www.hartcrowser.com

September 25, 2000		Anchorage
City Investors XIII, L.L.C. c/o joe Delaney Foster Pepper Shefleman 1111 Third Avenue, Suite 3400 Seattle, WA 98101		Boston
Re: Limited Soil and Ground Preliminary Remediation Denny's Property 966 Mercer Street Seattle, Washington J-7436	water Subsurface Assessment and Cost Estimate	Chicago Denver
Assessment and Preliminary Rem 966 Mercer Street on the north s Seattle, Washington. This report	ults of our Limited Soil and Groundwater Subsurface ediation Cost Estimate for the Denny's property located at ide of Mercer Street in the South Lake Union area of has been prepared in accordance with our contract order and that City Investors XIII, L.L.C., is in the process of a redevelopment.	Fairbanks Jersey City
BACKGROUND AND REPOR This Limited Soil and Groundwate groundwater on the subject prop by past on-site and/or off-site use		Juneau ् Long Beach
RESULTS, and PRELIMINAR followed by the LIMITATIONS Figure 1 presents a Vicinity Map a prominent subject property featu occurrence of TPH-G in the subst	begins with FIELD ACTIVITIES, CHEMICAL A REMEDIATION COST ESTIMATE sections section. and Figure 2 a Site and Exploration Plan showing res and boring locations. Figure 3 illustrates the urface. Chemical results for site soil and groundwater I and 2. Table 3 includes the Preliminary Cost Estimate for	Portland

.....

Seattie

.

J-7436 Page 2

Remediation at the subject property. Appendix A presents the strataprobe boring logs for the field explorations. Appendix B contains the chemical data quality review and the Transglobal Environmental Geosciences Northwest, Inc. (TEG) chemistry laboratory reports.

The observed environmental impacts will likely result in additional costs during redevelopment of the property. Following the summary of results we present a remedial cost estimate based on preliminary development plans.

FIELD ACTIVITIES

On August 29, 2000, nine Strataprobe borings, labeled B-1 and B-3 through B-10, were advanced by TEG, NW at locations shown on Figure 2. The borings were advanced to depths of 12 to 20 feet. Groundwater was encountered at depths between 10 and 13 feet. Boring logs are presented in Appendix A. The Hart Crowser field representative collected soil samples at continuous 4-foot-depth intervals and placed the samples in pre-cleaned headspace-free jars. Groundwater samples were collected from borings B-1, B-3, B-5, B-7, and B-10. Selected soil and groundwater samples were analyzed for the following constituents:

- Total petroleum hydrocarbons (TPH) by Ecology Method NWTPH-HCID;
- Gasoline-range petroleum (TPH-G) and BTEX by Ecology Method NWTPH-Gx/BTEX;
- Diesel-range petroleum (TPH-D) and oil-range petroleum (TPH-O) by Ecology Method NWTPH-Dx;
- Volatile organic compounds (VOCs) by EPA Method 8021B;
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8100; and
- Metals by EPA Method 7000 series.

The chemical analyses for soil and groundwater samples are summarized in Tables 1 and 2, respectively. Each soil sample was also screened for volatile organics using a photoionization detector (PID). PID readings are indicated on the boring logs. Low PID readings (less than 10) were observed in vadose-zone samples (0- to 4- and 4- to 8-foot-depth intervals) in the borings. PID readings above 10 were observed in borings B-1, B-3, B-4, B-6, and B-10 near water table.

Geology

The downtown Seattle area is typically underlain by glacial till. Due to the close proximity to Lake Union, the subject property probable contains fill material overlying glacial till as describe below.

Based on materials encountered in our soil borings, subsurface conditions at the subject property generally consist of a surficial fill layer of gray silty sand and sandy gravel with trace of fill debris (brick, wood, glass) to depths of 12 to 18 feet. In the northern corner of the subject property an 8-inch peat zone was encountered in soil borings B-7, B-9, and B-10. Groundwater was generally encountered at depths of 10 to 13 feet below grade in the explorations and the inferred groundwater flow direction is to the north toward Lake Union.

CHEMICAL RESULTS

Summaries of chemical results are presented in Table 1 for soil samples and in Table 2 for groundwater samples. The chemical data quality review and TEG laboratory certificates of analysis are provided in Appendix B.

Gasoline-range petroleum (TPH-G) was detected above Method A cleanup levels in groundwater and in saturated-zone soil under most of the property, as shown on Figure 3. The highest concentrations of TPH-G in soil (3,700 mg/kg) and groundwater (80 mg/L) occur along the northern property boundary. High TPH-G concentrations were also detected along the western property boundary (bordering the Unocal station). BTEX concentrations in soil and groundwater generally mirror TPH-G occurrences. The highest concentrations of BTEX were detected in B3-S3 for soil and B1 for groundwater samples, although benzene concentrations at B-1 in soil (not detected) and groundwater (0.29 mg/L) were proportionately less than other gasoline constituents compared to borings closer to the Unocal property.

Diesel-range petroleum was not detected in any of the soil or groundwater samples analyzed. Oil-range petroleum was detected in shallow soil in B-5 (280 mg/kg) above MTCA Method A cleanup levels.

Low concentrations of PAHs were detected in several soil and water samples; however, no carcinogenic PAHs were detected in the soil samples analyzed. The only VOC detection in a groundwater sample not associated with gasoline was of tetrachloroethene (210 ug/L) in boring B-1. This concentration is above the MTCA Method A cleanup level of 5 ug/L.

Low concentrations of chromium and lead were detected in the soil samples analyzed. However, none of the samples were above the MTCA Method cleanup levels. Arsenic, cadmium, chromium, lead, and mercury were detected above the MTCA Method A cleanup levels in groundwater samples B-1, B-3, B-7, and B-10. Since the samples were not filtered prior to analysis and groundwater samples collected from strataprobe borings typically

contain high concentrations of suspended solids, the reported concentrations are total metal concentrations and do not represent true dissolved metal concentrations.

PRELIMINARY REMEDIATION COST ESTIMATE

The observed gasoline impacts on the Denny's property are likely due to the adjacent Unocal station to the west. The highest concentrations of gasoline are associated with groundwater or soil within the groundwater smear zone, suggesting groundwater transport of gasoline to the property. Isolated occurrences of oil-range petroleum in surface soils are likely the result of past site use. Field screening indicated that vadose zone soils may contain low concentrations of gasoline due to contaminant transport from the saturated zone or the adjacent site.

A preliminary cost estimate for remediation of the site is provided in Table 3. We estimate remediation of TPH-impacted soils will likely involve excavation and off-site disposal. Since redevelopment of the site will likely include excavating the site, we have included only the additional costs for handling and disposing of contaminated soils. Soils in the vadose zone that are impacted and possibly below MTCA cleanup levels will likely require more costly disposal than clean fill and an additional disposal charge for these soils is also included. Since future site use may include a subsurface parking garage, groundwater surrounding the parking garage will likely require continued remediation. The costs for treating and disposing of contaminated groundwater is included as capital and O&M costs for a groundwater pump and treat system.

LIMITATIONS

Work for this project was performed, and this letter report prepared, in accordance with generally accepted professional practices for the nature and conditions of the work completed, in the same or similar localities, at the time the work was performed. It is intended for the exclusive use of City Investors XIII, L.L.C., for specific application to the subject property. Use of this report by City Investors XIII, L.L.C. is with the understanding that the limitations and terms and conditions of the contract between Hart Crowser and City Investors XIII, L.L.C. apply. This report is not meant to represent a legal opinion. No other warranty, express or implied, is made. These cost estimates do not represent a bid to conduct this work and are provided for budget planning purposes only.

All MTCA cleanup levels included in this report are provided for comparison purposes only and are based on our understanding of cleanup levels required by Ecology for similar

projects. They do not represent MTCA interpretations. By using them for comparison purposes, we are not implying that remedial actions at this site are required under MTCA. Specific MTCA interpretations may involve separate calculations and determinations upon which a range of cleanup standards may be established by Ecology.

Any questions regarding our work and this letter report, the presentation of the information and the interpretation of the data are welcome and should be referred the undersigned.

We trust that this report meets your needs.

Sincerely,

HART CROWSER, INC.

Jeremy Poster

JEREMY PORTER Senior Staff Engineer

F:\Docs\Jobs\7436\Dennys(ltr).doc

Attachments:

- Table 1 Soil Chemical Analysis Summary
- Table 2 Groundwater Chemical Analysis Summary
- Table 3 Preliminary Cost Estimate for Remediation

Figure 1 – Vicinity Map

- Figure 2 Site and Exploration Plan
- Figure 3 TPH-G Occurrence in the Subsurface
- Appendix A Strataprobe Boring Logs
- Appendix B Chemical Data Quality Review and Certificates of Analysis Transglobal Environmental Geosciences Northwest, Inc. and Sound Analytical Services, Inc.

