November 24, 2021

Mr. Brett Olson 2317 Broadway Avenue Everett, Washington 98201

Subject: Limited Site Assessment Report Former Alfy's Pizza 2317 Broadway Avenue Everett, Washington 98201

Dear Mr. Olson:

In accordance with your request, Puget Environmental, PLLC (Puget) has prepared this report presenting results of soil and groundwater sampling activities at the site referenced above. The investigation was conducted to evaluate subsurface conditions in the area of a reported former gasoline service station at the southwestern portion of the property.

BACKGROUND

The site consists of an approximately 0.69-acre commercial property occupied by a vacant former Alfy's Pizza building. The site location is shown on Figure 1.

Results of Phase I investigation activities conducted by a prior consultant indicate the southern portion of the site was previously occupied by a gasoline service station. In October 2021, an exploratory excavation advanced by Envirotank, LLC of Camano Island, Washington reportedly identified an existing UST at the southwestern portion of the site. Approximate locations of the UST and reported prior service station features are shown on Figure 2.

SOIL AND GROUNDWATER SAMPLING ACTIVITIES

On October 26, 2021, Puget visited the site and advanced a total of 4 borings (P-1 through P-4) to evaluate subsurface conditions. Borings were advanced to approximately 16 to 20 feet below ground surface (bgs) using truck-mounted direct-push sampling equipment. Boring locations are shown on Figure 3.

PUGET

ENVIRONMENTAL P.L.L.C.

Soil encountered generally consisted of damp, bluish-gray silty clay to clayey silt to the maximum depth explored of approximately 20 feet bgs. Saturated conditions were encountered at approximately 10 feet bgs in boring P-1. Additional information is provided in the attached boring logs.

Soil from each boring was examined by a geologist and screened for indications of volatile compounds and petroleum hydrocarbons using a photoionization detector. Select soil samples from each boring were transferred into laboratory-supplied containers and placed into an iced cooler pending transport to the analytical laboratory.

Following the completion of soil sampling, a temporary groundwater monitoring well was constructed by placing slotted and blank 1-inch-diameter PVC well casing into the open borehole of P-1 to allow potential accumulation of groundwater. Following placement of the casing, the temporary well was allowed to recharge for approximately 1 hour. Following the recharge of the temporary well, a groundwater sample (W-1) was collected using a disposable bailer, transferred into laboratory-supplied containers and placed into an iced cooler pending transport to the analytical laboratory. Following the collection of groundwater sample W-1, the well casing was removed and the borehole backfilled with bentonite.

LABORATORY ANALYSIS AND RESULTS

Laboratory Analysis

Soil and groundwater samples were transported to the Friedman & Bruya Inc., laboratory in Seattle, Washington for analysis. Select samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-G) using Washington State Department of Ecology (Ecology) Method NWTPH-Gx, total petroleum hydrocarbons as diesel (TPH-D) and as oil (TPH-O) using Ecology Method NWTPH-Dx; Benzene, Toluene, Ethylbenzene and total Xylenes (BTEX) using EPA Method 8021B; polycyclic aromatic hydrocarbons (PAHs) using EPA Method 8270E; and volatile organic compounds (VOCs) using EPA Method 8260D.

Soil Sample Results

Laboratory results indicate sample P1-15, collected approximately 15 feet bgs from boring P-1 near the existing UST contained TPH-G and total xylenes concentrations exceeding the Model Toxics Control Act (MTCA) Method A cleanup levels.

Laboratory results indicate sample P3-5, collected approximately 5 feet bgs from boring P-1 in the area of the reported former gas pumps and canopy island location contained

PUGET

ENVIRONMENTAL P.L.L.C.

TPH-G, TPH-D, TPH-O and carcinogenic PAH concentrations exceeding the MTCA Method A or B cleanup level.

Laboratory results indicate sample P4-8, collected approximately 8 feet bgs from boring P-4 in the area of the reported former station building contained TPH-G and benzene concentrations exceeding the MTCA Method A cleanup levels.

No other analyte concentrations exceeding the MTCA Method A or B cleanup levels were identified in any of the samples analyzed. Soil sample results are shown on Table 1. Copies of the official laboratory report and chain of custody documentation are attached.

Groundwater Sample Results

Laboratory results indicate sample W-1, collected from boring P-1 near the existing UST contained TPH-G, TPH-D, TPH-O and carcinogenic PAH concentrations exceeding the MTCA Method A or B cleanup level. The laboratory also reported one or more VOCs at concentrations exceeding their respective Method B cleanup levels, but the results were flagged as being due to laboratory contamination or as an estimate due to instrument calibration concerns. Groundwater sample results are shown on Table 2. Copies of the official laboratory report and chain of custody documentation are attached.

CONCLUSIONS AND RECOMMENDATIONS

Based on results, it appears impacted soil and groundwater at concentrations exceeding applicable cleanup standards is present in the area of the reported former service station at the southwestern portion of the site.

Based on conditions, Puget recommends removing the existing UST, followed by additional investigation to further evaluate the extent of impact and provide data needed for development of a suitable cleanup plan.

LIMITATIONS

The scope of work for this investigation was conducted in a manner that is consistent with the level of care and skill ordinarily exercised by other members of the profession practicing in the same locality and under similar conditions as of the date the services were provided. Results of our evaluation including conclusions, opinions and recommendations are based on a limited number of observations and data. Data from other areas may be different. Puget makes no representation, guarantee, or warranty, express or implied, regarding the services, communication, report, opinion, or instrument of service provided.

PUGET

ENVIRONMENTAL P.L.L.C.

Puget provides various levels of service to meet the needs of varying clients. Evaluation of geologic and environmental conditions requires judgment leading to conclusions and recommendations that are generally based on incomplete knowledge of subsurface conditions due to the limitations of data from field studies. Although risk cannot be eliminated, more detailed and extensive studies yield more information which may help understand and manage the level of risk.

The work was conducted based on the scope and budget requirements, and site information provided by our client.

We appreciate the opportunity to provide service. Please do not hesitate to contact either of the undersigned if you have any questions.

Sincerely,

Puget Environmental, PLLC

Sarah Meyer Office Manager

John K. Meyer, L.HG. Principal Hydrogeologist

Attachments

Figures Tables Boring Logs Laboratory Reports and Chain of Custody Documentation

Table 1 Soil Sample Laboratory Results TPH-G, TPH-D, TPH-O, BTEX, PAHs and VOCs Former Alfy's Pizza 2317 Broadway Avenue Everett, Washington 98201

Sample Name	Sample Location	Sample Depth	Date Collected	⊃d D-H 4L	ПРН-D	ТРН-О	Benzene ^{pc}	Toluene ^{pc}	Ethylbenzene ^{pc}	Total Xylenes ^{pc}	Naphthalene	Carcinogenic PAHs	Non-Carcinogenic PAHs	vocs
P1-15	P-1	15	10/26/21	1,400	<50	<250	<0.4	1.2	3.8	13	NA	NA	NA	NA
P1-18	P-1	18	10/26/21	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	NA	NA	NA	NA
P2-16	P-2	16	10/26/21	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	NA	NA	NA	NA
P3-5	P-3	5	10/26/21	750	2,900 x	17,000	<0.2	3.1	<0.2	7.1	<0.05	D	D	D
P3-8	P-3	8	10/26/21	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	NA	NA	NA	NA
P4-8	P-4	8	10/26/21	630	84 x	<250	0.36	0.45	6.9	7.8	NA	NA	NA	NA
P4-12	P-4	12	10/26/21	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	NA	NA	NA	NA
Method A Clear	nup Level			100/30 ¹	2,000	2,000	0.03	7	6	9	5			
Method B Clear	nup Level							-			-	Various	Various	Various

