July 17, 2007

Mr. Kipp Eckert ConocoPhillips Site Manager P.O Box 923 Bothell, Washington 98041

Re: Second Quarter 2007 Groundwater Monitoring Report 600 Westlake Avenue North, Seattle, WA ConocoPhillips Site No. 255353 Delta Project No. WA255-3534-1

Dear Mr. Eckert:

Delta Consultants, Inc. (Delta) is pleased to submit this Second Quarter 2007 Groundwater Monitoring Report for ConocoPhillips Site No 255353 located at 600 Westlake Avenue North in Seattle, Washington.

WORK PERFORMED THIS QUARTER [Second - 2007]

- Measured depth to groundwater in 44 monitoring wells and seven City Investor wells on June 13, 2007.
- Purged and sampled groundwater from 43 monitoring wells and seven City Investor wells between June 13 and 15, 2007.
- Analyzed groundwater samples for total petroleum hydrocarbons as gasoline (TPH-G) using Northwest Method NWTPH-Gx; TPH as diesel (TPH-D) and heavy oil (TPH-O) using Northwest Method NWTPH-Dx; benzene, toluene, ethylbenzene, and total xylenes (BTEX), methyl tert-butyl ether (MTBE), and naphthalene using EPA Method 8260B; total lead and dissolved lead using EPA Method 6000/7000 Series.

WORK PROPOSED FOR NEXT QUARTER [Third - 2007]

- Measure depth to water, purge and sample groundwater from 50 monitoring wells and eight City Investor wells
- Measure SPH thickness, if present.
- Analyze groundwater samples for TPH-G using Northwest Method NWTPH-Gx, TPH-D and TPH-O using Northwest Method NWTPH-Dx; BTEX, MTBE, and naphthalene using EPA Method 8260B; and total lead and dissolved lead using EPA Method 6000/7000 Series
- > The Third Quarter 2007 groundwater monitoring event is scheduled for September 2007.

Quarterly	(Quarterly, etc)
<u>3.21 – 15.45</u>	(Measured Feet)
Northerly	(Direction)
Varies	(ft/ft)
2,870 (MW-60)	(ug/L)
No	(Yes - ID well(s)/No)
None	(gallons)
43,632	(gallons)
Lake Union	
400 ft North	(Distance and Direction)
AS/SVE	(SVE/AS/P&T/DVE/
	Product Removal/Bio/etc.)
PSCAA No. 8905	_(NPDES, POTW, etc.)
	3.21 – 15.45 Northerly Varies 2,870 (MW-60) No None 43,632 Lake Union 400 ft North AS/SVE

DISCUSSION

CLIMARAADV

- Monitoring wells MW-74, MW-76, MW-83, MW-96, MW-203, and SMW-3 were obstructed during this monitoring event. There was not enough groundwater in monitoring well MW-206 to collect a sample.
- ➤ Depth to groundwater was monitored in 51 wells between June 13 and 15, 2007. None of the wells contained measurable SPH during this event.
- ➢ Groundwater was purged from 43 monitoring wells using a peristaltic pump, which enabled a low flow sampling method. Groundwater samples were collected from monitoring wells MW-3A, MW-18, MW-19, MW-32A, MW-33 through MW-35, MW-37, MW-38, MW-40, MW-41, MW-45, MW-50 through MW-60, MW-71 through MW-73, MW-80 through MW-82, MW-86, MW-87, MW-89 through MW-95, MW-200 through MW-202, MW-207, and MW-208. Groundwater samples were also collected from City Investor wells CI-1, CI-2, and CI-3 located on the northwest side of Westlake Avenue and from City Investor wells SMW-4, SMW-5, MW-49, and MW-102 located on the City Investor property.
- > TPH-G was detected above the laboratory reporting limit in the groundwater samples collected from 37 wells, at concentrations ranging from 71.4 micrograms per liter (μg/L) (MW-53) to 57,400 μg/L (MW-208).
- > TPH-D was detected above the laboratory reporting limit in the groundwater samples collected from 10 wells at concentrations ranging from 275 μg/L (MW-102) to 8,140 μg/L (MW-19)
- > TPH-O was detected above the laboratory reporting limit in the groundwater sample collected from well MW-93 at a concentration of 1,250 µg/L

- Benzene was detected above the laboratory reporting limit in the groundwater samples collected from 30 wells at concentrations ranging from 0 620 μg/L (MW-52) to 2,870 μg/L (MW-60).
- > Toluene was detected above the laboratory reporting limit in the groundwater samples collected from 21 wells at concentrations ranging from 0.680 μg/L (MW-93) to 1,010 μg/L (MW-57).
- > Ethylbenzene was detected above the laboratory reporting limit in the groundwater samples collected from 31 wells at concentrations ranging from 0 500 μg/L (MW-37) to 3,520 μg/L (MW-208)
- Total xylenes were detected above the laboratory reporting limit in the groundwater samples collected from 19 wells at concentrations ranging from 3 01 μg/L (MW-93) to 12,900 μg/L (MW-208).
- MTBE was detected above the laboratory reporting limit in the groundwater samples collected from wells MW-33, MW-50, and MW-56 at concentrations of 1.38 μg/L, 1.85 μg/L, and 1.53 μg/L, respectively. MTBE was not detected above the laboratory reporting limit in the groundwater samples collected from wells MW-57, MW-60, and MW-208; however, the laboratory reporting limits were equal to or greater than the MTCA Method A cleanup level because of sample dilution to accommodate elevated BTEX concentrations.
- Naphthalene was detected above the laboratory reporting limit in the groundwater samples collected from 26 wells at concentrations ranging from 5 40 μg/L (MW-93) to 2,110 μg/L (MW-208)
- Total lead was detected above the laboratory reporting limit in the groundwater samples collected from 21 wells at concentrations ranging from 1 05 μg/L (MW-40) to 73 4 μg/L (MW-18).
- Dissolved lead was detected above the laboratory reporting limit in the groundwater samples collected from eight wells at concentrations ranging from 1 37 μg/L (MW-80) to 34.4 μg/L (MW-18)
- Purge water generated during this groundwater sampling event was stored on-site in a 55-gallon drum for subsequent transport to a wastewater treatment facility.

LIMITATIONS

The services described in this report were performed in accordance with generally accepted professional consulting principles and practices. No other warranty, either expressed or implied, is made. These services were performed in accordance with terms established with our client. This report is solely for the use of our client and reliance on any part of this report by a third party is at such party's sole risk.

Mr Kipp Eckert, ConocoPhillips Company Second Quarter 2007 Groundwater Monitoring Report July 17, 2007 ConocoPhillips Site No. 255353 600 Westlake Avenue North, Seattle, WA

Delta appreciates the opportunity to provide environmental services for ConocoPhillips Company. Please call Elisabeth Silver at 425-498-7736 if you have any questions regarding the contents of this report.

Sed Ge

Sincerely,

DELTA ENVIRONMENTAL CONSULTANTS, INC.

Jaime L. KC

CC;

Senior Field Technician

Elisabeth Silver, LG. Senior Project Manager

LISABETH S. SILVER | LUST Coordinator, Washington State Dept. of Ecology – Northwest Regional Office, Bellevue, WA

Enc: Figure 1 - Site Map with Groundwater Elevations, June 2007

Figure 2 – TPH-G and Benzene Concentrations in Groundwater, June 2007

Table 1 – Second Quarter 2007 Groundwater Elevation Results

Table 2 - Second Quarter 2007 Groundwater Analytical Results

Table 3 – Historical Groundwater Analytical Results and Water Table Elevations

Laboratory Analytical Reports and Chain-of-Custody Documentation Groundwater Sampling Procedures and Field Sheets

TABLE 1 SECOND QUARTER 2007 GROUNDWATER ELEVATION RESULTS

ConocoPhillips Site No. 255353 600 Westlake Avenue N Seattle, Washington

		Top of Casing	vasnington Depth to	Separate-Phase Hydrocarbon	Groundwater
Well I.D.	Gauging Date	Elevation ¹ (feet)	Groundwater (feet)	Thickness (feet)	Elevation ² (feet)
CI-1	06/13/07	not available	10 91	0.00	not available
CI-2	06/13/07	not available	9 86	0 00	not available
CI-3	06/13/07	not available	9 43	0 00	not available
MW-3A	06/13/07	29 09	10 51	0.00	18.58
MW-18	06/13/07	30.08	11 24	0.00	18.84
MW-19	06/13/07	29 93	10.96	0 00	18 97
MW-32A	06/13/07	30 14	12.05	0 00	18 09
MW-33	06/13/07	30.16	12 03	0.00	18.13
MW-34	06/13/07	30 58	12 39	0 00	18.19
MW-35	06/13/07	28 90	10.44	0 00	18 46
MW-37	06/13/07	30 09	12 18	0 00	17 91
MW-38	06/13/07	26.01	6 37	0.00	19.64
MW-40	06/13/07	30 08	11.71	0 00	18.37
MW-41	06/13/07	36 25	15.45	0 00	20 80
MW-45	06/13/07	27.52	8.85	0.00	18 67
MW-49	06/13/07	22 36	3 59	0.00	18.77
MW-50	06/13/07	29 32	10.74	0 00	18.58
MW-51	06/13/07	29.75	11 77	0.00	17 98
MW-52	06/13/07	29.06	10 23	0.00	18 83
MW-53	06/13/07	30 38	11.42	0 00	18.96
MW-54	06/13/07	28.00	9.25	0 00	18 75
MW-55	06/13/07	29 22	11.46	0.00	17 76
MW-56	06/13/07	29 70	11.11	0.00	18 59
MW-57	06/13/07	29.31	10.65	0.00	18 66
MW-58	06/13/07	30 69	11 72	0.00	18 97
MW-59	06/13/07	30 73	12.12	0.00	18.61
MW-60	06/13/07	30.31	7 01 ³	0.00	23.30
MW-71	06/13/07	30 42	11.41	0.00	19 01
MW-72	06/13/07	30 32	11.43	0.00	18 89
MW-73	06/13/07	30.11	11 59	0.00	18 52
MW-74	06/13/07	30.35			
MW-76	06/13/07	27.08			
MW-80	06/13/07	26 34	5.43	0 00	20 91
MW-81	06/13/07	26 21	7 46	0.00	18 75
MW-82	06/13/07	23.70	4.93	0.00	18.77

TABLE 1 SECOND QUARTER 2007 GROUNDWATER ELEVATION RESULTS

ConocoPhillips Site No 255353 600 Westlake Avenue N Seattle, Washington

Well I.D.	Gauging Date	Top of Casing Elevation ¹ (feet)	Depth to Groundwater (feet)	Separate-Phase Hydrocarbon Thickness (feet)	Groundwater Elevation ² (feet)
MW-83	06/13/07	23 63			
MW-86	06/13/07	27 55	9.01	0 00	18 54
MW-87	06/13/07	26 74	8 17	0 00	18 57
MW-89	06/13/07	23 02	4 41	0.00	18.61
MW-90	06/13/07	22 90	4 14	0.00	18.76
MW-91	06/13/07	23 13	4 36	0.00	18.77
MW-92	06/13/07	28.98	10.20	0 00	18.78
MW-93	06/13/07	25 74	6.94	0 00	18 80
MW-94	06/13/07	21 90	3 21	0 00	18 69
MW-95	06/13/07	31 99	13.10	0.00	18 89
MW-96	06/13/07	24 98			
MW-102	06/13/07	23.86	5 12	0.00	18.74
MW-200	06/13/07	29 69	11 08	0 00	18.61
MW-201	06/13/07	29 32	10 89	0 00	18 43
MW-202	06/13/07	30 55	12 44	0 00	18.11
MW-203	06/13/07	26.63			
MW-206	06/13/07	31 54	10.36	0.00	21.18
MW-207	06/13/07	30 65	13 84	0 00	16.81
MW-208	06/13/07	30 28	11 22	0 00	19 06
SMW-3	06/13/07	29 03			
SMW-4	06/13/07	28.33	9 21	0 00	19 12
SMW-5	06/13/07	29.17	10.15	0.00	19.02

NOTES:

¹ Relative top of casing elevation surveyed during November 2005 relative to N.A V D. 1988 vertical datum using a City of Seattle benchmark with elevation of 88.56 feet above mean sea level.

² Groundwater table elevation relative to depth to water, corrected for separate-phase hydrocarbons where applicable using a specific gravity of 0.80.

³ Likely field error

[&]quot;--" = Not accessible

TABLE 2 SECOND QUARTER 2007 GROUNDWATER ANALYTICAL RESULTS

ConocoPhillips Site No 255353 600 Westlake Avenue N Seattle Washington

Sample I.D.	Sample Date	TPH- Gasoline (µg/L)	TPH- Diesel (µg/L)	TPH- Oil (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	MTBE (µg/L)	Naphthalene (μg/L)	Total Lead (μg/L)	Dissolved Lead (µg/L)
CI-1	06/13/07	<50 0	<236	<472	<0 500	<0 500	<0.500	<3 00	<1 00	6 75	<1 00	<1 00
CI-2	06/13/07	<50 0	<236	<472	<0 500	<0 500	<0.500	<3 00	<1 00	<5 00	<1 00	<1 00
CI-3	06/13/07	<50.0	<238	<476	<0 500	<0 500	<0 500	<3 00	<1 00	<5 00	<1 00	<1.00
MW-3A	06/15/07	<50 0	<250	<500	<0 500	<0 500	<0 500	<3 00	<1 00	<5 00	<1 00	<1.00
MW-18	06/14/07	330	<236	<472	8.67	0 720	2 02	4 84	<1 00	44 9	73.4	34.4
MW-19	06/14/07	28,100	8,140	<481	279	130	96 9	4,860	<1.00	308	53.4	32.0
MW-32A	06/15/07	296	<250	<500	14.2	<0 500	3.26	<3 00	<1 00	12.1	<1 00	<1 00
MW-33	06/15/07	535	<245	<490	32.5	<0 500	0 550	17 5	1 38	21 8	<1 00	<1 00
MW-34	06/15/07	806	<250	<500	141	1 01	4 02	<3 00	<1 00	6 79	<1 00	<1 00
MW-35	06/15/07	<50 0	<245	<490	<0 500	<0 500	<0 500	<3 00	<1 00	6.34	<1 00	<1.00
MW-37	06/14/07	121	<236	<472	1 56	<0 500	0 500	<3 00	<1 00	<5 00	<1 00	<1.00
MW-38	06/14/07	<50 0	<240	<481	<0 500	<0.500	<0 500	<3.00	<1 00	<5 00	<1 00	<1 00
MW-40	06/14/07	179	<240	<481	<0 500	<0 500	<0 500	<3.00	<1.00	<5 00	1 05	<1 00
MW-41	06/14/07	79 2	<236	<472	<0 500	<0 500	<0 500	<3 00	<1 00	<5.00	<1 00	<1 00
MW-45	06/15/07	12,500	439	<481	16.8	2 77	178	1,590	<1 00	330	1 77	<1 00
MW-49 MW-50	06/13/07 06/15/07	178	<238 333	<476	<0.500 28.0	<0 500	<0 500	<3 00	<1 00	<5 00	2.42	<1 00
MW-51	06/15/07	1,390 <50 0	<245	<495 <490	<0.500	1 00 <0 500	6 46 <0 500	5 20 <3.00	1 85 <1 00	40 5 <5 00	<1 00 <1 00	<1.00 <1.00
MW-52	06/15/07	146	<250	<500	0 620	<0.500	<0.500	<3.00 <3.00	<1 00 <1 00	<5 00 <5 00	<1 00	<1 00
MW-53	06/15/07	71.4	<238	<476	1.11	<0.500	0 590	<3 00 <3 00	<1 00	<5.00 <5.00	<1 00	<1.00
MW-54	06/15/07	<50 0	<243	<485	<0.500	<0 500	<0.500	<3 00	<1 00	<5.00 <5.00	<1 00	<1.00
MW-55	06/15/07	<50 0	<245	<490	<0.500	<0 500	<0.500	<3 00	<1 00	7 19	<1 00	<1 00
MW-56	06/15/07	106	<245	<490	1 94	<0.500	0 650	<3 00	1 53	10 1	<1 00	<1.00
MW-57	06/15/07	19,800	<245	<490	699	1,010	660	3,350	<20 0	256	1 77	1.55
MW-58	06/15/07	2,220	<243	<485	328	175	54 0	333	<1 00	12 3	<1 00	<1 00
MW-59	06/15/07	878	<245	<490	8.24	<0 500	0 740	<3 00	<1 00	<5.00	<1.00	<1 00
MW-60	06/15/07	41,200	957	<476	2,870	119	1,200	6,970	<40 0	880	1 11	<1 00
MW-71	06/14/07	19,200	851	<490	186	2 67	647	667	<1 00	326	2 89	1 66
MW-72	06/14/07	1,140	<255	<510	5.29	<0 500	2 72	<3 00	<1 00	10 0	1 97	<1 00
MW-73	06/14/07	2,450	<260	<521	11.6	1 56	2 63	<3 00	<1 00	<5 00	2 16	1.43
MW-74	06/13/07											
MW-76	06/13/07	[
MW-80	06/14/07	<50.0	<236	<472	<0 500	<0 500	<0 500	<3 00	<1 00	<5 00	6.15	1 37
MW-81	06/14/07	<50 0	<240	<481	<0 500	<0 500	<0 500	<3 00	<1 00	<5 00	<1 00	<1 00
MW-82	06/13/07	12,100	<243	<485	630	179	375	1,800	<1 00	154	1.27	<1 00
MW-83	06/13/07									<u></u>		
MW-86	06/13/07	7,300	<243	<485	2,430	7 40	11 9	26 9	<5.00	<25	<1 00	<1.00
MW-87	06/13/07	162	<243	<485	<0 500	<0.500	<0 500	<3 00	<1 00	<5 00	<1 00	<1 00
MW-89	06/13/07	2,450	<236	<472	21.6	72.2	148	816	<1 00	596	12 5	<1 00
MW-90	06/13/07	9,180	<248	<495	118	1 90	194	1,290	<1 00	166	2 14	<1 00
MW-91	06/13/07	1,180	<236	<472	<0 500	0 770	0 580	<3 00	<1.00	91.6	1 80	<1.00
MW-92	06/13/07	662	<238	<476	30.2	<0.500	8 98	<3 00	<1 00	<5 00	<1 00	<1 00
MW-93	06/13/07	1,330	822	1,250	<0.500	0 680	1 77	3 01	<1 00	5.40	1 66	<1 00
MW-94	06/13/07	2,340	<250	<500	<0.500	<0.500	0.710	<3.00	<1.00	96.7	2.13	<1.00

TABLE 2 SECOND QUARTER 2007 GROUNDWATER ANALYTICAL RESULTS

ConocoPhillips Site No 255353 600 Westlake Avenue N Seattle Washington

Sample I.D.	Sample Date	TPH- Gasoline (µg/L)	TPH- Diesel (µg/L)	TPH- Oil (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Xylenes (µg/L)	MTBE (µg/L)	Naphthalene (μg/L)	Total Lead (μg/L)	Dissolved Lead (µg/L)
MW-95	06/14/07	215	<236	<472	4 12	<0 500	1 60	41.7	<1 00	<5 00	<1 00	<1 00
MW-96	06/13/07											
MW-102	06/13/07	8,080	275	<476	320	2.26	182	894	<1 00	139	4 54	1 83
MW-200	06/14/07	262	<243	<485	3 63	<0.500	1 61	<3.00	<1 00	<5 00	1 87	<1 00
MW-201	06/14/07	206	<245	<490	20.4	0 870	<0 500	<3 00	<1 00	<5 00	<1 00	<1.00
MW-202	06/14/07	<50 0	<238	<476	<0 500	<0 500	<0 500	<3 00	<1 00	<5 00	<1 00	<1 00
MW-203	06/13/07		7.0									
MW-206	06/13/07											
MW-207	06/15/07	<50 0	<238	<476	<0 500	<0 500	<0 500	<3 00	<1.00	<5 00	<1 00	<1 00
MW-208	06/14/07	57,400	591	<472	241	52.6	3,520	12,900	<20 0	2,110	1 74	<1 00
SMW-3	06/13/07										-	
SMW-4	06/13/07	13,000	963	<495	2,070	14 4	1,720	42 6	<1 00	1,160	7 74	5.73
SMW-5	06/13/07	2,850	301	<485	612	0 880	8 21	5 43	<1 00	17 2	<1 00	<1 00
DUP-1ª	06/15/07	<50.0	<248	<495	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	<1.00
MTCA Methodeleanup Le	vel for	800 ^b	500	500	5	1,000	700	1,000	20	160	15	15
Groundwate	er											

NOTES:

µg/L = micrograms per liter

<n = Below the detection limit

"'--" = Not analyzed sampled or reported

TPH as Gasoline - Analysis by Northwest Method NWTPH-Gx

TPH as Diesel and Oil - Analysis by Northwest Method NWTPH-Dx with acid/silica gel cleanup

BTEX Compounds - Analysis by EPA Method 8260B

MTBE (Methyl tert-Butyl Ether) and Naphthalene - Analysis by EPA Method 8260B

Total Lead - Analysis by EPA Method 6020

Values in BOLD are detectable concentrations exceeding the MTCA Method A groundwater cleanup level

^a Duplicate sample DUP-1 was collected from well MW-54

^bMTCA Method A Cleanup Level for TPH-Gasoline is 1,000 ug/L if benzene is not detectable in groundwater.

GWE (feet)		;		-	3		-9.77	10.02	<u> </u>	10 34	10.08	1	10.25	1 1	10.39	9.27	9.77	1	1	8.42	-	11,51	<u> </u>	;	-	9.48	1	٠	Ţ.,	 i	 ¦	18.87	18.72	18.56	17.74	18.70	18.91	16.55		18.78	19.21	
			_		_	_																							<u> </u>		_							+				
SPH (feet)	000	0.00	0.00	0.00	0.00	0.00	Trace	00.0	Z	Trace	0.00	ž	0.00	Z	0.00	0.00	0.00	Ž	ž	0.00	∑ Z	00.0	ž	ž	Ž	0.00	ž	ΣX	0.00	0.00	0.00	0.00	00:00	0.00	00'0	0.00	0.0	0.00	0.00	0.00	3 6	
DTW (feet)	930	10.91	10.91	9.86	9.46	9.43	6.77	9.36	Σ	9.04	9.30	ΣN	9.13	Ž	8.99	10.11	9.61	Z	Z	10.96	Ž	78.7	ΣN	ΣN	ΣX	9.90	ΣN	Σ	11.00	10.29	10.56	10.22	10.37	10.53	11.35	10,39	10.18	10.01	08.6	70.04	9.0	0. l
DO (mg/L)	0.30	0.42	0.35	0.61	0.53	0.51	1	ı	1	ŀ	1	į	ł	ł	;	1	;	ŀ	ŀ	ł	1	ł	ı	;	1	0.79	1	ı	0.70	1.10	3.20	。 M N	ı	0.78	2.52	0.19	0.23	00.0	0,0	1.40	1 0	24. 1
Total Lead (µg/L)	<1.00	<1.00	<1.00	<1.00	V-1.00	<1.00	ł	ŀ	ŀ	ŀ	1	ŀ	ļ		1	:	;	;	i	ł	ŀ	ł	1	ļ	!	ŀ			ł	1	ŀ	ļ	4.10	9.14	11.6	9.05	2.36	3.7	l	1 8	27.5	C.77
Naphthalene Total Lead (µg/L)	<5.00	6.75	<5.00	<5.00	<5.00	<5.00	ı	1	1	1	ı	1	ı	1	ı	1	1	1	1	1	i	ı	***	ı	1	;	Ī		1	ł	2.16	;	5.83	13.3	7.03	12.3	<5.00 7.00	23.00	20,-	1 0	1,040	+00
MTBE (µg/L)	<1.00	<1,00	<1.00	×1.00	7.00	<1.00	ŀ	ŀ	ŀ	ı	ŀ	-	J	ł	ł	ŀ	ı	ı	ı	ı	ļ	ı	ı	ŀ	ı	ŀ	ŀ		1	₹	1.06	×1.00	<1.00	×1.00	×1.00	V	8.8	3 5	3 3	00 V	000,7	7200
Xylenes (µg/L)	<3.00	<3.00	<3.00	3.00	<3.00	<3.00	1	;	1	;	ı	;	1	ł	ł	292	51.2	:	ŀ	447	ţ	798	ļ	ŀ	ţ	23.57		ţe.	156.8	0.99	47.1	33.8	38.9	57.5	3.45	14.3	8.8	45 450	200	000,21	13,400	יייים
Ethvl- benzene (µg/L)	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	ł	1	ı	ļ	ŀ	}	I	1	1	1,040	146	:	1	685	ŀ	434	ł	1	ŀ	24.3	ŀ	Paved over with concrete	30.9	27.8	23,0	35.2	51.3	51.2	8.93	13.3	\$5.00 5.00 5.00	4 270	2,4,6	2,240	3,020	Decommissioned
Toluene (µg/L)	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	1	ŀ	1	ŀ	ł	:	:	1	ł	<25.0	4.62	;	ļ	14.0	1	38.1	ŀ	ı	ł	۸ ح	ı	Paved over	1.23	₹	0.860	0.890	0.740	1.35	0.580	0.700	\$5.00 \$5.00	280	207.0	240	6.510	Decomi
Benzene (µg/L)	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	ŀ	ı	ŀ	}	;	ł	ł	1	1	1,070	97.6	;	1	326	ł	9.98	1	I	ı	57.1	ŀ		2.54	5.21	4.60	4.77	4.14	3.60	0.550	0.930	00.500	470	3 5	040,40	2.940	717
TPH- Oil (µg/L)	<490	<472	<485	<472	<510	<476	ı	ı	ł	ŀ	ţ	ł	ł	ı	ł	1,990	<500	1	1	<500	ı	<595	1	ı	ı	<285	ł		<502	<483	×200	<485	<0.500	<521	<472	×485	<4/2	, 550 100 100 100 100 100 100 100 100 100	200	2007	<485 <485	-1
TPH- Diesel (µg/L)	<245	<236	<243	<236	<255	<238	į	;	ı	i	;	ł	1	ì	ŀ	4,060	1,810	;	ł	1,820	ı	1,440	1	ı	ı	1,950	ı		<251	<241	<250	<243	1.12	<260	<236	<243	4236 4250	844	6 90	5000	1.140	· :
TPH- Gasoline (µg/L)	<50.0	<50.0	<50.0	0.06>	<50.0	<50.0	1	1	ŀ	ł	ı	ı	ı	1	1	14,100	3,340	ı	1	10,500	ł	17,200	Ī	ł	Ŧ	3,040	ł		1,610	1,030	702	647	759	654	160	610	V 20.0	84 600	7,000	72 800	87.600	,,,,,
Sample Date	03/08/07	06/13/07	70/80/60	06/13/0/	03/08/02	06/13/07	02/14/88	05/15/88	07/20/88	04/14/89	10/27/89	02/01/90	05/01/90	06/12/90	12/07/90	10/10/01	12/28/01	03/08/02	06/24/02	09/26/02°	12/12/02	03/13/03	06/12/03	09/19/03	01/14/04	03/30/04	06/22/04	09/29/04	03/17/05	06/01/05	07/25/05	11/07/05	02/23/06	05/10/06	08/30/06	12/12/06	03/06/07	07/26/05	11/02/06	00/22/00	02/27/00	06/12/06
Sample I.D. TOC ª	G .		C - 2		<u> </u>		MW-3	19.38																					MW-3A	29.09								MW-8	2882	40.04		

Sample		TPH-	ŤPH,	TPH.			[+hv.]								
G	Sample	Gasoline	Diesel	ō	Benzene	Toluene	benzene	Xvlenes	MTBE	Naphthalene Total Lead	Total Lead	2	DTW	HdS	GWE
TOC	Dafe	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(feet)	(feet)	(feet)
MW-13	02/14/88		-	-	1	1	-	1		-	-	1	11.87	00.0	98.6
21.73	05/15/88	!	ŀ	1	;	į	ł	ŀ	1	ı	ŀ	ı	11.43	0.00	10.30
	07/20/88	1	ŀ	ŀ	ı	!	I	ŀ	1	ı	1	1	MN	ΣN	ŀ
	04/14/89	1	ŀ	ŀ	ı	ī	ŀ	ł	1	1	1	1	11.10	00.0	10.63
	10/27/89	1	i	!	1	1	ł	ł	!	1	1	1	11.36	0.03	10.39
	05/01/90	1	ļ	1	ı	1	1	;	1	I	!	1	10.97	00.0	10.76
	05/01/90	1	}	1	ļ	1	ł	ł	!	ı	ţ	1	11.13	00.0	10.60
	06/12/90	ł	ŀ	1	ı	;	1	ŀ	4.4	1	ı	1	ΣZ	Ν̈́	ł
	12/07/90	1	ı	1	ì	1	!	ļ	ŀ	ŀ	ŀ	1	11.11	00.0	10.62
	06/16/05	1,820	880	1,100	2.91	<u>۲</u>	٧	<2	۲	1	!	1.30	11.86	0.00	9.87
	07/26/05		ĺ	Z	Not sampled - well did not recharge after purging dry	well did no	t recharge a	ifter purging	dry			1.40	12.06	00.0	ł
30.88	11/01/05	125	<238	<476	1.19	<0.500	<0.500	00.1>	<2.00	I	1	» NN	12.16	00:0	18.72
	02/22/06	227	<272	<543	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	11.9	1	1	ł	;
	90/80/90	236	<243	<485	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	38.2	1.69	12.08	00:0	18.80
	08/31/06	<100	<243	<485	1.24	<0.500	7.64	6.68	<1.00	6.00	48.9	0.47	12.62	00.0	18.26
	09/25/06				Destroyed	during utili	Destroyed during utility construction activities	on activities				1	ı	ì	:
MW-14	02/14/88	ŀ	;	i	i	ŀ	1	ŀ	,	1	1	1	9.65	00.0	9.63
19.28	05/15/88	;	ı	ì	ı	ţ	ŀ	}	ı	1	ı	1	8.95	0.00	10.33
	07/20/88	ŀ	:	;	1	ł	ŀ	ŀ	ŀ	1	ı	1	ΝM	ΣN	1
	04/14/89	ļ	:	;	1	;	ì	1	1	ı	}	ŀ	8.95	00.00	10.33
	10/27/89	1	:	}	1	1	ŀ	1	i	I	ı	1	9.16	00.0	10.12
	02/01/90	1	1	į	}	ŀ	;	ŧ	ŀ	ı	ł	}	9.15	00.00	10.13
	02/01/90	ł	ł	ł	ŀ	;	ŀ	ı	1	ı	ŀ	1	8.99	00.0	10.29
	06/12/90	1	7	ŀ	1	;	1	ŀ	;	ı	;	ı	ΣN	ΣZ	;
	12/07/90	1	:	1	!	!	ı	;	1	ı	ł	Ī	9.04	00.0	10.24
	06/02/05					Unable to c	Unable to collect sample	<u>a</u>				1.40	8.35	0.00	10.93
	06/16/05				Not e	nough wate	Not enough water in well to sample	sample				ì	8.60	00.0	10.68
	06/13/06	•				Decom	Decommissioned					ı	1	J	1
MW-15	02/14/88	1	ł	1	ı	ì	;	ł	1	ŀ	1	1	10.62	00.0	9.86
20.48	05/15/88	;	ł	ł	1	i	1	ī	!	ł	!	1	10.18	00'0	10.30
	07/20/88	1	ı	ı	1	ł	1	ŀ	;	ı	1	1	ΣX	ΣZ	;
	04/14/89	1	i	ŀ	1	ŀ	;	;	;	1	:	1	96'6	00.0	10.52
	10/27/89	1	ŀ	1	ı	ł	!	ł	ŀ	ı	!	;	10.28	00.00	10.20
	02/01/90	ŀ	1	ŀ	1	ı	1	;	1	ŀ	:	I	10.17	00.0	10.31
	05/01/90	1	ı	;	ı	ı	ı	ł	ŀ	ļ	:	1	10.18	00.0	10.30
	06/12/90	ŀ	F	I	1	ŀ	I	ł	1	I	:	1	NM	Σ	ļ
	12/07/90	-	1	ļ	1	ŧ	1	ī	-	-	1	1	10.13	00.00	10.35
	06/02/05				Well casing is broken -	s broken - L	unable to gauge or sample	uge or sam	ple			1	1	1	1
	06/13/06					Decomi	Decommissioned					-	ŀ	ı	-

0			-												
sample		TPH-	TPH-	TPH-			Ethyl-								
I.D.	Sample	Gasoline	Diesel	ö	Benzene	Toluene	benzene	Xylenes	MTBE	Naphthalene Total Lead	Total Lead	00	MLQ	SPH	GWE
TOC #	Date	(hg/L)	(hg/L)	(hg/L)	(µg/L)	(µg/L)	(hg/L)	(hg/L)	(µg/L)	(µg/L)	(hg/L)	(mg/L)	(feet)	(feet)	(feet)
MW-16	02/14/88	1	-	-	-	1	1	1	1	-		- I	11 15	000	20 05
21.19	05/15/88	1	1	ŀ	30 50	1	ŀ	;	ı	ļ	1	1	7 2 2	8 6	20.07
	07/20/88	ŧ	ı	ŀ	ì	!	;	;	ı	}	ŀ		2 2	S N	P S
	04/14/89	ŀ	ļ	ŀ	ļ	1	1	ł	,	ŀ	:				0
	10/27/89	1	I	ŀ	ł	ŀ	ł	1		1 1	ļ	l ;	2 6	8 6	0.00
	02/01/90	ł	1	ł)	ļ	!	;				ł	2 6	9 6	2. 0
	05/01/90	1	ı	1 1	1			1 1	l 1	}	I		10.60	00.0	10.59
	06/12/90	1	1	ł	1	ŀ	ļ	ı	ŀ	ı	;	,	2 2) N	2 1
	12/07/90	1	ı	1	ŀ	1	ŀ	ŀ	ı	ŀ	ŀ	!	10.58	00.0	10.61
	06/02/05					Unable to c	Unable to collect sample	o o		j		1.00	10.95	00.0	10.24
	06/16/05	<500	4,000 ^{h,i}	16,000	135	<5	\$	×10	× 52	1	i	09.0	10.86	00.0	10.33
	07/26/05	358	8,320°	20,700	42.6	0.340	<0.200	1.25	<1.00	<0.500	1	0.30	11.08	00.0	ł
30.26	11/01/05	<50.0	<236	<472	8.00	<0.500	0.600	4.00	<2.00	ı	1	。 MN	11.10	00.00	19.16
	02/21/06	137	<278	1,080	4.09	<0.500	<0.500	<3.00	<1.00	<1.00	157	ı	10.84	00.0	19.42
	90/60/50	98.4	<238	<476	2.43	<0.500	<0.500	<3.00	<1.00	<1.00	4.33	0.40	11.12	0.00	19.14
	06/13/06					Decomr	Decommissioned					ŀ	ı	ı	;
MW-17	02/14/88	1	1	-	ŀ	1	:	1	-	-	1		11.56	0.07	9.77
21.28	05/15/88	ŀ	ł	1	1	ŀ	I	ł	ļ	ı	ı	1	11.22	0.04	10.09
	07/20/88	ı	ł	ŀ	ŀ	1	ŀ	ł	!	ļ	1	1	ΣŽ	ΣZ	}
	04/14/89	ì	1	ŀ	ł	ŀ	ł	;	!	1	ı	1	10.75	00.0	10.53
	10/27/89	ı	ŀ	1	ţ	ł	1	ł	ŀ	I	ł	1	11.22	00.00	10.06
	02/01/90	}	ŀ	ŀ	1	1	1	ł	1	ı	Ī	ı	10.71	00.0	10.57
	05/01/90	1	ł	ł	ł	ļ	ł	ļ	ł	ŀ	1	ı	10.90	00.0	10.38
	06/112/90	ı	ŀ	ı	ł	ì	ŀ	ì	1	ł	,	I	Σ	ž	;
	12/07/90	1	,	1	1	1	;	1	-	-	;	1	10.78	00.0	10.50
	06/02/05			We	Well obstructed with soil at 2.2 feet below top of casing	with soil at	2.2 feet bel	ow top of ca	asıng			ı	1	ı	i
	06/12/06					Decom	Decommissioned					1	ŀ	١	

	GWE (feet)		9.98	10,36	;	10,89	10.26	10.67	10.48	1	10.73	10.26	ŀ	18.71	19.48	18.23	18.43	19.40	18.94	18.84	9.91	10.25	i	10.65	10.01	9.93	10.55	10,65	10.78	10.02	10,05		18.93	19.24	18.84	18.22	19.01	19.13	18.97
	SPH (feet)		0.00	90.0	Σ	0.00	0.00	Trace	0.00	ΣZ	0.00	0.00	0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.23	0.44	Σ	0.57	Trace	Trace	0.43	0.47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	DTW (feet)	, , , , , , ,	11.11	10.78	Ž	10.20	10.83	10.42	10.61	WW	10.36	10.83	11.19	11.37	10.60	11.85	11.65	10.68	11.14	11.24	11.24	11.07	Ž	10.78	10.96	11.04	10.76	10.70	10.19	10.95	10.92	12.14	11.00	10.69	11.09	11.71	10.92	10.80	10.96
	DO (mg/L)		ţ	1	1	ŀ	ŀ	ł	1	;	ŀ	1.10	06.0	2.20	ŀ	0.23	96.0	0.72	1.78	0.28	ı	ŀ	1	;	ŀ	ŀ	ı	1	!	1.30	1.20	4.90	Na	!	0.92	0.26	0.21	0.53	0.47
	Total Lead (µg/L)		1	ı	;	ŀ	ł	ł	;	ŀ	I	;	1	;	386	64.8	1,360	70.2	15.3	73.4	1	I	1	;	;	}	ł	ŀ	ŀ		1	ŀ	ŀ	81.0	64.8	50.9	78.6	40.4	53.4
	Naphthalene Total Lead (µg/L) (µg/L)		ı	ı	1	ı	ı	1	ı	1	ŀ	ţ	30.9	ı	80.2	122	107	69.2	<50.0	44.9	ł	ı	ı	ı	ı	ı	ì	ı	ŀ		1	805	1	491	1,700	251	452	873	308
	MTBE (µg/L)		!	1	:	1	Ī	1	1	1	ı	₹	<1.00	<4.00	<20.09	<4.00	<1.00	<1.00	<10.0	<1.00	!	ł	ŀ	1	}	ł	1	Ţ			<50	<1.00	<40.0	<20.09	<100	<10.0	<1.00	10.00	<1.00
;	Xvlenes (µg/L)		ŀ	ı	}	ł	1	1	ł	ı	;	6//	33.4	314	269	57.4	72.2	281	67.1	4.84	ŀ	1	ŧ	ł	ł	i	ŀ	ı	:	<u>e</u>	21,960	16,590	13,700	1,760	8,760	1,020	10,700	12,000	4,860
- Ethyl-	benzene (µg/L)		ł	ì	;	ł	1	;	1	;	1	91.9	6.23	28.7	56.4	19.0	13.5	44.9	7.20	2.02		1	:	ł	ŀ	1	1	;	;	Unable to collect sample	121	<20.0	504	146	164	66.1	286.0	480	6.96
	l oluene (µg/L)		!	1	;	ł	1	ł	ŀ	ŀ	ł	434	3.98	28.2	217	5.32	7.42	28.7	5.00	0.720	-	ŀ	ł	1	1	ŀ	ł	ı	ł	Unable to c	380	529	520	33.8	171	72.4	731.0	192	130
	Benzene (µg/L)		ļ	ŀ	1	1	ŀ	1	ł	ł	ŀ	403	35.2	84.4	345	102	298	301	140	8,67	;	1		1	ł	ļ	;	ŀ	1		391	201	436	288	373	156	688	260	279
TPH	Oil (µg/L)		!	!	ŀ	ŀ	1	ł	ł	ł	ļ	28,800	13,200	<505	<505	<481	1,030	1,800	<532	<472	ł	ı	ı	1	ı	1	ŀ	ŀ	ŀ		<12,000	2,340	066>	<5,210	<1,000	<495	<481	<495	<481
TPH.	Uiesei (µg/L)		ŀ	ł	ş		ŀ	I	ł	ł	ŀ	18,000 ^{t,i}	6,930	271	2,090 ^p	269 ^p	377 ^p	856	<266	<236	ŀ	ļ	ŀ	1	1	ŀ	:	ì	ŀ		31,000 ^{f,i}	4,050 ^d	4,070	13,900 ^{9.P}	5,520	1,220 ^p	2,720	2,330	8140 ⁹
TPH-	Gasoline (µg/L)		ł	ı	1	ŀ	1	ł	1	ł	ı	6,600	1,400	2,660	10,800	1,450	1,250	4,360	856	330	1	ŀ	1	ł	i	ŀ	ì	ŀ	ı		117,000	96,400	72,000	18,900	45,900	3,530	68,400	47,800	28,100
o la marco	Sample	1 20,77,00	02/14/88	05/15/88	07/20/88	04/14/89	10/27/89	05/01/90	05/01/90	06/11/90	12/07/90	06/02/05	07/26/05	11/07/05	02/22/06	02/10/06	90/62/80	12/12/06	03/06/07	06/14/07	02/14/88	05/15/88	07/20/88	04/14/89	10/27/89	02/01/90	05/01/90	06/12/90	12/07/90	06/02/05	06/16/05	02//26/05	11/07/05	02/22/06	02/10/06	08/29/06	12/12/06	20/90/80	06/14/07
Sample	TOC a	07.74	MW-18	21.09										30.08							MW-19	20.97											29.93						

Sample G.	,	TPH-	TPH	TPH-			Ethyl-								
	Sample	Gasoline	Diesel	ō	Benzene	Toluene	penzene	Xylenes	MTBE	Naphthalene Total Lead	Total Lead	0	MTO	SPH	GWE
10C	Date	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(ng/L)	(µg/L)	(hg/L)	(µg/L)	(hg/L)	(hg/L)	(mg/L)	(feet)	(feet)	(feet)
MW-24	02/14/88		1	-		1	-	+	1	1	1	1	Dιν	1	
21.49	05/15/88	ŀ	i	ŀ	1	ı	1	ļ	ŀ	ł	ŀ	ŀ	ò	ı	ŀ
	07/20/88	ŀ	i	ł	ı	I	ì	ŀ	1	1	ı	ı	Δ	Į	1
	04/14/89	1	ŀ	ì	1	ŀ	1	ł	ŀ	ŀ	ŀ	ŧ	10.71	00.0	10.78
	10/27/89	ł	ł	ł	ı	1	1	1	1	ł	1	ļ	٥	1	;
	02/01/90	ł	ţ	ł	ł	ł	1	1	1	ŀ	ŀ	ŀ	Δ	ı	;
	05/01/90	<u> </u>	ł	ł	ŀ	ī	ı	ł	ŀ	ŀ	1	1	11.36	99'0	10.66
	06/12/90	1	ŀ	ŀ	ŀ	ŀ	1	ì	ŀ	I	ŀ	1	ΣZ	ΣN	1
	12/07/90	ŀ	i	ŀ	ı	I	ŀ	ŀ	;	1	1	;	ک	;	}
	06/02/05	ì	ı	1	;	ł	1	ŀ	ŀ	į	ŀ	ŀ	Δ	ı	1
	06/16/05	!	:		;	;	ı	1	1	;	ı	ì	ò	ŀ	ì
MW-27ª	06/16/05	ı	:	ţ	-		1	1	ł	1	1	1	ρί	-	-
	06/13/06					Decomi	nissioned					ı	1	ŀ	ł
MW-32A	11/04/91	52,000	<1,000	:	10,000	10,000	10,000 2,000	10,000	1	-	1	***	-	ŀ	ł
20.70	12/29/93	19,000	2,900	1,300	6,300	066	940	1,700	ŀ	1	ı	1	10.73	00.0	9.97
	04/07/94	11,000	2,100	1,300	3,900	150	490	590	Ĭ	ı	ı	ł	10.65	0.00	10.05
	07/14/94	9,900	1,700	1,500	5,600	54	530	200	1	1	ı	ŀ	10.72	00.00	9.98
	10/25/94	19,000	1,100	1,000	4,600	2,300	560	2,300	¦	1	1	ļ	11.46	00'0	9.24
	03/08/95	21,000	2,300	2,300	5,800	1,700	990	2,900	ì	:	ŀ	ı	11.29	00.00	9.41
	06/06/95	ł	ŀ	1	ŀ	ł	1	ł	1	1	ı	ì	ΣN	Σ	;
	09/07/95	20,000	2,500	1,600	4,200	470	730	2,000	1	ł	ŀ	ı	11.27	ı	9.43
	12/08/95	11,000	1,200	<750	1,600	98	420	910	ì	1	ţ	;	10.01	ı	10.09
	04/01/96	2,900	1,400	1,000	2,200	28	300	490	ţ	ŀ	!	ł	10.90	ı	9.80
	06/25/96	7,500	1,250	<750	1,200	60.4	217	435	ŀ	1	,	ļ	10.98	;	9.72
	09/27/96	7,050	1,040	<750	1,570	37.4	264	416	ŀ	1	1	!	11.37	ı	9.33
	03/28/97	1	ı	ı	i	ŀ	ŀ	ł	}	ŀ	ŀ	;	11.26	1	9.44
	26/30/92	ŀ	ŀ	ı	ŀ	1	!	ŀ	ı	l	. !	ı	10.89	ŧ	9.81
	26/80/60	;	ı	1	ł	ł	ł	E	ŀ	ı	1	i	11.67	0.00	9.03
	12/19/97	ł	1	1	ı	1	ļ	ł	ł	i	ŀ	ı	11.42	00.00	9.28
	03/16/98	:	ł	1	ŀ	1	ļ	1	ŀ	1	ł	ŀ	11.30	00.0	9.40
	06/26/98	ŧ	ŀ	1	1	ŀ	ŀ	}	1	1	ı	1	11.29	00.0	9.41
	09/23/98	ł	1	ŀ	ŀ	1	ļ	ŀ	ı	Ť	ı	ı	11.97	0.00	8.73
	12/17/98	ŀ	1	ŀ	ŀ	ı	ł	ŀ	ŀ	1	ı	ł	11.09	00.0	9.61
	03/31/99	1	;	1	1	;	!	1	1	}	1	;	10.47	0.00	10.23