J-7436 Page 5

Julie K. W. Wubelin My Bo

JULIE K. W. WUKEL Principal

Tab	le 1	- Soil	Chemica	l Anai	lysis	Summary
-----	------	--------	---------	--------	-------	---------

		,	~
- L	heet	~+	- 2
- 1	urer.	UH	•

Sample Location	MTCA Method A Residential	MTCA Method B	B1-S1	B1-S2	B1-53	B3-S1	B3-S2	B3-S3	B4-52	B4-S3
NWTPH-HCID in mg/kg							<u> </u>			
Gasoline	100	NA	· 20 U	20 U		20 U	20 U			-20 U
Mineral Spirits/Stoddard Solvent	100	NA	20 U	20 U		20 U	20 U			20 U
Kensol	200	NA	20 U	20 U		20 U	20 U			20 U
Kerosene/Jet Fuel	200	NA	20 U	20 U		20 U	20 U			50 U
Diesel/Fuel Oil	200	NA	50 U	50 U		50 U	50 U			20 U
Bunker C	200	NA	50 U	50 U		50 U	50 U			50 U
Heavy Oil	200	NA	100 U	100 U		100 U	100 U			100 U
Unidentifiable Petroleum	200	NA	20 U	20 U		>20	20 U			20 U
NWTPH-Gx in mg/kg										
Gasoline	100	NA			3700			3400	12	
Stoddard Solvent/Mineral Spirits	100	NA			5 U			5 U	5 U	
NWTPH-Dx in mg/kg								• •		
Kerosene/Jet Fuel	200	NA			20 U			20 U	20 U	
Diesel/Fuel Oil	200	NA			20 U			20 U	20 U	
Heavy Oil	200	NA			50 U			50 U	50 U	
Volatile Organics in mg/kg µg/kg									20 0	
(detected constituents only)	-									
Benzene	0.5	34.5			50 U			2700	50 U	
Toluene	40	16000			1000			20000	250	
Ethylbenzene	20	8000			17000			59000	210	
Xylenes	20	160000			99000			240000	1100	
Polycyclic Aromatic Hydrocarbons (P	AH) in mg/kg									
(detected constituents only)										
Fluoranthene	NA	3200		0.1 U*	0.1 U	0.98		0.1 U	0.1 U	
Phenanthrene	NA	NA		0.1 U	0.1 U	1.5		0.1 U	0.1 U	
Pyrene	NA	2400		0.1 U	0.1 U	1.2		0.1 U	0.1 U	
Total Metals in mg/kg				••••				0.1 0	0.1 0	
Arsenic	20	1.67			5 U			5 U		
Barium	NA	5600			50 U			50 U		
Cadmium	2	80			1 U			1 U		
Chromium	100	NA			51			29		
Lead	250	NA			12			25		
Mercury	1	24			0.1 U			0.1 U		
Selenium	NA	400			50 U			50 U		
Silver	NA	400			20 U			50 U 20 U		

.

Hart Crowser J-7436

Sample Location	MTCA Method A Residential	MTCA Method B	B5-\$1	B5-S2	B5-S3	B6-S1	B6-S2	B6-S3	B7-S1	B7-\$2	B7-S3
NWTPH-HCID in mg/kg		in an				· · ·					
Gasoline	100	NA	. 20 U		20 U	20 U	20 U	20 U	20 U	20 U	
Mineral Spirits/Stoddard Solvent	100	NA	20 U		20 U	20 U	20 U	20 U	20 U	20 U	
Kensol	200	NA	20 U		20 U	20 U	20 U	20 U	20 U	20 U	
Kerosene/Jet Fuel	200	NA	20 U		20 U	20 U	20 U	20 U	20 U	20 U	
Diesel/Fuel Oil	200	NA	50 U		50 U	50 U	50 U	50 U	50 U	50 U	
Bunker C	200	NA	50 U		50 U	50 U	50 U	50 U	50 U	50 U	
Heavy Oil	200	NA	280		100 U	100 U	100 U	100 U	100 U	100 U	
Unidentifiable Petroleum	200	NA	20 U		20 U	20 U	20 U	20 U	20 U	20 U	
NWTPH-Gx in mg/kg											-
Gasoline	100	NA		5 U				6200			1500
Stoddard Solvent/Mineral Spirits	100	NA		5 U				5 U			5 U
NWTPH-Dx in mg/kg											
Kerosene/Jet Fuel	200	NA		20 U							20 U
Diesel/Fuel Oil	200	NA		20 U							20 U
Heavy Oil	200	NA		50 U							50 U
Volatile Organics in merke µg/kg (detected constituents only)											
Benzene	0.5	34.5		50 U				2300			220
Toluene	40	16000		50 U				6900			260
Ethylbenzene	20	8000		50 U		50 U		21000			790
Xylenes	20	160000		50 U		50 U		400000			74000
Polycyclic Aromatic Hydrocarbons (P (detected constituents only)	AH) in mg/kg										
Fluoranthene	NA	3200		0.1 U			0.1 U				0.1 U
Phenanthrene	NA	NA		0.1 U			0.1 U				0.1 U
Pyrene	NA	2400		0.1 U			0.1 U				0.1 U
Total Metals in mg/kg				1000							2500 A
Arsenic	20	1.67						5 U			5 U
- Barium	NA	5600						50 U			50 U
Cadmium	2	80			-			10			10
Chromium	100	NA						33			42
Lead	250	NA						14			5 U
Mercury	1	24						0.1 U			0.1 U
Selenium	NA	400						50 U			50 U
Silver	NA	400						20 U			20 U

Table 1 - Soil Chemical Analysis Summary

Sheet 2 of 3

Sample Location	MTCA Method A Residential	MTCA Method B	B7-S4	88-51	B8-S3	B9-S2	B9-53	B10-52	B10-S3	B10-S4	B10-S5
NWTPH-HCID in mg/kg											
Gasoline	100	NA	_ 20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Mineral Spirits/Stoddard Solvent	100	NA	· 20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Kensol	200	NA	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Kerosene/Jet Fuel	200	NA	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Diesel/Fuel Oil	200	NA	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Bunker C	200	NA	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Heavy Oil	200	NA	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U
Unidentifiable Petroleum	200	NA	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
NWTPH-Gx in mg/kg											
Gasoline	100	NA			5 U						
Stoddard Solvent/Mineral Spirits	100	NA			5 U						
NWTPH-Dx in mg/kg											
Kerosene/Jet Fuel	200	NA									
Diesel/Fuel Oil	200	NA									
Heavy Oil	200	NA									
Volatile Organics in mg/kg µg/kg		*									
(detected constituents only)								•			
Benzene	0.5	34.5			50 U						
Toluene	40	16000			50 U						
Ethylbenzene	20	8000			50 U						
Xylenes	20	160000			50 U						
Polycyclic Aromatic Hydrocarbons (P/	AH) in mg/kg										
(detected constituents only)											
Fluoranthene	NA	3200			, 0.1 U	0.1 U			0.1 U		0.1 U
Phenanthrene	NA	NA			0.1 U	0.1 U			0.1 U		0.1 U
Pyrene	NA	2400			0.1 U	0.1 U			0.1 U		0.1 U
Total Metals in mg/kg					•••••				0.17 0		0.00
Arsenic	20	1.67						5 U			
- Barium	NA	5600						50 U			
Cadmium	2	80			•			1 U			
Chromium	100	NA						42			
Lead	250	NA						36			
Mercury	1	24						0.1 U			
Selenium	NA	400						50 U			
Silver	NA	400						30 U 20 U			

Table 1 - Soil Chemical Analysis Summary

Sheet 3 of 3

Blank indicates sample not analyzed for analyte.

J Estimated value.

Hart Crowser J-7436

Table 2 - Groundwater Chemical Analysis Summary

	MTCA	MTCA					
	Method A	Method B	B-1	B-3	B-5	B- 7	B-10
Groundwater Depth in Feet			11	10	10	12	12
Date Sampled			8/29/2000	8/29/2000	8/29/2000	8/29/2000	8/29/2000
NWTPH-G in mg/L		· ·					
Mineral Spirits/Stoddard Solvent	1	NA	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Gasoline	1	NA	80	1.3	1.1	21	0.92
NWTPH-Dx in mg/L							
Kerosene/Jet Fuel	1	NA	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Diesel/Fuel Oil	1	NA	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Heavy Oil	1	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Volatile Organics in µg/L							
Tetrachloroethene	5	0.858	210	1 U	1 U	10	1 U
Benzene	5	1.51	290	47	11	1000	1 U
Toluene	40	1600	2400	45	1 U	520	1 U
Ethylbenzene	30	800	1700	37	6.8	630	1 U
Xylenes	20	16000	13000	170	10	2400	2.8
Polycyclic Aromatic Hydrocarbons (PAH) in mg/L							
Naphthalene		320	490	2 U		2 U	2 U
Total Metals in mg/L							
Arsenic	0.005	0.0000053	0.21	0.087		0.17	0.033
Barium	NA	1.12	6.4	1.2		6.1	0.46
Cadmium	0.005	0.016	0.028	0.0082		0.024	0.003 U
Chromium	0.05	NA		0.062		2	0.091
Mercury	0.002	0.0048	0.0021 J	0.00065 J		0.0046 J	0.0003 J
Lead	0.005	NA	3.8	2.7		1.7	0.13
Selenium	NA	0.08	0.05 U	0.05 U		0.05	0.05 U
Silver	NA	0.08	0.011	0.0013		0.01	0.0011

÷

U Not detected at detection limit indicated.

NA Not Analyzed

Blank indicates sample not analyzed for analyte.

٠

.

Table 3 - Preliminary Cost Estimate for Remediation

Description	Unxit		Unit Cost	Quantity	Ex	tended Cost	
REMOVAL OF TPH-IMPACTED SOIL							
Dewatering and disposal of contaminated groundwater	gal	\$	0.20	40,000	\$	8,000	
Load/haul contaminated soil	ton	\$	6.00	2,432	\$	14,592	
Disposal of contaminated soil	ton	\$	25.00	2,432	\$	60,800	
Load/haul marginally contaminated soil (below MTCA Method A)	ton	\$	6.00	1,459	\$	8,755	
Disposal of marginally contaminated soil (below MTCA Method A)	ton	5	10.00	1,459	5	14,592	
Subtotal							\$ 106,739
FIELD AND ENGINEERING SUPPORT							
Field observation, sampling, lab analysis							\$ 8,000
Management, design and reporting							\$ 10,000
GROUNDWATER REMEDIATION							
Groundwater extraction and treatment - capital cost	LS	\$	150,000.00	1	\$	150,000	
Engineering services (20% of capital cost)			,		\$	30,000	
· · · · · · · · · · · · · · · · · · ·							\$ 180,000
ANNUAL COSTS		-	,				
0&M	1000 gal	\$	5.00	5000	\$	25,000	
Monitoring and reporting	ى	\$	20,000.00	1	\$	20,000	
Subtotal					\$	45,000	
Present value, 20-year lifetime (assume 8% discount rate)							\$ 441,817
Based on Contingency (20%)							\$ 149,320
TOTAL COST							\$ 895,900

Notes:

The costs shown have a nominal accuracy of roughly +50%/-30% due to uncertainties such as

the extent of excavation required, and the duration of operation and monitoring required.

Other construction costs, including excavation and backfilling, are not included.

Assumes depth to water 11 feet; excavation depth 12 feet.

Groundwater remediation assumes SVE system operating on adjacent property.