Total Petroleum Hydrocarbons as Gasoline (TPH-G) compound analysis conducted using Washington State Department of Ecoloy Method NWTPH-Gx

Total Petroleum Hydrocarbons as Diesel (TPH-D) and Total Petroleum Hydrocarbons as Oil (TPH-O) compound analysis conducted using Washington State Department of Ecology Method NWTPH-Dx

Benzene, Toluene, Ethylbenzene and Total Xylene (BTEX) and Volatile Organic Compound (VOC) analysis conducted using EPA Method 8260D

Polycyclic Aromatic Hydrocarbon (PAH) analysis conducted using EPA Method 8270E

Depths are in feet below ground surface (bgs)

Results in milligrams per kilogram (mg/kg)

Bolded and shaded values exceed MTCA Method A and/or B cleanup levels

Benzene detected/benzene not detected and the sum of toluene, ethylbenzene and total xylenes concentrations is less than 1% of the gasoline mixture

- D Detected
- NA Not analyzed
- pc Sample flagged by the analytical laboratory as "the sample was received with incorrect preservation or in a container not approved by the method."
- x Sample flagged by the analytical laboratory as "the sample chromotagraphic pattern does not resemble the fuel standard used for quantification."
- -- Not Applicable

Table 2Groundwater Sample Laboratory ResultsTPH-G, TPH-D, TPH-O, BTEX, PAHs and VOCsFormer Alfy's Pizza2317 Broadway AvenueEverett, Washington 98201

Sample Name	Sample Location	Sample Depth	Date Collected	ТРН-С	О-НАТ	О-НАТ	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	Carcinogenic PAHs	Non-Carcinogenic PAHs	VOCs ^{ca, ic}
W-1	Boring P-1	Unknown	10/26/21	2,000	1,400 x	1,800	2.0 ca	<1	3.9	<4.0	2.2	D	D	D
Method A Clear	nup Level			800/1,000 ¹	500	500	5	1,000	700	1,000	160			
Method B Clear	nup Level											Various	Various	Various

Total Petroleum Hydrocarbons as Gasoline (TPH-G) compound analysis conducted using Washington State Department of Ecology Method NWTPH-Gx Total Petroleum Hydrocarbons as Diesel (TPH-D) and Total Petroleum Hydrocarbons as Oil (TPH-O) compound analysis conducted using Washington State Department of Ecology Method NWTPH-Dx

Benzene, Toluene, Ethylbenzene and Total Xylene (BTEX) and Volatile Organic Compound (VOC) analysis conducted using EPA Method 8260D

Polycyclic Aromatic Hydrocarbon (PAH) analysis conducted using EPA Method 8270E

Results in microgarms per liter (ug/L)

Bolded and shaded values exceed MTCA Method A and/or B cleanup levels: protective of groundwater saturated

- Benzene detected/benzene not detected and the sum of toluene, ethylbenzene and total xylenes concentrations is less than 1% of the gasoline mixture. One or more analyte in the sample was detected at concentrations exceeding the cleanup level, but the samle was flagged by the analytical laboratory as "the
- ca calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate."
- D Detected
- Ic One or more analyte in the sample was detected at concentrations exceeding the cleanup level, but the samle was flagged by the analytical laboratory as "the presence of the analyte is likely due to laboratory contamination."
- x Sample flagged by the analtical laboratory as "the sample chromotagraphic pattern does not resemble the fuel standard used for quantification."

Date: 10/26/20)21		Soil Boring Log	Boring Name: P-1		
Project Name:	Fc	ormer Alfy	's Pizza	Location:		
Address:	2317 Everet	7 Broadw t, Washir	ay Avenue Igton 98201	Near estimated f and canop	former gas pump by location	
Depth Blows	PID	USCS	Description		Well Construction	
	0.0 0.0 0.0 291 0.2	ML/CL SW	Damp, bluish gray, silty clay to cl approximately 8 feet bgs, underl silty clay to clayey silt to approxi Saturated conditions encountered approximately 10 feet bgs.	layey silt to ain by medium brown, mately 15 feet bgs. d at d at		
-20	1.1		Total depth drilled = 18 feet			
25 30					Temporary well: 0 to 3 feet 1-inch blank PVC casing. 3 to 18 feet 0.010-inch slotted 1-inch PVC casing. Well decommissioned by removing casing and filling borehole with bentonite.	
-35	AL P.L.L.C.	Driller N	ame: Puget Environmental	Sampling Method: 4ft x 2.25-inch sampler	with acetate liner	
4616 25th Avenue Seattle, Washinate	e NE #143 on 98105		Truck-Mounted Direct-Push	Weather Conditions:		
Project Number: 21446 SM			2.25 inches		Page 1 of 1	

Date: 10/26/20	ate:10/26/2021Soil Boring LogBoring Na			Boring Nam	ne: P-2		
Project Name:	Fo	ormer Alfy	's Pizza	Location:			
Address:	2317 Everet	' Broadwa t, Washir	ay Avenue Igton 98201	East of the e pit exca	existing tank avation		
Depth Blows	PID	USCS	Description		Well Construction		
-10	0.0 0.0 0.0	ML/CL	Damp, medium brown and grey m clayey silt to maximum depth of a bgs. Refusal encountered at appro due to dense soils.	ottled silty clay to pproximately 16 feet ximately 16 feet bgs	Not Applicable		
20			lotal depth drilled = 16 feet				
-25							
_30 _35							
PUGET ENVIRONMENT	TAL P.L.L.C.	Driller N	ame: Puget Environmental Sa	ampling Method: 4ft x 2.25-inch sampler	with acetate liner		
ENVIRONMENTAL P.L.L.C. 4616 25th Avenue NE #143 Seattle, Washington 98105 Project Number: 21446 SM		Drilling N Diamete	1ethod: Truck-Mounted Direct-Push r: 2.25 inches	eather Conditions: Partly Cloudy,	, 50s Page 1 of 1		

Date: 10/26/2021 Soil Boring Log Boring Name:			ne: P-3			
Project Name:	Fc	ormer Alfy	's Pizza	Location:		
Address:	2317 Everet	7 Broadwa t, Washir	ay Avenue Igton 98201	Near former g canopy	as pumps and location	
Depth Blows	PID	USCS	Description		Well Construction	
5	101	SP	Wet, dark gray fine-grained sand hydrocarbon-like odor. @ 6 feet grayish-green, no odor.	with clay with a strong	Not Applicable	
	0.2 3.4	SM	Silty, clayey, fine-grained sand			
-10	0.0	ML/CL	Damp, medium-brown silty clay t	o clayey silt.		
-15	0.0		Total depth drilled = 16 feet			
20						
-25						
30						
-35						
PUGET ENVIRONMENT	AL P.L.L.C.	Driller N	ame: Puget Environmental S	ampling Method: 4ft x 2.25-inch sampler	with acetate liner	
4616 25th Avenue Seattle, Washingt	e NE #143 on 98105	Drilling N Diamete	Aethod: Truck-Mounted Direct-Push r: 2 25 inches	Weather Conditions: Partly Cloudy, 50s		
Project Number: 2	1446 SM				Page 1 of 1	

