LIMITED OFF-SITE ENVIRONMENTAL ASSESSMENT HORIZONTAL AND VERTICAL DELINEATION

CONOCOPHILLIPS COMPANY **SERVICE STATION 255353** 600 WESTLAKE AVENUE NORTH SEATTLE, WASHINGTON

Delta Project WA255-3514-1

August 29, 2005

Prepared for

ConocoPhillips Company

Prepared by:

Tena Seeds, E.I.T. **Project Engineer**

Reviewed by:

Eric Larsen, L.H.G. Senior Project Manager

Delta Environmental Consultants, Inc. 4006 - 148th Avenue NE, Redmond, Washington 98052 425.882-3528

800.477.7411

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.	1 SITE LOCATION AND DESCRIPTION 2 BACKGROUND AND PREVIOUS INVESTIGATIONS	1
	OFF-SITE SOIL ASSESSMENT ACTIVITIES	
2.2 2.3 2.4	 DRILLING SUBSURFACE CONDITIONS WASTE MANAGEMENT SOIL SAMPLE COLLECTION AND ANALYSES SOIL ANALYTICAL RESULTS 	3 4 1
3.0	GROUNDWATER MONITORING	6
3.1 3.2	1 GROUNDWATER SAMPLE COLLECTION AND ANALYSES 2 GROUNDWATER ANALYTICAL RESULTS	6 6
4.0	SUMMARY AND CONCLUSIONS	8
5.0	LIMITATIONS	9

.

TABLE OF CONTENTS, CON'T

TABLES

- TABLE 1 LIMITED OFF-SITE ASSESSMENT SOIL ANALYTICAL RESULTS
- TABLE 2 JULY 2005 GROUNDWATER MONITORING RESULTS

FIGURES

- FIGURE 1 SITE LOCATION MAP
- FIGURE 2 SITE MAP WITH DRILLING LOCATIONS
- FIGURE 3 TPH-G CONCENTRATIONS IN SOIL
- FIGURE 4 BENZENE CONCENTRATIONS IN SOIL
- FIGURE 5 TPH-G CONCENTRATIONS IN GROUNDWATER, JULY 2005
- FIGURE 6 BENZENE CONCENTRATIONS IN GROUNDWATER, JULY 2005

APPENDICES

- APPENDIX A BORING LOGS AND WELL CONSTRUCTION DETAILS
- APPENDIX B WASTE DISPOSAL DOCUMENTATION
- APPENDIX C SOIL ANALYTICAL LABORATORY REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION
- APPENDIX D GROUNDWATER ANALYTICAL LABORATORY REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION
- APPENDIX E GROUNDWATER MONITORING FIELD SHEETS

1.0 INTRODUCTION

At the request of ConocoPhillips Company (COP), Delta Environmental Consultants (Delta) conducted an off-site environmental site assessment in July 2005 associated with COP Site No. 255353 located at 600 Westlake Avenue North in Seattle, Washington. The assessment was intended to investigate petroleum hydrocarbon impacts to specific areas of soil and groundwater on the City of Seattle right-ofway, and on property owned by City Investors, both of which abut the ConocoPhillips property. The purpose of this report is to summarize the results of these off-site assessment activities.

1.1 SITE LOCATION AND DESCRIPTION

COP Site No. 255353 is an operating service station located on the northeast corner of the intersection of Westlake Avenue North and Mercer Street in Seattle, Washington (Figure 1). ConocoPhillips also owns the adjacent parcel to the east. The service station was originally constructed by Unocal in 1965. Previous uses of the service station site and adjacent parcel include a lumber mill, creamery, brewery, and a Denny's restaurant. Prior to use for a lumber mill, the property was a wetland area and part of Lake Union, and was reclaimed using undocumented fill materials. The parcel adjacent to the service station is currently vacant and leased as a parking lot. The service station currently has four 10,000-gallon fuel underground storage tanks (UST), and six dispensing islands (Figure 2).

City Investors owns the property immediately north of the ConocoPhillips service station. The City Investors' property was developed and operated as a service station as early as 1921, and operated as such until 1964. Buildings and other site structures associated with the former service station on the western half of the City Investors' property were recently demolished and the property was paved with asphalt. A vacant building, formerly associated with a lumber mill, remains on the eastern half of the City Investors' property.

1.2 BACKGROUND AND PREVIOUS INVESTIGATIONS

In May 1980, a release of supreme leaded gasoline was confirmed by Unocal following inventory discrepancies. Approximately 80,000 gallons was estimated to have leaked over a four-month period. The release occurred from a product line just south of the western pump islands. The USTs and piping were immediately replaced, two product recovery trenches were installed on the service station property, and a number of recovery wells were installed. Recovery of free product began in June 1980. Recovery of free product was discontinued in October 1982 as amounts recovered dwindled.

In 1988, a soil vapor extraction (SVE) system was installed by Unocal utilizing the free product recovery wells and trenches for vapor extraction. Monitoring showed that SVE was effective at reducing residual free product across the site. The system was shut down in August 1990 to evaluate site conditions after extracted vapor concentrations had greatly decreased. The system was pulsed on/off several times during the 1990s and manual/passive free product recovery was employed.

Tosco acquired the service station from Unocal in 1997. In May 2001, a contractor was removing the waste oil and heating oil USTs at the site and broke a product line. An estimated 600 gallons of unleaded gasoline was released. The contractor had a vacuum truck on site and recovery of free product was initiated immediately from the UST excavation. Approximately 500 gallons of free product were removed from the excavation at that time.

Vacuum trucks continued to be used for enhanced fluid recovery (EFR) from adjacent monitoring wells near the release location on a biweekly to monthly basis throughout the following year. Approximately

33,800 gallons of total fluids were recovered during the EFR program, and approximately 25 tons of excavated materials were transported off site for treatment and recycling.

Free product had been measured in on-site monitoring wells following the May 2001 release. Subsequent data from those wells show that free product recovery using EFR was effective at removing impacts associated with the release.

To further remediate the station property and to prevent hydrocarbon migration off-site onto the adjacent properties, a new remediation system was designed and installed. The system consists of an air sparge/soil vapor extraction (AS/SVE) trench, SVE wells, and several deep air sparge wells. Approximately 1,410 tons of impacted soils were removed during installation of the trench and wells. The new remediation system was installed and began operating in August of 2003. Groundwater concentrations in a number of wells on site with residual TPH-G/BTEX showed dramatic improvement after the system began operating.

Additional on-site assessment was performed in June 2005. Assessment activities consisted of installing 24 soil borings across the two COP parcels. Each boring was sampled continuously from 5 feet below grade to the total depth explored. Seven of the borings were completed as groundwater monitoring wells. Nine of the borings were completed as potential air sparging or soil vapor extraction wells. A total of 130 soil samples were analyzed to document hydrocarbon concentrations at various depths on the COP parcels. Soil sample results indicate hydrocarbon impacts are mostly limited vertically in a smear-zone that varies from approximately 9 to 15 feet across the COP properties. Soil impacts exceeding cleanup levels extend off-site in several areas and are not delineated in some off-site areas. Groundwater samples taken from new and pre-existing wells, both on-site and from adjacent City rights-of-way, indicate elevated dissolved hydrocarbon concentrations are still present in several areas. Dissolved hydrocarbons in groundwater are not delineated in some off-site areas. A report documenting these activities titled *On-Site Environmental Assessment, Horizontal and Vertical Delineation* was issued on August 4, 2005.

2.0 OFF-SITE SOIL ASSESSMENT ACTIVITIES

Assessment activities were conducted by Delta on the City of Seattle Right-of-Way and City Investors property. Drilling was performed between July 20 and July 22, 2005. The following sections describe these field activities.

2.1 DRILLING

Drilling activities were performed between July 20 and July 22, 2005 and included advancement of two soil borings on the City right-of-way and two soil borings on the City Investors property (SB-19 through SB-22). The location of each soil boring is shown on Figure 2. Prior to drilling, Delta coordinated the location and marking of underground utilities in the vicinity of the proposed drilling locations. The utilities survey included contacting the local utility locating service and contracting with a private locating service.

Each boring was cleared to five feet below ground surface with an air-knife prior to drilling. During airknifing, shallow soil samples were collected from each boring for field observations using a hand-auger. Following air-knifing, each boring was advanced using hollow-stem auger drilling equipment provided by Cascade Drilling, Inc. (Cascade). Each boring was advanced to a depth of 20 feet below ground surface. During soil boring installation, field work was observed by a representative of Urban Redevelopment, LLC.

Four borings (SB-1R, SB-4R, SB-5R, and MW-54R) were also installed on the COP property during this time. These borings were installed to collect duplicate soil samples for re-analysis, due to mis-handling of the original samples by the laboratory during the June 2005 assessment. The results of these additional samples will be presented in a separate report.

During drilling, soil samples were collected continuously using a split-spoon sampler driven ahead of the drill bit into undisturbed formation materials. A Delta geologist examined and described each sample using the Unified Soil Classification System and standard geologic techniques. Each soil sample was field screened for the presence of volatile organic vapors using a photoionization detector (PID).

A description of each sample was recorded on a boring log form. Down-hole drilling and sampling equipment was steam cleaned prior to and between each boring to prevent cross-contamination. Drill cuttings and decontamination fluids were placed in labeled 55-gallon drums and temporarily stored on-site. Boring logs, illustrating sampling intervals and lithologic descriptions, are included in Appendix A.

2.2 SUBSURFACE CONDITIONS

Concrete slabs, approximately 10 inches in thickness, were encountered directly beneath the asphalt surface of each boring. The concrete encountered in the borings located on the City Investors property (SB-19 and SB-22) appeared to be associated with former site structures, while the concrete slabs encountered in the borings located in Westlake Avenue (SB-20) and Valley Street (SB-21) appeared to be associated with former street surfacing. Subsurface soil encountered during drilling of borings located on City Investors property consisted of sands and silts with varying amounts of gravel and clay directly beneath the concrete to depths of approximately 11 and 15 feet below ground surface. Subsurface soil transitioned to a layer of wood debris, with sand and silt, to the total depth explored of 20 feet below ground surface. Subsurface soil encountered during drilling of borings located in the streets consisted of silty sands and clayey silts with varying amounts of gravel to the total depth explored of 20 feet below ground surface. Wood fragments were encountered in the street borings at approximately 15 feet below

ground surface. Groundwater was encountered during drilling at depths ranging from approximately 8.5 to 10 feet below ground surface.

Field screening of soil samples with the PID indicated the presence of hydrocarbon-impacted soil beneath the former automobile servicing structure at the southern portion of the City Investors property (SB-19) and beneath Valley Street (SB-21) north of the City Investors property. The PID malfunctioned during drilling of SB-21, therefore volatile organic vapors were not screened in soils below the 14-foot depth. Additionally, vapors could not be screened in soils during subsequent drilling of SB-22, located near a former fuel dispenser in the northern portion of the City Investors property. Volatile organic vapors were detected at elevated concentrations with the PID at soil depths between 8 and 15 feet below ground surface in borings SB-19 and SB-21 up to 178 parts per million (ppm). PID readings are included on the boring logs in Appendix A.

2.3 WASTE MANAGEMENT

Soil cuttings and decontamination fluids generated during drilling activities were placed in labeled 55-gallon drums and temporarily stored on the ConocoPhillips property. On July 22, 2005, a total of nine drums of soil were transported to Waste Management's Columbia Ridge Landfill located in Arlington, Oregon, and a total of three drums of water were transported to the Emerald Petroleum Services facility located in Seattle, Washington for subsequent disposal. Associated waste disposal documentation is included as Appendix B.

2.4 SOIL SAMPLE COLLECTION AND ANALYSES

Shallow soil samples were collected from each boring during air-knifing using a hand auger at approximate depths of two feet and four feet below ground surface. Following air-knifing, soil samples were collected continuously during drilling using a split-spoon sampler driven ahead of the drill bit into undisturbed formation materials. Soil samples collected during drilling were generally preserved for laboratory analysis from depths of five, ten, fifteen, and twenty feet below ground surface. The samples were placed in laboratory-prepared glass jars and stored in a chilled cooler pending delivery to the analytical laboratory. Per recent Washington State Ecology requirements regarding soil sampling for volatile organic compound analyses, the soil samples were also preserved in the field using EPA Method 5035A.

A total of 24 soil samples were submitted to North Creek Analytical, Inc. of Bothell, Washington for quantitative chemical analysis. The soil samples were analyzed for the following parameters: total petroleum hydrocarbons in the gasoline range (TPH-G) using Northwest Method NWTPH-Gx; total petroleum hydrocarbons in the diesel and heavy oil ranges (TPH-D and TPH-O) using Northwest Method NWTPH-Dx (with silica gel cleanup to remove biogenic interference); benzene, toluene, ethylbenzene, total xylenes (BTEX), methyl tert-butyl ether (MTBE), and naphthalene using EPA Method 8260B; and total lead using EPA Method 6020.

2.5 SOIL ANALYTICAL RESULTS

Laboratory analytical results indicate that concentrations of TPH-G, BTEX compounds, and naphthalene are present above respective Washington State Model Toxics Control Act (MTCA) Method A soil cleanup levels in soils beneath the City Investors property (SB-19 and SB-22). Additionally, benzene is present above the MTCA Method A soil cleanup level in soil beneath the City Right-of-Way at Valley Street (SB-21), north of the City Investors property.

Maximum concentrations of TPH-G, benzene, ethylbenzene, total xylenes, and naphthalene were detected in soil from 10 feet below ground surface from boring SB-19, located in the vicinity of a former automobile servicing building. The concentrations were detected at 3,420 milligrams per kilogram (mg/kg), 16.2 mg/kg, 76.8 mg/kg, 123 mg/kg, and 23.6 mg/kg, respectively. Boring SB-22, located in the vicinity of a former fuel dispenser, contained concentrations of TPH-G, benzene, and/or naphthalene exceeding MTCA Method A cleanup levels at depths between four and fifteen feet below ground surface. Maximum TPH-G was detected in SB-22 at the 10-foot depth, at a concentration of 1,380 mg/kg, while maximum benzene and naphthalene were both detected in the boring at the 5-foot depth, at 3.34 mg/kg and 9.98 mg/kg, respectively. Benzene concentrations exceeding the MTCA Method A cleanup level in SB-21, in Valley Street, ranged from 0.0442 mg/kg to 1.02 mg/kg, at depths between four and ten feet below ground surface.

According to the analytical report, concentrations of TPH-D, TPH-O, toluene, MTBE, and total lead were either not detected above laboratory reporting limits or were detected below respective MTCA Method A soil cleanup levels. Additionally, detectable concentrations of TPH-D were flagged by the analytical laboratory as either overlap from a heavy oil range product or as having a hydrocarbon pattern that resembles a jet fuel product. Soil analytical results are presented in Table 1. Concentrations of TPH-G in soil are shown on Figure 3 and concentrations of benzene in soil are shown on Figure 4. The soil analytical laboratory report is included in Appendix C.

3.0 GROUNDWATER MONITORING

At the request of ConocoPhillips and with authorization from the City of Seattle and City Investors, Delta performed a comprehensive groundwater monitoring event between July 25 and July 26, 2005. The scope of work included monitoring a total of 42 wells, of which eleven wells are associated with the City Investors property (SMW-2S, SMW-3, SMW-4, SMW-5, MW-8, MW-32, MW-49, and MW-101, MW-102 MW-103, and MW-105). The remaining 31 wells are associated with the ConocoPhillips property.

3.1 GROUNDWATER SAMPLE COLLECTION AND ANALYSES

Delta field personnel were not able to locate Well MW-102 on the City Investors property, so groundwater could not be monitored from the well during this event. Delta believes that Well MW-102 is located directly beneath one of a group of 55-gallon drums observed in the approximate location of the well. The drums appeared to contain drill cuttings from a previous investigation performed on the City Investors property and could not be moved by Delta personnel. Wells SMW-2S and MW-32, also located on City Investors property, could not be sampled during this event. The casing of Well SMW-2S was damaged such that groundwater samples could not be collected from the well, and Well MW-32 appeared to be abandoned in place.

Prior to sample collection, a Delta field technician measured the depth to water in each well with an electronic water level meter and estimated total volume of water standing in the well casing (pore volume). Using disposable polyethylene bailers, a minimum of three pore volumes of water were removed from each well prior to sample collection. Well MW-13, which is located in Westlake Avenue and is associated with the ConocoPhillips property, purged dry and did not recharge with enough water to collect samples from the well. Purge water was treated through granular activated carbon to remove hydrocarbon impacts, if present, and subsequently discharged in a vegetated area on-site.

Groundwater samples were collected from a total of 38 wells using disposable polyethylene bailers and placed in laboratory-prepared glass containers. The sample containers were stored in a chilled cooler pending delivery to the analytical laboratory. The samples were submitted to North Creek Analytical, Inc. for quantitative chemical analysis. The samples were analyzed for TPH-G using Northwest Method NWTPH-Gx, for TPH-D and TPH-O using Northwest Method NWTPH-Dx (with silica gel cleanup to remove biogenic interference), and for BTEX, MTBE, naphthalene using EPA Method 8260B.

3.2 GROUNDWATER ANALYTICAL RESULTS

Laboratory analytical results indicate that TPH-G was detected above the MTCA Method A groundwater cleanup level of 800 micrograms per liter (ug/l) in groundwater from 13 wells. Results also indicate that one or more BTEX compounds were detected above respective MTCA Method A groundwater cleanup levels (5 ug/l, 1,000 ug/l, 700 ug/l, and 1,000 ug/l, respectively) in groundwater from 17 wells, and that naphthalene was detected above the MTCA Method A cleanup level of 160 ug/l in groundwater from six wells. MTBE was not detected above laboratory reporting limits in groundwater from 34 wells and was detected below the MTCA Method A cleanup level of 20 ug/l in groundwater from four wells.

Well MW-19 contained maximum concentrations of TPH-G and xylenes at 96,400 ug/l and 16,590 ug/l, respectively. Well MW-8 contained maximum concentrations of benzene, ethylbenzene, and naphthalene at 4,700 ug/l, 4,270 ug/l, and 1,010 ug/l, respectively. Toluene was detected at the maximum concentration of 7,460 ug/l in the sample collected from Well MW-105. MTBE was detected in groundwater from Wells MW-3A, MW-35, MW-47, and MW-50, at concentrations ranging from 1.06 ug/l to 4.29 ug/l.

According to the laboratory analytical results, TPH-D was detected in groundwater samples collected from 19 wells, at concentrations ranging from 253 ug/l (MW-59) up to 8,320 ug/l (MW-16). However, the laboratory noted that most of the TPH-D analytical results were either due to overlap from a gasoline range product, overlap from a heavy oil range product, or overlap from both. Fourteen samples contained TPH-D above the MTCA Method A groundwater cleanup level of 500 ug/l. Concentrations of TPH-O were detected in samples collected from 10 wells, ranging from 571 ug/l (MW-57) up to 20,700 ug/l (MW-16), all of which exceed the MTCA Method A cleanup level of 500 ug/l.

A summary of groundwater analytical results for the July 2005 event is included in Table 2 and historical groundwater monitoring data are presented in Table 3. Groundwater analytical reports are included in Appendix D. Copies of groundwater monitoring field data are included in Appendix E. Additionally, concentrations of TPH-G and benzene in groundwater sampled during the July 2005 event are shown on Figures 5 and 6.

4.0 SUMMARY AND CONCLUSIONS

Assessment activities were performed on the City Investors property and on the City of Seattle right-ofway adjacent to the ConocoPhillips site to determine the horizontal and vertical extent of impact by petroleum hydrocarbons. A total of two soil borings were advanced on the City right-of-way and two soil borings were advanced on the City Investors property between July 20 and July 22, 2005.

During this site assessment, concentrations of petroleum hydrocarbons in subsurface soils were identified above MTCA Method A soil cleanup levels in the two soil borings that were advanced on the City Investors property and in one of the soil borings advanced on the City right-of-way. Maximum concentrations of TPH-G, BTEX, and naphthalene were identified in soil from a depth of 10 feet below ground surface on the City Investors property in the vicinity of a former automobile servicing building (SB-19). Elevated concentrations of TPH-G, benzene, and naphthalene were present above MTCA Method A cleanup levels in soil from depths ranging between 4 and 15 feet below ground surface in the vicinity of a former fuel dispenser on the City Investors property (SB-22). Benzene was present above the cleanup level in soil from depths between 4 and 10 feet below ground surface in Valley Street, north of the City Investors property (SB-20) did not contain hydrocarbon impacts above respective cleanup criteria. Overall, impacts appear to be greatest at the water table interface and in shallow soils adjacent to the former fuel dispenser.

Laboratory analysis of groundwater sampled during July 2005 indicates that concentrations of TPH, BTEX, and naphthalene are present above MTCA Method A cleanup levels in groundwater beneath the ConocoPhillips property, the City Investors property, and beneath surrounding City streets located east, west, and south of the two properties. Wells located on the ConocoPhillips property with impacts above MTCA Method A cleanup criteria include MW-45, MW-50 through MW-55, and MW-57 through MW-60. These on-site wells are primarily located along the northern property boundary, on the eastern portion of the property in the parking lot, and in areas surrounding the station building, USTs, and fuel dispensers. Wells on the City Investors property with impacts above the cleanup criteria include MW-49 located in the center portion of the property, SMW-4 located in the northwest portion of the property, and SMW-5 located in the southwest portion of the property. COP wells located in surrounding streets with impacts above cleanup criteria include MW-16 in Westlake Avenue north of the site. City Investors wells located in surrounding streets with impacts above cleanup criteria include MW-40 along Mercer Street south of the site. City Investors wells located in surrounding streets with impacts above cleanup criteria include MW-10 along Terry Avenue east of the City Investors property, and MW-105 along Westlake Avenue west of the ConocoPhillips property.

The findings of this assessment indicate that hydrocarbons are present in soil and groundwater beneath areas of off-site properties adjacent to the ConocoPhillips property. An additional off-site assessment is being planned to further investigate hydrocarbon impacts along Westlake Avenue, Terry Avenue, and Mercer Street, and in additional areas of the City Investors property where data gaps exist.

5.0 LIMITATIONS

The recommendations contained in this report represent Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client.

The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of Delta's Client and anyone else specifically listed on this report. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this report.

cc: Washington State Department of Ecology – Northwest Region, Bellevue, Washington

TABLE 1 LIMITED OFF-SITE ASSESSMENT - SOIL ANALYTICAL RESULTS ConocoPhillips Site No. 255353

600 Westlake Avenue N.

Seattle, Washington

Sample I.D.	Sample Date	Sample Depth (feet)	TPH- Gasoline (mg/kg)	TPH- Diesel (mg/kg)	TPH- Oil (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)	Total Lead (mg/kg)
SB-19-2	07/21/05	2	<7.76	20.3 ^a	70.0	<0.00119	<0.00119	<0.00317	<0.00792	<0.000792	<0.00396	28.4
SB-19-4	07/21/05	4	<7.91	<10.0	<25.0	<0.00125	<0.00125	<0.00334	<0.00835	<0.000835	<0.00417	64.4
SB-19-5	07/21/05	5	<3.91	11.9 ^a	50.9	<0.00150	0.00218	<0.00400	<0.0100	<0.00100	<0.00500	95.1
SB-19-10	07/21/05	10	3,420	112 ^b	277	16.2	<1.55	76.8	123	<7.74	23.6	7.66
SB-19-15	07/21/05	15	<3.35	33.2 ^b	163	0.0110	0.00254	0.0878	0.151	<0.00126	0.0999	14.9
SB-19-20	07/21/05	20	4.46	35.5 ^a	109	0.0181	0.00140	0.0383	0.0595	<0.000862	0.0120	8.06
SB-20-2	07/21/05	2	15.3	<10.0	<25.0	0.00442	<0.00150	<0.00400	<0.0100	<0.00100	<0.00500	4.75
SB-20-4	07/21/05	4	8.74	29.2 ^a	56.9	0.0116	0.00189	<0.00339	<0.00847	<0.000847	<0.00424	7.21
SB-20-5	07/21/05	5	<7.65	<10.0	<25.0	<0.00625	<0.00625	<0.0167	<0.0417	<0.00417	<0.0208	5.68
SB-20-10	07/21/05	10	<10.5	12.8 ^a	<25.0	0.00232	<0.00150	<0.00400	<0.0100	<0.00100	<0.00500	7.23
SB-20-15	07/21/05	15	<3.91	10.4 ^a	<25.0	0.00836	<0.00150	<0.00400	<0.0100	<0.00100	<0.00500	15.7
SB-20-20	07/21/05	20	6.93	33.8 ^a	200	0.00696	<0.00132	<0.00351	<0.00877	<0.000877	<0.00439	4.21
SB-21-2	07/21/05	2	18.1	<10.0	<25.0	0.00516	<0.00150	<0.00400	0.0110	<0.00100	<0.00500	16.9
SB-21-4	07/21/05	4	10.2	21.6 ^a	60.1	0.0754	0.00542	0.00896	0.0255	<0.000766	<0.00383	95.1
SB-21-5	07/21/05	5	8.31	12.0 ^a	44.9	0.0442	0.00506	0.0165	0.0454	<0.00172	<0.00859	6.63
SB-21-10	07/21/05	10	22.5	22.4 ^b	38.0	1.02	<0.221	2.61	1.53	<1.11	0.95	3.87
SB-21-15	07/21/05	15	<3.94	<10.0	<25.0	0.00538	0.00296	<0.00400	<0.0100	<0.00100	<0.00500	2.23
SB-21-20	07/21/05	20	<3.96	<10.0	<25.0	0.00275	0.00601	0.00546	0.0237	<0.00100	<0.00500	22.8
SB-22-2	07/21/05	2	17.9	<10.0	<25.0	0.0666	<0.0283	<0.0283	<0.0849	<0.141	0.0723	190
SB-22-4	07/21/05	4	1,090	587 ^b	1,490	<0.658	<0.658	0.780	<1.97	<3.29	7.99	53.3
SB-22-5	07/21/05	5	758	169 ^b	467	3.44	<0.356	3.59	1.14	<1.78	9.98	50.9
SB-22-10	07/21/05	10	1,380	382 ^b	995	1.76	<0.360	5.78	2.69	<1.80	5.96	50.3
SB-22-15	07/21/05	15	99.0	12.4 ^b	29.7	0.241	<0.0745	0.350	0.672	<0.372	0.336	6.37
SB-22-20	07/21/05	20	16.5	12.9 ^a	<25.0	0.0112	0.00282	0.0167	0.0224	<0.000859	0.0190	7.12

TABLE 1 LIMITED OFF-SITE ASSESSMENT - SOIL ANALYTICAL RESULTS

ConocoPhillips Site No. 255353 600 Westlake Avenue N.

Seattle, Washington

Sample I.D.	Sample Date	Sample Depth (feet)	TPH- Gasoline (mg/kg)	TPH- Diesel (mg/kg)	TPH- Oil (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)	Total Lead (mg/kg)
MTCA Method Level for Unre		•	30 [°]	2,000	2,000	0.03	7	6	9	0.1	5	250
Notes: mg/kg = milligi <n =="" below="" the<br="">TPH as Gasoli TPH as Diesel BTEX Compose Total Lead - A Values in BOL</n>	e detection lir ine - Analysis l and Oil - Ana unds, MTBE (nalysis by EF	nit by Northwes alysis by Nor (Methyl tert-E A Method 60	thwest Metho Butyl Ether), a 020.	od NWTPH- Ind Naphtha	lene - Analy	sis by EPA N	lethod 8260	В				
^a Results in the diesel organics range are primarily due to overlap from a heavy oil range product. ^b Hydrocarbon pattern most closely resembles a jet fuel product.												
	^c MTCA Method A Cleanup Level for TPH-Gasoline is 100 mg/kg if benzene is not detectable in soil.											

TABLE 2JULY 2005 GROUNDWATER MONITORING RESULTSConocoPhillips Site No. 255353

Seattle, Washington

Sample I.D.	Sample Date	TPH- Gasoline (µg/l)	TPH- Diesel (µg/l)	TPH- Oil (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Xylenes (µg/l)	MTBE (µg/l)	Naphthelene (µg/l)	DO (mg/l)	DTW (feet)	SPH (feet)	GWE (feet)
MW-3A	07/25/05	702	<250	<500	4.60	0.86	23.0	47.1	1.06	2.16	3.2	10.56	0.00	
MW-8	07/26/05	81,600	641	<500	4,700	5,280	4,270	15,450	<1.00	1,010	0.3	9.96	0.00	
MW-13	07/26/05			Not san	npled - well	did not rec	harge after	purging dr	у		1.4	12.06	0.00	
MW-16	07/26/05	358	8,320 ^c	20,700	42.6	0.340	<0.200	1.25	<1.00	<0.500	0.3	11.08	0.00	
MW-18	07/26/05	1,400	6,930	13,200	35.2	3.98	6.23	33.4	<1.00	30.9	0.9	11.19	0.00	
MW-19	07/26/05	96,400	4,050 ^d	2,340	201	229	<20.0	16,590	<1.00	805	4.9	12.14	0.00	
MW-32A	07/25/05	277	<250	<500	11.2	0.270	7.04	2.83	<1.00	2.28	2.2	12.17	0.00	
MW-33	07/25/05	79.3	<250	<500	3.27	0.230	1.95	1.78	<1.00	1.27	5.2	11.73	0.00	
MW-34	07/25/05	<50.0	<250	<500	0.210	<0.200	1.85	1.31	<1.00	<0.500	2.1	11.80	0.00	
MW-35	07/25/05	296	<250	<500	2.09	0.280	0.980	1.15	1.14	0.970	1.6	10.42	0.00	
MW-36	07/25/05	<50.0	<250	<500	0.55	<0.200	<0.200	<0.50	<1.00	<0.500	2.3	8.15	0.00	
MW-37	07/26/05	59.4	<250	<500	<0.200	<0.200	<0.200	<0.50	<1.00	0.520	10.1	11.37	0.00	
MW-38	07/26/05	<50.0	<250	<500	<0.200	<0.200	<0.200	<0.50	<1.00	<0.500	0.4	7.60	0.00	
MW-40	07/26/05	216	596 ^c	1,600	<0.200	<0.200	<0.200	<0.50	<1.00	<0.500	0.2	11.35	0.00	
MW-41	07/26/05	<50.0	258 ^c	977	<0.200	<0.200	<0.200	<0.50	<1.00	<0.500	5.7	15.88	0.00	
MW-42	07/26/05	117	<250	<500	2.95	0.340	<0.200	0.900	<1.00	<0.500	0.9	9.81	0.00	
MW-43	07/26/05	<50.0	<250	<500	4.24	<0.200	<0.200	<0.500	<1.00	<0.500	0.7	11.70	0.00	
MW-44	07/26/05	<50.0	<250	<500	<0.200	<0.200	<0.200	<0.500	<1.00	<0.500	5.2	8.76	0.00	
MW-45	07/25/05	564	<250	<500	18.6	14.6	16.7	113.2	<1.00	7.51	3.2	8.98	0.00	
MW-47	07/25/05	162	<250	<500	<0.200	<0.200	<0.200	<0.500	1.18	<0.500	1.0	11.36	0.00	
MW-48	07/25/05	334	<250	<500	<0.200	<0.200	<0.200	<0.500	<1.00	<0.500	0.6	9.48	0.00	
MW-49	07/25/05	313	2,060	6,590	<0.200	<0.200	<0.200	0.300	<1.00	0.550	3.2	3.82	0.00	
MW-50	07/25/05	1,500	<250	<500	16.8	3.23	36.9	50.11	4.29	7.04	1.7	10.90	0.00	
MW-51	07/25/05	<50.0	697 ^c	826	<0.200	<0.200	<0.200	<0.500	<1.00	<0.500	2.9	11.74	0.00	
MW-52	07/25/05	401	368	<500	14.5	<0.200	8.24	3.12	<1.00	2.37	1.5	10.60	0.00	
MW-53	07/25/05	450	310 ^b	<500	20.4	0.610	8.96	13.14	<1.00	9.15	2.5	11.75	0.00	
MW-54	07/25/05	177	<250	<500	5.26	0.280	0.680	3.11	<1.00	0.990	0.2	9.51	0.00	
MW-55	07/25/05	1,850	1,390 ^a	<500	0.480	1.69	2.57	1.99	<1.00	908	2.3	10.92	0.00	

TABLE 2 JULY 2005 GROUNDWATER MONITORING RESULTS ConocoPhillips Site No. 255353

Seattle, Washington

MTCA Method Level for Grou	-	800 ^e	500	500	5	1,000	700	1,000	20	160	-	-	-	-
SMW-5	07/25/05	3,110	835 ^b	<500	40.2	0.790	41.8	21.48	<1.00	24.6	0.6	10.40	0.00	
SMW-4	07/25/05	14,500	6,490	1,110	2,120	<20.0	908	<50.0	<1.00	312	1.1	9.04	Sheen	
SMW-3	07/25/05	<50.0	<250	<500	<0.200	<0.200	<0.200	<0.500	<1.00	<0.500	1.2	11.19	0.00	
SMW-2S	07/25/05			Ca	sing damag	ed - unable	e to collect	sample		-,		8.28		
MW-105	07/26/05	62,000	821 ^b	<500	1,970	7,460	2,640	12,750	<1.00	723	1.4	10.88	0.00	
MW-103	07/26/05	<50.0	<250	<500	<0.200	<0.200	<0.200	<0.500	<1.00	<0.500	1.3	8.61	0.00	
MW-102	07/25/05				Well	could not b	e located							
MW-101	07/25/05	6,960	432 ^b	<500	39.1	61.4	88.0	429	<5.00	19.7	0.1	9.45	0.00	
MW-60	07/25/05	48,800	2,820 ^b	791	3,670	4,730	1,570	7,720	<1.00	299	1.8	11.87	0.00	
MW-59	07/25/05	4,680	253	<500	307	1.24	181	201	<4.00	64.3	1.7	12.30	0.00	
MW-58	07/25/05	7,750	673 ^b	<500	1,420	1,610	379	1,687	<1.00	57.0	2.0	11.85	0.00	
MW-57	07/25/05	11,400	418 ^b	571	614	2,680	436	2,647	<1.00	98.0	0.7	10.83	0.00	
MW-56	07/25/05	220	<250	<500	3.81	<0.200	3.96	<0.500	<1.00	<0.500	2.1	11.24	0.00	
Sample I.D.	Sample Date	TPH- Gasoline (µg/l)	TPH- Diesel (µg/l)	TPH- Oil (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Xylenes (µg/l)	MTBE (µg/l)	Naphthelene (µg/l)	DO (mg/l)	DTW (feet)	SPH (feet)	GWE (feet)
		TDU	TDU	три			Eth. d							

Notes:

µg/I = micrograms per liter

TOC = Relative top of casing elevation

DO = Dissolved oxygen concentration, measured in the field with a dissolved oxygen meter

DTW = Depth to water

SPH = Separate-phase hydrocarbon thickness

GWE = Groundwater table elevation relative to DTW data; corrected for SPH where applicable using a specific gravity of 0.80

<n = Below the detection limit

TPH as Gasoline - Analysis by Northwest Method NWTPH-Gx

TPH as Diesel and Oil - Analysis by Northwest Method NWTPH-Dx

BTEX Compounds - Analysis by EPA Method 8260B

MTBE (methyl tert-butyl ether) - Analysis by EPA Method 8260B

Values in BOLD are detectable concentrations exceeding the MTCA Method A groundwater cleanup level.

^a The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

^b Results in the diesel range organics range are primarily due to overlap from a gasoline range product.

^c Results in the diesel range organics range are primarily due to overlap from a heavy oil range product.

^d The sample appears to have three distinct products: gasoline, diesel, and motor oil. The result in the diesel ranges could be exaggerated due to overlap from both the gasoline and motor oil products

^e MTCA Method A Cleanup Level for TPH-Gasoline is 1,000 ug/l if benzene is not detectable in groundwater.

	MW-24 🔘	- N	1.1.40	
			/W-40	
	LEGEND			
MW-3)	COP GROUNDWATER MONITORING WELL			
MW-105 🔵	CITY INVESTORS' GROUNDWATER MONITORING WELL			0 50 FT
GSB4	SOIL BORING INSTALLED BY GARY STRUTHERS & ASSOCIATES			
TP-8	TEST PIT INSTALLED BY HART CROWSER			APPROX. SCALE
B6	SOIL BORING INSTALLED BY HART CROWSER			
B15 🔘	SOIL BORING INSTALLED BY URBAN REDEVELOPMENT			
	SOIL VAPOR EXTRACTION WELL LOCATION		FIGURE 2	
DAS-4 🔶	AIR SPARGING WELL LOCATION		SITE MAP WITH DRILLIN JULY 2005 OFF-SITE A	
SB-4 -	SOIL BORING LOCATION - JUNE 2005			
SB-1/DAS-6 -	POTENTIAL AS WELL LOCATION - JUNE 2005		CONOCOPHILLIPS SIT 600 WESTLAKE AVEN	
SB-6/VE-6	POTENTIAL SVE WELL LOCATION - JUNE 2005		SEATTLE, WASH	
+	SOIL BORING LOCATION – JULY 2005	PROJECT NO. WA255-3514-1	DRAWN BY TS 8/29/05	
		FILE NO. WA255-3514-1	PREPARED BY TS 8/29/05	Delta
BASED ON MAPS P	ROVIDED BY GEOENGINEERS, INC. AND ENVIRONMENTAL RESOLUTIONS, INC.	REVISION NO. 0	REVIEWED BY EL	Environmental Consultants, Inc.