O&M costs include carbon treatment followed by discharge to the sanitary sewer.

Groundwater remediation assumes 10 gpm flowrate.

Assumes 20% of soil above 9 feet above impacted smear zone will be unacceptable as clean fill.

7436\DennysProperty.xls - Table 3

DIN 9/25/00 1=: charlie

Site and Exploration Plan

Figure 2

TPH-G Occurrence in the Subsurface

AFPENDIX A STRATAPROBE BORING LOGS

and series with the series of the

181-32326

ng da di da Mana si da da

art Crowser

Key to Exploration Logs

Sample Description

Classification of sails in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guice.

Soil descriptions consist of the following: Density/consistency, moisture, color, minor constituents, MAJOR CONSTITUENT, additional remorks.

Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits is estimated based on visual observation and is presented parenthetically on the test pit logs.

SAND or GRAVEL	Standard Penetration Resistance (N)	SILT or CLAY	Standard Penetration Resistance (N)	Approximate Shear Strength	
Density	in Blows/Foot	Consistency	in Blows/Foot	in TSF	
Very loose	0 - 4	Very soft	0 - 2	<0.125	
Loose	4 - 10	Soft	2 - 4	0.125 - 0.25	
Medium dense	10 - 30	Medium stiff	4 - 8	0.25 - 0.5	
Dense	30 - 50	Stiff	8 - 15	0.5 - 1.0	
Very dense	>50	Very stiff	15 - 30	1.0 - 2.0	
		Hard	>30	>2.0	

Moisture

Dry Little perceptible moisture

Damp Some perceptible maisture, probably below optimum

Moist Probably near optimum moisture content

Wet Much perceptible moisture, probably above optimum

Legends

Sampling Test Symbols BORING SAMPLES

Split Spoon

- Shelby Tube
- Cuttings
- Core Run
- * No Sample Recovery
- P Tube Pushed, Not Driven TEST PIT SAMPLES
- Grab (Jar)
- Bog
- ____

DWG.

BORING1

ĩ

Shelby Tube

Groundwater Observations

Surface Seal Groundwater Level on Date (ATD) At Time of Drilling Observation Well Tip or Slotted Section Groundwater Seepage (Test Pits)

Test Symbols

Minor Constituents

Not identified in description

Slightly (clayey, silty, etc.)

Clayey, silty, sandy, gravelly

Very (cloyey, silty, etc.)

GS Grain Size Classification CN Consolidation Unconsolidated Undrained Triaxiat uu cu Consolidated Undrained Triaxial CD **Consolidated Drained Triaxial** ΩU Unconfined Compression DS **Direct** Shear к Permeability pp Pocket Penetrometer Approximate Compressive Strength in TSF TV Torvane Approximate Shear Strength in TSF CBR California Bearing Ratio MD Moisture Density Relationship AL Atterberg Limits Water Content in Percent Liquid Limit Natural Plostic Limit PID Photoionization Detector Reading CA Chemical Analysis DT In Situ Density Test ٨

Estimated Percentage

0 - 5

5~12

12 - 30 30 - 50

1. Refer to Figure A-1 for explanation of descriptions and symbols.

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

- Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- 3. Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes

- may be gradual.
- 3. Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes

- may be gradual.
- 3. Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

oil Description	Depth in Feet	Sample	LAB TESTS & (PID)
5 inches of Asphalt.	T⁰	П	
Concrete slab.		N A	
Gray, moist, silty, gravelly, fine to medium SAND with slight gasoline-like odor.		1\/	
SAND with slight gasoline-like odor.		S-1	-(3.0/2.0) CA
	1 -		
		Н	
	+5	N/	
		S-2	- (27.0/3.0) CA
GRAVEL		IAI	CA
		∦ \	
Gray, moist, very silty sand to very sandy SILT with slight gasoline-like odor.			
Sich with slight gasoline-like odor.			
	-	A.//	
	+ 10	S-3	- (120.0/160.0) CA
 Grading wet with moderate gasoline-like odor. 		/ \	
Bottom of Boring at 12 Feet.	┉┥┟	. [-4	
Completed 08/31/00.			1
	+ 15		
		۰ ۱	
	-20		
	-		
			1
	1		
	1 125		

2 1

- Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- 3. Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

, ł

1. Refer to Figure A-1 for explanation of descriptions and symbols.

- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes

- may be gradual.
- Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

- Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes
- may be gradual.
- 3. Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

, -, -

, ,

Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes

may be gradual. 3. Ground water level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

XPEENDINE CHEMICAL DATAQUALITY REVIEW AND CERTIFICATES OF ANALYSIS

AND

化建筑的

120

an a specific at all the

Hait Crowser 14.6.6

AVIDE AND ADDRESS OF A

a di Kabusta di Kabusta Kabustan Ja

的特性主义

ALL STORAGE AND A STORAGE A

APPENDIX B CHEMICAL DATA QUALITY REVIEW AND CERTIFICATES OF ANALYSIS

Twenty-six soil and five groundwater samples were collected on August 29, 2000. The samples were submitted to Transglobal Environmental Geosciences NW, Inc. of Lacey, WA for analysis of the following:

- Total Metals (EPA Method 7000 Series);
- NWTPH-G/BTEX;
- NWTPH-Dx;
- NWTPH-HCID;
- Volatile Organics (EPA Method 8021B); and
- PAHs (EPA Method 8100).

The following criteria were evaluated in the standard data quality review process for the results:

- Holding Times;
- Method Blanks;
- Surrogate Recoveries;
- Blank Spike/Blank Spike Duplicate (BS/BSD) and Laboratory Control Sample Recoveries;
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries;
- ▶ Laboratory Duplicate Relative Percent Differences (RPDs); and
- Reporting Limits.

Soil Samples

Total Metals. All required holding times were met. No method blank contamination was detected. MS/MSD recoveries were within laboratory control limits. Laboratory duplicate RPDs were also acceptable.

NWTPH-G/BTEX. All required holding times were met. No method contamination was detected. Surrogate recovery of bromofluorobenzene coeluted with sample peaks in B1-S3, B6-S3, and B7-S3. No qualifiers were assigned since remaining recovery was acceptable. LCS and MS/MSD recoveries were within laboratory control limits. Laboratory duplicate RPDs were also acceptable.

NWTPH-Dx/ HCID. All required holding times were met. No method blank contamination was detected. Surrogate of terphenyl in HCID coeluted with sample peak in B1-S1 and B6-S2. No qualifiers were assigned since remaining recovery was acceptable. Laboratory duplicate RPDs were acceptable.

Volatile Organics. All required holding times were met. No method blank contamination was detected. Surrogate, LCS, and MS/MSD recoveries were within laboratory control limits.

PAHs. All required holding times were met. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits.

Groundwater Samples

Total Metals. All required holding times were met. No method blank contamination was detected. MS recovery of mercury was below laboratory control limits. Sample results were qualified as estimated (UJ/J). MS recovery of selenium was above control limits. No qualifiers were assigned since MS was not done on project specific samples and BS recovery was acceptable. Laboratory duplicate RPD for mercury was above control limits. The results were already qualified based on MS recovery.

NWTPH-G/BTEX. All required holding times were met. No method contamination was detected. Surrogate recoveries of bromofluorobenzene coeluted with sample peaks in B-1. No qualifiers were assigned since remaining recovery was acceptable. LCS and MS/MSD recoveries were within laboratory control limits. Laboratory duplicate RPDs were also acceptable.

NWTPH-Dx/ HCID. All required holding times were met. No method blank contamination was detected. Laboratory duplicate RPDs were acceptable.

Volatile Organics. All required holding times were met. No method blank contamination was detected. Surrogate recovery of bromofluorobenzene coeluted with sample peaks in B-1. No qualifiers were assigned since remaining recovery was acceptable. LCS and MS/MSD recoveries were within laboratory control limits.

PAHs. All required holding times were met. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits.

The data, as qualified, are acceptable for use.

F:\Docs\jobs\7436\Dennys(ltr).doc

CERTIFICATES OF ANALYSIS TRANSGLOBAL ENVIRONMENTAL GEOSCIENCES NORTHWEST, INC. AND SOUND ANALYTICAL SERVICES, INC.

1.12

14.4

. · 14

 \mathbb{R}_{0}

TRANSGLOBAL ENVIRONMENTAL GEOSCIENCES NORTHWEST, INC.

800 Sleater-Kinney SE, PMB #262 Lacey, Washington 98503-1127

Mobile Environmental Laboratories Environmental Sampling Services
 Telephone:
 360-459-4670

 Fax:
 360-459-3432

September 18, 2000

Julie Wukelic Hart Crowser, Inc. 1910 Fairview Ave. E Seattle, WA 98102-3699

Dear Ms. Wukelic:

Please find enclosed the analytical data report for the Denny's Project in Seattle, Washington. Soil and water samples were analyzed for Hydrocarbon Identification by NWTPH-HCID, Diesel and Oil by NWTPH-Dx/Dx Extended, Gasoline by NWTPH-Gx, Specific Halogenated Hydrocarbons & BTEX by Method 8021B, PAH's by Method 8100 and RCRA 8 Metals by Methods 6010/6020 and 7000 series on September 7 – 12, 2000.

The results of these analyses are summarized in the attached tables. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. An invoice for this work has been sent to your accounting department.

TEG Northwest appreciates the opportunity to have provided analytical services to Hart Crowser for this project. It was a pleasure working with you, and we are looking forward to the next opportunity to work together.

Sincerely,

michael a Korosee

Michael A. Korosec President

QA/QC FOR ANALYTICAL METHODS

GENERAL

The TEG Northwest Laboratory quality assurance and quality control (QA/QC) procedures are conducted following the guidelines and objectives which meet or exceed certification/-accreditation requirements of California DOHS, Washington DOE, and Oregon DEQ. The Quality Control Program is a consistent set of procedures which assures data quality through the use of appropriate blanks, replicate analyses, surrogate spikes, and matrix spikes, and with the use of reference standards that meet or exceed EPA standards.

When analyses are taking place on-site with the mobile lab, the need for Field Blanks or Travel/Trip Blanks is eliminated. If there is going to be a delay before sample preparation for analysis, the sample is stored at 4° C.