Date: 10/26/20	021		Soil Boring Log	Boring Nam	ie: P-4	
Project Name:	Fc	ormer Alfy	's Pizza	Location:		
Address:	2317 Everet	7 Broadwa t, Washin	ay Avenue Igton 98201	Near former building	gas station location	
Depth Blows	PID	USCS	Description		Well Construction	
-5	15.6		Saturated, loose, dark gray, silty cla hydrocarbon-like odor.	ay to clayey silt with strong	Not Applicable	
	15.6					
	6.7	ML/CL	@ 12 feet damp, dark, gravish-gree	en, no odor.		
15	0.9		@ 14 feet damp, medium-brown an no odor.	id tan with blue mottling,		
-20-	0.0		Total depth drilled = 20 feet			
-25						
-30						
PUGET	TAL P.L.L.C.	Driller Na	ame: Puget Environmental	Sampling Method: 4ft x 2.25-inch sampler v	with acetate liner	
ENVIRONMENTAL P.L.L.C 4616 25th Avenue NE #143 Seattle, Washington 98105 Project Number: 21446 SM		Drilling N Diameter	Nethod: Truck-Mounted Direct-Push r: 2.25 inches	Weather Conditions: Partly Cloudy,	50s Page 1 of 1	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 8, 2021

John Meyer, Project Manager Puget Environmental 4616 25th Avenue NE, Suite 143 Seattle, WA 98105

Dear Mr Meyer:

Included are the results from the testing of material submitted on October 28, 2021 from the Alfy's, F&BI 110560 project. There are 16 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

help Cole

Michael Erdahl Project Manager

Enclosures c: Sarah Meyer PGT1108R.DOC

ENVIRONMENTAL CHEMISTS

Date of Report: 11/08/21 Date Received: 10/28/21 Project: Alfy's, F&BI 110560 Date Extracted: 10/29/21 Date Analyzed: 10/29/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery)</u> (Limit 51-134)
W-1 110560-18 1/20	2,000	110
Method Blank 01-2323 MB	<100	110

ENVIRONMENTAL CHEMISTS

Date of Report: 11/08/21 Date Received: 10/28/21 Project: Alfy's, F&BI 110560 Date Extracted: 10/28/21 Date Analyzed: 10/29/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-132)
P1-15 pc 110560-03 1/20	<0.4	1.2	3.8	13	1,400	92
P1-18 pc 110560-05	< 0.02	< 0.02	< 0.02	<0.06	<5	86
P2-16 pc 110560-08	< 0.02	< 0.02	< 0.02	< 0.06	<5	87
P3-5 pc 110560-09 1/10	< 0.2	3.1	< 0.2	7.1	750	97
P3-8 pc 110560-10	< 0.02	< 0.02	< 0.02	< 0.06	<5	86
P4-8 pc 110560-13 1/5	0.36	0.45	6.9	7.8	630	106
P4-12 pc 110560-15	< 0.02	< 0.02	< 0.02	<0.06	<5	86
Method Blank 01-2320 MB	< 0.02	< 0.02	< 0.02	<0.06	<5	98
Method Blank	< 0.02	< 0.02	< 0.02	< 0.06	<5	97

ENVIRONMENTAL CHEMISTS

Date of Report: 11/08/21 Date Received: 10/28/21 Project: Alfy's, F&BI 110560 Date Extracted: 10/29/21 Date Analyzed: 10/29/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 48-168)
P1-15 110560-03	<50	<250	105
P1-18 110560-05	<50	<250	101
P2-16 110560-08	<50	<250	103
P3-5 110560-09	2,900 x	17,000	103
P3-8 110560-10	<50	<250	102
P4-8 110560-13	84 x	<250	110
P4-12 110560-15	<50	<250	101
Method Blank 01-2503 MB	<50	<250	104

ENVIRONMENTAL CHEMISTS

Date of Report: 11/08/21 Date Received: 10/28/21 Project: Alfy's, F&BI 110560 Date Extracted: 10/29/21 Date Analyzed: 10/29/21

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
W-1 110560-18	1,400 x	1,800	81
Method Blank 01-2504 MB	<50	<250	106