	MW-24 🔘		~ M	W-40	
			M	W-40	
	LEGEND	BOI	RING # BENZENE	CONCENTRATION (MG/	KG) IN SOIL
MW-3 🔘	COP GROUNDWATER MONITORING WELL	DEPTH		FROM BORING @ DEPTH	
<u>137</u>	TPH-G CONCENTRATION IN GROUNDWATER (ug/I) – JUNE 2005				0 50 FT
MW-105 🔵	CITY INVESTORS' GROUNDWATER MONITORING WELL	NOTE.	BOLD TYPE INDICATES	S CONCENTRATIONS	
GSB4	SOIL BORING INSTALLED BY GARY STRUTHERS & ASSOCIATES	EXCEE	D THE MTCA METHOD	A CLEANUP LEVEL,	APPROX. SCALE
тр-8	TEST PIT INSTALLED BY HART CROWSER			E SAMPLES EXCEED THE LEANUP LEVEL (0.03 MG	
B6 🔴	SOIL BORING INSTALLED BY HART CROWSER				
B15 🔘	SOIL BORING INSTALLED BY URBAN REDEVELOPMENT			FIGURE 4	
	SOIL VAPOR EXTRACTION WELL LOCATION		1		
DAS-4 🔶	AIR SPARGING WELL LOCATION			JULY 2005 OFF-SITE AS	SESSMENT
SB-4 -	SOIL BORING LOCATION - JUNE 2005			CONOCOPHILLIPS SITE 600 WESTLAKE AVEN	
SB-1/DAS-6 -	POTENTIAL AS WELL LOCATION - JUNE 2005			SEATTLE, WASHIN	
SB-6/VE-6 -	POTENTIAL SVE WELL LOCATION - JUNE 2005		PROJECT NO. WA255-3514-1	DRAWN BY TS 8/29/05	
+	SOIL BORING LOCATION – JULY 2005		FILE NO. WA255-3514-1	PREPARED BY TS 8/29/05	Delta
BASED ON MAPS PF	ROVIDED BY GEOENGINEERS, INC. AND ENVIRONMENTAL RESOLUTIONS, INC.		REVISION NO. 0	REVIEWED BY EL	Environmental Consultants, Inc.

LEGEND

- MW-3
 COP GROUNDWATER MONITORING WELL
 - 137 TPH-G CONCENTRATION IN GROUNDWATER (ug/l) JULY 2005
- MW-105 CITY INVESTORS' GROUNDWATER MONITORING WELL
- GSB4 O SOIL BORING INSTALLED BY GARY STRUTHERS & ASSOCIATES
- TP-8 🔲 TEST PIT INSTALLED BY HART CROWSER
- B6 SOIL BORING INSTALLED BY HART CROWSER
- B15 O SOIL BORING INSTALLED BY URBAN REDEVELOPMENT
- VE-6 🔺 SOIL VAPOR EXTRACTION WELL LOCATION
- DAS-4 + AIR SPARGING WELL LOCATION
- SB-4 SOIL BORING LOCATION JUNE 2005
- SB-19 🔶 SOIL BORING LOCATION JULY 2005

BASED ON MAPS PROVIDED BY GEOENGINEERS, INC. AND ENVIRONMENTAL RESOLUTIONS, INC.

SB-19 - SOIL BORING LOCATION - JULY 2005

PROJECT NO. WA255-3514-1	DRAWN BY TS 8/29/05	
FILE NO. WA255-3514-1	PREPARED BY TS 8/29/05	Delta
REVISION NO. 0	REVIEWED BY EL	Environmental Consultants, Inc.

BASED ON MAPS PROVIDED BY GEOENGINEERS, INC. AND ENVIRONMENTAL RESOLUTIONS, INC.

APPENDIX A

BORING LOGS AND WELL CONSTRUCTION DETAILS

SOIL CLASSIFICATION GRAPHIC SYMBOLS

MAJOR DIVISIONS	SYM	IBOLS	TYPICAL SOIL DESCRIPTIONS
	GW		Well graded gravels or gravel-sand mixtures, little or no fines
GRAVELS	GP		Poorly graded gravels or gravel-sand mixtures, little or no fines
	GM		Silty gravels, gravel-sand-silt mixtures
	GC		Clayey gravels, gravel-sand-clay mixtures
	SW		Well graded sands or gravelly sands, little or no fines
	SP		Poorly graded sands or gravelly sands, little or no fines
SANDS	SM		Silty sands, sand-silt mixtures
	SC/SM		Clayey sands with a touch of gravel
	SC		Clayey sands, sand-clay mixtures
	ML		Inorganic silts and very fine sands, rock flour, silty or clayey sands or clayey silts with slight plasticity
SILTS & CLAYS	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
LL<50	OL		Organic silts and organic silty clays of low plasticity
	MH		Inorganic silts, micaceous or diatomaceous fine sandy or silty soils elastic silts
SILTS & CLAYS	СН		Inorganic clays of high plasticity, fat clays
LL>50	OH		Organic clays of medium to high plasticity, organic silty clays, organic silts
HIGHLY ORGANIC SOILS	PT		Peat and other highly organic soils
FILL MATERIAL	FILL		
ASPHALT/Concre	te		
BENTONITE			Water Level - First Encounter
SAND			
			Static Water Level

			PROJECT	NO:	WA255-3	3514-1	CLIE	NT:	ConocoPhillips	BORING/WELL NO: SB-19
			LOGGED		J. North		LOC	ATION:	600 Westlake Ave N, Seat	tle, WA PAGE 1 OF 1
		to	DRILLER		CDI			E DRILLE		Location Map
IL	JE	ta		METHOD:				E DIAMET		
	_			G METHOD:				E DEPTH		
En	vironm	nental	CASING		NA NA			L DIAME		See Figure 2
Cor	nsultan	ts, Inc.	SLOT SIZ GRAVEL		NA			L DEPTH		
						1			EASTING	
					-		-			
	ompletion Gasing Casing	Static Water Level	Moisture Content	PID Reading (ppm)	Penetration (blows/6")	Depth (feet)	Recovery Sample	Soil Type		OLOGY / DESCRIPTION
Conc.	_					_			Asphalt (3")	
20 C						1 —			Concrete (10")	
						_			Air-knifed/vac-cl	eared to 5'
						2—		-	SILT with Gravel; dense	a
	_					-		1		<u>,</u>
						3—		1		
	_					_		1		
						4 —		1	SAND with Silt; medium	n sand
						5				
					7	5				, sand fine, with fine to coarse
			Moist	0.6	7	6 —		SM	gravel, 10-15 % silt, loo	se, moist, ~10" recovery
					_ 12	_				
			Maint	4.0	5	7 —		CL/ML	Clayey SILT; gray, poor	r recovery, with fine sand, loose/ moist
			Moist	4.9	5 5	_				
					5 5	8 —		SM	Silty SAND: gray sand	fine to medium, trace fine gravel,
			Moist	6.1	5	-			dense, moist	nine to medium, trace nine gravel,
			molet	0.1	7	9 —				
ш		\sum			2	10			(As above, mois	ture increases at ~10')
TONITE				0.0	2	10 —				
2					2	11 —				
BEN					2					sand fine to coarse, with fine to
m			Wet	178	223	12—			medium gravel, 5-10%	silt, loose, wet
					3	_		_		
			14/24	40	2	13 —				wood debris at ~13.5', increasing
	—		Wet	49	2	-		-	siit and clay at	~13.5' dense, wet)
					4	14 —		-	(1" recovery, gra	avel)
	_		Wet	18					(1 1000vory, gre	·····
					3	15 —		1		
	_				5	16-			Wood Debris with Silty	SAND; sand fine to medium, 5-10% silt,
			Wet	3.3	6	16—			loose, wet, poor recove	
					5	17—				
	_			-	5			-	(As above, poor	recovery)
			Wet	2.4	8	18—		-		
	_				6	-				
			Wet	1.6	2 4	19—		1	(Poor recovery	wood with sand/silty sand, fine to
	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.0	6			1	medium, loose	-
					ľ	20—		1	incolori, ioooo	, ···,
	_							1		
						21 —		1	BOTTOM OF HOLE @	20'
						22				
								<u> </u>		

			PROJECT	NO:	WA255-3	3514-1	CLIE	NT:	ConocoPhillips	BORING/WELL NO: SB-20	
			LOGGED	BY:	J. North		LOC	ATION:	600 Westlake Ave N, Seat	tle, WA PAGE 1 OF 1	
		1 -	DRILLER:		CDI		DATE		D: 7/21/2005	Location Map	
	\mathbf{P}	ta	DRILLING	METHOD:	HSA		HOLE		TER: 8"		
		ⁱ u	SAMPLIN	G METHOD:	SS		HOLE	E DEPTH:	20'		
F		antal	CASING 1	TYPE:	NA		WEL		rer: NA See Figure 2		
	vironm		SLOT SIZ	E:	NA		WEL	L DEPTH:	NA		
Con	sultant	is, inc.	GRAVEL	PACK:	NA		CASI	NG STICI	KUP: NA		
			I	ELEVATION	N	١	NORTHING	i	EASTING		
Well Co	mpletion	01-11-1	θΨ	PID Reading (ppm)	u 🗊	et)	Sample	Φ			
= 0	ת	Static Water	stur iten	ead m)	rati /s/6	(fe		Typ		OLOGY / DESCRIPTION	
Backfill		Level	Moisture Content	a d	Penetration (blows/6")	Depth (feet)	Recovery Interval	Soil Type		OLOGI / DESCRIPTION	
Ba	Š		20	ЫГ	a a	ď	Int Int	0			
ు									Asphalt (3")		
Conc.						1			Concrete (10")		
С С						· _			Air-knifed/vac-cl	eared to 5'	
						2—					
	_								Gravelly SAND; gray		
						3—		4			
	_							-			
						4 —					
									Silty CLAY; gray		
					0	5 —				n	
			11-1-1	0.7	2	_		CL		fine to coarse sand and fine to	
			Moist	0.7	2 2 3	6 —			coarse gravel, dense, m	noist	
					1 3	_		CL/ML	(As shows past	rocoversi	
			Moist	0.6	4	7 —			(As above, poor	recovery)	
			WOISt	0.0	4						
					-	8 —		ML	Silty SAND: grav 10-15	5% silt, sand fine to coarse, dense,	
		\bigtriangledown		0.4	3 2 3	_			wet at 9'		
					3	9 —					
ш					3	10		ML	(As above, grad	ing finer with depth to fine silty	
E.			Wet	2.3	4	10 —			sand/sandy silt,	gray, dense, wet)	
TONITE					5	11					
BEN					4			GM	(As above, grave	el coarsening, loose, wet)	
õ			Wet	0.0	4	12					
					4						
					4	13—		GM	(Poor recovery,	gravel, all fines washed out)	
	_		Wet	2.1	8						
					4 –	14 —					
	_		14/64	0.0	5 7	_		GM	(As above, few b	pits of gravel, 1" recovery)	
			Wet	0.2	7 8	15 —					
	_				ه	_		GM	(Ac above near	recovery, most fines gone, with wood	
			Wet	0.1	4 6	16—		Givi		ler reports voids])	
	_		W.GL	0.1	0 11						
					1	17 —			Silty Sandy GRAVEL · o	ray, 10-15% fine silt, gravel	
	_		Wet	0.0	3				fine to coarse, loose, we		
				2.3	12	18 —		1			
	_				8	40		1	SAND; gray, medium to	coarse, with trace fine gravel and 5%	
			Wet	0.2	16	19 —		1	silt, loose, wet		
	-				12			1			
						20—			1		
						21 —]			
]	BOTTOM OF HOLE @	20'	
						22					

			PROJECT		WA255-	3514-1	CLIE		ConocoPhillips	BORING/WELL NO: SB-21
Ι_			LOGGED		J. North CDI			ATION: E DRILLE	600 Westlake Ave N, Seatt D: 7/21/2005	_
	Del	12		G METHOD:	-			E DIAMET		Location Map
╎┖	ノ し	ια		IG METHOD:					-	
	_		CASING T		NA			L DIAMET		See Figure 2
	Invironm		SLOT SIZ		NA			L DEPTH		000 · .ga.o _
Co	onsultan	ts, Inc.	GRAVEL		NA			ING STIC		
				ELEVATIO	N	1	NORTHING	6	EASTING	
					r			1		
Backfill	Completion Casing Casing	Static Water Level	Moisture Content	PID Reading (ppm)	Penetration (blows/6")	Depth (feet)	Sample Recovery Interval	Soil Type		OLOGY / DESCRIPTION
<u>.</u>						_		-	Asphalt (3")	
Conc.						1—	+ $+$	4	Concrete (10")	acred to El
								-	Air-knifed/vac-cle	eared to 5
						2—			Silty SAND/Sandy SILT	aray with some gravel
									City Of the Odifuy OLT	, gray, with some graver
						3—		1		
								1		
						4			Silty CLAY; gray	
						5				
					3 3			CL/ML		fine to coarse sand, trace fine
	<u> </u>		Moist	31	3	6—			gravel, dense, moist	
					5	_			(A = = h = + =)	
			Moist	5.0	3 2	7 —			(As above)	
	—		woist	5.0	2					
		\bigtriangledown				8—		SM	(As above, sand	increasing, clay decreasing,
	—		Wet	140	3	-			loose, wet)	
					4	9		1	. ,	
ш					7	10		SM	Silty SAND; gray, with w	rood fragments, sand fine to
TONITE			Wet	12	3				coarse, dense, wet	
2					5	11 —				
BEN			14/- (3 2 2					silt, sand fine to coarse, trace fine
•			Wet	11		12			to medium gravel, loose	, wet
	—				2	-		SM	(As above)	
			Wet	4	2 3	13—		SIVI	(AS above)	
			,,,,,	т	3					
					3	14 —		SM	(As above, with I	prick and trace wood fragments)
			Wet		4			1		~ ,
					4	10				
					4	16—		SM		10-15% silt, sand fine to medium,
	_		Wet		3	_		-	loose, wet, trace	e fine gravel)
					5	17 —			(A 1	
	_		Wet		2 3 3	-		SM	(As above, poor	recovery ~ 8")
			wei		2	18—				
					2			ML	Sandy SILT; gray, 20-30	0% silt. loose wet
			Wet		2	19—		1	, <u></u> , <u>_</u> , <u>g</u> , <u>u</u> , <u>,</u> <u>_</u>	
					2	20				
						20—				
Í						21 —				
								4	BOTTOM OF HOLE @	20'
1						22 —		-		

		PROJECT	T NO:	WA255-3	3514-1	CLIE	NT:	ConocoPhillips	BORING/WELL NO: SB-22			
		LOGGED		J. North			ATION:	600 Westlake Ave N, Seat				
Delt	ta	DRILLER		CDI			DRILLE		Location Map			
	ια		METHOD:									
		CASING ⁻	IG METHOD:	NA					See Figure 2			
Environme		SLOT SIZE: NA GRAVEL PACK: NA			WELL DIAMET WELL DEPTH: CASING STICH			-				
Consultants	s, Inc.											
		ELEVATION			NORTHING			EASTING				
			5	1				<u> </u>				
Backfill Casing Casing	Static Water Level	Moisture Content	PID Reading (ppm)	Penetration (blows/6")	Depth (feet)	Recovery Interval	Soil Type	LITH	IOLOGY / DESCRIPTION			
Conc.					_			Asphalt (3")				
Cor					1 —		-	Concrete (10")	loored to 51			
_					-	+ $+$	-	Air-knifed/vac-cl	leared to 5			
					2—			Silty SAND with Gravel	. drav			
					3—							
					4 —							
_					_			Silty SAND; gray				
				3	5 —			Sandy SILT: gray, sand	fine to medium, trace coarse gravel			
—		Moist		3 3				loose, moist, poor recov				
				3	6—							
				3	7—			Clayey SILT; gray, woo	d fragments in shoe, with fine sand,			
_				4	· _			dense, moist				
				5	8—		CM		used debrie 40.450/ silt send fire			
—		Moist		3	-		SM	loose, moist	wood debris, 10-15% silt, sand fine,			
		WOISt		9	9 —							
<u> </u>	\bigtriangledown			3	10			(As above)				
		Wet		7	10							
e				11	11 —							
<u>б</u> ш —		Wet		12 50/6"	-			Wood debris; with silt a	nd fine sand, poor recovery (~ 4")			
		wei		50/0	12 —							
—				10	-			(Wood filled sho	be, no other recovery)			
		Wet		6	13—				-,			
				6	14 —							
		144.4		4	-			Wood debris; coarse w	ith silt and sand, dense, wet			
		Wet		3	15 —							
				3				(Wood filled sho	pe)			
		Wet		7	16—			(- /			
				10	17—							
				6				Sandy SILT; with wood	debris			
				12 8	18 —							
				8 5	-			(As above)				
				7	19 —			(//3/00/06)				
				7	20—							
					20							
					21 —	+	4		221			
					-	+ +	-	BOTTOM OF HOLE @	20.			
					22 —	+	1					
		1					1					

APPENDIX B

WASTE DISPOSAL DOCUMENTATION

NGNL HAZADOOLIO					0		č.		
WASTE MANIFEST	. Generator's US EPA ID		st Doc. No.	2. Page of	1				
	SITE ADORESS: COP 21 600 WE								
Transporter 1 Company Name ENVIROTECH SYSTEMS, INC.	6. W A	US EPA ID Number H 0 0 0 0 1 2	4 5 0	A. Tran	sporter's F	hone	(206) 363-	9000	
Transporter 2 Company Name	· 8.	US EPA ID Number		B. Tran	sporter's I	Phone			
Designated Facility Name and Site Address COLUMERA RIDGE LANDFILL 18177 CEDAR SPRINGS LANE	10.	US EPA ID Number	(C. Facil	ity's Phone	•		<u> </u>	
ARLINGTON, OR 97812		D 9 8 7 1 7 3	4 5 7				503493	7834	
Waste Shipping Name and Description					12. Cont	,	13. Total		14. Unit
MATERIAL NOT REGULATED ((IDW SOIL)	BY DOT				No.	Туре	Quantity		Wt/Vol
(Lear Y = Verturs En.)	·	· · · ·			∞^{α}	Dm	0630	0	p
								-	
					•				11 - 244 - 14 - 14
			• •						<u></u>
			,				· · ·		
Additional Descriptions for Materials Listed Above A. CRL#2235VC, ESI# 05-167-17-SOIL	• •		• E				tes Listed Abc	ove	
	•			ł	MSPOS	AL HE	GUIRED		
Special Handling Instructions and Additional Informa	lion							<u></u>	
EMERGENCY INFORMATION CO "Shippers Certification per 49CFR 1 packaged, marked, and labeled, and Department of Transportation. Sign.	72.204 - This is to oe sre in proper conditi- sture in box 16 of this	rify that the above-na on for transportation a manifest constitutes	imed mati iccording certificati	tu the on of ti	applicab nis state	le regu ment b	listions of the shipp	1ê er [*]	
EMERGENCY INFORMATION CO "Shippers Certification per 49CFR 1 packaged, marked, and labeled, and Department of Transportation. Sign GENERATOR'S CERTIFICATION: 1 certify the materi Printed/Typed Name	72.204 - This is to oe stre in proper condition sture in box 16 of this als described above on this m	rbify that the above-na on for transportation a manifest constitutes nanifest are not subject to fedg	imed mati iccording certificati	to the on of t	applicab tis state	le regu ment b er dispose	listions of th y the shipp al of Hażardous	ोके हन Waste	
EMERGENCY INFORMATION CO "Shippers Certification per 49CFR 1 packaged, marked, and labeled, and Department of Transportation. Sign GENERATOR'S CERTIFICATION: 1 certify the materi Printed/Typed Name SHEVX A. L. France	72.204 - This is to oe stre in proper condition ature in box 16 of this als described above on this m Si	rbify that the above-na on for transportation a manifest constitutes nanifest are not subject to fedg	imed mat coording certificati gral regulation	to the on of t	applicab tis state	le regu ment b er dispose	listions of th y the shipp al of Hażardous	ोके हन Waste	
EMERGENCY INFORMATION CO "Shippers Certification per 49CFR 1 packaged, marked, and labeled, and Department of Transportation. Sign GENERATOR'S CERTIFICATION: 1 certify the materi Printed/Typed Name Steve A L. Frame Printed/Typed Name Printed/Typed Name Steve A. L. Frame	72.204 - This is to ce stre in proper conditi- ature in box 16 of this als described above on this m si als NCC Si	rbify that the above-na on for transportation a manifest constitutes nanifest are not subject to fedg	imed mat coording certificati gral regulation	to the on of t	applicab tis state	le regu ment b er dispose	listions of th y the shipp al of Hażardous	Waste	
EMERGENCY INFORMATION CO "Shippers Certification per 49CFR 1 packaged, marked, and labeled, and Department of Transportation. Sign BENERATOR'S CERTIFICATION: 1 certify the materi Printed/Typed Name SHEVX A LAFRAME Transporter 1 Acknowledgement of Receipt of Materi Printed/Typed Name	72.204 - This is to oe are in proper conditionature in box 16 of this als described above on this m since als Since Sin Since Sin Si	rolly that the above-na on for transportation a manifest constitutes nanifest are not subject to fede ignature Oily Brhold	imed mat coording certificati gral regulation	to the on of t	applicab tis state	le regu ment b er dispose	lations of the shipp of the shi	Waste Day	Year
EMERGENCY INFORMATION CO "Shippers Certification per 49CFR 1 packaged, marked, and labeled, and Department of Transportation. Sign SENERATOR'S CERTIFICATION: 1 certify the materi Printed/Typed Name SHEVE A LAFRANCE Transporter 1 Acknowledgement of Receipt of Materi Printed/Typed Name SHEVE A LAFRANCE Transporter 2 Acknowledgement of Receipt of Materi	72.204 - This is to oe are in proper conditionature in box 16 of this als described above on this m since als Since Sin Since Sin Si	ruly that the above-na on for transportation a manifest constitutes nanifest are not subject to fed ignature	imed mat coording certificati gral regulation	to the on of t	applicab tis state	le regu ment b er dispose	lations of the shipp of the shi	Waste Day	Year Year Year
EMERGENCY INFORMATION CO "Shippers Certification per 49CFR 1 packaged, marked, and labeled, and Department of Transportation. Sign BENERATOR'S CERTIFICATION: 1 certify the material Printed/Typed Name SHEUR A LAFRAME Printed/Typed Name SHEUR A LAFRAME Printed/Typed Name SHEUR A LAFRAME Printed/Typed Name	72.204 - This is to oe are in proper conditionature in box 16 of this als described above on this m since als Since Sin Since Sin Si	ruly that the above-na on for transportation a manifest constitutes nanifest are not subject to fed ignature	imed mat coording certificati gral regulation	to the on of t	applicab tis state	le regu ment b er dispose	lations of the shipp of the shi	Waste Day	Year Year Year
EMERGENCY INFORMATION CO "Shippers Certification per 49CFR 1 packaged, marked, and labeled, and Department of Transportation. Sign BENERATOR'S CERTIFICATION: 1 certify the material Printed/Typed Name SHEUR A LAFRAME Printed/Typed Name SHEUR A LAFRAME Printed/Typed Name SHEUR A LAFRAME Printed/Typed Name	72.204 - This is to oe site in proper condition ature in box 16 of this als described above on this m site als Site als Site Site Site Site Site Site Site Site	rify that the above-na on for transportation a manifest constitutes nanifest are not subject to fed ignature	amed mate coording certificati for Bri for Bri for Bri	to the on of the rep 44 th ance	applicab tis state	le regu ment b er dispose	lations of the shipp of the shi	Waste Day	Year Year Year

THIS MEMORANDUM Is an acknowledgement that a bill of lading has been issued and is not the Original Bill of Lading, not a copy or quipted ac, covering the property named herein, and is intended solely for filing or record. Shipper's No	 For purposes of notification only.
at SEATTLE, WA date 7/20/2005 from CONOCO PHILLIPS CO. the property described below, in apperent good order, except as noted (contents and condition of contents of packages unknown), marked, consigned, and destined as indicated below, which seld company (the word company being understoo parts on inport, which as indicated below, which seld company (the word company being understoo parts on inport, or as indicated below, which as indicated below,	 For purposes of notification only.
If or any of said property over all or any portion of said route to destination, and as to each party at any time interested in all or any of said property, that every service to be performed interduced shall be subject to all the excitations and property agreed to by the shipper and accepted for himself and his assigns. (Mail or street address of consignee - (Mail or street address of consignee - EMERALD PETROLEUM SERVICES Consigned to ISOD AIRPORT WAY SOUTH Destination State County Zip Delivery Address* SEATTLE WA 98134 Address* Delivering Car or Vehicle Initials No.	 For purposes of notification only.
EMERALD PETROLEUM SERVICES 1500 AIRPORT WAY SOUTH Destination SEATTLE State WA County WA Zip 38134 Delivery Address* Route (*To be filled in only when shipper desires and governing Carrier Car or Vehicle Initials No.	
SEATTLE WA 38 i 34 Address* Route (*To be filled in only when shipper desires and governing Delivering Car or No.	g tariffs provide for delivery thereat.
Delivering Car or No.	g tariffs provide for delivery thereat.
Carrier Vehicle Initials	
Number of Description of articles, special marks, and exceptions	t to Section 7 of conditions, if this t is to be delivered to the consignee acourse on the consignor, the consignor the following statement:
	carrier shalf not make delivery of this without payment of freight and all other
G02906	(Signature of consignor)
	rges are to be prepaid, write or stamp be Prepaid".
	\$
Per	Agent or Cashier
Collect On Delivery and remit to C.O.D. Charge Shipper \$ to be paid by Consignee \$	Charges Advanced:
"If the shipment moves between two ports by a carrier by water, the law requires that the bill of lading shall state whether it is "carrier's or shipper's weight".	ERGENCY RESPONSE IONE NUMBER (§172.604)
This is to certify that the above-named materials are properly classified, described, packaged, marked and labeled, and are in proper c according to the applicable regulations of the Department of Transportation. Per	condition for transportatior
Shipper: <u>CONOCO PHILLIPS CO.</u> Per: <u>On behalf of Ue the Envikou</u> Date: 72205 Per: <u>Jaje Grane</u>	EMS_INC Date: _7.1205
Permanent post-office address of shipper FORM NO. 1 BLC-Q3 (Rev. 8/95)	

,

APPENDIX C

SOIL ANALYTICAL LABORATORY REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane	East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

02 August 2005

Tena Seeds Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 RE: 600 Westlake

Enclosed are the results of analyses for samples received by the laboratory on 07/22/05 08:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mul The

Robert Greer Project Manager

Delta Environmental

4006 148th Ave NE

Redmond, WA/USA 98052

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210 Seattle 425.420.9200 fax 425.420.9210 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210 Spokane Portland Bend Anchorage Project: 600 Westlake **Reported:**

Project Number: WA255-3514-1 Project Manager: Tena Seeds

08/02/05 15:31

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-19-2	B5G0533-01	Soil	07/21/05 09:15	07/22/05 08:40
SB-19-4	B5G0533-02	Soil	07/21/05 09:30	07/22/05 08:40
SB-19-5	B5G0533-03	Soil	07/21/05 10:10	07/22/05 08:40
SB-19-10	B5G0533-04	Soil	07/21/05 10:20	07/22/05 08:40
SB-19-15	B5G0533-05	Soil	07/21/05 10:35	07/22/05 08:40
SB-19-20	B5G0533-06	Soil	07/21/05 10:50	07/22/05 08:40
SB-20-2	B5G0533-07	Soil	07/21/05 10:35	07/22/05 08:40
SB-20-4	B5G0533-08	Soil	07/21/05 10:45	07/22/05 08:40
SB-20-5	B5G0533-09	Soil	07/21/05 12:00	07/22/05 08:40
SB-20-10	B5G0533-10	Soil	07/21/05 12:05	07/22/05 08:40
SB-20-15	B5G0533-11	Soil	07/21/05 12:15	07/22/05 08:40
SB-20-20	B5G0533-12	Soil	07/21/05 12:30	07/22/05 08:40
SB-21-2	B5G0533-13	Soil	07/21/05 12:20	07/22/05 08:40
SB-21-4	B5G0533-14	Soil	07/21/05 12:35	07/22/05 08:40
SB-21-5	B5G0533-15	Soil	07/21/05 13:20	07/22/05 08:40
SB-21-10	B5G0533-16	Soil	07/21/05 13:45	07/22/05 08:40
SB-21-15	B5G0533-17	Soil	07/21/05 14:00	07/22/05 08:40
SB-21-20	B5G0533-18	Soil	07/21/05 14:15	07/22/05 08:40
SB-22-2	B5G0533-19	Soil	07/21/05 14:10	07/22/05 08:40
SB-22-4	B5G0533-20	Soil	07/21/05 14:20	07/22/05 08:40
SB-22-5	B5G0533-21	Soil	07/21/05 14:45	07/22/05 08:40
SB-22-10	B5G0533-22	Soil	07/21/05 14:55	07/22/05 08:40
SB-22-15	B5G0533-23	Soil	07/21/05 15:10	07/22/05 08:40
SB-22-20	B5G0533-24	Soil	07/21/05 15:25	07/22/05 08:40

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer, Project Manager

North Creek Analytical, Inc. Page 1 of 48 Environmental Laboratory Network

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Delta EnvironmentalProject:600 Westlake4006 148th Ave NEProject Number:WA255-3514-1Reported:Redmond, WA/USA 98052Project Manager:Tena Seeds08/02/05 15:31

Volatile Petroleum Products by NWTPH-Gx North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-19-2 (B5G0533-01) Soil Sampled	: 07/21/05 09:1	5 Received	1: 07/22/05 0	8:40					
Gasoline Range Hydrocarbons	ND	7.76	mg/kg dry	1	5G27014	07/27/05	07/28/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	79.2 %	50-150			"	"	"	"	
<u>SB-19-4 (B5G0533-02) Soil</u> Sampled	: 07/21/05 09:3	0 Received	1: 07/22/05 0	8:40					
Gasoline Range Hydrocarbons	ND	7.91	mg/kg dry	1	5G27014	07/27/05	07/28/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	80.0 %	50-150			"	"	"	"	
SB-19-5 (B5G0533-03) Soil Sampled	: 07/21/05 10:1	0 Received	1: 07/22/05 0	8:40					
Gasoline Range Hydrocarbons	ND	3.91	mg/kg dry	1	5G27014	07/27/05	07/28/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	81.2 %	50-150			"	"	"	"	
<u>SB-19-10 (B5G0533-04) Soil</u> Sample	d: 07/21/05 10:	20 Receive	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	3420	81.3	mg/kg dry	20	5G27014	07/27/05	07/28/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	111 %	50-150			"	"	"	"	
<u>SB-19-15 (B5G0533-05) Soil</u> Sample	d: 07/21/05 10:	35 Receive	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	ND	3.35	mg/kg dry	1	5G28040	07/28/05	07/28/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	84.1 %	50-150			"	"	"	"	
SB-19-20 (B5G0533-06) Soil Sample	d: 07/21/05 10:	50 Receive	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	4.46	3.11	mg/kg dry	1	5G27013	07/27/05	07/28/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	81.5 %	50-150			"	"	"	"	
SB-20-2 (B5G0533-07) Soil Sampled	: 07/21/05 10:3	5 Received	1: 07/22/05 0	8:40					
Gasoline Range Hydrocarbons	15.3	4.15	mg/kg dry	1	5G27013	07/27/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	96.5 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Delta EnvironmentalProject:600 Westlake4006 148th Ave NEProject Number:WA255-3514-1Reported:Redmond, WA/USA 98052Project Manager:Tena Seeds08/02/05 15:31

Volatile Petroleum Products by NWTPH-Gx North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-20-4 (B5G0533-08) Soil Sampled:	07/21/05 10:4	5 Received	1: 07/22/05 0	8:40					
Gasoline Range Hydrocarbons	8.74	3.18	mg/kg dry	1	5G27013	07/27/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	97.0 %	50-150			"	"	"	"	
SB-20-5 (B5G0533-09) Soil Sampled:	07/21/05 12:0	0 Received	1: 07/22/05 0	8:40					
Gasoline Range Hydrocarbons	ND	7.65	mg/kg dry	1	5G27013	07/27/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	87.9 %	50-150			"	"	"	"	
SB-20-10 (B5G0533-10) Soil Sampled	l: 07/21/05 12:	05 Receive	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	ND	10.5	mg/kg dry	1	5G27013	07/27/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	78.8 %	50-150			"	"	"	"	
SB-20-15 (B5G0533-11) Soil Sampled	I: 07/21/05 12:	15 Receive	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	ND	3.91	mg/kg dry	1	5G27013	07/27/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	82.1 %	50-150			"	"	"	"	
SB-20-20 (B5G0533-12) Soil Sampled	I: 07/21/05 12:	30 Receive	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	6.93	3.94	mg/kg dry	1	5G27013	07/27/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	83.2 %	50-150			"	"	"	"	
SB-21-2 (B5G0533-13) Soil Sampled:	07/21/05 12:2	0 Received	1: 07/22/05 0	8:40					
Gasoline Range Hydrocarbons	18.1	8.39	mg/kg dry	1	5G27013	07/27/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	86.9 %	50-150			"	"	"	"	
SB-21-4 (B5G0533-14) Soil Sampled:	07/21/05 12:3	5 Received	1: 07/22/05 0	8:40					
Gasoline Range Hydrocarbons	10.2	8.00	mg/kg dry	1	5G27013	07/27/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	77.4 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta EnvironmentalProject:600 Westlake4006 148th Ave NEProject Number:WA255-3514-1Reported:Redmond, WA/USA 98052Project Manager:Tena Seeds08/02/05 15:31

Volatile Petroleum Products by NWTPH-Gx North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-21-5 (B5G0533-15) Soil Sampled:	07/21/05 13:2	0 Received	d: 07/22/05 0	8:40					
Gasoline Range Hydrocarbons	8.31	4.11	mg/kg dry	1	5G27013	07/27/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	85.8 %	50-150			"	"	"	"	
SB-21-10 (B5G0533-16) Soil Sampled	: 07/21/05 13:	45 Receive	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	22.5	3.94	mg/kg dry	1	5G27013	07/27/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	105 %	50-150			"	"	"	"	
SB-21-15 (B5G0533-17) Soil Sampled	: 07/21/05 14:	00 Receive	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	ND	3.94	mg/kg dry	1	5G27013	07/27/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	79.2 %	50-150			"	"	"	"	
SB-21-20 (B5G0533-18) Soil Sampled	: 07/21/05 14:	15 Receive	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	ND	3.96	mg/kg dry	1	5G27013	07/27/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	73.7 %	50-150			"	"	"	"	
SB-22-2 (B5G0533-19) Soil Sampled:	07/21/05 14:1	0 Received	d: 07/22/05 0	8:40					
Gasoline Range Hydrocarbons	17.9	8.58	mg/kg dry	1	5G27013	07/27/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	88.4 %	50-150			"	"	"	"	
SB-22-4 (B5G0533-20) Soil Sampled:	07/21/05 14:2	0 Received	d: 07/22/05 0	8:40					
Gasoline Range Hydrocarbons	1090	64.6	mg/kg dry	20	5G28040	07/28/05	07/28/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	94.5 %	50-150			"	"	"	"	
SB-22-5 (B5G0533-21) Soil Sampled:	07/21/05 14:4	5 Received	d: 07/22/05 0	8:40					
Gasoline Range Hydrocarbons	758	43.7	mg/kg dry	10	5G27014	07/27/05	07/28/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	99 .7 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental	Project:	600 Westlake	
4006 148th Ave NE	Project Number:	WA255-3514-1	Reported:
Redmond, WA/USA 98052	Project Manager:	Tena Seeds	08/02/05 15:31

Volatile Petroleum Products by NWTPH-Gx North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-22-10 (B5G0533-22) Soil Sampled	: 07/21/05 14	:55 Receive	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	1380	40.0	mg/kg dry	10	5G27013	07/27/05	07/28/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	141 %	50-150			"	"	"	"	
SB-22-15 (B5G0533-23) Soil Sampled	: 07/21/05 15	:10 Receive	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	99.0	9.09	mg/kg dry	1	5G27013	07/27/05	07/28/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	96.9 %	50-150			"	"	"	"	
SB-22-20 (B5G0533-24) Soil Sampled	: 07/21/05 15	:25 Receive	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	16.5	3.88	mg/kg dry	1	5G27013	07/27/05	07/28/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	80.9 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

Reported:

08/02/05 15:31

Delta EnvironmentalProject:600 Westlake4006 148th Ave NEProject Number:WA255-3514-1Redmond, WA/USA 98052Project Manager:Tena Seeds

