2021 Operations, Maintenance, and Monitoring Annual Report South Park Landfill

Volume I

Prepared for

March 2022

Prepared by Parametrix In Association with

2021 Operations, Maintenance, and Monitoring Annual Report South Park Landfill

Prepared for

Seattle Public Utilities 700 Fifth Avenue, Suite 4900 Seattle, WA 98124-4018

Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

In Association with

March 2022 | 553-1550-067

CITATION

Parametrix and HWA GeoSciences, Inc., 2022. 2021 Operations, Maintenance, and Monitoring Annual Report South Park Landfill. Prepared by Parametrix, Seattle, Washington. March 2022.

CERTIFICATION

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned, whose seal, as a professional hydrogeologist licensed to practice as such, is affixed below.

Prepared by Lisa Gilbert, LHG, Parametrix

Checked by Arnie Sugar, LHG, HWA GeoSciences Inc.

Approved by Ian Sutton, P.E., Parametrix

TABLE OF CONTENTS

1.	INTRODUCTION1						
	1.1	Regulatory Status1					
	1.2	Settler	2				
		1.2.1	South Park Property Development Property	2			
		1.2.2	South Recycling and Disposal Station Property	2			
	1.3	Hydro	geologic Setting				
	1.4	.4 Monitoring Program Overview					
		1.4.1	Annual Monitoring	4			
		1.4.2	Quarterly Monitoring				
		1.4.3	Unforeseen Emergency or Extreme Weather Events	4			
2.	LAND	LANDFILL CAP SYSTEM					
	2.1	Landfill Cap Inspection Methodology					
	2.2	Landfil	II Cap Inspection and Maintenance Events	7			
		2.2.1	January 2021 Weather Event Inspection	7			
		2.2.2	April 2021 Baseline Landfill Cap Inspection	7			
		2.2.3	October 2021 Follow Up Inspection	8			
		2.2.4	November Reinspection				
		2.2.5	Unforeseen Emergency or Extreme Weather Events	8			
		2.2.6	Landfill Cap Maintenance Completed	8			
	2.3	Activit	ies Planned for the Next One-Year Period	9			
3.	LAND	LANDFILL GAS SYSTEM					
	3.1	Landfil	ll Gas Monitoring Methodology				
		3.1.1	Gas Probe Monitoring				
		3.1.2	Landfill Gas Triggers and Contingency Actions				
	3.2	Landfil	II Gas Monitoring Activities and Results				
		3.2.1	Perimeter Probe Monitoring				
		3.2.2	Building Monitoring				
		3.2.3	Response to Fourth Quarter 2021 Landfill Gas Exceedance Event				
		3.2.4	Unforeseen Emergency or Extreme Weather Events				
		3.2.5	Gas Probe Maintenance Completed	15			
	3.3	Activit	ies Planned for the Next One-Year Period				
		3.3.1	Landfill Gas Monitoring				
		3.3.2	Gas Probe Maintenance				
		3.3.3	Landfill Gas Exceedance Event Recommended Follow Up Actions				

TABLE OF CONTENTS (CONTINUED)

4.	GROU	OUNDWATER MONITORING SYSTEM				
4.1 Groundwater Monitoring Methodology						
		4.1.1	Water Level Measurement	17		
		4.1.2	Sampling and Analysis	17		
		4.1.3	Groundwater Contingency Triggers and Actions			
	4.2 Groundwater Monitoring Activities and Results			19		
		4.2.1	Long-Term Groundwater Monitoring	19		
		4.2.2	Unforeseen Emergency or Extreme Weather Events	22		
		4.2.3	Monitoring Well Maintenance Completed	22		
		4.2.4	Purge Water Disposal	22		
	4.3 Activities Planned for the Next One-Year Period					
		4.3.1	Groundwater Monitoring	23		
		4.3.2	Monitoring Well Maintenance	23		
		4.3.3	Data Evaluation and Potential Reductions in Monitoring	23		
		4.3.4	Ongoing Access to Wells MW-10 and MW-25 (Encampment Area)	23		
5.	CONC	CLUSION	NS AND RECOMMENDATIONS	25		
	5.1	5.1 Landfill Cap				
	5.2	2 Landfill Gas				
	5.3	Ground	dwater	25		
6.	REFE	RENCES		27		

TABLE OF CONTENTS (CONTINUED)

LIST OF FIGURES

- 1 Site Vicinity Map
- 2 Site Property Map with Rights-of-Way
- 3 Perimeter Gas Probe Network
- 4 Flow Chart for Triggers and Contingent Actions for Perimeter Probe Monitoring
- 5 Groundwater Monitoring Well Network
- 6 Potentiometric Surface Map February 22, 2021
- 7 Potentiometric Surface Map May 17, 2021
- 8 Potentiometric Surface Map August 23, 2021
- 9 Potentiometric Surface Map November 15, 2021

LIST OF TABLES

- 1 Project Contact Information
- 2 Methane in Perimeter Gas Probes
- 3 Methane in Bar Hole Probes
- 4 Groundwater Elevation Summary
- 5 Groundwater Vertical Gradients
- 6 Groundwater Flow Velocity
- 7 Groundwater Quality Data Summary
- 8 Summary of Vinyl Chloride Trend Analyses
- 9 Groundwater Monitoring Well Information

2021 Operations, Maintenance, and Monitoring Annual Report South Park Landfill Seattle Public Utilities

TABLE OF CONTENTS (CONTINUED)

APPENDICES

- A Annual Report Checklist
- B Landfill Cap Inspection and Maintenance
 - B1 Cap Inspections
 - B1-A April 2021 Annual Inspection (including January 15, 2021 Inspection)
 - B1-B October 2021 Follow Up Inspection
 - B1-C November 2021 Reinspection
 - B2 Cap Maintenance Documentation
 - B2-A Example Form
 - B2-B Completed Forms
- C Landfill Gas Monitoring
 - C1 Perimeter Probe Monitoring Field Forms
 - C2 On-Site Building Monitoring Forms
 - C3 Gas Exceedance Incident
 - C3-A Parametrix Incident Report
 - C3-B SPPD Corrective Action Report
- D Groundwater Monitoring
 - D1 Time-Series Plots
 - D2 Trend Analyses
 - D3 Groundwater Monitoring Well Data and Field Forms
 - D4 Laboratory Reports
 - D5 Data Validation Memoranda
 - D6 Purge Water Technical Memorandum

ACRONYMS AND ABBREVIATIONS

САР	Cleanup Action Plan
City	City of Seattle
COC	chemical of concern
CPOC	conditional point of compliance
County	King County
CUL	cleanup level
DCE	dichloroethene (three isomers: 1,1-DCE, <i>cis</i> -1,2-DCE, and <i>trans</i> -1,2-DCE)
Ecology	Washington State Department of Ecology
EPA	U.S. Environmental Protection Agency
ft	feet
GPS	global positioning system
HHW	household hazardous waste
IA	Interim Action
IAWP	Interim Action Work Plan
IDW	investigative derived waste
KIP	Kenyon Industrial Park
LEL	lower explosive limit
LFG	landfill gas
μg/L	micrograms per liter
mg/L	milligrams per liter
MTCA	Model Toxics Control Act
NAVD 88	North American Vertical Datum of 1988
OMM	operations, maintenance, and monitoring
OMMP	Operations, Maintenance, and Monitoring Plan
ppm	parts per million
ppmv	parts per million by volume
PVC	polyvinyl chloride
redox	oxidation-reduction (potential)
RI/FS	Remedial Investigation/Feasibility Study
ROW	right-of-way
SPPD	South Park Property Development, LLC
SPU	Seattle Public Utilities
SR	State Route
SRDS	South Recycling and Disposal Station
WAC	Washington Administrative Code

1. INTRODUCTION

The South Park Landfill site (Site) is a former municipal solid waste landfill in the South Park neighborhood of Seattle, Washington, generally located at 8100 and 8200 2nd Avenue South, in Section 32 of Township 24 North, Range 4 East (Figure 1). Figure 2 shows the Site layout. The Edge of Refuse refers to that portion of the Site where landfill operations historically occurred and where solid waste was placed as interpreted by Floyd | Snider in the Remedial Investigation/Feasibility Study (RI/FS) (Floyd | Snider et al 2017).

The Settlement Area primarily consists of the two largest properties within the Edge of Refuse; the South Park Property Development (SPPD) and the South Recycling and Disposal Station (SRDS). The SPPD property owner is South Park Property Development, LLC and the SRDS property owner is the City. The Settlement Area also includes certain adjacent City of Seattle (City) and Washington State rights-of-way (ROWs). The other properties within the Edge of Refuse are the Kenyon Industrial Park (KIP) and the 7901 2nd Avenue South properties.

This report presents the results of the 2021 operations, maintenance, and monitoring (OMM) at the Site that was conducted in accordance with the Final Cleanup Action Plan (CAP) for the Settlement Area (Ecology 2018a). The required monitoring is described in the Post-Closure Operation, Maintenance, and Monitoring Plan (OMMP), presented as Appendix A of the CAP.

Site coordination and the preparation of this report is being performed for the Settlement Area under a 2019 Consent Decree with the Washington State Department of Ecology (Ecology). Parametrix has been designated by the City and their agency, Seattle Public Utilities (SPU), as the Site Coordinator to perform the long-term monitoring and reporting required under the CAP and the OMMP. Contact information for the responsible parties is presented in Table 1. Figures and Tables are appended at the end of the report.

The Kenyon Industrial Park (KIP) and the 7901 2nd Avenue South properties are expected to come to an agreement with Ecology and be added the Consent Decree at a later time.

1.1 Regulatory Status

The landfill received solid waste from the 1930s until 1966, when it was closed under the existing landfill closure laws at the time. Investigations of groundwater, surface water, soil, and landfill gas (LFG) began in the late 1980s. In February 2007, the Site was added to Ecology's Hazardous Sites List (Facility Site Identification No. 2180) based on concerns related to groundwater contamination and the presence of potentially flammable or explosive LFG.

In 2009, SPU and the SPPD entered into Agreed Order No. 6706 with Ecology to conduct a RI/FS and to complete a preliminary draft CAP. The Agreed Order was amended in 2013 to include an Interim Action (IA) to be conducted primarily on the portion of the Site owned by SPPD, and was amended again in 2015 to include an IA to be conducted primarily on the SRDS portion of the Site owned by SPU. The IAs included construction of a landfill cap, installing LFG and surface water control systems, establishing groundwater and LFG monitoring, and implementing institutional controls.

The South Park Landfill Final CAP (Ecology 2018a) was included as an attachment to the March 26, 2019, Consent Decree for the SPPD and SRDS properties. The selected cleanup action described in the CAP fulfills the requirements of the Model Toxics Control Act (MTCA), Chapter 70.105D of the Revised Code of Washington, administered by Ecology under the MTCA Cleanup Regulation, Chapter 173-340 of the Washington Administrative Code (WAC), for the Settlement Area portion of the Site.

The CAP is currently in the process of being amended (draft Amended CAP; Ecology 2021) to address redevelopment plan modifications for the SRDS property. Until 2020, SPU planned to construct support

facilities for the adjacent South Transfer Station on the SRDS property in conjunction with implementation of the remedial action requirements. In 2020, SPU chose to reevaluate the best use of the SRDS property and decoupled the redevelopment elements from the remedial project. SPU will proceed with implementation of the required remedial action components defined in the CAP and will manage the SRDS property as a paved South Transfer Station support facility with minor operational improvements for SPU activities.

1.2 Settlement Area Properties and Remedy Components

The Settlement Area portion of the Site includes the SPPD and SRDS properties and certain adjacent City and Washington State ROWs. The locations of the properties are shown on Figure 2. Brief descriptions of each property and the completed, or planned, remedy components are provided in the following sections.

1.2.1 South Park Property Development Property

The SPPD property is King County (County) tax parcel No. 3224049005 and includes 21.0 acres of land purchased from the County in 2006. The property was previously purchased by the County in 1957 and leased to SPU from 1958 to 1978 for municipal solid waste disposal. After disposal operations ended in 1966, additional unclassified fill was added, and the property was graded (but not paved) as part of landfill closure. The County later leased portions of the property to a variety of tenants from the mid-1980s through the late 1990s, primarily for truck and equipment storage. In 2008, the property was largely cleared of vegetation and, in some areas, a layer of crushed concrete was added as ballast and the property was regraded.

In 2014 and 2015, the SPPD owner performed an IA for cleanup at the property in accordance with the 2013 Ecology-approved Interim Action Work Plan (IAWP; Farallon 2013) under Amendment No. 1 of Agreed Order No. DE 6706 for the Site. The IA was performed simultaneously with the redevelopment of the property. The property redevelopment included a modular building for employees and paved parking for employees and visitors. The IA work included regrading and capping the landfill surface, installing an engineered stormwater collection system, installing and operating an LFG control system, implementing institutional controls, and conducting monitoring.

1.2.2 South Recycling and Disposal Station Property

The SRDS property includes County tax parcel No. 7328400005, encompassing 10.55 acres, and was purchased by SPU in 1951. Two additional strips of land defined by County tax parcel No. 3224049110, 60 feet (ft) on the west of the SRDS property and 30 ft on the south, were incorporated into the property in 2003 by City Ordinance 121306. This additional land is in the process of being recorded by the County and brings the area to approximately 11 acres.

A transfer station for municipal solid waste and recyclable materials operated from 1966 to 2013 on the SRDS property. In Spring 2013, SPU opened a new solid waste transfer station (South Transfer Station) to the north, across South Kenyon Street, and the transfer station on the SRDS property became inactive, except for limited support activities. SPU operates a household hazardous waste (HHW) collection site on the northernmost portion of the SRDS property near South Kenyon Street and 5th Avenue South.

The SRDS facility includes the main waste disposal building, a small maintenance facility, a scale house, two vehicle-fueling systems, and several additional small buildings used for offices and HHW collection. The offices and HHW collection are the only regularly occupied/active facilities. The majority of the facility is paved, except for some landscaped areas along the eastern edge of the property adjacent to 5th Avenue South, a landscape strip along the south side of the property, a few landscape planter

islands along the western side of the property, and other small areas in the interior of the property (Figure 2).

Under Amendment No. 2 of Agreed Order No. DE 6706, an IA was implemented for the SRDS property between 2015 and 2020, as detailed in an IAWP (Herrera 2021). The IA included monitoring during maintenance activities, evaluation of a groundwater seep, and a Supplemental Groundwater Investigation.

As required under the draft Amended CAP, SPU will demolish existing structures; abandon inactive utilities; install asphalt, concrete, or geomembrane landfill cap systems; install LFG and surface water controls; implement institutional controls; and perform compliance monitoring. The LFG collection system will include horizontal (trench) collectors, conveyance piping, and vents to address areas covered by cap materials.

1.3 Hydrogeologic Setting

The Site is located within the Lower Duwamish Valley, near the western valley wall, as shown in Figure 1. The Site is at an elevation of approximately 15 to 30 ft above sea level. The southern portion (SPPD property) is generally graded at a higher elevation than the remainder of the Site. The Site has an overall shallow topographic gradient trending to the northeast towards the Duwamish Waterway. The Duwamish Waterway is approximately 1,700 to 2,000 ft northeast of the northeast landfill boundary.

The Duwamish Valley consists of a relatively thick sequence of historical channel, floodplain, and overbank alluvial deposits from the Duwamish River overlain by a relatively extensive layer of imported fill. The alluvial deposits range from 30 to 50 ft thick near the edge of the valley to more than 100 ft thick in the center of the valley (Hart Crowser 1998). Groundwater occurs throughout the alluvial deposits forming the Duwamish Valley Alluvial Aquifer. It is comprised of various zones of saturation and thickness occurring within the alluvial deposits. At the Site, there are three groundwater zones of interest; all are part of the upper portion of the Duwamish Valley Alluvial Aquifer system.

- The Perched Zone is a thin discontinuous layer of groundwater (mostly infiltrating rainwater) that exists above the Silt Overbank Deposit. In many places, the Perched Zone groundwater is in contact with solid waste and is conceptually equivalent to landfill leachate in those locations. The thickness of the Perched Zone may vary seasonally but is often only a few inches of water sitting on the hummocky surface of the Silt Overbank Deposit.
- The A-Zone of the Duwamish Valley Alluvial Aquifer is immediately beneath the Silt Overbank Deposit and is the critical zone where leachate (and perched water) can enter the groundwater system and move off-site. The A-Zone extends from the base of the Silt Overbank Deposit for approximately 15 to 20 ft (generally to -15 ft elevation North American Vertical Datum of 1988 [NAVD 88]).
- The B-Zone of the Duwamish Valley Alluvial Aquifer is the next deeper zone extending from approximately -15 ft elevation NAVD 88 to either the top of the estuarine/marine deposits or approximately -35 ft elevation NAVD 88, whichever is more shallow.

The solid waste deposited in the landfill extends into the top of the A-Zone with the depth of waste extending down approximately to sea level (Floyd|Snider et al 2017). The lower portion of solid waste in the landfill is saturated (i.e., occurring below the local water table).

2021 Operations, Maintenance, and Monitoring Annual Report South Park Landfill Seattle Public Utilities

1.4 Monitoring Program Overview

In accordance with the CAP, monitoring at the Site by the Site Coordinator consists of annual cap inspections, quarterly monitoring of LFG perimeter probes, and quarterly sampling and analysis of groundwater monitoring wells within the Settlement Area. Additional events may be triggered by groundwater monitoring results, LFG monitoring results at the perimeter probes, or by unforeseen emergency or extreme weather conditions, as summarized in the following sections. Monitoring by the property owners (SPU and SPPD) consists of continuous methane monitoring in on-site buildings as defined in the OMMP. The status of the 2021 monitoring is documented in the Annual Report Checklist presented in Appendix A.

Monitoring performed by the Site Coordinator is in addition to the monitoring requirements of property owners in accordance with the CAP and OMMP.

1.4.1 Annual Monitoring

Cap inspections are conducted annually as described in Section 2 of this report. Maintenance forms are completed by the property owner to document repairs conducted and re-inspections are conducted by the Site Coordinator. The 2021 annual cap inspection results are presented in Appendix B.

1.4.2 Quarterly Monitoring

Quarterly monitoring at LFG perimeter probes and sampling and analysis of groundwater from monitoring wells was conducted as described in Sections 3 and 4, respectively, of this report. In addition to quarterly LFG monitoring, continuous methane detection systems with alarms are required to be operating in occupied buildings in the Settlement Area, and provisions are in place that would initiate methane monitoring in off-site buildings if triggered by LFG detections above regulatory limits in perimeter gas probes.

1.4.3 Unforeseen Emergency or Extreme Weather Events

An unforeseen emergency or extreme weather event, such as an earthquake, fire, flood, or other natural or man-made disaster, will trigger a requirement for an immediate Settlement Area-wide inspection. Such unforeseen events could cause sudden differential settlement of the landfill contents and/or cap that could affect the integrity of the landfill cap and infrastructure, including LFG control systems, monitoring probes, and monitoring wells, and potentially result in exposure to methane gas or affect safe operation of the LFG control system. The following criteria for unforeseen events would trigger an immediate Settlement Area-wide inspection:

- An earthquake along the Seattle fault that registers 4.0 or greater on the Richter scale.
- An earthquake within 100 miles of Seattle that registers 5.0 or greater on the Richter scale.
- A major storm that produces greater than 3.0 inches of rainfall within a 24-hour period.
- Any fire that occurs on or below the cap.
- Any other damage in the Settlement Area observed by the property owners, facility workers, or the public, such as damage sustained by high winds, or facility or vehicular accident(s).

The monitoring program will document monitoring and inspection results, provide information on maintenance requirements, and document OMM activities performed during the previous year.

2. LANDFILL CAP SYSTEM

The CAP requires inspection and maintenance of the landfill cap, including pavement, roadways, surficial stormwater features, and vegetated areas. The purpose of the inspection and maintenance is to confirm that the landfill cap remedy is performing as intended by the CAP in a manner that protects human health and the environment.

The cleanup action requires a landfill cap covering all areas at the Settlement Area that contain solid waste. The primary goal of the landfill cap is to block access or exposure to the solid waste and soil; secondary goals are to limit stormwater infiltration and to facilitate the performance of the LFG systems.

The landfill cap consists of pavement, buildings, and geomembrane/soil layers that must be maintained in such a manner to prevent contact with the solid waste/soil beneath the cap, prevent "shortcircuiting" of the LFG controls, and prevent interference with the stormwater controls. The cap is not required to entirely block the infiltration of stormwater. Existing or planned stormwater controls are described for each property as follows:

SPPD Property. Stormwater capture on the SPPD property is achieved with a system of paved surfaces and catch basins, and conveyance via overland flow on paved surfaces and piping to detention and treatment in one of two SPPD property bioswales. A small proportion of SPPD property stormwater runoff (e.g., from the access driveway off 5th Avenue South) is outside the capture area of the bioswales and flows to catch basins in ROWs.

SRDS Property. Stormwater management on the SRDS property is primarily pavement, catch basins, and conveyance pipes with collection into two systems. One system collects stormwater and liquids that may have come into contact with solid waste and directs them to the sanitary sewer. The other system collects stormwater from around the property and connects to the City's storm drain system in 2nd Avenue South. This system ties into the storm drain system on State Route (SR) 509 that flows into the wetlands on the west side of SR 509. A series of roadside ditches and catch basins collect stormwater runoff from South Kenyon Street and 5th Avenue South. These stormwater systems also connect to the City's storm drain system in 2nd Avenue South.

After redevelopment, in accordance with the draft Amended CAP, stormwater drainage will be collected across the SRDS property with flow and quality mitigation using an above-grade stormwater treatment tank, anticipated to be located on the northern portion of the SRDS property. Discharge from the stormwater vault is anticipated to drain to the northwest to the 30-inch-diameter storm pipe located in 2nd Avenue South.

2.1 Landfill Cap Inspection Methodology

Annual inspections consist of a visual survey of the accessible cap surface exterior to buildings, including drainage features and surface components of stormwater conveyance (i.e., catch basins, swales). The inspection documents signs of cap damage, failure, deterioration, or disturbance. Observations are noted on the field inspection form and via sketches or global positioning system (GPS) [for location] and photographs.

The following types of observations are documented for specific areas of the landfill cap.

- Asphaltic Concrete:
 - Cracking
 - > Uneven settlement or potholes
 - Pooling or ponding

2021 Operations, Maintenance, and Monitoring Annual Report South Park Landfill Seattle Public Utilities

- > Separation of pavement from curbs, gutters, or catch basins
- > Sloughing or crumbling of edge materials
- > Erosion
- > Other signs of cap damage, failure or disturbance
- Low Permeability Membrane:
 - > Erosion of cover soil
 - Exposed geotextile
 - > Holes/signs of unauthorized digging
 - > Poor vegetative cover
 - > Exposed geomembrane
- Stormwater Management Facilities:
 - > Signs of water infiltration below structure
 - Erosion of soil
 - > Holes/signs of unauthorized digging
 - Invasive/deep-rooted plants
 - > Poor vegetative cover
 - > Proper flow direction as designed

If any of the above are identified during an inspection, the condition will be documented and a recommendation for repairs will be included on the Cap Inspection Form. Corrective actions proposed by the property owners should be coordinated with the Site Coordinator prior to taking action and the Site Coordinator should perform verification inspections during and/or after corrective actions are complete to determine if the maintenance and repairs are consistent with the intent of the regulatory requirements. The property owner should document any repairs or maintenance in Part 1 of the Cap Inspection Form B (a blank sample is located in Appendix B2-A) and the Site Coordinator will provide observations in Part 2 of the form after reinspection.

The basis of determining the timeline for repairs comes from the OMMP. The OMMP has the following guidance for the timeline of maintenance/repairs:

- If underlying material (such as geomembrane) is exposed, corrective action shall occur within 60 days. These areas are of highest concern due to the potential compromise of the landfill cap and need to be further inspected, repaired, and restored in accordance with the approved 2013 IAWP of the Agreed Order.
- 2. If minor cracks or ponding do not expose underlying materials and the problem does not appear to be getting worse the issue shall be reinspected in 6 months.
- 3. If underlying material is not exposed but is worsening or the issue needs to be elevated to a repair before it worsens, the corrective action shall occur within the calendar year.

2.2 Landfill Cap Inspection and Maintenance Events

In accordance with the Cap Inspection Work Plan (Parametrix 2020), a preliminary baseline cap inspection was conducted in September 2020 (Part 1) and a secondary "wet-weather" baseline event (Part 2) was conducted in April 2021. In addition to the Baseline Landfill Cap Inspection conducted in April 2021, three additional inspections were completed in 2021. These included a January 2021 weather event inspection, an October follow-up inspection, and a November 2021 reinspection. Maintenance and repairs conducted by the property owners were documented and re-inspections were conducted by the Site Coordinator.

2.2.1 January 2021 Weather Event Inspection

An inspection was conducted on January 15, 2021 in response to a January 12, 2021 weather event when 2.33 inches of rain and wind gusts up to 54 mph were recorded. The weather event did not exceed trigger requirements; however, it was deemed prudent. The findings of the inspection are included in the report for the April 2021 Baseline Landfill Cap Inspection presented in Appendix B1-A (Appendix B). While no issues were identified related to the weather event, one new location of concern was identified on the SPPD property related to invasive deep-rooted plants in the west swale. It was recommended that the willow and black cottonwood growing along the edge of the west bioswale be removed from the swale since they are deep-rooted species.

2.2.2 April 2021 Baseline Landfill Cap Inspection

The 2021 Baseline Landfill Cap Inspection was conducted on April 22, 2021 and included reinspection of identified concerns from the 2020 Baseline Landfill Cap Inspection performed on September 21, 2020. Previously identified concerns that remained in the same general or worse condition as observed in September 2020 were retained in the current list of concerns. The findings of the inspection are presented in the technical memorandum included as Appendix B1-A (Appendix B) and are summarized below.

SPPD Property. The thirty-two locations on the SPPD property identified in the 2020 Baseline Landfill Cap Inspection were reinspected. Thirteen locations on the SPPD property were identified as new or ongoing points of concern for one or more conditions. Additionally, there was a noted area of concern where stormwater runoff from the SPPD property was suspected to flow onto the SPU property from the northeast corner of the SPPD property. This area was reinspected during the October 2021 rain inspection as discussed in Section 2.2.3 and determined to not be an issue.

Seven of the locations were identified as high priority where the landfill cap geomembrane is exposed or the asphalt is penetrated (Point Locations #21-12, 21-13, 21-14, 21-15, 21-16, 21-17, and 21-18). Erosion of the soil cover between the swale and parking area (Point Location #21-9) was also identified as an area of high concern.

SRDS Property. The seven locations on the SRDS property identified in the 2020 Baseline Landfill Cap Inspection were reinspected. Six locations on the SRDS property were identified as new or ongoing points of concern, along with additional areas where minor pavement cracking or ponding were observed. One of the locations at a sinkhole through the asphalt was identified as a high priority item (Point Location #21-7).

Right-of-Way. One location within the Occidental Avenue South right-of-way was identified as a location of concern where cracks and ruts were identified (Point Location #21-20). This location was not identified as a high priority. The 5th Avenue South right-of-way was not reviewed.

2021 Operations, Maintenance, and Monitoring Annual Report South Park Landfill Seattle Public Utilities

2.2.3 October 2021 Follow Up Inspection

At the request of the SRDS property owner, an additional inspection was conducted on October 29, 2021. This was a follow up to the Baseline Landfill Cap Inspection that focused primarily on looking for damage and issues in the fenced area at the boundary between the two properties (the southwestern edge of SRDS and the northeastern edge of SPPD) after a period of rainfall. The findings are presented in a report included as Appendix B1-B (Appendix B) and are summarized below.

The area of focus between the two fenced properties did not show evidence of runoff leaving the SPPD property and flowing across the SRDS property. It does appear that there is a pathway for runoff to leave the SRDS parking lot and flow across the SPPD property in this location. However, there is a row of ecology blocks that may be preventing runoff from taking this path of travel.

While at the Site, the inspection team also reviewed other areas of the properties where concerns had previously been identified. The inspection identified the continuing presence of minor ponding, poor vegetative cover, exposed geomembrane, and deep-rooted plants that had been recognized previously in the April 2021 inspection.

2.2.4 November Reinspection

A reinspection to the Baseline Landfill Cap Inspection was conducted by the Site Coordinator on November 17, 2021 that focused on Point Locations #21-9 and #21-18. The findings are presented in a report included as Appendix B1-C (Appendix B) and are summarized below.

Erosion of cover soil and poor vegetative cover continue to be observed at Location #21-9, exposed geomembrane continues to be observed at Location #21-18, and it is recommended to work with the Site Coordinator to prepare a plan to reestablish cover over the geomembrane.

2.2.5 Unforeseen Emergency or Extreme Weather Events

No unforeseen emergency or extreme weather events were identified at the Settlement Area during 2021 that triggered an inspection to the landfill cap, although a weather-related cap inspection for events that did not meet the threshold was conducted In January 2021 as described in Section 2.2.1.

2.2.6 Landfill Cap Maintenance Completed

Example forms to be used for documenting landfill cap maintenance are presented in Appendix B2-A of Appendix B. Cap maintenance completed during this reporting period is documented on Cap Maintenance Forms presented in Appendix B2-B, with Part 1 (Maintenance) completed by the property ownerowner, and Part 2 (Observation/Review of Maintenance) completed by the Site Coordinator.

SPPD Property. On March 30, 2021, SPPD documented that vegetation had been reestablished in some of the locations of concern identified in the 2020 Baseline Landfill Cap Inspection. These landscaping activities were reviewed by the Site Coordinator during the 2021 Baseline Landfill Cap Inspection and correspond with the vicinity of Point Location #21-9.

On November 2, 2021, SPPD conducted additional repair and maintenance work. The repairs corresponded with some of the high priority locations identified in the 2021 Baseline Landfill Cap Inspection including the culvert inlet (#21-12) and areas along the fence line on the south side of the bus parking (#21-13 through 21-15). The Site Coordinator observed repairs being conducted on the exposed geomembrane near the southwest entrance of the SPPD property off Occidental Avenue South. The work was focused on the exposed geomembrane at the culvert headwall and the exposed

geomembrane at the interface with the pavement cap. The culvert headwall was repaired using quarry spalls. After corrective actions were conducted, no geomembrane was exposed, although no cushion material was installed to protect the underlying geomembrane. The other exposed geomembrane areas within the work area were covered with topsoil and erosion control measures were installed on the steep slopes. SPPD also indicated that the exposed geomembrane is not the cap barrier geomembrane. In discussions, SPPD indicated that the geomembrane termination is not as indicated in the design and that this exposed geomembrane is a folded over flap. The exposed geomembrane should be confirmed as sacrificial (non-barrier) by either exposing the leading edge or by excavating below the geomembrane and locating the barrier geomembrane.

The Site Coordinator noted there is additional work required to complete the actions recommended in the 2021 Baseline Landfill Cap Inspection.

On November 15, 2021, SPPD installed an electric fence surrounding the bus lot, consisting of 4-inch posts on all corners and mid-points of the fence line, and 1-inch posts in between the 4-inch posts. All posts are set in concrete in the ground.

On January 26, 2022, SPPD raised the well monuments to prevent water intrusion at well head V-7 located in the northwest portion of the property and well head H-5 located at the east main gate entrance. The Site Coordinator observed these repairs on February 9, 2022, as well as an additional repair in the area of a leaking water pipe in the fire suppression area.

SRDS Property. The sinkhole on the SRDS property was repaired by filling with gravel to preclude potential contact with refuse.

2.3 Activities Planned for the Next One-Year Period

The 2021 Baseline Landfill Cap Inspection conducted in April 2021, presented in Appendix B1-A, identified areas of concern within the Settlement Area. Additional work will be required in 2022 to complete and/or reinspect outstanding recommended repairs. The Site Coordinator will conduct an annual cap inspection in the Spring of 2022 which will include reinspection of previous areas of concern, review maintenance conducted, including the November 15, 2021 fence installations, and look for any new areas of concern.

The following previously identified locations of concern will be evaluated during the 2022 annual inspection.

SPPD Property. The areas of the exposed geomembrane repaired during 2021 should be revisited to confirm design requirements have been achieved for the area of the parking interface. Additional identified locations of concern that may not have been addressed include:

- Prepare a plan to reestablish a uniform slope and vegetation of the erosion of soil cover between the swale and parking area (#21-9).
- Regrading for positive drainage away from the fire hydrant (#21-11).
- Repair holes in asphalt (#21-15).
- Prepare a plan to reestablish cover over the geomembrane north of the west entrance, including an unbooted storm drain manhole (#21-18).
- Regrade west bioswale for drainage.
- Identify unknown open vertical pipes and if they are not functional, excavate and remove them, then seal the penetrations.
- Remove invasive/deep rooted plants from the edge of the west bioswale.

Minor surface cracks or ponding will be reinspected by the Site Coordinator to assess if the condition is worsening.

SRDS Property. Minor surface cracks and ponding will be reinspected by the Site Coordinator to assess if the condition is worsening. Repair of the sinkhole (#21-7) will also be reinspected. Additional identified locations of concern that may not have been addressed include:

• Repair concrete at catch basin (#21-3).

Right-of-Way. Cracks and ruts along Occidental Avenue South will be reinspected.

3. LANDFILL GAS SYSTEM

The LFG control system consists of property-specific solutions designed to operate separately but be compatible and synergistic in how they control LFG across the Settlement Area. Brief descriptions of the existing, or planned, LFG control systems for each property are provided below with the LFG monitoring discussed in the following sections.

- **SPPD Property.** An active LFG control system was installed at the SPPD property as part of the IA development in 2014 and 2015 (Farallon 2013). The LFG system was designed to protect buildings on the SPPD property and to control gas migration along the southern, western, and eastern perimeter of the Settlement Area. The system consists of a network of vertical gas collection wells and horizontal gas collection trenches. LFG is extracted under an applied vacuum and discharged out a vent stack in the surface component equipment enclosure, which is located on the northwest portion of the SPPD property. It is operated by the SPPD owner in accordance with an Ecology-approved LFG Collection and Control System OMMP (Farallon 2016).
- SRDS Property. The buildings that are currently on the property are either naturally ventilated or are elevated and skirted with porous siding; both are appropriate methods of LFG mitigation. As part of the draft Amended CAP, SPU will install an LFG control system at the SRDS property, intended to be operated passively, with an option to convert to active operation if necessary. The final design for the LFG system at the SRDS property will be described in an Engineering Design Report, which will be finalized by 2025 per the schedule outlined in the draft Amended CAP. This system will also influence the ROW associated with 5th Avenue South adjacent to this property.

3.1 Landfill Gas Monitoring Methodology

The LFG monitoring includes quarterly monitoring of perimeter probes conducted by the Site Coordinator, continuous monitoring of on-site buildings using methane detectors and alarms conducted by individual property owners, and off-site building monitoring, if necessary. The primary goal of perimeter probe monitoring is to evaluate potential lateral off-site LFG migration, and the primary goal of building monitoring is to protect human health.

The perimeter gas probe network for the Settlement Area includes 17 probes installed at the locations shown on Figure 3. Procedures for perimeter gas probe monitoring are presented in the OMMP – Landfill Gas Monitoring and Contingency Plan.

3.1.1 Gas Probe Monitoring

A Landtec GEM 5000 is used to measure barometric pressure at the beginning and end of each monitoring event, as well as static pressure and LFG concentrations in each gas probe. The barometric pressure status (rising, falling, steady) is reported on the field form.

At each probe, static pressure is measured prior to purging, and then one probe volume is purged prior to recording concentrations of methane, carbon dioxide, oxygen, and hydrogen sulfide. The purge time using the Landtec GEM is calculated for each probe based on its construction. The LFG meter is connected to LFG probes using Teflon tubing and a rubber stopper placed into probes without a valve. Teflon, silicone, and polyethylene tubing are utilized to connect to the LFG meter.

After monitoring the LFG, depth to groundwater is measured using an electric water level indicator to confirm that water is not above the top of the probe screen. If the measured water level is determined to be above the top of the probe screen, the LFG measurements are not used. For the three probes that have consistently exhibited water levels above the top of the screen (GP-13, GP-15, and GP-32), water levels are measured prior to conducting LFG measurements.

3.1.2 Landfill Gas Triggers and Contingency Actions

The flow chart for the LFG triggers and contingency actions is presented in Figure 4, developed to clarify the flow chart presented in Figure A.2.6 of the OMMP (Parametrix 2021a). Methane concentrations in soil at the landfill boundary must not exceed 5 percent by volume, the lower explosive limit (LEL) for methane. The threshold criteria that would trigger additional off-site building monitoring is 1.25 percent by volume (25 percent of the LEL) for all probes other than GP-27 and GP-29. At probes GP-27 and GP-29, since methane concentrations of up to 5 percent by volume have been shown to be protective, the criterion for additional off-site building monitoring is 5 percent by volume.

3.2 Landfill Gas Monitoring Activities and Results

3.2.1 Perimeter Probe Monitoring

Quarterly perimeter probe monitoring events were conducted in February, May, August, and November 2021. The results are summarized in Table 2 and included on the gas probe monitoring field forms presented in Appendix C1.

Five gas probes (GP-11, GP-13, GP-15, GP-31, and GP-32) were observed to be blocked (screened zones completely saturated) during one or more sampling events and data measured from blocked probes during those events were not used. Additionally, the screened zones of several other wells were at least partially blocked with water. Data from the partially blocked probes is considered valid for the purposes of the perimeter probe monitoring.

Gas probes GP-11 and GP-13, located west of the Site, were consistently blocked by water. Due to their location in the vicinity of off-site buildings, monitoring was conducted at three temporary bar hole probes installed near each of these probes during the Third Quarter of 2021. The results are presented in Table 3. No methane was detected in any of the bar hole probes.

Methane concentrations during quarterly monitoring events were less than the 1.25 percent by volume regulatory action limit except during the Fourth Quarter of 2021. During the Fourth Quarter, methane was detected at 4.5 percent by volume at GP-33 and at 6.9 percent by volume at GP-29, causing a trigger value exceedance. GP-29 and GP-33 are located along the perimeter of the SPPD property. The LFG control system was observed and found to be offline.

Due to these exceedances, corrective actions were taken as outlined in Figure 4 and described in Section 3.2.3 of this report. Actions taken in response to the LFG exceedance trigger event are summarized in Section 3.2.3 and detailed in the Incident Report Form provided in Appendix C3-A and the SPPD Property Landfill Gas Collection and Control Corrective Action Summary Report (Farallon 2022) provided in Appendix C3-B.

3.2.2 Building Monitoring

Building monitoring is required for occupied on-site buildings, unless the construction demonstrates effective LFG mitigation. Off-site building monitoring is required only if triggered by conditions in perimeter gas probes. During the Fourth Quarter 2021 monitoring of the LFG compliance perimeter probes, it was observed that two of the gas probes had trigger value exceedances: GP-29 at 6.9% by volume and GP-33 at 4.5% by volume. Due to these exceedances, off-site building monitoring was required as described in Section 3.2.3.3 of this report.

3.2.2.1 On-Site

All occupied buildings on the Settlement Area (on-site buildings) are required to have continuous (i.e., operate 24 hours per day, 7 days per week) methane detectors with alarms, with the exception of the current SRDS buildings which are naturally ventilated or elevated. Methane concentrations inside buildings and structures within the landfill boundary must not exceed 1.25 percent by volume, or 25 percent of the LEL; meters in buildings should be set with a low alarm warning at 10 percent of the LEL and the high alarm at 25 percent of the LEL. Quarterly inspections of these alarms are required by individual property owners in accordance with the manufacturer's recommendations to ensure proper operation and protection of human health. Inspection forms have been created and will be included in future reports.

SPPD Property. The SPPD property owner did not report any incidences of methane detections inside on-site buildings or structures during 2021.

SRDS Property. Continuous monitoring is not required until the property is redeveloped to include standard enclosed buildings and a new LFG system is installed.

3.2.2.2 Off-Site

Off-site building monitoring is required to be conducted by the SPPD and SRDS individual property owners when triggered by methane conditions measured in nearby perimeter probes, as indicated in Figure 4. Methane concentrations inside buildings and structures outside the landfill boundary must not exceed 100 parts per million by volume (ppmv), equivalent to 0.01 percent by volume or 0.2 percent of the LEL. These criteria are typically measured in the buildings/structures with either handheld or mounted equipment. Procedures for off-site building monitoring are detailed in the OMMP.

3.2.3 Response to Fourth Quarter 2021 Landfill Gas Exceedance Event

The November 15, 2021 methane exceedances at GP-29 and GP-33 triggered contingency actions that are outlined in Figure 4.

Confirmation probe monitoring on November 29th identified both GP-33 and GP-29 exceeded 5 percent methane by volume and that the LFG collection system on the SPPD property was observed off. Corrective actions were then initiated.

3.2.3.1 Corrective Actions Taken

The Site Coordinator notified Ecology, Health Department, and the property owners (SPPD and SRDS) of the situation. SPPD and their consultant Farallon Consulting LLC (Farallon) restarted the LFG collection system on November 30th, made adjustments to the LFG control system until protectiveness was reestablished on December 7th at PG-33 and December 27th at GP-29, and prepared a corrective action

plan (SPPD Property Landfill Gas Collection and Control Corrective Action Summary Report; Farallon 2022) that is presented in Appendix C3-B of this report.

3.2.3.2 Probe Monitoring

Daily LFG monitoring began on November 29, 2021 at both probes and continued until methane measurements were consistently below 5 percent by volume. Monitoring was then conducted on a weekly basis, finishing at GP-33 on December 29, 2021 and at GP-29 on January 19, 2022. Results are included in the Incident Report presented in Appendix C3-A.

3.2.3.3 Off-Site Building Monitoring

GP-33 is adjacent to a building owned by W.G. Clark Construction Co. at 7598 Occidental Avenue South (northwest of the Site between the KIP and SPPD properties). Methane concentrations in GP-33 were periodically above 5 percent by volume during the period between 2015 and 2016 (maximum detection was 22 percent). These detections were attributed to a temporary shutdown of the SPPD LFG control system. During this period, one indoor air measurement was made at the adjacent buildings and no methane was detected. However, the results were not sufficient to provide a relationship between methane in the probe and the indoor air in adjacent buildings to assess protectiveness.

Parametrix and SPU staff measured indoor air concentrations and performed slab and utility screening at the W.G. Clark Construction Co. facility on November 30, 2021 with a Landtec GEM 5000 LFG meter. The LFG meter has a detection level of 0.1 percent by volume which is equivalent to 1000 parts per million (ppm), or 10 times greater than the action levels defined in the CAP OMMP. No methane was detected during the November 30th screening. W.G. Clark Construction Co. staff noted that the main building occupied by site workers has a passive LFG collection system that distributes sub-slab vapors to the roof of the building to ensure worker safety.

The Site Coordinator completed monitoring adjacent to the foundation of the buildings and asphalt cover of the W.G. Clark Co. facility on December 3, 2021 with a TVA 2020 flame ionization detector (FID) capable of measuring methane to 0.5 ppm. The business was closed at the time and no indoor air monitoring was completed. However, monitoring was completed adjacent to the edge of the asphalt slab for the property. No measurable methane above background levels (1.5 ppm) was found south, west, and southeast of the property. Additionally, screening was completed adjacent to the asphalt near GP-11 and MW-12. No measurable methane was detected above background.

GP-29 is located adjacent to the building at 8250 5th Avenue South. SPPD purchased this property in January 2021. At the time of the LFG exceedance the building was unoccupied by tenants, had no power or utilities, and was undergoing renovations during this incident. Bar hole probe testing and LFG screening between GP-29 and the off-site building was conducted by Farallon on two occasions. Farallon reported that no LFG was observed in bar hole probes or other monitoring locations and there was no risk to the building. These results were similar to the previously established protectiveness at GP-29.

3.2.4 Unforeseen Emergency or Extreme Weather Events

No unforeseen emergency or extreme weather events were identified at the Settlement Area during 2021 that triggered an inspection of the perimeter gas probes or the LFG system, other than the unplanned SPPD LFG system outage discussed above.

3.2.5 Gas Probe Maintenance Completed

During the 2021 gas monitoring events, maintenance of the gas probes was completed. Weeds, blackberries, and other vegetation were cut back to allow access to wells. The eye bolts at GP-32 were rethreaded prior to the Fourth Quarter 2021 monitoring event to allow the monument to be properly sealed.

3.3 Activities Planned for the Next One-Year Period

3.3.1 Landfill Gas Monitoring

Quarterly perimeter probe monitoring is planned during the months of February (completed), May, August, and November.

Monitoring records for on-site buildings will be provided by property owners on the form presented in Appendix C2.

3.3.2 Gas Probe Maintenance

Some additional future maintenance may be necessary related to asphalt erosion near gas probe GP-31. The roadway margin near the probe appears to be actively eroding due to heavy truck traffic. The condition of the probe will continue to be monitored to determine when actions are necessary to restore the asphalt near the probe.

3.3.3 Landfill Gas Exceedance Event Recommended Follow Up Actions

The following additional actions are planned to follow up on the landfill gas exceedance event that occurred during the Fourth Quarter of 2021.

Site Coordinator (Parametrix):

- The Project Manager and the Monitoring Program Manager will review quarterly monitoring field sheets within 24 hours of data collection.
- Work with Ecology to modify the flow chart for triggers and contingent actions for perimeter probe monitoring to include a response timeline for all actions. This may be documented in a technical memorandum and include roles and responsibilities.

Property Owner (SPPD/Farallon):

- Replace the alarm system with a telemetry system with cellular service and data-logging capabilities.
- Add additional alarm zones for reporting blower voltage present to the alarm zones. Blower voltage present will indicate if the blower is operational.
- With methane concentrations below the LEL in gas probe GP-29, rebalance LFG collection and control system to its steady-state operation to control LFG generated on the SPPD property. Rebalancing could include removal of portions of the air dilution intake modifications described in Section 2 of the Corrective Action Summary Report (Farallon 2022, provided in Appendix C3-B).
- Assess protocol of LFG system checks and documentation. Train staff performing system checks.

2021 Operations, Maintenance, and Monitoring Annual Report South Park Landfill Seattle Public Utilities

- Prepare and submit documentation of weekly system checks. Prepare and submit annual reports to Ecology documenting LFG collection and control system operation, maintenance, and monitoring as required in the SPPD property LFG Collection and Control System OMMP (Farallon 2016). Annual report should also be provided to the Site Coordinator.
- Document all actions taken to modify the system. Documentation should include a completed form or report and photographs in accordance with the Landfill Gas Monitoring and Contingency Plan (LFGMCP) as part of the CAP OMMP.

4. GROUNDWATER MONITORING SYSTEM

Long-term groundwater monitoring is being conducted to evaluate the effectiveness of cleanup actions at the Settlement Area on groundwater quality. The CAP requires long-term groundwater monitoring to continue until groundwater chemicals of concern (COCs) are in compliance at the conditional point of compliance (CPOC), which has been established at, or near, the downgradient Edge of Refuse. The monitoring program includes assessing current groundwater concentrations and monitoring trends to confirm that vinyl chloride, *cis*-1,2-dichloroethene (DCE), benzene, arsenic, iron, and manganese concentrations continue to decrease over time and in a reasonable restoration timeframe.

There are 14 groundwater monitoring wells included in the long-term groundwater monitoring program for the Settlement Area at the locations shown on Figure 5. In addition to the CPOC wells (MW-08, MW-10, MW-18, MW-24, MW-25, MW-26, MW-27, MW-32, and MW-33), the monitoring well network also includes wells used to monitor upgradient groundwater conditions (MW-12, MW-14, and MW-29) and wells used to monitor downgradient groundwater conditions adjacent to the former Glitsa American, Inc. property (MW-30 and MW-31). All wells are completed in native material except MW-18, which is completed in refuse, and MW-32 and MW-33, which are completed beneath refuse at the edge of waste. Table 9 provides a summary of the well depths, screen intervals, type of pump, top of casing, and well completion elevations.

The monitoring wells are completed primarily in one of three groundwater zones (Perched Zone, A-Zone, or B-Zone), all of which are part of the Duwamish Valley Alluvial Aquifer. There are four well pairs downgradient of the landfill that are screened in two different zones: Perched Zone/A-Zone (MW-30/MW-31) and A- and B-Zones (MW-27/MW-8, MW-25/MW-10, and MW-26/MW-24).

4.1 Groundwater Monitoring Methodology

Groundwater monitoring includes measuring groundwater levels and sampling groundwater at the 14 monitoring wells and analyzing the samples for Site-specific COCs.

4.1.1 Water Level Measurement

During each quarterly monitoring event, approximately time synchronous groundwater levels are measured with a precision of 0.01 foot using an electric water level indicator. Groundwater level measurements are made relative to the surveyed top of the polyvinyl chloride (PVC) well casing or other defined measuring point at the wellhead, typically the northern-most portion of the PVC casing stick-up.

4.1.2 Sampling and Analysis

Groundwater samples are collected according to procedures outlined in the OMMP, using either a dedicated bladder pump and Teflon tubing or a peristaltic pump with disposable low-density polyethylene and silicon tubing. Details on which type of pump is used at each well are included in Table 9. The monitoring wells are purged using low-flow sampling procedures while field parameters (temperature, pH, specific conductivity, dissolved oxygen, and oxidation-reduction potential [redox]) are measured to determine stabilization using a calibrated multiparameter probe with a flow-through cell. Turbidity is also measured in the field using a separate turbidity meter outside of the flow through cell.

Long-term groundwater monitoring includes analyzing samples for vinyl chloride, iron, and manganese; groundwater COCs that have exceeded cleanup levels (CULs) at the CPOC for the Settlement Area; and cis-1,2-DCE (the precursor for vinyl chloride). In addition, benzene is analyzed in samples from well

MW-25 to track a localized plume that appears to originate upgradient of the Settlement Area, and arsenic is analyzed in samples from wells MW-12, MW-08, MW-10, MW-18, MW-24, MW-25, MW-26, MW-27, MW-32, and MW-33.

Groundwater samples are analyzed using the following methods:

- 1,2-DCE and benzene, U.S. Environmental Protection Agency (EPA) Method 8260D
- Vinyl chloride: EPA Method 8260D-SIM
- Iron and manganese: EPA Method 6020A
- Arsenic: EPA Method 6020A

4.1.3 Groundwater Contingency Triggers and Actions

The Site-specific CULs for groundwater at the Settlement Area as stated in the CAP, which are based on the protection of groundwater as a potential drinking water source, are as follows:

- Vinyl chloride 0.29 micrograms per liter (µg/L)
- Iron (Total) 27 milligrams per liter (mg/L) (A-Zone); 31 mg/L (B-Zone)
- Manganese (Total) 2.2 mg/L
- cis-1,2-DCE 16 μg/L
- Benzene 5.0 μg/L
- Arsenic (Dissolved) 5.0 µg/L (background; note that MW-27 is not a CPOC well for arsenic).

Trigger conditions and contingency and actions for vinyl chloride are described in Section 4.1.3.1. Required actions for iron and manganese and arsenic are described in Sections 4.1.3.2 and 4.1.3.3.

4.1.3.1 Vinyl Chloride

In accordance with the OMMP, the following two conditions will potentially trigger contingent actions based on monitoring in the existing compliance monitoring well network:

- Condition 1. Condition 1 (the concentration trigger) is based on groundwater concentrations. If concentrations in any downgradient well exceed 1.45 μg/L (five times the CUL) for two consecutive sampling events, a contingent response is triggered. This trigger is not applied to MW-30 and MW-31, whose concentrations are affected by a non-landfill source in addition to the landfill.
- **Condition 2.** Condition 2 (the trend trigger) is based on a statistically significant increase in groundwater concentrations over time in the monitoring wells. The trend identification uses the nonparametric Mann-Kendall method and will be applied to downgradient wells where the concentration of vinyl chloride is greater than the CUL. The trend analysis will include MW-31 (which is screened in the alluvial aquifer) but not MW-30 (which is screened in the Silt Overbank Deposit).

4.1.3.2 Iron and Manganese

In accordance with the OMMP, as long as the concentrations are stable or decreasing, no further action is required beyond monitoring. Once a dataset of eight quarterly events has been collected during long-term monitoring, Ecology may approve a decreased frequency of monitoring for iron and manganese.

4.1.3.3 Arsenic

There are known cement kiln dust deposits upgradient of the Edge of Refuse on the KIP property and downgradient of the Edge of Refuse east of 5th Avenue South (Floyd|Snider et al. 2017). MW-27, a downgradient A-Zone well across SR 99, has consistently been observed to have arsenic at concentrations greater than the CUL due to a cement kiln dust deposit that is across the street from the Settlement Area; this well is not a CPOC well for arsenic.

In accordance with the OMMP, as long as the concentrations of arsenic are stable or decreasing in downgradient wells MW-08, MW-10, MW-18, MW-24, MW-25, MW-26, MW-32, and MW-33, no further actions are required beyond monitoring. If arsenic remains in compliance with the CUL for eight quarterly events, arsenic analysis will be terminated.

4.2 Groundwater Monitoring Activities and Results

4.2.1 Long-Term Groundwater Monitoring

Quarterly long-term monitoring events were conducted in February, May, August, and November 2021. The measured groundwater levels, calculated gradients, interpreted flow directions, and groundwater quality results are presented in this section of the report.

No samples were collected at wells MW-10 and MW-25 during the Third Quarter 2021 due to encroachment of a homeless encampment into the well area presenting potential access and safety issues for sampling personnel. Ecology was made aware of the situation in advance of the sampling event. SPU subsequently took measures to clear access to these wells including involvement by City of Seattle Homeless Outreach and Provider Ecosystem (HOPE) team, resulting in successful sampling in the Fourth Quarter of 2021. Since the Fourth Quarter 2021 event, the encampment has been rebuilt and is presenting ongoing access issues. Further discussion of this ongoing access issue as it relates to future sampling events is provided in Section 4.3.

4.2.1.1 Gradients and Flow Direction

Groundwater elevations calculated based on depth to groundwater measured in each well and the surveyed casing elevations are summarized in Table 4.

Horizontal Gradients

Groundwater gradient maps were prepared using data from all the A-Zone wells plus MW-18, as the Aand B-Zones are not separate aquifers or even hydraulically separated by any low permeability layers. Figures 6, 7, 8 and 9 show the interpreted gradients. The groundwater flow direction is generally to the east and northeast, toward the Lower Duwamish Waterway, with gradients ranging from 0.0085 to 0.0106 ft/ft in the northern region (calculated between MW-12 and MW-32) and 0.0087 to 0.0093 ft/ft in the southern region (calculated between MW-14 and MW-18). This is consistent with historical observations.

Vertical Gradients

Vertical groundwater gradients were calculated based on water level measurements collected in downgradient pairs completed in the Perched Zone/A-Zone of the Duwamish Valley Alluvial Aquifer (MW-30/MW-31) and the A- and B-Zones of the Duwamish Valley Alluvial Aquifer (MW-27/MW-8, MW-25/MW-10, and MW-26/MW-24). These data are presented in Table 5.

2021 Operations, Maintenance, and Monitoring Annual Report South Park Landfill Seattle Public Utilities

Boring logs show that the wells are mostly completed in the same alluvial aquifer, with some in the upper portions (A-Zone) and some in the lower (B-Zone), and no significant aquitards or low permeability layers in between the two zones. Vertical gradients measured in most of the well pairs during most of the sampling events were essentially neutral or within measurement error. Downward gradients were observed in in well pair MW-30/MW-31 is consistent with data presented in the RI indicating that the Silt Overbank Deposit is likely acting as a low permeability aquitard in this area.

Flow Velocity

Based on estimates of horizontal hydraulic conductivity and porosity determined in the remedial investigation (Floyd|Snider et al 2017) and the gradients measured in 2021, estimated horizontal groundwater flow velocities in the Duwamish Valley Alluvial Aquifer in the northern and southern regions of the Site are summarized in Table 6.

The two regions were identified in the remedial investigation as having differing groundwater flow directions, soil types, and hydraulic conductivity estimates. The northern region of the Site (SRDS property) is in the vicinity of MW-10/MW-25, with a northeasterly groundwater flow direction and slightly higher hydraulic conductivities. The southern region of the Site (SPPD property) is in the vicinity of MW-8/MW-27, with an easterly groundwater flow direction and slightly lower hydraulic conductivities. These values are similar or higher than measured/estimated values during the remedial investigation, due to steeper measured and interpreted gradients.

The following formula was used to calculate groundwater flow velocities:

V = Ki/ne, where:

V = groundwater velocity (L/T)

K = hydraulic conductivity (L/T)

i = hydraulic gradient (L/L)

ne = effective porosity (dimensionless)

Based on the observed gradients of 0.0085 to 0.0106 ft/ft in the northern region of the Site and 0.0087 to 0.0093 ft/ft in the southern region, the calculated flow velocity ranged from 4.74 to 8.46 ft/day in the northern region and 1.34 to 3.13 ft/day in the southern region of the Site.

4.2.1.2 Groundwater Quality Results

Groundwater samples were analyzed by Analytical Resources, Inc. in Tukwila, Washington. The quarterly groundwater quality data are summarized in Table 7. Field data sheets for each quarterly event are presented in Appendix D3. Laboratory reports and data validation memoranda are presented in Appendix D4 and D5, respectively.

The following is a summary of CUL exceedances in CPOC wells during 2021 monitoring events:

- Vinyl chloride concentrations exceeded the CUL of 0.29 μg/L in wells MW-25 (Q1, Q2, and Q4, with no measurement in Q3) and MW-32 (Q3 and Q4).
- Total iron concentrations exceeded the CUL of 27 mg/L in A-Zone well MW-25 (Q2 and Q4, with no measurement in Q3), and the CUL of 31 mg/L in B-Zone well MW-10 (Q2 and Q4, with no measurement in Q3).
- Total manganese concentrations exceeded the CUL of 2.2 mg/L in A-Zone well MW-25 (Q2 and Q4, with no measurement in Q3) and B-Zone well MW-10 (Q2and Q4, with no measurement in Q3).

- There were no concentrations of cis-1,2-DCE exceeding the CUL of 16 μ g/L.
- There were no concentrations of benzene at MW-25 exceeding the CUL of 5.0 μ g/L.
- There were no concentrations of dissolved arsenic exceeding the CUL of 5.0 μg/L.

Time-series plots for all COCs, showing data for all historical events and post-Consent Decree sampling events (2021) organized separately for the A-/Perched Zone and the B-Zone, are presented in Appendix D1. Time-series plots show CULs for all COCs and the concentration trigger value for vinyl chloride (1.45 µg/L).

Vinyl Chloride Trigger Evaluation and Trend Analyses

In 2021, vinyl chloride concentrations exceeded the CUL in CPOC downgradient A-Zone wells MW-25 and MW-32 during at least two quarters, but none of the concentrations exceeded the concentration trigger value.

Time-series plots of all historical data show overall stable or decreasing trends for vinyl chloride. For the 2021 data, the vinyl chloride time-series plots show slight apparent increases in some wells; however, the data are not sufficient to assess whether the apparent increases could be natural fluctuations due to factors such as precipitation, tidal, or seasonal variations.

Mann-Kendall trend analyses for vinyl chloride were conducted on the entire historical data set using the Excel-based program ProUCL (EPA 2015). The Mann-Kendall trend plots, calculations, and a summary of the approach used is provided in Appendix D2, and the results are summarized in Table 8.

Trends were evaluated for each well using the combined historical (1999 through 2014) and 2020 through 2021 data, resulting in a 6-year gap in the time-series data for all analytes and wells. Historic data coverage prior to 2020 for each well is summarized below.

- 1999-2014: MW-8, MW-10, MW-12, MW-14, MW-18, MW-24
- 2006-2014: MW-25, MW-26, MW-27
- 2013-2014: MW-29
- 2011-2014: MW-30, MW-31, MW-32, MW-33

The wells showed either statistically significant decreasing trends or no statistical trend, except for upgradient well MW-29 and downgradient well MW-18, which showed statistically significant increasing trends. However, both wells also had more than 50 percent non-detects and meaningful trends are difficult to determine due to the large number of censored and often repeated values. The data for MW-29 also had only a limited data set of eleven points with a 6-year gap preceding the 2020 data.

The two downgradient wells that had vinyl chloride concentrations above the CUL in 2021 (MW-25 and MW-32) had either a decreasing trend or no trend.

Although the Mann-Kendall test does not account for (i.e., is not sensitive to) time intervals, the trends should be evaluated with caution considering the gap in the data between 2014 to 2020. Evaluation and comparison of the entire data set is needed to interpret the results with respect to detecting potential releases from the landfill, as opposed to other factors which may influence concentration trends for individual parameters or wells. For example, one or several parameters increasing in a well may not necessarily indicate a release to groundwater from the landfill, if other parameters are decreasing, if increases are also measured in monitoring points not associated with the landfill, or if increases can be correlated to precipitation or groundwater levels.

Statistical evaluation of the post-Consent Decree (post-2020) data for trends will be conducted once a sufficient number of sampling events (at least eight) have been completed.

2021 Operations, Maintenance, and Monitoring Annual Report South Park Landfill Seattle Public Utilities

Since there were no wells that exceeded either or both of the contingency trigger conditions for vinyl chloride in 2021 (concentrations above the concentration trigger criteria for two consecutive sampling events and an increasing trend in a well where the concentration of vinyl chloride is greater than the CUL), no additional actions were required. Note the trend analysis is not a contingency trigger condition for well MW-30.

Iron and Manganese

In 2021, iron and manganese concentrations exceeded the CUL during at least one quarter in downgradient well MW-25 (A-Zone) and downgradient well MW-10 (B-Zone). Time-series plots for iron and manganese show generally stable or decreasing trends for all wells over the history of monitoring. Well MW-25 appears to show a slight apparent (i.e., not statistically significant) increase during the post-Consent Decree sampling events, although more points are needed to evaluate whether this could represent natural fluctuations due to factors such as precipitation or seasonal variations. Following completion of eight quarterly monitoring events, if there are no statistically significant upward trends in iron and manganese, Ecology may approve a reduced frequency of monitoring.

Arsenic

The time-series plots show generally stable or decreasing apparent trends for arsenic over the history of monitoring. Arsenic did not exceed the CUL in any wells except for MW-27, which is not a CPOC well for arsenic. MW-27 is in an area with elevated arsenic concentrations due to cement kiln dust fill deposits, and the exceedances do not appear related to the landfill. Following completion of eight quarterly events, arsenic analysis will be terminated if concentrations in CPOC wells remain in compliance with the CUL.

4.2.2 Unforeseen Emergency or Extreme Weather Events

No unforeseen emergency or extreme weather events were identified at the Settlement Area during 2021 that triggered an inspection to the groundwater monitoring wells.

4.2.3 Monitoring Well Maintenance Completed

The groundwater discharge and air line tubing at MW-08 was replaced prior to the Fourth Quarter 2021 event. Previous sampling events showed consistent bubbles and air present within the discharge line. The discharge tubing was replaced with Teflon lined polyethylene tubing and the air line was replaced with polyethylene tubing.

4.2.4 Purge Water Disposal

A technical memorandum was prepared (Parametrix 2021b; presented in Appendix D6) requesting authorization to discharge groundwater generated during purging of monitoring wells at the Site into the King County sewer at the City of Seattle, Seattle Public Utilities South Recycling and Disposal Station. The purge water was tested and compared to Discharge Authorization limitations and it was concluded that adding the purge water to the discharge would not change the nature and volume of the existing discharge. The County approved the request to discharge the purge water generated from the monitoring wells to the sewer system at the SRDS facility under the existing Discharge Authorization.

Discharge to the manhole at the SRDS facility was authorized by the County, and purge water disposal into the manhole was implemented beginning with the Third Quarter 2021 monitoring event.

4.3 Activities Planned for the Next One-Year Period

4.3.1 Groundwater Monitoring

During the next one-year period, quarterly groundwater monitoring is planned during the months of February, May, August, and November. Attempts will be made to sample wells MW-10 and MW-25, although ongoing access challenges may occur that prevent sampling every quarter. Further discussion on the access to wells MW-10 and MW-25 is presented in Section 4.3.4.

4.3.2 Monitoring Well Maintenance

The bladder pump from MW-10 will be repaired or replaced to facilitate future groundwater monitoring. The well is currently sampled with a peristaltic pump using a special withdrawal protocol.

The locking lid for MW-27 should be repaired/rewelded to ensure well security.

Additional discharge and air lines may be replaced with Teflon lined and polyethylene tubing depending upon field observations.

4.3.3 Data Evaluation and Potential Reductions in Monitoring

Trends in vinyl chloride will continue to be evaluated using the full historical database. After at least eight data points from the long-term monitoring program are available, the more recent post-Consent Decree data may be evaluated separately.

The OMMP states that once a dataset of eight quarterly events has been collected, if there are no upward trends in iron and manganese, Ecology may approve a reduced frequency of monitoring. Therefore, trends in iron and manganese will be evaluated in 2022, and reductions in monitoring frequency may be recommended.

The OMMP states that arsenic analysis will be terminated if concentrations in CPOC wells remain in compliance with the CUL for eight quarterly events. Since there have not been any exceedances of the CUL in CPOC wells during the long-term monitoring, it is anticipated that termination of arsenic analyses will occur in 2022.

4.3.4 Ongoing Access to Wells MW-10 and MW-25 (Encampment Area)

Access to monitoring wells MW-10 and MW-25 became problematic beginning in the Third Quarter of 2021 due to the expanding presence of a homeless encampment immediately adjacent to the wells, preventing collection of samples in the Third Quarter 2021 due to safety concerns for staff and restricted access. Access to these wells is anticipated to be an ongoing issue. SPU is considering measures to improve access including fencing and providing security personnel during sampling.

MW-10 and MW-25 are CPOC wells located at the northeastern downgradient corner of the Site (Figure 5). Recent concentrations in well MW-25 have exceeded the CUL for vinyl chloride, and both wells exceeded CULs for iron and manganese. However, the concentrations of these parameters during the six quarterly events during 2020 and 2021 were observed to be in a relatively stable range and well below the maximum concentrations observed during historical monitoring (1999 to 2014 for MW-10; 2006-2014 for MW-25).

In particular, both wells have shown clear downward concentrations of vinyl chloride over the history of monitoring. Vinyl chloride concentrations in MW-25 during the six post-Consent Decree quarters were

only slightly greater than the CUL (highest concentration of 0.505 μ g/L was less than twice the CUL of 0.29 μ g/L, and about three times lower than the concentration trigger of 1.45 μ g/L that would result in additional required actions).

Other nearby wells (within 250 ft) that have vinyl chloride concentrations above the CUL are MW-31 (further downgradient but not a CPOC well) and MW-32 (cross-gradient). In the future, these wells would continue to act as sentinel wells for unanticipated increases in concentrations in that area of the Site.

Due to the observed stability of the quarterly monitoring data observed since 2020 and the presence of other monitoring wells in the vicinity, a reduction in the frequency of monitoring at wells MW-10 and MW-25 is not likely to result in failure to detect concentration changes that would indicate a threat to human health or the environment. It is recommended that measures be put in place to ensure that MW-10 and MW-25 are available for monitoring at least on an annual basis. If this is not possible, other alternatives will be evaluated.

5. CONCLUSIONS AND RECOMMENDATIONS

No unforeseen emergency or extreme weather events occurred during 2021 at the Settlement Area that triggered additional monitoring requirements. However weather events may have been associated with the unplanned SPPD LFG system shutdown.

5.1 Landfill Cap

The 2021 Baseline Landfill Cap Inspection was conducted on April 22, 2021 and identified some areas requiring additional monitoring, maintenance, and repairs. SPPD conducted some of the recommended repairs during 2021, including reestablishing vegetation in March, and repairing exposed geomembrane at the culvert headwall and the exposed geomembrane at the interface with the pavement cap in November. These repairs were observed by the Site Coordinator. Additional work is required to complete the actions recommended in the 2021 Baseline Landfill Cap Inspection. SPPD also installed a fence surrounding the bus lot in November and provided maintenance at two well heads in January 2022.

The Site Coordinator will conduct an inspection in the Spring of 2022 during the rainy season that will include reinspection of areas identified during the 2021 baseline inspection and observation of the fence installation.

5.2 Landfill Gas

LFG monitoring throughout 2021 indicated that LFG remains present at the Site and that the LFG is being effectively controlled without offsite migration above regulatory thresholds. The only exception was when the SPPD LFG system was offline for an extended period of time.

During the Fourth Quarter 2021 monitoring event of the LFG compliance perimeter probes it was observed that two of the gas probes had trigger value exceedances: GP-29 at 6.9 percent by volume and GP-33 at 4.5 percent by volume GP-33 was later observed above 5 percent by volume. Due to these exceedances, contingency actions were taken as outlined in Figure 4. Contingency actions included restarting and adjusting the adjacent LFG system to increase LFG control, conducting off-site building monitoring and screening, and conducting gas probe monitoring daily until control was reestablished, followed by weekly LFG monitoring for 4 weeks to confirm protectiveness. Control of the LFG was established with GP-33 coming into compliance relatively quickly. Control of the LFG at GP-29 took additional time with multiple system adjustments implemented. The daily gas probe monitoring at GP-29 was reduced to weekly after December 29, 2021 and discontinued after January 19, 2022. Additional follow-up actions are planned in 2022 by the Site Coordinator and the SPPD property owner.

5.3 Groundwater

The groundwater flow direction indicated by 2021 groundwater monitoring was toward the northeast and generally consistent with historical measurements. Based on the observed gradients of 0.0085 to 0.0106 ft/ft in the northern region and 0.0087 to 0.0093 ft/ft in the southern region, the calculated flow velocity ranged from 4.74 to 8.46 ft/day in the northern region of the Site and 1.34 to 3.13 ft/day in the southern region of the Site.

Comparison of water levels in the shallow and deep wells show slightly downward vertical gradients (water levels are higher in the shallower wells) most predominant in the MW-30/MW-31 well pair off the Site to the northeast.

The following CPOC wells had at least one COC concentration that exceeded the CUL during 2021:

- Vinyl chloride: downgradient A-Zone wells MW-25 and MW-32
- Iron: downgradient wells MW-25 (A-Zone) and MW-10 (B-Zone)
- Manganese: downgradient wells MW-25 (A-Zone) and MW-10 (B-Zone)

None of the vinyl chloride groundwater monitoring results exceeded the concentration trigger (concentration greater than 1.45 μ g/L). Statistically significant increasing vinyl chloride trends were observed for upgradient well MW-29 and downgradient well MW-18. However, both these wells have over 50 percent non-detected values and the calculations may not be meaningful. The two downgradient wells that had vinyl chloride concentrations above the CUL in 2021 (MW-25 and MW-32) had either a decreasing trend or no trend.

Since there were no wells that exceeded either or both of the contingency trigger conditions for vinyl chloride in 2021 (concentrations above the concentration trigger criteria for two consecutive sampling events and an increasing trend in a well where the concentration of vinyl chloride is greater than the CUL), no additional actions were required. Note the trend analysis is not a contingency trigger condition for well MW-30.

The time-series plots show generally stable or decreasing trends and parameters over the entire history of monitoring. There were no data collected between 2014 and 2020, and the data collected since 2020 are not sufficient to evaluate trends in the post-Consent Decree data. After completing eight quarterly monitoring events, the recent data will be analyzed to evaluate vinyl chloride trends and to assess whether the monitoring frequency for iron and manganese should be reduced. Following completion of eight quarterly events, arsenic analysis will be terminated if concentrations in CPOC wells remain in compliance with the CUL.

Monitoring wells MW-10 and MW-25 could not be sampled during the Third Quarter 2021 due to encroachment of the adjacent homeless encampment into the area near the wells. Although these wells were successfully sampled in the Fourth Quarter of 2021, it is anticipated that the presence of the encampment will continue to present an ongoing problem that may prevent regular quarterly monitoring. However, due to the relatively stable concentrations measured at these wells since the Consent Decree, continued monitoring at a reduced frequency is not likely to pose a threat to human health or the environment.

6. REFERENCES

- Ecology (Washington State Department of Ecology). 2005. Implementation Guidance for the Ground Water Quality Standards. Washington State Department of Ecology Publication #96-02. Olympia, WA.
- Ecology. 2018a. South Park Landfill Final Cleanup Action Plan. Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan. Washington State Department of Ecology Toxics Cleanup Program. Olympia, WA.
- Ecology. 2018b. Guidance for Monitoring at Landfills and Other Facilities Regulated Under Chapters 173-304, 173-306, 173-350, and 173-351 WAC, Revised December 2018. Washington State Department of Ecology Publication no. 12-07-072. Olympia, WA.
- Ecology. 2021. Draft South Park Landfill Final Cleanup Action Plan: Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan, Amended 2021. Washington State Department of Ecology Toxics Cleanup Program. Olympia, WA.
- EPA (U.S. Environmental Protection Agency). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance. EPA 530/R-09-007. U.S. Environmental Protection Agency Office of Resource and Recovery. Washington, D.C.
- EPA. 2015. ProUCL 5.0.00 User Guide (Draft): Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R-07/041. U.S. Environmental Protection Agency Office of Research and Development. Washington, D.C.
- Farallon. 2013. Interim Action Work Plan, South Park Landfill Site, Seattle, Washington. Prepared for South Park Landfill Development, LLC. February 22, 2013. Seattle, WA.
- Farallon. 2016. SPPD Property Landfill Gas Collection and Control System Operation, Maintenance, and Monitoring Plan, South Park Landfill, Seattle, Washington. Prepared for South Park Property Development, L.L.C. c/o SEACON, L.L.C. June 2016.
- Farallon. 2022. SPPD Property Landfill Gas Collection and Control Corrective Action Summary Report, South Park Landfill, Seattle, Washington. Prepared for South Park Property Development, L.L.C. c/o SEACON, L.L.C. February 2022.
- Floyd|Snider, Aspect, BHC, and Herrera. 2017. Remedial Investigation/Feasibility Study. Prepared for City of Seattle South Park Property Development, LLC. July 2017. Seattle, WA.
- Hart Crowser. 1998. Duwamish Industrial Area Hydrogeologic Pathways Project: Duwamish Basin Groundwater Pathways Conceptual Model Report. Seattle, WA. 1 April.
- Herrera Environmental Consultants (Herrera). 2021. Draft Interim Action Work Plan Amended 2021: South Recycling and Disposal Station. Seattle, WA. February.
- Parametrix 2020. Cap Inspection Work Plan, South Park Landfill. Technical Memorandum prepared for Jerome Cruz, Project Manager, Washington State Department of Ecology. August 5, 2020.
- Parametrix 2021a. 2020 Operations, Maintenance, and Monitoring Annual Report, South Park Landfill. Prepared for SPU. March.
- Parametrix Inc. 2021b. Groundwater Monitoring Well Purge Water Discharge to Sewer. Technical Memorandum prepared for Jeff Neuner at SPU. June 28, 2021.
Figures

Parametrix

Figure 1 Site Vicinity Map South Park Landfill

Source: Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 2 Site Parcel Map with Rights-of-Way South Park Landfill

Source: Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

0 125 250 500 Feet Figure 3 Perimeter Gas Probe Network South Park Landfill

Perimeter Probe and Adjacent Off-Site Building Locations

Gas Probe	Adjacent LFG System	Adjacent Off-site Buildings within 100 ft ¹	Protectiveness Established*?
GP-03	SPPD	None	NA
GP-07	SRDS/SPPD	Eagle Eye Enterprises, LLC	No
GP-09	SRDS	None	NA
GP-11	SPPD	International Construction Equipment, Inc.	No
GP-13	SPPD	NorthStar Ice Equipment	No
GP-15	SPPD	Lenci/Emerson	No
GP-16	SPPD	None	NA
GP-23	SRDS	Bank of America (2 buildings)	No
GP-26	SRDS	Rick Larson Enterprises, Inc.	No
GP-27	SPPD	5th Avenue South	Yes
GP-28	SPPD	5th Avenue South	No
GP-29	SPPD	5th Avenue South	Yes
GP-31	SRDS	Emerson Power Products	No
GP-32	SRDS	Emerson Power Products	No
GP-33	SPPD	W.G. Clark Construction Co	No
GP-37	SRDS	None	NA
GP-38	None	None	NA

Notes:

1 Adjacent off-site buildings within 100 ft are shown on Figure 3.

Protectiveness established at methane concentrations up to 5 percent in adjacent probes.
Due to shallow groundwater, some probes are only measured when the water table is low enough for the probes to function.
NA - Not applicable.

