

Oregon Portland | Bend | Baker City California Oakland | Folsom | Irvine

March 12, 2018

Mr. Christopher Maurer Washington State Department of Ecology Southwest Regional Office 300 Desmond Drive Southeast Lacey, Washington 98503

RE: AGENCY DRAFT REMEDIAL INVESTIGATION/FEASIBILITY STUDY AND REQUEST FOR OPINION LAKESIDE INDUSTRIES ABERDEEN SITE 2400 SARGENT BOULEVARD, ABERDEEN WASHINGTON VCP IDENTIFICATION NO. SW1161 FARALLON PN: 525-006

Dear Mr. Mauer:

Farallon Consulting, L.L.C. (Farallon) has prepared this letter on behalf of Lakeside Industries Inc. to request a written opinion from the Washington State Department of Ecology (Ecology) confirming that the preferred cleanup action alternative identified in the attached Agency Draft Remedial Investigation/Feasibility Study Report (RI/FS Report)(Attachment A) prepared for the property at 2400 Sargent Boulevard in Aberdeen, Washington (herein referred to as the Site) meets the substantive requirements of Washington State Model Toxics Control Act Cleanup Regulations (MTCA) and is selected as the final cleanup action for the Site.

Farallon performed a comprehensive RI from 2009 through 2017 to evaluate the Site, as defined under MTCA and its implementing regulations in Chapter 173-340 of the Washington Administrative Code (WAC 173-340), as the portions of the Site where hazardous substances have come to be located at concentrations exceeding applicable cleanup levels. Based on the results of the RI, Farallon conducted a FS and disproportionate cost analysis for four cleanup action alternatives; Cleanup Alternative 3 – Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls – was selected as the preferred cleanup action alternative.

Cleanup Alternative 3 satisfies MTCA threshold criteria as specified in WAC 173-340-360(2)(a); meets additional requirements specified in WAC 173-340-360(2)(b); meets expectations for cleanup action alternatives as specified in WAC 173-340-370 for facilities adjacent to surface water requiring active measures be taken to remediate, contain, and prevent/minimize releases to surface water of contaminated media in excess of cleanup levels to the maximum extent practicable; and provides the greatest degree of permanence and protectiveness and the highest MTCA Composite Benefit Score that is technically practicable.

Washington State Department of Ecology March 12, 2019 Page 2

Farallon appreciates the opportunity to provide environmental consulting services for this project. Please contact either of the undersigned at (425) 295-0800 if you have questions or need additional information.

Sincerely,

Farallon Consulting, L.L.C.

Uni F. Buc

Eric Buer, L.G., L.H.G., P.G. Senior Hydrogeologist

J. Kipy Car

J. Riley Conkin, L.G., L.H.G. Principal Geologist

Attachment: Attachment A, RI/FS Report Attachment B, Ecology Request for Opinion Form

cc: Karen Deal, Lakeside Industries, Inc. William Joyce, Joyce Ziker Parkinson, PLLC

EB/JRC:cm

ATTACHMENT A REMEDIAL INVESTIGATION AND FEASIBILITY STUDY REPORT

RI/FS REPORT AND REQUEST FOR OPINION

Lakeside Aberdeen Site 2400 Sargent Boulevard Aberdeen, Washington

Farallon PN: 525-006

REMEDIAL INVESTIGATION AND FEASIBILITY STUDY REPORT

LAKESIDE INDUSTRIES ABERDEEN SITE 2400 SARGENT BOULEVARD ABERDEEN, WASHINGTON VCP Identification No. SW1161

> Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

> > Farallon PN: 525-006

For: Lakeside Industries, Inc. 6505 226th Place Southeast Issaquah, Washington 98027

Revised March 12, 2019

Prepared by:

Eric Buer, L.G., L.H.G., P.G. Senior Hydrogeologist

Reviewed by:

J. Riley Conkin, L.G., L.H.G. Principal Geologist

EXECUTIVE SUMMARY

Farallon Consulting, L.L.C. (Farallon) has prepared this revised Remedial Investigation/Feasibility Study Report on behalf of Lakeside Industries, Inc. (Lakeside Industries) to provide the results of the Remedial Investigation (RI) and Feasibility Study (FS) pertaining to the Lakeside Industries property at 2400 Sargent Boulevard in Aberdeen, Washington (herein referred to as the Site). The Site was enrolled in the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program in April 2011 and assigned Voluntary Cleanup Program Identification No. SW1161 by Ecology. Based on the results of the completed RI and FS, Farallon requests that Ecology issue an opinion that the preferred cleanup action alternative, Cleanup Alternative 3-Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls, be selected as the final cleanup action alternative.

The Site, as defined under the Washington State Model Toxics Control Act Cleanup Regulation (MTCA) and its implementing regulations in Chapter 173-340 of the Washington Administrative Code (WAC 173-340), comprises the area where hazardous substances have come to be located at concentrations exceeding applicable cleanup levels. The initial phase of the RI was conducted by Farallon in January 2009. Additional phases of the RI were conducted in 2011, 2013, and 2017 to further delineate identified contamination and to gather data needed to develop, evaluate, and recommend a final cleanup action alternative for the Site. During the RI, total petroleum hydrocarbons as gasoline-, diesel-, and oil-range organics; benzene; ethylbenzene; naphthalene compounds; carcinogenic polycyclic aromatic hydrocarbons; and the metals arsenic, cadmium, lead, and mercury were detected at concentrations exceeding preliminary cleanup levels, defined herein as MTCA Method A levels, in soil and/or groundwater at the Site. These compounds have been retained as constituents of concern for the Site. Based on the results of the RI, soil and shallow groundwater have been retained as media of concern at the Site.

The RI identified confirmed source areas in shallow soil and localized areas of shallow groundwater at the Site. The vast majority of source areas of petroleum products identified at the Site are associated with the historical bulk fuel facility operations by Chevron USA Inc. (Chevron)

during the period from 1922 through 1985 during which the Site was operated as a bulk fuel facility. The presence of petroleum products in soil was noted at the Site during a subsurface investigation conducted in May and June 1984 by GeoEngineers Incorporated (GeoEngineers) on behalf of Chevron, the results of which were documented in the *Report of Hydrogeologic Services, Existing Bulk Storage Facility, Aberdeen, Washington* dated July 9, 1984, prepared by GeoEngineers (1984) (1984 Hydrogeologic Report). The subsurface investigation was conducted prior to the enactment of MTCA and any of its cleanup regulations. The 1984 Hydrogeologic Report concluded that the results of the investigation indicated that petroleum hydrocarbons had leaked into the ground during past operations of the facilities at the Site by Chevron prior to Lakeside Industries acquisition of the Site in 1985. According to Lakeside Industries, a review of historical aerial photographs, and the 1984 Hydrogeologic Report, the Site was largely unpaved, with the exception of the foundation concrete pads for the bulk fuel aboveground storage tanks and several building structures, during Chevron's operation of the Site from 1922 through 1985. Lakeside Industries subsequently capped the entire Site with asphalt pavement upon purchase of the Site in 1985 and has operated the Site as a hot-batch asphalt plant from 1985 to the present.

Results of the Site characterization activities completed through 2013 and the evaluation and selection of the preferred cleanup action for the Site were presented initially in the *Remedial Investigation and Feasibility Study Report, Lakeside Industries Aberdeen Site* dated June 2015 prepared by Farallon (2015) (2015 RI/FS Report) that was submitted to Ecology. Following review of the 2015 RI/FS Report, Ecology requested that Lakeside Industries collect additional soil analytical data to further assess subsurface conditions along the southern property boundary proximate to and north of the existing retaining wall and riprap embankment. The purpose of the additional soil sampling was to confirm and bound the lateral and vertical extent of soil contamination exceeding MTCA cleanup levels at the Site. Ecology also requested that Lakeside Industries further evaluate the hydraulic implications of installing an environmental sheet pile wall along the southern property boundary that was identified by Ecology as an element of the preferred cleanup alternative under consideration for the Site. Specifically, Ecology requested further evaluation of the sheet pile wall to ensure that it would provide the required permanence and

protectiveness to prevent/minimize releases to surface water and/or sediment of contaminated media in excess of cleanup levels based on potential current and/or future exposure pathways.

Farallon performed hydraulic characterization of the Site, including rising and falling head tests to test shallow aquifer conductivity and a tidal study to evaluate the hydraulic connection between the south-adjacent Chehalis River and shallow groundwater on the Site. Hydraulic and tidal study data indicate that changes in Chehalis River stage have no impact on shallow groundwater flow direction or gradient, and that the conductivity of the shallow aquifer is very low yield. Furthermore, the studies confirm that the groundwater to surface water pathway is not complete at the Site; therefore, surface water is not a medium of concern.

Following completion of the additional characterization requested by Ecology in 2015, Farallon performed an FS based on the results of the RI to develop and evaluate a selection of potential cleanup action alternatives under the criteria established under MTCA (WAC 173-340-350). Four cleanup action alternatives were evaluated, including a no action alternative; two alternatives with institutional controls, containment and/or limited source removal; and a complete soil source removal alternative. The preferred cleanup action alternative selected in the FS was Cleanup Alternative 3—Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls.

Cleanup Alternative 3 includes limited source removal to the maximum extent practicable at confirmed source areas where groundwater exceeds preliminary cleanup levels and the application of institutional controls and engineering controls, including installation of an approximately 700-foot sealed sheet pile wall to contain contaminated soil that will remain in-place and prevent potential migration and exposure to contaminated media while monitored natural attenuation takes place. Specifically, installation of the 700-foot sheet pile wall provides an active measure to permanently contain and prevent/minimize potential future releases to surface water via contaminated groundwater discharges and/or migration of contaminated soil exceeding cleanup levels that to the maximum extent practicable will remain in-place proximate to the southern Site boundary adjacent to the Chehalis River. Based on the results of the RI, migration of contaminated

soil to surface water and/or sediment in the Chehalis River along the southern Site boundary has not occurred because of the concrete retaining wall and underlying native silt. However, the current concrete retaining wall on the southern Site boundary is limited to the western half of the southern Site boundary and does not currently provide full coverage of the confirmed source areas exceeding MTCA cleanup levels on the eastern portion of the Site. Potential future exposure scenarios requiring evaluation for the FS, such as mobilization and migration of contaminated soil or groundwater remaining in-place along the southern Site boundary to surface water and/or sediment in the Chehalis River, were considered and incorporated into the preferred cleanup alternative in the FS, as directed by Ecology. The future potential exposure scenarios considered in the FS, which potentially could cause mobilization and migration of contaminated media remaining in-place to surface water and/or sediment along the southern Site boundary, included flooding and mass erosion during a 100-year storm event or liquefaction and mobilization of shallow contaminated soil during an earthquake.

Cleanup Alternative 3 satisfies MTCA threshold criteria as specified in WAC 173-340-360(2)(a); meets additional requirements specified in WAC 173-340-360(2)(b); meets expectations for cleanup action alternatives as specified in WAC 173-340-360(2)(b); meets expectations for surface water requiring active measures be taken to remediate, contain, and prevent/minimize releases to surface water of contaminated media in excess of cleanup levels to the maximum extent practicable; and provides the greatest degree of permanence and protectiveness and the highest MTCA Composite Benefit Score that is technically practicable. A disproportionate cost analysis was performed to compare Cleanup Alternative 3 to Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels. The disproportionate cost analysis demonstrated that the additional cost associated with Cleanup Alternative 4, more than seven times the cost of Cleanup Alternative 3, resulted in negligible additional environmental benefit since the MTCA Composite Benefit scores for both cleanup action alternatives are essentially equivalent. Based on the results of the disproportionate costs analysis, Cleanup Alternative 3 was selected as the preferred cleanup action alternative because it provides the highest degree of permanence considering current and future Site conditions to the maximum extent practicable.

Farallon, on behalf Lakeside Industries, requests that Ecology issue an opinion that the preferred cleanup action alternative, Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, be selected as the final cleanup action and that implementation of the final cleanup action likely will result in a No Further Action determination for the Site. Following receipt of Ecology's opinion, the final cleanup action will be implemented in accordance with the provisions identified in this FS. The selected cleanup action alternative for the Site will be documented in a Cleanup Action Plan that will be prepared in accordance with WAC 173-340-380. Following Ecology approval of the final Cleanup Action Plan, the limited source removal excavations and sheet pile wall construction are expected to take approximately 1 month to complete. Documentation of the final cleanup action will be submitted to Ecology in a final Cleanup Action Report.

TABLE OF CONTENTS

EXEC	CUTIVI	E SUMMERY i
TABI	LE OF (CONTENTS vi
ACRO	ONYNN	IS AND ABBREVIATIONSx
1.0	INTR	ODUCTION1-1
	1.1	RI/FS OBJECTIVES AND PURPOSE1-2
	1.2	RI/FS REPORT ORGANIZATION
2.0	SITE	DESCRIPTION AND BACKGROUND
	2.1	SITE DESCRIPTION AND OPERATIONAL HISTORY
	2.2	ADJACENT PROPERTY USE
	2.3	GEOLOGY AND HYDROGEOLOGY
	2.4	PREVIOUS INVESTIGATION - GEOENGINEERS 1984
3.0	REMI	EDIAL INVESTIGATION SCOPE OF WORK
	3.1	INITIAL REMEDIAL INVESTIGATION PHASE – JANUARY 2009 3-1
	3.2	REMEDIAL INVESTIGATION – APRIL TO DECEMBER 2011 3-2
		3.2.1 Borings and Reconnaissance Soil and Groundwater Sampling 3-2
		3.2.2 Monitoring Well Installation, Development, and Surveying 3-3
		3.2.3 Groundwater Monitoring and Sampling
		3.2.4 Tidal Study
	3.3	TEST PIT INVESTIGATION AND GROUNDWATER SAMPLING
		– MARCH 2012
	3.4	ADDITIONAL WELL INSTALLATION AND GEOPROBE
		INVESTIGATION – APRIL TO AUGUST 2013
	3.5	HYDRAULIC EVALUATION – AUGUST 2016
	3.6	SUPPLEMENTAL SUBSURFACE INVESTIGATION – MAY 2017.3-6
		3.6.1 Borings and Reconnaissance Soil Sampling
		3.6.2 Groundwater Monitoring Event
4.0	REMI	EDIAL INVESTIGATION RESULTS
	4.1	PHYSICAL SITE FEATURES
	4.2	GEOLOGY AND HYDROGEOLOGY
		4.2.1 Geology
		4.2.2 Hydrogeology
		4.2.3 Tidal Study
	4.3	HYDRAULIC EVALUATION RESULTS
	4.4	SOIL AND GROUNDWATER ANALYTICAL RESULTS4-5
		4.4.1 Gasoline/Benzene Source Areas
		4.4.2 Diesel and Oil Source Areas

		4.4.3 Polycyclic Aromatic Hydrocarbons	4-10
		4.4.4 Metals	
	4.5	TERRESTRIAL ECOLOGICAL RISK EVALUATION	4-12
5.0		CEPTUAL SITE MODEL	
	5.1	CONSTITUENTS OF CONCERN	
	5.2	CONFIRMED AND SUSPECTED SOURCES OF COCS	
	5.3	CONTAMINANT FATE AND TRANSPORT	
	5.4	EXPOSURE ASSESSMENT	
		5.4.1 Soil Pathway	
		5.4.2 Groundwater Pathway	
		5.4.3 Soil Vapor Pathway	5-7
	5.5	SUMMARY OF CONCEPTUAL SITE MODEL	5-8
6.0		HNICAL ELEMENTS	6-1
	6.1	APPLICABLE OR RELEVANT AND APPROPRIATE	
		REQUIREMENTS	
	6.2	CONSTITUENTS OF CONCERN	6-2
		6.2.1 Soil	
		6.2.2 Groundwater	
	6.3	CONFIRMED SOURCE AREAS	6-2
	6.4	AFFECTED MEDIA	6-3
	6.5	CLEANUP STANDARDS	
		6.5.1 Cleanup Levels	
		6.5.2 Points of Compliance	6-5
7.0	FEA	SIBILITY STUDY	
	7.1	EVALUATION OF FEASIBLE REMEDIATION TECHNOLOGI	ES 7-2
		7.1.1 Retained Technologies	7-3
		7.1.2 Rejected Technologies	
	7.2	CLEANUP ACTION ALTERNATIVES	7-8
		7.2.1 Cleanup Alternative 1—No Action	7-9
		7.2.2 Cleanup Alternative 2—Institutional and Engineered Contro	
		Containment, and Monitored Natural Attenuation	7-11
		7.2.3 Cleanup Alternative 3—Source Area Excavation,	
		Containment, Monitored Natural Attenuation, Institutional	
		and Engineered Controls	7-13
		7.2.4 Cleanup Alternative 4—Complete Excavation of Soil	
		Exceeding Preliminary Cleanup Levels	7-16
	7.3	CLEANUP ACTION ALTERNATIVES EVALUATION	
		7.3.1 Evaluation Process	
		7.3.2 Evaluation Results	7-21
		7.3.3 Disproportionate Cost Analysis	
	7.4	PREFERRED CLEANUP ACTION ALTERNATIVE	

9.0	LIM	ITATIONS	
8.0	BIBLIOGRAPHY		
	7.8	CONTINGENCY ACTIONS	
	7.7	RESTORATION TIME FRAME	
	7.6	COMPLIANCE MONITORING	
	7.5	IMPLEMENTATION	

FIGURES

Figure 1 Site Location May	Figure	1	Site I	Location	Map
----------------------------	--------	---	--------	----------	-----

- Figure 2 Historical Features and Sampling Location Map
- Figure 3 Cross Section A-A'
- Figure 4 Groundwater Elevation Contour Map May 2, 2017
- Figure 5 Site Plan Showing GRO/Benzene Analytical Results for Soil
- Figure 6 Site Plan Showing Total DRO and ORO Analytical Results for Soil
- Figure 7 Site Plan Showing GRO and Benzene Analytical Results in Groundwater
- Figure 8 Site Plan Showing DRO and ORO Analytical Results in Groundwater
- Figure 9 Site Plan Showing Primary Elements of Cleanup Alternative 3

TABLES

- Table 1
 Summary of Petroleum Storage Tanks
- Table 2Groundwater Elevations
- Table 3
 Summary of Soil Analytical Results Total Petroleum Hydrocarbons
- Table 4
 Summary of Soil Analytical Results Polycyclic Aromatic Hydrocarbons
- Table 5
 Summary of Soil Analytical Results Metals
- Table 6Summary of Reconnaissance Groundwater Analytical Results Total PetroleumHydrocarbons

- Table 7
 Summary of Groundwater Analytical Results Total Petroleum Hydrocarbons
- Table 8
 Summary of Groundwater Analytical Results Polycyclic Aromatic Hydrocarbons
- Table 9
 Summary of Groundwater Analytical Results Metals
- Table 10
 Cleanup Technology Screening
- Table 11
 Summary of Cleanup Alternative Evaluation
- Table 12
 Summary of Cleanup Alternative Cost Estimates

CHART

Chart 1 Cleanup Alternative Cost Estimates Supporting Information

APPENDICES

- Appendix A Historical Site Drawings and 1984 Hydrogeologic Report
- Appendix B Boring Logs, Test Pit Logs, and Monitoring Well Completion Diagrams
- Appendix C Aquifer Testing Data
- Appendix D Tidal Study Data
- Appendix E Laboratory Analytical Reports
- Appendix F Terrestrial Ecological Evaluation Forms

ACRONYMS AND ABBREVIATIONS

ARARs	applicable or relevant and appropriate requirements
ASTs	aboveground storage tanks
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
CAP	Cleanup Action Plan
Chevron	Chevron USA Inc.
COCs	constituents of concern
COPCs	constituents of potential concern
DCA	Disproportionate Cost Analysis
DRO	total petroleum hydrocarbons as diesel-range organics
Ecology	Washington State Department of Ecology
EPA	U.S. Environmental Protection Agency
Farallon	Farallon Consulting, L.L.C.
FS	Feasibility Study
GRO	total petroleum hydrocarbons as gasoline-range organics
μg/l	micrograms per liter
mg/kg	milligrams per kilogram
EMMP	Environmental Media Management Plan
MNA	Monitored natural attenuation
MTCA	Washington State Model Toxics Control Act Cleanup Regulation
NOAA	National Oceanic and Atmospheric Administration
ORO	total petroleum hydrocarbons as oil-range organics

PAHs	polycyclic aromatic hydrocarbons
PLPs	potentially liable persons
PQL	practical quantitation limit
RI	Remedial Investigation
RI/FS Report	Remedial Investigation/Feasibility Study Report
SAP	Sampling and Analysis Plan
Site	Lakeside Industries Property, 2400 Sargent Boulevard, Aberdeen,
	Washington
TEE	Terrestrial Ecological Evaluation
USTs	underground storage tanks
VCP	Voluntary Cleanup Program
VOCs	volatile organic compounds
WAC	Washington Administrative Code
2015 RI/FS Report	Remedial Investigation and Feasibility Study Report, Lakeside Industries
	Aberdeen Site dated June 2015 prepared by Farallon

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this revised Remedial Investigation/Feasibility Study Report (RI/FS Report) on behalf of Lakeside Industries, Inc. (Lakeside Industries) to provide the results of the Remedial Investigation (RI) and Feasibility Study (FS) completed for the Lakeside Industries property at 2400 Sargent Boulevard in Aberdeen, Washington (herein referred to as the Site) (Figure 1). The initial phase of the RI conducted by Farallon in January 2009 identified a release of petroleum-based products to soil and groundwater from sources at the Site. Additional phases of the RI were conducted in 2011, 2013, and 2017 to further delineate identified contamination and to gather data needed to develop, evaluate, and recommend a final cleanup action alternative for the Site. The Site was enrolled in the Washington State Department of Ecology (Ecology) Voluntary Cleanup Plan (VCP) in April 2011 and assigned VCP Identification No. SW1161 by Ecology.

Concentrations of petroleum products detected in RI soil and groundwater samples exceeded the Washington State Model Toxics Control Act Cleanup Regulation (MTCA) cleanup levels, as established in Chapter 173-340 of the Washington Administrative Code (WAC 173-340). The vast majority of source areas of petroleum products identified at the Site are associated with the historical bulk fuel facility operations by Chevron USA Inc. (Chevron). The presence of petroleum products in soil was noted at the Site during a subsurface investigation conducted in May and June 1984 by GeoEngineers Incorporated (GeoEngineers) on behalf of Chevron, the results of which were documented in the Report of Hydrogeologic Services, Existing Bulk Storage Facility, Aberdeen, Washington dated July 9, 1984, prepared by GeoEngineers (1984) (1984 Hydrogeologic Report) (Appendix A). The subsurface investigation was conducted prior to the enactment of MTCA and any of its cleanup regulations. During the advancement of test pits, GeoEngineers noted olfactory and sometimes visual evidence of petroleum hydrocarbon contamination in soil samples collected from 10 of the 16 test pit locations. Based on these data, GeoEngineers concluded that petroleum hydrocarbons had leaked into the ground during past operations of the facilities at the Site by Chevron. Lakeside Industries purchased the Site in 1985 and has operated the Site as a hot-batch asphalt plant from 1985 to the present.

Results of the initial phase of the RI were provided in the Technical Memorandum regarding Remedial Investigation–Initial Phase Summary, Lakeside Industries Facility, Aberdeen, Washington dated March 26, 2009, prepared by Farallon (2009). Results of the Site characterization activities completed through 2013 and the evaluation and selection of the preferred cleanup action for the Site initially were presented in the *Remedial Investigation and Feasibility Study Report, Lakeside Industries Aberdeen Site* (2015 RI/FS Report) dated June 2015 prepared by Farallon (2015) that was submitted to Ecology.

Following review of the 2015 RI/FS Report, Ecology requested that Lakeside Industries collect additional soil analytical data to further assess subsurface conditions along the southern property boundary proximate to and north of the existing retaining wall and riprap embankment. The purpose of the additional soil sampling was to confirm and bound the lateral and vertical extent of soil contamination exceeding MTCA cleanup levels at the Site. Ecology also requested that Lakeside Industries further evaluate the hydraulic implications of installing an environmental sheet pile wall along the southern property boundary that was identified as an element of the preferred cleanup alternative under consideration for the Site. Specifically, Ecology requested further evaluation of the sheet pile wall to ensure that it would provide the required permanence and protectiveness to prevent/minimize releases to surface water and/or sediment of contaminated media in excess of cleanup levels based on potential current and/or future exposure pathways.

The RI has been performed as an independent remedial action in accordance with MTCA, as established in WAC 173-340-515. Subsequent phases of the RI/FS were conducted in accordance with WAC 173-340-350 under the Ecology VCP.

1.1 RI/FS OBJECTIVES AND PURPOSE

The primary objectives of the RI included identifying the constituents of potential concern (COPCs) and media of concern at the Site; identifying the potential source(s) of the release(s) of COPCs; identifying the nature and extent of the COPCs in the identified media of concern; and developing and refining the conceptual site model. The overall objective of the RI was to collect and evaluate sufficient information to support the development of feasible cleanup alternatives for

the Site in accordance with WAC 173-340-360 through 173-340-390. The RI completed by Farallon and summarized in this report provides sufficient data to evaluate potentially feasible remediation technologies and select a final remedial action in accordance with MTCA requirements in the FS.

The RI involved the following work elements:

- Sampling and analysis of soil and groundwater to identify the COPCs and media of concern;
- Conducting subsurface investigations to evaluate potential source(s) of the release(s) of COPCs;
- Characterizing the nature and extent of COPCs in the identified media of concern;
- Conducting a Terrestrial Ecological Evaluation (TEE) to evaluate the potential for COPCs to adversely affect terrestrial ecological receptors;
- Identifying applicable or relevant and appropriate requirements (ARARs) for the Site to enable identification of appropriate cleanup standards for potential cleanup actions; and
- Complying with the requirements of WAC 173-340-350.

The purpose of the FS is to develop and evaluate cleanup action alternatives to facilitate selection of a permanent cleanup action in accordance with WAC 173-340-350(8). The FS was conducted to screen available remediation technologies and identify a set of technically feasible and practicable cleanup action alternatives for evaluation in accordance with the requirements for cleanup actions established in WAC 173-340-360(2) and expectations for cleanup action alternatives as specified in WAC 173-340-360(2) and expectations for cleanup action alternatives be taken to remediate, contain, and prevent/minimize releases to surface water of contaminated media in excess of cleanup levels to the maximum extent practicable that provides the greatest degree of permanence and protectiveness and the highest MTCA Composite Benefit Score that is technically practicable. The selected cleanup action alternative approved by Ecology

for the Site will be documented in a Cleanup Action Plan (CAP) that will be prepared in accordance with WAC 173-340-380.

1.2 RI/FS REPORT ORGANIZATION

The RI/FS Report has been prepared to meet the general requirements of WAC 173-340-350(7) and (8), and has been organized into the following sections:

- Section 2—Site Description and Background. This section provides a description of the Site and summarizes the Site history, adjacent property use, geology, hydrogeology, and previous environmental investigation conducted at the Site by others.
- Section 3—Remedial Investigation Scope of Work. This section provides a description of the RI field program completed at the Site by Farallon between 2009 and 2017. This section also includes a discussion of the TEE requirement under MTCA.
- Section 4—Remedial Investigation Results. This section provides the results of the RI performed at the Site. Included is a discussion of RI findings related to the Site physical features, geology, and hydrogeology; a description and evaluation of the confirmed and suspected source areas; and a Site-specific TEE.
- Section 5—Conceptual Site Model. This section provides a summary of the conceptual site model derived from the results of the RI performed at the Site. Included is a discussion of the confirmed and suspected source areas, the constituents of concern (COCs), affected media, fate and transport characteristics of the releases of hazardous substances, and the preliminary exposure assessment.
- Section 6—Technical Elements. This section identifies the cleanup action objectives and ARARs for the Site, and includes a description of the COCs, media of concern, and cleanup standards, including cleanup levels for potential exposure pathways and points of compliance.
- Section 7—Feasibility Study. This section provides a summary of the scope of work and results of the FS. This section also summarizes the screening and overview of the

evaluation of potential remediation technologies, selection of the preferred cleanup action alternative for implementation at the Site, and the rationale for its recommendation.

- Section 9—Bibliography. This section lists the documents used in preparing this report.
- Section 10—Limitations. This section provides the standard limitations for the RI/FS as performed by Farallon.

2.0 SITE DESCRIPTION AND BACKGROUND

The Lakeside Industries facility is located at 2400 Sargent Boulevard in Aberdeen, Washington (Figure 1). The Site is bounded by the Chehalis River and Elliott Slough on the southern, western, and eastern sides, respectively, and by a frontage road and State Route 12 to the north. The Site is approximately 3.5 miles upstream of the Chehalis River confluence with Grays Harbor, which is an estuarine bay of the Pacific Ocean on the west coast of Washington (Figure 2).

2.1 SITE DESCRIPTION AND OPERATIONAL HISTORY

The Site is located in Section 10, Township 17, Range 9, in Grays Harbor County, Washington and is 8.6 acres in area (Figure 1). The Site has been owned by Lakeside Industries since 1985 and has been operated as a hot-mix asphalt batch plant since that time. Prior to Lakeside Industries' ownership, the Site was owned and operated by Chevron as a bulk fuel facility between 1922 and 1985. Locations of significant historical Site features prior to the Site being acquired by Lakeside Industries are depicted on Figure 2.

Historical bulk fuel facility operations by Chevron included off-loading of fuel from barges, and storage and distribution of various petroleum products. Features identified as part of the operational history of the Site by Chevron include at least 19 aboveground storage tanks (ASTs) with an estimated total storage capacity exceeding four million gallons, aboveground and underground product piping, fuel loading racks, wash racks, a barrel steamer area, a boiler room, and garage buildings (Figure 2). A summary of the former Chevron ASTs is provided in Table 1, including tank locations, approximate tank capacities, and petroleum products stored such as gasoline, diesel fuel, kerosene, light fuel oil, heating oil, and distillates. Two underground storage tanks (USTs) containing heating oil and waste oil, respectively, were also present at the facility during the period of Chevron operations. The waste oil UST was removed in 1988. The unused heating oil UST is proximate to the northeastern corner of the current office building (Figure 2).

The presence of petroleum products in soil was noted at the Site during a subsurface investigation conducted in May and June 1984 by GeoEngineers on behalf of Chevron. The subsurface

investigation was conducted at the Site prior to the enactment of MTCA and any of its cleanup regulations. The results of the subsurface investigation were documented in the 1984 Hydrogeologic Report prepared by GeoEngineers (Appendix A). During the advancement of test pits, GeoEngineers noted olfactory and sometimes visual evidence of petroleum hydrocarbon contamination in soil samples collected from 10 of the 16 test pit locations. Based on these data, GeoEngineers concluded that petroleum hydrocarbons had leaked into the ground during past operations of the facilities at the Site by Chevron (Figure 2). Additional details pertaining to Chevron operations, including the locations of former site features such as ASTs, aboveground and underground product piping, fuel loading racks, wash racks, a barrel steamer area, a boiler room, and garage buildings, are provided on a series of historical drawings included in Appendix A that were used in the compilation of historical features shown on Figure 2 and in Table 1.

According to Lakeside Industries, a review of historical aerial photographs, and the 1984 Hydrogeologic Report, the Site was largely unpaved, with the exception of the foundation concrete pads for the bulk fuel ASTs and several building structures, during Chevron's operation of the Site from 1922 through 1985. Lakeside Industries subsequently capped the entire Site with asphalt pavement upon purchase of the Site in 1985 and has operated the Site as a hot-batch asphalt plant from 1985 to the present.

Lakeside Industries' current operations at the Site include operation of a hot-mix asphalt batch plant, maintenance garage, and office facility (Figure 2). A list of the ASTs, USTs, and associated petroleum products currently stored and used by Lakeside Industries at the Site is provided in Table 1 and is summarized below:

- A series of ASTs in the central part of the Site, identified as the Asphalt Tank Farm, that are mainly used to store asphalt cement for the hot-mix asphalt batch plant. The Asphalt Tank Farm area is paved and includes a concrete secondary spill containment berm.
- A series of ASTs on the western side of the Site, identified as the Diesel Tank Farm, mainly used to store diesel fuel for vehicle refueling, and to a lesser extent, used oil and antifreeze.

The Diesel Tank Farm area is underlain by a concrete slab and includes a concrete secondary spill containment berm.

• A series of ASTs inside the shop building, identified as the Mechanics Shop, used to store small volumes of engine oil, hydraulic oil, heat transfer oil, and used oil.

A minor spill of diesel fuel occurred on the western side of the Site on October 3, 1989 as a result of overfilling an AST within the Diesel Tank Farm containment area (Figure 2). The spill report filed for the incident stated that a quantity of diesel fuel ranging from 50 to 100 gallons was released to the ground surface and affected surface soil in a localized area on and adjacent to the property. According to Ecology records, the cleanup of the diesel fuel and excavation of affected shallow surface soil were completed on the same day that the spill occurred, including backfilling the excavated area with clean fill.

2.2 ADJACENT PROPERTY USE

The Site is a triangular-shaped property bounded on the east by Elliott Slough and on the south and west by the Chehalis River. Figure 2 depicts surrounding facilities, buildings, and streets. A Weyerhaeuser lumber mill is located to the south, across the Chehalis River. The Grays Harbor County Courthouse and the Bayview Redi Mix cement plant are across Elliott Slough to the east. BNSF Railway Company tracks and State Route 12 are north-adjacent. Farther north, across State Route 12, is undeveloped forested land owned by the Washington State Department of Transportation and various private owners.

2.3 GEOLOGY AND HYDROGEOLOGY

According to geologic mapping conducted by the Washington Division of Geology and Earth Resources, the Site is underlain by Quaternary alluvium and undifferentiated glacial outwash deposits (Washington State Department of Natural Resources 1987). The alluvium consists of sand, silt, and gravel deposited in streambeds and fans. The undifferentiated outwash deposits consist of recessional and pro-glacial stratified sand and gravel, locally containing silt and clay. The Chehalis River is 115 miles long and drains an area of 2,660 square miles, of which

approximately 85 percent is forest land and approximately 10 percent is agricultural land (Green, et al. 2009). The Chehalis River is tidally influenced in the Site vicinity.

The general subsurface stratigraphy encountered in the RI borings consisted of a fill layer comprising sand with varying amounts of silt and gravel to depths ranging from 6 to 10 feet below ground surface (bgs) underlain by native silt. The silt extends to the maximum depth drilled of approximately 20 feet bgs.

A shallow unconfined groundwater-bearing zone was encountered at depths ranging from 3 to 10 feet bgs within the fill layer in the RI borings. Shallow groundwater beneath the Site flows primarily to the south, toward the Chehalis River. However, a concrete retaining wall, present along the western half of the Site's southern shoreline and the underlying native silt layer, acts as a barrier to shallow groundwater flow in the central part of the Site. The tidal study conducted during the RI confirmed that tidal changes in the Chehalis River have no influence on shallow groundwater levels and flow beneath the Site, likely due to the presence of the concrete retaining wall and the native silt interval underlying the entire Site (see Section 4.2, Geology and Hydrogeology).

2.4 PREVIOUS INVESTIGATION - GEOENGINEERS 1984

A subsurface investigation was conducted at the Site in 1984 prior to the enactment of MTCA and any of its cleanup regulations, and was reported in the 1984 Hydrogeologic Report prepared for Chevron by GeoEngineers (1984). According to the 1984 Hydrogeologic Report, the purpose of the subsurface investigation was to determine the nature and extent of potential subsurface contamination at the Site in anticipation of the potential sale of the Site by Chevron. A copy of the 1984 Hydrogeologic Report is included in Appendix A.

The subsurface investigation included the advancement and sampling of 16 test pits across the Site using a backhoe, and the installation and sampling of monitoring wells at each of the test pit locations (Figure 2). The general stratigraphy encountered in the test pits was a fill unit ranging in thickness from 1.5 to 7 feet underlain by native clayey silt, organic silt, and peat. A shallow

perched groundwater-bearing zone was encountered at depths of 1 to 3 feet bgs in the fill unit. Groundwater contours developed using water level measurements from the Site monitoring wells for June 1, 1984 indicated a southerly flow direction toward the Chehalis River. GeoEngineers also noted little or no variation in water levels during repetitive groundwater level measurements in two monitoring wells on the south-central portion of the Site during large tidal changes in the adjacent Chehalis River. Based these data, GeoEngineers concluded that the shallow perched groundwater-bearing zone was not in direct hydraulic connection with the Chehalis River.

During the advancement of test pits, GeoEngineers noted olfactory and sometimes visual evidence of petroleum hydrocarbon contamination in soil samples collected from 10 of the 16 test pit locations. Specifically, petroleum-contaminated soil was observed in soil samples collected from test pits 1, 3, 5, 6, 7, 8, 9, 11, 13, and 18 (Figure 2).

Four soil samples were selected from several of the test pit locations for laboratory analysis for one or more of the following analytes: pentachlorophenol; polycyclic aromatic hydrocarbons (PAHs); halogenated hydrocarbons reported as the sum of the halogens bromide, chloride, fluoride, and iodide; and total metals arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, and silver.

Concentrations of halogenated hydrocarbons ranging from 15 milligrams per kilogram (mg/kg) to 57 mg/kg were detected in three soil samples. Pentachlorophenol was detected at a concentration of 0.022 mg/kg in one soil sample. PAHs were detected in all four soil samples tested.

Two soil samples were analyzed for total metals. Maximum concentrations of detected metals included: arsenic at 7.3 mg/kg; lead at 40 mg/kg; barium at 70 mg/kg, chromium at 32 mg/kg, copper at 59 mg/kg, and mercury at 0.07 mg/kg. Extractable Partition Toxicity testing also was performed on the two soil samples for metals. Lead was the only metal detected, at a concentration of 200 micrograms per liter (ug/l).

The monitoring wells were sampled for the presence of floating petroleum product or light nonaqueous phase liquid (LNAPL). LNAPL was not observed during sampling in any of the monitoring wells. No groundwater samples were collected for laboratory analysis.

The 1984 Hydrogeologic Report concluded the following:

- The presence of petroleum hydrocarbon–contaminated soil in several of the test pits indicated that petroleum hydrocarbons have leaked into the ground during past operations of the facilities by Chevron;
- The shallow groundwater at the Site probably is contaminated by low concentrations of dissolved hydrocarbons, but it was highly unlikely that it was a threat to local groundwater supplies since it was unlikely that any water wells are located down-gradient from the tank yard; and
- The test results for the soil samples indicated no specific toxicity hazards as defined by Ecology at the time of investigation; however, the potential presence and migration of hydrocarbon vapors may present a hazard at the Site.

3.0 REMEDIAL INVESTIGATION SCOPE OF WORK

The RI was conducted by Farallon at the Site in accordance with the provisions of WAC 173-340-350(7) to evaluate whether releases of COPCs associated with historical and current operations have impacted soil or groundwater quality at the Site. The RI was conducted in several phases, with Site hydrogeological and soil and groundwater chemical analytical data from the early phases being used to refine the scope of later phases of the RI. This section presents a brief summary of the RI field activities.

3.1 INITIAL REMEDIAL INVESTIGATION PHASE – JANUARY 2009

The initial phase of the RI was conducted by Farallon in January 2009 to evaluate environmental conditions and potential contaminant source areas associated with historical property use as a petroleum bulk fuel facility by Chevron and/or current operations. Borings B1 through B16 were advanced and sampled using a direct-push drill rig as part of the initial field investigation. Each boring was advanced to a maximum depth of 12 feet bgs, with the exception of boring B3, which was advanced to a maximum depth of 20 feet bgs. The boring locations are shown on Figure 2. Boring logs are provided in Appendix B.

At least one soil sample collected from the vadose zone and a reconnaissance groundwater sample collected from each boring were submitted for laboratory analysis by one or more of the analytical methods identified below:

- Total petroleum hydrocarbons as gasoline-range organics (GRO) by Northwest Method NWTPH-Gx;
- benzene, toluene, ethylbenzene, and xylenes (BTEX) by U.S. Environmental Protection Agency (EPA) Method 8021B or EPA Method 8260B;
- Volatile organic compounds (VOCs) by EPA Method 8260B;
- Total petroleum hydrocarbons as diesel-range and as oil-range organics (DRO and ORO, respectively) by Northwest Method NWTPH-Dx;

- Resource Conservation and Recovery Act metals by EPA Methods 6010B/7471A; and
- PAHs by EPA Method 8270D/SIM.

Three soil samples with detectable concentrations of GRO and/or BTEX were submitted for laboratory analysis for Resource Conservation and Recovery Act metals. Four soil samples with detectable concentrations of DRO and/or ORO were submitted for laboratory analysis for PAHs. Four soil samples and four reconnaissance groundwater samples collected from borings completed in the vicinity of former or current chemical and product storage areas, vehicle maintenance areas, and/or the vehicle wash rack were submitted for laboratory analysis for VOCs.

3.2 REMEDIAL INVESTIGATION – APRIL TO DECEMBER 2011

The following sections describe the RI activities conducted at the Site in 2011.

3.2.1 Borings and Reconnaissance Soil and Groundwater Sampling

Borings B17 through B35 (19 borings) were drilled at the Site in April 2011 using a direct-push drill rig to collect reconnaissance groundwater and soil samples (Figure 2). The purpose of the borings was to further evaluate potential source areas identified during the 2009 initial phase of the RI, and to establish locations for the installation of groundwater monitoring wells. Reconnaissance soil and groundwater samples collected from the 19 borings were used to assess the lateral and vertical extent of COPCs at potential source areas at the Site and to select monitoring well locations to characterize and monitor groundwater quality in and around identified source areas, and to bound the cross- and down-gradient extent of the source areas.

Borings B36 through B44 (nine borings) were drilled in July 2011 using a direct-push drill rig to collect additional soil and reconnaissance groundwater samples (Figure 2). The purpose of the additional borings was to evaluate areas along historical Chevron aboveground product piping corridors and former Chevron operational areas, and to obtain subsurface hydrogeological and chemical data from the northern, up-gradient portion of the Site.

3.2.2 Monitoring Well Installation, Development, and Surveying

Monitoring wells MW-1 through MW-17 were drilled, installed, and developed in July 2011 using a direct-push drill rig. The monitoring well locations were selected based on soil and reconnaissance groundwater sampling analytical results from the earlier phases of investigation at the Site, and to provide representative characterization of shallow groundwater across the majority of the Site. The monitoring well locations are shown on Figures 2 and 3. Boring logs and well construction details for the monitoring wells are presented in Appendix B.

3.2.3 Groundwater Monitoring and Sampling

The monitoring wells were used to evaluate shallow groundwater flow direction, potential Chehalis River and Elliot Slough tidal influence and interaction with groundwater, and potential water quality impacts by Site COPCs. Table 2 provides the groundwater elevation data collected during monitoring events at the Site.

Groundwater monitoring wells MW-1 through MW-17 were sampled in August 2011 to provide analytical data representative of the shallow groundwater-bearing zone at the Site. Groundwater samples from the monitoring wells were analyzed for the Site COPCs identified in Section 3.1, Initial Remedial Investigation Phase – January 2009.

3.2.4 Tidal Study

A tidal study was conducted at the Site on December 7 and 8, 2011. Groundwater elevations were recorded in monitoring wells MW-6, MW-7, MW-8, MW-9, and MW-10 using pressure transducers and electronic data loggers during a full tidal cycle over an approximately 25-hour period. Surface water elevations were obtained for the Chehalis River from nearby National Oceanic and Atmospheric Administration Aberdeen Tidal Station No. 9441187 for the same time period to compare to the Site groundwater elevation data.

3.3 TEST PIT INVESTIGATION AND GROUNDWATER SAMPLING – MARCH 2012

Test pits TP1 and TP2 were excavated with a backhoe on March 21, 2012 to evaluate the construction, depth, and foundation embedment characteristics of the concrete retaining wall

present along the western half of the southern Site boundary. Test pit logs are provided in Appendix B.

Seventeen groundwater monitoring wells were gauged and sampled in March 2012 to provide additional hydrogeological and analytical data representative of the shallow groundwater-bearing zone at the Site. Groundwater samples from the monitoring wells were analyzed for Site COPCs by the analytical methods identified in Section 3.1, Initial Remedial Investigation Phase – January 2009.

3.4 ADDITIONAL WELL INSTALLATION AND GEOPROBE INVESTIGATION – APRIL TO AUGUST 2013

Two phases of remedial investigation boring and monitoring well installation were conducted at the Site in 2013. Boring B45 was advanced in the southeastern portion of the Site in April 2013 using a direct-push drill rig to collect soil samples (Figure 2). The purpose of boring B45 was to evaluate potential impacts to soil in the southeastern portion of the Site, east of the eastern terminus of the concrete retaining wall. Based on analytical results from boring B45 soil samples, borings B46 through B54 were drilled and sampled in August 2013 to further evaluate impacts to soil in the southeastern portion contamination was identified.

Monitoring well MW-18 was installed proximate to prior boring B45 in April 2013 using a directpush drill rig. The purpose of monitoring well MW-18 was to evaluate potential impacts to groundwater associated with concentrations of DRO, ORO, and benzene detected in soil samples collected from boring B45. Monitoring wells MW-19 through MW-21 were installed in August 2013 to delineate the lateral extent of petroleum hydrocarbons that were identified in the shallow groundwater sample collected from monitoring well MW-18.

3.5 HYDRAULIC EVALUATION – AUGUST 2016

A topographic survey of the Site was conducted in August 2016 by Berglund, Schmidt & Associates, Inc. of Hoquiam, Washington, a Washington State-licensed surveying firm. The survey information was used to document the bathymetry of the intertidal zone in the adjoining

Chehalis River immediately south of the existing retaining wall and riprap barrier along the southern side of the Site to further refine the conceptual Site model and Site-specific hydrogeology.

Falling and rising head aquifer tests (slug tests) were performed at monitoring wells MW-6 through MW-10, MW-12, and MW-18 to evaluate the hydraulic conductivity of the shallow groundwaterbearing zone at the Site. The purpose of the slug testing was to: 1) evaluate the hydraulic properties of aquifer materials in the Site subsurface; 2) further assess the potential influence on hydraulic conditions associated with installing an environmental sheet pile wall along the southern boundary of the Site; and 3) evaluate whether other factors should be considered in the design of the environmental sheet pile wall.

Slug testing is a method of estimating hydraulic properties of aquifer materials in the vicinity of the well being tested by measuring the water-level recovery in the well after a near instantaneous change in hydraulic head (i.e., injecting or withdrawing a mass [slug] beneath the groundwater surface). Hydraulic conductivity proximate to the tested monitoring wells was assessed by measuring water level versus time data after the slug had been added or removed. Slug testing was performed at the Site in general accordance with ASTM International (ASTM) Standard D4043-96e1, *Standard Guide for Selection of Aquifer Test Method in Determining of Hydraulic Properties by Well Techniques*, and ASTM Standard D4044-96 (2002), *Standard Test Method (Field Procedure) for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers*.

The slug tests were performed using a 1.5-inch-diameter by 3-foot-long weighted polyvinyl chloride slug. The slug tests were set up by collecting an initial depth to water measurement and suspending a pre-programed data logger in the test well at a depth of approximately 1 foot above the bottom of well using a stainless-steel cable. The falling head test was conducted first in each well by quickly dropping the slug, suspended from a polyethylene rope, to a depth below the water level in the well. Once the falling head test was completed as demonstrated by a stabilized water level in the monitoring well, the rising head test was initiated by quickly removing the slug.

The data were processed to estimate hydraulic conductivity values using AQTESOLV Version 4.50 software using the Bouwer and Rice solution for unconfined aquifer conditions. The hydraulic conductivity values from the rising and falling head tests for each well were averaged to estimate an average value for the well. The hydraulic conductivity data are summarized in Table C-1 in Appendix C. Plots of water level displacement versus time, and pertinent test input and output data also are provided in Appendix C. Because the falling head test data from monitoring wells MW-8, MW-12, and MW-18 were inconclusive, only the rising head data were used for estimating hydraulic conductivity in the vicinity of these wells.

3.6 SUPPLEMENTAL SUBSURFACE INVESTIGATION – MAY 2017

The following sections provide a summary of the RI activities completed at the Site in 2017, including supplemental subsurface Site characterization and a groundwater monitoring event.

3.6.1 Borings and Reconnaissance Soil Sampling

Borings B55 through B61 were drilled at the Site in May 2017 using direct-push drilling methods to collect subsurface soil samples. The purpose of the borings was to further refine and bound the vertical extent of soil contamination exceeding MTCA cleanup levels in the areas proximate to the concrete retaining wall along the southern Site boundary adjacent to the Chehalis River.

The seven borings were drilled to a total depth of 20 feet bgs. The boring locations are shown on Figure 2. Boring logs are provided in Appendix B. At least two soil samples were collected from each boring location, including at least one collected from the native silt material underlying the Site. The soil samples were submitted for laboratory analysis for GRO, BTEX, DRO, and ORO by the methods identified in Section 3.1, Initial Remedial Investigation Phase – January 2009. Select soil samples collected from the base of borings or from areas that exhibited field indications of petroleum hydrocarbon contamination also were submitted for laboratory analysis for carcinogenic PAHs by EPA Method 8270D/SIM.

3.6.2 Groundwater Monitoring Event

Groundwater monitoring wells MW-1 through MW-21 were gauged and sampled in May 2017 to provide additional groundwater flow and quality data to further characterize the shallow groundwater-bearing zone at the Site. Groundwater samples were submitted for laboratory analysis for GRO, BTEX, DRO, and ORO by the methods identified in Section 3.1, Initial Remedial Investigation Phase – January 2009.

4.0 REMEDIAL INVESTIGATION RESULTS

The following sections describe the physical features at the Site, the geologic and hydrogeologic conditions encountered during completion of the RI, and the findings of the soil and groundwater characterization activities.

4.1 PHYSICAL SITE FEATURES

Historical drawings and diagrams depicting historical Site features associated with the 1922 to 1985 Chevron petroleum bulk fuel facility operations were reviewed and evaluated as part of the RI for the Site. The historical Site features associated with the former Chevron petroleum bulk fuel facility are depicted on Figure 2. Historical and active ASTs and USTs associated with the Site are listed in Table 1. The vast majority of sources of soil and groundwater contamination identified at the Site are the result of suspected releases associated with the historical operation of the former bulk fuel facility for over 60 years by Chevron. The presence of petroleum products in soil was noted at the Site during a subsurface investigation conducted in May and June 1984 by GeoEngineers on behalf of Chevron. According to the 1984 Hydrogeologic Report, GeoEngineers noted olfactory and sometimes visual evidence of petroleum hydrocarbon contamination in soil samples collected from 10 of the 16 test pit locations. Based on these data, GeoEngineers concluded that petroleum hydrocarbons had leaked into the ground during past operations of the facilities at the Site by Chevron (Figure 2).

A concrete retaining wall is present along the western half of the southern Site boundary, adjacent to the Chehalis River. The location of the retaining wall is shown on Figure 2. Test pits TP1 and TP2 were excavated adjacent to the retaining wall in March 2012. The purpose of the test pit excavations was to evaluate the depth and nature of construction of the concrete retaining wall, its footing, and its relationship to the subsurface stratigraphy. The base of the retaining wall footing was encountered at approximately 4 feet bgs in test pits TP1 and TP2. The underlying native silt was encountered at approximately 3.5 feet bgs in both test pits TP1 and TP2, representing a retaining wall footing embedment of approximately 0.5 foot into the native silt. Groundwater was observed seeping into the test pit excavations at a depth of 5.7 feet bgs. Based on stabilized

groundwater depths in nearby monitoring wells MW-6 and MW-9, saturated subsurface soils are likely to occur at approximately 2 to 3 feet bgs. Test pit observations established that the retaining wall footing is embedded into the native silt, and below the depth of saturated soils. These data indicate that the retaining wall and underlying native silt act as a physical barrier to the lateral migration of COPCs in shallow soil and groundwater toward the surface water in the adjacent Chehalis River.

4.2 GEOLOGY AND HYDROGEOLOGY

This section discusses the results of the RI regarding the Site geology, hydrogeology, and tidal influence on Site groundwater.

4.2.1 Geology

Subsurface stratigraphy at the Site includes a shallow fill layer of sand with varying amounts of silt and gravel encountered from the ground surface to depths ranging from approximately 3.5 to 10 feet bgs. The fill layer is underlain primarily by silt, and to a lesser extent silty sand, with minor peat interbeds in localized areas to the total depth explored of 20 feet bgs at boring B3. Figure 3 provides a geological cross section that depicts the stratigraphic relationships of the identified subsurface materials.

4.2.2 Hydrogeology

An unconfined shallow groundwater-bearing zone is present within the fill layer at depths ranging from 1 to 9 feet bgs at the Site. Groundwater elevations for the shallow groundwater-bearing zone were contoured using the May 2017 groundwater-level measurement data collected by Farallon (Table 2). The groundwater elevation contour map developed using the May 2017 water level data is provided on Figure 4. Based on the groundwater elevation data, groundwater within the shallow groundwater-bearing zone is interpreted to flow predominantly from the upland areas toward the Chehalis River to the south. The hydraulic gradient is interpreted to be between approximately 0.025 to 0.035 foot/foot at the Site. A localized area in the east-central part of the Site, represented by monitoring wells MW-3, MW-4, and MW-5, is interpreted to have a more-shallow hydraulic gradient, between approximately 0.0011 to 0.0039 foot/foot to the south. Slug testing performed

in August 2016 estimated a geometric mean hydraulic conductivity for the Site of 5.89×10^{-5} centimeters per second in the shallow water bearing zone.

Field observations during drilling and installation of monitoring wells MW-18 through MW-21 indicated that the monitoring wells constructed in this area yielded only nominal volumes of groundwater before being purged dry and required extended periods of time to recharge. The estimated rate of recharge was less than 0.01 gallons per minute based on field measurements, which is consistent with the relatively low transmissivity of the silt and silty sand encountered in the groundwater-bearing zone. Groundwater elevations in monitoring wells MW-18 through MW-21 were observed to remain consistent during construction and development regardless of tidal stage in the adjacent Chehalis River. No groundwater seeps were observed in the intertidal areas proximate to the well installation area.

4.2.3 Tidal Study

Surface water elevations recorded for the Chehalis River at the National Oceanic and Atmospheric Administration Aberdeen Tidal Station No. 9441187 during the 25-hour period of the 2011 tidal study fluctuated by a maximum of approximately 10 feet. The largest changes in groundwater elevation recorded during the tidal study ranged from approximately 0.15 foot in monitoring well MW-9 to approximately 0.23 foot in monitoring well MW-10. The groundwater elevation recorded in monitoring well MW-6 displayed approximately 0.06 foot fluctuation. Water level data recorded in monitoring wells MW-7 and MW-8 indicated no response. Based on the tidal study, there appears to be no connection between the shallow groundwater-bearing zone at the Site and the surface water of the Chehalis River. Hydrographs depicting monitoring well groundwater elevations and the Chehalis River surface water elevation recorded for the tidal study are provided in Appendix D.

4.3 HYDRAULIC EVALUATION RESULTS

The hydraulic conductivity values derived from the slug testing described in Section 3.5, Hydraulic Evaluation – August 2016, were used to estimate potential groundwater flow rates adjacent to an environmental sheet pile wall to be installed along approximately 700 feet of the southern Site

boundary. The geometric mean of the hydraulic conductivity values for all the test wells was 5.89×10^{-5} centimeters per second for the shallow water-bearing zone at the Site. Groundwater seepage velocity was estimated for the Site using the Site-wide hydraulic conductivity value, September 26, 2013 hydraulic gradient, and an assumed effective porosity of 0.25 for silty sands to be approximately 8.5 feet per year.

The average estimated hydraulic conductivity values for the four wells tested along the proposed sheet pile wall alignment (MW-6, MW-9, MW-12, and MW-18) ranged from 7.75 x 10^{-6} to 7.13 x 10^{-5} centimeters per second (0.16 to 1.5 gallons per day per square foot). The geometric mean of the average hydraulic conductivity for these four wells is 2.90 x 10^{-5} centimeters per second (0.62 gallon per day per square foot).

Using the minimum average estimated hydraulic conductivity value of 0.16 gallon per day per square foot, an assumed saturated aquifer thickness along the river bank of 6 feet, and an assumed horizontal hydraulic gradient of 0.035 foot/foot based on September 2013 water level measurements (see Section 4.2, Geology and Hydrogeology), the estimated minimum groundwater flow rate at the proposed sheet pile wall is 22 gallons per day, or 0.015 gallon per minute. This estimate is consistent with previous observations of well recharge proximate to the proposed sheet pile wall.

Using the maximum average estimated hydraulic conductivity value of 1.5 gallons per day per square foot, an assumed saturated aquifer thickness along the river bank of 8.5 feet, and an assumed horizontal hydraulic gradient of 0.035 foot/foot, the estimated maximum groundwater flow rate at the proposed sheet pile wall is 300 gallons per day, or 0.21 gallon per minute.

Using the geometric mean of the average estimated hydraulic conductivity value of 0.62 gallon per day per square foot, an assumed saturated aquifer thickness along the river bank of 7.25 feet (the average of the 6-foot and 8.5-foot values assumed above), and an assumed horizontal hydraulic gradient of 0.035 foot/foot, the estimated mean groundwater flow rate at the proposed sheet pile wall is 100 gallons per day, or 0.07 gallon per minute.

The minimum and maximum groundwater flow rates were used in the design of the proposed environmental sheet pile wall and hydraulic control system discussed in Section 7.2, Cleanup Action Alternatives.

4.4 SOIL AND GROUNDWATER ANALYTICAL RESULTS

Based on the historical uses of the Site, it was anticipated that COPCs would consist of petroleum fuels and related constituents and additives, and that these releases of COPCs were likely to have affected shallow soil and groundwater at the Site. These constituents were subsequently confirmed in Site soil and groundwater samples, and the RI has sufficiently delineated their occurrence at the Site to support selection of a feasible and final cleanup alternative consistent with all MTCA requirements. The past operational features and activities likely responsible for the presence of the COPCs identified at the Site are described in Section 5.5, Summary of Conceptual Site Model.

Soil sample analytical results for GRO and benzene are shown on Figure 5. Soil sample analytical results for total DRO and ORO are shown on Figure 6. Groundwater analytical results for GRO and benzene are shown on Figure 7. Groundwater analytical results for DRO and ORO are shown on Figure 8. The soil sample analytical results for petroleum hydrocarbons, PAHs, and metals are provided in Tables 3, 4, and 5, respectively. Table 6 presents petroleum hydrocarbon analytical results for the reconnaissance groundwater samples collected from the borings at the Site. Analytical results for the groundwater samples collected from monitoring wells at the Site are provided in Tables 7, 8, and 9 for petroleum hydrocarbons, PAHs, and metals, respectively. Laboratory analytical reports are provided in Appendix E.

The confirmed source areas identified at the Site with concentrations of COPCs exceeding MTCA cleanup levels are limited to shallow soil within the fill horizon with the exception of four localized areas of groundwater contamination. A description of the confirmed source areas in soil and groundwater defined by the specific COPCs detected is provided below.

4.4.1 Gasoline/Benzene Source Areas

Three localized source areas with GRO and/or benzene in soil at concentrations exceeding MTCA Method A cleanup levels were identified in the east-central and southeastern portions of the Site.

Groundwater samples collected from monitoring wells on the western portion of the Site and areas outside the identified GRO/benzene source areas at the Site were reported either non-detect at the laboratory PQLs or less than the MTCA Method A cleanup levels for GRO and benzene (Figure 7; Table 7).

4.4.1.1 Central Gasoline and Benzene Source Area

The approximate areal extent of GRO and/or benzene in soil at concentrations exceeding MTCA Method A cleanup levels in the central portion of the Site is bounded by borings B18, B19, and B22 to the north; borings B11, B17, and B14 to the east; borings B1, B2, and B41 to the west; and borings MW-4 and MW-9 to the south (Figure 5). The highest concentrations of GRO and benzene were detected in a soil sample collected from 4 feet bgs in boring B3, which was advanced proximate to the western side of former Chevron gasoline Tank No. 16 (Figure 5). Metals, including lead, arsenic, cadmium, and mercury, also were detected from 2 feet bgs in boring B3 (Table 5). The concentration of 1,500 mg/kg lead in soil at boring B3 is indicative of a potential historical release of leaded gasoline. According to the 1984 Hydrogeologic Report, petroleum-contaminated soil was observed at test pits 4, through 9, and 11, which were advanced proximate to the former Chevron Tank Nos. 14 and 16 (Figure 5).

GRO and benzene were detected at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from monitoring well MW-1 in the northeastern portion of the east-central GRO/benzene source area. Benzene was detected at a concentration of 11 micrograms per liter (µg/l) in the groundwater sample collected from monitoring well MW-6 on May 3, 2017 in the east-central GRO/benzene source area. These data are consistent with the petroleum-contaminated soil observed at test pits 1 and 9 advanced during the 1984 subsurface investigation (Figures 5 and 7). All other groundwater samples collected from the central source area monitoring wells, including MW-4, MW-5, MW-6, MW-7, and MW-9, were reported non-detect at the laboratory PQL (Figure 7).

4.4.1.2 Southeast Gasoline and Benzene Source Area

Another localized source area with GRO and benzene in soil at concentrations exceeding MTCA Method A cleanup levels was identified in the southeastern portion of the Site. The area containing GRO and benzene in soil in this area is bounded by borings B46 through B49 to the north, borings B51 and B12 to the east, boring B54 to the west, and boring B52 and the Chehalis River to the south (Figure 5). Historical features in this portion of the Site include three former gasoline ASTs north and northeast of the source area and multiple conveyance and product distribution lines operated by Chevron (Figure 2). These data are consistent with the petroleum-contaminated soil observed at test pit 3 advanced during the 1984 subsurface investigation in this source area (Figure 5).

Groundwater samples collected from monitoring wells MW-18 and MW-20 in the southeast GRO/benzene source area exceeded the MTCA Method A cleanup level for groundwater of 5 μ g/l (Figure 7).

4.4.1.3 Boring B57 Source Area

GRO and benzene were detected at concentrations of 350 and 0.076 mg/kg, respectively, in the soil sample collected from boring B57 at a depth of 9 feet bgs. GRO and benzene were reported non-detect at the laboratory PQL in the soil sample collected from boring B57 at depths of 14 and 19 feet bgs. GRO and benzene were reported non-detect at the laboratory PQL in the groundwater samples collected from monitoring well MW-11, west-adjacent to boring B57. The source area comprises a small, isolated volume of shallow soil contamination between 9 and 14 feet bgs proximate to Chevron Tank No. 12, which formerly stored gasoline (Figure 5). The shallow contamination identified at this source area is bounded by boring B58 to the east, boring B6 to the northeast, and boring B5 to the northwest (Figure 5).

4.4.2 Diesel and Oil Source Areas

Three source areas with total DRO and ORO at concentrations exceeding the MTCA Method A cleanup level have been identified at the Site, including a large area in the central portion of the

Site; a slightly smaller area in the western portion of the Site; and a localized area in the southeastern portion of the Site (Figure 6). DRO and ORO were reported non-detect at the laboratory PQL in groundwater samples collected from monitoring wells outside the diesel and oil source areas and on the up-gradient portion of the Site (Figure 6).

4.4.2.1 Central Diesel and Oil Source Area

The DRO and ORO source area in the central portion of the Site generally is bounded by borings B34, B22, and B44 to the north; borings B19, B10, MW-1, and B13 to the east; borings B2, B4, B7, and B5 to the west; and the retaining wall to the south. Approximately half of the central DRO and ORO source area is comingled with the east-central GRO/benzene source area. These data are consistent with the petroleum-contaminated soil observed at test pits 4 through 9 and 11 during the 1984 subsurface investigation (Figure 6).

The highest concentrations of DRO/ORO were detected in a soil sample collected from 4 feet bgs in boring B9 advanced proximate to the former Chevron fuel loading rack area and heating oil tanks in the northeastern portion of the source area (Figure 6). During the May 2017 groundwater monitoring event, combined dissolved phase concentrations of DRO and ORO were detected at concentrations ranging from 580 to 770 μ g/l in groundwater samples collected from monitoring wells MW-6, MW-7, and MW-11, slightly exceeding the MTCA Method A cleanup level of 500 μ g/l (Figure 8; Table 7).

4.4.2.2 West Diesel and Oil Source Area

A smaller DRO/ORO source area is present proximate to former Chevron Tank Nos. 8 and 9¹ on the western side of the Site, which were used to store fuel oil (Table 1, Figure 6). The highest concentrations of DRO/ORO were detected in a soil sample collected from 3.5 feet bgs in boring MW-13 advanced proximate to the western side of former Tank No. 8, which was used to store approximately 1.4 million gallons of fuel oil (Figure 6; Table 1). These

¹ Table 1 presents tanks used on the Site. Tanks used by Standard Oil/Chevron 1922 through 1985 are identified by Tank Numbers (Tank Nos.) 8 through 26. Tanks used by Lakeside Industries 1985 to present are identified by area (e.g. Asphalt Tank Farm), and Tank Nos. 1 and 2.

data are consistent with the petroleum-contaminated soil observed at test pit 13 advanced during the 1984 subsurface investigation on the eastern side of former Chevron fuel oil Tank No. 8 (Figure 6).

DRO and ORO were detected at concentrations exceeding the MTCA Method A cleanup level in groundwater samples collected in 2011 and 2012 from monitoring well MW-17 on the western end of the Site and in monitoring well MW-12 on the southwestern portion of the Site in 2017, both of which are proximate to former Chevron Tank No. 8, which was used to store fuel oil (Figure 8). The combined concentration of dissolved DRO and ORO detected in the groundwater sample collected from monitoring well MW-15 on May 5, 2017 exceeded the MTCA Method A cleanup level; previous samples collected from monitoring well MW-15 in August 2011 and April 2012 were reported non-detect at the laboratory PQL.

Groundwater samples collected from the remaining monitoring wells in the west Site source area were reported either non-detect at the laboratory PQL or less than the MTCA Method A cleanup level for DRO and ORO.

4.4.2.3 Southeast Diesel and Oil Source Area

A third source area containing DRO and ORO at concentrations exceeding MTCA Method A soil and groundwater cleanup levels was identified in the southeastern portion of the Site, which is commingled with the GRO source in this area. The presence of DRO and ORO in this source area is bounded by borings B46 through B48 to the north; borings B50 and B51 to the east; borings B45 and B54 to the west, and boring B52 and the Chehalis River to the southeast and south, respectively (Figure 6).

DRO and ORO were detected in groundwater at concentrations exceeding MTCA Method A cleanup levels in monitoring wells MW-18 through MW-20. This area is down-gradient of former Chevron AST No. 18, which was used to store approximately 900,000 gallons of light fuel oil and was proximate to numerous former product conveyance pipes used by

Chevron (Figure 2). These data are consistent with the petroleum-contaminated soil observed at test pit 3 advanced during the 1984 subsurface investigation (Figure 8).

4.4.3 Polycyclic Aromatic Hydrocarbons

Selected soil and groundwater samples collected at the Site were tested for the presence of PAHs. Tables 4 and 8 provide summaries of the PAH analytical results for soil and groundwater samples, respectively. PAHs are commonly found as constituent compounds within petroleum hydrocarbon fuels, and the PAHs that were reported in Site soil and groundwater samples were consistent with that interpretation.

In general, PAHs were reported at low concentrations less than MTCA cleanup levels in the soil samples analyzed. 2-methylnapthalene and 1-methylnapthalene were reported at concentrations of 230 and 120 mg/kg, respectively, in the soil sample collected from boring B9 at a depth of 4 feet bgs (Table 4). These naphthalene-related compounds exceed the MTCA Method A soil cleanup level for naphthalene of 5 mg/kg. The soil sample collected from boring B9 containing methylnaphthalenes also had relatively high DRO and ORO concentrations, consistent with the PAHs being part of a fuel hydrocarbon mixture.

Ecology recommends evaluating environmental concentrations of carcinogenic PAHs using a total toxic equivalent concentration that is using calculated using the toxicity equivalency factor methodology developed by EPA (Ecology 2015). The toxic equivalent concentration reported for soil samples collected from borings B1, B8, B9, and B14 exceeded the MTCA Method A soil cleanup level. DRO and ORO also were detected at concentrations that exceeded MTCA cleanup levels in soil samples collected from borings B1, B8, B9, and B14. Carcinogenic PAHs were reported non-detect at the laboratory PQL in soil samples collected from depths of 14 to 19 feet bgs in the samples collected from borings B55 through B61 in 2017.

Groundwater samples from monitoring wells MW-4, MW-5, MW-6, MW-7, MW-9, and MW-12 were analyzed for PAHs. PAHs were not detected at concentrations exceeding MTCA Method A cleanup levels.

Based on the consistent association of PAHs with elevated concentrations of DRO and ORO in soil, DRO and ORO are considered indicator contaminants for the presence of PAHs that will be used to guide environmental decision-making at the Site.

4.4.4 Metals

Two soil samples collected from the Site contained metals at reported concentrations exceeding their respective MTCA Method A cleanup levels (Table 5). The soil sample collected at 4 feet bgs from boring B3 in the central source area contained arsenic, cadmium, lead, and mercury at concentrations exceeding MTCA cleanup levels. Lead was detected at a concentration of 1,500 mg/kg in the soil sample collected from boring B3 at a depth of 4 feet bgs. The soil sample from boring B3 at a depth of 4 feet bgs also contained the highest reported concentration of GRO and benzene at the Site, in addition to the metals (Table 3). The association of the high reported lead concentration, GRO, and benzene in soil at the boring B3 location demonstrates that the lead is likely associated with a release of leaded gasoline from former Chevron gasoline Tank No. 16 (Figure 5).

Arsenic was detected at a concentration of 46 mg/kg in a soil sample collected from boring MW-9 at a depth of 3 feet bgs, which exceeds both the MTCA Method A cleanup level and the natural background concentration for arsenic in soil. Detected concentrations of cadmium, chromium, and lead in the soil sample collected from boring MW-9 at a depth of 3 feet bgs were consistent with Washington State natural background concentrations for metals in soil. Because this soil sample did not have any compounds other than metals reported at concentrations suggesting Site-related contamination at this location and the concentrations of metals other than arsenic are within the expected naturally occurring range, the arsenic present also is likely naturally occurring.

Groundwater samples from monitoring wells MW-4, MW-5, MW-6, and MW-9 were analyzed for metals. With the exception of barium, all other metals were reported non-detect at the laboratory PQL (Table 9). Barium was detected at a maximum concentration of 140 μ g/l, which is less than the National Primary Drinking Water Standard Maximum Contaminant Level of 2,000 μ g/l.

4.5 TERRESTRIAL ECOLOGICAL RISK EVALUATION

A TEE is required by WAC 173-340-7490 at any site where there has been a release of a hazardous substance to soil. The regulation requires that one of the following actions be taken:

- Documenting a TEE exclusion using the criteria presented in WAC 173-340-7491;
- Conducting a simplified TEE in accordance with WAC 173-340-7492; or
- Conducting a site-specific TEE in accordance with WAC 173-340-7493.

The Site is excluded from a TEE because there is less than 1.5 acres of contiguous undeveloped land on the Site or within 500 feet of any area of the Site based on the criteria for TEE exclusion WAC 173-340-7491(1)(c)(i). No further consideration of terrestrial ecological impacts is required under MTCA. VCP TEE forms documenting the exclusion are provided in Appendix F.

5.0 CONCEPTUAL SITE MODEL

This section provides a summary of the conceptual site model derived from the results of the RI conducted at the Site. Included in this section is a discussion of the COCs, confirmed and suspected source areas, affected media, contaminant fate and transport characteristics of the released hazardous substances, and a preliminary exposure assessment. The conceptual site model is used as a basis for developing technically feasible cleanup alternatives and selecting a preferred cleanup action in accordance with applicable MTCA regulations.

5.1 CONSTITUENTS OF CONCERN

The Site has been operated as a hot-mix asphalt batch plant since 1985 by Lakeside Industries but was owned and operated by Chevron USA, Inc. as a bulk fuel facility between 1922 and 1985. Historical bulk fuel facility operations by Chevron between 1922 and 1985 likely included off-loading of fuel from barges, and storage and distribution of various petroleum products. Features identified as part of the operational history of the Site include numerous ASTs with an estimated total storage capacity exceeding four million gallons, aboveground product piping, fuel loading racks, a barrel steamer, wash racks, and storage sheds (Figure 2). Lakeside Industries capped the entire Site with asphalt in 1985. The COPCs included in the RI as defined in the Work Plan were based on the historical uses of the property.

The COCs that will be considered in the development of cleanup action alternatives for the Site are those COPCs confirmed to be present at concentrations that exceed the preliminary screening levels identified in the RI. Preliminary screening levels for the RI are the MTCA Method A and B cleanup levels for soil and groundwater. The COCs identified for the Site are provided in Section 6.2, Constituents of Concern, and the corresponding preliminary cleanup levels are provided in Section 6.5, Cleanup Standards. Soil and groundwater have been confirmed as the only affected media at the Site.

5.2 CONFIRMED AND SUSPECTED SOURCES OF COCS

The concentrations of GRO, DRO, ORO, and associated petroleum compounds detected in soil and groundwater are attributed to releases associated with the long-term operation of the bulk fuel storage and distribution facility by Chevron at the property. The 1984 Hydrogeologic Report concluded that the results of the investigation indicated that petroleum hydrocarbons had leaked into the ground during past operations of the facilities at the Site by Chevron prior to Lakeside Industries acquisition of the Site in 1985. The identified distribution of COCs at the Site indicates that the sources are likely the result of multiple releases during Chevron's prior operations of the bulk fueling facility.

A minor spill of diesel fuel during Lakeside's operations occurred on October 3, 1989 as a result of overfilling of an AST within the containment area on the western side of the Site. The spill report filed for the incident indicated that a quantity of diesel fuel ranging from 50 to 100 gallons was released to the ground surface and affected surface soil in a localized area on and adjacent to the property. According to Ecology records, the cleanup of the diesel fuel and excavation of affected shallow surface soil were completed on the same day, including backfilling the excavated area with clean fill.

Confirmed sources of COCs released to the environment at the Site that were identified during the RI include:

• Confirmed GRO/benzene source area in the central portion of the Site comprises a broad area of shallow soil contamination caused by surface releases from former Chevron ASTs and associated product conveyance piping, including but not limited to former Chevron Tank Nos. 14 and 16 used to store gasoline with a combined total storage capacity of over 1,000,000 gallons, former Chevron Tank Nos. 24 through 26 in the northeastern portion of the Site, the former garage, the former fuel loading rack, and/or wash racks operated by Chevron (Figure 5; Table 1). These data are consistent with the petroleum-contaminated soil observed at test pits 4 through 9, and 11, which were advanced during the 1984

subsurface investigation proximate to the former Chevron Tanks No. 14 and No. 16 (Figure 5).

- Confirmed GRO/benzene source area in the southeastern portion of the Site comprises a localized area of soil and groundwater contamination approximately centered on monitoring well MW-18 that is attributable to releases associated with the north-adjacent former Chevron product conveyance piping and/or prior operation of the two eastern-most former gasoline storage tanks east of Tank No. 18 (Figures 2, 5, and 7). These data are consistent with the petroleum-contaminated soil observed at test pit 3, which was advanced during the 1984 subsurface investigation proximate to the former Chevron product conveyance area (Figures 2 and 5).
- Confirmed GRO/benzene source in the south-central portion of the Site proximate to boring B57 comprises an isolated volume of shallow soil contamination at approximately 9 feet bgs proximate to the former Chevron Tank No. 12, which was used to store gasoline.
- Confirmed DRO/ORO source area in the central portion of the Site comprises a broad area of shallow soil contamination attributable to surface releases from multiple ASTs and associated product conveyance piping formerly used by Chevron to store diesel, light fuel oil, and distillates; the former barrel wash area; the former fuel loading rack; former garage buildings; and/or wash racks shown on Figure 6. These data are consistent with the petroleum-contaminated soil observed at test pits 4 through 9, and 11, which were advanced during the 1984 subsurface investigation proximate to this source area (Figure 6).
- Confirmed DRO/ORO source area in the western portion of the Site comprises an area of shallow soil contamination attributable to surface releases from the operation by Chevron of the former boiler room and/or operation of former ASTs and associated product conveyance piping, including Tank Nos. 8 and 9 used to store fuel oil with capacities of 1,430,000 and 36,000 gallons, respectively (Figure 6; Table 1). These data are consistent with the petroleum-contaminated soil observed at test pit 13 advanced during the 1984

subsurface investigation on the eastern side of former Chevron fuel oil Tank No. 8 (Figure 6).

• Confirmed DRO/ORO source area in the southeastern portion of the Site comprises an area of shallow soil and groundwater contamination proximate to monitoring well MW-18 (Figures 6 and 8). Contamination in this area is attributable to surface releases from the operation of the former product conveyance piping by Chevron in the southeastern portion of the Site and/or prior operation of Tank No. 18 that was used to store light fuel oil. These data are consistent with the petroleum-contaminated soil observed at test pit 3, which was advanced during the 1984 subsurface investigation proximate to the former Chevron product conveyance piping in this source area (Figures 2 and 5).

5.3 CONTAMINANT FATE AND TRANSPORT

The following potential routes of migration of the COCs are considered for development of the cleanup action alternatives in the FS:

- Leaching from soil to groundwater;
- Lateral and vertical transport in groundwater;
- Discharge from groundwater to surface water and/or sediment;
- Migration from soil to surface water and/or sediment; and
- Volatilization from soil vapor, soil, and groundwater to ambient air.

The releases of COCs to soil have migrated through the vadose zone by a combination of gravity and infiltration of precipitation. With the exception of one low-level detection of benzene, COCs detected at concentrations exceeding screening levels are limited to depths ranging from 2 to 9 feet bgs within the fill layer at the Site. The impact to the shallow groundwater-bearing zone is limited and groundwater screening level exceedances were detected only in monitoring wells MW-1 in the east-central portion of the Site; monitoring wells MW-6 and MW-7 in the central portion of the Site; monitoring wells MW-11, MW-12, and MW-17 adjacent to the AST containment area and proximate to former Chevron Tank No. 8 in the western portion of the Site; and monitoring

wells MW-18 through MW-20 in the southeastern portion of the Site. Based on the results of the RI, migration of contaminated soil to surface water and/or sediment in the Chehalis River along the southern Site boundary has not occurred. Potential future upset conditions such as a 100-year storm event or liquefaction and mobilization during an earthquake causing mass erosion of the river bank and subsequent mobilization and migration of contaminated soil along the southern Site boundary to surface water and/or sediment have been evaluated and incorporated into the FS to address this potential route of migration at the Site.

During the 2017 groundwater monitoring and sampling event, combined concentrations of DRO and ORO slightly exceeding the MTCA Method A cleanup level were detected for the first time in monitoring well MW-15 in the western portion of the Site. The groundwater flow direction of the shallow groundwater-bearing zone is generally to the south toward the Chehalis River. The western half of the southern Site boundary is bounded by a concrete retaining wall that extends to 4 feet bgs and is keyed into the underlying native silt, which is present to a depth of at least 20 feet bgs, the maximum depth explored during the RI (Figure 3). Supplemental Site characterization sampling in 2017 demonstrated that COCs are not present at concentrations exceeding MTCA Method A cleanup levels in the native silt underlying the Site.

Based on the findings of the 2011 tidal study, the retaining wall present on the western half of the Southern Site boundary and native silt underlying the entire Site act to prevent or substantively limit hydraulic communication between the shallow groundwater-bearing zone on the Site and the tidally influenced Chehalis River. Monitoring wells MW-15 and MW-17 are located outside and west of the concrete retaining wall, and monitoring wells MW-18 through MW-20 are east of the retaining wall. No sheen or other evidence of seepage of COCs attributable to the Site into the Chehalis River has been observed during evaluation of this potential route of migration during multiple monitoring events. Further, the 2011 tidal study confirmed Site groundwater flow, gradient, and elevation are not influenced by Chehalis River water levels. Currently, the entire site is paved with asphalt and/or concrete building slabs, which provide a physical barrier to potential soil vapors volatilizing to ambient and/or indoor air.

5.4 EXPOSURE ASSESSMENT

The following sections present the evaluation and conclusions pertaining to the potential human health and ecological risk at the Site. This section identifies current and potential future exposure scenarios that will assist in the selection of appropriate final cleanup levels and a final cleanup action alternative.

5.4.1 Soil Pathway

The exposure pathways for shallow soil include direct contact and atmospheric transport via the soil to vapor pathway. The direct contact pathway includes direct contact (dermal contact and/or ingestion) with soil beneath the Site. The depth of contamination is less than 15 feet bgs, with the majority of contamination being present in the depth interval from 2 to 9 feet bgs within the fill layer at the Site. The entire site is currently paved with asphalt. As a result, direct contact with soil would require excavation activities to encounter levels of the COCs that could pose a human health risk. Since the entire Site is capped with asphalt, there currently are no direct exposure routes to terrestrial ecological receptors. However, the potential for future development of a soil exposure pathway through potential erosion and migration of contaminated soil to surface water and/or sediment in the adjacent Chehalis River proximate to the southern Site boundary could pose a human health and/or ecological risk. The future potential exposure scenarios considered in the FS, which potentially could cause mobilization and migration of contaminated media remaining inplace to surface water and/or sediment along the southern Site boundary, included flooding and mass erosion during a 100-year storm event or liquefaction and mobilization of shallow contaminated soil during an earthquake. The potential for future development of a soil to surface water and/or sediment exposure pathway at the Site was evaluated and is addressed in the preferred cleanup alternative through source removal excavation and containment by the installation of a sheet pile wall along the southern Site boundary.

5.4.2 Groundwater Pathway

Potential exposure pathways for groundwater include the direct contact pathway, which comprises both dermal contact and ingestion pathways, and transfer of groundwater contamination to surface water and/or sediment. Direct contact with groundwater would require excavation through the existing asphalt cover to encounter levels of COCs that could pose a human health risk. As discussed above, there is no evidence that discharge of contaminated groundwater attributed to the sources identified on the Site to the Chehalis River is occurring. However, the potential for future development of groundwater to surface pathways through migration of contaminated groundwater and/or saturated soil proximate to the southern Site boundary could pose a human health and/or ecological risk.

There are no groundwater supply wells at or in the vicinity of the Site that are used for potable water supply. The 2016 Site hydraulic evaluation and observations made during monitoring well installation and development indicate subsurface hydraulic conductivity within the shallow groundwater-bearing zone is low and potential groundwater yield is less than 0.5 gallon per minute. Since there is no practical use of groundwater in the Site vicinity, an exposure pathway via groundwater ingestion is unlikely to present a potential risk to human health. The results of the hydraulic and tidal studies, including low hydraulic conductivity in the shallow aquifer, negligible groundwater influence as a result in changes to Chehalis River stage, and the absence of riverbank seeps, confirm that the groundwater to surface water pathway currently is not complete at the Site. The future potential exposure scenarios considered in the FS, which potentially could cause mobilization and migration of contaminated media remaining in-place to surface water and/or sediment along the southern Site boundary, included flooding and mass erosion during a 100-year storm event or liquefaction and mobilization of shallow contaminated soil during an earthquake. The potential for future development of a groundwater to surface water exposure pathway at the Site was evaluated and is addressed in the preferred cleanup alternative through containment by the installation of the proposed sheet pile wall along the southern Site boundary.

5.4.3 Soil Vapor Pathway

The concentrations of GRO and BTEX in shallow soil and groundwater at the Site are relatively low and limited in extent. Short-term exposure to vapors could result if future construction workers encounter contaminated soil and/or groundwater. Ecology guidance for evaluating soil vapor intrusion into structures (Ecology 2009) presents screening levels for groundwater and soil vapor that could result in vapor intrusion exposure risks. The presence of benzene concentrations in groundwater exceeding 24 μ g/l beneath a building structure has the potential to result in adverse risk via vapor intrusion to indoor air. The benzene concentrations detected in groundwater ranged from 10 to 65 μ g/l. However, there are no structures in which vapors could accumulate near the current localized areas of GRO and BTEX contamination. GRO and BTEX vapors entering the atmosphere would be rapidly diluted by ambient air, volatilized, and photodegraded to levels that are not anticipated to present an exposure risk to human health or the environment. Further, the proposed source removal excavations of the localized areas of GRO and BTEX contaminated soil exceeding MTCA Method A cleanup levels and the anticipated monitored natural attenuation of residual concentrations of GRO and BTEX will eliminate the potential vapor intrusion exposure pathway at the Site.

5.5 SUMMARY OF CONCEPTUAL SITE MODEL

Based on the results of the RI field program, historical information confirming releases of petroleum hydrocarbons to subsurface soil and shallow groundwater across the Site as a result of Chevron's operation of the bulk fuel facility prior to Lakeside Industries' ownership, Lakeside Industries' operations and history of a minor spill, and Farallon's previous experience at similar project sites, the vast majority of source areas identified at the Site are consistent with multiple releases associated with the long-term operation of the former bulk fuel storage and distribution facility at the Site by Chevron. Chevron's operations at the Site included the storage and distribution of petroleum products in excess of 4,000,000 gallons for a period of over 60 years (Table 1). In comparison, Lakeside Industries' operations at the Site since 1985 have included relatively limited use of petroleum products (less than 80,000 gallons stored on the Site at any given time), of which the majority is specifically related to the hot-mix asphalt batch plant operations (Table 1). The petroleum products used by Lakeside Industries are stored and managed in discrete areas of the Site such as the Asphalt Tank Farm and Diesel Tank Farm, both of which include secondary containment to prevent releases to the subsurface. In addition, the entire Site was paved by Lakeside Industries in 1985 prior to commencing operations to prevent the infiltration of potential surface releases of petroleum products and/or stormwater runoff to the subsurface beneath the Site. Further, the 1984 Hydrogeologic Report concluded that the results of

the investigation indicated that petroleum hydrocarbons had leaked into the ground during past operations of the facilities at the Site by Chevron (Figure 2; Appendix A).

Based on the available data, Farallon's opinion is that the vast majority of contamination present at the Site, including the source areas identified in Section 4.4, Soil and Groundwater Analytical Results, with concentrations of COCs exceeding MTCA Method A cleanup levels in both soil and the shallow perched groundwater-bearing zone, is the result of surface releases to the largely unpaved ground surface from ASTs, aboveground product piping, fuel loading racks, wash racks, the barrel steamer area, the boiler room, and/or the garage buildings during Chevron operations. Based on a review of available records the only spill identified during Lakeside Industries' period of operations was a minor spill of diesel fuel that occurred on October 3, 1989 as a result of overfilling an AST within the Diesel Tank Farm containment area on the western side of the Site, which according to Ecology records was cleaned up on the same day of the release.

Potential routes of migration of the COCs that may also have contributed to the observed distribution of contamination include leaching from soil to groundwater, and lateral and vertical transport in the shallow groundwater-bearing zone. The vertical retaining wall present along approximately half of the southern Site boundary and the presence of the native silt underlying the entire Site provide physical barriers mitigating the potential migration and discharge of contaminated soil and/or groundwater to surface water or sediments in the adjacent Chehalis River (Figure 3). Further, the lack of groundwater contamination exceeding cleanup levels within the identified source areas, with the exception of localized areas proximate to monitoring wells MW-1, MW-12 and MW-17, MW-6 and MW-7, and MW-18/MW-21, is consistent with an older, attenuating groundwater dissolved-phase plume (Figures 7 and 8; Table 7).

The confirmed GRO/benzene source area in the central portion of the Site comprises a broad area of shallow soil contamination caused by surface releases from former ASTs and associated product conveyance piping operated by Chevron, including but not limited to Tank Nos. 14 and 16 used to store gasoline with a combined total storage capacity of over 1,000,000 gallons, the former garage, the former fuel loading rack, and/or wash racks (Figure 5; Table 1).

The confirmed GRO/benzene source area in the southeastern portion of the Site comprises a localized area of soil and groundwater contamination approximately centered on monitoring well MW-18 that is attributable to releases associated with the north-adjacent former product conveyance piping and/or prior operation of the two eastern-most former gasoline storage tanks east of Tank No. 18 (Figures 2, 5, and 7). The confirmed GRO/benzene source area centered on boring B57 in the south-central portion of the Site comprises a small, isolated volume of shallow soil contamination between 9 and 14 feet bgs proximate to Chevron Tank No. 12, which formerly stored gasoline (Figures 2, 5, and 7).

The 1984 Hydrogeologic Report and the results of the RI confirm that release(s) of GRO/benzene occurred from the historical bulk fuel facilities operated by Chevron, including multiple ASTs used to store gasoline and the associated product conveyance piping in the northeastern and southeastern portions of the Site. Additional potential sources of the GRO/benzene releases in the northeast source area include the garage building, the fuel loading rack, and/or wash racks operated by Chevron that were located in the east-central portion of the Site (Figure 2).

The confirmed DRO/ORO source area in the central portion of the Site comprises a broad area of shallow soil contamination attributable to surface releases from multiple ASTs and associated product conveyance piping formerly used to store diesel, light fuel oil, and distillates; the former barrel wash area; the former fuel loading rack; former garage buildings; and/or wash racks operated by Chevron (Figure 6).

The confirmed DRO/ORO source area in the western portion of the Site comprises an area of shallow soil contamination attributable to surface releases from the operation of the former boiler room and/or operation of former ASTs and associated product conveyance piping operated by Chevron, including Tank Nos. 8 and 9 used to store fuel oil with capacities of 1,430,000 and 36,000 gallons, respectively (Figure 6; Table 1).

The confirmed DRO/ORO source area in the southeastern portion of the Site comprises an area of shallow soil and groundwater contamination proximate to the location of monitoring well MW-18 (Figures 6 and 8). Contamination in this area is attributable to surface releases from the operation

of the former product conveyance piping in the southeastern portion of the Site and/or prior operation of Tank No. 18 that was used to store light fuel oil.

6.0 TECHNICAL ELEMENTS

This section provides a summary and discussion of the ARARs, COCs, affected media, and cleanup standards including cleanup levels and points of compliance. The conceptual site model and RI technical elements are used as a basis for developing technically feasible cleanup alternatives and selecting a preferred cleanup action in accordance with applicable MTCA regulations.

6.1 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

The primary ARARs related to the RI/FS for the Site include:

- MTCA, Chapter 70.105D of the Revised Code of Washington, and WAC 173-340;
- Guidance for Remediation of Petroleum Contaminated Sites (Ecology 2016);
- Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action (Ecology 2010);
- Washington State Solid Waste Management Laws and Regulations, Chapter 70.95 of the Revised Code of Washington, WAC 173-351, and WAC 173-304;
- MTCA Cleanup Levels and Risk Calculations II Update;
- The Washington State Dangerous Waste Regulation, WAC 173-303;
- Water Quality Standards for Groundwater of the State of Washington (WAC 173-200);
- Water Quality Standards for Surface Waters of the State of Washington (WAC 173-201A); and
- Protection of Upper Aquifer Zones (WAC 173-154).

These primary ARARs are anticipated to be the most applicable to the RI/FS because they provide the framework for the remedial action, including applicable and relevant regulatory guidelines, cleanup standards, waste disposal criteria, references for additional ARARs, and standards for documentation of the remedial action. Other applicable ARARs for the Site include:

- The Occupational Safety and Health Act, Part 1910 of Title 29 of the Code of Federal Regulations;
- Safety Standards for Construction Work, WAC 296-155; and
- Accreditation of Environmental Laboratories, WAC 173-50.

6.2 CONSTITUENTS OF CONCERN

The COCs are defined as the chemicals that were reported at concentrations exceeding applicable MTCA cleanup levels. Provided below are the COCs identified by medium of concern.

6.2.1 Soil

The COCs reported in RI soil samples at concentrations exceeding MTCA Method A cleanup levels include GRO, DRO, ORO, benzene, ethylbenzene, naphthalene compounds (identified as 1-methylnapthalene and 2-methylnapthalene), carcinogenic PAHs (quantified as a total toxic equivalent concentration), arsenic, cadmium, lead, and mercury. Therefore, these compounds have been retained as COCs for the Site.

6.2.2 Groundwater

The COCs reported in RI groundwater samples at concentrations exceeding MTCA Method A cleanup levels include GRO, DRO, ORO, and benzene. Therefore, these compounds have been retained as COCs for the Site.

6.3 CONFIRMED SOURCE AREAS

Based on review of the 1984 Hydrogeologic Report, historical chemical use and storage practices at the Site, and on evaluation of soil and groundwater analytical data, the confirmed source areas for the COCs have been identified as follows:

• Petroleum hydrocarbons and associated compounds (GRO, DRO, ORO, benzene, ethylbenzene, and PAHs) identified in soil and groundwater samples are suspected to have

originated at former ASTs, USTs, and product pipelines associated with historical operation of the Site by Chevron as a bulk fuel facility.

- Lead identified in the soil sample collected from boring B3 at a depth of 4 feet bgs is likely associated with a release of leaded gasoline during Chevron's operations. Arsenic, cadmium, and mercury concentrations in the same soil sample also are suspected to be associated with a release of leaded gasoline. Arsenic, cadmium, chromium, and lead detected in the soil sample collected from boring MW-9 at a depth of 3 feet bgs likely are naturally occurring based on the concentrations reported.
- Specific and discrete leaks, spills, and/or equipment issues and incidents that resulted in the releases of petroleum hydrocarbons, related compounds, and potentially metals are unknown.

The COCs and affected media were investigated during the RI. The current distribution of Site COCs in soil and groundwater is consistent with the conceptual Site model described above. The areas with the highest COC concentrations are the source areas that have been delineated in the central portion of the Site, the western portion of the Site, and the southeastern portion of the Site.

Based on the RI data for the Site, the nature and extent of COCs have been sufficiently characterized to support an FS for the selection and design of a permanent and final cleanup action alternative protective of human health and the environment in full compliance with MTCA requirements.

6.4 AFFECTED MEDIA

Soil and groundwater have been confirmed as affected media of concern at the Site. GRO, DRO, ORO, benzene, ethylbenzene, naphthalene compounds, carcinogenic PAHs, arsenic, cadmium, lead, and mercury were reported at concentrations that exceeded the MTCA Method A cleanup levels in Site soil samples. GRO, DRO, ORO, and benzene have been identified at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from monitoring wells at the Site.

Indoor air was assessed as a potential medium of concern because of the GRO and benzene detected in Site soil and groundwater samples. However, because of the relatively limited extent of benzeneaffected soil, the lack of detected benzene concentrations and one low-level detection of GRO in groundwater within 100 feet of the occupied structure on the Site, the few current Site buildings, and the primarily outdoor nature of work conducted at the Site associated with the operation of an asphalt batch plant, indoor air has not been retained as a medium of concern at the Site.

Laboratory analytical results for groundwater samples collected from Site monitoring wells were used to delineate the extent of COCs in groundwater. Completion of the tidal study and field observations and monitoring conducted in the southeastern portion of the Site have shown that there is no hydraulic communication between the shallow water-bearing zone and the adjacent Chehalis River. Groundwater monitoring and sampling indicate that COCs at concentrations exceeding MTCA cleanup levels have not migrated off the Site, and that surface water of the Chehalis River is not a medium of concern for the Site.

6.5 CLEANUP STANDARDS

As defined in WAC 173-340-700, cleanup standards include establishing cleanup levels and the points of compliance at which the cleanup levels are to be attained. The cleanup standards for the Site have been established in accordance with WAC 173-340-700 through 173-340-760 to be protective of human health and the environment.

6.5.1 Cleanup Levels

The cleanup levels are the concentrations of COCs that are to be met for each medium of concern at the points of compliance defined for the Site. The preliminary cleanup levels for COCs in soil and groundwater are presented below.

6.5.1.1 Soil

The preliminary cleanup levels for soil at the Site are the MTCA Method A cleanup levels. The preliminary cleanup levels for the COCs in soil are:

o 30 mg/kg for GRO when benzene is present;

- 2,000 mg/kg for DRO and ORO combined;
- \circ 0.03 mg/kg for benzene;
- o 6 mg/kg for ethylbenzene;
- o 5 mg/kg for naphthalene and related compounds;
- 0.1 mg/kg for total toxic equivalent PAHs;
- 20 mg/kg for arsenic;
- 2 mg/kg for cadmium;
- o 250 mg/kg for lead; and
- \circ 2 mg/kg for mercury.

6.5.1.2 Groundwater

The preliminary cleanup levels for groundwater at the Site are the MTCA Method A cleanup levels for groundwater. The preliminary cleanup levels for COCs in groundwater are as follows:

- \circ 800 µg/l for GRO when benzene is present;
- \circ 500 µg/l for DRO and ORO combined; and
- \circ 5 µg/l for benzene.

6.5.2 Points of Compliance

The points of compliance are the locations at which preliminary cleanup levels for the COCs in each medium of concern must be attained to meet the requirements of MTCA and support issuance of a No Further Action determination from Ecology for the Site. The points of compliance for the Site were established in accordance with WAC 173-340-740(6) for soil, and WAC 173-340-720(8) for groundwater.

6.5.2.1 Soil

The point of compliance for soil for the Site was established in accordance with WAC 173-340-740(6) to be protective of the direct contact, groundwater, and vapor intrusion exposure pathways. Use of the standard point of compliance for soil throughout the Site is not possible because of the localized areas of petroleum contamination that will remain in soil following completion of the source removal excavations proposed under the preferred cleanup alternative selected in the FS.

The disproportionate cost analysis completed in the FS supports and confirms the use of a conditional point of compliance at the Site because the entire Site is covered with a physical barrier of pavement, concrete, and/or clean overburden preventing direct contact and effectively eliminating the soil vapor to indoor air exposure pathway. In addition, all remaining contamination anticipated in soil will be contained within the 8.6 acre-property comprising the Site. The conditional point of compliance for soil would be managed through the recordation of an Environmental Covenant on relevant portions of the Site. The disproportionate cost analysis is presented in Section 7.3.3, Disproportionate Cost Analysis.

6.5.2.2 Groundwater

The standard point of compliance for groundwater is defined as the uppermost level of the saturated zone extending vertically to the lowest depth that potentially could be impacted by the COCs throughout the Site. This groundwater interval consists of the shallow groundwater-bearing zone at the Site. As described in the preferred cleanup alternative selected in the FS, it is anticipated that the proposed source removal excavations and monitored natural attenuation will result in the attainment of MTCA cleanup levels for the shallow groundwater-bearing zone at the standard point of compliance in a reasonable restoration time frame.

7.0 FEASIBILITY STUDY

The purpose of the FS is to develop and evaluate cleanup action alternatives to facilitate selection of a preferred cleanup action at the Site in accordance with WAC 173-340-350(8). The FS is intended to provide sufficient information to select a preferred cleanup action under the Ecology VCP. The selected final cleanup action will be documented in a CAP to be prepared to guide the cleanup action at the Site.

The FS includes screening of potentially feasible remedial technologies and development of a range of Site-wide cleanup alternatives ranging from no additional cleanup action through a permanent Site-wide cleanup that achieves the cleanup standards identified in Section 6, Technical Elements, in the shortest possible restoration time frame without reliance on institutional or engineered controls. The cleanup alternatives are evaluated with respect to threshold and other requirements for cleanup actions set forth in MTCA.

This FS evaluates four cleanup alternatives according to criteria provided in MTCA (WAC 173-340-360[2], Minimum Requirements for Cleanup Actions). In accordance with WAC 173-340-350(8)(c)(ii), the FS includes one permanent cleanup action alternative, as defined in WAC 173-340-200, to serve as a baseline against which other alternatives are evaluated for the purpose of assessing whether the cleanup action selected is permanent to the maximum extent practicable.

The FS identifies a preferred cleanup alternative for the Site in conformance with WAC 173-340-360 through WAC 173-340-390. The preferred cleanup alternative is considered to present the highest degree of permanence and protectiveness considering current and potential future conditions to the maximum extent practicable according to the provisions of WAC 173-340-360(3)(e), Disproportionate Cost Analysis (DCA). The DCA uses a semi-quantitative procedure per WAC 173-340-360(3)(e)(ii), and guidance outlined in Ecology (2009) to compare the cost of implementation with the environmental benefit to be achieved and to identify which permanent cleanup alternative is more practicable under MTCA.

7.1 EVALUATION OF FEASIBLE REMEDIATION TECHNOLOGIES

Farallon performed a preliminary screening of potential remediation technologies typically applied to sites contaminated with the same, or comparable, COCs in order to eliminate technologies that did not meet the minimum requirements of implementability, effectiveness, and cost and to identify those technologies that would be most favorable for application considering current and potential future conditions at the Site.

Response actions, cleanup technologies, and process options considered potentially effective and implementable in the context of Site physical and chemical conditions are presented in Table 10. The technologies were evaluated primarily with respect to implementability and effectiveness. The technologies were also evaluated with respect to cost relative to other process options considered for the affected environmental media (e.g., soil and groundwater). Relative cost is based on published sources and professional judgment, and is used to further distinguish technologies with similar implementability and effectiveness. If a technology is equally implementable and effective, the lower relative cost technology is preferred. Technology process options were evaluated and then screened using a scoring methodology from 0 (least favorable) to 3 (most favorable). Technology evaluation scores were summed, enabling a general ranking of technologies for application at the Site.

Treatment technologies considered included in-situ and ex-situ physical, chemical, and biological techniques. Containment technologies considered include physical barriers such as constructed covers or caps, and vertical barriers such as a sheet pile barrier, the existing wall, or a slurry wall. Source removal by excavation, soil disposal at an approved landfill, institutional controls, and engineered controls were also considered.

Conditions at the Site that influence the evaluation of implementability and effectiveness include:

- Active Site operation as a hot-mix asphalt batch plant;
- Shallow groundwater conditions;
- Proximity to the Chehalis River at the southern Site boundary;

- Massive concrete foundations at the locations of the former ASTs;
- Presence of subsurface utilities;
- Fine-grained lithology of low hydraulic transmissivity limiting potential effectiveness of injection and extraction in-situ treatment technologies; and
- Multiple source areas with commingled COCs adjacent to existing Site structures.

7.1.1 Retained Technologies

Table 10 provides results of the implementability, effectiveness, and cost evaluation for a wide range of cleanup technologies, and identifies those most favorable for Site conditions to be retained for inclusion in Site-wide cleanup alternatives in Section 7.2, Cleanup Action Alternatives. Cleanup alternatives were then evaluated according to MTCA threshold and other requirements defined in WAC 173-340-360(2) and 173-340-370 in Section 7.3.2, Evaluation Results. The highest ranked technologies to be incorporated into Site-wide cleanup alternatives are summarized below.

7.1.1.1 Institutional and Engineered Controls

Institutional controls are measures undertaken to limit or prohibit activities that may interfere with the integrity of a cleanup action or that could result in adverse exposure to hazardous substances at the Site and are implemented in accordance with WAC 173-340-440. While institutional controls are non-engineered measures, engineered controls refer to components of containment and/or other systems that are designed and constructed to prevent, or limit the movement of, or the exposure to, hazardous substances.

Institutional and engineered controls could include: an environmental covenant prohibiting the domestic use of shallow groundwater at the Site; provisions for long-term compliance monitoring of groundwater to demonstrate that natural attenuation is occurring; implementation and ongoing maintenance of physical barriers to mitigate direct contact with hazardous constituents; and an environmental media management plan to govern the handling of impacted media during future maintenance or development projects. Specifically, to meet the expectations described in WAC 173-340-370, installation of the proposed environmental sheet pile wall provides an active measure to permanently contain and prevent/minimize potential future releases to surface water via contaminated groundwater discharges and/or migration of contaminated soil exceeding cleanup levels to the maximum extent practicable that will remain in-place proximate to the southern Site boundary adjacent to the Chehalis River. Institutional and engineered controls can be effective protective measures preventing exposure to impacted soil and groundwater and are considered to be readily implementable at the Site at a lower cost than active cleanup technologies.

7.1.1.2 Monitored Natural Attenuation

Natural attenuation relies on natural processes to attenuate concentrations of hazardous constituents in soil and/or groundwater. While natural attenuation occurs at most contaminated sites, there are optimal subsurface conditions that must exist to effectively and completely remediate a site within a reasonable restoration time frame.

Monitored natural attenuation (MNA) is the process of monitoring these conditions to ensure that natural attenuation continues to occur until remediation is complete. MNA is considered an effective means of reducing risk to human health and the environment at some sites and especially when risk of exposure is low and when a longer restoration time frame is acceptable. MNA is considered a potentially applicable component for cleanup of soil and groundwater at the Site.

7.1.1.3 Soil Technologies

Excavation and Landfill Disposal

Excavation of impacted soil and disposal at an appropriately engineered and permitted facility is an effective approach to reducing risk to human health and the environment. Excavation and landfill disposal employs standard construction practices and readily-available construction and earthmoving equipment. Subtitle D-permitted landfills are designed to securely manage non-hazardous soil over the long term. Excavation may

require shoring to protect existing structures or alternatively demolishing existing structures and rebuilding them upon completion of cleanup.

Dewatering is required when excavating below groundwater. Excavation wastewater may require treatment prior to discharge or disposal off of the Site sufficient to satisfy discharge permit requirements (see below). Excavations would be backfilled with suitable imported material placed according to geotechnical specifications required for resurfacing according to future site use plans. Excavation and landfill disposal of soil from the selected source areas is considered to be a quick, effective, and implementable technology at the Site.

Physical Barriers and Constructed Covers

Physical barriers such as pavement covers or caps over contaminated areas are considered effective for limiting exposure to impacted soil and for reducing rainwater infiltration that could mobilize soil contamination from soil to groundwater. Capping systems consist of impervious surfaces such as floor slabs or exterior paved surfaces suitable for vehicle traffic and a range of other uses. Capping systems typically require periodic inspections, maintenance, and implementation of protective measures when breached for subsurface maintenance or construction activities. Physical barriers and constructed cover are considered implementable and effective technologies for application at the Site.

7.1.1.4 Groundwater Technologies

Physical Barriers and Constructed Covers

Surface caps to minimize infiltration into contaminated soil are considered effective at reducing the volume and movement of contaminated groundwater. Capping systems for reducing infiltration may include impervious surfaces such as floor slabs, exterior paving, and/or other surface improvements that reduce infiltration and physical disturbance of the subsurface. Capping systems typically require periodic inspections, maintenance, and implementation of protective measures when breached for subsurface maintenance or construction activities. Physical barriers and constructed cover are considered implementable and effective technologies for application at the Site.

Source Containment

Vertical subsurface barriers, such as a sheet pile barrier system or retaining wall system between the operational area of the Site and the Chehalis River, are considered to be effective at limiting migration of contaminated groundwater and/or soil. The existing concrete retaining wall, which is keyed into the underlying silt at the Site, currently is acting as a barrier between shallow groundwater and the Chehalis River along the western half of the southern Site boundary (Figure 3). However, the eastern half of the southern Site boundary (Figure 3). However, the eastern portion of the Site proximate to monitoring well MW-18 attributed to releases from former Chevron operations, currently does not have a vertical barrier system such as the concrete retaining wall to prevent potential migration of contaminated media to surface water (Figures 5 through 8). Future potential exposure scenarios, which potentially could cause mobilization and migration of contaminated media remaining in-place to surface water and/or sediment along the southern Site boundary, include flooding and mass erosion during a 100-year storm event or liquefaction and mobilization of shallow contaminated soil during an earthquake.

A sheet pile barrier wall can be readily installed along the entire length of the affected portion of the Site with concentrations of COCs exceeding cleanup levels in soil and/or shallow groundwater without disturbing the existing retaining wall, and would provide a more permanent measure of protection since sheet piles can be driven deeper into the underlying silt and can be extended along the entire length of the shoreline past the existing retaining wall with minimal other disturbance to the Site. Installation of the sheet pile wall meets the expectations specified in WAC 173-34-370 requiring an active measure to permanently contain and prevent/minimize potential future releases to surface water via contaminated groundwater discharges and/or migration of contaminated soil exceeding cleanup levels that will remain in-place proximate to the southern Site boundary adjacent to the Chehalis River to the maximum extent practicable.

Disposal to Sanitary Sewer

Contaminated groundwater removed from the subsurface or excavations that meets local discharge requirements may be discharged to the sanitary sewer. Discharge to the sanitary sewer is an implementable and effective technology for managing limited quantities of contaminated groundwater at the Site.

7.1.2 Rejected Technologies

Table 10 also identifies cleanup technologies that have been eliminated from further consideration for application at the Site because they are not amenable, or are less suited to Site-specific conditions, than other technologies and/or performed less well in the FS when evaluated with regard to implementability, effectiveness, and/or cost considerations.

7.1.2.1 In-Situ Technologies

In-situ technologies rely on injection and distribution of materials in the subsurface or changing subsurface conditions through application of heat, air, or other reagents to remediate COCs. These technologies include bioventing, enhanced bioremediation, chemical oxidation, soil flushing, soil vapor extraction, and thermal remediation (Table 10). Farallon's analysis indicates that the fine-grained lithology and low transmissivity of the subsurface soil at the Site will make implementation of in-situ treatments more difficult and more costly than other remedial technologies.

In-situ technologies utilizing injections or thermal treatments will require dense treatment point arrays, potentially multiple rounds of treatment, and may damage underground utilities. Furthermore in-situ technologies are also most effective remediating lighter fraction petroleum COCs such as GRO and BTEX, and are less effective at remediating heavier fraction petroleum COCs such as DRO, ORO, and cPAHs.

Because most GRO exceedances are comingled with heavier fraction petroleum hydrocarbons that also exceed MTCA cleanup levels, soil or groundwater treated in-situ for GRO and BTEX would likely require additional cleanup actions to address residual heavy fraction petroleum hydrocarbon contamination. This approach of partial treatment

for GRO and BTEX followed by separate cleanup actions to address DRO and ORO would perform much less favorably in terms of technical feasibility, practicability, and cost effectiveness than selecting a technology that comprehensively treats all petroleum hydrocarbons present. Therefore, in-situ treatments for soil and groundwater were not carried forward in the FS.

7.1.2.2 Ex-Situ Technologies

Ex-situ technologies remove contaminated media for treatment. Ex-situ technologies include biopiles or bioreaction, slurry phase biological remediation, incineration, thermal desorption, air stripping, advanced oxidation processes, and disposal at licensed facilities. Farallon's analysis eliminated several ex-situ technologies including biological, physical, and chemical treatments that were determined to be difficult to implement at the Site, less effective at achieving cleanup levels within a reasonable timeframe, and/or less cost effective than other available technologies. Specific ex-situ technologies that were not carried forward in the FS are identified in Table 10.

7.1.2.3 Soil Improvement Containment Systems

Construction of a slurry wall to contain groundwater on the Site was not carried forward in the FS (Table 10). Installation of a slurry wall may compromise the existing concrete retaining wall along the western half of the southern Site boundary that is already acting as a barrier between contaminated Site groundwater and/or soil and the Chehalis River (Figure 4). A completed slurry wall is not expected to perform as well as a sheet pile wall to contain groundwater, while requiring significantly more ground disturbance to install, which could create potential preferential pathways for migration of contaminated Site groundwater and/or soil to surface water or sediment in the Chehalis River.

7.2 CLEANUP ACTION ALTERNATIVES

The most favorable cleanup technologies derived from the technology screening were used to develop a suite of Site-wide cleanup action alternatives (herein referred to as Cleanup Alternatives)

for cleanup of the affected media of concern at the Site. Based on Site-specific conditions, the most practicable cleanup approach for the Site will include a limited source removal action, containment, institutional and engineered controls, and long-term monitoring to confirm that natural attenuation of residual COCs is occurring in soil and groundwater. Institutional and engineered controls will be required where COCs remain in media at concentrations exceeding applicable preliminary cleanup levels following completion of active remediation.

A total of four cleanup alternatives were developed for the Site:

- Cleanup Alternative 1: No Action;
- Cleanup Alternative 2: Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation;
- Cleanup Alternative 3: Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls; and
- Cleanup Alternative 4: Complete Excavation of Soil Exceeding Preliminary Cleanup Levels.

A description of the components of each cleanup alternative follows. Summary cost estimates developed for the four cleanup alternatives are provided in Table 11 with more detail provided in Table 12.

7.2.1 Cleanup Alternative 1—No Action

The No Action alternative assumes that no additional remedial action will occur at the Site. No additional monitoring will occur, and no protective institutional or engineered controls will be implemented. While existing paved surfaces, buildings, and the retaining wall functioning as containment measures would remain in-place for the foreseeable future, there will be no restrictions to their removal, maintenance, modification, or replacement. COCs would remain in soil and groundwater at concentrations exceeding preliminary cleanup levels until attenuated naturally over the long term, but no monitoring would be conducted to evaluate and document the attenuation process.