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-19-2 (B5G0533-01) Soil	Sampled: 07/21/05 09:1	5 Received	d: 07/22/05 0	8:40					
Diesel Range Hydrocarbons	20.3	10.0	mg/kg dry	1	5G26062	07/26/05	07/28/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbo	ns 70.0	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	74.9 %	50-150			"	"	"	"	
Surrogate: Octacosane	93.1 %	50-150			"	"	"	"	
<u>SB-19-4 (B5G0533-02) Soil</u>	Sampled: 07/21/05 09:3	80 Received	d: 07/22/05 0	8:40					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	5G26062	07/26/05	07/28/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	77.0 %	50-150			"	"	"	"	
Surrogate: Octacosane	102 %	50-150			"	"	"	"	
<u>SB-19-5 (B5G0533-03) Soil</u>	Sampled: 07/21/05 10:1	0 Received	d: 07/22/05 0	8:40					
Diesel Range Hydrocarbons	11.9	10.0	mg/kg dry	1	5G26062	07/26/05	07/28/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbo	ns 50.9	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	69.1 %	50-150			"	"	"	"	
Surrogate: Octacosane	98.0 %	50-150			"	"	"	"	
SB-19-10 (B5G0533-04) Soil	Sampled: 07/21/05 10	20 Receive	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	112	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	D-15
Lube Oil Range Hydrocarbo	ns 277	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	76.0 %	50-150			"	"	"	"	
Surrogate: Octacosane	138 %	50-150			"	"	"	"	
<u>SB-19-15 (B5G0533-05) Soil</u>	Sampled: 07/21/05 10	:35 Receive	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	33.2	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	D-15
Lube Oil Range Hydrocarbo	ns 163	25.0	"	"			"	"	
Surrogate: 2-FBP	72.8 %	50-150			"	"	"	"	
Surrogate: Octacosane	115 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

Delta EnvironmentalProject: 600 Westlake4006 148th Ave NEProject Number: WA255-3514-1Redmond, WA/USA 98052Project Manager: Tena Seeds

Reported: 08/02/05 15:31

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

	D k	Reporting	T	D'I (iss	D. (1	D	A 1 1		Nut
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-19-20 (B5G0533-06) Soil S	Sampled: 07/21/05 10:	50 Receive	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	35.5	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	109	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	70.3 %	50-150			"	"	"	"	
Surrogate: Octacosane	108 %	50-150			"	"	"	"	
SB-20-2 (B5G0533-07) Soil Sa	mpled: 07/21/05 10:3	5 Received	1: 07/22/05 0	8:40					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	77.2 %	50-150			"	"	"	"	
Surrogate: Octacosane	96.7 %	50-150			"	"	"	"	
SB-20-4 (B5G0533-08) Soil Sa	mpled: 07/21/05 10:4	5 Received	1: 07/22/05 0	8:40					
Diesel Range Hydrocarbons	29.2	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	56.9	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	72.9 %	50-150			"	"	"	"	
Surrogate: Octacosane	96.6 %	50-150			"	"	"	"	
SB-20-5 (B5G0533-09) Soil Sa	mpled: 07/21/05 12:0	0 Received	1: 07/22/05 0	8:40					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	73.7 %	50-150			"	"	"	"	
					"	"	"	"	
Surrogate: Octacosane	92.8 %	50-150							
0	92.8 % Sampled: 07/21/05 12:		ed: 07/22/05	08:40					
SB-20-10 (B5G0533-10) Soil S Diesel Range Hydrocarbons			ed: 07/22/05 mg/kg dry	08:40	5G26063	07/26/05	07/27/05	NWTPH-Dx	D-09
SB-20-10 (B5G0533-10) Soil S	Sampled: 07/21/05 12:	05 Receive			5G26063 "	07/26/05	07/27/05		D-09
SB-20-10 (B5G0533-10) Soil S Diesel Range Hydrocarbons	Sampled: 07/21/05 12: 12.8	05 Receive 10.0	mg/kg dry	1				NWTPH-Dx	D-09

North Creek Analytical - Bothell

Delta EnvironmentalProject:600 Westlake4006 148th Ave NEProject Number:WA255-3514-1Reported:Redmond, WA/USA 98052Project Manager:Tena Seeds08/02/05 15:31

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-20-15 (B5G0533-11) Soil Sam	pled: 07/21/05 12	:15 Receive	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	10.4	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	72.1 %	50-150			"	"	"	"	
Surrogate: Octacosane	92.6 %	50-150			"	"	"	"	
SB-20-20 (B5G0533-12) Soil Sam	pled: 07/21/05 12	:30 Receive	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	33.8	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	200	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	75.0 %	50-150			"	"	"	"	
Surrogate: Octacosane	128 %	50-150			"	"	"	"	
SB-21-2 (B5G0533-13) Soil Samp	oled: 07/21/05 12:2	20 Received	1: 07/22/05 0	8:40					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	68.1 %	50-150			"	"	"	"	
Surrogate: Octacosane	88.6 %	50-150			"	"	"	"	
SB-21-4 (B5G0533-14) Soil Samp	oled: 07/21/05 12:3	35 Received	l: 07/22/05 0	8:40					
Diesel Range Hydrocarbons	21.6	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	60.1	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	69.6 %	50-150			"	"	"	"	
Surrogate: Octacosane	98.1 %	50-150			"	"	"	"	
SB-21-5 (B5G0533-15) Soil Samp	oled: 07/21/05 13:2	20 Received	l: 07/22/05 0	8:40					
Diesel Range Hydrocarbons	12.0	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	44.9	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	70.4 %	50-150			"	"	"	"	
Surrogate: Octacosane	97.3 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

Delta EnvironmentalProject:600 Westlake4006 148th Ave NEProject Number:WA255-3514-1Reported:Redmond, WA/USA 98052Project Manager:Tena Seeds08/02/05 15:31

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-21-10 (B5G0533-16) Soil	Sampled: 07/21/05 13	:45 Receive	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	22.4	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	D-15
Lube Oil Range Hydrocarbons	38.0	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	76.6 %	50-150			"	"	"	"	
Surrogate: Octacosane	100 %	50-150			"	"	"	"	
SB-21-15 (B5G0533-17) Soil	Sampled: 07/21/05 14	:00 Receive	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	76.0 %	50-150			"	"	"	"	
Surrogate: Octacosane	93.8 %	50-150			"	"	"	"	
SB-21-20 (B5G0533-18) Soil	Sampled: 07/21/05 14	:15 Receive	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	72.0 %	50-150			"	"	"	"	
Surrogate: Octacosane	90.9 %	50-150			"	"	"	"	
SB-22-2 (B5G0533-19) Soil Sail	ampled: 07/21/05 14:1	10 Received	1: 07/22/05 0	8:40					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	81.4 %	50-150			"	"	"	"	
Surrogate: Octacosane	102 %	50-150			"	"	"	"	
SB-22-4 (B5G0533-20) Soil Sail	ampled: 07/21/05 14:2	20 Received	1: 07/22/05 0	8:40					
Diesel Range Hydrocarbons	587	50.0	mg/kg dry	5	5G26063	07/26/05	07/27/05	NWTPH-Dx	D-15
Lube Oil Range Hydrocarbons	s 1490	125	"	"	"	"	"	"	
Surrogate: 2-FBP	103 %	50-150			"	"	"	"	
Surrogate: Octacosane	116 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

Reported:

Delta Environmental Project: 600 Westlake 4006 148th Ave NE Project Number: WA255-3514-1 Redmond, WA/USA 98052 Project Manager: Tena Seeds 08/02/05 15:31

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up **North Creek Analytical - Bothell**

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-22-5 (B5G0533-21) Soil Sampled	: 07/21/05 14:	45 Received	1: 07/22/05 0	8:40					
Diesel Range Hydrocarbons	169	20.0	mg/kg dry	2	5G26063	07/26/05	07/27/05	NWTPH-Dx	D-15
Lube Oil Range Hydrocarbons	467	50.0	"	"	"	"	"	"	
Surrogate: 2-FBP	84.0 %	50-150			"	"	"	"	
Surrogate: Octacosane	97.5 %	50-150			"	"	"	"	
SB-22-10 (B5G0533-22) Soil Sample	d: 07/21/05 14	:55 Receive	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	382	50.0	mg/kg dry	5	5G26063	07/26/05	07/27/05	NWTPH-Dx	D-15
Lube Oil Range Hydrocarbons	995	125	"	"	"	"	"	"	
Surrogate: 2-FBP	96.7 %	50-150			"	"	"	"	
Surrogate: Octacosane	123 %	50-150			"	"	"	"	
SB-22-15 (B5G0533-23) Soil Sample	d: 07/21/05 15	:10 Receive	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	12.4	10.0	mg/kg dry	1	5G26063	07/26/05	07/27/05	NWTPH-Dx	D-15
Lube Oil Range Hydrocarbons	29.7	25.0	"	"		"	"	"	
Surrogate: 2-FBP	69.1 %	50-150			"	"	"	"	
Surrogate: Octacosane	90.4 %	50-150			"	"	"	"	
SB-22-20 (B5G0533-24) Soil Sample	d: 07/21/05 15	:25 Receive	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	12.9	10.0	mg/kg dry	1	5G26064	07/26/05	07/27/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	73.4 %	50-150			"	"	"	"	
Surrogate: Octacosane	95.6 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: 600 Westlake Project Number: WA255-3514-1

Project Manager: Tena Seeds

Reported: 08/02/05 15:31

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

			•						
Analyte	I Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-19-2 (B5G0533-01) Soil	Sampled: 07/21/05 09:15	Received	d: 07/22/05 0	08:40					
Lead	28.4	0.500	mg/kg dry	1	5G27038	07/27/05	07/28/05	EPA 6020	
SB-19-4 (B5G0533-02) Soil	Sampled: 07/21/05 09:30	Received	d: 07/22/05 0	8:40					
Lead	64.4	0.427	mg/kg dry	1	5G27038	07/27/05	07/28/05	EPA 6020	
<u>SB-19-5 (B5G0533-03) Soil</u>	Sampled: 07/21/05 10:10	Received	d: 07/22/05 0	8:40					
Lead	95.1	0.500	mg/kg dry	1	5G27038	07/27/05	07/28/05	EPA 6020	
SB-19-10 (B5G0533-04) Soil	Sampled: 07/21/05 10:20	Receive	ed: 07/22/05	08:40					
Lead	7.66	0.431	mg/kg dry	1	5G27038	07/27/05	07/28/05	EPA 6020	
<u>SB-19-15 (B5G0533-05) Soil</u>	Sampled: 07/21/05 10:35	Receive	ed: 07/22/05	08:40					
Lead	14.9	0.500	mg/kg dry	1	5G27038	07/27/05	07/28/05	EPA 6020	
SB-19-20 (B5G0533-06) Soil	Sampled: 07/21/05 10:50	Receive	ed: 07/22/05	08:40					
Lead	8.06	0.266	mg/kg dry	1	5G27038	07/27/05	07/28/05	EPA 6020	
SB-20-2 (B5G0533-07) Soil	Sampled: 07/21/05 10:35	Received	d: 07/22/05 0	08:40					
Lead	4.75	0.500	mg/kg dry	1	5G27038	07/27/05	07/29/05	EPA 6020	
<u>SB-20-4 (B5G0533-08) Soil</u>	Sampled: 07/21/05 10:45	Received	d: 07/22/05 0	08:40					
Lead	7.21	0.500	mg/kg dry	1	5G27038	07/27/05	07/29/05	EPA 6020	
SB-20-5 (B5G0533-09) Soil	Sampled: 07/21/05 12:00	Received	d: 07/22/05 0	8:40					
Lead	5.68	0.500	mg/kg dry	1	5G27038	07/27/05	07/29/05	EPA 6020	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: 600 Westlake Project Number: WA255-3514-1

Project Manager: Tena Seeds

Reported: 08/02/05 15:31

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

			•						
Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-20-10 (B5G0533-10) Soil	Sampled: 07/21/05 12:05	Receivo	ed: 07/22/05	08:40					
Lead	7.23	0.500	mg/kg dry	1	5G27038	07/27/05	07/29/05	EPA 6020	
<u>SB-20-15 (B5G0533-11) Soil</u>	Sampled: 07/21/05 12:15	Receive	ed: 07/22/05	08:40					
Lead	15.7	0.500	mg/kg dry	1	5G27038	07/27/05	07/29/05	EPA 6020	
SB-20-20 (B5G0533-12) Soil	Sampled: 07/21/05 12:30	Receive	ed: 07/22/05	08:40					
Lead	4.21	0.455	mg/kg dry	1	5G27038	07/27/05	07/29/05	EPA 6020	
SB-21-2 (B5G0533-13) Soil	Sampled: 07/21/05 12:20	Received	d: 07/22/05 0	8:40					
Lead	16.9	0.439	mg/kg dry	1	5G27038	07/27/05	07/29/05	EPA 6020	
SB-21-4 (B5G0533-14) Soil	Sampled: 07/21/05 12:35	Received	d: 07/22/05 0	8:40					
Lead	95.1	0.427	mg/kg dry	1	5G27038	07/27/05	07/29/05	EPA 6020	
SB-21-5 (B5G0533-15) Soil	Sampled: 07/21/05 13:20	Received	d: 07/22/05 0	8:40					
Lead	6.63	0.500	mg/kg dry	1	5G27038	07/27/05	07/29/05	EPA 6020	
SB-21-10 (B5G0533-16) Soil	Sampled: 07/21/05 13:45	Receive	ed: 07/22/05	08:40					
Lead	3.87	0.500	mg/kg dry	1	5G27038	07/27/05	07/29/05	EPA 6020	
SB-21-15 (B5G0533-17) Soil	Sampled: 07/21/05 14:00	Receive	ed: 07/22/05	08:40					
Lead	2.23	0.431	mg/kg dry	1	5G27038	07/27/05	07/29/05	EPA 6020	
SB-21-20 (B5G0533-18) Soil	Sampled: 07/21/05 14:15	Receive	ed: 07/22/05	08:40					
Lead	22.8	0.500	mg/kg dry	1	5G27038	07/27/05	07/29/05	EPA 6020	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: 600 Westlake Project Number: WA255-3514-1

Project Manager: Tena Seeds

Reported: 08/02/05 15:31

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

Analyte	F Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-22-2 (B5G0533-19) Soil	Sampled: 07/21/05 14:10	Received	1: 07/22/05 ()8:40					
Lead	190	0.446	mg/kg dry	1	5G27038	07/27/05	07/29/05	EPA 6020	
SB-22-4 (B5G0533-20) Soil	Sampled: 07/21/05 14:20	Received	l: 07/22/05 ()8:40					
Lead	53.3	0.500	mg/kg dry	1	5G27038	07/27/05	07/29/05	EPA 6020	
SB-22-5 (B5G0533-21) Soil	Sampled: 07/21/05 14:45	Received	I: 07/22/05 (08:40					
Lead	50.9	0.500	mg/kg dry	1	5G27040	07/27/05	07/29/05	EPA 6020	
SB-22-10 (B5G0533-22) Soil	Sampled: 07/21/05 14:55	Receive	ed: 07/22/05	08:40					
Lead	50.3	0.500	mg/kg dry	1	5G27040	07/27/05	07/29/05	EPA 6020	
SB-22-15 (B5G0533-23) Soil	Sampled: 07/21/05 15:10	Receive	ed: 07/22/05	08:40					
Lead	6.37	0.500	mg/kg dry	1	5G27040	07/27/05	07/29/05	EPA 6020	
SB-22-20 (B5G0533-24) Soil	Sampled: 07/21/05 15:25	Receive	ed: 07/22/05	08:40					
Lead	7.12	0.500	mg/kg dry	1	5G27040	07/27/05	07/29/05	EPA 6020	

North Creek Analytical - Bothell

4006 148th Ave NE Project Number: WA255-35	4-1 Reported:
Delta Environmental Project: 600 Westla	

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-19-2 (B5G0533-01) Soil	Sampled: 07/21/05 09:	15 Received	1: 07/22/05 0	8:40					
Benzene	ND	0.00119	mg/kg dry	1	5G28035	07/27/05	07/27/05	EPA 8260B	
Ethylbenzene	ND	0.00317	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.000792	"	"	"	"	"	"	
Naphthalene	ND	0.00396	"	"	"	"	"	"	
Toluene	ND	0.00119	"	"	"	"	"	"	
Total Xylenes	ND	0.00792	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	165 %	60-140			"	"	"	"	S-10
Surrogate: Toluene-d8	83.6 %	60-140			"	"	"	"	
Surrogate: 4-BFB	93.0 %	60-140			"	"	"	"	
SB-19-4 (B5G0533-02) Soil	Sampled: 07/21/05 09:	30 Received	1: 07/22/05 0	8:40					
Benzene	ND	0.00125	mg/kg dry	1	5G28035	07/27/05	07/27/05	EPA 8260B	
Ethylbenzene	ND	0.00334	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.000835	"	"	"	"	"	"	
Naphthalene	ND	0.00417	"	"	"	"	"	"	
Toluene	ND	0.00125	"	"	"	"	"	"	
Total Xylenes	ND	0.00835	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	149 %	60-140			"	"	"	"	S-10
Surrogate: Toluene-d8	88.3 %	60-140			"	"	"	"	
Surrogate: 4-BFB	99.8 %	60-140			"	"	"	"	
SB-19-5 (B5G0533-03) Soil	Sampled: 07/21/05 10:	10 Received	1: 07/22/05 0	8:40					
Benzene	ND	0.00150	mg/kg dry	1	5G29014	07/28/05	07/28/05	EPA 8260B	
Ethylbenzene	ND	0.00400	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00100	"	"	"	"	"	"	
Naphthalene	ND	0.00500	"	"	"	"	"	"	
Toluene	0.00218	0.00150	"	"	"	"	"	"	
Total Xylenes	ND	0.0100	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	102 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	93.2 %	60-140			"	"	"	"	
Surrogate: 4-BFB	110 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental	Project: 600 Westlal	Ke
4006 148th Ave NE	Project Number: WA255-35	4-1 Reported:
Redmond, WA/USA 98052	Project Manager: Tena Seeds	08/02/05 15:31

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
<u>SB-19-15 (B5G0533-05) Soil</u>	Sampled: 07/21/05 10	:35 Receive	ed: 07/22/05	08:40					
Benzene	0.0110	0.00189	mg/kg dry	1	5G29014	07/28/05	07/28/05	EPA 8260B	
Ethylbenzene	0.0878	0.00504	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00126	"	"	"	"	"	"	
Naphthalene	0.0999	0.00630		"	"	"	"	"	
Toluene	0.00254	0.00189	"	"	"	"	"	"	
Total Xylenes	0.151	0.0126	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	108 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	91.8 %	60-140			"	"	"	"	
Surrogate: 4-BFB	106 %	60-140			"	"	"	"	
<u>SB-19-20 (B5G0533-06) Soil</u>	Sampled: 07/21/05 10	:50 Receive	ed: 07/22/05	08:40					
Benzene	0.0181	0.00129	mg/kg dry	1	5H02005	08/01/05	08/01/05	EPA 8260B	
Ethylbenzene	0.0383	0.00345	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.000862	"	"	"	"	"	"	
Naphthalene	0.0120	0.00431	"	"	"	"	"	"	
Toluene	0.00140	0.00129	"	"	"	"	"	"	
Total Xylenes	0.0595	0.00862	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	107 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	81.6 %	60-140			"	"	"	"	
Surrogate: 4-BFB	108 %	60-140			"	"	"	"	
SB-20-2 (B5G0533-07) Soil	Sampled: 07/21/05 10:	35 Received	1: 07/22/05 0	8:40					
Benzene	0.00442	0.00150	mg/kg dry	1	5G29045	07/29/05	07/29/05	EPA 8260B	
Ethylbenzene	ND	0.00400	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00100	"	"	"	"	"	"	
Naphthalene	ND	0.00500	"	"	"	"	"	"	
Toluene	ND	0.00150	"	"	"	"	"	"	
Total Xylenes	ND	0.0100	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	104 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	95.8 %	60-140			"	"	"	"	
Surrogate: 4-BFB	107 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental	Project	600 Westlake	
4006 148th Ave NE	Project Number:	WA255-3514-1	Reported:
Redmond, WA/USA 98052	Project Manager	Tena Seeds	08/02/05 15:31

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-20-4 (B5G0533-08) Soil	Sampled: 07/21/05 10:	45 Received	l: 07/22/05 0	8:40					
Benzene	0.0116	0.00127	mg/kg dry	1	5G29014	07/28/05	07/28/05	EPA 8260B	
Ethylbenzene	ND	0.00339	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.000847	"	"	"	"	"	"	
Naphthalene	ND	0.00424	"	"	"	"	"	"	
Toluene	0.00189	0.00127	"	"	"	"	"	"	
Total Xylenes	ND	0.00847	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	106 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	95.4 %	60-140			"	"	"	"	
Surrogate: 4-BFB	111 %	60-140			"	"	"	"	
SB-20-5 (B5G0533-09) Soil	Sampled: 07/21/05 12:	00 Received	1: 07/22/05 0	8:40					
Benzene	ND	0.00625	mg/kg dry	1	5G29045	07/29/05	07/29/05	EPA 8260B	
Ethylbenzene	ND	0.0167	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00417	"	"	"	"	"	"	
Naphthalene	ND	0.0208	"	"	"	"	"	"	
Toluene	ND	0.00625	"	"	"	"	"	"	
Total Xylenes	ND	0.0417	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	104 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	91.3 %	60-140			"	"	"	"	
Surrogate: 4-BFB	104 %	60-140			"	"	"	"	
SB-20-10 (B5G0533-10) Soil	Sampled: 07/21/05 12	:05 Receive	ed: 07/22/05	08:40					
Benzene	0.00232	0.00150	mg/kg dry	1	5G29045	07/29/05	07/29/05	EPA 8260B	
Ethylbenzene	ND	0.00400	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00100	"	"	"	"	"	"	
Naphthalene	ND	0.00500	"	"	"	"	"	"	
Toluene	ND	0.00150	"	"	"	"	"	"	
Total Xylenes	ND	0.0100	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	108 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	90.8 %	60-140			"	"	"	"	
Surrogate: 4-BFB	104 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental	Project: 600 Wes	stlake	
4006 148th Ave NE	Project Number: WA255-	-3514-1 Reported:	
Redmond, WA/USA 98052	Project Manager: Tena See	eds 08/02/05 15:31	

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-20-15 (B5G0533-11) Soil	Sampled: 07/21/05 12	:15 Receive	ed: 07/22/05	08:40					
Benzene	0.00836	0.00150	mg/kg dry	1	5G29045	07/29/05	07/29/05	EPA 8260B	
Ethylbenzene	ND	0.00400	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00100	"	"	"	"	"	"	
Naphthalene	ND	0.00500	"	"	"	"	"	"	
Toluene	ND	0.00150	"	"	"	"	"	"	
Total Xylenes	ND	0.0100	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	102 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	95.9 %	60-140			"	"	"	"	
Surrogate: 4-BFB	107 %	60-140			"	"	"	"	
SB-20-20 (B5G0533-12) Soil	Sampled: 07/21/05 12	:30 Receive	ed: 07/22/05	08:40					
Benzene	0.00696	0.00132	mg/kg dry	1	5G29045	07/29/05	07/29/05	EPA 8260B	
Ethylbenzene	ND	0.00351	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.000877	"	"	"	"	"	"	
Naphthalene	ND	0.00439	"	"	"	"	"	"	
Toluene	ND	0.00132	"	"	"	"	"	"	
Total Xylenes	ND	0.00877	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	106 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	94.3 %	60-140			"	"	"	"	
Surrogate: 4-BFB	108 %	60-140			"	"	"	"	
SB-21-2 (B5G0533-13) Soil	Sampled: 07/21/05 12:	20 Received	1: 07/22/05 0	8:40					
Benzene	0.00516	0.00150	mg/kg dry	1	5G29045	07/29/05	07/29/05	EPA 8260B	
Ethylbenzene	ND	0.00400	"	"		"	"	"	
Methyl tert-butyl ether	ND	0.00100	"	"		"	"	"	
Naphthalene	ND	0.00500	"	"		"	"	"	
Toluene	ND	0.00150	"	"	"	"	"	"	
Total Xylenes	0.0110	0.0100	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	106 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	97.0 %	60-140			"	"	"	"	
Surrogate: 4-BFB	109 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental	Project: 600 Westlake	
4006 148th Ave NE	Project Number: WA255-3514-1	Reported:
Redmond, WA/USA 98052	Project Manager: Tena Seeds	08/02/05 15:31

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-21-4 (B5G0533-14) Soil	Sampled: 07/21/05 12:	35 Received	1: 07/22/05 0	8:40					
Benzene	0.0754	0.00115	mg/kg dry	1	5G29014	07/28/05	07/28/05	EPA 8260B	
Ethylbenzene	0.00896	0.00306	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.000766	"	"	"	"	"	"	
Naphthalene	ND	0.00383	"	"	"	"	"	"	
Toluene	0.00542	0.00115	"	"	"	"	"	"	
Total Xylenes	0.0255	0.00766	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	114 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	93.2 %	60-140			"	"	"	"	
Surrogate: 4-BFB	112 %	60-140			"	"	"	"	
<u>SB-21-5 (B5G0533-15) Soil</u>	Sampled: 07/21/05 13:	20 Received	1: 07/22/05 0	8:40					
Benzene	0.0442	0.00258	mg/kg dry	1	5G29014	07/28/05	07/28/05	EPA 8260B	
Ethylbenzene	0.0165	0.00687	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00172	"	"	"	"	"	"	
Naphthalene	ND	0.00859	"	"	"	"	"	"	
Toluene	0.00506	0.00258	"	"	"	"	"	"	
Total Xylenes	0.0454	0.0172	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	116 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	91.7 %	60-140			"	"	"	"	
Surrogate: 4-BFB	105 %	60-140			"	"	"	"	
<u>SB-21-15 (B5G0533-17) Soil</u>	Sampled: 07/21/05 14	:00 Receive	ed: 07/22/05	08:40					
Benzene	0.00538	0.00150	mg/kg dry	1	5G29045	07/29/05	07/29/05	EPA 8260B	
Ethylbenzene	ND	0.00400	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00100	"	"	"	"	"	"	
Naphthalene	ND	0.00500	"	"	"	"	"	"	
Toluene	0.00296	0.00150	"	"	"	"	"	"	
Total Xylenes	ND	0.0100	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	102 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	93.7 %	60-140			"	"	"	"	
Surrogate: 4-BFB	101 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental	Project: 600 Westlake	
4006 148th Ave NE	Project Number: WA255-3514-1	Reported:
Redmond, WA/USA 98052	Project Manager: Tena Seeds	08/02/05 15:31

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-21-20 (B5G0533-18) Soil	Sampled: 07/21/05 14	:15 Receive	ed: 07/22/05	08:40					
Benzene	0.00275	0.00150	mg/kg dry	1	5G29014	07/28/05	07/28/05	EPA 8260B	
Ethylbenzene	0.00546	0.00400		"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00100		"	"	"	"	"	
Naphthalene	ND	0.00500		"	"	"	"	"	
Toluene	0.00601	0.00150		"	"	"	"	"	
Total Xylenes	0.0237	0.0100	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	123 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	95.8 %	60-140			"	"	"	"	
Surrogate: 4-BFB	105 %	60-140			"	"	"	"	
SB-22-20 (B5G0533-24) Soil	Sampled: 07/21/05 15	5:25 Receive	ed: 07/22/05	08:40					
Benzene	0.0112	0.00129	mg/kg dry	1	5G29045	07/29/05	07/29/05	EPA 8260B	
Ethylbenzene	0.0167	0.00344		"	"	"	"	"	
Methyl tert-butyl ether	ND	0.000859		"	"	"	"	"	
Naphthalene	0.0190	0.00430		"	"	"	"	"	
Toluene	0.00282	0.00129		"	"	"	"	"	
Total Xylenes	0.0224	0.00859	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	102 %	60-140			"	"	"	"	
-	97.7 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	11.1 /0								

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

Project Number: WA255-3514-1

Project Manager: Tena Seeds

Reported: 08/02/05 15:31

Volatile Organic Compounds (Special List) by EPA Method 8260B North Creek Analytical - Bothell

A	D It	Reporting	TT. it.		D. (1	D	A 1 1	Mahal	Nutur
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-19-10 (B5G0533-04) Soil	Sampled: 07/21/05 10:	20 Receive	ed: 07/22/05	08:40					
Benzene	16.2	1.55	mg/kg dry	10	5H01037	07/29/05	07/29/05	EPA 8260B	
Ethylbenzene	76.8	1.55	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	7.74	"	"	"	"	"	"	
Naphthalene	23.6	1.55	"	"	"	"	"	"	
Toluene	ND	1.55	"	"	"	"	"	"	
Total Xylenes	123	4.64	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	89.8 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	92.6 %	70-130			"	"	"	"	
Surrogate: 4-BFB	83.4 %	70-130			"	"	"	"	
SB-21-10 (B5G0533-16) Soil	Sampled: 07/21/05 13:	45 Receive	ed: 07/22/05	08:40					
Benzene	1.02	0.221	mg/kg dry	1	5G27052	07/27/05	07/29/05	EPA 8260B	
Ethylbenzene	2.61	0.221	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.11	"	"	"	"	"	"	
Naphthalene	0.950	0.221	"	"	"	"	"	"	
Toluene	ND	0.221	"	"	"	"	"	"	
Total Xylenes	1.53	0.664	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	87.2 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	100 %	70-130			"	"	"	"	
Surrogate: 4-BFB	101 %	70-130			"	"	"	"	
SB-22-2 (B5G0533-19) Soil	Sampled: 07/21/05 14:1	0 Received	d: 07/22/05 0	8:40					
Benzene	0.0666	0.0283	mg/kg dry	1	5G27052	07/27/05	07/28/05	EPA 8260B	
Ethylbenzene	ND	0.0283	"	"		"	"	"	
Methyl tert-butyl ether	ND	0.141	"	"	"	"	"	"	
Naphthalene	0.0723	0.0283	"	"	"	"	"	"	
Toluene	ND	0.0283	"	"	"	"	"	"	
Total Xylenes	ND	0.0849	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	91.1 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	101 %	70-130			"	"	"	"	
Surrogate: 4-BFB	103 %	70-130			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

Project Number: WA255-3514-1

Project Manager: Tena Seeds

Reported: 08/02/05 15:31

Volatile Organic Compounds (Special List) by EPA Method 8260B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-22-4 (B5G0533-20) Soil	Sampled: 07/21/05 14:20	0 Received	d: 07/22/05 0	8:40					
Benzene	ND	0.658	mg/kg dry	10	5G27052	07/27/05	07/28/05	EPA 8260B	
Ethylbenzene	0.780	0.658	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	3.29	"	"	"	"	"	"	
Naphthalene	7.99	0.658	"	"	"	"	"	"	
Toluene	ND	0.658	"	"	"	"	"	"	
Total Xylenes	ND	1.97	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	88.2 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	101 %	70-130			"	"	"	"	
Surrogate: 4-BFB	102 %	70-130			"	"	"	"	
SB-22-5 (B5G0533-21) Soil	Sampled: 07/21/05 14:45	5 Received	d: 07/22/05 0	8:40					
Benzene	3.44	0.356	mg/kg dry	5	5G27052	07/27/05	07/28/05	EPA 8260B	
Ethylbenzene	3.59	0.356	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.78	"	"	"	"	"	"	
Naphthalene	9.98	0.356	"	"	"	"	"	"	
Toluene	ND	0.356	"	"	"	"	"	"	
Total Xylenes	1.14	1.07	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	91.5 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	102 %	70-130			"	"	"	"	
Surrogate: 4-BFB	99.4 %	70-130			"	"	"	"	
SB-22-10 (B5G0533-22) Soil	Sampled: 07/21/05 14::	55 Receive	ed: 07/22/05	08:40					
Benzene	1.76	0.360	mg/kg dry	5	5G27052	07/27/05	07/28/05	EPA 8260B	
Ethylbenzene	5.78	0.360	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.80	"	"	"	"	"	"	
Naphthalene	5.96	0.360	"	"	"	"	"	"	
Toluene	ND	0.360	"	"	"	"	"	"	
Total Xylenes	2.69	1.08	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	88.9 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	101 %	70-130			"	"	"	"	
Surrogate: 4-BFB	101 %	70-130			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

Project: 600 Westlake Project Number: WA255-3514-1 Project Manager: Tena Seeds

Reported: 08/02/05 15:31

Volatile Organic Compounds (Special List) by EPA Method 8260B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-22-15 (B5G0533-23) Soil	Sampled: 07/21/05 15	:10 Receive	ed: 07/22/05	08:40					
Benzene	0.241	0.0745	mg/kg dry	1	5G27052	07/27/05	07/28/05	EPA 8260B	
Ethylbenzene	0.350	0.0745	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.372	"	"	"	"	"	"	
Naphthalene	0.336	0.0745	"	"	"	"	"	"	
Toluene	ND	0.0745	"	"	"	"	"	"	
Total Xylenes	0.672	0.223	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	88.6 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	102 %	70-130			"	"	"	"	
Surrogate: 4-BFB	103 %	70-130			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer, Project Manager

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: 600 Westlake Project Number: WA255-3514-1 Project Manager: Tena Seeds

Reported: 08/02/05 15:31

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

				-					
	F	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-19-2 (B5G0533-01) Soil	Sampled: 07/21/05 09:15	Received	1. 07/22/05	08.40					
				00.40					
Dry Weight	85.0	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
SB-19-4 (B5G0533-02) Soil	Sampled: 07/21/05 09:30	Received	1: 07/22/05	08:40					
Dry Weight	81.7	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
<u>SB-19-5 (B5G0533-03) Soil</u>	Sampled: 07/21/05 10:10	Received	1: 07/22/05	08:40					
Dry Weight	83.2	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
<u>SB-19-10 (B5G0533-04) Soil</u>	Sampled: 07/21/05 10:20	Receive	ed: 07/22/05	5 08:40					
Dry Weight	79.0	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
<u>SB-19-15 (B5G0533-05) Soil</u>	Sampled: 07/21/05 10:35	Receive	ed: 07/22/05	5 08:40					
Dry Weight	77.9	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
SB-19-20 (B5G0533-06) Soil	Sampled: 07/21/05 10:50	Receive	ed: 07/22/05	5 08:40					
Dry Weight	76.6	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
SB-20-2 (B5G0533-07) Soil	Sampled: 07/21/05 10:35	Received	I: 07/22/05	08:40					
Dry Weight	86.8	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
SB-20-4 (B5G0533-08) Soil	Sampled: 07/21/05 10:45	Received	I: 07/22/05	08:40					
Dry Weight	70.8	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
SB-20-5 (B5G0533-09) Soil	Sampled: 07/21/05 12:00	Received	I: 07/22/05	08:40					
Dry Weight	85.6	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: 600 Westlake Project Number: WA255-3514-1 Project Manager: Tena Seeds

Reported: 08/02/05 15:31

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

	R	eporting]
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-20-10 (B5G0533-10) Soil	Sampled: 07/21/05 12:05	Receive	ed: 07/22/05	08:40					
Dry Weight	83.3	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
SB-20-15 (B5G0533-11) Soil	Sampled: 07/21/05 12:15	Receive	ed: 07/22/05	08:40					
Dry Weight	83.6	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
SB-20-20 (B5G0533-12) Soil	Sampled: 07/21/05 12:30	Receive	ed: 07/22/05	08:40					
Dry Weight	86.4	1.00	%	1	5G26010	07/26/05	07/27/05	BSOPSPL003R08	
SB-21-2 (B5G0533-13) Soil	Sampled: 07/21/05 12:20	Received	l: 07/22/05 (08:40					
Dry Weight	86.8	1.00	%	1	5G26010	07/26/05	07/27/05	BSOPSPL003R08	
SB-21-4 (B5G0533-14) Soil	Sampled: 07/21/05 12:35	Received	l: 07/22/05 (08:40					
Dry Weight	87.0	1.00	%	1	5G26010	07/26/05	07/27/05	BSOPSPL003R08	
SB-21-5 (B5G0533-15) Soil	Sampled: 07/21/05 13:20	Received	l: 07/22/05 (08:40					
Dry Weight	87.3	1.00	%	1	5G26010	07/26/05	07/27/05	BSOPSPL003R08	
SB-21-10 (B5G0533-16) Soil	Sampled: 07/21/05 13:45	Receive	ed: 07/22/05	08:40					
Dry Weight	86.9	1.00	%	1	5G26010	07/26/05	07/27/05	BSOPSPL003R08	
<u>SB-21-15 (B5G0533-17) Soil</u>	Sampled: 07/21/05 14:00	Receive	ed: 07/22/05	08:40					
Dry Weight	84.9	1.00	%	1	5G26010	07/26/05	07/27/05	BSOPSPL003R08	
SB-21-20 (B5G0533-18) Soil	Sampled: 07/21/05 14:15	Receive	ed: 07/22/05	08:40					
Dry Weight	82.2	1.00	%	1	5G26010	07/26/05	07/27/05	BSOPSPL003R08	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: 600 Westlake Project Number: WA255-3514-1 Project Manager: Tena Seeds