	ź	_
i	ā	헏
2	ē	hingtor
	Ź	Washi
,	쑱	≶
	Westlake Avenue N.	
:	š	Seattle,
1	0	ഗ്

GWE (feet)	7 7 70	01.10	S 6	9.80	9.39	8.85	9.89	1	9.41	9.21	9.14	7.82		7.98	7.98	7.98 9.75 8.78	7.98 9.75 8.78 8.03	7.98 9.75 8.78 8.03	7.98 9.75 8.78 8.03 9.37	7.98 9.75 8.78 8.03 9.37 8.31 8.08	7.98 9.75 8.78 8.03 9.37 8.31 8.08	7.98 9.75 8.78 8.03 9.37 8.31 8.08 11.50	7.98 9.75 8.78 8.03 9.37 8.31 8.08 11.50 8.46	7.98 9.75 8.78 8.03 9.37 8.31 8.08 11.50 8.46 8.39	7.98 9.75 8.78 8.03 9.37 8.31 8.08 11.50 8.46 8.39	7.98 9.75 8.78 8.03 9.37 8.31 8.08 11.50 8.46 8.39 8.39	7.98 9.75 8.78 8.03 9.37 8.31 8.08 11.50 8.46 8.39 8.39 8.39	7.98 9.75 8.78 8.03 9.37 8.31 11.50 8.46 8.39 8.39 8.39 1.70	7.98 9.75 8.78 8.03 9.37 8.31 11.50 8.46 8.39 8.39 8.39 11.45	7.98 9.75 8.78 8.03 9.37 8.31 11.50 8.46 8.39 8.39 8.39 18.70	7.98 9.75 8.78 8.03 9.37 8.31 8.08 11.50 8.46 8.39 8.39 8.39 11.60 17.60 17.60	7.98 9.75 8.03 9.37 8.31 8.08 11.50 8.46 8.39 8.34 1.50 17.60 17.60 17.60 18.69	7.98 9.75 8.78 8.03 9.37 8.31 8.46 8.39 8.39 8.39 18.45 17.60 17.60 17.60 17.60	7.98 9.75 8.78 8.03 9.37 8.31 8.08 11.50 8.46 8.39 8.39 8.34 17.60 17.60 17.43 18.69	7.98 9.75 8.78 8.03 9.37 8.31 8.46 8.39 8.94 18.45 17.60 17.60 17.60 17.60 17.60	7.98 9.75 8.78 8.03 9.37 8.31 8.46 8.39 8.94 118.45 17.60 17.60 17.60 17.60 17.60 17.60	7.98 9.75 8.78 8.03 9.37 8.31 8.08 11.50 8.46 8.39 8.94 18.70 17.60 17.60 17.60 17.60 17.60	7.98 9.75 8.78 8.03 9.37 8.31 8.08 11.50 8.46 8.39 8.94 18.70 17.60 17.60 17.60 17.60 17.60 17.60	7.98 9.75 8.78 8.03 9.37 8.31 8.08 11.50 8.46 8.39 8.94 1.7.60 17.60 17.60 17.60 17.60 17.60 17.60 17.60 17.60	7.98 9.75 8.78 8.03 9.37 8.31 8.08 11.50 8.46 8.39 8.94 1.45 11.43 11.43 11.43 11.60 17.43 11.60 17.60 17.60 17.60 17.60 17.60
SPH (feet)		000	000	0.00	0.00	0.00	0.00	Σ	0.00	0.00	00.00	0.00		0.00	0.00	0.00	0.00	00.0	00.0	00.0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000						000000000000000000000000000000000000000				0000 0000 0000 0000 0000 0000 0000 0000 0000	0000 0000 0000 0000 0000 0000 0000 0000 0000	0000 0000 0000 0000 0000 0000 0000 0000 0000	0000 0000 0000 0000 0000 0000 0000 0000 0000
DTW (feet)		3.00	11 40	10.90	11.31	11.85	10.81	ž	11.29	11.49	11,56	12.88	10 10	12.72	12.72	12.72 10.95 11.92	12.72 10.95 11.92 12.67	12.72 10.95 11.92 12.67	12.72 10.95 11.92 12.67 11.33	12.72 10.95 11.92 12.67 12.39 12.39	12.72 10.95 11.92 12.67 11.33 12.39 12.62	12.72 10.95 11.92 12.67 12.39 12.62 9.20	12.72 10.95 11.92 12.67 12.39 12.62 9.20 12.24 12.31	12.72 10.95 11.92 12.67 12.39 12.62 9.20 12.24 12.34	12.72 10.95 11.92 12.67 11.33 12.62 9.20 12.24 12.34 12.34	12.72 10.95 11.92 12.67 11.33 12.62 9.20 12.24 12.34 12.34 12.34 12.34 11.76	12.72 11.92 12.67 11.33 12.39 12.62 12.24 12.34 12.34 11.76 11.69	12.72 11.92 12.67 11.33 12.39 12.02 12.24 12.34 12.34 11.76 11.69 11.44	12.72 11.92 12.67 11.33 12.39 12.24 12.34 12.34 12.34 12.34 12.34 11.69 11.44 12.54	12.72 11.92 12.67 11.33 12.39 12.24 12.31 11.76 12.31 11.76 12.31 11.69 11.44	12.72 11.92 12.67 12.39 12.24 12.31 12.24 12.31 11.76 12.31 11.69 11.44 12.71 11.69	10.95 11.92 12.67 11.33 12.39 12.24 12.24 12.31 11.76 11.69 11.44 11.44 11.45 11.45	11.92 11.92 12.67 11.33 12.39 12.24 12.24 12.31 11.76 11.69 11.44 12.71 11.69 11.45	11.92 11.92 12.67 11.33 12.39 12.24 12.24 12.31 11.76 11.69 11.44 12.54 11.65 11.45 11.65	11.92 11.92 12.67 11.33 12.39 12.24 12.24 12.31 11.69 11.69 11.69 11.65 11.65 11.65 11.65	11.92 11.92 12.67 11.33 12.39 12.24 12.24 12.31 11.69 11.69 11.16	11.92 11.92 12.67 11.33 12.39 12.62 12.24 12.24 12.31 11.69 11.44 12.71 11.69 11.45 12.71 11.65	11.92 11.92 12.67 11.33 12.39 12.62 9.20 12.24 12.34 11.76 11.69 11.45 11.65 11.45 11.20 11.16	12.72 10.95 11.92 12.39 12.39 12.24 12.24 12.24 12.31 11.76 12.71 11.69 11.45 11.20 10.82 10.82 11.16 11.45 11.20 11.16	12.72 10.95 11.92 12.39 12.39 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.24 12.31 11.69 11.65
DO (mg/L)		1	i I	ŀ	1	1	;	;	:	Ì	ł	1		ł	1 1	1 1 1	1 1 1 1	3.10	3.10 2.43	1. 3.10 2.43 0.50	3.10 2.43 0.50 6.10	3.40 3.40 0.50 6.10	3.10 2.43 0.50 0.10 0.90	3.10 2.43 6.10 0.50 0.90 2.60	3.10 2.43 6.10 0.50 0.90 2.20	3.10 2.43 0.50 0.50 0.90 2.20 1.80	3.10 2.43 0.50 6.10 0.90 2.20 1.80	3.10 2.43 0.50 6.10 1.00 2.20 1.80	3.10 2.43 0.50 6.10 0.90 2.20 1.80 1.80	3.10 3.10 0.50 6.10 1.00 2.20 1.80 1.80 0.29	3.10 3.10 0.50 6.10 1.00 2.20 1.80 1.80 0.72 0.29	3.10 3.10 5.10 6.10 6.10 7.20 7.20 7.20 7.20 7.20 7.20 7.20 7.2	3.10 3.10 5.10 6.10 6.10 7.20 7.20 7.20 7.20 7.20 7.20 7.20 7.2	3.10 3.10 5.10 6.10 6.10 7.20 7.20 7.20 7.20 7.20 7.20 7.20 7.2	3.10 3.10 5.20 1.00 0.20 0.29 0.29 0.29	3.10 3.10 5.20 1.00 0.20 0.29 0.29 0.24	3.10 3.10 5.10 6.10 6.10 7.20 7.20 7.20 7.20 7.20 7.20 7.20 7.2	3.10 3.41 3.43 0.50 0.50 0.72 0.24 0.13 0.26 0.29	3.10 3.41 3.43 0.50 0.50 0.72 0.24 0.13 0.26 0.29	3.10 3.40 3.40 5.43 6.10 1.80 6.20 7.2 6.29 6.29 6.29 6.29 6.29 6.29
Total Lead (µg/L)		i		ł	ŀ	ł	I	ł	}	ŀ	ì	ı	;		ŀ	1 1	1 1 1	1111	1111	11111							111111111111111111111111111111111111111		1.12	1.12 1.12 1.143 4.100	1.12 1.13 4.100 4.100	1.12 1.12 1.43 41.00 41.00 41.00	1.12 1.143 1.26 41.00 1.26	1.12 1.12 1.13 4.1.00 4.1.00 4.1.00	1.12 1.143 1.26 <1.00 1.26	1.12 1.143 1.16 4.1.00 4.1.00 4.1.00	1.12 1.26 41.00 41.00	1.12 1.26 41.00	1.12 1.26 41.00 41.00 1.26 1.10 1.26 1.10 1.26 1.10 1.26 1.10 1.26 1.10 1.26 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.1	1.12 1.30 4.1.00 4.1.00 4.1.00 1.26 41.00 1.26
Naphthalene Total Lead (µg/L) (µg/L)				1	ı	ı	1	1	ı		1	I	ı		ì	1 1	1 1 1	1 1 1	1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	7.58	7.58	2.28	2.28	2.28	2.28 	2.28 	2.28 	2.28 	2.28 	2.28 	2.28 	2.28 	2.28 	2.28 	2.28
MTBE 1 (µg/L)			ŀ	ļ	ł	!	;	1	Ī	;	1	ı	1		ŀ	1 1	1 1 1	1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	111111	11111111	ι ι ι ι ι ι ι ι τ Σ	1.	1 1 1 1 1 1 1 1 1 1 1 7 7 7 7 7 7 9 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7 7	1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Xylenes (µg/L)		-	ŀ	182	31.1	1,020	110	;	393	247	59.1	89.7	283		908	806 262	806 262 135	806 262 135 32.5	806 262 135 32.5	806 262 135 32.5 122 43.8	806 262 135 32.5 122 43.8	806 262 135 32.5 122 43.8 39 31.2	806 262 135 32.5 122 43.8 39 31.2	806 262 135 32.5 122 43.8 39 31.2	806 262 135 32.5 122 43.8 39 31.2 <2 6.16	806 262 135 32.5 122 43.8 39 31.2 < 2 6.16 2.83 < 3.00	806 262 135 32.5 122 43.8 39 31.2 < 2 6.16 6.16 2.83 <3.00	806 262 135 32.5 122 43.8 39 31.2 6.16 6.16 6.16 6.30 6.30 6.30	806 262 135 32.5 122 43.8 39 31.2 6.16 6.16 6.16 6.300 <3.00 85.5	806 262 135 32.5 122 43.8 39 31.2 < 2 6.16 6.16 6.16 6.30 6.30 6.30 6.30 6.30 6.30 6.30 6.3	806 262 135 32.5 122 43.8 39 31.2 6.16 6.16 6.16 6.30 6.30 6.30 6.30 6.30 6.30 6.30 6.3	806 262 135 32.5 32.5 122 43.8 39 31.2 6.16 6.16 6.16 6.300 5.300 5.30 5.30	806 262 135 32.5 122 43.8 39 31.2 < 2 6.16 6.16 6.16 6.300 < 3.00 6.300	806 262 135 32.5 122 122 43.8 39 31.2 < 2 6.16 6.16 6.16 6.30 6.30 6.30 6.30 6.30 6.30 6.30 6.3	806 262 135 32.5 122 43.8 39 31.2 <2.8 5.10 6.16 6.16 6.16 6.30 6.30 6.30 6.30 6.30 6.30 6.30 6.16 7.30 6.30 6.16 6.16 6.16 6.16 6.16 6.16 6.16 6.1	806 262 135 32.5 122 43.8 39 31.2 <2.83 5.30 5.10 5.30 5.30 5.30 5.10 1,300 1,100 1,100 1,900	806 262 135 32.5 122 43.8 39 31.2 <2.00 51 5.30 6.16 6.16 6.16 6.16 6.30 6.30 6.30 6.30 6.30 6.30 7.30 6.30 7.30 6.30 6.40 6.10 7.30 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.4	806 262 135 32.5 122 43.8 39 31.2 <2.00 <3.00 63.00 63.00 63.00 1,300 1,100 1,900 420	806 262 135 32.5 122 43.8 39 31.2 <2.00 6.16 2.83 <3.00 6.10 6.10 6.10 1,300 1,300 1,300 1,000 1	806 262 135 32.5 122 43.8 39 31.2 <2.00 6.16 2.83 <3.00 6.30 6.16 5.1 5.30 7.100 1,3
Etnyl- benzene (µg/L)			ŀ	438	272	1,230	684	ı	537	619	221	204	229		419	419 745	419 745 7.49	419 745 7.49 13.1	419 745 7.49 13.1 209	745 7.49 7.49 13.1 209 72.5	745 7.49 7.49 13.1 209 72.5	745 7.49 7.49 13.1 209 72.5 30.9	749 749 749 13.1 209 72.5 30.9	419 745 7.49 13.1 209 72.5 3.7 30.9 <-1	419 745 7.49 13.1 209 72.5 3.7 30.9 <1 5.55	745 7.49 7.49 13.1 209 72.5 30.9 <1 5.55 7.04	745 7.49 7.49 13.1 209 72.5 30.9 <1 5.55 7.04 0.660	745 7.49 7.49 13.1 209 72.5 30.9 <1 5.55 7.04 0.660	745 7.49 7.49 13.1 209 72.5 30.9 <1 5.55 7.04 0.660 <0.500	745 7.49 7.49 13.1 209 72.5 30.9 <1 5.55 7.04 0.660 <0.500 179	745 7.49 7.49 13.1 209 72.5 30.9 <1 5.55 7.04 0.660 <1.23 129.0 31.3	745 749 749 725 30.9 41 555 7.04 0.660 40.500 179 12.3 12.3 31.3	745 749 749 725 30.9 41 555 704 0.660 6.550 179 12.3 12.3 129.0	745 749 749 13.1 209 72.5 30.9 <1 7.04 0.660 0.660 4.555 7.04 0.660 179 179 12.3 12.3 31.3 3.26	745 749 749 13.1 209 72.5 30.9 41 7.04 0.660 6.550 179 179 12.3 12.3 12.3 12.3 80	745 749 749 13.1 209 72.5 30.9 41 7.04 0.660 6.550 179 179 12.3 12.3 12.3 12.3 32.6 80	745 745 749 749 725 209 725 30.9 41 7.04 0.660 6.550 129.0 31.3 31.3 31.3 326 80	745 745 749 749 72.5 30.9 7.04 0.660 0.660 0.660 179 12.3 129.0 31.3 326 240 250 80 320 230	745 745 749 749 725 209 725 30.9 41 7.04 0.660 6.550 129.0 31.3 31.3 326 240 250 80 320 280	745 745 749 749 72.5 30.9 30.9 41 7.04 0.660 60.500 179 12.3 129.0 32.6 80 320 250 80 320 280
Toluene (µg/L)	This is a second of the second	· 1	ŀ	136	11.2	1,110	19.9	ł	180	142	7.43	31.4	55.6		222	222	222 200 42.7	222 200 42.7 4.13	222 200 42.7 4.13	222 200 42.7 4.13 <10	222 200 42.7 4.13 <10 <10	222 200 42.7 4.13 <10 <10 <5	222 200 42.7 4.13 <10 <10 <10 <10	222 200 200 42.7 4.13 <10 <10 <10 <10 <10	222 200 200 4.13 4.13 6.10 6.10 6.10 6.10 6.10 6.10 6.10	222 200 200 4.13 4.13 6.10 6.10 6.1 6.1 6.1 6.1 6.2 7 6.1 6.2 7 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	222 200 200 4.13 4.13 4.10 4.10 4.10 4.1 6.1 6.10 6.00 6.00	222 200 200 4.13 4.13 4.13 4.10 6.10 6.10 6.10 6.0500 1.65	222 200 200 4.13 4.13 4.10 4.10 4.1 6.1 6.500 6.500 6.500	222 200 200 4.13 4.13 4.10 4.10 6.10 6.270 0.270 0.810 0.810 0.810 0.810 0.810 0.810 0.810	222 200 200 4.13 4.13 4.10 4.10 6.10 6.10 6.0500 7.05 6.0500 7.05	222 200 200 4.13 4.13 4.13 4.10 6.10 6.10 6.10 6.00 6.00 6.00 6.00 6	222 200 200 200 4.13 4.13 4.13 4.13 4.13 4.13 4.16 6.10 6.270 6.270 6.0270 6.0500 7.05 7.05 7.05 7.05 7.05 7.05 7.05	222 200 200 200 4.13 4.13 4.13 4.13 4.16 6.16 6.16 6.16 6.16 6.16 6.16 6.16	222 200 200 200 4.13 4.13 4.13 4.13 4.16 6.16 6.270 6.270 6.500 6.500 6.500 6.500 6.500 7.05 7.05 7.05 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8	222 200 200 200 4.13 4.13 4.13 4.13 4.16 6.16 6.270 6.270 6.0.500 6.0.500 7.05 7.05 7.05 490 490 1.15	222 200 200 4.13 4.13 4.13 4.13 4.13 4.16 6.16 6.16 6.16 6.16 6.16 6.16 6.16	222 200 200 4.13 4.13 6.10 6.16 6.50 6.500 6.500 6.500 6.500 6.500 6.500 7.05 6.500 7.05 6.500 7.05 7.05 7.05 7.05 7.05 7.05 7.05	222 200 200 200 4.13 4.13 4.13 4.13 4.16 6.16 6.16 6.16 6.16 6.16 6.16 6.16	222 200 200 4.13 4.13 4.13 4.13 4.13 4.14 6.15 6.15 6.15 6.15 6.15 6.15 6.15 6.15
Benzene (µg/L)	-	-	ı	4,430	2,370	8,780	5,870	1	3,570	4,900	2,820	1,930	1,450		1,990	1,990 4,830	1,990 4,830 64.2	1,990 4,830 64.2 28.9	1,990 4,830 64.2 28.9 18.3	1,990 4,830 64.2 28.9 18.3	1,990 4,830 64.2 28.9 18.3 149	1,990 4,830 64.2 28.9 18.3 149 13	1,990 4,830 64.2 28.9 18.3 149 13	1,990 4,830 64.2 28.9 18.3 14.9 77 71 71	1,990 4,830 64.2 28.9 18.3 149 71 71 71 13.2	1,990 4,830 64.2 28.9 18.3 149 71 71 71 13.2 11.2	1,990 4,830 64.2 28.9 18.3 149 71 71 71 13.2 11.2 6.84	1,990 4,830 64.2 28.9 18.3 149 13 71 71 13.2 11.2 6.84 0.500	1,990 4,830 64.2 28.9 18.3 149 113.2 11.2 6.84 <0.500 157	1,990 4,830 64.2 28.9 18.3 14.9 13.2 11.2 6.84 <0.500 157 13.8	1,990 4,830 64.2 28.9 18.3 14.9 13.2 11.2 6.84 <0.500 157 13.8 128.0	1,990 4,830 64.2 28.9 18.3 14.9 71 71 71 71 71 71 71 71 71 71 71 8,84 <0.500 157 128.0 38.5 14.2	1,990 4,830 64.2 28.9 18.3 14.9 13.2 11.2 6.84 <0.500 157 128.0 38.5 14.2 550	1,990 4,830 64.2 28.9 18.3 14.9 13.2 11.2 6,84 <0.500 157 128.0 38.5 14.2 550 560	1,990 4,830 64.2 28.9 18.3 14.9 13.2 14.2 6.84 <0.500 157 128.0 38.5 14.2 550 550	1,990 4,830 64.2 28.9 18.3 14.9 13.2 14.2 6.84 <0.500 157 128.0 38.5 14.2 550 560 660	1,990 4,830 64.2 28.9 18.3 14.9 11.2 11.2 6.84 <0.500 157 128.0 38.5 128.0 38.5 560 560 660	4,830 64.2 28.9 18.3 14.9 11.2 11.2 6.84 6.0.500 157 13.8 128.0 38.5 560 560 660 660	4,830 64.2 28.9 18.3 14.9 11.2 11.2 6.84 6.0.500 157 13.8 128.0 38.5 560 650 650 650 650	4,830 64.2 28.9 18.3 14.9 11.2 11.2 6.84 6.0.500 157 13.8 128.0 38.5 560 650 650 650 650 630
Oil (µg/L)		;	ł	<750	<846	<750	822	ł	711	692	277	029	528		<581	<581 <500	<581 <500 <588	<581 <500 <588 <253	<581 <500 <588 <253 <276	<581 <500 <588 <253 <276	<581 <500 <588 <253 <276 381 <484	<pre><581 <500 <588 <253 <276 381 <484 <478</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <478</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <478 <478 <478 <478</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <477 <473 <500</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <477 <477 <500 <500</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <477 <477 <500 <500<</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <477 <500 <500 <500 <500<</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <473 <500 <500 <500 <505 <485</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <473 <500 <500 <500 <500 <500 <500 <500 <50</pre>	<pre><581 <500 <588 <253 <276 381 <478 <478 <4773 <500 <500 <500 <500 <485 <485 <485 <495</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <478 <473 <500 <500 <500 <485 <485 <496 <496 <496 <496 <496 <496 <496 <496</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <478 <473 <500 <500 <500 <485 <485 <485 <485 <485 <485 <485 <485</pre>	<pre><581 <500 <588 <253 <276 381 <444 <478 <477 <500 <500 <500 <485 <485 <485 <485 <485 <485 <485 <485</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <473 <500 <500 <500 <485 <485 <495 <495 <495 <495 <475 <495 <475 <495 <475 <495 <475 <495 <475 <475 <475 <475 <475 <475 <475 <47</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <477 <500 <500 <500 <500 <500 <500 <500 <5</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <473 <500 <500 <500 <500 <405 <405 <405 <405</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <473 <500 <500 <500 <405 <495 <495 <495 <476 <495 <495 <495 <476 <495 <495 <495 <495 <495 <495 <495 <495</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <477 <473 <500 <500 <500 <495 <495 <495 <495 <495 <495 <496 <496 <496 <496 <496 <496 <496 <496</pre>	<pre><581 <500 <588 <253 <276 381 <484 <478 <478 <473 <500 <500 <500 <495 <495 <495 <495 <495 <470 <495 <495 <470 <495 <470 <495 <470 <495 <470 <495 <470 <470 <470 <470 <470 <470 <470 <470</pre>
Diesel (µg/L)	1	۱	ı	1,740	2,810	1,620	4,220	ı	4,260	4,140	2,040	3,740	3,530		2,550	2,550	2,550 2,730 <294	2,550 2,730 <294 316	2,550 2,730 <294 316 838	2,550 2,730 <294 316 838 1,470	2,550 2,730 <294 316 838 1,470 <242	2,550 2,730 <294 316 838 1,470 <242 592	2,550 2,730 <294 316 838 1,470 <242 592	2,550 2,730 <294 316 838 1,470 <242 592 <239	2,550 2,730 <294 316 838 1,470 <242 592 <239 <237 <250	2,550 2,730 <294 316 838 1,470 <242 592 <239 <237 <250	2,550 2,730 <294 316 838 1,470 <242 592 <239 <237 <250 <250	2,550 2,730 <294 316 838 1,470 <242 592 <239 <237 <250 <250 <400 1,030	2,550 2,730 <294 316 838 1,470 <242 592 <239 <237 <250 <250 <250 <250	2,550 2,730 <294 316 838 1,470 <242 592 <239 <237 <250 <250 <250 <250 <250	2,550 2,730 <294 316 838 1,470 <242 592 <239 <237 <250 <250 <250 <250 <243 <250 <243	2,550 2,730 <294 316 838 1,470 <242 592 <237 <250 <250 400 1,030° <243 <250 <243 <250 <243 <250	2,550 2,730 <294 316 838 1,470 <242 592 <239 <239 <237 <250 400 1,030 <243 <243 <243 <243 <244 <244 <244 <244	2,550 2,730 <294 316 838 1,470 <242 592 <239 <237 <250 400 1,030° <243 <250 <260 <270 <270 <270 <270 <270 <270 <270 <27	2,550 2,730 <294 316 838 1,470 <242 592 <239 <237 <250 <250 <250 <250 <250 <250 <243 <243 <250 <274 <274 <276 <277 <270 <270 <270 <270 <270 <270 <270	2,550 2,730 <294 316 838 1,470 <242 592 <239 <250 <250 <250 <250 <250 <250 <250 <250	2,550 2,730 <294 316 838 1,470 <242 592 <239 <237 <250 <250 <250 <250 <250 <243 <250 <243 <250 <243 <250 <1,000 1,000 1,100 1,100	2,550 2,730 <294 316 838 1,470 <242 592 <239 <237 <250 <250 <250 <250 <250 <243 <250 <243 <250 <1,000 1,000 1,100 1,400	2,550 2,730 <294 316 838 1,470 <242 592 <239 <250 <250 <250 <250 <250 <250 <250 <243 <250 <243 <250 <1,000 1,000 1,100 1,400	2,550 2,730 <294 316 838 1,470 <242 592 <239 <250 <250 <250 <250 <250 <250 <243 <250 <243 <250 <1,000 1,000 1,100 1,400 1,400
Gasoline (µg/L)			ŀ	7,010	13,700	15,500	17,100	1	12,200	16,400	6,850	6,580	6,750	***	13,000	13,000	13,000 17,400 1,420	13,000 17,400 1,420 1,580	13,000 17,400 1,420 1,580 7,310	13,000 17,400 1,420 1,580 7,310 3,330	13,000 17,400 1,420 1,580 7,310 3,330	13,000 17,400 1,420 1,580 7,310 3,330 330 1,500	13,000 17,400 1,420 1,580 7,310 3,330 330 1,500 	13,000 17,400 1,420 1,580 7,310 33,330 330 1,500 <100 205	13,000 17,400 1,420 1,580 7,310 33,330 330 1,500 <100 205	13,000 17,400 1,420 1,580 7,310 33,330 330 1,500 <100 205 277	13,000 17,400 1,420 1,580 7,310 33,330 330 1,500 <100 205 277 217 217	13,000 17,400 1,420 1,580 7,310 33,330 330 1,500 <100 205 277 277 <50,0 277 277	13,000 17,400 1,420 1,580 7,310 33,330 330 1,500 <100 205 277 277 277 <50.0 2,740 197	13,000 17,400 1,420 1,580 7,310 33,330 330 1,500 <100 205 277 217 <217 <217 <217 197 197	13,000 17,400 1,420 1,580 7,310 33,330 330 1,500 <100 205 277 277 <50.0 <50.0 1,770 197 1,770	13,000 17,400 1,420 1,580 7,310 330 330 1,500 <100 205 205 277 277 277 277 277 277 1,770 4,770 1,770 596 296	13,000 17,400 1,420 1,580 7,310 330 1,500 <100 <100 277 277 277 277 277 277 277 197 1,770 596 296 296	13,000 17,400 1,420 1,580 7,310 330 330 1,500 <100 2,77 2,77 2,77 2,77 2,77 2,77 1,770 5,50,0 1,770 1,70 1,	13,000 17,400 1,420 1,580 7,310 33,330 33,330 33,500 <100 1,500 <100 2,77 2,77 2,77 2,77 2,77 1,770 1,70 1,	13,000 17,400 1,420 1,580 7,310 33,330 33,330 277 277 277 277 205 2,740 197 1,770 1,770 1,770 3,500 4,900	13,000 17,400 1,420 1,580 7,310 33,330 33,330 33,0 4,100 1,500 2,740 197 1,770 2,740 197 1,770 2,740 197 1,700 3,500 2,740 197	13,000 17,400 1,420 1,580 7,310 33,330 330 1,500 <100 <100 2,740 197 1,770 596 596 596 596 11,000 7,200 3,500 4,900 4,900	13,000 17,400 1,420 1,580 7,310 33,330 330 1,500 <100 <100 2,740 197 1,770 596 596 596 596 11,000 7,200 3,500 4,900 4,900 13,000	13,000 17,400 1,420 1,580 7,310 33,330 330 1,500 <100 2,77 205 277 <20,0 <100 1,770 1,770 1,770 1,770 2,740 197 1,700 4,900 4,900 4,900 4,900 5,200 5,200
Sample Date	06/30/99	12/08/99	00/22/90	12/19/00 ^b	06/15/01 ^b	06/26/01 ^b	09/07/01 ^b	10/10/01	12/28/01	03/08/02	06/24/02	09/26/02°	12/12/02	03/13/03	_	06/12/03	06/12/03 09/19/03	06/12/03 09/19/03 01/14/04	06/12/03 09/19/03 01/14/04 03/30/04	06/12/03 09/19/03 01/14/04 03/30/04	06/12/03 09/19/03 01/14/04 03/30/04 06/22/04	06/12/03 09/19/03 01/14/04 03/30/04 06/22/04 09/29/04	06/12/03 09/19/03 01/14/04 03/30/04 06/22/04 09/29/04 12/29/04 03/17/05	06/12/03 09/19/03 01/14/04 03/30/04 06/22/04 09/29/04 12/29/04 03/17/05	06/12/03 09/19/03 01/14/04 03/30/04 06/22/04 09/29/04 12/29/04 03/17/05 06/01/05	06/12/03 09/19/03 01/14/04 03/30/04 06/22/04 12/29/04 12/29/04 03/17/05 06/01/05	06/12/03 09/19/03 01/14/04 03/30/04 09/22/04 12/29/04 12/29/04 03/17/05 06/01/05 07/25/05	08/12/03 09/19/03 01/14/04 03/30/04 06/22/04 09/29/04 12/29/04 03/17/05 06/01/05 07/25/05 11/08/05	06/12/03 09/19/03 01/14/04 03/30/04 09/29/04 12/29/04 03/17/05 06/01/05 07/25/05 11/08/05 02/23/06	06/12/03 09/19/03 01/14/04 03/30/04 06/22/04 09/29/04 12/29/04 03/17/05 06/01/05 07/25/05 11/08/05 02/23/06 05/08/06	06/12/03 09/19/03 01/14/04 03/30/04 06/22/04 09/29/04 12/29/04 03/17/05 06/01/05 07/25/05 11/08/05 02/23/06 05/08/06	06/12/03 09/19/03 01/14/04 01/14/04 05/22/04 09/29/04 03/17/05 06/01/05 07/25/05 11/08/05 05/08/06 05/08/06 05/08/06 05/08/06 05/08/06	06/12/03 09/19/03 01/14/04 01/14/04 03/30/04 06/22/04 09/29/04 03/17/05 06/01/05 07/25/05 11/08/05 05/08/06 05/08/06 05/08/06 05/08/06 12/13/06 03/08/06 12/13/06	08/12/03 09/19/03 01/14/04 03/30/04 08/22/04 09/29/04 12/29/04 03/17/05 06/01/05 07/25/05	08/12/03 09/19/03 01/14/04 03/30/04 06/22/04 06/22/04 06/22/04 03/17/05 06/01/05 07/25/05	06/12/03 09/19/03 01/14/04 01/14/04 03/30/04 06/22/04 09/29/04 12/29/04 03/17/05 06/01/05 07/25/05 11/08/05 03/06/06 12/13/06 03/08/06 12/13/06 03/08/06 12/13/06 03/08/06	06/12/03 09/19/03 01/14/04 03/30/04 06/22/04 09/29/04 11/2/9/05 06/01/05 06/06/05	06/12/03 09/19/03 01/14/04 03/30/04 06/22/04 09/29/04 12/29/04 03/17/05 06/01/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 08/07/94	06/12/03 09/19/03 01/14/04 03/30/04 06/22/04 09/29/04 12/29/04 03/17/05 06/01/05 06/01/05 06/01/05 06/01/05 06/01/05 06/01/05 06/01/05 06/01/05 06/01/05 06/01/05 06/01/05 06/01/05 06/01/05 06/01/05 06/06/05 06/06/05 06/06/05 06/06/05 06/06/05 06/06/05 06/06/05 06/06/05 06/06/05	06/12/03 09/19/03 01/14/04 03/30/04 06/22/04 09/29/04 11/2/9/05 06/01/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 07/25/05 08/07/94 03/08/95 06/06/95 06/06/95
I.D.	MW-32A			-				-	-			<u> </u>				_										41.08														

	GWE		9.56	10.09	10.27	1	1	9.57	8.85	9.72	10.37	11.23	9.78	9.42	ł	10.03	f	ŀ	;	9.54	9.38	9.39	8.38	8.41	10.16	9.10	14.05	8.72	8.26	8.09	11.15	8.61	89.8	9.54	:	23.66	18.67	18.37	17.73	18.64	21.71	18.13
	SPH (feet)		0.00	0.00	00'0	Σ	ΣN	0.00	00.0	00.0	00'0	00.00	00.00	00'0	ΣN	2.50	ΣN	0:30	ΣN	00.00	0.00	0.00	0.10	00'0	0.00	Sheen	00.0	00'0	0.00	00.00	0.00	00'0	00.0	00.0	0.00	00'0	0.00	00:00	00.0	0.00	00'0	0.00
	DTW (feet)		11.19	10.66	10.48	ΣN	ΣN	11.18	11.90	11.03	10.38	9.52	10.97	11.33	ΣN	12.72	Z	NN	Z	11.21	11.37	11.36	12.45	12.34	10.59	11.65	6.70	12.03	12.49	12.66	9.60	12.14	12.07	11.21	11.73	6.50	11.49	11.79	12.43	11.52	8.45	12.03
	DO (ma/L)	ì	!	ŀ	ŀ	:	ł	ł	ı	1	:	1	1	;	;	;	I	1	;	1	:	1	1		;	-	1	09.0	1.72	1.20	7.20	0.10	4.60	9.30	5.20	» MN	ı	0.56	1.74	0.15	0.87	0.55
	Total Lead (ug/L)	1 2 2	1	1	1	ł	ł	ı	ŀ	ı	1	ı	ŀ	1			1		ŀ	ŀ	ł	1		I	;	I	;	1	1	ı		ł	ł	ŀ	ŀ	}	1.00	<1.00	41.00	<1.00	<1.00	<1.00
	Naphthalene Total Lead (ug/L)	,	1	ı	ı	1	l	;	1	ı	ı	1	l	1			ı		1	ı	ı	ŀ		1	ı	ı	ı	1	ı	ı	1	ł	ı	1	1.27	ŀ	<5.00	2.13	17.1	<25.0	23.8	21.8
	MTBE (ug/L)		!	****	ı	ļ	ł	!	,	ı	;	!	ŀ	ŀ					1	ŀ	ı	1		!	ł	ŀ	ı	;	Ì	;	;	I	ŀ	⊽	×1.00	<2.00	<5.00	<1.00	6.79	<5.00	41.00	1.38
	Xvlenes (µg/L)		1	;	1	1	ł	ł	;	!	ì	ŀ	ł	;			1		1	22,700	24,800	28,900		ł	1	3,890	4.30	ક	150.4	217.3	22	169.3	9.55	%	1.78	<1.00	<15.0	1.78	56.0	175	84.6	17.5
Ethyl-	benzene (µa/L)		ı	ŀ	ł	ı	1	ł	ı	ŀ	ı	Ì	ŀ	ı	Inaccessible	LPH Present	1	LPH Present	,	3,410	3,420	3,770	LPH Present	ł	ł	474	<0.500	7.65	53.2	99.2	5.6	49.4	4.6	₹	1.95	<0.500	5.50	0.700	26.2	45.2	54.8	0.550
	Toluene (µg/L)		1	ı	!	ŀ	ı	ł	!	1	ļ	ŀ	ı	Ì	Inacc	LPH	-	LPH	,	32,500	21,600	14,200	LPH	1	1	526	<0.500	3.7	14.7	12.1	6.	30.9	1.23	⊽	0.230	<0.500	4.75	<0.500	10.0	41.2	2.48	<0.500
	Benzene (µg/L)		;	;	ļ	ŀ	ŀ	ł	ł	ł	ŀ	ŀ	;	1			1		;	5,360	2,660	1,510		ł	ł	396	0.704	17	218	197	12	9	8.23	2.03	3.27	0.800	145	4.29	200	163	65	32.5
TPH-	Oil (hg/L)		ţ	ţ	i	ŀ	ì	ł	ł	1	ŀ	1	1	1			1		1	2,680	3,420	14,000		1	ı	<562	<581	<271	<256	443	<511	<491	<478	<524	<500	<472	<510	<481	<500	<485	<521	<490
TPH-	Diesel (µg/L)		ŀ	ŀ	ŀ	-	ŀ	ŀ	ļ	ł	1	ļ	ļ	ŀ			11		ŀ	25,200	31,400	51,700		ı	1	4,170	<291	<135	725	1,330	290	795	<239	<262	<250	<236	<255	<240	<250	<243	<260	<245
TPH-	Gasoline (µg/L)		l	ŧ	Į	ŀ	ŀ	ı	ł	1	ı	į	ž į	1		j	1		}	141,000	126,000	205,000	j	ŀ	ł	30,900	125	524	2,680	3,500	290	2,860	106	<100	79.3	<50.0	582	242	874	11,200	867	535
	Sample Date		/6/87/50	06/30/97	26/80/60	12/19/97	03/16/98	06/26/98	09/23/98	12/17/98	03/31/99	66/02/90	12/08/99	06/20/00	12/19/00	06/15/01	06/26/01	09/07/01	10/10/01	12/28/01	03/08/02	06/24/02	09/26/02	12/12/02	03/13/03	06/12/03	09/19/03	01/14/04	03/30/04	06/22/04	09/29/04	12/29/04	03/17/05	06/01/05	07/25/05	11/01/05	02/23/06	90/80/50	90/30/80	12/12/06	03/07/07	06/15/07
Sample	TOC.	1 00 1111	INIAN-33	(cont'd)																																30.16						

TABLE 3
HISTORICAL GROUNDWATER ANALYTICAL RESULTS
AND WATER TABLE ELEVATIONS
ConocoPhillips Site No. 255353
600 Westlake Avenue N.
Seattle, Washington

Sample		1		1			i								
- מוויים	,	뉴	-HA1	-H-H-			Ethyl-								
.D.	Sample	Gasoline	Diese	ō	Benzene	Toluene	benzene	Xylenes	MTBE	Naphthalene Total Lead	Total Lead	8	DTW	SPH	GWE
500	Date	(hg/L)	(J/6r/)	(hg/L)	(hg/L)	(µg/L)	(µg/L)	(J)(F)	(hg/L)	(hg/L)	(µg/L)	(mg/L)	(feet)	(feet)	(feet)
MW-34	11/04/91	40,000	<1,000	ı	23,000	18,000	2600	14000	1	1	-	,	-	1	1
21.42	10/07/93	4,200	1,600	970	1,400	480	120	440	ł	ı	ŀ	ŀ	!	1	ı
	12/29/93	52,000	2,200	<750	15,000	11,000	1,500	7,000	1	ı	ł	ł	11.01	0.00	10.41
	04/07/94	9,800	1,400	<750	4,500	930	260	840	1	ŀ	1	ł	10.88	00'0	10.54
	07/14/94	5,700	1,200	<750	980	420	210	820	1	ı	ł	1	10.78	0.00	10.64
	10/25/94	13,000	4,100	1,900	6,500	170	089	1,000	1	ŀ	ı	ı	11.78	0.00	9.64
	03/08/95	8,200	1,100	480	2,400	1,500	250	1,300	ŀ	;	1	ı	11.62	0.00	9.80
	06/06/95	9,100	2,300	<750	4,200	1,000	330	1,200	ŀ	ī	ı	ı	11.73	0.00	9.69
	09/07/95	18,000	1,800	930	4,800	2,300	560	2,000	1	1	ŀ	ı	11.57	0.00	9.85
	12/08/95	68,000	2,900	1,600	12,000	9,200	1,200	5,500	ŀ	ŀ	1	ŀ	10.92	0.00	10.50
	04/01/96	10,000	1,900	<750	5,500	580	520	1,200	ŀ	1	1	ı	11.21	0.00	10.21
	06/25/96	13,700	1,160	<750	4,190	1,110	393	i,740	ŀ	ŀ	ı	ı	11.19	0.00	10.23
	09/27/96	16,300	1,030	<750	5,010	2,520	541.0	1,310	Į.	ŀ	1	1	11.58	0.00	9.84
	03/28/97	1	ŀ	1	ŀ	ł	1	}	;	1	ı	í	11.47	0.00	9.95
	06/30/97 ^b	2,970	311	<750	1,930	15.7	271	531	 I	ŀ	ŀ	ı	11.19	0.00	10.23
	09/08/97 ^b	8,390	455	<750	3,920	645	267	1,270	ŀ	1	ı	ı	11.74	0.00	9.68
	12/19/97	1	ŀ	1	I	ŀ	ı	ŀ	ŀ	ŀ	;	ı	ΣZ	N	
	03/16/98	ı	ŀ	1	ł	ł	ŀ	ŀ	ļ	:	1	ŀ	ΣZ	ΣN	1
	06/26/98 ^b	76,900	3,090	<750	13,400	11,100	2,310	9,080	1	1	1	ı	11.42	0.00	10.00
	09/23/98 ^b	9,040	3,000	799	3,540	243	929	1,650	;	1	1	ŀ	12.23	0.00	9.19
	12/17/98 ^b	80,900	5,470	1,380	14,200	10,800	3,110	11,800	ł	ŀ	1	1	11.35	00'0	10.07
	03/31/99 ^b	33,400	1,910	<750	5,970	1,740	1,400	3,820	ŀ	1	1	ı	10.85	0.00	10.57
	06/30/99 ^b	28,500	4,840	984	4,340	1,320	1,490	3,610	ŀ	ŀ	ŀ	1	10.18	0.00	11.24
	12/08/99 ^b	62,400	2,500	<1,360	12,900	7,440	3,240	9,210	ı	ŀ	ı	ı	11.33	0.00	10.09
	06/20/00 ⁵	25,000	<250	<750	6,360	480	2,190	3,930	ì	ı	ŀ	ì	11.68	00.0	9.74
	12/19/00	ŀ	ı	ł	ŀ	ì	ŀ	1	ı	ı	ı	ļ	ΣN	ΝŽ	ł
	06/15/01 ^b	25,800	4,780	<883	5,300	06	1,930	2,190	}	I	ŀ	ş	11.85	00.0	9.57
	06/26/01	1	ŀ	ı	ļ.	ŀ	ŀ	;	;	ŀ	ŀ	Ì	ΣN	ΣZ	ŀ
	09/07/01 ^b	17,800	4,510	722	3,540	44.9	1,510	2,180	ŀ	ì	ł	1	11.86	0.00	9.56
	10/110/01	1	ł	1	1	ļ	ļ	ł	i	I	ł	1	ΣZ	ΣN	ł
	12/28/01	19,000	8,400	752	5.320	1,200	406	1.010	1	ţ	ŀ	;	11.46	00.0	98.6

Sample			H	H			i								
I.D.	Sample	Gasoline	Diesel	Ėō	Benzene	Tolliene	Etnyl- henzene	Xvlenes	MTRF	Nanhthalene Total ead	Totallead	Ç	WITC.	0	באלנו
TOC ^a	Date	(µg/L)	(hg/L)	(µg/L)	(1/6rl)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(µg/L)	(hg/L)	(mg/L)	(feet)	(feet)	(feet)
MW-24	03/08/02	000	0 660	100	1 200	0,000	0.400	0000							
	70/00/00	007,60	0000	-	002',	0,610	2,190	8,200		1	ŀ	}	11.70	0.0	9.72
(conta)	06/24/02	12,500	4,200	614	2,140	651	629	1,160	1	ı	ł	ŀ	11.91	0.00	9.51
	09/26/02	13,800	6,270	<1,160	5,840	21.8	280	87	ļ	ı	1	1	12.80	0.00	8.62
	12/12/02	14,500	11,000	681	5,130	44.7	333	224	1	i	ļ	ŀ	12.98	00'0	8.44
	03/13/03	25,600	6,480	<500	6,030	899	775	1,130	ŀ	ı	!	ı	11.67	00:0	9.75
	06/12/03	13,000	2,880	<500	1,590	735	450	1,360	1	ı	į	ı	12.04	00:0	9.38
	09/19/03	351	<301	<602	9.91	11.7	6,48	34.6	ł	ł	1	ı	12.83	00:0	8,59
	01/14/04	160	<122	<245	23.7	<0.5	2.11	⊽	1	ı	1	0.20	12.00	0.00	9.42
	03/30/04	15,100	1,120	<300	3,060	238	564	846.6	I	1	1	1.68	12.62	00.0	8.80
	06/22/04	6,760	1,900	<238	2,320	14.3	395	279.8	;	1	ı	0.50	12.88	00.0	8.54
	09/29/04	310	306	<505	5	<0.50	3.5	8.2	;	1	1	0.40	11.38	00'0	10.04
	12/29/04	2,590	481	<504	320	۲ <u>۰</u>	83.8	101.4	;	ı	ŀ	2.00	12.67	00.0	8.75
	03/17/05	×100	<239	<478	⊽	⊽	⊽	7	1	ı	Ī	0.40	12.66	00.0	8.76
	06/01/05	143	<237	<474	₹	⊽	5.34	4.87	₹	ŀ	1	2.90	11.81	00.0	9.61
	07/25/05	<50.0	<250	<500	0.210	<0.200	1.85	1.31	<1.00	<0.500	1	2.10	11.80	00.0	!
30.58	11/07/05	219	<245	<490	8.46	<0.500	0.58	4.86	00.T≥	ı	ŀ	06:0	11.92	00.0	18.66
	02/22/06	95.9	<255	<510	6.27	9.27	2.10	10.2	<1.00 ^{q,}	<1.00	1.32	1	11.48	00.0	19.10
	02/08/06	489	<250	<500	14.7	<0.500	9.15	2.36	<1.00	8.04	4.00	4.67	12.84	00.00	17.74
	90/30/08	254	<245	<490	32.8	0.880	4.82	5,45	۲۰ ۲۰	12.1	4.00	0.40	12.70	00.0	17.88
	12/13/06	2,240	<250	<500	211	<2.50	25.0	<15.0	<5.00	<25.0	×1.00	1.34	11.66	00.0	18,92
	03/02/02	1,010	<240	<481	81.7	<5.00	7.50	181	<10.0	<50.0	1.98	0.64	10.75	00.0	19.83
	06/15/07	908	<250	<500	141	1.01	4.02	<3.00	<1.00	6.79	<1.00	0.57	12.39	00.0	18.19
MW-35	11/04/91	24,000	<1,000	ı	440	2,600	610	4,300	ł	1	!	ŀ	ı	1	1
20.10	12/29/93	4,200	1,000	<750	280	04	200	720	ŀ	ı	ŀ	1	10.23	00.00	9.87
	04/07/94	5,300	870	<750	480	51	1	550	;	1	!	1	9.91	0.00	10,19
	07/14/94	8,100	890	<750	980	7.6	150	900	ļ	ı	į	ı	10.13	00.00	9.97
	10/25/94	2,800	1,300	1,200	360	3.6	100	82	ı	1	ı	ł	10.87	00'0	9.23
	96/80/60	2,600	1,200	1,300	400	<25	120	83	ì	ı	ŧ	ŀ	10.67	00.0	9.43
	96/90/90	810	1,000	930	62	i. 4	27	36	;	1	1	1	10.67	00.0	9.43
	96/20/60	ı	ŀ	ł	1	ļ	ı	ł	ł	ı	!	1	10.87	00.00	9.23
	12/08/95	f	1	ł	I	1	ł	ł	ŀ	1	1	ı	Ž	¥N	ŀ
	04/01/96	ł	1	ł	1	1	ŀ	ł	I	1	1	1	Σ	ΝN	;
	06/25/96	1,620	850	<750	68.2	1.1	26.7	17.6	1	1	,	!	11.11	00.0	8.99
	09/27/96	929	524	<750	38.8	0.990	10.4	6.18	1	ı	ı	I	10.64	00.00	9.46
	03/28/97"	1,370	333	<750	161	2.36	31.9	10.7	}	1	1	,	11.28	0.00	8.82

	GWE (feet)	8.82	9,91	9.24	!	9.46	9.45	8.72	9.61	ŀ		,	,	,	ł	9.50	9.56	!	9.56	9.38	!	8.20	ı	10.23	8.19	7.92	8.77	8.41	8.19	8.33	8.81	8.57	9.34	ŀ	18.68	18.69	18.47	17.72	18.67	18.95	18.46
	SPH (feet)	0.00	0.00	00.00	ΣN	00.00	00'0	00.0	00.0	ΣN	ΣN	ΣX	ΣZ	ΣX	MN	00.00	00'0	ΣN	00'0	00.0	ΣN	00.0	ΣZ	00.0	00'0	00.0	0.00	0.00	00:00	00:0	00'0	00'0	00.0	00.0	0.00	0.00	0.00	0.00	0.00	00'0	00'0
	DTW (feet)	11.28	10.19	10.86	MM	10.64	10.65	11.38	10.49	Ž	Ž	MN	W	Ž	Z	10.60	10.54	ΣX	10.54	10.72	Ž	11.90	Z	9.87	11.91	12.18	11.33	11.69	11.91	11.77	10.64	10.88	10.11	10.42	10.22	10.21	10.43	11.18	10.23	9.95	10.44
	DO (mg/L)	1	ł	ŀ	I	1	ł	1	ŀ	1	1	ı	1	ı	ŀ	ı	ı	ł	ı	ł	I		ī	ı	1	ı	0:30	1.46	1.50	0.10	0.10	0.70	1.60	1.60	。 WN	1	0.72	3,99	1.62	0.37	0.22
	Total Lead (µg/L)		i	1	;	ı	ļ	1	;						1	1	i	;	ı	I		1		ı	i	ŀ	1	ŀ	l	1	ł	ŀ	ì	ļ	ŀ	1.95	2.01	1.35	<1.00	2.55	<1.00
	Naphthalene Total Lead (µg/L)	1	ļ	ı	ı	ı	ł	ı	***						1	ı	l	ı	ı	ı		1		1	ŀ	1	1	ı	ŀ	1	1	ı	1	0.970	ı	<1.00	<1.00	<5.00	<5.00	<5.00	6.34
	MTBE (µg/L)	1	ļ	ŀ	1	ı	1	1	!						ł	ŀ	ŀ	1	ŀ	ŀ)	:	1	1	1	ł	ł	1	1	1.21	1.14	×1.00	41.00	<1.00	V-1.00	×1.00	<1.00	<1.00
	Xylenes (µg/L)	8.04	7.31	68.2	;	<5.00	<20.0	<5.00	9.99						1	28.4	<1.00	ł	13.2	6.91		<1.50		2,160	222	14.6	0.568	ç	~	2.1	♡	۲,	\$	1.15	3.89	<3.00	×3.00	<3.00	<3.00	<3.00	<3.00
Ethyl-	benzene (µg/L)	49.1	82	231	ł	<2.50	45.1	<2.50	10.8	Obstructed by vehicle	1	5.52	<0.500	:	14.1	7.05	Obstructed by vehicle	1.78	Obstructed by vehicle	794	49.9	1.86	0.657	₹	⊽	1.1	₹	₹	2.11	0.980	1.17	<0.500	<0.500	<0.500	<0.500	0.890	<0.500				
	Toluene (µg/L)	2.62	<2.50	16.2	1	4.24	<10.0	<2.50	<2.50	Obstructed	Obstructed	Obstructed	Obstructed	Obstructed	1	27.5	<0.500	ì	0.898	0.939	Obstructed	<2.00	Obstructed	153	21.2	4.32	<0.5	₹	7	<0.50	⊽	₹	⊽	0.280	0.870	<0.500	<0.500	1.25	<0.500	0.720	<0.500
	Benzene (µg/L)	250	348	1,460	ŀ	410	909	243	402						ı	11.3	2.36	ŀ	28.7	16.2		9.49		749	338	7.29	i.45	₹	1.27	0.50	⊽	⊽	2.06	2.09	1.22	<0.500	2.53	1.30	<0.500	13.0	<0.500
TPH-	Oil (hg/L)	<750	<750	<750	į	<750	<750	<750	<750						ŀ	<750	<564	ŀ	<500	<500		<500		<500	<562	<746	<256	<257	<238	<487	<510	<478	<475	<500	<490	<485	<472	<490	<495	<505>	<490
TPH-	Diesel (µg/L)	<250	<250	<250	ı	361	682	629	572						ŀ	464	903	1	1,160	1,100		1,420		1,430	973	<373	142	196	210	248	<255	<239	<238	<250	<245	315	<236	<245	<248	<253	<245
TPH-	Gasoline (µg/L)	1,800	1,900	4,200	ı	902	1,300	999	669						1	504	263	ı	691	638		555		13,500	3,930	517	614	541	526	250	280	168	334	296	243	<50.0	<50.0	120	181	89.1	<50.0
	Sample Date	03/28/97	06/30/97 ^b	_q 26/80/60	12/19/97	03/16/98 ^b	06/26/98 ^b	09/23/98 ^b	12/17/98 ^b	03/31/99	66/30/90	12/08/99	06/20/00	12/19/00	06/15/01	06/26/01 ^b	09/04/01 ^b	10/10/01	12/28/01	03/08/02	06/24/02	09/26/02 ^b	12/12/02	03/13/03	06/12/03	09/19/03	01/14/04	03/30/04	06/22/04	09/29/04	12/29/04	03/17/05	06/01/05	07/25/05	11/07/05	02/23/06	90/80/90	90/08/80	12/13/06	03/08/07	06/15/07
Sample	TOC.	MW-35	(cont'd)																												19.45				28.90						

		1	1																																_
	GWE	(feet)	-	8.38	9.82	8.48	8.73	9.88	9.69	8.80	8.80	8.83	10.27	8.59	10.92	8,59	7.71	8.51	9.33	7.91	7.80	8.84	9.36	7.75	9,33	8.30	9.80	ŀ	9.10	ł	8.23		ı	7.64	!
	SPH	(feet)	ŀ	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ΣZ	00'0	ΣN	0.00	ΝN	ΣZ	0.00	Z
	WTO	(feet)	-	9.42	7.98	9.32	9.07	7.92	8.11	9.00	9.00	8.97	7.53	9.21	6.88	9.21	10.09	9.29	8.47	9.89	10.00	8.96	8.44	10.05	8.47	9.50	8.00	ΣN	8.70	N.	9.57	N N	MM	10.16	ΣZ
	8	(mg/L)	-	ı	1	1	1	i	ı	ı	ı	1	1	}	ı	1	ŀ	ı	ı	ı	1	ı	ı	1	ı	!	!	ł	ı	ļ	f	ł	1	ı	ŀ
	Total Lead	(1/gn)	ŀ	;	ı	ŀ	ŀ	ŀ	1	;	ŀ	;	ı	ł	ŀ	1	ŀ	;	ŀ	;	ŀ	1	ŀ	ŀ	;	ı	;	ţ	!	ł	ł	1	;	;	i
	Naphthalene Total Lead	(µg/L)	ı	i i	ı	1	1	ı	ı	ı	į	ŀ	Ī	ı	ı	1	ı	1	ī	1	1	1	ŀ	ı	ı	ı	ŀ	ı	l	ı	I	1	ļ	ı	1
	MTBE	(J/g/L)	1	ł	;	;	;	Į	;	ł	1	ł	ł	ł	ł	ŀ	1	1	ł	ł	1	1	1	ì	1	ì	1	1	ŧ	ļ	ŀ	I	;	ŀ	1
	Xylenes	(J/6rl)	1.0	<0.5	<0.5	o.r>	۲۲°0	۸. ۲.0	41.0	0,1>	o.r>	<1.00	00.1	00.1≻	00.1	<1.00	<1.00	41.00	41.00	1.13	00.1	00.1>	<1.00	o.1.00	11.1	7.14	1.53	ŀ	<1.00	ł	1.78	ł	ł	<1.50	1
Ethyl-	penzene	(ha/r)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	1.78	1.08	0.530	ļ	<0.500	į	<0.500	ł	ŀ	×1,00	1
	Toluene	(J/6fl)	6.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	0.583	1.51	0.648	i	<0.500	1	0.748	ì	ł	<2.00	ŀ
	Benzene	(hg/L)	24	0.7	0.7	1.2	2.6	_	<0.5	1.	<0.5	0.58	1.18	0.810	<0.500	<0.500	909.0	<0.500	<0.500	0.737	0.533	0.759	1.29	<0.500	<0.500	0.529	0.691	ı	0.897	ı	0.773	ı	ļ	0.735	1
TPH-	ō	(ng/L)	1	940	096	1,300	1,200	<750	<750	1,200	<750	<750	<750	<750	<750	<750	<750	<750	<750	<750	<750	<750	<750	<750	<750	<750	<750	ŀ	<500	1	<500	1	ı	<500	!
TPH-	Diesel	(ha/L)	<1,000	370	410	670	260	<250	<250	510	<250	<250	<250	<250	<250	<250	<250	287	<250	<250	288	321	<250	<250	<250	<250	298	ł	<250	1	387	ì	ŀ	<250	!
TPH-	Gasoline	(µg/L)	1,000	×100	×100	<50	<50	<50	×20	<50	<50	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	9.99	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	172	106	<50.0	1	<50.0	ł	<50.0	ì	ŀ	<100	***
	Sample	Date	11/05/91	12/30/93	07/15/94	10/25/94	03/08/95	26/90/90	09/07/95	12/08/95	04/01/96	06/25/96	09/27/96	03/28/97	06/30/97 ^b	_q 26/80/60	12/19/97 ^b	03/16/98 ^b	06/26/98 ^b	09/23/98 ^b	12/17/98 ^b	03/31/99 ^b	de/06/90	12/08/99 ^b	06/20/00 ^b	12/19/00 ^b	06/15/01 ^b	06/26/01	09/07/01 ^b	10/10/01	12/28/01	03/08/02	06/24/02	09/26/02	12/12/02
Sample		TOC	MW-36	17.80																															

Sample		TPH-	TPH-	TPH-			Ethyl-								
.D.	Sample	Gasoline	Diese	io ŝ	Benzene	Toluene	benzene	Xylenes	MTBE	Naphthalene Total Lead	Total Lead	8	WTC	SPH	GWE
3	רמונ	(µ9/∟/	(hg/L)	(hg/L)	(ng/r)	(hg/L)	(Ja)(r)	(µg/L)	(<u>1</u> ,6)	(hg/L)	(J/gr)	(mg/L)	(reet)	(teet)	(teet)
MW-36	03/13/03	<50.0	<250	<500	0.830	<0.500	<0.500	<1.00	1	:	-	*	9.34	00.0	8.46
(cont'd)	06/12/03	}	ı	1	ı	i	!	ŀ	1	:	1	ı	Σ	ΣZ	1
••••	09/19/03	<50.0	<287	<575	1.44	0.561	<0.500	<1.00	I	1	1	ŀ	10.23	00.00	7.57
	01/14/04	1	ı	ŀ	ŀ	ı	1	ł	ı	!	1	}	ΣZ	ΣN	!
	03/30/04	<100	<133	<267	₹	₹	⊽	\$	1	!	1	1.10	9.46	00.00	8.34
	06/22/04	ł	1	ŧ	ł	ī	1	1	ł	1	1	ı	ΣZ	ΣZ	1
	09/29/04	<50	<250	<500	0.90	<0.50	<0.50	۲.0 م	1	!	ŀ	0.80	9.78	00.0	8.02
	12/29/04	ī	ı	1	ł	ł	ŀ	!	ì	ı	1	1	ΣZ	ΣZ	!
	03/17/05	<100	<246	<492	√	₹	7	7	ŀ	1	ŀ	0.10	8.66	00.0	9.14
	06/02/05	<100	°¦	۰۱	₹	₹	₹	7	₹	I	ŀ	0.90	7.70	00.0	10.10
	06/16/05	ŀ	82'	<250	ì	ŀ	1	;	ŀ	1	1	08.0	7.71	00.00	10.09
	07/25/05	<50.0	<250	<500	0.550	<0.200	<0.200	<0.500	<1.00	<0.500	1	2.30	8.15	00.0	1
27.21	11/08/05	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	<1.00	1	ŀ	1.20	8.81	00.0	18.40
	02/24/06	<50.0	<255	<510	<0.500	<0.500	<0.500	<3.00	×1.00	<1.00	3.37	ł	8.62	00.0	18.59
	90/60/90	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	10.7	1.00	7.55	00.00	19.66
	06/13/06					Decom	Decommissioned					ı	1	ŀ	!
MW-37	11/05/91	21,000	<1,000	+	810	2,400	470	3,300	1	ŀ	ı	1	1	!	!
21.01	12/30/93		•		-	LPH	LPH Present	•	•			ı	10.59	0.40	10.74
	04/07/94	92,000	18,000	<750	099	3,600	1,500	9,500	I	l	ì	-	10.49	90'0	10.58
	07/15/94	330,000	1,700,000	260,000	18,000	44,000	7,700	44,000	I	1	ı	ł	ı	0.25	ŀ
	10/26/94	170,000	35,000	7,500	14,000	30,000	4,400	26,000	ŀ	!	ł	ì	ı	0.17	1
	03/08/95	34,000	3,200	1,400	3,100	2,400	1,200	6,700	1	1	ł	ı	11.94	00.0	9.07
	06/00/95	45,000	4,600	2,500	3,700	2,400	1,300	2,900	ŀ	}	ŀ	1	11.76	0.01	9.26
	06/00/92	90,000	ł	1	5,100	6,000	2,400	14,000	1	ŀ	ı	1	11.76	0.01	9.26
	96/20/60	1	ı	ł	ī	ŀ	1	ì	ŀ	1	1	ı	11.17	0.00	9.84
••	12/08/95	ł	1	1	1	ļ	ı	:	ł	1	1	į	10.22	0.00	10.79
	04/01/96					LPHI	LPH Present					}	10.79	0.02	10.24
	06/25/96					LPH	LPH Present)	10.82	0.20	10.35
	09/27/96					LPHI	LPH Present					ı	11.47	0.05	9.58
	03/28/97 ^b	60,100	7,570	789	1,530	2,180	1,650	7,440	1	1	ı	ł	11.14	0.25	10.07
	03/28/97	297,000	45,100	<8,250	6,570	13,200	4,930	22,900	;	ı		ı	11.14	0,25	10.07
	26/06/90					LPH	LPH Present					ı	10.80	0.02	10,23
	26/80/60					LPH	LPH Present					,	11.41	0.23	9.78
	12/19/97					LPH	LPH Present					ı	11.28	0.02	9.75
	03/16/98				j	LPH	LPH Present					ļ	11.11	0.01	9.91
	06/26/98					LPH	LPH Present					1	11.32	0.01	9.70
	09/23/98					LPH	LPH Present					-	12.01	0.03	9.02

GWE (feet)	10 01	1	1	9.90	9.51	9.91	9.68	;	9.58	;	10.17	9.72	ļ	8.63	9.66	9.91	9.40	90.6	8.89	8.28	8.72	10.12	9.11	8.83	10.14	ı	15.38	18.95	17.60	17.91	18.92	19.89	17.91	;	1	ŀ	ŀ	1	1	ŀ	-
SPH (feet)	Trace	Trace	0:30	ı	ì	0.50	0.03	Ä	00:00	Z	0.20	0.40	ΣN	00.0	00.0	0.00	00.00	00.0	00.0	0.00	00.0	0.00	00'0	00'0	00'0	0.00	00.00	0.00	00'0	0.00	00.00	00'0	00.0	ı	ΣZ	ΝN	MΝ	ΣN	ΣN	ΣZ	Ž
DTW (feet)	11.00	ΣN	DRY	11.11	11.50	11.50	11.35	Σ	11.43	Σ	11.00	11.61	Ž	12.38	12.35	11.10	11.61	11.95	12.12	12.73	12.29	10.89	11.90	12.18	10.87	11.37	14.71	11.14	12.49	12.18	11.17	10.20	12.18	;	ΣZ	ΣN	Z	Z	Z	Ž	Σ
DO (mg/L)	· · · · · · · · · · · · · · · · · · ·	I	1	1	ı	ı	ı	ı	i	1	1	ı	ŀ	1	ŀ	;	ŀ	1	0.50	1.50	1.00	2.00	1.50	2.50	1.50	10.10	3.80	1	1.88	0.94	0.10	9.14	0.58	ł	1	ł	ł	1	ı	ı	ı
Total Lead (µg/L)				ı	ı			1	ı	***				1	1	ı	;	3	1	1	ł	ì	!	!	ı	;	ŀ	1.66	<1.00	1.30	<1.00	<1.00	<1.00	1	ı	ı	ı	ŀ	ı	ŀ	,
Naphthalene Total Lead (µg/L)				ı	1			1	I	I				-	-	ŀ	ŀ	ŀ	1	ı	1	ŀ	ı	i		0.520	ı	15.0	<1.00	<5.00	<5.00	<5.00	<5.00	ı	ì	ı	l	1	ı	1	}
MTBE (µg/L)				ł	1	471		ı	ı	ì				ł	1	ŀ	!	1	!	1	!	1	!	;	٧	۲۰ م	00.1>	<5.00 ^q	0.1	×1.00	<1.00	۲۲.00 د۲.00	۸. 1.80	ì	;	,	1	ļ	ļ	ı	1
Xylenes (µg/L)				!				ı	27,000	ı				1	1	ł	85.5	1.01	27.75	1.53	14.25	1.3	11.22	4.22	8	<0.50	<3.00	284	<3.00	12.4	60,4	5.76	3.00	0.5	ŀ	1	ŀ	ı	ł	ŀ	!
Ethvl- benzene (µg/L)	LPH Present	LPH Present	LPH Present	ł	ł	LPH Present	LPH Present	ŀ	4,440	;	LPH Present	LPH Present	Inaccessible	I	1	ŀ	15.8	<0.500	9.01	۲	i.46	29.0	1.08	⊽	₹	<0.200	<0.500	19.6	<0.500	1.19	5.87	1.02	0.500	<0.5	!	ļ	ı	ı	ı	ı	-
Toluene (µg/L)	LPH	LPH F	LPH	ł	,	PH.	HAT.	ŀ	12,600	i	LPH	LPHF	Inacc	ŀ	ŀ	1	43.2	<0.500	<0.5	₹	3.66	<0.50	2.27	1.27	⊽	<0.200	<0,500	63.8	<0.500	1.61	11.2	1.14	<0.500	9.0	!	i	ļ	1	1	ļ	;
Benzene (µg/L)				1	1		No.	ŀ	3,420	1		į		{	ŀ	;	22.9	<0.500	4.56	5.77	3.26	<0.50	18,2	₹	₹	<0.200	<0.500	32.4	<0.500	2.59	5.46	<0.500	1.56	<0.5	1	ŀ	ţ	1	ł	1	ı
TPH- Oil (µg/L)			-	ı	ł			ŀ	14,600	:			Ī	ı	ļ	ł	<568	<595	<255	<281	294	<496	<524	<476	604	<500	<485	<495	<485	<515	<476	<532	<472	ı	ı	ŀ	ł	ł	}	ŀ	1
TPH- Diesel (µg/L)				1				ł	22,100	:				1	ł	ł	474	<298	<127	180	487	419	<262	259	<238	<250	<243	<248	<243	<258	<238	<266	<236	<1,000	ŀ	1	}	1	ł	1	1
TPH- Gasoline (µg/L)				Ī	:			1	159,000	1				ļ	1	ı	1,450	141	471	572	737	190	430	250	137	59.4	<50.0	1,830	<50.0	91.2	989	64.6	121	۲ ^۰	i	ŀ	ı	ł	i	1	;
Sample Date	12/17/98	03/31/99	66/06/90	12/08/99	00/02/90	12/19/00	06/15/01"	06/26/01	09/07/01"	10/10/01	12/28/01	03/08/02	06/24/02	09/26/02	12/12/02	03/13/03	06/12/03	09/19/03	01/14/04	03/30/04	06/22/04	09/29/04	12/29/04	03/11/05	06/02/05	07/26/05	11/07/05	02/22/06	05/10/06	08/29/06	12/12/06	20/90/80	06/14/07	11/05/91	03/08/95	96/90/90	96/20/60	12/08/95	04/01/96	06/22/96	09/27/96
Sample I.D. TOC ^a	MW-37	(cont'd)																								•	30.09						1	MW-38	16.52						

	GWE (feet)	7 29	<u>i</u>		1	ŀ	1	ŀ	-	:	ŀ	1	:	:	ŀ	1	1	ı	7.56	1	;	7.65	ł	8.68	!	7.62	!	8.43	;	ı	;	8.20	!	,	1	17.90	ŀ	20.19	18.99	17.45	18.09
	SPH (feet)	000	NIA	2 Z	NZ	Z	ΣZ	Ž	Ž	ΣZ	Z	ΣZ	Z	Σ	ΣŽ	ΣN	ΣZ	ΣN	00.00	ΣZ	ΣN	00.00	ΣN	00.00	ΣN	00.00	ΣZ	00.0	ΣZ	ΣZ	Σ	00'0	!	1	0.00	0.00	ł	00'0	00.00	00'0	0.00
	DTW (feet)	9.23	N	Z	Z	ΣN	ΣN	ΣZ	ΣZ	ΣX	ΣN	ΜN	ΣN	ΣX	Σ	MN	ΣZ	ΣN	8.96	ΣN	ΣN	8.87	ΣX	7.84	Ν̈́Ν	8.90	ΣX	8.09	MZ	NN	MN	8.32	1	1	7.60	8.11	1	5.82	7.02	8.56	7.92
	DO (mg/L)	1	1	! !	ļ	I	1	ŧ	ı	ŀ	**	1	ŀ	ı	ŀ	1	ı	!	1	1	1	ı	ł	1	ì	ı	1	06.0	1	ł	1	0.40	1	ı	0.40	» N	ı	0.50	1.81	1.09	0.45
	Total Lead (µg/L)	-	1		!	ı	ŀ	;	;	¥ in	!	ŀ	1	}	1	ı	ı	ŀ	ŀ	1	;	ł	ŀ	ŀ	ı	ı	I	ı	}						ŀ			<1.00	<1.00	<1.00	0. ∆ 0. 0.
	Naphthalene Total Lead (µg/L)	1	i	1	ı	1	1	I	ı	ı	J	I	1	ŀ	ł	1	1	ŀ	[l	1	1	ŀ	!	ŀ	ı	ı	ı	ı		ł	-			<0.500	1		<1,00	<5.00	<5.00	<5.00 <5.00
	MTBE (µg/L)		١	1	ı	. 1	J	ŀ	ŀ	1	ı	ı	ŀ	1	ł	ı	ŀ	;	;	1	;]	ŀ	ł	}	1	ì	1	ŀ	ies	1	1			<1.00	×1.00		<1.00	<1.00	×1.00	0. ∆ 0. 0. 0. 0.
	Xvlenes (µg/L)	<1.00	;	;	ł	ł	ı	1	ı	ı	ļ	ł	ļ	ŀ	}	1	1	1	2.59	ı	}	<1.50	ł	<1.00	ŀ	3.72	ŀ	7	:	ction activit	ł	\$			<0.50	<3.00	<u>ie</u>	<3.00	<3.00	<3.00	<3.00 <3.00
Ethyl-	benzene (µg/L)	<0.500	1	1	ŀ	ļ	ı	ł	ı	1	ŀ	ı	1	1	ł	ŀ	!	1	0.554	;	;	×1.00	+	<0.500	1	0.722	;	₹	-	oad constru	1	₹	Obstructed by vehicle	Obstructed by vehicle	<0.200	<0.500	Well obstructed by vehicle.	<0.500	<0.500	<0.500	<0.500
	Toluene (µg/L)	<0.500	;	ŀ	ŀ	ł	ł	1	1	ŀ	1	i	i	ŀ	ŀ	ł	ł	;	1.33	ł	1	<2.00	j	<0.500	ı	1.42	1	₹	1	ate due to n	ı	₹	Obstructed	Obstructed	<0.200	<0.500	/ell obstruct	<0.500	<0.500	<0.500	<0.500
	Benzene (µg/L)	<0.500	1	ŀ	ļ	ļ	}	ì	ì	ì	i	i	i	ł	ł	ł	;	;	0.636	ŀ	ì	0.743	1	<0.500	ì	0.704	!	7	;	Unable to locate due to road construction activities	1	₹			<0.200	<0.500	>	<0.500	<0.500	<0.500	<0.500
TPH-	Oil (J/Brl)	<750	ŀ	;	ŀ	ł	ł	ł	ł	ŀ	1	1	ł	ł	ł	1	;	;	<500	1	ł	<500	ļ	<500	ł	<500	1	<266	1	7	ł	<499			<500	<505		<500	<490	<500	<500 <481
ТРН-	Diesel (µg/L)	<250	!	ŀ	1	ŀ	1	ì	ţ	i	ŀ	ı	ı	ŀ	1	ı	:	:	403	ŀ	¦	282	ł	<250	ł	<250	!	<133	1		ł	<250			<250	<253		<250	<245	<250	<250 <240
TPH-	Gasoline (µg/L)	<50	1	ŀ	ı	ŀ	ł	ł	:	;	;	1	ŧ	;	ŀ	ŀ	ı	!	<50.0	!	}	<100	ž.	<50.0	ı	<50.0	1	<100	}		1	<100			<50.0	<50.0		<50.0	<80.0	<50.0	<50.0
	Sample Date	03/28/97	26/30/90	26/80/60	12/19/97	03/16/98	06/26/98	09/23/98	12/17/98	03/31/99	66/30/90	12/08/99	06/20/00	12/19/00	06/15/01	06/26/01	09/07/01	10/10/01	12/28/01	03/08/02	06/24/02	09/26/02°	12/12/02	03/13/03	06/12/03	09/19/03	01/14/04	03/30/04	06/22/04	09/29/04	12/29/04	03/17/05	06/02/05	06/16/05	07/26/05	11/07/05	02/21/06	90/60/50	90/06/80	12/13/06	03/07/07
Sample	TOC 3	MW-38	(cont'd)																																	26.01					

Sample		TPH-	TPH-	TPH-			Ethyl-								
	Sample	Gasoline	Diesel	Ö	Benzene	Toluene	benzene	Xylenes	MTBE	Naphthalene Total Lead	Total Lead	8	DTW	SPH	GWE
3	Date	(hg/L)	(hg/L)	(hg/L)	(T/6rl)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(mg/L)	(feet)	(feet)	(feet)
MW-40	11/05/91	<1,000	<1,000		5.8	0.7	0.5	0.8	1	1	1	,	-	1	1
20.89	10/02/93	930	1,800	1,900	36	, a	2.1	5.3	1	ı	}	,	;	ı	ı
	12/30/93	1,500	5,400	4,200	34	1.1	7	7.4	ı	I	ı	F	10.68	00.0	10.21
	04/07/94	1,200	2,200	2,000	59	1.1	6.9	2.6	;	i	,	ı	9.35	00.0	11.54
	07/15/94	1,000	2,100	2,500	27	8.0	1.2	1.7	I	ı		ı	10.68	00.0	10.21
	10/26/94	1,200	2,900	2,600	20	0.53	0.77	2.0	ł	ı	ì	ļ	11.22	00.0	9.67
	03/08/95	960	2,600	2,600	Ŧ	<0.5	Ξ	<1.0	1	ŀ	ŀ	ı	10.98	00.0	9.91
	96/90/90	1,500	2,300	1,600	6.8	4.3	4.1	77	ł	ŀ	ı	ţ	11.18	00.0	9.71
	96/20/60	650	13,000	000′99	7	0.91	0.57	o. 1.0	ļ	1	1	1	11.08	00.0	9.81
	12/08/95	200	1,400	4,800	2.7	3.00	<0.5	4.0	2	1	ł	1	10.30	00.0	10.59
	04/01/96	520	3,200	13,000	1.2	<0.5	0.55	۲٠ دا.0	1	ı	1	ì	10.56	00:0	10.33
	06/22/96	200	2,700	8,460	<0.500	9.82	<0.500	<1.00	ı	1	1	1	10.69	00.0	10.20
	09/22/96	602	3,550	9,860	0.604	41.1	0.525	۸.0 د۱.0	1	1	1	1	10.95	00.0	9.94
	03/28/97	1	ŀ	Į	ł	1	1	1	ł	}	1	ı	10.92	00.0	9.97
	26/06/90	}	ı	ı	ł	ł	ŧ	ŀ	1	!	1	1	ΣZ	ΣZ	ı
	26/80/60	1	i	ŀ	ì	ł	ı	ł	ŀ	1	ŀ	1	ΣN	MN	1
	12/19/97 ^b	325	3,260	12,600	<0.500	0.504	0.663	2.44	1	!	ı	ŀ	11.11	0.00	9.78
	03/16/98	;	1	ŀ	ì	ŀ	1	;	ı	Ī	1	1	ΣZ	ΣZ	1
	06/26/98	1	ł	ł	1	i	ŀ	1	ŀ	1	ł	ı	Σ	ΣN	!
	09/23/98	1	ı	1	ł	ŀ	1	ŀ	I	ł	;	ı	ΣZ	ΣN	ŀ
	12/17/98 ^b	384	2,840	9,620	<0.500	<0.500	<0.500	<1.00	I	Į.	1	1	10.86	00.00	10.03
	03/31/99	!	ı	ı	1	1	ì	1	ł	!	1	1	ΣZ	ΣN	
	66/30/90	1	ł	ł	ł	ŀ	ŀ	ı	ı	ŀ	1	1	Σ	ΣN	1
	12/08/99	ŀ	1	ŀ	ł	ł	1		ŀ	1	ŀ	ı	Σ	ΣZ	1
	06/20/00	ŀ	ì	ł	ŀ	ì	ı	1	ŀ	1	i	ı	MM	Ν̈́	!
	12/09/00	ŀ	ŀ	-	ŀ	ł	ì	ı	ì	1	1	ŀ	Σ	ΣN	ş
	12/19/00	ì	ŀ	ŀ	;	ŀ	1	ı	I	l	ı	1	Σ	Σ	!
	06/15/01	1	1	ŀ	ì	1	ı	1	ł	1	1	ļ	ΣN	Z	1
	06/26/01	ł	ŀ	ŀ	1	ı	1	ŀ	1	1	ı	ł	ΣN	Z	ı
	10/2/04	1	1	1	ł	;	1	ı	1	1	1	ŀ	ΣZ	N	ŀ
	10/10/01	1	ł	ì	ı	1	1	l	ł	1	1	1	Σ	MM	;
	12/28/01	449	4,000	5,090	2.12	2.19	1.38	3.88	ŀ	1	1	ı	10.75	00.00	10.14
	03/08/02	ţ	ŀ	}	i	1	ļ	ŀ	ı	!	ı	ı	Σ	Z	:
	06/24/02	1	ŀ	1	j	ı	1	ļ	ı	l	ı	ı	Σ	Z	:
	09/26/02	331	2,810	3,470	1.92	<2.00	۲- 0.1	<1.50	1	1	ı	ı	12.69	00.00	8.20
	12/12/02	:		1	1	1	-	The Park	;	:	;	,	MN	NN	-