ENVIRONMENTAL CHEMISTS

Client Sample ID:W-1Date Received:10/28/21Date Extracted:11/01/21Date Analyzed:11/02/21Matrix:WaterUnits:ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 110560 110560-18 1/2 110209.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14	$\begin{array}{c} \mbox{% Recovery:} \\ 26 \\ 42 \\ 48 \\ 41 \\ 48 \\ 66 \end{array}$	Lower Limit: 10 10 15 25 10 41	Upper Limit: 60 49 144 128 142 138
Compounds:	Concentration ug/L (ppb)		
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)pervlene	$\begin{array}{c} 2.2\\ 10\\ 5.9\\ 0.65\\ 0.24\\ 0.49\\ 3.7\\ 0.93\\ 5.9\\ 6.2\\ 4.3\\ 3.8\\ 4.2\\ 6.2\\ 1.9\\ 1.7\\ 0.44\\ 1.3\end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Blank	Client:	Puget Environmental
Date Received:	Not Applicable	Project:	Alfy's, F&BI 110560
Date Extracted:	11/01/21	Lab ID:	01-2511 mb2
Date Analyzed:	11/02/21	Data File:	110209.D
Matrix:	Water	Instrument	:: GCMS12
Units:	ug/L (ppb)	Operator:	VM
Surrogates:	% Recov	ery: Lowe:	$ \begin{array}{ccc} r & Upper \\ : & Limit: \\ & 65 \\ & 65 \\ & 150 \\ & 108 \\ & 140 \\ & 150 \end{array} $
2-Fluorophenol	21	11	
Phenol-d6	16	11	
Nitrobenzene-d5	120	50	
2-Fluorobiphenyl	103	44	
2,4,6-Tribromopheno	61 81	10	
Terphenyl-d14	112	50	
Compounds:	Concentr ug/L (p	ation pb)	
Naphthalene 2-Methylnaphthalen 1-Methylnaphthalen Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(k)fluoranthen Indeno(1,2,3-cd)pyre Dibenz(a,h)anthrace	$\begin{array}{c} <0.2\\ e & <0.2\\ e & <0.2\\ e & <0.2\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	W-1 10/28/21 11/03/21 11/03/21 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 110560 110560-18 110318.D GCMS11 WE	
~			Lower	Upper	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	e-d4	99	78	126	
1 Duomo fluoro horr		97	87	115	
4-Bromolluorobenz	zene	99	92	112	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome	ethane	<1	1.3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		< 0.02	Dibromo	chloromethane	< 0.5
Bromomethane		<5	1,2-Dibr	omoethane (EDB)	<1
Chloroethane		<1	Chlorobe	enzene	<1
Trichlorofluoromet	hane	<1	Ethylber	nzene	3.9
Acetone		<50	1,1,1,2-7	etrachloroethane	<1
1,1-Dichloroethene	•	<1	m,p-Xyle	ene	3.0 ca
Hexane		110	o-Xylene	9	<1
Methylene chloride	Э	9.1 lc	Styrene		<1
Methyl t-butyl eth	er (MTBE)	<1	Isopropy	lbenzene	5.0
trans-1,2-Dichloroe	ethene	<1	Bromofo	rm	<5
1,1-Dichloroethane	e e e e e e e e e e e e e e e e e e e	<1	n-Propy	lbenzene	9.3
2,2-Dichloropropar	ne	<1	Bromobe	enzene	<1
cis-1,2-Dichloroeth	ene	<1	1,3,5-Tri	imethylbenzene	8.3
Chloroform		8.4 ca	1,1,2,2-1	letrachloroethane	< 0.2
2-Butanone (MEK))	<20	1,2,3-Tri	ichloropropane	<1
1,2-Dichloroethane	e (EDC)	< 0.2	2-Chloro	otoluene	<1
1,1,1-Trichloroetha	ane	<1	4-Chloro	otoluene	<1
1,1-Dichloroproper	ne	<1	tert-But	ylbenzene	<1
Carbon tetrachlori	de	4.3	1,2,4-Tri	imethylbenzene	3.6
Benzene		2.0 ca	sec-Buty	lbenzene	4.2
Trichloroethene		< 0.5	p-Isopro	pyltoluene	10
1,2-Dichloropropar	ne	<1	1,3-Dich	lorobenzene	<1
Bromodichloromet	hane	< 0.5	1,4-Dich	lorobenzene	<1
Dibromomethane		<1	1,2-Dich	lorobenzene	<1
4-Methyl-2-pentan	one	<10	1,2-Dibr	omo-3-chloropropane	<10
cis-1,3-Dichloropro	pene	< 0.4	1,2,4-Tri	ichlorobenzene	<1
Toluene		<1	Hexachl	orobutadiene	< 0.5
trans-1,3-Dichloro	propene	< 0.4	Naphtha	alene	1.8
1,1,2-Trichloroetha	ane	< 0.5	1,2,3-Tri	ichlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 11/03/21 11/03/21 Water ug/L (ppb)	nk ble	Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 110560 01-2487 mb 110307.D GCMS11 WE	
Surrogatos		% Rocovory:	Lower Limit:	Upper Limit:	
1 2-Dichloroethane	-d4	104	78	126	
Toluene-d8	uı	97	87	115	
4-Bromofluorobenze	ene	100	92	112	
Compounds:		Concentration	Compou	nds:	Concentration
De la la la		ugili (pps)	e e De l		ug, 1 (pps)
Dichlorodifluorome	thane	<1	1,3-Dich	loropropane	<1
Chloromethane		<10	Tetrachl	oroethene	<1
Vinyl chloride		<0.02	Dibromo	ochloromethane	<0.5
Chloroothono		<0 <1	1,2-Dibr Chloroby	omoetnane (EDD)	<1
Trichlorofluoromot	hano	<1	Ethylbo		<1
Acetone	lialle	<50	1 1 1 2 . T	'etrachloroethane	<1
1 1-Dichloroethene		<1	m n-Xvle	ene	<2
Hexane		<5	o-Xvlene)	<1
Methylene chloride		<5	Styrene		<1
Methyl t-butyl ethe	er (MTBE)	<1	Isopropy	lbenzene	<1
trans-1,2-Dichloroe	thene	<1	Bromofo	rm	<5
1,1-Dichloroethane		<1	n-Propyl	lbenzene	<1
2,2-Dichloropropan	e	<1	Bromobe	enzene	<1
cis-1,2-Dichloroethe	ene	<1	1,3,5-Tri	imethylbenzene	<1
Chloroform		<1	1,1,2,2-T	letrachloroethane	< 0.2
2-Butanone (MEK)		<20	1,2,3-Tri	ichloropropane	<1
1,2-Dichloroethane	(EDC)	<0.2	2-Chloro	otoluene	<1
1,1,1-Trichloroetha	ne	<1	4-Chloro	otoluene	<1
1,1-Dichloropropen	e 1-	<1	tert-But	ylbenzene	<[
Carbon tetrachioric	ie	<0.5	1,2,4-1r	Imetnyibenzene	<1
Trichloroothono		<0.55	n Loopro	nyltoluono	<1
1 2-Dichloropropan	Δ	<0.5	1 3-Dich	lorobenzene	<1
Bromodichlorometh	e nane	<0.5	1,5-Dich	lorobenzene	<1
Dibromomethane	lane	<1	1,4 Dich	lorobenzene	<1
4-Methyl-2-pentance	one	<10	1, 2 Dien 1.2-Dibr	omo-3-chloropropane	<10
cis-1,3-Dichloropror	pene	< 0.4	1,2,4-Tri	ichlorobenzene	<1
Toluene		<1	Hexachl	orobutadiene	< 0.5
trans-1,3-Dichlorop	oropene	< 0.4	Naphtha	alene	<1
1,1,2-Trichloroetha	ne	< 0.5	1,2,3-Tri	ichlorobenzene	<1
2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Date of Report: 11/08/21 Date Received: 10/28/21 Project: Alfy's, F&BI 110560

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 110	565-01 (Duplie	cate)			
	Reporting	Sampl	le Duj	olicate	RPD
Analyte	Units	Resul	t R	esult	(Limit 20)
Gasoline	ug/L (ppb)	<100	<	:100	nm
Laboratory Code: Lab	oratory Contr	ol Sample			
			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	ug/L (ppb)	1,000	104	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 11/08/21 Date Received: 10/28/21 Project: Alfy's, F&BI 110560

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 110487-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	94	69-120
Toluene	mg/kg (ppm)	0.5	98	70-117
Ethylbenzene	mg/kg (ppm)	0.5	95	65 - 123
Xylenes	mg/kg (ppm)	1.5	96	66-120
Gasoline	mg/kg (ppm)	20	100	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 11/08/21 Date Received: 10/28/21 Project: Alfy's, F&BI 110560

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 110558-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	99	69-120
Toluene	mg/kg (ppm)	0.5	102	70-117
Ethylbenzene	mg/kg (ppm)	0.5	100	65 - 123
Xylenes	mg/kg (ppm)	1.5	101	66-120
Gasoline	mg/kg (ppm)	20	105	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 11/08/21 Date Received: 10/28/21 Project: Alfy's, F&BI 110560

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	110560-05 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	\mathbf{MS}	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	106	104	73-135	2
Laboratory Code:	Laboratory Contro	ol Sampl	e				
			Percent				
	Reporting	Spike	Recovery	Acceptan	ce		
Analyte	Units	Level	LCS	Criteria	1		
Diesel Extended	mg/kg (ppm)	5,000	104	74-139			