Reported: 08/02/05 15:31

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

Analyte	F Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
<u>SB-22-2 (B5G0533-19) Soil</u>	Sampled: 07/21/05 14:10	Received	: 07/22/05	08:40					
Dry Weight	78.6	1.00	%	1	5G26010	07/26/05	07/27/05	BSOPSPL003R08	
SB-22-4 (B5G0533-20) Soil	Sampled: 07/21/05 14:20	Received	: 07/22/05	08:40					
Dry Weight	81.8	1.00	%	1	5G26010	07/26/05	07/27/05	BSOPSPL003R08	
SB-22-5 (B5G0533-21) Soil	Sampled: 07/21/05 14:45	Received	: 07/22/05	08:40					
Dry Weight	80.4	1.00	%	1	5G26010	07/26/05	07/27/05	BSOPSPL003R08	
SB-22-10 (B5G0533-22) Soil	Sampled: 07/21/05 14:55	Receive	d: 07/22/0	5 08:40					
Dry Weight	84.1	1.00	%	1	5G26010	07/26/05	07/27/05	BSOPSPL003R08	
SB-22-15 (B5G0533-23) Soil	Sampled: 07/21/05 15:10	Receive	d: 07/22/0	5 08:40					
Dry Weight	80.8	1.00	%	1	5G26010	07/26/05	07/27/05	BSOPSPL003R08	
SB-22-20 (B5G0533-24) Soil	Sampled: 07/21/05 15:25	Receive	d: 07/22/0	5 08:40					
Dry Weight	73.0	1.00	%	1	5G26010	07/26/05	07/27/05	BSOPSPL003R08	

North Creek Analytical - Bothell

Delta EnvironmentalProject: 600 Westlake4006 148th Ave NEProject Number: WA255-3514-1Redmond, WA/USA 98052Project Manager: Tena Seeds08/02/05 15:31

Volatile Petroleum Products by NWTPH-Gx - Quality Control North Creek Analytical - Bothell

		1		con many	tical I	Jounen					
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G27013:	Prepared 07/27/05	Using E	CPA 5030B	(MeOH)							
Blank (5G27013-Bl	LK1)										
Gasoline Range Hydro	carbons	ND	5.00	mg/kg							
Surrogate: 4-BFB (FIL))	2.12		"	3.00		70.7	50-150			
LCS (5G27013-BS1	l)										
Gasoline Range Hydro	carbons	52.0	5.00	mg/kg	50.0		104	75-125			
Surrogate: 4-BFB (FIL))	2.80		"	3.00		93.3	50-150			
LCS Dup (5G27013	3-BSD1)										
Gasoline Range Hydro	carbons	57.0	5.00	mg/kg	50.0		114	75-125	9.17	25	
Surrogate: 4-BFB (FIL))	2.86		"	3.00		95.3	50-150			
Matrix Spike (5G2'	7013-MS1)					Source: H	B5G0533-	10			
Gasoline Range Hydro	carbons	150	10.5	mg/kg dry	126	2.77	117	42-125			
Surrogate: 4-BFB (FIL))	7.87		"	7.58		104	50-150			
Matrix Spike Dup ((5G27013-MSD1)					Source: H	35G0533-	10			
Gasoline Range Hydro	carbons	152	10.5	mg/kg dry	126	2.77	118	42-125	1.32	40	
Surrogate: 4-BFB (FIL))	7.93		"	7.58		105	50-150			
Batch 5G27014:	Prepared 07/27/05	Using E	CPA 5030B	(MeOH)							
Blank (5G27014-Bl	LK1)										
Gasoline Range Hydro	carbons	ND	5.00	mg/kg							
Surrogate: 4-BFB (FIL))	2.32		"	3.00		77.3	50-150			
LCS (5G27014-BS1	l)										
Gasoline Range Hydro	carbons	56.8	5.00	mg/kg	50.0		114	75-125			
Surrogate: 4-BFB (FIL))	2.96		"	3.00		98.7	50-150			

North Creek Analytical - Bothell

Delta EnvironmentalProject: 600 Westlake4006 148th Ave NEProject Number: WA255-3514-1Redmond, WA/USA 98052Project Manager: Tena Seeds08/02/05 15:31

Volatile Petroleum Products by NWTPH-Gx - Quality Control North Creek Analytical - Bothell

			D	v	a 1			AVDEC		DDD	
Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Allalyte		Kesuit	Liiiit	Units	Level	Kesuit	70KEC	Linits	KFD	Liiiit	Notes
Batch 5G27014:	Prepared 07/27/05	Using E	EPA 5030E	B (MeOH)							
LCS Dup (5G27014	-BSD1)										
Gasoline Range Hydro	carbons	54.6	5.00	mg/kg	50.0		109	75-125	3.95	25	
Surrogate: 4-BFB (FIL))	2.95		"	3.00		<i>98.3</i>	50-150			
Matrix Spike (5G27	7014-MS1)					Source: E	35G0533-	01			
Gasoline Range Hydro	carbons	104	7.76	mg/kg dry	91.3	2.91	111	42-125			
Surrogate: 4-BFB (FIL))	5.51		"	5.48		101	50-150			
Matrix Spike Dup (5G27014-MSD1)					Source: E	35G0533-	01			
Gasoline Range Hydro	carbons	108	7.76	mg/kg dry	91.3	2.91	115	42-125	3.77	40	
Surrogate: 4-BFB (FIL))	5.18		"	5.48		94.5	50-150			
Batch 5G28040:	Prepared 07/28/05	Using E	EPA 5030E	B (MeOH)							
Blank (5G28040-BI	LK1)										
Gasoline Range Hydro	carbons	ND	5.00	mg/kg							
Surrogate: 4-BFB (FIL))	2.40		"	3.00		80.0	50-150			
LCS (5G28040-BS1	.)										
Gasoline Range Hydro	carbons	57.4	5.00	mg/kg	50.0		115	75-125			
Surrogate: 4-BFB (FIL))	2.86		"	3.00		95.3	50-150			
LCS Dup (5G28040	-BSD1)										
Gasoline Range Hydro	,	55.2	5.00	mg/kg	50.0		110	75-125	3.91	25	
Surrogate: 4-BFB (FIL))	2.82		"	3.00		94.0	50-150			
Matrix Spike (5G28	8040-MS1)					Source: E	35G0613-	03			
Gasoline Range Hydro	,	73.7	5.00	mg/kg dry	57.4	2.47	124	42-125			
Surrogate: 4-BFB (FIL))	3.32		"	3.44		96.5	50-150			

North Creek Analytical - Bothell

Delta EnvironmentalProject:600 Westlake4006 148th Ave NEProject Number:WA255-3514-1Redmond, WA/USA 98052Project Manager:Tena Seeds

Reported: 08/02/05 15:31

Volatile Petroleum Products by NWTPH-Gx - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G28040:	Prepared 07/28/05	Using El	PA 5030B	6 (MeOH)							
Matrix Spike Dup ((5G28040-MSD1)					Source: I	35G0613-	03			
Gasoline Range Hydro	carbons	77.5	5.00	mg/kg dry	57.4	2.47	131	42-125	5.03	40	Q-01
Surrogate: 4-BFB (FIL		3.44		"	3.44		100	50-150			

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 28 of 48

4006 148th Ave NE

Redmond, WA/USA 98052

08/02/05 15:31

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

	INC	ortin Cre	ек Апату	licai - I	Dothen					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G26062: Prepared 07/26/0	5 Using El	PA 3550B								
Blank (5G26062-BLK1)										
Diesel Range Hydrocarbons	ND	10.0	mg/kg							
Lube Oil Range Hydrocarbons	ND	25.0	"							
Surrogate: 2-FBP	6.45		"	8.33		77.4	50-150			
Surrogate: Octacosane	7.35		"	8.33		88.2	50-150			
LCS (5G26062-BS1)										
Diesel Range Hydrocarbons	55.4	10.0	mg/kg	66.7		83.1	61-120			
Surrogate: 2-FBP	7.24		"	8.33		86.9	50-150			
LCS Dup (5G26062-BSD1)										
Diesel Range Hydrocarbons	56.0	10.0	mg/kg	66.7		84.0	61-120	1.08	40	
Surrogate: 2-FBP	7.14		"	8.33		85.7	50-150			
Duplicate (5G26062-DUP1)					Source: I	35G0525-	01			
Diesel Range Hydrocarbons	112	20.0	mg/kg dry		59.3			61.5	50	Q-07
Lube Oil Range Hydrocarbons	604	50.0	"		316			62.6	50	Q-07
Surrogate: 2-FBP	5.19		"	8.90		58.3	50-150			
Surrogate: Octacosane	6.61		"	8.90		74.3	50-150			
Batch 5G26063: Prepared 07/26/0	5 Using El	PA 3550B								
Blank (5G26063-BLK1)										
Diesel Range Hydrocarbons	ND	10.0	mg/kg							
Lube Oil Range Hydrocarbons	ND	25.0	"							

"

"

8.33

8.33

6.40

8.12

North Creek Analytical - Bothell

Surrogate: 2-FBP

Surrogate: Octacosane

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

76.8

97.5

50-150

50-150

4006 148th Ave NE

Reported:

Redmond, WA/USA 98052	Project Manager: Tena Seeds	08/02/05 15:31
Semivolatile Petroleum Produ	icts by NWTPH-Dx with Acid/Silica Gel	Clean-up - Quality Control

Project Number: WA255-3514-1

North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G26063: Prepared 07/26/05	Using E	PA 3550B								
LCS (5G26063-BS1)										
Diesel Range Hydrocarbons	61.5	10.0	mg/kg	66.7		92.2	61-120			
Surrogate: 2-FBP	7.57		"	8.33		90.9	50-150			
LCS Dup (5G26063-BSD1)										
Diesel Range Hydrocarbons	60.1	10.0	mg/kg	66.7		90.1	61-120	2.30	40	
Surrogate: 2-FBP	7.57		"	8.33		90.9	50-150			
Duplicate (5G26063-DUP1)					Source: I	35G0533-	11			
Diesel Range Hydrocarbons	8.04	10.0	mg/kg dry		10.4			25.6	50	
Lube Oil Range Hydrocarbons	18.5	25.0	"		22.4			19.1	50	
Surrogate: 2-FBP	7.14		"	9.93		71.9	50-150			
Surrogate: Octacosane	9.42		"	9.93		94.9	50-150			
Batch 5G26064: Prepared 07/26/05	Using E	PA 3550B								
Blank (5G26064-BLK1)										
Diesel Range Hydrocarbons	ND	10.0	mg/kg							
Lube Oil Range Hydrocarbons	ND	25.0	"							
Surrogate: 2-FBP	6.95		"	8.33		83.4	50-150			
Surrogate: Octacosane	7.96		"	8.33		95.6	50-150			
LCS (5G26064-BS1)										
Diesel Range Hydrocarbons	66.3	10.0	mg/kg	66.7		99.4	61-120			
Surrogate: 2-FBP	9.48		"	8.33		114	50-150			
LCS Dup (5G26064-BSD1)										
Diesel Range Hydrocarbons	61.2	10.0	mg/kg	66.7		91.8	61-120	8.00	40	
Surrogate: 2-FBP	8.23		"	8.33		98.8	50-150			

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

08/02/05 15:31

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G26064: Prepared 07/26/05	Using El	PA 3550B								
Duplicate (5G26064-DUP1)					Source: E	85G0533-	24			
Diesel Range Hydrocarbons	12.0	10.0	mg/kg dry		12.9			7.23	50	
Lube Oil Range Hydrocarbons	11.5	25.0	"		11.1			3.54	50	
Surrogate: 2-FBP	9.17		"	11.3		81.2	50-150			
Surrogate: Octacosane	11.1		"	11.3		98.2	50-150			

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

Project Number: WA255-3514-1 Project Manager: Tena Seeds

08/02/05 15:31

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

		1 1		ck Analy	iicai - I	Jounen					
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G27038:	Prepared 07/27/05	Using E	PA 3050B								
Blank (5G27038-Bl	LK1)										
Lead		ND	0.500	mg/kg							
LCS (5G27038-BS1	l)										
Lead		36.0	0.500	mg/kg	40.4		89.1	80-120			
LCS Dup (5G27038	3-BSD1)										
Lead	,	34.3	0.500	mg/kg	38.8		88.4	80-120	4.84	20	
Matrix Spike (5G2'	7038-MS1)					Source: H	B5G0533-	01			
Lead		104	0.500	mg/kg dry	47.1	28.4	161	29-162			
Matrix Spike Dup ((5G27038-MSD1)					Source: I	35G0533-	01			
Lead		87.7	0.500	mg/kg dry	43.6	28.4	136	29-162	17.0	30	
Post Spike (5G2703	38-PS1)					Source: I	B5G0533-	01			
Lead	· · · · ·	0.140		ug/ml	0.100	0.0488	91.2	75-125			
Batch 5G27040:	Prepared 07/27/05	Using E	PA 3050B								
Blank (5G27040-Bl	LK1)										
Lead	,	ND	0.500	mg/kg							
LCS (5G27040-BS1	1)										
Lead	,	35.0	0.500	mg/kg	37.7		92.8	80-120			
LCS Dup (5G2704()-BSD1)										
Lead	, 2021)	40.5	0.500	mg/kg	40.8		99.3	80-120	14.6	20	
				00							

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

Project: 600 Westlake Project Number: WA255-3514-1 Project Manager: Tena Seeds

Reported: 08/02/05 15:31

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

			·							
		Reporting		Spike	Source		%REC		RPD	
	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Prepared 07/27/05	Using EF	PA 3050B								
040-MS1)					Source: H	85G0464-	01			
	95.6	0.500	mg/kg dry	43.6	62.2	76.6	29-162			
5G27040-MSD1)					Source: H	85G0464-	01			
	108	0.500	mg/kg dry	42.8	62.2	107	29-162	12.2	30	
)-PS1)					Source: H	85G0464-	01			
	0.206		ug/ml	0.100	0.110	96.0	75-125			
	040-MS1) 5G27040-MSD1)	Result Prepared 07/27/05 Using EF 040-MS1) 95.6 5G27040-MSD1) 108 0-PS1) 108	Prepared 07/27/05 Using EPA 3050B 040-MS1) 95.6 0.500 5G27040-MSD1) 108 0.500 0-PS1) 108 0.500	Result Limit Units Prepared 07/27/05 Using EPA 3050B Output 040-MS1) 95.6 0.500 mg/kg dry 5G27040-MSD1) 108 0.500 mg/kg dry	Result Limit Units Level Prepared 07/27/05 Using EPA 3050B 040-MS1) 95.6 0.500 mg/kg dry 43.6 5G27040-MSD1) 108 0.500 mg/kg dry 42.8 0-PS1) 108 0.500 mg/kg dry 42.8	Result Limit Units Level Result Prepared 07/27/05 Using EPA 3050B Source: E 040-MS1) Source: E 95.6 0.500 mg/kg dry 43.6 62.2 5G27040-MSD1) Source: E 108 0.500 mg/kg dry 42.8 62.2 0-PS1) Source: E Source: E Source: E Source: E	Result Limit Units Level Result %REC Prepared 07/27/05 Using EPA 3050B Source: B5G0464-0 040-MS1) 95.6 0.500 mg/kg dry 43.6 62.2 76.6 5G27040-MSD1) Source: B5G0464-0 108 0.500 mg/kg dry 42.8 62.2 107 O-PS1) Source: B5G0464-0 Source: B5G0464-0 Source: B5G0464-0	Result Limit Units Level Result %REC Limits Prepared 07/27/05 Using EPA 3050B Source: B5G0464-01 040-MS1) 95.6 0.500 mg/kg dry 43.6 62.2 76.6 29-162 5G27040-MSD1) Source: B5G0464-01 108 0.500 mg/kg dry 42.8 62.2 107 29-162 0-PS1) Source: B5G0464-01	Result Limit Units Level Result %REC Limits RPD Prepared 07/27/05 Using EPA 3050B Source: B5G0464-01 Source: B5G0464-01 040-MS1) 95.6 0.500 mg/kg dry 43.6 62.2 76.6 29-162 5G27040-MSD1) Source: B5G0464-01 108 0.500 mg/kg dry 42.8 62.2 107 29-162 12.2 0-PS1) Source: B5G0464-01	Result Limit Units Level Result %REC Limits RPD Limit Prepared 07/27/05 Using EPA 3050B Source: B5G0464-01 Source: B5G0464-01 040-MS1) Source: B5G0464-01 Source: B5G0464-01 Source: B5G0464-01 5G27040-MSD1) Source: B5G0464-01 Source: B5G0464-01 108 0.500 mg/kg dry 42.8 62.2 107 29-162 12.2 30 O-PS1) Source: B5G0464-01

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer, Project Manager

4006 148th Ave NE

Redmond, WA/USA 98052

08/02/05 15:31

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G28035:	Prepared 07/27/05	Using E	PA 5035								
Blank (5G28035-BLK	(1)										
Benzene		ND	0.00150	mg/kg							
Ethylbenzene		ND	0.00400	"							
Methyl tert-butyl ether		ND	0.00100	"							
Naphthalene		ND	0.00500	"							
Toluene		ND	0.00150	"							
Total Xylenes		ND	0.0100	"							
Surrogate: 1,2-DCA-d4		0.0549		"	0.0400		137	60-140			
Surrogate: Toluene-d8		0.0345		"	0.0400		86.2	60-140			
Surrogate: 4-BFB		0.0373		"	0.0400		93.3	60-140			
LCS (5G28035-BS1)											
Benzene		0.0428	0.00150	mg/kg	0.0400		107	70-130			
Ethylbenzene		0.0415	0.00400	"	0.0400		104	70-130			
Methyl tert-butyl ether		0.0373	0.00100	"	0.0400		93.3	70-130			
Naphthalene		0.0414	0.00500	"	0.0400		104	70-130			
Toluene		0.0381	0.00150	"	0.0400		95.2	70-130			
Total Xylenes		0.125	0.0100	"	0.120		104	70-130			
Surrogate: 1,2-DCA-d4		0.0868		"	0.0800		108	60-140			
Surrogate: Toluene-d8		0.0561		"	0.0800		70.1	60-140			
Surrogate: 4-BFB		0.0595		"	0.0800		74.4	60-140			
LCS Dup (5G28035-E	BSD1)										
Benzene		0.0452	0.00150	mg/kg	0.0400		113	70-130	5.45	30	
Ethylbenzene		0.0421	0.00400	"	0.0400		105	70-130	1.44	30	
Methyl tert-butyl ether		0.0389	0.00100	"	0.0400		97.2	70-130	4.20	30	
Naphthalene		0.0416	0.00500	"	0.0400		104	70-130	0.482	30	
Toluene		0.0405	0.00150	"	0.0400		101	70-130	6.11	30	
Total Xylenes		0.125	0.0100	"	0.120		104	70-130	0.00	30	
Surrogate: 1,2-DCA-d4		0.102		"	0.0800		128	60-140			
Surrogate: Toluene-d8		0.0728		"	0.0800		91.0	60-140			
Surrogate: 4-BFB		0.0745		"	0.0800		93.1	60-140			

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

08/02/05 15:31

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G29014:	Prepared 07/28/05	Using E	PA 5035								
Blank (5G29014-BLK	(1)										
Benzene		ND	0.00150	mg/kg							
Ethylbenzene		ND	0.00400	"							
Methyl tert-butyl ether		ND	0.00100	"							
Naphthalene		ND	0.00500	"							
Toluene		ND	0.00150	"							
Total Xylenes		ND	0.0100	"							
Surrogate: 1,2-DCA-d4		0.0453		"	0.0400		113	60-140			
Surrogate: Toluene-d8		0.0332		"	0.0400		83.0	60-140			
Surrogate: 4-BFB		0.0417		"	0.0400		104	60-140			
LCS (5G29014-BS1)											
Benzene		0.0397	0.00150	mg/kg	0.0400		99.3	70-130			
Ethylbenzene		0.0381	0.00400	"	0.0400		95.2	70-130			
Methyl tert-butyl ether		0.0468	0.00100	"	0.0400		117	70-130			
Naphthalene		0.0397	0.00500	"	0.0400		99.3	70-130			
Toluene		0.0357	0.00150	"	0.0400		89.2	70-130			
Total Xylenes		0.115	0.0100	"	0.120		95.8	70-130			
Surrogate: 1,2-DCA-d4		0.0814		"	0.0800		102	60-140			
Surrogate: Toluene-d8		0.0741		"	0.0800		92.6	60-140			
Surrogate: 4-BFB		0.0842		"	0.0800		105	60-140			
LCS Dup (5G29014-E	BSD1)										
Benzene		0.0406	0.00150	mg/kg	0.0400		102	70-130	2.24	30	
Ethylbenzene		0.0392	0.00400	"	0.0400		98.0	70-130	2.85	30	
Methyl tert-butyl ether		0.0417	0.00100	"	0.0400		104	70-130	11.5	30	
Naphthalene		0.0378	0.00500	"	0.0400		94.5	70-130	4.90	30	
Toluene		0.0371	0.00150	"	0.0400		92.8	70-130	3.85	30	
Total Xylenes		0.116	0.0100	"	0.120		96.7	70-130	0.866	30	
Surrogate: 1,2-DCA-d4		0.0761		"	0.0800		95.1	60-140			
Surrogate: Toluene-d8		0.0691		"	0.0800		86.4	60-140			
Surrogate: 4-BFB		0.0772		"	0.0800		96.5	60-140			

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

08/02/05 15:31

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

		-									
A 1		D k	Reporting	11.4	Spike	Source	0/DEC	%REC	DDD	RPD	NL
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G29045: 1	Prepared 07/29/05	Using E	CPA 5035								
Blank (5G29045-BLK	(1)										
Benzene		ND	0.00150	mg/kg							
Ethylbenzene		ND	0.00400	"							
Methyl tert-butyl ether		ND	0.00100	"							
Naphthalene		ND	0.00500	"							
Toluene		ND	0.00150	"							
Total Xylenes		ND	0.0100	"							
Surrogate: 1,2-DCA-d4		0.0416		"	0.0400		104	60-140			
Surrogate: Toluene-d8		0.0371		"	0.0400		92.8	60-140			
Surrogate: 4-BFB		0.0405		"	0.0400		101	60-140			
LCS (5G29045-BS1)											
Benzene		0.0416	0.00150	mg/kg	0.0400		104	70-130			
Ethylbenzene		0.0376	0.00400	"	0.0400		94.0	70-130			
Methyl tert-butyl ether		0.0496	0.00100	"	0.0400		124	70-130			
Naphthalene		0.0480	0.00500	"	0.0400		120	70-130			
Toluene		0.0348	0.00150	"	0.0400		87.0	70-130			
Total Xylenes		0.110	0.0100	"	0.120		91.7	70-130			
Surrogate: 1,2-DCA-d4		0.0844		"	0.0800		106	60-140			
Surrogate: Toluene-d8		0.0672		"	0.0800		84.0	60-140			
Surrogate: 4-BFB		0.0755		"	0.0800		94.4	60-140			
LCS Dup (5G29045-B	SD1)										
Benzene		0.0400	0.00150	mg/kg	0.0400		100	70-130	3.92	30	
Ethylbenzene		0.0379	0.00400	"	0.0400		94.8	70-130	0.795	30	
Methyl tert-butyl ether		0.0486	0.00100	"	0.0400		122	70-130	2.04	30	
Naphthalene		0.0412	0.00500	"	0.0400		103	70-130	15.2	30	
Toluene		0.0378	0.00150	"	0.0400		94.5	70-130	8.26	30	
Total Xylenes		0.113	0.0100	"	0.120		94.2	70-130	2.69	30	
Surrogate: 1,2-DCA-d4		0.0770		"	0.0800		96.2	60-140			
Surrogate: Toluene-d8		0.0757		"	0.0800		94.6	60-140			
Surrogate: 4-BFB		0.0785		"	0.0800		98.1	60-140			

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

08/02/05 15:31

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5H02005:	Prepared 08/01/05	Using E	PA 5035								
Blank (5H02005-BLK	(1)										
Benzene		ND	0.00150	mg/kg							
Ethylbenzene		ND	0.00400	"							
Methyl tert-butyl ether		ND	0.00100	"							
Naphthalene		ND	0.00500	"							
Toluene		ND	0.00150	"							
Total Xylenes		ND	0.0100	"							
Surrogate: 1,2-DCA-d4		0.0419		"	0.0400		105	60-140			
Surrogate: Toluene-d8		0.0362		"	0.0400		90.5	60-140			
Surrogate: 4-BFB		0.0409		"	0.0400		102	60-140			
LCS (5H02005-BS1)											
Benzene		0.0400	0.00150	mg/kg	0.0400		100	70-130			
Ethylbenzene		0.0381	0.00400	"	0.0400		95.2	70-130			
Methyl tert-butyl ether		0.0431	0.00100	"	0.0400		108	70-130			
Naphthalene		0.0393	0.00500	"	0.0400		98.2	70-130			
Toluene		0.0342	0.00150	"	0.0400		85.5	70-130			
Total Xylenes		0.109	0.0100	"	0.120		90.8	70-130			
Surrogate: 1,2-DCA-d4		0.0760		"	0.0800		95.0	60-140			
Surrogate: Toluene-d8		0.0663		"	0.0800		82.9	60-140			
Surrogate: 4-BFB		0.0737		"	0.0800		92.1	60-140			
LCS Dup (5H02005-B	SD1)										
Benzene		0.0415	0.00150	mg/kg	0.0400		104	70-130	3.68	30	
Ethylbenzene		0.0399	0.00400	"	0.0400		99.8	70-130	4.62	30	
Methyl tert-butyl ether		0.0458	0.00100	"	0.0400		114	70-130	6.07	30	
Naphthalene		0.0370	0.00500	"	0.0400		92.5	70-130	6.03	30	
Toluene		0.0372	0.00150	"	0.0400		93.0	70-130	8.40	30	
Total Xylenes		0.118	0.0100	"	0.120		98.3	70-130	7.93	30	
Surrogate: 1,2-DCA-d4		0.0695		"	0.0800		86.9	60-140			
Surrogate: Toluene-d8		0.0697		"	0.0800		87.1	60-140			
Surrogate: 4-BFB		0.0734		"	0.0800		91.8	60-140			

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

Reported:

08/02/05 15:31

Volatile Organic Compounds (Special List) by EPA Method 8260B - Quality Control
North Creek Analytical - Bothell

Project Manager: Tena Seeds

Project Number: WA255-3514-1

Analyte	Result	Limit		Reporting Spike Source %REC RPD												
Detah 50270521 Duemound 07/27/05		LIIIII	Units	Level	Result	%REC	Limits	RPD	Limit	Notes						
Batch 5G27052: Prepared 07/27/05	Using El	PA 5030B	[MeOH]													
Blank (5G27052-BLK1)																
Acetone	ND	1.00	mg/kg													
Benzene	ND	0.100	"													
Bromobenzene	ND	0.100	"													
Bromochloromethane	ND	0.100	"													
Bromodichloromethane	ND	0.100	"													
Bromoform	ND	0.100	"													
Bromomethane	ND	0.100	"													
2-Butanone	ND	1.00	"													
n-Butylbenzene	ND	0.100	"													
sec-Butylbenzene	ND	0.100	"													
tert-Butylbenzene	ND	0.100	"													
Carbon disulfide	ND	0.100	"													
Carbon tetrachloride	ND	0.100	"													
Chlorobenzene	ND	0.100	"													
Chloroethane	ND	0.100	"													
Chloroform	ND	0.100	"													
Chloromethane	ND	0.500	"													
2-Chlorotoluene	ND	0.100	"													
4-Chlorotoluene	ND	0.100	"													
Dibromochloromethane	ND	0.100	"													
1,2-Dibromo-3-chloropropane	ND	0.500	"													
1,2-Dibromoethane (EDB)	ND	0.100	"													
Dibromomethane	ND	0.100	"													
1,2-Dichlorobenzene	ND	0.100	"													
1,3-Dichlorobenzene	ND	0.100	"													
1,4-Dichlorobenzene	ND	0.100	"													
Dichlorodifluoromethane	ND	0.100	"													
1,1-Dichloroethane	ND	0.100	"													
1,2-Dichloroethane	ND	0.100	"													
1,1-Dichloroethene	ND	0.100	"													
cis-1,2-Dichloroethene	ND	0.100	"													
trans-1,2-Dichloroethene	ND	0.100	"													
1,2-Dichloropropane	ND	0.100	"													
1,3-Dichloropropane	ND	0.100	"													
2,2-Dichloropropane	ND	0.100														

North Creek Analytical - Bothell

Robert Greer, Project Manager

4006 148th Ave NE

Redmond, WA/USA 98052

Reported:

08/02/05 15:31

Volatile Organic Compounds (Special List) by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

Project Number: WA255-3514-1

	Reporting Spike Source %REC RPD											
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 5G27052:	Prepared 07/27/05	Using E	PA 5030B	[MeOH]								
Blank (5G27052-BL												
1,1-Dichloropropene)	ND	0.100	mg/kg								
cis-1,3-Dichloropropen	e	ND	0.100	"								
trans-1,3-Dichloroprop		ND	0.100	"								
Ethylbenzene		ND	0.100	"								
Hexachlorobutadiene		ND	0.100	"								
Methyl tert-butyl ether		ND	0.500	"								
2-Hexanone		ND	1.00	"								
Isopropylbenzene		ND	0.100	"								
p-Isopropyltoluene		ND	0.100	"								
4-Methyl-2-pentanone		ND	1.00	"								
Methylene chloride		ND	1.00	"								
Naphthalene		ND	0.100	"								
n-Propylbenzene		ND	0.100	"								
Styrene		ND	0.100	"								
1,2,3-Trichlorobenzene		ND	0.100	"								
1,2,4-Trichlorobenzene		ND	0.100	"								
1,1,1,2-Tetrachloroetha	ne	ND	0.100	"								
1,1,2,2-Tetrachloroetha	ne	ND	0.100	"								
Tetrachloroethene		ND	0.0500	"								
Toluene		ND	0.100	"								
1,1,1-Trichloroethane		ND	0.100	"								
1,1,2-Trichloroethane		ND	0.100	"								
Trichloroethene		ND	0.0300	"								
Trichlorofluoromethane	2	ND	0.100	"								
1,2,3-Trichloropropane		ND	0.100	"								
1,2,4-Trimethylbenzene	;	ND	0.100	"								
1,3,5-Trimethylbenzene		ND	0.100	"								
Vinyl chloride		ND	0.100	"								
Total Xylenes		ND	0.300	"								
Surrogate: 1,2-DCA-d4	!	1.94		"	2.00		97.0	70-130				
Surrogate: Toluene-d8		1.97		"	2.00		98.5	70-130				
Surrogate: 4-BFB		2.05		"	2.00		102	70-130				

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

Reported:

08/02/05 15:31

Volatile Organic Compounds (Special List) by EPA Method 8260B - Quality Control
North Creek Analytical - Bothell

Project Manager: Tena Seeds

Project Number: WA255-3514-1

		Reporting	en mary	Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G27052: Prepared 07/27/05	Using El	PA 5030B	[MeOH]							
Blank (5G27052-BLK2)	9	-	• •							
Acetone	ND	1.00	mg/kg							
Benzene	ND	0.100	"							
Bromobenzene	ND	0.100	"							
Bromochloromethane	ND	0.100	"							
Bromodichloromethane	ND	0.100	"							
Bromoform	ND	0.100	"							
Bromomethane	ND	0.100	"							
2-Butanone	ND	1.00	"							
n-Butylbenzene	ND	0.100	"							
sec-Butylbenzene	ND	0.100	"							
tert-Butylbenzene	ND	0.100	"							
Carbon disulfide	ND	0.100	"							
Carbon tetrachloride	ND	0.100	"							
Chlorobenzene	ND	0.100	"							
Chloroethane	ND	0.100	"							
Chloroform	ND	0.100	"							
Chloromethane	ND	0.500	"							
2-Chlorotoluene	ND	0.100	"							
4-Chlorotoluene	ND	0.100	"							
Dibromochloromethane	ND	0.100	"							
1,2-Dibromo-3-chloropropane	ND	0.500	"							
1,2-Dibromoethane (EDB)	ND	0.100	"							
Dibromomethane	ND	0.100	"							
1,2-Dichlorobenzene	ND	0.100	"							
1,3-Dichlorobenzene	ND	0.100	"							
1,4-Dichlorobenzene	ND	0.100	"							
Dichlorodifluoromethane	ND	0.100	"							
1,1-Dichloroethane	ND	0.100	"							
1,2-Dichloroethane	ND	0.100	"							
1,1-Dichloroethene	ND	0.100	"							
cis-1,2-Dichloroethene	ND	0.100	"							
trans-1,2-Dichloroethene	ND	0.100	"							
1,2-Dichloropropane	ND	0.100	"							
	ND	0.100								
1,3-Dichloropropane	ND	0.100								

North Creek Analytical - Bothell

Robert Greer, Project Manager

4006 148th Ave NE

Reported:

Volatile Organic Compounds	t) by EPA Method 8260B - Quality Con	trol	
Redmond, WA/USA 98052	Project Manager:	Tena Seeds	08/02/05 15:31

Project Number: WA255-3514-1

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5G27052: Prepared 07/27/05		EPA 5030B								
	5 Using 1									
Blank (5G27052-BLK2) 1,1-Dichloropropene	ND	0.100	mg/kg							
cis-1,3-Dichloropropene	ND	0.100	mg/kg							
trans-1,3-Dichloropropene	ND	0.100	"							
Ethylbenzene	ND	0.100	"							
Hexachlorobutadiene	ND	0.100	"							
Methyl tert-butyl ether	ND	0.500	"							
2-Hexanone	ND	1.00	"							
Isopropylbenzene	ND	0.100	"							
p-Isopropyltoluene	ND	0.100	"							
4-Methyl-2-pentanone	ND	1.00	"							
Methylene chloride	ND	1.00	"							
Naphthalene	ND	0.100	"							
n-Propylbenzene	ND	0.100	"							
Styrene	ND	0.100	"							
1,2,3-Trichlorobenzene	ND	0.100	"							
1,2,4-Trichlorobenzene	ND	0.100	"							
1,1,1,2-Tetrachloroethane	ND	0.100	"							
1,1,2,2-Tetrachloroethane	ND	0.100	"							
Tetrachloroethene	ND	0.100	"							
Toluene	ND	0.100	"							
1,1,1-Trichloroethane	ND	0.100	"							
1,1,2-Trichloroethane	ND	0.100	"							
Trichloroethene	ND	0.100	"							
Trichlorofluoromethane	ND	0.100	"							
1,2,3-Trichloropropane	ND	0.100	"							
1,2,4-Trimethylbenzene	ND	0.100	"							
1,3,5-Trimethylbenzene	ND	0.100	"							
Vinyl chloride	ND	0.100	"							
Total Xylenes	ND	0.300	"							
Surrogate: 1,2-DCA-d4	1.75		"	2.00		87.5	70-130			
Surrogate: Toluene-d8	2.03		"	2.00		102	70-130			
Surrogate: 4-BFB	2.04		"	2.00		102	70-130			

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

Reported:

08/02/05 15:31

Volatile Organic Compounds (Special List) by EPA Method 8260B - Quality Control
North Creek Analytical - Bothell

