April 8, 2022

Mr. Brett Olson 2317 Broadway Avenue Everett, Washington 98201

Subject: Excavation and Well Installation Report Former Alfy's Pizza 2317 Broadway Avenue Everett, Washington 98201

Dear Mr. Olson:

In accordance with your request, Puget Environmental, PLLC (Puget) has prepared this report presenting results of excavation and monitoring well installation activities at the site referenced above. The investigation was conducted to excavate and remove impacted soil and evaluate subsurface conditions in the area of a reported former gasoline service station at the southwestern portion of the property.

BACKGROUND

The site consists of an approximately 0.69-acre commercial property occupied by a vacant former Alfy's Pizza building. The site location is shown on Figure 1.

Results of Phase I investigation activities conducted by a prior consultant reportedly indicated the southern portion of the site was previously occupied by a gasoline service station. In October 2021, an exploratory excavation advanced by Envirotank, LLC of Camano Island, Washington (Envirotank) reportedly identified an existing UST at the southwestern portion of the site. Approximate locations of the UST and reported prior service station features are shown on Figure 2.

PREVIOUS INVESTIGATIONS

On October 26, 2021, Puget visited the site and advanced a total of 4 borings (P-1 through P-4) to evaluate subsurface conditions near the UST. Borings were advanced to approximately 16 to 20 feet below ground surface (bgs) using truck-mounted direct-push sampling equipment.

PUGET

ENVIRONMENTAL P.L.L.C.

Laboratory results indicate sample P1-15, collected approximately 15 feet below ground surface (bgs) from boring P-1 near the existing UST contained total petroleum hydrocarbon as gasoline (TPH-G) and total xylenes concentrations exceeding the Model Toxics Control Act (MTCA) Method A cleanup levels.

Laboratory results indicate sample P3-5, collected approximately 5 feet bgs from boring P-1 in the area of the reported former gas pumps and canopy island location contained concentrations of TPH-G, total petroleum hydrocarbons as diesel (TPH-D) and as oil (TPH-O), and carcinogenic polycyclic aromatic hydrocarbons (PAHs) exceeding the MTCA Method A or B cleanup level.

Laboratory results indicate sample P4-8, collected approximately 8 feet bgs from boring P-4 in the area of the reported former station building contained TPH-G and benzene concentrations exceeding the MTCA Method A cleanup levels.

No other analyte concentrations exceeding the MTCA Method A or B cleanup levels were identified in any of the samples analyzed.

Laboratory results indicate groundwater sample W-1, collected from boring P-1 near the existing UST contained TPH-G, TPH-D, TPH-O and carcinogenic PAH concentrations exceeding the MTCA Method A or B cleanup level. The laboratory also reported one or more VOCs at concentrations exceeding their respective Method B cleanup levels, but the results were flagged as being due to laboratory contamination or as an estimate due to instrument calibration concerns. Additional information is provided in the *Limited Site Assessment Report* prepared by Puget dated November 24, 2021.

RECENT INVESTIGATION

Underground Storage Tank Decommissioning and Soil Sampling

On December 20, 2022, Puget visited the site to observe decommissioning and removal of the existing UST. Tank decommissioning and removal activities were conducted by Envirotank. Following tank removal, soil samples were collected from the excavation bottom and sidewalls for analysis. The tank and sample locations are shown on Figure 3.

Soil samples were collected in laboratory-supplied containers, placed into an iced cooler and transported to the Friedman and Bruya Inc laboratory in Seattle, Washington for analysis. The samples were analyzed for TPH-D and TPH-O using Washington State Department of Ecology (Ecology) Method NWTPH-Dx, TPH-G using Ecology Method NWTPH-Gx, benzene, toluene, ethylbenzene and total xylenes (BTEX) using EPA Method 8021. Results indicate none of the samples analyzed contained any analyte concentrations exceeding the MTCA Method A cleanup levels. Soil sample results are

shown on Table 1 and Figure 3. Copies of the official laboratory report and chain of custody documentation are attached.

Excavation and Soil Sampling

Following UST removal, Envirotank returned to the site to excavate and remove impacted soil in the area of the decommissioned UST at the southwestern portion of the site. Approximately 2,000 tons of soil were reportedly excavated to a maximum depth of approximately 18 feet below ground surface (bgs). Following impacted soil removal, the excavation was backfilled with clean imported fill.

During excavation, Puget visited the site at periodic intervals to observe the excavation and collect soil samples for analysis. Soil was screened for petroleum hydrocarbons using a combination of visual observation, sheen testing and photoionization detector (PID) readings.

Soil encountered generally consisted of damp to saturated, medium gray, silty, fine- to medium-grained sand with gravel underlain by damp to wet, brown and gray silty clay to clayey silt to the maximum depth explored of approximately 18 feet bgs.

Soil samples from the bottom and sidewalls of the excavation were collected in laboratorysupplied containers and placed into an iced cooler pending transport to the analytical laboratory. Confirmation soil samples from the limits of excavation were collected in accordance with EPA 5035 sampling methods. Soil samples were transported under chain of custody to the Friedman & Bruya, Inc. laboratory in Seattle, Washington for analysis. The samples were analyzed for TPH-D and TPH-O using Ecology Method NWTPH-Dx, TPH-G using Ecology Method NWTPH-G and BTEX using EPA Method 8021.

Laboratory results indicate six soil samples collected approximately 6 to 18 feet bgs from the southwestern portion of the excavation contained TPH-G and/or benzene concentrations exceeding the MTCA Method A cleanup level. Soil samples collected from remaining portions of the excavation contained analyte concentrations below the respective MTCA Method A cleanup levels. Soil sample results are shown on Table 1 and Figure 3. Copies of the official laboratory report and chain of custody documentation are attached.

Monitoring Well Installation and Sampling

On March 10 and 15, 2022, Puget visited the site to further evaluate the extent of impacted soil and groundwater. A total of 6 borings (MW-1 through MW-6) were advanced to a maximum depth of approximately 14 feet bgs using 2.5-inch-diameter direct-push drilling equipment and constructed as 1-inch diameter groundwater monitoring wells. Monitoring well locations are shown on Figure 4.

Soil samples were collected in acetate liners from each boring and screened for volatile compounds using a PID. Select soil samples from each boring were transferred into laboratory-supplied containers in accordance with EPA 5035 sampling methods and placed into an iced cooler pending transport to the laboratory for analysis.

Soil encountered generally consisted of damp to saturated, medium gray, silty, fine- to medium-grained sand with gravel underlain by damp to wet, brown and gray silty clay to clayey silt to the maximum depth explored of approximately 14 feet bgs.

The soil samples were transported under chain of custody to the Friedman and Bruya, Inc. laboratory in Seattle, Washington. The samples were analyzed for TPH-D and TPH-O using Ecology Method NWTPH-Dx, TPH-G using Ecology Method NWTPH-G and BTEX using EPA Method 8021, and volatile organic compounds (VOCs) using EPA Method 8260D.

Laboratory results indicate soil samples collected approximately 9 to 14 feet bgs in borings MW-1 through MW-6 contained TPH-D, TPH-O, TPH-G, BTEX and VOC concentrations below the respective Model Toxics Control Act (MTCA) Method A cleanup levels. Soil sample results are shown on Table 2 and Figure 5. Copies of the official laboratory report and chain of custody documentation are attached.

Following drilling, the borings were constructed as groundwater monitoring wells MW-1 through MW-6. The wells were constructed as 1-inch-diameter polyvinylchloride (PVC) monitoring wells with 0.010-inch slotted and blank casing. The annular space of each boring was backfilled with 2/12 silica sand from total depth to approximately 2 feet above the screened interval and sealed near the surface with bentonite. The wells were then completed at the surface with a monument set in concrete, and fitted with a water-tight cap. Well construction diagrams are included in the attached boring logs.

PUGET ENVIRONMENTAL P.L.L.C.

Wellhead Elevation Survey and Groundwater Sampling

Following well installation, Puget returned to the site in March of 2022 to measure the groundwater elevations and collect initial groundwater samples for laboratory analysis. During the visit, Puget measured wellhead elevations relative to an established datum using an optical level and graduated rod. Elevation survey measurements are shown on Table 3.

Following depth to water measurements, groundwater samples were collected from the monitoring wells according to Washington State Department of Ecology (Ecology) approved low-flow purging and sampling techniques, using a peristaltic pump with dedicated tubing. Groundwater samples were collected in laboratory-supplied containers and placed into an iced cooler pending transport to the analytical laboratory. Monitoring wells MW-1 and MW-2 at the eastern and northern portions of the site were dry and could not be sampled. Depth to water measurements and well purging data are shown on the attached groundwater sampling field data sheets.

The groundwater samples were transported under chain of custody to the Friedman and Bruya, Inc. laboratory in Seattle, Washington and analyzed for TPH-D, TPH-O, TPH-G, BTEX and volatile organic compounds (VOCs) using Ecology Methods NWTPH-Dx, NWTPH-G and EPA Method 8021.

Laboratory results indicate groundwater sample MW-4 collected from monitoring well MW-4 contained 24 micrograms per liter (ug/L) benzene, exceeding the MTCA Method A cleanup level of 5 ug/L. Laboratory results indicate groundwater sample MW-6 collected from monitoring well MW-6, contained 570 ug/L TPH-D, exceeding the MTCA Method A cleanup level of 500 ug/L. No other analyte concentrations exceeding MTCA Method A cleanup levels were detected in any of the groundwater samples analyzed. Groundwater sample laboratory results are shown on Figure 6 and Table 4. Copies of official laboratory reports and chain of custody documentation are attached.

RESULTS

Laboratory results indicate six soil samples collected approximately 6 to 18 feet bgs from the southwestern portion of the tank excavation contained TPH-G and/or benzene concentrations exceeding the MTCA Method A cleanup level. Soil samples collected from remaining portions of the excavation contained analyte concentration below the respective MTCA Method A cleanup levels. Soil sample results are shown on Table 1 and Figure 3.

PUGET

ENVIRONMENTAL P.L.L.C.

Results indicate groundwater approximately 3 to 5 feet bgs at the southwestern portion of the property with a gradient generally directed toward the west and south at a magnitude of approximately 0.05. Monitoring wells at the northern and eastern portion of the site were dry and groundwater elevations could not be measured. Groundwater elevations and sample results are shown on Table 4 and Figure 7.

Laboratory results indicate the groundwater sample collected from monitoring well MW-4 contained 24 micrograms per liter (ug/L) benzene, exceeding the MTCA Method A cleanup level of 5 ug/L. The groundwater sample collected from MW-6 contained 570 ug/L TPH-D, exceeding the MTCA Method A cleanup level of 500 ug/L. No other analyte concentrations exceeding MTCA Method A cleanup levels were reported in any of the groundwater samples analyzed. Monitoring wells MW-1 and MW-2 at the eastern and northern portions of the site were dry and could not be sampled.

LIMITATIONS

The scope of work for this investigation was conducted in a manner that is consistent with the level of care and skill ordinarily exercised by other members of the profession practicing in the same locality and under similar conditions as of the date the services were provided. Results of our evaluation including conclusions, opinions and recommendations are based on a limited number of observations and data. Data from other areas may be different. Puget makes no representation, guarantee, or warranty, express or implied, regarding the services, communication, report, opinion, or instrument of service provided.

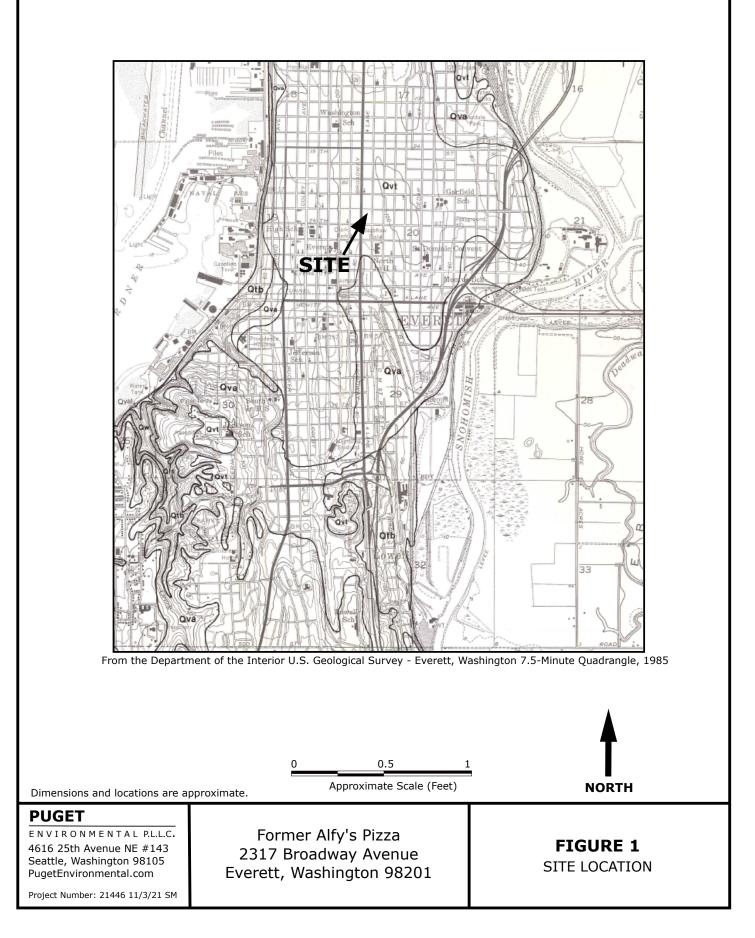
Puget provides various levels of service to meet the needs of varying clients. Evaluation of geologic and environmental conditions requires judgment leading to conclusions and recommendations that are generally based on incomplete knowledge of subsurface conditions due to the limitations of data from field studies. Although risk cannot be eliminated, more detailed and extensive studies yield more information which may help understand and manage the level of risk.

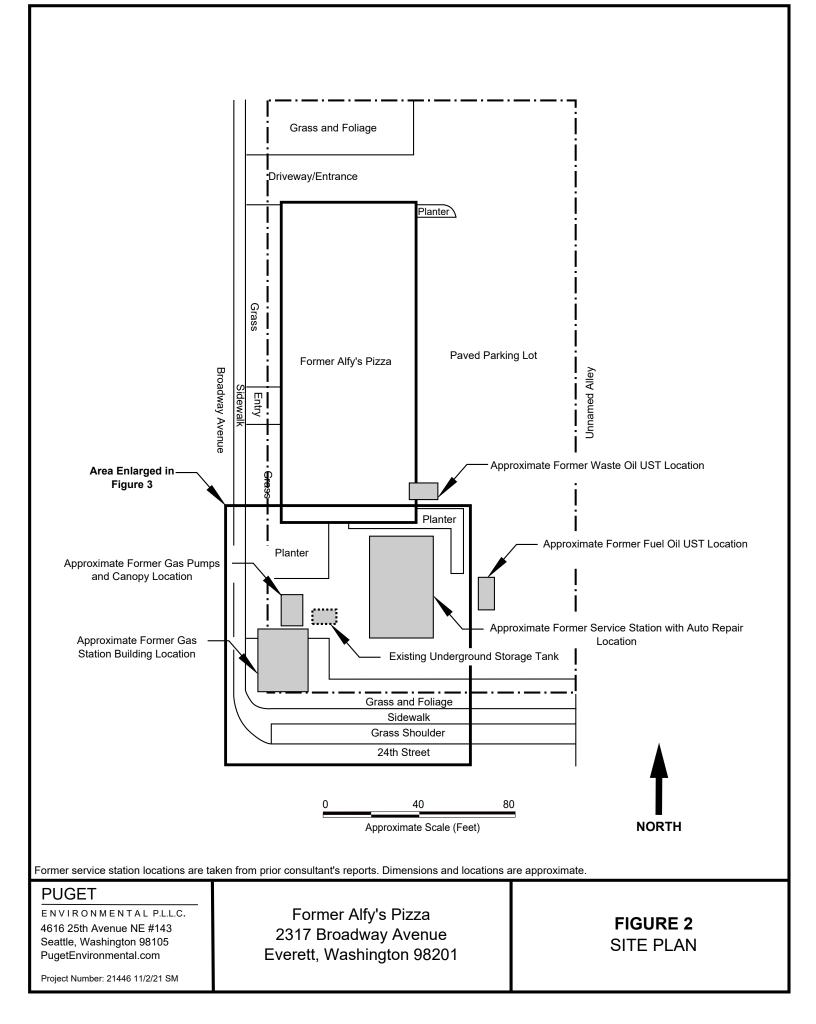
PUGET ENVIRONMENTAL P.L.L.C.

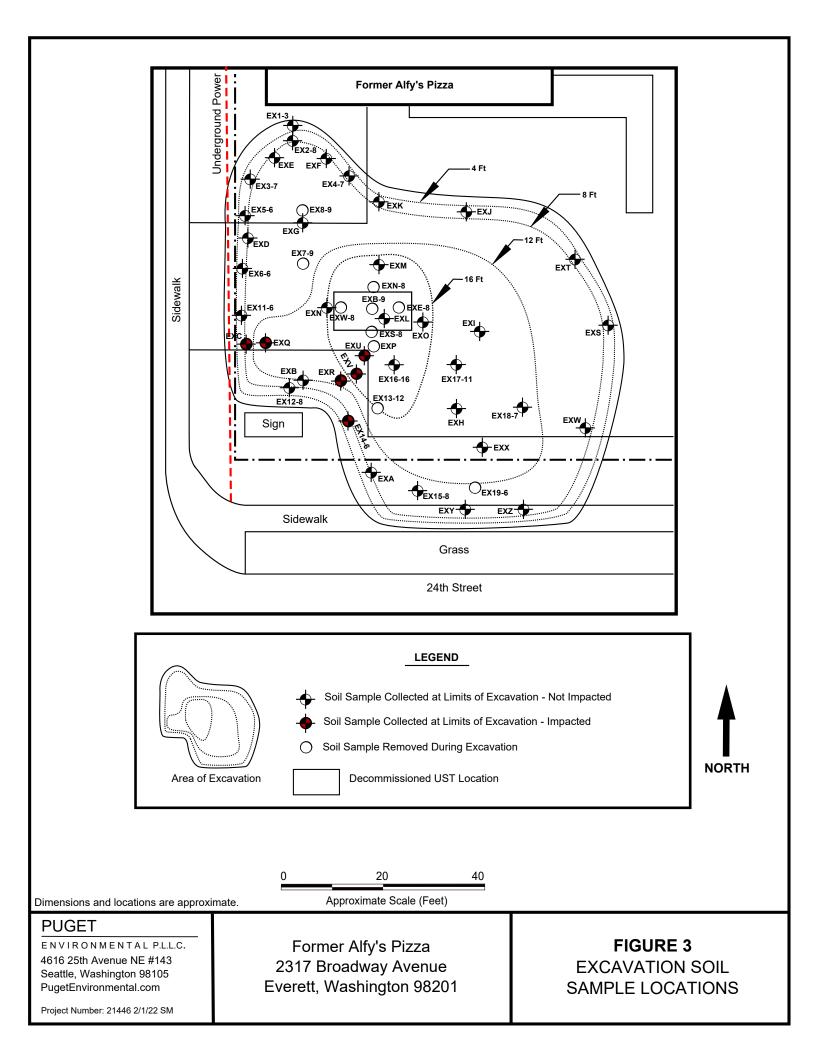
The work was conducted based on the scope and budget requirements, and site information provided by our client.

We appreciate the opportunity to provide service. Please do not hesitate to contact either of the undersigned if you have any questions.