ANALYTICAL METHODS

TEG Northwest Labs use analytical methodologies which are in conformity with U. S. Environmental Protection Agency (EPA), Washington DOE, and Oregon DEQ methodologies. When necessary and appropriate due to the nature or composition of the sample, TEG may use variations of the methods which are consistent with recognized standards or variations used by the industry and government laboratories.

TPH-Gasoline, TPH-Diesel (Gasoline and/or Diesel, Modified EPA 8015, NWTPH-Gx and NWTPH-Dx)

A check standard is run at the beginning of the day. 1) A close standard is run at the end of the day. 2) Both open and close standards must be within 15% of the continuing calibration curve value. All samples are prepared with a surrogate spike, and the recovery must be between 65% and 135% unless high sample concentrations interfere with the determination of the recovery percentage. A duplicate sample is run at a rate of 1 per 10 samples. At least 1 method blank is run per 20 samples analyzed.

Purgeable Volatile Aromatics (BTEX, EPA 8021B)

A check standard is run at the beginning of the day. The check standard is run at the end of the day. Both open and close standards must be within 15% of the continuing calibration curve value. All samples are prepared with a surrogate spike, and the recovery must be between 65% and 135% unless high sample concentrations interfere with the determination of the recovery percentage. At least 1 method blank is run per day.

TPH-Hydrocarbon Identification (NWTPH-HCID)

Calibration standards are run at the beginning of the day. The standards must be within 15% of the continuing calibration curve value. Check standards are run at the close of the day. All samples are prepared with a surrogate spike, and the recovery must be between 65% and 135%. A duplicate sample is run at a rate of 1 per 10 samples. At least 1 method blank is run per 20 samples analyzed.

Purgeable Volatile Halocarbons (Chlorinated Hydrocarbons, EPA 601/8021B)

A calibration standard is run at the beginning of the day. The standard must be within 15% of the continuing calibration curve value. The standard is rerun at the end of the day. All samples are prepared with a surrogate spike, and the recovery must be between 65% and 135%. At least 1 method blank is run per day.

PAH, Polynuclear Aromatic Hydrocarbons (EPA 8100)

÷

A check standard is run at the beginning of the day. The standard must be within 15% of the continuing calibration curve value. The check standard is run at the end of the day. All samples are prepared with a surrogate spike, and the recovery must be between 65% and 135%. A duplicate sample is run at a rate of 1 per 10 samples. At least 1 method blank is run per 20 samples analyzed.

TEG NW SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

TEG Job Number:	S00906-3
Client:	HART CROWSER
Client Job Name:	DENNYS
Client Job Number:	7436

NWTPH-Gx / BTEX		MTH BLK	LCS	B1-S3	B3-S3	B4-S2	B5-S2
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soi
Date extracted	Reporting	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Date analyzed	Limits	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Moisture, %				15%	15%	15%	
NWTPH-Gx, mg/kg							
Mineral spirits/Stoddard solvent	5.0	nd		nd	nd	nd	no
Gasoline	5.0	nd		3,700	3,400	12	nc
BTEX , µg/kg							
Benzene	50	nd	78%	nd	2,700	nd	no
Toluene	50	nd	83%	1,000	20,000	250	no
Ethylbenzene	50	nd		17,000	59,000	210	nd
Xylenes	50	nd		99,000	240,000	1,100	n
Surrogate recoveries:							
Trifluorotoluene		84%	97%	102%	93%	93%	88%
Bromofluorobenzene		88%	97%	С	94%	94%	97%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

TEG NW SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

A-14

TEG Job Number:	S00906-3
Client:	HART CROWSER
Client Job Name:	DENNYS
Client Job Number:	7436

Analytical Results		MS	MSD	RPD			
NWTPH-Gx / BTEX		B5-S2	B5-S2	85-S2	B6-S3	B7-S3	B8-S3
Matrix	Soil	Soil	Sail	Sail	Soil	Soil	Soi
Date extracted	Reporting	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Date analyzed	Limits	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Moisture, %	· · · · · · · · · · · · · · · · · · ·				15%	15%	
NWTPH-Gx, mg/kg							
Mineral spirits/Stoddard solvent	5.0				nd	nd	nd
Gasoline	5.0				6,200	1,500	nd
BTEX , µg/kg							
Benzene	50	82%	74%	10%	2,300	220	nd
Toluene	50	88%	78%	12%	6,900	260	nd
Ethylbenzene	5 0				21,000	790	nd
Xylenes	50				400,000	74,000	nd
Surrogate recoveries:							
Trifluorotoluene		87%	70%		119%	98%	86%
Bromofluorobenzene		89%	82%		С	С	87%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

TEG NW SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

TEG Job Number:	\$00906-3
Client:	HART CROWSER
Client Job Name:	DENNYS
Client Job Number:	7436

Analytical Results		DUPL
NWTPH-Gx / BTEX		B8-S3
Matrix	Soil	Soi
Date extracted	Reporting	09/07/00
Date analyzed	Limits	09/07/00
Moisture, %		
NWTPH-Gx, mg/kg		
Mineral spirits/Stoddard solvent	5.0	nc
Gasoline	5.0	ho
BTEX , µg/kg		
Benzene	50	no
Toluene	50	nc
Ethylbenzene	. 50	nc
Xylenes	50	nc
Surrogate recoveries:		
Trifluorotoluene		93%
Bromofluorobenzene		92%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 65% TO 135%

~

Acceptable RPD limit: 35%

TEG NW SEATTLE CHEMISTRY LABORATORY (425) 957-9872, fax (425) 957-9904

TEG Job Number:	S00906-3
Client:	HART CROWSER
Client Job Name:	DENNYS
Client Job Number:	7436
Printed:	9/14/00 16:23

Analytical Results NWTPH-Gx / BTEX MTH BLK LCS **B-1 B-3 B-7** Water Water Water Water Matrix Water Water 09/07/00 09/07/00 09/07/00 09/07/00 09/07/00 09/07/00 Date extracted Reporting 09/07/00 09/07/00 09/07/00 09/07/00 Date analyzed Limits 09/07/00 09/07/00 NWTPH-Gx, mg/L Mineral spirits/Stoddard solvent 0.10 nd nd nd nd 0.10 nd 80 1.3 21 Gasoline BTEX , µg/L 78% 1.0 nd Benzene 1.0 nd 83% Toluene Ethylbenzene 1.0 nd 1.0 **Xylenes** nd Surrogate recoveries: 95% 84% 97% 98% 96% Trifluorotoluene 88% 97% 113% 92% Bromofluorobenzene С

B-10

Water

nd

0.92

84%

100%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

Page 1 of 2
TEG Job Number:	S00906-3
Client:	HART CROWSE
Client Job Name:	DENNY'S
Client Job Number:	7436
Printed:	9/14/00 16:23

Analytical Results			DUPL	RPD
NWTPH-Gx / BTEX		B-5	B-5	B-5
Matrix	Water	Water	Water	Water
Date extracted	Reporting	09/07/00	09/07/00	09/07/00
Date analyzed	Limits	09/07/00	09/07/00	09/07/00
NWTPH-Gx, mg/L				
Mineral spirits/Stoddard solvent	0.10	nd	nd	
Gasoline	0.10	1.1	1.1	0%
BTEX , µg/L				
Benzene	1.0	11	10	10%
Toluene	1.0	nd	nd	
Ethylbenzene	1.0	6.8	5.6	19%
Xylenes	1.0	10	10	2%
Surrogate recoveries:				
Trifluorotoluene		93%	91%	
Bromofluorobenzene		85%	82%	

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

TEG Job Number:	\$00906-3
Client:	HART CROWSER
Client Job Name:	DENNY'S
Client Job Number:	7436

Analytical Results

NWTPH-Dx, mg/kg		MTH BLK	B1-S3	B3-S3	B4-S2	B5-S2	B7-S3
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Date analyzed	Limits	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Kerosene/Jet fuel	20	nd	nđ	nd	nd	nđ	nd
Diesel/Fuel oil	20	nd	nd	nd	nd	nd	nd
Heavy oil	50	nd	nd	nd	nd	nd	nd
Surrogate recoveries:							
Fluorobiphenyl		97%	96%	97%	118%	97%	94%
o-Terphenyl		99%	94%	93%	121%	95%	93%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

TEG Job Number:	S00906-3
Client:	HART CROWSER
Client Job Name:	DENNYS
Client Job Number:	7436

Analytical Results							DUPL
NWTPH-Dx, mg/l		MTH BLK	8-1	B-3	B-5	B-7	B-7
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Date analyzed	Limits	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Kerosene/Jet fuel	0.20	nd	nd	nd	nđ	nd	nd
Diesel/Fuel oil	0.20	nd	nd	nd	nd	nd	nd
Heavy oil	0.50	nd	nd	nd	nd	nd	nd
Surrogate recoveries:							
Fluorobiphenyl		98%	101%	102%	102%	105%	100%
o-Terphenyl		102%	105%	105%	104%	108%	99%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

TEG Job Number:	S00906-3
Client:	HART CROWSER
Client Job Name:	DENNY'S
Client Job Number:	7436

Analytical Results

NWTPH-Dx, mg/l		B-10
Matrix	Water	Water
Date extracted	Reporting	09/07/00
Date analyzed	Limits	09/07/00
Kerosene/Jet fuel	0.20	nd
Diesel/Fuel oil	0.20	nd
Heavy oil	0.50	nd
Surrogate recoveries:		
Fluorobiphenyl	· · · · ·	102%
o-Terphenyl		102%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

)

Ĭ

TEG Job Number:	S00906-3
Client:	HART CROWSER
Client Job Name:	DENNY'S
Client Job Number:	7436

Analytical Results						DUPL	
NWTPH-HCID, mg/kg		MTH BLK	B1-S1	B1-S2	B3-S1	B3-S1	B3-S2
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soi
Date extracted	Reporting	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Date analyzed	Limits	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Moisture, %					15%	15%	
Gasoline	20	nd	nd	nď	nd	nd	nd
Stoddard solvent/Mineral spirits	20	nd	nd	nd	nd	nd	no
Kensol	20	nd	nd	nd	nd	nd	nc
Kerosene/Jet fuel	20	nd	nd	nd	nd	nd	nd
Diesel/Fuel oil	50	nd	nd	nd	nd	nd	nd
Bunker C	50	nd	nd	nd	nd	nd	nd
Heavy oil	100	nd	nd	nd	100	130	nd
Unidentifiable petroleum products	20	nd	nd	nd	D	D	nd
Surrogate recoveries:							
Fluorobiphenyl		97%	96%	96%	95%	95%	96%
o-Terphenyl		99%	С	97%	91%	91%	94%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