Contingent Action Triggered by Exceedance

- 1. SC notifies the Ecology PM, Public Health Seattle & King County, and the rest of the PLP Group.
- 2. Parcel staff adjust adjacent LFG system to increase control on LFG, and continue DAILY monitoring at probe until control is established (using criteria above) then weekly for 4 weeks.
- 3. SC arranges monitoring of indoor air for LFG in any off-site buildings within 100 feet of the Landfill boundary (Figure 3). Refer to OMMP Figure A.2.6 for triggers and actions based on indoor measurements.
- 4. SC notifies Ecology PM and Public Health Seattle & King County of the actions taken and their effectiveness. If the adjustments to the adjacent gas system are not effective, then a plan must be prepared and submitted for approval.
- 5. SC reports exceedances and actions in Annual Report to Ecology.

Abbreviations: Ecology = Washington State Department of Ecology; LEL = Lower Explosive Limit; LFG = Landfill gas; OMMP = Operations, Maintenance, and Monitoring Plan; PLP = Potentially liable person; PM = Project manager; SPPD = South Park Property Development, LLC; SRDS = South Recycling and Disposal Station

Source: Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure OMMP.

Parametrix

Figure 4 Flow Chart for Triggers and Contingent Actions for Perimeter Probe Monitoring South Park Landfill

Source: Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 5 Groundwater Monitoring Well Network South Park Landfill

In association with

Figure 6 Potentiometric Surface Map February 22, 2021 South Park Landfill

In association with

HWA

GEOSCIENCES INC.

Figure 7 Potentiometric Surface Map May 17, 2021 South Park Landfill

0

Figure 8 Potentiometric Surface Map August 23, 2021 South Park Landfill

0 125 250 500 Feet

In association with

HWA GEOSCIENCES INC.

Figure 9 Potentiometric Surface Map November 15, 2021 South Park Landfill

Tables

Contact	Title	Affiliation	Phone Number (s)	Mailing Address	Email Address
Jerome Cruz	Ecology Site Manager	Ecology	425.649.7094 (W)	Toxics Cleanup Program,	Jerome.Cruz@ecy.wa.gov
			425.466.8732 (C)	Northwest Regional Office	
				3190 - 160th SE Bellevue, WA	
				98008	
Jeff Neuner	Landfill Closure	SPU	206.684.7693 (W)	P.O. Box 34018	Jeff.Neuner@Seattle.gov
	Program Manager		206.369.1153 (C)	Seattle, WA 98124-4018	
Rob Howie	SPPD Parcel Owner	SPPD	425.837.9720 (W)	165 NE Juniper Street,	rhowie@seaconllc.com
			425.652.2550 (C)	Suite 100, Issaquah, WA	
				98027	
Laura Lee	Site Coordinator	Parametrix	206.394.3665 (W)	719 2nd Avenue, Suite 200,	Lblee@parametrix.com
			425.941.9409 (C)	Seattle, WA 98104	

Table 1. Project Contact Information, South Park Landfill

			Durrent	Purge Duration								
6	Probe	Screened	Purge	(min)	Dete	Times of	Depth to	Deserves	CH	<u> </u>	0	цс
Gas Probe	Diameter (ft)	(ft btoc)	$(cc)^1$	Purge rate =	Date Monitored	lime of Measurement	(ft - btoc)	(in W C)	CH ₄		U ₂ (% Volume)	п ₂ 5 (nnm)
GP_37	0.063	2.8 to 7.8	868	1 57	2/22/2021	11.12		0.00		1 5	19.6	
01 57	0.005	2.0 10 7.0	000	1.57	5/17/2021	13:11	Obst	-0.01	0.0	9.9	6.7	0
					8/23/2021	11:45	Obst	0.40	0.0	10.2	10.0	0
					11/15/2021	10:30	7.66	0.00	0.3 ²	9.4	5.0	0
GP-09	0.063	6.62 to 10.62	899	1.63	2/22/2021	12:12	10.71	0.00	0.0	6.4	13.4	0
					5/17/2021	13:31	11.12	0.02	0.0	6.3	14.0	0
					8/23/2021	NA			Probe ina	ccessible		
					11/15/2021	12:00	Obst	0.00	0.3 ²	8.1	12.8	0
GP-26	0.063	4.62 to 9.62	868	1.57	2/22/2021	12:00	6.88	0.00	0.0	1.4	20.2	0
					<u> 5/1//2021</u> <u> 8/22/2021</u>	14:16	7.57 Drv	0.02	0.0	2.2	18.2	0
					0/25/2021	12.54	עוט סב ד	-0.02	0.0	2.Z 1F F	10.5	0
GP-23	0 167	6 05 to 7 05	4 940	8 98	2/22/2021	12.51	6 34	0.00	0.0	0.2	21.4	0
0. 20	0.207	0.00 10 7.00	1,5 10	0.50	5/17/2021	13:53	Dry	-0.02	0.1	6.4	13.5	0
					8/23/2021	12:33	, Dry	0.04	0.0	7.1	12.9	0
					11/15/2021	12:28	6.50	0.00	0.3 ²	0.4	21.5	0
GP-07	0.063	5.75 to 6.25	519	0.94	2/22/2021	11:30	Dry	0.00	0.0	1.0	19.5	0
					5/17/2021	14:37	Obst	0.02	0.0	1.9	18.3	0
					8/23/2021	13:08	5.70	0.01	0.0	3.0	16.5	0
					11/15/2021	13:02	Obst	0.00	0.3 ²	2.6	16.2	0
GP-27	0.063	8.57 to 13.57	1,216	2.21	2/22/2021	10:22	11.40	0.00	0.0	9.2	0.2	3
					<u> 5/1//2021</u> <u> 8/22/2021</u>	12:02	12.14	-0.02	0.6	9.2		6
					11/15/2021	11.27	12.50	0.00	1 1 ²	12.6	0.0	
GP-28	0.063	6 59 to 11 59	1 042	1 89	2/22/2021	10.10	9 10	0.00	0.0	11	14.6	
0. 20	0.000	0.00 10 11.00	1,0 12	1.00	5/17/2021	11:45	10.53	-0.01	0.0	3.6	10.6	0
					8/23/2021	11:13	11.46	-0.02	0.0	11.0	4.6	0
					11/15/2021	11:00	7.71	0.00	0.3 ²	31.0	8.1	0
GP-29	0.063	4.62 to 9.62	868	1.57	2/22/2021	9:34	7.01	0.00	2.0	7.3	6.1	0
					5/17/2021	11:30	8.54	-0.02	1.6	14.1	NA	17
					8/23/2021	11:00	9.27	-0.02	1.5	21.4	NA	18
					11/15/2021	11:19	6.76	0.00	6.9 ²	16.6	0.0	1.2
					11/29/2021	13:01	NA	0.10	5.1	13.5	0.1	NA
					11/30/2021	10:27	NA	0.03	5.2	13.4	0.2	NA
					12/1/2021	9:00		0.01	5.2	13.5	0.0	
					12/2/2021	9.00		-0.06 NA	4.9	13.2	0.2	
					12/3/2021	9.49	NA	-0.01	4 7	12.2	0.1	NA
					12/6/2021	12:28	NA	-0.02	5.3	14.0	0.1	NA
					12/7/2021	12:55	NA	0.01	5.3	14.0	0.1	NA
					12/8/2021	11:07	NA	-0.02	5.2	13.9	0.1	NA
					12/9/2021	10:42	NA	-0.03	5.4	14.1	0.1	NA
					12/10/2021	13:20	NA	0.01	5.4	13.8	0.3	NA
					12/13/2021	11:25	NA	0.03	5.2	13.9	0.1	NA
					12/14/2021	8:15	NA	-0.01	5.3	13.9	0.3	
					12/15/2021	<u>ع.59</u> 11·00	NΔ	-0.03	5.3	13.5	0.1	
					12/17/2021	10:49	NA	0.00	5.4	12.9	0.2	NA
					12/18/2021	10:27	NA	0.01	5.8	13.8	0.1	NA
					12/19/2021	9:50	NA	0.00	5.8	13.7	0.2	NA
					12/20/2021	11:16	NA	0.01	5.8	13.6	0.3	NA
					12/21/2021	8:48	NA	-0.02	5.4	12.8	0.2	NA
					12/22/2021	8:16	NA	-0.01	6.0	13.6	0.2	NA
					12/23/2021	9:18	NA	-0.05	6.1	12.9	0.1	NA
					12/24/2021	9:27	NA	0.01	6.2	12.8	0.1	NA
					12/2//2021	8:16		-0.02	1.0	12.0	0.2	
					1/6/2022	9:05	NA	0.02	1.2	11.7	0.1	NA
					1/12/2022	10:45	NA	-0.03	1.2	11.0	0.3	NA
					1/19/2022	9:30	NA	-0.01	0.5	10.6	0.1	NA
GP-16	0.167	6.60 to 9	5,867	10.67	2/22/2021	9:55	Obst	0.00	0.0	0.3	21.3	0
					5/17/2021	10:59	Obst	-0.08	0.0	0.5	20.8	0
					8/23/2021	10:42	Obst	-0.03	0.0	0.5	18.7	0
					11/15/2021	9:56	Obst	0.00	0.3 ²	0.4	21.2	0
GP-31	0.063	4.64 to 9.64	868	1.57	2/22/2021	9:06	4.18					
					5/17/2021	10:48	5.06	0.02	0.0	7.1	11.4	0
					8/23/2021 11/15/2021	10:18	6.90	0.03	0.0	14.2	3.8	U
GP-15	0.167	6.62 to 8 62	5.558	10.11	2/22/2021	9:15	4.23					
5. 15	0.107	0.02 10 0.02	2,000		5/17/2021	10:21	2.20					
					8/23/2021		5.90					
					11/15/2021	9:40	3.34					

Table 2. Methane in Perimeter Gas Probes, 2021, South Park Landfill

2021 Operations, Maintenance, and Monitoring Annual Report

South Park Landfill

Seattle Public Utilities

553-1550-067 05.00 March 2022

				Purge Duration								
	Probe	Screened	Purge	(min)			Depth to					
Gas	Diameter	Interval	Volume	Purge rate =	Date	Time of	Water	Pressure	CH₄	CO2	02	H ₂ S
Probe	(ft)	(ft btoc)	(cc) ¹	550 ml/min	Monitored	Measurement	(ft - btoc)	(in W.C.)	(% Volume)	(% Volume)	(% Volume)	(ppm)
GP-32	0.063	4.72 to 9.72	868	1.57	2/22/2021	8:58	1.43					
					5/17/2021	9:52	2.34					
					8/23/2021	NA			Probe ina	ccessible		
					11/15/2021	9:49	1.02					
GP-03	0.063	6.73 to 8.63	725	1.32	2/22/2021	8:45	8.74	0.00	0.0	4.8	12.4	0
					5/17/2021	9:39	Dry	-0.01	0.0	6.9	11.8	0
					8/23/2021	9:33	Dry	-12.00	0.0	8.6	10.1	0
					11/15/2021	9:13	Dry	0.00	0.3 ²	5.9	8.7	0
GP-13	0.167	4.91 to 5.41	4,014	7.29	2/22/2021	8:39	2.42					
					5/17/2021	NA	2.90					
					8/23/2021	NA	3.88					
					11/15/2021	NA	2.71 ³					
GP-11	0.167	6.23 to 6.73	4,632	8.42	2/22/2021	8:28	4.88					
					5/17/2021	8:17	4.80					
					8/23/2021	8:26	6.50	0.0	0.0	0.6	19.1	0
					11/15/2021	NA	3.28 ³					
GP-38	0.063	3.8 to 8.8	882	1.6	2/22/2021	11:20	6.76	0.00	0.0	10.6	5.6	0
					5/17/2021	13:03	8.59	-0.01	0.0	13.3	3.5	0
					8/23/2021	12:02	Obst	-0.01	0.0	19.5	0.4	0
					11/15/2021	10:45	8.42	0.00	0.3 ²	16.2	1.0	0
GP-33	0.063	8.2 to 13.2	1,165	2.12	2/22/2021	12:28	12.38	0.00	0.0	4.2	6.2	0
					5/17/2021	16:45	13.59	-0.05	0.0	4.7	8.2	0
					8/23/2021	9:56	Dry	10.74	0.0	8.3	6.0	0
					11/15/2021	11:43	12.11	0.00	4.5 ²	9.3	0.0	0
					11/29/2021	13:19	NA	0.07	5.0	8.0	0.0	NA
					11/30/2021	10:44	NA	-0.30	5.2	7.9	0.0	NA
					12/1/2021	9:08	NA	0.03	4.9	8.0	0.0	NA
					12/2/2021	9:05	NA	-0.09	2.4	8.0	0.0	NA
					12/3/2021	13:25	NA	NA	1.7	8.2	0.1	NA
					12/4/2021	10:00	NA	-0.02	0.9	8.5	0.0	NA
					12/6/2021	12:40	NA	-0.01	0.6	9.5	0.0	NA
					12/7/2021	13:07	NA	0.00	0.5	9.6	0.0	NA
					12/10/2021	13:37	NA	0.00	0.4	10	0	NA
					12/16/2021	11:17	NA	-0.02	0.0	9.4	2.1	NA
					12/22/2021	8:27	NA	-0.01	0.0	9.2	5.2	NA
					12/29/2021	8:27	NA	0.01	0.1	9.5	3.5	NA

Table 2. Methane in Perimeter Gas Probes, 2021, South Park Landfill

Notes:

Blue font Indicates entire screen is blocked by water

Red font Measurement exceeds 5% by volume = 100% lower explosive limit

¹ Purge volume assumes no water present within the probe screen

- ² Instrument ambient methane reading of 0.3 % volume
- ³ Barhole study performed. See Table 3.
- -- No measurement, screen blocked by water

Obst Groundwater not observed due to physical obstruction reported above the probe total depth. Screen likely not blocked therefore gas readings are considered valid.

Abbreviations:

btoc below top of casing

- ppm parts per million
 - ft feet
- cc cubic centimeter
- W.C. Water Column
- CH_4 Methane

CO₂ Carbon Dioxide

O₂ Oxygen

H₂S Hydrogen Sulfide

NA Not Available

2021 Operations, Maintenance, and Monitoring Annual Report South Park Landfill Seattle Public Utilities

553-1550-067 05.00 March 2022

Bar Hole	Probe	Screened	Purge	Purge Duration			Denth to					
Probe Location	Diameter (ft)	Interval (ft btoc)	Volume (cc) ¹	Purge rate = 550 ml/min	Date Monitored	Time of Measurement	Water (ft - btoc)	Pressure (in W.C.)	CH₄ (% Volume)	CO ₂ (% Volume)	O ₂ (% Volume)	H₂S (ppm)
GP-13*	0.042	0.0 to 1.5	58	0.11	11/15/2021	8:44	Dry	NA	0.3 ²	0.9	20.9	0.0
						8:51	Dry	NA	0.3 ²	0.5	21.0	0.0
						8:56	Dry	NA	0.3 ²	0.6	21.0	0.0
GP-11*	0.042	0.0 to 2.0	77	0.14	11/15/2021	8:20	Dry	NA	0.3 ²	0.3	21.1	0.0
						8:27	Dry	NA	0.3 ²	0.2	21.1	0.0
						8:30	Dry	NA	0.3 2	0.2	21.2	0.0

Table 3. Methane in Bar Hole Probes, South Park Landfill

Notes:

¹ Purge volume assumes no water present within the probe screen

² Instrument ambient methane reading of 0.3 % volume

* Temporary bar hole probes installed at three locations adjacent to blocked gas probe

NA Not available

Abbreviations:

btoc below top of casing

ppm parts per million

ft feet

cc cubic centimeter

W.C. Water Column

CH₄ Methane

CO₂ Carbon Dioxide

O₂ Oxygen

H₂S Hydrogen Sulfide

NA Not Applicable

			Depth to	Water (ft)		Ground	lwater Elev	ation (ft NA	AVD 88)
Well ID	NAVD 88)	2/22/21	5/17/21	8/23/21	11/15/21	2/22/21	5/17/21	8/23/21	11/15/21
Perched Zone									
MW-30	17.07	8.85	10.34	11.04	9.68	8.22	6.73	6.03	7.39
Shallow / A-Zo	one wells								
MW-12	20.63	4.86	5.93	6.59	3.37	15.77	14.70	14.04	17.26
MW-14	19.85	1.90	2.68	3.61	1.92	17.95	17.17	16.24	17.93
MW-25	20.09	12.54	13.53	#N/A	12.71	7.55	6.56	#N/A	7.38
MW-26	15.94	8.21	9.74	10.41	8.89	7.73	6.20	5.53	7.05
MW-27	14.76	6.86	8.31	9.16	7.58	7.90	6.45	5.60	7.18
MW-29	19.16	5.67	6.85	8.51	5.87	13.49	12.31	10.65	13.29
MW-31	17.12	9.71	11.11	11.71	9.97	7.41	6.01	5.41	7.15
MW-32	17.07	9.44	10.87	11.54	10.00	7.63	6.20	5.53	7.07
MW-33	17.34	9.57	10.89	11.72	10.21	7.77	6.45	5.62	7.13
Deep / B-Zone	wells								
MW-08	14.76	6.90	8.47	9.17	7.65	7.86	6.29	5.59	7.11
MW-10	19.35	11.75	13.20	#N/A	12.15	7.60	6.15	#N/A	7.20
MW-18	22.03	13.89	15.31	16.06	14.49	8.14	6.72	5.97	7.54
MW-24	15.13	7.42	8.90	9.67	8.15	7.71	6.23	5.46	6.98

Table 4. Groundwater Elevation Summary, 2021, South Park Landfill

Abbreviations:

TOC = Top of casing ft = feet NAVD 88 = North American Vertical Datum of 1988 #NA = Not available

2021 Operations, Maintenance, and Monitoring Annual Report South Park Landfill Seattle Public Utilities

		Ground	dwater Elev	vation (ft N	AVD 88)	Mid-screen	Mid-screen		Vertical gra	dient (ft/ft)	
Well Pairs	Zone	2/22/21	5/17/21	8/23/21	11/15/21	Elevation (ft NAVD 88)	Elevation Difference (ft)	2/22/21	5/17/21	8/23/21	11/15/21
MW-26	Shallow	7.73	6.20	5.53	7.05	-6.45	10.09	0.0010	0.0015	0.0025	0.0025
MW-24	Deep	7.71	6.23	5.46	6.98	-26.43	19.96	0.0010	-0.0015	0.0055	0.0035
MW-27	Shallow	7.90	6.45	5.60	7.18	-2.28	25.44	0.0016	0.0063	0.0004	0.0028
MW-08	Deep	7.86	6.29	5.59	7.11	-27.72	25.44	0.0010	0.0063	0.0004	0.0028
							-		-	-	-
MW-25	Shallow	7.55	6.56	#N/A	7.38	-7.2	15 1	0.0022	0.0272	#NI / A	0.0110
MW-10	Deep	7.60	6.15	#N/A	7.20	-22.3	15.1	-0.0033	0.0272	#N/A	0.0119
							-		-	-	-
MW-30	Perched	8.22	6.73	6.03	7.39	7.1	10.02	0.0000	0.0710	0.0010	0.0240
MW-31	Shallow	7.41	6.01	5.41	7.15	-2.92	10.02	0.0808	0.0719	0.0619	0.0240

Table 5. Groundwater Vertical Gradients, 2021, South Park Landfill

Notes:Positive vertical gradient represents downward hydraulic flowNegative vertical gradient represents upward hydraulic flow

Abbreviations:

ft = feet NAVD 88 = North American Vertical Datum of 1988

#NA = Not available

Region	Horizontal Hydraulic Conductivity ¹ (ft/day)	2021 Horizontal Hydraulic Gradient (ft/ft)	Effective Porosity ¹	Horizontal Groundwater Velocity (ft/day)
Northern Region ²	145 to 167	0.0085 to 0.0106	0.21 to 0.26	4.74 to 8.46
Southern Region ³	40 to 71	0.0087 to 0.0093	0.21 to 0.26	1.34 to 3.13

Table 6. Groundwater Flow Velocity, South Park Landfill

Notes:

- ¹ Hydraulic Conductivity and Effective Porosity as determined from the RI-FS (Floyd Snider, 2017).
- ² Horizontal gradients for the northern region are calculated between A-Zone wells MW-12 and MW-32.
- ³ Horizontal gradients for the southern region are calculated between A-Zone well MW-14 and B-Zone well MW-18.

								U	Jpgradient	Wells					
									A-Zone						
			MW-12	MW-12	MW-12	MW-12	MW-14	MW-14	MW-14	MW-14	MW-29	MW-60	MW-29	MW-29	MW-29
												(MW-29			
		Cleanup										Dup)			
Parameter	Units	Level	2/22/21	5/18/21	8/24/21	11/16/21	2/22/21	5/18/21	8/24/21	11/17/21	2/23/21	2/23/21	5/18/21	8/24/21	11/16/21
Field Parameters															
Temperature	С		10.8	11.8	15.5	13.4	13.1	14.4	17.1	14.3	12.2		13.3	14.1	13.0
Dissolved Oxygen	mg/L		4.79	3.3 ⁴	3.2	0.46	0.44	1.9 ⁴	2.7	0.35	0.46		3 4	2.3	0.20
Specific Conductivity	μS/cm		558.6	362.4	505.3	384.1	453.8	422.2	555.6	522.5	777		774	795	635.6
рН	units		6.78	6.35	6.03	6.18	7.18	6.63	6.43	6.56	7.40		6.7	6.57	6.66
Redox	mv		266.7	50.3	68.1	110.5	4.2	-159.6	36.2	14.9	-79.7		-116.9	-39.8	-61.3
Turbidity	NTU		0.02	6.02	0.02	0.02	4.0	2.96	0.07	1.98	0.10		0.95	1.74	0.02
Metals															
Arsenic, Dissolved	μg/L	5.0	0.292	0.323	0.359	0.407									
Iron, Total	mg/L	27 A-Zone	0.0661	1.66	0.800	0.810	4.01	4.26	3.09	3.06 J-	17.6	20.2	24.5	15.0	12.2
		31 B-Zone													
Manganese, Total	mg/L	2.2	0.0334	0.141	0.0780	0.0908	0.564	0.655	0.613	0.623	0.578	0.598	0.778	0.612	0.526
Volatile Organic Compoun	ds														
Vinyl Chloride	μg/L	0.29	0.0200 U	0.020 U	0.0200 U	0.0200 U	0.0200 U	0.020 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.020 U	0.0200 U	0.0200 U
Cis-1,2-Dichloroethene	μg/L	16	0.20 U	0.20 U	0.20 U	0.20	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Benzene	μg/L	5.0													

Table 7. Groundwater Quality Data Summary, 2021, South Park Landfill

									0	Downgradie	nt Wells							
				Perche	ed Zone							A-Zo	ne					
			MW-30 ¹	MW-30 ¹	MW-30 ¹	MW-30 ¹	MW-25	MW-25	MW-25	MW-26	MW-26	MW-26	MW-61	MW-26	MW-27 ²	MW-27 ²	MW-27 ²	MW-27 ²
Parameter	Units	Cleanup Level	2/23/21	5/20/21	8/25/21	11/16/21	2/23/21	5/20/21	11/17/21	2/24/21	5/19/21	8/25/21	(MW-26 Dup) 8/25/21	11/17/21	2/24/21	5/19/21	8/25/21	11/16/21
Field Parameters																		
Temperature	С		10.9	12.2	15.7	14.0	13.6	13.9	13.7	12.2	12.2	13.9		12.1	10.2	11.7	14.5	12.6
Dissolved Oxygen	mg/L		0.74	11 4	3.0	0.41	1.88	2.1 4	0.26	0.81	8.8 4	3.1		0.28	1.01	2.8 4	3.0	0.56
Specific Conductivity	μS/cm		473.1	457.6	605.3	392.4	986	948	1165	199.1	149	231.1		205.8	263.0	283.2	499.8	275.1
рН	units		6.78	6.21	6.01	6.24	7.21	6.52	6.55	6.54	6.03	5.70		5.87	6.91	6.43	6.23	6.10
Redox	mv		60.3	7.3	94.8	30.6	-51.5	-75.8	-65.9	63.6	23.5	58.7		46.2	61.8	-27.5	32.7	84.6
Turbidity	NTU		0.02	7.87	1.46	0.02	1.42	9.23	0.02	8.40	7.59	3.23		0.02	5.80	10.7	2.30	21.0
Metals																		
Arsenic, Dissolved	μg/L	5.0					0.295	0.342	0.278	0.712	0.682	0.813	0.868	0.822	0.823	6.39 ²	16.7 ²	1.00
Iron, Total	mg/L	27 A-Zone 31 B-Zone	1.50	2.32	5.46	2.51	26.8	28.2	32.9 J-	5.81	5.43	8.43	8.54	7.81 J-	1.86	8.7	18.5	2.08
Manganese, Total	mg/L	2.2	0.0617	0.0654	0.174	0.0666	2.12	2.45	2.57	0.0777	0.0744	0.127	0.127	0.103	0.125	0.386	0.655	0.0607
Volatile Organic Compound	ds																	
Vinyl Chloride	μg/L	0.29	0.0200 U	0.155	0.570 1	0.106	0.463	0.451	0.455	0.0620	0.020 U	0.0310 J	0.0294	0.0582	0.0200 U	0.0445	0.0870	0.0200 U
Cis-1,2-Dichloroethene	μg/L	16	0.20 U	0.47	0.68	0.43	0.20 U	0.20 U	0.28	0.65	0.45	0.37	0.35	0.20	0.20 U	0.20 U	0.20 U	0.20 U
Benzene	μg/L	5.0					0.47	0.61	0.94									

Table 7. Groundwater Quality Data Summary, 2021, South Park Landfill

				Downgradient Wells (cont.)													
										A-Zone (co	nt.)						
			MW-31 ¹	MW-61	MW-31 ¹	MW-31 ¹	MW-31 ¹	MW-32 ³	MW-32 ³	MW-32 ³	MW-60	MW-32 ³	MW-33 ³	MW-33 ³	MW-33 ³	MW-33 ³	MW-60
				(MW-31							(MW-32						(MW-33
		Cleanup		Dup)							Dup)						Dup)
Parameter	Units	Level	2/23/21	2/23/21	5/20/21	8/25/21	11/16/21	2/23/21	5/18/21	8/24/21	8/24/21	11/16/21	2/24/21	5/20/21	8/24/21	11/17/21	11/17/21
Field Parameters																	
Temperature	С		13.1		13.1	14.3	14.1	13.6	14.5	14.4		14.3	14.9	14.9	15.7	15.1	
Dissolved Oxygen	mg/L		0.62		2.3	3.5 ⁴	0.19	0.44	2.1 4	3.6		0.24	0.40	1.8 4	2.8	0.19	
Specific Conductivity	μS/cm		417.0		369.4	427.7	374.2	839	749	860		836	1330	1209	1420	1398	
рН	units		6.98		6.26	5.96	6.31	7.37	6.71	6.44		6.7	7.31	6.69	6.52	6.67	
Redox	mv		-28.8		-36.5	101.6	-32.5	-63.3	-124.4	-56.9		-79.3	-91.2	-95.4	-58.3	-79.6	
Turbidity	NTU		5.88		10.7	5.48	2.19	1.34	2.65	0.97		0.02	3.80	8.01	3.07	1.12	
Metals																	
Arsenic, Dissolved	μg/L	5.0						1.16	1.06	1.29	1.22	1.17	0.845	0.889	0.964	0.863	0.842
Iron, Total	mg/L	27 A-Zone	11.8	12.3	15.7	12.0	11.4	11.2	14.3	12.1	12.1	12.7	15.6	16.1	13.7	14.8 J-	14.5 J-
		31 B-Zone															
Manganese, Total	mg/L	2.2	0.537	0.513	0.601	0.605	0.665	1.37	1.5	1.43	1.44	1.61	1.55	1.77	1.85	1.83	1.82
Volatile Organic Compound	ds																
Vinyl Chloride	μg/L	0.29	0.167 J	0.357	0.321	0.494	0.384	0.162	0.208	0.465	0.477	0.471	0.114	0.114	0.169	0.124	0.109
Cis-1,2-Dichloroethene	μg/L	16	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.87	0.84	1.06	0.92	1.13	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Benzene	μg/L	5.0															

Table 7. Groundwater Quality Data Summary, 2021, South Park Landfill

										Do	wngradien	t Wells (con	t.)							
											B-Z	one								
			MW-08	MW-08	MW-08	MW-08	MW-61	MW-10	MW-10	MW-10	MW-18 ³	MW-18 ³	MW-60	MW-18 ³	MW-18 ³	MW-24	MW-24	MW-61	MW-24	MW-24
							(MW-08						(MW-18					(MW-24		
		Cleanup					Dup)						Dup)					Dup)		
Parameter	Units	Level	2/24/21	5/19/21	8/25/21	11/17/21	11/17/21	2/23/21	5/20/21	11/17/21	2/23/21	5/18/21	5/18/21	8/24/21	11/17/21	2/24/21	5/19/21	5/19/21	8/25/21	11/17/21
Field Parameters																				
Temperature	С		11.3	12.5	14.3	12.1		13.6	13.9	13.5	13.4	14.2		16.8	14.2	12.0	12.1		14.9	12.2
Dissolved Oxygen	mg/L		1.10	79.10 ⁴	6.6	0.19		0.44	2.6 4	0.23	0.47	36.3 ⁴		3.7	0.21	0.93	3 4		6.7	0.18
Specific Conductivity	μS/cm		1248	1053	1128	865		1482	1306	1510	1161	1006		1086	870	979	775		988	948
рН	units		7.28	6.62	6.44	6.57		7.50	6.72	6.81	7.29	6.51		6.36	6.58	7.13	6.56		6.39	6.46
Redox	mv		-56.6	-75.4	112.2	-69.4		-108.4	-106.1	-109.8	-52.1	-74.3		-10.2	-41.9	-41.5	-66.4		71.4	-41.3
Turbidity	NTU		2.33	7.07	0.44	2.48		1.92	10.8	0.02	0.02	4.09		0.02	0.02	1.35	4.98		2.95	0.02
Metals																				
Arsenic, Dissolved	μg/L	5.0	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.400 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U
Iron, Total	mg/L	27 A-Zone																		
		31 B-Zone	14.6	15.4	14.2	15.2 J-	14.8 J-	28.0	35.3	34.8 J-	24.2	22.6	23.9	14.8	13.8 J-	25.5	12.5	14.7	17.4	19.7 J-
Manganese, Total	mg/L	2.2	1.09	1.27	1.11	0.991	0.991	2.08	2.44	2.68	1.30	1.33	1.4	1.21	0.918	1.48	0.913	0.91	1.39	1.34
Volatile Organic Compound	ds																			
Vinyl Chloride	μg/L	0.29	0.0735	0.0754	0.0987	0.0863	0.0819	0.0755	0.0876	0.0745	0.0200 U	0.0459	0.0454	0.0540	0.0248	0.0226	0.0214	0.0255	0.051	0.0808
Cis-1,2-Dichloroethene	μg/L	16	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	1.29	1.17	1.36	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Benzene	µg/L	5.0																		

Table 7. Groundwater Quality Data Summary, 2021, South Park Landfill

Fable 7. Groundwater Quali	y Data Summary, 2021	L, South Park Landfill
----------------------------	----------------------	------------------------

			Trip Blanks							
			First Q	luarter	Second	Quarter	Third C	Quarter	Fourth	Quarter
			MW-80	MW-81	MW-80	MW-81	MW-80	MW-81	MW-80	MW-81
Parameter	Units	Cleanup Level	2/22/21	2/24/21	5/19/21	5/20/21	8/24/21	8/25/21	11/16/21	11/17/21
Field Parameters										
Temperature	С									
Dissolved Oxygen	mg/L									
Specific Conductivity	μS/cm									
рН	units									
Redox	mv									
Turbidity	NTU									
Metals										
Arsenic, Dissolved	μg/L	5.0								
Iron, Total	mg/L	27 A-Zone								
		31 B-Zone								
Manganese, Total	mg/L	2.2								
Volatile Organic Compounds										
Vinyl Chloride	μg/L	0.29	0.0200 U	0.0200 U	0.020 U	0.020 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U
Cis-1,2-Dichloroethene	μg/L	16	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Benzene	μg/L	5.0	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U

Notes:

¹ MW-30 and MW-31 monitor the former Glitsa property and are not CPOC wells.

² MW-27, a downgradient A-Zone well across SR 99 consistently has arsenic at concentrations greater than the CUL due to a cement kiln dust deposit that is across the street from the Settlement Area. MW-27 is not a CPOC well for arsenic.

³ MW-18 is completed in refuse along the downgradient edge of the Landfill; MW-32 and MW-33 are completed beneath refuse along the downgradient edge.

⁴ Dissolved Oxygen readings for the second quarter were not reliable and potentially related to a faulty sensor

- = Exceeds cleanup level for CPOC wells
- - = Not sampled

U = The analyte was analyzed for but was not detected above the reported sample quantitation limit.

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

J - = The result is an estimated quantity, but the result may be biased low. The associated numerical value is the approximate concentration of the analyte in the sample.

Abbreviations:

- µg/L Micrograms per liter
- mg/L Milligrams per liter
- $\mu\text{S/cm}$ Microsiemens per centimeter
- NTU Nephelometric Turbidity unit
- CPOC Conditional point of compliance

mple. centration of the analyte in the sample.

Well ID	# Samples	# ND's	% ND's	MK S Value ¹	Significance Level ²	Trend ²			
Upgradient We	Upgradient Wells								
A-Zone									
MW-12	45	7	16	-400	<0.0001	decreasing			
MW-14	43	43	100	NA	NA	NA			
MW-29	11	8	73	27	0.0215	increasing*			
Downgradient	Wells								
Perched Zor	ne								
MW-30	11	1	9	-13	0.1751	no trend			
A-Zone									
MW-25	20	1	5	-84	0.0035	decreasing			
MW-26	18	7	39	-63	0.0094	decreasing			
MW-27	17	6	35	-84	0.0003	decreasing			
MW-31	11	0	0	-27	0.0215	decreasing			
MW-32	12	0	0	25	0.0495	no trend			
MW-33	11	0	0	-10	0.2411	no trend			
B-Zone									
MW-08	44	4	9	-681	<0.0001	decreasing			
MW-10	45	2	4	-700	<0.0001	decreasing			
MW-18	42	23	55	160	0.0424	increasing*			
MW-24	34	7	21	-341	<0.0001	decreasing			

Table 8. Summary of Vinyl Chloride Trend Analyses, South Park Landfill

Notes:

All ND's were replaced with estimated values using the ROS (Regression on Order Statistics) meth

- ND = Non-detected value
- NA = Not applicable

Bold = Downgradient well where the vinyl chloride concentration is greater than the CUL

- ¹ The Mann-Kendall test statistic, S, is based on pair-wise differences between each concentration and all earlier concentrations. A positive S value indicates an increasing trend, a zero value indicates no trend, and a negative value indicates a decreasing trend. The null hypothesis for this test is no trend. For a positive S value, the alternative hypothesis is an increasing trend. For a negative S value, the alternative hypothesis is a decreasing trend.
- ² Significance of the Mann-Kendall test statistic, S, is a function of the magnitude of S and the number of concentrations, with a larger positive or negative value of S and a greater number of concentrations leading to a higher statistical significance. An increasing or decreasing trend is considered statistically significant if the significance level is less than 0.05 (the confidence level is greater than 0.95); otherwise, no trend is indicated.
- * Because of limited data, including a 6-year gap between 2014 and 2020, and more than 50% ND's, the trend may not be meaningful.

Table 9. Groundwater Monitoring Well Information, South Park Landfil
--

				Well Information from RI ²						Pump Information						
			WASPN		Ground	Casing		Total Well		Screen	Screen Top	Screen Bottom				
	Latitude	Longitude	North	WASPN East	Elevation	Elevation	Stickup	Depth	Screen Top	Bottom	Elevation	Elevation			Intake or Top of Pump	Date
Well ID	(NAD 83) ¹	(NAD 83) ¹	(ft NAD 83)	(ft NAD 83)	(ft NAVD 88)	(ft NAVD 88)	(ft)	(ft bgs)	(ft bgs)	(ft bgs)	(ft NAVD 88)	(ft NAVD 88)	Aquifer	Pump Type	(ft btoc)	Measured
MW-08	47.529801	-122.3273	196834.57	1271362.27	12.88	14.76	1.88	45.59	35.6	45.6	-22.72	-32.72	B-Zone	Bladder	Pump at approx. 39.5 ft btoc	11/10/2021 ³
MW-10	47.531977	-122.3306	197659.19	1270559.83	17.7	19.35	1.65	45	35	45	-17.3	-27.3	B-Zone	Peristaltic	Dedicated intake at 30 ft btoc	5/26/2020
MW-12	47.530062	-122.3337	196964.43	1269792.64	19.11	20.63	1.52	15.3	10	15	9.11	4.11	A-Zone	Bladder	Pump at 12.24 ft btoc	5/26/2020
MW-14	47.528523	-122.3329	196399.9	1269963.70	19.05	19.85	0.8	21.8	11.50	21.5	7.55	-2.45	A-Zone	Bladder	Pump at 16.63 ft btoc	5/26/2020
MW-18	47.528449	-122.3284	196350.26	1271077.67	20.78	22.03	1.25	40.4	30	40	-9.22	-19.22	B-Zone	Bladder	Pump at 33.70 ft btoc	5/26/2020
MW-24	47.530515	-122.3281	197110.02	1271165.6	13.57	15.13	1.56	45.3	35	45	-21.43	-31.43	B-Zone	Bladder	Pump at 39.80 ft btoc	5/26/2020
MW-25	47.532033	-122.3305	197657.49	1270566.75	17.3	20.09	2.79	27	22	27	-4.7	-9.7	A-Zone	Bladder	Pump at 25.30 ft btoc	5/26/2020
MW-26	47.53057	-122.3281	197121.60	1271164.4	13.55	15.94	2.39	25	15	25	-1.45	-11.45	A-Zone	Bladder	Pump at 20.09 ft btoc	5/26/2020
MW-27	47.529792	-122.3273	196835.06	1271357.64	12.72	14.76	2.04	20	10	20	2.72	-7.28	A-Zone	Bladder	Pump at 14.97 ft btoc	5/26/2020
MW-29	47.527537	-122.3316	196034.29	1270270.91	19.45	19.16	-0.29	30	20	30	-0.55	-10.55	A-Zone	Peristaltic	Intake placed at 25 feet bgs	5/26/2020
MW-30	47.532014	-122.3295	197655.77	1270826.64	17.6	17.07	-0.53	13	8	13	9.6	4.6	Perched	Peristaltic	Intake placed at 10.5 feet bgs	5/26/2020
MW-31	47.532027	-122.3295	197660.37	1270825.71	17.58	17.12	-0.46	23	18	23	-0.42	-5.42	A-Zone	Bladder	Pump at 18.24 ft btoc	5/26/2020
MW-32	47.531347	-122.3303	197416.52	1270622.16	17.51	17.07	-0.44	24	19	24	-1.49	-6.49	A-Zone	Peristaltic	Intake placed at 21.5 feet bgs	5/26/2020
MW-33	47.53092	-122.3298	197257.91	1270751.02	17.81	17.34	-0.47	25	20	25	-2.19	-7.19	A-Zone	Peristaltic	Intake placed at 22.5 feet bgs	5/26/2020

Notes:

¹ Converted from Washington State plane data.

² Well information sourced from the RI Table 5.4 (Floyd Snider, 2017).

³ Will be validated during the 2022 second quarter monitoring event.

Abbreviations:

NAD 83 = North American Datum of 1983

NAVD 88 = North American Vertical Datum of 1988

ft = feet

bgs = below ground surface

btoc = below top of casing

WASPN = Washington State Plane North - 4601

Appendix A

Annual Report Checklist

SOUTH PARK LANDFILL ANNUAL REPORT CHECKLIST

DUE TO ECOLOGY March 31 of each calendar year (includes January 1 through December 31 of the previous year)

1. Landfill Cap Inspections and Maintenance

			Form	
	Type of Activity	Date Completed	Completed	Comments
\boxtimes	Annual	April 22, 2021	\boxtimes	Baseline inspection
\boxtimes	Maintenance	March 30, 2021	\boxtimes	SPPD landscaping
		November 2, 2021	\boxtimes	SPPD repair of exposed
				geomembrane and
				landscaping in areas of
				erosion
		January 26, 2022	\boxtimes	Two gas monitoring well
				heads were raised to
				provide better access. New
				asphalt was added around
				the wells.
\boxtimes	Inspection	January 15, 2021	\boxtimes	Weather event inspection
		October 29, 2021	\boxtimes	Rain event inspection.

2. Quarterly LFG Perimeter Probe Monitoring

		Date Completed	Field Forms	Comments
\boxtimes	Q1	February 22, 2021	\boxtimes	
\boxtimes	Q2	May 17, 2021	\boxtimes	
\boxtimes	Q3	August 23, 2021	\boxtimes	
\boxtimes	Q4	November 15, 2021	\boxtimes	

3. Owner-reported Quarterly Inspection of On-site Building Methane Detectors and Alarms

		Date Completed						
		SPPD	SRDS					
	Q1	No records received from property owner	Not required until redevelopment					
	Q2							
	Q3							
	Q4							
Off-s	Off-site building monitoring conducted?							
2	2021, and December 3, 2021. Details are included in an incident report (Appendix C3).							

4. Q	Quarterly Groundwater Monitoring									
		Date Completed	Field Forms	Uploaded into EIM						
\boxtimes	Q1	February 22 through 24, 2021	\boxtimes							
\boxtimes	Q2	May 18 through 20, 2021	\boxtimes							
\boxtimes	Q3	August 24 through 25, 2021	\boxtimes							
\boxtimes	Q4	November 16 through 17, 2021	\boxtimes							

Site Coordinator Signature

March 31, 2022

Date

Source: South Park Landfill Final Cleanup Action Plan. Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan. Prepared by Washington State Department of Ecology 2018.

Appendix B

Landfill Cap Inspection and Maintenance

B1

Landfill Cap Inspections

B1-A

April 2021 Baseline Landfill Cap Inspection

60 WASHINGTON AVENUE, SUITE 390 | BREMERTON, WA 98337 | P 360.377.0014

TECHNICAL MEMORANDUM

DATE:	June 25, 2021
TO:	Jeff Neuner, Seattle Public Utilities Rob Howie, South Park Property Development
FROM:	Laura Lee; Rhiannon Sayles, PE; Ian Sutton, PE; and Lisa Gilbert, LHG
SUBJECT:	2021 Baseline Landfill Cap Inspection
CC:	Jerome Cruz, Ecology
PROJECT NUMBER:	553-1550-067
PROJECT NAME:	South Park Landfill Site Coordination

The purpose of this Technical Memorandum is to summarize the findings of the 2021 Baseline Landfill Cap Inspection at South Park Landfill including the reinspection of identified concerns from the 2020 Baseline Landfill Cap Inspection performed on September 21, 2020. Additionally, the field inspection report and photos from the January 15, 2021, inspection are included in this document as Attachment F. The January 15, 2021, field inspection was performed after a large rain event. There is one immediate repair that was identified during that inspection and that is to cut the deep-rooted plants in the swale adjacent to Occidental Avenue. This repair item has been combined with the repairs required from the 2021 Baseline Landfill Cap inspection in Table 4.

The 2021 Baseline Landfill Cap inspection was performed on April 22, 2021, by three Parametrix staff members (Rhiannon Sayles, PE; Ian Sutton, PE; and Lisa Gilbert, LHG). The baseline inspection satisfies the requirements of the Cleanup Action Plan (CAP) which fulfills a requirement of the Consent Decree that was signed on March 26, 2019. The primary objective of this inspection was to reinspect issues identified during the 2020 Baseline Landfill Cap Inspection, document current status, and complete a second inspection of the landfill cap to identify areas that may be compromised and need maintenance. The inspection also included observing areas noted in the January 15, 2021, inspection conducted as a result of a storm event.

The inspection took place on April 22, 2021, from approximately 9:30 AM to 1:15 PM. The weather was cloudy, and the temperature was 55°F. The last substantial rain event was twelve days prior (Saturday, April 10) when approximately 0.01 inches of rain fell. The inspection started on the northern portion of the site at the South Recycling and Disposal Station (SRDS) property and progressed south to the South Park Property Development (SPPD) property and the surrounding right-of-way. Two accompanying cap inspection figures are included in Attachment C. Photographs were taken, and global information system (GIS) points were collected using a Trimble Geo7X handheld data collector at each location where a potential issue or concern was observed. The photographs are numbered and included in Attachment D with numbers mapped on the Attachment C figures. The Cap Inspection Form A was completed for both parcels and the right-of-way and are included as Attachment B. The following inspection results are presented in accordance with the associated property and respective responsible party.

All repairs shall be documented on a Cap Maintenance Form B and are included in Attachment G.

The basis of determining the timeline for repairs shown in the tables in this report comes from the Landfill Post-Closure Operations, Maintenance, and Monitoring Plan (OMMP). The OMMP has the following guidance for the timeline of maintenance/repairs:

- 1. If underlying material (such as geomembrane) is exposed, corrective action shall occur within 60 days.
- 2. If minor cracks or ponding do not expose underlying materials and the problem does not appear to be getting worse the issue shall be reinspected in 6 months.

3. If underlying material is not exposed but is worsening or the issue needs to be elevated to a repair before it worsens, the corrective action shall occur within the calendar year.

Corrective actions proposed by the property owners should be coordinated with Parametrix prior to taking action. Parametrix should perform verification inspections during and/or after corrective actions are complete to determine if the maintenance and repairs are consistent with the intent of the regulatory requirements. Parametrix shall perform a reinspection in October or November of 2021. The next regular annual inspection shall occur in the first quarter of 2022. The property owner should document any repairs or maintenance in Part 1 of the Cap Inspection Form B (a blank sample is located in Attachment G) and Parametrix will provide observations in Part 2 of the form after reinspection.

SRDS PARCEL

Reinspection of Identified Concerns from September 2020 Cap Inspection

There were 7 locations on the SRDS property identified in the 2020 Baseline Landfill Cap Inspection that were reinspected during this site visit for minor pavement cracking and ponding. Locations are shown in Attachment A which includes the 2020 Baseline Landfill Cap Inspection site plan. Table 1 lists the 7 items identified. Previous concerns identified remain in the same general condition as observed in September 2020 and have been added to the current list of concerns in Table 2.

	Description	Recommended Action on September 21, 2020	Status on April 22, 2021
20-27	Minor pavement cracking	Follow-up inspection in 6 months	No Change
20-28	Minor pavement cracking	Follow-up inspection in 6 months	No Change
20-29	Ponding	Follow-up inspection in 6 months	No Change
20-30	Ponding	Follow-up inspection in 6 months	No Change
20-31	Ponding	Follow-up inspection in 6 months	No Change
20-32	Minor pavement cracking	Follow-up inspection in 6 months	No Change
20-39	Minor pavement cracking	Follow-up inspection in 6 months	No Change

Table 1. Status of Identified Locations of Concern on the SRDS Parcel, September 21, 2020, Inspection

April 2021 Inspection and Identification of Current Concerns

The general parcel condition was good. Pavement cracks and ponding areas remain the primary concerns; however, with the planned redevelopment of the parcel, temporary pavement restoration is not recommended based on conditions at this time. There were 6 new locations identified as points of concern for one or more conditions. Each new location of concern is identified by number on Attachment C and corresponding photographs are in Attachment D. There are also 4 locations identified as points of concern identified during the September 21, 2020, inspection that will continue to be monitored.

Table 2 briefly describes the issue or concern at each location on the SRDS parcel, indicates a recommended action, and proposes a timeline for repairs, maintenance, and/or reinspection. Parametrix will perform a reinspection in October or November 2021.

There is one item recommended for immediate repair on the SRDS parcel at this time. That is to repair the sinkhole location at point #21-7. There is one item that is recommended for repair by the end of the calendar year and that is the concrete cracking around the catch basin at point #21-3.

2021 Point #	2020 Point #	Description	Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment
21-2	20-28 20-39	Minor pavement cracking	Follow-up inspection	6 months	Parametrix
21-3	-	Concrete cracking at catch basin	Repair concrete at catch basin.	No later than end of calendar year.	SPU
21-4	20-27 20-29	Minor pavement cracking and ponding	Follow-up inspection	6 months	Parametrix
21-5	-	Minor pavement cracking	Follow-up inspection	6 months	Parametrix
21-6	-	Ponding	Follow-up inspection	6 months	Parametrix
21-7	-	Sinkhole through asphalt	Immediate repair	60 days	SPU
-	20-26	Ponding	Follow-up inspection	6 months	Parametrix
-	20-30	Ponding	Follow-up inspection	6 months	Parametrix
-	20-31	Ponding	Follow-up inspection	6 months	Parametrix
-	20-32	Minor pavement cracking	Follow-up inspection	6 months	Parametrix

Table 2. Identified Locations of Concern on the SRDS Parcel, April 22, 2021, Inspection

The Cap Inspection Form A was completed for the SRDS parcel and is included in Attachment B.

SPPD PARCEL

Reinspection of Identified Concerns from September 2020 Cap Inspection

There were 32 locations on the SPPD parcel identified in the 2020 Baseline Landfill Cap Inspection that were reinspected during this site visit for one or more conditions. Locations are shown in Attachment A which includes the 2020 Baseline Landfill Cap Inspection site plan. Table 3 lists the 32 items identified. Previous concerns identified that remain in the same general or worse condition as observed in September 2020 have been added to the current list of concerns in Table 4.

April 2021 Inspection and Identification of Current Concerns

The general parcel condition was good. The paved area is in good condition; though, ponding remains a concern. Vegetated slopes are uniform and generally in good condition; however, there are two primary concerns of exposed geomembrane at the slope and parking area interface, and exposed geomembrane near the sidewalk along 5th Avenue S. There were 13 locations on the SPPD parcel identified during the April 2021 and previous inspections, as points of concern for one or more conditions. Each new location of concern is identified by number on Attachment C and corresponding photographs are in Attachment D.

Table 4 briefly describes the issue or concern at each location on the SPPD parcel, indicates a recommended action, and proposes a timeline for repairs, maintenance, and/or reinspection. Items identified for repair will be reinspected as part of the regular Annual Inspection.

Additionally, there is a noted area of concern where stormwater runoff from the SPPD Property flows onto the SPU property from the northeast corner of the SPPD property. Parametrix was unable to visit the site during or after a large rain event to observe this condition. A reinspection will be scheduled in October or November during a rain event to observe the area of concern.

Table 3. Status of Identified Locations of Concern on the SPPD Parcel, September 21, 2020, Inspection

2020		Recommended Action	
Point #	Description	on September 21, 2020	Status on April 22, 2021
20-1	Standing water in west bioswale	Regrade for drainage within 12 months	No Change
20-2	Exposed geotextile	Reestablish vegetation within 6 months	Vegetation reestablished (see maintenance form in Attachment G)
20-3	Exposed geotextile	Reestablish vegetation within 6 months	Vegetation reestablished (see maintenance form in Attachment G)
20-4	Exposed geomembrane	Expose geomembrane until the 18" cover requirement is satisfied to determine the extent of erosion. Inspect geomembrane, repair as needed, and restore the 18" cover in accordance with the Interim Action Work Plan (IAWP) within 3 months	Exposed geomembrane was reported by SPPD to be a loose piece of material and not part of the cap. The area had been regraded and vegetation reestablished
20-5	Exposed geomembrane	Expose geomembrane until the 18" cover requirement is satisfied to determine the extent of erosion. Inspection geomembrane, repair as needed, and restore the 18" cover in accordance with the IAWP within 3 months	Exposed geomembrane was reported by SPPD to be a loose piece of material and not part of the cap. The area had been regraded and vegetation reestablished
20-6	Ponding at Fire Hydrant	Regrade for drainage within 12 months	No Change
20-7	Exposed geomembrane	Expose geomembrane until the 18" cover requirement is satisfied to determine the extent of erosion. Inspection geomembrane, repair as needed, and restore the 18" cover in accordance with the IAWP within 3 months	No Change
20-8	Potholes/pavement cracking	Follow-up inspection within 6 months	No Change. Reassigned to the Right-of-Way.
20-9	Exposed geomembrane	Expose geomembrane until the 18" cover requirement is satisfied to determine the extent of erosion. Inspection geomembrane, repair as needed, and restore the 18" cover in accordance with the IAWP within 3 months	No Change
20-10	Unknown open vertical pipes	If pipes are not functional, excavate and remove. Determine relation to the landfill cap and repair as required in accordance with the IAWP within 3 months	No change. One conduit appeared broken at the level of surrounding vegetation.
20-11	Exposed geotextile	Reestablish vegetation within 6 months	Vegetation reestablished (see maintenance form in Attachment G)
20-12	Exposed geotextile	Reestablish vegetation within 6 months	Inspection needed to verify vegetation reestablished
20-13	Ponding	Follow-up inspection in 6 months	No Change
20-14	Ponding	Follow-up inspection in 6 months	No Change
20-15	Ponding	Follow-up inspection in 6 months	No Change
20-16	Ponding above LFG Collector Control Box V4	Confirm no infiltration into the control box. Raise control box and surrounding grade to prevent ponding within 6 months	Reinspection needed after a substantial rain event.

Table 3. Status of Identified Locations of Concern on the SPPD Parcel, September 21, 2020, Inspection (continued)

2020		Recommended Action	
Point #	Description	on September 21, 2020	Status on April 22, 2021
20-17	Ponding	Follow-up inspection in 6 months	No Change
20-18	Ponding	Follow-up inspection in 6 months	No Change
20-19	Ponding	Follow-up inspection in 6 months	No Change
20-20	Ponding	Follow-up inspection in 6 months	No Change
20-21	Water flowing from asphalt	Determine source of water and take corrective action immediately. Restore the area in accordance with the IAWP. Monitor the area for settlement impacts as a result of the water.	Broken water pipe identified and repaired. Asphalt patched. (see maintenance form in Attachment G)
20-22	Ponding above Sanitary Cleanout	Confirm no infiltration into or around the cleanout. Raise cleanout and surrounding grade to prevent ponding within 6 months	No Change
20-23	Ponding	Follow-up inspection in 6 months	No Change
20-24	Ponding	Follow-up inspection in 6 months	No Change
20-25	Ponding	Follow-up inspection in 6 months	No Change
20-26	Minor pavement cracking/ponding	Follow-up inspection in 6 months	No Change
20-33	Exposed geotextile	Reestablish vegetation within 6 months	No Change. The ditch bottom has been restored; however, the south side slope adjacent to the parking area remains an erosion issue.
20-34	Exposed geotextile	Reestablish vegetation within 6 months	Inspection needed to verify vegetation reestablished
20-35	Exposed geotextile	Reestablish vegetation within 6 months	Vegetation reestablished (see maintenance form in Attachment G)
20-36	Exposed geotextile	Reestablish vegetation within 6 months	Vegetation reestablished (see maintenance form in Attachment G)
20-37	Exposed geotextile	Reestablish vegetation within 6 months	Vegetation reestablished (see maintenance form in Attachment G)
20-38	Exposed geotextile	Reestablish vegetation within 6 months	Vegetation reestablished (see maintenance form in Attachment G)
Table 4. Current Identified Loca	ations of Concern on the SPPD	Parcel, April 22, 2021, Inspection	
----------------------------------	-------------------------------	------------------------------------	
----------------------------------	-------------------------------	------------------------------------	

2021 Point #	2020 Point #	Description	Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment
21-9	20-33	Erosion of soil cover between the swale and parking area. Erosion may be a result of a low point in the curb channelizing parking lot runoff at this location. This issue was identified during January 2021 storm event inspection. See Attachment F.	Work with Parametrix to prepare a plan to reestablish a uniform slope and vegetate. The team shall investigate source of erosion, identify possible solutions and take corrective action. Additionally, this area shall be inspected after heavy persistent rain.	No later than end of calendar year	SPPD Property Owner will work in coordination with Parametrix to establish a solution
21-11	20-6	Ponding at fire hydrant	Regrade for positive drainage away from fire hydrant.	No later than end of calendar year	SPPD Property Owner
21-12	20-7	Exposed geomembrane at the culvert headwall	Work with Parametrix to prepare a plan to reestablish cover over the geomembrane. Potential solutions may include adding rock on top of the geomembrane. However, if this is done a cushion material should be provided to protect the geomembrane.	60 days	SPPD Property Owner will work in coordination with Parametrix to establish a solution
21-13	-	Exposed and damaged geomembrane at the parking area interface	The configuration of the geomembrane and cover at the interface of the parking area does not appear to be in accordance with Figure 5 of the Interim Action Work Plan (IAWP) included as Attachment E. The geomembrane appears to be directly below the asphalt with no drainage layer or surfacing layer in between. Some locations show evidence of geomembrane damage. Along with Parametrix, prepare a plan to reestablish cover over the geomembrane. Most likely, the area should be exposed, and the geomembrane tested for damage before repairs should be made. The crest of slope should then be provided cover to the maximum extent possible considering the existing asphalt and curb configuration.	60 days	SPPD Property Owner will work in coordination with Parametrix to establish a solution
21-14	-	Exposed and damaged geomembrane at the parking area interface	See Point #21-13 recommendations.	60 days	SPPD Property Owner will work in coordination with Parametrix to establish a solution
21-15	-	Exposed and damaged geomembrane at the parking area interface	See Point #21-13 recommendations.	60 days	SPPD Property Owner will work in coordination with Parametrix to establish a solution

Table4. Current Identified Locations of Concern on the SPPD Parcel, April 22, 2021, Inspection (continued)

2021 Point #	2020 Point #	Description	Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment
21-16	-	Asphalt cap penetrations exist	Repair holes.	60 days	SPPD Property Owner
21-17	-	Exposed and damaged geomembrane at the parking area interface	See Point #21-13 recommendations.	60 days	SPPD Property Owner will work in coordination with Parametrix to establish a solution
21-18	20-9	Exposed and damaged geomembrane north of the east entrance, including an unbooted storm drain manhole	Work with Parametrix to prepare a plan to reestablish cover over the geomembrane. The geomembrane should be exposed and inspected. Based on the visible geomembrane at the manhole, the original cap installation did not adequately depress the geomembrane, nor provide adequate cover. Other visibly damaged geomembrane appears to be the result of the shallow cover and landscaping activities.	60 days	SPPD Property Owner will work in coordination with Parametrix to establish a solution
-	20-1	Standing water in west bioswale	Regrade for drainage within 12 months. See 2020 baseline inspection for details and photos.	No later than end of calendar year	SPPD Property Owner
-	20-10	Unknown open vertical pipes	If pipes are not functional, excavate and remove. Determine relation to the landfill cap and repair as required in accordance with the IAWP. See 2020 baseline inspection for details and photos.	No later than end of calendar year	SPPD Property Owner
-	20-13	Ponding	Follow-up inspection. See 2020 baseline inspection for details and photos.	6 months	Parametrix
-	Jan Event 1	Invasive/Deep Rooted Plants	The willow (salix sp.) and black cottonwood (populus balsamifera) growing along the edge of the west bioswale are native but deep-rooted species that shall be removed from the swale. See Appendix F for details and photos.	No later than end of calendar year	SPPD Property Owner

Of these 15 locations, 8 are recommended as high priority. The high priority items include seven locations where the landfill cap geomembrane is exposed or the asphalt is penetrated (Point Locations # 21-12, 21-13, 21-14, 21-15, 21-16, 21-17, and 21-18). These areas are of highest concern due to the potential compromise of the landfill cap and need to be further inspected, repaired, and restored in accordance with the approved 2013 IAWP of the Agreed Order. There is one other location where other cover maintenance is required (Point Location #21-9). This area is of next highest concern. Attachment E includes a schematic cross-section of a vegetated slope area. Refer to the Agreed Order for complete requirements.

The Cap Inspection Form A was completed for the SPPD parcel which is included in Attachment B.

RIGHT-OF-WAY

There was one location within the Occidental Avenue S right-of-way identified as a location of concern. The 5th Avenue S right-of-way was not reviewed. The locations of concern are identified by number on Attachment C and corresponding photographs are in Attachment D.

Table 5 briefly describes the issue of concern within the Occidental Avenue S right-of-way, indicates a recommended action, and proposes a timeline for repairs, maintenance, and/or reinspection.

2021 Point #	2020 Point #	Description	Recommended Action	Timeline for Repair and/or Reinspection	Recommended Action Assignment
21-20	20-8	Cracks/Ruts	A portion of the asphalt appears to be marked for repair. However, the marked portion does not include the entire area that should be repaired. SPU should coordinate with WSDOT to expand the limits of repair. Ultimately the asphalt needs to be repaired.	No later than end of calendar year.	SPU to coordinate with WSDOT

Table 5. Current Identified Locations of Concern within the Right-of-Way, April 22, 2021, Inspection

ATTACHMENTS

- A September 2020 Landfill Cap Inspection Site Plan
- B April 2021 Cap Inspection Forms
- C April 2021 Landfill Cap Inspection Figures 1 & 2
- D April 2021 Photographs
- E 2013 Interim Action Work Plan Figure 5
- F January 15, 2021, Storm Event Inspection
- G Landfill Cap Maintenance
 - G1. Blank Sample Maintenance Form B
 - G2. Maintenance Activities Completed September 2020 through April 2021

Attachment A

September 2020 Landfill Cap Inspection Site Plan

Source: City of Seattle, Floyd|Snider, Aspect, Herrera. 2018. South Park Landfil Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Attachment A September 21, 2020 Landfill Cap Inspection Site Plan South Park Landfill

Seattle, WA

Attachment B

April 2021 Cap Inspection Forms

SOUTH PARK LANDFILL CAP INSPECTION FORM A

Date:	April 22, 2021

Parcel Owner:
SPPD

Inspector(s): Rhiannon Sayles, Ian Sutton, Lisa Gilbert

SRDS

□ Right-of-Way

Type of Inspection:

□ Non-Routine Reason:

Last Rain Event before Inspection:

April 10th, 2021, 0.01 inches of rain

VISUAL INSPECTION CHECKLIST

Asphalt Concrete							
	Yes	No	Needs Repair	If yes, describe:			
Minor cracking	\boxtimes			Locations #21-2, 21-4, and 21-5. Minor asphalt cracking. Most likely due to age of pavement. No concerns at this time. Continue to monitor for further deterioration.			
Open cracks/ruts		\boxtimes					
Differential settlement		\boxtimes					
Potholes		\boxtimes					
Pooling or ponding	\boxtimes			Location #21-6, Visible ponding near vehicle wash area. Low spot in pavement is not centered on the nearest storm drain. Ponding depth is less than a few inches. No concerns at this time.			
Separation of pavement from curbs, gutters, or catch basins	\boxtimes			Location #21-3, Cracking in concrete slab around catch basin needs to be repaired.			
Sloughing or crumbling of edge materials		\boxtimes					
Erosion		\boxtimes					

Asphalt Concrete							
	Yes	No	Needs Repair	If yes, describe:			
Other signs of cap damage, failure, or disturbance		\boxtimes					
Sinkhole				Location #21-7, Sinkhole that has been marked by owner with a cone. Approximately 1 foot diameter hole that is several feet deep. There is concern about the integrity of the adjacent pavement. Sinkhole should be repaired.			
Recent Maintenance Activity				Security fence was installed which required puncturing asphaltic landfill cover. The first hole that was drilled for fence post exposed utilities, so a second hole was drilled in the same vicinity.			

Recommended Maintenance or Repair Type/Location:

There were six locations identified during the site inspection that either need further monitoring or immediate repair.

Location #21-7 is a sinkhole that needs to be repaired/filled. This sudden sinking of pavement into an empty underground space is concerning. If left unmitigated, the sinkhole will continue to allow runoff to seep below the asphaltic cap which could lead to water ponding underneath the cap. Runoff in this area should be reaching the next downstream catch basin instead of entering the sinkhole.

Location #21-3 where there is cracking concrete at a catch basin needs to be repaired by the end of the calendar year.

Low-Permeability Geomembrane						
	Yes	No	Needs Repair	If yes, describe:		
Erosion of cover soil				Not applicable to SRDS site because there is no low-permeability geomembrane		
Exposed geotextile				Not applicable to SRDS site.		
Holes/signs of unauthorized digging				Not applicable to SRDS site.		
Poor vegetative cover				Not applicable to SRDS site.		
Exposed geomembrane				Not applicable to SRDS site.		
Recommended Maintenance or Repair Type/Location:						

Stormwater Management Facilities								
	Yes No Needs Repair If yes, describe:							
Signs of water infiltration below structures		\boxtimes						
Erosion of soil		\boxtimes						
Exposed geotextile membrane		\boxtimes						
Holes/signs of unauthorized digging		\boxtimes						
Invasive/deep-rooted plants		\boxtimes						
Poor vegetative cover		\boxtimes						
Proper flow direction as designed		\boxtimes						
Recommended Maintenance or Repair Type/Location:								

Attach necessary documentation such as photographs, sketches, and additional notes.

See figures and inspection photos in the cap inspection report.

SOUTH PARK LANDFILL **CAP INSPECTION FORM A**

Date:	April 22, 2021					
Inspector(s):	Rhiannon Sayles, Ian Sutton, Lisa Gilbert					

Parcel Owner: SPPD

Inspector(s):

Type of Inspection:

□ Right-of-Way

🛛 Annual

□ Non-Routine Reason:

Last Rain Event before Inspection:

April 10th, 2021, 0.01 inches of rain

VISUAL INSPECTION CHECKLIST

Asphalt Concrete							
	Yes	No	Needs Repair	If yes, describe:			
Minor cracking		\boxtimes					
Open cracks/ruts		\boxtimes					
Differential settlement		\boxtimes					
Potholes		\boxtimes					
Pooling or ponding	\boxtimes			Location #21-11 shows ponding around a fire hydrant. This location needs to be regraded to avoid ponding.			
Separation of pavement from curbs, gutters, or catch basins		\boxtimes					
Sloughing or crumbling of edge materials		\boxtimes					
Erosion		\boxtimes					
Other signs of cap damage, failure, or disturbance	\boxtimes			Location #21-16 is a puncture in the asphaltic concrete cap.			

Recommended Maintenance or Repair Type/Location:

Location #21-16 requires repair within 60 days.

Low-Permeability Geomembrane						
	Yes	No	Needs Repair	If yes, describe:		
Erosion of cover soil				Location #21-9 is on the north side of the property between the edge of the parking lot and the stormwater swale. There is evidence of erosion by runoff that is attributed to the curb cut reflected in the Location #10 photos. Runoff is eroding the slope and causing rutting. This area needs to be revegetated and protected from further erosion.		
Exposed geotextile						
Holes/signs of unauthorized digging						
Poor vegetative cover	\boxtimes			Location #21-9 is a place of poor vegetative cover due to a curb cut in the asphalt parking lot that directs runoff down the side of the swale in this location. This area needs to be revegetated and protected from further erosion.		
Exposed geomembrane				Locations #21-12, 21-13, 21-14, 21-15, 21- 17, and 21-18 need immediate attention. The black geomembrane is exposed in all of these locations. The membrane needs to be covered with 18" of topsoil in accordance with the Interim Action Work Plan (IAWP).		

Recommended Maintenance or Repair Type/Location:

Location #21-9 needs to be covered with topsoil, restabilized, and protected from further erosion. Locations #21-12, 21-13, 21-14, 21-15, 21-17 and 21-18 need to be covered with 18" of topsoil (and stabilized) in accordance with the Interim Action Work Plan (IAWP).

Stormwater Management Facilities								
	Yes	No	Needs Repair	If yes, describe:				
Signs of water infiltration below structures		\boxtimes						
Erosion of soil								
Exposed geotextile membrane		\boxtimes						
Holes/signs of unauthorized digging								
Invasive/deep-rooted plants				As identified in the January 2021 Rain Event inspection, the swale adjacent to Occidental Avenue South has willow and black cottonwood growing along the edge of the structure. These are native but deep-rooted species and should be removed.				
Poor vegetative cover		\boxtimes						
Proper flow direction as designed		\boxtimes						

Recommended Maintenance or Repair Type/Location:

The willow and black cottonwood shrubs located within the west swale are deep-rooted plants and should be cut down and maintained. The swale should be evaluated to determine if dredging and removal of herbaceous species would improve water conveyance.

Attach necessary documentation such as photographs, sketches, and additional notes.

See figures and inspection photos in the cap inspection report.

SOUTH PARK LANDFILL **CAP INSPECTION FORM A**

Date:	April 22, 2021

Parcel Owner:

Inspector(s):

Rhiannon Sayles, Ian Sutton, Lisa Gilbert

SPPD

⊠ Right-of-Way

Type of Inspection: 🛛 Annual

□ Non-Routine Reason:

Last Rain Event before Inspection:

April 10th, 2021, 0.01 inches of rain

VISUAL INSPECTION CHECKLIST

Asphalt Concrete							
	Yes	No	Needs Repair	If yes, describe:			
Minor cracking		\boxtimes					
Open cracks/ruts	\boxtimes			Location #21-20 needs repair. There are large open cracks and ruts in the asphalt pavement. As shown in Figure 2, this area contains asphaltic concrete landfill cap and must be maintained in good condition.			
Differential settlement		\boxtimes					
Potholes		\boxtimes					
Pooling or ponding		\boxtimes					
Separation of pavement from curbs, gutters, or catch basins		\boxtimes					
Sloughing or crumbling of edge materials		\boxtimes					
Erosion		\boxtimes					
Other signs of cap damage, failure, or disturbance		\boxtimes					

Recommended Maintenance or Repair Type/Location:

Repair to the asphalt areas identified at location #21-20 is needed by replacing the pavement. There are paint marks at location #21-20 that potentially identify WSDOT plans to repair the pavement, but these marks do not include the entire area that needs replacing as shown in the attached photos.

Low-Permeability Geomembrane						
Yes No Needs Repair If yes, describe:						
Erosion of cover soil				Not applicable to ROW.		
Exposed geotextile				Not applicable to ROW.		
Holes/signs of unauthorized digging				Not applicable to ROW.		
Poor vegetative cover				Not applicable to ROW.		
Exposed geomembrane						
Recommended Maintenance or Repair Type/Location:						

Stormwater Management Facilities								
	Yes	No	Needs Repair	If yes, describe:				
Signs of water infiltration below structures				Not applicable to ROW.				
Erosion of soil				Not applicable to ROW.				
Exposed geotextile membrane				Not applicable to ROW.				
Holes/signs of unauthorized digging				Not applicable to ROW.				
Invasive/deep-rooted plants				Not applicable to ROW.				
Poor vegetative cover				Not applicable to ROW.				
Proper flow direction as designed				Not applicable to ROW.				
Recommended Maintenance or Repair T	Recommended Maintenance or Repair Type/Location:							

Attach necessary documentation such as photographs, sketches, and additional notes.

See figures and inspection photos in the cap inspection report.

Attachment C

April 2021 Landfill Cap Inspection Figures 1 & 2

arkLandfill\99Svcs\GIS\Mapdocs\Figure 1 Landfill Cap Inspection - Site Plan with fie

Source: City of Seattle, King County, Floyd|Snider, Aspect, Herrera. 2018. South Park La Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 1 April 22, 2021, Landfill Cap Inspection Site Plan South Park Landfill

Seattle, WA

Source: City of Seattle, King County, Floyd|Snider, Aspect, Herrera. 2018. South Park Land Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 2 April 22, 2021, Landfill Cap Inspection Site Coverage South Park Landfill

Seattle, WA

Attachment D

April 2021 Photographs

SRDS Photographs – April 22, 2021

Location 21-1. Recent Maintenance Activity

Location 21- 3. Concrete Cracking at Catch Basin

Location 21- 2. Minor Cracking

Location 21-4. Minor Cracking

Location 21-5. Minor Cracking

Location 21-6. Ponding

Location 21-6. Ponding

Location 21-7. Sinkhole

Location 21-7. Sinkhole

Location 21-7. Sinkhole

SPPD Photographs – April 22, 2021

Location 21-9. Erosion of Soil Cover

Location 21-9. Erosion of Soil Cover

Location 21-9. Erosion of Soil Cover

Location 21-9. Poor Vegetative Cover

Location 21-9. Poor Vegetative Cover

Location 21-9. Poor Vegetative Cover

Location 21-11. Ponding at Fire Hydrant

Location 21-12. Exposed Geomembrane

Location 21-12. Exposed Geomembrane

Location 21-12. Exposed Geomembrane

Location 21-13. Exposed & Damaged Geomembrane

Location 21-14. Exposed Geomembrane

Location 21-13. Exposed & Damaged Geomembrane

Location 21- 14. Exposed Geomembrane

Location 21-15. Exposed Geomembrane

Location 21- 16. Cap Disturbance (Hole drilled into asphalt to secure tent)

Location 21-17. Exposed Geomembrane

Location 21- 16. Cap Disturbance (Hole drilled into asphalt to secure tent)

Location 21- 18. Exposed Geomembrane at storm drain structure

Location 21- 18. Exposed Geomembrane at storm drain structure

Location 21-18. Exposed & Damaged Geomembrane

Location 21-18. Exposed & Damaged Geomembrane

Location 21-18. Exposed & Damaged Geomembrane

Right-of-Way Photographs – April 22, 2021

Location 21-20. Open Cracks/Ruts

Location 21-20. Open Cracks/Ruts

Location 21-20. Open Cracks/Ruts

Location 21-20. Open Cracks/Ruts

Attachment E

2013 Interim Action Work Plan – Figure 5

Attachment F

January 15, 2021, Storm Event Inspection

SOUTH PARK LANDFILL CAP INSPECTION FORM A

Date:	January	ary 15, 2021; 15:10 – 16:20			Location/Parcel:	SRDS
Inspector(s):	Trey Parry		Owner:			
Type of Inspection	on:	🗆 Annual				
		🛛 Non-Rou	tine Reas	on:	January 12, 2021 Sto	rm Event
Last Rain Event before Inspection: 2.33" on January 1					12, 2021 with wind gu	sts up to 54 mph

VISUAL INSPECTION CHECKLIST

Asphalt Concrete								
	Yes	No	Needs Repair	If yes, describe:				
Minor cracking	\boxtimes			See 2020 Annual Report.				
Open cracks/ruts		\boxtimes						
Differential settlement		\boxtimes						
Potholes		\boxtimes						
Pooling or ponding		\boxtimes						
Separation of pavement from curbs, gutters, or catch basins		\boxtimes						
Sloughing or crumbling of edge materials		\boxtimes						
Erosion		\boxtimes						
Other signs of cap damage, failure, or disturbance		\boxtimes						
Recommended Maintenance or Repair Ty	Recommended Maintenance or Repair Type/Location:							

Low-Permeability Geomembrane							
Yes No Needs Repair If yes, describe:							
Erosion of cover soil		\boxtimes					
Exposed geotextile		\boxtimes					
Holes/signs of unauthorized digging		\boxtimes					
Poor vegetative cover		\boxtimes					
Exposed geomembrane							
Recommended Maintenance or Repair Type/Location:							

VISUAL INSPECTION CHECKLIST (continued)

Stormwater Management Facilities							
Yes No Needs Repair If yes, describe:							
Signs of water infiltration below structures		\boxtimes					
Erosion of soil		\boxtimes					
Exposed geotextile membrane		\boxtimes					
Holes/signs of unauthorized digging		\boxtimes					
Invasive/deep-rooted plants		\boxtimes					
Poor vegetative cover		\boxtimes					
Proper flow direction as designed		\boxtimes					
Recommended Maintenance or Repair Type/Location:							

Attach necessary documentation such as photographs, sketches, and additional notes.