Cleanup Alternative 1 is retained for evaluation in the FS as adverse risk to terrestrial ecological receptors has not been identified with current Site conditions and the potential for adverse risk from direct contact exposure to COCs by human receptors is considered to be low under current Site conditions.

7.2.1.1 Implementation

Residual concentrations of COCs would be contained beneath the existing pavement surfaces and buildings for the foreseeable future and contamination migration from soil to groundwater and via groundwater transport would be limited by the existing impervious surfaces by the existing retaining wall keyed into the underlying native silt and, to a lesser extent, by the subsurface stratigraphy in the area east of the retaining wall. However, since the retaining wall is not laterally contiguous on the eastern portion of the Site where COCs are present in soil and shallow groundwater at concentrations exceeding the MTCA cleanup levels, future human health and/or ecological exposure could occur along the southern, down-gradient Site boundary under upset conditions. For example, potential flooding and/or bank erosion caused by a 100-year storm event or earthquake could cause migration of contaminated soil and/or groundwater remaining in-place to surface water or sediment in the adjacent river. Groundwater at the Site currently is not used, and future use of shallow groundwater is not anticipated at the Site. While the Site will be operated for the foreseeable future as a hot-mix asphalt batch plant, it is possible that the Site could be redeveloped by the current property owner, or another future property owner, for other uses according to zoning, shoreline, and other local, state, and federal rules and regulations. Future human health and/or ecological exposure could occur during future excavation activities and/or during redevelopment.

7.2.1.2 Time Frame and Estimated Cost

There is no time frame associated with Cleanup Alternative 1. The cost for implementing Cleanup Alternative 1 is \$0.

7.2.2 Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation

Cleanup Alternative 2 assumes environmental protection from exposure to COCs remaining above preliminary cleanup levels, until attenuated naturally, would be realized by use of institutional and engineered controls and containment measures. Containment would be realized with the existing impervious surfaces, the existing retaining wall keyed into the underlying native silt, and by the subsurface stratigraphy in the area east of the retaining wall.

A sheet pile barrier with sealed seams would be installed along the upland face of the existing retaining wall to a depth of up to 25 feet and would extend about 300 feet beyond the eastern end of the existing retaining wall to encompass the entire portion of the southern Site boundary where COCs remain at concentrations exceeding preliminary cleanup levels adjacent to the Chehalis River. The full length of the proposed sheet pile wall would be approximately 700 feet. The sheet pile barrier system would include installation of a drainage system along the northern (up-gradient) face of the barrier at the interface of the fill layer and the underlying silt to reduce hydrostatic pressure build-up behind the sheet pile barrier. The sheet pile barrier system would address current exposure pathways and future potential exposure scenarios, including flooding and mass erosion during a 100-year storm event or liquefaction and mobilization of shallow contaminated soil during an earthquake.

Groundwater discharge from the drainage system would be treated above ground using granular activated carbon prior to discharge to the municipal sanitary sewer system at the Site. COCs would remain in soil and groundwater at concentrations exceeding preliminary cleanup levels until attenuated naturally over the long term. A groundwater monitoring program would be implemented to evaluate the efficacy of natural attenuation and to document trends of COC concentrations and geochemical parameters affecting attenuation.

7.2.2.1 Implementation

Institutional and engineered controls would be implemented per WAC 173-340-440 and would include an environmental covenant recorded on the property deed. The environmental covenant would include the following:

- A Compliance Monitoring Plan and an associated SAP for performance, protection, and confirmational monitoring per WAC 173-340-410.
- A groundwater restriction placed on use of shallow groundwater for domestic use.
- Stipulated requirements for inspections and maintenance of the existing cover and retaining wall systems at an 18-month frequency for 5 years.
- An approximately 700-foot-long sheet pile wall installed and driven into the underlying silt to a total depth of approximately 25 feet bgs to provide permanent containment to the maximum extent practicable of contaminated soil and/or hydraulic control of groundwater exceeding MTCA cleanup levels along the southern boundary of the Site adjacent to the Chehalis River. Installation of the sheet pile wall meets the expectations specified in WAC 173-34-370 requiring an active measure to permanently contain and prevent/minimize potential future releases to surface water via contaminated groundwater discharges and/or migration of contaminated soil exceeding cleanup levels to the maximum extent practicable that will remain in-place proximate to the southern Site boundary adjacent to the Chehalis River. For purposes of this FS, the total installed area of sheet pile shoring is approximately 2,000 square feet.
- Stipulated monitoring and maintenance requirements for testing up to 15 groundwater monitoring wells for indicator COCs and natural attenuation geochemical parameters at an 18-month frequency for 5 years and for evaluation of natural attenuation. The environmental covenant will reference and require the implementation of a Groundwater Monitoring Plan, including a Sampling and Analysis Plan (SAP) developed per WAC 173-340-810.
- Implementation of an Environmental Media Management Plan (EMMP) to govern the handling of potentially contaminated environmental media during future redevelopment or utility work, as necessary, and including general worker protective measures. The EMMP will include a SAP developed per WAC 173-340-810.

7.2.2.2 Time Frame and Estimated Cost

The sheet pile barrier and drainage modification elements of Cleanup Alternative 2 will be constructed over the course of 1 to 2 months. Other elements of Cleanup Alternative 2 will be implemented over the course of 5 years. The environmental covenant to be attached to the property deed would be developed over the course of up to 6 months and institutional and engineered controls will be implemented until COC preliminary cleanup levels have been demonstrated to have been achieved. For the purposes of this FS, monitoring and maintenance activities are assumed to be completed in Year 5.

The estimated cost to complete Cleanup Alternative 2 is summarized below from Table 12:

Capital Cost:	\$1,135,000		
Ongoing Periodic and Future Costs:	<u>\$194,800</u>		
Total:	\$1,330,000		
	(Estimated range: \$931,000 to \$2,000,000)		

7.2.3 Cleanup Alternative 3—Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls

Cleanup Alternative 3 assumes environmental protection from exposure to COCs remaining at concentrations exceeding preliminary cleanup levels would be realized by removal of soil in the three primary areas where residual concentrations of COCs in soil and groundwater are confirmed at concentrations that exceed preliminary cleanup levels and can be readily accessed to perform simple source removal excavations. Cleanup Alternative 3 also includes use of institutional and engineered controls, containment measures, and monitored natural attenuation as described above for Cleanup Alternative 2.

7.2.3.1 Implementation

Institutional and engineered controls would be implemented per WAC 173-340-440, and would include an environmental covenant recorded on the property deed. Institutional and engineering controls would be consistent with those implemented under Cleanup Alternative 2, including installation of the sheet pile barrier and associated drainage control

system. It is assumed that the environmental covenant would include the elements described under Cleanup Alternative 2.

Assumptions for source area excavation include the following:

- A Compliance Monitoring Plan and an associated SAP will be prepared for performance, protection, and confirmational monitoring per WAC 173-340-410.
- Prior to excavation, surface paving in localized areas will require removal to the extent practicable. For purposes of the FS, it is assumed that this will entail removal of about 5,400 square feet of asphalt.
- Soil will be excavated to depths up to approximately 12 feet bgs to remove soil with concentrations of COCs exceeding MTCA cleanup levels in the three defined excavation areas shown on Figure 9:
 - West Area—The West Area is proximate to boring B40 and monitoring well MW-17 where DRO and ORO were detected in soil and groundwater samples at concentrations exceeding preliminary cleanup levels;
 - Central Area—The East-Central Area is proximate to monitoring well MW-1 where benzene was detected in a soil sample and benzene and GRO were detected in groundwater samples at concentrations exceeding preliminary cleanup levels; and
 - Southeast Area—The Southeast Area is proximate to borings B45, B50, B53, and B61 and monitoring wells MW-18 through MW-21 where GRO, DRO, ORO, and benzene were detected in soil and groundwater samples at concentrations exceeding preliminary cleanup levels.
- Temporary dewatering will be required where excavation occurs below groundwater. Depth to groundwater varies seasonally between the ground surface and 10 feet bgs.
- An approximately 700-foot-long sheet pile wall will be installed and driven into the underlying silt to a total depth of approximately 25 feet bgs to provide permanent

containment to the maximum extent practicable of contaminated soil and/or hydraulic control of groundwater exceeding MTCA cleanup levels along the southern boundary of the Site adjacent to the Chehalis River. Installation of the sheet pile wall meets the expectations specified in WAC 173-340-370 requiring an active measure to permanently contain and prevent/minimize potential future releases to surface water via contaminated groundwater discharges and/or migration of contaminated soil exceeding cleanup levels to the maximum extent practicable that will remain in-place proximate to the southern Site boundary adjacent to the Chehalis River. For purposes of this FS, the total installed area of sheet pile shoring is approximately 2,000 square feet.

- Excavated soil containing COCs at concentrations exceeding preliminary cleanup levels will require off-Site disposal at a Subtitle D landfill and/or an approved facility authorized to dispose of petroleum-contaminated soil. For purposes of this FS, it is assumed that approximately 3,100 tons of soil will be trucked off-Site for disposal at the Republic Services facility in Klickitat County, Washington.
- Extracted groundwater collected during excavation dewatering will require disposal.
 For purposes of this FS, it is assumed that approximately 70,000 gallons of wastewater will be pretreated prior to discharge to the City of Aberdeen sanitary sewer system.
- Excavations will be backfilled and surfaces restored to provide a physical barrier over areas containing residual levels of COCs and enabling the Site to continue to be used as a hot-mix asphalt batch plant. For purposes of this FS, it is assumed that 3,100 tons of backfill material will be imported, placed, and compacted and approximately 17,600 square feet of area will require paving.

7.2.3.2 Time Frame and Estimated Cost

The source removal excavation elements of Cleanup Alternative 3 will be implemented over the course of up to about 1 month. The environmental covenant to be recorded would

be developed over the course of up to 6 months, and long-term institutional and engineered controls will be implemented until COC preliminary cleanup levels have been demonstrated to have been achieved at the defined points of compliance. For the purposes of this FS, monitoring, inspections, and maintenance activities are assumed to be completed in Year 5.

The estimated cost to complete Cleanup Alternative 3 is summarized below from Table 12:

Capital Cost:	\$2,110,000
Ongoing Periodic and Future Costs	: <u>\$204,800</u>
Total:	\$2,310,000
	(Estimated range: \$1,620,000 to \$3,470,000)

7.2.4 Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels

Cleanup Alternative 4 assumes environmental protection from exposure to COCs remaining at concentrations exceeding preliminary cleanup levels would be accomplished by removal of all soil at the Site with concentrations of COCs exceeding preliminary cleanup levels. While Cleanup Alternative 4 includes compliance monitoring, it does not require implementation of institutional or engineered controls, protective containment measures, or a long-term environmental media monitoring program. In accordance with WAC 173-340-350(8)(c)(ii), Cleanup Alternative 4 is a permanent cleanup action alternative, as defined in WAC 173-340-200, and serves as a baseline against which other alternatives can be evaluated for the purpose of determining whether a preferred cleanup action is permanent to the maximum extent practicable.

7.2.4.1 Implementation

It is assumed that Cleanup Alternative 4 would include the following elements:

- A Compliance Monitoring Plan and an associated SAP will be prepared for performance, protection, and confirmational monitoring per WAC 173-340-410.
- The hot-mix asphalt batch plant facility will be moved temporarily to an alternate location until cleanup work is completed.

- Excavation will occur in areas where there are current facility structures. For the purposes of this FS, it is assumed that the 8,300-square-foot, half two-story, half one-story office and shop building will be demolished and then replaced after cleanup is completed. It is assumed that approximately 800 lineal feet, or about 90 percent, of the existing retaining wall will be demolished during excavation activities and replaced prior to backfilling. Other structures will either be demolished or temporarily moved prior to initiation of cleanup and then replaced upon completion of cleanup.
- Prior to excavation, surface paving and former tank foundations will require removal. For purposes of the FS, it is assumed that this will entail removal of 76,500 square feet of asphalt and 2,520 tons of concrete, including concrete from the existing retaining wall.
- Soil will be excavated to depths up to 12 feet bgs where concentrations of COCs exceed preliminary cleanup levels and will occur over a large area of the Site where releases associated with over 60 years of historical operation of the former bulk fuel facility occurred. Excavation will occur in those areas of the Site depicted on Figures 5 and 6 where concentrations of COCs exceed preliminary cleanup levels plus additional areas as needed for excavation side sloping.
- Dewatering will be required where excavation occurs below groundwater. Depth to groundwater varies seasonally between the ground surface and 10 feet bgs.
- Excavated soil containing concentrations of COCs exceeding preliminary cleanup levels will require off-Site disposal at a Subtitle D landfill and/or an approved facility authorized to manage petroleum-contaminated soil. For purposes of this FS, it is assumed that approximately 47,100 tons of soil will be trucked off the Site and disposed at the Republic Services facility in Klickitat County, Washington.
- Extracted groundwater collected during excavation dewatering will require disposal. For purposes of this FS, it is assumed that approximately 150,000 gallons

of wastewater will be pretreated prior to discharge to the City of Aberdeen sanitary sewer system.

- Excavations will be backfilled and surfaces restored to enable the Site to return to use as a hot-mix asphalt batch plant. For purposes of this FS, it is assumed that 47,100 tons of backfill material will be imported, placed, and compacted and approximately 230,000 square feet of area will require paving.
- It is assumed that the hot-mix asphalt batch plant facility will be moved back to the Site and that the office and shop building, demolished to enable excavation, will be replaced. Temporarily moved structures will be re-installed.

7.2.4.2 Time Frame and Estimated Cost

Cleanup Alternative 4 will be implemented over the course of up to about 12 months. The estimated cost to complete Cleanup Alternative 4 is summarized below from Table 12:

Capital Cost:	\$16,300,000
Ongoing Periodic and Future Cost	ts: <u>\$130,000</u>
Total:	\$16,400,000
	(Estimated range: \$11,500,000 to \$24,600,000)

7.3 CLEANUP ACTION ALTERNATIVES EVALUATION

This section presents the evaluation of Cleanup Action Alternatives 1 through 4 summarized above. The evaluation was performed with respect to the requirements set forth in MTCA under WAC 173-340-350 through 173-340-370. The cleanup alternatives evaluation considered results of the RI and Site-specific conditions including the nature and extent of COCs and the exposure assessment presented in Section 5, Conceptual Site Model. The evaluation of cleanup alternatives also considered current facility structures and operations. This section presents a summary of the evaluation process per MTCA, the results of the evaluation, and the results of a DCA completed for the Site.

7.3.1 Evaluation Process

The FS considered the requirements under WAC 173-340-350 and the criteria defined in WAC 173-340-360 for screening of potentially feasible cleanup alternatives for the Site. A cleanup alternative must satisfy the following threshold criteria as specified in WAC 173-340-360(2)(a):

- Protect human health and the environment;
- Comply with cleanup standards;
- Comply with applicable state and federal laws; and
- Provide for compliance monitoring.

In addition to meeting the threshold criteria, cleanup actions under MTCA must also meet the following additional requirements specified in WAC 173-340-360(2)(b):

- Provide for a reasonable restoration time frame based on the factors provided in WAC 173-340-360(4)(b);
- Use permanent solutions to the maximum extent practicable based on the criteria defined in WAC 173-340-360(3)(f); and
- Consider public concerns raised during public comment on the CAP (WAC 173-340-600).

The factors used to evaluate the reasonableness of the restoration time frame per WAC 173-340-360(4)(b) include:

- Potential risks posed by the Site to human health and the environment;
- Practicability of achieving a shorter restoration time frame;
- Current use of the Site, surrounding areas, and associated resources that are or may be affected by releases from the Site;
- Availability of alternative water supplies;
- Likely effectiveness and reliability of institutional controls;

- Ability to control and monitor migration of hazardous substances from the Site;
- Toxicity of the hazardous substances at the Site; and
- Natural processes that reduce concentrations of hazardous substances and have been documented to occur at the Site or under similar Site conditions.

The criteria used to evaluate the degree of permanence to the maximum extent practicable per WAC 173-340-360(3)(f) include:

- Protectiveness: Overall protectiveness of human health and the environment, including the degree to which existing risks are reduced; the time required to reduce risk at the facility and attain cleanup standards, and risks at the Site resulting from implementing the alternative; and improvement of overall environmental quality.
- Permanence: The degree to which the alternative permanently reduces the toxicity, mobility, or volume of hazardous substances, including the adequacy of the alternative in destroying the hazardous substances, the reduction or elimination of hazardous substance releases and sources of releases, the degree of irreversibility of the waste treatment process, and the characteristics and quantity of treatment residuals generated.
- Effectiveness over the long term: Long-term effectiveness includes the degree of certainty that the alternative will be successful, the reliability of the alternative during the period of time that hazardous substances are expected to remain on the Site at concentrations that exceed preliminary cleanup levels, and the magnitude of residual risk with the alternative in place. The following types of cleanup action components may be used as a guide, in descending order, when assessing the relative degree of long-term effectiveness: reuse or recycling; destruction or detoxification; immobilization or solidification; disposal on- or off-Site in an engineered, lined, and monitored facility; isolation or containment with attendant engineered controls on the Site; and institutional controls and monitoring.
- Management of short-term risks: The risk to human health and the environment associated with the alternative during construction and implementation, and the effectiveness of

measures that will be taken to manage such risks. This criterion includes risks to workers and customers at businesses adjoining the Site resulting from implementation of the cleanup alternative.

- Technical and administrative implementability: Ability to be implemented, including consideration of whether the alternative is technically feasible, administrative and regulatory requirements, permitting, scheduling, size, complexity, monitoring requirements, access for construction operations and monitoring, and integration with the business operations at the Site and adjoining business operations.
- Consideration of public concerns: Whether the community has concerns regarding the alternative and, if so, the extent to which the alternative addresses those concerns. This process includes concerns from individuals, community groups, local governments, federal and state agencies, or any other organization that may have an interest in or knowledge of the Site.
- Cost: The cost to implement the alternative, including the cost of construction and anticipated long-term costs. Long-term costs include operation and maintenance, monitoring, and reporting costs.

The expectations specified in WAC 173-340-370 for facilities adjacent to a surface water body requiring an active measure to permanently contain and prevent/minimize potential future releases to surface water via contaminated groundwater discharges and/or migration of contaminated soil exceeding cleanup levels were used to evaluate the cleanup alternatives anticipating contaminated media remaining in-place proximate to the southern Site boundary adjacent to the Chehalis River.

7.3.2 Evaluation Results

The results of the evaluation for each alternative are summarized in Table 11 and described below.

7.3.2.1 Threshold Criteria

Protect Human Health and the Environment

According to the exposure assessment presented in Section 5, Conceptual Site Model, the two types of exposure risk associated with the presence of COCs at the Site are terrestrial ecological risk and human health risk. Because the Site qualifies for a TEE exclusion based on WAC 173-340-7491, mitigating the potential human health risk associated with exposure to COCs in soil and groundwater at the Site will be the primary objective of any cleanup action implemented.

Cleanup Alternatives 2 through 4 satisfy the MTCA criterion for protection of human health and the environment. Under Cleanup Alternative 1, No Action, subsurface contamination would continue to attenuate naturally over time and existing containment structures would provide a level of protection but there are no provisions for either institutional or engineered controls to ensure maintenance of the containment elements, to further limit exposure to COCs in the event of a future potential upset condition, or to monitor natural attenuation.

Cleanup Alternative 2 (Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation) provides additional protection by use of containment measures and institutional and engineered controls ensuring that future monitoring and maintenance activities are conducted to limit exposure to COCs in soil and groundwater. Cleanup Alternative 3 (Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls) and Cleanup Alternative 4 (Complete Excavation of Soil Exceeding Preliminary Cleanup Levels) include the institutional and engineered controls identified for Cleanup Alternative 2 and provide additional protection by source area excavation.

Comply with Cleanup Standards

Active remedial measures in Cleanup Alternatives 3 and 4 are designed to ultimately achieve cleanup standards within a reasonable restoration time frame by excavation and dewatering of source areas (Cleanup Alternative 3) or by excavation and dewatering of all

areas with COCs exceeding preliminary cleanup levels (Cleanup Alternative 4). Compliance with cleanup standards would occur via natural attenuation processes under Alternative 3 but over a longer period of time. Natural attenuation processes under Cleanup Alternatives 1 and 2 would require a much longer period of time to achieve cleanup standards.

Comply with State and Federal Laws

Along with the preliminary cleanup levels selected per MTCA, numerous laws and associated regulations influence how any particular remedial action is implemented. Applicable chemical-specific, location-specific, and action-specific state and federal laws are listed in Section 6, Technical Elements. Permitting by agencies, substantive standards promulgated by state and local agencies, best management practices, workplace safety, and off-Site waste disposal practices are a few of the aspects that must be formally addressed in the design and implementation phases of a cleanup action to ensure compliance with applicable laws. While Cleanup Alternative 1 does not comply with MTCA, the other cleanup alternatives possess features that can be designed and implemented in compliance with state and federal laws including MTCA.

Provide for Compliance Monitoring

Compliance monitoring per WAC 173-340-410 refers to the collection, analysis, and reporting of environmental data to determine the short- and long-term effectiveness of a cleanup action and whether protection is being achieved in accordance with cleanup objectives. A Compliance Monitoring Plan will be developed in conjunction with the CAP, which will include standard field techniques and laboratory analytical methods in a SAP. Cleanup Alternatives 2 through 4 include comprehensive compliance monitoring programs to fulfill this requirement.

7.3.2.2 Other Requirements

Provide for a Reasonable Restoration Time Frame

Restoration time frame is the time needed to meet cleanup standards (i.e., to meet all preliminary cleanup levels in all media at all points of compliance). MTCA places a preference on those alternatives that can be implemented in a shorter period of time while equivalent in other respects. Under MTCA, eight factors are used to determine whether a cleanup action provides for a reasonable restoration time frame (Section 7.3.1, Evaluation Process). Cleanup Alternative 2 (Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation), Cleanup Alternative 3 (Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls), and Cleanup Alternative 4 (Complete Excavation of Soil Exceeding Preliminary Cleanup Levels), offer a reasonable restoration time frame under MTCA.

The restoration time frame for Alternatives 1 and 2 are the longest and would rely on attaining cleanup standards for affected media through natural attenuation. Cleanup Alternatives 3 and 4 use soil excavation to remove source material. Cleanup Alternative 4 would remove all material with COC concentrations exceeding preliminary cleanup levels. For purposes of this FS, the restoration time frame for groundwater with Cleanup Alternatives 3 and 4 is assumed to be within 5 years of completing remedial action construction. The restoration time frame for soil with Cleanup Alternative 3 after removal of source areas is estimated to be several to many years, as COCs are naturally attenuated; however, the removal of source material is expected to significantly reduce the period required to achieve cleanup standards compared to Alternatives 1 and 2. Further, the contaminated soil remaining in-place would be managed through the recording of an Environmental Covenant on relevant portions of the Site. The restoration time frame for soil with Cleanup Alternative 4 is the duration of remedial action construction as all soil with COCs at concentrations exceeding preliminary cleanup levels will be removed; this period has been estimated in the FS to be approximately 12 months.

Longer multi-year restoration time frames associated with soil in Cleanup Alternatives 2 and 3 and with groundwater in Cleanup Alternatives 2 through 4 are considered reasonable based on the following:

- Potential risks posed by the Site to human health and the environment will be low after implementing cleanup actions. An environmental covenant to be implemented with Cleanup Alternatives 2 and 3 requires protective measures that would effectively and reliably limit exposure to residual contamination.
- Practicable active remedial measures that could achieve a shorter restoration time frame than Cleanup Alternative 2 are limited, and are included in Cleanup Alternative 3.
- Resources associated with the Site are not known to be affected by releases at the Site under current conditions.
- Shallow groundwater is not used at the Site and municipal water is provided to this area of the city. Contamination from the Site is sufficiently bounded and has not migrated off the property.
- Institutional controls included in Cleanup Alternatives 2 and 3 are effective and reliable for mitigating potential adverse exposure to COCs exceeding preliminary cleanup levels. Cleanup Alternative 4 is sufficiently protective that institutional controls are not required.
- Cleanup Alternatives 2 and 3 provide for adequate control and monitoring of potential migration of COCs from the Site. As media containing COCs exceeding preliminary cleanup levels will be removed with Cleanup Alternative 4, additional controls and monitoring are not required.
- Measures are employed in Cleanup Alternatives 2 and 3 to prevent adverse toxic exposure to residual weathered petroleum products.
- Weathered petroleum products, under favorable conditions, are amenable to degradation with natural processes.

7.3.2.3 Use Permanent Solutions to the Maximum Extent Practicable

MTCA specifies that when a cleanup action is selected, preference be given to actions that are permanent to the maximum extent practicable. Multiple approaches to cleanup are possible for the Site. Under MTCA, seven factors are used to determine whether a cleanup action provides for a reasonable restoration time frame (Section 7.3.1, Evaluation Process). Active treatment approaches such as those in Alternative 3 (Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls) and Cleanup Alternative 4 (Complete Excavation of Soil Exceeding Preliminary Cleanup Levels) offer the greatest degree of permanence by actively reducing the mass of contaminants at the source areas to achieve cleanup standards in a reasonable restoration time frame.

Per WAC 173-340-360(3)(f), the following criteria were considered for evaluation of permanence to the maximum extent practicable. Table 11 summarizes the results of the evaluation, which uses a scoring methodology for each of the seven components of this criterion on a scale of 1 to 10, with 10 being most favorable and 1 being least favorable. A mathematically derived MTCA Composite Benefit Score is presented in Table 11 as described in the table notes for use in the DCA. The derived scores and the DCA are further described in Section 7.3.3, Disproportionate Cost Analysis.

Protectiveness

Cleanup Alternative 1—No Action, will not provide additional protection beyond that provided by the existing containment systems comprised of pavement, the retaining wall, and the native underlying silt and does not include a protective covenant or environmental monitoring. Cleanup standards will be achieved over the course of many years by natural attenuation processes.

Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation, would not accelerate the achievement of cleanup standards but provides for monitoring of natural attenuation processes and additional environmental and public health protection via an environmental restrictive covenant. The existing containment systems would be retained and supplemented with a sheet pile barrier to provide permanent protection from future mobilization and migration to the adjacent surface water body to the maximum extent practicable.

Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, provides the same protective measures and monitoring of COC concentrations in shallow groundwater as Cleanup Alternative 2 but adds excavation of source areas, which will reduce groundwater exposure risk and restoration time frame for groundwater to approximately 5 years. In addition, all remaining contamination anticipated in soil exceeding MTCA cleanup levels will be contained at the southern Site boundary by the sheet pile barrier wall and within the 8.6-acre property comprising the Site. The conditional point of compliance for soil would be managed through the recordation of an Environmental Covenant on relevant portions of the Site.

Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels, is the most protective cleanup alternative and will achieve cleanup standards over the short term and provides for confirmational groundwater monitoring.

Permanence

Cleanup Alternative 1—No Action and Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation, would limit mobility of COCs with the existing pavement and retaining wall containment systems supplemented with a sheet pile barrier (Cleanup Alternative 2) until concentrations are permanently reduced by natural attenuation processes.

Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, permanently reduces the volume of hazardous substances with source excavation in areas where groundwater concentrations exceed cleanup levels. Cleanup Alternative 3 relies on containment systems to reduce mobility of residual COCs until naturally attenuated. Cleanup Alternative 4—Complete Excavation of

Soil Exceeding Preliminary Cleanup Levels, permanently reduces volume of hazardous substances with mass excavation when all areas where COCs exceed preliminary cleanup levels are removed and is considered to provide the highest degree of permanence.

Effectiveness Over the Long Term

Cleanup Alternative 1—No Action and Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation, provide effectiveness over the long term with use of the existing pavement cover, retaining wall, and underlying silt to contain COCs on the Site until naturally attenuated.

Cleanup Alternative 2 provides for supplemental engineered and institutional controls and compliance monitoring. Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, effectively reduces Site risks by source excavation and disposal at a permitted facility and use of containment systems supplemented by engineered and institutional controls and compliance monitoring. Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels, effectively reduces Site risk with mass excavation in all areas where COCs exceed preliminary cleanup levels and is considered to provide the highest degree of long-term effectiveness.

Management of Short-Term Risks

Cleanup Alternative 1—No Action and Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation, presents low short-term risk during implementation and primarily during construction of the sheet pile barrier under Cleanup Alternative 2. Excavation and off-Site disposal elements of Cleanup Alterative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, and Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels are considered to present more short-term risks related to construction and off-Site transport of hazardous materials although these elements of the cleanup actions can be effectively managed.

Technical and Administrative Implementability

Cleanup Alternative 1—No Action is readily implementable. Implementation of Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation, would include activities such as establishing and recording an environmental restrictive covenant, and implementing periodic inspection, maintenance, and monitoring tasks. Implementation of Cleanup Alternatives 1 and 2 has no or negligible impacts on Site business operations although some impact may occur during construction of the sheet pile barrier element of Cleanup Alternative 2.

Implementation of Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, would not involve technically complex field activities or administrative complications, although there will be modest impacts to Site business operations during the period of source removal and backfilling as well as construction of the sheet pile barrier.

Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels, would require extensive administrative and logistical coordination to complete, as well as significant prolonged disruption to operations at the Site, including halting and relocating the hot-mix asphalt batch plant operations, demolishing and rebuilding multiple existing structures, removing large reinforced concrete foundations for former ASTs, expanding excavation of source areas, extending periods of hauling and increased truck traffic on local roads, and managing relatively large quantities of wastewater during the excavation period. Cleanup Alternative 4 is, therefore, considered the least implementable cleanup alternative.

Consideration of Public Concerns

Concentrations of COCs exceeding preliminary cleanup levels are limited to discrete areas on the Site, which is an active hot-mix asphalt batch plant operation with controlled access. There currently is no complete pathway for exposure via direct contact for the public, and implementation of construction activities would include measures to prevent public exposure to hazardous materials. Cleanup alternatives would address potential public concerns with regard to residual levels of COCs at the Site and with regard to excavation and transport of petroleum-contaminated soil to an off-Site disposal facility.

Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, will result in a modest increase in hauling traffic on public roadways for a limited period of time. Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels, will result in extensive and prolonged hauling traffic on public roadways over the course of the excavation work, which is estimated to require approximately 12 months to complete, as well as during hotmix asphalt batch plant relocation.

<u>Cost</u>

Estimated costs for implementation of the four cleanup alternatives are summarized in Table 12, Summary of Cleanup Alternative Cost Estimates. The estimated cost for implementing Alternative 1—No Action is \$0. The estimated cost for implementing Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation (\$1,330,000, ranging between \$931,000 to \$2,000,000) is substantially lower than the estimated costs for implementation of active remedial measures.

The estimated cost for implementing Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls (\$2,310,000, ranging between \$1,620,000 and \$3,470,000) includes excavation and shoring to protect existing structures, and treatment and disposal of wastewater collected during excavation de-watering. The estimated cost for implementing Cleanup Alternative 4—Mass Excavation (\$16,400,000, ranging between \$11,500,000 and \$24,600,000) includes a large volume excavation including temporarily relocating the hot-mix asphalt batch plant facility, demolition and rebuilding of the existing structures, removal of the former AST foundations and demolition and replacement of approximately 90 percent of the retaining wall. Approximately 47,100 tons of soil would be disposed of off-Site and replaced with imported material before restoring the Site for continued operation as a hotmix asphalt batch plant.

7.3.3 Disproportionate Cost Analysis

The purpose of the DCA is to facilitate selection of the cleanup alternative that provides the highest degree of permanence to the maximum extent practicable. The following cleanup alternatives were considered for the DCA:

- Cleanup Alternative 1—No Action;
- Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation;
- Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls; and
- Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels.

The DCA for the Site was conducted according to the methodology provided by Ecology (2009) and per WAC 173-340-360(3)(e). The cleanup alternative evaluation presented in Table 11 is provided in a format suggested by Ecology (2009). Table 11 presents a quantitative assessment of the MTCA criteria for permanence to the maximum extent practicable (WAC 173-340-360[3][f]). A numeric score ranging from 0 to 10 was assigned for each of the criteria based on best professional judgment. The higher the score, the more favorable the evaluation criterion is under MTCA. The criteria scores were weighted according to Ecology (2009) suggestions and as indicated in Table 11.

A MTCA Composite Benefit Score was calculated for each alternative by summing the mathematical product of the criterion score times the weighting factor, which provided the quantitative measure of environmental benefit that would be realized with implementation of a cleanup alternative. For example, if the weighting factors for the six criteria are Protectiveness at 30 percent, Permanence at 20 percent, Long-Term Effectiveness at 20 percent, Short-Term

Effectiveness at 10 percent, Implementability at 10 percent, and Public Concerns at 10 percent, if scores for each of these criteria were 7.5, 7, 6, 3, 7, and 6, respectively, the MTCA Composite Benefit Score is calculated as: (7.5)*(0.3) + (7)*(0.2) + (6)*(0.2) + (3)*(0.1) + (7)*(0.1) + (6)*(0.1) = 6.45. A score of 6.45 represents moderate environmental benefit on a scale of 0 to 10, with 10 having the highest environmental benefit.

Table 11 summarizes the basis for the scoring and the estimated costs for the four cleanup alternatives. Chart 1 graphically presents the results of the DCA. The red bars on Chart 1 indicate the environmental benefit offered by each cleanup alternative as measured by the MTCA Composite Benefit Score using the left vertical axis of the graph. The blue bars reflect the estimated cost for each alternative using the right vertical axis of the graph. The incremental benefit of implementing an alternative can be discerned relative to the incremental cost of implementation.

Implementing Cleanup Alternative 1 results in a MTCA Composite Benefit Score of 5.5. By spending about \$1,330,000 to implement Cleanup Alternative 2, the MTCA Composite Benefit Score will rise to 6.2, an increase of about 13 percent (i.e., about \$102,300 per percent increase in benefit estimated by the MTCA Composite Benefit Score).

Implementing Cleanup Alternative 3 entails an investment of approximately \$2,310,000 resulting in a MTCA Composite Benefit Score of 7.8, an increase of about 42 percent over Cleanup Alternative 1 (No Action) and about a 26 percent increase over Cleanup Alternative 2 (i.e., about \$55,000 and \$38,000 per percent increase in benefit estimated by the MTCA Composite Benefit Score, respectively).

Implementing Cleanup Alternative 4 will cost about seven times the estimated cost for Cleanup Alternative 3 for an approximately equivalent MTCA Composite Benefit Score (i.e., about \$16,00,000 for a negligible change in MTCA Composite Benefit Score). The negligible increase in environmental benefits provided by Cleanup Alternative 4 compared to Cleanup Alternative 3, as demonstrated by the respective MTCA Composite Benefit Scores of each cleanup alternative, is clearly substantial and disproportionate to the benefits and costs incurred, estimated to be more than \$14,000,000.

Implementing Cleanup Alternative 3 offers the greatest environmental benefit estimated by the MTCA Composite Benefit Score for the unit costs incurred of the cleanup alternatives evaluated. Cleanup Alternative 3 offers the highest degree of permanence to the maximum extent practicable of the four cleanup alternatives evaluated. Cleanup Alternative 3—Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls, is therefore selected as the preferred cleanup alternative for application at this Site.

7.4 PREFERRED CLEANUP ACTION ALTERNATIVE

Cleanup Alternative 3—Source Excavation, Containment, Monitored Natural Attenuation, and Institutional and Engineered Controls, is the preferred cleanup action alternative. The rationale for selecting Cleanup Alternative 3 as the preferred cleanup action alternative is based on the results of the evaluation presented in Section 7.3, Cleanup Action Alternatives Evaluation. The Cleanup Action Alternatives Evaluation was conducted per the requirements set forth in MTCA under WAC 173-340-350 through 173-340–370, and based on Farallon's best professional judgment for implementing cleanup technologies at the Site. The results of the FS cleanup alternative evaluation are presented in Table 11. Figure 9 depicts the primary elements that would be implemented as part of Cleanup Alternative 3 on a Site map.

The preferred cleanup action alternative, Cleanup Alternative 3, satisfies MTCA threshold criteria as specified in WAC 173-340-360(2)(a) and meets additional requirements specified in WAC 173-340-360(2)(b) and expectations specified in WAC 173-340-370 for a facility adjacent to a surface water body defined in Section 7.3.1, Evaluation Process. Of the four alternatives evaluated, Cleanup Alternative 3 is considered to offer the highest degree of protectiveness and permanence to the maximum extent practicable, as it received the highest MTCA Composite Benefit Score (i.e., environmental benefit under MTCA) for permanence to the maximum extent practicable per WAC 173-340-360(3)(f) and Ecology (2009): 7.8 on a scale of 0 to 10, with 10 representing the

highest degree of permanence under MTCA. The basis for the MTCA Composite Benefit Score derived for Cleanup Alternative 3 is summarized below:

- Protectiveness is considered favorable, with a score of 8 out of 10 reflecting a high degree of protectiveness with source excavation and the containment system components. Engineered controls provide for periodic inspection and maintenance of the containment systems. Institutional control in the form of an environmental covenant limits future exposure and a groundwater monitoring program will enable evaluation of natural attenuation processes over time.
- Permanence is considered favorable, with a score of 8 out of 10 resulting from the source area excavations and disposal at a permitted off-Site disposal facility and reliance on permanent and reliable containment systems to limit future mobility instead of permanent destruction on the Site.
- Long-Term Effectiveness is considered favorable, with a score of 7 out of 10 based on reliance on containment and natural attenuation processes and the associated environmental covenant and periodic inspections and repairs of the containment systems outside of source excavation areas.
- Short-Term Risk Management is considered favorable, with a score of 7 out of 10 with low risk and impact to facility operations associated with the source area excavations.
- Implementability is considered favorable, with a score of 8 out of 10 since limited source excavation, paving, and institutional and engineered controls are readily implementable and will occur in areas with low impact to facility operations.
- Public Concerns are considered favorable, with a score of 9 out of 10 as a result of anticipated public perception of minimal impacts during excavation work.

Cleanup Alternative 3 meets the requirements set forth in WAC 173-340-370, Expectations for Cleanup Action Alternatives, specifically for a facility adjacent to a surface water body. Cleanup Alternative 3 minimizes reliance on long-term management and control of residual contamination with source excavation. Use of containment systems limit mobility and future exposure to residual

levels of COCs in the shallow soil mitigates future risks where removal is impracticable. Institutional controls in the form of an environmental covenant, including restrictions on use of Site groundwater, maintenance of engineered controls, a compliance groundwater monitoring program, and requirements for protective measures during future subsurface activities at the Site, will provide additional protection.

Cleanup Alternative 3 relies on natural attenuation processes in areas where COCs at concentrations exceeding preliminary cleanup levels will remain in soil after limited source area excavation. Cleanup measures to be implemented for groundwater where active cleanup measures are considered impracticable are consistent with WAC 173-340-370(7) because: 1) source control is achieved by source excavation; 2) safeguards will be implemented to reduce the risk of exposure to residual levels of COCs at the Site; and 3) compliance groundwater monitoring will be performed to enable the evaluation of efficacy of natural attenuation and estimation of the time frame for COC concentrations to attain preliminary cleanup levels.

Cleanup Alternative 1—No Action presents no cost and relies on existing containment measures. Cleanup Alternative 1, however, is not considered to satisfy the threshold requirements for cleanup under MTCA. Cleanup Alternative 2—Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation, and Cleanup Alternative 4—Complete Excavation of Soil Exceeding Preliminary Cleanup Levels also meet MTCA requirements. Cleanup Alternative 2 has a lower MTCA Composite Benefit Score than Cleanup Alternative 3. The MTCA Composite Benefit Score than Cleanup Alternative 3. Cleanup Alternative 2, while approximately 60 percent the cost of Cleanup Alternative 3, is not considered permanent to the maximum extent practicable. Cleanup Alternative 4 is so disruptive to Site operations that it is considered technically impracticable and offers only marginal additional environmental benefit sassociated with Cleanup Alternative 4 are clearly disproportionate to the potential costs incurred, as demonstrated by Section 7.3, Disproportionate Cost Analysis, and added public concerns associated with the extensive relocations and hauling requirements of complete excavation.

7.5 IMPLEMENTATION

Technical elements, including preliminary cleanup levels and points of compliance for the remedial action at the Site, are described in Section 6, Technical Elements. Cleanup Alternative 3—Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls, practicably achieves preliminary cleanup levels protective of human health direct contact exposure to COCs at the standard point of compliance in a reasonable restoration time frame. Implementation of Cleanup Alternative 3 includes the following primary elements:

- Preparation and submittal of a draft Compliance Monitoring Plan and an associated SAP for performance, protection, and confirmational monitoring per WAC 173-340-410.
- Containment using the existing pavement, buildings, and retaining wall keyed into native silt material. Installation of an approximately 700-foot-long permanent sheet pile wall, including along approximately 660 feet of the southern Site boundary, supplemented with engineered controls to protect against future migration of contaminated media to the adjacent surface water and/or sediment, including periodic inspections and repairs;
- Limited source area excavation and off-Site disposal of contaminated soil at a permitted landfill;
- Monitored natural attenuation of groundwater through Year 5; and
- Institutional controls consisting of an environmental covenant restricting future groundwater use, stipulating physical barrier cover system inspections and maintenance requirements, and referring to and requiring implementation of a Compliance Groundwater Monitoring Plan and an EMMP to govern the handling of potentially contaminated environmental media during future construction work requiring excavation in areas of residual contamination.

Implementation of Cleanup Alternative 3 is described in Section 7.2.3, Cleanup Alternative 3— Source Area Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls. Details of implementation of the selected cleanup alternative will be developed further in a CAP per WAC 173-340-380.

The estimated cost to complete Cleanup Alternative 3 is summarized below from Table 12 and is estimated to be \$2,310,000 and within a range of \$1,620,000 to \$3,470,000.

7.6 COMPLIANCE MONITORING

During excavation, compliance monitoring will be conducted in accordance with a Compliance Monitoring Plan as specified in WAC 173-340-410 and will include protection, performance, and confirmational soil sampling. The post-remediation, Groundwater Monitoring Plan will include up to 15 groundwater monitoring wells sampled at 18-month intervals through Year 5 following the source area excavations (Figure 9).

7.7 RESTORATION TIME FRAME

As indicated in Section 7.3.2, Evaluation Results, and in Table 11, Summary of Cleanup Alternative Evaluation, preliminary groundwater cleanup standards are expected to be attained within approximately 5 years of source area excavations. Achievement of soil cleanup standards outside of the source area excavations will occur over multiple years as natural attenuation processes occur. All remaining contamination anticipated in soil will be contained within the 8.6-acre property comprising the Site. The conditional point of compliance for soil would be managed through the recordation of an Environmental Covenant on relevant portions of the Site. The restoration time frame is considered to be reasonable under MTCA, as additional protective controls, inspections, and monitoring will be employed, off-Site effects of COCs have not been identified, and cleanup levels will be attained for shallow groundwater in a reasonable restoration time frame.

As indicated in Section 7.2.3.2, Time Frame and Estimated Cost, the active excavation elements of Cleanup Alternative 3 will be implemented over the period of approximately 1 month. The environmental covenant to be attached to the property deed would be developed over the course of up to 6 months, and long-term institutional and engineered controls will be implemented until

COC preliminary cleanup levels have been demonstrated to have been achieved. For the purposes of this FS, monitoring, inspections, and maintenance activities are assumed to be completed in Year 5.

7.8 CONTINGENCY ACTIONS

The decision process for evaluating whether modifications to the selected cleanup approach are warranted, and the monitoring requirements that will be implemented to document effectiveness, will be provided in the CAP and the associated Compliance Monitoring Plan. The primary contingency action trigger will be non-compliance with applicable groundwater cleanup levels in groundwater samples collected from the groundwater monitoring well network by the end of Year 5, as set forth the in the CAP.

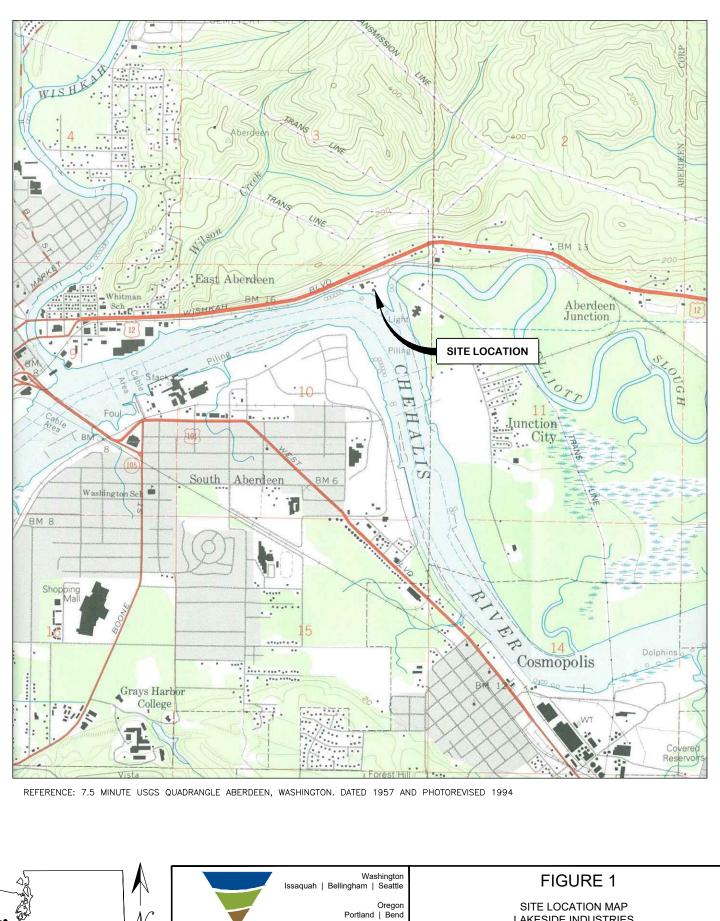
8.0 BIBLIOGRAPHY

- Farallon Consulting, L.L.C. (Farallon). 2009. Technical Memorandum Regarding Remedial Investigation–Initial Phase Summary Lakeside Industries Facility, Aberdeen, Washington. From Carla E. Brock, L.G. and J. Riley Conkin. To James Hatch, Lakeside Industries. March 26.
- ———. 2010. Telephone Conversation Regarding City of Aberdeen Water Supply between Akos Fekete and Mike Randich, Aberdeen Water Department. November 19.
- ———. 2015. Remedial Investigation and Feasibility Study Report, Lakeside Industries Aberdeen Site, Aberdeen, Washington. June 2015.
- GeoEngineers, Incorporated. 1984. Report of Hydrogeologic Services, Existing Bulk Storage Facility, Aberdeen, Washington. July 9.
- Grays Harbor County. Geographic Information Systems, GIS Mapping. No date. <<u>http://www.ghc-gis.org/info/GIS/Index.html</u>>. (November 16, 2010.)
- Green, Joel, Ph.D., Don Loft, B.A., and Randy Lehr, Ph.D. 2009. State-of-the-River Report for the Chehalis River Basin, 2006-2009. Prepared for Washington State Department of Ecology, Grays Harbor College, and the Confederated Tribes of the Chehalis Reservation. September 14.
- Johnson, P.C., and R.A. Ettinger. 1991. "Heuristic Model for Predicting the Intrusion of Contaminant Vapors into Buildings." *Environmental Science & Technology* 25, (no. 8): 1445-1452.
- U.S. Census Bureau. *American Fact Finder*, Aberdeen City, Washington. November 19, 2010. <<u>http://factfinder.census.gov/home/saff/main.html?_lang=en</u>>. (November 19, 2010.)

- U.S. Department of Commerce. 2000. *United States Census 2000*. U.S. Department of Commerce. Washington, D.C.
- U.S. Geological Survey. 1957. 7.5-Minute Quadrangle Aberdeen, Washington. Photo revised 1994.
- Washington State Department of Ecology (Ecology). 2001. *Guidelines for Preparation of Quality* Assurance Project Plans for Environmental Studies. Publication No. 01-03-003. February.
- ———. 2003. Well Logs. Well Log Imaging Internet Version 1.0. February 12, 2003.
 <<u>http://apps.ecy.wa.gov/welllog/</u>>. (November 19, 2010.)
- ——. 2009. *Disproportionate Cost Analysis (DCA) Outline*. June.
- ——. 2010. Draft *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*. Publication No. 09-09-047. Revised February 2016. October.
- ———. 2016. *Guidance for Remediation of Petroleum Contaminated Sites*. Publication No. 10-09-057. June.
- ———. 2015. Evaluating the Human Health Toxicity of Carcinogenic PAHs (cPAHs) Using Toxicity Equivalency Factors (TEFs). Implementation Memorandum #10 from Mr. Jeff Johnson, Information and Policy Section Toxics Cleanup Program. April 20.
- Washington State Department of Natural Resources. 1987. Geologic Map of Washington Southwest Quadrant. Prepared by Timothy J. Walsh, Michael A. Korosec, William M. Phillips, Robert L. Logan, and Henry W. Schasse. Washington Division of Geology and Earth Resources Geologic Map GM-34.
- Western Regional Climate Center. *Historical Climate Data*. No Date. <<u>http://www.wrcc.dri.edu</u>>. (November 19, 2010.)

-. Seattle University of Washington (457478), Period of Record Monthly Climate Summary, 1971 to 2000 Monthly Climate Summary. No date. <<u>http://www.wrcc.dri.edu/CLIMATEDATA.html</u>>. (November 19, 2010.)

9.0 LIMITATIONS


The conclusions and recommendations contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location and are subject to the following inherent limitations.

Certain information used by Farallon in this report/assessment has been obtained, reviewed, and evaluated from various sources believed to be reliable, including the local health districts, fire departments, Ecology, and Lakeside Industries. Although Farallon's conclusions, opinions, and recommendations are based in part on such information, Farallon's services did not include the verification of its accuracy or authenticity. Should such information prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.

FIGURES

LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

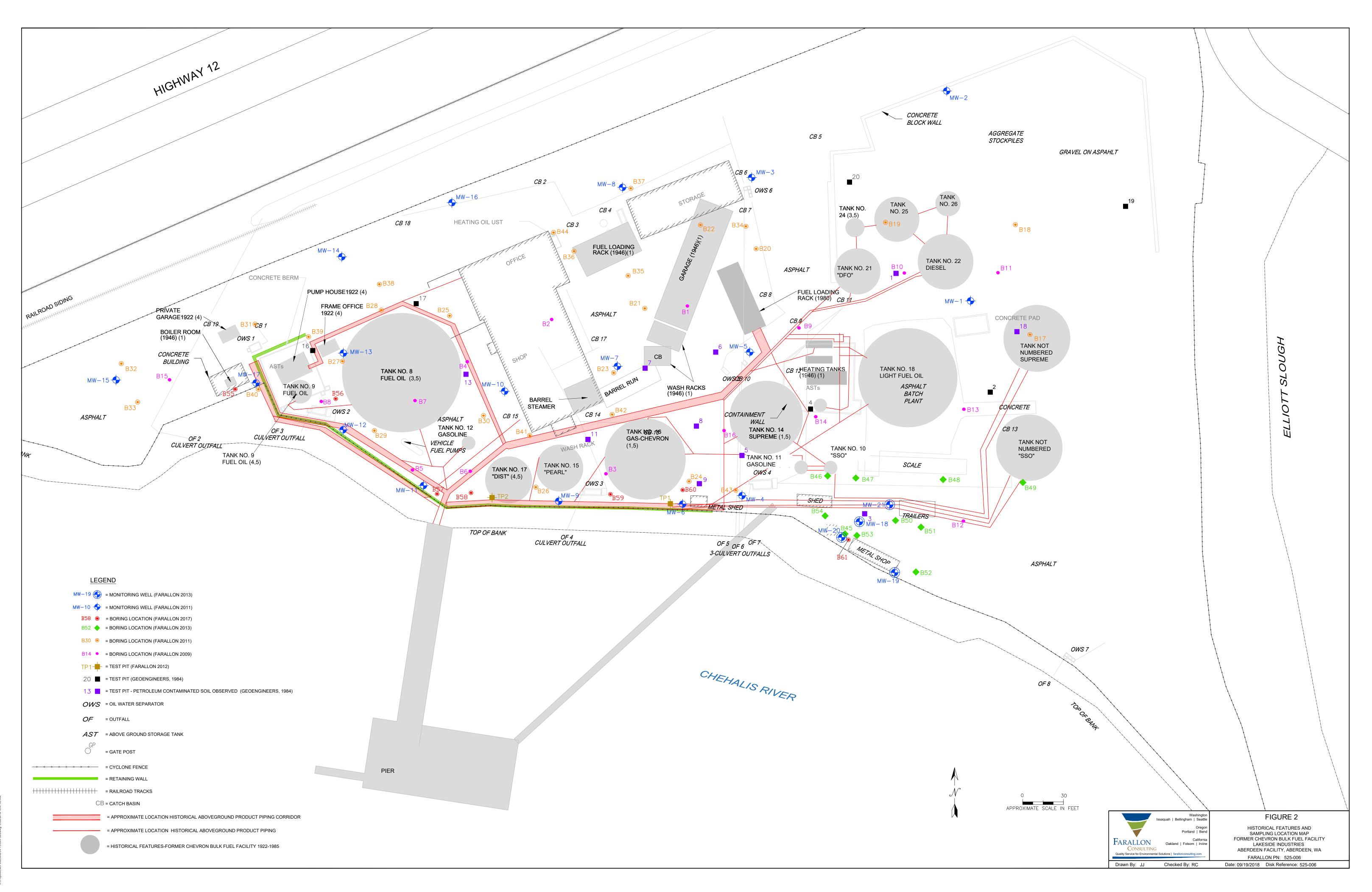
Farallon PN: 525-006

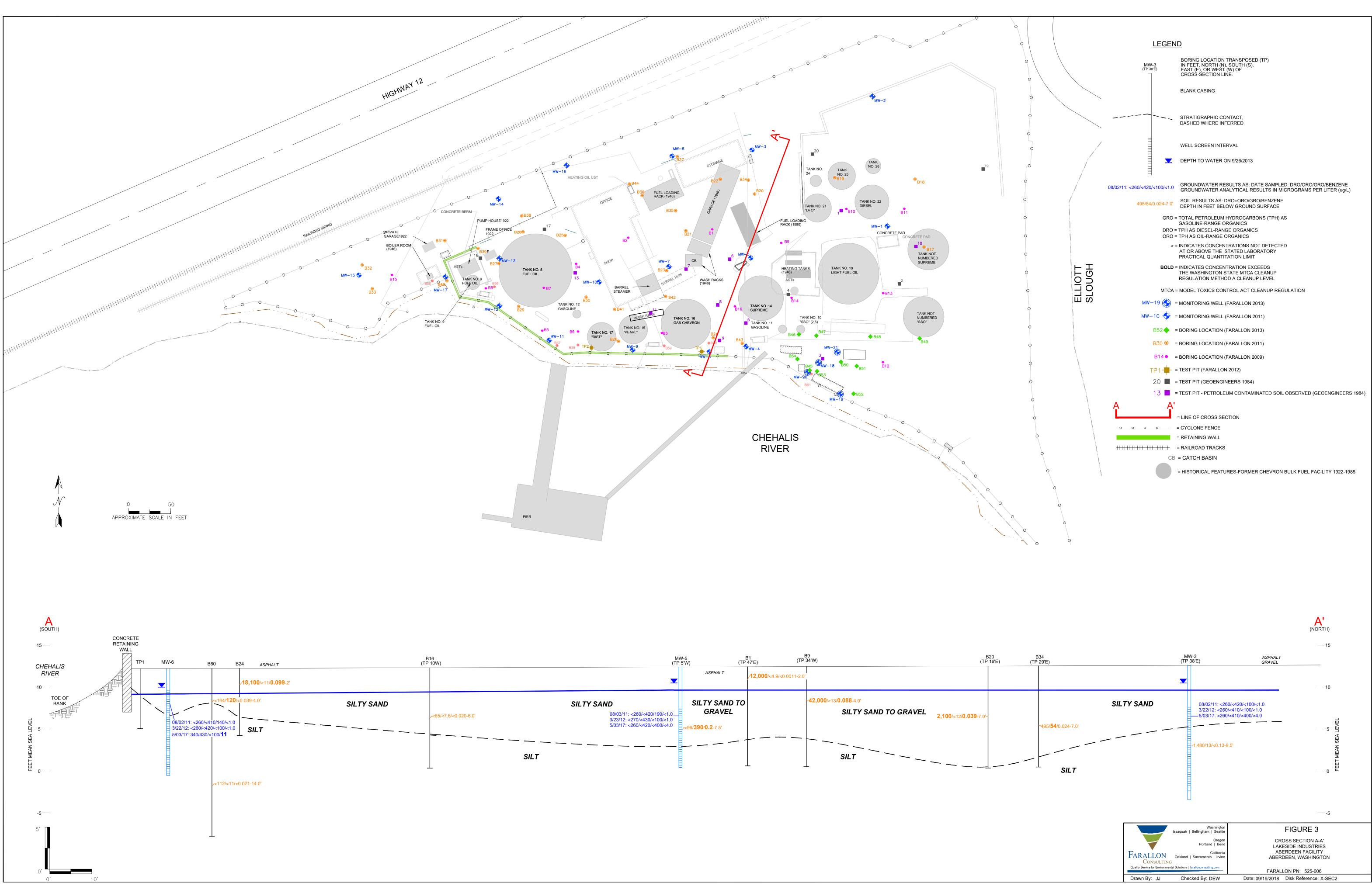
SITE LOCATION MAP LAKESIDE INDUSTRIES ABERDEEN FACILITY ABERDEEN, WASHINGTON

WASHINGTON (

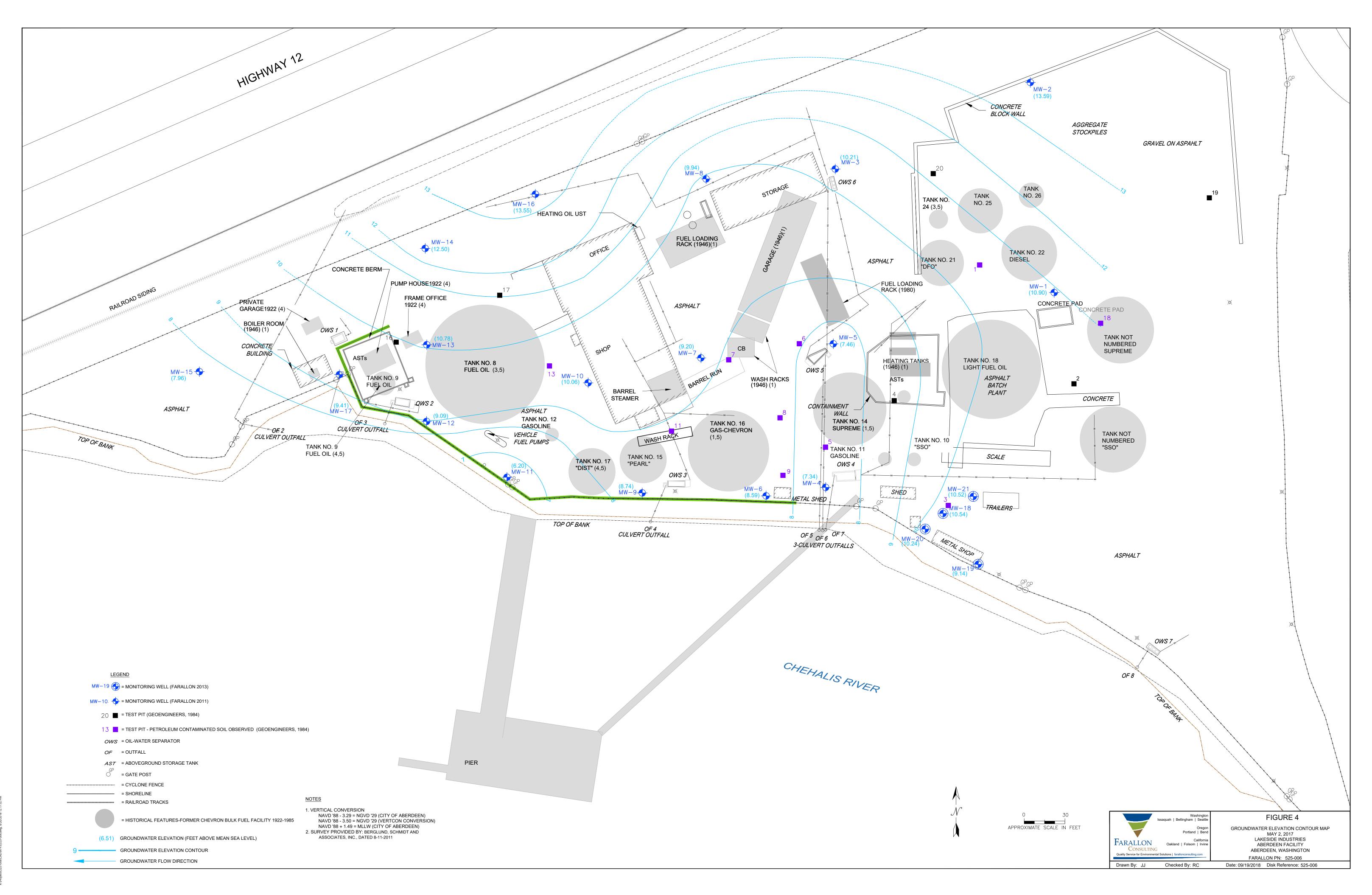
ABERDEEN

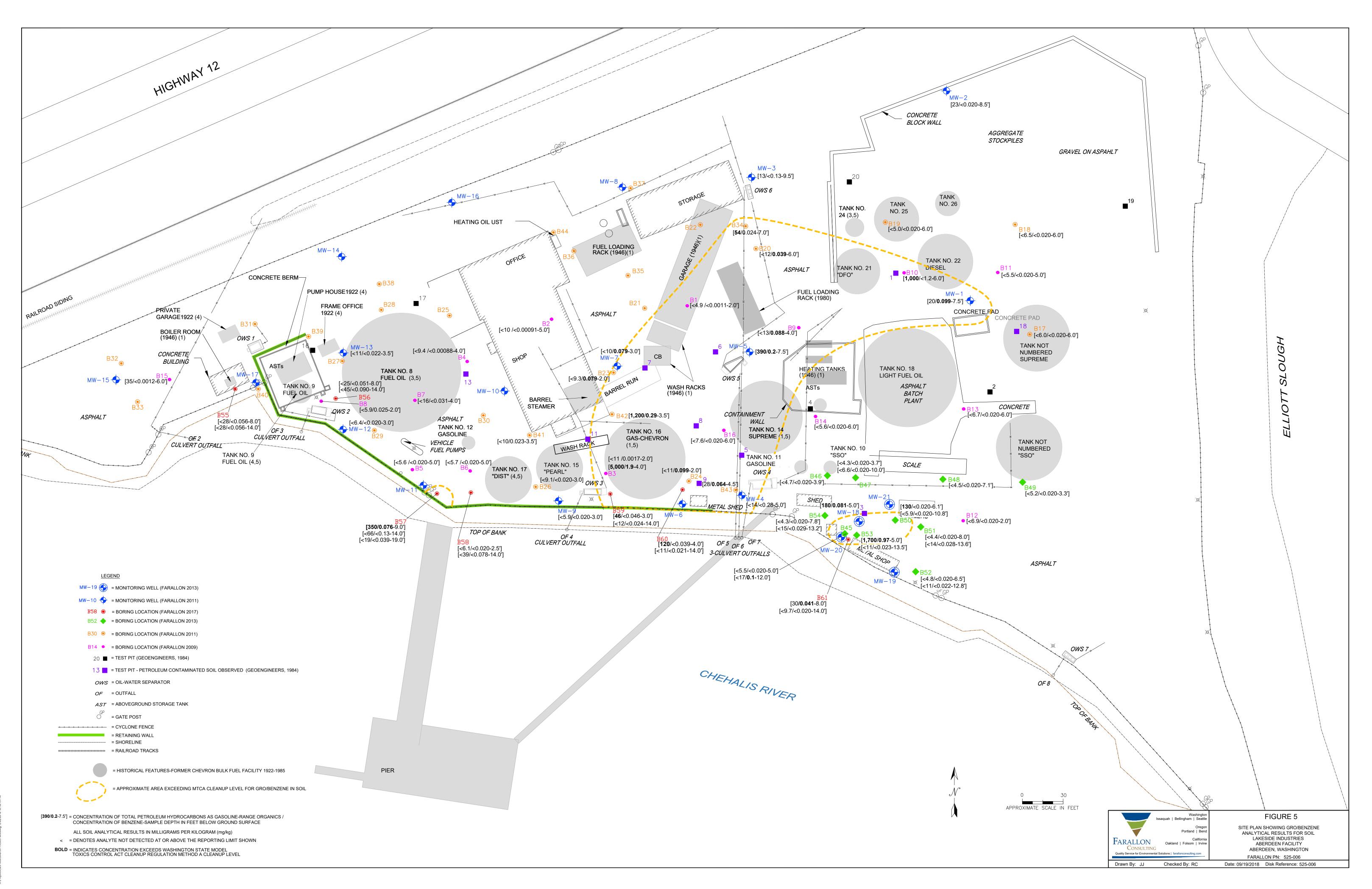
 FARALLON CONSULTING
 Oakland | Sacramento | Irvine

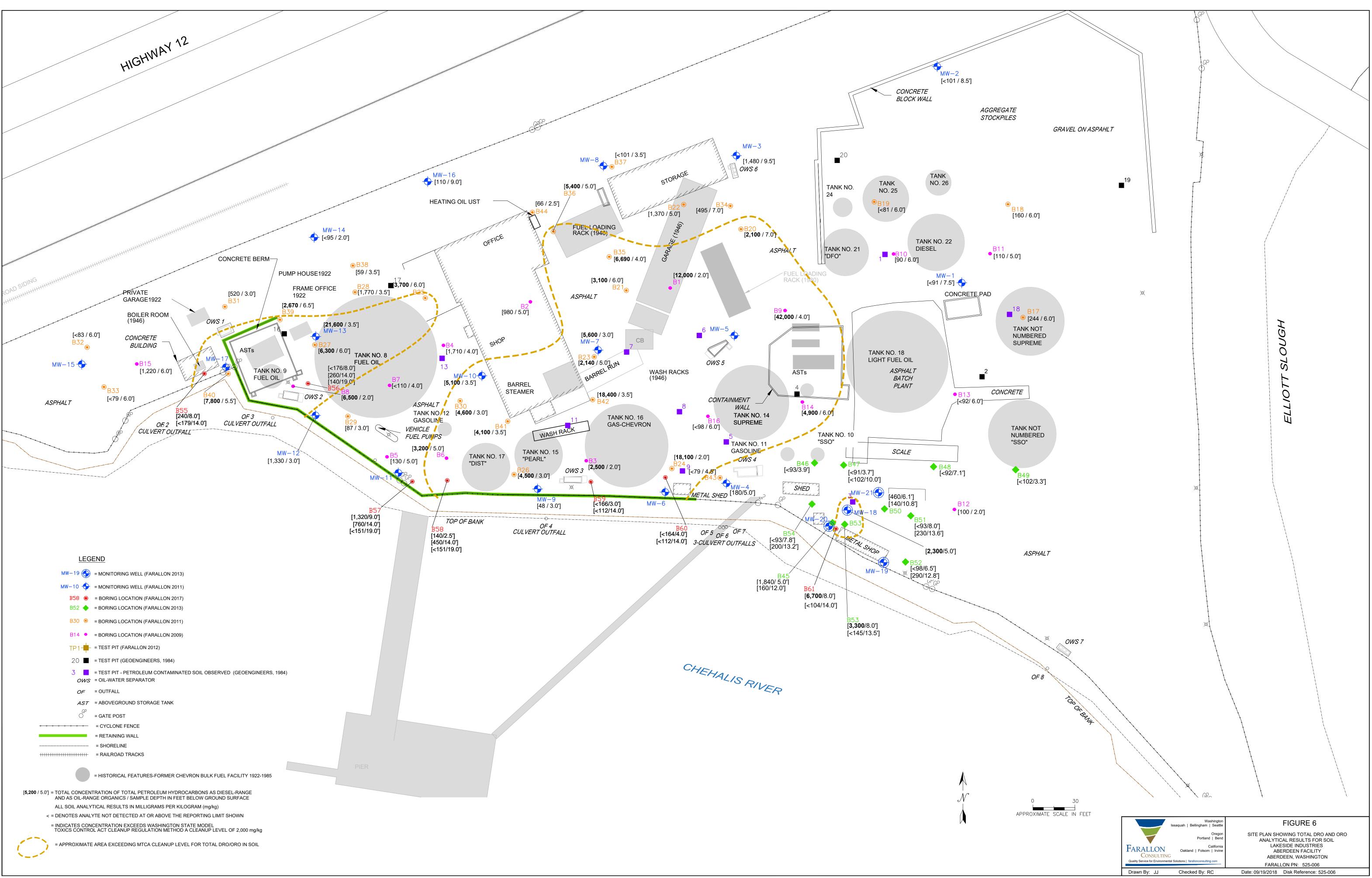

 Quality Service for Environmental Solutions | farallonconsulting.com

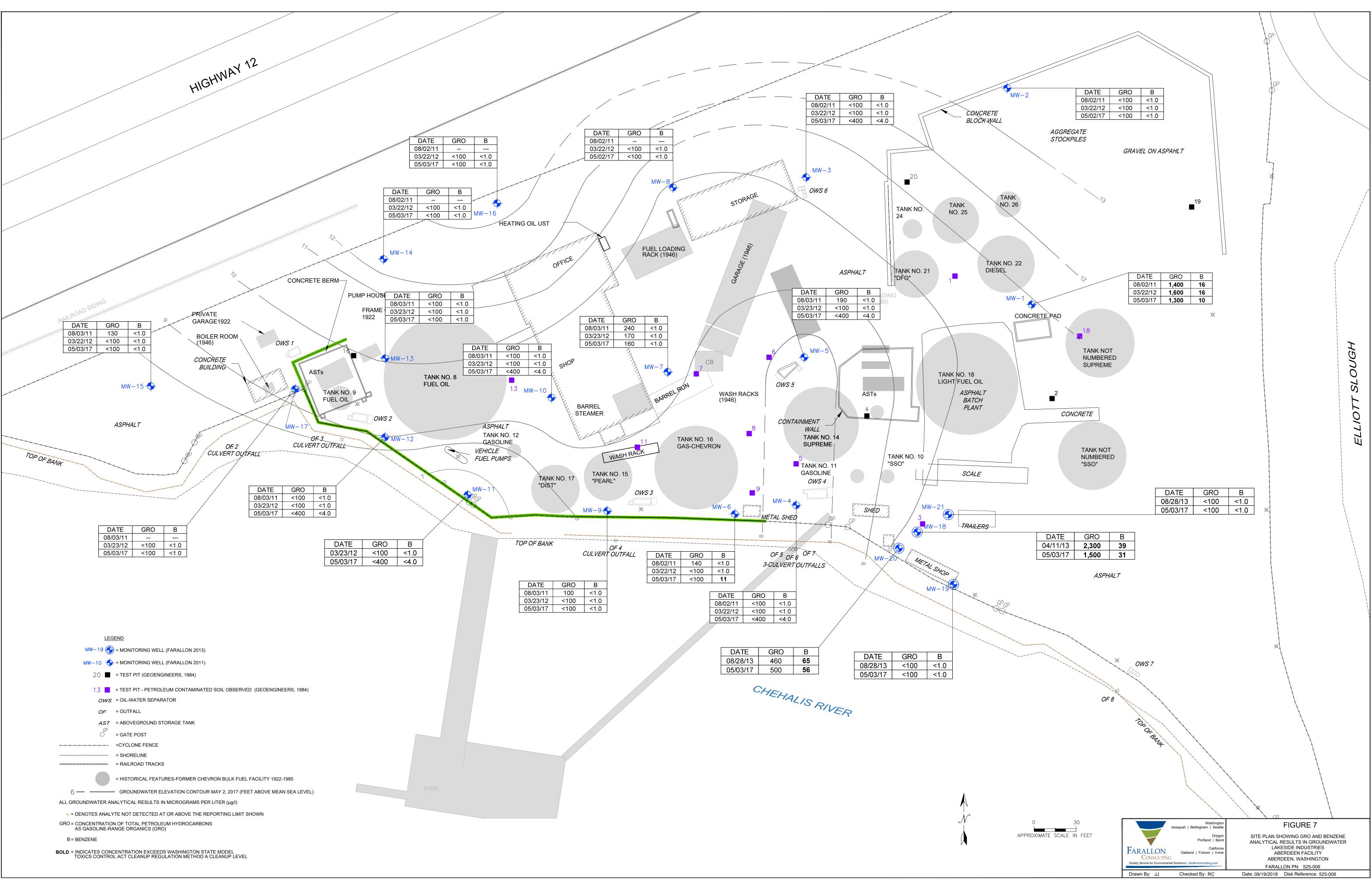

 Drawn By:
 DEW

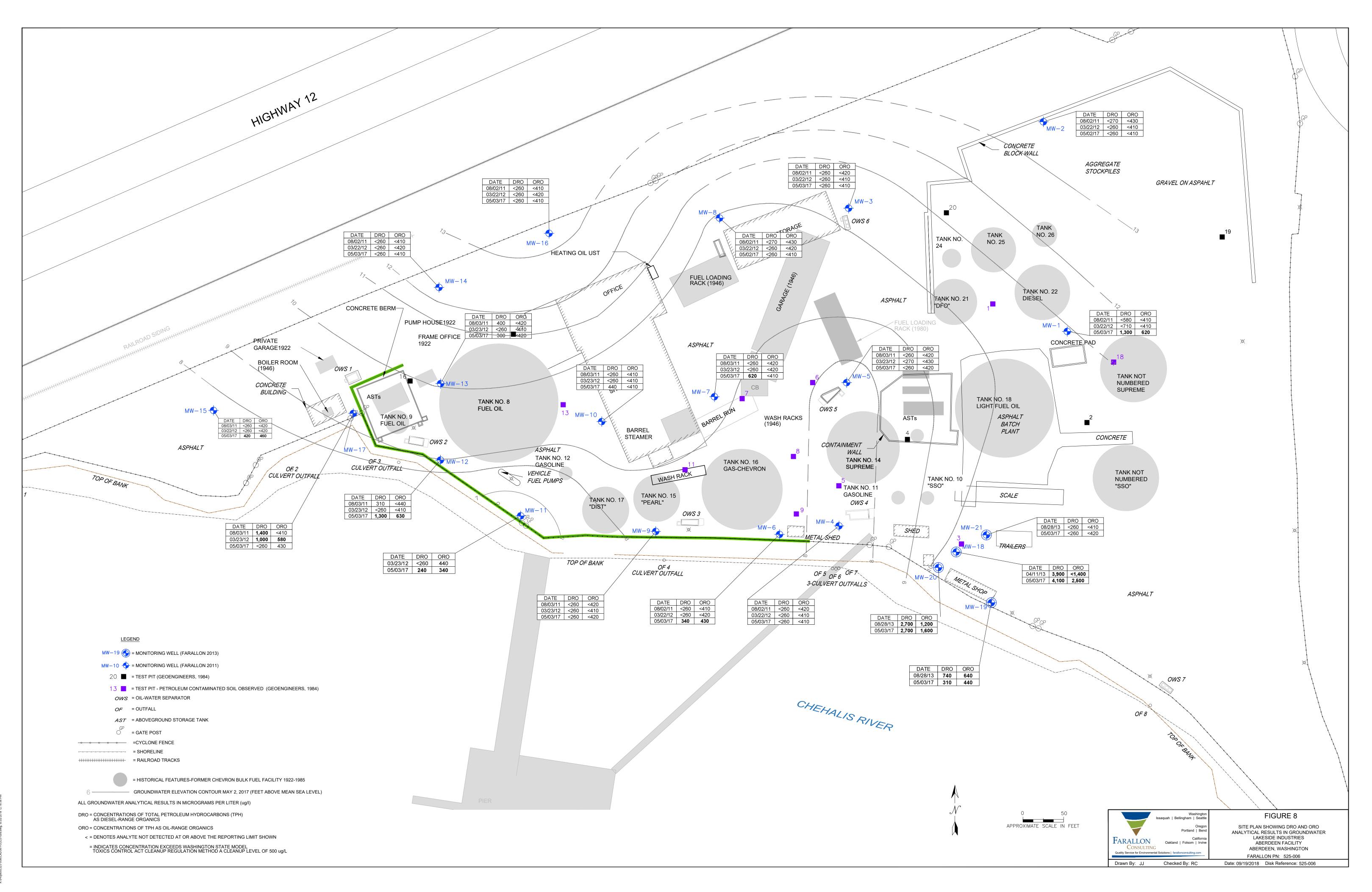
 Checked By:
 RC

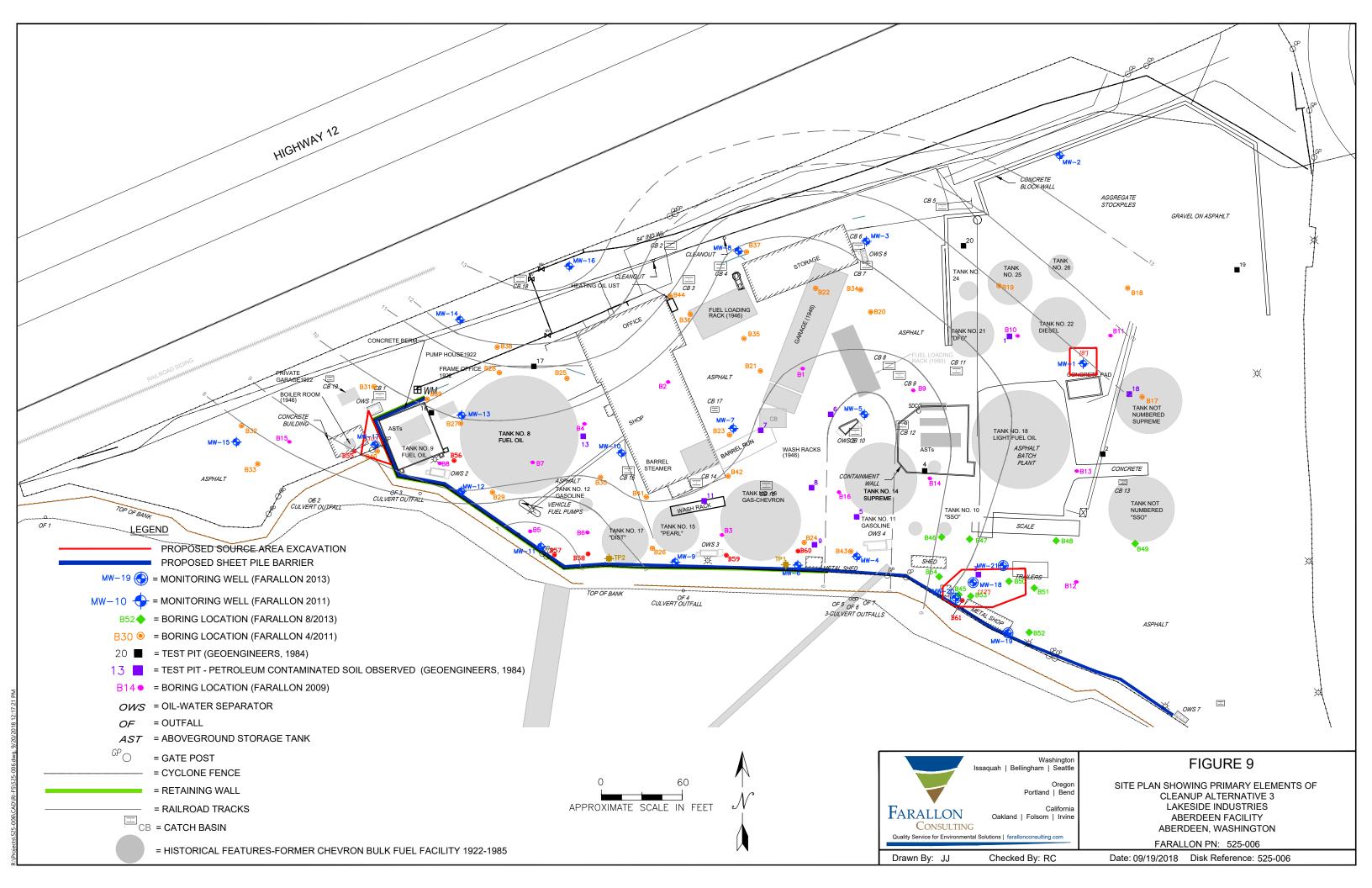

FARALLON PN: 525-006


Date: 4/3/2015 Disk Reference: 525006






	MW-5 I TP 5'W) (TP	B1 (TP	39 34'W)	E (TP	320 9 16'E)
2	ASPHALT	/ 12,000 /<4.9/<0.0011-2.0'			
SILTY SAND 08/03/11: <260/<420/190/<1.0 3/23/12: <270/<430/<100/<1.0 5/03/17: <260/<420/<400/<4.0	H		-42,000/<13/0.088-4.0' SILTY SAND TO GRAVEL	2,100 /<12/ 0.039 -7.0'-	



TABLES

LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

Farallon PN: 525-006

Table 1Summary of Petroleum Storage TanksLakeside Industries Aberdeen FacilityAberdeen, WashingtonFarallon PN: 525-006

Tank Identification	Type (AST/UST)	Approximate Volume (Gallons)	Product	Location	In Use	Date Closed	Closure Method		
Tank No. 8	AST	1,430,000	Fuel Oil	West	No	Early 1980s	Removed		
Tank No. 9	AST	36,000	Fuel Oil	West (current diesel tank farm)	No	Early 1980s	Removed		
Tank No. 10	AST	19,500	"SSO"	South Central	No	Early 1980s	Removed		
Tank No. 11	AST	19,500	Gasoline	South Central	No	Early 1980s	Removed		
Tank No. 12	AST	20,000	Gasoline	Southwest	No	Early 1980s	Removed		
Tank No. 14	AST	567,000	Supreme	South Central	No	Early 1980s	Removed		
Tank No. 15	AST	185,000	Kerosene ("Pearl")	Southwest	No	Early 1980s	Removed		
Tank No. 16	AST	500,000	Gasoline	South Central	No	Early 1980s	Removed		
Tank No. 17	AST	160,000	"DIST"	Southwest	No	Early 1980s	Removed		
Tank No. 18	AST	905,058	Light Fuel Oil	East	No	Early 1980s	Removed		
Tank No. 21	AST	186,480	"DFO"	Northeast	No	Early 1980s	Removed		
Tank No. 22	AST	186,480	Diesel	Northeast	No	Early 1980s	Removed		
Tank No. 24	AST	19,500	Unknown	Northeast	No	Early 1980s	Removed		
Tank No. 25	AST	190,000	Unknown	Northeast	No	Early 1980s	Removed		
Tank No. 26	AST	36,000	Unknown	Northeast	No	Early 1980s	Removed		
Unknown	AST	20,000	Supreme	East (east of Tank No. 18)	No	Early 1980s	Removed		
Unknown	AST	20,000	"SSO"	Southeast (SE of Tank No. 18)	No	Early 1980s	Removed		
Unknown	Unknown	5,500	Heating Oil	East Central (NW of Tank No. 18)	No	Early 1980s	Removed		
Unknown	Unknown	5,500	Heating Oil	East Central (NW of Tank No. 18)	No	Early 1980s	Removed		
TOTALS	19	4,511,518		Standard Oil Company/Chevron	d Oil Company/Chevron 1922-1985				
	AST	12,000	Asphalt Cement		Yes	-	N/A		
	AST	10,000	Asphalt Cement		Yes	-	N/A		
	AST	10,000	Asphalt Cement		Yes	-	N/A		
	AST	10,000	Emulsified Asphalt		No	2018	Removed		
Asphalt Tank Farm	AST	8,000	Emulsified Asphalt	East	Yes	-	N/A		
	AST	2,500	Anti-Strip		No	Unknown	Removed		
	AST	275	Diesel Fuel		Yes	-	N/A		
	OE	250	Heat Transfer Oil		Yes				
	OE	55	Heat Transfer Oil		Yes				
	AST	15,000	Diesel Fuel		No	2018	Removed		
	AST	12,000	Diesel Fuel		No	2018	Removed		
	AST	5,000	Diesel Fuel		Yes	-	N/A		
Diesel Tank Farm	AST	4,000	Gasoline	West	No	Unknown	Unknown		
	AST	1,000	Used Oil		Yes	-	N/A		
	AST	140	Anti-freeze		No	2017	Removed		
	AST	140	Anti-freeze		No	2017	Removed		
	AST	250	Used Oil		Yes	-	N/A		
		250	Engine Oil	Central	No	2017	Removed		
Mechanics Shop	AST								
Mechanics Shop	AST	250	Hydraulic Oil		No	2017	Removed		
Mechanics Shop			Hydraulic Oil Heat Transfer Oil		No No	2017 2017	Removed Removed		
Mechanics Shop Tank 1	AST	250		North Central (Adjacent Office Building)	-				
	AST AST	250 250	Heat Transfer Oil	North Central	No	2017	Removed Removal		

NOTES:

Operational equipment containers are associated with in-use equipment on the Site and are not used for product storage.

AST = aboveground storage tank N/A = Not Applicable OE = operational equipment container UST = underground storage tank

1 of 1

Monitoring Well Number	Water Level Measurement (Date)	Well Head Elevation (feet) ¹	Depth to Water (feet) ²	Elevation of Groundwater (feet) ¹
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8/2/2011		3.50	9.73
	12/7/2011		3.24	9.99
	12/8/2011		3.27	9.96
MW-1	3/22/2012	13.23	2.75	10.48
IVI W - 1	4/11/2013	15.25	2.74	10.49
	9/26/2013		3.90	9.33
	12/1/2016		NM	NM
	5/2/2017		2.33	10.90
	8/2/2011		9.97	10.65
	12/7/2011		8.22	12.40
	12/8/2011		8.30	12.32
MW-2	3/22/2012	20.62	8.09	12.53
IVI W-2	4/11/2013	20.62	7.47	13.15
	9/26/2013	7 F	8.45	12.17
	12/1/2016	7 F	6.71	13.91
	5/2/2017	7 F	7.03	13.59
	8/2/2011		0.97	10.11
	12/7/2011		2.56	8.52
	12/8/2011		1.36	9.72
	3/22/2012	11.00	1.79	9.29
MW-3	4/11/2013	11.08	2.14	8.94
	9/26/2013		2.69	8.39
	12/1/2016		2.45	8.63
	5/2/2017		0.87	10.21
	8/2/2011		4.12	7.38
	12/7/2011		4.20	7.30
	12/8/2011		3.46	8.04
	3/22/2012	11.50	4.20	7.30
MW-4	4/11/2013	11.50	4.19	7.31
	9/26/2013		4.03	7.47
	12/1/2016		2.61	8.89
	5/2/2017	7 F	4.16	7.34
	8/2/2011		2.83	8.04
	12/7/2011	7 F	2.33	8.54
	12/8/2011	7 F	2.76	8.11
MW-5	3/22/2012	10.87	3.13	7.74
1v1 w -2	4/11/2013	10.87	3.45	7.42
	9/26/2013	7 F	1.97	8.90
	12/1/2016	7 [	3.95	6.92
	5/2/2017	7 [	3.41	7.46
	8/2/2011		2.59	8.05
	12/7/2011	7 [	2.64	8.00
	12/8/2011	7 [	2.70	7.94
MW-6	3/22/2012	10.64	2.19	8.45
1v1 w -0	4/11/2013	10.64	2.18	8.46
	9/26/2013	7 F	2.24	8.40
	12/1/2016	7 F	1.90	8.74
	5/2/2017	7 F	2.05	8.59

Monitoring Well Number	Water Level Measurement (Date)	Well Head Elevation (feet) ¹	Depth to Water (feet) ²	Elevation of Groundwater (feet) ¹
¥	8/2/2011		2.01	9.02
	12/7/2011		1.83	9.20
	12/8/2011		1.88	9.15
MUU 7	3/22/2012	11.02	1.63	9.40
MW-7	4/11/2013	11.03	1.64	9.39
	9/26/2013		1.80	9.23
	12/1/2016		1.54	9.49
	5/2/2017		1.83	9.20
	8/2/2011		2.10	9.96
	12/7/2011		2.20	9.86
	12/8/2011		2.31	9.75
MUV 0	3/22/2012	12.00	1.95	10.11
MW-8	4/11/2013	12.06	1.92	10.14
	9/26/2013		2.06	10.00
	12/1/2016	1 F	2.10	9.96
	5/2/2017		2.12	9.94
	8/2/2011		5.49	5.19
	12/7/2011		2.65	8.03
	12/8/2011		2.66	8.02
	3/22/2012	10.00	2.05	8.63
MW-9	4/11/2013	10.68	1.73	8.95
	9/26/2013		1.49	9.19
	12/1/2016		1.66	9.02
	5/2/2017		1.94	8.74
	8/2/2011		2.30	8.76
	12/7/2011		1.39	9.67
	12/8/2011		1.34	9.72
NUV 10	3/22/2012	11.00	1.13	9.93
MW-10	4/11/2013	11.06	1.15	9.91
	9/26/2013		2.19	8.87
	12/1/2016		0.90	10.16
	5/2/2017	1 F	1.00	10.06
	8/2/2011		7.21	5.20
	12/7/2011	7	7.27	5.14
	12/8/2011	7	4.57	7.84
MW7-1-1	3/22/2012	12 41	6.54	5.87
MW-11	4/11/2013	12.41	6.71	5.70
	9/26/2013	7	6.76	5.65
	12/1/2016	7	3.64	8.77
	5/2/2017	<u>]                                    </u>	6.21	6.20
	8/2/2011		5.51	6.09
	12/7/2011	7	2.94	8.66
	12/8/2011	7	2.93	8.67
MW/12	3/22/2012	11.60	2.60	9.00
MW-12	4/11/2013	11.60	2.50	9.10
	9/26/2013	7	2.70	8.90
	12/1/2016	7	2.43	9.17
	5/2/2017	7	2.51	9.09

Monitoring Well Number	Water Level Measurement (Date)	Well Head Elevation (feet) ¹	Depth to Water (feet) ²	Elevation of Groundwater (feet) ¹
	8/2/2011		2.81	10.02
	12/7/2011		2.25	10.58
	12/8/2011		2.30	10.53
MW-13	3/22/2012	12.83	1.80	11.03
WI W -15	4/11/2013	12.05	1.74	11.09
	9/26/2013		2.42	10.41
	12/1/2016		1.53	11.30
	5/2/2017		2.05	10.78
	8/2/2011		1.10	11.40
	12/7/2011		0.69	11.81
	12/8/2011		0.69	11.81
NANY 14	3/22/2012	12.50	$0.00^{3}$	12.50
MW-14	4/11/2013	12.50	$0.00^{3}$	12.50
	9/26/2013		0.16	12.34
	12/1/2016	╡ ┣	0.003	12.50
	5/2/2017	┥ ┝	0.00 ³	12.50
	8/2/2011		7.35	7.06
	12/7/2011		6.95	7.46
	12/8/2011		7.00	7.41
	3/22/2012	-	6.33	8.08
MW-15	4/11/2013	14.41	6.55	7.86
	9/26/2013		7.08	7.33
	12/1/2016		6.23	8.18
·	5/2/2017	-   -	6.45	7.96
			1.10	12.45
·	8/2/2011	-   -	0.49	13.06
	12/7/2011	-	0.51	13.06
	12/8/2011	-	0.003	
MW-16	3/22/2012	13.55	0.00 ³	13.55
	4/11/2013	-   -		13.55
	9/26/2013		0.11	13.44
	12/1/2016		0.003	13.55
	5/2/2017		0.003	13.55
	8/2/2011	_	3.79	8.88
	12/7/2011	┥ ┝	3.45	9.22
	12/8/2011	-  ⊢	3.45	9.22
MW-17	3/22/2012	12.67	3.21	9.46
	4/11/2013		3.35	9.32
	9/26/2013		3.63	9.04
	12/1/2016	╡	3.03	9.64
	5/2/2017		3.26	9.41
	4/11/2013	_	4.40	10.25
MW-18	9/26/2013	14.65	5.48	9.17
	12/1/2016		3.82	10.83
	5/2/2017		4.11	10.54
	9/26/2013		4.73	9.19
MW-19	12/1/2016	13.92	NM	NM
	5/2/2017		4.78	9.14

3 of 4

Monitoring Well Number	Water Level Measurement (Date)	Well Head Elevation (feet) ¹	Depth to Water (feet) ²	Elevation of Groundwater (feet) ¹
	9/26/2013		4.89	9.43
MW-20	12/1/2016	14.32	3.92	10.40
	5/2/2017		4.08	10.24
	9/26/2013		4.36	9.11
MW-21	12/1/2016	13.47	2.54	10.93
	5/2/2017		2.95	10.52

NOTES:

¹Site surveys by Berglund, Schmidt, and Associates on August 11, 2011, May 1, 2013, and October 1, 2013. Elevations NM = not measured due to access issue in feet above mean sea level based on NAVD88 datum.

²In feet below top of PVC well casing.

³Artesian conditions were observed at the time of measurement.

Samula			Depth			Analytical Re	sults (milligra	ms per kilog	yram)	
Sample Identification	Boring Number	Sample Date	(feet bgs) ¹	DRO ²	ORO ²	<b>GRO</b> ³	Benzene ⁴	Toluene ⁴	<b>Ethylbenzene</b> ⁴	Total Xylenes ⁴
			Janu	ary 2009 Initia	al Remedial Inv	vestigation				
B1-2	B1	1/13/2009	2.0	<1,200	12,000	<4.9	< 0.0011	< 0.0053	< 0.0011	< 0.0021
B2-5	B2	1/13/2009	5.0	450	530	<10	< 0.00091	< 0.0045	< 0.00091	< 0.0018
B3-2	B3	1/13/2009	2.0	1,300	1,200	<11	0.0017	< 0.0052	0.0048	0.0032
B3-4	B3	1/13/2009	4.0			5,000 ⁵	1.9	0.69	8	6.6
B4-4	B4	1/13/2009	4.0	510	1,200	<9.4	< 0.00088	< 0.0044	< 0.00088	< 0.0018
B5-5	B5	1/14/2009	5.0	<28	130	<5.6	< 0.020	< 0.056	< 0.056	< 0.056
B6-5	B6	1/14/2009	5.0	2,000	1,200	<5.7	< 0.020	< 0.057	< 0.057	< 0.057
B7-4	B7	1/14/2009	4.0	<57	<110	<16	< 0.031	< 0.16	< 0.16	< 0.16
B8-2	B8	1/14/2009	2.0	2,100	4,400	<5.9	0.025	< 0.059	< 0.059	< 0.059
B9-4	B9	1/14/2009	4.0	19,000	23,000	<13	0.088	< 0.13	0.34	0.87
B10-6	B10	1/14/2009	6.0	<30	90	1,000 ⁵	<1.2	<1.2	<1.2	1.4
B11-5	B11	1/14/2009	5.0	<27	110	<5.5	< 0.020	< 0.055	< 0.055	< 0.055
B12-2	B12	1/15/2009	2.0	<31	100	<6.9	< 0.020	< 0.069	< 0.069	< 0.069
B13-6	B13	1/15/2009	6.0	<31	<61	<6.7	< 0.020	< 0.067	< 0.067	< 0.067
B14-6	B14	1/15/2009	6.0	1,100	3,800	<5.6	< 0.020	< 0.056	< 0.056	< 0.056
B15-6	B15	1/15/2009	6.0	220	1,000	35 ⁶	< 0.0012	< 0.0058	< 0.0012	< 0.0023
B16-6	B16	1/15/2009	6.0	6.0 <33 <65 <7.6 <0.020 <0.076 <0.076						< 0.076
MTCA Method A Cl	eanup Levels ⁷			2,0	000	30	0.03	7	6	9

Samula			Depth			Analytical Re	esults (milligra	ms per kilog	yram)	
Sample Identification	<b>Boring Number</b>	Sample Date	(feet bgs) ¹	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	<b>Ethylbenzene</b> ⁴	Total Xylenes ⁴
				April 2011 Re	medial Investig	ation				
B17-6.0	B17	4/19/2011	6.0	64	180	<6.0	< 0.020	< 0.060	< 0.060	< 0.060
B18-6.0	B18	4/19/2011	6.0	<29 160		<6.5	< 0.020	< 0.065	< 0.065	< 0.065
B19-6.0	B19	4/19/2011	6.0	<27	<54	<5.0	< 0.020	< 0.050	< 0.050	< 0.050
B20-7.0	B20	4/19/2011	7.0	2,100	<62	<12	0.039	< 0.12	0.90	1.18
B21-6.0	B21	4/20/2011	6.0	3,100	<300 ⁸					
B22-5.0	B22	4/20/2011	5.0	10						
B23-3.0	B23	4/20/2011	3.0	1,500	640	<9.3	0.079	< 0.093	0.82	1.9 ⁸
B24-2.0	B24	4/20/2011	2.0	11,000	7,100	<11	0.099	0.15	0.25	1.02
B25-6.0	B25	4/20/2011	6.0	2,400	1,300					
B26-3.0	B26	4/20/2011	3.0	3,400	1,100	<9.1	< 0.020	< 0.091	< 0.091	< 0.468
B27-6.0	B27	4/20/2011	6.0	3,100	3,200					
B28-3.5	B28	4/21/2011	3.5	770	1,000					
B29-3.0	B29	4/21/2011	3.0	<27	87					
B30-3.0	B30	4/21/2011	3.0	3,500	<b>1,100</b> ⁹					
B31-3.0	B31	4/21/2011	3.0	$160^{10}$	360					
B32-6.0	B32	4/21/2011	6.0	<28	<55					
B33-6.0	B33	4/21/2011	6.0	<26	<53					
B34-7.0	B34	4/19/2011	7.0	430	65 ⁹	54	0.024	< 0.11	0.18	0.28
B35-4.0	B35	4/21/2011	4.0	5,800	<b>890</b> ⁹					
MTCA Method A Cl	eanup Levels ⁷			2,0	)00	30	0.03	7	6	9

			Depth			Analytical Re	esults (milligra	ms per kilog	gram)	
Sample Identification	<b>Boring Number</b>	Sample Date	(feet bgs) ¹	DRO ²	ORO ²	<b>GRO</b> ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴
			July/Augu	st 2011 Supple	emental Remedi	ial Investigatio	n			
B36-5.0	B36	7/27/2011	5.0	3,300	2,100					
B37-3.5	B37	7/27/2011	3.5	<34	<67					
B38-3.5	B38	7/27/2011	3.5	<26	<26 59					
B39-6.5	B39	7/27/2011	6.5	2,400	270					
B40-5.5	B40	7/27/2011	5.5	4,000	3,800					
B41-3.5	B41	7/26/2011	3.5	3,000	1,100	<10	0.023	< 0.10	0.11	0.55
B42-3.5	B42	7/27/2011	3.5	9,300	9,100	1,200	0.29	< 0.26	1.3	2.2
B43-4.5	B43	7/27/2011	4.5	<26	<53	28	0.064	< 0.053	< 0.053	0.077
B44-2.5	B44	8/1/2011	2.5	<28	66					
MW1-7.5	MW-1	7/27/2011	7.5	<30	<61	20	0.099	< 0.081	< 0.081	< 0.162
MW2-8.5	MW-2	7/27/2011	8.5	<34	<67	23	< 0.020	< 0.086	< 0.086	< 0.172
MW3-9.5	MW-3	7/27/2011	9.5	380	1,100	13	< 0.13	< 0.13	< 0.13	<0.26
MW4-5.0	MW-4	7/28/2011	5.0	<51	180	<14	< 0.28	< 0.14	< 0.14	<0.28
MW5-7.5	MW-5	7/27/2011	7.5	<48	<96	390	0.2	< 0.16	0.45	< 0.41
MW7-3.0	MW-7	7/27/2011	3.0	3,400	2,200	<10	0.079	0.28	0.84	2.1
MW9-3.0	MW-9	7/26/2011	3.0	48	<56	<5.9	< 0.020	< 0.059	< 0.059	< 0.118
MW10-3.5	MW-10	8/1/2011	3.5	4,100	1,000					
MW12-3.0	MW-12	8/1/2011	3.0	450	880	<6.4	< 0.020	< 0.064	< 0.064	< 0.128
MW13-3.5	MW-13	8/1/2011	3.5	8,600	13,000	<11	< 0.022	< 0.11	< 0.11	<0.22
MW14-2.0	MW-14	8/1/2011	2.0	<32	<63					
MW16D-9.0	MW-16	8/1/2011	9.0	<31	110					
MTCA Method A C	leanup Levels ⁷			2,0	000	30	0.03	7	6	9

Sec			Depth			Analytical Re	sults (milligra	ms per kilog	gram)	
Sample Identification	<b>Boring Number</b>	Sample Date	(feet bgs) ¹	DRO ²	ORO ²	<b>GRO</b> ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴
				pril 2013 Addit	tional Well Inst	allation				-
B-45-5.0	B45	4/5/2013	5.0	540	1,300	<5.5	< 0.020	< 0.055	< 0.055	< 0.110
B-45-12.0	B45	4/5/2013	12.0	<58	160	<17	0.1	< 0.17	< 0.17	< 0.34
MW-18-5.0	MW-18	4/5/2013	5.0	1,700	600	180	0.081	< 0.12	0.54	0.26
				August 2	2013 Geoprobe					
B46-080613-3.9	B46	8/6/2013	3.9							
B47-080613-3.7	B47	8/6/2013	3.7	<30	<61	<4.3	< 0.020	< 0.043	< 0.043	< 0.086
B47-080613-10.0	B47	8/6/2013	10.0	<34	<68	<6.6	< 0.020	< 0.066	< 0.066	< 0.132
B48-080613-7.1	B48	8/6/2013	7.1	<31	<61	<4.5	< 0.020	< 0.045	< 0.045	< 0.090
B49-080613-3.3	B49	8/6/2013	3.3	<34	<68	<5.2	< 0.020	< 0.052	< 0.052	< 0.104
B50-080613-6.1	B50	8/6/2013	6.1	460	<64	130	< 0.020	< 0.093	0.43	0.28
B50-080613-10.8	B50	8/6/2013	10.8	<35	140	<5.9	< 0.020	< 0.059	< 0.059	< 0.118
B51-080613-8.0	B51	8/6/2013	8.0	<31	<62	<4.4	< 0.020	< 0.044	< 0.044	< 0.088
B51-080613-13.6	B51	8/6/2013	13.6	<55	230	<14	< 0.028	< 0.14	< 0.14	< 0.28
B52-080613-6.5	B52	8/6/2013	6.5	<33	<65	<4.8	< 0.020	< 0.048	< 0.048	< 0.096
B52-080613-12.8	B52	8/6/2013	12.8	50	240	<11	< 0.022	< 0.11	< 0.11	< 0.22
B53-080613-5.0	B53	8/6/2013	5.0	3,300	<220	1,700	0.97	< 0.37	13	3.4
B53-080613-13.5	B53	8/6/2013	13.5	<48	<97	<11	< 0.023	< 0.11	< 0.11	< 0.22
B54-080613-7.8	B54	8/6/2013	7.8	<31	<62	<4.3	< 0.020	< 0.043	< 0.043	< 0.086
B54-080613-13.2	B54	8/6/2013	13.2	<58	200	<15	< 0.029	< 0.15	< 0.15	< 0.30
MTCA Method A Cle	anup Levels ⁷			2,0	000	30	0.03	7	6	9

Samula			Depth			Analytical Re	esults (milligra	ms per kilog	gram)	
Sample Identification	Boring Number	Sample Date	(feet bgs) ¹	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴
				May 20	17 Geoprobe					
B55-8.0	B55	5/2/2017	8.0	90	150	<28	< 0.056	< 0.28	< 0.28	< 0.56
B55-14.0	B55	5/2/2017	14.0	<59	<120	<28	< 0.056	< 0.28	< 0.28	< 0.56
B56-8.0	B56	5/2/2017	8.0	<56	<120	<25	< 0.051	< 0.25	< 0.25	< 0.50
B56-14.0	B56	5/2/2017	14.0	<130	260	<45	< 0.090	< 0.45	< 0.45	< 0.90
B56-19.0	B56	5/2/2017	19.0	<49	140					
B57-9.0	B57	5/2/2017	9.0	1,000 M	320	350	0.076	< 0.21	0.35	2.3
B57-14.0	B57	5/2/2017	14.0	140	620	<66	< 0.13	< 0.66	<0.66	<1.32
B57-19.0	B57	5/2/2017	19.0	<51	<100	<19	< 0.039	< 0.19	< 0.19	< 0.38
B58-2.5	B58	5/2/2017	2.5	<26	140	<6.1	< 0.020	< 0.061	< 0.061	< 0.122
B58-14.0	B58	5/2/2017	14.0	<80	450	<39	< 0.078	< 0.39	< 0.39	< 0.78
B58-19.0	B58	5/2/2017	19.0	<51	<100					
B59-3.0	B59	5/2/2017	3.0	<56	<110	46	< 0.046	< 0.23	< 0.23	0.27
B59-14.0	B59	5/2/2017	14.0	<37	<75	<12	< 0.024	< 0.12	< 0.12	< 0.24
B60-4.0	B60	5/2/2017	4.0	<54	<110	120	< 0.039	< 0.20	0.29	0.54
B60-14.0	B60	5/2/2017	14.0	<37	<75	<11	< 0.021	< 0.11	< 0.11	< 0.22
B61-8.0	B61	5/2/2017	8.0	2,600	4,100	30	0.041	< 0.078	< 0.078	< 0.156
B61-14.0	B61	5/2/2017	14.0	<35	<69	<9.7	< 0.020	< 0.097	< 0.097	< 0.194
MTCA Method A Clo	eanup Levels ⁷			2,0	000	30	0.03	7	6	9

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or above the reporting limit listed.

-- denotes sample not analyzed

¹Depth in feet below ground surface (bgs).

²Analyzed by Northwest Method NWTPH-Dx.

³Analyzed by Northwest Method NWTPH-Gx.

⁴Analyzed by U.S. Environmental Protection Agency Method 8021B or 8260B.

⁵The laboratory analytical report indicates that hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

⁶The laboratory analytical report indicates that the sample chromatogram is not similar to a typical gasoline.

⁷Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁸The practical quantitation limit is elevated due to interferences in the sample.

⁹Hydrocarbons in diesel range are impacting oil-range results.

¹⁰Hydrocarbons in lube oil range are impacting diesel-range results.

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

M = hydrocarbons in the gasoline-range are impacting the diesel-range result

GRO = TPH as gasoline-range organics

ORO = TPH as oil-range organics

					Analytical Results (milligrams per kilogram) ²																	
							Non-Carci	nogenic Po	lycyclic Ar	omatic Hyd	lrocarbons						Carcinogeni	c Polycyclic A	Aromatic Hyd	lrocarbons		
Sample Identification	Boring Number	Sample Date	Depth (feet bgs) ¹	Naphthalene	-Methylnaphthalene	-Methylnaphthalene	Acenaphthylene	Acenaphthene	fluorene	Phenanthrene	Anthracene	fluoranthene	yrene	Benzo(g,h,i)perylene	3enzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(j,k)fluoranthene	Benzo(a)pyrene	ndeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Total Toxic Equivalent Concentration ⁵
								-	Janu	ary 2009 I	nitial Reme	dial Investi	gation				. –	. ~ .				
B1-2	B1	1/13/2009	2.0	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	0.0061	< 0.036	< 0.036	0.11	0.13	0.046	0.54	0.23	< 0.036	0.099	< 0.036	< 0.036	0.149
B8-2	B8	1/14/2009	2.0	0.15	1.3	0.89	0.039	0.11	0.11	0.25	0.024	0.068	0.11	0.099	0.016	0.13	0.091	< 0.014	0.086	< 0.014	< 0.014	0.109
B9-4	B9	1/14/2009	4.0	0.97	230	120	0.081	3.1	6.2	8.5	0.68	0.21	1.3	< 0.079	0.37	1.3	0.3	< 0.079	0.2	< 0.079	< 0.079	0.292
B14-6	B14	1/15/2009	6.0	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	0.026	0.048	0.055	0.2	1.8	0.2	0.16	0.95	0.28	0.019	0.37	0.066	0.062	0.452
										April 2011	Remedial	Investigatio	n									
B20-7.0	B20	4/19/2011	7.0	0.17	0.69	1.4	0.038	0.23	0.58	0.29	0.036	0.0097	0.0082	< 0.0079	< 0.040	< 0.040	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	0.020
				,							pplemental											
MW-7-3.0	MW7	7/27/2011	3.0	< 0.035	0.48	1.9	0.09	0.11	0.38	0.37	0.088	0.059	0.17	0.039	0.07	0.12	0.037	< 0.035	0.073	0.035	< 0.035	0.096
MW-9-3.0	MW9	7/26/2011	3.0	< 0.037	< 0.037	< 0.037	0.049	< 0.037	< 0.037	< 0.037	< 0.037	0.043	0.044	0.058	0.065	0.039	0.052	0.051	0.069	0.062	0.058	0.098
MW-12-3.0	MW12	7/28/2011	3.0	0.083	0.09	< 0.036	0.045	< 0.036	< 0.036	0.081	< 0.036	0.075	0.069	0.059	0.05	0.044	0.051	0.042	0.063	0.052	< 0.036	0.084
										Ma	y 2017 Geo	probe										
B55-14.0	B55	5/2/2017	14.0												< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	< 0.016	0.012
B56-14.0	B56	5/2/2017	14.0												< 0.024	< 0.024	< 0.024	< 0.024	< 0.024	< 0.024	< 0.024	0.018
B57-14.0	B57	5/2/2017	14.0												< 0.035	< 0.035	< 0.035	< 0.035	< 0.035	< 0.035	< 0.035	0.026
B57-19.0	B57	5/2/2017	19.0												< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	0.010
B58-14.0	B58	5/2/2017	14.0												< 0.021	< 0.021	< 0.021	< 0.021	< 0.021	< 0.021	< 0.021	0.016
B59-14.0	B59	5/2/2017	14.0												< 0.0099	0.022	0.019	< 0.0099	< 0.0099	< 0.0099	< 0.0099	0.011
B59-19.0 [*]	B59	5/2/2017	19.0												<0.012 UJ	<0.012 UJ	<0.012 UJ	<0.012 UJ	<0.012 UJ	<0.012 UJ	<0.012 UJ	0.009
B60-14.0	B60	5/2/2017	14.0												< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	0.0075
B61-14.0	B61	5/2/2017	14.0												< 0.0093	< 0.0093	< 0.0093	< 0.0093	< 0.0093	< 0.0093	< 0.0093	0.0070
MTCA Cleanup	Levels				5 ³		NE	4,800 ⁴	3,200 ⁴	NE	24,000 ⁴	3,200 ⁴	2,400 ⁴	NE					(	leanup Level	for Mixture	<b>0.1</b> ³

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or above the reporting limit listed.

¹Depth in feet below ground surface (bgs).

²Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁴Washington State Cleanup Levels and Risk Calculations under MTCA, Version 3.1 Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway, https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

⁵Total Toxic Equivalent Concentration for mixtures of carcinogenic polycyclic aromatic hydrocarbons, calculated in accordance with MTCA Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

* = analyzed one day out of holding time NE = cleanup level not established

UJ = the analyte was analyzed for but was not detected; the reporting limit is an estimate

#### Table 5 Summary of Soil Analytical Results - Metals Lakeside Industries Aberdeen Facility Aberdeen, Washington Farallon PN: 525-006

Sample	Boring		Depth			Analytica	l Results (mill	ligrams pe	r kilogram) ²				
Identification	Number	Sample Date	(feet bgs) ¹	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver		
			Janua	ry 2009 Init	y 2009 Initial Remedial Investigation								
B3-4	В3	1/13/2009	4	26	43	7	30	1,500	4.3	<11	< 0.56		
B9-4	В9	1/14/2009	4	14	44	< 0.60	36	11	< 0.30	<12	< 0.60		
B10-6	B10	1/14/2009	6	<12	44	< 0.60	41	6.7	< 0.30	<12	< 0.60		
			А	pril 2011 R	emedial In	vestigation							
B23-3.0	B23	4/20/2011	3	<11		< 0.54	24	35	< 0.27				
B24-2.0	B24	4/20/2011	2	<11		1	19	59	1.2				
B26-3.0	B26	4/20/2011	3	<11		< 0.56	18	110	< 0.28				
			July/August	2011 Supp	lemental R	emedial Inv	estigation						
MW9-3.0	MW-9	7/27/2011	3	46	35	2	27	8.7	< 0.28	<11	< 0.56		
			Apr	il 2013 Add	itional Wel	l Installatio	n						
B-45-5.0	B45	4/5/2013	5.0					<6.1					
B-45-12.0	B45	4/5/2013	12.0					<12					
MW-18-5.0	MW-18	4/5/2013	5.0					14					
			Augu	ıst 2013 Ad	ditional We	ell Installati	on						
B50-080613-6.1	B50	8/6/2013	6.1					<6.2					
B54-080613-5.0	B53	8/6/2013	5					9					
Natural Backgrou	nd Soil Metals (	Concentrations ³		7	NE	1	42	36	0.07	NE	NE		
MTCA Cleanup Lo	evels			$20^{4}$	16,000 ⁵	2 ⁴	2,000 ⁴	250 ⁴	2 ⁴	<b>400⁵</b>	400 ⁵		

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

-- denotes sample not analyzed

¹Depth in feet below ground surface (bgs).

