www.deltaenv.com

Solving environment-related business problems worldwide

4006 148th Avenue NE Redmond, Washington 98052 USA

425.882.3528 800.477.7411 Fax 425.869.1892

September 14, 2005

Mr. Kipp Eckert ConocoPhillips Company PO Box 923 Bothell, WA 98041

SUBJ: Addendum to On-Site Assessment Report Replacement Borings ConocoPhillips Station 255353 600 Westlake Avenue North Seattle, Washington Delta Project No. WA255-3513-1

Dear Mr. Eckert:

At the request of ConocoPhillips Company, Delta Environmental Consultants (Delta) has prepared this Addendum to the *On-Site Environmental Assessment Horizontal and Vertical Delineation (Assessment Report)* prepared by Delta and dated August 4, 2005. The tasks summarized in this report addendum were performed in general accordance with the scope of work presented in Delta's *Work Plan for Additional Site Assessment (Work Plan)* dated June 3, 2005. This Addendum summarizes work that was performed in order to acquire analytical data for soil samples to compare to data of questionable quality which originated from the original field program.

SITE BACKGROUND

The site is an operating service station located on the northeast corner of the intersection of Westlake Avenue North and Mercer Street in Seattle, Washington. ConocoPhillips also owns the adjacent property to the east, which is currently vacant and leased as a parking lot. The service station currently has four 10,000-gallon fuel underground storage tanks (USTs), and four pump islands. A more thorough discussion of the site background was included in the *Work Plan* and is not repeated in this addendum.

SCOPE OF WORK

The tasks summarized in this Addendum were proposed following completion of the original work scope and review of the analytical laboratory results for soil samples submitted for analysis. Sample handling errors on the part of the analytical laboratory resulted in samples from four borings (SB-1, SB-4, SB-5, and MW-54) falling outside of acceptable sample handling protocols. Specifically, the analytical laboratory failed to pack these samples on ice, or other cooling media, when they transferred them to

On-Site Assessment Addendum ConocoPhillips Site No. 255353 Page 2 of 6

22°C, which is significantly outside the acceptable temperature range of 2°C to 6°C. As such, four replacement borings (SB-1R, SB-4R, SB-5R, and MW-54R) were proposed to ensure that reliable analytical results had been obtained from these locations.

PRE-FIELD ACTIVITIES

Pre-Field activities performed by Delta included marking the replacement boring locations, coordinating location and marking of underground utilities, and notifying the station operators of the work schedule. The replacement boring locations are shown on Figure 1.

FIELD ACTIVITIES

Advancement of the four replacement borings was performed between July 20 and July 22, 2005, in conjunction with advancement of four off-site soil borings. Details of off-site drilling and sampling activities were presented in Delta's *Limited Off-Site Environmental Assessment* report, dated August 29, 2005.

Drilling and Sampling Procedures

A detailed description of drilling and sample collection procedures was presented in the original *On-Site Environmental Assessment Report*, dated August 4, 2005. The same procedures were followed during this phase of work. The four replacement borings were advanced in close proximity to the previous four borings to allow collection of representative soil samples from a similar area of the site. Copies of the boring logs are included in Appendix A.

Sample Preservation and Transport

All samples designated for chemical analyses were placed on ice in a chilled cooler pending delivery to North Creek Analytical of Bothell, Washington. Chain-of-custody documentation was maintained throughout the sample collection, transport, and analyses process.

Disposal of Drill Cuttings and Decontamination Fluids

Soil cuttings and decontamination fluids generated during on- and off-site drilling activities were placed in labeled 55-gallon drums and temporarily stored on the ConocoPhillips property. On July 22, 2005, The drums containing soil were transported to Waste Management's Columbia Ridge Landfill located in Arlington, Oregon, and the drums containing water were transported to the Emerald Petroleum Services facility located in Seattle, Washington for subsequent disposal. Associated waste disposal documentation was included as an attachment to Delta's *Limited Off-Site Environmental Assessment*.

LABORATORY ANALYSES

Selected soil samples from each boring were submitted to North Creek Analytical, a State-certified analytical laboratory, for chemical analyses. The samples were analyzed for total petroleum hydrocarbons as gasoline (Northwest Method NWTPH-G), and for benzene, toluene, ethylbenzene, and total xylenes (BTEX), methyl tert-butyl ether (MTBE), and naphthalene (BTEX+MN, EPA Method 8260B),

On-Site Assessment Addendum ConocoPhillips Site No. 255353 Page 3 of 6

and total lead (EPA Methods 6000/7000). Samples were also analyzed for total petroleum hydrocarbons as diesel and oil by Northwest Method NWTPH-DX, with silica gel cleanup to remove biogenic interference.

ANALYTICAL RESULTS

Analytical results for soil samples collected from the replacement borings indicated that TPH-G, benzene, toluene, and xylenes were detected at concentrations exceeding their respective MTCA Method A soil cleanup levels in select samples. Specifically, the soil samples collected from borings SB-1R (15-foot depth), SB-4R (10-foot depth), and SB-5R (10-foot depth) contained concentrations of TPH-G at 830 milligrams per kilogram (mg/kg), 2,010 mg/kg, and 51.9 mg/kg, respectively. The soil sample collected from SB-4R from the 3-foot depth contained a benzene concentration at 1.24 mg/kg, and the soil sample collected from SB-4R from the 10-foot depth contained concentrations of benzene, toluene, and xylenes at 50.6 mg/kg, 7.05 mg/kg, and 12.8 mg/kg, respectively. No other target analytes were detected at concentrations exceeding MTCA Method A soil cleanup levels in any sample submitted for analysis. A summary of the analytical results is presented in Table 1 and copies of the analytical laboratory reports are included in Appendix B. The analytical results for the original borings are summarized in Table 2. Quality Assurance/Quality Control issues related to analysis of the original samples was described in the *Assessment Report*.

DISCUSSION

Compared to analytical results for soil samples from original borings SB-1, SB-4, SB-5, and MW-54, detected concentrations of TPH-G, TPH-D, BTEX, MTBE, and naphthalene were generally lower in the soil samples collected from replacement borings SB-1R, SB-4R, SB-5R, and MW-54R, while concentrations of TPH-O were generally detected at higher concentrations.

Benzene was reported at higher concentrations or had elevated detection limits in most of the samples from the original borings (SB-1, SB-4, SB-5, and MW-54), with concentrations exceeding the MTCA Method A cleanup level, while benzene was generally either non-detectable or detected at concentrations below MTCA in the samples from the replacement borings (with the exception of the two samples from SB-4R that contained benzene above the cleanup level).

TPH-G and BTEX concentrations were notably different in the samples collected from SB-1 and SB-1R. The 10-foot sample from SB-1 reportedly contained TPH-G at 3,600 mg/kg, while the 10-foot sample from SB-1R reportedly contained TPH-G at 12.6 mg/kg. In contrast, TPH-G was not detectable in the sample from the 15-foot depth from SB-1, but was detected at 830 mg/kg in the 15-foot sample from SB-1R. Maximum concentrations of BTEX and naphthalene were also detected in the 10-foot sample collected from SB-1 (above MTCA Method A cleanup levels), while maximum concentrations were detected in the 15-foot sample from SB-1R (all below MTCA Method A).

The maximum concentrations of TPH-G and BTEX were detected at the 10-foot depth in both SB-4 and SB-4R. However, TPH-G was somewhat higher in the sample from SB-4R, at 2,010 mg/kg, compared to 1,200 mg/kg in the sample from SB-4. In contrast, concentrations of BTEX and naphthalene were detected at lower concentrations in the sample from SB-4R.

On-Site Assessment Addendum ConocoPhillips Site No. 255353 Page 4 of 6

TPH-G differed in SB-5 at the 10-foot and 15-foot depths. SB-5 contained maximum TPH-G (72 mg/kg) at the 15-foot depth, while SB-5R contained the maximum TPH-G concentration (51.9 mg/kg) at the 10-foot depth.

Concentrations of TPH-G and/or benzene exceeded MTCA Method A in samples from the 5 and 15 foot depths from MW-54, but were detected below MTCA Method A in the samples from MW-54R.

TPH-D and TPH-O were generally similar in the samples from both the original borings and the replacement borings, at concentrations that were either not detected above laboratory reporting limits or detected below MTCA Method A cleanup levels. Analytical results of soil samples collected from the original borings SB-1, SB-4, SB-5, and MW-54 are summarized in Table 2 for reference.

LIMITATIONS

The services described in this report were performed in accordance with generally accepted professional consulting principles and practices. No other warranty, either express or implied, is made. These services were performed in accordance with terms established with our client. This report is solely for the use of our client and reliance on any part of this report by a third party is at such party's sole risk. Delta appreciates the opportunity to provide environmental services to you. Please call if you have any questions regarding the contents of this letter.

Sincerely,

DELTA ENVIRONMENTAL CONSULTANTS, INC.

Lena Seed

Tena Seeds Project Engineer

Eric Larsen Senior Project Manager

Hydrogeologist Hydrogeologist Eric Bruce Larsen

Attachments:

Table 1 – Replacement Borings –Summary of Soil Analytical Results Table 2 – Summary of Soil Analytical Results for Borings SB-1, SB-4, SB-5, and MW-54 Figure 1 – Site Plan and Replacement Boring Locations Appendix A – Boring Logs

Appendix B - Analytical Laboratory Report and Chain-of-Custody Documentation

TABLE 1 REPLACEMENT BORINGS - SUMMARY OF SOIL ANALYTICAL RESULTS ConocoPhillips Site No. 255353

600 Westlake Avenue N.

Seattle, Washington

Sample I.D.	Sample Date	Sample Depth (feet)	TPH- Gasoline (mg/kg)	TPH- Diesel (mg/kg)	TPH- Oil (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)	Total Lead (mg/kg)
SB-1R-5	07/22/05	5	8.39	15.9	105	0.00330	0.00154	<0.00297	<0.00742	<0.000742	<0.00371	67.6
SB-1R-10	07/22/05	10	12.6	<10.0	<25.0	<0.000927	0.00119	<0.00247	<0.00618	<0.000618	<0.00309	75.4
SB-1R-15	07/22/05	15	830	147	335	<0.100	0.995	1.13	5.66	<0.500	0.263	22.3
SB-1R-20	07/22/05	20	<14.9	80.0	227	0.0184	0.0782	0.0743	0.393	0.00616	<0.0108	26.4
SB-4R-3	07/20/05	3	17.0	126	758	1.24	<0.0594	0.278	<0.178	<0.297	<0.0594	128
SB-4R-5.5	07/21/05	5.5	7.90	90.0	525	<0.00150	<0.00150	<0.00400	<0.0100	<0.00100	<0.00500	97.3
SB-4R-10	07/21/05	10	2,010	138	143	50.6	7.05	3.65	12.8	<7.60	<1.52	40.6
SB-4R-15	07/21/05	15	<8.59	13.0	28.2	0.00199	0.00234	<0.00349	0.0110	0.00263	<0.00436	2.57
SB-4R-20	07/21/05	20	<9.82	<10.0	<25.0	<0.000761	0.000877	<0.00203	<0.00507	0.00141	<0.00254	1.25
SB-5R-5	07/21/05	5	24.5	15.0	50.5	0.00615	0.00453	0.0175	0.0683	<0.000708	<0.00354	5.35
SB-5R-10	07/21/05	10	51.9	17.1	44.7	<0.000964	0.00155	0.0260	0.0244	<0.000643	0.0680	14.2
SB-5R-15	07/21/05	15	<16.3	57.3	79.1	0.0246	0.0371	0.0666	0.434	<0.00461	0.0240	26.8
SB-5R-20	07/21/05	20	<8.53	<10.0	<25.0	<0.00125	<0.00125	<0.00334	<0.00836	0.00196	<0.00418	1.93
MW-54R-5	07/22/05	5	15.9	59.3	316	0.00570	0.00584	0.00485	0.0236	<0.00100	<0.00500	120
MW-54R-10	07/22/05	10	15.1	12.9	30.0	<0.00167	0.00173	<0.00446	<0.0112	<0.00112	<0.00558	24.4
MW-54R-15	07/22/05	15	<5.98	71.7	263	0.00963	0.00972	<0.0182	<0.0455	<0.00455	<0.0227	43.2
MW-54R-20	07/22/05	20	<9.98	<10.0	<25.0	<0.00150	0.00185	<0.00400	<0.0100	<0.00100	<0.00500	2.31
MTCA Methoo		•	30 ^ª	2,000	2,000	0.03	7	6	9	0.1	5	250
Notes:												

mg/kg = milligrams per kilogram

<n = Below the detection limit

TPH as Gasoline - Analysis by Northwest Method NWTPH-Gx

TPH as Diesel and Oil - Analysis by Northwest Method NWTPH-Dx with silica gel cleanup

BTEX Compounds, MTBE (Methyl tert-Butyl Ether), and Naphthalene - Analysis by EPA Method 8260B

Total Lead - Analysis by EPA Method 6010.

Values in **BOLD** are detectable concentrations exceeding the MTCA Method A soil cleanup level.

^a MTCA Method A Cleanup Level for TPH-Gasoline is 100 mg/kg if benzene is not detectable in soil.

TABLE 2

SUMMARY OF SOIL ANALYTICAL RESULTS

FOR BORINGS SB-1, SB-4, SB-5, AND MW-54

ConocoPhillips Site No. 255353

600 Westlake Avenue N.

Seattle, Washington

Sample I.D.	Sample Date	Sample Depth (feet)	TPH- Gasoline (mg/kg)	TPH- Diesel (mg/kg)	TPH- Oil (mg/kg)	Benzene ^a (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Xylenes (mg/kg)	MTBE ^a (mg/kg)	Naphthalene (mg/kg)	Total Lead (mg/kg)
SB-1-5	06/07/05 ^b	5	7.6	<26.1	<52.1	0.064	<0.24	0.095 ^d	0.57	<0.48	<0.24	13.9
SB-1-10	06/07/05 ^b	10	3,600	113 ^c	<57.8	3.8 ^e	28 ^e	48 ^e	280 ^e	<28 ^e	34 ^e	16.6
SB-1-15	06/07/05 ^b	15	<30	<26.6	<53.2	0.17	<1.2	<1.2	<1.2	<2.3	<1.2	10.8
SB-1-20	06/07/05 ^b	20	<20	<97.2 ^f	<194 ^f	1.4	0.63 ^d	0.35 ^d	1.7	<2.4	0.37 ^d	61.5
SB-4-5	06/07/05 ^b	5	9.7	<29.3	<58.6	0.041	<0.31	0.16 ^d	0.26 ^d	<0.62	<0.31	9.5
SB-4-10	06/07/05 ^b	10	1,200	193 [°]	<215	270	62	34	170	<36	5.5 ^d	107
SB-4-15	06/07/05 ^b	15	<22	<109 ^f	<219 ^f	0.92	<1.5	<1.5	0.48 ^d	<3.1	<1.5	109
SB-4-20	06/07/05 ^b	20	<6.6	<28.4	<56.9	0.15	<0.25	<0.25	<0.25	<0.49	<0.25	3.59
SB-5-5	06/07/05 ^b	5	21	<28.7	<57.5	0.22	0.25 ^d	0.39	2.1	<0.55	0.11 ^d	9.73
SB-5-10	06/07/05 ^b	10	<7.1	<32.8	<65.7	0.38	<0.31	<0.31	0.25 ^d	<0.63	<0.31	79.3
SB-5-15	06/07/05 ^b	15	72	<57.6	<115	0.33	<0.68	0.25 ^d	1.3	<1.4	<0.68	108
SB-5-20	06/07/05 ^b	20	<6.2	<28.8	<57.5	<0.037	<0.26	<0.26	<0.26	<0.52	<0.26	1.81
MW-54-5	06/07/05 ^b	5	37	<29.6	<59.1	1.9	3.8	1.2	4.2	<0.6	0.14 ^d	91.5
MW-54-10	06/07/05 ^b	10	<12	<29	<58	<0.052	<0.44	<0.44	<0.44	<0.87	<0.44	26.3
MW-54-15	06/07/05 ^b	15	12	<50.7	<101	0.95	0.21 ^d	0.19 ^d	0.76	<1.3	<0.67	94.1
MW-54-20	06/07/05 ^b	20	<6.2	<28.1	<56.2	<0.037	<0.27	<0.27	<0.27	<0.54	<0.27	2.01
	MTCA Method A Soil Cleanup Level or Unrestricted Land Uses		30 ^g	2,000	2,000	0.03	7	6	9	0.1	5	250

Notes:

mg/kg = milligrams per kilogram

<n = Below the detection limit

TPH as Gasoline - Analysis by Northwest Method NWTPH-Gx

TPH as Diesel and Oil - Analysis by Northwest Method NWTPH-Dx with silica gel cleanup

BTEX Compounds, MTBE (Methyl tert-Butyl Ether), and Naphthalene - Analysis by EPA Method 8260B

Total Lead - Analysis by EPA Method 6010.

Values in BOLD are detectable concentrations exceeding the MTCA Method A soil cleanup level.

^a Due to laboratory limitations, method reporting limits for benzene and MTBE exceed MTCA Method A soil cleanup levels for most samples.

^b Due to laboratory error, samples collected on June 7, 2005 were transferred from STL Seattle to STL Sacramento without ice or other cooling media and were received at STL Sacramento at 22°C. The TPH-G, BTEX, MTBE, and Naphthalene results for these samples may be biased low due to the higher temperature.

^c Chromatogram suggests this might be overlap from gasoline range.

^d Analyte was positively identified during analysis, but the associated numerical value is an estimated quantity and is less than the reporting limit.

^e Surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery.

^f Surrogate recovery outside advisory QC limits due to matrix interference.

⁹ MTCA Method A Cleanup Level for TPH-Gasoline is 100 mg/kg if benzene is not detectable in soil.