SOUTH PARK LANDFILL CAP INSPECTION FORM A

Date:	January	nuary 15, 2021; 15:10 – 16:20			Location/Parcel:	SPPD
Inspector(s):	Trey Pa	rey Parry			Owner:	
Type of Inspectio	on:	🗆 Annual				
		🛛 Non-Rou	tine Reas	on:	January 12, 2021 Stor	rm Event
Last Rain Event before Inspection: 2.33" on January				12, 2021 with wind gus	sts up to 54 mph	

VISUAL INSPECTION CHECKLIST

Asphalt Concrete								
	Yes	No	Needs Repair	If yes, describe:				
Minor cracking	\boxtimes			See 2020 Annual Report.				
Open cracks/ruts		\boxtimes						
Differential settlement		\boxtimes						
Potholes		\boxtimes						
Pooling or ponding				Small ponding areas (generally less than 100 sf with 2 larger areas great than 300 sf). One ponding location is directly above landfill gas collector control box V4.				
Separation of pavement from curbs, gutters, or catch basins		\boxtimes						
Sloughing or crumbling of edge materials		\boxtimes						
Erosion		\boxtimes						
Other signs of cap damage, failure, or disturbance		\boxtimes						
Recommended Maintenance or Repair Ty	/pe/Loo	cation:	·					

Low-Permeability Geomembrane							
	Yes	No	Needs Repair	If yes, describe:			
Erosion of cover soil		\boxtimes					
Exposed geotextile		\boxtimes					
Holes/signs of unauthorized digging		\boxtimes					
Poor vegetative cover	\boxtimes			Poor vegetative cover on the slopes outside of the fence on the SPPD property. The recent aeration of the grass has resulted in reduced vegetative cover.			
Exposed geomembrane							
Recommended Maintenance or Repair Type/Location:							

Stormwater Management Facilities											
	Yes	No	Needs Repair	If yes, describe:							
Signs of water infiltration below structures		\square									
Erosion of soil	\boxtimes			North bioswale has erosion on the side slopes as well as defined channel (approximately 6" wide) running through the bottom. The recent rain did not exacerbate the erosion.							
Exposed geotextile membrane		\boxtimes									
Holes/signs of unauthorized digging		\boxtimes									
Invasive/deep-rooted plants	\boxtimes			The swale adjacent to Occidental Avenue South has willow (Salix sp.) and black cottonwood (Populus balsamifera) growing along the edge of structure. These are native but deep-rooted species and should be removed.							
Poor vegetative cover	\boxtimes			North bioswale is forming a defined channel and is poorly vegetated.							
Proper flow direction as designed	\boxtimes			All swales and conveyance structures appear to be flowing as designed. West bioswale has some standing water after end of last storm event and has capacity for more water storage. This swale is densely vegetated and should be dredged in the future to maintain water conveyance.							

Recommended Maintenance or Repair Type/Location:

The willow and black cottonwood shrubs located within the west swale are deep-rooted plants and should be cut down and maintained. This swale should be evaluated to determine if dredging and removal of herbaceous species would improve water conveyance.

Attach necessary documentation such as photographs, sketches, and additional notes.

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - <u>http://www.ncdc.noaa.gov</u>.

Climatological Report (Daily)

783 CDUS46 KSEW 130 CLISEA	9928							
CLIMATE REPORT NATIONAL WEATHE 128 AM PST WED	ER SERVIC JAN 13 2	CE SEATTI 2021	_E					
•••••		••••••	• • • • •					
THE SEATTLE	-TACOMA V	NA AIRPOF	RT CLIM	ATE SI	JMMARY	FOR JANUA	RY 12 202	1
CLIMATE NORMAL CLIMATE RECORD	PERIOD 1 PERIOD 1	1981 TO 2 1945 TO 2	2010 2021					
WEATHER ITEM	OBSERVED VALUE) TIME (LST)	RECORD VALUE	YEAR	NORMAL VALUE	DEPARTUR FROM NORMAL	E LAST YEAR	
TEMPERATURE (F) YESTERDAY)		• • • • • • •	••••			•••••	
MAXIMUM	57	1156 PM	59	1986 2019	47	10	45	
MINIMUM AVERAGE	47 52	115 AM	13	1963	37 42	10 10	33 39	
PRECIPITATION (YESTERDAY MONTH TO DATE SINCE OCT 1 SINCE JAN 1	(IN) 2.33 7.45 22.26 7.45	3R 5 5	1.58	1975	0.19 2.27 17.67 2.27	2.14 5.18 4.59 5.18	0.18 3.18 16.52 3.18	
SNOWFALL (IN) YESTERDAY MONTH TO DATE SINCE OCT 1 SINCE JUL 1 SNOW DEPTH	0.0 0.0 0.5 0.5 MM		1.8	1969			T T T T	
DEGREE DAYS HEATING YESTERDAY MONTH TO DATE SINCE DEC 1 SINCE JUL 1	13 233 866 1827				23 284 1039 2222	-10 -51 -173 -395	26 248 878 1955	
COOLING YESTERDAY MONTH TO DATE SINCE DEC 1 SINCE JAN 1	0 0 0 0				0 0 0 0	0 0 0 0	0 0 0 0	
WIND (MPH) RESULTANT WIND SPEED HIGHEST WIND SPEED HIGHEST GUST SPEED AVERAGE WIND SPEED	10 RESUL 36 HIGHES 54 HIGHES 11.5	FANT WIND ST WIND DI ST GUST DI	DIRECTION RECTION RECTION	S (170) SW (230) SW (220)				
---	--	---------------------------------------	---------------------------------	---------------------------------				
SKY COVER AVERAGE SKY COVER 1.0								
WEATHER CONDITIONS THE FOLLOWING WEATHER W. RAIN LIGHT RAIN FOG	AS RECORDED	YESTERDAY						
RELATIVE HUMIDITY (PERC HIGHEST 100 LOWEST 87 AVERAGE 94	ENT) 500 AM 200 PM							
	• • • • • • • • • • • •		••••	• • • • •				
THE SEATTLE-TACOMA WA A	IRPORT CLIM	ATE NORMAL	S FOR TOD	 ΔΥ				
MAYTMIM TEMPEDATIDE /E	NORMAL	RECORD	YEAR					
MINIMUM TEMPERATURE (F) 37	11	1950					
SUNRISE AND SUNSET JANUARY 13 2021SU JANUARY 14 2021SU	JNRISE 753 JNRISE 752	3 AM PST 2 AM PST	SUNSET SUNSET	443 PM PST 445 PM PST				
- INDICATES NEGATIVE N R INDICATES RECORD WAS MM INDICATES DATA IS MI T INDICATES TRACE AMOUNT	JMBERS. SET OR TIEL SSING. NT.).						

The U.S. Naval Observatory (USNO) data is currently unavailable. The links provided are from other US Government sources. When USNO data is returned to service, the links will be updated.

SPPD Property – Photos from January 15, 2021 Site Visit

Extensive ponding located near GP-11 and MW-12. This area is likely ponds after minor rain, too. Photographed facing to the north.

Extensive ponding located near GP-11 and MW-12. This area is likely ponds after minor rain, too. Photographed facing to the north.

Extensive ponding extending to the north of GP-11 and MW-12. This area is likely ponds after minor rain, too. Photographed facing south.

Extensive ponding extending to the north of GP-11 and MW-12. This area is likely ponds after minor rain, too. Photographed facing south.

Evidence of swales and conveyance structures flowing as designed. This stormwater feature is experiencing minor erosion and downcutting. Photographed to the east of GP-11 and MW-12.

Evidence of swales and conveyance structures flowing as designed. This stormwater feature is experiencing minor erosion and downcutting. Photographed to the east of GP-11 and MW-12.

Revegetation on exposed cap area near the stormwater structure to the east of GP-11 and MW-12.

Sparse vegetation as a result of plug aerator

Evidence of swales and conveyance structures flowing as designed. Dredging and removal of sediment accumulation may be recommended. Photographed to the east of GP-11 and MW-12.

Shallow ponding photographed near 47.5291218, -122.3298498.

Shallow ponding photographed near at 47.5291218, -122.3298498.

Shallow ponding photographed near 47.5292943, -122.3321924.

Shallow ponding photographed near 47.5292943, -122.3321924.

Attachment G

Landfill Cap Maintenance

Attachment G1

Blank Sample Maintenance Form B

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Location/Parcel: Owner Contact:							
Part 1: Maintenance							
(Completed by Property Owner)							
Date of Repair/ Maintenance:	Repaired by:						
Reason for Maintenance:							
Describe Maintenance Location (attach sketch and	photos):						
Describe Maintenance or Banair Barformed (attack	whether and decumentation or recordently						
Describe Maintenance of Repair Performed (attacr	photos and documentation as necessary):						
Is the maintenance activity complete?							
n no, explain:							
	Data						
Property Owner Signature	Date Date Date Date Date Date Date Date						
maintenance/repair OR by March 1 if the activity is completed	within 60 days prior to March 1.						

Part 2: Observation/Review of Maintenance (Completed by Site Coordinator)					
Date of Observation/Review:	Inspector(s):				
Observation Notes (attach photos):					
Site Coordinator/Inspector Signature	Date				

//

Attachment G2

Maintenance Activities Completed September 2020 through April 2021

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Location/Parcel: SPPD Parcel	Owner Co	ntact: _	Rob Howie		
	Part 1: Main	itenano	Ce wper)		
Date of Renair/ Maintenance:	(completed by 110	Renaire	ad hv:		
Reason for Maintenance:		перин	<u></u>		
Water coming up through asphalt.					
· · · · · · · · · · · · · · · · · · ·					
Describe Maintenance Location (attach	sketch and photos):				
Bus parking area					
Describe Maintenance or Repair Perform	ned (attach photos ar	nd docur	nentation as nece	essary):	
Describe Maintenance or Repair Perform A joint in the fire line came apart. The re	ned (attach photos ar epair was made and t	nd docur the aspha	nentation as nece alt repaired.	essary):	
Describe Maintenance or Repair Perform A joint in the fire line came apart. The re	ned (attach photos ar epair was made and t	nd docur he aspha	nentation as nece alt repaired.	essary):	
Describe Maintenance or Repair Perform A joint in the fire line came apart. The re Is the maintenance activity complete?	ned (attach photos ar epair was made and t ⊠ Yes □	nd docur the aspha	nentation as nece alt repaired.	essary):	
Describe Maintenance or Repair Perform A joint in the fire line came apart. The re- ls the maintenance activity complete?	ned (attach photos ai epair was made and t ⊠ Yes □	nd docur the aspha	nentation as nece alt repaired.	essary):	
Describe Maintenance or Repair Perform A joint in the fire line came apart. The re- ls the maintenance activity complete? If no, explain:	ned (attach photos an epair was made and t ⊠ Yes □	nd docur :he aspha] No	nentation as nece	essary):	
Describe Maintenance or Repair Perform A joint in the fire line came apart. The re- ls the maintenance activity complete? If no, explain:	ned (attach photos ai epair was made and t ⊠ Yes □	nd docur the aspha	nentation as nece	essary):	
Describe Maintenance or Repair Perform A joint in the fire line came apart. The re- ls the maintenance activity complete? If no, explain:	ned (attach photos ai epair was made and t ⊠ Yes □	nd docur the aspha	nentation as nece	essary):	
Describe Maintenance or Repair Perform A joint in the fire line came apart. The re- ls the maintenance activity complete? If no, explain:	ned (attach photos ai epair was made and t ⊠ Yes □	nd docur the aspha	nentation as nece	essary):	
Describe Maintenance or Repair Perform A joint in the fire line came apart. The re- Is the maintenance activity complete? If no, explain:	ned (attach photos ai epair was made and t ⊠ Yes □	nd docur the aspha	nentation as nece	essary):	
Describe Maintenance or Repair Perform A joint in the fire line came apart. The re- Is the maintenance activity complete? If no, explain:	ned (attach photos ai epair was made and t 🛛 Yes 🗆	nd docur the aspha	nentation as nece	essary):	
Describe Maintenance or Repair Perform A joint in the fire line came apart. The re- Is the maintenance activity complete? If no, explain:	ned (attach photos ai epair was made and t ⊠ Yes □	nd docur the aspha	nentation as nece	essary):	
Describe Maintenance or Repair Perform A joint in the fire line came apart. The re- Is the maintenance activity complete? If no, explain:	ned (attach photos ai epair was made and t ⊠ Yes □	nd docur the aspha	nentation as nece	essary):	
Describe Maintenance or Repair Perform A joint in the fire line came apart. The re- Is the maintenance activity complete? If no, explain:	ned (attach photos ai epair was made and t Internet Yes Internet State S	nd docur the aspha] No <u>3</u> , D	nentation as nece	essary):	

Part 2: Observation/Review of Maintenance (Completed by Site Coordinator)								
Date of Observation/Review: November 11, 2020 Inspector(s): Austin York, HWA Geosciences								
Observation Notes (attach photos):								
The water line repair was inspected during the 4 th quar asphalt surrounding the patch appeared solid and inta-	rter monitoring event. The patch looked good and ct.							
Is the maintenance activity complete?	□ No							
If no, explain:								
Lawa Day ce Lee Site Coordinator Signature	March 31, 2021 Date							

74

7.

State 2

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Location/Parcel: SPPD Parcel Ow	ner Contact: Rob Howie						
Part 1: Maintenance							
(Completed by Property Owner)							
Date of Repair/ Maintenance: 3/30/21 Rep	paired by						
Reason for Maintenance:							
Maintaining landscaping around property.							
Describe Maintenance Location (attach sketch and pho	otos):						
Grass is being maintained around the perimeter of the p	property.						
<image/>							

Describe Maintenance or Repair Performed (attach photos and documentation as necessary):

Added topsoil and seed as well as planted plants at basin of swale. In the picture below, plant will begin growing at the base of the ditch.

Is the maintenance activity complete?	$ imes$ Yes \Box No
If no, explain:	
	3/30/21
Property Owner Signature	Date
All maintenance and repair documentation must be provided OR by March 1 if the activity is completed within 60 days prior	to the Site Coordinator within 60 days of the completion of the maintenance/repair r to March 1.

Part 2: Observation/Review of Maintenance (Completed by Site Coordinator)							
Date of Observation/Review: 4/22/21	Inspector(s): Rhiannon Sayles						
Observation Notes (attach photos):							
During the site visit on April 22, 2021 the foren grass is being maintained in the areas shown in planted plants at basin of the north swale.	nentioned landscaping activities were observed. We can confirm that the n the photos above and that the owner added topsoil, seeded and						
Rhiamon Sayles	4/22/21						

B1-B

October 2021 Follow Up Event

SOUTH PARK LANDFILL CAP INSPECTION FORM A

Date:	October 29, 202	october 29, 2021					Parcel Owner: 🛛 SPPD				
Inspector(s):	Rhiannon Sayle	hiannon Sayles, Colin Phang						□ SRDS			
								🗆 Right-	of-Way		
Type of Inspecti	on: 🗌 Anni	ual									
	⊠ Non	Routine	Re	eason: Ir	nspectio	n after pi	rolonged	l period	of rain (9	days)	
Last Rain Event before Inspectio	Per NOAA (<u>h</u> n: <u>the 9 days le</u>	Per NOAA (<u>https://www.weather.gov/wrh/climate?wfo=sew</u>), the observed daily rainfall total for : the 9 days leading up to this inspection event are as follows:						l total for			
	Date	10/20	10/21	10/22	10/23	10/24	10/25	10/26	10/27	10/28	10/29
	Rainfall (in	0.29	0.54	0.06	0.15	0.32	0.16	0.38	0.12	1.99	0.57
Purpose	The purpose rainfall on th runoff only. inspecting p inspection to boundary. T properties.	The purpose of this rain event inspection was to observe the effects of multiple days of continuous rainfall on the properties. The inspection team looked for damage and issues regarding rainfall runoff only. This inspection event was not for the purpose of assessing other damage or re- inspecting previously discovered maintenance concerns. The SRDS owner requested that the inspection team take a careful look at the fenced area between the two properties along the north boundary. This area is technically SRDS property, but it falls outside of the fence of both properties.									

VISUAL INSPECTION CHECKLIST

Asphalt Concrete								
Yes No Needs Repair If yes, describe:								
	\boxtimes							
	\boxtimes							
	\boxtimes							
	\boxtimes							
\boxtimes			Locations 1-4 in photos and on map					
	\boxtimes							
	\boxtimes							
	\boxtimes							
	\boxtimes							
	Yes	Aspha Yes No □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Sphalt Concrete Yes No Needs Repair Image: Concrete Image: Concrete Image: Concrete Image: Concrete Image: Concre Image: Concrete					

Recommended Maintenance or Repair Type/Location:

There are a few locations on the SPPD property where minor ponding occurs on the asphalt concrete (less than 1"). These ponding locations appear to be minor and a result of accuracy in asphalt paving techniques. They are causing no harm to the pavement and due to their shallow depths are most likely evaporating within 24-48 hours. No immediate maintenance is required.

VISUAL INSPECTION CHECKLIST (continued)

Low-Permeability Geomembrane								
Yes No Needs Repair If yes, describe:								
Erosion of cover soil		\boxtimes						
Exposed geotextile		\boxtimes						
Holes/signs of unauthorized digging		\boxtimes						
Poor vegetative cover	\boxtimes			Location 5 in photos and on map				
Exposed geomembrane	\boxtimes			Locations 6-13 in photos and on map				

Recommended Maintenance or Repair Type/Location:

There are locations of poor vegetative cover and exposed geomembrane however this inspection was not to focus on those items. They are maintenance issues that have already been recognized in the April 2021 annual inspection and they will be reinspected during the 2022 annual inspection.

Stormwater Management Facilities								
Yes No Needs Repair If yes, describe:								
Signs of water infiltration below structures		\boxtimes						
Erosion of soil		\boxtimes						
Exposed geotextile membrane		\boxtimes						
Holes/signs of unauthorized digging		\boxtimes						
Invasive/deep-rooted plants	\boxtimes							
Poor vegetative cover		\boxtimes						
Proper flow direction as designed	\boxtimes							
Ponding	\boxtimes							

Recommended Maintenance or Repair Type/Location:

The poor vegetative cover and deep-rooted plants were not a part of this inspection however the inspection team did observe these conditions during their site walk.

Parametrix

0 125 250

500 Feet October 29, 2021 Rain Event Inspection Site Plan South Park Landfill

Location 1-1. Pooling/Ponding on Asphalt Concrete View looking East near fenced area with SRDS ahead

Location 3-1. Pooling/Ponding on Asphalt Concrete View looking North-West from SPPD north swale

Location 2-1. Pooling/Ponding on Asphalt Concrete View looking North along fenced area, SRDS to right

Location 4-1. Pooling/Ponding on Asphalt Concrete View looking South-West from SPPD towards bus lot

Location 4-2. Pooling/Ponding on Asphalt Concrete View looking South-West from SPPD towards bus lot

Location 5-1. Poor vegetative cover View looking North-East in vicinity of North swale

Location 5-2. Poor vegetative cover Zoomed in view of North swale

Location 5-3. Poor vegetative cover Zoomed in view of North swale

Location 8-1. Exposed Geomembrane

Location 9-1. Exposed Geomembrane

Location 10-1. Exposed Geomembrane

Location 12-1. Exposed Geomembrane

Location 11-1. Exposed Geomembrane

Location 13-1. Exposed Geomembrane

SOUTH PARK LANDFILL CAP INSPECTION FORM A

Date:	October 29, 202	1			Pa	arcel Ow	ner:	🗆 SPPD			
Inspector(s):	Rhiannon Sayle	s, Colin P	hang					SRDS 🛛			
								🗆 Right-	-of-Way		
Type of Inspection	on: 🗌 Annu	ial									
	🛛 Non	Routine	Re	eason: Ir	nspectio	n after p	rolongec	l period	of rain (9	days)	
Last Rain Event before Inspectio	Per NOAA (<u>h</u> n: the 9 days le	Per NOAA (<u>https://www.weather.gov/wrh/climate?wfo=sew</u>), the observed daily rainfall total for the 9 days leading up to this inspection event are as follows:							l total for		
	Date	10/20	10/21	10/22	10/23	10/24	10/25	10/26	10/27	10/28	10/29
	Rainfall (in	0.29	0.54	0.06	0.15	0.32	0.16	0.38	0.12	1.99	0.57
Purpose The purpose of this rain event inspection was to observe the effects of multiple days of continuous rainfall on the properties. The inspection team looked for damage and issues regarding rainfall runoff only. This inspection event was not for the purpose of assessing other damage or re- inspecting previously discovered maintenance concerns. The SRDS owner requested that the inspection team take a careful look at the fenced area between the two properties along the north boundary. This area is technically SRDS property, but it falls outside of the fence of both properties.											

VISUAL INSPECTION CHECKLIST

Asphalt Concrete							
	Yes	No	Needs Repair	If yes, describe:			
Minor cracking		\boxtimes					
Open cracks/ruts		\boxtimes					
Differential settlement		\boxtimes					
Potholes		\boxtimes					
Pooling or ponding		\boxtimes					
Separation of pavement from curbs, gutters, or catch basins		\boxtimes					
Sloughing or crumbling of edge materials		\boxtimes					
Erosion		\boxtimes					
Other signs of cap damage, failure, or disturbance		\boxtimes					

Recommended Maintenance or Repair Type/Location:

The area of focus (between the two fenced properties) did not show evidence of runoff leaving the SPPD site and flowing across the SRDS site. At the time of the inspection event, it was not raining. It does appear that there is a pathway for runoff to leave the SRDS parking lot and flow across the SPPD site in this location. However, there is a row of ecology blocks that may be preventing runoff from taking this path of travel. Without sustained rainfall during the inspection, we are unable to tell if runoff sheetflows across the SRDS property that comes directly from the SPPD site. The attached photos are all looking at the same location from different angles.

I

VISUAL INSPECTION CHECKLIST (continued)

Low-Permeability Geomembrane							
	Yes	No	Needs Repair	If yes, describe:			
Erosion of cover soil		\boxtimes					
Exposed geotextile		\boxtimes					
Holes/signs of unauthorized digging		\boxtimes					
Poor vegetative cover		\boxtimes					
Exposed geomembrane		\boxtimes					
Recommended Maintenance or Repair Type/Location:							

Stormwater Management Facilities							
	Yes	No	Needs Repair	If yes, describe:			
Signs of water infiltration below structures		\boxtimes					
Erosion of soil		\boxtimes					
Exposed geotextile membrane		\boxtimes					
Holes/signs of unauthorized digging		\boxtimes					
Invasive/deep-rooted plants		\boxtimes					
Poor vegetative cover		\boxtimes					
Proper flow direction as designed		\boxtimes					
Ponding		\boxtimes					
Recommended Maintenance or Repair Type/Location:							

Parametrix

0 125 250

500 Feet October 29, 2021 Rain Event Inspection Site Plan South Park Landfill

SRDS Photographs – October 29, 2021

Location 1-1. Fenced area between two parcels View looking North – SPPD on left, SRDS on right

SRDS Photographs – October 29, 2021

Location 1-2. Fenced area between two parcels Ecology block wall on SPPD side

View looking South from SPPD – SRDS on left

Location 1-3. Fenced area between two parcels View looking East from SPPD towards SRDS

Location 1-5. Fenced area between two parcels View looking North from SPPD – SRDS on right

Location 1-6. Fenced area between two parcels View looking North-East from SPPD – SRDS ahead

Location 1-7. Fenced area between two parcels View looking East from SPPD – SRDS straight ahead

Location 1-8. Fenced area between two parcels View looking South from SPPD – SRDS on left

B1-C

November 2021 Reinspection

SOUTH PARK LANDFILL CAP INSPECTION FORM A

Date:	November 17, 2021	Parcel Owner: 🛛 SPPD						
Inspector(s):	Trey Parry	\Box SRDS						
		□ Right-of-Way						
Type of Inspecti	on: 🗌 Annual							
	🛛 Non-Routine Reason: Reinspec	ct Location 9 and 18 from the 2021 annual inspection						
Last Rain Event	ast Rain Event before Daily precipitation observations from Seattle-Tacoma International Airport Station:							
Inspection:	11/11/211	/12/21 11/13/21 11/14/21 11/15/21 11/16/21 11/17/21						
	Precipitation (in) 0.13	l.50 0.37 1.26 0.58 0.20 0.00						

VISUAL INSPECTION CHECKLIST

Asphalt Concrete							
	Yes	No	Needs Repair	If yes, describe:			
Minor cracking							
Open cracks/ruts							
Differential settlement							
Potholes							
Pooling or ponding							
Separation of pavement from curbs,							
Sloughing or crumbling of edge materials							
Erosion							
Other signs of cap damage, failure, or disturbance							
Recommended Maintenance or Repair Type/Location:							

Not included in this reinspection

VISUAL INSPECTION CHECKLIST (continued)

Low-Permeability Geomembrane								
	Yes	No	Needs Repair	If yes, describe:				
Erosion of cover soil	\boxtimes			Location #21-9 is on the north side of the property between the edge of the parking lot and the stormwater swale. There is evidence of erosion of cover soil on the slopes.				
Exposed geotextile								
Holes/signs of unauthorized digging								
Poor vegetative cover	\boxtimes		\boxtimes	At Location #21-9 there is evidence of poor vegetative cover on the slopes.				
Exposed geomembrane				Location #21-18: There is no standing water in the SE corner. There are no changes in conditions in this area from previous observations. The scrap wood is still covering the geomembrane cover and there is evidence (detached and shredded/cut membrane) nearby.				

Recommended Maintenance or Repair Type/Location:

Location #21-9: Work with Parametrix to prepare a plan to reestablish a uniform slope and vegetate. The team shall investigate source of erosion, identify possible solutions and take corrective action. Additionally, this area shall be inspected after heavy persistent rain.

Location #21-18: Work with Parametrix to prepare a plan to reestablish cover over the geomembrane. The geomembrane should be exposed and inspected. Based on the visible geomembrane at the manhole, the original cap installation did not adequately depress the geomembrane, nor provide adequate cover. Other visibly damaged geomembrane appears to be the result of the shallow cover and landscaping activities.

VISUAL INSPECTION CHECKLIST (continued)

Stormwater Management Facilities								
	Yes	No	Needs Repair	If yes, describe:				
Signs of water infiltration below structures								
Erosion of soil				Location #21-9 is on the north side of the property between the edge of the parking lot and the stormwater swale. There was no evidence of erosion or scour above the water line in this area, although there are sparsely vegetated areas where tufts of grass appear to have been dragged downslope (see comment under Low Permeability Membrane section).				
Exposed geotextile membrane								
Holes/signs of unauthorized digging								
Invasive/deep-rooted plants								
Poor vegetative cover								
Proper flow direction as designed				At Location #21-9 there was ponded water within the constructed swale in the northwest corner. The water was slowly flowing from in the east to west.				

Recommended Maintenance or Repair Type/Location:

See recommendations in previous section.

Location #21-9.

arkLandfill\99Svcs\GIS\Mapdocs\Figure 1 Landfill Cap Inspection - Site Plan with fiel

Source: City of Seattle, King County, Floyd|Snider, Aspect, Herrera. 2018. South Park Lar Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 1 April 22, 2021, Landfill Cap Inspection Site Plan South Park Landfill

Seattle, WA

Source: City of Seattle, King County, Floyd|Snider, Aspect, Herrera. 2018. South Park Land Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 2 April 22, 2021, Landfill Cap Inspection Site Coverage South Park Landfill

Seattle, WA

B2

Cap Maintenance Documentation

B2-A

Example Form
SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Parcel Owner:	SPPD	Owner Contact:	
		Part 1: Maintenance (Completed by Property Owner)	
Date of Repair/ N	laintenance:	Repaired by:	
Reason for Maint	enance:	, , , , , , , , , , , , , , , , ,	-
Describe Mainten	ance Location (attach s	(etch and photos):	
Describe Mainten	ance or Repair Perform	ed (attach photos and documentation as necess	ary):
Is the maintenand	e activity complete?	□ Yes □ No	
If no. explain:			
,			
Property Owner	Signature	Date	
All maintenance and r	epair documentation must be	provided to the Site Coordinator within 60 days of the com	pletion of the
namenance/repair C	in by iviarch if the activity is	completed within oblidays phor to March 1.	

Part 2: Observation/Review of Maintenance (Completed by Site Coordinator)		
Date of Observation/Review: Inspector(s):		
Observation Notes (attach photos):		
Site Coordinator/Inspector Signature	Date	

B2-B

Completed Forms

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Location/Parcel:	SPPD Parcel	Owner Contact: Rob Howie
		Part 1: Maintenance
	(Co	ompleted by Property Owner)
Date of Repair/ Ma	aintenance: 3/30/21	Repaired by
Reason for Mainte	nance:	
Maintaining landsc	aping around property.	
Describe Maintena	nce Location (attach sketch	h and photos):
Grass is being main	tained around the perimete	er of the property.
- States		
		and the second sec
and a start of		
1		
and the second second		
Production (ST		
	The second	
We All		

Describe Maintenance or Repair Performed (attach photos and documentation as necessary):

Added topsoil and seed as well as planted plants at basin of swale. In the picture below, plant will begin growing at the base of the ditch.

Is the maintenance activity complete?	⊠ Yes ⊔ No	
If no, explain:		
		3/30/21
Property Owner Signature		Date
All maintenance and repair documentation must be provided to OR by March 1 if the activity is completed within 60 days prior to	o the Site Coordinato o March 1.	or within 60 days of the completion of the maintenance/repair

Part 2: Observation/Review of Maintenance (Completed by Site Coordinator)		
Date of Observation/Review: 4/22/21	Inspector(s): Rhiannon Sayles	
Observation Notes (attach photos):		
During the site visit on April 22, 2021, the forementioned land grass was maintained in the areas shown in the photos from t seed were added and plants were planted plants at basin of th	scaping activities were observed. W ne site owner (see photos in Part 1) e north swale.	/e confirmed that the and that topsoil and
Ricaman Sayles	4/22/21	
Site Inspector Signature	Date	

South Park Landfill Forms/Rev. 08/20

36

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Location/Parcel:	8249 5 th Ave. S.	Owner Contact:	Rob Howie – (425) 652-2550
	10	Part 1: Maintenar	1Ce
Date of Repair/ Ma	intenance: 11/2/21	Renai	red by:
Reason for Mainte	nance:	1 roepor	- Go by.
Covert inlet showed	d erosion. Repairs needed		
Describe Maintena West side of prope	nce Location (attach sketc rty, along 4 th Ave. S.	h and photos):	
Describe Maintena The culvert was rep the time of the repa	nce or Repair Performed (aired using 2" x 4" rock sp aired area.	attach photos and docu read over existing rock a	mentation as necessary): round area. No geomembrane was exposed at
Is the maintenance If no, explain:	activity complete?	🖾 Yes 🛛 No	
Len		1	.1/2/21
Property Owner Si	gnature	0	Date
All maintenance and rep maintenance/repair OR	air documentation must be prov by March 1 if the activity is come	vided to the Site Coordinator	within 60 days of the completion of the

Parametrix ENGINEERING. PLANNING. ENVIRONMENTAL SCIENCES

South Park Landfill Forms/Rev. 08/20

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Location/Parcel:	8249 5 th Ave. S.	Owner Contact:	Rob Howie – (425) 652-2550
	10	Part 1: Maintenar	nce Owner)
Date of Repair/ Ma	aintenance: 11/2/21	Repai	ired by:
Reason for Mainte	nance:	Lisebai	
Grass areas along f	ence line on south side of	bus parking showed ero	sion.
Describe Maintena	ance Location (attach sket	ch and photos):	
Top of the hill of la	ndscape area along fence	line, west side of bus pai	rking.
Describe Maintena Topsoil, 60/40 mix sunshade grass see	ance or Repair Performed , was placed using wheelb ed, and jute netting was pl	(attach photos and docu arrow and rakes. Over the aced over seeded areas.	umentation as necessary): he eroded areas, the soil was seeded with
Is the maintenance	e activity complete?	🖾 Yes 🛛 No	
If no, explain:			
Rail			11/2/21
Property Owner	Signature		Date
All maintenance and re maintenance/repair O	epair documentation must be pr R by March 1 if the activity is co	ovided to the Site Coordinator mpleted within 60 days prior t	r within 60 days of the completion of the to March 1.

Part 2: Observation (Completed b	/Review of Maintenance by Site Coordinator)
Date of11/02/21Observation/Review:	Inspector(s): Trey Parry
Observation Notes (attach photos):	
A crew of 2 landscapers were on site to address the expo Parcel off Occidental Avenue South. The crew reestablish completed approximately 300 linear feet of the perimete 122.3319600. The work was focused on the exposed geo geomembrane at the interface with the pavement cap.	osed geomembrane near the southwest entrance of the SPPD hed cover over exposed patches of geomembrane and er from 47.5283933, -122.33262199 to 47.5279849, - omembrane at the culvert headwall and the exposed
The culvert headwall was repaired using angular rock. Th action (Photographs 1, 2, and 6). However, no cushion m as recommended in the 2021 Baseline Landfill Cap Inspe	nere was no geomembrane exposed following the corrective naterial was installed to protect the underlying geomembrane ction technical memorandum.
All other exposed geomembrane areas within the work a consisting of a 60/40 mix (Photographs 3, 4, and 5). A tot transported throughout the site using low impact metho Top Choice Sun & Sade premium grass seed (Lot No. M6-included Jute netting and secured with 6-inch staples, we adjacent to the paved cap (Photograph 6).	area were covered with 2-to-3-inches of unconsolidated topsoil tal of 2 cubic yards was deposited during the workday and was ods (wheelbarrow). The topsoil was then heavily seeded using -21-HTCSS-10; Photograph 3). Erosion control measures, which ere installed on the steep slopes but not at the top of the hill
Work receipts detailing materials were documented and	are available upon request.
There is additional work required to complete the recom technical memorandum. The work area should be revisit should be applied to the southeast and to the northeast exposed geomembrane areas.	nmended actions in the 2021 Baseline Landfill Cap Inspection red until design specifications are achieved. This approach (47.528481, -122.332362) of their work area to cover other
Photograph 1.	Photograph 2.

Site Coordinator/Inspector Signature

Date

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Part 1: Maintenance (Completed by Property Owner) Date of Repair/ Maintenance: 11-15-21 Repaired by: First student Reason for Maintenance: Installed electric fence for safety concerns First student Describe Maintenance Location (attach sketch and photos): The electric fence surrounds the bus lot completely
Date of Repair/ Maintenance: 11-15-21 Repaired by: First student Reason for Maintenance: Installed electric fence for safety concerns Installed electric fence for safety concerns Describe Maintenance Location (attach sketch and photos): The electric fence surrounds the bus lot completely
Reason for Maintenance: Installed electric fence for safety concerns Describe Maintenance Location (attach sketch and photos): The electric fence surrounds the bus lot completely
Installed electric fence for safety concerns Describe Maintenance Location (attach sketch and photos): The electric fence surrounds the bus lot completely
Describe Maintenance Location (attach sketch and photos): The electric fence surrounds the bus lot completely
Describe Maintenance Location (attach sketch and photos): The electric fence surrounds the bus lot completely
Describe Maintenance Location (attach sketch and photos): The electric fence surrounds the bus lot completely
The electric fence surrounds the bus lot completely
Describe Maintenance or Repair Performed (attach photos and documentation as necessary):
4inch post are installed on all corners and mid ways along the fence line, and 1 inch post are installed in-between the
4inch posts along the fence. All post are concreted in the ground. (see pics)
Is the maintenance activity complete?
ir no, explain:
Dr. a
* M
<u>2-20-22</u>
Property Owner Signature Date

maintenance/repair OR by March 1 if the activity is completed within 60 days prior to March 1.

Parametrix ENGINEERING, PLANNING, ENVIRONMENTAL SCIENCES

Part 2: Observation/Review of Maintenance (Completed by Site Coordinator)		
Date of Observation/Review:	Inspector(s):	
Observation Notes (attach photos):		
Site Coordinator was not informed of this maintenance until Fe during the 2022 annual cap inspection.	bruary 23, 2022 by Ecology. Observation will happen	
Site Coordinator/Inspector Signature	Date	

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

	Owner Contact: Rob Howle 425-837-9720	
	Part 1: Maintenance (Completed by Property Owner)	
Date of Repair/ Maintenance: 1- 26-22	Repaired by: Eagle Asphalt	
Reason for Maintenance:		
Well head V-7 low area water collects	around and in the well	
Describe Maintenance Location (atta Well head V-7 is at the NW or the pro	perty	
Describe Maintenance or Repair Perf	formed (attach photos and documentation as necessary): s and placed new asphalt around it. No longer water gets in the we	
Is the maintenance activity complete	? 🛛 Yes 🗌 No	
Is the maintenance activity complete If no, explain:	? 🛛 Yes 🗌 No	

Dal	52
ACUI	2-15-22
Property Owner Signature	Date

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

	Owner Co	entact: Rob Ho	owie 425-837-9720						
	Part 1: Mair	itenance							
(Completed by Property Owner)									
Date of Repair/ Maintenance: 1/26/22		Repaired by:	Eagle Asphalt						
Reason for Maintenance:									
Well head H-5was taking in water on t	he driveway slope	2							
Describe Maintenance Location (attach ske	tch and photos):								
Well head H-5 East Main gate entrance	e								
Describe Maintenance or Renair Performed	(attach nhotos a	nd documentati	on as noraceanyly						
	(etteen prioros d		on as necessary.						
The well box H-5 was raised approx. 2 prevent water getting inside.	inches above actu	ial asphalt grade	and new asphalt was laid around it to						
The well box H-5 was raised approx. 2 prevent water getting inside.	inches above actu	ial asphalt grade	and new asphalt was laid around it to						
The well box H-5 was raised approx. 2 prevent water getting inside.	inches above actu	ıal asphalt grade	and new asphalt was laid around it to						
The well box H-5 was raised approx. 2 prevent water getting inside.	inches above actu	ıal asphalt grade	and new asphalt was laid around it to						
The well box H-5 was raised approx. 2 prevent water getting inside. Is the maintenance activity complete?	inches above actu ⊠ Yes □	ial asphalt grade	and new asphalt was laid around it to						
The well box H-5 was raised approx. 2 prevent water getting inside. Is the maintenance activity complete? If no, explain:	inches above actu	ial asphalt grade	and new asphalt was laid around it to						
The well box H-5 was raised approx. 2 prevent water getting inside. Is the maintenance activity complete? If no, explain:	inches above actu	ial asphalt grade	and new asphalt was laid around it to						
The well box H-5 was raised approx. 2 prevent water getting inside. Is the maintenance activity complete? If no, explain:	inches above actu	ial asphalt grade	and new asphalt was laid around it to						
The well box H-5 was raised approx. 2 prevent water getting inside. Is the maintenance activity complete? If no, explain:	inches above actu	ial asphalt grade	and new asphalt was laid around it to						
The well box H-5 was raised approx. 2 prevent water getting inside. Is the maintenance activity complete? If no, explain:	inches above actu ⊠ Yes □	ial asphalt grade	e and new asphalt was laid around it to						
The well box H-5 was raised approx. 2 prevent water getting inside. Is the maintenance activity complete? If no, explain:	inches above actu ⊠ Yes □	ial asphalt grade	5-22						

maintenance/repair OR by March 1 if the activity is completed within 60 days prior to March 1.

Part 2: Observation/Review of Maintenance (Completed by Site Coordinator)

Date of Observation/Review: February 9, 2022 Inspector(s):

ctor(s): Laura Lee, Mike Brady, Erika Beyer

Observation Notes (attach photos):

Three areas were observed on SPPD property that appeared to have recent repairs to the asphalt landfill cap.

- 1. A crack in a water access pipe was observed in the fire suppression area that was allowing for a low flow but steady stream of water to be released on SPDD property on the landfill cap (Photograph 1). A bollard had been removed and replaced. There was a fresh asphalt edging around the original patch around the bollard (Photograph2). The area of the leaking pipe also had fresh asphalt edging patch around the original patch.
- 2. A gas extraction well in the NW area of the property appeared to have recent repairs or maintenance to the landfill cap. Safety cones and fresh asphalt were observed at this location (Photograph 4).
- 3. A gas extraction well in the driveway on the eastern border of the property appeared to have recent repairs or maintenance to the landfill cap. Safety cones and fresh asphalt were observed at this location (Photograph 5).

Photograph 3	Photograph 4
Caura Barce Lee	February 9, 2022
Site Coordinator/Inspector Signature	Date

SOUTH PARK LANDFILL CAP MAINTENANCE FORM B

Parcel Owner:	□ SPPD	Owner Co	ontact:	Jeff Neuner 206 369 1153
	SRDS			
		Part 1: Mair	ntenar	nce
	(Co	ompleted by Pro	operty C	Dwner)
Date of Repair/ Mai	intenance:		Repai	red by:
Reason for Mainten	ance:			
Small sinkhole in pav	ving			
	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •		
Describe Maintenan	ice Location (attach sketc	h and photosj:	- 2021	
Directly west of the	truck washing area at SKD	S as shown in th	ie 2021	cover inspection.
Describe Maintenar	nce or Repair Performed (attach photos a	nd docı	umentation as necessary):
We filled the hole w a drive lane this repa	ith gravel to eliminate pot air will be adequate until 2	ential contact w 2024 when the s	vith refu ite is ree	ise and it was also a fall hazard. Since this is not in developed.
Is the maintenance	activity complete?	🛛 Yes 🛛] No	
If no, explain:				
- •				
Jeff Neuner, SPU				3/18/21
Property Owner Sig	gnature		[Date
All maintenance and repair OR I	air documentation must be prov	vided to the Site Coo pleted within 60 da [,]	ordinator	within 60 days of the completion of the of March 1.

Part 2: Observation/Re	view of Maint	enance
(Completed by Si	te Coordinator)	
Date of Observation/Review: February 9, 2022	Inspector(s):	Laura Lee
Observation Notes (attach photos):		
Location of sinkhole was observed. The sink was filled with g	ravel. We recomm	end ongoing observations during annual
cap inspections until the site is redeveloped in 2024 to verify	if the fill remains a	adequate.
Site Coordinator/Inspector Signature	March 18, Date	2022

1

Appendix C

Landfill Gas Monitoring

C1

Perimeter Probe Monitoring Field Forms

Date: _	-	2	12/22/20	071	Field Per	sonnel:	T. Phm	1 + C. 1	Bourgeoi	S July	
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min (min)	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO₂ (% Volume)	O ₂ (% Volume)	H₂S (ppm)
GP-37	.063	2.8 to 7.8	868	1.57	•	0.0	11:12	00	15	19.6	0
GP-09	.063	6.62 to 10.62	899	1.63	10.71	0.0	12:17.	0.0	6.4	134	0
GP-26	.063	4.62 to 9.62	868	1.57	698	0.0	12:00	0.0	14	202	Ū
GP-23	.167	6.05 to 7.05	4,940	8.98	6.34	0.0	1.12	0.0	0.2	214	0
GP-07	.063	5.75 to 6.25	519	0.94	Bottom	0.0	11:30	0.0	1.0	19.5	 O
GP-27	.063	8.57 to 13.57	1,216	2.21	ILUD	0.0	10.21	0:0	9.2	0.2	3
GP-28	.063	6.59 to 11.59	1,042	1.89	9.10	0,0	10:10	0.0	1.1	14.6	0
GP-29	.063	4.62 to 9.62	868	1.57	2.01	0,0	9:34	2.0	73	6.1	0
GP-16	.167	6.60 to 9	5,867	10.67	4.22	0.0	1:55	0.0 🛸	0.3	21.3	0
GP-31	.063	4.64 to 9.64	868	1.57	4.18	~	9:06	-	-	- 10 mil	-1 -
GP-15	.167	6.62 to 8.62	5,558	10.11	4.23	0-	9.15		-	-3	1900 - S
GP-32	.063	4.72 to 9.72	868	1.57	1.43	-	8:58	- ²	2	-	-1
GP-03	.063	6.73 to 8.63	725	1.32	8.74	0.0	8:45	0.0	4.8	12.4	0
GP-13	.167	4.91 to 5.41	4,014	7.29	2.42	-	8:39			-	~
GP-11	.167	6.23 to 6.73	4,632	8.42	4.88		8:28	-	— ."	1	-
GP-38	.063	3.8 to 8.8	882	1.6	6.76	0:0	17:20	0.0	10.6	5,6	0
GP-33	.063	8.2 to 13.2	1,165	2.12	12.38	0.0	12:28	0.0	4.2	6.2	Ò
nents:											
neter ("Hg) (Start):	3	0.15	Baron	meter ("Hg)	(Finish): 3	0.10				
erature:				Weat	her:	ast 21	light .	din.			
ment Used:		6	NEM 500	•			~				

from DOBA, Massine, or ALL

GAS PROBE MONITORING FIELD FORM

Date:		5/1	7/21		Field Per	sonnel:	C. Bow	rgeois	A. Thom			
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min (min)	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO₂ (% Volume)	O ₂ (% Volume)	H ₂ S (ppm)	
GP-37	.063	2.8 to 7.8	868	1.57 2.64	DRY	-0.01	1311	0	9.9	6.7	0	
GP-09	.063	6.62 to 10.62	899	1.63	11.12	+0.02	1331	0	6.3	14.0	0	1
GP-26	.063	4.62 to 9.62	868	1.57	A M.95	+ 0.02	1716	0	2.2	18.2	0	
GP-23	167	6.05 to 7.05	4,940	8.98 25	ORY	-0.02	1353	0.1	6.7	13.5	0	
GP-07	.063	5.75 to 6.25	519	0.94 6,5	PRY	+0.02	1437	0	11.9	48.34	6	
GP-27	.063	8.57 to 13.57	1,216	2.21	12.14	-0.62	1202	0,6	9.2	LLLL	6	
GP-28	.063	6.59 to 11.59	1,042	1.89	10.53	-0,01	11:45	0	3.6	10.6	0	
GP-29	.063	4.62 to 9.62	868	1.57	8.54	-0.02	/130	1.6	14.1	LLLL	17	
GP-16	.167	6.60 to 9	5,867	10.67 4.47	DRY	-6.08	1059	0	0.5	20.8	0	
GP-31	.063	4.64 to 9.64	868	1.57	5.06	+ 0.02	1648	ъ	7.1	11.4	0	
GP-15	.167	6.62 to 8.62	5,558	10.11	2.20	+ 0,22	1021	O	5,5	3.7	0	- pump
GP-32	.063	4.72 to 9.72	868	1.57	2.34	-1.26	0952					- water
GP-03	.063	6.73 to 8.63	725	1.32 9.1	DRY	-0.01	0939	0.0	6.9	11.8	0.0	- artci
GP-13	.167	4.91 to 5.41	4,014	7.29	2.90	-3.86						- wat
GP-11	.167	6.23 to 6.73	4,632	8.42	4.80	-0.23	8:17	C	1.3	20.5	C	- UP qe
GP-38	.063	3.8 to 8.8	882	1.6	8.59	-0.01	1303	0	13.3	3.5	6	
GP-33	.063	8.2 to 13.2	1,165	2.12	13.59	-0.05	1645	0	4.7	8.2	J	
ts:						- 12			L			
er ("Hg)	(Start):	29.89 2	(8:10)	Baron	neter ("Hg) (Finish):	29,85	a 160	12			
ture:	. ,	51°F)	West		event				-		

Parametrix

De romotrix Sam

GAS PROBE MONITORING FIELD FORM

ng Organiza	ation: Para	metrix			Project N	umber:			5			
Date:	8	23-2021	s		Field Per	sonnel:	livis	B. V	Mary M	ice B.		
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min (min)	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO ₂ (% Volume)	O ₂ (% Volume)	H ₂ S (ppm)	
GP-37	.063	2.8 to 7.8	868	1.57	Dry to 7.55 loviduil 50	+0.4	1145	0.0	10.2	10.0	6.0	
GP-0 9	.063	6.62 to 10.62	899	1.63	Cam	P Sh	ill in	Place.	· not =	ampling		
GP-26	.063	4.62 to 9.62	868	1.57	DM	-0.02	1254	2:20	2.2	16.5	0	Secu. bolt mudou u
GP-23	.167	6.05 to 7.05	4,940	8.98	DM	+0.04	1233	0.0	7.1	12.9	6.0	ZoforCo
GP-07	.063	5.75 to 6.25	519	0.94	5.7	0.01	1308	6.0	3.0	16.5	0	
GP-27	.063	8.57 to 13.57	1,216	2.21	12.58	0.0	1127	0.5	13.1	LLLL	50	Secu. boit Slighty eler
GP-28	.063	6.59 to 11.59	1,042	1.89	11.46	-0.02	- 1113	0.0	11.0	4.6	0. B	well Ge
GP-29	.063	4.62 to 9.62	868	1.57	9.27	-0.02	1160	1.5	21.4	LLLL 7777	18	Tickity Boo
GP-16	.167	6.60 to 9	5,867	10.67 (NG)	H.15 Well purpsically blocked	- 0.03	1042	6.0	6.5	18.7	6.0	per. stabali uell before pu
GP-31	.063	4.64 to 9.64	868	1.57	6.9	+0.03	1018	0.0	14.2	3.8	6.0	Hoo in mountauper boit
GP-15	.167	6.62 to 8.62	5,558	10.11	5.90		_		_			Lock in o shape not
GP-32	.063	4.72 to 9.72	868	1.57	- 2010/00/00	puttasa	Residence.		Millionate	_	Sec. and a second	Boit Shearen Sec. Boit Str
GP-03	.063	6.73 to 8.63	725	1.32	DM	-12	0933	0.0	8.6	10.1	Ö.D	yard cutting
GP-13	.167	4.91 to 5.41	4,014	7.29	3.88	-		-		_		Lock hear Court, shill
GP-11	.167	6.23 to 6.73	4,632	8.42	(e.5°	_	0826	6.0	12,6	19.1	0.0	opened i
GP-38	.063	3.8 to 8.8	882	1.6	Dry TO 5.00 (ovjoluit 50	-0.01	1202	0.0	19.5	0.4	0.0	
GP-33	.063	8.2 to 13.2	1,165	2.12	DM	+ 10.74	0956	0.0	8.3	6.0	0.0	Good well
ents:		с.			(
eter ("Hg) (Start):	0.04 (to	20	Baron	neter ("Hg) (Finish):	U.S.	1 (1000				
rature:	5€	2		Weat	her:	56° 0	vercas	ł				
ent Used:	Soliust	water lev	el mete	r model	101 /	auditec.	GEMA	5000				de.
		514 3774	-1-1		- 1 of 1	SIN	not rea	datale		F	Pàrame	trix

Page 1 of 1

[Date:	1115121			Field Pers	onnel:	Parry	a.			
Gas	Probe Diameter	Screened Interval (ft	Purge Volume	Purge Duration	Depth to Water	Pressure	J	CH4	CO2	O ₂	H ₂
Probe	(ft)	btoc)	(cc)	Purge rate = 550 ml/min	(ft - btoc)	(in W.C.)	Time	(% Volume)	(% Volume)	(% Volume)	(рр
GP-37	.063	2.8 to 7.8	868	94 seconds	7.66	().O	10:30	0.3	94	5.0	0
GP-09	.063	6.62 to 10.62	899	98 seconds	7.27(0.1)	0.0	12:00	0.3	8.1	12.8	0
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds 71	8+25+	0.0 17	51 4:22	03	15336	0.0	4
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec	6.50	0.0	12:28	0.3	04	21.5	0
GP-07	.063	5.75 to 6.25	519	56 seconds	6.00 (dra)	0.0	13:02	0.3	7.6	16.2	0
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds	1251	0.0	11:33	1.1	136	0.0	4
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds	7.71	0.0	11:00	0.3	31	8.1	C
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds	6.76	0.0	11:19.	6.9	16.6	0.0	1.2
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec	4.22 (dry?)	0.0 🖉	9:56	0.3	0.4	212	C
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds	450 -	0.0	9:25	0.3	7.5	4.8	0
GP-15	.167	6.62 to 8.62	4,103 ^B	Check for H2O (448 sec if open)	3.34	-	9:40		in the second se		
GP-32	.063	4.72 to 9.72	416 ^B	Check for H2O (45 sec if open)	1.02	E	9:49	-	-	-	-
GP-03	.063	6.73 to 8.63	725	79 seconds	8.75 (dry)	0.0	9:13	0.3	5.9	8:7	C
GP-13	.167	4.91 to 5.41	3,043 ^B	Check for H2O (332 sec if open)	2.71	000	5567	0.3	0.5	21.0	ÖÖ
GP-11	.167	6.23 to 6.73	3,862 ^B	Check for H2O (420 sec if open)	3.28	0.0	\$:20	03	0.3	21.1	C
GP-38	.063	3.8 to 8.8	882*	96 seconds	8.42	0.0	10:45	0.6	16.2	1.0	, (
GP-33	.063	8.2 to 13.2	1,165*	127 seconds	12.11	0.0	11:43	4.5	9.3	0.0	0
*- occasional	water in probe	C - water consiste	ntly present in	probe B - water typically	blocks probe	GEM SP	CO				
arometer	("Hg) (Start):	29.55		Bard	ometer ("Hg) (Finish):	29.50			45	
emperatu	ıre:	56°F		Wea	ather: 0/0/	ast w/	Satteral	Shaders.	to hegin.	Lewy rail	vot +
		1. 2				/			J	J	

C2

Building Monitoring Forms

SOUTH PARK LANDFILL SPPD ON-SITE BUILDING METHANE ALARM INSPECTION CHECKLIST

Building Location:

Make and Model of Detector:

	Monthly Check									
	Press test button and confirm indicator light is illuminated.									
Pass	Date	Initials								

	Quarterly Test								
Direct	Direct gas from unlighted butane lighter into the detector through one of the vent holes and hold for several seconds. Confirm that red light and alarm activated.								
Pass	Date Initials								

C3

Gas Exceedance Incident

C3-A

Incidence Response Form

SOUTH PARK LANDFILL INCIDENT REPORT FORM

Date of Report:	March 8, 2022	Prepared by:	Laura Lee, Site Coordinator, Parametrix						
Incident Type:	LFG Exceedance in Perimeter Co	Compliance Gas Probes							
Report Type:	Original	Propert	y Owner:	SPPD					
	Supplemental	□ SPU							
	🛛 Final								

Incident Description

The fourth quarter monitoring of the landfill gas (LFG) compliance perimeter probes was conducted on November 15, 2021, (results are attached). During QC review of the monitoring field sheets two gas probes were identified with trigger value exceedances: GP-29 at 6.9% by volume and GP-33 at 4.5% by volume. The Cleanup Action Plan Operations, Maintenance, and Monitoring Plan (CAP OMMP) states that the LFG control system must meet the criteria under the Minimum Functional Standards (MFS) as defined in Washington Administrative Code (WAC) 173-304-460 and King County Board of Health Title 10 regulations:

- **On-Site Structures.** Methane concentrations inside buildings and structures within the landfill boundary must not exceed 1.25 percent by volume, or 25 percent of the lower explosive limit (LEL). This criterion is typically measured in the buildings/structures with either calibrated handheld monitors or installed building monitors/alarms.
- **Perimeter Gas Probes.** Methane concentrations in soil at the landfill boundary must not exceed 5 percent by volume, the LEL for methane. This criterion is typically measured by LFG probes along the landfill boundary.
- Off-Site Structures. Methane concentrations inside buildings and structures outside the landfill boundary must not exceed 100 parts per million by volume (ppmv). This criterion is typically measured in the buildings/structures with either calibrated hand-held monitors with detection limits below 100 ppm or permanently installed building monitors/alarms with higher detection limits.

GP-29 and GP-33 are located along the perimeter of the South Park Property Development, LLC (SPPD) parcel (CAP OMMP Figure A.2.3). The LFG control system at the SPPD parcel has been designed to protect buildings on the SPPD parcel and to control gas migration along the southern, western, and eastern perimeter of the Settlement Area. This includes sections of 5th Avenue South, Occidental Avenue South, and South Sullivan Street that are adjacent to the SPPD parcel.

The LFG system owned by SPPD was activated in December 2014 as part of the SPPD Interim Action. SPPD or their delegated LFG OMM professional are required to operate the system in accordance with a Landfill Gas Collection and Control System OMMP (Farallon 2016), which was prepared by Farallon Consulting, LLC, approved by Ecology, and is on file at Ecology.

Parametrix is the Site Coordinator for the landfill and completes the compliance monitoring and coordinates execution of the cleanup action plan (CAP) with Ecology and the property owners.

The November 15, 2021, exceedances at GP-29 and GP-33 triggered contingency actions that are outlined in the attached flow chart (Figure A.2.4 from the CAP OMMP). The following actions are to be taken if a probe measurement is 5.0% or greater by volume:

- 1. The Site Coordinator notifies the Ecology PM, Public Health Seattle & King County (Health Department), and the rest of the PLP Group.
- 2. Parcel staff adjust adjacent LFG system to increase control on LFG and continue daily monitoring at probe until control is established then weekly for 4 weeks.
- 3. Site Coordinator arranges monitoring of indoor air for LFG in any off-site buildings within 100 feet of the Landfill boundary (CAP OMMP Figure A.2.2). Refer to CAP OMMP Figure A.2.6 for triggers and actions based on indoor measurements.
- 4. Site Coordinator notifies Ecology PM and Health Department of the actions taken and their effectiveness. If the adjustments to the adjacent gas system are not effective, then a plan must be prepared, submitted for approval, and executed.
- 5. Site Coordinator reports exceedances and actions in Annual Report to Ecology.

The following actions are to be taken if a probe measurement is between 1.25% and 5% by volume:

- 1. The Site Coordinator reviews protectiveness of gas probe , if not previously identified as protective of nearby structures, it is a new condition.
- 2. Review LFG system at adjacent parcel and continue monitoring probe weekly until situation returns to < 1.25% or is demonstrated to be protective in adjacent buildings.

Contingency Actions Taken

November 15, 2021

• Quarterly monitoring at the perimeter gas probes was conducted by the Site Coordinator field team. An exceedance of the LEL at GP-29 and an exceedance of twenty-five percent of the LEL at GP-33 were recorded on the field sheet.

November 29, 2021

• The Site Coordinator notified SPU and SPPD of the exceedance at GP-29 and near exceedance of the LEL at GP-33. SPPD was informed of the triggers and contingent actions and were asked to verify if their LFG control system was running. SPPD indicated that the gas system was inspected weekly, and they were not aware of any outages.

- SPU and Parametrix field staff measured GP-29 and GP-33 to confirm the fourth quarter results. The LFG control system was observed to be offline, and the overload alarm was lit (photographs attached). No audible noise was heard from the flare. Measurements at both probes equaled or exceeded the LEL (GP-29, 5.1% by volume; GP-33 5.0% by volume).
- SPPD, SPU, and the Site Coordinator met via Teams after the monitoring was complete to review the results and discuss the next steps. Parametrix shared field observations, including the photos indicating that the system was not running, and the overload alarm light was on. SPPD was informed of the urgency to have their engineer (Farallon) on site as quickly as possible to assess the system and make adjustments as needed.
- SPPD indicated LFG field staff would be onsite the next morning to make system adjustments.
- The Site Coordinator sent an email notifying Ecology and the Health Department of the LFG exceedances.
- The quarterly LFG compliance monitoring field forms were modified adding a statement to call the Parametrix project manager immediately if methane is above 5% by volume at a gas probe.

November 30, 2021, through December 27, 2021

- SPPD informed the Site Coordinator that their LFG field staff observed the system off and turned the LFG control system back on. SPPD reported that their LFG field staff check the blowers every Tuesday.
- The Site Coordinator screened indoor air at the off-site buildings near GP-33 (W.G. Clark Construction Co.). No measurable methane (<0.1% methane by volume) was found in the indoor air screening of the W.G. Clark Construction Co. buildings.

November 30, 2021, through December 27, 2021

- Without action from SPPD to continue the required daily LFG monitoring, the Site Coordinator and/or SPU field staff took daily gas probe measurements at GP-33 through December 7, 2021, and at GP-29 through December 27, 2021.
- The Site Coordinator sent updates to Ecology, the Health Department, and the PLP group reporting on actions taken, daily gas measurement results, and observations of the gas system.

December 1, 2021

- Farallon, SPPD's Professional LFG Engineer, indicated that adjustments were made to the LFG extraction wells near GP-33. They were unable to make adjustments at the extraction well (H5) influencing GP-29 as the well vault was flooded with water and needed pumping prior to making well adjustments.
- The Site Coordinator and SPU met with Ecology via Teams to report daily measurements and to discuss field observations from the Site Coordinator field staff, as well as limited reports of conditions from SPPD.
December 3, 2021

- The Site Coordinator field staff collected measurements with a flame ionization detector (FID) outside of the W.G. Clark Construction Co. parcel adjacent to GP-33. The FID is capable of reading less than 100 ppmv as required by the CAP OMMP. No measurable methane above background was recorded surrounding the facility. No indoor air screening could be completed as the business was closed.
- Site Coordinator field staff were notified about the updated LFG field forms and requirement to contact the project manager immediately if exceedances are observed in the future.

December 6, 2021

• Farallon confirmed that adjustments would be made on December 7.

December 7, 2021, through December 29, 2021

• Methane was measured at GP-33 on a weekly basis until completion on December 29, 2021.

December 9, 2021

Ecology requested the following actions be implemented immediately:

- 1. Daily monitoring of gas probe GP-29, which continues to exceed the 5% methane threshold requirement for methane concentrations along the landfill perimeter as required in the CAP.
- Site Coordinator will send daily methane measurement results to Farallon no later than 1pm each day to allow SPPD time to make adjustments that day if necessary. An email to Ecology, Health Department, and PLP team will continue to be sent with the daily update by the Site Coordinator.
- A period of observation of 2 weeks from the adjustments to the LFG system conducted on December 1, 2021, are allotted to observe if the LFG system adjustments are effective in decreasing the methane concentration in GP-29 below the 5% LEL. If exceedances persist after December 15, 2021, a corrective action plan (see #4) shall be implemented by Farallon/SPPD.
- 4. SPPD shall submit in a timely manner a corrective action plan prepared by Farallon for review and comment from Ecology, Health Department, SPU, and the Site Coordinator. Ecology shall approve the final plan. Once LFG is controlled and there are no further exceedances, an incident response investigation shall be completed by SPPD and overseen by Farallon to determine the cause of the outage including investigation and verification of alarm systems. Based on those results, a second corrective action plan shall be submitted by SPPD (prepared by Farallon) to prevent similar situations from occurring again and approved by Ecology.
- 5. By Friday December 10, 2021, if the daily methane measurement remains at 5% or above, methane monitoring will be conducted by Farallon east of GP-29 (i.e., between GP-29 and the nearby 1st Student Maintenance Building which is currently unoccupied). Methane concentrations will be monitored in existing monitoring wells on the 1st Student Maintenance Building Property (if it is confirmed that the wells have exposed screens) or through bar hole(s). The bar hole or monitoring well measurement functions as an additional monitoring point to assess extent of methane migration towards the building, demonstrate protectiveness, and a data point to compare with GP-29 for consistency and possibly verify representativeness of

methane concentrations around GP-29. Farallon shall submit the results to Ecology, Health Department, Site Coordinator, and PLP team by the end of the day.

 Farallon shall submit to the Site Coordinator and Ecology the daily records of measurements, O&M activities, and system adjustments made during the time the exceedances were first measured on November 15, 2021.

December 27, 2021, through January 19, 2022

- Weekly monitoring began at GP-29 and concluded on January 19, 2022.
- The Site Coordinator sent updates to Ecology, the Health Department, and the PLP group to report updated field measurements after each day of monitoring.

Actions taken by SPPD, or their representatives are recorded in the Corrective Action Summary Report prepared by Farallon Consulting (Farallon 2022).

Monitoring Result Summary

Gas Probe GP-29

Quarterly monitoring under the consent decree began in the second quarter of 2020 by the Site Coordinator. Until the recent exceedance, GP-29 typically had low levels of gas ranging from 1.4% to 2.9% which did not trigger a response due to the previously established protectiveness at adjacent buildings (discussed below). The methane level at GP-29 was recorded at 6.9% during the 2021 fourth quarter monitoring event triggering contingent actions due to exceedances. Daily monitoring began November 29, 2021, and continued until methane was measured below 5% by volume on December 27, 2021. Monitoring resumed on a weekly basis ending on January 19, 2022. Results are presented in the attached table and time series plot.

Indoor Air Monitoring at Adjacent Off-Site Building

Protectiveness was established in 2011 when GP-29 had elevated methane concentrations up to 8.5% by volume (Farallon 2019). In response, an indoor air study was conducted at the adjacent building (within 100 ft) located east of 5th Avenue South and the SPPD parcel to establish a baseline of methane gas monitoring data across the seasons and to support the existing safety of people and structures. No methane was detected in indoor air in the building at that time.

SPPD has since purchased the building adjacent to GP-29. The building was unoccupied by tenants, had no power or utilities, and was undergoing renovations during this incident. Ecology determined that indoor air monitoring was not required at this building due to the established previous protectiveness and the current building status.

Gas Probe GP-33

Methane was not detected during quarterly compliance monitoring completed by the Site Coordinator at GP-33 from May 2020 through August 2021. Methane was detected at 4.5% during the 2021 fourth quarter monitoring event indicative of a new condition. Daily monitoring began on November 29th. presented in the attached table and time series plot.

Indoor Air Monitoring at Adjacent Off-Site Building

GP-33 is adjacent to a building owned by W.G. Clark Construction Co. Methane concentrations in GP-33 were periodically above 5 percent during the period between 2015 and 2016 (maximum detection was 22%). These detections were attributed to a temporary shutdown of the SPPD LFG control system. During this period, one indoor air measurement was made at the adjacent buildings and no methane was detected. However, the results were not sufficient to provide a relationship between methane in the probe and the indoor air in adjacent buildings to assess protectiveness.

Parametrix and SPU staff measured indoor air concentrations and performed slab and utility screening at the W.G. Clark Construction Co. facility on November 30, 2021, with a Landtec GEM 5000 landfill gas meter. The landfill gas meter has a detection level of 0.1% by volume which is equivalent to 1000 parts per million, or 10 times greater than the action levels defined in the CAP OMMP.

Parametrix completed monitoring adjacent to the foundation of the buildings and asphalt cover of the W.G. Clark Co. facility on December 3, 2021, with a TVA 2020 flame ionization detector (FID) capable of measuring methane to 0.5 ppm. The business was closed at the time and no indoor air monitoring was completed. No measurable methane above background levels (1.5 parts per million) was found south, west, and southeast of the property. Additionally, screening was completed adjacent to the asphalt near GP-11 and MW-12. No measurable methane was detected above background.

Incident Resolution Summary

GP-29 and GP-33 are along the perimeter of SPPD property. The Site Coordinator field staff was onsite November 29, 2021, to confirm the fourth quarter results. No audible noise was coming from the LFG blower system near GP-33. The position of the blower control panel showed the system set to automatic having a red overload alarm activated (see attached photos). The light indicating if blower No. 2 was running was not lit.

On November 30, 2021, Parametrix and SPU observed that the system was operating. Audible noise was coming from the LFG blower system and the position of the panel switches was identical to the previous observations except no alarms were triggered and the green light indicating if blower No. 2 was running was lit.

The system has been observed running every day since it was reactivated on November 30, 2021.

Observations indicate that the system shut down most likely occurred prior to the quarterly monitoring, possibly as a result of a power outage or overload to the pumps from storms that brought significant power outages throughout the region. It is unclear why the phone system connected to the alarm system did not call SPPD when the blowers went into overload, nor why the outage was not observed during weekly checks by SPPD.

Recommendations

Recommended Follow Up Actions:

- Site Coordinator (Parametrix):
 - The Project Manager and the Monitoring Program Manager will review quarterly monitoring field sheets within 24 hours of data collection for all future monitoring events.
 - Work with Ecology to modify the flow chart for triggers and contingent actions for perimeter probe monitoring to include a response timeline for all actions. This may be documented in a TM and include roles and responsibilities.
- Property Owner (SPPD/Farallon):
 - Replace the alarm system with a telemetry system with cellular service and data-logging capabilities.
 - Add additional alarm zones for reporting blower voltage present to the alarm zones. Blower voltage present will be an indicator of if the blower is operational.
 - With methane concentrations below the LEL in gas probe GP-29, rebalance LFGCCS to its steady-state operation to control LFG generated on the SPPD Property. Rebalancing could include removal of portions of the air dilution intake modifications described in Section 2 of the Corrective Action Summary Report (Farallon 2022).
 - Assess protocol of gas system checks and documentation. Train staff performing system checks.
 - Prepare and submit documentation of weekly system checks. Prepare and submit annual reports to Ecology documenting LFGCCS operation, maintenance, and monitoring as required in the SPPD Property LFG Collection and Control System OMMP (Farallon). Annual report should also be provided to the Site Coordinator.
 - Document all actions taken to modify the system. Documentation should include a completed form or report and photographs in accordance with the Landfill Gas Monitoring and Contingency Plan (LFGMCP) as part of the CAP OMMP.

References

- Ecology (Washington State Department of Ecology). 2018. South Park Landfill Final Cleanup Action Plan. Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.
- Floyd | Snider, Aspect, BHC, Herrera. 2017. Remedial Investigation/Feasibility Study. Prepared for City of Seattle South Park Property Development, LLC. July 2017.
- Farallon. 2016. SPPD Property Landfill Gas Collection and Control System Operation, Maintenance, and Monitoring Plan, South Park Landfill, Seattle, Washington. Prepared for South Park Property Development, L.L.C. c/o SEACON, L.L.C. June 2016.
- Farallon. 2019. Landfill Gas Collection and Control System Interim Action Progress Report—2018, SPPD Property, South Park Landfill Site, Seattle, Washington. Prepared for Ecology. July 2019.
- Farallon. 2022. SPPD Property Landfill Gas Collection and Control Corrective Action Summary Report, South Park Landfill, Seattle, Washington. Prepared for South Park Property Development, L.L.C. c/o SEACON, L.L.C. February 2022.

Figures

- 1. Landfill Gas Controls (CAP OMMP Figure A.2.1)
- 2. Buildings within the Landfill and within 100 ft of the Landfill Boundary (CAP OMMP Figure A.2.2)
- 3. Perimeter Landfill Gas Probe Network (CAP OMMP Figure A.2.3)
- 4. Flow Chart for Triggers and Contingent Actions for Perimeter Probe Monitoring (CAP OMMP Figure A.2.4)
- 5. Flow Chart for Triggers and Contingent Actions for LFG Monitoring in Off-Site Buildings (CAP OMMP Figure A.2.6)
- 6. Historical Perimeter Probe Monitoring Data (Farallon 2018 annual report Figure 3)
- 7. South Park Landfill Blower Panel As Built

Attachments

- A. Gas Exceedance Data Summary Table
- B. Methane Exceedance Trigger Monitoring Time Series Plot
- C. Fourth Quarter LFG Field Data Sheet
- D. Exceedance Monitoring Field Data Sheets
- E. Indoor Air Monitoring Field Sheets
- F. Photographs

Figures

I:GIS:Projects\COS-SPARK\MXD\CAP\2017 CAP-FEB18\OMMP\LGMCP\Figure A.2.2 Buildings within 100 feet of the Landfill Boundary.mxd 2/13/2018

I\GIS\Projects\COS-SPARK\MXD\CAP\2017 CAP-FEB18\OMMP\LGMCP\Figure A.2.3 Perimeter Gas Probe Network.mxc 2/12/2018

6/13/16	FLOODED
9/26/16	0.0
12/8/16	FLOODED
3/3/17	0.0
6/2/17	0.0
9/6/17	0.0
10/19/17	FLOODED
3/9/18	0.0
5/21/18	0.0
9/12/18	0.0
12/26/18	0.0

6/13/16	FLOODED	
9/26/16	FLOODED	
12/8/16	FLOODED	
3/3/17	0.0	
6/2/17	0.0	
9/6/17	5.4	
10/19/17	FLOODED	
3/9/18	0.0	
5/21/18	0.0	
9/13/18	0.0	
12/26/18	0.0	

+ 05 5/12/15 0.1 9/6/17 0.0 10/19/17 0.2 3/9/18 0.0 5/21/18 0.0 9/13/18 0.8 12/26/18 0.0	-05				
10/19/17 0.2 3/9/18 0.0 5/21/18 0.0 9/13/18 0.0 12/26/18 0.0		5/12	2/15 0.1	9/6/17	0.0
3/9/18 0.0 5/21/18 0.0 9/13/18 0.8 12/26/18 0.0				10/19/17	0.2
				3/9/18	0.0
	\sim			5/21/18	0.0
	λ (9/13/18	0.8
				12/26/18	0.0
0 100 APPROXIMATE SCALE IN FEET					
Washington Issaquah Bellingham Seattle FIGURE 3			AF	0 1 PPROXIMATE SCALE II	00 H FEET
Oregon PERIMETER PROBE COMPLIACNE MONITORING DA		Washington Issaquah Bellingtuan Seattle	AF	0 1 PPROXIMATE SCALE II FIGURE 3	00 N FEET
Portland Bend Baker City SOUTH PARK LANDFILL SITE SEATTLE, WASHINGTON		Washingson Issaquah Bellingtan Seattle Oregon	AF	0 1 PPROXIMATE SCALE II FIGURE 3 BE COMPLIACNE MONIT	

FARALLON Oakland | Folsom | Irvine FARALLON PN: 408-002

Gas	Incident	Report	Figure	6

FENCE

DITCH OR CHANNEL EXISTING BUILDING

۲ LANDFILL GAS PROBE MONITORING LOCATIONS

SOUTH PARK LANDFILL BOUNDARY KING COUNTY TAX PARCEL BOUNDARY INTERIM ACTION AREA

- GAS PROBE LOCATIONS NOT INCLUDED IN THE INTERIM ACTION COMPLIANCE MONITORING PROGRAM ۲
- + SEWER MANHOLE MONITORING LOCATIONS
- ۰ LANDFILL GAS VERTICAL COLLECTION WELL
- LANDFILL GAS HORIZONTAL COLLECTION WELL
 - LANDFILL GAS COLLECTOR MAIN

LEGEND

NM = NOT MONITORED FLOODED = WELL SCREEN SUBMERGED %CH4 = PERCENT METHANE

- NOTES: 1. DATA SHOWN IN **BOLD** REPRESENTS PERCENT METHANE MEASURE ABOVE THE LOWER EXPLOSIVE LIMIT FOR METHANE (5%). 2. FIGURE INCLUDES INFORMATION PRESENTED IN COLOR. PHOTOCOPIES MAY NOT DEPICT ALL INTENDED INFORMATION ON THE ORIGINAL DRAWING. 3. ALL LOCATIONS ARE APPROXIMATE.