²Analyzed by U.S. Environmental Protection Agency Methods 6010B/7471A.

³Washington State Department of Ecology Natural Background Soil Metals Concentrations in Washington State, Publication #94-115, Statewide.

⁴Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁵Washington State Cleanup Levels and Risk Calculations under MTCA, Version 3.1 Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway,

https://for tress.wa.gov/ecy/clarc/Reporting/Chemical Query.aspx

NE = background concentration not established

## Table 6 Summary of Reconnaissance Groundwater Analytical Results - Total Petroleum Hydrocarbons Lakeside Industries Aberdeen Facility Aberdeen, Washington Farallon PN: 525-006

					Analytical	Results (micr	ograms per lit	er)	
Sample Identification	Boring Number	Sample Date	<b>DRO</b> ¹	<b>ORO</b> ¹	<b>GRO</b> ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
			January 20	09 Initial Ro	emedial Investig	gation			
B1-011309-8	B1	1/13/2009	9,500	2,600	<500	< 0.20	<1.0	0.29	2.3
B2-011309-10	B2	1/13/2009	920	820	<500	< 0.20	<1.0	< 0.20	< 0.40
B3-011309-6	В3	1/13/2009	6,300	1,100	6,800	400	90	280	366
B4-011309-8	B4	1/13/2009	1,800	<400	<500	< 0.20	<1.0	< 0.20	< 0.40
B5-011409-8	В5	1/14/2009	8,400	5,900	<400	<4.0	<4.0	<4.0	<4.0
B6-011409-9	B6	1/14/2009	2,900	520	<400	<4.0	<4.0	<4.0	<4.0
B7-011409-9	B7	1/14/2009	<260	<410	<400	<4.0	<4.0	<4.0	<4.0
B8-011409-8	B8	1/14/2009	9,300	5,200	1,800 ¹⁰	<4.0	<4.0	<4.0	<4.0
B9-011409-8	В9	1/14/2009	5,900	5,300	<400	5	<4.0	<4.0	<4.0
B10-011409-8	B10	1/14/2009	2,500	1,300	1,000	18	4.1	8.3	8.8
B11-011409-10	B11	1/14/2009	290	610	<400	<4.0	<4.0	<4.0	<4.0
B12-011509-10	B12	1/15/2009	<250	<400	<400	<4.0	<4.0	<4.0	<4.0
B13-011509-9	B13	1/15/2009	<260	<410	<400	<4.0	<4.0	<4.0	<4.0
B14-011509-9	B14	1/15/2009	<250	<410	<400	<4.0	<4.0	<4.0	<4.0
B15-011509-9	B15	1/15/2009	460	740	<500	< 0.20	<1.0	<0.20	<0.40
B16-011509-10	B16	1/15/2009	<270	<430	<400	<4.0	<4.0	<4.0	<4.0
MTCA Method A	Cleanup Levels ⁴		500		800 ⁵	5	1,000	700	1,000

## Table 6 Summary of Reconnaissance Groundwater Analytical Results - Total Petroleum Hydrocarbons Lakeside Industries Aberdeen Facility Aberdeen, Washington Farallon PN: 525-006

~ .					Analytical	Results (micr	ograms per lit	er)	
Sample Identification	Boring Number	Sample Date	<b>DRO</b> ¹	<b>ORO</b> ¹	<b>GRO</b> ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
			April 2	2011 Remed	ial Investigatior	1			
B17-041911-GW	B17	4/19/2011	<260	<420	<100	<1.0	<1.0	<1.0	<1.0
B18-041911-GW	B18	4/19/2011	<270	<440	<100	<1.0	<1.0	<1.0	<1.0
B19-041911-GW	B19	4/19/2011	250	1,200	<100	<1.0	<1.0	<1.0	<1.0
B20-041911-GW	B20	4/19/2011	<b>810</b> ⁷	<420	240	<1.0	<1.0	<1.0	<1.0
B21-042011-GW	B21	4/20/2011	8,800	<1,200					
B22-042011-GW	B22	4/20/2011	<280	<440					
B23-042011-GW	B23	4/20/2011	<b>30,000</b> ⁷	15,000	560	<4.0	<4.0	<4.0	<4.0
B24-042011-GW	B24	4/20/2011	<b>40,000</b> ⁷	17,000	4,500	<4.0	<4.0	8.8	13
B25-042011-GW	B25	4/20/2011	<b>1,700</b> ⁸	470					
B26-042011-GW	B26	4/20/2011	<b>19,000</b> ⁷	$<2,000^{6}$	1,200	<4.0	<4.0	<4.0	6.0
B27-042011-GW	B27	4/20/2011	12,000	9,900					
B28-042111-GW	B28	4/21/2011	9,100	1,700					
B29-042111-GW	B29	4/21/2011	2,000	<b>700</b> ⁹					
B30-042111-GW	B30	4/21/2011	<b>4,900</b> ⁸	610					
B31-042111-GW	B31	4/21/2011	290	<260					
B32-042111-GW	B32	4/21/2011	<290	<460					
B33-042111-GW	B33	4/21/2011	<280	<450					
B34-041911-GW	B34	4/19/2011	<b>510</b> ⁷	<420	510	<1.0	<1.0	<1.0	<1.0
B35-042111-GW	B35	4/21/2011	39,000	<4,200 ⁶					
MTCA Method A	Cleanup Levels ⁴		500		800 ⁵	5	1,000	700	1,000

### Table 6 Summary of Reconnaissance Groundwater Analytical Results - Total Petroleum Hydrocarbons Lakeside Industries Aberdeen Facility Aberdeen, Washington Farallon PN: 525-006

					Analytical	Results (micr	ograms per lit	er)	
Sample Identification	Boring Number	Sample Date	<b>DRO</b> ¹	<b>ORO</b> ¹	<b>GRO</b> ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³
		Jı	ıly/August 2011	Supplemen	tal Remedial In	vestigation			
B36-072511-GW	B36	7/25/2011	7,300	1,200					
B37-072511-GW	B37	7/25/2011	<270	<430					
B38-072522-GW	B38	7/25/2011	330	620					
B39-072511-GW	B39	7/25/2011	9,300	1,100					
B40-072511-GW	B40	7/25/2011	9,600	3,600					
B41-072611-GW	B41	7/26/2011	2,000	1,400	<400	<4.0	<4.0	<4.0	<8.0
B42-072511-GW	B42	7/25/2011	6,800	6,800	660	<4.0	<4.0	<4.0	<8.0
B43-072511-GW	B43	7/25/2011	2,900	680	1,100	5.60	<4.0	<4.0	<8.0
B44-072911-GW	B44	7/29/2011	13,000	4,300					
MTCA Method A	Cleanup Levels ⁴		500		800 ⁵	5	1,000	700	1,000

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

-- denotes sample not analyzed

¹Analyzed by Northwest Method NWTPH-Dx.

²Analyzed by Northwest Method NWTPH-Gx.

³Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁴Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁵Cleanup level for GRO is with the presence of benzene.

⁶The practical quantitation limit is elevated due to interferences in the sample.

⁷Hydrocarbons in the gasoline range are impacting the diesel-range result.

⁸Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.

⁹Hydrocarbons in the diesel range are impacting the oil-range result.

¹⁰The laboratory analytical report indicates that hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

ORO = TPH as oil-range organics

					Analytical l	Results (micro	grams per liter)		
Boring/ Monitoring	Sample							Ethyl-	
Well	Identification	Sample Date	DRO ¹	<b>ORO</b> ¹	<b>GRO</b> ²	Benzene ³	Toluene ³	benzene ³	Xylenes ³
	MW-1-080211	08/02/11	<580	<410	1,400	16	<1.0	17	17.2
MW-1	MW-1-032212	03/22/12	<710	<410	1,600	16	1.3	19	13.8
	MW-1-050317	05/03/17	1,300	620	<b>1,300</b> J F	10 J	<4.0 UJ	<4.0 UJ	<8.0 UJ
	MW-2-080211	08/02/11	<270	<430	<100	<1.0	<1.0	<1.0	<2.0
MW-2	MW-2-032212	03/22/12	<260	<410	<100	<1.0	<1.0	<1.0	<2.0
	MW-2-050217*	05/02/17	<260	<410	<100	<1.0	<1.0	<1.0	<2.0
	MW-3-080211	08/02/11	<260	<420	<100	<1.0	<1.0	<1.0	<2.0
MW-3	MW-3-032212	03/22/12	<260	<410	<100	<1.0	<1.0	<1.0	<2.0
	MW-3-050317	05/03/17	<260	<410	<400	<4.0	<4.0	<4.0	<8.0
	MW-4-080211	08/02/11	<260	<420	<100	<1.0	<1.0	<1.0	<2.0
MW-4	MW-4-032212	03/22/12	<260	<410	<100	<1.0	<1.0	<1.0	<2.0
	MW-4-050317	05/03/17	<260	<410	<400	<4.0	<4.0	<4.0	<8.0
	MW-5-080311	08/03/11	<260	<420	190	<1.0	<1.0	<1.0	<2.0
MW-5	MW-5-032312	03/23/12	<270	<430	<100	<1.0	<1.0	<1.0	<2.0
	MW-5-050317	05/03/17	<260	<420	<400	<4.0	<4.0	<4.0	<8.0
	MW-6-080211	08/02/11	<260	<410	140	<1.0	<1.0	<1.0	<2.0
MW-6	MW-6-032212	03/22/12	<260	<420	<100	<1.0	<1.0	<1.0	<2.0
	MW-6-050317	05/03/17	340	430	<100	11	<1.0	<1.0	<2.0
	MW-7-080311	08/03/11	<260	<420	240	<1.0	<1.0	<1.0	<2.0
MW-7	MW-7-032312	03/23/12	<260	<420	170	<1.0	<1.0	<1.0	<2.0
IVI W - /	MW-7-050317	05/03/17	620	<410	160 F	<1.0	<1.0	<1.0	<2.0
	DUP2-050317	05/03/17			160	<1.0	<1.0	<1.0	<2.0
	MW-8-080211	08/02/11	<270	<430					
MW-8	MW-8-032212	03/22/12	<260	<420	<100	<1.0	<1.0	<1.0	<2.0
	MW-8-050217*	05/02/17	<260	<410	<100	<1.0	<1.0	<1.0	<2.0
	MW-9-080311	08/03/11	<260	<420	100	<1.0	<1.0	<1.0	<2.0
MW-9	MW-9-032312	03/23/12	<260	<410	<100	<1.0	<1.0	<1.0	<2.0
	MW-9-050317	05/03/17	<260	<420	<100	<1.0	<1.0	<1.0	<2.0
	MW-10-080311	08/03/11	<260	<410	<100	<1.0	<1.0	<1.0	<2.0
MW-10	MW-10-032312	03/23/12	<260	<410	<100	<1.0	<1.0	<1.0	<2.0
	MW-10-050317	05/03/17	440	<410	<400 UJ	<4.0 UJ	<4.0 UJ	<4.0 UJ	<8.0 UJ
MTCA Cleanup Levels	s for Groundwater ⁴	-	50	0	800	5	1,000	700	1,000

### Table 7 Summary of Groundwater Analytical Results - Total Petroleum Hydrocarbons Lakeside Industries Aberdeen Facility Aberdeen, Washington Farallon PN: 525-006

					Analytical l	Results (microg	grams per liter)		
Boring/ Monitoring Well	Sample Identification	Sample Date	<b>DRO</b> ¹	ORO ¹	<b>GRO</b> ²	Benzene ³	Toluene ³	Ethyl- benzene ³	Xylenes ³
	MW-11-080211-LNAPL	08/03/11							
MW-11	MW-11-032312	03/23/12	<260	440	<100	<1.0	<1.0	<1.0	<2.0
1 <b>v1 vv - 1 1</b>	MW-11-050317	05/03/17	240	340	<400	<4.0	<4.0	<4.0	<8.0
-	DUP3-050317	05/03/17			480	<1.0	<1.0	<1.0	<2.0
	MW-12-080311	08/03/11	310	<440	<100	<1.0	<1.0	<1.0	<2.0
MW-12	MW-12-032312	03/23/12	<260	<410	<100	<1.0	<1.0	<1.0	<2.0
-	MW-12-050317	05/03/17	1,300	630	<400	<4.0	<4.0	<4.0	<8.0
	MW-13-080311	08/03/11	400	<420	<100	<1.0	<1.0	<1.0	<2.0
MW-13	MW-13-032312	03/23/12	<260	<410	<100	<1.0	<1.0	<1.0	<2.0
-	MW-13-050317	05/03/17	300	<420	<100	<1.0	<1.0	<1.0	<2.0
	MW-14-080211	08/02/11	<260	<410					
MW-14	MW-14-032212	03/22/12	<260	<420	<100	<1.0	<1.0	<1.0	<2.0
	MW-14-050317	05/03/17	<260	<410	<100	<1.0	<1.0	<1.0	<2.0
	MW-15-080311	08/03/11	<260	<420	130	<1.0	<1.0	<1.0	<2.0
MW-15	MW-15-032212	03/22/12	<260	<420	<100	<1.0	<1.0	<1.0	<2.0
	MW-15-050317	05/03/17	420	460	<100	<1.0	<1.0	<1.0	<2.0
	MW-16-080211	08/02/11	<260	<410					
MW-16	MW-16-032212	03/22/12	<260	<420	<100	<1.0	<1.0	<1.0	<2.0
	MW-16-050317	05/03/17	<260	<410	<100	<1.0	<1.0	<1.0	<2.0
	MW-17-080311	08/03/11	1,400	<410					
MW-17	MW-17-032312	03/23/12	1,000	580	<100	<1.0	<1.0	<1.0	<2.0
101 00 - 1 /	MW-17-050317	05/03/17	<260	430	<100	<1.0	<1.0	<1.0	<2.0
	DUP1-050317	05/03/17			<400	<4.0	<4.0	<4.0	<8.0
MW-18	MW-18-041113	04/11/13	3,900	<1,400	2,300	39	4.7	34	5.9
101 00 - 1 0	MW-18-050317	05/03/17	4,100	2,500	<b>1,500</b> F	31	4.3	4.6	<8.0
MW-19	MW-19-082813	08/28/13	740	640	<100	<1.0	<1.0	<1.0	9.3
101 00 - 1 7	MW-19-050317	05/03/17	310	440	<100	<1.0	<1.0	<1.0	13
ITCA Cleanup Leve	TCA Cleanup Levels for Groundwater ⁴		50	0	800	5	1,000	700	1,000

#### Table 7 Summary of Groundwater Analytical Results - Total Petroleum Hydrocarbons Lakeside Industries Aberdeen Facility Aberdeen, Washington Farallon PN: 525-006

			Analytical Results (micrograms per liter)							
Boring/ Monitoring	Sample		ppol	onol	$CDO^2$	D 3	<b>T</b> 1 ³	Ethyl-	<b>X 1</b> 3	
Well	Identification	Sample Date	DRO	ORO	<b>GRO</b> ²	Benzene	Toluene	benzene	Xylenes	
MW-20	MW-20-082813	08/28/13	2,700	1,200	460	65	1.3	<1.0	2.7	
IVI VV -2.0	MW-20-050317	05/03/17	2,700	1,600	500 F	56	<1.0	<1.0	3.9	
MW-21	MW-21-082813	08/28/13	<260	<410	<100	<1.0	<1.0	<1.0	<2.0	
IVI VV -2.1	MW-21-050317	05/03/17	<260	<420	<100	<1.0	<1.0	<1.0	<2.0	
MTCA Cleanup Leve	ls for Groundwater ⁴		50	0	800	5	1,000	700	1,000	

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by Northwest Method NWTPH-Dx.

²Analyzed by Northwest Method NWTPH-Gx.

³Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁴Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013. DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

F = hydrocarbons indicative of heavier fuels are present in sample and are impacting

the gasoline result

GRO = TPH as gasoline-range organics

J = result is an estimate

ORO = TPH as oil-range organics

UJ = the analyte was analyzed for but was not detected; the reporting limit is an estimate

* sample analyzed one day out of holding time

#### Table 8 Summary of Groundwater Analytical Results - Polycyclic Aromatic Hydrocarbons Lakeside Industries Aberdeen Facility Aberdeen, Washington Farallon PN: 525-006

				Analytical Results (micrograms per liter) ¹																	
					_	Non-Carci	nogenic Po	lycyclic Ar	omatic Hyd	rocarbons	-				С	arcinogeni	c Polycyclic	Aromatic	Hydrocarb	ons	
Location	Sample Identification	Sample Date	Vaphthalene	2-Methylnaphthalene	l-Methylnaphthalene	Acenaphthylene	Acenaphthene	fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(g,h,i)perylene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(j,k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Fotal Toxic Equivalent Concentration ³
MW-4	MW-4-080211	08/02/11	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.025	0.029	0.011	0.019	0.021	0.031	0.028	0.024	0.043
MW-5	MW-5-080311	08/03/11	< 0.096	< 0.096	0.52	< 0.096	0.13	0.15	< 0.096	< 0.096	< 0.096	< 0.096	0.022	0.026	< 0.0096	0.019	0.019	0.028	0.027	0.024	0.040
MW-6	MW-6-080211	08/02/11	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	0.021	0.025	< 0.0096	0.017	0.019	0.027	0.026	0.024	0.038
MW-7	MW-7-080311	08/03/11	0.12	0.23	3.2	< 0.095	0.29	0.65	0.13	< 0.095	< 0.095	< 0.095	0.021	0.016	< 0.0095	0.018	0.017	0.027	0.026	0.024	0.037
MW-9	MW-9-080311	08/03/11	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	0.022	0.024	< 0.0096	0.017	0.019	0.027	0.025	0.024	0.038
MW-12	MW-12-080311	08/03/11	< 0.098	< 0.098	0.18	< 0.098	< 0.098	< 0.098	< 0.098	< 0.098	< 0.098	< 0.098	0.026	0.027	0.012	0.021	0.021	0.032	0.028	0.025	0.044
MTCA Cleanur	p Levels for Ground	water		<b>160</b> ²		NE	NE	NE	NE	NE	NE	NE	NE					Clean	up Level fo	or Mixture	<b>0.1</b> ²

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM.

²Washington State Model Toxics Control Act Cleanup [Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised November 2013.

³Total Toxic Equivalent Concentration for mixtures of carcinogenic PAHs, calculated in accordance with MTCA Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

 $P: \label{eq:label} S25006 \ Aberdeen \ Site \ Reports \ RI-FS \ Report \ 2018 \ Tables \ and \ Chart \ 2018-09-28 \ Aberdeen \ RIFS \ Tables \ RIFS \ Tables \ RIFS \ Report \ 2018 \ RIFS \ Report \ 2018 \ RIFS \ RIFS$ 

NE = cleanup levels not established

#### Table 9 Summary of Groundwater Analytical Results - Metals Lakeside Industries Aberdeen Facility Aberdeen, Washington Farallon PN: 525-006

	Sample				Analytic	al Results (mi	icrograms p	er liter) ¹		
Location	Identification	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
MW-4	MW-4-080211	08/02/11	<3.0	<25	<4.0	<10	<1.0	< 0.5	<5	<10
MW-5	MW-5-080211	08/02/11	<3.0	91	<4.0	<10	<1.0	< 0.5	<5	<10
MW-6	MW-6-080211	08/02/11	<3.0	140	<4.0	<10	<1.0	<0.5	<11	<10
MW-9	MW-9-080311	08/03/11	<3.0	130	<4.0	<10	<1.0	<0.5	<5	<10
MTCA Cle	eanup Levels for G	roundwater	5 ²	<b>2,000³</b>	5 ²	<b>50</b> ²	$15^{2}$	<b>2</b> ²	NE	NE

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

NE = cleanup level not established

¹Analyzed by U.S. Environmental Protection Agency Methods 6000/6010/7000.

²Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of

Chapter 173-340 of the Washington Administrative Code, as revised 2013.

³ National Primary Drinking Water Standard Maximum Contaminant Level - http://water.epa.gov/drink/contaminants/index.cfm

### Table 10Cleanup Technology ScreeningLakeside Industries Aberdeen FacilityAberdeen, WashingtonFarallon PN: 525-006

Media	General Response Action	Technology	Process Option ¹	Prima Criteria S Implementability	•	Secondary Criterion Score ² Relative Cost	Total Score ²	Rank ³	Retain ⁴
	No Action	None	None	3	0	3	6	2	Y
Non-Specific	Institutional Controls	Legal	Deed Restrictions (Environmental Covenant), Property Use Restrictions, Health Advisories	3	1	3	7	1	Y
	Monitored Natural Attenuation	Natural Degradation Processes, Monitoring, Modeling	Sample Collection and Analysis, Predictive Modeling	3	1	3	7	1	Y
		Dislogical	Bioventing	2	1	2	5	3	Ν
		Biological	Enhanced Bioremediation	2	1	2	5	3	Ν
	Treat In-Situ	Chemical	Chemical Oxidation	1	1	2	4	4	Ν
	Treat III-Situ		Soil Flush	2	1	1	4	4	Ν
		Physical	Soil Vapor Extraction	2	1	2	5	3	Ν
			Thermal Remediation	1	3	1	5	3	Ν
Soil	Soil Biol		Biopile	2	1	1	4	4	Ν
	<b>Excavate and Treat or Contain</b>		Slurry Phase Biological Remediation	2	2	1	5	3	Ν
	On or Off the Site		Incineration	1	3	1	5	3	Ν
		Physical	Landfill Disposal	2	3	2	7	2	Y
			Thermal Desorption	2	2	1	5	3	Ν
	Containment	Capping	Physical Barriers and Constructed Cover	3	2	3	8	1	Y
		Biological	Enhanced Bioremediation	1	1	2	4	3	Ν
		Chemical	Chemical Oxidation	1	1	2	4	3	Ν
	Treat In-Situ	Chemiear	Passive or Reactive Treatment Wall	2	1	1	4	3	Ν
		Physical	Air Sparge	1	1	2	4	3	N
		-	Thermal Remediation	2	2	1	5	2	N
		Biological	Bioreactor	2	1	1	4	3	N
Groundwater		Chemical	Advanced Oxidation Processes	2	1	1	4	3	Ν
Groundwater	Collect and Treat Ex-Situ		Granular Activated Carbon	2	3	1	6	2	Ν
		Physical	Air Stripping	2	1	1	4	3	N
		-	Dispose to Sanitary Sewer	2	1	2	5	2	Y
		Capping	Physical Barriers and Constructed Cover	3	1	3	7	1	Y
	Containment		Sheet Pile Barrier	2	3	1	6	2	Y
		Vertical Barrier	Slurry Wall	1	1	1	3	4	N
NOTES			Existing Wall	3	1	3	7	1	Y

NOTES:

¹Process options in **bold** and highlighted are retained for consideration in Cleanup Alternatives 2 through 4.

²Scores: 0 least favorable, 3 most favorable

³Rank: based on total score for media, scale of 1 (most favorable) to 4 (least favorable)

⁴Retain: Y = Yes, retain for consideration in cleanup alternative(s). N = No, do not retain for consideration in cleanup alternative(s).

#### Table 11Summary of Cleanup Alternative EvaluationLakeside Aberdeen FacilityAberdeen WashingtonFarallon PN: 525-006

	1		I	Γ
	Alternative 1 No Action	Alternative 2 Institutional and Engineered Controls, Containment, and Monitored Natural Attenuation	Alternative 3 Source Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered Controls	Alternative 4 Complete Excavation of Soil Exceeding Cleanup Levels
Description	No action. No additional measures will be taken to clean up property or to provide protection from exposure to COCs remaining at the Site.	Institutional controls in the form of an environmental covenant recorded on the property deed mandating implementation of future protective measures including engineered controls and containment with capping and vertical barriers, groundwater capture and treatment system, and requiring groundwater monitoring of natural attenuation processes and concentrations of COCs over a period of 5 years.	Soil excavation and off-Site disposal at a permitted landfill; Containment involves capping and vertical barriers and requires temporary partial building demolition and restoration.	Soil site-wide excavation and off-Site disposal at a permitted landfill.
Amount of Contaminated Soil Removal (tons)	0	0	3,100	47,090
		THRESHOLD REQUIREMENTS		
Protection of Human Health and the Environment	Alternative will not provide additional protection to human health and the environment.	Yes - Alternative will protect human health and the environment by limiting future COC exposure and requiring protective measures included in institutional and engineered controls.	Yes - Alternative will protect human health and the environment by use of institutional and engineered controls containment measures, and by source excavation.	Yes - Alternative will protect human health and the environment by use of institutional and engineered controls containment measures, and by excavation o all areas of the Site where COCs occur above cleanu levels.
Compliance with Cleanup Standards	Alternative will not comply with cleanup standards except over a very long period of time. COCs will remain above cleanup levels until attenuated naturally.	Alternative will not comply with cleanup standards except over a very long period of time. COCs will remain above cleanup levels until attenuated naturally.	Yes - Active remedial measure (excavation) will result in compliance with cleanup standards in source areas. Cleanup standards outside of source areas would be achieved over the long term.	Yes - Active remedial measures (excavation) will result in compliance with cleanup standards through the Site.
Compliance with Applicable State and Federal Laws	Alternative does not comply with MTCA.	Yes - Alternative complies with applicable laws.	Yes - Alternative complies with applicable laws.	Yes - Alternative complies with applicable laws.
Provision for Compliance Monitoring	Alternative does not include provisions for compliance monitoring.	Yes - Alternative includes provisions for compliance monitoring.	Yes - Alternative includes provisions for compliance monitoring.	Yes - Alternative includes provisions for compliance monitoring.
		OTHER REQUIREMENTS		
Permanent to the Maximum Extent Practicable (see detail below)	While alternative is permanent and protective with the current containment systems, cleanup standards will be achieved only over a very long period of time and does not provide for protectiveness beyond that provided by existing containment systems.	Alternative is permanent and protective with the current containment systems supplemented with a new vertical barrier and a protective environmental covenant; however, cleanup standards will be achieved only over a very long period of time and monitoring will enable evaluation of natural attenuation processes.	Yes - Alternative is permanent and protective to the maximum extent practicable with the current containment systems supplemented with a new vertical barrier and a protective environmental covenant; achievement of cleanup standards will be accelerated by removal of source material and monitoring will enable evaluation of natural attenuation processes.	Alternative is permanent and protective and cleanup standards will be achieved by removal of soil containing COCs exceeding cleanup levels; howeve this cleanup alternative is not considered to be practicable.
Restoration Time Frame	Concentrations of COCs will degrade below cleanup levels over many years. As no additional protective controls or monitoring will be employed, the restoration time frame is not considered to be reasonable under MTCA.	Concentrations of COCs will degrade below cleanup levels over many years. As additional protective controls and monitoring will be employed, no off-Site effects of COCs are expected, and shallow groundwater is not considered to be a potable water supply, the restoration time frame is considered to be reasonable under MTCA.	The restoration time frame for groundwater is within 5 years of completing remedial action construction. The restoration time frame for soil after removal of source areas is many years as COCs are naturally attenuated. As additional protective controls, inspections, and monitoring will be employed, no off-Site effects of COCs are expected, and shallow groundwater is not considered to be a potable water supply, the restoration time frame is considered to be reasonable under MTCA.	The restoration time frame for groundwater is within years of completing remedial action construction. T restoration time frame for soil is upon completion of remedial action construction. Protective controls an monitoring is not required. As no off-Site effects of COCs are expected, and shallow groundwater is not considered to be a potable water supply, the restorat time frame is considered to be reasonable under MTCA.
	<u> </u>	Evaluation Criteria for Permanence to the Maximum E	xtent Practicable ¹	
Protectiveness (30% weighting Factor)	Alternative will not provide additional protectiveness beyond that provided by existing containment systems and does not include an environmental covenent or monitoring; cleanup standards achieved over a long time period through natural attenuation. = 5.	Alternative provides protection with containment systems, subject to periodic repairs, supplemented with an environmental covenant and monitoring; cleanup standards achieved over a long period of time through natural attenuation. = 6.5.	Alternative provides protection with containment systems, supplemented with source excavation and an environmental covenant; cleanup standards achieved in reasonable period of time; monitoring of natural attenuation of residual levels of COCs. = 8.	Alternative provides protection by removing all soil containing COCs exceeding cleanup levels. = 9.
Permanence (20% weighting Factor)	Alternative will not pernamently reduce the toxicity or volume of haxardous substances except via natural attenuation processes but the existing containment systems will reduce the overall mobility of COCs. = 4.	Alternative will not pernamently reduce the toxicity or volume of haxardous substances except via natural attenuation processes but the containment systems will reduce the overall mobility of COCs. = 4.	Alternative will permanently reduce the volume of hazardous substances with source excavation; the existing containment system will reduce overall mobility of residual COCs until naturally attenuated. = 8.	Alternative will permanently reduce the volume of hazardous substances with mass excavation of all are where COCs exceed cleanup levels. = 9.
Long-Term Effectiveness (20% weighting Factor)	Alternative is considred to provide effective protection over the long-term but with reliance on the existing on-Site containment systems. = 2.	Alternative is considred to provide effective protection over the long-term but with reliance on containment systems supplemented with engineered and institutional controls and monitoring. = 4.	Alternative provides effective protection over the long- term by source excavation and disposal off-Site at a permitted facility and by containment of residual levels of COCs supplemented by engineered and instituational controls. = 7.	Alternative provides effective protection over the lor term by mass excavation of areas where COCs excee cleanup levels and disposal off-Site at a permitted facility. = 9.
Short-Term Risk Management (10% weighting Factor)	Alternative does not disturb affected media in the short term; no short-term risk management needed = 8.	Alternative disturbs minor volume of affected media in the short term for installation of engineer controls; no short-term risk management needed = 7.	Alternative disturbs affected media presenting short- term risk to workers, proximate property owners, and during transport off-Site = 7.	Alternative disturbs larger volumes of affected medi than Alternative 3 presenting short-term risk to workers, proximate property owners, and during transport off-Site = 5.
Implementability (10% weighting Factor)	Alternative is easily implemented and results in no Site disturbance. =10.	Alternative employs standard construction processes and use of institutional and engineered controls. While components are readily implementable and require minimal Site disturbance. = 9.	Alternative employs standard construction processes and use of institutional and engineered controls. Components are readily implementable and require modest Site disturbance. = 8.	Alternative requires facilities temporarily move and demolition/rebuilding of structures, extensive excavation, and large impact to the Site business operations. = 1.

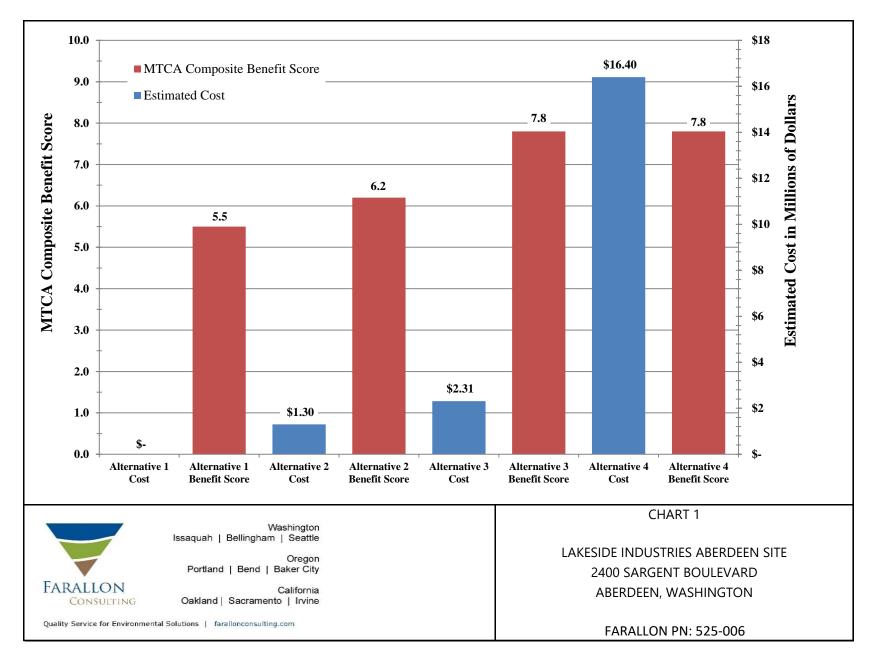
Public Concerns (10% weighting Factor)	Alternative leaves impacted soil in place. Site is in area zoned for industrial use and public access is restricted. Public exposure will not occur and limited public concern is anticipated = 10.	Alternative leaves impacted soil in place. Site is in area zoned for industrial use and public access is restricted. Public exposure will not occur and limited public concern is anticipated = 10.	Alternative maximizes removal and disposal of impacted soils. Site is in area zoned for industrial use and public access will be restricted during construction activities. Limited public concern during excavation with most during off-Site transport = 9.	Site is in an area zoned for industiral use and public access will be restricted during construction activities. Public concern may be heightened due to scale of excavation and quantity of soil removed. = 9.
MTCA Composite Benefit Score ¹	5.5	6.2	7.8	7.8
Overall Alternative Ranking ²	4	3	1	2
Cost	\$0	\$1,330,000	\$2,310,000	\$16,400,000

#### NOTES:

¹ Basis for overall Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Composite Benefit Score provided quantitatively with a "score" from 0 (least favorable) to 10 (most favorable) for each of the six evaluation criteria for permanence to the Maximum Extend Practicable above. MTCA Composite Benefit Scores are calculated by summing the mathematical product of the score multiplied by the indicated weighting factor for each of the six criteria. The basis for the weighting factors for the six criteria to evaluate permanence to the maximum extent practicable are obtained from Washington State Department of Ecology guidance cited in the text.

² Overall Alternative Ranking from 1 (most favorable) to 4 (least favorable).

# Table 12Summary of Cleanup Alternative Cost EstimatesFormer Chevron Bulk Fuel FacilityLakeside IndustriesAberdeen, WashingtonFarallon PN: 525-006

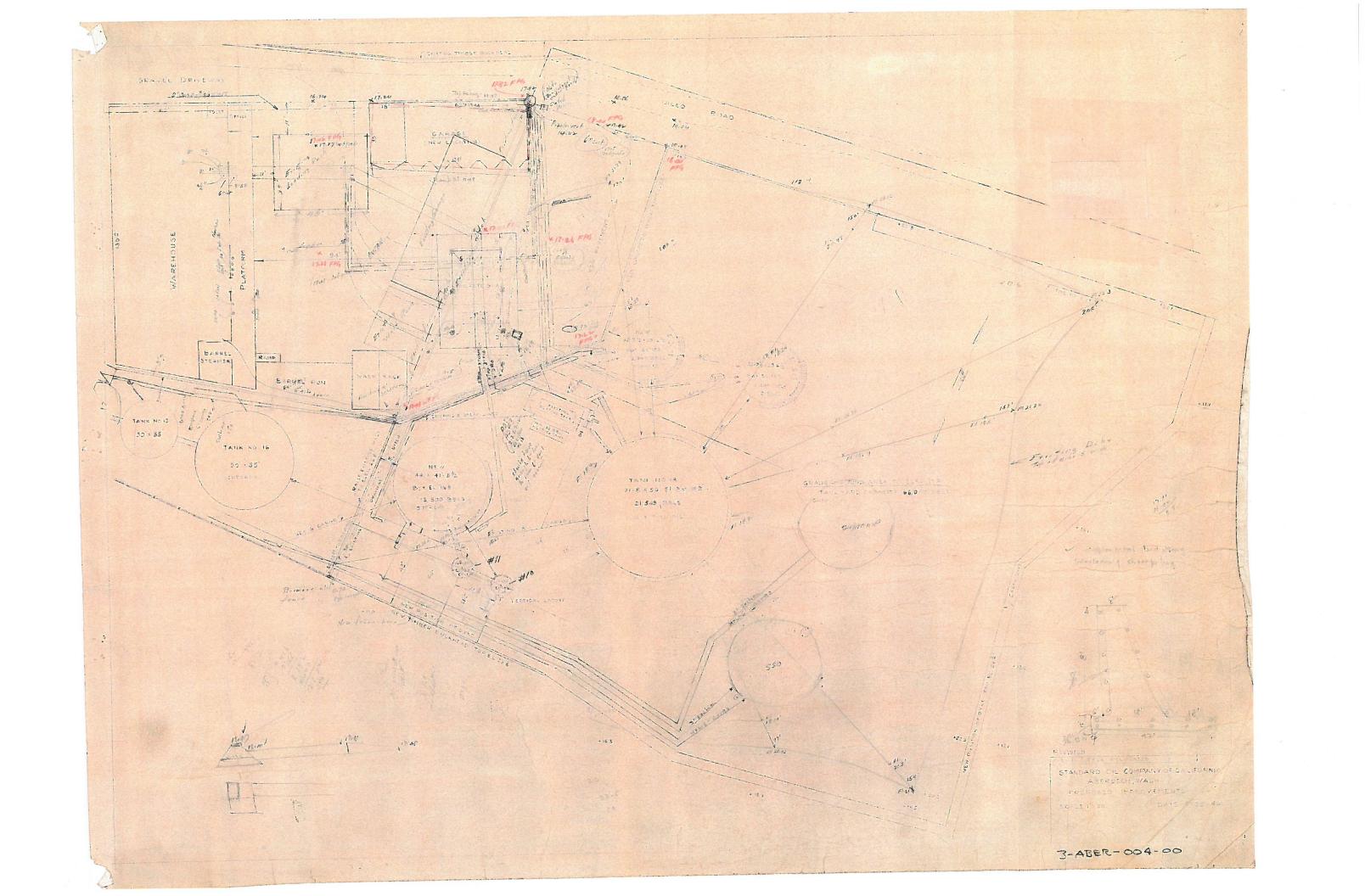

			Alternative 3	
	Alternative 1	Alternative 2 Institutional and Engineered Controls, Containment, and	Source Excavation, Containment, Monitored Natural Attenuation, Institutional and Engineered	Alternative 4 Complete Excavation of Soil
	No Action	Monitored Natural Attenuation	Controls	Exceeding Cleanup Levels
Capital Costs				
Engineering				
Project Management (7% total construction cost)	\$0	\$57,800	\$108,000	\$833,000
Remedial Design, Permitting (15% total construction cost)	\$0	\$123,900	\$231,000	\$1,790,000
Construction Management (8% total construction cost)	\$0	\$66,100	\$123,000	\$952,000
Construction				
Site Preparation and Construction				
Mobilization/Demobilization	\$0	\$0	\$28,000	\$400,000
Temporary Facilities	\$0	\$0	\$5,000	\$5,000
Batch Plant Relocation	\$0	\$0	\$0	\$1,700,000
Erosion Control	\$0	\$0	\$20,000	\$50,000
Site Preparation	\$0	\$0	\$10,000	\$22,000
Demolition (structures, foundations, surfacing, wells, utilities, etc.)	\$0	\$1,700	\$46,800	\$1,100,000
Remediation				
Sheet Pile Barrier and Shoring	\$0	\$705,950	\$746,000	\$0
Excavation & Disposal				
Excavate, Disposal, and Backfill	\$0	\$0	\$265,000	\$3,980,000
Dewatering & Treatment + Disposal	\$0	\$0	\$80,000	\$160,000
Site Restoration & Compliance Monitoring Wells	\$0	\$10,000	\$32,000	\$2,110,000
Subtotal Construction	\$0	\$718,000	\$1,233,000	\$9,530,000
Contingency and Taxes		-		
Contingency Percent	0%	15%	25%	25%
Contingency Price	\$0	\$107,700	\$308,250	\$2,380,000
Washington and Local Sales Tax (6.5% + 2.0%)	\$0	\$61,000	\$105,000	\$810,000
Total Construction Cost	\$0	\$826,000	\$1,540,000	\$11,900,000
TOTAL CAPITAL COST	\$0	\$1,135,000	\$2,110,000	\$16,300,000
Ongoing Periodic and Future Costs				
Lift Station Operation and Maintenance (5 years)	\$0	\$84,800	\$84,800	\$0
Preparation of Cleanup Action Plan	\$0	\$25,000	\$25,000	\$25,000
Confirmational Groundwater Monitoring	\$0	\$51,000	\$51,000	\$51,000
Progress Reporting	\$0	\$14,000	\$14,000	\$14,000
Closure Report	\$0	\$20,000	\$30,000	\$40,000
TOTAL ONGOING PERIODIC and FUTURE COST	\$0	\$194,800	\$204,800	\$130,000
Remediation Project Total Cost	\$0	\$1.330,000	\$2,310,000	\$16,400,000
Remediation Project Total Cost Range (-30%/+50%)	\$0	\$931,000 \$2,000,000	. //	\$11,500,000 \$24,600,000

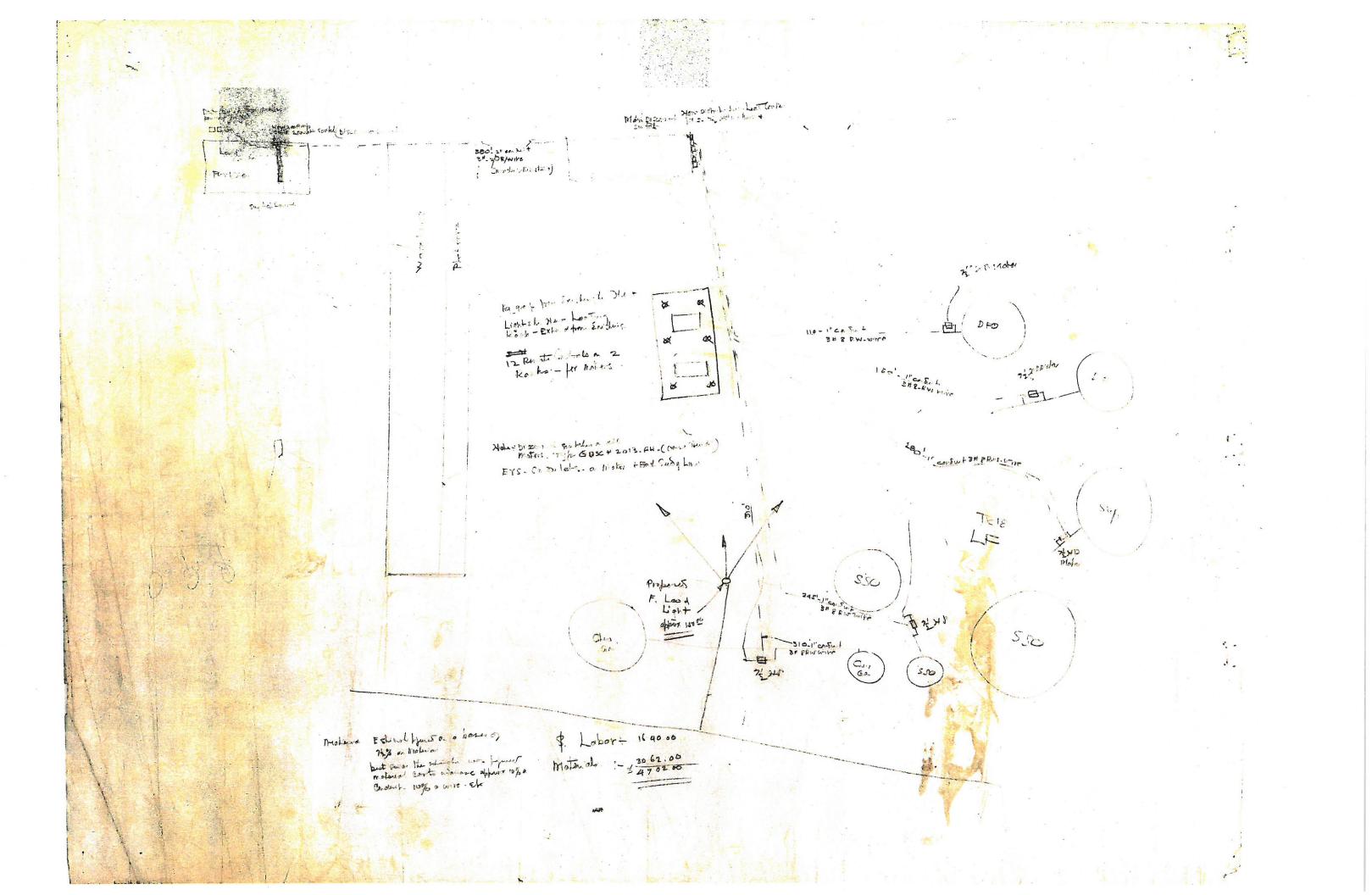
#### CHART

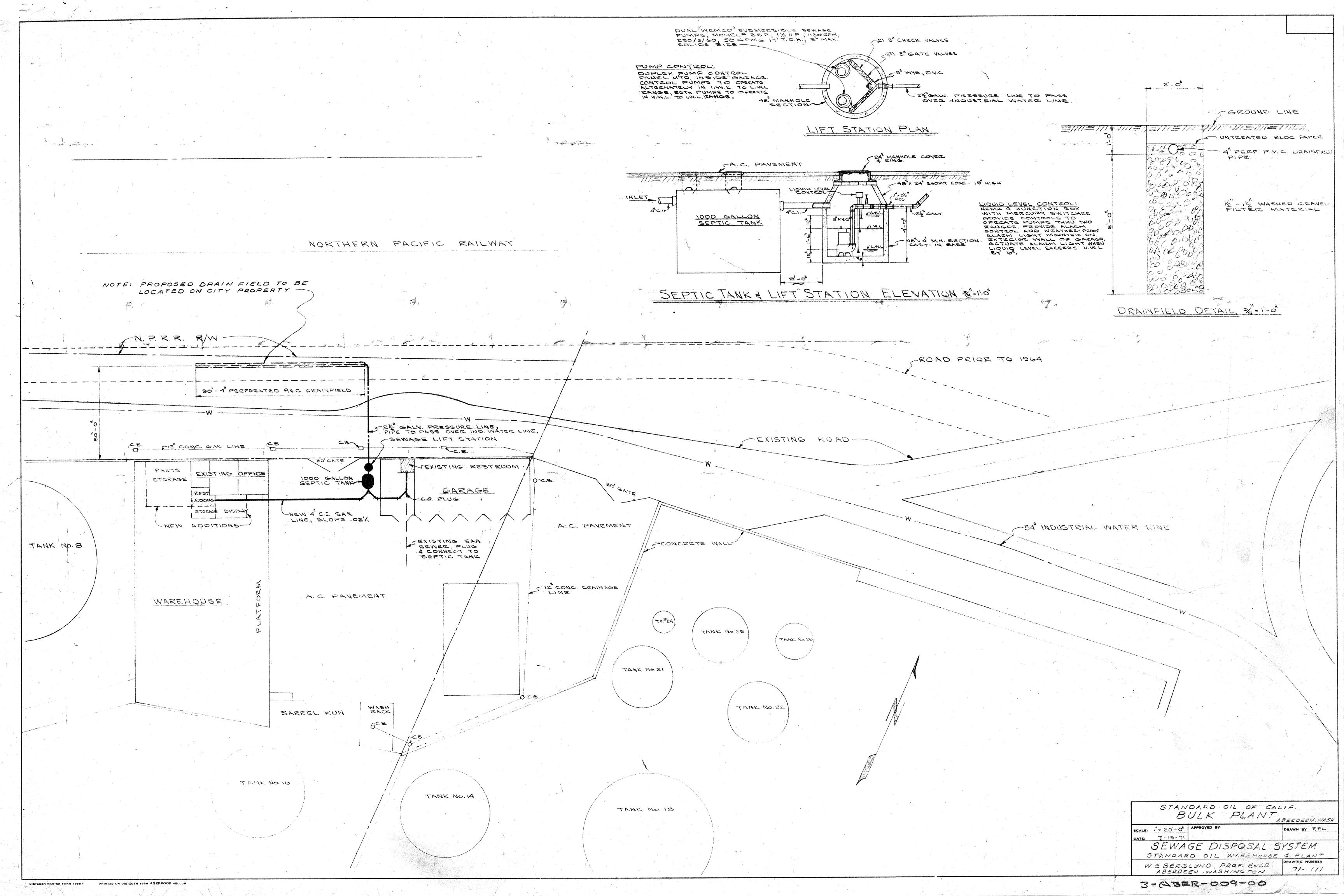
#### LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

Farallon PN: 525-006

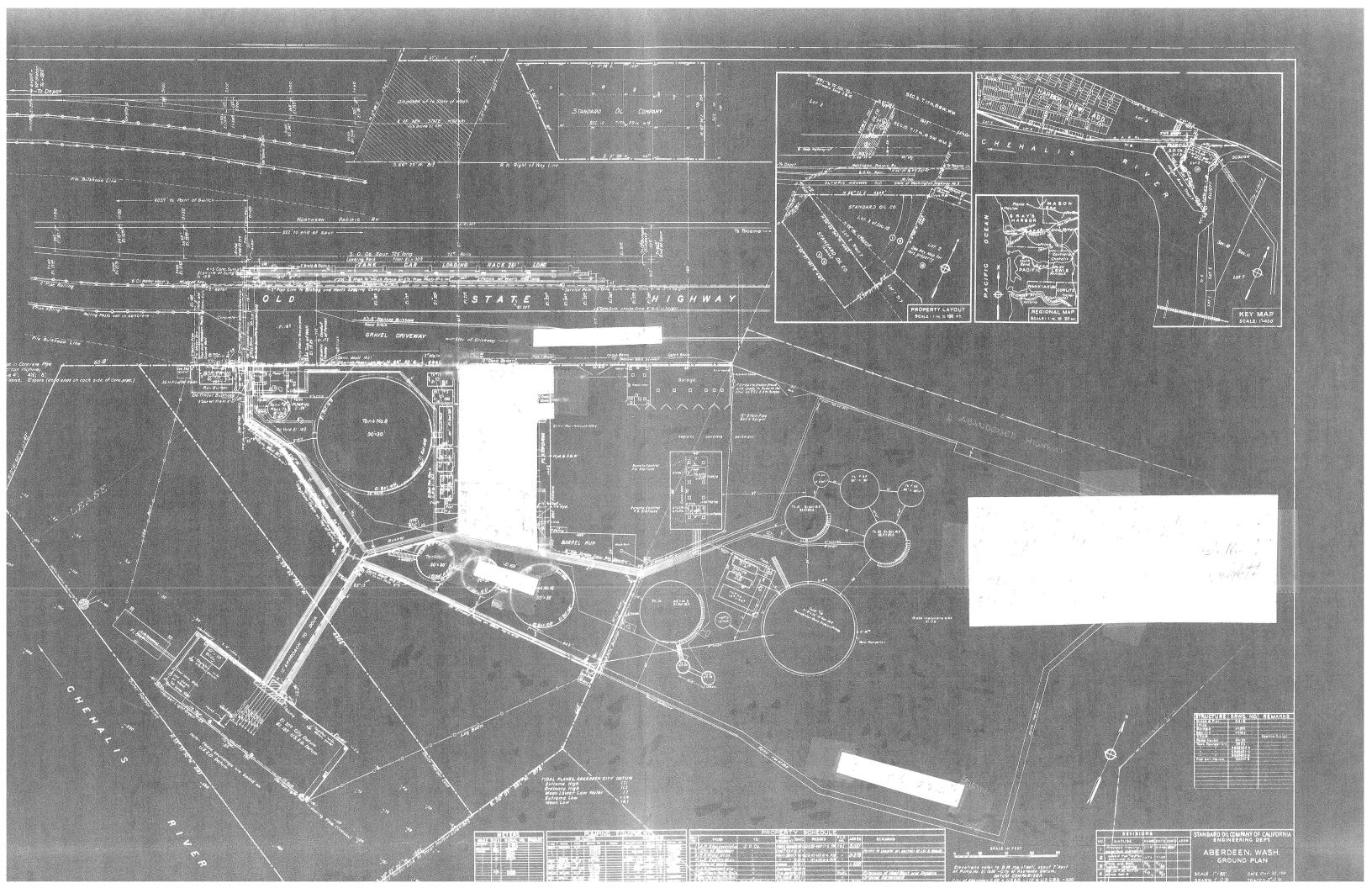
#### Chart 1 Disproportionate Cost Analysis Lakeside Aberdeen Facility Aberdeen Washington Farallon PN: 525-006





DRAFT—Issued for Agency Review


#### APPENDIX A HISTORICAL SITE DRAWINGS AND 1984 HYDROGEOLOGIC REPORT

LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington


Farallon PN: 525-006













(206) 881-7900 P.O. Box 6325 2020 124th Ave. N.E. Bellevue, WA 98008

July 9, 1984

Consulting Geotechnical Engineers and Geologists

Chevron USA, Inc. P.O. Box 220 Seattle, Washington 98111

Attention: Mr. Ken Godwin

Gentlemen:

We are transmitting four copies of our hydrogeologic report for your existing bulk storage facility in Aberdeen, Washington. Our services have been performed under the terms of Contract No. M66CNW03444.

We appreciate the opportunity to be of continued service to Chevron USA, Inc. Please call if you have any questions regarding our report or if we may be of additional service.

Yours very truly,

GeoEngineers, Inc.

James a. meller

James A. Miller Senior Geological Engineer

JAM:da

File No. 372-09

REPORT OF HYDROGEOLOGIC SERVICES EXISTING BULK STORAGE FACILITY ABERDEEN, WASHINGTON FOR CHEVRON USA, INC.

## TABLE OF CONTENTS

	Page No.
INTRODUCTION	1
SUBSURFACE SOIL CONDITIONS	1
HYDROCARBON CONTAMINATION	2
GROUND WATER CONDITIONS	2
CHEMICAL TESTING	3
CONCLUSIONS	3

## LIST OF FIGURES

SITE PLAN

۰. ا

ŕ ,

ļ

.

•

;

3

Figure No.

1

### APPENDICES

	Page No.
APPENDIX 1	A-1
FIELD EXPLORATIONS	A-1
MONITOR WELL CONSTRUCTION AND MEASUREMENTS	A-1
EXPLOSIMETER READINGS	A-2
APPENDIX 2	A-3
Laucks Testing Laboratories, Inc. Certificate	
Laboratory No. 84886, dated June 25, 1984	A-4

## REPORT OF HYDROGEOLOGIC SERVICES EXISTING BULK STORAGE FACILITY ABERDEEN, WASHINGTON FOR CHEVRON USA, INC.

#### INTRODUCTION

The results of our hydrogeologic services at your existing bulk storage facility in Aberdeen, Washington are presented in this report. The bulk plant is located on the north bank of the Chehalis River immediately east of the Aberdeen city limits. The facility was constructed in about 1911 and was used until 1980 when operations ceased at the site. The location of the bulk plant and a layout of the facility are indicated on Figure 1. Most of the storage tanks in the Middle and East Tank Yards are being removed at this time.

We understand that the bulk plant property may be purchased by another owner in the near future. The purpose of our services is to determine the extent and nature of potential subsurface contamination at the bulk plant site. Specifically, our services include:

- 1. Excavating and logging 16 backhoe test pits at the site.
- Installing 2-inch-diameter monitor wells in each of the test pits.
- Submitting four soil samples to Laucks Testing Laboratories for various chemical analyses.
- Sampling the monitor wells for the presence of free (floating) hydrocarbons.
- 5. Evaluating shallow ground water conditions at the site, including ground water flow direction and tidal effects.
- Providing opinions and recommendations regarding abatement of subsurface hydrocarbon contamination at the site.

#### SUBSURFACE SOIL CONDITIONS

Subsurface soil conditions at the bulk plant site were explored by excavating 16 test pits at the locations indicated on Figure 1. Monitor wells were installed in each test pit prior to backfilling. Details of the excavation program, well installations and field measurements are presented in Appendix 1.

The test pit data indicate that the subsurface soils at the site can be divided into an upper unit of fill and a lower unit of native soils. The fill is variable in composition and consists of moderately to highly weathered sandstone fragments, fine to medium sand with a trace of silt and gravel, and sandy to silty gravel. Fill thicknesses appear to vary from 1-1/2 to over 4 feet in the West Tank Yard, from 3-1/2 to over 4 feet in the Middle Tank Yard, and from 4 to over 7 feet in the East Tank Yard.

Underlying the fill are native soils consisting of clayey silt, organic silt and peat. Test Pit 20, located in the northwestern corner of the East Tank Yard, appears to have encountered sandstone bedrock at a depth of approximately 7 feet.

#### HYDROCARBON CONTAMINATION

Olfactory, and sometimes visual, evidence of soil contamination by hydrocarbons was found in 10 of the 16 test pits. Hydrocarbon soil contamination was noted in Test Pits 1, 3, 5, 6, 7, 8, 9, 11, 13, and 18.

The monitor wells were sampled for the presence of free (floating) hydrocarbons on June 1, 1984. Free hydrocarbons were not found in any of the monitor wells.

Explosimeter readings were made at a distance of about one foot above the water level within each monitor well. A list of explosimeter readings is included in Appendix 1. The highest reading obtained was well below the explosive range.

#### GROUND WATER CONDITIONS

Ground water levels in the monitor wells are shallow, ranging from about 1 to 3 feet below present site grades. Contours of water table elevation, based on June 1 measurements in the 16 monitor wells, are shown on Figure 1. The water table elevation contours indicate that the shallow ground water flows in a southerly direction towards the Chehalis River in the vicinity of the tank yards.

Repetitive ground water level measurements in Monitor Wells 6 and 9 indicated little or no variation in water levels despite large tidal changes in the Chehalis River. This suggests that the shallow ground water at the site is "perched" within the fill which overlies native soils and that the perched ground water is not in direct hydraulic connection with the Chehalis River.

i

|

#### CHEMICAL TESTING

Soil samples from Test Pits 1, 6, 11 and 13 were submitted to Laucks Testing Laboratories for chemical analyses. The testing program is listed below.

TYPE OF		TEST PI	T NUMBER	
TEST	1	_6	11	13
EP Toxicity	X	X		
Halogenated Hydrocarbons		x	x	x
Total Metals	X	X		
Pentachlorophenol		x		
Polycyclic Aromatic Hydrocarbons	X	x	x	x

The test data are attached in Appendix 2. The test results indicate no specific toxicity hazards as defined by the State of Washington Department of Ecology.

#### CONCLUSIONS

The presence of soil contamination by hydrocarbons in several of the test pits indicates that hydrocarbons have leaked into the ground during the past operation of the facilities. The apparent absence of free (floating) hydrocarbons in the monitor wells suggests that the subsurface hydrocarbons at the site have been immobilized by contact with soil materials. Based on our measurements, it is our opinion that recovery of subsurface hydrocarbons by pumping or skimming operations is not feasible at this site. The available test data indicate that subsurface soils with residual hydrocarbons are not "hazardous", as defined by the State of Washington Department of Ecology.

The shallow ground water in the site area is probably contaminated by low concentrations of dissolved hydrocarbons. This contamination probably does not pose a threat to local ground water supplies since it is highly unlikely that any water wells are located downgradient from the tank yard. Slow discharge of the shallow ground water into the Chehalis River probably results in dilution of dissolved hydrocarbons below detectable limits.

3

It is our opinion that hydrocarbon vapors may represent a hazard at this site. It has been our experience that vapor production and migration problems are most troublesome when ground warming occurs during the summer months, thereby increasing the rate of volatilization of buried petroleum products. We recommend that future property owners be made aware of the potential presence of hydrocarbon vapors. Future improvements to the property, particularly construction of below-grade confined spaces, should include provisions for vapor protection and isolation.

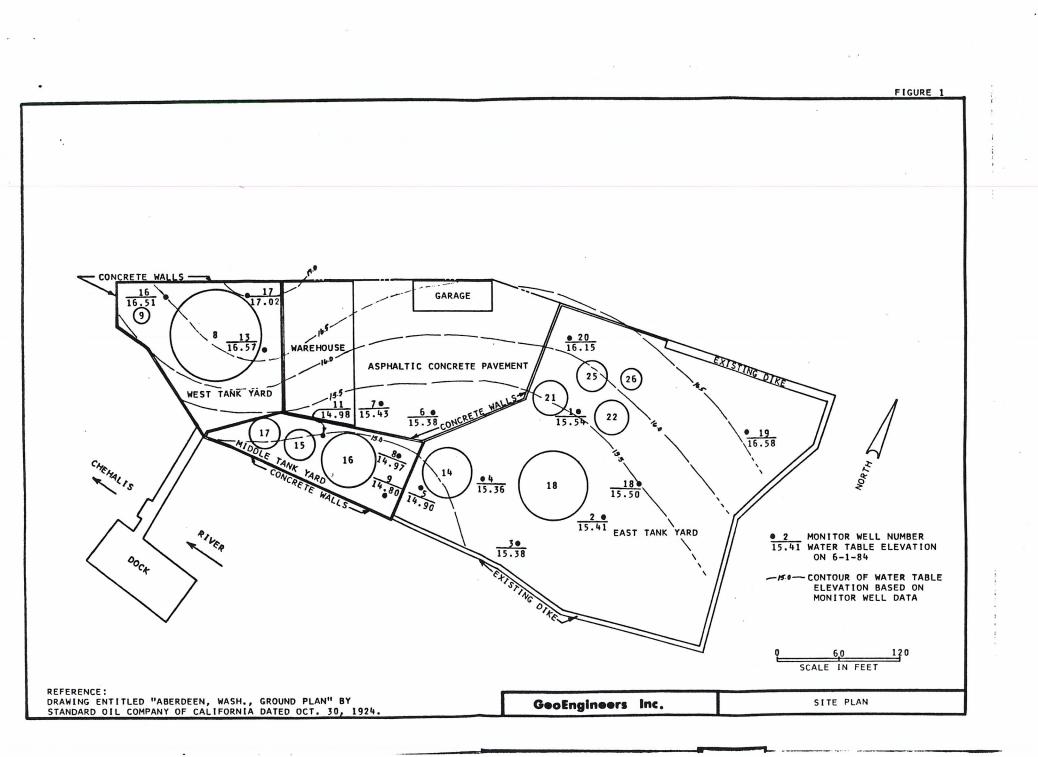
Recently published information from nationwide experience indicates potential problems with volatile hydrocarbons from petroleum-contaminated soils penetrating buried plastic water pipes, even when those pipes are pressurized and flowing. We therefore recommend that copper or steel water lines be installed at this site if future property owners anticipate the construction of new potable water lines.

• • • • •

We appreciate the opportunity to be of service on this project. Please call if you have any questions regarding our report.



Respectfully submitted,


GeoEngineers, Inc.

James a. mille

James A. Miller Senior Geological Engineer

JAM:da

Attachments



#### APPENDIX 1

#### FIELD EXPLORATIONS

Sixteen test pits were excavated at the approximate locations indicated on Figure 1 for the purpose of exploring subsurface conditions and installing monitor wells. The test pits were excavated to depths of 5-1/2 to 10 feet with a rubber-tired backhoe owned and operated by the Jack L. Root Construction Company.

A geological engineer from our staff determined the test pit locations, examined and classified the soils encountered, and prepared a detailed log of each excavation. Soils encountered were classified in accordance with the Unified Soil Classification System. Disturbed soil samples were collected and examined in our laboratory. Detailed test pit logs are available in our files.

#### MONITOR WELL CONSTRUCTION AND MEASUREMENTS

Two-inch-diameter, Schedule 40 PVC pipe was installed to near the base of each test pit excavation. The PVC pipe is machine-slotted (0.02 inch slot size) to allow entry of water and/or free product into the wells. The test pits were backfilled with imported pea gravel. Elevations of the well casing rims were determined by our field engineer to an accuracy of 0.01 feet. Water-finding paste and a weighted fiberglas tape were used to measure subsurface water levels in each of the casings to the nearest 0.01 feet. The results of the June 1, 1984 water level measurements are indicated on Figure 1.

The well casings were also sampled for the potential presence of free (floating) hydrocarbons using a transparent sampler. No free product was found in the wells on June 1, 1984.

A - 1

### EXPLOSIMETER READINGS

·

le la

.

1.1.k

ii.

10.4

S.

------

Explosimeter readings were made at a distance of about one foot above the water level in each monitor well on June 1, 1984. The measurements were made using our Bacharach Model L Explosimeter. A tabulation of the explosimeter readings is presented below.

Well No.	Explosimeter Readings (% L.E.L.)
1	12
2	0
3	0
4	0
5	0
6	10
7	0
8	6
9	10
11	5
13	0
16	0
17	0
18	10
19	0
20	0

A - 2

### APPENDIX 2

RESULTS OF SOIL TESTING

ATTACHMENT TO APPENDIX 2





**Testing Laboratories, Inc.** 940 South Harney Street. Seattle. Washington 98108 (206) 767-5060

### Chemistry Microbiology and Technical Services

CLIENT GeoEngineers Inc. P.O. Box 6325 Bellevue, WA 98008 ATTN: James A. Miller Routing

277-6

GeoEngineers

LABORATORY NO. 84886 DATE JUNE 25, 1984

REPORT ON SOIL

SAMPLE

TESTS PERFORMED

 Boring 1, Sample 3, Depth 42", Job No. 372-09, Soil type ML, 5-22
 Boring 6, Sample 2, Depth 2 1/2, Job #372-09, Soil type GP, 5-22
 Boring No.11, Sample 1, 0-4", 372-09, SW/GP, 5-22
 13, 1, 6", 372-09, SW, 5-22

File

Samples submitted 5-31-84 and identified as shown below:

Samples were analyzed in accordance with 40 CFR, Part 261.24 for EP Toxicity, with results as shown below:

Arsenic Barium Cadmium Chromium Copper Lead Mercury Selenium Silver

parts	per million	(mg/L)
1	2	MCL
L/0.2 L/0.5 L/0.02 L/0.1 L/0.1 0.2 L/0.002 L/0.2	L/0.2 L/0.5 L/0.02 L/0.1 L/0.1 0.2 L/0.002 L/0.2	5.0 100. 1.0 5.0  5.0 0.2 1.0
L/0.1	L/0.1	5.0



-

See.

ţ.

Ŧ.

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Lat	IC	ks	
<b>Testing L</b>	abora	tories	Inc.
940 South Harney Stree	t. Seattle. Washi	ngton 98108 (	206)767-5060





Chemistry Microbiology and Technical Services

PAGE NO. 2.

LABORATORY NO.

GeoEngineers Inc.

84886

Samples were then analyzed for Halogenated Hydrocarbons in accordance with Washington State Department of Ecology WAC 173-303 with results as follow:

	2	3	4
Halogenated Hydrocarbons* parts per million (mg/kg),	48.	15.	57.

parts per million (mg/kg), as received basis

reported as the sum of the halogens bromide, chloride, fluoride and iodide.
 A value of less than 100 mg/kg is classified as undesignated waste

		part	s per mi	llion (mg/kg)
Total Metals			1	2
Arsenic Barium Cadmium Chromium Copper Lead Mercury Selenium Silver			7.3 70. L/2. 32. 40. 40. 0.07 L/0.5 L/4.	1.4 L/50. L/2. 25. 59. L/20. L/0.05 L/0.5 L/4.
	• •	part	s per bi	llion (ug/kg)
Pentachloropheno	1			22.



111

Alle

This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any member of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.





Chemistry Microbiology and Technical Services

PAGE NO. 3

GeoEngineers Inc.

-

. i

LABORATORY NO. 84886

Certificate

Samples were analyzed also for Gravimetric Polycyclic Aromatic Hydrocarbons in accordance with Washington State Department of Ecology WAC 173-303. The method requires analysis of the sample through successive stages until the result obtained is less than 1% by weight (as received basis) or until the fourth stage has been completed. Results are as shown below:

			% by	weight,	as	received	basis*	
			1	2	-	3	4	
Soxhlet	Extraction	0.	23	0.51		0.28	2.85	
Acid/Bas	se Clean Up	-					0.99	

* for 4,5,6 membered rings

#### Key

JMO:bg

Stage 1:

Stage 2:

MCL = Maximum Contamination Level allowed per regulation. L/ = Less than

Respectfully submitted,

Laucks Testing Laboratories, Inc.

M. Owens



This report is submitted for the exclusive use of the person, partnership, or corporation to whom it is addressed. Subsequent use of the name of this company or any nember of its staff in connection with the advertising or sale of any product or process will be granted only on contract. This company accepts no responsibility except of the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

## APPENDIX B BORING LOGS, TEST PIT LOGS, AND MONITORING WELL COMPLETION DIAGRAMS

LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

Farallon PN: 525-006



# **USCS Classification and Graphic Legend**

Coarse-	GRAVEL	CLEAN GRAVEL (Little		GW	Well graded GRAVEL, well graded GRAVEL with sand
Grained Soil (More than 50%	AND GRAVELLY SOIL (More	or no fines)		GP	Poorly graded GRAVEL, GRAVEL with sand
of material is larger	than 50% of coarse	GRAVEL WITH FINES (Appreciable amount of		GP-GM	Poorly graded GRAVEL - GRAVEL with sand and silt
than No. 200 sieve	fraction retained on	fines)		GM	Silty GRAVEL
size)	No. 4 sieve)			GC	Clayey GRAVEL
	SAND AND SANDY	CLEAN SAND (Little or no fines)		SW	Well graded SAND
	SOIL (More than 50% of	no incoy		SP	Poorly graded SAND
	coarse fraction	SAND WITH FINES (Appreciable amount of	.	SP-SM	Poorly graded SAND - silty SAND
	passed through No.	fines)		SM	Silty SAND
	4 sieve)			SC	Clayey SAND
				SM-ML	SILT - Silty SAND
Fine- Grained	SILT AND CLAY (Liquid			ML	SILT
Soil (More than 50%	limit less than 50)		1777 ALL	CL	CLAY
of material				OL	Organic SILT
than No. 200 sieve	SILT AND CLAY (Liquid			MH	Inorganic SILT
size)	limit greater than 50)			СН	Inorganic CLAY
			$\sim$	ОН	Organic CLAY
		Highly Organic Soil	<u> </u>	PT	Peat
OTHER MATERIALS	PAVEMENT			AC	Asphalt concrete
				CO	Concrete
	OTHER			RK	Bedrock
				WD	Wood Debris
			<u> </u>	DB	Debris (Miscellaneous)
				PC	Portland cement



E:\Forms\Boilerplates\LogPlot\Lithology\Coverpage

		975 5th Avenue Northwest Issoquan, WA 98027		Lo	g o	of E	3ori	ing:	B1		Page 1 of 1
Pro Loc Far	cat all	t: Lakeside Industries ct: Aberdeen Site ion:Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Starte Date/Time Comp Equipment: Drilling Company Drilling Foreman Drilling Method:	leted: /:		09 1 erprol ade l	145 be 963( Drilling ott	Dri De _l Tot	mpler Type: 4' ve Hammer (Ibs pth of Water AT al Boring Depth al Well Depth (f	D (ft bgs): (ft bgs):	NA
ueptn (reet ogs.)	Sample Interval	Lithologic Descript	ion	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID		oring/Well onstruction Details
0	Asphalt Poorly graded GRAVEL with sand (75% gravel, fine gravel, fine sand, dark brown, moist, odor, s 1.5 feet to 2 feet.			AC GP							Asphalt
-		Concrete Poorly graded GRAVEL with silt and sand (65% gra 10% silt), fine to medium sand, gray, moist to 6 feel sheen, rounded gravel.		CO GP-GN	A A A A	100		75.1	B1-2		
5					N N N N N N N	80		40.2	B1-4		¥
-		SILT (100% silt), dark brown, wet, odor, sheen. SILT (100% silt), tan, wet, odor, sheen. SILT (100% silt), dark brown, wet, odor, sheen, woo	nd debris at 7.6	ML ML ML							Bentonite
		feet. Poorly graded GRAVEL with sand (65% gravel, 30% coarse gravel, fine to medium sand, gray, wet, odor gravel.	6 sand, 5% silt),	GP					B1-011309-8		
0-		SILT (100% silt), dark brown, wet, slight odor, no sl at 11 feet, wood chunk from 11 to 11.2 feet.	een, woody debris	ML		90	·	15.6			
		SILT (100% silt), brown, wet, no odor, no sheen.		ML					B1-11		
		nt Type: NA <b>We</b> l niameter (inches): NA Filter Pacl	I Construction	Inforn	natio	n			urface Elevation		AI A

		FARALLON CONSULTING 975 5th Avenue Northwest Issoquah, WA 98027		Lo	g o	of E	Bori	ng	: B2		. 1	Page 1 of 1
Loo Fai	ojeo cat rall	t: Lakeside Industries ct: Aberdeen Site ion: Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Started Date/Time Compl Equipment: Drilling Company Drilling Foreman: Drilling Method:	leted:		09 10 erprol ade l < Sco	340 be 963( Drilling ott	Dr ) De To	impler Type: 4 ive Hammer (Ibs epth of Water ATI tal Boring Depth tal Well Depth (fi	D (ft b (ft bg	gs): js):	NA 9 12 NA
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	uscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Cor	ring/Well Istruction Details
0		Concrete		Co							1000 1000 1000 1000 1000 1000 1000 100	Concrete
-		Poorly graded GRAVEL with sand (75% gravel, 20% fine gravel, fine to medium sand, gray, moist, odor, s rounded gravel.	sand, 5% silt), light sheen,	GP	8							
-		Silty GRAVEL with sand (50% gravel, 30% sand, 20 coarse gravel, fine sand, brown, moist to slightly wet, sheen.	% silt), fine to , no odor, no	GM		50		2.8	B2-2			
5		Poorly graded SAND with gravel (60% sand, 35% gra gravel, fine to medium sand, slight odor, slight sheen SILT (100% silt), dark brown, moist, slight odor, sligh	· · · · · · · · · · · · · · · · · · ·	SP ML				1.5	B2-5			Bentonite
		SILT (100% silt), tan, moist, slight odor, slight sheen. Poorly graded GRAVEL with silt and sand (60% grav 10% silt), fine gravel, fine sand, gray, moist to 9 feet sheen.	el, 30% sand, then wet, odor,	ML GP-GN				2.8	B2-011309-10			T
		SILT (100% silt), dark brown, moist to wet, no odor, r	IO SNEEN.	ML								
onu	imer	nt Type: NA	Construction	Inforn	natio	n	Gr	ound S	Surface Elevation	n (ft):	NA	<i></i>
asir icree	ng Di en Si	iameter (inches): NA Filter Pack: lot Size (inches): NA Surface Sea I Interval (ft bgs): 8-12 Annular Sea	al: NA	·	Sur	veye	To Bo	p of Ca ring A	asing Elevation ( bandonment: X: NA		NA Ber	

		FARALLON CONSULTING 975 5th Avenue Northwest issoquen, WA 98027		Lo	g c	of E	Bori	ng:	B3		Pa	ige 1 of 1
Clie	en	t: Lakeside Industries	Date/Time Started	l:	1/13/	/09 1	355	Sar	mpler Type: 4'	Масго	соге	
Pro	oje	ct: Aberdeen Site	Date/Time Comple	eted:	1/13/				ve Hammer (lbs			NA .
.00	cat	tion:Aberdeen, WA	Equipment: Drilling Company:			•	be 9630 Drilling		oth of Water ATI al Boring Depth			) 20
Fai	rall	lon PN: 525-006	Drilling Foreman:		Fran		-		al Well Depth (fi			.∪ IA
Lo	gg	ed By: K. Scott	Drilling Method:		Direc	t pus	sh					
neptn (reet ogs.)	Sample Interval	Lithologic Description	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Cons	ng/Well struction etails
0		Asphalt		AC								Asphalt
-		Poorly graded SAND with silt and gravel (60% sand, silt), fine sand, fine gravel, gray, odor, sheen, staining		SP-SN		60		562	B3-2			
5-		Sandy SILT (60% silt, 30% sand, 10% gravel), fine s brown, moist to slightly wet, strong solvent-like odor,		ML					B3-4			
-		Poorly graded SAND with gravel (65% sand, 30% gr sand, fine gravel, gray, moist to 6 feet then wet, stror	avel, 5% silt), fine ng odor, sheen.	SP		80		225	B3-011309-6			¥
						60		28.6				Bentonite
-		SILT (100% silt), brown, wet, odor, slight sheen.		ML								
-		Peat (100% peat), dark brown, slightly wet, slight odd	or, slight sheen,	РТ		60		17.2				
5 -		SILT (100% silt), brown, slightly wet, odor, no sheen, at 15.25 feet.	, wood fragment	ML ML								
	$\mathbb{N}$	SILT (95% silt, 5% sand), brownish-green, slight odo	r, no sheen.									
1 1	$\mathbb{A}$	SILT (100% silt), green, slightly wet, no odor, no she	en.	ML		90		1.5				
		Well	Construction I	nforn	natio	n			urface Elevation	0 (ff):	NA	
asir :ree	ng D эп S	ent Type: NA Filter Pack: Diameter (inches): NA Surface Sea Slot Size (inches): NA Surface Sea d Interval (ft bgs): 6-10 Annular Sea	al: NA		e	3/01/2	То	p of Ca pring At	sing Elevation ( bandonment:		NA Bent	onite

erel. V	FARALLON CONSULTING 975 5th Avenue Northwest Issaquah, WA 98027		Lo	g c	of E	3ori	ng:	B4		Page 1 of 1
-ocat Farall	t: Lakeside Industries ct: Aberdeen Site tion: Aberdeen, WA lon PN: 525-006 ed By: K. Scott	Date/Time Started: Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:		1/13/ Powe Case Frant	•	'15 be 9630 Drilling tt	Dri Dej Tot	npler Type: 4 ve Hammer (Ibs oth of Water AT al Boring Deptl al Well Depth (1	.): D (ft bgs n (ft bgs)	NA ): 8.5
Ueptin (reet bgs.) Sample Interval		ion	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID		Boring/Well Constructior Details
0 	Asphalt Poorly graded SAND with silt and gravel (60% sand silt), fine sand, fine gravel, gray, odor, sheen. Sandy SILT (60% silt, 30% sand, 10% gravel), fine brown, moist to slightly wet, odor, sheen. Poorly graded SAND with gravel (65% sand, 30% g sand, fine gravel, gray, moist to 8.5 feet then wet, or '	sand, fine gravel, ravel, 5% silt), fine	AC 56P-SN ML SP		20		28.8	B4-2 B4-4 B4-011309-8		Concrete
	SILT (100% silt), gray, wet, odor, no sheen. PEAT (100% peat), dark brown, slightly wet, odor, s rhizomes, wood debris. SILT (100% silt), brown, slightly wet, odor, no sheer	·	ML PT ML		100		7.2			Bentonite
ising D reen S	ent Type: NA Wel Diameter (inches): NA Filter Pack Slot Size (inches): NA Surface Se d Interval (ft bgs): 6-10 Annular Se	eal: NA	nforn			To Bo	p of Ca	urface Elevatio sing Elevation pandonment: X: NA		NA NA Bentonite

-ynse		975 5th Avenue Northwest Issoquant WA 98027		LU	y u	71 C	ווטכ	ny:	B5		Page 1 of 1
Pro .oc	cat all	t: Lakeside Industries ect: Aberdeen Site tion: Aberdeen, WA Ion PN: 525-006 Jed By: K. Scott	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	eted:		09 08 erprol ade I < Sco	335 be 9630 Drilling ott	Dri De Tol	mpler Type: 4' M ve Hammer (Ibs.) pth of Water ATD al Boring Depth ( al Well Depth (ft I	: (ft bgs): ft bgs):	
nepru (reet pds.)	Sample Interval	Lithologic Descri	ption	uscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID		oring/Well Instruction Details
0		Asphalt /		AC							Asphalt
		Poorly graded GRAVEL with sand (75% gravel, fine gravel, fine sand, brown, moist, no odor, no		GP	8 21						
		Poorly graded GRAVEL (90% gravel, 10% sand sand, gray, moist, no odor, no sheen, angular gr		GP	68 . 68 .						
-	Å	Poorly graded SAND with gravel (65% sand, 30 brown, moist, no odor, no sheen.	% gravel, 5% silt),	SP GP		70		1.2	B5-2		
-	$\left  \right $	Poorly graded GRAVEL (85% gravel, 10% sand gravel, fine sand, brown, moist, no odor, no she		SM							
5		Silty SAND (70% sand, 25% silt, 5% gravel), fin brown, moist, no odor, no sheen.	e sand, fine gravel,			70		92.7	B5-5		
		Poorly graded SAND with gravel (65% sand, 30 sand, coarse gravel, gray, moist to 7 feet then w staining.		SP					B5-011409-8		¥
1		SILT (100% silt), gray, wet, odor, no sheen.		ML							
0 —						90		45.7			Bentonite
-		SILT (100% silt), dark brown, wet, slight odor, no	o sheen.	ML							
 Snt	imei	ent Type: NA	Vell Construction 1	nforn	natio	n	Gr	ound S	urface Elevation	(ft): N	IA A
isir	ıg D	Diameter (inches): NA Filter P	ack: NA e Seal: NA				То	p of Ca	sing Elevation (ft bandonment:	): N	IA entonite

		975 5th Avenue Northwest Issaquah, WA 98027			y u		5011	ny.	B6		Page 1 of 1
Pro Loc Fai	cat rall	ct: Aberdeen Site tion: Aberdeen, WA on PN: 525-006	Date/Time Started Date/Time Compl Equipment: Drilling Company Drilling Foreman: Drilling Method:	eted: :		09 10 erprol ade I < Sco	)10 be 9630 Drilling tt	Dri De _l Tot	mpler Type: 4' ve Hammer (Ibs pth of Water ATI tal Boring Depth tal Well Depth (f	D (ft bgs): (ft bgs):	NA
Depth (feet bgs.)	Sample Interval	Lithologic Descriptic	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID		oring/Well onstruction Details
0		Asphalt		AC							Asphalt
-		Poorly graded SAND with gravel (70% sand, 25% gra sand, fine gravel, brown, moist, odor, sheen.	avel, 5% silt), fine	SP							
-		Poorly graded GRAVEL (85% gravel, 10% sand, 5% gravel, fine sand, brown, moist, odor, sheen, rounded	silt), coarse I gravel.	GP SP	8	50		2.8	B6-2		
-		Poorly graded SAND with gravel (65% sand, 30% gra sand, coarse gravel, gray, moist, odor, sheen. Well-graded GRAVEL with sand (70% gravel, 25% sa		GW							
5		to coarse gravel, fine to coarse sand, gray, moist, od			00000000000	90		21.6	B6-5		
-		SILT (100% silt), brown, odor, no sheen.		ML							
		Well-graded GRAVEL with sand (75% gravel, 20% sa to coarse gravel, fine to medium sand, gray, moist to odor, no sheen.	and, 5% silt), fine 8.5 feet then wet,	GW	000						¥
- 0		SILT (100% silt), brown, wet, slight odor, no sheen.		ML		90		2.5	B6-011409-9		Bentonite
-											Sentonite
_		PEAT (100% peat), dark brown, moist, no odor, no sh debris.	neen, wood	PT	an airte	COMPLEX RECEIPTION OF A LONG MALE					
onu	ume	nt Type: NA Filter Pack:	Construction I	nforn	natio	n	Gro	ound S	urface Elevation	n (ft): N	IA
	-	liameter (inches): NA Filter Pack: ilot Size (inches): NA Surface Sea							sing Elevation ( bandonment:		IA Bentonite

		FARALLON CONSULTING 975 5th Avenue Northwest Issoquah, WA 98027		Lo	g c	of E	Bori	ng:	B7		P	age 1 of 1
-0 -0 Fai	cat rali	t: Lakeside Industries ct: Aberdeen Site tion: Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	eted:	1/14, Powe Case Fran		25 be 9630 Drilling tt	Dr De To	mpler Type: 4' ive Hammer (Ibs. pth of Water ATE tal Boring Depth tal Well Depth (ft	) (ft bgs (ft bgs)	ore s): ):	NA 8.5 12 NA
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID		Con	ing/Well structior etails
0. N- S- S-		Asphalt SILT (100% silt), gray, moist to wet, no odor, no she observed at 5 feet, possibly due to concrete coring v	en. Water vork.	AC ML		100		0.0	B7-4 B7-6			Asphalt
×		SILT (100% silt), brown, moist to wet, no odor, no sh SILT, with sand (75% silt, 25% sand), brownish-gray, no odor, no sheen. SILT (100% silt), brown, wet, no odor, no sheen, wo to 11.5 feet. PEAT (100% peat), dark brown, moist, no odor, no s	wet at 8.5 feet, od debris from 9	ML ML ML		90		0.0	B7-011409-9			<b>▼</b> Bentonite
asir cree	ng D en S	nt Type: NA Well Nameter (inches): NA Filter Pack: NA Surface Se I Interval (ft bgs): 6-10 Annular Se	al: NA	nform			Тор	of Ca ing Al	Surface Elevation asing Elevation (f pandonment: X: NA			onite

	V	FARALLON CONSULTING 975 5th Avenue Northwest Issoquoh, WA 98027		Lo	g c	of E	3ori	ng:	B8		Page 1 of 1
Pro -OC Far	cat all	t: Lakeside Industries ct: Aberdeen Site tion: Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	eted: :	1/14/ Powe Case Fran	erprol ade l	235 be 9630 Drilling ott	Dri De To	mpler Type: 4 ^t ive Hammer (Ibs pth of Water ATI tal Boring Depth tal Well Depth (fi	.): D (ft bgs): i (ft bgs):	NA 7 12 NA
reput (teer nder)	Sample Interval	Lithologic Descripti	on	uscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID		oring/Well nstruction Details
0		Asphait		AC	8						Asphalt
	$\left  \right $	Fill - rounded pea gravel, gray, moist, no odor, no sh	neen.	GP	G						
`		Poorly graded GRAVEL with sand (75% gravel, 20% fine gravel, fine sand, brown, moist, odor, sheen.	6 sand, 5% silt),	GP							
V -		Poorly graded SAND with gravel (65% sand, 30% gr sand, fine gravel, brown, moist, odor, sheen.	ravel, 5% silt), fine	SP		60		145	B8-2		
5-		Poorly graded SAND with gravel (65% sand, 30% gr sand, fine to coarse gravel, gray, moist to 7 feet ther staining.		SP					B8-5		
						70		325			×
		SILT (100% silt), brown, wet, odor, no sheen.		ML					B8-011409-9		
						80		10.7			Bentonite
-		PEAT (100% peat), dark brown, wet, no odor, no she	en.	PT							
		Wood debris, no odor, no sheen, pier-like, laminated		DB							
sin	ıg D	nt Type: NA <b>Well</b> iameter (inches): NA Filter Pack: lot Size (inches): NA Surface Se		nform	natio	n			urface Elevation		

<b>A</b>		FARALLON CONSULTING 975 5th Avenue Northwest Issaquah, WA 98027		Lo	g o	fE	Bori	ng:	B9		Page 1 of 1
Pro _O Fai	cat rall	t: Lakeside Industries ect: Aberdeen Site tion: Aberdeen, WA Ion PN: 525-006 ged By: K. Scott	Date/Time Starte Date/Time Comp Equipment: Drilling Company Drilling Foreman Drilling Method:	leted: /:		)9 12 rprot ade [ Sco	415 be 9630 Drilling itt	Dri Dej Tot	npler Type: 4' ve Hammer (Ibs oth of Water ATI al Boring Depth al Well Depth (ff	.): ) (ft t (ft b)	<b>gs)</b> : 12
Leptn (reet pgs.)	Sample Interval	Lithologic Description	on	uscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Boring/Well Construction Details
		Asphalt Poorly graded SAND with silt and gravel (65% sand silt), fine sand, fine to coarse gravel, moist, odor, slig Sandy SILT (65% silt, 35% sand), fine sand, brown, sheen.	ght sheen.	AC SP-SN ML		60		33.2	B9-2 B9-4		Asphalt
5		Silty SAND (65% sand, 25% silt, 10% gravel), fine sa gravel, wet, strong bunker-like odor, sheen, staining Poorly graded SAND (95% sand, 5% silt), fine sand, sheen.		SM SP		70		45.6			*
(		No recovery, driller reports material very soft.				0		NM	B9-011409-8		Bentonite
sir ree	ng D en S	ent Type: NA Well Diameter (inches): NA Filter Pack: Slot Size (inches): NA Surface Sea d Interval (ft bgs): 6-10 Annular Sea	al: NA	Inforn			Тор	o of Ca ing Ab	urface Elevatior sing Elevation ( andonment:		NA NA Bentonite

		975 5th Avenue Northwest Issoquah, WA 98027		LU	g o		5011	ng.	B10		Page 1 of
Pro Loc Fai	cat rall	t: Lakeside Industries ct: Aberdeen Site ion: Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	eted:		)9 15 rprot ade [ Sco	545 be 9630 Drilling tt	Dr De To	mpler Type: 4' ive Hammer (Ibs pth of Water ATI tal Boring Depth tal Well Depth (fi	) (ft bgs (ft bgs)	NA ): 8
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	uscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID		Boring/We Constructic Details
0_		Concrete Poorly graded SAND with gravel (65% sand, 30% gr sand, fine gravel, brown, moist, no odor, no sheen.	ravel, 5% silt), fine	CO SP							Concrete
-		Fill - pea gravel (90% pea gravel, 5% sand, 5% silt), sand, black, moist, no odor, no sheen. Poorly graded GRAVEL (85% gravel, 10% sand, 5% gravel, fine sand, gray, moist, no odor, no sheen, an Poorly graded SAND with gravel (60% sand, 35% gr to coarse gravel, fine sand, gray, moist, odor, no she between 6 and 6.5 feet.	s silt), coarse igular gravel. ravel, 5% silt), fine	GP GP SP	G G	60		3.5	B10-2		
5		Silty SAND (60% sand, 35% silt, 5% gravel), fine sa moist, odor, slight sheen, red oxides between 7 and		SM				245	B10-6		
-		Silty SAND with gravel (60% sand, 20% silt, 20% gra fine gravel, green, moist to 8 feet then wet, odor, she	een.	SM					B10-011409-8		×
- 0		SILT (100% silt), brownish green, wet, odor, no shee Poorly graded SAND (95% sand, 5% silt), fine sand, no sheen.		SP				56.5			Bentonite
		nt Type: NA <b>Well</b> iameter (inches): NA Filter Pack	Construction I	nforn	natio	<u> </u>			Surface Elevation		NA NA

	V	FARALLON CONSULTING 975 5th Avenue Northwest Issaquah, WA 98027		Lo	g o	of E	Bori	ng:	B11		Page	1 of 1
Pro Lo Fai	cat rall	t: Lakeside Industries ct: Aberdeen Site tion: Aberdeen, WA Ion PN: 525-006 Jed By: K. Scott	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	eted:		09 16 erprot ade [ < Sco	50 50 9630 Drilling tt	Dr De To	mpler Type: 4 ive Hammer (Ibs. pth of Water ATE tal Boring Depth tal Well Depth (ft	); ) (ft bgs (ft bgs]	NA \$): 9	
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID		Boring, Constru Deta	ictior
0		Concrete Poorly graded SAND with gravel (65% sand, 30% gr sand, fine gravel, gray, moist, no odor, no sheen.	avel, 5% silt), fine	CO SP							Cor	ocrete
-		Concrete Well-graded GRAVEL with sand (60% gravel, 35% s to coarse gravel, fine to medium sand, brown, moist no sheen.		GW	<u>a0a0a0a0a0</u>	60		0.0	B11-2			
		Silty SAND (65% sand, 35% silt), fine sand, green, n	noist.	SM		90		0.3	B11-5			
-		Sandy SILT (60% silt, 30% sand, 10% gravel), fine s green, moist to 9 feet then wet, no odor, no sheen.	and, fine gravel,	ML							¥	
0						60		0.2	B11-011409-10		Ben	tonite
sir	ng D	ent Type: NA Well Diameter (inches): NA Filter Pack: Slot Size (inches): NA Surface Se		nform	natio	n	Тор	ofCa	Surface Elevation asing Elevation (f bandonment:		NA NA Bentonite	

			FARALLON CONSULTING 975 5th Avenue Northwest Issoquah, WA 98027		Lo	g c	of E	Bori	ng	: B12		Page 1 of 1
Pro -O( Fai	cat rali	ct: Abe tion:Ab	keside Industries erdeen Site berdeen, WA 525-006 K. Scott	Date/Time Starte Date/Time Comp Equipment: Drilling Company Drilling Foreman Drilling Method:	leted: y:	1/15/ Powe Case Fran	erproł ade [	000 De 9630 Drilling tt	Dr De To	impler Type: 4' ive Hammer (Ibs apth of Water ATI atal Boring Depth atal Well Depth (fi	.): ) (ft bę   (ft bg	NA gs): 8.5 s): 12
Depth (feet bgs.)	Sample Interval		Lithologic Descripti	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Boring/Well Constructior Details
0		Concrete Poorly gr silt), fine	a raded SAND with silt and grave! (60% sand sand, fine to coarse gravel, gray, moist, no	, 30% gravel, 10% odor, no sheen	CO SP-SM							Concrete
		gravel, g Silty SAN	ILT (55% silt, 35% sand, 10% gravel), fine reen, moist, no odor, no sheen, angular gravel ND (80% sand, 20% silt), fine sand, green, red oxidation between 7.5 and 7.9 feet.	ivel.	ML		80		0.0	B12-2		
-							60		0.0	B12-6		
		Silty SAN then wet,	ID (65% sand, 35% silt), fine sand, green, r , no odor, no sheen.	noist to 8.5 feet	SM		100		0.0	B12-011509-10		<b>▼</b> Bentonite
			0% silt), brown, wet, no odor, no sheen. 0% silt), gray, moist, no odor, no sheen, dri	ller reports very	ML ML							
sir: ree	ng D en S	nt Type: 1 liameter (ir lot Size (in l Interval (f	NA Filter Pack nches): NA Surface Se	al: NA	Inform			Тој Вој	o of Ca ring Al	Surface Elevatior asing Elevation ( bandonment: X: NA		NA NA Bentonite A

		FARALLON CONSULTING 975 5th Avenue Northwest Issoqueh, WA 98027		Lo	g o	fE	Bori	ng:	B13		Page 1 of 1	
Loc Far	oje cat 'all	t: Lakeside Industries ct: Aberdeen Site ion: Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	eted:		09 10 Irprot ade [ Sco	030 De 9630 Drilling tt	Dri De To	mpler Type: 4' ive Hammer (Ibs. pth of Water ATE tal Boring Depth tal Well Depth (ft	): ) (ft (ft b	ogs): 12	
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Boring/Wel Constructio Details	
0		Concrete Well-graded GRAVEL with sand (80% gravel, 15% s to coarse gravel, fine sand, gray, moist to wet, no oc	sand, 5% silt), fine dor, no sheen.	CO GW	000000	70		0.0	B13-2		Concrete	
- 5		Silty SAND (80% sand, 20% silt), fine sand, green, r sheen, red oxidation between 2.8 and 6 feet.	noist, no odor, no	SM								
		Poorly-graded SAND with gravel (60% sand, 35% gr sand, fine to coarse gravel, brown, moist, no odor, r Silty SAND (80% sand, 20% silt), fine sand, green, r wet, no odor, no sheen.	no sheen.	SP SM		80		0.0	B13-6 B13-011509-9		<b>⊻</b> Bentonite	
		SILT (100% silt), dark brown, wet, no odor, no sheer SILT (100% silt), brown, wet, no odor, no sheen. PEAT (100% peat), dark brown, moist, no odor, no s Wood debris, no odor.	/	ML ML PT DB		100		0.0			Bentonite	
		SILT (100% silt), brown, wet, no odor, no sheen.		ML								
Casin Scree	ig D in S	nt Type: NA Well iameter (inches): NA Filter Pack lot Size (inches): NA Surface Se Interval (ft bgs): 6-10 Annular Se	al: NA	nform			Тор	o of Ca ing Al	ourface Elevation Ising Elevation (f Dandonment: X: NA		NA Bentonite	

		FARALLON CONSULTING 975 5th Avenue Northwest Issoquah, WA 98027		Lo	g o	of E	Bori	ng	B14		Page 1 of 1
Lo Fai	oje cat rall	t: Lakeside Industries ct: Aberdeen Site tion: Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Compl Equipment: Drilling Company	Drilling Company:Cascade DriDrilling Foreman:Frank Scott				45Sampler Type:4' Macrocore40Drive Hammer (Ibs.):be 9630Depth of Water ATD (ft bgs):DrillingTotal Boring Depth (ft bgs):ttTotal Well Depth (ft bgs):			
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	ion	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0		Concrete Poorly graded SAND with gravel (60% sand, 35% g sand, fine to coarse gravel, brown, moist, no odor, r		CO SP		~					Concrete
		Silty SAND (80% sand, 20% silt), fine sand, green, i sheen.		SM		60		0.0	B14-2		
-		Poorly graded SAND with silt (90% sand, 10% silt), odor, no sheen.	green, moist, no	SP-SN		60		0.0	B14-6		
		Silty SAND (80% sand, 20% silt), fine sand, green, r then wet, no odor, no sheen.	moist to 8.5 feet	SM					B14-011509-9	-9	X
10-		SILT (100% silt), brown, wet, no odor, no sheen.	ML		100		0.0			Bentonite	
		SILT (100% silt), dark brown, wet, no odor, no sheel		ML		•					
Casir Scree	ig D en S	nt Type: NA <b>Well</b> iameter (inches): NA Filter Pack lot Size (inches): NA Surface Se I Interval (ft bgs): 6-10 Annular Se	eal: NA	ntorm			Тор	o of Ca ing Al	ourface Elevation asing Elevation ( bandonment:		NA NA Bentonite

<u>A</u>		FARALLON CONSULTING 975 5th Avenue Northwest Issoquon, WA 98027		Lo	g o	f E	Bori	ng:	B15		F	age 1 of 1
Loo Far	oje cat all	t: Lakeside Industries ct: Aberdeen Site tion: Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	ted:		09 13 erprot ade I « Sco	20 be 9630 Drilling tt	Dri De Toi	mpler Type: 4' ve Hammer (Ibs. pth of Water ATE tal Boring Depth tal Well Depth (ft	): ) (ft b (ft bg	gs): Is):	NA 7.5 12 NA
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID	Sample Analyzed	Cor	ring/Well struction Details
0		Concrete Poorly graded gravel with sand (75% gravel, 20% sa gravel, fine sand, brown, moist no odor, no sheen.	and, 5% silt), fine	CO GP	8 8 8 8							Concrete
-		<ul> <li>SILT with sand (75% silt, 20% sand, 5% gravel), fine brown, moist, no odor, no sheen.</li> <li>Poorty graded GRAVEL with silt and sand (65% gravel), too arse gravel, fine sand, brown, sweet odd rounded gravel.</li> </ul>	vel, 25% sand,	ML GP-GN		70		0.0	B15-2			
5		Silty SAND with gravel (60% sand, 20% silt, 20% grafine gravel, brown, sweet odor, no sheen.	avel), fine sand,	SM		70		3.5	B15-6			
		Poorly graded GRAVEL (85% gravel, 10% sand, 5% gravel, fine sand, gray, moist to 7.5 feet then wet, pe sheen, rounded to subrounded gravel.		GP	8 2 3 3 3 3 3 3 3 3 3 3 3 3 3							×
- 10		SILT (90% silt, 10% sand), fine sand, brown, wet, oo SILT (100% silt), dark brown, wet, no odor, no sheet		ML		100		35.6	B15-011509-9			Bentonite
asir cree	ng D en S	nt Type: NA Well Diameter (inches): NA Filter Pack Slot Size (inches): NA Surface Se d Interval (ft bgs): 6-10 Annular Se	eal: NA	nforn			То	p of Ca ring Al	Surface Elevation asing Elevation ( bandonment: X: NA			itonite

		FARALLON CONSULTING 975 5th Avenue Northwest Issoqueh, WA 98027		Lo	g o	of E	3ori	ng:	B16		Page 1 of 1
Loo Fai	oje cat rall	t: Lakeside Industries ect: Aberdeen Site tion: Aberdeen, WA Ion PN: 525-006 Jed By: K. Scott	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	ted:		09 18 erprol ade l « Sco	545 be 9630 Drilling xtt	Dr De To	mpler Type: 4' ive Hammer (lbs. pth of Water ATE tal Boring Depth tal Well Depth (ft	) (ft bgs) (ft bgs):	NA : 9
Depth (feet bgs.)	Sample Interval		on	uscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (units)	Sample ID		Boring/Well onstruction Details
. 0 .		Concrete Poorly graded GRAVEL with sand (60% gravel, 35% fine gravel, fine sand, brown, moist, no odor, no she		CO GP							Concrete
-		Silty SAND (80% sand, 20% silt), fine sand, green, n sheen.	noist, no odor, no	SM	الله المسلح الاست. إذا المسلح الاستعمال المسلح ا المسلح المسلح المسلح وقال المسلح ال			5.0	B16-2		
		SILT (100% silt), brown, moist, no odor, no sheen.		ML				4.3	B16-6		
-		Wood debris, laminated, beige, no odor, no sheen. SILT (100% silt), brown, moist to 9 feet then wet, no	odor, no sheen.	DB ML							¥
10		SILT (100% silt), dark brown, wet, no odor, no sheer	1.	ML				1.8	B16-011509-10		Bentonite
		ent Type: NA Filter Pack	Construction I	nforr	natio	n			Surface Elevation		NA NA
cree	en S	Diameter (inches): NA Filter Pack Slot Size (inches): NA Surface Se d Interval (ft bgs): 8-12 Annular Se			Sur	veye		ring A	asing Elevation (i bandonment: X: NA	•	NA Bentonite

B       Image: Construction       Ima				FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	а 1	Lo	g c	of I	Bori	ng:	B17		Page 1 of 1
Logged By: K. Scott     Drilling Method:     Direct push       (1)     Under the second se	Client: Lakeside Industries Project: Aberdeen Site Location: Aberdeen, WA				Date/Time Started: 4 Date/Time Completed: 4 Equipment: S Drilling Company: E			4/19/11 1040Drive Hammer (lbs.):Stratoprobe BR187Depth of Water ATD (ftESNTotal Boring Depth (ft b)					NA s): 8.0 ): 12.0
0         0.0.5' Well graded GRAVEL with sand (70% gravel, 20% sand, 5%, sit), fine to coarse gravel, fine sand, brown, moist, no odor, no sheen, arguit gravel fill         GW         GW         GW         Fill           0.5.2.0' Sitty SAND (65% sand, 25% sit, 10% gravel), fine sand, fine to coarse gravel, brown, moist, no odor, no sheen.         Fill         Fill         Fill           2.0-2.2' Asphalt (100% asphalt), black, moist, odor, sheen.         AC         Fill         Fill           2.2-5.5' Sitty SAND (65% sand, 25% sit, 10% gravel), fine sand, fine to coarse gravel, olive-grey, moist, no odor, no sheen.         AC         Fill           5         5.5-8.0' SILT (100% sitt), green, moist, no odor, no sheen, very soft.         ML         60         NA         0.0         B17-6.0         X           8.0-11.5' SILT (90% sitt, 5% sand, 5% gravel), fine sand, fine gravel, green, wet, no odor, no sheen.         ML         60         NA         0.0         B17-6.0         X           10         8.0-11.5' SILT (90% sitt, 5% sand, 5% gravel), fine sand, fine gravel, green, wet, no odor, no sheen.         ML         60         NA         0.0         B17-041911-GW         X					107		26						
0-0.5' Well graded GRAVEL with sand (70% gravel), 20% sand, 5%, sill, fine to coarse gravel, fine sand, brown, moist, no odor, no sheen, angular gravel fill.       GW       SM         0.5-2.0' Silty SAND (65% sand, 25% silt, 10% gravel), fine sand, fine to coarse gravel, brown, moist, no odor, no sheen.       SM       Into the coarse gravel, fine sand, brown, moist, no odor, no sheen.         2.0-2.2' Asphalt (100% asphalt), black, moist, odor, sheen.       AC       Into the coarse gravel, brown, moist, no odor, no sheen.       NA         2.0-2.2' Asphalt (100% asphalt), black, moist, odor, sheen.       SM       Into the coarse gravel, olive-grey, moist, no odor, no sheen.       SM         5       5.5*8.0' SILT (100% silt), green, moist, no odor, no sheen, very soft.       ML       60       NA       0.0       B17-6.0       X         10-       8.0-11.5' SILT (90% silt, 5% sand, 5% gravel), fine sand, fine gravel, must, no odor, no sheen.       ML       60       NA       0.0       B17-041911-GW       X         10-       90       NA       0.0       B17-041911-GW       X       Bentonite	Depth (feet bas.)		sample Interval	Lithologic Descripti	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
	ţ			<ul> <li>silt), fine to coarse gravel, fine sand, brown, moist, r angular gravel fill.</li> <li>0.5-2.0' Silty SAND (65% sand, 25% silt, 10% grave to coarse gravel, brown, moist, no odor, no sheen.</li> <li>2.0-2.2' Asphalt (100% asphalt), black, moist, odor,</li> <li>2.2-5.5' Silty SAND (65% sand, 25% silt, 10% grave to coarse gravel, olive-grey, moist, no odor, no sheet</li> <li>5.5-8.0' SILT (100% silt), green, moist, no odor, no sheet</li> <li>8.0-11.5' SILT (90% silt, 5% sand, 5% gravel), fine s green, wet, no odor, no sheen.</li> </ul>	no odor, no sheen, , , , , , , , , , , , , , , , , , ,	SM AC SM ML		60	NA	0.0	B17-6.0		

		Well C	onstruction Information		
Monument Type: NA				Ground Surface Elevation (ft):	NA
Casing Diameter (inches):					
Screen Slot Size (inches):	NA	NA Surface Seal: NA		Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	8-11	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA

CONSULTING 975 5th Avenue Northwest Issaquah, Washington 98027		y oi	Borir	.9.	вто		Page 1 of 1
lient: Lakeside Industries roject: Aberdeen Site ocation: Aberdeen, WA arallon PN: 525-006 ogged By: K. Scott	Date/Time Started:       4/19/11 1050       Sampler Type:       4' Macrocore         Date/Time Completed:       4/19/11 1140       Drive Hammer (lbs.):         Equipment:       Stratoprobe BR187       Depth of Water ATD (ft bgs):         Drilling Company:       ESN       Total Boring Depth (ft bgs):         Drilling Foreman:       Marty Huan       Total Well Depth (ft bgs):         Drilling Method:       Direct push						NA : 8.5
Lithologic Descripti	ion SS	USGS Graphic % Recoverv	Blow Counts 8/8/8	PID (ppm)	Sample ID		Boring/Well onstructior Details
0-0.6' Well graded GRAVEL with sand (75% gravel, coarse gravel, fine sand, brown, moist, no odor, no gravel fill. 0.6-2.5' Silty SAND (65% sand, 25% silt, 10% grave to coarse gravel, brown, moist, no odor, no sheen. 2.5-3.0' Asphalt (100% asphalt), black, moist, odor, 3.0-3.8' Silty SAND (60% sand, 30% silt, 10% grave to coarse gravel, brown, moist, no odor, no sheen. 3.8-4.0' Well graded GRAVEL with sand (60% grave silt), fine to coarse gravel, fine sand, gray, moist, od 4.0-7.0' Well graded GRAVEL (90% gravel, 10% sa to coarse gravel, fine sand, gray, moist, petro-odor, 7.0-9.0' Silty SAND (50% sand, 40% silt, 10% grave gravel, brown, moist to wet, no odor, no sheen. 9.0-12.0' Poorly graded SAND (95% sand, 5% silt), wet, no odor, no sheen.	sheen, angular SM Sheen. Sheen. Sheen. SM Sheen. SM AC SM SM SM SM SM SM SM SM SM SM		0 NA	0.8	B18-3.8 B18-6.0 B18-041911-GW	x	Fill Bentonite

		Well C	onstruction Information						
Monument Type: NA				Ground Surface Elevation (ft):	NA				
Casing Diameter (inches):	NA	Filter Pack:	NA	Top of Casing Elevation (ft):					
Screen Slot Size (inches):	NA	Surface Seal:	NA	Boring Abandonment:	Bentonite				
Screened Interval (ft bgs):	8-11	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA				

		Consulting 975 5th Avenue Northwest Issaquah, Washington 98027		Lo	g o	of E	Bori	ng:	B19		Page 1 of 1	
Pro _O Fai	all	Lakeside IndustriesDct: Aberdeen SiteDion: Aberdeen, WADon PN: 525-006D	Date/Time Completed: Equipment: Drilling Company: Drilling Foreman:			11 11 11 13 oprob / Hua	305 be BR18 n	Dri 7 De To	Sampler Type:4' MacrocoreDrive Hammer (Ibs.):NDepth of Water ATD (ft bgs):8Total Boring Depth (ft bgs):1Total Well Depth (ft bgs):N			
	99			<u> </u>	1			I				
Depth (feet bgs.)	Sample Interval	Lithologic Description	n	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details	
0_												
-	V	0-2.4' Well graded GRAVEL with sand (75% gravel, 20 silt), fine to coarse gravel, fine sand, brown, moist, no angular gravel fill.		GW	000000	90	NA				Fill	
_	$\Lambda$	2.4-2.7' Asphalt (100% asphalt), black, moist, odor, sh	een.	AC			i i i	- 20				
-	$\left( \right)$	2.7-5.0' Poorly graded SAND with gravel (70% sand, 3 sand, fine gravel, brown, moist, no odor, no sheen.	0% gravel), fine	SP				0.0	B19-2.0			
5-	V	5.0-6.0' Poorly graded GRAVEL with sand (75% grave coarse gravel, fine sand, brown, moist, no odor, no she		GP SP	8	95	NA	0.0	B19-6.0	x		
-	$\bigwedge$	6.0-7.5' Poorly graded SAND (95% sand, 5% silt), fine moist, no odor, no sheen.	sand, green,						-	-		
-	$\left( \right)$	7.5-8.0 Poorly graded SAND (95% sand, 5% silt), fine moist, no odor, no sheen.	sand, brown,	SP GW	Dec				5.		<b>x</b>	
10 –		8.0-11.0' Well graded GRAVEL with sand (50% gravel, silt), fine to coarse gravel, fine sand, brown, wet, petro- rounded gravel.		5	200000	100	NA	0.0	B19-041911-GW	x	Bentonite	
_	$  \rangle$	11.0-12.0' Poorly graded SAND (95% sand, 5% silt), fil wet, no odor, no sheen.	ne sand, gray,	SP								
- - 15 - -									5. 5.			
_												

		Well C	onstruction Information		
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA			Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal:	NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	8-11	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA

		CONSULTING 975 5th Avenue Northwest Issaquab, Washington 98027									Page 1 of 1
ro	5	: Lakeside Industries <b>::</b> Aberdeen Site ion:Aberdeen, WA	Date/Time Started: Date/Time Completed: Equipment: Drilling Company:			11 13 11 14 oprob		Dri 7 De	mpler Type: 4' M ve Hammer (Ibs.) pth of Water ATD tal Boring Depth (	NA 8.0 12.0	
		on PN: 525-006	Drilling Foreman: Drilling Method:		Marty Direc			To	tal Well Depth (ft	NA	
-0	gge	ed By: K. Scott					*				
nepui (ieer ngs.)	Sample Interval	Lithologic Description	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID		oring/Well nstructior Details
0_											
2		0-5.0' Well graded GRAVEL with sand (75% gravel, 2 silt), fine to coarse gravel, fine sand, brown, moist, no angular gravel fill.	o odor, no sheen,	GW	00000000000000000000000000000000000000	100	NA	0.0	B20-2.0		Fill
5-		5.0-7.0' SILT (100% silt), green, moist, no odor, no sl	neen.	ML		100	NA	111			
		7.0-9.0' Silty SAND (70% sand, 30% silt), fine sand, s moist to wet, petro-odor, sheen.	greenish-brown,	SM					B20-7.0	x	¥
0 —	$\left  \right $	9.0-12.0' WOOD debris (100% wood), brown, wet, or	dor, no sheen.	WD	a la la la	100	NA	12.3	B20-041911-GW	X	Bentonite
-											
			14								

Manuscrat Transa MA		Well C	onstruction Information	Ground Surface Elevation (ft):	NA	
Monument Type: NA		Filter Pack:	NA	Giouna Surface Elevation (it).	NA	
Casing Diameter (inches):	NA			Top of Casing Elevation (ft):	NA	
Screen Slot Size (inches):	NA	Surface Seal:	NA	Boring Abandonment:	Bentonite	
Screened Interval (ft bgs):	8-11	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA	

ø		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027		Lo	g c	of	Bori	ng	: B21		I	Page 1 of 1
Lo	ojeo cat	ct: Aberdeen Site ion: Aberdeen, WA	Date/Time Started Date/Time Comple Equipment: Drilling Company:	ted:					Impler Type: 4' ive Hammer (Ibs) opth of Water (ft b stal Boring Depth	:	NA 8.0 12.0	
		on PN: 525-006 ed By: K. Scott	g			John Mefford Total Well Depth (ft bgs Direct push					s):	NA
Depth (feet bgs)	Sample Interval	Lithologic Descripti	ion	uscs	USGS Graphic	% Recovery	Blow Counts	PID (ppmv)	Sample ID	Sample Analyzed	Cor	ring/Well estruction Details
0 - - 5-		0-0.4' Asphalt (100% asphalt), black, moist, odor, st 0.4-2.3' Well graded GRAVEL with sand (70% grave silt), fine to coarse gravel, fine sand, brown, moist, s sheen, angular gravel fill. 2.3-7.0' Silty SAND (50% sand, 30% silt, 20% grave	əl, 20% sand, 5% slight odor, no	AC FILL SM		100	NA	26.4	B21-3.0			Asphalt cap
- - - - - - - - - - - - - - - - - - -	Å	to coarse gravel, gray, moist, odor, sheen. 7.0-7.8' SILT (100% silt), brown, moist, slight odor, r 7.8-11.0' Weil graded GRAVEL with sand (70% grav 10% silt), fine to coarse gravel, fine sand, brown, mo sheen, rounded pea-gravel. 11.0-11.5' SILT (100% silt), brown, wet, no odor, no	vel, 20% sand, bist to wet, odor, sheen.	ML GW	0000	100 100		6.8 4.7	B21-6.0 B21-042011-GW	×		<b>▼</b> Bentonite
- 15		11.5-12.0' WOOD debris (100% wood), brown, mois no sheen.	at to wet, no odor,									

	Well Construction Information												
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft msl):	NA								
Casing Diameter (in):	NA	Surface Seal:	NA	Top of Casing Elevation (ft msl):	NA								
Screen Slot Size (in):	NA	Annular Seal:	NA	Surveyed Location:	X:NA								
Screened Interval (ft bgs):	8-11	Boring Abandonment:	Bentonite		Y:NA								

	FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	Lo	g o	f E	Bori	ng	: B22		Page 1 of 1
Loca Faral	t: Lakeside Industries ct: Aberdeen Site tion: Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	4/20/11 0945 4/20/11 1115 Stratoprobe BR187 ESN John Mefford Direct push				ampler Type: 4' rive Hammer (Ibs epth of Water (ft I otal Boring Depth otal Well Depth (ft	NA : 8.0 bgs): 12.0	
Depth (feet bgs) Sample Interval	Lithologic Descripti	on SS SN	USGS Graphic	% Recovery	Blow Counts	PID (ppmv)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0	0-0.2' Asphalt (100% asphalt), black, moist, odor, sh 0.2-0.7' Void (100%) 0.7-2.5' Well graded GRAVEL with sand (70% grave silt), fine to coarse gravel, fine sand, brown, moist to sheen, rounded gravel. Water appears to be perche surface near boring. 2.5-4.0' No soil in liner. 4.0-6.0' Well graded GRAVEL with sand (70% grave silt), fine sand, brown, wet, odor, sheen. 6.0-7.0' WOOD debris (100% wood), brown, wet, no	I, 20% sand, 10% Wet, no odor, no ed, puddle on I, 20% sand, 10% BLANK		40	NA NA	0.0 27.8 0.0	B22-2.0 B22-5.0 B22-042011-GW	x	Asphalt ca

10.5-12.0' SILT (100% silt), brown, wet, organic odor, no sheen, soft.