Sincerely,

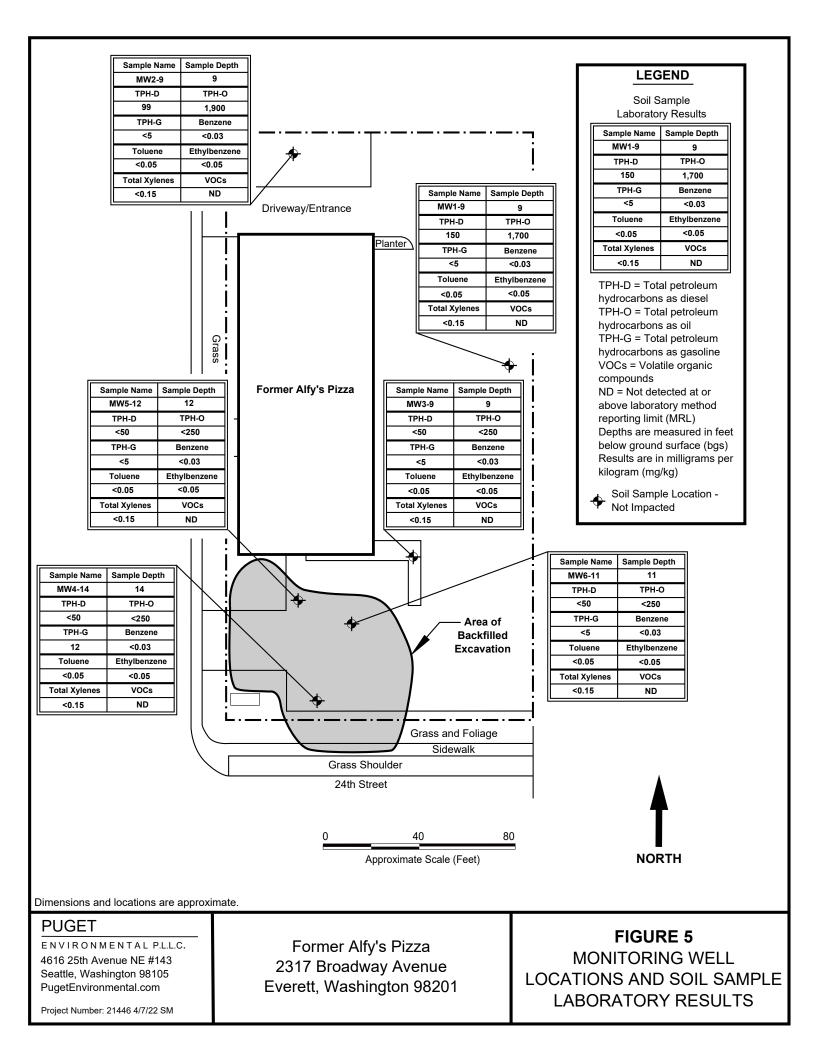

Puget Environmental, PLLC

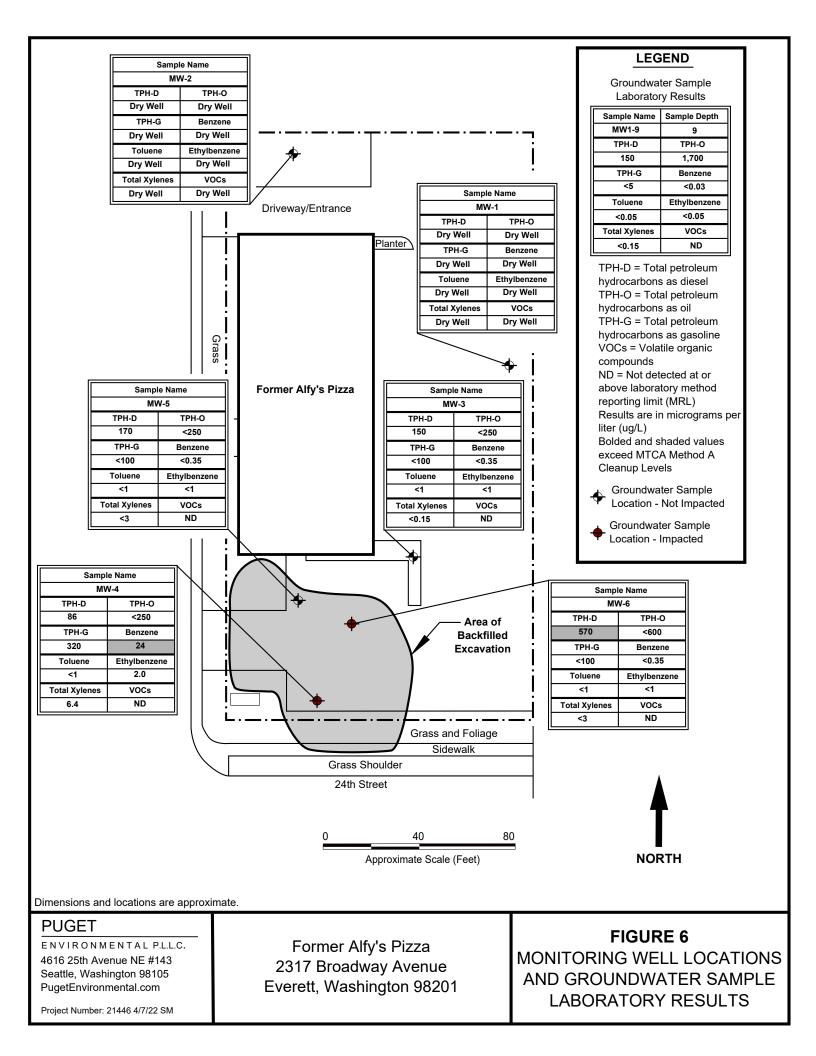

Sarah Meyer Office Manager

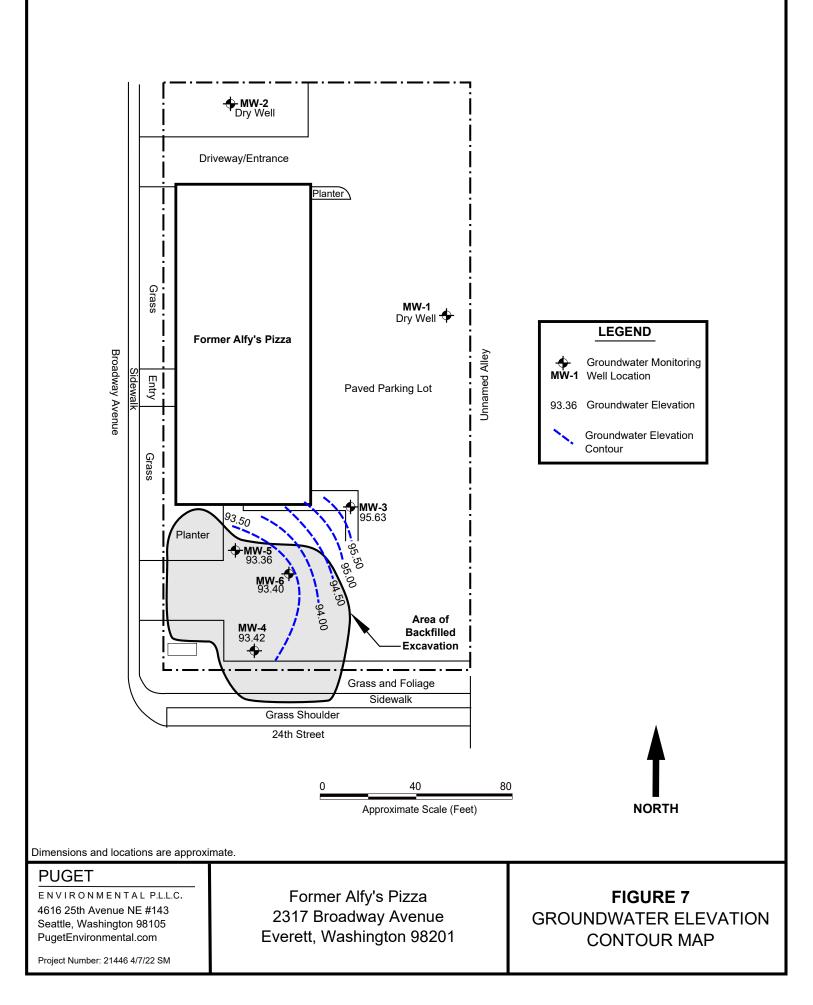

John K. Meyer, L.HG. Principal Hydrogeologist

Attachments

Figures Tables Boring Logs Groundwater Sample Data Sheets Laboratory Reports and Chain of Custody Documentation







Project Number: 21446 4/7/22 SM

Table 1 Excavation Soil Sample Results Former Alfy's Pizza 2317 Broadway Avenue Everett, Washington 98201

Sample Name	Sample Date	Sample Depth	TPH-G	TPH-D	TPH-O	Benzene	Toluene	Ethylbenzene	Total Xylenes	Final Sample	Interim Sample
EXB-9	12/20/2021	9	<5	<50	NA	<0.02	<0.02	<0.02	<0.06		Х
EXN-8	12/20/2021	8	16	86	NA	<0.02	0.037	0.044	0.17		Х
EXS-8	12/20/2021	8	31	330 x	NA	<0.02	0.051	0.087	0.23		Х
EXE-8	12/20/2021	8	<5	<50	NA	<0.02	<0.02	<0.02	<0.06		Х
EXW-8	12/20/2021	8	12	<50	NA	<0.02	0.036	<0.02	<0.06		Х
Ex1-3	1/13/2022	3	<5	<50	<250	<0.02	< 0.02	<0.02	<0.06	Х	
Ex2-8	1/13/2022	8	9.9	<50	<250	<0.02	<0.02	<0.02	0.12	Х	
Ex3-7	1/13/2022	7	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	Х	
Ex4-7	1/13/2022	7	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	X	
Ex5-6	1/13/2022	6	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	Х	
Ex6-6	1/13/2022	6	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	Х	
Ex7-9	1/13/2022	9	27	<50	<250	< 0.02	< 0.02	0.076	<0.06		Х
Ex8-9	1/13/2022	9	7.2	<50	<250	<0.02	<0.02	<0.02	<0.06		Х
Ex11-6 pc	1/19/2022	6	28	<50	<250	< 0.02	< 0.02	0.083	<0.06	Х	
Ex12-8 pc	1/19/2022	8	22	<50	<250	< 0.02	<0.02	0.14	0.097	X	
Ex13-12 pc	1/19/2022	12	<5	<50	<250	0.12	<0.02	<0.02	<0.06		Х
Ex14-6 pc	1/19/2022	6	280	<50	<250	<0.4	<0.4	3.2	20	Х	
Ex15-8 pc	1/19/2022	8	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	Х	
Ex16-16 pc	1/19/2022	16	<5	<50	<250	0.41	< 0.02	0.053	0.16	X	
Ex17-11 pc	1/19/2022	11	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	Х	
Ex18-7 pc	1/19/2022	7	<5	<50	<250	< 0.02	< 0.02	<0.02	<0.06	Х	
Ex19-6 pc	1/19/2022	6	240	78 x	<250	<0.02 j	0.18	1.6	2.3		Х
EXA	1/24/2022	8	<5	<50	<250	< 0.02	<0.02	<0.02	<0.06	Х	
EXB	1/24/2022	12	<5	<50	<250	< 0.02	< 0.02	<0.02	<0.06	Х	
EXC	1/24/2022	8	310	190	<250	<0.02 j	<0.1	0.73	0.69	X	
EXD	1/24/2022	8	<5	<50	<250	< 0.02	<0.02	<0.02	<0.06	Х	
EXE	1/24/2022	8	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	X	
EXF	1/24/2022	8	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	Х	
EXG	1/24/2022	10	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	X	
EXH	1/24/2022	14	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	X	

Table 1 Excavation Soil Sample Results Former Alfy's Pizza 2317 Broadway Avenue Everett, Washington 98201

Sample Name	Sample Date	Sample Depth	TPH-G	TPH-D	TPH-O	Benzene	Toluene	Ethylbenzene	Total Xylenes	Final Sample	Interim Sample
EXI	1/24/2022	14	<5	<50	<250	< 0.02	< 0.02	<0.02	<0.06	Х	
EXS	1/27/2022	6.5	<5	<50	<250	< 0.02	< 0.02	<0.02	<0.06	Х	
EXL	1/27/2022	18	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	Х	
EXK	1/27/2022	5.5	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	Х	
EXJ	1/27/2022	5.5	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	Х	
EXP	1/27/2022	16	40	<50	<250	2.8	3.1	0.27	1.7		Х
EXM	1/27/2022	16	<5	<50	<250	< 0.02	<0.02	<0.02	<0.06	Х	
EXT	1/27/2022	6.5	<5	<50	<250	<0.02	<0.02	0.040	0.16	Х	
EXO	1/27/2022	16	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	Х	
EXR	1/27/2022	16	69	<50	<250	3.9	5.4	0.60	4.7	Х	
EXN	1/27/2022	13	<5	<50	<250	< 0.02	<0.02	<0.02	< 0.06	Х	
EXQ	1/27/2022	13	42	<50	<250	0.76	<0.1	0.19	0.46	Х	
EXU	2/3/2022	18	37	<50	<250	2.5	4.2	0.37	2.5	Х	
EXV	2/3/2022	18	10	<50	<250	0.30	<0.02	0.074	0.32	Х	
EXW	2/3/2022	10	<5	<50	<250	<0.02	<0.02	<0.02	< 0.06	Х	
EXX	2/7/2022	12	<5	<50	<250	< 0.02	< 0.02	0.18	0.30	Х	
EXY	2/7/2022	10	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	Х	
EXZ	2/7/2022	10	<5	<50	<250	<0.02	<0.02	<0.02	<0.06	Х	
	tics Control A d A Cleanup	• •	30/100 ₁	2,000	2,000	0.03	7	6	9	-	-

TPH-G Total petroleum hydrocarbons as gasoline analysis using Ecology Method NWTPH-G

TPH-D Total petroleum hydrocarbons as diesel analysis using Ecology Method NWTPH-Dx

TPH-O Total petroleum hydrocarbons as oil analysis using Ecology Method NWTPH-Dx Benzene, toluene, ethylbenzene and total xylenes analysis using EPA Method 8021

1 Benzene detected/benzene not detected and the sum of toluene, ethylbenzene and total xylenes concentrations is less than 1% of the gasoline mixture

j Sample flagged by the analytical laboratory as "the analyte concentration is reported below the lowest calibration standard. The value reported is an estimate."

pc Sample flagged by the analytical laboratory as "the sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate."

Results in milligrams per kilogram (mg/kg)

Bolded and shaded values exceed MTCA Method A cleanup levels

Table 2 Soil Sample Analytical Results Former Alfy's Pizza 2317 Broadway Avenue Everett, Washington 98201

Sample Name	Sample Location	Sample Depth	Date Collected	TPH-D	TPH-O	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes	VOCs
MW1-9	MW-1	9	3/10/2022	150 x	1,700	<5	<0.03	<0.05	<0.05	<0.15	ND
MW2-9	MW-2	9	3/10/2022	99 x	1,900	<5	<0.03	<0.05	<0.05	<0.15	ND
MW3-9	MW-3	9	3/10/2022	<50	<250	<5	<0.03	<0.05	<0.05	<0.15	ND
MW4-14	MW-4	14	3/15/2022	<50	<250	12	<0.03	<0.05	<0.05	<0.15	ND
MW5-12	MW-5	12	3/15/2022	<50	<250	<5	<0.03	<0.05	<0.05	<0.15	ND
MW6-11	MW-6	11	3/15/2022	<50	<250	<5	<0.03	<0.05	<0.05	<0.15	ND
Model Toxics Co	ntrol Act (MTCA) M	ethod A Cleanup	Level	2,000	2,000	100/30 1	0.03	7	6	9	

TPH-D Total petroleum hydrocarbons as diesel analysis using Ecology Method NWTPH-Dx

TPH-O TPH-G Total petroleum hydrocarbons as disset analysis using Ecology Method NWTPH-Dx Total petroleum hydrocarbons as gasoline analysis using Ecology Method NWTPH-Dx

BTEX VOCs Benzene, toluene, ethylbenzene and total xylenes analysis using EPA Method 8260D Volatile organic compound analysis using EPA Method 8260D

<

Less than the indicated method reporting limit

Depths in feet below ground surface

Results in milligrams per kilogram (mg/kg) Bolded and shaded values exceed Model Toxics Control Act (MTCA) Method A cleanup levels

Table 3 Wellhead Elevation Survey Data Former Alfy's Pizza 2317 Broadway Avenue Everett, Washington 98201

Station	Backshot	Height of Instrument	Foreshot	Elevation
First Loop				
Datum	4.260	104.260		100.00
MW-1			4.850	99.410
MW-2			3.941	100.319
Second Loop				
Datum	4.451	104.451		100.00
MW-1			5.044	99.407
MW-2			4.132	100.319
First Loop				
MW-1	4.250	103.658		99.408
MW-3			4.535	99.123
MW-4			5.639	98.019
MW-5			5.248	98.410
MW-6			5.443	98.215
Second Loop				
MW-1	4.291	103.699		99.408
MW-3			4.579	99.120
MW-4			5.682	98.017
MW-5			5.285	98.414
MW-6			5.486	98.213

Datum Southeast corner of north planter at the assigned elevation of 100.00

Table 4 **Groundwater Sample Analytical Results** Former Alfy's Pizza 2317 Broadway Avenue Everett, Washington 98201

Well	Wellhead Elevation	Sample Date	Depth to Water	Groundwater Elevation	TPH-D	TPH-O	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes	VOCs
MW-1	99.41	3/24/2022	Dry Well	Dry Well	Dry Well	Dry Well	Dry Well	Dry Well	Dry Well	Dry Well	Dry Well	Dry Well
MW-2	100.32	3/24/2022	Dry Well	Dry Well	Dry Well	Dry Well	Dry Well	Dry Well	Dry Well	Dry Well	Dry Well	Dry Well
MW-3	99.12	3/24/2022	3.49	95.63	150 x	<250	<100	<0.35	<1	<1	<0.15	ND
MW-4	98.02	3/24/2022	4.60	93.42	86 x	<250	320	24	<1	2.0	6.4	ND
MW-5	98.41	3/24/2022	5.05	93.36	170 x	<250	<100	<0.35	<1	<1	<3	ND
MW-6	98.21	3/24/2022	4.81	93.40	570 x	<600	<100	<0.35	<1	<1	<3	ND
Model Toxics Co	ntrol Act (MTCA) M	ethod A Cleanup	Level		500	500	800/1,000 1	5	1,000	700	1,000	Various

TPH-D TPH-O Total petroleum hydrocarbons as diesel analysis using Ecology Method NWTPH-Dx

Total petroleum hydrocarbons as motor oil analysis using Ecology Method NWTPH-Dx Total petroleum hydrocarbons as motor oil analysis using Ecology Method NWTPH-Dx Total petroleum hydrocarbons as gasoline analysis using Ecology Method NWTPH-Gx Benzene, toluene, ethylbenzene and total xylenes analysis using EPA Method 8260D Voldtile organic compound analysis using EPA Method 8260D TPH-G

BTEX VOCs ND

Not detected at or above the indicated method reporting limit

Less than the indicated method reporting limit <

х Sample flagged by the analytical laboratory as "the sample chromatographic pattern does not resemble the fuel standard used for quantification

Depths in feet below ground surface

Results in micrograms per liter (ug/L) Bolded and shaded values exceed Model Toxics Control Act (MTCA) Method A cleanup levels

Date:		3-10-2	2	Soil Boring Log	Boring Nam	e: MW-1
Proje	ct N	lame:		Former Alfy's Pizza	Location:	
Addre				2317 Broadway Avenue verett, Washington 98201	East S Parkir	
Depth	Sample	PID	USCS	Description		Well Construction
— 5 — —10—		▼ 0.0	SM	Damp to saturated, medium gray, silty, fine- to mediun gravel	n-grained sand with	
—15— —20—				Total Depth = 11 Feet Refusal Encountered at 11 Feet bgs		Well constructed of 1-inch diameter PVC well casing with 0.010-inch screen 2/12 silica sand
—30— —35—						
PUG			ALP.L.L.C.	Driller Name: John Meyer	Sampling Method: 2-inch x 48-inch sample	er with acetate liner
4616 2 Seattle (206) 5	25th 9, Wa 518-4	Avenue N ashingtor	NE #143 n 98105	Drilling Method: Truck-Mounted Direct-Push Diameter: 2.5 inches	Weather Conditions: Cloudy	

Date:		3-10-2	2	Soil Boring Log	Boring Nam	e: MW-2
Proje	ct N	lame:		Former Alfy's Pizza	Location:	
Addro		:		2317 Broadway Avenue rerett, Washington 98201	Planter at l of Bui	
Depth	Sample	PID	USCS	Description		Well Construction
— 5 — —10—		▼ 0.0	SM	Wet to saturated, medium brown, silty, fine- to medium interbedded fine- to coarse-grained sand with gravel	n-grained sand with	
—15—				Total Depth = 11 Feet Refusal Encountered at 11 Feet bgs		Well constructed of 1-inch diameter PVC well casing with 0.010-inch screen 2/12 silica sand
-20-						
—25— —30—						
—35—						
			AL P.L.L.C.	Driller Name: John Meyer	Sampling Method: 2-inch x 48-inch sample	er with acetate liner
Seattle (206) క	e, W 518-	Avenue N ashingtor 4887 onmental	n 98105	Drilling Method: Truck-Mounted Direct-Push Diameter: 2.5 inches	Weather Conditions: Cloudy	50's Page <u>1</u> of <u>1</u>

Date:		3-10-2	2	Soil Boring Log	Boring Nam	e: MW-3
Proje	ct N	lame:		Former Alfy's Pizza	Location:	
Addre		:		2317 Broadway Avenue verett, Washington 98201	Southeast of t Building	
Depth	Sample	PID	USCS	Description		Well Construction
— 5 — —10—		▼ 0.0	ML/CL	Wet to saturated, light brown, silty clay to clayey silt		
—15—				Total Depth = 11 Feet Refusal Encountered at 11 Feet bgs		Well constructed of 1-inch diameter PVC well casing with 0.010-inch screen 2/12 silica sand
—20— —25—						
—30— —35—						
PUG			I	Driller Name: John Meyer	Sampling Method:	n with acotate liner
4616 2 Seattle (206) 5	25th e, W 518-	Avenue N ashingtor	n 98105		2-inch x 48-inch sample Weather Conditions: Cloudy	

Date:		3-15-2	2	Soil Boring Log	Boring Nam	e: MW-4
Proje	ct N	lame:		Former Alfy's Pizza	Location:	
Addro				2317 Broadway Avenue verett, Washington 98201	Near So Property	
Depth	Sample	PID	USCS	Description		Well Construction
— 5 — —10—			SM	Damp to moist, medium brown, silty, fine- to medium-g (fill material)	grained sand with gravel	
—15—		0.0	ML/CL	Wet, medium brown and grayish green, mottled, silty o Total Depth = 14 Feet	clay to clayey silt	Well constructed of 1-inch diameter PVC
—20—						well casing with 0.010-inch screen 2/12 silica sand
—25—						
—30— —35—						
			AL P.L.L.C.	Driller Name: John Meyer	Sampling Method: 2-inch x 48-inch sample	er with acetate liner
4616 2 Seattle (206) \$	25th e, W 518-	Avenue N ashington	NE #143 n 98105	Drilling Method: Truck-Mounted Direct-Push Diameter: 2.5 inches	Weather Conditions: Cloudy	