ENVIRONMENTAL CHEMISTS

Date of Report: 11/08/21 Date Received: 10/28/21 Project: Alfy's, F&BI 110560

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	120	116	63-142	3

ENVIRONMENTAL CHEMISTS

Date of Report: 11/08/21 Date Received: 10/28/21 Project: Alfy's, F&BI 110560

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample 1/0.5

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Naphthalene	ug/L (ppb)	2.5	93 vo	92 vo	62-90	1
2-Methylnaphthalene	ug/L (ppb)	2.5	94 vo	94 vo	64-93	0
1-Methylnaphthalene	ug/L (ppb)	2.5	94 vo	93	64-93	1
Acenaphthylene	ug/L (ppb)	2.5	103	101	70-130	2
Acenaphthene	ug/L (ppb)	2.5	100	98	70-130	2
Fluorene	ug/L (ppb)	2.5	103	100	70-130	3
Phenanthrene	ug/L (ppb)	2.5	103	100	70-130	3
Anthracene	ug/L (ppb)	2.5	100	100	70-130	0
Fluoranthene	ug/L (ppb)	2.5	106	105	70-130	1
Pyrene	ug/L (ppb)	2.5	106	104	70-130	2
Benz(a)anthracene	ug/L (ppb)	2.5	105	104	70-130	1
Chrysene	ug/L (ppb)	2.5	105	103	70-130	2
Benzo(a)pyrene	ug/L (ppb)	2.5	105	103	70-130	2
Benzo(b)fluoranthene	ug/L (ppb)	2.5	107	103	70-130	4
Benzo(k)fluoranthene	ug/L (ppb)	2.5	103	98	70-130	5
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	2.5	111	112	70-130	1
Dibenz(a,h)anthracene	ug/L (ppb)	2.5	108	113	70-130	5
Benzo(g,h,i)perylene	ug/L (ppb)	2.5	106	112	70-130	6

ENVIRONMENTAL CHEMISTS

Date of Report: 11/08/21 Date Received: 10/28/21 Project: Alfy's, F&BI 110560

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

	_		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	126	134	46-206	6
Chloromethane	ug/L (ppb)	10	110	119	70-142	8
Vinyl chloride	ug/L (ppb)	10	111	118	70-130	6
Bromomethane	ug/L (ppb)	10	112	120	56 - 197	7
Chloroethane	ug/L (ppb)	10	112	118	70-130	5
Trichlorofluoromethane	ug/L (ppb)	10	111	118	70-130	6
1 1 Dishloroothono	ug/L (ppb)	10	109	110	70 120	2
Hovano	ug/L (ppb)	10	96	102	54-136	6
Methylene chloride	ug/L (ppb)	10	86	93	43-134	8
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	98	106	70-130	8
trans-1,2-Dichloroethene	ug/L (ppb)	10	96	102	70-130	6
1,1-Dichloroethane	ug/L (ppb)	10	100	107	70-130	7
2,2-Dichloropropane	ug/L (ppb)	10	97	113	70-130	15
cis-1,2-Dichloroethene	ug/L (ppb)	10	98	105	70-130	7
Chloroform	ug/L (ppb)	10	98	109	70-130	11
2-Butanone (MEK)	ug/L (ppb)	50	177	81	17-154	5
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	106	113	70-130	6 7
1,1,1-1 richloropropaga	ug/L (ppb)	10	102	109	70-130	3
Carbon tetrachloride	ug/L (ppb)	10	95	105	70-130	19
Benzene	ug/L (ppb)	10	101	107	70-130	6
Trichloroethene	ug/L (ppb)	10	94	101	70-130	7
1,2-Dichloropropane	ug/L (ppb)	10	93	103	70-130	10
Bromodichloromethane	ug/L (ppb)	10	106	96	70-130	10
Dibromomethane	ug/L (ppb)	10	97	107	70-130	10
4-Methyl-2-pentanone	ug/L (ppb)	50	97	103	68-130	6
cis-1,3-Dichloropropene	ug/L (ppb)	10	90	97	69-131	7
Toluene	ug/L (ppb)	10	91	99	70-130	8
1 1 2 Trichloroothono	ug/L (ppb)	10	91	97	70-130	6
2-Hovenono	ug/L (ppb)	50	54 88	95	45-138	8
1 3-Dichloropropane	ug/L(ppb)	10	93	101	70-130	8
Tetrachloroethene	ug/L (ppb)	10	92	100	70-130	8
Dibromochloromethane	ug/L (ppb)	10	93	102	60-148	9
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	90	97	70-130	7
Chlorobenzene	ug/L (ppb)	10	93	100	70-130	7
Ethylbenzene	ug/L (ppb)	10	91	99	70-130	8
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	95	105	70-130	10
m,p-Aylene	ug/L (ppb)	20	96	104	70-130	8
Sturono	ug/L (ppb)	10	91	100	70-130	9
Isopropylhenzene	ug/L(ppb)	10	91	101	70-130	10
Bromoform	ug/L (ppb)	10	91	96	69-138	5
n-Propylbenzene	ug/L (ppb)	10	89	97	70-130	9
Bromobenzene	ug/L (ppb)	10	85	94	70-130	10
1,3,5-Trimethylbenzene	ug/L (ppb)	10	99	101	70-130	2
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	91	101	70-130	10
1,2,3-Trichloropropane	ug/L (ppb)	10	93	101	70-130	8
2-Chlorotoluene	ug/L (ppb)	10	90	103	70-130	13
4-Chiorotoluene	ug/L (ppb)	10	97	101	70-130	4
1.2.4-Trimethylbenzone	ug/L (ppb)	10	91	100	70-130	9
sec-Butylbenzene	ug/L (ppb)	10	89	100	70-130	12
p-Isopropyltoluene	ug/L (ppb)	10	90	100	70-130	11
1,3-Dichlorobenzene	ug/L (ppb)	10	92	100	70-130	8
1,4-Dichlorobenzene	ug/L (ppb)	10	91	100	70-130	9
1,2-Dichlorobenzene	ug/L (ppb)	10	89	99	70-130	11
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	97	105	70-130	8
1,2,4-Trichlorobenzene	ug/L (ppb)	10	86	97	70-130	12
Hexachlorobutadiene	ug/L (ppb)	10	85	96	70-130	12
Naphthalene	ug/L (ppb)	10	91	102	70-130	11
1,2,5-1 richtorobenzene	ug/L (ppb)	10	66	99	70-130	12

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

red at 6 °C	Samples receiv			Received by:	Ph. (206) 285-8282
10001	121/	NWW PNW	W W W	Relinquished b	Seattle, WA 98119-2029
50 El 17/3//01	LAT CAL	NEL UN	mal ha i i	Received by.	; 3012 16 th Avenue West
DATE TIME	COMPANY	PRINT NAME	SIGNARUURU	Relinquished b	Friedman & Bruya, Inc.
			V	0	8-41 N
				R	1 12-5
				R	11-21
	ž			40	12-12
•				06	12-8
				20	81~11 x
				004	11-19
		XXX 1		<u><u></u> 8</u>	11-15
				102	P1-12
		5 /	12/2/2/	0	8-11
Notes	PAHs EPA 8270 PCBs EPA 8082	Type Performance Provide Type Performance Provide Prov	ID Date Time Sampled Sampled	Lab I	Sample ID
	YSES REQUESTED			~ ~ ~	
r t: Dispose after 30 days	Default	specific RLs? - Yes / No	Project	Smail	PhoneI
AMPLE DISPOSAL ve samples	ICE TO S.	IKS	REMAI		City, State, ZIP
narges authorized by:	□ KUSF Rush ch	5 5		ni alli	Address
JRNAROUND TIME lard turnaround	0# I Stand	CT NAME F	PROJE	Day Mer	Report To 1911 1
ge# 1 of X Doll	10-28-21 ·	ERS (signature)	SAMPL		110560