		Well Construct	tion Inform	ation	
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft msl):	NA
Casing Diameter (in):	NA	Surface Seal:	NA	Top of Casing Elevation (ft msl):	NA
Screen Slot Size (in):	NA	Annular Seal:	NA	Surveyed Location:	X:NA
Screened Interval (ft bgs):	8-11	Boring Abandonment:	Bentonite		Y:NA

<b>2</b> 33	FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	Lo	og o	of I	Bori	ng	: B23			Page 1 of 1
Locat Farall	t: Lakeside Industries ct: Aberdeen Site tion: Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Started:4/20/11 1125Date/Time Completed:4/20/11 1240Equipment:Stratoprobe BR187Drilling Company:ESNDrilling Foreman:John MeffordDrilling Method:Direct push			Dr 37 De To	Sampler Type: 4' Macroco Drive Hammer (Ibs): 7 Depth of Water (ft bgs): Total Boring Depth (ft bgs): Total Well Depth (ft bgs):			NA 3.3 12.0 NA	
Depth (feet bgs) Sample Interval	Lithologic Descript	ion လူဒ	USGS Graphic	% Recovery	Blow Counts	PID (ppmv)	Sample ID	Sample Analyzed	Cor	ring/Well nstruction Details
0 	0-0.4' Asphalt (100% asphalt), black, moist, odor, sl 0.4-3.8' Silty SAND (50% sand, 25% silt, 25% grave to coarse gravel, brown, moist, odor, sheen seen at 3.8-11.0' WOOD debris (100% wood), brown, wet, o	el), fine sand, fine SM 3.0-feet bgs.		50 100	NA NA	80.1 NA 0.0	B23-3.0 B23-042011-GW	x		Asphalt cap
	11.0-12.0' SILT (75% silt, 25% clay), high plasticity, organic odor, no sheen.	dark brown, wet, OH	P							

Well Construction Information												
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft msl):	NA							
Casing Diameter (in):	NA	Surface Seal:	NA	Top of Casing Elevation (ft msl):	NA							
Screen Slot Size (in):	NA	Annular Seal:	NA	Surveyed Location:	X:NA							
Screened Interval (ft bgs):	3-6'	Boring Abandonment:	Bentonite		Y:NA							

<u> </u>		FARALLON CONSULTING 975 5th Avenue Northwest Issaguah, Washington 98027		Lo	g c	of E	Bori	ng	: B24			Page 1 of 1
Loc Fara	jec ati allo	: Lakeside Industries ct: Aberdeen Site ion:Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	4/20/11 1250 4/20/11 1345 Stratoprobe BR187 ESN John Mefford Direct push				mpler Type: 4' ive Hammer (Ibs pth of Water (ft b tal Boring Depth tal Well Depth (fi	ogs):	NA 5.0		
Depth (feet bgs)					USGS Graphic	% Recovery	Blow Counts	(vmqq) Olq	Sample ID	Sample Analyzed	Cor	ring/Well Instruction Details
0 		0-0.4' Asphalt (100% asphalt), black, moist, odor, sh 0.4-3.0' Silty SAND with gravel (50% sand, 25% silt, sand, fine to coarse gravel, brown, moist, odor, shee feet. 3.0-6.0' Well graded GRAVEL with sand (70% grave silt), fine to coarse gravel, fine sand, brown, moist to 6.0-8.0' SILT (100%), dark brown, wet, slight odor be feet, no odor at 8.0-feet, no sheen.	25% gravel), fine en starts at 2.0- / / / / / / / / / / / / / / / / / / /	GW		100	NA	44.0	B24-2.0 B24-042011-GW	x		Asphalt cap

Well Construction Information												
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft msl):	NA							
Casing Diameter (in):	NA	Surface Seal:	NA	Top of Casing Elevation (ft msl):	NA							
Screen Slot Size (in):	NA	Annular Seal:	NA	Surveyed Location:	X:NA							
Screened Interval (ft bgs):	4-7'	Boring Abandonment:	Bentonite		Y:NA							

Ŕ		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027		Lo	g c	of I	Bori	ng	B25			Page 1 of 1
Fai	ojeo cat rallo	-	Date/Time Completed: 4/ Equipment: S Drilling Company: E Drilling Foreman: Jo			'11 1 '11 1 oprol Mefi	510 be BR1	Dr 87 De To	mpler Type: 4' ive Hammer (Ibs) pth of Water (ft b tal Boring Depth tal Well Depth (ft	gs):	NA 7.0 12.0 NA	
Depth (feet bgs)	Sample Interval	Lithologic Descripti	ion	USCS	USGS Graphic	% Recovery	Blow Counts	PID (ppmv)	Sample ID	Sample Analyzed	Cor	ring/Well astruction Details
		0-0.4' Asphalt (100% asphalt), black, moist, odor, sh 0.4-3.5' Poorly graded SAND with gravel (50% sand silt), fine sand, fine to coarse gravel, brown, moist, r 3.5-7.5' Poorly graded SAND with gravel (70% sand silt), fine sand, fine to coarse gravel, brown, moist to 7.5-12.0' SILT (100% silt), dark brown, wet, odor to a	I, 40% gravel, 10% no odor, no sheen. I, 20% gravel, 10% o wet, odor, sheen.	AC , , SP SP ML		50 40 50	NA NA NA	38.6 42.8 28.6	B25-3.0 B25-6.0 B25-042011-GW	x x		Asphalt cap ▼ Bentonite

Well Construction Information											
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft msl):	NA						
Casing Diameter (in):	NA	Surface Seal:	NA	Top of Casing Elevation (ft msl):	NA						
Screen Slot Size (in):	NA	Annular Seal:	NA	Surveyed Location:	X:NA						
Screened Interval (ft bgs):	7-10'	Boring Abandonment:	Bentonite		Y:NA						

	V	FARALLON CONSULTING 975 5th Avenue Northwest Issaquah, Washington 98027	L.	O	g c	of I	Bori	ng	: B26		Page 1 of 1
Loc Far	ojeo cat allo	: Lakeside Industries ct: Aberdeen Site ion: Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Started:4/20/11 15Date/Time Completed:4/20/11 15Equipment:StratoprobeDrilling Company:ESNDrilling Foreman:John MeffoDrilling Method:Direct push			11 1545       Drive Hammer (lbs):         oprobe BR187       Depth of Water (ft bgs):         Total Boring Depth (ft bgs):         Mefford       Total Well Depth (ft bgs):				NA 4.0	
Depth (feet bgs)	Sample Interval	Lithologic Descripti	on	2	USGS Graphic	% Recovery	Blow Counts	PID (ppmv)	Sample ID		Boring/Well Construction Details
		<ul> <li>0-0.4' Asphalt (100% asphalt), black, moist, odor, sh</li> <li>0.4-2.0' Poorly graded GRAVEL with sand (70% gra 5% silt), fine to coarse gravel, fine sand, brown, moist sheen.</li> <li>2.0-7.3' Poorly graded SAND with gravel (50% sand silt), fine sand, fine to coarse gravel, brown, moist to</li> <li>7.3-7.8' SILT (100% silt), dark brown, wet, slight odo</li> <li>7.8-8.0' WOOD debris (100%), brown, wet, no odor.</li> </ul>	vel, 25% sand, st, no odor, no , 40% gravel, 10% wet, odor, sheen.	-/ /		60	NA	37.0 13.4	B26-3.0 B26-042011-GW	x	Asphalt cap

Well Construction Information											
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft msl):	NA						
Casing Diameter (in):	NA	Surface Seal:	NA	Top of Casing Elevation (ft msl):	NA						
Screen Slot Size (in):	NA	Annular Seal:	NA	Surveyed Location:	X:NA						
Screened Interval (ft bgs):	4-7'	Boring Abandonment:	Bentonite		Y:NA						

		FARALLON consulting 975 5th Avenue Northwest Issaguath, Washington 98027		Lo	g c	of∣	Bori	ng	: B27		F	Page 1 of 1
Loc Fara	jec ati allo	: Lakeside Industries ct: Aberdeen Site on: Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Completed:4Equipment:SDrilling Company:EDrilling Foreman:J			4/20/11 1555Sampler Type: 4' Macrocore4/20/11 1645Drive Hammer (Ibs):Stratoprobe BR187Depth of Water (ft bgs):ESNTotal Boring Depth (ft bgs):John MeffordTotal Well Depth (ft bgs):Direct push					: ogs):	NA 6.5 12.0 NA
Depth (feet bgs)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts	PID (ppmv)	Sample ID	Sample Analyzed	Con	ring/Well struction Details
		0-0.4' Asphalt (100% asphalt), black, moist, odor, sh 0.4-3.5' Poorly graded SAND with gravel (50% sand silt), fine sand, fine to coarse gravel, brown, moist, n 3.5-4.0' Silty SAND (70% sand, 30% silt), fine to mer moist, odor, sheen. 4.0-8.0' Poorly graded SAND with gravel (50% sand silt), fine sand, fine to coarse gravel, brown, moist to 8.0-9.0' SILT (100% silt), dark brown, wet, odor, she 9.0-10.5' Poorly graded SAND with gravel (50% san 10% silt), fine sand, fine to coarse gravel, brown, wet 10.5-12.0' SILT (100% silt), dark brown, wet, odor to sheen.	, 40% gravel, 10% o odor, no sheen. dium sand, black, , 40% gravel, 10% wet, odor, sheen. en. d, 40% gravel, t, odor, sheen.	AC SP SP ML SP ML		70 80	NA NA	2.5 7.6 6.8	B27-3.5 B27-6.0 B27-042011-GW	x x		Asphalt cap

Well Construction Information									
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft msl):	NA				
Casing Diameter (in):	NA	Surface Seal:	NA	Top of Casing Elevation (ft msl):	NA				
Screen Slot Size (in):	NA	Annular Seal:	NA	Surveyed Location:	X:NA				
Screened Interval (ft bgs):	7-10'	Boring Abandonment:	Bentonite		Y:NA				

	FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027		Lo	g o	f E	Borin	g:	B28		Page 1 of 1
ocat	:: Lakeside Industries ct: Aberdeen Site ion:Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Completed: Equipment: Drilling Company: Drilling Foreman:		4/21/11 0745 4/21/11 0825 Stratoprobe BR187 ESN John Mefford Direct push			Dri De To	ve Hammer (Ibs.)	<b>is):</b> 12.0	
Deptn (reet bgs.) Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
	<ul> <li>0-0.4' Asphalt (100% asphalt), black, moist.</li> <li>0.4-3.5' Poorly graded GRAVEL with sand (70% gra 5% silt), fine to coarse gravel, fine sand, brown, moisten.</li> <li>3.5-7.0' Poorly graded SAND with gravel (50% sand silt), fine sand, fine to coarse gravel, brown, moist to sheen, rounded gravel.</li> <li>7.0-8.0' SILT (100% silt), dark brown, wet, slight odd 8.0-10.0' Poorly graded GRAVEL with sand (70% gra 5% silt), fine to coarse gravel, fine sand, brown, wet</li> <li>10.0-11.5' SILT (100% silt), dark brown, wet, odor to sheen.</li> </ul>	st, no odor, no , 40% gravel, 10% wet, petro-odor, or, no sheen. avel, 25% sand, , odor, no sheen.	AC GP SP ML GW		100 60 50		0.0 0.7 33.2 5.0	B28-3.5 B28-042111-GW	x	Asphalt ca

Manument Tunes NIA			Well Co	onstruction Information	Ground Surface Elevation (ft):	NA	
Monument Type: NA	wonument Type: NA		Filter Pack: NA		Ground Surface Elevation (it).	NA	
Casing Diameter (inches):	NA NA				Top of Casing Elevation (ft):	NA	
Screen Slot Size (inches):			Surface Seal:	NA	Boring Abandonment:	Bentonite	
Screened Interval (ft bgs):	5-8'		Annular Seal:	NA	Surveyed Location: X: NA	Y: NA	

	FARALLON CONSULTING 975 5th Avenue Northwest Issaguah, Washington 98027	Lo	g o	of E	Borir	ıg:	B29		Page 1 of 1	
Locat Farall		Date/Time Completed: 4 Equipment: 5 Drilling Company: E Drilling Foreman: 5		4/21/11 0840 4/21/11 0900 Stratoprobe BR187 ESN John Mefford Direct push			mpler Type: 4' M ive Hammer (lbs.): pth of Water ATD tal Boring Depth ( tal Well Depth (ft b	(ft bgs): ft bgs):	NA 5.5 8.0 NA	
Depth (feet bgs.) Sample Interval	Lithologic Descripti	on SSS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	V Co	oring/Well nstruction Details	
	0-0.4' Asphalt (100% asphalt), black, moist. 0.4-5.5' Poorly graded GRAVEL with sand (70% gra 5% silt), fine to coarse gravel, fine sand, brown, moi sheen, angular gravel fill.			100	NA	0.0	B29-3.0	x	Asphalt cap	
	5.5-5.8' Wood debris (100%), brown, wet, odor, she 5.8-8.0' SILT (100% silt), brown, wet, odor to 6.3-fee	/\		100	NA	6.7	B29-042111-GW	X	Bentonite	
10		•								

		Well C	onstruction Information		
Monument Type: NA				Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Filter Pack:	NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal:	NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	5-8'	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA

	FARALLON CONSULTING 975 5th Avenue Northwest Issaguah, Washington 98027	Lo	og c	of E	Bori	ng:	B30		Page 1 of 1
Locat Farall		Date/Time Completed: 4 Equipment: 5 Drilling Company: 6 Drilling Foreman: 5		4/21/11 0950 4/21/11 1015 Stratoprobe BR187 ESN John Mefford Direct push			mpler Type: 4' M ive Hammer (Ibs.) pth of Water ATD tal Boring Depth ( tal Well Depth (ft	NA : 5.0	
Depth (feet bgs.) Sample Interval	Lithologic Descripti	on SCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID		Boring/Well onstruction Details
	<ul> <li>0-0.4' Asphalt (100% asphalt), black, moist.</li> <li>0.4-5.0' Poorly graded GRAVEL with sand (70% gra 5% silt), fine to coarse gravel, fine sand, brown, mo odor, sheen, angular gravel fill.</li> <li>5.0-7.2' Poorly graded SAND with gravel (50% sand silt), fine sand, fine to coarse gravel, brown, wet, od rounded gravel.</li> <li>7.2-8.0' SILT (100% silt), dark brown, wet, odor to 7</li> </ul>	ist to wet, petro- l, 40% gravel, 10% or, sheen,		s 60 a	NA	236	B30-3.0	x	Asphalt car Bentonite
15	Wel	I Construction Info	matic						20

		Well C	onstruction Information	Ground Surface Elevation (ft):	NA	
Monument Type: NA		Filter Pack:	NA			
Casing Diameter (inches):	NA	Surface Seal:	NA	Top of Casing Elevation (ft):	NA	
Screen Slot Size (inches):	NA	Surface Seal:	NA	Boring Abandonment:	Bentonite	
Screened Interval (ft bgs):	5-8'	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA	

cat	975 5th Avenue Northwest Issaquah, Washington 98027 :: Lakeside Industries ct: Aberdeen Site ion: Aberdeen, WA on PN: 525-006	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman:	Meff	130 pe BR187 ord	Sa Dri De To To	1. · · · · · · · · · · · · · · · · · · ·			
Lithologic Descrip		Drilling Method: on ວິ	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
	0-0.4' Asphalt (100% asphalt), black, moist. 0.4-3.5' Poorly graded GRAVEL with silt and sand (7 sand, 10% silt), fine to coarse gravel, fine sand, gray petro-odor, no sheen. 3.5-7.5' Poorly graded SAND with gravel (70% sand silt), fine sand, fine to coarse gravel, gray, moist, odd	/, moist, slight , 20% gravel, 10% SP		100	NA	3.0 0.9	B31-3.0 B31-6.0	×	Asphalt ca
	<ul> <li>7.5-8.0' SILT (100% silt), dark brown, moist to slight sheen.</li> <li>8.0-10.0' Poorly graded SAND with gravel (70% san 10% silt), fine sand, fine to coarse gravel, gray, mois no sheen.</li> <li>10.0-10.5' WOOD debris (100%), brown, wet, no odd 10.5-12.0' SILT (100% silt), dark brown, wet, no odd</li> </ul>	d, 20% gravel, st to wet, no odor, or, no sheen.		60	NA	0.0	B31-042111-GW	x	Bentonite

9-12'

Screened Interval (ft bgs):

Annular Seal: NA

Surveyed Location: X: NA

Y: NA

		FARALLON Consulting 975 5th Avenue Northwest Issaguah, Washington 98027		Lo	g o	of E	Borir	ıg:	B32		Page 1 of 1
Lo Fa	oje cat rall		Date/Time Completed: Equipment: Drilling Company: Drilling Foreman:			4/21/11 1140 4/21/11 1240 Stratoprobe BR187 ESN John Mefford Direct push			mpler Type: 4' M ive Hammer (Ibs.) pth of Water ATD tal Boring Depth ( tal Well Depth (ft I	: (ft bgs): ft bgs):	NA
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID		oring/Well onstruction Details
0_		<ul> <li>0-0.4' Asphalt (100% asphalt), black, moist.</li> <li>0.4-3.6' Poorly graded GRAVEL with sand (70% gra 5% silt), fine to coarse gravel, fine sand, gray, moist sheen, angular gravel fill.</li> <li>3.6-6.5' Poorly graded SAND with gravel (50% sand silt), fine sand, fine to coarse gravel, gray, moist, no</li> <li>6.5-8.8' Silty SAND (70% sand, 30% silt), fine sand, moist, no odor, no sheen.</li> <li>8.8-11.5' SILT with sand (80% silt, 20% sand), fine to wet, no odor, no sheen.</li> </ul>	t, no odor, no d, 40% gravel, 10% odor, no sheen. blackish-gray,	AC GP SP SM		70	NA	0.0	B32-2.0 B32-6.0	X	Asphalt cap
		11.5-12.0' SILT (100% silt), dark brown, wet, no odd	or, no sheen.	ML		100	NA	0.0	B32-042111-GW	x	Bentonite

		Well C	onstruction Information		
Monument Type: NA				Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Filter Pack:	NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal:	NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	9-12'	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA

V	FARALLON consulting 975 5th Avenue Northwest Issaquab, Washington 98027	Lo	og o	of I	Bori	ing	: B33		I	Page 1 of 1	
Locat Farall	t: Lakeside Industries ct: Aberdeen Site tion: Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Started:4/21/11 124Date/Time Completed:4/21/11 131Equipment:StratoprobeDrilling Company:ESNDrilling Foreman:John MefforDrilling Method:Direct push				1315       Drive Hammer (Ibs):         robe BR187       Depth of Water (ft bgs):         Total Boring Depth (ft bgs):         efford       Total Well Depth (ft bgs):					
Depth (feet bgs) Sample Interval	Lithologic Descripti	on SSN	USGS Graphic	% Recovery	Blow Counts	PID (ppmv)	Sample ID	Sample Analyzed	Con	ring/Well Istruction Details	
	<ul> <li>0-0.4' Asphalt (100% asphalt), black, moist, odor, sh</li> <li>0.4-2.3' Silty SAND (70% sand, 20% silt, 10% grave to coarse gravel, brown, moist, no odor, no sheen.</li> <li>2.3-3.5' Silty SAND (50% sand, 45% silt, 5% gravel) coarse gravel, dark brown, moist, no odor, no sheen</li> <li>3.5-5.5' Silty SAND (80% sand, 20% silt), fine sand, moist, no odor, no sheen.</li> <li>5.5-12.0' Silty SAND (70% sand, 30% silt), fine sand moist to wet, no odor, no sheen.</li> </ul>	I), fine sand, fine SM SM , fine sand, fine to blackish-gray, SM		90 50	NA NA	0.0	B33-2.0 B33-6.0 B33-042111-GW	x		Asphait cap ❤ Bentonite	

		Well Construc	tion Informa	ation	
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft msl):	NA
Casing Diameter (in):	NA	Surface Seal:	NA	Top of Casing Elevation (ft msl):	NA
Screen Slot Size (in):	NA	Annular Seal:	NA	Surveyed Location:	X:NA
Screened Interval (ft bgs):	9-12'	Boring Abandonment:	Bentonite		Y:NA

		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	Lo	g c	of E	Borir	ng:	B34		Page 1 of 1
Loc Far	ojec cati allo		Date/Time Started:4/19/11 1440Sampler Type:4' MacDate/Time Completed:4/19/11 1620Drive Hammer (lbs.):Equipment:Stratoprobe BR187Depth of Water ATD (ftDrilling Company:ESNTotal Boring Depth (ft bgsDrilling Foreman:Marty HuanTotal Well Depth (ft bgsDrilling Method:Direct push							NA ogs): 9.0 gs): 12.0
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on Son	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0		0.0-6.0' Well graded GRAVEL with sand (75% grave silt), fine to coarse gravel, fine sand, brown, moist, r angular gravel fill. 6.0-11.0' Silty SAND (70% sand, 30% silt), fine sand	o odor, no sheen,		100	NA	0.0			Fill
		wet, petro-odor, no sheen. 11.0-12.0' SILT (100% silt), brown, moist to wet, no	,		100		41.8	B34-7.0 B34-041911-GW	x	Sentonite

		Well Construction Information	tion	
Monument Type: NA		54540	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Filter Pack: NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal: NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	8-11	Annular Seal: NA	Surveyed Location: X: NA	Y: NA

	FARALLON consulting 975 5th Avenue Northwest Issaguath, Washington 98027		Lo	g o	f E	Bori	ng:	B35		Page 1 of 1
Loca Fara		Date/Time Completed:4/21/11 1455Equipment:Stratoprobe BR187Drilling Company:ESN				Dri 7 De To	Sampler Type:4' MacrocoreDrive Hammer (lbs.):N/Depth of Water ATD (ft bgs):5.Total Boring Depth (ft bgs):12Total Well Depth (ft bgs):N/			
Depth (feet bgs.)	Lithologic Descripti	on	uscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID		oring/Well onstruction Details
0	0-0.4' Asphalt (100% asphalt), black, moist, odor, sh 0.4-2.5' Well graded GRAVEL with sand (70% grave silt), fine to coarse gravel, fine sand, gray, moist, ode	el, 20% sand, 5%	AC GW		100	NA	86.0	B35-2.0		Asphalt cap
5-	2.5-6.7' Poorly graded SAND with gravel (50% sand silt), fine sand, fine to coarse gravel, brown, moist to sheen.		SP				115	B35-4.0	x	 
	6.7-9.0' SILT (100% silt), dark brown, wet, odor to 6.	9-feet, no sheen.	ML		100	NA	31.4	B35-042111-GW	x	
-   10 -	9.0-10.0' WOOD debris (100% wood), brown, wet, o 10.0-12.0' SILT (100% silt), dark brown, wet, no odo		WD ML		100	NA	0.0			Bentonite
-										

	82	Well C	onstruction Information		
Monument Type: NA		Filter Pack:	NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA			Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal:	NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	5-8'	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA

	FARALLON consulting 975 5th Avenue Northwest Issaguah, Washington 98027	Lo	g c	of E	Borir	ng:	B36		Page 1 of 1		
Loca Faral	t: Lakeside Industries ect: Aberdeen Site tion: Aberdeen, WA Ion PN: 525-006 ged By: Ken Scott	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	Time Completed:7/25/11 @ 11:50pment:Powerprobe 9500ng Company:ESNng Foreman:Don Harnden					Drive Hammer (Ibs.): NA			
Depth (feet bgs.) Sample Interval	Lithologic Descripti	on SCS S	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Co	oring/Well nstruction Details		
	0-0.3' Asphalt (100% asphalt), black. 0.3-1.5' Concrete (100% concrete), white, dry, no od 1.5-7.0' Well-graded SAND with silt and gravel Fill ( gravel, 10% silt), fine to coarse sand, fine to coarse to wet, odor, sheen. 7.0-7.7' WOOD (100% wood), brown, wet, no odor, 7.7-12.0' SILT (100% silt), dark brown, wet, no odor	70% sand, 20% gravel, grey, moist		70		64.9 66.5 0.2	B36-3.5 B36-5.0 B36-072511-GW	x	Asphalt cap		

		Well C	onstruction Information		
Monument Type: NA		100000000000000000000000000000000000000		Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Filter Pack:	NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal:	NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	5 to 8' bgs	Annular Seal:	NA	Surveyed Location: X: 98666.478/:	20175.524

		FARALLON CONSULTING 975 5th Avenue Northwest Issaquah, Washington 98027		Lo	g c	of E	Borir	ıg:	B37		F	Page 1 of 1	
Loo Far	ojec cat ralle	Lakeside Industries ct: Aberdeen Site ion: Aberdeen, WA on PN: 525-006	Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman: Drilling Method:	eted: :	7/25/ Powe ESN	/11 @ erpro Harn		Dr De To	mpler Type: 4' l ive Hammer (Ibs.) pth of Water ATD tal Boring Depth tal Well Depth (ft	er (Ibs.): NA ter ATD (ft bgs): 4.0' Depth (ft bgs): 12.0			
Lo	gge	ed By: Ken Scott	Drining Method.	1									
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ring/Well struction Details	
0_				T	REAL PROPERTY.	8 1					B		
-		0-0.3' Asphalt (100% asphalt), black. 0.3-2.8' Well-graded GRAVEL with silt and sand Fill sand, 10% silt), fine to coarse gravel, fine to coarse no odor, no sheen.	(70% gravel, 20% sand, grey, moist,	GW-G	) <u>0 0 0 0 0 0</u>	¢ 100	NA				2	Asphalt cap	
_	$\left  \right\rangle$	2.8-4.0' SILT (95% silt, 5% sand), fine sand, green, no odor, no sheen.	moist to slight wet,	ML		911		0.3	B37-3.5	x		Fill	
5-		4.0-6.5' Silty SAND (60% sand, 35% silt, 5% gravel) coarse gravel, greenish-brown, wet, slight odor, no s		SM					B37-072511-GW	x		Water level	
-		6.5-10.0' SILT (90% silt, 10% sand), fine sand, brow (natural) odor, monochromatic white sheen.	/n, wet, organic	ML		100	NA	0.2				×	
								9					
10 —		10.0-12.0' SILT (100% silt), fine sand, dark brown, v (natural) odor, no sheen.	vet, organic	ML		100	NA	0.0				Bentonite	

		Well C	onstruction Information		
Monument Type: NA			NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Filter Pack:		Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal:	NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	4 to 7' bgs	Annular Seal:	NA	Surveyed Location: X: 98708.318/	20221.861

		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	L	.0	g o	f E	Borir	ng:	B38		Page 1 of 1
Loo Far	ojeo cat rallo		Date/Time Started:7/25/11 @ 10:30Sampler Type:4' MDate/Time Completed:7/25/11 @ 11:05Drive Hammer (lbs.):Equipment:Powerprobe 9500Depth of Water ATD (Drilling Company:ESNTotal Boring Depth (fDrilling Foreman:Don HarndenTotal Well Depth (ft bDrilling Method:Direct push				ve Hammer (Ibs.): pth of Water ATD (ft al Boring Depth (ft	(ft bgs): 4.0' (ft bgs): 12.0			
Depth (feet bgs.)	Sample Interval	Lithologic Descripti		nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID Sample Juaivzed	Bo Coi	ring/Well nstruction Details
0_   5		0-0.3' Asphalt (100% asphalt), black. 0.3-1.1' Well-graded GRAVEL with silt and sand Fill sand, 10% silt), fine to coarse gravel, fine sand, gre no sheen. 1.21-1.4' Asphalt (100% asphalt), black. 1.4-5.0' Poorly graded SAND with silt and gravel Fil gravel, 10% silt), fine to medium sand, fine to coars moist to wet, no odor, no sheen. 5.0-7.5' SILT (100% silt), brown, moist to wet, no od	I (70% gravel, 20% y, moist, no odor, / SF I (70% sand, 20% e gravel, grey,	AC /-GI AC 	77	100	NA	0.8	B38-3.5 X B38-5.5 B38-072511-GW X	-	Asphalt cap ▼ Water level
		7.5-10.5' Silty SAND (60% sand, 40% silt), fine to c brown, wet, no odor, no sheen. Observe root rhizo 10-feet bgs. 10.5-12.0' SILT (100% silt), brown, wet, no odor, no	mes between 8 to	SM ML		100	NA	0.0			Bentonite

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA NA Filter Pack: Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: NA 0.010 Boring Abandonment: Bentonite Screen Slot Size (inches): 4 to 7' bgs Annular Seal: NA Surveyed Location: X: 98523.0767: 20151.184 Screened Interval (ft bgs):

		CONSULTING 975 5th Avenue Northwest Issaquah, Washington 98027	L	-0	g o	of E	Boriı	ng:	B39		Page 1 of 1
Pro Lo Fai	cat rall	t: Lakeside Industries ct: Aberdeen Site ion: Aberdeen, WA on PN: 525-006 ed By: Ken Scott	Equipment:         Powerprobe 9500         Depth of Water           Drilling Company:         ESN         Total Boring Detection				mpler Type: 4' M ve Hammer (Ibs.): pth of Water ATD tal Boring Depth ( tal Well Depth (ft k	(lbs.):         NA           ATD (ft bgs):         7.0'           epth (ft bgs):         12.0			
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	NSCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Co	oring/Well nstruction Details
0_		0-0.3' Asphalt (100% asphalt), black. 0.3-1.2' Well-graded GRAVEL with silt and sand Fill sand, 10% silt), fine to coarse gravel, fine sand, grey sheen. 1.2-4.0' Poorly graded SAND with silt and gravel Fill gravel, 10% silt), fine sand, fine to coarse gravel, bro odor, sheen.	(70% gravel, 20% GW y, moist, odor,, SF (60% sand, 30% own, moist, petro-	AC  V-GN  P-SM	0	100	NA	58.3	B39-2.0		Asphalt cap
5-		5.2-8.0' Well-graded GRAVEL with silt and sand (70 sand, 10% silt), fine to coarse gravel, fine to coarse to wet, petro-odor, sheen.	% gravel, 20% GW	vil  V-GN	0000000	100	NA	36.3	B39-6.5	×	<b>≭</b> Water leve
- 10		8.0-10.4' SILT (100% silt), brown, wet, slight odor, n 10.4-12.0' Silty SAND (60% sand, 30% silt, 10% gra sand, fine to coarse gravel, brown, wet, odor, no she	vel), fine to coarse	ML 5M		100	NA		B39-072511-GW	×	Bentonite

		Well Co	onstruction Information	Ground Surface Elev	ration (ft):	NA	
Monument Type: NA		Filter Pack:	NA	Ground Surface Elev	ation (it):	INA	
Casing Diameter (inches):	NA	The Fack.		Top of Casing Elevat	ion (ft):	NA	
Screen Slot Size (inches):	0.010	Surface Seal:	NA	Boring Abandonmen	t:	Bentonite	
Screened Interval (ft bgs):	6 to 9' bgs	Annular Seal:	NA	Surveyed Location:	X: 98470.904/:	20112.496	

	FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	Lo	g o	fΕ	Borir	ıg:	B40		Page 1 of 1
Loca Faral	t: Lakeside Industries ct: Aberdeen Site tion: Aberdeen, WA on PN: 525-006 ed By: Ken Scott	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:		11 @ rprob	10:10 pe 9500 len	Dri De Tot	mpler Type: 4' N ve Hammer (Ibs.) pth of Water ATD tal Boring Depth ( tal Well Depth (ft	: (ft bg: ft bgs	NA s): 6.0'
Depth (feet bgs.) Sample Interval	Lithologic Descripti	on	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID		Boring/Well Construction Details
	<ul> <li>0-0.5' Asphalt (100% asphalt), black.</li> <li>0.5-1.2' Well-graded GRAVEL with silt and sand (70 sand, 10% silt), fine to coarse gravel, fine sand, grey no sheen. Observe concrete chunks between 0.5 to 1.2-3.5' Poorly graded SAND with silt and gravel Fill gravel, 10% silt), fine sand, fine to coarse gravel, grey no sheen. Observe metal fence post support at 1.3-3.5-4.2' SILT (100% silt), brown, moist, no odor, no satist, fine to coarse gravel, fine sand, brown, moist to sheen. Observe staining between 6 to 9-feet bgs.</li> <li>10.2-12.0' SILT (100% silt), brown, wet, no odor, no satist, silt), fine to coarse gravel, fine sand, brown, moist to sheen. Observe staining between 6 to 9-feet bgs.</li> </ul>	y, moist, no odor, b 1.2-feet bgs. / SP-SM (70% sand, 20% ay, moist, no odor, feet bgs. ML sheen. ML vel, 25% sand, 5% o wet, petro-odor, GW	000000000000000000000000000000000000000	100	NA	0.0	B40-3.0 B40-5.5 B40-072511-GW	×	Fill Bentonite

		Woll C	onstruction Information			
Monument Type: NA				Ground Surface Elev	ation (ft):	NA
Casing Diameter (inches):	NA	T III OF T GOIL	NA	Top of Casing Elevat	ion (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal:	NA	Boring Abandonmen	t:	Bentonite
Screened Interval (ft bgs):	6 to 9' bgs	Annular Seal:	NA	Surveyed Location:	X: 98433.895Y:	20073.833

	CONSULTING 975 5th Avenue Northwest Issaquah, Washington 98027	L	bg	O		sorir	ıg:	B41		Page 1 of 1
_oca Faral		Date/Time Started:7/26/11 @ 8:10Sampler Type: 4' MathematicDate/Time Completed:7/26/11 @ 8:55Drive Hammer (lbs.):Equipment:Powerprobe 9500Depth of Water ATD (ftDrilling Company:ESNTotal Boring Depth (ft I)Drilling Foreman:Don HarndenTotal Well Depth (ft bg:Drilling Method:Direct push					vrocore NA bgs): 4.0' ogs): 12.0			
Depth (feet bgs.) Sample Interval	Lithologic Descript	ion So So		USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID Sample Analyzed	Bo Co	oring/Well nstruction Details
	0-0.3' Asphalt (100% asphalt), black.         0.3-0.8' Well-graded GRAVEL with silt and sand Fillsand, 10% silt), fine to coarse gravel, fine to coarse petro-odor, sheen.         0.8-3.5' Well-graded SAND with gravel Fill (75% satisfy silt), fine to coarse sand, fine to coarse gravel, sodor, sheen.         3.5-5.5' Silty SAND Fill (60% sand, 30% silt, 10% g coarse sand, fine to coarse gravel, brown, moist to sheen.         5.5-6.3' SILT (100% silt), brown, wet, petro-odor, no         6.3-7.5' WOOD (100% wood), brown, wet, odor, no	e sand, grey, moist, / SV nd, 15% gravel, grey, moist, petro- ravel), fine to wet, petro-odor, o sheen. MI			00		34.2	B41-3.5 X B41-072611-GW X		Asphalt ca
р — _ / /	7.5-8.3' SILT (100% silt), greenish-brown, wet, odo 8.3-8.7' WOOD (100% wood), brown, wet, no odor, 8.7-9.2' SILT (100% silt), dark brown, wet, organic t sheen. 9.2-9.8' SILT (100% silt), greenish-brown, wet, no o 9.8-12.0' Well-graded SAND with silt and gravel (70 gravel, 10% silt), fine to coarse sand, fine to coarse wet, no odor, no sheen.	no sheen. W[ (natural) odor, no Ml 			00	NA	1.1			Bentonite

	11 (31 action	Well Cons	struction Information		
Monument Type: NA		Filter Pack: NA		Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	,		Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal: NA		Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	4 to 7' bgs	Annular Seal: NA		Surveyed Location: X: NA	Y: NA

		CONSULTING 975 5th Avenue Northwest Issaquah, Washington 98027		3		Borir	.9.			Page 1 of 1
Pro LOC Fai	cat all	t: Lakeside Industries ct: Aberdeen Site ion: Aberdeen, WA on PN: 525-006 ed By: Ken Scott	Date/Time Completed:7/25/11 @Equipment:PowerproDrilling Company:ESN		25/11 @ 14:00Drive Hammerowerprobe 9500Depth of WSNTotal Borinon HarndenTotal Well I			mpler Type: 4' Mac ve Hammer (Ibs.): pth of Water ATD (ft tal Boring Depth (ft B tal Well Depth (ft bgs	mer (lbs.): NA ater ATD (ft bgs): 4.0' g Depth (ft bgs): 12.0	
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on SS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Samble ID Sample ID	Coi	oring/Well Instruction Details
0_ - - 5-		0-0.3' Asphalt (100% asphalt), black. 0.3-1.1' Well-graded GRAVEL with silt and sand Fill sand, 10% silt), fine to coarse gravel, fine to coarse slight odor, no sheen. 1.1-5.5' Well-graded SAND with silt and gravel Fill (7 gravel, 10% silt), fine to coarse sand, fine to coarse to wet, petro-odor, sheen.	sand, grey, moist, , , , , , , , , , , , , , , , , , ,	-10-	100	NA	72.0	B42-3.5 X B42-072511-GW X		Asphalt cap <b>≭</b> Water leve
-		5.5-9.0' SILT (100% silt), brown, wet, slight odor, no	sheen. ML		100	NA	13.5			Fill
- 0		9.0-10.0' Silty SAND (60% sand, 25% silt, 15% grav sand, fine to coarse gravel, greenish-brown, wet, slig sheen. 10.0-11.2' SILT (100% silt), dark brown, wet, no odo 11.2-12.0' SILT (100% silt), greenish-brown, wet, no	ght odor, slight r, no sheen. ML		100	NA	0.5			Bentonite

		Well C	onstruction Information		
Monument Type: NA				Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA		NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal:	NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	4 to 7' bgs	Annular Seal:	NA	Surveyed Location: X: NA	Y: NA

		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	×	Lo	g o	of E	Borin	ıg:	B43	÷	Page 1 of 1
Pro Lo Fa	cat rall	t: Lakeside Industries ct: Aberdeen Site ion: Aberdeen, WA on PN: 525-006 ed By: Ken Scott	Date/Time Started: Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	Date/Time Completed:7/25/11 @ 13:20Drive HammerEquipment:Powerprobe 9500Depth of WaterDrilling Company:ESNTotal Boring DeDrilling Foreman:Don HarndenTotal Well Depth				mpler Type: 4' M ve Hammer (Ibs.) pth of Water ATD tal Boring Depth ( tal Well Depth (ft	(lbs.): NA ATD (ft bgs): 5.0' epth (ft bgs): 12.0		
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	NSCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID		Boring/Well Construction Details
0_		<ul> <li>0-0.3' Asphalt (100% asphalt), black.</li> <li>0.3-3.5' Well-graded GRAVEL with silt and sand Fill sand, 10% silt), fine to coarse gravel, fine to coarse no odor, no sheen.</li> <li>3.5-7.5' SILT (100% silt), dark brown, moist to wet, sheen.</li> <li>7.5-10.0' SILT (100% silt), greenish-brown, wet, pet sheen to 7.5-feet bgs; no sheen at 8-feet bgs.</li> <li>10.0-11.5' SILT (100% silt), brown, wet, organic (na sheen.</li> <li>11.5-12.0' SILT (100% silt), greenish-brown, wet, no sheen.</li> </ul>	sand, grey, moist, slight odor, slight ro-odor, slight tural) odor, no	AC SW-GI ML ML		90	NA	0.9 26.3	B43-3.5 B43-4.5 B43-072511-GW	x	Fill Bentonite

		Sha A		
Monument Type: NA		Well Construction Information	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Filter Pack: NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal: NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	5 to 8' bgs	Annular Seal: NA	Surveyed Location: X: 98785.739	19999.390

	FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	Lo	g o	of E	Boriı	ng:	B44		Page 1 of 1
Loca Fara		Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	7/29/	erprol		Dri De To	mpler Type: 4' Ma ive Hammer (Ibs.): pth of Water ATD ( tal Boring Depth (f tal Well Depth (ft b	ft bgs): t bgs):	NA
Depth (feet bgs.)	Lithologic Descript	ion System	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID		oring/Well onstruction Details
	0-0.3' Asphalt (100% asphalt), black.         0.3-3.5' Well-graded GRAVEL with silt and sand Fill sand, 10% silt), fine to coarse gravel, fine to coarse no odor, no sheen.         1.6-2.9' Silty SAND (65% sand, 35% silt), fine to me moist, no odor, no sheen.         2.9-6.2' Well-graded SAND with gravel (70% sand, silt), fine to coarse sand, fine to coarse gravel, grey 3.0-feet bgs, odor, no sheen.         6.2-6.5' SILT (100% silt), dark brown, wet, no odor, 6.5-6.9' SILT (100% silt), tan, wet, no odor, no sheen.         7.9-10.5' SILT (100% silt), dark brown, wet, aron sheen.         7.9-10.5' SILT (100% silt), dark brown, wet, no odor         10.5-11.8' PEAT (100% peat), dark brown, wet, no odor         11.8-12.0' SILT (100% silt), dark brown, wet, no odor	sand, grey, moist, edium sand, brown, 25% gravel, 5% moist to wet at sn. matic odor, no sheen. ML ML ML odor, no sheen. PT		70	NA	12.2 22.7 0.8	B44-2.5 > B44-6.0 B44-072911-GW > B44-10.0		Asphalt cap Water level Fill Bentonite

		Woll C	onstruction Information			
Monument Type: NA				Ground Surface I	Elevation (ft):	NA
Casing Diameter (inches):	NA		NA	Top of Casing Ele	evation (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal:	NA	Boring Abandonn	nent:	Bentonite
Screened Interval (ft bgs):	3 to 6' bgs	Annular Seal:	NA	Surveyed Location:	X: 98666.478/:	20175.524

		FARALLON CONSULTING 975 5th Avenue Northwest Issaquah, Washington 98027		Lo	g c	of I	Bori	ng:	B45		Pa	ge 1 of 1
Lo Fai	ojeo cat rallo		Date/Time Completed:4Equipment:GDrilling Company:EDrilling Foreman:N			3 @ probe		Sampler Type: 5' Macrocore Drive Hammer (Ibs.): Depth of Water ATD (ft bgs): Total Boring Depth (ft bgs): Total Well Depth (ft bgs):				uto 0' 2.5' A
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Const	ng/Well truction tails
0_		0-0.5' GRAVEL with sand (80% gravel, 15% sand, 5 coarse gravel, fine to medium sand, medium brown, Observed asphalt grindings.	% silt), fine to moist, no odor.	GW				0.0				Asphalt cap
-	-					10	NA					
5-		5.0-7.5' Silty SAND (60% sand, 35% silt, 5% gravel) sand, fine gravel, gray to greenish-gray, moist to we odor. Observed piece of wood from 6 to 6.2-feet bg	t, hydrocarbon-like	SM		50	NA	0.2	B45-5.0	×	7	▼ Water level
10		10.0-12.5' SILT (95% silt, 5% sand), fine sand, brow moist, no odor, no sheen.	n to dark brown,	ML		50	NA	0.0	B45-12.0	×		Bentonite
15												

		Well Construction Information		
Monument Type: NA			Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Filter Pack: NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal: NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	NA	Annular Seal: NA	Surveyed Location: X: NA	Y: NA

		FARALLON consulting 975 5th Avenue Northwest Issaguah, Washington 98027	Lo	g c	of E	Bori	ng:	B46	Page 1 of 1		
Loc Far	ojec cati rallo		Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	8/6/1 8/6/1 Geop ESN Don Direc	3 9:3 probe Harne	5 7800 den	Dri De Toi	Sampler Type:5' MacrocoreDrive Hammer (Ibs.):AUTODepth of Water ATD (ft bgs):5.0Total Boring Depth (ft bgs):15.0Total Well Depth (ft bgs):NA			
Depth (feet bgs.)	Sample Interval	Lithologic Description	on Sos	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID Samble Vualyzed	Boring/Well Construction Details		
0 _ _		0.0-0.3 Asphalt (100% asphalt), black 0.3-1.7 Poorly graded SAND with silt and gravel (50% gravel, 10% silt), fine to coarse sand, fine to coarse of brown, moist, no odor. 1.7-3.9 Silty SAND (60% sand, 40% silt), greenish gr moist, no odor. 3.9-5.0 No Recovery	pravel, light		72	NA	9.8	B46-080613-3.9 @ 0905			
5		<ul> <li>5.0-6.7 Silty SAND (60% sand, 40% silt), greenish gr moist, no odor.</li> <li>6.7-7.1 Wood Debris</li> <li>7.1-8.1 SILT (100% silt), olive gray, wet, no odor, mir throughout.</li> <li>8.1-10.0 No Recovery</li> </ul>	WD		62	NA	11.0	B46-080613-7.4 @ 0922	Water level		
10		10.0-13.9 SILT (100% silt), olive gray, wet, no odor, n throughout.	ninor wood debris ML		78	NA	7.1	D46.090010.10.0			
		13.9-15.0 No Recovery					7.1	B46-080613-13.9 @ 0928			

		Well Construction Information		
Monument Type: NA		Filter Pack: NA	Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Filler Fack.	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal: NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	NA	Annular Seal: NA	Surveyed Location: X: NA Y	': NA

		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	Lo	bg	0	f E	Bori	ing:	B47	Ρ	age 1 of 1
Loo Far	ojec cati allo		Date/Time Completed:EEquipment:CDrilling Company:EDrilling Foreman:E		8/6/13 9:45 8/6/13 10:10 Geoprobe 7800 ESN Don Harnden Direct push			Dri De To	mpler Type: 5' Mac ve Hammer (Ibs.): pth of Water ATD (ft tal Boring Depth (ft bg tal Well Depth (ft bg	bgs): bgs):	AUTO 3.6 15.0 NA
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on SS S		USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Samble Analyzed	Bor Con E	ing/Well struction Details
0_ - - -		0.0-0.3 Asphalt (100% asphalt), black 0.3-2.0 Poorly graded SAND with silt and gravel (50 gravel, 10% silt), fine to coarse sand, gray, moist, no 2.0-3.7 Silty SAND (60% sand, 40% silt), fine sand, moist to wet, no odor. 3.7-5.0 No Recovery	o odor.	SM		68	NA	14.8	B47-080613-3.7 @ 0947		Water level
5- - -		5.0-9.3 Silty SAND (60% sand, 40% silt), fine sand, moist, no odor. 9.3-10.0 SILT (100% silt), brown, wet, no odor, woo				100	NA				Bentonite
10 — - -		throughout. 10.0-13.6 SILT (100% silt), brown, wet, no odor, wo throughout. 13.6-15.0 No Recovery	od debris			72	NA		B47-080613-10.0 @ 0954 B47-080613-13.6		

		Well Construction Information		
Monument Type: NA			Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Filter Pack: NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal: NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	NA	Annular Seal: NA	Surveyed Location: X: NA Y	': NA

		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027		Lo	g o	of E	Bori	ng:	B48	I	Page 1 of 1
Lo Fai	ojec cati allo		Date/Time Started: Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	Completed:8/6/13 10:40Drive Hammer (lbs.):t:Geoprobe 7800Depth of Water ATD (ftompany:ESNTotal Boring Depth (ft lreman:Don HarndenTotal Well Depth (ft lgs)				bgs): ogs):	AUTO 5.0 15.0 NA		
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample Analyzed	Cor	ring/Well Istruction Details
0_		0.0-0.3 Asphalt (100% asphalt), black 0.3-1.9 Poorly graded SAND with silt and gravel (5 gravel, 10% silt), fine to coarse gravel, gray, moist, 1.9-2.9 Silty SAND (60% sand, 40% silt), fine sand, moist, no odor. 2.9-5.0 No Recovery	no odor.	AC SP-SN SM		52	NA	13.6	B48-080613-2.9 @ 1020		
5-		5.0-7.1 Silty SAND (60% sand, 40% silt), fine sand moist, no odor. 7.1-7.6 Wood Debris 7.6-8.5 SILT (100% silt), brown, wet, no odor. 8.5-10.0 No Recovery	greenish gray,	SM WD ML		70	NA	5.8	B48-080613-7.1 @ 1028		Water leve
- 10 -		10.0-13.3 SILT (100% silt), brown, wet, no odor, wo throughout.	od debris	ML		66	NA	3.9	B48-080613-13.3 @ 1034		

		Well Construction Information		
Monument Type: NA			Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA		Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal: NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	NA	Annular Seal: NA	Surveyed Location: X: NA	<b>/:</b> NA

		FARALLON consulting 975 5th Avenue Northwest Issaquab, Washington 98027	L	DQ	g o	of E	Bori	ng:	B49	F	Page 1 of 1
Loc Fara	jec ati allo		Date/Time Started: Date/Time Completed Equipment: Drilling Company: Drilling Foreman: Drilling Method:	:	8/6/13 10:45 8/6/13 11:25 Geoprobe 7800 ESN Don Harnden Direct push			Dri De To	mpler Type: 5' Ma ve Hammer (Ibs.): pth of Water ATD (f tal Boring Depth (ft tal Well Depth (ft bç	t bgs): bgs):	AUTO 5.0 15.0 NA
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	ion		<b>USGS Graphic</b>	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID Sample ID	Bo Cor	ring/Well Istruction Details
		<ul> <li>0.0-0.3 Asphalt (100% asphalt), black</li> <li>0.3-2.1 Poorly graded SAND with silt and gravel (5) gravel, 10% silt), fine to coarse gravel, fine to coars no odor.</li> <li>2.1-3.3 Silty SAND (60% sand, 40% silt), fine sand, moist, no odor.</li> <li>3.3-5.0 No Recovery</li> <li>5.0-7.9 Silty SAND (60% sand, 40% silt), fine sand wet, no odor.</li> <li>7.9-8.5 SILT (100% silt), brown, wet, no odor.</li> <li>8.5-10.0 No Recovery</li> <li>10.0-15.0 SILT (100% silt), brown, wet, no odor, wo throughout but significantly less than previous borin</li> </ul>	e sand, gray, dry, greenish gray, , , greenish gray, M 			60	NA	14.8	B49-080613-3.3 @ 1050 B49-080613-8.5 @ 1100 B49-080613-15.0 @ 1118		Water level Bentonite

		Well Construction Information		
Monument Type: NA			Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Filter Pack: NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal: NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	NA	Annular Seal: NA	Surveyed Location: X: NA Y	': NA

		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	Lo	g c	of I	Bori	ng	: B50	Page 1 of 1
Lo Fai	ojec cati rallo		Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:		8/6/13 11:30 8/6/13 12:00 Geoprobe 7800 ESN Don Harnden Direct push			mpler Type: 5' Macr ive Hammer (Ibs.): pth of Water ATD (ft I tal Boring Depth (ft b tal Well Depth (ft bgs	AUTO ogs): 6.1 gs): 15.0
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID Sample Juar	Boring/Well Construction Details
0_		0.0-0.3 Asphalt (100% asphalt), black 0.3-3.3 Silty SAND (60% sand, 40% silt), fine sand no odor. 3.3-5.0 No Recovery	, light brown, dry, SM		60	NA	1.2	B50-080613-3.3 @ 1135	
5-		5.0-5.2 Silty SAND (60% sand, 40% silt), fine sand, strong petroleum odor. 5.2-8.3 Silty SAND (60% sand, 40% silt), fine sand, wet at 6.1' bgs, strong petroleum odor 5.2-6.1 bgs. 8.3-10.0 No Recovery	/\		66	NA	277 20.6	B50-080613-6.1 @ 1139 B50-080613-8.3 @ 1142	Water level Bentonite
- 10		10.0-10.8 Silty SAND (60% sand, 40% silt), fine sar wet, slight petroleum odor. 10.8-12.4 SILT (100% silt), grayish brown, wet, no c 12.4-15.0 No Recovery			48	NA		B50-080613-10.8 @ 1146 B50-080613-12.4 @ 1200	

		Well Construction Information		
Monument Type: NA			Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Filter Pack: NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal: NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	NA	Annular Seal: NA	Surveyed Location: X: NA	<b>Y:</b> NA

FARALLON consulting 975 5th Avenue Northwest Insource Washington 0807	Lo	og o	of E	<b>3or</b> i	ng:	B51	Page 1 of 1
t: Lakeside Industries ct: Aberdeen Site tion: Aberdeen, WA lon PN: 525-006 ged By: D. Kayhan	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	8/6/13 12:07 8/6/13 12:30 Geoprobe 7800 ESN Don Harnden Direct push			Dri De Tot	ve Hammer (Ibs.): pth of Water ATD (ft tal Boring Depth (ft	AUTO (bgs): 6.2 (bgs): 15.0
Lithologic Descripti	ion SS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample Analyzed	Boring/Well Construction Details
0.0-0.3 Asphalt (100% asphalt), black 0.3-3.1 Silty SAND (60% sand, 40% silt), fine sand greensih gray starting at 1.9, moist, no odor. 3.1-5.0 No Recovery	, light brown to SM		58	NA			
5.0-8.0 Silty SAND (60% sand, 40% silt), fine sand, wet, no odor at 6.2, slight petroleum odor at 8.0. 8,0-10,0 No Recovery	greenish gray, SM		60	NA	7.9	B51-080613-6.2 @ 1213 B51-080613-8.0 @ 1215	Water level Bentonite
wet, slight petroleum odor throughout.			72	NA	10.1	B51-080613-11.0 @ 1221	
	2013 Altring         2013 Altring         2013 Altring         2014 Altring         2014 Altring         2015 Sth Avenue Northwest         2014 Altring         2015 Altring         2015 Altring         2016 Altring         2017 Altring         2018 Altring         2019 Altring         2019 Altring         2019 Altring         2019 Altring         2010 Altring	293 5th Avenue Northweet Issaquh, Washington 9907       LCC         t:       Lakeside Industries       Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:         ton PN: 525-006       Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:         Lithologic Description       gg         0.0-0.3 Asphalt (100% asphalt), black       AC         0.3-3.1 Silty SAND (60% sand, 40% silt), fine sand, light brown to greensih gray starting at 1.9, moist, no odor.       SM         3.1-5.0 No Recovery       SM         5.0-8.0 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, wet, no odor at 6.2, slight petroleum odor at 8.0.       SM         8,0-10,0 No Recovery       SM         10.0-11.0 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, wet, slight petroleum odor throughout.       SM         11.0-13.6 SILT (100% silt), brownish gray, wet, no odor. Thick, wet       ML	Unitable producting 273 sth Avenue Northwest Exacutating Withington 98027         t:       Lakeside Industries         ct:       Aberdeen Site         tion: Aberdeen, WA       Date/Time Started:       %6/         ion PN:       525-006         red By:       D. Kayhan       Drilling Company:       ESN         Drilling Foreman:       Don         Lithologic Description       gg         0.0-0.3 Asphalt (100% asphalt), black       AC         0.3-3.1       Silty SAND (60% sand, 40% silt), fine sand, light brown to greensih gray starting at 1.9, moist, no odor.       SM         3.1-5.0 No Recovery       Sole 2., slight petroleum odor at 8.0.       SM         8,0-10,0 No Recovery       SM       SM         10.0-11.0       Silty SAND (60% sand, 40% silt), fine sand, greenish gray, wet, no odor at 6.2, slight petroleum odor at 8.0.       SM	Output       Output       Output       Stateward       Stateward <td< td=""><td>Log of Born         Log of Born         Log of Born         Log of Born         Log of Born         Lakeside Industries         def Time Started: 8/6/13 12:07         Date/Time Completed: 8/6/13 12:07         Date/Time Started: Date/Time Started: Date/Time Started: 2007         Date/Time Started: Date/Time Started: 8/6/13 12:07         Date/Time Started: Date/Time Started: 8/6/13 12:07         Date/Time Started: St</td><td>It:       Lakeside Industries       Date/Time Started:       8/6/13 12:07       Same         ct:       Aberdeen Site       Date/Time Started:       8/6/13 12:07       Same         tion:       Aberdeen Site       Date/Time Started:       8/6/13 12:07       Same         ion PN:       525-006       Date/Time Started:       8/6/13 12:07       Same         on PN:       525-006       Drilling Company:       Son       Toi         Drilling Company:       Don Harmden       Toi         Drilling Method:       Direct push       Toi         0.0-0.3 Asphalt (100% asphalt), black       AC       SM       SM       SM         0.3-3.1 Silty SAND (60% sand, 40% silt), fine sand, light brown to greenish gray.       SM       SM       SM       SM         1011.0 Silty SAND (60% sand, 40% silt), fine sand, greenish gray.       SM       M       Ion       A         1011.0 Silty SAND (60% sand, 40% silt), fine sand, greenish gray.       SM       M       Ion         1013.6 Silt (100% silt), brownish gray, wet, no odor. Thick, wet       ML       ML       Ion         1013.6 Silt (100% silt), brownish gray, wet, no odor. Thick, wet       ML       Ion       Ion</td><td>Decomposition       Log of Boring: B51         Littleside       DeterTime Started: B611312:07 DeterTime Completes: B611312:07 DeterTime Completes: B611312:07 DeterTime Completes: B611312:07 DeterTime Completes: B611102 Company: B60 PN: 525-006 Drilling Company: B70 Drilling Foreman: Drilling Foreman: Drilling Foreman: Drilling Method: Drilling Method: Driling Method: Dri</td></td<>	Log of Born         Lakeside Industries         def Time Started: 8/6/13 12:07         Date/Time Completed: 8/6/13 12:07         Date/Time Started: Date/Time Started: Date/Time Started: 2007         Date/Time Started: Date/Time Started: 8/6/13 12:07         Date/Time Started: Date/Time Started: 8/6/13 12:07         Date/Time Started: St	It:       Lakeside Industries       Date/Time Started:       8/6/13 12:07       Same         ct:       Aberdeen Site       Date/Time Started:       8/6/13 12:07       Same         tion:       Aberdeen Site       Date/Time Started:       8/6/13 12:07       Same         ion PN:       525-006       Date/Time Started:       8/6/13 12:07       Same         on PN:       525-006       Drilling Company:       Son       Toi         Drilling Company:       Don Harmden       Toi         Drilling Method:       Direct push       Toi         0.0-0.3 Asphalt (100% asphalt), black       AC       SM       SM       SM         0.3-3.1 Silty SAND (60% sand, 40% silt), fine sand, light brown to greenish gray.       SM       SM       SM       SM         1011.0 Silty SAND (60% sand, 40% silt), fine sand, greenish gray.       SM       M       Ion       A         1011.0 Silty SAND (60% sand, 40% silt), fine sand, greenish gray.       SM       M       Ion         1013.6 Silt (100% silt), brownish gray, wet, no odor. Thick, wet       ML       ML       Ion         1013.6 Silt (100% silt), brownish gray, wet, no odor. Thick, wet       ML       Ion       Ion	Decomposition       Log of Boring: B51         Littleside       DeterTime Started: B611312:07 DeterTime Completes: B611312:07 DeterTime Completes: B611312:07 DeterTime Completes: B611312:07 DeterTime Completes: B611102 Company: B60 PN: 525-006 Drilling Company: B70 Drilling Foreman: Drilling Foreman: Drilling Foreman: Drilling Method: Drilling Method: Driling Method: Dri

		Well Construction Information		
Monument Type: NA			Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Filter Pack: NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal: NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	NA	Annular Seal: NA	Surveyed Location: X: NA Y	<b>/:</b> NA

		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	L	-0	go	of E	Bori	ng:	B52		Page 1 of 1	
Pro Loc Fai	cati rallo		Date/Time Completed: Equipment: Drilling Company: Drilling Foreman:				:25 9 7800 den	Dri De To	mpler Type: 5' Mac ive Hammer (Ibs.): pth of Water ATD (ft tal Boring Depth (ft bgs tal Well Depth (ft bgs	bgs): ogs):	e AUTO	
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	NSCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Samble Analyzed	Cor	ring/Well nstruction Details	
		0.0-0.3 Asphalt (100% asphalt), black 0.3-1.8 Poorly Graded SAND with Silt and Gravel (5 gravel, 10% silt), fine to coarse grade sand, fine to o gravel, light brown, dry, no odor. 1.8-3.8 Silty SAND (60% sand, 40% silt), fine sand, moist, no odor. 3.8-5.0 No Recovery	50% sand, 40% SF coarse grade	AC  SM		70	NA					
5-		5.0-6.8 Silty SAND (60% sand, 40% silt), fine sand, moist from 5.0-6.0, wet from 6.0-6.8, no odor. 6.8-7.0 Wood Debris 7.0-10.0 No Recovery		SM		40	NA	0.0	B52-080613-6.5 @ 1310		Water level	
10 - - - -		10.0-12.8 SILT (100% silt), brown, wet, no odor. Wo throughout lense 11.2-11.3 bgs. 12.8-15.0 No Recovery	ood Debris	 ML		56	NA		B52-080613-10.0 @ 1315 B52-080613-12.8 @ 1317		Bentonite	

		Well Construction Information		
Monument Type: NA			Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Filter Pack: NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal: NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	NA	Annular Seal: NA	Surveyed Location: X: NA	<b>Y:</b> NA

	Date/Time Starte Date/Time Comp Equipment: Drilling Company Drilling Foreman Drilling Method:	y: n:	Geop ESN Don I Direc	3 14: probe Harne	00 7800 den h	Dri De _l Tot	mpler Type: 5' M ve Hammer (Ibs.): pth of Water ATD al Boring Depth ( al Well Depth (ft b	: (ft bgs): ft bgs): bgs):	AUTO 6.0 15.0 NA
	on		phic		8/8			p	
		nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	voO 🖉	ring/Well Istruction Details
0.0-0.3 Asphalt (100% asphalt), black 0.3-1.6 Poorly Graded SAND with Silt and Gravel (5 gravel, 10% silt), fine to coarse grade sand, fine to c gravel, brown, dry, no odor. 1.6-3.8 Silty SAND (60% sand, 40% silt), fine sand, moist, strong petroleum odor at 3.5 bgs. 3.8-5.0 No Recovery	oarse grade	SP-SM		70	NA				
moist from 5.0-6.0, wet starting at 6.0 bgs, strong pe	troleum odor.	SM		60	NA	1052	B53-080613-5.0 @ 1338		Water level
wet, strong petroleum odor.		SM		70	NA		@ 1345		
	moist, strong petroleum odor at 3.5 bgs. 3.8-5.0 No Recovery 5.0-8.0 Silty SAND (60% sand, 40% silt), fine sand, moist from 5.0-6.0, wet starting at 6.0 bgs, strong pe Wood Debris from 5.8-6.1 bgs with strong petroleum 8.0-10.0 No Recovery 10.0-10.8 Silty SAND (60% sand, 40% silt), fine san wet, strong petroleum odor.	3.8-5.0 No Recovery         5.0-8.0 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, moist from 5.0-6.0, wet starting at 6.0 bgs, strong petroleum odor.         Wood Debris from 5.8-6.1 bgs with strong petroleum odor.         8.0-10.0 No Recovery         10.0-10.8 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, wet, strong petroleum odor.         10.8-13.5 SILT (100% silt), gray, wet, no odor past 11.0 bgs .	1.6-3.8 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, moist, strong petroleum odor at 3.5 bgs.         3.8-5.0 No Recovery         5.0-8.0 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, moist from 5.0-6.0, wet starting at 6.0 bgs, strong petroleum odor.         Wood Debris from 5.8-6.1 bgs with strong petroleum odor.         8.0-10.0 No Recovery         10.0-10.8 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, wet, strong petroleum odor.         SM         10.8-13.5 SILT (100% silt), gray, wet, no odor past 11.0 bgs .	1.6-3.8 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, moist, strong petroleum odor at 3.5 bgs.       3.8-5.0 No Recovery         3.8-5.0 No Recovery       5.0-8.0 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, moist from 5.0-6.0, wet starting at 6.0 bgs, strong petroleum odor. Wood Debris from 5.8-6.1 bgs with strong petroleum odor.       SM         8.0-10.0 No Recovery       SM       III         10.0-10.8 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, wet, strong petroleum odor.       SM         10.8-13.5 SILT (100% silt), gray, wet, no odor past 11.0 bgs .       ML	1.6-3.8 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, moist, strong petroleum odor at 3.5 bgs.       70         3.8-5.0 No Recovery       5.0-8.0 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, moist from 5.0-6.0, wet starting at 6.0 bgs, strong petroleum odor.       SM       11         8.0-10.0 No Recovery       SM       11       60         8.0-10.0 No Recovery       SM       11       60         10.0-10.8 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, wet, strong petroleum odor.       SM       11         10.8-13.5 SILT (100% silt), gray, wet, no odor past 11.0 bgs .       ML       70	1.6-3.8 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, moist, strong petroleum odor at 3.5 bgs.       70       NA         3.8-5.0 No Recovery       50-8.0 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, moist from 5.0-6.0, wet starting at 6.0 bgs, strong petroleum odor.       SM       50         60       NA         8.0-10.0 No Recovery       50       SM       60         10.0-10.8 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, wet, strong petroleum odor.       SM       60         10.0-10.8 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, wet, strong petroleum odor.       SM       60         10.0-10.8 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, wet, strong petroleum odor.       ML       70         70       NA       70       NA	1.6-3.8 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, moist, strong petroleum odor at 3.5 bgs.       70       NA         3.8-5.0 No Recovery       70       NA         5.0-8.0 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, moist from 5.0-6.0, wet starting at 6.0 bgs, strong petroleum odor.       SM       1052         60       NA         8.0-10.0 No Recovery       60       NA         10.0-10.8 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, wet, strong petroleum odor.       SM       10         10.0-10.8 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, wet, strong petroleum odor.       SM       10         10.0-10.8 Silty SAND (60% sand, 40% silt), fine sand, greenish gray, wet, strong petroleum odor.       SM       10         10.8-13.5 SILT (100% silt), gray, wet, no odor past 11.0 bgs .       ML       70       NA	1.6-3.8 Sitty SAND (60% sand, 40% sitt), fine sand, greenish gray, moist, strong petroleum odor at 3.5 bgs.       70       NA         3.8-5.0 No Recovery       5.0-8.0 Sitty SAND (60% sand, 40% sitt), fine sand, greenish gray, moist from 5.0-6.0, wet starting at 6.0 bgs, strong petroleum odor.       SM       1052       B53-080613-5.0 @ 1338         8.0-10.0 No Recovery       50       NA       1052       B53-080613-5.0 @ 1338         10.0-10.8 Sitty SAND (60% sand, 40% sitt), fine sand, greenish gray, wet, strong petroleum odor.       60       NA       3.8         10.0-10.8 Sitty SAND (60% sand, 40% sitt), fine sand, greenish gray, wet, strong petroleum odor.       SM       10       NA         10.0-10.8 Sitty SAND (60% sand, 40% sitt), fine sand, greenish gray, wet, strong petroleum odor.       SM       10       NA         10.8-13.5 SILT (100% sitt), gray, wet, no odor past 11.0 bgs .       ML       70       NA       8.0	1.6-3.8 Sity SAND (60% sand, 40% sit), fine sand, greenish gray, moist, strong petroleum odor at 3.5 bgs.       70       NA         3.8-5.0 No Recovery       70       NA         5.0-8.0 Sity SAND (60% sand, 40% sit), fine sand, greenish gray, moist from 5.0-6.0, wet starting at 6.0 bgs, strong petroleum odor.       SM       11         8.0-10.0 No Recovery       60       NA       80         10.0-10.8 Sity SAND (60% sand, 40% sit), fine sand, greenish gray, moist from 5.8-6.1 bgs with strong petroleum odor.       SM       11         10.0-10.8 Sity SAND (60% sand, 40% sit), fine sand, greenish gray, wet, strong petroleum odor.       SM       11         10.0-10.8 Sity SAND (60% sand, 40% sit), fine sand, greenish gray, wet, strong petroleum odor.       SM       11         10.8-13.5 SiLT (100% sit), gray, wet, no odor past 11.0 bgs .       ML       70       NA         13.5-15 0 No Becovery       0.0       B53-080613-13.5       0.0

		Well Construction Information		
Monument Type: NA			Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA	Filter Pack: NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal: NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	NA	Annular Seal: NA	Surveyed Location: X: NA	Y: NA

		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027		Lo	go	of E	Bori	ng:	: B54		Page 1 of 1	
Pro Lo Fa	cati rallo		Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman: Drilling Method:	eted: :		3 14 probe Harn	:40 9 7800 den	Dri De To	mpler Type: 5' N ive Hammer (Ibs.) pth of Water ATD tal Boring Depth ( tal Well Depth (ft	: (ft bgs): ft bgs):	AUTO	
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Ā Co	oring/Well nstruction Details	
		0.0-3.4 Silty SAND (60% sand, 40% silt), fine sand, moist, no odor. 3.4-5.0 No Recovery	rusty/light brown,	SM		68	NA					
5-		5.0-7.8 Silty SAND (60% sand, 40% silt), fine sand, moist from 5.0-5.7 bgs, wet at 5.7 bgs, no odor. 7.8-10.0 No Recovery	greenish gray,	SM		56	NA	7.3	B54-080613-7.8 @ 1433		Water level	
10 -		10.0-13.2 SILT (100% silt), brown to olive gray, wet, layer containing wood debris from 11.8-12.0 bgs. 13.2-15.0 No Recovery	no odor. Organic	ML		64	NA	0.0	B54-080613-13.2 @ 1435			

		Well Construction Information		
Monument Type: NA			Ground Surface Elevation (ft):	NA
Casing Diameter (inches):	NA		Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	NA	Surface Seal: NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	NA	Annular Seal: NA	Surveyed Location: X: NA	Y: NA

		FARALLON	L	-0(	g c	of E	Bor	ing	<b>g:</b> B55		Рас	le 1 of 1
Pro	-	: Lakeside Industries ct: Aberdeen Site ion:Aberdeen, WA	Date/Time Started: Date/Time Complete Equipment: Drilling Company:	d:	5/2/1	7 @ probe	1140 1210 7822[ ng	<b>ו</b> דכ	Sampler Type: 5' ^N Drive Hammer (Ibs.) Depth of Water ATD Fotal Boring Depth	: (ft b	A o <b>gs):</b> 3	UTO .0 0.0
Far	rallo	on PN: 525-006	Drilling Foreman:				unning	g T	Γotal Well Depth (ft	bgs)	: N	A
Lo	gge	ed By: K. Scott	Drilling Method:		Direc	t pus	sn	1	1			
Depth (feet bgs.)	Sample Interval	Lithologic Description		NSCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Cons	ng/Well truction etails
0_		0.0-0.3': Asphalt (100% asphalt), black. 0.3-2.5': Silty SAND with gravel Fill (60% sand, 20%	silt, 20% gravel),	AC SM								Asphalt
-		fine to coarse sand, fine to coarse gravel, brown, mo no sheen. Subangular gray gravel. 2.5-5.0': No Recovery.	אני, siignt odor,			50	NA	2.8	B55-2.5 @ 1145			<del>⊠</del> Water leve
5		5.0-7.5': Well-graded GRAVEL with sand (80% grave silt), fine to coarse gravel, fine sand, black, moist fror wet, petroleum-like odor, sheen.		SW				44.7				
-		7.5-10.0': SILT (100% silt), brown, wet, no odor, no s	heen. I	ИL		100	NA	14.2	B55-8.0 @ 1150	x		
0 		10.0-15.0': SILT (100% silt), dark brown, wet, slight o	dor, no sheen.	ИL								Bentonite
-						100	NA	2.1	B55-14.0 @ 1155	x		
5		15.0-18.7': SILT (100% silt), dark brown, wet, no odo	r, no sheen.	ИL		100	NA					
_		18.7-19.6': SILT (100% silt), brownish to gray, wet, no	o odor, no sheen.	ML				0.1	B55-19.0 @ 1200			
20 —	+	19.6-20.0': WOOD (100% wood), light brown, wet, no	o odor, no sheen.	VD /	$\square$							

		Well Construct	tion Information	Ground Surface Eleva	tion (ft)	NA
Monument Type: NA		Filter Pack:	NA		• • •	NA
Casing Diameter (inches):	NA	Surface Seal:	NA	Top of Casing Elevati	on (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite		Y: NA	

$\mathbf{\nabla}$	CONSULTING		LO	y u	/I L	501	шç	<b>j:</b> B56		Pa	age 1 of 1
jec ati	<b>t:</b> Aberdeen Site <b>on:</b> Aberdeen, WA		ed:	5/2/1 Geop Holt I	7 @ orobe Drillin	1305 7822E g	ם ד דכ ד	Drive Hammer (Ibs.) Depth of Water ATD Total Boring Depth	): ) (ft k (ft b	ogs): gs):	AUTO 3.0 20.0 NA
jge	ed By: K. Scott	Drilling Method:		Direc	t pus	h					
Sample Interval	Lithologic Description	on	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ing/Well struction Details
	0.0-0.6': Asphalt (100% asphalt), black.		AC								Asphalt
	0.6-3.3': Silty SAND with gravel Fill (60% sand, 20% fine to coarse sand, fine to coarse gravel, brown, mo	oist to wet @ 3.0-	SM		100	NA		B56-3.0 @ 1220			
	3.3-5.0': No Recovery.						0.3	C			⊠ Water lev
	fine to coarse sand, fine to coarse gravel, brown, we sheen. Subangular gray gravel. 5.6-6.2': SILT (100% silt), gray, wet, odor, no sheen.	et, slight odor, no	SM ML ML		100	NA	2.6	B56-8.0 @ 1225	x		
	10.0-13.0': WOOD (100% wood), light brown, slight v feet bgs, no odor, no sheen.	wet to wet @ 10-	WD				12.6				Bentonite
	fine to coarse sand, fine to coarse gravel, dark gray	, wet, petroleum-	SM ML		100	NA	8.4	B56-14.0 @ 1245	×		
$\backslash$		/	ML								
	17.2-20.0': SILT (100% silt), gray, wet, no odor, no s	heen.	ML		100	NA	0.6	B56-19.0 @ 1255	x		
	jec ati allo	ject: Aberdeen Site ation: Aberdeen, WA allon PN: 525-006 gged By: K. Scott Lithologic Description 0.0-0.6': Asphalt (100% asphalt), black. 0.6-3.3': Silty SAND with gravel Fill (60% sand, 20% fine to coarse sand, fine to coarse gravel, brown, m feet bgs, no odor, no sheen. Subangular gray gravel 3.3-5.0': No Recovery. 5.0-5.6': Silty SAND with gravel Fill (60% sand, 20% fine to coarse sand, fine to coarse gravel, brown, we sheen. Subangular gray gravel. 5.6-6.2': SILT (100% silt), gray, wet, odor, no sheen. 6.2-10.0': SILT (100% silt), dark brown, wet, slight of 10.0-13.0': WOOD (100% wood), light brown, slight of 11.0-13.0': WOOD (100% wood), light brown, slight of 13.0-13.5': Silty SAND with gravel (60% sand, 25% s fine to coarse sand, fine to coarse gravel, dark gray like odor, no sheen. Subrounded to subangular gray 13.5-15.0': SILT (100% silt), dark brown, wet, no odd 15.0-17.2': SILT (100% silt), dark brown, wet, no odd	Ject: Aberdeen Site         sation: Aberdeen, WA         allon PN: 525-006         gged By: K. Scott         Lithologic Description         0.0-0.6': Asphalt (100% asphalt), black.         0.6-3.3': Silty SAND with gravel Fill (60% sand, 20% silt, 20% gravel), fine to coarse gravel, brown, moist to wet @ 3.0-feet bgs, no odor, no sheen. Subangular gray gravel.         3.3-5.0': No Recovery.         5.0-5.6': Silty SAND with gravel Fill (60% sand, 20% silt, 20% gravel), fine to coarse gravel, brown, moist to wet @ 3.0-feet bgs, no odor, no sheen. Subangular gray gravel.         3.3-5.0': No Recovery.         5.0-6.2': SILT (100% silt), gray, wet, odor, no sheen.         6.2-10.0': SILT (100% silt), dark brown, wet, slight odor, no sheen.         6.2-10.0': SILT (100% silt), dark brown, wet, slight odor, no sheen.         10.0-13.0': WOOD (100% wood), light brown, slight wet to wet @ 10-	Ject: Aberdeen Site       Date/Time Completed:         aation: Aberdeen, WA       Date/Time Completed:         allon PN: 525-006       Drilling Company:         Jgged By: K. Scott       Drilling Foreman:         Drilling Method:       Drilling Method:         Image: State S	Ject: Aberdeen Site       Date/Time Completed: 5/2/1         aation: Aberdeen, WA       Date/Time Completed: 5/2/1         Bilon PN: 525-006       Drilling Company: Holt I         gged By: K. Scott       Drilling Foreman: Mich.         Drilling Method: Direct       Drilling Method: Direct         gged By: K. Scott       Sg         Lithologic Description       gg         gg       Sg         0.0-0.6: Asphalt (100% asphalt), black.       AC         0.6-3.3: Silty SAND with gravel Fill (60% sand, 20% silt, 20% gravel), fine to coarse sand, fine to coarse gravel, brown, moist to wet @ 3.0-feet bgs, no odor, no sheen. Subangular gray gravel.       SM         3.3-5.0: No Recovery.       SM         5.0-6.6: Silty SAND with gravel Fill (60% sand, 20% silt, 20% gravel), fine to coarse sand, fine to coarse gravel, brown, wet, slight odor, no sheen.       ML         6.2-10.0: SILT (100% silt), gray, wet, odor, no sheen.       ML       ML         13.0-13.5: Silty SAND with gravel (60% sand, 25% silt, 15% gravel), fine to coarse sand, fine to coarse gravel, dark gray, wet, petroleum-like odor, no sheen.       SM         13.0-13.5: Silty SAND with gravel (60% sand, 25% silt, 15% gravel), fine to coarse sand, fine to coarse gravel, dark gray, wet, petroleum-like odor, no sheen.       ML         13.0-13.5: Silty SAND with gravel (60% sand, 25% silt, 15% gravel), fine to coarse sand, fine to coarse gravel, dark gray, wet, petroleum-like odor, no sheen.       ML	Job 10       Station: Aberdeen Site         aation: Aberdeen, WA       DateTime Completed:       5/2/17 @         Ballon PN: 525-006       Drilling Company:       Holt Drilling         Jgged By: K. Scott       Drilling Foreman:       Michael R         Drilling Method:       Direct pus         Image: State	Image: Construction of the second	DeterTime Completed:       5/2/17 @ 1305         ation: Aberdeen, WA       Date/Time Completed:       5/2/17 @ 1305         allon PN: 525-006       Diffing Company:       Holt Diffing         gged By: K. Scott       Drifling Company:       Holt Diffing         gged By: K. Scott       Diffing Foreman:       Diffing Foreman:         0.0-0.6: Asphalt (100% asphalt), black.       A       A         0.3-3.3: Silty SAND with gravel Fill (60% sand, 20% silt, 20% gravel),       SM       Image: Silty Sand Silty Gravel Fill (60% sand, 20% silt, 20% gravel),         5.6-5.6: Silty SAND with gravel Fill (60% sand, 20% silt, 20% gravel),       SM       Image: Silty Sand Silty, Garage Gravel, brown, wet, silght odor, no sheen.         6.2-10.0: Silt T (100% silt), dark brown, wet, slight odor, no sheen.       ML       100       NA       3.7         13.0-13.5: Silty SAND with gravel (60% sand, 25% silt, 15% gravel), frite to coarse gravel, forwn, wet, slight odor, no sheen.       ML       100       NA       3.7         13.0-13.5: Silty SAND with gravel (60% sand, 25% silt, 15% gravel), frite to coarse gravel, forwn, wet, no odor, no sheen.       ML       100       NA       8.4         13.0-13.5: Silty SAND with gravel (60% sand, 25% silt, 15% gravel), frite to coarse gravel, forwn, wet, no odor, no sheen.       ML       100       NA       8.4         13.0-13.2: Silty SAND with gravel (60% sand, 25% silt, 15% gravel),	ipect:       Aberdeen Site aution: Aberdeen, WA       Date/Time Complete: Equipment: Dilling Company: Hot Drilling Dilling Foreman: Drilling Foreman: Drilling Method:       S2/17 @ 1305 Geoprets 78220T Hot Drilling Direct push       Drive Hammer (Ibs. Geoprets 78220T Total Boring Depth Total Boring Depth Total Boring Depth Total Woll Depth (It Depth (It Dep	ipet: Aberdeen Site ation: Aberdeen, WA       Date/Time Completed:       5/2/17 @ 1305       Drive Hammer (tbs.):         allon PN: 525-006       Billing Company:       Holt Drilling       Geoprobe 7822DT       Drive Hammer (tbs.):         gred By: K. Scott       Drive Mammer (tbs.):       Equipment:       Site and the state of the state	0.0.0.6: Asphalt (100% asphalt), black.     0.0.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1

		Well Construc	tion Information	Ground Surface Eleva	ation (ft):	NA
Monument Type: NA		Filter Pack:	NA		. ,	
Casing Diameter (inches):	NA	Surface Seal:	NA	Top of Casing Elevati	on (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON		Lo	g o	of E	Bor	ring	g: B57		Page 1 of 1
Pro Lo Fa	rall	ct: Aberdeen Site ion: Aberdeen, WA	Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman: Drilling Method:	eted: :	Holt I	7 @ orobe Drillir ael R	1355 7822 Ig unnin	DT I	Sampler Type: 5' Drive Hammer (Ibs. Depth of Water ATI Total Boring Depth Total Well Depth (fi	.): D (ft (ft k	ogs): 20.0
Depth (feet bgs.)	Sample Interval	Lithologic Descriptio	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0_     5-		0.0-0.4': Asphalt (100% asphalt), black.         0.4-3.5': Silty SAND with gravel Fill (60% sand, 20% if ine to coarse sand, fine to coarse gravel, brown, mosheen. Subangular gray gravel.         3.5-5.0': No Recovery.         5.0-7.0': WOOD (100% wood), light brown, moist to wood, no sheen.		AC SM		50	NA	0.4	B57-3.0 @ 1320		Asphalt Water level
10 -		<ul> <li>7.0-8.5': Silty SAND with gravel Fill (65% sand, 20% if fine to coarse sand, fine to coarse gravel, brown, we sheen. Subangular gray gravel.</li> <li>8.5-10.0': SILT with sand (85% silt, 15% sand), fine to black to gray, wet, petroleum-like odor, no sheen.</li> <li>10.0-13.5': Well-graded GRAVEL (90% gravel, 5% s to coarse gravel (mostly fine), brown, wet, petroleum-sheen.</li> </ul>	t, slight odor, no o medium sand, and, 5% silt), fine	SM ML GW		100	NA	22.7 37.5	B57-9.0 @ 1330	x	Bentonite
15 - 20 -		13.5-15.0': SILT (100% silt), dark brown, wet, slight o         15.0-17.3': SILT (100% silt), dark brown, wet, slight o         17.3-20.0': SILT (100% silt), gray, wet, no odor, no sh	dor, no sheen.	ML ML ML		100	NA	2.8	B57-14.0 @ 1340 B57-19.0 @ 1350	x	

		Woll Construct	tion Information			
Monument Type: NA		Filter Pack:	NA	Ground Surface Eleva	ation (ft):	NA
Casing Diameter (inches):	NA	Surface Seal:	NA	Top of Casing Elevati	on (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location:	<b>X:</b> NA	
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON		Lo	g c	of E	Bor	inę	<b>g:</b> B58		P	Page 1 of 1
Pro Lo Fa	cat rall	:: Lakeside Industries ct: Aberdeen Site ion: Aberdeen, WA on PN: 525-006 ed By: K. Scott	Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman: Drilling Method:	eted:	5/2/1 Geor Holt	7 @ orobe Drillir ael R	I Running Total Well Depth (ft bgs): 20				JTO ): ~6.0'	
Depth (feet bgs.)	Sample Interval	Lithologic Descriptio	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed		oring/Well onstruction Details
0_		0.0-0.4': Asphalt (100% asphalt), black. 0.4-2.8': Silty SAND with gravel Fill (60% sand, 20% fine to coarse sand, fine to coarse gravel, brown, mo sheen. Subangular to subrounded gray gravel. 2.8-5.0': No Recovery.		AC SM		50	NA	0.4	B58-2.5 @ 1405		(Reader)	Asphalt
5-		5.0-10.0': No Recovery. Driller stated felt like a void. outside of rod wet between 6.0 to 10.0-feet bgs.	Observed			100	NA	NR		x		₩ Water level
10 -		10.0-14.2': SILT (100% silt), light brown, wet, petrole sheen.		ML		100	NA	3.0	B58-14.0 @ 1415	x		Bentonite
15 -		14.2-15.0': SILT (100% silt), dark brown, wet, slight p odor, no sheen. 15.0-16.5': Well-graded GRAVEL (90% gravel, 5% s to coarse gravel (mostly fine), gray, wet, petroleum-li 16.5-17.6': SILT (100% silt), dark brown, wet, slight o 17.5-feet bgs, no sheen.	and, 5% silt), fine ke odor, sheen.	ML GW ML ML		100	NA	21.2				

		Well Construc	tion Information			
Monument Type: NA		Filter Pack:	NA	Ground Surface Eleva	ation (ft):	NA
Casing Diameter (inches):	NA	Surface Seal:	NA	Top of Casing Elevati	on (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite		Y: NA	

17.6-20.0': SILT (100% silt), gray, wet, no odor, no sheen.

20

B58-19.0 @ 1425 X

2.3

0.4

		FARALLON		Lo	g o	of E	Bor	ing	<b>j:</b> B59		F	age 1 of 1
Lo	ojeo cat	ct: Aberdeen Site ion: Aberdeen, WA	Date/Time Completed: 5 Equipment: 6 Drilling Company: 6			7 @ orobe Drillir	•	30 Drive Hammer (lbs.): 322DT Depth of Water ATD (ft bgs Total Boring Depth (ft bgs)				AUTO 3.0 20.0
		on PN: 525-006 ed By: K. Scott	Drilling Foreman: Drilling Method:		Direc		tunning sh	ј I	rotai weli Deptri (n	bgs	5):	NA
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Cor	ring/Well nstruction Details
0		0.0-0.4': Asphalt (100% asphalt), black.         0.3-3.5': Silty SAND with gravel Fill (60% sand, 25% fine to coarse sand, fine to coarse gravel, brown, me petroleum-like odor from 2.5 to 3.5-feet bgs, stringer Subangular gray gravel.         3.5-3.7': SILT (100% silt), dark brown, wet, petroleum sheen.         3.7-5.0': No Recovery.         5.0-7.5': Well-graded GRAVEL (90% gravel, 5% sar coarse gravel (mostly fine), fine sand, gray, moist from wet, petroleum-like odor, sheen.         7.5-8.8': SILT (100% silt), dark brown, wet, petroleur sheen.         8.8-10.0': SILT (100% silt), gray, wet, slight odor, no         10.0-15.0': SILT (100% silt), gray, wet, slight odor, no         15.0-15.3': SILT (100% silt), brown, wet, no odor, no         15.0-15.3': SILT (100% silt), brown, wet, no odor, no         15.0-15.3': SILT (100% silt), brown, wet, no odor, no         15.0-15.3': SILT (100% silt), brown, wet, no odor, no         15.0-15.3': SILT (100% silt), brown, wet, no odor, no         15.0-15.3': SILT (100% silt), brown, wet, no odor, no         15.0-15.3': SILT (100% silt), brown, wet, no odor, no         15.3-16.7': Well-graded GRAVEL (90% gravel, 5% sto coarse gravel (mostly fine), fine sand, gray, wet, no	oist, no odor to sheen. n-like odor, no nd, 5% silt), fine to m 5.0-5.7 bgs, n-like odor, no sheen. odor, no sheen. odor, no sheen. sheen. sheen.	AC SM ML GW ML GW ML		75		8.8 16.5 4.2	B59-3.0 @ 1450 B59-9.0 @ 1500 B59-14.0 @ 1510	x		Asphalt
- - 20 —		16.7-20.0': SILT (100% silt), gray, wet, no odor, no s	/			100	NA	0.3	B59-19.0 @ 1520	x		

		Well Construc	tion Information	Ground Surface Eleva	NA	
Monument Type: NA		Filter Pack:	NA		( )	
Casing Diameter (inches):	NA	Surface Seal:	NA	Top of Casing Elevati	on (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON CONSULTING		Lo	g c	of E	Bor	'n	<b>j:</b> B60		Page 1 of 1
	oje	: Lakeside Industries ct: Aberdeen Site ion:Aberdeen, WA	Date/Time Started Date/Time Comple Equipment: Drilling Company:	eted:	5/2/1	7 @ probe	1535 1610 e 7822  ng	<b>ו</b> DT <b>ו</b>	Sampler Type: 5' I Drive Hammer (Ibs.) Depth of Water ATD Fotal Boring Depth	): ) (ft l	AUTO ogs): 7.5
Fa	rall	on PN: 525-006	Drilling Foreman:				Running	g 1	Fotal Well Depth (ft	bgs	): NA
Lo	gg	ed By: K. Scott	Drilling Method:		Direo		50		1		
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	NSCS	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0_		0.0-0.4': Asphalt (100% asphalt), black.		AC							
 		0.4-3.5': Silty SAND with gravel Fill (60% sand, 20% fine to coarse sand, fine to coarse gravel, brown, m 3.5-feet bgs, no odor, no sheen. Subangular gray gr	oist to slight wet at	SM		85	NA				Asphalt
		3.5-4.2': SILT (100% silt), dark gray, slightly wet, slig sheen.	ght odor, no	ML				4.6	B60-4.0 @ 1540	x	
5-		4.2-5.0': No Recovery. 5.0-7.8': SILT (100% silt), dark brown, slightly wet to bgs, slight odor, no sheen.	o wet @ 7.5-feet	ML							⊠ Water level
10 -		7.8-10.0': SILT (100% silt), gray, wet, slight odor, no	) sheen.	ML		100	NA	7.5	B60-9.0 @ 1550		Water level
		10.0-12.2': Well-graded GRAVEL (90% gravel, 5% to coarse gravel (mostly fine), fine sand, gray, wet, s sheen. Subrounded gray gravel.		GW							Bentonite
		12.2-15.0': SILT (100% silt), gray, wet, slight odor to bgs, no sheen.	o no odor at 15-feet	ML		100	NA	2.6	B60-14.0 @ 1600	x	
15 -		15.0-15.6': SILT (100% silt), gray, wet, no odor, no s	sheen.	ML							
		15.6-16.8': Well-graded GRAVEL (90% gravel, 5% to coarse gravel (mostly fine), fine sand, gray, wet, r Subrounded gray gravel.	sand, 5% silt), fine no odor, no sheen.	GW ML		100					
		16.8-20.0': SILT (100% silt), gray, wet, no odor, no s	sheen.			100	NA	0.2	B60-19.0 @ 1605		
20 -											

		Well Construc	tion Information	Ground Surface Eleva	tion (ft):	NA
Monument Type: NA		Filter Pack:	NA		. ,	
Casing Diameter (inches):	NA	Surface Seal:	NA	Top of Casing Elevati	on (ft):	NA
Screen Slot Size (inches):	NA	Annular Seal:	NA	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	NA	Boring Abandonment:	Bentonite		Y: NA	

		FARALLON CONSULTING		Lo	g c	of E	Bor	'n	<b>j:</b> B61		Page 1 of 1
Loc	ojec cati	Lakeside Industries <b>t:</b> Aberdeen Site <b>on:</b> Aberdeen, WA <b>on PN:</b> 525-006	Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman:	eted: :	5/2/1 Geop Holt	7 @ probe Drillir	1615 1700 78221 ng Running	I DT I -	Sampler Type: 5' N Drive Hammer (Ibs.) Depth of Water ATD Fotal Boring Depth Fotal Well Depth (ft	): ) (ft b (ft bç	AUTO gs): 3.0" gs): 20.0
Log	gge	ed By: K. Scott	Drilling Method:		Direc	t pus	sh				
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USCS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
, °_					555555			1			N
		<ul> <li>0.0-0.4': Asphalt (100% asphalt), black.</li> <li>0.4-1.1': Silty SAND with gravel Fill (60% sand, 20% fine to coarse sand, fine to coarse gravel, brown, m sheen. Subangular to subrounded gray gravel.</li> <li>1.1-1.8': SILT (100% silt), light brown, moist, no odo</li> <li>1.8-4.2': SILT with sand (85% silt, 15% sand), fine sate of the same set of the same set.</li> <li>4.2-5.0': No Recovery.</li> <li>5.0-8.6': SILT with sand (80% silt, 20% sand), fine sate of wet at 8.0-feet bgs, slight odor, no sheen.</li> </ul>	oist, no odor, no	AC SM ML ML ML		80	NA	0.3	B61-4.0 @ 1620		* Asphalt ₩ Water level
- - 10 —		8.6-9.2': SILT (100% silt), green, wet, slight odor, no 9.2-10.0': No Recovery.	sheen.	ML		85	NA	6.8	B61-8.0 @ 1630	x	Bentonite
-		10.0-15.0': SILT with sand (75% silt, 20% sand, 5% fine gravel, green, wet, slight odor, no sheen.	gravel), fine sand,	ML		100	NA	3.9	B61-14.0 @ 1640	x	
- 15		15.0-18.6': SILT with sand (75% silt, 20% sand, 5% fine gravel, green, wet, slight odor, no sheen.	gravel), fine sand,	ML		100	NA				
20 -		18.6-20.0': SILT (100% silt), dark brown, wet, no odd	or, no sheen.	ML				0.4	B61-19.0 @ 1650		

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: NA Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA Boring Abandonment: Bentonite Y:NA

	FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	Lo	g c	of E	Borir	ıg:	MW-1		P	age 1 of 1	
Pro Loo Fai	ent: Lakeside Industries oject: Aberdeen Site cation: Aberdeen, WA rallon PN: 525-006 gged By: Ken Scott	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	7/27, Pow ESN Don	/11 @	den	Sampler Type: 4' macrocore Drive Hammer (lbs.): Depth of Water ATD (ft bgs): Total Boring Depth (ft bgs): Total Well Depth (ft bgs):				e Auto	
Depth (feet bgs.)	Lithologic Descriptio	on scs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ing/Well struction Details	
0_ - - 5-	0.0-0.2' Asphalt (100% asphalt), black.         0.2-1.3' Well-graded GRAVEL with silt and sand Fill (sand, 10% silt), fine to coarse gravel, fine to coarse sine odor, no sheen.         1.3-2.5' Well-graded SAND with silt and gravel Fill (7 gravel, 10% silt), fine to coarse sand, fine to coarse gravel, no odor, no sheen. Observed round 3 to 5-inclustence of the sentence of the	Sand, grey, moist, 	- (C	100	NA	0.0				Monument Well cap Concrete Bentonite Sand	
- - - 10 -	6.5-7.0' Silty SAND (80% sand, 20% silt), fine sand, I slight odor, no sheen.         7.0-8.0' Silty SAND (70% sand, 30% silt), fine sand, g moist to wet, slight odor, no sheen.         8.0-10.8' Silty SAND (60% sand, 40% silt), fine sand, odor, no sheen.         10.8-12.0' SILT (100% silt), tan, wet, no odor, no sheen	greenish-brown, , green, wet, no		100	NA	124	MW1-7.5	x		Fill Water level Screen End cap	

Manual Tana Maria		Well Co	onstruction Information	Ground Surface I	Elevation (ft):	NA
Monument Type: Morris		Filter Pack:	10/20 silica sand		( )	
Casing Diameter (inches):	2"	The Tuok.		Top of Casing Ele	evation (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring Abandonn	nent:	NA
Screened Interval (ft bgs):	4 to 12' bgs	Annular Seal:	Bentonite	Surveyed Location:	<b>X:</b> 98958.64 <b>9</b> :	20138.942

		FARALLON consulting 975 5th Avenue Northwest Issaguah, Washington 98027		Lo	g c	of E	Borir	ng:	MW-2		F	Page 1 of 1
Pro Loc Fai	cati rallo	1 2 0	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	eted:	7/27/	/11 @ erpro Drillin Harn	den	Dri De _l Tot	npler Type: 4' ve Hammer (Ibs oth of Water ATI al Boring Depth al Well Depth (f	.): D (ft n (ft k	bgs): ogs):	Auto 9.0' 16' 16'
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ring/Well struction Details
0_ - - - - - - - - - - - - - - - - - - -		<ul> <li>0.0-1.9' Asphalt (100% asphalt), black.</li> <li>1.9-2.8' Well-graded GRAVEL with silt and sand Fill sand, 10% silt), fine to coarse gravel, fine to coarse no odor, no sheen.</li> <li>2.8-4.0' Silty SAND (70% sand, 30% silt), fine sand, odor, no sheen.</li> <li>4.0-11.5' Silty SAND (80% sand, 20% silt), fine sand orange, moist to slight wet, no odor, no sheen.</li> <li>1.5-12.2' SILT (100% silt), dark grey, slight wet, no hard.</li> <li>12.2-12.8' Sandy SILT (65% silt, 35% sand), fine sand orange, wet, no odor, no sheen.</li> <li>12.8-16.0' SILT (100% silt), dark grey, slight wet, no odor, no sheen.</li> </ul>	sand, grey, moist, green, moist, no d, yellowish-	AC FILL FILL SM		100	NA	0.0	MW2-8.5	x		Monument Well cap Concrete Bentonite Fill Sand Water level Screen

		Well Co	onstruction Information	Ground Surface I	Elevation (ft)	NA
Monument Type: Morris		Filter Pack:	10/20 silica sand	Ground Surface i	Elevation (it):	INA
Casing Diameter (inches):	2"	The Tack.		Top of Casing Ele	evation (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring Abandonr	nent:	NA
Screened Interval (ft bgs):	6 to 16' bgs	Annular Seal:	Bentonite	Surveyed Location:	X: 98941.092/:	20293.606

		FARALLON CONSULTING 975 5th Avenue Northwest Issaquah, Washington 98027	Lo	g d	of E	Borir	ng:	MW-3		Page 1 of 1	
Pro _00 Far	cat ralle		Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	7/27 Pow ESN Don	7/27/11 @ 7:50 7/27/11 @ 9:05 Powerprobe 9500 ESN Drilling Don Harnden Geoprobe			Sampler Type: 4' macrocore Drive Hammer (Ibs.): Depth of Water ATD (ft bgs): Total Boring Depth (ft bgs): Total Well Depth (ft bgs):			
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on sss	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Bo	oring/Well nstruction Details	
0		0.0-0.3' Asphalt (100% asphalt), black. 0.3-1.1' Well-graded GRAVEL with sand Fill (70% gr 10% silt), fine to coarse gravel, fine to coarse sand, odor, no sheen. 1.1-3.3' Well-graded SAND with silt and gravel Fill (7 gravel, 10% silt), fine to coarse sand, fine to coarse moist, no odor, no sheen. 3.3-6.5' Silty SAND Fill (60% sand, 35% silt, 5% gravel)	grey, moist, no // /SW-S /0% sand, 20% gravel, brown,		80	NA	0.1			Monumer Well cap Concrete Bentonite	
		fine gravel, green, moist, no odor, no sheen. 6.5-7.0' PEAT (100% peat), brown, moist, organic od 7.0-8.0' SILT (100% silt), brown, moist, no odor, no s	^		70	NA	0.0			Sand Fill	
- - - -		8.0-10.2' SILT (90% silt, 5% sand, 5% gravel), fine s greyish-brown, moist to slight wet, no odor, no sheer 10.2-11.3' PEAT (100% peat), brown, moist to slight no sheen. 11.3-11.7' SILT (100% silt), tan, slight wet, no odor, 11.7-12.3' WOOD (100% wood), brown, moist, no od	n. wet, organic odor, PT no sheen. ML		80	NA	0.1	MW6-9.5		Screen ₩ Water lev	
- 5 —		12.3-14.0' SILT (90% silt, 5% sand, 5% gravel), fine brown, wet, no odor, no sheen. 14.0-14.4' PEAT (100% peat), brown, moist, organic 14.4-16.0' SILT (100% silt), brown, wet, no odor, no	sand, fine gravel, ML	- - -	90	NA	0.0			End cap	

		Well C	onstruction Information			
Monument Type: Morris		Filter Pack:	10/20 silica sand	Ground Surface I	=levation (ft):	NA
Casing Diameter (inches):	2"	i iitor i uoiti		Top of Casing Ele	evation (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring Abandonr	nent:	NA
Screened Interval (ft bgs):	5 to 15' bgs	Annular Seal:	Bentonite	Surveyed Location:	X: 98797.4097:	20229.860

		FARALLON Consulting 975 5th Avenue Northwest Issaquada, Washington 98027		Lo	g c	of E	Bori	ng:	MW-4		F	Page 1 of 1
	oje		Date/Time Started Date/Time Comple Equipment: Drilling Company:	eted:	7/28/	/11 @ erpro	2 8:10 2 9:30 be 9500 ng	Dri De	mpler Type: 4 ve Hammer (Ibs pth of Water AT tal Boring Depti	s.): D (ft	bgs):	Auto 5.5' 12'
		on PN: 525-006	Drilling Foreman: Drilling Method:		Don Geor			Tot	tal Well Depth (f	t bgs	5):	12.5'
Lo	gg	ed By: Ken Scott			T							
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ring/Well Istruction Details
0_ 		0.0-0.2' Asphalt (100% asphalt), black.         0.2-1.0' Well-graded GRAVEL with silt and sand Fill sand, 10% silt), fine to coarse gravel, fine to coarse no odor, no sheen.         1.0-1.5' Silty SAND (75% sand, 25% silt), fine sand, moist, no odor, no sheen.         1.5-5.0' Silty SAND (60% sand, 40% silt), fine sand, odor, no sheen.         5.0-10.3' SILT (90% silt, 10% sand), dark brown, modor, no sheen.         10.3-12.0' SILT (100% silt), green, wet, no odor, no	sand, grey, moist, f	FILL FILL ML		100		0.2	MW4-5.0	x		Monument Well cap Concrete Bentonite Fill Water level Sand Screen End cap

Manual Trans. Marrie		Well Co	onstruction Information	Ground Surface I	Elevation (ft):	NA
Monument Type: Morris	0"	Filter Pack:	10/20 silica sand	Top of Casing Ele	( )	NA
Casing Diameter (inches):	2 0.010	Surface Seal:	Concrete		()	NA
Screen Slot Size (inches):		Annular Cooli	Dentenite	Boring Abandonn		
Screened Interval (ft bgs):	2.5 to 12.5' bgs	Annular Seal:	Bentonite	Surveyed Location:	<b>X:</b> 98/90.3097:	19999.461

		FARALLON consulting 975 5th Avenue Northwest Issaguah, Washington 98027		Lo	g c	of E	Bori	ng:	MW-5		F	Page 1 of 1
Pro Loc Fai	catio rallo		Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	eted:	7/27/	'11 @ erpro Drillin Harn	den	Dri ^v Dep Tot	npler Type: 4' ve Hammer (Ibs. oth of Water ATI al Boring Depth al Well Depth (fi	.): D (ft k (ft b <u>i</u>	ogs): gs):	Auto 8.0' 12' 12
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ring/Well struction Details
		0.0-0.3' Asphalt (100% asphalt), black. 0.4-1.0' Well-graded GRAVEL with silt and sand Fill sand, 10% silt), fine to coarse gravel, fine to coarse no odor, no sheen. 1.0-6.0' Silty SAND Fill (70% sand, 25% silt, 5% gra fine gravel, green, moist, petro-odor, sheen.	sand, grey, moist,	AC FILL FILL			NA	44.3				Monument Well cap Concrete Bentonite Sand
5-		6.0-7.5' SILT (100% silt), brown, moist to slight wet, 7.5-8.0' WOOD (100% wood), brown, moist, chemic		ML		100	NA	40.8	MW5-7.5	x		Fill
		8.0-10.3' Silty SAND (60% sand, 40% silt), fine sand slight odor, no sheen. 10.3-12.0' SILT (100% silt), dark brown, wet, no odo		SM		80	NA	0.0				Water level Screen End cap

Manument Turney Marris		Well C	onstruction Information	Ground Surface Elevation (ft):	NA
Monument Type: Morris Casing Diameter (inches):	2"	Filter Pack:	10/20 silica sand	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	2 0.010	Surface Seal:	Concrete	Boring Abandonment:	NA
Screened Interval (ft bgs):	5 to 12' bgs	Annular Seal:	Bentonite	Surveyed Location: X: 98795.97	
······································				, , , , , , , , , , , , , , , , , , , ,	

		FARALLON consulting 975 5th Avenue Northwest Issaguah, Washington 98027	Lc	og o	of I	Borii	ng:	MW-6	F	Page 1 of 1	
Lo Far	oje cat rall	t:Lakeside Industriesct:Aberdeen Sitetion:Aberdeen, WAon PN:525-006	Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	7/26 Pow ESN Don	5/11 @	iden	Dri De _l Tot	mpler Type: 4' ma ve Hammer (Ibs.): pth of Water ATD (f al Boring Depth (ft al Well Depth (ft bg	t bgs): bgs):	Auto 3.5'	
Depth (feet bgs.)	Sample Interval	Lithologic Descriptio	n sys	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Bo Cor I	ring/Well astruction Details	
0_ - - 5- -		0.0-0.3' Asphalt (100% asphalt), black.         0.3-0.9' Well-graded GRAVEL with sand Fill (75% gra         5% silt), fine to coarse gravel, fine to coarse sand, gre         0.9-3.5' Well-graded SAND with silt and gravel Fill (70         gravel, 10% silt), fine to coarse sand, fine to coarse gr         moist to wet, petro-odor, sheen.         3.5-5.7' Well-graded Silty SAND Fill (60% sand, 25% fine to coarse sand, fine to coarse gravel, brown, wet, sheen.         5.7-7.1' SILT (100% silt), brown, wet, petro-odor, no s         7.1-8.0' SILT (100% silt), greenish-brown, wet, odor, r         8.0-9.2' Silty SAND with gravel (60% sand, 20% silt, 2 to coarse sand, fine to coarse gravel, grey, wet, odor,	ey, moist, no y, moist, no FILL % sand, 20% avel, brown, silt, 15% gravel), petro-odor, heen, soft. ML no sheen, firm. 0% gravel), fine SM		80	NA	105	MW6-3.0		Monumen Well cap Concrete Bentonite Water leve	
- 10 - -		9.2-10.3' SILT (100% silt), greyish-brown, wet, odor, n 10.3-10.9' PEAT (100% peat), brown, moist, organic o 10.9-12.0' SILT (100% silt), greenish-brown, wet, no o	odor, no sheen. PT		100	NA	7.2			Screen End cap	

**Well Construction Information** Ground Surface Elevation (ft): NA Monument Type: Morris Filter Pack: 10/20 silica sand Casing Diameter (inches): 2" Top of Casing Elevation (ft): NA Surface Seal: Concrete 0.010 NA Screen Slot Size (inches): **Boring Abandonment:** Screened Interval (ft bgs): 2.5 to 12.5' bgs Annular Seal: Bentonite Surveyed Location: X: 98746.473: 19989.172

Clier Proje	Issaquah, Washington 98027			5				MW-7		P	age 1 of 1
Fara	ht:Lakeside Industriesect:Aberdeen Sitehtion:Aberdeen, WAllon PN:525-006ged By:Ken Scott	Date/Time Started: Date/Time Complet Equipment: Drilling Company: Drilling Foreman: Drilling Method:		7/27 Pow ESN Don	/11 @	den	Driv Dep Tot	npler Type: 4' ve Hammer (Ibs oth of Water AT al Boring Depth al Well Depth (f	.): D (ft k 1 (ft b <u>(</u>	ogs): gs):	Auto 3.5' 12' 12.5
Depth (feet bgs.) Samnle Interval		on	NSCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ing/Well struction Details
0	0.0-0.5' Asphalt (100% asphalt), black. 0.5-1.5' Well-graded GRAVEL with silt and sand Fill ( sand, 10% silt), fine to coarse gravel, fine to coarse since of the sand, 10% solution of the sand, fine to coarse gravel, grey, solution of the sand, fine to coarse gravel, grey, petro-odor, sheen. 6.0-6.8' SILT (100% silt), tan, wet, odor, no sheen. 6.8-8.5' SILT (100% silt), greenish-brown, wet, odor, no sheen.	(70% gravel, 20% sand, grey, moist, % gravel, 10% moist to wet,	AC FILL FILL ML			NA	24.3	MW7-3.0	x		Monument Well cap Concrete Bentonite
10 -	8.5-9.7' Silty SAND (65% sand, 25% silt, 10% gravel sand, fine gravel, brown, wet, odor, no sheen. 9.7-10.5' SILT (100% silt), brown, wet, slight odor, no 10.5-11.1' PEAT (100% peat), brown, wet, organic of 11.1-12.0' SILT (100% silt), tan, wet, no odor, no she	o sheen. dor, no sheen.	SM ML PT ML		60	NA	14.8				Sand

**Well Construction Information** Ground Surface Elevation (ft): NA Monument Type: Morris Filter Pack: 10/20 silica sand Casing Diameter (inches): 2" Top of Casing Elevation (ft): NA Surface Seal: Concrete NA Screen Slot Size (inches): 0.010 **Boring Abandonment:** Screened Interval (ft bgs): 2.5 to 12.5' bgs Annular Seal: Bentonite Surveyed Location: X: 98698.46Y: 20090.762