Date:		3-15-2	22	Soil Boring Log	Boring Nam	e: MW-5
Proje	ct N	lame:		Former Alfy's Pizza	Location:	
Addr		:		2317 Broadway Avenue erett, Washington 98201	South from th Corner of	
Depth	Sample	PID	USCS	Description		Well Construction
		0.0	SM ML/CL	Damp to moist, medium brown, silty, fine- to medium- (fill material) Wet, medium brown and grayish green, mottled, silty of Total Depth = 12 Feet Hole Collapsed to 8 Feet bgs		Well constructed of 1-inch diameter PVC well casing with 0.010-inch screen 2/12 silica sand
	ROI		A L P.L.L.C. NE #143	John Meyer	Sampling Method: 2-inch x 48-inch sample Weather Conditions:	er with acetate liner
Seattle (206) \$	e, Wa 518-	ashingtor	ו 98105	Diameter: 2.5 inches	Cloudy	50's Page <u>1</u> of <u>1</u>

Date:		3-15-2	22	Soil Boring Log	Boring Name: MW-6	
Proje	ct N	Name:		Former Alfy's Pizza	Location:	
Addr	ess	:		2317 Broadway Avenue verett, Washington 98201	South from Center of Building	
Depth	Sample	PID	USCS	Description	Well Construction	۱
— 5 —			SM	Damp to moist, medium brown, silty, fine- to medium-((fill material)	grained sand with gravel	
-10-	┢		ML/CL	Wet, medium brown and grayish green, mottled, silty o	clay to clayey silt	- -
-15- -20- -25- -30-		0.0		Total Depth = 11 Feet	Well constructed of 1-inch diameter PVC well casing with 0.010-inch screen 2/12 silica sand Sampling Method:	-
4616 2	R O N 25th	N M E N T . Avenue N		Drilling Method:	2-inch x 48-inch sampler with acetate liner Weather Conditions:	
(206) \$	518-4	ashingtor 4887 onmental		Truck-Mounted Direct-Push Diameter: 2.5 inches	Cloudy 50's Page <u>1</u> of <u>1</u>	

	<u>و</u> م	MW6 - 4.81		Mw 4 - 4.60	_	MW-1-Dry MW-Z-Dry		
(ft.)	hickness: Remarks	(ft.) Water Thickness: Water Level	Static W/L: ORP (+or - 10 mv)	pth: (ft.) pH (+or- 0.1) unit	(In.) Total Depth: Dissolved O2 mg/L (10%) (+	Casing Diameter: Conductivity mS/cm (3%)	Temp	Time
	Sampler Name:		ING FIELD C	SAMI	DUNDWATI	GRO D. 72A	NTAL PLLC.	PUGET ENVIRONMENTAL P.L.C. Project Name: AIS

Purge/Sample Equipment			lime	
uipment			Temp	ENTAL PLLC.
Notes:			mS/cm (3%)	3 Sing Diame
			(10%) (10%)	Project #: (in.) Total Depth:
			pH (+or- 0.1) unit	GROUNDWATER SAMPLING FIELD DATA SHEET
			ORP (+or - 10 mv)	LING FIEL
			Water Level	LD DATA SHEE
			Remarks	SHEET

Purge/Sample Equipment			Time	PUGET ENVIRONMENTAL PLLC. Project Name:
uipment			Тетр	NTAL PLLC
Notes:			Conductivity mS/cm (3%)	sing Diame
			Dissolved O2 mg/L (10%)	DUNDWATER Project #: (in.) Total Depth:
			or- 0.1) un	ER SAMP
				GROUNDWATER SAMPLING FIELD DATA SHEET
			(It.) Water Thickness: Water Level	D DATA
			Thickness: Remarks	Sampler Name: Survivo
			(ft.)	

						8.0.7	t 0, 1	- 1	2,83		24 2	2 21	Water Level Remarks	(ft.) Water Thickness:	1/22 Sampler Name: Drew		IELD DATA SHEET
						-46.5	-43.9	-37.9	-26.3	-16.5	-2.7		ORP t (+or - 10 mv)	(ft.) Static W/L:		Date: 7 Int	TT
						ちょう	6.78	34.9	46.37	6.75	£t.7	6.64	pH (+or- 0.1) unit				ER SAMF
						(,7	1.6	2.1	2.7	5.3	4.0	4.0	mg/L (10%)	Dissolved 00	(in \ 1 1	Project #:	GROUNDWATER SAMPLING
Notes:						++	101	++-	194	595	718	768	mS/cm (3%)	Conductivity		Pizza	
Purge/Sample Equipment						10.5	· · · · · · · · · · · · · · · · · · ·	10.2	14 7 2	10 1.01	10,10		Temp		2 V	ame: AIFy's	ENVIRONMENTAL P.L.L.C.
urge/Sample							23.52	13. 41	74 42	1 26	72.41	15.32	lime	1	well #: MW -	Project Name:	TOGE T

i

ctivity Dissolved O2 pH 3^{-1} 3^{-1} 5^{-1} 5^{-1} 2^{-1} 3^{-1} 5^{-1} 5^{-1} 3^{-1} 5^{-1} 5^{-1} 5^{-1} 3^{-1} 5^{-1} 5^{-1} 5^{-1} 3^{-1} 5^{-1} 5^{-1} 5^{-1} 3^{-1} 5^{-1} 5^{-1} 5^{-1} 2^{-1} 2^{-1} 5^{-1} 5^{-1} 2^{-1} 2^{-1} 5^{-1} 5^{-1} 2^{-1} 2^{-1} 5^{-1} 5^{-1} 2^{-1} 2^{-1} 5^{-1} 5^{-1} 2^{-1} 2^{-1} 5^{-1} 5^{-1} 2^{-1} 2^{-1} 5^{-1} 5^{-1} 2^{-1} 2^{-1} 5^{-1} 5^{-1} 3^{-1} 2^{-1} 5^{-1} 5^{-1} 3^{-1} 2^{-1} 5^{-1} 5^{-1} 3^{-1} 2^{-1} 5^{-1} 5^{-1} 3^{-1} 3^{-1} 5^{-1} 5^{-1} 3^{-1} 3^{-1} 5^{-1} 5^{-1} 3^{-1} 3^{-1} 5^{-1} 5^{-1}	Time Temp Conductivity (19%) Dissolved 02 (19%) pH (19%) Of conductivity (19%) Dissolved 02 (19%) pH (19%) Of conductivity (19%) Of conductivity (19%) Dissolved 02 (19%) pH (19%) PH (19%) Dissolved 02 (19%) PH (19%) Dissolved 02 (19%) PH (19%) PH (19%) Dissolved 02 (19%) PH (19%) PH (19%) <t< th=""></t<>
Project #: Date: 3 / 2 y / 2 Z (in.) Total Depth: (it.) Static W / 1 ·	Well #: MW-4 Casing Diameter:
GRC	

Imper Name All Fyl Project #: Date: 7, 17, 2 Sample Name: 10, 17, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10							• • • • • • • • • • • • • • • • • • • •	
transe: AIFy/ Y, Z, (n) Project #: [ante: 7, 2, 2] Sampler Name: Trail Depth: (ft) Static W/L: (ft) Water Thickness: $nw \leq$ Temp Casing Diameter: (ft) Dissolved 02 pH (ft) Static W/L: (ft) Water Thickness: $q_1, 0^{+c}$ $Z_3 \leq 1$ ≤ 1 $\leq S_2$ ≤ 1 $\leq S_2$ $q_1 q_2$ $\leq 2 1$ $\leq 2 2 1$ $\leq 2 1$ $\leq 2 2 1$ $\leq 2 1$ $\leq 2 2 1$ $= 2 2 2 2 2$ $= 2 2 2 2 2 2$ $= 2 2 2 2 2 2 2 2 2 2$ $= 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2$				Ō			Equipment	urge/Sample
thame: $A \Gamma_{Y}' \sum \gamma \Sigma_{A}$ Project #: Date: $Z \gamma Y, Z Z$ Sampler Name: Y_{A} nw S casing Diameter: (m.) Total Depth: (ft.) Static W/L: (ft.) Water Thickness: nw S Conductivity Dissolved 02 pH one ORP Water Thickness: $Q, 0^{-c}$ ZS_{1} S_{1} S_{1} S_{2} R_{1} New Water Thickness: $Q, 0^{-c}$ ZS_{1} S_{1} S_{2} R_{1} S_{2} R_{1} S_{2} R_{1} S_{2} R_{1} S_{2} R_{1} S_{2} R_{2} S_{1} S_{2} R_{2} S_{1} S_{2} <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
t Name: $A_1[\frac{1}{2}\sqrt{5}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ Project #: Date: $\frac{2}{2}, \frac{1}{2}, \frac{1}{2}$ Sampler Name: $\frac{1}{2}$ <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
t Name: $A_1 [\frac{1}{2}\sqrt{5}, \frac{1}{2}, \frac{1}{2}\sqrt{4}$ Project #: Image: Dissolved Dissolved O2 pH ORP Static W/L: (ft.) Water Thickness: ne Temp Conductivity Dissolved O2 pH ORP Water Thickness: g_{1} U [*] Z_{3} S, 1 $S_{1,1}$ $S_{1,2}$ $g_{1,2}$ S_{2} $g_{1,2}$ $g_{1,2}$ g_{2} $g_{1,2}$ g_{2}								
t Name: $\Lambda[\Gamma_{2}'S_{-}^{+}, 7, \chi_{-}]$ Project #: Date: 7, 2, 7, 2 Sampler Name: Λ_{-}^{+} Nw S Casing Diameter: (in.) Tetal Depth: (it.) Static W/L: (it.) Water Thickness: ne Temp Conductivity ms/cm Dissolved 02 (10%) pH (10%) ORp h (+or - 0.1) unit ORp h (+or - 10 mv) Water Level $\partial_{-} 0^{+c}$ $2.5, 1$ 5.1 5.82 9.7 5.21 5.21 $\partial_{-} q^{+c}$ $2.05, 4$ $5.5, 4$ $5.9, 4$ $5.9, 7$ $1.04, 3$ 5.21 $\partial_{-} q^{+c}$ $2.05, 4$ $5.5, 4$ 5.74 $1.04, 3$ 5.21 $\partial_{-} q^{+c}$ $2.05, 4$ $5.9, 4$ 5.74 $1.04, 3$ 5.21 $\partial_{-} q^{+c}$ $2.1, 5$ $4.1, 1$ 5.74 $1.04, 3$ 5.21 $\partial_{-} q^{+c}$ $2.1, 5$ $4.1, 1$ 5.74 $1.04, 8$ 5.21 $\partial_{-} q^{+c}$ $2.1, 5$ $4.1, 1$ 5.74 $1.04, 8$ 5.21 $\partial_{-} q^{+c}$ $2.1, 5$ $4.1, 1$ 5.74 $1.04, 8$ 5.21 5.21								
t Name: $\Lambda [\Gamma_{2}' [\Sigma_{2}, \gamma_{2, k}]]$ Project #: Interpendence Discolved 02 ph ms/cm ORP Mater Thickness: re Temp Conductivity Discolved 02 ph (10%) (11) Static W/L: (ft.) Water Thickness: $q_{1,0}$ $Z_{3,5,1}$ $5_{1,1}$ $5_{1,1}$ $5_{1,1}$ $5_{1,2}$ $9_{1,2}$ $5_{1,1}$ $5_{1,2}$ $9_{1,2}$ $5_{1,2}$ $9_{1,2}$ $5_{1,2}$ $5_{1,2}$ $5_{1,2}$ $5_{2,1}$ $5_{2,1}$ $5_{2,1}$ $5_{2,1}$ $5_{2,1}$ $5_{2,2}$								
t Name: A) [\neg Y , γ L , Project #: Inote I Depth: (ft.) Static W/L: (ft.) Water Thickness: ne Temp Conductivity mS/cm Dissolved 02 mg/L pH (10%) ch: Static W/L: (ft.) Water Thickness: Q. 0* Z 35.1 51.1 5.82 $qf7$ 5.21 Mater Level B 4* Z 05.4 52.4 5.74 10% 5.74 5.21 B 4* Z 0.5.4 52.4 5.74 104.3 5.21 B 4* Z 0.5.4 5.74 104.1 5.74 104.5 5.21 B 4* Z 0.5.4 5.74 104.5 5.21 104.5 5.21 B 4* Z 0.5.4 5.74 104.5 5.21 104.5 5.21 B 4* Z 0.5.4 5.74 104.6 5.21 104.5 5.21 104.5 104.5 104.5 104.5 104.5 104.5 104.5 104.5 104.5 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.5 105.2								
t Name: AI $[Ty'_{5}, Y_{2,2,4}]$ Project #: Integration of the state of								
t Name: $AI[Fy']$ $\gamma_{T_{2,Y}}$ Project #: Date: $\overline{\gamma}_{2,Y,22}$ Sampler Name: $Y_{2,Y,22}$ Sampler Name: $Y_{2,Y,22}$ Sampler Name: $Y_{2,Y,22}$ Image: I								
t Name: $A_1[\frac{-\gamma}{2}, \gamma, 2, 4]$ Project #: Image: I								
t Name: $A [-Y _{2}^{+}, \gamma, \chi_{4}^{+} $ Project #:Date: $\overline{\zeta}, 2, \gamma, 2\overline{\zeta}$ Sampler Name: χ_{4}^{+} $me Temp$ Conductivity mS/cmDissolved 02 m9/LpH (10%)ORP (+or-0.1) unitORP (+or-10 mv)Water Thickness: Q_{10}^{+2} $\overline{\zeta}, 1$ $\overline{\zeta}, 1$ $\overline{\zeta}, 1$ $\overline{\zeta}, 1$ $\overline{\zeta}, 1$ $\overline{\zeta}, 1$ $\overline{\zeta}, 2$ $\overline{\zeta}, 2$ $\overline{\zeta}, 2$ Q_{10}^{+2} $\overline{\zeta}, 2$ $\overline{\zeta}, 4$ $\overline{\zeta}, 5$ $\overline{\zeta}, 5$ $\overline{\zeta}, 5$ $\overline{\zeta}, 2$ $\overline{\zeta}, 2$ $\overline{\zeta}, 2$ $\overline{\zeta}, 2$ Q_{10}^{+2} $\overline{\zeta}, 2$ $\overline{\zeta}, 4$ $\overline{\zeta}, 5$ $\overline{\zeta}, 5$ $\overline{\zeta}, 2$ $\overline{\zeta}, 2$ $\overline{\zeta}, 2$ $\overline{\zeta}, 3$ $\overline{\zeta}, 2$ $\overline{\zeta}, 2$ Q_{10}^{+2} $\overline{\zeta}, 2$ $\overline{\zeta}, 4$ $\overline{\zeta}, 5$ $\overline{\zeta}, 4$ $\overline{\zeta}, 2$ $\overline{\zeta}, 2$ $\overline{\zeta}, 2$ $\overline{\zeta}, 2$ Q_{10}^{+2} $\overline{\zeta}, 2$ $\overline{\zeta}, 4$ $\overline{\zeta}, 5$ $\overline{\zeta}, 2$ $\overline{\zeta}, 2$ $\overline{\zeta}, 2$ $\overline{\zeta}, 2$ $\overline{\zeta}, 2$ Q_{10}^{+2} $\overline{\zeta}, 2$ $\overline{\zeta}, 3$ $\overline{\zeta}, 2$ Q_{10}^{+2} $\overline{\zeta}, 2$ $\overline{\zeta}, 3$ $\overline{\zeta}, 2$ Q_{10}^{+2} $\overline{\zeta}, 2$ Q_{10}^{+2} $\overline{\zeta}, 2$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
t Name: $A [-Y']$ $\gamma_{2,2,4}$ Project #: Date: $\overline{2}, 2, 2, 22$ Sampler Name: Y_{-2} Image: New S Casing Diameter: (in.) Total Depth: (f.) Static W/L: (ft.) Water Thickness: Image: New S Conductivity Dissolved 02 pH ORP ORP Water Thickness: Image: New S Conductivity Dissolved 02 pH ORP Water Level ORP Image: New S Conductivity Dissolved 02 pH ORP Water Thickness: Image: New S Conductivity Dissolved 02 pH ORP Water Level ORP Image: New S Conductivity Dissolved 02 pH ORP Water Level ORP Image: New S Conductivity Dissolved 02 pH ORP Water Level Image: New S Image: New S Conductivity Dissolved 02 pH ORP Water Level Image: New S Image: New S Conductivity Solved S Solved S <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
t Name: $A [-Y'_{5}, \gamma_{2,4}]$ Project #: Image: Temp Dissolved Project #: Image: Temp Dissolved O2 pH ORP ORP Water Thickness: Image: Temp Conductivity Dissolved O2 pH ORP ORP Water Thickness: Image: Temp Conductivity Dissolved O2 pH ORP Water Thickness: Image: Temp Conductivity Dissolved O2 pH ORP Water Level Image: Temp (3%) (10%) (+or-0.1) unit (+or-10 mv) Water Level Image: Temp (3%) 5.1 5.82 91.2 5.21 5.21 Image: Temp Conductivity Dissolved O2 pH (02.2.2) 5.21 5.21 Image: Temp Conductivity Static 5.21 5.21 5.21 5.21 Image: Temp Conductivity Static 5.21 5.21 5.21 5.21		12:5	106.6	74.5	61.1	211.5		1:34
t Name: $A [FY'_{5}, \gamma_{2,4}]$ Project #:Project #:Date: $\overline{2}, 2\gamma, 72$ Sampler Name: $Y_{4,2}$: $Mw \zeta$ Casing Diameter:(in.)Total Depth:(ft.)Static W/L:(ft.)Water Thickness:neTempConductivity mS/cmDissolved O2 (10%)pH (10%)ORP (+or-0.1) unitORP (+or - 10 mv)Water Level Q_{-0}^{*} $\overline{2}, 1$ $\overline{5}, 1$ $\overline{5}, 1$ $\overline{5}, 2$ $\overline{7}, 7$ $\overline{7}, 2$ $\overline{5}, 2$ Q_{-0}^{*} $2 \sigma 5, 4$ $5 S, 4$ $5 S, 7$ $\overline{10}, 2, 7$ $\overline{5}, 2$ $\overline{5}, 2$		•	104.3	シアイ	57.6		1	1: 72
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		12.2	4.201	イモン	58.6	205.4		1:28
ICasing Diameter: (In.) Total Depth: (ft.) Static W/L: (ft.) Water Thickness: Temp MS/cm Mg/L mg/L (+or- 0.1) unit (+or - 10 mv) Water Level		· ·	t 36	5.82	51	235.1	Q.0°~	1:25
:A/「ソ」〉、フェキ Project #: Date: フ・ユソ・フと Sampler Name: ・ Casing Diameter: (in.) Total Depth: (ft.) Static W/L: (ft.) Water Thickne		Water Level	ORP (+or - 10 mv)	рН (+or- 0.1) unit	Dissolved O2 mg/L (10%)	Conductivity mS/cm (3%)	Temp	Time
: <u>A)[-ゾ」); ってき </u> Project #: Date: フ・2 ソ・ フ 2 Sampler Name: ·	ckness:	1	s		(in.) Total Dep	asing Diameter:		Well #: べゃ
			Date: 3 . 2.4.		Project #:		AIFY'S	Project Nam

Г

Purse/Sample Equipment Notes: , U CII IF BNDH71 (CON Dry offer 5 m.M) Ke charge to gat gross simple
Notes: vuch F BND471 (
Notes: NUCH F BND471 (
Notes: Vult FRND471 (
Notes: $vc1 \neq 3NQ471$ (
Notes: Vc11F PNV472 (
Notes: vuch # 3N0471 (
Notes: WULL FRND472 (

Г

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 27, 2021

John Meyer, Project Manager Puget Environmental 4616 25th Avenue NE, Suite 143 Seattle, WA 98105

Dear Mr Meyer:

Included are the results from the testing of material submitted on December 21, 2021 from the Alfys, F&BI 112413 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

help Cole

Michael Erdahl Project Manager

Enclosures c: Sarah Meyer PGT1227R.DOC

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/21 Date Received: 12/21/21 Project: Alfys, F&BI 112413 Date Extracted: 12/21/21 Date Analyzed: 12/21/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-132)
EXB-9 112413-01	< 0.02	< 0.02	< 0.02	<0.06	<5	74
EXN-8 112413-02	< 0.02	0.037	0.044	0.17	16	83
EXS-8 112413-03	< 0.02	0.051	0.087	0.23	31	83
EXE-8 112413-04	< 0.02	< 0.02	< 0.02	< 0.06	<5	80
EXW-8 112413-05	< 0.02	0.036	< 0.02	<0.06	12	76
Method Blank 01-2678 MB2	< 0.02	< 0.02	< 0.02	<0.06	<5	75

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/21 Date Received: 12/21/21 Project: Alfys, F&BI 112413 Date Extracted: 12/22/21 Date Analyzed: 12/22/21

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL USING METHOD NWTPH-Dx Extended to Include Motor Oil Range Compounds