	MW-24 🔘	M₩-40 ●					
	LEGEND						
SB-1R 🔶	REPLACEMENT BORING LOCATION – JULY 2005						
MW-3 🔘	COP GROUNDWATER MONITORING WELL			0 50 FT			
MW-105 🝚	CITY INVESTORS' GROUNDWATER MONITORING WELL						
GSB4 🔘	SOIL BORING INSTALLED BY GARY STRUTHERS & ASSOCIATES			APPROX. SCALE			
TP-8	TEST PIT INSTALLED BY HART CROWSER						
B6 🔘	SOIL BORING INSTALLED BY HART CROWSER		FIGURE	1			
B15 🔘	SOIL BORING INSTALLED BY URBAN REDEVELOPMENT		FIGURE	1			
Δ	SOIL VAPOR EXTRACTION WELL LOCATION	SITE F	PLAN AND REPLACEMEN JULY 2005 ON-SITE A				
DAS-4 🕈	AIR SPARGING WELL LOCATION						
SB-4 🔶	SOIL BORING LOCATION - JUNE 2005		CONOCOPHILLIPS SI 600 WESTLAKE AVE				
SB-1/DAS-6 🔶	POTENTIAL AS WELL LOCATION - JUNE 2005		SEATTLE, WASH	INGTON			
SB-6/VE-6 🔶	POTENTIAL SVE WELL LOCATION - JUNE 2005	PROJECT NO. WA255-3513-1	DRAWN BY TS 9/13/05				
		FILE NO. WA255-3513-1	PREPARED BY TS 9/13/05	Delta			
BASED ON MAPS PR	OVIDED BY GEOENGINEERS, INC. AND ENVIRONMENTAL RESOLUTIONS, INC.	REVISION NO. 0	REVIEWED BY EL	Environmental Consultants, Inc.			

ATTACHMENT A

BORING LOGS

SOIL CLASSIFICATION GRAPHIC SYMBOLS

MAJOR DIVISIONS	SYM	IBOLS	TYPICAL SOIL DESCRIPTIONS						
	GW		Well graded gravels or gravel-sand mixtures, little or no fines						
GRAVELS	GP		Poorly graded gravels or gravel-sand mixtures, little or no fines						
	GM		Silty gravels, gravel-sand-silt mixtures						
	GC		Clayey gravels, gravel-sand-clay mixtures						
	SW		Well graded sands or gravelly sands, little or no fines						
	SP		Poorly graded sands or gravelly sands, little or no fines						
SANDS	SM		Silty sands, sand-silt mixtures						
	SC/SM		Clayey sands with a touch of gravel						
	SC		Clayey sands, sand-clay mixtures						
	ML		Inorganic silts and very fine sands, rock flour, silty or clayey sands or clayey silts with slight plasticity						
SILTS & CLAYS	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays						
LL<50	OL		Organic silts and organic silty clays of low plasticity						
	MH		Inorganic silts, micaceous or diatomaceous fine sandy or silty soils elastic silts						
SILTS & CLAYS	СН		Inorganic clays of high plasticity, fat clays						
LL>50	OH		Organic clays of medium to high plasticity, organic silty clays, organic silts						
HIGHLY ORGANIC SOILS	PT		Peat and other highly organic soils						
FILL MATERIAL	FILL								
ASPHALT/Concre	te								
BENTONITE			Water Level - First Encounter						
SAND									
			Static Water Level						

UCORDENT J. North UCORTINE 000 Westikk Are N, Sentie, VA Poce 1 or 1 DOLELING PTUE DATE BLADE PTUE DATE STATE PTUE BUILING PTUE DATE STATE PTUE DATE STATE PTUE Sampu Toric NA WELL DUMETER: NA Sampu Toric NA MORE TOR Sampu Toric NA WELL DUMETER: NA Sampu Toric Well Convolution Sampu Toric NA Well DUMETER: NA Sampu Toric Well Convolution Static Barbon Static Barbon Static Sampu Toric NA Well Convolution Static Barbon Static Barbon Static Sampu Toric NA Well Convolution Static Barbon Static Barbon Static Sampu Toric Well Convolution Static Barbon Static Sampu Toric Sampu Toric Weint Convolution Sampu Toric Sampu Toric Sampu Toric Sampu Toric Weint Convolution Sampu Toric Sampu Toric Sampu Toric Sampu Toric Weint Convolution Sampu Toric Sampu Toric Sampu Toric Sampu Toric Moler 0 Sampu Toric Sampu Toric Sampu Toric Sampu Tori				PROJECT	ΓNO:	WA255-3	3513-1	CLIE	NT:	ConocoPhillips	BORING/WELL NO: SB-1R		
Uper law Bale Linko Mettrico Plas Hole DAMETRE Pols Pol								LOC	ATION:		tle, WA PAGE 1 OF 1		
Note the intervention of the interventintervention of the intervention of the inter			to								Location Map		
Note the intervention of the interventintervention of the intervention of the inter		Ye l	la							-			
Litrologenetia NA WELL DEPTH- CONSULTANT, INC. NA Stratic By By B				-							Soo Eiguro 1		
Consultants, inc. CASING STICUP. NA CASING STICUP. NA Vel Consultants, inc. ELEVATION NORTHING EASTING Vel Consultants, inc. Static Wel Consultants, inc. Image: Static Wel Consultants, inc. Image: Static Wel Consultants, inc. Image: Static Wel Consultants, inc. Image: Static Wel Level Image: Static Wel Consultants, inc. Image: Static Wel Level	En	vironm	nental								See Figure 1		
Net Completion Static Big End (a) Big End (b) Big End (c)	Con	sultan	ts, Inc.										
Yest Asphalt (3°) Asphalt (3°) Air-knifed/vac-cleared to 5° Air-knifed/vac-cleared to 5° Air-knifed/vac-cleared to 5° Asphalt (3°) Air-knifed/vac-cleared to 5° Moist 0 5 5 5 Air-knifed/vac-cleared to 5° Moist 0 2 Asphalt (3°) Air-knifed/vac-cleared to 5° Moist 0 2 Asphalt (3°) Air-knifed/vac-cleared to 5° Moist 0 2 Asphalt (3°) Air-knifed/vac-cleared to 5° Moist 0 2 3 7 Asphalt (3°) Moist 0 2 12 1 3 2 12 1 3 10 (Air knifed/vac-cleared to 5° (Air knifed/vac-cleared to 20' Silty SAND: gray 10-15% silt, sand fine to medium, 1000000000000000000000000000000000000													
Yest Asphalt (3°) Asphalt (3°) Air-knifed/vac-cleared to 5° Air-knifed/vac-cleared to 5° Air-knifed/vac-cleared to 5° Asphalt (3°) Air-knifed/vac-cleared to 5° Moist 0 5 5 5 Air-knifed/vac-cleared to 5° Moist 0 2 Asphalt (3°) Air-knifed/vac-cleared to 5° Moist 0 2 Asphalt (3°) Air-knifed/vac-cleared to 5° Moist 0 2 Asphalt (3°) Air-knifed/vac-cleared to 5° Moist 0 2 3 7 Asphalt (3°) Moist 0 2 12 1 3 2 12 1 3 10 (Air knifed/vac-cleared to 5° (Air knifed/vac-cleared to 20' Silty SAND: gray 10-15% silt, sand fine to medium, 1000000000000000000000000000000000000													
Yest Asphalt (3°) Asphalt (3°) Air-knifed/vac-cleared to 5° Air-knifed/vac-cleared to 5° Air-knifed/vac-cleared to 5° Asphalt (3°) Air-knifed/vac-cleared to 5° Moist 0 5 5 5 Air-knifed/vac-cleared to 5° Moist 0 2 Asphalt (3°) Air-knifed/vac-cleared to 5° Moist 0 2 Asphalt (3°) Air-knifed/vac-cleared to 5° Moist 0 2 Asphalt (3°) Air-knifed/vac-cleared to 5° Moist 0 2 3 7 Asphalt (3°) Moist 0 2 12 1 3 2 12 1 3 10 (Air knifed/vac-cleared to 5° (Air knifed/vac-cleared to 20' Silty SAND: gray 10-15% silt, sand fine to medium, 1000000000000000000000000000000000000			Water	oisture ontent	Reading ppm)	ietration ows/6")	oth (feet)		ii Type	LITHOLOGY / DESCRIPTION			
Moist 0 5 <th>Bac</th> <th>Cas</th> <th>Levei</th> <th>ΣO</th> <th>) DIA</th> <th>Per (bl</th> <th>Dep</th> <th>Reco</th> <th>Š</th> <th></th> <th></th>	Bac	Cas	Levei	ΣO) DIA	Per (bl	Dep	Reco	Š				
Moist 0 5 <td>JC.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>Asphalt (3")</td> <td></td>	JC.								_	Asphalt (3")			
Moist 0 5 <td>ŝ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 —</td> <td>+ $+$</td> <td>-</td> <td></td> <td>eared to 5'</td>	ŝ						1 —	+ $+$	-		eared to 5'		
Moist 0 5 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>1</td> <td></td> <td></td>		_					-		1				
Moist 0 5 6 6 6 6 6 6 6 6 6 6 6 5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>1</td> <td></td> <td></td>							2		1				
Moist 0 5 6 6 6 6 6 6 6 6 6 6 6 5 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>]</td> <td></td> <td></td>		_					2]				
Moist 0 2 6							3						
Moist 0 2 6							4						
Moist 0 2 6					_	5	· _		SM				
Moist 0 2 6				Moist	0	5	5 —			wet (from surface H2O	drag down)		
Moist 0 3 0						5	-				45 200/ silt sand fine to medium		
Moist 0 2 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 3 7 3 <td></td> <td></td> <td></td> <td>Moist</td> <td>Ο</td> <td>2</td> <td>6 —</td> <td></td> <td></td> <td></td> <td></td>				Moist	Ο	2	6 —						
Moist 0 3 7 3 8 3 9 3 3 9 10 10 10 10				moloc	0								
Moist 0 2 8 plasticity, dense, moist V 12 1 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 <							7—			Sandy SILT; gray, sand	I fine to medium, 15-25% silt, low		
Image: Sendy SILT: gray, sand fine to coarse, with fine to coarse gravel, low plasticity, dense, moist Image: Sendy SILT: gray, sand fine to coarse gravel, low plasticity, dense, moist Image: Sendy SILT: gray, sand fine to coarse with fine to coarse gravel, low plasticity, dense, moist Image: Sendy SILT: gray, sand fine to coarse with fine to coarse gravel, low plasticity, dense, moist Image: Sendy SILT: gray, sand fine to coarse with fine to coarse gravel, low plasticity, dense, moist Image: Sendy SILT: gray, sand fine to coarse with fine to coarse gravel, low plasticity, dense, moist Image: Sendy SILT: gray, sand fine to coarse with fine to coarse gravel, low plasticity, dense, moist Image: Sendy SILT: gray, sand fine to coarse with fine to coarse gravel, low plasticity, dense, moist Image: Sendy SILT: gray, sand fine to coarse gravel, low plasticity, dense, moist Image: Sendy SILT: gray, sand fine to coarse gravel, low plasticity, dense, moist Image: Sendy SILT: gray, sand fine to moist Image: Sendy Silt: Sendy Silt: Sendy Silt: Sendy Silt: Gray Silt: Sendy				Moist	0	2	8						
Wet 12 1 3 9 gravel, low plasticity, dense, moist Wet 120 1 1 (As above) Wet 72 1 1 (As above) Wet 72 1 1 (As above) Wet 18 3 14 PT Wet 3.4 7 15 Slough/wood debris; chips with dust, poor recovery Wet 3.2 5 17 16 Wood debris; trace fine to medium gravel, wet Wet 2.8 3 18 (As above, 2" recovery) (As above, 2" recovery) 20 21 19 (As above, 2" recovery) 19 (As above, 2" recovery)						1	0						
Wet 120 3 2 10 (As above) 11 12 12 12 (As above) Wet 72 1 13 (As above) Wet 72 1 13 (As above) Wet 18 3 14 PT Wet 3.4 7 15 16 Wet 3.2 5 17 16 Wet 3.2 5 17 16 Wet 3.4 5 18 18 Wet 2.8 4 19 (As above, chips with dust, poor recovery Wet 2.8 4 19 (As above, chips and sawdust) (As above, 2" recovery) 20 10 10 (As above, 2" recovery) 20 10 10 (As above, 2" recovery) 20 10 10 (As above, 2" recovery) 10 10 10 (As above, 2" recovery) 10 10 10 (As above, 2" recovery) 10 10 10 (As above, 2" recovery						2	9						
Wet 72 2 1 1 12 (As above) Wet 18 3 3 3 14 PT Wet 18 5 7 50-0" 15 Slough/wood debris; chips with dust, poor recovery Wet 3.4 7 50-0" 15 Slough/wood debris; trace fine to medium gravel, wet Wet 3.2 5 6 17 16 Wood debris; trace fine to medium gravel, wet Wet 2.8 3 4 5 5 6 18 (As above, 2" recovery) 19 (As above, 2" recovery) 20 21 BOTTOM OF HOLE @ 20' 20'		_	$\mathbf{\Sigma}$		12	1				gravel, low plasticity, de	ense, moist		
Wet 72 2 1 1 12 (As above) Wet 18 3 3 3 14 PT Wet 18 5 7 50-0" 15 Slough/wood debris; chips with dust, poor recovery Wet 3.4 7 50-0" 15 Slough/wood debris; trace fine to medium gravel, wet Wet 3.2 5 6 17 16 Wood debris; trace fine to medium gravel, wet Wet 2.8 3 4 5 5 6 18 (As above, 2" recovery) 19 (As above, 2" recovery) 20 21 BOTTOM OF HOLE @ 20' 20'	Ë					-	10 —			(A = = h =			
Wet 72 2 1 1 12 (As above) Wet 18 3 3 3 14 PT Wet 18 5 7 50-0" 15 Slough/wood debris; chips with dust, poor recovery Wet 3.4 7 50-0" 15 Slough/wood debris; trace fine to medium gravel, wet Wet 3.2 5 6 17 16 Wood debris; trace fine to medium gravel, wet Wet 2.8 3 4 5 5 6 18 (As above, 2" recovery) 19 (As above, 2" recovery) 20 21 BOTTOM OF HOLE @ 20' 20'	õ	_		Wot	120		-			(As above)			
Wet 72 1 12	Ę			1101	120		11 —						
Wet 72 1 12 13 (As above, changes to peat at 14') Wet 18 3 14 PT Slough/wood debris; chips with dust, poor recovery Wet 3.4 7 15 15 16 Wood debris; trace fine to medium gravel, wet Wet 3.2 5 6 17 16 Wood debris; trace fine to medium gravel, wet Wet 2.8 3 4 19 (As above, chips and sawdust) 19 (As above, 2" recovery) 20 21 19 (As above, 2" recovery) 10 BOTTOM OF HOLE @ 20' 20 21 21 21 21 21	m									(As above)			
Wet 18 3 3 3 14 PT Wet 3.4 5 7 50-0" 15 Slough/wood debris; chips with dust, poor recovery Wet 3.2 5 6 17 16 Wood debris; trace fine to medium gravel, wet Wet 3.2 5 6 18 17 Wood debris; trace fine to medium gravel, wet Wet 2.8 4 5 18 (As above, chips and sawdust) 19 (As above, 2" recovery) 20 21 E BOTTOM OF HOLE @ 20'				Wet	72	1	12						
Wet 18 3 3 3 14 PT Wet 3.4 5 7 50-0" 15 Slough/wood debris; chips with dust, poor recovery Wet 3.2 5 6 17 16 Wood debris; trace fine to medium gravel, wet Wet 3.2 5 6 18 17 Wood debris; trace fine to medium gravel, wet Wet 2.8 4 5 18 (As above, chips and sawdust) 19 (As above, 2" recovery) 20 21 E BOTTOM OF HOLE @ 20'						1	13						
Image: Strate in the						3				(As above, chan	iges to peat at 14')		
Wet = 3.4 $Wet = 3.4$ $Wet = 3.2$ $Wet = 3.2$ $Wet = 2.8$ $Wet = 2.8$ $Uet = 2.8$ $Wet = 2.8$ $Uet = 2.8$ Uet				Wet	18	3	14—		\swarrow				
$Wet = 3.4 \begin{bmatrix} 7 \\ 50 - 0^{"} \\ 4 \\ 5 \\ 6 \\ 17 \\ 4 \\ 17 \\ 16 \\ 17 \\ 16 \\ 17 \\ 16 \\ 17 \\ 16 \\ 17 \\ 16 \\ 17 \\ 16 \\ 17 \\ 16 \\ 17 \\ 18 \\ 17 \\ 18 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19$		_				_	-			Slough/wood dobries of	ins with dust, poor recovery		
$Wet \begin{vmatrix} 50-0^{\circ} \\ 4 \\ 5 \\ 6 \\ 17 \\ 18 \\ 18 \\ 18 \\ 19 \\ 19 \\ 20 \\ 20 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21$				W/ot	34	5	15 —			Sibugii/wood debris; Ch	ips with dust, poor recovery		
Wet = 3.2 $Wet = 3.2$ $Wet = 3.2$ $Wet = 2.8$ $Wet = 2.8$ $Uwet = 2$		_		VV GL	0.4	, 50-0"	-						
$Wet = \begin{array}{c} 3.2 \\ Wet \end{array} \begin{array}{c} 3.2 \\ 2.8 \end{array} \begin{array}{c} 5 \\ 6 \\ 17 \\ 18 \\ 19 \\ 19 \\ 20 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21$							16—		1	Wood debris; trace fine	to medium gravel, wet		
$Wet = 2.8 \begin{bmatrix} 6 \\ 3 \\ 4 \\ 5 \\ 6 \\ 5 \\ 6 \\ 19 \\ 20 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21$		_		Wet	3.2	5			1		• ·		
Wet 2.8 4 18 19 (As above, 2" recovery) (As above, 2" recovery) 20 21 21 21 21 21 BOTTOM OF HOLE @ 20'													
Wet 2.8 4 19 (As above, 2" recovery) (As above, 2" recovery) 20 21 21 BOTTOM OF HOLE @ 20'						-	18—			(As above, chips	s and sawdust)		
6 19 (As above, 2" recovery) 20 21 21 21 21 BOTTOM OF HOLE @ 20'		_		Wet	2.8		-		-				
5 20 20 20 20'							19 —		-	(As shows Office	eover)		
20 21 21 BOTTOM OF HOLE @ 20'		_								(As above, 2" re	covery)		
BOTTOM OF HOLE @ 20'							20—			1			
BOTTOM OF HOLE @ 20'		_					-		1				
							21]	BOTTOM OF HOLE @	20'		
							22		1				