TEM	QTY	DE	SCRIPT	ION	MFGR.
	1	ENCLOSURE	30X30	CSD30308	HOFFMAN
	1	PAN		CP3030	HOFFMAN
	1	FOOT KIT		CMFK	HOFFMAN
ID	1	MAIN DISCONNECT	80A	OT80F3	ABB
	1	HANDLE		онв65ј6	ABB
	1	SHAFT		0XP6X210	ABB
U1,2	2	PRIMARY FUSES	2A	FNQR-2	BUSS
U3	1	SECONDARY FUSE	5A	FNM-5	BUSS
U4-6	3	FUSES	80A	LPJ80SP	BUSS
U1-3	1	FUSE BLOCK	3P	BC6033PQ	BUSS
U4-6	1	FUSE BLOCK	3P	J60100-3CR	BUSS
IMS1,2	2	MANUAL MOTOR STARTERS	14A	GV2P16	SQUARE D
1,2	2	CONTACTORS	18A	LC1D18G7	SQUARE D
	2	AUXILARY CONTACTS		GVAN11	SQUARE D
SW1,2	2	HOA SWITCHES	3 POS.	HW1S-3TF20	IDEC
	2	INDICATOR LIGHTS	GREEN	HW1P-1FQD-G-120V	IDEC
IALER	1	AUTODIALER		SENSAPHONE 400 + BAT5	SENSAPHONE
	3	INDICATOR LIGHTS	RED	HW1P-1FQD-R-120V	IDEC
1	1	TRANSFORMER	500VA	PH500MQMJ	HAMMOND
)	20	TERMINALS	50A	3044131	PHOENIX
R1	1	PROBE RELAY	4 CH.	47X1B0A4	GEMS
В	1	POWER BLOCK		1423570	MARATHON
R4,5	2	CONTROL RELAYS	3P	RH3B-ULAC120V	IDEC
	3	RELAY BASES		SR3B-05	IDEC
UTLET	1	DUPLEX RECEPTACLE		7599–1	LEVITON
B1	1	PUSH BUTTON		HW1B-M1-F11-B	IDEC
LT1	1	ALTERNATING RELAY		ARA120ADA	DIVERSIFIED
	1	SOCKET		SR2P-06	IDEC
	1	END PLATE		3047028	PHOENIX
	2	END CLAMPS		0800886	PHOENIX
R7-10	4	CONTROL RELAYS	1P	PLC-RSC-120UC/21	PHOENIX

ITEM	QTY	DES	CRIPT	ION	MFGR.
U7,8	2	FUSES	15A	LPCC-15	BUSS
U7,8	1	FUSE BLOCK	2P	BC6032PQ	BUSS
AMS3,4	2	MANUAL MOTOR STARTERS	4-6A	GV2P10	SQUARE D
3,4	2	CONTACTORS	9A	LC1D09G7	SQUARE D
	2	AUXILARY CONTACTS		GVAN11	SQUARE D
SW3,4	2	HOA SWITCHES	3 POS.	HW1S-3TF20	IDEC
	2	INDICATOR LIGHTS	GREEN	HW1P-1FQD-G-120V	IDEC
	1	INDICATOR LIGHT	RED	HW1P-1FQD-R-120V	IDEC
R1,2,6	3	CONTROL RELAY	3P	RH3B-ULAC120V	IDEC
	3	RELAY BASE		SR3B-05	IDEC
CR3	1	CONTROL RELAY	4P	RH4B-ULAC120V	IDEC
	1	RELAY BASE		SR4B-05	IDEC

NAMEPLATE	SCHEDULE-

- 1- BLOWER NO. 1 RUNNING 2- BLOWER NO. 2 RUNNING 3- MAIN DISCONNECT 4- BLOWER NO. 1 CONTROL HAND OFF AUTO

- 5- BLOWER NO. 2 CONTROL HAND OFF AUTO
- 6- PUMP NO. 1 RUNNING 7- PUMP NO. 2 RUNNING 8- PUMP NO. 1 CONTROL HAND OFF AUTO 9- PUMP NO. 2 CONTROL HAND OFF AUTO
- 10- LOCAL HIGH CONDENSATE LEVEL 11- BLOWER NO. 1 OVERLOAD 12- BLOWER NO. 2 OVERLOAD 13- REMOTE HIGH CONDENSATE LEVEL 14- ALARM RESET

Gas Incident Report Figure 7

NUTIO

Attachment A

Gas Exceedance Data Summary Table

Gas	Date	Time of	Pressure	CH₄	CO,	0,		
Probe	Monitored	Measurement	(in W.C.)	(% Volume)	(% Volume)	(% Volume)	Baro	meter
GP-29	5/14/2020	NA	0.00	1.4	11.8	3.0	29.97	\uparrow
	8/24/2020	11:19	0.00	1.8	14.8	2.0	30.03	\downarrow
	11/9/2020	9:48	0.00	2.9	14.3	1.6	30.05	\leftrightarrow
	2/22/2021	9:34	0.00	2.0	7.3	6.1	30.15	\checkmark
	5/17/2021	11:30	-0.02	1.6	14.1		29.89	\checkmark
	8/23/2021	11:00	-0.02	1.5	21.4		29.66	\uparrow
	11/15/2021	11:19	0.00	6.9	16.6	0.0	29.55	\checkmark
	11/29/2021	13:01	0.10	5.1	13.5	0.1	30.24	\uparrow
	11/30/2021	10:27	0.03	5.2	13.4	0.2	30.23	\leftrightarrow
	12/1/2021	9:00	0.01	5.2	13.5	0.0	30.16	\leftrightarrow
	12/2/2021	9:00	-0.06	4.9	13.2	0.2	30.27	\uparrow
	12/3/2021	13:15		5.0	13.2	0.1	30.32	\leftrightarrow
	12/4/2021	9:49	-0.01	4.7	12.7	0.8	30.14	\checkmark
	12/6/2021	12:28	-0.02	5.3	14.0	0.1	29.99	\uparrow
	12/7/2021	12:55	0.01	5.3	14.0	0.1	29.58	\checkmark
	12/8/2021	11:07	-0.02	5.2	13.9	0.1	29.61	\downarrow to \leftrightarrow
	12/9/2021	10:42	-0.03	5.4	14.1	0.1	29.89	\leftrightarrow
	12/10/2021	13:20	0.01	5.4	13.8	0.3	30.07	\checkmark
	12/13/2021	11:25	0.03	5.2	13.9	0.1	29.4	\checkmark
	12/14/2021	8:15	-0.01	5.3	13.9	0.3	29.32	\uparrow
	12/15/2021	9:39	0.03	5.3	13.3	0.1	29.73	\leftrightarrow
	12/16/2021	11:00	-0.01	5.3	13.5	0.2	29.59	\uparrow
	12/17/2021	10:49	0.00	5.4	12.9	0.2	30.35	\uparrow
	12/18/2021	10:27	0.01	5.8	13.8	0.1	29.75	\checkmark
	12/19/2021	9:50	0.00	5.8	13.7	0.2	29.97	\leftrightarrow
	12/20/2021	11:16	0.01	5.8	13.6	0.3	30.06	\leftrightarrow
	12/21/2021	8:48	-0.02	5.4	12.8	0.2	29.65	\leftrightarrow
	12/22/2021	8:16	-0.01	6.0	13.6	0.2	29.71	\checkmark
	12/23/2021	9:18	-0.05	6.1	12.9	0.1	29.47	\checkmark
	12/24/2021	9:27	0.01	6.2	12.8	0.1	29.27	\checkmark
	12/27/2021	12:41	0.01	1.8	12.0	0.2	29.85	\uparrow
	12/29/2021	8:16	-0.02	1.2	12.6	1.4	29.91	\uparrow
	1/6/2022	9:05	0.01	1.4	11.7	0.1	29.7	\checkmark
	1/12/2022	10:45	-0.03	1.2	11.0	0.3	29.72	\downarrow to \leftrightarrow
	1/19/2022	9:30	-0.01	0.5	10.6	0.1	30.31	\leftrightarrow

Methane in Perimeter Gas Probes GP-29 and GP-33, 2021 Gas Probe Exceedance Contingency Monitoring, South Park Landfill

Gas	Date	Time of	Pressure	CH₄	CO ₂	0 ₂		
Probe	Monitored	Measurement	(in W.C.)	(% Volume)	(% Volume)	(% Volume)	Baro	meter
GP-33	5/14/2020	NA	0.00	0.0	5.5	8.0	29.97	\uparrow
	8/24/2020	12:55	0.00	0.0	6.7	9.5	30.03	\checkmark
	11/9/2020	12:44	0.00	0.0	4.9	13.5	30.05	\leftrightarrow
	2/22/2021	12:38	0.00	0.0	4.2	6.2	30.15	\checkmark
	5/17/2021	16:45	-0.05	0.0	4.7	8.2	29.89	\checkmark
	8/23/2021	9:56	10.74	0.0	8.3	6.0	29.66	\uparrow
	11/15/2021	11:43	0.00	4.5	9.3	0.0	29.55	\checkmark
	11/29/2021	13:19	0.07	5.0	8.0	0.0	30.24	\uparrow
	11/30/2021	10:44	-0.30	5.2	7.9	0.0	30.23	\leftrightarrow
	12/1/2021	9:08	0.03	4.9	8.0	0.0	30.16	\leftrightarrow
	12/2/2021	9:05	-0.09	2.4	8.0	0.0	30.27	\uparrow
	12/3/2021	13:25		1.7	8.2	0.1	30.32	\leftrightarrow
	12/4/2021	10:00	-0.02	0.9	8.5	0.0	30.14	\checkmark
	12/6/2021	12:40	-0.01	0.6	9.5	0.0	29.99	\uparrow
	12/7/2021	13:07	0.00	0.5	9.6	0.0	29.58	\checkmark
	12/10/2021	13:37	0.00	0.4	10	0	30.07	\checkmark
	12/16/2021	11:17	-0.02	0.0	9.4	2.1	29.59	\uparrow
	12/22/2021	8:27	-0.01	0.0	9.2	5.2	29.71	\checkmark
	12/29/2021	8:27	0.01	0.1	9.5	3.5	29.91	\uparrow

Methane in Perimeter Gas Probes GP-29 and GP-33, 2021 Gas Probe Exceedance Contingency Monitoring, South Park Landfill

Values in red exceed the LEL % by volume

 $\downarrow \uparrow \leftrightarrow$ Arrows indicate falling, rising, or steady barometer

Attachment B

Methane Exceedance Trigger Monitoring Time Series Plot

LFG Exceedance in Perimeter Compliance Gas Probes South Park Landfill Seattle Public Utilities

Attachment C

Fourth Quarter LFG Field Data Sheet

	Prohe	Screened	Durgo	1	- Donth to		1	1	1	-	
Gas	Diameter	Interval (ft	Volume	Purge Duration	Water	Pressure		CH₄	CO₂	O2	La Cifer F
Probe	(ft)	btoc)	(cc)	Purge rate = 550 ml/min	(ft - btoc)	(in W.C.)	Time	(% Volume)	(% Volume)	(% Volume)	(p
GP-37	.063	2.8 to 7.8	868	94 seconds	7.66	0.0	10:30	0.3	94	5.0	(
GP-09	.063	6.62 to 10.62	899	98 seconds	7.27(04)	0.0	12:00	0.3	8.1	12.8	0
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds 71	8+251	7 0.0	51 41:23	02	15736	0.0	4
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec	6.50	0.0	12:28	03	04	715	C
GP-07	.063	5.75 to 6.25	519	56 seconds	6.00 (dra)	0.0	13:02	0.3	2.6	162	0
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds	1251	0.0	11:33	11	136	0.0	4
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds	7.71	0.0	11:00	0.3	31	8.1	0
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds	6.76	0.0	11:19.	6.9	16.6	0.0	1.
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec	4.22 (dag?)	0.0	9:56	0.3	0.4	212	0
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds	450 .	0.0	9:25	0.3	7.5	4.8	C
GP-15	.167	6.62 to 8.62	4,103 ^B	Check for H2O (448 sec if open)	3.34	1	9:40	-	-)	
GP-32	.063	4.72 to 9.72	416 ^B	Check for H2O (45 sec if open)	1.02	t	9:49	-	-	-	-
GP-03	.063	6.73 to 8.63	725	79 seconds	8.75 (dry)	0.0	9:13	0.3	5.9	8:7	
GP-13	.167	4.91 to 5.41	3,043 ^B	Check for H2O (332 sec if open)	2.71	0000	2557	0.3	0.5	21.0	6
GP-11	.167	6.23 to 6.73	3,862 ^B	Check for H2O (420 sec if open)	3.28	0.0	\$20	03	03	21.1	
GP-38	.063	3.8 to 8.8	882*	96 seconds	8.42	0.0	10.45	0.6	16.2	1.0	
GP-33	.063	8.2 to 13.2	1,165*	127 seconds	12.11	0.0	11:43	4.5	9.3	00	6
- occasional	water in probe	C - water consiste	ntly present in	probe B - water typically	blocks probe	GEN G	000				
arometer	("Hg) (Start):	29.55	I ULAN	Barces	ometer ("Hg) (Finish):	29.50		1	ĠØ.	
emperatu	ire:	56°F		Wea	ather: 01/M	ast 1.11	Sutteral	Shalles	to hearin.	Lewy Carl	Und 4

Attachment D

Exceedance Monitoring Field Data Sheets

,

			1	GAS PRO	BE MONITOR	ing field fo	ORM				
Sampling O	rganization:	Parametr	"x / S	,eu	Project N	umber:	553-1	550-0	67	<u></u>	· · · · · · · · · · · · · · · · · · ·
	Date: 11	29/2021	- 1		Field Pers	ionnel:	Brady	/ Stre	ius.		
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO2 (% Volume)	O2 (% Volume)	H₂S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds							
GP-09	.063	6.62 to 10.62	899	98 seconds							
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds							
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec				,			
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds		0.0	1310	0.7	11.7	0.0	••••
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds		0.1	1301	5.1	13.5	0.1	
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec							
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds							
GP-15	.167	6.62 to 8.62	4,103 ⁸	Check for H2O (448 sec if open)							
GP-32	.063	4.72 to 9.72	416 ⁸	Check for H2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds							
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)							
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33	.063	8.2 to 13.2	1,165*	127 seconds		0.07	1319	5.0	8.0	0.0	-
*- occasiona Comments	water in probe	C-water consiste	ently present in OFF/0	probe B - water typical	ly blocks probe uipment Used	:					
Barometer	r ("Hg) (Start):	30.25	(seat	and Ba	rometer ("Hg)	(Finish):	30.23	>			
Temperati	ure: 5	3° F	``	We	eather:	Sunn					

Parametrix

Ť

mpling Oi	rganization: Date:	30/202		3(0	_ Project N _ Field Per	umber: sonnel:	Brady	3 540	aurs.		
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO₂ (% Volume)	O₂ (% Volume)	H ₂ S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds							
GP-09	.063	6.62 to 10.62	899	98 seconds							
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds							
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to 6.25	519	56 seconds				`			
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds		-0.03	1036	0.8	11.8	0.0	
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds		0.03	1027	5.2	13.4	0.2	
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec							
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds	¢*						
GP-15	.167	6.62 to 8.62	4,103 ⁸	Check for H2O (448 sec if open)	· · · · · · · · · · · · · · · · · · ·						
GP-32	.063	4.72 to 9.72	416 ⁸	Check for H2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds							
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)							
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33)	.063	8.2 to 13.2	1,165*	127 seconds		-0.3	1044	5.2	7.9	0.0	
occasional mmeitig	water in probe	C-water consister C-water cons	ntly present in	probe B - water typically Equ	blocks probe ipment Used ometer ("Hg)	: (Finish):	30.23	IF CH4 IS ABOVE	5% CALL PROJECT	MANAGER IMME	DIATELY
mperatu	ire: 50)'5		Wea	ther: ((under)	Drizzt	l			

~

Parametrix

Sampling Org Da	ganization:	Paran	section .	0.3							
Da	to: 17		2 mile	SIV	Project N	lumber:	53-159	50-06	<u>)</u>		
		1/21	(Field Per	sonnel:	Brady	\$ Stran	15		
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btac)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO2 (% Volume)	O2 (% Volume)	H₂S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds							
GP-09	.063	6.62 to 10.62	899	98 seconds							
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds							
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec	-,46-4				1		
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds							
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds	е — нация не	0.01	900	5.2	13.5	0.0	and the second se
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec							-
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds							
GP-15	.167	6.62 to 8.62	4,103 ⁸	Chèck for H2O (448 sec if open)							
GP-32	.063	4.72 to 9.72	416 ⁸	Check for H2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds			-11				
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6. 7 3	3,862 [₿]	Check for H2O (420 sec if open)					-		
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33	.063	8.2 to 13.2	1,165*	127 seconds		6.03	9:08 MPB	4.9	8. U	0. Ŭ	
*- occasional wi	ater in probe	C-water consiste	ntly present in V	probe B - water typically Equi	blocks probe ipment Used:	.		HF CH₄ IS ABOVE	5% CALL PROJECT	MANAGER IMMEI	SIATELY
Berometer ("	'Hg) (Start):			Baro	meter ("Hg) ((Finish):	20.10	*; **			
[emperature	e: <u> </u>) * 5	al adalah di katala sa atala katala katala kata kata kata	Wea	ther:	Cloud	1				alan menalakan dari kata dalam terdenteri dalam terdenteri dalam terdenteri dalam terdenteri dalam terdenteri d

Page 1 of 1

Parametrix

Sampling ()	ranization	Paramo	tur	GAS PROE	BE MONITOR	ING FIELD FC	0RM 53-151	50-06-	7		
Sampling O	Date:	2/2/202	~ ~ (J	Field Per	sonnel: <u> </u>	Brady	\$ Stra	NS .		······································
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = \$50 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO2 (% Volume)	O2 (% Volume)	H₂S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds							
GP-09	.063	6.62 to 10.62	899	98 seconds							
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds				-			
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds							
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							
GP-29	.063	4.62 to 9.62	814 ^C	89 seconds		-0.06	900	4.9	(3.2	0.2	
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec					-		
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds				· · · · · · · · · · · · · · · · · · ·			
GP-15	.167	6.62 to 8.62	4,103 ⁸	Check for H2O (448 sec if open)							
GP-32	.063	4.72 to 9.72	416 ⁸	Check for H2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds							
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)							
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33	.063	8.2 to 13.2	1,165*	127 seconds		-0.09	905	2.4	8.0	0.0	
*-occasional Comments:	water in probe	C-water consiste	ntly present in	probe B - water typically Equ	blocks probe ipment Used:	.	L	IF CH4 IS ABOVE	5% CALL PROJECT	MANAGER IMMEI	DIATELY
Barometer Temperatu	("Hg) (Start): ire: <u>45</u>	<u> </u>	(Baro	ther:	rinish):					

Parametrix

1.1

-

Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO ₂ (% Volume)	O2 (% Volume)	H ₂ S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds		gergenen, einig einig der in die staar te gebenen.					
GP-09	.063	6.62 to 10.62	899	98 seconds	n				· · · · · · · · · · · · · · · · · · ·		
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds	÷						
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 s ec	-						
GP-07	.063	5.75 to 6.25	519	56 seconds							a anna a su anna an anna an anna an an anna an an a
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds		· · · · · · · · · · · · · · · · · · ·					na Monaton () () ()
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							
SP-29	.063	4.62 to 9.62	814 ^c	89 seconds			1315	5.0	13.2	0.1	5
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec.		an a Èr					
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds							
GP-15	.167	6.62 to 8.62	4,103 ⁸	Check for H2O (448 sec if open)				·			* .
GP-32	.063	4.72 to 9.72	416 ³	Check for H2O (45 sec if open)							:
GP-03	.063	6.73 to 8.63	725	79 seconds							
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec :f open)							
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)							
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33) .063	8.2 to 13.2	1,165*	127 seconds			1325	1.7	8.2	0.1	0
nments ometer	water in probe Systu ("Hg) (Start):		ntly present in N D. 32	probe B-water typically Equi	Nocks probe ipment Used: imieser ("Hai) (Renta Finish):	al G.En	IF CH₄ IS ABOVE	5% CALL PROJECT	MANAGER MANAEE	MIELY

				GAS PROE	E MONITOR	ING FIELD FO	DRM				
Sampling O	rganization:	Para	netr	0 X	Project N	umber:	553-1	550 - 0	67		
C	ate:	2/4/21			Field Per	sonnel:	Biady			and a series of a series of the series of th	-
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH4 (% Volume)	CO ₂ (% Volume)	O₂ (% Volume)	H₂S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds						-	
GP-09	.063	6.62 to 10.62	899	98 seconds							
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds							
GP-23	.167	6.05 to 7.05	4,940*	8 mín 59 sec							
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds							
GP-28	.063	6.59 to 11.59	1,010 ^C	110 seconds							
GP-29)	.063	4.62 to 9.62	814 ^c	89 seconds		-0.01	949	4.7	۲2.٦	0.8	0
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec							
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds							
GP-15	.167	6.62 to 8.62	4,103 ⁸	Check for H2O (448 sec if open)							
GP-32	.063	4.72 to 9.72	416 ⁸	Chéck for H2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds							
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)							
GP-38	.063	3.8 to 8.8	882*	96 seconds						·	
(GP-33)	.063	8.2 to 13.2	1,165*	127 seconds		-0.02	1000	0.9	8.5	0.0	0
*- occasional Comments:	water in probe	C-water consistent ferm 15 C	ntly present in	probe B - water typically Equ	blocks probe ipment Used:	Renta	I Gem	IF CH4 IS ABOVE	5% CALL PROJECT	MANAGER IMMEL	DIATELY
Barometer	("Hg) (Start):	30.14	nt analas alassi an analas na analas an an an an an	Barc	meter ("Hg) (Finish):	30.15				
Temperatu	ré: <u>30</u>	7	and, analysis and an a sub-state	Wea	ther: V	tainy_					

Parametrix

- **st**r - 1

. [)ate:	12/6/2			Field Per	sonnel:	Brad	1			
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO2 (% Volume)	O2 (% Volume)	H ₂ S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds						-	
GP-09	.063	6.62 to 10.62	899	98 seconds							4
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds	1999 (1996 - 1997 - 1996 - 1996 - 1996 - 1996 - 1996 - 1997 - 1997 (1997 - 1997 - 1997 (1997 - 1997 - 1997 - 1	-					,
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to 6.25	.519	56 seconds							Alexandra and a second a second and the Alexandra
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds							
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds		-0.02	1728	5.3	14.0	0.1	Ó
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec			12-0	- * -		Constantino da ₱30000000 Netro de Constantino da Constantino da Constantino da Constantino da Constantino da Constantino da Constantino Constantino da Constantino da Constantino da Constantino da Constantino da Constantino da Constantino da Constanti	
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds				· · · · · · · · · · · · · · · · · · ·	i _ 1. in		
GP-15	.167	6.62 to 8.62	4,103 ⁸	Check for H2O (448 sec if apen)							
GP-32	.063	4.72 to 9.72	416 ⁸	Check for H2O (45 sec if open)				- -	, • , <u>,</u>	- -	1
GP-03	.063	6.73 to 8.63	725	79 seconds							
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)	97 March (1999 A. A. Wey) (A.						dilla de aparen en provincia de 1997 (1998
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-3)	.063	8.2 to 13.2	1,165*	127 seconds 💡 .	i mag	70.01	1240	0.6	9.5	0.0	0
occasional mments:	water in probe	C - water consister	ntly present in	probe B - water typically Equi	blocks probe pment Used:	L	h.as	IF CH4 IS ABOVE	5% CALL PROJECT	MANAGER IMMED	NATELY
irometer	("Hg) (Start):	29.99		Baro	meter ("Hg) (Finish): 3	0.12				
mperatu	ré:	1		Wea	ther: 니	4° Dr	177.11				

Parametrix

ſ	Date:	12/7/21			Field Per	sonnel:	Bra	h			
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO ₂ (% Volume)	O2 (% Volume)	H ₂ S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds							ana
GP-09	.063	6.62 to 10.62	899	98 seconds							₩ 400
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds	• ••						•
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to 6.25	519	56 seconds	an taun taun taun taun sebuta sebu						······································
GP-27	.063	8.57 to 13.57	1,089 ^č	119 seconds	ana da manga kana na sa	-0.01	1319	0.7	11.5	00	5
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds	nan gentani a mana shiga di man na na na ana ana ana a					U	<u> </u>
GP-29	.063	4.62 to 9.62	814 ^C	89 seconds		0.01	1255	53	140	0.1	8
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec			()				
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds			4				
GP-15	.167	6.62 to 8.62	- 4,103 ⁸	Check for H2O (448 sec if opén)					er en		
GP-32	.063	4.72 to 9.72	416 ⁸	Check for H2O (15 sec if open)				·			27 8 2 - - -
GP-03	.063	6.73 to 8.63	725	79 seconds							<u></u>
GP-13	.167	4.91 to 5.41	3,043 ^d	Check for H2O (#37 sec if open)	· · · ·	•			<i>1</i> /		
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)	· · · · · · · · · · · · · · · · · · ·					in the second	
GP-38	.063	3.8 to 8.8	882*	96 seconds						· ·	
3P-33	.063	8.2 to 13.2	1,165*	127 seconds	an a	-0.00	1307	0.5	96	0.0	0
ccarional nments:	water in probe	C-water consister	itly present in	probe B - water typically t Equi	blacks probe pment Used:	Ren	la Gei	IF CH₄ IS ABOVE S	5%.CALL PROJECT	MANAGER IMMED	IATELY
meter	("Hg) (Start):	27.28	, 	Baro	meter ("Hg) (Finish):		and the answer of the second	· · · ·		

Page 1 of 1

Parametrix

South	Park	Landfill

mpling O	rganization:	Param	vetriv	P	Project N	umber:	553-	1550-	067		
C	Date:	12/8/21			-Field Per	sonnel:	ોર્ટા	ady		alaria and an	
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 mi/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO ₂ (% Volume)	O₂ (% Volume)	H₂S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds						-	
GP-09	.063	6.62 to 10.62	899	98 seconds	n						nandema en en Palma Annologie e quincipal de la Constante
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds					-		· · · ·
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to 6.25	519	56 seconds							na 17 a 17 an - Anna an Anna Anna Anna Anna Anna A
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds	·····						
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							
GP-29	.063	4.62 to 9.62	814 ^C	89 seconds		-0.02	1107	5.2	13.9	0.1	7
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec				and a second			4
GP-31	.063	4.64 to 9.64	548 ^C	60 seconds			······································			کے۔ میں میں	
GP-15	.167	6.62 to 8.62	4,103 ⁸	Check for H2O (448 sec if open)							•
GP-32	.063	4.72 to 9.72	416 ⁸	Check for H2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds					-		
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)							
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33	.063	8.2 to 13.2	1,165*	127 seconds					No. 14		
occasional mments	water in probe	C-water consister	ently present in p	B - water typically Equ	blocks probe . ipment Used	Ren	Jal Gi	IF CH4 IS ABOVE	5% CALL PROJECT	MANAGER IMME	DIATELY

Parametrix

Sampling O	rganization:	Parla	neArit	1	Project N	umber: _553 -	1550-067		.		
D)ate:	12/2 20	021		Field Pers	ionnel:	Brad	5			
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO2 (% Volume)	O2 (% Volume)	H₂S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds							
GP-09	.063	6.62 to 10.62	899	98 seconds							0
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds							
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds					:		
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds	7.21	-003	1042	5.4	14.1	0.1	7
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec		• •					
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds					1、家 (1)		
GP-15	.167	6.62 to 8.62	4,103 ⁸	Check for H2O (448 sec if open)					No.	-	
GP-32	.063	4.72 to 9.72	416 ⁸	Check for H2O (45 sec if open)			•	ater and			
GP-03	.063	6.73 to 8.63	725	79 seconds							
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)	,						
GP-38	.063	3.8 to 8.8	882*	96 seconds				2			
GP-33	.063	8.2 to 13.2	1,165*	127 seconds							
*- occasional Comments:	water in probe	C-water consister	ently present in	probe B - water typicall Equ	y blocks probe uipment Used:	Rent	ral GCh	IF CH4 IS ABOVE	5% CALL PROJECT	MANAGER IMME	DIATELY
Barometer	("Hg) (Start):	29.89		Bar	ometer ("Hg) (Finish):		В	arometric Tre	nd:	
Temperatu	ire: 40			We	ather: <u>C</u>	londy			-		

GAS PROBE MONITORING FIELD FORM

Parametrix

		\wedge	Å	GAS PROB	BE MONITOR	ING FIELD FO	DRM		-		
ampling O	rganization:	, para	met	(V farallon	Project N	umber: <u>553</u> -	- 1550-067	····/.			
[Date: <u>[2</u>	10/21		- 	Field Pers	sonnel:	Brad	γ/μ	riten		
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO ₂ (% Volume)	O2 (% Volume)	H₂S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds							
GP-09	.063	6.62 to 10.62	899	98 seconds						-	
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds							
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds			24				
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds					.,		
GP 29	.063	4.62 to 9.62	814 ^c	89 seconds		0.01	13:20	5.4	13.8	0.3	Ζ
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec							
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds							
GP-15	.167	6.62 to 8.62	4,103 ⁸	Check for H2O (448 sec if open)							
GP-32	.063	4.72 to 9.72	416 ^B	Check for H2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds					· · ·		
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)						• • •	
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33	.063	8.2 to 13.2	1,165*	127 seconds		0.00	13:37	0.4	10.0	0.0	ð
*- occasiona Comments	l water in probe :ऽप	C-water consister	ntly present in	probe B - water typically Equ	blocks probe	Ren	ital Ger	IF CH4 IS ABOVE	5% CALL PROJECT	MANAGER IMME	DIATELY
Barometer	("Hg) (Start):	30.0	7	Barc	ometer ("Hg) ((Finish):		В	arometric Tre	nd:	[
Temperatu	ire:	39		Wea	ather: (Jondy					

1

GAS PROBE MONITORING FIELD FORM

mpling Or	ganization:	_	10	rom	envy		Project N	umber: 553 -	- 1550-067				
Da	ate:	12	13	202	1		Field Per	sonnel:	Brad	5			
Gas Probe	Probe Diameter (ft)		Screen nterva btoc	ned I (ft :)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO ₂ (% Volume)	O2 (% Volume)	H₂S (ppm)
GP-37	.063		2.8 to	7.8	868	94 seconds							
GP-09	.063	6.	62 to 1	10.62	899	98 seconds							
GP-26	.063	4	.62 to	9.62	768 ^c	83 seconds							
GP-23	.167	6	.05 to	7.05	4,940*	8 min 59 sec							
GP-07	.063	5	.75 to	6.25	519	56 seconds							
GP-27	.063	8.	57 to 1	13.57	1,089 ^c	119 seconds							
GP-28	.063	6.	59 to 1	11.59	1,010 ^c	110 seconds							
GP-29	.063	4	.62 to	9.62	814 ^c	89 seconds		0.03	11:25	5.2	13.1	0.1	6
GP-16	.167		6.60 t	o 9	5,867*	10 min 18 sec					attan.		
GP-31	.063	4	.64 to	9.64	548 ^c	60 seconds							
GP-15	.167	6	.62 to	8.62	4,103 ⁸	Check for H2O (448 sec if open)							
GP-32	.063	4	.72 to	9.72	416 ^B	Check for H2O (45 sec if open)					1 :		
GP-03	.063	6	.73 to	8.63	725	79 seconds							
GP-13	.167	4	.91 to	5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6	.23 to	6.73	3,862 ⁸	Check for H2O (420 sec if open)							
GP-38	.063		3.8 to	8.8	882*	96 seconds							
GP-33	.063	8	3.2 to 2	13.2	1,165*	127 seconds							
occasional v	water in probe	in	- water	consister	ntly present in	probe B - water typically Equ	blocks probe ipment Used:	Reni	al Ger	VIF CH₄ IS ABOVE	5% CALL PROJECT	MANAGER IMME	DIATELY
rometer ("Hg) (Start)	:	29.	40		Barc	ometer ("Hg)	(Finish):		В	arometric Trei	nd:	
mperatur	e: 40	6				Wea	ather:	177 4					

Parametrix

GAS PROBE MONITORING FIELD FORM

ampling O	rganization:	Param	Aux	· · ·	Project N	umber: _553 -	- 1550-067				
Ĩ	Date:	12/14/21			Field Pers	sonnel:	Bra	dy			
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO2 (% Volume)	O2 (% Volume)	H ₂ S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds							
GP-09	.063	6.62 to 10.62	899	98 seconds							
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds							
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds							
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds	ant di ta di su ta su	-0.01	8:15	53	139	03	4
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec	199 9 999			1			
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds					· · · · · · · · · · · · · · · · · · ·		
GP-15	.167	6.62 to 8.62	4,103 ^B	Check for H2O (448 sec if open)				a an			
GP-32	.063	4.72 to 9.72	416 ^B	Check for H2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds							
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ^в	Check for H2O (420 sec if open)							
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33	.063	8.2 to 13.2	1,165*	127 seconds							
- occasional omments	water in probe :	C - water consiste	ntly present in	probe B - water typically Equ	blocks probe ipment Used:	Rent	ul GCm	IF CH4 IS ABOVE	5% CALL PROJECT	MANAGER IMME	DIATELY
arometer	("Hg) (Start):	29.32		Barc	ometer ("Hg) (Finish):		B	arometric Trei	nd:	
emperatu	ire:			Wea	ther:						

__**:**∎*__*`

- changes

A.

GAS PROBE MONITORING FIELD FORM

Sampling Organization: ______ Date: 12/

- T			
≤ 1	21	-)	
101	~ \		

12/15/21

Project Number: 553 - 1550-067

Field Personnel:	S	Strau	05
and the second sec			

Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH4 (% Volume)	CO2 (% Volume)	O2 (% Volume)	H ₂ S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds	1000			1.1.1.1.1.1.1			
GP-09	.063	6.62 to 10.62	899	98 seconds							
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds					-		
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec	The second						
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds							
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds				1	1		
GP-29	.063	4.62 to 9.62	814 ^C	89 seconds	N/A	0.03	0939	5.3	13.3	0.1	
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec			0101				
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds							
GP-15	.167	6.62 to 8.62	4,103 ^B	Check for H2O (448 sec if open)							
GP-32	.063	4.72 to 9.72	416 ⁸	Check for H2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds	1						1.1
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)	/I						
GP-38	.063	3.8 to 8.8	882*	96 seconds			1				
GP-33	.063	8.2 to 13.2	1,165*	127 seconds		1					
occasional mments	l water in probe :	C - water consister	ntly present in	probe B - water typically Equ	blocks probe	Gem	5000	IF CH4 IS ABOVE	5% CALL PROJECT	MANAGER IMMEL	DIATELY
ometer	("Hg) (Start):	29.73		Bar	ometer ("Hg) (Finish): 2	9.73	В	arometric Trer	nd:	
nperatu	ire: 42	Ŷ		Wea	ather: Cl	oudu					

Parametrix

. .

4

GAS PROBE MONITORING FIELD FORM

2					Project Number: <u>553 – 1550-067</u>						
Date:		12/16/20	21		Brad	~		100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100			
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO ₂ (% Volume)	O2 (% Volume)	H₂S (ppm
GP-37	.063	2.8 to 7.8	868	94 seconds							
GP-09	.063	6.62 to 10.62	899	98 seconds							
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds	• •						
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec		· · · · · · · · · · · · · · · · · · ·					
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds							
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds			<u>, , , , , , , , , , , , , , , , , , , </u>				
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds		-0.01	(100)	5.3	13.5	0.2	1
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec	Ŷ						
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds							
GP-15	.167	6.62 to 8.62	[™] 4,103 [₿]	Check for H2O (448 sec if open)						an a	
GP-32	.063	4.72 to 9.72	416 ⁸	Check forH2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds	### <u></u>				· · · · · · · · · · · · · · · · · · ·	-	10
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ^B	Check for H2O (420 sec if open)							
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33	.063	8.2 to 13.2	1,165*	127 seconds		-0.02	1117	0.0	9.4	2.1	D
'- occasional omments	water in probe : Sy	C-water consiste sten 15 0	ntly present in	probe B - water typically Equ	blocks probe ipment Used:	Ronte	1 Gem	IF CH4 IS ABOVE	5% CALL PROJECT	MANAGER IMME	DIATELY
arometer	("Hg) (Start):	29.59		Barc	ometer ("Hg) (Finish):		В	arometric Trei	nd:1	
emneratu	ure 41				ther (1onder			·	1.2.1.1	

1

والمسعلات
**

GAS PROBE MONITORING FIELD FORM

Sampling O	rganization:	Paran	etinx		_ Project N	umber: 553 -	- 1550-067				
(Date:	12/17/202	.1		Field Pers	sonnel:	Bran	1			
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO2 (% Volume)	O2 (% Volume)	H ₂ S
GP-37	.063	2.8 to 7.8	868	94 seconds			~	,			
GP-09	.063	6.62 to 10.62	899	98 seconds				17 1			<u> </u>
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds	,,,,,		-				
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds				·			
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds			- W				·····
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds		0.00	1049	5.4	12.9	0.2	1
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec	· ·						•
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds							
GP-15	.167	6.62 to 8.62	4,103 ^B	Check for H2O (448 sec if open)				· · · · · · · · · · · · · · · · · · ·			
GP-32	.063	4.72 to 9.72	416 ⁸	Check for H2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds							
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)							
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33	.063	8.2 to 13.2	1,165*	127 seconds							
*- occasional Comments	water in probe	C-water consiste	ntly present in	probe B - water typically Equ	blocks probe ipment Used:	Ron	I Gem	IF CH4 IS ABOVE	5% CALL PROJECT		
Barometer	("Hg) (Start):	30.39	>	Barc	ometer ("Hg) (Finish):		B	arometric Trei	nd:1	
Temperatu	ire: <u>3</u>	7		Wea	ther: <u>Su</u>	inny			······································		

d1 - 1

وخلعت

5.95

mpling O	rganization:	Para	miti	GAS PROE	BE MONITOR Project N	ING FIELD FO	DRM - 1550-067				
ت وو ا	Date:	12/18/2	.1		_ Field Pers	sonnel:	Bra	ly-	4. 		· · · · · · · · · · · · · · · · · · ·
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO2 (% Volume)	O2 (% Volume)	H ₂ S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds	-						
GP-09	.063	6.62 to 10.62	899	98 seconds							<u></u>
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds							
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds							
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds		· · ·				-	· · · · · · · · · · · · · · · · · · ·
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds		0.01	1027	5.8	13.8	0.1	6
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec		3					
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds							
GP-15	.167	6.62 to 8.62	4,103 ^B	Check for H2O (448 sec if open)					and the second sec		
GP-32	.063	4.72 to 9.72	416 ⁸	Check for H2O (45 sec if open)				:			
GP-03	.063	6.73 to 8.63	725	79 seconds				· · ·			<u></u>
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ^B	Check for H2O (420 sec if open)							
GP-38	.063	3.8 to 8.8	882*	96 seconds		, 200 14					
GP-33	.063	8.2 to 13.2	1,165*	127 seconds							
occasional mments:	water in probe	C - water consister	ntly present in	probe B - water typically	blocks probe ipment Used:	Ren	tal GG	IF CH₄ IS ABOVE	5% CALL PROJECT	MANAGER IMME	DIATELY
rometer	("Hg) (Start):	29.75	.	Barc	ometer ("Hg) (Finish):	-	В	arometric Trei	nd:	1
mperatu	re: 46	ę		Wea	ther:	Rain					

Parametrix

\$ 1

- contains

l'			θ.,,		GAS PI	ROBE MONITOR	ING FIELD FO	DRM				
ampling C	organization: _)7	19	21		Project Ni Field Pers	umber: <u>553</u> -	- 1550-067 D N				
Gas Probe	Probe Diameter (ft)	Scree Interv bto	ened al (ft oc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/r	Depth to Water nin (ft - btoc)	Pressure (in W.C.)	Time	CH ₄ (% Volume)	CO2 (% Volume)	O2 (% Volume)	H ₂ S
GP-37	.063	2.8 to	o 7.8	868	94 seconds		, , , , , , , , , , , , , , , , , , ,					
GP-09	.063	6.62 to	10.62	899	98 seconds							
GP-26	.063	4.62 to	9.62	768 ^c	83 seconds				, ``			
GP-23	.167	6.05 to	0 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to	o 6.25	519	56 seconds							
GP-27	.063	8.57 to	13.57	1,089 ^c	119 seconds							
GP-28	.063	6.59 to	11.59	1,010 ^c	110 seconds		· · · · · · · · · · · · · · · · · · ·		<u></u>			
GP-29	.063	4.62 to	9.62	814 ^c	89 seconds		-0,00	950	5.8	13.7	0.2	5
GP-16	.167	6.60	to 9	5,867*	10 min 18 sec							
GP-31	.063	4.64 to	9.64	548 ^c	60 seconds							
GP-15	.167	6.62 to	o 8.62	4,103 ^B	Check for H2O (448 sec if open)							- -
GP-32	.063	4.72 to	9.72 ס	416 ⁸	Check for H2O (45 sec if open)							
GP-03	.063	6.73 to	5 8.63	725	79 seconds						-	
GP-13	.167	4.91 to	5.41	3,043 ^B	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to	o 6.73	3,862 ^B	Check for H2O (420 sec if open)						Ŧ	
GP-38	.063	3.8 to	o 8.8	882*	96 seconds			-				
GP-33	.063	8.2 to	13.2	1,165*	127 seconds					-	· · · · ·	
- occasiona omments	water in probe	C - wate	er consiste	ently present in	probe B - water typi	cally blocks probe Equipment Used:	Rent	N GEN	IF CH₄ IS ABOVE	5% CALL PROJECT	MANAGER IMME	DIATELY
arometer	("Hg) (Start):	29	97			Barometer ("Hg) (Finish):	29.97	B	arometric Tre	nd:	$\overline{}$
emperatu	ire: <u>40</u>					Veather:	Sunny		".			
						Page 1 of 1	3	1. T. 1.			Pai	ametri

#

~

			•		GAS PROE	BE MONITORI	NG FIELD FO	RM				
S	ampling O	rganization:	Para	etrix		Project Nu	mber: 553 –	1550-067				
	۵	Date:	2/20/20	150		Field Pers	onnel:	Brach				
	Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO2 (% Volume)	O2 (% Volume)	H ₂ S (ppm)
	GP-37	.063	2.8 to 7.8	868	94 seconds							
	GP-09	.063	6.62 to 10.62	899	98 seconds							
	GP-26	.063	4.62 to 9.62	768 ^c	83 seconds							
	GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
	GP-07	.063	5.75 to 6.25	519	56 seconds							
	GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds							
	GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds		er e					
	GP-29	.063	4.62 to 9.62	814 ^c	89 seconds		0.61	116	5.8	3.6	0.3	4
	GP-16	.167	6.60 to 9	5,867*	10 min 18 sec	8 - 	÷					
and .	GP-31	.063	4.64 to 9.64	548 ^c	60 seconds					A		
	GP-15	.167	6.62 to 8.62	4,103 ⁸	Check for H2O (448 sec if open)		1					
	GP-32	.063	4.72 to 9.72	416 ^в	Check for H2O (45 sec if open)							
	GP-03	.063	6.73 to 8.63	725	79 seconds						بې.	
	GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
	GP-11	.167	6.23 to 6.73	3,862 ^B	Check for H2O (420 sec if open)							
	GP-38	.063	3.8 to 8.8	882*	96 seconds							
	GP-33	.063	8.2 to 13.2	1,165*	127 seconds							
C	*- occasional Comments	l water in probe	C - water consiste	ently present in	probe B - water typically Equ	blocks probe	Ren	hal GGn	IF CH4 IS ABOVE	5% CALL PROJECT	MANAGER IMM	EDIATELY
8	arometer	("Hg) (Start):	30.06		Bare	ometer ("Hg) (Finish):		B	arometric Tre	nd: 🗲	\rightarrow
Т	emperatu	ıre: <u>38</u>			Wea	ather: <u>Sn</u>	ow (Ra	i م		× .		

-#

Parametrix

**

				GAS PROB	BE MONITORI	ING FIELD FC	DRM				
Sampling O	rganization:	Para	metris	K	Project Nu	umber: 553 -	- 1550-067				
C	Date:	1221	2021		Field Pers	onnel:	Brad	4			
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO2 (% Volume)	O2 (% Volume)	H ₂ S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds							
GP-09	.063	6.62 to 10.62	899	98 seconds							
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds							
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds		Pro Mili de Server en la composición de					
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds		- 0,02	848	5.4	12.8	0.2	3
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec							
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds							
GP-15	.167	6.62 to 8.62	4,103 ^B	Check for H2O (448 sec if open)							
GP-32	.063	4.72 to 9.72	416 ^B	Check for H2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds							
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ^B	Check for H2O (420 sec if open)							
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33	.063	8.2 to 13.2	1,165*	127 seconds							
*- occasional Comments:	water in probe	C - water consiste	ently present in	probe B - water typically Equ	blocks probe ipment Used:	Rento	JGEM	IF CH4 IS ABOVE	5% CALL PROJECT	MANAGER IMME	DIATELY
Barometer	("Hg) (Start):	29.05		Barc	ometer ("Hg) (Finish):		В	arometric Trei	nd:	7
Temperatu	re: <u>38°</u>	,		Wea	ther: <u>C</u>	012	Second and the state				

Parametrix

1 1

دغيبيت

P.4

GAS PROBE MONITORING FIELD FORM

npling O	rganization: _	Yacan			Project N	umber: <u>553 –</u>	1550-067				
D	ate:	12/22/	21		Field Per	sonnel:	E				
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min*	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO2 (% Volume)	O2 (% Volume)	H₂S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds			-				
GP-09	.063	6.62 to 10.62	899	98 seconds							
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds							
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec		- San					· .
GP-07	.063	5.75 to 6.25	519	56 seconds							***
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds							
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds		-0.01	816	6.0	13.6	0.2	4
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec.							
GP-31	.063	4.64 to 9.64	.548 ^c	60 seconds							
GP-15	.167	6.62 to 8.62	4,103 ^B	Check for H2O (448 sec if open)		· · ·					
GP-32	.063	4.72 to 9.72	416 ^B	Check for H2O (45 sec if open)					a - 15	≥(\$ *>	
GP-03	.063	6.73 to 8.63	725	79 seconds					1 a 8	·	
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)	****						69
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)							*
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33	.063	8.2 to 13.2	1,165*	127 seconds		-0.01	827	0.0	9.2	5.2	0
- occasional omments:	water in probe	C - water consiste	ntly present in	probe B - water typically Equi	blocks probe pment Used:	Ren	al Ger	LIF CH₄ IS ABOVE	5% CALL PROJECT	MANAGER IMME	DIATELY
rometer	("Hg) (Start):	29.68		Baro	meter ("Hg)	Finish):	29.71	В	arometric Trei	nd:V	
emperatu	re: <u>45</u>			Wea	ther:C	londy		····			

 $\cdot_{\mathbf{5}_{\mathbf{Y}}},$

1 1

- compiles

GAS PROBE MONITORING FIELD FORM

	Jate:	012212	100-1		- Field Pers	onner.	nannio	n 0110	ia s		
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO ₂ (% Volume)	O2 (% Volume)	H₂S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds	1-10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	10.00					
GP-09	.063	6.62 to 10.62	899	98 seconds				1	1		
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds							
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec				1			
GP-07	.063	5.75 to 6.25	519	56 seconds				a			
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds				1.			
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds			-		1.1.1.1.1		
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds		5	1918	6.1	129	5.1	~
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec				- e			
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds				1.00			
GP-15	.167	6.62 to 8.62	4,103 ^B	Check for H2O (448 sec if open)							
GP-32	.063	4.72 to 9.72	416 ^B	Check for H2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds				1	1.	1	
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)				1.00			
GP-38	.063	3.8 to 8.8	882*	96 seconds			1				
GP-33	.063	8.2 to 13.2	1,165*	127 seconds				10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			

Barometer ("Hg) (Start):	29.17
Temperature: 43	2.0

Barometer ("Hg) (Finish):	29

.47

Barometric Trend:

Weather: Ducroas

Parametrix

GAS PROBE MONITORING FIELD FORM

Sampling Organization: SPU

Project Number: 553-1550-067

Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO ₂ (% Volume)	O2 (% Volume)	H ₂ S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds	1-1-27		1		í	-	1
GP-09	.063	6.62 to 10.62	899	98 seconds							
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds							
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec			1		1		
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds							-
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds		0.01	1924	1.2	128	AL	
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec		0.01	0.01	1.91	1.053.0	0.1	
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds							
GP-15	.167	6.62 to 8.62	4,103 ^B	Check for H2O (448 sec If open)							
GP-32	.063	4.72 to 9.72	416 ⁸	Check for H2O (45 sec if open)				-			
GP-03	.063	6.73 to 8.63	725	79 seconds				1.00			
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)	1	1					
GP-11	.167	6.23 to 6.73	3,862 ^B	Check for H2O (420 sec if open)						1	
GP-38	.063	3.8 to 8.8	882*	96 seconds		10000	1	1	-		
GP-33	.063	8.2 to 13.2	1,165*	127 seconds		(1	1			
occasional nments ometer	water in probe	C-water consistent	y present in pr	obe B - water typically bloc Equ Barc	ks probe ipment Used: ometer ("Hg) (Gem S	5000	IF CH₄ IS Ba	ABOVE 5% CALL I	PROJECT MANAGEF Laura Lee	R IMMEDIATE 2 425-941-94
nperatu	re:	38'F		Wea	ther: Ou	ercast					
inperatu		20 1		Wea	age 1 of 1	encast				Para	an

GAS PROBE MONITORING FIELD FORM

	Date:	2/27/2	Durgo		Field Pers	sonnel: <u>S</u>	. Otra	125 -	T. Ste	imel	
Gas Probe	Diameter (ft)	Interval (ft btoc)	Volume (cc)	Purge Duration Purge rate = 550 ml/min	Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO ₂ (% Volume)	O ₂ (% Volume)	H ₂ S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds	1		1102271				
GP-09	.063	6.62 to 10.62	899	98 seconds						1	111
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds					1		
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to 6.25	519	56 seconds		1	1				
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds		1					
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds	/	501	12:41	18	1200	10.2	1
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec	-	0.01	1= 1)	+ 4	million	0.00	-
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds							
GP-15	.167	6.62 to 8.62	4,103 ^B	Check for H2O (448 sec if open)	<u>}</u>						
GP-32	.063	4.72 to 9.72	416 ^B	Check for H2O (45 sec If open)				1			
GP-03	.063	6.73 to 8.63	725	79 seconds	1.000						1
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							1
GP-11	.167	6.23 to 6.73	3,862 ^B	Check for H2O (420 sec if open)	-						1
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33	.063	8.2 to 13.2	1,165*	127 seconds				A		4	
nments: ometer	water in probe	C-water consistent	y present in pr	B - water typically block	s probe pment Used: meter ("Hg) (I	Gem	5000	IF CH4 IS	ABOVE 5% CALL F prometric Tren	ROJECT MANAGEI	R IMMEDIAT e 425-941-9

**

GAS PROBE MONITORING FIELD FORM

Sampling Or	rganization:	Paran	netrix	0	Project Nu	umber: <u>553 –</u>	1550-067				
D	ate: 12	129/21			Field Pers	onnel:	Brade	٩			
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO2 (% Volume)	O2 (% Volume)	H ₂ S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds							
GP-09	.063	6.62 to 10.62	899	98 seconds							
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds							
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds							
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds		-0.02	816	1.2	12.6	1.4	0
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec	```						
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds							
GP-15	.167	6.62 to 8.62	4,103 ^B	Check for H2O (448 sec if open)	с. С. С.						
GP-32	.063	4.72 to 9.72	416 ⁸	Check for H2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds			····				
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)				~~~~~			
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)							
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33	.063	8.2 to 13.2	1,165*	127 seconds		0.01	827	0.1	9.5	3.5	0
*- occasional Comments:	water in probe	C - water consiste	ntly present in	probe B - water typically Equ	v blocks probe vipment Used:	Rente	al GEM	IF CH4 IS ABOVE	5% CALL PROJECT	r MANAGER IMM	
Barometer Temperatu	("Hg) (Start): re: <u>23</u>	0 29.11		Bard Wea	ometer ("Hg) (ather: <u>5</u>	Finish):		B	arometric Trei	na:	•

* *

والمصير

3

GAS PROBE MONITORING FIELD FORM

ampling	Organization:	Pors an	dr.x		Project N	lumber: 553	- 1550-067				
	Date:	622			Field Per	sonnel:	Br	ady	Triff for		
Gas Probe	Probe Diameter (ft)	Screened Interval (ft	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH4 (% Volume)	CO ₂ (% Volume)	O2 (% Volume)	H ₂ S
GP-37	.063	2.8 to 7.8	868	94 seconds							
GP-09	.063	6.62 to 10.62	899	98 seconds							
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds		1		<u> </u>			
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec					· ·		
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds							<u></u>
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds						а. 1915 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 — 1917 —	
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds		0.01	9:05	1.4	11.7	0.1	
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec	· ·						
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds							
GP-15	.167	6.62 to 8.62	4,103 ^B	Check for H2O (448 sec if open)						· · · · · · · · · · · · · · · · · · ·	
GP-32	.063	4.72 to 9.72	416 ^B	Check for H2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds						~	
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)							
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33	.063	8.2 to 13.2	1,165*	127 seconds	· · · ·	0.03	9.14	0.0	4.6	1.3	0
occasiona mments	l water in probe	C-water consister	ntly present in	probe B - water typically Equi	blocks probe pment Used:	Real	d Gem	IF CH4 IS ABOVE	5% CALL PROJECT	MANAGER IMMED	NATELY
rometer	" ("Hg) (Start):	29-	10	Baro	meter ("Hg) ((Finish):		Ba	arometric Tren	d: 🖌	
mperati	ure: 45			Wear	ther:	Lainy	· · · · · · · · · · · · · · · · · · ·	**********			

and the second

Parametrix

South	Park	Landfill

GAS PROBE MONITORING FIELD FORM

Sampling O	rganization:	Param	etily		Project Nu	umber: _553 —	1550-067				
۵)ate:	2/2022			Field Pers	onnel:	Bra	dy			
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO2 (% Volume)	O2 (% Volume)	H₂S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds							
GP-09	.063	6.62 to 10.62	899	98 seconds							
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds			······				
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to 6.25	519	56 seconds							
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds			27	a a sa sa			
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds	· · · · · ·	-0,03	1045	1,2	11.0	0.3	3
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec				·			
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds		-m _ 1					·
GP-15	.167	6.62 to 8.62	4,103 ^B	Check for H2O (448 sec if open)			. /				*
GP-32	.063	4.72 to 9.72	416 ⁸	Check for H2O (45 sec if open)				1	<u>}</u>		Non 1.
GP-03	.063	6.73 to 8.63	725	79 seconds				*			
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)							
GP-11	.167	6.23 to 6.73	3,862 ^B	Check for H2O (420 sec if open)							
GP-38	.063	3.8 to 8.8	882*	96 seconds							
GP-33	.063	8.2 to 13.2	1,165*	127 seconds							
*- occasiona Comments	l water in probe	C - water consiste	ently present ir	n probe B - water typicall Eq	y blocks probe uipment Used	Re	tel Gor	IF CH4 IS ABOVE	5% CALL PROJEC	T MANAGER IMM	EDIATELY
Barometer	("Hg) (Start):	29.72		Bar	ometer ("Hg)	(Finish):	· 84		Barometric Tre	end:	to -7
Temperate	ure: 54	ł		We	ather:	rizzle					

T 1

وأقسعت

GAS PROBE MONITORING FIELD FORM

0	Date: 1/1	9/22			_ Field Per	sonnel: <u>5</u>	S h	77			
Gas Probe	Probe Diameter (ft)	Screened Interval (ft btoc)	Purge Volume (cc)	Purge Duration Purge rate = 550 ml/min	Depth to Water (ft - btoc)	Pressure (in W.C.)	Time	CH₄ (% Volume)	CO ₂ (% Volume)	Oz (% Volume)	H₂S (ppm)
GP-37	.063	2.8 to 7.8	868	94 seconds							
GP-09	.063	6.62 to 10.62	899	98 seconds			1.				
GP-26	.063	4.62 to 9.62	768 ^c	83 seconds	1						
GP-23	.167	6.05 to 7.05	4,940*	8 min 59 sec							
GP-07	.063	5.75 to 6.25	519	56 seconds			1.00				
GP-27	.063	8.57 to 13.57	1,089 ^c	119 seconds							
GP-28	.063	6.59 to 11.59	1,010 ^c	110 seconds							-
GP-29	.063	4.62 to 9.62	814 ^c	89 seconds	-	-0.01	9:30	0.5	-10.6	0.1	/
GP-16	.167	6.60 to 9	5,867*	10 min 18 sec							
GP-31	.063	4.64 to 9.64	548 ^c	60 seconds			i				
GP-15	.167	6.62 to 8.62	4,103 ⁸	Check for H2O (448 sec if open)			1	1 - 1			
GP-32	.063	4.72 to 9.72	416 ^B	Check for H2O (45 sec if open)							
GP-03	.063	6.73 to 8.63	725	79 seconds							
GP-13	.167	4.91 to 5.41	3,043 ⁸	Check for H2O (332 sec if open)	· (
GP-11	.167	6.23 to 6.73	3,862 ⁸	Check for H2O (420 sec if open)		1					
GP-38	.063	3.8 to 8.8	882*	96 seconds				-			
GP-33	.063	8.2 to 13.2	1,165*	127 seconds			-				
- occasional	water in probe : <u>Blowe</u>	C - water consistent	ly present in p	robe B - water typically bloc	ipment Used	Gem	#1	IF CH4 IS	ABOVE 5% CALL	PROJECT MANAGE Laura Le	R IMMEDIAT e 425-941-94
arometer	("Hg) (Start):	30.35		Bard	ometer ("Hg)	(Finish):	30.31	В	arometric Tre	nd:	
emperatu	ire: 43	5		Wea	ather: Part	Cloudy					

Attachment E

Indoor Air Monitoring Field Sheets

Off-Site Building Monitoring
Date: 11/30/2021 Location: 7958 OCCIDENTAL
Inspector: BRADY STRAWS Owner: WG CLARK
Reason for Monitoring: <u>GP-33</u> Exceedance
meet w/ Jeff Franks 206-793-4792 from
WG Clark
Instrument Used: LANDTEC GEM 5000 Det linit 0.1% BU
Describe monitoring; include locations, building type, cracks in foundation or floors, etc.:
WG Clark noted they have a LFG mitigation system discharges
from pipe on north side roof. Measured LFG at following locations?
·N side exterior pipe 0.0
· Repair blog crack in Foundation 0.0
- main blog garage door area 0.0
· slab/asphalt connection 0.0
· Power conduit west side of 66/ 0.0
· NW sole drain conduct next to slab 0.0

-

5

Ŷ

- States

Off-Site Building Monitoring
Date: 12/3/21 Location: 7958 OCCIDENTAL
Inspector: Brady Owner: WG CLARK
Reason for Monitoring: <u>GP-33 Exceedance</u>
Arrive 1500, WG clock closed
Instrument Used: TVA 2020 FID PPM DET LIMIT
Describe monitoring; include locations, building type, cracks in foundation or floors, etc.:
WG Clark is closed for day. collect
measurements from exterior w/ FID.
· BACKGROUND 1.5 PPM START UP
- SOUTH OF BLOC 1.3 PPM (edge of asphalt slab)
· WEST OF BLOG 1.2 PPM (" '')
· SOUTH EAST 1.0 ppm (" ")
- ATGP-11/MW-12 0.8 ppm

F:\projects\COS-SPARK\5000 - CAP\07 SPARK CAP Final\04 Appendix A OMMP\Attachment A.2 Landfill Gas MCP\04 Exhibit\02_Off-Site Building Monitoring 2018-0312.docx **Off-Site Building Monitoring**

Attachment F

Photographs

Photo of the gas system control panel taken November 29, 2021. The Blower No. 2 overload light is lit red.

Control Panel Schematic

Photo of the gas system control panel taken December 2, 2022. The Blower No. 2 light indicating the system is lit green and the overload light is off.

Parametrix

553-1550-067/December 2021

C3-B

SPPD Corrective Action Report

Oregon Portland | Baker City

> California Oakland | Irvine

SPPD PROPERTY LANDFILL GAS COLLECTION AND CONTROL CORRECTIVE ACTION SUMMARY REPORT

SOUTH PARK LANDFILL SITE SEATTLE, WASHINGTON

Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 408-002

For: South Park Property Development, LLC c/o SEACON, L.L.C. 165 Northeast Juniper Street, Suite 100 Issaquah, Washington

February 18, 2022

Prepared by:

Russell Luiten, P.E. Associate Engineer

Reviewed by:

Junovil T. Selment

Clifford T. Schmitt, L.G., L.H.G. Principal Hydrogeologist

\EDGEFS02\Projects\408 South Park Prop Dev\408002 SPPD Property Specific Work\Reports\2021 Corrective Action Summary Rpt\2021 Corrective Action Summary Report.docx

Your Challenges. Our Priority. | farallonconsulting.com

TABLE OF CONTENTS

1.0	INTRODUCTION	1-1
2.0	CORRECTIVE ACTION RESULTS	
3.0	ADDITIONAL INVESTIGATIONS AND FUTURE WORK	
4.0	REFERENCES	
5.0	LIMITATIONS	
	5.1 GENERAL LIMITATIONS	

FIGURES

|--|

Figure 2 Property Map

TABLES

Table 1Perimeter Probe Compliance Monitoring Data, GP-29 and GP-33

i

ACRONYMS AND ABBREVIATIONS

Corrective Action Plan	SPPD Property Landfill Gas Collection and Control System Corrective Action Plan, South Park Landfill Site, Seattle, Washington dated December 22, 2021 prepared for SPPD by Farallon
Ecology	Washington State Department of Ecology
Farallon	Farallon Consulting, L.L.C.
LEL	lower explosive limit (5 percent methane)
LFGCCS	landfill gas collection and control system
LFG	landfill gas
OMMP	Operations, Maintenance, and Monitoring Plan
South Park Landfill Site	the locations where contamination caused by the release of hazardous substances from the South Park Landfill has come to be located
SPPD	South Park Property Development, LLC
SPPD Property	a 19.4-acre parcel purchased by South Park Property Development, LLC from King County in 2006 (King County Parcel No. 3224049005)

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this Corrective Action Summary Report on behalf of South Park Property Development, LLC (SPPD) to provide a summary of the corrective actions conducted in response to methane concentrations exceeding the lower explosive limit (LEL) at a compliance perimeter probe proximate to the SPPD-owned landfill gas collection and control system (LFGCCS) at a portion of what is known as the South Park Landfill in the South Park neighborhood of Seattle, Washington (Figure 1). The LFGCCS was designed to capture landfill gas (LFG) generated by mixed municipal solid waste at an approximately 19.4-acre parcel within the South Park Landfill that SPPD purchased from King County in 2006 (King County Parcel No. 3224049005) (SPPD Property) (Figure 2). Corrective actions for reducing methane concentrations in a perimeter probe adjacent to the SPPD LFGCCS were outlined in the *SPPD Property Landfill Gas Collection and Control System Corrective Action Plan, South Park Landfill Site, Seattle, Washington* dated December 22, 2021 prepared for SPPD by Farallon (2021) (Corrective Action Plan), which was submitted to the Washington State Department of Ecology (Ecology) on December 22, 2021.

The Landfill Post-Closure Operations, Maintenance, and Monitoring Plan (OMMP) (Floyd|Snider 2018) is an appendix to the South Park Landfill, Final Cleanup Action Plan dated March 2018, prepared by Ecology. The OMMP (2018) describes monitoring requirements and criteria for additional actions for the SPPD Property, South Recycling and Disposal Station Property, and certain adjacent rights-of-way (Figures 1 and 2). Contingent actions are triggered in the OMMP when concentrations of methane exceed 5 percent by volume in the perimeter probes.

Since December 27, 2021, concentrations of methane in perimeter probes proximate to the SPPD Property have been in compliance with the criteria as defined in the OMMP. The purpose of this Corrective Action Summary Report is to summarize the recent corrective actions completed, present results of additional monitoring and testing, provide a description of the suspected cause leading to the perimeter probes exceeding the methane concentration limit defined in the OMMP, and describe future operation of the LFGCCS.

2.0 CORRECTIVE ACTION RESULTS

The Corrective Action Plan outlined the following short-term actions for the SPPD LFGCCS to reduce methane concentrations in gas probe GP-29 and confirm that the SPPD-owned LFGCCS is operating as designed. In accordance with the Corrective Action Plan, these actions were completed within 7 days of providing the Corrective Action Plan to Ecology:

- 1. Vacuum verification testing of LFG collector H-5 conveyance piping;
- 2. Temporary modifications to the LFGCCS air dilution intake piping; and
- Installation of methane detectors in the buildings at the property located at 8250 5th Avenue South (King County Parcel No. 7883600350), in Seattle Washington (former Ness Manitowoc Property).

A summary of the short-term corrective actions conducted and the results are as follows:

1. Vacuum verification testing of LFG collection H-5 was conducted on December 22, 2021. A vacuum monitoring port was installed at the connection point of the horizontal collection piping of LFG collector H-5. From the horizontal well connection point, conveyance piping is routed to the control assembly at the top of the slope of the SPPD Property where extracted LFG parameters are monitored and vacuum of this collector well is adjusted.

On December 22, 2021, vacuum was monitored at the control assembly and the trench connection point with results of 2.361 and 2.345 inches of water column, respectively. The minimal vacuum difference between the two monitoring points represents the pipe friction losses and confirms that the conveyance piping does not have a break or leak preventing application of the full vacuum to the LFG collector well screen.

- 2. Modifications to the air dilution intake for the LFGCCS were conducted on December 20, 2021 to increase the overall extraction flowrate and vacuum applied to the LFG collector network. A series of reducing PVC bushings were temporarily installed on the air dilution intake to decrease the dilution air for the LFGCCS. The reduction in dilution air to the LFGCCS increased the vacuum and extraction flowrate to the LFG collection network. With increasing flowrate and vacuum to the LFG collector network, a subset of LFG collection wells had their flowrates reduced on December 20 and 22, 2021 to increase the flowrate of LFG collector H-5.
- 3. Four Techamor Y401 methane detectors were installed in the buildings located at and associated with the property at 8250 5th Avenue South. One methane detector was placed in the western building, two methane detectors were placed in the central building, and one methane detector was placed in the in the building located at 500 South Sullivan Street (King County Parcel No. 7883600600) on the south-adjacent property (Figure 2). The 8250 5th Avenue South property previously had power service disconnected and was being restored as part of tenant improvements. Power was restored to the 8250 5th Avenue South

property on January 4, 2022, and subsequently to the methane detectors. Methane has not been detected at the four methane detector locations.

Medium-term or long-term corrective actions were not necessary, because methane concentrations were less than its LEL on December 27, 2021. From November 29 to December 24, 2021 methane concentration in gas probe GP-29 ranged from 4.7 to 6.2 percent by volume. During the December 27, 2021 monitoring event, methane concentrations in gas probe GP-29 were 1.8 percent by volume and confirmed to be less than methane's LEL on December 29, 2021 when methane concentrations were 1.2 percent by volume. Weekly methane monitoring of gas probe GP-29 had a decreasing trend with the last monitoring event for the corrective action with a concentration of 0.5 percent by volume on January 19, 2022 (Table 1).

Concentrations of methane in gas probe GP-33 have remained less than the LEL since the monitoring event on December 1, 2021.

3.0 ADDITIONAL INVESTIGATIONS AND FUTURE WORK

The SPPD-owned LFGCCS was discovered shut down during the November 29, 2021 LFG monitoring event. The current operational blower, Blower No. 2, had an overload alarm from the blower thermal overload tripping. The thermal overload breaker for Blower No. 2 was reset on November 30, 2021, and the LFGCCS resumed operation and has operated continuously since that time. The cause of the thermal overload, and the duration of the period that the LFGCCS was not operational, has not been determined but is suspected to have been caused by a power surge related to a localized regional power outage. The LFGCCS has an alarm monitoring system that is supposed to call a preprogramed phone number when alarm conditions occur, such as the power outage or thermal overload. A notification was not received by the LFGCCS operator from the thermal overload for Blower No. 2. The alarm monitoring system's backup batteries no longer had a charge, and the alarm system was unable to place a call if there was a power outage. The batteries for the alarm system were replaced on January 3, 2022. The alarm system will be replaced with a telemetry system with cellular service and data-logging capabilities. The replacement alarm notification system is awaiting delivery and is expected to be installed by the end of February 2022. In addition to replacement of the notification system, additional alarm zones for reporting blower voltage present will be added to the alarm zones. Blower voltage present will be an indicator of if the blower is operational.

Methane accumulated proximate to gas probe GP-29 was removed from soil gas by increased LFG extraction at collector H-5. With methane concentrations below the LEL in gas probe GP-29, the LFGCCS will be rebalanced to its steady-state operation to control LFG generated on the SPPD Property. Rebalancing could include removal of portions of the air dilution intake modifications described in Section 2, Corrective Action Results.

4.0 REFERENCES

- Farallon Consulting, L.L.C. (Farallon). 2016. SPPD Property Landfill Gas Collection and Control System Operation, Maintenance, and Monitoring Plan, South Park Landfill Site, Seattle, Washington. Prepared for South Park Property Development, LLC. June 7.
 - —. 2021. SPPD Property Landfill Gas Collection and Control System Corrective Action Plan, South Park Landfill Site, Seattle, Washington. Prepared for South Park Property Development, LLC. December 22.
- Floyd|Snider. 2018. South Park Landfill Post-Closure Operations, Maintenance, and Monitoring Plan. Prepared for City of Seattle and South Park Property Development, LLC. March.
- Washington State Department of Ecology (Ecology). 2018. South Park Landfill, Final Cleanup Action Plan. March 2018.

4-1

5.0 LIMITATIONS

5.1 GENERAL LIMITATIONS

The conclusions contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location. The conclusions contained herein are subject to the following inherent limitations:

- Accuracy of Information. Farallon obtained, reviewed, and evaluated certain information used in this report/assessment from sources that were believed to be reliable. Farallon's conclusions, opinions, and recommendations are based in part on such information. Farallon's services did not include verification of its accuracy or authenticity. Should the information upon which Farallon relied prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.
- **Reconnaissance and/or Characterization**. Farallon performed a reconnaissance and/or characterization of the Site that is the subject of this report/assessment to document current conditions. Farallon focused on areas deemed more likely to exhibit hazardous materials conditions. Contamination may exist in other areas of the Site that were not investigated or were inaccessible. Site activities beyond Farallon's control could change at any time after the completion of this report/assessment.

For the foregoing reasons, Farallon cannot and does not warrant or guarantee that the Site is free of hazardous or potentially hazardous substances or conditions, or that latent or undiscovered conditions will not become evident in the future. Farallon's observations, findings, and opinions can be considered valid only as of the date of the report.

This report/assessment has been prepared in accordance with the contract for services between Farallon and South Park Property Development L.L.C., and currently accepted industry standards. No other warranties, representations, or certifications are made.

FIGURES

SPPD PROPERTY LANDFILL GAS COLLECTION AND CONTROL CORRECTIVE ACTION SUMMARY South Park Landfill Site Seattle, Washington

Farallon PN: 408-002

TABLE

SPPD PROPERTY LANDFILL GAS COLLECTION AND CONTROL CORRECTIVE ACTION SUMMARY South Park Landfill Site Seattle, Washington

Farallon PN: 408-002

Table 1Perimeter Probe Compliance Monitoring Data, GP-29 and GP-33South Park Landfill SiteSeattle, WashingtonFarallon PN: 408-002

			Well Head	LFG	Monitoring Param	neters ⁵			
Monitoring		Barometric	Pressure	CH4	CO ₂	02	Balance Gas	CO	LEL
Location	Start Date ²	(in. Hg) ³	(in. H ₂ O) ⁴	(% Volume)	(% Volume)	(% Volume)	(% Volume)	(ppm)	(% CH4)
	2/7/2011	30.10	0.06	7.1	12.5	0.0	-	-	-
	2/21/2011	29.89	0.09	3.6	6.9	9.0	-	-	-
	5/25/2011	29.75	-0.05	2.4	4.1	12.6	-	-	-
	6/27/2011	29.68	0.11	8.5	13.1	0.0	-	-	-
	9/23/2011	29.99	0.03	7.2	14.2	0.0	-	-	-
	11/17/2011	29.73	-0.22	7.1	12.2	3.7	-	-	-
	12/28/2011	29.95	-0.11	8.1	15.1	0.0	-	- 41.0	-
	6/25/2013	29.8	-	6.6	12.5	0.0	80.4	- 41.0	-
	9/2/2014	29.67	-	8.1	16.6	0.5	74.9	-	100.0
	10/13/2014	29.71	0.003	8.5	16.9	0.0	-	-	100.0
	11/6/2014	29.85	-0.047	8.9	14.9	0.0	-	-	-
	1/28/2015	30.03	-	1.0	14.9	0.0	-	-	-
	2/26/2015	29.99	0.000	1.4	9.9	28.0	-	-	-
	5/12/2015	29.69	0.000	4.9	14.3	0.0	80.8	-	99.0
	11/17/2015	29.58	0.000	10.6	16.5	0.0	72.8	-	100.0
	12/17/2015	29.73	0.000	6.2	12.4	0.4	80.8	0.0	100.0
	2/1//2016	29.36	0.000	2.9	12.2	0.0	84.8	0.0	-
	3/18/2016	30.02	-	1.5	11.2	0.0	87.0	13.0	13.0
	4/13/2016	30.01	0.000	2.2	9.2	0.0	88.5	0.0	0.0
	5/11/2016	30.01	0.000	1.2	12.2	0.0	86.6	0.0	-
	6/13/2016	29.95	-	0.4	16.1	0.0	83.4	0.0	8.0
	9/26/2016	29.93	-0.009	0.0	15.5	0.0	84.4	0.0	0.0
	12/8/2010	29.97	0.000	3.1	15.1	0.0	81.8	0.0	-
	12/29/2016	30.11	-0.005	0.0	13.6	0.0	86.3	0.0	-
	3/21/2017	29.67	-0.047	0.9	15.1	0.1	83.8	-	-
	6/2/2017	29.97	-0.038	0.0	14.7	0.1	85.9	0.0	0.0
	9/6/2017	29.78	-0.031	0.0	0.4	20.0	79.6 81.1	-	-
	3/9/2018	29.78	0.024	0.0	12.3	0.0	87.1	-	-
	5/21/2018	29.92	0.000	0.0	15.9	0.0	84.0	-	-
GP-29	9/13/2018	29.93	0.000	0.8	20.3	0.0	78.7	-	-
01-27	12/26/2018	30.05	-	0.0	13.1	0.6	85.1	-	-
	4/1/2019	29.62	-	1.2	0.3	15.3	-	-	-
	8/24/2020	30.03	0.000	1.4	11.8	2.0	-	-	-
	11/9/2020	30.05	0.000	2.9	14.3	1.6	-	-	-
	2/22/2021	30.15	0.000	2.0	7.3	6.1	-	-	-
	5/17/2021	29.89	-0.020	1.6	14.1	-	-	-	-
	8/23/2021	29.66	-0.020	1.5	21.4	-	-	-	-
	11/29/2021	30.24	0.000	5.1	13.5	0.0	-	-	-
	11/30/2021	30.23	0.030	5.2	13.4	0.2	-	-	-
	12/1/2021	30.16	0.010	5.2	13.5	0.0	-	-	-
	12/2/2021	30.27	-0.060	4.9	13.2	0.2	-	-	-
	12/3/2021	30.32	0.010	5.0	13.2	0.1	-	-	-
	12/6/2021	29.99	-0.020	5.3	14.0	0.3	-	-	-
	12/7/2021	29.58	0.010	5.3	14.0	0.1	-	-	-
	12/8/2021	29.61	-0.020	5.2	13.9	0.1	-	-	-
	12/9/2021	29.89	-0.030	5.4	14.1	0.1	-	-	-
	12/10/2021	30.07	0.010	5.4	13.8	0.3	-	-	-
	12/13/2021	29.4	-0.010	5.2	13.9	0.1	-	-	-
	12/15/2021	29.73	0.030	5.3	13.3	0.1	-	-	-
	12/16/2021	29.59	-0.010	5.3	13.5	0.2	-	-	-
	12/17/2021	30.35	0.000	5.4	12.9	0.2	-	-	-
	12/18/2021	29.75	0.010	5.8	13.8	0.1	-	-	-
	12/19/2021	30.06	0.000	5.8	13.7	0.2	-	-	-
	12/22/2022	29.71	-0.010	6.0	13.6	0.2	-	-	-
	12/23/2021	29.47	-0.050	6.1	12.9	0.1	-	-	-
	12/24/2021	29.27	0.010	6.2	12.8	0.1			
	12/27/2021	29.85	0.010	1.8	12.0	0.2	-	-	-
	1/6/2022	29.91	-0.020	1.2	12.0	0.1	-	-	-
	1/12/2022	29.72	-0.030	1.2	11.0	0.3	-	-	-
	1/19/2022	30.31	-0.010	0.5	10.6	0.1	-	-	-

Table 1 Perimeter Probe Compliance Monitoring Data, GP-29 and GP-33 South Park Landfill Site Seattle, Washington Farallon PN: 408-002

			Well Head	LFG	Monitoring Paran	neters ⁵			
Monitoring		Barometric	Pressure	CH4	CO ₂	O2	Balance Gas	CO	LEL
Location	Start Date ²	(in Hg) ³	$(in, H_2O)^4$	(% Volume)	(% Volume)	(% Volume)	(% Volume)	(ppm)	(% CH4)
Location	5/22/2013	29.84	-0.15	1.5	11.7	3.3	83.5	293.0	29.0
	6/18/2013	29.82	0	0.0	12.8	5.0	82.1	0.0	0.0
	6/19/2013	29.01	-0.004	0.0	13.7	4.3	81.9	0.0	0.0
	6/25/2014	29.72	0.018	0.0	13.7	1.2	85.0	0.0	0.0
	10/13/2014	29.55	-0.013	4.9	16.5	0.0	78.7	-	97.0
	11/6/2014	29.93	0.033	0.0	1.2	18.9	-	-	-
-	2/26/2015	30	0.014	0.0	7.2	3.5	-	-	-
-	5/12/2015	29.63	0	7.6	6.5	10.3	75.3		100.0
	12/17/2015	29.69	-0.07	18.7	3.8	0.1	77.4	0.0	100.0
-	3/18/2016	30.03	-	19.8	7.0	0.0	73.1	4.0	-
	3/18/2016	-	-	18.2	5.5	0.0	76.2	-	-
	4/13/2016	30.01	0.059	22.0	11.3	0.0	66.6	-	-
	5/11/2016	30.06	-0.05	4.6	9.7	0.0	85.6	10.0	-
	6/13/2016	29.92	-0.03	0.0	1.4	20.4	78.1	9.0	0.0
	6/28/2016	30.09	-0.033	0.1	10.6	0.8	88.4	-	-
	9/26/2016	29.95	-0.019	0.0	10.6	0.1	89.3	0.0	0.0
	12/8/2016	30.08	0.023	4.5	4.6	0.0	90.9	0.0	90.0
	12/22/2016	-	-	8.0	6.1	0.2	85.5	0.0	-
	12/29/2016	30.11	0.025	4.0	6.6	0.0	83.3	0.0	-
	3/21/2017	29.67	0.023	3.5	3.0	2.6	90.7	-	-
	5/31/2017	-	-	0.0	2.6	8.6	88.7	-	0.0
	9/6/2017	29.87	-0.265	0.8	10.3	0.0	88.7	-	-
CD 22	10/19/2017	29.87	-0.265	0.0	10.0	1.6	88.4	0.0	0.0
GF-55	3/9/2018	29.97	0.104	0.0	6.3	4.0	89.6	-	-
	5/21/2018	30.03	0	0.0	6.2	6.6	87.1	-	-
	9/12/2018	29.87	0	0.0	11.6	1.9	86.5	-	-
	12/26/2018	30.5	-	0.0	8.1	4.1	87.8	-	-
	4/1/2019	30.24	-	0.0	3.0	11.6	-	-	-
	5/14/2020	29.97	0	0.0	5.5	8.0	-	-	-
	8/24/2020	30.03	0	0.0	6.7	9.5	-	-	-
	11/9/2020	30.05	0	0.0	4.9	13.5	-	-	-
	2/22/2021	30.15	0	0.0	4.2	6.2	-	-	-
	5/17/2021	29.89	-0.05	0.0	4.7	8.2	-	-	-
	8/23/2021	29.66	10.74	0.0	8.3	6.0	-	-	-
	11/15/2021	29.55	0	4.5	9.3	0.0	-	-	-
	11/29/2021	30.24	0.07	5.0	8.0	0.0	-	-	-
	11/30/2021	30.23	-0.3	5.2	7.9	0.0	-	-	-
	12/1/2021	30.16	0.03	4.9	8.0	0.0	-	-	-
	12/2/2021	30.27	-0.09	2.4	8.0	0.0	-	-	-
	12/3/2021	30.32	-	1.7	8.2	0.1	-	-	-
	12/4/2021	30.14	-0.02	0.9	8.5	0.0	-	-	-
	12/6/2021	29.99	-0.01	0.6	9.5	0.0	-	-	-
	12/7/2021	29.58	0	0.5	9.6	0.0	-	-	-
	12/10/2021	30.07	0	0.4	10.0	0.0	-	-	-
	12/16/2021	29.59	-0.02	0.0	9.4	2.1	-	-	-
	12/29/2022	29.91	0.01	0.1	9.5	3.5	-	-	-
BH-1	12/10/2021	-	-	0.0	0.1	18.3	81.6	-	0.0
	12/20/2021	-	-	0.0	0.0	17.5	82.5	-	0.0
Screening Level			1	5.0	NA	NA	NA	NA	100

NOTES:

Results in **bold** denote that monitoring results are equal to or exceed the Lower Explosive Limit.