D - detected at or above listed reporting limits

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

. ar

\$ 12

TEG Job Number:	S00906-3
Client:	HART CROWSER
Client Job Name:	DENNY'S
Client Job Number:	7436

Analytical Results							DUPL
NWTPH-HCID, mg/kg		B4-S3	85-S1	B5-S3	B6-S1	B6-S2	B6-S2
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soi
Date extracted	Reporting	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Date analyzed	Limits	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Moisture, %			15%	· · · ·			
Gasoline	20	nd	nd	nd	nd	nd	nd
Stoddard solvent/Mineral spirits	20	nd	nd	nd	nd	nd	nd
Kensol	20	nd	nđ	nd	nd	nd	nd
Kerosene/Jet fuel	20	nd	nd	nd	nđ	nd	nd
Diesel/Fuel oil	50	nd	nd	nd	nd	nđ	nd
Bunker C	50	nd	nd	nd	nd	nd	nd
Heavy oil	100	nd	280	nd	nd	nd	nd
Unidentifiable petroleum products	20	nd	nd	nd	nd	nd	nd
Surrogate recoveries:							
Fluorobiphenyl		117%	118%	117%	94%	94%	94%
o-Terphenyl		120%	116%	118%	С	93%	93%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

D - detected at or above listed reporting limits

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis Acceptable Recovery limits: 65% TO 135%

TEG Job Number:	S00906-3
Client:	HART CROWSER
Client Job Name:	DENNYS
Client Job Number:	7436

Analytical Results

NWTPH-HCID, mg/kg		B6-S3	B7-S1	B7-S2	B7-S4	B8-S1	B8-S3
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soi
Date extracted	Reporting	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Date analyzed	Limits	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Moisture, %							
Gasoline	20	nd	nd	nd	nd	nd	nd
Stoddard solvent/Mineral spirits	20	nd	nd	nd	nd	nd	nd
Kensol	20	nd	nd	nd	nd	nd	nd
Kerosene/Jet fuel	20	nd	nd	nd	nd	nd	nd
Diesel/Fuel oil	50	nd	nd	nd	nd	nd	nd
Bunker C	50	nd	nd	nd	nd	nd	nd
Heavy oil	100	nd	nd	nd	nđ	nd	nd
Unidentifiable petroleum products	20	nd	nd	nd	nd	nd	nd
Surrogate recoveries:						_	
Fluorobiphenyl		94%	98%	95%	93%	120%	115%
o-Terphenyl		94%	94%	93%	93%	120%	119%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

D - detected at or above listed reporting limits

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 65% TO 135%

TEG Job Number:	S00906-3
Client:	HART CROWSER
Client Job Name:	DENNY'S
Client Job Number:	7436

Analytical Results		DUPL					
NWTPH-HCID, mg/kg		B8-S3	B9-S2	B9-S3	B10-S2	B10-S3	B10-S4
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soi
Date extracted	Reporting	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Date analyzed	Limits	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Moisture, %	_						
Gasoline	20	nd	nd	nd	nd	nd	nd
Stoddard solvent/Mineral spirits	20	nd	nd	nd	nd	nd	nd
Kensol	20	nd	nd	nd	nd	nd	nd
Kerosene/Jet fuel	20	nd	nd	nd	nd	nd	nd
Diesel/Fuel oil	50	nd	nd	nd	nd	nd	nd
Bunker C	50	nd	nd	nd	nd	nd	กต่
Heavy oil	100	nd	nd	nd	nd	nd	nd
Unidentifiable petroleum products	20	nd	nd	nd	nd	nd	nd
Surrogate recoveries:							
Fluorobiphenyl		92%	92%	92%	96%	96%	96%
o-Terphenyl		92%	92%	93%	94%	94%	94%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

D - detected at or above listed reporting limits

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 65% TO 135%

.

TEG Job Number:	S00906-3
Client:	HART CROWSER
Client Job Name:	DENNYS
Client Job Number:	7436

Analytical Results

NWTPH-HCID, mg/kg		B10-S5
Matrix	Soil	Soil
Date extracted	Reporting	09/07/00
Date analyzed	Limits	09/07/00
Moisture, %		
Gasoline	20	nd
Stoddard solvent/Mineral spirits	20	nd
Kensol	20	nd
Kerosene/Jet fuel	20	nd
Diesel/Fuel oil	50	nd
Bunker C	50	nd
Heavy oil	100	nd
Unidentifiable petroleum products	20	nd
Surrogate recoveries:		
Fluorobiphenyl		98%

o-Terphenyl	95%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

D - detected at or above listed reporting limits

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

TEG Job Number:	S00906-3
Client	HART CROWSER
Client Job Name:	DENNY'S
Client Job Number:	7436

80218, µg/l		MTH BLK	LCS	B-1	B-3	B-3	B-3	8-3
Matrix	Water	Water	Water	Water	Water	Water	Water	Wate
Date extracted	Reporting	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Date analyzed	Limits	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Chloromethane	5.0	nd		nd	nd			
Bromomethane	5.0	nd		nd	nd			
Vinyl chloride	5.0	nd		nd	nd			
Chloroethane	5.0	ndi		nd	nd			
cis-1,2-Dichloroethene	5.0	nd		nd	nd			
1,1-Dichloroethene	5.0	nd		nd	nd			
Methylene Chloride	5.0	nd		nd	nd			
rans-1,2-Dichloroethene	5.0	nd		nd	nd			
1.1-Dichloroethane	5.0	nd		nd	nď			
Chloroform	1.0	nd		nd	nd			
1,1,1-Trichloroethane	1.0	nd		nd	nd			
Carbontetrachloride	1.0	nd		nd	nd			
1.2-Dichloroethane	5.0	nd		nd	nd			
Trichloroethene	1.0	nd	101%	nd	nd	104%	108%	4%
1.2-Dichloropropane	5.0	nd		nd	nd			
Bromodichloromethane	5.0	nd		nd	nd			
cis-1,3-Dichloropropene	5.0	nd		nd	nd			
rans-1,3-Dichloropropene	5.0	nd		nd	nd			
Chlorobenzene	5.0	nd	106%	nd	nd	114%	117%	3%
1.1.2-Trichloroethane	1.0	nd		nd	nd			
Tetrachloroethene	1.0	nd		210	nd			
Dibromochloromethane	5.0	nd		nd	nd			
Bromoform	5.0	nd		nd	nd			
1,1,2,2-Tetrachloroethane	5.0	nd		nd	nd			
1,1,1,2-Tetrachioroethane	5.0	nd		nd	nd			
Bromobenzene	5.0	nd		nd	nd			
1,2,3-Trichloropropane	5.0	nd		nd	nd			
Dibromomethane	5.0	nd		nd	nd			
m-Dichlorobenzene	1.0	nd		nd	nd			
-Dichlorobenzene	1.0	nd		nd	nd			
o-Dichlorobenzene	1.0	nd		nd	nd			
Benzene	1.0	nd	104%	290	47	104%	109%	5%
Toluene	1.0	nd	104%	2,400	45	102%	104%	2%
Ethylbenzene	1.0	nd	10170	1,700	37			
Xvlenes	1.0	nd		13,000	170			
Kylenes		114		10,000				
Surrogate recoveries:								
Bromochloromethane		86%	92%	94%	84%	80%	88%	
1,4-Dichlorobutane		100%	111%	94%	87%	101%	100%	
Bromochloropropane		93%	100%	88%	79%	96%	94%	
Trifluorotoluene		84%	97%	98%	96%	97%	87%	
Bromofluorobenzene		88%	99%	Ċ	113%	98%	92%	

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 65% TO 135%

TEG Job Number:	S00906-3
Client:	HART CROWSER
Client Job Name:	DENNY'S
Client Job Number:	7436

Analytical Results

8021B, µg/l		B-7	<u>B-1</u>
Matrix	Water	Water	Wate
Date extracted	Reporting	09/07/00	09/07/0
Date analyzed	Limits	09/07/00	09/07/0
Chioromethane	5.0	nd	n
Bromomethane	5.0	nd	n
Vinyl chloride	5.0	nd	n
Chloroethane	5.0	nd	n
cis-1,2-Dichloroethene	5.0	nd	n
1.1-Dichloroethene	5.0	nď	n
Methylene Chloride	5.0	nd	n
trans-1,2-Dichloroethene	5.0	nd	n
1,1-Dichloroethane	5.0	nď	n
Chloroform	1.0	nd	n
1,1,1-Trichloroethane	1.0	nd	n
Carbontetrachloride	1.0	nd	n
1.2-Dichloroethane	5.0	nd	n
Trichloroethene	1.0	nd	n
1,2-Dichloropropane	5.0	nd	n
Bromodichloromethane	5.0	nd	n
cis-1,3-Dichloropropene	5.0	nd	n
rans-1,3-Dichloropropene	5.0	nd	D
Chiorobenzene	5.0	nd	B
1.1.2-Trichloroethane	1.0	nd	n
Tetrachloroethene	1.0	nd	n
Dibromochloromethane	5.0	nd	n
Bromoform	5.0	nd	n
1,1,2,2-Tetrachloroethane	5.0	nd	n
1,1,1,2-Tetrachloroethane	5.0	nd	п
Bromobenzene	5.0	nđ	n
1,2,3-Trichloropropane	5.0	nd	no
Dibromomethane	5.0	nd	n
m-Dichlorobenzene	1.0	nd	n
-Dichlorobenzene	1.0	nd	n
-Dichlorobenzene	1.0	nd	n
Benzene	1.0	1,000	n
Toluene	1.0	520	n
Ethylbenzene	1.0	630	
Kylenes	1.0	2,400	2.8
Surrogate recoveries:	<u></u>		000
Bromochloromethane		88%	839
1,4-Dichlorobutane		99%	999
Bromochloropropane		88%	96%
Trifluorotoluene		95%	84%
Bromofluorobenzene B1-, B-7 ANALYZED DILUTED 1:1		92%	100%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