			PROJECT	T NO:	WA255-3	3513-1	CLIE	NT:	ConocoPhillips	BORING/WELL NO: SB-4R		
			LOGGED	BY:	J. North		LOC	ATION:	600 Westlake Ave N, Seatt	tle, WA PAGE 1 OF 1		
		+0	DRILLER		CDI		DAT	E DRILLE		Location Map		
)el	ld		METHOD:				E DIAME				
			-	IG METHOD:				E DEPTH				
E	nvironm	ental	CASING		NA			L DIAME		See Figure 1		
Co	nsultan	ts, Inc.	SLOT SIZ GRAVEL		NA NA			L DEPTH				
						CASING STICK NORTHING			EASTING			
				-								
Well C	ompletion	Static	e t	ing	Sample			0				
≣	Zadin C C Onitetre Readin Read			PID Reading (ppm)	Penetration (blows/6")	Depth (feet)		~	і ітн	OLOGY / DESCRIPTION		
ackt	Mater Construction Moistt Isano Construction Moistt Isano Construction			D R (pl	ene blov	eptł	Recovery Interval	Soil				
	ပ			Ы	₽)		Re L	•,				
Conc.	_					-			Asphalt (3")			
ပိ						1—						
						-			Air-knifed/vac-clo	eared to 5'		
						2—						
						3—						
	_						+	-				
						4 —	+	-		arow 10 20% oilt condition to		
	—			0.3	3	-		SM		; gray, 10-20% silt, sand fine to nd fine gravel, loose, moist		
				0.0	3							
					3			CL/ML	ClayeyY SILT; gray/blue	e gray, with fine to medium sand and		
					2	6—			fine gravel, dense, mois			
				0.2	3	7						
					3					wood fragments, grades into silty		
		\sum		0.4	1 3	8—			sand at ~7.5', bi	rown, loose, wet)		
				0.4	3	-		PT	PEAT: dark brown with	fine to medium sand and fine to		
					3	9—		· · ·	medium gravel, loose, w			
ш				1.2	8	10						
ITONITE					1				(As above, poorl	y degraded wood fragments/wire,		
0E				~ ^	1	11 —			poor recovery, v	very loose, wet)		
BEN				0.4	6	-			(Overdrilled 1) b			
m						12			(Overdrilled 1 be	etween samples)		
	—			4.5	10	-			(As above, with t	fine to medium gravel, loose, wet)		
					6	13—			,			
					6	14 —			Wood debris; pale orang	ge, poorly degraded, large		
				0.2	4	_			fragments to sawdust, lo	pose, wet		
					5					all and the second sector for the second		
	—			7.1	5	-			(As above, more at ~15.5', loose,	e degraded; grades to fine sand		
				1.1	1 2	16—			at ~ 15.5 , 10050,	, wc <i>ij</i>		
	—				6	47 -		SM	Silty SAND; gray; sand	fine, trace medium and coarse, loose,		
					5				wet			
				0.2	12							
	_			<u> </u>	15	-			(As above)			
				0.1	11 13	19—						
	—			0.2	13	-						
				0.2		20—			1			
	_					21 —						
									BOTTOM OF HOLE @	20'		
I						22						

			PROJECT	ΓNO:	WA255-3	3513-1	CLIE	NT:	ConocoPhillips	BORING/WELL NO: SB-5R	
			LOGGED	BY:	J. North		LOC	ATION:	600 Westlake Ave N, Seat	tle, WA PAGE 1 OF 1	
		+0	DRILLER		CDI		DAT	E DRILLE		Location Map	
	H	ta		METHOD:				E DIAMET			
	-			G METHOD:				E DEPTH			
En	vironm	nental	CASING 1		NA			L DIAMET		See Figure 1	
Con	sultan	ts, Inc.	SLOT SIZ		NA						
			GRAVEL	PACK: ELEVATIOI				ING STIC	KUP: NA EASTING		
								,	EAGTING		
Well Co	mpletion	Static	e F	PID Reading (ppm)	on (")	et)	Sample	e			
.≕ .	D	Water	Moisture Content) Read	Penetration (blows/6")	Depth (feet)		Soil Type	і ітн	OLOGY / DESCRIPTION	
Backfill	Lasing	Level	Voi Coi	D R (Pl	ene blov	ept	Recovery Interval	Soil			
	ر			Ы	₫)	Ō	L Re				
Conc.						-	+ $+$	-	Asphalt (3")		
ပိ						1 —		1			
						2		1	Air-knifed/vac-cl	eared to 5'	
						-		4			
						3—	+ $+$	-			
	-							1			
					4	4			Clavey SILT; gray, with	fine to coarse gravel and sand,	
			Moist	0.6	5	5		CL	~20% silt, dense, moist		
					6	5					
					16	6—			(As above, poor	recovery)	
	_		Moist	4.9	5	-					
					/ 8	7 —			(As above with	wood debris, poorly degraded,	
			Moist	6.1	8 7	-			loose, moist)		
					6						
					4	9—				d), grades to clayey silt at ~9',	
111				0	5 10	-			gray, dense, wit	h fine sand and gravel, moist)	
Ę		\bigtriangledown		0	5	10 —		CL	Clayey SILT; with fine to	o medium gravel and wood fragments,	
TONITE			Wet	2.6	3				wet, poor recovery	<u> </u>	
BEN					3			\checkmark			
m			144.4	4.0	4	12—		PT	PEAT with fine Sand; da	ark brown, loose, wet, poor recovery	
	_		Wet	1.3	6 6	-					
					о 1	13—			Wood debris: poorly der	graded, loose, wet, poor recovery	
			Wet	1.0				1		g	
					3 3	14		1			
					4	15 —			(As above, all w	ood debris, wet, loose, 6" recovery)	
	_		Wet	0	4	-					
					5	16—		SM	Silty SAND: with wood	debris, 10-15% silt, loose, wet,	
			Wet	0	2 2 2			Sivi	poor recovery (~8")	10-10 /0 SIIL, 10058, WBL,	
				Ŭ	2	17 —		1			
					7	18			Silty SAND; gray, 10-15	% silt, sand fine to coarse, loose,	
	_		Wet	0	12				wet		
					10	19—		-			
	_		Wet	0	6 11	-			(As above)		
				0		20—					
						21 —]			
							+ $-$	4	BOTTOM OF HOLE @	20'	
						22 —	+ $+$	4			
L								<u> </u>			

			PROJECT	ΓNO:	WA255-	3513-1	CLIE	NT:	ConocoPhillips	BORING/WELL NO: MW-54R
			LOGGED		J. North				600 Westlake Ave N, Seat	ttle, WA PAGE 1 OF 1
)el	10	DRILLER:		CDI			DRILLE		Location Map
L	JEI	la		METHOD:					-	
			CASING 1	G METHOD:	: 55 NA			E DEPTH		See Figure 1
	nvironm		SLOT SIZ		NA			L DIAME		
Со	nsultan	ts, Inc.	GRAVEL		NA			NG STIC		
				ELEVATIO			ORTHING		EASTING	
							1			
	ompletion	Static	art	ading (۱	PID Reading (ppm) Penetration (blows/6")		Sample	/be		
kfill	Casing	Water	Moisture Content	Re; ppn	ietra ows	Depth (feet)	kecovery Interval	Soil Type	LITH	IOLOGY / DESCRIPTION
Backfill	Cas	Level	ΣO	DI9)	ber (bl	Dep	Recovery Interval	Ň		
ပ်						_			Asphalt (3")	
Conc.						1				
									Air-knifed/vac-cl	leared to 5'
						2				
						3—				
						_				
			Moist	0.0	3	4 —			Silty SAND: gray/brown	n, with fine to medium gravel, sand fine
			molet	0.0	4			SM	to medium, 10-15% silt,	-
					5	5				
					4	6 —			(As above)	
			Moist	0.0	2 4	-		SM		
					· ·	7 —			(As above)	
				0.1	2 2 3	8		SM	(
					3					
		\square	Wet	0.0	3	9 —		SM		ncreases to 25% then decreases
ш			VVEL	0.0	3 2				loose, wet)	%, gravel increases, sand coarse,
Ę					6	10				
ITONITE			Wet	0.0	7	11 —		SM	(As above, wood	d fragments at ~11')
BEN	_				8 5	-				hanges to wood/peat at ~12'
			Wet	0.0	6	12		PT	Silly SAND/GRAVEL, C	inaliges to wood/pear at ~12
				0.0	9	10				
					4				(2" recovery, say	wdust)
			Wet	0.0	9					
					4				(6" recovery: 100)% wood fragments, sawdust and chips)
			Wet	0.0	5	15 —				278 wood hugmonito, sawadot and onipoj
					5	16		1		
					4				(As above, 6" re	ecovery)
			Wet	0.0	6 8					
			Wet	0.0	5				(As above, more	e degraded peat, dark orange/brown,
				0.0	11	18—			6" recovery)	
			Wet	0.0	9	19				
			14/51	0.0	5 7	- 1		SM		ges to fine silty sand at ~19',
			Wet	0.0	'	20—			10% sand, loos	se, weij
						-	+	1		
						21 —]	BOTTOM OF HOLE @	20'
						22				

ATTACHMENT B

ANALYTICAL LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane	East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

02 August 2005

Tena Seeds Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 RE: 600 Westlake

Enclosed are the results of analyses for samples received by the laboratory on 07/22/05 08:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mul The

Robert Greer Project Manager

Delta EnvironmentalProject: 600 Westlake4006 148th Ave NEProject Number: WA255-3513-1Reported:Redmond, WA/USA 98052Project Manager: Tena Seeds08/02/05 13:56

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-4R-3	B5G0522-01	Soil	07/20/05 14:45	07/22/05 08:40
SB-4R-5.5	B5G0522-02	Soil	07/21/05 07:40	07/22/05 08:40
SB-4R-10	B5G0522-03	Soil	07/21/05 07:50	07/22/05 08:40
SB-4R-15	B5G0522-04	Soil	07/21/05 08:05	07/22/05 08:40
SB-4R-20	B5G0522-05	Soil	07/21/05 08:10	07/22/05 08:40
SB-5R-5	B5G0522-06	Soil	07/21/05 08:45	07/22/05 08:40
SB-5R-10	B5G0522-07	Soil	07/21/05 09:00	07/22/05 08:40
SB-5R-15	B5G0522-08	Soil	07/21/05 09:15	07/22/05 08:40
SB-5R-20	B5G0522-09	Soil	07/21/05 09:30	07/22/05 08:40

North Creek Analytical - Bothell

Robert Greer, Project Manager

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Delta EnvironmentalProject:600 Westlake4006 148th Ave NEProject Number:WA255-3513-1Reported:Redmond, WA/USA 98052Project Manager:Tena Seeds08/02/05 13:56

Volatile Petroleum Products by NWTPH-Gx North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-4R-3 (B5G0522-01) Soil San	npled: 07/20/05 14:	45 Receive	d: 07/22/05	08:40					
Gasoline Range Hydrocarbons	17.0	3.00	mg/kg dry	1	5G26023	07/26/05	07/26/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	94.8 %	50-150			"	"	"	"	
SB-4R-5.5 (B5G0522-02) Soil Sail	ampled: 07/21/05 0′	7:40 Receiv	ved: 07/22/0	5 08:40					
Gasoline Range Hydrocarbons	7.90	3.42	mg/kg dry	1	5G26023	07/26/05	07/26/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	83.5 %	50-150			"	"	"	"	
SB-4R-10 (B5G0522-03) Soil Sa	mpled: 07/21/05 07	:50 Receiv	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	2010	62.1	mg/kg dry	4	5G26023	07/26/05	07/26/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	111 %	50-150			"	"	"	"	
SB-4R-15 (B5G0522-04) Soil Sa	mpled: 07/21/05 08	:05 Receiv	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	ND	8.59	mg/kg dry	1	5G26023	07/26/05	07/26/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	83.2 %	50-150			"	"	"	"	
SB-4R-20 (B5G0522-05) Soil Sa	mpled: 07/21/05 08	:10 Receiv	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	ND	9.82	mg/kg dry	1	5G26023	07/26/05	07/26/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	78.9 %	50-150			"	"	"	"	
SB-5R-5 (B5G0522-06) Soil San	npled: 07/21/05 08:	45 Receive	d: 07/22/05	08:40					
Gasoline Range Hydrocarbons	24.5	4.08	mg/kg dry	1	5G26023	07/26/05	07/26/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	92.9 %	50-150			"	"	"	"	
SB-5R-10 (B5G0522-07) Soil Sa	mpled: 07/21/05 09	:00 Receiv	ed: 07/22/05	08:40					
Gasoline Range Hydrocarbons	51.9	9.90	mg/kg dry	1	5G26023	07/26/05	07/26/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	92.2 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

Project: 600 Westlake Project Number: WA255-3513-1 Project Manager: Tena Seeds

Reported: 08/02/05 13:56

Volatile Petroleum Products by NWTPH-Gx North Creek Analytical - Bothell

		Reporting					1 0												
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes										
SB-5R-15 (B5G0522-08) Soil	Sampled: 07/21/05 09:	15 Receiv	ed: 07/22/05	5 08:40															
Gasoline Range Hydrocarbons	ND	16.3	mg/kg dry	1	5G26023	07/26/05	07/26/05	NWTPH-Gx											
Surrogate: 4-BFB (FID)	73.5 %	50-150			"	"	"	"											
SB-5R-20 (B5G0522-09) Soil	Sampled: 07/21/05 09:	30 Receiv	ed: 07/22/05	5 08:40															
Gasoline Range Hydrocarbons	ND	8.53	mg/kg dry	1	5G26023	07/26/05	07/26/05	NWTPH-Gx											
Surrogate: 4-BFB (FID)	71.6 %	50-150			"	"	"	"											

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: 600 Westlake Project Number: WA255-3513-1

Project Manager: Tena Seeds

Reported: 08/02/05 13:56

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

		Reporting	-						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4R-3 (B5G0522-01) Soil	Sampled: 07/20/05 14:	45 Receive	d: 07/22/05 ()8:40					
Diesel Range Hydrocarbons	126	20.0	mg/kg dry	2	5G26062	07/26/05	07/28/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	s 758	50.0	"	"	"	"	"	"	
Surrogate: 2-FBP	66.0 %	50-150			"	"	"	"	
Surrogate: Octacosane	85.7 %	50-150			"	"	"	"	
SB-4R-5.5 (B5G0522-02) Soil	Sampled: 07/21/05 0	7:40 Receiv	ved: 07/22/05	5 08:40					
Diesel Range Hydrocarbons	90.0	20.0	mg/kg dry	2	5G26062	07/26/05	07/28/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	s 525	50.0	"	"	"	"	"	"	
Surrogate: 2-FBP	55.5 %	50-150			"	"	"	"	
Surrogate: Octacosane	80.0 %	50-150			"	"	"	"	
SB-4R-10 (B5G0522-03) Soil	Sampled: 07/21/05 07	:50 Receiv	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	138	10.0	mg/kg dry	1	5G26062	07/26/05	07/27/05	NWTPH-Dx	D-08
Lube Oil Range Hydrocarbons	s 143	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	64.3 %	50-150			"	"	"	"	
Surrogate: Octacosane	75.8 %	50-150			"	"	"	"	
SB-4R-15 (B5G0522-04) Soil	Sampled: 07/21/05 08	:05 Receiv	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	13.0	10.0	mg/kg dry	1	5G26062	07/26/05	07/27/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	s 28.2	25.0	"	"	"	"	"	"	D-06
Surrogate: 2-FBP	64.0 %	50-150			"	"	"	"	
Surrogate: Octacosane	82.9 %	50-150			"	"	"	"	
SB-4R-20 (B5G0522-05) Soil	Sampled: 07/21/05 08	:10 Receiv	red: 07/22/05	08:40					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	5G26062	07/26/05	07/27/05	NWTPH-Dx	
	ND	25.0		"	"	"	"	"	
Lube Oil Range Hydrocarbons	ND	20.0							
Surrogate: 2-FBP	74.0 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

Delta EnvironmentalProject:600 Westlake4006 148th Ave NEProject Number:WA255-3513-1Redmond, WA/USA 98052Project Manager:Tena Seeds

Reported: 08/02/05 13:56

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-5R-5 (B5G0522-06) Soil Sampled	: 07/21/05 08:	45 Receive	d: 07/22/05 ()8:40					
Diesel Range Hydrocarbons	15.0	10.0	mg/kg dry	1	5G26062	07/26/05	07/27/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	50.5	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	67.7 %	50-150			"	"	"	"	
Surrogate: Octacosane	98.8 %	50-150			"	"	"	"	
SB-5R-10 (B5G0522-07) Soil Sample	d: 07/21/05 09	0:00 Receiv	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	17.1	10.0	mg/kg dry	1	5G26062	07/26/05	07/27/05	NWTPH-Dx	D-08
Lube Oil Range Hydrocarbons	44.7	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	68.0 %	50-150			"	"	"	"	
Surrogate: Octacosane	100 %	50-150			"	"	"	"	
SB-5R-15 (B5G0522-08) Soil Sample	d: 07/21/05 09	9:15 Receiv	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	57.3	21.7	mg/kg dry	1	5G26062	07/26/05	07/27/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	79.1	54.3	"	"	"	"	"	"	
Surrogate: 2-FBP	66.9 %	50-150			"	"	"	"	
Surrogate: Octacosane	93.8 %	50-150			"	"	"	"	
SB-5R-20 (B5G0522-09) Soil Sample	d: 07/21/05 09	.30 Receiv	ed: 07/22/05	08:40					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	5G26062	07/26/05	07/27/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"		"	"	"	
Surrogate: 2-FBP	65.3 %	50-150			"	"	"	"	
Surrogate: Octacosane	89.5 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: 600 Westlake Project Number: WA255-3513-1