	TPH.	TPH-	TPH.			Ethyd.	Ī							
	Gasoline	Diesel	ō	Benzene	Toluene	benzene	Xvlenes	MTRF	Naphthalana Totai Lead	Total Lead	2	WLU	I	E1015
- 1:	(hg/L)	(hg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(J/6d)	(µg/L)	(µg/L)	(mg/L)	(feet)	(feet)	(feet)
\vdash	509	2,010	2,010	<0.500	<0.500	0.630	1.77	1		- I	,	11.30	0.00	9.59
	:	ì	Į.	ŀ	ł	ı	!	1	ı	ı	ţ	Σ	Ž	
	259	393	1,120	2.64	3.01	1.39	6.77	ı	1	ŀ	ŧ	12.46	00.00	8.43
	ł	ŀ	ı	ı	1	ı	;	1	ŀ	1	ı	ΣZ	Ž	1
	627	863	3,360	3.69	⊽	₹	\$	ŀ	ļ	ı	1.71	11.55	Sheen	9.34
	ŀ	ł	1	i	 	ì	ł	3	ł	1	ı	ΣZ	Ž	
	380	32,800	219,000	<0.50	<0.50	<0.50	<1.0	;	1	ı	1.40	12.03	Sheen	8.86
12/29/04	ŀ	;	!		ŀ	ŀ	ı	ł	ŀ	ı	ı	ΣZ	ΣX	ł
03/17/05	402	758	4,130	⊽	⊽	⊽	7	ŀ	ı	i	0.20	11.89	Sheen	9.00
06/02/05	433	692	3,760	٧	⊽	₹	\$	⊽	I	ı	1.00	11.30	0.00	9.59
07/26/05	216	596°	1,600	<0.200	<0.200	<0.200	<0.500	<1.00	<0.500	i	0.20	11.35	0.00	ı
11/07/05	569	<243	<485	<0.500	<0.500	<0.500	3.58	<1.00	ł	i	» MN	11.66	0.00	18.42
02/23/06	397	<248	546	<0.500	<0.500	<0.500	<3.00	×1.00	<1.00	7.35	ŀ	į	ı	ı
02/10/06	207	<238	<476	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	1.84	0.67	12.50	0.00	17.58
08/29/06	81.5	<236	<472	0.940	<0.500	<0.500	<3.00	×1.00	<5.00	2.01	0:30	12.87	0.00	17.21
12/12/06	540	<243	<485	2.51	0.600	0.520	<3.00	<1.00	<5.00	۲٠ م	0.32	11.92	0.00	18.16
03/07/07	216	<250	<500	<0.500	<0.500	<0.500	<3.00	×1.00	<5.00	1.08	0.35	10.63	0.00	19.45
06/14/07	179	<240	<481	<0.500	<0.500	<0.500	<3.00	41.00	<5.00	1.05	0.51	11.71	0.00	18.37
11/05/91	<1,000	<1,000	1	29	<0.5	<0.5	<0.5	;	1		-	;	ı	-
12/29/93	<100	<250	<750	4.6	<0.5	<0.5	<0.5	1	ı	ŀ	;	11.24	0.00	15.76
07/14/94	×100	<250	<750	10	<0.5	<0.5	<0.5	ł	ı	Į.	;	10.81	0.00	16.19
10/25/94	<50	200	<750	<0.5	<0.5	<0.5	0.1.0	ł	ı	1	I	13.69	0.00	13.31
03/08/95	<50	<250	<750	1.6	<0.5	<0.5	<1.0	ļ	ı	ı		14.72	ı	12.28
26/90/90	<50	<250	<750	<0.5	<0.5	<0.5	<1.0	ı	ı	!	ı	15.02	ı	11.98
26/20/60	<50	<250	<750	<0.5	<0.5	<0.5	<1.0	ŀ	ı	1	;	15.00	1	12.00
12/08/95	<50	<250	<750	<0.5	<0.5	<0.5	0.1^	ļ	ı	ı	1	16.30	;	10.70
04/01/96	<50	<250	<750	<0.5	<0.5	<0.5	<1.0	ŀ	1	1	!	15.02	ŀ	11.98
06/22/96	<50.0	<250	<750	<0.500	<0.500	<0.500	۲۲.00 د۲.00	ı	ı	1	ļ	15.07	1	11.93
09/22/60	<50.0	<250	<750	<0.500	<0.500	<0.500	×1.00	ı	1		;	15.42	0.00	11.58
03/28/97	1	ł	1	!	1	ł	1	ł	ı	1		15.27	0.00	11.73
26/06/90	ı	ł	1	į	1	1	ı	1	ı	ŀ	;	Ž	Σ	ı
06/02/05	×100	<237	<474	⊽	Ÿ	₹	7	⊽	ı	ī	1.40	15.48	0.00	11.52
07/26/05	<50.0	258°	977	<0.200	<0.200	<0.200	<0.50	×1.00	<0.500	I	5.70	15,88	0.00	;
11/02/05	<50.0	<238	<476	<0.500	<0.500	<0.500	<3.00	<1.00	ı	ı	08.0	15.89	0.00	20.36
02/23/06	<50.0	<250	<500	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	1.32	!	15.26	0.00	20.99
90/60/50	<50.0	<253	<505	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	1.56	0.57	15.47	0.00	20.78
90/06/80	<80.0	<240	<481	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	00.1	0.80	15.90	00'0	20.35
12/12/06	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	8.79	1.42	15.81	0.00	20.44
20/20/60	<50.0	<263	<526	<0.500	<0.500	<0.500	<3.00	√1.00	<5.00	<1.00	0.32	15.38	0.00	20.87
06/14/07	79.2	<236	<472	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.53	15.45	00.0	20.80

Sample		TPH-	TPH-	TPH-			Ethyl-								
	Sample	Gasoline	Diesel	ō	Benzene	Toluene	benzene	Xylenes	MTBE	Naphthalene Total Lead	Total Lead	00	DTW	SPH	GWE
. 201	Date	(ng/L)	(µg/L)	(hg/L)	(ng/L)	(hg/L)	(hg/L)	(hg/L)	(L/g/L)	(hg/L)	(hg/L)	(mg/L)	(feet)	(feet)	(feet)
MW-42	11/05/91	<1,000	<1,000	-	180	2.9	0.8	4.7	1	ı			ļ	1	1
20.34	12/30/93	<100	1,300	2,400	929	0,5	<0.5	0.7	ı	l	ı	1	9.62	0.00	10.72
	04/07/94	<200	840	1,100	620	۸.1 د	v. 1.0	o:1>	1	ı	ı	1	9.36	0.00	10.98
	07/15/94	<100	540	850	490	9.0	<0.5	0.5	1	1	1	ł	9.26	0.00	11.08
	10/26/94	92	1,300	2,500	530	0.55	<0.5	o:1>	1	ı	1	1	9.92	0.00	10.42
	03/08/95	130	029	1,200	790	<25	<25	<50 <50	1	l	١	ı	9,45	0.00	10.89
	96/90/90	120	920	1,500	200	<0.56	<0.5	0.1^	;	ŀ	1	;	9.37	0.00	10.97
	09/07/95	3,000	780	1,200	210	4.1	42	230	;	***	1	ı	9.50	0.00	10.84
	12/08/95	200	1,300	1,900	380	<2.0	<2.0	<4.0	;	!	-	1	8.95	0.00	11.39
	04/01/96	180	650	<750	280	0.52	<0.5	o.1.o	;	l	ı	1	9.03	0.00	11.31
	06/25/96	150	720	<750	150	<0.500	<0.500	0.1 21.00	1	Ī	1	1	9.07	0.00	11.27
	09/27/96	<250	534	<750	228	<2.50	<2.50	<5.00	ŀ	l	ı	1	9.12	0.00	11.22
	03/28/97	1	ı	1	1	i	ł	ŧ	ŀ	1	1	1	9.09	0.00	11.25
	26/30/90	ł	1	1	1	ł	ŀ	***	ŀ	ł	1	1	8.92	0.00	11.42
	26/80/60	1	1	1		ì	ŀ	ŀ	ı	ŀ	1	1	9.57	0.00	10.77
	12/19/97	1	;	ı	ŀ	ł	1	ŀ	ı	ŀ	1	ı	ΣX	ı	;
	03/16/98	!	ı	1	ı	ŀ	1	ŀ	Ī	1	ı	ŀ	9.53	0.00	10.81
	06/26/98	1	f	1	ŀ	ł	1	}	ì	1	ı	ì	9.51	0.00	10.83
	09/23/98	1	1	ı	ı	1	ł	ļ	ŀ	ł	1		96.6	0.00	10.38
	12/17/98	1	1	1	1	ł	ı	ı	1	ı	ļ	ŀ	9.10	0.00	11.24
	03/31/99	1	ı	1	1	1	ł	1	ł	1	ı	ŀ	9.00	0.00	11.34
	66/08/90	1	ŀ	1	ł	ł	ł	ŧ	;	ı	1	;	8.60	0.00	11.74
	12/08/99	1	ı	1	1	;	ŀ	!	ŀ	1	ŀ	1	8.00	0.00	12.34
	06/20/00	Į.	ŀ	ı	ı	1	Į	ł	ı	ı	1	}	Ž	ΣŽ	1
	12/19/00	ŀ	ł	1	ı	1	;	:	į	ı	1	ł	Ž	Σ	1
	06/15/01	1	ł	ļ	ļ	ŀ	ł	ı	i	ı	1	1	9.41	0.00	10.93
	06/26/01	ŀ	;	!	1	ŀ	1	ł	ļ	1	1	!	ΣN	Σ	ŀ
	09/07/01	1	1	ŀ	ŀ	ł	·	1	Ę	1	1	ŀ	9.66	0.00	10.68
	10/10/01	1	1	ł	1	;	ł	ł	;	1	Ī	ŀ	ΝN	ΣN	ł
	12/28/01	1	1	!	ł	}	1	· · ·	ł	ı	ı	1	10.28	0.00	10.06
	03/08/02	!	;	ì	1	;	ŀ	1	ı	1	1	1	9.75	0.00	10.59
	06/24/02	l	ŀ	;	ŀ	ł	1	ı	ı	1	ı	ı	ΣN	Ž	ł
	09/26/02	1	ì	!	ŀ	ı	ì	ŀ	ı	I	}	ļ	10.81	0.00	9.53
	12/12/02	1	ŀ	;	ı	ł	1	ŀ	ì	1	1	ı	10.89	0.00	9.45
	03/13/03	:	1	1	1	1	ŀ	1	1	ı	1	I	9.77	0.00	10.57
	06/12/03					Monitoring	Monitoring Discontinued	þ				1	MN	MN	1

	GWE	(feet)	10.82	11.00	10.53	19.00	19.00	19.02	. ;	· ·	!	10,34	9.70	9.69	9.59	9.90	10.19	10.06	9.98	9.71	9.91	13.96	9.58		9.95	9.78	9.29	9.97	10.07	11.07	96.6	9.64	9.64	9.72		
			\vdash		-					ŀ																										
	SPH	(teet)	0.0	00'0	0.00	0.00	0.00	0:00	ì		1	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	MN	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00'0	Ž	
	DTW	(feet)	9.52	9.34	9.81	10.18	99.6	9.64	ı	ı	ı	10.70	11.34	11.35	11.45	11.14	10.85	10.98	11.06	11.33	11.13	7.08	11.46	Σ	11.09	11.26	11.75	11.07	10.97	9.97	11.06	11.40	11,40	11.32	ΣZ	
	8	(mg/L)	1.50	1.00	0.90	0.10	ı	0.64	1	1	ı	ŀ	ı	ŧ	;	ŀ	:	;	ļ	ŀ	ţ	ı	ţ	1	ł	ı	ı	ı	1	ŀ	1	ı	ı	1	1	_
	Total Lead	(ng/L)	ı	ļ	1	ŀ	×1.00	<1.00		1	ì	ŀ	1	ŀ	;	ŀ	ŀ	ŀ	!	1	!	;	ı	ı	I	1	ı	ı	ı	1	1	ł	ı	ı	ŀ	
	Naphthalene Total Lead	(hg/L)	-	ı	<0.500	ı	×1.00	<1.00		1	1	ł	ı	1	ŀ	ı	ı	ı	1	ı	1	ı	1	ı	I	:	i	1	ŀ	;	ŀ	ł	ŀ	1	ı	-
		(hg/L)	₹	1	<1.00	۲- در 00	<1.00⁴	<1.00			ţ	ı	;	ŀ	ı	1	ŀ	1	1	ı	ı	į	ı	1	1	ł		ş	1	1	1	1	1	ı	1	-
	Xvlenes	(hg/L)	\$ \$	ŀ	0.900	×3.00	<3.00	<3.00		2.7	100	74	0.1	o:1>	0.1^	o.1>	0.1>	<1.0	<1.00	×1.00	2.47	×1.00	3.08	ı	<1.00	<1.00	<1.00	<1.00	2.47	17.5	<1.00	<1.00	4.78	1.22	ŀ	_
Ethyl-	benzene	(hg/L)	₹	!	<0.200	<0.500	<0.500	0.580	Decommissioned	9.0	7	9.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.500	<0.500	<0.500	<0.500	2.10	ŀ	<0.500	<0.500	<0.500	<0.500	0.782	2.95	<0.500	<0.500	0.730	<0.500	ŀ	-
	Toluene	(hg/L)	۲	!	0.340	<0.500	<0.500	1.37	Decom	3.4	9.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.500	<0.5	0.884	<0.500	<0.500	ł	<0.500	<0.500	<0.500	<0.500	<0.500	7.47	<0.500	<0.500	0.948	<0.500	ł	
	Benzene	(hg/L)	4.67	;	2.95	8.22	2.23	3.62		98	82	31	9.1	25	8.2	10	37	4.5	2.57	4.4	5.89	59.2	35.5	1	26.5	9.69	9.05	33.0	9.84	28.2	20.5	3.79	2.97	0.670	ŀ	
TPH-	lio ((hg/L)	e	<250	<500	<472	<495	<500		ı	<750	<750	<750	2,400	1,500	850	3,100	<750	<750	<750	<750	<750	<750	}	<750	<750	<750	<750	<750	<750	<750	<750	<749	<750	ł	
TPH-	Diesel	(µg/L)	٠,	97	<250	<236	<248	<250		<1,000	320	<250	580	650	069	<250	096	300	370	339	<250	<250	<250	1	408	346	267	<250	267	253	<250	<250	253	405	ł	
TPH	Gasoline	(µ8/r)	198	ŀ	117	179	193	185		<1,000	340	360	160	<50	<50	<50	<50	<50	<50.0	<50.0	<50.0	<50.0	83	I	76.3	<50.0	<50.0	<50.0	<50.0	146	<50.0	<50.0	55.9	<50.0	1	
	Sample	רמום	06/02/05	06/16/05	07/26/05	11/02/05	02/22/06	90/60/90	06/12/06	11/05/91	12/30/93	07/14/94	10/26/94	03/08/95	06/06/95	09/07/95	12/08/95	04/01/96	06/22/96	09/22/96	03/28/97	06/30/97 ^b	_q 26/80/60	12/19/97	03/16/98°	06/26/98 ^b	09/23/98°	12/17/98 ^b	03/31/99 ^b	e6/06/90	12/08/99 ^b	06/20/00 ^b	12/19/00 ^b	06/15/01 ^b	06/26/01	
Sample	TO: 2	3	MW-42	(cont'd)		28.66				MW-43	21.04															•										-

	±	TPH	TPH-			Ethyl-								
Sample Date	Gasoline (ua/L)	Diesel		Benzene	Toluene	benzene	Xylenes	MTBE	Naphthalene Total Lead	Total Lead	00	WTQ	SPH (forth	GWE
			(1.62)	71.64)	(= 6=) -	7.63	(184)	1881	(H8/L-)	(P8/E)	(8/)	(1001)	(1661)	(IEEI)
12/28/01	52	487	<500	5.61	1.18	0.558	3.34	ı	1	ŀ	ı	11.17	0.00	9.87
03/08/02	1	1	ı	;	ı	}	ŀ	1	:	1	ı	Σ	Ž	1
06/24/02	1	ì	1	ł	1	1	ļ	1	!	ŀ	ļ	ΣZ	Ž	1
09/26/02°	<100	303	<500	0.669	<2.00	0.1.00	<1.50	1	!	1	ļ	12.28	00.0	8.76
12/12/02	1	1	ł	ł	ŀ	i	ı	1	!	1	}	ΣN	Ž	1
03/13/03	<50.0	<321	<641	0.883	<0.500	<0.500	<1.00	-	I	ŀ	1	11.20	00.00	9.84
06/12/03	ı	j	;	ı	ł	ł	ŀ	ŀ	!	1	ı	ΣZ	Ž	}
09/19/03	<50.0	<291	<581	1.76	<0.500	<0.500	×1.00	1	!	1	ı	12.37	00.0	8.67
01/14/04	ı	;	;	;	ł	ı	1	ŀ	!	ì	1	ΣZ	ΣZ	ŀ
03/30/04	<100	<129	<258	₹	₹	√	۲	ŀ	ı	ı	1.76	11.95	00.0	60.6
06/22/04	l	;	ł	ł	;	ŀ	ı	ļ	1	ì	ı	ΣN	Σ	ŀ
09/29/04	180	<249	<499	3.6	<0.50	<0.50	0. V	1	1	ŀ	0.10	12.00	00.00	9.04
12/29/04	1	1	i	ı	ļ	1	ì	- 1	1	ŀ	ı	ΣZ	ΣN	ŀ
03/17/05	<100	<250	<501	2.2	₹	₹	7	:	I	ŀ	08.0	11.69	00'0	9.35
06/02/05	<100	ψ¦	t t	15	⊽	₹	7	₹	1	E	1.30	11.18	0.00	9.86
06/16/05	1	² 20	<250	ŀ	;	}	ŀ	1	ı	ŀ	1.20	11.16	00.0	9.88
07/26/05	<50.0	<250	<500	4.24	<0.200	<0.200	<0.500	<1.00	<0.500	ŀ	0.70	11.70	00.00	ı
11/01/05	<50.0	<236	<472	<0.200	<0.500	<0.500	×1.00	<2.00	ł	ŀ	。 NN	11.45	00:0	18.76
02/21/06	<50.0	<281	<562	1.16	<0.500	<0.500	<3.00	<1.00	<1.00	<1.00	ŀ	10.99	00.0	19.22
02/09/06	<50.0	<236	<472	1.13	<0.500	<0.500	<3,00	<1.00	<1.00	<1.00	0.47	11.40	00'0	18.81
08/31/06	<100	<236	<472	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	4.00	2.64	11.90	00.0	18.31
12/13/06	<50.0	<240	<481	10.3	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.11	10.87	00:0	19.34
23/06/07					Decomr	Decommissioned					1	1	1	1
11/05/91	<1,000	<1,000	-	<0.5	<0.5	<0.5	<0.5	1	1		ı	-	!	+
07/15/94	<100	<250	<750	<0.5	<0.5	<0.5	<0.5	!	1	1	ı	8.35	00.0	10.38
10/26/94	<50	280	<750	<0.5	<0.5	<0.5	۸۲.٥	1	1	ŀ	ī	9.81	00'0	8.92
03/08/95	<50	290	940	<0.5	<0.5	<0.5	۸ 0.	1	1	ŀ	ı	9.44	00.00	9.29
06/06/95	<50	<250	820	<0.5	<0.5	<0.5	1.60		1	ŀ	1	8.28	00.00	10.45
09/07/95	<50	<250	<750	<0.5	<0.5	<0.5	0. V	1	1	ł	ı	7.94	00.00	10.79
12/08/95	<50	520	2,500	<0.5	<0.5	<0.5	0. 1.0	i	1	ŀ	;	8.09	00'0	10.64
04/01/96	<50	<250	<750	<0.5	<0.5	<0.5	۲- 0.	:	ı	1	ı	7.98	00.0	10.75
06/25/96	<50.0	<250	<750	<0.500	<0.500	<0.500	×1.00	1	ı	ŀ	ŀ	7.90	0.00	10,83
09/27/96	<50.0	<250	<750	<0.500	<0.500	<0.500	0.1	ŀ	1	ł	ı	8.28	00.0	10.45
03/28/97	<50.0	<250	<750	<0.500	<0.500	<0.500	<1.00	}	1	ŀ	ł	8.07	00.00	10.66
06/30/97°	<50.0	<250	<750	<0.500	<0.500	<0.500	v.1.00	1	ı	ŀ	ı	7.84	00.0	10.89
_a 26/80/60	<50.0	<250	<750	<0.500	<0.500	<0.500	<1.00	ī	1	ŀ	ţ	8.65	00.0	10.08
12/19/97 ^b	<50.0	<250	<750	<0.500	<0.500	<0.500	<1.00	1	I	ŀ	ı	8.51	00:0	10.22
03/16/98 ^b	0.09	310	<750	<0.500	<0.500	<0.500	<1.00	-	1	Ţ	1	8.43	0.00	10.30

П	1 🖈	و	<u>е</u>	2	ເນ	.0	Σ.	-		<u>ق</u>		ທ		۵			₹		2		(C)		~	_		<u></u>	N	92	-		<u>ي</u>	စ္တ	88		_
אַלאַנ	(feet)	10.36	9.43	10.63	10.55	10.70	10.21	9.20	9.53	10.29	1	9.25		9.42	!	!	7.94	1	7.15	!	7.76	-	8.72	!	1	9.49	9.25	10.43	10.41		18.83	19.39	18.68	18.08	1
HdS	(feet)	0.0	0.00	00.00	00.00	00'0	00.00	0.00	0.00	00.00	Σ	00'0	Ž	00.00	ΣZ	ΣN	0.00	Z	0.00	Ž	00'0	Ž	0.00	Ž	ΣZ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	:
WITC	(feet)	8,37	9.30	8.10	8.18	8.03	8.52	9.53	9.20	8.44	ΣZ	9.48	N	9.31	ΝN	ΣN	10.79	ΣZ	11.58	Σ	10.97	ΣZ	10.01	ΣN	ΣZ	9.24	9.48	8.30	8.32	8.76	9.14	8.58	9.29	9.89	1
2	(mg/L)	1	ı	ì	ı		1	ŀ	ŀ	ı	1	ı	ı	1	1	1	;	ı	i	1	ı	ì	1.90	;	!	0:30	0.40	1.20	1.30	5.20	。 NN	1	0.59	0.37	ı
Total Lead	(Hg/L)		l	;	ı	ı	1	ì	ŀ	ŀ	ŀ	I	ı	;	i	ŀ	1	ł	ŀ	1	;	ı	ŀ	ſ	;	;	ŀ	ł	ŀ	1	ł	<1.00	0.1 0.0	<1.00	
Nanhthalene Total Lead	(µg/L)	-	ı	ı	ı	Ι	ŀ	ŀ	ı	;	1	!	ŀ	-	ŀ	1	ŀ	1	ŀ	1	1	ı	Ī	ŀ	ŀ	ı	ı	1	ı	<0.500	ı	<1.00	7.98	<5.00	
MTBF		-	:	1	;	;				1	;	;	;	<u> </u>	ł		;	ı	ı	ŀ	ŀ	ì	ł	ł	ì	1	;	٧	ŀ	×1.00	<2.00	Q. ✓	×1.00	<1.00	
Xvlenes	(hg/L)	<1.00	×1.00	<1.00	41.00	1.21	√1.00	<1.00	22.1	<1.00	;	51.0	ı	4.04	1	1	<1.50	;	<1.00	ŧ	2.61	1	\$;	!	\$	7	₽	ł	<0.500	۲۰ 00.1	<3.00	<3.00	<3.00	
Ethyl- henzene	(hg/L)	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	2.76	<0.500	ł	945	l	0.644	ŀ	 	<1.00	ì	<0.500	1	<0.500	1	⊽	**	!	₹	۲	٧	ŀ	<0.200	<0.500	<0.500	<0.500	<0.500	Decommissioned
Toluene	(Hg/L)	<0.500	<0.500	<0.500	<0.500	0.619	<0.500	<0.500	1.64	<0.500	;	6.97	ŀ	1.40	ł	·	<2.00	i	<0.500	ŀ	0.997	ŀ	⊽	ı	ŀ	٧	٧	Ÿ	ļ	<0.200	<0.500	<0.500	<0.500	<0.500	Decom
Benzene	(hg/L)	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	ł	1,050	ł	10.9	ł	1	14.2	;	26.8	¦	20.2	ŀ	₹	I	ŀ	۲	₹	<u>\</u>	ı	<0.200	<0.200	<0.500	<0.500	<0.500	
HªF ≅	(hg/L)	<750	<750	<750	<750	<750	<750	<750	<750	<841	1	849	ł	<500	ł	;	569	Į	<575	1	<602	1	<268	ł	ı	<520	<480	o į	<250	<500	<472	<526	<543	<481	
TPH- Diesel	(µg/L)	<250	343	271	<250	393	281	<250	330	468	:	4,250	;	823	1	ł	1,600	ł	347	ŀ	<301	ł	^ 73	}	ı	<260	<240	°¦	<50	<250	<236	<263	<272	<240	
TPH- Gasoline	(µg/L)	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	301	<50.0	i	10,300	ŀ	90.6	ł	ł	<100	ŀ	196	ł	156	ł	<100	;	;	×100	<100	× 100	1	<50.0	<50.0	<50.0	<50.0	<80.0	
Sample	Date	06/26/98 ^b	09/23/98 ^b	12/17/98 ^b	03/31/99 ^b	06/30/99 ^b	12/08/99 ^b	06/20/00 ^b	12/19/00 ^b	06/15/01 ^b	06/26/01	09/07/01 ^b	10/110/01	12/28/01	03/08/02	06/24/02	09/26/02°	12/12/02	03/13/03	06/12/03	09/19/03	01/14/04	03/30/04	06/22/04	09/29/04	12/29/04	03/17/05	06/02/05	06/16/05	07/26/05	11/01/05	02/21/06	90/60/50	08/29/06	03/06/07
Sample I.D.	TOC ª	MW-44	(cont'd)																	•											27.97				

_																									_									
9.34	9.66	9.79	8.09	7.51	Ī	ŀ	ŀ	7.71	1	;	;	!	4.21	9.72	1	1	ı	1	1	!	1	ŀ	ŀ	1	;	1	-	10.33	9.36	9.32	8.81	8.95	8.92	20 6
00.0	00'0	00.0	00.0	00.0	Ν̈́	MN	ΝN	00.0	Ž	ΣZ	Z	Σ	00.0	00.0	ΣZ	Z	ΣZ	ΣN	Σ	ΣN	MN	MN	ΣN	ΣN	ΣZ	ΣN		00.0	00.0	00.0	00.0	00.0	00.0	000
7.57	7.25	7.12	8.82	9.40	ΣN	ΣZ	ΣN	9.20	ΣZ	ΣZ	ΣZ	ΝΝ	12.70	7.19	ΣZ	ΣN	ΣZ	ΣN	ΣZ	Z	ΣN	Σ	ΣN	ΣN	ΣZ	ΣZ	1	9.50	10.47	10.51	11.02	10.88	10.91	10.76
	1	Į	ı	1	ŀ	ŀ	ı	ı	ļ	ı	ļ	ı	ł	ı	1	1	ı	1	ı	ı	ì	ı	ŀ	i	1	***	1	ı	1	1	1	1	!	1
1	,	ļ	ţ	ı	ŀ	ı	ļ	ļ	ı	ı	1	ł	1	1	1	ŀ	1		ī	1		1		-			1	ı	ı	1	ı	1	ı	1
-	1	**	ı	ì	I	ı	1	ł	;	1	;	Ī	1	;	ŀ	ŀ	ŀ		1	1		1		1			1	1	ł	1	ł	ŀ	1	ŀ
-	ŀ	ı	ł	ı	1	1	ı	;	1	ı	ł	ı	1	i	1	;	Ţ		ŀ	1				1			1	;	i	ŀ	;	ì	ı	ł
V-1.00	2.06	ļ	!	<1.00	1	ł	i	<1.00	ŀ	1	ı	1	18.0	1.39	ı	ŀ	ı		ı	1		1		ı		o.	<0.5	1.0	<0.5	<0.5	0.1	0.15	2.3	×10
<0.500	<0.500	ŀ	4	<0.500	ı	1	1	<0.500	1	ı	į	1	2.53	<0.500	ı	1	ı	by asphait	ŀ	;	to locate	1	by asphalt]	by asphalt	Discontinue	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
<0.500	1.25	ı	1	<0.500	į	ı	1	<0.500	ŀ	ţ	ŀ		2.18	<0.500	1	ı	1	Covered	ł		Unable	ł	Covered	:	Covered	Monitoring	6.0	<0.5	<0.5	<0.5	<0.5	<0.5	0.59	<0.5
0.518	<0.500	ŀ	1	<0.500	ŀ	1	ŀ	<0.500	1	ŀ	-	ł	<0.500	<0.500	1	ł	:	•	;	;		-		1			5.2	2.0	2.5	1.6	1.8	5.3	15	1.7
<750	<750	ı	ı	<750	į	ł	ļ	<750	ı	-	ł	1	<750	<750	;	;	1		ì	1		ł		1				<750	<750	<750	<750	1,600	780	<750
267	<250	ŀ	1	<250	ł	1	ł	354	}	ŀ	ļ	1	277	295	ţ	i	:		;	1		;		1			<1,000	310	300	290	270	330	380	260
<50.0	<50.0	i	i	<50.0	;	1	3	<50.0	;	ł	1	ŀ	226	<50.0	1	!	;		1	ŀ		,		1			<1,000	<100	×100	<100	52	×20	70	×20
09/27/96	03/28/97	26/30/90	26/80/60	12/19/97 ^b	03/16/98	06/26/98	09/23/98	12/17/98 ^b	03/31/99	66/30/90	12/08/99	06/20/00	12/19/00	06/15/01 ^b	06/26/01	10//0/60	10/10/01	12/28/01	03/08/02	06/24/02	09/26/02	12/12/02	03/13/03	06/12/03	09/19/03	01/14/04	11/05/91	12/30/93	04/07/94	07/14/94	10/25/94	03/08/95	26/90/90	96/20/60
MW-46	(cont'd)																										MW-47	19.83						
	09/27/36 <50.0 267 <750 0.518 <0.500 <0.500 <1.00 7.57 0.00	09/27/96 <50.0	09/27/96 <50.0	09/27/96 <50.0	09/27/96 <50.0	09/27/96 <50.0	09/27/96 <50.0	09/27/96 <50.0	09/27/96 <50.0	09/27/96 <56.0	09/27/96 <56.0	09/27/96 <56.0	09/27/96 <56.0	09/27/96 <56.0	09/27/96 < 50.0	09/27/96 < <p> 09/27/96</p>	09/27/96 <a href="https://doi.org/10.25/26/20.20/2.20/2.20/2.20/2.20/2.20/2.20/</th><th>09/27/96 <e>60.0 267</th><th>09/23/97 C50.0 C750 C0500 C1.00 — — — 7.57 0.00 03/28/97 <650.0</td> <250</td> <750</td> <0.500</td> 1.25 <0.500</td> 2.06 — — — 7.12 0.00 06/30/97 — — — — — — 7.12 0.00 12/19/97 <50.0</td> <250</td> <0.500</td> <0.500</td> <1.00</td> — — — — 7.12 0.00 03/16/98 — — — — — — — 9.40 0.00 03/16/98 — — — — — — — 9.40 0.00 03/16/98 — — — — — — — N/M N/M 12/17/98 <55.0</td> <0.500</td> <0.500</td> <0.500</td> <0.500</td> <0.500</td> <0.00</td> — — — <0.00</td> 06/20</th><th>09/27/96 <50.0</th> 287 <750</th> 0.518 <0.500</th> <1.05</th> <1.00</th> <t</th><th>09/27/96 09/27/96</th><th>09/27/96 650.0 675.0 <a< th=""><th>09/27/96 650.0 267 750 <a "="" 10.0000="" doi.org="" href="text-</th><th>09/27/96 <th</th><th>09/23/99</th><th>09/28/97 <th</th><th>09/27/96 < </th> <</th><th>09/27/396</th><th>09/27/96</th><th>09/27/89 a href="https://doi.org/"> a</th><th>09/27/99 <250</th> 267/7 <275</a<>	09/27/96 650.0 267 750 <a "="" 10.0000="" doi.org="" href="text-</th><th>09/27/96 <th</th><th>09/23/99</th><th>09/28/97 <th</th><th>09/27/96 < </th> <</th><th>09/27/396</th><th>09/27/96</th><th>09/27/89 a href="https://doi.org/"> a	09/27/99 <250	0927/96 <56.0 2867 <750 0.516 <0.550 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.000	092/29/96 <ebod< th=""> 267 <!--</th--><th>0927796 < <60.0</th></ebod<>	0927796 < <60.0												

Sample		TPH-	TPH-	TPH			Ethvl-								
G.	Sample	Gasoline	Diesel	ō	Benzene	Toluene	penzene	Xylenes	MTBE	Naphthalene Total Lead	Total Lead	8	MTG	SPH	GWE
TOC ^a	Date	(hg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(hg/L)	(hg/L)	(µg/L)	(µg/L)	(ng/L)	(mg/L)	(feet)	(feet)	(feet)
MW-47	12/08/95	740	580	2,000	<0.5	<0.5	<0.5	۸ ۲.0	1	1	-		10.40	00'0	9.43
(cont'd)	04/01/96	<50	<250	<750	4.4	<0.5	<0.5	<1.0	ı	ł	'	ŀ	10.67	00.0	9.16
	06/25/96	110	400	<750	14.4	<0.500	<0.500	×1.00	!	1	ł	1	10.71	0.00	9.12
	09/22/96	<50.0	<250	<750	4.34	<0.500	<0.500	<1.00	1	1	ı	1	10.85	00.00	8.98
	03/28/97 ^b	64.5	<250	<750	7.61	<0.500	<0.500	1.57	!	1	ł	;	10.92	00.0	8.91
	03/28/97	177	<250	<750	52.6	<0.500	<0.500	۲۲.00 د۲.00	1	1	ł	Ţ	10.92	0.00	8.91
	26/30/90	1	ŀ	ŀ	7	ı	ı	;	1	1	ŀ	;	ΣN	Σ	1
	26/80/60	ţ	!	!	ŀ	ı	ı	;	1	1	1	1	Σ	ΣZ	1
	12/19/97	}	!	1	1	ł	ı	;	1	1	ı	;	ΣN	Σ	ı
	03/16/98	1	!	1	1	ł	;	ì	1	1	;	ı	Z	Σ	1
	06/26/98 ^b	<50.0	356	<750	27.3	<0.500	<0.500	<1.00	1	Ī	;	ı	10.78	0.00	9.05
	09/23/98	!	1	ł	ŀ	ı	1	ļ	1	1	:	1	ž	Σ	1
	12/17/98 ^b	<50.0	<250	<750	3.34	<0.500	<0.500	1.12	1	-	1	1	10.61	0.00	9.22
	03/31/99	}	ł	Ţ	ŀ	;	;	ł	Ì	I	ŀ	-1	9.65	0,00	10.18
	66/30/90	1	Ŧ	ł	;	ŀ	ì	;	;	!	ı	ı	ΣN	ΣŽ	1
	12/08/99	!	ì	ŀ	;	;	ł	ì]	l	ı	ı	ΣZ	ΣN	1
	06/20/00 ^b	<50.0	<250	<750	<1.30	<0.500	<0.500	4.00	1	}	Į	1	10.94	0.00	8.89
	12/19/00 ^b	1,310	357	<750	<0.500	6.10	10.6	77.3	ŀ	ŀ	ı	1	11.20	0.00	8.63
	06/15/01	<50.0	591	<952	0.70	0.504	<0,500	1.18	1	ŀ	1	ŀ	10.98	0.00	8.85
	06/26/01		ł	1	į	ŀ	ŀ	1	ı	1	ļ	ŀ	ΣN	Z	;
	09/07/01 ^b	<50.0	356	<500	<0.500	<0.500	<0.500	<1.00	1	1	ı	ı	11.14	00.00	8.69
	10/10/01	1	;	1	1	ł	ł	**	1	ŀ	ļ	ļ	ΣN	ΝŽ	:
	12/28/01	181	542	<500	7.64	1.49	4.79	37.8	1	ı	ı	;	10.90	0.00	8.93
	03/08/02	1	ì	1	1	!	ŀ	ł	1	ı	ı	!	MΝ	ž	1
	06/24/02	ī	1	ı	ı	1	ı	1	1	1	ı	1	ΣŽ	ΣZ	1
	09/26/02°	106	747	<500	2.36	<2.00	×1.00	<1.50	I	ı	ì	1	11.85	0.00	7.98
	12/12/02	1	ţ	ļ	;	ŀ	ŀ	:	1	ţ	ŀ	;	Z	Σ	;
	03/13/03	75.5	<284	<568	<0.500	<0.500	<0.500	<1.00	ŀ	ı	;		10.91	00.00	8.92
	06/12/03	1	ł	1	ł	1	ļ	ŧ	1	ı	ł	1	ΣN	ΣZ	:
	09/19/03	76.8	<294	<588	3.41	<0.500	<0,500	1.14	;	1	1	1	12.05	0.00	7.78
	01/14/04	ı	;	1	1	1		ı	1	!	ı	ŀ	ΣZ	ΣŽ	!
	03/30/04	272	262	086	⊽	⊽	⊽	\$;	ì	ļ	1.21	11.81	0.00	8.02
	06/22/04	1	ł	}		}	ì	ı	ŀ	ł	I	!	Σ	ž	
	09/29/04	200	329	735	<0.50	<0.50	<0.50	o.1.o	ì	ı	ı	0.20	11.87	00.00	7.96
	12/29/04	I	ì	l	ŀ	ı	ŀ	!	1	į	1	F	ΣN	ΣZ	Ţ

	# F F	\	8	_	92	9	93				18.63	22	98	28	,			9/	_	12	63	33	68	1	<u>6</u>	35		96	_		37	23	-2	<u>6</u>	5	5	60	6	<u>'</u>	22	_	18.72
	GWE (feet)	8.21	8.58	}	17.92	18.10	17.93	f	-	!	18	18.57	18.86	17.58	}	_		18.76		18.77	17.63	18.33	18.89	18.77	8.69	9.35	 	8.96		-	9.87	8.53	7.75	7.99	8.15	8.01	8.09	8.79	8.54	9.22		ζ
	SPH (feet)	0.0	0.00	0.00	0.00	0.00	0.00	ŀ	0.0	0.00	0.00	0.00	0.00	0.00	1	ŀ	0.00	0.00	ŀ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ž	0.00	ž	ΣZ	0.00	00.00	0.00	00'00	0.00	0.00	0.00	0.00	0.00	00'0	0.00	0
	DTW (feet)	11.62	11.25	11.36	11.42	11.24	11.41	ł	9.40	9.48	9.35	9.41	9.12	10.40	1	ł	3.82	3,60	1	3.59	4.73	4.03	3.47	3.59	11.11	10.45	ΣN	10.84	ΣN	NΝ	9.93	11.27	12.05	11,81	11.65	11.79	11.71	11.01	11.26	10.58	10.90	6
	DO (mg/L)	0.80	1.70	1.00	。 N	ı	1.24	ŀ	1.30	09.0	。 MN	1	0.32	1.79	0.09	}	3.20	。 MN	1	0.54	1.19	1.30	0.09	0.88	1	ı	j	ı	!	1	ŧ	ı	I	4.10	1.69	1.10	0.20	1.50	09:0	1.30	1.70	0 114
	Total Lead (µg/L)	1	ŀ	ì	ŀ	o.1 ∆	<1.00		1	1	1	<1.00	×1.00	<1.00	×1.00		ı	1	1.69	2.21	5.73	3.33	<1.85	2.42	!	ı		ı			1	ı	ł	ŀ	1	1	1	;	1	1	ì	
	Naphthalene Total Lead (µg/L) (µg/L)	-	1	<0.500	ŀ	<1.00	<1.00		1	<0.500	1	41.0	<1.00	<5.00	<5.00		0.550	ŀ	1.52	<1.00	<5.00	<5.00	<5.00	<5.00	1	ŀ		-			1	ı	1	ŧ	ı	ı	ı	ı	1	ł	7.04	
	MTBE (µg/L)	1	1.3	1.18	<1.00	1.06	<1.00		⊽	۲٠.00 د۲.00	4.00	<20.09	<1.00	<1.00	<1.00		×1.00	<2.00	<1.00	<1.00	<1.00	<1.00	×1.00	<1.00	1	1		1			1	ı	ļ	,	!	ł	ŀ	ł	1	8.01	4.29	000
	Xylenes (µg/L)	22	ç,	<0.500	00.1	<3.00	<3.00		2	<0.500	41.00	1140	<3.00	<3.00	4.44		0.300	1.06	9.35	<3.00	<3.00	<3.00	<3.00	<3.00	6//	4,480		2,010			1,100	286	462	6,180	226.4	85.11	520	27.62	30.59	84.7	50.11	0.40
Ethyl-	benzene (µg/L)	√	₹	<0.200	<0.500	<0.500	<0.500	missioned	⊽	<0.200	<0.500	219	<0.500	<0.500	0.870	Decommissioned	<0.200	0.660	3.45	<0.500	<0.500	<0.500	<0.500	<0.500	382	991	Obstructed by vehicle	314	Obstructed by vehicle	Obstructed by vehicle	523	299	26.1	312	21.9	27.9	100	9.98	10.6	42.3	36.9	0
	Toluene (µg/L)	₽	⊽	<0.200	<0.500	<0.500	<0.500	Decomr	₹	<0.200	<0.500	26.8	<0.500	<0.500	<0.500	Decomi	<0.200	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	221	3,690	Obstructed	23	Obstructed	Obstructed	127	13.7	315	205	Ŝ.	2.4	62	3.88	2.41	10.7	3.23	0,0
	Benzene (µg/L)	₽	₹	<0.200	<0.500	<0.500	<0.500		٧	<0.200	<0.500	139	<0.500	<0.500	<0.500		<0.200	0.200	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	674	1,630		414			733	448	51.7	308	21.8	14.2	95	69.6	5.82	20.3	16.8	ć
TPH-	Oil (µg/L)	<495	616	<500	<472	<476	<472		<494	<500	<472	<515	<472	<472	<481		6,590	<472	<556	625 ^p	<472	679	<472	<476	909>	<500		556			<588	<500	<500	<258	<241	<237	<502	<611	909	<503	<500	1110
TPH-	Diesel (µg/L)	<248	<252	<250	<236	<238	<236		2948	<250	<236	<258	<236	<236	<240		2,060	<236	457	2,550 ^p	<236	<240	<236	<238	2,200	3,460		1,970			1,810	1,740	<250	1,970	867	874	1,330	745	1,060	5289	<250	0.000
TPH-	Gasoline (μg/L)	166	217	162	99.2	73.5	8.76		357	334	278	6,460	325	176	275		313	<50.0	380	201	<100	197	232	178	8,970	23,200		8,290			12,200	6,450	4,440	29,700	3,330	2,130	3,600	1,570	1,420	1,710	1,500	700
	Sample Date	03/17/05	06/01/05	07/25/05	11/04/05	02/22/06	90/60/90	06/13/06	06/01/05	07/25/05	11/04/05	02/22/06	90/60/90	90/06/80	12/13/06	03/06/07	07/25/05	11/02/05	02/24/06	05/11/06	08/31/06	12/13/06	20/20/60	06/13/07	10/10/01	12/28/01	03/08/02	06/24/02	09/26/02	12/12/02	03/13/03	06/12/03	09/19/03	01/14/04	03/30/04	06/22/04	09/29/04	12/29/04	03/17/05	06/01/05	07/25/05	10770177
Sample	LD. TOC ª	MW-47	(cont.d)		29.34				MW-48		27.98						MW-49	22.36							MW-50	19.80																00.00

TOC	Sample Date 05/08/06	Gasoline (µg/L)	Diesel	ō	Benzene	Toluene	benzene	Xylenes	MTBE	Nanhthalene	Naphthalene Total Lead	2	DTW	SPH	GWE
-	Vale 5/08/06	(hg/L)								- September 1					!
	90/80/9		(µg/L)	(µg/L)	(µg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(µg/L)	(hg/L)	(mg/L)	(feet)	(feet)	(feet)
	-	1,550	1,870	<485	28.4	2.13	24.7	35.06	3.88	9.48	41.00	<1.00	10.81	00.0	18.51
	08/29/06	264	<248	<495	8.55	0.780	6.87	7.26	4.23	<5.00	<1.00	0.47	11.58	00.00	17.74
	12/12/06	1,650	<243	<485	80.9	2.75	18.9	41.9	3.93	17.4	1.62	0.09	10.61	00'0	18.71
_	20/80/20	1,650	<240	<481	51.3	1.06	14.1	33.6	2.92	35.9	۲۲:00 د1:00	0:30	10.53	0.00	18.79
	06/15/07	1390	333	<495	28.0	1.00	6.46	5.20	1.85	40.5	<1.00	0.35	10.74	0.00	18.58
_	10/10/01	671	11,700	2,150	10.1	10.4	7.75	16.6	1	ł	ı	ł	11.68	00.00	8.90
	12/28/01	631	2,170	3,100	37.0	75.6	30,4	81.2	1	i	ı	1	11.20	00'0	9.38
<u>ප</u>	03/08/02	102	2,350	1,610	6.22	5.89	3.84	10.4	ı	!	!	1	11.38	0.00	9.20
90	06/24/02	27.79	2,650	1,730	1.28	1.42	0.699	2.51	1	1	ŀ	ŀ	11.60	0.00	8.98
00	09/26/02°	×100	1,660	875	0.848	<2.00	<1.00	<1.50	1	1	1	1	12.18	0.00	8.40
12	12/12/02	<50.0	2,050	781	<0.500	<0.500	<0.500	<1.00	ı	1	1	ŀ	12.28	0.00	8.30
80	03/13/03	<50.0	693	<625	<0.500	<0.500	<0.500	<1.00	,	;	ţ	ŀ	11.05	0.00	9.53
90	06/12/03	ļ	1	:	ì	1	1	ì	ı	1	1	1	ΣN	Z	:
80	09/19/03	52.4	<250	<500	1.47	1.81	0.544	3.59	ı	· ·	ı	ı	12.42	0.00	8.16
0	01/14/04	73.5	<139	<278	<0.25	0.804	<0.5	⊽	;	· ·	1	0.40	11.79	00'0	8.79
03	03/30/04	×100	404	401	₹	₹	⊽	7	ŀ	!	1	1.56	12.22	00.0	8.36
90	06/22/04	104	129	<237	₹	₹	⊽	7	;	!	ı	1.20	12.10	00'0	8.48
60	09/29/04	150	<242	<484	<0.50	<0.50	<0.50	۷.1.	;	1	ŀ	1.40	12.20	0.00	8.38
12	12/29/04	<100	<257	<514	₹	₹	₹	\$;	ŀ	ì	0.10	11.80	00:00	8.78
03	03/17/05	<100	<240	<481	₹	₹	⊽	7	1	ļ	!	1.80	11.58	0.00	9.00
90	06/01/05	<100	408	<520	⊽	₹	⊽	7	⊽	1	ŀ	2.10	11.62	0.00	8.96
20	07/25/05	<50.0	697°	826	<0.200	<0.200	<0.200	<0.500	<1.00	<0.500	ı	2.90	11.74	0.00	1
29.75 11	11/04/05	<50.0	<238	<476	<0.500	<0.500	<0.500	4.00	√1.00	ŀ	١	° MN	11.80	0.00	17.95
7	11/04/05	1	1,290 1	53611	ŀ	:	1		i	ł	ı	1	ı	:	ı
05	02/22/06	<50.0	<248	<495	<0.500	<0.500	<0.500	<3.00	×1.00	۲۰.00	<1.00	ı	11.64	0.00	18.11
90	90/80/50	<50.0	<245	<490	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	3.71	1.61	11.82	0.00	17.93
80	90/06/80	<80.0	<245	<490	<0.500	<0.500	<0.500	<3.00	1.20	<5.00	2.81	0.56	12.23	0.00	17.52
12	12/12/06	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.18	11.70	0.00	18.05
	03/07/07	<50.0	<258	<515	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.42	11.61	0.00	18.14
+	06/15/07	<50.0	<245	<490	<0.500	<0.500	<0.500	<3.00	×1.00	<5.00	<1.00	0.31	11.77	0.00	17.98
MW-52 10	10/110/01	13,400	1,460	<582	1,150	<10.0	827	793	ı	}	1	1	10.79	0.00	
12	12/28/01	7,900	1,690	595	634	5.87	200	479	ì	!	ı	ı	10.22	0.00	;
- -	03/08/02	10,100	2,790	<602	814	e:30	602	387	,	:	ı	ļ	10.42	0.00	ı
90	06/24/02	9,820	2,810	640	1,250	<25.0	757	448	ţ	ŀ	ŀ	ì	10.58	0.00	ı
60	09/26/02 ^c	009'9	3,530	<500	943	21.7	900	284	1	ı	ı	ı	11.51	0.00	
12	12/12/02	1,170	7,350	638	120	0.822	73.9	7.30	1	ı	ı	1	11.61	0.00	ı
8	03/13/03	4,540	1,530	<568	272	52.7	236	210	ı	ı	ı	1	9.59	00.00	ŀ
90	06/12/03	-	;	1	1	1	1	1	1	ĵ		!	ΣN	ΣN	ŀ
8	09/19/03					Obstructed	Obstructed by vehicle					1	ΣN	ΣZ	ı
2	01/14/04	902	<126	<252	16.6	0.532	39.6	2.45	1	ŀ	1	0.30	11.00	00'0	;
03	03/30/04	738	462	<253	16.8	₹	18.4	24.66	ı	!	!	1.31	11.47	0.00	ŀ
90	06/22/04	1,600	593	<248	161	40	70.1	²⁰	;	1	1	1.50	11.50	00.00	ļ
60	09/29/04	290	<253	<507	6.4	<0.50	4.8	2.3	;			0.30	11.45	0.00	:

Sample		TPH-	TPH-	TPH-			Ethyl-								
 	Sample	Gasoline	Diesel	ō	Benzene	Toluene	penzene	Xylenes	MTBE	Naphthalene Total Lead	Total Lead	8	WTO	SPH	GWE
, 201	Date	(ng/L)	(hg/L)	(hg/L)	(J/6rl)	(hg/L)	(hg/L)	(ng/L)	(hg/L)	(µg/L)	(hg/L)	(mg/L)	(feet)	(feet)	(feet)
NW-52	12/29/04	844	272	<507	28.7	₹	17	9.22	-	1	1	0.40	10.75	0.00	1
(cont'd)	03/17/05	752	<238	<477	18.9	₹	17.6	3.75	1	1	i	0.70	11.00	00.00	}
	06/01/05	503	<249	<498	28.3	₹	19	7.06	₹	1	1	1.40	10.30	0.00	!
	07/25/05	401	368	<500	14.5	<0.200	8.24	3.12	41.00	2.37	ı	1.50	10.60	0.00	1
29.06	11/08/05	243	<243	<485	6.47	0.860	9.39	4.69	<1.00	l	1	° N	10.41	0.00	18.65
	02/23/06	91.8	587	<495	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	<1.00	I	10.38	00'0	18.68
	90/80/90	<250°	290°	<490	<0.500	<0.500	0,560	<3.00	√1.00	<1.00	<1.00	0.57	10.48	0.00	18.58
	90/06/80	178	<236	<472	10.3	1.14	8.04	11.0	<1.00	<5.00	<1.00	3.70	11.33	00.0	17.73
	12/13/06	215	<245	<490	5.82	<0.500	4.20	<3.00	<1.00	<5.00	1.02	0.10	10.37	0.00	18.69
	20/90/20				Not Acc	essable- co	Not Accessable- construction equipment	quipment				ł	ŀ	ļ	ı
	06/15/07	146	<250	<500	0.620	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.25	10.23	00'0	18.83
MW-53	03/13/03	14,000	1,030	<625	398	143	501	1,170	1	ŀ	1		11.17	0.00	9.58
20.75	06/12/03	9,700	1,370	<500	553	197	431	1,270	!	1	ŀ	:	12.05	0.00	8.70
	09/19/03	1,470	<250	<500	29.3	6.61	28.5	111	ŀ	-	1	ı	12.85	00'0	2.90
	01/14/04	2,770	181	<264	173	3.79	91.7	127.1	1	!	1	0.40	11.70	0.00	9.05
	03/30/04	3,580	989	<237	257	49.7	125	204.8	,	1	}	1.28	12.26	0.00	8.49
	06/22/04	4,820	750	<240	363	85.2	188	425	!	1	ŀ	1.10	12.23	0.00	8.52
	09/29/04	240	311	<509	1.9	<0.50	4.	6.7	,	ı	1	1.90	12.60	0.00	8.15
	12/29/04	2,650	655	<491	225	11.9	97.8	123.4	!	1	ŀ	0.30	11.70	00.0	9.05
	03/17/05	1,560	293	<515	106	3.25	40.9	61.3	1	1	ŀ	1.40	12.97	0.00	7.78
	06/01/05	3,120	3819	493	205	5.98	120	236.9	1.88	ı	I	1.50	11.22	00'0	9.53
	07/25/05	450	310 ^b	<500	20.4	0.610	8.96	13.14	۲- 7-00	9.15	ŀ	2.50	11.75	0.00	ı
30.38	11/04/05	1,510	<236	<472	164	<2.50	59.4	28.2	<5.00	Ť	1	1.70	11.49	00'0	18.89
	02/22/06	2,770	<248	<495	183	5.65	77.2	173	<5.00 ⁴	30.0	1.16	1	11.04	0.00	19.34
	90/80/50	559	<245	<490	9.99	×1.00	21.2	90.6	<2.00	8.24	1.32	0.95	11.54	00.00	18.84
	90/08/80	1,980	<236	<472	188	4.50	61.2	112	۲۰ ۲۰	38.7	<1.00	0.41	12.32	0.00	18.06
	12/12/06	177	<245	<490	33.8	<0.500	2.20	4.38	<1.00	<5.00	3.34	1.13	11.07	00.00	19.31
	20/20/60	<50.0	<236	<472	2.86	<0.500	<0.500	<3.00	<1.00	<5.00	1.44	0.50	11.17	00.00	19.21
	06/15/07	71.4	<238	<476	1.11	<0.500	0.590	<3.00	<1.00	<5.00	<1.00	0.80	11.42	0.00	18.96
MW-54	06/16/05	206	130	410	4.82	⊽	5.09	10.27	⊽	1	ł	1.40	9.09	0.00	18.91
28.00	07/25/05	177	<250	<500	5.26	0.280	0.680	3.11	<1.00	066.0	1	0.20	9.51	0.00	18.49
	11/18/05	75.8	<243	<485	0.560	0.530	4.19	10.8	<1.00	1	1	0.39	9.73	0.00	18.27
	02/23/06	<50.0	969	<472	<0.500	<0.500	<0.500	<0.500	v.00	×1.00	1.04	,	9.44	0.00	18.56
	90/80/90	<50.0	328 ^p	<500	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	1.41	0.97	9.31	00.0	18.69
	08/29/06	<80.0	<236	<472	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	×1.00	0.53	10.33	00.00	17.67
	12/12/06	<50.0	<248	<495	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	2.69	1.99	9.69	00.00	18.31
	03/06/07	<50.0	<263	<526	<0.500	<0.500	<0.500	<3.00	۲- 20.0	<5.00	<1.00	0.83	9.40	0.00	18.60
	06/15/07	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	۲۳.00 ۲۳.00	<5.00	<1.00	0.38	9.25	0.00	18.75