- denotes no data available.

1 Monitoring Locations are those identified for compliance monitoring in the Interim Action Compliance Monitoring Plan, Appendix C of the Interim Action Work Plan, South Park Landfill Site, CO = carbon monoxide ¹²Monitoring data following May 22, 2013 until October 2017 were collected by Farallon. All prior data were collected

by Floyd Snider; Aspect Consulting LLC; Associated Earth Sciences, Inc; Herrera Environmental Consultants, Inc.; and

King County Solid Waste Division. Data following were collected by SeaCon LLC and Paramtrix

³Barometric pressure data collected by Farallon using the GEM 2000.

⁴ Well head pressure measured using the Dwyer 475-2-FM Series 475 MK III Handheld Digital Manometer by Farallon.

^{5D}ata collected by Farallon using the GEM 2000, calibrated prior to monitoring.

% = percent

 CO_2 = carbon dioxide $H_2O = water$

Hg = mercury

in. = inches

LEL = lower explosive limit

LFG = landfill gas

O₂ = oxygen ppm = parts per million

CH₄ = methane

Appendix D

Groundwater Monitoring

D1

Time-Series Plots

D = Downgradient

U = Upgradient

South Park Landfill

A-Zone CPOC Wells

South Park Landfill

D = Downgradient

D = Downgradient

U = Upgradient

South Park Landfill

ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

A-Zone CPOC Wells

D = Downgradient

U = Upgradient

South Park Landfill

D2

Trend Analyses

APPENDIX D2

Trend Analyses

Per the CAP, the Mann-Kendall test was used to statistically evaluate groundwater quality trends. The Mann-Kendall test is a nonparametric trend evaluation procedure that can be used when there are missing values or when the data do not conform to any particular distribution. The Mann-Kendall test only uses directional differences (positive, zero, negative) of the data rather than the measured values. In statistical terms, the Mann-Kendall test is a nonparametric test for zero slope of the linear regression of time-ordered data versus time (Gilbert 1987). For the Mann-Kendall test, the null hypothesis (H₀) is no trend (i.e., the observations are randomly ordered in time), which is tested against the alternative hypothesis (H_A) of an increasing or decreasing monotonic trend.

An assumption underlying the Mann-Kendall test is that the time-ordered data are monotonic (Salmi et al. 2002); that is, the successive values in the data set consistently increase or decrease, but not necessarily in a linear manner, and they display no seasonal or other cycle. If the data are not monotonic, then the statistical power of the Mann-Kendall trend test is reduced. One example of non-monotonic data is precipitation, which can vary seasonally as well as by larger time intervals (e.g., years or decades). Statistical power is the strength of a test to identify an actual release of contaminated groundwater or difference from a compliance standard (EPA 2009). In the case of the Mann-Kendall test, statistical power is the strength to correctly identify an increasing or decreasing trend in a set of time-ordered data.

The Mann-Kendall test computes an **S** statistic based on pair-wise differences between each timeordered value and all earlier values. A positive **S** value indicates an increasing trend, zero indicates no trend, and a negative value indicates a decreasing trend. The magnitude of **S** does not indicate the slope of the trend; instead, large positive values of **S** indicate that measurements taken later in time tend to be larger than those taken earlier. Similarly, large negative values of **S** indicate that measurements taken later in time tend to be smaller than those taken earlier (Gilbert 1987).

Significance of the Mann-Kendall test **S** statistic is a function of the magnitude of **S** and the number of measurements, with a larger positive or negative value of **S** and a greater number of measurements leading to a higher statistical significance (Gilbert 1987).

To evaluate trends in the monitoring data using the Mann-Kendall test, the EPA (2015) program ProUCL (version 5.1.002) was used. Per the CAP and Washington Department of Ecology guidance (Ecology 2005), groundwater monitoring data were evaluated at a 95 percent confidence level (5 percent significance level). That is, a trend was considered statistically significant if the confidence level was greater than 95 percent (the significance level was less than 5 percent).

Of the 14 wells evaluated:

- Three wells had no non-detects
- Four wells had 1 to 15 percent non-detects
- Four wells had 16 to 50 percent non-detects
- Two wells had 51 to 99 percent non-detects (MW-29 at 73 percent and MW-18 at 55 percent)
- One well had all non-detects (MW-14)

For data sets with non-detect, or "censored", results, per the Ecology *Guidance for Monitoring at Landfills and Other Facilities* (Ecology 2018), the censored data were handled as follows:

- ProUCL guidance (EPA 2015) states that the substitution of half detection limits for censored values is not recommended, as the bias cannot be quantified with certainty. Because the Mann-Kendall test is a nonparametric test, it was not necessary to substitute censored values with half detection limits for wells with fewer than 15 percent non-detects. The Mann-Kendall test only uses directional differences (positive, zero, negative), which are not affected by use of detection limits or half detection limits for censored values.
- For all wells, censored values were replaced with estimated values using the ROS method prior to statistical analysis. The ROS method fits a regression line to the uncensored data, then assigns values from that line below the detection limit to estimate concentrations for the censored observations. The uncensored values are then combined with the estimated censored values for further statistical analysis.
- The two wells with more than 50 percent non-detects (MW-18 and MW-29) were analyzed using the Mann-Kendall test; however, the results should be interpreted with caution, as significance of the analysis may be diminished due the large number of censored data. Statistical evaluations are typically not performed on data sets with more than 50 percent non-detects because meaningful trends are difficult to determine due to the large number of censored values.

Vinyl chloride was detected in well MW-24 in 1999 at a concentration of 11 μ g/L, which is an order of magnitude higher than any prior or subsequent result (see time-series plot in Appendix D1), suggesting a possible statistical outlier. The Mann Kendall test was run with and without this value, and the results yielded different **S** values (-373 with outlier, -341 without outlier) but both indicated a significantly decreasing trend.

REFERENCES

- Ecology (Washington State Department of Ecology). 2005. Implementation Guidance for the Ground Water Quality Standards. Washington State Department of Ecology Publication #96-02. Olympia, WA.
- Ecology. (Washington State Department of Ecology). 2018. Guidance for Monitoring at Landfills and Other Facilities Regulated Under Chapters 173-304, 173-306, 173-350, and 173-351 WAC, Revised December 2018. Washington State Department of Ecology Publication no. 12-07-072.
- EPA (U.S. Environmental Protection Agency). 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities: Unified Guidance. EPA 530/R-09-007. March 2009. U.S. Environmental Protection Agency Office of Resource and Recovery. Washington, D.C.
- EPA (U.S. Environmental Protection Agency). 2015. ProUCL Version 5.1.002 User Guide: Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R-07/041. October 2015. U.S. Environmental Protection Agency Office of Research and Development. Washington, D.C.
- Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. John Wiley & Sons, Inc. New York, NY. 320 pages.

Mann-Kendall Trend Test Analysis

User Selected Options	
Date/Time of Computation	ProUCL 5.13/17/2022 12:48:02 PM
From File	VC input wo MW-14 and outlier removed.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05

LnROS_VC-mw-08

General Statistics

Number of Events Reported (m)	44
Number of Missing Events	0
Number or Reported Events Used	44
Number Values Reported (n)	44
Minimum	0.00569
Maximum	3.8
Mean	1.354
Geometric Mean	0.501
Median	1.1
Standard Deviation	1.25
Coefficient of Variation	0.923

Mann-Kendall Test

M-K Test Value (S)	-681
Critical Value (0.05)	-1.645
Standard Deviation of S	98.82
Standardized Value of S	-6.881
Approximate p-value	2.965E-12

Statistically significant evidence of a decreasing trend at the specified level of significance. LnROS_VC-mw-10

General Statistics

Number of Events Reported (m)	45
Number of Missing Events	0
Number or Reported Events Used	45
Number Values Reported (n)	45
Minimum	0.02
Maximum	3.6
Mean	1.002
Geometric Mean	0.56
Median	0.84
Standard Deviation	0.92
Coefficient of Variation	0.918

Mann-Kendall Test

M-K Test Value (S)	-700
Critical Value (0.05)	-1.645
Standard Deviation of S	102.2
Standardized Value of S	-6.841
Approximate p-value	3.941E-12

Statistically significant evidence of a decreasing trend at the specified level of significance.

LnROS_VC-mw-12

General Statistics

Number of Events Reported (m)	45
Number of Missing Events	0
Number or Reported Events Used	45
Number Values Reported (n)	45
Minimum	0.00219
Maximum	2
Mean	0.444
Geometric Mean	0.224
Median	0.41
Standard Deviation	0.345
Coefficient of Variation	0.777

Mann-Kendall Test

M-K Test Value (S)	-400
Critical Value (0.05)	-1.645
Standard Deviation of S	102.2
Standardized Value of S	-3.905
Approximate p-value	4.7183E-5

Statistically significant evidence of a decreasing trend at the specified level of significance. LnROS_VC-mw-18

General Statistics

Number of Events Reported (m)	42
Number of Missing Events	0
Number or Reported Events Used	42
Number Values Reported (n)	42
Minimum	0.00827
Maximum	0.32
Mean	0.0404
Geometric Mean	0.0283
Median	0.0289
Standard Deviation	0.0503
Coefficient of Variation	1.246

Mann-Kendall Test

M-K Test Value (S)	160
Critical Value (0.05)	1.645
Standard Deviation of S	92.26
Standardized Value of S	1.723
Approximate p-value	0.0424

Statistically significant evidence of an increasing trend at the specified level of significance. LnROS_VC-mw-24

Number of Missing Events	0
Number or Reported Events Used	34
Number Values Reported (n)	34
Minimum	0.022
Maximum	1.1
Mean	0.218
Geometric Mean	0.142
Median	0.17
Standard Deviation	0.236
Coefficient of Variation	1.082

Mann-Kendall Test

M-K Test Value (S)	-341
Critical Value (0.05)	-1.645
Standard Deviation of S	67.44
Standardized Value of S	-5.041
Approximate p-value	2.3105E-7

Statistically significant evidence of a decreasing trend at the specified level of significance. LnROS_VC-mw-25

General Statistics

Number of Events Reported (m)	20
Number of Missing Events	0
Number or Reported Events Used	20
Number Values Reported (n)	20
Minimum	0.0795
Maximum	1.8
Mean	0.856
Geometric Mean	0.715
Median	0.895
Standard Deviation	0.438
Coefficient of Variation	0.511

Mann-Kendall Test

M-K Test Value (S)	-84
Tabulated p-value	0.003
Standard Deviation of S	30.76
Standardized Value of S	-2.699
Approximate p-value	0.00348

Statistically significant evidence of a decreasing

trend at the specified level of significance.

LnROS_VC-mw-26

General Statistics

Number of Events Reported (m)	18
Number of Missing Events	0
Number or Reported Events Used	18
Number Values Reported (n)	18
Minimum	0.0216
Maximum	0.17
Mean	0.0689
Geometric Mean	0.0548

Median	0.0556
Standard Deviation	0.0476
Coefficient of Variation	0.69

Mann-Kendall Test

M-K Test Value (S)	-63
Tabulated p-value	0.009
Standard Deviation of S	26.4
Standardized Value of S	-2.348
Approximate p-value	0.00943

Statistically significant evidence of a decreasing trend at the specified level of significance. LnROS_VC-mw-27

General Statistics

Number of Events Reported (m)	17
Number of Missing Events	0
Number or Reported Events Used	17
Number Values Reported (n)	17
Minimum	0.0252
Maximum	0.36
Mean	0.136
Geometric Mean	0.103
Median	0.128
Standard Deviation	0.0982
Coefficient of Variation	0.72

Mann-Kendall Test

M-K Test Value (S)	-84
Tabulated p-value	0
Standard Deviation of S	24.28
Standardized Value of S	-3.419
Approximate p-value	3.1427E-4

Statistically significant evidence of a decreasing trend at the specified level of significance.

LnROS_VC-mw-29

General Statistics

Number of Events Reported (m)	11
Number of Missing Events	0
Number or Reported Events Used	11
Number Values Reported (n)	11
Minimum	0.0269
Maximum	0.124
Mean	0.0511
Geometric Mean	0.0423
Median	0.0312
Standard Deviation	0.0369
Coefficient of Variation	0.722

Mann-Kendall Test

M-K Test Value (S)	27
Tabulated p-value	0.02

Standard Deviation of S	12.85
Standardized Value of S	2.024

Approximate p-value 0.0215

Statistically significant evidence of an increasing

trend at the specified level of significance.

LnROS_VC-mw-30

General Statistics

Number of Events Reported (m)	11
Number of Missing Events	0
Number or Reported Events Used	11
Number Values Reported (n)	11
Minimum	0.0339
Maximum	2.2
Mean	0.402
Geometric Mean	0.214
Median	0.161
Standard Deviation	0.619
Coefficient of Variation	1.539

Mann-Kendall Test

M-K Test Value (S)	-13
Tabulated p-value	0.179
Standard Deviation of S	12.85
Standardized Value of S	-0.934
Approximate p-value	0.175

Insufficient evidence to identify a significant

trend at the specified level of significance.

LnROS_VC-mw-31

General Statistics

Number of Events Reported (m)	11
Number of Missing Events	0
Number or Reported Events Used	11
Number Values Reported (n)	11
Minimum	0.167
Maximum	9
Mean	2.326
Geometric Mean	0.92
Median	0.475
Standard Deviation	2.984
Coefficient of Variation	1.283

Mann-Kendall Test

M-K Test Value (S)	-27
Tabulated p-value	0.02
Standard Deviation of S	12.85
Standardized Value of S	-2.024
Approximate p-value	0.0215

Statistically significant evidence of a decreasing trend at the specified level of significance. LnROS_VC-mw-32

General Statistics

Number of Events Reported (m)	12
Number of Missing Events	0
Number or Reported Events Used	12
Number Values Reported (n)	12
Minimum	0.162
Maximum	0.472
Mean	0.311
Geometric Mean	0.292
Median	0.29
Standard Deviation	0.113
Coefficient of Variation	0.362

Mann-Kendall Test

Tabulated p-value0.058Standard Deviation of S14.55Standardized Value of S1.65Approximate p-value0.0495	M-K Test Value (S)	25
Standard Deviation of S 14.55 Standardized Value of S 1.65 Approximate p-value 0.0495	Tabulated p-value	0.058
Standardized Value of S 1.65 Approximate p-value 0.0495	Standard Deviation of S	14.55
Approximate p-value 0.0495	Standardized Value of S	1.65
	Approximate p-value	0.0495

Insufficient evidence to identify a significant trend at the specified level of significance.

LnROS_VC-mw-33

General Statistics

Number of Events Reported (m)	11
Number of Missing Events	0
Number or Reported Events Used	11
Number Values Reported (n)	11
Minimum	0.0582
Maximum	1.1
Mean	0.309
Geometric Mean	0.197
Median	0.124
Standard Deviation	0.339
Coefficient of Variation	1.096

Mann-Kendall Test

M-K Test Value (S)	-10
Tabulated p-value	0.223
Standard Deviation of S	12.81
Standardized Value of S	-0.703
Approximate p-value	0.241

Insufficient evidence to identify a significant trend at the specified level of significance.

D3

Groundwater Monitoring Well Data and Field Forms
Water Level Measurement Field Report

DATE 11	1/11		JOB NO. 553	-1550-067			
PROJECT: S	outh Park La	Indfill	CLIENT: Sea	attle Public Utili	ties		
LOCATION:	Seattle, WA						
WEATHER	1.1.	TEMP		° at		A	М
Distant M	light (min			° at		P	M
PRESENT A	LAITE	+ C. Ba	urgeois				
WELL NUMBER	Time	Measured Depth to Water (ft from TOC or SG level)	Total Measured Well Depth (ft from TOC)	Measuring Point	Total Well Depth (ft bgs)	Screen Interval (ft bgs)	SU (ft)
MW-12	13:31	4.86	1	TOC	15.3	10-15	1.52
MW-14	13:40	1.90	-	TOC	21.8	11.5-21.5	0.8
MW-29	13:45	567	1	тос	30	20-30	-0.29
MW-18	13:50	13.89	1	тос	40.4	30-40	1.25
MW-25	14:10	12.54	-	TOC	27	22-27	2.79
MW-32	13:58	9.44	_	тос	24	19-24	-0.44
MW-33	14:02	9.57		тос	25	20-25	-0.47
MW-26	14:32	8.21	-	тос	25	15-25	2.39
MW-27	14:48	6.86	(тос	20	10-20	2.04
MW-10	14:14	11.75	galijimin	тос	45	35-45	1.65
MW-24	14:36	7.42	-	тос	45.3	35-45	1.56
MW-08	14:45	6.90		тос	45.6	35.5 – 45.5	1.88
MW-30	14:20	8.85	_	тос	13	8-13	-0.53
MW-31	14:23	9.71	~	тос	23	35.5-45.5	-0.46

Comments:

TOC – top of PVC casing SG – staff gauge SIGNED

1.0.11

Project No.:	553-155	0-067				Date:	TALIL	71101	Well ID:	MVV-08	
Sampling O	ganization	Parametr	rix		Sampler	rs:	Phim	<u>+ с.</u>	Bourg	eois	
Purge Data	Scree	ned Interval	(ft bgs): <u>5</u>	.0-20.0			Well Ca	sing/Diam	eter: PV	C/2 in	
Initial Dept	h of Water	(Ft below T	OC):	7.16		Pur	ge Water Dispos	al Methoo	d:	Umm	
Purge Devi	_{ce} ded	icated blad	lder pump			P	ump Intake Dep	th: 10.	5ft		
Begin Purg Time:	e _	8:2	4			E	nd Purge Time:		9:08		
	Depth to Water										
Time	(feet below MP)	Pump	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
828	7.18	9/12	360	0.75	11.5	1.23	1492	7.17	32.1	38.6	4
833	1*	<u>, , , , , , , , , , , , , , , , , , , </u>	21	1-1	11.2	2.60	1302	7.25	-16.8	25,1	
838	te .	н	11	1.6	11.3	1.20	1286	7.31	-32.8	11.3	
843	£1	4	51	2.1	11.3	1.82	1274	7.32	-44.8	4.51	
248	7.18	11	ti-	2.6	11.3	3.14	1266	7.32	-49.0	3,13	
853	al .	1.	11	3.0	11.3	1.92	1263	7.31	- 523	2.99	с
858	u	6	ti	3.6	11.3	1.13	1254	7.29	- 54.0	2.57	
-	د.	- 16	-1	4.0	11.3	1-11	1255	4.28	~55.1	2.67	
\$ 908		<u> </u>		4.5	11.3	1.10	1278	7.28	-58,6	2.53	
913					······						
								<u> </u>			
			-								
						<u>-</u>					
		s									
·											
								<u></u>			
									<u> </u>		
·											
			. <u> </u>								
			Stabiliza	ation Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling D	ata										
Sample ID:	SPL-G	-80WM_W		Time Co	llected:	9:15		Weat	ner: <u>(</u>	artly (1	oudy, 4
Sample De	scription (olor, Turbid	ity, Ödor, O	 ther):	Alu			_)	
Sample An	alvses (cis-1.2-DCI	E. vinvl chl	oride, total ir	on, total m	anganese.	dissolved arse	enic			
Duplicate S	Sample Col	ected:] Yes	No No	If yes, ID:						
MS/MSD C	ollected:	C	Yes	X №							
				the second se		the second s					

Project No.: <u>553-1550-067</u>		Date:	2/23/21	Well ID: MW-10	
Sampling Organization: Paran	netrix	Samplers:	T.Pary	+ C. Bonrgeo iz	
Purge Data Screened Inter	rval (ft bgs): <u>35.0-44.0</u>		ر Well Casing/Dian	neter: PVC/2 in	
Initial Depth of Water (Ft belo Purge Device dedicated b	w TOC): 577	<u> .q()</u> ₽ı	urge Water Disposal Metho Pump Intake Depth: <u>30</u>	d: DAMA	
Begin Purge Time:	1155		End Purge Time:	1232	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Temp DO (°C) (mg/L) 13.3 13.3 13.5 1.01 13.6 0.56 13.6 0.56 13.6 0.52 13.7 0.42 13.6 0.44	Specific Conductance pH (mg/cm) (units) 1447 7.44 1487 7.45 1488 7.48 1488 7.49 1488 7.49 1488 7.49 1486 7.56 1486 7.56 1	$\begin{array}{c} \text{ORP} & \text{Turbidity} \\ (mv) & (NTU) \\ \hline -50.8 & 4/.8 \\ \hline -87.7 & 4.0 \\ \hline -98.3 & 7.62 \\ \hline -102.3 & 6.96 \\ \hline -107.5 & 7.87 \\ \hline -106.3 & 2.16 \\ \hline -107.5 & 7.87 \\ \hline -106.3 & 2.16 \\ \hline -107.5 & 7.87 \\ \hline -106.3 & 2.16 \\ \hline -107.5 & 7.87 \\ \hline -108.4 & 1.92 \\ \hline \end{array}$	Comments
<u></u>	Stabilization Criteria	3% 10%		± 10 mv 10%	
Sampling Data					
Sample ID: SPL-GW-MW	10- 022 Time Co	ollected: 12:4	O Wea	ther: <u>Sightly</u>	OWNEWS!
Sample Description (Color, Tu	rbidity, Odor, Other):	NA.		<i>V I</i>	
Sample Analyses: <u>cis-1,2-</u>	DCE, vinyl chloride, total in	ron, total manganes	e, dissolved arsenic		
Duplicate Sample Collected:	Yes No	If yes, ID:			
MS/MSD Collected:	Yes No				
Additional Information/Comm	nents				

17

S outh	n P ark	Lan	dfill				1				
Project No	.: <u>553-155</u>	0-067				Date:	121/21	V	Vell ID:	MW-12	
Sampling (Organization:	Param	etrix		Samplers	s:	T. King 7	<u>+ С. В</u> е	onrelec	<u>jis</u>	
Purge Data	a Screet	ned Inter	val (ft bgs):	10.0-15.0			Well Cas	sing/Diame	eter: PV	C/2 in	
Initial Dep	pth of Water	(Ft belov	v TOC):	4.86		Pure	ge Water Dispos	al Method	: _ O n	hm	
Purge De	vice ded	icated b	adder pum	р		P	ump Intake Dep	th: 12.5	ft		
Begin Pur Time:	rge 	153	5			E	nd Purge Time:		:05		
1. 1.	Depth to Water (feet			Cum.		-	Specific			5- 2 	
_	below	Pump	Purge	Vol.	Temp	DO (mg/l)	Conductance	pH (units)	ORP (my)		Comments
Time	NP)	Setting	Rate Building	Purged	10,9	(mg/L) 8.37-	5597	<u>(units)</u>	298.	0 (.59	Comments
15 4U		<u> 7</u>		G. Bad	10.8	11.23	570.1	6.45	283.0	\$ 2.64	
1560	11	11	11	1.25	10,8	6.05	562.2	6.77	247.1	1.43	
1565	4	11	0	1.60	10,8	5.26	565.0	6.78	244.7	0.46	
1600	64	11	4	2,0	10.8	4.82	561,7	6.79	6926	17 6.02	
1605	- 11	4	4	2.5	10.8	4.79	558.6	6,78	266.7	6.02	
			9		•			1°			
		-						<u> </u>			
			 								
<u> </u>		<u></u>									
<u></u>	1		·								
	······										
			- 2								
							2				
							· · · ·				
					<u>.</u>						
	<u> </u>										
			Stabil	ization Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling	Data					100	- / / .			0	
Sample II	D: SPL-G	W_MW12	2-0221	Time Co	ollected:	KS	5 (Octual +	Meath	her:	Marcinst	4
Sample D	Description (C	Color, Tur	bidity, Odor,	Other):	es la companya de la comp		Atterat the	nn GON	2)		
Sample A	Analyses:	cis-1,3-D	CE, vinyl chl	oride, total iron,	total manga	anese, dissol	lved arsenic				
Duplicate	- e Sample Coll	lected:	Yes	No	If yes, ID:						4
MS/MSD	Collected:		Yes								
Additiona	I Informatio	n/Comm	ents			8					

Purge Data Screened Interval (ft bgs); 11.5×1.5 Well Casing/Diameter: 11.0×1.11 Initial Depth of Water (ft below TOC):				4.4	E 04 E						(C/2 in	
Initial Depth of Water (Ft below TOC): 195 Purge Water Disposal Method: 1/1/1/4 Purge Device dedicated bladder pump Pump Intake Depth: 16.5 ft Begin Purge 1/607 End Purge Time: 170.6 Time: 1/607 End Purge Time: 170.6 Water (ffeet 1610 2047 5/7 206/7 5/7 1610 2047 5/7 206/7 5/7 206/7 1610 2047 5/7 206/7 1/2.6 5/2.7 1/2.5 5/2.0 3/8 1625 1/1 0/1 0/2.5 1/2.0 2/4.7 5/2.5 3/8 1/2.7 1/2.	Purge Dat	a Scree	ned Interva	l (ft bgs):	.5-21.5			Well Cas	sing/Diamo	eter:	<u> </u>	
Purge Device dedicated bladder pump Pump Intake Depth: 16.5 ft Begin Purge ////////////////////////////////////	Initial De	pth of Water	(Ft below 1	ГОС):	1.95		Pur	ge Water Dispos	al Method	: _ _	hm	
Begin Purge //607 End Purge Time: /706 Time: Depth to Water Com. Specific (rest (rest ////////////////////////////////////	Purge De	vice ded	icated bla	dder pump			P	ump Intake Dep	th: <u>16.5</u>	5 ft		
Imme I/OU/ End Purge Purge Purge Vol. Temp DO Conductance pH ORP Turbidity Time MP) Setting Rate 0.255 ISO 2.147 Stabilization Stabilization Stabilization Conductance pH ORP Turbidity Comment 1610 7.00 Stabilization 0.255 ISO 2.147 Stabilization Stabilization Stabilization Conductance pH ORP Turbidity Comment 1610 7.00 Stabilization Crime 0.255 ISO C/147 Stabilization Stabilization Crime Stabilization Stabilization Stabilization Stabilization Stabilization Stabilization Stabilization <t< th=""><th>Begin Pu</th><th>rge</th><th>/</th><th>607</th><th></th><th></th><th>-</th><th></th><th></th><th>170.</th><th>6</th><th></th></t<>	Begin Pu	rge	/	607			-			170.	6	
Upper to Water (feet Curn. Specific (mg/u) ORP Turbidity (mv) Comment 1610 7.04 577 200/201 13.0 0.15 13.0 2.14 532.1 3.73 5.0 318 1615 17 0 0.40 13.2 0.91 13.4 532.1 3.73 5.0 318 1615 17 0 0.40 13.2 0.91 14.9 7.10 50.0 318 1625 17 0 0.41 12.4 0.91 14.4 7.11 12.5 52.1 12.4 12.4 12.5 12.4 12.4 12.5 12.4 12.5 12.4 12.4 12.5 12.5 13.0 55 15.6 7.16 13.5 5.6 10.6 12.5 13.0 0.71 15.7 12.5 13.0 1.17 14.5 1.1 12.7 12.5 12.5 13.0 0.71 15.7 13.5 1.1 0.74 15.7 2.14 8.15 1.1 0.74 14.5 1.7 2.5 1.2 1.2 1.0<	Time:	-	1	007			E	nd Purge Time:				
(rest Cum. Specific Time MP) Setting Rate Purged [S.O Z.M Small (mr)		Water										
below Pump Pumpe Pumpe Pumpe Pumpe Pumpe CO (mg/L)		(feet			Cum.			Specific				
Image International State Internaternational State Internate	Time	below	Pump	Purge Rate	Vol. Purged	Temp	DO (mg/l)	Conductance	pH (units)	ORP (my)	Turbidity (NTU)	Comment
1010 101 01 0.00 12.1 0.46 532.4 3.77 5.0 3.18 1620 4 0 4 0.40 532.4 3.77 3.77 5.0 3.18 1620 4 0 4 0.40 532.4 3.77 3.77 5.0 3.18 1620 4 0 4 0.40 532.4 12.4 0.71 12.5 552.4 12.5 13.0 0.71 15.6 13.0 0.71 154.6 7.17 12.4 12.5 1.1 10.0 1.1 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 <td>7610</td> <td>204</td> <td>5/7</td> <td>760M/</td> <td>1015</td> <td>13.0</td> <td>714</td> <td><u><449</u></td> <td>730</td> <td>50.0</td> <td>187 -</td> <td>comment</td>	7610	204	5/7	760M/	1015	13.0	714	<u><449</u>	730	50.0	187 -	comment
1020 * 0 10.025600000 12.2 0.81 499.0 7.11 12.5 550 1625 · · · 0 1.2.6 0.71 46.7.9 7.16 14.7 7.17 1635 · · · 0 1.2.6 0.71 46.7.9 7.16 14.7 7.17 1635 · · · · · · 1.2.6 0.71 46.7.9 7.16 14.7 7.7 1635 · · · · · · · 7.2.5 7.5 7.5 7.5 7.5 7.7 7.6.4 7.17 8.5.5 6.70 7.14 8.5.5 6.70 7.14 8.5.5 6.70 7.14 8.5.5 7.14 8.5.5 7.14 8.5.5 7.14 8.5.5 7.14 8.5.5 7.14 8.5.5 7.14 8.5.5 7.14 8.5.5 7.14 8.5.5 7.14 8.5.5 7.14 8.5.5 7.14 8.5.5 7.14 8.5.5 7.14 7.14 8.5.5 7.14 <	1615	11	0	1)	640	13.1	0.96	532.4	3.20	5.0	218	
Image: constraint of the stabilization Criteria 10% 12.4 $(2,4)$ $(2$	1620	4	4	4 0,	45 6000	12.9	0.81	499.0	7.19	12.5	12 -	
100 1 10 1.26 17.9 6.63 460.5 ₹.16 13.8 34.4 1635 1 1 1.50 13.0 0.55 458.6 ₹.16 12.2 12.5 1645 1 1 1.50 13.0 0.71 457.1 ₹.16 12.2 12.5 1656 1 2 2.26 13.1 0.71 466.4 ₹.14 8.5 6.10 1656 2.55 13.0 0.71 456.4 ₹.14 8.5 6.10 1655 13.0 0.71 456.4 ₹.14 8.5 6.10 12.5 1655 13.0 0.71 456.4 ₹.16 12.2 4.9 4.18 5.9 3.63 1655 13.0 0.74 454.0 ₹.16 12.2 4.0 4.18 5.9 3.63 1700 1 1.5 13.1 0.44 454.8 ₹.18 5.9 3.63 3.63 1700 1 13.0 0.44 453.8 7.18 4.12 4.00	1675	• /	••		6.8	12.9	0.71	467.9	7.16	14.7	43.7	
1635 n <td>1630</td> <td>1/</td> <td>2+</td> <td>()</td> <td>1-20</td> <td>12.9</td> <td>6.63</td> <td>460.5</td> <td>7.16</td> <td>13.8</td> <td>34.4</td> <td></td>	1630	1/	2+	()	1-20	12.9	6.63	460.5	7.16	13.8	34.4	
(Grice 12.0 13.0 0.71 457.1 2.16 19.7 7.35 14.45 2.75 13.1 0.71 46.7 7.14 9.5 6.10 16.55 10 10 2.750 13.0 0.71 457.0 7.14 9.5 6.10 (G55 10 1 12.75 13.0 0.74 459.0 7.14 9.5 6.10 (G55 1 1 13.0 0.74 459.0 7.14 9.5 6.10 (G55 1 1 13.0 0.74 459.0 7.14 9.5 9.03 (G55 1 1 13.0 0.74 459.0 7.16 9.03 (G55 18 0.74 459.0 7.16 9.03 9.03 9.03 (G55 18 0.74 459.0 7.14 459.0 7.16 9.03 (G55 1 1 13.0 0.74 459.0 7.16 9.03 (G55 1 1 1 1 1 1 1	1635	6	(1	4	1.50	13.0	0.55	458.6	7.16	12.2	12,5	
1445 4003 1 2.25 13.1 0.71 146.7 7.14 8.5 6.10 1656 1 1 2.75 13.0 0.74 157.0 7.14 8.5 6.10 1655 1 1 2.75 13.0 0.74 157.0 7.14 6.9 1.46 1655 1 1 2.75 13.0 0.74 157.0 7.14 8.5 6.10 1655 1 1 1 2.75 13.0 0.74 157.0 7.14 8.5 7.16 7.17 7.00 1605 1 1 1 13.15 13.1 0.74 153.8 7.18 51.2 14.00 1600 1 1 10.1 10.1 10.0 10.	1640	1.		v	2.0	13.0	0.71	757.1	2.16	19-9	7-35	
i & Sec 2.50 13.0 0.74 453.0 7.14 6.8 4.98 i & i & 3.15 13.0 6.46 454.8 5.4 3.63 i + i & i & 3.15 13.1 0.44 453.8 7.18 5.4 3.63 i + i & i & 3.15 13.1 0.44 453.8 7.18 4.2 4.0	1645	the E	ti	2	2.25	13.1	0.79	456.4	7.17	8.5	6,10	
(655 i i 2.25 13.0 6.36 4.18 5.4 3.63 1705 i i 3.15 i3.1 0.344 453.8 7.18 4.2 4.0 Image: Stabilization Criteria i 3.15 i3.1 0.344 453.8 7.18 4.2 4.0 Image: Stabilization Criteria Image: Stabilicrion Criteria	1656	2.02		×	2.50	13.0	0.77	457.0	7.17	6.8	<u> 4.48</u>	
1700 * i 3.15 i3.1 0.74 Y53 8 7.18 Y.2 Y.0	(655	.	ь	A	2.75	13.0	6.76	454.8	7.18	5.4	3.03	
Sampling Data Sample ID: SPL-GW-MW14- Q121 Time Collected: 1710 Weather: QWCASA Sample Analyses: Cis-1,2-DCE, vinyl chloride, total iron, total manganese Duplicate Sample Collected: Yes Yes Yes	1700	÷/	Ų	<u> </u>	3.15	13.1	0.44	753 8	7.18	4.2	4.0	
Sample ID: SPL-GW-MW14- OT 2 [к. <u></u>					
Stabilization Criteria 3% 10% 3% ± 0.1 ± 10 mv 10% Sampling Data												
Stabilization Criteria 3% 10% 3% ± 0.1 ± 10 mv 10% Sampling Data Sample ID: SPL-GW-MW14- OL2 [Time Collected: 17/10 Weather: OLMC GAA Sample Description (Color, Turbidity, Odor, Other):												
Stabilization Criteria 3% 10% 3% ± 0.1 ± 10 mv 10% Sampling Data Image: Second conditions of the second conditis of the second cond conditions of the second conditions of the s								,				
Stabilization Criteria 3% 10% 3% ± 0.1 ± 10 mv 10% Sampling Data Image: SPL-GW-MW14- ON 21 Time Collected: 1710 Weather: OWCasAr. Sample ID: SPL-GW-MW14- ON 21 Time Collected: 1710 Weather: OWCasAr. Sample Description (Color, Turbidity, Odor, Other): Image: Collected: 1710 Weather: OWCasAr. Sample Analyses: Cis-1,2-DCE, vinyl chloride, total iron, total manganese Duplicate Sample Collected: Yes If yes, ID:												
Stabilization Criteria 3% ± 0.1 ± 10 mv 10% Sampling Data Image: Second content in the second content			.									
Stabilization Criteria 3% 10% 3% ± 0.1 ± 10 mv 10% Sampling Data												
Stabilization Criteria 3% 10% 3% ± 0.1 ± 10 mv 10% Sampling Data												
Stabilization Criteria 3% 10% 3% ± 0.1 ± 10 mv 10% Sampling Data Sample ID: SPL-GW-MW14- Or 2 (<u> </u>				40.000			
Stabilization Criteria 3% 10% 3% ± 0.1 ± 10 mv 10% Sampling Data Sample ID: SPL-GW-MW14- OR2 Time Collected: 1710 Weather: OWN CASA Sample Description (Color, Turbidity, Odor, Other):												
Stabilization Criteria 3% ± 0.1 ± 10 mv 10% Sampling Data												1
Stabilization Criteria 3% 10% 3% ± 0.1 ± 10 mv 10% Sampling Data Sample ID: SPL-GW-MW14- OL2 (Time Collected: 17/0 Weather: OWNCANDOWN Sample Description (Color, Turbidity, Odor, Other): Jaint Jaint Odor Sample Analyses: cis-1,2-DCE, vinyl chloride, total iron, total manganese Duplicate Sample Collected: I Yes If yes, ID:												They want
Stabilization Criteria 3% ± 0.1 ± 10 mv 10% Sampling Data												
Sampling Data Sample ID: SPL-GW-MW14- OL2 (Stabilizat	ion Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sample ID: SPL-GW-MW14- OL2 Time Collected: 1710 Weather: OWC as A Sample Description (Color, Turbidity, Odor, Other): Image: Analyses: Cis-1,2-DCE, vinyl chloride, total iron, total manganese Sample Analyses: Cis-1,2-DCE, vinyl chloride, total iron, total manganese Duplicate Sample Collected: Yes Yes, ID:	Sampling	Data										
Sample Description (Color, Turbidity, Odor, Other):	Sample II	D. SPI-GI	W-MW14-	M11	Time Co	llected	171	6	Weath	ner:	MAGA	
Sample Description (Color, Turbidity, Odor, Other):	Sample II				/			~	-	_	NUCAY	•
Sample Analyses: cis-1,2-DCE, vinyl chloride, total iron, total manganese Duplicate Sample Collected: Yes KNo If yes, ID:	Sample D	escription (C	Color, Turbi	dity, Odor, Oth	er): <u>7</u>	ant odol						
Duplicate Sample Collected: 🗌 Yes 🕅 No If yes, ID:	Sample A	nalyses:	cis-1,2-DC	E, vinyl chlo	ride, total ir	on, total ma	anganese					
	Duplicate	e Sample Coll	ected: [Yes 🔰	No	If yes, ID:	-					

roject No).: <u>553-155</u>	0-067				Date:	LILS /C		Well ID:		
ampling (Organization:	Paramet	rix		Samplers	:	1. Ving +	C. 13	Ohlgen	5	
urge Dat	a Screer	ned Interval	(ft bgs):				Well Ca	sing/Diam	eter: PV	C/2 in	
Initial De	pth of Water	(Ft below T	OC):	30.0-40.0	198. 	Pur	ge Water Dispos	al Metho	d: Un	m.	
Purge De	vice dedi	cated blac	dder pum	р		P	Pump Intake Dep	th: 20.	0 ft		
Begin Pu	rge	104	22				ad Durgo Timor	į	9 1 Al	WAR G:1	7
Time:		00	L				inu Purge Time.				
	Depth to Water										
	(feet			Cum.			Specific				
	below	Pump	Purge	Vol.	Temp	DO (mg/l)	Conductance	pH (upite)	ORP (my)	Turbidity (NTU)	Comments
Time		Setting	16AL	Purgeo	(0)	(mg/L)		1011031	2200	2-++	connents
	14.09	4 11	200~	S.Z.	12	1.98	918	7.19	12.0	2.4?	
23 6	14154	- <u>1</u> 		6.6	13.2	0.87	1168	7.25	-6.8	0.02	
835	<u> </u>			0.97	13.2	0.62	1211	7.31	- 28,7	0.02	
840	12	**	· · ·	1.29	13.3	0.57	1189	7.32	- 38,3	6.02	
845	11	11	11	1.66	13.1	0.51	1161	7.32	-44.2	6.02	
856	4	4		(.80	13.3	0.43	1152	7.31	-47.7	0.02	
355	14.07	21	20	2.20	13.3	0.64	1149	7.30	- 49.0	0.62	
705	ù	Σ,	1.	2.59	13.3	0.5	1154	7.30	-56.5	0402	
905	**	v		2.89	13.2	0.97	1158	7.29	-51.5	0.02	
10	1.	ui	"	<u>3.19</u>	13.4	0.42	1161	7.29	-52.1	6.02 -	
•	1										
								<u></u>		3	
										the,	
			(-				
			·								
•			Ctabil	instian Cuitoria	20/	1.0%	2%	+01	+ 10 mv	10%	
			Stabli		570	1078	370	± 0.1	1 10 111	10/0	
ampling	Data					01	(\mathbf{c})			3 h dece	
Sample I	D: SPL-G	/V-MW18-0	221	Time Co	llected:	4.1	U	_ Weat	her: <u>(</u>	NCICAS#	
Sample [Description (C	olor, Turbio	dity, Odor,	Other):	len						
Sample A	Analyses: C	cis-1,2-DC	E, vinyl c	hloride, total ir	on, total m	anganese,	dissolved arse	enic			
Duplicate	e Sample Coll	ected: [Yes		If yes, ID:						-
MS/MSD	Collected:	[Yes	XN0							

Sampling C	Organizatior	n: Parametr	ix			Samplers	s:	7. Pan	ing - (- 1500	Meoi3	
Purge Data	a Scree	ened Interval	(ft bgs):	35.0-4	5.0			Well Ca	sing/Diam	eter: <u>P</u> V	C/2 in	
Initial Dep	pth of Wate	er (Ft below T	DC):	35.0 4	5.0 7.	70	Pur	ge Water Dispos	al Methoo	1:)mm	
Purge De	vice de	dicated blad	der pur	np			P	ump Intake Dep	oth: 40.0) ft	1	
Begin Pur	rge	114	R							11.16	-	
Time:		117	0	1	2020		E	nd Purge Time:	6	1251		
	Depth to Water (feet below	Pump	Purg	e	Cum. Vol.	Temp	DO	Specific Conductance	pН	ORP	Turbidity	
Time	MP)	Setting	Rate	P	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv)	(NTU)	Comments
1150	1.73	-19	2+0	han	- 5	10.1	6.87	80/	1.56	140.3	<u>'3.44.</u>	
1-200	<u>+.73</u>				5.5	11.8	1.00	17L 90L	7.10	-2-3	1.15	
200		u			1.7.0	12.0	1.01	987	7.17	- 37.7	0.85	
1915	4.73	il	A		1.4D	12.1	6.95	982	7.14	-39.8	1.61	
1215	ng k	<u>, ()</u>	1-	1	.75	12.0	0.93	979	7.13	-41-5	1.35	
	<u> </u>											
			1 			4			<u> </u>			
							····					· <u>···</u>
			0									
												4
								<u>-1448.</u>				10
									<u> </u>		.	·
			2			1	- California			·		
				S		- <u>A. A. Art</u>		·	ν. τ. χ' Έγ.	77.7		
						AR		(Press)	1. A.			
			Stab	lization	Criteria	3%	10%	3%	+ 0.1	+/10 mv	10%	
Sampling	Data										4	
Samala II), <u>e</u> di (Time Ce	llected	11:1	0	\A/aati	ner:	PAL -	land the
		~ · · · · · · · · · · · · · · · · · · ·			Time CO	<u></u>	100	<u> </u>	- vveali	ист. <u> </u>	arty C	in ay
sample D	escription (Color, Turbid	ity, Odor	, Uther):		TUG					······································	All and a second
Sample A	nalyses:	cis-1,2-DCI	z, vinyl	chloride	, total ir	on, total m	anganese,	dissolved arse	enic			4. 190
Duplicate	Sample Co	llected:] Yes	<u>م</u> لا	o	If yes, ID:		A dama	8			
MS/MSD	Collected:] Yes		0	<i>.</i>						
Additional	I Informatio	on/Comment	5	\sim							and the second s	
									X. 2		1	
									5		a	

Journ	unk	Lana					2/22			NUN/ 05	· _
Project No.: 55	3-1550	-067				Date:	413	0	Nell ID:	MVV-25	
Sampling Organi	zation:	Parametr	ix		_ Samplers	(Imy + L.	. Bow	<u>geois</u>		
Purge Data	Screen	ed Interval	(ft bgs): 2	0.0-27.0			Well Cas	sing/Diam	eter: PV	'C/2 in	
Initial Depth of	Water (Ft below T	OC):	12.65		Pure	ge Water Dispos	al Methoo	: D	nm	
Purge Device	dedic	cated blad	lder pump			P	ump Intake Dep	th: 24.5	5 ft		
Begin Purge		(.)	5					112	21		
Time:		10	57.			E	nd Purge Time:)L		
$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ \hline \hline 107 & 12 \\ \hline 1117 & 12 \\ \hline 1$	ater eet low IP) .65 .65 .65	Pump Setting 6/14 ×-	Purge Rate UOO ···	$\begin{array}{c} \text{Cum.} \\ \text{Vol.} \\ \hline 0.15 \\ \hline 0.50 \\ \hline 1.00 \\ \hline 1.50 \\ \hline 1.75 \\ \hline 1.75 \\ \hline 1.75 \\ \hline 1.75 \\ \hline 1.60 \\ \hline 1$	Temp (°C) 13.0 13.9 13.9 13.6 13.6 13.6 13.6	DO (mg/L) 4.37 323 1.82 1.82 1.24 1.50 1.50	Specific Conductance (mg/cm) 9/4 927 956 976 976 15 976 17 976 17 976 17 976	pH (units) 7.14 7.14 7.14 7.14 7.10 7.20 7.20 7.20 7.20 7.20 7.20 7.20	ORP (mv) /3.2 -28.5 -40.6 -48.1 -50.1 -50.5 -50.5	Turbidity (NTU) 5.14 1.90 1.28 1.13 1.50 1.47	Comments
_1154_11	-,05			00	13.0	1.00		<u>T.U</u>	-91.5		
											5
<u> </u>											P
										·	
<u> </u>			1								
<u> </u>											
								<u> </u>			
								<u></u>			<u> </u>
			Stabiliza	ation Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling Data											
Sample ID:	SPL-G	N-MW25-	6111	Time Co	llected:	1140		Weat	her:	htle ove	Sart
	otion (Co	olor, Turbid	lity, Odor, O	ther):	IA			_	4	Jud	
Sample Analyse	es: Ci	is-1,2-DCI	E, benzene	e, vinyl chlori	de, total irc	on, total ma	nganese, diss	olved are	senic		
Duplicate Sam	– ple Colle	ected:	Yes	X N₀	If yes, ID:						
MS/MSD Collec	cted:		Yes	No.							
Additional Infor	rmation	/Comment	s								

S	ampling O	ganization:	Parameti	rix		Samplers		T. PEM +	C.B	ongeois			
-	Purge Data	Scree	ned Interval	(ft bgs): 1	5.0-25.0			Well Cas	ing/Diame	eter: PV	C/2 in		
_	Initial Dep	th of Water	(Ft below T	OC):	8.46		Pur	ge Water Disposa	al Method	:()mm		
	Begin Purg Time:	je	/2	:33			F	nd Purge Time:		13:40			
		Depth to Water (feet below	Pump	Purge	Cum. Vol.	Temp	DO	Specific Conductance	pH	ORP	Turbidity		
-	Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv) Log	(NTU) 1 46	Commen	ts
	255	8.77	6/9		C> (-)	12.1	1 22	211-5	6.70	<u>488</u> 5(3	10 5		
	246	RUL	и 		<u>2</u> A R	12.3	1.73	2.17 9	651	567	18.7	because 1	loud.
1	250	N. 10	L	i.	1.20	12.2	0.85	706.R	6.55	59.7	394		
<u> </u> 	255	BUL		h	1,50	12.2	0.95	202.7	6.54	62.5	219		
360	(-05)	11	L,		1.80	12.1	1.03	200.7	6.53	64.3	131		
-	1305	8.46	<u></u>	n	2.10	12-1	1.00	199.0	6.53	65.0	94.7		
-	1310	L	11	и	2.4	12.1	8.97	198.3	6.53	65.2	38.2		
_	1315	¥.	11	j i	2.75	12.1	0.93	1981	6.53	64.9	26.5		
_	1320	4	·\	i)	3.10	12.1	0.87	197.7	6.53	64.6	14.7		
325	1330	8.46		11	<u>43.3</u>	12.1	0,83	192.2	653	69.9	12.3		
3e J	3355	••	<u></u>	<u> </u>	- 3.54	12.2	0.30	199.1	6,54	13.9	9.00	1	
-	1335	<u>а</u>	<u> </u>	10	9,66	12.2	0.80	199.8	6.57	63.0	205		
-	1340			 	7.20		0.8		<u> </u>	صا ، کر صل 	0.70		
-	320												
-													
-													
-													
-				Stabiliz	ation Criteria		10%		± 0.1	± 10 mv	10%		
-	Sampling [)ata											
-	Sample ID	: SPL-G	W_MW26-	0221	Time Co	llected:	13	50	Weat	her: 🧕	KAY (Trady	
	Sample D	escription (Color, Turbio	dity, Odor, O	ther):	nt on	inge (o	lar.			/		
	Sample A	nalyses:	cis-1,2-DCE	E, vinyl chlor	ide, total iron,	total manga	añese, disso	lved arsenic					
	Duplicate	Sample Col	lected: [Yes		If yes, ID:							
	MS/MSD	Collected:	[Yes	Ď x ™o								
_	Additional	Informatio	n/Commen	ts	+				-				
			0114 5	herr c	objerved	in k	suche-	at the	ene	l of	pure	2	
-			Ect.										
4												Daram	atriv

					Date:	LIUIU		Vell ID:		
ampling Organization:	Parametr	ix		Sampler	s:	J. Pary +	C.B	bulgeoi	3	
urge Data Screene	ed Interval	(ft bgs): <u>10</u>	0.0-20.0		¥.	Well Cas	ing/Diam	eter: <u>P\</u>	/C/2 in	
nitial Depth of Water (Ft below T(DC):	7.04		Pur	ge Water Disposa	al Method	:	Umm	
Purge Device dedic	ated blad	der pump			F	ump Intake Dept	:h: 15.0) ft		
Begin Purge	a,	11						10:0	2	
Гіте:	7.	JL			E	nd Purge Time:		10.70)	
Depth to										
Water			Cum			Specific				
below	Pump	Purge	Vol.	Temp	DO	Conductance	рН	ORP	Turbidity	
Time MP)	Setting	Rate	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv)	(NTU)	Comments
135 711	519	240 ml	0.15	8.4	5.60	336.4	6.98	576	487	Thom Olympe Coll
140 7.09	~	v	(1.35	9.1	2.29	242.4	6.92	61.3	586	J
945 Jna	M	~	0.55	97	1.48	220.4	6.92	67.1	353	More clear
150 \$ IA	NL	~1	1.20	98	1.17	216.7	6.97	68.5	350	
955 JIN		12	150	9.9	137	218.7	6.97	117	178	
1000 11	h		2.25	10.0	1.72	225,5	6.97	76.2	744	-
	h	·····	1.60	100	1.30	229.7	6.75	76.9	89.1	
	<u>n</u>		2.5	10 0	1.50	726.7	6.92	769	503	
NOW	> 10		3(0	100	142	2.28 3	6.93	4.31	20.9	
	ti	i,	+ 0 25	10.0	121	2413	6.92	710	158	Duning I la ch
620 F.1C			+0.50		1.17	244 7	697	10 E	10.9	Vin per voca
<u> </u>	<u>a</u>		10.30		1.15	21:0.9	6.07	61.2	0 91	
636 4.14				10.1	1.00	299.7	6.05	1.10 1 E L	1 71	
<u>035 </u>		·)	+1.7	10-1	1.00	15C,+	1 92	63.1	<u>+.)</u> E aE	
540 11	4		+ 2.0	10.2	0.14	279.5	6.12	10(1	5-15	
345 11			46.60	10.L	1.01	26(.5	6-70	65.6	2.21	
1650 "	ei.		-13.0	10.L	1.01	263.0	6.71	61.0	7.80	
*										
					1.09/	29/	+01	+ 10 mv	10%	
		Stabiliza		5%	10%	370	10.1	1 10 1114	10/0	
ampling Data		40.0			111.00				P. M.	to d
Sample ID: SPL-GV	V-MVV27-	011	Time Co	llected:	11.6	0	- Weat	her:	WITHY C	where
Sample Description (Co	olor, Turbid	ity, Odor, Ot	her):	MA Top. total.m		dissolved arse	nic		l	
Sample Analyses: Cl	5-1,Z-DUI				anyanese,	4199014CU 0190				
Duplicate Sample Colle	cted:	Yes [-XN₀ /	If yes, ID:						
	Г	TYes 1	No							
MS/MSD Collected:										

3 0uti	IFAIK	Lall	um				2/10				
Project No	553-155	0-067				Date:	2113		Well ID:	MW-29	
Sampling (Organization:	Param	etrix		Samplers	s:	-Pang +	C. Bonl	years		
Purge Dat	a Screer	ned Interv	/al (ft bgs):	20.0-30.0			Well Ca	sing/Diam	eter: PV	/C/2 in	
Initial Dep	pth of Water	(Ft belov	v TOC):	5.77		Pur	ge Water Dispos	al Method	l:	mm	
Purge De	vice <u>peri</u>	staltic pu	ump			P	ump Intake Dep	oth: 25.0) ft		
Begin Pur Time:	rge	ġ;I	12			E	nd Purge Time:		0:35	7	
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
945	6.47'	1/3	250,	1/m 0.20	11.2	2.25	417	7:30	-42.0	11.6	
950	6.51			- 10.5d	(1.8	0,81	473	7.32	-61.0	33.5	<u></u>
955	6,69			- <u>6.45</u>	<u> </u>	0.69	+5+	7.39	-6-1.8	11.9	
1065	6.71			- 1.16g	11.7	653	124	727	-74.6	3.7-6	
1010	6110168			1.80 2000	17.2	0 48	272	738	- 77.2	0 89	
1015	6.8	4		2.10	12.1	0.48	177	7.40	-78.7	0.02	
1620	6.8	1.	1	2.5	12.2	0.46	777	7.70	-79.7	0,10	
	<u></u>					. <u></u>					
				<u> </u>							
			Stabi	lization Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling	Data										
Sample II	D: SPL-G	W_MW29	-024	Time Co	llected:	10:2	25	Weatl	ner:	light ou	Wast.
Sample D	Description (C	Color, Tur	bidity, Odor	Other):	ent						
Sample A	Analyses:	cis-1.2-D	CE, vinvl ch	loride, total iron.	total manua	inese					
Duplicate	e Sample Coll	lected:	Yes	□ No	If yes, ID:	SPL	-Gw-ML	160.0	221		
MS/MSD	Collected:		Yes	No No							
Additiona	l Informatio	n/Comme	ents								

- 9

South	Park	Landf	ill

roject No.: 553-1550-06	7		,	Date:	2/23	V	Vell ID:	MW-30	
ampling Organization: Par	ametrix		Samplers	s:	T.Pan	+C.Bu	marcoi3		
urge Data Screened In	terval (ft bgs): <u>8</u>	.0-13.0			Well Cas	ing/Diame	eter: PV	C/2 in	
Initial Depth of Water (Ft be Purge Device peristaltic	elow TOC): c pump	S.4	5	Purg	e Water Dispos ump Intake Dep	al Method th: 10.5	: 5 ft	Jam	
Begin Purge Time:	13/0	1		EI	nd Purge Time:		404		
Depth to Water (feet below Pu Ime MP Set I317 8.95 Vi I317 8.97 N I327 8.97 N I327 8.97 N I327 8.97 N I327 8.97 N I333 8.97 N I347 9.91 N I351 9.00 1 I352 9.01 N I353 9.01 N N	mp Purge ting Rate 3 · 3 · 3 · 1 · 3 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1	Cum. Vol. Purged 0.1 0.4 0.6 1.30 1.75 2.05 2.60 3.00 1.75 2.60 3.00 1.50	Temp (°C) .4 1.5 1.4 1.3 1.4 1.2 1.1 1.0 0.9 	DO (mg/L) 1.64 1.03 0.79 0.79 0.77 0.71 0.78 0.75 0.74	Specific Conductance (mg/cm) 611.() 592.9 583.0 557.3 533.8 509.0 499.2 479.9 479.9 473.1 473.1	pH (units) 7.13 6.87 6.85 6.85 6.85 6.83 6.81 6.80 6.76 6.76 6.78	ORP (mv) 18.6 44.3 47.7 55.4 57.7 55.4 57.4 57.7 55.4 57.4 57	Turbidity (NTU) 217 75.7 81.7 93.4 1.5 5.50 3.76 2.32 0.02 0.02	Comments · <u>Flour - Unorgh</u> alv <u>emptich</u> · <u>Flour - Unorgh</u> a
Sample ID: SPL-GW_M	N30-0221	Time Col	llected:	ΙL	10	Weath	ner:	Party	Clordy
Sample Description (Color,	Turbidity, Odor, O	ther):	JIA .		et a				/
Sample Analyses: cis-1,2	2-DCE, vinyl chlor	ide, total iron,	total manga	anese					
Duplicate Sample Collected	: Yes	XN0	If yes, ID:				2		
MS/MSD Collected:	Yes	XN0							
dditional Information/Con	monte								

	Duter							
Sampling Organization: Parametrix	Samplers: + C. Buhrgeois							
Purge Data Screened Interval (ft bgs): 18.0-23.0		Well Cas	sing/Diameter:	VC/2 in				
Initial Depth of Water (Ft below TOC): 9,75 Purge Device dedicated bladder pump	<u>_</u>	Purge Water Dispos _ Pump Intake Dep	al Method:	Drum				
Begin Purge 1922	1	End Purge Time:	1518	1				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{Specific} \\ \text{Conductance} \\ (mg/cm) \\ \hline \\ $	pH ORP (units) (mv) <u>6.91</u> <u>15.9</u> <u>6.96</u> <u>10.2</u> <u>6.98</u> <u>166</u> <u>6.99</u> <u>21.7</u> <u>6.99</u> <u>21.7</u> <u>6.99</u> <u>25.8</u> <u>6.99</u> <u>28.8</u> <u>6.99</u> <u>29.7</u> <u>6.99</u> <u>29.7</u> <u>6.99</u> <u>29.7</u> <u>6.99</u> <u>28.8</u> <u></u>	Turbidity (NTU) Comments 1/96				
Stabilization Criteria Sampling Data Sample ID: SPL-GW_MW31- OZZ(3% 10% Ilected: //	3% 525	± 0.1 ± 10 mv	10% Anh 2/ Man'l				
Duplicate Sample Collected: X Yes No	If yes, ID:	PL-GW-ML	161-0221					
MS/MSD Collected: X Yes No								
Additional Information/Comments								

S outh	n P ark	Land	fill				a lan la				
Project No	553-155	50-067				Date:	125/21	\	Vell ID:	MW-32	
Sampling (Organization	: Parametr	ix		Sampler	rs:	Kany 1	C. Bac	Nyro	S	4
Purge Dat	a Scree	ened Interval	(ft bgs):		4		Well Ca	sing/Diam	eter: <u>PV</u>	C/2 in	
Initial De	pth of Wate	r (Ft below T	DC): <u>19</u> .	0-24.0	r	Pur	ge Water Dispos	al Method	l:	Umm	
Purge De	vice per	istaltic pum	р	al.		P	ump Intake Dep	oth: 21.5	π		a manage
Begin Pu Time:	rge	(6	16			E	nd Purge Time:				
	Depth to							1			• • •
	Water			Cum			Specific	14	, etc		
	below	Pump	Purge	Vol.	Temp	DO	Conductance	pН	ORP	Turbidity	
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv)	<u>(NTU)</u>	Comments
	9.55	1/3	240		121	a 06	01/	702	-71	140	
1615	9.55	1)		0.9	13.9	0.50	026	7.31	-27 0	171.8	
1620	9.55			10	13.7	0.55	431	7.34	-44.	1 6 44	
1(30	9 55			1.9	13.5	0.50	835	7.35	-52.	4.37	
1625	1	17		1.70	13.6	0.78	836	7.36	-566	3.83	
1640	955	ч	11	2.10	13.6	0.45	839	7.37	- 59.3	1.96	
1645	1	12	14	2.50	13:5	Digra	839	7.37	- 63.3	1.34	
				<u> </u>		0.94					
						11	-				
						·					
	».					. <u></u>					
							·				
						<u> </u>		<u> </u>		1	
<u> </u>				·		·					- New -
	N										
			to the	and the				15			
			1.1		K.						2
	5	· · · · · · · · · · · · · · · · · · ·		6 .	•		<u></u>	<u></u>			
				the state	A	·				<u></u>	1
			A. C. Sand	ALL L	1.			<u> </u>	<u> </u>		
		NI AM	Stabilizat	tion Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	3
Sampling	Data	N All CL	Mar 4	10 11	1.1			• •	1	an a	
Sample II	D: SPL-C	GW_MW32-	0221	Time Co	ollected:	16:5	F	Weath	ner:	Weras	4
Sample D	Description (Color, Turbid	ity, Odor, Ot	her):	1	2		_	1		
Sample A	Analyses.	cis-1 2-DCF	vinyl chlorid	de, total iron	total mano	anese. dissol	ved arsenic		b_		
Duplicate	e Sample Co	llected:] Yes	No	If yes, ID:	Notes .			£.,		
MS/MSD	Collected:	Г	Yes	No	The By	162	1	÷.		. I	
Additiona	I Informatio	on/Comment	s	1	1 all	4	gaine .	£			1
						14/1	1				
			5			VA B	Stra St				-

1 of 1

Sampling C	Organization:	Parametr	ix		Samplers: J. Kny + C. Bourgeois 0 Well Casing/Diameter:								
Purge Date	a Screen	ed Interval	(ft bgs): 20	0.0-25.0									
Initial Date	a Sciecci	(Et bolow T(903		Pure	e Water Dispos	al Method		Dain	-		
Durge Der	vice peris	staltic pum	n	1.02		i uig Di	umn Intake Den	th 22.5	5ft	1012-1			
Purge Dev			٣			FV	ump make bep	un. <u></u>					
Time:	ge 	144				E	nd Purge Time:		545				
	Depth to Water (feet below	Pump	Purge	Cum. Vol.	Temp	DO	Specific Conductance	pН	ORP	Turbidity			
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv)	(NTU)	Commen	nts	
1425	9-84	215	260	0.25	14.6	1.24	1381	7.29	-37.9	18.5			
49)	*>	17	<u>сі</u>	6.7	14.2	1.03	1377	7.36	- 64.3	12.0			
1735	9.85	<u> </u>	iN	5.76	14.7	0,88	1375	7.37	- 71.3	9.77			
1776	v	11	<u>і</u> с.	1.0	14.7	6.70	1371	7.38	-75.9	9.58	-	_	
1445	11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ř.	1.2	14.9	0.52	1363	7.38	<u>- 78,8</u>	6.68			
1750	л 	<u>د ۲</u>	1)	1.70	17.0	0.41	1360	4.38	-81.0	9.49			
1455	11	<u> </u>	Lı	2.10	17.9	6.37	1355	7.34	-82.6	6.28			
1500	7.84	<u> </u>	<u> </u>	2.50	19.9	0.73	1548	+35 2	- 05.5 - 05.5	4,75			
1505	~	4		2.80	14.9	0.40	1542	7.35	- 55.0	+.37	1		
1510	9.84	<u>r</u>		3.25	14.9	24.0.35	1338	+.55	- 26.0	- 10147 1 	W. D(-		
1515	<u>د۔</u>			3.60	14.9	0.55	1222	170	-0+.M	- UDAR	1,10		
1520		<u></u>		<u> 1,00</u> N K	17.9	6.57	1353	1.50	-00.7	<u>a.30</u>	Dividente	h	
157 5				+ 0 75	14 6	0.37	1328	+. L 1 119	-01.7	2 62	povquea	1.0	
1550		4 ¥		+0,05	<u>11.3</u>	642	1335	7.27	- 89.7.	2.7.5			
1552				- 15 2	14 9	0,43	17.29	7.30	- 90.8	3.35	-		
1640			L	+125	144	0.70	1320	4.31	-91.2	3.0.			
13 [9													
				- /									
. <u></u>							1						
	<u></u>						- d						
ja –								1					
								2	~	<u> </u>			
	-		Stabiliza	tion Critoria		1.0%		+01	+ 10 mv	10%			
			Stabiliza		378	10/6	370	10.1	10 110	10/0			
Sampling	Data									2	./ 1	_	
Sample II	D: SPL-G	W-MW33-		Time Co	ollected:	1554	2	Weat	her:	htty C	10hly		
Sample D	Description (C	olor, Turbid	ity, Odor, O	ther):						· .			
Sample 4	analyses o	sis-1.2-DCI	E. vinvl chl	oride, total in	ron, total m	anganese.	dissolved arso	enic		4			
Duali		ontoni. F			If yos ID:				1				
Duplicate	e sample Coll	ectea: L			ii yes, iD:								
MS/MSD	Collected:] Yes	X No									
Additiona	I Information	n/Comment	S		1	~		501	e 11		0		
			Sud	s presa	Nt	Ø	10 1530,	751	4011	aslac	¥		

Water Level Measurement Field Report

DATE	5/17/2	6	JOB NO. 553	8-1550-067			
PROJECT: S	South Park L	andfill	CLIENT: Sea	attle Public Utili	ties		
LOCATION:	Seattle, WA						
WEATHER		TEMP		° at		/	AM
av	what	- 60		°at 1472	3 Start	F	PM
PRESENT A	C SITE	Barry 03	A Th	on			
HE FOLL	OWING WAS	S NOTED:					
WELL NUMBER	Time	Measured Depth to Water (ft from TOC or SG level)	Total Measured Well Depth (ft from TOC)	Measuring Point	Total Well Depth (ft bgs)	Screen Interval (ft bgs)	SU (ft
MW-12	1612	5.93	-	TOC	15.3	10-15	1.52
MW-14	1619	2-68		TOC	21.8	11.5-21.5	0.8
MW-29	1629	6.85	/	TOC	30	20-30	-0.29
MW-18	1539	153(TOC	40.4	30-40	1.25
MW-25	11605	13.53	~	TOC	27	22-27	2.79
MW-32	1550	10.27	-	TOC	24	19-24	-0.44
MW-33	1855	10-89	-	тос	25	20-25	-0.47
MW-26	1455	9.74	~	TOC	25	15-25	2.39
MW-27	1423	.8.31		TOC	20	10-20	2.04
MW-10	1605	13,20		TOC	45	35-45	1.65
MW-24	1455	\$.90	<u> </u>	TOC	45.3	35-45	1.56
MW-08	1450	847	~	TOC	45.6	35.5 – 45.5	1.88
MW-30	1505	\$ (0.34)	_	TOC	13	8-13	-0.53
MW-31	1505	Ital	~	TOC	23	35.5-45.5	-0.46

Comments:

TOC – top of PVC SG – staff gauge casing

howl

SIGNED:

Sampling	Organizatio	n: Parame	etrix		Sample	ers:	to. The	2 2	L.B	outers?	s
Duran Da				0-20.0			101 . 102	~ ~	D		,
Purge Da	ta Scre	ened Interva	al (ft bgs):	0-20.0		-	Well Ca	asing/Diar	neter: P	VC/2 IN	
Initial D	epth of Wate	er (Ft below	TOC):	@ 1x	8.4	5 Pu	irge Water Dispo	sal Metho	d:)r-m	
Purge D	evice de	dicated bla	idder pump				Pump Intake Dep	oth: 10	.5ft		
Time:	irge	12	29				End Duran Time	f	320		
	Depth to						End Purge Time:				
	Water										
	(feet			Cum.			Specific				
Time	MP)	Setting	Purge	Vol. Purged	Temp (°C)	DO	Conductance	pH	ORP	Turbidity	
1002	30 8.45	9/12	=30/	0.5	17 2	(mg/L)	(mg/cm)	(units)	(mv)	(NTU)	Comments
1235	7.56	5/16	ZOCINIA	. Caby	13.0	12 5	1143	0.6	711.4	111 1	yellow the
1240	541	6/10	25 -	0750	12 4	1/ 7	1000	6.65	-34.4	16 1	year we
1245	8.40	7/10	795 1/4	1000	12.0	16et_	1098	6.64	-50.5	15.4	yenco hat
1250	8.43	7/10	29001/2	1.40	12.11	64 3	10 4 2	6.01	-67	10.1	deas, me
1255	8.39	89/10	165mi/	1.50	12.7	8.9	1063	5.61	-110	10.1 V AU	Stip of For yellow
1300	8.42	7/10	475M1/4	1.00	12.7	120	149-1	5-56	1.1.0	110	cleer
1305	2.40	6.9/10	50 my min	2350	12.5	18.7	1036	6.01	22 9	1.06	deal
1310	8.36	7/10	250 Mynin	2,59	12.5	79.9	16119	(()	-72 6	1.41	(lac)
1315	8.35	7/10	11	2-759	12.5	81.0	1041	612	-775	Gas	
1320	8.36	_4	L.	3.19	12.5	79.1	1053	6.62	-75.4	7.07	w)
				- 5-						10-1	
_								_			
			_								
								_			
		-									
				_							
-			Stabilizatio	on Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling [Data										
Sample ID	SPL-GV	W_MW08-	0521	Time Col	lected:	1330		Weath	er C	1224	1 Janes
Sample De	escription (C	olor Turbidi	ity Odor Othe	r).		1.5.4					1 was ne
Convolu A							20.000				
Sample Ar	alyses: C	IS-1,Z-DCE	, vinyl chlori	de, total iro	on, total ma	anganese,	dissolved arser	nic		_	
Duplicate	Sample Colle	ected:	Yes 1	No	If yes, ID:						
	collected:		Yes 🗂	No							
MS/MSD				-				-			
MS/MSD (Information	/Comments	5								
MS/MSD (Information	/Comments			_		_	_			
MS/MSD (Information	/Comments		_							/

Project N	o.: 553-15	50-067				Date:	5/20/2	1	Well ID:	MW-10	
Sampling	Organization	n: Param	netrix		Sample	rs:	An	om is	C. 1	Bong	Louis
Purge Da	ta Scree	ened Inter	val (ft bgs): 3	35.0-44.0			Well Ca	asing/Diam	neter: PV	/C/2 in	
Initial De	epth of Wate	er (Ft belov	w TOC):	13.40		Pu	rge Water Dispo:	sal Metho	d:	prom	
Purge De	evice de	dicated b	ladder pump				Pump Intake Dep	oth: 30.	0 ft	_	
Begin Pu	irge		int	12.14					1205		
Time:	-		que	1300			End Purge Time:		1377	, 	
Time	Depth to Water (feet below MP)	Pump Setting	MI/Min Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
1305	13.32	9:00	225	0.4	13.9	6.5	1236	6.65	-31.8	12.9	Stight yellow have
1310	13.32	8:30	250	0.75	13.8	6.1	1257	6.61	-57.8	11.0	Pale Vella, miner
1315	13.32	11	()	0.9	13.8	4.3	1275	6.65	-74.2	11.7	
1320	13.32	Ħ	is.	1.2	13.8	3.4	1287.	6.67	-85.4	13.8	11
1325	13.32	11	b	1.5	13.9	3.0	1297	6.69	-93.9	11.6	41
1330	13.32	U.	1	1.75	13.9	2.7	1303	6.70	-98.7	11.9	ų
1335	13.33	U	~	2.1	13.9	2.7	1305	6.71	-103.0	11.6	5
13-75	13.33			2.3	13.9	2.6	1305	672	-106.1	10.8	и
				_		_		_	_		
				_							
				_							
				_							
		-									
								_		_	
			Stabiliza	ation Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling	Data										
Sample I	D: SPL-G	GW-MW1	0- 052	[Time Co	llected:	13	55	Weat	her: P	artly	cloudy
Sample [Description (Color, Turi	bidity, Odor, O	ther):						/	/
Sample A	Analyses:	cis-1,2-D	CE, vinyl chl	oride, total in	on, total m	anganese,	dissolved arse	enic			
Duplicate	e Sample Col	llected:	Yes	I No	If yes, ID:						
MS/MSD	Collected:		Yes	No							
Additiona	Informatio	n/Comme	ents								

		120.00					4	-1-			
Sampling C	rganization	Parame	trix		Sampler	rs:	A. Thom	3	C.Ba	rapas	5
Purge Data	a Scree	ned Interva	al (ft bgs): <u>10</u>	0.0-15.0			Well Ca	sing/Diam	eter: P	/C/2 in	
Initial Dep	oth of Water	(Ft below	TOC):	6.0		Pu	urge Water Dispos	al Method	d:	Drug	
Purge Dev	vice ded	icated bla	dder pump				Pump Intake Dep	th: 12.	5 ft		
Begin Pur	ge		8.44					,	100		
Time:			0.11				End Purge Time:		1:30		
	Depth to Water (feet below	Pump	Purge	Cum. Vol.	Temp	DO	Specific Conductance	pН	ORP	Turbidity	, S
C U M	MP)	Setting	Rate ~	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv)	(NTU)	Comments
050	0.0	7/7	U.S. gal	290/win	11.6	30.1	351.4	6.09	120.7	+.94	Clear
OCC.	6.04	14		1.79	11.4	20.5	351.2	6.13	140.3	2.01	4
GDA	6.04			19	t1.2	5.6	2(00	6.13	ar 3	5.36	
905	1.	11	h	1.7	11 7	1.0	369.6	6.22	81.1	(124	
910	11	h	11	206	11.2	41	259.5	(13	712	110	4
915	6.05		U II	2.5	11.7	38	359.6	6 29	140	1.16	er
926	6.02	21	4	2.8	11.7	3.5	266.7	6.31	58.8	602	4
925	6.05	24	11	3	11.7	3.4	362.0	636	51.7	6.62	-11
930	6.04	IX.	U.	3.125	11.8	3.3	362.4	6.35	50.3	6.02	41
ampling D			Stabilizat	ion Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
- Anne D									_		
Sample ID	SPL-GV	V_MW12-	0521	Time Col	lected:	940		Weath	er: 5	unny, "	rindy
ample De	scription (Co	olor, Turbic	lity, Odor, Oth	er):	elicar	from	the start				_
ample An	alyses: c	is-1,3-DCE	, vinyl chlorid	e, total iron,	total manga	nese, disso	olved arsenic				
Duplicate S	Sample Colle	cted:	Yes	No	If yes, ID:	1					
	ollosted	E.		TNO							

Project No.		0-007				Date:	7/10/1	·[well ID:	10100-14			
Sampling O	rganization:	Parametr	rix		Samplers	:A	Thin	₹ C.	Bour	geois			
Purge Data	Screen	ned Interval	(ft bgs): 11	.5-21.5			Well Ca	sing/Diam	eter: PV	'C/2 in			
Initial Dep	th of Water	(Ft below T	OC):	2-54		Pur	ge Water Dispos	al Metho	1: D	run			
Purge Dev	ice dedi	cated blad	lder pump	_		I	Pump Intake Dep	th: 16.	5 ft				
Begin Purg Time:	ge	t	0.00		End Purge Time: 1105								
	Depth to Water (feet below	Pump	Purge	Cum. Vol.	Temp	DO	Specific Conductance	рH	ORP	Turbidity			
Time	Trip)	Setting	Rate	Purged	14.2	(mg/L)	(mg/cm)	(units)	(mv)	(NIU)	Comments		
1003	0 2 4	3/-1.	3014 -	MM 0.99	in a	7.5	455 4	6.69	40.2	D'I.L	V. turbin		
INI'S	2 13		11	1.1.59	11.0	42	426.0	669	. (2 1	18.5	in the second		
1/100	262	1	11	1.59	14.2	3.7	120.0	1 67	97.1	7.4			
1020	.1	26	- DA 1.3	152-00	in i	3.6	424 4	615	-112 7	4 9P	и		
1000	2-64		11	1-0-	14.6	24	4230	6.65	-120 /	2.246	4.43 clear		
1035	11	145.		220	1416	2.2	427.3	645	-17.6 1	3.9.6	Clear		
1046	2.63	6	230 44		14.5	2.3	122.1	6.64	.13.1.3	4.02			
12.45	2.61	11		2.75	14.4	2.3	421.7	6.63	-138.9	1.00	U		
20 50	7.63	34		30	14.5	2.1	421.7	6.64	-175.9	2.46	ii.		
1055	2,62	ç.	1.	3.20	14.5	2.1	721.6	6.63	-151.1	2,67	Y.		
Dide	2.65	ν	4	3.60	14.5	2.0	422.1	6.63	1561	3.13	u.		
1125	262	\$5	ù.	49	M.Y	1.9	422.2	6.63	-159	6 2.96	54		
110.0					1.01								
· ·													
								_					
#1													
										_			
								_	_				
			Stabilizat	ion Criteria	3%	10%	3%	± 0.1	± 10 my	10%			
-	oto								1000 CTC				
ampling D	46		2 m 2 1			26.2.2							
Sample ID:	SPL-GV	V-MW14-	0521	Time Co	llected:	1110		Weath	ner:	Sum	-)		
Sample De	scription (C	olor, Turbid	ity, Odor, Oth	ner):	Givst	1.5 0	7 toubid	111	inty		/		
Sample An	alvses.	is-1.2-DCF	E, vinvl chlo	ride, total in	on, total ma	anganese)				
	Camela 6 1			Tal.	if use 10	- Iguiloud			_				
Duplicate :	sample Colle	ected:	Yes	NO	if yes, ID:	-			_				
MS/MSD C	collected:		Yes	No									

Project No	.: 553-15	50-067				Date:	5/218/21	-	Well ID:	MW-18		
Sampling (Organization	: Paramet	rix		Sample	rs: P	Thim 3	c. B	burger	its	_	
Purge Dat	a Scree	ened Interva	(ft bgs): _3	0.6-40.6			Well Ca	sing/Diam	eter: PV	/C/2 in		
Initial De	oth of Wate	r (Ft below]	OC): 30.0	-40.0	5.91	Pur	e Water Dispos	al Metho	d: Dr	~m		
Purge De	vice dec	dicated blad	dder pump			P	ump Intake Der	th: 20.	0 ft			
Begin Pu	rge								4.1			
Time:	-		540 16	10		E	nd Purge Time:		200			
ルム いし パイ Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comment	s
1415	15.41	3/5	375 mil	2/05 0.35	14.3	67.9	1065	6.49	-20.7	4.00	clear	
1420	15.40	6/6	35metrus	1.259	15.6	66.0	1026	6.51	-54	4.30	X.4	
1425	15.41	615	120 ml/mm	1.39	15.0	56.3	1025	6.53	-62.6	3.91	in .	
1430	8 "	le.	200 million	1.75	14.5	Gens 61.4	1028	6.51	-66.7	3.29	45	(
1435	15	45	11	2.8	14.4	58.5	1618	6.51	- 69.3	5.10	15	2
1630	1645 11	34	1	2.25	14.3	50.6	1009	6.51	-63.5	4.20	**	
1650	*1	11	240	2.5	14.3	39.0	999	6.51	- 67.3	7.10	~	
1655	8	•1	15	2.75	14.3	36.2	1002	6.51	-26.9	4.46	14	
1700	r	L.	4	3	14.2	39.3	1406	6.51	- 74.3	4.09	ί	
						1						
						_			-			
					-							_
	-											
		_		_					_			
			-	_								
_												
				_								
					L	_			_			
1			Stabilizati	on Criteria	3%	10%	3%	± 0.1	± 10 mv	10%		
Sampling I	Data											
Sample If	SPL-G	W-MW18-	0521	Time Col	lected:	1270		Weat	her:	Increast		
Sample D	escription (Color, Turbic	lity, Odor, Oth	er):	lected.	du	/	-	<u>-</u>			_
Samala A	naluces	cie 1 2 DC	E vinvl chlor	ide total in	on total -	angangeo	dissolved area	anic				
Sample A	nalyses:	013-1,2-00		ide, total In	on, total f	langanese,		sille	A.S			
Duplicate	Sample Col	lected:	Yes [] No	If yes, ID:	SPL-	Cow-mwi	60-05	21			
MS/MSD	Collected:	0	Yes [] No								
Additional	Informatio	n/Comment	s									
_	Itad	dittern	acoth	y weber	. t. c.	bart Bloc	~n.	Bup	Collega	ed on	1220	_
	100,00	Va.	1 AL 145	@ 14.	17 V	e Curred a	3		concero.	and an		_
		1 10		- 11		esember of						

Sampling (Organization	Paramet	rix		Sampler	rs:	A. Thim	30	Bin	afoi ?			
Purge Data	a Scree	ned Interval	(ft bgs): 35	.0-45.0			Well Ca	sing/Diam	neter: PV	/C/2 in			
Initial De	oth of Water	(Ft below T	OC): 35,	0 45.0	5.0 6-02 Purge Water Disposal Method: Dr.								
Purge De	vice ded	icated blac	dder pump			P	ump Intake Dep	oth: 40.	0 ft				
Begin Pur	ge		11.00	~									
Time:	-		10:00			E	End Purge Time: 1130						
	Depth to Water		Cum.				Specific		ON C	» h	vo Sin		
Time	below MP)	Pump Setting	Purge Rate	Vol. Purged	Temp (°C)	DO (mg/L)	Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments		
(225	5.98	2/9	120 mg	0,25	12.0	13.7	72)	6.53	72.1	7.92	clear		
1030	6.01	8/8	17044	0.45	11.9	F211.1	804	6.47	15.3	2.89	alar		
1035	5.99	219	17 275	0-Ba	11.9	5.6	7.84	6.56	-1.5	6,22	de01		
1040	6.01	La	11	1.259	11.9	4.7	759%	6.55	-145	6.54	char		
10-15	5.99		Ť	1.50	11.9	4.14	751	6.56	.27.0	5.96	clear		
1656	6.01	4	p. H.	1.759	11.8	3.6	757	6.55	-32.0	5.52	10		
1655	6.02	**		2.255	11.8	3.4	764	6-54	-39.2	5.40	\overline{v}		
1166	94	11	250 41	2.500	12.1	3.4	765	6.96	-46.9	5.41	4		
165		4	ů.	2.9	12.2	3.2	768	6.55	-517	5,12	-440		
1110	6.03	÷1		3:20	12.0	3.1	270	6-55	-56-1	4.62	li.		
1115	6.02	1.	51	3.60	11.9	3.1	774	6.55	-59.2	5.28	-		
1120	6.01	4.1	W	4.00	12-12	3.3	773	6.45	-62-3	4.55	1		
11.2.5	1¢	v	40	4.254	12.1	3.3	774	6.56	-64.4	4.75	15		
1130	5.99			4.5	12.1	3.0	775	6.56	-64.4	7.48	11		
									_				
									_				
									_				
					_	_		_					
								_					
									_				
Sampling)ata	_	Stabilizati	on Criteria	3%	10%	3%	± 0.1	± 10 mv	10%			
Sample ID	SPL-G	V-MW24-	0521	Time Co	llected:	1146		Weat	ner: D	atta i	under und		
Sample De	escription (C	olor, Turbid	ity, Odor, Oth	er):		-1.			+		1.00		
Sample Ar	nalyses: C	is-1,2-DCI	E, vinyl chlor	ide, total ir	on, total m	anganese,	dissolved arse	enic					
Duplicate	Sample Coll	ected:	Yes [] No	If yes, ID:	SPL	Gila -	MWC	1-0	521			
MS/MSD (Collected:		Yes [No									

Parametrix

.