Project Manager: Tena Seeds

Reported: 08/02/05 13:56

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

		porting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4R-3 (B5G0522-01) Soil	Sampled: 07/20/05 14:45	Receive	d: 07/22/05 ()8:40					
Lead	128	0.500	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	
SB-4R-5.5 (B5G0522-02) Soil	Sampled: 07/21/05 07:40	Receiv	ved: 07/22/05	5 08:40					
Lead	97.3	0.500	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	
SB-4R-10 (B5G0522-03) Soil	Sampled: 07/21/05 07:50	Receiv	ed: 07/22/05	08:40					
Lead	40.6	0.439	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	
SB-4R-15 (B5G0522-04) Soil	Sampled: 07/21/05 08:05	Receiv	ed: 07/22/05	08:40					
Lead	2.57	0.323	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	
SB-4R-20 (B5G0522-05) Soil	Sampled: 07/21/05 08:10	Receiv	ed: 07/22/05	08:40					
Lead	1.25	0.455	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	
SB-5R-5 (B5G0522-06) Soil	Sampled: 07/21/05 08:45	Receive	d: 07/22/05 ()8:40					
Lead	5.35	0.500	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	
SB-5R-10 (B5G0522-07) Soil	Sampled: 07/21/05 09:00	Receiv	ed: 07/22/05	08:40					
Lead	14.2	0.500	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	
SB-5R-15 (B5G0522-08) Soil	Sampled: 07/21/05 09:15	Receiv	ed: 07/22/05	08:40					
Lead	26.8	1.09	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	
SB-5R-20 (B5G0522-09) Soil	Sampled: 07/21/05 09:30	Receiv	ed: 07/22/05	08:40					
Lead	1.93	0.500	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	

North Creek Analytical - Bothell

Delta Environmental	Project: 600 Westlake	
4006 148th Ave NE	Project Number: WA255-3513-1	Reported:
Redmond, WA/USA 98052	Project Manager: Tena Seeds	08/02/05 13:56

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
i inity to	Result	Liiiit	ema	Dilution	Buton	Trepureu	1 mary 20a	memou	110100
SB-4R-3 (B5G0522-01) Soil	Sampled: 07/20/05 14:	:45 Receive	d: 07/22/05 (08:40					
Benzene	0.287	0.00150	mg/kg dry	1	5G26070	07/26/05	07/26/05	EPA 8260B	E-01
Ethylbenzene	0.0725	0.00400	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00100	"	"	"	"	"	"	
Naphthalene	ND	0.00500	"	"	"	"	"	"	
Toluene	0.00376	0.00150	"	"	"	"	"	"	
Total Xylenes	0.0353	0.0100	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	177 %	60-140			"	"	"	"	S-04
Surrogate: Toluene-d8	92.6 %	60-140			"	"	"	"	
Surrogate: 4-BFB	108 %	60-140			"	"	"	"	
SB-4R-5.5 (B5G0522-02) Soil	Sampled: 07/21/05 0	7:40 Receiv	ved: 07/22/05	5 08:40					
Benzene	ND	0.00150	mg/kg dry	1	5G29045	07/29/05	07/29/05	EPA 8260B	
Ethylbenzene	ND	0.00400	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00100		"	"	"	"	"	
Naphthalene	ND	0.00500	"	"	"	"	"	"	
Toluene	ND	0.00150	"	"	"	"	"	"	
Total Xylenes	ND	0.0100	"	"		"	"	"	
Surrogate: 1,2-DCA-d4	107 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	96.9 %	60-140			"	"	"	"	
Surrogate: 4-BFB	108 %	60-140			"	"	"	"	
SB-4R-15 (B5G0522-04) Soil	Sampled: 07/21/05 08	8:05 Receiv	ed: 07/22/05	08:40					
Benzene	0.00199	0.00131	mg/kg dry	1	5G27011	07/27/05	07/27/05	EPA 8260B	
Ethylbenzene	ND	0.00349	"	"	"	"	"	"	
Methyl tert-butyl ether	0.00263	0.000873	"	"	"	"	"	"	
Naphthalene	ND	0.00436	"	"	"	"	"	"	
Toluene	0.00234	0.00131	"	"	"	"	"	"	
Total Xylenes	0.0110	0.00873	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	126 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	93.4 %	60-140			"	"	"	"	
Surrogate: 4-BFB	108 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental	Project:	600 Westlake	
4006 148th Ave NE	Project Number:	WA255-3513-1	Reported:
Redmond, WA/USA 98052	Project Manager:	Tena Seeds	08/02/05 13:56

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
liniye	Result	Linit	ema	Dilution	Butten	Trepureu	1 mary 20a	memou	110100
SB-4R-20 (B5G0522-05) Soil	Sampled: 07/21/05 08	8:10 Receiv	ed: 07/22/05	08:40					
Benzene	ND	0.000761	mg/kg dry	1	5G27011	07/27/05	07/27/05	EPA 8260B	
Ethylbenzene	ND	0.00203	"	"	"	"	"	"	
Methyl tert-butyl ether	0.00141	0.000507	"	"	"	"	"	"	
Naphthalene	ND	0.00254	"	"	"	"	"	"	
Toluene	0.000877	0.000761	"	"	"	"	"	"	
Total Xylenes	ND	0.00507	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	112 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	92.9 %	60-140			"	"	"	"	
Surrogate: 4-BFB	105 %	60-140			"	"	"	"	
SB-5R-5 (B5G0522-06) Soil	Sampled: 07/21/05 08:	45 Receive	d: 07/22/05 ()8:40					
Benzene	0.00615	0.00106	mg/kg dry	1	5G27011	07/27/05	07/27/05	EPA 8260B	
Ethylbenzene	0.0175	0.00283	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.000708	"	"	"	"	"	"	
Naphthalene	ND	0.00354	"	"	"	"	"	"	
Toluene	0.00453	0.00106	"	"	"	"	"	"	
Total Xylenes	0.0683	0.00708	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	110 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	99.1 %	60-140			"	"	"	"	
Surrogate: 4-BFB	113 %	60-140			"	"	"	"	
SB-5R-10 (B5G0522-07) Soil	Sampled: 07/21/05 09	9:00 Receiv	ed: 07/22/05	08:40					
Benzene	ND	0.000964	mg/kg dry	1	5H02005	08/01/05	08/01/05	EPA 8260B	
Ethylbenzene	0.0260	0.00257	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.000643	"	"	"	"	"	"	
Naphthalene	0.0680	0.00321	"	"	"	"	"	"	
Toluene	0.00155	0.000964	"	"	"	"	"	"	
Total Xylenes	0.0244	0.00643	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	107 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	83.5 %	60-140			"	"	"	"	
Surrogate: 4-BFB	107 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental	Project: 600 Westlake	
4006 148th Ave NE	Project Number: WA255-3513-1	Reported:
Redmond, WA/USA 98052	Project Manager: Tena Seeds	08/02/05 13:56

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-5R-15 (B5G0522-08) Soil	Sampled: 07/21/05 09	9:15 Receiv	ed: 07/22/05	08:40					
Benzene	0.0246	0.00691	mg/kg dry	1	5G27011	07/27/05	07/27/05	EPA 8260B	
Ethylbenzene	0.0666	0.0184		"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00461	"	"	"	"	"	"	
Naphthalene	0.0240	0.0230	"	"	"	"	"	"	
Toluene	0.0371	0.00691		"	"	"	"	"	
Total Xylenes	0.434	0.0461	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	118 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	107 %	60-140			"	"	"	"	
Surrogate: 4-BFB	129 %	60-140			"	"	"	"	
SB-5R-20 (B5G0522-09) Soil	Sampled: 07/21/05 09	9:30 Receiv	ed: 07/22/05	08:40					
Benzene	ND	0.00125	mg/kg dry	1	5G27011	07/27/05	07/27/05	EPA 8260B	
Ethylbenzene	ND	0.00334		"	"	"	"	"	
Methyl tert-butyl ether	0.00196	0.000836	"	"	"	"	"	"	
Naphthalene	ND	0.00418		"	"	"	"	"	
Toluene	ND	0.00125	"	"	"	"	"	"	
Total Xylenes	ND	0.00836	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	111 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	91.6 %	60-140			"	"	"	"	
Surrogate: 4-BFB	106 %	60-140			"	"	"	"	
5									

North Creek Analytical - Bothell

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Project:
 600 Westlake

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

Project Number: WA255-3513-1

Project Manager: Tena Seeds

Reported: 08/02/05 13:56

Volatile Organic Compounds (Special List) by EPA Method 8260B North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4R-3 (B5G0522-01) Soil	Sampled: 07/20/05 14:4	5 Receive	d: 07/22/05 ()8:40					
Benzene	1.24	0.0594	mg/kg dry	1	5G27071	07/27/05	07/27/05	EPA 8260B	
Ethylbenzene	0.278	0.0594	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.297	"	"	"	"	"	"	
Naphthalene	ND	0.0594	"	"	"	"	"	"	
Toluene	ND	0.0594	"	"	"	"	"	"	
Total Xylenes	ND	0.178	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	106 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	115 %	70-130			"	"	"	"	
Surrogate: 4-BFB	127 %	70-130			"	"	"	"	
SB-4R-10 (B5G0522-03) Soil	Sampled: 07/21/05 07:	50 Receiv	ed: 07/22/05	08:40					
Benzene	50.6	1.52	mg/kg dry	10	5G27071	07/27/05	07/27/05	EPA 8260B	
Ethylbenzene	3.65	1.52	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	7.60	"	"	"	"	"	"	
Naphthalene	ND	1.52	"	"	"	"	"	"	
Toluene	7.05	1.52	"	"	"	"	"	"	
Total Xylenes	12.8	4.56	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	114 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	116 %	70-130			"	"	"	"	
Surrogate: 4-BFB	129 %	70-130			"	"	"	"	

North Creek Analytical - Bothell

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: 600 Westlake Project Number: WA255-3513-1 Project Manager: Tena Seeds

Reported: 08/02/05 13:56

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

	Da	porting							1
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-4R-3 (B5G0522-01) Soil	Sampled: 07/20/05 14:45	Receive	d: 07/22/05	08:40					
Dry Weight	85.1	1.00	%	1	5G25084	07/25/05	07/26/05	BSOPSPL003R08	
SB-4R-5.5 (B5G0522-02) Soil	Sampled: 07/21/05 07:40	Receiv	ved: 07/22/0	5 08:40					
Dry Weight	91.6	1.00	%	1	5G25084	07/25/05	07/26/05	BSOPSPL003R08	
SB-4R-10 (B5G0522-03) Soil	Sampled: 07/21/05 07:50	Receiv	ed: 07/22/05	5 08:40					
Dry Weight	53.7	1.00	%	1	5G25084	07/25/05	07/26/05	BSOPSPL003R08	
SB-4R-15 (B5G0522-04) Soil	Sampled: 07/21/05 08:05	Receiv	ed: 07/22/05	5 08:40					
Dry Weight	64.4	1.00	%	1	5G25084	07/25/05	07/26/05	BSOPSPL003R08	
SB-4R-20 (B5G0522-05) Soil	Sampled: 07/21/05 08:10	Receiv	ed: 07/22/05	5 08:40					
Dry Weight	85.0	1.00	%	1	5G25084	07/25/05	07/26/05	BSOPSPL003R08	
SB-5R-5 (B5G0522-06) Soil	Sampled: 07/21/05 08:45	Receive	d: 07/22/05	08:40					
Dry Weight	86.6	1.00	%	1	5G25084	07/25/05	07/26/05	BSOPSPL003R08	
SB-5R-10 (B5G0522-07) Soil	Sampled: 07/21/05 09:00	Receiv	ed: 07/22/05	5 08:40					
Dry Weight	80.2	1.00	%	1	5G25084	07/25/05	07/26/05	BSOPSPL003R08	
SB-5R-15 (B5G0522-08) Soil	Sampled: 07/21/05 09:15	Receiv	ed: 07/22/05	5 08:40					
Dry Weight	46.0	1.00	%	1	5G25084	07/25/05	07/26/05	BSOPSPL003R08	
SB-5R-20 (B5G0522-09) Soil	Sampled: 07/21/05 09:30	Receiv	ed: 07/22/05	5 08:40					
Dry Weight	78.2	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	

North Creek Analytical - Bothell

Delta EnvironmentalProject: 600 Westlake4006 148th Ave NEProject Number: WA255-3513-1Redmond, WA/USA 98052Project Manager: Tena Seeds08/02/05 13:56

Volatile Petroleum Products by NWTPH-Gx - Quality Control North Creek Analytical - Bothell

	1		CCK Analy	ucai - i	Jounen					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G26023: Prepared 07/26/0	5 Using E	EPA 5030B	B (MeOH)							
Blank (5G26023-BLK1)										
Gasoline Range Hydrocarbons	ND	5.00	mg/kg							
Surrogate: 4-BFB (FID)	2.28		"	3.00		76.0	50-150			
LCS (5G26023-BS1)										
Gasoline Range Hydrocarbons	54.5	5.00	mg/kg	50.0		109	75-125			
Surrogate: 4-BFB (FID)	2.82		"	3.00		94.0	50-150			
LCS Dup (5G26023-BSD1)										
Gasoline Range Hydrocarbons	57.3	5.00	mg/kg	50.0		115	75-125	5.01	25	
Surrogate: 4-BFB (FID)	2.99		"	3.00		99.7	50-150			
Matrix Spike (5G26023-MS1)					Source: E	85G0522-	04			
Gasoline Range Hydrocarbons	164	8.59	mg/kg dry	133	3.97	120	42-125			
Surrogate: 4-BFB (FID)	7.44		"	8.00		93.0	50-150			
Matrix Spike Dup (5G26023-MSD1)					Source: B	35G0522-	04			
Gasoline Range Hydrocarbons	163	8.59	mg/kg dry	133	3.97	120	42-125	0.612	40	
Surrogate: 4-BFB (FID)	7.19		"	8.00		89.9	50-150			

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

08/02/05 13:56

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

	1		CK Analy	tical - I	Jounen					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G26062: Prepared 07/26/05	Using l	EPA 3550B								
Blank (5G26062-BLK1)										
Diesel Range Hydrocarbons	ND	10.0	mg/kg							
Lube Oil Range Hydrocarbons	ND	25.0	"							
Surrogate: 2-FBP	6.45		"	8.33		77.4	50-150			
Surrogate: Octacosane	7.35		"	8.33		88.2	50-150			
LCS (5G26062-BS1)										
Diesel Range Hydrocarbons	55.4	10.0	mg/kg	66.7		83.1	61-120			
Surrogate: 2-FBP	7.24		"	8.33		86.9	50-150			
LCS Dup (5G26062-BSD1)										
Diesel Range Hydrocarbons	56.0	10.0	mg/kg	66.7		84.0	61-120	1.08	40	
Surrogate: 2-FBP	7.14		"	8.33		85.7	50-150			
Duplicate (5G26062-DUP1)					Source: I	B5G0525-	01			
Diesel Range Hydrocarbons	112	20.0	mg/kg dry		59.3			61.5	50	Q-0
Lube Oil Range Hydrocarbons	604	50.0	"		316			62.6	50	Q-0
Surrogate: 2-FBP	5.19		"	8.90		58.3	50-150			
Surrogate: Octacosane	6.61		"	8.90		74.3	50-150			

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

Project Number: WA255-3513-1 Project Manager: Tena Seeds

08/02/05 13:56

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

	1,0		cer mary	tical I	Jounen					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G26032: Prepared 07/2	26/05 Using El	PA 3050E	8							
Blank (5G26032-BLK1)										
Lead	ND	0.500	mg/kg							
LCS (5G26032-BS1)										
Lead	38.8	0.500	mg/kg	40.8		95.1	80-120			
LCS Dup (5G26032-BSD1)										
Lead	39.6	0.500	mg/kg	41.7		95.0	80-120	2.04	20	
Matrix Spike (5G26032-MS1)					Source: I	B5G0522-	01			
Lead	113	0.420	mg/kg dry	39.5	128	-38.0	29-162			Q-02
Matrix Spike Dup (5G26032-MSD1)					Source: I	35G0522-	01			
Lead	124	0.500	mg/kg dry	47.0	128	-8.51	29-162	9.28	30	Q-02
Post Spike (5G26032-PS1)					Source: I	B5G0522-	01			
Lead	0.284		ug/ml	0.100	0.207	77.0	75-125			

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

08/02/05 13:56

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G26070:	Prepared 07/26/05	Using E	CPA 5035								
Blank (5G26070-BLF	(1)										
Benzene		ND	0.00150	mg/kg							
Ethylbenzene		ND	0.00400	"							
Methyl tert-butyl ether		ND	0.00100	"							
Naphthalene		ND	0.00500	"							
Toluene		ND	0.00150	"							
Total Xylenes		ND	0.0100								
Surrogate: 1,2-DCA-d4		0.0414		"	0.0400		104	60-140			
Surrogate: Toluene-d8		0.0341		"	0.0400		85.2	60-140			
Surrogate: 4-BFB		0.0376		"	0.0400		94.0	60-140			
LCS (5G26070-BS1)											
Benzene		0.0378	0.00150	mg/kg	0.0400		94.5	70-130			
Ethylbenzene		0.0394	0.00400	"	0.0400		98.5	70-130			
Methyl tert-butyl ether		0.0340	0.00100		0.0400		85.0	70-130			
Naphthalene		0.0463	0.00500	"	0.0400		116	70-130			
Toluene		0.0367	0.00150	"	0.0400		91.8	70-130			
Total Xylenes		0.124	0.0100	"	0.120		103	70-130			
Surrogate: 1,2-DCA-d4		0.0884		"	0.0800		110	60-140			
Surrogate: Toluene-d8		0.0671		"	0.0800		83.9	60-140			
Surrogate: 4-BFB		0.0713		"	0.0800		89.1	60-140			
LCS Dup (5G26070-I	BSD1)										
Benzene		0.0378	0.00150	mg/kg	0.0400		94.5	70-130	0.00	30	
Ethylbenzene		0.0367	0.00400	"	0.0400		91.8	70-130	7.10	30	
Methyl tert-butyl ether		0.0333	0.00100	"	0.0400		83.2	70-130	2.08	30	
Naphthalene		0.0433	0.00500	"	0.0400		108	70-130	6.70	30	
Toluene		0.0330	0.00150	"	0.0400		82.5	70-130	10.6	30	
Total Xylenes		0.114	0.0100	"	0.120		95.0	70-130	8.40	30	
Surrogate: 1,2-DCA-d4		0.0911		"	0.0800		114	60-140			
Surrogate: Toluene-d8		0.0577		"	0.0800		72.1	60-140			
Surrogate: 4-BFB		0.0630		"	0.0800		78.8	60-140			