	Sample Date Date 06/16/05 07/25/05 11/01/05 02/21/06 05/08/06 05/08/06 07/25/05 11/03/05 07/25/05	(µg/L) 2,240 1,850 814 278 190 60.1 650.0	Diesel (µg/L) 3,100 ^{t,1} 1,390 ^a	Oil (µg/L) <2,500'	Benzene (µg/L)	Toluene (µg/L)	benzene (µg/L)	Xylenes (µg/L)	MTBE (µg/L)	Naphthalene Total Lead (µg/L) (µg/L)	Total Lead (µg/L)	DO (mg/L)	DTW (feet)	SPH (feet)	GWE (feet)
	Date 716/05 7125/05 7125/05 7121/06 71	(µg/L) 2,240 1,850 814 278 190 <80.0 60.1	(µg/L) 3,100 ^{t,1} 1,390 ^a	(µg/L) <2,500'	(µg/L)	(hg/L)	(µg/L)	(µg/L)	(µg/L)	(hg/L)	(hg/L)	(mg/L)	(feet)	(feet)	(feet)
	1725/05 101/05 101/05 1721/06 1721/06 1721/06 1721/06 1725/05	2,240 1,850 814 278 190 <80.0 60.1	3,100 ^{f,i} 1,390ª	<2,500			۲							5000	
	725/05 1/21/06 1/21/06 1/22/06 1/12/06 1/15/07 1/15/07 1/15/07 1/15/07 1/15/07 1/15/07 1/15/07 1/15/05 1/15/05 1/15/05 1/15/05 1/15/06	1,850 814 278 190 <80.0 60.1	1,390		7	7	7	4	7	!	1	0.70	10.53	3	18.69
	721/06 7/21/06 7/21/06 7/12/06 7/12/06 7/15/07 7/15/07 7/25/05 7/25/05 7/25/05 7/25/05 7/25/05 7/25/05 7/25/05 7/25/05 7/25/05	814 278 190 680.0 60.1		<500	0.480	1.69	2.57	1.99	×1.00	806	1	2.30	10.92	0.00	18,30
	721/06 7/21/06 7/22/06 7/12/06	278 190 <80.0 60.1 <50.0	669 u	<526	0.360	2.12	<0.500	<1.00	<2.00	1	!	° MN	11.11	0.00	18.11
	708/06 7/29/06 7/12/06 7/15/07 7/25/05 7/25/05 7/25/05 7/25/05 7/25/05 7/25/05 7/25/05 7/25/05 7/25/05 7/25/05 7/25/05 7/25/05	190 <80.0 60.1 <50.0	353	<562	<0.500	1.35	<0.500	<3.00	×1.00	117	<1.00	ı	10.62	0.00	18.60
	/29/06 /12/06 /106/07 /116/05 /116/05 /125/05 /123/06 /139/06 /130/06 /130/06	<80.0 60.1 <50.0	358	<500	<0.500	0.550	<0.500	<3.00	×1.00	64.9	<1.00	1.75	11.47	0.00	17.75
	/12/06 /06/07 /15/07 /16/05 /125/05 /03/05 /03/06 /03/06 /03/06 /03/06	60.1	268	<495	1.42	0.910	0.720	6.95	o.1.	104	×1.00	0.19	12.23	00'0	16.99
	/06/07 /15/07 /16/05 /125/05 /03/05 /03/06 /08/06 /08/06 /12/06	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	1.06	39.1	×1.00	0.25	11.51	0.00	17.71
-	/15/07 /16/05 /25/05 /03/05 /03/06 /03/06 /03/06 /03/06 /03/06	0 0 2 1	<243	<485	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	×1.00	2.34	10.73	0.00	18.49
	/16/05 /25/05 /03/05 /22/06 //08/06 //30/06 //12/06	0.00	<245	<490	<0.500	<0.500	<0.500	<3.00	<1.00	7.19	<1.00	0.41	11.46	0.00	17.76
	725/05 703/05 703/05 7722/06 730/06 712/06	135	210	380	₹	٧	· ·	<2	1.29	1	,	1.10	10.91	0.00	18.79
29.70 07.	/03/05 //22/06 //08/06 //30/06 //12/06	220	<250	<500	3.81	<0.200	3.96	<0.500	۲-00 د	<0.500	ţ	2.10	11.24	0.00	18.46
11	//22/06 //08/06 //30/06 //12/06	130	<236	<472	7.28	<0.500	1.70	2.33	<2.00	1	1	2.50	11.03	00'0	18.67
02	/08/06 //30/06 2/12/06	285	<248	<495	3.69	0.690	0.870	<3.00	2.79	<1.00	<1.00	ì	10.96	0.00	18.74
05	//30/06 2/12/06	120	<248	<495	<0.500	<0.500	<0.500	<3.00	o0.1≻	<1.00	o.r>	1.00	11.19	00'0	18.51
80	3/12/06	449	<243	<485	36.7	<0.500	4.02	<3.00	1.67	<5.00	1.85	2.20	11.96	0.00	17.74
12	70/90/1	609	<245	<490	2.72	0.570	5.12	<3.00	3.56	<5.00	<1.00	0.10	11.11	0.00	18.59
03	-	279	<250	<500	<0.500	<0.500	<0.500	<3.00	2.20	<5.00	<1.00	0.23	10.96	0.00	18.74
90	06/15/07	106	<245	<490	1.94	<0.500	0.650	<3.00	1.53	10.1	<1.00	0.27	11.11	0.00	18.59
	06/16/05	16,900	1,800	<1,200	525	2,310	327	2,188	<20	ŀ	1	1.10	10.54	0.00	18.77
29.31 07.	07/25/05	11,400	418 ^b	571	614	2,680	436	2,647	<1.00	98.0	ŀ	0.70	10.83	00.0	18.48
	11/08/05	3,980	<245	<490	328	497	100	525	<10.0	1	i	。 NN	10.62	0.00	18.69
02	02/23/06	10,800	877	<495	606	1,570	381	2,230	<20.0	92.0	4.38	1	10.59	00'0	18.72
90	90/80/50	12,200	426	<485	538	096	281	1,671	41,00	94.0	5.09	1.08	10.70	0.00	18.61
80	90/02/80	2,620	<248	<495	249	37.9	77.4	350	√ 4.00	28.9	1.24	2.50	11.55	0.00	17.76
12	12/13/06	39,400	422	<495	1,200	5,020	1,150	6,590	<5.00	266	5.18	3.22	10.55	0.00	18.76
03	03/08/07	21,600	267	<472	1,130	2,330	928	4,610	<40.0	291	9.81	0.12	10.44	0.00	18.87
\dashv	06/15/07	19,800	<245	<490	669	1,010	099	3,350	<20.0	256	1.77	0.20	10.65	0.00	18.66
_	06/16/05	3,970	420	<250	628	499	143	541	\$	1	1	1.30	11.71	0.00	18.98
30.69 07	07/25/05	7,750	673 ^b	<500	1,420	1,610	379	1,687	<1.00	57.0	1	2.00	11.85	0,00	18.84
7	11/07/05	1,350	<248	<495	147	123	37.2	177	<4.00	ı	ı	1.20	11.84	0.00	18.85
05	02/22/06	28,700	<258	<515	2,570	3,980	906	4,200	<50.09"	166	1.21	1.20	11.54	0.00	19.15
90	90/80/90	11,700	<238	<476	929	1,150	314	1,644	۲۰ 00:1	107	1.04	1.04	11.81	00'0	18.88
80	90/06/80	9,010	<245	<490	2,070	347	736	2,950	۲- 8-1-	<250	2.09	0.85	12.54	0.00	18.15
12	12/13/06	17,000	268	<485	1,720	241	292	2,920	<5.00	178	۲۲:00 د۲:00	0.92	11.37	0.00	19.32
ee	20/80/60	3,790	<245	<490	423	367	100	548	<20.0	<100	13.0	0.70	11.84	0.00	18.85
_	06/15/07	2,220	<243	<485	328	175	54.0	333	<1.00	12.3	<1.00	0.41	11.72	0.00	18.97
	06/16/05	10,100	1,700	<1,200	519	۲ <u>۰</u>	176	725.2	٠ 10	ı	!	1.00	12.00	0.00	18.73
30.73 07	07/25/05	4,680	253	<500	307	1.24	181	201	<4.00	64.3	I	1.70	12.30	0.00	18.43
	11/08/05	919	<250	<500	10.3	<0.500	28.8	41.0	۲۳.00 م	1	:	1.40	12.05	0.00	18.68
05	02/22/06	1,630	<248	<495	8.68	<2.50	105	<15.0	<5.00 ^{q,r}	9.80	1.83	!	ı	ŀ	ļ
90	90/80/90	968	322	<500	27.9	0.510	53.2	89.44	<1.00	6.27	1.04	0.76	12.15	00.00	18.58
90	90/06/80	830	<236	<472	27.1	<0.500	61.7	82.8	<1.00	<5.00	1.82	0.26	13.01	0.00	17.72
12	12/13/06	1,280	<243	<485	76.3	1.35	20.2	24.8	√1.00	13.5	2.18	0.11	12.05	0.00	18.68
80	20/90/60	129	<245	<490	2.22	<0.500	1.12	43.00	×1.00	<5.00	×1.00	0.21	11.90	00'0	18.83
90	06/15/07	87.8	<245	<490	8.24	<0.500	0.740	<3.00	<1.00	<5.00	<1.00	0.31	12.12	00.00	18.61

Sample		ŢPḤ.	TPH-	TPH			Ethyl-								
10 20 20 20 20	Sample	Gasoline	Diesel	i ()	Benzene	Toluene	benzene	Xylenes	MTBE	Naphthalene Total Lead	Total Lead	00	MLQ fcc#	SPH /foot	GWE
		7 .64	1 61	(184)	73.67	(28) L)	(n8/c)	(N8/L)	(P9/E)	(PS/L)	(Jag/L)	7-16111	(1991)	(IGGI)	(leer)
MW-60	06/16/05	64,300	4,300	<5,000	4,100	6,820	2,260	10,610	c40	1	1	08'0	11.54	Sheen	18.77
30.31	07/25/05	48,800	2,820	791	3,670	4,730	1,570	7,720	۲۰ 0,1	299	ļ	1.80	11.87	0.00	18.44
	11/07/05	78,100	311	<472	5,260	6,550	2,950	16,200	<200	l	ı	。 M N	11.53	00.0	18.78
	11/07/05	ı	490 🖟	<962	ı	ı	ı	ļ	ı	ŀ	;	ı	;	ŀ	1
	02/24/06	96,900	973	<510	5,020	89.6	2,750	14,600	<40.0	721	5.09	ı	11.61	00.00	18.70
	90/80/50	48,800	1,150	<476	3,660	179	1,780	8,500	×1.00	473	3.21	0.38	11.72	00.00	18.59
	90/08/80	40,700	406p	<521	5,350	434	2,610	10,300	×1.00	472	2.56	0.31	12.59	0.00	17.72
	12/12/06	56,400	417	<505	4,630	58.6	2,840	11,200	<5.00	<500	2.14	1.17	11.64	00.0	18.67
	03/07/07	27,700	<245	<490	1,780	84.8	652	4,870	<40.0	350	1.09	0.56	11.44	00.0	18.87
	06/15/07	41,200	957	<476	2,870	119	1,200	0,69	<40.0	880	1.11	0.38	7.01	0.00	23.30
MW-61	11/01/05	<50.0	<236	<472	10.0	<0.500	<0.500	41.00	<2.00	1	1	。 MN	11.39	00.0	18.85
30.24	02/21/06	<50.0	<250	<500	2.80	<0.500	<0.500	<3.00	×1.00	<1.00	<1.00	ı	10.90	00.00	19.34
	90/60/50	<50.0	<240	<481	3.39	<0.500	<0.500	<3.00	×1.00	<1.00	<1.00	0.44	11.36	00'0	18.88
	08/31/06	<100	<250	<500	0.600	<0.500	<0.500	<3.00	×1.00	<5.00	<1.00	2.93	11.66	0.00	18.58
	12/13/06	<50.0	<238	<476	1.31	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.11	10.68	00.00	19.56
	03/06/07					Decomn	nissioned					ŀ		I	1
MW-62	11/01/05	<50.0	<243	<485	0.470	<0.500	<0.500	<1.00	<2.00		;	。 MN	10.79	00.0	18.95
29.74	02/21/06	<50.0	<275	<549	<2.50	<2.50	<2.50	<15.0	<5.00	<5.00	<1.00	ı	10.52	00.0	19.22
	90/60/50	<50.0	<240	<481	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	<1.00	0.41	10.71	00.00	19.03
	08/31/06	<100	<248	<495	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	1.13	0.49	11.76	0.00	17.98
	12/13/06	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.28	9.89	0.00	19.85
	20/90/60					Decomi	Decommissioned					ı	1	1	11
MW-63	11/01/05	<50.0	<250	<500	1.00	<0.500	<0.500	<1.00	<2.00	1	ı	。MN	10.44	00'0	18.99
29.43	02/21/06	<50.0	<278	<556	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	5.98	1	10.26	0.00	19.17
	90/60/90	<50.0	<245	<490	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	1.43	0.94	10.41	0.00	19.02
	08/31/06	<100	<248	<495	<0.500	<0.500	<0.500	<3.00	×1.00	<5.00	2.52	0.58	11.90	00.0	17.53
	12/13/06	<50.0	<243	<485	0.590	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.10	9.99	0.00	19.44
	03/06/07					Decomi	Decommissioned					1	1	ì	ŀ
MW-64	11/01/05	<50.0	<250	<500	41.9	<0.500	<0.500	0.1∨	<2.00	ł	1	。 WN	9.82	00.0	18.91
28.73	02/21/06	84.9	<272	<543	32.4	<0,500	<0.500	<3.00	<1.00 <1.00	<1.00	×1.00	1	9.48	0.00	19.25
	90/60/50	133,	<248	<495	55.8	<0.500	<0.500	3.00	۲۳.00 د۲.00	<1.00	<1.00	0.61	9.60	0.00	19.13
	08/31/06	×100	<243	<485	90.9	<0.500	<0.500	<3.00	۲- 8.0	<5.00	×1.00	0.32	11.10	0.00	17,63
	12/13/06	<50.0	<240	<481	14.7	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.22	9.22	00'0	19.51
	03/06/07					Decomi	Decommissioned					:	ı	ŀ	ŀ
MW-65	11/04/05	857	<236	<472	0.740	0.740	12.9	7.80	<1.00	ı	ş	0.15	9.23	0.00	18.44
27.67	02/23/06	1,000	638	<495	<0.500	1.83	15.3	8.34	×1.00	4.32	<1.00	1	9,13	00'0	18.54
	90/60/90	1,220	<236	<472	<0.500	0.680	7.72	3.04	<1.00	2.52	<1.00	0.51	8.67	0.00	19.00
	90/08/80	261	<248	<495	<0.500	<0.500	11.2	3.42	<1.00	<5.00	<1.00	99.0	9.90	00.00	17.77
	03/06/07					Decomi	Decommissioned					ì	;	ŀ	!
MW-66	11/07/05	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	41.00	I	1	» MN	10.50	0.00	18.15
28.65	02/24/06	<50.0	<253	<505	<0.500	<0.500	<0.500	<3.00	۲۲.00 د۲.00	<1.00'	<1,00	1	10.28	0.00	18.37
	90/60/50	<50.0	<272	<543	<0.500	<0.500	<0.500	<3.00	۲۲:00 د۲:00	1.85	<1.00	0.49	10.20	0.00	18.45
	90/06/80	<80.0	<248	<495	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.38	11.51	0.00	17.14
	03/06/07					Decomi	Decommissioned					ı	ŀ	:	:

Sample		TPH-	TPH.	뀨			Ethyl-								
70C	Sample Date	Gasoline (µg/L)	Diesel (µg/L)	(T/6rl)	Benzene (µg/L)	Toluene (µg/L)	benzene (µg/L)	Xylenes (µg/L)	MTBE (µg/L)	Naphthalene Total Lead (µg/L) (µg/L)	Total Lead (µg/L)	(mg/L)	(feet)	SPH (feet)	GWE (feet)
MW-67	11/04/05	78.1	<238	<476	<0.500	<0.500	0.77	1.44	.8 8.5	-	-	0.18	9.33	0.00	18.31
27.64	02/23/06	<50.0	<255	<510	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	<1.00	1	9.15	0.00	18.49
	90/60/90	<50.0	<236	<472	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	<1.00	69.0	8.81	0.00	18.83
	90/36/80	<80.0	<275	<549	<0.500	<0.500	<0.500	<3.00	V-100	<5.00	1.75	0.25	9.55	00'0	18.09
	03/06/07					Decomi	Decommissioned					,	ļ	ŀ	-
MW-68	11/04/05	437	<236	<472	8.11	0.790	<0.5	<3.00	1.21	1	1	MN	11.30	0.00	17.93
29.23	02/22/06	248	<255	<510	19.0	1.70	<0.500	5.08	<1.00	<1.00	×1.00	ı	11.15	0.00	18.08
	90/60/90	184	<238	<476	2.46	0.570	<0.500	<3.00	<1.00	<1.00	۲- 7.00	2.09	11.33	0.00	17.90
	90/08/80	168	<258	<515	1.29	2.08	<0.500	<3.00	1.02	<5.00	8.45	0.32	11.72	00.0	17.51
	12/13/06	401	<245	<490	115	<1.00	<1.00	<6.00	<2.00	<10.0	<1.00	0.12	11.26	0.00	17.97
	20/90/80					Decom	Decommissioned					1	1	-	1
69-WM	11/07/05	<50.0	<238	<476	<0.500	<0.500	<0.500	<3.00	<1.00	1	. !	. WN	9.10	0.00	18.57
27.67	02/23/06	<50.0	<236	<472	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	3.54	I	9.02	0.00	18.65
	90/60/90	<50.0	<236	<472	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	1.01	09.0	8.34	0.00	19.33
	90/06/80	<80.0	<255	<510	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.23	9.54	0.00	18.13
	03/06/07					Decom	Decommissioned					ı	ı	1	!
MW-70	11/02/05	24,800	<236	<472	29.8	3.60	269	1,540	<1.00	1	ī	0.10	12.60	0.00	18.54
31.14	02/23/06	8,290	<287	<575	33.3	2.00	428	537	<4.00	91.8	3.47	ì	12.04	0.00	19.10
	90/60/90	15,500	<266	<532	108	<10.0	905	1,315.6	<20.0	233	2.18	0.90	12.37	00.00	18.77
	06/12/06					Decomi	missioned					1	ŧ	ī	1
MW-71	11/03/05	18,100	5,880 9	<472	240	59.3	925	1,750	<20.0	-	1	0.40	11.61	00'0	18.81
30.42	02/23/06	21,800	1,7709	<485	190	28.0	848	1,710	<20.0	341	3.25	1	11.23	0.00	19.19
	05/10/06	25,100	733 ^p	<495	195	<20.0	803	1,338	<40.0	410	2.54	0.32	11.71	0.00	18.71
	08/29/06	15,400	664°	<476	207	4.61	869	834	<1.00	364	8.19	0.51	12.27	0.00	18.15
	12/12/06	11,300	609	<476	127	68.2	237	512	41.00	151	1.55	2.52	11.25	0.00	19.17
	03/07/07	22,100	292	<490	211	<20.0	836	1220	<40.0	691	2.33	0.26	11.19	0.00	19.23
	06/14/07	19,200	851 9	<490	186	2.67	647	299	<1.00	326	2.89	0.36	11.41	0.00	19.01
MW-72	11/03/05	71.3	<236	<472	0.980	<0.500	<0.500	2.32	<2.00	ŀ	!	1.20	10.33	0.00	19.99
30.32	02/23/06	1,900	4089	<500	11.0	1.22	98.2	25.3	<2.00	37.3	1.61	ı	10.84	00'0	19.48
	02/10/06	1,540	<250	<500	8.20	1.12	70.4	<6.00	<2.00	48.9	0.F V-	0.37	11.60	0.00	18.72
	08/29/06	810	<253	<505	6.28	<0.500	10.2	<3.00	<1.00	48.4	<1.00	0.42	12.08	0.00	18.24
	12/12/06	970	<250	<500	3.29	<0.500	1.95	3.00	۲۳.00 م	12.5	×1.00	0.89	11.11	0.00	19.21
	03/07/07	260	<260	<521	5.45	0.59	38.5	<3.00	<1.00	6,68	<1.00	09:0	11.02	0.00	19.30
	06/14/07	1,140	<255	<510	5.29	<0.500	2.72	<3.00	<1.00	10.0	1.97	0.81	11.43	0.00	18.89
MW-73	11/03/05	1,070 ^m	249 ⁹	<472	23.1	1.74	3.58	4.74	<2.00	Ī	1	5.70	11.50	0.00	18.61
30.11	02/23/06	2,420	7319	<500	13.2	2.13	4.52	<3.00	<1.00	<1.00	2.27	ŀ	11.32	0.00	18.79
	04/10/06	2,460	<236	<472	9.56	2.19	4.51	2.44	<1.00	1.06	1.97	92.0	11.67	0.00	18.44
	08/29/06	1,130	<236	<472	12.60	2.40	1.89	<3.00	<1.00	<5.00	1.76	0.26	12.27	0.00	17.84
	12/12/06	2,360	<243	<485	14.50	2.01	4.32	<3.00	<1.00	<5.00	3.01	0.36	11.35	0.00	18.76
	03/02/02	2,260	<236	<472	17.5	1.47	2.72	3.11	۲۳.00 د۲.00	<5.00	1.16	0.19	11.31	0.00	18.80
	06/14/07	2,450	<260	<521	11.6	1.56	2.63	<3.00	<1.00	<5.00	2.16	0.48	11.59	0.00	18.52

Sample		TPH-	TPH-	TPH			Ethyl-	-							
<u>.</u>	Sample	Gasoline	Diesel	ö	Benzene	Toluene	benzene	Xvlenes	MTBE	Naphthalene Total Lead	Total Lead	8	MTO	SPH	GWE
Toc	Date	(µg/L)	(µg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(ng/L)	(mg/L)	(feet)	(feet)	(feet)
MW-74	11/04/05	2,160	<245	<490	14.2	1.53	13.0	3.35	<1.00	1	-	3.10	11.79	0.00	18.56
30.35	02/23/06	3,320	<245	<490	11.0	1.37	17.3	3.50	00.1≻	27.9	5.42	ı	11.35	0.00	19.00
	02/10/06	3,320	<240	<481	13.8	2.29	17.3	4.04	41.00	27.8	1.94	0.25	11.70	0.00	18.65
	08/29/08	618	<253	<505	33.9	4.55	8.18	<3.00	×1.00	21.6	2.71	0.20	13.12	00.0	17.23
	03/06/07				Not Acce.	Not Accessible - Stacy Witback construction	y Witback c	construction				1	ı	ı	1
	06/14/07		•			Not Ac	Not Accessible					1	ł	1	1
MW-75	11/08/05	<50.0	<238	<476	<0.500	<0.500	<0.500	<3.00	<1.00	-	1	. WN	10.12	0.00	17.99
28.11	02/24/06	<50.0	<253	<505	<0.500	<0.500	<0.500	<3.00	<1.00	×1.00	<1.00	1	10.30	0.00	17,81
	05/11/06	<50.0	<240	<481	1.52	<0.500	<0.500	<3.00	V-1.00	<1.00	<1.00	0.31	9.53	0.00	18.58
	06/12/06		•			Decomi	Decommissioned					-	ţ	:	١
MW-76	11/08/05	84.6	<245	<490	0.700	<0.500	<0.500	<3.00	<1.00	1	ŀ	。 WN	9.42	0.00	17.66
27.08	02/24/06	<50.0	394	752	<0.500	<0.500	<0.500	<3.00	۲۳.00 م	<1.00	4.30	}	9.57	00'0	17.51
	05/11/06	<50.0	<245	<490	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	<1.00	0.28	8.50	0.00	18.58
	90/06/80	<80.0	<236	<472	<0.500	<0.500	<0.500	<3.00	41.00	<5.00	1.78	8.04	10.02	0.00	17.06
	03/06/07	+	Ţ	1	;	-	-	1	1	1	;	ł	9.43	0.00	17.65
	06/13/07					Not Ac	Not Accessible					١	į	ŀ	1
MW-77	11/04/05	<50.0	<236	<472	<0.500	<0.500	0.540	<3.00	<1.00	1	1	0.27	8.65	0.00	17.88
26.53	02/23/06	<50.0	<238	<476	<0.500	<0.500	<0.500	<3.00	0.10	<1.00	<1.00	1	8.86	0.00	17.67
	05/11/06	<50.0	<238	<476	<0.500	<0.500	<0.500	<3.00	<1.00	1.08	<1.00	0.41	8.11	0.00	18.42
	06/12/06					Decom	Decommissioned					1	ł	ł	ł
MW-78	11/04/05	<50.0	<236	<472	0.590	0.760	0.730	<3.00	<1.00	T.	1	1.50	8.30	0.00	18.15
26.45	02/23/06	<50.0	1,800°	<490	<0.500	0.660	<0.500	<3.00	<1.00	<1.00	<1.00	1	8.48	0.00	17.97
	05/11/06	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	<1,00	0.22	7.91	0.00	18.54
	06/12/06					Decomr	Decommissioned					,	ı	1	1
MW-79	11/04/05	<50.0	<236	<472	0.620	<0.500	0.67	1.41	<1.00	-	1	2.06	8.61	0.00	18.19
26.80	02/23/06	<50.0	<245	<490	<0.500	<0.500	<0.500	<3.00	×1.00	<1.00	<1.00	ŧ	8.59	0.00	18.21
	05/11/06	<50.0	<248	<495	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	<1.00	0.24	8.18	0.00	18.62
	06/12/06	•				Decom	Decommissioned					-	!	ı	:
MW-80	11/03/05	69.4	<243	<485	3.96	<0.500	10	7.88	<2.00	1	1	0.50	8.21	00.0	18.13
26.34	02/23/06	<50.0	<245	<490	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	×1.00	ļ	8.31	0.00	18.03
	90/60/90	<50.0	<236	<472	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	<1.00	0.95	7.42	0.00	18.92
	90/08/80	<80.0	<258	<515	7	7	7	7	7	ח	<1.00	1.68	7.62	00.00	18.72
	12/13/06	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	41.00	<5.00	<1.00	1.18	8.57	0.00	17.77
	20/20/60	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.15	8.18	0.00	18.16
	06/14/07	<50.0	<236	<472	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	6.15	2.24	5.43	0.00	20,91
MW-81	11/03/05	<50.0	<236	<472	<0.200	<0.500	0.840	2.05	<2.00	ŀ	!	2.20	8.37	0.00	17.84
26.21	02/23/06	<50.0	<248	<495	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	1.30	ı	8.41	0.00	17.80
	90/60/90	<50.0	<248	<495	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	<1.00	1.00	7.28	0.00	18.93
	90/06/80	08>	<248	<495	7	7	7	7	7	7	<1.00	4.36	8.46	0.00	17.75
	12/13/06	<50.0	<258	<515	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	41.00	96.0	8.90	0.00	17.31
	20/20/60	<50.0	<258	<515	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	41.00	0.20	8.30	0.00	17.91
	06/14/07	<50.0	<240	<481	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.96	7.46	0.00	18.75

Sample		TPH	TPH.	HOL			P+prof					-			
	Sample	Gasoline	Diesel	ō	Benzene	Toluene	benzene	Xvlenes	MTBE	Naphthalene Total Lead	Total Lead	8	MTQ	SPH	GWE
_ 	Date	(hg/L)	(µg/L)	(µg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(µg/L)	(ha/L)	(mg/L)	(feet)	(feet)	(feet)
MW-82	11/03/05	16,300	1,850 9	<472	308	427	969	3,370	<40.0	1	1	。 MN	4.92	0.00	18.78
23.70	02/21/06	15,400	<258 ^q	<515	483	256	477	2,110	<1.00	78.7	3.90	ì	5.12	00'0	18.58
	90/11/60	6,890	554	<476	221	120	177	1,043	<10.0	31.0	<1.00	0.68	4.88	00.00	18.82
	90/62/90				Not Acces	sible - Bloc	Not Accessible - Blocked by field office trailer	office trailer	,			ı	I	ı	ı
	12/11/06	5,590	<240	<481	244	20.7	184	815	<1.00	27.4	1.28	0.08	5.53	00.00	18.17
	20/80/60	8,910	<250	<500	425	193	328	1,450	<20.0	<100	1.39	0.16	4.99	0.00	18.71
	06/13/07	12,100	<243	<485	630	179	375	1,800	<1.00	154	1.27	0.94	4.93	0.00	18.77
MW-83	11/03/05	2,270	<236	<472 ^j	6.79	202	50.6	230	<4.00		1	8.80	4.71	00.0	18.92
23.63	02/24/06	4,370	<250	<500	198	367	93.9	393	<4.00	23.8	3.59	ı	4.84	00.0	18.79
	05/11/06	2,820	550°	<200	163	172	9.99	259.9	<4.00	14.3	4.96	0.63	5.02	00'0	18.61
	08/31/06	386	<236	<472	8.90	4.97	6.30	24.7	<1.00	<5.00	1.11	0.26	5.88	00.0	17.75
	03/06/07				Not Acc	ກessable- ດ	Not Accessable- covered by sheet piles	neet piles				ı	ı	ı	ì
	06/13/07					Not Ac	Not Accessible					ı	1	ì	ŀ
MW-84	11/02/05	95.5	<236	<472	10.2	<0.500	<0.500	<3.00	<1.00	ļ	1	0.40	9.85	00.0	18.66
28.51	02/22/06	189	<266	<532	53.4	0.550	<0.500	<3.00	<1.00	<1.00	<1.00	ı	9.63	00'0	18.88
	90/60/50	143	<250	<500	29.7	0.810	<0.500	<3.00	v.1.00	<1.00	×1.00	0,48	9.58	00:0	18.93
	06/12/06					Decomi	Decommissioned					1	ŀ	ŀ	ţ
MW-85	11/02/05	108	<236	<472	3.25	0.740	2.19	5.68	<1.00	:	1	1.20	9.80	00.0	18.49
28.29	02/22/06	8.69	<248	<495	5.47	0.770	0.850	<3.00	<1.00	<1.00	<1.00	1	9.29	00.0	19.00
	90/60/50	69.5	<245	<490	4.56	0.720	0.800	<3.00	<1.00	×1.00	<1.00	0.51	9.20	00.00	19.09
	08/29/06	<80.0	<248	<495	□	31	¬;	³	³¦	³ ¦	<1.00	0.36	10.57	00.0	17.72
	09/20/06				Decommis	sioned durii	Decommissioned during construction activities	ion activities	S			1	1	1	1
MW-86	11/02/05	3,010	<248	<495	208	5.09	5.26	31.5	<1.00	}	1	1.20	9.28	00'0	18.27
27.55	02/21/06	7,880	<269 ^q	<538	2,640	5.65	10.2	31.9	<5.00	<5.00	41.00	ı	9.29	00:00	18.26
	90/60/50	7,980	<240	<481	2,740	<25.0	64.0	104	<50.0	287	<1.00	0.84	8.85	0.00	18.70
	90/52/80	2,690	<253	<505	1,640	6.58	9.78	29.2	2.62	<5.00	1.32	0.43	10.12	00'0	17.43
	12/11/06	4,700	<250	<500	1,410	5.79	99.7	28.2	3.21	<5.00	1.43	0.29	9.61	0.00	17,94
	03/02/02	7,370	<243	<485	2,530	<10.0	10.8	<60.0	<20.0	<100	<1.00	0.20	9.23	00'0	18.32
	06/13/07	7,300	<243	<485	2,430	7.40	11.9	26.9	<5.00	<25	<1.00	0.59	9.01	00.00	18.54
MW-87	11/02/05	<50.0	<245	<490	2.35	1.28	1.33	6.61	<1.00	1	ŀ	08'0	8.40	0.00	18.34
26.74	02/21/06	<50.0	<263	<526	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	۲- 0.1	ı	8,55	00.0	18.19
	90/60/90	<50.0	<245	<490	<0.500	<0.500	<0.500	<3.00	۸.0 م	~1.00 ~1.00	۲- د1.00	0.53	7.98	00'0	18.76
	08/29/06	<80.0	<248	<495	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	۲۲°00	1.71	9.33	0.00	17.41
	12/11/06	<50.0	<245	<490	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	۲۲.00 د	0.16	8.96	00'0	17.78
	03/02/02	<50.0	<236	<472	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.26	8.44	0.00	18,30
	06/13/07	162	<243	<485	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	×1.00	1.59	8.17	0.00	18.57
MW-88	11/07/05	14,700	<240	<481	546	<50.0	2,230	1,400	<100	1	1	o N N	8.75	0.00	18.53
27.28	02/21/06					LPH	LPH Present					1	8.75	Sheen	18.53
	05/10/06	20,500	418 ^p	<476	768	<50.0	2,590	1,121	<100	734	1.97	0.21	8:38	00.0	18.90
	08/29/06					LPH	LPH Present					ı	9.77	0.10	17.47
	12/13/06	16,600	316	<485	208	<10.0	1,170	1,620	<20.0	255	2.2	0.24	9.30	00'0	17.98
	03/06/07					Decom	Decommissioned					ı	;	-	;

Sample		TDH	101	JOF			145.4								
<u>.</u>	Sample	Gasoline	Diesel	Ėō	Benzene	Toluene	benzene	Xylenes	MTBE	Naphthalene Total Lead	Total Lead	00	WL	SPH	GWE
Toc	Date	(hg/L)	(µg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(µg/L)	(hg/L)	(mg/L)	(feet)	(feet)	(feet)
WW-89	11/03/05	1,110	<236	<472	10.3	8.20	82.5	170	<2.00	1	1	° MN	3.92	0.00	19.10
23.02	02/24/06	49,900	1,1809	<515	188	916	2,050	7,950	<20.0	860	23.4	ı	4.36	00.0	18.66
	05/11/06	24,300	3,040 ^p	<495	96.0	352	1,200	3,452	<40.0	365	37.4	0.49	4.37	00.0	18.65
	08/31/06	463	<245	<490	6.85	15.4	40.9	82.2	<1.00	59.8	12.2	0.48	5.41	00.00	17.61
	12/11/06	1,100	<248	<495	3.21	14.6	38.1	87.9	<1.00	50.8	6.6	0.39	4.83	00'0	18.19
	03/08/07	2,640	<250	<500	13.4	14.8	506	396	<10.0	122	290	0.35	4.10	0.00	18.92
	06/13/07	2,450	<236	<472	21.6	72.2	148	816	<1.00	596	12.5	0.39	4.41	00'0	18.61
NW-90	11/02/05	3,840 m	4449	<490	70.8	2.94	244	792	<4.00	ŀ	Į	o MN	4.22	00'0	18.68
22.90	02/21/06	19,800	504 ⁹	<538	218	10.0	805	2,400	<20.0	187	5.59		4.33	00.00	18.57
	05/11/06	10,200	1,170 ^p	<495	125	6.90	348	1,222	<10.0	91.3	2.87	0.38	4.07	0.00	18.83
	08/29/06				Not Acces	sible - Block	Not Accessible - Blocked by heavy equipment	v equipment				ı	ı	1	1
	03/06/07				Not Acces:	sible - Block	ed by heav	Not Accessible - Blocked by heavy equipment				ŀ	ŀ	;	1
	06/13/07	9,180	<248	<495	118	1.90	194	1,290	<1.00	166	2.14	0.75	4.14	00.0	18.76
MW-91	11/03/05	9,390	2,2309	<472	56.2	6.45	319	414	<10.0	ŀ	ì	, MN	4.13	0.00	19.00
23.13	02/24/06	6,080	4879	<515	21.0	2.67	177	430	<1.00	188	2.39	1	4.51	00:0	18.62
	02/11/06	5,900	931 ^p	<485	14.9	14.5	106	162.7	<4.00	171	1.49	0.53	4.33	00.0	18.80
	08/53/06				Not Acces	sible - Block	ed by heavy	Not Accessible - Blocked by heavy equipment				1	ļ	ŀ	!
	03/06/07				Not Acces	sible - Block	ed by heavy	Not Accessible - Blocked by heavy equipment				ì	ı	:	1
	06/13/07	1,180	<236	<472	<0.500	0.770	0.580	<3.00	<1.00	91.6	1.80	0.43	4.36	00.0	18.77
MW-92	11/02/05	12,300	3389	<472	925	83.4	756	940	<20.0	ŀ	-	o MN	10.28	00'0	18.70
28.98	02/22/06	4,360	<248	<495	261	8.60	111	127	<5.00	36.0	3.58	ı	10.13	00'0	18.85
	05/10/06	5,580	<240	<481	458	11.2	122	97.6	<20.0	38.4	2.69	0.41	10.22	00.0	18.76
	08/31/06	3,770	<243	<485	770	25.0	197	103	<1.00	55.1	3.36	1.19	11.34	00'0	17.64
	12/13/06	1,190	<238	<476	23.2	0.730	23.6	14.7	<1.00	5.05	<1.00	0.12	10.12	00.0	18.86
	03/08/07	525	<250	<500	2.68	<0.500	8.90	4.70	<1.00	<5.00	<1.00	0.24	98'6	00'0	19.12
	06/13/07	662	<238	<476	30.2	<0.500	8.98	<3.00	<1.00	<5.00	<1.00	0.82	10.20	0.00	18.78
MW-93	11/02/05	79.3	<248	<495	0.370	0.570	0.720	2.35	<2.00	ı	ı	0.70	7.06	00.00	18.68
25,74	02/21/06	1,200	3,580 ^p	<526	2.38	0.780	3.25	3.18	<1.00	1.71	1.16	ŀ	7.25	0.00	18,49
	05/10/06	1,200	1,540	<472	<0.500	0.790	2.04	1.70	×1.00	2.04	<1.00	0.34	9.30	0.00	18.84
	08/31/06	204	<243	<485	<0.500	0.610	1.55	<3.00	<1.00	<5.00	2.98	1.80	8.15	00.0	17.59
	12/13/06	1,120	<253	<505	<0.500	0.670	2.54	3,18	×1.00	<5.00	1.25	0.09	7.54	0.00	18.20
	03/07/02	1,010	3,490	<500	11.60	0.760	2.91	3.59	×1.00	<5.00	<1.00	0.20	66.9	00'0	18.75
	06/13/07	1,330	822 % P	1,250	<0.500	0.680	1.77	3.01	×1.00	5.40	1.66	0.50	6.94	0.00	18.80
MW-94	11/02/05	393	2779	<472	1.74	0.750	30.2	4.62	<2.00	ı	1	。 ΣΝ	3.21	00.00	18.69
21.90	02/24/06	172	<248	<495	<0.500	<0.500	<0.500	<3.00	<1.00	×1.00	4.81	ı	3.38	00'0	18.52
	05/11/06	236	360	<500	<0.500	<0.500	<0.500	<3.00	<1.00	1.60	10.4	0.33	3.10	00.00	18.80
	08/31/06	<100	<250	<500	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	×1.00	1.50	4.30	00'0	17.60
	12/13/06	159	<243	<485	<0.500	<0.500	<0.500	<3.00	4.00	<5.00	4.24	1.15	3.76	00'0	18.14
	03/07/07	1,720	<248	<495	1.88	<0.500	33,6	<3.00	<1.00	93.8	۲۰.00 د۲.00	0.10	3.16	0.00	18.74
	06/13/07	2,340	<250	<500	<0.500	<0.500	0.710	<3.00	×1.00	96.7	2.13	0.80	3.21	0.00	18.69

Sample		Hal	TPH-	TPH.			1,44								
G.	Sample	Gasoline	Diesel	ō	Benzene	Toluene	penzene	Xvlenes	MTBE	Naphthalene Totai Lead	Total Lead	00	MTG	SPH	GWE
5001	Date	(hg/L)	(hg/L)	(hg/L)	(µg/L)	(hg/L)	(µg/L)	(µg/L)	(hg/L)	(hg/L)	(hg/L)	(mg/L)	(teet)	(feet)	(feet)
MW-95	11/02/05	545	<236	<472	1.06	0.910	1.18	9.87	×1.00	ı	1	0.50	13.50	00.0	18.49
31.99	02/23/06	278	2409	<481	9.67	2.57	7.88	19.20	۲۲.00 د۲.00	3,31	×1.00	ı	13.00	00.0	18.99
	90/60/90	326	<255	<510	2.91	0.730	1.40	15.78	×1.00	5.56	×1.00	0.55	13,35	00.00	18.64
	90/06/80	94.3	<248	<495	³l	³ 1	³;	³	-,	³¦	×1.00	09.0	13.82	00.00	18.17
	12/12/06	1,330	<243	<485	52.9	14.5	32.9	119	۲۲.00 د	10.6	۲- 00.1	0.78	12.98	00.0	19.01
	20/20/60	60.2	<250	<500	3.87	<0.500	1.31	10.5	۲۲°00	<5.00	<1.00	0.39	12.87	00.00	19.12
	06/14/07	215	<236	<472	4.12	<0.500	1.60	41.7	۲٠00 م	<5.00	<1.00	0.28	13.10	0.00	18.89
MW-96	11/02/05	3,230	5019	<472	172	75.1	65.0	714	<4.00	1	ı	06.0	6.28	00.0	18.70
24.98	02/21/06					LPH	LPH Present					ı	6.43	0.02	18.57
	05/11/06	6,190	5,570	<971	392	136	152	1,057	<10.0	8.06	1.20	0.57	6.20	0.01	18,78
	08/53/06					LPH.	LPH Present					ı	7.48	0.23	17.04
	12/11/06					IH.	LPH Present					1	9.76	0.30	18.22
	20/90/60				Not Acc	sessible - co	Not Accessible - construction materials	naterials				i	ŀ	ŀ	ŀ
	06/13/07					Not Ac	Not Accessible					ı	:	ŀ	ı
MW-97	11/02/05	17,600	4419	<490	121	38.2	1,010	1,860	<1.00	1	ı	» MN	11.70	00.0	18.65
30.35	02/22/06	39,900	8119	<500	350	32.8	1,840	3,730	<40.0	735	21.6	ı	11.17	00.0	19.18
	90/60/50	30,300	989	<498	564	65.5	1,740	2,660	<50.0	768	12.0	0.68	11.60	00.00	18.75
	90/06/80	6,580	456 ^g	<485	82.4	6.40	749	401	<1.00	516	7.48	0.32	12.17	00'0	18.18
	09/22/06	•			Decommis	sioned durir	Decommissioned during construction activities	on activities					I	;	1
MW-98	11/02/05	25,800	<250	<500	1,880	4,080	680	3,760	<1.00	ł.	ı	0.20	11.85	00'0	18.62
30.47	02/22/06	173,000	3608	<556	14,000	30,500	4,090	22,200	<400	888	49.9	Ī	11.24	00.0	19.23
	90/60/90	186,000	651P	<472	12,700	29,000	4,800	22,560	<1,000	11,800	50.0	0.52	11.44	00'0	19.03
	06/12/06					Decomr	Decommissioned					ı	ı	ı	ı
MW-99	11/02/05	910	<243	<485	1.84	0.850	11.1	73.8	<1.00	ı	1	08.0	10.57	00'0	18.77
29.34	02/22/06	4,910	<240	<481	28.4	<2.50	203	811	<5.00	80.8	14.0	ŀ	10.23	00'0	19.11
	90/60/50	3,370	<248	<495	14.0	<5.00	82.5	521.3	<10.0	59.7	6.57	0.51	10.43	00.00	18.91
	06/12/06					Decomi	Decommissioned					ı	ı	1	1
MW-101	07/25/05	096'9	432 ^b	<500	39.1	61.4	88.0	429	<5.00	19.7	1	0.10	9.45	00.00	18.65
28.10	11/04/05	2,960	<236	<472	53.8	8.44	72.1	464	<5.00	1	ı	。 N	9.65	0.00	18.45
	02/23/06	4,890	<250	<500	99.4	16.9	150	768	<4.00	27.5	41.00	ļ	9.57	0.00	18,53
	90/60/90	1,120	<238	<476	14.2	1.62	27.1	136.7	<2.00	6.06	×1.00	0.51	9.13	0.00	18.97
	06/13/06		-			Decom	Decommissioned					1	;	ī	
MW-102	07/25/05					Well could r	Well could not be located	ğ				ı	:	I	1
23.86	11/03/05	10,200	1,7309	<472	471	12.0	492	1,490	<20.0	ı	١	0.50	5.10	0.00	18.76
	02/24/06	11,400	2948	<532	471	3.96	473	1,160	<4.00	90.4	4.54	:	5.29	00'0	18.57
	05/11/06	2,810	370 ^p	<490	97.6	<2.00	35.8	177.6	<4.00	22.9	1.71	0.41	5.01	00.00	18.85
	08/31/06	2,430	<236	<472	212	<2.50	101	208	<5.00	29.5	2.71	0.24	6.29	00'0	17.57
	12/11/06	13,600	243	<485	809	30.6	609	1,190	×1.00	118	90.9	0.16	5.70	00'0	18.16
	03/08/02	10,000	257	<500	366	25.8	448	1,240	<20.0	183	3.58	0.21	5.16	0.00	18.70
	06/13/07	8,080	275 9	<476	320	2.26	182	894	×1.00	139	4.54	0.48	5.12	0.00	18.74

Sample		TPH	TPH-	TPH-			Ethyl-								
.D.	Sample	Gasoline	Diesel	≅	Benzene	Toluene	penzene	Xylenes	MTBE	Naphthalene Total Lead	Total Lead	8	MTO	SPH	GWE
100	Date	(hg/L)	(J/g/L)	(hg/L)	(hg/L)	(1/8/l)	(hg/L)	(hg/L)	(T/6/I)	(µg/L)	(hg/L)	(mg/L)	(feet)	(teet)	(feet)
MW-103	02/26/05	<50.0	<250	<500	<0.200	<0.200	<0.200	<0.500	<1.00	<0.500	1	1.30	8.61	0,00	
27.22	11/07/05	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	<1.00	1	;	» NM	8.82	00.00	18.40
	02/24/06	<50.0	<250	<500	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	41.00	ı	8.66	00.00	18.56
	90/60/50	<50.0	<248	<495	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	41.00	0.61	7.84	00.00	19.38
	90/06/80	<80.0	<248	<495	7	7	7	7	7	7	<1.00	0.25	6.01	00.0	21.21
	12/13/06	<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.25	9.00	00'0	18.22
	03/06/07					Decomr	Decommissioned					1	ı	}	ı
MW-105	07/26/05	62,000	821 ^b	<500	1,970	7,460	2,640	12,750	<1.00	723	1	1.40	10.88	00.0	ı
29.61	11/02/05	66,100	495 ⁹	<538	1,370	6,430	2,360	12,300	<1.00	i	;	1.50	10.94	00.0	18.67
	02/22/06	20,000	3328	<495	1,200	2,810	1,990	8,540	<50.0 ^{q,r}	498	5.13	Ĭ	10.59	00:00	19.02
	90/60/90	62,300	867 ^p	<472	1,200	5,070	2,210	10,550	<100	440	9.54	1.50	10.69	00'0	18.92
	06/12/06					Decomi	Decommissioned						1	!	;
MW-200	11/07/05	533	<250	<500	4.39	1.21	8.65	22.1	5.03	-	1	08.0	11.22	00'0	18.47
29.69	02/22/06	2,560	2709	<490	38.4	2.38	57.3	6.07	1.84	60.7	1.60	1	11.15	00.00	18.54
	02/10/06	1,440	<245	<490	25.1	0.620	35.5	12.82	1.57	45.2	×1.00	0.28	11.29	00'0	18.40
	08/29/06	471	<236	<472	7.10	2.00	31.3	28.2	1.1	53.0	<1.00	0.38	11.95	00'0	17.74
	12/12/06	1,630	<245	<490	7.12	1.30	20.0	27.9	1.90	25.0	1.05	60.0	11.29	00.00	18.40
	20/90/60	<50.0	<260	<521	<5.00	<5.00	<5.00	<3.00	1.12	<5.00	i.73	3.33	11.05	00.0	18.64
	06/14/07	262	<243	<485	3.63	<0.500	1.61	<3.00	<1.00	<5.00	1.87	0.41	11.08	0.00	18.61
MW-201	11/07/05	56.8	974'	4.180	<0.500	<0.500	0.990	9.49	۰۲.00 م		ı	。 NN	9.81	00.00	19.51
29.32	02/22/06	199	464 ⁿ	1,460	27.6	14.2	<0.500	<3.00	×1.00	<1.00	9.78	1	10.76	0.00	18.56
	02/10/06	221	<250	<500	27.1	14.6	<0.500	<3.00	<1.00	<1.00	3.01	0.32	11.12	00.00	18.20
	08/53/06	114	<248	<495	19.1	10.6	<0.500	<3.00	×1.00	<5.00	2.16	0.31	11.64	0.00	17.68
	12/12/06	223	<245	<490	16.3	1.79	<0.500	<3.00	<1.00	<5.00	3.88	0.10	11.65	00.00	17.67
	20/90/60	174	<260	<521	25.6	1.46	<5.00	<3.00	×1.00	<5.00	2.54	99'0	11.65	00.00	17.67
	06/14/07	206	<245	<490	20.4	0.870	<0.500	<3.00	<1.00	<5.00	<1.00	0.54	10.89	0.00	18.43
MW-202	11/04/05	247	<240	<481	0.630	0.880	<0.500	1.80	V-1.00	ī	1	1.70	12.77	00.0	17.78
30.55	02/22/06	<50.0	<253	<505	<0.500	<0.500	<0.500	<3.00	×1.00 ^{q,r}	<1.00	1.71	1	12.35	0.00	18.20
	02/10/06	<50.0	<250	×200	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	۲- 1.00	0.54	12.43	00'0	18.12
	08/29/06	<80.0	<253	<505	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	9.54	0.37	12.76	0.00	17.79
	12/12/06	<50.0	<243	<485	<0.500	<0.500	<0.500	93.00	×1.00	<5.00	۲۰.00 م	1.23	12.24	00'0	18.31
	20/80/60	<50.0	<253	<505	<0.500	<0.500	<0.500	3.00	۲-00 7-00	<5.00	1.04	0.40	12.23	00'0	18.32
	06/14/07	<50.0	<238	<476	<0.500	<0.500	<0.500	3.00	×1.00	<5.00	<1.00	0.72	12.44	0,00	18.11
MW-203	11/08/05	<50.0	<238	<476	1.14	<0.500	0.780	<3.00	×1.00	í	!	1.80	8.24	0.00	18.39
26.63	02/24/06	<50.0	<260	<521	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	×1.00	;	8.05	00'0	18.58
	90/60/50	<50.0	<248	<495	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	۲- م.00	0.72	6.9	00.00	19.64
	90/06/80	<80.0	<236	<472	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	41.00	2.15	8.30	00.00	18.33
	12/13/06	<50.0	<258	<515	<0.500	<0.500	<0.500	<3.00	×1.00	<5.00	<1.00	1.42	8.46	00.00	18.17
	20/20/60	<50.0	<245	<490	<0.500	<0.500	<0.500	<3.00	41.00	<5.00	<1.00	0.18	29'2	00'0	18.96
	06/13/07					Not Ac	Not Accessible					ŀ	1	:	!

LU. Sample Gasoline Diesel OII Diesel OII Genzene Cute Protection Cute </th <th>Sample</th> <th></th> <th>TPH-</th> <th>TPH.</th> <th>TPH-</th> <th></th> <th></th> <th>Ethyl-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Sample		TPH-	TPH.	TPH-			Ethyl-								
11/03/05 725 <236	TOC a	Sample Date	Gasoline (µg/L)	Diesel (µg/L)	Oil (µg/L)	Benzene (µg/L)	Toluene (µg/L)	benzene (µg/L)	Xylenes (µg/L)	MTBE (µg/L)	Naphthalene Total Lead (µg/L) (µg/L)	Total Lead (µg/L)	DO (mg/L)	OTW (feet)	SPH (feet)	GWE (feet)
11/02/05 3,120 <236 <472 <472 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <6575 <657	2000	10.00,11	24													
05/21/06 3,120 <287°	MW-204	50/80/LL	(22)	<236	<4/2	34.5	0.550	23.3	13.6	<2.00	1	ļ	Σ Z	10.05	0,00	18.08
05/09/06 2,990 <236°	28.13	02/21/06	3,120	<287	<575	388	<2.50	221	87.0	<5.00	42.2	1.63	ı	10.09	0.00	18.04
06/13/06 735 <236 <472 11/02/05 3,950 <245 <490 05/10/06 1,530 <236 <472 06/13/06 1,530 <236 <472 01/23/06 <50.0 <279 P <490 05/10/06 <50.0 <279 P <490 05/10/06 <50.0 <226 <526 06/13/07 <60.0 <263 <526 06/13/07 <60.0 <266 <532 06/13/07 <60.0 <266 <550 06/13/07 <50.0 <248 <495 06/13/07 <50.0 <248 <495 06/13/07 <50.0 <248 <495 06/15/07 <50.0 <248 <495 06/15/07 <50.0 <226 <500 06/15/07 <50.0 <226 <476 11/07/05 1,340 <226 <490 05/10/06 21,800 <236 <449 06/1		90/60/90	2,990	<236 ^p	<472	343	9.05	144	84.7	<5.00	50.6	<1.00	0.30	9.40	00'0	18.73
11/02/05 735 <236		06/13/06					Decom	Decommissioned						-		1
05/22/06 3,950 <245	MW-205	11/02/05	735	<236	<472	0.750	<0.500	23.2	20.6	<1.00	ł	1	0.10	9.34	00.0	18.74
05/10/06 1,530 <236	28.08	02/22/06	3,950	<245	<490	7.60	<2.50	307	116	<5.00 ^{q,r}	82.0	3.64	ı	9.22	00.0	18.86
06/13/06 93.4 <236 <472 11/03/05 \$9.4 <236 <442 02/23/06 <50.0 279\bigoday <490 05/10/06 <50.0 <263 <526 06/13/07 <80.0 <266 <532 11/04/05 <60.0 <248 <495 05/10/06 <50.0 <248 <495 05/10/06 <50.0 <248 <495 05/10/06 <50.0 <248 <495 05/10/06 <50.0 <248 <495 05/10/06 <50.0 <248 <495 03/07/07 <50.0 <248 <495 03/10/06 <50.0 <226 <500 06/15/07 <50.0 <228 <476 11/10/106 11,300 <224 <495 05/10/06 11,300 <224 <490 05/14/07 <51,400 <236 <449 06/14/07 <57,400 <236 <449		02/10/06	1,530	<236	<472	2.68	<1.00	86.8	30.04	<2.00	38.5	1.31	0.13	9.19	00.00	18.89
11/03/05 93.4 <236 <472 02/23/06 <50.0 279 P <490 05/10/06 <50.0 <263 <526 06/13/07 <80.0 <266 <532 11/04/05 <50.0 <266 <560 02/23/06 <50.0 <248 <495 05/10/06 <50.0 <248 <495 05/10/06 <50.0 <248 <495 05/10/06 <50.0 <248 <495 05/10/06 <50.0 <248 <495 03/07/07 <50.0 <248 <495 03/07/07 <50.0 <223 <476 11/07/05 11,300 <223 <476 05/10/06 11,300 <220 <495 05/10/06 11,300 <224 <490 05/10/06 11,300 <243 <485 05/10/06 13,400 <236 <490 06/14/		06/13/06					Decomi	Decommissioned					ţ	ı	1	ŀ
02/23/06 <50.0 279° <490 05/10/06 <50.0 <263 <526 08/29/06 <50.0 <266 <532 06/13/07 <50.0 <266 <532 11/04/05 <50.0 <248 <495 02/23/06 <50.0 <248 <495 05/10/06 <50.0 <248 <495 05/10/06 <50.0 <248 <495 03/07/07 <50.0 <248 <495 03/07/07 <50.0 <248 <495 04/15/07 <50.0 <248 <495 05/10/06 <50.0 <248 <495 06/15/07 <50.0 <223 <476 11/07/05 11,300 <224 <485 05/10/06 13,400 <236 <496 05/14/07 57,400 531 <485 11/102/05 51,800 531 <476 06/14/07	MW-206	11/03/05	93.4	<236	<472	2.23	<0.500	2.86	2.84	<2.00	1		0.70	12.60	00'0	18.94
05/10/06 <50.0 <263 <526 08/29/06 <80.0 <266 <532 06/13/07 <80.0 <266 <532 11/04/05 <50.0 <248 <495 02/23/06 <50.0 <248 <495 05/10/06 <50.0 <253 <506 12/12/06 <50.0 <248 <495 03/07/07 <50.0 <248 <495 03/07/07 <50.0 <228 <476 11/07/05 1,980 <229 <485 06/15/07 <50.0 <238 <476 11/07/05 1,980 <226 <500 05/10/06 11,900 <238 <448 05/10/06 11,900 <249 <490 05/14/07 57,400 534 <490 06/14/07 57,400 531 <476 11/102/05 61.8 <245 <490	31.54	02/23/06	<50.0	279 ^p	<490	7.57	0.560	<0.500	<3.00	×1.00	×1.00	1.24	:	12.40	00'0	19.14
08/29/06 <80.0		05/10/06	<50.0	<263	<526	8.54	<0.500	<0.500	<3.00	<1.00	<1.00	1.04	0.47	12.75	00.0	18.79
06/13/07 <50.0 <281 <562 02/23/06 <50.0 <248 <495 05/10/06 <50.0 <248 <495 05/10/06 <50.0 <250 <500 08/29/06 <80.0 <253 <566 12/12/06 <50.0 <248 <495 03/07/07 <50.0 <263 <476 11/07/05 1,980 <250 <500 06/15/07 <50.0 <238 <476 11/07/05 1,980 <250 <500 06/15/07 <50.0 <238 <446 11/07/05 11,900 <243 <4485 05/14/06 21,800 2769 <490 06/14/07 57,400 591 <470 11/102/05 61.8 <245 <490 02/24/06 117 <238 <476 11/102/05 760 <2		08/29/06	<80.0	<266	<532	1.63	<0.500	<0.500	<3.00	<1.00	<5.00	1.84	0.83	13,25	00'0	18.29
11/04/05 <50.0 <281 <562 02/23/06 <50.0 <248 <495 05/10/06 <50.0 <248 <495 05/10/06 <50.0 <250 <500 12/12/06 <50.0 <248 <495 03/07/07 <50.0 <248 <496 03/07/07 <50.0 <263 <526 06/15/07 <50.0 <238 <476 11/07/05 1,380 <250 <500 05/10/06 11,300 <243 <485 05/10/06 11,340 <240 <496 05/10/06 21,800 276 <490 03/08/07 34,000 542 <490 03/14/07 57,400 591 <476 11/102/05 61.8 <245 <490 02/24/06 117 <238 <476 11/102/05 760 <265 <477 11/102/05 760 <252 <477		06/13/07					Lack of We	ack of Water to sample	je				ı	10.36	0,00	21.18
02/23/06 <50.0 <248 <495 05/10/06 <50.0 <250 <500 08/29/06 <80.0 <253 <505 12/12/06 <50.0 <248 <495 03/07/07 <50.0 <263 <526 06/15/07 <50.0 <238 <476 11/07/05 1,980 <250 <500 02/22/06 11,900 <243 <485 05/10/06 13,400 <236 <495 12/12/06 21,800 2769 <490 06/14/07 57,400 591 <472 11/02/05 61.8 <249 <490 06/14/07 57,400 591 <476 11/102/05 61.8 <245 <490 02/24/06 7/6 <260 < < 02/21/06 7/6 <285 <4476	MW-207	11/04/05	<50.0	<281	<562	2.82	<0.500	<0.500	<3.00	<1.00	1	1	2.10	13.79	00.0	16.86
05/10/06 <50.0 <250 <50.0 08/29/06 <80.0 <253 <50.5 12/12/06 <50.0 <248 <495 03/07/07 <50.0 <263 <476 11/07/05 1,980 <238 <476 11/07/05 1,980 <250 <500 02/22/06 11,900 <243 <485 05/10/06 13,400 <236 <495 12/12/06 21,800 276g <490 06/14/07 57,400 591 o <472 11/02/05 61.8 <245 <490 06/14/07 57,400 591 o <476 11/102/05 61.8 <245 <490 02/24/06 177 <236 <476 11/102/05 760 <252 <477 02/21/06 760 <252 <477	30.65	02/23/06	<50.0	<248	<495	3.52	2.05	<0.500	<3.00	<1.00	<1.00	<1.00 ∠1.00	ŀ	13.64	00'0	17.01
08/29/06 <80.0 <253 <505 12/12/06 <50.0 <248 <495 03/07/07 <50.0 <2263 <526 11/07/05 1,980 <250 <476 11/07/05 1,980 <243 <485 02/22/06 11,900 <243 <485 05/10/06 13,400 <236 <495 12/12/06 21,800 276g <490 06/14/07 57,400 591 g <472 11/02/05 61.8 <245 <490 06/14/07 57,400 591 g <476 11/02/05 61.8 <245 <490 02/24/06 177 <236 <476 11/02/05 760 <252 <475 02/21/06 760 <252 <472 02/21/06 760 <252 <472		05/10/06	<50.0	<250	<500	1.85	1.86	<0.500	<3.00	<1.00	<1.00	<1.00	0.29	13.81	00.0	16.84
12/12/06 <50.0 <248 <495 03/07/07 <50.0 <263 <526 06/15/07 <50.0 <238 <476' 11/07/05 1,980 <250 <500 02/22/06 11,900 <243 <485 05/10/06 13,400 <236 <495 12/12/06 21,800 276° <490 03/08/07 34,000 454 <500 06/14/07 57,400 591° <476 11/02/05 61.8 <245 <490 02/24/06 117 <238 <476 11/02/05 760 252' <476 02/21/06 760 255' <472 02/21/06 760 255' <472		08/29/06	<80.0	<253	<505>	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	1.22	0.42	14.40	00.0	16.25
03/07/07 <50.0 <263 <526 06/15/07 <50.0 <238 <476' < 1.980		12/12/06	<50.0	<248	<495	1.21	<0.500	<0.500	<3.00	<1.00	<5.00	4.00	0.10	14.07	00'0	16.58
06/15/07 <50.0		20/20/60	<50.0	<263	<526	0.960	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.24	13.88	0.00	16.77
11/07/05 1,980 <250		06/15/07	<50.0	<238	<476	<0.500	<0.500	<0.500	<3.00	<1.00	<5.00	<1.00	0.81	13.84	0.00	16.81
02/22/06 11,900 <243 <485 05/10/06 13,400 <236 <472 08/30/06 21,800 276g <495 12/12/06 21,800 542 <490 03/08/07 34,000 454 <500 06/14/07 57,400 591 g <472 11/02/05 61.8 <245 <490 02/24/06 117 <238 <476 11/02/05 760 252' <472 02/21/06 760 252' <472	MW-208	11/07/05	1,980	<250	<500	20.2	4.40	35.2	143	<1.00	1	1	1.20	11.44	0.00	18.84
05/10/06 13,400 <236 <472 08/30/06 21,800 276³ <495 12/12/06 21,800 542 <490 03/08/07 34,000 454 <500 06/14/07 57,400 591 ° <472 11/02/05 61.8 <245 <490 02/24/06 117 <238 <476 11/02/05 760 252' <472 02/21/06 760 252' <472	30.28	02/22/06	11,900	<243	<485	131	35.4	450	1,610	<20.0	96.8	2.17	ı	11.11	00'0	19.17
08/30/06 21,800 276g <495		05/10/06	13,400	<236	<472	185	29.2	785	2,358	<20.0	184	1.80	0.28	11.52	0.00	18.76
12/12/06 21,800 542 <490		90/08/80	21,800	2769	<495	213	93.9	1,590	5,960	<1.00	521	2.88	0.30	12.10	00'0	18.18
03/08/07 34,000 454 <500 06/14/07 57,400 591 ° <472 11/02/05 61.8 <245 <490 02/24/06 117 <238 <476 12/11/06 11/02/05 760 252' <472 02/21/06 07/25/05		12/12/06	21,800	542	<490	78.6	18.2	949	3,780	<20.0	315	1.28	0.10	11,09	0.00	19.19
06/14/07 57,400 591 ° <472		03/08/07	34,000	454	×200	212	25.2	1,660	5,360	40.0	838	۲۲:00 د۲:00	0.18	11.02	0.00	19.26
11/02/05 61.8 <245 <490 02/24/06 117 <238 <476 <12/11/06 11/02/05 760 252' <472 02/21/06		06/14/07	57,400	591 9	<472	241	52.6	3,520	12,900	<20.0	2,110	1.74	0.23	11.22	0.00	19.06
02/24/06 117 <238 <476 <12/11/06 11/02/05 760 252' <472 07/25/06	MW-806	11/02/05	61.8	<245	<490	1.57	<0.500	2.94	10.3	<2.00	ŀ	ŀ	。 图	7.58	00'0	-7.58
12/11/06	26.28	02/24/06	117	<238	<476	<0.500	0.910	1.49	4.24	<1.00	<1.00	2.16	!	7.71	00'0	18.57
11/02/05 760 252' <472 02/21/06 07/25/05		12/11/06	-	-	1	+	-		1	1		1	:	8.21	0.00	18.07
07/25/05	х-мм	11/02/05	760	252	<472	114	0.730	14.0	7.16	<1.00	ŀ	:	. MN	39.6	00'0	18.72
07/25/05	28.37	02/21/06				Casing d	amaged - u	nable to col	lect sample				-	,	!	-
	SMW-2S	07/25/05				Casing d	lamaged - u	nable to col	lect sample				!	8.28	ı	1
11/02/05 Not		11/02/05					Not M	Not Monitored						;	ŀ	:

TPH- Gasoline	TPH- Diesel	투등	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Naphthalene Total Lead	Total Lead	8	WTQ	SPH	GWF
	(hg/L)	(<u>hg/L)</u>	(hg/L)	(µg/L)	(hg/L)	(hg/L)	(hg/L)	(µg/L)	(hg/L)	(mg/L)	(feet)	(feet)	(feet)
	400	2,500	<0.5	<0.5	<0.5	<1.0	1		1	1	10.25	00.0	1
	<250	<750	<0.5	<0.5	<0.5	0.12	!	ı	ı	1	10.23	00:0	!
	300	<750	<0.5	<0.5	<0.5	۲- 0.1	;	1	ŀ	ı	10.89	00.00	ł
×20	900	<750	<0.5	×0.5	0.5	۲۰	į	ı	ı	1	10.36	0.00	ŀ
34,000	4,000	2,300	6,400	42	2,100	3,000	;	1	ŀ	ŀ	10.07	0.00	ļ
<50.0	320	<750	<0.500	<0.500	<0.500	0. 0. 0.	ł	j	ł	1	10.19	0.00	ı
<50.0	<250	<750	<0.500	<0.500	<0.500	۲۰.00 دا.00	1	ŀ	I	ł	11.12	0.00	1
<50.0	<250	<750	<0.500	<0.500	<0.500	<1,00	1	ı	ı	ł	10.19	00.00	ŀ
<50.0	<250	<750	<0.500	<0.500	<0.500	<1.00	;	ı	1	ı	10.14	0.00	1
<50.0	<250	<750	<0.500	<0.500	<0.500	×1.00	;	ı	1	ı	10.85	0.00	ŀ
<50.0	521	<750	<0.500	<0.500	<0.500	×1.00	;	ı		ı	9.67	00.0	**
50.1	<250	<750	<0.500	<0.500	<0.500	×1.00	ļ	ı	ŀ	1	9.28	00'0	ı
<50.0	200	<750	<0.500	<0.500	<0.500	<1.00	ı	ı	ı	1	8.87	00.0	ł
<50.0	<250	<750	<0.500	<0.500	<0,500	00.1>	ŀ	ı	ı	ì	9.88	0.00	1
<50.0	293	<750	<0.500	<0.500	<0.500	41.00	ł	ł	ł	1	9.22	00.0	į
<50.0	360	<750	<0.500	<0.500	0.53	4.97	+	1	ŀ	!	9.01	00.0	I
<50.0	639	<750	<0.500	609.0	<0.500	1.32	ŀ	1	1	ŀ	9.55	0.00	
<50.0	<484	<1,450	<0.500	<0.500	<0.500	41.00	ŀ	1	ı	ı	8.75	00:00	
<50.0	<250	<750	<0.500	0.585	<0.500	1.86	ŀ	ı	1	ı	8.89	00:0	
;	;	ŀ	;	1	1	1	ŀ	1	i	ļ	ΣN	ΝN	:
<50.0	368	<866	<0.500	<0.500	<0.500	×1.00	¦	1	1	ı	7.23	00:0	
	ŧ	i	ł	ł	1	ı	ł	1	a.eem.	ļ	Σ	Ž	ł
<50.0	385	<571	<0.500	<0.500	<0.500	<1.00	i	ł	ı	ı	9.19	00'0	1
ţ	ŀ	ł	ł	1	ŀ	,	1	;	ļ	ı	ΣZ	MN	- 1
<50.0	1,160	<500	<0.500	0.902	<0.500	2.78	ì	ı	ţ	;	8.89	00.00	ı
ì	ı	ı	1	i	ı	!	ŀ	1	ŧ	ŀ	ΣX	MN	1
1	ł	i	ŀ	1	1	ŀ	;	1	1	i	N	Σ	ı
<100	<250	<500	1.83	<2.00	41.00	<1.50	1	ı	ŀ	·	10.32	00.0	1
ł	ł	ł	ł	ŀ	ł	;	!	ı	ļ	ı	MN	Σ	1
<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00	1	ı	;	ŀ	10.99	00'0	ŀ
ı	ŀ	ı	1	ł	1	ı	1	1	ı	ŀ	ΣN	ΣŽ	ŀ
<50.0	<287	<575	<0.500	<0.500	<0.500	<1.00	1	ı	1	I	11.00	00.0	!
ŀ	!	ŀ	:	1	ı	ı	1	1	ı	1	ΣN	ΣŽ	!
<100	<119	<238	√	⊽	₹	7	ş	ı	ı	2.10	10.42	0.00	1
ı	ł	!	1	ì	1	ŀ	ı	1	1	1	ΣN	ΣZ	ł
56	<242	<483	<0.50	<0.50	<0.50	<1.0	ł	1	į	0.10	11.67	0.00	:
1	ŀ	ł	:	;	;	ļ	ı	ŀ	1	ı	ΣN	Ž	:
<100	<248	<495	⊽	⊽	₹	7	1	ı	1	1.20	11.68	0.00	1
<100	<249	<498	⊽	₹	٧	7	₹	ł	ļ	1.30	10.62	00.0	1
<50.0	<250	<500	<0.200	<0.200	<0.200	<0.500	<1.00	<0.500	ı	1.20	11.19	0.00	ı
<50.0	<236	<472	<0.500	<0.500	<0.500	<3.00	41.00	ı	ŀ	» MN	11.77	00.0	17.26
<50.0	<278	<556	<0.500	<0.500	<0.500	<0.500	×1.00	<1.00	۲- 1.00	!	11.84	00.00	17,19
<50.0	<243	<485	<0.500	<0.500	<0.500	<3.00	<1.00	<1.00	<1.00	0.17	10.70	0.00	18.33

RIVIE	(feet)	16.86	16.89	17.35	1			1		l			ı	1	ł	ŀ	ł	!		1	ì	!	!	1	ı	1	*	1	ŀ		ł		ŀ	1	ŀ	Į.	!	1	1	ł	18.23	23.26	19.04	17.77	19.06	19.14	19.12
HdS	(feet)	0.00	0.00	0.00)	00.0	00.0	00.0		3 6	8 8	8 8	00.0	0.00	0.00	0,04	00.0	Trace	0.05	Trace	Trace	3 6		2 :	<u> </u>	<u> </u>	Σ :	∑ Z	ΣŽ	Σ	Ž	Ž	Σ	ΣZ	ΣZ	00.0	Σ	00.00	Σ	Sheen	0.00	00.0	00:0	00:0	0.00	00.00	0.00
WILD	(feet)	12.17	12.14	11.68	ŀ	8.14	8.90	8.99	7.56	ς α 5 ς	2 6	2 6	8.20	8.06	9.00	9.41	9.09	8.76	96.6	10.22	8 70	2 6	0.2.0	ž :	<u> </u>		<u> </u>	Σ	Σ Z	Σ	ΣN	ΣZ	ΣN	ΣZ	ΣN	9.55	ΣZ	10.58	Z	9.04	10.10	5.07	9.29	10.56	9.27	9.19	9.21
00	(mg/L)	2.64	1.05	i.44	1		ļ	ŀ	;	· ·	· :		1		ł	1	;	1	;	;			\ \	;	·	!	1	ı	;	ı	!	}	;	-	1	-	1			1.10	° Z		0.46	1.15	60.0	0.27	0.75
otal Lead	(hg/L)	7.00	×1.00	<1.00		1	ŀ	ŀ	;			-	!	!	ŀ		İ		į									:		1		ı	,	1	ŀ	ŀ	;	;	}	1		15.8	29.4	20.0	9.5	7.42	7.74
Naphthalene Total Lead	(µg/L)	<5.00	<5.00	<5.00		ŀ	1	ı	ı	1	1	1	ı	1	;													1		1		ı	ĵ	ı	ı	ı	ŀ	ı	ı	312	ı	442	531	366	465	991	1,160
	(hg/L)	√1.00	×1.00	×1.00		ı	1	!	·	!	ļ	!	ŀ	1	1													!	-	ŀ		;	;	1	!	ţ	;	ţ	1	<1.00	<100	<20.0	<50.0	×10	<40.0	40.0	×1.00
Xylenes	(hg/L)	<3.00	<3.00	<3.00		8,200	4,900		3.600	0 1	1.710	1.730	. 1	ļ	ı		1											1	-	ı		1	1	ł	ŀ	ŀ	ł	1	{	<50.0	<300	<60.0	<150	1,350	1,550	1,820	42.6
Ethyl- benzene	(hg/L)	<0.500	<0.500	<0.500	Not Accessible	2,400	2,700	ł	2.600	<0.5	1.710	2,060	, 1	ŀ	ł	LPH Present	1	LPH Present	LPH Present	LPH Present	LPH Present	I DH Drasant	Inaccessible	Indecessible	II laccessible	Indecedent	DICIO CO	1	Inaccessible	1	Inaccessible		;	ł	1	}	1	ì	!	806	1,390	1,330	1,120	1,000	1,240	1,480	1,720
Toluene	(hg/L)	<0.500	<0.500	<0.500	Not Ac	<250	4	1	57.0	<0.5	4.18	<0.500	ı	ł	į	LPH	1	F	LPHF	LPH	LPH	Hd	Dacu	2000	DO CO	200	ווים ארני. ביים ביים ביים ביים ביים ביים ביים ביים	-	Inacc	1	Inacce	1	ł	ŀ	!	;	ı	!	1	<20.0	<50.0	13.4	<25.0	11.9	<20.0	<20.0	4.4
Benzene	(µg/L)	<0.500	<0.500	<0.500		13,000	9,400	ı	8,100	<0.5	3,900	6,090	ı	44.	1		ł											1	-	ŀ	-	!	ł	ł	ı	ı	!	!	ŀ	2,120	2,440	2,730	2,130	1,800	1,880	2,000	2,070
₽₩ E	(µg/L)	<485	<472	<500		5,100	<750	ı	920	<750	630	<750	1	ı	ı		1											:		:		ŀ	1	1	ŀ	ı	ŀ	}	ŀ	1,110	<472	<472	<490	<495	<472	<490	<495
TPH- Diesel	(µg/L)	<243	<236	<250		4,100	5,500	ŀ	1,500	<250	2,680	2,460	ŀ	ì	1		ł			i										1		1	1	ı	ı	ı	ł	ı	ı	6,490	3,210	3,1609	1,520	651g	682	1,010	963 9
TPH- Gasoline	(hg/L)	<80.0	<50.0	<50.0		39,000	41,000	1	40,000	<50	28,100	28,600	ŀ	;	!		1							Ì						1		ł	ı	ł	ţ	ł	ł	ł	ł	14,500	17,200	17,800	18,700	8,190	16,800	16,500	13,000
Sample	Date	90/08/80	12/13/06	20/80/60	06/13/07	03/08/95	96/00/90	96/20/60	12/08/95	04/01/96	06/25/96	09/27/96	03/28/97	26/30/90	76/80/60	12/19/97	03/16/98	06/26/98	09/23/98	12/17/98	03/31/99	66/30/90	12/08/99	00/02/90	12/19/00	06/15/01	06/26/01	00/20/00	10//0/60	10/10/01	12/28/01	03/08/02	06/24/02	09/26/02	12/12/02	03/13/03	06/12/03	09/19/03	01/14/04	07/25/05	11/02/05	02/24/06	05/11/06	08/31/06	12/13/06	03/08/07	06/13/07
Sample I.D.	TOC	E-WMS	(cont'd)			SMW-4															•															·					28.33						-

Diesel Oil Benzene Toluene b (199L) (199L) (199L) (199L) (199L) (199L) (199L) (199C) (1	TPH-	TPH			Ethyl-								
(Hg/L) (Sample Gasoline		Diesel	ö	Benzene	Toluene	benzene	Xylenes	MTBE	Naphthalene	Total Lead	8	MTO	SPH	GWE
<500 40.2 0.790 41.8 21.48 <1.00 24.6 0.60 10.40 0.00 <490 62.9 3.43 58.0 64.8 <2.00 NM° 10.51 0.00 <490 45.9 176 <2.50 31.8 18.5 <5.00 50.0 4.21 NM° 10.51 0.00 <490 140 2.96 53.6 31.1 <5.00 49.2 <1.00 0.63 10.51 0.00 <472 51.8 1.73 9.01 11.3 <1.00 60.8 <1.00 0.63 10.59 0.00 <472 51.8 1.77 6.62 93.9 53.4 <2.00 60.8 <1.00 0.63 11.45 0.00 <472 61.2 0.840 8.81 6.35 <1.00 51.3 2.12 0.94 10.27 0.00 <485 61.2 0.880 8.21 5.43 <1.00 17.2 <td>(hg/L)</td> <td>B. 3</td> <td>(µg/L)</td> <td>(µg/L)</td> <td>(µg/L)</td> <td>(hg/L)</td> <td>(hg/L)</td> <td>(hg/L)</td> <td>(hg/L)</td> <td>(µg/L)</td> <td>(hg/L)</td> <td>(mg/L)</td> <td>(feet)</td> <td>(feet)</td> <td>(feet)</td>	(hg/L)	B. 3	(µg/L)	(µg/L)	(µg/L)	(hg/L)	(hg/L)	(hg/L)	(hg/L)	(µg/L)	(hg/L)	(mg/L)	(feet)	(feet)	(feet)
<490 52.9 3.43 58.0 64.8 <2.00 NM° 10.51 0.00 <495 176 <2.50 31.8 18.5 <5.00 50.0 4.21 10.42 0.00 <500 140 2.96 53.6 31.1 <5.00 49.2 <1.00 0.63 10.59 0.00 <472 51.8 1.73 9.01 11.3 <1.00 30.3 2.12 0.29 11.45 0.00 <472 66.2 93.9 53.4 <2.00 60.8 <1.00 0.07 10.42 0.00 <472 61.2 0.840 8.81 6.35 <1.00 51.3 2.12 0.94 10.27 0.00 <485 61.2 0.880 8.21 5.43 <1.00 17.2 <1.00 0.72 10.15 0.00	3,110		835 ^b	<500	40.2	0.790	41.8	21.48	×1.00	24.6	1	09.0	10.40	000	1
<495 176 <2.50 31.8 18.5 <5.00 50.0 4.21 10.42 0.00 <500 140 2.95 53.6 31.1 <5.00 49.2 <1.00 0.63 10.59 0.00 <472 51.8 1.73 9.01 11.3 <1.00 30.3 2.12 0.29 11.45 0.00 <472 477 6.62 93.9 53.4 <2.00 60.8 <1.00 0.07 10.42 0.00 <485 61.2 0.840 8.81 6.35 <1.00 71.2 <1.00 0.72 10.42 0.00 50 61.2 0.880 8.21 5.43 <1.00 17.2 <1.00 0.72 10.15 0.00 50 5 1,000 70 1,000 70 17.2 <1.00 0.72 10.15 0.00	1/02/05 1,950 ^m		1,930 ^{1,9}	<490	52.9	3,43	58.0	64.8	<2.00	ı	ŀ	ο ΣΝ	10.51	00.0	18.66
<500 140 2.95 53.6 31.1 <5.00 49.2 <1.00 0.63 10.59 0.00 <472 51.8 1.73 9.01 11.3 <1.00 30.3 2.12 0.29 11.45 0.00 <472 477.0 6.62 93.9 53.4 <2.00 60.8 <1.00 0.07 11.45 0.00 <472 80.4 0.840 8.81 6.35 <1.00 51.3 2.12 0.94 10.27 0.00 <485 61.2 0.880 8.21 5.43 <1.00 17.2 <1.00 0.72 10.15 0.00 500 5 1,000 70 1,000 70 17.2 <1.00 0.72 10.15 0.00	٠,	_	<248	<495	176	<2.50	31.8	18.5	<5.00	50.0	4.21	ş	10.42	0.00	18.75
<472 51.8 1.73 9.01 11.3 <1.00 30.3 2.12 0.29 11.45 0.00 <472 177.0 6.62 93.9 53.4 <2.00 60.8 <1.00 0.07 10.42 0.00 <472 80.4 0.840 8.81 6.35 <1.00 51.3 2.12 0.94 10.42 0.00 <485 61.2 0.880 8.21 5.43 <1.00 17.2 <1.00 0.72 10.15 0.00 500 5 1,000 70 1,000 70 1,000 70 10.15 0.00			1,110	<500	140	2.95	53.6	31.1	<5.00	49.2	<1.00	0.63	10.59	0.00	18.58
<472 177.0 6.62 93.9 53.4 <2.00 60.8 <1.00 0.07 10.42 0.00 <472 80.4 0.840 8.81 6.35 <1.00 51.3 2.12 0.94 10.27 0.00 <485 61.2 0.880 8.21 5.43 <1.00 17.2 <1.00 0.72 10.15 0.00 500 5 1,000 70 1,000 70 160	08/31/06 942	-	248p	<472	51.8	1.73	9.01	11.3	×1.00	30.3	2.12	0.29	11.45	00'0	17.72
<472 80.4 0.840 8.81 6.35 <1.00 51.3 2.12 0.94 10.27 0.00 <485 61.2 0.880 8.21 5.43 <1.00 17.2 <1.00 0.72 10.15 0.00 500 5 1,000 70 1,000 20 160 16	3,780		318	<472	177.0	6.62	93.9	53.4	<2.00	80.9	<1.00	0.07	10.42	0.00	18.75
<485 61.2 0.880 8.21 5.43 <1.00 17.2 <1.00 0.72 10.15 0.00 500 5 1,000 700 1,000 20 160 15	2,560		<236	<472	80.4	0.840	8.81	6.35	<1.00	51.3	2.12	0.94	10.27	0.00	18,90
500 5 1,000 700 1,000 20 160 15	2850		301 9	<485	61.2	0.880	8.21	5.43	<1.00	17.2	<1.00	0.72	10.15	000	19.02
1	BOOK		500	500	u,	98	700	1 000	, F	9	1				20.01
				;	1		3	2001	3	3	2	E	}	:	:

HISTORICAL GROUNDWATER ANALYTICAL RESULTS AND WATER TABLE ELEVATIONS TABLE 3

ConocoPhillips Site No. 255353 600 Westlake Avenue N. Seattle, Washington

			_	•
		GWE	(feet)	
		SPH	(feet)	
		DTW	(feet)	
		8	(mg/L)	
		Total Lead	(µg/L)	
		Naphthalene	(hg/L)	
		MTBE	\sim	
		Xylenes	L) (µg/L)	
	Ethy!-	penzene	(µg/L)	
		Toluene	(hg/L)	The state of the state of
		Benzene	(L) (hg/L)	
	TPH	ō	(µg/L)	
	TPH.	Diesel	(hg/L)	
	TPH-	Gasoline	(hg/L)	
		Sample	Date	
1000	e E E		ဗျ	

NOTES:

µg/L = micrograms per liter

mg/L = milligrams per liter

TOC = Relative top of casing elevation

DO = Dissolved oxygen concentration, measured in the field with a dissolved oxygen meter

DTW = Depth to water

SPH = Separate-phase hydrocarbon thickness

GWE = Groundwater table elevation relative to DTW data; corrected for SPH where applicable using a specific gravity of 0.80

<n = Below the detection limit

"-" = Not analyzed, sampled, or reported

NM = Not Measured

TPH as Gasoline - Analysis by Northwest Method NWTPH-Gx

TPH as Diesel and Oil - Analysis by Northwest Method NWTPH-Dx

BTEX Compounds - Analysis by EPA Method 8020A, 8021B or 8260B

Total Lead Analysis via EPA Method 6020.

Values in BOLD are detectable concentrations exceeding the MTCA Method A groundwater cleanup level.

^a Top of casing elevations shown prior to November 2005 based on information provided by the previous consultant. All TOC elevations were re-surveyed between November 1 and November 15, 2005 relative to N.A.V.D. 1988 using a City of Seattle benchmark.

Well was not purged prior to sample collection.

TPH-Diesel and TPH-Oil did not resemble chromatogram used for quantitation.

^d Well casing was trimmed down during monument replacement in December 2004. New TOC elevation surveyed on January 27, 2005.

Quality control failed due to laboratory error. Quantitative analytical results not reported.

Contaminant does not appear to be "typical" product.

 $^{\mathfrak{g}}$ Chromatogram suggests that this may be overlap from the gasoline range.

^h Chromatogram suggests that this may be overlap from the motor oil range.

Surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery.

J Surrogate recovery outside advisory QC limits due to matrix interference

* MTCA Method A Cleanup Level for TPH-Gasoiine is 1,000 ug/L if benzene is not detectable in groundwater

'Samples analyzed using Northwest Method NWTPH-Dx without acid/silica gel cleanup.

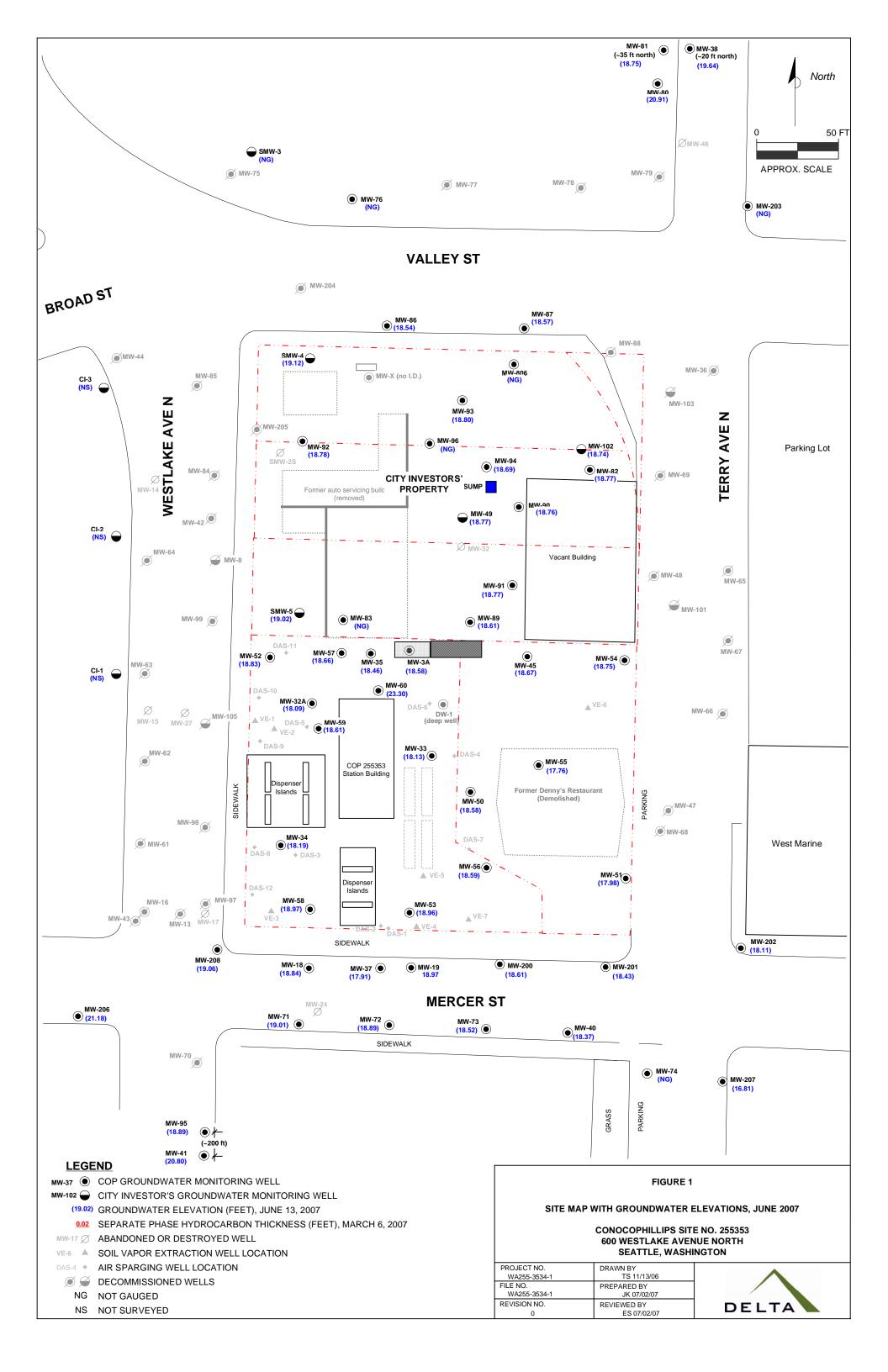
" Surogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present.

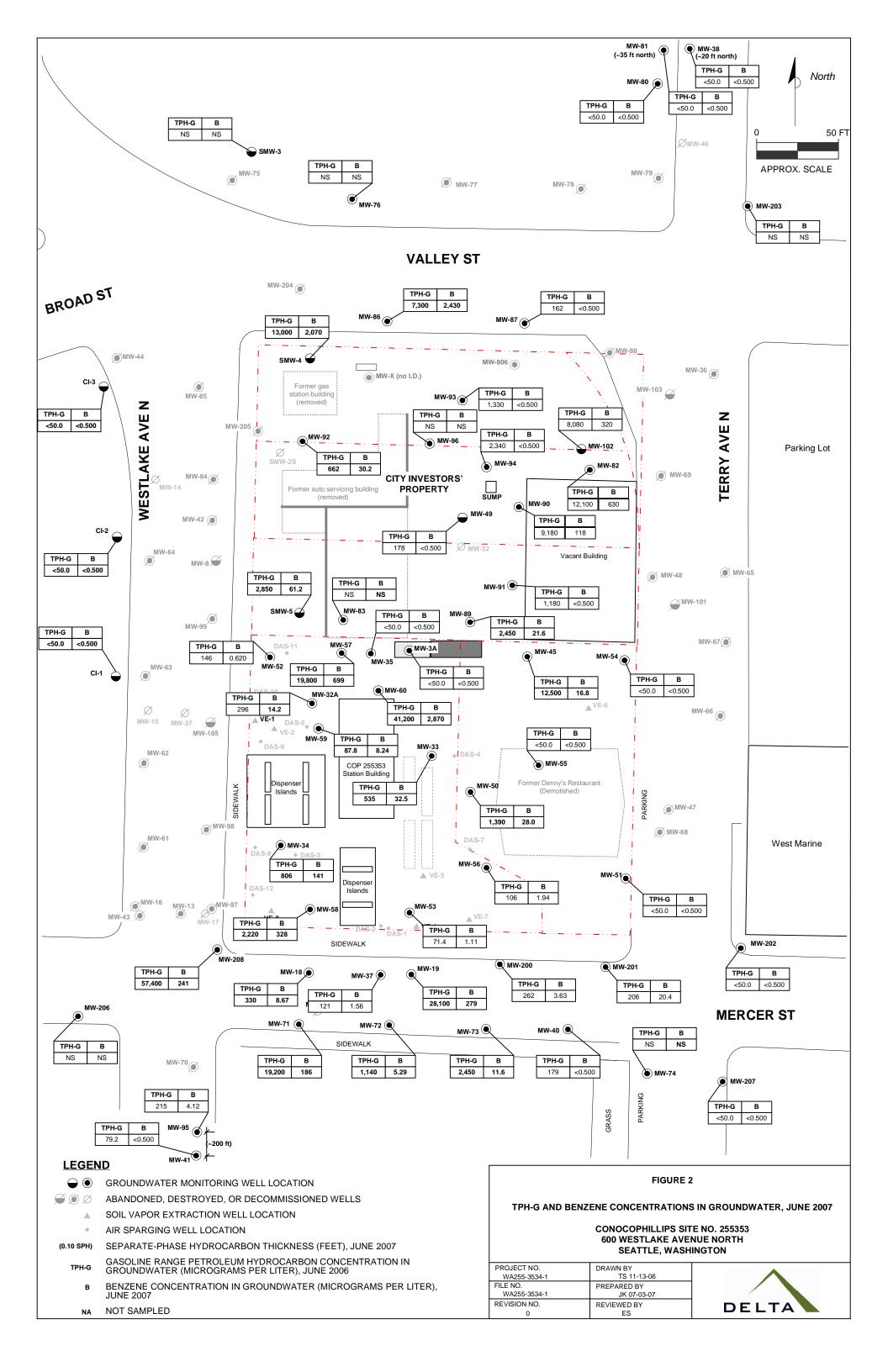
ⁿ Detected hydrocarbons due mainly to cleanup artifact. There is no diese! present.

DO meter was unavailable

^p The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

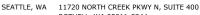
4 Analyte had a high bias in the associated calibration verification standard.

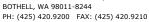

Dilluted due to matrix effect


Laboratory Control Sample and/or Sample Duplicate recovery was above the laboratory control limits. Analyte not detected, data not impacted.

The total hydrocarbon result in this sample is primanly due to an individual compound eluting in the volatile hydrocarbon range.

^u Due to laboratory error, the samples were not analyzed for EPA 8260B compounds


* Possible field error.



LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Quarterly Groundwater Monitoring ConocoPhillips Site No. 255353

June 27, 2007

Elisabeth Silver Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

RE: COP Westlake 255-35-3

Enclosed are the results of analyses for samples received by the laboratory on 06/13/07 16:30. The following list is a summary of the Work Orders contained in this report, generated on 06/27/07 11:29.

If you have any questions concerning this report, please feel free to contact me.

Work Order	<u>Project</u>	<u>ProjectNumber</u>	
BQF0360	COP Westlake 255-35-3	WA 255-35-42-1	
•			

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE WA 255-35-42-1 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/27/07 11:29

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-87	BQF0360-01	Water	06/13/07 10:35	06/13/07 16:30
MW-82	BQF0360-02	Water	06/13/07 11:15	06/13/07 16:30
MW-94	BQF0360-03	Water	06/13/07 12:50	06/13/07 16:30
MW-49	BQF0360-04	Water	06/13/07 13:20	06/13/07 16:30
MW-90	BQF0360-05	Water	06/13/07 14:00	06/13/07 16:30
SMW-4	BQF0360-06	Water	06/13/07 14:30	06/13/07 16:30
MW-86	BQF0360-07	Water	06/13/07 10:30	06/13/07 16:30
MW-102	BQF0360-08	Water	06/13/07 11:30	06/13/07 16:30
MW-89	BQF0360-09	Water	06/13/07 13:00	06/13/07 16:30
MW-91	BQF0360-10	Water	06/13/07 13:30	06/13/07 16:30
MW-93	BQF0360-11	Water	06/13/07 14:10	06/13/07 16:30
MW-92	BQF0360-12	Water	06/13/07 14:45	06/13/07 16:30

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

melling

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE Project Number: WA 255-35-42-1 Report Created: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/27/07 11:29

Volatile Petroleum Products by NWTPH-Gx

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0360-01 (MW-87)		Wa	iter		Sampl	ed: 06/1	13/07 10:35			
Gasoline Range Hydrocarbons	NWTPH-Gx	162		50.0	ug/l	1x	7F15016	06/15/07 10:20	06/15/07 16:52	
Surrogate(s): 4-BFB (FID)			88.7%		58 - 144 %	"			"	
BQF0360-02RE1 (MW-82)		Wa	iter		Sampl	ed: 06/1	13/07 11:15			
Gasoline Range Hydrocarbons	NWTPH-Gx	12100		500	ug/l	10x	7F18029	06/18/07 09:52	06/19/07 00:23	
Surrogate(s): 4-BFB (FID)			100%		58 - 144 %	1x			"	
BQF0360-03 (MW-94)		Wa	iter		Sampl	ed: 06/1	13/07 12:50			
Gasoline Range Hydrocarbons	NWTPH-Gx	2340		50.0	ug/l	1x	7F15016	06/15/07 10:20	06/15/07 18:30	
Surrogate(s): 4-BFB (FID)			88.3%		58 - 144 %	"			"	
BQF0360-04 (MW-49)		Wa	iter		Sampl	ed: 06/1	13/07 13:20			
Gasoline Range Hydrocarbons	NWTPH-Gx	178		50.0	ug/l	1x	7F15016	06/15/07 10:20	06/15/07 19:02	
Surrogate(s): 4-BFB (FID)			89.3%		58 - 144 %	"			"	
BQF0360-05RE1 (MW-90)		Wa	iter		Sampl	ed: 06/1	13/07 14:00			
Gasoline Range Hydrocarbons	NWTPH-Gx	9180		500	ug/l	10x	7F18029	06/18/07 09:52	06/19/07 00:55	
Surrogate(s): 4-BFB (FID)			104%		58 - 144 %	1x			"	
BQF0360-06 (SMW-4)		Wa	iter		Sampl	ed: 06/1	13/07 14:30			
Gasoline Range Hydrocarbons	NWTPH-Gx	13000		500	ug/l	10x	7F15016	06/15/07 10:20	06/16/07 01:01	
Surrogate(s): 4-BFB (FID)			94.8%		58 - 144 %	1x			"	
BQF0360-07RE1 (MW-86)		Wa	iter		Sampl	ed: 06/1	13/07 10:30			
Gasoline Range Hydrocarbons	NWTPH-Gx	7300		250	ug/l	5x	7F18029	06/18/07 09:52	06/18/07 22:49	
Surrogate(s): 4-BFB (FID)			124%		58 - 144 %	1x			"	
BQF0360-08RE1 (MW-102)		Wa	iter		Sampl	ed: 06/1	13/07 11:30			
Gasoline Range Hydrocarbons	NWTPH-Gx	8080		500	ug/l	10x	7F18029	06/18/07 09:52	06/19/07 01:27	
Surrogate(s): 4-BFB (FID)			106%		58 - 144 %	1x			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and the

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental

Redmond, WA/USA 98052

4006 148th Ave NE

Project Name:

COP Westlake 255-35-3

Project Number: Project Manager: WA 255-35-42-1 Elisabeth Silver

Report Created: 06/27/07 11:29

Volatile Petroleum Products by NWTPH-Gx

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0360-09 (MW-89)		Wa	iter		Sampl	ed: 06/1	13/07 13:00			
Gasoline Range Hydrocarbons	NWTPH-Gx	2450		50.0	ug/l	1x	7F15016	06/15/07 10:20	06/15/07 22:18	
Surrogate(s): 4-BFB (FID)			90.8%		58 - 144 %	"			"	
BQF0360-10 (MW-91)		Wa	iter		Sampl	ed: 06/1	13/07 13:30			
Gasoline Range Hydrocarbons	NWTPH-Gx	1180		50.0	ug/l	1x	7F15016	06/15/07 10:20	06/15/07 22:51	
Surrogate(s): 4-BFB (FID)			89.8%		58 - 144 %	"			"	
BQF0360-11 (MW-93)		Wa	iter		Sampl	ed: 06/1	13/07 14:10			
Gasoline Range Hydrocarbons	NWTPH-Gx	1330		500	ug/l	10x	7F15016	06/15/07 10:20	06/15/07 23:56	
Surrogate(s): 4-BFB (FID)			88.8%		58 - 144 %	1x			"	
BQF0360-12 (MW-92)		Wa	iter		Sampl	ed: 06/1	13/07 14:45			
Gasoline Range Hydrocarbons	NWTPH-Gx	662		50.0	ug/l	1x	7F15016	06/15/07 10:20	06/15/07 23:23	
Surrogate(s): 4-BFB (FID)			95.7%		58 - 144 %	"			n	

TestAmerica - Seattle, WA

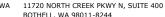
Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and Times

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE WA 255-35-42-1 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/27/07 11:29

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up


TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0360-01 (MW-87)		Wa	iter		Sampl	ed: 06/	13/07 10:35			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.243	mg/l	1x	7F18014	06/18/07 09:10	06/21/07 01:50	
Lube Oil Range Hydrocarbons	"	ND		0.485	"	"	"	"	"	
Surrogate(s): 2-FBP			79.0%		53 - 125 %	"			"	
Octacosane			99.2%		68 - 125 %	"			"	
BQF0360-02 (MW-82)		Wa	iter		Sampl	ed: 06/	13/07 11:15			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.243	mg/l	1x	7F18014	06/18/07 09:10	06/21/07 02:20	
Lube Oil Range Hydrocarbons	"	ND		0.485	"	"	"	"	"	
Surrogate(s): 2-FBP			82.3%		53 - 125 %	"			"	
Octacosane			101%		68 - 125 %	"			"	
BQF0360-03 (MW-94)		Wa	iter		Sampl	ed: 06/	13/07 12:50			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.250	mg/l	1x	7F18014	06/18/07 09:10	06/21/07 02:49	
Lube Oil Range Hydrocarbons	"	ND		0.500	"	"	"	"	"	
Surrogate(s): 2-FBP			80.4%		53 - 125 %	"			"	
Octacosane			96.4%		68 - 125 %	"			"	
BQF0360-04 (MW-49)		Wa	iter		Sampl	ed: 06/	13/07 13:20			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.238	mg/l	1x	7F18014	06/18/07 09:10	06/21/07 03:18	
Lube Oil Range Hydrocarbons	"	ND		0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			79.4%		53 - 125 %	"			"	
Octacosane			97.1%		68 - 125 %	"			"	
BQF0360-05 (MW-90)		Wa	iter		Sampl	ed: 06/	13/07 14:00			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.248	mg/l	1x	7F18014	06/18/07 09:10	06/21/07 03:48	
Lube Oil Range Hydrocarbons	"	ND		0.495	"	"	"	"	"	
Surrogate(s): 2-FBP			73.8%		53 - 125 %	"			"	_
Octacosane			91.1%		68 - 125 %	"			"	
BQF0360-06 (SMW-4)		Wa	iter		Sampl	ed: 06/	13/07 14:30			
Diesel Range Hydrocarbons	NWTPH-Dx	0.963		0.248	mg/l	1x	7F18014	06/18/07 09:10	00/21/07 01:17	Q
Lube Oil Range Hydrocarbons	"	ND		0.495	"	"	"	"	"	
Surrogate(s): 2-FBP			83.1%		53 - 125 %	"			"	
Octacosane			94.0%		68 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE WA 255-35-42-1 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/27/07 11:29

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

TestAmerica - Seattle, WA

				u South	10, 1111					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0360-07 (MW-86)		Wa	ater		Sampl	ed: 06/	13/07 10:30			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.243	mg/l	1x	7F18014	06/18/07 09:10	06/21/07 06:15	
Lube Oil Range Hydrocarbons	"	ND		0.485	"	"	"	"	"	
Surrogate(s): 2-FBP			80.2%		53 - 125 %	"			"	
Octacosane			95.5%		68 - 125 %	"			"	
BQF0360-08 (MW-102)		Wa	ater		Sampl	ed: 06/	13/07 11:30			
Diesel Range Hydrocarbons	NWTPH-Dx	0.275		0.238	mg/l	1x	7F18014	06/18/07 09:10	06/21/07 06:45	Q
Lube Oil Range Hydrocarbons	"	ND		0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			73.5%		53 - 125 %	"			"	
Octacosane			92.9%		68 - 125 %	"			"	
BQF0360-09 (MW-89)		Wa	ater		Sampl	ed: 06/	13/07 13:00			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.236	mg/l	1x	7F18014	06/18/07 09:10	06/21/07 07:14	
Lube Oil Range Hydrocarbons	"	ND		0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			52.1%		53 - 125 %	"			"	Z
Octacosane			70.8%		68 - 125 %	"			"	
BQF0360-10 (MW-91)		Wa	ater		Sampl	ed: 06/	13/07 13:30			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.236	mg/l	1x	7F18014	06/18/07 09:10	06/21/07 07:44	
Lube Oil Range Hydrocarbons	"	ND		0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			70.3%		53 - 125 %	"			"	
Octacosane			88.1%		68 - 125 %	"			"	
BQF0360-11 (MW-93)		Wa	ater		Sampl	ed: 06/	13/07 14:10			
Diesel Range Hydrocarbons	NWTPH-Dx	0.822		0.236	mg/l	1x	7F18014	06/18/07 09:10	06/21/07 08:14	Q1
Lube Oil Range Hydrocarbons	"	1.25		0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			83.5%		53 - 125 %	"			"	
Octacosane			89.4%		68 - 125 %	"			"	
BQF0360-12 (MW-92)		Wa	ater		Sampl	ed: 06/	13/07 14:45			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.238	mg/l	1x	7F18014	06/18/07 09:10	06/21/07 08:43	
Lube Oil Range Hydrocarbons	"	ND		0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			65.5%		53 - 125 %	"			"	
Octacosane										

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE Project Number: WA 255-35-42-1 Report Created: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/27/07 11:29

Total Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

Notes	Analyzed	Prepared	Batch	Dil	Units	MRL	MDL*	Result	Method		Analyte
			3/07 10:35	led: 06/13	Samp		er	Wat		(MW-87)	BQF0360-01
	06/18/07 22:18	06/15/07 14:39	7F15046	1x	mg/l	0.00100		ND	EPA 6020		Lead
			3/07 11:15	led: 06/13	Samp		er	Wat		(MW-82)	BQF0360-02
	06/18/07 22:24	06/15/07 14:39	7F15046	1x	mg/l	0.00100		0.00127	EPA 6020		Lead
			3/07 12:50	led: 06/13	Samp		er	Wat		(MW-94)	BQF0360-03
	06/18/07 22:30	06/15/07 14:39	7F15046	1x	mg/l	0.00100		0.00213	EPA 6020		Lead
			3/07 13:20	led: 06/13	Samp		er	Wat		(MW-49)	BQF0360-04
	06/18/07 22:36	06/15/07 14:39	7F15046	1x	mg/l	0.00100		0.00242	EPA 6020		Lead
			3/07 14:00	led: 06/13	Samp		er	Wat		(MW-90)	BQF0360-05
	06/18/07 22:42	06/15/07 14:39	7F15046	1x	mg/l	0.00100		0.00214	EPA 6020		Lead
			3/07 14:30	led: 06/13	Samp		er	Wat		(SMW-4)	BQF0360-06
	06/18/07 22:48	06/15/07 14:39	7F15046	1x	mg/l	0.00100		0.00774	EPA 6020		Lead
			3/07 10:30	led: 06/13	Samp		er	Wat		(MW-86)	BQF0360-07
	06/18/07 22:53	06/15/07 14:39	7F15046	1x	mg/l	0.00100		ND	EPA 6020		Lead
			3/07 11:30	led: 06/13	Samp		er	Wat		(MW-102)	BQF0360-08
-	06/18/07 23:11	06/15/07 14:39	7F15046	1x	mg/l	0.00100		0.00454	EPA 6020		Lead
			3/07 13:00	led: 06/13	Samp		er	Wat		(MW-89)	BQF0360-09
	06/18/07 23:17	06/15/07 14:39	7F15046	1x	mg/l	0.00100		0.0125	EPA 6020	/	Lead
			3/07 13:30	led: 06/13	Samp		er	Wat		(MW-91)	BOF0360-10
	06/18/07 23:23	06/15/07 14:39	7F15046	1x	mg/l	0.00100		0.00180	EPA 6020	,	Lead
			3/07 14:10	led: 06/13	Samn		er	Wat		(MW-93)	ROF0360-11
	06/18/07 23:29	06/15/07 14:39	7F15046	1x		0.00100			EPA 6020	(11111-75)	
	06/18/07 23:23	06/15/07 14:39	7F15046 3/07 13:30 7F15046 3/07 14:10	lx bled: 06/1; lx bled: 06/1;	mg/l Samp	0.00100	 er 	0.0125 Wat	EPA 6020	(MW-91) (MW-93)	Lead BQF0360-10

TestAmerica - Seattle, WA

and trong

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental

Project Name:

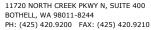
COP Westlake 255-35-3

4006 148th Ave NE Redmond, WA/USA 98052 Project Number: Project Manager: WA 255-35-42-1 Elisabeth Silver

Report Created: 06/27/07 11:29

Total Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA


Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0360-12	(MW-92)		Wa	ter		Sam	pled: 06/1	3/07 14:45			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F15046	06/15/07 14:39	06/18/07 23:35	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

million

Delta Environmental 4006 148th Ave NE

Redmond, WA/USA 98052

Project Name:

COP Westlake 255-35-3

Project Number: Project Manager: WA 255-35-42-1 Elisabeth Silver Report Created: 06/27/07 11:29

Dissolved Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0360-01	(MW-87)		Wa	iter		Samj	oled: 06/1	13/07 10:35			P
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18002	06/18/07 05:58	06/18/07 08:47	R
BQF0360-02	(MW-82)		Wa	iter		Samj	pled: 06/1	13/07 11:15			P
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18002	06/18/07 05:58	06/18/07 08:53	
BQF0360-03	(MW-94)		Wa	iter		Samj	pled: 06/1	13/07 12:50			P
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18002	06/18/07 05:58	06/18/07 08:59	
BQF0360-04	(MW-49)		Wa	iter		Samj	pled: 06/1	13/07 13:20			P
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18002	06/18/07 05:58	06/18/07 09:05	
BQF0360-05	(MW-90)		Wa	iter		Samj	pled: 06/1	13/07 14:00			P
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18002	06/18/07 05:58	06/18/07 09:11	
BQF0360-06	(SMW-4)		Wa	iter		Samj	pled: 06/1	13/07 14:30			P
Lead		EPA 6020 - Diss	0.00573		0.00100	mg/l	1x	7F18002	06/18/07 05:58	06/18/07 09:16	
BQF0360-07	(MW-86)		Wa	iter		Samj	pled: 06/1	13/07 10:30			P'
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18002	06/18/07 05:58	06/18/07 09:34	
BQF0360-08	(MW-102)		Wa	iter		Samj	pled: 06/1	13/07 11:30			P'
Lead		EPA 6020 - Diss	0.00183		0.00100	mg/l	1x	7F18002	06/18/07 05:58	06/18/07 09:40	
BQF0360-09	(MW-89)		Wa	ıter		Samı	oled: 06/1	13/07 13:00			P'
Lead	(EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18002	06/18/07 05:58	06/18/07 09:46	
BOF0360-10	(MW-91)		Wa	ıter		Samı	oled: 06/1	13/07 13:30			P'
Lead	()	EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18002	06/18/07 05:58	06/18/07 09:52	
BOF0360-11	(MW-93)		Ws	ıter		Sami	oled: 06/1	13/07 14:10			P'
Lead	(11111-93)	EPA 6020 - Diss	ND		0.00100	mg/l	lx	7F18002	06/18/07 05:58	06/18/07 09:58	

TestAmerica - Seattle, WA

Carlling

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental 4006 148th Ave NE

Redmond, WA/USA 98052

Project Name:

COP Westlake 255-35-3

Project Number: Project Manager: WA 255-35-42-1 Elisabeth Silver

Report Created: 06/27/07 11:29

Dissolved Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0360-12	(MW-92)		Wa	iter		Sam	pled: 06/1	13/07 14:45			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18002	06/18/07 05:58	06/18/07 10:04	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

million

4006 148th Ave NEProject Number:WA 255-35-42-1Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/27/07 11:29

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0360-01	(MW-87)		Wa	nter		Sampl	ed: 06/1	3/07 10:35			
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F18011	06/18/07 08:27	06/18/07 11:15	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl et	ther	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			110%		70 - 130 %	"			"	
	Toluene-d8			112%		75 - 125 %	"			"	
	4-BFB			99.5%		75 - 125 %	"			"	
BQF0360-02	(MW-82)		Wa	ater		Sampl	ed: 06/1	3/07 11:15			
Methyl tert-butyl et	ther	EPA 8260B	ND		1.00	ug/l	1x	7F18011	06/18/07 08:27	06/18/07 11:42	
Naphthalene		"	154		5.00	"	"	"	"	"	
Toluene		"	179		0.500	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			123%		70 - 130 %	"			"	
	Toluene-d8			110%		75 - 125 %	"			"	
	4-BFB			92.5%		75 - 125 %	"			"	
BQF0360-02RE	1 (MW-82)		Wa	ater		Sampl	ed: 06/1	3/07 11:15			
Benzene		EPA 8260B	630		10.0	ug/l	20x	7F19043	06/19/07 15:27	06/19/07 18:55	
Ethylbenzene		"	375		10.0	"	"	"	"	"	
o-Xylene		"	440		20.0	"	"	"	"	"	
m,p-Xylene		"	1360		40.0	"	"	"	"	"	
Xylenes (total)		"	1800		60.0	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			94.0%		70 - 130 %	1x			"	
	Toluene-d8			99.5%		75 - 125 %	"			"	
	4-BFB			98.5%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

" and Timen

4006 148th Ave NEProject Number:WA 255-35-42-1Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/27/07 11:29

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0360-03	(MW-94)		W	ater		Sampl	ed: 06/	13/07 12:50			
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F20010	06/20/07 07:28	06/20/07 11:44	
Ethylbenzene		"	0.710		0.500	"	"	"	"	"	
Methyl tert-butyl etl	ner	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	96.7		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			94.5%		70 - 130 %	"			"	
	Toluene-d8			98.5%		75 - 125 %	"			"	
	4-BFB			98.0%		75 - 125 %	"			"	
BQF0360-04	(MW-49)		W	ater		Sampl	ed: 06/	13/07 13:20			
Benzene	•	EPA 8260B	ND		0.500	ug/l	1x	7F18011	06/18/07 08:27	06/18/07 17:14	
Ethylbenzene		"	ND		0.500	"	"	"	"	•	
Methyl tert-butyl etl	ner	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			112%		70 - 130 %	"			"	
	Toluene-d8			110%		75 - 125 %	"			"	
	4-BFB			97.0%		75 - 125 %	"			"	
BQF0360-05	(MW-90)		w	ater		Sampl	ed: 06/	13/07 14:00			
Ethylbenzene		EPA 8260B	194		0.500	ug/l	1x	7F18011	06/18/07 08:27	06/18/07 13:04	
Methyl tert-butyl etl	ner	"	ND		1.00	"	"	"	"	"	
Toluene		"	1.90		0.500	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			140%		70 - 130 %	"			"	
	Toluene-d8			112%		75 - 125 %	"			"	
	4-BFB			90.0%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and the

4006 148th Ave NEProject Number:WA 255-35-42-1Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/27/07 11:29

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0360-05RE1 (MW-90)		W	ater		Sampl	ed: 06/1	13/07 14:00			
Benzene	EPA 8260B	118		5.00	ug/l	10x	7F19043	06/19/07 15:27	06/19/07 19:25	
Naphthalene	"	166		50.0	"	"	"	"	"	
o-Xylene	"	50.8		10.0	"	"	"	"	"	
m,p-Xylene	"	1240		20.0	"	"	"	"	"	
Xylenes (total)	"	1290		30.0	"	"	"	"	"	
Surrogate(s): 1,2-DCA-d4			94.5%		70 - 130 %	lx			"	
Toluene-d8			102%		75 - 125 %	"			"	
4-BFB			96.0%		75 - 125 %	"			"	
BQF0360-06 (SMW-4)		W	ater		Sampl	ed: 06/1	13/07 14:30			
Methyl tert-butyl ether	EPA 8260B	ND		1.00	ug/l	1x	7F18011	06/18/07 08:27	06/18/07 13:31	
Toluene	"	14.4		0.500	"	"	"	"	"	
o-Xylene	"	6.05		1.00	"	"	"	"	"	
m,p-Xylene	"	36.5		2.00	"	"	"	"	"	
Xylenes (total)	"	42.6		3.00	"	"	"	"	"	
Surrogate(s): 1,2-DCA-d4			139%		70 - 130 %	"			"	ZX
Toluene-d8			114%		75 - 125 %	"			"	
4-BFB			94.5%		75 - 125 %	"			"	
BQF0360-06RE1 (SMW-4)		w	ater		Sampl	ed: 06/1	13/07 14:30			
Benzene	EPA 8260B	2070		50.0	ug/l	100x	7F19043	06/19/07 15:27	06/19/07 19:54	
Ethylbenzene	"	1720		50.0	"	"	"	"	"	
Naphthalene	#	1160		500	"	"	"	"	"	
Surrogate(s): 1,2-DCA-d4			93.0%		70 - 130 %	lx			"	
Toluene-d8			100%		75 - 125 %	"			"	
4-BFB			97.0%		75 - 125 %	"			"	
BQF0360-07 (MW-86)		W	ater		Sampl	led: 06/1	13/07 10:30			RL7
Ethylbenzene	EPA 8260B	11.9		2.50	ug/l	5x	7F18011	06/18/07 08:27	06/18/07 19:04	
Methyl tert-butyl ether	"	ND		5.00	"	"	"	"	"	
Naphthalene	"	ND		25.0	"	"	"	"	"	
Toluene	"	7.40		2.50	"	"	"	"	"	
o-Xylene	"	ND		5.00	"	"	"	"	"	
m,p-Xylene	"	26.9		10.0	"	"	"	"	"	
Xylenes (total)	"	26.9		15.0	"	"	"	"	"	
Surrogate(s): 1,2-DCA-d4			109%		70 - 130 %	1x			"	
Toluene-d8			110%		75 - 125 %	"			"	
4-BFB			100%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and trong

4006 148th Ave NEProject Number:WA 255-35-42-1Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/27/07 11:29

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0360-07RE1	(MW-86)		W:	ater		Sampl	ed: 06/1	3/07 10:30			
Benzene		EPA 8260B	2430		20.0	ug/l	40x	7F19043	06/19/07 15:27	06/19/07 20:24	
Surrogate(s):	1,2-DCA-d4			92.0%		70 - 130 %	1x			"	
	Toluene-d8			100%		75 - 125 %	"			"	
	4-BFB			99.0%		75 - 125 %	"			"	
BQF0360-08 (I	MW-102)		W	ater		Sampl	ed: 06/1	3/07 11:30			
Ethylbenzene		EPA 8260B	182		0.500	ug/l	1x	7F18011	06/18/07 08:27	06/18/07 14:25	
Methyl tert-butyl ethe	er	"	ND		1.00	"	"	"	"	"	
Toluene		"	2.26		0.500	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			118%		70 - 130 %	"			"	
	Toluene-d8			110%		75 - 125 %	"			"	
	4-BFB			94.0%		75 - 125 %	"			"	
BQF0360-08RE1	(MW-102)		W	ater		Sampl	ed: 06/1	3/07 11:30			
Benzene		EPA 8260B	320		5.00	ug/l	10x	7F19043	06/19/07 15:27	06/19/07 20:54	
Naphthalene		"	139		50.0	"	"	"	"	"	
o-Xylene		"	102		10.0	"	"	"	"	"	
m,p-Xylene		"	792		20.0	"	"	"	"	"	
Xylenes (total)		"	894		30.0	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			92.5%		70 - 130 %	1x			"	
0 ,,	Toluene-d8			101%		75 - 125 %	"			"	
	4-BFB			98.0%		75 - 125 %	"			"	
BQF0360-09 (I	MW-89)		W	ater		Sampl	ed: 06/1	3/07 13:00			
Benzene	_	EPA 8260B	21.6		0.500	ug/l	1x	7F18011	06/18/07 08:27	06/18/07 14:53	
Ethylbenzene		"	148		0.500	"	"	"	"	"	
Methyl tert-butyl ethe	er	"	ND		1.00	"	"	"	"	"	
Гoluene		"	72.2		0.500	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			111%		70 - 130 %	"			"	
,	Toluene-d8			109%		75 - 125 %	"			"	
	4-BFB			96.0%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and trong

4006 148th Ave NEProject Number:WA 255-35-42-1Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/27/07 11:29

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0360-09RE1	(MW-89)		W	ater		Sampl	ed: 06/1	3/07 13:00			
Naphthalene		EPA 8260B	596		200	ug/l	40x	7F19043	06/19/07 15:27	06/19/07 21:24	
o-Xylene		"	202		40.0	"	"	"	"	"	
m,p-Xylene		"	613		80.0	"	"	"	"	"	
Xylenes (total)		"	816		120	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			91.5%		70 - 130 %	1x			"	
	Toluene-d8			100%		75 - 125 %	"			"	
	4-BFB			97.5%		75 - 125 %	"			"	
BQF0360-10 (1	MW-91)		w	ater		Sampl	ed: 06/1	13/07 13:30			
Benzene	<u> </u>	EPA 8260B	ND		0.500	ug/l	1x	7F18011	06/18/07 08:27	06/18/07 17:43	
Ethylbenzene		"	0.580		0.500	"	"	"	"	"	
Methyl tert-butyl ethe	er	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	91.6		5.00	"	"	"	"	"	
Toluene		"	0.770		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			112%		70 - 130 %	"			"	
	Toluene-d8			110%		75 - 125 %	"			"	
	4-BFB			94.5%		75 - 125 %	"			"	
BQF0360-11 (I	MW-93)		w	ater		Sampl	ed: 06/1	3/07 14:10			
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F18011	06/18/07 08:27	06/18/07 18:10	
Ethylbenzene		"	1.77		0.500	"	"	"	"	"	
Methyl tert-butyl ethe	er	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	5.40		5.00	"	"	"	"	"	
Toluene		"	0.680		0.500	"	"	"	"	"	
o-Xylene		"	1.73		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	3.01		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			119%		70 - 130 %	"			"	
	Toluene-d8			109%		75 - 125 %	"			"	
	4-BFB			96.0%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and trong

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental 4006 148th Ave NE

Redmond, WA/USA 98052

Project Name:

COP Westlake 255-35-3

Project Number: Project Manager: WA 255-35-42-1 Elisabeth Silver

Report Created: 06/27/07 11:29

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0360-12 (MW-92)		Wa	ter		Sampl	ed: 06/1	3/07 14:45			
Benzene	EPA 8260B	30.2		0.500	ug/l	1x	7F18011	06/18/07 08:27	06/18/07 18:37	
Ethylbenzene	"	8.98		0.500	"	**	"	"	"	
Methyl tert-butyl ether	"	ND		1.00	"	"	"	"	"	
Naphthalene	"	ND		5.00	"	"	"	"	"	
Toluene	"	ND		0.500	"	"	"	"	"	
o-Xylene	"	ND		1.00	"	"	"	"	"	
m,p-Xylene	"	ND		2.00	"	"	"	"	"	
Xylenes (total)	"	ND		3.00	"	"	"	"	"	
Surrogate(s): 1,2-DCA-d4			118%		70 - 130 %	"			"	
Toluene-d8			110%		75 - 125 %	"			"	
4- BFB			97.5%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

million

Delta Environmental

Project Name:

COP Westlake 255-35-3

4006 148th Ave NE Project Number:
Redmond, WA/USA 98052 Project Manager:

WA 255-35-42-1 Elisabeth Silver Report Created: 06/27/07 11:29

06/15/07 17:24

Volatile Petroleum Products by NWTPH-Gx - Laboratory Quality Control Results

			T	estAmerica -	Seattle, W	/A		•						
QC Batch: 7F15016	Water I	Preparation	n Method:	EPA 5030B	(P/T)									
Analyte	Method	Result	MDL	* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (7F15016-BLK1)								Extr	acted:	06/15/07 10):20			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x							06/15/07 11:44	
Surrogate(s): 4-BFB (FID)		Recovery:	89.2%	Lin	nits: 58-144%	6 "							06/15/07 11:44	
LCS (7F15016-BS1)								Extr	acted:	06/15/07 10	:20			
Gasoline Range Hydrocarbons	NWTPH-Gx	913		50.0	ug/l	1x		1000	91.3%	(80-120)			06/15/07 12:17	
Surrogate(s): 4-BFB (FID)		Recovery:	95.3%	Lin	nits: 58-144%	ó "							06/15/07 12:17	
Duplicate (7F15016-DUP1)				QC Source:	BQF0237-0)1		Extr	acted:	06/15/07 10	:20			
Gasoline Range Hydrocarbons	NWTPH-Gx	2750		50.0	ug/l	1x	2770	-			0.725%	6 (25)	06/15/07 16:14	
Surrogate(s): 4-BFB (FID)		Recovery:	108%	Lin	nits: 58-144%	6 "							06/15/07 16:14	
Duplicate (7F15016-DUP2)				QC Source:	BQF0360-1	1		Extr	acted:	06/15/07 10):20			
Gasoline Range Hydrocarbons	NWTPH-Gx	1180		500	ug/l	10x	1330				12.0%	(25)	06/16/07 00:28	
Surrogate(s): 4-BFB (FID)		Recovery:	88.3%	Lin	nits: 58-144%	6 1x							06/16/07 00:28	
Matrix Spike (7F15016-MS1)				QC Source:	BQF0360-0)1		Extr	acted:	06/15/07 10):20			
Gasoline Range Hydrocarbons	NWTPH-Gx	1120		50.0	ug/l	1x	162	1000	95.8%	(75-131)			06/15/07 17:24	

QC Batch: 7F18029	Water 1	Preparation	Method: E	PA 5030B	(P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (7F18029-BLK1)								Extr	acted:	06/18/07 09	9:52			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x							06/18/07 12:16	
Surrogate(s): 4-BFB (FID)		Recovery:	88.3%	Lin	nits: 58-144%	"							06/18/07 12:16	
LCS (7F18029-BS1)								Extr	acted:	06/18/07 09	9:52			
Gasoline Range Hydrocarbons	NWTPH-Gx	1000		50.0	ug/l	1x		1000	100%	(80-120)			06/18/07 12:48	
Surrogate(s): 4-BFB (FID)		Recovery:	93.8%	Lin	nits: 58-144%	"							06/18/07 12:48	
Duplicate (7F18029-DUP1)				QC Source:	BQF0334-02			Extr	acted:	06/18/07 09	9:52			
Gasoline Range Hydrocarbons	NWTPH-Gx	279		50.0	ug/l	1x	295				5.57%	(25)	06/18/07 13:51	
Surrogate(s): 4-BFB (FID)		Recovery:	92.3%	Lin	nits: 58-144%	"							06/18/07 13:51	
Duplicate (7F18029-DUP2)				QC Source:	BQF0334-04			Extr	acted:	06/18/07 09	9:52			
Gasoline Range Hydrocarbons	NWTPH-Gx	4430		50.0	ug/l	1x	4740				6.76%	(25)	06/18/07 14:54	
Surrogate(s): 4-BFB (FID)		Recovery:	198%	Lin	nits: 58-144%	"							06/18/07 14:54	