	at <u>o</u> oc	a received	Sample											reu by:	Tagant	7070-002 (002	4 i 6.
														ad her	Receit	6868 386 (3116)	ph
5387	10/22/21		2BJ	-11		S.			5	1964		hund	1 Carlos	luished by:	Reling	tle, WA 98119-2029	Seat
		R	Nor 1					1 Section		ull of	~			instea of	Recei	2 16th Avenue West	3012
TIME	DATE	YN	COMPA				ME	<u>I NA</u>	RIN	F		TURE	ANDI8	michael hus	Ralin	dman & Residia Jun	Frie
									Ĺ	•							
	¢ , , ,	-								ا							
				Á	\ge		\mathfrak{R}	X	\geq	4 10				1 X		1-14	
		* .							- <u>(</u>	Фъ <u>с</u> кан 	х х			4 T		04-20	
	•											2000-000 		6	1	- K-	
						\sim	쐿	X	~~~~					ন		14-12	
						, ,			~					R	-	ah.h	
		·········				-	쉿	X		-				21		8.61	ľ
									~~~		entrestations			P	i	13-16	
									NOTION OF	N		1	Qr.			212	l
Ω Ω	Note		PCBs EPA 8082	PAHs EPA 8270	VOCs EPA 8260	BTEX EPA 8021	NWTPH-Gx	NWTPH-Dx	# of Jars	Sample Type	Time Sampled	Date ampled S	N N	Lab I		Sample ID	
		TED	S REQUES	LYSH	AN			0		-	-		-	- ·			
30 days	Dispose after	Default:					No	N.S.C.	- Ye	cific RLs?	Project sp				Email	one	
	e samples	□ Archive	; ;			e			×.						/	y, suare, cur	
ÀL.	MPLE DISPOS	SAI	0T	OICE	INV	,				S	REMARK				9	TTD	2. 2.
1 by:	rges authorized	Rush cha				,				6. 12	X					dress	Ad
	urd turnaround	Standa		PO #		$\left( \right)$				NAME	PROJECT			Al la	Ð,	mpany left	ç
184		Page			$\geq$	$\mathcal{N}$	$\mathcal{N}$	[N]	ure)	RS (signat	SAMPLE			12/	Sill.	port To 2/10	Re
	)	21.	7-28-0	Ĵ		DΥ	TO	CUS	OF	CHAIN	AMPLE	ß				04501	

#### ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

November 18, 2021

John Meyer, Project Manager Puget Environmental 4616 25th Avenue NE, Suite 143 Seattle, WA 98105

Dear Mr Meyer:

Included are the additional results from the testing of material submitted on October 28, 2021 from the Alfy's, F&BI 110560 project. There are 9 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Sarah Meyer PGT1118R.DOC

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	P3-5 10/28/21 11/09/21 11/10/21 Soil mg/kg (ppm	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 110560 110560-09 1/25 111010.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	ıol	% Recovery: 74 d 86 d 95 d 90 d 91 d 103 d	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrace	ne ne ne ene ene ene	$< 0.05 \\ 1.8 \\ 0.88 \\ < 0.05 \\ < 0.05 \\ 0.10 \\ 0.22 \\ < 0.05 \\ 0.32 \\ 0.86 \\ 0.19 \\ 0.33 \\ 0.14 \\ J \\ 0.48 \\ J \\ 0.056 \\ J \\ 0.10 \\ J \\ < 0.05 \\ J $		
Benzo(g,h,i)perylen	e	0.099 J		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	P3-5 10/28/21 11/09/21 11/10/21 Soil mg/kg (ppn	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 110560 110560-09 1/250 111011.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	% Recovery: 67 d 84 d 90 d 85 d 74 d 85 d	Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:		Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrace Benzo(g,h,i)pervlen	ne ne ne ene ene e	$\begin{array}{c} < 0.5 \\ 1.7 \\ 0.86 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < $		

## ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 11/09/21 11/09/21 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 110560 01-2558 mb2 1/5 110929.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14		Lower Limit: 39 48 23 50 40 50	Upper Limit: 103 109 138 150 127 150
Compounds:	Concentration mg/kg (ppm)		
Naphthalene 2-Methylnaphthale 1-Methylnaphthale Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	$\begin{array}{cccc} <0.01\\ ne & <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ ne & <0.01\\ ne & <0.01\\ ene & <0.0$		

## ENVIRONMENTAL CHEMISTS

## Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	P3-5 pc		Client:	Puget Environmental	
Date Received:	10/28/21		Project:	Alfy's, F&BI 110560	
Date Extracted:	11/11/21		Lab ID:	110560-09	
Date Analyzed:	11/15/21		Data File:	111513.D	
Matrix:	Soil		Instrument:	GCMS13	
Units:	mg/kg (ppr	n) Dry Weight	Operator:	WE	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	-d4	103	84	118	
Toluene-d8		108	86	117	
4-Bromofluorobenz	ene	98	90	112	
		Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		0.73	o-Xylene	e	< 0.05
Methylene chloride	•	< 0.5	Styrene		< 0.05
Methyl t-butyl ethe	er (MTBE)	< 0.05	Isopropy	lbenzene	1.8
trans-1,2-Dichloroe	thene	< 0.05	Bromofo	orm	< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	5.2
2,2-Dichloropropan	e	< 0.05	Bromobe	enzene	< 0.05
cis-1,2-Dichloroeth	ene	< 0.05	1,3,5-Tr	imethylbenzene	0.060
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tr	ichloropropane	< 0.05
1,2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1,1,1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1,1-Dichloropropen	e	< 0.05	tert-But	ylbenzene	< 0.05
Carbon tetrachlorid	de	< 0.05	1,2,4-Tr	imethylbenzene	0.14
Benzene		< 0.03	sec-Buty	lbenzene	0.60
Trichloroethene		< 0.02	p-Isopro	pyltoluene	0.37
1,2-Dichloropropan	e	< 0.05	1,3-Dich	lorobenzene	< 0.05
Bromodichlorometh	nane	< 0.05	1,4-Dich	lorobenzene	0.051
Dibromomethane		< 0.05	1,2-Dich	lorobenzene	< 0.05
4-Methyl-2-pentane	one	<1	1,2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro	pene	< 0.05	1,2,4-Tri	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha	alene	0.057
1,1,2-Trichloroetha	ne	< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