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

08/02/05 13:56

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Anaryte		Kesuit	Limit	Units	Level	Kesuit	70KEC	Linits	KPD	Liinit	Inotes
Batch 5G27011:	Prepared 07/27/05	Using E	CPA 5035								
Blank (5G27011-BL	K1)										
Benzene		ND	0.00150	mg/kg							
Ethylbenzene		ND	0.00400	"							
Methyl tert-butyl ether		ND	0.00100	"							
Naphthalene		ND	0.00500	"							
Toluene		ND	0.00150	"							
Total Xylenes		ND	0.0100	"							
Surrogate: 1,2-DCA-d4		0.0441		"	0.0400		110	60-140			
Surrogate: Toluene-d8		0.0368		"	0.0400		92.0	60-140			
Surrogate: 4-BFB		0.0398		"	0.0400		99.5	60-140			
LCS (5G27011-BS1))										
Acetone		0.417	0.0300	mg/kg	0.400		104	70-130			
Benzene		0.0417	0.00150	"	0.0400		104	70-130			
2-Butanone		0.473	0.0150	"	0.400		118	70-130			
Carbon disulfide		0.0429	0.00300	"	0.0400		107	70-130			
Chlorobenzene		0.0423	0.00200	"	0.0400		106	70-130			
1,1-Dichloroethane		0.0450	0.00200	"	0.0400		112	70-130			
1,1-Dichloroethene		0.0411	0.00300	"	0.0400		103	70-130			
cis-1,2-Dichloroethene		0.0450	0.00300	"	0.0400		112	70-130			
Ethylbenzene		0.0407	0.00400	"	0.0400		102	70-130			
Hexachlorobutadiene		0.0397	0.00500	"	0.0400		99.3	70-130			
4-Methyl-2-pentanone		0.385	0.0200	"	0.400		96.2	70-130			
Tetrachloroethene		0.0408	0.00200	"	0.0400		102	70-130			
Toluene		0.0402	0.00150	"	0.0400		100	70-130			
1,1,1-Trichloroethane		0.0429	0.00250	"	0.0400		107	70-130			
Trichloroethene		0.0369	0.00250	"	0.0400		92.2	70-130			
Surrogate: 1,2-DCA-d4		0.0817		"	0.0800		102	60-140			
Surrogate: Toluene-d8		0.0824		"	0.0800		103	60-140			
Surrogate: 4-BFB		0.0840		"	0.0800		105	60-140			

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

08/02/05 13:56

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G27011:	Prepared 07/27/05	Using E	PA 5035								
LCS Dup (5G27011	-BSD1)										
Acetone		0.427	0.0300	mg/kg	0.400		107	70-130	2.37	30	
Benzene		0.0399	0.00150	"	0.0400		99.8	70-130	4.41	30	
2-Butanone		0.476	0.0150	"	0.400		119	70-130	0.632	30	
Carbon disulfide		0.0415	0.00300	"	0.0400		104	70-130	3.32	30	
Chlorobenzene		0.0398	0.00200	"	0.0400		99.5	70-130	6.09	30	
1,1-Dichloroethane		0.0433	0.00200	"	0.0400		108	70-130	3.85	30	
1,1-Dichloroethene		0.0399	0.00300	"	0.0400		99.8	70-130	2.96	30	
cis-1,2-Dichloroethene		0.0426	0.00300	"	0.0400		106	70-130	5.48	30	
Ethylbenzene		0.0382	0.00400	"	0.0400		95.5	70-130	6.34	30	
Hexachlorobutadiene		0.0384	0.00500	"	0.0400		96.0	70-130	3.33	30	
4-Methyl-2-pentanone		0.374	0.0200	"	0.400		93.5	70-130	2.90	30	
Tetrachloroethene		0.0356	0.00200	"	0.0400		89.0	70-130	13.6	30	
Toluene		0.0370	0.00150	"	0.0400		92.5	70-130	8.29	30	
1,1,1-Trichloroethane		0.0410	0.00250	"	0.0400		102	70-130	4.53	30	
Trichloroethene		0.0395	0.00250	"	0.0400		98.8	70-130	6.81	30	
Surrogate: 1,2-DCA-d4		0.0644		"	0.0800		80.5	60-140			
Surrogate: Toluene-d8		0.0526		"	0.0800		65.8	60-140			
Surrogate: 4-BFB		0.0616		"	0.0800		77.0	60-140			

Batch 5G29045: Prepared 07/29/05 Using EPA 5035

Blank (5G29045-BLK1)							
Benzene	ND	0.00150	mg/kg				
Ethylbenzene	ND	0.00400	"				
Methyl tert-butyl ether	ND	0.00100	"				
Naphthalene	ND	0.00500	"				
Toluene	ND	0.00150	"				
Total Xylenes	ND	0.0100	"				
Surrogate: 1,2-DCA-d4	0.0416		"	0.0400	104	60-140	
Surrogate: Toluene-d8	0.0371		"	0.0400	92.8	60-140	
Surrogate: 4-BFB	0.0405		"	0.0400	101	60-140	

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

08/02/05 13:56

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G29045:	Prepared 07/29/05	Using F	EPA 5035								
LCS (5G29045-BS1))										
Benzene		0.0416	0.00150	mg/kg	0.0400		104	70-130			
Ethylbenzene		0.0376	0.00400	"	0.0400		94.0	70-130			
Methyl tert-butyl ether		0.0496	0.00100	"	0.0400		124	70-130			
Naphthalene		0.0480	0.00500	"	0.0400		120	70-130			
Toluene		0.0348	0.00150	"	0.0400		87.0	70-130			
Total Xylenes		0.110	0.0100	"	0.120		91.7	70-130			
Surrogate: 1,2-DCA-d4		0.0844		"	0.0800		106	60-140			
Surrogate: Toluene-d8		0.0672		"	0.0800		84.0	60-140			
Surrogate: 4-BFB		0.0755		"	0.0800		94.4	60-140			
LCS Dup (5G29045-	BSD1)										
Benzene		0.0400	0.00150	mg/kg	0.0400		100	70-130	3.92	30	
Ethylbenzene		0.0379	0.00400	"	0.0400		94.8	70-130	0.795	30	
Methyl tert-butyl ether		0.0486	0.00100	"	0.0400		122	70-130	2.04	30	
Naphthalene		0.0412	0.00500	"	0.0400		103	70-130	15.2	30	
Toluene		0.0378	0.00150	"	0.0400		94.5	70-130	8.26	30	
Total Xylenes		0.113	0.0100	"	0.120		94.2	70-130	2.69	30	
Surrogate: 1,2-DCA-d4		0.0770		"	0.0800		96.2	60-140			
Surrogate: Toluene-d8		0.0757		"	0.0800		94.6	60-140			
Surrogate: 4-BFB		0.0785		"	0.0800		98.1	60-140			
Batch 5H02005:	Prepared 08/01/05	Using E	EPA 5035								
Blank (5H02005-BL	K1)										
Benzene		ND	0.00150	mg/kg							
Ethylbenzene		ND	0.00400	"							
Methyl tert-butyl ether		ND	0.00100	"							
Naphthalene		ND	0.00500	"							

Toluene	ND	0.00150	"				
Total Xylenes	ND	0.0100	"				
Surrogate: 1,2-DCA-d4	0.0419		"	0.0400	105	60-140	
Surrogate: Toluene-d8	0.0362		"	0.0400	90.5	60-140	
Surrogate: 4-BFB	0.0409		"	0.0400	102	60-140	

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

08/02/05 13:56

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

				·····	·						
Amalada		Descult	Reporting	T In: 4a	Spike	Source	0/DEC	%REC		RPD	Net
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5H02005:	Prepared 08/01/05	Using E	CPA 5035								
LCS (5H02005-BS1)											
Benzene		0.0400	0.00150	mg/kg	0.0400		100	70-130			
Ethylbenzene		0.0381	0.00400		0.0400		95.2	70-130			
Methyl tert-butyl ether		0.0431	0.00100	"	0.0400		108	70-130			
Naphthalene		0.0393	0.00500	"	0.0400		98.2	70-130			
Toluene		0.0342	0.00150	"	0.0400		85.5	70-130			
Total Xylenes		0.109	0.0100	"	0.120		90.8	70-130			
Surrogate: 1,2-DCA-d4		0.0760		"	0.0800		95.0	60-140			
Surrogate: Toluene-d8		0.0663		"	0.0800		82.9	60-140			
Surrogate: 4-BFB		0.0737		"	0.0800		92.1	60-140			
LCS Dup (5H02005-	BSD1)										
Benzene		0.0415	0.00150	mg/kg	0.0400		104	70-130	3.68	30	
Ethylbenzene		0.0399	0.00400	"	0.0400		99.8	70-130	4.62	30	
Methyl tert-butyl ether		0.0458	0.00100	"	0.0400		114	70-130	6.07	30	
Naphthalene		0.0370	0.00500	"	0.0400		92.5	70-130	6.03	30	
Toluene		0.0372	0.00150	"	0.0400		93.0	70-130	8.40	30	
Total Xylenes		0.118	0.0100		0.120		98.3	70-130	7.93	30	
Surrogate: 1,2-DCA-d4		0.0695		"	0.0800		86.9	60-140			
Surrogate: Toluene-d8		0.0697		"	0.0800		87.1	60-140			
Surrogate: 4-BFB		0.0734		"	0.0800		91.8	60-140			

North Creek Analytical - Bothell

4006 148th Ave NE	Project Number: WA255-3513-1	Reported:
Redmond, WA/USA 98052	Project Manager: Tena Seeds	08/02/05 13:56

Volatile Organic Compounds (Special List) by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

			<u></u>	CK Mary							
			Reporting	** *	Spike	Source	0/255	%REC	DES	RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G27071:	Prepared 07/27/05	Using El	PA 5030B	[MeOH]							
Blank (5G27071-BL)	K1)										
Benzene		ND	0.100	mg/kg							
Ethylbenzene		ND	0.100	"							
Methyl tert-butyl ether		ND	0.500	"							
Naphthalene		ND	0.100	"							
Toluene		ND	0.100	"							
Total Xylenes		ND	0.300	"							
Surrogate: 1,2-DCA-d4		4.03		"	4.00		101	70-130			
Surrogate: Toluene-d8		4.03		"	4.00		101	70-130			
Surrogate: 4-BFB		3.96		"	4.00		99.0	70-130			
LCS (5G27071-BS1)											
Benzene		2.34	0.100	mg/kg	2.00		117	75-130			
Ethylbenzene		2.17	0.100	"	2.00		108	75-130			
Methyl tert-butyl ether		2.02	0.500	"	2.00		101	75-130			
Naphthalene		2.12	0.100	"	2.00		106	75-130			
Toluene		2.20	0.100	"	2.00		110	75-124			
Total Xylenes		6.60	0.300	"	6.00		110	70-130			
Surrogate: 1,2-DCA-d4		3.74		"	4.00		93.5	70-130			
Surrogate: Toluene-d8		3.74		"	4.00		93.5	70-130			
Surrogate: 4-BFB		3.94		"	4.00		98.5	70-130			
LCS Dup (5G27071-	BSD1)										
Benzene		2.21	0.100	mg/kg	2.00		110	75-130	5.71	20	
Ethylbenzene		2.06	0.100	"	2.00		103	75-130	5.20	20	
Methyl tert-butyl ether		1.98	0.500	"	2.00		99.0	75-130	2.00	20	
Naphthalene		2.03	0.100	"	2.00		102	75-130	4.34	20	
Toluene		2.08	0.100	"	2.00		104	75-124	5.61	20	
Total Xylenes		6.25	0.300	"	6.00		104	70-130	5.45	30	
Surrogate: 1,2-DCA-d4		3.67		"	4.00		91.8	70-130			
Surrogate: Toluene-d8		3.69		"	4.00		92.2	70-130			
Surrogate: 4-BFB		3.84		"	4.00		96.0	70-130			

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: 600 Westlake Project Number: WA255-3513-1 Project Manager: Tena Seeds

Reported: 08/02/05 13:56

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G25084:	Prepared 07/25/05	Using Ge	eneral Prej	paration							
Blank (5G25084-Bl	LK1)										
Dry Weight		100	1.00	%							
Batch 5G26009:	Prepared 07/26/05	Using Dr	y Weight								
Blank (5G26009-BI	L K1)										
Dry Weight		100	1.00	%							

North Creek Analytical - Bothell

Delta Environmental	Project:	600 Westlake	
4006 148th Ave NE	Project Number:	WA255-3513-1	Reported:
Redmond, WA/USA 98052	Project Manager:	Tena Seeds	08/02/05 13:56

Notes and Definitions

- D-06 The sample chromatographic pattern does not resemble the fuel standard used for quantitation.
- D-08 Results in the diesel organics range are primarily due to overlap from a gasoline range product.
- D-09 Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
- E-01 Estimated value. The reported value exceeds the capacity of the detector and therefore is unreliable.
- Q-02 The spike recovery for this QC sample is outside of NCA established control limits due to sample matrix interference.
- Q-07 The RPD value for this QC sample is above the established control limit. Review of associated QC indicates the high RPD does not represent an out-of-control condition for the batch.
- S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer, Project Manager

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-9508 11115 E Montgomery Suite B, Spokane, WA 99206-4776 9405 SW Nimbus Ave, Beaverton, OR 97008-7132 20332 Empire Ave Suite F-1, Bend, OR 99701-5711 3209 Denali St, Anchorage, AK 99503-4030

 425-420-9200
 FAX 420-9210

 509-924-9200
 FAX 924-9290

 503-906-9200
 FAX 906-9210

 541-383-9310
 FAX 382-7588

 907-334-9200
 FAX 334-9210

	CHAIN	OF	CUS	TO										Work O	rder #	: B5G05,	2
CLIENT: Conoco	Phillips				INV	DICE T	0: Kipp	Ecke	rt					Т	'URNAI	ROUND REQU	EST
REPORT TO: Delts En	V						(600)	co Phi	lips		~			in Business Days *			
ADDRESS: 4006 148 Redmond, 4 PHONE425 498 772	the Ave NS.						1144	East	lake	Ave	٢			Organic & Inorganic Analyses			
Redmond	NA 98052	^ -					SEA	TTLS	, le)Ą	98	104	·)				
PHONE 425 . 498 . 774	BFAX: 425- 869-18	392			P.O. NUMBER: 1396 DELO13								STD. Petroleum Hydrocarbon Analyses				
PROJECT NAME: COO	Westpke	<i>v</i>				P	RESERV	VATIVI	3					X	4	3 2 1	<1
	_	i M	Mlue	Upr	Upr									STD	<u> </u>		_
PROJECT NUMBER: \bigcup_{A}	4 (22, 22)					REQU	ESTED	ANALY	(SES					0	THER	Specify:	
SAMPLED BY: JMP			メナが	a a	م									* Turnarou	nd Requests l	less than standard may incu	r Rush Charges.
CLIENT SAMPLE	SAMPLING	7	101-11 10-11 10-11		12									MATRIX	# OF	LOCATION /	NCA
IDENTIFICATION	DATE/TIME	30	162	n-ta-	to to									(W, S, O)	CONT.	COMMENTS	WO ID
	alalar and		/ X	X	\checkmark									5	~		61
1 5B-4R-5.5	7/21/05 074	-1-	\mathbf{Y}												- /		02
2 5B-4R-10	7/21/05 0750		$4\times$	X	X									S	7		B
3 SB-4R-15	7/2/05 0805		$\langle X \rangle$	X	X									S	7		04
4 SB-4R-20	7/21/05 0810		$4 \times$	X	X									5	7		05
58-5R-5	7/21/05 08	ys ×	$\langle \vee$	X	\times									S	7		04
6 SB-5R-10	7/21/05 090			X	\times									S	7		07
7 SB-5R-15	7/21/05 091	5 >	$\langle \times \rangle$	X	\times									2	7		08
8 SB-5R-20	7/21/05 093	ο×	X	X	X				· ·					S	7		09
. 5000-	tota on			X	×												
	10100				<u>K</u>			DECE	VED BY		4		+	<u> </u>			
RELEASED BY: PRINT NAME: Jena	Seede FIRM:	De	Ha		DATE: TIME:	/-2 0	,2-05 840		NAME:	~	th	u C	10 m	ble FIRM:	NM	DATE TIME	1-4-0
RELEASED BY:					DATE:			RECE	VED BY	: :	/	/		-		DATE]:
PRINT NAME:	FIRM:				TIME:			PRINT	NAME:					FIRM:		TIMI	:
ADDITIONAL REMARKS: US	e silica gel	cle	221	up	$\overline{\mathbb{W}}$	ith	NU	TPH	+D	<u>k.</u>						темр: 5.9°	PAGE OF
																wo	

. 1

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-9508 11115 E Montgomery Suite B, Spokane, WA 99206-4776 9405 SW Nimbus Ave, Beaverton, OR 97008-7132 20332 Empire Ave Suite F-1, Bend, OR 99701-5711 3209 Denali St, Anchorage, AK 99503-4030