Limits: 58-144%

Recovery: 96.3%

TestAmerica - Seattle, WA

Surrogate(s): 4-BFB (FID)

Calling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

11720 NORTH CREEK PKWY N, SUITE 400

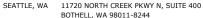
BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE Project Number: WA 255-35-42-1 Report Created: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/27/07 11:29

Volatile Petroleum Products by NWTPH-Gx - Laboratory Quality Control Results

TestAmerica - Seattle, WA


QC Batch: 7F18029	Water I	Preparation	Method: E	PA 5030B	(P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Matrix Spike (7F18029-MS1)				QC Source:	BQF0334-0)2		Extr	acted:	06/18/07 09	:52			
Gasoline Range Hydrocarbons	NWTPH-Gx	1420		50.0	ug/l	1x	295	1000	112%	(75-131)			06/19/07 03:01	
Surrogate(s): 4-BFB (FID)		Recovery:	108%	Lin	nits: 58-144%	6 "							06/19/07 03:01	
Matrix Spike Dup (7F18029-M	ASD1)			QC Source:	BQF0334-0)2		Extr	acted:	06/18/07 09	:52			
Gasoline Range Hydrocarbons	NWTPH-Gx	1380		50.0	ug/l	1x	295	1000	108%	(75-131)	2.86%	(25)	06/19/07 03:33	
Surrogate(s): 4-BFB (FID)		Recovery:	85.7%	Lim	nits: 58-144%	6 "							06/19/07 03:33	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental

Project Name: C

COP Westlake 255-35-3

4006 148th Ave NE Redmond, WA/USA 98052 Project Number: WA 255-35-42-1
Project Manager: Elisabeth Silver

Report Created: 06/27/07 11:29

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F18014	Water I	Preparation	Method: EP	A 3510C	!									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD (I	Limits)	Analyzed	Notes
Blank (7F18014-BLK1)								Exti	acted:	06/18/07 09):10			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.250	mg/l	1x						0	6/20/07 23:53	
Lube Oil Range Hydrocarbons	"	ND		0.500	"	"							"	
Surrogate(s): 2-FBP		Recovery:	61.2%	Lin	nits: 53-125%	"							06/20/07 23:53	
Octacosane			84.0%		68-125%	"							"	
LCS (7F18014-BS1)								Exti	acted:	06/18/07 09):10			
Diesel Range Hydrocarbons	NWTPH-Dx	2.03		0.250	mg/l	1x		2.00	102%	(61-132)		0	6/21/07 00:22	
Surrogate(s): 2-FBP		Recovery:	86.0%	Lin	nits: 53-125%	"							06/21/07 00:22	
Octacosane			96.0%		68-125%	"							"	
LCS Dup (7F18014-BSD1)								Exti	acted:	06/18/07 09):10			
Diesel Range Hydrocarbons	NWTPH-Dx	2.09		0.250	mg/l	1x		2.00	104%	(61-132)	2.91%	(35) 0	6/21/07 00:51	
Surrogate(s): 2-FBP		Recovery:	86.4%	Lin	nits: 53-125%	"							06/21/07 00:51	
Octacosane			99.6%		68-125%	"							"	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental

Redmond, WA/USA 98052

4006 148th Ave NE

Project Name:

COP Westlake 255-35-3

Project Number: Project Manager:

WA 255-35-42-1 Elisabeth Silver

Report Created: 06/27/07 11:29

Total Metals by EPA 6000/7000 Series Methods - Laboratory Quality Control Results

TestAmerica - Seattle, WA

			1 68	stAmerica -	Scattle,	W A							
QC Batch: 7F15046	Water P	reparation M	lethod: E	EPA 3020A									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (7F15046-BLK1)								Extracted:	06/15/07 14	1:39			
Lead	EPA 6020	ND		0.00100	mg/l	1x			-			06/18/07 21:31	
LCS (7F15046-BS1)								Extracted:	06/15/07 14	1:39			
Lead	EPA 6020	0.0730		0.00100	mg/l	1x		0.0800 91.2%	(80-120)			06/18/07 21:37	
Duplicate (7F15046-DUP1)				QC Source:	BQF0360	-01		Extracted:	06/15/07 14	1:39			
Lead	EPA 6020	ND		0.00100	mg/l	1x	ND			28.1%	(20)	06/18/07 22:06	R4
Matrix Spike (7F15046-MS1)				QC Source:	BQF0360	-01		Extracted:	06/15/07 14	1:39			
Lead	EPA 6020	0.0764		0.00100	mg/l	1x	0.000550	0.0800 94.8%	(80-120)			06/18/07 22:00	
Post Spike (7F15046-PS1)				QC Source:	BQF0360	-01		Extracted:	06/15/07 14	1:39			
Lead	EPA 6020	0.0960			ug/ml	1x	0.000550	0.100 95.4%	(75-125)			06/18/07 21:43	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

COP Westlake 255-35-3

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental Project Name:

4006 148th Ave NE WA 255-35-42-1 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/27/07 11:29

Dissolved Metals by EPA 6000/7000 Series Methods - Laboratory Quality Control Results

			Tes	stAmerica -	Seattle, W	/A								
QC Batch: 7F18002	Water P	reparation M	ethod: H	EPA 3005A										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result		% EC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (7F18002-BLK1)								Extract	ted: 0	6/18/07 05	:58			
Lead	EPA 6020 - Diss	ND		0.00100	mg/l	1x							06/18/07 08:06	
LCS (7F18002-BS1)								Extract	ted: 0	6/18/07 05	:58			
Lead	EPA 6020 - Diss	0.208		0.00100	mg/l	1x		0.200 10	04%	(80-120)	-		06/18/07 08:24	
Duplicate (7F18002-DUP1)				QC Source:	BQF0360-0)1		Extract	ted: 0	6/18/07 05	:58			
Lead	EPA 6020 - Diss	ND		0.00100	mg/l	1x	ND	-	-			(20)	06/18/07 08:35	R4
Matrix Spike (7F18002-MS1)				QC Source:	BQF0360-0)1		Extract	ted: 0	6/18/07 05	:58			
Lead	EPA 6020 - Diss	0.0983		0.00100	mg/l	1x	ND	0.100 98	3.3%	(77-120)			06/18/07 08:29	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Delta Environmental

Project Name:

COP Westlake 255-35-3

4006 148th Ave NE Project Number:
Redmond, WA/USA 98052 Project Manager:

WA 255-35-42-1 Report Created: Elisabeth Silver 06/27/07 11:29

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F18011	Water I	Preparation	Method: EI	PA 5030B	1									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (7F18011-BLK1)								Ext	racted:	06/18/07 08	:27			
Benzene	EPA 8260B	ND		0.500	ug/l	1x							06/18/07 10:19	
Ethylbenzene	"	ND		0.500	"	"							"	
Methyl tert-butyl ether	"	ND		1.00	"	"							"	
Naphthalene	"	ND		5.00	"	"							"	
Toluene	"	ND		0.500	"	"							"	
o-Xylene	"	ND		1.00	"	"							"	
m,p-Xylene	"	ND		2.00	"	"							"	
Xylenes (total)	"	ND		3.00	"	"							"	
Surrogate(s): 1,2-DCA-d4		Recovery:	114%	Lin	nits: 70-130%	"							06/18/07 10:19	
Toluene-d8			111%		75-125%	"							"	
4-BFB			99.0%		75-125%	"							"	
LCS (7F18011-BS1)								Ext	racted:	06/18/07 08	:27			
Benzene	EPA 8260B	18.3		0.500	ug/l	1x		20.0	91.5%	(80-120)			06/18/07 09:18	
Ethylbenzene	"	19.4		0.500	"	"		"	97.0%	(75-125)			"	
Methyl tert-butyl ether	"	19.7		1.00	"	"		"	98.5%	(75-126)			"	
Naphthalene	"	16.8		5.00	"	"		"	84.0%	(65-144)			"	
Toluene	"	20.1		0.500	"	"		"	100%	(75-125)			"	
o-Xylene	"	17.2		1.00	"	"		"	86.0%	(75-130)			"	
m,p-Xylene	"	35.8		2.00	"	"		40.0	89.5%	(75-125)			"	
Xylenes (total)	"	53.0		3.00	"	"		60.0	88.3%	"			"	
Surrogate(s): 1,2-DCA-d4		Recovery:	102%	Lin	nits: 70-130%	"							06/18/07 09:18	
Toluene-d8			112%		75-125%	"							"	
4-BFB			118%		75-125%	"							"	
LCS Dup (7F18011-BSD1)								Ext	racted:	06/18/07 08	:27			
Benzene	EPA 8260B	16.7		0.500	ug/l	1x		20.0	83.5%	(80-120)	9.14%	(20)	06/18/07 09:48	
Ethylbenzene	"	18.7		0.500	"	"		"	93.5%	(75-125)	3.67%	, "	"	
Methyl tert-butyl ether	"	17.6		1.00	"	"		"	88.0%	(75-126)	11.3%		"	
Naphthalene	"	21.9		5.00	"	"		"	110%	(65-144)	26.4%	, "	"	
Γoluene	"	18.4		0.500	"	"		"	92.0%	(75-125)	8.83%		"	
o-Xylene	"	18.6		1.00	"	"		"	93.0%	(75-130)	7.82%		"	
n,p-Xylene	"	38.1		2.00	"	"		40.0	95.2%	(75-125)	6.22%	, "	"	
Xylenes (total)	"	56.7		3.00	"	"		60.0	94.5%	"	6.75%		"	
Surrogate(s): 1,2-DCA-d4		Recovery:	110%	Lin	nits: 70-130%	"							06/18/07 09:48	
Toluene-d8		ŕ	111%		75-125%	"							"	
4-BFB			99.5%		75-125%	"							"	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

4006 148th Ave NEProject Number:WA 255-35-42-1Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/27/07 11:29

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA


QC Batch: 7F19043	Water I	Preparation	Method:	EPA 5030B	3									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (7F19043-BLK1)								Ext	racted:	06/19/07 13	3:35			
Benzene	EPA 8260B	ND		0.500	ug/l	1x							06/19/07 18:25	
Ethylbenzene	"	ND		0.500	"	"							"	
Methyl tert-butyl ether	"	ND		1.00	"	"							"	
Naphthalene	"	ND		5.00	"	"							"	
Toluene	"	ND		0.500	"	"							"	
o-Xylene	"	ND		1.00	"	"							"	
m,p-Xylene	"	ND		2.00	"	"							"	
Xylenes (total)	"	ND		3.00	"	"							"	
Surrogate(s): 1,2-DCA-d4		Recovery:	94.0%	Lii	mits: 70-130	% "							06/19/07 18:25	
Toluene-d8			97.0%		75-125	5% "							"	
4-BFB			98.5%		75-125	5% "							"	
LCS (7F19043-BS1)								Ext	racted:	06/19/07 13	3:35			
Benzene	EPA 8260B	18.4		0.500	ug/l	1x		20.0	92.0%	(80-120)			06/19/07 16:55	
Ethylbenzene	"	18.8		0.500	"	,,		"	94.0%	(75-125)			"	
Methyl tert-butyl ether	"	17.4		1.00	"	,,		"	87.0%	(75-126)			,,	
Naphthalene	"	22.6		5.00	,,			,,	113%	(65-144)			"	
Toluene		18.6		0.500	"			,,	93.0%	(75-125)			,,	
o-Xylene		18.9		1.00	"			,,	94.5%	(75-130)			,,	
m,p-Xylene	"	38.2		2.00	,,			40.0	95.5%	(75-125)			,,	
Xylenes (total)	"	57.2		3.00	"	"		60.0	95.3%	"			,,	
Surrogate(s): 1,2-DCA-d4		Recovery:	105%	Lii	nits: 70-130	% "							06/19/07 16:55	
Toluene-d8			99.0%		75-125								"	
4-BFB			101%		75-125								"	
I CC D (7F10042 DCD1)								Eve	raatad:	06/19/07 13	1.25			
LCS Dup (7F19043-BSD1) Benzene	EPA 8260B	18.4		0.500	ug/l	1x		20.0	92.0%	(80-120)	0.00%	(20)	06/19/07 17:19	
	El A 8200B	18.8		0.500	ug/i	"		20.0			0.00%	` ′	00/19/07 17.19	
Ethylbenzene Methyl tort hytyl other		18.8		1.00	,,			,,	94.0%	(75-125)			,,	
Methyl tert-butyl ether		21.7		5.00	,,			,,	97.0%	(75-126)	10.9% 4.06%		,,	
Naphthalene					,,			,,	108%	(65-144)			,,	
Toluene		18.9		0.500	,,			,,	94.5%	(75-125)	1.60%	,,		
o-Xylene		19.2		1.00					96.0%	(75-130)	1.57%			
m,p-Xylene		38.6		2.00		"		40.0	96.5%	(75-125)	1.04%			
Xylenes (total)	"	57.8		3.00	"			60.0	96.3%	"	1.04%		"	
Surrogate(s): 1,2-DCA-d4		Recovery:	102%	Lin	nits: 70-130								06/19/07 17:19	
Toluene-d8			99.0%		75-125								"	
<i>4-BFB</i>			98.5%		75-125	5% "							"	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE Project Number: WA 255-35-42-1 Report Created: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/27/07 11:29

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F20010	Water 1	Preparation	Method:	EPA 5030F	3									
Analyte	Method	Result	MDL	* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	No
Blank (7F20010-BLK1)								Ext	racted:	06/20/07 07	:28			
Benzene	EPA 8260B	ND		0.500	ug/l	1x							06/20/07 11:06	
Ethylbenzene	"	ND		0.500	"	"							"	
Methyl tert-butyl ether	"	ND		1.00	"	"							"	
Naphthalene	"	ND		5.00	"	"							"	
Γoluene	"	ND		0.500	"	"							"	
o-Xylene	"	ND		1.00	"	"							"	
m,p-Xylene	"	ND		2.00	"	"							"	
Xylenes (total)	"	ND		3.00	"	"							"	
Surrogate(s): 1,2-DCA-d4		Recovery:	89.5%	Li	mits: 70-130	% "							06/20/07 11:06	
Toluene-d8			96.5%		75-125	% "							"	
4-BFB			102%		75-125	% "							"	
LCS (7F20010-BS1)								Ext	racted:	06/20/07 07	:28			
Benzene	EPA 8260B	19.1		0.500	ug/l	1x		20.0	95.5%	(80-120)			06/20/07 09:23	
Ethylbenzene	"	19.4		0.500	"			"	97.0%	(75-125)			"	
Methyl tert-butyl ether	"	18.3		1.00	"			"	91.5%	(75-126)			"	
Naphthalene	"	19.6		5.00	"			"	98.0%	(65-144)			"	
Toluene	"	19.3		0.500	"			"	96.5%	(75-125)			"	
o-Xylene	"	19.8		1.00	"			"	99.0%	(75-130)			"	
m,p-Xylene	"	39.0		2.00	"			40.0	97.5%	(75-125)			"	
Xylenes (total)	"	58.8		3.00	"			60.0	98.0%	"			"	
Surrogate(s): 1,2-DCA-d4		Recovery:	100%	Li	mits: 70-130	% "							06/20/07 09:23	
Toluene-d8		necovery.	98.0%	23.	75-125								"	
4-BFB			99.5%		75-125								"	
LCC D (#E20010 BCD1)								Ent	ua atadı	06/20/07 07				
LCS Dup (7F20010-BSD1) Benzene	EPA 8260B	18.8		0.500	na/1	1x		20.0	94.0%	(80-120)	1.58%	(20)	06/20/07 09:56	
	EFA 8200B			0.500	ug/l "	ıx "		20.0					00/20/07 09.30	
Ethylbenzene Mothyl tort hytril other		18.9			,,	,		,,	94.5%	(75-125)	2.61%		,,	
Methyl tert-butyl ether Naphthalene	,,	18.5 20.0		1.00 5.00	,,	,		,,	92.5% 100%	(75-126) (65-144)	1.09% 2.02%		,,	
•	,,	18.8		0.500	,,	,		,,	94.0%	(75-125)	2.62%		,,	
Foluene Videne					,,	,		,,					,,	
o-Xylene		19.2		1.00	,	,			96.0%	(75-130)	3.08%			
m,p-Xylene	"	38.1		2.00		"		40.0	95.2%	(75-125)	2.33%		"	
Xylenes (total)		57.3		3.00	"			60.0	95.5%	"	2.58%	. "		
Surrogate(s): 1,2-DCA-d4		Recovery:	99.5%	Li	mits: 70-130								06/20/07 09:56	
Toluene-d8			96.0%		75-125								"	
<i>4-BFB</i>			98.5%		75-125	% "							"	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

4006 148th Ave NEProject Number:WA 255-35-42-1Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/27/07 11:29

Notes and Definitions

Report Specific Notes:

P7 - Sample filtered in lab.

Q10 - Hydrocarbon pattern most closely resembles a blend of gasoline and diesel range hydrocarbons...

Q5 - Results in the diesel organics range are primarily due to overlap from a gasoline range product.

R4 - Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.

R7 - LFB/LFBD RPD exceeded the acceptance limit. Recovery met acceptance criteria.

RL7 - Sample required dilution due to high concentrations of target analyte.

Z - Due to sample matrix effects, the surrogate recovery was below the acceptance limits.

ZX - Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.

Laboratory Reporting Conventions:

DET - Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND - Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA _ Not Reported / Not Available

dry - Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported

on a Wet Weight Basis.

RPD - RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

 $\begin{tabular}{ll} MRL & - & METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. \\ \end{tabular}$

MDL* - METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil - Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting - Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits percent solids, where applicable

percent solids, where applicable.

Electronic - Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

Signature Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

gent terms

Test/Imerical Testing Corporation

CHAIN OF CUSTODY REPORT

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

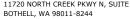
2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

TA WO ID R Turnaround Requests less than standard may incur Rush Charge D DATE: 6/13/67 **~**1 TIME: 1500 **▼** TURNAROUND REQUEST DATE: TIME 15.2.51 LOCATION / COMMENTS in Business Days * Work Order #: OTHER Specify: FIRM: 7 1-5 # OF CONT. σ Q σ σ 9 Q 0 a S σ MATRIX (W, S, O) QLab 1630 \mathcal{Z} 3 3 3 3 3 **9** 3 PRINT NAME: Francisco Luna, Jr MORNAMATINA RECEIVED BY: Z Delta Consultants Ath Elsabeth She RECEIVED BY: REQUESTED ANALYSES PRESERVATIVE 100 to C. 135 DATE: 4-13-07
TIME: 15:100 Disolued P.O. NUMBER DATE RIE X × 15:30 > 14:30 10:35 13.00 . (0.3¢ 05:21 G-13-07/14:00 6-13-CH 11:30 SAMPLING DATE/TIME PROJECT NAME: 255353 WEST PARE Starthon 15 6-13-07, 6-13-07 6-13-07, (4-13-07) 6-13-07 ADDRESS: 4006 148th Ave NE Deamand, LUN 98 CSZ PHONE: 425-498-7736 FAX: PROJECT NUMBER: 40 A2S ST35 42-1 413/07 4/3/07 6-13-07 SAMPLED BY: AF/JR/SM/GM CCC REV 09/2004 NWTPH-DX -ahman CLIENT SAMPLE IDENTIFICATION 90 MW - 49 RELEASED BY: HU mm-94 mm-87 mw-82 mw 86 201 - MW mw - 89 Smw - 4 ADDITIONAL REMARKS 10 mm - al 381 PRINT NAME: RELEASED BY: PRINT NAME: CLIENT

Test/merical Testing CORPORATION

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244.
 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145
 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

l, WA 98011-8244 425-420-9200 FAX 420-9210 5. WA 99206-5302 509-924-9200 FAX 924-9290 6. AK 99502-1119 907-563-9200 FAX 563-9210


iai Aupun na sie a 10, aukiniago, an 32002-1113

Work Order #:

CHAIN OF CUSTODY REPORT

TURNAROUND REQUEST	in Bactaces Days *	Organic & Inorganic Analyses	roleum Hydrocarbon Analyses		/srp.	OTHER Specify:	ur Rush	MATRIX # OF LOCATION TA (W, S, O) CONT. COMMENTS WO ID	200	5 3							`	FIRM: T = 5	FIRM	$\frac{\partial U_{ub}}{\sqrt{\sigma}} \frac{1630}{\sqrt{\sigma}} \frac{\text{TEMP: }}{15.7^{\circ}} c$
		Sixe Sixe		VATIVE		ANALYSES										,	RECEIVED BY:	PRINT NAME: Francisco Lung, IC.	RECEIVED BY: PRINT NAME:	Les) thanking
INVOICE TO:		44h	P.O. NUMBER:	PRESERVATIVE	ませせ		3	BTEN Naph Jugot Jugot	X X X X	XXXX							DATE	M	DATE	; Diss hed
1 1	EATS	NE, Redmond, WA 4.		10.410.60	# #	×	O +1	SAMPLING PATE/TIME DATE/TIME	x X 01:41/2051-2	X X Sh:H/t0-61-7								FIRM: Della Cural/tun	CTDA.	NINTPH-DX V/S.9. Clery to
1	CLIENT: LE LE CONSAL	ADDRESS: 4006 146th Ave NE, Red mand, WA 98052	PHONE: 425.498. 7336 PAX.	PROBET NAME OACAGO (1) ALL LA	0000W	PROJECT NUMBER: WAZSS - 35 42-1	SAMPLED BY: AFJR/SM/51M	CLIENT SAMPLE IDENTIFICATION	m4-93 6-1		3	*	\$ 9	2	80	6	10 PRI FACETI RV. To.	PRINT NAME: AND PARTY	١	ADDITIONAL REMARKS: NATIONAL PROPERTY:

PH: (425) 420.9200 FAX: (425) 420.9210

June 28, 2007

Elisabeth Silver Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

RE: COP Westlake 255-35-3

Enclosed are the results of analyses for samples received by the laboratory on 06/14/07 10:20. The following list is a summary of the Work Orders contained in this report, generated on 06/28/07 16:04.

If you have any questions concerning this report, please feel free to contact me.

Work Order	<u>Project</u>	<u>ProjectNumber</u>	
BQF0386	COP Westlake 255-35-3	WA 255-35-42-1	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE WA 255-35-42-1 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/28/07 16:04

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
CI-1	BQF0386-01	Water	06/13/07 16:15	06/14/07 10:20
CI-2	BQF0386-02	Water	06/13/07 15:55	06/14/07 10:20
CI-3	BQF0386-03	Water	06/13/07 15:40	06/14/07 10:20
5MW-5	BQF0386-04	Water	06/13/07 15:20	06/14/07 10:20

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

melling

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental 4006 148th Ave NE

Redmond, WA/USA 98052

Project Name:

COP Westlake 255-35-3

Project Number: Project Manager: WA 255-35-42-1 Elisabeth Silver

Report Created: 06/28/07 16:04

Volatile Petroleum Products by NWTPH-Gx

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0386-01 (CI-1)		Wa	ater		Sampl	led: 06/1	13/07 16:15			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	7F18029	06/18/07 09:52	06/18/07 20:42	
Surrogate(s): 4-BFB (FID)			88.6%		58 - 144 %	"			"	
BQF0386-02 (CI-2)		Wa	ater		Sampl	ed: 06/1	13/07 15:55			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	7F18029	06/18/07 09:52	06/18/07 21:14	
Surrogate(s): 4-BFB (FID)			89.3%		58 - 144 %	"			"	
BQF0386-03 (CI-3)		Wa	ater		Sampled: 06/13/0					
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	7F18029	06/18/07 09:52	06/18/07 21:46	
Surrogate(s): 4-BFB (FID)			87.7%		58 - 144 %	"			"	
BQF0386-04 (5MW-5)		Water			Sampled: 06/13/07 15:20					
Gasoline Range Hydrocarbons	NWTPH-Gx	2850		50.0	ug/l	1x	7F18029	06/18/07 09:52	06/18/07 22:17	
Surrogate(s): 4-BFB (FID)			241%		58 - 144 %	"			"	ZX

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and Times

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE WA 255-35-42-1 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/28/07 16:04

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0386-01 (CI-1)		Wa	ater		Sampl	ed: 06/	13/07 16:15			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.236	mg/l	1x	7F18016	06/18/07 09:14	06/23/07 01:50	
Lube Oil Range Hydrocarbons	"	ND		0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			78.7%		53 - 125 %	"			"	
Octacosane			96.4%		68 - 125 %	"			"	
BQF0386-02 (CI-2)		Wa	ater		Sampl	ed: 06/	13/07 15:55			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.236	mg/l	lx	7F18016	06/18/07 09:14	06/23/07 02:17	
Lube Oil Range Hydrocarbons	"	ND		0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			71.7%		53 - 125 %	"			"	
Octacosane			95.5%		68 - 125 %	"			"	
BQF0386-03 (CI-3)		Wa	ater		Sampl	ed: 06/	13/07 15:40			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.238	mg/l	1x	7F18016	06/18/07 09:14	06/23/07 02:43	
Lube Oil Range Hydrocarbons	"	ND		0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			78.5%		53 - 125 %	"			"	
Octacosane			99.6%		68 - 125 %	"			"	
BQF0386-04 (5MW-5)		Wa	ater		Sampl	ed: 06/	13/07 15:20			
Diesel Range Hydrocarbons	NWTPH-Dx	0.301		0.243	mg/l	1x	7F18016	06/18/07 09:14	06/23/07 03:10	Q
Lube Oil Range Hydrocarbons	"	ND		0.485	"	"	"	"	"	
Surrogate(s): 2-FBP			79.2%		53 - 125 %	"			"	
Octacosane			94.8%		68 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE Project Number: WA 255-35-42-1 Report Created: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/28/07 16:04

Total Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0386-01	(CI-1)		Wa	ter		Sam	pled: 06/1	3/07 16:15			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F18018	06/18/07 09:16	06/18/07 23:47	
BQF0386-02	(CI-2)		Wa	ter		Sam	pled: 06/1	3/07 15:55			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F18018	06/18/07 09:16	06/18/07 23:52	
BQF0386-03	(CI-3)		Wa	ter		Sam	pled: 06/1	3/07 15:40			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F18018	06/18/07 09:16	06/18/07 23:58	
BQF0386-04	(5MW-5)		Water			Sampled: 06/13/07 15:20					
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F18018	06/18/07 09:16	06/19/07 00:04	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and trong

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE WA 255-35-42-1 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/28/07 16:04

Dissolved Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0386-01	(CI-1)		Wa	ter		Sam	pled: 06/1	13/07 16:15			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 01:57	
BQF0386-02	(CI-2)		Wa	ter		Sam	pled: 06/1	13/07 15:55			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 02:03	
BQF0386-03	(CI-3)		Wa	ter		Sam	pled: 06/1	13/07 15:40			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 02:09	
BQF0386-04	(5MW-5)		Wa	ter		Sam	pled: 06/1	13/07 15:20			P 7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 02:15	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

alling

Delta Environmental Project Name: COP Westlake 255-35-3

4006 148th Ave NEProject Number:WA 255-35-42-1Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/28/07 16:04

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0386-01	(CI-1)		Wa	iter		Sampl	ed: 06/	13/07 16:15			
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F19043	06/19/07 15:27	06/19/07 22:23	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl	ether	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	6.75		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			92.2%		70 - 130 %	"			"	
	Toluene-d8			99.4%		75 - 125 %	"			"	
	4-BFB			99.3%		75 - 125 %	"			"	
BQF0386-02	(CI-2)		Wa	iter		Sampl	ed: 06/	13/07 15:55			
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F19043	06/19/07 15:27	06/19/07 22:53	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl e	ether	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			92.0%		70 - 130 %	"			"	
	Toluene-d8			100%		75 - 125 %	"			"	
	4-BFB			101%		75 - 125 %	"			"	
BQF0386-03	(CI-3)		Wa	iter		Sampl	ed: 06/	13/07 15:40			
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F19043	06/19/07 15:27	06/19/07 23:23	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl e	ether	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			90.8%		70 - 130 %	"			"	
	Toluene-d8			102%		75 - 125 %	"			"	
	4-BFB			102%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

" and Timen

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental

COP Westlake 255-35-3 Project Name:

4006 148th Ave NE Redmond, WA/USA 98052

WA 255-35-42-1 Project Number: Project Manager: Elisabeth Silver

Report Created: 06/28/07 16:04

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0386-04 (5MW-5)		Wa	ter		Sampl	led: 06/1	3/07 15:20			
Benzene	EPA 8260B	61.2		0.500	ug/l	1x	7F19043	06/19/07 15:27	06/19/07 23:53	
Ethylbenzene	"	8.21		0.500	"	"	"	"	"	
Methyl tert-butyl ether	"	ND		1.00	"	"	"	"	"	
Naphthalene	"	17.2		5.00	"	"	"	"	"	
Toluene	"	0.880		0.500	"	"	"	"	"	
o-Xylene	"	1.12		1.00	"	"	"	"	"	
m,p-Xylene	"	4.31		2.00	"	"	"	"	"	
Xylenes (total)	"	5.43		3.00	"	"	"	"	"	
Surrogate(s): 1,2-DCA-d4			97.4%		70 - 130 %	"			"	
Toluene-d8			98.4%		75 - 125 %	"			"	
4- BFB			96.0%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and the

COP Westlake 255-35-3 **Delta Environmental** Project Name:

4006 148th Ave NE Project Number: WA 255-35-42-1 Report Created: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/28/07 16:04

Volatile Petroleum Products by NWTPH-Gx - Laboratory Quality Control Results

	v olatile P	etroieum	Products by Te	stAmerica -			ory Qual	nty Cor	itrol .	Kesuits				
QC Batch: 7F18029	Water I	Preparation	Method:	EPA 5030B	(P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (7F18029-BLK1)								Extr	acted:	06/18/07 09	:52			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x							06/18/07 12:16	
Surrogate(s): 4-BFB (FID)		Recovery:	88.4%	Lin	nits: 58-144%	"							06/18/07 12:16	
LCS (7F18029-BS1)								Extr	acted:	06/18/07 09	:52			
Gasoline Range Hydrocarbons	NWTPH-Gx	1000		50.0	ug/l	1x		1000	100%	(80-120)			06/18/07 12:48	
Surrogate(s): 4-BFB (FID)		Recovery:	93.9%	Lin	nits: 58-144%	"							06/18/07 12:48	
Duplicate (7F18029-DUP1)				QC Source:	BQF0334-02			Extr	acted:	06/18/07 09	:52			
Gasoline Range Hydrocarbons	NWTPH-Gx	279		50.0	ug/l	1x	295				5.80%	6 (25)	06/18/07 13:51	
Surrogate(s): 4-BFB (FID)		Recovery:	92.3%	Lin	iits: 58-144%	"							06/18/07 13:51	
Duplicate (7F18029-DUP2)				QC Source:	BQF0334-04			Extr	acted:	06/18/07 09	:52			
Gasoline Range Hydrocarbons	NWTPH-Gx	4430		50.0	ug/l	1x	4740				6.70%	(25)	06/18/07 14:54	
Surrogate(s): 4-BFB (FID)		Recovery:	198%	Lin	nits: 58-144%	"							06/18/07 14:54	z
Matrix Spike (7F18029-MS1)				QC Source:	BQF0334-02			Extr	acted:	06/18/07 09	:52			
Gasoline Range Hydrocarbons	NWTPH-Gx	1420		50.0	ug/l	1x	295	1000	112%	(75-131)			06/19/07 03:01	
Surrogate(s): 4-BFB (FID)		Recovery:	108%	Lin	nits: 58-144%	"							06/19/07 03:01	
Matrix Spike Dup (7F18029-MS	SD1)			QC Source:	BQF0334-02			Extr	acted:	06/18/07 09	:52			
Gasoline Range Hydrocarbons	NWTPH-Gx	1380		50.0	ug/l	1x	295	1000	109%	(75-131)	2.27%	(25)	06/19/07 03:33	
Surrogate(s): 4-BFB (FID)		Recovery:	85.7%	Lin	its: 58-144%	"							06/19/07 03:33	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE Project Number: WA 255-35-42-1 Report Created: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/28/07 16:04

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F18016	Water I	Preparation	Method: EF	PA 3520C	7								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% (Li RPD	imits) Analyzed	Notes
Blank (7F18016-BLK1)								Exti	acted:	06/18/07 09	:14		
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.250	mg/l	1x						- 06/23/07 00:05	
Lube Oil Range Hydrocarbons	"	ND		0.500	"	"						- "	
Surrogate(s): 2-FBP		Recovery:	79.0%	Lin	nits: 53-125%	"						06/23/07 00:05	
Octacosane			97.3%		68-125%	"						"	
LCS (7F18016-BS1)								Exti	acted:	06/18/07 09	:14		
Diesel Range Hydrocarbons	NWTPH-Dx	2.01		0.250	mg/l	1x		2.00	101%	(61-132)		- 06/23/07 00:31	
Surrogate(s): 2-FBP		Recovery:	95.2%	Lin	nits: 53-125%	"						06/23/07 00:31	
Octacosane			100%		68-125%	"						"	
LCS Dup (7F18016-BSD1)								Exti	acted:	06/18/07 09	:14		
Diesel Range Hydrocarbons	NWTPH-Dx	1.97		0.250	mg/l	1x		2.00	98.7%	(61-132)	1.93% (3	5) 06/23/07 00:58	
Surrogate(s): 2-FBP		Recovery:	88.6%	Lin	nits: 53-125%	"						06/23/07 00:58	
Octacosane			97.1%		68-125%	,,						"	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental Project Name:

COP Westlake 255-35-3

4006 148th Ave NE Project Number: WA 255-35-42-1 Redmond, WA/USA 98052 Project Manager: Elisabeth Silver

Report Created: 06/28/07 16:04

Total Metals by EPA 6000/7000 Series Methods - Laboratory Quality Control Results

TestAmerica - Seattle, WA

			1 es	stAmerica -	Seattle,	WA							
QC Batch: 7F18018	Water P	reparation M	ethod: E	EPA 3020A									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (7F18018-BLK1)								Extracted:	06/18/07 09):16			
Lead	EPA 6020	ND		0.00100	mg/l	1x					(06/18/07 15:16	
LCS (7F18018-BS1)								Extracted:	06/18/07 09):16			
Lead	EPA 6020	0.0798		0.00100	mg/l	1x		0.0800 99.8%	(80-120)		(06/18/07 15:22	
Duplicate (7F18018-DUP1)				QC Source:	BQF0381	-01		Extracted:	06/18/07 09):16			
Lead	EPA 6020	0.0161		0.00100	mg/l	1x	0.0160			0.187%	(20)	06/18/07 15:40	
Matrix Spike (7F18018-MS1)				QC Source:	BQF0381	-01		Extracted:	06/18/07 09	0:16			
Lead	EPA 6020	0.100		0.00100	mg/l	1x	0.0160	0.0800 105%	(80-120)		(06/18/07 15:34	
Post Spike (7F18018-PS1)				QC Source:	BQF0381	-01		Extracted:	06/18/07 09	0:16			
Lead	EPA 6020	0.117			ug/ml	1x	0.0160	0.100 101%	(75-125)		(06/18/07 15:28	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

11720 NORTH CREEK PKWY N, SUITE 400

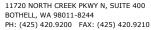
BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental

COP Westlake 255-35-3 Project Name:

4006 148th Ave NE WA 255-35-42-1 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/28/07 16:04

Dissolved Metals by EPA 6000/7000 Series Methods - Laboratory Quality Control Results


TestAmerica - Seattle, WA														
QC Batch: 7F18023	Water P	reparation M	lethod: E	PA 3005A										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes
Blank (7F18023-BLK1)								Extra	acted:	06/18/07 09	9:37			
Lead	EPA 6020 - Diss	ND		0.00100	mg/l	1x							06/19/07 01:33	
LCS (7F18023-BS1)								Extra	acted:	06/18/07 09	9:37			
Lead	EPA 6020 - Diss	0.203		0.00100	mg/l	1x		0.200	101%	(80-120)	-		06/19/07 01:39	
Duplicate (7F18023-DUP1)				QC Source:	BQF0386-	01		Extra	acted:	06/18/07 09	9:37			
Lead	EPA 6020 - Diss	ND		0.00100	mg/l	1x	ND				100%	(20)	06/19/07 01:51	R4
Matrix Spike (7F18023-MS1)				QC Source:	BQF0386-	01		Extra	acted:	06/18/07 09	9:37			
Lead	EPA 6020 - Diss	0.105		0.00100	mg/l	1x	0.0000400	0.100	105%	(77-120)			06/19/07 01:45	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

4006 148th Ave NEProject Number:WA 255-35-42-1Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/28/07 16:04

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F19043	Water I	Preparation	Method:	EPA 5030E	3								
Analyte	Method	Result	MDL ³	* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD (L	imits) Analyzed	Notes
Blank (7F19043-BLK1)								Ext	racted:	06/19/07 13	3:35		
Benzene	EPA 8260B	ND		0.500	ug/l	1x						06/19/07 18:25	
Ethylbenzene	"	ND		0.500	"	"						"	
Methyl tert-butyl ether	"	ND		1.00	"	"						"	
Naphthalene	"	ND		5.00	"	"						"	
Toluene	"	ND		0.500	"	"						"	
o-Xylene	"	ND		1.00	"	"						"	
m,p-Xylene	"	ND		2.00	"	"						"	
Xylenes (total)	"	ND		3.00	"	"						"	
Surrogate(s): 1,2-DCA-d4		Recovery:	94.2%	Li	mits: 70-130	% "						06/19/07 18:25	
Toluene-d8			96.8%		75-125	5% "						"	
4-BFB			98.4%		75-125	5% "						"	
LCS (7F19043-BS1)								Ext	racted:	06/19/07 13	3:35		
Benzene	EPA 8260B	18.4		0.500	ug/l	1x		20.0	92.0%	(80-120)		06/19/07 16:55	
Ethylbenzene	"	18.8		0.500	"	"		"	94.0%	(75-125)		"	
Methyl tert-butyl ether	"	17.4		1.00	"	"		"	86.9%	(75-126)		"	
Naphthalene	"	22.6		5.00	"	"		"	113%	(65-144)		"	
Toluene	"	18.6		0.500	"	"		"	93.2%	(75-125)		"	
o-Xylene	"	18.9		1.00	"	"		"	94.6%	(75-130)		"	
m,p-Xylene	"	38.2		2.00	"	"		40.0	95.6%	(75-125)		"	
Xylenes (total)	"	57.2		3.00	"	"		60.0	95.3%	"		"	
Surrogate(s): 1,2-DCA-d4		Recovery:	105%	Li	mits: 70-130	% "						06/19/07 16:55	
Toluene-d8		,	99.2%		75-125	5% "						"	
4-BFB			101%		75-125	5% "						"	
LCS Dup (7F19043-BSD1)								Ext	racted:	06/19/07 13	3:35		
Benzene	EPA 8260B	18.4		0.500	ug/l	lx		20.0	92.1%	(80-120)	0.0543% (2	20) 06/19/07 17:19	
Ethylbenzene	"	18.8		0.500	"	"		"	94.2%	(75-125)	0.212% "	"	
Methyl tert-butyl ether	,,	19.4		1.00	"	"		,,	97.2%	(75-126)	11.2% "	,	
Naphthalene	,,	21.7		5.00	"			,,	108%	(65-144)	4.11% "	,,	
Toluene	"	18.9		0.500	"	"		"	94.6%	(75-125)	1.60% "	"	
o-Xylene	"	19.2		1.00	,,			"	96.2%	(75-130)	1.57% "	"	
m,p-Xylene	,,	38.6		2.00	"			40.0	96.4%	(75-125)	0.834% "	,,	
Xylenes (total)	"	57.8		3.00	,,	"		60.0	96.3%	"	1.08% "	"	
Surrogate(s): 1,2-DCA-d4		Recovery:	102%		mits: 70-130	0/0 "						06/19/07 17:19	
Toluene-d8		Recovery.	99.0%	Lli	75-125	70						"	
4-BFB			98.6%		75-125							"	

TestAmerica - Seattle, WA

Carling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

COP Westlake 255-35-3 **Delta Environmental** Project Name:

4006 148th Ave NE WA 255-35-42-1 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/28/07 16:04

Notes and Definitions

Report Specific Notes:

P7 Sample filtered in lab.

Q5 Results in the diesel organics range are primarily due to overlap from a gasoline range product.

Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information. R4

ZXDue to sample matrix effects, the surrogate recovery was outside the acceptance limits.

Laboratory Reporting Conventions:

Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. DET

Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). ND

Not Reported / Not Available NR/NA _

dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits

percent solids, where applicable.

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Electronic

Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle, WA

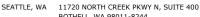
Signature

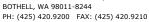
Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and the cons

COC REV 09/2004

425-420-9200 FAX 420-9210 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 509-924-9200 FAX 924-9290 11922 E. First Ave, Spokane, WA 99206-5302 503-906-9200 FAX 906-9210 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 907-563-9200 FAX 563-9210


2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119


CHAIN OF CUSTODY REPORT

Work Order #: BOFO386 TURNAROUND REQUEST DISUTA CONSULTANTS DELTA CONSULTANTS ATTN ELISABETH SILVER REPORT TO: ELIBABETH SILVER
ADDRESS:
4006 | 49th ALL NE
REPMAND WA
PHONE: 425-785-786FAX: in Business Days * Organic & Inorganic Analyses P.O. NUMBER: Petroleum Hydrocarbon Analyses PROJECT NAME: 256 353 WROTLARE PRESERVATIVE PROJECT NUMBER:

WA2553542-1

SAMPLED BY: A5/JR/SM/GM OTHER REQUESTED ANALYSES Specify: * Turnaround Requests less than standard may incur Rush Charges LOCATION / SAMPLING MATRIX # OF NCA CLIENT SAMPLE COMMENTS WOID (W, S, O)CONT DATE/TIME **IDENTIFICATION** 6/13 16:15 01 CI-1 大 15:55 X 12 CI-J 15:40 c1-3 5MW-5 15:20 FIRM: Oelte PRINT NAME: Francisco Luna, In. TIME: 0947 RECEIVED BY RELEASED BY: PRINT NAME:
ADDITIONAL REMARKS: NWTPH-Dx W S.C. CLEANUP; DISSOLUCE LEAD LANTO FILTER PRINT NAME:

June 29, 2007

Elisabeth Silver Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

RE: COP Westlake 255-35-3

Enclosed are the results of analyses for samples received by the laboratory on 06/14/07 17:00. The following list is a summary of the Work Orders contained in this report, generated on 06/29/07 11:49.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber	
BQF0387	COP Westlake 255-35-3	WA 255-35-42	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Delta Environmental Project Name: COP Westlake 255-35-3

4006 148th Ave NEProject Number:WA 255-35-42Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/29/07 11:49

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-38	BQF0387-01	Water	06/14/07 07:45	06/14/07 17:00
MW-81	BQF0387-02	Water	06/14/07 08:10	06/14/07 17:00
MW-202	BQF0387-03	Water	06/14/07 09:00	06/14/07 17:00
MW-72	BQF0387-04	Water	06/14/07 10:10	06/14/07 17:00
MW-71	BQF0387-05	Water	06/14/07 10:45	06/14/07 17:00
MW-73	BQF0387-06	Water	06/14/07 11:20	06/14/07 17:00
MW-40	BQF0387-07	Water	06/14/07 12:00	06/14/07 17:00
MW-201	BQF0387-08	Water	06/14/07 13:30	06/14/07 17:00
MW-200	BQF0387-09	Water	06/14/07 14:10	06/14/07 17:00
MW-19	BQF0387-10	Water	06/14/07 14:50	06/14/07 17:00
MW-80	BQF0387-11	Water	06/14/07 07:55	06/14/07 17:00
MW-41	BQF0387-12	Water	06/14/07 10:40	06/14/07 17:00
MW-95	BQF0387-13	Water	06/14/07 11:40	06/14/07 17:00
MW-208	BQF0387-14	Water	06/14/07 12:45	06/14/07 17:00
MW-18	BQF0387-15	Water	06/14/07 13:30	06/14/07 17:00
MW-37	BQF0387-16	Water	06/14/07 14:20	06/14/07 17:00

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

melling

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE WA 255-35-42 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/29/07 11:49

Volatile Petroleum Products by NWTPH-Gx


TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-01 (MW-38)		Wa	ter		Sample	ed: 06/1	4/07 07:45			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	7F18030	06/18/07 10:03	06/18/07 12:59	
Surrogate(s): 4-BFB (FID)			86.0%		58 - 144 %	"			"	
BQF0387-02 (MW-81)		Wa	ter		Sample	ed: 06/1	4/07 08:10			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	7F18030	06/18/07 10:03	06/18/07 14:05	
Surrogate(s): 4-BFB (FID)			87.8%		58 - 144 %	"			"	
BQF0387-03 (MW-202)		Wa	ter		Sample	ed: 06/1	4/07 09:00			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	7F18030	06/18/07 10:03	06/18/07 18:31	
Surrogate(s): 4-BFB (FID)			85.6%		58 - 144 %	"			"	
BQF0387-04 (MW-72)		Wa	ter		Sample	ed: 06/1	4/07 10:10			
Gasoline Range Hydrocarbons	NWTPH-Gx	1140		50.0	ug/l	1x	7F18030	06/18/07 10:03	06/18/07 19:03	
Surrogate(s): 4-BFB (FID)			85.6%		58 - 144 %	"			"	
BQF0387-05 (MW-71)		Wa	ter		Sample	ed: 06/1	4/07 10:45			
Gasoline Range Hydrocarbons	NWTPH-Gx	19200		1000	ug/l	20x	7F18030	06/18/07 10:03	06/19/07 11:26	
Surrogate(s): 4-BFB (FID)			86.8%		58 - 144 %	lx			"	
BQF0387-06 (MW-73)		Wa	ter		Sample	ed: 06/1	4/07 11:20			
Gasoline Range Hydrocarbons	NWTPH-Gx	2450		250	ug/l	5x	7F18030	06/18/07 10:03	06/18/07 15:11	
Surrogate(s): 4-BFB (FID)			88.4%		58 - 144 %	lx			"	
BQF0387-07 (MW-40)		Wa	ter		Sample	ed: 06/1	4/07 12:00			
Gasoline Range Hydrocarbons	NWTPH-Gx	179		50.0	ug/l	1x	7F18030	06/18/07 10:03	06/18/07 22:19	
Surrogate(s): 4-BFB (FID)			87.8%		58 - 144 %	"			"	
BQF0387-08 (MW-201)		Wa	ter		Sample	ed: 06/1	4/07 13:30			
Gasoline Range Hydrocarbons	NWTPH-Gx	206		50.0	ug/l	1x	7F18030	06/18/07 10:03	06/18/07 23:24	
Surrogate(s): 4-BFB (FID)			87.8%		58 - 144 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Delta Environmental 4006 148th Ave NE

Redmond, WA/USA 98052

Project Name:

COP Westlake 255-35-3

Project Number: Project Manager: WA 255-35-42 Elisabeth Silver

Report Created: 06/29/07 11:49

Volatile Petroleum Products by NWTPH-Gx

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-09 (MW-200)		Wa	ter		Sampl	ed: 06/1	14/07 14:10			
Gasoline Range Hydrocarbons	NWTPH-Gx	262		50.0	ug/l	1x	7F18030	06/18/07 10:03	06/18/07 22:52	
Surrogate(s): 4-BFB (FID)			86.1%		58 - 144 %	"			"	
BQF0387-10 (MW-19)		Wa	ter		Sampl	ed: 06/1	14/07 14:50			
Gasoline Range Hydrocarbons	NWTPH-Gx	28100		1000	ug/l	20x	7F18030	06/18/07 10:03	06/18/07 16:16	
Surrogate(s): 4-BFB (FID)			88.6%		58 - 144 %	1x			"	
BQF0387-11 (MW-80)		Wa	ter		Sampl	ed: 06/1	14/07 07:55			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	7F18030	06/18/07 10:03	06/19/07 10:53	
Surrogate(s): 4-BFB (FID)			85.3%		58 - 144 %	"			"	
BQF0387-12 (MW-41)		Wa	ter		Sampl	ed: 06/1	14/07 10:40			
Gasoline Range Hydrocarbons	NWTPH-Gx	79.2		50.0	ug/l	1x	7F18030	06/18/07 10:03	06/18/07 20:41	
Surrogate(s): 4-BFB (FID)			85.3%		58 - 144 %	"			"	
BQF0387-13 (MW-95)		Wa	ter		Sampl	ed: 06/1	14/07 11:40			
Gasoline Range Hydrocarbons	NWTPH-Gx	215		50.0	ug/l	1x	7F18030	06/18/07 10:03	06/18/07 21:14	
Surrogate(s): 4-BFB (FID)			85.9%		58 - 144 %	"			"	
BQF0387-14 (MW-208)		Wa	ter		Sampl	ed: 06/1	14/07 12:45			
Gasoline Range Hydrocarbons	NWTPH-Gx	57400		2500	ug/l	50x	7F18030	06/18/07 10:03	06/19/07 01:34	
Surrogate(s): 4-BFB (FID)			85.5%		58 - 144 %	lx			"	
BQF0387-15 (MW-18)		Wa	ter		Sampl	ed: 06/1	14/07 13:30			
Gasoline Range Hydrocarbons	NWTPH-Gx	330		50.0	ug/l	1x	7F18030	06/18/07 10:03	06/19/07 01:02	
Surrogate(s): 4-BFB (FID)			86.8%		58 - 144 %	"			"	
BQF0387-16 (MW-37)		Wa	ter		Sampl	ed: 06/1	14/07 14:20			
Gasoline Range Hydrocarbons	NWTPH-Gx	121		50.0	ug/l	1x	7F18030	06/18/07 10:03	06/18/07 21:46	
Surrogate(s): 4-BFB (FID)			86.7%		58 - 144 %	"			"	

TestAmerica - Seattle, WA

sellenny

Delta Environmental Project Name: COP Westlake 255-35-3

4006 148th Ave NEProject Number:WA 255-35-42Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/29/07 11:49

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-01 (MW-38)		Wa	iter		Sampl	ed: 06/	14/07 07:45			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.240	mg/l	1x	7F19012	06/19/07 09:04	06/23/07 21:21	
Lube Oil Range Hydrocarbons	"	ND		0.481	"	"	"	"	"	
Surrogate(s): 2-FBP			79.6%		53 - 125 %	"			"	
Octacosane			96.1%		68 - 125 %	"			"	
BQF0387-02 (MW-81)		Wa	iter		Sampl	ed: 06/	14/07 08:10			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.240	mg/l	1x	7F19012	06/19/07 09:04	06/23/07 21:51	
Lube Oil Range Hydrocarbons	"	ND		0.481	"	"	"	"	"	
Surrogate(s): 2-FBP			81.8%		53 - 125 %	"			"	
Octacosane			96.1%		68 - 125 %	"			"	
BQF0387-03 (MW-202)		Wa	iter		Sampl	ed: 06/	14/07 09:00			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.238	mg/l	1x	7F19012	06/19/07 09:04	06/23/07 22:21	
Lube Oil Range Hydrocarbons	"	ND		0.476	"	"	"	"	"	
Surrogate(s): 2-FBP			78.6%		53 - 125 %	"			"	
Octacosane			97.9%		68 - 125 %	"			"	
BQF0387-04 (MW-72)		Wa	iter		Sampl	ed: 06/	14/07 10:10			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.255	mg/l	1x	7F19012	06/19/07 09:04	06/24/07 00:18	
Lube Oil Range Hydrocarbons	"	ND		0.510	"	"	"	"	"	
Surrogate(s): 2-FBP			81.2%		53 - 125 %	"			"	
Octacosane			95.8%		68 - 125 %	"			"	
BQF0387-05 (MW-71)		Wa	iter		Sampl	ed: 06/	14/07 10:45			
Diesel Range Hydrocarbons	NWTPH-Dx	0.851		0.245	mg/l	1x	7F19012	06/19/07 09:04	06/24/07 00:48	Q
Lube Oil Range Hydrocarbons	"	ND		0.490	"	"	"	"	"	
Surrogate(s): 2-FBP			88.2%		53 - 125 %	"			"	
Octacosane			98.3%		68 - 125 %	"			"	
BQF0387-06 (MW-73)		Wa	iter		Sampl	ed: 06/	14/07 11:20			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.260	mg/l	1x	7F19012	06/19/07 09:04	06/24/07 01:17	
Lube Oil Range Hydrocarbons	"	ND		0.521	"	"	"	"	"	
Surrogate(s): 2-FBP			79.4%		53 - 125 %	"			"	
Octacosane			95.8%		68 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

4006 148th Ave NEProject Number:WA 255-35-42Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/29/07 11:49

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-07 (MW-40)		Wa	iter		Sampl	ed: 06/	14/07 12:00			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.240	mg/l	1x	7F19012	06/19/07 09:04	06/24/07 01:47	
Lube Oil Range Hydrocarbons	"	ND		0.481	"	"	"	"	"	
Surrogate(s): 2-FBP			84.5%		53 - 125 %	"			"	
Octacosane			98.3%		68 - 125 %	"			"	
BQF0387-08 (MW-201)		Wa	iter		Sampl	ed: 06/	14/07 13:30			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.245	mg/l	1x	7F19012	06/19/07 09:04	06/24/07 02:17	
Lube Oil Range Hydrocarbons	"	ND		0.490	"	"	"	"	"	
Surrogate(s): 2-FBP			83.6%		53 - 125 %	"			"	
Octacosane			95.6%		68 - 125 %	"			"	
BQF0387-09 (MW-200)		Wa	iter		Sampl	ed: 06/	14/07 14:10			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.243	mg/l	1x	7F19012	06/19/07 09:04	06/24/07 02:46	
Lube Oil Range Hydrocarbons	"	ND		0.485	"	"	"	"	"	
Surrogate(s): 2-FBP			82.2%		53 - 125 %	"			"	
Octacosane			95.2%		68 - 125 %	"			"	
BQF0387-10 (MW-19)		Wa	iter		Sampl	ed: 06/	14/07 14:50			
Diesel Range Hydrocarbons	NWTPH-Dx	8.14		0.240	mg/l	1x	7F19012	06/19/07 09:04	06/24/07 03:16	Q5
Lube Oil Range Hydrocarbons	"	ND		0.481	"	"	"	"	"	
Surrogate(s): 2-FBP			102%		53 - 125 %	"			"	
Octacosane			95.5%		68 - 125 %	"			"	
BQF0387-11 (MW-80)		Wa	iter		Sampl	ed: 06/	14/07 07:55			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.236	mg/l	1x	7F19012	06/19/07 09:04	06/24/07 03:45	
Lube Oil Range Hydrocarbons	"	ND		0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			84.3%		53 - 125 %	"			"	
Octacosane			103%		68 - 125 %	"			"	
BQF0387-12 (MW-41)		Wa	iter		Sampl	ed: 06/	14/07 10:40			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.236	mg/l	1x	7F19012	06/19/07 09:04	06/24/07 04:15	
Lube Oil Range Hydrocarbons	"	ND		0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			80.3%		53 - 125 %	"			"	
Octacosane			96.9%		68 - 125 %	"			"	

TestAmerica - Seattle, WA

Carried J.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE WA 255-35-42 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/29/07 11:49

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

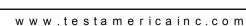
TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-13 (MW-95)		Wa	iter		Sampl	ed: 06/	14/07 11:40			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.236	mg/l	1x	7F19012	06/19/07 09:04	06/24/07 04:45	
Lube Oil Range Hydrocarbons	"	ND		0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			80.1%		53 - 125 %	"			"	
Octacosane			98.5%		68 - 125 %	"			"	
BQF0387-14 (MW-208)		Wa	iter		Sampl	ed: 06/	14/07 12:45			
Diesel Range Hydrocarbons	NWTPH-Dx	0.591		0.236	mg/l	lx	7F19012	06/19/07 09:04	06/24/07 06:42	Q5
Lube Oil Range Hydrocarbons	"	ND		0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			87.9%		53 - 125 %	"			"	
Octacosane			100%		68 - 125 %	"			"	
BQF0387-15 (MW-18)		Wa	iter		Sampl	ed: 06/	14/07 13:30			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.236	mg/l	lx	7F19012	06/19/07 09:04	06/24/07 07:12	
Lube Oil Range Hydrocarbons	"	ND		0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			84.7%		53 - 125 %	"			"	
Octacosane			95.5%		68 - 125 %	"			"	
BQF0387-16 (MW-37)		Wa	iter		Sampl	ed: 06/	14/07 14:20			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.236	mg/l	1x	7F19012	06/19/07 09:04	06/24/07 07:41	
Lube Oil Range Hydrocarbons	"	ND		0.472	"	"	"	"	"	
Surrogate(s): 2-FBP			80.1%		53 - 125 %	"			"	
Octacosane			102%		68 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

4006 148th Ave NEProject Number:WA 255-35-42Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/29/07 11:49


Total Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-01	(MW-38)		Wa	ter		Samı	oled: 06/1	4/07 07:45			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F18018	06/18/07 09:16	06/19/07 00:22	
BQF0387-02	(MW-81)		Wa	ter		Samı	oled: 06/1	4/07 08:10			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F18018	06/18/07 09:16	06/19/07 00:28	
BQF0387-03	(MW-202)		Wa	ter		Samı	oled: 06/1	4/07 09:00			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F18018	06/18/07 09:16	06/19/07 00:34	
BQF0387-04	(MW-72)		Wa	ter		Samı	oled: 06/1	4/07 10:10			
Lead	,	EPA 6020	0.00197		0.00100	mg/l	1x	7F18018	06/18/07 09:16	06/19/07 00:40	
BQF0387-05	(MW-71)		Wa	ter		Samı	oled: 06/1	4/07 10:45			
Lead	(11111-71)	EPA 6020	0.00289		0.00100	mg/l	1x	7F18018	06/18/07 09:16	06/19/07 00:46	
BOF0387-06	(MW-73)		Wa	tor		Sami	aled: 06/1	4/07 11:20			
Lead	(NI VV - 73)	EPA 6020	0.00216		0.00100	mg/l	1x	7F18018	06/18/07 09:16	06/19/07 00:52	
Leau		El A 0020	0.00210		0.00100	IIIg/I	11	71 10010	00/10/07 07:10	00/19/07 00.32	
BQF0387-07	(MW-40)		Wa	ter		Samı	pled: 06/1	4/07 12:00			
Lead		EPA 6020	0.00105		0.00100	mg/l	1x	7F18018	06/18/07 09:16	06/19/07 00:58	
BQF0387-08	(MW-201)		Wa	ter		Samp	oled: 06/1	4/07 13:30			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F18018	06/18/07 09:16	06/19/07 01:04	
BQF0387-09	(MW-200)		Wa	ter		Samı	oled: 06/1	4/07 14:10			
Lead		EPA 6020	0.00187		0.00100	mg/l	1x	7F18018	06/18/07 09:16	06/19/07 01:16	
BQF0387-10	(MW-19)		Wa	ter		Samı	oled: 06/1	4/07 14:50			
Lead	(,	EPA 6020	0.0534		0.00100	mg/l	1x	7F20005	06/20/07 07:36	06/20/07 23:09	
BOF0387-11	(MW-80)		Wa	ter		Sami	oled: 06/1	4/07 07:55			
Lead	(11111-00)	EPA 6020	0.00615		0.00100	mg/l	1x	7F20005	06/20/07 07:36	06/20/07 23:15	
			0.00015			3					

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

4006 148th Ave NE

Redmond, WA/USA 98052

Delta Environmental

Project Name:

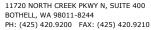
COP Westlake 255-35-3

Project Number: Project Manager: WA 255-35-42 Elisabeth Silver

Report Created: 06/29/07 11:49

Total Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA


Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-12	(MW-41)		Wa	iter		Sampled: 06/14/07 10:40					
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20005	06/20/07 07:36	06/20/07 23:21	
BQF0387-13	(MW-95)		Wa	ıter		Sam	pled: 06/1	4/07 11:40			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20005	06/20/07 07:36	06/20/07 23:26	
BQF0387-14	(MW-208)		Water			Sam	pled: 06/1	4/07 12:45			
Lead		EPA 6020	0.00174		0.00100	mg/l	1x	7F20005	06/20/07 07:36	06/20/07 23:44	
BQF0387-15	(MW-18)		Wa	ıter		Sam	pled: 06/1	4/07 13:30			
Lead		EPA 6020	0.0734		0.00100	mg/l	1x	7F20005	06/20/07 07:36	06/20/07 23:50	
BQF0387-16	(MW-37)		Water			Sampled: 06/14/07 14:20					
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20005	06/20/07 07:36	06/20/07 23:56	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and Times

4006 148th Ave NEProject Number:WA 255-35-42Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/29/07 11:49

Dissolved Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-01	(MW-38)		Wa	iter		Samj	pled: 06/1	4/07 07:45			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 02:20	
BQF0387-02	(MW-81)		Wa	iter		Sampled: 06/14/07 08:10					P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 02:26	
BQF0387-03	(MW-202)		Wa	iter		Samj	pled: 06/1	4/07 09:00			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 02:44	
BQF0387-04	(MW-72)		Wa	iter		Samj	pled: 06/1	4/07 10:10			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 02:50	
BQF0387-05	(MW-71)		Wa	iter		Samj	pled: 06/1	4/07 10:45			P7
Lead		EPA 6020 - Diss	0.00166		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 02:56	
BQF0387-06	(MW-73)		Wa	iter		Samj	pled: 06/1	4/07 11:20			P 7
Lead		EPA 6020 - Diss	0.00143		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 03:02	
BQF0387-07	(MW-40)		Wa	iter		Samj	pled: 06/1	4/07 12:00			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 03:08	
BQF0387-08	(MW-201)		Wa	iter		Samj	pled: 06/1	4/07 13:30			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 03:14	
BQF0387-09	(MW-200)		Wa	iter		Samj	pled: 06/1	4/07 14:10			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 03:19	
BQF0387-10	(MW-19)		Wa	iter		Samj	pled: 06/1	4/07 14:50			P7
Lead		EPA 6020 - Diss	0.0320		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 03:25	
BQF0387-11	(MW-80)		Wa	iter		Samj	pled: 06/1	14/07 07:55			P7
Lead		EPA 6020 - Diss	0.00137		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 03:31	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and trong

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental

Redmond, WA/USA 98052

4006 148th Ave NE

Project Name:

COP Westlake 255-35-3

Project Number: Project Manager: WA 255-35-42 Elisabeth Silver

Report Created: 06/29/07 11:49

Dissolved Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-12	(MW-41)		Wa	iter		Sam	pled: 06/1	14/07 10:40			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 03:37	
BQF0387-13	(MW-95)		Wa	iter		Sam	pled: 06/1	14/07 11:40			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 03:55	
BQF0387-14	(MW-208)		Water			Sampled: 06/14/07 12:45					P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 04:01	
BQF0387-15	(MW-18)		Wa	iter		Sam	pled: 06/1	14/07 13:30			P7
Lead		EPA 6020 - Diss	0.0344		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 04:07	
BQF0387-16	(MW-37)		Water			Sampled: 06/14/07 14:20					P 7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F18023	06/18/07 09:37	06/19/07 04:13	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

selling.