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Extended (C10-C36)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
EXB-9 112413-01	<50	96
EXN-8 112413-02	86	108
EXS-8 112413-03	330 x	100
EXE-8 112413-04	<50	111
EXW-8 112413-05	<50	104
Method Blank 01-2913 MB	<50	96

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/21 Date Received: 12/21/21 Project: Alfys, F&BI 112413

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 112406-02 (Duplicate)

	Reporting	Sample Result	Duplicate Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	80	66-121
Toluene	mg/kg (ppm)	0.5	88	72 - 128
Ethylbenzene	mg/kg (ppm)	0.5	88	69-132
Xylenes	mg/kg (ppm)	1.5	87	69-131
Gasoline	mg/kg (ppm)	20	90	61 - 153

ENVIRONMENTAL CHEMISTS

Date of Report: 12/27/21 Date Received: 12/21/21 Project: Alfys, F&BI 112413

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	112396-01 (Matri	x Spike)								
			Sample	Percent	Percent					
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD			
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)			
Diesel Extended	mg/kg (ppm)	5,000	<50	84	84	64-133	0			
Laboratory Code: Laboratory Control Sample										
			Percent	5						
	Reporting	Spike	Recover	y Accep	tance					
Analyte	Units	Level	LCS	Crit	eria					
Diesel Extended	mg/kg (ppm)	5,000	86	58-1	147					

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16 th Avenue West	Friedman & Bruya, Inc.	j				EX w-6	FX F-8	EX 5-4	EXN-8	5×B-9	Sample ID			PhoneE	City, State, ZIP	Address		Idia .	112413
Keceived by:	Relinquished by:	Received by:	Relinquished by:	SIC		 š		Ŝ	q	63	02	0	Lab ID	NITHING OF A CARD		Email			Environmental	Meyer	
		9-11 C	all the	NATURE				**10000000			we want to the set	12/20/21	Date Sampled							11 A.	
			13										Time Sampled			Project s	. REMARKS	. Alfys	PROJEC	SAMPLI	SAMPLE CHAIN OF CUSTODY
		112	John									501	Sample Type			Project specific RLs? -	SS	25	PROJECT NAME	SAMPLERS (signature)	CHAIN
		المعلله	N	PRINT NAME				-		 	,	حتہ ا	# of Jars			? - Yes			200	ure)	OFC
		Weybor . B ~	ever	NAM				XX	イズ	$\times \times$	ズズ	メメ	NWTPH-			/ No				101	UST
		もたい	Ĭ,	(J)				メ	\checkmark	\times	X	\times	BTEX EPA	8021					··	1	AGC
		M				 							NWTPH-H		Al		N		ļ	12 La	
						 							VOCs EPA	8260	ANALYSES REQUESTED		INVOICE TO		PO#	() 	
		с т	, we				· · · · · ·						PAHs EPA	8270	SES		JE TO		#		2
Sa		61,63	+	COV	+								rods Era	0002	REQI		0				2
Samples received at			Thomas	COMPANY		 		 							JESI	<u> </u>					ý
s nece			0	Y											UH,	□ Other Default		Rush	⊐ प्र स		alleyt the state
eived																her ult:]	SAN	t char	andar ISH	Page #	
at 4 oc		12/21/21	÷.	DATE									Nc			O Other Default: Dispose after 30 days	SAMPLE DISPOSAL Archive samples	Rush charges authorized by:	KStandard turnaround	AROUND	
-		444		TIME									Notes			¥r 30 days)SAL	ed by:	d.	TIME	Dol/

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 21, 2022

John Meyer, Project Manager Puget Environmental 4616 25th Avenue NE, Suite 143 Seattle, WA 98105

Dear Mr Meyer:

Included are the results from the testing of material submitted on January 18, 2022 from the Alfy's, F&BI 201238 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Sarah Meyer PGT0121R.DOC

ENVIRONMENTAL CHEMISTS

Date of Report: 01/21/22 Date Received: 01/18/22 Project: Alfy's, F&BI 201238 Date Extracted: 01/18/22 Date Analyzed: 01/18/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
Ex1-3 201238-01	< 0.02	< 0.02	< 0.02	< 0.06	<5	87
Ex2-8 201238-02	< 0.02	< 0.02	< 0.02	0.12	9.9	90
Ex3-7 ²⁰¹²³⁸⁻⁰³	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
Ex4-7 201238-04	< 0.02	< 0.02	< 0.02	< 0.06	<5	81
Ex5-6 201238-05	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
Ex6-6 201238-06	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
Ex7-9 ²⁰¹²³⁸⁻⁰⁷	< 0.02	< 0.02	0.076	< 0.06	27	89
Ex8-9 201238-08	< 0.02	< 0.02	< 0.02	<0.06	7.2	89
Method Blank 02-0145 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	89

ENVIRONMENTAL CHEMISTS

Date of Report: 01/21/22 Date Received: 01/18/22 Project: Alfy's, F&BI 201238 Date Extracted: 01/18/22 Date Analyzed: 01/18/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
Ex1-3 201238-01	<50	<250	88
Ex2-8 201238-02	<50	<250	89
Ex3-7 201238-03	<50	<250	89
Ex4-7 201238-04	<50	<250	89
Ex5-6 201238-05	<50	<250	88
Ex6-6 201238-06	<50	<250	87
Ex7-9 201238-07	<50	<250	97
Ex8-9 201238-08	<50	<250	87
Method Blank 02-0182 MB	<50	<250	88

ENVIRONMENTAL CHEMISTS

Date of Report: 01/21/22 Date Received: 01/18/22 Project: Alfy's, F&BI 201238

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING METHOD 8021B AND NWTPH-Gx

Laboratory Code: 201124-03 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	94	69-120
Toluene	mg/kg (ppm)	0.5	86	70-117
Ethylbenzene	mg/kg (ppm)	0.5	84	65 - 123
Xylenes	mg/kg (ppm)	1.5	87	66 - 120
Gasoline	mg/kg (ppm)	20	90	71 - 131

ENVIRONMENTAL CHEMISTS

Date of Report: 01/21/22 Date Received: 01/18/22 Project: Alfy's, F&BI 201238

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	201197-01 (Matri	x Spike)									
			Sample	Percent	Percent						
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD				
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)				
Diesel Extended	mg/kg (ppm)	5,000	<50	92	90	64-133	2				
Laboratory Code:	Laboratory Code: Laboratory Control Sample										
			Percent	5							
	Reporting	Spike	Recover	y Accep	tance						
Analyte	Units	Level	LCS	Crit	eria						
Diesel Extended	mg/kg (ppm)	5,000	92	58-1	147						

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

 ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

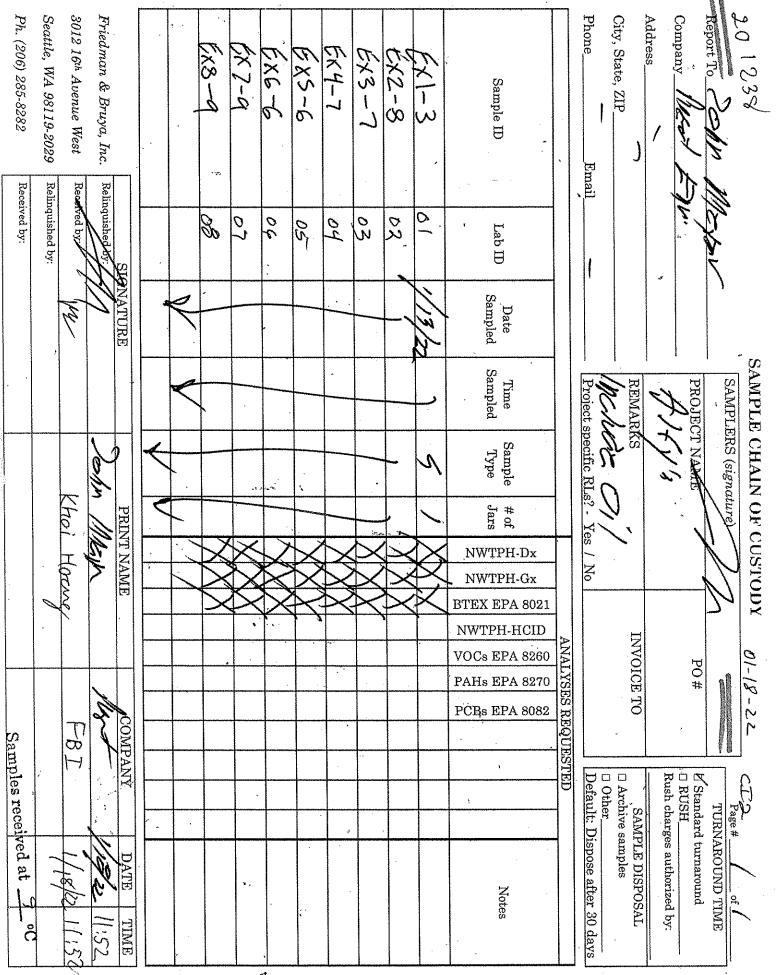
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.


nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

-4

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 24, 2022

John Meyer, Project Manager Puget Environmental 4616 25th Avenue NE, Suite 143 Seattle, WA 98105

Dear Mr Meyer:

Included are the results from the testing of material submitted on January 20, 2022 from the Alfy's, F&BI 201270 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Sarah Meyer PGT0124R.DOC

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/22 Date Received: 01/20/22 Project: Alfy's, F&BI 201270 Date Extracted: 01/20/22 Date Analyzed: 01/20/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-132)
EX11-6 pc 201270-01	< 0.02	< 0.02	0.083	< 0.06	28	85
EX12-8 pc 201270-02	< 0.02	< 0.02	0.14	0.097	22	84
EX13-12 pc 201270-03	0.12	< 0.02	< 0.02	< 0.06	<5	80
EX14-16 pc 201270-04 1/20	<0.4	<0.4	3.2	20	280	87
EX15-8 pc 201270-05	< 0.02	< 0.02	< 0.02	<0.06	<5	79
EX16-16 pc 201270-06	0.41	< 0.02	0.053	0.16	<5	82
EX17-11 pc 201270-07	< 0.02	< 0.02	< 0.02	< 0.06	<5	81
EX18-7 pc 201270-08	< 0.02	< 0.02	< 0.02	< 0.06	<5	81
EX19-6 pc 201270-09 1/5	<0.02 j	0.18	1.6	2.3	240	90
Method Blank ^{02-147 MB}	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
Method Blank 02-149 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	81

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/22 Date Received: 01/20/22 Project: Alfy's, F&BI 201270 Date Extracted: 01/20/22 Date Analyzed: 01/20/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 56-165)
EX11-6 201270-01	<50	<250	118
EX12-8 201270-02	<50	<250	101
EX13-12 201270-03	<50	<250	118
EX14-16 201270-04	<50	<250	124
EX15-8 ²⁰¹²⁷⁰⁻⁰⁵	<50	<250	118
EX16-16 201270-06	<50	<250	116
EX17-11 ²⁰¹²⁷⁰⁻⁰⁷	<50	<250	111
EX18-7 ²⁰¹²⁷⁰⁻⁰⁸	<50	<250	112
EX19-6 201270-09	78 x	<250	113
Method Blank 02-0192 MB	<50	<250	104

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/22 Date Received: 01/20/22 Project: Alfy's, F&BI 201270

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 201252-01 (Duplicate)

	Reporting	Sample Result	Duplicate Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	90	69-120
Toluene	mg/kg (ppm)	0.5	82	70-117
Ethylbenzene	mg/kg (ppm)	0.5	82	65 - 123
Xylenes	mg/kg (ppm)	1.5	80	66-120
Gasoline	mg/kg (ppm)	20	85	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/22 Date Received: 01/20/22 Project: Alfy's, F&BI 201270

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	201226-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	110	96	63-146	14
Laboratory Code:	Laboratory Conti	rol Samp	le				
			Percent	t			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crit	eria		
Diesel Extended	mg/kg (ppm)	5,000	108	79-1	144		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Received by: Samples received at	3012 16th Avenue West Received by: OUW MA MULLYUL FRB Seattle, WA 98119-2029 Relinquished by:	an Quintan Dram Puget t	INATTIRE PRINT NAME	6	$E_X S - 7 0 1 1 1 1 1 1 1 1 1$		6	XX 8~		2 - 8 02 1	$\xi_{XII} - \xi_{III} = 0_{IIII} - \frac{V_{III}}{V_{IIIIII}} = V_{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	Sample ID Lab ID Sampled Type Jars NWTPH-I NWTPH-I NWTPH-H VOCS EPA PCBs EPA	Gx 8021 CID		Email Project specific RLs? - Yes / No	the, ZIP ARKS AND AT RONGE INVOLUDIO	
	centraloutin 8x	Sino 1/20/22	COMPANY DATE TIME						· • •:		-	PCBs EPA	8082	S REQUESTED	Default: Dispose after 30 days		D RUSH Rush charges authorized by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 28, 2022

John Meyer, Project Manager Puget Environmental 4616 25th Avenue NE, Suite 143 Seattle, WA 98105

Dear Mr Meyer:

Included are the results from the testing of material submitted on January 25, 2022 from the Alfy's, F&BI 201351 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Sarah Meyer PGT0128R.DOC

ENVIRONMENTAL CHEMISTS

Date of Report: 01/28/22 Date Received: 01/25/22 Project: Alfy's, F&BI 201351 Date Extracted: 01/26/22 Date Analyzed: 01/26/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-132)
EXA 201351-01	< 0.02	< 0.02	< 0.02	< 0.06	<5	82
EXB 201351-02	< 0.02	< 0.02	< 0.02	<0.06	<5	81
EXC 201351-03 1/5	<0.02 j	<0.1	0.73	0.69	310	88
EXD 201351-04	< 0.02	< 0.02	< 0.02	< 0.06	<5	83
EXE 201351-05	< 0.02	< 0.02	< 0.02	< 0.06	<5	84
EXF 201351-06	< 0.02	< 0.02	< 0.02	< 0.06	<5	84
EXG 201351-07	< 0.02	< 0.02	< 0.02	< 0.06	<5	83
EXH 201351-08	< 0.02	< 0.02	< 0.02	< 0.06	<5	82
EXI 201351-09	< 0.02	< 0.02	< 0.02	< 0.06	<5	81
Method Blank 02-159 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	83
Method Blank 02-158 MB2	< 0.02	< 0.02	< 0.02	< 0.06	<5	79

ENVIRONMENTAL CHEMISTS

Date of Report: 01/28/22 Date Received: 01/25/22 Project: Alfy's, F&BI 201351 Date Extracted: 01/26/22 Date Analyzed: 01/26/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
EXA 201351-01	<50	<250	88
EXB 201351-02	<50	<250	90
EXC 201351-03	190	<250	88
EXD 201351-04	<50	<250	97
EXE 201351-05	<50	<250	100
EXF 201351-06	<50	<250	89
EXG 201351-07	<50	<250	98
EXH 201351-08	<50	<250	100
EXI 201351-09	<50	<250	94
Method Blank 02-252 MB	<50	<250	102

ENVIRONMENTAL CHEMISTS

Date of Report: 01/28/22 Date Received: 01/25/22 Project: Alfy's, F&BI 201351

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 201351-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	0.12	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	0.028	nm
Xylenes	mg/kg (ppm)	< 0.06	0.081	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	100	66-121
Toluene	mg/kg (ppm)	0.5	98	72 - 128
Ethylbenzene	mg/kg (ppm)	0.5	103	69 - 132
Xylenes	mg/kg (ppm)	1.5	102	69-131
Gasoline	mg/kg (ppm)	20	100	61 - 153

ENVIRONMENTAL CHEMISTS

Date of Report: 01/28/22 Date Received: 01/25/22 Project: Alfy's, F&BI 201351

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 201342-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	0.027	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	98	69-120
Toluene	mg/kg (ppm)	0.5	88	70-117
Ethylbenzene	mg/kg (ppm)	0.5	88	65 - 123
Xylenes	mg/kg (ppm)	1.5	87	66 - 120
Gasoline	mg/kg (ppm)	20	120	71 - 131

ENVIRONMENTAL CHEMISTS

Date of Report: 01/28/22 Date Received: 01/25/22 Project: Alfy's, F&BI 201351

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	201362-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	\mathbf{MS}	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	15,000	130	123	63-146	6
Laboratory Code:	Laboratory Contr	ol Samp	le				
			Percent	,			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crit	eria		
Diesel Extended	mg/kg (ppm)	5,000	106	79-1	144		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	<u>ئ</u>		KX	t X t	5×3	XX	EX K	QXJ EXD	UX A	& X =	AX J	Sample ID			City, State, ZIP	Company by t	261351 Report To 24/11
Received by:	Relinquished by:	Received Thy	Relinquished by:	SIGNATION	8	8	Ę0	96	8	8	83	02 1	01 A. 12 2/2 41/2	Lab ID Date Sampled		Bmail		HUMAN Nor	Med a
		WWW days by stars	.)	2	 	- 5								Time Sampled		Project sp	REMARKS	PROJECT NAME	SAMPLE
		Der I	John 1	PRINT NAM		· · ·							5	Sample # of Type Jars		Project specific RLs? - Yes		FY S	SAMPLE CHAIN OF CUSTODY
		-	MEVa	NAME ·			I NXX				NNN	XXX		NWTPH-Dx NWTPH-Gx BTEX EPA 8021 NWTPH-HCID	A	/ No	AI I		USTODY
ß	1	the B	to be t	,COMPANY										VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082	ANALYSES REQUESTED	al ye	INVOICE TO	PO #	01-25-22
Samples received at		14	- De						```						STED	Default: Dispos	SAMPLE DI	C Standard turnaround RUSH Rush charges authorized by:	Page #
$d at = 4 \circ C$		120 1526	5/2/21	DATE TIME			~							Notes		□ Other Default: Dispose after 30 days	SAMPLE DISPOSAL	thorized by:	Page # A05/VSB 3

·.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 1, 2022

John Meyer, Project Manager Puget Environmental 4616 25th Avenue NE, Suite 143 Seattle, WA 98105

Dear Mr Meyer:

Included are the results from the testing of material submitted on January 27, 2022 from the Alfy's, F&BI 201395 project. There are 7 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

help Cole

Michael Erdahl Project Manager

Enclosures c: Sarah Meyer PGT0201R.DOC

ENVIRONMENTAL CHEMISTS

Date of Report: 02/01/22 Date Received: 01/27/22 Project: Alfy's, F&BI 201395 Date Extracted: 01/28/22 Date Analyzed: 01/28/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery)</u> (Limit 50-150)
EXS 201395-01	< 0.02	< 0.02	< 0.02	< 0.06	<5	78
EXL 201395-02	< 0.02	< 0.02	< 0.02	< 0.06	<5	91
EXK 201395-03	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
EXJ 201395-04	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
EXP 201395-05 1/5	2.8	3.1	0.27	1.7	40	87
EXM 201395-06	< 0.02	< 0.02	< 0.02	< 0.06	<5	88
EXT 201395-07	< 0.02	< 0.02	0.040	0.16	<5	89
EXO 201395-08	< 0.02	< 0.02	< 0.02	< 0.06	<5	89
EXR 201395-09 1/5	3.9	5.4	0.60	4.7	69	88
EXN 201395-10	< 0.02	< 0.02	< 0.02	< 0.06	<5	87

ENVIRONMENTAL CHEMISTS

Date of Report: 02/01/22 Date Received: 01/27/22 Project: Alfy's, F&BI 201395 Date Extracted: 01/28/22 Date Analyzed: 01/28/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
EXQ 201395-11 1/5	0.76	<0.1	0.19	0.46	42	73
Method Blank 02-0163 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	89

ENVIRONMENTAL CHEMISTS

Date of Report: 02/01/22 Date Received: 01/27/22 Project: Alfy's, F&BI 201395 Date Extracted: 01/28/22 Date Analyzed: 01/28/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
EXS 201395-01	<50	<250	108
EXL 201395-02	<50	<250	97
EXK 201395-03	<50	<250	96
EXJ 201395-04	<50	<250	97
EXP 201395-05	<50	<250	98
EXM 201395-06	<50	<250	96
EXT 201395-07	<50	<250	97
EXO 201395-08	<50	<250	99
EXR 201395-09	<50	<250	98
EXN 201395-10	<50	<250	105

ENVIRONMENTAL CHEMISTS

Date of Report: 02/01/22 Date Received: 01/27/22 Project: Alfy's, F&BI 201395 Date Extracted: 01/28/22 Date Analyzed: 01/28/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	<u>Diesel Range</u> (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
EXQ 201395-11	<50	<250	101
Method Blank 02-262 MB	<50	<250	108

ENVIRONMENTAL CHEMISTS

Date of Report: 02/01/22 Date Received: 01/27/22 Project: Alfy's, F&BI 201395

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 201064-05 (Duplicate)

	Reporting	Sample Result	Duplicate Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	90	69-120
Toluene	mg/kg (ppm)	0.5	83	70-117
Ethylbenzene	mg/kg (ppm)	0.5	82	65 - 123
Xylenes	mg/kg (ppm)	1.5	82	66-120
Gasoline	mg/kg (ppm)	20	100	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 02/01/22 Date Received: 01/27/22 Project: Alfy's, F&BI 201395

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 20	1395-01 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm) 5,000 <50 82			94	73 - 135	14	
Laboratory Code: La	aboratory Contro	ol Sampl	е				
			Percent				
	Reporting	Spike	Recovery	Acceptar	nce		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	84	74-139)		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