		FARALLON Consulting 975 5th Avenue Northwest Issaquab, Washington 98027		Lo	go	of E	Bori	ng:	MW-8		Page 1 of 1
Pro Lo Fa	cat ralle		Date/Time Started Date/Time Compl Equipment: Drilling Company Drilling Foreman: Drilling Method:	eted:	7/29/	'11 @ erpro Harn		Dri Dej Tot	npler Type: 4' M ve Hammer (Ibs.) oth of Water ATD al Boring Depth ( al Well Depth (ft	: (ft bgs): ft bgs):	NA
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID		oring/Well onstruction Details
0_		<ul> <li>0-0.3' Asphalt (100% asphalt), black.</li> <li>0.3-2.8' Well-graded GRAVEL with silt and sand Fill sand, 10% silt), fine to coarse gravel, fine to coarse no odor, no sheen.</li> <li>2.8-4.0' SILT (95% silt, 5% sand), fine sand, green, no odor, no sheen.</li> <li>4.0-6.5' Silty SAND (60% sand, 35% silt, 5% gravel coarse gravel, greenish-brown, wet, slight odor, no sheen silt sand, greenish-brown, wet, slight odor, no sheen.</li> <li>6.5-10.0' SILT (90% silt, 10% sand), fine sand, brow (natural) odor, monochromatic white sheen.</li> </ul>	sand, grey, moist, moist to slight wet, , fine sand, fine to sheen.	FILL FILL		100	NA	0.3			Monument         Well cap         Concrete         Bentonite         Water level         Fill
10 -		(natural) odor, monochromatic white sheen. 10.0-12.0' SILT (100% silt), fine sand, dark brown, v (natural) odor, no sheen.	vet, organic	ML		100	NA	0.0			Sand Screen End cap

Monument Turner, NA		Well Construction Information	Ground Surface Elevation (ft):	NA
Monument Type: NA Casing Diameter (inches):	NA	Filter Pack: NA	Top of Casing Elevation (it):	NA
Screen Slot Size (inches):	0.010	Surface Seal: NA	Boring Abandonment:	Bentonite
Screened Interval (ft bgs):	2.5 to 12.5' bgs	Annular Seal: NA	Surveyed Location: X: 98702.2507:	20222.583

		FARALLON CONSULTING 975 5th Avenue Northwest Issaquah, Washington 98027	I	Lo	g o	of E	Bori	ng:	MW-9		P	Page 1 of 1
Loc Far	ojeo cat allo		Date/Time Started: Date/Time Complet Equipment: Drilling Company: Drilling Foreman: Drilling Method:		7/26/	11 @ erprol Drillir Harno	den	Dri ^v Dej Tot	npler Type: 4' ve Hammer (Ibs oth of Water ATI al Boring Depth al Well Depth (f	.): D (ft b (ft bg	ogs): gs):	Auto 3.5' 12.5' 12.5'
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	uscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ring/Well Istruction Details
0		0.0-0.3' Asphalt (100% asphalt), black. 0.3-1.5' Well-graded GRAVEL with sand Fill (70% gr 10% silt), fine to coarse gravel, fine to coarse sand, odor, no sheen. 1.5-5.2' Well-graded SAND with silt and gravel Fill (7 gravel, 10% silt), fine to coarse sand, fine to coarse moist to wet, petro-odor, sheen.	avel, 20% sand, grey, moist, no 	AC FILL		100	NA	267	MW9-3.0	x		Monumen Well cap Concrete Bentonite
		5.2-6.4' SILT (100% silt), greenish-brown, wet, odor, 6.4-6.7' WOOD (100% wood), light brown, wet, cher i sheen. 6.7-6.9' SILT (100% silt), green, wet, odor, no sheen 6.9-9.0' Silty SAND (65% sand, 25% silt, 10% grave sand, fine to coarse gravel, brown, wet, petro-odor, s 9.0-11.0' SILT (100% silt), brownish-green, wet, odo	nical-odor, no	ML WD ML SM		75	NA	0.2				Fill Sand Screen
-		11.0-11.5' PEAT (100% peat), brown, moist, organic 11.5-12.0' SILT (100% silt), dark brown, wet, no odo	+	PT ML								End cap

**Well Construction Information** Ground Surface Elevation (ft): NA Monument Type: Morris Filter Pack: 10/20 silica sand Casing Diameter (inches): 2" Top of Casing Elevation (ft): NA Surface Seal: Concrete 0.010 NA Screen Slot Size (inches): **Boring Abandonment:** Screened Interval (ft bgs): 2.5 to 12.5' bgs Annular Seal: Bentonite Surveyed Location: X: 98655.204/: 19991.384

		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027		Lo	gc	of E	Bori	ng:	MW-10		P	age 1 of 1
Lo	ojeo cat	: Lakeside Industries ct: Aberdeen Site ion:Aberdeen, WA	Date/Time Started Date/Time Comple Equipment: Drilling Company	eted:	7/28/	/11 @ erpro	9:55 11:05 be 9500 ng	Dri Dej	npler Type: 4' ve Hammer (Ibs oth of Water AT al Boring Depth	s.): D (ft	bgs):	Auto 4.0' 12'
		on PN: 525-006	Drilling Foreman: Drilling Method:		Don Geop			Tot	al Well Depth (f	t bgs	s):	12.5'
Lo	gg	ed By: Ken Scott		1								
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ring/Well struction Details
0_ 		<ul> <li>0.0-0.3' Asphalt (100% asphalt), black.</li> <li>0.3-1.2' Well-graded GRAVEL with silt and sand Fill sand, 10% silt), fine to coarse gravel, fine to coarse gravel, no odor, no sheen.</li> <li>1.2-6.2' Well-graded SAND with silt and gravel Fill (gravel, 10% silt), fine to coase sand, fine to coarse smoist to wet, odor, no sheen.</li> <li>6.2-11.0' SILT Fill (95% silt, 5% wood), brown, wet, 11.0-112.0' WOOD (100% wood), brown, wet, no od</li> </ul>	sand, brown, 70% sand, 20% gravel, brown, no odor, no sheen.	FILL		90	NA	5.5 25.8 0.1	MW10-3.5	x		Monument Well cap Concrete Bentonite
	-				X							End cap

No		Well C	onstruction Information	Ground Surface I	Elevation (ft):	NA
Monument Type: Morris	0"	Filter Pack:	10/20 silica sand		()	
Casing Diameter (inches):		Surface Seal:	Concrete	Top of Casing Ele	( )	NA
Screen Slot Size (inches):	0.010			Boring Abandonr		NA
Screened Interval (ft bgs):	2.5 to 12.5' bgs	Annular Seal:	Bentonite	Surveyed Location:	<b>X:</b> 98615.364	: 20072.417

		FARALLON Consulting 975 5th Avenue Northwest Issaquah, Washington 98027	L	O	g c	of E	Boriı	ng:	MW-11	l	Page 1 of 1
Loc Fara	jec ati allo		Date/Time Started: Date/Time Completed Equipment: Drilling Company: Drilling Foreman: Drilling Method:	l:	7/26/11 @ 12:55 7/26/11 @ 15:00 Powerprobe 9500 ESN Drilling Don Harnden Geoprobe			Driv Dep Tot	npler Type: 4' m ve Hammer (lbs.): oth of Water ATD ( al Boring Depth (f al Well Depth (ft b	(ft bgs): t bgs):	Auto 7.0' 12.5' 12
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	0000	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	۰ م Sample ID	🖣 Coi	ring/Well nstruction Details
0		<ul> <li>0.0-0.3' Asphalt (100% asphalt), black.</li> <li>0.3-1.5' Well-graded GRAVEL with silt and sand Fill sand, 10% silt), fine to coarse gravel, fine to coarse no odor, no sheen.</li> <li>1.5-6.5' Well-graded SAND with silt and gravel Fill (7 gravel, 10% silt), fine to coarse sand, fine to coarse moist, petro-odor, no sheen.</li> <li>6.5-8.0' SILT (100% silt), greenish-brown with red m no sheen.</li> </ul>	(70% gravel, 20% sand, grey, moist, 70% sand, 20% gravel, brown,			90	NA	0.2	MW11-6.5		Monument Well cap Concrete Bentonite Sand
10 -		8.0-10.5' Poorly graded SAND with gravel (80% san silt), fine to medium sand, fine to coarse gravel, brov sheen. 10.5-10.9' WOOD (100% wood), brown, wet, no odo 10.9-12.0' SILT (100% silt), brown, wet, no odor, no	vn, wet, odor, no	D IL		60	NA	0.0			Water leve

Manufacture Manufacture		Well Co	onstruction Information	Ground Surface E	lovation (ft):	NA
Monument Type: Morris		Filter Pack:	10/20 silica sand	Ground Surface E	levation (it).	
Casing Diameter (inches):	2"	Tiller Fack.		Top of Casing Ele	evation (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring Abandonn	nent:	NA
Screened Interval (ft bgs):	4 to 12' bgs	Annular Seal:	Bentonite	Surveyed Location:	X: 98555.562/:	20002.877

		FARALLON consulting 975 5th Avenue Northwest Issaquab, Washington 98027	l	Lo	g o	f E	Boriı	ng:	MW-12		P	age 1 of 1
Lo	oje cat	t: Lakeside Industries ct: Aberdeen Site ion:Aberdeen, WA	Date/Time Started: Date/Time Complet Equipment: Drilling Company:	ed:	7/28/	11 @ erprol	11:25 12:35 be 9500	Driv Dep	npler Type: 4' ve Hammer (Ibs oth of Water AT al Boring Depth	.): D (ft b	gs):	Auto 3.8' 12'
		on PN: 525-006	Drilling Foreman: Drilling Method:		Don I Geop			Tot	al Well Depth (f	t bgs)	:	12.5'
Depth (feet bgs.)	Sample Interval	ed By: Ken Scott Lithologic Descripti		USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ring/Well struction Details
0_ 		0.0-0.3' Asphalt (100% asphalt), black. 0.3-2.1' Well-graded GRAVEL with silt and sand Fill sand, 10% silt), fine to coarse gravel, fine to coarse no odor, no sheen. 2.1-6.9' Well-graded SAND with gravel Fill (70% san 5% silt), fine to coase sand, fine to coarse gravel, bi petro-odor, sheen. 6.9-10.2' SILT Fill (100% silt), greenish-brown, wet, feet bgs than no odor, no sheen.	(70% gravel, 20% sand, grey, moist, nd, 25% gravel, rown, moist to wet,	AC FILL FILL		90	NA	74.3	MW12-3.0	x		Monument Well cap Concrete Bentonite
- 10 -	-	10.2-10.7' WOOD (100% wood), light brown, wet, n 10.7-12.0' SILT (100% silt), dark brown, wet, no odd	·^·	ML		90	NA	1.2				Fill End cap
15 -												

Manual Tana Maria		Well C	onstruction Information	Ground Surface Elevation (ft):	NA
Monument Type: Morris Casing Diameter (inches):	2"	Filter Pack:	10/20 silica sand	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring Abandonment:	NA
, , ,	2.5 to 12.5' bgs	Annular Seal:	Bentonite	Surveyed Location: X: 98496.387	20044.027

		FARALLON consulting 975 5th Avenue Northwest Issaquab, Washington 98027		Lo	g o	of E	Bori	ng:	MW-13		P	age 1 of 1
Lo Fai	oje cat rall		Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	ted:	7/28/	11 @ erprol Drillin Harne	den	Dri ^v Dej Tot	npler Type: 4' ve Hammer (Ibs oth of Water AT al Boring Depth al Well Depth (f	.): D (ft n (ft b	bgs): ogs):	Auto 4.0' 12' 12.5'
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ing/Well struction Details
0_ 		0.0-0.9' Asphalt (100% asphalt), black.         0.9-1.5' Well-graded GRAVEL with silt sand Fill (70'sand, 10% silt), fine to coarse gravel, fine to coarse no odor, no sheen.         1.5-2.4' Well-graded SAND with silt and gravel Fill (gravel, 10% silt), fine to coarse sand, fine to coarse moist, petro odor, no sheen.         2.4-2.6' Concrete (100% concrete), white, dry, no or 2.6-6.5' Well-graded SAND with silt and gravel Fill (gravel, 10% silt), fine to coarse sand, fine to coarse 4.5-feet bgs, and brown between 4.5 to 6.5-feet bgs petro odor, sheen.         6.5-8.0' SILT (100% silt), tan, wet, odor to 7.0-feet b no sheen.         8.0-12.0' PEAT (100% peat), dark brown, wet, no or 3.0-feet b no sheen.	sand, grey, moist, 70% sand, 20% gravel, brown, dor, no sheen. 70% sand, 20% gravel, black to s, moist to wet, 95 than no odor,	AC FILL FILL FILL PT		100	NA	18.0	MW13-3.5	x		Monument Well cap Concrete Bentonite Water level Sand Fill Screen

**Well Construction Information** Ground Surface Elevation (ft): NA Monument Type: Morris Filter Pack: 10/20 silica sand Casing Diameter (inches): 2" Top of Casing Elevation (ft): NA Surface Seal: Concrete 0.010 NA Screen Slot Size (inches): **Boring Abandonment:** Screened Interval (ft bgs): 2.5 to 12.5' bgs Annular Seal: Bentonite Surveyed Location: X: 98496.534/: 20100.477

		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027		Lo	g c	of E	Bori	ng:	MW-14		P	Page 1 of 1
Lo Fa	ojeo cat rallo		Date/Time Started Date/Time Comple Equipment: Drilling Company Drilling Foreman: Drilling Method:	eted:	7/28/	'11 @ erpro Drillin Harn	den	Driv Dej Tot	npler Type: 4' ve Hammer (Ibs oth of Water AT al Boring Depth al Well Depth (f	.): D (ft n (ft k	bgs): ogs):	Auto 2.5' 12' 12.5'
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ring/Well struction Details
0_		<ul> <li>0.0-1.5' Asphalt (100% asphalt), black.</li> <li>(1.5-1.8' Concrete (100% concrete), white, dry, no od 1.8-2.6' SILT Fill (100% silt), green, moist, no odor, 2.6-5.5' Well-graded GRAVEL with sand Fill (75% g 5% silt), fine to coarse gravel, fine to coarse sand, g no odor, no sheen. Observed round to subrounded</li> <li>5.5-6.8' Silty SAND Fill (85% sand, 15% silt), fine sa odor, no sheen.</li> <li>6.8-10.8' SILT (100% silt), dark brown, wet, no odor</li> <li>10.8-12.0' PEAT (100% peat), dark brown, wet, orgino sheen.</li> </ul>	no sheen. ravel, 20% sand, jreyish-green, wet, pea-gravel.	AC FILL FILL FILL PT		90	NA	0.0	MW14-2.0	x		Monument Well cap Concrete Bentonite Water level Sand Fill Screen
.												End cap

**Well Construction Information** Ground Surface Elevation (ft): NA Monument Type: Morris Filter Pack: 10/20 silica sand Casing Diameter (inches): 2" Top of Casing Elevation (ft): NA Surface Seal: Concrete 0.010 NA Screen Slot Size (inches): **Boring Abandonment:** Screened Interval (ft bgs): 2.5 to 12.5' bgs Annular Seal: Bentonite Surveyed Location: X: 98495.364/: 20171.411

		FARALLON consulting 975 5th Avenue Northwest Issaquab, Washington 98027		Lo	g c	of E	Bori	ng:	MW-15		Page 1 of 1
Pre	-		Date/Time Started Date/Time Compl Equipment: Drilling Company	eted:	Powerprobe 9500 ESN Drilling			Dri Dej	mpler Type: 4' ve Hammer (Ibs. pth of Water ATI al Boring Depth	): D (ft bgs):	Auto
		on PN: 525-006	Drilling Foreman: Drilling Method:		Don Harnden Geoprobe			Tot	al Well Depth (fi	bgs):	14'
Lo	oggo	ed By: Ken Scott									
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID		oring/Well onstruction Details
0_		0.0-0.4' Asphalt (100% asphalt), black. 0.4-1.6' Well-graded GRAVEL with silt and sand Fill sand, 10% silt), fine to coarse gravel, fine to coarse no odor, no sheen.		AC  FILL							Monument Well cap Concrete
		1.6-5.4' Well-graded SAND with silt and gravel Fill ( gravel, 10% silt), fine to coarse gravel, fine to coars moist, no odor, no sheen.		FILL		100	NA	0.0			Bentonite
5-		5.4-7.7' Poorly graded SAND with silt Fill (90% sand sand, greenish-brown, moist to wet, no odor, no she		FILL		100	NA	0.0	MW15-7.0		Sand Water level
10 -		7.7-8.2' PEAT (100% peat), dark brown, wet, organ no sheen. 8.2-10.3' Silty SAND (65% sand, 135% silt), fine san odor, no sheen.	/	PT SM		100	NA	0.0			Fill
		10.3-14.0' SILT (100% silt), greenish-brown, wet, no	o odor, no sheen.	ML							End cap

**Well Construction Information** Ground Surface Elevation (ft): NA Monument Type: Morris Filter Pack: 10/20 silica sand Casing Diameter (inches): 2" Top of Casing Elevation (ft): NA Surface Seal: Concrete NA Screen Slot Size (inches): 0.010 **Boring Abandonment:** Screened Interval (ft bgs): 4 to 14' bgs Annular Seal: Bentonite Surveyed Location: X: 98329.057/: 20080.658

		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027		Lo	g c	of E	Bori	ng:	MW-16		P	Page 1 of 1
Pro Lo	cat		Equipment: Drilling Company:			eted: 7/29/11 @ 13:45 Powerprobe 9500			npler Type: 4' ve Hammer (Ibs oth of Water AT al Boring Depth al Well Depth (f	.): D (ft (ft k	bgs): ogs):	Auto 9.5' 12' 12.5'
		ed By: Ken Scott	Drilling Foreman: Drilling Method:			orobe			ai tron Dopin (i			12.5
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	ion	uscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ring/Well struction Details
0_ 5-		<ul> <li>0.0-0.3' Asphalt (100% asphalt), black.</li> <li>0.3-1.8' Well-graded GRAVEL with silt and sand Fill sand, 10% silt), fine to coarse gravel, fine to coarse no odor, no sheen.</li> <li>1.8-3.2' SILT Fill (100% silt), greenish-brown, moist sheen.</li> <li>i.3.2-3.3' WOOD (100% wood), light brown, moist, no odor,</li> <li>3.3-4.5' SILT Fill (100% silt), brown, moist, no odor,</li> <li>4.5-5.1' Asphalt (100% asphalt), black.</li> <li>5.1-5.6' Well-graded GRAVEL with silt Fill (80% gra 10% silt), fine to coarse gravel, fine to medium sand moist, no odor, no sheen.</li> <li>5.6-8.0' SILT (100% silt), brown, moist to slight wet, sheen.</li> <li>8.0-10.1' Silty SAND (65% sand, 35% silt), fine sams slightly wet to wet at 9.5-feet bgs, petro odor, slight</li> <li>10.1-12.0' SILT (100% silt), dark brown, wet, slight 1</li> </ul>	sand, grey, moist, , no odor, no o odor, no sheen. no sheen. Nyel, 10% sand, d, greenish-grey, , no odor, no d, greenish-brown, sheen.	AC FILL FILL AC FILL AC SM		100	NA	0.3 0.8 4.8 0.0	MW16-9.0	x		Monument Well cap Concrete Bentonite Sand Fill Screen Trill Screen

Maria		Well C	onstruction Information	Ground Surface I	Howation (ft):	NA
Monument Type: Morris		Filter Pack:	10/20 silica sand			
Casing Diameter (inches): 2"			_	Top of Casing Ele	evation (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal:	Concrete	Boring Abandonn	nent:	NA
Screened Interval (ft bgs):	2.5 to 12.5' bgs	Annular Seal:	Bentonite	Surveyed Location:	X: 98576.547:	20211.326

	FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	Lo	g o	fE	Borir	ıg:	MW-17		Page 1 of 1	
-oca Faral	t: Lakeside Industries ct: Aberdeen Site tion: Aberdeen, WA Ion PN: 525-006 Ied By: Ken Scott	Date/Time Completed: Equipment: Drilling Company: Drilling Foreman:		7/29/11 @ 9:55 7/29/11 @ 11:05 Powerprobe 9500 ESN Don Harnden Direct push			mpler Type: 4' Ma ve Hammer (Ibs.): pth of Water ATD (f tal Boring Depth (ft tal Well Depth (ft bg	t bgs): bgs):	NA : 6.0'	
Depth (feet bgs.) Samole Interval		on	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Bo	oring/Well nstruction Details	
	<ul> <li>0-0.5' Asphalt (100% asphalt), black.</li> <li>0.5-1.2' Well-graded GRAVEL with silt and sand (70 sand, 10% silt), fine to coarse gravel, fine sand, gree no sheen. Observe concrete chunks between 0.5 to 1.2-3.5' Poorly graded SAND with silt and gravel Fil gravel, 10% silt), fine sand, fine to coarse gravel, gr no sheen. Observe metal fence post support at 1.3</li> <li>3.5-4.2' SILT (100% silt), brown, moist, no odor, no 4.2-10.2' Well-graded GRAVEL with sand (70% gra silt), fine to coarse gravel, fine sand, brown, moist to sheen. Observe staining between 6 to 9-feet bgs.</li> <li>10.2-12.0' SILT (100% silt), brown, wet, no odor, no dor, no dot sheen.</li> </ul>	y, moist, no odor, b 1.2-feet bgs. / SP-SN I (70% sand, 20% ey, moist, no odor, -feet bgs. sheen. ML vel, 25% sand, 5% b wet, petro-odor, GW	-9-	100	NA	0.0	B40-3.0 X B40-5.5 X B40-072511-GW		Monumen Well cap Concrete Bentonite Fill Sand Water leve Screen	

		Well C	onstruction Information		
Monument Type: Morris				Ground Surface Elevation (ft):	NA
Casing Diameter (inches): NA		Filter Pack:	NA	Top of Casing Elevation (ft):	NA
Screen Slot Size (inches):	0.010	Surface Seal:	NA	Boring Abandonment:	NA
Screened Interval (ft bgs):	6 to 9' bgs	Annular Seal:	NA	Surveyed Location: X: 98433.895	<b>Y</b> : 20073.833

		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	Lo	g o	of E	Bor	'n	<b>g:</b> MW-18		F	age 1 of 1
Pro Loc Fai	cat ralle		Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	04-05-2013/0924 D Geoprobe 7900 D ESN T				Sampler Type: 5' Macrocore Drive Hammer (Ibs.): Depth of Water ATD (ft bgs): Total Boring Depth (ft bgs): Total Well Depth (ft bgs):			Auto 5.0' 12.0' 12.0'
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on Ss	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Con	ring/Well struction Details
0_		0.0-3.0': Poorly graded SAND with silt and gravel (7 15% gravel), fine to medium sand, fine to coarse gra brown, moist, no odor. 3.0-5.0': No recovery.			60	NA	500	MW-18-5.0	x		Monumen Well cap Concrete Bentonite Sand
		5.0-8.0': Silty SAND (70% sand, 30% silt), fine sand bgs, hydrocarbon-like odor, sheen. 8.0-10.0': No recovery.	, green, wet at 5.0' SM		60	NA	506	@ 1015	~		Screen
- 00 - -		10.0-11.5': SILT (90% silt, 10% sand), fine sand, me dark brown, wet, no odor. 11.5-12.0': WOOD (100% wood), light brown, hydro no sheen. Refusal at 12.0' bgs due to wood.			100	NA	0.4	@ 12.0'			End cap

Well Construction Information Ground Surface Elevation (ft): NA Monument Type: Morris Filter Pack: 10/20 silica sand Top of Casing Elevation (ft): NA Casing Diameter (inches): 2" Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): 0.010 Annular Seal: **X:**98876.79 Bentonite Screened Interval (ft bgs): 3.0-12.0' Boring Abandonment: NA Y: 19976.23

		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	Lo	g o	of E	Bor	ing	<b>g:</b> MW-19		Page 1 of 1
Loo Far	ojec cati rallo		Date/Time Completed:OEquipment:ODrilling Company:EDrilling Foreman:E		5-201 probe	3 / 08 3 / 09 7800	40 I I	Sampler Type: 5' M Drive Hammer (Ibs.): Depth of Water ATD Fotal Boring Depth (1 Fotal Well Depth (ft I	Auto 6.0' 15.0' 10.0'	
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on SS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Z Cor	ring/Well Instruction Details
0		0.0-0.3': Asphalt. 0.3-1.2': Poorly graded SAND with silt and gravel (5 gravel, 10% silt), fine to coarse sand, fine to coarse moist, no odor. 1.2-3.0': Silty SAND (60% sand, 40% silt), fine sand moist, no odor. 3.0-5.0': No recovery.	gravel, brown, SM		60	NA	21.2	MW19-3.0-081513 @ 0858		Monument Well cap Concrete Bentonite Sand
5		5.0-8.0': Silty SAND (60% sand, 40% silt), fine sand moist, wet at 6.0' bgs, no odor. 8.0-8.4': Sandy SILT (60% silt, 30% sand, 10% grav sand, fine gravel, grayish black, wet, no odor. 8.4-10.0': No recovery.			68	NA	1.8	MW19-6.0-081513 @ 0907		Water level
10		10.0-10.5': Sandy SILT (60% silt, 30% sand, 10% gi medium sand, fine gravel, grayish black, wet, no od 10.5-10.9': Wood debris, no odor. 10.9-14.0': SILT (100% silt), gray, wet, no odor. 14.0-15.0': No recovery.	ML		80	NA	1.2	MW19-12.0-081513 @ 0915		End cap

Manual Transa Marria		Well Construct	tion Information	Ground Surface Eleva	tion (ft):	NA
Monument Type: Morris Casing Diameter (inches):	2"	Filter Pack:	2/12 sand	Top of Casing Elevati	• • •	NA
Screen Slot Size (inches):	2 0.010	Surface Seal: Annular Seal:	Concrete Bentonite	Surveyed Location:	X:NA	1.17.1
Screened Interval (ft bgs):	5.0-10.0'	Boring Abandonment:	NA	····,···	Y: NA	

		FARALLON consulting 975 5th Avenue Northwest Issaquah, Washington 98027	Lo	g c	of I	Bor	inç	<b>g:</b> MW-20	P	age 1 of 1
Loo Far	ojec cati allo		Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:	eted: 08-15-2013 / 1050 Geoprobe 9630 :: ESN			50 I I	Sampler Type: 5' Maa Drive Hammer (Ibs.): Depth of Water ATD (f Total Boring Depth (ft Total Well Depth (ft bo	Auto 6.8' 15.0' 14.0'	
Depth (feet bgs.)	Sample Interval	Lithologic Description	on SS	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID Sample S	Boi Con [	ring/Well struction Details
0_   5   		0.0-0.3': Asphalt. 0.3-1.1': Silty SAND with gravel (50% sand, 30% gravel to coarse sand, fine to coarse gravel, brown. 1.1-2.7': Silty SAND (60% sand, 40% silt), fine sand, moist, no odor. 2.7-5.0': No recovery. 5.0-7.8': Silty SAND (60% sand, 40% silt), fine sand, moist, wet at 6.8' bgs, odor at 6.0' bgs. 7.8-10.0': No recovery.	greenish gray,			NA	2.3	MW20-2.7-081513 @ 0958 MW20-6.5-081513 @ 1000		Monument Well cap Concrete Bentonite Sand
10 - - 15	-	10.0-11.3': Silty SAND (60% sand, 40% silt), fine sar wet, odor, sheen. 11.3-11.4': Wood debris. 11.4-14.2': SILT (100% silt), gray, wet, no odor.			84	NA	13.6 4.2 1.3	MW20-10.5-081513 @ 1012 MW20-12.0-081513 @ 1015 MW20-14.2-081513 @ 1019		End cap

		Well Construc	tion Information	Ground Surface Eleva	tion (ft)	NA
Monument Type: Morris Casing Diameter (inches):	2"	Filter Pack:	2/12 sand	Top of Casing Elevati	• • •	NA
Screen Slot Size (inches):	0.010"	Surface Seal: Annular Seal:	Concrete Bentonite	Surveyed Location:	X:NA	
Screened Interval (ft bgs):	4.0-14.0'	Boring Abandonment:	NA		Y: NA	

		FARALLON consulting 975 5th Avenue Northwest Issaguah, Washington 98027		Lo	g o	of E	Bor	inę	<b>g:</b> MW-21	F	Page 1 of 1
Pro Lo Fa	cat ralle	1 2 0	Date/Time Started Date/Time Comple Equipment: Drilling Company: Drilling Foreman: Drilling Method:	eted:	08-15-2013 / 1100 08-15-2013 / 1219 Geoprobe 9630 ESN Brian Direct Push			19     	Sampler Type: 5' Mac Drive Hammer (Ibs.): Depth of Water ATD (fr Total Boring Depth (ft Total Well Depth (ft bg	t bgs): bgs):	Auto 5.4' 15.0' 13.0'
Depth (feet bgs.)	Sample Interval	Lithologic Description	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Samble ID Sample ID	Bo Cor I	ring/Well Istruction Details
0_		0.0-5.0': Silty SAND (60% sand, 40% silt). green, mo Hand augered to clear any potential water line. 5.0-6.6': Silty SAND (60% sand, 40% silt), green to g 5.4' bgs. 6.6-10.0': No recovery.		SM		32	NA	0.4	MW21-6.6-081513 @ 1119		Monument Well cap Concrete Bentonite Sand Water level Screen
10 -		10.0-10.9': Silty SAND (60% sand, 40% silt), green to 10.9-13.3': SILT (100% silt), gray, wet, no odor. 13.3-15.0': No recovery.	o gray, wet.	SM		66	NA	0.6	MW21-10.5-081513 @ 1122 MW21-13.3-081513 @ 1125		End cap

Manual Trans. Marris		Well Construct	tion Information	Ground Surface Elevation	(ft): NA
Monument Type: Morris		Filter Pack:	2/12 sand		
Casing Diameter (inches):	2"	Surface Seal:	Concrete	Top of Casing Elevation (	ft): NA
Screen Slot Size (inches):	0.010"	Annular Seal:	Bentonite	Surveyed Location: X:	NA
Screened Interval (ft bgs):	3.0-13.0'	Boring Abandonment:	NA	Y: 1	NA

		FARALLON consulting 975 5th Avenue Northwest Issaguah, Washington 98027		Lo	go	of E	Bori	ng:	TP1		Pag	je 1 of 1
Client: Lakeside Industries Project: Aberdeen Facility Location: Aberdeen, WA Farallon PN: 525-006 Logged By: Ken Scott			Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:		3/21/12 @ 10:20Sampler Type: Bucket3/21/12 @ 12:10Drive Hammer (lbs.):John Deere 710DDepth of Water ATD (ft bgs):Lakeside IndustriesTotal Boring Depth (ft bgs):Brian BartlettTotal Well Depth (ft bgs):Excavation							
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	USCS	USGS Graphic	% Recovery	Blow Counts 8/8/8	(mqq) OIA	Sample ID	Sample Analyzed	Const	g/Well ruction tails
0_          		<ul> <li>0.0-0.4" Asphalt (100% asphalt), black.</li> <li>0.4-3.6' Silty GRAVEL with sand Fill (65% gravel, 20 fine to coarse gravel, fine to coarse sand, brown, mo 2.8-feet bgs, no sheen. Observed 3-inch round to s cobbles between 1.5 to 3-feet bgs. Observed stainin with sheen seen on northside of test-pit.</li> <li>3.6-7.0' SILT (100% silt), black, moist to wet, petro of southside test-pit. Observed round wood pier piling pit between 4.0 to 7.0-feet bgs. A 7-foot high concressouthside of test-pit, and the bottom of seawall was at 4-feet bgs. Observed groundwater on northside of sheen at 5.7-feet bgs.</li> </ul>	bist, no odor to ubrounded ng at 2.8-feet bgs odor, no sheen on in center of test- ete seawall was on tied-into silt layer	AC GM		100%	<ul> <li>N/A</li> <li>N/A</li> <li>N/A</li> </ul>	NM NM NM	TP1-3.5 @ 11:15 TP1-4.5 @ 11:30 TP1-7.0 @ 11:45			

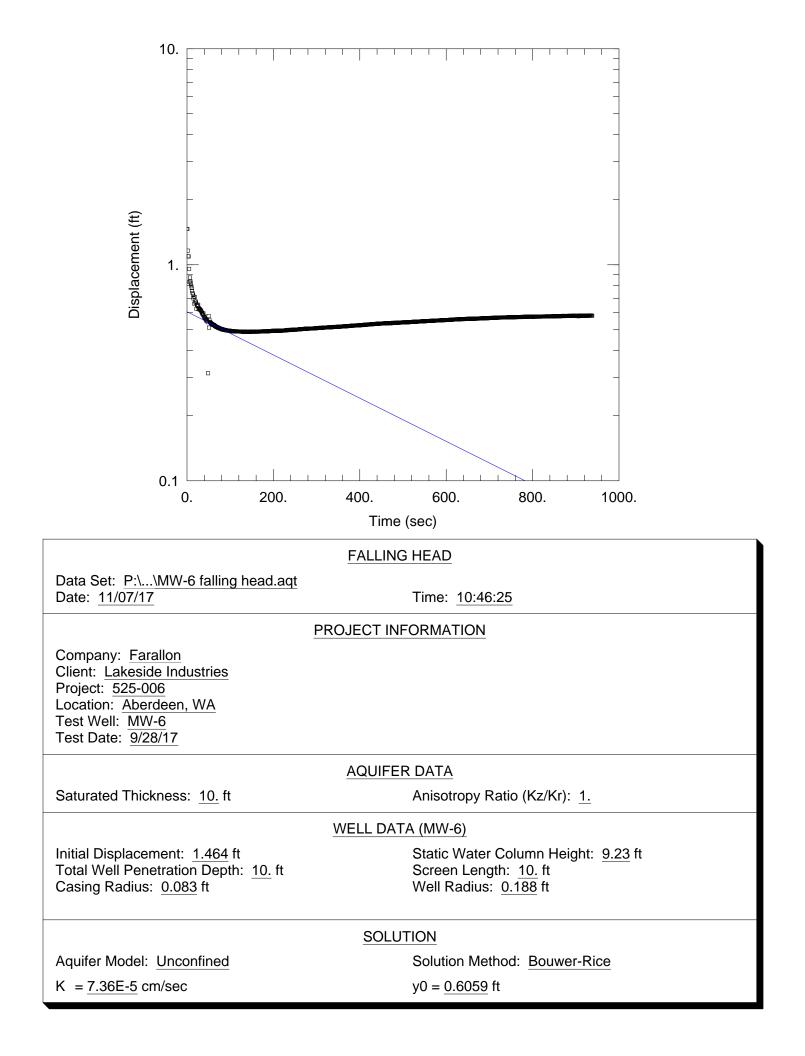
Monument Type:	Well Construction Information	Ground Surface Elevation (ft):	
Casing Diameter (inches):	Filter Pack:	Top of Casing Elevation (ft):	
Screen Slot Size (inches):	Surface Seal:	Boring Abandonment:	
Screened Interval (ft bgs):	Annular Seal:	Surveyed Location: X:	Y:

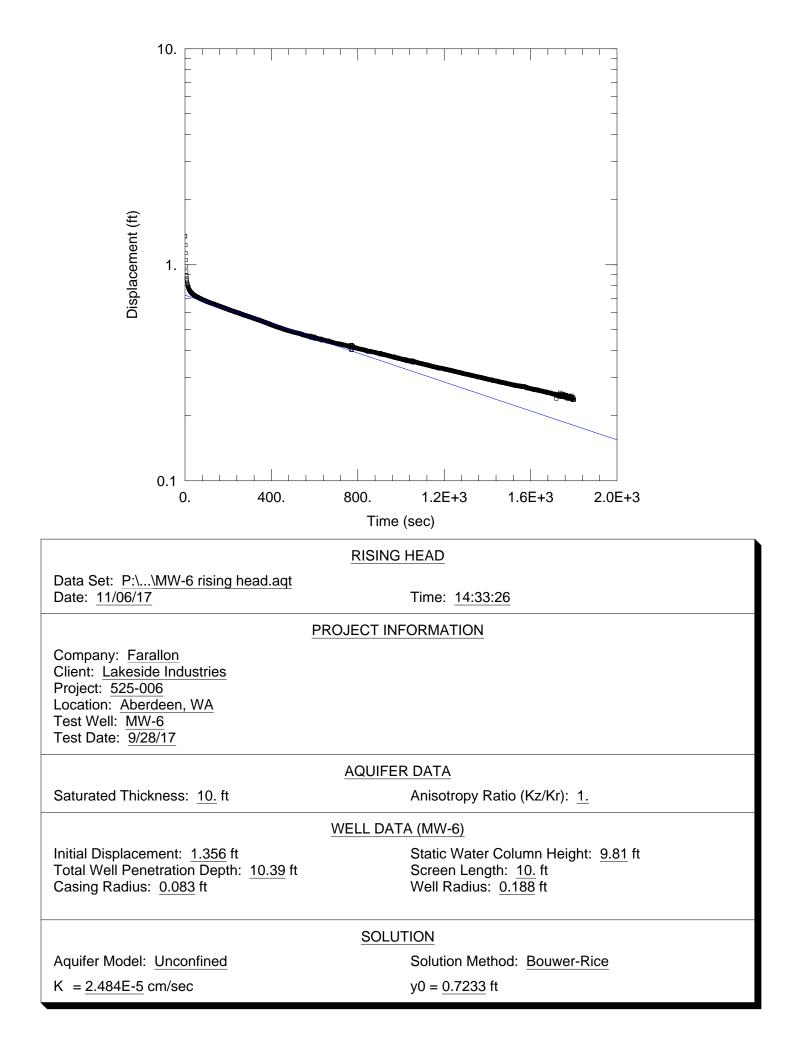
	7	FARALLON consulting 975 5th Avenue Northwest		Lo	g c	of E	Bori	ng:	TP2		Page 1 of 1
Client: Lakeside Industries Project: Aberdeen Facility Location: Aberdeen, WA Farallon PN: 525-006 Logged By: Ken Scott			Date/Time Started: Date/Time Completed: Equipment: Drilling Company: Drilling Foreman: Drilling Method:		3/21/12 @ 14:15Drive HJohn Deere 710DDepthLakeside IndustriesTotal E				Page 1 of pler Type: Bucket h Hammer (Ibs.): h of Water ATD (ft bgs): 5.7 Boring Depth (ft bgs): 7.0 Well Depth (ft bgs):		
Depth (feet bgs.)	Sample Interval	Lithologic Descripti	on	nscs	USGS Graphic	% Recovery	Blow Counts 8/8/8	PID (ppm)	Sample ID	Sample Analyzed	Boring/Well Construction Details
0_		0.0-0.3 Asphalt (100% asphalt), black. 0.3-3.8' Silty GRAVEL with sand Fill (60% gravel, 24 fine to coarse gravel, fine to coarse sand, brown, m 3.0-feet bgs, no sheen. Observed 3-inch round to s cobbles between 1.5 to 3-feet bgs. Observed staini	oist, no odor to subrounded	GM		00%	N/A	NM			
- 5-		3.8-7.0' SILT (90% silt, 10% wood), black to grey at to wet, petro odor to 6.5-feet bgs., slight sheen seer no sheen on southside test-pit or deeper than 3.8-fe wood pier piling debris from historic dock between 3 A 7-foot high concrete seawall was on southside of bottom of seawall was tied-into silt layer at 4-feet bg metal support cable tied-into seawall at 5-feet bgs. groundwater on northside of test-pit at 5.7-feet bgs.	n at 3.8-feet bgs, eet bgs. Observed 3.8 to 5.5-feet bgs. test-pit, and the gs. Observed Observed	ML			N/A N/A	NM NM	TP2-4.0 @ 13:40 TP2-4.5 @ 13:45		
-	-					100%	N/A	NM	TP2-7.0 @ 13:50		
10	-			2							

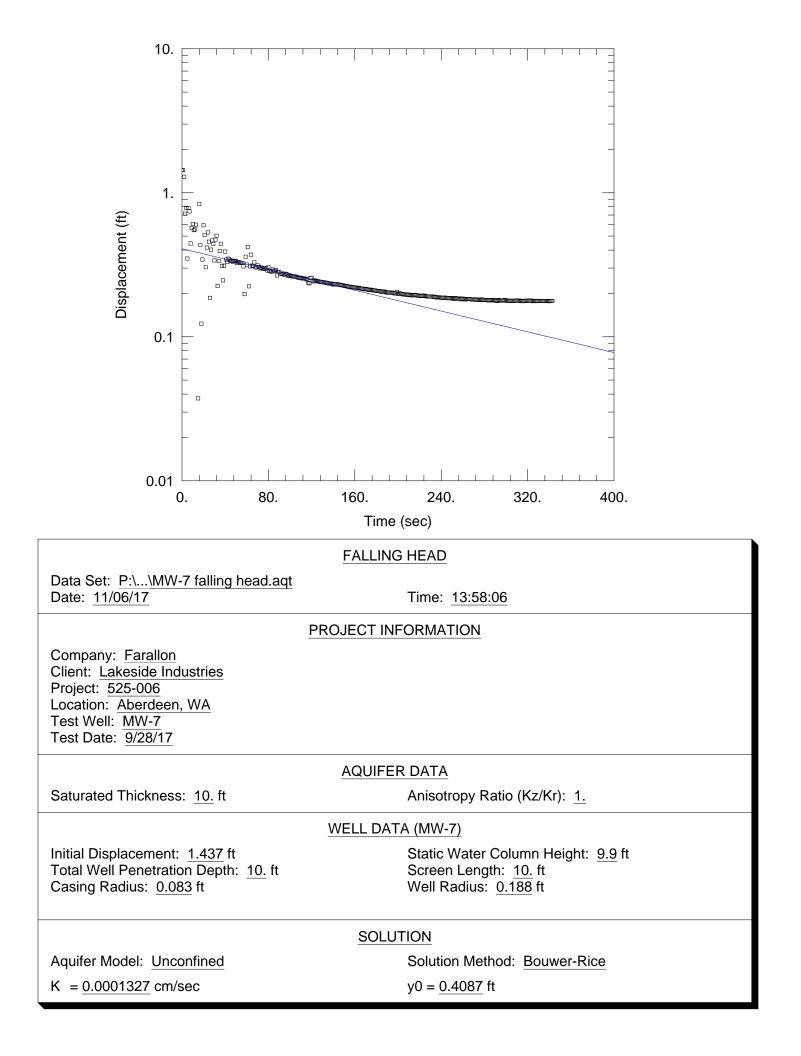
Monument Type:
Casing Diameter (inches):
Screen Slot Size (inches):
Screened Interval (ft bgs):

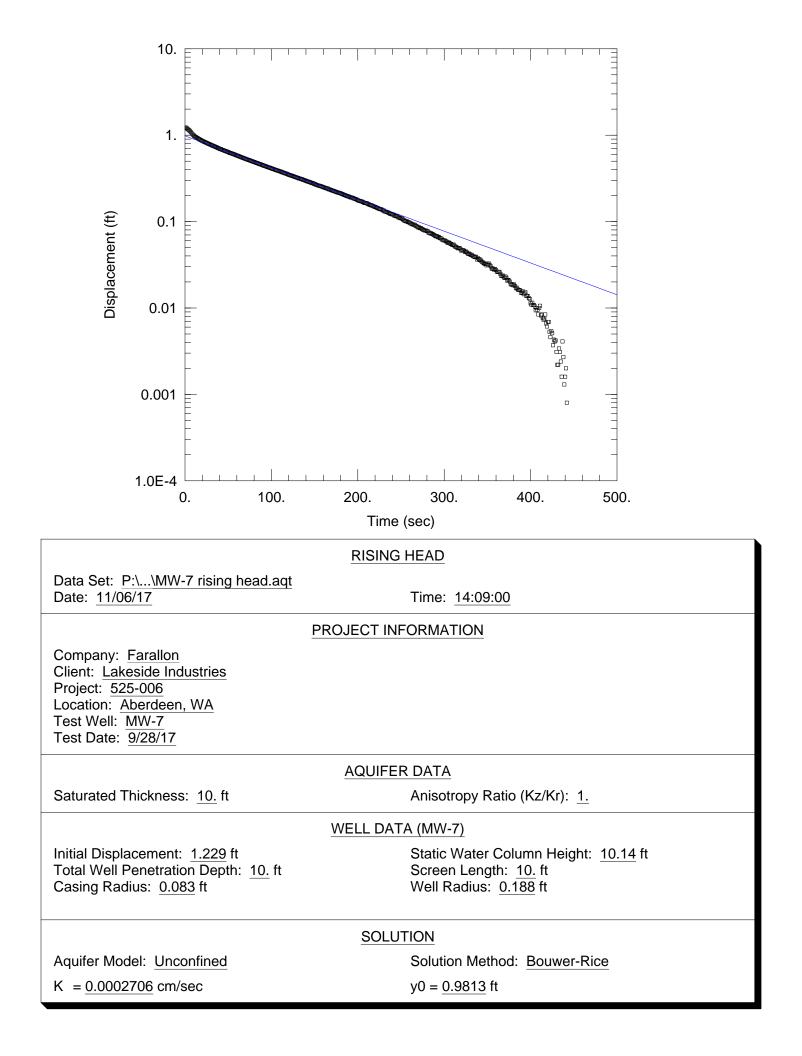
Well Construction Information Filter Pack: Surface Seal: Annular Seal:

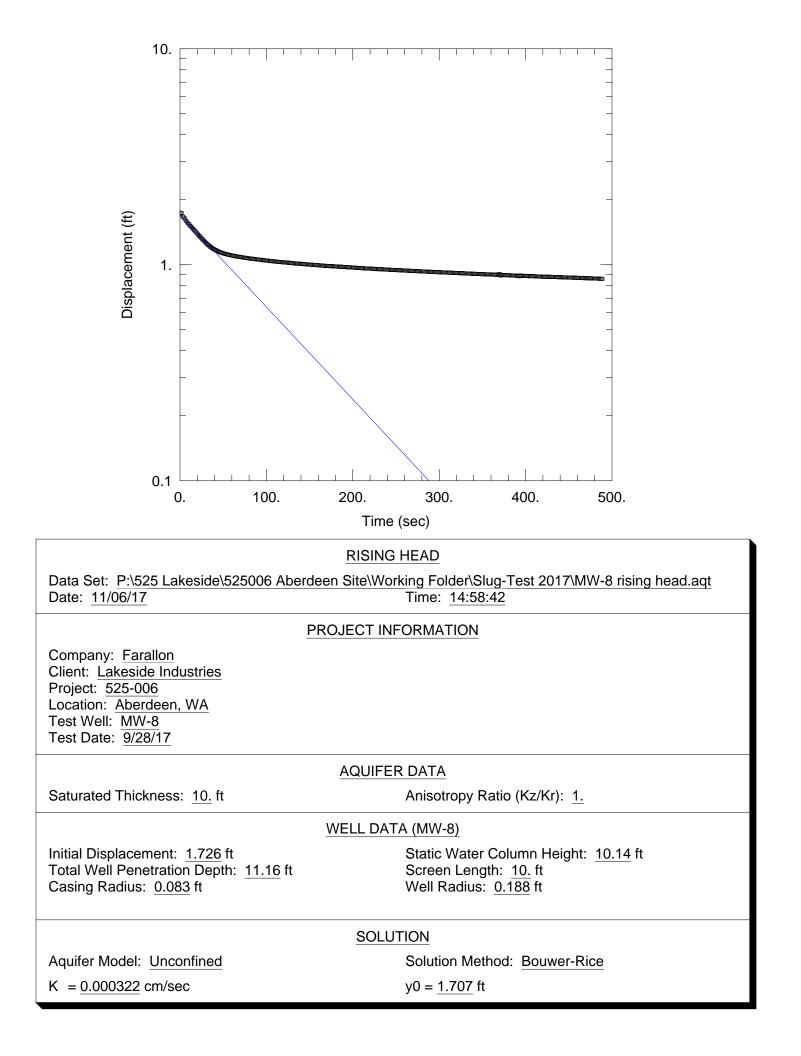
Ground Surface Elevation (ft): Top of Casing Elevation (ft): Boring Abandonment: Surveyed Location: X:

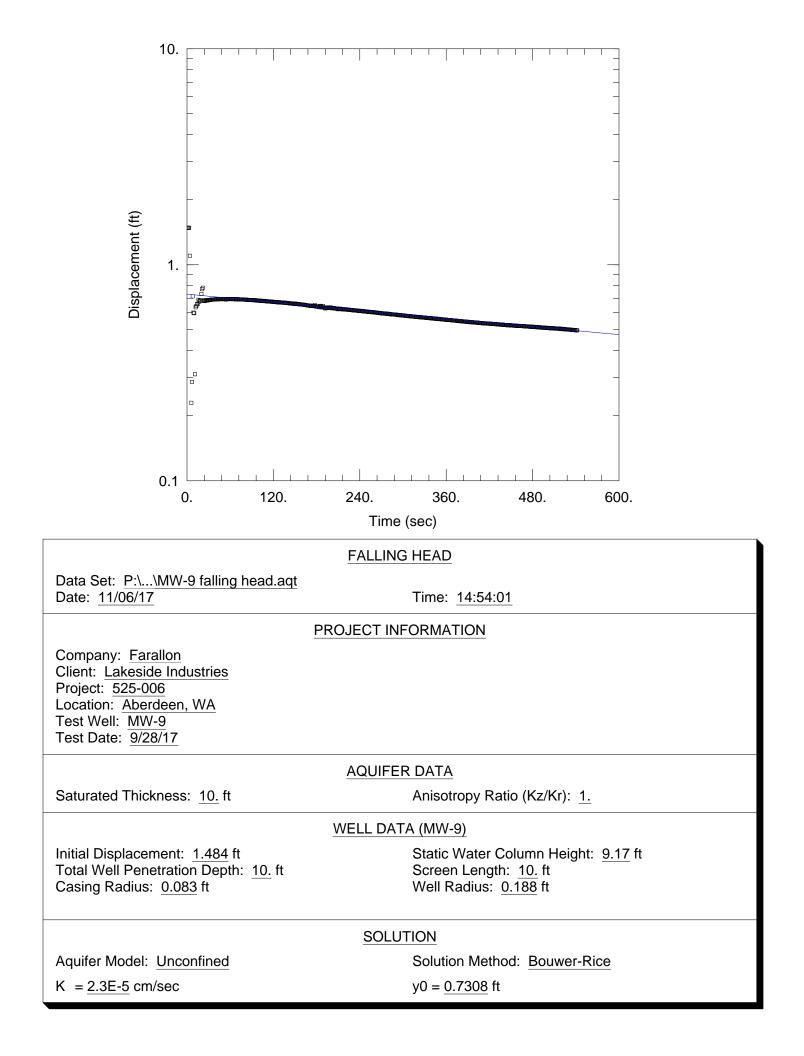

**Y**:

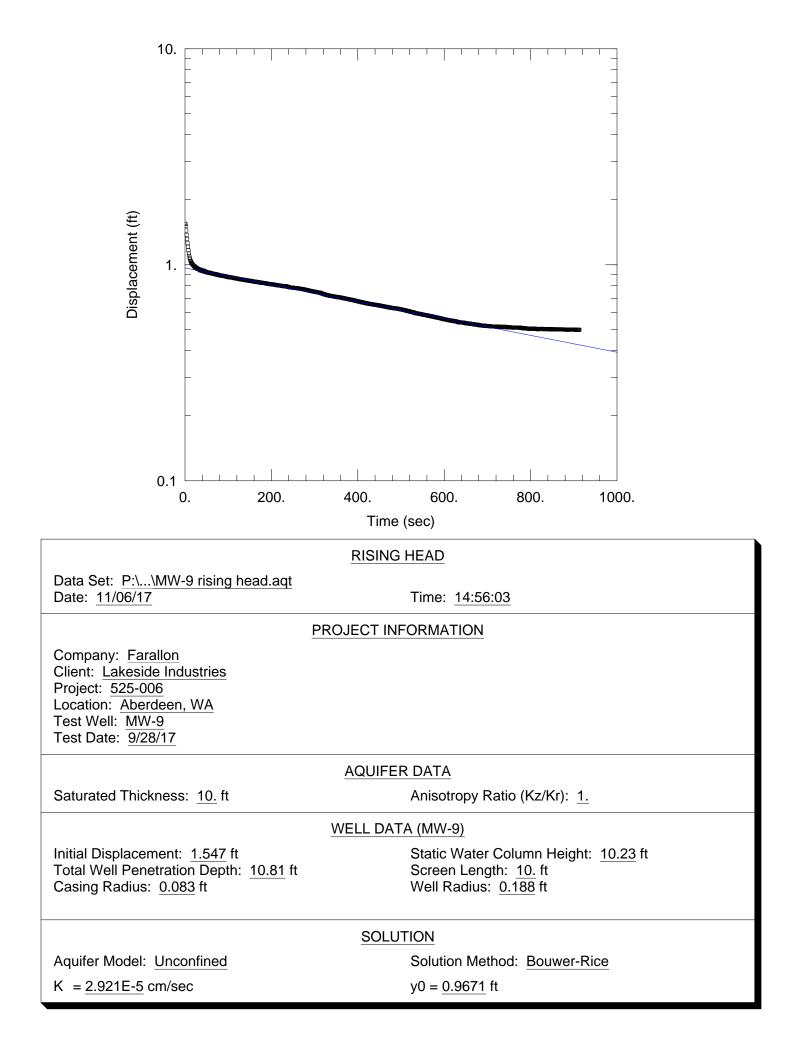

DRAFT—Issued for Agency Review

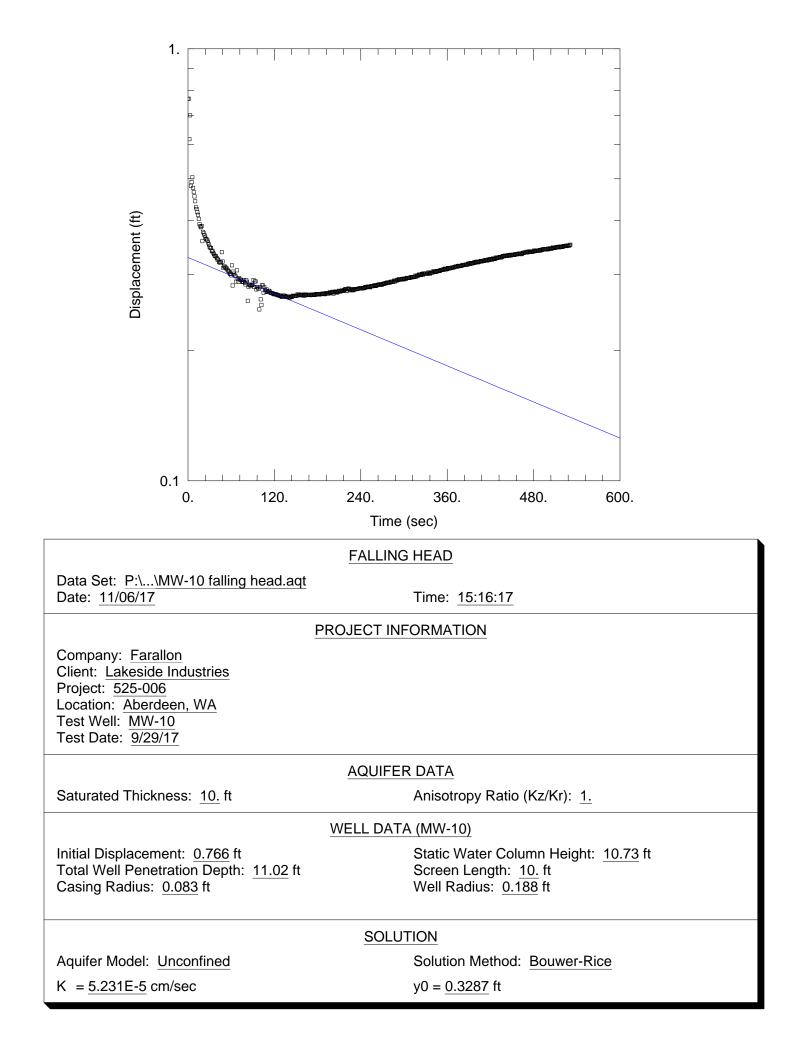

## APPENDIX C AQUIFER TESTING DATA

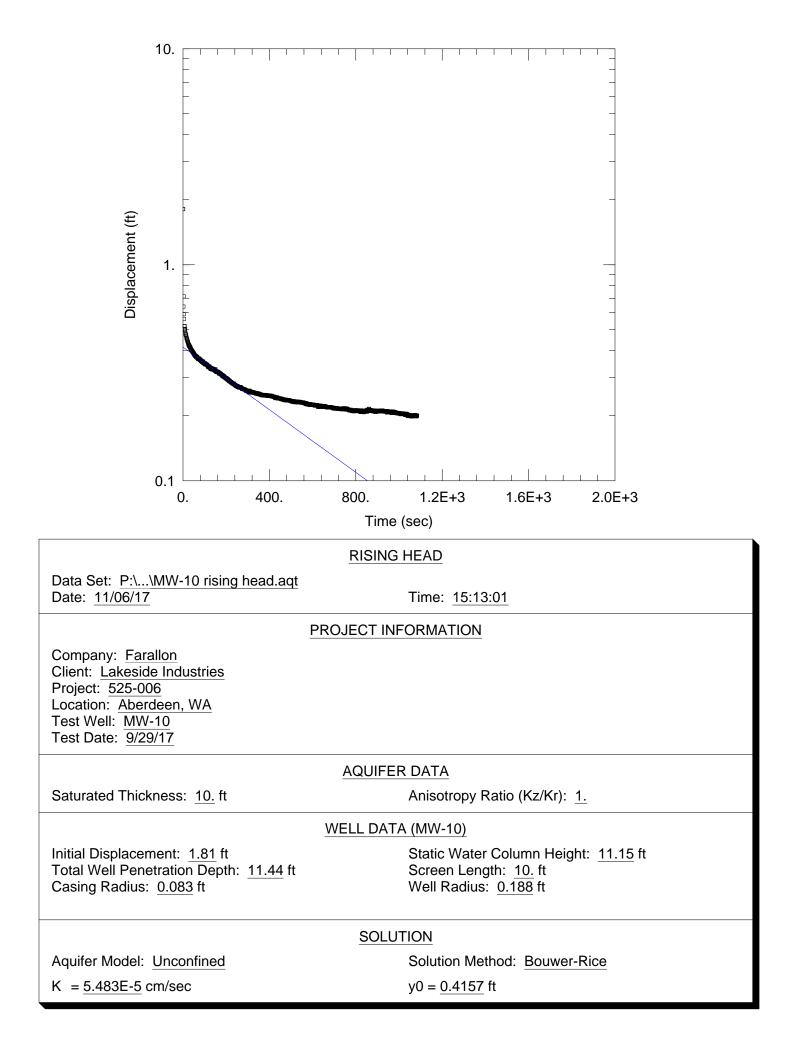

## LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

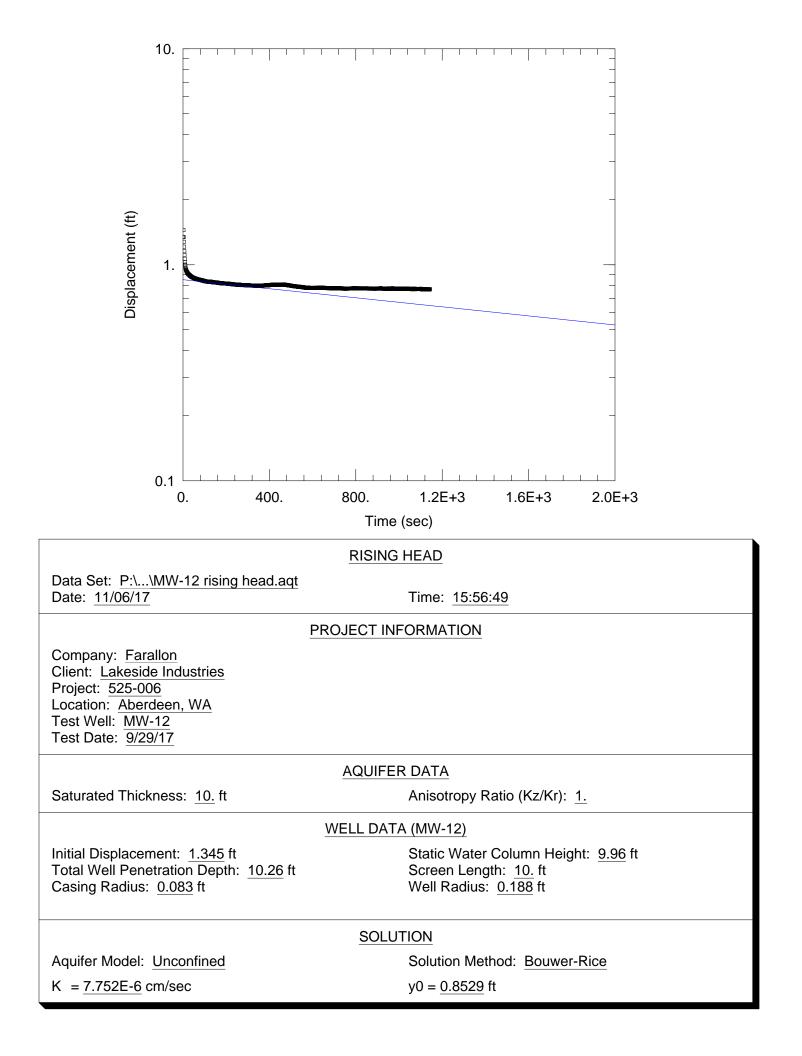

Farallon PN: 525-006

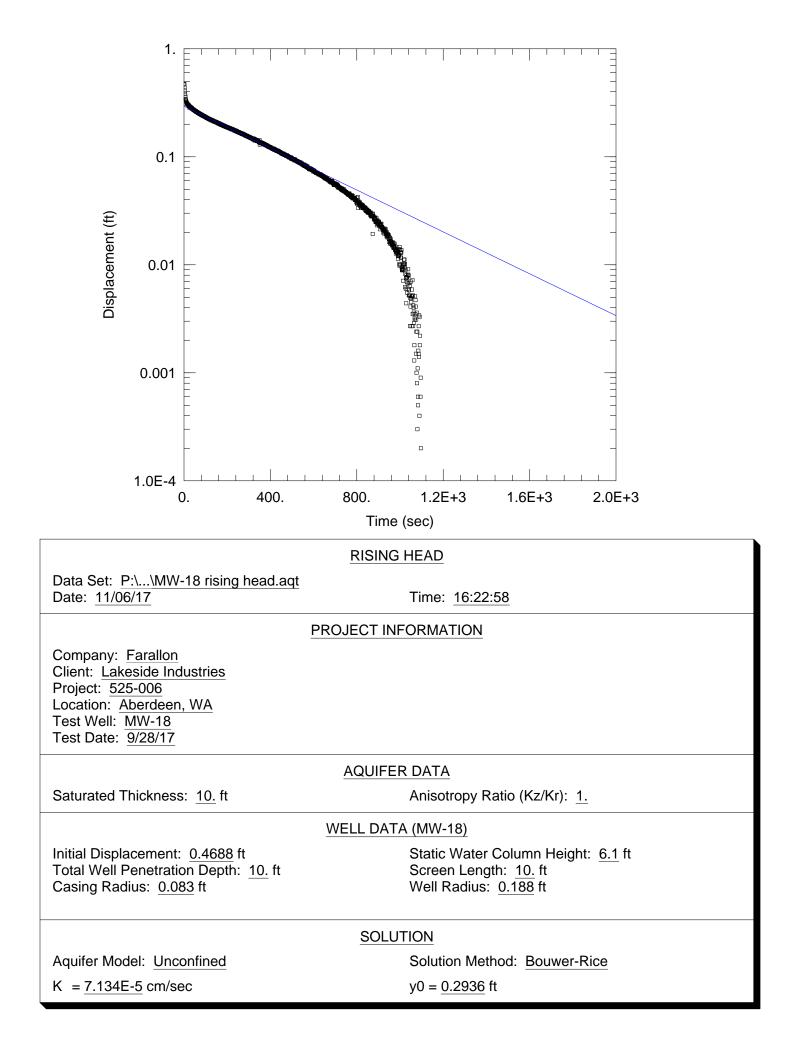













## Table C-1 Summary of Aquifer Testing Results Lakeside Industries Aberdeen Facility Aberdeen, Washington Farallon PN: 525-006

Monitoring Well Tested	Date Tested	Test Conducted	Estimated Hydraulic Conductivity (centimeters/second)	Average Hydraulic Conductivity (centimeters/second)	Hydraulic Conductivity Geometric Mean (centimeters/second)	Groundwater Seepage Velocity (feet per year) ¹
MW-6	9/29/2017	Falling Head	7.36E-05	4.92E-05		
101 00 -0	9/29/2017	Rising Head	2.48E-05	4.92L-05		
MW-7	9/28/2017	Falling Head	1.33E-04	2.02E-04		
1 <b>v1 vv -</b> /	9/28/2017	Rising Head	2.71E-04	2.021-04		
	9/28/2017	Falling Head	Inconclusive	2 225 04		
MW-8	9/28/2017	Rising Head	3.22E-04	3.22E-04		
MW-9	9/28/2017	Falling Head	2.30E-05	2.61E-05		
101 00 - 9	9/28/2017	Rising Head	2.92E-05	2.012-05	5.89E-05	8.5
MW-10	9/29/2017	Falling Head	5.23E-05	5.36E-05		
101 00 - 10	9/29/2017	Rising Head	5.48E-05	5.502-05		
MW-12	9/29/2017	Falling Head	Inconclusive	7.75E-06		
101 00 - 12	9/29/2017	Rising Head	7.75E-06	7.752-00		
MW-18	9/28/2017	Falling Head	Inconclusive	7.13E-05		
NOTES:	9/28/2017	Rising Head	7.13E-05	7.15E-05		

NOTES:

¹Groundwater seepage velocity (V) = Kl/n, where

K = hydraulic conductivity

l = hydraulic gradient of 0.035 foot per foot (September 2013)

n = effective porosity of 0.25 (unitless) for silty sands and gravels

## APPENDIX D TIDAL STUDY DATA

# LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

Farallon PN: 525-006

## LAKESIDE TIDAL STUDY

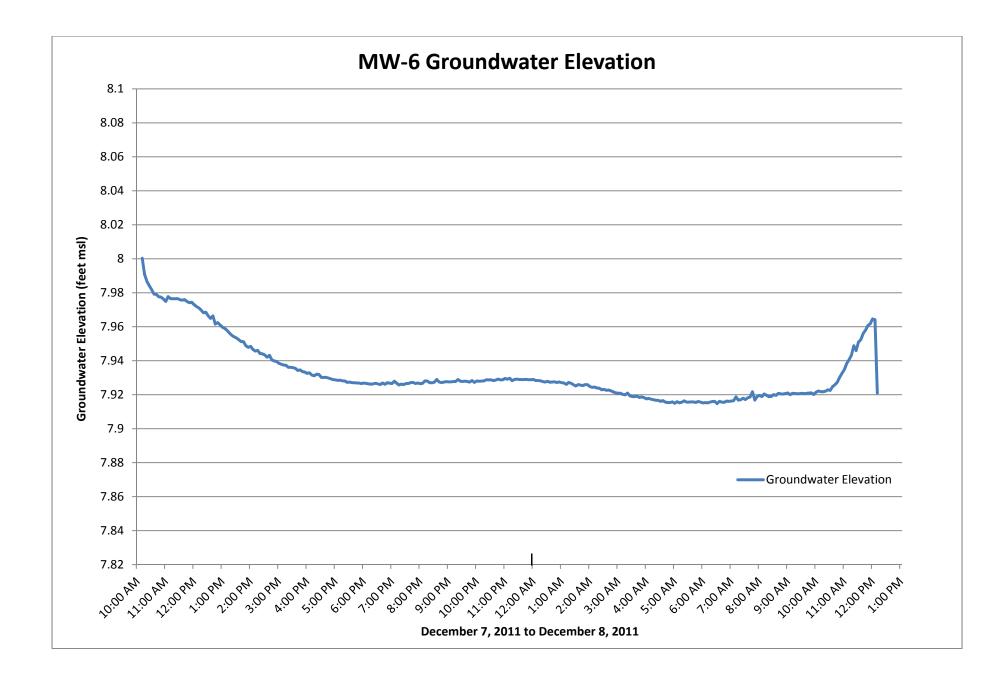
A tidal study was conducted during a 24-hour tidal cycle on December 7 and 8, 2011 at the Lakeside Aberdeen facility in Aberdeen Washington (the Site).

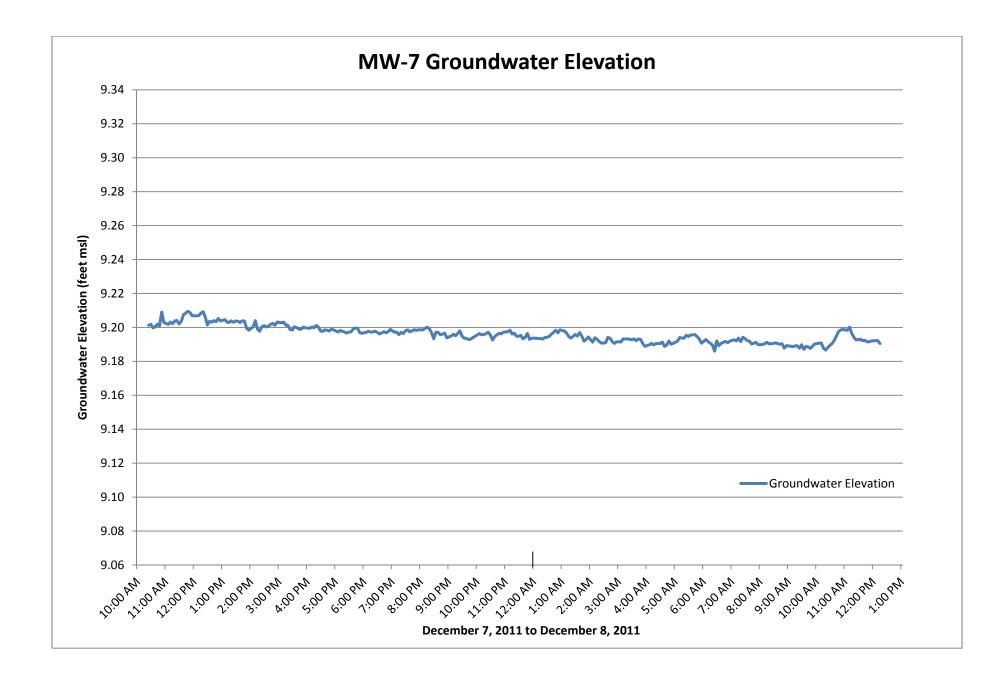
The tidal study included installation of electric pressure-logging transducers in monitoring wells MW-6, MW-7, MW-8, MW-9, and MW-10. Surface water level fluctuations in the Chehalis River were evaluated using data from the National Oceanic and Atmospheric Administration (NOAA) Aberdeen Station #9441187, west of the Site.

Recording of groundwater levels at each well using the transducers was initiated at 10:00 a.m. on December 7, 2011 during a high tide cycle. Measurements were recorded at 5-minute intervals for approximately 26 hours.

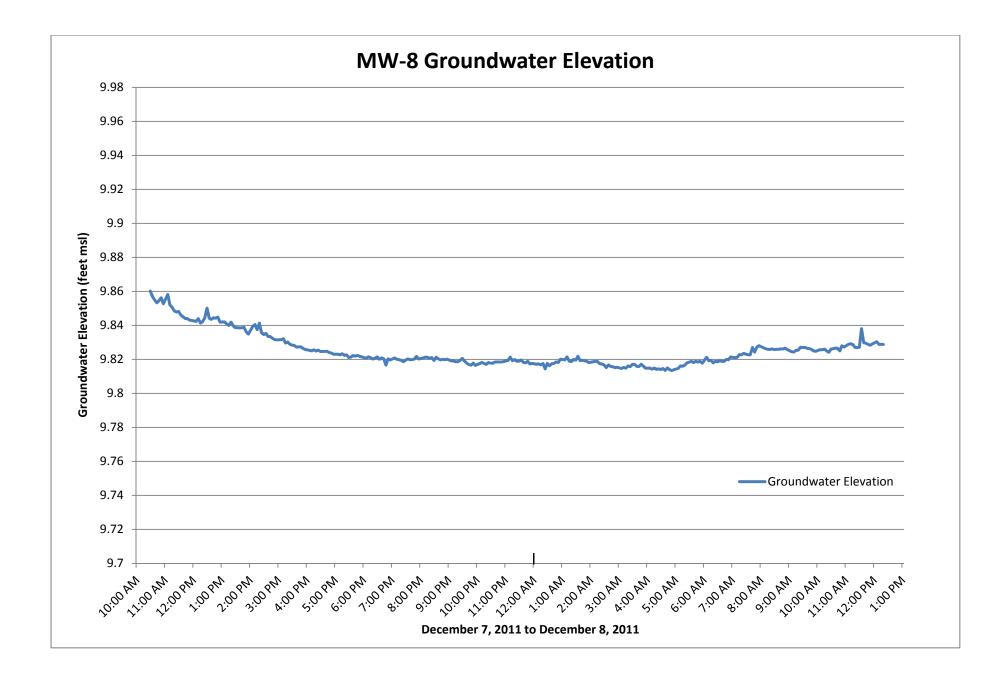
The relative groundwater level fluctuations recorded in the monitoring wells during the tidal study are provided graphically on the included figures. The surface water elevation tidal fluctuation recorded in the Chehalis River at the Aberdeen Station is also depicted graphically over the same time period. The surface water elevation fluctuation in the Chehalis River at Aberdeen Station #9441187 was approximately 10 feet during the study period.

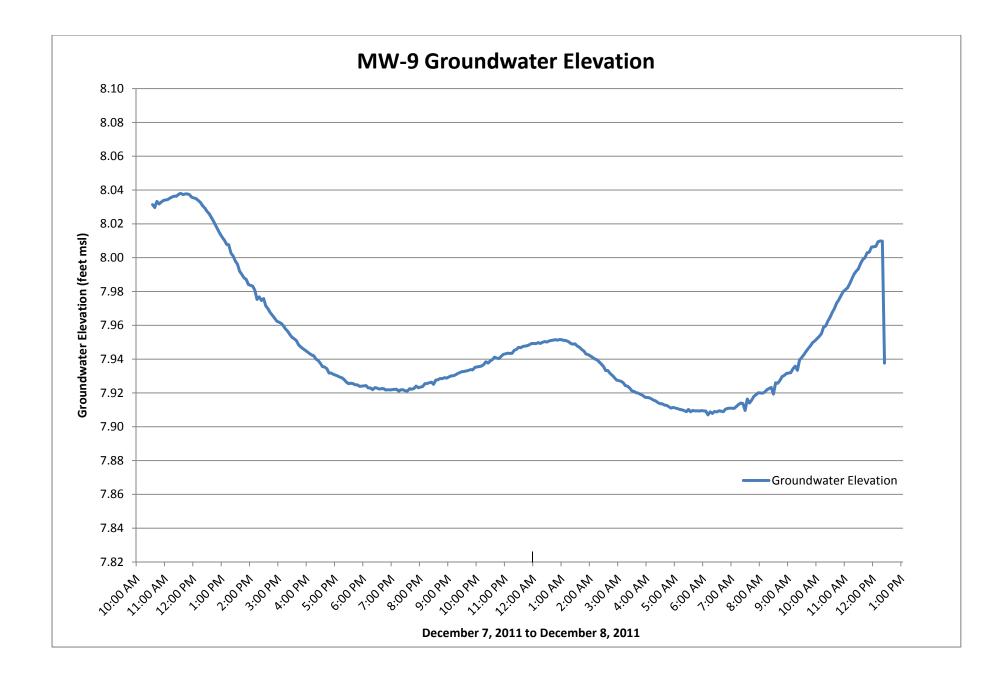
The relative change (i.e., the difference between the highest recorded elevation and the lowest recorded elevation) in groundwater elevations measured in Site monitoring wells is summarized as follows:

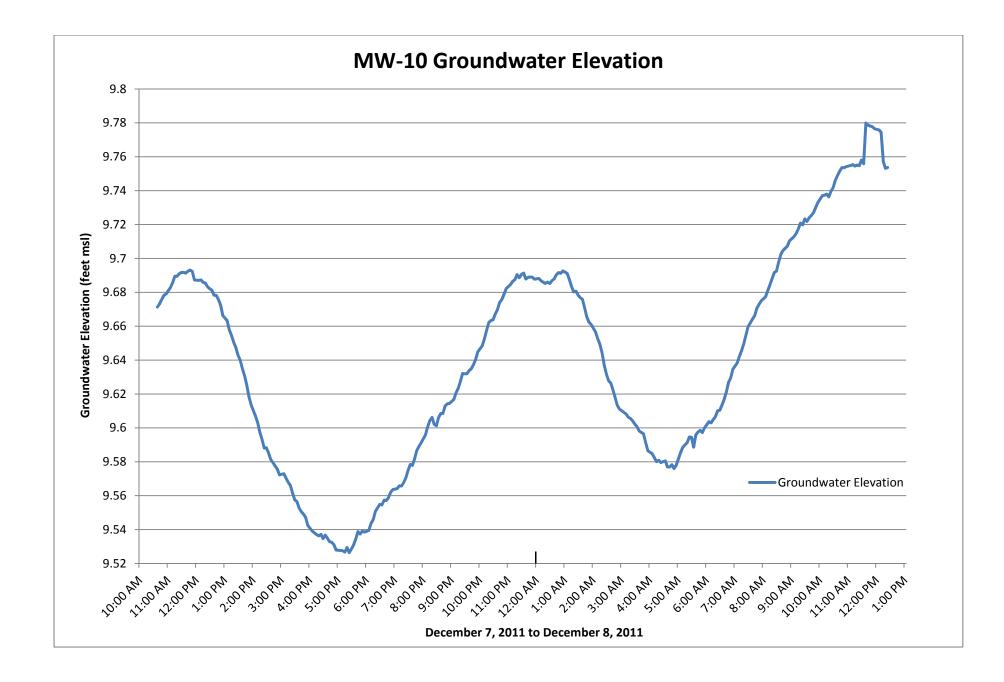

- Monitoring well MW-6, located approximately 20 feet from the top of the river bank, and very close to the concrete retaining wall, displayed a groundwater elevation tidal response of approximately 0.06 foot.
- Monitoring well MW-7, located approximately 120 feet from the top of the river bank, did not display a groundwater elevation tidal response and may reflect either no tidal response or a transducer malfunction.
- Monitoring well MW-8, located approximately 255 feet from the top of the river bank, did not display a groundwater elevation tidal response and may reflect either no tidal response or a transducer malfunction.
- Monitoring well MW-9, located approximately 20 feet from the top of the river bank, and very close to the concrete retaining wall, displayed a groundwater elevation tidal response of approximately 0.15 foot.
- Monitoring well MW-10, located approximately 100 feet from the top of the river bank, displayed a groundwater elevation tidal response of approximately 0.23 foot.

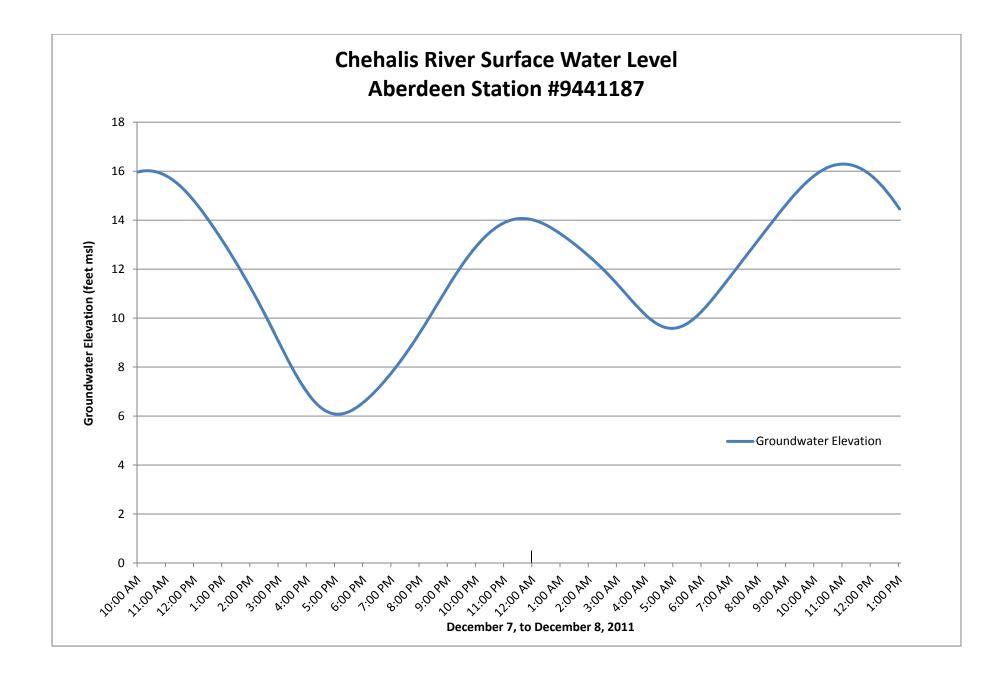

The relative change in groundwater elevations measured in the two monitoring wells that displayed the greatest tidal response ranged from approximately 0.15 foot in monitoring well MW-9 to approximately 0.23 foot in monitoring well MW-10. Monitoring well MW-6, the other

well that possibly displayed a recordable tidal response had a groundwater elevation change of approximately 0.06 foot.


Groundwater elevation data recorded in monitoring wells MW-7 and MW-8 show little or no elevation change and/or tidal pattern. The lack of recorded tidal response could be related to transducer malfunctions. However, these two wells are also the furthest wells from the Chehalis River that were included in the tidal study, so it is possible that they represent actual recorded tidal responses of essentially zero at these locations.


The relatively muted groundwater fluctuations, ranging from approximately 0.15 to 0.23 foot in the two wells that displayed the greatest groundwater elevation response to the tide, compared to the large (10-feet elevation) river tidal fluctuation, suggest a very limited connection between the shallow groundwater-bearing zone at the Site and the surface water of the Chehalis River.




C:\Documents and Settings\rostrom\Desktop\charts.docx









## APPENDIX E LABORATORY ANALYTICAL REPORTS (PROVIDED ON CD IN PRINT REPORT)

LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

Farallon PN: 525-006



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 4, 2011

Akos Fekete Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1104-151

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on April 22, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: May 4, 2011 Samples Submitted: April 22, 2011 Laboratory Reference: 1104-151 Project: 525-006

#### **Case Narrative**

Samples were collected on April 19, 20, and 21, 2011 and received by the laboratory on April 22, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

#### NWTPH Gx/BTEX (soil) Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

#### NWTPH Dx (water) Analysis

The samples were received with their pH levels above 2. A pH below 2 is required by the method. As they were collected in Hydrochloric Acid preserved containers, it is suspected that the matrix may be effecting the pH. The holding time for unpreserved samples is 7 days instead of 14 days. Because of this, samples B17-041911-GW, B18-041911-GW, B19-041911-GW, B20-041911-GW, and B34-041911-GW were extracted and analyzed out of holding time.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B17-6.0					
Laboratory ID:	04-151-02					
Benzene	ND	0.020	EPA 8021	4-27-11	4-27-11	
Toluene	ND	0.060	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	0.060	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	0.060	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	0.060	EPA 8021	4-27-11	4-27-11	
Gasoline	ND	6.0	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	68-124				
Client ID:	B18-6.0					
Laboratory ID:	04-151-05					
Benzene	ND	0.020	EPA 8021	4-27-11	4-27-11	
Toluene	ND	0.065	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	0.065	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	0.065	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	0.065	EPA 8021	4-27-11	4-27-11	
Gasoline	ND	6.5	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	68-124				
Client ID:	B19-6.0					
Laboratory ID:	04-151-08					
Benzene	ND	0.020	EPA 8021	4-27-11	4-27-11	
Toluene	ND	0.050	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	0.050	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	0.050	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	0.050	EPA 8021	4-27-11	4-27-11	
Gasoline	ND	5.0	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	68-124				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B20-7.0					
Laboratory ID:	04-151-11					
Benzene	0.039	0.023	EPA 8021	4-27-11	4-27-11	
Toluene	ND	0.12	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	0.90	0.12	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	1.1	0.12	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	0.60	EPA 8021	4-27-11	4-27-11	U1
Gasoline	ND	12	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	68-124				
Client ID:	B34-7.0					
Laboratory ID:	04-151-13					
Benzene	0.024	0.022	EPA 8021	4-27-11	4-27-11	
Toluene	ND	0.11	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	0.18	0.11	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	0.28	0.11	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	0.11	EPA 8021	4-27-11	4-27-11	
Gasoline	54	11	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	68-124				
Client ID:	B23-3.0					
Laboratory ID:	04-151-21					
Benzene	0.079	0.020	EPA 8021	4-27-11	4-27-11	
Toluene	ND	0.093	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	0.82	0.093	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	1.9	0.093	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	0.93	EPA 8021	4-27-11	4-27-11	U1
Gasoline	ND	9.3	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	68-124				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B24-2.0					
Laboratory ID:	04-151-23					
Benzene	0.099	0.022	EPA 8021	4-27-11	4-27-11	
Toluene	0.15	0.11	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	0.25	0.11	EPA 8021	4-27-11	4-27-11	
n,p-Xylene	0.42	0.11	EPA 8021	4-27-11	4-27-11	
o-Xylene	0.60	0.11	EPA 8021	4-27-11	4-27-11	
Gasoline	ND	11	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	68-124				
Client ID:	B26-3.0					
Laboratory ID:	04-151-28					
Benzene	ND	0.020	EPA 8021	4-27-11	4-28-11	
Toluene	ND	0.091	EPA 8021	4-27-11	4-28-11	
Ethyl Benzene	ND	0.091	EPA 8021	4-27-11	4-28-11	
m,p-Xylene	0.43	0.091	EPA 8021	4-27-11	4-28-11	
o-Xylene	ND	0.46	EPA 8021	4-27-11	4-28-11	U1
Gasoline	ND	9.1	NWTPH-Gx	4-27-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	68-124				

#### NWTPH-Gx/BTEX QUALITY CONTROL

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0427S1					
ND	0.020	EPA 8021	4-27-11	4-27-11	
ND	0.050	EPA 8021	4-27-11	4-27-11	
ND	0.050	EPA 8021	4-27-11	4-27-11	
ND	0.050	EPA 8021	4-27-11	4-27-11	
ND	0.050	EPA 8021	4-27-11	4-27-11	
ND	5.0	NWTPH-Gx	4-27-11	4-27-11	
Percent Recovery	Control Limits				
91	68-124				
	MB0427S1 ND ND ND ND ND ND Percent Recovery	MB0427S1           ND         0.020           ND         0.050           ND         5.0           Percent Recovery         Control Limits	MB0427S1           ND         0.020         EPA 8021           ND         0.050         EPA 8021           ND         5.0         NWTPH-Gx           Percent Recovery         Control Limits	Result         PQL         Method         Prepared           MB0427S1	Result         PQL         Method         Prepared         Analyzed           MB0427S1

					Source	-	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-1	51-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA			NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA			NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						80	81	68-124			
SPIKE BLANKS											
Laboratory ID:	SB04	27S1									
<b>_</b>	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.885	0.897	1.00	1.00		89	90	77-114	1	9	
Toluene	0.919	0.931	1.00	1.00		92	93	80-115	1	9	
Ethyl Benzene	0.924	0.939	1.00	1.00		92	94	80-118	2	9	
m,p-Xylene	0.939	0.955	1.00	1.00		94	96	82-118	2	9	
o-Xylene	0.935	0.953	1.00	1.00		94	95	82-116	2	9	
Surrogate:		· · · ·									
Fluorobenzene						85	83	68-124			

Matrix: Water Units: ug/L (ppb)

onits. ug/L (ppb)	_			Date	Date	_
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B17-041911-GW					
Laboratory ID:	04-151-03					
Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Toluene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Gasoline	ND	100	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	73-121				
Client ID:	B18-041911-GW					
Laboratory ID:	04-151-06					
Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Toluene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Gasoline	ND	100	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				
Client ID:	B19-041911-GW					
Laboratory ID:	04-151-09					
Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Toluene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Gasoline	ND	100	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				

7

Matrix: Water Units: ug/L (ppb)

onits. ug/L (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B20-041911-GW					
Laboratory ID:	04-151-12					
Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Toluene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Gasoline	240	100	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	73-121				
Client ID:	B34-041911-GW					
Laboratory ID:	04-151-14					
Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Toluene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Gasoline	510	100	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				
Client ID:	B23-042011-GW					
Laboratory ID:	04-151-22					
Benzene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Toluene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	4.0	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	4.0	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Gasoline	560	400	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B24-042011-GW					
Laboratory ID:	04-151-24					
Benzene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Toluene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	8.8	4.0	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	13	4.0	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Gasoline	4500	400	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	73-121				
Client ID:	B26-042011-GW					
Laboratory ID:	04-151-29					
Benzene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Toluene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	4.0	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	6.0	4.0	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	4.0	EPA 8021	4-27-11	4-27-11	
Gasoline	1200	400	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				

#### NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0427W1					
Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Toluene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Ethyl Benzene	ND	1.0	EPA 8021	4-27-11	4-27-11	
m,p-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
o-Xylene	ND	1.0	EPA 8021	4-27-11	4-27-11	
Gasoline	ND	100	NWTPH-Gx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	73-121				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-17	74-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA			NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA			NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						90	92	73-121			
MATRIX SPIKES											
Laboratory ID:	04-17	74-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	46.4	45.5	50.0	50.0	ND	93	91	82-120	2	8	
Toluene	47.2	45.5	50.0	50.0	ND	94	91	84-119	4	8	
Ethyl Benzene	46.9	44.4	50.0	50.0	ND	94	89	84-122	5	9	
m,p-Xylene	46.8	44.3	50.0	50.0	ND	94	89	85-121	5	9	
o-Xylene	47.3	44.7	50.0	50.0	ND	95	89	84-121	6	9	
Surrogate:											
Fluorobenzene						95	90	73-121			

10

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B17-6.0			•		•
Laboratory ID:	04-151-02					
Diesel Range Organics	64	27	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil	180	55	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	B18-6.0					
Laboratory ID:	04-151-05					
Diesel Range Organics	ND	29	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil	160	57	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				
Client ID:	B19-6.0					
Laboratory ID:	04-151-08					
Diesel Range Organics	ND	27	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil Range Organics	ND	54	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				
Client ID:	B20-7.0					
Laboratory ID:	04-151-11					
Diesel Range Organics	2100	30	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil Range Organics	ND	62	NWTPH-Dx	4-28-11	4-28-11	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				
Client ID:	B34-7.0					
Laboratory ID:	04-151-13					
Diesel Range Organics	430	30	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil	65	59	NWTPH-Dx	4-28-11	4-28-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	B21-6.0					
Laboratory ID:	04-151-16					
Diesel Range Organics	3100	28	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil Range Organics	ND	300	NWTPH-Dx	4-28-11	4-28-11	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	114	50-150				

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B22-5.0			•	,	
Laboratory ID:	04-151-19					
Diesel Range Organics	170	32	NWTPH-Dx	4-28-11	5-2-11	N
Lube Oil	1200	65	NWTPH-Dx	4-28-11	5-2-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	B23-3.0					
Laboratory ID:	04-151-21					
Diesel Range Organics	1500	27	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil	640	54	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				
Client ID:	B24-2.0					
Laboratory ID:	04-151-23					
Diesel Range Organics	11000	280	NWTPH-Dx	4-28-11	4-29-11	
Lube Oil	7100	550	NWTPH-Dx	4-28-11	4-29-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Client ID:	B25-6.0					
Laboratory ID:	04-151-26					
Diesel Range Organics	2400	30	NWTPH-Dx	4-28-11	4-29-11	
Lube Oil	1300	59	NWTPH-Dx	4-28-11	4-29-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	B26-3.0					
Laboratory ID:	04-151-28					
Diesel Range Organics	3400	28	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil	1100	56	NWTPH-Dx	4-28-11	4-28-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	B27-6.0					
Laboratory ID:	04-151-31					
Diesel Range Organics	3100	59	NWTPH-Dx	4-28-11	4-29-11	
Lube Oil	3200	120	NWTPH-Dx	4-28-11	4-29-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				

Matrix: Soil Units: mg/Kg (ppm)

Units: mg/Kg (ppm) Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B28-3.5					· J -
Laboratory ID:	04-151-33					
Diesel Range Organics	770	27	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil	1000	53	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				
Client ID:	B29-3.0					
Laboratory ID:	04-151-35			4 00 44		
Diesel Range Organics	ND	27	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil	87	53 Control Limits	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery 119	50-150				
o-Terphenyl	119	50-150				
Client ID:	B30-3.0					
Laboratory ID:	04-151-37					
Diesel Range Organics	3500	27	NWTPH-Dx	4-28-11	4-29-11	
Lube Oil	1100	55	NWTPH-Dx	4-28-11	4-29-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
Client ID:	B31-3.0					
Laboratory ID:	04-151-39					
Diesel Range Organics	160	27	NWTPH-Dx	4-28-11	4-28-11	N
Lube Oil	360	55	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	113	50-150				
Client ID:	B32-6.0					
Laboratory ID:	04-151-43					
Diesel Range Organics	ND	28	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil Range Organics	ND	55	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	B33-6.0					
Laboratory ID:	04-151-46 ND	00	NWTPH-Dx	4 00 11	4 00 11	
Diesel Range Organics Lube Oil Range Organics	ND	26 53	NWTPH-Dx NWTPH-Dx	4-28-11 4-28-11	4-28-11 4-28-11	
Surrogate:	Percent Recovery	Control Limits		4-20-11	4-20-11	
o-Terphenyl	106	50-150				
Стырнынут	100	50-150				
Client ID:	B35-4.0					
Laboratory ID:	04-151-49					
Diesel Range Organics	5800	55	NWTPH-Dx	4-28-11	4-29-11	
Lube Oil	890	110	NWTPH-Dx	4-28-11	4-29-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

#### NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0428S1					
Diesel Range Organics	ND	25	NWTPH-Dx	4-28-11	4-28-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	4-28-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	04-15	51-02						
	ORIG	DUP						
Diesel Range Organics	58.4	48.8				18	NA	
Lube Oil	168	179				6	NA	
Surrogate:								
o-Terphenyl			92	105	50-150			
Laboratory ID:	04-15	1-08						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			108	109	50-150			

14

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B17-041911-GW					
Laboratory ID:	04-151-03					
Diesel Range Organics	ND	0.26	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	B18-041911-GW					
Laboratory ID:	04-151-06					
Diesel Range Organics	ND	0.27	NWTPH-Dx	4-27-11	4-27-11	
ube Oil Range Organics	ND	0.44	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	B19-041911-GW					
Laboratory ID:	04-151-09					
		0.10		4.07.44	4 07 44	
Diesel Range Organics	0.25	0.16	NWTPH-Dx	4-27-11	4-27-11	
ube Oil	1.2	0.26	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	B20-041911-GW					
Laboratory ID:	04-151-12					
Diesel Range Organics	0.81	0.26	NWTPH-Dx	4-27-11	4-27-11	М
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	4-27-11	4-27-11	IVI
Surrogate:	Percent Recovery	Control Limits		4-27-11	4-27-11	
o-Terphenyl	102	50-150				
)- Terprienyi	102	50-150				
Client ID:	B34-041911-GW					
aboratory ID:	04-151-14					
Diesel Range Organics	0.51	0.26	NWTPH-Dx	4-27-11	4-27-11	М
ube Oil Range Organics	ND	0.42	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits		/		
p-Terphenyl	104	50-150				
, respirency,		00 100				
Client ID:	B21-042011-GW					
	04-151-17					
_aboratory ID:	<u> </u>			4 07 11	4.07.44	
	8.8	0.27	NWTPH-Dx	4-27-11	4-27-11	
Diesel Range Organics		0.27 1.2				U1
Diesel Range Organics Lube Oil Range Organics	8.8 ND	1.2	NWTPH-Dx NWTPH-Dx	4-27-11 4-27-11	4-27-11 4-27-11	U1
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl	8.8					U1

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B22-042011-GW				-	
Laboratory ID:	04-151-20					
Diesel Range Organics	ND	0.28	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil Range Organics	ND	0.44	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	B23-042011-GW					
Laboratory ID:	04-151-22					
Diesel Range Organics	30	0.28	NWTPH-Dx	4-27-11	4-27-11	М
Lube Oil	15	0.45	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	128	50-150				
Client ID:	B24-042011-GW					
Laboratory ID:	04-151-24					
Diesel Range Organics	40	0.28	NWTPH-Dx	4-27-11	4-27-11	М
Lube Oil	17	0.45	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	129	50-150				
Client ID:	B25-042011-GW					
Laboratory ID:	04-151-27					
	<b>1.7</b>	0.16	NWTPH-Dx	4-27-11	4-27-11	MI
Diesel Range Organics	0.47					M1
Lube Oil		0.26	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	B26-042011-GW					
Laboratory ID:	04-151-29					
Diesel Range Organics	19	0.31	NWTPH-Dx	4-27-11	4-27-11	М
Lube Oil Range Organics	ND	2.0	NWTPH-Dx	4-27-11	4-27-11	U1
Surrogate:	Percent Recovery	Control Limits		1 - 2 / 11		01
o-Terphenyl	117	50-150				
o reiphonyr		00 100				
Client ID:	B27-042011-GW					
Laboratory ID:	04-151-32					
Diesel Range Organics	12	0.28	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil	9.9	0.44	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
	-					
o-Terphenyl	126	50-150				

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B28-042111-GW			•		
Laboratory ID:	04-151-34					
Diesel Range Organics	9.1	0.28	NWTPH-Dx	4-27-11	4-27-11	
_ube Oil	1.7	0.45	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	120	50-150				
Client ID:	B29-042111-GW					
Laboratory ID:	04-151-36					
Diesel Range Organics	2.0	0.29	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil	0.70	0.47	NWTPH-Dx	4-27-11	4-27-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	B30-042111-GW					
	04-151-38					
Laboratory ID: Diesel Range Organics	<u>4-151-38</u> <b>4.9</b>	0.28	NWTPH-Dx	4-27-11	4-27-11	M1
Lube Oil	0.61	0.28	NWTPH-Dx NWTPH-Dx	4-27-11 4-27-11	4-27-11	IVI I
Surrogate:	Percent Recovery	Control Limits	INVVIETEDX	4-27-11	4-27-11	
o-Terphenyl	115	50-150				
Client ID:	B31-042111-GW					
Laboratory ID:	04-151-41	0.10		4.07.44	4.07.44	
Diesel Range Organics	0.29 ND	0.16	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil Range Organics		0.26	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	112	50-150				
Client ID:	B32-042111-GW					
Laboratory ID:	04-151-44					
Diesel Range Organics	ND	0.29	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil Range Organics	ND	0.46	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				
Client ID:	B33-042111-GW					
	0 4 4 <b>5</b> 4 <b>7</b>					
	04-151-47					
Diesel Range Organics	ND	0.28	NWTPH-Dx	4-27-11	4-27-11	
Diesel Range Organics Lube Oil Range Organics		0.45	NWTPH-Dx NWTPH-Dx	4-27-11 4-27-11	4-27-11 4-27-11	
Laboratory ID: Diesel Range Organics Lube Oil Range Organics Surrogate:	ND					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

17

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B35-042111-GW					
Laboratory ID:	04-151-50					
Diesel Range Organics	39	0.28	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil Range Organics	ND	4.2	NWTPH-Dx	4-27-11	4-27-11	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	129	50-150				

#### NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0427W1					
Diesel Range Organics	ND	0.13	NWTPH-Dx	4-27-11	4-27-11	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	120	50-150				

			Pere	cent	Recovery		RPD	
Analyte	Result		Recovery		Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	04-15	51-03						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			100	99	50-150			
Laboratory ID:	04-17	74-01						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			124	114	50-150			

19

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

# PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B20-7.0					
Laboratory ID:	04-151-11					
Naphthalene	0.17	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
2-Methylnaphthalene	0.69	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
1-Methylnaphthalene	1.4	0.040	EPA 8270/SIM	4-27-11	4-28-11	
Acenaphthylene	0.038	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Acenaphthene	0.23	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Fluorene	0.58	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Phenanthrene	0.29	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Anthracene	0.036	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Fluoranthene	0.0097	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Pyrene	0.0082	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Benzo[a]anthracene	ND	0.040	EPA 8270/SIM	4-27-11	4-28-11	
Chrysene	ND	0.040	EPA 8270/SIM	4-27-11	4-28-11	
Benzo[b]fluoranthene	ND	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Benzo[k]fluoranthene	ND	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Benzo[a]pyrene	ND	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Dibenz[a,h]anthracene	ND	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Benzo[g,h,i]perylene	ND	0.0079	EPA 8270/SIM	4-27-11	4-28-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	51	43 - 109				
Pyrene-d10	64	38 - 128				
Terphenyl-d14	74	33 - 119				

# PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

onno. mg/rtg				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0427S1					
Naphthalene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Fluorene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Anthracene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Fluoranthene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Pyrene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Chrysene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Benzo[k]fluoranthene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	4-27-11	4-27-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	82	43 - 109				
Pyrene-d10	85	38 - 128				
Terphenyl-d14	86	33 - 119				

# PAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

onito. http://tg					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB04	27S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0637	0.0633	0.0833	0.0833	76	76	43 - 108	1	27	
Acenaphthylene	0.0670	0.0671	0.0833	0.0833	80	81	52 - 120	0	21	
Acenaphthene	0.0663	0.0659	0.0833	0.0833	80	79	59 - 113	1	17	
Fluorene	0.0678	0.0661	0.0833	0.0833	81	79	64 - 117	3	14	
Phenanthrene	0.0656	0.0642	0.0833	0.0833	79	77	67 - 112	2	12	
Anthracene	0.0701	0.0683	0.0833	0.0833	84	82	59 - 110	3	16	
Fluoranthene	0.0713	0.0692	0.0833	0.0833	86	83	68 - 120	3	15	
Pyrene	0.0679	0.0662	0.0833	0.0833	82	79	69 - 121	3	17	
Benzo[a]anthracene	0.0592	0.0573	0.0833	0.0833	71	69	63 - 114	3	12	
Chrysene	0.0681	0.0661	0.0833	0.0833	82	79	67 - 118	3	12	
Benzo[b]fluoranthene	0.0619	0.0592	0.0833	0.0833	74	71	58 - 125	4	20	
Benzo[k]fluoranthene	0.0635	0.0620	0.0833	0.0833	76	74	42 - 134	2	26	
Benzo[a]pyrene	0.0611	0.0596	0.0833	0.0833	73	72	55 - 111	2	19	
Indeno(1,2,3-c,d)pyrene	0.0716	0.0711	0.0833	0.0833	86	85	60 - 125	1	20	
Dibenz[a,h]anthracene	0.0725	0.0722	0.0833	0.0833	87	87	62 - 125	0	19	
Benzo[g,h,i]perylene	0.0716	0.0712	0.0833	0.0833	86	85	61 - 124	1	19	
Surrogate:										
2-Fluorobiphenyl					86	84	43 - 109			
Pyrene-d10					91	87	38 - 128			
Terphenyl-d14					87	83	33 - 119			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

#### TOTAL METALS EPA 6010B/7471A

Matrix:	Soil					
Units:	mg/kg (ppm)			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	04-151-21 <b>B23-3.0</b>					
Arsenic	ND	11	6010B	4-26-11	4-27-11	
Cadmium	ND	0.54	6010B	4-26-11	4-27-11	
Chromium	24	0.54	6010B	4-26-11	4-27-11	
Lead	35	5.4	6010B	4-26-11	4-27-11	
Mercury	ND	0.27	7471A	4-27-11	4-27-11	
Lab ID: Client ID:	04-151-23 <b>B24-2.0</b>					
Arsenic	ND	11	6010B	4-26-11	4-27-11	
Cadmium	1.0	0.55	6010B	4-26-11	4-27-11	
Chromium	19	0.55	6010B	4-26-11	4-27-11	
Lead	59	5.5	6010B	4-26-11	4-27-11	
Mercury	1.2	0.55	7471A	4-27-11	4-27-11	
Lab ID: Client ID:	04-151-28 <b>B26-3.0</b>					
Arsenic	ND	11	6010B	4-26-11	4-27-11	
Cadmium	ND	0.56	6010B	4-26-11	4-27-11	
Chromium	18	0.56	6010B	4-26-11	4-27-11	
Lead	110	5.6	6010B	4-26-11	4-27-11	
Mercury	ND	0.28	7471A	4-27-11	4-27-11	

# TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	4-26&27-11
Date Analyzed:	4-27-11
Matrix:	Soil
Units:	mg/kg (ppm)

# Lab ID: MB0426S2&MB0427S1

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.25

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

# TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted:	4-26&27-11
Date Analyzed:	4-27-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 04-173-18

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Cadmium	ND	ND	NA	0.50	
Chromium	19.3	16.6	15	0.50	
Lead	11.8	18.7	46	5.0	С
Mercury	ND	ND	11	0.25	

# TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted:	4-26&27-11
Date Analyzed:	4-27-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 04-173-18

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	101	101	99.8	100	1	
Cadmium	50	48.2	96	47.7	95	1	
Chromium	100	117	97	123	104	5	
Lead	250	250	95	245	93	2	
Mercury	0.50	0.573	97	0.565	95	2	

# % MOISTURE

Date Analyzed: 4-27&28-11

Client ID	Lab ID	% Moisture
B17-6.0	04-151-02	9
B18-6.0	04-151-05	12
B19-6.0	04-151-08	7
B20-7.0	04-151-11	16
B34-7.0	04-151-13	15
B21-6.0	04-151-16	12
B22-5.0	04-151-19	23
B23-3.0	04-151-21	8
B24-2.0	04-151-23	9
B25-6.0	04-151-26	16
B26-3.0	04-151-28	10
B27-6.0	04-151-31	15
B28-3.5	04-151-33	6
B29-3.0	04-151-35	6
B30-3.0	04-151-37	8
B31-3.0	04-151-39	8
B32-6.0	04-151-43	9
B33-6.0	04-151-46	5
B35-4.0	04-151-49	9

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881



### **Data Qualifiers and Abbreviations**

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical ______.