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE WA 255-35-42 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/29/07 11:49

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-01	(MW-38)		Wa		Sampl	ed: 06/1	14/07 07:45				
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F20062	06/20/07 08:07	06/20/07 10:51	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl et	her	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			102%		70 - 130 %	"			"	
	Toluene-d8			87.2%		75 - 125 %	"			"	
	4-BFB			98.2%		75 - 125 %	"			"	
BQF0387-02	(MW-81)		Wa	iter		Sampl	ed: 06/1	14/07 08:10			
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F20062	06/20/07 08:07	06/20/07 11:20	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl et	her	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"		"	
m,p-Xylene		"	ND		2.00	"	"	"		"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			105%		70 - 130 %	"			"	
	Toluene-d8			88.8%		75 - 125 %	"			"	
	4-BFB			100%		75 - 125 %	"			"	
BQF0387-03	(MW-202)		Wa	Sampled: 0			14/07 09:00				
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F20062	06/20/07 08:07	06/20/07 12:45	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl et	her	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			105%		70 - 130 %	"			"	
	Toluene-d8			89.2%		75 - 125 %	"			"	
	4-BFB			98.9%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and trong

4006 148th Ave NEProject Number:WA 255-35-42Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/29/07 11:49

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-04	(MW-72)		Wa	ater		Sampl	ed: 06/1	4/07 10:10			
Benzene		EPA 8260B	5.29		0.500	ug/l	1x	7F20062	06/20/07 08:07	06/20/07 13:14	
Ethylbenzene		"	2.72		0.500	"	"	"	"	"	
Methyl tert-butyl etl	her	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	10.0		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			106%		70 - 130 %	"			"	
	Toluene-d8			93.4%		75 - 125 %	"			"	
	4-BFB			96.4%		75 - 125 %	"			"	
BQF0387-05		Water			Sampl	ed: 06/1	4/07 10:45				
Methyl tert-butyl etl	her	EPA 8260B	ND		1.00	ug/l	1x	7F20062	06/20/07 08:07	06/20/07 13:40	
Toluene		"	2.67		0.500	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			106%		70 - 130 %	"			"	
	Toluene-d8			96.4%		75 - 125 %	"			"	
	4-BFB			99.6%		75 - 125 %	"			"	
BQF0387-05RE1	(MW-71)		Wa	ater		Sampl	ed: 06/1	14/07 10:45			
Benzene		EPA 8260B	186		20.0	ug/l	40x	7F20062	06/20/07 08:07	06/20/07 14:36	
Ethylbenzene		"	647		20.0	"	"	"	"	"	
Naphthalene		"	326		200	"	"	"	"	"	
o-Xylene		"	ND		40.0	"	"	"	"	"	
m,p-Xylene		"	628		80.0	"	"	"	"	"	
Xylenes (total)		"	667		120	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			93.2%		70 - 130 %	1x			"	
	Toluene-d8			98.6%		75 - 125 %	"			"	
	4-BFB			99.2%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and trong

Delta Environmental Project Name: COP Westlake 255-35-3

4006 148th Ave NEProject Number:WA 255-35-42Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/29/07 11:49

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-06	(MW-73)		Wa	iter		Sampl	ed: 06/1	14/07 11:20			
Benzene		EPA 8260B	11.6		0.500	ug/l	1x	7F20062	06/20/07 08:07	06/20/07 15:28	
Ethylbenzene		"	2.63		0.500	"	"	"	"	"	
Methyl tert-butyl eth	ner	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	1.56		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	2.09		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			95.7%		70 - 130 %	"			"	
	Toluene-d8			94.6%		75 - 125 %	"			"	
	4-BFB			97.1%		75 - 125 %	"			"	
BQF0387-07	(MW-40)		Wa	iter		Sampl	ed: 06/1	14/07 12:00			
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F20062	06/20/07 08:07	06/20/07 15:56	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl eth	ner	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			94.6%		70 - 130 %	"			"	
	Toluene-d8			94.4%		75 - 125 %	"			"	
	4-BFB			99.4%		75 - 125 %	"			"	
BQF0387-08	(MW-201)		Wa	iter		Sampl	ed: 06/1	14/07 13:30			
Benzene		EPA 8260B	20.4		0.500	ug/l	1x	7F20062	06/20/07 08:07	06/20/07 16:25	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl eth	ner	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	0.870		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			92.9%		70 - 130 %	"			"	
2 ()	Toluene-d8			97.0%		75 - 125 %	"			"	
	4-BFB			102%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and Times

4006 148th Ave NEProject Number:WA 255-35-42Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/29/07 11:49

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-09 (MW-200)		Wa	nter		Sampl	ed: 06/1	4/07 14:10			
Benzene		EPA 8260B	3.63		0.500	ug/l	1x	7F20062	06/20/07 14:07	06/20/07 16:52	
Ethylbenzene		"	1.61		0.500	"	"	"	"	"	
Methyl tert-butyl eth	er	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			93.6%		70 - 130 %	"			"	
	Toluene-d8			95.6%		75 - 125 %	"			"	
	4-BFB			99.5%		75 - 125 %	"			"	
BQF0387-10 (MW-19)		Wa	Water			ed: 06/1	4/07 14:50			
Ethylbenzene		EPA 8260B	96.9		0.500	ug/l	1x	7F20062	06/20/07 14:07	06/20/07 17:17	
Methyl tert-butyl eth	er	"	ND		1.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			95.2%		70 - 130 %	"			"	
	Toluene-d8			96.7%		75 - 125 %	"			"	
	4-BFB			103%		75 - 125 %	"			"	
BQF0387-10RE1	(MW-19)		Wa	ater		Sampl	ed: 06/1	4/07 14:50			
Benzene		EPA 8260B	279		20.0	ug/l	40x	7F20062	06/20/07 14:07	06/20/07 18:35	
Naphthalene		"	308		200	"	"	"	"	"	
Toluene		"	130		20.0	"	"	"	"	"	
o-Xylene		"	1840		40.0	"	"	"	"	"	
m,p-Xylene		"	3020		80.0	"	"	"	"	"	
Xylenes (total)		"	4860		120	•	"	"	"		
Surrogate(s):	1,2-DCA-d4			88.8%		70 - 130 %	1x			"	
	Toluene-d8			97.6%		75 - 125 %	"			"	
	4-BFB			99.2%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

" and Timen

4006 148th Ave NEProject Number:WA 255-35-42Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/29/07 11:49

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-11 (N	AW-80)		Wa	iter		Sampl	ed: 06/1	14/07 07:55			
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F21024	06/20/07 08:19	06/20/07 20:57	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl ether	r	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			103%		70 - 130 %	"			"	
,	Toluene-d8			103%		75 - 125 %	"			"	
	4-BFB			102%		75 - 125 %	"			"	
BQF0387-12 (N	/IW-41)		Wa	iter		Sampl	ed: 06/1	14/07 10:40			
Benzene	·	EPA 8260B	ND		0.500	ug/l	1x	7F20062	06/20/07 14:07	06/20/07 18:09	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl ether	r	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			88.6%		70 - 130 %	"			"	
,	Toluene-d8			95.2%		75 - 125 %	"			"	
4	4-BFB			100%		75 - 125 %	"			"	
BQF0387-13 (N	MW-95)		Wa	iter		Sampl	ed: 06/1	14/07 11:40			
Benzene		EPA 8260B	4.12		0.500	ug/l	1x	7F21024	06/20/07 08:19	06/20/07 21:24	
Ethylbenzene		"	1.60		0.500	"	"	"	"	"	
Methyl tert-butyl ether	r	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	2.84		1.00	"	"	"	"	"	
m,p-Xylene		"	38.8		2.00	"	"	"	"	"	
Xylenes (total)		"	41.7		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			100%		70 - 130 %	"			"	
0 (/	Toluene-d8			104%		75 - 125 %	"			"	
	4-BFB			98.6%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

selling.

4006 148th Ave NEProject Number:WA 255-35-42Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/29/07 11:49

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-14	(MW-208)		Wa	ater		Sampl	ed: 06/1	4/07 12:45			
Benzene		EPA 8260B	241		10.0	ug/l	20x	7F21006	06/21/07 08:30	06/21/07 17:40	
Ethylbenzene		"	3520		10.0	"	"	"	"	"	
Methyl tert-butyl et	her	"	ND		20.0	"	"	"	"	"	
Naphthalene		"	2110		100	"	"	"	"	"	
Toluene		"	52.6		10.0	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			113%		70 - 130 %	1x			"	
	Toluene-d8			112%		75 - 125 %	"			"	
	4-BFB			93.2%		75 - 125 %	"			"	
BQF0387-14RE	1 (MW-208)		Wa	iter		Sampl	ed: 06/1	14/07 12:45			
o-Xylene		EPA 8260B	1900		100	ug/l	100x	7F22008	06/22/07 09:00	06/22/07 13:59	
m,p-Xylene		"	11000		200	"	"	"	"	"	
Xylenes (total)		"	12900		300	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			110%		70 - 130 %	1x			"	
	Toluene-d8			111%		75 - 125 %	"			"	
	4-BFB			95.5%		75 - 125 %	"			"	
BQF0387-15	(MW-18)		Wa	ater		Sampl	ed: 06/1	14/07 13:30			
Benzene		EPA 8260B	8.67		0.500	ug/l	1x	7F21006	06/21/07 08:30	06/21/07 17:13	
Ethylbenzene		"	2.02		0.500	"	"	"	"	"	
Methyl tert-butyl et	her	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	44.9		5.00	"	"	"	"	"	
Toluene		n	0.720		0.500	"	"	"	"	"	
o-Xylene		"	1.20		1.00	"	"	"	"	"	
m,p-Xylene		"	3.64		2.00	"	"	"	"	"	
Xylenes (total)		"	4.84		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			110%		70 - 130 %	"			"	
	Toluene-d8			110%		75 - 125 %	"			"	
	4-BFB			95.4%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

selling.

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental

COP Westlake 255-35-3 Project Name:

4006 148th Ave NE Redmond, WA/USA 98052

WA 255-35-42 Project Number: Project Manager: Elisabeth Silver

Report Created: 06/29/07 11:49

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0387-16 (MW-37)		Wa	ter		Sampl	led: 06/1	4/07 14:20			
Benzene	EPA 8260B	1.56		0.500	ug/l	1x	7F21006	06/21/07 08:30	06/21/07 16:45	
Ethylbenzene	"	0.500		0.500	"	"	"	"	"	
Methyl tert-butyl ether	"	ND		1.00	"	"	"	"	"	
Naphthalene	"	ND		5.00	"	"	"	"	"	
Toluene	"	ND		0.500	"	"	"	"	"	
o-Xylene	"	ND		1.00	"	"	"	"	"	
m,p-Xylene	"	ND		2.00	"	"	"	"	"	
Xylenes (total)	"	ND		3.00	"	"	"	"	"	
Surrogate(s): 1,2-DCA-d4			112%		70 - 130 %	"			"	
Toluene-d8			112%		75 - 125 %	"			"	
4-BFB			99.8%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and the

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE WA 255-35-42 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/29/07 11:49

Volatile Petroleum Products by NWTPH-Gx - Laboratory Quality Control Results

	v olatile 1	eti oleum		TestAmerica -			ory Quar	ity con		resuits				
QC Batch: 7F18030	Water 1	Preparatio	n Method:	EPA 5030B	s (P/T)									
Analyte	Method	Result	MDI	L* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (7F18030-BLK1)								Extra	cted:	06/18/07 10	:03			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x							06/18/07 11:50	
Surrogate(s): 4-BFB (FID)		Recovery:	86.7%	Lin	nits: 58-144%	"							06/18/07 11:50	
LCS (7F18030-BS1)								Extra	icted:	06/18/07 10	:03			
Gasoline Range Hydrocarbons	NWTPH-Gx	958		50.0	ug/l	1x		1000	95.8%	(80-120)			06/18/07 12:27	
Surrogate(s): 4-BFB (FID)		Recovery:	93.1%	Lin	nits: 58-144%	"							06/18/07 12:27	
Duplicate (7F18030-DUP1)				QC Source:	BQF0387-01			Extra	cted:	06/18/07 10	:03			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	ND				62.5%	(25)	06/18/07 13:32	R
Surrogate(s): 4-BFB (FID)		Recovery:	85.5%	Lin	nits: 58-144%	"							06/18/07 13:32	
Duplicate (7F18030-DUP2)				QC Source:	BQF0387-02	!		Extra	cted:	06/18/07 10	:03			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	ND				9.69%	(25)	06/18/07 14:38	R
Surrogate(s): 4-BFB (FID)		Recovery:	86.1%	Lin	nits: 58-144%	"							06/18/07 14:38	
Matrix Spike (7F18030-MS1)				QC Source:	BQF0387-01			Extra	cted:	06/18/07 10	:03			
Gasoline Range Hydrocarbons	NWTPH-Gx	1020		50.0	ug/l	1x	35.4	1000	98.5%	(75-131)			06/19/07 02:07	
Surrogate(s): 4-BFB (FID)		Recovery:	92.9%	Lin	nits: 58-144%	"							06/19/07 02:07	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE Project Number: WA 255-35-42 Report Created: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/29/07 11:49

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Laboratory Quality Control Results

TestAmerica - Seattle, WA

			1	estAmerica -	· Seattle, W	1								
QC Batch: 7F19012	Water I	Preparation	Method:	EPA 3520C										
Analyte	Method	Result	MDL	* MRL	Units	Dil	Source Result	Spike Amt	REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (7F19012-BLK1)								Ext	racted:	06/19/07 09	9:04			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.250	mg/l	1x							06/23/07 18:54	
Lube Oil Range Hydrocarbons	"	ND		0.500	"	"							"	
Surrogate(s): 2-FBP		Recovery:	72.9%	Lii	nits: 53-125%	"							06/23/07 18:54	
Octacosane			92.7%		68-125%	"							"	
LCS (7F19012-BS1)								Ext	racted:	06/19/07 09	9:04			
Diesel Range Hydrocarbons	NWTPH-Dx	1.80		0.250	mg/l	1x		2.00	89.9%	(61-132)			06/23/07 19:24	
Surrogate(s): 2-FBP		Recovery:	82.0%	Lin	nits: 53-125%	"							06/23/07 19:24	
Octacosane			93.3%		68-125%	"							"	
LCS Dup (7F19012-BSD1)								Ext	racted:	06/19/07 09	9:04			
Diesel Range Hydrocarbons	NWTPH-Dx	1.92		0.250	mg/l	1x		2.00	95.8%	(61-132)	6.31%	6 (35)	06/23/07 19:53	
Surrogate(s): 2-FBP		Recovery:	86.1%	Lii	nits: 53-125%	"							06/23/07 19:53	
Octacosane			102%		68-125%	"							"	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

4006 148th Ave NEProject Number:WA 255-35-42Report Created:Redmond, WA/USA 98052Project Manager:Elisabeth Silver06/29/07 11:49

	Total Metal	s by EPA 60		eries Met			tory Qua	ality Contr	ol Result	ts			
QC Batch: 7F18018	Water P	reparation M	ethod: E	PA 3020A									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RE	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (7F18018-BLK1)								Extracted	: 06/18/07 0	9:16			
Lead	EPA 6020	ND		0.00100	mg/l	1x						06/18/07 15:16	
LCS (7F18018-BS1)								Extracted	: 06/18/07 0	9:16			
Lead	EPA 6020	0.0798		0.00100	mg/l	1x		0.0800 99.89	% (80-120))		06/18/07 15:22	
Duplicate (7F18018-DUP1)				QC Source:	BQF0381-)1		Extracted	: 06/18/07 0	9:16			
Lead	EPA 6020	0.0161		0.00100	mg/l	1x	0.0160			0.187	7% (20)	06/18/07 15:40	
Matrix Spike (7F18018-MS1)				QC Source:	BQF0381-)1		Extracted	: 06/18/07 0	9:16			
Lead	EPA 6020	0.100		0.00100	mg/l	1x	0.0160	0.0800 1059	% (80-120))		06/18/07 15:34	
Post Spike (7F18018-PS1)				QC Source:	BQF0381-)1		Extracted	: 06/18/07 0	9:16			
Lead	EPA 6020	0.117			ug/ml	1x	0.0160	0.100 1019	% (75-125))		06/18/07 15:28	
QC Batch: 7F20005	Water P	reparation M	ethod: E	PA 3020A									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RE		% RPD	(Limits)	Analyzed	Notes
Blank (7F20005-BLK1)								Extracted	: 06/20/07 0	7:36			
Lead	EPA 6020	ND		0.00100	mg/l	1x						06/20/07 22:33	

Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes
Blank (7F20005-BLK1)								Extracted	06/20/07 0	7:36			
Lead	EPA 6020	ND		0.00100	mg/l	1x						06/20/07 22:33	
LCS (7F20005-BS1)								Extracted	06/20/07 0	7:36			
Lead	EPA 6020	0.0726		0.00100	mg/l	1x		0.0800 90.89	(80-120)			06/20/07 22:39	
Duplicate (7F20005-DUP1)				QC Source:	BQF0401-0	17		Extracted:	06/20/07 0	7:36			
Lead	EPA 6020	ND		0.00100	mg/l	1x	ND			NR	(20)	06/20/07 23:03	R4
Matrix Spike (7F20005-MS1)				QC Source:	BQF0401-0	17		Extracted	06/20/07 0	7:36			
Lead	EPA 6020	0.0735		0.00100	mg/l	1x	ND	0.0800 91.99	(80-120)			06/20/07 22:51	
Matrix Spike Dup (7F20005-MSI	D1)			QC Source:	BQF0401-0	17		Extracted	06/20/07 0	7:36			
Lead	EPA 6020	0.0751		0.00100	mg/l	1x	ND	0.0800 93.8%	(80-120)	2.09%	(20)	06/20/07 22:57	
Post Spike (7F20005-PS1)				QC Source:	BQF0401-0	17		Extracted	06/20/07 0	7:36			
Lead	EPA 6020	0.0916			ug/ml	1x	-0.0000200	0.100 91.29	(75-125)			06/20/07 22:45	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental 4006 148th Ave NE

Redmond, WA/USA 98052

Project Name:

COP Westlake 255-35-3

Project Number: Project Manager: WA 255-35-42 Elisabeth Silver

Report Created: 06/29/07 11:49

Dissolved Metals by EPA 6000/7000 Series Methods - Laboratory Quality Control Results

		·	Tes	tAmerica -	Seattle, W	'A								
QC Batch: 7F18023	Water P	reparation M	lethod: E	PA 3005A										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes
Blank (7F18023-BLK1)								Extra	acted:	06/18/07 09	:37			
Lead	EPA 6020 - Diss	ND		0.00100	mg/l	1x							06/19/07 01:33	
LCS (7F18023-BS1)								Extra	acted:	06/18/07 09	:37			
Lead	EPA 6020 - Diss	0.203		0.00100	mg/l	lx		0.200	101%	(80-120)			06/19/07 01:39	
Duplicate (7F18023-DUP1)				QC Source:	BQF0386-0	1		Extra	acted:	06/18/07 09	:37			
Lead	EPA 6020 - Diss	ND		0.00100	mg/l	lx	ND				100%	(20)	06/19/07 01:51	R4
Matrix Spike (7F18023-MS1)				QC Source:	BQF0386-0	1		Extra	acted:	06/18/07 09	:37			
Lead	EPA 6020 - Diss	0.105		0.00100	mg/l	1x	0.0000400	0.100	105%	(77-120)			06/19/07 01:45	_

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Delta Environmental

Project Name:

COP Westlake 255-35-3

4006 148th Ave NE Project Number: Redmond, WA/USA 98052 Project Manager:

WA 255-35-42 Elisabeth Silver

Report Created: 06/29/07 11:49

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F20062	Water I	reparation	Method: F	PA 5030B	B									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	« REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (7F20062-BLK1)								Ext	racted:	06/20/07 08	3:07			
Benzene	EPA 8260B	ND		0.500	ug/l	1x							06/20/07 09:54	
Ethylbenzene	"	ND		0.500	"	"							"	
Methyl tert-butyl ether	"	ND		1.00	"	"							"	
Naphthalene	"	ND		5.00	"	"							"	
Toluene	"	ND		0.500	"	"							"	
o-Xylene	"	ND		1.00	"	"							"	
m,p-Xylene	"	ND		2.00	"	"							"	
Xylenes (total)	"	ND		3.00	"	"							"	
Surrogate(s): 1,2-DCA-d4		Recovery:	101%	Lin	nits: 70-1309	6 "							06/20/07 09:54	
Toluene-d8			98.0%		75-125	% "							"	
4-BFB			101%		75-125	% "							"	
LCS (7F20062-BS1)								Ext	racted:	06/20/07 08	3:07			
Benzene	EPA 8260B	18.4		0.500	ug/l	1x		20.0	92.2%	(80-120)			06/20/07 08:15	
Ethylbenzene	"	18.4		0.500	"	"		"	92.0%	(75-125)			"	
Methyl tert-butyl ether	"	20.2		1.00	"	"		"	101%	(75-126)			"	
Naphthalene	"	18.8		5.00	"	"		"	94.2%	(65-144)			"	
Toluene	"	18.1		0.500	"	"		"	90.6%	(75-125)			"	
o-Xylene	"	19.3		1.00	"	"		"	96.4%	(75-130)			"	
m,p-Xylene	"	37.6		2.00	"	"		40.0	93.9%	(75-125)			"	
Xylenes (total)	"	56.8		3.00	"	"		60.0	94.7%	"			"	
Surrogate(s): 1,2-DCA-d4		Recovery:	101%	Lin	nits: 70-1309	6 "							06/20/07 08:15	
Toluene-d8		•	98.8%		75-125	% "							"	
4-BFB			98.6%		75-125	% "							"	
LCS Dup (7F20062-BSD1)								Ext	racted:	06/20/07 08	3:07			
Benzene	EPA 8260B	19.1		0.500	ug/l	1x		20.0	95.5%	(80-120)	3.57%	(20)	06/20/07 19:00	
Ethylbenzene	"	18.7		0.500	"	"		"	93.4%	(75-125)	1.51%		"	
Methyl tert-butyl ether	"	19.8		1.00	"	"		"	98.8%	(75-126)	2.15%		"	
Naphthalene	"	19.7		5.00	"	"		"	98.6%	(65-144)	4.62%	"	"	
Toluene	"	19.1		0.500	"	"		"	95.6%	(75-125)	5.26%	"	"	
o-Xylene	"	19.5		1.00	"	"		"	97.6%	(75-130)	1.29%	"	"	
m,p-Xylene	"	38.2		2.00	"	,,		40.0	95.6%	(75-125)	1.82%	"	"	
Xylenes (total)	"	57.8		3.00	,,	"		60.0	96.3%	"	1.64%	"	"	
Surrogate(s): 1,2-DCA-d4		Recovery:	88.2%		nits: 70-1309	6 "							06/20/07 19:00	
Toluene-d8		necovery.	98.4%	Lin	75-125	o							"	
4-BFB			99.0%		75-125								"	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

SEATTLE, WA 11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE Project Number: WA 255-35-42 Report Created: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/29/07 11:49

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F21006	Water I	Preparation	Method: E	PA 5030B	.									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	Note
Blank (7F21006-BLK1)								Exti	racted:	06/21/07 08	3:30			
Benzene	EPA 8260B	ND		0.500	ug/l	1x							06/21/07 10:14	
Ethylbenzene	"	ND		0.500	"	"							"	
Methyl tert-butyl ether	"	ND		1.00	"	"							"	
Naphthalene	"	ND		5.00	"	"							"	
Toluene	"	ND		0.500	"	"							"	
o-Xylene	"	ND		1.00	"	"							"	
m,p-Xylene	"	ND		2.00	"	"							"	
Xylenes (total)	"	ND		3.00	"	"							"	
Surrogate(s): 1,2-DCA-d4		Recovery:	103%	Lii	nits: 70-1309	6 "							06/21/07 10:14	
Toluene-d8			114%		75-125								"	
4-BFB			102%		75-125	% "							"	
LCS (7F21006-BS1)								Exti	racted:	06/21/07 08	3:30			
Benzene	EPA 8260B	18.8		0.500	ug/l	1x		20.0	94.0%	(80-120)			06/21/07 09:02	
Ethylbenzene	"	20.5		0.500	"			"	102%	(75-125)			"	
Methyl tert-butyl ether	"	16.6		1.00	"			"	83.2%	(75-126)			"	
Naphthalene	"	19.7		5.00	"	"		"	98.4%	(65-144)			,,	
Гоluene		20.4		0.500	"	,,		"	102%	(75-125)			,,	
o-Xylene		20.3		1.00	"	,,		"	102%	(75-130)			,,	
m,p-Xylene		42.3		2.00	"	,,		40.0	106%	(75-125)			,,	
Xylenes (total)	"	62.6		3.00	"	"		60.0	104%	"			"	
Surrogate(s): 1,2-DCA-d4		Recovery:	103%	Lin	nits: 70-1309	6 "							06/21/07 09:02	
Toluene-d8			110%		75-125								"	
4-BFB			100%		75-125	% "							"	
I CC D (7E2100(DCD1)								Evt	eastad:	06/21/07 08				
LCS Dup (7F21006-BSD1) Benzene	EPA 8260B	18.2		0.500	ug/l	1x		20.0	90.9%		3.30%	(20)	06/21/07 09:38	
Ethylbenzene	" "	19.9		0.500	ug/i	"		20.0	99.5%	(75-125)	2.78%		"	
Methyl tert-butyl ether	,,	17.4		1.00	,,	,,		,,	87.0%	(75-125)	4.46%		,,	
Naphthalene	,,	22.4		5.00	,,	,,		,,	112%	(65-144)	13.0%		,,	
Naphthalene Foluene	,,	19.7		0.500	,,	,,		,,	98.6%	(75-125)	3.24%		,,	
	,,				,,	,,		,,	98.6%				,,	
o-Xylene		20.0		1.00						(75-130)	1.69%			
m,p-Xylene	"	41.0		2.00	,	"		40.0	103%	(75-125)	3.10%		,,	
Xylenes (total)		61.0		3.00				60.0	102%		2.64%	· "		
Surrogate(s): 1,2-DCA-d4		Recovery:	108%	Lin	nits: 70-130%								06/21/07 09:38	
Toluene-d8			111%		75-125								"	
4-BFB			102%		75-125	% "							"	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Delta Environmental

Project Name:

COP Westlake 255-35-3

4006 148th Ave NE Redmond, WA/USA 98052 Project Number: WA 255-35-42 Project Manager: Elisabeth Silver

Report Created: 06/29/07 11:49

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA


QC Batch: 7F21024	Water I	Preparation	Method: E	PA 5030B	3									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD (Limits) Analyzed	Notes
Blank (7F21024-BLK1)								Ext	racted:	06/20/07 08	3:19			
Benzene	EPA 8260B	ND		0.500	ug/l	1x							06/20/07 14:37	
Ethylbenzene	"	ND		0.500	"	"							"	
Methyl tert-butyl ether	"	ND		1.00	"	"							"	
Naphthalene	"	ND		5.00	"	"							"	
Toluene	"	ND		0.500	"	"							"	
o-Xylene	"	ND		1.00	"	"							"	
m,p-Xylene	"	ND		2.00	"	"							"	
Xylenes (total)	"	ND		3.00	"	"							"	
Surrogate(s): 1,2-DCA-d4		Recovery:	103%	Lin	nits: 70-1309	6 "							06/20/07 14:37	
Toluene-d8			102%		75-125	% "							"	
4-BFB			103%		75-125	% "							"	
LCS (7F21024-BS1)								Ext	racted:	06/20/07 08	3:19			
Benzene	EPA 8260B	20.8		0.500	ug/l	1x		20.0	104%	(80-120)			06/20/07 13:43	
Ethylbenzene	"	20.1		0.500	"			"	101%	(75-125)			"	
Methyl tert-butyl ether	"	19.6		1.00	"	"		"	98.0%	(75-126)			"	
Naphthalene	"	19.5		5.00	"	"		"	97.3%	(65-144)			"	
Toluene	"	19.6		0.500	"	"		"	97.8%	(75-125)			"	
o-Xylene	"	20.2		1.00	"	"		"	101%	(75-130)			"	
m,p-Xylene	"	38.7		2.00	"	"		40.0	96.7%	(75-125)			"	
Xylenes (total)	"	58.9		3.00	"	"		60.0	98.1%	"			"	
Surrogate(s): 1,2-DCA-d4		Recovery:	101%	Lin	nits: 70-1309	6 "							06/20/07 13:43	
Toluene-d8			94.6%		75-125	% "							"	
4-BFB			109%		75-125	% "							"	
LCS Dup (7F21024-BSD1)								Ext	racted:	06/20/07 08	3:19			
Benzene	EPA 8260B	19.8		0.500	ug/l	1x		20.0	98.8%	(80-120)	5.37%	(20)	06/20/07 14:10	
Ethylbenzene	"	20.6		0.500	"	"		"	103%	(75-125)	2.21%	"	"	
Methyl tert-butyl ether	"	19.6		1.00	"	"		"	98.2%	(75-126)	0.204%	"	"	
Naphthalene	"	19.3		5.00	"	"		"	96.3%	(65-144)	1.03%	"	"	
Toluene	"	19.8		0.500	"	"		"	98.8%	(75-125)	0.966%	"	"	
o-Xylene	"	19.3		1.00	"	"		"	96.7%	(75-130)	4.40%	"	"	
m,p-Xylene	"	40.1		2.00	"	"		40.0	100%	(75-125)	3.53%	"	"	
Xylenes (total)	"	59.4		3.00	"	"		60.0	99.0%	"	0.879%	"	"	
Surrogate(s): 1,2-DCA-d4		Recovery:	97.0%	Lin	nits: 70-1309	6 "							06/20/07 14:10	
Toluene-d8			93.5%	2311	75-125								"	
4-BFB			98.8%		75-125								"	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE Project Number: WA 255-35-42 Report Created: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/29/07 11:49

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F22008	Water I	Preparation	Method:	EPA 5030B	1									
analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	No
Blank (7F22008-BLK1)								Ext	racted:	06/22/07 09	00:			
Benzene	EPA 8260B	ND		0.500	ug/l	1x							06/22/07 10:28	
Ethylbenzene	"	ND		0.500	"	"							"	
Methyl tert-butyl ether	"	ND		1.00	"	"							"	
Naphthalene	"	ND		5.00	"	"							"	
Γoluene	"	ND		0.500	"	"							"	
o-Xylene	"	ND		1.00	"	"							"	
m,p-Xylene	"	ND		2.00	"	"							"	
Xylenes (total)	"	ND		3.00	"	"							"	
Surrogate(s): 1,2-DCA-d4		Recovery:	106%	Lin	nits: 70-130	% "							06/22/07 10:28	
Toluene-d8			113%		75-125	% "							"	
4-BFB			102%		75-125	% "							"	
LCS (7F22008-BS1)								Ext	racted:	06/22/07 09	0:00			
Benzene	EPA 8260B	17.4		0.500	ug/l	1x		20.0	87.2%	(80-120)			06/22/07 09:16	
Ethylbenzene	"	19.0		0.500	"			"	95.0%	(75-125)			"	
Methyl tert-butyl ether	"	16.0		1.00	"			"	80.1%	(75-126)			"	
Naphthalene	"	19.4		5.00	"			"	97.0%	(65-144)			,,	
Toluene	"	19.0		0.500	"			"	95.1%	(75-125)			,,	
o-Xylene	"	18.9		1.00	"			"	94.3%	(75-130)			,,	
m,p-Xylene	"	39.0		2.00	"			40.0	97.4%	(75-125)			,,	
Xylenes (total)	"	57.8		3.00	"	"		60.0	96.4%	"			"	
Surrogate(s): 1,2-DCA-d4		Recovery:	98.6%	Lir	nits: 70-130	26 "							06/22/07 09:16	
Toluene-d8		necovery.	110%	2311	75-125								"	
4-BFB			102%		75-125								"	
LCS Dup (7F22008-BSD1)										06/22/07 09				
Benzene	EPA 8260B	17.7		0.500	ug/l	1x		20.0	88.6%	(80-120)		(20)	06/22/07 09:52	
Ethylbenzene	"	19.5		0.500	"	"		"	97.4%	(75-125)	2.44%		"	
Methyl tert-butyl ether	"	16.6		1.00	"	"		"	83.2%	(75-126)	3.74%		"	
Naphthalene	"	18.4		5.00	"	"		"	92.0%	(65-144)	5.19%		"	
Γoluene	"	19.6		0.500	"	"		"	97.8%	(75-125)	2.80%		"	
o-Xylene	"	19.4		1.00	"	"		"	96.9%	(75-130)	2.72%	ó "	"	
m,p-Xylene	"	39.9		2.00	"	"		40.0	99.8%	(75-125)	2.41%	ó "	"	
Xylenes (total)	"	59.3		3.00	"	"		60.0	98.8%	"	2.51%	ó "	"	
Surrogate(s): 1,2-DCA-d4		Recovery:	99.4%	Lin	nits: 70-130	% "							06/22/07 09:52	
Toluene-d8			113%		75-125	% "							"	
4-BFB			104%		75-125	% "							"	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

11720 NORTH CREEK PKWY N. SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

COP Westlake 255-35-3 **Delta Environmental** Project Name:

4006 148th Ave NE Report Created: WA 255-35-42 Project Number: Redmond, WA/USA 98052 Project Manager: Elisabeth Silver 06/29/07 11:49

Notes and Definitions

Report Specific Notes:

P7 Sample filtered in lab.

Q5 Results in the diesel organics range are primarily due to overlap from a gasoline range product.

Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information. R4

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA _ Not Reported / Not Available

Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. dry

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). RPD

METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL

METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. MDL* *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and

percent solids, where applicable.

Electronic Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Signature

Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle, WA

Limits

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

gent terms

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244

11922 E. First Ave, Spokane, WA 99206-5302

509-924-9200 FAX 924-9290

9405 SW Nimbus Ave, Beaverton, OR 97008-7145

503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

425-420-9200 FAX 420-9210

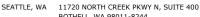
2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

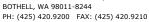
Work Order #: 60F0387

CLIENT: Dz1+9					INVOIC	CE TO:	F3/159	b= + k	Silve	/				r	URNAR	OUND REQUEST	r
PEPOPT TO: Fleshith	silver 4 ALL NE Redmond, L	i 1							n Ave N		rdm	ud, h	4	46 7	Organic & I	susiness Days * norganic Analyses 4 3 2 1	[<1]
					P.O. NU	MBER:								STD.	Petroleum l	lydrocarbon Analyses	
PHONE: PROJECT NAME: 25535	3- Westlake						PRI	ESERVA?	TIVE					1 15	14	3 2 1 <	1
PROJECT NUMBER: WA 2		HUI	HCI	1401	1461		REQUE:	STED AN	ALYSES]		Specify:	
SAMPLED BY: Saigh M. Ju	MIZP AILF, Javan R	×	× 2	V	41	N. Carl		2						* Turnaround I	Requests less	than standard may incur	Rush Charges.
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	TPHgx	TPHdx Silengd	87EX	MTBE	NaphtWe	Total Load	Pissolv						MATRIX (W, S, O)	# OF CONT.	LOCATION / COMMENTS	TA WO ID
, MW 38	c11467 745	X	X	X	X	×						W	9		01		
2 MW-81								X						w	9		07
3 MW-202	6/14/07 900	У	×	X	X	X	X	X						w	9		B
4 MW-72	6/14/07 1010	X	V	X	X	X	X	×						W	9	1300	07
s MW-71	6/14/07 1045	X	X	X	X	X	1	X			_		-	w	9		05
6 MW-73	6/14/07 1120	X	X	X	X	X	X	×						W	9		04
7 MW-40	6/14/07 1200	X	X	×	X	X	X	X						W	9		07
8 MW-201	6/14/07 1330	Х	X	×	X	X	×	×						W	9		ag
, MW-200	6/14/07 1410	X	×	X	X	X	X	X						W	9		09
10 MW-19	6/14/07 1450	X	X	X	X	X	/ -	X				,		W	9	- 6	W
RELEASED BY: MW	ign 2	1			DATE		4107		RECEIVED BY	70	14	,	_	EMP14	TA-5		1552
PRINT NAME: 6 +4 MG	internation of FIRM: 1)	01+	9	***	TIME		552		PRINT NAME:		cisc	O Lun	1,J	rikM:	1/1-7	DATE:	
RELEASED BY:	FIRM:				TIME				PRINT NAME:	•				FIRM:		TIME:	
PRINT NAME: ADDITIONAL REMARKS:	s Filter Dissolve	dLa	ead										a	Plab 1	700	TEMP: 21.0°	GE OF

CHAIN OF CUSTODY REPORT

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244


11922 E. First Ave, Spokane, WA 99206-5302


9405 SW Nimbus Ave, Beaverton, OR 97008-7145

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

	СН	IAIN OF C	CUSTO	DY R	EPO	RT								Work Or	der #: <u>/</u>	30F0387	7
CLIENT: Del+9				INVOICE		Elisa	66-1	44 5	5,10	21				Т	URNARO	OUND REQUEST	1
PERCETTO Flisabeth	9, luer n Aue NE Rodmini, u	14				De 1 4006	19 1481	n Do	N	E R	ed mes	d, n	4	10 7	Organic & Inc	organic Analyses	<1
h .				P.O. NUM	MBER:	wA	255-	354	2						Petroleum Hy	drocarbon Analyses	
PHONE: PROJECT NAME: 2 55 35	3- vestlake					PRE	SERVAT	IVE				1 1		5-	4 3	2 1 <	IJ
PROJECT NUMBER: WA 29		Hel He	Hal	Hol		REQUES	TED AN	ALYSES								ecify:	
SAMPLED BY: Salah M.	Tamie P. AMEF Javan	3 -	3	Ŋ	1/20		100							* Turnaround I	lequests less th	han standard may incur l	Rush Charges
CLIENT SAMPLE IDENTIFICATION	Jamie P. AMEF Jawall SAMPLING DATE/TIME	10 H 6x	BTEX	MTBE	Naphthla	Total 1 cal	Pissul							MATRIX (W, S, O)	# OF CONT.	LOCATION / COMMENTS	TA WO ID
1 MW-80	6/14/01 7:55	 /	X	X	×	X	X							W			//
2MW-41	W/4/07 10:40	XX	< ×	X	X	X	X							W	9		12
1 MW-95	6/14/07 11:40	$ X \times$	$\langle \times \rangle$	X	X	X	X							W	9		13
MW-208	6/14/01 12:45		X	X	X	X	×							W	9		14
5 MW-18	6/14/07 13:30	XX	1 ×	X	X	X	×							W	9		15
· MW-37	6/14/07 KY:20	XX	_ X	X	X	X	X							W	9		14
Tr.p Blank												-		W	1		
//k 8										-							_
9							-			-							
10									<u> </u>	<u></u>							7.41
RELEASED BY: MARIE M.	cotacinery FIRM:	Delta		DATE: TIME:		556		RECEIVE	DBY:	ranti	sco	Lung	Jr.	FIRM	TA-5		552
RELEASED BY:	7	, -		DATE:				RECEIVE	DBY:			-7				DATE:	
PRINT NAME:	FIRM:			TIME:	:			PRINT NA	ME:				****	FIRM	ab 1700	TIME:	
ADDITIONAL REMARKS:	to filter	dissal	red	16	ಚಿ			•						WL	w K		JE OF

June 29, 2007

Greg Montgomery Delta Environmental 4006 148th Ave NE Redmond, WA/USA 98052

RE: COP Westlake 255-35-3

Enclosed are the results of analyses for samples received by the laboratory on 06/15/07 16:20. The following list is a summary of the Work Orders contained in this report, generated on 06/29/07 13:56.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber	
BQF0423	COP Westlake 255-35-3	WA 255-3542-1	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

COP Westlake 255-35-3 **Delta Environmental** Project Name:

4006 148th Ave NE WA 255-3542-1 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: 06/29/07 13:56 Greg Montgomery

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-207	BQF0423-01	Water	06/15/07 08:00	06/15/07 16:20
MW-53	BQF0423-02	Water	06/15/07 08:45	06/15/07 16:20
MW-58	BQF0423-03	Water	06/15/07 09:30	06/15/07 16:20
MW-34	BQF0423-04	Water	06/15/07 10:10	06/15/07 16:20
MW-59	BQF0423-05	Water	06/15/07 11:00	06/15/07 16:20
MW-32A	BQF0423-06	Water	06/15/07 11:45	06/15/07 16:20
MW-52	BQF0423-07	Water	06/15/07 13:40	06/15/07 16:20
MW-3A	BQF0423-08	Water	06/15/07 07:50	06/15/07 16:20
MW-33	BQF0423-09	Water	06/15/07 08:40	06/15/07 16:20
MW-50	BQF0423-10	Water	06/15/07 09:15	06/15/07 16:20
MW-56	BQF0423-11	Water	06/15/07 09:50	06/15/07 16:20
MW-51	BQF0423-12	Water	06/15/07 10:30	06/15/07 16:20
MW-55	BQF0423-13	Water	06/15/07 11:05	06/15/07 16:20
MW-57	BQF0423-14	Water	06/15/07 14:20	06/15/07 16:20
MW-35	BQF0423-15	Water	06/15/07 14:55	06/15/07 16:20
MW-60	BQF0423-16	Water	06/15/07 14:45	06/15/07 16:20
MW-45	BQF0423-17	Water	06/15/07 14:15	06/15/07 16:20
MW-54	BQF0423-18	Water	06/15/07 13:30	06/15/07 16:20
DUP-1	BQF0423-19	Water	06/15/07 16:20	06/15/07 16:20
Trip Blank	BQF0423-20	Water	06/15/07 16:20	06/15/07 16:20

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

melling

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental

Redmond, WA/USA 98052

4006 148th Ave NE

Project Name:

COP Westlake 255-35-3

Project Number: Project Manager: WA 255-3542-1 Greg Montgomery Report Created: 06/29/07 13:56

Volatile Petroleum Products by NWTPH-Gx

TestAmerica - Seattle, WA


Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-01 (MW-207)		Wa	ater		Sampl	ed: 06/1	15/07 08:00			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	7F20048	06/20/07 13:59	06/20/07 15:29	
Surrogate(s): 4-BFB (FID)			87.3%		58 - 144 %	"			"	
BQF0423-02 (MW-53)		Wa	ater		Sampl	ed: 06/1	15/07 08:45			
Gasoline Range Hydrocarbons	NWTPH-Gx	71.4		50.0	ug/l	1x	7F20048	06/20/07 13:59	06/20/07 16:35	
Surrogate(s): 4-BFB (FID)			86.6%		58 - 144 %	"			"	
BQF0423-03RE1 (MW-58)		Wa	ater		Sampl	ed: 06/1	15/07 09:30			
Gasoline Range Hydrocarbons	NWTPH-Gx	2220		50.0	ug/l	1x	7F21026	06/21/07 11:27	06/21/07 16:18	
Surrogate(s): 4-BFB (FID)			100%		58 - 144 %	"			"	
BQF0423-04 (MW-34)		Wa	ater		Sampl	ed: 06/1	15/07 10:10			
Gasoline Range Hydrocarbons	NWTPH-Gx	806		50.0	ug/l	1x	7F20048	06/20/07 13:59	06/20/07 17:41	
Surrogate(s): 4-BFB (FID)			87.4%		58 - 144 %	"			"	
BQF0423-05 (MW-59)		Wa	ater		Sampl	ed: 06/1	15/07 11:00			
Gasoline Range Hydrocarbons	NWTPH-Gx	87.8		50.0	ug/l	1x	7F20048	06/20/07 13:59	06/20/07 18:14	
Surrogate(s): 4-BFB (FID)			84.2%		58 - 144 %	"			"	
BQF0423-06RE1 (MW-32A)		Wa	iter		Sampl	ed: 06/1	15/07 11:45			
Gasoline Range Hydrocarbons	NWTPH-Gx	296		50.0	ug/l	1x	7F21026	06/21/07 11:27	06/21/07 23:41	
Surrogate(s): 4-BFB (FID)			90.3%		58 - 144 %	"			"	
BQF0423-07RE1 (MW-52)		Wa	ater		Sampl	ed: 06/1	15/07 13:40			
Gasoline Range Hydrocarbons	NWTPH-Gx	146		50.0	ug/l	1x	7F21026	06/21/07 11:27	06/21/07 15:15	
Surrogate(s): 4-BFB (FID)			93.8%		58 - 144 %	"			"	
BQF0423-08RE1 (MW-3A)		Wa	ater		Sampl	ed: 06/1	15/07 07:50			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	7F21026	06/21/07 11:27	06/21/07 14:12	
Surrogate(s): 4-BFB (FID)			91.6%		58 - 144 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

" and Timen

Delta Environmental 4006 148th Ave NE

Redmond, WA/USA 98052

Project Name:

COP Westlake 255-35-3

Project Number: Project Manager: WA 255-3542-1 Greg Montgomery

Report Created: 06/29/07 13:56

Volatile Petroleum Products by NWTPH-Gx

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-09RE1 (MW-33)		Wa	iter		Sampl	ed: 06/1	15/07 08:40			
Gasoline Range Hydrocarbons	NWTPH-Gx	535		50.0	ug/l	1x	7F21026	06/21/07 11:27	06/21/07 23:09	
Surrogate(s): 4-BFB (FID)			105%		58 - 144 %	"			"	
BQF0423-10RE1 (MW-50)		Wa	iter		Sampl	ed: 06/1	15/07 09:15			
Gasoline Range Hydrocarbons	NWTPH-Gx	1390		50.0	ug/l	1x	7F21026	06/21/07 11:27	06/22/07 00:12	
Surrogate(s): 4-BFB (FID)			168%		58 - 144 %	"			"	ZX
BQF0423-11RE1 (MW-56)		Wa	iter		Sampl	ed: 06/1	15/07 09:50			
Gasoline Range Hydrocarbons	NWTPH-Gx	106		50.0	ug/l	1x	7F21026	06/21/07 11:27	06/21/07 22:38	
Surrogate(s): 4-BFB (FID)			90.4%		58 - 144 %	"			"	
BQF0423-12RE1 (MW-51)		Wa	iter		Sampl	ed: 06/1	15/07 10:30			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	7F21026	06/21/07 11:27	06/21/07 22:06	
Surrogate(s): 4-BFB (FID)			89.0%		58 - 144 %	"			"	
BQF0423-13RE1 (MW-55)		Wa	iter		Sampl	ed: 06/1	15/07 11:05			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	7F21026	06/21/07 11:27	06/21/07 21:35	
Surrogate(s): 4-BFB (FID)			89.0%		58 - 144 %	"			"	
BQF0423-14RE1 (MW-57)		Wa	iter		Sampl	ed: 06/1	15/07 14:20			
Gasoline Range Hydrocarbons	NWTPH-Gx	19800		500	ug/l	10x	7F21026	06/21/07 11:27	06/21/07 16:50	
Surrogate(s): 4-BFB (FID)			100%		58 - 144 %	1x			"	
BQF0423-15RE1 (MW-35)		Wa	iter		Sampl	ed: 06/1	15/07 14:55			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	7F21026	06/21/07 11:27	06/21/07 21:03	
Surrogate(s): 4-BFB (FID)			88.3%		58 - 144 %	"			"	
BQF0423-16 (MW-60)		Wa	iter		Sampl	ed: 06/1	15/07 14:45			
Gasoline Range Hydrocarbons	NWTPH-Gx	41200		500	ug/l	10x	7F20048	06/20/07 13:59	06/20/07 18:46	
Surrogate(s): 4-BFB (FID)			86.6%		58 - 144 %	1x			"	

TestAmerica - Seattle, WA

and Times Curtis D. Armstrong For Sandra Yakamavich, Project Manager

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental 4006 148th Ave NE

Redmond, WA/USA 98052

Project Name:

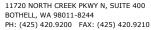
COP Westlake 255-35-3

Project Number: Project Manager: WA 255-3542-1 Greg Montgomery

Report Created: 06/29/07 13:56

Volatile Petroleum Products by NWTPH-Gx

TestAmerica - Seattle, WA


Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-17RE1 (MW-45)		Wa	iter		Sampl	ed: 06/1	5/07 14:15			
Gasoline Range Hydrocarbons	NWTPH-Gx	12500		500	ug/l	10x	7F21026	06/21/07 11:27	06/21/07 17:21	
Surrogate(s): 4-BFB (FID)			93.7%		58 - 144 %	1x			"	
BQF0423-18RE1 (MW-54)		Wa	iter		Sampl	ed: 06/1	15/07 13:30			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	7F21026	06/21/07 11:27	06/21/07 20:32	
Surrogate(s): 4-BFB (FID)			88.0%		58 - 144 %	"			"	
BQF0423-19RE1 (DUP-1)		Wa	iter		Sampl	ed: 06/1	5/07 16:20			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	7F21026	06/21/07 11:27	06/21/07 20:00	
Surrogate(s): 4-BFB (FID)			90.3%		58 - 144 %	"			"	
BQF0423-20RE1 (Trip Blank)		Wa	iter		Sampl	ed: 06/1	5/07 16:20			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	7F21026	06/21/07 11:27	06/21/07 19:28	
Surrogate(s): 4-BFB (FID)			88.8%		58 - 144 %	"			"	

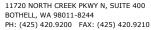
TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and Times

4006 148th Ave NEProject Number:WA 255-3542-1Report Created:Redmond, WA/USA 98052Project Manager:Greg Montgomery06/29/07 13:56

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up


TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-01 (MW-207)		Wa	iter		Sampl	led: 06/	15/07 08:00			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.238	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 00:50	
Lube Oil Range Hydrocarbons	"	ND		0.476	"	"	"	"	"	C
Surrogate(s): 2-FBP			90.3%		53 - 125 %	"			"	_
Octacosane			105%		68 - 125 %	"			"	
BQF0423-02 (MW-53)		Wa	iter		Sampl	ed: 06/	15/07 08:45			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.238	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 01:20	
Lube Oil Range Hydrocarbons	"	ND		0.476	"	"	"	"	"	C
Surrogate(s): 2-FBP			88.9%		53 - 125 %	"			"	
Octacosane			103%		68 - 125 %	"			"	
BQF0423-03 (MW-58)		Wa	iter		Sampl	ed: 06/	15/07 09:30			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.243	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 01:50	
Lube Oil Range Hydrocarbons	"	ND		0.485	"	"	"	"	"	
Surrogate(s): 2-FBP			89.5%		53 - 125 %	"			"	
Octacosane			104%		68 - 125 %	"			"	
BQF0423-04 (MW-34)		Wa	iter		Sampl	ed: 06/	15/07 10:10			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.250	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 02:20	
Lube Oil Range Hydrocarbons	"	ND		0.500	"	"	"	"	"	
Surrogate(s): 2-FBP			90.6%		53 - 125 %	"			"	
Octacosane			105%		68 - 125 %	"			"	
BQF0423-05 (MW-59)		Wa	iter		Sampl	ed: 06/	15/07 11:00			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.245	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 02:50	
Lube Oil Range Hydrocarbons	"	ND		0.490	"	"	"	"	"	C
Surrogate(s): 2-FBP			87.0%		53 - 125 %	"			"	
Octacosane			103%		68 - 125 %	"			"	
BQF0423-06 (MW-32A)		Wa	iter		Sampl	ed: 06/	15/07 11:45			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.250	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 03:19	
Lube Oil Range Hydrocarbons	"	ND		0.500	"	"	"	"	"	c
Surrogate(s): 2-FBP			89.7%		53 - 125 %	"			"	
Octacosane			104%		68 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE WA 255-3542-1 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: 06/29/07 13:56 Greg Montgomery

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-07 (MW-52)		Wa	ater		Sampl	ed: 06/	15/07 13:40			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.250	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 03:49	
Lube Oil Range Hydrocarbons	"	ND		0.500	"	"	"	"	"	(
Surrogate(s): 2-FBP			86.8%		53 - 125 %	"			"	
Octacosane			107%		68 - 125 %	"			"	
BQF0423-08 (MW-3A)		Wa	ater		Sampl	ed: 06/	15/07 07:50			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.250	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 05:48	
Lube Oil Range Hydrocarbons	"	ND		0.500	"	"	"	"	"	(
Surrogate(s): 2-FBP			88.2%		53 - 125 %	"			"	
Octacosane			108%		68 - 125 %	"			"	
BQF0423-09 (MW-33)		Wa	ater		Sampl	ed: 06/	15/07 08:40			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.245	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 06:18	
Lube Oil Range Hydrocarbons	"	ND		0.490	"	"	"	"	"	(
Surrogate(s): 2-FBP			91.5%		53 - 125 %	"			"	
Octacosane			108%		68 - 125 %	"			"	
BQF0423-10 (MW-50)		Wa	ater		Sampl	ed: 06/	15/07 09:15			
Diesel Range Hydrocarbons	NWTPH-Dx	0.333		0.248	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 06:47	Q
Lube Oil Range Hydrocarbons	"	ND		0.495	"	"	"	"	"	(
Surrogate(s): 2-FBP			110%		53 - 125 %	"			"	
Octacosane			108%		68 - 125 %	"			"	
BQF0423-11 (MW-56)		Wa	ater		Sampl	ed: 06/	15/07 09:50			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.245	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 07:17	
Lube Oil Range Hydrocarbons	"	ND		0.490	"	"	"	"	"	(
Surrogate(s): 2-FBP			90.4%		53 - 125 %	"			"	
Octacosane			105%		68 - 125 %	"			"	
BQF0423-12 (MW-51)		Wa	ater		Sampl	ed: 06/	15/07 10:30			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.245	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 07:47	
Lube Oil Range Hydrocarbons	"	ND		0.490	"	"	"	"	"	(
Surrogate(s): 2-FBP			88.7%		53 - 125 %	"			"	
Octacosane			108%		68 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

4006 148th Ave NEProject Number:WA 255-3542-1Report Created:Redmond, WA/USA 98052Project Manager:Greg Montgomery06/29/07 13:56

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-13 (MW-55)		Wa	ter		Sampl	ed: 06/	15/07 11:05			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.245	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 08:17	
Lube Oil Range Hydrocarbons	"	ND		0.490	"	"	"	"	"	(
Surrogate(s): 2-FBP			91.9%		53 - 125 %	"			"	
Octacosane			108%		68 - 125 %	"			"	
BQF0423-14 (MW-57)		Wa	ter		Sampl	ed: 06/	15/07 14:20			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.245	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 08:47	
Lube Oil Range Hydrocarbons	"	ND		0.490	"	"	"	"	"	C
Surrogate(s): 2-FBP			91.2%		53 - 125 %	"			"	
Octacosane			108%		68 - 125 %	"			"	
BQF0423-15 (MW-35)		Wa	ter		Sampl	ed: 06/	15/07 14:55			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.245	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 09:17	
Lube Oil Range Hydrocarbons	"	ND		0.490	"	"	"	"	"	C
Surrogate(s): 2-FBP			90.1%		53 - 125 %	"			"	
Octacosane			109%		68 - 125 %	"			"	
BQF0423-16 (MW-60)		Wa	ter		Sampl	ed: 06/	15/07 14:45			
Diesel Range Hydrocarbons	NWTPH-Dx	0.957		0.238	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 09:46	Q5
Lube Oil Range Hydrocarbons	"	ND		0.476	"	"	"	"	"	C
Surrogate(s): 2-FBP			117%		53 - 125 %	"			"	
Octacosane			104%		68 - 125 %	"			"	
BQF0423-17 (MW-45)		Wa	ter		Sampl	ed: 06/	15/07 14:15			
Diesel Range Hydrocarbons	NWTPH-Dx	0.439		0.240	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 10:16	Q5
Lube Oil Range Hydrocarbons	"	ND		0.481	"	"	"	"	"	C
Surrogate(s): 2-FBP			97.3%		53 - 125 %	"			"	
Octacosane			109%		68 - 125 %	"			"	
BQF0423-18 (MW-54)		Wa	ter		Sampl	ed: 06/	15/07 13:30			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.243	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 12:15	<u> </u>
Lube Oil Range Hydrocarbons	"	ND		0.485	"	"	"	"	"	C
Surrogate(s): 2-FBP		-	92.4%		53 - 125 %	"			"	
Octacosane			107%		68 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental

Redmond, WA/USA 98052

4006 148th Ave NE

Project Name:

COP Westlake 255-35-3

Project Number: Project Manager: WA 255-3542-1 Greg Montgomery

Report Created: 06/29/07 13:56

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-19 (DUP-1)		Wa	iter		Sampl	ed: 06/1	5/07 16:20			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.248	mg/l	1x	7F20013	06/20/07 09:06	06/28/07 12:45	
Lube Oil Range Hydrocarbon	S "	ND		0.495	"	"	"	"	"	C
Surrogate(s): 2-FBP			90.6%		53 - 125 %	"			"	
Octacos	rane		107%		68 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental Project Name: COP Westlake 255-35-3

4006 148th Ave NEProject Number:WA 255-3542-1Report Created:Redmond, WA/USA 98052Project Manager:Greg Montgomery06/29/07 13:56

Total Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-01	(MW-207)		Wa	iter		Samp	oled: 06/1	15/07 08:00			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 02:30	
BQF0423-02	(MW-53)		Wa	iter		Samı	pled: 06/1	15/07 08:45			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 02:36	
BQF0423-03	(MW-58)		Wa	iter		Samı	pled: 06/1	15/07 09:30			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 02:42	
BQF0423-04	(MW-34)		Wa	iter		Samı	pled: 06/1	15/07 10:10			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 02:48	
BQF0423-05	(MW-59)		Wa	iter		Samı	oled: 06/1	15/07 11:00			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 02:54	
BQF0423-06	(MW-32A)		Wa	iter		Samı	oled: 06/1	15/07 11:45			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 03:00	
BQF0423-07	(MW-52)		Wa	iter		Samı	oled: 06/1	15/07 13:40			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 03:18	
BQF0423-08	(MW-3A)		Wa	iter		Samı	oled: 06/1	15/07 07:50			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 03:24	
BQF0423-09	(MW-33)		Wa	iter		Samı	oled: 06/1	15/07 08:40			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 03:30	
BQF0423-10	(MW-50)		Wa	iter		Samı	oled: 06/1	15/07 09:15			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 03:36	
BQF0423-11	(MW-56)		Wa	iter		Samı	oled: 06/1	15/07 09:50			
Lead	/	EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 03:42	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental

Redmond, WA/USA 98052

4006 148th Ave NE

Project Name:

COP Westlake 255-35-3

Project Number: Project Manager:

WA 255-3542-1 Greg Montgomery

Report Created: 06/29/07 13:56

Total Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-12	(MW-51)		Wa	ter		Sam	pled: 06/1	5/07 10:30			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 03:48	
BQF0423-13	(MW-55)		Wa	ter		Sam	pled: 06/1	5/07 11:05			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 03:54	
BQF0423-14	(MW-57)		Wa	ter		Sam	pled: 06/1	5/07 14:20			
Lead		EPA 6020	0.00177		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 03:59	
BQF0423-15	(MW-35)		Wa	ter		Sam	pled: 06/1	5/07 14:55			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 04:05	
BQF0423-16	(MW-60)		Wa	ter		Sam	pled: 06/1	5/07 14:45			
Lead		EPA 6020	0.00111		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 04:11	
BQF0423-17	(MW-45)		Wa	ter		Sam	pled: 06/1	5/07 14:15			
Lead		EPA 6020	0.00177		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 05:26	
BQF0423-18	(MW-54)		Wa	ter		Sam	pled: 06/1	5/07 13:30			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 05:32	
BQF0423-19	(DUP-1)		Wa	ter		Sam	pled: 06/1	5/07 16:20			
Lead		EPA 6020	ND		0.00100	mg/l	1x	7F20006	06/20/07 07:39	06/21/07 05:38	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

selling.