FAX 420-9210 FAX 924-9290 FAX 906-9210 FAX 382-7588 FAX 334-9210	
FAX 334-9210	
	FAX 924-9290 FAX 906-9210 FAX 382-7588

,

	CH	AIN O	F C	CUS	TO	DY	RE	PO]	RT							Work O	rder #	: B5C1052	2
CLIENT: Cop REPORT TO: Delta Sa ADDRESS: GOOL IS PHONE: G2C BEC.31	NU AJENE						DICE Lipp 1144	Eck Eas	ert stlai	/ C.	moco re E 18109	Phi	Unos			Т	URNA in	ROUND REQUEST Business Days * Inorganic Analyses 4 3 2 1	
PHONE 425 81.3	28 AX. 425	869	- 19	592		4					5201							Hydrocarbon Analyses	
PROJECT NAME:	I NORC					1	т. Т.	PRES	ERVA	TIVI	3					X		3 2 1 <1	
PROJECT NUMBER:		3-1		226		REQUES			STED ANALYSES						THER	Specify: less than standard may incur Rush	Charges		
SAMPLED BY: JM			Š	Xe	÷	Ă										MATRIX	# OF	LOCATION /	NCA
CLIENT SAMPLE IDENTIFICATION	SAMPL DATE/I		35		3	32										(W, S, O)	CONT.		WO ID
5B-4R-3	7-20-05	14:45	X	X	X	X	X									S	7		01
												2							
2			1		+	+	<u> </u>												
3				+					<u> .</u>										24
4				<u> </u>				<u> </u>	<u> </u>	<u> </u>					-			+	
5			4		<u> </u>		<u> </u>			 		ļ							
6																			· ·
· ·																		3.4	
7		<u></u> 			+	+	+			1								4 20	
8				+			- N	<u> </u>	-	+-	• • • • • • • • • • • • • • • • • • •		+-		+-		R		
9			-		+	<u></u>							-	+	-		1997 - 1997 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1		· · ·
10					- 44 L	n n Alfred	•						14	R	1,				A
RELEASED BY: JONA	feeds	FIRM:	De	lto		DAT TIM	e: 7 e: 0	-27	2-05)		EIVED B		a	hyl	no	chle FIRM	1: NC		5:40
RELEASED BY:						DAT					EIVED E		•			FIRM	(:	DATE: TIME:	
PRINT NAME: ADDITIONAL REMARKS:	<u> </u>	FIRM:				TIM		<u>~</u>	<u>(</u> *					<u>an an</u> Said				TEMP:	
COC REV 1/03	NWTP	H-Dx	Ľ	14	571	i ca	3	2	de	an	up							5.9 PAG	E_OF
				٩							•			,				vo	

, s.¹⁹

Seattle	11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210
Spokane	East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290
Portland	9405 SW Nimbus Avenue, Beaverton, OR 97008-7132
	503.906.9200 fax 503.906.9210
Bend	20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588
Anchorage	2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

01 August 2005

Tena Seeds Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 RE: 600 Westlake

Enclosed are the results of analyses for samples received by the laboratory on 07/22/05 16:07. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Abul The

Robert Greer Project Manager

Delta EnvironmentalProject: 600 Westlake4006 148th Ave NEProject Number: WA255-3513-1Redmond, WA/USA 98052Project Manager: Tena Seeds

Reported: 08/01/05 13:41

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-54R-5	B5G0525-01	Soil	07/22/05 07:15	07/22/05 16:07
MW-54R-10	B5G0525-02	Soil	07/22/05 07:25	07/22/05 16:07
MW-54R-15	B5G0525-03	Soil	07/22/05 07:35	07/22/05 16:07
MW-54R-20	B5G0525-04	Soil	07/22/05 07:45	07/22/05 16:07
SB-1R-5	B5G0525-05	Soil	07/22/05 08:40	07/22/05 16:07
SB-1R-10	B5G0525-06	Soil	07/22/05 08:50	07/22/05 16:07
SB-1R-15	B5G0525-07	Soil	07/22/05 09:00	07/22/05 16:07
SB-1R-20	B5G0525-08	Soil	07/22/05 09:20	07/22/05 16:07

North Creek Analytical - Bothell

Robert Greer, Project Manager

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Delta EnvironmentalProject:600 Westlake4006 148th Ave NEProject Number:WA255-3513-1Reported:Redmond, WA/USA 98052Project Manager:Tena Seeds08/01/05 13:41

Volatile Petroleum Products by NWTPH-Gx North Creek Analytical - Bothell

		Reporting	-						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-54R-5 (B5G0525-01) Soil	Sampled: 07/22/05	07:15 Rece	ived: 07/22/(5 16:07					
Gasoline Range Hydrocarbons	15.9	4.12	mg/kg dry	1	5G26023	07/26/05	07/26/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	81.6 %	50-150			"	"	"	"	
MW-54R-10 (B5G0525-02) Soil	Sampled: 07/22/05	5 07:25 Rec	eived: 07/22	/05 16:07					
Gasoline Range Hydrocarbons	15.1	3.59	mg/kg dry	1	5G26023	07/26/05	07/26/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	100 %	50-150			"	"	"	"	
MW-54R-15 (B5G0525-03) Soil	Sampled: 07/22/05	5 07:35 Rec	eived: 07/22	/05 16:07					
Gasoline Range Hydrocarbons	ND	5.98	mg/kg dry	1	5G26023	07/26/05	07/26/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	81.3 %	50-150			"	"	"	"	
MW-54R-20 (B5G0525-04) Soil	Sampled: 07/22/05	5 07:45 Rec	eived: 07/22	/05 16:07					
Gasoline Range Hydrocarbons	ND	9.98	mg/kg dry	1	5G26023	07/26/05	07/26/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	69.6 %	50-150			"	"	"	"	
SB-1R-5 (B5G0525-05) Soil Sa	mpled: 07/22/05 08	:40 Receive	d: 07/22/05 1	16:07					
Gasoline Range Hydrocarbons	8.39	4.18	mg/kg dry	1	5G26023	07/26/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	79.8 %	50-150			"	"	"	"	
SB-1R-10 (B5G0525-06) Soil S	ampled: 07/22/05 0	8:50 Receiv	ed: 07/22/05	16:07					
Gasoline Range Hydrocarbons	12.6	3.63	mg/kg dry	1	5G26023	07/26/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	93.0 %	50-150			"	"	"	"	
SB-1R-15 (B5G0525-07) Soil S	ampled: 07/22/05 09	9:00 Receiv	ed: 07/22/05	16:07					
Gasoline Range Hydrocarbons	830	10.0	mg/kg dry	1	5G26023	07/26/05	07/27/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	135 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

Project: 600 Westlake Project Number: WA255-3513-1 Project Manager: Tena Seeds

Reported: 08/01/05 13:41

Volatile Petroleum Products by NWTPH-Gx North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1R-20 (B5G0525-08) Soil	Sampled: 07/22/05 09	20 Receiv	ed: 07/22/05	16:07					
Gasoline Range Hydrocarbons	ND	14.9	mg/kg dry	1	5G27014	07/27/05	07/28/05	NWTPH-Gx	
Surrogate: 4-BFB (FID)	74.2 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer, Project Manager

North Creek Analytical, Inc. Environmental Laboratory Network Page 3 of 23

Delta EnvironmentalProject: 600 Westlake4006 148th Ave NEProject Number: WA255-3513-1Reported:Redmond, WA/USA 98052Project Manager: Tena Seeds08/01/05 13:41

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

Angleda	Result	Reporting Limit	Units	Dilution	Datah	Duranad	A	Method	Nata
Analyte	Kesuit	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-54R-5 (B5G0525-01) Soil	Sampled: 07/22/05	07:15 Rece	ived: 07/22/(05 16:07					
Diesel Range Hydrocarbons	59.3	10.0	mg/kg dry	1	5G26062	07/26/05	07/27/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	316	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	65.9 %	50-150			"	"	"	"	
Surrogate: Octacosane	87.9 %	50-150			"	"	"	"	
MW-54R-10 (B5G0525-02) Soil	Sampled: 07/22/05	5 07:25 Rec	eived: 07/22	/05 16:07					
Diesel Range Hydrocarbons	12.9	10.0	mg/kg dry	1	5G26062	07/26/05	07/27/05	NWTPH-Dx	D-08
Lube Oil Range Hydrocarbons	30.0	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	71.7 %	50-150			"	"	"	"	
Surrogate: Octacosane	92.8 %	50-150			"	"	"	"	
MW-54R-15 (B5G0525-03) Soil	Sampled: 07/22/05	5 07:35 Rec	eived: 07/22	/05 16:07					
Diesel Range Hydrocarbons	71.7	10.0	mg/kg dry	1	5G26062	07/26/05	07/27/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	263	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	55.3 %	50-150			"	"	"	"	
Surrogate: Octacosane	76.6 %	50-150			"	"	"	"	
MW-54R-20 (B5G0525-04) Soil	Sampled: 07/22/05	5 07:45 Rec	eived: 07/22	/05 16:07					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	5G26062	07/26/05	07/27/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	70.6 %	50-150			"	"	"	"	
Surrogate: Octacosane	99.1 %	50-150			"	"	"	"	
SB-1R-5 (B5G0525-05) Soil Sa	ampled: 07/22/05 08	:40 Receive	d: 07/22/05 1	16:07					
Diesel Range Hydrocarbons	15.9	10.0	mg/kg dry	1	5G26062	07/26/05	07/27/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	105	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	69.9 %	50-150			"	"	"	"	
Surrogate: Octacosane	91.8 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

Delta EnvironmentalProject:600 Westlake4006 148th Ave NEProject Number:WA255-3513-1Reported:Redmond, WA/USA 98052Project Manager:Tena Seeds08/01/05 13:41

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up North Creek Analytical - Bothell

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1R-10 (B5G0525-06) Soil	Sampled: 07/22/05 08	3:50 Receiv	ed: 07/22/05	16:07					
Diesel Range Hydrocarbons	ND	10.0	mg/kg dry	1	5G26062	07/26/05	07/27/05	NWTPH-Dx	
Lube Oil Range Hydrocarbons	ND	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	68.9 %	50-150			"	"	"	"	
Surrogate: Octacosane	94.0 %	50-150			"	"	"	"	
SB-1R-15 (B5G0525-07) Soil	Sampled: 07/22/05 09	0:00 Receiv	ed: 07/22/05	16:07					
Diesel Range Hydrocarbons	147	10.0	mg/kg dry	1	5G26062	07/26/05	07/27/05	NWTPH-Dx	D-08
Lube Oil Range Hydrocarbons	s 335	25.0	"	"	"	"	"	"	
Surrogate: 2-FBP	75.1 %	50-150			"	"	"	"	
Surrogate: Octacosane	93.8 %	50-150			"	"	"	"	
SB-1R-20 (B5G0525-08) Soil	Sampled: 07/22/05 09	20 Receiv	ed: 07/22/05	16:07					
Diesel Range Hydrocarbons	80.0	26.8	mg/kg dry	1	5G26062	07/26/05	07/28/05	NWTPH-Dx	D-09
Lube Oil Range Hydrocarbons	s 227	67.0	"	"	"	"	"	"	
Surrogate: 2-FBP	67.9 %	50-150			"	"	"	"	
Surrogate: Octacosane	87.1 %	50-150			"	"	"	"	

North Creek Analytical - Bothell

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: 600 Westlake Project Number: WA255-3513-1

Project Manager: Tena Seeds

Reported: 08/01/05 13:41

Total Metals by EPA 6000/7000 Series Methods North Creek Analytical - Bothell

			v						
		eporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-54R-5 (B5G0525-01) Soil	Sampled: 07/22/05 07:1	15 Rece	ived: 07/22/()5 16:07					
Lead	120	0.500	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	
MW-54R-10 (B5G0525-02) So	il Sampled: 07/22/05 07	:25 Rec	eived: 07/22	/05 16:07					
Lead	24.4	0.500	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	
MW-54R-15 (B5G0525-03) So	il Sampled: 07/22/05 07	:35 Rec	eived: 07/22	/05 16:07					
Lead	43.2	0.397	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	
MW-54R-20 (B5G0525-04) So	il Sampled: 07/22/05 07	:45 Rec	eived: 07/22	/05 16:07					
Lead	2.31	0.311	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	
SB-1R-5 (B5G0525-05) Soil	Sampled: 07/22/05 08:40	Receive	d: 07/22/05 1	16:07					
Lead	67.6	0.365	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	
SB-1R-10 (B5G0525-06) Soil	Sampled: 07/22/05 08:50	Receiv	ed: 07/22/05	16:07					
Lead	75.4	0.500	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	
SB-1R-15 (B5G0525-07) Soil	Sampled: 07/22/05 09:00	Receiv	ed: 07/22/05	16:07					
Lead	22.3	0.307	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	
SB-1R-20 (B5G0525-08) Soil	Sampled: 07/22/05 09:20	Receiv	ed: 07/22/05	16:07					
Lead	26.4	0.859	mg/kg dry	1	5G26032	07/26/05	07/28/05	EPA 6020	

North Creek Analytical - Bothell

Delta Environmental	Project	600 Westlake	
4006 148th Ave NE	Project Number	WA255-3513-1	Reported:
Redmond, WA/USA 98052	Project Manager	Tena Seeds	08/01/05 13:41

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-54R-5 (B5G0525-01) Soil	Sampled: 07/22/05	07:15 Rece	ived: 07/22/(5 16:07					
Benzene	0.00570	0.00150	mg/kg dry	1	5G26038	07/26/05	07/26/05	EPA 8260B	
Ethylbenzene	0.00485	0.00400	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00100	"	"	"	"	"	"	
Naphthalene	ND	0.00500	"	"	"	"	"	"	
Toluene	0.00584	0.00150	"	"	"	"	"	"	
Total Xylenes	0.0236	0.0100	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	109 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	105 %	60-140			"	"	"	"	
Surrogate: 4-BFB	125 %	60-140			"	"	"	"	
MW-54R-10 (B5G0525-02) Soil	Sampled: 07/22/05	5 07:25 Rec	eived: 07/22	/05 16:07					
Benzene	ND	0.00167	mg/kg dry	1	5G26038	07/26/05	07/26/05	EPA 8260B	
Ethylbenzene	ND	0.00446	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00112	"	"	"	"	"	"	
Naphthalene	ND	0.00558	"	"	"	"	"	"	
Toluene	0.00173	0.00167	"	"	"	"	"	"	
Total Xylenes	ND	0.0112	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	113 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	94.2 %	60-140			"	"	"	"	
Surrogate: 4-BFB	105 %	60-140			"	"	"	"	
MW-54R-15 (B5G0525-03) Soil	Sampled: 07/22/05	5 07:35 Rec	eived: 07/22	/05 16:07					
Benzene	0.00963	0.00682	mg/kg dry	1	5G27011	07/27/05	07/27/05	EPA 8260B	
Ethylbenzene	ND	0.0182	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00455	"	"	"	"	"	"	
Naphthalene	ND	0.0227	"	"	"	"	"	"	A-02
Toluene	0.00972	0.00682	"	"	"	"	"	"	
Total Xylenes	ND	0.0455	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	124 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	95.0 %	60-140			"	"	"	"	
Surrogate: 4-BFB	106 %	60-140			"	"	"	"	A-02a

North Creek Analytical - Bothell

Delta	Environmental	Project:	600 Westlake	
4006 1	48th Ave NE	Project Number:	WA255-3513-1	Reported:
Redmo	ond, WA/USA 98052	Project Manager:	Tena Seeds	08/01/05 13:41

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-54R-20 (B5G0525-04) Soil	Sampled: 07/22/05	5 07:45 Rec	eived: 07/22	/05 16:07					
Benzene	ND	0.00150	mg/kg dry	1	5G26038	07/26/05	07/26/05	EPA 8260B	
Ethylbenzene	ND	0.00400	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.00100	"	"	"	"	"	"	
Naphthalene	ND	0.00500	"	"	"	"	"	"	
Toluene	0.00185	0.00150	"	"	"	"	"	"	
Total Xylenes	ND	0.0100	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	106 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	92.3 %	60-140			"	"	"	"	
Surrogate: 4-BFB	104 %	60-140			"	"	"	"	
SB-1R-5 (B5G0525-05) Soil Sa	ampled: 07/22/05 08:	40 Receive	d: 07/22/05 1	l 6:0 7					
Benzene	0.00330	0.00111	mg/kg dry	1	5G26038	07/26/05	07/26/05	EPA 8260B	
Ethylbenzene	ND	0.00297	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.000742	"	"	"	"	"	"	
Naphthalene	ND	0.00371	"	"	"	"	"	"	
Toluene	0.00154	0.00111	"	"	"	"	"	"	
Total Xylenes	ND	0.00742	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	115 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	97.2 %	60-140			"	"	"	"	
Surrogate: 4-BFB	108 %	60-140			"	"	"	"	
<u>SB-1R-10 (B5G0525-06) Soil</u>	Sampled: 07/22/05 08	8:50 Receiv	ed: 07/22/05	16:07					
Benzene	ND	0.000927	mg/kg dry	1	5G26038	07/26/05	07/26/05	EPA 8260B	
Ethylbenzene	ND	0.00247	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.000618	"	"	"	"	"	"	
Naphthalene	ND	0.00309	"	"	"	"	"	"	
Toluene	0.00119	0.000927	"	"	"	"	"	"	
Total Xylenes	ND	0.00618	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	110 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	94.9 %	60-140			"	"	"	"	
Surrogate: 4-BFB	105 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

Delta Environmental	Project: 600 Westlake	
4006 148th Ave NE	Project Number: WA255-3513-1	Reported:
Redmond, WA/USA 98052	Project Manager: Tena Seeds	08/01/05 13:41

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1R-20 (B5G0525-08) Soil	Sampled: 07/22/05 09):20 Receiv	ed: 07/22/05	16:07					
Benzene	0.0184	0.00323	mg/kg dry	1	5G26038	07/26/05	07/26/05	EPA 8260B	
Ethylbenzene	0.0743	0.00862	"	"	"	"	"	"	
Methyl tert-butyl ether	0.00616	0.00216	"	"	"	"	"	"	
Naphthalene	ND	0.0108	"	"	"	"	"	"	
Toluene	0.0782	0.00323	"	"	"	"	"	"	
Total Xylenes	0.393	0.0216	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	105 %	60-140			"	"	"	"	
Surrogate: Toluene-d8	97.0 %	60-140			"	"	"	"	
Surrogate: 4-BFB	107 %	60-140			"	"	"	"	

North Creek Analytical - Bothell

Robert Greer, Project Manager

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

Project Number: WA255-3513-1 Project Manager: Tena Seeds

Reported: 08/01/05 13:41

Volatile Organic Compounds (Special List) by EPA Method 8260B North Creek Analytical - Bothell

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SB-1R-15 (B5G0525-07) Soil	Sampled: 07/22/05 09:	00 Receiv	ed: 07/22/05	16:07					
Benzene	ND	0.100	mg/kg dry	1	5G27071	07/27/05	07/27/05	EPA 8260B	
Ethylbenzene	1.13	0.100	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	0.500	"	"	"	"	"	"	
Naphthalene	0.263	0.100	"	"	"	"	"	"	
Toluene	0.995	0.100	"	"	"	"	"	"	
Total Xylenes	5.66	0.300	"	"	"	"	"	"	
Surrogate: 1,2-DCA-d4	106 %	70-130			"	"	"	"	
Surrogate: Toluene-d8	117 %	70-130			"	"	"	"	
Surrogate: 4-BFB	128 %	70-130			"	"	"	"	