## ENVIRONMENTAL CHEMISTS

Client Sample ID:	Method Bla	ank	Client:	Puget Environmental	
Date Received:	Not Applic	able	Project:	Alfy's, F&BI 110560	
Date Extracted:	11/11/21		Lab ID:	01-2573 mb	
Date Analyzed:	11/11/21		Data File:	111105.D	
Matrix:	Soil		Instrument:	GCMS4	
Units:	mg/kg (ppr	n) Dry Weight	Operator:	WE	
	8 8 T	, , ,	т. Т	TT	
C (		0/ D	Lower	Upper	
Surrogates:	14	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-	·d4	105	90	109	
Toluene-d8		103	89	112	
4-Bromofluorobenze	ene	96	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	thane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5	Tetrachl	oroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorobe	enzene	< 0.05
Trichlorofluorometh	nane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1.1.1.2-7	'etrachloroethane	< 0.05
1.1-Dichloroethene		< 0.05	m.p-Xvle	ene	< 0.1
Hexane		< 0.25	o-Xvlene	)	< 0.05
Methylene chloride		< 0.5	Styrene		< 0.05
Methyl t-butyl ethe	r (MTBE)	< 0.05	Isopropy	lbenzene	< 0.05
trans-1.2-Dichloroe	thene	< 0.05	Bromofo	rm	< 0.05
1,1-Dichloroethane		< 0.05	n-Propy	lbenzene	< 0.05
2.2-Dichloropropan	е	< 0.05	Bromobe	enzene	< 0.05
cis-1.2-Dichloroethe	ene	< 0.05	1.3.5-Tri	imethvlbenzene	< 0.05
Chloroform		< 0.05	1.1.2.2-7	etrachloroethane	< 0.05
2-Butanone (MEK)		<1	1.2.3-Tri	chloropropane	< 0.05
1.2-Dichloroethane	(EDC)	< 0.05	2-Chloro	otoluene	< 0.05
1.1.1-Trichloroetha	ne	< 0.05	4-Chloro	otoluene	< 0.05
1.1-Dichloropropene	9	< 0.05	tert-But	vlbenzene	< 0.05
Carbon tetrachlorid	le	< 0.05	1.2.4-Tri	imethvlbenzene	< 0.05
Benzene		< 0.03	sec-Buty	lbenzene	< 0.05
Trichloroethene		< 0.02	p-Isopro	pyltoluene	< 0.05
1,2-Dichloropropan	е	< 0.05	1.3-Dich	lorobenzene	< 0.05
Bromodichlorometh	ane	< 0.05	1.4-Dich	lorobenzene	< 0.05
Dibromomethane		< 0.05	1.2-Dich	lorobenzene	< 0.05
4-Methvl-2-pentanc	one	<1	1.2-Dibr	omo-3-chloropropane	< 0.5
cis-1,3-Dichloropror	oene	< 0.05	1,2,4-Tri	ichlorobenzene	< 0.25
Toluene		< 0.05	Hexachl	orobutadiene	< 0.25
trans-1,3-Dichlorop	ropene	< 0.05	Naphtha	alene	< 0.05
1,1,2-Trichloroetha	ne	< 0.05	1.2.3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

#### ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/21 Date Received: 10/28/21 Project: Alfy's, F&BI 110560

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 111088-01 1/5 (Matrix Spike)

Laboratory Code:	111000-01 1/0 (Mat	rix opik	le)				
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recoverv	Recoverv	Acceptance	$\operatorname{RPD}$
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	79	79	34-118	0
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	82	82	29-130	0
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	82	82	37-119	0
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	87	86	45-128	1
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	86	85	36-125	1
Fluorene	mg/kg (ppm)	0.83	< 0.01	89	89	48-121	0
Phenanthrene	mg/kg (ppm)	0.83	< 0.01	87	89	50-150	2
Anthracene	mg/kg (ppm)	0.83	< 0.01	88	88	50-150	0
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	93	93	50-150	0
Pyrene	mg/kg (ppm)	0.83	< 0.01	85	92	50-150	8
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.01	89	90	50-150	1
Chrysene	mg/kg (ppm)	0.83	< 0.01	92	94	50-150	2
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	92	94	50-150	2
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	91	95	50-150	4
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.01	93	94	50-150	1
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.01	96	103	41-134	7
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	97	101	44-130	4
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	< 0.01	93	98	33-131	5

#### Laboratory Code: Laboratory Control Sample 1/5

Laboratory Coue. Laboratory C	onutor bampie	110		
Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	85	58-108
2-Methylnaphthalene	mg/kg (ppm)	0.83	89	67-108
1-Methylnaphthalene	mg/kg (ppm)	0.83	89	66-107
Acenaphthylene	mg/kg (ppm)	0.83	91	70-130
Acenaphthene	mg/kg (ppm)	0.83	89	66-112
Fluorene	mg/kg (ppm)	0.83	93	67-117
Phenanthrene	mg/kg (ppm)	0.83	90	70-130
Anthracene	mg/kg (ppm)	0.83	91	70-130
Fluoranthene	mg/kg (ppm)	0.83	96	70-130
Pyrene	mg/kg (ppm)	0.83	88	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	92	70-130
Chrysene	mg/kg (ppm)	0.83	95	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	95	68-120
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	95	69-125
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	97	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	101	67-129
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	103	67-128
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	100	64-127

#### ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/21 Date Received: 10/28/21 Project: Alfy's, F&BI 110560

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 111205-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	$\operatorname{RPD}$
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	< 0.5	47	42	10-142	11
Chloromethane	mg/kg (ppm)	1	< 0.5	66	65	10-126	2
Vinyl chloride	mg/kg (ppm)	1	< 0.05	73	74	10-138	1
Bromomethane	mg/kg (ppm)	1	<0.5	103	100	10-163	3
Unioroethane Tricklouefluoromotheme	mg/kg (ppm)	1	<0.5	85	87	10-176	2
Acetone	mg/kg (ppm)	5	<5	186 vo	194 vo	10-163	1
1.1-Dichloroethene	mg/kg (ppm)	1	<0.05	93	97	10-160	4
Hexane	mg/kg (ppm)	1	< 0.25	79	77	10-137	3
Methylene chloride	mg/kg (ppm)	1	< 0.5	80	82	10-156	2
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	< 0.05	90	90	21-145	0
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	94	93	14-137	1
1,1-Dichloroethane	mg/kg (ppm)	1	< 0.05	89	88	19-140	1
2,2-Dichloropropane	mg/kg (ppm)	1	<0.05	123	115	10-158	7
Cls-1,2-Dichloroethene	mg/kg (ppm)	1	<0.05	94	92	25-135	2
2-Butanona (MEK)	mg/kg (ppm)	5	<0.05	92 139	90 136	21-140	2
1 2-Dichloroethane (EDC)	mg/kg (ppm)	1	<0.05	97	97	12.160	0
1.1.1-Trichloroethane	mg/kg (ppm)	1	< 0.05	95	97	10-156	2
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	92	90	17-140	2
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	107	105	9-164	2
Benzene	mg/kg (ppm)	1	< 0.03	90	90	29-129	0
Trichloroethene	mg/kg (ppm)	1	< 0.02	92	85	21-139	8
1,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	91	89	30-135	2
Bromodichloromethane	mg/kg (ppm)	1	<0.05	95	92	23-155	3
Dibromomethane	mg/kg (ppm)	1	< 0.05	95	95	23-145	0
4-Metnyi-2-pentanone	mg/kg (ppm)	Э 1	<0.05	99	98	24-100	1
Toluene	mg/kg (ppm)	1	<0.05	96	95	35-130	1
trans-1.3-Dichloropropene	mg/kg (ppm)	1	< 0.05	102	98	26-149	4
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	95	92	10-205	3
2-Hexanone	mg/kg (ppm)	5	< 0.5	111	107	15-166	4
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	96	93	31-137	3
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	102	100	20-133	2
Dibromochloromethane	mg/kg (ppm)	1	< 0.05	100	99	28-150	1
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	<0.05	98	97	28-142	1
Ethylhonzono	mg/kg (ppm)	1	<0.05	99	90	32-129	1
1 1 1 2 Tetrachloroethane	mg/kg (ppm)	1	<0.05	99	99	31.143	0
m.p-Xvlene	mg/kg (ppm)	2	<0.1	101	98	34-136	3
o-Xylene	mg/kg (ppm)	1	< 0.05	97	97	33-134	0
Styrene	mg/kg (ppm)	1	< 0.05	98	96	35-137	2
Isopropylbenzene	mg/kg (ppm)	1	< 0.05	99	98	31-142	1
Bromoform	mg/kg (ppm)	1	< 0.05	104	100	21 - 156	4
n-Propylbenzene	mg/kg (ppm)	1	< 0.05	93	95	23-146	2
Bromobenzene	mg/kg (ppm)	1	<0.05	100	100	34-130	0
1,5,5-1 rimethylbenzene	mg/kg (ppm)	1	<0.05	96	99	28-140	5 1
1.2.3-Trichloropropane	mg/kg (ppm)	1	<0.05	90	89	25-140	1
2-Chlorotoluene	mg/kg (ppm)	1	< 0.05	90	93	31-134	3
4-Chlorotoluene	mg/kg (ppm)	1	< 0.05	97	95	31-136	2
tert-Butylbenzene	mg/kg (ppm)	1	< 0.05	99	99	30-137	0
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	93	97	10-182	4
sec-Butylbenzene	mg/kg (ppm)	1	< 0.05	96	96	23-145	0
p-lsopropyltoluene	mg/kg (ppm)	1	<0.05	96	99	21-149	3
1,3-Dichlorobenzene	mg/kg (ppm)	1	<0.05	96	96	30-131	0
1,4-Dichlorobenzene	mg/kg (ppm)	1	<0.00 <0.05	94 05	90 07	29-129 31,199	1 9
1.2-Dibromo-3-chloropropane	mg/kg (nnm)	1	<0.55	99	97	11-161	2
1.2.4-Trichlorobenzene	mg/kg (ppm)	1	<0.25	98	100	22-142	2
Hexachlorobutadiene	mg/kg (ppm)	î	< 0.25	107	111	10-142	4
Naphthalene	mg/kg (ppm)	1	< 0.05	90	96	14 - 157	6
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	< 0.25	95	99	20-144	4