Project Manager: Tena Seeds

Project Number: WA255-3514-1

Blark (5C27082-B1K3) Acetore ND 1.00 ng/kg Benzene ND 0.100 " Bromobenzene ND 0.100 " Bromotenzene ND 0.100 " Bromotenzene ND 0.100 " Bromotentane ND 0.100 " Bromotenzene ND 0.100 " Bromotenzene ND 0.100 " Bromotenzene ND 0.100 " Sec-Batylbenzene ND 0.100 " Carbon distifié ND 0.100 " Carbon distifié ND 0.100 " Chorotenzene ND 0.100 " Loborotenzene ND 0.100 "<		1.11									
Data Sci227052: Prepared 07/27/05 Using EPA 5030B [MeCH] Bank 5G27052: BLK3)	Analyte	Result		Units	-		%REC		RPD		Notes
Bank (SC27052-BLK3) Acetore ND 1.00 reg/kg Benzene ND 0.100 " Bromobenzene ND 0.100 " Bromoditromethane ND 0.100 " SecButylbenzene ND 0.100 " Carbon tetrachloride ND 0.100 " Carbon tetrachloride ND 0.100 " Chlorothane ND 0.100 " Chlorothane ND 0.100 " 1.2-Ditoros-fallocorophane ND 0.100 " 1.2-Dibromodi-A											
ActoneNDI.0mkgBranceND0.00"BromochuromeND0.00"BromochuromethaneND0.100"BromochuromethaneND0.100"BromochuromethaneND0.100"BromochuromethaneND0.100"BrumomethaneND0.100"BrumomethaneND0.100"BrumomethaneND0.100"BrumomethaneND0.100"BrutomethaneND0.100"BrutomethaneND0.100"Carbon distributioneND0.100"Carbon distributioneND0.100"ChorochaneND0.100"ChorochaneND0.100"ChorochaneND0.100"ChorochaneND0.100"ChorochaneND0.100"L'IndromethaneND0.100"L'IndromethaneND0.100"L'IndromethaneND0.100"L'IndromethaneND0.100"L'IndromethaneND0.100"L'IndromethaneND0.100"L'IndromethaneND0.100"L'IndromethaneND0.100"L'IndromethaneND0.100"L'IndromethaneND0.100"L'IndromethaneND0.100	Batch 5G27052: Prepared 07/27/05	Using El	PA 5030B	[MeOH]							
BenzeneND0.100"BromochloromethaneND0.100"BromochloromethaneND0.100"BromochloromethaneND0.100"BromochloromethaneND0.100"BromochloromethaneND0.100"BromochloromethaneND0.100"BromochloromethaneND0.100"BromochloromethaneND0.100"BromochloromethaneND0.100"BromochloromethaneND0.100"BromochloromethaneND0.100"Carbon disulfideND0.100"Carbon disulfideND0.100"Carbon disulfideND0.100"ChlorochaneND0.100"ChlorochaneND0.100"ChlorochaneND0.100"DibromochloromethaneND0.100"Lj. DibromochaneND0.100"Lj. DibromochaneND	Blank (5G27052-BLK3)										
Characteric ND 0.100 Bromochloromethane ND 0.100 Semudichloromethane ND 0.100 Carbon ctrackhoride ND 0.100 Chlorobenzene ND 0.100 1.2-Dibromochane (EDB) ND 0.100 1.2-Dibromochane (EDB) ND 0.100 I	Acetone	ND	1.00	mg/kg							
Database Description Bromochloromethane ND 0.100 " Bromochloromethane ND 0.100 " Bromochloromethane ND 0.100 " 2-Butanon ND 0.100 " 2-Butanon ND 0.100 " 2-Butanon ND 0.100 " Carbon disulfade ND 0.100 " Carbon disulfade ND 0.100 " Carbon disulfade ND 0.100 " Chlorothane ND 0.100 " L'Dibromocharoter ND 0.100 " L'Dibromocharoter ND 0.100 " L'Dibrotonezane ND </td <td>Benzene</td> <td>ND</td> <td>0.100</td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Benzene	ND	0.100	"							
BromodichloromethaneND0.100"BromodichloromethaneND0.100"JabuanoneND0.100"a-BarylbenzeneND0.100"arch JulybenzeneND0.100"Carbon disulfideND0.100"Carbon disulfideND0.100"Carbon disulfideND0.100"ChorochanzeneND0.100"ChorochanzeneND0.100"ChorochanzeneND0.100"ChorochanzeneND0.100"ChorochanzeneND0.100"ChorochanzeneND0.100"ChorochanzeneND0.100"ChorochanzeneND0.100"ChorochanzeneND0.100"ChorochanzeneND0.100"ChorochanzeneND0.100"Labiomon-SchloropopaneND0.100"Labiomon-SchloropopaneND0.100"LabiohorobenzeneND0.100"LabiohorobenzeneND0.100"LabiohorobenzeneND0.100"LabiohorobenzeneND0.100"LabiohorobenzeneND0.100"LabiohorobenzeneND0.100"LabiohorobenzeneND0.100"LabiohorobenzeneND0.100"LabiohorobenzeneND0.100"	Bromobenzene	ND	0.100	"							
Bromonform ND 0.100 " Bromonchane ND 0.100 " 2-Butanone ND 0.100 " -Butylbrazene ND 0.100 " see-Butylbenzene ND 0.100 " Carbon disulfide ND 0.100 " Carbon disulfide ND 0.100 " Chlorobenzene ND 0.100 " 2-Chlorobenzene ND 0.100 " 2-Dibromochane ND 0.100 " 1,2-Dibromochane ND 0.100 " 1,2-Dibromochane ND 0.100 " 1,2-Dibromochane ND 0.100 "	Bromochloromethane	ND	0.100	"							
Bromomethane ND 0.100 " 2-Butanone ND 1.00 " n-Butybenzene ND 0.100 " cerbutybenzene ND 0.100 " carbon disulfde ND 0.100 " Carbon disulfde ND 0.100 " Carbon disulfde ND 0.100 " Chlorobenzene ND 0.100 " 1.2-Dibromothane (EDB) ND 0.100 <t< td=""><td>Bromodichloromethane</td><td>ND</td><td>0.100</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Bromodichloromethane	ND	0.100	"							
Distribution ND 0.100 a-Butybenzene ND 0.100 sec-Butybenzene ND 0.100 sec-Butybenzene ND 0.100 carbon disulfac ND 0.100 Carbon disulfac ND 0.100 Carbon disulfac ND 0.100 Chorobenzene ND 0.100 12-Dibromoethane ND 0.100 12-Dibromoethane ND 0.100 1.2-Dibromoethane ND 0.100 1.3-Dibromoethane ND 0.100 1.4-Dibromoethane ND 0.100 1.1-Dibromoethane ND <	Bromoform	ND	0.100	"							
Public ND 1.00 Baryblenzene ND 0.100 " see-Butybenzene ND 0.100 " Carbon disulfide ND 0.100 " Carbon disulfide ND 0.100 " Chorobenzene ND 0.100 " Chlorobenzene ND 0.100 " 4.Chlorobluene ND 0.100 " 1.2-Dibromo-3-chloropopane ND 0.100 " 1.2-Dibromo-S-chloropopane ND 0.100 " 1.2-Dibrlorobenzene ND 0.100 " 1.2-Dichlorobenzene ND 0.100 " 1.2-Dichlorobenzene ND 0.100 "	Bromomethane	ND	0.100	"							
see-AugleenzeeND0.100"Carbon disulfideND0.100"Carbon disulfideND0.100"Carbon dirachlorideND0.100"ChlorobenzeneND0.100"ChloroformND0.100"ChlorodentaneND0.100"ChlorodentaneND0.100"ChlorodentaneND0.100"2-ChlorodolueneND0.100"2-ChlorodolueneND0.100"1,2-Dibromo-3-chloropropaneND0.100"1,2-Dibromo-schloropropaneND0.100"1,2-DibrlorobenzeneND0.100"1,3-DichlorobenzeneND0.100"1,4-DichlorobenzeneND0.100"1,1-DichlorobenzeneND0.100"1,1-DichlorobenzeneND0.100"1,1-DichlorobenzeneND0.100"1,1-DichlorobenzeneND0.100"1,1-DichlorobenzeneND0.100"1,1-DichlorobenzeneND0.100"1,1-DichlorobenzeneND0.100"1,1-DichlorobenzeneND0.100"1,1-DichlorobenzeneND0.100"1,1-DichlorobenzeneND0.100"1,1-DichlorobenzeneND0.100"1,1-DichlorobenzeneND0.100"1,1-DichlorobenzeneND0.100 <t< td=""><td>2-Butanone</td><td>ND</td><td>1.00</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	2-Butanone	ND	1.00	"							
tert-BuylbenzeneND0.100"Carbon disulfideND0.100"Carbon tetrachlorideND0.100"ChlorobenzeneND0.100"ChlorobenzeneND0.100"ChlorothameND0.100"ChlorothameND0.100"ChlorothameND0.100"2-ChlorotolueneND0.100"2-ChlorotolueneND0.100"1,2-Dibromo-3-chloropropaneND0.100"1,2-Dibromo-4-chloropropaneND0.100"1,2-DichlorotolueneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,1-DichlorothaneND0.100"1,1-DichlorothaneND0.100"1,1-DichlorothaneND0.100"1,1-DichlorothaneND0.100"1,1-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-Dic	n-Butylbenzene	ND	0.100	"							
Carbon disulfide ND 0.100 " Carbon tetrachloride ND 0.100 " Chlorobenzene ND 0.100 " Chlorobenzene ND 0.100 " Chloroform ND 0.100 " Chloroform ND 0.100 " Chloroform ND 0.100 " Chlorofoluene ND 0.100 " 2-Chlorotoluene ND 0.100 " 2-Dibrono-3-chloropropane ND 0.100 " 1,2-Dibrono-dane (EDB) ND 0.100 " 1,2-Dichlorobenzene ND 0.100 " 1,2-Dichlorobenzene ND 0.100 " 1,2-Dichlorobenzene ND 0.100 " 1,1-Dichlorobenzene ND 0.100 " 1,1-Dichlorobenzene ND 0.100 " 1,1-Dichlorobenzene ND 0.100 " 1,1-Dichloroethane ND 0.1	sec-Butylbenzene	ND	0.100	"							
Carbon tetrachloride ND 0.100 Carbon tetrachloride ND 0.100 Chlorochane ND 0.100 Chlorothane ND 0.100 Chlorothane ND 0.100 Chlorothane ND 0.100 Chlorothane ND 0.100 2-Chlorotoluene ND 0.100 4-Chlorotoluene ND 0.100 1,2-Dibromo-sholroomethane ND 0.100 1,2-Dibromo-sholroomethane ND 0.100 1,2-Dibromo-sholroomethane ND 0.100 1,2-Dibromo-shoropopane ND 0.100 1,2-Dibromo-shoromethane ND 0.100 1,2-Dibromo-shoromethane ND 0.100 1,4-Dibrihorobenzene ND 0.100 1,4-Dibrihorobenzene ND 0.100 1,1-Dichloroethane ND 0.100 1,1-Dichloroethane ND 0.100 1,1-Dichloroethane ND 0.100 1,1-Dichloroethene ND <td< td=""><td>tert-Butylbenzene</td><td>ND</td><td>0.100</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	tert-Butylbenzene	ND	0.100	"							
Characteristic ND 0.100 Chlorobenzene ND 0.100 Chlorothane ND 0.100 Chlorothane ND 0.100 Chlorothane ND 0.100 Chlorothane ND 0.100 2-Chlorothuene ND 0.100 4-Chlorothuene ND 0.100 12-Dibromo-s-chloropropane ND 0.100 1,2-Dibromo-s-chloropropane ND 0.100 1,2-Dibromoethane (EDB) ND 0.100 1,2-Dibromoethane ND 0.100 1,2-Dibromoethane ND 0.100 1,2-Dibromoethane ND 0.100 1,2-Dichlorobenzene ND 0.100 1,4-Dichlorobenzene ND 0.100 1,1-Dichloroethane ND 0.100 1,1-Dichloroethane ND 0.100 1,1-Dichloroethene ND 0.100 1,1-Dichloroethene ND 0.100 isi-1,2-Dichloroethene ND 0.100 <t< td=""><td>Carbon disulfide</td><td>ND</td><td>0.100</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Carbon disulfide	ND	0.100	"							
ChlorothaneND0.100"ChloroformND0.100"ChlorothaneND0.500"2-ChlorotolueneND0.100"4-ChlorotolueneND0.100"DibromochloromethaneND0.100"1,2-Dibromo-3-chloropopaneND0.100"1,2-Dibromothane (EDB)ND0.100"1,2-DichlorobenzeneND0.100"1,3-DichlorobenzeneND0.100"1,4-DichlorobenzeneND0.100"1,1-DichlorothaneND0.100"1,1-DichlorothaneND0.100"1,1-DichlorothaneND0.100"1,1-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,1-DichlorothaneND0.100"1,1-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,2-DichlorothaneND0.100"1,3-DichlorothaneND0.100"1,3-DichlorothaneND0.100"1,3-DichlorothaneND0.100"	Carbon tetrachloride	ND	0.100	"							
Chloroform ND 0.100 Chloromethane ND 0.500 2-Chlorotoluene ND 0.100 4-Chlorotoluene ND 0.100 4-Chloromethane ND 0.100 1,2-Dibromo-3-chloropropane ND 0.100 1,2-Dibromo-4 ND 0.100 1,2-Dibromo-blane (EDB) ND 0.100 Dibromoethane ND 0.100 1,2-Dichlorobenzene ND 0.100 1,2-Dichlorobenzene ND 0.100 1,4-Dichloroethane ND 0.100 1,4-Dichloroethane ND 0.100 1,1-Dichloroethane ND 0.100 trans-1,2-Dichloroethene ND 0.100 trans-1,2-Dichloroethene ND 0.100 1,2-Dichloroethene ND 0.100	Chlorobenzene	ND	0.100	"							
ChloromethaneND0.500"2-ChlorotolueneND0.100"4-ChlorotolueneND0.100"DibromochloromethaneND0.500"1,2-Dibromo-3-chloropropaneND0.100"1,2-Dibromoethane (EDB)ND0.100"1,2-DichlorobenzeneND0.100"1,2-DichlorobenzeneND0.100"1,3-DichlorobenzeneND0.100"1,4-DichlorobenzeneND0.100"1,1-DichlorothaneND0.100"1,1-DichlorothaneND0.100"1,1-DichlorothaneND0.100"1,1-DichlorothaneND0.100"1,1-DichlorotheneND0.100"1,2-DichlorotheneND0.100"1,2-DichlorotheneND0.100"1,2-DichlorotheneND0.100"1,2-DichlorotheneND0.100"1,2-DichlorotheneND0.100"1,2-DichlorotheneND0.100"1,2-DichlorotheneND0.100"1,2-DichlorotheneND0.100"1,2-DichlorotheneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.10	Chloroethane	ND	0.100	"							
2-ChlorotolueneND0.100"4-ChlorotolueneND0.100"DibromochloromethaneND0.500"1,2-Dibromo-3-chloropropaneND0.100"1,2-Dibromoethane (EDB)ND0.100"1,2-DichlorobenzeneND0.100"1,3-DichlorobenzeneND0.100"1,4-DichlorobenzeneND0.100"1,1-DichloroethaneND0.100"1,1-DichloroethaneND0.100"1,1-DichloroethaneND0.100"1,1-DichloroethaneND0.100"1,1-DichloroethaneND0.100"1,2-DichloroethaneND0.100"1,2-DichloroethaneND0.100"1,2-DichloroethaneND0.100"1,2-DichloroethaneND0.100"1,2-DichloroethaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-Dichloropropane	Chloroform	ND	0.100	"							
4-ChlorotolueneND0.100"DibromochloromethaneND0.100"1,2-Dibromo-3-chloropropaneND0.100"1,2-Dibromoethane (EDB)ND0.100"1,2-DichlorobenzeneND0.100"1,3-DichlorobenzeneND0.100"1,4-DichlorobenzeneND0.100"1,4-DichlorobenzeneND0.100"1,1-DichloroethaneND0.100"1,1-DichloroethaneND0.100"1,1-DichloroethaneND0.100"1,1-DichloroethaneND0.100"1,1-DichloroethaneND0.100"1,1-DichloroethaneND0.100"1,2-DichloroetheneND0.100"1,2-DichloroetheneND0.100"1,2-DichloroetheneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"1,3-DichloropropaneND0.100"	Chloromethane	ND	0.500	"							
DibromochloromethaneND0.100"1,2-Dibromo-3-chloropropaneND0.500"1,2-Dibromoethane (EDB)ND0.100"DibromomethaneND0.100"1,2-DichlorobenzeneND0.100"1,3-DichlorobenzeneND0.100"1,4-DichlorobenzeneND0.100"1,1-DichlorotentaneND0.100"1,1-DichlorotentaneND0.100"1,1-DichlorotentaneND0.100"1,1-DichlorotentaneND0.100"1,1-DichlorotentaneND0.100"1,2-DichlorotentaneND0.100"1,2-DichlorotentaneND0.100"1,2-DichlorotentaneND0.100"1,2-DichlorotentaneND0.100"1,2-DichlorotentaneND0.100"1,2-DichlorotentaneND0.100"1,2-DichlorotentaneND0.100"1,2-DichlorotentaneND0.100"1,2-DichlorotentaneND0.100"1,2-DichlorotentaneND0.100"1,2-DichlorotentaneND0.100"1,3-DichloropropaneND0.100"	2-Chlorotoluene	ND	0.100	"							
1,2-Dibromo-3-chloropropane ND 0.500 " 1,2-Dibromoethane (EDB) ND 0.100 " Dibromomethane ND 0.100 " 1,2-Dichlorobenzene ND 0.100 " 1,3-Dichlorobenzene ND 0.100 " 1,4-Dichlorobenzene ND 0.100 " 1,4-Dichlorobenzene ND 0.100 " 1,1-Dichlorothane ND 0.100 " 1,1-Dichlorothane ND 0.100 " 1,1-Dichlorothane ND 0.100 " 1,2-Dichlorothane ND 0.100 " 1,1-Dichlorothene ND 0.100 " 1,1-Dichlorothene ND 0.100 " 1,2-Dichlorothene ND 0.100 " 1,2-Dichlorothene ND 0.100 " 1,2-Dichloroptene ND 0.100 " 1,2-Dichloroptene ND 0.100 " 1,2-Dichloroptene ND 0.100 " 1,3-Dichloropropane ND <	4-Chlorotoluene	ND	0.100	"							
ND 0.100 " Dibromonethane ND 0.100 " 1,2-Dichlorobenzene ND 0.100 " 1,3-Dichlorobenzene ND 0.100 " 1,4-Dichlorobenzene ND 0.100 " 1,4-Dichlorobenzene ND 0.100 " 1,4-Dichlorobenzene ND 0.100 " 1,1-Dichlorobenzene ND 0.100 " 1,1-Dichlorobenzene ND 0.100 " 1,1-Dichlorobethane ND 0.100 " 1,1-Dichlorobethane ND 0.100 " 1,1-Dichlorobethene ND 0.100 " 1,1-Dichlorobethene ND 0.100 " trans-1,2-Dichlorobethene ND 0.100 " 1,2-Dichloroptopane ND 0.100 "	Dibromochloromethane	ND	0.100	"							
Dibromomethane ND 0.100 " 1,2-Dichlorobenzene ND 0.100 " 1,3-Dichlorobenzene ND 0.100 " 1,4-Dichlorobenzene ND 0.100 " 1,4-Dichlorobenzene ND 0.100 " 1,4-Dichlorobenzene ND 0.100 " 1,1-Dichloroethane ND 0.100 " 1,1-Dichloroethane ND 0.100 " 1,2-Dichloroethane ND 0.100 " 1,1-Dichloroethane ND 0.100 " 1,1-Dichloroethene ND 0.100 " 1,2-Dichloroethene ND 0.100 " 1,2-Dichloroethene ND 0.100 " 1,2-Dichloroethene ND 0.100 " 1,2-Dichloroptopane ND 0.100 "	1,2-Dibromo-3-chloropropane	ND	0.500	"							
I,2-Dichlorobenzene ND 0.100 " 1,3-Dichlorobenzene ND 0.100 " 1,4-Dichlorobenzene ND 0.100 " 1,4-Dichlorobenzene ND 0.100 " Dichlorodifluoromethane ND 0.100 " 1,1-Dichloroethane ND 0.100 " 1,2-Dichloroethane ND 0.100 " 1,1-Dichloroethane ND 0.100 " 1,1-Dichloroethene ND 0.100 " 1,2-Dichloroethene ND 0.100 " 1,2-Dichloropropane ND 0.100 "	1,2-Dibromoethane (EDB)	ND	0.100	"							
1,2-Dichlorobenzene ND 0.100 " 1,4-Dichlorobenzene ND 0.100 " Dichlorodifluoromethane ND 0.100 " 1,1-Dichloroethane ND 0.100 " 1,2-Dichloroethane ND 0.100 " 1,2-Dichloroethane ND 0.100 " 1,1-Dichloroethane ND 0.100 " 1,1-Dichloroethane ND 0.100 " 1,1-Dichloroethene ND 0.100 " 1,2-Dichloroethene ND 0.100 " trans-1,2-Dichloroethene ND 0.100 " 1,2-Dichloroethene ND 0.100 " 1,2-Dichloroethene ND 0.100 " 1,2-Dichloropropane ND 0.100 "	Dibromomethane	ND	0.100	"							
1,4-Dichlorobenzene ND 0.100 " Dichlorodifluoromethane ND 0.100 " 1,1-Dichloroethane ND 0.100 " 1,2-Dichloroethane ND 0.100 " 1,1-Dichloroethane ND 0.100 " 1,1-Dichloroethane ND 0.100 " 1,1-Dichloroethene ND 0.100 " trans-1,2-Dichloroethene ND 0.100 " 1,2-Dichloroethene ND 0.100 " 1,2-Dichloroethene ND 0.100 " 1,2-Dichloroethene ND 0.100 " 1,2-Dichloroptopane ND 0.100 "	1,2-Dichlorobenzene	ND	0.100	"							
ND 0.100 Dichlorodifluoromethane ND 0.100 " 1,1-Dichloroethane ND 0.100 " 1,2-Dichloroethane ND 0.100 " 1,1-Dichloroethane ND 0.100 " 1,1-Dichloroethane ND 0.100 " 1,1-Dichloroethene ND 0.100 " trans-1,2-Dichloroethene ND 0.100 " 1,2-Dichloroethene ND 0.100 " 1,2-Dichloroethene ND 0.100 " 1,2-Dichloroptopane ND 0.100 "	1,3-Dichlorobenzene	ND	0.100	"							
1,1-Dichloroethane ND 0.100 " 1,2-Dichloroethane ND 0.100 " 1,1-Dichloroethane ND 0.100 " 1,1-Dichloroethene ND 0.100 " cis-1,2-Dichloroethene ND 0.100 " trans-1,2-Dichloroethene ND 0.100 " 1,2-Dichloroethene ND 0.100 " 1,2-Dichloropropane ND 0.100 "	1,4-Dichlorobenzene	ND	0.100	"							
1,2-Dichloroethane ND 0.100 " 1,1-Dichloroethene ND 0.100 " cis-1,2-Dichloroethene ND 0.100 " trans-1,2-Dichloroethene ND 0.100 " 1,2-Dichloroethene ND 0.100 " 1,2-Dichloroptopane ND 0.100 " 1,3-Dichloroptopane ND 0.100 "	Dichlorodifluoromethane	ND	0.100	"							
ND 0.100 " cis-1,2-Dichloroethene ND 0.100 " trans-1,2-Dichloroethene ND 0.100 " 1,2-Dichloroptopane ND 0.100 " 1,3-Dichloroptopane ND 0.100 "	1,1-Dichloroethane	ND	0.100	"							
IndextendedND0.100cis-1,2-DichloroetheneND0.100trans-1,2-DichloroptopaneND0.1001,2-DichloroptopaneND0.1001,3-DichloroptopaneND0.100	1,2-Dichloroethane	ND	0.100	"							
trans-1,2-DichloroetheneND0.100"1,2-DichloropropaneND0.100"1,3-DichloropropaneND0.100"	1,1-Dichloroethene	ND	0.100	"							
1,2-DichloropropaneND0.100"1,3-DichloropropaneND0.100"	cis-1,2-Dichloroethene	ND	0.100	"							
1,3-DichloropropaneND0.100ND0.100	trans-1,2-Dichloroethene	ND	0.100	"							
	1,2-Dichloropropane	ND	0.100	"							
2,2-Dichloropropane ND 0.100 "	1,3-Dichloropropane	ND	0.100	"							
	2,2-Dichloropropane	ND	0.100	"							

North Creek Analytical - Bothell

4006 148th Ave NE

Reported:

F	Redmond, WA/USA 98052	Project Manager: Tena Seeds	08/02/05 15:31
	Volatile Organic Compounds	uality Control	

North Creek Analytical - Bothell

Project Number: WA255-3514-1

 			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G27052:	Prepared 07/27/05	Using El	PA 5030B	[MeOH]							
Blank (5G27052-BL	K3)										
1,1-Dichloropropene		ND	0.100	mg/kg							
cis-1,3-Dichloropropene	2	ND	0.100	"							
trans-1,3-Dichloroprope	ene	ND	0.100	"							
Ethylbenzene		ND	0.100	"							
Hexachlorobutadiene		ND	0.100	"							
Methyl tert-butyl ether		ND	0.500	"							
2-Hexanone		ND	1.00	"							
Isopropylbenzene		ND	0.100	"							
p-Isopropyltoluene		ND	0.100	"							
4-Methyl-2-pentanone		ND	1.00	"							
Methylene chloride		ND	1.00	"							
Naphthalene		ND	0.100	"							
n-Propylbenzene		ND	0.100	"							
Styrene		ND	0.100	"							
1,2,3-Trichlorobenzene		ND	0.100	"							
1,2,4-Trichlorobenzene		ND	0.100	"							
1,1,1,2-Tetrachloroethan	ne	ND	0.100	"							
1,1,2,2-Tetrachloroethan	ne	ND	0.100	"							
Tetrachloroethene		ND	0.100	"							
Toluene		ND	0.100	"							
1,1,1-Trichloroethane		ND	0.100	"							
1,1,2-Trichloroethane		ND	0.100	"							
Trichloroethene		ND	0.100								
Trichlorofluoromethane		ND	0.100	"							
1,2,3-Trichloropropane		ND	0.100	"							
1,2,4-Trimethylbenzene		ND	0.100	"							
1,3,5-Trimethylbenzene		ND	0.100	"							
Vinyl chloride		ND	0.100	"							
Total Xylenes		ND	0.300	"							
Surrogate: 1,2-DCA-d4		1.78		"	2.00		89.0	70-130			
Surrogate: Toluene-d8		2.00		"	2.00		100	70-130			
Surrogate: 4-BFB		1.99		"	2.00		99.5	70-130			

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052	Project Manager: Tena Seeds	08/02/05 15:31
Volatile Organic Compound	ds (Special List) by EPA Met	hod 8260B - Quality Control

North Creek Analytical - Bothell

	D	Reporting	TT. *	Spike	Source	0/050	%REC	DDD	RPD	NT /
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G27052: Prepared ()7/27/05 Using I	EPA 5030B	[MeOH]							
LCS (5G27052-BS1)										
Benzene	1.90	0.100	mg/kg	2.00		95.0	75-130			
Chlorobenzene	2.00	0.100	"	2.00		100	77-124			
1,1-Dichloroethene	2.00	0.100	"	2.00		100	74-133			
cis-1,2-Dichloroethene	2.06	0.100	"	2.00		103	70-130			
trans-1,2-Dichloroethene	1.99	0.100	"	2.00		99.5	70-130			
Tetrachloroethene	2.00	0.100	"	2.00		100	70-130			
Trichloroethene	2.07	0.100	"	2.00		104	78-128			
Surrogate: 1,2-DCA-d4	1.95		"	2.00		97.5	70-130			
Surrogate: Toluene-d8	2.01		"	2.00		100	70-130			
Surrogate: 4-BFB	1.96		"	2.00		98.0	70-130			
LCS Dup (5G27052-BSD1)										
Benzene	1.89	0.100	mg/kg	2.00		94.5	75-130	0.528	20	
Chlorobenzene	1.98	0.100	"	2.00		99.0	77-124	1.01	20	
1,1-Dichloroethene	1.95	0.100	"	2.00		97.5	74-133	2.53	20	
cis-1,2-Dichloroethene	1.98	0.100	"	2.00		99.0	70-130	3.96	20	
trans-1,2-Dichloroethene	1.94	0.100	"	2.00		97.0	70-130	2.54	20	
Tetrachloroethene	1.97	0.100	"	2.00		98.5	70-130	1.51	20	
Trichloroethene	2.01	0.100	"	2.00		100	78-128	2.94	20	
Surrogate: 1,2-DCA-d4	1.91		"	2.00		95.5	70-130			
Surrogate: Toluene-d8	2.04		"	2.00		102	70-130			
Surrogate: 4-BFB	1.98		"	2.00		99.0	70-130			
Matrix Spike (5G27052-MS1)					Source: 1	B5G0478-	02			
Benzene	1.35	0.0636	mg/kg dry	1.34	ND	101	66-135			
Chlorobenzene	1.36	0.0636	"	1.34	ND	101	63-131			
1,1-Dichloroethene	1.44	0.0636	"	1.34	ND	107	64-143			
cis-1,2-Dichloroethene	1.45	0.0636	"	1.34	ND	108	60-140			
trans-1,2-Dichloroethene	1.41	0.0636	"	1.34	ND	105	60-140			
Tetrachloroethene	1.43	0.0636	"	1.34	ND	107	60-140			
Trichloroethene	1.44	0.0636	"	1.34	ND	107	66-144			
Surrogate: 1,2-DCA-d4	1.21		"	1.34		90.3	70-130			
Surrogate: Toluene-d8	1.37		"	1.34		102	70-130			
Surrogate: 4-BFB	1.34		"	1.34		100	70-130			

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052	Project Manager: Tena Seeds	08/02/05 15:31
Volatile Organic Comp	ounds (Special List) by EPA Method 8	260B - Quality Control

North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes			
Batch 5G27052: Prepared 07/27/05	Using E	CPA 5030B	[MeOH]										
Matrix Spike Dup (5G27052-MSD1)				Source: B5G0478-02									
Benzene	1.31	0.0636	mg/kg dry	1.34	ND	97.8	66-135	3.01	25				
Chlorobenzene	1.30	0.0636	"	1.34	ND	97.0	63-131	4.51	25				
1,1-Dichloroethene	1.36	0.0636	"	1.34	ND	101	64-143	5.71	25				
cis-1,2-Dichloroethene	1.43	0.0636	"	1.34	ND	107	60-140	1.39	25				
trans-1,2-Dichloroethene	1.36	0.0636	"	1.34	ND	101	60-140	3.61	25				
Tetrachloroethene	1.32	0.0636	"	1.34	ND	98.5	60-140	8.00	25				
Trichloroethene	1.41	0.0636	"	1.34	ND	105	66-144	2.11	25				
Surrogate: 1,2-DCA-d4	1.21		"	1.34		90.3	70-130						
Surrogate: Toluene-d8	1.35		"	1.34		101	70-130						
Surrogate: 4-BFB	1.39		"	1.34		104	70-130						

Batch 5H01037: Prepared 07/29/05 Using EPA 5030B [MeOH]

Blank (5H01037-BLK1)							
Benzene	ND	0.100	mg/kg				
Ethylbenzene	ND	0.100	"				
Methyl tert-butyl ether	ND	0.500	"				
Naphthalene	ND	0.100	"				
Toluene	ND	0.100	"				
Total Xylenes	ND	0.300	"				
Surrogate: 1,2-DCA-d4	3.48		"	4.00	87.0	70-130	
Surrogate: Toluene-d8	4.24		"	4.00	106	70-130	
Surrogate: 4-BFB	3.98		"	4.00	99.5	70-130	
LCS (5H01037-BS1)							
Benzene	2.17	0.100	mg/kg	2.00	108	75-130	
Ethylbenzene	2.11	0.100	"	2.00	106	75-130	
Methyl tert-butyl ether	1.85	0.500	"	2.00	92.5	75-130	
Naphthalene	1.94	0.100	"	2.00	97.0	75-130	
Toluene	2.13	0.100	"	2.00	106	75-124	
Total Xylenes	6.50	0.300	"	6.00	108	70-130	
Surrogate: 1,2-DCA-d4	3.82		"	4.00	95.5	70-130	
Surrogate: Toluene-d8	4.10		"	4.00	102	70-130	
Surrogate: 4-BFB	3.94		"	4.00	98.5	70-130	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

North Creek Analytical, Inc. Environmental Laboratory Network Page 45 of 48

4006 148th Ave NE

Volatile Organic Compou	nds (Special List) by EPA Method 8	260B - Quality Control
Redmond, WA/USA 98052	Project Manager: Tena Seeds	08/02/05 15:31

North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD		
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 5H01037:	Prepared 07/29/05	Using El	PA 5030B	[MeOH]								
LCS Dup (5H01037	-BSD1)											
Benzene		2.10	0.100	mg/kg	2.00		105	75-130	3.28	20		
Ethylbenzene		2.08	0.100	"	2.00		104	75-130	1.43	20		
Methyl tert-butyl ether		1.86	0.500	"	2.00		93.0	75-130	0.539	20		
Naphthalene		1.94	0.100	"	2.00		97.0	75-130	0.00	20		
Toluene		2.10	0.100	"	2.00		105	75-124	1.42	20		
Total Xylenes		6.35	0.300	"	6.00		106	70-130	2.33	30		
Surrogate: 1,2-DCA-d4		3.60		"	4.00		90.0	70-130				
Surrogate: Toluene-d8		4.06		"	4.00		102	70-130				
Surrogate: 4-BFB		3.93		"	4.00		<i>98.2</i>	70-130				

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: 600 Westlake Project Number: WA255-3514-1 Project Manager: Tena Seeds

Reported: 08/02/05 15:31

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC			
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G26009:	Prepared 07/26/05	Using Dr	y Weight								
Blank (5G26009-BI	LK1)										
Dry Weight		100	1.00	%							
Batch 5G26010:	Prepared 07/26/05	Using Dr	y Weight								
Blank (5G26010-BI	LK1)										
Dry Weight		100	1.00	%							

North Creek Analytical - Bothell

9	Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
		425.420.9200 fax 425.420.9210
Sp	okane	11922 E. 1st Avenue, Spokane Valley, WA 99206-5302
		509.924.9200 fax 509.924.9290
Po	ortland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
		503.906.9200 fax 503.906.9210
	Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711
		541.383.9310 fax 541.382.7588
Ancl	horage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119
	· · ·	907.563.9200 fax 907.563.9210
ect: 600	Westla	ike

Delta Environmental	Project:	600 Westlake	
4006 148th Ave NE	Project Number:	WA255-3514-1	Reported:
Redmond, WA/USA 98052	Project Manager:	Tena Seeds	08/02/05 15:31

Notes and Definitions

- D-09 Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
- D-15 Hydrocarbon pattern most closely resembles a jet fuel product.
- Q-01 The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
- Q-07 The RPD value for this QC sample is above the established control limit. Review of associated QC indicates the high RPD does not represent an out-of-control condition for the batch.
- S-10 The surrogate recovery is outside of established control limits and biased high. However, the concentrations of the associated target compounds are less than the corresponding method reporting limits.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-9508 11115 E Montgomery Suite B, Spokane, WA 99206-4776 9405 SW Nimbus Ave, Beaverton, OR 97008-7132 20332 Empire Ave Suite F-1, Bend, OR 99701-5711 3209 Denali St, Anchorage, AK 99503-4030

0	-9210 🚺	425-420-9200
ю [-9290	509-924-9200
0	-9210	503-906-9200
8 [-7588	541-383-9310
0	-9210	907-334-9200
· ~ L		JU/-JJ4-J200

- 24-

North Creek Analytical, Inc. Environmental Laboratory Network

1

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244
East 11115 Montgomery, Suite B, Spokane, WA 99206-4776
9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132
20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

(425) 420-9200	FAX 420-921
(509) 924-9200	FAX 924-929
(503) 906-9200	FAX 906-921
(541) 383-9310	FAX 382-758

5/0

210	
29 0	
210	
588	

Environmental Laborat www.ncalabs.com		CHA	IN	OF (CUS	STO	DY	RE	PO	RT			Wo	rk ()rde	er #:				
	ca Philli)es				INVC	INVOICE TO: Kipp Eckert/Coraco Phillips									TURNAROUND REQUEST in Business Days*				
REPORT TO: Del 2 m		ų				1	1144 Eastlake Ave E									Organic & Inorganic Analyses				
ADDRESS: 4006 1483	CLIENT: Conoco Phillips REPORT TO: Delt? Env ADDRESS: 4006 1485 Ave NE Redword, WA 98052 102 425.869-1892											$\hat{\mathbf{n}}$			10	5	4 3 2		<1	
Redmond, W/	9805Z	FAX: 42		0 10	07					WA		SIL	<u></u>			STD.	Petroleu	Im Hydrocarbon Analyse 3 2 1		
PHONE: 425 - 476 272	6	FAX: 47	5.56	59-18	10	P.O. 1	NUMBE			DEL C										
PROJECT NAME: 600 Wes-	•			1		Т							[51	ОТНІ	ER Please Specify		
PROJECT NUMBER: WA 2	55-3514-1	1	1 P4-6×	12	XU-HUL MA						·					*Turnar	-	less than standard may incu	r Rush Charges	s.
SAMPLED BY: JMP			Ē	44 (80 (8)		2										MATRIX	# OF		N	CA WO
CLIENT SAMPLE	SAMPLIN DATE/TIN		L NN	876×	3	total										(W, S, O)	CONT.	COMMENTS		ID
IDENTIFICATION			1.1				<u> </u>									S				11
1. SB-20-15	7-21-05		1 /	ţŻ	łŻ	\rightarrow										ى			<u> </u>	
2. 58-20-20	7-21-03	5)230	4 (++-	++													[$\left \begin{array}{c} \\ \\ \end{array} \right $
3. 58-21-2	7-21-05		×	\perp	\square					ļ										13
4. 58-21-4	721-05	1235		\	\downarrow	1	<u> </u>													14_
5. 5B-21-5	7-21-05	1320			4														[:5
6. 5B-21-10	7-21-05	1345		4 /															/	16
7. 5B-24-15	7-21-05	1400																		17
8. 5B-21-20	7-21-05	1415																		1 <u>B</u>
9. 5B-22-2	7-21-05																			19_
10. 5B-22-4	7-21-05	1420	$ \rangle$																	<u>20</u>
11. 5B-22-5	7-21-05	1445																		21
12. 5B-22-10	7-21-05	1455																	ī	22
13. 58-22-15	7-21-05	1510																		23
14. 58-22-20	7.21-05	1525	1.17										L							<u>24</u>
15.	7-21-65											1	<u></u>	11						11
RELINQUISHED BY: 1000	feeds	FIRM:	Dol	bła				2-05 40	RECE	IVED BY: MAME:	lat	Ay S	Jam	foll 1 non	h	FIRM.	N CHA		DATE: 1 TIME:	22/05 0.40
PRINT NAME: RELINQUISHED BY:	A-01-	FIRM:	~			TIME DATE		40		IVED BY:	-	<u>n</u>	my (<u>K/U</u>	1 11/141.			DATE:	D
PRINT NAME:		FIRM:				TIME			PRIN	NAME:			•			FIRM:			TIME:	
ADDITIONAL REMARKS:	2 Silica ge		A A		th	111)11	PH-	$\overline{\mathcal{D}}$. —			TEMP:		
COC REV 3/99	C JILLS DE	el cles	nup	wi	11	NV	<u> </u>	<u>' 11 -</u>	$\underline{\nabla}$									1.0	PAGE	OF