					•																,' ' '
Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.		NX.N	TXR N	FRO	EXT	t'xw	EXP	C.S.	X	1 Z	S.N.S		Sample ID		Phone Em	Address	Report 10 VIII	
Received by:	Relinquished by:	Received by: Jollel (.	Relinquished by: Rath	STGNATURE	Jess C	0,9 1 1/1	80	97	06	20	04	8	02		with the second	Lab ID Date Sampled		Email		Viconal)
											× .				~	Time Sampled		Project spe	REMARKS	PROJECT NAME	MPLE C
		Tokala .C		PRINT N/	V C V	~ ×				<u></u>		1 2 X 2		· ·		Sample Type # of Jars NWTPH-D		Project specific RLs? - Yes / No	0.	•	SAMPLE CHAIN OF CUSTODY
		chostace		NAME	XXI									$\overline{\langle}$	× ×	NWTPH-G: BTEX EPA 80 NWTPH-HC VOCs EPA 82 PAHs EPA 8	021 ID		INVOICE TO	PO #	N / Ol-2:
bamp	S	F+8	1 Peret	COMPANY												PCBs EPA 8	ANALYSES REQUESTED	Default:			2
Samplespreusiven an W. J.	5	CILCHER IN. CI	4	DATE TIME	_											Notes		: Dispose after 30 days		D RUSH Rush charges authorized by:	BO3/ US-BY TURNAROUND TIME

Friedman & Bruya, Inc. Ph. (206) 285-8282	XX	Sample ID	2 of 2 of 2 of 1 Report To Jam Company Phage Address City, State, ZIP Phone
SIGNATURE Relinquished by: Octuber () Received by: Relinquished by: Received by:	11 A-E /27/	Lab ID Sa	Email V Emul
RE C.	22	Date Time Sampled Sampled	
Avin n Dary Tokala Christ	X X Ž:	Sample Type # of Jars NWTPH-Dx	SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) O PROJECT NAME A/A/Y' S REMARKS Tudude 0i Project specific RLs? - Yes / No
		NWTPH-Gx BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260 PAHs EPA 8270	
COMPANY Puge FB Samples		VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082 CBs EPA 8082 QUESTED	4
DATE TIME 1/27/22 12:41 01/24/22 13:41 received at 6 00		Notes	303/VS_BY_TWSC_OM/DUV Page # of TURNAROUND TIME UStandard turnaround BRUSH Rush charges authorized by: Rush charges authorized by: SAMPLE DISPOSAL Archive samples Other Default: Dispose after 30 days

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 8, 2022

John Meyer, Project Manager Puget Environmental 4616 25th Avenue NE, Suite 143 Seattle, WA 98105

Dear Mr Meyer:

Included are the results from the testing of material submitted on February 3, 2022 from the Alfy's, F&BI 202068 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Sarah Meyer PGT0208R.DOC

ENVIRONMENTAL CHEMISTS

Date of Report: 02/08/22 Date Received: 02/03/22 Project: Alfy's, F&BI 202068 Date Extracted: 02/07/22 Date Analyzed: 02/07/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-132)
EXU 202068-01 1/5	2.5	4.2	0.37	2.5	37	83
EXV 202068-02	0.30	< 0.02	0.074	0.32	10	84
EXW 202068-03	< 0.02	< 0.02	< 0.02	< 0.06	<5	84
Method Blank 02-0311 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	91

ENVIRONMENTAL CHEMISTS

Date of Report: 02/08/22 Date Received: 02/03/22 Project: Alfy's, F&BI 202068 Date Extracted: 02/04/22 Date Analyzed: 02/04/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
EXU 202068-01	<50	<250	91
EXV 202068-02	<50	<250	93
EXW 202068-03	<50	<250	92
Method Blank 02-367 MB2	<50	<250	92

ENVIRONMENTAL CHEMISTS

Date of Report: 02/08/22 Date Received: 02/03/22 Project: Alfy's, F&BI 202068

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	mg/kg (ppm)	0.5	90	99	69-120	10
Toluene	mg/kg (ppm)	0.5	82	89	70 - 117	8
Ethylbenzene	mg/kg (ppm)	0.5	81	89	65 - 123	9
Xylenes	mg/kg (ppm)	1.5	81	89	66 - 120	9
Gasoline	mg/kg (ppm)	20	85	90	71-131	6

ENVIRONMENTAL CHEMISTS

Date of Report: 02/08/22 Date Received: 02/03/22 Project: Alfy's, F&BI 202068

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	202059-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	\mathbf{MS}	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	86	88	64-133	2
Laboratory Code:	Laboratory Conti	rol Samp	le				
			Percent	,			
	Reporting	Spike	Recover	y Accept	tance		
Analyte	Reporting Units	Spike Level	Recover LCS	y Accep Crite			

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

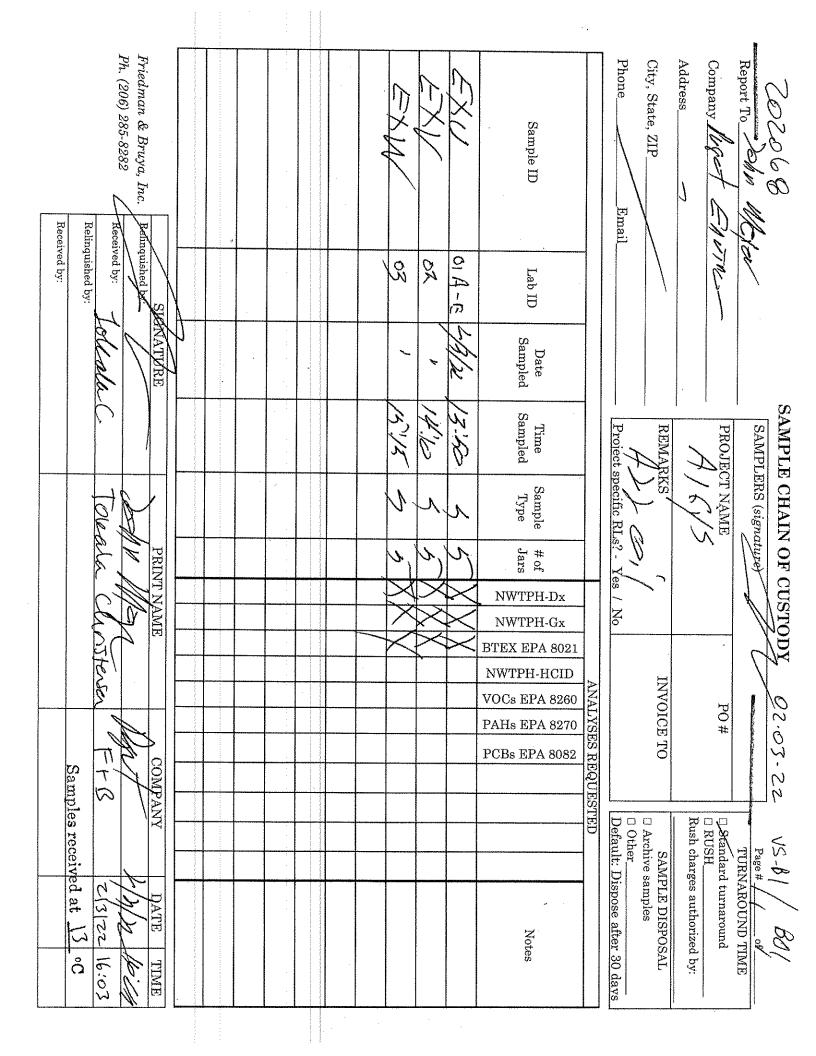
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.


nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

February 14, 2022

John Meyer, Project Manager Puget Environmental 4616 25th Avenue NE, Suite 143 Seattle, WA 98105

Dear Mr Meyer:

Included are the results from the testing of material submitted on February 9, 2022 from the Alfy's, F&BI 202161 project. There are 5 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

help Cole

Michael Erdahl Project Manager

Enclosures c: Sarah Meyer PGT0214R.DOC

ENVIRONMENTAL CHEMISTS

Date of Report: 02/14/22 Date Received: 02/09/22 Project: Alfy's, F&BI 202161 Date Extracted: 02/10/22 Date Analyzed: 02/10/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-132)
EXX 202161-01	< 0.02	< 0.02	0.18	0.30	<5	82
EXY 202161-02	< 0.02	< 0.02	< 0.02	< 0.06	<5	64
EXZ 202161-03	< 0.02	< 0.02	< 0.02	<0.06	<5	50
Method Blank 02-318 MB	< 0.02	< 0.02	< 0.02	< 0.06	<5	90

ENVIRONMENTAL CHEMISTS

Date of Report: 02/14/22 Date Received: 02/09/22 Project: Alfy's, F&BI 202161 Date Extracted: 02/09/22 Date Analyzed: 02/09/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
EXX 202161-01	<50	<250	89
EXY 202161-02	<50	<250	102
EXZ 202161-03	<50	<250	89
Method Blank 02-412 MB	<50	<250	91

ENVIRONMENTAL CHEMISTS

Date of Report: 02/14/22 Date Received: 02/09/22 Project: Alfy's, F&BI 202161

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 202144-01 (Duplicate)

	Reporting	Sample Result	Duplicate Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	91	69-120
Toluene	mg/kg (ppm)	0.5	83	70-117
Ethylbenzene	mg/kg (ppm)	0.5	83	65 - 123
Xylenes	mg/kg (ppm)	1.5	83	66-120
Gasoline	mg/kg (ppm)	20	90	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 02/14/22 Date Received: 02/09/22 Project: Alfy's, F&BI 202161

-

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 2	202151-01 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	6,500	53 b	48 b	64-133	10 b
Laboratory Code: 1	Laboratory Contr	ol Sampl	le				
			Percent	i			
	Reporting	Spike	Recovery	y Accept	tance		
Analyte	Units	Level	LCS	Crite	eria		
Diesel Extended	mg/kg (ppm)	5,000	84	58-1	47		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	3012 16 th 1 Seattle, W	Friedman		*		- 1	z vag		*.	ĿŢ.	Th.	アメ	70		Phone	City State	Company	ZO2
285-8282	3012 16 th Avenue West Seattle, WA 98119-2029	Friedman & Bruya, Inc.		 т	÷	4		• • •		X7	X X	X	Sample ID		Email	dIZ	liget E	16/ Mol
Received by:	Received by:	3	JIS					-		03 U	02	01 A-15	Lab ID		ail		Mud-n-	Marter
	My Ch		SIGNATURE		- - -		· · ·		-	4	, 1 1	47/22	Date Sampled				· · ·	
	Ŵ			 			•			12.4	15.50	18.32	Time Sampled		Project specific	REMARKS	PROJECT NAME	SAMPLERS (signature)
	Nha	R	7	 						N,	r	V	Sample # Type J		scific RLs?		NAME L	SAMPLERS (signature)
	hin t		PRINT NAME							S X	51XX		NWTPH-Dx NWTPH-Gx		- Yes / No	>, /	1	re
	han	it.	ME										BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260	AN		VNI		
	Fé B	Ricor											PAHs EPA 8270 PCBs EPA 8082	ANALYSES REQ	ан на се	INVOICE TO	PO#	· · · · · 2.2
Samples			COMPANY											REQUESTED	Default	□ Archiv	☐ RUSH_ Rush cha	J
Samples received at 2°C	2/9/2	2/4/22	DATE										z		Other	SAMPLE DISPOSAL	☐ Standard turnaround □ RUSH	Page # of TURNAROUND TIME
1 <u></u> 2°C	22 1335		TIME										Notes		<u>ər 30 days</u>)SAL	d ed by:	TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 17, 2022

John Meyer, Project Manager Puget Environmental 4616 25th Avenue NE, Suite 143 Seattle, WA 98105

Dear Mr Meyer:

Included are the results from the testing of material submitted on March 11, 2022 from the Alfy's, F&BI 203216 project. There are 11 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

help Cole

Michael Erdahl Project Manager

Enclosures c: Sarah Meyer PGT0317R.DOC

ENVIRONMENTAL CHEMISTS

Date of Report: 03/17/22 Date Received: 03/11/22 Project: Alfy's, F&BI 203216 Date Extracted: 03/14/22 Date Analyzed: 03/14/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW1-9 203216-01	<5	102
MW2-9 203216-02	<5	95
MW3-9 203216-03	<5	106
Method Blank 02-596 MB	<5	99

ENVIRONMENTAL CHEMISTS

Date of Report: 03/17/22 Date Received: 03/11/22 Project: Alfy's, F&BI 203216 Date Extracted: 03/11/22 Date Analyzed: 03/11/22 and 03/12/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
MW1-9 203216-01	150 x	1,700	89
MW2-9 203216-02	99 x	1,900	98
MW3-9 203216-03	<50	<250	91
Method Blank 02-636 MB	<50	<250	91

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW1-9 03/11/22 03/14/22 03/14/22 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 203216 203216-01 031410.D GCMS4 RF	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	e-d4	105	90	109	
Toluene-d8		96 97	89	112	
4-Bromofluorobenz	zene	97	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane	_	< 0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber		< 0.05
Acetone		<5		etrachloroethane	< 0.05
1,1-Dichloroethene Hexane		<0.05 <0.25	m,p-Xyle		<0.1
Methylene chloride	`	<0.25 <0.5	o-Xylene Styrene		$< 0.05 \\ < 0.05$
Methyl t-butyl ethe		< 0.05	-	lbenzene	<0.05
trans-1,2-Dichloroe		<0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05		lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth		< 0.05	1,3,5-Tr	imethylbenzene	< 0.05
Chloroform		< 0.05	1,1,2,2-7	etrachloroethane	< 0.05
2-Butanone (MEK)		<1	1,2,3-Tr	ichloropropane	< 0.05
1,2-Dichloroethane	· /	< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.05	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlori	de	< 0.05		imethylbenzene	< 0.05
Benzene		< 0.03	v	lbenzene	< 0.05
Trichloroethene		< 0.02		pyltoluene	< 0.05
1,2-Dichloropropar Bromodichlorometl		<0.05 <0.05		lorobenzene lorobenzene	$< 0.05 \\ < 0.05$
Dibromomethane	liane	< 0.05		lorobenzene	<0.05
4-Methyl-2-pentan	one	<1	,	omo-3-chloropropane	<0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene	L -	< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	-	< 0.05	-	ichlorobenzene	< 0.25
2-Hexanone		<0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW2-9 03/11/22 03/14/22 03/14/22 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 203216 203216-02 031411.D GCMS4 RF	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	e-d4	106	90	109	
Toluene-d8		100	89	112	
4-Bromofluorobenz	ene	99	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle	ene	< 0.1
Hexane		< 0.25	o-Xylene	e	< 0.05
Methylene chloride	e e e e e e e e e e e e e e e e e e e	< 0.5	Styrene		< 0.05
Methyl t-butyl ethe		< 0.05		lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05		lbenzene	< 0.05
2,2-Dichloropropar		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.05	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorie	de	< 0.05		imethylbenzene	< 0.05
Benzene		< 0.03		lbenzene	< 0.05
Trichloroethene		< 0.02		pyltoluene	< 0.05
1,2-Dichloropropan		< 0.05		lorobenzene	< 0.05
Bromodichloromet	nane	< 0.05		lorobenzene	< 0.05
Dibromomethane	0.00	< 0.05		lorobenzene	<0.05
4-Methyl-2-pentan		<1 <0.05		omo-3-chloropropane	$<\!\!0.5 < \!\!0.25$
cis-1,3-Dichloropro Toluene	pene	< 0.05		ichlorobenzene orobutadiene	<0.25 <0.25
trans-1,3-Dichlorog	vonore	< 0.05	Naphtha		<0.25 <0.05
1,1,2-Trichloroetha	-	< 0.05	-	ichlorobenzene	< 0.05
2-Hexanone		<0.05	1,4,0-11	ICHTOLODEHIZEHE	NU.20
2-11exanone		~0.0			

ENVIRONMENTAL CHEMISTS

Client Sample ID:MW3-9Date Received:03/11/22Date Extracted:03/14/22Date Analyzed:03/14/22Matrix:SoilUnits:mg/kg (p)	2	Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 203216 203216-03 031412.D GCMS4 RF	
		Lower	Upper	
Surrogates:	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane-d4	103	90	109	
Toluene-d8	101	89	112	
4-Bromofluorobenzene	102	84	115	
Compounds:	Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane	< 0.5		loroethene	< 0.025
Vinyl chloride	< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylber		< 0.05
Acetone	<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xyle		< 0.1
Hexane	< 0.25	o-Xylene	e	< 0.05
Methylene chloride	< 0.5	Styrene		< 0.05
Methyl t-butyl ether (MTBE			lbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromofo		< 0.05
1,1-Dichloroethane	< 0.05		lbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroethene	< 0.05		imethylbenzene	< 0.05
Chloroform	< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1		ichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chloro		< 0.05
1,1-Dichloropropene	<0.05		ylbenzene	< 0.05
Carbon tetrachloride	<0.05 <0.03		imethylbenzene	< 0.05
Benzene Trichloroethene	<0.03		vlbenzene	$< 0.05 \\ < 0.05$
1,2-Dichloropropane	<0.02 <0.05		pyltoluene lorobenzene	< 0.05
Bromodichloromethane	<0.05		lorobenzene	< 0.05
Dibromomethane	<0.05		lorobenzene	< 0.05
4-Methyl-2-pentanone	<0.05		omo-3-chloropropane	<0.05
cis-1,3-Dichloropropene	<0.05		ichlorobenzene	<0.25
Toluene	<0.05		orobutadiene	<0.25
trans-1,3-Dichloropropene	< 0.05	Naphtha		<0.25
1,1,2-Trichloroethane	< 0.05	-	ichlorobenzene	<0.25
2-Hexanone	<0.5	-, = ,0 11		J.= J

ENVIRONMENTAL CHEMISTS

LowerUpperSurrogates:% Recovery:Limit:1,2-Dichloroethane-d49790109Toluene-d810189112	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:
1,2-Dichloroethane-d4 97 90 109	
	Surrogates:
Toluene-d8 101 89 112	
	Toluene-d8
4-Bromofluorobenzene 101 84 115	4-Bromofluorobenze
Compounds:Concentration mg/kg (ppm)Compounds:Concentration mg/kg (ppm)	Compounds:
Dichlorodifluoromethane <0.5 1,3-Dichloropropane <0.05	Dichlorodifluoromet
Chloromethane <0.5 Tetrachloroethene <0.025	Chloromethane
Vinyl chloride <0.05 Dibromochloromethane <0.05	Vinyl chloride
Bromomethane <0.5 1,2-Dibromoethane (EDB) <0.05	
Chloroethane <0.5 Chlorobenzene <0.05	Chloroethane
Trichlorofluoromethane <0.5 Ethylbenzene <0.05	Trichlorofluorometh
Acetone <5 1,1,1,2-Tetrachloroethane <0.05	Acetone
1,1-Dichloroethene <0.05 m,p-Xylene <0.1	1,1-Dichloroethene
Hexane <0.25 o-Xylene <0.05	
Methylene chloride <0.5 Styrene <0.05	
Methyl t-butyl ether (MTBE) <0.05 Isopropylbenzene <0.05	
trans-1,2-Dichloroethene <0.05 Bromoform <0.05	
1,1-Dichloroethane <0.05 n-Propylbenzene <0.05	-
2,2-Dichloropropane <0.05 Bromobenzene <0.05	
cis-1,2-Dichloroethene <0.05 1,3,5-Trimethylbenzene <0.05	
Chloroform <0.05 1,1,2,2-Tetrachloroethane <0.05	
2-Butanone (MEK) <1 1,2,3-Trichloropropane <0.05	
1,2-Dichloroethane (EDC) <0.05 2-Chlorotoluene <0.05	
1,1,1-Trichloroethane <0.05 4-Chlorotoluene <0.05	
1,1-Dichloropropene <0.05 tert-Butylbenzene <0.05	
Carbon tetrachloride <0.05 1,2,4-Trimethylbenzene <0.05	
Benzene<0.03sec-Butylbenzene<0.05Trichloroethene<0.02	
1,2-Dichloropropane<0.051,3-Dichlorobenzene<0.05Bromodichloromethane<0.05	
Dibromomethane <0.05 1,4-Dichlorobenzene <0.05 Dibromomethane <0.05	
Dibromomethane<0.051,2-Dichlorobenzene<0.054-Methyl-2-pentanone<1	
cis-1,3-Dichloropropene <0.05 1,2,4-Trichlorobenzene <0.25	
Cis-1,5-Dichlorophopene<0.051,2,4-Thenlorobenzene<0.25Toluene<0.05	· · · ·
trans-1,3-Dichloropropene <0.05 Naphthalene <0.25	
1,1,2-Trichloroethane<0.051,2,3-Trichlorobenzene<0.25	· •
2-Hexanone <0.5	

ENVIRONMENTAL CHEMISTS

Date of Report: 03/17/22 Date Received: 03/11/22 Project: Alfy's, F&BI 203216

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 20)3216-01 (Duplic	ate)			
		Samp	le Du	plicate	
	Reporting	Resu	lt R	lesult	RPD
Analyte	Units	(Wet V	Vt) (W	et Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5		<5	nm
Laboratory Code: La	aboratory Contro	ol Sample	e Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	mg/kg (ppm)	20	95	71-131	