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit RPD - Relative Percent Difference



# **Chain of Custody**

Page	of _5
	A (2000)

Environmental Inc.		Turnaround (in workin		t	La	bor	ato	ry I	Nur	nbe	er:								U	4 -	15	)1
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:	_	(Check	One)				200					Re	que	sted	a Ar	naly	sis					
Company: FARALLON Project Number:	Sar	me Day		1 Day																		
Project Number:	2 D			3 Day					8260B													
Project Number: 525-006 Project Name:		ndard (7 wo		-					oy 82													
Project Manager:		ndard (7 wo PH analysis						~	iles t	8270D	SIM		1A	1Á	s (8)							
AKOS FEKETS		,		5 , - ,		3TEX		260E	Volat	by 8	/ D0	5	808	/ 815	Metal							
Sampled by: Ken Scott		(oth	ier)		HCI	H-Gx/	+DX	s by 8	nated	atiles	y 827	y 808	es by	les by	CRA	letals	1664					ture
0	Date ampled	Time Sampled	Matrix	# of Cont.	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B	Halogenated Volatiles by	Semivolatiles by	PAHs by 8270D /	PCBs by 8082	Pesticides by 8081A	Herbicides by 8151Å	Total RCRA Metals (8)	TCLP Metals	HEM by					% Moisture
1	19/11	940	<	2										_			_					
2 B17-6.0	T	950	2	2		D	$\bigotimes$															Ø
3 B17-041911-GW		1000	W	5			Ø															
4 B18-3.8		1100	5	2																		
5 BIB-6.0		1115	5	2		$\otimes$	$\bigotimes$															$\bigotimes$
6 B18-041911-GW		1135	W	5			$\bigotimes$															
7 B19-2.0		1200	5	2														•				
8 B19-6.0		1215	5	2	(	$\otimes$	$\bigotimes$														3	Ø
9 B19-041911-GW		1235	W	5		$\otimes$	Ø															
10 320-2.0	V	1330	5	2																		
Signature		Company				Date			Time				ments		A REAL PROPERTY.							
Relinquished by		FARA	3LL	dN		4/2	-21	11	1( =	oc		N	te	t	he	Gr	K B-	ret	50	115	AMP	leg
Received by		(A)	RE			4/2	221	11	15	330	0	P	res	ser	ves		AN	ne fe	haw,	115 +(a-	ØB	5)
Relinquished by			2									A	216	SE	mp	Hes	10	Jill	CA	110		-
Received by												1	MA	14	51	S	Ne	H	ti	1230	6AC	T'
Relinquished by												Ø	)A	Idec	ly	llze	slr	1- DA	36	TA)		orz
Received by													,									
Reviewed by/Date		Reviewed b	y/Date									Chro	omat	ograi	ms v	vith f	inal I	report				

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

OnSite		Cha	nin o	)f (	Cu	st	od	ly											P	age _	Z	of	5	_	
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		naround Requ working day			L	.abo	rate	ory	Nu	mb	ber:										0	4 -	-1	51	
Phone: (425) 883-3881 • www.onsite-env.com Company:	_	(Check One)																12							
FARALLON Project Number:		,	1 Day											_	WIS/QC	IA	e one)								
525-006 Project Name: LAKESIDE INDUSTRIESS	2 Da	ndard (7 Days)	3 Days	5						3260B	W	level)		des 8081A	icides 827(	cides 815	etals (circl		1664						
Project Manager: AKQS FEKETE		H analysis 5 D	ays)	Number of Containers		BTEX			0B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)		Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA / MTCA Metals (circle		grease)						
Sampled by: Kan Scott		(other)		ber of (	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	enated	/olatiles	8270D,	PCBs 8082	lochlori	dsoydo	inated /	RCRA /	TCLP Metals	HEM (oil and						% Moisture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numl	NWTF	NWTF	NWTF	NWTF	Volati	Halog	Semiv (with I	PAHS	PCBs	Orgar	Organ	Chlor	Total	TCLP	HEM						m
11 B20-7.0	4/19111	1340	5	3		Ø						Ø													R
12 B20-041911-GW		1410	W	5		888		Ø																	0.
13 B34-7.0		1450	5	3		$\bigotimes$		Ø															_	(	$\bigotimes$
14 B34041911-GW	V	1515	W	3		$\bigotimes$	(	Ø											-						
15 B21-3.0	4/20/11	810	5	l				0											-						0
16 B21-6.0		820	5	1				X																0	Ø
1) B21-042011-GW		835	W	2	-		(	Ø										-	-	9K					
L8 B22-2.0		1000	5	1															-						0
19 B22-5.0		1010	5	1				$\bigotimes$										-						(	Ø
20 B22-042011-GW		1035	W	2	LNIS G	Date		$\bigotimes$	Time	1		Con	nmen	ts/Sp	ecial	Instra	Iction	19	120045		Safaka	Real of	2.500		208
Relinquished		ompany FARA		2	orea hi		1.				- 1												0161.8		
Relinquished Knowth		08	E			41	20	14	IS	3	ð		G	20	1d	od	4)	24	1	γ.	2	2			
Relinquished		0				1/16	10						C	XM	000	20	(	a	) ( )	1 .	DI	>			
Received																									
Relinquished																									
Received															_										
Reviewed/Date	Data Package:	Reviewed/Da		locier	nio D-		vorah	loc /Er				Chro	matog	grams	with f	inal re	port								

OnSite		Cha	nin o	f	Cu	st	od	ly											Ρ	age _	3	_ of	5		
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com		around Requ working day			L	abo	orate	ory	Nu	mb	er:										0	4.	-1	51	
Phone: (425) 883-3881 • www.onsite-env.com Company:		(Check One)																		1					
FARALLON	Sam	e Day	1 Day												SIM		(et								
Project Number: 525-006	2 Da	ivs	3 Days											1A	2/00/2	51A	LCIE OI								
Project Name:	A	idard (7 Days)								60B	1	(Ia)	000	s 808	des 82	les 81	als (cli		54						
LAKESIDE INDUSTRI Project Manager:	ES (TPH	H analysis 5 D	ays)	ners						es 82	S/SIM	ow-le/		sticide	estici	erbicic	Mete		e) 16(						
AKOS FEKETE				ontai		TEX			B	Volatil	8270[ PAH		C	le Pes	Jorus	cid H			greas						
AKOS FEKETE Sampled by: KenScott		(other)		r of C	-HCIE	-Gx/B	Š	XQ-	8260	lated '	atiles v-leve	100/2	. 082	chlorir	ldsoho	ated A	AH	letals	il and						ture
	Date	Time		Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx	Volatiles 8260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PARS 82/UD/SIM (IOW-IEVEI)	PCBs 8082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Iotal HCHA (MILCA Metals (circle one)	TCLP Metals	HEM (oil and grease) 1664						% Moisture
Lab ID Sample Identification	Sampled	Sampled	Matrix		Z	A			>	Ï	500			0	0	K	2	<u>T</u>	I						Ø
H B23-3,0	4/20/1	1130	5	3		Ø		$\bigotimes$				_		_	_	0	X						_	—	X
22 B23-042011-6W	1	1205	W	7		000		$\bigotimes$									-								
23 324-2.0		1255	5	3		-	I I	Ø								6	Ø								Ø
24 B24-042011-GW		1315	W	7		Ø		Ø															_	_	
25 B25-3.0		1400	5	1																					
26 B25-6.0		1410	5	1			(	S																	Ø
27 B25-042011-GW		1420	W	2	-	-		$\bigotimes$							_		~						_		
28 B26-3.0		1.520	5	3		Ø		$\bigotimes$								(	8								Ø
29 B26-042011-GW		1530	W	7		$\oslash$	(	$\bigotimes$																	
30 B27-3.5	V	1600	5	1																					
Signature	Co	ompany				Date			Time			Comr	ments	/Spe	cial lı	nstruc	tions	S			31.Z			E. Ser	
Relinquished Kar Sauth		FAR	ALLO	21	)	41	221	11	11-	0	0	50	R	PA	+95	et	ŧ(								
Received		7	UE			41	21	111	4	30		/	T		1.1	23	26	1	1)	. D	R				
Relinquished		0	0			-00		~ . /	4			Q	81	-100	NO	19	0	0 1			/				
Received																									
Relinquished																									
Received																									
Reviewed/Date		Reviewed/Da	te								C	Chrom	natogra	ams v	vith fir	nal rep	ort [								

Data Package: Level III 🗌 Level IV 🗌 Electronic Data Deliverables (EDDs)

Ĩ	<b>OnSite</b>		Cha	nin o	f (	Cu	st	00	ly											P	age 🔽	4_	of <u>5</u>		
	Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com		around Requ working day			L	abo	orat	ory	Nu	ımk	ber:										0	4-	1	51
Compa		_	(Check One) ne Day	1 Day												IM		()							
Project	525-006	2 Da	ays	3 Days							æ				3081A	s 8270D/S	s 8151A	(circle on							
	LAKESIDE INDUSTRIES	(TPI	idard (7 Days) H analysis 5 D	ays)	ainers		×				atiles 8260	'OD/SIM (Hs)	(low-level		esticides (	s Pesticide	Herbicide	CA Metals		ase) 1664					
Sample	ARDS FEKETE Kernutt	-	(other)		Number of Containers	NWTPH-HCID	NWTPH-Gx/BTEX	+Gx	H-Dx	Volatiles 8260B	Halogenated Volatiles 8260B	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	3082	Organochlorine Pesticides 8081A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides	Total RCRA / MTCA Metals (circle one)	Metals	HEM (oil and grease) 1664					sture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTP	NWTP	NWTPH-Gx	NWTPH-DX	Volatile	Haloge	Semivo (with lo	PAHs 8	PCBs 8082	Organo	Organo	Chlorin	Total R	TCLP Metals	HEM (					% Moisture
31	B27-6.0	4/2011		5	1			(	ØØ				_			1			-	-					Ø
32 33	B27-042011-GW B28-3.5	4/21/11	1620	W 5	2	-			ØØ																Ø
34	B28-042111-GW		810	W	2				Ø																
35	B29-3.0		840 900	5	1				$\otimes$				_											-	Ø
21	B29-042111-GW B30-3.0		1000	W S	2				ØØ																Ø
38	B30-042111-GW		1010	W	2				Ø																
39 40	B31-30		1630	5	1				60										-						Ø
-10	331-6.0 Signature	C	1040 ompany	5	1		Date			Time	•		Com	iment	ts/Sp	ecial	Instru	uctio	ns					131	
Rece	quished Ken Bust		FARA	3	J		40	22	11	15	30	0)	5	6	- 1 Q.	Ac Fdu	ge ded	# ( i	i)2	61	1].	DA	>		
Rece	ived																								
Relin	quished																								
	ewed/Date		Reviewed/Da	te									Chror	matog	grams	with	final re	eport							

Data Package: Level III 🗌 Level IV 🗌 Electronic Data Deliverables (EDDs)

ĺ	<b>MA</b> . OnSite		Cha	ain o	<b>f</b> (	Cu	st	10	ly											F	Page 📕	5	of <u>5</u>		
	Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	(in	naround Requ n working day			L	.abc	orat	ory	Nu	mk	oer:		22.43	12.5			1.56	Auto	5.44		0	4-	1	51
Comp	FARALLON	San	(Check One)	1 Day							848					M		()						0853	
Projec	Number: 525-006	2 Da		3 Days											81A	Organophosphorus Pesticides 8270D/SIM	151A	Total RCRA / MTCA Metals (circle one)							
Projec	Name: LAKESIDE INPUSTRIES	Star	ndard (7 Days)		ş						8260B	MI	-level)		Organochlorine Pesticides 8081A	sticides 8	Chlorinated Acid Herbicides 8151A	letals (c		1664					
Projec	AKOS FEKETE		H analysis 5 D	ays)	ntainer		EX				olatiles	8270D/SIM PAHs)	IM (low		e Pestic	orus Pes	id Herb	ATCA N		Jrease)					
Samp	Ken Scott		(other)		Number of Containers	H-HCID	NWTPH-Gx/BTEX	1-Gx	+Dx	Volatiles 8260B	Halogenated Volatiles 8260B	latiles 8 w-level	PAHs 8270D/SIM (low-level)	082	chlorine	phospho	ated Ac	CRA / N	Aetals	HEM (oil and grease) 1664					sture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTPH-HCID	NWTPH	NWTPH-Gx	NWTPH-Dx	Volatile	Haloge	Semivolatiles 8: (with low-level F	PAHs 8	PCBs 8082	Organo	Organo	Chlorin	Total R	TCLP Metals	HEM (0					% Moisture
41	B31-042111-GW	4/21/11	(100)	W	2	-			Ø																
42 43	B32-2.0	1	1145	5	1																				0
43	B32- 6.0		1155	5	1				Ø																Ø
44	B32-042111-GW		1230	W	2	,			Ø					_											
45	B33-2.0		1250	5	1				0														_		
46	B33-6.0		1300	5	1				Ø					_		_			_				_		$\otimes$
47	B33-042111-GW		1310	W	2				Ø														_		
48	B35-2-0		1420	5	1				h							_			-	-			_		<u></u>
49	B35-4.0		1425	S	l	_	_		R						_				-	-	+++				Ø
50	1335-042111-GW	V	1438	W	2	-	Date	00000	Ø	Time	14-36	1000	Com	ment	s/Spe	cial	Instru	Ictio	ns	Roll				315	
	quished Kan Shuth		iompany EARA	eld.	J		47/	22	10	11	:01	~		28	z f	2A	ige	2 -	#(						
	pived provide		<u>U</u> SC				11	de	1/1	15				Ø	A	Jd	ed	4]	26	li	).D	B			
	ived																								
Reli	quished																								
Rec	sived																								
Rev	ewed/Date		Reviewed/Da	ite									Chror	natog	rams	with f	inal re	eport							

Data Package: Level III 🗌 Level IV 🗌 Electronic Data Deliverables (EDDs)



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 27, 2011

Akos Fekete Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1107-179

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on July 27, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 27, 2011 Samples Submitted: July 27, 2011 Laboratory Reference: 1107-179 Project: 525-006

#### **Case Narrative**

Samples were collected on July 25, 2011 and received by the laboratory on July 27, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

#### NWTPH Gx/BTEX (soil) Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

#### NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-4.5					
Laboratory ID:	07-179-16					
Benzene	0.064	0.020	EPA 8021	7-26-11	7-26-11	
Toluene	ND	0.053	EPA 8021	7-26-11	7-26-11	
Ethyl Benzene	ND	0.053	EPA 8021	7-26-11	7-26-11	
m,p-Xylene	0.077	0.053	EPA 8021	7-26-11	7-26-11	
o-Xylene	ND	0.053	EPA 8021	7-26-11	7-26-11	
Gasoline	28	5.3	NWTPH-Gx	7-26-11	7-26-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	68-124				
Client ID:	B42-3.5					
Laboratory ID:	07-179-18					
Benzene	0.29	0.053	EPA 8021	7-26-11	7-26-11	
Toluene	ND	0.26	EPA 8021	7-26-11	7-26-11	
Ethyl Benzene	1.3	0.26	EPA 8021	7-26-11	7-26-11	
m,p-Xylene	2.2	0.26	EPA 8021	7-26-11	7-26-11	
o-Xylene	ND	1.3	EPA 8021	7-26-11	7-26-11	U1
Gasoline	1200	26	NWTPH-Gx	7-26-11	7-26-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	68-124				

and is intended only for the use of the individual or company to whom it is addressed.

#### NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

0 0 11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0726S1					
Benzene	ND	0.020	EPA 8021	7-26-11	7-26-11	
Toluene	ND	0.050	EPA 8021	7-26-11	7-26-11	
Ethyl Benzene	ND	0.050	EPA 8021	7-26-11	7-26-11	
m,p-Xylene	ND	0.050	EPA 8021	7-26-11	7-26-11	
o-Xylene	ND	0.050	EPA 8021	7-26-11	7-26-11	
Gasoline	ND	5.0	NWTPH-Gx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	68-124				

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-1	79-16									
	ORIG	DUP									
Benzene	0.0614	0.0632	NA	NA		Ν	JA	NA	3	30	
Toluene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
m,p-Xylene	0.0730	0.0721	NA	NA		Ν	١A	NA	1	30	
o-Xylene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
Gasoline	26.7	28.0	NA	NA		Ν	١A	NA	5	30	
Surrogate:											
Fluorobenzene						105	104	68-124			
SPIKE BLANKS											
Laboratory ID:	SB07	'26S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	1.09	1.05	1.00	1.00		109	105	77-114	4	9	
Toluene	1.13	1.09	1.00	1.00		113	109	80-115	4	9	
Ethyl Benzene	1.11	1.07	1.00	1.00		111	107	80-118	4	9	
m,p-Xylene	1.12	1.08	1.00	1.00		112	108	82-118	4	9	
o-Xylene	1.11	1.08	1.00	1.00		111	108	82-116	3	9	
Surrogate:		· · ·									
Fluorobenzene						109	105	68-124			

#### NWTPH-Gx/BTEX

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B43-072511-GW					
Laboratory ID:	07-179-17					
Benzene	5.6	4.0	EPA 8021	7-26-11	7-26-11	
Toluene	ND	4.0	EPA 8021	7-26-11	7-26-11	
Ethyl Benzene	ND	4.0	EPA 8021	7-26-11	7-26-11	
m,p-Xylene	ND	4.0	EPA 8021	7-26-11	7-26-11	
o-Xylene	ND	4.0	EPA 8021	7-26-11	7-26-11	
Gasoline	1100	400	NWTPH-Gx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	73-121				
Client ID:	B42-072511-GW					
Laboratory ID:	07-179-19					
Benzene	ND	4.0	EPA 8021	7-26-11	7-26-11	
Toluene	ND	4.0	EPA 8021	7-26-11	7-26-11	
Ethyl Benzene	ND	4.0	EPA 8021	7-26-11	7-26-11	
m,p-Xylene	ND	4.0	EPA 8021	7-26-11	7-26-11	
o-Xylene	ND	4.0	EPA 8021	7-26-11	7-26-11	
Gasoline	660	400	NWTPH-Gx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	73-121				

#### NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0726W1					
ND	1.0	EPA 8021	7-26-11	7-26-11	
ND	1.0	EPA 8021	7-26-11	7-26-11	
ND	1.0	EPA 8021	7-26-11	7-26-11	
ND	1.0	EPA 8021	7-26-11	7-26-11	
ND	1.0	EPA 8021	7-26-11	7-26-11	
ND	100	NWTPH-Gx	7-26-11	7-26-11	
Percent Recovery	Control Limits				
98	73-121				
	MB0726W1 ND ND ND ND ND ND Percent Recovery	MB0726W1           ND         1.0           ND         100	MB0726W1           ND         1.0         EPA 8021           ND         1.00         NWTPH-Gx           Percent Recovery         Control Limits	Result         PQL         Method         Prepared           MB0726W1	Result         PQL         Method         Prepared         Analyzed           MB0726W1

					Source	Per	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-10	61-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
Toluene	ND	ND	NA	NA		1	٨٨	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	٨٨	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	٨٨	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	٨٨	NA	NA	30	
Surrogate:											
Fluorobenzene						99	104	73-121			
MATRIX SPIKES											
Laboratory ID:	07-10	61-01									
<b>`</b>	MS	MSD	MS	MSD		MS	MSD				
Benzene	53.3	54.3	50.0	50.0	ND	107	109	82-120	2	8	
Toluene	53.8	54.1	50.0	50.0	ND	108	108	84-119	1	8	
Ethyl Benzene	52.5	51.8	50.0	50.0	ND	105	104	84-122	1	9	
m,p-Xylene	51.9	51.3	50.0	50.0	ND	104	103	85-121	1	9	
o-Xylene	51.8	51.4	50.0	50.0	ND	104	103	84-121	1	9	
Surrogate:		· · ·									
Fluorobenzene						108	106	73-121			

# NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B39-6.5					
Laboratory ID:	07-179-02					
Diesel Range Organics	2400	27	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	270	54	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	113	50-150				
Client ID:	B40-5.5					
Laboratory ID:	07-179-05					
Diesel Range Organics	4000	140	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	3800	280	NWTPH-Dx	7-26-11	7-26-11	
Surrogate: o-Terphenyl	Percent Recovery 96	Control Limits 50-150				
Client ID: Laboratory ID:	<b>B38-3.5</b> 07-179-07					
Diesel Range Organics	ND	26	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	59	53	NWTPH-Dx	7-26-11	7-26-11	
Surrogate: o-Terphenyl	Percent Recovery 107	Control Limits 50-150				
Client ID: Laboratory ID:	<b>B36-5.0</b> 07-179-11					
Diesel Range Organics	3300	130	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	2100	270	NWTPH-Dx	7-26-11	7-26-11	
Surrogate: o-Terphenyl	Percent Recovery 92	Control Limits 50-150				
Client ID: Laboratory ID:	<b>B37-3.5</b> 07-179-13					
Diesel Range Organics	ND	34	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil Range Organics	ND	67	NWTPH-Dx	7-26-11	7-26-11	
Surrogate: o-Terphenyl	Percent Recovery 87	Control Limits 50-150				
Client ID:	<b>B43-4.5</b>					
Laboratory ID:	07-179-16 ND	26	NWTPH-Dx	7-26-11	7-26-11	
Diesel Range Organics Lube Oil Range Organics	ND	26 53	NWTPH-DX NWTPH-Dx	7-26-11 7-26-11	7-26-11 7-26-11	
Surrogate:	Percent Recovery	Control Limits		1-20-11	1-20-11	
o-Terphenyl	107	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

7

# NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B42-3.5					
Laboratory ID:	07-179-18					
Diesel Range Organics	9300	270	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	9100	540	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S

#### NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0726S1					
Diesel Range Organics	ND	25	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	07-17	79-02						
	ORIG	DUP						
Diesel Range Organics	2250	2160				4	NA	
Lube Oil	250	236				6	NA	
Surrogate:								
o-Terphenyl			113	100	50-150			

# NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B39-072511-GW			-		
Laboratory ID:	07-179-03					
Diesel Range Organics	9.3	0.26	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	1.1	0.42	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				
Client ID:	B40-072511-GW					
Laboratory ID:	07-179-06					
Diesel Range Organics	96	5.5	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	36	8.8	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	,	50-150				S
Client ID:	D00 070511 OW					
•	B38-072511-GW					
Laboratory ID:	07-179-09 <b>0.33</b>	0.26	NWTPH-Dx	7-26-11	7-26-11	
Diesel Range Organics	0.33	0.26	NWTPH-DX NWTPH-Dx			
Lube Oil		Control Limits	NWIPH-DX	7-26-11	7-26-11	
Surrogate: o-Terphenyl	Percent Recovery 80	50-150				
o reipiicityi						
Client ID:	B36-072511-GW					
Laboratory ID:	07-179-12			7 00 44	7 00 11	
Diesel Range Organics	7.3	0.27	NWTPH-Dx	7-26-11	7-26-11	NIJ
Lube Oil	1.2	0.43	NWTPH-Dx	7-26-11	7-26-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
Client ID:	B37-072511-GW					
Laboratory ID:	07-179-14					
Diesel Range Organics	ND	0.27	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil Range Organics	ND	0.43	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	B43-072511-GW					
Laboratory ID:	07-179-17					
Diesel Range Organics	2.9	0.26	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	0.68	0.41	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits		, _0 , ,	0	
o-Terphenyl	86	50-150				
	20					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

# NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B42-072511-GW					
Laboratory ID:	07-179-19					
Diesel Range Organics	6.8	0.26	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil	6.8	0.42	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

#### NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0726W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	7-26-11	7-26-11	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	7-26-11	7-26-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	07-17	79-03						
	ORIG	DUP						
Diesel Range Organics	9.32	5.18				57	NA	
Lube Oil	1.12	0.746				40	NA	
Surrogate:								
o-Terphenyl			85	81	50-150			

12

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Date of Report: July 27, 2011 Samples Submitted: July 27, 2011 Laboratory Reference: 1107-179 Project: 525-006

# % MOISTURE

Date Analyzed: 7-26-11

Client ID	Lab ID	% Moisture
B39-6.5	07-179-02	8
B40-5.5	07-179-05	11
B38-3.5	07-179-07	5
B36-5.0	07-179-11	6
B37-3.5	07-179-13	25
B43-4.5	07-179-16	5
B42-3.5	07-179-18	7

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881



### **Data Qualifiers and Abbreviations**

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

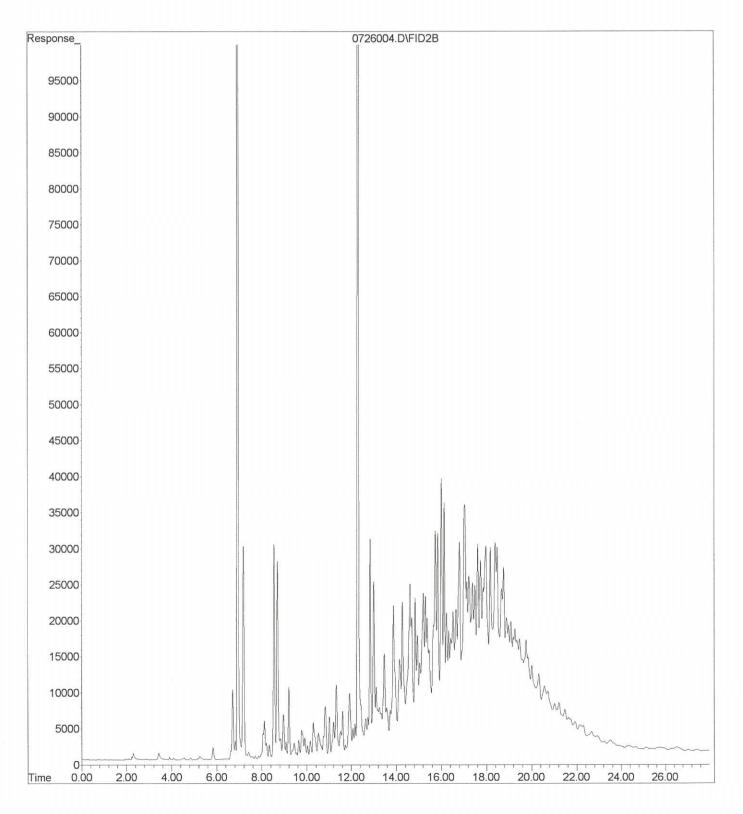
T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

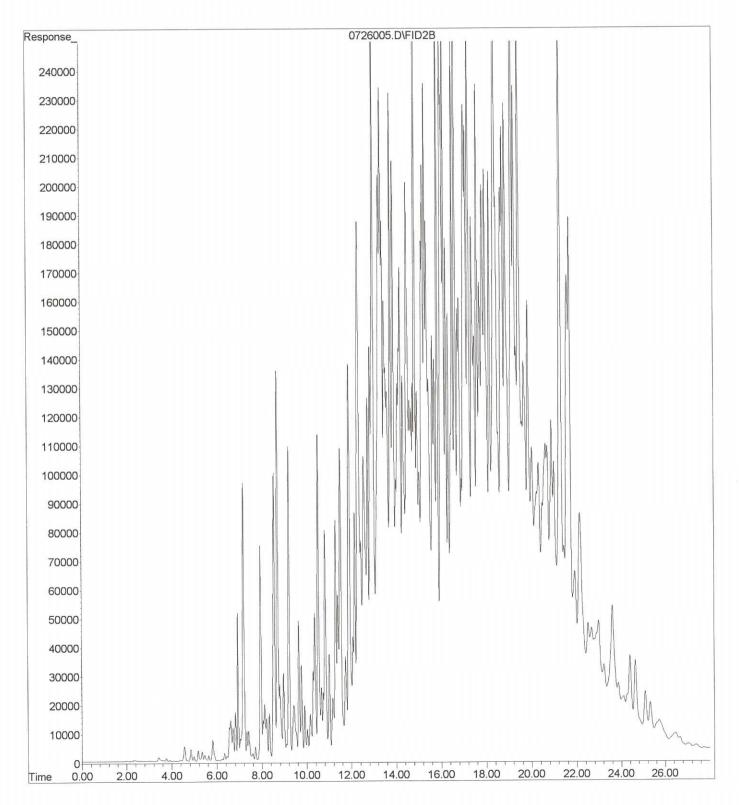
U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

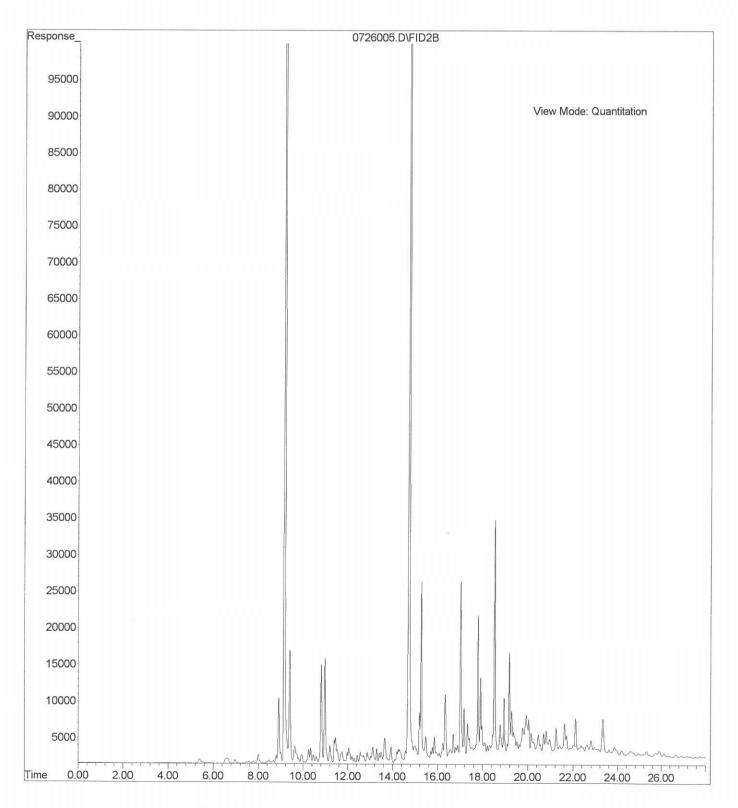
W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.


X - Sample extract treated with a mercury cleanup procedure.

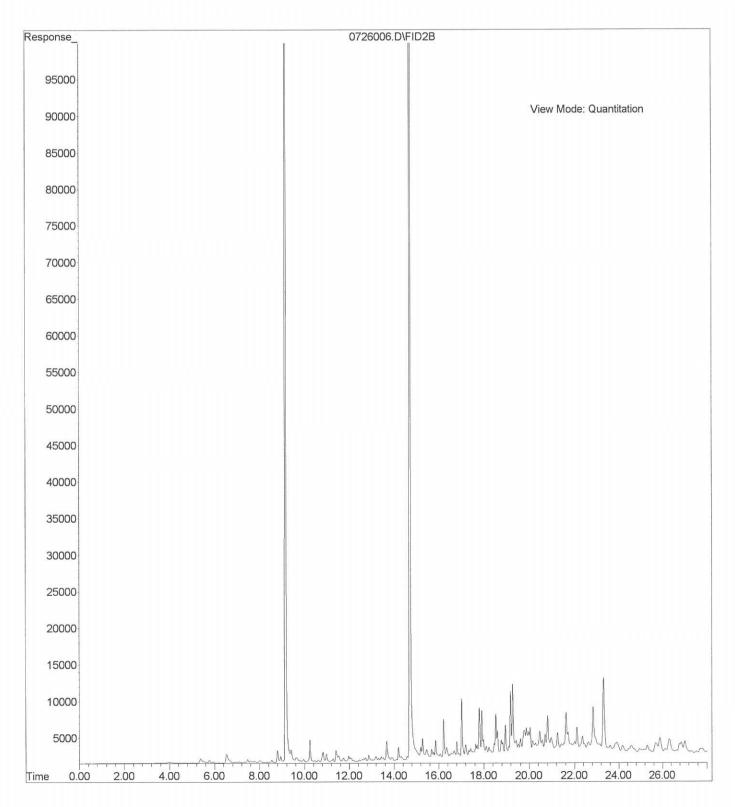
Y - Sample extract treated with an acid/silica gel cleanup procedure.


Ζ-

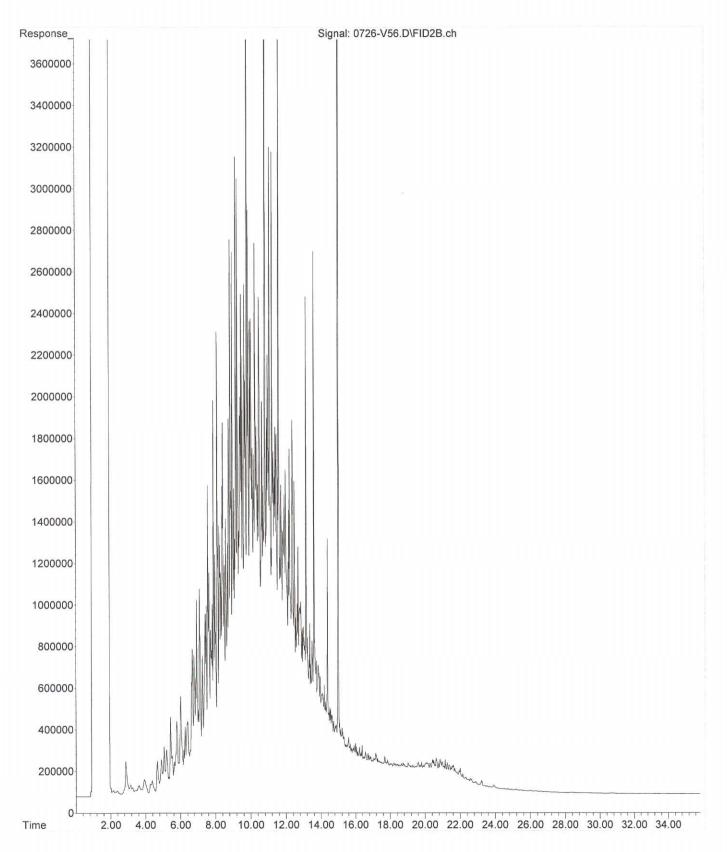
ND - Not Detected at PQL


PQL - Practical Quantitation Limit RPD - Relative Percent Difference File : X:\BTEX\DARYL\DATA\D110726\0726004.D
Operator :
Acquired : 26 Jul 2011 12:51 using AcqMethod 110630V.M
Instrument : Daryl
Sample Name: 07-179-16s
Misc Info : V2-26-24
Vial Number: 4

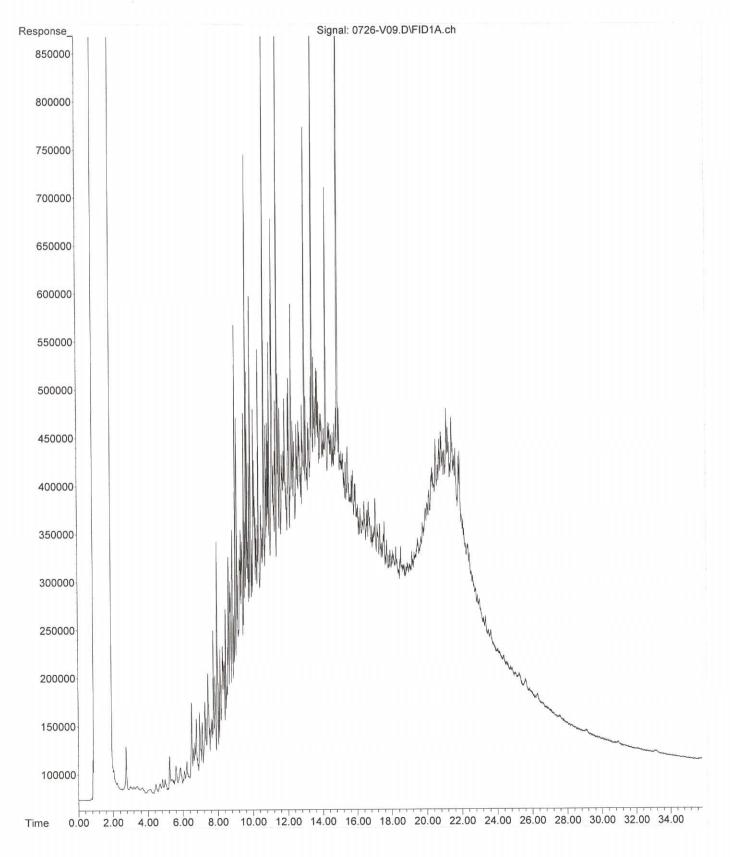



File : X:\BTEX\DARYL\DATA\D110726\0726005.D
Operator :
Acquired : 26 Jul 2011 13:32 using AcqMethod 110630V.M
Instrument : Daryl
Sample Name: 07-179-18s 1:250
Misc Info : V2-26-24
Vial Number: 5

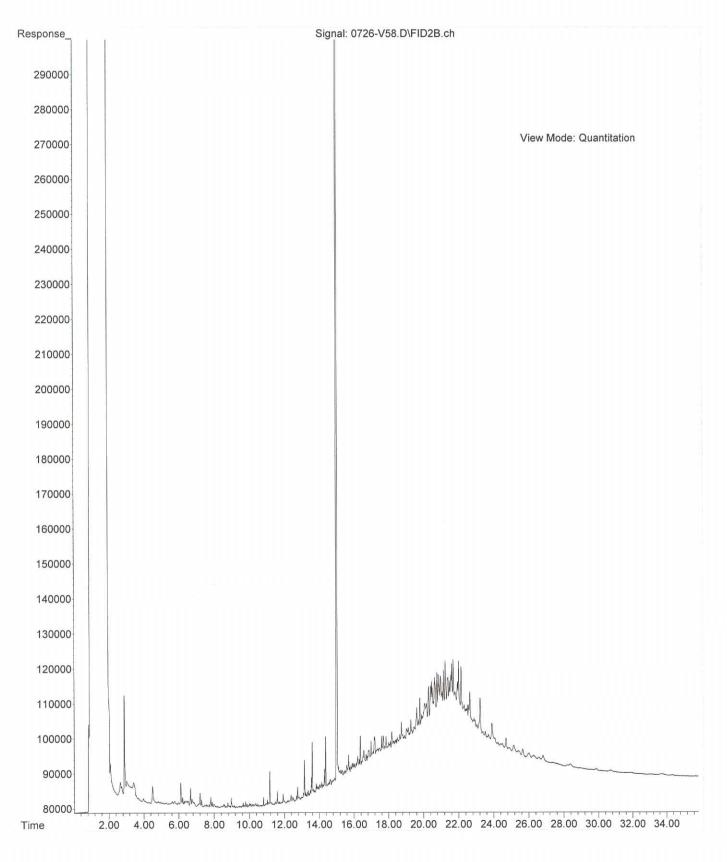



File : X:\BTEX\HOPE\DATA\H110726\0726005.D
Operator :
Acquired : 26 Jul 2011 12:46 using AcqMethod 110630.M
Instrument : HOPE
Sample Name: 07-179-17c 1:4
Misc Info : V2-26-24
Vial Number: 5

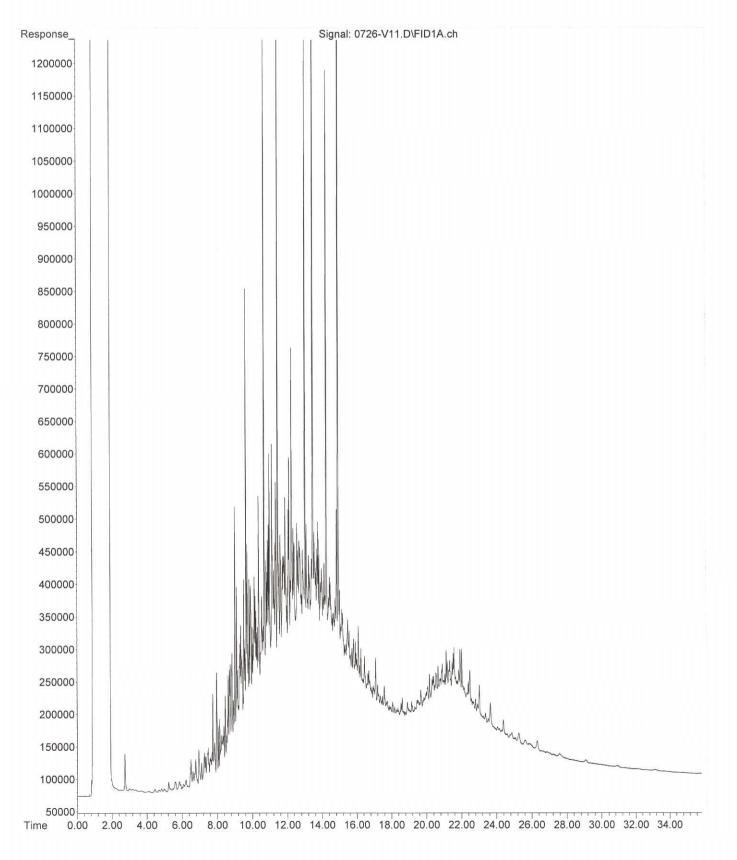



File : X:\BTEX\HOPE\DATA\H110726\0726006.D
Operator :
Acquired : 26 Jul 2011 13:21 using AcqMethod 110630.M
Instrument : HOPE
Sample Name: 07-179-19c 1:4
Misc Info : V2-26-24
Vial Number: 6

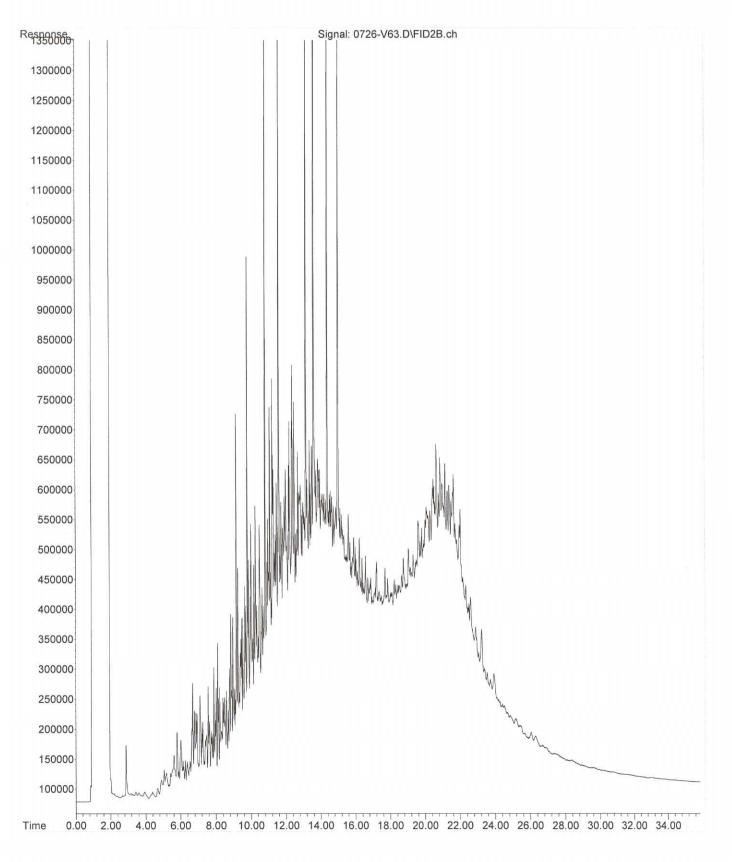



File :C:\msdchem\2\DATA\V110726.SEC\0726-V56.D Operator : Acquired : 26 Jul 2011 13:07 using AcqMethod V110710F.M Instrument : VIGO Sample Name: 07-179-02 Misc Info : Vial Number: 56

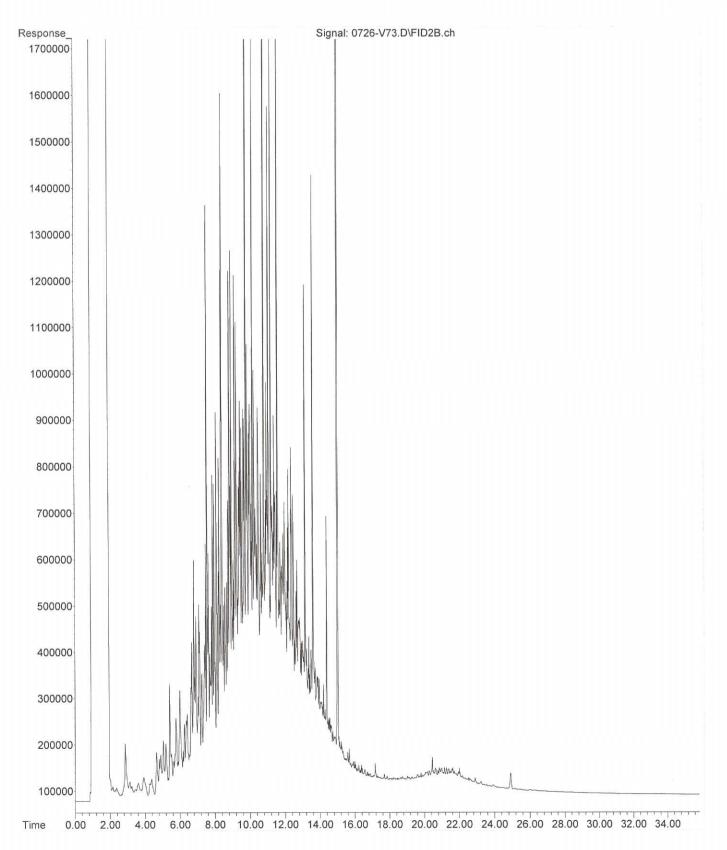



File :C:\msdchem\2\DATA\V110726\0726-V09.D Operator : Acquired : 26 Jul 2011 15:07 using AcqMethod V110710F.M Instrument : VIGO Sample Name: 07-179-05 5X Misc Info : Vial Number: 9

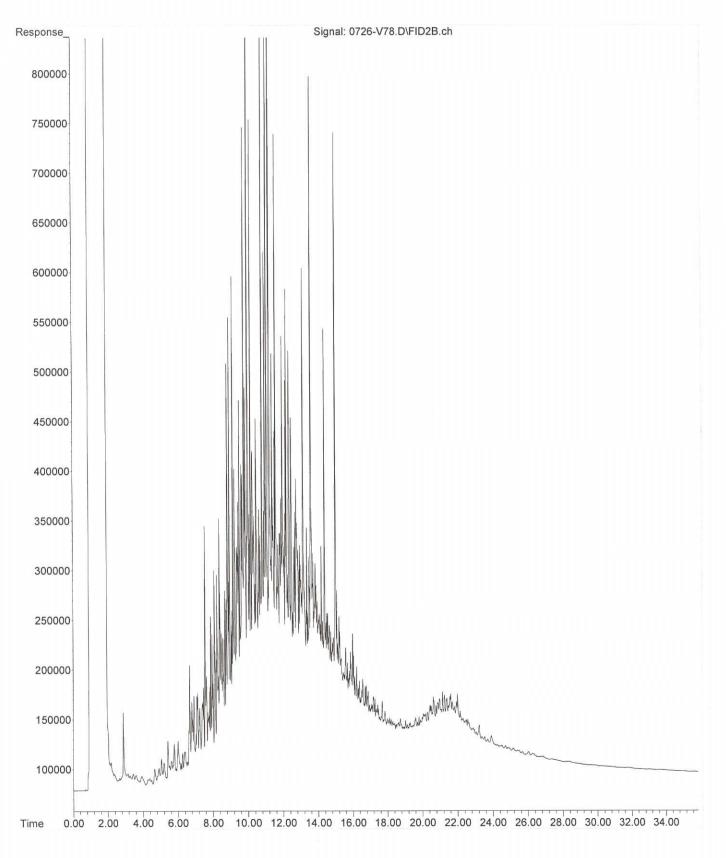



File :C:\msdchem\2\DATA\V110726.SEC\0726-V58.D
Operator :
Acquired : 26 Jul 2011 14:27 using AcqMethod V110710F.M
Instrument : VIGO
Sample Name: 07-179-07
Misc Info :
Vial Number: 58

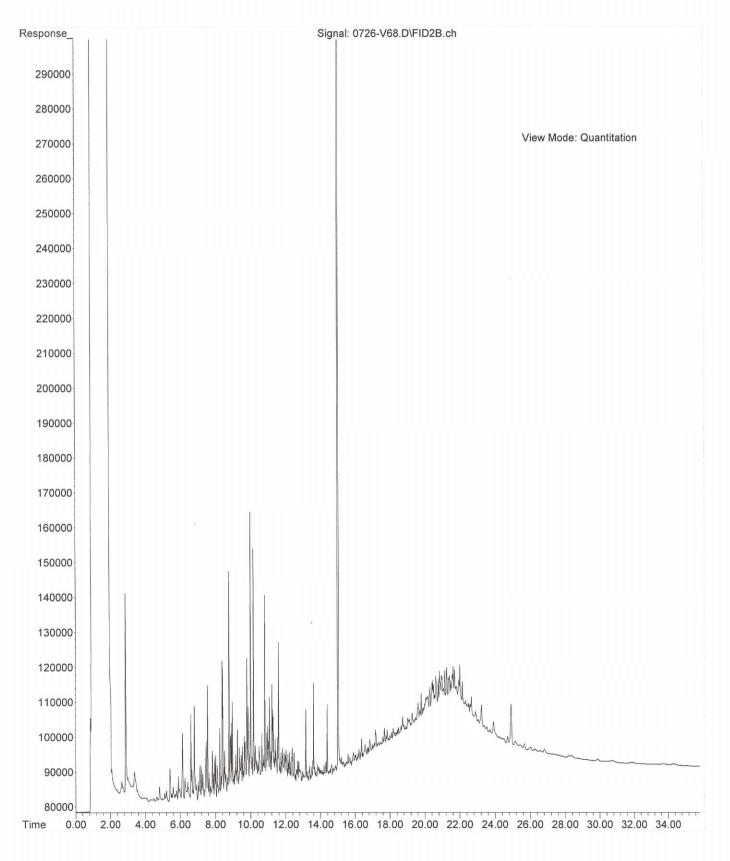



File :C:\msdchem\2\DATA\V110726\0726-V11.D
Operator :
Acquired : 26 Jul 2011 16:27 using AcqMethod V110710F.M
Instrument : VIGO
Sample Name: 07-179-11 5X
Misc Info :
Vial Number: 11

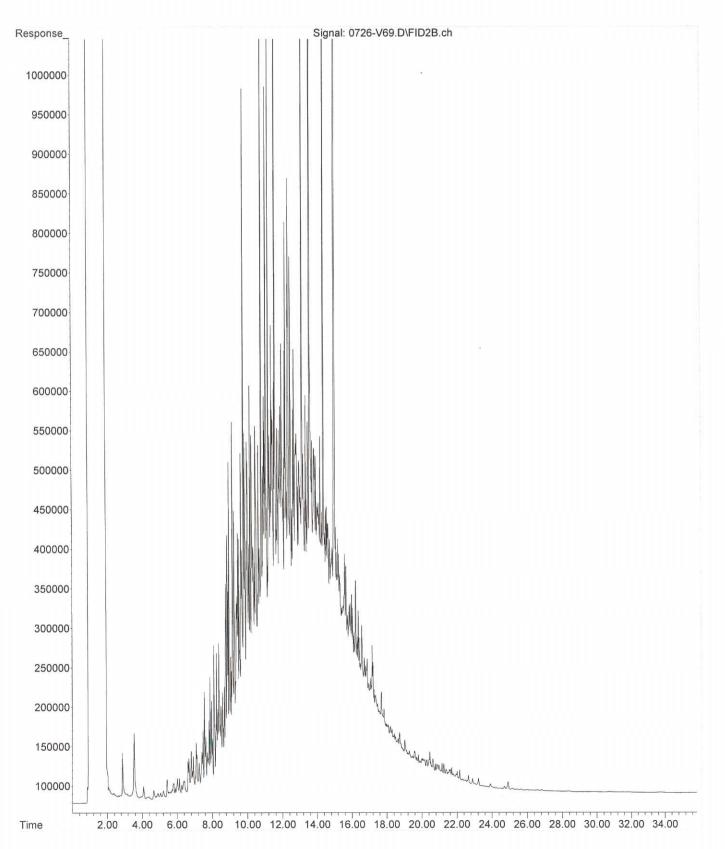



File :C:\msdchem\2\DATA\V110726.SEC\0726-V63.D
Operator :
Acquired : 26 Jul 2011 17:47 using AcqMethod V110710F.M
Instrument : VIGO
Sample Name: 07-179-18 500ul
Misc Info :
Vial Number: 63

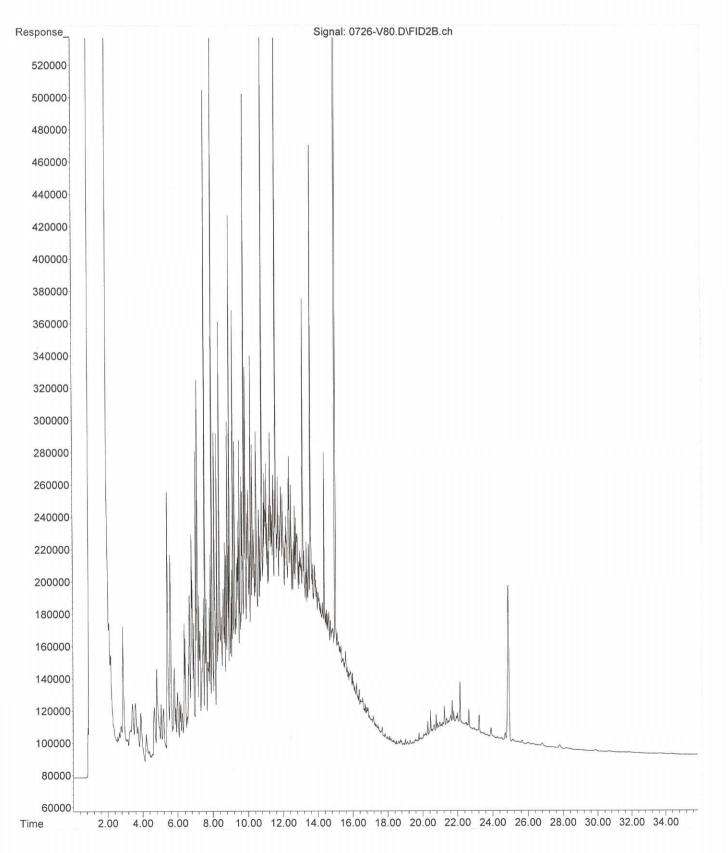



File :C:\msdchem\2\DATA\V110726.SEC\0726-V73.D
Operator :
Acquired : 27 Jul 2011 00:27 using AcqMethod V110710F.M
Instrument : VIGO
Sample Name: 07-179-03
Misc Info :
Vial Number: 73

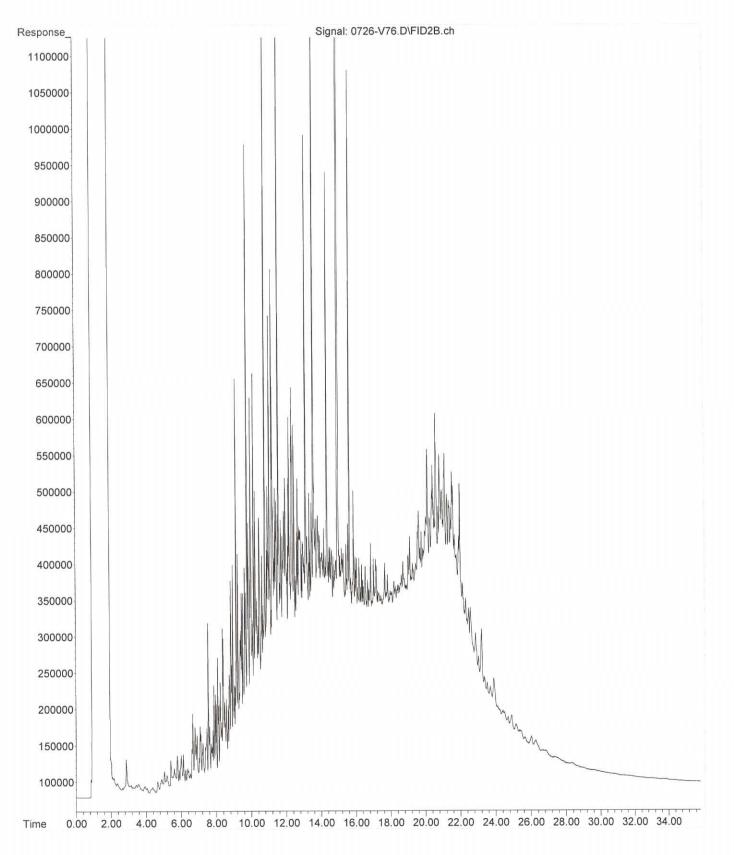



File :C:\msdchem\2\DATA\V110726.SEC\0726-V78.D Operator : Acquired : 27 Jul 2011 3:46 using AcqMethod V110710F.M Instrument : VIGO Sample Name: 07-179-06 20X Misc Info : Vial Number: 78




File :C:\msdchem\2\DATA\V110726.SEC\0726-V68.D
Operator :
Acquired : 26 Jul 2011 21:07 using AcqMethod V110710F.M
Instrument : VIGO
Sample Name: 07-179-09
Misc Info :
Vial Number: 68




File :C:\msdchem\2\DATA\V110726.SEC\0726-V69.D
Operator :
Acquired : 26 Jul 2011 21:47 using AcqMethod V110710F.M
Instrument : VIGO
Sample Name: 07-179-12
Misc Info :
Vial Number: 69



File :C:\msdchem\2\DATA\V110726.SEC\0726-V80.D
Operator :
Acquired : 27 Jul 2011 5:06 using AcqMethod V110710F.M
Instrument : VIGO
Sample Name: 07-179-17
Misc Info :
Vial Number: 80



File :C:\msdchem\2\DATA\V110726.SEC\0726-V76.D
Operator :
Acquired : 27 Jul 2011 2:26 using AcqMethod V110710F.M
Instrument : VIGO
Sample Name: 07-179-19
Misc Info :
Vial Number: 76



Reviewed by/Date	Received by	Relinquished by	Relinquished by	Received by	Relinquished by Ken Shreet	Signature	10 B36-35	9 838-072511-GW	8 B38-5.5	7 38-3.5	6 B40-072511-GW	5 340-5.5	4 1340-3.0	3 B39-072511-6W	2 B39-6.5	1 839-20	Lab ID Sample Identification	Ken Swall	AROS PEKEES	Project Manager: Project Manager:	S2S-006	Project Number:	Company:	Invironmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: 1457, 883, 2884 - Exercised Sections	<b>MA OnSite</b>
DISTRIBUTION LECEND: White Onsite Conv. Valley, Broost Conv.				- 1/36/11	FARALLON 7/25/1	Company Date	4 1120 5 6	1085 W 2	1045 S 1	1035 J 1	1000 W 2 X	950 S 1 X	1 5 046	905 W 2	X 1 5 528	ZHB III S ZHB III STR	Date Time # of P Sampled Sampled Matrix Cont. NWTP NWTP Volatile	PH-Gx PH-Dx	/BTEX	Day	Lay		(Check One)	Turnaround Request (in working days)	Chain of Custody
Chromatograms with final report		1 souts.	Key scott (w verto At Authytet	1 + cont Arcos F2	1440 ANALYZE JAMPLES UN SAME	Time Comments/Special Instructions:											Volatile Haloge Semive PAHs I PCBs Pestici Herbic Total F TCLP HEM b VPH EPH	enated olatile by 82 by 80 des b ides b ides b RCRA	d Volat s by 8 70C / 8 82 y 8081 by 815 Metals s	iles by 270C SIM A 1A	82608	3	Requested Analysis	y Number: 07-179	Y Page of

Reviewed by/Date	Received by	Relinquished by	Received by	Relinquished by	Received by	Relinquished by	Signature		19 B42-072511-GW	18 642-3.5	17 B43-072511-GW	16 843-4.5	15 1343-3.5	14 B37-072511-GW	13 37-3.5	12 B36-072511-6W	11 336-50	Lab ID Sample Identification	Ken Sred	Sampled by: AKOS FELLETE	Aberdeen FACILITY	S2S-006	TARALLOZ Project Number:		Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 882-3884 • Eav. (425) 885-4600	<b>OnSite</b>
DISTRIBUTION LEGEND: White - OnSite Copy					1	FARALLOW	Company	4	1345 W 5	1335 S 2	1305 W 5	1250 5 2	1245 5 2	1220 W 2	1210 5 1	1140 W 2	7/25W 1130 5 1	Date Time # of Sampled Sampled Matrix Cont.	(other)		Standard (7 working down)	Day			Turnaround Request (in working days)	Chain of (
Yellow - Report Copy Pink - Client Copy					76/11 925	7125/11 1440	Date Time		×					X	X	X		NWTP Volatile Haloge Semive	PH-Gx PH-Dx es by enated	/BTEX 8260B	lles by 2270C	8260B	3		Laboratory Number:	Custody
Chromatograms with final report			Avaytist restruit	A Key Scott (we werent	T	Anthree samples on same	Comments/Special Instructions:											PCBs Pestici Herbic	by 80 des b ides b RCRA Metal	82 y 8081 by 8151 Metals s	A			Requested Analysis	. 07-179	Page Z of Z



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 29, 2011

Akos Fekete Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1107-201

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on July 28, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: July 29, 2011 Samples Submitted: July 28, 2011 Laboratory Reference: 1107-201 Project: 525-006

#### **Case Narrative**

Samples were collected on July 26 and 27, 2011 and received by the laboratory on July 28, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

### NWTPH Gx/BTEX (soil) Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

# NWTPH-Dx (with acid/silica gel clean-up)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B41-3.5					
Laboratory ID:	07-201-01					
Diesel Range Organics	3000	27	NWTPH-Dx	7-28-11	7-28-11	
Lube Oil	1100	54	NWTPH-Dx	7-28-11	7-28-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				

## NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0728S1					
Diesel Range Organics	ND	25	NWTPH-Dx	7-28-11	7-28-11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	7-28-11	7-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	116	50-150				

			Perc	ent	Recovery		RPD	
Analyte	Res	sult	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	07-20	01-01						
	ORIG	DUP						
Diesel Range Organics	2800	2020				32	NA	
Lube Oil	1050	753				33	NA	N1
Surrogate:								
o-Terphenyl			109	98	50-150			

4

# NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B41-072611-GW					
Laboratory ID:	07-201-02					
Diesel Range Organics	2.0	0.27	NWTPH-Dx	7-28-11	7-28-11	
Lube Oil	1.4	0.44	NWTPH-Dx	7-28-11	7-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				

## NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0728W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	7-28-11	7-28-11	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	7-28-11	7-28-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	07-20	)1-02						
	ORIG	DUP						
Diesel Range Organics	2.04	1.44				34	NA	
Lube Oil	1.43	1.01				34	NA	
Surrogate:								
o-Terphenyl			101	111	50-150			

#### NWTPH-Gx/BTEX

3 3 3 (1-1- /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B41-3.5					
Laboratory ID:	07-201-01					
Benzene	0.023	0.020	EPA 8021	7-28-11	7-28-11	
Toluene	ND	0.10	EPA 8021	7-28-11	7-28-11	
Ethyl Benzene	0.11	0.10	EPA 8021	7-28-11	7-28-11	
m,p-Xylene	0.55	0.10	EPA 8021	7-28-11	7-28-11	
o-Xylene	ND	0.50	EPA 8021	7-28-11	7-28-11	U1
Gasoline	ND	10	NWTPH-Gx	7-28-11	7-28-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	68-124				

## NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

······				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0728S1					
Benzene	ND	0.020	EPA 8021	7-28-11	7-28-11	
Toluene	ND	0.050	EPA 8021	7-28-11	7-28-11	
Ethyl Benzene	ND	0.050	EPA 8021	7-28-11	7-28-11	
m,p-Xylene	ND	0.050	EPA 8021	7-28-11	7-28-11	
o-Xylene	ND	0.050	EPA 8021	7-28-11	7-28-11	
Gasoline	ND	5.0	NWTPH-Gx	7-28-11	7-28-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	68-124				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-19	96-05									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Surrogate:											
Fluorobenzene						104	104	68-124			
SPIKE BLANKS											
Laboratory ID:	SB07	28S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	1.06	1.06	1.00	1.00		106	106	77-114	0	9	
Toluene	1.12	1.10	1.00	1.00		112	110	80-115	2	9	
Ethyl Benzene	1.09	1.08	1.00	1.00		109	108	80-118	1	9	
m,p-Xylene	1.15	1.09	1.00	1.00		115	109	82-118	5	9	
o-Xylene	1.11	1.10	1.00	1.00		111	110	82-116	1	9	
Surrogate:											
Fluorobenzene						103	104	68-124			

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

#### NWTPH-Gx/BTEX

Matrix: Water Units: ug/L (ppb)

oo. og, = (ppo)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B41-072611-GW					
Laboratory ID:	07-201-02					
Benzene	ND	4.0	EPA 8021	7-28-11	7-28-11	
Toluene	ND	4.0	EPA 8021	7-28-11	7-28-11	
Ethyl Benzene	ND	4.0	EPA 8021	7-28-11	7-28-11	
m,p-Xylene	ND	4.0	EPA 8021	7-28-11	7-28-11	
o-Xylene	ND	4.0	EPA 8021	7-28-11	7-28-11	
Gasoline	ND	400	NWTPH-Gx	7-28-11	7-28-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	73-121				

## NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0728W1					
Benzene	ND	1.0	EPA 8021	7-28-11	7-28-11	
Toluene	ND	1.0	EPA 8021	7-28-11	7-28-11	
Ethyl Benzene	ND	1.0	EPA 8021	7-28-11	7-28-11	
m,p-Xylene	ND	1.0	EPA 8021	7-28-11	7-28-11	
o-Xylene	ND	1.0	EPA 8021	7-28-11	7-28-11	
Gasoline	ND	100	NWTPH-Gx	7-28-11	7-28-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	73-121				

					Source	Per	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	07-13	35-11									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	NA	NA	NA	30	
Surrogate:											
Fluorobenzene						100	99	73-121			
MATRIX SPIKES											
Laboratory ID:	07-13	35-11									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	52.6	53.4	50.0	50.0	ND	105	107	82-120	2	8	
Toluene	52.6	53.2	50.0	50.0	ND	105	106	84-119	1	8	
Ethyl Benzene	50.5	51.2	50.0	50.0	ND	101	102	84-122	1	9	
m,p-Xylene	50.0	50.5	50.0	50.0	ND	100	101	85-121	1	9	
o-Xylene	50.3	50.8	50.0	50.0	ND	101	102	84-121	1	9	
Surrogate:		· · ·									
Fluorobenzene						102	103	73-121			

Date of Report: July 29, 2011 Samples Submitted: July 28, 2011 Laboratory Reference: 1107-201 Project: 525-006

## % MOISTURE

Date Analyzed: 7-28-11

Client ID Lab ID % Moisture

B41-3.5

07-201-01

8

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881



## **Data Qualifiers and Abbreviations**

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical ______.

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit RPD - Relative Percent Difference

1876	Date				o, nuclinua of sign Frim				o, nonnquisirou y sigrettine Commonte	Commonto
T.						Trace			should be on the second s	3 Dolino
1 9/5	Date 7/28/11 Date		5	-muour	1. Received By Sign/Print 2. Received By Sign/Print	Time Time	Date 7/17/11 Date		1. Relinquished By Sign/Print 2. Relinquished By Sign/Print	1. Relingu 2. Relingu
					QC Requirements (Specify)		Other	's 🔲 15 Days	Turn Around Time Required (business days)         24 Hours       48 Hours       5 Days       10 Days	Turn Around
(A fee may be assessed if samples are retained longer than 1 month)		Months	Archive For	Return To Client	Unknown	itant 🗌 Poison B	nable 🗌 Skin Irritant	☐ Non-Hazard Identification ☐ Non-Hazard ☐ Flammable		Voler Yes
								and Identification	Describle La	Coolor
								4	1 1	
	2	b				×	1420	ŧ	AU2-8,5	IN OI
		2				$\times$	1245	1	01-7.5	MW
	~	e				$\times$	1055	1 1	07-3.0	MM 8
	0	10				×	935		MW5-715	MI
	2	2				×	518	7/27/11	03-95	MW
		2				×	1310	Y I	11-6.5	MWI
		6				×	1130		0-63-0	MW
	<u></u>	ن				×	940		16-30	MW 6
	~1	S		×		<b>k</b>	835 X		1-072611-GW	BHI
	~	X		X		×	êne I	7/26/11	1-3.5	84
	110	961 # 61		NWT	H2SO4 HNO3 HCI NaOH ZnAc/ NaOH	Sed. Soil Unpres.	Time Air Aqueous	Date	Sample I.D. and Location/Description (Containers for each sample may be combined on one line)	(Containe
Conditions of Receipt		nois		PH-6	Containers & Preservatives	Matrix	A		25-006	Contract/
Special Instructions/		sne					Dilling Contact		Aberdees Facility	Ab
	es	WI -	more space is needed)	-	DAVE Opmesta	Sutto,	Ken	12086	· WA	Project N
of (	Page (	01			Lab Contact - 0800	Leiephone wumber (Area Code//Fax Wumber 425-29 &	relephone ivumo	2 Conte	15 5th Avenue,	Citv
dy Number	Chain of Custody Number		Date		PEKETE	ARas	Client Contact		FARALLON	Client
ecord	Custody Record	Cus	Hold	Short	8 NE 95th 54	Resident	Tel: 253-972-2310 146 Eax 253-972-5047 P.e.S www.testamericainc.com	k to L	THE LEADER IN ENVIRONMENTAL TESTING	THE LE,
	Chain of		SAMS-DAY	Rush	to TAB		TestAmerica Seattle 5755.8th Street E.	1 6 6	HAmerica 4	D'
									SITC LAR	2



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 15, 2011

Akos Fekete Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1107-201B

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on July 28, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: August 15, 2011 Samples Submitted: July 28, 2011 Laboratory Reference: 1107-201B Project: 525-006

#### **Case Narrative**

Samples were collected on July 26 and 27, 2011 and received by the laboratory on July 28, 2011. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

#### NWTPH Gx/BTEX Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

## NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW9-3.0					
Laboratory ID:	07-201-04					
Diesel Range Organics	48	28	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil Range Organics	ND	56	NWTPH-Dx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
Client ID:	MW3-9.5					
Laboratory ID:	07-201-06					
Diesel Range Organics	380	38	NWTPH-Dx	8-5-11	8-6-11	Ν
Lube Oil	1100	77	NWTPH-Dx	8-5-11	8-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	MW5-7.5					
Laboratory ID:	07-201-07	40		0 5 4 4	0 5 44	
Diesel Range Organics	ND	48	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil Range Organics	ND	96	NWTPH-Dx	8-5-11	8-5-11	
Surrogate: o-Terphenyl	Percent Recovery 94	Control Limits 50-150				
Client ID:	MW7-3.0					
Laboratory ID:	07-201-08					
Diesel Range Organics	3400	26	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil	2200	53	NWTPH-Dx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	108	50-150				
Client ID:	MW1-7.5					
Laboratory ID:	07-201-09					
Diesel Range Organics	ND	30	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil Range Organics	ND	61	NWTPH-Dx NWTPH-Dx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits		0-0-11	0-0-11	
o-Terphenyl	102	50-150				
Client ID:	MW2-8.5					
Laboratory ID:	07-201-10	• ·				
Diesel Range Organics	ND	34	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil Range Organics	ND	67	NWTPH-Dx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

#### NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Dat	e	
Analyte	Result	PQL	Method	Prepared	Analy	zed	Flags
METHOD BLANK							
Laboratory ID:	MB0805S1						
Diesel Range Organics	ND	25	NWTPH-Dx	8-5-11	8-5-	11	
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-5-11	8-5-	11	
Surrogate:	Percent Recover	y Control Limits					
o-Terphenyl	102	50-150					
			Percer	nt Recovery		RPD	
Analyte	Result		Recove	ery Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	07-201-0	8					
<b>F</b>	ORIG D	UP					
Diesel Range Organics	3180 2	370			29	NA	
Lube Oil	2080 1	610			25	NA	
Surrogate:							
o-Terphenyl			108 1	112 50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

4

## NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW9-3.0					
Laboratory ID:	07-201-04					
Benzene	ND	0.020	EPA 8021	8-1-11	8-1-11	
Toluene	ND	0.059	EPA 8021	8-1-11	8-1-11	
Ethyl Benzene	ND	0.059	EPA 8021	8-1-11	8-1-11	
m,p-Xylene	ND	0.059	EPA 8021	8-1-11	8-1-11	
o-Xylene	ND	0.059	EPA 8021	8-1-11	8-1-11	
Gasoline	ND	5.9	NWTPH-Gx	8-1-11	8-1-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	68-124				
Client ID:	MW3-9.5					
Laboratory ID:	07-201-06					
Benzene	ND	0.026	EPA 8021	8-1-11	8-1-11	
Toluene	ND	0.13	EPA 8021	8-1-11	8-1-11	
Ethyl Benzene	ND	0.13	EPA 8021	8-1-11	8-1-11	
m,p-Xylene	ND	0.13	EPA 8021	8-1-11	8-1-11	
o-Xylene	ND	0.13	EPA 8021	8-1-11	8-1-11	
Gasoline	ND	13	NWTPH-Gx	8-1-11	8-1-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	68-124				
Client ID:	MW5-7.5					
Laboratory ID:	07-201-07					
Benzene	0.20	0.032	EPA 8021	8-1-11	8-1-11	
Toluene	ND	0.16	EPA 8021	8-1-11	8-1-11	
Ethyl Benzene	0.45	0.16	EPA 8021	8-1-11	8-1-11	
m,p-Xylene	0.41	0.16	EPA 8021	8-1-11	8-1-11	
o-Xylene	ND	0.16	EPA 8021	8-1-11	8-1-11	
Gasoline	390	16	NWTPH-Gx	8-1-11	8-1-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	122	68-124				

## NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW7-3.0					
Laboratory ID:	07-201-08					
Benzene	0.079	0.020	EPA 8021	8-1-11	8-2-11	
Toluene	0.28	0.10	EPA 8021	8-1-11	8-2-11	
Ethyl Benzene	0.84	0.10	EPA 8021	8-1-11	8-2-11	
m,p-Xylene	2.1	0.10	EPA 8021	8-1-11	8-2-11	
o-Xylene	ND	1.0	EPA 8021	8-1-11	8-2-11	U1
Gasoline	ND	10	NWTPH-Gx	8-1-11	8-2-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	68-124				
Client ID:	MW1-7.5					
Laboratory ID:	07-201-09					
Benzene	0.099	0.020	EPA 8021	8-1-11	8-1-11	
Toluene	ND	0.081	EPA 8021	8-1-11	8-1-11	
Ethyl Benzene	ND	0.081	EPA 8021	8-1-11	8-1-11	
m,p-Xylene	ND	0.081	EPA 8021	8-1-11	8-1-11	
o-Xylene	ND	0.081	EPA 8021	8-1-11	8-1-11	
Gasoline	20	8.1	NWTPH-Gx	8-1-11	8-1-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	68-124				
Client ID:	MW2-8.5					
Laboratory ID:	07-201-10					
Benzene	ND	0.020	EPA 8021	8-1-11	8-1-11	
Toluene	ND	0.086	EPA 8021	8-1-11	8-1-11	
Ethyl Benzene	ND	0.086	EPA 8021	8-1-11	8-1-11	
m,p-Xylene	ND	0.086	EPA 8021	8-1-11	8-1-11	
o-Xylene	ND	0.086	EPA 8021	8-1-11	8-1-11	
Gasoline	23	8.6	NWTPH-Gx	8-1-11	8-1-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	109	68-124				

#### NWTPH-Gx/BTEX QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0801S1					
Benzene	ND	0.020	EPA 8021	8-1-11	8-1-11	
Toluene	ND	0.050	EPA 8021	8-1-11	8-1-11	
Ethyl Benzene	ND	0.050	EPA 8021	8-1-11	8-1-11	
m,p-Xylene	ND	0.050	EPA 8021	8-1-11	8-1-11	
o-Xylene	ND	0.050	EPA 8021	8-1-11	8-1-11	
Gasoline	ND	5.0	NWTPH-Gx	8-1-11	8-1-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	68-124				

Analyte	Re	sult	Snike	Level	Source Result		cent overy	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE	1101	Jun	opine	20101	Reoun	1100	overy	Linito		Liiiit	riago
Laboratory ID:	07-22	20-02									
<b>F</b>	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Surrogate:											
Fluorobenzene						108	106	68-124			
SPIKE BLANKS											
Laboratory ID:	SB08	01S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	1.04	0.987	1.00	1.00		104	99	77-114	5	9	
Toluene	1.06	1.01	1.00	1.00		106	101	80-115	5	9	
Ethyl Benzene	1.02	1.00	1.00	1.00		102	100	80-118	2	9	
m,p-Xylene	1.02	0.994	1.00	1.00		102	99	82-118	3	9	
o-Xylene	1.01	0.997	1.00	1.00		101	100	82-116	1	9	
Surrogate:											
Fluorobenzene						105	102	68-124			

# PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW9-3.0					
Laboratory ID:	07-201-04					
Naphthalene	ND	0.037	EPA 8270/SIM	8-5-11	8-11-11	
2-Methylnaphthalene	ND	0.037	EPA 8270/SIM	8-5-11	8-11-11	
1-Methylnaphthalene	ND	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthylene	0.049	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthene	ND	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Fluorene	ND	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Phenanthrene	ND	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Anthracene	ND	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Fluoranthene	0.043	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Pyrene	0.044	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]anthracene	0.065	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Chrysene	0.039	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[b]fluoranthene	0.052	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Benzo(j,k)fluoranthene	0.051	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]pyrene	0.069	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Indeno(1,2,3-c,d)pyrene	0.062	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Dibenz[a,h]anthracene	0.058	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[g,h,i]perylene	0.058	0.037	EPA 8270/SIM	8-5-11	8-11-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	43 - 109				
Pyrene-d10	112	38 - 128				
Terphenyl-d14	93	33 - 119				

# PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW7-3.0					
07-201-08					
ND	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.48	0.035	EPA 8270/SIM	8-5-11	8-11-11	
1.9	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.090	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.11	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.38	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.37	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.088	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.059	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.17	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.070	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.12	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.037	0.035	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.073	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.035	0.035	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.035	EPA 8270/SIM	8-5-11	8-11-11	
0.039	0.035	EPA 8270/SIM	8-5-11	8-11-11	
Percent Recovery	Control Limits				
85	43 - 109				
112	38 - 128				
81	33 - 119				
	MW7-3.0 07-201-08 ND 0.48 1.9 0.090 0.11 0.38 0.37 0.088 0.059 0.17 0.070 0.12 0.037 ND 0.073 0.035 ND 0.035 ND 0.039 Percent Recovery 85 112	MW7-3.0           07-201-08           ND         0.035           0.48         0.035           1.9         0.035           0.090         0.035           0.11         0.035           0.38         0.035           0.37         0.035           0.038         0.035           0.035         0.37           0.035         0.035           0.059         0.035           0.17         0.035           0.070         0.035           0.037         0.035           0.037         0.035           0.037         0.035           0.035         0.035           0.035         0.035           0.035         0.035           0.035         0.035           0.035         0.035           0.035         0.035           0.035         0.035           0.035         0.035           0.035         0.035           0.035         0.035           0.035         0.035           0.035         0.035           0.035         0.035           0.035         0.035	MW7-3.0           07-201-08           ND         0.035         EPA 8270/SIM           0.48         0.035         EPA 8270/SIM           1.9         0.035         EPA 8270/SIM           0.090         0.035         EPA 8270/SIM           0.11         0.035         EPA 8270/SIM           0.38         0.035         EPA 8270/SIM           0.37         0.035         EPA 8270/SIM           0.38         0.035         EPA 8270/SIM           0.37         0.035         EPA 8270/SIM           0.38         0.035         EPA 8270/SIM           0.059         0.035         EPA 8270/SIM           0.059         0.035         EPA 8270/SIM           0.17         0.035         EPA 8270/SIM           0.17         0.035         EPA 8270/SIM           0.12         0.035         EPA 8270/SIM           0.12         0.035         EPA 8270/SIM           0.037         0.035         EPA 8270/SIM           0.037         0.035         EPA 8270/SIM           0.035         EPA 8270/SIM         0.035           0.035         EPA 8270/SIM         0.035           0.035         EPA 8270/SIM	Result         PQL         Method         Prepared           MW7-3.0         07-201-08             ND         0.035         EPA 8270/SIM         8-5-11           0.48         0.035         EPA 8270/SIM         8-5-11           0.48         0.035         EPA 8270/SIM         8-5-11           0.090         0.035         EPA 8270/SIM         8-5-11           0.090         0.035         EPA 8270/SIM         8-5-11           0.38         0.035         EPA 8270/SIM         8-5-11           0.38         0.035         EPA 8270/SIM         8-5-11           0.37         0.035         EPA 8270/SIM         8-5-11           0.38         0.035         EPA 8270/SIM         8-5-11           0.37         0.035         EPA 8270/SIM         8-5-11           0.059         0.035         EPA 8270/SIM         8-5-11           0.17         0.035         EPA 8270/SIM         8-5-11           0.18         0.035         EPA 8270/SIM         8-5-11           0.070         0.035         EPA 8270/SIM         8-5-11           0.037         0.035         EPA 8270/SIM         8-5-11           0.037         0.035<	Result         PQL         Method         Prepared         Analyzed           MW7-3.0         07-201-08         07-201-08         8-5-11         8-11-11           ND         0.035         EPA 8270/SIM         8-5-11         8-11-11           0.48         0.035         EPA 8270/SIM         8-5-11         8-11-11           1.9         0.035         EPA 8270/SIM         8-5-11         8-11-11           0.090         0.035         EPA 8270/SIM         8-5-11         8-11-11           0.090         0.035         EPA 8270/SIM         8-5-11         8-11-11           0.11         0.035         EPA 8270/SIM         8-5-11         8-11-11           0.38         0.035         EPA 8270/SIM         8-5-11         8-11-11           0.37         0.035         EPA 8270/SIM         8-5-11         8-11-11           0.38         0.035         EPA 8270/SIM         8-5-11         8-11-11           0.37         0.035         EPA 8270/SIM         8-5-11         8-11-11           0.059         0.035         EPA 8270/SIM         8-5-11         8-11-11           0.17         0.035         EPA 8270/SIM         8-5-11         8-11-11           0.17 <t< td=""></t<>

Date of Report: August 15, 2011 Samples Submitted: July 28, 2011 Laboratory Reference: 1107-201B Project: 525-006

## PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0805S2					
Naphthalene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
1-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Fluorene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Anthracene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Fluoranthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Pyrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Chrysene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	43 - 109				
Pyrene-d10	74	38 - 128				
Terphenyl-d14	74	33 - 119				

#### PAHs by EPA 8270D/SIM MS/MSD QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

Units. hig/kg					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	08-00	61-01									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0608	0.0644	0.0833	0.0833	ND	73	77	39 - 110	6	21	
Acenaphthylene	0.0609	0.0624	0.0833	0.0833	ND	73	75	47 - 124	2	21	
Acenaphthene	0.0634	0.0665	0.0833	0.0833	ND	76	80	50 - 120	5	20	
Fluorene	0.0631	0.0661	0.0833	0.0833	ND	76	79	52 - 126	5	21	
Phenanthrene	0.0695	0.0655	0.0833	0.0833	ND	83	79	41 - 130	6	22	
Anthracene	0.0621	0.0631	0.0833	0.0833	ND	75	76	48 - 124	2	23	
Fluoranthene	0.0668	0.0644	0.0833	0.0833	ND	80	77	40 - 137	4	23	
Pyrene	0.0679	0.0648	0.0833	0.0833	ND	82	78	36 - 139	5	23	
Benzo[a]anthracene	0.0566	0.0487	0.0833	0.0833	ND	68	58	43 - 127	15	21	
Chrysene	0.0587	0.0527	0.0833	0.0833	ND	70	63	41 - 133	11	19	
Benzo[b]fluoranthene	0.0516	0.0578	0.0833	0.0833	ND	62	69	40 - 132	11	25	
Benzo(j,k)fluoranthene	0.0521	0.0550	0.0833	0.0833	ND	63	66	35 - 132	5	25	
Benzo[a]pyrene	0.0544	0.0566	0.0833	0.0833	ND	65	68	37 - 131	4	26	
Indeno(1,2,3-c,d)pyrene	0.0527	0.0554	0.0833	0.0833	ND	63	67	39 - 134	5	23	
Dibenz[a,h]anthracene	0.0557	0.0586	0.0833	0.0833	ND	67	70	40 - 137	5	21	
Benzo[g,h,i]perylene	0.0537	0.0577	0.0833	0.0833	ND	64	69	35 - 135	7	22	
Surrogate:											
2-Fluorobiphenyl						77	78	43 - 109			
Pyrene-d10						76	76	38 - 128			
Terphenyl-d14						69	59	33 - 119			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

#### TOTAL METALS EPA 6010B/7471A

Matrix: Units:	Soil mg/kg (ppm)	)				
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: <b>Client ID:</b>	07-201-04 <b>MW9-3.0</b>					
Arsenic	46	11	6010B	8-3-11	8-3-11	
Barium	35	2.8	6010B	8-3-11	8-3-11	
Cadmium	2.0	0.56	6010B	8-3-11	8-3-11	
Chromium	27	0.56	6010B	8-3-11	8-3-11	
Lead	8.7	5.6	6010B	8-3-11	8-3-11	
Mercury	ND	0.28	7471A	8-3-11	8-3-11	
Selenium	ND	11	6010B	8-3-11	8-3-11	
Silver	ND	0.56	6010B	8-3-11	8-3-11	

Date of Report: August 15, 2011 Samples Submitted: July 28, 2011 Laboratory Reference: 1107-201B Project: 525-006

### TOTAL METALS EPA 6010B/7471A METHOD BLANK QUALITY CONTROL

Date Extracted:	8-3-11
Date Analyzed:	8-3-11
Matrix:	Soil
inddind.	0011
Units:	mg/kg (ppm)

Lab ID: MB0803S2&MB0803S4

Analyte	Method	Result	PQL
Arsenic	6010B	ND	10
Barium	6010B	ND	2.5
Cadmium	6010B	ND	0.50
Chromium	6010B	ND	0.50
Lead	6010B	ND	5.0
Mercury	7471A	ND	0.050
Selenium	6010B	ND	10
Silver	6010B	ND	0.50

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Date of Report: August 15, 2011 Samples Submitted: July 28, 2011 Laboratory Reference: 1107-201B Project: 525-006

## TOTAL METALS EPA 6010B/7471A DUPLICATE QUALITY CONTROL

Date Extracted:	8-3-11
Date Analyzed:	8-3-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 08-018-01

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
			-		
Barium	44.1	45.3	3	2.5	
Cadmium	ND	ND	NA	0.50	
Caumum	ND	ND	INA	0.50	
Chromium	36.7	36.5	1	0.50	
Lead	230	236	2	5.0	
Mercury	ND	ND	NA	0.25	
Selenium	ND	ND	NA	10	
-					
Silver	ND	ND	NA	0.50	

14

Date of Report: August 15, 2011 Samples Submitted: July 28, 2011 Laboratory Reference: 1107-201B Project: 525-006

### TOTAL METALS EPA 6010B/7471A MS/MSD QUALITY CONTROL

Date Extracted:	8-3-11
Date Analyzed:	8-3-11

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 08-018-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	97.6	98	99.4	99	2	
Barium	100	169	125	153	109	10	
Cadmium	50.0	46.3	93	47.0	94	1	
Chromium	100	132	95	133	96	1	
Lead	250	446	86	431	80	3	
Mercury	0.500	1.52	92	1.49	87	2	
Selenium	100	94.1	94	94.9	95	1	
Silver	25.0	23.2	93	23.3	93	0	

Date of Report: August 15, 2011 Samples Submitted: July 28, 2011 Laboratory Reference: 1107-201B Project: 525-006

# % MOISTURE

Date Analyzed: 8-1-11

Client ID	Lab ID	% Moisture
MW9-3.0	07-201-04	11
MW3-9.5	07-201-06	35
MW5-7.5	07-201-07	48
MW7-3.0	07-201-08	5
MW1-7.5	07-201-09	17
MW2-8.5	07-201-10	25

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881



#### **Data Qualifiers and Abbreviations**

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

**RPD - Relative Percent Difference** 

Address 975 5th Avenue NW City Issagual, " State Zip Code VI Issagual, " WA 98027	Telephone Numbe	Telephone Number (Area Code)/Fax Number 425-23 & Sampler Ken Sawar Dave	5 FEKETE Fax Number 295-0800 Lab Contact DAVE Ormoster	¥.	Whyse 20	1 Page		of (
Contract/Purchase Order/Quote No.		Matrix	Containers & Preservatives	MH-0 MH-G	its ZA n	noisi	Conditions	Conditions of Receipt
Sample I.D. and Location/Description (Containers for each sample may be combined on one line) Date	Time Air Aqueous	Sed. Soil Unpres.	H2SO4 HNO3 HCI NaOH ZnAc/ NaOH	LUWT		961 #6		
BH1-3.5 7/26/11	600	×				X	S. D.	
3 MW6-3.0	046	X		3		w		
	1130	X		AN AN		Ø3		
	1310	×						
6 MW 3-9.5 7/27/11	518	×		C C C		h		
	935	<		R.C.		R S C		
A MW (-7,5	1245	$\times$		E		A second		
10 MW2-8,5 V	1420	X		(XIX)		C)2		
Cooler Possible Hazard Identification	ification	tant Poison B	Unknown	Sample Disposal	Disposal By Lab	Months ar	(A fee may be assessed if sample are retained longer than 1 month)	(A fee may be assessed if samples are retained longer than 1 month)
Turn Around Time Required (business days)	s 🗌 Other	-	QC Requirements (Specify)					
ed By Sign/Print	Date	Time	1. Received By Sign/Prim 2. Received By Sign/Prim	-muan	0	Date 7/ Date	28/11	Time 915 Time
3. Relinquished By Sign/Print	Date	Time	3. Received By Sign/Print			Date	te	Time
Comments @ Added Stilling STA	T					_		
DISTRIBUTION: WHITE - Stays with the Samples; CANARY - Returned to Client with Report; PINK - Field Copy	nt with Report; PINK -	Field Copy					TAI -	TAI -8274-580 (0210)



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 15, 2011

Akos Fekete Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1108-008

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on August 1, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: August 15, 2011 Samples Submitted: August 1, 2011 Laboratory Reference: 1108-008 Project: 525-006

#### **Case Narrative**

Samples were collected on July 28 and 29, 2011 and received by the laboratory on August 1, 2011. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

#### NWTPH Gx/BTEX Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

The surrogate recovery is outside of the control limits on the high end for sample MW4-5.0. However, since the sample was non-detect no further action was taken.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW4-5.0					
Laboratory ID:	08-008-01					
Benzene	ND	0.028	EPA 8021	8-3-11	8-3-11	
Toluene	ND	0.14	EPA 8021	8-3-11	8-3-11	
Ethyl Benzene	ND	0.14	EPA 8021	8-3-11	8-3-11	
m,p-Xylene	ND	0.14	EPA 8021	8-3-11	8-3-11	
o-Xylene	ND	0.14	EPA 8021	8-3-11	8-3-11	
Gasoline	ND	14	NWTPH-Gx	8-3-11	8-3-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	153	68-124				Q
Client ID:	MW12-3.0					
Laboratory ID:	08-008-03					
Benzene	ND	0.020	EPA 8021	8-3-11	8-3-11	
Toluene	ND	0.064	EPA 8021	8-3-11	8-3-11	
Ethyl Benzene	ND	0.064	EPA 8021	8-3-11	8-3-11	
m,p-Xylene	ND	0.064	EPA 8021	8-3-11	8-3-11	
o-Xylene	ND	0.064	EPA 8021	8-3-11	8-3-11	
Gasoline	ND	6.4	NWTPH-Gx	8-3-11	8-3-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	110	68-124				
Client ID:	MW13-3.5					
Laboratory ID:	08-008-04					
Benzene	ND	0.022	EPA 8021	8-3-11	8-3-11	
Toluene	ND	0.11	EPA 8021	8-3-11	8-3-11	
Ethyl Benzene	ND	0.11	EPA 8021	8-3-11	8-3-11	
m,p-Xylene	0.32	0.11	EPA 8021	8-3-11	8-3-11	
o-Xylene	0.21	0.11	EPA 8021	8-3-11	8-3-11	
Gasoline	ND	11	NWTPH-Gx	8-3-11	8-3-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	68-124				

#### NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

0 0 41 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0803S2					
Benzene	ND	0.020	EPA 8021	8-3-11	8-3-11	
Toluene	ND	0.050	EPA 8021	8-3-11	8-3-11	
Ethyl Benzene	ND	0.050	EPA 8021	8-3-11	8-3-11	
m,p-Xylene	ND	0.050	EPA 8021	8-3-11	8-3-11	
o-Xylene	ND	0.050	EPA 8021	8-3-11	8-3-11	
Gasoline	ND	5.0	NWTPH-Gx	8-3-11	8-3-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	110	68-124				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-01	18-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	ΝA	NA	NA	30	
Toluene	ND	ND	NA	NA		١	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		١	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		١	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		١	A	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	A	NA	NA	30	
Surrogate:											
Fluorobenzene						108	106	68-124			
MATRIX SPIKES											
Laboratory ID:	08-01	18-02									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	0.995	1.04	1.00	1.00	ND	100	104	79-121	4	10	
Toluene	1.02	1.07	1.00	1.00	ND	102	107	83-121	5	14	
Ethyl Benzene	1.00	1.07	1.00	1.00	ND	100	107	83-123	7	9	
m,p-Xylene	0.996	1.06	1.00	1.00	ND	100	106	84-123	6	10	
o-Xylene	0.995	1.06	1.00	1.00	ND	100	106	82-124	6	10	
Surrogate:											
Fluorobenzene						103	106	68-124			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW4-5.0			•	,	U
Laboratory ID:	08-008-01					
Diesel Range Organics	ND	51	NWTPH-Dx	8-5-11	8-6-11	
Lube Oil	180	100	NWTPH-Dx	8-5-11	8-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	MW10-3.5					
Laboratory ID:	08-008-02					
Diesel Range Organics	4100	160	NWTPH-Dx	8-5-11	8-6-11	
Lube Oil	1000	320	NWTPH-Dx	8-5-11	8-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	104	50-150				
Client ID:	MW12-3.0					
Laboratory ID:	08-008-03					
Diesel Range Organics	450	140	NWTPH-Dx	8-5-11	8-6-11	
Lube Oil	880	270	NWTPH-Dx	8-5-11	8-6-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	MW13-3.5					
Laboratory ID:	08-008-04					
Diesel Range Organics	8600	280	NWTPH-Dx	8-5-11	8-6-11	
Lube Oil	13000	570	NWTPH-Dx	8-5-11	8-6-11	
Surrogate:	Percent Recovery	Control Limits				0
o-Terphenyl		50-150				S
Client ID:	MW14-2.0					
Laboratory ID:	08-008-05					
Diesel Range Organics	ND	32	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil Range Organics	ND	63	NWTPH-Dx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				
Client ID:	MW16D-9.0					
Laboratory ID:	08-008-11					
Diesel Range Organics	ND	31	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil	110	62	NWTPH-Dx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	B44-2.5					
Laboratory ID:	08-008-12					
Diesel Range Organics	ND	28	NWTPH-Dx	8-5-11	8-5-11	
Lube Oil	66	56	NWTPH-Dx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

5

#### NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

					Date	Dat	е	
Analyte	Result	PQL	Method		Prepared	Analy	zed	Flags
METHOD BLANK								
Laboratory ID:	MB0805S1							
Diesel Range Organics	ND	25	NWTPH-D	Эx	8-5-11	8-5-2	11	
Lube Oil Range Organics	ND	50	NWTPH-D	Эx	8-5-11	8-5-7	11	
Surrogate:	Percent Recove	ery Control Limits						
o-Terphenyl	102	50-150						
			Per	cent	Recovery		RPD	
Analyte	Resu	lt	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	08-008	-12						
<b>k</b>	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil	59.0	ND				NA	NA	
Surrogata:								
Surrogate:								

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B44-072911-GW					
Laboratory ID:	08-008-15					
Diesel Range Organics	13	0.28	NWTPH-Dx	8-4-11	8-4-11	
Lube Oil	4.3	0.44	NWTPH-Dx	8-4-11	8-4-11	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				

#### NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

					Date	Dat	е	
Analyte	Result	PQL	Method		Prepared	Analy	zed	Flags
METHOD BLANK								
Laboratory ID:	MB0804W1							
Diesel Range Organics	ND	0.25	NWTPH-D	)x	8-4-11	8-4-1	11	
Lube Oil Range Organics	ND	0.40	NWTPH-D	)x	8-4-11	8-4-1	11	
Surrogate:	Percent Recove	ery Control Limits						
o-Terphenyl	95	50-150						
			Per	cent	Recovery		RPD	
Analyte	Resu	lt	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	07-202	-01						
<b>i</b>	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl								

Matrix: Soil Units: mg/Kg

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW12-3.0					
08-008-03					
0.083	0.036	EPA 8270/SIM	8-5-11	8-11-11	
0.090	0.036	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.036	EPA 8270/SIM	8-5-11	8-11-11	
0.045	0.036	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.036	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.036	EPA 8270/SIM	8-5-11	8-11-11	
0.081	0.036	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.036	EPA 8270/SIM	8-5-11	8-11-11	
0.075	0.036	EPA 8270/SIM	8-5-11	8-11-11	
0.069	0.036	EPA 8270/SIM	8-5-11	8-11-11	
0.050	0.036	EPA 8270/SIM	8-5-11	8-11-11	
0.044	0.036	EPA 8270/SIM	8-5-11	8-11-11	
0.051	0.036	EPA 8270/SIM	8-5-11	8-11-11	
0.042	0.036	EPA 8270/SIM	8-5-11	8-11-11	
0.063	0.036	EPA 8270/SIM	8-5-11	8-11-11	
0.052	0.036	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.036	EPA 8270/SIM	8-5-11	8-11-11	
0.059	0.036	EPA 8270/SIM	8-5-11	8-11-11	
Percent Recovery	Control Limits				
68	43 - 109				
86	38 - 128				
75	33 - 119				
	MW12-3.0 08-008-03 0.083 0.090 ND 0.045 ND 0.045 ND 0.081 ND 0.075 0.069 0.050 0.050 0.044 0.051 0.042 0.063 0.052 ND 0.052 ND 0.059 Percent Recovery 68 86	MW12-3.0           08-008-03           0.083         0.036           0.090         0.036           ND         0.036           0.081         0.036           0.075         0.036           0.069         0.036           0.050         0.036           0.051         0.036           0.044         0.036           0.051         0.036           0.042         0.036           0.052         0.036           0.052         0.036           0.059         0.036           0.059         0.036           0.059         0.036           0.059         0.036           0.059         0.036           0.059         0.036           0.059         0.036           0.059         0.036           0.059         0.036           0.059         0.036           0.059         0.036           0.0	MW12-3.0           08-008-03           0.083         0.036         EPA 8270/SIM           0.090         0.036         EPA 8270/SIM           ND         0.036         EPA 8270/SIM           0.045         0.036         EPA 8270/SIM           ND         0.036         EPA 8270/SIM           0.081         0.036         EPA 8270/SIM           0.081         0.036         EPA 8270/SIM           0.075         0.036         EPA 8270/SIM           0.075         0.036         EPA 8270/SIM           0.069         0.036         EPA 8270/SIM           0.050         0.036         EPA 8270/SIM           0.051         0.036         EPA 8270/SIM           0.042         0.036         EPA 8270/SIM           0.052         0.036         EPA 8270/SIM           0.052         0.036         EPA 8270/SIM           0.052         0.036         EPA 8270/SIM           0.059         0.036         EPA	Result         PQL         Method         Prepared           MW12-3.0         08-008-03 </td <td>Result         PQL         Method         Prepared         Analyzed           MW12-3.0 08-008-03         0036         EPA 8270/SIM         8-5-11         8-11-11           0.083         0.036         EPA 8270/SIM         8-5-11         8-11-11           0.090         0.036         EPA 8270/SIM         8-5-11         8-11-11           ND         0.036         EPA 8270/SIM         8-5-11         8-11-11           0.045         0.036         EPA 8270/SIM         8-5-11         8-11-11           ND         0.036         EPA 8270/SIM         8-5-11         8-11-11           0.050         0.036         EPA 8270/SIM         8-5-11         8-11-11           0.050         0.036         EPA 8270/SIM         8-5-11         8-11-11           0.051         &lt;</td>	Result         PQL         Method         Prepared         Analyzed           MW12-3.0 08-008-03         0036         EPA 8270/SIM         8-5-11         8-11-11           0.083         0.036         EPA 8270/SIM         8-5-11         8-11-11           0.090         0.036         EPA 8270/SIM         8-5-11         8-11-11           ND         0.036         EPA 8270/SIM         8-5-11         8-11-11           0.045         0.036         EPA 8270/SIM         8-5-11         8-11-11           ND         0.036         EPA 8270/SIM         8-5-11         8-11-11           0.050         0.036         EPA 8270/SIM         8-5-11         8-11-11           0.050         0.036         EPA 8270/SIM         8-5-11         8-11-11           0.051         <

# PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
aboratory ID:	MB0805S2					
Naphthalene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
2-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
-Methylnaphthalene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Acenaphthylene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Acenaphthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Fluorene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Phenanthrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Anthracene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
luoranthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Pyrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[a]anthracene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Chrysene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[a]pyrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
ndeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270/SIM	8-5-11	8-6-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	43 - 109				
Pyrene-d10	74	38 - 128				
- Terphenyl-d14	74	33 - 119				

# PAHs by EPA 8270D/SIM MS/MSD QUALITY CONTROL (with silica gel clean-up)

Matrix: Soil Units: mg/Kg

				Sourco	Dor	cont	Pecoverv		חסס	
Po	eult	Sniko					-	חסס		Flags
ILC.	Suit	бріке	Level	Nesuit	Nec	overy	Linits	NFD	Linin	Tiays
08.00	S1 01									
		MS	MSD		MQ	MSD				
				ND			39 - 110	6	21	
					-			-		
					-	-				
								-		
0.0695	0.0655				83	79	41 - 130	6		
0.0621	0.0631	0.0833	0.0833	ND	75	76	48 - 124	2		
0.0668	0.0644	0.0833	0.0833	ND	80	77	40 - 137	4	23	
0.0679	0.0648	0.0833	0.0833	ND	82	78	36 - 139	5	23	
0.0566	0.0487	0.0833	0.0833	ND	68	58	43 - 127	15	21	
0.0587	0.0527	0.0833	0.0833	ND	70	63	41 - 133	11	19	
0.0516	0.0578	0.0833	0.0833	ND	62	69	40 - 132	11	25	
0.0521	0.0550	0.0833	0.0833	ND	63	66	35 - 132	5	25	
0.0544	0.0566	0.0833	0.0833	ND	65	68	37 - 131	4	26	
0.0527	0.0554	0.0833	0.0833	ND	63	67	39 - 134	5	23	
0.0557	0.0586	0.0833	0.0833	ND	67	70	40 - 137	5	21	
0.0537	0.0577	0.0833	0.0833	ND	64	69	35 - 135	7	22	
					77	78	43 - 109			
					76	76	38 - 128			
					69	59	33 - 119			
	08-00 MS 0.0608 0.0609 0.0634 0.0631 0.0695 0.0621 0.0668 0.0679 0.0566 0.0587 0.0516 0.0521 0.0544 0.0527 0.0557	0.0608         0.0644           0.0609         0.0624           0.0634         0.0665           0.0631         0.0661           0.0695         0.0655           0.0621         0.0631           0.0668         0.0631           0.0668         0.0644           0.0679         0.0648           0.0566         0.0487           0.0516         0.0578           0.0521         0.0550           0.0524         0.0550           0.0557         0.0554           0.0557         0.0586	08-061-01           MS         MSD         MS           0.0608         0.0644         0.0833           0.0609         0.0624         0.0833           0.0634         0.0665         0.0833           0.0631         0.0661         0.0833           0.0631         0.0661         0.0833           0.0695         0.0655         0.0833           0.0621         0.0631         0.0833           0.0668         0.0644         0.0833           0.0566         0.0487         0.0833           0.0566         0.0487         0.0833           0.0566         0.0487         0.0833           0.0557         0.0833         0.0521           0.0527         0.0833         0.0521           0.0550         0.0833         0.0527           0.0533         0.0527         0.0833           0.0527         0.0554         0.0833           0.0527         0.0554         0.0833	08-061-01           MS         MSD         MS         MSD           0.0608         0.0644         0.0833         0.0833           0.0609         0.0624         0.0833         0.0833           0.0634         0.0665         0.0833         0.0833           0.0631         0.0661         0.0833         0.0833           0.0695         0.0655         0.0833         0.0833           0.0621         0.0631         0.0833         0.0833           0.0668         0.0644         0.0833         0.0833           0.0668         0.0644         0.0833         0.0833           0.0566         0.0487         0.0833         0.0833           0.0566         0.0487         0.0833         0.0833           0.0587         0.0527         0.0833         0.0833           0.0516         0.0578         0.0833         0.0833           0.0521         0.0550         0.0833         0.0833           0.0524         0.0566         0.0833         0.0833           0.0527         0.0833         0.0833         0.0833           0.0527         0.0554         0.0833         0.0833           0.0557         0.0586	08-061-01           MS         MSD         MS         MSD           0.0608         0.0644         0.0833         0.0833         ND           0.0609         0.0624         0.0833         0.0833         ND           0.0634         0.0665         0.0833         0.0833         ND           0.0631         0.0661         0.0833         0.0833         ND           0.0695         0.0655         0.0833         0.0833         ND           0.0621         0.0631         0.0833         0.0833         ND           0.0668         0.0644         0.0833         0.0833         ND           0.06679         0.0648         0.0833         0.0833         ND           0.0566         0.0487         0.0833         0.0833         ND           0.0566         0.0487         0.0833         0.0833         ND           0.0566         0.0487         0.0833         0.0833         ND           0.0516         0.0578         0.0833         0.0833         ND           0.0521         0.0550         0.0833         0.0833         ND           0.0524         0.0566         0.0833         0.0833         ND <t< td=""><td>Result         Spike Level         Result         Recult           08-061-01         MS         MSD         MSD         MS         MSD         MS           0.0608         0.0644         0.0833         0.0833         NDD         73           0.0609         0.0624         0.0833         0.0833         NDD         73           0.0634         0.0665         0.0833         0.0833         NDD         76           0.0631         0.0661         0.0833         0.0833         NDD         76           0.0635         0.0833         0.0833         NDD         76           0.0634         0.0665         0.0833         0.0833         NDD         76           0.0635         0.0655         0.0833         0.0833         ND         75           0.0668         0.0644         0.0833         0.0833         ND         82           0.0579         0.0648         0.0833         0.0833         ND         63           0.0576         0.0578         0.0833         0.0833         ND         63           0.0527         0.0533         0.0833         ND         63           0.0527         0.0554         0.0833         <td< td=""><td>Result         Spike Level         Result         Recovery           08-061-01         MS         MSD         MS         MSD         MS         MSD           0.0608         0.0644         0.0833         0.0833         NDD         73         77           0.0609         0.0624         0.0833         0.0833         NDD         73         75           0.0634         0.0665         0.0833         0.0833         NDD         76         80           0.0631         0.0665         0.0833         0.0833         NDD         76         79           0.0695         0.0655         0.0833         0.0833         NDD         76         79           0.0695         0.0665         0.0833         0.0833         ND         83         79           0.0695         0.0665         0.0833         0.0833         ND         83         79           0.0621         0.0631         0.0833         0.0833         ND         80         77           0.0679         0.0648         0.0833         0.0833         ND         63         58           0.0576         0.0578         0.0833         0.0833         ND         63         66     </td></td<></td></t<> <td>Result         Spike Level         Result         Recovery         Limits           08-061-01         MS         MSD         MS         MSD         MS         MSD           0.0608         0.0644         0.0833         0.0833         ND         73         77         39 - 110           0.0609         0.0624         0.0833         0.0833         ND         73         77         39 - 110           0.0634         0.0665         0.0833         0.0833         ND         76         80         50 - 120           0.0631         0.0661         0.0833         0.0833         ND         76         80         50 - 120           0.0621         0.0631         0.0833         0.0833         ND         76         47 - 124           0.0668         0.0644         0.0833         0.0833         ND         76         48 - 124           0.0668         0.0644         0.0833         0.0833         ND         80         77         40 - 137           0.0579         0.0648         0.0833         0.0833         ND         68         58         43 - 127           0.0587         0.0527         0.0833         0.0833         ND         63         66&lt;</td> <td>Result         Spike Level         Result         Recovery         Limits         RPD           08-061-01         MS         MSD         MS         MSD         MS         MSD         Spike Level         MS         MSD         0.0608         0.0644         0.0833         0.0833         NDD         73         77         39 - 110         6           0.0609         0.0624         0.0833         0.0833         NDD         76         80         50 - 120         5           0.0631         0.0665         0.0833         0.0833         NDD         76         79         52 - 126         5           0.0632         0.0655         0.0833         0.0833         NDD         83         79         41 - 130         6           0.0621         0.0631         0.0833         0.0833         NDB         80         77         40 - 137         4           0.0668         0.0444         0.0833         0.0833         ND         68         58         43 - 127         15</td> <td>Result         Spike Level         Result         Recovery         Limits         RPD         Limit           08-061-01         MS         MSD         MS         MSD         S         MSD         MS         MSD         0.0603         0.0644         0.0833         0.0833         ND         73         77         39-110         6         21           0.0608         0.0624         0.0833         0.0833         ND         73         75         47 - 124         2         21           0.0634         0.0665         0.0833         0.0833         ND         76         80         50 - 120         5         20           0.0631         0.0665         0.0833         0.0833         ND         76         79         52 - 126         5         21           0.0695         0.0655         0.0833         0.0833         ND         75         76         48 - 124         2         23           0.0668         0.0644         0.0833         0.0833         ND         80         77         40 - 137         4         23           0.0566         0.0487         0.0833         0.0833         ND         68         58         43 - 127         15         21&lt;</td>	Result         Spike Level         Result         Recult           08-061-01         MS         MSD         MSD         MS         MSD         MS           0.0608         0.0644         0.0833         0.0833         NDD         73           0.0609         0.0624         0.0833         0.0833         NDD         73           0.0634         0.0665         0.0833         0.0833         NDD         76           0.0631         0.0661         0.0833         0.0833         NDD         76           0.0635         0.0833         0.0833         NDD         76           0.0634         0.0665         0.0833         0.0833         NDD         76           0.0635         0.0655         0.0833         0.0833         ND         75           0.0668         0.0644         0.0833         0.0833         ND         82           0.0579         0.0648         0.0833         0.0833         ND         63           0.0576         0.0578         0.0833         0.0833         ND         63           0.0527         0.0533         0.0833         ND         63           0.0527         0.0554         0.0833 <td< td=""><td>Result         Spike Level         Result         Recovery           08-061-01         MS         MSD         MS         MSD         MS         MSD           0.0608         0.0644         0.0833         0.0833         NDD         73         77           0.0609         0.0624         0.0833         0.0833         NDD         73         75           0.0634         0.0665         0.0833         0.0833         NDD         76         80           0.0631         0.0665         0.0833         0.0833         NDD         76         79           0.0695         0.0655         0.0833         0.0833         NDD         76         79           0.0695         0.0665         0.0833         0.0833         ND         83         79           0.0695         0.0665         0.0833         0.0833         ND         83         79           0.0621         0.0631         0.0833         0.0833         ND         80         77           0.0679         0.0648         0.0833         0.0833         ND         63         58           0.0576         0.0578         0.0833         0.0833         ND         63         66     </td></td<>	Result         Spike Level         Result         Recovery           08-061-01         MS         MSD         MS         MSD         MS         MSD           0.0608         0.0644         0.0833         0.0833         NDD         73         77           0.0609         0.0624         0.0833         0.0833         NDD         73         75           0.0634         0.0665         0.0833         0.0833         NDD         76         80           0.0631         0.0665         0.0833         0.0833         NDD         76         79           0.0695         0.0655         0.0833         0.0833         NDD         76         79           0.0695         0.0665         0.0833         0.0833         ND         83         79           0.0695         0.0665         0.0833         0.0833         ND         83         79           0.0621         0.0631         0.0833         0.0833         ND         80         77           0.0679         0.0648         0.0833         0.0833         ND         63         58           0.0576         0.0578         0.0833         0.0833         ND         63         66	Result         Spike Level         Result         Recovery         Limits           08-061-01         MS         MSD         MS         MSD         MS         MSD           0.0608         0.0644         0.0833         0.0833         ND         73         77         39 - 110           0.0609         0.0624         0.0833         0.0833         ND         73         77         39 - 110           0.0634         0.0665         0.0833         0.0833         ND         76         80         50 - 120           0.0631         0.0661         0.0833         0.0833         ND         76         80         50 - 120           0.0621         0.0631         0.0833         0.0833         ND         76         47 - 124           0.0668         0.0644         0.0833         0.0833         ND         76         48 - 124           0.0668         0.0644         0.0833         0.0833         ND         80         77         40 - 137           0.0579         0.0648         0.0833         0.0833         ND         68         58         43 - 127           0.0587         0.0527         0.0833         0.0833         ND         63         66<	Result         Spike Level         Result         Recovery         Limits         RPD           08-061-01         MS         MSD         MS         MSD         MS         MSD         Spike Level         MS         MSD         0.0608         0.0644         0.0833         0.0833         NDD         73         77         39 - 110         6           0.0609         0.0624         0.0833         0.0833         NDD         76         80         50 - 120         5           0.0631         0.0665         0.0833         0.0833         NDD         76         79         52 - 126         5           0.0632         0.0655         0.0833         0.0833         NDD         83         79         41 - 130         6           0.0621         0.0631         0.0833         0.0833         NDB         80         77         40 - 137         4           0.0668         0.0444         0.0833         0.0833         ND         68         58         43 - 127         15	Result         Spike Level         Result         Recovery         Limits         RPD         Limit           08-061-01         MS         MSD         MS         MSD         S         MSD         MS         MSD         0.0603         0.0644         0.0833         0.0833         ND         73         77         39-110         6         21           0.0608         0.0624         0.0833         0.0833         ND         73         75         47 - 124         2         21           0.0634         0.0665         0.0833         0.0833         ND         76         80         50 - 120         5         20           0.0631         0.0665         0.0833         0.0833         ND         76         79         52 - 126         5         21           0.0695         0.0655         0.0833         0.0833         ND         75         76         48 - 124         2         23           0.0668         0.0644         0.0833         0.0833         ND         80         77         40 - 137         4         23           0.0566         0.0487         0.0833         0.0833         ND         68         58         43 - 127         15         21<

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: August 15, 2011 Samples Submitted: August 1, 2011 Laboratory Reference: 1108-008 Project: 525-006

### % MOISTURE

Date Analyzed: 8-3&5-11

Client ID	Lab ID	% Moisture
MW4-5.0	08-008-01	51
MW10-3.5	08-008-02	22
MW12-3.0	08-008-03	9
MW13-3.5	08-008-04	11
MW14-2.0	08-008-05	21
MW16D-9.0	08-008-11	19
B44-2.5	08-008-12	11

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.