APPENDIX D

GROUNDWATER ANALYTICAL LABORATORY REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane	East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

04 August 2005

Eric Larsen Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 RE: COP 255353 Westlake and Mercer

Enclosed are the results of analyses for samples received by the laboratory on 07/27/05 12:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mul The

Robert Greer Project Manager

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: COP 255353 Westlake and Mercer

Project Number: WA255-3514-1 Project Manager: Eric Larsen **Reported:** 08/04/05 16:43

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-38	B5G0601-01	Water	07/26/05 06:40	07/27/05 12:40
MW-43	B5G0601-02	Water	07/26/05 08:30	07/27/05 12:40
MW-16	B5G0601-03	Water	07/26/05 09:00	07/27/05 12:40
MW-44	B5G0601-04	Water	07/26/05 09:30	07/27/05 12:40
MW-105	B5G0601-05	Water	07/26/05 10:00	07/27/05 12:40
MW-8	B5G0601-06	Water	07/26/05 10:30	07/27/05 12:40
MW-42	B5G0601-07	Water	07/26/05 10:45	07/27/05 12:40
MW-103	B5G0601-08	Water	07/26/05 11:15	07/27/05 12:40
MW-41	B5G0601-09	Water	07/26/05 12:45	07/27/05 12:40
MW-40	B5G0601-10	Water	07/26/05 13:20	07/27/05 12:40
MW-19	B5G0601-11	Water	07/26/05 14:30	07/27/05 12:40
MW-37	B5G0601-12	Water	07/26/05 14:10	07/27/05 12:40
MW-18	B5G0601-13	Water	07/26/05 13:50	07/27/05 12:40

North Creek Analytical - Bothell

Robert Greer, Project Manager

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: COP 255353 Westlake and Mercer Project Number: WA255-3514-1

Reported: 08/04/05 16:43

Volatile Petroleum Products by NWTPH-Gx North Creek Analytical - Bothell

Project Manager: Eric Larsen

	-								
Analyte	Result	Reporti Lii	ing nit Unit	s Dilution	n Batch	Prepared	Analyzed	Method	Notes
MW-38 (B5G0601-01) Water	Sampled: 07/26/05 0	6:40 Re	eceived: 07/	27/05 12:40					
Gasoline Range Hydrocarbons	ND	50).0 ug/	l 1	5H01033	08/02/05	08/03/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	76.5 %	58-144			"	"	"	"	
MW-43 (B5G0601-02) Water	Sampled: 07/26/05 0	8:30 Re	eceived: 07/	27/05 12:40					
Gasoline Range Hydrocarbons	ND	50).0 ug/	l 1	5H01033	08/02/05	08/03/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	83.2 %	58-144			"	"	"	"	
MW-16 (B5G0601-03) Water	Sampled: 07/26/05 0	9:00 Re	eceived: 07/	27/05 12:40					
Gasoline Range Hydrocarbons	358	50).0 ug/	1 1	5H01033	08/02/05	08/02/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	85.8 %	58-144			"	"	"	"	
MW-44 (B5G0601-04) Water	Sampled: 07/26/05 0	9:30 Re	eceived: 07/	27/05 12:40					
Gasoline Range Hydrocarbons	ND	50	0.0 ug/	l 1	5H01033	08/02/05	08/03/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	87.2 %	58-144			"	"	"	"	
MW-105 (B5G0601-05) Water	Sampled: 07/26/05	10:00 F	Received: 07	7/27/05 12:40					
Gasoline Range Hydrocarbons	62000	5	00 ug/	10	5H01033	08/02/05	08/02/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	132 %	58-144			"	"	"	"	
MW-8 (B5G0601-06) Water	Sampled: 07/26/05 10	:30 Rec	eived: 07/2	7/05 12:40					
Gasoline Range Hydrocarbons	81600	5	00 ug/	1 10	5H01033	08/02/05	08/02/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	155 %	58-144			"	"	"	"	S-04
MW-42 (B5G0601-07) Water	Sampled: 07/26/05 1	0:45 Re	eceived: 07/	27/05 12:40					
Gasoline Range Hydrocarbons	s 117	50	0.0 ug/	1	5H01033	08/02/05	08/03/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	83.7 %	58-144			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: COP 255353 Westlake and Mercer Project Number: WA255-3514-1

Reported: 08/04/05 16:43

Volatile Petroleum Products by NWTPH-Gx North Creek Analytical - Bothell

Project Manager: Eric Larsen

		Ren	orting							
Analyte	Result	1	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
<u>MW-103 (B5G0601-08) Water</u>	Sampled: 07/26/05	11:15	Rece	ived: 07/27/	05 12:40					
Gasoline Range Hydrocarbons	ND		50.0	ug/l	1	5H01033	08/02/05	08/03/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	80.0 %	58-1	44			"	"	"	"	
MW-41 (B5G0601-09) Water	Sampled: 07/26/05 1	12:45	Receiv	ved: 07/27/0	5 12:40					
Gasoline Range Hydrocarbons	ND		50.0	ug/l	1	5H01033	08/02/05	08/03/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	78.3 %	58-1	44			"	"	"	"	
MW-40 (B5G0601-10) Water	Sampled: 07/26/05 1	13:20	Receiv	ved: 07/27/0	5 12:40					
Gasoline Range Hydrocarbons	216		50.0	ug/l	1	5H02015	08/02/05	08/02/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	90.3 %	58-1	44			"	"	"	"	
MW-19 (B5G0601-11) Water	Sampled: 07/26/05 1	14:30	Receiv	ved: 07/27/0	5 12:40					
Gasoline Range Hydrocarbons	96400		500	ug/l	10	5H02015	08/02/05	08/03/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	134 %	58-1	44			"	"	"	"	
MW-37 (B5G0601-12) Water	Sampled: 07/26/05 1	14:10	Receiv	ved: 07/27/0	5 12:40					
Gasoline Range Hydrocarbons	59.4		50.0	ug/l	1	5H02015	08/02/05	08/03/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	83.2 %	58-1	44			"	"	"	"	
MW-18 (B5G0601-13) Water	Sampled: 07/26/05 1	13:50	Receiv	ved: 07/2 <u>7/0</u>	5 12:40					
Gasoline Range Hydrocarbons	1400		50.0	ug/l	1	5H02015	08/02/05	08/02/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	100 %	58-1	44			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: COP 255353 Westlake and Mercer

Reported: 08/04/05 16:43

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Project Number: WA255-3514-1

Project Manager: Eric Larsen

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-38 (B5G0601-01) Water	Sampled: 07/26/05 0	6:40 Receiv	ed: 07/27/0)5 12:40					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	5G28002	07/28/05	07/30/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	"	"		"	"	"	
Surrogate: 2-FBP	84.2 %	50-150			"	"	"	"	
Surrogate: Octacosane	97.9 %	50-150			"	"	"	"	
MW-43 (B5G0601-02) Water	Sampled: 07/26/05 0	8:30 Receiv	ed: 07/27/0)5 12:40					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	5G28002	07/28/05	07/30/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	"	"	"	"	"	"	
Surrogate: 2-FBP	93.8 %	50-150			"	"	"	"	
Surrogate: Octacosane	102 %	50-150			"	"	"	"	
MW-16 (B5G0601-03) Water	Sampled: 07/26/05 0	9:00 Receiv	ed: 07/27/0)5 12:40					
Diesel Range Hydrocarbons	8.32	1.25	mg/l	5	5G28002	07/28/05	07/30/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	20.7	2.50	"	"	"	"	"	"	
Surrogate: 2-FBP	49.2 %	50-150			"	"	"	"	S-06
Surrogate: Octacosane	102 %	50-150			"	"	"	"	
MW-44 (B5G0601-04) Water	Sampled: 07/26/05 0	9:30 Receiv	ed: 07/27/0)5 12:40					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	5G28002	07/28/05	07/30/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	"	"	"	"	"	"	
Surrogate: 2-FBP	66.2 %	50-150			"	"	"	"	
Surrogate: Octacosane	<i>98.3 %</i>	50-150			"	"	"	"	
MW-105 (B5G0601-05) Water	Sampled: 07/26/05	10:00 Recei	ved: 07/27	/05 12:40					
Diesel Range Hydrocarbons	0.821	0.250	mg/l	1	5G28002	07/28/05	07/30/05	NWTPH-Dx	D-08
Lube Oil Range Hydrocarbons	ND	0.500	"	"	"	"	"	"	
Surrogate: 2-FBP	91.6 %	50-150			"	"	"	"	
Surrogate: Octacosane	100 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: COP 255353 Westlake and Mercer Project Number: WA255-3514-1

Reported: 08/04/05 16:43

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Project Manager: Eric Larsen

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-8 (B5G0601-06) Water	Sampled: 07/26/05 10	:30 Receive	ed: 07/27/05	5 12:40					
Diesel Range Hydrocarbons	0.641	0.250	mg/l	1	5G28002	07/28/05	07/30/05	NWTPH-Dx	D-08
Lube Oil Range Hydrocarbons	ND	0.500	"	"	"	"	"	"	
Surrogate: 2-FBP	76.7 %	50-150			"	"	"	"	
Surrogate: Octacosane	103 %	50-150			"	"	"	"	
MW-42 (B5G0601-07) Water	Sampled: 07/26/05 1	0:45 Receiv	ed: 07/27/0)5 12:40					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	5G28002	07/28/05	07/30/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	"	"	"	"	"	"	
Surrogate: 2-FBP	87.5 %	50-150			"	"	"	"	
Surrogate: Octacosane	102 %	50-150			"	"	"	"	
MW-103 (B5G0601-08) Water	Sampled: 07/26/05	11:15 Recei	ived: 07/27	/05 12:40					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	5G28002	07/28/05	07/30/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	"	"	"	"	"	"	
Surrogate: 2-FBP	86.1 %	50-150			"	"	"	"	
Surrogate: Octacosane	102 %	50-150			"	"	"	"	
MW-41 (B5G0601-09) Water	Sampled: 07/26/05 1	2:45 Receiv	ed: 07/27/0)5 12:40					
Diesel Range Hydrocarbons	0.258	0.250	mg/l	1	5G28002	07/28/05	07/30/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbon	s 0.977	0.500	"	"		"	"	"	
Surrogate: 2-FBP	73.1 %	50-150			"	"	"	"	
Surrogate: Octacosane	82.2 %	50-150			"	"	"	"	
MW-40 (B5G0601-10) Water	Sampled: 07/26/05 1	3:20 Receiv	ved: 07/27/0)5 12:40					
Diesel Range Hydrocarbons	0.596	0.250	mg/l	1	5G28002	07/28/05	07/30/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbon	s 1.60	0.500	"	"	"	"	"	"	
Surrogate: 2-FBP	82.4 %	50-150			"	"	"	"	
Surrogate: Octacosane	96.4 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: COP 255353 Westlake and Mercer Project Number: WA255-3514-1

Reported: 08/04/05 16:43

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Project Manager: Eric Larsen

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-19 (B5G0601-11) Water	Sampled: 07/26/05 1	4:30 Receiv	ed: 07/27/0)5 12:40					
Diesel Range Hydrocarbons	4.05	0.250	mg/l	1	5G28002	07/28/05	07/30/05	NWTPH-Dx	A-01
Lube Oil Range Hydrocarbons	2.34	0.500	"	"		"	"	"	
Surrogate: 2-FBP	87.6 %	50-150			"	"	"	"	
Surrogate: Octacosane	93.6 %	50-150			"	"	"	"	
MW-37 (B5G0601-12) Water	Sampled: 07/26/05 1	4:10 Receiv	ed: 07/27/0	05 12:40					
Diesel Range Hydrocarbons	ND	0.250	mg/l	1	5G28002	07/28/05	07/30/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	0.500	"	"		"	"	"	
Surrogate: 2-FBP	83.2 %	50-150			"	"	"	"	
Surrogate: Octacosane	98.0 %	50-150			"	"	"	"	
MW-18 (B5G0601-13) Water	Sampled: 07/26/05 1	3:50 Receiv	ed: 07/27/0	05 12:40					
Diesel Range Hydrocarbons	6.93	1.52	mg/l	5	5G28002	07/28/05	07/30/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	13.2	3.05	"	"		"	"	"	
Surrogate: 2-FBP	45.9 %	50-150			"	"	"	"	
Surrogate: Octacosane	60.3 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: COP 255353 Westlake and Mercer Project Number: WA255-3514-1

Reported: 08/04/05 16:43

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

Project Manager: Eric Larsen

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-38 (B5G0601-01) Water	Sampled: 07/26/05 0	6.40 Doooiy	ad. 07/27/0	5 12.40			-		
					5020051	07/07/05	07/27/05	EDA 02/0D	
Benzene	ND ND	0.200 0.200	ug/l "	1	5G29051 "	07/27/05	07/27/05	EPA 8260B "	
Ethylbenzene Mathyl tart hytyl athar	ND ND	1.00		"		"	"		
Methyl tert-butyl ether Naphthalene	ND ND	0.500		"		"	"	"	
Toluene	ND	0.300		"		"	"	"	
o-Xylene	ND	0.200				"	"	"	
m,p-Xylene	ND	0.230	"	"		"	"		
Surrogate: 1,2-DCA-d4	110 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	103 %	70-130			"	"	"	"	
Surrogate: 4-BFB	98.5 %	70-130			"	"	"	"	
MW-43 (B5G0601-02) Water	Sampled: 07/26/05 0	8:30 Receive	ed: 07/27/0	5 12:40					
Benzene	4.24	0.200	ug/l	1	5G29051	07/27/05	07/27/05	EPA 8260B	
Ethylbenzene	ND	0.200	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	0.200	"	"	"	"	"	"	
o-Xylene	ND	0.250	"	"	"	"	"	"	
m,p-Xylene	ND	0.500	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	109 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	102 %	70-130			"	"	"	"	
Surrogate: 4-BFB	99.5 %	70-130			"	"	"	"	
MW-16 (B5G0601-03) Water	Sampled: 07/26/05 0	9:00 Receive	ed: 07/27/(5 12:40					
Benzene	42.6	0.200	ug/l	1	5G29062	07/28/05	07/28/05	EPA 8260B	
Ethylbenzene	ND	0.200	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	ND	0.500	"	"	"	"	"	"	
Toluene	0.340	0.200	"	"	"	"	"	"	
o-Xylene	0.280	0.250	"	"	"	"	"	"	
m,p-Xylene	0.970	0.500	"	"		"	"	"	
Surrogate: 1,2-DCA-d4	102 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	101 %	70-130			"	"	"	"	
0									

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: COP 255353 Westlake and Mercer Project Number: WA255-3514-1

Reported: 08/04/05 16:43

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

Project Manager: Eric Larsen

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						.1			
MW-44 (B5G0601-04) Water	Sampled: 07/26/05 0		ved: 07/27/0	05 12:40					
Benzene	ND	0.200	ug/l	1	5G29051	07/27/05	07/27/05	EPA 8260B	
Ethylbenzene	ND	0.200	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	0.200	"	"	"	"	"	"	
o-Xylene	ND	0.250	"	"	"	"	"	"	
m,p-Xylene	ND	0.500	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	110 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	102 %	70-130			"	"	"	"	
Surrogate: 4-BFB	102 %	70-130			"	"	"	"	
MW-105 (B5G0601-05) Water	Sampled: 07/26/05	10:00 Rece	eived: 07/27	/05 12:40					
Benzene	781	0.200	ug/l	1	5G29051	07/27/05	07/27/05	EPA 8260B	E-01
Ethylbenzene	532	0.200	"	"	"	"	"	"	E-01
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	552	0.500	"	"	"	"	"	"	E-01
Toluene	827	0.200	"	"	"	"	"	"	E-01
o-Xylene	569	0.250	"	"	"	"	"	"	E-01
m,p-Xylene	804	0.500	"	"	"	"	"	"	E-01
Surrogate: 1,2-DCA-d4	127 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	98.5 %	70-130			"	"	"	"	
Surrogate: 4-BFB	112 %	70-130			"	"	"	"	
MW-105 (B5G0601-05RE1) Wa	ter Sampled: 07/2	6/05 10:00	Received: 0	7/27/05 12:	40				
Benzene	1970	20.0	ug/l	100	5G29064	07/29/05	07/29/05	EPA 8260B	
Ethylbenzene	2640	20.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	100	"	"	"	"	"	"	
Naphthalene	723	50.0	"	"	"	"	"	"	
Toluene	7460	20.0	"	"	"	"	"	"	
o-Xylene	3550	25.0	"	"	"	"	"	"	
m,p-Xylene	9200	50.0	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	90.0 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	102 %	70-130			"	"	"	"	
Surrogate: 4-BFB	100 %	70-130			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

Project: COP 255353 Westlake and M Project Number: WA255-3514-1

Reported: 08/04/05 16:43

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

Project Manager: Eric Larsen

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-8 (B5G0601-06) Water	Sampled: 07/26/05 10:30) Receive	d: 07/27/05	5 12:40					
Benzene	907	0.200	ug/l	1	5G29051	07/27/05	07/27/05	EPA 8260B	E-01
Ethylbenzene	538	0.200	"	"	"	"	"	"	E-01
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	621	0.500	"	"	"	"	"	"	E-01
Toluene	676	0.200	"	"	"	"	"	"	E-01
o-Xylene	523	0.250	"	"	"	"	"	"	E-01
m,p-Xylene	758	0.500	"	"	"	"	"	"	E-01
Surrogate: 1,2-DCA-d4	124 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	103 %	70-130			"	"	"	"	
Surrogate: 4-BFB	113 %	70-130			"	"	"	"	
<u>MW-8 (B5G0601-06RE1) Wa</u>	ater Sampled: 07/26/05	10:30 Rec	eived: 07/2	27/05 12:40					
Benzene	4700	20.0	ug/l	100	5G29062	07/28/05	07/28/05	EPA 8260B	
Ethylbenzene	4270	20.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	100	"	"	"	"	"	"	
Naphthalene	1010	50.0	"	"	"	"	"	"	
Toluene	5280	20.0	"	"	"	"	"	"	
o-Xylene	3950	25.0	"	"	"	"	"	"	
m,p-Xylene	11500	50.0	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	99.0 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	102 %	70-130			"	"	"	"	
Surrogate: 4-BFB	96.5 %	70-130			"	"	"	"	
MW-42 (B5G0601-07) Water	Sampled: 07/26/05 10:4	45 Receiv	ed: 07/27/0	5 12:40					
Benzene	2.95	0.200	ug/l	1	5G29062	07/28/05	07/28/05	EPA 8260B	
Ethylbenzene	ND	0.200	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"		"	"	"	
Naphthalene	ND	0.500	"	"		"	"	"	
Toluene	0.340	0.200	"	"	"	"	"	"	
o-Xylene	0.260	0.250	"	"	"	"	"	"	
m,p-Xylene	0.640	0.500	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	101 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	101 %	70-130			"	"	"	"	
Surrogate: 4-BFB	98.0 %	70-130			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: COP 255353 Westlake and Mercer Project Number: WA255-3514-1

Reported: 08/04/05 16:43

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

Project Manager: Eric Larsen

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-103 (B5G0601-08) Water	Sampled: 07/26/05	11:15 Recei	ved: 07/27	/05 12:40					
Benzene	ND	0.200	ug/l	1	5G29062	07/28/05	07/28/05	EPA 8260B	
Ethylbenzene	ND	0.200	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	0.200		"	"	"	"	"	
o-Xylene	ND	0.250	"	"	"	"	"	"	
m,p-Xylene	ND	0.500	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	97.5 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	101 %	70-130			"	"	"	"	
Surrogate: 4-BFB	99.5 %	70-130			"	"	"	"	
<u>MW-41 (B5G0601-09) Water</u>	Sampled: 07/26/05 1	2:45 Receiv	ed: 07/27/(5 12:40					
Benzene	ND	0.200	ug/l	1	5G29062	07/28/05	07/28/05	EPA 8260B	
Ethylbenzene	ND	0.200	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	0.200	"	"	"	"	"	"	
o-Xylene	ND	0.250	"	"	"	"	"	"	
m,p-Xylene	ND	0.500	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	96.0 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	100 %	70-130			"	"	"	"	
Surrogate: 4-BFB	99.0 %	70-130			"	"	"	"	
MW-40 (B5G0601-10) Water	Sampled: 07/26/05 1	3:20 Receiv	ed: 07/27/(5 12:40					
Benzene	ND	0.200	ug/l	1	5G29062	07/28/05	07/28/05	EPA 8260B	
Ethylbenzene	ND	0.200	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	0.200	"	"	"	"	"	"	
o-Xylene	ND	0.250	"	"	"	"	"	"	
m,p-Xylene	ND	0.500	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	100 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	102 %	70-130			"	"	"	"	
Surrogate: 4-BFB	101 %	70-130			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: COP 255353 Westlake and Mercer Project Number: WA255-3514-1

Reported: 08/04/05 16:43

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

Project Manager: Eric Larsen

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
/ mary to	result	Emit	emo	Dilution	Butten	Tiepuieu	1 mary 20a	Wethou	110101
MW-19 (B5G0601-11) Water Sa	mpled: 07/26/05 1	4:30 Receive	ed: 07/27/0	5 12:40					
Benzene	80.0	0.200	ug/l	1	5G29051	07/27/05	07/27/05	EPA 8260B	
Ethylbenzene	ND	0.200	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	476	0.500	"	"	"	"	"	"	E-01
Toluene	30.3	0.200	"	"	"	"	"	"	
o-Xylene	550	0.250	"	"	"	"	"	"	E-01
m,p-Xylene	647	0.500	"	"	"	"	"	"	E-01
Surrogate: 1,2-DCA-d4	91.0 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	98.5 %	70-130			"	"	"	"	
Surrogate: 4-BFB	118 %	70-130			"	"	"	"	
MW-19 (B5G0601-11RE1) Water	Sampled: 07/26	/05 14:30 Re	ceived: 07	/27/05 12:4	0				
Benzene	201	20.0	ug/l	100	5G29062	07/27/05	07/28/05	EPA 8260B	
Ethylbenzene	ND	20.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	100	"	"	"	"	"	"	
Naphthalene	805	50.0	"	"	"	"	"	"	
Toluene	229	20.0	"	"	"	"	"	"	
o-Xylene	6960	25.0	"	"	"	"	"	"	
m,p-Xylene	9630	50.0	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	102 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	100 %	70-130			"	"	"	"	
Surrogate: 4-BFB	98.5 %	70-130			"	"	"	"	
MW-37 (B5G0601-12) Water Sa	mpled: 07/26/05 1	4:10 Receive	ed: 07/27/0	5 12:40					
Benzene	ND	0.200	ug/l	1	5G29062	07/28/05	07/28/05	EPA 8260B	
Ethylbenzene	ND	0.200	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	0.520	0.500	"	"	"	"	"	"	
Toluene	ND	0.200	"	"	"	"	"	"	
o-Xylene	ND	0.250	"	"	"	"	"	"	
m,p-Xylene	ND	0.500	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	97.0 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	100 %	70-130			"	"	"	"	
Surrogate: 4-BFB	98.0 %	70-130			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

Project Number: WA255-3514-1 Project Manager: Eric Larsen

Reported: 08/04/05 16:43

Volatile Organic Compounds by EPA Method 8260B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-18 (B5G0601-13) Water	Sampled: 07/26/05 1	3:50 Receiv	ed: 07/27/0	05 12:40					
Benzene	35.2	0.200	ug/l	1	5G29062	07/28/05	07/28/05	EPA 8260B	
Ethylbenzene	6.23	0.200	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.00	"	"	"	"	"	"	
Naphthalene	30.9	0.500	"	"	"	"	"	"	
Toluene	3.98	0.200	"	"	"	"	"	"	
o-Xylene	12.4	0.250	"	"	"	"	"	"	
m,p-Xylene	21.0	0.500	"	"		"	"	"	
Surrogate: 1,2-DCA-d4	104 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	101 %	70-130			"	"	"	"	
Surrogate: 4-BFB	97.5 %	70-130			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer, Project Manager

Delta Environmental 4006 148th Ave NE

Redmond, WA/USA 98052

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.306.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 COP 255353 Westlake and Mercer

 Project Number:
 WA255-3514-1
 Reported:

08/04/05 16:43

Volatile Petroleum Products by NWTPH-Gx - Quality Control North Creek Analytical - Bothell

Project Manager: Eric Larsen

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Using E	PA 5030B	(P/T)							
ND	50.0	ug/l							
45.7		"	60.0		76.2	58-144			
1090	50.0	ug/l	1000		109	80-120			
58.3		"	60.0		97.2	58-144			
1040	50.0	ug/l	1000		104	80-120	4.69	25	
61.3		"	60.0		102	58-144			
				Source: H	35G0601-	01			
1090	50.0	ug/l	1000	13.2	108	58-129			
61.9		"	60.0		103	58-144			
				Source: H	35G0601-	01			
1020	50.0	ug/l	1000	13.2	101	58-129	6.64	25	
61.1		"	60.0		102	58-144			
Using E	PA 5030B	(P/T)							
ND	50.0	ug/l							
48.9		"	60.0		81.5	58-144			
1170	50.0	ug/l	1000		117	80-120			
60.7		"	60.0		101	58-144			
	Using E ND 45.7 1090 58.3 1040 61.3 1090 61.3 1090 61.9 1020 61.1 Using E ND 48.9 1170	Using EPA 5030B ND 50.0 45.7 - 1090 50.0 58.3 - 1040 50.0 61.3 - 1020 50.0 61.1 - Using EPA 5030B - 1020 50.0 61.1 - 1020 50.0 61.3 - 1020 50.0 61.3 - 1020 50.0 61.3 - 1020 50.0 61.1 - Using EPA 5030B - 1170 50.0	Result Limit Units Using EPA 5030B (P/T)	Result Limit Units Level Using EPA 5030B (P/T)	Result Limit Units Level Result Using EPA 5030B (P/T)	Result Limit Units Level Result %REC Using EPA 5030B (P/T)	Result Limit Units Level Result %REC Limits Using EPA 5030B (P/T)	Result Limit Units Level Result %REC Limits RPD Using EPA 5030B (P/T)	Result Limit Units Level Result %REC Limits RPD Limit Using EPA 5030B (P/T)

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: COP 255353 Westlake and Mercer Project Number: WA255-3514-1 Project Manager: Eric Larsen

Reported: 08/04/05 16:43

Volatile Petroleum Products by NWTPH-Gx - Quality Control North Creek Analytical - Bothell

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5H02015: Prepared 08/02/05	Using EF	PA 5030B	(P/T)							
LCS Dup (5H02015-BSD1)										
Gasoline Range Hydrocarbons	1140	50.0	ug/l	1000		114	80-120	2.60	25	
Surrogate: 4-BFB (FID)	60.0		"	60.0		100	58-144			
Matrix Spike (5H02015-MS1)					Source: I	B5G0601-	10			
Gasoline Range Hydrocarbons	1210	50.0	ug/l	1000	216	99.4	58-129			
Surrogate: 4-BFB (FID)	63.7		"	60.0		106	58-144			
Matrix Spike Dup (5H02015-MSD1)					Source: I	B5G0601-	10			
Gasoline Range Hydrocarbons	1110	50.0	ug/l	1000	216	89.4	58-129	8.62	25	
Surrogate: 4-BFB (FID)	63.6		"	60.0		106	58-144			

North Creek Analytical - Bothell

Delta Environmental	Project: COP 255353 Westlake and Mercer	Dece de la
4006 148th Ave NE	Project Number: WA255-3514-1	Reported:
Redmond, WA/USA 98052	Project Manager: Eric Larsen	08/04/05 16:43

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

	110			, titul 1	Jounen					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G28002: Prepared 07/28/05	Using EI	PA 3520C								
Blank (5G28002-BLK1)										
Diesel Range Hydrocarbons	ND	0.250	mg/l							
Lube Oil Range Hydrocarbons	ND	0.500	"							
Surrogate: 2-FBP	0.222		"	0.250		88.8	50-150			
Surrogate: Octacosane	0.257		"	0.250		103	50-150			
LCS (5G28002-BS1)										
Diesel Range Hydrocarbons	1.92	0.250	mg/l	2.00		96.0	45-119			
Surrogate: 2-FBP	0.295		"	0.250		118	50-150			
LCS Dup (5G28002-BSD1)										
Diesel Range Hydrocarbons	1.99	0.250	mg/l	2.00		99.5	45-119	3.58	35	
Surrogate: 2-FBP	0.310		"	0.250		124	50-150			
Duplicate (5G28002-DUP1)					Source: H	35G0601-	01			
Diesel Range Hydrocarbons	ND	0.250	mg/l		0.142				50	
Lube Oil Range Hydrocarbons	ND	0.500	"		0.309				50	
Surrogate: 2-FBP	0.197		"	0.243		81.1	50-150			
Surrogate: Octacosane	0.242		"	0.243		99.6	50-150			

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: COP 255353 Westlake and Mercer Project Number: WA255-3514-1 Project Manager: Eric Larsen