North Creek Analytical - Bothell

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052 Project: 600 Westlake Project Number: WA255-3513-1

Reported: 08/01/05 13:41

Physical Parameters by APHA/ASTM/EPA Methods North Creek Analytical - Bothell

Project Manager: Tena Seeds

				•					
Analyte	Re Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-54R-5 (B5G0525-01) Soil	Sampled: 07/22/05 07:1	5 Recei	ved: 07/22/	05 16:07					
Dry Weight	92.4	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
MW-54R-10 (B5G0525-02) So	il Sampled: 07/22/05 07:	25 Rece	eived: 07/22	2/05 16:07					
Dry Weight	84.1	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
MW-54R-15 (B5G0525-03) So	il Sampled: 07/22/05 07:	35 Rece	eived: 07/22	2/05 16:07					
Dry Weight	53.8	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
MW-54R-20 (B5G0525-04) So	il Sampled: 07/22/05 07:	45 Rece	eived: 07/22	2/05 16:07					
Dry Weight	77.7	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
SB-1R-5 (B5G0525-05) Soil	Sampled: 07/22/05 08:40	Received	1: 07/22/05	16:07					
Dry Weight	83.1	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
SB-1R-10 (B5G0525-06) Soil	Sampled: 07/22/05 08:50	Receive	ed: 07/22/0	5 16:07					
Dry Weight	89.5	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
SB-1R-15 (B5G0525-07) Soil	Sampled: 07/22/05 09:00	Receive	ed: 07/22/0	5 16:07					
Dry Weight	64.4	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	
SB-1R-20 (B5G0525-08) Soil	Sampled: 07/22/05 09:20	Receive	ed: 07/22/0	5 16:07					
Dry Weight	37.3	1.00	%	1	5G26009	07/26/05	07/27/05	BSOPSPL003R08	

North Creek Analytical - Bothell

Delta Environmental	Project: 600 Westlake	
4006 148th Ave NE	Project Number: WA255-3513-1	Reported:
Redmond, WA/USA 98052	Project Manager: Tena Seeds	08/01/05 13:41

Volatile Petroleum Products by NWTPH-Gx - Quality Control North Creek Analytical - Bothell

		11	or the Cr	ccix i tinaiy	ucul I	Jounen					
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G26023:	Prepared 07/26/05	Using E	PA 5030B	(MeOH)							
Blank (5G26023-Bl	LK1)										
Gasoline Range Hydro	carbons	ND	5.00	mg/kg							
Surrogate: 4-BFB (FIL))	2.28		"	3.00		76.0	50-150			
LCS (5G26023-BS1	l)										
Gasoline Range Hydro	carbons	54.5	5.00	mg/kg	50.0		109	75-125			
Surrogate: 4-BFB (FIL))	2.82		"	3.00		94.0	50-150			
LCS Dup (5G26023	3-BSD1)										
Gasoline Range Hydro	carbons	57.3	5.00	mg/kg	50.0		115	75-125	5.01	25	
Surrogate: 4-BFB (FIL))	2.99		"	3.00		99.7	50-150			
Matrix Spike (5G2	6023-MS1)					Source: E	B5G0522-	04			
Gasoline Range Hydro	carbons	164	8.59	mg/kg dry	133	3.97	120	42-125			
Surrogate: 4-BFB (FIL))	7.44		"	8.00		93.0	50-150			
Matrix Spike Dup ((5G26023-MSD1)					Source: E	B5G0522-	04			
Gasoline Range Hydro	carbons	163	8.59	mg/kg dry	133	3.97	120	42-125	0.612	40	
Surrogate: 4-BFB (FIL))	7.19		"	8.00		89.9	50-150			
Batch 5G27014:	Prepared 07/27/05	Using E	PA 5030B	(MeOH)							
Blank (5G27014-Bl	LK1)										
Gasoline Range Hydro	carbons	ND	5.00	mg/kg							
Surrogate: 4-BFB (FIL))	2.32		"	3.00		77.3	50-150			
LCS (5G27014-BS1	l)										
Gasoline Range Hydro	carbons	56.8	5.00	mg/kg	50.0		114	75-125			
Surrogate: 4-BFB (FIL))	2.96		"	3.00		98.7	50-150			

North Creek Analytical - Bothell

Delta EnvironmentalProject:600 Westlake4006 148th Ave NEProject Number:WA255-3513-1Reported:Redmond, WA/USA 98052Project Manager:Tena Seeds08/01/05 13:41

Volatile Petroleum Products by NWTPH-Gx - Quality Control North Creek Analytical - Bothell

Result Using I	Reporting Limit EPA 5030B	Units B (MeOH)	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			Level	Result	%REC	Limits	RPD	Limit	Notes
Using I	EPA 5030B	6 (MeOH)							
54.6	5.00	mg/kg	50.0		109	75-125	3.95	25	
2.95		"	3.00		98.3	50-150			
				Source: H	85G0533-0	01			
104	7.76	mg/kg dry	91.3	2.91	111	42-125			
5.51		"	5.48		101	50-150			
				Source: H	85G0533-(01			
108	7.76	mg/kg dry	91.3	2.91	115	42-125	3.77	40	
5.18		"	5.48		94.5	50-150			
	2.95 104 5.51 108	2.95 104 7.76 5.51 108 7.76	2.95 " 104 7.76 mg/kg dry 5.51 " 108 7.76 mg/kg dry	2.95 " 3.00 104 7.76 mg/kg dry 91.3 5.51 " 5.48 108 7.76 mg/kg dry 91.3	2.95 " 3.00 Source: E 104 7.76 mg/kg dry 91.3 2.91 5.51 " 5.48 Source: E 108 7.76 mg/kg dry 91.3 2.91	2.95 " 3.00 98.3 Source: B5G0533-1 104 7.76 mg/kg dry 91.3 2.91 111 5.51 " 5.48 101 Source: B5G0533-1 108 7.76 mg/kg dry 91.3 2.91 115	2.95 " 3.00 98.3 50-150 Source: B5G0533-01 104 7.76 mg/kg dry 91.3 2.91 111 42-125 5.51 " 5.48 101 50-150 Source: B5G0533-01 108 7.76 mg/kg dry 91.3 2.91 115 42-125	2.95 " 3.00 98.3 50-150 Source: B5G0533-01 104 7.76 mg/kg dry 91.3 2.91 111 42-125 5.51 " 5.48 101 50-150 Source: B5G0533-01 108 7.76 mg/kg dry 91.3 2.91 115 42-125 3.77	2.95 " 3.00 98.3 50-150 Source: B5G0533-01 104 7.76 mg/kg dry 91.3 2.91 111 42-125 5.51 " 5.48 101 50-150 Source: B5G0533-01 Source: B5G0533-01 101 5.51 " 5.48 101 50-150 Source: B5G0533-01 108 7.76 mg/kg dry 91.3 2.91 115 42-125 3.77 40

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer, Project Manager

4006 148th Ave NE

Redmond, WA/USA 98052

08/01/05 13:41

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

	1		CK I Mary	iicai I	Jounen					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G26062: Prepared 07/26/05	Using 1	EPA 3550B								
Blank (5G26062-BLK1)										
Diesel Range Hydrocarbons	ND	10.0	mg/kg							
Lube Oil Range Hydrocarbons	ND	25.0	"							
Surrogate: 2-FBP	6.45		"	8.33		77.4	50-150			
Surrogate: Octacosane	7.35		"	8.33		88.2	50-150			
LCS (5G26062-BS1)										
Diesel Range Hydrocarbons	55.4	10.0	mg/kg	66.7		83.1	61-120			
Surrogate: 2-FBP	7.24		"	8.33		86.9	50-150			
LCS Dup (5G26062-BSD1)										
Diesel Range Hydrocarbons	56.0	10.0	mg/kg	66.7		84.0	61-120	1.08	40	
Surrogate: 2-FBP	7.14		"	8.33		85.7	50-150			
Duplicate (5G26062-DUP1)					Source: l	B5G0525-	01			
Diesel Range Hydrocarbons	112	20.0	mg/kg dry		59.3			61.5	50	Q-0
Lube Oil Range Hydrocarbons	604	50.0	"		316			62.6	50	Q-0
Surrogate: 2-FBP	5.19		"	8.90		58.3	50-150			
Surrogate: Octacosane	6.61		"	8.90		74.3	50-150			

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

Project Number: WA255-3513-1 Project Manager: Tena Seeds

08/01/05 13:41

Total Metals by EPA 6000/7000 Series Methods - Quality Control North Creek Analytical - Bothell

		111		cent i inany	iicui i	Jounen					
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G26032:	Prepared 07/26/05	Using E	PA 3050E	8							
Blank (5G26032-Bl	LK1)										
Lead		ND	0.500	mg/kg							
LCS (5G26032-BS1	l)										
Lead		38.8	0.500	mg/kg	40.8		95.1	80-120			
LCS Dup (5G26032	2-BSD1)										
Lead		39.6	0.500	mg/kg	41.7		95.0	80-120	2.04	20	
Matrix Spike (5G2	6032-MS1)					Source: H	35G0522-	01			
Lead		113	0.420	mg/kg dry	39.5	128	-38.0	29-162			Q-02
Matrix Spike Dup ((5G26032-MSD1)					Source: H	35G0522-	01			
Lead		124	0.500	mg/kg dry	47.0	128	-8.51	29-162	9.28	30	Q-02
Post Spike (5G2603	32-PS1)					Source: H	B5G0522-	01			
Lead		0.284		ug/ml	0.100	0.207	77.0	75-125			

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

08/01/05 13:41

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G26038: Prepared 07/26/05	Using E	PA 5035								
Blank (5G26038-BLK1)										
Acetone	ND	0.0300	mg/kg							
Benzene	ND	0.00150	"							
Bromobenzene	ND	0.00500	"							
Bromochloromethane	ND	0.00500	"							
Bromodichloromethane	ND	0.00500	"							
Bromoform	ND	0.00500	"							
Bromomethane	ND	0.0100	"							
2-Butanone	ND	0.0150	"							
n-Butylbenzene	ND	0.00500	"							
sec-Butylbenzene	ND	0.00500	"							
tert-Butylbenzene	ND	0.00500	"							
Carbon disulfide	ND	0.00300	"							
Carbon tetrachloride	ND	0.00500	"							
Chlorobenzene	ND	0.00200	"							
Chloroethane	ND	0.00500	"							
Chloroform	ND	0.00250	"							
Chloromethane	ND	0.0100	"							
2-Chlorotoluene	ND	0.00500	"							
4-Chlorotoluene	ND	0.00500	"							
Dibromochloromethane	ND	0.00500	"							
1,2-Dibromo-3-chloropropane	ND	0.0100	"							
1,2-Dibromoethane (EDB)	ND	0.00500	"							
Dibromomethane	ND	0.00500	"							
1,2-Dichlorobenzene	ND	0.00500	"							
1,3-Dichlorobenzene	ND	0.00500	"							
1,4-Dichlorobenzene	ND	0.00500	"							
Dichlorodifluoromethane	ND	0.00500	"							
1,1-Dichloroethane	ND	0.00200	"							
1,2-Dichloroethane	ND	0.00125	"							
1,1-Dichloroethene	ND	0.00300	"							
cis-1,2-Dichloroethene	ND	0.00300	"							
trans-1,2-Dichloroethene	ND	0.00250	"							
1,2-Dichloropropane	ND	0.00500	"							
1,3-Dichloropropane	ND	0.00500	"							
2,2-Dichloropropane	ND	0.0100	"							

North Creek Analytical - Bothell

Robert Greer, Project Manager

4006 148th Ave NE

Redmond, WA/USA 98052

08/01/05 13:41

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

A 1	Reporting Spike Source %REC RPD													
Analyte		Result	Limit	Units	Level	Source Result	%REC	%REC Limits	RPD	Limit	Notes			
Batch 5G26038:	Prepared 07/26/05	Using F	CPA 5035											
Blank (5G26038-BLH		comg L												
1,1-Dichloropropene	()	ND	0.00500	mg/kg										
cis-1,3-Dichloropropene		ND	0.00500	mg/kg										
trans-1,3-Dichloropropen	9	ND	0.00125	"										
Ethylbenzene	c	ND	0.00400	"										
Hexachlorobutadiene		ND	0.00500											
Methyl tert-butyl ether		ND	0.00100											
2-Hexanone		ND	0.0200	"										
Isopropylbenzene		ND	0.00500	"										
p-Isopropyltoluene		ND	0.00500	"										
4-Methyl-2-pentanone		ND	0.0200	"										
Methylene chloride		0.00708	0.00350	"										
Naphthalene		ND	0.00500	"										
n-Propylbenzene		ND	0.00500	"										
Styrene		ND	0.00100	"										
1,2,3-Trichlorobenzene		ND	0.00500	"										
1,2,4-Trichlorobenzene		ND	0.00500	"										
1,1,1,2-Tetrachloroethan	2	ND	0.00500	"										
1,1,2,2-Tetrachloroethan	2	ND	0.00500	"										
Tetrachloroethene		ND	0.00200	"										
Toluene		ND	0.00150	"										
1,1,1-Trichloroethane		ND	0.00250	"										
1,1,2-Trichloroethane		ND	0.00125	"										
Trichloroethene		ND	0.00250	"										
Trichlorofluoromethane		ND	0.00500	"										
1,2,3-Trichloropropane		ND	0.00500	"										
1,2,4-Trimethylbenzene		ND	0.00500	"										
1,3,5-Trimethylbenzene		ND	0.00500	"										
Vinyl chloride		ND	0.00250	"										
Total Xylenes		ND	0.0100	"										
Surrogate: 1,2-DCA-d4		0.0498		"	0.0400		124	60-140						
Surrogate: Toluene-d8		0.0376		"	0.0400		94.0	60-140						
Surrogate: 4-BFB		0.0409		"	0.0400		102	60-140						

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

08/01/05 13:41

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

Reporting Spike Source %REC RPD													
Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Anaryte		Result	Lillit	Onits	Level	Result	70KLC	Lillits	КID	Linit	Notes		
Batch 5G26038: 1	Prepared 07/26/05	Using E	CPA 5035										
LCS (5G26038-BS1)													
Acetone		0.477	0.0300	mg/kg	0.400		119	70-130					
Benzene		0.0389	0.00150	"	0.0400		97.2	70-130					
2-Butanone		0.515	0.0150	"	0.400		129	70-130					
Carbon disulfide		0.0376	0.00300	"	0.0400		94.0	70-130					
Chlorobenzene		0.0405	0.00200	"	0.0400		101	70-130					
1,1-Dichloroethane		0.0413	0.00200	"	0.0400		103	70-130					
1,1-Dichloroethene		0.0353	0.00300	"	0.0400		88.3	70-130					
cis-1,2-Dichloroethene		0.0416	0.00300	"	0.0400		104	70-130					
Ethylbenzene		0.0383	0.00400	"	0.0400		95.8	70-130					
Hexachlorobutadiene		0.0368	0.00500	"	0.0400		92.0	70-130					
Methyl tert-butyl ether		0.0428	0.00100	"	0.0400		107	70-130					
4-Methyl-2-pentanone		0.414	0.0200	"	0.400		104	70-130					
Naphthalene		0.0442	0.00500	"	0.0400		110	70-130					
Fetrachloroethene		0.0391	0.00200	"	0.0400		97.8	70-130					
Foluene		0.0371	0.00150	"	0.0400		92.8	70-130					
1,1,1-Trichloroethane		0.0415	0.00250	"	0.0400		104	70-130					
Trichloroethene		0.0354	0.00250	"	0.0400		88.5	70-130					
Fotal Xylenes		0.115	0.0100	"	0.120		95.8	70-130					
Surrogate: 1,2-DCA-d4		0.0913		"	0.0800		114	60-140					
Surrogate: Toluene-d8		0.0808		"	0.0800		101	60-140					
Surrogate: 4-BFB		0.0811		"	0.0800		101	60-140					
LCS Dup (5G26038-B	SD1)												
Acetone		0.385	0.0300	mg/kg	0.400		96.2	70-130	21.3	30			
Benzene		0.0404	0.00150	"	0.0400		101	70-130	3.78	30			
2-Butanone		0.424	0.0150	"	0.400		106	70-130	19.4	30			
Carbon disulfide		0.0390	0.00300	"	0.0400		97.5	70-130	3.66	30			
Chlorobenzene		0.0418	0.00200	"	0.0400		104	70-130	3.16	30			
,1-Dichloroethane		0.0423	0.00200	"	0.0400		106	70-130	2.39	30			
,1-Dichloroethene		0.0379	0.00300	"	0.0400		94.8	70-130	7.10	30			
cis-1,2-Dichloroethene		0.0427	0.00300	"	0.0400		107	70-130	2.61	30			
Ethylbenzene		0.0407	0.00400	"	0.0400		102	70-130	6.08	30			
Hexachlorobutadiene		0.0403	0.00500	"	0.0400		101	70-130	9.08	30			
Methyl tert-butyl ether		0.0378	0.00100	"	0.0400		94.5	70-130	12.4	30			
1-Methyl-2-pentanone		0.400	0.0200		0.400		100	70-130	3.44	30			

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052

08/01/05 13:41

Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control North Creek Analytical - Bothell

Project Manager: Tena Seeds

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G26038:	Prepared 07/26/05	Using E	PA 5035								
LCS Dup (5G26038-	BSD1)										
Naphthalene		0.0404	0.00500	mg/kg	0.0400		101	70-130	8.98	30	
Tetrachloroethene		0.0418	0.00200	"	0.0400		104	70-130	6.67	30	
Toluene		0.0402	0.00150	"	0.0400		100	70-130	8.02	30	
1,1,1-Trichloroethane		0.0430	0.00250	"	0.0400		108	70-130	3.55	30	
Trichloroethene		0.0408	0.00250	"	0.0400		102	70-130	14.2	30	
Total Xylenes		0.122	0.0100	"	0.120		102	70-130	5.91	30	
Surrogate: 1,2-DCA-d4		0.0958		"	0.0800		120	60-140			
Surrogate: Toluene-d8		0.0919		"	0.0800		115	60-140			
Surrogate: 4-BFB		0.0821		"	0.0800		103	60-140			