ENVIRONMENTAL CHEMISTS

Date of Report: 03/17/22 Date Received: 03/11/22 Project: Alfy's, F&BI 203216

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 2	203204-46 (Matrix	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	\mathbf{MS}	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	98	98	73-135	0
Laboratory Code: I	Laboratory Contro	ol Sampl	e				
			Percent				
	Reporting	Spike	Recovery	Acceptan	nce		
Analyte	Units	Level	LCS	Criteria	a		
Diesel Extended	mg/kg (ppm)	5,000	96	74-139)		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/17/22 Date Received: 03/11/22 Project: Alfy's, F&BI 203216

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 203216-01 (Matrix Spike)

Laboratory Code: 203216-01 (Matrix Spike)		Sample	Percent	Percent		
		0. 'I				A 4	מתת
	Reporting	Spike	Result			Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	< 0.5	19	20	10-142	5
Chloromethane Vinyl chloride	mg/kg (ppm) mg/kg (ppm)	1 1	<0.5 <0.05	51 51	$54 \\ 56$	10-126 10-138	6 9
Bromomethane	mg/kg (ppm)	1	<0.05	69	58 71	10-163	3
Chloroethane	mg/kg (ppm)	1	< 0.5	60	60	10-176	0
Trichlorofluoromethane	mg/kg (ppm)	1	< 0.5	53	53	10-176	0
Acetone	mg/kg (ppm)	5	<5	85	78	10-163	9
1,1-Dichloroethene	mg/kg (ppm)	1	< 0.05	64	67	10-160	5
Hexane	mg/kg (ppm)	1	< 0.25	52	53	10-137	2
Methylene chloride Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	1 1	<0.5 <0.05	79 80	82 82	10-156 21-145	$\frac{4}{2}$
trans-1.2-Dichloroethene	mg/kg (ppm)	1	<0.05	80 72	82 74	14-137	2 3
1,1-Dichloroethane	mg/kg (ppm)	1	<0.05	75	77	19-140	3
2,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	90	89	10-158	1
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	78	77	25 - 135	1
Chloroform	mg/kg (ppm)	1	< 0.05	73	75	21-145	3
2-Butanone (MEK)	mg/kg (ppm)	5	<1	76	78	19-147	3
1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane	mg/kg (ppm)	1	<0.05 <0.05	75 75	77 78	12-160 10-156	3 4
1,1.1-Irichloropene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	75 72	78 75	10-156 17-140	4
Carbon tetrachloride	mg/kg (ppm)	1	<0.05	70	75 71	9-164	4
Benzene	mg/kg (ppm)	1	< 0.03	74	76	29-129	3
Trichloroethene	mg/kg (ppm)	1	< 0.02	73	76	21-139	4
1,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	80	79	30-135	1
Bromodichloromethane	mg/kg (ppm)	1	< 0.05	73	73	23 - 155	0
Dibromomethane	mg/kg (ppm)	1	< 0.05	79	79	23-145	0
4-Methyl-2-pentanone cis-1,3-Dichloropropene	mg/kg (ppm)	5 1	<1 <0.05	81 77	83 79	24-155 28-144	2 3
Toluene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	71	73	35-130	3
trans-1,3-Dichloropropene	mg/kg (ppm)	1	<0.05	76	74	26-149	3
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	76	75	10-205	1
2-Hexanone	mg/kg (ppm)	5	< 0.5	79	79	15-166	0
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	76	77	31-137	1
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	71	72	20-133	1
Dibromochloromethane	mg/kg (ppm)	1	<0.05 <0.05	67 77	66 77	28-150 28-142	2 0
1,2-Dibromoethane (EDB) Chlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	75	75	28-142 32-129	0
Ethylbenzene	mg/kg (ppm)	1	<0.05	75	75	32-125	0
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	72	69	31-143	4
m,p-Xylene	mg/kg (ppm)	2	< 0.1	75	75	34-136	0
o-Xylene	mg/kg (ppm)	1	< 0.05	76	76	33-134	0
Styrene	mg/kg (ppm)	1	< 0.05	75	73	35-137	3
Isopropylbenzene Bromoform	mg/kg (ppm)	1	<0.05 <0.05	77 61	77 59	31-142 21-156	0 3
n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	1	<0.05	75	59 77	23-146	3
Bromobenzene	mg/kg (ppm)	1	<0.05	72	77	34-130	7
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	< 0.05	74	75	18-149	1
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	77	78	28-140	1
1,2,3-Trichloropropane	mg/kg (ppm)	1	< 0.05	73	76	25 - 144	4
2-Chlorotoluene	mg/kg (ppm)	1	< 0.05	72	75	31-134	4
4-Chlorotoluene tert-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	1	<0.05 <0.05	74 76	76 77	31-136 30-137	3 1
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	<0.05	78	76	10-182	3
sec-Butylbenzene	mg/kg (ppm)	1	<0.05	76	78	23-145	3
p-Isopropyltoluene	mg/kg (ppm)	1	< 0.05	75	77	21-149	3
1,3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	71	76	30-131	7
1,4-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	70	73	29-129	4
1,2-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	74	76	31-132	3
1,2-Dibromo-3-chloropropane 1.2.4-Trichlorobenzene	mg/kg (ppm)	1	<0.5 <0.25	65 72	$\frac{65}{74}$	11-161 22-142	0 3
1,2,4-Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	1	<0.25 <0.25	72 77	74 81	22-142 10-142	3 5
Naphthalene	mg/kg (ppm)	1	<0.25	76	79	14-157	5 4
1,2,3-Trichlorobenzene	mg/kg (ppm)	1	<0.25	72	76	20-144	5
	0 0 44 7						

ENVIRONMENTAL CHEMISTS

Date of Report: 03/17/22 Date Received: 03/11/22 Project: Alfy's, F&BI 203216

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laborator	ур		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	56	10-146
Chloromethane	mg/kg (ppm)	1	81	27-133
Vinyl chloride	mg/kg (ppm)	1	86	22-139
Bromomethane	mg/kg (ppm)	1	82	38-114
Chloroethane	mg/kg (ppm)	1	89	9-163
Trichlorofluoromethane	mg/kg (ppm)	1	85	10-196
Acetone	mg/kg (ppm)	5	93	52-141
1,1-Dichloroethene	mg/kg (ppm)	1 1	92 92	47-128
Hexane Methylene chloride	mg/kg (ppm)	1	96 96	43-142
Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	1	106	10-184 60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	1	99	67-129
1,1-Dichloroethane	mg/kg (ppm)	1	100	68-115
2.2-Dichloropropane	mg/kg (ppm)	1	118	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	1	99	72-127
Chloroform	mg/kg (ppm)	1	97	66-120
2-Butanone (MEK)	mg/kg (ppm)	5	92	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	96	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	103	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	100	69-128
Carbon tetrachloride	mg/kg (ppm)	1	102	60-139
Benzene	mg/kg (ppm)	1	98	71-118
Trichloroethene	mg/kg (ppm)	1	100	63-121
1,2-Dichloropropane	mg/kg (ppm)	1	101	72-127
Bromodichloromethane	mg/kg (ppm)	1	101	57-126
Dibromomethane	mg/kg (ppm)	1	101	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	5	98	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	104	67-122
Toluene	mg/kg (ppm)	1	96	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	1	105	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	1	98	64-115
2-Hexanone	mg/kg (ppm)	5	97	33-152
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm)	1 1	98 96	72-130 72-114
Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	1	98 92	72-114 55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	92 100	74-132
Chlorobenzene	mg/kg (ppm)	1	97	76-111
Ethylbenzene	mg/kg (ppm)	1	97	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	98	64-121
m,p-Xylene	mg/kg (ppm)	2	98	78-122
o-Xylene	mg/kg (ppm)	1	99	77-124
Styrene	mg/kg (ppm)	1	96	74-126
Isopropylbenzene	mg/kg (ppm)	1	100	76-127
Bromoform	mg/kg (ppm)	1	86	56-132
n-Propylbenzene	mg/kg (ppm)	1	100	74-124
Bromobenzene	mg/kg (ppm)	1	100	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	102	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	1	99	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	1	96	61-137
2-Chlorotoluene	mg/kg (ppm)	1	99	74-121
4-Chlorotoluene	mg/kg (ppm)	1	98	75-122
tert-Butylbenzene	mg/kg (ppm)	1	102	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	102	76-125
sec-Butylbenzene	mg/kg (ppm)	1 1	101	71-130
p-Isopropyltoluene	mg/kg (ppm)	1	101	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	1	98 96	75-121
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	96 100	74-117 76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	98	58-138
1.2.4-Trichlorobenzene	mg/kg (ppm)	1	98 104	64-135
Hexachlorobutadiene	mg/kg (ppm)	1	104	50-153
Naphthalene	mg/kg (ppm)	1	101	63-140
1.2.3-Trichlorobenzene	mg/kg (ppm)	1	104	63-138
r,=,o menorobenzene	mg/ng (ppm)	-	100	00 100

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

o T	Friedman & Bruya, Inc. F 3012 16th Avenue West					· · · ·		- AM	MN 3-9	6-2MM	6-4/MM	Sample ID		PhoneEmail	City, State, ZIP	Company lugst a	Report To 2411
Relinquished by: Received by:	Relinquished by	SIZNATURE							J 20	02	OLA-F 7/6	Lab ID Da		ail	ケジー	Eyu	203216
haled .		URE			3				· · · · · · · · · · · · · · · · · · ·			Date Time Sampled Sampled		Project s	REMARKS		
1 olea le	Jenn .) PRINT						1.C	5	5	1 2	Sample # of Type Jars		Project specific RLs? - Yes	0 110	ALLYY	ature
Christian	Mah	L NAME					. 5			XXX (NWTPH-Dx NWTPH-Gx BTEX EPA 8021 NWTPH-HCID		- No		1999-1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	USTODY Z
	142	POMPANY		•								VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082	기렀		INVOICE TO	, LO #	11/22-
Samples received at	4/11/p	ANY DATE	- Valad Color Valad and a second sec second second sec		A			¢.			Recieval 6 Jars: 4,002, 2,207	Notes	STED	Default: Dispose after 30 days	SAMPLE DISPOSAL	 RUSH Rush charges authorized by 	Page #of
10:04		TIME						ann agus an la chuir an la	3/11/22	T WC	6 Jars: 2,202	tes		r 30 days	SAL	d by:	IME VS-A

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 25, 2022

John Meyer, Project Manager Puget Environmental 4616 25th Avenue NE, Suite 143 Seattle, WA 98105

Dear Mr Meyer:

Included are the results from the testing of material submitted on March 17, 2022 from the Alfy's, F&BI 203315 project. There are 11 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

help Cole

Michael Erdahl Project Manager

Enclosures c: Sarah Meyer PGT0325R.DOC

ENVIRONMENTAL CHEMISTS

Date of Report: 03/25/22 Date Received: 03/17/22 Project: Alfy's, F&BI 203315 Date Extracted: 03/18/22 Date Analyzed: 03/18/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW4-14 203315-01	12	100
MW5-12 203315-02	<5	85
MW6-11 203315-03	<5	93
Method Blank 02-606 MB	<5	92

ENVIRONMENTAL CHEMISTS

Date of Report: 03/25/22 Date Received: 03/17/22 Project: Alfy's, F&BI 203315 Date Extracted: 03/17/22 Date Analyzed: 03/17/22

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 53-144)
MW4-14 203315-01	<50	<250	95
MW5-12 203315-02	<50	<250	94
MW6-11 203315-03	<50	<250	94
Method Blank 02-679 MB	<50	<250	95

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW4-14 03/17/22 03/17/22 03/18/22 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 203315 203315-01 031813.D GCMS4 RF	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	e-d4	98	90	109	
Toluene-d8		90	89	112	
4-Bromofluorobenz	ene	99	84	115	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	<0.5 ca	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05	Dibromo	ochloromethane	< 0.05
Bromomethane		< 0.5	1,2-Dibr	omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob	enzene	< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	nzene	< 0.05
Acetone		<5	1,1,1,2-7	Tetrachloroethane	< 0.05
1,1-Dichloroethene		< 0.05	m,p-Xyle		< 0.1
Hexane		< 0.25	o-Xylene)	< 0.05
Methylene chloride		< 0.5	Styrene		< 0.05
Methyl t-butyl ethe		< 0.05		lbenzene	< 0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05		lbenzene	< 0.05
2,2-Dichloropropan		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth	ene	< 0.05		imethylbenzene	< 0.05
Chloroform		< 0.05		Tetrachloroethane	< 0.05
2-Butanone (MEK)		<1		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.05	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorie	ae	< 0.05		imethylbenzene	<0.05
Benzene Twichloweeth on a		<0.03 <0.02	v	vlbenzene	$< 0.05 \\ < 0.05$
Trichloroethene				pyltoluene lorobenzene	<0.05 <0.05
1,2-Dichloropropan Bromodichlorometl		<0.05 <0.05		lorobenzene	< 0.05
Dibromomethane	liane	< 0.05		lorobenzene	< 0.05
4-Methyl-2-pentan	000	<0.05		omo-3-chloropropane	<0.05
cis-1,3-Dichloropro		<0.05		ichlorobenzene	<0.5
Toluene	pene	< 0.05		orobutadiene	<0.25
trans-1,3-Dichlorog	ronene	< 0.05	Naphtha		<0.25
1,1,2-Trichloroetha	-	<0.05	-	ichlorobenzene	<0.25
2-Hexanone		<0.5	1,2,0 11		-0.20
_ 110Au110110		-0.0			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW5-12 03/17/22 03/17/22 03/17/22 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 203315 203315-02 031714.D GCMS4 RF	
			Lower	Upper	
Surrogates:	1.	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	e-d4	99	90	109	
Toluene-d8 4-Bromofluorobenz		$\begin{array}{c} 95 \\ 101 \end{array}$	$\frac{89}{84}$	$112\\115$	
4-bromolluorobenz	iene	101	0 - 110		
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	< 0.05	
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane	_	< 0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	< 0.05	
Acetone		<5	1,1,1,2-7	< 0.05	
1,1-Dichloroethene		<0.05 <0.25	m,p-Xyle	<0.1	
Hexane Methylene chloride		<0.25 <0.5	o-Xylene Styrene	$< 0.05 \\ < 0.05$	
Methyl t-butyl ethe		<0.05	Isopropy	<0.05	
trans-1,2-Dichloroe		<0.05	Bromofo	< 0.05	
1,1-Dichloroethane		< 0.05	n-Propy	< 0.05	
2,2-Dichloropropan		< 0.05	Bromobe	< 0.05	
cis-1,2-Dichloroeth		< 0.05	1,3,5-Tr	< 0.05	
Chloroform		< 0.05	1,1,2,2-7	< 0.05	
2-Butanone (MEK)		<1	1,2,3-Tr	< 0.05	
1,2-Dichloroethane	· · ·	< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.05	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorie	de	< 0.05		imethylbenzene	< 0.05
Benzene		< 0.03		lbenzene	< 0.05
Trichloroethene 1,2-Dichloropropar		<0.02 <0.05		pyltoluene	< 0.05
Bromodichloromet		< 0.05		lorobenzene lorobenzene	$< 0.05 \\ < 0.05$
Dibromomethane	liane	<0.05		lorobenzene	<0.05
4-Methyl-2-pentan	one	<1	,	omo-3-chloropropane	<0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	<0.25
Toluene	L -	< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	-	< 0.05	-	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW6-11 03/17/22 03/17/22 03/17/22 Soil mg/kg (ppr	n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 203315 203315-03 031715.D GCMS4 RF	
			Lower	Upper	
Surrogates:	• •	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	e-d4	100	90	109	
Toluene-d8		93	89	112	
4-Bromofluorobenz	zene	104	84 115		
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	< 0.05	
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane	_	< 0.5	Chlorobe		< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber	< 0.05	
Acetone		<5	1,1,1,2-7	< 0.05	
1,1-Dichloroethene		<0.05 <0.25	m,p-Xyle	<0.1	
Hexane Methylene chloride		<0.25 <0.5	o-Xylene Styrene	$< 0.05 \\ < 0.05$	
Methyl t-butyl ethe		<0.05	Isopropy	<0.05	
trans-1,2-Dichloroe		<0.05	Bromofo	< 0.05	
1,1-Dichloroethane		< 0.05	n-Propy	< 0.05	
2,2-Dichloropropan		< 0.05	Bromobe	< 0.05	
cis-1,2-Dichloroeth		< 0.05	1,3,5-Tri	< 0.05	
Chloroform		< 0.05	1,1,2,2-7	< 0.05	
2-Butanone (MEK)		<1	1,2,3-Tri	< 0.05	
1,2-Dichloroethane	· · ·	< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.05	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorie	de	< 0.05		imethylbenzene	< 0.05
Benzene		< 0.03		lbenzene	< 0.05
Trichloroethene 1,2-Dichloropropar		<0.02 <0.05		pyltoluene	< 0.05
Bromodichloromet		< 0.05		lorobenzene lorobenzene	$< 0.05 \\ < 0.05$
Dibromomethane	liane	<0.05		lorobenzene	<0.05
4-Methyl-2-pentan	one	<1	,	omo-3-chloropropane	<0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene	L -	< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorop	oropene	< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	-	< 0.05	-	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
1,2-Dichloroethane-d49490109Toluene-d895891124-Bromofluorobenzene10084115Compounds: $Concentration mg/kg (ppm)$ $Compounds:$ $Concentration mg/kg (ppm)$ Dichlorodifluoromethane<0.5
Toluene-d895891124-Bromofluorobenzene10084115Compounds:Concentration mg/kg (ppm)Compounds:Concentration mg/kg (ppm)Dichlorodifluoromethane<0.5
4-Bromofluorobenzene10084115Compounds:Concentration mg/kg (ppm)Compounds:Concentration mg/kg (ppm)Dichlorodifluoromethane<0.5
Compounds:Concentration mg/kg (ppm)Compounds:Concentration mg/kg (ppm)Dichlorodifluoromethane<0.5
Dichlorodifluoromethane<0.51,3-Dichloropropane<0.05Chloromethane<0.5
Chloromethane<0.5Tetrachloroethene<0.025Vinyl chloride<0.05
Chloromethane<0.5Tetrachloroethene<0.025Vinyl chloride<0.05
Bromomethane<0.51,2-Dibromoethane (EDB)<0.05Chloroethane<0.5
Chloroethane<0.5Chlorobenzene<0.05Trichlorofluoromethane<0.5
Trichlorofluoromethane <0.5 Ethylbenzene <0.05
Acetone <5 1,1,1,2-Tetrachloroethane <0.05
1,1-Dichloroethene <0.05 m,p-Xylene <0.1
Hexane <0.25 o-Xylene <0.05
Methylene chloride <0.5 Styrene <0.05
Methyl t-butyl ether (MTBE) <0.05 Isopropylbenzene <0.05
trans-1,2-Dichloroethene <0.05 Bromoform <0.05
1,1-Dichloroethane <0.05 n-Propylbenzene <0.05
2,2-Dichloropropane <0.05 Bromobenzene <0.05
cis-1,2-Dichloroethene <0.05 1,3,5-Trimethylbenzene <0.05
Chloroform <0.05 1,1,2,2-Tetrachloroethane <0.05
2-Butanone (MEK) <1 1,2,3-Trichloropropane <0.05
1,2-Dichloroethane (EDC)<0.052-Chlorotoluene<0.05
1,1,1-Trichloroethane <0.05 4-Chlorotoluene <0.05
1,1-Dichloropropene<0.05tert-Butylbenzene<0.05Colore to the state of the s
Carbon tetrachloride <0.05 1,2,4-Trimethylbenzene <0.05
Benzene<0.03sec-Butylbenzene<0.05Trichloroethene<0.02
1,2-Dichloropropane<0.051,3-Dichlorobenzene<0.05Bromodichloromethane<0.05
Dibromomethane <0.05 1,4-Dichlorobenzene <0.05
Dioromomentane<0.051,2-Dichlorobenzene<0.054-Methyl-2-pentanone<1
cis-1,3-Dichloropropene <0.05 1,2,4-Trichlorobenzene <0.25
Cis-1,3-Dichlorophopene<0.051,2,4-Trichlorobenzene<0.25Toluene<0.05
trans-1,3-Dichloropropene <0.05 Naphthalene <0.05
1,1,2-Trichloroethane<0.05Naphthalene<0.051,2,3-Trichlorobenzene<0.25
2-Hexanone <0.5

ENVIRONMENTAL CHEMISTS

Date of Report: 03/25/22 Date Received: 03/17/22 Project: Alfy's, F&BI 203315

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 203319-01 (Duplicate)									
	Sample Duplicate		plicate						
	Reporting	Resu	lt R	esult	RPD				
Analyte	Units	s (Wet Wt) (Wet Wt)		et Wt)	(Limit 20)				
Gasoline	mg/kg (ppm)	<5		<5	nm				
Laboratory Code: Laboratory Control Sample Percent									
	Reporting	Spike	Recovery	Acceptance					
Analata	Units	Level	LCS	Criteria					
Analyte	Units	Level	LUS	Uriteria	_				
Gasoline	mg/kg (ppm)	20	85	71-131					

ENVIRONMENTAL CHEMISTS

Date of Report: 03/25/22 Date Received: 03/17/22 Project: Alfy's, F&BI 203315

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	203310-01 (Matri	x Spike)						
			Sample	Percent	Percent			
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)	
Diesel Extended	mg/kg (ppm)	5,000	<50	92	92	64-133	0	
Laboratory Code: Laboratory Control Sample								
			Percent	t				
	Reporting	Spike	Recover	y Accep	tance			
Analyte	Units	Level	LCS	Crit	eria			
Diesel Extended	mg/kg (ppm)	5,000	92	58-1	147			