TEG Job Number:	S00906-3
Client:	HART CROWSER
Client Job Name:	DENNYS
Client Job Number:	7436

Analytical Results

PAH(8100), mg/kg		MTH BLK	LCS	B1-S2	B1-S3	B3-S1	B3-S3
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soi
Date extracted	Reporting	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Date analyzed	Limits	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Moisture, %						15%	
Acenaphthene	0.10	nd	93%	nd	nd	nd	nd
Acenaphthylene	0.10	nd		nd	nd	nd	nd
Anthracene	0.10	nd		nd	nd	nd	nd
Benzo(a)anthracene	0.10	nd		nd	nd	nd	nd
Benzo(a)pyrene	0.10	nd		nd	nd	nd	nd
Benzo(b)fluoranthene	0.10	nd		nd	nd	nd	nd
Benzo(ghi)perylene	0.10	nd		nd	nd	nd	nd
Benzo(k)fluoranthene	0.10	nd		ndi	nd	nd	nd
Chrysene	0.10	nd	77%	nd	nđ	nd	nd
Dibenzo(ah)anthracene	0.10	nd		nd	nd	nd	nd
Fluorene	0.10	nd	89%	nd	nd	nd	nd
Fluoranthene	0.10	nď		nd	nd	0.98	nd
Indeno(1,2,3-cd)pyrene	0.10	nd		nd	nd	nd	nd
Naphthalene	0.10	nd	98%	nd	nd	nd	nd
Phenanthrene	0.10	nd	82%	nđ	nď	1.5	nd
Pyrene	0.10	nd	77%	nd	nd	1.2	nd
Surrogate recoveries:							
Fluorobiphenyl		97%	100%	96%	96%	109%	97%
o-Terphenyl		99%	98%	97%	94%	92%	93%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 65% TO 135%

TEG Job Number:	S00906-3
Client:	HART CROWSER
Client Job Name:	DENNY'S
Client Job Number:	7436

PAH(8100), mg/kg		B4-S2	85-S2	B6-S2	B7-S3	B8-S3	B8-S3
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soi
Date extracted	Reporting	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Date analyzed	Limits	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Moisture, %							· · · · · · · · · · · · · · · · · ·
Acenaphthene	0.10	nd	nd	nd	nd	nd	nd
Acenaphthylene	0.10	nd	nd	nđ	nd	nd	nd
Anthracene	0.10	nd	nd	nd	nd	nd	nd
Benzo(a)anthracene	0.10	nd	nd	nd	nd	nd	nd
Benzo(a)pyrene	0.10	nđ	nd	nd	nd	nd	nd
Benzo(b)fluoranthene	0.10	nd	nđ	nd	nd	nd	nd
Benzo(ghi)perylene	0.10	nd	nd	nd	nd	nd	nd
Benzo(k)fluoranthene	0.10	nd	nd	nd	nd	nd	nd
Chrysene	0.10	nd	nd	nd	nd	nd	nd
Dibenzo(ah)anthracene	0.10	nd	nd	nd	nd	nd	nd
Fluorene	0.10	nd	ndi	nd	nd	nd	nd
Fluoranthene	0.10	nd	nd	nd	nd	nd	nd
indeno(1,2,3-cd)pyrene	0.10	nd	nd	nd	nd	nd	nd
Naphthalene	0.10	nd	nd 🕚	nd	nd	nd	nd
Phenanthrene	0.10	nd	nd	nd	nd	nd	nd
Pyrene	0.10	nd	nd	nd	nd	nd	nd
Surrogate recoveries:							
Fluorobiphenyl		118%	97%	94%	94%	115%	92%
o-Terphenyl		121%	95%	93%	93%	119%	92%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 65% TO 135%

TEG Job Number:	S00906-3
Client:	HART CROWSER
Client Job Name:	DENNY'S
Client Job Number:	7436

Analytical Results

• • • •

Det

PAH(8100), mg/kg		B9-S2	B10-S3	B10-S5
Matrix	Soil	Soil	Soil	Soi
Date extracted	Reporting	09/07/00	09/07/00	09/07/00
Date analyzed	Limits	09/07/00	09/07/00	09/07/00
Moisture, %				
Acenaphthene	0.10	nd	nď	nc
Acenaphthylene	0.10	nd	nd	חמ
Anthracene	0.10	nd	nd	nc
Benzo(a)anthracene	0.10	nđ	nd	na
Benzo(a)pyrene	0.10	nđ	nd	nc
Benzo(b)fluoranthene	0.10	nd	nđ	nc
Benzo(ghi)perylene	0.10	nd	nd	no
Benzo(k)fluoranthene	0.10	nd	nd	no
Chrysene	0.10	nd	nd	nc
Dibenzo(ah)anthracene	0.10	nd	nd	no
Fluorene	0.10	nd	nd	nc
Fluoranthene	0.10	nd	nd	nc
Indeno(1,2,3-cd)pyrene	0.10	nd	nd	nc
Naphthalene	0.10	nd	nd	no
Phenanthrene	0.10	nd	nd	nc
Pyrene	0.10	nd	nd	nc
Surrogate recoveries:				
Fluorobiphenyl		92%	96%	98%
o-Terphenyl		92%	94%	96%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis

Acceptable Recovery limits: 65% TO 135%

TEG Job Number:	S00906-3
Client:	HART CROWSER
Client Job Name:	DENNYS
Client Job Number:	7436

Analytical Results

PAH(8100), ug/L		MTH BLK	LCS	B-1	B-3	B-7	B-10
Matrix	Soil	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Date analyzed	Limits	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00	09/07/00
Acenaphthene	2.0	nd	93%	nd	nd	ndi	nd
Acenaphthylene	2.0	nd		nd	nd	nd	nd
Anthracene	2.0	nd		nd	nd	nd	nd
Benzo(a)anthracene	2.0	nd		nd	nd	nd	nd
Benzo(a)pyrene	2.0	nd		nd	nd	nd	nd
Benzo(b)fluoranthene	2.0	nd		nd	nd	nd	nd
Benzo(ghi)perylene	2.0	nd		nd	nd	nd	nd
Benzo(k)fluoranthene	2.0	nd		nd	nd	. nd	nd
Chrysene	2.0	nd	77%	nd	nd	nd	nd
Dibenzo(ah)anthracene	2.0	nd		nd	nd	nd	nd
Fluorene	2.0	nd	89%	nd	nd	nd	nd
Fluoranthene	2.0	nd		nd	nd	nd	nd
Indeno(1,2,3-cd)pyrene	2.0	nd		nd	nđ	nd	nd
Naphthalene	2.0	nd	98%	490	nd	nd	nd
Phenanthrene	2.0	nd	82%	nd	nd	nd	nd
Pyrene	2.0	nd	77%	nd	nd	nd	nd
Surrogate recoveries:							
Fluorobiphenyl		98%	100%	101%	101%	107%	102%
o-Terphenyl		102%	99%	105%	105%	108%	102%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

M - matrix interference

J - estimated value

Results reported on dry-weight basis Acceptable Recovery limits: 65% TO 135%

Washington Hart Crowser, Inc. Client Project #DENNY'S TEG Project #.

Heavy Metals in Soil by EPA-7000 Series

		Lead (Pb)	Cadmium (Cd)	Chromium (Cr)	Arsenic (As)	Silver (Ag)	Barium (Ba)	Selenium (Se)	Mercury (Hg)
Sample	Date	EPA 7420	EPA 7130	EPA 7190	EPA 7061	EPA 7760	EPA 7080	EPA 7741	EPA 7471
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	9/15/00	nd	nd	nd	nd	nd	nd	nd	nd
B1-53	9/15/00	12	nd	51	nd	nd	nd	nđ	nd
B3-S3	9/15/00	25	nd	29	nd	nd	nd	nđ	nd
B6-S3	9/15/00	14	nd	33	nd	nd	nd	nd	nd
B7-S3	9/15/00	nd	nd	42	nd	nd	nd	nd	ndi
B10-S2	9/15/00	36	nd	42	nd	nd	nđ	nd	nd
B10-S2 Dup	9/15/00	30	nd	39	nd	nd	nd	nd	nd
Method Detection	Limits	5	t	20	5	20	50	50	0.1

"nd" Indicates not detected at listed detection limits.

ANALYSES PERFORMED BY: Sherry Chilcutt

Washington Hart Crowser, Inc. Client Project #DENNY'S TEG Project #.

QA/QC Data - Total Metals EPA-7000 Series Analyses

		S	ample Number:	WOIB			
		Matrix Spik	e	Matr	ix Spike Duplica	te	RPD
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	(%)
		,		200	280		3.51
Lead	250	290	116	250	280	112	
Cadmium	25	25	100	25	22	88 -	12.8
Chromium	. 250 .	. 208	83	250	214	86	2.84
Arsenic	63	65	104	63	67	107	3.03

	Laboratory Control Sample					
		÷ 1	· • •	;		
	Spiked	Measured	⁶ Spike			
	Conc.	Conc.	Recovery			
	(mg/kg)	(mg/kg)	(%)	_		
Lead	250	235	94			
Cadmium	25	24 °	96	ų -		
Chromium	250	278	111			
Arsenic	63	· · 58	93	_		

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 65%-135% ACCEPTABLE RPD IS 20%

ANALYSES PERFORMED BY: Sherry Chilcutt

. .

.

· ·

.

.*

Client Name	
Client ID:	
Lab ID:	
Date Received:	
Date Prepared:	
Date Analyzed:	
Dilution Factor	

TEG Northwest, Inc.