Batch 5G27011: Prepared 07/27/05 Using EPA 5035

Benzene ND 0.00150 mg/kg Ethylbenzene ND 0.00400 " Methyl tert-butyl ether ND 0.00100 " Naphthalene ND 0.00500 " Toluene ND 0.00100 " Total Xylenes ND 0.0100 " Surrogate: 1,2-DCA-d4 0.0441 " 0.0400 92.0 60-140 Surrogate: Toluene-d8 0.0368 " 0.0400 92.0 60-140 Surrogate: 4-BFB 0.0398 " 0.0400 99.5 60-140 Surrogate: 4-BFB 0.0398 " 0.0400 99.5 60-140 LCS (5G27011-BS1)
Methyl tert-butyl ether ND 0.00100 " Naphthalene ND 0.00500 " Toluene ND 0.00150 " Total Xylenes ND 0.0100 " Surrogate: 1,2-DCA-d4 0.0441 " 0.0400 110 60-140 Surrogate: Toluene-d8 0.0368 " 0.0400 92.0 60-140 Surrogate: 4-BFB 0.0398 " 0.0400 92.5 60-140 Surrogate: 4-BFB 0.0417 0.0300 mg/kg 0.400 104 70-130 Benzene 0.0417 0.00150 " 0.0400 118 70-130 2-Butanone 0.473 0.0150 " 0.400 107 70-130 Carbon
Nachthyl Chrobityl Chief ND 0.00100 Naphthalene ND 0.00500 " Toluene ND 0.00150 " Total Xylenes ND 0.0100 " Surrogate: 1,2-DCA-d4 0.0441 " 0.0400 110 60-140 Surrogate: Toluene-d8 0.0368 " 0.0400 92.0 60-140 Surrogate: 4-BFB 0.0398 " 0.0400 99.5 60-140 LCS (5G27011-BS1) " 0.0400 104 70-130 Benzene 0.0417 0.0300 mg/kg 0.400 104 70-130 2-Butanone 0.473 0.0150 " 0.400 118 70-130 Carbon disulfide 0.0429 0.0300 " 0.0400 107 70-130 Chlorobenzene 0.0423 0.0200 " 0.0400 106 70-130
Toluene ND 0.00150 " Total Xylenes ND 0.0100 " Surrogate: 1,2-DCA-d4 0.0441 " 0.0400 110 60-140 Surrogate: Toluene-d8 0.0368 " 0.0400 92.0 60-140 Surrogate: 4-BFB 0.0398 " 0.0400 99.5 60-140 LCS (5G27011-BS1) Concession ND 0.0150 " 0.0400 104 70-130 Benzene 0.0417 0.0300 mg/kg 0.400 104 70-130 2-Butanone 0.473 0.0150 " 0.400 118 70-130 Carbon disulfide 0.0429 0.00300 " 0.0400 106 70-130
Total Xylenes ND 0.00150 Surrogate: 1,2-DCA-d4 0.0441 " 0.0400 110 60-140 Surrogate: 1,2-DCA-d4 0.0368 " 0.0400 92.0 60-140 Surrogate: Toluene-d8 0.0368 " 0.0400 99.5 60-140 Surrogate: 4-BFB 0.0398 " 0.0400 99.5 60-140 LCS (5G27011-BS1) Cactone 0.417 0.0300 mg/kg 0.400 104 70-130 Benzene 0.0417 0.00150 " 0.0400 104 70-130 2-Butanone 0.473 0.0150 " 0.400 118 70-130 Carbon disulfide 0.0429 0.00300 " 0.0400 107 70-130 Chlorobenzene 0.0423 0.00200 " 0.0400 106 70-130
TOD TOD TOD TOD Surrogate: 1,2-DCA-d4 0.0441 " 0.0400 110 60-140 Surrogate: Toluene-d8 0.0368 " 0.0400 92.0 60-140 Surrogate: 4-BFB 0.0398 " 0.0400 99.5 60-140 LCS (5G27011-BS1) Acetone 0.417 0.0300 mg/kg 0.400 104 70-130 Benzene 0.0417 0.00150 " 0.0400 104 70-130 2-Butanone 0.473 0.0150 " 0.400 118 70-130 Carbon disulfide 0.0429 0.00300 " 0.0400 107 70-130 Chlorobenzene 0.0423 0.00200 " 0.0400 106 70-130
Surrogate: 1,2-DCA44 0.0447 0.0400 110 00-140 Surrogate: Toluene-d8 0.0368 " 0.0400 92.0 60-140 Surrogate: 4-BFB 0.0398 " 0.0400 99.5 60-140 LCS (5G27011-BS1) Acetone 0.417 0.0300 mg/kg 0.400 104 70-130 Benzene 0.0417 0.00150 " 0.0400 104 70-130 2-Butanone 0.473 0.0150 " 0.400 118 70-130 Carbon disulfide 0.0429 0.00300 " 0.0400 107 70-130 Chlorobenzene 0.0423 0.00200 " 0.0400 106 70-130
Surrogate: 101dene-do 0.0306 0.0400 92.0 00140 Surrogate: 4-BFB 0.0398 " 0.0400 99.5 60-140 LCS (5G27011-BS1) Acetone 0.417 0.0300 mg/kg 0.400 104 70-130 Benzene 0.0417 0.00150 " 0.0400 104 70-130 2-Butanone 0.473 0.0150 " 0.400 118 70-130 Carbon disulfide 0.0429 0.00300 " 0.0400 107 70-130 Chlorobenzene 0.0423 0.00200 " 0.0400 106 70-130
LCS (5G27011-BS1) 0.0417 0.0300 mg/kg 0.400 99.3 600140 Acetone 0.417 0.0300 mg/kg 0.400 104 70-130 Benzene 0.0417 0.00150 " 0.0400 104 70-130 2-Butanone 0.473 0.0150 " 0.400 118 70-130 Carbon disulfide 0.0429 0.00300 " 0.0400 107 70-130 Chlorobenzene 0.0423 0.00200 " 0.0400 106 70-130
Acetone0.4170.0300mg/kg0.40010470-130Benzene0.04170.00150"0.040010470-1302-Butanone0.4730.0150"0.40011870-130Carbon disulfide0.04290.00300"0.040010770-130Chlorobenzene0.04230.00200"0.040010670-130
Benzene0.04170.00150"0.040010470-1302-Butanone0.4730.0150"0.40011870-130Carbon disulfide0.04290.00300"0.040010770-130Chlorobenzene0.04230.00200"0.040010670-130
2-Butanone0.4730.0150"0.40011870-130Carbon disulfide0.04290.00300"0.040010770-130Chlorobenzene0.04230.00200"0.040010670-130
Carbon disulfide0.04290.00300"0.040010770-130Chlorobenzene0.04230.00200"0.040010670-130
Chlorobenzene 0.0423 0.00200 " 0.0400 107 70-150
1,1-Dichloroethane 0.0450 0.00200 " 0.0400 112 70-130
1,1-Dichloroethene 0.0411 0.00300 " 0.0400 103 70-130
cis-1,2-Dichloroethene 0.0450 0.00300 " 0.0400 112 70-130
Ethylbenzene 0.0407 0.00400 " 0.0400 102 70-130
Hexachlorobutadiene 0.0397 0.00500 " 0.0400 99.3 70-130
4-Methyl-2-pentanone 0.385 0.0200 " 0.400 96.2 70-130
Tetrachloroethene 0.0408 0.00200 " 0.0400 102 70-130

North Creek Analytical - Bothell

4006 148th Ave NE

Redmond, WA/USA 98052 Project Manager: Tena Seeds 08/01/05 13:41 Volatile Organic Compounds (Special List) per EPA Method 8260B (Low Soil Method) - Quality Control

		Ν	orth Cre	ek Analy	ytical - B	Bothell					
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G27011:	Prepared 07/27/05	Using E	PA 5035								
LCS (5G27011-BS1)											
Toluene		0.0402	0.00150	mg/kg	0.0400		100	70-130			
1,1,1-Trichloroethane		0.0429	0.00250	"	0.0400		107	70-130			
Trichloroethene		0.0369	0.00250	"	0.0400		92.2	70-130			
Surrogate: 1,2-DCA-d4		0.0817		"	0.0800		102	60-140			
Surrogate: Toluene-d8		0.0824		"	0.0800		103	60-140			
Surrogate: 4-BFB		0.0840		"	0.0800		105	60-140			
LCS Dup (5G27011-B	BSD1)										
Acetone		0.427	0.0300	mg/kg	0.400		107	70-130	2.37	30	
Benzene		0.0399	0.00150	"	0.0400		99.8	70-130	4.41	30	
2-Butanone		0.476	0.0150	"	0.400		119	70-130	0.632	30	
Carbon disulfide		0.0415	0.00300	"	0.0400		104	70-130	3.32	30	
Chlorobenzene		0.0398	0.00200	"	0.0400		99.5	70-130	6.09	30	
1,1-Dichloroethane		0.0433	0.00200	"	0.0400		108	70-130	3.85	30	
1,1-Dichloroethene		0.0399	0.00300	"	0.0400		99.8	70-130	2.96	30	
cis-1,2-Dichloroethene		0.0426	0.00300	"	0.0400		106	70-130	5.48	30	
Ethylbenzene		0.0382	0.00400	"	0.0400		95.5	70-130	6.34	30	
Hexachlorobutadiene		0.0384	0.00500	"	0.0400		96.0	70-130	3.33	30	
4-Methyl-2-pentanone		0.374	0.0200	"	0.400		93.5	70-130	2.90	30	
Tetrachloroethene		0.0356	0.00200	"	0.0400		89.0	70-130	13.6	30	
Toluene		0.0370	0.00150	"	0.0400		92.5	70-130	8.29	30	
1,1,1-Trichloroethane		0.0410	0.00250	"	0.0400		102	70-130	4.53	30	
Trichloroethene		0.0395	0.00250	"	0.0400		98.8	70-130	6.81	30	
Surrogate: 1,2-DCA-d4		0.0644		"	0.0800		80.5	60-140			
Surrogate: Toluene-d8		0.0526		"	0.0800		65.8	60-140			
Surrogate: 4-BFB		0.0616		"	0.0800		77.0	60-140			

North Creek Analytical - Bothell

4006 148th Ave NE	Project Number: WA255-3513-1	Reported:
Redmond, WA/USA 98052	Project Manager: Tena Seeds	08/01/05 13:41

Volatile Organic Compounds (Special List) by EPA Method 8260B - Quality Control North Creek Analytical - Bothell

				CK Mary							
			Reporting	** *	Spike	Source	0/222	%REC	DES	RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G27071:	Prepared 07/27/05	Using EI	PA 5030B	[MeOH]							
Blank (5G27071-BL	K1)										
Benzene		ND	0.100	mg/kg							
Ethylbenzene		ND	0.100	"							
Methyl tert-butyl ether		ND	0.500	"							
Naphthalene		ND	0.100	"							
Toluene		ND	0.100	"							
Total Xylenes		ND	0.300	"							
Surrogate: 1,2-DCA-d4		4.03		"	4.00		101	70-130			
Surrogate: Toluene-d8		4.03		"	4.00		101	70-130			
Surrogate: 4-BFB		3.96		"	4.00		99.0	70-130			
LCS (5G27071-BS1)											
Benzene		2.34	0.100	mg/kg	2.00		117	75-130			
Ethylbenzene		2.17	0.100	"	2.00		108	75-130			
Methyl tert-butyl ether		2.02	0.500	"	2.00		101	75-130			
Naphthalene		2.12	0.100	"	2.00		106	75-130			
Toluene		2.20	0.100	"	2.00		110	75-124			
Total Xylenes		6.60	0.300	"	6.00		110	70-130			
Surrogate: 1,2-DCA-d4		3.74		"	4.00		93.5	70-130			
Surrogate: Toluene-d8		3.74		"	4.00		93.5	70-130			
Surrogate: 4-BFB		3.94		"	4.00		98.5	70-130			
LCS Dup (5G27071-	BSD1)										
Benzene		2.21	0.100	mg/kg	2.00		110	75-130	5.71	20	
Ethylbenzene		2.06	0.100	"	2.00		103	75-130	5.20	20	
Methyl tert-butyl ether		1.98	0.500	"	2.00		99.0	75-130	2.00	20	
Naphthalene		2.03	0.100	"	2.00		102	75-130	4.34	20	
Toluene		2.08	0.100	"	2.00		104	75-124	5.61	20	
Total Xylenes		6.25	0.300	"	6.00		104	70-130	5.45	30	
Surrogate: 1,2-DCA-d4		3.67		"	4.00		91.8	70-130			
Surrogate: Toluene-d8		3.69		"	4.00		92.2	70-130			
Surrogate: 4-BFB		3.84		"	4.00		96.0	70-130			

North Creek Analytical - Bothell

Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

Project Number: WA255-3513-1 Project Manager: Tena Seeds

Reported: 08/01/05 13:41

Physical Parameters by APHA/ASTM/EPA Methods - Quality Control North Creek Analytical - Bothell

				•							
			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5G26009:	Prepared 07/26/05	Using Dr	y Weight								
Blank (5G26009-BI	LK1)										
Dry Weight		100	1.00	%							

Dry Weight

1.00 %

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer, Project Manager

North Creek Analytical, Inc. Page 22 of 23 Environmental Laboratory Network

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210

 Spokane
 11922 E. 1st Avenue, Spokane Valley, WA 99206-5302 509.924.9200 fax 509.924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210

 Pert
 600 Westlake

Delta Environmental	Project:	600 Westlake	
4006 148th Ave NE	Project Number:	WA255-3513-1	Reported:
Redmond, WA/USA 98052	Project Manager:	Tena Seeds	08/01/05 13:41

Notes and Definitions

- A-01 The recovery of the internal standard fell outside of normal acceptance limits and was biased low.
- A-02 The internal standard associated with the analyte fell outside of normal acceptance limits . Review of the associated QC indicates the recovery of the analyte does not represent an out of control situation. The value reported is an estimate.
- A-02a The internal standard associated with the analyte fell outside of normal acceptance limits. The value reported is an estimate.
- D-08 Results in the diesel organics range are primarily due to overlap from a gasoline range product.
- D-09 Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
- Q-02 The spike recovery for this QC sample is outside of NCA established control limits due to sample matrix interference.
- Q-07 The RPD value for this QC sample is above the established control limit. Review of associated QC indicates the high RPD does not represent an out-of-control condition for the batch.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

North Creek Analytical - Bothell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Robert Greer, Project Manager

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-9508 11115 E Montgomery Suite B, Spokane, WA 99206-4776 9405 SW Nimbus Ave, Beaverton, OR 97008-7132 20332 Empire Ave Suite F-1, Bend, OR 99701-5711 3209 Denali St, Anchorage, AK 99503-4030

425-420-9200	FAX 420-9210	凶
509-924-9200 503-906-9200	FAX 924-9290 FAX 906-9210	Н
541-383-9310 907-334-9200	FAX 382-7588 FAX 334-9210	Н

	CHAIN OF CUSTODY REPORT Work Or IENT: Corp INVOICE TO: Kipp & kert TU															rder #	BF	SGDS	525			
CLIENT: Cor							INV	DICE	to: K	lipp E	i Ker	÷								REQUEST		
REPORT TO: Velt Sv	٦J								(e	moci	o thi	lips	-				in Business Days *					
ADDRESS: 400 6 1484 2 e Jmond 1 PHONE: 425-498-7728 PROJECT NAME: 600 6	= Aup	NF.							114	42	257124	(e Au	юĘ				Organic & Inorganic Analyses					
Redmond,	WT	18050	2						52	ATT	TLE	WA	96	3109)							
PHONE: 425-498-772	FAX: Y	125-81	69.18	12			P.O. NUMBER: 1396 DEL 013								STD.	Petroleum	<u> </u>	on Analyses				
PROJECT NAME:	Nestl	ske			r - 7 -		1	PRESERVATIVE									\mathbf{X}		3 2	1 <		
PROJECT NUMBER:				Μ	м Мах	Upr	REQUESTED ANALYSES								STD	THER	a :a					
SAMPLED BY: JMP				×	±8	X	B						T						Specify: less than stand	ard may incur Rush	Charges.	
CLIENT SAMPLE		SAMPLIN	iG	-Ha-C	EST 122	XU.HOL	6 P									Ī	MATRIX	# OF		CATION /	NCA	
IDENTIFICATION	D	DATE/TIM	ИЕ	31-	202	34	tetal										(W, S, O)	CONT.	CO	MMENTS	WO ID	
MW-S4R-S	7.22	-05-0-	7:15	X		$\left \boldsymbol{X} \right $	X										5	7			01	
2 MW-54R-10		0	7:25	X	X	×	X										5	7			02	
3 MW-54R-15		0-	7:35	×	X	X	\times										5	7			03	
1 MW-54R.20		0	7:45	×	×	X	$\boldsymbol{\times}$										5	7			04	
5B-1R-5		09	8:40	\times	X	X	×										5	7			05	
SR-1R-10		0	8:50	×	X	X	X										5	7			100	
5B-1R-15		0	9:00	X	X	X	<									-+	5	7			67	
SB-1R-20	7-22-	05 09	9:20	×	X	\times	\boldsymbol{X}										5	7			0%	
8 2 2 1		<u>}</u>																				
9																						
10 RELEASED BY:	<u>ــــــــــــــــــــــــــــــــــــ</u>	1				L	DATE:	7	-22-	05	RECEI	VEDBY								DATE: 7	1/22/05	
PRINT NAME: JENA	Jee	de)	FIRM:	Del	Ja	ل	TIME:		007	- 2	1	NAME:		AN	u	TZ	FIRM:	NO	A-	TIME:	1017	
RELEASED BY:							DATE:				RECEI	VED BY			1		0			DATE:	407	
PRINT NAME:			FIRM:				TIME:					NAME:					FIRM:			TIME:	4	
ADDITIONAL REMARKS:	Ura silico gal clangua tar 1)11-14H. Dr: 15Tex MTRS and Aboth the BCLOISI/h. 1																					
									e not		-								U U			

Samples were not @2-6c upon receipt!