ENVIRONMENTAL CHEMISTS

Date of Report: 03/25/22 Date Received: 03/17/22 Project: Alfy's, F&BI 203315

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 203282-01 (Matrix Spike)

Laboratory Code: 203282-0	of (Matrix Spike)		~ -	_	_		
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	1	<0.5	20	18	10-142	11
Chloromethane	mg/kg (ppm)	1	< 0.5	53	49	10-126	8
Vinyl chloride	mg/kg (ppm)	1	< 0.05	64	58	10-138	10
Bromomethane	mg/kg (ppm)	1	< 0.5	65	60	10-163	8
Chloroethane	mg/kg (ppm)	1	< 0.5	65	61	10-176	6
Trichlorofluoromethane	mg/kg (ppm)	1	<0.5	60	55 93	10-176	9 3
Acetone 1,1-Dichloroethene	mg/kg (ppm)	5 1	<5 <0.05	96 68	93 65	10-163 10-160	3 5
Hexane	mg/kg (ppm) mg/kg (ppm)	1	<0.05	65	61	10-160	о 6
Methylene chloride	mg/kg (ppm)	1	<0.25	65 79	82	10-157	4
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	<0.05	88	88	21-145	0
trans-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	80	78	14-137	3
1,1-Dichloroethane	mg/kg (ppm)	1	< 0.05	83	79	19-140	5
2,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	101	95	10-158	6
cis-1,2-Dichloroethene	mg/kg (ppm)	1	< 0.05	83	82	25 - 135	1
Chloroform	mg/kg (ppm)	1	< 0.05	78	76	21 - 145	3
2-Butanone (MEK)	mg/kg (ppm)	5	<1	85	84	19-147	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	< 0.05	79	77	12-160	3
1,1,1-Trichloroethane	mg/kg (ppm)	1	< 0.05	79	75	10-156	5
1,1-Dichloropropene	mg/kg (ppm)	1	< 0.05	80	77	17-140	4
Carbon tetrachloride	mg/kg (ppm)	1	< 0.05	73	70	9-164	4
Benzene	mg/kg (ppm)	1	< 0.03	77	75	29-129	3
Trichloroethene	mg/kg (ppm)	1	< 0.02	80	78	21-139	3
1,2-Dichloropropane	mg/kg (ppm)	1	< 0.05	81	79	30-135	2
Bromodichloromethane Dibromomethane	mg/kg (ppm)	1	<0.05 <0.05	75 83	74 81	23-155 23-145	$\frac{1}{2}$
4-Methyl-2-pentanone	mg/kg (ppm) mg/kg (ppm)	5	<0.05	83 91	81 89	23-145 24-155	2
cis-1,3-Dichloropropene	mg/kg (ppm)	1	<0.05	91 80	89 79	28-144	1
Toluene	mg/kg (ppm)	1	<0.05	83	82	35-130	1
trans-1,3-Dichloropropene	mg/kg (ppm)	1	< 0.05	91	88	26-149	3
1,1,2-Trichloroethane	mg/kg (ppm)	1	< 0.05	89	90	10-205	1
2-Hexanone	mg/kg (ppm)	5	< 0.5	96	98	15-166	2
1,3-Dichloropropane	mg/kg (ppm)	1	< 0.05	89	88	31-137	1
Tetrachloroethene	mg/kg (ppm)	1	< 0.025	83	81	20-133	2
Dibromochloromethane	mg/kg (ppm)	1	< 0.05	75	74	28 - 150	1
1,2-Dibromoethane (EDB)	mg/kg (ppm)	1	< 0.05	91	90	28-142	1
Chlorobenzene	mg/kg (ppm)	1	< 0.05	87	86	32-129	1
Ethylbenzene	mg/kg (ppm)	1	0.066	83	84	32-137	1
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	83	82	31-143	1
m,p-Xylene	mg/kg (ppm)	2	0.28	80	80	34-136	0
o-Xylene	mg/kg (ppm)	1	< 0.05	93 90	91	33-134	$\frac{2}{2}$
Styrene Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	1 1	<0.05 0.12	90 87	88 87	35-137 31-142	2 0
Bromoform	mg/kg (ppm)	1	<0.05	73	68	21-156	7
n-Propylbenzene	mg/kg (ppm)	1	0.29	76 b	75 b	23-146	1 b
Bromobenzene	mg/kg (ppm)	1	<0.05	87	83	34-130	5
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	0.92	49 b	52 b	18-149	6 b
1.1.2.2-Tetrachloroethane	mg/kg (ppm)	1	< 0.05	125	114	28-140	9
1,2,3-Trichloropropane	mg/kg (ppm)	1	< 0.05	87	85	25 - 144	2
2-Chlorotoluene	mg/kg (ppm)	1	< 0.05	101	101	31-134	0
4-Chlorotoluene	mg/kg (ppm)	1	0.10	82	81	31-136	1
tert-Butylbenzene	mg/kg (ppm)	1	< 0.05	93	87	30-137	7
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	1.6	17 b	27 b	10-182	45 b
sec-Butylbenzene	mg/kg (ppm)	1	0.63	69 b	69 b	23-145	0 b
p-Isopropyltoluene	mg/kg (ppm)	1	0.84	60 b	60 b	21-149	0 b
1,3-Dichlorobenzene	mg/kg (ppm)	1	< 0.05	89	86	30-131	3
1,4-Dichlorobenzene	mg/kg (ppm)	1 1	<0.05 <0.05	87 92	83 91	29-129 31-132	$\frac{5}{1}$
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	<0.05 <0.5	92 97	91 90	31-132 11-161	1 7
1.2.4-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	<0.5	97 105	90 99	22-142	6
Hexachlorobutadiene	mg/kg (ppm)	1	<0.25	105	99 106	10-142	16
Naphthalene	mg/kg (ppm)	1	4.4	0 b	0 b	14-157	nm
1.2.3-Trichlorobenzene	mg/kg (ppm)	1	<0.25	118	97	20-144	20
, , · ···	- 8 (FF/	-					~

ENVIRONMENTAL CHEMISTS

Date of Report: 03/25/22 Date Received: 03/17/22 Project: Alfy's, F&BI 203315

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code. Laboratory Co	Sumpro		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	1	41	10-146
Chloromethane	mg/kg (ppm)	1	59	27-133
Vinyl chloride	mg/kg (ppm)	1	77	22-139
Bromomethane	mg/kg (ppm)	1	69	38-114
Chloroethane	mg/kg (ppm)	1	77	9-163
Trichlorofluoromethane	mg/kg (ppm)	1	73	10-196
Acetone	mg/kg (ppm)	5	94 76	52-141
1,1-Dichloroethene Hexane	mg/kg (ppm)	1 1	76 83	47-128 43-142
Methylene chloride	mg/kg (ppm) mg/kg (ppm)	1	83 97	10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	1	92	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	1	82	67-129
1,1-Dichloroethane	mg/kg (ppm)	1	84	68-115
2,2-Dichloropropane	mg/kg (ppm)	1	101	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	1	86	72-127
Chloroform	mg/kg (ppm)	1	85	66-120
2-Butanone (MEK)	mg/kg (ppm)	5	88	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	1	86	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	1	88	62-131
1,1-Dichloropropene	mg/kg (ppm)	1	84	69-128
Carbon tetrachloride	mg/kg (ppm)	1 1	83 84	60-139
Benzene Trichloroethene	mg/kg (ppm) mg/kg (ppm)	1	84 87	71-118 63-121
1.2-Dichloropropane	mg/kg (ppm)	1	88	72-127
Bromodichloromethane	mg/kg (ppm)	1	82	57-126
Dibromomethane	mg/kg (ppm)	1	88	62-123
4-Methyl-2-pentanone	mg/kg (ppm)	5	93	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	1	86	67-122
Toluene	mg/kg (ppm)	1	91	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	1	96	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	1	96	64-115
2-Hexanone	mg/kg (ppm)	5	100	33-152
1,3-Dichloropropane	mg/kg (ppm)	1	94	72-130
Tetrachloroethene	mg/kg (ppm)	1	92	72-114
Dibromochloromethane	mg/kg (ppm)	1	83	55-121
1,2-Dibromoethane (EDB) Chlorobenzene	mg/kg (ppm) mg/kg (ppm)	1 1	99 93	74-132 76-111
Ethylbenzene	mg/kg (ppm)	1	93	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	1	89	64-121
m.p-Xylene	mg/kg (ppm)	2	95	78-122
o-Xylene	mg/kg (ppm)	1	96	77-124
Styrene	mg/kg (ppm)	1	93	74-126
Isopropylbenzene	mg/kg (ppm)	1	96	76-127
Bromoform	mg/kg (ppm)	1	77	56-132
n-Propylbenzene	mg/kg (ppm)	1	99	74-124
Bromobenzene	mg/kg (ppm)	1	99	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	1	101	76-126
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm)	1 1	98 97	56-143 61-137
2-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	1	97 97	74-121
4-Chlorotoluene	mg/kg (ppm)	1	97	75-122
tert-Butylbenzene	mg/kg (ppm)	1	99	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	1	99	76-125
sec-Butylbenzene	mg/kg (ppm)	1	100	71-130
p-Isopropyltoluene	mg/kg (ppm)	1	100	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	1	98	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	1	97	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	1	98	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	1	85	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	1 1	99	64-135
Hexachlorobutadiene	mg/kg (ppm)	1	99 101	50-153 62 140
Naphthalene 1,2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	1	99	63-140 63-138
1,2,0-1110H010DellZelle	mg/kg (ppm)	1	39	09-190

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

											,	•								
	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.									Maj6-11	11105-12	14-14 20101	Sample ID		Address	Company light t	Report To Day
	Received by:	Relinquished by:	Received by	Relinquished by:				~				~	7 20	1 20	9-Å 10	Lab ID.		Fmail	Dundan V	Marker
			P F /	211	SIGNATURE								W	•	3/3/22	Date Sampled		~	K	
			h (.										1.10	115	12	Time Sampled		REMARKS A>> Project spec	PROJECT Y	SAMPLE CHAIN OF C
				R			A compared to the second se		,				2	5	r	Sample Type		REMARKS' A Project specific RLs?	PROJECT NAME	SAMPLERS (signature)
			black	R	PRIN	ran o canto a comanda a	and Job Revenue A. M. Transfer and						r	5	R	Jars		? - Yes		OF
			$\tilde{\mathbf{O}}$										X	X	\geq	NW'TPH-Dx	Π	1		
			Ž	R	NAME	-					ļ		\mathbb{R}	\geq	\geq	NWTPH-Gx		/ No		USTODY
			N N T C					 			ļ		\geq	\mathbb{R}	\bowtie	BTEX EPA 8021				V N
			r r							<u> </u>			\leftarrow	+	k	NWTPH-HCID	A	INI		0
-			<u>}</u>									-	X	↓×		VOCs EPA 8260	ALY	INVOICE TO	PO#	
	, بر بر	`		100					-	+					}	PAHs EPA 8270 PCBs EPA 8082	SES	ETO	#	4-
	yam		Ĭ.	<u></u>	00							1				PUBS EFA 8082	REQ			Ň
	ples	•	5 T	1	COMPANY		-							1			ANALYSES REQUESTED			
	Samples received at	-			AN					1			ية.	\$	Ì		ŒD	SA Archiv Other Default:	☐ Standa □ RUSH Rush cha	
	nver	•								<u> </u>							4	SAN chive herult:	JSH_ char	Page #
-	- ar	•	3	+		account of the Part						-						SAMPLE DI Archive samples O Other Default: Dispose	□ Standard turnaround □ RUSH Rush charges authorize	* ·
	-	 ,	14122		DATE													DISI oles	narou uthor	
ŀ	'-	<u>}</u>	<u>+</u>	<u> </u>		2 · · · · · · · · · · · · · · · · · · ·										Notes		SAMPLE DISPOSAL hive samples	□ Standard turnaround □ RUSH Rush charges authorized by:	Page # / of /
2			10:27		TIME													SAMPLE DISPOSAL	S S I	1
			Ŧ		머	L		<u> </u>					<u> </u>	<u> </u>		L.,		Ś	' <u>,</u>	Ao Ao

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 6, 2022

John Meyer, Project Manager Puget Environmental 4616 25th Avenue NE, Suite 143 Seattle, WA 98105

Dear Mr Meyer:

Included are the results from the testing of material submitted on March 28, 2022 from the Alfy's, F&BI 203497 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Cale

Michael Erdahl Project Manager

Enclosures c: Sarah Meyer PGT0406R.DOC

ENVIRONMENTAL CHEMISTS

Date of Report: 04/06/22 Date Received: 03/28/22 Project: Alfy's, F&BI 203497 Date Extracted: 04/01/22 Date Analyzed: 04/01/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
MW-3 203497-01	<100	84
MW-4 203497-02	320	96
MW-5 203497-03	<100	86
MW-6 203497-04	<100	91
Method Blank 02-809 MB	<100	101

ENVIRONMENTAL CHEMISTS

Date of Report: 04/06/22 Date Received: 03/28/22 Project: Alfy's, F&BI 203497 Date Extracted: 03/29/22 Date Analyzed: 03/29/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL **USING METHOD NWTPH-Dx**

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	<u>Motor Oil Range</u> (C ₂₅ -C ₃₆)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
MW-3 203497-01	150 x	<250	131
MW-4 203497-02	86 x	<250	121
MW-5 203497-03	170 x	<250	133
MW-6 203497-041/1.2	570 x	<600	107
Method Blank 02-761 MB	<50	<250	131

ENVIRONMENTAL CHEMISTS

Date Received:03Date Extracted:03Date Analyzed:03Matrix:W	W-3 /28/22 /30/22 /31/22 ater ;/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 203497 203497-01 033123.D GCMS13 WE	
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	% Recovery 99 96 102	Lower : Limit: 85 88 90	Upper Limit: 117 112 111	
Compounds:	Concentratio ug/L (ppb)	on Compour	nds:	Concentration ug/L (ppb)
Dichlorodifluorometha Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethan Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ether (A trans-1,2-Dichloroethe 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethene Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (EI 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane	$\begin{array}{c} <10\\ <0.02\\ <5\\ <1\\ <50\\ <1\\ <50\\ <1\\ <5\\ <5\\ \\ (15)\\ <1\\ <20\\ <1\\ <1\\ <1\\ <1\\ <1\\ <1\\ <1\\ <20\\ OC) \\ <0.2\\ <1\\ <1\\ <1\\ <0.5\\ <0.35\\ <0.5\\ <1\\ e\\ <1\\ \\e\\ <0.5\\ <1\\ \\e\\ <1\\ \\e\\ <0.5\\ <1\\ \\e\\ <1\\ \\e\\ <1\\ \\e\\ <0.5\\ <1\\ \\e\\ <1\\ \\e\\ <1\\ \\e\\ <1\\ \\e\\ <0.5\\ <1\\ \\e\\ <1\\ \\e\\ <1\\ \\e\\ <1\\ \\e\\ <0.5\\ <1\\ \\e\\ \\e\\ <1\\ \\e\\ \\e\\ \\e\\ \\e\\ \\e\\ \\e\\ \\e\\ \\e\\ \\e\\ \\$	Tetrachl Dibromo 1,2-Dibro Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-Buty 1,2,4-Tri sec-Buty p-Isoprop 1,3-Dich 1,4-Dich 1,2-Dich	Izene etrachloroethane ene lbenzene rm benzene enzene methylbenzene etrachloroethane chloropropane toluene toluene ylbenzene methylbenzene lbenzene oyltoluene lorobenzene lorobenzene lorobenzene	$<1 \\<1 \\<0.5 \\<1 \\<1 \\<1 \\<1 \\<2 \\<1 \\<1 \\<5 \\<1 \\<1 \\<1 \\<1 \\<1 \\<1 \\<1 \\<1 \\<1 \\<1$
4-Methyl-2-pentanone cis-1,3-Dichloropropen- Toluene trans-1,3-Dichloroprop 1,1,2-Trichloroethane 2-Hexanone	<1	1,2,4-Tri Hexachle Naphtha	omo-3-chloropropane chlorobenzene orobutadiene llene chlorobenzene	<10 <1 <0.5 <1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID:MW-4Date Received:03/28/22Date Extracted:03/30/22Date Analyzed:03/31/22Matrix:WaterUnits:ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 203497 203497-02 033124.D GCMS13 WE	
Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene	% Recovery: 101 94 99	Lower Limit: 85 88 90	Upper Limit: 117 112 111	
Compounds:	Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethene Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane 4-Methyl-2-pentanone cis-1,3-Dichloropropene Toluene	<1 ca <10 <0.02 <5 <1 <1 <1 <50 <1 <5 <5 <1 <1 <5 <5 <1 <1 <1 <50 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylber 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propy! Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,2-Dibr 1,2,4-Tri	nzene Vetrachloroethane ene Vlbenzene rm Ibenzene enzene imethylbenzene Vetrachloroethane ichloropropane otoluene	$ \begin{array}{c} <1 \\ <1 \\ <0.5 \\ <1 \\ 2.0 \\ <1 \\ 3.5 \\ 2.9 \\ <1 \\ <1 \\ <5 \\ <1 \\ <1 \\ <1 \\ <1 \\ <1$
trans-1,3-Dichloropropene 1,1,2-Trichloroethane 2-Hexanone	<0.4 <0.5 <10	Naphtha		<1 <1

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-5 03/28/22 03/30/22 03/31/22 Water ug/L (ppb)	- · ·	Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 203497 203497-03 033125.D GCMS13 WE	l
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 91 100 99	Lower Limit: 85 88 90	Upper Limit: 117 112 111	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome	ethane	<1 ca		loropropane	<1
Chloromethane		<10		loroethene	<1
Vinyl chloride		< 0.02		chloromethane	<0.5
Bromomethane		<5		omoethane (EDB)	<1
Chloroethane Trichlorofluoromet	h	<1 <1	Chlorobe		<1 <1
Acetone	nane	<50	Ethylber	Setrachloroethane	<1
1,1-Dichloroethene		<50 <1	m,p-Xyle		<2
Hexane		<1 <5	o-Xylene		<1
Methylene chloride		<5	Styrene		<1
Methyl t-butyl ethe		<1		lbenzene	<1
trans-1,2-Dichloroe		<1	Bromofo	<5	
1,1-Dichloroethane		<1	n-Propy		<1
2,2-Dichloropropan		<1	Bromobe		<1
cis-1,2-Dichloroeth		<1		imethylbenzene	<1
Chloroform		<1		Tetrachloroethane	< 0.2
2-Butanone (MEK)		<20	1,2,3-Tri	ichloropropane	<1
1,2-Dichloroethane	(EDC)	< 0.2	2-Chloro	otoluene	<1
1,1,1-Trichloroetha		<1	4-Chloro		<1
1,1-Dichloropropen		<1		ylbenzene	<1
Carbon tetrachlorie	de	< 0.5		imethylbenzene	<1
Benzene		< 0.35		lbenzene	<1
Trichloroethene		< 0.5		pyltoluene	<1
1,2-Dichloropropan		<1		lorobenzene	<1
Bromodichlorometh	nane	< 0.5		lorobenzene	<1
Dibromomethane		<1		lorobenzene	<1
4-Methyl-2-pentan		<10		omo-3-chloropropane	<10
cis-1,3-Dichloropro	pene	<0.4		ichlorobenzene	<1
Toluene trans-1,3-Dichlorog	wonone	<1 <0.4		orobutadiene	<0.5 <1
1,1,2-Trichloroetha		<0.4 <0.5	Naphtha 1.2.3 Tri	ichlorobenzene	<1 <1
2-Hexanone	.110	<10	1,4,0-11	icinor openzene	N 1
2-11CAA11011C		N10			