#### ENVIRONMENTAL CHEMISTS

Date of Report: 11/18/21 Date Received: 10/28/21 Project: Alfy's, F&BI 110560

#### QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

	_		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	17	10-146
Chloromethane	mg/kg (ppm)	1	43	27-133
Vinyl chloride	mg/kg (ppm)	1	63	22-139
Bromomethane	mg/kg (ppm)	1	92	38-114
Trichlorofluoromothono	mg/kg (ppm)	1	89	9-163
Acetone	mg/kg (ppm)	5	150 vo	52-141
1.1-Dichloroethene	mg/kg (ppm)	1	106	47-128
Hexane	mg/kg (ppm)	1	73	43-142
Methylene chloride	mg/kg (ppm)	1	102	10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	102	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	1	104	67-129
1,1-Dichloroethane	mg/kg (ppm)	1	102	68-115
2,2-Dichloropropane	mg/kg (ppm)	1	139	52-170 79-197
Chloroform	mg/kg (ppm)	1	105	66-120
2-Butanone (MEK)	mg/kg (ppm)	5	105	30-197
1.2-Dichloroethane (EDC)	mg/kg (ppm)	1	111	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	109	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	99	69-128
Carbon tetrachloride	mg/kg (ppm)	1	124	60-139
Benzene	mg/kg (ppm)	1	100	71-118
Trichloroethene	mg/kg (ppm)	1	100	63-121
1,2-Dichloropropane	mg/kg (ppm)	1	101	72-127
Dibromomothano	mg/kg (ppm)	1	109	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	5	105	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	104	67-122
Toluene	mg/kg (ppm)	1	95	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	1	103	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	1	95	64-115
2-Hexanone	mg/kg (ppm)	5	81	33-152
1,3-Dichloropropane	mg/kg (ppm)	1	94	72-130
Dibromochloromothono	mg/kg (ppm)	1	99 105	72-114
1 2-Dibromoethane (EDB)	mg/kg (ppm)	1	98	74-132
Chlorobenzene	mg/kg (ppm)	1	97	76-111
Ethylbenzene	mg/kg (ppm)	1	98	64-123
1,1,1,2 Tetrachloroethane	mg/kg (ppm)	1	100	64-121
m,p-Xylene	mg/kg (ppm)	2	101	78-122
o-Xylene	mg/kg (ppm)	1	98	77-124
Styrene	mg/kg (ppm)	1	97	74-126
Bromoform	mg/kg (ppm)	1	99 108	70-127 56-139
n-Pronylhenzene	mg/kg (ppm)	1	92	74-124
Bromobenzene	mg/kg (ppm)	1	96	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	95	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	95	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	1	86	61-137
2-Chlorotoluene	mg/kg (ppm)	1	89	74-121
4-Uniorotoluene	mg/kg (ppm)	1	92	75-122
1 2 4-Trimethylhenzene	mg/kg (ppm)	1	94	76-125
sec-Butylbenzene	mg/kg (ppm)	1	93	71-130
p-Isopropyltoluene	mg/kg (ppm)	1	95	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	1	94	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	1	92	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	1	94	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	97	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	1	94	64-135
Naphthalono	mg/kg (ppm)	1	103	0U-100 63-140
1.2.3-Trichlorobenzene	mg/kg (ppm)	1	93	63-138
, ,		-		

#### ENVIRONMENTAL CHEMISTS

#### **Data Qualifiers & Definitions**

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

**b** - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 $\operatorname{ca}$  - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$  - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

34 7 3012 16th Avenue West Ph. (206) 285-8282 Seattle, WA 98119-2029 Priedman & Bruya, Inc. Address Phone City, State, ZIP Company_ Report To 1105101 3 90 12 2-12 D C 1 N 2-16 やくや 1 Sample ID S Ì J. ¥ Email Ĩ, SIGNATURE Relinquished by: Received by Received by: Relinquished by: ì - Al 19 20 Ś 40 40 06 <u>e</u> R Ş. б 3 9 Lab ID T.M. 5 Ò Sampled Date M MARCO SAMPLE CHAIN OF CUSTODY Sampled ~ Time Project specific RLs? - Yes / No REMARKS PROJECT NAME < SAMPLERS (signature) ノデノン Sample Type ~~~ \$ <u>VWVIC</u> 2 Jars # of PRINT NAME R. F. C. C. PINAM NWTPH-Dx+ NWTPH-Gx BTEX EPA 8021 NWTPH-HCID INVOICE TO ANALYSES REQUESTED VOCs EPA 8260 State of the second PO # 10-28-21 PAHs EPA 8270 Y Mary -PCBs EPA 8082 5.7 COMPANY Samples received at 0°C N. D Standard turnaround 0 Other_ Archive samples Rush charges authorized by: Default: Dispose after 30 days 2 Page # TURNAROUND TIME SAMPLE DISPOSAL 112/28/01 DATE 11/9/21 ME per SM Notes or 1 Dor TIME 58