B-1 92404-01 9/7/00 9/8/00 9/8/00 1

 $\mathbf{\tilde{2}}$

. '-

Metals by ICP - USEPA Method 6010

	Result		
Analyte	(mg/L)	PQL	Flags
Barium	6.4	0.005	
Chromium	1.3	0.01	
Lead	3.8	0.01	
Selenium	ND	0.05	

Client Name	TEG Northwest, Inc.	
Client ID:	B-1	
Lab ID:	92404-01	
Date Received:	9/7/00	
Date Prepared:	9/8/00	
Date Analyzed:	9/8/00	
Dilution Factor	1	

Metals by ICP-MS - USEPA Method 6020

	Result		
Analyte	(mg/L)	PQL	Flags
Arsenic	0.21	0.001	
Cadmium	0.028	0.003	
Silver	0.011	0.0005	

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: Dilution Factor TEG Northwest, Inc. B-1 92404-01 9/7/00 9/11/00 9/12/00 1

Mercury by CVAA - USEPA Method 7470

Analyte Mercury Result (mg/L) 0.0021 J

PQL 0.0002 Flags

9/2100 JH

Sound Analytical Services, Inc.

Client Name	TEG Northwest, Inc.
Client ID:	B-3
Lab ID:	92404-02
Date Received:	9/7/00
Date Prepared:	9/8/00
Date Analyzed:	9/8/00
Dilution Factor	1

Metals by ICP - USEPA Method 6010

5

	Result		
Analyte	(mg/L)	PQL	Flags
Barium	1.2	0.005	
Chromium	0.062	0.01	
Lead	2.7	0.01	
Selenium	ND	0.05	

Client Name
Client ID:
Lab ID:
Date Received:
Date Prepared:
Date Analyzed:
Dilution Factor

TEG Northwest, Inc. B-3 92404-02 9/7/00 9/8/00 9/8/00 1

6

Metals by ICP-MS - USEPA Method 6020

	Result		
Analyte	(mg/L)	PQL	Flags
Arsenic	0.087	0.001	
Cadmium	0.0082	0.003	
Silver	0.0013	0.0005	

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: Dilution Factor TEG Northwest, Inc. B-3 92404-02 9/7/00 9/11/00 9/12/00 1

Mercury by CVAA - USEPA Method 7470

Analyte Mercury Result (mg/L) 0.00065 J

PQL 0.0002 Flags

7

9/22/00 JH

Client Name	TEG Northwest, Inc.	
Client ID:	B-7	
Lab ID:	92404-05	
Date Received:	9/7/00	
Date Prepared:	9/8/00	
Date Analyzed:	9/8/00	
Dilution Factor	1	

Metals by ICP - USEPA Method 6010

	Result		
Analyte	(mg/L)	PQL	Flags
Barium	6.1	0.005	
Chromium	2	0.01	
Lead	1.7	0.01	
Selenium	ND	0.05	

8

·

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: Dilution Factor TEG Northwest, Inc. B-7 92404-05 9/7/00 9/8/00 9/8/00 1

Metals by ICP-MS - USEPA Method 6020

	Result		
Analyte	(mg/L)	PQL	Flags
Arsenic	0.17	0.001	
Cadmium	0.024	0.003	
Silver	0.01	0.0005	

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: Dilution Factor TEG Northwest, Inc. B-7 92404-05 9/7/00 9/11/00 9/12/00 1

Mercury by CVAA - USEPA Method 7470

Analyte Mercury Result (mg/L) 0.0046 J

PQL 0.0002 Flags

Sound Analytical Services, Inc.

Client Name	TEG Northwest, Inc.
Client ID:	B-10
Lab ID:	92404-06
Date Received:	9/7/00
Date Prepared:	9/8/00
Date Analyzed:	9/8/00
Dilution Factor	1

Metals by ICP - USEPA Method 6010

	Result		
Analyte	(mg/L)	PQL	Flags
Barium	0.46	0.005	
Chromium	0.091	0.01	
Lead	0.13	0.01	
Selenium	ND	0.05	

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: Dilution Factor TEG Northwest, Inc. B-10 92404-06 9/7/00 9/8/00 9/8/00 1

Metals by ICP-MS - USEPA Method 6020

	Result		
Analyte	(mg/L)	PQL	Flags
Arsenic	0.033	0.001	
Cadmium	ND	0.003	
Silver	0.0011	0.0005	

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: Dilution Factor TEG Northwest, Inc. B-10 92404-06 9/7/00 9/11/00 9/12/00 1

Mercury by CVAA - USEPA Method 7470

Analyte Mercury Result (mg/L) 0.0003 J

PQL 0.0002 Flags

13

Lab ID:	Method Blank - T825
Date Received:	-
Date Prepared:	9/8/00
Date Analyzed:	9/8/00
Dilution Factor	1

Metals by ICP-MS - USEPA Method 6020

	Result		
Analyte	(mg/L)	PQL	Flags
Arsenic	ND	0.001	
Cadmium	ND	0.003	
Silver	ND	0.0005	

Sound Analytical Services, Inc.

Lab ID: Date Received: Date Prepared: Date Analyzed: Dilution Factor Method Blank - T825

9/8/00 9/8/00 1

Metals by ICP - USEPA Method 6010

	Result		
Analyte	(mg/L)	PQL	Flags
Barium	ND	0.005	
Chromium	ND	0.01	
Lead	ND	0.01	
Selenium	ND	0.05	

Lab ID: Date Received: Date Prepared: Date Analyzed: Dilution Factor Method Blank - T831

9/11/00 9/12/00 1

Mercury by CVAA - USEPA Method 7470

Analyte Mercury Result (mg/L) ND

PQL 0.0002 Flags

Blank Spike/Blank Spike Duplicate Report

Lab ID:	T825
Date Prepared:	9/8/00
Date Analyzed:	9/8/00
QC Batch ID:	T825

Metais by ICP - USEPA Method 6010

Compound Name	Blank Result (mg/L)	Spike Amount (mg/L)	BS Resuit (mg/L)	BS % Rec.	BSD Result (mg/L)	BSD % Rec.	RPD	Flag
Selenium	0	4	4.16	104	4.11	103	-0.97	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: T831 9/11/00 9/12/00 T831

Mercury by CVAA - USEPA Method 7470

Compound Name		Spike Amount (mg/L)		BS % Rec.	BSD Result (mg/L)	BSD % Rec.	RPD	Flag
Mercury	0	0.002	0.00214	107	0.00216	108	0.93	

Matrix Spike Report

Client Sample ID:	MAN-BT-3
Lab ID:	92417-02
Date Prepared:	9/8/00
Date Analyzed:	9/8/00
QC Batch ID:	T825

A Vinnes

Metals by ICP - USEPA Method 6010

	Sample Result	Spike Amount	MS Result	MS	
Parameter Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	Flag
Barium	0.048	4	3.99	98	
Chromium	0	0.4	0.389	97	
Lead	0.018	1	0.923	91	
Selenium	0	4	5.28	132	X7

Matrix Spike Report

Client Sample ID: Lab ID:	
Date Prepared:	
Date Analyzed:	
QC Batch ID:	

MAN-BT-3 92417-02 9/8/00 9/8/00 T825

Metals by ICP-MS - USEPA Method 6020

Parameter Name Arsenic Cadmium	Sample Result (mg/L) 0.00717 0	Spike Amount (mg/L) 4 0.1	MS Result (mg/L) 4.38 0.0971	MS % Rec. 109 97	Flag
Silver	Ō	0.6	0.619	103	

Matrix Spike Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: B-10 92404-06 9/11/00 9/12/00 T831

Mercury by CVAA - USEPA Method 7470

	Sample Result	Spike Amount	MS Result	MS.	
Parameter Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	Flag
Mercury	0.000302	0.002	0.00145	57	x7

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: MAN-BT-3 92417-02 9/8/00 9/8/00 T825

Metals by ICP - USEPA Method 6010

Parameter Name	Sample Result (mg/L)	Duplicate Result (mg/L)	RPD %	Flag
Barium	0.048	0.05	-4.1	
Chromium	0	0	NC	
Lead	0.018	0.019	-5.4	
Selenium	0	0	NC	

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID:

MAN-BT-3 92417-02 9/8/00 9/8/00 T825

Metals by ICP-MS - USEPA Method 6020

Parameter Name	Sample Result (mg/L)	Duplicate Result (mg/L)	RPD %	Flag
Arsenic	0.0072	0.0073	-1.4	•
Cadmium	0	0	NC	
Silver	0	0	NC	

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: B-10 92404-06 9/11/00 9/12/00 T831

Mercury by CVAA - USEPA Method 7470

	Sample	Duplicate		
	Result	Result	RPD	
Parameter Name	(mg/L)	(mg/L)	%	Flag
Mercury	0.0003	0.0004	-29.0	x4

Sound Analytical Services, Inc.

ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East • Tacoma, WA 98424 (253) 922-2310 • FAX (253) 922-5047 e-mail: info@saslab.com

DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C1: Second column confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be $\leq 40\%$.
- C2: Second column confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 40%. The higher result was reported unless anomalies were noted.
- M: GC/MS confirmation was performed. The result derived from the original analysis was reported.
- D: The reported result for this analyte was calculated based on a secondary dilution factor.
- E: The concentration of this analyte exceeded the instrument calibration range and should be considered an estimated quantity.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- N: See analytical narrative.
- ND: Not Detected
- PQL: Practical Quantitation Limit
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be ______.
- X2: Contaminant does not appear to be "typical" product.
- X3: Identification and quantitation of the analyte or surrogate was complicated by matrix interference.
- X4: RPD for duplicates was outside advisory QC limits. The sample was re-analyzed with similar results. The sample matrix may be nonhomogeneous.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike recovery was not determined due to the required dilution.
- X6: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Sample was reanalyzed with similar results.
- X7: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Matrix interference may be indicated based on acceptable blank spike recovery and/or RPD.
- X7a: Recovery and/or RPD values for this spiked analyte outside advisory QC limits due to high concentration of the analyte in the original sample.
- X8: Surrogate recovery was not determined due to the required dilution.
- X9: Surrogate recovery outside advisory QC limits due to matrix interference.