ENVIRONMENTAL CHEMISTS

LowerUpperSurrogates:% RecoveryLimit:Limit:1,2-Dichloroethane-d49785117Toluene-d898881124-Bromofluorobenzene9990111ConcentrationCompounds:ug/L (ppb)Compounds:ug/L (ppb)Dichlorodifluoromethane<1 ca1,3-Dichloropropane<1Charomethane<10Tetrachloroethene<1Chloromethane<10Tetrachloroethene<1Chloromethane<51,2-Dibromochloromethane<0.5Bromomethane<1Chlorobenzene<1Chloroethane<1Chlorobenzene<1Acetone<501,1,1,2-Tetrachloroethane<11,1-Dichloroethene<1m,p-Xylene<2Hexane<5Styrene<1Methyl t-butyl ether (MTBE)<1Isoprogylbenzene<11,1-Dichloroethene<1n.Progylbenzene<11,1-Dichloroethene<1N.S-Trimethylbenzene<11,1-Dichloroethene<1N.S-Trimethylbenzene<11,1-Dichloroethene<1N.S-Trimethylbenzene<11,1-Dichloropropane<1N.S-Trimethylbenzene<11,1-Dichloropthane<1N.S-Trimethylbenzene<11,1-Dichloroethene<1N.S-Trimethylbenzene<11,1-Dichloropthane<1N.S-Trimethylbenzene<11,1-Dichloropthane<1N.S-Trimethylbenzene<1 <t< th=""><th>Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:</th><th>MW-6 03/28/22 03/30/22 03/31/22 Water ug/L (ppb)</th><th>- · ·</th><th>Client: Project: Lab ID: Data File: Instrument: Operator:</th><th>Puget Environmental Alfy's, F&BI 203497 203497-04 033126.D GCMS13 WE</th><th></th></t<>	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-6 03/28/22 03/30/22 03/31/22 Water ug/L (ppb)	- · ·	Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 203497 203497-04 033126.D GCMS13 WE	
Compounds:ug/L (ppb)Compounds:ug/L (ppb)Dichlorodifluoromethane<1 ca	1,2-Dichloroethane Toluene-d8		97 98	Limit: 85 88	Limit: 117 112	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Compounds:			Compou	nds:	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Dichlorodifluorome	thane	<1 ca	1,3-Dich	loropropane	<1
Bromomethane<51,2-Dibromoethane (EDB)<1Chlorobenzene<1	Chloromethane		<10	Tetrachl	oroethene	<1
$\begin{array}{c c} Chloroethane < 1 & Chlorobenzene < 1 \\ Trichlorofluoromethane < 1 & Ethylbenzene < 1 \\ Acetone < 50 & 1,1,1,2:Tterachloroethane < 1 \\ 1,1-Dichloroethene < 1 & m,p-Xylene < 2 \\ Hexane < 5 & O-Xylene < 1 \\ Methylene chloride < 5 & Styrene < 1 \\ Methyl t-butyl ether (MTBE) < 1 & Isopropylbenzene < 1 \\ trans-1,2:Dichloroethene < 1 & Bromoform < 5 \\ 1,1:Dichloropethane < 1 & Bromoform < 5 \\ 1,1:Dichloropethane < 1 & Bromoform < 5 \\ 2,2:Dichloropethane < 1 & Bromoform < 5 \\ 2,2:Dichloropethane < 1 & 1,3,5:Trimethylbenzene < 1 \\ Chloroform < 1 & 1,2:2:Tetrachloroethane < 0.2 \\ 2:Butanone (MEK) < 20 & 1,2:3:Trichloropthane < 1 \\ 1,1:Dichloropethane < 1 & 4:Chlorotoluene < 1 \\ 1,1:Trichloropethane < 1 & 4:Chlorotoluene < 1 \\ 1,1:Trichloropthane & 1 & 4:Chlorotoluene < 1 \\ 1,1:Trichloropthane & 1 & 4:Chlorotoluene < 1 \\ 1,1:Trichloropthane & 1 & 4:Chlorotoluene < 1 \\ 1,2:Dichloropthane & 0.5 & 1,2,4:Trimethylbenzene < 1 \\ Frichloroethane & 0.5 & 1,2:Dichlorobenzene < 1 \\ 1,2:Dichloropthane & 0.5 & 1,4:Dichlorobenzene & 1 \\ 1,1:1:Tichloropthane & 0.5 & 1,4:Dichlorobenzene & 1 \\ 1,1:1:Tichloropthane & 0.5 & 1,2:Dichlorobenzene & 1 \\ 1,1:1:Tichloropthane $	Vinyl chloride		< 0.02	Dibromo	ochloromethane	< 0.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Acetone<50 $1,1,1,2$ -Tetrachloroethane<1 $1,1$ -Dichloroethane<1						
1,1-Dichloroethene<1m,p-Xylene<2Hexane<5		hane				
Hexane<5 $o^2Xylene$ <1Methylene chloride<5						
Methylene chloride <5 Styrene <1 Methyl t-butyl ether (MTBE) <1 Isopropylbenzene <1 trans-1,2-Dichloroethene <1 Bromoform <5 1,1-Dichloroethane <1 n-Propylbenzene <1 2,2-Dichloropropane <1 Bromobenzene <1 cis-1,2-Dichloroethene <1 1,3,5-Trimethylbenzene <1 cis-1,2-Dichloroethene <1 1,3,5-Trimethylbenzene <1 Chloroform <1 1,1,2,2-Tetrachloroethane <0.2 2-Butanone (MEK) <20 1,2,3-Trichloropropane <1 1,2-Dichloroethane <1 4-Chlorotoluene <1 1,1-Trichloroethane <1 4-Chlorotoluene <1 1,1-Dichloropropane <1 tert-Butylbenzene <1 1,1-Dichloropropane <1 tert-Butylbenzene <1 1,1-Dichloropropane <1 tert-Butylbenzene <1 1,1-Dichloropropane <1 tert-Butylbenzene <1 1,2-Dichloropropane <1 tert-Butylbenzene <1						
Methyl t-butyl ether (MTBE)<1Isopropylbenzene<1trans-1,2-Dichloroethene<1				•	9	
trans-1,2-Dichloroethene<1Bromoform<51,1-Dichloroethane<1	-					
1,1-Dichloroethane<1n-Propylbenzene<12,2-Dichloropropane<1						
2,2-Dichloropropane<1Bromobenzene<1cis-1,2-Dichloroethene<1						
cis-1,2-Dichloroethene<11,3,5-Trimethylbenzene<1Chloroform<1						
Chloroform<11,1,2,2-Tetrachloroethane<0.22-Butanone (MEK)<20						
2-Butanone (MEK)<201,2,3-Trichloropropane<11,2-Dichloroethane (EDC)<0.2		ene				
1,2-Dichloroethane (EDC)<0.22-Chlorotoluene<11,1,1-Trichloroethane<1						
1,1,1-Trichloroethane<14-Chlorotoluene<1 $1,1$ -Dichloropropene<1						
1,1-Dichloropropene<1tert-Butylbenzene<1Carbon tetrachloride<0.5		· /				
Carbon tetrachloride<0.51,2,4-Trimethylbenzene<1Benzene<0.35						
Benzene<0.35sec-Butylbenzene<1Trichloroethene<0.5	· · · ·					
Trichloroethene<0.5p-Isopropyltoluene<11,2-Dichloropropane<1					-	
1,2-Dichloropropane<11,3-Dichlorobenzene<1Bromodichloromethane<0.5						
Bromodichloromethane<0.51,4-Dichlorobenzene<1Dibromomethane<1		e				
Dibromomethane<11,2-Dichlorobenzene<14-Methyl-2-pentanone<10	· · · ·					
4-Methyl-2-pentanone<101,2-Dibromo-3-chloropropane<10cis-1,3-Dichloropropene<0.4						
cis-1,3-Dichloropropene<0.41,2,4-Trichlorobenzene<1Toluene<1		one				
Toluene<1Hexachlorobutadiene<0.5trans-1,3-Dichloropropene<0.4						
trans-1,3-Dichloropropene<0.4Naphthalene<11,1,2-Trichloroethane<0.5		-				
1,1,2-Trichloroethane <0.5 1,2,3-Trichlorobenzene <1		oropene				
				-		
	2-Hexanone		<10			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 03/30/22 03/30/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Puget Environmental Alfy's, F&BI 203497 02-711 mb 033007.D GCMS13 WE	l
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 104 97 98	Lower Limit: 85 88 90	Upper Limit: 117 112 111	
Compounds:		Concentration ug/L (ppb)	Compou	nds:	Concentration ug/L (ppb)
Dichlorodifluorome Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromet Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ethe trans-1,2-Dichloroethane 2,2-Dichloropethane 2,2-Dichloropethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Trichloroethane 1,1-Trichloroethane 1,1-Dichloropropan Carbon tetrachlorid Benzene Trichloroethene 1,2-Dichloropethane 4-Methyl-2-pentane	hane er (MTBE) ethene ene (EDC) ne e de	<1 ca <10 < 0.02 <5 <1 <1 <50 <1 <5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Tetrachl Dibromo 1,2-Dibr Chlorobe Ethylben 1,1,1,2-T m,p-Xyle o-Xylene Styrene Isopropy Bromofo n-Propyl Bromobe 1,3,5-Tri 1,1,2,2-T 1,2,3-Tri 2-Chloro 4-Chloro tert-But 1,2,4-Tri sec-Buty p-Isopro 1,3-Dich 1,4-Dich 1,2-Dich	nzene Cetrachloroethane ene Vlbenzene rm lbenzene enzene imethylbenzene Cetrachloroethane ichloropropane otoluene	
cis-1,3-Dichloropro Toluene trans-1,3-Dichlorop 1,1,2-Trichloroetha 2-Hexanone	pene propene	<0.4 <1 <0.4 <0.5 <10	1,2,4-Tri Hexachl Naphtha	ichlorobenzene orobutadiene	<1 <0.5 <1 <1

ENVIRONMENTAL CHEMISTS

Date of Report: 04/06/22 Date Received: 03/28/22 Project: Alfy's, F&BI 203497

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Gasoline	ug/L (ppb)	1,000	99	95	69-134	4

ENVIRONMENTAL CHEMISTS

Date of Report: 04/06/22 Date Received: 03/28/22 Project: Alfy's, F&BI 203497

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	104	63-142	0

ENVIRONMENTAL CHEMISTS

Date of Report: 04/06/22 Date Received: 03/28/22 Project: Alfy's, F&BI 203497

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Percent

Laboratory Code: 203477-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recoverv	Acceptance
Analyte	Units		Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	10	<1	72	50-150
Chloromethane	ug/L (ppb)	10	<10	81	50-150
Vinyl chloride	ug/L (ppb)	10	< 0.02	97	16-176
Bromomethane	ug/L (ppb)	10	<5	90	10-193
Chloroethane	ug/L (ppb)	10	<1	96	50-150
Trichlorofluoromethane	ug/L (ppb)	10	<1	89	50-150
Acetone	ug/L (ppb)	50	<50	90	15-179
1,1-Dichloroethene	ug/L (ppb)	10	<1	89	50-150
Hexane	ug/L (ppb)	10	<5	95	49-161
Methylene chloride	ug/L (ppb)	10	<5	100	40-143
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	100	50-150
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	88	50-150
1,1-Dichloroethane	ug/L (ppb)	10	<1	90	50 - 150
2,2-Dichloropropane	ug/L (ppb)	10	<1	114	10-335
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	90	50-150
Chloroform	ug/L (ppb)	10	<1	92	50-150
2-Butanone (MEK)	ug/L (ppb)	50	<20	86	34-168
1,2-Dichloroethane (EDC)	ug/L (ppb)	10 10	< 0.2	87	50-150
1,1,1-Trichloroethane	ug/L (ppb)		<1	103	50-150
1,1-Dichloropropene	ug/L (ppb)	10	<1	93	50-150
Carbon tetrachloride Benzene	ug/L (ppb)	10 10	<0.5 <0.35	112 90	50-150
	ug/L (ppb)	10	<0.35	90 88	50-150
Trichloroethene 1.2-Dichloropropane	ug/L (ppb)	10	<0.5 <1	88 92	43-133 50-150
Bromodichloromethane	ug/L (ppb) ug/L (ppb)	10	<0.5	92 97	50-150 50-150
Dibromomethane	ug/L (ppb) ug/L (ppb)	10	<0.5	93	50-150
4-Methyl-2-pentanone	ug/L (ppb) ug/L (ppb)	50	<10	113	50-150
cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	10	<0.4	108	48-145
Toluene	ug/L (ppb)	10	<1	91	50-150
trans-1.3-Dichloropropene	ug/L (ppb)	10	<0.4	107	37-152
1.1.2-Trichloroethane	ug/L (ppb)	10	<0.5	93	50-150
2-Hexanone	ug/L (ppb)	50	<10	100	50-150
1,3-Dichloropropane	ug/L (ppb)	10	<1	91	50-150
Tetrachloroethene	ug/L (ppb)	10	<1	88	50-150
Dibromochloromethane	ug/L (ppb)	10	< 0.5	107	33-164
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	<1	99	50-150
Chlorobenzene	ug/L (ppb)	10	<1	95	50-150
Ethylbenzene	ug/L (ppb)	10	<1	92	50-150
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	<1	108	50-150
m,p-Xylene	ug/L (ppb)	20	<2	92	50-150
o-Xylene	ug/L (ppb)	10	<1	91	50-150
Styrene	ug/L (ppb)	10	<1	95	50-150
Isopropylbenzene	ug/L (ppb)	10	<1	95	50-150
Bromoform	ug/L (ppb)	10	<5	109	23-161
n-Propylbenzene	ug/L (ppb)	10	<1	90	50-150
Bromobenzene	ug/L (ppb)	10	<1	91	50-150
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	88	50 - 150
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	< 0.2	91	10-235
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	88	33-151
2-Chlorotoluene	ug/L (ppb)	10	<1	89	50-150
4-Chlorotoluene	ug/L (ppb)	10	<1	90	50-150
tert-Butylbenzene	ug/L (ppb)	10	<1	89	50-150
1,2,4-Trimethylbenzene	ug/L (ppb)	10	<1	89	50-150
sec-Butylbenzene	ug/L (ppb)	10	<1	91	46-139
p-Isopropyltoluene	ug/L (ppb)	10	<1	92	46-140
1,3-Dichlorobenzene	ug/L (ppb)	10 10	<1 <1	92 93	50-150
1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10 10	<1 <1	93 92	50-150 50-150
1,2-Dichlorobenzene		10	<1 <10	92 101	50-150 50-150
1,2-Dibromo-3-chloropropane 1.2,4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	10	<10 <1	91	50-150 50-150
Hexachlorobutadiene	ug/L (ppb) ug/L (ppb)	10	<0.5	91 91	42-150
Naphthalene	ug/L (ppb) ug/L (ppb)	10	<0.5 <1	91 86	42-150 50-150
1,2,3-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	10	<1	86 90	50-150 44-155
1,=,0 1100000000000	der (hhn)	10	-1	00	11 100

ENVIRONMENTAL CHEMISTS

Date of Report: 04/06/22 Date Received: 03/28/22 Project: Alfy's, F&BI 203497

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Coue. Laborati	v i		Percent	Percent				
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD		
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)		
Dichlorodifluoromethane	ug/L (ppb)	10	82	82	70-130	0		
Chloromethane	ug/L (ppb)	10	82	83	70-130	1		
Vinyl chloride	ug/L (ppb)	10	97	98	70-130	1		
Bromomethane	ug/L (ppb)	10	102	92	28-182	10		
Chloroethane	ug/L (ppb)	10	95	95	70-130	0		
Trichlorofluoromethane Acetone	ug/L (ppb) ug/L (ppb)	10 50	92 83	91 89	70-130 42-155	$\frac{1}{7}$		
1,1-Dichloroethene	ug/L (ppb)	10	88	91	42-133	3		
Hexane	ug/L (ppb)	10	89	91 90	50-161	1		
Methylene chloride	ug/L (ppb)	10	84	91	29-192	8		
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	96	98	70-130	2		
trans-1,2-Dichloroethene	ug/L (ppb)	10	86	88	70-130	2		
1,1-Dichloroethane	ug/L (ppb)	10	89	90	70-130	1		
2,2-Dichloropropane	ug/L (ppb)	10	117	120	70-130	3		
cis-1,2-Dichloroethene	ug/L (ppb)	10	88	89	70-130	1		
Chloroform	ug/L (ppb)	10	89	90	70-130	1		
2-Butanone (MEK)	ug/L (ppb)	50	97	95	50 - 157	2		
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	84	85	70-130	1		
1,1,1-Trichloroethane	ug/L (ppb)	10	100	102	70-130	2		
1,1-Dichloropropene	ug/L (ppb)	10	89	93	70-130	4		
Carbon tetrachloride	ug/L (ppb)	10	108	111	70-130	3		
Benzene	ug/L (ppb)	10	88	89	70-130	1		
Trichloroethene	ug/L (ppb)	10 10	84 89	85 89	70-130 70-130	1		
1,2-Dichloropropane Bromodichloromethane	ug/L (ppb) ug/L (ppb)	10	89 92	89 96	70-130			
Dibromomethane	ug/L (ppb)	10	92 91	90 90	70-130	1		
4-Methyl-2-pentanone	ug/L (ppb)	50	100	102	70-130	2		
cis-1,3-Dichloropropene	ug/L (ppb)	10	106	102	70-130	0		
Toluene	ug/L (ppb)	10	90	92	70-130	2		
trans-1.3-Dichloropropene	ug/L (ppb)	10	107	106	70-130	1		
1,1,2-Trichloroethane	ug/L (ppb)	10	92	91	70-130	1		
2-Hexanone	ug/L (ppb)	50	100	94	69-130	6		
1,3-Dichloropropane	ug/L (ppb)	10	96	94	70-130	2		
Tetrachloroethene	ug/L (ppb)	10	87	88	70-130	1		
Dibromochloromethane	ug/L (ppb)	10	107	108	63-142	1		
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	99	98	70-130	1		
Chlorobenzene	ug/L (ppb)	10	94	93	70-130	1		
Ethylbenzene	ug/L (ppb)	10	91	91	70-130	0		
1,1,1,2-Tetrachloroethane m,p-Xylene	ug/L (ppb)	10 20	108 91	108 91	70-130 70-130	0 0		
o-Xylene	ug/L (ppb) ug/L (ppb)	10	91 91	91 91	70-130	0		
Styrene	ug/L (ppb)	10	91 95	91 94	70-130	0		
Isopropylbenzene	ug/L (ppb)	10	93	94 94	70-130	1		
Bromoform	ug/L (ppb)	10	112	110	50-157	2		
n-Propylbenzene	ug/L (ppb)	10	90	93	70-130	3		
Bromobenzene	ug/L (ppb)	10	89	94	70-130	5		
1,3,5-Trimethylbenzene	ug/L (ppb)	10	89	91	52 - 150	2		
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	92	95	70-130	3		
1,2,3-Trichloropropane	ug/L (ppb)	10	88	89	70-130	1		
2-Chlorotoluene	ug/L (ppb)	10	89	92	70-130	3		
4-Chlorotoluene	ug/L (ppb)	10	91	93	70-130	2		
tert-Butylbenzene	ug/L (ppb)	10	89	92	70-130	3		
1,2,4-Trimethylbenzene	ug/L (ppb)	10	89	92	70-130	3		
sec-Butylbenzene	ug/L (ppb)	10	90	95	70-130	5		
p-Isopropyltoluene 1.3-Dichlorobenzene	ug/L (ppb)	10 10	91 92	94 95	70-130 70-130	3		
1,3-Dichlorobenzene 1.4-Dichlorobenzene	ug/L (ppb)	10 10	92 93	95 94	70-130	3		
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10	93 93	94 93	70-130	$1 \\ 0$		
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	93 104	93 104	70-130	0		
1.2.4-Trichlorobenzene	ug/L (ppb)	10	88	90	70-130	$\frac{0}{2}$		
Hexachlorobutadiene	ug/L (ppb)	10	83	88	70-130	6		
Naphthalene	ug/L (ppb)	10	87	89	70-130	2		
1,2,3-Trichlorobenzene	ug/L (ppb)	10	87	90	69-143	3		
	8 (T.)							

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

							÷			、											
Ph. (206) 285-8282	3012 16 ^{‡n} Avenue West Seattle, WA 98119-2029	Friedman & Bruya, Inc.								2 MM	G- MU	fr null	- MM - 3	Sample ID		PhoneE	tate, ZIP	Address	Company Juget	Report To	
Received by:	Retriquished by:	Relinquisked by:	SIGN							04	03	100	@ A-0	Lab ID		Email		1	ENINGAN	MB/2	20
	John		JATURE		میں میں					4 ana ann 1000 111			all c	Date Sampled		- 4		and the second			203497
	rhe.				مىلىنى ئىلانلىقىتىنىيە			5 Sinkett 100 , 100 and	June C	my sur	1:30pm	12:15 m	11:00	Time Sampled		Project	REMA	- 7	- PROJE	- SAMPL	SAWFL
	TOka	B	2							-			0	Sample Type		Project specific RLs?	C RKS	17	PROJECT NAME	SAMPLERS (signature)	SAMPLE CHAIN OF C
	ta (C a	PRINT NAME				1/2017/m.1/4/64/41 1/2-5			J.	N.	A Star	No.	# of Jars		? - Yes	16		•	ure)	
	N.	Q.	TNA								R	X	K	NWTPH-Dx		≥ / No					USIONI
	rate Se	Y.	ME							\mathbb{R}	XX	Ð	B	NWTPH-Gx BTEX EPA 8021		0			*	J	ĥξ
	Ś					······		ļ			<u> </u>			NWTPH-HCID			ب ــز			\langle	Ì.⊨
										X	X	\geq	X	VOCs EPA 8260	ANALYSES		INVOICE TO		q		0
		Na										ļ		PAHs EPA 8270	LYSE	-	ICE		PO #		2.4
2	AT R	all's	20											PCBs EPA 8082	SRE		TO		-	Į	8.22
du	\sim		OMI							ļ		ļ			HUD						2
Samples received at			COMPANY	-											REQUESTED	Ē			ចែធ្		1
ece)			K												B	efau	Arch	ush c	C Stands	H P	
Ved	•															lt: Di	SAMP ive sa	harge	dard	Page #	
2	3/2	1 les	DA							PPC-						spose	□ Archive samples	s aut)	turna	AROU	~
	- 22	B	TE	And a second				and the second		LOU VOLONC				Z) afte	SAMPLE DISPOSAL hive samples her	Rush charges authorized by:	Standard turnaround RUSH	Page # of TURNAROUND TIME	
		Ť	H E							Ó I	THE REAL PROPERTY AND A VALUE OF A			Notes		Default: Dispose after 30 days	SAL	¢d by:	بغير		\~
	551		TIME					- 		3128	NAME IN CONTRACTOR OF A VIC	5 	W water and a state of the stat			days					0 0 /m