		Derewa	A		3 4 3		. 1	2 .	.0		
Sampling (Organization	: Parame	etrix		Sampler	s:	A. Ihem	5 (- USON	apris	
Purge Dat	a Scree	ned Interv	al (ft bgs): 20.	.0-27.0			Well Ca	asing/Diam	neter: <u>P\</u>	/C/2 in	
Initial Dep	pth of Wate	r (Ft below	тос):	14.05		Pur	rge Water Dispo	sal Metho	d:	Srum	
Purge De	vice dec	licated bla	adder pump			1	Pump Intake De	pth: 24.	5 ft		
Begin Pur	ge		1116				End Durge Time	15	500		
rine.	Denth to						Lind Fulge fille.				
Time	Water (feet below	Pump	(m//n) Purge Pate	(Salons Cum. Vol. Burgod	Temp	DO (mg/l)	Specific Conductance	pH (unite)	ORP		Commonte
1420	14.03	6/9	Box mt/	B.75	13.4	15.2	948	<u>(units)</u>	(7.2	10.8	Slightly celled her
1425	14.03	6/9	200	1.0	13.8	7.4	889	6.48	-13.5	10.2	11
1430	14.04	7/11	200 200	1.5	13.8	4.5	910	6.48	-31.9	10.5	11
1435	14.04	7/11	255	1.75	13.8	3.0	927	6.49	-46.5	11.4	u
1440	14.04	7/11		2.0	13.8	2.5	935	6.50	-57.2	10.8	μ
14 45	14.02	7/11		2.25	13.9	2.3	940	6.51	-64.0	10.5	щ
1450	14.62	=/11		2.75	14.0	9.3	943	6.52	-68.3	9.98	M.
1455	14.02	₹/11		3.0	13.9	2.1	9 46	6.52	-72.8	9.12	
14 1500	14.03	7/11		3,25	13.9	2.1	948	6.52	-75.8	9.23	
			-								
								_	_		
										_	
				_					_		
								_		_	
	_			_				_			-
									_		
				_							
			Stabilizati	on Criteria	3%	10%	3%	+01	+ 10 my	10%	
Compline	Data		Stabilizati	on enteria	570	1070	370	20.1	2 10 111	1070	
sampling i	Data		1.2.01	-		16.0				-	
Sample ID	: SPL-G	W-MW25	-0521	Time Co	llected:	1510		Weat	her:	Partly	clendy
Sample D	escription (0	Color, Turbi	idity, Odor, Oth	er):							
Sample A	nalyses:	cis-1,2-D0	CE, benzene,	vinyl chlorid	de, total iro	on, total ma	anganese, diss	solved an	senic		
Duplicate	Sample Col	lected:	Yes 🖟	No	If yes, ID:						
MC/MCD	Collected:			INO							

Sampling (rganization	Parame	trix		Sample		A. Th	in 3	C Y	Bang	145
Purge Dat:	a Scree	aned Interva	l (ft bgs). 15	.0-25.0			Well Ca	sing/Diam	P	/C/2 in	
Initial Dep	oth of Wate	r (Ft below	TOC):	9.80		Pu	rge Water Dispos	sal Metho	d: D	rim	
Purge Dev	vice dec	licated bla	dder pump	830			Pump Intake Dep	oth: 20.	0 ft		
Begin Pur	ge		00	~				(254		
Time:			01	U			End Purge Time:		1.90		
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
830	9.30	6/9	17500	0.250	11.4	51.4	164.3	6.21	12.7	i7.6	Tellow have
235	9.78	7/9	475 1	0.69	11.6	14.6	171.6	5.98	11.0	38.5	viallow
840	18 11	618	276 1	190	11.8	6.7	160,0	6.00	20	174	misteral yellow
845	9.78	618	ŧ į	1.334	11.0	4.1	154.8	5.98	8.0	93	Vellow
850	9.77	618	4+	1.75 4	168	4.4	154,1	5.98	8.5	52.9	1
855	9,77.	6/4	3(0 MI/M)	2.00	11.8	4.0	150.8	5.97	10.7	59.2	Yellow
900	9.78	619		2.40	11.8	5.4	148.9	5.98	11.7	89.2	yellow
905	9.77	6/8	375"/	r 2.75	11.6	6.8	147.5	5.98	13.8	43.1	yollow ince
910	11	419	41	39	11.6	66	149.6	6.00	15,0	30.00	cloudy best yell
915	9:75*	7/2	100 m/min	3,252	11.6	6,2	150.6	5.99	12.2	21.0	Slight Yellow have
920	Ħ	46	# 220	3.49	11.6	6.5	151.2	600	18.4	11.6	gen Stipped has I have
925	¥t.	1ª	U	3.79	11.8	8.1	172.1	6,00	19.7	13.4	signi yellow nue
9/30	9.77	- G		Miller	120	8.6	148.2	6.46	20.7	12.0	elear
935	4	54	6	4.25	11.9	8,3	148.6	6.01	21.5	10.1	New held
946	20	44	-p	4.59	11.9	2.0	149.3	6.00	23.1	8,34	elen
945	9.96	14		4.759	12.2	8.2	142.8	6.01	23.2	2.55	
976		<u> </u>	- 16	5.44	12.2	8,8	149.6	6,63	23.5	7,59	11
								_	_		
								_		_	
			Stabilizati	ion Criteria	3%	10%	3%	± 0.1	± 10 my	10%	
Sampling D	ata				- 21				10 7 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.00	
Sample ID	: SPL-G	W MW26-	0521	Time Col	llected:	1000		Weath	ner: Co	It wi	nde extraction
Samela Da	provintion /c	alar Turki	lity order out	-		10					
Sample De	scription (C	olor, lurbic	aity, Odor, Oth	er):	total manage	ancon diana	hind seconds				
Duplicate	Sample Cell	actod.		No.	iotal manga	anese, disso	nved arsenic		_		
ouplicate:	Sample Coll	ecteu: [ir yes, iD:	-					
MS/MSD C	collected:	L	Yes	U/No							

Project No.:	553-155	50-067				Date:	>/124/ -		Well ID:	MW-27	
Sampling Org	ganization	Paramet	rix		Sample	rs:	A Thom	32	C. Ba	weigeois)
Purge Data	Scree	ned Interval	(ft bgs): 10.	0-20.0			Well Ca	sing/Diam	eter: PV	/C/2 in	
Initial Depth Purge Devic	n of Wate e dec	r (Ft below T licated blac	oc): 8	.39		<u> </u>	urge Water Dispos Pump Intake Dep	al Methor th: 15.	d: Oft	Jon	
Begin Purge Time:		49	5 135	0			End Purge Time:	1	560		
Time	Depth to Water (feet below MP)	Pump Setting	25 Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	এ ৭ Comments
1355 8	5.39	519	120 mil	0.259	11.9	21.1	195.0	6.42	22.2	8.40	gettin have
1400 8	3.41	6/11	150m	U. yg	11.5	7.3	214.0	6.42	31.2	52.2	Cicarer
1405 8	3.40	5/10	280 ml	\$1531.2	511.8	6-0	259.3	6.40	25.7	152	more up New
1410	8.41	- \$4	dij	1.59	17	5.1	276.1	6.39	19.6	52.5	clearer, slight with
1415	11	k		1.89	11.7	4.0	282.1	6.40	10.5	290	slight yellow here
1420 6	5.40	. P	v	2.79	11.7	3.5	283.2	6.40	2.3	21.2	clear
1425 8	5.40	519.5	Zoorlan	2.69	11.2	3.4	283 2	6.42	-7.1	15.4	clea
1436 8	5.40			2.89	1.8	3.3	284.2	6.43	-10.0	14.2	eler
1735	h			3.25	11.8	3-1	284.1	6.43	-15.7	18.9	client
11-1-10	n			3.49	11.8	3.1	284.1	6.93	-16.4	15.1	
1450	u	L.		2.09	11.3	5.1	1.107.10	6-13	-21.9	11 4	3
1455	11			2.09	21 7	5.1	2251	6.71	- 27.2	11.0	
10.00	14	- 1.		4.29	117	2.8	283.2	6.41	-27.5	in 7	No.
×			Stabilizati	on Criteria	3%	10%	3%	±0.1	± 10 mv	10%	
Sampling Dat	ta			_				_			
Sample ID:	SPL-G	W-MW27-	0521	Time Co	llected:	(51)	6	Weath	ner:	sunny	3 warm
Sample Desc	cription (C	Color, Turbid	ity, Odor, Oth	er):						/	
Sample Anal	yses: 0	sis-1,2-DCI	E, vinyl chlor	ide, total in	on, total m	nanganese	, dissolved arse	nic			
Duplicate Sa	mple Coll	ected:	Yes 🖸	No	If yes, ID:						
MS/MSD Col	llected:		Yes 📫	No							
1. 2. A. 2											

200		_	5.5 C		1.00	Date.		- 1	wen ib.		
Sampling	Organization	Parame	etrix		Sampler	s:	A. Thim	3 0	Bor	Jens	
Purge Dat	ta Scree	ned Interv	al (ft bgs):	20.0-30.0			Well Ca	sing/Diam	neter: PV	/C/2 in	
Initial De Purge De	pth of Water evice peri	(Ft below staltic pu	TOC):	7.44	1	Pu	rge Water Dispo Pump Intake Der	sal Metho oth: 25.	d: <u>0</u> . 0 ft	~~	
Begin Pu Time:	rge	1	145				End Purge Time:	1	250	φ.Γ.	
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
1145	8.49	113	2800	ul/www 0.25g	12.8	50.8	769.2	6.41	50,6	2.40	
1150	8.51	15		0.69	13.0	18.6	469.5	6.61	52.7	6.48	
i1 55	\$.52	v	1)	0.3	12.8	48.5	746	6.56	53.6	3.14	Clear !!
1200	8.51	W.	P	1.0	13.1	7.4	824	6.53	-16.6	2.62	+1 0
1205	8,49	il	p	1.3	13.3	4-5	833	662	-61.8	0,96	-01-
1210	8-50	N.	11	1.6	13.2	3.3	837	6.64	-84.0	1.68	215
1215	8.50	н	d	1.9	13.2	2.8	832	6.65	-93.3	1.01	-94
12.20	8.5P		p	2.2	13.2	2.4	828	6.65	-98.8	D.74	11
1225	8.50	"	1)	2.5	13.3	2.3	815	6.66	-104.1	.63	Ŋ
1230	8.50	ti.	<u>b</u>	2.8	13.3	2.0	805	6.67	-108.3	1.51	- (t
1285	8.51	1/	1	3.1	13.2	2.1	794	6.68	-110.8	1.37	
12.40	8.52	ir	h	3.7	13.1	3.2	785	6.68	-112.3	0.56	- 11
1245	6.52	<u>n</u>		3.7	13.2	3.3	780	6.69	-114.6	0.93	10
1250	8.51			<u> </u>		3.0	774	6.70	-116.9	0.95	h
			_					=	Ξ		
_	=	_	_			=		Ξ	Ξ	=	
	_		Stabil	ization Criteria	3%	10%	2%	+01	+ 10 my	10%	
Sampling	Data		Stabil	ization criteria	370	10%	370	10.1	10 110	10%	
Complet		A/ MA/20	0571	Time Co		12.00	1200		2		
Sample II	Description (C	Color, Turb	idity, Odor,	Other):	nected;		1300	weat	ner: <u>Pa</u>	Hally Cla	ndy
Sample A	nalyses:	cis-1,2-DC	E, vinyl chl	oride, total iron,	total manga	inese					
Duplicate	Sample Coll	ected:	Yes	DN0	If yes, ID:						
MS/MSD	Collected:		Yes	PINO							

Project No.	: <u>553-155</u>	Parame	trix		Grand	Date:	h The se	3	Well ID:	10100-30	i
Sampling C	Seree:	- dintenue	(ft has), 8.	0-13.0	Sample	rs:/	y wayn	1	P\	/C/2 in	>
Initial Data	a Screen	/Et holow		10 41	Ó		Well Ca	sing/Diam	neter:		
Burgo Do	vice peris	staltic pur	mp	10, 10		Pui	ge water Dispos	al Metho	d: <u>10</u>	min	
Begin Pur		statue put					² ump Intake Dep	oth: 10.	511.		
Time:	ee –		936				End Purge Time:		1025		
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
935	6	low	2000 MTY	0.259	12.1	7.70	464.9	6.18	12.0	8.22	claw
940	10.55	11	230 m	0.659	12.1	4.30	470.6	619	12.7	3.00	4
945	10.57	1.	4	19	12.1	3.7	468.5	6.20	9.8	9.08	1+
950	j.	4		1.25.	12.1	4.8	462.0	6.24	2.8	8.62	N
955	1.	45	i,	1.59	12.1	5.9	467.2	6.21	6,2	8.54	11
1000	<u> </u>	b.		1.759	12.1	7.9	467.1	6.21	6.0	8.78	X5
1005	6	11		2.05	12.1	8.4	9661	6-21	5.5	8.26	
1010				2.259	12.1	10.1	460.8	6.21	57	7.95	1
1015	<u></u>			2.55	12.1	11.3	455.3	6.Z1	6.0	7.77	ž)
1020	1.	~ .	Li	39	12.1	10.4	458.0	6.21	6.8	7.85	34
003				3.259	10.6	11.0	794,6	6,21	4.3	1.87	
								_	_	_	
						=		_	_	_	
	• •							_	_		
								_	_		
_											
			Stabilizat	ion Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
ampling D	ata	-			_				_	_	
Sample ID:	SPL-GW	/_MW30-	0621	Time Col	lected:	1635	-	Weath	ner: 0	veriast,	cold
Sample De Sample An	scription (Co alvses: ci	olor, Turbic s-1.2-DCE	lity, Odor, Oth . vinyl chlorid	ner): <u>6</u>	aind s	mell of	bleach o	at this	unell	. Not p	outre its Gr
Duplicate S	Sample Colle	cted:	Yes [No	If yes, ID:						
MS/MSD C	ollected:	C	Yes 2	No							

Project No	: 553-15	50-067				Date:	5/19/2	1	Well ID:	MW-31	
Sampling (Organization	: Paramet	rix		Sampler	rs: /	1. Them	3 (Bar	-1Nor3	
Purge Dat	a Scree	ened Interval	(ft bgs): 18.	0-23.0			Well Ca	sing/Dian	neter: P	/C/2 in	
Initial Der	oth of Wate	r (Ft below T	OC):	1.25		Pur	ge Water Dispos	al Metho	d'	Irum	
Purge De	vice dec	dicated blac	lder pump			u.	ump Intake Den	th 20.	.5ft		
Begin Pur Time:	ge	815	5			E	and Purge Time:		916		
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
820	11.20	5/9	165 21	6.59	13.0	35.1	365.6	5.96	51.2	191	yellow, V. forbis
825	1-	-11	275 -	0.79	12.9	11.2	366.7	6.03	38.8	44.5	in
830	1.	- li	41	19	13.0	5.3	369.1	6.11	19-1	25.5	your his
835				1.59	13.8	4.2	367.6	6.15	4.3	18.6	29
870	ł.	47		1.75	13.0	3.6	367.8	6.19	-7.0	15.6	gooding clearer
895	10	1.19	12 ML	alwar	13.0	3.1	366.6	6.21	-13.6	13.9	
850	<u> </u>	6/1	TTOMAN	1 5	13.0	3.1	366.5	6.23	-12.9	12.7	()
1 900	-0-	6 5/4	115 M2	2.9	13.0	2.9	7197	6.74	-128	11.4	i
965	4	10/9/1	- C S This	2 2 .	13.1	2.7	7101	6.26	-27 1	11.3	Anna Anna
910			<u></u>	3=5	i3.1	2.3	369.4	6,26	-36.5	16.7	u
Sampling	Data		Stabilizatio	on Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sample ID	SDI CI	A/ MA/24 /	56-21	Tranci	1	970		Sec.			0.5000
sample ID	SPL-G	vv_ivivv31- (124	Time Col	lected:	720		Weath	ner:	Nercas	it, derizzlik
Sample De	escription (C	olor, Turbidi	ty, Odor, Othe	er):							
Sample Ar	alyses: o	cis-1,2-DCE,	vinyl chloride	, total iron,	total manga	inese					

Additional Information/Comments

-

Sampling (Organization	Paramet	rix		Sample	rs: A	. Then	Cit	REVENI	5	
Purge Dat	a Scree	ned interval	(ft bgs):	9.0-24	.07		Well Ca	sing/Diam	PV	/C/2 in	
Initial De	pth of Water	(Ft below T	OC): 19.0)-24.0	16.9.	1 Pu	rge Water Dispo	sal Metho	d.	Dran	
Purge De	vice peri	staltic pum	1p				Pump Intake Der	oth: 21.	5 ft		
Begin Pur	rge		1251						inic		
Time:		_	1355				End Purge Time:		1515		
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
1355	10.94	115 uper	2 10 m/	0	14.5	15.0	714	6.71	34.0	8.04	wisible arava f
1400	10.96	*	0	6.259	15.0	7.0	FIM	6.70	-51.7	5,84	1
1405	10.95	1.	187.5mb	0.50	15.0	4.8	1215	6.71	-72.5	7.94	4
1710	10.95	4	11	0.79	15,0	3.3	715	6.71	-33.5	10.2	¢i
1415	10.95	61	*1	1.00	14.9	4.0	718	6.70	-91.7	000 8.00	7 11
1420	j,		200 1/100	1259	15.6	4.0	7:20	6.71	-98.1	6.47	ş4
1425	10.94	P	-	1-50	14.0	2.6	725	6.70	-1023	5.48	
1430	10-95	t.	*/	1.75	15.0	2,1	730	6.70	- 105.2	3.28	i l
1735	10.94	fr.	Ψ.	2.1	15.0	21	729	6.71	-109.3	5.19	61
17:40		- 41	¥1	2.5	15.0	2.1	732	6.71	-111.4	4,3	1.4
1445	- 14	4	1,	2.75	14.9	3.6	735	6.71	-113.6	6.36	Fewer Flecks
\$1450	10.95	• •	14	3	17.9	3.9	738	6.71	-115]	5.57	ā.
1755		L		3.25	15.1	3.2	737	6.71	-117.0	5-13	P
1500	+1	- 4		3.69	19-8	2.7	739	6.76	-118.1	4.96	×
1505	10.90	*		3.47	19.6	2.3	293	6.70	-119.0	3.45	li.
1510	10.95			4.29	14.5	7.1	157	6.20	- 12.3	3.	by u
				<u> </u>			4 11	<u>b. +1</u>			
								-		_	
			Stabilizatio	on Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling [Data										
Sample ID Sample De Sample Ar	0: SPL-GV escription (C nalyses: c	V_MW32- (olor, Turbidi is-1,2-DCE,	ראַן ity, Odor, Othe vinyl chloride	Time Col r): /total iron,	الادي الادي total manga	u eran	s 1520 My Must . Ived arsenic	Weath	ner: ∠d €	Sum Icehs), which
Duplicate MS/MSD	Sample Colle Collected:	ected:]Yes 🗋]Yes 🕇	No	If yes, ID:	-					
Additional	Information	/Commonto	2.								

Parametrix

Project N	lo.: 553-18	550-067	_			Date:	512012	1	Well ID:	MW-33	
Sampling	Organizatio	on: Parame	trix		Sample	rs:	A. Thim	N	C. P.	reintylu	3
Purge Da	nta Scre	eened Interva	l (ft bgs): 20	.0-25.0		1	Well Ca	asing/Dian	neter: P	/C/2 in	
Initial D	epth of Wat	er (Ft below	тос):	11.12		Pu	rge Water Dispo	sal Metho	d: _ D.	rum	
Purge D	evice pe	eristaltic pur	np				Pump Intake Dep	oth: 22.	.5ft		
Begin Pu	urge	11	15					1	150		
Time.	Donth to		0.5				End Purge Time:		1.2.		
	Water (feet	Pump	MI	Cum.	Tomp	00	Specific		OPP	Truchidiar	
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv)	(NTU)	Comments
ni io	11.15	9:00	255/min	0.5	14.8	5.0	1228	6.67	-27.1	9.3	slight yellow hu
1115	11.15	4	250/11-	0.7	14.8	4.2	1230	6.67	-42.6	13.7	u t
1120	11.15	el	250/min	1.0	14.8	2.9	1226	6-68	-63.0	9.54	li -
125	11.15	45	4	1.25	14.8	2.5	1224	6.69	-74.5	10.2	4
1130	11.15	R	240	1.5	14.9	2.1	1222	6-69	-81.7	11.5	Ū.
135	11.15	0	240	1.8	14.1	2.0	1220	6.69	-86.7	8.70	<i>tl</i>
1140	11/2	11	4	2.15	14.9	1.9	1216	6.69	-90.3	229 7.79	11
1145	11.15	н		2.4	14.9	1.8	1211	6.69	-93.3	8.13	6
1150	(1.15			2.75	14.9	1.2	1209	6-69	- 45.4	8.01	11
	_							_			
										_	_
_											
								_	_		
		_			_			_	_		
_									-		
				_							
			Stabilizati	on Criteria	3%	10%	3%	± 0.1	± 10 mv	10%	
Sampling	Data			_							
Sample I	D: SPL-C	GW-MW33-	0526	Time Co	llected:	1200	-	Weat	ner: p	atly i	cho day
Sample [Description (Color, Turbid	lity, Odor, Oth	er):						,	/
Sample A	Analyses:	cis-1,2-DCI	E, vinyl chlor	ide, total ire	on, total m	anganese,	dissolved arse	enic		_	
Duplicate	e Sample Co	llected:	Yes A] No	If yes, ID:						
MS/MSD	Collected:		Yes 🕅	No							
Additiona	I Informatio	on/Comment	s								
			Pures .	inter its	hake	t ic .	dark well	- le=			
			The second	in it	mene	() 0	your your	yrr.	m		

Water Level Measurement Field Report

outh Park L Seattle, WA	andfill	CLIENT: Sea	attle Dublie Litil	11		
Seattle, WA			ame Fublic Util	ties		
	TEMP		° at		,	٩M
My		6	ך °at		1316	PM
SITE						
WING WAS	S NOTED:					
Time	Measured Depth to Water (ft from TOC or SG level)	Total Measured Well Depth (ft from TOC)	Measuring Point	Total Well Depth (ft bgs)	Screen Interval (ft bgs)	SU (ft)
1401	6.59	12.11	TOC	15.3	10-15	1.52
1407	3.61	16.95	TOC	21.8	11.5-21.5	0.8
1413	8.50	29.59	тос	30	20-30	-0.29
1510	16.06	33.30	тос	40.4	30-40	1.25
			TOC	27	22-27	2.79
1582	11.54	23,29	TOC	24	19-24	-0.44
1519	1172	24,88	TOC	25	20-25	-0.47
330	10:41	20.04	TOC	25	15-25	2.39
1321	9.16	14,87	TOC	20	10-20	2.04
			TOC	45	35-45	1.65
1334	9.67	39.12	тос	45.3	35-45	1.56
1316	9.17	39.34	тос	45.6	35.5 - 45.5	1.88
1347	11.04	12.70	тос	13	8-13	-0.53
1341	11.71	18.29	тос	23	35.5-45.5	-0.46
	Time 1401 1407 1510 1510 1510 1512 1510 1512 1519 1521 1532 1532 1532 1532 1532 1532 1532 1532 1532 1532 1532 1532 1532 1532 1532 1532 1532 1532 1532 15344 1534 1534 1534 1534 15345 15345 15345 15345 15345	NING WAS NOTED: Measured Depth to Water (ft from TOC or SG level) 1401 $(6, S9)$ 1407 3.61 1407 3.61 1407 3.61 1407 3.61 1407 3.61 1407 3.61 1407 3.61 1407 3.61 1407 3.61 1407 3.61 1407 3.61 1407 3.61 1407 3.61 1407 3.61 1407 3.61 1407 3.61 1407 3.61 1510 16.06 $$ 1512 11.54 1519 10.41 1321 9.167 1347 11.04 1347 11.04	SITE Measured Depth to Water (ft from TOC or SG level) Total Measured Well Depth (ft from TOC) 1401 6.59 12.11 1407 3.61 16.95 1407 3.61 16.95 1413 8.50 29.59 1510 16.06 33.30 1510 16.06 33.30 1510 16.06 33.30 1510 16.06 33.30 1510 16.06 33.30 1510 16.06 33.30 1510 16.06 33.30 1512 11.54 23.29 1519 11.92 24.88 330 10.41 20.04 1321 9.16 14.07 1334 9.67 39.12 1316 9.17 39.34 1347 11.04 12.70 1341 11.71 18.29	Mag Control SITE Measured Total Measured Depth to Measured Wing WAS NOTED: Measured Weil Depth Time or SG level) TOC) Point 1401 6,59 12.11 TOC 1407 3.61 16.95 TOC 1407 3.61 16.95 TOC 1413 8.56 29.59 TOC 1510 16.06 33.30 TOC 1510 16.06 33.30 TOC 1512 11.54 23.29 TOC 1519 11.54 23.29 TOC 1519 11.54 23.29 TOC 1519 11.54 23.29 TOC 1321 9.16 14.67 TOC 1321 9.16 14.67 TOC 1334 9.67 39.12 TOC 1347 11.04 12.70 TOC 1347 11.04 <td< td=""><td>Mage Total Total Total Well Depth Measured Depth to Water (ft from TOC or SG level) Total Measured TOC) Measuring Point Total Well Depth (ft bgs) 1401 $(6, 59)$ 2.1 TOC 15.3 1407 3.61 16.95 TOC 21.8 1407 3.61 16.95 TOC 21.8 1407 3.61 16.95 TOC 21.8 1413 8.56 29.59 TOC 30 151D 16.06 33.30 TOC 40.4 TOC 27 153.2 11.54 23.26 TOC 24 151D 16.06 33.30 TOC 24 25 33.0 10.41 20.04 TOC 25 1320 10.41 20.04 TOC 25 1321 9.16 39.12 TOC 45.3 1321 9.16 39.34 TOC 45.3 1316 9.17 39.34 TOC 13 1347 11.04 12.70 TOC 1</td><td>Mund G / C 131 G SITE Measured Total Screen Wing WAS NOTED: Measured Total Measured Screen Time Or SG level) Total Measured Total Well Screen 1401 $(6, 59)$ 12.11 TOC 15.3 10-15 1407 3.61 16.95 TOC 21.8 11.5-21.5 1413 8.56 29.59 TOC 30 20-30 151D 16.06 33.30 TOC 40.4 30-40 TOC 27 22-27 1532 11.54 23.29 TOC 24 19-24 1519 16.06 33.30 TOC 25 20-25 330 10-41 20.04 TOC 25 20-25 330 10-41 20.04 TOC 25 15-25 1321 9.16 14.97 TOC 20 10-20 <</td></td<>	Mage Total Total Total Well Depth Measured Depth to Water (ft from TOC or SG level) Total Measured TOC) Measuring Point Total Well Depth (ft bgs) 1401 $(6, 59)$ $ 2.1 $ TOC 15.3 1407 3.61 16.95 TOC 21.8 1407 3.61 16.95 TOC 21.8 1407 3.61 16.95 TOC 21.8 1413 8.56 29.59 TOC 30 151D 16.06 33.30 TOC 40.4 TOC 27 153.2 11.54 23.26 TOC 24 151D 16.06 33.30 TOC 24 25 33.0 10.41 20.04 TOC 25 1320 10.41 20.04 TOC 25 1321 9.16 39.12 TOC 45.3 1321 9.16 39.34 TOC 45.3 1316 9.17 39.34 TOC 13 1347 11.04 12.70 TOC 1	Mund G / C 131 G SITE Measured Total Screen Wing WAS NOTED: Measured Total Measured Screen Time Or SG level) Total Measured Total Well Screen 1401 $(6, 59)$ 12.11 TOC 15.3 10-15 1407 3.61 16.95 TOC 21.8 11.5-21.5 1413 8.56 29.59 TOC 30 20-30 151D 16.06 33.30 TOC 40.4 30-40 TOC 27 22-27 1532 11.54 23.29 TOC 24 19-24 1519 16.06 33.30 TOC 25 20-25 330 10-41 20.04 TOC 25 20-25 330 10-41 20.04 TOC 25 15-25 1321 9.16 14.97 TOC 20 10-20 <

HII boits

sit Free

Subtract probe leader from measurements (10)

Add

TOC - top of PVC SG - staff gauge casing

SIGNED: Churt

Purge Data	a Scree	ned Interval	(ft bgs): 5.	0-20.0			Well Ca	sing/Diam	eter: PV	C/2 in	
Initial Dep	oth of Water	(Ft below T	OC):	9.1	10	Purg	e Water Dispos	al Method	: SP	u - Author	Red Prain
Purge Dev	vice ded	icated blac	der pump		_	PL	imp Intake Dep	th: 10.5	5ft		5
Begin Pur	ge		1			-				-	
Time:	-		1045			Er	d Purge Time:		11	35	
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
050	9.19	918	250		14.5	10.0	1301	6.24	143.0	0.72	
055	9.17	918	250	_	14.3	13.4	1163	6.26	141.2	2113	
00	9.17	918	250		14.2	22.5	1154	6.32	1370	1.87	
188	9.17	9/8	250		14.2	27.2	1152	6.37	132.5	1.43	
105	9.17	918	250		14.2	29.7	1146	6.40	128.7	0.29	
110	9.19	918	250		14.2	12.5	1148	6.41	125.5	0.46	
120	9.21	9/8	250		14.2	19.8	1142	6.42	122,6	0.63	
125	9.21	918	250		14.2	20.9	1130	6.44	119.4	1.09	
30	9.21	9/8	250		14.1	25.2	1126	6.44	116.2	0.47	
35	9.21	9/8	250		14.3	6.6	1128	6.44	112.2	0.44	
				~4 gal							
				total		_					
									_		
							;				
									_		
				C							
			Stabilizat	ion Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <5 N1	ru
mpling D	Data										
			1.5	T	Contract of		7				o
ample ID	SPL-GI	V_IVIV08-	0821	Time Col	liected:		2	weath	er:	Sunny	71
ample De	escription (C	olor, Turbid	ity, Odor, Oth	ner): <u>4</u>	0 60	tor to	4. sligh	by yes	low	huge	
ample Ar	nalyses: C	is-1,2-DCE	E, vinyl chlo	ride, total in	on, total n	nanganese, d	issolved arse	enic		- E.	
unlicate	Sampla Coll	ected.		The	If yes ID.						
	Collected.	F		The	in yes, iU:						
עכואו קניי	conected:										

Sampling Organization: Parametrix samplers:		MW-10	Well ID:			Date:				0-067	.: 553-1550	Project No
urge Data Screened Interval (ft bgs): 35.0-44.0 Well Casing/Diameter: PVC/2 in initial Depth of Water (ft below TOC): Purge Water Disposal Method:			1			rs:	Sample		trix	Parametr	Organization:	ampling
hitial Depth of Water (Ft below TOC):Purge Water Disposal Method: Purge Device dedicated bladder pump Pump Intake Depth: 30.0 ft legin Purge Begin Purge methods were for the follow Pump Purge Vol. Temp DO Conductance pH ORP Turbidity (NTU) Con Water (feet Cum Specific DO Conductance pH ORP Turbidity (NTU) (mg/m) (units) (mv) (NTU) Con (NTU) (mg/m) (units) (mv) (NTU) (mg/m) (mg/m) (mg/m) (units) (mv) (nv) (mg/m)		/C/2 in	eter: PV	ing/Diam	Well Cas			35.0-44.0	l (ft bgs): 35	ned Interval	a Screen	urge Dat
ime: End Purge Time: End Purge			l: D ft	th: 30.0	Water Disposa p Intake Dept	Purge		· · · · · · · · · · · · · · · · · · ·	TOC): dder pump	(Ft below To icated blad	pth of Water (vice <u>dedic</u> ge	nitial Dep Purge De Begin Pur
Useprin to Water (feet Curn. Specific Imme MP) Setting Rate Purged (°C) (mg/L) (mm) (NTU) Conductance Imme MP) Setting Rate Purged (°C) (mg/L) (mg/cm) (units) (mv) (NTU) Conductance Imme MP) Setting Rate Purged (°C) (mg/L) (mg/cm) (units) (mv) (NTU) Conductance Imme Im					Purge Time:	En						lime:
Stabilization Criteria 3% 10%, or 3<0.5 3% ± 0.1 ± 10 mv 10% or 3 < 5 NTU ampling Data	mments	Turbidity (NTU) Co	ORP (mv)	pH (units)	Specific onductance (mg/cm)	DO (mg/L)	Temp (°C)	Cum. Vol. Purged	Purge Rate	Pump Setting	Depth to Water (feet below MP)	Time
Stabilization Criteria 3% 10%, or 3<0.5				_								
Stabilization Criteria 3% 10%, or 3<0.5			2	_		_			_	_	_	
Stabilization Criteria 3% 10%, or 3<0.5			_	_	-/							_
Stabilization Criteria 3% 10%, or 3<0.5					/		1					
Stabilization Criteria 3% 10%, or 3<0.5			_				-/			_		
Stabilization Criteria 3% 10%, or 3<0.5			_		_	X						_
Stabilization Criteria 3% 10%, or 3<0.5			_	_		$ \rightarrow $	-/				_	
Stabilization Criteria 3% 10%, or 3<0.5			_	_	1		-		_			
Stabilization Criteria 3% 10%, or 3<0.5			_									
Stabilization Criteria 3% 10%, or 3<0.5			_					<u> </u>				
Stabilization Criteria 3% 10%, or 3<0.5 3% ± 0.1 ± 10 mv 10% or 3 <5 NTU mpling Data ample ID: SPL-GW-MW10- Time Collected: Weather: ample Description (Color, Turbidity, Odor, Other):												
ampling Data ample ID: SPL-GW-MW10- Time Collected: Weather: ample Description (Color, Turbidity, Odor, Other):		10% or 3 <5 NTU	± 10 mv	±0.1	3%	10% , or 3<0.5	3%	ation Criteria	Stabilizat		_	
ample ID: SPL-GW-MW10- Time Collected: Weather: ample Description (Color, Turbidity, Odor, Other):											Data	mpling
ample Analyses: cis-1,2-DCE, vinyl chloride, total iron, total manganese, dissolved arsenic			er:	Weath			lected:	Time Col	lity, Odor, Oth	W-MW10- olor, Turbidi	escription (Co	ample IC ample D
uplicate Sample Collected: Yes No If ves, ID:				nic	solved arsei	nanganese, di	on, total n	oride, total irc	E, vinyl chlo	is-1,2-DCE	nalyses: cis	ample A
					_		lf yes, ID:	No	Yes	ected:	Sample Colle	uplicate
Iditional Information/Comments					_				Yes	/Comments	Information/	ditional
										,		

Purge Data	a Scree	ned Interva	l (ft bgs):	10.0-15.0			Well Ca	sing/Diam	eter: PV	/C/2 in	
Initial Dep Purge Dev	oth of Water vice ded	(Ft below icated bla	TOC): dder pump	6.	57	Purge Pu	e Water Dispos Imp Intake Dep	al Methoo th: 12.	1: <u>51</u> 5 ft	?u - Author	ized Drai
Begin Pur Time:	ge	145	5			En	d Purge Time:		153	5	
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
1500	6.60	417	300	_	15.6	17.0	487.2	5.96	87.8	0.33	
1505	6.60	417	300		15.6	9.2	498.1	5.91	84.7	1.05	
1510	6.60	417	300		15.6	5.6	561.1	5.94	79.2	0.27	
1515	6.60	417	300		15.4	4.3	564.3	5.98	75.0	DIDZ	
1520	6.60	417	360		15.5	3.8	504.4	6.00	72.1	0.02	
1525	6.60	47	360	-	15.4	3.4	505.5	6.02	70.6	0.07	
530	6.60	-117_	300		19.5	3.2	506.1	6.03	69.1	0.12	
5%	6.60	417	300	2501	15.5	5.2	505.5	6.03	681	5.02	
				5.5 gal							
				4 816W							
_				-							
										-	
										_	
	-	-									
		_									
			-								
_				_							
				_							
			Stabiliz	ation Criteria	3%	10% , or 3<0.5	3%	± 0.1	± 10 mv	10% or 3 <5 NT	Ū
ampling [Data										
ample ID	: SPL-G	N_MW12-	0821	Time Col	lected:	1540		Weath	er:	SUMMU	750
ample D	escription (C	olor, Turbio	dity, Odor, O	ther):	(dela					9	1
ample A	nalyses: 0	cis-1,3-DCE	E, vinyl chlor	ide, total iron, t	total manga	anese, dissolv	ed arsenic				
Duplicate	Sample Coll	ected:	Yes	No No	If yes, ID:						
			7	-							

Purge Data Screened Interval (ft bgs): 11.5-21.5						Well Casing/Diameter: PVC/2 in							
Initial Dep	oth of Wate	r (Ft below T	OC):	3.5	7 Purge Water Disposal Method: 5pu - Authorited Drai								
Purge Device dedicated bladder pump Begin Purge					Pump Intake Depth: 16.5 ft								
													Time:
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments		
330	3.59	37	~480		16.2	22.0	594.8	6.65	86.6	10.7			
1335	3:77	715	265		16.5	4.6	554.5	6.14	81.8	20.4			
1340	3.77	715	265		16.9	4.0	554.0	6.22	70.8	8.28			
1345	3.72	715	245		17.0	3.3	553.0	6.32	60.1	2:05			
1350	3.72	715	265		17.0	3.1	554.5	6.37	53.7	4.37			
1354	Hoz	U Sto	-prod	Storte	d ac	gain (0 1356						
358	3.72	715	265		15.9	3.3	_ 557.0	6.34	51.7				
403	3.72	715	~480		15.7	2.6	556.2	6.33	505	9.11			
406	3.69	5/1	240		16.9	2.6	555.5	6.35	44.1	3.65			
409	3.69	511	240		17.0	2.4	555.1	6.40	-39.5	2.78			
412	3.69	_5/1_	240		17.1	2.7	555.6	6.43	36.2	0.07			
				ng gener									
									_				
			_		_	_							
		_											
		-											
		_											
							-						
		_	Stabilizat	tion Criteria	3%	10% , or 3<0.	5 5%	±0.1	± 10 mv	10% or 3 <5 NTU			
ampling (Data			_					_		0.05		
Sample ID	: SPL-G	W-MW14- 0	1580	Time Co	llected:	1415		Weath	er:	Sound	705		
Sample D	escription (C	color, Turbid	ity, Odor, Otl	ner): DC	ale br	min				2			
Sample A	nalvses: (sis-1.2-DCI	E, vinvl chlo	ride, total in	on, total m	anganese							
Dunta-t-	Comple Coll			The	Huge In	Janood							
	Sample Coll	ected: L	Jires L	TNO	it yes, ID:								
VIS/IVISD	collected:	L	Tres L	NO NO									

				-					D)	/C/2 in		
urge Data	a Scree	ned Interval	(ft bgs):	30.0	- 40.0		Well Ca	sing/Diam	eter:	10/2 11		
Initial Dep	th of Water	(Ft below T	OC): 3	0.0-40.0	8.10	16. Pure	ge Water Dispos	al Method	d: _50	u-Author	- Fed P	Iraih
Purge Dev	vice ded	icated blac	der pump			P	ump Intake Dep	th: 20.0	0 ft			
Begin Pur	ge						10.00			inut		
Time:			155			E	nd Purge Time:			1295		
	Depth to Water											
	(feet		a Cho	Cum.		1.1	Specific			a 221		
Time	below MP)	Pump	Purge	Vol. Purged	Temp (°C)	DO (mg/l)	Conductance	pH (units)	ORP (my)	Turbidity	Com	ments
1156	16-10	ale	1100	Turgeu	10	14.8	1223	(- 41	-12.9	545		incing
12.65	16.10	115	400	_	15.1	17.2	17.76	1. 7/	78.8	7.75	-	
205	16.10	615	240	_	10.5	9.3	1174	6.29	10.9	5.34	11.4012	Note
210	16.10	1015	240		Vale	8.1	1128	6.32	51.2	10.03		101.5
215	16.10	615	240		16.6	7.2	1111	6.34	38.2	3.46		
220	110,10	116	240		1/217	5.4	1103	10.35	24.7	2.49		
17.75	16x10	615	241,	_	16.5	4.7	1098	6.35	13.4	1.55	_	
1230	16.10	1015	740		16.5	4.5	1091	10.35	29	1.33	_	
235	16.10	leic	240		16.7	3.9	1088	6.35	-8.1	0.38		
240	110.10	615	240		16.6	4.1	1085	6.36	-12.8	1.47		
245	16.10	615	240		16.8	3.7	10860	6.36	-1012	0.02		
	-100			12.5 GAN	-1001 0		,					
	_			total								
		_	_				_		_			
								-				
				_				_				_
_												
											_	
		-							<u> </u>			
			Stabiliz	ation Criteria	3%	10% or 3<0	5 3%	+01	+ 10 my	10% or 3 <5	NTU	
maling)ata	_				20,0,0,0,0						
inipinig c	/			1.219.02.1	1.00			12.000				
Sample ID	SPL-G	N-MW18-	0821	Time Co	llected:	1250	>	Weath	ner:	Sunny	7	F
Sample De	escription (C	olor, Turbid	lity, Odor, O	ther): 51	isht y	ellow to	ing i			0)	_
Sample Ar	nalyses: C	is-1,2-DC	E, vinyl chl	oride, total in	on, total m	nanganese,	dissolved arse	enic				
Duplicate	Sample Coll	ected: T	Yes	No	If yes, ID:							
MS/MSD	Collected	- F	TYes		1.1.1.1.1.1.1							
	concercu.		1.65						_			
				0.45.0			,		Di	1012 in		
---------------------------------------	--	----------------------------	-----------------------	-------------------------------	--------------	----------------	------------------------------------	-------------------------	------------------------	--------------------	--------------	
Purge Data	a Scree	ned Interval	l (ft bgs): 35	0.0-45.0			Well Ca	sing/Diam	eter: <u>P</u> V	/C/2 IN		
Initial Dep Purge Dev Begin Pur	oth of Water vice ded	(Ft below T icated blac	roc): 35 dder pump	. 0-45. 0 <i>C</i>	1.65	Purg	e Water Dispos Imp Intake Dep	sal Method oth: 40.0	l: <u>59</u> 0 0 ft	u - Antho	orized Prain	
Time:	-		1340			En	d Purge Time:	-	14	20		
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments	
1346	9.66	719	240		15.1	14.1	905	6.08	116.3	6.21		
1345	9.66	719	240		14.9	12.9	947	6.14	112.9	3.89		
1350	9.69	719	240		14.9	9.0	954	6:23	107.2	2.64		
1355	9.69	719	240		14.9	7.4	968	6.30	100.4	2.44		
1400	9.69	719	240		14.7	6.6	970	6.34	_95.3	1.89		
1405	9.69	719	240		15.0	6.6	480	6.35	89.5	2.58		
1410	9.69	7/9_	240		1417	6.6	982	6.38	81.9	2.83		
1415	9.69	7/9	240		14.8	6.8	987	6.38	77.8	2.63		
1420	9,69	719	240		14.9	6.7	488	6,39	71.4	2.95		
				ngis sal								
				total								
		_							_	;		
	<u> </u>		_						_			
_					_							
	_							_				
		_							_			
			Stabilizat	ion Criteria	3%	10% , or 3<0.5	5 3%	± 0.1	± 10 mv	10% or 3 <5	NTU	
ampling [Data	_							-			
Cample IP		N MM24	10.21	Time Cel	lactor	11175		Weath		/		
Jampie IL	. GFL-GI	-www.24-	0821	- Time Col	lected.	1425		weath	el	Jonna	170	
Sample D	escription (C	olor, Turbid	lity, Odor, Oth	ner):,	Slight	y yellow	D tinge			0		
Sample A	nalyses: C	sis-1,2-DC	E, vinyl chlo	ride, total irc	on, total m	nanganese, d	issolved arse	enic				
Duplicate	Sample Coll	ected:	Yes [No	If yes, ID:							

Project No.: 553-155	0-067				Date:			Well ID:	MW-25	
ampling Organization:	Parametri	ix		Samplers				_	_	
Purge Data Scree	ned Interval ((ft bgs): 20.0-27	7.0			Well Ca	sing/Diam	eter: P	/C/2 in	
Initial Depth of Water Purge Device ded Begin Purge	(Ft below TC icated blade	DC): der pump			Pur	ge Water Dispos Pump Intake Dep	al Methor th: 24.	d: 5 ft		
Time:					E	nd Purge Time:	_			
Depth to Water (feet below Time MP)	Pump Setting	C Purge N Rate Pu	um. Vol. Irged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
				-						
	_				X	7	<u>/</u>		=	
	_				Ž	\equiv	_	=		
				/					_	
								_		
		Stabilization C	riteria	3%	10%	3%	± 0.1	± 10 mv	10% or 3	3 <5 NTU
ampling Data										
iample ID: SPL-G Sample Description (C Sample Analyses: <u>C</u>	W-MW25- olor, Turbidit is-1,2-DCE	T ty, Odor, Other): , benzene, vinyl	ime Colle	ected: e, total iro	n, total ma	nganese, disso	Weath	ner:		
Duplicate Sample Colle	ected:	Yes No	H	fyes, ID:	-					

Purge Dat	ta Scree	ened Inter	val (ft bgs):	15.0-25.0			Well Ca	sing/Diam	eter: P	/C/2 in	
Initial De Purge De	pth of Wate	r (Ft belov dicated b	w TOC): ladder pur	10,72	2	Purg	e Water Dispos Imp Intake Dep	al Methor th: 20.1	d: <u>57</u> 0 ft	V- Authin	Red Drai
Begin Pu Time:	rge		1	445		En	d Purge Time:	10	530		
Time	Depth to Water (feet below MP)	Pump Setting	Purg g Rate	Cum. e Vol. e Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
1445	10.72	5/8	26	5	14.2	22.Z	210.4	5.81	67.3	14,1	
1450	10172	5/8	26	5	14.3	12.5	223.9	5163	70.6	68.3	
1455	10.32	_5/8	26	<u> </u>	14.4	6.7	224.3	5.6le	67.1	48.3	
1500	10.72	5/8	265	F	14.3	4,6	225.6	5.68	65.1	20.5	
1505	10.72	5/8	265	<u> </u>	14.2	4.0	51825	5.69	63.5	Het -	
1510	10.72	5/8	- 26	<u> </u>	14.2	41	228.8	5.69	62.3	6.108 -	
1515	10.72	5/8	26	-	12 9	4.5	7202	5168	121	5:55 _	
1520	10.72	-3/8			12.1	27	276 7	516t	62.1	3.94	
1525	10.72	-218	24		13.9	3.1	721.1	5.30	58.2	3.22	
			Stabi	-4 Sel	3%	10% , or 3<0.5	<u> </u>		± 10 mv	10% or 3 <5 N	
Sampling	Data										_
Sample II	D: SPL-G	W_MW26	-0821	Time Co	llected:	1535		Weath	ner:	Sound	770
Sample D Sample A	escription (Color, Turi cis-1.2-D	bidity, Odor CE, vinvl ch	Other):	total mang	anese, dissolv	ed arsenic			D	
Duplicate	Sample Col	lected:	Yes	No	If yes, ID:	SPL-	GW2-MW	61-05	158	(@ 15	55)
				-						6-16	

urge Data	a Scree	ned Interva	l (ft bgs); 10	0.0-20.0			Well Ca	sing/Diam	eter: P\	/C/2 in	
Initial Der	oth of Wate	r (Ft below	TOC):	9.14		Purg	e Water Dispos	al Method	: SP	J-Author	gel Drain
Purge De	vice ded	licated bla	dder pump			PL	imp Intake Dep	th: 15.0) ft		
Begin Pur	ge	-							1000		
Time:	-	1155	5			En	d Purge Time:		240)	
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
1200	9.14	517	300		15.1	21.1	479.1	6.01	88.0	14.60	
1205	9.14	517	300		14.8	7.9	495.7	6.07	78.8	7.24	
1210	9.14	617	360		14.8	4.9	499.3	6.10	73.0	6.15	
1215	9.14	57	300		14.7	3.6	499.9	6.15	64.5	6.42	
1220	9.14	5/7	300		14.6	3,4	500.2	6.18	57.0	4.53	
1225	9.14	5/7	300		14.5	3:2	500.1	6.21	49.4	3.87	
1230	9.14	517	300		14.5	3.0	499.5	6.22	42.6	4.09	
1235	9.16	5/7	300		14.6	2.9	499.4	6.22	37.5	2.75	
1240	9.16	_5/7	300		14.5	3.0	499.8	6.23	32.7	2.30	
				-5 sal							
				total							
											-
			-								
_											
								-			
					_						
		_									
				a santana i						1000	2.02
-	-		Stabilizat	ion Criteria	3%	10% , or 3<0.	5 3%	±0.1	± 10 mv	10% or 3 <5	NTU
Sampling [Data								_	_	
Sample ID	: SPL-G	W-MW27-	0821	Time Col	lected:	1245		Weath	er:	Sunny	730
Sample D	escription (C	Color, Turbic	dity, Odor, Oth	ner):	jellou	brown	_				
Sample A	nalyses:	cis-1,2-DC	E, vinyl chlo	ride, total iro	on, total n	nanganese, d	issolved arse	enic			
Duplicate	Sample Col	lected:	Yes [No	If yes, ID:						
				- /							

-		202.12	00	0 20 0					DI	/C/2 in	
Purge Dat	a Screen	ned Interval	(ft bgs): 20	.0-30.0	_		Well Ca	sing/Diam	eter:	/0/2 11	
Initial De Purge De	pth of Water	(Ft below To staltic pum	OC):	9.34		Purg	e Water Dispos	al Method	d: <u>_</u> ≶∲ Oft	ou - Auth	orized Drain
Regin Put	rge		r				inp make bep				
Time:		1617	Z			Er	nd Purge Time:		13	730	
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
1615	10.10	3	240		14.60	6.9	868	6.25	95.1	5.29	in water particle
1620	10.10	3	240		14.8	415	867	6.21	95.5	7.67	
625	10.10	3	240		14.7	3.8	861	6.32	88.1	9.30	
1630	10-13	3	246		14.5	3.3	858	6.39	80.6	9.96	
1635	10.12	3	240		14.6	3.1	857	6.43	73.0	5.52	
1640	10.12	3	240		14.5	2.8	855	6.47	60.6	4.15	
1645	10.12	3	240		14.5	2.6	849	6.49	44.2	3.11	
1650	10.12	3	240		14.5	2.3	842	6.51	35.1	2,89	
1655	10.12	3	240		14.5	2.6	833	6.52	21.6	4.21	
1700	10.12	3	240		14.3	2.4	824	6.53	-8.8	4.25	
1705	10.12	3	240		14.1	2.4	821	6.53	-0.9	3.66	
710	10.12	3	240		_14.1	2,4	818	6.53	-12.0	2.86	
715	10.12	3	240	_	1412	2.0	809	6.54	-22.1	3.49	
720	10.12	3	246		14.1	2.3	800	6.55	-29.9	1.69	
725	10.12	3	240	_	141	2.3	795	6.50	-35.5	2.08	
1736	10.12	3	240		14.1	2.3	795	6.57	-39.8	1.74	
235	=		=	-5 Gal total		Ξ	_	Ξ	Ξ	=	
		_						Ξ	Ξ	_	
			Stabilizati	on Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <5	NTU
Sampling I	Data										
Sample II	SPL-GV	V MW29-	1021	Time Col	lected:	172	~	Weath	ner:	5	20
				_		. 1.0.	2			sound	10
sample D	escription (C	olor, Turbidi	ity, Odor, Oth	er):	ight i	gellow/b	roun tis	ase 1	appare	and three	Shean on pre
Sample A	nalyses: c	is-1,2-DCE,	, vinyl chloride	e, total iron, i	total manga	anese					
Duplicate	Sample Colle	ected:	Yes	No	If yes, ID:						
MS/MSD	Collected:]Yes	2No		-					
Additional	Information	Commente									

			2 (Well ID: MW-30				
Sampling Organization: Parametrix	Sampler	rs:	CDB , M	14B	-		
Purge Data Screened Interval (ft bgs): 8.0-13.0		_	Well Ca	sing/Diam	eter: <u>P\</u>	/C/2 in	
Initial Depth of Water (Ft below TOC):		Pur	ge Water Dispos	al Methor	l:	SPU	-Authorized Praw
Purge Device peristaltic pump		F	Pump Intake Dep	oth: 40.6	5# ~	H-5 (see water dept
Begin Purge			and Durgo Timor		0	070	
Decit 4:			ind Purge Time.		0	725	
Water (feet Cum. below Pump Purge Vol.	Temp (°C)	DO (mg/l)	Specific Conductance	pH (units)	ORP	Turbidity	Comments
1111 149 3 265	15.9	51	5981	1013	1011	631	comments
410 11.01 <u>3</u> 200	15.9	4.5	607.7	592	101.1	292	ale or bile
113 11.50 <u>230</u>	15.8	4.2	605.5	5 67	IND.Z	1.12	U.S. Horricles
925 11.55 3.3 230	15.7	3.2	1007.0	5.97	101.1	1.10	
0930 11.55 3.3 230	15.7	3.0	606.6	10.00	97.5	0.48	
0935 11.55 3.3 236	15.7	3.0	605.3	6.01	94.8	1.46	
-2 5a	1						
total							
						-	
	-						
						_	
	-						
	-			_		-	
	-						
				_			
					_	_	
	-						
	-						
				_		-	
	_						
							1000
Stabilization Criteria	a 3%	10% , or 3<0).5 3%	±0.1	± 10 mv	10% or 3 <	5 NTU
Sampling Data				_	_		
Sample ID: SPL-GW MW30- 0% Z/ Time (Collected:	200	ILA	Weath	er:	5	40°
Countie Description (Color Tradition Oder Other)	61		10			20111	1 00
Sample Description (Color, Turbidity, Odor, Otner):	0 0010	V					
Sample Analyses: cis-1,2-DCE, vinyl chloride, total iron	n, total manga	anese					
Duplicate Sample Collected: Yes Yo	If yes, ID:						
MS/MSD Collected: Yes Yo		~					
Additional Information/Comments							
Additional information/comments						_	

Project No.: 553-1550-067						Date:	8-25-21		Well ID:	MW-31		
Sampling	Organization	: Parame	trix		Sample	rs:	CDB,	MAR	5			
Purge Dat	ta Scree	ened Interva	l (ft bgs):	18.0-23.0			Well Ca	sing/Diam	eter: P	/C/2 in		_
Initial De Purge De	epth of Wate evice dec	r (Ft below dicated bla	TOC): dder pump	11.75		Pur	ge Water Dispos Pump Intake Dep	al Method th: 20.	d: <u>5</u> 8 5ft	u-Auth	prized Prnih	-
Begin Pu Time:	rge		075	51		E	nd Purge Time:		084	10		
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments	
0755	11.76	619	250	_	14.2	7.6	417.0	5.45	164.2	48.5		_
0900	11,77	619	250	_	14.2	7.1	425.6	5.50	149.3	31.7	U.S. Small P	octicle
0805	11.77	48	125		14,9	5.6	423.3	5.67	136.0	24.2		1
0816	11.77	4/6	250		14.2	4.7	429.9	5.79	125.5	15.9		
0815	11.77	4/10	250		14.2	5.6	427.3	5.82	120.2	12.5		-
0820	11.77	4/6	250		14.2	4.6	430.1	5.86	114.8	9.89		_
6825	11.76	4/6	250		14.3	4.2	429.6	5.89	111.9	4	water clear	2
0830	11.76	416	250		14.2	3.6	429.2	5.92	107.6	5.61		-
0835	11.76	416	250		14.3	3.6	428.7	5.94	104.6	4:30		-
0840	11.78	416	252		14.3	3.5	427.7	5.96	101.6	5.48		-
				~5 Sal.	_							-
				total								4
		_										2
												-
		_						_	_			-
									_			-
												-
												-
						_			_			-
												-
									_			-
		-										-
-												-
	_		Stabiliz	ation Critoria	29/	10% or 3-0	5 2%	+01	+ 10 mu	10% 0= 2 <	ENTIL	-
Sampling	Data	_	Stabiliza	ation criteria	370	10%,01 3.0	.5 570	10.1	1 10 110	10% 01 3 <	5110	-
			and l			- 57.7						-
sample II	J: SPL-G	vv_ivivv31-	0821		nected:	0845	5	weath	ier: <u>5</u>	ound	60	-
Sample D	escription (0	Color, Turbic	dity, Odor, O	ther):	ellouis	h broy	n			-		
Sample A	nalyses:	cis-1,2-DCE	, vinyl chlor	ide, total iron,	total manga	anese						
Duplicate	Sample Col	lected:	Yes	No	If yes, ID:							2
MS/MSD	Collected:	D	Yes	No								
Additiona	Informatio	n/Comment	ts									-
												-

Purge Dat	ta Scree	ned Interval	(ft bgs):	19.0	- 24.0		Well Cas	sing/Diam	eter: P\	/C/2 in	
Initial De	pth of Water	(Ft below T	DC): 19.0	9-24.0 IL	.62	Purg	e Water Dispos	al Metho	d: _ SP	U-App	ruved Drain
Purge De	evice peri	staltic pum	р			P	imp Intake Dep	th: 21.	5 ft		
Begin Pu	rge	~	000				d Dunna Time		nari		
Time:	Danah da	0	890			EI	nd Purge Time:		0-160		
Time	Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
2840	11.62	4	207		14.4"	(2.3	823	635	-22.8	8.45	
2845	11,60	4	240		14.3	7.1	820	6.32	-30.3	7.49	pale yellow
0850	11.61	_ 4	240		14.3	6.1	822	6.31	-35.7	8.10	
0855	11.(21	4	240		14.3	6.0	220	6.33	-40.2	6.12	
0900	11.61		240		14.5	4.7	820	4.35	-46.0	4,13	pale villere brou
0905	11.61	3.5	207		19.4	9.2	851	6.38	-44.5	2.32	
0915	11.61	2.5	775		14.5	3.1.	857.	6.47	-54.5	1.46	
0070	11 /1	25	275		14.4	36	860	1. 44	-51 9	092	
	=			~ 3.5 - 102		_			=		
		_				_			_		
	_				_	_		_			
	_					_		_	=		
_		_				_		_	=	_	
	_							_			
	_	_							_		
Sampling	Data		Stabilizati	on Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <5	NTU
Sample II	D: SPL-G	N_MW32-		Time Col	lected:	0925	5	Weath	ier:	Бани	1 58° F
Sample D	escription (C	olor, Turbidi	ty, Odor, Oth	er):		1.00				1.00	
Sample A	nalvees	sis-1.2-DOF	vinyl chloride	total iron	total manage	anese dissolv	ed arsenic				
Duplicate	Sample Coll	ected:	Yes [] No	If yes, ID:	SPL	- Gw- 1	41460	+ran	4	
	Collected		Iver E	INC							

Durgo Dat	- Coroo	and Interval	(ft has), 20	.0-25.0			Well Co	sing/Diam	P\	/C/2 in	
Purge Dat	a Scree	ned Interval	(it bgs):	11 7 5			well Ca	sing/Diam	ieter:	A 10	
Initial Dep	oth of Wate	r (Ft below T istaltic num	OC):	11. 75	>	Purg	ge Water Dispos	al Metho	d: <u> </u>	- Hut	norized brach
Purge De	vice per	istante pun	ip			Pi	ump Intake Dep	th: 22.	511		
Begin Pur Time:	ge	10	270								
	Denth to						a raibe titter		1100		
Time	Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO (mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments
1020	11.75	3	240		15.8	11.7	1334	656	57.2	4.601	Vis. particle tu
1025	11.75	3	240		15.6	6.3	1357	6.47	24.4	5.10	- france
1030	11.75	3	240		15.7	4.7	1420	6.47	-2.6	6.87	
1035	11.75	3	240		15.6	41.0	1426	6.48	-20.8	6.10	
1040	11.75	3	240		15.7	3.4	1427	6.5	-34.5	5.27	
1045	11.75	3	240	_	15.7	3.2	1428	6.50	-18.1	0.22	
050	11.75	3	240		15.8	3.0	1424	6.51	- 50.5	1.17	
1055	11.75	3	240		15.7	2.8	1424	6.52	-54.4	0.02	can shill see pert
1100	11.75	3	240		15.7	2.8	1420	652	-58.3	3.07	
_				= 3 soull.							
				12.0-1							
				-				_			
		_									
		_									
_											
			_							_	
			Stabilizat	ion Criteria	3%	10% . or 3<0.	5 3%	± 0.1	± 10 my	10% or 3 <5	NTU
										20/0 01 0 1	
Sampling [Data				_			_			
Sample ID	: SPL-G	W-MW33-	6821	Time Col	lected:	1105		Weath	ner:	Sumar	106° =
Sample D	escription //	olor Turbid	ity Odor Oth	er).				-		2	wu i
Sample A	nalyses: (cis-1,2-DCE	E, vinyl chlor	ride, total irc	on, total ma	anganese, c	dissolved arse	pal	e yet		District
Duplicate	Sample Coll	ected:	Yes 🖸	No	If yes, ID:						
	C	-	1	16							

ある一個

1771

Water Level Measurement Field Report

DATE	11/15/2	?/	JOB NO. 553	-1550-067			
PROJECT: S	South Park La	ndfill	CLIENT: Sea	attle Public Utili	ties		
LOCATION:	Seattle, WA						
WEATHER		TEMP	56	°F ∘at		8:00 A	M
OVERANSA	2) henry	an	58	° at		13:30	'M
PRESENT A	I SITE						
	WING WAS	NOTED:					
WELL		Measured Depth to Water (ft from TOC	Total Measured Well Depth (ft from	Measuring	Total Well Depth (ft	Screen Interval (ft bgs)	SU (ft)
		1 21	100)	TOC	15 3	10-15	1.52
10100-12	13:59	5.57.		100	10.0	11 5-21 5	0.8
MW-14	13:55	1.92		TOC	21.8	11.5-21.5	0.0
MW-29	14:32	5.87		тос	30	20-30	-0.29
MW-18	14:12	1449		тос	40.4	30-40	1.25
MW-25	14:00	12.71		тос	27	22-27	2.79
MW-32	14:28	10.00		тос	24	19-24	-0.44
MW-33	14:24	10.21		тос	25	20-25	-0.47
MW-26	13:27	8.89		тос	25	15-25	2.39
MW-27	13:17	7.54		тос	20	10-20	2.04
MW-10	14:06	12.15		тос	45	35-45	1.65
MW-24	13:30	8.15		тос	45.3	35-45	1.56
MW-08	13:10 -	7.65		тос	45.6	35.5 – 45.5	1.88
MW-30	13:21	9.64		тос	13	8-13	-0.53
MW-31	14:19	9.97		тос	23	35.5-45.5	-0.46

Comments:

SIGNED:

TOC – top of PVC SG – staff gauge casing

2

South	Park	Landfill	

Project No.	: 553-155	60-067				Date:	11/17/2	20	Well ID:	MW-08		
Sampling O	rganization	Paramet	rix		Sampler	rs: <u> </u>	any +	MAB				
Purge Data	Scree	ned Interval	(ft bgs): 5.0	-20.0	an gar en Saultanet e se pe		Well Ca	sing/Diam	eter: PV	'C/2 in		
Initial Dep	th of Water	· (Ft below T	OC):	8.12		Purge	Water Dispos	al Methoc	l: 0	NI Sef	hnhr	
Purge Dev	ice ded	icated blac	der pump			Pu	mp Intake Dep	th: 10.8	ōft			
Begin Purg Time:	ge		11:25			En	d Purge Time:					
	 Depth to											
	Water						C					
	(feet	Pumn	Purge	Cum. Vol	Temp	DO	Specific	рH	ORP	Turbidity		
Time	MP)	Setting	Rate	Purged	(°C)	(mg/L)	(mg/cm)	(units)	(mv)	(NTU)	Commer	nts
1132	8.12	10/12	750 mi/h.	- 01	112	0.38	749	6.59	15.3	36.7	Olangis	h
1137	818	10/1-	~	0.5	12.2	0.11	752	6.58	-30.5	20.6	~ ~ ~	
1147	8.12	4.5	**	0.9	12.3	6.21	772	6.57	-46.0	13.7	*	
1147	8.12	24	**	1.3	12.3	0.17	803	6.57	-53.7	10.3		
1152	8.12	11	• 1	1.7	12.2	0.17	823	6.57	-58.3	6.66		
1157	8.12	15	• •	2.1	12.2	0.1Ce	833	6.57	-61.1	7.85		
1202	8.13	11	c1	2.5	12.2	0.16	839	6.57	-62.8	16.4		
1207	8.13	(1	11	2.9	12.2	0,13	842	6.57	-64.1	20.8		
1212	8.13	*1		3.3	12.3	6.15	847	6.57	-65.0	21.5		
1217	8.13	IN .		3.7	12.2	Dille	848	6.57	-659	16.0		
1222	8.13			4.1	12.3	0.17	850	6.57	-66.8	10.8		
1227	8.13	**		4.5	12.3	0.19	855	6.57	-67.5	8.84	auto	
1232	8.13			4.9	12.3	0.46	858	6.53	-66.1	5.47	restort	20 1230
1237	8.14		и	5.3	12.3	0.27	862	6.56	-68.1	4.27	Bubbles,	pre-duction
1242	8.14	- 11		5.7	12.3	6.14	865	6.56	-68.9	3.70		
1247	8.14	EX.		6.1	12.1	0.19	865	6.57	-69.4	2.48	water he	25 oily
											sheen, no	Smell
											<u> </u>	
	<u> </u>											
							20/			100/ 2		
			Stabilizati	on Criteria	3%	10% , or 3<0.5	5%	± 0.1	± 10 mv	10% or 3 <	5 11 0	
Sampling D	ata										1 1	
Sample ID	: SPL-G	W_MW08-	121	_ Time Co	llected:	1250		_ Weath	ier: 🗲	unny 2	1 Clew	Sky.
Sample De	escription (O	Color, Turbid	lity, Odor, Othe	er):						J		
Sample Ar	nalvses: (cis-1,2-DC	E, vinyl chlori	ide, total ir	on, total m	anganese, d	ssolved arse	enic 👝				1.
Duplicate	Sample Col	lected: D	KYes [] No	If ves. ID:	<u> </u>	GILI-MI	1014-1	121			
		in the second	zivee [] N 0			DIW		161			
				טאו ן								
Additional	intormatio	nycomment	.5									
1. Jal	() [14	A China h	ich in co	las has	hubble	Saul	n oila	Shaan				7
	maj	2 Orvers	Join 10 10	101 / 1.40	U	S MAN 6			6			
						1 of 1					Parame	etrix:

South													
Project No.	: 553-158	50-067			Date: Well ID:								
Sampling O	rganization	: Param	etrix		Sampler	rs: <u> </u> , 1	my + m	1413					
Purge Data	Scree	ened Inter	val (ft bgs):	35.0-44.0		Well Casing/Diameter: PVC/2 in							
Initial Dep	th of Wate	r (Ft belov	v TOC):	12.43	Purge Water Disposal Method: Bil Separater								
Purge Dev	vice dec	dicated b	ladder pum	ıp 🧳	Pump Intake Depth: 30.0 ft								
Begin Purg Time:	ge -		10:15		End Purge Time: 10:55								
Time	Depth to Water (feet below MP)	Pump Setting	Purge Rate	Cum. Vol. Purged	Temp (°C)	DO _(mg/L)	Specific Conductance (mg/cm)	pH (units)	ORP (mv)	Turbidity (NTU)	Comments		
1030	1242	<u>14</u>	<u></u>	Mymin 0,2	13.6	1.02	1929	<u>0.68</u>	-70.9	9.96	pahe yellow		
1035	12.42			<u> </u>	12.5	6.76	1509	(e.TS	-30 .0	0.00			
1040	12.43	11		D.4	13.6	0.23	1512	6.80	-114.8	5.62			
1050	12.43		4	1.30	13.7	0.22	1512	6.81	- 107.9	0.02			
1055	12,43	**		2.0	13.5	023	1510	6.81	-109.8	200			
11.60													
			· · · · · · · · · · · · · · · · · · ·										
		<u></u>											
		ų.	Stabi	lization Criteria	3%	10% , or 3<0	.5 3%	± 0.1	± 10 mv	10% or 3 <	5 NTU		
Sampling D	Data									Margaret in Castle			
Sample ID	: SPL-C	GW-MW1	0-2121	Time Co	llected:	11:00)	Weath	her: <u>Sh</u>	nny h	ith dear sky		
Sample De	escription (Color, Tur	bidity, Odor,	Other):						/	0		
Sample Ar	nalyses:	cis-1,2-0	DCE, vinyl o	chloride, total ir	on, total m	nanganese,	dissolved arse	enic		ie -			
Duplicate	Sample Co	llected:	Yes	No No	lf yes, ID:								
MS/MSD (Collected:		Yes	No									
Additional	Informatio	on/Comm	ents										

	Sampling C	Drganization	: Paramet	rix		Sample	rs:	. Viny	<i>≁ </i>	1/4/5					
	Purge Data	a Scree	ned Interval	(ft bgs): <u>10</u>	.0-15.0	Well Casing/Diameter: PVC/2 in									
	Initial Dep	oth of Wate	r (Ft below T	OC):	3,71	Purge Water Disposal Method: Oil Segurator									
	Purge Dev	vice ded	licated blac	lder pump		Pump Intake Depth: 12.5 ft									
	Begin Pur Time:	ge	8	21		End Purge Time: 10:104.									
-		 Depth to								~ [
		Water			Course			Creatitie							
		(feet below	Pump	Purge	Cum. Vol.	Temp	DO	Specific Conductance	pН	ORP	Turbidity				
	Time	MP)	Setting	Rate	Purged	(°C)	(mg/L) jj	Ska(mg/cm)	(units)	(mv)	(NTU)	Comments			
	8:15	371	5/7.	400 mi/m	n 0.15	13.6	3.61	333.7	5.85	-249.9	253	-			
	8:30	2.71	~~	<u> </u>	0.50	13.6	1.35	513.5	5.88	<u>Z +1.1</u>	0.32				
	8:35 8:40	171			1.00	122	0:91	2167	5.9M	2041L 2001	$\frac{0.02}{0.02}$				
	8:45	371		~~~~	250	137	<u>0.71</u> <u>0.69</u>	2194	5.10	157.6	002				
	8.50	The	Ahm	1 Stuan	1 with	n_{r} –	~		-		<u></u>				
2.	8:55		July		3.50	0 14.1	0.57	333.2	6.07	223.6	0.02				
17	9:00	3.72	**	~ ` `	4.00	13.6	0.60	337.2	6.09	204.4	10.0.2				
2		3.72		<u>.</u> .	4.50	13.8	0.58	347.9	6.11	197.1	0.02	1. 			
	9:17	372	~~	~	5.25	13.9	0.51	356.9	6.12	174.1	0.02				
	9:22	3.72	<u> </u>	·	6.00	13.9	0,49	364.3	6.12	155.3	0.02				
	9:27	3:+2	<u> </u>		1.00	13.6	047	368.3	6.15	144.7	D.OZ				
	9:32	3.47	<u> </u>		00.00	13.9	0.49	312+	6.19	131.8	<u>U.OL</u>				
	<u>9:2+</u> 9:41	3.72	<u> </u>		9.00	$\frac{13.9}{120}$	045	378.0	6.15	130.9	DOL DOZ				
	9.41	<u> </u>	Aura a	Shand a	<u>10.00</u>	15.1	0.17	JOLIT	<u>0.10</u>	107.5					
Y	Ball	371	phinge .	<u>5147744 - 1</u>	11 1219	<u>Mire</u> 141	13 AVI 1948	284.8	<u>6.18</u>	115.7	007				
ľ	9:59	3.71	<u> </u>	<u> </u>	12.00	13.4	0.41	388.9	6.19	11/2	O.OZ				
	\$0:04	3.71		۲	12.50	13.4	0.46	384.1	6.18	110.5	0.02				
	10:09														
								·				(
								3)							
				Stabilizati	ion Criteria	3%	10% , or 3<0	0.5 3%	± 0.1	± 10 mv	10% or 3 </td <td>5 NTU</td>	5 NTU			
	Sampling [Data													
	Sample ID	: SPL-G	W_MW12-	121	Time Co	llected:	/C	2:10	Weath	er: _C	woranst				
	Sample D	escription (C	olor, Turbid	ity, Odor, Oth	er): (lear.									
	Sample A	nalvses: 0	cis-1.3-DCE	vinvl chlorid	e. total iron.	total mano	anese, dissol	ved arsenic							
	Dunlicata	Samala Call	ostodu [Í No	If yes ID:									
	MS/MSD	Collected:		Yes 🎽	No	ii yes, iD:									
	Additional	Information	n/Comment	S .								angen Hallin Balanta Berghomping an on Sill Be			
		T		1			1		Δ	and direction					
		110 1	and ch	lonla .	Sinna Ales	1/11	MISING	1 ith HI	i Nu	me tin	103 End	Sumlle			

GROUNDWATER SAMPLE COLLECTION FORM

Designation	553-155	L 067				Data	11/17/2	/		MW-14			
Project No.:		Paramet	rix		Sampler	Samplers: Them + MAB							
Sampling Or	ganization.	T dramot											
Purge Data	Screen	ed Interval	(ft bgs): <u>11</u>	1.5-21.5			Well Ca	sing/Diam	eter: PV				
Initial Dept	th of Water	(Ft below T	OC):	221		Purg	e Water Dispos	al Method	:_ <i>O</i>	il Sepa	wher.		
Purge Devi	ice dedi	cated blac	dder pump			P	ump Intake Dep	oth: 16.5	5 ft	/			
Begin Purg	e		1:10			-	d Dunne Times	<	8:15				
Time:)	P			EI	nd Purge Time:						
	Depth to Water												
	(feet			Cum.	_		Specific						
Timo	below	Pump	Purge	Vol. Purged	Temp (°C)	DO (mg/l)	Conductance	pH (units)	ORP (my)	Turbidity (NTU)	Comments		
TITE	1/20	5 m	110ml/m	- 12.25	1412	7 (21)	5725	624	1419	170			
1:20	930	<u></u>	LIC IM	<u>050</u>	145	TIU	5465	6412	903	258			
7:25	730		* 29	075	141	095	5347	641	677	16.7			
Tiun	120	~~		(00	143	19 69	5/79	649	467	14.9			
7:46	130		×.	125	143	053	525.5	651	37.8	13.4			
7:50	130	~~	22	1.50	14.4	OUR	515.5	6.52	31.3	8.91			
7:55	130	~	* 3	175	14.6	039	523.0	6.53	25.7	5.61			
8:00	2.30	~~	~	20	14.6	0.38	523.0	6.55	21.2	4.23			
8.10	230		~	2.25	14.5	0.31	522.4	6.55	177	2.80	2		
8:15	230	~.	~	2.50	14.3	035	522.5	6.56	<u>H.a</u>	198			
8:20	-		-				. 	-	~				
				1									
					-					<u> </u>			
					* <u></u>					C			
			Stabiliza	tion Criteria	3%	10% , or 3<0	.5 3%	± 0.1	± 10 mv	10% or 3 <5	NTU		
Sampling Da	ata												
Sample ID:	SPL-GV	V-MW14-	1121	Time Co	llected:	820)	Weath	er: <u>C</u>	len she	105		
Sample De	scription (C	olor, Turbic	lity, Odor, Ot	her): Fri	int ode	r. Some	bubbles in	male	1 bud	ut.			
Sample An	alyses: C	is-1,2-DC	E, vinyl chlo	oride, total ir	on, total m	nanganese		a ()		`			
Duplicate S	— Sample Colle	ected:	Yes	X No	If yes, ID:								
MS/MSD C	collected:		Yes	No									
Additional I	Information	/Comment	ts										

V

Project No.: 553-1550-067		Date:		<u>///</u> Well ID:	MVV-18							
Sampling Organization: Para	ametrix	Samplers:	J. PAMy+	MAB								
Purge Data Screened Inte	erval (ft bgs):		Well Cas	sing/Diameter: <u>P\</u>	/C/2 in							
Initial Depth of Water (Ft bel	low TOC): (30.0-40.0	14.92	Purge Water Dispos	al Method:	Oil Separnhr.							
Purge Device dedicated	bladder pump	N	Pump Intake Dep	_{th:} 20.0 ft	/							
Begin Purge Time:	8:34		End Purge Time:	9:0:	3							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} Cum. \\ Purge Vol. \\ Rate Purged \\ O 375mV/min 0.10 \\ 1.25 \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{Specific} \\ \text{Conductance} \\ \text{(mg/cm)} \\ \hline 0.5.7 \\ \hline 9.22 \\ \hline 9.872 \\ \hline 870 \\ \hline 870 \\ \hline 870 \\ \hline \hline 870 \\ \hline \hline \\ \hline $	pH ORP (units) (mv) 6.57 .39.0 6.56 3.6 6.58 .20.1 6.58 .31.0 6.58 .37.5 6.58 .41.4 	Turbidity (NTU) Comments 17.%							
Sampling Data												
Sample ID: SPL-GW-MW	18- 1121. Time Co	ollected:	9:10	Weather:	Clear styles with Sun.							
Sample Description (Color, Tu	urbidity, Odor, Other):	int odar 1	Sulphw-like)								
Sample Analyses: Cis-1,2-	Sample Analyses: cis-1,2-DCE, vinyl chloride, total iron, total manganese, dissolved arsenic											
Duplicate Sample Collected:	Yes XNo	If yes, ID:										
MS/MSD Collected:	Yes XNo											
Additional Information/Comr	ments											

	[1] 7/207 1 MW/24	
Project No.: <u>555-1550-007</u>	Date: $10/4$ Weild: Weild: $MVV-24$	
Purge Data Screened Interval (ft bgs): 35.0-45.0	Well Casing/Diameter:	
Initial Depth of Water (Ft below TOC):	S.54 Purge Water Disposal Method: OII Separator.	
Purge Device dedicated bladder pump	Pump Intake Depth: 40.0 ft	
Begin Purge 1413	End Purge Time: 1449	
Depth to Water (feet Cum. Time MP) Setting Rate Purge 1419 8.54 7/9 400 fm/m. 0.15 1419 8.54 50 ml/m. 0.15 1419 8.56 50 ml/m. 1.15 1499 9.56 50 ml/m. 1.16 1509 100 ml/m. 100 ml/m. 100 ml/m. 150	Specific (°C) Conductance (mg/L) PH (mg/cm) ORP (mv) Turbidity (NTU) Comments 17.1 0.40 940 6.42 18.9 0.02 11.1 0.02 11.1 0.12 949 6.44 13 0.02 11.1 0.12 949 6.45 -15.7 0.02 11.1 0.20 14.7 0.46 -33.1 6.02 14.7 0.02 11.1 0.12 949 6.46 -33.1 6.02 11.1 0.02 11.1 0.02 11.1 0.02 11.1 0.02 11.1 0.02 11.1 0.02 11.1 0.02 11.1 0.02 11.1 0.02 11.1 0.02 11.1 0.02 11.1 10.02 11.1 10.02 11.1 10.02 11.1 10.02 11.1 10.02 11.1 10.02 11.1 10.02 11.1 10.02 11.1 10.02 11.1 10.02 11.1 10.02 11.1 10.02 11.1 11.1 10.02	
Sampling Data		
Sample ID: SPL-GW-MW24- 11 21 Time Col	ollected: 1500 Weather: SUNNY W/ Clear Sky	4
Sample Description (Color, Turbidity, Odor, Other):	Slight /faint orningo	
Sample Analyses: <u>cis-1,2-DCE</u> , vinyl chloride, total irc	ron, total manganese, dissolved arsenic	
Duplicate Sample Collected: 🗌 Yes 🕅 No	If yes, ID:	
MS/MSD Collected:		
Additional Information/Comments		

South	Park 553-1550	Land ⁻	fill			Date:	117/71		Well ID:	MW-25	
Sampling Org	ganization:	Parametr	ix		Samplers	$T_{\rm r}$	PARK+	MAB	Wennb.		
Purge Data	Screer	ed Interval	(ft bgs); 20	.0-27.0			Well Ca	asing/Diam	eter: PV	C/2 in	
Initial Deptl Purge Devic Begin Purge Time:	n of Water e <u>dedi</u>	(Ft below To cated blad	DC): der pump	13.10)	Pur, P	ge Water Dispo ump Intake Dep nd Purge Time:	sal Methoo pth: 24.	d:(5 ft 9:5	Dil sepi 7	nontor.
Time 937 941 947 952 957 1001 1017 1017 1017 1017 1017 1017 1017 1017 1017 1017 1017	Depth to Water (feet below MP) 13.20 13.21 (3.2.(/3.2.(/3.2.(/3.2.(Pump Setting 8/14 \$/14 	Purge Rate 350 m ¹ /m	Cum. Vol. Purged 0.50 1.00 1.50 2.00	Temp (°C) 13.5 13.7 13.7 13.7 13.7 13.7 	DO (mg/L) 2.97 0.77 0.55 0.26 0.26 0.26	Specific Conductance (mg/cm) /////3 /////3 /////3 ///6/2 ///6/2 ///6/2	pH (units) 6.52 6.53 6.55 6.55	ORP (mv) - 4.6 - 4.9 - 56.9 - 65.9 - 65.9 - 65.9	Turbidity (NTU) 2/.5- 0.6/ 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07	
Sampling Da Sample ID: Sample Des Sample Ana Duplicate Sa	ta SPL-GV cription (Co lyses: <u>C</u> ample Colle	W-MW25- olor, Turbidi is-1,2-DCE ected:	Stabilizati	ion Criteria Time Col er): vinyl chloric	3% lected: de, total irc If yes, ID:	 on, total ma	3%	± 0.1 Weath	± 10 mv	10% or 3 <	s NTU Clear Skirs
Additional Ir	formation	/Comments	s y								
Pne	zeil 1	Mer	hus br	bhles -	hut	de p	dissaf	nte.			
	- 80					1 of 1				F	Parametrix

Project No.: <u>553-1550-067</u>		Date:///7/	2/Well ID:MW-26							
Sampling Organization: Para	ametrix	_ Samplers:GM_+ []	NAB							
Purge Data Screened Int	erval (ft bgs):15.0-25.0	Well Casing/Diameter: PVC/2 in								
Initial Depth of Water (Ft bel Purge Device dedicated	low TOC): <u>9.20</u> bladder pump	Purge Water Disposal Method: 011 September Pump Intake Depth: 20.0 ft								
Begin Purge Time:	13:29.	End Purge Time:								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} Cum. \\ Purge Vol. \\ 9 375^{n}/h 0.15^{n} \\ \hline 0.75^{n}} \\ \hline 1.25^{n}} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ \hline 1.15^{n} \\ $	Temp DO Conductance (°C) (mg/L) /49/2 12.1 3.64 /49/2 12.1 9.56 202.7 12.1 9.56 203.7 12.1 0.37 204.9 12.1 0.37 205.6 12.1 0.28 205.8	pH ORP Turbidity Comments 6.02 30.5 1.61							
	Stabilization Criteria	 3% 10% , or 3<0.5 3%	± 0.1 ± 10 mv 10% or 3 <5 NTU							
Sampling Data										
Sample ID: SPL-GW_MW	126- 1121 Time Col	llected: 14:00	Weather: Shann W clew Sky							
Sample Description (Color, T	urbidity, Odor, Other):									
Sample Analyses: cis-1,2-	DCE, vinyl chloride, total iron,	total manganese, dissolved arsenic								
Duplicate Sample Collected:	🗌 Yes 🕅 No	If yes, ID:								
MS/MSD Collected:	🗌 Yes 🕅 No									
Additional Information/Com	ments									

Journ	IFAIN						11/1/10	í		NNA/ 07		
Project No.	.: 553-155	0-067			-	Date:	1110101	ΛΛΛΛ	Well ID:	MVV-27		
Sampling C	Organization:	Parametr	ix		Sampler	rs:	MMX +/	MAB				
Purge Data	a Screer	ned Interval	(ft bgs): <u>10</u>	.0-20.0			Well Ca	sing/Diam	eter: P\	/C/2 in		
Initial Dep	oth of Water	(Ft below T	DC):	8.05		Pur	ge Water Dispos	al Methoo	l:(oil ser	Inntor	
Purge Dev	_{/ice} dedi	icated blad	der pump			P	ump Intake Dep	th: 15.0) ft	1		
Begin Pur	ge	12	:uu			-	d Duran Time a		15 M)		
Time:	-) [-[E	nd Purge Time:		1 3 00	J		
	Depth to Water											
	(feet			Cum.	•		Specific					
Time	below MP)	Pump	Purge	Vol. Purged	Temp (°C)	DO (mg/l)	Conductance	pH (units)	ORP (my)	Turbidity (NTU)	Comments	
1250	0.14	5 10	200-	10.25	12.5	5.572	316.7	<u>(units)</u> 1.22	73.5	158	uallas land	
1355	8.14			0.5D	12.5	2.85	275.8	6.14	69.0	511	genoro wor	
1400	8.14	14		0.75	12.6	1.81	268.8	Caill	74.1	430		
1405	8.14	i	11	1.0	12.6	1.43	265.6	6.10	77.6	366		
1410	8.14	4	• 1	1.25	12.6	1.27	263.8	6.09	79.7	228		
1415	8.14	11		1.50	12.6	1.06	263.1	6.08	81.2	96.2		
1420	8.14	11		1.75	12.6	0.88	263.2	608	823	81.1		
1425	8.14	•1		2.00	12.6	0.81	264.3	6.08	83.3	44.7		
1430	8.14	<u>t ×</u>		2.25	12.6	0.73	264.8	6.07	83.5	51.0		
1435	8.14			2.50	12.6	F-25	266.1	6.06	85.1	30.3		
1440	8.14			2.75	12.6	Dits	407.7	6.08	84.5	26.6		
1445	8.19			3.60	12.6	0.67	26817	LeiDD	84.6	25:6		
1450	8.14			200	12.6	662	272 0	601	5118	19.5		
1935	4.14			2.25	17.10	0.51	275.1	6.01	04.6	21.6		
1505	011-1			-	-	~		~	~	-		
1510												
			Stabilizati	ion Criteria	3%	10% , or 3<0	.5 3%	± 0.1	± 10 mv	10% or 3 <5	S NTU	
Sampling D	Data	H (MOTORNAL MARKAN DATA DATA DATA DATA DATA DATA DATA DA	×									
Sample ID	: SPL-G	W-MW27-	1121	Time Col	lected:	15:05		Weath	ier:	Clen SI	hiew with	Sin
Sample De	escription (C	olor, Turbidi	ty, Odor, Oth	er):	1-trint	Vellew 10	more				DA	2015.
Sample Ar	nalyses: C	is-1,2-DCE	, vinyl chlor	ide, total ir	on, total m	anganese.	dissolved arse	enic				
Duplicate	Sample Colle	ected:	Yes 🕅	S _{No}	If ves. ID	. ,					2	,
MS/MSD (Collected:		Yes	XNo						9.000000000000000000000000000000000000		
Additional	Information	/Comments	- 7	- \	1			ан сан сан сан сан сан сан сан сан сан с				
Saw	re hubb	oks ANSI	ut ih t	he Ann	red Zun	۹ <u>۲. </u>						
		1.00			1							

42

South Park Landi				III.c. L	1							
Project No.: 553-1550-067			Date:	<u> 6 'î</u>	1	Well ID:	MW-29					
Sampling Organization: Parametrix		_ Sampler	rs:	hmy +	MAI	5						
Purge Data Screened Interval (ft	bgs): 20.0-30.0			Well Ca	sing/Diam	eter: <u>P</u> V	/C/2 in					
Initial Depth of Water (Ft below TOC	c): <u>6.16</u>		Purg	e Water Dispos	al Methoo	: <i>0</i>	IT SEAM	alar				
Purge Device peristaltic pump			Pu	mp Intake Dep	oth: 25.0) ft						
Begin Purge G:U2					11	111						
Time:			En	d Purge Time:								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cum. Purge Vol. Rate Purged 350 m // 0.25 0.450 \sim 0.50 \sim 2.5 \sim 3.0 \sim <	Temp (°C) 13.0 13.0 13.0 13.0 12.9 12.9 12.9 13.0 	DO (mg/L) 1.05 0.42 0.31 0.17 0.24 0.21 0.20	Specific Conductance (mg/cm) 599.4 591.0 599.2 611.1 631.0 634.7 635.6 	рН (units) 6.5D 6.57 6.65 6.65 6.66 6.66	ORP (mv) -29.5 -40.6 -50.1 -55.9 -55.9 -61.3 	Turbidity (NTU) 0.02 0.03 0.04 0.05 0.05 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07	Comments				
	Stabilization Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <5 N	τu				
Sampling Data												
Sample ID: SPL-GW_MW29-	21 Time Coll	ected:	10:20		Weath	ier: _C	Nercust.					
Sample Description (Color, Turbidity	, Odor, Other): Fu	int ye	llow in	color. Stra	ma od	lor.	_					
Sample Analyses: cis-1,2-DCE, v	inyl chloride, total iron, to	otal manga	anese		1							
Duplicate Sample Collected:	Duplicate Sample Collected: Yes XNo If yes, ID:											
MS/MSD Collected:	MS/MSD Collected: 🗌 Yes 🖄 No											
Additional Information/Comments												
Paly tubing the	seled pump intit	r dep	th (25 fe	et) · Pha	yeah har	hc h	hs h st	ring and				

GROUNDWATER SAMPLE COLLECTION FORM

Journ	553-155	0-067					11/16	,		M\\\/-30		
Sampling ()rganization:	Paramet	rix		Samplers: Thom + MAB							
	nganization.			. 10.0						/C/2 in		
Purge Data	a Scree	ned Interval	(ft bgs): 8.0	0-13.0	Well Casing/Diameter:							
Initial Dep	oth of Water	(Ft below T	OC):	9.	9.61 Purge Water Disposal Method: Oil Sephrater-							
Purge Dev	_{/ice} peri	staltic pum	р		Pump Intake Depth: 10.5 ft							
Begin Pur Time:	ge	11	:53			Er	nd Purge Time:		1:25			
Time 1/56 1205 126 120	Depth to Water (feet below MP) 9.70 9.78 9.78 9.78 9.79	Pump Setting	Purge Rate	Cum. Vol. Purged (a) 0.1 (0.25 (0.40 (2.57)	Temp (°C) /3.8 /3.9 13.9 13.9	DO (mg/L) 3,19 0.40 0.40	Specific Conductance (mg/cm) 491.4 405.6 402.4 295.7	pH (units) <u>6.45</u> <u>6.26</u> <u>6.25</u> <u>6.15</u>	ORP (mv) 29.7 29.7 29.2	Turbidity (NTU) 0.97 0.02 0.02	Comments	
1225 1220 1235	9.79			0.70 	<u> </u>	0.91	392.9	6:24	30.6	0.02		
1240 1245 1250												
		9										
			Stabilizat	ion Criteria	3% 1	L0% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <5 l	NTU	
Sampling D	Data											
Sample ID Sample De	escription (C	N_MW30-	ity, Odor, Oth	Time Coll er):	lected:	123 N/1	0 10 obvibn	Weath SPOO	er: lor, th	Scatter ongh, a t	cel clunds	
Sample Ar	nalyses: o	sis-1,2-DCE	, vinyl chlorid	e, total iron, t	otal mangar	nese				13 Mosen	<i>k</i> -	
Duplicate	Duplicate Sample Collected: Yes. Xo If yes, ID:											
MS/MSD (Collected:		Yes	XNo		ć						
Additional	Information	/Comments	s ·									
Vol	Puly thing with a target depth of 10.5;											

Parametrix

South Park	Landtill 1-067			Date:	11/16/2	/	Well ID:	MW-31				
Sampling Organization:	Parametrix		Sample	rs:	Pumy +	MAB						
Purge Data Screen	ed Interval (ft bg	(s): <u>18.0-23.0</u>		Well Casing/Diameter: PVC/2 in								
Initial Depth of Water (Purge Device dedic Begin Purge Time:	Ft below TOC): cated bladder	10:34 pump 39	9 <u>38</u>	4.38 10.38 Purge Water Disposal Method: 011 Separativ Pump Intake Depth: 20.5ft End Purge Time: 1315								
Depth to Water (feet below MP) 10:45 10:45 10:44	Pump P Setting I 5/9 3	Cum. urge Vol. Rate Purged 0 0.6 1.15	Temp (°C) 14.3 14.3	DO (mg/L) 0.34 0.15	Specific Conductance (mg/cm) 373: 374.4 275-2	pH (units) 2 <u>6.30</u> <u>6.30</u>	ORP (mv) -119 -211	Turbidity (NTU) 11.7 7.65	Comments			
12:00 10:44 13:00 10:44 13:05 10:45 13:10 10:45 13:15 10:45		× <u>1.15</u> × <u>2.20</u> × <u>2.60</u> × <u>2.8</u> × <u>3.25</u> − −	14.2 14.2 14.2 14.2 14.2	0.19 0.19 0.24 0.22 0.19	374.5 374.3 374.6 374.2	<u>6.31</u> 6.31 6.31 6.31	-27.7 -30.0 -31.5 -37.5 -37.5	<u>6.07</u> 5.60 3.41 3.05 2.19.	·			
				-								
	St	tabilization Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <	<5 NTU			
Sample ID: SPI -CIA	MW/31- 111	\ Time (ollected	1210	State of the second state of the second states	Weath		Hered	(line A II on			
Sample Description (Co	lor, Turbidity. O	dor, Other):	onected.		<u> </u>	- vvcali	20	MAN DI	(1000) LATE SI			
Sample Analyses: Ci	s-1,2-DCE, viny	I chloride, total iror	i, total mang	anese								
Duplicate Sample Colle	cted: Yes	X No	If yes, ID:									
MS/MSD Collected:	Yes	No										
Additional Information	Comments											

We want of the Page

Project No.: <u>553-1550-067</u> Date: <u>1//16/21</u> Well ID: <u>MW-32</u>													
Sampling O	rganization:	Parametr	ix		Samplei	rs:	Party	* 1111	t0				
Purge Data	Screer	ned Interval	(ft bgs):				Well Ca	sing/Diame	eter: <u>PV</u>	/C/2 in			
Initial Dep	th of Water	(Ft below TO	DC): 19.0	0-24.0	0.28	Purg	e Water Dispos	al Method	0	il Sefn	pater.		
Purge Dev	ice <u>peri</u>	staltic pum	р			Ρι	ımp Intake Dep	oth: 21.5	ft	/			
Begin Purg	ge	(1:41			F		115	rsh				
Time:			UL			Er	id Purge Time:		00				
	Water												
	(feet			Cum.	_	20	Specific		000	The sub-full term			
Time	below MP)	Pump Setting	Purge Rate	Vol. Purged	Temp (°C)	DO (mg/L)	Conductance (mg/cm)	pH (units)	(mv)	(NTU)	Comments		
10:47	10.75	1/2	280	0.75	14.0	250	822	6.64	-11.2	4.7			
10:48	10.28			0.50	14.1	0.42	851	(e.70	-69.9	47			
10:53	10.25	~~	~~	0.75	14.2	0.31	845	6.70	-76.1	0.02			
10:54	10.30	~~	~~	1.00	14.3	0.30	841	6.70	-77.	5 0.02			
11:03	10.30	< <u>`</u>	· ~	1.25	14.4	0.28	837	6.70	-78.6	5.02			
11:08	10.30	<u> </u>	<u> </u>	1.50	14.3	0.24	836	6.70		0.02			
11:13		97 272000 1		~		<u>`</u>		60mm			<i>b</i>		
11:146													
11:23													
								-					
											· · · · · · · · · · · · · · · · · · ·		
<u></u>													
						ter alvin mid d'							
											κ		
			Stabilizati	on Criteria	3%	10% , or 3<0.	5 3%	± 0.1	± 10 mv	10% or 3 <5	NTU		
Sampling D	ata												
Sample ID	SPL-G	N_MW32-	121	Time Col	lected:	11:17)	Weath	er:	Sathre	1 . Clunds.		
Sample De	escription (C	olor. Turbidi	tv. Odor. Oth	$\overline{F_{i}}$	int ad								
Commit					total mana	anoso dissely	ed amonio						
Sample An	iaiyses: C	,2-DCE,			iotal manga	anese, dissolv							
Duplicate	Duplicate Sample Collected: Yes Yes If yes, ID:												
	collected:	L		Į 140									
Additional	Additional Information/Comments												
- Voly	thling	troples	o ke	bip of	; 25	tet.							

*

GROUNDWATER SAMPLE COLLECTION FORM

Journ	Iun	Euria					11/17/11	i				
Project No.: 553-1550-067 Date: Date: Well ID: MW-33												
Sampling Organization: Parametrix Samplers: T. PANUE + MAB.												
Purge Data	Purge Data Screened Interval (ft bgs): 20.0-25.0 Well Casing/Diameter: PVC/2 in											
Initial Depth of Water (Ft below TOC):						Purge Water Disposal Method: NI Senara tan						
Purge Dev	_{ice} peris	staltic pum	0			 P	ump Intake Dep	th: 22.5	ift	7		
Begin Purg	ge	10	1711			1			10 10 1			
Time:	Time: End Purge Time: 1551											
	Depth to Water											
	(feet	_		Cum.	_		Specific		000			
Time	below	Pump	Purge	Vol.	Temp (°C)	DO (mg/l)	Conductance	pH (units)	ORP (my)	(NTII)	Comments	
ir-a(1020	Setting	120ml/4		150	R CU	1167	6 6U	281	087	STALA VIALIA	Thing
1520	10.51		LJU IM	0.10	1 <u>5</u> 0	027	1452	<u> </u>	-20.0	169	Shiper yeard	<u>, m</u> w~
1521	10.39			M5D	151	N1h	1435	666	-661	111		
100	10.20			(280	150	A14	1413	6 66	-737	182		
16716	10.30			1 00	151	011	1405	6.66	767	0.13		
1551	10 39			150	161	Δ la	1gag	667	796	117		
1556						-	1210	0.01				
1601												
1601							·					
1611												
1616												
1642												
1646												
010												
				<u> </u>								
							·					
				1		1						
						10% or 2<0	E 3%	+01				
Stabilization Criteria 5% 10%, or 5<0.5 5% I 0.1 I 10 mv 10% or 5 5 mro												
Sample ID	: SPL-G		1121	Time Col	lected:	15:59		Weath	er: S	ANAIN A.	wh clow sh	
Sample Description (Color, Turbidity, Odor, Other): Vellov lornnich, there are a lot of publies no sent.												
Sample An	Sample Analyses: cis-1,2-DCE, vinyl chloride, total iron, total manganese, dissolved arsenic											
Duplicate Sample Collected: Xes INO If yes, ID: SPL - GW-MW60-1121.												
MS/MSD Collected:												
Additional Information/Comments												
Holy taking formedies a depth of 225. Phoned Luker has publices and												
a frint thirt and four older.												

Parametrix

D4

Laboratory Reports

Laboratory reports are contained in Volume II

D5

Data Validation Memoranda

First Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report

Prepared for

Seattle Public Utilities 700 Fifth Avenue, Suite 4900 Seattle, WA 98124-4018

Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

In Association with

July 2021 | 553-1550-067 (03.00)

First Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

Parametrix and HWA GeoSciences, Inc., 2021. First Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report . Prepared by Parametrix, Seattle, Washington. July 2021.

TABLE OF CONTENTS

1.	PROJECT NARRATIVE1-1					
	1.1	Overview of Data Validation1-1				
2.	DATA	VALIDATION REPORT SELECT VOCS BY EPA METHOD 8260D	2-1			
	2.1	Data Package Completeness	2-1			
	2.2	Technical Data Validation	2-1			
		2.2.1 Matrix Spike/Matrix Spike Duplicate	2-1			
	2.3	Overall Assessment	2-1			
3.	DATA	VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM	3-1			
	3.1	Data Package Completeness	3-1			
	3.2	Technical Data Validation	3-1			
		3.2.1 Field Duplicates	3-1			
	3.3	Overall Assessment	3-1			
4.	DATA	VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B	4-1			
	4.1	Data Package Completeness	4-1			
	4.2	Technical Data Validation	4-1			
		4.2.1 Matrix Spike	4-1			
	4.3	Overall Assessment	4-1			
5.	REFEF	RENCES	5-1			

APPENDICES

- A Data Qualifier Definitions and Criteria Tables
- B Field Duplicate Analysis
- C Qualified Data Summary Table

First Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

ACRONYMS AND ABBREVIATIONS

CRQL	Contract Reporting Quantitation Limit
EPA	U.S. Environmental Protection Agency
LCS	Laboratory control standard
LCSD	Laboratory control standard duplicate
MS	Matrix spike
MSD	Matrix spike duplicate
RPD	Relative percent difference
QC	Quality control
VOC	Volatile organic compound

1. PROJECT NARRATIVE

1.1 Overview of Data Validation

This report summarizes the results of the Compliance Screening performed on the groundwater and field quality control (QC) sample data for the South Park Landfill First Quarter 2021 Groundwater Monitoring Event. A complete list of samples is provided below.

		Comulo			6020B	6020B
Sample ID	Lab ID	Location	8260D	8260D-SIM	Mn	As
SPL-GW-MW12-0221	21B0315-01	MW-12	X	X	Х	-
SPL-GW-MW12-0221	21B0315-02	MW-12				х
SPL-GW-MW14-0221	21B0315-03	MW-14	х	х	х	
SPL-GW-MW29-0221	21B0315-04	MW-29	Х	х	Х	
SPL-GW-MW18-0221	21B0315-05	MW-18	Х	Х	Х	
SPL-GW-MW18-0221	21B0315-06	MW-18				Х
SPL-GW-MW10-0221	21B0315-07	MW-10	Х	Х	Х	
SPL-GW-MW10-0221	21B0315-08	MW-10				Х
SPL-GW-MW60-0221	21B0315-09	MW-29 Dup	Х	Х	Х	
SPL-GW-MW80-0221	21B0315-10	TRIP BLANK	Х	Х		
SPL-GW-MW25-0221	21B0315-11	MW-25	Х	Х	Х	
SPL-GW-MW25-0221	21B0315-12	MW-25				Х
SPL-GW-MW30-0221	21B0315-13	MW-30	Х	Х	Х	
SPL-GW-MW31-0221	21B0315-14	MW-31	Х	Х	Х	
SPL-GW-MW61-0221	21B0315-15	MW-31 Dup	Х	х	Х	
SPL-GW-MW24-0221	21B0328-01	MW-24	Х	Х	х	
SPL-GW-MW24-0221	21B0328-02	MW-24				Х
SPL-GW-MW26-0221	21B0328-03	MW-26	Х	Х	Х	
SPL-GW-MW26-0221	21B0328-04	MW-26				Х
SPL-GW-MW08-0221	21B0328-05	MW-08	Х	Х	Х	
SPL-GW-MW08-0221	21B0328-06	MW-08				Х
SPL-GW-MW27-0221	21B0328-07	MW-27	Х	Х	Х	
SPL-GW-MW27-0221	21B0328-08	MW-27				Х
SPL-GW-MW32-0221	21B0328-09	MW-32	Х	Х	Х	
SPL-GW-MW32-0221	21B0328-10	MW-32				Х
SPL-GW-MW33-0221	21B0328-11	MW-33	Х	Х	Х	
SPL-GW-MW33-0221	21B0328-12	MW-33				Х
SPL-GW-MW81-0221	21B0328-13	TRIP BLANK	Х	X		

Project Sample Index

First Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

Groundwater samples were collected between February 22 and 23, 2021 and submitted to Analytical Resources, Inc. (ARI) located in Tukwila, Washington for chemical analyses. The chemical analyses were performed under ARI Work Orders 21B0315 and 21B0328. The analytical methods include the following:

- Select volatile organic compounds (VOCs)—U.S. Environmental Protection Agency (EPA) Method 8260D
- Vinyl chloride—EPA Method 8260D-SIM
- Select metals (Total iron and manganese, and dissolved arsenic) EPA Method 6020B

The data were reviewed using guidance and QC criteria documented in the analytical methods, U.S. Environmental Protection Agency (EPA) *National Functional Guidelines for Inorganic Data Review* (EPA 2017a), *National Functional Guidelines for Organic Data Review* (EPA 2017b), EPA *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (EPA 2009), and the *South Park Landfill Operations, Maintenance and Monitoring Plan* (OMMP; Appendix A of the South Park Landfill Cleanup Action Plan [Ecology 2018]).

In accordance with the OMMP, to generate data of sufficient quality, the following approach for groundwater samples will be followed:

- Field and laboratory QC samples (field replicates, trip blanks, and temperature blanks) will be used for assessing data quality.
- Laboratory QA will be implemented and maintained as described in the accredited laboratory's Quality Assurance Plan (ARI 2020a) and Standard Operating Procedures (ARI 2016, 2017, 2020b, 2020c) and in Table 3 (from OMMP and presented in Appendix B).
- Data summary packages will be generated, and the documentation provided will be sufficient to perform a Level I data quality review.

The goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

The data were evaluated in accordance with EPA guidance (EPA 2002, 2009) at a Stage 2A level. Data qualifier definitions, reasons, and validation criteria are included as Appendix A. Analysis of field duplicates are presented in Appendix B. Qualified data are summarized in Appendix C.

Field Duplicates

Two field duplicate samples were analyzed. Sample SPL-GW-MW60-0221 is a duplicate of SPL-GW-MW29-0221. Sample SPL-GW-MW61-0221 is a duplicate of SPL-GW-MW31-0221.

Appendix B presents the calculated Relative Percent Differences (RPDs) for field duplicate samples. RPDs = difference / average = $((X1-X2) / (X1+X2)/2) \times 100$, where X1 is the sample and X2 is the duplicate sample concentration. RPD is a measure of analytical precision. Precision is a measure of the variability in the results of replicate measurements due to random error.

Trip Blanks

Two trip blanks were analyzed for selected VOCs (SPL-GW-MW80-0221 and SPL-GW-MW81-0221).

Sample Temperature

Although no temperature blanks were prepared, the laboratory measured the cooler interior temperatures on receipt. Temperatures for the two batches were 1.6 and 2.7 degrees C, indicating adequate temperature control for sample preservation for both batches. No data were therefore qualified based on temperature issues.

VOC Sample Integrity

The laboratory reported that all VOA vials were free of air bubbles. No data were therefore qualified based on VOC integrity issues.

2. DATA VALIDATION REPORT SELECT VOCS BY EPA METHOD 8260D

This section documents the review of VOC analytical data for groundwater and field QC samples and the associated laboratory QC samples.

2.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation Surrogate recoveries Extraction and analysis holding times Target analyte list Blank contamination Reporting limits and reported results Laboratory control sample (LCS) and LCS duplicate (LCSD) Field Duplicate MS/MSD¹

QC Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below.

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

2.2.1 Matrix Spike/Matrix Spike Duplicate

Sample specific QC was performed in association with sample 21B0315-04 (SPL-GW-MW29-0221) in batch BJC0053. The matrix spike/matrix spike duplicate (MS/MSD) spike recoveries and relative percent difference (RPD) were within advisory control limits. No data were therefore qualified based on MS/MSD integrity issues.

2.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

3. DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM

This section documents the review of vinyl chloride analytical data for groundwater and field QC samples and the associated laboratory QC samples.

3.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

3.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservationSurrogate recoveriesExtraction and analysis holding timesTarget analyte listBlank contamination (method and trip)Reporting limits and reported resultsLCS and LCSDField duplicates²MS/MSDImage: Market State State

QC Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

3.2.1 Field Duplicates

The RPD between sample SPL-GW-MW31-0221 and its field duplicate SPL-GW-MW61-0221 was greater than the target precision of +/- 35 percent. Therefore, the vinyl chloride result for SPL-GW-MW31-0221 was qualified "J" as estimated in accordance with the criteria presented in Appendix A.

3.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

4. DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B

This section documents the review of metals (total iron and manganese, and dissolved arsenic) analytical data for groundwater and field QC samples and the associated laboratory QC samples.

4.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

4.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Lab Control Sample
Extraction and analysis holding times	Laboratory Duplicate
Blank contamination (method)	Target analyte list
Matrix Spike (MS) ¹	Reporting limits and reported results
	Field duplicates

QC Requirements

QC requirement findings further discussed in following sections (if required):

Quality control results are discussed below, but no data were qualified.
 Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

Some of the metals data were the result of a dilution and were flagged with "D" qualifier by the laboratory. The "D" qualifiers were removed from the final data table.

4.2.1 Matrix Spike

Sample specific QC was performed in association with sample 21B0315-04 (SPL-GW-MW29-0221) in Total Metals batch BJC0200. The duplicate and MS/MSD RPDs were within control limits. The lab noted that the natural concentration of the spiked analyte is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible. No data were qualified because the spike was less than 25 percent of the sample value.

4.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS percent recovery values. Precision was acceptable, as demonstrated by the LCS/laboratory duplicate RPDs, with the except of manganese, as discussed above.

All data, as reported by the laboratory, are acceptable for use.
5. REFERENCES

- ARI. 2016. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS, SOP 545S, Version 001, Revision Date 2/8/16.
- ARI (Analytical Resources Inc.). 2017. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS with Universal Cell Technology, SOP 543S, Version 003.3, Revision Date 2/23/17.
- ARI. 2020a. Quality Assurance Plan. Revision 17.0. 6/11/2020.
- ARI. 2020b. Standard Operating Procedure, Volatile Organic Analysis SOP 700S, Version 022, Revision Date 2/12/2020.
- ARI. 2020c. Standard Operating Procedure, Volatile Organic Analysis Selected Ion Mass Spectrometry, SOP 703S, Version 13, Revision Date 2/12/2020.
- Ecology (Washington Department of Ecology). 2018. South Park Landfill Final Cleanup Action Plan. March.
- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical data for Superfund Use. EPA 540-R-08-005. January 13, 2009.
- EPA. 2017a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001.
- EPA. 2017b. National Functional Guidelines for Organic Superfund Data Review. EPA 540R- 2017-002.

Appendix A

Data Qualifier Definitions and Criteria Tables

DATA VALIDATION QUALIFIER CODES

National Functional Guidelines (EPA 2020)

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- NJ The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value represents the approximate concentration (for organics).
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature	Cooler temperature: ≤ 6°C HCl to pH ≤ 2	If >6 deg. C but = 10 deg. C, use professional<br judgement J/UJ if greater than 10 deg. C
Hold Time	14 days preserved 7 Days: unpreserved (for aromatics)	Detects: J; Non-detects: J if hold times exceeded
Method Blank	One per batch <crql< td=""><td>If blank <crql: <ul=""> If sample result <crql, at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= CRQL, use professional judgement </crql,></crql:></td></crql<>	If blank <crql: <ul=""> If sample result <crql, at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= CRQL, use professional judgement </crql,></crql:>
		 If blank >/= CRQL: If sample result <crql, and="" at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= but < blank result, qualify U and report at sample result If sample result >/= CRQL and >/= 2x </crql,>
Trip Blank	Frequency as per project QAPP <crql< td=""><td>Same as method blank for positive results remaining in trip blank after method blank</td></crql<>	Same as method blank for positive results remaining in trip blank after method blank
MS/MSD (recovery)	One per batch Use method acceptance criteria	Qualify original sample only unless other QC indicates systematic problems: For detects: • J if %R <20%, or 20%<%R <lower limit,="" or<br="">%R or RPD >Upper limit For non-detects: • R if %R<20%, UJ if 20%<%R<lower limit<="" td=""></lower></lower>
MS/MSD (RPD)	One per batch Use method acceptance criteria	For detects: J in original sample if RPD >Upper limit
LCS	One per lab batch	If not performed at specified frequency or concentration or % R not specified: use professional judgment For detects: • %R < Lower Limit, qualify J-+; %R> Upper Limit, qualify J+- For non-detects: • %R<, qualify results R; If %R >/= No qualification
LCS/LCSD (if required)	One set per batch of 20 samples RPD < 30%	Qualify sample results J/UJ

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a)

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a), continued

Validation QC Element	Acceptance Criteria	Action	
Surrogates	Added to all samples Within method control limits	Not added or not at specified concentration, use professional judgement.	
		 MR <expanded (10%),<br="" limit="" lower="">qualify results J-</expanded> 	
		 Expanded Lower Limit <!--=%R < specified<br-->Lower Limit, qualify results J- 	
		 %R > specified Upper Limit, qualify results J+ 	
		For non-detects:	
		 %R < Expanded lower limit (10%), qualify results R 	
		 Expanded Lower Limit <!--=%R <specified<br-->Lower Limit, qualify results UJ 	
Field Duplicates	QAPP limits RPD <35%	J/UJ in original only	
	OR in the project-specific SOP. Limits may not apply when sample and dup concentrations are less than 5x QL or limit in the QAPP	If no guidance available, qualify associated samples for contaminants found in field blanks based on the criteria for Method Blanks	

Validation	Guidelines for Metals Analysis by ICP-MS
(Based on EPA 2020a; ARI 2020a)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: ≤ 6°C Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled	For detects: samples received with pH>/=2 and pH not adjusted, or technical holding >180 days, qualify J- For non-detects: pH>/= 2 and pH not adjusted, or technical holding >180 days, qualify R
Method Blank	One per batch <crql< td=""><td>If blank <crql: Sample Detect <ql: and<br="" at="" ql="" report="">qualify U Sample >/= QL: J+ or no qualification If blank result <\= (-MDL) but > (-QL): Sample Detect: qualify J- or no qualification Sample Non-detect: qualify UJ If blank result >/= CRQL: Sample Detect < CRQL: Report at QL and qualify U Sample result >/=CRQL but <10 x the Blank results: Report at Blank Result and qualify J+ or R >/=10x Blank results, no qualification If blank result <!--= (-QL):<br-->Sample Detect < CRQL or >/= CRQL but <10x CRQL, qualify J- Sample Non-detect qualify UJ Sample result >/= 10x QL, no qualification</ql:></crql: </td></crql<>	If blank <crql: Sample Detect <ql: and<br="" at="" ql="" report="">qualify U Sample >/= QL: J+ or no qualification If blank result <\= (-MDL) but > (-QL): Sample Detect: qualify J- or no qualification Sample Non-detect: qualify UJ If blank result >/= CRQL: Sample Detect < CRQL: Report at QL and qualify U Sample result >/=CRQL but <10 x the Blank results: Report at Blank Result and qualify J+ or R >/=10x Blank results, no qualification If blank result <!--= (-QL):<br-->Sample Detect < CRQL or >/= CRQL but <10x CRQL, qualify J- Sample Non-detect qualify UJ Sample result >/= 10x QL, no qualification</ql:></crql:
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 70%-130%	 For detects: If %R < 40% or 40-69%, J- If %R 70-130%, no qualification If %R 131-151%, J+ If %R >150%, R For non-detects: If %R<40%, R If %R 40-69%, UJ If %R>70%, no qualification

Validation Guidelines for Metals Analysis by GC/I	VIS
(Based on EPA 2020a; ARI 2020a), continued	

Validation QC Element	Acceptance Criteria	Action
Matrix Spike	One per matrix per batch %R 75-125% for samples where results do not exceed 4x spike level. If >/= 4x the spike added, report unqualified.	For detects: J- if %R <30 to 74% J+ if %R>125% No qualification if %R 75-125% For Non-detects: R if %R<30%, UJ if %R <75% or No qualification if %R 75 to >125
Laboratory Duplicate	One per matrix per batch RPD <20% for samples >/= 5x CRQL OR CQRL if sample results <5x CRQL	If results >/= 5x CRQL and RPD>20% OR if results <5x CRQL and absolute difference >CRQL, • J if detect, • UJ if non-detect
Field Duplicate	For results > 5x RL: RPD < 20% For results < 5x RL: Diff < RL	J/UJ in original sample only

Appendix B

Field Duplicate Analysis

Data Validation			South Par	rk Landfill					
QA/QC completed by: Chr	is Bourgeois		4/2/2021						
ARI Work Order		21B0315							
Sample numbers:		SPL-GW-M	1W29-0221;	SPL-GW-MW	60-0221				
Sample Date:		2/23/2021		1					
Groundwater u	units	sample	duplicate	avg	diff	rpd	=/<50%	RL	w/in RL?
		MW-29	MW-60						
cis-1,2-DCE เ	ug/L	<0.2	<0.2	#DIV/0!	#VALUE!	#VALUE!		0.2	У
Vinyl chloride	ug/L	<0.02	<0.02	#DIV/0!	#VALUE!	#VALUE!		0.02	У
Benzene ı	ıg/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!		0.2	
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
lron r	ng/L	17.6	20.2	18.9	-2.60	13.76	У	0.02	
Manganese r	ng/L	0.578	0.598	0.588	-0.02	3.40	У	0.01	
Arsenic ı	ug/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!		0.2	
Comments:	No data qualified								
Calculated duplicate samp	le RPD = difference / a	average = ((X1	-X2) / (X1+2	X2)/2)*100					
< = Analyte not detected a	t laboratory's reporting	limit							

Data Validation			South Par	rk Landfill					
QA/QC completed by	: Chris Bourgeois		4/2/2021						
ARI Work Order		21B0315							
Sample numbers:		SPL-GW-M	1W31-0221:	SPL-GW-MW	61-0221				
Sample Date:		2/23/2021	,						
Groundwater	units	sample	duplicate	avg	diff	rpd	=/<50%	RL	w/in RL?
		MW-31	MW-61						
cis-1,2-DCE	ug/L	<0.2	<0.2	#DIV/0!	#VALUE!	#VALUE!		0.2	у
Vinyl chloride	ug/L	0.167	0.357	0.262	-0.19	72.52	n	0.02	n
Benzene	ug/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!		0.2	
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	mg/L	11.8	12.3	12.05	-0.50	4.15	у	0.02	
Manganese	mg/L	0.537	0.513	0.525	0.02	4.57	У	0.01	
Arsenic	ug/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!		0.2	
Comments:	Vinyl chloride da	ta for MW-31 qual	ified "J" as	estimated					
Calculated duplicate s	sample RPD = differen	ce / average = ((X1	-X2) / (X1+2	X2)/2)*100					
< = Analyte not detect	ted at laboratory's repo	orting limit							

Appendix C

Qualified Data Summary Table

Table C.1 Qualified Data Summary Table First Quarter 2021 Groundwater Sampling Event

Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qualifier	DV Qualifier	Final Qualifier
SPL-GW-MW31-0221	21B0315-14	EPA 8260DSIM	Vinyl Chloride	0.167	μg/L		J	J

Qualifiers:

J the result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

Second Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report

Prepared for

Seattle Public Utilities 700 Fifth Avenue, Suite 4900 Seattle, WA 98124-4018

Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

In Association with

July 2021 | 553-1550-067 (03.00)

Second Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

Parametrix and HWA GeoSciences, Inc., 2021. Second Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report. Prepared by Parametrix, Seattle, Washington. July 2021.

TABLE OF CONTENTS

1.	PROJI	PROJECT NARRATIVE					
	1.1	Overview of Data Validation	1-1				
2.	DATA	VALIDATION REPORT SELECT VOCS BY EPA METHOD 8260D	2-1				
	2.1	Data Package Completeness	2-1				
	2.2	Technical Data Validation	2-1				
		2.2.1 Matrix Spike/Matrix Spike Duplicate	2-1				
	2.3	Overall Assessment	2-1				
3.	DATA	VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM	3-1				
	3.1	Data Package Completeness	3-1				
	3.2	Technical Data Validation	3-1				
	3.3	Overall Assessment	3-1				
4.	DATA	VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B	4-1				
	4.1	Data Package Completeness	4-1				
	4.2	Technical Data Validation	4-1				
		4.2.1 Blank Contamination	4-1				
		4.2.2 Matrix Spike	4-1				
	4.3	Overall Assessment	4-2				
5.	REFEF	RENCES	5-1				

APPENDICES

- A Data Qualifier Definitions and Criteria Tables
- B Field Duplicate Analysis
- C Qualified Data Summary Table

Second Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

ACRONYMS AND ABBREVIATIONS

CRQL	Contract Reporting Quantitation Limit
EPA	U.S. Environmental Protection Agency
LCS	Laboratory control standard
LCSD	Laboratory control standard duplicate
MS	Matrix spike
MSD	Matrix spike duplicate
RPD	Relative percent difference
QC	Quality control
VOC	Volatile organic compound

1. PROJECT NARRATIVE

1.1 Overview of Data Validation

This report summarizes the results of the Compliance Screening performed on the groundwater and field quality control (QC) sample data for the South Park Landfill Second Quarter 2021 Groundwater Monitoring Event. A complete list of samples is provided below.

		Sampla			6020B	6020B
Sample ID	Lab ID	Location	8260D	8260D-SIM	Mn	As
SPL-GW-MW12-0521	21E0228-01	MW-12	Х	х	Х	
SPL-GW-MW12-0521	21E0228-02	MW-12				Х
SPL-GW-MW14-0521	21E0228-03	MW-14	Х	Х	Х	
SPL-GW-MW29-0521	21E0228-04	MW-29	Х	Х	Х	
SPL-GW-MW18-0521	21E0228-05	MW-18	Х	Х	Х	
SPL-GW-MW18-0521	21E0228-06	MW-18				х
SPL-GW-MW32-0521	21E0228-07	MW-32	Х	Х	Х	
SPL-GW-MW32-0521	21E0228-08	MW-32				Х
SPL-GW-MW60-0521	21E0228-09	MW-18 Dup	Х	Х	Х	
SPL-GW-MW60-0521	21E0228-10	MW-18 DUP				Х
SPL-GW-MW80-0521	21E0228-11	TRIP BLANK	Х	Х		
SPL-GW-MW24-0521	21E0228-12	MW-24	Х	Х	Х	
SPL-GW-MW24-0521	21E0228-13	MW-24				Х
SPL-GW-MW26-0521	21E0228-14	MW-26	Х	Х	Х	
SPL-GW-MW26-0521	21E0228-15	MW-26	Х	Х	Х	
SPL-GW-MW08-0521	21E0228-16	MW-08	Х	х	Х	
SPL-GW-MW08-0521	21E0228-17	MW-08				Х
SPL-GW-MW27-0521	21E0228-18	MW-27	Х	Х	Х	
SPL-GW-MW27-0521	21E0228-19	MW-27				Х
SPL-GW-MW61-0521	21E0228-20	MW-24 DUP	Х	Х	Х	
SPL-GW-MW61-0521	21E0228-21	MW-24 DUP				Х
SPL-GW-MW33-0521	21E0243-01	MW-33	Х	Х	Х	
SPL-GW-MW33-0521	21E0243-02	MW-33				Х
SPL-GW-MW10-0521	21E0243-03	MW-10	Х	Х	Х	
SPL-GW-MW10-0521	21E0243-04	MW-10				Х
SPL-GW-MW25-0521	21E0243-05	MW-25	Х	Х	Х	
SPL-GW-MW25-0521	21E0243-06	MW-25				Х
SPL-GW-MW30-0521	21E0243-07	MW-30	Х	Х	Х	
SPL-GW-MW31-0521	21E0243-08	MW-31	Х	Х	Х	
SPL-GW-MW81-0521	21E0243-09	TRIP BLANK	Х	Х		

Project Sample Index

Second Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

Groundwater samples were collected between May 18 and 20, 2021 and submitted to Analytical Resources, Inc. (ARI) located in Tukwila, Washington for chemical analyses. The chemical analyses were performed under ARI Work Orders 21E0228 and 21E0243. The analytical methods include the following:

- Select volatile organic compounds (VOCs)—U.S. Environmental Protection Agency (EPA) Method 8260D
- Vinyl chloride—EPA Method 8260D-SIM
- Select metals (Total iron and manganese, and dissolved arsenic) EPA Method 6020B

The data were reviewed using guidance and QC criteria documented in the analytical methods, U.S. Environmental Protection Agency (EPA) *National Functional Guidelines for Inorganic Data Review* (EPA 2017a), *National Functional Guidelines for Organic Data Review* (EPA 2017b), EPA *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (EPA 2009), and the *South Park Landfill Operations, Maintenance and Monitoring Plan* (OMMP; Appendix A of the South Park Landfill Cleanup Action Plan [Ecology 2021]).

In accordance with the OMMP, to generate data of sufficient quality, the following approach for groundwater samples will be followed:

- Field and laboratory QC samples (field replicates, trip blanks, and temperature blanks) will be used for assessing data quality.
- Laboratory QA will be implemented and maintained as described in the accredited laboratory's Quality Assurance Plan (ARI 2020a) and Standard Operating Procedures (ARI 2016, 2017, 2020b, 2020c) and in Table 3 (from OMMP and presented in Appendix B).
- Data summary packages will be generated, and the documentation provided will be sufficient to perform a Level I data quality review.

The goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

The data were evaluated in accordance with EPA guidance (EPA 2002, 2009) at a Stage 2A level. Data qualifier definitions, reasons, and validation criteria are included as Appendix A. Analysis of field duplicates are presented in Appendix B. Qualified data are summarized in Appendix C.

Field Duplicates

Two field duplicate samples were analyzed. Sample SPL-GW-MW60-0521 is a duplicate of SPL-GW-MW18-0521. Sample SPL-GW-MW61-0521 is a duplicate of SPL-GW-MW24-0521.

Appendix B presents the calculated Relative Percent Differences (RPDs) for field duplicate samples. RPDs = difference / average = $((X1-X2) / (X1+X2)/2) \times 100$, where X1 is the sample and X2 is the duplicate sample concentration. RPD is a measure of analytical precision. Precision is a measure of the variability in the results of replicate measurements due to random error.

Trip Blanks

Two trip blanks were analyzed for selected VOCs (SPL-GW-MW80-0521 and SPL-GW-MW81-0521).

Sample Temperature

Although no temperature blanks were prepared, the laboratory measured the cooler interior temperatures on receipt. Temperatures for the two batches were 3.4 and 4.8 degrees C, indicating adequate temperature control for sample preservation for both batches. No data were therefore qualified based on temperature issues.

VOC Sample Integrity

All VOA vials samples submitted on May 20, 2021 (laboratory report ID 21E0243) were free of air bubbles. The laboratory reported that VOA vials submitted on May 19, 2021 (laboratory report ID 21E0228) were not all free of air bubbles but did not specify which VOA vial sample(s) included air bubbles. This could possibly be due to sample collection methods or in some cases (particularly at landfills), dissolved methane present in groundwater forms bubbles in the VOA vials after collection. Therefore, no data were qualified based on VOC integrity issues.

2. DATA VALIDATION REPORT SELECT VOCS BY EPA METHOD 8260D

This section documents the review of VOC analytical data for groundwater and field QC samples and the associated laboratory QC samples.

2.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation Surrogate recoveries Extraction and analysis holding times Target analyte list Blank contamination Reporting limits and reported results Laboratory control sample (LCS) and LCS duplicate (LCSD) Field Duplicate MS/MSD¹

QC Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below.

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

2.2.1 Matrix Spike/Matrix Spike Duplicate

Sample specific QC was performed in association with sample 21E0228-05 (SPL-GW-MW18-0521) and 21E0228-12 (SPL-GW-MW24-0521) in batch BJE0508. The matrix spike/matrix spike duplicate (MS/MSD) spike recoveries and relative percent difference (RPD) were within advisory control limits. No data were therefore qualified based on MS/MSD integrity issues.

2.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

3. DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM

This section documents the review of vinyl chloride analytical data for groundwater and field QC samples and the associated laboratory QC samples.

3.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

QC Requirements

3.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservationSurrogate recoveriesExtraction and analysis holding timesTarget analyte listBlank contamination (method and trip)Reporting limits and reported resultsLCS and LCSDField duplicatesMS/MSDImage: Marcolar State Stat

Notes:

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

3.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

4. DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B

This section documents the review of metals (total iron and manganese, and dissolved arsenic) analytical data for groundwater and field QC samples and the associated laboratory QC samples.

4.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

4.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Lab Control Sample
Extraction and analysis holding times	Laboratory Duplicate
Blank contamination (method) ²	Target analyte list
Matrix Spike (MS) ¹	Reporting limits and reported results
	Field duplicates

QC Requirements

QC requirement findings further discussed in following sections (if required):

Quality control results are discussed below, but no data were qualified.
 Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

Some of the metals data were the result of a dilution and were flagged with "D" qualifier by the laboratory. The "D" qualifiers were removed from the final data table.

4.2.1 Blank Contamination

The blank spike (BS/LCS) percent recoveries were within control limits except Manganese in 21E0228, which was detected in the blank at a concentration of 0.00103 mg/L. All samples that contain manganese were flagged by the lab with a "B" qualifier. The B qualifiers were removed from the final data table because all sample concentrations are >10X the blank detection.

4.2.2 Matrix Spike

Sample specific QC for total iron and manganese was performed in association with sample 21E0228-05 (SPL-GW-MW18-0521) and 21E0228-12 (SPL-GW-MW24-0521) in batch BJF0108. The lab noted that the natural concentration of the spiked analyte is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible, and therefore no data were qualified.

Sample specific QC for dissolved arsenic was performed in association with samples 21E0228-06 (SPL-GW-MW18-0521) and 21E0228-13 (SPL-GW-MW24-0521) in batch BJE0511. The matrix spike (MS)

Second Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

percent recoveries and the duplicate (DUP) relative percent difference (RPD) were within advisory control limits.

4.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS percent recovery values. Precision was acceptable, as demonstrated by the LCS/laboratory duplicate RPDs, with the except of manganese, as discussed above.

All data, as reported by the laboratory, are acceptable for use.

5. REFERENCES

- ARI. 2016. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS, SOP 545S, Version 001, Revision Date 2/8/16.
- ARI (Analytical Resources Inc.). 2017. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS with Universal Cell Technology, SOP 543S, Version 003.3, Revision Date 2/23/17.
- ARI. 2020a. Quality Assurance Plan. Revision 17.0. 6/11/2020.
- ARI. 2020b. Standard Operating Procedure, Volatile Organic Analysis SOP 700S, Version 022, Revision Date 2/12/2020.
- ARI. 2020c. Standard Operating Procedure, Volatile Organic Analysis Selected Ion Mass Spectrometry, SOP 703S, Version 13, Revision Date 2/12/2020.
- Ecology. 2021. Draft South Park Landfill Final Cleanup Action Plan: Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan, Amended 2021. Washington State Department of Ecology Toxics Cleanup Program. Olympia, WA.
- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical data for Superfund Use. EPA 540-R-08-005. January 13, 2009.
- EPA. 2017a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001.
- EPA. 2017b. National Functional Guidelines for Organic Superfund Data Review. EPA 540R- 2017-002.

Appendix A

Data Qualifier Definitions and Criteria Tables

DATA VALIDATION QUALIFIER CODES

National Functional Guidelines (EPA 2020)

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- NJ The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value represents the approximate concentration (for organics).
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature	Cooler temperature: ≤ 6°C HCl to pH ≤ 2	If >6 deg. C but = 10 deg. C, use professional<br judgement J/UJ if greater than 10 deg. C
Hold Time	14 days preserved 7 Days: unpreserved (for aromatics)	Detects: J; Non-detects: J if hold times exceeded
Method Blank	One per batch <crql< td=""><td>If blank <crql: <ul=""> If sample result <crql, at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= CRQL, use professional judgement </crql,></crql:></td></crql<>	If blank <crql: <ul=""> If sample result <crql, at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= CRQL, use professional judgement </crql,></crql:>
		 If blank >/= CRQL: If sample result <crql, and="" at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= but < blank result, qualify U and report at sample result If sample result >/= CRQL and >/= 2x blank results, report sample result and J+ qualify or no qualification </crql,>
Trip Blank	Frequency as per project QAPP <crql< td=""><td>Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned</td></crql<>	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned
MS/MSD (recovery)	One per batch Use method acceptance criteria	Qualify original sample only unless other QC indicates systematic problems: For detects: J if %R <20%, or 20%<%R <lower limit,="" or<br="">%R or RPD >Upper limit For non-detects: R if %R<20%, UJ if 20%<%R<lower limit<="" td=""></lower></lower>
MS/MSD (RPD)	One per batch Use method acceptance criteria	For detects: J in original sample if RPD >Upper limit
LCS	One per lab batch	If not performed at specified frequency or concentration or % R not specified: use professional judgment For detects: • %R < Lower Limit, qualify J-+; %R> Upper Limit, qualify J+- For non-detects: • %R<, qualify results R; If %R >/= No qualification
LCS/LCSD (if required)	One set per batch of 20 samples RPD < 30%	Qualify sample results J/UJ

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a)

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a), continued

Validation QC Element	Acceptance Criteria	Action			
Surrogates	Added to all samples Within method control limits	Not added or not at specified concentration, use professional judgement.			
		For detects: • %R <expanded (10%),<br="" limit="" lower="">qualify results J-</expanded>			
		 Expanded Lower Limit <!--=%R < specified<br-->Lower Limit, qualify results J- 			
		 %R > specified Upper Limit, qualify results J+ 			
		For non-detects:			
		 %R < Expanded lower limit (10%), qualify results R 			
		 Expanded Lower Limit <!--=%R <specified<br-->Lower Limit, qualify results UJ 			
Field Duplicates	QAPP limits RPD <35%	J/UJ in original only			
	OR in the project-specific SOP. Limits may not apply when sample and dup concentrations are less than 5x QL or limit in the QAPP	If no guidance available, qualify associated samples for contaminants found in field blanks based on the criteria for Method Blanks			

Validation Guidelines for Metals Analysis by ICP-MS
(Based on EPA 2020a; ARI 2020a)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: ≤ 6°C Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled	For detects: samples received with pH>/=2 and pH not adjusted, or technical holding >180 days, qualify J-
		or technical holding >180 days, qualify R
Method Blank	One per batch	If blank <crql:< td=""></crql:<>
	<crql< td=""><td> Sample Detect <ql: and<br="" at="" ql="" report="">qualify U</ql:> </td></crql<>	 Sample Detect <ql: and<br="" at="" ql="" report="">qualify U</ql:>
		• Sample >/= QL: J+ or no qualification
		If blank result <\= (-MDL) but > (-QL):
		Sample Detect: qualify J- or no qualification
		Sample Non-detect: qualify UJ
		If blank result >/= CRQL:
		 Sample Detect < CRQL: Report at QL and qualify U
		 Sample result >/=CRQL but <10 x the Blank results: Report at Blank Result and qualify J+ or R
		• >/=10x Blank results, no qualification
		lf blank result = (-QL):</td
		 Sample Detect < CRQL or >/= CRQL but <10x CRQL, qualify J-
		Sample Non-detect qualify UJ
		 Sample result >/= 10x QL, no qualification
Laboratory Control Sample	One per matrix per batch	For detects:
(LCS)	Blank Spike: %R within 70%-130%	• If %R < 40% or 40-69%, J-
		• If %R 70-130%, no qualification
		• If %R 131-151%, J+
		• If %R >150%, R
		For non-detects:
		• If %R<40%, R
		• If %R 40-69%, UJ
		• If %R>70%, no qualification

Validation QC Element	Acceptance Criteria	Action
Matrix Spike	One per matrix per batch %R 75-125% for samples where results do not exceed 4x spike level. If >/= 4x the spike added, report unqualified.	For detects: • J- if %R <30 to 74% • J+ if %R>125% • No qualification if %R 75-125% For Non-detects: • R if %R<30%, • UJ if %R <75% or No qualification if %R 75 to >125
Laboratory Duplicate	One per matrix per batch RPD <20% for samples >/= 5x CRQL OR CQRL if sample results <5x CRQL	If results >/= 5x CRQL and RPD>20% OR if results <5x CRQL and absolute difference >CRQL, J if detect, UJ if non-detect
Field Duplicate	For results > 5x RL: RPD < 20% For results < 5x RL: Diff < RL	J/UJ in original sample only

Validation Guidelines for Metals Analysis by GC/MS (Based on EPA 2020a; ARI 2020a), continued

Appendix B

Field Duplicate Analysis

Data Validation		rk Landfill							
QA/QC completed by: Lisa	Gilbert		6/24/2021						
ARI Work Order		21E0228							
Sample numbers:		SPL-GW-M	1W18-0521;	SPL-GW-MW	60-0521				
Sample Date:		5/18/21	-						
Groundwater u	inits	sample	duplicate	avg	diff	rpd	=/<50%	RL	w/in RL?
units = ug/L		MW-18	MW-60						
cis-1,2-DCE u	g/L	<0.2	<0.2	#DIV/0!	#VALUE!	#VALUE!		0.2	у
Vinyl chloride u	g/L	0.0459	0.0454	0.04565	0.00	1	У	0.02	
Benzene u	g/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!		0.2	У
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
lron n	ng/L	22.6	23.9	23.25	-1.30	5.59	у	0.02	
Manganese n	ng/L	1.33	1.40	1.365	-0.07	5.13	У	0.01	
Arsenic u	g/L	<0.2	<0.2	#DIV/0!	#VALUE!	#VALUE!		0.2	У
Comments: N	lo data qualified								
Calculated duplicate sampl	e RPD = difference / a	average = ((X1	-X2) / (X1+2	X2)/2)*100					
< = Analyte not detected at	laboratory's reporting	limit							

Data Validation		rk Landfill							
QA/QC completed by: Lisa	Gilbert		6/24/2021						
ARI Work Order		21E0228							
Sample numbers:		SPL-GW-M	1W24-0521;	SPL-GW-MW	61-0521				
Sample Date:		5/19/21	,						
Groundwater u	inits	sample	duplicate	avg	diff	rpd	=/<50%	RL	w/in RL?
units = ug/L		MW-24	MW-61						
cis-1,2-DCE u	ıg/L	<0.2	<0.2	#DIV/0!	#VALUE!	#VALUE!		0.2	у
Vinyl chloride u	ig/L	0.0214	0.0255	0.02345	0.00	17.48	У	0.02	
Benzene u	ig/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!		0.2	у
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron n	ng/L	12.5	14.7	13.6	-2.20	16.18	у	0.02	
Manganese n	ng/L	0.913	0.910	0.9115	0.00	0.33	У	0.01	
Arsenic u	ıg/L	<0.2	<0.2	#DIV/0!	#VALUE!	#VALUE!		0.2	
Comments:	lo data qualified								
Calculated duplicate sample	e RPD = difference / a	average = ((X1	-X2) / (X1+2	X2)/2)*100					
< = Analyte not detected at	laboratory's reporting	limit							

Appendix C

Qualified Data Summary Table

Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qualifier	DV Qualifier	Final Qualifier
SPL-GW-MW12-0521	21E0228-01	EPA 6020B	Manganese	0.141	mg/L	В		
SPL-GW-MW14-0521	21E0228-03	EPA 6020B	Manganese	0.655	mg/L	В		
SPL-GW-MW29-0521	21E0228-04	EPA 6020B	Manganese	0.778	mg/L	В		
SPL-GW-MW18-0521	21E0228-05	EPA 6020B	Manganese	1.33	mg/L	В		
SPL-GW-MW32-0521	21E0228-07	EPA 6020B	Manganese	1.50	mg/L	В		
SPL-GW-MW60-0521	21E0228-09	EPA 6020B	Manganese	1.40	mg/L	В		
SPL-GW-MW24-0521	21E0228-12	EPA 6020B	Manganese	0.913	mg/L	В		
SPL-GW-MW26-0521	21E0228-14	EPA 6020B	Manganese	0.0744	mg/L	В		
SPL-GW-MW08-0521	21E0228-16	EPA 6020B	Manganese	1.27	mg/L	В		
SPL-GW-MW27-0521	21E0228-18	EPA 6020B	Manganese	0.386	mg/L	В		
SPL-GW-MW61-0521	21E0228-20	EPA 6020B	Manganese	0.910	mg/L	В		

 Table C.1

 Qualified Data Summary Table Second Quarter 2021 Groundwater Sampling Event

Qualifiers:

B – The analyte was detected in the method blank.

Third Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report

Prepared for

Seattle Public Utilities 700 Fifth Avenue, Suite 4900 Seattle, WA 98124-4018

Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

In Association with

October 2021 | 553-1550-067 (03.00)
Third Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

Parametrix and HWA GeoSciences, Inc., 2021. Third Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report. Prepared by Parametrix, Seattle, Washington. October 2021.

TABLE OF CONTENTS

1.	PROJECT NARRATIVE	1-1
	1.1 Overview of Data Validation	1-1
2.	DATA VALIDATION REPORT SELECT VOCS BY EPA METHOD 8260D	2-1
	2.1 Data Package Completeness	. 2-1
	2.2 Technical Data Validation	. 2-1
	2.2.1 Matrix Spike/Matrix Spike Duplicate	. 3-1
	2.3 Overall Assessment	2-1
3.	DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM	3-1
	3.1 Data Package Completeness	. 3-1
	3.2 Technical Data Validation	. 3-1
	3.3 Overall Assessment	. 3-2
4.	DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B	4-1
	4.1 Data Package Completeness	. 4-1
	4.2 Technical Data Validation	.4-1
	4.2.1 Blank Contamination Error! Bookmark not defir	ıed.
	4.2.2 Matrix Spike	. 4-1
	4.3 Overall Assessment	4-2
5.	REFERENCES	5-1

APPENDICES

- A Data Qualifier Definitions and Criteria Tables
- B Field Duplicate Analysis
- C Qualified Data Summary Table

Third Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

ACRONYMS AND ABBREVIATIONS

CRQL	Contract Reporting Quantitation Limit
EPA	U.S. Environmental Protection Agency
LCS	Laboratory control standard
LCSD	Laboratory control standard duplicate
MS	Matrix spike
MSD	Matrix spike duplicate
RPD	Relative percent difference
QC	Quality control
VOC	Volatile organic compound

1. PROJECT NARRATIVE

1.1 Overview of Data Validation

This report summarizes the results of the Compliance Screening performed on the groundwater and field quality control (QC) sample data for the South Park Landfill Third Quarter 2021 Groundwater Monitoring Event. A complete list of samples is provided below.