#### **Data Qualifiers and Abbreviations**

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

**RPD - Relative Percent Difference** 

OnSite		Ch	ain	of (	Cu	St	00	ly											F	Page _	1	of <u>2</u>	<u> </u>
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		Turnaround (in workin		st	La	bo	rato	ry	Nui	nbe	ər:									08	3-0	0	8
Phone: (425) 883-3881 • Fax: (425) 885-4603	-	(Check	One)									Re	eque	ste	d Aı	naly	sis						
FARALLON Project Number: 525-006 Project Name:		me Day		1 Day					8260B														
Project Name: <u>Aberdeev</u> FACILity Project Manager:	2 D	Day andard (7 wo		3 Day				~	tiles by 8	270C	/ SIM		1A	1A	s (8)								
Aberdeen Facility Project Manager: AKOS FERETE Sampled by:					ICID	NWTPH-Gx/BTEX	XC	Volatiles by 8260B	Halogenated Volatiles by	Semivolatiles by 8270C	3270C /	8082	Pesticides by 8081A	s by 8151A	Total RCRA Metals (8)	tals	1664						re
	Date	(oth		# of	NWTPH-HCID	NTPH-(	NWTPH-Dx	latiles t	alogena	emivolat	PAHs by 8270C	PCBs by 8082	sticides	Herbicides by	tal RCF	TCLP Metals	HEM by 1	VPH	EPH				% Moisture
	ampled	Sampled	Matrix	Cont.	ź	X	X	0	H	Se	PA	PO	Pe	<u>H</u>	To	10	<u><u><u></u></u></u>	N N	<u> </u>				8
2 MW10-3.5		1010	5	2			X																1
3 MW12-3.0		1135	5	3 alling		X	Х				Х												
4 MW 13- 3.5		1325	5	pd	<b>_</b> ,	Д	X,											_					
5 MW14-2-0 6 MW15A-7.5	V	1445	55	21			X																
6 MWISA-7.5 7/ 7 MWISB-7.0	2911	820 845	5	2																			
8 MW16A-3.5		1135	5	2																			
9 MW16B-6.0		1150	5	2										_					-				
10 MW16C-2-5 Signature	V	1205 Company	5	21	15 10	Date			Time			Com	ments	/Spe	cial Ir	nstruc	ctions						
Relinquished by Ken Scott		FAR	ty	UN	(	8/		1	12	15	-												
Relinquished by		6	200	5		811	111		12	17,	>												
Received by																							
Relinquished by Received by			_																				
Reviewed by/Date		Reviewed b	y/Date									Chr	omat	ogra	ums v	with	final	repo	ort 🗆				

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

OnSite	Ch	ain of (	Cu	st	od	У									,	Page	2of	2
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052	Turnaround (in workin		La	bor	ato	ry Nu	umb	er:								08	-01	Z ) 8
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company: EAD A(1, C) A	(Check	One)							Re	que	sted	Ana	alysi	S				
FARALLON Project Number: 525-006 Project Name: Aber Seee FACILITY Project Manager: AKOS FEKETE Sampled by: 8 M	<ul><li>Same Day</li><li>2 Day</li></ul>	☐ 1 Day ☐ 3 Day				by 8260B	. 0											
Aber deed FACILITY Project Manager: AROS FEKETE	X Standard (7 wc	orking days)	DIS	/BTEX		Volatiles by 8260B Halogenated Volatiles by 8260B	Semivolatiles by 8270C	PAHs by 8270C / SIM	82	Pesticides by 8081A	Herbicides by 8151A	Total RCRA Metals (8)	S	5				
Sampled by: Ken hott	(oth Date Time	ner) # of	NWTPH-HCID	NWTPH-Gx/BTEX	NWTPH-Dx	Volatiles by 8260B Halogenated Volati	ivolatile	ls by 82	PCBs by 8082	ticides b	bicides 1	I RCRA	ICLP Metals HFM hv 1664		_			% Moisture
	Sampled Sampled	Matrix Cont.	MN	MN	MN	Vola Halo	Sem	PAH	PCB	Pest	Hert	Tota		VPH	EPH			N %
10	1/2911 1245	S RI	-		$\diamond$						_	-		_			_	A
12 844-2.5 13 844-6-0	1520	SZ			$\sim$							+	+					U
14 1344-10.0	1535	5 2	-															
15 B44-072911-GW	V 1555	WZ			X													
	2 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	6										_						
	Sata					_	_				_	_	_	_				
											_		_		-			
						_		-			-				-			
Signature	Company		1	Date		Tin	ne		Com	ments	/Speci	al Ins	tructio	ns:				
Relinquished by	FARA	ALCN		81	$(\lambda I)$	1 13	215	5	_									
Received by		SE.		8/1	111	12	148	5										
Relinquished by																		
Received by									-									
Relinquished by Received by		-																
Reviewed by/Date	Reviewed b	py/Date							Chro	omate	ogran	ns wi	ith fin	al rei	oort 🗆	]		

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 16, 2011

Akos Fekete Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1108-048

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on August 4, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: August 16, 2011 Samples Submitted: August 4, 2011 Laboratory Reference: 1108-048 Project: 525-006

#### **Case Narrative**

Samples were collected on August 2 and 3, 2011 and received by the laboratory on August 4, 2011. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

#### Total Metals EPA 6010B/200.8/7470A Analysis

The practical quantitation limit of Selenium for sample MW-6-080211 is elevated due to interferences present in the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

onits. ug/L (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-080211					
Laboratory ID:	08-048-02					
Benzene	16	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	17	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	14	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	3.2	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	1400	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				
Client ID:	MW-2-080211					
Laboratory ID:	08-048-03					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	73-121				
Client ID:	MW-3-080211					
Laboratory ID:	08-048-04					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	73-121				

onits. ug/E (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-080211					
Laboratory ID:	08-048-05					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				
Client ID:	MW-6-080211					
Laboratory ID:	08-048-06					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	140	100	NWTPH-Gx	8-5-11	8-5-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	73-121				
Client ID:	MW-15-080311					
Laboratory ID:	08-048-10					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	130	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	73-121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9-080311					
Laboratory ID:	08-048-11					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	100	100	NWTPH-Gx	8-5-11	8-5-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	73-121				
Client ID:	MW-5-080311					
Laboratory ID:	08-048-12					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	190	100	NWTPH-Gx	8-5-11	8-5-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				
Client ID:	MW-7-080311					
Laboratory ID:	08-048-13					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	240	100	NWTPH-Gx	8-5-11	8-5-11	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	73-121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10-080311					
Laboratory ID:	08-048-14					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	73-121				
Client ID:	MW-12-080311					
Laboratory ID:	08-048-15					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	73-121				
Client ID:	MW-13-080311					
Laboratory ID:	08-048-16					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				

# NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0805W1					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	73-121				
Laboratory ID:	MB0805W2					
Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Toluene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Ethyl Benzene	ND	1.0	EPA 8021	8-5-11	8-5-11	
m,p-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
o-Xylene	ND	1.0	EPA 8021	8-5-11	8-5-11	
Gasoline	ND	100	NWTPH-Gx	8-5-11	8-5-11	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	73-121				

#### NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flage
DUPLICATE											
Laboratory ID:	08-04	48-03									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Surrogate:											
Fluorobenzene						93	88	73-121			
Laboratory ID:	08-04	48-04									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Surrogate:											
Fluorobenzene						98	91	73-121			
MATRIX SPIKES											
Laboratory ID:	08-04	48-03									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	52.7	53.0	50.0	50.0	ND	105	106	82-120	1	8	
Toluene	54.3	54.5	50.0	50.0	ND	109	109	84-119	0	8	
Ethyl Benzene	53.8	54.1	50.0	50.0	ND	108	108	84-122	1	9	
m,p-Xylene	52.5	52.6	50.0	50.0	ND	105	105	85-121	0	9	
o-Xylene	53.1	52.9	50.0	50.0	ND	106	106	84-121	0	9	
Surrogate:											
Fluorobenzene						99	101	73-121			

8

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-1-080211			-	-	
Laboratory ID:	08-048-02					
Diesel Range Organics	ND	0.58	NWTPH-Dx	8-8-11	8-8-11	U1
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	103	50-150				
Client ID:	MW-2-080211					
Laboratory ID:	08-048-03					
Diesel Range Organics	ND	0.27	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.43	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits		0011	0011	
o-Terphenyl	105	50-150				
o-reipinenyi	100	50-150				
Client ID:	MW-3-080211					
Laboratory ID:	08-048-04					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	MW-4-080211					
Laboratory ID:	08-048-05					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits		0011	0011	
o-Terphenyl	98	50-150				
o-reipinenyi	30	50-150				
Client ID:	MW-6-080211					
Laboratory ID:	08-048-06					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	MW-8-080211					
Laboratory ID:	08-048-07					
		0.27	NWTPH-Dx	8-8-11	8-8-11	
Diesel Range Organics				0011	0011	
	ND ND		NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.43	NWTPH-Dx	8-8-11	8-8-11	
Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl			NWTPH-Dx	8-8-11	8-8-11	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-16-080211					
Laboratory ID:	08-048-08					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	MW-14-080211					
Laboratory ID:	08-048-09					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
Client ID:	MW-15-080311					
Laboratory ID:	08-048-10					
Diesel Range Organics	<u>ND</u>	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits	HWITTE DX	0011	0011	
o-Terphenyl	104	50-150				
Client ID:	MW-9-080311					
Laboratory ID:	08-048-11					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits	NWITH DX	0011	0011	
o-Terphenyl	103	50-150				
e reipilenyi	100	00 100				
Client ID:	MW-5-080311					
Laboratory ID:	08-048-12					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	MW-7-080311					
Laboratory ID:	08-048-13					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

10

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10-080311					
Laboratory ID:	08-048-14					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	102	50-150				
Client ID:	MW-12-080311					
Laboratory ID:	08-048-15					
Diesel Range Organics	0.31	0.27	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.44	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				
Client ID:	MW-13-080311					
Laboratory ID:	08-048-16					
Diesel Range Organics	0.40	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	MW-17-080311					
Laboratory ID:	08-048-17					
Diesel Range Organics	1.4	0.26	NWTPH-Dx	8-8-11	8-8-11	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				

#### NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

						Date	Dat	-	
Analyte	Result		PQL	Method		Prepared	Analy	zed	Flags
METHOD BLANK									
Laboratory ID:	MB0808W	/1							
Diesel Range Organics	ND		0.25	NWTPH-D	x	8-8-11	8-8-1	11	
Lube Oil Range Organics	ND		0.40	NWTPH-D	x	8-8-11	8-8-1	11	
Surrogate:	Percent Reco	overy	Control Limits						
o-Terphenyl	97		50-150						
				Perc	ent	Recovery		RPD	
Analyte	Res	sult		Reco		Limits	RPD	Limit	Flags
DUPLICATE		Jun		11000	very	Linito		2	riago
Laboratory ID:	08-04	10-01							
	ORIG	DUP							
							NIA	NIA	<u> </u>
Diesel Range Organics	ND	ND					NA	NA	
Lube Oil Range Organics	ND	ND					NA	NA	
Surrogate:									
o-Terphenyl				86	87	50-150			
Laboratory ID:	08-04	48-02							
	ORIG	DUP	1						
Diesel Range Organics	ND	ND					NA	NA	U1
Lube Oil Range Organics	ND	ND					NA	NA	
Surrogate:									
o-Terphenyl				103	99	50-150			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-080211					
Laboratory ID:	08-048-05					
Naphthalene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
2-Methylnaphthalene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
1-Methylnaphthalene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthylene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Fluorene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Phenanthrene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Anthracene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Fluoranthene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Pyrene	ND	0.10	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]anthracene	0.029	0.010	EPA 8270/SIM	8-5-11	8-11-11	
Chrysene	0.011	0.010	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[b]fluoranthene	0.019	0.010	EPA 8270/SIM	8-5-11	8-11-11	
Benzo(j,k)fluoranthene	0.021	0.010	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]pyrene	0.031	0.010	EPA 8270/SIM	8-5-11	8-11-11	
Indeno(1,2,3-c,d)pyrene	0.028	0.010	EPA 8270/SIM	8-5-11	8-11-11	
Dibenz[a,h]anthracene	0.024	0.010	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[g,h,i]perylene	0.025	0.010	EPA 8270/SIM	8-5-11	8-11-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	55	38 - 105				
Pyrene-d10	94	37 - 121				
Terphenyl-d14	70	32 - 112				

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MW-6-080211					
08-048-06					
ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
0.025	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
ND	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
0.017	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
0.019	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
0.027	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
0.026	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
0.024	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
0.021	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Percent Recovery	Control Limits				
55	38 - 105				
104	37 - 121				
86	32 - 112				
	MW-6-080211 08-048-06 ND ND ND ND ND ND ND ND ND ND	MW-6-080211           08-048-06           ND         0.096           ND         0.0096           ND         0.0096           ND         0.0096           0.017         0.0096           0.027         0.0096           0.026         0.0096           0.021         0.0096           0.0221         0.0096           0.021         0.0096           Percent Recover         Sas - 105           104         37 - 121	MW-6-080211           08-048-06           ND         0.096         EPA 8270/SIM           0.017         0.0096         EPA 8270/SIM           0.017         0.0096         EPA 8270/SIM           0.026         0.0096         EPA 8270/SIM           0.026         0.0096         EPA 8270/SIM           0.021         0.0096         EPA 8270/SIM <td>Result         PQL         Method         Prepared           MW-6-080211         08-048-06             ND         0.096         EPA 8270/SIM         8-5-11           ND         0.0096         EPA 8270/SIM         8-5-11           ND         0.0096         EPA 8270/SIM&lt;</td> <td>Result         PQL         Method         Prepared         Analyzed           MW-6-080211 08-048-06        </td>	Result         PQL         Method         Prepared           MW-6-080211         08-048-06             ND         0.096         EPA 8270/SIM         8-5-11           ND         0.0096         EPA 8270/SIM         8-5-11           ND         0.0096         EPA 8270/SIM<	Result         PQL         Method         Prepared         Analyzed           MW-6-080211 08-048-06

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9-080311					
Laboratory ID:	08-048-11					
Naphthalene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
2-Methylnaphthalene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
1-Methylnaphthalene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthylene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Fluorene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Phenanthrene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Anthracene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Fluoranthene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Pyrene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]anthracene	0.024	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Chrysene	ND	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[b]fluoranthene	0.017	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo(j,k)fluoranthene	0.019	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]pyrene	0.027	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Indeno(1,2,3-c,d)pyrene	0.025	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Dibenz[a,h]anthracene	0.024	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[g,h,i]perylene	0.022	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	38 - 105				
Pyrene-d10	108	37 - 121				
Terphenyl-d14	78	32 - 112				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-080311					
Laboratory ID:	08-048-12					
Naphthalene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
2-Methylnaphthalene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
1-Methylnaphthalene	0.52	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthylene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthene	0.13	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Fluorene	0.15	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Phenanthrene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Anthracene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Fluoranthene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Pyrene	ND	0.096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]anthracene	0.026	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Chrysene	ND	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[b]fluoranthene	0.019	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo(j,k)fluoranthene	0.019	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]pyrene	0.028	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Indeno(1,2,3-c,d)pyrene	0.027	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Dibenz[a,h]anthracene	0.024	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[g,h,i]perylene	0.022	0.0096	EPA 8270/SIM	8-5-11	8-11-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	63	38 - 105				
Pyrene-d10	92	37 - 121				
Terphenyl-d14	71	32 - 112				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-7-080311					
Laboratory ID:	08-048-13					
Naphthalene	0.12	0.095	EPA 8270/SIM	8-5-11	8-11-11	
2-Methylnaphthalene	0.23	0.095	EPA 8270/SIM	8-5-11	8-11-11	
1-Methylnaphthalene	3.2	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthylene	ND	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthene	0.29	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Fluorene	0.65	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Phenanthrene	0.13	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Anthracene	ND	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Fluoranthene	ND	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Pyrene	ND	0.095	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]anthracene	0.016	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Chrysene	ND	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[b]fluoranthene	0.018	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Benzo(j,k)fluoranthene	0.017	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]pyrene	0.027	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Indeno(1,2,3-c,d)pyrene	0.026	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Dibenz[a,h]anthracene	0.024	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[g,h,i]perylene	0.021	0.0095	EPA 8270/SIM	8-5-11	8-11-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	38 - 105				
Pyrene-d10	99	37 - 121				
Terphenyl-d14	65	32 - 112				

# PAHs by EPA 8270D/SIM (with silica gel clean-up)

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-12-080311					
Laboratory ID:	08-048-15					
Naphthalene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
2-Methylnaphthalene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
1-Methylnaphthalene	0.18	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthylene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Acenaphthene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Fluorene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Phenanthrene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Anthracene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Fluoranthene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Pyrene	ND	0.098	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]anthracene	0.027	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
Chrysene	0.012	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[b]fluoranthene	0.021	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
Benzo(j,k)fluoranthene	0.021	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[a]pyrene	0.032	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
Indeno(1,2,3-c,d)pyrene	0.028	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
Dibenz[a,h]anthracene	0.025	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
Benzo[g,h,i]perylene	0.026	0.0098	EPA 8270/SIM	8-5-11	8-11-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	38 - 105				
Pyrene-d10	105	37 - 121				
Terphenyl-d14	73	32 - 112				

# PAHs by EPA 8270D/SIM METHOD BLANK QUALITY CONTROL (with silica gel clean-up)

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0805W1					
Naphthalene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
2-Methylnaphthalene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
1-Methylnaphthalene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Acenaphthylene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Acenaphthene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Fluorene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Phenanthrene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Anthracene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Fluoranthene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Pyrene	ND	0.10	EPA 8270/SIM	8-8-11	8-8-11	
Benzo[a]anthracene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Chrysene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Benzo[b]fluoranthene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Benzo[a]pyrene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270/SIM	8-8-11	8-8-11	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	38 - 105				
Pyrene-d10	80	37 - 121				
Terphenyl-d14	82	32 - 112				

# PAHs by EPA 8270D/SIM SB/SBD QUALITY CONTROL (with silica gel clean-up)

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	05W1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.295	0.354	0.500	0.500	59	71	38 - 110	18	35	
Acenaphthylene	0.349	0.396	0.500	0.500	70	79	47 - 120	13	30	
Acenaphthene	0.340	0.393	0.500	0.500	68	79	46 - 113	14	26	
Fluorene	0.362	0.410	0.500	0.500	72	82	60 - 104	12	25	
Phenanthrene	0.394	0.423	0.500	0.500	79	85	61 - 99	7	19	
Anthracene	0.400	0.427	0.500	0.500	80	85	55 - 122	7	19	
Fluoranthene	0.432	0.445	0.500	0.500	86	89	58 - 129	3	18	
Pyrene	0.426	0.441	0.500	0.500	85	88	57 - 126	3	22	
Benzo[a]anthracene	0.399	0.395	0.500	0.500	80	79	51 - 124	1	18	
Chrysene	0.425	0.430	0.500	0.500	85	86	53 - 123	1	20	
Benzo[b]fluoranthene	0.297	0.263	0.500	0.500	59	53	53 - 126	12	18	
Benzo(j,k)fluoranthene	0.294	0.256	0.500	0.500	59	51	51 - 126	14	23	
Benzo[a]pyrene	0.351	0.323	0.500	0.500	70	65	52 - 127	8	21	
Indeno(1,2,3-c,d)pyrene	0.409	0.361	0.500	0.500	82	72	49 - 123	12	26	
Dibenz[a,h]anthracene	0.411	0.322	0.500	0.500	82	64	39 - 125	24	31	
Benzo[g,h,i]perylene	0.349	0.328	0.500	0.500	70	66	40 - 125	6	30	
Surrogate:										
2-Fluorobiphenyl					64	76	38 - 105			
Pyrene-d10					85	89	37 - 121			
Terphenyl-d14					87	85	32 - 112			

#### DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: <b>Client ID:</b>	08-048-05 <b>MW-4-080211</b>					
Arsenic	ND	3.0	200.8		8-15-11	
Barium	ND	25	200.8		8-15-11	
Cadmium	ND	4.0	200.8		8-15-11	
Chromium	ND	10	200.8		8-15-11	
Lead	ND	1.0	200.8		8-15-11	
Mercury	ND	0.50	7470A		8-8-11	
Selenium	ND	5.0	200.8		8-15-11	
Silver	ND	10	200.8		8-15-11	

Lab ID:	08-048-06				
Client ID:	MW-6-080211				
Arsenic	ND	3.0	200.8	8-15-11	
Barium	140	25	200.8	8-15-11	
Cadmium	ND	4.0	200.8	8-15-11	
Chromium	ND	10	200.8	8-15-11	
Lead	ND	1.0	200.8	8-15-11	
Mercury	ND	0.50	7470A	8-8-11	
Selenium	ND	11	200.8	8-15-11	U1
Silver	ND	10	200.8	8-15-11	

21

#### DISSOLVED METALS EPA 200.8/7470A

	- <b>3</b> - (11-7			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	08-048-11					
Client ID:	MW-9-080311					
Arsenic	ND	3.0	200.8		8-15-11	
Barium	130	25	200.8		8-15-11	
Cadmium	ND	4.0	200.8		8-15-11	
Chromium	ND	10	200.8		8-15-11	
Lead	ND	1.0	200.8		8-15-11	
Mercury	ND	0.50	7470A		8-8-11	
Selenium	ND	5.0	200.8		8-15-11	
Silver	ND	10	200.8		8-15-11	

Lab ID: Client ID:	08-048-12 <b>MW-5-080311</b>			
Arsenic	ND	3.0	200.8	8-15-11
Barium	91	25	200.8	8-15-11
Cadmium	ND	4.0	200.8	8-15-11
Chromium	ND	10	200.8	8-15-11
Lead	ND	1.0	200.8	8-15-11
Mercury	ND	0.50	7470A	8-8-11
Selenium	ND	5.0	200.8	8-15-11
Silver	ND	10	200.8	8-15-11

Date of Report: August 16, 2011 Samples Submitted: August 4, 2011 Laboratory Reference: 1108-048 Project: 525-006

## DISSOLVED METALS EPA 200.8/7470A METHOD BLANK QUALITY CONTROL

Date Analyzed:	8-8&15-11
Matrix: Units:	Water ug/L (ppb)
Lab ID:	MB0808D1&MB0815D1

Analyte	Method	Result	PQL
Arsenic	200.8	ND	3.0
Barium	200.8	ND	25
Cadmium	200.8	ND	4.0
Chromium	200.8	ND	10
Lead	200.8	ND	1.0
Mercury	7470A	ND	0.50
Selenium	200.8	ND	5.0
Silver	200.8	ND	10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Date of Report: August 16, 2011 Samples Submitted: August 4, 2011 Laboratory Reference: 1108-048 Project: 525-006

## DISSOLVED METALS EPA 200.8/7470A DUPLICATE QUALITY CONTROL

Date Analyzed:	8-8&15-11
----------------	-----------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 08-048-05

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	3.0	
Barium	ND	ND	NA	25	
Cadmium	ND	ND	NA	4.0	
Chromium	ND	ND	NA	10	
Lead	ND	ND	NA	1.0	
Mercury	ND	ND	NA	0.50	
Selenium	ND	ND	NA	5.0	
Silver	ND	ND	NA	10	

Date of Report: August 16, 2011 Samples Submitted: August 4, 2011 Laboratory Reference: 1108-048 Project: 525-006

## DISSOLVED METALS EPA 200.8/7470A MS/MSD QUALITY CONTROL

Date Analyzed:	8-8&15-11
----------------	-----------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 08-048-05

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Arsenic	100	101	101	101	101	0	
Barium	100	118	118	117	117	1	
Cadmium	100	101	101	99.1	99	2	
Chromium	100	100	100	100	100	0	
Lead	100	100	100	99.3	99	1	
Mercury	12.5	12.0	96	12.1	97	1	
Selenium	100	98.6	99	98.4	98	0	
Silver	100	92.8	93	92.1	92	1	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881



## **Data Qualifiers and Abbreviations**

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

**RPD - Relative Percent Difference** 

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Kan Root	Signature	10 MW-15-080311	9 MW-14-08021	8 MW-16-080211	7 MW-8-080211	6 MW-6-080211	5 MW-4-080211	4 MW-3-080211	3 MW-2-080211	2 MW-1-080211	1 MW-11-080211-LNAPL	Lab ID Sample Identification	sampled by:	AKUS FEKETE	Aberdeen Racility	525-006	FARALLON	Phone: (425) 883-3881 • www.onsite-env.com Company:	Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052	in OnSite
Reviewed/Date					ORE	FARALION	Company	8/3/11 850 W 5	V 1705 W 2	1615 W 2	1545 W 2	1455 W 8	1405 W S	1325 W 5	1235 W 5	II4S & 5	1 000 1000 11/2/18	Date Time Sampled Sampled Matrix	(other)	Contai	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	<b>Chain of</b>
					8/4/11 1330	8/4/11 930	Date Time			X	X	X						NWTP NWTP NWTP NWTF Volatil Haloge	H-HCII H-Gx/E H-Gx H-Dx es 8260	D BTEX DB Volatil	es 8260	 B			Laboratory Number:	Custody
Chromatograms with final report						All motal samples f	Comments/Special Instructions											(with M PAHs PCBs Organ Organ Chlori Total F TCLP	ow-leve 8270D/ 8082 ochlori ophosp nated A RCRA / Metals oil and	I PAH: SIM (I SIM (I ne Pes horus I Acid He MTC/		8081A 88270D 8151A (circle e				Page
						samples field - filtered												% Mo		2.45	8				08-048	1 of 2

Data Package: Level III Level IV Electronic Data Deliverables (EDDs)

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Ken Sucot	Signature		18 Trip blank	17 MW-17-08031/	16 MW-13-080311	15 MW-12-08 03 []	4 MW-10-08 0311	13 MW-7-080311	12 MW-5-080311	11 MW-9-0803 11	Lab ID Sample Identification	Sampled by: Ken & A	Add FEKE-	Aherdeen Facility	525-006	FARALLON	Phone: (425) 883-3881 • www.onsite-env.com Company:	Inc. 14648 NE 95th Street • Redmond, WA 98052	<b>MA OnSite</b>
Reviewed/Date					0022	FARALLON	Company		4	1515 W 2	1435 W \$	1345 W	1245 W 5	1155 W	1 1055 W 8	8/3/11 945 W 8	Date Time Sampled Sampled Matrix	(other)	(TPH analysis 5 Days)		2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
					814/11 1330	8/4/11 930	Date Time	C									NWTF NWTF NWTF NWTF Volatil Halog Semiv	PH-HCIE PH-Gx/B PH-Gx PH-Dx les 8260 volatiles	) TEX B /olatiles & 8270D/SI	8260B	<u> </u>			Laboratory Number:	Custody
Chromatograms with final report						see page #1	Comments/Special Instructions										PAHs PCBs Organ Chlori Total I TCLP HEM Dīs	8082 nochlorir nophosph inated A RCRA / Metals (oil and	SIM (low- ne Pesticion norus Pesti cid Herbio MTCA Mo grease) 1	des 80 ticides cides etals ( 1664	081A 8270D 8151A (circle o	one)		: 08-048	Page 2 of 2

Data Package: Level III  $\square$  Level IV  $\square$  Electronic Data Deliverables (EDDs)  $\square$  _



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 23, 2011

Akos Fekete Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1108-048B

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on August 4, 2011.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: August 23, 2011 Samples Submitted: August 4, 2011 Laboratory Reference: 1108-048B Project: 525-006

#### **Case Narrative**

Samples were collected on August 2 and 3, 2011 and received by the laboratory on August 4, 2011. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

#### **NWTPH-HCID**

Matrix: Product Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-11-080211-LNAPL					
Laboratory ID:	08-048-01					
Gasoline Range Organics	ND	9000	NWTPH-HCID	8-19-11	8-19-11	U1
Diesel Range Organics	Detected	18000	NWTPH-HCID	8-19-11	8-19-11	
Lube Oil	Detected	36000	NWTPH-HCID	8-19-11	8-19-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S

#### NWTPH-HCID QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

ee				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0819S1					
Gasoline Range Organics	ND	20	NWTPH-HCID	8-19-11	8-19-11	
Diesel Range Organics	ND	50	NWTPH-HCID	8-19-11	8-19-11	
Lube Oil Range Organics	ND	100	NWTPH-HCID	8-19-11	8-19-11	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.



#### **Data Qualifiers and Abbreviations**

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

**RPD** - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Kan Sucot	Signature	10 MW-15-080311	9 MW-14-08021	8 MW-16-080211	7 MW-8-080211	1,7080-9-MW 9	5 MW-4-080211	4 MW-3-080211	3 MW-2-080211	2 MW-1-080211	1 MW-11-080211-LNAPL	Lab ID Sample Identification	Sampred DY:	AKOS FEKETE	Aberdeen Facility Project Manager:	525-006	FARALLON Project Number:	Company:	Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052	<b>WW OnSite</b>
Reviewed/Date					ORE	FARALLON	Company	8/3/1 850 W 5	V 1705 W 2	1615 W 2	1545 W 2	1455 W 8	1405 W 8	1325 W 5	1235 W 5	IHS W 5	1 ODA DOU INCIA	Date Time Sampled Sampled Matrix N	(other)	Contai	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of (
					8/4/11 1330	8/4/11 930	Date Time			X							(D)	NWTF NWTF NWTF Volatil Halogu Semiv	PH-Dx es 826 enated olatiles	3TEX 0B Volati		В			Laboratory Number:	Custody
Chromatograms with final report		OAdded 8/17/11. 28		CHORON 8/16/11.	- An ILlaft	All metal samples E	Comments/Special Instructions											PAHs PCBs Organ Organ Chlori Total F TCLP	8082 ochlori ophosp nated / RCRA / Metals (oil and	/SIM (I ine Pes horus Acid H / MTC/ s	s) ow-level sticides & Pesticides erbicides A Metals ee) 1664	3081A s 8270E s 8151 <i>A</i> (circle	D/SIM A		n	Page
	.\	B (STA)	assificient Somple	1 A IC SIL	no fota	Field - Eiltered													pisture	2A	8				08-048	-

age: Level III 📋 Level IV 🔟 Electronic Data Deliverables (EDDs

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Ken Sucot	Signature		18 Trip blank	17 MW-17-08031/	16 MW-13-080311	15 MW-12-08 03 11	14 MW-10-08 0311	13 MW-7-080311	12 MW-5-080311	11 MW-9-0803 11	Lab ID Sample Identification	Sampled by:	AKOS FEKEtE	Aberdeen Facility	525-006	FARALLON Project Number	Phone: (425) 883-3881 • www.onsite-env.com	14648 NE 95th Street • Redmond, WA 98052	<b>OnSite</b>
Reviewed/Date					002	FARALLON	Company		K Z N	1515 W 2	1435 W \$	1345 W Z	1245 W 5	1155 W 7	1 1055 W 8	8/3/11 945 W 8	Date Time Sampled Sampled Matrix	(other)	Contai	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of
					814/11 1330	8/4/11 930	Date Time	Cic Cic									NWTF NWTF NWTF Volatil Halog Semiv	PH-Dx	DB Volatil		В			Laboratory Number:	Custody
Chromatograms with final report			.]	_		See page #1	Comments/Special Instructions										PAHs PCBs Organ Organ Chlori Total I TCLP HEM	8270D/ 8082 nochlorin ophospl nated A RCRA / Metals (oil and	SIM (I ne Pes horus I Acid He MTC#	e) 1664	8081A s 8270D s 8151A (circle o	one)			Page
																	12	oisture	4 8	s me	TAS			08-048	ige <u>N</u> of <u>N</u>



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

March 30, 2012

Akos Fekete Farallon Consulting, LLC Queen Anne Square East Bldg. 200 West Mercer Street, Suite 302 Seattle, WA 98119

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1203-187

Dear Akos:

Enclosed are the analytical results and associated quality control data for samples submitted on March 23, 2012.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: March 30, 2012 Samples Submitted: March 23, 2012 Laboratory Reference: 1203-187 Project: 525-006

#### **Case Narrative**

Samples were collected on March 22 and 23, 2012 and received by the laboratory on March 23, 2012. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-1-032212					
Laboratory ID:	03-187-01					
Benzene	16	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	1.3	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	19	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	11	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	2.8	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	1600	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	73-121				
Client ID:	MW-2-032212					
Laboratory ID:	03-187-02					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	73-121				
Client ID:	MW-3-032212					
Laboratory ID:	03-187-03					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				

3

onns. ug/E (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-032212					
Laboratory ID:	03-187-04					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				
Client ID:	MW-6-032212					
Laboratory ID:	03-187-05					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				
Client ID:	MW-8-032212					
Laboratory ID:	03-187-06					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-16-032212					
Laboratory ID:	03-187-07					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	73-121				
Client ID:	MW-14-032212					
Laboratory ID:	03-187-08					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				
Client ID:	MW-15-032212					
Laboratory ID:	03-187-09					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9-032312					
Laboratory ID:	03-187-10					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	73-121				
Client ID:	MW-5-032312					
Laboratory ID:	03-187-11					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				
Client ID:	MW-7-032312					
Laboratory ID:	03-187-12					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	170	100	NWTPH-Gx	3-28-12	3-28-12	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-10-032312					
Laboratory ID:	03-187-13					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				
Client ID:	MW-12-032312					
Laboratory ID:	03-187-14					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	73-121				
Client ID:	MW-13-032312					
Laboratory ID:	03-187-15					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-17-032312					
Laboratory ID:	03-187-16					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				
Client ID:	MW-11-032312					
Laboratory ID:	03-187-17					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				

# NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0328W1					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	73-121				
Laboratory ID:	MB0328W2					
Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Toluene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Ethyl Benzene	ND	1.0	EPA 8021	3-28-12	3-28-12	
m,p-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
o-Xylene	ND	1.0	EPA 8021	3-28-12	3-28-12	
Gasoline	ND	100	NWTPH-Gx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	73-121				

#### NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flage
DUPLICATE											
Laboratory ID:	03-18	37-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Surrogate:											
Fluorobenzene						93	92	73-121			
Laboratory ID:	03-18	37-04									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Surrogate:											
Fluorobenzene						92	93	73-121			
MATRIX SPIKES											
Laboratory ID:	03-18	37-02									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	49.2	51.5	50.0	50.0	ND	98	103	82-120	5	8	
Toluene	49.8	53.7	50.0	50.0	ND	100	107	84-119	8	8	
Ethyl Benzene	50.3	52.2	50.0	50.0	ND	101	104	84-122	4	9	
m,p-Xylene	50.8	54.0	50.0	50.0	ND	102	108	85-121	6	9	
o-Xylene	50.9	52.0	50.0	50.0	ND	102	104	84-121	2	9	
Surrogate:											
Fluorobenzene						94	92	73-121			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

# NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-1-032212			•		V
Laboratory ID:	03-187-01					
Diesel Range Organics	ND	0.71	NWTPH-Dx	3-28-12	3-28-12	U1
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
Client ID:	MW-2-032212					
Laboratory ID:	03-187-02					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	106	50-150				
Client ID:	MW-3-032212					
Laboratory ID:	03-187-03					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	MW-4-032212					
Laboratory ID:	03-187-04					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	MW-6-032212					
Laboratory ID:	03-187-05					
Diesel Range Organics	<u>ND</u>	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits	HITTER DA	0 20 12	0 20 12	
o-Terphenyl	94	50-150				
Client ID:	MW/ 0 000040					
Client ID:	<b>MW-8-032212</b> 03-187-06					
Laboratory ID:	03-107-00		NWTPH-Dx	3-28-12	3-28-12	
	ND	0.26				
Diesel Range Organics	ND ND	0.26 0.42				
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	3-28-12	3-28-12	
<b>v</b>						

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

# NWTPH-Dx (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-16-032212			•		<u> </u>
Laboratory ID:	03-187-07					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
Client ID:	MW-14-032212					
Laboratory ID:	03-187-08					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	MW-15-032212					
Laboratory ID:	03-187-09					
Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits		0 20 12	0 20 12	
o-Terphenyl	86	50-150				
Client ID:	MW-9-032312					
	03-187-10					
Laboratory ID: Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits		5-20-12	3-20-12	
o-Terphenyl	92	50-150				
0-reiphenyr	32	00-100				
Client ID:	MW-5-032312					
Laboratory ID:	03-187-11	0.07		0.00.40	0.00.40	
Diesel Range Organics Lube Oil Range Organics	ND	0.27 0.43		3-28-12	3-28-12	
Lube Oil Range Organics Surrogate:	ND Dereant Resources	0.43 Control Limits	NWTPH-Dx	3-28-12	3-28-12	
Surrogate: o-Terphenyl	Percent Recovery 99	50-150				
о-тегрпенуг	33	50-150				
	MNN 7 000040					
Client ID:	MW-7-032312					
Laboratory ID:	03-187-12	0.00		2 20 40	2 20 40	
Diesel Range Organics	ND	0.26		3-28-12	3-28-12	
Lube Oil Range Organics	ND Dereant Resources	0.42	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery 95	Control Limits 50-150				
o-Terphenyl	90	50-750				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody,

and is intended only for the use of the individual or company to whom it is addressed.

# NWTPH-Dx (with acid/silica gel clean-up)

Analyte         Result         PQL         Method         Prepared         Analyzed         Flags           Client ID:         MW-10-032312         Laboratory ID:         03-187-13	onits. htg/l (pph)				Date	Date	
Laboratory ID:         03-187-13           Diesel Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           Laboratory ID:         03-187-14         Laboratory ID:         03-187-14         3-28-12         3-28-12           Surrogate:         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12           Objesel Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Surogate:         Percent Recovery         Control Limits         3-28-12         3-28-12           Surogate:         03-187-16         10         0.26         NWTPH-Dx         3-28-12         3-28-12           Surogate:	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Diesel Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil Range Organics         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           Client ID:         MW-12-032312         103-187-14         103-187-14         104-103-103-103-103         105-150           Diesel Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Lube Oil Range Örganics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         50-150         50-150           Client ID:         MW-12-032312         2000         3-28-12         3-28-12         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         0-160         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         0.187-16         0.26         NWTPH-Dx         3-28-12         3-28-12 <t< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td>03-187-13</td><td></td><td></td><td></td><td></td><td></td></t<>	· · · · · · · · · · · · · · · · · · ·	03-187-13					
Surrogate:         Percent Recovery         Control Limits           o-Terphenyl         93         50-150           Client ID:         MW-12-032312         Laboratory ID:         03-187-14           Diesel Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         -76rphenyl         3-28-12         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         -76rphenyl         3-28-12         3-28-12         3-28-12           Laboratory ID:         03-187-15         Desel Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
o-Terphenyl         93         50-150           Client ID:         MW-12-032312         Jack Stress         ND         0.26         NWTPH-Dx         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3			-	NWTPH-Dx	3-28-12	3-28-12	
Client ID:         MW-12-032312           Laboratory ID:         03-187-14           Diesel Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           O'Terphenyl         93         50-150         50-150         50-150         50-150           Client ID:         MW-13-032312         100-0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           Surogate:         Percent Recovery							
Laboratory ID:         03-187-14           Diesel Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           O-Terphenyl         93         50-150         50-150         50-150         50-150           Client ID:         MW-13-032312         Laboratory ID:         03-187-15         50-150         52-8-12         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         -         -         -           o-Terphenyl         86         50-150         50-150         52-12         3-28-12         -           Client ID:         MW-17-032312         -         -         -         3-28-12         3-28-12         3-28-12           Lube Oil         0.58         0.42         NWTPH-Dx         3-28-12         3-28-12         -         -           Surrogate:         Percent Recovery <td< td=""><td>o-Terphenyl</td><td>93</td><td>50-150</td><td></td><td></td><td></td><td></td></td<>	o-Terphenyl	93	50-150				
Lube Oil Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         50-150         3-28-12         3-28-12         3-28-12           Client ID:         MW-13-032312         Solution							
Surrogate:         Percent Recovery         Control Limits           o-Terphenyl         93         50-150           Client ID:         MW-13-032312           Laboratory ID:         03-187-15           Diesel Range Organics         ND         0.26           ND         0.41         NWTPH-Dx         3-28-12           Surrogate:         Percent Recovery         Control Limits           o-Terphenyl         86         50-150           Client ID:         MW-17-032312           Laboratory ID:         03-187-16           Diesel Range Organics         1.0         0.26           NUTPH-Dx         3-28-12         3-28-12           Laboratory ID:         03-187-16           Diesel Range Organics         1.0         0.26           VITPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits           o-Terphenyl         93         50-150           Client ID:         MW-11-032312         3-28-12           Laboratory ID:         03-187-17           93         50-150         50-150           Client ID:         MW-11-032312           Laboratory ID:         03-187-17	Diesel Range Organics	ND	0.26	NWTPH-Dx	3-28-12	3-28-12	
o-Terphenyl         93         50-150           Client ID:         MW-13-032312         Laboratory ID:         03-187-15           Diesel Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits	Lube Oil Range Organics	ND	0.41	NWTPH-Dx	3-28-12	3-28-12	
Client ID:         MW-13-032312           Laboratory ID:         03-187-15           Diesel Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         50-150         3-28-12         3-28-12           Client ID:         MW-17-032312         Laboratory ID:         03-187-16         3-28-12         3-28-12         3-28-12           Surrogate:         03-187-16         Diesel Range Organics         1.0         0.26         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID:         03-187-15           Diesel Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           Client ID:         MW-17-032312         Laboratory ID:         03-187-16         03-187-16         03-187-16           Diesel Range Organics         1.0         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil         0.58         0.42         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         0-150         0-150           Client ID:         MW-11-032312         Laboratory ID:         03-187-17         0-26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil         0.44         0.41         NWTPH-Dx         3-28-12         3-28-12           Lube Oil         0.44         0.41         NWTPH-Dx         3-28-12         3-28	o-Terphenyl	93	50-150				
Laboratory ID:         03-187-15           Diesel Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           Client ID:         MW-17-032312         Laboratory ID:         03-187-16         03-187-16         03-187-16           Diesel Range Organics         1.0         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil         0.58         0.42         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         0-150         0-150           Client ID:         MW-11-032312         Laboratory ID:         03-187-17         0-26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil         0.44         0.41         NWTPH-Dx         3-28-12         3-28-12           Lube Oil         0.44         0.41         NWTPH-Dx         3-28-12         3-28	Client ID:	MW/_12_022212					
Diesel Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           O'I Range Organics         Percent Recovery         Control Limits         3-28-12         3-28-12         3-28-12           Client ID:         MW-17-032312           3-28-12         3-28-12         3-28-12           Laboratory ID:         03-187-16          0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil         0.58         0.42         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         o-Terphenyl         93         50-150           Client ID:         MW-11-032312                Laboratory ID:         03-187-17         03-187-17           3-28-12         3-28-12            Diesel Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12							
Lube Oil Range Organics         ND         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         50-150         50-150         50-150           Client ID:         MW-17-032312         Laboratory ID:         03-187-16         50-150         50-150         50-150           Client ID:         MW-17-032312         Laboratory ID:         03-187-16         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150         50-150	· · · · · ·		0.26		3-28-12	3-28-12	
Surrogate:         Percent Recovery         Control Limits           o-Terphenyl         86         50-150           Client ID:         MW-17-032312           Laboratory ID:         03-187-16           Diesel Range Organics         1.0         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil         0.58         0.42         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits	<b>U</b>						
o-Terphenyl         86         50-150           Client ID:         MW-17-032312 Laboratory ID:         03-187-16           Diesel Range Organics         1.0         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil         0.58         0.42         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12           O-Terphenyl         93         50-150         50-150         50-150				NWITH DX	0 20 12	0 20 12	
Laboratory ID:       03-187-16         Diesel Range Organics       1.0       0.26       NWTPH-Dx       3-28-12       3-28-12         Lube Oil       0.58       0.42       NWTPH-Dx       3-28-12       3-28-12         Surrogate:       Percent Recovery       Control Limits       3-28-12       3-28-12         o-Terphenyl       93       50-150       50-150         Client ID:       MW-11-032312       MW-11-032312         Laboratory ID:       03-187-17       03-187-17         Diesel Range Organics       ND       0.26       NWTPH-Dx       3-28-12       3-28-12         Lube Oil       0.44       0.41       NWTPH-Dx       3-28-12       3-28-12         Surrogate:       Percent Recovery       Control Limits       3-28-12       3-28-12		•					
Laboratory ID:       03-187-16         Diesel Range Organics       1.0       0.26       NWTPH-Dx       3-28-12       3-28-12         Lube Oil       0.58       0.42       NWTPH-Dx       3-28-12       3-28-12         Surrogate:       Percent Recovery       Control Limits       3-28-12       3-28-12         o-Terphenyl       93       50-150       50-150         Client ID:       MW-11-032312       MW-11-032312         Laboratory ID:       03-187-17       03-187-17         Diesel Range Organics       ND       0.26       NWTPH-Dx       3-28-12       3-28-12         Lube Oil       0.44       0.41       NWTPH-Dx       3-28-12       3-28-12         Surrogate:       Percent Recovery       Control Limits       3-28-12       3-28-12	Client ID:	MW-17-032312					
Diesel Range Organics         1.0         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil         0.58         0.42         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         3-28-12         3-28-12           o-Terphenyl         93         50-150         50-150         50-150           Client ID:         MW-11-032312         MW-11-032312         Surrogate:         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12         3-28-12	• · · · · · · · · · · · ·						
Lube Oil0.580.42NWTPH-Dx3-28-123-28-12Surrogate:Percent RecoveryControl Limitso-Terphenyl9350-150Client ID:MW-11-032312Laboratory ID:03-187-17Diesel Range OrganicsND0.26NWTPH-Dx3-28-123-28-12Lube Oil0.440.41NWTPH-Dx3-28-123-28-12Surrogate:Percent RecoveryControl Limits			0.26	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:       Percent Recovery       Control Limits         o-Terphenyl       93       50-150         Client ID:       MW-11-032312         Laboratory ID:       03-187-17         Diesel Range Organics       ND       0.26       NWTPH-Dx       3-28-12       3-28-12         Lube Oil       0.44       0.41       NWTPH-Dx       3-28-12       3-28-12         Surrogate:       Percent Recovery       Control Limits	<b>č</b>	-					
o-Terphenyl         93         50-150           Client ID:         MW-11-032312           Laboratory ID:         03-187-17           Diesel Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil         0.44         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits					0 20 12	0 20 12	
Laboratory ID:         03-187-17           Diesel Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil         0.44         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         Control Limits         Control Limits		-					
Laboratory ID:         03-187-17           Diesel Range Organics         ND         0.26         NWTPH-Dx         3-28-12         3-28-12           Lube Oil         0.44         0.41         NWTPH-Dx         3-28-12         3-28-12           Surrogate:         Percent Recovery         Control Limits         Control Limits         Control Limits	0.1						
Lube Oil0.440.41NWTPH-Dx3-28-123-28-12Surrogate:Percent RecoveryControl Limits	Laboratory ID:						
Surrogate: Percent Recovery Control Limits		ND		NWTPH-Dx	3-28-12		
				NWTPH-Dx	3-28-12	3-28-12	
o-Terphenyl 103 50-150							
	o-Terphenyl	103	50-150				

#### NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0328W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	3-28-12	3-28-12	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	3-28-12	3-28-12	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

Analyte	Res	ult	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	03-18	7-01						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	U1
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			88	88	50-150			
Laboratory ID:	03-18	7-05						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			94	95	50-150			



## **Data Qualifiers and Abbreviations**

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U1 - The practical quantitation limit is elevated due to interferences present in the sample.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a mercury cleanup procedure.

Y - Sample extract treated with an acid/silica gel cleanup procedure.

Ζ-

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

**RPD - Relative Percent Difference** 

Reviewed/Date Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	MW-9-032312	MW-15-032212	MW-14-032212	MW-16-032212	MW-8-032212	MW-6-032212	MW-4-032212	MW-3-032212	MW-2-032212	MW-1-032212	Lab ID Sample Identification	Sampled by: Ven Secot	AKUS FEREte	Project Name: Aberdeen Pacility	525-006	FORALLON Project Number:		Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	OnSite Environmental Inc.
Data Package: Level III  Level IV					Corrett.	PARALLON	Company	3/22/12 850 W 5	V 1540 W 5	1505 W 5	1430 W 5	1345 W 5	1310 W 5	1220 W 5	1135 W 5	1055 W 5	3/22/12/1015 W 5	Date Time No. of Sampled Sampled Matrix Cont.	(other)		Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of Custody
Electronic Data Deliverables (EDDs)					3/27/12 1720	3/23/12 1730	Date Time							X	X			NWTPI NWTPI NWTPI Volatile Haloge	H-Dx es 8260 enated '	3TEX DB Volatile	s 8260B				Laboratory Number:	istody
Chromatograms with final report							Comments/Special Instructions											(with lc PAHs & PCBs & Organo Organo Chlorir Total F Total N TCLP	8082 pphosph nated A RCRA N MTCA N Metals	el PAHs SIM (Id ne Pest norus P acid He Acid He Metals		081A 8270D			ber: 03-187	Page 1 of 2

Reviewed/Date Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		111-11-0-212	MW-17-032312	MW-13-032312	MW-12-032312	MW-10-032312	MW-7-032312	MW-5-032312	Lab ID Sample Identification	Ken Scart	AKOS PEKETE	Aberdeen Facility	525-006	FARALLON	Company: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	INA OnSite	
Data Package: Level III Devel IV		•			OF WE FT	FARALLON	Company		N IHAT IN D	\$310 W 5	1225 W 5	2 M 5411	1100 W 5	1010 W 5	5 M 055 2112 330 W	Date Time No. of Sampled Sampled Matrix Cont.	(other)		Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of Custody	
Electronic Data Deliverables (EDDs)		0			3/22/12 1730	3/23/12 1730	Date Time		X		X				X	NWTP NWTP NWTP NWTP Volatili Haloge	H-Gx/ H-Gx H-Dx es 826	BTEX	s 8260B				Laboratory Number:	ustody	
Chromatograms with final report		d 					Comments/Special Instructions									Semiv (with le PAHs PCBs Organ Organ Chlorin Total f Total f Total f	olatiles ow-lev 8270D 8082 ochlor pphosp nated / RCRA   MTCA Metals	s 8270D el PAHs /SIM (lo ine Pest phorus Pe Acid Her Metals Metals	/SIM ) w-level) icides 80 esticides bicides	081A 8270D,			nber: 03-187	Page 2 of 2	



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

December 10, 2012

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1211-230

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on November 30, 2012.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: December 10, 2012 Samples Submitted: November 30, 2012 Laboratory Reference: 1211-230 Project: 525-006

### **Case Narrative**

Samples were collected on November 30, 2012 and received by the laboratory on November 30, 2012. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

### NWTPH Gx/BTEX Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

The MTCA Method A clean-up level for Benzene is not achievable in samples B27A-10.5 and B9A-9.0 due to their high moisture content.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

### NWTPH-Gx/BTEX

onits. mg/kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B27A-3.5					
Laboratory ID:	11-230-01					
Gasoline	ND	5.2	NWTPH-Gx	12-3-12	12-4-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	70-132				
Client ID:	B27A-10.5					
Laboratory ID:	11-230-03					
Benzene	ND	0.046	EPA 8021B	12-3-12	12-3-12	
Toluene	ND	0.23	EPA 8021B	12-3-12	12-3-12	
Ethyl Benzene	ND	0.23	EPA 8021B	12-3-12	12-3-12	
m,p-Xylene	ND	0.23	EPA 8021B	12-3-12	12-3-12	
o-Xylene	ND	0.23	EPA 8021B	12-3-12	12-3-12	
Gasoline	ND	23	NWTPH-Gx	12-3-12	12-3-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	110	70-132				
Client ID:	B9A-5.0					
Laboratory ID:	11-230-05					
Gasoline	ND	8.1	NWTPH-Gx	12-3-12	12-4-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	114	70-132				
Client ID:	B9A-9.0					
Laboratory ID:	11-230-06					
Benzene	ND	0.034	EPA 8021B	12-3-12	12-3-12	
Toluene	ND	0.17	EPA 8021B	12-3-12	12-3-12	
Ethyl Benzene	ND	0.17	EPA 8021B	12-3-12	12-3-12	
n,p-Xylene	ND	0.17	EPA 8021B	12-3-12	12-3-12	
o-Xylene	ND	0.17	EPA 8021B	12-3-12	12-3-12	
Gasoline	ND	17	NWTPH-Gx	12-3-12	12-3-12	
Surrogate:	Percent Recovery	Control Limits	·			
Fluorobenzene	122	70-132				

### NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

5 5 (1 )				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1203S2					
Benzene	ND	0.020	EPA 8021B	12-3-12	12-3-12	
Toluene	ND	0.050	EPA 8021B	12-3-12	12-3-12	
Ethyl Benzene	ND	0.050	EPA 8021B	12-3-12	12-3-12	
m,p-Xylene	ND	0.050	EPA 8021B	12-3-12	12-3-12	
o-Xylene	ND	0.050	EPA 8021B	12-3-12	12-3-12	
Gasoline	ND	5.0	NWTPH-Gx	12-3-12	12-3-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	70-132				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	12-00	04-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	ΙA	NA	NA	30	
Surrogate:											
Fluorobenzene						115	114	70-132			
SPIKE BLANKS											
Laboratory ID:	SB12	03S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	1.02	1.04	1.00	1.00		102	104	71-125	2	11	
Toluene	1.03	1.05	1.00	1.00		103	105	77-125	2	11	
Ethyl Benzene	1.03	1.03	1.00	1.00		103	103	76-125	0	10	
m,p-Xylene	1.04	1.03	1.00	1.00		104	103	78-124	1	9	
o-Xylene	1.00	0.985	1.00	1.00		100	99	77-123	2	9	
Surrogate:											
Fluorobenzene						105	106	70-132			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

### NWTPH-Dx (with acid/silica gel clean-up)

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
S-S-5-120112					
12-003-07					
ND	27	NWTPH-Dx	12-3-12	12-3-12	
ND	54	NWTPH-Dx	12-3-12	12-3-12	
Percent Recovery	Control Limits				
124	50-150				
S-N-4-120112					
12-003-09					
8500	140	NWTPH-Dx	12-3-12	12-4-12	
ND	420	NWTPH-Dx	12-3-12	12-4-12	U1
Percent Recovery	Control Limits				
	50-150				F
S-E-2-120112					
12-003-10					
44	29	NWTPH-Dx	12-3-12	12-3-12	
ND	58	NWTPH-Dx	12-3-12	12-3-12	
Percent Recovery	Control Limits				
118	50-150				
	S-S-5-120112 12-003-07 ND ND Percent Recovery 124 S-N-4-120112 12-003-09 8500 ND Percent Recovery  S-E-2-120112 12-003-10 44 ND Percent Recovery	S-S-5-120112 12-003-07           ND         27 54           Percent Recovery 124         Control Limits 50-150           S-N-4-120112 12-003-09         140 420           Percent Recovery Control Limits 50-150           S-E-2-120112 12-003-10         Control Limits 50-150           S-E-2-120112 12-003-10         Second Solution           Percent Recovery 12-003-10         Control Limits 58           Percent Recovery ND         Solution	S-S-5-120112 12-003-07         ND         27 54         NWTPH-Dx NWTPH-Dx           Percent Recovery 124         Control Limits 50-150            S-N-4-120112 12-003-09         NWTPH-Dx           8500         140         NWTPH-Dx           Percent Recovery ND         420         NWTPH-Dx           Percent Recovery 12-003-10         Control Limits 50-150         NWTPH-Dx           S-E-2-120112 12-003-10         S8         NWTPH-Dx           Percent Recovery ND         58         NWTPH-Dx           Percent Recovery ND         58         NWTPH-Dx	Result         PQL         Method         Prepared           S-S-5-120112         12-003-07         12-3-12         12-3-12           ND         27         NWTPH-Dx         12-3-12           ND         54         NWTPH-Dx         12-3-12           Percent Recovery         Control Limits         124         50-150           S-N-4-120112         50-150         12-3-12         12-3-12           Percent Recovery         Control Limits         12-3-12         12-3-12           ND         420         NWTPH-Dx         12-3-12           Percent Recovery         Control Limits         12-3-12           Percent Recovery         Control Limits         12-3-12           Percent Recovery         Control Limits         12-3-12           12-003-10         58         NWTPH-Dx         12-3-12           Percent Recovery         Control Limits         12-3-12	Result         PQL         Method         Prepared         Analyzed           S-S-5-120112         12-003-07         12-003-07         12-3-12         12-3-12           ND         27         NWTPH-Dx         12-3-12         12-3-12           ND         54         NWTPH-Dx         12-3-12         12-3-12           Percent Recovery         Control Limits         12-3-12         12-3-12           124         50-150              S-N-4-120112            12-3-12         12-4-12           12-003-09         140         NWTPH-Dx         12-3-12         12-4-12           ND         420         NWTPH-Dx         12-3-12         12-4-12           Percent Recovery         Control Limits          50-150            S-E-2-120112          50-150             S-E-2-120112               12-003-10           12-3-12         12-3-12           44         29         NWTPH-Dx         12-3-12         12-3-12           Percent Recovery         Control Li

### NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Dat	е	
Analyte	Result	PQL	Method	Prepared	Analy	zed	Flags
METHOD BLANK							
Laboratory ID:	MB1203S1						
Diesel Range Organics	ND	25	NWTPH-Dx	12-3-12	12-3-	12	
Lube Oil Range Organics	ND	50	NWTPH-Dx	12-3-12	12-3-	12	
Surrogate:	Percent Recove	ery Control Limits	5				
o-Terphenyl	98	50-150					
			Percent	Recovery		RPD	
Analyte	Resu	lt	Recovery	Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	12-002-	-01					
	ORIG	DUP					
Diesel Range Organics	ND	ND			NA	NA	U1
Lube Oil	17500 1	6900			3	NA	
	17500	0000			•	10.	

---

o-Terphenyl

--- 50-150

```
OnSite Environmental, Inc. 14648 NE 95<sup>th</sup> Street, Redmond, WA 98052 (425) 883-3881
```

S,S

# VOLATILE PETROLEUM HYDROCARBONS

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B27A-3.5					
Laboratory ID:	11-230-01					
Aliphatic C5-C6	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C6-C8	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C8-C10	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C10-C12	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Total Aliphatic:	NA		NWTPH-VPH	12-3-12	12-4-12	
Aromatic C8-C10	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aromatic C10-C12	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aromatic C12-C13	6.5	5.0	NWTPH-VPH	12-3-12	12-4-12	
Total Aromatic:	6.5		NWTPH-VPH	12-3-12	12-4-12	
Methyl t-butyl ether	ND	0.052	EPA 8021B	12-3-12	12-4-12	
Benzene	ND	0.020	EPA 8021B	12-3-12	12-4-12	
Toluene	ND	0.052	EPA 8021B	12-3-12	12-4-12	
Ethylbenzene	ND	0.052	EPA 8021B	12-3-12	12-4-12	
m,p-Xylene	ND	0.052	EPA 8021B	12-3-12	12-4-12	
o-Xylene	ND	0.052	EPA 8021B	12-3-12	12-4-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	70-132				

### **VOLATILE PETROLEUM HYDROCARBONS**

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B9A-5.0					
Laboratory ID:	11-230-05					
Aliphatic C5-C6	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C6-C8	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C8-C10	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C10-C12	17	5.0	NWTPH-VPH	12-3-12	12-4-12	
Total Aliphatic:	17		NWTPH-VPH	12-3-12	12-4-12	
Aromatic C8-C10	7.9	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aromatic C10-C12	6.9	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aromatic C12-C13	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Total Aromatic:	15		NWTPH-VPH	12-3-12	12-4-12	
Methyl t-butyl ether	ND	0.081	EPA 8021B	12-3-12	12-4-12	
Benzene	ND	0.020	EPA 8021B	12-3-12	12-4-12	
Toluene	ND	0.081	EPA 8021B	12-3-12	12-4-12	
Ethylbenzene	ND	0.081	EPA 8021B	12-3-12	12-4-12	
m,p-Xylene	ND	0.081	EPA 8021B	12-3-12	12-4-12	
o-Xylene	ND	0.081	EPA 8021B	12-3-12	12-4-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	114	70-132				

Date of Report: December 10, 2012 Samples Submitted: November 30, 2012 Laboratory Reference: 1211-230 Project: 525-006

### VOLATILE PETROLEUM HYDROCARBONS METHOD BLANK QUALITY CONTROL

ee				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB1203S2					
Aliphatic C5-C6	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C6-C8	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C8-C10	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aliphatic C10-C12	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Total Aliphatic:	NA		NWTPH-VPH	12-3-12	12-4-12	
Aromatic C8-C10	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aromatic C10-C12	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Aromatic C12-C13	ND	5.0	NWTPH-VPH	12-3-12	12-4-12	
Total Aromatic:	NA		NWTPH-VPH	12-3-12	12-4-12	
Methyl t-butyl ether	ND	0.050	EPA 8021B	12-3-12	12-4-12	
Benzene	ND	0.020	EPA 8021B	12-3-12	12-4-12	
Toluene	ND	0.050	EPA 8021B	12-3-12	12-4-12	
Ethylbenzene	ND	0.050	EPA 8021B	12-3-12	12-4-12	
m,p-Xylene	ND	0.050	EPA 8021B	12-3-12	12-4-12	
o-Xylene	ND	0.050	EPA 8021B	12-3-12	12-4-12	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	70-132				

### VOLATILE PETROLEUM HYDROCARBONS DUPLICATE QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level		Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	12-00	04-01								
	ORIG	DUP								
Aliphatic C5-C6	ND	ND	NA	NA		NA	NA	NA	30	
Aliphatic C6-C8	ND	ND	NA	NA		NA	NA	NA	30	
Aliphatic C8-C10	ND	ND	NA	NA		NA	NA	NA	30	
Aliphatic C10-C12	ND	ND	NA	NA		NA	NA	NA	30	
Total Aliphatic:	NA	NA	NA	NA		NA	NA	NA	30	
Aromatic C8-C10	ND	ND	NA	NA		NA	NA	NA	30	
Aromatic C10-C12	ND	ND	NA	NA		NA	NA	NA	30	
Aromatic C12-C13	ND	ND	NA	NA		NA	NA	NA	30	
Total Aromatic:	NA	NA	NA	NA		NA	NA	NA	30	
MTBE	ND	ND	NA	NA		NA	NA	NA	30	
Benzene	ND	ND	NA	NA		NA	NA	NA	30	
Toluene	ND	ND	NA	NA		NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		NA	NA	NA	30	

Fluorobenzene

110 112 70-132

### VOLATILE PETROLEUM HYDROCARBONS SPIKE BLANK QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike Level		Result	t Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB12	03S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.999	1.04	1.00	1.00		100	104	71-125	4	11	
Toluene	1.02	1.06	1.00	1.00		102	106	77-125	4	11	
Ethyl Benzene	1.01	1.05	1.00	1.00		101	105	76-125	4	10	
m,p-Xylene	1.02	1.06	1.00	1.00		102	106	78-124	4	9	
o-Xylene	0.975	1.00	1.00	1.00		98	100	77-123	3	9	
Surrogate:											
Fluorobenzene						105	106	70-132			

11

Date of Report: December 10, 2012 Samples Submitted: November 30, 2012 Laboratory Reference: 1211-230 Project: 525-006

## % MOISTURE

Date Analyzed: 12-3-12

Client ID	Lab ID	% Moisture
B27A-3.5	11-230-01	9
B27A-10.5	11-230-03	53
B9A-5.0	11-230-05	26
B9A-9.0	11-230-06	48

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.



### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881



December 10, 2012

Mr. David Baumeister OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052

Dear Mr. Baumeister,

On December 3rd, 2 samples were received by our laboratory and assigned our laboratory project number EV12120002. The project was identified as your Lab Ref #11-230 / Proj #525-006. The sample identification and requested analyses are outlined on the attached chain of custody record.

QC sample results for this data met laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

**ALS Laboratory Group** 

Rick Bagan Laboratory Director

Page 1
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com



# CERTIFICATE OF ANALYSIS

CLIENT:	OnSite Environmental Inc. 14648 NE 95th Street Redmond, WA 98052
CLIENT CONTACT:	David Baumeister
CLIENT PROJECT:	Lab Ref #11-230 / Proj #525-006

DATE: 12/10/2012 ALS JOB#: EV12120002 WDOE ACCREDITATION: C601

CASE NARRATIVE

No sample abnormalities were qualified in this report.

Page 2
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com



# CERTIFICATE OF ANALYSIS

CLIENT:	OnSite Environme 14648 NE 95th Str Redmond, WA 980	eet		DA ALS JO	B#: EV1	10/2012 12120002	
CLIENT CONTACT:	David Baumeister	052		ALS SAMPL DATE RECEIVI		3/2012	
CLIENT PROJECT:	Lab Ref #11-230 /	Proi #525-006		LLECTION DA		30/2012 9:40	0.00 AM
CLIENT SAMPLE ID	B27A-3.5	110, #020 000		ACCREDITATIO			
		DAT	A RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS A DATE	ANALYSIS BY
>C8-C10 Aliphatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS
>C10-C12 Aliphatics	NWEPH	37	5.0	1	MG/KG	12/04/2012	EBS
>C12-C16 Aliphatics	NWEPH	500	5.0	1	MG/KG	12/04/2012	EBS
>C16-C21 Aliphatics	NWEPH	460	5.0	1	MG/KG	12/04/2012	EBS
>C21-C34 Aliphatics	NWEPH	820	5.0	1	MG/KG	12/04/2012	EBS
>C8-C10 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS
>C10-C12 Aromatics	NWEPH	18	5.0	1	MG/KG	12/04/2012	EBS
>C12-C16 Aromatics	NWEPH	370	5.0	1	MG/KG	12/04/2012	EBS
>C16-C21 Aromatics	NWEPH	820	5.0	1	MG/KG	12/04/2012	EBS
>C21-C34 Aromatics	NWEPH	1400	5.0	1	MG/KG	12/04/2012	EBS
SURROGATE	METHOD	%REC				ANALYSIS A DATE	ANALYSIS BY
C25	NWEPH	95.0				12/04/2012	EBS
p-Terphenyl	NWEPH	109				12/04/2012	EBS

U - Analyte analyzed for but not detected at level above reporting limit.

Page 3
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com



		CERTIFIC	ATE OF ANALYSI	S				
CLIENT:	OnSite Environme 14648 NE 95th Sti Redmond, WA 98	reet		DA ⁻ ALS JOI ALS SAMPLI	B#: EV1	10/2012 12120002		
CLIENT CONTACT:	David Baumeister			DATE RECEIVE		3/2012		
CLIENT PROJECT:	Lab Ref #11-230 /	Proj #525-006	CO	LLECTION DA	TE: 11/3	30/2012 11:2	25:00 AM	
CLIENT SAMPLE ID	B9A-5.0		WDOE /	ACCREDITATIC	DN: C60	)1		
		DAT	A RESULTS					
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS A DATE	NALYSIS BY	
>C8-C10 Aliphatics	NWEPH	8.4	5.0	1	MG/KG	12/04/2012	EBS	
>C10-C12 Aliphatics	NWEPH	8.5	5.0	1	MG/KG	12/04/2012	EBS	
>C12-C16 Aliphatics	NWEPH	38	5.0	1	MG/KG	12/04/2012	EBS	
>C16-C21 Aliphatics	NWEPH	91	5.0	1	MG/KG	12/04/2012	EBS	
>C21-C34 Aliphatics	NWEPH	150	5.0	1	MG/KG	12/04/2012	EBS	
>C8-C10 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS	
>C10-C12 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS	
>C12-C16 Aromatics	NWEPH	5.8	5.0	1	MG/KG	12/04/2012	EBS	
>C16-C21 Aromatics	NWEPH	49	5.0	1	MG/KG	12/04/2012	EBS	
>C21-C34 Aromatics	NWEPH	82	5.0	1	MG/KG	12/04/2012	EBS	:
SURROGATE	METHOD	%REC				ANALYSIS A DATE	NALYSIS BY	
C25	NWEPH	90.0				12/04/2012	EBS	
p-Terphenyl	NWEPH	107				12/04/2012	EBS	

U - Analyte analyzed for but not detected at level above reporting limit.

Page 4
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com



# CERTIFICATE OF ANALYSIS

CLIENT:	OnSite Environmental Inc.
	14648 NE 95th Street
	Redmond, WA 98052
CLIENT CONTACT:	David Baumeister
CLIENT PROJECT:	Lab Ref #11-230 / Proj #525-006

# DATE: 1 ALS SDG#: E WDOE ACCREDITATION: C

12/10/2012 EV12120002 C601

LABORATORY BLANK RESULTS

# MBLK-1242012 - Batch R79505 - Soil by NWEPH

			REPORTING	DILUTION		ANALYSIS	
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY
>C8-C10 Aliphatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS
>C10-C12 Aliphatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS
>C12-C16 Aliphatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS
>C16-C21 Aliphatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS
>C21-C34 Aliphatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS
>C8-C10 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS
>C10-C12 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS
>C12-C16 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS
>C16-C21 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS
>C21-C34 Aromatics	NWEPH	U	5.0	1	MG/KG	12/04/2012	EBS

Page 5
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com



# CERTIFICATE OF ANALYSIS

CLIENT:	OnSite Environmental Inc.
	14648 NE 95th Street
	Redmond, WA 98052
CLIENT CONTACT:	David Baumeister
CLIENT PROJECT:	Lab Ref #11-230 / Proj #525-006

# DATE: 12/10/2012 ALS SDG#: EV12120002 WDOE ACCREDITATION: C601

LABORATORY CONTROL SAMPLE RESULTS

# ALS Test Batch ID: R79505 - Soil by NWEPH

SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	ANALYSIS DATE	ANALYSIS BY	
>C8-C10 Aliphatics - BS	NWEPH	74.0			12/04/2012	EBS	1
>C8-C10 Aliphatics - BSD	NWEPH	72.0	3		12/04/2012	EBS	I
>C10-C12 Aliphatics - BS	NWEPH	78.0			12/04/2012	EBS	I
>C10-C12 Aliphatics - BSD	NWEPH	77.0	1		12/04/2012	EBS	1
>C12-C16 Aliphatics - BS	NWEPH	78.0			12/04/2012	EBS	1
>C12-C16 Aliphatics - BSD	NWEPH	79.0	1		12/04/2012	EBS	1
>C16-C21 Aliphatics - BS	NWEPH	78.0			12/04/2012	EBS	I
>C16-C21 Aliphatics - BSD	NWEPH	81.0	4		12/04/2012	EBS	I
>C21-C34 Aliphatics - BS	NWEPH	79.0			12/04/2012	EBS	I
>C21-C34 Aliphatics - BSD	NWEPH	81.0	3		12/04/2012	EBS	I
>C8-C10 Aromatics - BS	NWEPH	76.0			12/04/2012	EBS	I
>C8-C10 Aromatics - BSD	NWEPH	83.0	9		12/04/2012	EBS	I
>C10-C12 Aromatics - BS	NWEPH	77.0			12/04/2012	EBS	I
>C10-C12 Aromatics - BSD	NWEPH	83.0	8		12/04/2012	EBS	I
>C12-C16 Aromatics - BS	NWEPH	79.0			12/04/2012	EBS	I
>C12-C16 Aromatics - BSD	NWEPH	85.0	7		12/04/2012	EBS	I
>C16-C21 Aromatics - BS	NWEPH	82.0			12/04/2012	EBS	I
>C16-C21 Aromatics - BSD	NWEPH	86.0	5		12/04/2012	EBS	I
>C21-C34 Aromatics - BS	NWEPH	73.0			12/04/2012	EBS	I
>C21-C34 Aromatics - BSD	NWEPH	75.0	3		12/04/2012	EBS	I

APPROVED BY

Dagu

Laboratory Director

Page 6 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

	P~
Relinquished by: Received by: Received by: Received by: Received by: Received by: Received by:	
AU SPERTY 12 AU 175 175 11	Turnaround Request: 1 Day 2 Day 3 Day Other: Ul30/JA 0940 S Ul30/JA 0940 S
MAN 103 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-3 12-	Page_l_of Laboratory Reference #: 11 - 230 Project Manager: David Baumeister email: dbaumeister@onsite-env.com Project Name: Project Name: 

EV/2/20002

	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Ken Shoet	Signature			6 B9A-90	5 B9A- 5.0	4 897-40	3 B27 A- 10:5	2 B27A- 6.5	1 BJJA -3:5	Lab ID Sample Identification	Sampled by: Kon Suckt	Jern Pertelo	Aberdeen Facility	525-006	FAPALLON	Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	OnSite Environmental Inc.
el IV	Reviewed/Date					330	FARALLON	Company			V 1135 5 2	1125 5 2	1115 5 2	1005 5 2	950 5 2	11/2al 12-940 5 2	Date Time No. of Sampled Sampled Matrix Cont.	(other)		Standard (7 Days) (TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	<b>Chain of Custody</b>
Electronic Data Deliverables (EDDs)						11/30/2 1505	11/2012-1505	Date Time		(F)	×			X			NWTP NWTP NWTP Volatile	H-Dx es 8260	TEX	s 8260E	3			Laboratory Number:	stody
Chromatograms with final report								Comments/Special Instructions									(with lc PAHs & PCBs & Organo Organo Chlorir Total F Total N TCLP HEM (	BOB2 pochlorin pated Ad RCRA M MTCA M Metals oil and g	PAHs SIM (Io e Pest orus Pe cid Her letals letals	) w-level) icides 8 esticides rbicides	081A 8270D 8151A	A		oer: 117-230	Page of
											×	×		X		$\times$	% Moi	isture							



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

April 10, 2013

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1304-051

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on April 5, 2013.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

### **Case Narrative**

Samples were collected on April 5, 2013 and received by the laboratory on April 5, 2013. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

#### NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

### NWTPH-Gx/BTEX

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-18-5.0					
Laboratory ID:	04-051-01					
Benzene	0.081	0.025	EPA 8021B	4-8-13	4-9-13	
Toluene	ND	0.12	EPA 8021B	4-8-13	4-9-13	
Ethyl Benzene	0.54	0.12	EPA 8021B	4-8-13	4-9-13	
m,p-Xylene	0.26	0.12	EPA 8021B	4-8-13	4-9-13	
o-Xylene	ND	0.12	EPA 8021B	4-8-13	4-9-13	
Gasoline	180	12	NWTPH-Gx	4-8-13	4-9-13	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	104	70-132				
Client ID:	B-45-5.0					
Laboratory ID:	04-051-02					
Benzene	ND	0.020	EPA 8021B	4-8-13	4-9-13	
Toluene	ND	0.055	EPA 8021B	4-8-13	4-9-13	
Ethyl Benzene	ND	0.055	EPA 8021B	4-8-13	4-9-13	
m,p-Xylene	ND	0.055	EPA 8021B	4-8-13	4-9-13	
o-Xylene	ND	0.055	EPA 8021B	4-8-13	4-9-13	
Gasoline	ND	5.5	NWTPH-Gx	4-8-13	4-9-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	70-132				
Client ID:	B-45-12.0					
Laboratory ID:	04-051-03					
Benzene	0.10	0.034	EPA 8021B	4-8-13	4-9-13	
Toluene	ND	0.17	EPA 8021B	4-8-13	4-9-13	
Ethyl Benzene	ND	0.17	EPA 8021B	4-8-13	4-9-13	
m,p-Xylene	ND	0.17	EPA 8021B	4-8-13	4-9-13	
o-Xylene	ND	0.17	EPA 8021B	4-8-13	4-9-13	
Gasoline	ND	17	NWTPH-Gx	4-8-13	4-9-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	70-132				

### NWTPH-Gx/BTEX QUALITY CONTROL

5 5 (i 1 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0408S1					
Benzene	ND	0.020	EPA 8021B	4-8-13	4-8-13	
Toluene	ND	0.050	EPA 8021B	4-8-13	4-8-13	
Ethyl Benzene	ND	0.050	EPA 8021B	4-8-13	4-8-13	
m,p-Xylene	ND	0.050	EPA 8021B	4-8-13	4-8-13	
o-Xylene	ND	0.050	EPA 8021B	4-8-13	4-8-13	
Gasoline	ND	5.0	NWTPH-Gx	4-8-13	4-8-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	70-132				

					Source		cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-05	56-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	٨N	NA	NA	30	
Toluene	ND	ND	NA	NA		1	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	٨N	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	٨N	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	A	NA	NA	30	
Surrogate:											
Fluorobenzene						91	93	70-132			
SPIKE BLANKS											
Laboratory ID:	SB04	08S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.989	0.996	1.00	1.00		99	100	71-125	1	11	
Toluene	1.01	1.01	1.00	1.00		101	101	77-125	0	11	
Ethyl Benzene	0.985	0.960	1.00	1.00		99	96	76-125	3	10	
m,p-Xylene	1.01	0.968	1.00	1.00		101	97	78-124	4	9	
o-Xylene	0.980	0.912	1.00	1.00		98	91	77-123	7	9	
Surrogate:											
Fluorobenzene						94	96	70-132			

#### **NWTPH-Dx**

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-18-5.0					
Laboratory ID:	04-051-01					
Diesel Fuel #2	1700	31	NWTPH-Dx	4-8-13	4-8-13	
Lube Oil	600	62	NWTPH-Dx	4-8-13	4-8-13	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	B-45-5.0					
Laboratory ID:	04-051-02					
Diesel Fuel #2	540	31	NWTPH-Dx	4-8-13	4-8-13	
Lube Oil	1300	61	NWTPH-Dx	4-8-13	4-8-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	B-45-12.0					
Laboratory ID:	04-051-03					
Diesel Range Organics	ND	58	NWTPH-Dx	4-8-13	4-8-13	
Lube Oil	160	120	NWTPH-Dx	4-8-13	4-8-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				

### NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Dat	е	
Analyte	Result	PQL	Method	Prepared	Analy	zed	Flags
METHOD BLANK							
Laboratory ID:	MB0408S1						
Diesel Range Organics	ND	25	NWTPH-Dx	4-8-13	4-8-	13	
Lube Oil Range Organics	ND	50	NWTPH-Dx	4-8-13	4-8-	13	
Surrogate:	Percent Recove	ry Control Limits					
o-Terphenyl	93	50-150					
			Percent	Recovery		RPD	
Analyte	Result	t	Recovery	Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	04-046-0	04					
	ORIG [	OUP					
Diesel Range Organics	47.9	71.6			40	NA	
Lube Oil	1070	423			87	NA	
Surrogate:							

o-Terphenyl

82 87 50-150

#### TOTAL LEAD EPA 6010C

Matrix: Units:	Soil mg/kg (ppm)					
Official.	1119/129 (PP111)			Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	04-051-01					
Client ID:	MW-18-5.0					
Lead	14	6.2	6010C	4-8-13	4-8-13	
Lab ID:	04-051-02					
Client ID:	B-45-5.0					
Lead	ND	6.1	6010C	4-8-13	4-8-13	
Lab ID:	04-051-03					
Client ID:	B-45-12.0					
Lead	ND	12	6010C	4-8-13	4-8-13	

Lead

### TOTAL LEAD EPA 6010C METHOD BLANK QUALITY CONTROL

ND

Date Extracted:	4-8-13	
Date Analyzed:	4-8-13	
Matrix:	Soil	
Units:	mg/kg (ppm)	
Lab ID:	MB0408SM1	
Analyte	Method	Result

6010C

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

PQL

5.0

### TOTAL LEAD EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted:	4-8-13
Date Analyzed:	4-8-13

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 04-051-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	11.0	10.7	2	5.0	

### TOTAL LEAD EPA 6010C MS/MSD QUALITY CONTROL

- Date Extracted: 4-8-13 Date Analyzed: 4-8-13
- Matrix: Soil Units: mg/kg (ppm)

Lab ID: 04-051-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	254	97	256	98	1	

## % MOISTURE

Date Analyzed: 4-8-13

Client ID	Lab ID	% Moisture
MW-18-5.0	04-051-01	19
B-45-5.0	04-051-02	18
B-45-12.0	04-051-03	57

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.



### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature				3 B-45-12.0	2 B-45-5.0	1 1 1 MW 185.0 4	Lab ID Sample Identification	Concerced Concercon Mildings	Sampled hu	Latight Aberdon	Briat Name: 325-000	Project Number:	Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: 14251 883-3881 • www.onsite-env.com	Environmental Inc.	
Data Package: Level III   Level IV   Electronic Data Deliverables (EDDs)	Reviewed/Date					( The the Heart and I have a h	0 Fave an 1/5/13 1800	Company Date Time				1 Loo 1 + X X		4/2/3/019 21/2 X X	NWTF NWTF NWTF Volatil	(other) Deer of C PH-HCIII PH-Gx/E PH-Gx PH-Dx les 8260 enated	BTEX	s 8260C	X 2 Days 3 Days	Same Day	(Check One)	Turnaround Request (in working days) Laboratory Number:	Chain of Custody	
	Chromatoprame with final raport						0	Comments/Special Instructions							(with I PAHs PCBs Organ Organ Chlori Total I TCLP HEM	ow-leve 8270D/ 8082A oochlorin ophospl nated A RCRA M Metals (oil and	el PAHs) SIM (lor ne Pesti norus Pe acid Her Metals/ I grease)		081B 8270D/ 8151A /letals (	circle or	ne)	r: 04-051	Page of	



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

April 19, 2013

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1304-100

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on April 11, 2013.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

### **Case Narrative**

Samples were collected on April 11, 2013 and received by the laboratory on April 11, 2013. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

### NWTPH-Gx/BTEX

Matrix: Water Units: ug/L (ppb)

5 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-18-041113					
Laboratory ID:	04-100-01					
Benzene	39	1.0	EPA 8021B	4-16-13	4-16-13	
Toluene	4.7	1.0	EPA 8021B	4-16-13	4-16-13	
Ethyl Benzene	34	1.0	EPA 8021B	4-17-13	4-17-13	
m,p-Xylene	2.4	1.0	EPA 8021B	4-17-13	4-17-13	
o-Xylene	3.5	1.0	EPA 8021B	4-17-13	4-17-13	
Gasoline	2300	100	NWTPH-Gx	4-16-13	4-16-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	71-116				

# NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0416W2					
Benzene	ND	1.0	EPA 8021B	4-16-13	4-16-13	
Toluene	ND	1.0	EPA 8021B	4-16-13	4-16-13	
Ethyl Benzene	ND	1.0	EPA 8021B	4-16-13	4-16-13	
m,p-Xylene	ND	1.0	EPA 8021B	4-16-13	4-16-13	
o-Xylene	ND	1.0	EPA 8021B	4-16-13	4-16-13	
Gasoline	ND	100	NWTPH-Gx	4-16-13	4-16-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	71-116				
Laboratory ID:	MB0417W1					
Benzene	ND	1.0	EPA 8021B	4-17-13	4-17-13	
Toluene	ND	1.0	EPA 8021B	4-17-13	4-17-13	
Ethyl Benzene	ND	1.0	EPA 8021B	4-17-13	4-17-13	
m,p-Xylene	ND	1.0	EPA 8021B	4-17-13	4-17-13	
o-Xylene	ND	1.0	EPA 8021B	4-17-13	4-17-13	
Gasoline	ND	100	NWTPH-Gx	4-17-13	4-17-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	71-116				

Apolyto	Bo	sult	Spike		Source Result		rcent	Recovery Limits	RPD	RPD Limit	Flore
Analyte DUPLICATE	Re	suit	Бріке	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
	04.4										
Laboratory ID:		14-11									
	ORIG	DUP									
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA			NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA			NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						89	90	71-116			
MATRIX SPIKES											
Laboratory ID:	04-11	14-10									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	45.1	48.1	50.0	50.0	ND	90	96	81-121	6	11	
Toluene	45.3	48.0	50.0	50.0	ND	91	96	83-122	6	13	
Ethyl Benzene	44.4	47.1	50.0	50.0	ND	89	94	81-121	6	15	
m,p-Xylene	44.9	47.3	50.0	50.0	ND	90	95	80-119	5	16	
o-Xylene	44.7	47.0	50.0	50.0	ND	89	94	80-119	5	15	
Surrogate:											
Fluorobenzene						93	94	71-116			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

4

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-18-041113			-	-	
Laboratory ID:	04-100-01					
Diesel Range Organics	3.9	0.26	NWTPH-Dx	4-12-13	4-15-13	М
Lube Oil Range Organics	ND	1.4	NWTPH-Dx	4-12-13	4-15-13	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

5

## NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result		PQL	Method	Date Prepared	Date Analy:		Flags
METHOD BLANK			-					
Laboratory ID:	MB0412W1	1						
Diesel Range Organics	ND		0.13	NWTPH-Dx	4-12-13	4-16-	13	
Lube Oil Range Organics	ND		0.20	NWTPH-Dx	4-12-13	4-16-	13	
Surrogate:	Percent Recov	very	Control Limits					
o-Terphenyl	75	-	50-150					
				Percent	Recovery		RPD	
Analyte	Resi	ult		Recovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	04-087	7-06						
	ORIG	DUP	1					
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								

o-Terphenyl

78 96 50-150



### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature					1 MW-18-041113	Lab ID Sample Identification	Emerald Frickson-Mulanak	Jerry Partele	Laveside Indestries	25-000	Project Number:		Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date					Restofu Hulis 1753	& Farridon 411/13/1759	Company Date Time					4/11/13 1323 Water 5 X X	NWTP NWTP NWTP NWTP Volatile Haloge	H-Gx/E H-Gx H-Dx es 8260 enated	D BTEX DC Volatile	s 8260C	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request Laboratory Number:	Chain of Custody
Chromatograms with final report							Comments/Special Instructions						PCBs & Organo Organo Chlorin Total R TCLP I	w-leve 8270D/ B082A ochlorir nohosph ated A CCRA M Metals Doil and	I PAHs SIM (Io ne Pest norus Pe cid Hen letals/		081B 8270D/ 8151A 1etals (d			04-100	Page of



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 14, 2013

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1308-045

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on August 7, 2013.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: August 14, 2013 Samples Submitted: August 7, 2013 Laboratory Reference: 1308-045 Project: 525-006

### **Case Narrative**

Samples were collected on August 6, 2013 and received by the laboratory on August 7, 2013. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

# NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Method 5035A VOA vials were not provided for sample B53-080613-5.0. The sample was therefore extracted from a 4-ounce jar for analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

onits. mg/kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B46-080613-3.9					
Laboratory ID:	08-045-01					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.047	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.047	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.047	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.047	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	4.7	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	71-121				
Client ID:	B47-080613-3.7					
Laboratory ID:	08-045-04					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.043	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.043	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.043	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.043	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	4.3	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	71-121				
Client ID:	B47-080613-10.0					
Laboratory ID:	08-045-05					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.066	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.066	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.066	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.066	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	6.6	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	71-121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B48-080613-7.1					
Laboratory ID:	08-045-08					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.045	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.045	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.045	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.045	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	4.5	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	71-121				
Client ID:	B49-080613-3.3					
Laboratory ID:	08-045-10					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.052	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.052	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.052	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.052	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	5.2	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	71-121				
Client ID:	B50-080613-6.1					
Laboratory ID:	08-045-14					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.093	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	0.43	0.093	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	0.28	0.093	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.093	EPA 8021B	8-12-13	8-12-13	
Gasoline	130	9.3	NWTPH-Gx	8-12-13	8-12-13	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	71-121				

onits. mg/kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B50-080613-10.8					
Laboratory ID:	08-045-16					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.059	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.059	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.059	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.059	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	5.9	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	71-121				
Client ID:	B51-080613-8.0					
Laboratory ID:	08-045-18					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.044	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.044	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.044	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.044	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	4.4	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	71-121				
Client ID:	B51-080613-13.6					
Laboratory ID:	08-045-19					
Benzene	ND	0.028	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.14	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.14	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.14	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.14	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	14	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	71-121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B52-080613-6.5					
Laboratory ID:	08-045-20					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.048	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.048	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.048	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.048	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	4.8	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	71-121				
Client ID:	B52-080613-12.8					
Laboratory ID:	08-045-22					
Benzene	ND	0.022	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	11	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	71-121				
Client ID:	B53-080613-5.0					
Laboratory ID:	08-045-23					
Benzene	0.97	0.075	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.37	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	13	0.37	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	3.4	0.37	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	1.9	EPA 8021B	8-12-13	8-12-13	U1
Gasoline	1700	37	NWTPH-Gx	8-12-13	8-12-13	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	71-121				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B53-080613-13.5					
Laboratory ID:	08-045-25					
Benzene	ND	0.023	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.11	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	11	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	71-121				
Client ID:	B54-080613-7.8					
Laboratory ID:	08-045-26					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.043	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.043	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.043	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.043	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	4.3	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	71-121				
Client ID:	B54-080613-13.2					
Laboratory ID:	08-045-27					
Benzene	ND	0.029	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.15	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.15	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.15	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.15	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	15	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	71-121				

# NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

ee				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0812S1					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	5.0	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	71-121				
Laboratory ID:	MB0812S2					
Benzene	ND	0.020	EPA 8021B	8-12-13	8-12-13	
Toluene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
Ethyl Benzene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
m,p-Xylene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
o-Xylene	ND	0.050	EPA 8021B	8-12-13	8-12-13	
Gasoline	ND	5.0	NWTPH-Gx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	71-121				

# NWTPH-Gx/BTEX QUALITY CONTROL

				Source	Per	cent	Recovery		RPD	
Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
08-04	45-04									
ORIG	DUP									
ND	ND	NA	NA		Ν	A	NA	NA	30	
ND	ND	NA	NA		N	A	NA	NA	30	
ND	ND	NA	NA		N	A	NA	NA	30	
ND	ND	NA	NA		N	A	NA	NA	30	
ND	ND	NA	NA		N	A	NA	NA	30	
ND	ND	NA	NA		N	A	NA	NA	30	
					100	100	71-121			
ORIG	DUP									
ND	ND	NA	NA		N	A	NA	NA	30	
ND	ND	NA	NA		N	A	NA	NA	30	
ND	ND	NA	NA		N	A	NA	NA	30	
ND	ND	NA	NA		Ν	A	NA	NA	30	
ND	ND	NA	NA		N	A	NA	NA	30	
ND	ND	NA	NA		N	A	NA	NA	30	
					95	90	71-121			
SB	SBD	SB	SBD		SB	SBD			;	
0.932	0.899	1.00	1.00		93	90	73-121	4	10	
0.965	0.924	1.00	1.00		97	92	75-124	4	10	
0.987	0.950	1.00	1.00		99	95	75-125	4	9	
0.997	0.957	1.00	1.00		100	96	75-126	4	9	
1.00	0.964	1.00	1.00		100	96	74-123	4	8	
					91	86	71-121			
	08-04 ORIG ND ND ND ND ND ND ND ND ND ND ND ND ND	ND         ND           SB         SBD           0.932         0.899           0.965         0.924           0.997         0.957	08-045-04           ORIG         DUP           ND         NA           ND         ND         NA           SB         SBD         SB           0.932         0.899         1.00           0.997         0.957<	08-045-04         ORIG         DUP           ND         ND         NA         NA           08-059-05              08-059-05              08-059-05              08-059-05              08-059-05              ND         ND         NA         NA           ND         ND         NA         NA           ND         ND         NA         NA           ND         ND         NA	Result         Spike Level         Result           08-045-04             ORIG         DUP             ND         ND         NA         NA           ND         ND         NA         NA<	Result         Spike Level         Result         Record           08-045-04	Result         Spike Level         Result         Recovery           08-045-04	Result         Spike Level         Result         Recovery         Limits           08-045-04         ORIG         DUP               ND         ND         NA         NA         NA         NA         NA           ND         ND         NA         NA         NA         NA         NA <td>Result         Spike Level         Result         Recovery         Limits         RPD           08-045-04         ORIG         DUP                                         NA         NA</td> <td>Result         Spike Level         Result         Recovery         Limits         RPD         Limit           08-045-04         ORIG         DUP         NA         NA         NA         NA         NA         30           ND         ND         NA         NA         NA         NA</td>	Result         Spike Level         Result         Recovery         Limits         RPD           08-045-04         ORIG         DUP                                         NA         NA	Result         Spike Level         Result         Recovery         Limits         RPD         Limit           08-045-04         ORIG         DUP         NA         NA         NA         NA         NA         30           ND         ND         NA         NA         NA         NA

Matrix: Soil Units: mg/Kg (ppm)

Client ID:         B46-080613-3.9           Laboratory ID:         08-045-01           Diesel Range Organics         ND         31         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Lube Oil Range Organics         ND         30         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         30         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         61         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Jube Oil Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         Percent Recovery <th>Analyte</th> <th>Result</th> <th>PQL</th> <th>Method</th> <th>Date Prepared</th> <th>Date Analyzed</th> <th>Flags</th>	Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Laboratory ID:         08-045-01           Diesel Range Organics         ND         31         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Or Forphenyl         Control Limits         08-045-04         8-12-13         8-12-13         8-12-13           Client ID:         B47-080613-3.7         Laboratory ID:         08-045-04         8-12-13         8-12-13         8-12-13           Diesel Range Organics         ND         30         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Or Forphenyl         08-045-04         NWTPH-Dx         8-12-13         8-12-13           Surogate:         Or Forphenyl         93         50-150         8-12-13         8-12-13         8-12-13           Surrogate:         Or Terphenyl         93         50-150         8-12-13         8-12-13         8-12-13           Client ID:         B47-080613-10.0         Laboratory ID:         08-045-05         Diesel Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surogate:         Percent Recovery         Control Limits         -7-67049         96         50-150         8-12-13         8-12-13         8-12-13           Client ID:         B49-080613-7.1			i dL	Method	Trepared	Analyzeu	T lugo
Diesel Range Organics         ND         31         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Client ID:         B47-080613-3.7         8-12-13         8-12-13         8-12-13         8-12-13           Laboratory ID:         08-045-04         08-045-05         8-12-13         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         0-7-erphenyl         93         50-150         8-12-13         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         ND         31         NWTPH-Dx         8-12-13         8-12-13         8-12-13 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Lube Oil Range Örganics         ND         62         NWTPH-Dx         8-12-13         8-12-13         8-12-13           Surrogate:         o-Terphenyl         103         50-150         50-150         8-12-13         8-12-13         8-12-13           Client ID:         B47-080613-3.7         50-150         8-12-13         8-12-13         8-12-13         8-12-13           Diesel Range Organics         ND         30         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         o-Terphenyl         93         50-150         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Orlent ID:         B47-080613-10.0         Laboratory ID:         08-045-05         0         8-12-13         8-12-13         8-12-13           Diesel Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         -         -         -           O-Terphenyl         96         50-150         8-12-13         8-12-13         8-12-13           Client ID:         B48-080613-7.1         Laboratory ID:         08-045-06         0 <td></td> <td></td> <td>31</td> <td>NWTPH-Dx</td> <td>8-12-13</td> <td>8-12-13</td> <td></td>			31	NWTPH-Dx	8-12-13	8-12-13	
Surrogate: o-Terphenyl         Percent Recovery 103         Control Limits 50-150           Client ID: Laboratory ID: Diesel Range Organics         B47-080613-3.7 08-045-04         8-12-13 08-045-04         8-12-13 08-12-13 08-12-13         8-12-13 08-12-13           Surrogate: o-Terphenyl         Percent Recovery 93         Control Limits 50-150         8-12-13 08-12-13         8-12-13 08-12-13           Client ID: Laboratory ID: o-Terphenyl         B47-080613-10.0 08-045-05         8-12-13 08-12-13         8-12-13 08-12-13           Client ID: Laboratory ID: o-Terphenyl         B47-080613-10.0 08-045-05         8-12-13 08-12-13         8-12-13 08-12-13           Surrogate: o-Terphenyl         Percent Recovery 96         Control Limits 50-150         8-12-13 08-12-13         8-12-13 08-12-13           Surrogate: o-Terphenyl         Percent Recovery 96         Control Limits 50-150         8-12-13 08-12-13         8-12-13 08-12-13           Client ID: Laboratory ID: 08-045-10         B48-080613-3.3 14         50-150         8-12-13 08-12-13         8-12-13 08-12-13           Client ID: Besel Range Organics ND         S4 NWTPH-Dx         S-12-13 08-12-13         8-12-13 08-12-13         8-12-13 08-12-13           Client ID: Besel Range Organics ND         S4 NWTPH-Dx         S-12-13 08-12-13         8-12-13 08-12-13         8-12-13 08-12-13           Client ID: Besel Range Organics ND         S4 NWTPH-Dx <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
a-Terphenyl         103         50-150           Client ID:         B47-080613-3.7         Laboratory ID:         08-045-04           Diesel Range Organics         ND         30         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Client ID:         B47-080613-10.0         Laboratory ID:         08-045-05         Diesel Range Organics         ND         64         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Diesel Range Organics         ND         G1         NWTPH-Dx         8-12-13         8-12-13         8-12-13           <					01210	01210	
Client ID:         B47-080613-3.7           Laboratory ID:         08-045-04           Diesel Range Organics         ND         30         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Orterphenyl         93         50-150         Surrogate:         8-12-13         8-12-13         8-12-13           Client ID:         B47-080613-10.0         Laboratory ID:         08-045-05         Surrogate:         8-12-13         8-12-13         8-12-13           Lube Oil Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         50-150         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         50-150         8-12-13         <							
Laboratory ID:         08-045-04           Diesel Range Organics         ND         30         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         61         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           aboratory ID:         08-045-05         Diesel Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           o-Terphenyl         96         50-150         50-150         50-150         50-150           Client ID:         B48-080613-7.1         08-045-08         50-150         50-150         50-150           Diesel Range Organics         ND         61         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         50-150         50-150         50-150           Client ID:         B49-080613-3.3         Laboratory ID:         08-045	e respirenzi	100					
Diesel Range Organics         ND         30         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         93         50-150         S0-150         8-12-13         8-12-13         8-12-13           Client ID:         B47-080613-10.0         Laboratory ID:         08-045-05         93         50-150           Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Otiesel Range Organics         ND         61         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         61         NWTPH-Dx         8-12-13         8-12-13           Diesel Ran	Client ID:	B47-080613-3.7					
Lube Oil Range Organics         ND         61         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         93         50-150         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	Laboratory ID:	08-045-04					
Lube Oil Ränge Örganics         ND         61         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         93         50-150         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	Diesel Range Organics	ND	30	NWTPH-Dx	8-12-13	8-12-13	
o-Terphenyl         93         50-150           Client ID:         B47-080613-10.0 08-045-05         08-045-05           Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Output         96         50-150         Control Limits         8-12-13         8-12-13         8-12-13           Client ID:         B48-080613-7.1         08-045-08         Diesel Range Organics         ND         61         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         61         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits		ND	61	NWTPH-Dx	8-12-13	8-12-13	
Client ID:         B47-080613-10.0           Laboratory ID:         08-045-05           Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Or Terphenyl         96         50-150         50-150         50-150         50-150           Client ID:         B48-080613-7.1         1         1         1         1         1           Lube Oil Range Organics         ND         31         NWTPH-Dx         8-12-13         8-12-13         1           Surrogate:         Percent Recovery         Control Limits         61         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         61         NWTPH-Dx         8-12-13         8-12-13           Laboratory ID:         08-045-10         08-045-10         08-045-10         114         50-150         50-150           Surrogate:         Percent Recovery         Control Limits         68         NWTPH-Dx         8-12-13         8-12-13 </td <td>Surrogate:</td> <td>Percent Recovery</td> <td>Control Limits</td> <td></td> <td></td> <td></td> <td></td>	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID:         08-045-05           Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           OrTerphenyl         96         50-150         50         50         50         50           Client ID:         B48-080613-7.1         Laboratory ID:         08-045-08         50         50         50         50           Diesel Range Organics         ND         31         NWTPH-Dx         8-12-13         8-12-13         512-13           Surrogate:         Percent Recovery         Control Limits         50-150         50         50         50           Client ID:         B49-080613-3.3         Laboratory ID:         08-045-10         50-150         50         50         50           Surrogate:         Percent Recovery         Control Limits         50-150         50         50         50         50           Client ID:         B49-080613-6.1         Laboratory ID:         08-045-14         50-150         50-150         50-150		93	50-150				
Laboratory ID:         08-045-05           Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           OrTerphenyl         96         50-150         50         50         50         50           Client ID:         B48-080613-7.1         Laboratory ID:         08-045-08         50         50         50         50           Diesel Range Organics         ND         31         NWTPH-Dx         8-12-13         8-12-13         512-13           Surrogate:         Percent Recovery         Control Limits         50-150         50         50         50           Client ID:         B49-080613-3.3         Laboratory ID:         08-045-10         50-150         50         50         50           Surrogate:         Percent Recovery         Control Limits         50-150         50         50         50         50           Client ID:         B49-080613-6.1         Laboratory ID:         08-045-14         50-150         50-150         50-150							
Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Or-Terphenyl         96         50-150         8-12-13         8-12-13         8-12-13           Client ID:         B48-080613-7.1         Laboratory ID:         08-045-08         8-12-13         8-12-13           Diesel Range Organics         ND         31         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         61         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         -150         -114         50-150           Client ID:         B49-080613-3.3         Laboratory ID:         08-045-10         -114         50-150           Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Co							
Lube Oil Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         50-150         8-12-13         8-12-13         8-12-13           Client ID:         B48-080613-7.1         Control Limits         Social Soc							
Surrogate:         Percent Recovery         Control Limits           o-Terphenyl         96         50-150           Client ID:         B48-080613-7.1         50-150           Laboratory ID:         08-045-08         08-045-08           Diesel Range Organics         ND         31         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         0-7 erphenyl         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         0-7 erphenyl         8-12-13         8-12-13           Client ID:         B49-080613-3.3         14         50-150         14         50-150           Client ID:         B49-080613-3.3         14         50-150         14         50-150           Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         50-150         50-150         50-150           Client ID:         B50-080613-6.1         10-7         50-150         50-150         50-150           Client I							
o-Terphenyl         96         50-150           Client ID:         B48-080613-7.1 Laboratory ID:         08-045-08           Diesel Range Organics         ND         31         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         61         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13           O'Terphenyl         114         50-150         50-150         8-12-13         8-12-13           Client ID:         B49-080613-3.3 Laboratory ID:         08-045-10         8-12-13         8-12-13         8-12-13           Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         0-7670         50-150         50-150           Client ID:         B50-080613-6.1         Laboratory ID:         08-045-14         U         Surogate:         8-12-13         8-12-13         8-12-13         8-12-13         8-12-13         8-12-13         8-12-13         8-12-13         8				NWTPH-Dx	8-12-13	8-12-13	
Client ID:         B48-080613-7.1 08-045-08           Diesel Range Organics         ND         31         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         61         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Or Terphenyl         114         50-150         50-150         8-12-13         8-12-13           Client ID:         B49-080613-3.3         Laboratory ID:         08-045-10         8-12-13         8-12-13           Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         6-150         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         6-12-13         8-12-13         8-12-13           O'T soloatory ID:         08-045-14         08-045-14         107         50-150         50-150           Client ID:         B50-080613-6.1         107         50-150         50-150         8-12-13         8-12-13           Lube Oil Range Organics         ND         64         NWTPH-Dx         8-12-13 <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>		-					
Laboratory ID:         08-045-08           Diesel Range Organics         ND         31         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         61         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           OFFERDENT         114         50-150         50-150         8-12-13         8-12-13         8-12-13           Client ID:         B49-080613-3.3         114         50-150         8-12-13         8-12-13         8-12-13           Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         6-150         6-150           Client ID:         B50-080613-6.1         107         50-150         50-150           Client ID:         B50-080613-6.1         107         50-150         50-150           Client ID:         B50-080613-6.1         107         50-150         50-150         50-150           Diesel Fuel #2         460	o-Terphenyl	96	50-150				
Laboratory ID:         08-045-08           Diesel Range Organics         ND         31         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         61         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           OFFERDENT         114         50-150         50-150         8-12-13         8-12-13         8-12-13           Client ID:         B49-080613-3.3         114         50-150         8-12-13         8-12-13         8-12-13           Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         6-150         6-150           Client ID:         B50-080613-6.1         107         50-150         50-150           Client ID:         B50-080613-6.1         107         50-150         50-150           Client ID:         B50-080613-6.1         107         50-150         50-150         50-150           Diesel Fuel #2         460	Client ID:	B48-080613-7 1					
Diesel Range Organics         ND         31         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         61         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         8-12-13           Organics         Percent Recovery         Control Limits         50-150         8-12-13         8-12-13           Client ID:         B49-080613-3.3         Laboratory ID:         08-045-10         8-12-13         8-12-13         8-12-13           Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         0-7         50-150         0           Client ID:         B50-080613-6.1         Laboratory ID:         08-045-14         0         0         8-12-13         8-12-13         8-12-13           Diesel Fuel #2         460         31         NWTPH-Dx         8-12-13         8-12-13         10           Lube Oil Range Organics         ND         64         NWTPH-Dx         8-12-13							
Lube Oil Range OrganicsND61NWTPH-Dx8-12-138-12-13Surrogate: o-TerphenylPercent Recovery 114Control Limits 50-150Control Limits 50-150Client ID: Laboratory ID: Diesel Range OrganicsB49-080613-3.3 08-045-10Control Limits 8-12-138-12-138-12-13Diesel Range OrganicsND34NWTPH-Dx8-12-138-12-13Lube Oil Range OrganicsND68NWTPH-Dx8-12-138-12-13Surrogate: o-TerphenylPercent Recovery 107Control Limits 50-150Control Limits 50-150Control Limits 50-150Client ID: Laboratory ID: Diesel Fuel #2B50-080613-6.1 460State State Sta			31		8-12-13	8-12-13	
Surrogate: o-TerphenylPercent Recovery 114Control Limits 50-150Client ID: Laboratory ID: Diesel Range OrganicsB49-080613-3.3 08-045-10Diesel Range OrganicsND34 68NWTPH-Dx8-12-13 8-12-138-12-13 8-12-13Surrogate: o-TerphenylPercent Recovery 107Control Limits 50-150Client ID: Laboratory ID: 0-TerphenylB50-080613-6.1 107Surrogate: 50-150Percent Recovery 8-12-13Control Limits 8-12-13Client ID: Laboratory ID: Diesel Fuel #2B50-080613-6.1 460Surrogate: 64NWTPH-Dx8-12-13 8-12-138-12-13 8-12-13Client ID: Laboratory ID: Diesel Fuel #2B50-080613-6.1 460Surrogate: 64Surrogate: NUSurrogate: 64Surrogate: NUSurrogate: 64Surrogate: NUSurrogate: 64Surrogate: NUSurrogate: 64Surrogate: NUSurrogate: 64Surrogate: NUSurrogate: NUSurrogate: Control LimitsSurrogate: Control Limits	<b>v</b>						
o-Terphenyl         114         50-150           Client ID:         B49-080613-3.3 Laboratory ID:         08-045-10           Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits 0-Terphenyl         107         50-150           Client ID:         B50-080613-6.1 Laboratory ID:         V         NWTPH-Dx         8-12-13         8-12-13           Laboratory ID:         08-045-14         08-045-14         V         V         107         50-150           Client ID:         B50-080613-6.1 Laboratory ID:         08-045-14         V         V         107         107           Diesel Fuel #2         460         31         NWTPH-Dx         8-12-13         8-12-13         101           Lube Oil Range Organics         ND         64         NWTPH-Dx         8-12-13         8-12-13         U1           Surrogate:         Percent Recovery         Control Limits         V         V         V         V			<b>.</b>		01210	01210	
Client ID:         B49-080613-3.3 08-045-10           Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         0-7erphenyl         107         50-150           Client ID:         B50-080613-6.1 Laboratory ID:         08-045-14         V         NWTPH-Dx         8-12-13         8-12-13           Diesel Fuel #2         460         31         NWTPH-Dx         8-12-13         8-12-13         U1           Surrogate:         Percent Recovery         Control Limits         8-12-13         8-12-13         U1		•					
Laboratory ID:         08-045-10           Diesel Range Organics         ND         34         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         68         NWTPH-Dx         8-12-13         8-12-13           Surrogate:         Percent Recovery         Control Limits         -         -         -           o-Terphenyl         107         50-150         -         -         -         -           Client ID:         B50-080613-6.1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< td=""><td>0-Telphenyi</td><td>114</td><td>50-150</td><td></td><td></td><td></td><td></td></td<>	0-Telphenyi	114	50-150				
Diesel Range OrganicsND34NWTPH-Dx8-12-138-12-13Lube Oil Range OrganicsND68NWTPH-Dx8-12-138-12-13Surrogate:Percent RecoveryControl Limitso-Terphenyl10750-150Client ID:B50-080613-6.1Laboratory ID:08-045-14Diesel Fuel #246031NWTPH-Dx8-12-138-12-13Lube Oil Range OrganicsND64NWTPH-Dx8-12-138-12-13U1Surrogate:Percent RecoveryControl Limits	Client ID:	B49-080613-3.3					
Lube Oil Range OrganicsND68NWTPH-Dx8-12-138-12-13Surrogate:Percent RecoveryControl Limitso-Terphenyl10750-150Client ID:B50-080613-6.1Laboratory ID:08-045-14Diesel Fuel #246031NWTPH-Dx8-12-138-12-13Lube Oil Range OrganicsND64NWTPH-Dx8-12-138-12-13U1Surrogate:Percent RecoveryControl Limits	Laboratory ID:	08-045-10					
Lube Oil Range OrganicsND68NWTPH-Dx8-12-138-12-13Surrogate:Percent Recovery 107Control Limits 50-150	Diesel Range Organics	ND	34	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:       Percent Recovery       Control Limits         o-Terphenyl       107       50-150         Client ID:       B50-080613-6.1         Laboratory ID:       08-045-14         Diesel Fuel #2       460       31       NWTPH-Dx       8-12-13       8-12-13         Lube Oil Range Organics       ND       64       NWTPH-Dx       8-12-13       U1         Surrogate:       Percent Recovery       Control Limits		ND	68	NWTPH-Dx			
o-Terphenyl         107         50-150           Client ID:         B50-080613-6.1           Laboratory ID:         08-045-14           Diesel Fuel #2         460         31         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         64         NWTPH-Dx         8-12-13         8-12-13         U1           Surrogate:         Percent Recovery         Control Limits         5000000000000000000000000000000000000		Percent Recovery	Control Limits				
Client ID:         B50-080613-6.1           Laboratory ID:         08-045-14           Diesel Fuel #2         460         31         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         64         NWTPH-Dx         8-12-13         8-12-13         U1           Surrogate:         Percent Recovery         Control Limits         Ket State         Ket		•	50-150				
Laboratory ID:         08-045-14           Diesel Fuel #2         460         31         NWTPH-Dx         8-12-13         8-12-13           Lube Oil Range Organics         ND         64         NWTPH-Dx         8-12-13         8-12-13         U1           Surrogate:         Percent Recovery         Control Limits         V         V         V							
Diesel Fuel #246031NWTPH-Dx8-12-138-12-13Lube Oil Range OrganicsND64NWTPH-Dx8-12-138-12-13U1Surrogate:Percent RecoveryControl Limits0000							
Lube Oil Range OrganicsND64NWTPH-Dx8-12-138-12-13U1Surrogate:Percent RecoveryControl Limits		08-045-14					
Surrogate: Percent Recovery Control Limits	Diesel Fuel #2			NWTPH-Dx	8-12-13	8-12-13	
		ND	64	NWTPH-Dx	8-12-13	8-12-13	U1
		Percent Recovery	Control Limits				
	o-Terphenyl		50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B50-080613-10.8					
Laboratory ID:	08-045-16					
Diesel Range Organics	ND	35	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	140	70	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	B51-080613-8.0					
Laboratory ID:	08-045-18					
Diesel Range Organics	ND	31	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	ND	62	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits		01210	01210	
o-Terphenyl	110	50-150				
o-reipinenyi	110	50-150				
Client ID:	B51-080613-13.6					
Laboratory ID:	08-045-19					
Diesel Range Organics	ND	55	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	230	110	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				
Client ID:	B52-080613-6.5					
Laboratory ID:	08-045-20					
	ND	00	NWTPH-Dx	8-12-13	8-12-13	
Diesel Range Organics	ND	33 65	NWTPH-Dx NWTPH-Dx			
Lube Oil Range Organics			INVVIPH-DX	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				
Client ID:	B52-080613-12.8					
Laboratory ID:	08-045-22					
Diesel Range Organics	50	47	NWTPH-Dx	8-12-13	8-12-13	
		47 94	NWTPH-Dx NWTPH-Dx		8-12-13 8-12-13	
Lube Oil Range Organics	240	94	NWTPH-Dx NWTPH-Dx	8-12-13 8-12-13	8-12-13 8-12-13	
Lube Oil Range Organics Surrogate:	240 Percent Recovery	94 Control Limits				
Lube Oil Range Organics Surrogate:	240	94				
Lube Oil Range Organics Surrogate: o-Terphenyl Client ID:	240 Percent Recovery 80 B53-080613-5.0	94 Control Limits				
Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID:	240 Percent Recovery 80 B53-080613-5.0 08-045-23	94 Control Limits 50-150	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID:	240 Percent Recovery 80 B53-080613-5.0 08-045-23 3300	94 Control Limits 50-150 32	NWTPH-Dx NWTPH-Dx			
Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Fuel #2 Lube Oil Range Organics	240 Percent Recovery 80 B53-080613-5.0 08-045-23	94 Control Limits 50-150	NWTPH-Dx	8-12-13	8-12-13	U1
Diesel Range Organics Lube Oil Range Organics Surrogate: o-Terphenyl Client ID: Laboratory ID: Diesel Fuel #2 Lube Oil Range Organics Surrogate:	240 Percent Recovery 80 B53-080613-5.0 08-045-23 3300	94 Control Limits 50-150 32	NWTPH-Dx NWTPH-Dx	8-12-13	8-12-13	U1

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B53-080613-13.5					
Laboratory ID:	08-045-25					
Diesel Range Organics	ND	48	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	ND	97	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				
Client ID:	B54-080613-7.8					
Laboratory ID:	08-045-26					
Diesel Range Organics	ND	31	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	ND	62	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	B54-080613-13.2					
Laboratory ID:	08-045-27					
Diesel Range Organics	ND	58	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	200	120	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

# NWTPH-Dx QUALITY CONTROL

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0812S1					
Diesel Range Organics	ND	25	NWTPH-Dx	8-12-13	8-12-13	
Lube Oil Range Organics	ND	50	NWTPH-Dx	8-12-13	8-12-13	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				

			Per	cent	Recovery		RPD	
Analyte	Res	sult	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	08-04	15-08						
	ORIG	DUP						
Diesel Range Organics	ND	ND				NA	NA	
Lube Oil Range Organics	ND	ND				NA	NA	
Surrogate:								
o-Terphenyl			114	108	50-150			
Laboratory ID:	08-05	55-13						
	ORIG	DUP						
Mineral Oil	88.7	87.3				2	NA	
Lube Oil	149	135				10	NA	
Surrogate:								
o-Terphenyl			121	112	50-150			

Date of Report: August 14, 2013 Samples Submitted: August 7, 2013 Laboratory Reference: 1308-045 Project: 525-006

# % MOISTURE

Date Analyzed: 8-12-13

Client ID	Lab ID	% Moisture
B46-080613-3.9	08-045-01	20
B47-080613-3.7	08-045-04	18
B47-080613-10.0	08-045-05	26
B48-080613-7.1	08-045-08	18
B49-080613-3.3	08-045-10	27
B50-080613-6.1	08-045-14	19
B50-080613-10.8	08-045-16	29
B51-080613-8.0	08-045-18	19
B51-080613-13.6	08-045-19	55
B52-080613-6.5	08-045-20	24
B52-080613-12.8	08-045-22	47
B53-080613-5.0	08-045-23	21
B53-080613-13.5	08-045-25	48
B54-080613-7.8	08-045-26	19
B54-080613-13.2	08-045-27	57



# **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Hevie	1000	Relinquis	Received	Relino	Received	Relinc			2	$\sim$	し	5	ហ	2	S	R	-	Lab ID	Sampled by:	Project	Project	Project	Company:			
Heviewed/Date		Reinquished	ived B	Relinquished	ved Allettan	Relinquished	- Signature	11	11 - 13.3	11 - 7,1	648-090613-2.9	11 - 13.6	11 - 10.0	-B47-080613-3.7	11 - 13,9	11 - 7,4	B46-080613- 3.9	Sample Identification	ad by: Dincer Keyhan	Project Manager: Jerry P. & Riley C.	Project Name: Lakeside	Project Number: 525-006	Tarallon	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testino Services	M Onsite
Data Package: Level III D Level IV	5		380%	\$1 20 K	Snakk		Company	4 4	1034	1628	1020	1000	0954	0947	0928	0922	8/6/13 0905 soil 2			A Wed 8/14	(TPH analysis 5 Days)		Same Day 1 Day	(in working days)	Turnaround Request	Chain of
Electronic Data Deliverables (EDDs)			0101 EIICB	Q1/ 10104	al 9/176	-	Date Time			8	×	AND AND	× ×	R R			4	NWTPH NWTPH Volatile Haloge	H-Gx/B H-Gx H-Dx Is 82600 nated V	TEX C /olatiles 3270D/S				Laboratory Number:		of Custody
Chromatograms with final report )s)			JAMPLES HOLD UNTIL THEN	ALL TO CONFI	Could let	1611 II for enducie	Comments/Special Instructions											(with lo PAHs 8 PCBs 8 Organo Organo Chlorin: Total R TCLP N	w-level 270D/S 2082A chloring phospho ated Ac CRA Mo Metals	PAHs) BIM (Iow e Pestic prus Pes cid Herb	ides 800 ticides 8 icides 8	3270D/S 3151A			00-01	Page of 3
			Z							X			×	X			×	% Mois	sture							

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	10.8- 11 81	B51-080613-6.2	17 11 - 12.4	8.01-11 91	15 11 - 8,3	14 11 - 6.1	13 1350-080613-3,3	12 11 - 15.0	11 11 - 8,5	10 BH9-080113-3,3	Lab ID Sample Identification	sampled by: Dincer Kayhan	Project Manager: Jerry P, & Riley C,	Project Name: Lakeside	525-006	Company: Faallon	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services	INA OnSite
Reviewed/Date			3800	Sprach	Sarch		Company	$\Rightarrow$ 1215 $\Rightarrow$ $\Rightarrow$	1213	1200	34.11	1142	1139	1135	0011	1055	8/6/13 1050 Soil 2	Date Time Sampled Sampled Matrix NUTE	(other)	ontaine	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(in working days)		Chain of Custody
1			877/13/010	4/1 10:10a	97 4.174		Date Time	9. 7	Star Core	NO	9 9.		9				9. 9.	NWTPI NWTPI NWTPI Volatile Haloge Semivo	H-Gx/E H-Gx H-Dx es 8260 enated 1	C /olatiles	3 8260C			Laboratory Number:	I obouotom, Niimbou	ustody
Chromatograms with final report			DE THE THE THEY	HJ VOL OF THE	Cicknetty 101 1000		Comments/Special Instructions	×	NOT & SAMPLE				×					PAHs & PCBs & Organo Organo Chlorin Total R TCLP I	3270D/ 3082A pochlorir phosph ated A CRA M Metals pil and	orus Per	cides 80 sticides bicides 8 //TCA M	8270D/5 8151A	SIM ircle one)	C 4 D D O	N - 00	Page 2 of 3

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature ///	27 11 - 13,2//	26 854-080613-7.8	25 11 - 13,5	24 11 - 10.0	23 853-080613-5.0	22 11 - 12.8	21 11 - 10:0	20 852-080613-6,5	19 11 - 13,6	B51-080613-Hio	Lab ID Sample Identification	Dincer Kayhan	Sampled by:	Project Name: Lakeside	Project Number: 525-006	company: Farallon		Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date			3801	Slock	And A		Company	A 4 5541 A	1433	1348	1345	1338	1317	1315	1310	1225	8/6/13 1221 50:1	Date Time Sampled Sampled Matrix	(other)	A 8/14 Containe	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of Custody
1			0101 EI/L/8	Q117 10:16G	6117 9174		Date Time	9	q. 7	9		9.	8		R R	9 9.	10	Semiv	H-Gx/ H-Gx H-Dx es 826 enated	BTEX					Laboratory Number:	Sustody
Chromatograms with final report		1	SAMPLES HOLD ONTIC T	CT - A - TO	COUL TOT OT		Comments/Special Instructions							NOT RECEIVED ,			TASOMPLE	PAHs PCBs Organ Organ Chlorin Total F TCLP	8270D 8082A ochlor ophosp nated RCRA Metals	/SIM (lo ine Pest bhorus Pe Acid Her Metals/	) w-level) icides 8( esticides bicides MTCA M ) 1664A	081B 8270D/S 8151A fletals (ci			0-80	Page 3 of
-		4	HCAL	CONFIRM	dysis			×	×	×		×	X	1	X	×		% Mo	isture						45	



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 4, 2013

Riley Conkin Farallon Consulting, LLC Queen Anne Square East Bldg. 200 West Mercer Street, Suite 302 Seattle, WA 98119

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1308-222

Dear Riley:

Enclosed are the analytical results and associated quality control data for samples submitted on August 29, 2013.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

1

David Baumeister Project Manager

Enclosures

Date of Report: September 4, 2013 Samples Submitted: August 29, 2013 Laboratory Reference: 1308-222 Project: 525-006

## **Case Narrative**

Samples were collected on August 28, 2013 and received by the laboratory on August 29, 2013. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Matrix: Water Units: ug/L (ppb)

onns. ug/E (ppb)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-21-082813					
Laboratory ID:	08-222-01					
Benzene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
Toluene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
Ethyl Benzene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
m,p-Xylene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
o-Xylene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
Gasoline	ND	100	NWTPH-Gx	8-30-13	8-30-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	71-112				
Client ID:	MW-19-082813					
Laboratory ID:	08-222-02					
Benzene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
Toluene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
Ethyl Benzene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
m,p-Xylene	7.2	1.0	EPA 8021B	8-30-13	8-30-13	
o-Xylene	2.1	1.0	EPA 8021B	8-30-13	8-30-13	
Gasoline	ND	100	NWTPH-Gx	8-30-13	8-30-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	71-112				
Client ID:	MW-20-082813					
Laboratory ID:	08-222-03					
Benzene	65	1.0	EPA 8021B	8-30-13	8-30-13	
Toluene	1.3	1.0	EPA 8021B	8-30-13	8-30-13	
Ethyl Benzene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
m,p-Xylene	2.7	1.0	EPA 8021B	8-30-13	8-30-13	
o-Xylene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
Gasoline	460	100	NWTPH-Gx	8-30-13	8-30-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	71-112				

## NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0830W1					
Benzene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
Toluene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
Ethyl Benzene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
m,p-Xylene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
o-Xylene	ND	1.0	EPA 8021B	8-30-13	8-30-13	
Gasoline	ND	100	NWTPH-Gx	8-30-13	8-30-13	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	71-112				

					Source	Per	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-19	95-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	٨٨	NA	NA	30	
Surrogate:											
Fluorobenzene						81	81	71-112			
MATRIX SPIKES											
Laboratory ID:	08-19	95-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	49.7	45.4	50.0	50.0	ND	99	91	78-120	9	12	
Toluene	51.0	47.3	50.0	50.0	ND	102	95	80-121	8	12	
Ethyl Benzene	51.5	47.8	50.0	50.0	ND	103	96	81-120	7	13	
m,p-Xylene	52.3	49.1	50.0	50.0	ND	105	98	81-119	6	13	
o-Xylene	52.1	49.1	50.0	50.0	ND	104	98	79-117	6	13	
Surrogate:											
Fluorobenzene						110	99	71-112			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Water Units: mg/L (ppm)

			Date	Date	
	PQL	Method	Prepared	Analyzed	Flags
08-222-01					
ND	0.26	NWTPH-Dx	8-30-13	8-30-13	
ND	0.41	NWTPH-Dx	8-30-13	8-30-13	
Percent Recovery	Control Limits				
68	50-150				
M\N/_10_092913					
	0.00		0.00.40	0.00.40	
••••					
	-	NWIPH-DX	8-30-13	8-30-13	
•					
87	50-150				
MW-20-082813					
08-222-03					
2.7	0.26	NWTPH-Dx	8-30-13	8-30-13	
1.2	0.41	NWTPH-Dx	8-30-13	8-30-13	
Percent Recovery	Control Limits				
91	50-150				
	ND           Percent Recovery           68           MW-19-082813           08-222-02           0.74           0.64           Percent Recovery           87           MW-20-082813           08-222-03           2.7           1.2           Percent Recovery	MW-21-082813 08-222-01         0.26           ND         0.26           ND         0.41           Percent Recovery         Control Limits           68         50-150           MW-19-082813 08-222-02         50-150           08-222-02         0.74           0.74         0.26           0.64         0.41           Percent Recovery         Control Limits           87         50-150           MW-20-082813 08-222-03         50-150           08-222-03         50-150           Percent Recovery         Control Limits           08-222-03         0.26           1.2         0.41           Percent Recovery         Control Limits	MW-21-082813 08-222-01         ND         0.26         NWTPH-Dx           ND         0.41         NWTPH-Dx           Percent Recovery         Control Limits         NWTPH-Dx           68         50-150         WTPH-Dx           MW-19-082813         08-222-02         NWTPH-Dx           0.74         0.26         NWTPH-Dx           Percent Recovery         Control Limits         NWTPH-Dx           Percent Recovery         Control Limits         S0           87         50-150         NWTPH-Dx           MW-20-082813         08-222-03         S0-150           MW-20-082813         08-222-03         NWTPH-Dx           2.7         0.26         NWTPH-Dx           Percent Recovery         0.26         NWTPH-Dx           Percent Recovery         Control Limits         NWTPH-Dx           08-222-03         0.26         NWTPH-Dx           Percent Recovery         Control Limits         NWTPH-Dx	Result         PQL         Method         Prepared           MW-21-082813         08-222-01                                          8-30-13	Result         PQL         Method         Prepared         Analyzed           MW-21-082813 08-222-01         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .

## NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Dat Analy		Flags
METHOD BLANK					, <b>,</b>		1
Laboratory ID:	MB0830W1						
Diesel Range Organics	ND	0.25	NWTPH-Dx	8-30-13	8-30-	13	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	8-30-13	8-30-	13	
Surrogate:	Percent Recovery	Control Limits					
o-Terphenyl	85	50-150					
			Percent	Recovery		RPD	
Analyte	Result		Recovery	Limits	RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	08-220-0	1					
	ORIG D	UP					
Diesel Range Organics	ND N	ID			NA	NA	U1
Lube Oil Range Organics	1.11 1.	04			7	NA	

Surrogate:

o-Terphenyl

82 77 50-150



### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature					3 mm - 20 - 082813	2 MW-19-082813	1 MW-21-08283	Lab ID Sample Identification	Diver	RILEY C JERRY P	LAKESIDE ABERDEEN	S2S-000 Project Name:	Project Number:	Company:	Analytical Laboratory Testing Services 14648 NE 95th Street e Redmond, WA 98052 Phone: (475) 883-3881	Environmental Inc.
					10	יד	C0					4		31/8	Date Sampled			(TPH	2 Days	Same Day	Ż.	Turi (ir	
Reviewed/Date			1 AD	ISNEW)	South	FARALON	Company				4	たわり	1340	1240	Time Sampled	(other)		(TPH analysis 5 Days)	/s	- Day-	(Check One)	Turnaround Request (in working days)	Cha
ate			11)	X		2						4	_	3	Matrix			rs)	3 Days	] 1 Day		est s)	Chain of Custody
												4-	_	5	Numbe NWTPI			iers					fC
			S.	R	6	61/8	Date				4	۶.	٩.	9-	NWTPI							Laboratory N	ust
Electronic Data Dalia			1/8	29.	¥	24						4	e	8								rato	bo
			1 8	0			Time					٢	2	8	Volatile		00				_	N	Y
			5	2.St	in	1200	ne								Haloge	nated	Volatil	es 8260	C		_	umber:	
			<b>V</b> 0-	6	0	0									Semivo (with lo	w-leve	el PAH	5)				er:	
Chromatograms with final report							Comn	_	_						PAHs 8			ow-level	)		_		
atogra							nents/	 										ticides 8	3081B		_		
ns with							Specia								Organo	phospl	horus F	esticide	s 8270	D/SIM	_		
n final r							Instr					-			Chlorin	ated A	cid He	orbicides	8151	A	_		
eport							<b>Comments/Special Instructions</b>								Total R	CRAN	/letals/	MTCA	Metals	6 (circle c	one)		
							S								TCLP I								
									_						HEM (d	oil and	greas	e) 1664/	4				Page
								 													_		e
								_													-	8	-
									+												_	18-22	of
																					_	N	-
																						N	
															% Moi	sture							



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 12, 2015

Riley Conkin Farallon Consulting, LLC 720 Olive Way , Suite 840 Seattle, WA 98119

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1505-280B

Dear Riley:

Enclosed are the analytical results and associated quality control data for samples submitted on May 29, 2015.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

1

David Baumeister Project Manager

Enclosures

# **Case Narrative**

Samples were collected on May 29, 2015 and received by the laboratory on May 29, 2015. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

#### TOTAL LEAD EPA 6010C

Matrix: Units:	Soil mg/kg (ppm)					
				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-280-01					
Client ID:	SFE Trench-1					
Lead	54	5.5	6010C	6-11-15	6-11-15	

# TOTAL LEAD EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted:	6-11-15		
Date Analyzed:	6-11-15		
Matrix:	Soil		
Units:	mg/kg (ppm)		
Lab ID:	MB0611SM1		
Analyte	Method	Result	PQL
2			
Lead	6010C	ND	5.0
	00100		0.0

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

# TOTAL LEAD EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted:	6-11-15
Date Analyzed:	6-11-15

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 05-199-32

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Lead	53.9	54.0	0	5.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: June 12, 2015 Samples Submitted: May 29, 2015 Laboratory Reference: 1505-280B Project: 525-006

## TOTAL LEAD EPA 6010C MS/MSD QUALITY CONTROL

Date Extracted:	6-11-15
Date Analyzed:	6-11-15

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 05-199-32

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Lead	250	281	91	281	91	0	



#### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Data Package:	Reviewed/Date	Received	Relinquished	Received Maryl	Relinquished	Received	Relinquished amande Nei	Signature	Project Number: S25-002 Project Name: DA end eag SA E Project Manager: Sampled by: Amunda Neice I SFE Tiench - I SFE Tiench - I SFE Trench - Z SFE T	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc
Standard Level III Level IV Electronic Data Deliverables (EDDs)	Reviewed/Date	Stellistis	T De Sar 15/20/5 3:2	429/15	Fundley Stralis 1430	m 5/28/15	de Industries 5-29-15	Company Date Time	Image: Same Day	Turnaround Request (in working days) Laboratory Num	Chain of Custody
s (EDDs)	Chromatograms with final report	05		and for	0		the Att And And Shilis DR/ day	Comments/Special Instructions	Image: Second Secon	umber: 05-280	Page / of /



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 5, 2015

Riley Conkin Farallon Consulting, LLC 720 Olive Way , Suite 840 Seattle, WA 98119

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1505-280

Dear Riley:

Enclosed are the analytical results and associated quality control data for samples submitted on May 29, 2015.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: June 5, 2015 Samples Submitted: May 29, 2015 Laboratory Reference: 1505-280 Project: 525-006

### **Case Narrative**

Samples were collected on May 29, 2015 and received by the laboratory on May 29, 2015. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

# NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

#### NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

3· 3 (i-i- /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SFE Trench-1					
Laboratory ID:	05-280-01					
Benzene	0.091	0.020	EPA 8021B	6-1-15	6-3-15	
Toluene	0.25	0.067	EPA 8021B	6-1-15	6-3-15	
Ethyl Benzene	ND	0.067	EPA 8021B	6-1-15	6-3-15	
m,p-Xylene	0.16	0.067	EPA 8021B	6-1-15	6-3-15	
o-Xylene	ND	0.067	EPA 8021B	6-1-15	6-3-15	
Gasoline	ND	6.7	NWTPH-Gx	6-1-15	6-3-15	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	68-123				

# NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

0 0 11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0601S1					
Benzene	ND	0.020	EPA 8021B	6-1-15	6-1-15	
Toluene	ND	0.050	EPA 8021B	6-1-15	6-1-15	
Ethyl Benzene	ND	0.050	EPA 8021B	6-1-15	6-1-15	
m,p-Xylene	ND	0.050	EPA 8021B	6-1-15	6-1-15	
o-Xylene	ND	0.050	EPA 8021B	6-1-15	6-1-15	
Gasoline	ND	5.0	NWTPH-Gx	6-1-15	6-1-15	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	68-123				

					Source	Ре	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	covery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-27	74-07									
	ORIG	DUP									
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA			NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA			NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						78	83	68-123			
SPIKE BLANKS											
Laboratory ID:	SB06	601S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.916	0.839	1.00	1.00		92	84	75-117	9	13	
Toluene	0.922	0.859	1.00	1.00		92	86	78-118	7	12	
Ethyl Benzene	0.927	0.866	1.00	1.00		93	87	78-118	7	12	
m,p-Xylene	0.930	0.910	1.00	1.00		93	91	78-121	2	13	
o-Xylene	0.929	0.890	1.00	1.00		93	89	77-119	4	13	
Surrogate:											
Fluorobenzene						84	79	68-123			

# **NWTPH-Dx**

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	SFE Trench-1					
Laboratory ID:	05-280-01					
Diesel Range Organics	810	140	NWTPH-Dx	6-2-15	6-3-15	Ν
Lube Oil	4000	280	NWTPH-Dx	6-2-15	6-3-15	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	61	50-150				

# NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0602S1					
Diesel Range Organics	ND	25	NWTPH-Dx	6-2-15	6-2-15	
Lube Oil Range Organics	ND	50	NWTPH-Dx	6-2-15	6-2-15	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	72	50-150				

					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-01	16-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		N	A	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		N	A	NA	NA	NA	
Surrogate:											
o-Terphenyl						76	67	50-150			

Date of Report: June 5, 2015 Samples Submitted: May 29, 2015 Laboratory Reference: 1505-280 Project: 525-006

# % MOISTURE

Date Analyzed: 6-1-15

Client ID Lab ID % Moisture

SFE Trench-1

05-280-01

9



### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Data Darkana.	Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished amande Nei	Signature	Company: Lakacite Inductives, Inc. Project Name: SI endoeun Site Project Manager: Site for and Neice I SFE Trench - 1 STE Trench - 1 STE Trench - 1 STE Trench - 1 STE Trench - 1	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	OnSite Environmental Inc.
Standard Level III Level IV	Reviewed/Date	NH (DR)	TON	T.Day	Trustion	Fara/lon	Lakeside Industries	Company	(Check One)	Turnaround Request (in working days)	Chain of Custody
Electronic Data Deliverables (EDDs)		5/29/15/530	5/24 5 3:20pm	5/29/15 2:30 pm	5/29/15 1430	5/29/15 1420	ies 5-29-15 12:20pm	Date Time	Image: Second	Laboratory Number:	Custody
	Chromatograms with final report		,	r Add	-		etty	Comments/Special Instructions	Image: Solution of the second system of t	05-280	Page 1 of
	_										7



June 8, 2016

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1606-060

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on June 7, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely.

David Baumeister Project Manager

Enclosures



Date of Report: June 8, 2016 Samples Submitted: June 7, 2016 Laboratory Reference: 1606-060 Project: 525-006

## **Case Narrative**

Samples were collected on June 7, 2016 and received by the laboratory on June 7, 2016. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.



# **NWTPH-Dx**

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	SP1-E-060716					
Laboratory ID:	06-060-03					
Diesel Fuel #2	16000	270	NWTPH-Dx	6-7-16	6-7-16	
Lube Oil	12000	530	NWTPH-Dx	6-7-16	6-7-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S



# NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0607S2					
Diesel Range Organics	ND	25	NWTPH-Dx	6-7-16	6-7-16	
Lube Oil Range Organics	ND	50	NWTPH-Dx	6-7-16	6-7-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				

					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	06-05	50-02									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		Ν	A	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		N	А	NA	NA	NA	
Surrogate:											
o-Terphenyl						62	68	50-150			



Date of Report: June 8, 2016 Samples Submitted: June 7, 2016 Laboratory Reference: 1606-060 Project: 525-006

# % MOISTURE

Date Analyzed: 6-7-16

Client ID

Lab ID

% Moisture

SP1-E-060716

06-060-03

6





### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished			8 TR-1	7 TR-1	6 TR-S	S TR-E	4 TR-W	3 SPI-E	2 SPI-	1 SPI-1	Lab ID Sa	Sampled by: Ken	LAKESIDE Project Manager:	Project Name:	Company: FARA Project Number:	Analytical Lab 14648 NE 9 Phone: (425	OnSite Enviro
Data Package: Standard					R	Kon Busot	Signature		8-20	V-1.5	5-1-5	-1.5	1-1.5	5-060716	C-060716	W-060716	Sample Identification	hortele	INdustries	-006	LL and	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	nSite nvironmental Inc.
tandard   Level III   Level IV				(		FARALLON	Company		× 1145 5 2	1135 5 2	11.36 S 2	1125 S 2	1120 5 2	1105 5 2	1100 5 2	617/16/055 5 2	Date Time Sampled Sampled Matrix N	Other)	(TPH analysis 5 Days)	2 Days 3 Days	Same Day	(in working days)	Chain of Custody
Electronic Data Deliverables (EDDs)					61116 1455	6/2/16 1455	Date Time	6	)								NWTP NWTP NWTP Volatile Haloge		D/SIM			Laboratory Number:	Sustody
Chromatograms with final report	results.	to give verbal ANXLYT	CHI DOIN POILOR AS AN	Derel	24-har rush for Du	PUN SPI-E-060716 01	Comments/Special Instructions										PAHs & PCBs & Organo Organo Chlorir Total F Total N TCLP	8270D/SIM (k 8082A pochlorine Pes pphosphorus F nated Acid He RCRA Metals ATCA Metals	bw-level) ticides 8 Pesticides	081B 8270D/ 8151A		06-060	
		E.				C								X			% Moi	isture					



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 5, 2017

Riley Conkin Farallon Consulting, LLC 1809 7th Ave., Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1704-263

Dear Riley:

Enclosed are the analytical results and associated quality control data for samples submitted on April 27, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures



Date of Report: May 5, 2017 Samples Submitted: April 27, 2017 Laboratory Reference: 1704-263 Project: 525-006

### **Case Narrative**

Samples were collected on April 26, 2017 and received by the laboratory on April 27, 2017. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

### NWTPH-Gx/BTEX

Matrix: Water Units: ug/L (ppb)

5 (i1 )				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FW1-042617					
Laboratory ID:	04-263-01					
Benzene	ND	4.0	EPA 8021B	5-3-17	5-3-17	
Toluene	ND	4.0	EPA 8021B	5-3-17	5-3-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-3-17	5-3-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-3-17	5-3-17	
o-Xylene	ND	4.0	EPA 8021B	5-3-17	5-3-17	
Gasoline	ND	400	NWTPH-Gx	5-3-17	5-3-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	61-118				



### NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0503W1					
Benzene	ND	1.0	EPA 8021B	5-3-17	5-3-17	
Toluene	ND	1.0	EPA 8021B	5-3-17	5-3-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-3-17	5-3-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-3-17	5-3-17	
o-Xylene	ND	1.0	EPA 8021B	5-3-17	5-3-17	
Gasoline	ND	100	NWTPH-Gx	5-3-17	5-3-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	61-118				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-26	64-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
Toluene	ND	ND	NA	NA		1	NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	NA	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	NA	NA	NA	30	
Surrogate:											
Fluorobenzene						94	93	61-118			
MATRIX SPIKES											
Laboratory ID:	04-26	64-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	49.2	48.2	50.0	50.0	ND	98	96	80-120	2	13	
Toluene	49.7	48.7	50.0	50.0	ND	99	97	81-115	2	14	
Ethyl Benzene	51.0	49.9	50.0	50.0	ND	102	100	81-114	2	12	
m,p-Xylene	50.1	49.1	50.0	50.0	ND	100	98	81-114	2	13	
o-Xylene	50.1	49.2	50.0	50.0	ND	100	98	81-113	2	11	
Surrogate:											
Fluorobenzene						95	95	61-118			



#### **NWTPH-Dx**

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	FW1-042617					
Laboratory ID:	04-263-01					
Diesel Fuel #2	27	0.26	NWTPH-Dx	5-2-17	5-3-17	
Lube Oil Range Organics	ND	9.9	NWTPH-Dx	5-2-17	5-3-17	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

### NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0502W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	5-2-17	5-3-17	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	5-2-17	5-3-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	04-2	53-06								
	ORIG	DUP								
Diesel Range Organics	0.678	0.580	NA	NA		NA	NA	16	NA	
Lube Oil Range	ND	0.515	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						86 71	50-150			

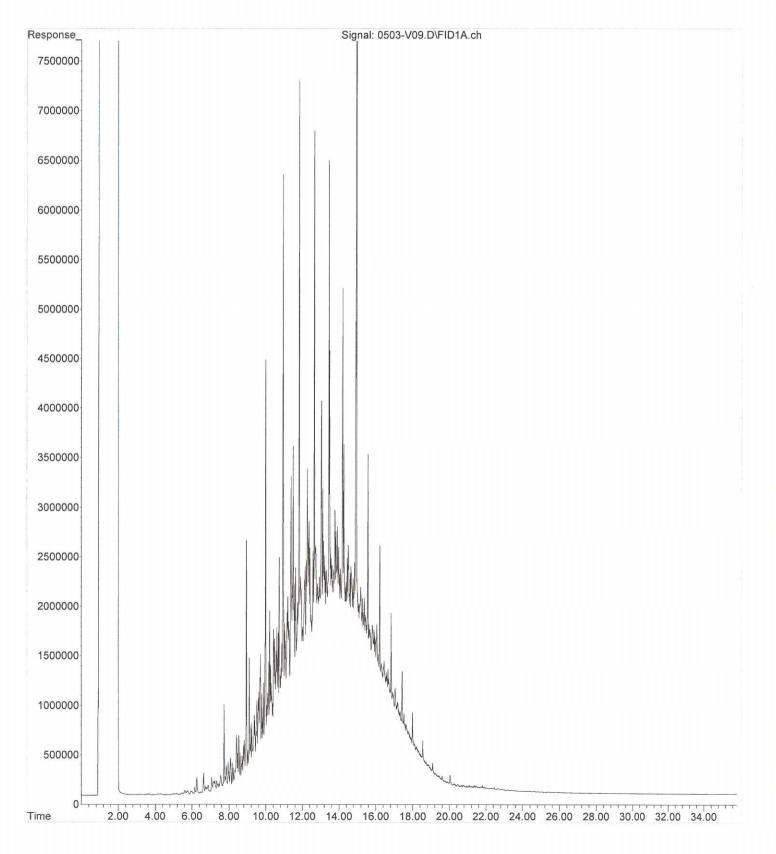




### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-


ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received YZA	Relinquished Men Down	Signature					2 FW2-042617	1 FW1-042617	Lab ID Sample Identification	MB	Friger Manager: Piles Contin	Project Name: La besside	525-006	Privat Number Facallon		Analytical Laboratory Testing Services	in Onsite
Reviewed/Date			OALY B	Aloha	alpha	Facillon	Сотрану					4/26/17 0825 W 5	4/26/17 0820 W 5	Date Time Sampled Sampled Matrix	(other)	Contain	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(in working days) (Check One)	Turnaround Request	Chain of Custody
Chrc	Data		Warks 1135	4/21/in 11:35	4/27/17 10:20	4/26/17 1500	Date Time Con						×××	NWTF NWTF NWTF NWTF Volatil Halog EDB E	PH-HCI PH-Gx/ H-Gx PH-Dx ( es 826 enated PA 80 rolatiles	D BTEX Acid DC Volatile	B / SG Cl s 8260C ers Only /SIM	;	)	Laboratory Number:		Custody
Chromatograms with final report   Electronic Data Deliverables (EDDs)	ta Package: Standard 🛛 Level III 🗌 Level IV 🗌				FIORY TWA DILLI		Comments/Special Instructions							PAHs PCBs Organ Organ Chlori Total F Total N TCLP	8270D, 8082A ochlori ophosy nated A RCRA N Metals oil and	'SIM (Ion ne Pesti ohorus F Acid Her Acid Her Acid S	w-level) icides 8 Pesticides bicides	081B es 8270		U4-203	2	Page of

File :X:\DIESELS\VIGO\DATA\V170503\0503-V09.D
Operator :
Acquired : 3 May 2017 13:24 using AcqMethod V170502F.M
Instrument : Vigo
Sample Name: 04-263-01
Misc Info :
Vial Number: 9





14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 19, 2017

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1705-076B

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on May 4, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures



Date of Report: May 19, 2017 Samples Submitted: May 4, 2017 Laboratory Reference: 1705-076B Project: 525-006

### **Case Narrative**

Samples were collected on May 2, 2017 and received by the laboratory on May 4, 2017. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

# PAHs EPA 8270D/SIM Analysis

Sample B59-19.0 was extracted one day out of hold-time.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.



#### **NWTPH-Dx**

Matrix: Soil Units: mg/Kg (ppm)

onito. ing/itg (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B56-19.0					
Laboratory ID:	05-076-08					
Diesel Range Organics	ND	49	NWTPH-Dx	5-16-17	5-16-17	
Lube Oil Range Organics	140	97	NWTPH-Dx	5-16-17	5-16-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	119	50-150				
Client ID:	B58-19.0					
Laboratory ID:	05-076-15					
Diesel Range Organics	ND	51	NWTPH-Dx	5-16-17	5-16-17	
Lube Oil Range Organics	ND	100	NWTPH-Dx	5-16-17	5-16-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	69	50-150				

### NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0516S1					
Diesel Range Organics	ND	25	NWTPH-Dx	5-16-17	5-16-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-16-17	5-16-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-09	92-03								
	ORIG	DUP								
Diesel Range Organics	65.0	53.6	NA	NA		NA	NA	19	NA	
Lube Oil Range Organics	150	144	NA	NA		NA	NA	4	NA	
Surrogate:										
o-Terphenyl						64 68	50-150			



## cPAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B59-19.0					
Laboratory ID:	05-076-19					
Benzo[a]anthracene	ND	0.012	EPA 8270D/SIM	5-17-17	5-18-17	
Chrysene	ND	0.012	EPA 8270D/SIM	5-17-17	5-18-17	
Benzo[b]fluoranthene	ND	0.012	EPA 8270D/SIM	5-17-17	5-18-17	
Benzo(j,k)fluoranthene	ND	0.012	EPA 8270D/SIM	5-17-17	5-18-17	
Benzo[a]pyrene	ND	0.012	EPA 8270D/SIM	5-17-17	5-18-17	
Indeno(1,2,3-c,d)pyrene	ND	0.012	EPA 8270D/SIM	5-17-17	5-18-17	
Dibenz[a,h]anthracene	ND	0.012	EPA 8270D/SIM	5-17-17	5-18-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	32 - 122				
Pyrene-d10	77	33 - 125				
Terphenyl-d14	86	36 - 118				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

# cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB0517S1					
ND	0.0067	EPA 8270D/SIM	5-17-17	5-18-17	
ND	0.0067	EPA 8270D/SIM	5-17-17	5-18-17	
ND	0.0067	EPA 8270D/SIM	5-17-17	5-18-17	
ND	0.0067	EPA 8270D/SIM	5-17-17	5-18-17	
ND	0.0067	EPA 8270D/SIM	5-17-17	5-18-17	
ND	0.0067	EPA 8270D/SIM	5-17-17	5-18-17	
ND	0.0067	EPA 8270D/SIM	5-17-17	5-18-17	
Percent Recovery	Control Limits				
91	32 - 122				
89	33 - 125				
104	36 - 118				
	MB0517S1 ND ND ND ND ND ND ND Percent Recovery 91 89	MB0517S1           ND         0.0067           Percent Recovery         Control Limits           91         32 - 122           89         33 - 125	MB0517S1           ND         0.0067         EPA 8270D/SIM           Pd         0.0067         EPA 8270D/SIM           ND         0.0067         EPA 8270D/SIM           91         32 - 122         89           89         33 - 125	Result         PQL         Method         Prepared           MB0517S1	Result         PQL         Method         Prepared         Analyzed           MB0517S1           ND         0.0067         EPA 8270D/SIM         5-17-17         5-18-17           ND         32 - 122         33 - 125         5-17-17         5-18-17



## cPAHs EPA 8270D/SIM **MS/MSD QUALITY CONTROL**

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-2	17-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0827	0.0857	0.0833	0.0833	ND	99	103	30 - 143	4	31	
Chrysene	0.0795	0.0806	0.0833	0.0833	ND	95	97	32 - 129	1	33	
Benzo[b]fluoranthene	0.0766	0.0765	0.0833	0.0833	ND	92	92	23 - 140	0	29	
Benzo(j,k)fluoranthene	0.0819	0.0867	0.0833	0.0833	ND	98	104	32 - 119	6	30	
Benzo[a]pyrene	0.0783	0.0804	0.0833	0.0833	ND	94	97	31 - 131	3	32	
Indeno(1,2,3-c,d)pyrene	0.0679	0.0698	0.0833	0.0833	ND	82	84	31 - 130	3	28	
Dibenz[a,h]anthracene	0.0780	0.0803	0.0833	0.0833	ND	94	96	40 - 119	3	27	
Surrogate:											
2-Fluorobiphenyl						83	83	32 - 122			
Pyrene-d10						88	88	33 - 125			
Terphenyl-d14						98	97	36 - 118			



Date of Report: May 19, 2017 Samples Submitted: May 4, 2017 Laboratory Reference: 1705-076B Project: 525-006

# % MOISTURE

Date Analyzed: 5-16-17

Client ID	Lab ID	% Moisture
B56-19.0	05-076-08	48
B58-19.0	05-076-15	51
B59-19.0	05-076-19	44



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881



#### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Received Reviewed/Date	Received Carter Control Contro	Received Knyhuld	Signature	10 1357-9.0	B57 -	8 1256-19:0	7 356-14.0	6 B56-810	5 B56-3.0 M	4 B55-1910	3 355-14-0	L B 55-8.0	1 855-215	Lab ID Sample Identification	varippied up.	Sampled bur very Portolo,	Project Manager: Project Manager:	525-006	Project Number:		Analytical Laboratory Testing Services	OnSite
Reviewed/Date	Contraction of the second	PARALLON	Company	6 S 0681 A	4	1255 S 5	1 1245 5 5	1225 S 2	1220 5 2	Izeo S S	1155 5 5	1150 5 2	512/17/145 S 2	Date Time Sampled Sampled Matrix N	(other)	Contai	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(in working days) (Check One)	Turnaround Request	Chain of (
	4117 12	5/2/17 1800	Date Time	××		Ø	X X	×××			X X	×		Volatile Haloge	H-Gx/I H-Gx H-Dx ( es 826 enated	BTEX	d / SG C es 82600 ters Only	0	)	Laboratory Number:		Custody
Data Package: Standard       Level III       Level IV       Level IV         Chromatograms with final report       Electronic Data Deliverables (EDDs)	& Added STIGht . DB (STA)	Hold SAMPLES will CALLED	Comments/Special Instructions				×				×			Semiv (with k PAHs I PCBs Organo Organo Chlorir Total F Total N TCLP I	olatiles ow-leve 3270D/ 8082A ochlori ophosp nated A RCRA N ITCA N Metals	82701 el PAH /SIM (In ne Pes bhorus Acid He Acid He Acid He	D/SIM	081B es 8270 8151A	DD/SIM		05-070	Page ( of 3

Reviewed/Date	Received	Relinquished	Received	Relinquished	I NORTH	Beneived A. M.	Relinquished	Signature	19 B 59-19.0	18 B59-14.0	聞ける59-9·0	10 359-3.0	10 00 00 00 00 00 00 00 00 00 00 00 00 0	15 1358-19.0	14 358-140	13 1358-20025 218	12 357-19.0	11 857-14.0	Lab ID Sample Identification	San Sugar	Jeny Partela	LAKESIDE Aberdeel	525-006	Project Number:	Phone: (425) 883-3881 • www.onsite-env.com Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date			(0875	20 may	Tusal		5 FMALCON	Company	V 1520 5 5	1510 5 5	1500 5 2	1450 S 2	- Company - Comp	1425 5 5	1415 5 5	1405 S 2	350 5 5	512101340 5 5	Date Time Sampled Sampled Matrix	(other)	Contain	(TPH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain of (
			SH11 120	1200	1011 LINGIC	and the part	5/217 1900	Date Time		×	* vo	× ×		8	X	X	X X	×	Volatil Haloge	'H-Gx/ 'H-Gx 'H-Dx ( es 826 enated	BTEX	d / SG C es 82600	0	p)		Laboratory Number:	Custody
Chromatograms with final report 🗌 Electronic Data Deliverables (EDDs) 🗌	Data Package: Standard  Level III  Level IV						See prof # 1 -	Comments/Special Instructions		× 						×		×	Semiv (with k PAHs i PCBs Organ Organ Chlorii Total F Total N TCLP	olatiles 8270D, 8082A ochlori ophosp nated A ACRA N Metals oil and	s 82701 el PAH /SIM (le ne Pes ohorus Acid He Metals	D/SIM	c P4 8081B es 827 81514	OD/SIN	1		Page 2 of 3

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received Jan	Relinquished	Signature		27 361-19.0	26 361-14-0	25 361 - 8.0	24 B61 - 4.0	23 1360-1910	22 360-14.0	U B60-910	20 360-4.0	Lab ID Sample Identification	campred by Ken Sneet	Sampled by TRICY Portelo	LAKESIDE Aberdeed	525-006	Project Number:	Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Environmental Inc.
Reviewed/Date			1	20000	speedy	FARALLON	Company		V 16505 5	1640 5 5	1630 5 2	1626 S 2	1605 5 5	1600 5 5	1.550 S 2	SIX171546 5 2	Date Time Sampled Sampled Matrix Z	(other)	Contai	(7 Days) (7 PH analysis 5 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	E
			split in	54/17 1200	5417 1100	5/3/17 1800	Date Time	R L		×	×			メメ		X	NWTF NWTF NWTF Volatil Halog	PH-Gx PH-Dx es 826 enated	BTEX	d / SG C	С	p)		Laboratory Number:	of Custody
Chromatograms with final report 🗌 Electronic Data Deliverables (EDDs)	Data Package: Standard  Level III  Level IV					See page #1	Comments/Special Instructions										Semiv (with I PAHs PCBs Organ Organ Chlori Total I Total I Total I	volatile: ow-lev 8270D 8082A tochlor ophos nated RCRA MTCA Metals	s 8270 rel PAH //SIM ( // ine Pe phorus Acid H Metals	ów-level sticides & Pesticic erbicides	3081B des 827 s 8151/	70D/SIM			Page 3 of 3
EDDs)										X	×			×		X	% Moi	sture							



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 15, 2017

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1705-076

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on May 4, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures



Date of Report: May 15, 2017 Samples Submitted: May 4, 2017 Laboratory Reference: 1705-076 Project: 525-006

#### **Case Narrative**

Samples were collected on May 2, 2017 and received by the laboratory on May 4, 2017. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

# NWTPH Gx/BTEX Analysis

Per EPA method 5035A, samples were received by the laboratory in pre-weighed 40 ml VOA vials preserved with either Methanol or Sodium Bisulfate.

The MTCA Method A cleanup level of 0.030 ppm for Benzene is not achievable for samples B55-8.0, B55-14.0, B56 –8.0, B56-14.0, B57-14.0, B57-19.0, B58-14.0, B59-3.0, and B60-4.0 due to the low dry weight of the sample in addition to the low sample weight in the provided VOA vial.

The MTCA Method A cleanup level of 30.0 ppm for fresh gasoline is not achievable for samples B56-14.0, B57-14.0, and B58-14.0 due to the low dry weight of the sample in addition to the low sample weight in the provided VOA vial..

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.



Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B55-8.0					
Laboratory ID:	05-076-02					
Benzene	ND	0.056	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	28	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	63-124				
Client ID:	B55-14.0					
Laboratory ID:	05-076-03					
Benzene	ND	0.056	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.28	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	28	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	63-124				
Client ID:	B56-8.0					
Laboratory ID:	05-076-06					
Benzene	ND	0.051	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.25	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.25	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.25	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.25	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	25	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	71	63-124				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B56-14.0					
Laboratory ID:	05-076-07					
Benzene	ND	0.090	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.45	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.45	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.45	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.45	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	45	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	63-124				
Client ID:	B57-9.0					
Laboratory ID:	05-076-10					
Benzene	0.076	0.043	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.21	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	0.35	0.21	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	2.3	0.21	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	2.1	EPA 8021B	5-10-17	5-10-17	
Gasoline	350	21	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	110	63-124				
Client ID:	B57-14.0					
Laboratory ID:	05-076-11					
Benzene	ND	0.13	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.66	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.66	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.66	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.66	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	66	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	63-124				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

4

Matrix: Soil Units: mg/kg (ppm)

onits. mg/kg (ppm)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B57-19.0					
Laboratory ID:	05-076-12					
Benzene	ND	0.039	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.19	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.19	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.19	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.19	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	19	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	63-124				
Client ID:	B58-2.5					
Laboratory ID:	05-076-13					
Benzene	ND	0.020	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.061	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.061	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.061	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.061	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	6.1	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	63-124				
Client ID:	B58-14.0					
Laboratory ID:	05-076-14					
Benzene	ND	0.078	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.39	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.39	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.39	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.39	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	39	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	63-124				
Fluorobenzene	81	63-124				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

5

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B59-3.0					
Laboratory ID:	05-076-16					
Benzene	ND	0.046	EPA 8021B	5-10-17	5-11-17	
Toluene	ND	0.23	EPA 8021B	5-10-17	5-11-17	
Ethyl Benzene	ND	0.23	EPA 8021B	5-10-17	5-11-17	
m,p-Xylene	0.27	0.23	EPA 8021B	5-10-17	5-11-17	
o-Xylene	ND	0.23	EPA 8021B	5-10-17	5-11-17	
Gasoline	46	23	NWTPH-Gx	5-10-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	63-124				
Client ID:	B59-14.0					
Laboratory ID:	05-076-18					
Benzene	ND	0.024	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.12	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.12	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.12	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.12	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	12	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	63-124				
Client ID:	B60-4.0					
Laboratory ID:	05-076-20					
Benzene	ND	0.039	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.20	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	0.29	0.20	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	0.54	0.20	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	1.0	EPA 8021B	5-10-17	5-10-17	
Gasoline	120	20	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	63-124				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg (ppm)

Analyte	<b>– –</b>					
	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B60-14.0					
Laboratory ID:	05-076-22					
Benzene	ND	0.021	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.11	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.11	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.11	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.11	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	11	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	63-124				
Client ID:	B61-8.0					
Laboratory ID:	05-076-25					
Benzene	0.041	0.020	EPA 8021B	5-10-17	5-11-17	
Toluene	ND	0.078	EPA 8021B	5-10-17	5-11-17	
Ethyl Benzene	ND	0.078	EPA 8021B	5-10-17	5-11-17	
m,p-Xylene	ND	0.078	EPA 8021B	5-10-17	5-11-17	
o-Xylene	ND	0.078	EPA 8021B	5-10-17	5-11-17	
Gasoline	30	7.8	NWTPH-Gx	5-10-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	63-124				
Client ID:	B61-14.0					
Laboratory ID:	05-076-26					
Benzene	ND	0.020	EPA 8021B	5-10-17	5-11-17	
Toluene	ND	0.097	EPA 8021B	5-10-17	5-11-17	
Ethyl Benzene	ND	0.097	EPA 8021B	5-10-17	5-11-17	
m,p-Xylene	ND	0.097	EPA 8021B	5-10-17	5-11-17	
o-Xylene	ND	0.097	EPA 8021B	5-10-17	5-11-17	
Gasoline	ND	9.7	NWTPH-Gx	5-10-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	63-124				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

7

## NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0510S1					
Benzene	ND	0.020	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	5.0	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	63-124				
Laboratory ID:	MB0510S2					
Benzene	ND	0.020	EPA 8021B	5-10-17	5-10-17	
Toluene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
Ethyl Benzene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
m,p-Xylene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
o-Xylene	ND	0.050	EPA 8021B	5-10-17	5-10-17	
Gasoline	ND	5.0	NWTPH-Gx	5-10-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	63-124				



#### NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-07	76-13									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	A	NA	NA	30	
Toluene	ND	ND	NA	NA		N	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	A	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	А	NA	NA	30	
Surrogate:											
Fluorobenzene						89	88	63-124			
Laboratory ID:	05-07	76-22									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	A	NA	NA	30	
Toluene	ND	ND	NA	NA		N	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	A	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	А	NA	NA	30	
Surrogate:											
Fluorobenzene						103	102	63-124			
SPIKE BLANKS											
Laboratory ID:	SB05	10S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.867	0.834	1.00	1.00		87	83	70-124	4	12	
Toluene	0.888	0.867	1.00	1.00		89	87	73-119	2	12	
Ethyl Benzene	0.909	0.886	1.00	1.00		91	89	74-117	3	12	
m,p-Xylene	0.909	0.883	1.00	1.00		91	88	75-117	3	13	
o-Xylene	0.917	0.894	1.00	1.00		92	89	75-116	3	12	
Surrogate:											
Fluorobenzene						83	80	63-124			



#### **NWTPH-Dx**

Matrix: Soil Units: mg/Kg (ppm)

Jnits: mg/Kg (ppm) Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B55-8.0				-	
_aboratory ID:	05-076-02					
Diesel Range Organics	90	54	NWTPH-Dx	5-11-17	5-10-17	
ube Oil Range Organics	150	110	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	55	50-150				
Client ID:	B55-14.0					
aboratory ID:	05-076-03					
Diesel Range Organics	ND	59	NWTPH-Dx	5-11-17	5-10-17	
ube Oil Range Organics	ND	120	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
p-Terphenyl	76	50-150				
Client ID:	B56-8.0					
aboratory ID:	05-076-06					
Diesel Range Organics	ND	56	NWTPH-Dx	5-11-17	5-10-17	
ube Oil Range Organics	ND ND	56 110	NWTPH-DX NWTPH-Dx	5-11-17 5-11-17	5-10-17 5-10-17	
urrogate:	Percent Recovery	Control Limits		5-11-17	5-10-17	
-Terphenyl	58	50-150				
Client ID:	B56-14.0					
aboratory ID:	05-076-07					
Diesel Range Organics	ND	130	NWTPH-Dx	5-11-17	5-12-17	
	260	260	NWTPH-Dx	5-11-17	5-12-17	
ube Oil Range Organics	260		NWTPH-Dx	5-11-17	5-12-17	
ube Oil Range Organics Surrogate: p-Terphenyl		260	NWTPH-Dx	5-11-17	5-12-17	
ube Oil Range Organics Surrogate: -Terphenyl	260 Percent Recovery 79	260 Control Limits	NWTPH-Dx	5-11-17	5-12-17	
ube Oil Range Organics Surrogate: -Terphenyl	260 Percent Recovery 79 B57-9.0	260 Control Limits	NWTPH-Dx	5-11-17	5-12-17	
ube Oil Range Organics urrogate: -Terphenyl lient ID: aboratory ID:	260 Percent Recovery 79 B57-9.0 05-076-10	260 Control Limits 50-150				
ube Oil Range Organics Surrogate: - Terphenyl Client ID: aboratory ID: viesel Range Organics	260 Percent Recovery 79 B57-9.0 05-076-10 1000	260 Control Limits 50-150 65	NWTPH-Dx	5-11-17	5-10-17	М
ube Oil Range Organics Surrogate: -Terphenyl Client ID: aboratory ID: Diesel Range Organics ube Oil Range Organics	260 Percent Recovery 79 B57-9.0 05-076-10 1000 320	260 Control Limits 50-150 65 130				М
ube Oil Range Organics <i>Terphenyl</i> lient ID: aboratory ID: iesel Range Organics ube Oil Range Organics <i>Urrogate:</i>	260 Percent Recovery 79 B57-9.0 05-076-10 1000 320 Percent Recovery	260 Control Limits 50-150 65 130 Control Limits	NWTPH-Dx	5-11-17	5-10-17	M
ube Oil Range Organics Surrogate: - Terphenyl Stient ID: aboratory ID: biesel Range Organics ube Oil Range Organics Surrogate:	260 Percent Recovery 79 B57-9.0 05-076-10 1000 320	260 Control Limits 50-150 65 130	NWTPH-Dx	5-11-17	5-10-17	M
ube Oil Range Organics Surrogate: - Terphenyl steat ID: aboratory ID: Diesel Range Organics ube Oil Range Organics Surrogate: - Terphenyl	260 Percent Recovery 79 B57-9.0 05-076-10 1000 320 Percent Recovery 72 B57-14.0	260 Control Limits 50-150 65 130 Control Limits	NWTPH-Dx	5-11-17	5-10-17	M
ube Oil Range Organics Surrogate: - Terphenyl stient ID: aboratory ID: biesel Range Organics ube Oil Range Organics Surrogate: - Terphenyl stient ID:	260 Percent Recovery 79 B57-9.0 05-076-10 1000 320 Percent Recovery 72	260 Control Limits 50-150 65 130 Control Limits	NWTPH-Dx	5-11-17	5-10-17	M
ube Oil Range Organics Surrogate: - Terphenyl client ID: aboratory ID: biesel Range Organics ube Oil Range Organics Surrogate: - Terphenyl client ID: aboratory ID:	260 Percent Recovery 79 B57-9.0 05-076-10 1000 320 Percent Recovery 72 B57-14.0	260 Control Limits 50-150 65 130 Control Limits	NWTPH-Dx	5-11-17	5-10-17	M
ube Oil Range Organics Surrogate: Terphenyl Client ID: aboratory ID: Diesel Range Organics ube Oil Range Organics Surrogate: Terphenyl Client ID: aboratory ID: Diesel Range Organics	260 Percent Recovery 79 B57-9.0 05-076-10 1000 320 Percent Recovery 72 B57-14.0 05-076-11	260 Control Limits 50-150 65 130 Control Limits 50-150	NWTPH-Dx NWTPH-Dx	5-11-17 5-11-17	5-10-17 5-10-17	M
ube Oil Range Organics Surrogate:	260 Percent Recovery 79 B57-9.0 05-076-10 1000 320 Percent Recovery 72 B57-14.0 05-076-11 140	260 Control Limits 50-150 65 130 Control Limits 50-150 89	NWTPH-Dx NWTPH-Dx NWTPH-Dx	5-11-17 5-11-17 5-11-17	5-10-17 5-10-17 5-12-17	M



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

10

#### **NWTPH-Dx**

Matrix: Soil Units: mg/Kg (ppm)

Units: mg/Kg (ppm) Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	B57-19.0			•		
Laboratory ID:	05-076-12					
Diesel Range Organics	ND	51	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	ND	100	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	79	50-150				
Client ID:	B58-2.5					
Laboratory ID:	05-076-13					
Diesel Range Organics	ND	26	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil	140	52	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits		-		
o-Terphenyl	86	50-150				
Client ID:	B58-14.0					
Laboratory ID:	05-076-14				= 10.17	
Diesel Range Organics	ND	80	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	450	160	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	63	50-150				
Client ID:	B59-3.0					
Laboratory ID:	05-076-16					
Diesel Range Organics	ND	56	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	ND	110	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	77	50-150				
Client ID:	B59-14.0					
Laboratory ID:	05-076-18	•=				
Diesel Range Organics	ND	37	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	ND	75	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	61	50-150				
Client ID:	B60-4.0					
Laboratory ID:	05-076-20					
Diesel Range Organics	ND	54	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	ND	110	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits		• • • •	0.011	
o-Terphenyl	67	50-150				
e i sipilonyi	57	00 100				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

#### **NWTPH-Dx**

Matrix: Soil Units: mg/Kg (ppm)

onita. http://tg.(ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B60-14.0					
Laboratory ID:	05-076-22					
Diesel Range Organics	ND	37	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	ND	75	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	65	50-150				
Client ID:	B61-8.0					
Laboratory ID:	05-076-25					
Diesel Range Organics	2600	330	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil	4100	660	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S
Client ID:	B61-14.0					
Laboratory ID:	05-076-26					
Diesel Range Organics	ND	35	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	ND	69	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				



#### NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0510S1					
Diesel Range Organics	ND	25	NWTPH-Dx	5-11-17	5-10-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-11-17	5-10-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
Laboratory ID:	MB0512S2					
Diesel Range Organics	ND	25	NWTPH-Dx	5-11-17	5-12-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-11-17	5-12-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				

					Source	Perce	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recov	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-05	59-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA		NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA		NA	NA	NA	
Surrogate:											
o-Terphenyl						68	65	50-150			
Laboratory ID:	05-05	51-07									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA		NA	NA	NA	
Lube Oil	2140	2120	NA	NA		NA		NA	1	NA	
Surrogate:											
o-Terphenyl								50-150			S,S
Laboratory ID:	05-06	61-08									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA		NA	NA	NA	
Lube Oil	217	146	NA	NA		NA		NA	39	NA	
Surrogate:											
o-Terphenyl						93	109	50-150			



				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B55-14.0					
Laboratory ID:	05-076-03					
Benzo[a]anthracene	ND	0.016	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	ND	0.016	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	ND	0.016	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.016	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.016	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.016	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.016	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	78	32 - 122				
Pyrene-d10	74	33 - 125				
Terphenyl-d14	86	36 - 118				



				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B56-14.0					
Laboratory ID:	05-076-07					
Benzo[a]anthracene	ND	0.024	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	ND	0.024	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	ND	0.024	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.024	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.024	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.024	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.024	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	32 - 122				
Pyrene-d10	69	33 - 125				
Terphenyl-d14	79	36 - 118				



Matrix: Soil Units: mg/Kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B57-14.0					
Laboratory ID:	05-076-11					
Benzo[a]anthracene	ND	0.035	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	ND	0.035	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	ND	0.035	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.035	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.035	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.035	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.035	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	59	32 - 122				
Pyrene-d10	55	33 - 125				
Terphenyl-d14	77	36 - 118				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B57-19.0					
Laboratory ID:	05-076-12					
Benzo[a]anthracene	ND	0.013	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	ND	0.013	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	ND	0.013	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.013	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.013	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.013	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.013	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	32 - 122				
Pyrene-d10	77	33 - 125				
Terphenyl-d14	87	36 - 118				



0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B58-14.0					
Laboratory ID:	05-076-14					
Benzo[a]anthracene	ND	0.021	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	ND	0.021	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	ND	0.021	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.021	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.021	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.021	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.021	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	32 - 122				
Pyrene-d10	65	33 - 125				
Terphenyl-d14	75	36 - 118				



0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B59-14.0					
Laboratory ID:	05-076-18					
Benzo[a]anthracene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	0.022	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	0.019	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	82	32 - 122				
Pyrene-d10	78	33 - 125				
Terphenyl-d14	111	36 - 118				



				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B60-14.0					
Laboratory ID:	05-076-22					
Benzo[a]anthracene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.0099	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	76	32 - 122				
Pyrene-d10	68	33 - 125				
Terphenyl-d14	72	36 - 118				



				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B61-14.0					
Laboratory ID:	05-076-26					
Benzo[a]anthracene	ND	0.0093	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	ND	0.0093	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	ND	0.0093	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.0093	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.0093	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0093	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.0093	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	90	32 - 122				
Pyrene-d10	80	33 - 125				
Terphenyl-d14	94	36 - 118				



## cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0511S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	5-11-17	5-11-17	
Chrysene	ND	0.0067	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	5-11-17	5-11-17	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	5-11-17	5-11-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	5-11-17	5-11-17	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	5-11-17	5-11-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	91	32 - 122				
Pyrene-d10	91	33 - 125				
Terphenyl-d14	103	36 - 118				



## cPAHs EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-00	61-02									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0811	0.0828	0.0833	0.0833	ND	97	99	30 - 143	2	31	
Chrysene	0.0759	0.0762	0.0833	0.0833	ND	91	91	32 - 129	0	33	
Benzo[b]fluoranthene	0.0744	0.0730	0.0833	0.0833	ND	89	88	23 - 140	2	29	
Benzo(j,k)fluoranthene	0.0710	0.0758	0.0833	0.0833	ND	85	91	32 - 119	7	30	
Benzo[a]pyrene	0.0745	0.0756	0.0833	0.0833	ND	89	91	31 - 131	1	32	
Indeno(1,2,3-c,d)pyrene	0.0769	0.0777	0.0833	0.0833	ND	92	93	31 - 130	1	28	
Dibenz[a,h]anthracene	0.0765	0.0790	0.0833	0.0833	ND	92	95	40 - 119	3	27	
Surrogate:											
2-Fluorobiphenyl						86	86	32 - 122			
Pyrene-d10						80	80	33 - 125			
Terphenyl-d14						93	97	36 - 118			



23

Date of Report: May 15, 2017 Samples Submitted: May 4, 2017 Laboratory Reference: 1705-076 Project: 525-006

## % MOISTURE

Date Analyzed: 5-10-17

Client ID	Lab ID	% Moisture
B55-8.0	05-076-02	53
B55-14.0	05-076-03	58
B56-8.0	05-076-06	55
B56-14.0	05-076-07	72
B57-9.0	05-076-10	62
B57-14.0	05-076-11	81
B57-19.0	05-076-12	51
B58-2.5	05-076-13	4
B58-14.0	05-076-14	69
B59-3.0	05-076-16	55
B59-14.0	05-076-18	33
B60-4.0	05-076-20	54
B60-14.0	05-076-22	33
B61-8.0	05-076-25	24
B61-14.0	05-076-26	28



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881



#### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished		10 357-	9 857 -	8 356-1	7 356-12	6 B56-8	S B 56-3	4 B55-10	3 355-14	L B 55-8	1 855-2	Lab ID San	Sampled by: Kery	Project Manager:	Project Name:	Company: PARA	Analytical Labo 14648 NE 95 Phone: (425)	AMA OnSite Envirol
		(	R	Van	Ven	Kinhat	Signature	0.0	3.0	9.0	4.0	0,0	3,0	0,0	0-1-0	0.8	2:5	Sample Identification	Portolo	be Aberdeel	-006	HUN	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	<b>OnSite</b> Environmental Inc.
Reviewed/Date			1		C A O	PAK	Company	V 1330	1320	1255	1245	2011	1220	1200	1155	1150	512/17 1145	Date Time Sampled Sampled	(ot	(TPH analysis 5 Days)	2 Days	(Check One)	Turnaround Request (in working days)	C
d/Date			186	Solut	Loga	ALLON		6 20	5	5	5 5 5	5 5	0 5 2	0 5 5	5 5	5 2	S S S	Matrix	(other)	ays)	3 Days	One)	Request g days)	Chain of
								T									7	NWTPH		nera			5	Custody
			Sig	54	24	5/2	Date	$\times$			X	$\times$			X	$\times$		NWTPH NWTPH	-Gx/BTEX				Laboratory	sto
			411	117	1	E		X			X	×			×	$\times$			-Gx -Dx ( Ac	id / SG C	lean-up	))	atory	bd
			5	12	1	10	Time	-			Ī							Volatiles	8260C			,		
			E	9	20/	300	e											Halogen	nated Volati	les 8260	С		Number:	
				0	0	C	2011											EDB EP	A 8011 (Wa	aters Only	/)		er:	
Chro	Data				X	+	Com												atiles 8270 w-level PAF					
Chromatograms with final report	Package:				t.t	E	ment				X				X			PAHs 82	270D/SIM (	low-level	CPF	ths only	1	
				•	ty	0	s/Spec		-			<u> </u>						PCBs 80					05	
4464	Standard				5	SAM	<b>Comments/Special Instructions</b>				-		-						chlorine Pe				1	
					Y.	mple	structi									-			ohosphorus ated Acid H			a management	0	
2024					Pro d	R	Suo			-									CRA Metals				6	
	Level III				out	tw												Total M1	rca Metals					-
					Ac	111												TCLP M	letals					Page_
Data	Level			-	tq i	C												HEM (oi	l and greas	e) 1664A				-
Electronic Data Dalizonables (EDDe)				1	23	HIG																		e U
				,		0					X				9									
								X			$\searrow$	X			×	Х		% Moist	ure					

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	19 359-19.0	18 B59-14.0	\$1359-910	16 359-3.0	16-10-58-(26-2)	15 1358-19.0	14 358-140	13 1358-20025 218	12 357-19.0	11 857-14.0	Lab ID Sample Identification	Company: Project Name: Bampled by: Sampled by: Manual Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com Project Number: Based of the street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com Project Number: Based of the street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com Project Number: Based of the street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com Project Name: Date: Company: Company: Project Name: Date: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Comp
Reviewed/Date			(02)5	20 al	Sogue	5 FMALLOW	Company	V 1520 5 5	1510 5 5	1500 5 2	1450 5 2		1425 5 5	1415 5 5	1405 S 2	1350 5 5	512171340 5 5	Date Time Sampled Sampled Matrix	ays)
			Stylin 1200	" 1200	all Liffs	5/3/17 1800	Date Time		×	* No	××			X	×	××	×	NWTP NWTP NWTP Volatil Haloge	PH-Dx ( Acid / SG Clean-up) les 8260C genated Volatiles 8260C
Chromatograms with final report   Electronic Data Deliverables (EDDs)	Data Package: Standard  Level III  Level IV					See proft 1-	Comments/Special Instructions		×					×	×	×		Semiv (with I PAHs PCBs Organ Organ Chlori Total F Total N TCLP	volatiles 8270D/SIM low-level PAHs) 8270D/SIM (low-level) C PAHS M 88082A nochlorine Pesticides 8081B nophosphorus Pesticides 8270D/SIM inated Acid Herbicides 8151A RCRA Metals MTCA Metals (oil and grease) 1664A (oil and grease) 1664A

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature		27 1361-19.0	16 361-14.0	25 361 - 8.0	24 B61 - 4.0	23 1360-19,0	22 360-140	U B60-910	10 B60-4.0	Lab ID Sample Identification	Sampled by: Ken Shart	Project Name: LAKESIDE Aberdeed	Project Number:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	OnSite Environmental Inc.
Reviewed/Date			- (OSB Stylin) I was	2024 54/17 1200	Speedy 54/17 1100	FARALLON SIGILT 1800	Company Date Time		V 16505 5	1640 5 5 X X	1630 S 2 X X	1626 S 2	1605 5 5	1600 S 5 X X	1550 S 2	S14171546 5 2 X X	NWTF NWTF NWTF NWTF Volatil Halog	PH-HCID PH-Gx/BTEX PH-Gx PH-Dx ( Acid PH-Dx	/ SG Clean- s 8260C	Same Day	Turnaround Request (in working days)     Laboratory Number:	Chain of Custody
Chromatograms with final report   Electronic Data Deliverables (EDDs)	Data Package: Standard 🛛 Level III 🗌 Level IV 🗌					See page #1	Comments/Special Instructions			×				×			Semiv (with I PAHs PCBs Organ Organ Chlori Total I Total I Total I	EPA 8011 (Wate rolatiles 8270D ow-level PAHs 8270D/SIM (lo 8082A rochlorine Pest ophosphorus F nated Acid Her RCRA Metals MTCA Metals Metals (oil and grease)	/SIM ) w-level) icides 8081E Pesticides 82 rbicides 815	3 270D/SIM	-	Page Co of Co



14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 19, 2017

Jerry Portele Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 525-006 Laboratory Reference No. 1705-077

Dear Jerry:

Enclosed are the analytical results and associated quality control data for samples submitted on May 4, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures



Date of Report: May 19, 2017 Samples Submitted: May 4, 2017 Laboratory Reference: 1705-077 Project: 525-006

#### **Case Narrative**

Samples were collected on May 2 and 3, 2017 and received by the laboratory on May 4, 2017. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

#### NWTPH Gx/BTEX Analysis

Samples MW-8-050217 and MW-2-050217 were extracted and analyzed one day out of hold time.

All VOA vials provided for samples MW-10-050317 and MW-1-050317 contained headspace. Some loss of volatiles may have occurred.

#### NWTPH Dx Analysis

Samples MW-8-050217 and MW-2-050217 were extracted and analyzed one day out of hold time.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.



Matrix: Water Units: ug/L (ppb)

Client ID:         MW-8-050217           Laboratory ID:         05-077-01           Benzene         ND         1.0         EPA 8021B         5-17-17         5-17.17           Deluene         ND         1.0         EPA 8021B         5-17-17         5-17.17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17.17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17.17           Surrogate:         ND         1.0         EPA 8021B         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17.17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Surrogate:         ND         1.0         EPA 8021B         5-17-17         5-17-17           Surrogate:         ND         1.0         EPA 8021B         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17         5-17-17           Surrogate:         Percent R					Date	Date	
Laboratory ID:         05-077-01           Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           m.p-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         1.0         EPA 8021B         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Elaboratory ID:         05-077-02         Enzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ehyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Oxylene         ND         1.0         EPA 8021B	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           chylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         100         NWTPH-Gx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         61-118         5-17-17         5-17-17           Suboratory ID:         05-077-02         Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Fulvene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         Fulvenee         5-17-17 <t< td=""><td>Client ID:</td><td>MW-8-050217</td><td></td><td></td><td></td><td></td><td></td></t<>	Client ID:	MW-8-050217					
ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           oxylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         100         NWTPH-Gx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17         5-17-17           Laboratory ID:         05-077-02         E         E         E         E         E           Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17         E-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Surrogate:         ND         1.0         EPA 8021B         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Surro	Laboratory ID:	05-077-01					
Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           m,p-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         100         NWTPH-Gx         5-17-17         5-17-17           Gasoline         ND         100         NWTPH-Gx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17         5-17-17           Ehboratory ID:         05-077-02         Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Surrogate:         ND         1.0         EPA 8021B         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17 <td< td=""><td>Benzene</td><td>ND</td><td>1.0</td><td>EPA 8021B</td><td>5-17-17</td><td>5-17-17</td><td></td></td<>	Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
ND         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         100         NWTPH-Gx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         6-1118         5-17-17         5-17-17           Client ID:         MW-2-050217	Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         100         NWTPH-Gx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         61-118         5-17-17         5-17-17           Client ID:         MW-2-050217	Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline         ND         100         NWTPH-Gx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118         61-118	m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Surrogate:         Percent Recovery         Control Limits           Fluorobenzene         86         61-118           Client ID:         MW-2-050217           Laboratory ID:         05-077-02           Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Surrogate:         ND         1.0         EPA 8021B         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Benzene         56         1.0         EPA 8021B         5-17-17         5-17-17           Laboratory ID:         05-0	o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Fluorobenzene         86         61-118           Client ID:         MW-2-050217           Laboratory ID:         05-077-02           Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           oxylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           oxylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         1.0         EPA 8021B         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Fluorobenzene         92         61-118         5-17-17         5-17-17           Client ID:         MW-20-050317         Eaboratory ID:         05-077-03         5-17-17         5-17-17           Benzene         56         1.0         EPA 8021B         5-17-17         5-17-17	Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Client ID:         MW-2-050217 05-077-02           Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Surgate:         ND         1.0         EPA 8021B         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17         5-17-17           Fluorobenzene         92         61-118         5-17-17         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17         5-17-17           Benzene         56         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID:         05-077-02           Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           m.p-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         100         NWTPH-Gx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         Fluorobenzene         92         61-118           Client ID:         MW-20-050317         Entrono         Entrono         5-17-17         5-17-17           Laboratory ID:         05-077-03         05-077-03         Entrono         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         E	Fluorobenzene	86	61-118				
Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           m.p-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         100         NWTPH-Gx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Surrogate:         92         61-118         61-118         61-118           Client ID:         MW-20-050317         5-17-17         5-17-17         5-17-17           Laboratory ID:         05-077-03         05-077-03         5-17-17         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B	Client ID:	MW-2-050217					
ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           m,p-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         100         NWTPH-Gx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Benzene         56         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         <	Laboratory ID:	05-077-02					
Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           m,p-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         100         NWTPH-Gx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Client ID:         MW-20-050317         -         -         -           Laboratory ID:         05-077-03         -         -         -           Benzene         56         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           m,p-Xylene         2.9         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         1.0         1.0         EPA 8021B         5-17-17	Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
ND         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         100         NWTPH-Gx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Fluorobenzene         92         61-118         5-17-17         5-17-17           Client ID:         MW-20-050317         5-077-03         5-17-17         5-17-17           Benzene         56         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           M,p-Xylene         2.9         1.0         EPA 8021B         5-17-17         5	Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
ND         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         ND         100         NWTPH-Gx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17         5-17-17           Client ID:         MW-20-050317         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td>Ethyl Benzene</td><td>ND</td><td>1.0</td><td>EPA 8021B</td><td>5-17-17</td><td>5-17-17</td><td></td></t<>	Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
ND         100         NWTPH-Gx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         7         5         7         7         5         17         17         5         17         17         5         17         17         10         10         5         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10	m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Surrogate:         Percent Recovery         Control Limits           Fluorobenzene         92         61-118           Client ID:         MW-20-050317           Laboratory ID:         05-077-03           Benzene         56         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         2.9         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         1.0         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         1.0         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         500         100         NWTPH-Gx         5-17-17         5-17-17         O           Surrogate:         Percent Recovery         Control Limits         Control Limits         Control Limits         Control Limits	o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Fluorobenzene         92         61-118           Client ID:         MW-20-050317           Laboratory ID:         05-077-03           Benzene         56         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           MD         1.0         EPA 8021B         5-17-17         5-17-17           O-Xylene         2.9         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         1.0         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         500         100         NWTPH-Gx         5-17-17         5-17-17         O           Surrogate:         Percent Recovery         Control Limits         Ket         Ket         Ket         Ket         Ket         Ket	Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Client ID:         MW-20-050317           Laboratory ID:         05-077-03           Benzene         56         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           m,p-Xylene         2.9         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         1.0         1.0         EPA 8021B         5-17-17         5-17-17           gasoline         500         100         NWTPH-Gx         5-17-17         5-17-17         O           Surrogate:         Percent Recovery         Control Limits         Control Limits         Control Limits         Control Limits	Surrogate:	Percent Recovery	Control Limits				
Laboratory ID:         05-077-03           Benzene         56         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           m,p-Xylene         2.9         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         1.0         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         500         100         NWTPH-Gx         5-17-17         5-17-17         O           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17         5-17-17         O	Fluorobenzene	92	61-118				
Benzene         56         1.0         EPA 8021B         5-17-17         5-17-17           Toluene         ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           m,p-Xylene         2.9         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         1.0         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         500         100         NWTPH-Gx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17         5-17-17	Client ID:	MW-20-050317					
ND         1.0         EPA 8021B         5-17-17         5-17-17           Ethyl Benzene         ND         1.0         EPA 8021B         5-17-17         5-17-17           m,p-Xylene         2.9         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         500         100         NWTPH-Gx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         EVANDE         5-17-17         5-17-17         O	Laboratory ID:	05-077-03					
ND         1.0         EPA 8021B         5-17-17         5-17-17           m,p-Xylene         2.9         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         1.0         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         1.0         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         500         100         NWTPH-Gx         5-17-17         5-17-17         O           Surrogate:         Percent Recovery         Control Limits         EVA         Surrogate	Benzene	56	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene         2.9         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         1.0         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         500         100         NWTPH-Gx         5-17-17         5-17-17         O           Surrogate:         Percent Recovery         Control Limits         Control Limits         Control Limits         Control Limits	Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene         2.9         1.0         EPA 8021B         5-17-17         5-17-17           o-Xylene         1.0         1.0         EPA 8021B         5-17-17         5-17-17           Gasoline         500         100         NWTPH-Gx         5-17-17         5-17-17         O           Surrogate:         Percent Recovery         Control Limits         Control Limits         Control Limits         Control Limits	Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline500100NWTPH-Gx5-17-175-17-17OSurrogate:Percent RecoveryControl Limits	m,p-Xylene	2.9	1.0	EPA 8021B	5-17-17	5-17-17	
Surrogate: Percent Recovery Control Limits	o-Xylene	1.0	1.0	EPA 8021B	5-17-17	5-17-17	
	Gasoline	500	100	NWTPH-Gx	5-17-17	5-17-17	0
•	Surrogate:	Percent Recovery	Control Limits				
	Fluorobenzene	89	61-118				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-16-050317					
Laboratory ID:	05-077-04					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	61-118				
Client ID:	MW-18-050317					
Laboratory ID:	05-077-05					
Benzene	31	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	4.3	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	4.6	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	1500	400	NWTPH-Gx	5-17-17	5-17-17	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	61-118				
Client ID:	MW-14-050317					
Laboratory ID:	05-077-06					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	61-118				



4

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-15-050317					
Laboratory ID:	05-077-07					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	61-118				
Client ID:	MW-17-050317					
Laboratory ID:	05-077-08					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	61-118				
Client ID:	MW-19-050317					
Laboratory ID:	05-077-09					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	13	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	61-118				



5

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-13-050317					
Laboratory ID:	05-077-10					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	61-118				
Client ID:	MW-12-050317					
Laboratory ID:	05-077-11					
Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	400	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	61-118				
Client ID:	MW-11-050317					
Laboratory ID:	05-077-12					
Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	400	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	97	61-118				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-21-050317					
Laboratory ID:	05-077-13					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	61-118				
Client ID:	MW-10-050317					
Laboratory ID:	05-077-14					
Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	400	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	61-118				
Client ID:	MW-4-050317					
Laboratory ID:	05-077-15					
Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	400	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	61-118				



7

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-9-050317					
Laboratory ID:	05-077-16					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	61-118				
Client ID:	MW-7-050317					
Laboratory ID:	05-077-17					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	160	100	NWTPH-Gx	5-17-17	5-17-17	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	61-118				
Client ID:	MW-3-050317					
Laboratory ID:	05-077-18					
Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	400	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	61-118				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-050317					
Laboratory ID:	05-077-19					
Benzene	11	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	61-118				
Client ID:	MW-1-050317					
Laboratory ID:	05-077-20					
Benzene	10	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	1300	400	NWTPH-Gx	5-17-17	5-17-17	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	61-118				



Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-050317					
Laboratory ID:	05-077-21					
Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	400	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	61-118				
Client ID:	DUP1-050317					
Laboratory ID:	05-077-22					
Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	4.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	400	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	61-118				
Client ID:	DUP2-050317					
Laboratory ID:	05-077-23					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	160	100	NWTPH-Gx	5-17-17	5-17-17	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	61-118				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: ug/L (ppb)

<b>5</b> (17)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	DUP3-050317					
Laboratory ID:	05-077-24					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	480	100	NWTPH-Gx	5-17-17	5-17-17	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	61-118				



### NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0517W1					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	61-118				
Laboratory ID:	MB0517W2					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	61-118				
Laboratory ID:	MB0517W3					
Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Toluene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Ethyl Benzene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
m,p-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
o-Xylene	ND	1.0	EPA 8021B	5-17-17	5-17-17	
Gasoline	ND	100	NWTPH-Gx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	61-118				



### NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

0 (11 /					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-07	77-16									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	A	NA	NA	30	
Toluene	ND	ND	NA	NA		N	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	A	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	A	NA	NA	30	
Surrogate:											
Fluorobenzene						90	94	61-118			
Laboratory ID:	05-07	77-13									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	A	NA	NA	30	
Toluene	ND	ND	NA	NA		N	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	A	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	A	NA	NA	30	
Surrogate:											
Fluorobenzene						93	95	61-118			
Laboratory ID:	05-15	51-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	A	NA	NA	30	
Surrogate:											
Fluorobenzene						88	85	61-118			



### NWTPH-Gx/BTEX MS/MSD QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

onns. ug/L (ppb)					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result		overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	05-0	77-16									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	45.5	45.3	50.0	50.0	ND	91	91	80-120	0	13	
Toluene	46.1	46.0	50.0	50.0	ND	92	92	81-115	0	14	
Ethyl Benzene	47.0	47.0	50.0	50.0	ND	94	94	81-114	0	12	
m,p-Xylene	46.2	46.5	50.0	50.0	ND	92	93	81-114	1	13	
o-Xylene	46.4	46.1	50.0	50.0	ND	93	92	81-113	1	11	
Surrogate:											
Fluorobenzene						89	88	61-118			
Laboratory ID:	05-1	51-02									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	44.6	41.6	50.0	50.0	ND	89	83	80-120	7	13	
Toluene	45.4	42.1	50.0	50.0	ND	91	84	81-115	8	14	
Ethyl Benzene	46.4	43.0	50.0	50.0	ND	93	86	81-114	8	12	
m,p-Xylene	45.6	42.4	50.0	50.0	ND	91	85	81-114	7	13	
o-Xylene	45.7	42.3	50.0	50.0	ND	91	85	81-113	8	11	
Surrogate:											
Fluorobenzene						86	88	61-118			



14

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-8-050217					
Laboratory ID:	05-077-01					
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	72	50-150				
Client ID:	MW-2-050217					
Laboratory ID:	05-077-02					
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	72	50-150				
Client ID:	MW-20-050317					
Client ID:						
Laboratory ID:	05-077-03					
Diesel Range Organics	2.7	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	1.6	0.42	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	80	50-150				
Client ID:	MW-16-050317					
Laboratory ID:	05-077-04					
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	61	50-150				
Client ID:	MW-18-050317					
Laboratory ID:	05-077-05					
Diesel Range Organics	4.1	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	2.5	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits		0 17 17	0 17 17	
o-Terphenyl	72	50-150				
Client ID:	MW/ 44 050047					
Client ID:	MW-14-050317					
Laboratory ID:	05-077-06	0.00		F 47 47	E 47 47	
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

15

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	MW-15-050317				<b>,</b>	<b>y</b> -
Laboratory ID:	05-077-07					
Diesel Range Organics	0.42	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	0.46	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				
Client ID:	MW-17-050317					
Laboratory ID:	05-077-08					
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-18-17	
Lube Oil	0.43	0.41	NWTPH-Dx	5-17-17	5-18-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				
Client ID:	MW-19-050317					
Laboratory ID:	05-077-09					
Diesel Range Organics	0.31	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	0.44	0.42	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				
Client ID:	MW-13-050317					
Laboratory ID:	05-077-10					
Diesel Range Organics	0.30	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits		5-17-17	5-17-17	
o-Terphenyl	87	50-150				
0-reipilenyi	07	50-150				
Client ID:	MW-12-050317					
Laboratory ID:	05-077-11					
Diesel Range Organics	1.3	0.29	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	0.63	0.46	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				
Client ID:	MW-11-050317					
Laboratory ID:	05-077-12					
Diesel Range Organics	2.4	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	3.4	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

16

Matrix: Water Units: mg/L (ppm)

Client ID:         MW-21-050317           Laboratory ID:         05-077-13           Diesel Range Organics         ND         0.42           NUTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits           o-Terphenyl         91         50-150           Client ID:         MW-10-050317         Laboratory ID:           Laboratory ID:         05-077-14         Disel Range Organics         0.44           Disel Range Organics         0.44         0.25         NWTPH-Dx         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Laboratory ID:         05-077-16         Diesel Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:	Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-17-17           Lube Oil Range Organics         ND         0.42         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         50-150         50-150           Client ID:         MW-10-050317         Laboratory ID:         05-077-14         5-17-17         5-17-17         5-17-17           Surrogate:         0.44         0.25         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         So-150         50-150         50-150           Client ID:         MW-4-050317         Laboratory ID:         05-077-15         50-150         50-150           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         50-150         50-150         50-150           Client ID:         MW-9-050317         Laboratory ID:         05-077-16         50-150         50-150           Diesel Range Organics	Client ID:	MW-21-050317			-	-	
Lube Oil Range Örganics         ND         0.42         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         50-150         5-17-17         5-17-17         5-17-17           Client ID:         MW-10-050317         Eaboratory ID:         0.5-077-14         5-17-17         5-17-17         5-17-17           Diesel Range Organics         0.44         0.25         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         0-Ferphenyl         87         50-150         5-17-17         5-17-17           Surrogate:         0-Ferphenyl         87         50-150         5-17-17         5-17-17           Surrogate:         0-Ferphenyl         87         50-150         5-17-17         5-18-17           Laboratory ID:         05-077-15         Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17         5-18-17           Surrogate:         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17	Laboratory ID:	05-077-13					
Surrogate: o-Terphenyl         Percent Recovery 91         Control Limits 50-150           Client ID: Laboratory ID: Diesel Range Organics Ube Oil Range Organics o-Terphenyl         0.44         0.25         NWTPH-Dx         5-17-17         5-17-17           Surrogate: o-Terphenyl         Percent Recovery 87         Control Limits 50-150         5-17-17         5-17-17         5-17-17           Surrogate: o-Terphenyl         Percent Recovery 87         Control Limits 50-150         5-17-17         5-17-17           Client ID: Laboratory ID: Diesel Range Organics o-Terphenyl         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Surrogate: o-Terphenyl         Percent Recovery 05-077-15         Control Limits 0-160         5-17-17         5-18-17           Surrogate: o-Terphenyl         Percent Recovery 70         Control Limits 70         5-17-17         5-18-17           Surrogate: o-Terphenyl         Percent Recovery 70         Control Limits 77         5-17-17         5-18-17           Surrogate: o-Terphenyl         Percent Recovery 77         Control Limits 77         5-17-17         5-18-17           Surrogate: o-Terphenyl         Percent Recovery 77         Control Limits 76         5-17-17         5-17-17           Surrogate: o-Terphenyl         Percent Recovery 76         Control Limits 76         5-17-17	Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-17-17	
o-Terphenyl         91         50-150           Client ID: Laboratory ID:         MW-10-050317 05-077-14         NWTPH-Dx         5-17-17         5-17-17           Diesel Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate: o-Terphenyl         Percent Recovery 87         Control Limits 50-150         5-17-17         5-17-17           Client ID: Laboratory ID: Diesel Range Organics         MW-4-050317 05-077-15         NUTPH-Dx         5-17-17         5-18-17           Surrogate: o-Terphenyl         70         0.26         NWTPH-Dx         5-17-17         5-18-17           Surogate: o-Terphenyl         Percent Recovery 70         Control Limits 50-150         5-17-17         5-18-17           Client ID: Laboratory ID:         MW-9-050317 Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Surrogate: o-Terphenyl         77         50-150         50-150         50-17-17         5-18-17           Client ID: Lube Oil Range Organics ND         0.42         NWTPH-Dx         5-17-17         5-18-17           Surrogate: o-Terphenyl         77         50-150         50-170         5-17-17         5-17-17           Surrogate: o-Terphenyl         0.62         0.25	Lube Oil Range Organics	ND	0.42	NWTPH-Dx	5-17-17	5-17-17	
Client ID:         MW-10-050317           Laboratory ID:         05-077.14           Diesel Range Organics         0.44         0.25         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17         5-17-17           Otient ID:         MW-4-050317         Elaboratory ID:         05-077-15         5-07-17         5-18-17           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         50-150         50-150         50-150           Client ID:         MW-9-050317         Elaboratory ID:         05-077-16         50-150         50-17-17         5-18-17           Diesel Range Organics         ND         0.42         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         -77         50-150         50-150           Client ID:         MW-7-050317         Laboratory ID:         05-077-17         50-150         50-17-17         5-17-17         5-17-17		Percent Recovery	Control Limits				
Laboratory ID:         05-077-14           Diesel Range Organics         0.44         0.25         NWTPH-Dx         5-17-17         5-17-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17         5-17-17           Client ID:         MW-4-050317         Eaboratory ID:         05-077-15         Diesel Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         50-150         50-150         50-150           Client ID:         MW-9050317         Eaboratory ID:         05-077-16         50-150         50-150           Diesel Range Organics         ND         0.42         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         50-150         50-150         50-150           Client ID:         MW-7-050317         Eaboratory ID:         0.5-077-17         5-17-17         5-17-17           Diesel Range Orga	o-Terphenyl	91	50-150				
Diesel Range Organics         0.44         0.25         NWTPH-Dx         5-17-17         5-17-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         50-150         5-17-17         5-17-17           Client ID:         MW-4-050317         Eaboratory ID:         05-077-15         5-17-17         5-18-17           Diesel Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         50-150         50-150         50-150           Client ID:         MW-7-050317         Eaboratory ID         0.62	Client ID:	MW-10-050317					
Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         50-150         5-17-17         5-17-17         5-17-17           Client ID:         MW-4-050317         -         -         -         -         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         -         50-150         50-150           Client ID:         MW-9-050317         -         -         5-17-17         5-18-17           Laboratory ID:         05-077-16         -         -         5-17-17         5-18-17           Diesel Range Organics         ND         0.42         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Surrogate:         Diesel Range Organics         ND	Laboratory ID:	05-077-14					
Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         50-150         5-17-17         5-17-17         5-17-17           Client ID:         MW-4-050317         -         -         -         -         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         -         50-150         50-150           Client ID:         MW-9-050317         -         -         5-17-17         5-18-17           Laboratory ID:         05-077-16         -         -         5-17-17         5-18-17           Diesel Range Organics         ND         0.42         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Surrogate:         Diesel Range Organics         ND	Diesel Range Organics	0.44	0.25	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:         Percent Recovery         Control Limits           o-Terphenyl         87         50-150           Client ID:         MW-4-050317           Laboratory ID:         05-077-15           Diesel Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Laboratory ID:         0.50-77-16         0.26         NWTPH-Dx         5-17-17         5-18-17           Diesel Range Organics         ND         0.42         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Surrogate:         05-077-17         Diesel Range Organics         ND         0.41         NWTPH-Dx							
o-Terphenyl         87         50-150           Client ID: Laboratory ID:         MW-4-050317 05-077-15         0.26         NWTPH-Dx         5-17-17         5-18-17           Diesel Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Surrogate: o-Terphenyl         Percent Recovery         Control Limits 50-150         S-17-17         5-18-17           Client ID: Laboratory ID:         MW-9-050317 05-077-16         D         0.26         NWTPH-Dx         5-17-17         5-18-17           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Laboratory ID:         05-077-16         Diesel Range Organics         ND         0.42         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         MW-7-050317         Laboratory ID:         0.5-077-17         5-17-17         5-17-17         5-17-17           Diesel Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         -7-17         5-17-17         5-17-17           Surrogate		Percent Recoverv					
Laboratory ID:         05-077-15           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           O'Ferphenyl         70         50-150         50-150         5-17-17         5-18-17           Client ID:         MW-9-050317         Laboratory ID:         05-077-16         5-17-17         5-18-17           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.42         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         05-077-17         Diesel Range Organics         0.62         0.25         NWTPH-Dx         5-17-17         5-17-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17 <tr< td=""><td></td><td></td><td>50-150</td><td></td><td></td><td></td><td></td></tr<>			50-150				
Laboratory ID:         05-077-15           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           O'Ferphenyl         70         50-150         50-150         5-17-17         5-18-17           Client ID:         MW-9-050317         Laboratory ID:         05-077-16         5-17-17         5-18-17           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.42         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Laboratory ID:         05-077-17         Diesel Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17      <							
Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           OrTerphenyl         70         50-150         50-150         50-170           Client ID:         MW-9-050317         Laboratory ID:         05-077-16         Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.42         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Ostartory ID:         05-077-17         05-077-17         5-17-17         5-17-17         5-17-17           Diesel Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Ostartory ID:         05-077-1	Client ID:	MW-4-050317					
Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         50-150         50-150         50-150           Client ID:         MW-9-050317         Control Limits         5-17-17         5-18-17           Laboratory ID:         05-077-16         05-077-16         5-17-17         5-18-17           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           O-Terphenyl         77         50-150         50-150         5-17-17         5-17-17           Client ID:         MW-7-050317         Laboratory ID:         05-077-17         5-17-17         5-17-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Client ID:         MW-3-050317         Laboratory ID:         05-077-18         5-07-150	Laboratory ID:	05-077-15					
Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         50-150         50-150         50-150           Client ID:         MW-9-050317         Control Limits         5-17-17         5-18-17           Laboratory ID:         05-077-16         05-077-16         5-17-17         5-18-17           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           O-Terphenyl         77         50-150         50-150         5-17-17         5-17-17           Client ID:         MW-7-050317         Laboratory ID:         05-077-17         5-17-17         5-17-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Client ID:         MW-3-050317         Laboratory ID:         05-077-18         5-07-150	Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-18-17	
o-Terphenyl         70         50-150           Client ID: Laboratory ID:         MW-9-050317 05-077-16         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Diesel Range Organics         ND         0.42         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           O'-Terphenyl         77         50-150         5-17-17         5-18-17           Client ID:         MW-7-050317         Laboratory ID:         05-077-17         5-0-150           Diesel Range Organics         0.62         0.25         NWTPH-Dx         5-17-17         5-17-17           Laboratory ID:         05-077-17         Diesel Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         -76         50-150         -77-17         5-17-17         5-17-17         5-17-17           Client ID:         MW-3-050317         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -		ND	0.41	NWTPH-Dx	5-17-17	5-18-17	
o-Terphenyl         70         50-150           Client ID: Laboratory ID:         MW-9-050317 05-077-16         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Diesel Range Organics         ND         0.42         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           O'-Terphenyl         77         50-150         5-17-17         5-18-17           Client ID:         MW-7-050317         Laboratory ID:         05-077-17         5-0-150           Diesel Range Organics         0.62         0.25         NWTPH-Dx         5-17-17         5-17-17           Laboratory ID:         05-077-17         Diesel Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         -76         50-150         -77-17         5-17-17         5-17-17         5-17-17           Client ID:         MW-3-050317         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -		Percent Recovery	Control Limits				
Laboratory ID:         05-077-16           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.42         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           o-Terphenyl         77         50-150         50-150         5-17-17         5-17-17           Client ID:         MW-7-050317         Laboratory ID:         05-077-17         5-07-17         5-17-17         5-17-17           Diesel Range Organics         0.62         0.25         NWTPH-Dx         5-17-17         5-17-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         -         -         -           o-Terphenyl         76         50-150         50-150         -         -         -           Client ID:         MW-3-050317         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -		-	50-150				
Laboratory ID:         05-077-16           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.42         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17           o-Terphenyl         77         50-150         50-150         5-17-17         5-17-17           Client ID:         MW-7-050317         105-077-17         105-077-17         5-17-17         5-17-17         5-17-17           Diesel Range Organics         0.62         0.25         NWTPH-Dx         5-17-17         5-17-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         0-150         0-150         0-150           Client ID:         MW-3-050317         105-077-18         105-077-18         105-077-17         5-17-17         5-18-17           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         <							
Diesel Range OrganicsND0.26NWTPH-Dx5-17-175-18-17Lube Oil Range OrganicsND0.42NWTPH-Dx5-17-175-18-17Surrogate:Percent RecoveryControl Limitso-Terphenyl7750-150Client ID:Laboratory ID:05-077-17Diesel Range Organics0.620.25ND0.41NWTPH-Dx5-17-17Surrogate:Percent RecoveryControl Limitso-Terphenyl7650-150Client ID:MW-3-050317Laboratory ID:05-077-18Diesel Range OrganicsND0.26NWTPH-Dx5-17-175-18-17Client ID:MW-3-050317Laboratory ID:05-077-18Diesel Range OrganicsND0.26ND0.41NWTPH-Dx5-17-17Surrogate:Percent RecoveryControl Limitso-Terphenyl7650-150Client ID:MW-3-050317Laboratory ID:05-077-18Diesel Range OrganicsND0.26ND0.41NWTPH-Dx5-17-17Surrogate:Percent RecoveryControl LimitsSurrogate:Percent RecoveryControl Limits							
Lube Oil Range OrganicsND0.42NWTPH-Dx5-17-175-18-17Surrogate: o-TerphenylPercent Recovery 77Control Limits 50-150							
Surrogate:Percent RecoveryControl Limitso-Terphenyl7750-150Client ID:MW-7-050317Laboratory ID:05-077-17Diesel Range Organics0.620.25ND0.41NWTPH-Dx5-17-175-17-17Surrogate:Percent Recoveryo-Terphenyl7650-15050-150Client ID:MW-3-050317Laboratory ID:05-077-18Diesel Range OrganicsND0.26NWTPH-Dx5-17-175-18-17Lube Oil Range OrganicsND0.26NWTPH-Dx5-17-175-18-17Lube Oil Range OrganicsND0.41NWTPH-Dx5-17-175-18-17Surrogate:Percent RecoveryControl Limits5-077-18Diesel Range OrganicsND0.41NWTPH-Dx5-17-175-18-17Surrogate:Percent RecoveryControl Limits	<b>v</b>						
o-Terphenyl         77         50-150           Client ID:         MW-7-050317           Laboratory ID:         05-077-17           Diesel Range Organics         0.62         0.25         NWTPH-Dx         5-17-17         5-17-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-17-17           Offent ID:         MW-3-050317         50-150         50-150         50-150           Client ID:         MW-3-050317         50-17-17         5-17-17         5-18-17           Laboratory ID:         05-077-18         05-077-18         5-17-17         5-18-17           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17				NWTPH-Dx	5-17-17	5-18-17	
Client ID:         MW-7-050317           Laboratory ID:         05-077-17           Diesel Range Organics         0.62         0.25         NWTPH-Dx         5-17-17         5-17-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         -         -         -           o-Terphenyl         76         50-150         -         -         -         -           Client ID:         MW-3-050317         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <		Percent Recovery					
Laboratory ID:         05-077-17           Diesel Range Organics         0.62         0.25         NWTPH-Dx         5-17-17         5-17-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         50-150         50-150         50-150           Client ID:         MW-3-050317         MW-3-050317         50-077-18         50-077-18         50-077-18           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17	o-Terphenyl	77	50-150				
Laboratory ID:         05-077-17           Diesel Range Organics         0.62         0.25         NWTPH-Dx         5-17-17         5-17-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-17-17           Surrogate:         Percent Recovery         Control Limits         50-150         50-150         50-150           Client ID:         MW-3-050317         MW-3-050317         50-077-18         50-077-18         50-077-18           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-17-17         5-18-17							
Diesel Range Organics0.620.25NWTPH-Dx5-17-175-17-17Lube Oil Range OrganicsND0.41NWTPH-Dx5-17-175-17-17Surrogate:Percent RecoveryControl Limitso-Terphenyl7650-150Client ID:Laboratory ID:05-077-18Diesel Range OrganicsND0.26NWTPH-Dx5-17-175-18-175-18-17Lube Oil Range OrganicsND0.41NWTPH-Dx5-17-17Surrogate:Percent RecoveryControl Limits							
Lube Oil Range OrganicsND0.41NWTPH-Dx5-17-175-17-17Surrogate:Percent Recovery 76Control Limits 50-150Client ID:MW-3-050317 05-077-18		05-077-17					
Surrogate:       Percent Recovery       Control Limits         o-Terphenyl       76       50-150         Client ID:       MW-3-050317         Laboratory ID:       05-077-18         Diesel Range Organics       ND       0.26       NWTPH-Dx       5-17-17       5-18-17         Lube Oil Range Organics       ND       0.41       NWTPH-Dx       5-17-17       5-18-17         Surrogate:       Percent Recovery       Control Limits							
o-Terphenyl 76 50-150          Client ID:       MW-3-050317         Laboratory ID:       05-077-18         Diesel Range Organics       ND       0.26       NWTPH-Dx       5-17-17       5-18-17         Lube Oil Range Organics       ND       0.41       NWTPH-Dx       5-17-17       5-18-17         Surrogate:       Percent Recovery       Control Limits	Lube Oil Range Organics			NWTPH-Dx	5-17-17	5-17-17	
Client ID:       MW-3-050317         Laboratory ID:       05-077-18         Diesel Range Organics       ND       0.26       NWTPH-Dx       5-17-17       5-18-17         Lube Oil Range Organics       ND       0.41       NWTPH-Dx       5-17-17       5-18-17         Surrogate:       Percent Recovery       Control Limits	- · · · J	-					
Laboratory ID:         05-077-18           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         Control Limits         Control Limits         Control Limits	o-Terphenyl	76	50-150				
Laboratory ID:         05-077-18           Diesel Range Organics         ND         0.26         NWTPH-Dx         5-17-17         5-18-17           Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         Control Limits         Control Limits         Control Limits	Client ID:	MW 2 050247					
Diesel Range OrganicsND0.26NWTPH-Dx5-17-175-18-17Lube Oil Range OrganicsND0.41NWTPH-Dx5-17-175-18-17Surrogate:Percent RecoveryControl Limits5-17-175-18-17							
Lube Oil Range Organics         ND         0.41         NWTPH-Dx         5-17-17         5-18-17           Surrogate:         Percent Recovery         Control Limits         5-10-17         5-18-17			0.00		F 47 47	E 40 47	
Surrogate: Percent Recovery Control Limits							
				NWTPH-Dx	5-17-17	5-18-17	
o-Terphenyl 95 50-150							
	o- i erphenyl	95	50-150				



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Water Units: mg/L (ppm)

onita. ing/L (ppin)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-050317					
Laboratory ID:	05-077-19					
Diesel Range Organics	0.34	0.26	NWTPH-Dx	5-17-17	5-18-17	
Lube Oil Range Organics	0.43	0.42	NWTPH-Dx	5-17-17	5-18-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				
Client ID:	MW-1-050317					
Laboratory ID:	05-077-20					
Diesel Range Organics	1.3	0.26	NWTPH-Dx	5-17-17	5-17-17	
Lube Oil Range Organics	0.62	0.41	NWTPH-Dx	5-17-17	5-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Client ID:	MW-5-050317					
Laboratory ID:	05-077-21					
Diesel Range Organics	ND	0.26	NWTPH-Dx	5-17-17	5-18-17	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	5-17-17	5-18-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	76	50-150				



### NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flag	as
METHOD BLANK					<b>,</b>		
Laboratory ID:	MB0517W1						
Diesel Range Organics	ND	0.25	NWTPH-Dx	5-17-17	5-1-81		
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	5-17-17	5-1-81		
Surrogate:	Percent Recovery	Control Limits					
o-Terphenyl	83	50-150					
Laboratory ID:	MB0517W2						
Diesel Range Organics	ND	0.25	NWTPH-Dx	5-17-17	5-17-17		
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	5-17-17	5-17-17		
Surrogate:	Percent Recovery	Control Limits					
o-Terphenyl	70	50-150					
			Source Pe	ercent Recov	ery	RPD	
Analyte	Result	Spike Level	Result Re	covery Limit	s RPD	Limit	Flags
DUPLICATE							
Laboratory ID:	05-077-09						

Laboratory ID:	05-07	77-09							
	ORIG	DUP							
Diesel Range Organics	0.314	0.305	NA	NA	NA	NA	3	NA	
Lube Oil Range Organics	0.442	0.440	NA	NA	NA	NA	0	NA	
Surrogate:									
o-Terphenyl					82 79	50-150			
Laboratory ID:	05-07	77-20							
	ORIG	DUP							
Diesel Range Organics	1.36	1.34	NA	NA	NA	NA	1	NA	
Lube Oil Range	ND	ND	NA	NA	NA	NA	NA	NA	U1,
Surrogate:									
o-Terphenyl					99 95	50-150			





### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference



OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	neiinquistied	Delise	Received	Relinquished		10 MW-13-	PI-MM P	8 MW-17-	7 MW-15-	6 MW-14	S MELLO	4 MW-16	3 MW-20	2 MW-2	1 MW-E	Lab ID San	Sampled by: AVASE	Jerry	Project Manager	Project Number	Company: FARF		Analytical Labo	MA Onsite
			X	Var	1000	1/man 0	Kin Britt	Signature	.050817	050317	050317	- 050317	- 050317	3-050317	-050317	0-050317	CH2020-17	3-050217	Sample Identification	ASIA BUNJS.	Portele	be Aberdeen	-006	H CN	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com		
Reviewed/Date				20	000	SA	PARAL	Company	10:33	10:28	10:00	9:29	8:59	25:8	0:30	5-3-17 8:16	V 1766 W	S12/17/456 W	Date Time Sampled Sampled M	(other)		J X Standard (7 Days) (TPH analysis 5 Days)	2 Days 3		(in working days) (Check One)	Turnaround Request	Chain
			B SHIL	11/1 S/14/1	1111-0	4/4/1-	100 E-41-	Date								5		C 5 X	NWTP NWTP NWTP		D BTEX		3 Days	1 Day	Laboratory		1 of Custody
Chron	Data I		7 1200	7 1200	100	1 1/m	7 800	Time Comr	5										Volatil Haloge EDB E Semiv (with le	es 8260 enated PA 801 olatiles ow-leve	OC Volatile 1 (Wat 8270D 8270D	3)	)	)	Number: U	>	V
Chromatograms with final report $\Box$	Package: Standard  Level							Comments/Special Instructions											PCBs Organ Organ Chlori	8082A ochlorii ophosp	ne Pesi horus Acid He	ticides 8 Pesticid rbicides	081B es 8270		<u>40-c</u>	5	
Electronic Data Deliverables (EDDs)	el III 🗌 Level IV 🗌																		TCLP	Metals		) 1664A				-	Page / of
DDs)		£																	% Moi	sture							

Reviewed/Date	Received	Relinquished	Received	Kellinduished	Heceived Var	Reinquisned Kn Snav	Deliner inhered Signature	2 MW-1-050317	19 MW- 6-050317	18 MW- 3- 050317	17 MW-7-050317	16 MW-9-650317	15 MW- 4-050317	14 MW-10-050317	13 MW-21-050317	12 MW-11-550317	11 MW-12-050317	Lab ID Sample Identification	Sampled by: A. BURS/K. Scott.	2 - Portele	Briert Manager	Britot Name: 525-086	Privat Number		Analytical Laboratory Testing Services	OnSite Environmental Inc
Reviewed/Date			N COPT S	7024 5	Sport 5	tarallan b	Company Date	V 15:03 V V V	14:3)	14:30	13:46	/33/0	(2:3)	. 12:05	11:31	11:30	5-3-17 11: 05 Water 5 X	NWTF	(other)	<b>ontain</b>	(TPH analysis 5 Days)	2 Days - 3 Days	Same Day 1 Day		Turnaround Request	Chain of Cus
Chroma	Data Pa		1/13 1200	1117 1200	4/17 /100	111 800	Time	Ł									*	Volatil Halog EDB E Semiv (with I	PH-Dx ( es 8260 enated PA 801 rolatiles ow-leve	DC Volatile 1 (Wate 8270D el PAHs		)		Laboratory Number:		Custody
Chromatograms with final report $\Box$ Electronic Data Deliverables (EDDs) $\Box$	Package: Standard   Level III   Level IV						Comments/Special Instructions											PCBs Organ Organ Chlori Total F Total N TCLP	8082A ochlorir ophosp nated A RCRA M MTCA M Metals oil and	he Pest horus F icid Her letals letals	v-level) icides 8 Pesticides bicides	081B es 8270	D/SIM			Page 2 of 3

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished Im And	Signature				24 DUP3-050317	23 DUP 2-050317	22 DUPI-050317	21 MW-5-050317	Lab ID Sample Identification	Sampled by: A.BurnS/K.Scott	Project Manager: Project Manager: Project Manager:	Project Number: 525-000	Company: FDrollon	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date		(	SALE (120) 120	5/4/7 12	- 5ply 5/4/17 /12	F2r21100 54-17 800	Company Date Time		Ē	Ref.	V 11:33 V 37 V Arcan	13:48 31 1000	10:02 \$1 .1 c.	5-3-17 15:30 Water 5 X X	NWTF NWTF NWTF NWTF Volatil	PH-Dx (	EX Acid / SG C	14.192	ck Une)	ys) Laboratory N	Chain of Custody
Chromatograms with final report $\Box$ Electronic Data Deliverables (EDDs) $\Box$	Data Package: Standard 🛛 Level III 🗍 Level IV 🗌		0	200	00/	¢	Comments/Special Instructions				i celled	ndeWed	macuked 38		EDB E Semiv (with I PAHs PCBs Organ Organ Chlori Total I Total I Total I	PA 8011 rolatiles 8 ow-level 1 8270D/SI 8082A ochlorine ophospho nated Acia RCRA Me MTCA Me Metals foil and gr	M (low-level) Pesticides & orus Pesticid d Herbicides tals	/) 3081B les 8270D/ s 8151A	SIM	umber: 05-077	Page 3 of 3

DRAFT—Issued for Agency Review

## APPENDIX F TERRESTRIAL ECOLOGICAL EVALUATION FORMS

LAKESIDE INDUSTRIES ABERDEEN SITE 2400 Sargent Boulevard Aberdeen, Washington

Farallon PN: 525-006



# **Voluntary Cleanup Program**

## Washington State Department of Ecology Toxics Cleanup Program

## TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

## Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to <a href="http://www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm">www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm</a>.

## Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: Lakeside Industries Aberdeen Site

Facility/Site Address: 2400 Sargent Boulevard

Facility/Site No: 84657452

VCP Project No.: SW1161

Title: Senior Hydrogeologist

## Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

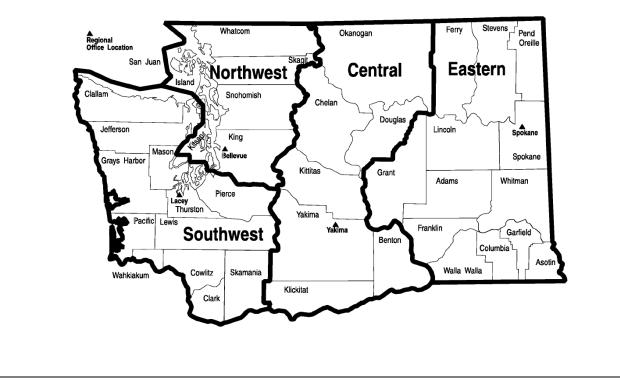
INAME. LINC DUEL	Name:	Eric	Buer
------------------	-------	------	------

Organization: Farallon Consulting LLC

Mailing address: 1809 7th Avenue Suite 1111

City: Seattle		Sta	te: WA	Zip code: 98101
Phone: (425)394-4418	Fax: (425)295-085	0	E-mail: ebuer	@farallonconsulting.com

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS												
A. Exclusion from further evaluation.												
1. Does the Site qualify for an exclusion from further evaluation?												
Yes If you answered " <b>YES</b> ," then answer <b>Question 2</b> .												
□ No or If you answered " <b>NO" or</b> " <b>UKNOWN,"</b> then skip to <b>Step 3B</b> of this form. Unknown												
2. What is the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.												
Point of Compliance: WAC 173-340-7491(1)(a)												
All soil contamination is, or will be,* at least 15 feet below the surface.												
All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.												
Barriers to Exposure: WAC 173-340-7491(1)(b)												
All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.												
Undeveloped Land: WAC 173-340-7491(1)(c)												
<ul> <li>There is less than 0.25 acres of contiguous[#] undeveloped[±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.</li> </ul>												
For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.												
Background Concentrations: WAC 173-340-7491(1)(d)												
Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.												
* An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology.												
* "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil.												
# "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area by wildlife.												


В.	Simplified	evaluation.									
1.	Does the S	ite qualify for a simplified evaluation?									
	🗌 Y	es If you answered "YES," then answer Question 2 below.									
		No or Unknown If you answered " <b>NO</b> " or " <b>UNKNOWN</b> ," then skip to <b>Step 3C</b> of this form.									
2.	Did you co	nduct a simplified evaluation?									
	🗌 Y	es If you answered "YES," then answer Question 3 below.									
	□ N	o If you answered " <b>NO,</b> " then skip to <b>Step 3C</b> of this form.									
3.	Was furthe	r evaluation necessary?									
	□ Y	es If you answered "YES," then answer Question 4 below.									
	□ N	o If you answered " <b>NO</b> ," then answer <b>Question 5</b> below.									
4.	lf further e	valuation was necessary, what did you do?									
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to <b>Step 4</b> of this form.									
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.									
5.	If no furthe to Step 4 o	er evaluation was necessary, what was the reason? Check all that apply. Then skip f this form.									
	Exposure A	analysis: WAC 173-340-7492(2)(a)									
		Area of soil contamination at the Site is not more than 350 square feet.									
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.									
	Pathway A	nalysis: WAC 173-340-7492(2)(b)									
		No potential exposure pathways from soil contamination to ecological receptors.									
	Contamina	nt Analysis: WAC 173-340-7492(2)(c)									
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.									
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.									
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.									
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.									

C.	the proble		ion process consists of two parts: (1) formulating dressing the identified problem. Both steps y. See WAC 173-340-7493(1)(c).
1.	Was ther	re a problem? See WAC 173-340-7493	(2).
		Yes If you answered "YES," then an	swer <b>Question 2</b> below.
		No If you answered " <b>NO</b> ," then idea below:	ntify the reason here and then skip to <b>Question 5</b>
		No issues were ider	tified during the problem formulation step.
			dentified, those issues were addressed by the protecting human health.
2.	What did	I you do to resolve the problem? See	WAC 173-340-7493(3).
		Used the concentrations listed in Tab <b>Question 5</b> below.	ble 749-3 as cleanup levels. If so, then skip to
			ted in WAC 173-340-7493(3) to evaluate and , <i>then answer <b>Questions 3 and 4</b> below.</i>
3.		nducted further site-specific evaluation in the second strain of the sec	ons, what methods did you use?
		Literature surveys.	
		Soil bioassays.	
		Wildlife exposure model.	
		Biomarkers.	
		Site-specific field studies.	
		Weight of evidence.	
		Other methods approved by Ecology	. If so, please specify:
4.	What was	s the result of those evaluations?	
		Confirmed there was no problem.	
		Confirmed there was a problem and	established site-specific cleanup levels.
5.	-	ou already obtained Ecology's approva resolution steps?	I of both your problem formulation and
		Yes If so, please identify the Ecology	v staff who approved those steps:
		No	

### Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region:	Central Region:	
Attn: VCP Coordinator	Attn: VCP Coordinator	
3190 160 th Ave. SE	1250 West Alder St.	
Bellevue, WA 98008-5452	Union Gap, WA 98903-0009	
Southwest Region:	Eastern Region:	
Attn: VCP Coordinator	Attn: VCP Coordinator	
P.O. Box 47775	N. 4601 Monroe	
Olympia, WA 98504-7775	Spokane WA 99205-1295	



ECY 090-300 (07/2015) To request ADA accommodation including materials in a format for the visually impaired, call Ecology Toxic Cleanup Program 360-407-7170. Persons with impaired hearing may call Washington Relay Service at 711. Persons with speech disability may call TTY at 877-833-6341.

## ATTACHMENT B ECOLOGY REQUEST FOR OPINION FORM

RI/FS REPORT AND REQUEST FOR OPINION Lakeside Aberdeen Site 2400 Sargent Boulevard Aberdeen, Washington

Farallon PN: 525-006



# **Voluntary Cleanup Program**

## Washington State Department of Ecology Toxics Cleanup Program

## **REQUEST FOR OPINION FORM**

Use this form to request a written opinion on your planned or completed independent remedial action under the Voluntary Cleanup Program (VCP). Attach to this form the plans or reports documenting the remedial action. Please submit only one form for each request.

### Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are requesting a written opinion under the VCP. This information may be found on the VCP Agreement.

Facility/Site Name: Lakeside Industries Aberdeen

Facility/Site Address: 2400 Sargent Blvd, Aberdeen

Facility/Site No: 84657452

VCP Project No.: SW1161

## Step 2: REQUEST WRITTEN OPINION ON PLAN OR REPORT

What type of independent remedial action plan or report are you submitting to Ecology for review	
under the VCP? Please check all that apply.	

Remedial	l investigation	plan
----------	-----------------	------

Remedial investigation report

- Feasibility study report
- Property cleanup* plan (* cleanup of one or more parcels located within the Site)
- Property cleanup* report
- Site cleanup plan
- Site cleanup report
- Other please specify:

Do you want Ecology to provide you with a written opinion on the planned or completed independent remedial action?

🛛 Yes 🗌 No

Please note that Ecology's opinion will be limited to:

- Whether the planned or completed remedial action at the site meets the substantive requirements of the Model Toxics Control Act (MTCA), and/or
- Whether further remedial action is necessary at the site under MTCA.

### Step 3: REPRESENTATIONS AND SIGNATURE

The undersigned representative of the Customer hereby certifies that he or she is fully authorized to request services from Ecology under the Agreement for this VCP Project.

Name: Karen Deal		Title: Environmental and Land Use Director						
Signature: Kalue	l			Date: 3/12/2019				
Organization: Lakeside Industries, Inc.								
Mailing address: PO Box 7016								
City: Issaquah		State: WA		Zip code: 98027				
Phone: (425) 313 -2600	Fax:		E-mail: kar	en.deal@lakesideindustries.com				

### Step 4: SUBMITTAL

Please mail your completed form and the independent remedial action plan or report that you are requesting Ecology review to the site manager Ecology assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.



If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.