08/04/05 16:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

Analyte Result Limit Units Level Result %AREC Limit Notes Batch SG29051: Prepared 07/27/05 Using EPA 5030B <												
Bath SC29051: Prepared 07/27/05 Using EPA 5030B Bank (GC29051-BLK1)	Analvte		Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Blank (G20951-BLK1) Aectore ND 0.00 rg/ Berozene ND 0.200 " Bromobenzene ND 0.200 " Bromodichloromethane ND 0.200 " Cabuna ND 0.200 " Ser-Butylbenzene ND 0.200 " Cabon distlifde ND 0.200 " Chlorobnzane ND 0.200 " Chlorobnzane ND 0.200 " 1.2-Dibromochane ND 0.200 " 1.2-Dibromochane <th></th> <th></th> <th></th> <th>enite</th> <th>20101</th> <th>Ttoburt</th> <th>, uille</th> <th>2</th> <th>10.5</th> <th>2</th> <th>110105</th>				enite	20101	Ttoburt	, uille	2	10.5	2	110105	
Acetone ND 10.0 ugt Brazene ND 0.200 " Bromochloromethane ND 0.200 " See-Butylbenzene ND 0.200 " Carbon distrified ND 0.200 " Carbon distrified ND 0.200 " Carbon distrified ND 0.200 " Chorothane ND 0.200 " Chorothane ND 0.200 " Chorothane ND 0.200 " 1.2-Dibromochloromethane ND 0.200 " 1.2-Dibromochloromethane ND 0.200 " 1.2-Dibromochloromethane ND 0.200	Batch 5G29051: Prepared 07/27/05	Using El	PA 5030B									
Benzene ND 0.200 . Bromochloromethane ND 0.200 . Carbon disalifid ND 0.200 . Carbon disalifid ND 0.200 . Chlorochane ND 0.200 . Chlorochane ND 0.200 . Chlorochane ND 0.200 . J.2-Dichorochane ND 0.200 . J.2-Dichorochane ND 0.200	Blank (5G29051-BLK1)											
Data Mark D Color Bromochlaromethane ND 0.200 " Sebusylbenzene ND 0.200 " Sebusylbenzene ND 0.200 " Carbon disulfide ND 0.200 " Chlorobenzene ND 0.200 " L2-Dibromo-3-chloropropane ND 0.200 " L2-Dibromo-4-Chlorobenzene ND 0.200 " </td <td>Acetone</td> <td>ND</td> <td>10.0</td> <td>ug/l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Acetone	ND	10.0	ug/l								
Bronachloromethane ND 0.200 " Bromodichloromethane ND 0.200 " Bromodichloromethane ND 2.00 " Pabutone ND 2.00 " Senderdhane ND 2.00 " Bromodichloromethane ND 0.200 " Sei-Burybenzene ND 0.200 " Carbon drishifde ND 0.200 " Carbon drishifde ND 0.200 " Chlorobenzene ND 0.200 " Chlorobethane ND 0.200 " Chlorobethane ND 0.200 " Chlorobethane ND 0.200 " Chlorobethane ND 0.200 " Schorobethane ND 0.200 " 1.2-Dibromodi-Bane ND 0.200 " 1.2-Dibromodinane ND 0.200 " 1.2-Dibromodinane ND 0.200 "	Benzene	ND	0.200	"								
Bromodichioromethane ND 0.200 " Bromorthane ND 0.200 " Bromorthane ND 0.200 " sen-Butylbenzene ND 0.200 " sen-Butylbenzene ND 0.200 " Carbon disulfide ND 0.500 " Carbon disulfide ND 0.200 " Chorothane ND 0.200 " Dibromochane ND 0.200 " 1.2-Dibromochane ND 0.200 " 1.2-Dibromochane ND 0.200 " 1.4-Dibrokomezne ND 0.200 " 1.4-D	Bromobenzene	ND	0.500	"								
Bromoform ND 0.200 " Bromonethane ND 2.00 " 2-Butanone ND 0.200 " n-Bauylbenzene ND 0.200 " see-Butylbenzene ND 0.200 " Carbon disalifide ND 0.500 " Carbon disalifide ND 0.200 " Chlorobenzene ND 0.200 " Chlorobentane ND 0.200 " Chlorobentane ND 0.200 " 10horobenzene ND 0.200 " 2-Chlorobluene ND 0.200 " 1.2-Dichoroblane ND 0.200 " <t< td=""><td>Bromochloromethane</td><td>ND</td><td>0.200</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Bromochloromethane	ND	0.200	"								
Bromomethane ND 2.00 " 2-Butanone ND 2.00 " n-Butylbenzene ND 0.200 " ser-Butylbenzene ND 0.500 " Carbon disulfde ND 0.500 " Carbon disulfde ND 0.500 " Carbon disulfde ND 0.200 " Chlorochane ND 0.200 " Chloroform ND 0.200 " Chloroform ND 0.200 " 2-Chlorotolucne ND 0.200 " 2-Chlorotolucne ND 0.500 " 1.2-Dibromo-3-chloropropame ND 0.200 " 1.2-Dibromo-3-chloropropame ND </td <td>Bromodichloromethane</td> <td>ND</td> <td>0.200</td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Bromodichloromethane	ND	0.200	"								
Andmontantic ND 2.00 P-Butapone ND 2.00 n-Butylbenzene ND 0.200 sec-Butylbenzene ND 0.500 Carbon disulfide ND 0.500 Carbon disulfide ND 0.200 Carbon disulfide ND 0.200 Chorobenzene ND 0.200 12-Dibromoethane ND 0.200 1.2-Dibromoethane ND 0.200 1.2-Dibromoethane ND 0.200 1.2-Dibromoethane ND 0.200 1.2-Dibromoethane ND 0.200 1.4-Dichorobenzene ND <	Bromoform	ND	0.200	"								
n-Butylbenzene ND 0.200 " see-Butylbenzene ND 0.500 " Carbon disulfide ND 0.500 " Carbon disulfide ND 0.200 " Chlorobenzene ND 0.200 " Chlorobenzene ND 0.200 " Chloroform ND 0.200 " Chloroform ND 0.200 " Chloroform ND 0.200 " Chloroform ND 0.200 " 2Chlorobluene ND 0.200 " 2Chlorobluene ND 0.200 " 12-Diromo-3-chloropropane ND 0.200 " 12-Dirohoroblane ND 0.200 " 1.2-Dirohoroblane ND 0.200 " 1.2-Dirohoroblane ND 0.200 " 1.2-Dirohoroblane ND 0.200 " 1.2-Dirohoroblane ND 0.200 "	Bromomethane	ND	2.00	"								
Bruin Windlick ND 0.200 kert-Butylbenzene ND 0.500 Carbon disulfde ND 0.500 Carbon disulfde ND 0.200 Carbon disulfde ND 0.200 Chlorobenzene ND 0.500 Dibromochlorne ND 0.200 1,2-Diblorobenzene ND 0.200 1,2-Diblorobenzene ND 0.200 1,3-Dichlorobenzene ND 0.200 1,4-Dichlorobenzene ND 0.200 1,1-Dichlorobenzene ND 0.200 1,1-Dichlorobenzene ND 0.200 1,1-Dichloroethene	2-Butanone	ND	2.00	"								
Internation ND 0.500 " Carbon disulfide ND 0.500 " Carbon tetrachloride ND 0.200 " Chlorobenzene ND 0.200 " Chlorochane ND 0.500 " 2-Chlorochune ND 0.500 " 2-Chlorochune ND 0.200 " 1,2-Dirono-3-chloropropane ND 0.200 " 1,2-Dirono-3-chloropropane ND 0.200 " 1,2-Dirohorobenzene ND 0.200 " 1,2-Dirohoropane ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " 1,4-Dichloroethane ND 0.200 " 1,1-Dichloroethane ND 0.200	n-Butylbenzene	ND	0.200	"								
Carbon disulfide ND 0.500 " Carbon tetrachloride ND 0.200 " Chlorobenzene ND 0.200 " Chlorotothane ND 1.00 " Chlorotothane ND 0.200 " Chlorotothane ND 0.200 " Chlorotothane ND 0.500 " 2-Chlorotoluene ND 0.500 " 4-Chlorotothane ND 0.500 " 1.2-Dibromo-3-chloropropane ND 0.500 " 1.2-Dibromo-thane ND 0.200 " 1.2-Dibromo-thane ND 0.200 " 1.2-Dibromo-thane ND 0.200 " 1.2-Dibromo-thane ND 0.200 " 1.4-Dichlorobenzene ND 0.200 " 1.4-Dichloromethane ND 0.200 " 1.4-Dichloromethane ND 0.200 " 1.4-Dichloromethane ND 0	sec-Butylbenzene	ND	0.200	"								
Cabon tetrachloride ND 0.200 " Chlorobenzene ND 0.200 " Chloroothane ND 0.200 " Chloroothane ND 0.200 " Chloroothane ND 0.200 " Chloroothane ND 0.500 " 2-Chloroothane ND 0.500 " 4-Chloroothane ND 0.500 " 1.2-Dibromo-thane ND 0.200 " 1.2-Dibromo-thane ND 0.200 " 1.2-Dibromo-thane ND 0.200 " 1.2-Dibromo-thane ND 0.200 " 1.4-Dichlorobenzene ND 0.200 " 1.4-Dichlorobenzene ND 0.200 " 1.4-Dichlorobenzene ND 0.200 " 1.4-Dichloroethane ND 0.200 " 1.4-Dichloroethane ND 0.200 " 1.2-Dichloroethene ND 0.200	tert-Butylbenzene	ND	0.500	"								
Calour drammand ND 0.200 Chlorodhane ND 0.500 2-Chlorotoluene ND 0.500 4.Chlorotoluene ND 0.200 1.2-Dibromo-3-chloropropane ND 0.200 1.2-Dibromo-dhane ND 0.200 1.2-Dibromoethane ND 0.200 1.3-Dichlorobenzene ND 0.200 1.4-Dichlorobenzene ND 0.200 1.1-Dichloroethane ND 0.200 1.1-Dichloroethane ND 0.200 1.1-Dichloroethane ND 0.200 ias-1,2-Dic	Carbon disulfide	ND	0.500	"								
Chlorothane ND 1.00 " Chlorothane ND 0.200 " Chlorothane ND 0.500 " 2-Chlorothuene ND 0.500 " 4-Chlorothuene ND 0.200 " Dibromochloromethane ND 0.200 " 1,2-Dibromo-3-chloropropane ND 0.200 " 1,2-Dibromoethane ND 0.200 " 1,2-Dibromoethane ND 0.200 " 1,2-Dibromoethane ND 0.200 " 1,2-Dibromoethane ND 0.200 " 1,3-Dichlorobenzene ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " 1,4-Dichloroethane ND 0.200 " 1,1-Dichloroethane ND 0.200 " 1,1-Dichloroethane ND 0.200 " 1,1-Dichloroethane ND 0.200 " 1,1-Dichloroethane ND 0.200 " 1,2-Dichloroethane ND 0.200 "	Carbon tetrachloride	ND	0.200	"								
Chloroform ND 0.200 " Chloromethane ND 1.00 " 2-Chlorotoluene ND 0.500 " 4-Chlorotoluene ND 0.200 " Dibromochloromethane ND 0.200 " 1,2-Dibromo-3-chloropropane ND 0.200 " 1,2-Dibromo-4nare ND 0.200 " 1,2-Dibromoethane ND 0.200 " 1,2-Dibromoethane ND 0.200 " 1,2-Dichlorobenzene ND 0.200 " 1,3-Dichlorobenzene ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " 1,4-Dichloroethane ND 0.200 " 1,2-Dichloroethane ND 0.200 " 1,2-Dichloroethane ND 0.200 " 1,2-Dichloroethene ND 0.200 " cis-1,2-Dichloroethene ND 0.200 " trans-1,2-Dichloroethene <	Chlorobenzene	ND	0.200	"								
Chloromethane ND 1.00 " 2-Chlorotoluene ND 0.500 " 4-Chlorotoluene ND 0.200 " Dibromochloromethane ND 0.200 " 1,2-Dibromo-3-chloropropane ND 0.200 " 1,2-Dibromo-thane ND 0.200 " 1,2-Dibromoethane ND 0.200 " 1,2-Dichlorobenzene ND 0.200 " 1,3-Dichlorobenzene ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " 1,1-Dichlorobenzene ND 0.200 " 1,1-Dichloroethane ND 0.200 " 1,1-Dichloroethene ND 0.200 " trans-1,2-Dichloroethene ND 0.200 " 1,2-Dichloroethene ND 0.200 " 1,2-Dichloroethene ND 0.200 " 1,2-Dichloroethene ND	Chloroethane	ND	1.00	"								
2-ChlorotolueneND0.500"4-ChlorotolueneND0.500"DibromochloromethaneND0.200"1,2-Dibromo-3-chloropropaneND0.200"1,2-DibromoethaneND0.200"1,2-DichlorobenzeneND0.200"1,3-DichlorobenzeneND0.200"1,4-DichlorobenzeneND0.200"1,1-DichloroethaneND0.200"1,1-DichloroethaneND0.200"1,1-DichloroethaneND0.200"1,1-DichloroethaneND0.200"1,1-DichloroethaneND0.200"1,2-DichloroethaneND0.200"1,2-DichloroethaneND0.200"1,2-DichloroethaneND0.200"1,2-DichloroethaneND0.200"1,2-DichloroethaneND0.200"1,3-DichloroethaneND0.200"1,3-DichloroethaneND0.200"1,3-DichloroethaneND0.200"1,3-DichloroethaneND0.200"1,3-DichloroethaneND0.200"1,3-DichloroethaneND0.200"1,3-DichloroethaneND0.200"1,3-DichloroethaneND0.200"1,3-DichloroethaneND0.200"1,3-DichloroethaneND0.200"1,3-DichloroethaneND<	Chloroform	ND	0.200	"								
4-ChlorotolueneND0.500"DibromochloromethaneND0.200"1,2-Dibromo-3-chloropropaneND0.200"1,2-DibromoethaneND0.200"1,2-DichlorobenzeneND0.200"1,3-DichlorobenzeneND0.200"1,4-DichlorobenzeneND0.200"1,4-DichlorobenzeneND0.200"1,1-DichloroethaneND0.200"1,1-DichloroethaneND0.200"1,1-DichloroethaneND0.200"1,1-DichloroethaneND0.200"1,1-DichloroethaneND0.200"1,1-DichloroethaneND0.200"1,1-DichloroethaneND0.200"1,2-DichloroetheneND0.200"1,2-DichloroetheneND0.200"1,2-DichloroetheneND0.200"1,3-DichloropopaneND0.200"	Chloromethane	ND	1.00	"								
A-control ND 0.300 Dibromochloromethane ND 0.200 " 1,2-Dibromoc-3-chloropropane ND 0.200 " 1,2-Dibromoethane ND 0.200 " 1,2-Dichlorobenzene ND 0.200 " 1,2-Dichlorobenzene ND 0.200 " 1,3-Dichlorobenzene ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " 1,4-Dichlorothane ND 0.200 " 1,1-Dichlorothane ND 0.200 " 1,1-Dichlorothane ND 0.200 " 1,1-Dichlorothane ND 0.200 " 1,1-Dichlorothene ND 0.200 " trans-1,2-Dichloroethene ND 0.200 " 1,2-Dichloroethene ND 0.200 " 1,2-Dichloroethene ND 0.200 " 1,2-Dichloroethene ND	2-Chlorotoluene	ND	0.500	"								
1,2-Dibromo-3-chloropropane ND 0.500 " 1,2-Dibromoethane ND 0.200 " 1,2-Dichlorobenzene ND 0.200 " 1,3-Dichlorobenzene ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " 1,1-Dichlorothane ND 0.200 " 1,1-Dichlorothane ND 0.200 " 1,1-Dichlorothane ND 0.200 " 1,1-Dichlorothane ND 0.200 " 1,1-Dichlorothene ND 0.200 " 1,1-Dichlorothene ND 0.200 " 1,2-Dichlorothene ND 0.200 " 1,2-Dichlorothene ND 0.200 " 1,2-Dichlorothene ND 0.200 " 1,3-Dichloropropane ND 0.200 "	4-Chlorotoluene	ND	0.500	"								
1,2-Dibromoethane ND 0.200 " Dibromomethane ND 0.200 " 1,2-Dichlorobenzene ND 0.200 " 1,3-Dichlorobenzene ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " 1,1-Dichlorothane ND 0.200 " 1,1-Dichloroethane ND 0.200 " 1,1-Dichloroethane ND 0.200 " 1,1-Dichloroethane ND 0.200 " 1,1-Dichloroethene ND 0.200 " trans-1,2-Dichloroethene ND 0.200 " 1,2-Dichloroethene ND 0.200 " 1,2-Dichloroethene ND 0.200 " 1,2-Dichloroethene ND 0.200 " 1,2-Dichloroethene ND 0.200 " 1,3-Dichloropropane ND 0.200 "	Dibromochloromethane	ND	0.200	"								
DibromomethaneND0.200"1,2-DichlorobenzeneND0.200"1,3-DichlorobenzeneND0.200"1,4-DichlorobenzeneND0.200"1,4-DichlorobenzeneND0.200"1,1-DichloroethaneND0.200"1,1-DichloroethaneND0.200"1,1-DichloroethaneND0.200"1,1-DichloroethaneND0.200"1,1-DichloroetheneND0.200"trans-1,2-DichloroetheneND0.200"1,2-DichloroetheneND0.200"1,2-DichloroetheneND0.200"1,3-DichloroptopaneND0.200"	1,2-Dibromo-3-chloropropane	ND	0.500	"								
1,2-DichlorobenzeneND0.2001,3-DichlorobenzeneND0.2001,4-DichlorobenzeneND0.200DichlorodifluoromethaneND0.5001,1-DichloroethaneND0.2001,2-DichloroethaneND0.2001,1-DichloroethaneND0.2001,1-DichloroethaneND0.2001,2-DichloroethaneND0.2001,2-DichloroetheneND0.2001,2-DichloroetheneND0.2001,2-DichloroetheneND0.2001,2-DichloroetheneND0.2001,3-DichloropropaneND0.200	1,2-Dibromoethane	ND	0.200	"								
1,3-Dichlorobenzene ND 0.200 " 1,4-Dichlorobenzene ND 0.200 " Dichlorodifluoromethane ND 0.500 " 1,1-Dichloroethane ND 0.200 " 1,2-Dichloroethane ND 0.200 " 1,1-Dichloroethane ND 0.200 " 1,1-Dichloroethene ND 0.200 " 1,1-Dichloroethene ND 0.200 " cis-1,2-Dichloroethene ND 0.200 " trans-1,2-Dichloroethene ND 0.200 " 1,2-Dichloroptene ND 0.200 " 1,3-Dichloroptopane ND 0.200 "	Dibromomethane	ND	0.200	"								
1,3-Dichlorobenzene ND 0.200 1,4-Dichlorobenzene ND 0.200 Dichlorodifluoromethane ND 0.500 1,1-Dichloroethane ND 0.200 1,2-Dichloroethane ND 0.200 1,1-Dichloroethane ND 0.200 1,1-Dichloroethene ND 0.200 1,1-Dichloroethene ND 0.200 cis-1,2-Dichloroethene ND 0.200 trans-1,2-Dichloroethene ND 0.200 1,2-Dichloroethene ND 0.200 1,2-Dichloroethene ND 0.200 1,3-Dichloropropane ND 0.200	1,2-Dichlorobenzene	ND	0.200	"								
Dichlorodifluoromethane ND 0.500 " 1,1-Dichloroethane ND 0.200 " 1,2-Dichloroethane ND 0.200 " 1,1-Dichloroethane ND 0.200 " 1,1-Dichloroethene ND 0.200 " cis-1,2-Dichloroethene ND 0.200 " trans-1,2-Dichloroethene ND 0.200 " 1,2-Dichloroethene ND 0.200 " 1,2-Dichloroethene ND 0.200 " 1,2-Dichloroethene ND 0.200 " 1,3-Dichloropropane ND 0.200 "	1,3-Dichlorobenzene	ND	0.200	"								
1,1-Dichloroethane ND 0.200 " 1,2-Dichloroethane ND 0.200 " 1,1-Dichloroethene ND 0.200 " cis-1,2-Dichloroethene ND 0.200 " trans-1,2-Dichloroethene ND 0.200 " 1,2-Dichloroethene ND 0.200 " 1,2-Dichloroethene ND 0.200 " 1,2-Dichloropropane ND 0.200 "	1,4-Dichlorobenzene	ND	0.200	"								
1,2-Dichloroethane ND 0.200 " 1,1-Dichloroethene ND 0.200 " cis-1,2-Dichloroethene ND 0.200 " trans-1,2-Dichloroethene ND 0.200 " 1,2-Dichloropropane ND 0.200 " 1,2-Dichloropropane ND 0.200 " 1,3-Dichloropropane ND 0.200 "	Dichlorodifluoromethane	ND	0.500	"								
1,1-Dichloroethene ND 0.200 " cis-1,2-Dichloroethene ND 0.200 " trans-1,2-Dichloroethene ND 0.200 " 1,2-Dichloropropane ND 0.200 " 1,3-Dichloropropane ND 0.200 "	1,1-Dichloroethane	ND	0.200	"								
ND 0.200 " trans-1,2-Dichloroethene ND 0.200 " 1,2-Dichloropropane ND 0.200 " 1,3-Dichloropropane ND 0.200 "	1,2-Dichloroethane	ND	0.200	"								
IndextsIndexts0.200trans-1,2-DichloroetheneND0.2001,2-DichloropropaneND0.2001,3-DichloropropaneND0.200	1,1-Dichloroethene	ND	0.200	"								
1,2-Dichloropropane ND 0.200 " 1,3-Dichloropropane ND 0.200 "	cis-1,2-Dichloroethene	ND	0.200	"								
1,3-Dichloropropane ND 0.200 "	trans-1,2-Dichloroethene	ND	0.200	"								
1,3-Dichloropropane ND 0.200 "	1,2-Dichloropropane	ND	0.200	"								
		ND	0.200	"								
	2,2-Dichloropropane			"								

North Creek Analytical - Bothell

Robert Greer, Project Manager

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

Project Number: WA255-3514-1 Project Manager: Eric Larsen

08/04/05 16:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte		Kesult	Linnt	Units	Level	Kesuit	70KEC	Linits	KPD	Liiiiit	notes
Batch 5G29051:	Prepared 07/27/05	Using El	PA 5030B								
Blank (5G29051-BL	LK1)										
1,1-Dichloropropene		ND	0.200	ug/l							
cis-1,3-Dichloropropen	e	ND	0.200	"							
trans-1,3-Dichloroprope	ene	ND	0.200	"							
Ethylbenzene		ND	0.200	"							
Hexachlorobutadiene		ND	0.500	"							
Methyl tert-butyl ether		ND	1.00	"							
n-Hexane		ND	1.00	"							
2-Hexanone		ND	2.00	"							
Isopropylbenzene		ND	0.500	"							
p-Isopropyltoluene		ND	0.200	"							
4-Methyl-2-pentanone		ND	2.00	"							
Methylene chloride		ND	5.00	"							
Naphthalene		ND	0.500	"							
n-Propylbenzene		ND	0.500	"							
Styrene		ND	0.500	"							
1,2,3-Trichlorobenzene		ND	0.200	"							
1,2,4-Trichlorobenzene		ND	0.200	"							
1,1,1,2-Tetrachloroetha	ne	ND	0.200	"							
1,1,2,2-Tetrachloroetha	ne	ND	0.500	"							
Tetrachloroethene		ND	0.200	"							
Toluene		ND	0.200	"							
1,1,1-Trichloroethane		ND	0.200	"							
1,1,2-Trichloroethane		ND	0.200	"							
Trichloroethene		ND	0.200	"							
Trichlorofluoromethane	e	ND	0.500	"							
1,2,3-Trichloropropane		ND	0.500	"							
1,2,4-Trimethylbenzene	e	ND	0.200	"							
1,3,5-Trimethylbenzene		ND	0.500	"							
Vinyl chloride		ND	0.200	"							
o-Xylene		ND	0.250	"							
m,p-Xylene		ND	0.500	"							
Surrogate: 1,2-DCA-d4	!	20.6		"	20.0		103	70-130			
Surrogate: Toluene-d8		20.3		"	20.0		102	70-130			
Surrogate: 4-BFB		19.8		"	20.0		99.0	70-130			

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE

Redmond, WA/USA 98052

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 COP 255353 Westlake and Mercer

 Project Number:
 WA255-3514-1
 Reported:

08/04/05 16:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

Project Manager: Eric Larsen

r				•				A/D= 2		DD	
Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte		Nesun	LIIIIIt	Units	Level	Result	/0KEC	Linits	KF D	Liiiit	notes
Batch 5G29051:	Prepared 07/27/05	Using E	PA 5030B								
LCS (5G29051-BS1)											
Benzene		36.6	0.200	ug/l	40.0		91.5	80-120			
Chlorobenzene		35.8	0.200	"	40.0		89.5	77-120			
1,1-Dichloroethene		37.6	0.200	"	40.0		94.0	80-120			
Ethylbenzene		36.9	0.200		40.0		92.2	80-120			
Methyl tert-butyl ether		39.3	1.00		40.0		98.2	80-120			
Naphthalene		37.5	0.500		40.0		93.8	70-130			
Toluene		37.5	0.200		40.0		93.8	80-120			
Trichloroethene		36.6	0.200		40.0		91.5	80-120			
o-Xylene		36.8	0.250	"	40.0		92.0	80-120			
m,p-Xylene		75.4	0.500		80.0		94.2	80-120			
Surrogate: 1,2-DCA-d4		20.3		"	20.0		102	70-130			
Surrogate: Toluene-d8		19.8		"	20.0		99.0	70-130			
Surrogate: 4-BFB		20.1		"	20.0		100	70-130			
LCS Dup (5G29051-	BSD1)										
Benzene		39.8	0.200	ug/l	40.0		99.5	80-120	8.38	20	
Chlorobenzene		39.0	0.200	"	40.0		97.5	77-120	8.56	20	
1,1-Dichloroethene		42.1	0.200	"	40.0		105	80-120	11.3	20	
Ethylbenzene		40.8	0.200	"	40.0		102	80-120	10.0	20	
Methyl tert-butyl ether		41.8	1.00	"	40.0		104	80-120	6.17	20	
Naphthalene		40.8	0.500	"	40.0		102	70-130	8.43	20	
Toluene		40.6	0.200	"	40.0		102	80-120	7.94	20	
Trichloroethene		40.1	0.200	"	40.0		100	80-120	9.13	20	
o-Xylene		39.8	0.250	"	40.0		99.5	80-120	7.83	20	
m,p-Xylene		82.6	0.500	"	80.0		103	80-120	9.11	20	
Surrogate: 1,2-DCA-d4		19.9		"	20.0		99.5	70-130			
Surrogate: Toluene-d8		19.9		"	20.0		99.5	70-130			
Surrogate: 4-BFB		19.8		"	20.0		99.0	70-130			

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

Project Number: WA255-3514-1 Project Manager: Eric Larsen

08/04/05 16:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
maryu	Result	LIIIII	Units	LEVEI	Result	/0IXEC	Linnis	κr D	LIIIII	TNOLES	
Batch 5G29062: Prepared 07/28/0)5 Using El	PA 5030B									
Blank (5G29062-BLK1)											
Acetone	ND	10.0	ug/l								
Benzene	ND	0.200	"								
Bromobenzene	ND	0.500	"								
Bromochloromethane	ND	0.200	"								
Bromodichloromethane	ND	0.200	"								
Bromoform	ND	0.200	"								
Bromomethane	ND	2.00	"								
2-Butanone	ND	2.00	"								
n-Butylbenzene	ND	0.200	"								
sec-Butylbenzene	ND	0.200	"								
tert-Butylbenzene	ND	0.500	"								
Carbon disulfide	ND	0.500	"								
Carbon tetrachloride	ND	0.200	"								
Chlorobenzene	ND	0.200	"								
Chloroethane	ND	1.00	"								
Chloroform	ND	0.200	"								
Chloromethane	ND	1.00	"								
2-Chlorotoluene	ND	0.500	"								
4-Chlorotoluene	ND	0.500	"								
Dibromochloromethane	ND	0.200	"								
1,2-Dibromo-3-chloropropane	ND	0.500	"								
1,2-Dibromoethane	ND	0.200	"								
Dibromomethane	ND	0.200	"								
1,2-Dichlorobenzene	ND	0.200	"								
1,3-Dichlorobenzene	ND	0.200	"								
1,4-Dichlorobenzene	ND	0.200	"								
Dichlorodifluoromethane	ND	0.500	"								
1,1-Dichloroethane	ND	0.200	"								
1,2-Dichloroethane	ND	0.200	"								
1,1-Dichloroethene	ND	0.200	"								
cis-1,2-Dichloroethene	ND	0.200	"								
trans-1,2-Dichloroethene	ND	0.200	"								
1,2-Dichloropropane	ND	0.200	"								
1,3-Dichloropropane	ND	0.200	"								
2,2-Dichloropropane	ND	0.500	"								

North Creek Analytical - Bothell

Robert Greer, Project Manager

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: COP 255353 Westlake and Mercer Project Number: WA255-3514-1 Project Manager: Eric Larsen

08/04/05 16:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

Reporting Spike Source WRPC IPP Limit Notes Analyte Result Units Level Result Vierse Result Result Vierse Result Notes Result Result Result Level Result Maint Notes Batch SG29062-BLK1)	Reporting Spike Source %REC RPD												
Datk SG229062: Prepared 07/28/05 Using EPA 5030B Bank (SG229062-BLK) ND 0.200 ug/l 1,1-Dichloropropene ND 0.200 " tama-1,2-Dichloropropene ND 0.200 " Ethylhenzene ND 0.200 " Ethylhenzene ND 0.200 " Heiselkorobutadiene ND 0.200 " Heiselkorobutadiene ND 0.200 " Heiselkorobutadiene ND 1.00 " n-Hesane ND 1.00 " 2-Hesanone ND 0.200 " psopropyltoluene ND 0.200 " valdetyl-zenataone ND 0.200 " n=Propyltenzene ND 0.500 " 1,2,4-Trichlorobenzene ND 0.500 " 1,2,4-Trichlorobenzene ND 0.200 " 1,1,2-Tetrachlorobenzene ND 0.200 " 1,1,2-Tetrachlorocethane	Analyte				Units	-		%REC		RPD		Notes	
Blank (5C29062-BLK1) 1.1-Dichloropropene ND 0.200 ug/l cis-1,3-Dichloropropene ND 0.200 " trans, 1,3-Dichloropropene ND 0.200 " Edybenzene ND 0.200 " Hexachlorobutatiene ND 0.200 " Methy Iert-Punyl ether ND 1.00 " n-Hexane ND 1.00 " stoprosyltochune ND 0.200 " Jesprosyltochune ND 0.200 " stoprosyltochune ND 0.200 " viethylare chloride ND 0.200 " Naphthalene ND 0.500 " n-Propylbenzene ND 0.500 " 1,2,3-Trichlorobenzene ND 0.500 " 1,1,2,1-Tetrakhoroethane ND 0.500 " 1,1,2,1-Tetrakhoroethane ND 0.500 " 1,1,2,1-Tetrakhoroethane ND 0.200 "	7 maryte		Result	Linit	Olitis	Level	Result	/mele	Linits	KI D	Linit	110105	
1.1-Dichloropropene ND 0.200 • tans-1.3-Dichloropropene ND 0.200 • Edhylbenzene ND 0.200 • Edhylbenzene ND 0.200 • Hexachlorobutatione ND 0.500 • Methyl terb-butyl ether ND 0.100 • -14cane ND 0.500 • Jespropsibenzene ND 0.500 • Pisopropsiburzene ND 0.500 • Jospropsibenzene ND 0.500 • Adethyl-2-pentanone ND 0.500 • Naphthalene ND 0.500 • n-Propylbenzene ND 0.500 • 1,2.4-Trichlorobenzene ND 0.200 • 1,2.4-Trichlorobenzene ND 0.200 • 1,1.2-Tertakloroethane ND 0.200 • 1,1.2-Tertakloroethane ND 0.200 • 1,1.2-Tertakloroethane ND 0.200 • 1,1.2-Tertakloroethane ND 0	Batch 5G29062:	Prepared 07/28/05	Using El	PA 5030B									
cis-1,3-Dichloropropene ND 0.200 " trans.1,3-Dichloropropene ND 0.200 " Ehlyhbenzene ND 0.500 " Hexachlorobutadiene ND 1.00 " Mehlyl tert-butyl ether ND 1.00 " n-Hexane ND 1.00 " Sopropylbenzene ND 0.500 " J-Hosanone ND 0.200 " Avethyl-2-pentanone ND 0.200 " Naphthalene ND 0.500 " n-Propylbenzene ND 0.500 " 1,2,3-Trichlorobenzene ND 0.500 " 1,2,3-Trichlorobenzene ND 0.200 " 1,1,2-Tetrachloroethane ND 0.200 " 1,1,2,2-Tetrachloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND	Blank (5G29062-BI	_K1)											
nrans-1.3-Dichloropropene ND 0.200 * Ethylbenzene ND 0.200 * Hexachlorobutadiene ND 0.100 * Methyl terl-budyl ether ND 1.00 * n-Hexano ND 0.500 * Soporopithenzene ND 0.500 * p-lsopropytholuene ND 0.200 * Adhthyl-2-pentanone ND 0.200 * Naphthalene ND 0.500 * Naphthalene ND 0.500 * 1,2,3-Trichlorobenzene ND 0.500 * 1,2,4-Trichlorobenzene ND 0.200 * 1,1,2-Trichlorobenzene ND	1,1-Dichloropropene		ND	0.200	ug/l								
Ethylbenzene ND 0.200 " Hexahlorobutadiene ND 0.500 " Methyl terb-buryl ether ND 1.00 " -Hexanone ND 0.500 " Sopropythenzene ND 0.500 " Polsoponythenzene ND 0.200 " Adethyl-2-pentanone ND 0.200 " Adethyl-2-pentanone ND 0.500 " Naphthalene ND 0.500 " -PropylBenzene ND 0.500 " Styrene ND 0.500 " " 1,1,2-Trichlorobenzene ND 0.200 " " 1,1,2-Trichlorobenzene ND 0.200 " " 1,1,1,2-Trichlorochane ND 0.200 " " 1,1,1,2-Trichlorochane ND 0.200 " " 1,1,1,1-Trichlorochane ND 0.200 " " 1,1,2-Trichlorochane ND 0.200 " " 1,1,2-Trichlorochane ND 0.	cis-1,3-Dichloropropen	e	ND	0.200	"								
Hexachlorobutadiene ND 0.500 " Methyl tert-hurjl ether ND 1.00 " n-Hexane ND 1.00 " 2-Hexanone ND 0.200 " lsopropylbetzene ND 0.200 " p-Isopropylbetzene ND 0.200 " Addthyl-2-pentanone ND 0.200 " Methylene chloride ND 5.00 " Naphthalene ND 0.500 " n-Propylbenzene ND 0.500 " 1,2,3-Trichlorobenzene ND 0.200 " 1,1,2-Trichlorobenzene ND	trans-1,3-Dichloroprop	ene	ND	0.200	"								
Mehyl ter-buyl ether ND 1.00 " n-Hexane ND 1.00 " 2-Hexanone ND 0.00 " Sopropylloptizzne ND 0.200 " p-Jsopropylloptizzne ND 0.200 " 4-Methyl-2-pentanore ND 0.200 " Methylane chloride ND 0.500 " Naphthalen ND 0.500 " NPopylbenzene ND 0.500 " Styrene ND 0.500 " 1,2,4-Trichlorobenzene ND 0.200 " 1,1,2-Tetrachloroethane ND 0.200 " 1,1,2-Trichlorobenzene ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " " 1,1,1-Trichloroethane ND 0.200 " " 1,1,2-Trichloroethane ND 0.200 " " 1,1,2-Trichloroethane ND 0.200 " " 1,1,2-Trichloroethane ND 0.200 " "	Ethylbenzene		ND	0.200	"								
Index interval Index n-Hxane ND 1.00 2-Hexanone ND 2.00 Isopropylbenzane ND 0.500 p-Isopropylbenzane ND 0.200 p-Isopropylbenzane ND 0.200 Methyl-2-pentanone ND 0.200 Methyl-2-pentanone ND 0.500 Naphthalene ND 0.500 n-Propylbenzene ND 0.500 Styrene ND 0.200 1,2,3-Trichlorobenzene ND 0.200 1,2,2-Tetrachloroethane ND 0.200 1,1,2-Zretrachloroethane ND 0.200 Toluene ND 0.200 1,1,1-Trichloroethane ND 0.200 1,1,1-Trichloroethane ND 0.200 Trichloroethane ND 0.200 1,1,2-Trichloroethane ND 0.200 Trichloroethane ND 0.200 1,2,3-Trichloropopane ND 0.500 1,2,4-Trinehylbenzene </td <td>Hexachlorobutadiene</td> <td></td> <td>ND</td> <td>0.500</td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Hexachlorobutadiene		ND	0.500	"								
2-Hexanone ND 2.00 " Isopropylbenzene ND 0.500 " p-Isopropylbuene ND 0.200 " 4Methyl-2-pentanone ND 0.200 " Methylene chloride ND 5.00 " Naphhalene ND 0.500 " n-Propylbenzene ND 0.500 " 1,2,3-Trichlorobenzene ND 0.200 " 1,2,4-Trichlorobenzene ND 0.200 " 1,1,1,2-Tetrachloroethane ND 0.200 " 1,1,1,2-Tetrachloroethane ND 0.200 " 1,1,1,2-Tetrachloroethane ND 0.200 " 1,1,1,2-Trichloroethane ND 0.200 " 1,1,1,1-Trichloroethane ND 0.200 " 1,1,1-Trichloroethane ND 0.200 " 1,1,1-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,2,4-Trichloroethane ND 0.200 " 1,3,5-Trichloroptopane <td>Methyl tert-butyl ether</td> <td></td> <td>ND</td> <td>1.00</td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Methyl tert-butyl ether		ND	1.00	"								
Isopropylbenzene ND 0.500 " 4-Methyl-2-pentanone ND 2.00 " Methyl-2-pentanone ND 2.00 " Methylene chloride ND 5.000 " Naphthalene ND 0.500 " n-Propylbenzene ND 0.500 " Styrene ND 0.500 " 1,2,3-Trichlorobenzene ND 0.200 " 1,1,2-Z-Etrachloroethane ND 0.200 " 1,1,2-Z-Etrachloroethane ND 0.200 " 1,1,2-Z-Etrachloroethane ND 0.200 " 1,1,2-Teitholoroethane ND 0.200 " 1,1,2-Teitholoroethane ND 0.200 " Trichloroethane ND 0.200 " " 1,1,2-Trichloroethane ND 0.200 " " Trichloroethane ND 0.200 " " " 1,2,3-Trichloropthane ND 0.200 " " " 1,3,5-Trinethylbenzene ND <	n-Hexane		ND	1.00	"								
p-Isopropyloluene ND 0.200 " 4-Methyl-2-pentanone ND 2.00 " Methylene chloride ND 5.00 " Naphthalene ND 0.500 " Naphthalene ND 0.500 " P-Propylbenzene ND 0.500 " 1,2,3-Trichlorobenzene ND 0.200 " 1,2,4-Trichlorobenzene ND 0.200 " 1,1,2-Tetrachloroethane ND 0.200 " 1,1,2,2-Tetrachloroethane ND 0.200 " 1,1,1,2-Tetrachloroethane ND 0.200 " 1,1,1,2-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,2,3-Trichloroethane ND 0.200 " 1,2,3-Trichloroethane ND 0.500 " 1,2,4	2-Hexanone		ND	2.00	"								
A-Methyl-2-pentanone ND 2.00 " Methylene chloride ND 5.00 " Maphthalene ND 0.500 " n-Propylbenzene ND 0.500 " Styrene ND 0.500 " 1,2,3-Trichlorobenzene ND 0.200 " 1,2,4-Trichlorobenzene ND 0.200 " 1,1,2,7-trichlorobenzene ND 0.200 " 1,1,2,7-trichlorobenzene ND 0.200 " 1,1,2,7-trichloroethane ND 0.200 " 1,1,2,7-trichloroethane ND 0.200 " 1,1,1,7-trichloroethane ND 0.200 " 1,1,1,1-Trichloroethane ND 0.200 " 1,1,2,7-trichloroethane ND 0.200 " 1,1,2,7-trichloroethane ND 0.200 " 1,2,4-Trinethylbenzene ND 0.200 " " 1,2,4-Trinethylbenzene ND 0.500 " " " 1,2,4-Trinethylbenzene ND 0.500 <	Isopropylbenzene		ND	0.500	"								
Methylene chloride ND 5.00 " Naphthalene ND 0.500 " Propylbenzene ND 0.500 " Styrene ND 0.500 " 1,2,3-Trichlorobenzene ND 0.200 " 1,1,2-Tetrachloroethane ND 0.200 " 1,1,2,2-Tetrachloroethane ND 0.200 " 1,1,2,2-Tetrachloroethane ND 0.200 " 1,1,1,2-Tetrachloroethane ND 0.200 " 1,1,1,2-Trichloroethane ND 0.200 " 1,1,1,2-Trichloroethane ND 0.200 " 1,1,1-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,2,3-Trichloroethane ND 0.200 " 1,2,3-Trichloroethane ND 0.200 " 1,2,3-Trichloroethane ND 0.200 " 1,2,4-Trimethylbenzene ND 0.200 " 1,3,5-Trimethyl	p-Isopropyltoluene		ND	0.200	"								
Naphthalene ND 0.500 " n-Propylbenzene ND 0.500 " Styrene ND 0.500 " 1,2,3-Trichlorobenzene ND 0.200 " 1,1,2-Tetrachlorobenzene ND 0.200 " 1,1,2-Tetrachlorobenzene ND 0.200 " Tetrachlorobenzene ND 0.200 " Toluene ND 0.200 " " 1,1,2-Trichlorobenzene ND 0.200 " " 1,1,2-Trichlorobenzene ND 0.200 " " 1,1,2-Trichlorobenzene ND 0.200 " " 1,2,3-Trichlorophane ND 0.200 " " 1,2,3-Trinhotyblenzene ND 0.200 " " 1,3,5-Trimetyblenzene ND 0.2	4-Methyl-2-pentanone		ND	2.00	"								
n-Propylbenzene ND 0.500 " Styrene ND 0.500 " 1,2,3-Trichlorobenzene ND 0.200 " 1,2,4-Trichlorobenzene ND 0.200 " 1,1,2-Tetrachloroethane ND 0.200 " 1,1,2-Tetrachloroethane ND 0.200 " 1,1,2-Tetrachloroethane ND 0.200 " Tetrachloroethane ND 0.200 " Toluene ND 0.200 " 1,1,1-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,1,1-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,2,3-Trichloropthane ND 0.200 " 1,2,3-Trichloroptopane ND 0.200 " 1,3,5-Trimethylbenzene ND 0.200 " 1,3,5-Trimethylbenzene ND 0.200 " vinylekhoride ND 0.200 " vizylene ND	Methylene chloride		ND	5.00	"								
ND 0.500 " 1,2,3-Trichlorobenzene ND 0.200 " 1,2,4-Trichlorobenzene ND 0.200 " 1,1,2-Tetrachloroethane ND 0.200 " 1,1,2-Tetrachloroethane ND 0.200 " 1,1,2-Tetrachloroethane ND 0.200 " Tetrachloroethane ND 0.200 " 1,1,1-Trichloroethane ND 0.200 " 1,1,1-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,2,3-Trichloropthane ND 0.200 " 1,2,3-Trichloropthane ND 0.500 " 1,2,4-Trimethylbenzene ND 0.500 " 1,3,5-Trimethylbenzene ND 0.200 " 0-Xylene ND 0.200 " - 0-Xylene ND 0.200 " - 0-Xy	Naphthalene		ND	0.500	"								
1.2.3-Trichlorobenzene ND 0.200 " 1.2.4-Trichlorobenzene ND 0.200 " 1.1,1.2-Tetrachloroethane ND 0.200 " 1.1,2.2-Tetrachloroethane ND 0.500 " Tetrachloroethane ND 0.200 " Toluene ND 0.200 " 1,1.1-Trichloroethane ND 0.200 " 1,1.1-Trichloroethane ND 0.200 " 1,1.2-Trichloroethane ND 0.200 " 1,1.2-Trichloroethane ND 0.200 " 1,1.2-Trichloroethane ND 0.200 " 1,2.3-Trichloropthane ND 0.200 " 1,2.3-Trichloroptopane ND 0.500 " 1,2,4-Trimethylbenzene ND 0.200 " 1,3.5-Trimethylbenzene ND 0.200 " Vinyl chloride ND 0.200 " o-Xylene ND 0.200 " mp-Xylene ND 0.500 " Surrogate: 1,2-DCA-44 <td< td=""><td>n-Propylbenzene</td><td></td><td>ND</td><td>0.500</td><td>"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	n-Propylbenzene		ND	0.500	"								
1,2,4-Trichlorobenzene ND 0.200 " 1,1,2-Tetrachloroethane ND 0.500 " 1,1,2-Tetrachloroethane ND 0.200 " Tetrachloroethane ND 0.200 " Toluene ND 0.200 " 1,1,1-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,2,3-Trichloroethane ND 0.200 " 1,2,3-Trichloroptopane ND 0.500 " 1,2,3-Trichloroptopane ND 0.200 " 1,3,5-Trimethylbenzene ND 0.200 " 1,3,5-Trimethylbenzene ND 0.200 " vinyl chloride ND 0.200 " o-Xylene ND 0.200 " m.p-Xylene ND 0.200 " Surrogate: 1,2-DCA-4d 18.9 " 20.0 94.5 70-130 <td>Styrene</td> <td></td> <td>ND</td> <td>0.500</td> <td>"</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Styrene		ND	0.500	"								
1,1,2-Tetrachloroethane ND 0.200 " 1,1,2-Tetrachloroethane ND 0.500 " Tetrachloroethane ND 0.200 " Toluene ND 0.200 " 1,1,1-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " Trichloroethane ND 0.200 " Trichloroethane ND 0.200 " 1,2,3-Trichloroethane ND 0.500 " 1,2,3-Trichloropropane ND 0.500 " 1,2,4-Trimethylbenzene ND 0.200 " 1,3,5-Trimethylbenzene ND 0.200 " 1,3,5-Trimethylbenzene ND 0.200 " o-Xylene ND 0.200 " mp-Xylene ND 0.500 " Surrogate: 1,2-DCA-d4 18.9 " 20.0 94.5 70-130 Surrogate: Toluene-d8 20.2 " 20.0 101 70	1,2,3-Trichlorobenzene		ND	0.200	"								
1,1,2,2-Tetrachloroethane ND 0.500 " Tetrachloroethene ND 0.200 " Toluene ND 0.200 " 1,1,1-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " Trichloroethane ND 0.200 " Trichloroethane ND 0.200 " 1,2,3-Trichloroptopane ND 0.500 " 1,2,4-Trimethylbenzene ND 0.200 " 1,3,5-Trimethylbenzene ND 0.200 " Vinyl chloride ND 0.200 " o-Xylene ND 0.200 " mp-Xylene ND 0.200 " Surrogate: 1,2-DCA-d4 18.9 " 20.0 94.5 70-130 Surrogate: Toluene-d8 20.2 " 20.0 101 70-130	1,2,4-Trichlorobenzene		ND	0.200	"								
Tetrachloroethene ND 0.200 " Toluene ND 0.200 " 1,1,1-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " Trichloroethane ND 0.200 " Trichloroethane ND 0.200 " Trichloropthane ND 0.200 " 1,2,3-Trichloroptopane ND 0.500 " 1,2,4-Trimethylbenzene ND 0.200 " 1,3,5-Trimethylbenzene ND 0.200 " Vinyl chloride ND 0.200 " o-Xylene ND 0.200 " m.p-Xylene ND 0.500 " Surrogate: 1,2-DCA-44 18.9 " 20.0 94.5 70-130	1,1,1,2-Tetrachloroetha	ne	ND	0.200	"								
Toluene ND 0.200 " 1,1,1-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " Trichloroethane ND 0.200 " Trichloroethane ND 0.200 " Trichloroethane ND 0.500 " 1,2,3-Trichloropopane ND 0.500 " 1,2,4-Trimethylbenzene ND 0.200 " 1,3,5-Trimethylbenzene ND 0.500 " Vinyl chloride ND 0.200 " o-Xylene ND 0.200 " <i>Surrogate: 1,2-DCA-44</i> 18.9 " 20.0 94.5 70-130 Surrogate: Toluene-d8 20.2 " 20.0 101 70-130	1,1,2,2-Tetrachloroetha	ne	ND	0.500	"								
1,1,1-Trichloroethane ND 0.200 " 1,1,2-Trichloroethane ND 0.200 " Trichloroethane ND 0.200 " Trichloroethane ND 0.500 " Trichloropropane ND 0.500 " 1,2,3-Trichloropropane ND 0.500 " 1,2,4-Trimethylbenzene ND 0.200 " 1,3,5-Trimethylbenzene ND 0.500 " 1,3,5-Trimethylbenzene ND 0.200 " vinyl chloride ND 0.200 " o-Xylene ND 0.200 " m.p-Xylene ND 0.500 " Surrogate: 1,2-DCA-44 18.9 " 20.0 94.5 70-130 Surrogate: Toluene-d8 20.2 " 20.0 101 70-130	Tetrachloroethene		ND	0.200	"								
1,1,2-Trichloroethane ND 0.200 " Trichloroethane ND 0.200 " Trichlorofluoromethane ND 0.500 " 1,2,3-Trichloropropane ND 0.500 " 1,2,4-Trimethylbenzene ND 0.200 " 1,3,5-Trimethylbenzene ND 0.500 " Vinyl chloride ND 0.200 " o-Xylene ND 0.200 " m,p-Xylene ND 0.500 " Surrogate: 1,2-DCA-d4 18.9 " 20.0 94.5 70-130 Surrogate: Toluene-d8 20.2 " 20.0 101 70-130	Toluene		ND	0.200	"								
Trichloroethene ND 0.200 " Trichlorofluoromethane ND 0.500 " 1,2,3-Trichloropropane ND 0.500 " 1,2,4-Trimethylbenzene ND 0.200 " 1,3,5-Trimethylbenzene ND 0.500 " Vinyl chloride ND 0.200 " o-Xylene ND 0.200 " m,p-Xylene ND 0.500 " Surrogate: 1,2-DCA-d4 18.9 " 20.0 94.5 70-130 Surrogate: Toluene-d8 20.2 " 20.0 101 70-130	1,1,1-Trichloroethane		ND	0.200	"								
Trichlorofluoromethane ND 0.500 " 1,2,3-Trichloropropane ND 0.500 " 1,2,4-Trimethylbenzene ND 0.200 " 1,3,5-Trimethylbenzene ND 0.500 " 1,3,5-Trimethylbenzene ND 0.500 " Vinyl chloride ND 0.200 " o-Xylene ND 0.250 " m,p-Xylene ND 0.500 " Surrogate: 1,2-DCA-d4 18.9 " 20.0 94.5 70-130 Surrogate: Toluene-d8 20.2 " 20.0 101 70-130	1,1,2-Trichloroethane		ND	0.200	"								
1,2,3-Trichloropropane ND 0.500 " 1,2,4-Trimethylbenzene ND 0.200 " 1,3,5-Trimethylbenzene ND 0.500 " Vinyl chloride ND 0.200 " o-Xylene ND 0.250 " m,p-Xylene ND 0.500 " Surrogate: 1,2-DCA-d4 18.9 " 20.0 94.5 70-130 Surrogate: Toluene-d8 20.2 " 20.0 101 70-130	Trichloroethene		ND	0.200	"								
1,2,4-Trimethylbenzene ND 0.200 " 1,3,5-Trimethylbenzene ND 0.500 " Vinyl chloride ND 0.200 " o-Xylene ND 0.250 " m,p-Xylene ND 0.500 " Surrogate: 1,2-DCA-d4 18.9 " 20.0 94.5 70-130 Surrogate: Toluene-d8 20.2 " 20.0 101 70-130	Trichlorofluoromethane		ND	0.500	"								
ND 0.500 " Vinyl chloride ND 0.200 " o-Xylene ND 0.250 " m,p-Xylene ND 0.500 " Surrogate: 1,2-DCA-d4 18.9 " 20.0 94.5 70-130 Surrogate: Toluene-d8 20.2 " 20.0 101 70-130	1,2,3-Trichloropropane		ND	0.500	"								
ND 0.300 Vinyl chloride ND 0.200 o-Xylene ND 0.250 m,p-Xylene ND 0.500 Surrogate: 1,2-DCA-d4 18.9 " 20.0 94.5 70-130 Surrogate: Toluene-d8 20.2 " 20.0 101 70-130	1,2,4-Trimethylbenzene	2	ND	0.200	"								
o-Xylene ND 0.250 " m,p-Xylene ND 0.500 " Surrogate: 1,2-DCA-d4 18.9 " 20.0 94.5 70-130 Surrogate: Toluene-d8 20.2 " 20.0 101 70-130	1,3,5-Trimethylbenzene	2	ND	0.500	"								
m,p-Xylene ND 0.500 " Surrogate: 1,2-DCA-d4 18.9 " 20.0 94.5 70-130 Surrogate: Toluene-d8 20.2 " 20.0 101 70-130	Vinyl chloride		ND	0.200	"								
Surrogate: 1,2-DCA-d4 18.9 " 20.0 94.5 70-130 Surrogate: Toluene-d8 20.2 " 20.0 101 70-130	o-Xylene		ND	0.250	"								
Surrogate: Toluene-d8 20.2 " 20.0 101 70-130	m,p-Xylene		ND	0.500	"								
Surrogate: Toluene-d8 20.2 " 20.0 101 70-130	Surrogate: 1,2-DCA-d4	1	18.9		"	20.0		94.5	70-130				
Surrogate: 4-BFB 20.1 " 20.0 100 70-130	-				"			101	70-130				
	Surrogate: 4-BFB		20.1		"	20.0		100	70-130				