					6020B	6020B
		Sample			Total Fe,	Dissolved
Sample ID	Lab ID	Location	8260D	8260D-SIM	Mn	As
SPL-GW-MW12-0821	21H0296-01	MW-12	Х	Х	Х	
SPL-GW-MW12-0821	21H0296-02	MW-12				Х
SPL-GW-MW14-0821	21H0296-03	MW-14	Х	Х	Х	
SPL-GW-MW29-0821	21H0296-04	MW-29	Х	Х	Х	
SPL-GW-MW18-0821	21H0296-05	MW-18	Х	Х	Х	
SPL-GW-MW18-0821	21H0296-06	MW-18				Х
SPL-GW-MW32-0821	21H0296-07	MW-32	Х	Х	Х	
SPL-GW-MW32-0821	21H0296-07RE1 ¹	MW-32			Х	
SPL-GW-MW32-0821	21H0296-08	MW-32				Х
SPL-GW-MW33-0821	21H0296-09	MW-33	Х	Х	Х	
SPL-GW-MW33-0821	21H0296-10	MW-33				Х
SPL-GW-MW60-0821	21H0296-11	MW-32 DUP	Х	Х	Х	
SPL-GW-MW60-0821	21H0296-12	MW-32 DUP				Х
SPL-GW-MW80-0821	21H0296-13	TRIP BLANK	Х	Х		
SPL-GW-MW30-0821	21H0308-01	MW-30	Х	Х	Х	
SPL-GW-MW31-0821	21H0308-02	MW-31	Х	Х	Х	
SPL-GW-MW24-0821	21H0308-03	MW-24	Х	Х	Х	
SPL-GW-MW24-0821	21H0308-04	MW-24				Х
SPL-GW-MW26-0821	21H0308-05	MW-26	Х	Х	Х	
SPL-GW-MW26-0821	21H0308-06	MW-26				Х
SPL-GW-MW08-0821	21H0308-07	MW-08	Х	Х	Х	
SPL-GW-MW08-0821	21H0308-08	MW-08				Х
SPL-GW-MW27-0821	21H0308-09	MW-27	Х	Х	Х	
SPL-GW-MW27-0821	21H0308-10	MW-27				Х
SPL-GW-MW61-0821	21H0308-11	MW-26 DUP	Х	х	Х	
SPL-GW-MW61-0821	21H0308-12	MW-26 DUP				Х
SPL-GW-MW81-0821	21H0308-13	TRIP BLANK	Х	Х		

Project Sample Index

Notes:

Laboratory assigned a separate extraction ID for manganese analysis of this sample.

Third Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

Groundwater samples were collected on August 24 and 25, 2021 and submitted to Analytical Resources, Inc. (ARI) located in Tukwila, Washington for chemical analyses. The chemical analyses were performed under ARI Work Orders 21H0296 and 21H0308. The analytical methods include the following:

- Select volatile organic compounds (VOCs)—U.S. Environmental Protection Agency (EPA) Method 8260D
- Vinyl chloride—EPA Method 8260D-SIM
- Select metals (Total iron and manganese, and dissolved arsenic) EPA Method 6020B

The data were reviewed using guidance and QC criteria documented in the analytical methods, U.S. Environmental Protection Agency (EPA) *National Functional Guidelines for Inorganic Data Review* (EPA 2017a), *National Functional Guidelines for Organic Data Review* (EPA 2017b), EPA *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (EPA 2009), and the *South Park Landfill Operations, Maintenance and Monitoring Plan* (OMMP; Appendix A of the South Park Landfill Cleanup Action Plan [Ecology 2021]).

In accordance with the OMMP, to generate data of sufficient quality, the following approach for groundwater samples will be followed:

- Field and laboratory QC samples (field replicates, trip blanks, and temperature blanks) will be used for assessing data quality.
- Laboratory QA will be implemented and maintained as described in the accredited laboratory's Quality Assurance Plan (ARI 2020a) and Standard Operating Procedures (ARI 2016, 2017, 2020b, 2020c) and in Table 3 (from OMMP and presented in Appendix B).
- Data summary packages will be generated, and the documentation provided will be sufficient to perform a Level I data quality review.

The goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

The data were evaluated in accordance with EPA guidance (EPA 2002, 2009) at a Stage 2A level. Data qualifier definitions, reasons, and validation criteria are included as Appendix A. Analysis of field duplicates are presented in Appendix B. Qualified data are summarized in Appendix C.

Field Duplicates

Two field duplicate samples were analyzed. Sample SPL-GW-MW60-0821 is a duplicate of SPL-GW-MW32-0821. Sample SPL-GW-MW61-0821 is a duplicate of SPL-GW-MW26-0821.

Appendix B presents the calculated Relative Percent Differences (RPDs) for field duplicate samples. RPDs = difference / average = $((X1-X2) / (X1+X2)/2) \times 100$, where X1 is the sample and X2 is the duplicate sample concentration. RPD is a measure of analytical precision. Precision is a measure of the variability in the results of replicate measurements due to random error.

Trip Blanks

Two trip blanks were analyzed for selected VOCs (SPL-GW-MW80-0821 and SPL-GW-MW81-0821).

Sample Temperature

Although no temperature blanks were prepared, the laboratory measured the cooler interior temperatures on receipt. Temperatures for the two batches were 5.2 and 7.4 degrees C, indicating adequate temperature control for sample preservation for batch 21H0308, and slightly elevated temperature for batch 21H0296, i.e., above the recommended 6 degrees C, but below 10 degrees C, in which case professional judgement may be used per EPA guidance. No data were therefore qualified based on temperature issues.

VOC Sample Integrity

The laboratory reported that all VOA vials samples submitted in batch 21H0308 were free of air bubbles, but two VOA vials (laboratory Container IDs 21H0296-03 B and 21H0296-04 B) submitted in batch 21H0296 contained air bubbles. This could possibly be due to sample collection methods or in some cases (particularly at landfills), dissolved methane present in groundwater forms bubbles in the VOA vials after collection. Therefore, no data were qualified based on VOC integrity issues.

2. DATA VALIDATION REPORT SELECT VOCS BY EPA METHOD 8260D

This section documents the review of VOC analytical data for groundwater and field QC samples and the associated laboratory QC samples.

2.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation Surrogate recoveries Extraction and analysis holding times Target analyte list Blank contamination Reporting limits and reported results Laboratory control sample (LCS) and LCS duplicate (LCSD) Field Duplicate MS/MSD¹

QC Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below.

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

2.2.1 Matrix Spike/Matrix Spike Duplicate

Sample specific QC was performed in association with sample 21H0296-07 (SPL-GW-MW32-0821) and 21H0308-05 (SPL-GW-MW26-0821) in batches BJI0099 and BJI0079, respectively. The matrix spike/matrix spike duplicate (MS/MSD) spike recoveries and relative percent difference (RPD) were within advisory control limits. No data were therefore qualified based on MS/MSD integrity issues.

2.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

3. DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM

This section documents the review of vinyl chloride analytical data for groundwater and field QC samples and the associated laboratory QC samples.

3.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

3.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination (method and trip)	Reporting limits and reported results
LCS and LCSD	Field duplicates
MS/MSD ^{1,2}	

QC Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below.

Four of the 14 vinyl chloride results (MW-18, MW-24, MW-16, and MW-61), with one result being a duplicate sample result, were flagged "M" by the laboratory, as "estimated value for a GC/MS analyte detected and confirmed by an analyst but with low spectral match parameters". All of these were low detections, ranging from 0.0294 to 0.0540 μ g/L, and were all less than the cleanup level by a factor of at least 5, therefore the final data were not qualified.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

3.2.1 Matrix Spike/Matrix Spike Duplicate

Sample specific QC was performed in association with sample 21H0296-07 (SPL-GW-MW32-0821) in batch BJH0680. The matrix spike/matrix spike duplicate (MS/MSD) spike recoveries and relative percent difference (RPD) were within advisory control limits. No data were therefore qualified based on MS/MSD integrity issues.

Sample specific QC was performed in association with sample 21H0308-05 (SPL-GW-MW26-0821) in batch BJH0680. The MS and MSD percent recoveries were outside advisory control limits high (178 % for vinyl chloride in the MS compared to the acceptable upper limit of 141, and 172 for the MSD). The MS/MSD RPD was within control limits.

Third Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

Qualifiers were added to the data as follows: J for detected values in the original sample only. Because the detected concentration was below the cleanup level, qualification of the data as estimated should not affect their use in evaluating project objectives.

3.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

4. DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B

This section documents the review of metals (total iron and manganese, and dissolved arsenic) analytical data for groundwater and field QC samples and the associated laboratory QC samples.

4.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

4.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Lab Control Sample
Extraction and analysis holding times	Laboratory Duplicate
Blank contamination (method)	Target analyte list
Matrix Spike (MS) ¹	Reporting limits and reported results
	Field duplicates

QC Requirements

QC requirement findings further discussed in following sections (if required):

Quality control results are discussed below, but no data were qualified.
 Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below.

Some of the metals data were the result of a dilution and were flagged with "D" qualifier by the laboratory. The "D" qualifiers were removed from the final data table.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

4.2.1 Matrix Spike

Sample specific for Manganese was performed in association with sample 21H0296-07 (SPL-GW-MW32-0821) in batch BJH0808. The lab noted that the natural concentration of the spiked analyte is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible. No data were qualified because the spike was less than 25 percent of the sample value.

Sample specific QC for Total Metals was performed in association with samples 21H0296-07 (SPL-GW-MW32-0821) and 21H0308-05 (SPL-GW-MW26-0821) in batch BJH0808. The duplicate (DUP) relative percent difference (RPD) and matrix spike/matrix spike duplicate (MS/MSD) percent recoveries and relative percent difference (RPD) were within advisory control limits.

Sample specific QC for Dissolved Arsenic was performed in association with sample 21H0296-08 (SPL-GW-MW32-0821) in batch BJI0160. The duplicate (DUP) relative percent difference (RPD) and matrix spike/matrix spike duplicate (MS/MSD) percent recoveries and relative percent difference (RPD) were within advisory control limits.

Third Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

Sample specific QC for Dissolved Metals was performed in association with sample 21H0308-06 (SPL-GW-MW26-0821) in batch BJI0163. The duplicate (DUP) relative percent difference (RPD) and matrix spike/matrix spike duplicate (MS/MSD) percent recoveries and relative percent difference (RPD) were within advisory control limits.

4.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS percent recovery values. Precision was acceptable, as demonstrated by the LCS/laboratory duplicate RPDs, with the exception of manganese, as discussed above.

All data, as reported by the laboratory, are acceptable for use.

5. REFERENCES

- ARI. 2016. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS, SOP 545S, Version 001, Revision Date 2/8/16.
- ARI (Analytical Resources Inc.). 2017. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS with Universal Cell Technology, SOP 543S, Version 003.3, Revision Date 2/23/17.
- ARI. 2020a. Quality Assurance Plan. Revision 17.0. 6/11/2020.
- ARI. 2020b. Standard Operating Procedure, Volatile Organic Analysis SOP 700S, Version 022, Revision Date 2/12/2020.
- ARI. 2020c. Standard Operating Procedure, Volatile Organic Analysis Selected Ion Mass Spectrometry, SOP 703S, Version 13, Revision Date 2/12/2020.
- Ecology. 2021. Draft South Park Landfill Final Cleanup Action Plan: Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan, Amended 2021. Washington State Department of Ecology Toxics Cleanup Program. Olympia, WA.
- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical data for Superfund Use. EPA 540-R-08-005. January 13, 2009.
- EPA. 2017a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001.
- EPA. 2017b. National Functional Guidelines for Organic Superfund Data Review. EPA 540R- 2017-002.

Appendix A

Data Qualifier Definitions and Criteria Tables

DATA VALIDATION QUALIFIER CODES

National Functional Guidelines (EPA 2020)

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- NJ The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value represents the approximate concentration (for organics).
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature	Cooler temperature: ≤ 6°C HCl to pH ≤ 2	If >6 deg. C but = 10 deg. C, use professional<br judgement J/UJ if greater than 10 deg. C
Hold Time	14 days preserved 7 Days: unpreserved (for aromatics)	Detects: J; Non-detects: J if hold times exceeded
Method Blank	One per batch <crql< td=""><td>If blank <crql: <ul=""> If sample result <crql, at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= CRQL, use professional judgement </crql,></crql:></td></crql<>	If blank <crql: <ul=""> If sample result <crql, at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= CRQL, use professional judgement </crql,></crql:>
		 If blank >/= CRQL: If sample result <crql, and="" at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= but < blank result, qualify U and report at sample result If sample result >/= CRQL and >/= 2x blank results, report sample result and J+ qualify or no qualification </crql,>
Trip Blank	Frequency as per project QAPP <crql< td=""><td>Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned</td></crql<>	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned
MS/MSD (recovery)	One per batch Use method acceptance criteria	Qualify original sample only unless other QC indicates systematic problems: For detects: J if %R <20%, or 20%<%R <lower limit,="" or<br="">%R or RPD >Upper limit For non-detects: R if %R<20%, UJ if 20%<%R<lower limit<="" td=""></lower></lower>
MS/MSD (RPD)	One per batch Use method acceptance criteria	For detects: J in original sample if RPD >Upper limit
LCS	One per lab batch	If not performed at specified frequency or concentration or % R not specified: use professional judgment For detects: • %R < Lower Limit, qualify J-+; %R> Upper Limit, qualify J+- For non-detects: • %R<, qualify results R; If %R >/= No qualification
LCS/LCSD (if required)	One set per batch of 20 samples RPD < 30%	Qualify sample results J/UJ

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a)

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a), continued

Validation QC Element	Acceptance Criteria	Action
Surrogates	Added to all samples Within method control limits	Not added or not at specified concentration, use professional judgement.
		For detects: • %R <expanded (10%),<br="" limit="" lower="">qualify results J-</expanded>
		 Expanded Lower Limit <!--=%R < specified<br-->Lower Limit, qualify results J-
		 %R > specified Upper Limit, qualify results J+
		For non-detects:
		 %R < Expanded lower limit (10%), qualify results R
		 Expanded Lower Limit <!--=%R <specified<br-->Lower Limit, qualify results UJ
Field Duplicates	QAPP limits RPD <35%	J/UJ in original only
	OR in the project-specific SOP. Limits may not apply when sample and dup concentrations are less than 5x QL or limit in the QAPP	If no guidance available, qualify associated samples for contaminants found in field blanks based on the criteria for Method Blanks

Validation Guidelines for Metals Analysis by IC	CP-MS
(Based on EPA 2020a; ARI 2020a)	

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: ≤ 6°C Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled	For detects: samples received with pH>/=2 and pH not adjusted, or technical holding >180 days, qualify J- For non-detects: pH>/= 2 and pH not adjusted,
Method Blank	One per batch <crql< td=""><td>If blank <crql: • Sample Detect <ql: and<="" at="" ql="" report="" td=""></ql:></crql: </td></crql<>	If blank <crql: • Sample Detect <ql: and<="" at="" ql="" report="" td=""></ql:></crql:
		 qualify U Sample >/= QL: J+ or no qualification If blank result <\= (-MDL) but > (-QL):
		Sample Detect: qualify J- or no qualification
		• Sample Non-detect: qualify UJ
		Sample Detect < CRQL: Report at QL and qualify U
		 Sample result >/=CRQL but <10 x the Blank results: Report at Blank Result and qualify J+ or R
		• >/=10x Blank results, no qualification
		If blank result = (-QL):</td
		• Sample Detect < CRQL or >/= CRQL but <10x CRQL, qualify J-
		Sample Non-detect qualify UJ
		 Sample result >/= 10x QL, no qualification
Laboratory Control Sample	One per matrix per batch	For detects:
(LCS)	Blank Spike: %R within 70%-130%	• If %R < 40% or 40-69%, J-
		• If %R 70-130%, no qualification
		• If %R 131-151%, J+
		• If %R >150%, R
		For non-detects:
		• If %R<40%, R
		• If %R 40-69%, UJ
		 If %R>70%, no gualification

Validation Guidelines for Metals Analysis by GC/MS	5
(Based on EPA 2020a; ARI 2020a), continued	

Validation QC Element	Acceptance Criteria	Action
Matrix Spike	One per matrix per batch %R 75-125% for samples where results do not exceed 4x spike level. If >/= 4x the spike added, report unqualified.	For detects: J- if %R <30 to 74% J+ if %R>125% No qualification if %R 75-125% For Non-detects: R if %R<30%, UJ if %R <75% or No qualification if %R 75 to >125
Laboratory Duplicate	One per matrix per batch RPD <20% for samples >/= 5x CRQL OR CQRL if sample results <5x CRQL	If results >/= 5x CRQL and RPD>20% OR if results <5x CRQL and absolute difference >CRQL, • J if detect, • UJ if non-detect
Field Duplicate	For results > 5x RL: RPD < 20% For results < 5x RL: Diff < RL	J/UJ in original sample only

Appendix B

Field Duplicate Analysis

Data Validation South Park Landfill								
QA/QC completed by: Ch	nris Bourgeo	i: 9/20/2021						
ARI Work Order	21H0296							
Sample numbers:	SPL-GW-M	W32-0821;	SPL-GW-MW6	0-0821				
Sample Date:	8/24/21							
Groundwater	sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
units = ug/L	MW-32	MW-60						
cis-1,2-DCE	1.06	0.92	0.99	0.14	14	У	0.2	
Vinyl chloride	0.465	0.477	0.471	-0.01	3	У	0.02	
Benzene	NT	NT	#DIV/0!	#VALUE!	#VALUE!	NA	0.2	NA
Groundwater	sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	12.1	12.1	12.1	0.00	0.00	У	0.036	
Manganese	1.43	1.44	1.435	-0.01	0.70	У	0.005	
Arsenic	1.29	1.22	1.255	0.07	6	У	0.2	
Comments:								
Calculated duplicate sample RPD = difference / average = ((X1-X2) / (X1+X2)/2)*100								

Data Validation			South Par	k Landfill					
QA/QC completed by: Chris Bourgeois			9/16/2021						
ARI Work Order		21H0308							
Sample numbers: SPL-GW-M'		W26-0821; SPL-GW-MW61-0821							
Sample Date:		8/25/21							
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
units = ug/L		MW-26	MW-61						
cis-1,2-DCE	ug/L	0.37	0.35	0.36	0.02	5.56	у	0.2	
Vinyl chloride	ug/L	0.031	0.0294	0.0302	0.00	5.30	У	0.02	
Benzene	ug/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!		0.2	
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	mg/L	8.43	8.54	8.485	-0.11	1.30	у	0.036	
Manganese	mg/L	0.127	0.127	0.127	0.00	0.00	у	0.005	
Arsenic	ug/L	0.813	0.868	0.8405	-0.06	7	У	0.2	
Comments:									
Calculated duplicate sample RPD = difference / average = ((X1-X2)				X2)/2)*100					

Appendix C

Qualified Data Summary Table

Table C.1 Qualified Data Summary Table Third Quarter 2021 Groundwater Sampling Event

Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qualifier	DV Qualifier	Final Qualifier
SPL-GW-MW26-0821	21H0308-05	EPA 8260D-SIM	Vinyl Chloride	0.0310	μg/L	М	J	J

Qualifiers:

M - Estimated value for a GC/MS analyte detected and confirmed by an analyst but with low spectral match parameters.

J – The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

Fourth Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report

Prepared for

Seattle Public Utilities 700 Fifth Avenue, Suite 4900 Seattle, WA 98124-4018

Prepared by

Parametrix 719 2nd Avenue, Suite 200 Seattle, WA 98104 T. 206.394.3700 F. 1.855.542.6353 www.parametrix.com

In Association with

Fourth Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

Parametrix and HWA GeoSciences, Inc., 2021. Fourth Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report. Prepared by Parametrix, Seattle, Washington. January 2022.

TABLE OF CONTENTS

1.	PROJECT NARRATIVE 1	L-1
	1.1 Overview of Data Validation	L-1
2.	DATA VALIDATION REPORT SELECT VOCS BY EPA METHOD 8260D	2-1
	2.1 Data Package Completeness	2-1
	2.2 Technical Data Validation	2-1
	2.2.1 Matrix Spike/Matrix Spike Duplicate2	2-1
	2.3 Overall Assessment	2-1
3.	DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM	3-1
	3.1 Data Package Completeness	3-1
	3.2 Technical Data Validation	3-1
	3.2.1 Lab Control Sample and Lab Control Sample Duplicate	3-1
	3.2.2 Matrix Spike/Matrix Spike Duplicate	3-1
	3.3 Overall Assessment	3-2
4.	DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B	i-1
	4.1 Data Package Completeness	1-1
	4.2 Technical Data Validation	1-1
	4.2.1 Cooler Temperature and Preservation	1 -1
	4.2.2 Matrix Spike	1-1
	4.3 Overall Assessment	1-2
5.	REFERENCES	5-1
ΑΡ	PENDICES	
	A Data Qualifier Definitions and Criteria Tables	

- B Field Duplicate Analysis
- C Qualified Data Summary Table

Fourth Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

ACRONYMS AND ABBREVIATIONS

CRQL	Contract Reporting Quantitation Limit
EPA	U.S. Environmental Protection Agency
LCS	Laboratory control standard
LCSD	Laboratory control standard duplicate
MS	Matrix spike
MSD	Matrix spike duplicate
RPD	Relative percent difference
QC	Quality control
VOC	Volatile organic compound

1. PROJECT NARRATIVE

1.1 Overview of Data Validation

This report summarizes the results of the Compliance Screening performed on the groundwater and field quality control (QC) sample data for the South Park Landfill Fourth Quarter 2021 Groundwater Monitoring Event. A complete list of samples is provided below.

Sample ID	Lab ID	Sample Location	8260D	8260D-SIM	6020B Total Fe, Mn	6020B Dissolved As
 SPL-GW-MW30-1121	21K0307-01	MW-30	Х	Х	х	
SPL-GW-MW31-1121	21K0307-02	MW-31	Х	х	х	
SPL-GW-MW27-1121	21K0307-03	MW-27	Х	х	х	
SPL-GW-MW27-1121	21K0307-04	MW-27				Х
SPL-GW-MW12-1121	21K0307-05	MW-12	Х	Х	Х	
SPL-GW-MW12-1121	21K0307-06	MW-12				Х
SPL-GW-MW29-1121	21K0307-07	MW-29	Х	Х	Х	
SPL-GW-MW32-1121	21K0307-08	MW-32	Х	Х	Х	
SPL-GW-MW32-1121	21K0307-09	MW-32				Х
SPL-GW-MW80-1121	21K0307-10	TRIP BLANK	Х	Х		
SPL-GW-MW25-1121	21K0331-01	MW-25	Х	Х	х	
SPL-GW-MW25-1121	21K0331-02	MW-25				Х
SPL-GW-MW24-1121	21K0331-03	MW-24	Х	Х	х	
SPL-GW-MW24-1121	21K0331-04	MW-24				Х
SPL-GW-MW26-1121	21K0331-05	MW-26	Х	Х	х	
SPL-GW-MW26-1121	21K0331-06	MW-26				Х
SPL-GW-MW08-1121	21K0331-07	MW-08	Х	Х	х	
SPL-GW-MW08-1121	21K0331-08	MW-08				Х
SPL-GW-MW61-1121	21K0331-09	MW-08 DUP	Х	Х	х	
SPL-GW-MW61-1121	21K0331-10	MW-08 DUP				х
SPL-GW-MW81-1121	21K0331-11	TRIP BLANK	Х	Х		
SPL-GW-MW14-1121	21K0331-12	MW-14	Х	Х	Х	
SPL-GW-MW18-1121	21K0331-13	MW-18	Х	Х	х	
SPL-GW-MW18-1121	21K0331-14	MW-18				Х
SPL-GW-MW33-1121	21K0331-15	MW-33	Х	Х	Х	
SPL-GW-MW33-1121	21K0331-16	MW-33				Х
SPL-GW-MW10-1121	21K0331-17	MW-10	х	х	х	
SPL-GW-MW10-1121	21K0331-18	MW-10				Х
SPL-GW-MW60-1121	21K0331-19	MW-33 DUP	Х	Х	Х	
SPL-GW-MW60-1121	21K0331-20	MW-33 DUP				Х

Project Sample Index

Fourth Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

Groundwater samples were collected on November 16 and 17, 2021 and submitted to Analytical Resources, Inc. (ARI) located in Tukwila, Washington for chemical analyses. The chemical analyses were performed under ARI Work Orders 21K0307 and 21K0331. The analytical methods include the following:

- Select volatile organic compounds (VOCs)—U.S. Environmental Protection Agency (EPA) Method 8260D
- Vinyl chloride—EPA Method 8260D-SIM
- Select metals (total iron and manganese, and dissolved arsenic) EPA Method 6020B

The data were reviewed using guidance and QC criteria documented in the analytical methods, U.S. Environmental Protection Agency (EPA) *National Functional Guidelines for Inorganic Data Review* (EPA 2020a), *National Functional Guidelines for Organic Data Review* (EPA 2020b), EPA *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (EPA 2009), and the *South Park Landfill Operations, Maintenance and Monitoring Plan* (OMMP; Appendix A of the South Park Landfill Cleanup Action Plan [Ecology 2021]).

In accordance with the OMMP, to generate data of sufficient quality, the following approach for groundwater samples will be followed:

- Field and laboratory QC samples (field replicates, trip blanks, and temperature blanks) will be used for assessing data quality.
- Laboratory QA will be implemented and maintained as described in the accredited laboratory's Quality Assurance Plan (ARI 2020a) and Standard Operating Procedures (ARI 2016, 2017, 2020b, 2020c) and in Table 3 (from OMMP and presented in Appendix B).
- Data summary packages will be generated, and the documentation provided will be sufficient to perform a Level I data quality review.

The goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

The data were evaluated in accordance with EPA guidance (EPA 2002, 2009) at a Stage 2A level. Data qualifier definitions, reasons, and validation criteria are included as Appendix A. Analysis of field duplicates are presented in Appendix B. Qualified data are summarized in Appendix C.

Field Duplicates

Two field duplicate samples were analyzed. Sample SPL-GW-MW60-1121 is a duplicate of SPL-GW-MW33-1121. Sample SPL-GW-MW61-1121 is a duplicate of SPL-GW-MW08-1121.

Appendix B presents the calculated Relative Percent Differences (RPDs) for field duplicate samples. RPDs = difference / average = $((X1-X2) / (X1+X2)/2) \times 100$, where X1 is the sample and X2 is the duplicate sample concentration. RPD is a measure of analytical precision. Precision is a measure of the variability in the results of replicate measurements due to random error.

Trip Blanks

Two trip blanks were analyzed for selected VOCs (SPL-GW-MW80-1121 and SPL-GW-MW81-1121). The lab reported that VOA vial 21K0331-11 B (SPL-GW-MW81-1121) used to assess data quality for vinyl chloride analyses by EPA method 8260D-SIM was not free of bubbles. However, the laboratory did not flag the corresponding analysis, indicating the bubble was <6mm in diameter and acceptable for analysis per EPA 2020b. Therefore, no data were qualified based on trip blank integrity issues.

Sample Temperature

Although no temperature blanks were prepared, the laboratory measured the cooler interior temperatures on receipt. Temperatures for the two batches were 3.9 and 5.7 degrees C, indicating adequate temperature control for sample preservation for both batches. No data were therefore qualified based on temperature issues.

VOC Sample Integrity

All VOA vials samples submitted on November 16, 2021 (laboratory report ID 21E0228) were free of air bubbles. The laboratory reported that VOA vials 21K0331-03 G, 21K0331-09 D, 21K0331-11 B, 21K0331-13 F, 21K0331-13 G, 21K0331-15 D, 21K0331-15 M, and 21K0331-19 G, all submitted on November 17, 2021 (laboratory report ID 21K0331), were not free of air bubbles. This could possibly be due to sample collection methods or in some cases (particularly at landfills), dissolved methane present in groundwater forms bubbles in the VOA vials after collection. At the time of sample collection, it is believed that the landfill gas collection and control system (LFGCCS) was not in operation, which may have led to an increase in dissolved methane in groundwater; however, there was at least one bubble-free vial for each location and the laboratory did not flag any VOC analyses based on VOC integrity issues. Therefore, no data were qualified based on VOC sample integrity issues.

2. DATA VALIDATION REPORT SELECT VOCS BY EPA METHOD 8260D

This section documents the review of VOC analytical data for groundwater and field QC samples and the associated laboratory QC samples.

2.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Surrogate recoveries		
Extraction and analysis holding times	Target analyte list		
Blank contamination	Reporting limits and reported results		
Laboratory control sample (LCS) and LCS duplicate (LCSD)	Field Duplicate		
MS/MSD ¹			

QC Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

2.2.1 Matrix Spike/Matrix Spike Duplicate

Sample specific QC was performed in association with samples 21K0331-07/21K0331-08 (SPL-GW-MW08-1121) and 21K0331-15/21K0331-16 (SPL-GW-MW33-1121) in batch BJK0622. The matrix spike/matrix spike duplicate (MS/MSD) spike recoveries and RPD were within advisory control limits. No data were therefore qualified based on MS/MSD integrity issues.

2.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

3. DATA VALIDATION REPORT VINYL CHLORIDE BY EPA METHOD 8260D-SIM

This section documents the review of vinyl chloride analytical data for groundwater and field QC samples and the associated laboratory QC samples.

3.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

3.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation	Surrogate recoveries		
Extraction and analysis holding times	Target analyte list		
Blank contamination (method and trip)	Reporting limits and reported results		
LCS and LCSD ¹	Field duplicates		
MS/MSD ¹			

QC Requirements

Notes:

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

The instrument malfunctioned during the initial run for samples 21K0331-13 (SPL-GW-MW18-1121), 21K0331-17 (SPL-GW-MW10-1121), and 21K0331-19 (SPL-GW-MW60-1121), which were reanalyzed. All unpreserved vials for 21K0331-19 (SPL-GW-MW60-1121/SPL-GW-MW33-1121 field duplicate) were compromised after injects, therefore the samples were analyzed out of a preserved vial. Analysis of vinyl chloride by Method 8260D is acceptable with or without acid preservation. No analyses were flagged by the laboratory as a result, and therefore the final data were not qualified.

3.2.1 Lab Control Sample and Lab Control Sample Duplicate

The percent recovery for laboratory control sample duplicate (LCSD) (BJK0666-BSD1) surrogate was just below established control limits (79.2%, with a lower control limit of 80%). EPA 2020 does not provide LCSD QC guidance for volatiles data review. However since surrogates for the samples, LCS, and MS/MSD were within control limits, no data were qualified based on LCS/LCSD integrity issues.

3.2.2 Matrix Spike/Matrix Spike Duplicate

Sample specific QC was performed in association with sample 21K0331-08 (SPL-GW-MW08-1121) and 21K0331-15 (SPL-GW-MW33-1121) in batch BJK0588. The MS/MSD spike recoveries and RPD were within advisory control limits. No data were therefore qualified based on MS/MSD integrity issues.

Fourth Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

3.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

4. DATA VALIDATION REPORT SELECT METALS BY EPA METHOD 6020B

This section documents the review of metals (total iron and manganese, and dissolved arsenic) analytical data for groundwater and field QC samples and the associated laboratory QC samples.

4.1 Data Package Completeness

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

4.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

Cooler temperature and preservation ²	Lab Control Sample
Extraction and analysis holding times	Laboratory Duplicate
Blank contamination (method)	Target analyte list
Matrix Spike (MS) ^{1,2}	Reporting limits and reported results
	Field duplicates

QC Requirements

QC requirement findings further discussed in following sections (if required):

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were changed or issued as discussed below.

Some of the metals data were the result of a dilution and were flagged with "D" qualifier by the laboratory. The "D" qualifiers were removed from the final data table.

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and/or had exceptions to the validation criteria are discussed below.

4.2.1 Cooler Temperature and Preservation

The laboratory reported that HNO₃-preserved bottles 21K0331-16 A (FF) (SPL-GW-MW33-1121) and 21K0331-19 A (SPL-GW-MW60-1121/SPL-GW-MW33-1121 field duplicate) submitted on November 17, 2021 did not meet pH preservation requirements. The lab reduced sample pH to preservation criteria on 12/1/2021 with 0.5 mL concentrated HNO₃. EPA 2020 guidance recommends professional judgement be used to qualify samples based on the pH of samples and chemistry of the metals of interest. At the time of collection, sample pH was recorded as 6.67. The metals of interest (total iron, manganese, and dissolved arsenic) are not considered to be highly sensitive to sample pH. Therefore, no data were qualified based on sample preservation issues.

4.2.2 Matrix Spike

Sample specific QC for manganese was performed in association with sample 21K0331-15 (SPL-GW-MW33-0821) in batch BJL0028. The lab noted that the natural concentration of the spiked analyte is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible. No data were qualified because the spike was less than 25 percent of the sample value.

Fourth Quarter 2021 Groundwater Sampling Event South Park Landfill Data Validation Report Seattle Public Utilities

Sample specific QC for total metals was performed in association with samples 21K0331-08 (SPL-GW-MW08-1121) and 21K0331-15 (SPL-GW-MW33-1121) in batch BJL0028. The MS/MSD percent recoveries and RPDs were within advisory control limits except Total Iron which was out of control low in the MS/MSD (BKL0028-MS1, BKL0028-MS2, BKL0028-MSD1 and BKL0028-MSD2). Therefore, the Total Iron results for all samples associated with batch BJL0028 were qualified "J-" as estimated in accordance with the criteria presented in Appendix A.

Sample specific QC for Dissolved Arsenic was performed in association with 21K0331-09 (SPL-GW-MW61-1121/SPL-GW-MW08-1121 field duplicate) and 21K0331-16 (SPL-GW-MW33-1121) in batch BJL0029. The duplicate (DUP) RPD and MS/MSD percent recoveries and RPD were within advisory control limits.

4.3 Overall Assessment

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS percent recovery values. Precision was acceptable, as demonstrated by the LCS/laboratory duplicate RPDs.

All data, as reported by the laboratory, are acceptable for use.

5. REFERENCES

- ARI. 2016. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS, SOP 545S, Version 001, Revision Date 2/8/16.
- ARI (Analytical Resources Inc.). 2017. Standard Operating Procedure, Metals Analysis Nexlon ICP-MS with Universal Cell Technology, SOP 543S, Version 003.3, Revision Date 2/23/17.
- ARI. 2020a. Quality Assurance Plan. Revision 17.0. 6/11/2020.
- ARI. 2020b. Standard Operating Procedure, Volatile Organic Analysis SOP 700S, Version 022, Revision Date 2/12/2020.
- ARI. 2020c. Standard Operating Procedure, Volatile Organic Analysis Selected Ion Mass Spectrometry, SOP 703S, Version 13, Revision Date 2/12/2020.
- Ecology. 2021. Draft South Park Landfill Final Cleanup Action Plan: Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan, Amended 2021. Washington State Department of Ecology Toxics Cleanup Program. Olympia, WA.
- EPA (U.S. Environmental Protection Agency). 2002. Guidance on Environmental Data Verification and Data Validation. EPA QA/G-8. EPA240R-02/004.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical data for Superfund Use. EPA 540-R-08-005. January 13, 2009.
- EPA. 2020a. National Functional Guidelines for Inorganic Superfund Data Review. EPA 540R- 2017-001. November.
- EPA. 2020b. National Functional Guidelines for Organic Superfund Data Review. EPA 542-R-20-006. November.
Appendix A

Data Qualifier Definitions and Criteria Tables

DATA VALIDATION QUALIFIER CODES

National Functional Guidelines (EPA 2020)

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- NJ The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value represents the approximate concentration (for organics).
- UJ The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature	Cooler temperature: ≤ 6°C HCl to pH ≤ 2	If >6 deg. C but = 10 deg. C, use professional<br judgement I/III if greater than 10 deg. C
Hold Time	14 days preserved 7 Days: unpreserved (for aromatics)	Detects: J; Non-detects: J if hold times exceeded
Method Blank	One per batch <crql< td=""><td>If blank <crql: If sample result <crql, qualify="" report<br="" u="">at CRQL If sample result >/= CRQL, use professional judgement</crql,></crql: </td></crql<>	If blank <crql: If sample result <crql, qualify="" report<br="" u="">at CRQL If sample result >/= CRQL, use professional judgement</crql,></crql:
		 If blank >/= CRQL: If sample result <crql, and="" at="" crql<="" li="" qualify="" report="" u=""> If sample result >/= but < blank result, qualify U and report at sample result If sample result >/= CRQL and >/= 2x blank results, report sample result and J+ qualify or no qualification </crql,>
Trip Blank	Frequency as per project QAPP <crql< td=""><td>Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned</td></crql<>	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned
MS/MSD (recovery)	One per batch Use method acceptance criteria	Qualify original sample only unless other QC indicates systematic problems: For detects: J if %R <20%, or 20%<%R <lower limit,="" or<br="">%R or RPD >Upper limit For non-detects: R if %R<20%, UJ if 20%<%R<lower limit<="" td=""></lower></lower>
MS/MSD (RPD)	One per batch Use method acceptance criteria	For detects: J in original sample if RPD >Upper limit
LCS	One per lab batch	If not performed at specified frequency or concentration or % R not specified: use professional judgment For detects: • %R < Lower Limit, qualify J-+; %R> Upper Limit, qualify J+- For non-detects: • %R<, qualify results R; If %R >/= No qualification
LCS/LCSD (if required)	One set per batch of 20 samples RPD < 30%	Qualify sample results J/UJ

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a)

Validation Guidelines for Volatile Analysis by GC/MS (Based on EPA 2020b; ARI 2020a), continued

Validation QC Element	Acceptance Criteria	Action			
Surrogates	Added to all samples Within method control limits	Not added or not at specified concentration, use professional judgement.			
		For detects: • %R <expanded (10%),<br="" limit="" lower="">qualify results J-</expanded>			
		 Expanded Lower Limit <!--=%R < specified<br-->Lower Limit, qualify results J- 			
		 %R > specified Upper Limit, qualify results J+ 			
		For non-detects:			
		 %R < Expanded lower limit (10%), qualify results R 			
		 Expanded Lower Limit <!--=%R <specified<br-->Lower Limit, qualify results UJ 			
Field Duplicates	QAPP limits RPD <35%	J/UJ in original only			
	OR in the project-specific SOP. Limits may not apply when sample and dup concentrations are less than 5x QL or limit in the QAPP	If no guidance available, qualify associated samples for contaminants found in field blanks based on the criteria for Method Blanks			

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: ≤ 6°C Nitric Acid to pH For Dissolved Metals: 0.45um filter & preser after filtration	 Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled	For detects: samples received with pH>/=2 and pH not adjusted, or technical holding >180 days, qualify J- For non-detects: pH>/= 2 and pH not adjusted, or technical holding >180 days, qualify R
Method Blank	One per batch <crql< td=""><td>If blank <crql: <ql:="" and<br="" at="" detect="" ql="" report="" sample="">qualify U Sample >/= QL: J+ or no qualification If blank result <\= (-MDL) but > (-QL): Sample Detect: qualify J- or no qualification Sample Non-detect: qualify UJ If blank result >/= CRQL: Sample Detect < CRQL: Report at QL and qualify U Sample result >/=CRQL but <10 x the Blank results: Report at Blank Result and qualify J+ or R >/=10x Blank results, no qualification If blank result <!--= (-QL): Sample Detect < CRQL or -->/= CRQL but <10x CRQL, qualify J- Sample Non-detect qualify UJ Sample result >/= 10x QL, no qualification</crql:></td></crql<>	If blank <crql: <ql:="" and<br="" at="" detect="" ql="" report="" sample="">qualify U Sample >/= QL: J+ or no qualification If blank result <\= (-MDL) but > (-QL): Sample Detect: qualify J- or no qualification Sample Non-detect: qualify UJ If blank result >/= CRQL: Sample Detect < CRQL: Report at QL and qualify U Sample result >/=CRQL but <10 x the Blank results: Report at Blank Result and qualify J+ or R >/=10x Blank results, no qualification If blank result <!--= (-QL): Sample Detect < CRQL or -->/= CRQL but <10x CRQL, qualify J- Sample Non-detect qualify UJ Sample result >/= 10x QL, no qualification</crql:>
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 70%-130%	For detects: If %R < 40% or 40-69%, J- If %R 70-130%, no qualification If %R 131-151%, J+ If %R >150%, R For non-detects: If %R<40%, R If %R 40-69%, UJ If %R>70%, no qualification

Validation Guidelines for Metals Analysis by ICP-MS (Based on EPA 2020a; ARI 2020a)

Validation QC Element	Acceptance Criteria	Action
Matrix Spike	One per matrix per batch %R 75-125% for samples where results do not exceed 4x spike level. If >/= 4x the spike added, report unqualified.	For detects: • J- if %R <30 to 74% • J+ if %R>125% • No qualification if %R 75-125% For Non-detects: • R if %R<30%, • UJ if %R <75% or No qualification if %R 75 to >125
Laboratory Duplicate	One per matrix per batch RPD <20% for samples >/= 5x CRQL OR CQRL if sample results <5x CRQL	If results >/= 5x CRQL and RPD>20% OR if results <5x CRQL and absolute difference >CRQL, J if detect, UJ if non-detect
Field Duplicate	For results > 5x RL: RPD < 20% For results < 5x RL: Diff < RL	J/UJ in original sample only

Validation Guidelines for Metals Analysis by GC/MS (Based on EPA 2020a; ARI 2020a), continued

Appendix B

Field Duplicate Analysis

Data Validation			South Park	Landfill					
QA/QC completed by: Ch	nris Bourgeois	ris Bourgeois 12/27/2021							
ARI Work Order		21K0331							
Sample numbers:		SPL-GW-M	IW33-1121;	SPL-GW-MW6	0-1121				
Sample Date:		11/17/21							
Groundwater		sample	duplicate	avg	diff	rpd	=/<35%	RL	w/in RL?
units = ug/L		MW-33	MW-60						
cis-1,2-DCE	ug/L	<0.20	<0.20	#DIV/0!	#VALUE!	#VALUE!	NA	0.2	у
Vinyl chloride	ug/L	0.124	0.109	0.1165	0.02	13	у	0.02	
Benzene	ug/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!	NA	0.2	NA
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	mg/L	14.8	14.5	14.65	0.30	2	у	0.036	
Manganese	mg/L	1.83	1.82	1.825	0.01	1	у	0.005	
Arsenic	ug/L	0.863	0.842	0.8525	0.02	2	У	0.2	
Comments:									
Calculated duplicate sam	ple RPD = difference	/ average = ((X1	-X2) / (X1+X	(2)/2)*100					

Data Validation			South Park	Landfill					
QA/QC completed by: Ch	nris Bourgeois		12/27/2021						
ARI Work Order		21K0331							
Sample numbers:		SPL-GW-M	W08-1121; S	SPL-GW-MW6	1-1121				
Sample Date:		11/17/21							
Groundwater		sample	duplicate	avg	diff	rpd	=/<35%	RL	w/in RL?
units = ug/L		MW-08	MW-61						
cis-1,2-DCE	ug/L	<0.20	<0.20	#DIV/0!	#VALUE!	#VALUE!	NA	0.20	у
Vinyl chloride	ug/L	0.0863	0.0819	0.0841	0.0044	5	у	0.0200	
Benzene	ug/L	NT	NT	#DIV/0!	#VALUE!	#VALUE!	NA	0.20	NA
Groundwater		sample	duplicate	avg	diff	rpd	=/<20%	RL	w/in RL?
Iron	mg/L	15.2	14.8	15.0	0.40	3	у	0.036	
Manganese	mg/L	0.991	0.991	0.991	0.000	0	y	0.005	
Arsenic	ug/L	<0.200	<0.200	#DIV/0!	#VALUE!	#VALUE!	NA	0.2	у
Comments:									
Calculated duplicate sample RPD = difference / average = ((X1-X2) / (X1+X2)/2)*100									

Appendix C

Qualified Data Summary Table

Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qualifier	DV Qualifier	Final Qualifier
SPL-GW-MW25-1121	21K0331-01	EPA 6020B	Total Iron	32.9	mg/L	D	J-	J-
SPL-GW-MW24-1121	21K0331-03	EPA 6020B	Total Iron	19.7	mg/L		J-	J-
SPL-GW-MW26-1121	21K0331-05	EPA 6020B	Total Iron	7.81	mg/L		J-	J-
SPL-GW-MW08-1121	21K0331-07	EPA 6020B	Total Iron	15.2	mg/L		J-	J-
SPL-GW-MW61-1121	21K0331-09	EPA 6020B	Total Iron	14.8	mg/L		J-	J-
SPL-GW-MW14-1121	21K0331-12	EPA 6020B	Total Iron	3.06	mg/L		J-	J-
SPL-GW-MW18-1121	21K0331-13	EPA 6020B	Total Iron	13.8	mg/L		J-	J-
SPL-GW-MW33-1121	21K0331-15	EPA 6020B	Total Iron	14.8	mg/L		J-	J-
SPL-GW-MW10-1121	21K0331-17	EPA 6020B	Total Iron	34.8	mg/L	D	J-	J-
SPL-GW-MW60-1121	21K0331-19	EPA 6020B	Total Iron	14.5	mg/L		J-	J-

 Table C.1

 Qualified Data Summary Table Fourth Quarter 2021 Groundwater Sampling Event

Qualifiers:

J- - The result is an estimated quantity, but the result may be biased low. The associated numerical value is the approximate concentration of the analyte in the sample.

D6

Purge Water Technical Memorandum

TECHNICAL MEMORANDUM

DATE:	June 28, 2021
TO:	Jeff Neuner
FROM:	Laura Lee and Lisa Gilbert, LHG
SUBJECT:	Groundwater Monitoring Well Purge Water Discharge to Sewer
PROJECT NUMBER:	553-1550-067
PROJECT NAME:	South Park Landfill

This Technical Memorandum was prepared to request authorization to discharge groundwater generated during purging of monitoring wells at the South Park Landfill (Site) into the King County sewer at the City of Seattle (City) Seattle Public Utilities (SPU) South Recycling and Disposal Station (SRDS).

INTRODUCTION

The Site is a former municipal solid waste landfill in the South Park neighborhood of Seattle, Washington (Figure 1). Groundwater monitoring is being conducted quarterly in accordance with the Final Cleanup Action Plan (CAP) for the Settlement Area (Ecology 2018) at the locations on Figure 2. The Settlement Area consists of the two largest parcels within the Edge of Refuse, SRDS and the South Park Property Development (SPPD), and certain adjacent City and Washington State rights-of-way (ROWs). Two other landfill parcels within the Edge of Refuse are the Kenyon Industrial Park (KIP) and the 7901 2nd Avenue S parcels and these parcels will be added to the Settlement Area in a future amendment to the CAP.

Site coordination is being performed by SPU for the Settlement Area under a Consent Decree with the Washington State Department of Ecology (Ecology). Parametrix has been designated as the Site Coordinator to perform the long-term monitoring and reporting required under the CAP and has conducted monitoring since Second Quarter 2020 (Parametrix 2021). The monitoring generates less than 100 gallons of purged water quarterly that is currently temporarily stored in drums and disposed of off-site following each monitoring event.

COMPARISON OF DATA FOR PURGED WATER TO DISCHARGE AUTHORIZATION CONDITIONS

Discharge of wastewater generated by the Solid Waste Transfer Facility operation located at 8100 Second Avenue South, Seattle, to the King County sewer system at Manhole 'M' (see location on Figure 2) is regulated by Discharge Authorization No. 400-05 issued by the King County Industrial Waste Program (KCIW) effective July 17, 2018 (Attachment A). The Discharge Authorization sets forth effluent limitations and monitoring requirements and states that "As long as you maintain compliance with regulations and do not change the nature and volume of your discharge, KCIW will not require you to apply for an industrial wastewater discharge permit."

Quarterly discharge quantities and water quality results for SRDS wastewater since the effective date of the Discharge Authorization (Third Quarter 2018 through Fourth Quarter 2020) are summarized in Attachment B. Discharge volumes ranged from 4,296 gpd to 21,725 gpd, and were below the maximum allowable volume of 38,000 gpd. The results for all water quality parameters were within discharge limitations.

The attached Table 1 compares purge water quality data for the May 2020 and February 2021 Site groundwater monitoring events to the Discharge Authorization limitations. The following conclusions can be made:

- The purge water would add less than 100 gallons quarterly to the SRDS wastewater discharge and would represent a very small percentage of the allowable discharge of 38,000 gallons per day.
- Concentrations of the required discharge monitoring parameters measured in purge water (May 2020 and Feb 2021) were very low compared to Discharge Authorization limitations.

RECOMMENDATIONS

Based on this information, it does not appear that adding the purge water to the discharge would "change the nature and volume" of the discharge. SPU should request the County's authorization to discharge the purged groundwater to the sewer system at the SRDS facility under the existing Discharge Authorization.

REFERENCES

- Ecology. 2018. South Park Landfill Final Cleanup Action Plan. Appendix A Landfill Post-Closure Operations, Maintenance, and Monitoring Plan. Washington State Department of Ecology Toxics Cleanup Program. Olympia, WA.
- Parametrix. 2021. 2020 Operations, Maintenance, and Monitoring Annual Report, South Park Landfill. Prepared for Seattle Public Utilities. March.

FIGURES

- 1 Site Vicinity Map
- 2 Groundwater Monitoring Well Network

TABLE

1 Comparison of South Park Landfill Purge Water Results with SRDS Discharge Authorization Limits

ATTACHMENTS

Attachment A Discharge Authorization

Attachment B Discharge Analyses and Quantities Third Quarter 2018 to Fourth Quarter 2020

Figures

Parametrix

Figure 1 Site Vicinity Map South Park Landfill

Source: Floyd|Snider, Aspect, Herrera. 2018. South Park Landfill, Landfill Post-Closure Operations, Maintenance, and Monitoring Plan.

Parametrix

Figure 2 Groundwater Monitoring Well Network South Park Landfill

Table

Date	Cadmium (mg/L)	Chromium (mg/L)	Copper (mg/L)	Lead (mg/L)	Nickel (mg/L)	Zinc (mg/L)	Silver (mg/L)	Arsenic (mg/L)	Mercury (mg/L)	SGT- HEM Nonpolar Oil and Grease (mg/L)	Total Cyanide (mg/L)
				SRD	S EFFLUEN	IT LIMITAT	IONS FROM D	DISCHARGE	AUTHORIZA	TION 400-05	
						Daily /	Average (mg/	L)			
	0.5	2.75	3.0	2.0	2.5	5.0	1	1	0.1		2
					Ir	nstantaneo	ous Maximum	(mg/L)			
	0.6	5.0	8.0	4.0	5.0	10.0	3.0	4	0.2	100	3
5/28/2020	0.0020 U	0.0050 U	0.002	0.0200 U	0.0100 U	0.0100 U	0.0030 U	0.0500 U	0.000100 U	NT	NT
2/24/2021	0.000100 U	0.00273	NT	0.00038	NT	NT	0.000200 U	0.00206	0.00010 U	5 U	0.0050 U

Table 1. Comparison of South Park Landfill Purge Water Results with SRDS Discharge Authorization Limits

Notes:

 \cup = The analyte was analyzed for but was not detected above the reported sample quantitation limit.

NT = Not tested

TTO = Sum of total toxic organics detected values

*Includes additional VOCs that are not on the TTO list

**Range of pH measured in groundwater samples

TTO (mg/L)	рН (s.u.)
	Min.
0.1	5.0
	Max.
0.1	12.0
0.07526 0.00262	6.26 to 6.85** 6.70

Attachment A

Discharge Authorization

Wastewater Treatment Division Industrial Waste Program Department of Natural Resources and Parks 201 South Jackson Street, Suite 513 Seattle, WA 98104-3855 **206-477-5300** Fax 206-263-3001 TTY Relay: 711

RECEIVED

July 12, 2018

CERTIFIED MAIL RETURN RECEIPT REQUESTED

Ben Whitley Seattle Public Utilities 130 S. Kenyon Street Seattle, WA 98108

Issuance of Wastewater Discharge Authorization No. 400-05 to City of Seattle - Seattle Public Utilities - South Recycling and Disposal Station

Dear Mr. Whitley:

The King County Industrial Waste Program (KCIW) has reviewed your application to discharge industrial wastewater to the sewer system from the City of Seattle - Seattle Public Utilities - South Recycling and Disposal Station facility located at 8100 Second Avenue South, Seattle, Washington, and has issued the enclosed Major Discharge Authorization. The enclosed Discharge Authorization No. 400-05 supersedes and cancels Discharge Authorization No. 400-04, effective July 17, 2018.

This authorization permits you to discharge limited amounts of industrial wastewater into King County's sewer system in accordance with the effluent limitations and other requirements and conditions set forth in the document and the regulations outlined in King County Code 28.84.060 (enclosed). As long as you maintain compliance with regulations and do not change the nature and volume of your discharge, KCIW will not require you to apply for an industrial wastewater discharge permit, a type of approval that would result in additional requirements and increased fees.

If you propose to increase the volume of your discharge or change the type or quantities of substances discharged, you must contact KCIW at least 60 days before making these changes.

The major changes to this authorization are:

1. A switch in sample collection method for metals analysis. You are required to collect composite samples for analysis and determination of compliance for daily average limits.

Ben Whitley July 12, 2018 Page 2

2. Increased maximum daily discharge from 25,000 gallons per day (gpd) at A43221 to 37,000 gpd based on your application and site inspection.

King County Code 28.84 authorizes a fee for each Major Discharge Authorization issued by the King County Department of Natural Resources and Parks. The current fee for issuance of a Major Discharge Authorization is \$3,000. King County will send you an invoice for this amount.

If you have any questions about this discharge authorization or your wastewater discharge, please call me at 206-477-5426 or email me at todd.gowing@kingcounty.gov. You may also wish to visit our program's Internet pages at: www.kingcounty.gov/industrialwaste.

Thank you for helping support our mission to protect public health and enhance the environment.

Sincerely,

Todd Gowing Compliance Investigator

Enclosures

cc: Julie Howell, Seattle Public Utilities

MAJOR DISCHARGE AUTHORIZATION

King County Industrial Waste Program 201 S. Jackson Street, Suite 513 Seattle, WA 98104-3855

NUMBER 400-05

for

City of Seattle - Seattle Public Utilities - South Recycling and Disposal Station

Facility address:	8100 2nd Avenue S. Seattle, WA 98106			
Mailing address:	130 S. Kenyon Street Seattle, WA 98108			
Phone:	206-684-5518			
Emergency (24-hour	r) phone:	206-786-4605		
Industry type:	Solid Waste -	Transfer Facility		
SIC code: Discharge to:	4053, 4963 West Point	EPA Id. No.:	WAD980833826	
*Note: This authorization is valid only for the specific discharges shown below:				

Discharge process: Wastewater generated by Solid Waste Transfer Facility operation

Effective date:	July 17, 2018
Expiration date:	July 16, 2023

DESCRIPTION OF SAMPLE SITES AND DISCHARGE VOLUMES

Sample Site No	Description	Maximum Volume (gallons per da				
Sample Site No.	Description	Industrial	Total			
A43221	Manhole 'M'	37,000	38,000			

Permission is hereby granted to discharge industrial wastewater from the above-identified facility into the King County sewer system in accordance with the effluent limitations and monitoring requirements set forth in this authorization.

If the industrial user wishes to continue to discharge after the expiration date, an application must be filed for re-issuance of this discharge authorization at least 90 days prior to the expiration date. For information concerning this King County Discharge Authorization, please call Industrial Waste Compliance Investigator Todd Gowing at 206-477-5426.

24-HOUR EMERGENCY NOTIFICATION West Point Treatment Plant: 206-263-3801 Washington State Department of Ecology: 425-649-7000

SPECIAL CONDITIONS

A. Screening Level for Soluble Sulfide

- 1. Discharges that exceed the soluble sulfide screening level of 0.1 milligrams per liter (mg/L) have the potential to cause occupational health hazards in the sewage collection system or indicate that treatment has not been sufficient enough to remove hazardous waste characteristics.
- 2. Determination of the soluble sulfide concentration using an approved field test kit is acceptable.
- 3. For each exceedance of the screening level the permittee shall:
 - a. Take immediate action to stop the exceedance and notify KCIW within 24 hours of learning of the exceedance
 - b. Collect a sample and submit new data to KCIW within 14 days of becoming aware of the exceedance (or the next time discharge occurs if greater than 14 days)
 - c. Submit a written report within 14 days of learning of the exceedance (14-Day Report)
 - d. The report should explain the cause of the exceedance and corrective actions taken to respond to the sulfide exceedance and ensure ongoing compliance
- 4. The following conditions apply whenever KCIW monitoring or the permittee's selfmonitoring results exceed the screening level for three out of four sampling events:
 - a. The permittee shall submit a plan indicating the steps that will be taken to ensure that discharges do not exceed screening levels.
 - b. This plan shall be submitted within 30 days from the third measurement indicating that the discharge exceeded the screening level, and indicate the steps that will be taken to reduce soluble sulfide concentrations so that they remain consistently below screening levels within 60 days.
- 5. If submitted plan (required in condition 4) does not result in continued compliance with screening limit, King County may require further action which can include performing atmospheric hydrogen sulfide monitoring at a manhole designated by King County to assess for compliance with the King County local discharge limit of 10.0 ppm, and/or establishing a soluble sulfide limit.

B. Best Management Practices (BMPs)

The amount of contaminated industrial stormwater entering the sanitary sewer shall be minimized to the greatest extent practical. Best Management Practices (BMPs) shall be implemented both to reduce the amount of contaminated stormwater and minimize the degree of contamination.

SELF-MONITORING REQUIREMENTS

A. The following self-monitoring requirements shall be met for this discharge authorization:

Sample Site No.	Parameter	Sample Type	Frequency
	Arsenic, Total	Composite	Quarterly
	Cadmium, Total	Composite	Quarterly
	Chromium, Total	Composite	Quarterly
	Copper, Total	Composite	Quarterly
	Lead, Total	Composite	Quarterly
	Nickel, Total	Composite	Quarterly
	Silver, Total	Composite	Quarterly
A43221	Zinc, Total	Composite	Quarterly
	Dissolved Sulfide	Grab	Quarterly
	Non-polar fats, oils	3 Grabs	Quarterly
	and grease		Quarterry
	Discharge Volume	Meter reading	Quarterly
	Total Monthly Flow	Meter reading	Quarterly
	pH	Grab	Quarterly
	Settleable solids	Grab (by Imhoff	Quarterly
		cone)	
	Hydrogen sulfide	Meter reading	Only if Operating Criteria for
			rotten egg odor are exceeded
	Explosivity	Meter reading	Only if Operating Criteria for
			visible sheen or odor of
			solvents/gasoline are exceeded

- B. The settleable solids field test by Imhoff cone must be performed as follows:
 - 1. Fill Imhoff cone to one-liter mark with well-mixed sample
 - 2. Allow 45 minutes to settle
 - 3. Gently stir sides of cone with a rod or by spinning; settle 15 minutes longer
 - 4. Record volume of settleable matter in the cone as mL/L
- C. The three nonpolar fats, oils, and grease (FOG) grab samples shall be of equal volume, collected at least five minutes apart, and analyzed separately. When using U.S. Environmental Protection Agency approved protocols specified in 40 CFR Part 136, the individual grab samples may be composited (at the laboratory) prior to analysis. The result of the composite sample or the average of the concentrations of the three grab samples may be reported as Total FOG unless the value is 100 mg/L or greater, in which case the concentration of nonpolar FOG must be reported.
- D. If a violation of any discharge limits or operating criteria is detected in monitoring, you shall notify KCIW immediately upon receipt of analytical data.
- E. A self-monitoring report shall be filed with KCIW no later than the 15th day of the time period following the sample collection (i.e., the 15th day of the following month for monthly, weekly, daily samples; the 15th day of the following quarter for quarterly samples). If no discharge takes place during any monitoring period, it shall be noted on the report.

- F. All self-monitoring data submitted to KCIW, which required a laboratory analysis, must have been performed by a laboratory accredited by the Washington State Department of Ecology for each parameter tested, using procedures approved by 40 CFR 136. This does not apply to field measurements performed by the industrial user such as pH, temperature, flow, atmospheric hydrogen sulfide, total dissolved sulfides, total settleable solids by Imhoff cone, or process control information.
- G. All sampling data collected by the permittee and analyzed using procedures approved by 40 CFR 136 or approved alternatives shall be submitted to KCIW whether required as part of this authorization or done voluntarily by the permittee.
- H. Self-monitoring reports shall be signed by an authorized representative of the industrial user. The authorized representative of the industrial user is defined as:
 - 1. The president, secretary, treasurer, or a vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation
 - 2. The manager of one or more manufacturing, production, or operating facilities, but only if the manager:
 - a. Is authorized to make management decisions that govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiate and direct other comprehensive measures to assure long-term environmental compliance with environmental laws and regulations
 - b. Can ensure that the necessary systems are established or actions taken to gather complete and accurate information for control mechanism requirements and knowledgeable of King County reporting requirements
 - c. Has been assigned or delegated the authority to sign documents, in accordance with corporate procedures
 - 3. A general partner or proprietor if the industrial user is a partnership or proprietorship, respectively
 - 4. A director or highest official appointed or designated to oversee the operation and performance of the industry if the industrial user is a government agency
 - 5. The individuals described in one through four above may designate an authorized representative if:
 - a. The authorization is submitted to King County in writing.
 - b. The authorization specifies the individual or position responsible for the overall operation of the facility from which the discharge originates or having overall responsibility for environmental matters for the company or agency.

GENERAL DISCHARGE LIMITATIONS

Operating criteria

There shall be no odor of solvents, gasoline, or hydrogen sulfide (rotten egg odor), oil sheen, unusual color, or unusual turbidity. You must collect additional monitoring samples in accordance with Part A of the Self-Monitoring Requirements if you observe any of the preceding conditions. If any of the discharge limits are exceeded, you must stop discharging and notify KCIW at 206-477-5300. You may resume discharging when you have verified a return to compliance with the discharge limitations. Any additional monitoring samples collected in accordance with Part A of the Self-Monitoring Requirements must be submitted to King County on your self-monitoring report. Failure to collect additional samples in accordance with Part A will result in a violation of your permit conditions and result in potential enforcement action.

Corrosive substances

Limits	
Maximum:	pH 12.0 (s.u.)
Instantaneous minimum:	pH 5.0 (s.u.)
Daily minimum:	pH 5.5 (s.u.)

The instantaneous minimum pH limit is violated whenever any single grab sample or any instantaneous recording is less than pH 5.0. The daily minimum pH limit is violated whenever any continuous recording of 15 minutes or longer remains below pH 5.5 or when each pH value of four consecutive grab samples collected at 15-minute intervals or longer within a 24-hour period remains below pH 5.5.

Discharges of more than 50 gallons per day of caustic solutions equivalent to more than 5 percent NaOH by weight or greater than pH 12.0 are prohibited unless authorized by KCIW and subject to special conditions to protect worker safety, the collection system, and treatment works.

Fats, oils, and grease

Discharge of FOG shall not result in significant accumulations that either alone or in combination with other wastes are capable of obstructing flow or interfere with the operation or performance of sewer works or treatment facilities.

Dischargers of polar FOG (oil and grease from animal and/or vegetable origin) shall minimize free-floating polar FOG. Dischargers may not add emulsifying agents exclusively for the purpose of emulsifying free-floating FOG.

Nonpolar FOG limit: 100 mg/L

The limit for nonpolar FOG is violated when the arithmetic mean of the concentration of three grab samples, taken no more frequently than at five minute intervals, or when the results of a composite sample exceed the limitation.

Flammable or explosive materials

No person shall discharge any pollutant, as defined in 40 CFR 403.5, that creates a fire or explosion hazard in any sewer or treatment works, including, but not limited to, waste streams with a closed cup flashpoint of less than 140° Fahrenheit or 60° Centigrade using the test methods specified in 40 CFR 261.21.

At no time shall two successive readings on an explosion hazard meter, at the point of discharge into the system (or at any point in the system), be more than 5 percent nor any single reading be more than 10 percent of the lower explosive limit (LEL) of the meter.

Pollutants subject to this prohibition include, but are not limited to, gasoline, kerosene, naphtha, benzene, toluene, xylene, ethers, alcohols, ketones, aldehydes, peroxides, chlorates, perchlorates, bromates, carbides, hydrides, and sulfides, and any other substances that King County, the fire department, Washington State, or the U.S. Environmental Protection Agency has notified the user are a fire hazard or a hazard to the system.

Heavy metals/cyanide

Heavy Metals & Cyanide	Instantaneous Maximum ppm (mg/L) ¹	Daily Average ppm (mg/L) ²
Arsenic	4.0	1.0
Cadmium	0.6	0.5
Chromium	5.0	2.75
Copper	8.0	3.0
Lead	4.0	2.0
Mercury	0.2	0.1
Nickel	5.0	2.5
Silver	3.0	1.0
Zinc	10.0	5.0
Cyanide	3.0	2.0

The industrial user shall not discharge wastes, which exceed the following limitations:

¹ The instantaneous maximum is violated whenever the concentration of any sample, including a grab within a series used to calculate daily average concentrations, exceeds the limitation.

² The daily average limit is violated: a) for a continuous flow system when a composite sample consisting of four or more consecutive samples collected during a 24-hour period over intervals of 15 minutes or greater exceeds the limitation, or b) for a batch system when any sample exceeds the limitation. A composite sample is defined as at least four grab samples of equal volume taken throughout the processing day from a well-mixed final effluent chamber, and analyzed as a single sample.

King County Major Discharge Authorization Number 400-05 Expiration Date: July 16, 2023 Page: 7

High temperature

The industrial user shall not discharge material with a temperature in excess of 65° C (150° F).

Hydrogen sulfide

Atmospheric hydrogen sulfide: 10.0 ppm (As measured at a monitoring manhole designated by KCIW)

Soluble sulfide limits may be established on a case-by-case basis depending upon volume of discharge and conditions in the receiving sewer, including oxygen content and existing sulfide concentrations.

Organic compounds

No person shall discharge any organic pollutants that result in the presence of toxic gases, vapors, or fumes within a public or private sewer or treatment works in a quantity that may cause worker health and safety problems.

Organic pollutants subject to this restriction include, but are not limited to: Any organic pollutants compound listed in 40 CFR Section 433.11 (e) (total toxic organics [TTO] definition), acetone, 2-butanone (MEK), 4-methyl-2-pentanone (MIBK), and xylenes.

Settleable solids

Settleable solids concentrations: 7.0 ml/L

GENERAL CONDITIONS

- A. All requirements of King County Code pertaining to the discharge of wastes into the municipal sewer system are hereby made a condition of this discharge authorization.
- B. The industrial discharger shall implement measures to prevent accidental spills or discharges of prohibited substances to the municipal sewer system. Such measures include, but are not limited to, secondary containment of chemicals and wastes, elimination of connections to the municipal sewer system, and spill response equipment.
- C. Any facility changes, which will result in a change in the character or volume of the pollutants discharged to the municipal sewer system, must be reported to your KCIW representative. Any facility changes that will cause the violation of the effluent limitations specified herein will not be allowed.
- D. In the event the permittee is unable to comply with any of the conditions of this discharge authorization because of breakdown of equipment or facilities, an accident caused by human error, negligence, or any other cause, such as an act of nature the company shall:
 - 1. Take immediate action to stop, contain, and clean up the unauthorized discharges and correct the problem.
 - 2. Immediately notify KCIW and, if after 5 p.m. weekdays and on weekends, call the emergency King County treatment plant phone number on Page 1 so steps can be taken to prevent damage to the sewer system.
 - 3. Submit a written report within 14 days of the event (14-Day Report) describing the breakdown, the actual quantity and quality of resulting waste discharged, corrective action taken, and the steps taken to prevent recurrence.
- E. Compliance with these requirements does not relieve the permittee from responsibility to maintain continuous compliance with the conditions of this discharge authorization or the resulting liability for failure to comply.
- F. The permittee shall, at all reasonable times, allow authorized representatives of KCIW to enter that portion of the premises where an effluent source or disposal system is located or in which any records are required to be kept under the terms and conditions of this authorization.
- G. Nothing in this discharge authorization shall be construed as excusing the permittee from compliance with any applicable federal, state, or local statutes, ordinances, or regulations including discharge into waters of the state. Any such discharge is subject to regulation and enforcement action by the Washington State Department of Ecology.
- H. This discharge authorization does not authorize discharge after its expiration date. If the permittee wishes to continue to discharge after the expiration date, an application must be filed for reissuance of this discharge authorization at least 90 days prior to the expiration date. If the permittee submits its reapplication in the time specified herein, the permittee shall be deemed to have an effective wastewater discharge authorization until KCIW issues or denies the new wastewater discharge authorization. If the permittee fails to file its reapplication in the time period specified herein, the permittee will be deemed to be discharging without authorization.

Compliance Investigator:

July 12, 2018 Date:

Todd Gowing

	King County
--	-------------

Seattle, City of - SPU - South Recycling and Disposal Station **Company Name:**

This form is available at www.kingcounty.gov/industrialwaste.

Permit/DA No.: 400-05 Sample Site No.: A43221 4 QUARTER Please specify year: 20 ł

fotal Monthly -low (gallons)				aidt te			
- ш		 -				 T	
Discharge Volume on sample day (gallons)		or October		November			December
Dissolve d Sulfide (mg/L)		charged f		arged for			arged for
Non-Polar fats, oils & grease (FOG) (Record average only)		al volume dis		olume disch			olume disch
Settable Solids (mL/L)		Tota		 Total v			Total √
nS, aniS							
Silver, Ag		-					
Nickel, Ni							
Lead, Pb	 						
Copper, Cu							
Chromium, Cr							
bጋ ,muimbsጋ							
Arsenic, As							
Hd							
G (Grab) G (Grab)					:		

Due Dates Fourth Quarter Report is due by January 15 of each year.

Signature of Principal Executive or Authorized Agent

tested

Date

i.u	ing County
	Ξ

1

Company Name:

Mail or FAX to:

Seattle, City of - SPU - South Recycling and Disposal Station

This form is available at www.kingcounty.gov/industrialwaste.

Permit/DA No.: 400-05 Sample Site No.: A43221 က QUARTER Please specify year: 20_

5) 2 <u>7</u>	t nuder	ICEDGLEC	s mele d	hment i	all attac	bne ine	pocnue	at this	f law th	o vilene	a Japun	l certify
Total Month Flow (gallon												
Discharge Volume on sample day (gallons)				ged for July				for August				September
Dissolved Sulfide (mg/L)				ne dischar				dischargec				harged for
Non-Polar fats, oils & grease (FOG) (Record average only)				Total volum				otal volume o				volume discl
Settable Solids (mL/L)												Total
nZ ,oniZ												
Silver, Ag												
Nickel, Ni												
Lead, Pb												
Copper, Cu												
Chromium, Cr												
bO ,muimbsO												
sA ,cineera												
ц									· · · · · · · · · · · · · · · ·			

In	
	King County

Seattle, City of - SPU - South Recycling and Disposal Station **Company Name:**

This form is available at www.kingcounty.gov/industrialwaste.

Permit/DA No.: 400-05): delete or ignore EOG or SS_if not required
A43221	d. e.a. Silver (Aa)
Sample Site No.: _	parameters. if not provide
QUARTER 2	Note: Write in self-monitoring
Please specify year: 20	All units are mg/l unless otherwise noted.

Sample Type G (Grab)													
Ha								[
Arsenic, As													
bD ,muimbsD													
Chromium, Cr													
Copper, Cu									- <u>.</u>				
dq ,bsəJ													
Nickel, Ni					·								
Silver, Ag													
nZ ,ɔniZ													
Settable Solids (mL/L)													
 Non-Polar fats, oils & grease (FOG) (Record average only) 				Total volur				Total volui				Total volun	
Dissolved Sulfide (mg/L)				ne discharg				me discharç				ne discharg	
Discharge Volume on sample day (gallons)				led for April				jed for May				ed for June	
Total Monthly Flow (gallons)													
	Sample Type G (Grab) G (Grab) Arsenic, As C (Grab) Arsenic, As Copper, Cu Copper, Cu Non-Polar fats, Settable Solids (mL/L) Non-Polar fats, Copper, Cu Non-Polar fats, Settable Solids (mL/L) average only) (mg/L) (gallons) Settable (mg/L) (gallons)	Sample Type Complet Type Complet Type Complet Type Complet Calmum, Ct Complet, Calmum, Ct Calmum, Ct Complet, Calmum, Ct Complet, Calmum, Ct Calmon, Calmum, Ct	Sample Type Gample Type Gample Type Gample Type Gample Type Chromium, Ct Chrolum Chro	Sample Type E G (Grab) E G (Grab) F Arsenic, As Cadmium, Cd Cadmid Cadmid Cadmid Cadmid Cadmid Cadmid Cadi	Total volume Sample Type Tit Tit Tit	Image: state	The angle is the second of	Image: Section of the section of t	Image: Second Second Processor Second Second Processor Second Second Processor Image: Second Second Processor Image: Second Second Processor Second Second Processor Image: Second Second Processor Image: Second Second Processor Second Second Processor Image: Second Second Processor Image: Second Second Processor Second Second Processor Image: Second Processor Image: Second Processor Second Second Processor Image: Second Processor Image: Second Processor Image: Second Processor Image: Second Processor Image: Second Processor Image: Second Procesor Image: Second Processor	Image: Second	Image: state in the state i	Image: Second	Image: Line of the second s

arter keport is due by July 15 of each year. 3

Signature of Principal Executive or Authorized Agent

Date

King County
King Coul

Industrial Waste Quarterly Self-Monitoring Report

Mail or FAX to:

King County Industrial Waste 201 S Jackson Street, Suite 513 Seattle, WA 98104-3855 Phone 206-477-5300/ FAX 206-263-3001

This form is available at www.kingcounty.gov/industrialwaste. Seattle, City of - SPU - South Recycling and Disposal Station Company Name:

Sample Site No.: A43221 QUARTER Please specify year: 20_

Permit/DA No.: 400-05

Fotal Monthiy									
Discharge Volume on sample day (gallons)				January		<u> </u>	February		or March
Dissolved Sulfide (mg/L)			-	charged for			harged for		ischarged f
Non-Polar fats, oils & grease (FOG) (Record average only)				il volume disc			volume disch		otal volume di
Settable Solids (mL/L)				Tota	<u> </u>		 Total		Ĕ
Zinc, Zn									
Silver, Ag									
ИіскеІ, Иі								 	
Lead, Pb									
Copper, Cu									
Chromium, Cr									
bO ,muimbsO									
Arsenic, As									
 L			1						

Signature of Principal Executive or Authorized Agent

Date

Attachment B

Discharge Analyses and Quantities Third Quarter 2018 to Fourth Quarter 2020

SRDS Metro Sample Data Trend

Quarter	Sample Date	Method C/G/BC	рН S.U. 5 - 12	As (mg/L) 4.0	Cd (mg/L) 0.6	Cr (mg/L) 5.0	Cu (mg/L) 8.0	Pb (mg/L) 4.0	Ni (mg/L) 5	Ag (mg/L) 3	Zn (mg/L) 10	Settleable Solid (mg/L) 7.0	NP-FOG (mg/L) 100	Soluble Sulfide (mg/L) 0.1	Flow Gal 37,000	Non-Polar Oil/Grease (mg/L)				Polar Oil/Grease			
																					(m	g/L)	
Bench mark																100							
2018 3qt	8/31/2018	G	7.42	ND	ND	ND	ND	ND	ND	ND	0.0131		<4.7	<0.1	6,446	ND	ND	ND	0.0	ND	ND	ND	0.0
2018 4qt	11/30/2018	С	7.43	ND	ND	ND	0.0046	ND	ND	ND	0.05	<1	<4.7	<0.1	13,233	ND	ND	ND	0.0	ND	ND	ND	0.0
2019 1qt	3/8/2019	С	7.07	ND	ND	ND	0.0077	ND	ND	ND	0.111	<1	<4.7	<0.1	12,232	ND	ND	5	1.7	ND	ND	ND	0.0
2019 2qt	5/9/2019	С	7.36	ND	ND	0.005	ND	ND	ND	ND	0.0147	<1	<4.7	<0.1	8,199	ND	ND	ND	0.0	ND	ND	ND	0.0
2019 3qt	8/30/2019	С	7.73	ND	ND	0.0057	0.0091	ND	ND	ND	0.0618	<1	<4.7	<0.1	4,296	ND	ND	ND	0.0	ND	ND	ND	0.0
2019 4qt	12/13/2019	С	7.32	ND	ND	ND	ND	ND	ND	ND	0.0246	<1	<4.7	<0.1	4,840	ND	ND	ND	0.0	ND	ND	ND	0.0
2020 1qt	3/6/2020	С	7.17	ND	ND	ND	0.0139	ND	ND	ND	0.0651	<1	<4.7	<0.1	21,725	ND	ND	ND	0.0	ND	ND	ND	0.0
2020 2qt	5/27/2020	С	7.27	ND	ND	ND	0.0036	ND	ND	ND	0.0363	<1	<4.7	<0.1	5,220	ND	ND	ND	0.0	ND	ND	ND	0.0
2020 3qt	9/17/2020	С	7.24	ND	ND	ND	0.0031	ND	ND	ND	0.0257	<1	<4.7	<0.1	4,717	ND	ND	ND	0.0	ND	ND	ND	0.0
2020 4qt	12/4/2020	С	7.13	ND	ND	ND	0.0067	ND	ND	ND	0.0757	<1	<4.7	<0.1	NA	ND	ND	ND	0.0	ND	ND	ND	0.0