Samp	le Cus	tody R	ecord DAT	<u>= 1/6</u>	100	PAC	3E_/		7			RT	CRC	Hart Crowsel, I 1910 Fairview Avenue E Seattle, Washington 98102-30		
PROJECT PROJECT		NUKELIC NNYS RE:	LAB NUMBER 7. IF BRอพุภ			I. HCID	· • `	TPHO/LIEX	(20218)	Har Liver	1 to Suit & Wate	HS	NO. OF CONTAINERS	OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS		
LAB NO.	SAMPLE	TIME	STATION	MAT	TRIX	101	Hol	101	20	J.E	111	d d	Z			
<u>B-/</u>	5-1			50		X	_				_					
	5-2			50		X				~		X				
	5.3			55	1		>	XΖ		Хł	1	X				
			·····								_			*		
8-3	5-1			27	11	X		_				X		· · · · · · · · · · · · · · · · · · ·		
	5-2			اہ ک	۲	X					_			· · · · · · · · · · · · · · · · · · ·		
	5.3			2011	<u> </u>		-	×Х		X						
3-4	5-1		······	201	ι									· · · · · · · · · · · · · · · · · · ·		
	2- ز			53	۷	·	Ž	$\leq \geq$								
	5-3		<u> </u>	رد تر	۲ <u>د</u>	Σ_{\uparrow}										
	5-4			50	<u>ر</u>											
RELI	NQUISHED BY	DATE	RECEIVED BY		DATE	1		UMBER						METHOD OF SHIPMENT		
	Wikeric		SIGNAURE FANO	$\overline{\mathcal{V}}$	7/6 Time	OF CONTAINERS SPECIAL SHIPMENT/HANDLING NORMAL TURNALOW										
Hart CIOWSPT 27/ 726 153						P			¥	P	LtA	36	(Jua	NITTY HEID KELLTS.		
RELI	NQUISHED BY	DATE	RECEIVED BY		DATE	 	-		*	1	hiy?	2. /	VIE 7/2	rom a		
			-					UTION:				00015				
SIGNATURE						2. RETURN PINK COPY TO PROJECT MANAGER										
		TIME TIME TIME				1 🤊	RETHE	IN PINI	COP	י מד א	PROIP	CT MAN	JAGER			

								40					-	g									
Samŗ	ole Cu	sto (dy R	ecord DAT	ле <u>1/6/0</u>	4)	P/	IGE_	2.	_ OF.	4	-	H	M	RT	a	20	WSER	1910 Fai Seattle, Washin	Hart Crow airview Aver ington 9810	enue Ea		
	iber <u> -</u> 7	<u>1436</u>	2		<u></u>		<u>. </u>		,	T	EST	FIN	G	.T			RS			<u></u>			
PROJECT	MANAGER	DEN,	WY: Re	<u> </u>					ic 10		11.72×		(2)	7215	1- 500	2			CONTAINERS		VATIONS/COMM		• •
SAMPLED	BY: For 1	1/1/0	Jer.	FRENINS	<u> </u>		<u> н</u> - н/Ц	6		CH D		101	12 3	DAHE			NO. OF						
LAB NO.	SAMPLE	Tľ	IME	STATION	MATRIX	K]			НØЦ	い	1×	0	2		•		-				••		
B.5	5-1				Shin	\Box	\overline{X}	F	\Box		Ē	\square		\square							v		
	S·Z	[STIC		, ,		\mathbf{X}	\mathbb{N}	[-]			\mathbf{X}	-			1		<u></u>			
	5-3	Í		-	Sac	ľ	X																
							ر ا				\Box					·							
B-6	5-1			1	5. all		$\overleftarrow{\times}$	F							$\overline{\mathbf{k}}$	1							
	5-Z				Soll		\mathbf{X}	$\overline{1}$				\Box		X	\mathbf{V}	ł							
	5.3				Loic	`	X	口	X	\Box	\square	X	Z	16	4								
B-7	5-1	 			5.010	-+	X	╞┼			\vdash	<u> </u> '			╞	+	+			;;			
	5.2	[- Join	K	Ż	 	$\begin{bmatrix} \bullet \\ \bullet \end{bmatrix}$	-			<u> </u>	+	 	-					·		
	:3	[JUL		x + 		Ń	\mathbf{X}	\square	X	P	\mathbf{X}	\mathbf{T}		†		<u></u>				
	5-1				Chic	t	\overline{X}	\square	ŕ	\square	\square	<u> </u>			†	<u>†</u>	-	t					
REL	INQUISHED BY	Y	DATE	RECEIVED BY	Y D	DATE	(T		NUN	ABER	, <u> </u>			J	<u>مەنىمىيە</u> ر	<u> </u>	<u></u>	METHOD OF S	HIPMENT				
2	WM	-	772	SIGNATURE LA	1 9	7/6	0	OF CON	NTAI	NER	3												
SIGNATURE	Wiker	i C.	TIME	SIGNATURE TRADE	n í		·	SPECIA										J					
	ME C		-		· · · · · · · · · · · · · · · · · · ·	53	P	dr sto)HAu	it ne	Qui	REME	<u>-1</u> N15	,									
HAI T	((Uul Se			COMPANY	/_	21	, I																
REL	INQUISHED BY	۲	DATE	RECEIVED BY		DATE	<u> </u>					<u></u>		<u> </u>					•				
I							•) prov				ND Y	/FLL	<u></u>				ORATORY					
SIGNATURE			TIME	SIGNATURE		TIME		. RETU										UNALUIT					
PRINTED NAM	ĀĒ.			PRINTED NAME								-						D SIGN FOR REC	EIPT				
COMPANY			_	COMPANY			4	. LABC	ORAT	/ORY	TO P	IETU'	RN V	NHIT	E CO	PY TO	D HAI	RT CROWSER					

1.1990-2

The Dantes | On Boryahad Pagan

.

			Record a	DATE 7/1/0	<u></u>	PAG	<u>د</u>			_					Seattle, Washington 98102-369	
IOB NUMB PROJECT I PROJECT I	MANAGER	WJK Pain	LAB NUMBER	· · · · · · · · · · · · · · · · · · ·		#110	Ker		EST (S1.20%)		~ · · · · · · · · ·			OF CONTAINERS	OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS	
SAMPLED	BA: HOW	~ 10	لہ ہے			14 402	V HOL	Q HAI	Vuc /	キャ	1.1	44		Ň		
LAB NO.	SAMPLE	TIME	STATION	MATRI		Ň	104		2	<u>_</u>	\geq	~~				
B- (5	5.1			5016		λ										
	22			Soil				╷─┤				\rightarrow				
	5-3		· · · · · · · · · · · · · · · · · · ·	SOIL		Xł						Xł	-		<u> </u>	
3.9	2.1			- SINIL												
	5-2			5010		X	·					X	-			
	5.3			Soll		Xł										
	5-4			Snic												
B-10		<u> </u>		571				}	$\left - \right $				-+			
<u> </u>	5.2			Soil		$\mathbf{\nabla}$	- -			\mathbf{X}	-					
	5-3			5016		K		1				X	~	-		
REL	INQUISHED BY	DA	RECEIVED		DATE	TC	TAL NU	MBER	<u> </u>	ابا		<u> </u>		L	METHOD OF SHIPMENT	
12	4	- 9/	Jul Shair		9/6	OF	F CONT	AINER:	5						<u> </u>	
SICHATURE	. Lika u		SIGNATURE T	un t	TIME		PECIAL					G				
PRINTED NAM			PRINTED NAME		153	₽ ⁰	r stor	NUE M			(7 1)					
Hart	Crowser	2	COMPANY		12-	ł										
	INQUISHED BY	/ DA		BY	DATE	 										
							ISTRIBU									
SIGNATURE			SIGNATURE												BORATORY	
		<u> </u>			TIME		RETUR									
PRINTED NA		1				3. LABORATORY TO FILL IN SAMPLE NUMBER AND SIGN FOR RECEIPT 4. LABORATORY TO RETURN WHITE COPY TO HART CROWSER										

1

.

Sample Custody Record

Samples Shipped to: /_

Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, Washington 98102-3699 Phone: 206-324-9530 FAX: 206-328-5581

					REQU	ESTI	ED AN	NALY		0										
											ł	Ţ	•		·.			CONTAINERS		
	NAME		<u>aic</u>					X	ſ	0								NTAI	OBSERVATIONS/COMMENTS/	
HART CROWSER CONTACT Dring's Cost						A H	Ľ	ଅକ୍ଷ	Δ	5	f	1 - 1	4						COMPOSITING INSTRUCTIONS	
Hayes Brown							•	5	I T	7	2		Z		1			NO. OF		
SAMPLED	BY: U	r				HUL	TPH	HOC	PPH	Voc		5						2		
LAB NO.	SAMPLE ID	DESCRIPTIC	ON DATE	TIME	MATRIX															
13-10	5-4				SOIL	X	\sim													
	5-5				SOIL	\succ	-						X	-					· · · · · · · · · · · · · · · · · · ·	
				-																
B-1				a	WATEL		X	,	X_1	Σ	Λ	- [X,	-						
B.3					WAR :		\times		X	Xľ	X	- []	X	-						
B-4					WATER															_
B-7					WATE 2		X		X	X	X		X		_	1				
P10					WATER		X		X	λ	X		X							
3-5								X	\mathbf{X}											
							-								_					
											}								·	
RELINQUI	SHED BY	DATE	RECEIVED BY		DATE					NT HA			OR					1 ¹¹ 100 100 1	TOTAL NUMBER OF CONTAINERS	-
CHANT LIPS		9/4/05	VAnu	lear	9/6	510	ORAG	ie Re	QUI	REME	NIS:									
JULIE	KINWKL	TIME	SIGNATURE A	m	TIME														(≟ ∕ san ∎his ∎), <u>i</u> s	
	(10000	2:24-	PRINTNAME		1550															
			COMPANY															en en de de la seconda de l Norde la seconda de la second Norde la seconda de la second		
RELINQUI	SHED BY	DATE	RECEIVED BY		DATE	L												2 2 2		
SIGNATURE									:.	-			STO	ORAG	E LOC/	ATION	l:		NAROUND TIME:	
		TIME	SIGNATURE		TIME	1													24 HOURS 🗆 1 WEEK	
PRINT NAME			PRINT NAME				See Lab Work Order No											48 HOURS I STANDARD	i	
COMPANY	w Copies to Lab	Pink to Proje	COMPANY		hite Copy to Ha		for Other Contract Requirements										· [] ·	72 HOURS OTHER		

Lab to Return White Copy to Hart Crowser