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE

Redmond, WA/USA 98052

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.306.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 COP 255353 Westlake and Mercer

 Project Number:
 WA255-3514-1
 Reported:

08/04/05 16:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

Project Manager: Eric Larsen

r				•				ANDEG		DDD	
Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Anaryte		Kesuit	Liiiit	Onits	Level	Kesun	70KEC	Lillits	KI D	Liiiit	notes
Batch 5G29062:	Prepared 07/28/05	Using E	PA 5030B								
LCS (5G29062-BS1)	1										
Benzene		37.8	0.200	ug/l	40.0		94.5	80-120			
Chlorobenzene		36.7	0.200	"	40.0		91.8	77-120			
1,1-Dichloroethene		37.0	0.200	"	40.0		92.5	80-120			
Ethylbenzene		37.3	0.200	"	40.0		93.2	80-120			
Methyl tert-butyl ether		40.1	1.00	"	40.0		100	80-120			
Naphthalene		39.8	0.500	"	40.0		99.5	70-130			
Toluene		38.8	0.200	"	40.0		97.0	80-120			
Trichloroethene		35.7	0.200	"	40.0		89.2	80-120			
o-Xylene		36.7	0.250	"	40.0		91.8	80-120			
m,p-Xylene		75.4	0.500	"	80.0		94.2	80-120			
Surrogate: 1,2-DCA-d4		17.7		"	20.0		88.5	70-130			
Surrogate: Toluene-d8		19.8		"	20.0		99.0	70-130			
Surrogate: 4-BFB		20.2		"	20.0		101	70-130			
LCS Dup (5G29062-	BSD1)										
Benzene		39.8	0.200	ug/l	40.0		99.5	80-120	5.15	20	
Chlorobenzene		38.6	0.200	"	40.0		96.5	77-120	5.05	20	
1,1-Dichloroethene		38.9	0.200	"	40.0		97.2	80-120	5.01	20	
Ethylbenzene		39.5	0.200	"	40.0		98.8	80-120	5.73	20	
Methyl tert-butyl ether		40.7	1.00	"	40.0		102	80-120	1.49	20	
Naphthalene		41.1	0.500	"	40.0		103	70-130	3.21	20	
Toluene		41.7	0.200	"	40.0		104	80-120	7.20	20	
Trichloroethene		37.6	0.200	"	40.0		94.0	80-120	5.18	20	
o-Xylene		39.0	0.250	"	40.0		97.5	80-120	6.08	20	
m,p-Xylene		80.5	0.500	"	80.0		101	80-120	6.54	20	
Surrogate: 1,2-DCA-d4		17.2		"	20.0		86.0	70-130			
Surrogate: Toluene-d8		20.0		"	20.0		100	70-130			
Surrogate: 4-BFB		20.7		"	20.0		104	70-130			

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

Project Number: WA255-3514-1 Project Manager: Eric Larsen

08/04/05 16:43

Volatile Organic Compounds by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

		111			, titul 1	ounem					
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G29064:	Prepared 07/29/05	Using El	PA 5030B								
Blank (5G29064-BL	K1)										
Benzene		ND	0.200	ug/l							
Ethylbenzene		ND	0.200	"							
Methyl tert-butyl ether		ND	1.00	"							
Naphthalene		ND	0.500	"							
Toluene		ND	0.200	"							
o-Xylene		ND	0.250	"							
m,p-Xylene		ND	0.500	"							
Surrogate: 1,2-DCA-d4		19.8		"	20.0		99.0	70-130			
Surrogate: Toluene-d8		20.2		"	20.0		101	70-130			
Surrogate: 4-BFB		19.8		"	20.0		99.0	70-130			
LCS (5G29064-BS1)											
Benzene		37.1	0.200	ug/l	40.0		92.8	80-120			
Ethylbenzene		38.4	0.200	"	40.0		96.0	80-120			
Methyl tert-butyl ether		38.1	1.00	"	40.0		95.2	80-120			
Naphthalene		39.0	0.500	"	40.0		97.5	80-120			
Toluene		39.1	0.200	"	40.0		97.8	80-120			
o-Xylene		37.7	0.250	"	40.0		94.2	80-120			
m,p-Xylene		78.2	0.500	"	80.0		97.8	80-120			
Surrogate: 1,2-DCA-d4		19.3		"	20.0		96.5	70-130			
Surrogate: Toluene-d8		20.3		"	20.0		102	70-130			
Surrogate: 4-BFB		19.7		"	20.0		98.5	70-130			
LCS Dup (5G29064-	BSD1)										
Benzene		37.7	0.200	ug/l	40.0		94.2	80-120	1.60	20	
Ethylbenzene		39.4	0.200	"	40.0		98.5	80-120	2.57	20	
Methyl tert-butyl ether		39.2	1.00	"	40.0		98.0	80-120	2.85	20	
Naphthalene		38.8	0.500	"	40.0		97.0	80-120	0.514	20	
Toluene		40.2	0.200	"	40.0		100	80-120	2.77	20	
o-Xylene		38.6	0.250	"	40.0		96.5	80-120	2.36	20	
m,p-Xylene		79.2	0.500	"	80.0		99.0	80-120	1.27	230	
Surrogate: 1,2-DCA-d4		18.9		"	20.0		94.5	70-130			
Surrogate: Toluene-d8		20.2		"	20.0		101	70-130			
Surrogate: 4-BFB		20.5		"	20.0		102	70-130			

North Creek Analytical - Bothell

Delta Environmental	Project: COP 255353 Westlake and Mercer	
4006 148th Ave NE	Project Number: WA255-3514-1	Reported:
Redmond, WA/USA 98052	Project Manager: Eric Larsen	08/04/05 16:43

Notes and Definitions

- A-01 The sample appears to have three distinct products: Gasoline, Diesel, and Motor Oil. The result in the Diesel range could be exaggerated due to overlap from both the Gas and Motor Oil products.
- D-08 Results in the diesel organics range are primarily due to overlap from a gasoline range product.
- D-09 Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
- E-01 Estimated value. The reported value exceeds the capacity of the detector and therefore is unreliable.
- S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- S-06 The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interferences.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

x

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-9508 11115 E Montgomery Suite B, Spokane, WA 99206-4776 9405 SW Nimbus Ave, Beaverton, OR 97008-7132 20332 Empire Ave Suite F-1, Bend, OR 99701-5711 3209 Denali St, Anchorage, AK 99503-4030
 425-420-9200
 FAX 420-9210

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210

 541-383-9310
 FAX 382-7588

 907-334-9200
 FAX 334-9210

CHAIN O)F (CUS	TO	DY	REP	OR	Г						Work O	rder #	: B5	5GM	100	
CLIENT: ConocoPhillips Company				INV	OICE TO): Kin	p Eckert	Copo	coPł	nillips			· · · ·			REQUES]
REPORT TO: Eric Larsen (elarsen@deltaenv.com)						npany 1				enue			in	Business I	Days *		
ADDRESS: Delta Environmental Consultants 4006 148th Avenue NE			Eas	st Seattle	e, WA (9810	9			Organic & Inorganic Analyses								
Redmond, WA 98052																		
PHONE: 425-498-7718 FAX: 425-869-1892				P.O. 1	NUMBE		96DEL0	14					STD.		rin m	on Analyses		
PROJECT NAME: COP 255353 Westlake & Mercer				11/0		RESER	VATIVE							4	3 2		1	
PROJECT NUMBER: WA255-3514-1	HCI	140	HU	Ha		FSTED	ANALY	979					510	THER				
SAMPLED BYC. Milewski, J. Peterson	L×	ô	60	e l			ANALI	363							Specify:	ard may incur Rus	h Champer	
CLIENT SAMPLE SAMPLING	Ŧ	(82	E (82) thate	Ca g H-D								MATRIX	# OF	T	CATION /	- T	┥
IDENTIFICATION DATE/TIME	NWTPH-Gx	BTEX (8260)	MTBE (8260	Vaph 8260	NWTPH-Dx w/silica gel cleanup								(W, S, O)	CONT.	1	AMENTS	- NCA WOID	
, MW-38 7.26-05 06:40	X	X	X		X								٦.)	8			01	1
	ί.			$\left \right\rangle$									$\frac{\omega}{1}$					1
2 MW 43 08 30	X	X		K.									\underline{w}	8			02	
3 MW-16 09:00	X	\times	X	X	X								\mathbb{W}	8			12	
MW-44 09:30	X	$ \times $	$ \times $	X	$ \times $								$\overline{\mathcal{W}}$	8			04]
5 MW-105 1000	X	\times	X	X	X								W	8			05	1
MW-8 1030	X	X	X	X	X								\.J	8			54	1
, MW-42 10:45	X	X	X	X	X								$\frac{\sqrt{2}}{\sqrt{2}}$	8			FA	1
MW-103 11:15	X	X	X	X	X								$\frac{\sqrt{2}}{\sqrt{2}}$	8			108	1
	$\left \right\rangle$	$\overline{\mathbf{x}}$	\mapsto										$\overline{\mathcal{W}}_{-}$	D				ł
, MW-41 7-26-05 12:45	X	×	X		X								$\overline{\mathcal{M}}$	7			09	
10				<u> </u>				+	1			\neg					10	R
RELEASED BY:				DATE:	7-27-		RECEIV	ED BY			ス	-	~~~		<u> </u>	DATE	2705	た
PRINT NAME: Jany Peterson FIRM: D	411/	4		TIME:		00	PRINT			<u>EK</u>	pn.	ína	FIRM:	NC	A	TIME: (2~	
RELEASED BY:	11	- ^		DATE:	727	٥Ź	RECEIV			-	ant	\leq)	11-1			27/05	
ADDITIONAL REMARKS:	\sim	-7		TIME:	121		PRINT	NAME:	D/a	nking	shif-	\mathcal{O}	FIRM:	NCA	TR	TIME:	1240	ł
COC REV 1/03											1				1	PAG	El OF	

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-9508 11115 E Montgomery Suite B, Spokane, WA 99206-4776 9405 SW Nimbus Ave, Beaverton, OR 97008-7132 20332 Empire Ave Suite F-1, Bend, OR 99701-5711 3209 Denali St, Anchorage, AK 99503-4030

 425-420-9200
 FAX 420-9210

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210

 541-383-9310
 FAX 382-7588

 907-334-9200
 FAX 334-9210

		HAIN C)F (CUS	TO	DY	RE	PO	RT							Work C	rder #	:B5G	Olac	12
ADDRESS Delta Envir	n (elarsen@d onmental Co Avenue NE	1)			INVOICE TO: Kipp Eckert ConocoPhillips Company 1144 Eastlake Avenue East Seattle, WA 98109							TURNAROUND REQUEST in Business Days * Organic & Inorganic Analyses								
PHONE: 425-498-7718	FAX: 425-8					P.O.	NUM			DELO						10 7 STD.	Petroleum	Hydrocarbon A	nalyses	
PROJECT NAME: COP 2	A255-3514-1			IfCI	HCI	HC(PRES										3 2	1 <1	<u>]</u>
SAMPLED BY: C.M. 1005 CLIENT SAMPLE IDENTIFICATION	SAM	elson Pling Etime	NWTPH-Gx	BTEX (8260)	MTBE (8260	Vaphthalene 8260)	NWTPH-Dx w/silica gel									* Turnaron MATRIX (W, S, O)		LOCATIC COMME	ON /	Charges. NCA WO II
1 MW-40	7.2605	13:20	Х	×	X	X	×									ω	8			10
2 MW-19		14:30	X	×	×	X	X									ω	7			11
<u>MW-37</u>		14:10	X	×	×	X	X									Ŵ	8			12
▲ MW-18	7-26:05	13:50	X	\times	X	X	X						4			W	ア			13
5 6 7																				
8																				
10 RELEASED BY: PRINT NAME: DZMEP PC-	terson	FIRM:)el	F1		DATE		7-00		RECEN		A	TCA	1. De	e L	ERM:	NCA		ATE:7-	270
	KONIN	FIRM:	No	A		DATE TIME	:			RECEIV			m	Blan	~F		NCA	D	ATE: 7/ IME: 1 PAGE	27/09

APPENDIX E

GROUNDWATER MONITORING FIELD SHEETS

Delta Environmental Consultants, Inc. Daily Field Log

Project Name Como Phillips - Westlake - Mercer Site Project No. WA -255-3513-1 7-25-2005 Date Location 600 Westlake Ave N-Seattle Delta Representative: J. Peterson Field Log: 7:00. JMP on site to perform ground water monitoring. Inform station Manager of intended work activities. Prepare coolers. 7:15-C. Milewski on-site. Delts personnel begin groundwater monitoring with wells in West Marine Parking lot. 10:00 - Complete gitted monitoring of wells in West Marine Parking lot. Sampling was completed without any anomalous incidents or observations, All well caps appeared to be in working condition. Begin groundwater Monitoring on wells ground the Station Building 12:50 - Complete gittz monitoring of wells near station building. Well Caps were in working condition. No departure from standard Sampling of these wells. Begin groundwater monitoring on wells located on City Investor's Property. 13:15-L. Brock on-site to 255it in gitt20 monitoring. New asphalt has been placed and rolled on the Northwest portion of the City Investor's site. Monitoring Wells within this area were not asphalted over however, it appears asphalt contractor placed wooden forms 2 round each well to prevent them From rolling over a well with machinery. Delta personnel was required to pull these forms out the in order to access the wells. Additionally, each well was buried under sub-grace gravel which appeared to be 14" minus in size. Delta personnel was required to dig grovel away from well cap to perform work activities. Initials: JMP Page____of U

Delta Environmental Consultants, Inc. Daily Field Log

Project Name Col-Westlake Mercer Site Project No. WA-255-3513-1	
Date 7-25-2005 Location	
Delta Representative:	
Field Log: Continued Flom Page 2	
13:40 - 5MW-25 has 2 damaged casing. Water level probe was able	
to get 2 depth to water reading, but bailers were unable to drop	
past 4' below ground surface. Casing is stanted on surface. No sample	
for this well.	
14:00-L. Brock discovers 2 slight sheen 2nd 2 hydrocarbon odor in while	
Sampling SMW-4. Additionally, this well went dry during purging activity	:5
Recharge was reported to be Slow.	Ο,
141:40- Delta personnel observes water approximately 6" b.g. the top of	
Casing in MW. 32. Field stath had been instructed to sample this well.	
However, upon Further investigation - MW-32 appears to have been	
abandoned or is severely filled in. No Sample from MW-32.	
15:00 - Deltz field personnel could not locate MW-102. This well may	
possibly be located under one of the 55-gallon drum located in front of the	
green-wooden building. Some drums have 2 " Contains PCBo" label, while	
others are unlabeled. No sample for this well.	
- Complete with groundwater monitoring of wells lorated on City Investors	
Site. Beging 420 monitoring of wells on Terry Ave N.	
16:00- Complete with gitz monitoring of wells on Terry Ave N. No 2notinglous	
Observations or sampling. Well caps in working condition. Begin site departure	
activities and sample inventory.	
16:32 - Delta off-site	
Initials: JMP Page 2of 4	

GROUNDWATER SAMPLING FIELD SHEET

				GR	OUNDWAT	ER SAMPL	ING FIEL	D SHEE	Г			
DELTA	ROJEC	NUMBER	:_WA	1-255-	3513-	1	CLI	IENT:	C_{ℓ}	P		
SITE No	JOB No	.:	Cop	255 -	353 5	ezHle	- PA			1	of 4	
SITE AD	DRESS/L	OCATION:	N: 600 Westlake Ave N					TE:	July 25, 2005			
FIELD P	ERSONN	EL:	C. Mile	ewski, J		n i L.Br			<u>Sun</u>		20° F	
				<u> </u>	10.0.30			AINER.		<u>ng (</u>		
		Well Diameter	Depth to	Depth to		LPH	Calc.	Actual	Purge	Dissolved	1	
Well ID	Time	(in.)	Bottom (feet)	Water (feet)	Depth to LPH (feet)	Thickness (feet)	Purge (gal)	Purge (gal)	Method (B/LF/P)	Oxygen		
· MWS4	7:40) Sii	20.05	9.51			5.15	(yai) SS	B	(mg/l) (). 2	Sample Appearance/Comments Jrzk brownish (bio growth	
2 MW 15	8:00	211	18.35	8.93	~		4.83	5.0	R	3.2	grey-cloydy w/ bio growth	
3 MW 5	5 8:20	2 2"	19.60	10.92	-	~	4.24	4.25	B	23	transport w/ biogravith	
" MWSI	8:3	0 2"	17.45	10.90	-		3.20	3.25	B	17	grey-clarby w/ biogravit	
MWS	6 8:50	"5 0	195	11.24	-	-	4.11	4.25	B	2.1		
- MW.51	9:10		15 30	11.74	-		1.74	175	B	2)	grey-ilondy w/ biogrowth	
7 MW 5	3): U	2 ?"	16.00	11.75	-		2.08	2.15	R	25	<u>Greycloudy wi bio growth</u> greycloudy wi bio growth	
AWS	9:40	2"	2490	11 77			1 111	6.50	R	5.2		
MW.60	10.00) 'Z+1	19.65	11.87	-	~	3.90	3.80	B	1.8	transpirent will bio growth	
10 MW.35	10:2.) :1 ^{is}	2760	10.42	-		5.95	6.00	R	1.6	Brownsh yrey cloudy Rust colored	
MWST	10.30	2"	1859	10.83	-		3.79	3.90	B	0.7		
12 MW.3A	10.50	'Z''	21.50	1056	- 1		5.35	5.45	B	3.2	sscy-clandy w/bio graith	
3 MW-52	11.10	2"	17.90	1060	-		3.57	3.75	B	15	gley cloudy w/ biograth	
1 MW-32A	11:30	2"	24.20	12.17		-	5.88	(.00)	B	22	Viey cloudy of bio good	
MW-59	11.40	7.	19.35	12.30	-		3.45	3.50	B	<u> </u>	gres- clarity w/biogionth	
· MW-34	12:30	2"	25.15	11.80	-	1	652	6.75	B	2.1	tiensonient w/ bioglowth	
1 MW.SC	1250	2"	19.95	11:95	-		3.96	400	$\overline{\mathcal{B}}$	20	greyclandy w/hiog.	
Serw. 5	13:10	2"	1774	10.40	-	-	3.34	3.50	$\frac{B}{D}$	$\frac{10}{0.0}$	Sily - Ind with be	
SMW-25				8.28	Maria	an an an an an	_J. /]	5.50	<u> </u>	<u> </u>	-grey-cloudy	
SMW-4	14:00		16.88	9 nu			3.84	4.00	B		CASINY DAMAYE UN	
SAW-3		211	1100	11,19		-	<u>).09</u> 259	2.75	B	$\frac{1}{1}$	wint dry during purging	
MW.49	1410	2"	10,22	382	-			7,25	B	1.2	gray-cloudy w/ Siograth	
MW-32	14:40	2"	<u>· (,))</u>		e li kale vezi i		710		0	5.6	-grey-cloudy w/ bio growth	
		L				a a fa				Ð	-vell found to be allendoned	
			System On-	the second s	Yes			ments:	<u> </u>			
Syste Instruct			al Upon Arri		ye		Com		Appearen		cunnity ? ppropriately	
			ystem (Y/N)	24 hours be ? <i>N</i>		ng (Y/N)?	No			e Downe		
		Purge Met		ispossble		·····	Com	ments:	ime/Dat	e Restar	ted: 10/14	
Purge Wate			<u>v</u> 7			orbon t						
				Treated throu Placed in dru		annon tteat				n-site		
							-	No. of dru				
				Fransported o	off-site for tr	eatment	<u>F</u>	acility/Lo	cation:			
Measuring	Device(s): Witer	Level	Indiciti								
	<u>** (</u>	<u>115:</u>		mple		see v						
	N W	alls on	City In	vestor's P				Jon (P	lesse	See no	otes	
										<u>v</u>	,	

n

1. N. W.

200

GROUNDWATER SAMPLING FIELD SHEET

DELTAP	ROJECT	NUMBER:	WA-7	255-3	513-1		CLI	ENT:	C	oP		
SITE No./.			255-	353	Seattle		- PA(÷F				
SITE ADD	RESS/LO	CATION:	600 \	Jestlak	'e Ave	N	- DA1	E:	7.	25 - 7	<u> </u>	
FIELD PE	RSONNE	L:	<u>600 1</u> C.Milew	ski, L. I	Brock, J). Peterson	 \ WE	ATHER:	Sunni	- 80°	'F	-
					·····)=		_ ` ` ` _ `			30		-
		Well Diameter	Depth to Bottom	Depth to Water		LPH	Calc.	Actual	Purge	Dissolved		
Well ID	Time	(in.)	(feet)	(feet)	Depth to LPH (feet)	Thickness (feet)	Purge (gal)	Purge (gal)	Method (B/LF/P)	Oxygen (mg/l)	Sample Appear	rance/Comments
MW36	14:50	2"	1800	8.15	-	~	4.81	Y. 5.00			Jok inten class	Jy w/ biograft
MV-48	15:20	2"	18.63	9.48	-	-	4.47		B	0.6	aren-cloudy	w/ biograth
MWLIOI	15:30	2"	4.09	9.45	-	-	2.27	2.50	B	0.1	grey-cloudy	will big grant
MW-47	15:50	2.4	19.25	11.36	-	-	3.86	4,00	B	1.0	grey-cloudy	will his gladt
							0.00	1/0 0	<u> </u>	1.0	Jud cloud	Of Doguant
										·		
ц.,												
				-								·
								·				
											18-14-1-1-1	
											·····	
(<u> </u>							
-	_		System On-S	the second se	<u>Yes</u>			ments:	<u> </u>			
Syster Instructio			I Upon Arriv System 1 /		yes	in a (V/N)2	$\frac{Com}{N_0}$				pristed	
			/stem (Y/N)?		elore gaug	ing (1/N)?	100			e Downe e Restart		, <u>, , , , , , , , , , , , , , , , </u>
		urge Meth		Dispossi	le Brile	ins	Com	ments:	inie/Dat	e Nestait	eu. /////	
^o urge Water	r Disposa	I Method:	ΣIT	reated throu	ugh mobile d	-	ment unit	and disc	narged o	n-site		
			[]	laced in dru				No. of dru		0.10		
					off-site for tr	astmont						
			<i>(</i>)			caunent	<u>f</u>	acility/Lo	cation:			
leasuring D	evice(s):	Wite	<u>C Level</u>	<u>Indi</u>	cotor							

Delta Environmental Consultants, Inc. Daily Field Log

Project NameCop-Westlaket Mercer Site Date July 26, 2005	Project No. WA-255-3513-1 Location 600 Westlake Ave N
Delta Representative: OJ. Peterson	
Delta PM: E. Lersen	
Client C_{ρ}	Contact
Contractors	Contact
	Contact
Traffic Control Services (TCS)	Contact
Visitors: Weather:	C MOOF
(Name/Co.)	
Eiold Log:	
Field Log: 6:30 JMP On-site. Begin groundwater	monitoring at MIJ-38 (early start
to 2001 issues with parked cars relation	
Concert)	g to today's S. Lake Union
7:15-C. Milewski on-site Delta field Person	incl prepare coolers for
today's sampling event.	inel prepare coolers for
7:30- T.C.S. personnel On-site. Go oue	er field activities and
52mpling Path. Groundwater Monitoring	
T.C.S. begins Ime closure proceedures.	with begin on Westprie pe,
8:50-MW-13 went dry during purging an	didnot Doner to be
recharging. Well appears to Contain an exc	
No sample for this well.	cprimier emount of times.
	Page 1 of 3

Delta Environmental Consultants, Inc. Daily Field Log

Project Name Co P West bke Mescer Site 7-16-7005 Date

Project No. WA-255-3513-1

Location

Delta Representative:

Field Log: <u>Continued From Tage 1</u> <u>10:30</u> MW-8 went dry during purging and sampling. Well contains Fines which may be related to its slow recharge rate. Sample <u>Contains</u> Sediment.

11:00 - Groundwater monitoring is complete for wells located on Westlake Ave N. Begin Sampling of MW-103 on Terry Ave N. 12:45 - MW-41 was discovered to be buried in Mud ander the well exp lid. Well cap was not sealed on to the casing. Well went dry during Purging and sampling. Due to slow secharge rate, only one Amber bottle was filled. Sample contained and an exceptional amount of sediment.

13:10-Begin groundwater monitoring on wells located on Mercer St. Monitoring Wells MW-18 & MW-19 went dry early into purging. Additionally, recharge rates for these wells were very slow. Both wells appeared to contain high amounts of fines. Only 1-Amber bottle was filled for MW-18 & MW-19.

15:00 - Ground water monitoring has been completed for the site. Delta Personnel begin departure activities and sample inventory. JMP calls N.C.A. to schedule a sample pick up for tomorrow @ the Delta Office. Samples will be chilled in refridgerator overnight before pick up. 15:30 - JMP off-site. Departing to office for sample refridgeration.

Initials: JMP

Page / of 3

GROUNDWATER SAMPLING FIELD SHEET

DELTA PR	OJECT	NUMBER:	WA	- 255.	3513-	1	CLI	ENT:		P		
SITE No./J	OB No.	:	255	353	SezHle		_ 0			3 .	3	
SITE ADDI	RESS/LO	OCATION:	600	Westlz	Ke Ave	N: Seattle			7.			
FIELD PER	SONNE	EL:	C. Mile	wski j				ATHER:	5.	26-7 nny -	2005 Ro°F	~
					2.100	<u> </u>	- 112		<u> </u>	nny_		Ĝ
		Well Diameter	Depth to Bottom	Depth to Water	Depth to LPH	LPH Thickness	Calc.	Actual	Purge	Dissolved		- 0
Well ID	Time	(in.)	(feet)	(feet)	(feet)	(feet)	Purge (gal)	Purge (gal)	Method (B/LF/P)	Oxygen (mg/l)	Sample Appearance	ce/Comments
MW-38	6:40	2"	19.74	7.60	-	-	5.92	6.0	B	0.4	Dark- Grey w/ b	
MW-43	<u>830</u>	2.0"	21.50	11.70	-	-	4.79	5.0	R	0.7	Dark-Greywy b	
MW-13	<u>8:50</u>	1.5	16.60	12.06		-	2.22	Ø.5»		1.4	grey - cloudy	Pincaria
MW-16 (<u> 9:00</u>	1.5	12.90	11.08	+	-	.890	1.0	R	0.3	srey-cloudy w/	
NW-44	9:30	192	19.40	8.76	-	-	5.20	5.20	R	6.2	grey- cloudy w	
MW-105	10:00	2	14.75	10.88		-	1.89	2.0	R	1.4	grey-cloudy w	1
MW-8	10:30	2	13.60	9.96	-	-	1.78	2.0	B	0.3	-well went dry du	Aring Purging
MW-42	10:45	2	26.50	9.81	~	~	8.16	8.2	ß	0.9	lisht grey w/ bid	Growth.
NW103	1.15	2	13.9	8.61	-	~	2.59	2.75	B	1.3	Grey Cloudy W	
MW24111	2:45	2	19.76	15.88	a		1.40	2.00	R	5.7	-Multo #West D Dark w/ sediment	ry-1-Amber
MW-40	13:20	2	19.00	11.35	4	,	3.74	3.75	B	0.2	-DAFK-Cloudy wi	sediment
MW19 1	4:30	1.5	14.5	12.14	•	-	1.15	1	ß		- West dry during pur - 1- Amber On	ye i simpling
MW.37 I	410	2	19.00	10.37	ε μ	-	3.73	3.75	B	101	-Bubbing Nois	o from well
MW48 1	3:50	2"	13.50	11.19	•	-	1.13	1	· · · · · · · · · · · · · · · · · · ·	0.9	-Muddy - Wont "DATK wischment	dry during 521
							<u> </u>	-	<u> </u>	<u>.</u> ,	"UNTRE WI Sedement	LEAMBER ONL
							·					
		Remedial	System On-S		Yes		<u>_</u>					
System			l Upon Arriv		Jus	25		<u>ments:</u> ments:				
Instructio	ns:	Shut Down	System 1 /	24 hours be			No		lime/Dat	e Downe	d: N/A	
	_		/stem (Y/N)?							e Restart	7 1 5 4	
		Purge Meth		possible	Brile	1 <u>5</u>	Com	ments:				
irge Water	Disposa	al Method:		reated throu	ıgh mobile c	arbon treati	ment unit	and disc	harged o	n-site		
			LP	laced in dru	ms on site		<u> </u>	lo. of dru	ms:			
			Т	ransported of	off-site for tr	eatment	F	acility/Lo	cation:			
easuring De	vice(s):	- ()	ter Le	Jol T.	ndicate	۲.						
					which is	/1						
				· · · · · · · · · · · · · · · · · · ·		·····						

L