COP Westlake 255-35-3

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental Project Name:

4006 148th Ave NEProject Number:WA 255-3542-1Report Created:Redmond, WA/USA 98052Project Manager:Greg Montgomery06/29/07 13:56

Dissolved Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-01	(MW-207)		Wa	nter		Sam	pled: 06/1	15/07 08:00			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 06:44	
BQF0423-02	(MW-53)		Wa	ater		Samj	pled: 06/1	15/07 08:45			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 06:50	
BQF0423-03	(MW-58)		Wa	ater		Samj	pled: 06/1	15/07 09:30			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 18:48	
BQF0423-04	(MW-34)		Wa	ater		Samj	pled: 06/1	15/07 10:10			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 18:54	
BQF0423-05	(MW-59)		Wa	ater		Samj	pled: 06/1	15/07 11:00			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 19:00	
BQF0423-06	(MW-32A)		Wa	ater		Samj	pled: 06/1	15/07 11:45			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 19:06	
BQF0423-07	(MW-52)		Wa	ater		Samj	pled: 06/1	15/07 13:40			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 19:23	
BQF0423-08	(MW-3A)		Wa	ater		Samj	pled: 06/1	15/07 07:50			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 19:29	
BQF0423-09	(MW-33)		Wa	iter		Samj	pled: 06/1	15/07 08:40			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 19:35	
BQF0423-10	(MW-50)		Water Sampled: 06/15/07 09:15							P7	
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 19:41	
BQF0423-11	(MW-56)		Wa	iter		Samj	pled: 06/1	15/07 09:50			P7
Lead	•	EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 19:47	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental 4006 148th Ave NE

Redmond, WA/USA 98052

Project Name:

COP Westlake 255-35-3

Project Number: Project Manager:

WA 255-3542-1 Greg Montgomery

Report Created: 06/29/07 13:56

Dissolved Metals by EPA 6000/7000 Series Methods

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-12	(MW-51)		Wa	iter		Sam	pled: 06/1	5/07 10:30			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 19:53	
BQF0423-13	(MW-55)		Wa	iter		Sam	pled: 06/1	5/07 11:05			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 19:59	
BQF0423-14	(MW-57)		Wa	iter		Sam	pled: 06/1	5/07 14:20			P7
Lead		EPA 6020 - Diss	0.00155		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 20:05	
BQF0423-15	(MW-35)		Wa	iter		Sam	pled: 06/1	5/07 14:55			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 20:11	
BQF0423-16	(MW-60)		Wa	iter		Sam	pled: 06/1	5/07 14:45			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 20:17	
BQF0423-17	(MW-45)		Wa	iter		Sam	pled: 06/1	5/07 14:15			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 20:35	
BQF0423-18	(MW-54)		Wa	iter		Sam	pled: 06/1	5/07 13:30			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 20:40	
BQF0423-19	(DUP-1)		Wa	iter		Sam	pled: 06/1	5/07 16:20			P7
Lead		EPA 6020 - Diss	ND		0.00100	mg/l	1x	7F20046	06/20/07 13:29	06/21/07 20:46	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and thereng

4006 148th Ave NEProject Number:WA 255-3542-1Report Created:Redmond, WA/USA 98052Project Manager:Greg Montgomery06/29/07 13:56

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-01	(MW-207)		W	ater		Sampl	ed: 06/	15/07 08:00			
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F20010	06/20/07 07:28	06/20/07 13:06	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl et	her	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			92.4%		70 - 130 %	"			"	
	Toluene-d8			98.8%		75 - 125 %	"			"	
	4-BFB			98.0%		75 - 125 %	"			"	
BQF0423-02	(MW-53)		W	ater		Sampl	ed: 06/	15/07 08:45			
Benzene	•	EPA 8260B	1.11		0.500	ug/l	1x	7F18025	06/19/07 11:30	06/19/07 19:56	
Ethylbenzene		"	0.590		0.500	"	"	"	"	"	
Methyl tert-butyl et	her	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			105%		70 - 130 %	"			"	
	Toluene-d8			98.4%		75 - 125 %	"			"	
	4-BFB			101%		75 - 125 %	"			"	
BQF0423-03	(MW-58)		W	ater		Sampl	ed: 06/	15/07 09:30			
Ethylbenzene		EPA 8260B	54.0		0.500	ug/l	1x	7F20010	06/20/07 07:28	06/20/07 13:36	
Methyl tert-butyl etl	her	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	12.3		5.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			95.8%		70 - 130 %	"			"	
	Toluene-d8			98.6%		75 - 125 %	"			"	
	4-BFB			97.9%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and Times

4006 148th Ave NEProject Number:WA 255-3542-1Report Created:Redmond, WA/USA 98052Project Manager:Greg Montgomery06/29/07 13:56

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-03RE1	(MW-58)		Wa	nter		Sampl	ed: 06/1	5/07 09:30			
Benzene		EPA 8260B	328		5.00	ug/l	10x	7F20010	06/20/07 07:28	06/20/07 15:06	
Гoluene		"	175		5.00	"	"	"	"	"	
o-Xylene		"	133		10.0	"	"	"	"	"	
m,p-Xylene		"	199		20.0	"	"	"	"	"	
Xylenes (total)		"	333		30.0	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			89.2%		70 - 130 %	1x			"	
	Toluene-d8			100%		75 - 125 %	"			"	
	4-BFB			101%		75 - 125 %	"			"	
3QF0423-04 ((MW-34)		Wa	ater		Sampl	ed: 06/1	5/07 10:10			
Ethylbenzene		EPA 8260B	4.02		0.500	ug/l	1x	7F20010	06/20/07 07:28	06/20/07 15:48	
Methyl tert-butyl eth	ier	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	6.79		5.00	"	"	"	"	"	
Гoluene		"	1.01		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			96.8%		70 - 130 %	"			"	
	Toluene-d8			100%		75 - 125 %	"			"	
	4-BFB			99.5%		75 - 125 %	"			"	
BQF0423-04RE1	(MW-34)		Wa	iter		Sampl	ed: 06/1	5/07 10:10			
Benzene		EPA 8260B	141		2.50	ug/l	5x	7F20010	06/20/07 07:28	06/20/07 17:17	
Surrogate(s):	1,2-DCA-d4			93.8%		70 - 130 %	1x			"	
	Toluene-d8			102%		75 - 125 %	"			"	
	4-BFB			98.0%		75 - 125 %	"			"	
BQF0423-05 ((MW-59)		Wa	iter		Sampl	ed: 06/1	5/07 11:00			
Benzene		EPA 8260B	8.24		0.500	ug/l	1x	7F18025	06/19/07 11:30	06/19/07 20:23	
Ethylbenzene		"	0.740		0.500	"	"	"	"	"	
Methyl tert-butyl eth	ier	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Γoluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
n,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			105%		70 - 130 %	"			"	
	Toluene-d8			99.4%		75 - 125 %	"			"	
	4-BFB			102%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Selling

4006 148th Ave NEProject Number:WA 255-3542-1Report Created:Redmond, WA/USA 98052Project Manager:Greg Montgomery06/29/07 13:56

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method Result MDL* MRL Units Dil Batch Prepared Analyzed No				Notes					
BQF0423-06 (1	MW-32A)		Wa	iter		Sample	ed: 06/1	15/07 11:45			
Benzene		EPA 8260B	14.2		0.500	ug/l	1x	7F20010	06/20/07 07:28	06/20/07 14:36	
Ethylbenzene		"	3.26		0.500	"	"	"	"	"	
Methyl tert-butyl ethe	er	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	12.1		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			93.2%		70 - 130 %	"			"	
	Toluene-d8			101%		75 - 125 %	"			"	
	4-BFB			99.2%		75 - 125 %	"			"	
BQF0423-07 (1	MW-52)		Wa	iter		Sample	ed: 06/1	15/07 13:40			
Benzene		EPA 8260B	0.620		0.500	ug/l	1x	7F20010	06/20/07 07:28	06/20/07 17:37	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl ethe	er	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			91.8%		70 - 130 %	"			"	
	Toluene-d8			101%		75 - 125 %	"			"	
	4-BFB			100%		75 - 125 %	"			"	
BQF0423-08 (I	MW-3A)		Wa	iter		Sample	ed: 06/1	15/07 07:50			
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F20010	06/20/07 07:28	06/20/07 16:49	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl ethe	er	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			92.2%		70 - 130 %	"			"	
	Toluene-d8			102%		75 - 125 %	"			"	
	4-BFB			98.4%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

11720 NORTH CREEK PKWY N, SUITE 400 BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental Project Name: COP Westlake 255-35-3

4006 148th Ave NEProject Number:WA 255-3542-1Report Created:Redmond, WA/USA 98052Project Manager:Greg Montgomery06/29/07 13:56

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-09 ((MW-33)		W	ater		Sample	ed: 06/1	5/07 08:40			
Benzene		EPA 8260B	32.5		0.500	ug/l	1x	7F27029	06/27/07 08:30	06/27/07 13:59	
Ethylbenzene		"	0.550		0.500	"	"	"	"	"	
Methyl tert-butyl et	ther	"	1.38		1.00	"	"	"	"	"	
Naphthalene		"	21.8		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
-Xylene		"	16.9		1.00	"	"	"	"	"	
n,p-Xylene		"	ND		2.00	"	"	"	"	"	
Kylenes (total)		"	17.5		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			95.8%		70 - 130 %	"			"	
	Toluene-d8			102%		75 - 125 %	"			"	
	4-BFB			97.5%		75 - 125 %	"			"	
BQF0423-10 ((MW-50)		w	ater		Sample	ed: 06/1	5/07 09:15			
Benzene		EPA 8260B	28.0		0.500	ug/l	1x	7F20077	06/20/07 21:19	06/21/07 04:45	
Ethylbenzene		m .	6.46		0.500	"	"	"	"	"	
Aethyl tert-butyl et	ther	"	1.85		1.00	"	"	"	"	"	
Naphthalene		"	40.5		5.00	"	"	"	"	"	
Toluene		"	1.00		0.500	"	"	"	"	"	
-Xylene		"	1.50		1.00	"	"	"	"	"	
n,p-Xylene		"	3.70		2.00	"	"	"	"	"	
Kylenes (total)		"	5.20		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			103%		70 - 130 %	"			"	
	Toluene-d8			106%		75 - 125 %	"			"	
	4-BFB			96.6%		75 - 125 %	"			"	
3QF0423-11 ((MW-56)		W	ater		Sample	ed: 06/1	15/07 09:50			
Benzene		EPA 8260B	1.94		0.500	ug/l	1x	7F20077	06/20/07 21:19	06/21/07 05:30	
Ethylbenzene		"	0.650		0.500	"	"	"	"	"	
Aethyl tert-butyl et	ther	"	1.53		1.00	"	"	"	"	"	
Naphthalene		"	10.1		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
-Xylene		"	ND		1.00	"	"	"	"	"	
n,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			102%		70 - 130 %	"			"	
	Toluene-d8			105%		75 - 125 %	"			"	
	4-BFB			95.4%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Selling

4006 148th Ave NEProject Number:WA 255-3542-1Report Created:Redmond, WA/USA 98052Project Manager:Greg Montgomery06/29/07 13:56

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-12 (MW-51))	Wa	iter		Sampl	ed: 06/1	5/07 10:30			
Benzene	EPA 8260B	ND		0.500	ug/l	1x	7F20077	06/20/07 21:19	06/21/07 06:00	
Ethylbenzene	"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl ether	"	ND		1.00	"	"	"	"	"	
Naphthalene	"	ND		5.00	"	"	"		"	
Toluene	"	ND		0.500	"	"	"	"	"	
o-Xylene	"	ND		1.00	"	"	"	"	"	
m,p-Xylene	"	ND		2.00	"	"	"	"	"	
Xylenes (total)	"	ND		3.00	"	"	"	"	n	
Surrogate(s): 1,2-DCA	1-d4		100%		70 - 130 %	"			"	_
Toluene-	-d8		106%		75 - 125 %	"			"	
4-BFB			97.3%		75 - 125 %	"			"	
BQF0423-13 (MW-55))	Wa	iter		Sampl	ed: 06/1	5/07 11:05			
Benzene	EPA 8260B	ND		0.500	ug/l	1x	7F20077	06/20/07 21:19	06/21/07 06:29	
Ethylbenzene	"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl ether	"	ND		1.00	"	"	"	"	"	
Naphthalene	"	7.19		5.00	"	"	"	"	"	
Toluene	"	ND		0.500	"	"	"	"	"	
o-Xylene	"	ND		1.00	"	"	"	•	"	
m,p-Xylene	"	ND		2.00	"	"	"	"	"	
Xylenes (total)	"	ND		3.00	"	"	"	"	"	
Surrogate(s): 1,2-DCA	1-d4		102%		70 - 130 %	"			"	
Toluene-	-d8		105%		75 - 125 %	"			"	
4-BFB			96.9%		75 - 125 %	"			"	
BQF0423-14RE1 (MW-	57)	Wa	iter		Sampl	ed: 06/1	5/07 14:20			
Benzene	EPA 8260B	699		10.0	ug/l	20x	7F27029	06/27/07 08:30	06/27/07 15:08	
Ethylbenzene	"	660		10.0	"	"	"		"	
Methyl tert-butyl ether	"	ND		20.0	"	"	"	"	"	
Naphthalene	"	256		100	"	"	"		"	
Toluene	"	1010		10.0	"	"	"		"	
o-Xylene	"	964		20.0	"	"	"	"	"	
m,p-Xylene	"	2380		40.0	"	"	"	"	"	
Xylenes (total)	"	3350		60.0	"	"	"	"	"	
Surrogate(s): 1,2-DCA	1-d4		95.4%		70 - 130 %	1x			"	
Toluene-			102%		75 - 125 %	"			"	
4-BFB			97.3%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Selling

4006 148th Ave NEProject Number:WA 255-3542-1Report Created:Redmond, WA/USA 98052Project Manager:Greg Montgomery06/29/07 13:56

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Note
BQF0423-15	(MW-35)		W	ater		Sampl	ed: 06/1	15/07 14:55			
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F27029	06/27/07 08:30	06/27/07 14:29	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl eth	ner	"	ND		1.00	"	"	"	"	"	
Naphthalene		"	6.34		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			93.6%		70 - 130 %	"			"	
	Toluene-d8			102%		75 - 125 %	"			"	
	4-BFB			98.6%		75 - 125 %	"			"	
BQF0423-16RE1	(MW-60)		W	ater		Sampl	ed: 06/1	15/07 14:45			
Benzene		EPA 8260B	2870		20.0	ug/l	40x	7F27029	06/27/07 08:30	06/27/07 16:45	
Ethylbenzene		"	1200		20.0	"	"	"	"	"	
Methyl tert-butyl eth	ner	"	ND		40.0	"	"	"	"	"	
Naphthalene		"	880		200	"	"	"	"	"	
Гoluene		"	119		20.0	"	"	"	"	"	
o-Xylene		"	688		40.0	"	"	"	"	•	
m,p-Xylene		"	6280		80.0	"	"	"	"	"	
Xylenes (total)		"	6970		120	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			94.6%		70 - 130 %	1x			"	
	Toluene-d8			99.8%		75 - 125 %	"			"	
	4-BFB			98.3%		75 - 125 %	"			"	
BQF0423-17	(MW-45)		W	ater		Sampl	ed: 06/1	15/07 14:15			
Benzene		EPA 8260B	16.8		0.500	ug/l	1x	7F21006	06/21/07 08:30	06/21/07 19:29	
Ethylbenzene		"	178		0.500	"	"	"	"	"	
Methyl tert-butyl eth	ner	"	ND		1.00	"	"	"	"	"	
Гоluene		"	2.77		0.500	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			114%		70 - 130 %	"			"	
	Toluene-d8			109%		75 - 125 %	"			"	
	4-BFB			88.2%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and Times

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE WA 255-3542-1 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: 06/29/07 13:56 Greg Montgomery

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-17RE1	(MW-45)		Wa	iter		Sampl	ed: 06/1	15/07 14:15			
Naphthalene		EPA 8260B	330		100	ug/l	20x	7F22008	06/22/07 09:00	06/22/07 13:29	
o-Xylene		"	547		20.0	"	"	"	"	"	
m,p-Xylene		"	1040		40.0	"	"	"	"	"	
Xylenes (total)		"	1590		60.0	"	"	"	"	"	
Surrogate(s): 1,	,2-DCA-d4			107%		70 - 130 %	1x			"	
T	Coluene-d8			111%		75 - 125 %	"			"	
4-	-BFB			96.8%		75 - 125 %	"			"	
BQF0423-18 (M	IW-54)		Wa	iter		Sampl	ed: 06/1	15/07 13:30			
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F22008	06/22/07 09:00	06/22/07 10:57	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl ether		"	ND		1.00	"	"	"	"	"	
Naphthalene	,		ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s): 1,	,2-DCA-d4			111%		70 - 130 %	"			"	
T	Coluene-d8			111%		75 - 125 %	"			"	
4-	-BFB			101%		75 - 125 %	"			"	
BQF0423-19 (D)	UP-1)		Wa	iter		Sampl	ed: 06/1	15/07 16:20			
Benzene		EPA 8260B	ND		0.500	ug/l	1x	7F22008	06/22/07 09:00	06/22/07 11:28	
Ethylbenzene		"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl ether		"	ND		1.00	"	"	"	"	"	
Naphthalene		"	ND		5.00	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
o-Xylene		"	ND		1.00	"	"	"	"	"	
m,p-Xylene		"	ND		2.00	"	"	"	"	"	
Xylenes (total)		"	ND		3.00	"	"	"	"	"	
Surrogate(s): 1,	,2-DCA-d4			107%		70 - 130 %	"			"	
T	Coluene-d8			113%		75 - 125 %	"			"	
4	-BFB			101%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and trong

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental

Project Name:

COP Westlake 255-35-3

4006 148th Ave NE Redmond, WA/USA 98052

WA 255-3542-1 Project Number: Project Manager: Greg Montgomery

Report Created: 06/29/07 13:56

Volatile Organic Compounds by EPA Method 8260B

TestAmerica - Seattle, WA

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQF0423-20 (Trip Blank)		Wa	ter		Sampl	ed: 06/1	5/07 16:20			
Benzene	EPA 8260B	ND		0.500	ug/l	1x	7F20077	06/20/07 21:19	06/20/07 23:48	
Ethylbenzene	"	ND		0.500	"	"	"	"	"	
Methyl tert-butyl ether	"	ND		1.00	"	"	"	"	"	
Naphthalene	"	ND		5.00	"	"	"	"	"	
Toluene	"	ND		0.500	"	"	"	"	"	
o-Xylene	"	ND		1.00	"	"	"	"	"	
m,p-Xylene	"	ND		2.00	"	"	"	"	"	
Xylenes (total)	"	ND		3.00	"	"	"	"	"	
Surrogate(s): 1,2-DCA-d4			99.4%		70 - 130 %	"			"	
Toluene-d8			104%		75 - 125 %	"			"	
4-BFB			100%		75 - 125 %	"			"	

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and Times

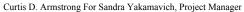
Delta Environmental

Project Name:

COP Westlake 255-35-3

4006 148th Ave NE Project Number:
Redmond, WA/USA 98052 Project Manager:

WA 255-3542-1 Greg Montgomery Report Created: 06/29/07 13:56


Volatile Petroleum Products by NWTPH-Gx - Laboratory Quality Control Results

	v olatile 1	cti oicuiii .		TestAmerica -			ory Quar		101 01	ixcourts				
QC Batch: 7F20048	Water l	Preparation	n Method:	EPA 5030B	(P/T)									
Analyte	Method	Result	MDI	L* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Blank (7F20048-BLK1)								Extra	acted:	06/20/07 13	3:59			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x							06/20/07 14:13	
Surrogate(s): 4-BFB (FID)		Recovery:	88.6%	Lin	nits: 58-144%	"							06/20/07 14:13	
LCS (7F20048-BS1)								Extra	acted:	06/20/07 13	3:59			
Gasoline Range Hydrocarbons	NWTPH-Gx	942		50.0	ug/l	1x		1000	94.2%	(80-120)			06/20/07 14:46	
Surrogate(s): 4-BFB (FID)		Recovery:	91.9%	Lin	nits: 58-144%	"							06/20/07 14:46	
Duplicate (7F20048-DUP1)				QC Source:	BQF0423-01			Extra	acted:	06/20/07 13	3:59			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	ND				26.1%	(25)	06/20/07 16:02	R
Surrogate(s): 4-BFB (FID)		Recovery:	87.2%	Lin	nits: 58-144%	"							06/20/07 16:02	
Duplicate (7F20048-DUP2)				QC Source:	BQF0423-02	!		Extra	acted:	06/20/07 13	3:59			
Gasoline Range Hydrocarbons	NWTPH-Gx	59.9		50.0	ug/l	1x	71.4				17.6%	(25)	06/20/07 17:08	
Surrogate(s): 4-BFB (FID)		Recovery:	85.7%	Lin	nits: 58-144%	"							06/20/07 17:08	
Matrix Spike (7F20048-MS1)				QC Source:	BQF0423-01			Extra	acted:	06/20/07 13	3:59			
Gasoline Range Hydrocarbons	NWTPH-Gx	1040		50.0	ug/l	1x	38.9	1000	100%	(75-131)			06/20/07 19:19	
Surrogate(s): 4-BFB (FID)		Recovery:	93.6%	Lin	nits: 58-144%	"							06/20/07 19:19	-

QC Batch: 7F21026	Water 1	Preparation	Method: E	PA 5030B	s (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (7F21026-BLK1)								Extr	acted:	06/21/07 1	1:27			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x							06/21/07 12:48	
Surrogate(s): 4-BFB (FID)		Recovery:	87.5%	Lin	nits: 58-144%	"							06/21/07 12:48	
LCS (7F21026-BS1)								Extr	acted:	06/21/07 1	1:27			
Gasoline Range Hydrocarbons	NWTPH-Gx	1020		50.0	ug/l	1x		1000	102%	(80-120)			06/21/07 13:19	
Surrogate(s): 4-BFB (FID)		Recovery:	94.8%	Lin	nits: 58-144%	"							06/21/07 13:19	
Duplicate (7F21026-DUP1)				QC Source:	BQF0423-08	RE1		Extr	acted:	06/21/07 1	1:27			
Gasoline Range Hydrocarbons	NWTPH-Gx	ND		50.0	ug/l	1x	ND			-	35.5%	(25)	06/21/07 14:43	F
Surrogate(s): 4-BFB (FID)		Recovery:	89.2%	Lin	nits: 58-144%	"							06/21/07 14:43	
Duplicate (7F21026-DUP2)				QC Source:	BQF0423-07	RE1		Extr	acted:	06/21/07 1	1:27			
Gasoline Range Hydrocarbons	NWTPH-Gx	158		50.0	ug/l	1x	146				7.42%	(25)	06/21/07 15:47	
Surrogate(s): 4-BFB (FID)		Recovery:	93.4%	Lin	nits: 58-144%	"							06/21/07 15:47	

TestAmerica - Seattle, WA

Calling

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental COP Westlake 255-35-3 Project Name:

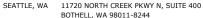
4006 148th Ave NE WA 255-3542-1 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: 06/29/07 13:56 Greg Montgomery

Volatile Petroleum Products by NWTPH-Gx - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F21026 Water Preparation Method: EPA 5030B (P/T)

Analyte Method Result MDL* MRL Units Dil Source Spike % (Limits) % (Limits) Anal Result Amt REC RPD	ed Notes
--	----------


Matrix Spike (7F21026-MS1)				QC Source:	BQF0423	-08RE1		Extr	acted:	06/21/07 11:2	:7	
Gasoline Range Hydrocarbons	NWTPH-Gx	1150		50.0	ug/l	1x	34.4	1000	111%	(75-131)		 06/21/07 17:53
Surrogate(s): 4-BFB (FID)		Recovery: 9	7.1%	Lim	its: 58-144	!% "						06/21/07 17:53

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

and trong

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental Project Name: COP Westlake 255-35-3

4006 148th Ave NEProject Number:WA 255-3542-1Report Created:Redmond, WA/USA 98052Project Manager:Greg Montgomery06/29/07 13:56

Semivolatile Petroleum Products by NWTPH-Dx with Acid/Silica Gel Clean-up - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F20013	Water I	Preparation	Method: EI	PA 3520C	2									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (7F20013-BLK1)								Exti	racted:	06/20/07 09	9:06			
Diesel Range Hydrocarbons	NWTPH-Dx	ND		0.250	mg/l	1x							06/27/07 23:21	
Lube Oil Range Hydrocarbons	"	ND		0.500	"	"							"	
Surrogate(s): 2-FBP		Recovery:	86.4%	Lii	mits: 53-125%	"							06/27/07 23:21	
Octacosane			103%		68-125%	"							"	
LCS (7F20013-BS1)								Exti	racted:	06/20/07 09	9:06			
Diesel Range Hydrocarbons	NWTPH-Dx	1.96		0.250	mg/l	1x		2.00	98.2%	(61-132)			06/27/07 23:51	
Surrogate(s): 2-FBP		Recovery:	88.4%	Lii	mits: 53-125%	"							06/27/07 23:51	
Octacosane			105%		68-125%	"							"	
LCS Dup (7F20013-BSD1)								Exti	racted:	06/20/07 09	9:06			
Diesel Range Hydrocarbons	NWTPH-Dx	1.97		0.250	mg/l	1x		2.00	98.4%	(61-132)	0.1479	6 (35)	06/28/07 00:21	
Surrogate(s): 2-FBP		Recovery:	93.2%	Lii	mits: 53-125%	"							06/28/07 00:21	
Octacosane			104%		68-125%	"							"	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental

COP Westlake 255-35-3 Project Name:

4006 148th Ave NE Redmond, WA/USA 98052 Project Number: WA 255-3542-1 Project Manager: Greg Montgomery

Report Created: 06/29/07 13:56

Total Metals by EPA 6000/7000 Series Methods - Laboratory Quality Control Results

TestAmerica - Seattle, WA

			103	tAmenca -	scattic, vi	А							
QC Batch: 7F20006	Water P	reparation M	ethod: E	PA 3020A									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (7F20006-BLK1)								Extracted:	06/20/07 0	7:39			
Lead	EPA 6020	ND		0.00100	mg/l	1x						06/21/07 01:37	
LCS (7F20006-BS1)								Extracted:	06/20/07 0	7:39			
Lead	EPA 6020	0.0740		0.00100	mg/l	1x		0.0800 92.5%	(80-120)			06/21/07 01:43	
Duplicate (7F20006-DUP1)				QC Source:	BQF0440-0)1		Extracted:	06/20/07 0	7:39			
Lead	EPA 6020	ND		0.00100	mg/l	1x	ND			NR	(20)	06/21/07 02:13	R4
Matrix Spike (7F20006-MS1)				QC Source:	BQF0440-0)1		Extracted:	06/20/07 0	7:39			
Lead	EPA 6020	0.0703		0.00100	mg/l	lx	ND	0.0800 87.9%	(80-120)			06/21/07 02:07	
Post Spike (7F20006-PS1)				QC Source:	BQF0440-0)1		Extracted:	06/20/07 0	7:39			
Lead	EPA 6020	0.0937			ug/ml	1x	-0.0000500	0.100 93.2%	(75-125)			06/21/07 01:49	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

11720 NORTH CREEK PKWY N, SUITE 400

BOTHELL, WA 98011-8244 PH: (425) 420.9200 FAX: (425) 420.9210

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE WA 255-3542-1 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: 06/29/07 13:56 Greg Montgomery

Dissolved Metals by EPA 6000/7000 Series Methods - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F20046	Water P	reparation M	ethod: E	PA 3005A									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes
Blank (7F20046-BLK1)								Extracted:	06/20/07 13:	29			
Lead	EPA 6020 - Diss	ND		0.00100	mg/l	1x						06/21/07 06:08	
LCS (7F20046-BS1)								Extracted:	06/20/07 13:	29			
Lead	EPA 6020 - Diss	0.193		0.00100	mg/l	1x		0.200 96.4%	(80-120)			06/21/07 06:14	
Duplicate (7F20046-DUP1)				QC Source:	BQF0423-	01		Extracted:	06/20/07 13:	29			
Lead	EPA 6020 - Diss	ND		0.00100	mg/l	1x	ND			NR	(20)	06/21/07 06:38	
Matrix Spike (7F20046-MS1)				QC Source:	BQF0423-	01		Extracted:	06/20/07 13:	29			
Lead	EPA 6020 - Diss	0.0961		0.00100	mg/l	1x	ND	0.100 95.6%	(77-120)			06/21/07 06:20	

TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

Delta Environmental Pro

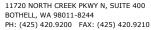
Project Name: COP Westlake 255-35-3

4006 148th Ave NEProject Number:WA 255-3542-1Report Created:Redmond, WA/USA 98052Project Manager:Greg Montgomery06/29/07 13:56

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F18025	Water I	Preparation	n Method:	EPA 5030I	3									
Analyte	Method	Result	MD	L* MRL	Units	Dil	Source Result	Spike Amt	« % REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (7F18025-BLK1)								Ext	racted:	06/19/07 09	:59			
Benzene	EPA 8260B	ND		0.500	ug/l	1x							06/19/07 13:49	
Ethylbenzene	"	ND		0.500	"	"							"	
Methyl tert-butyl ether	"	ND		1.00	"	"							"	
Naphthalene	"	ND		5.00	"	"							"	
Toluene	"	ND		0.500	"	"							"	
o-Xylene	"	ND		1.00	"	"							"	
m,p-Xylene	"	ND		2.00	"	"							"	
Xylenes (total)	"	ND		3.00	"	"							"	
Surrogate(s): 1,2-DCA-d4		Recovery:	97.6%	Li	mits: 70-130)% "							06/19/07 13:49	
Toluene-d8			99.4%		75-12.	5% "							"	
4-BFB			99.8%		75-12.	5% "							"	
LCS (7F18025-BS1)								Ext	racted:	06/19/07 09	:59			
Benzene	EPA 8260B	18.5		0.500	ug/l	1x		20.0	92.3%	(80-120)			06/19/07 10:27	
Ethylbenzene	"	18.6		0.500	"	"		"	93.2%	(75-125)			"	
Methyl tert-butyl ether	"	20.4		1.00	"	"		"	102%	(75-126)			"	
Naphthalene	"	18.8		5.00	"	"		"	94.0%	(65-144)			"	
Toluene	"	18.7		0.500	"	"		"	93.6%	(75-125)			"	
o-Xylene	"	19.6		1.00	"	"		"	97.8%	(75-130)			"	
m,p-Xylene	"	38.1		2.00	"	"		40.0	95.3%	(75-125)			"	
Xylenes (total)	"	57.7		3.00	"	"		60.0	96.1%	"			"	
Surrogate(s): 1,2-DCA-d4		Recovery:	99.5%	Li	mits: 70-130)% "							06/19/07 10:27	
Toluene-d8		,	99.7%		75-12	5% "							"	
4-BFB			97.8%		75-12.	5% "							"	
LCS Dup (7F18025-BSD1)								Ext	racted:	06/19/07 09	:59			
Benzene	EPA 8260B	18.7		0.500	ug/l	1x		20.0	93.6%	(80-120)	1.35%	(20)	06/19/07 10:59	
Ethylbenzene	"	19.0		0.500	"	"		"	95.1%	(75-125)	2.07%		"	
Methyl tert-butyl ether	•	19.6		1.00	"	"		,,	98.2%	(75-126)	3.80%		,,	
Naphthalene	•	18.7		5.00	"	"		,,	93.6%	(65-144)	0.480%			
Toluene	"	18.9		0.500	"			"	94.6%	(75-125)	1.06%		"	
o-Xylene	"	19.8		1.00	"			"	99.2%	(75-130)	1.42%		"	
m,p-Xylene	,,	38.7		2.00	"	"		40.0	96.8%	(75-125)	1.59%		"	
Xylenes (total)	"	58.6		3.00	"	"		60.0	97.6%	"	1.53%		"	
Surrogate(s): 1,2-DCA-d4		Recovery:	96.6%		mits: 70-130	0% "					.== / 0		06/19/07 10:59	
Toluene-d8		Recovery.	99.4%	Li	mus. 70-130 75-12.								"	
4-BFB			101%		75-12								"	


TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE Project Number: WA 255-3542-1 Report Created: Redmond, WA/USA 98052 Project Manager: 06/29/07 13:56 Greg Montgomery

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F20010	Water I	Preparation	Method:	EPA 5030E	3									
analyte	Method	Result	MDL ⁵	* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	No
Blank (7F20010-BLK1)								Ext	racted:	06/20/07 07	:28			
Benzene	EPA 8260B	ND		0.500	ug/l	1x							06/20/07 11:06	
Ethylbenzene	"	ND		0.500	"	"							"	
Methyl tert-butyl ether	"	ND		1.00	"	"							"	
Naphthalene	"	ND		5.00	"	"							"	
Γoluene	"	ND		0.500	"	"							"	
o-Xylene	"	ND		1.00	"	"							"	
m,p-Xylene	"	ND		2.00	"	"							"	
Xylenes (total)	"	ND		3.00	"	"							"	
Surrogate(s): 1,2-DCA-d4		Recovery:	89.4%	Li	mits: 70-130	% "							06/20/07 11:06	
Toluene-d8		·	96.6%		75-125	% "							"	
4-BFB			102%		75-125	% "							"	
LCS (7F20010-BS1)								Ext	racted:	06/20/07 07	:28			
Benzene	EPA 8260B	19.1		0.500	ug/l	1x		20.0	95.3%	(80-120)			06/20/07 09:23	
Ethylbenzene	"	19.4		0.500	"			"	97.2%	(75-125)			"	
Methyl tert-butyl ether	"	18.3		1.00	"			"	91.6%	(75-126)			,,	
Naphthalene		19.6		5.00	"			,,	97.8%	(65-144)			,,	
Foluene	"	19.3		0.500	,,			"	96.3%	(75-125)			"	
o-Xylene	"	19.8		1.00	,,			"	98.8%	(75-130)			"	
n,p-Xylene	"	39.0		2.00	,,			40.0	97.6%	(75-125)			"	
Xylenes (total)	"	58.8		3.00	"			60.0	98.0%	"			,,	
Surrogate(s): 1,2-DCA-d4		Recovery:	100%		mits: 70-130	% "							06/20/07 09:23	
Toluene-d8		Recovery.	97.9%	Li	75-125								"	
4-BFB			99.4%		75-125								"	
LCS Dup (7F20010-BSD1)								Ext	racted:	06/20/07 07	:28			
Benzene	EPA 8260B	18.8		0.500	ug/l	1x		20.0	93.8%	(80-120)	1.59%	(20)	06/20/07 09:56	
Ethylbenzene	"	18.9		0.500	"	"		"	94.4%	(75-125)	2.97%	, "	"	
Methyl tert-butyl ether	"	18.5		1.00	"	"		"	92.4%	(75-126)	0.978%	6 "	"	
Naphthalene	"	20.0		5.00	"	"		"	100%	(65-144)	2.17%	, "	"	
Toluene	"	18.8		0.500	"	"		"	94.0%	(75-125)	2.42%	, "	"	
-Xylene	"	19.2		1.00	"	"		"	96.0%	(75-130)	2.98%	ő "	"	
n,p-Xylene	"	38.1		2.00	"	"		40.0	95.2%	(75-125)	2.46%	, "	"	
Xylenes (total)	"	57.3		3.00	"	"		60.0	95.5%	"	2.64%	, "	"	
Surrogate(s): 1,2-DCA-d4		Recovery:	99.3%	Li	mits: 70-130	% "							06/20/07 09:56	
Toluene-d8		,	96.2%		75-125								"	
4-BFB			98.6%		75-125	% "							"	

TestAmerica - Seattle, WA

Carling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

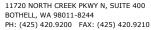
Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE Project Number: WA 255-3542-1 Report Created: Redmond, WA/USA 98052 Project Manager: 06/29/07 13:56 Greg Montgomery

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F	20077	Water P	reparation	Method:	EPA 5030B										
Analyte		Method	Result	MDI	L* MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	RPD (Limits) Analyzed	No
Blank (7F20077-BL	K1)								Ext	racted:	06/20/07 20):19			
Benzene		EPA 8260B	ND		0.500	ug/l	1x							06/20/07 22:48	
Ethylbenzene		"	ND		0.500	"	"							"	
Methyl tert-butyl ether		"	ND		1.00	"	"							"	
Naphthalene		"	ND		5.00	"	"							"	
Γoluene		"	ND		0.500	"	"							"	
o-Xylene		"	ND		1.00	"	"							"	
m,p-Xylene		"	ND		2.00	"	"							"	
Xylenes (total)		"	ND		3.00	"	"							"	
Surrogate(s): 1,2-DO	CA-d4		Recovery:	100%	Lin	nits: 70-130	% "							06/20/07 22:48	
Toluen				105%		75-125								"	
4-BFB	?			100%		75-125	% "							"	
LCS (7F20077-BS1))								Ext	racted:	06/20/07 20	:19			
Benzene		EPA 8260B	20.5		0.500	ug/l	1x		20.0	103%	(80-120)			06/20/07 21:27	
Ethylbenzene		"	20.8		0.500	"	"		"	104%	(75-125)				
Methyl tert-butyl ether		"	22.7		1.00	"	"		"	113%	(75-126)				
Naphthalene		"	23.1		5.00	"	"		"	116%	(65-144)			"	
Γoluene		"	21.3		0.500	"	"		"	106%	(75-125)			"	
o-Xylene		"	21.0		1.00	"	"		"	105%	(75-130)			"	
m,p-Xylene		"	42.2		2.00	"	"		40.0	106%	(75-125)			"	
Xylenes (total)		"	63.2		3.00	"	"		60.0	105%				"	
Surrogate(s): 1,2-DC	CA-d4		Recovery:	101%	Lin	nits: 70-130	% "							06/20/07 21:27	
Toluer	ne-d8			103%		75-125	% "							"	
4-BFB	?			98.8%		75-125	% "							"	
LCS Dup (7F20077-	·BSD1)								Ext	racted:	06/20/07 20	:19			
Benzene	,	EPA 8260B	20.7		0.500	ug/l	1x		20.0	103%	(80-120)	0.679%	(20)	06/20/07 22:03	
Ethylbenzene		"	21.2		0.500	"			"	106%	(75-125)	1.52%	"	"	
Methyl tert-butyl ether		"	19.1		1.00	"			"	95.5%	(75-126)	17.0%	••	"	
Naphthalene		"	20.9		5.00	"	"		"	104%	(65-144)	10.2%	"	"	
Γoluene		"	20.9		0.500	"	"		"	104%	(75-125)	1.76%	"	"	
o-Xylene		"	20.9		1.00	"	"		"	105%	(75-130)	0.143%	"	"	
n,p-Xylene		"	42.3		2.00	"	"		40.0	106%	(75-125)	0.0237%	••	"	
Kylenes (total)		"	63.2		3.00	"	"		60.0	105%	"	0.0316%		"	
Surrogate(s): 1,2-DC	CA-d4		Recovery:	102%	Lin	nits: 70-130	% "							06/20/07 22:03	
Toluen				103%	2311	75-125								"	
4-BFB				95.9%		75-125								"	


TestAmerica - Seattle, WA

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

Delta Environmental Project Name: COP Westlake 255-35-3

4006 148th Ave NEProject Number:WA 255-3542-1Report Created:Redmond, WA/USA 98052Project Manager:Greg Montgomery06/29/07 13:56

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F21006	Water I	Preparation	Method: 1	EPA 5030B	3									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limit	s) Analyzed	Notes
Blank (7F21006-BLK1)								Ext	racted:	06/21/07 08	3:30			
Benzene	EPA 8260B	ND		0.500	ug/l	1x							06/21/07 10:14	
Ethylbenzene	"	ND		0.500	"	"							"	
Methyl tert-butyl ether	"	ND		1.00	"	"							"	
Naphthalene	"	ND		5.00	"	"							"	
Toluene	"	ND		0.500	"	"							"	
o-Xylene	"	ND		1.00	"	"							"	
m,p-Xylene	"	ND		2.00	"	"							"	
Xylenes (total)	"	ND		3.00	"	"							"	
Surrogate(s): 1,2-DCA-d4		Recovery:	103%	Lin	nits: 70-130	% "							06/21/07 10:14	
Toluene-d8			114%		75-125	5% "							"	
4-BFB			102%		75-125	5% "							"	
LCS (7F21006-BS1)								Ext	racted:	06/21/07 08	3:30			
Benzene	EPA 8260B	18.8		0.500	ug/l	1x		20.0	94.0%	(80-120)			06/21/07 09:02	
Ethylbenzene	"	20.5		0.500	"	"		,,	102%	(75-125)			"	
Methyl tert-butyl ether	"	16.6		1.00	"	"		,,	83.2%	(75-126)			"	
Naphthalene	"	19.7		5.00	"			"	98.4%	(65-144)			"	
Toluene	"	20.4		0.500	"			,,	102%	(75-125)			"	
o-Xylene	"	20.3		1.00	"			,,	102%	(75-130)			"	
m,p-Xylene	"	42.3		2.00	"			40.0	106%	(75-125)			"	
Xylenes (total)	"	62.6		3.00	"	"		60.0	104%	"			"	
Surrogate(s): 1,2-DCA-d4		Recovery:	103%	Lin	nits: 70-130	% "							06/21/07 09:02	
Toluene-d8		,	110%		75-125	5% "							"	
4-BFB			100%		75-125	5% "							"	
LCS Dup (7F21006-BSD1)								Ext	racted:	06/21/07 08	8:30			
Benzene	EPA 8260B	18.2		0.500	ug/l	1x		20.0	90.9%	(80-120)	3.30%	(20)	06/21/07 09:38	
Ethylbenzene	"	19.9		0.500	"	,,		,,	99.5%	(75-125)	2.78%		"	
Methyl tert-butyl ether	"	17.4		1.00	"	,,		.,	87.0%	(75-126)	4.46%		,,	
Naphthalene	"	22.4		5.00	"	,,		,,	112%	(65-144)	13.0%		,,	
Toluene	"	19.7		0.500	,,	"		"	98.6%	(75-125)	3.24%		,,	
o-Xylene	"	20.0		1.00	,,	"		"	99.9%	(75-130)	1.69%		,,	
m,p-Xylene	"	41.0		2.00	"			40.0	103%	(75-125)	3.10%		,,	
Xylenes (total)	"	61.0		3.00	"	"		60.0	102%	"	2.64%		"	
Surrogate(s): 1,2-DCA-d4		Recovery:	108%		nits: 70-130	% "							06/21/07 09:38	
Toluene-d8		necovery.	111%	Lin	nus. 70-130 75-125	/0							"	
4-BFB			102%		75-125								"	

TestAmerica - Seattle, WA

Carling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Delta Environmental Project Name: COP Westlake 255-35-3

4006 148th Ave NEProject Number:WA 255-3542-1Report Created:Redmond, WA/USA 98052Project Manager:Greg Montgomery06/29/07 13:56

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7F22008	Water I	Preparation	n Method:	EPA 5030B	3									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes
Blank (7F22008-BLK1)								Ext	racted:	06/22/07 09	0:00			
Benzene	EPA 8260B	ND		0.500	ug/l	1x							06/22/07 10:28	
Ethylbenzene	"	ND		0.500	"	"							"	
Methyl tert-butyl ether	"	ND		1.00	"	"							"	
Naphthalene	"	ND		5.00	"	"							"	
Toluene	"	ND		0.500	"	"							"	
o-Xylene	"	ND		1.00	"	"							"	
m,p-Xylene	"	ND		2.00	"	"							"	
Xylenes (total)	"	ND		3.00	"	"							"	
Surrogate(s): 1,2-DCA-d4		Recovery:	106%	Lin	nits: 70-130	% "							06/22/07 10:28	
Toluene-d8			113%		75-125	5% "							"	
4-BFB			102%		75-125	5% "							"	
LCS (7F22008-BS1)								Ext	racted:	06/22/07 09	0:00			
Benzene	EPA 8260B	17.4		0.500	ug/l	1x		20.0	87.2%	(80-120)			06/22/07 09:16	
Ethylbenzene	,,	19.0		0.500	"			,,	95.0%	(75-125)			"	
Methyl tert-butyl ether	"	16.0		1.00	"	,,		"	80.1%	(75-126)			"	
Naphthalene	"	19.4		5.00	"			,,	97.0%	(65-144)			"	
Toluene		19.0		0.500	"			,,	95.1%	(75-125)			"	
o-Xylene		18.9		1.00	"			,,	94.3%	(75-130)			"	
m,p-Xylene	,,	39.0		2.00	"			40.0	97.4%	(75-125)			"	
Xylenes (total)	"	57.8		3.00	,,	"		60.0	96.4%	"			"	
Surrogate(s): 1,2-DCA-d4		Recovery:	98.6%	Lir	nits: 70-130	% "							06/22/07 09:16	
Toluene-d8		necovery.	110%	2311	75-125								"	
4-BFB			102%		75-125								"	
I CC D (7F22000 DCD1)								Ent	ua ata di	06/22/07 09				
LCS Dup (7F22008-BSD1) Benzene	EPA 8260B	17.7		0.500	a/1	1x		20.0	88.6%	(80-120)	1.59%	(20)	06/22/07 09:52	
	EPA 8200B				ug/l	1X		20.0		` ′		(20)	06/22/07 09:32	
Ethylbenzene Methyl text hart letter		19.5		0.500					97.4%	(75-125)	2.44%			
Methyl tert-butyl ether		16.6		1.00	,,				83.2%	(75-126)	3.74%			
Naphthalene		18.4		5.00	,,			,,	92.0%	(65-144)	5.19%	,,		
Toluene		19.6		0.500				"	97.8%	(75-125)	2.80%			
o-Xylene		19.4		1.00					96.9%	(75-130)	2.72%			
m,p-Xylene		39.9		2.00	"	"		40.0	99.8%	(75-125)	2.41%	"	"	
Xylenes (total)	"	59.3		3.00	"	"		60.0	98.8%	"	2.51%	"	"	
Surrogate(s): 1,2-DCA-d4		Recovery:	99.4%	Lin	nits: 70-130								06/22/07 09:52	
Toluene-d8			113%		75-125								"	
<i>4-BFB</i>			104%		75-125	5% "							"	

TestAmerica - Seattle, WA

Carling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Delta Environmental COP Westlake 255-35-3 Project Name:

4006 148th Ave NE Project Number: WA 255-3542-1 Report Created: Redmond, WA/USA 98052 Project Manager: 06/29/07 13:56 Greg Montgomery

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results

TestAmerica - Seattle, WA

QC Batch: 7	F27029	Water F	Preparation	Method:	EPA 5030E	3									
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Note
Blank (7F27029-Bl	LK1)								Extr	acted:	06/27/07 08	:30			
Benzene		EPA 8260B	ND		0.500	ug/l	1x							06/27/07 12:24	
Ethylbenzene		"	ND		0.500	"	"							"	
Methyl tert-butyl ether		"	ND		1.00	"	"							"	
Naphthalene		"	ND		5.00	"	"							"	
Toluene		"	ND		0.500	"	"							"	
o-Xylene		"	ND		1.00	"	"							"	
m,p-Xylene		"	ND		2.00	"	"							"	
Xylenes (total)		"	ND		3.00	"	"							"	
Surrogate(s): 1,2-L	DCA-d4		Recovery:	92.7%	Li	mits: 70-1309	% "							06/27/07 12:24	
9 , ,	ene-d8			103%		75-125								"	
4-BF	⁷ B			99.8%		75-125	% "							"	
LCS (7F27029-BS1	D								Extr	acted:	06/27/07 08	:30			
Benzene	-)	EPA 8260B	20.6		0.500	ug/l	1x		20.0	103%	(80-120)			06/27/07 11:16	
Ethylbenzene		"	19.9		0.500	"	"		,,	99.6%	(75-125)			"	
Methyl tert-butyl ether		"	20.8		1.00	"			,,	104%	(75-126)				
Naphthalene		"	19.8		5.00	"			,,	99.2%	(65-144)			"	
Toluene		"	20.0		0.500	"			,,	100%	(75-125)			"	
o-Xylene		"	20.0		1.00	"			,,	100%	(75-130)			,,	
m,p-Xylene		"	40.6		2.00	"			40.0	101%	(75-125)			,,	
Xylenes (total)		"	60.6		3.00	"	"		60.0	101%	"				
	DCA-d4					: 70 120	V ₀ "			10170				06/27/07 11:16	
	ene-d8		Recovery:	102% 101%	Lli	mits: 70-1309 75-125	· ·							00/2//0/ 11.10	
4-BF				97.6%		75-125								"	
LCS Dup (7F27029	9-BSD1)								Extr	acted:	06/27/07 08	:30			
Benzene		EPA 8260B	20.5		0.500	ug/l	1x		20.0	103%	(80-120)	0.486%	(20)	06/27/07 11:39	
Ethylbenzene		"	20.1		0.500	"	"		"	101%	(75-125)	1.10%	"	"	
Methyl tert-butyl ether		"	21.8		1.00	"	"		"	109%	(75-126)	4.23%	"	"	
Naphthalene		"	21.6		5.00	"	"		"	108%	(65-144)	8.54%	"	"	
Γoluene		"	20.6		0.500	"	"		"	103%	(75-125)	3.05%	"	"	
o-Xylene		"	20.6		1.00	"	"		"	103%	(75-130)	2.66%	"	"	
m,p-Xylene		"	40.8		2.00	"	"		40.0	102%	(75-125)	0.566%	. "		
Xylenes (total)		"	61.4		3.00	"	"		60.0	102%	"	1.26%	"	"	
Surrogate(s): 1,2-L	DCA-d4		Recovery:	102%	Lii	mits: 70-1309	% "							06/27/07 11:39	
0 ()	ene-d8			101%	2	75-125								"	
4-BF				101%		75-125								"	

TestAmerica - Seattle, WA

Carling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

COP Westlake 255-35-3 **Delta Environmental** Project Name:

4006 148th Ave NE WA 255-3542-1 Report Created: Project Number: Redmond, WA/USA 98052 Project Manager: Greg Montgomery 06/29/07 13:56

Notes and Definitions

Report Specific Notes:

C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.

Calibration Verification recovery was above the method control limit for this analyte. A high bias may be indicated. C8

Sample filtered in lab.

O5 Results in the diesel organics range are primarily due to overlap from a gasoline range product.

R4 Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.

ZXDue to sample matrix effects, the surrogate recovery was outside the acceptance limits.

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

Not Reported / Not Available NR/NA _

dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRI. METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits

percent solids, where applicable.

Electronic - Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Signature Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Seattle, WA

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

gent terms

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

425-420-9200 FAX 420-9210 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 509-924-9200 FAX 924-9290 11922 E. First Ave, Spokane, WA 99206-5302

503-906-9200 FAX 906-9210 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 907-563-9200 FAX 563-9210 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

	СН	AIN (OF C	USTC	DY I	REPO	ORT						Work Or	der #:	Bafor	23
CLIENT: Delta (ionsultents				INVOI	E TO:							Т	URNAR	OUND REQUES	ST
					1	\mathcal{D}	elta	10	nsull	- t	~<			in B	usiness Days *	
REPORT TO: Etsabety	Ave NE, Rodmord;	in a	a e se	-	A /1									Organic & II	norganic Analyses	ŀ
	•	י פוע	1003	C	AH	n: 8	clise	ibeH	n 5:1	ver			7	5	4 3 2	1 <1
PHONE 425-498 77	36FAX.				P.O. NU	MBER:			 						lydrocarbon Analyses	
PHONE: 42 5-498-77. PROJECT NAME: 25 25	5353 Westlake				A		PR	ESERVAT	TVE				X	14	3 2 1	<1
	,	bc	IHCI	HCI	HCl	HCI	_	-					/ STD.			
PROJECT NUMBER: WA2S		1.	<u> </u>		·	`\	REQUE	STED AN	ALYSES				O	THER S	specify:	
SAMPLED BY: AF/JF	BRICC	1	10	V	119	3		3					* Turnaround I	Requests less	than standard may incu	ır Rush Charges.
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	JWTPH-DX	NWTP# 5	BTex	MTBE	Naphthlene	10 kg	Pass.					MATRIX (W, S, O)	# OF CONT.	LOCATION / COMMENTS	TA WO ID
mw-56	6-1507/9.50	X	X	X	X	X	X	X					W	9		-11
2 mw-51	6-15-07/10:30			((1						X	X		-12
3 mw-55	6-15-07/11:05				1	1/	1/						11	(-13
1 MW-57	6-15-07/14:20		/	/			1	$\bot \bot$					\bot	$\downarrow) \downarrow$		-14
5 Mw-35	6-15-07/14:55						/_	/					+	+(-)		15
6 mw - 60	6-1507/14:45		(1			<u> </u>	1					+)		-16
, mw - 45	615-07/14:15)			1	1	↓ }	$\downarrow \downarrow$					+	(-(7
8 mw-54	6-15-07/13:30) _	{_	1	<u> </u>				+			-18
DUP-1	G-15-07/1020 CM 041807		0	7	7	V	U						_	14		-19
	(See 194180)															
RELEASED BY:		' 	·	1	DATI	3:			RECEIVED BY		T T	· · · · · · · · · · · · · · · · · · ·			DATE	- 1
PRINT NAME:	FIRM:				ТІМІ	E:			PRINT NAME:	5	TAKAMA	vich	FIRM	TA		
RELEASED BY:					DATI	E:			RECEIVED BY	7 :	-				DATE	
PRINT NAME:	FIRM:				TIM	E:			PRINT NAME:				FIRM	:	TIME	:
ADDITIONAL REMARKS: COC REV 09/2004 N 1 P	H-Dx W/sg C	lean	up	•	,	Diss	solve	e)	Lead	ر	ab to	filte.			RO I	PAGE OF
	T		7						Met	ala					8.5	Wo

JULI INCHURE

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244

11922 E. First Ave, Spokane, WA 99206-5302

9405 SW Nimbus Ave, Beaverton, OR 97008-7145

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210

907-563-9200 FAX 563-9210

Alon	TICAL TEGITING CORT GRATIN													DATE 1	22
	СН	AIN (OF CU	ISTO	DY F	REPO	RT					Work O	rder #:	BQF04:	15
CLIENT: De la C	ensultants				INVOIC	ETO:	از.	sc. h	eth s	5.1.	_		TURNAR	OUND REQUEST	
REPORT TO: Elisabeth	5. Ver					;		-w.	orn,	3, 100				Susiness Days * norganic Analyses	
ADDRESSINGS have Reduced w	NG ME					,	Je (ta (Consul	ten 45		7	- - -		1 <1
ream.c~0, W! PHONE: 425.498.736	M 78052 FAX:				P.O. NU	MBER:						STD.	Petroleum H	lydrocarbon Analyses	
PHONE: 425 498 736 PROJECT NAME: 25535	3 Westlake	sur:	T	161	lict.	177	PRI	ESERVA	TIVE			- A		3 2 1 <	1
PROJECT NUMBER: WAZ		*CI	HCI	Ha!	HU	1401	REOUE	STED AN	ALYSES			1	THER S	Specify:	
SAMPLED BY: AFJJF	/se/cc	3	玉		CH	~		3-				* Turnaround		than standard may incur	Rush Charges.
CLIENT SAMPLE IDENTIFICATION	SAMPLING DATE/TIME	NUTPH-6x	JwTP14-	BTEX	MTBE	Nuph the	Total	23:53				MATRIX (W, S, O)	# OF CONT.	LOCATION / COMMENTS	TA WO ID
, MW-207	6-15-07/8:00	X	X	X	X	×	×	X				W	9		-01
2 mw - 5-3	6-15-67/8:45	1	1	/	1	1	1	1				1	1		-02
, mw-58	6-15-67/9:30											\perp	$\downarrow \downarrow \downarrow$		-03
.mw-34	6-15-07/10:10											$\perp /$	\bot / \bot		-04
, mw-59	6-1507/11:00														-05
6 MW-32 A	6-15-07/11:45											1)			-06
, mw-52	6-15-07/13:40													W	+07
· MW-3A	6-15-07 /7:50			\perp									$\downarrow \downarrow \downarrow$		-08
, Mw - 33	6-15-07 8:40			\perp		Δ.		$\perp \perp$					$\perp \perp \mid$		-09
10 MW 50 RELEASED BY: Third	6-15-67/9:15	V	V		V	U	V						M		1-19
		11.			DATE TIME	•	5/0	7	RECEIVED BY: PRINT NAME:	5.1	Aramavida	FIRM	. TA-S	DATE: U	a 15 07
PRINT NAME: Arc Fold	man firm: D	um			DATE				RECEIVED BY:	0 1	MARI (ROICE)			DATE:	4,7-
PRINT NAME:	FIRM:				TIME	Ŀ			PRINT NAME:			FIRM	:	TIME:	
ADDITIONAL REMARKS: COC REV 09/2004 NWTP H	-Dx w/sg cle	anup) <u></u>		D :	550	(see)	la	ead	ab .	to filter			120	GE OF
	σ		7			»PLi	T	Me	ead 1	>				69.12	Mo

GROUNDWATER SAMPLING PROCEDURES AND FIELD SHEETS

Quarterly Groundwater Monitoring ConocoPhillips Site No. 255353

GROUNDWATER MONITORING AND SAMPLING

Before the sampling event, Delta measured depth to water in each groundwater monitoring well at the facility with an electronic water level meter. This information was recorded on waterproof field sheets. Groundwater elevations (GWE) were measured to an accuracy of 0.01 feet.

Wells were purged and sampled by using a low flow method with a peristaltic pump. Water pumped from the well was routed through a flow-through cell for monitoring of groundwater quality parameters with an electronic water quality meter. Water quality parameters included dissolved oxygen, conductivity, pH, oxidation-reduction potential, and temperature, which were allowed to stabilize prior to sample collection. This information was recorded on waterproof field sheets. While pumping to a minimal draw down, or static level, samples were collected using an appropriate laboratory-provided container. Samples were labeled, placed into ice filled coolers, logged onto chain-of-custody forms and transported to the laboratory.

GROUNDWATER SAMPLING FIELD SHEET

DELTA PROJE	CT NUMBER:	WAZ	5535	42-1		CL	IENT:		COP		
SITE No./JOB	No.:	255	353	West	ake	PA	GE		01	F	
SITE ADDRES	S/LOCATION:	· ·			,	DA	TĘ:	4	1/13/		
FIELD PERSOI	-		JJR			WE	ATHER:	60	15 0	clerias +	
Well ID Ti	Well Diameter me (in.)	Depth to Bottom (feet)	Depth to Water (feet)	Depth to LPH (feet)	LPH Thickness (feet)	Calc. Purge (gal)	Actual Purge (gal)	Purge Method (B/LF/P)	Dissolved Oxygen (mg/l)	Sample Ap	ppearance/Comments
Sm w.5	2"		10.15								
mw-92	24		10.20								
5mu-4	Z"		9.21						,		
mw-93	ZH		6.94			-					
Mw-96	unac	cesable									
MW-94	2 u		3.21			,					
mw-90	2"		4.14				•				
mw-49	a ^r		3.59								
mw-91	24		4.36							-	
mw-eel	2"		4,41				·				
mw-83		cessarb									
nw-102	24		5.12								
nw-82	2"		1.93							· · · · · · · · · · · · · · · · · · ·	•
MW-SL/	2.1		975				<u>-</u>				
Mw-45	S n		8,85								
nu 3A	2"		0.51								
nw-33	2"		2.03	· .							•
NW-50	2 "		0.74					• •			
n w-55	211	. 1	1.46							-	
nw-51	2"	- 1,	1.77								
nw-207	2"		7.77 Z.44		2					······································	
nw-56	2"	<u>'</u> ,	111								
nw-53	7"		1.11								
<u> </u>		/ System On-Si	<u> , 42 </u> te (Y/N)?	Y		Com	ments:			•	
System		l Upon Arriva		N			ments:	4,			
Instructions:	Shut Down	System 1 / 2	4 hours be	fore gaugin	g (Y/N)? 1	Y		ime/Date	Downed:		
**************************************		stem (Y/N)?	<u> </u>		······································		T	ime/Date	Restarte	d: 4/5	107 15:30
urge Water Disp	Purge Methoosal Method:	Tre	eated throu	gh mobile ca		ent unit a	ments: and dischalo, of drur acility/Loo	ns:	site		
easuring Device	e(s): ()/	lakr (evel	meter							
						*					

Admin\Forms\Misc GW Forms\Primary Sampling Field Sheet.xls

8/28/2006

GROUNDWATER SAMPLING FIELD SHEET

DELTA PROJEC	T NUMBER:	WAS	25535	542-1		CLI	ENT:		COP	
SITE No./JOB N	0.:	255	353	West	larke	- PAC	3E		of	
SITE ADDRESS			West	7 .	tre	DA			1/3/0	7
FIELD PERSON		Ar 1	1 R /5 M		GM	-	ATHER:	100	15 00	7 recast
I IEEE I EROOM		707_2	<u> </u>	// JP	0.,1	- ''				
·	Well	Depth to	Depth to		LPH	Calc.	Actual	Purge	Dissolved	
Well ID Tim	Diameter e (in.)	Bottom (feet)	Water (feet)	Depth to LPH (feet)	Thickness (feet)	Purge (gal)	Purge (gal)	Method (B/LF/P)	Oxygen (mg/l)	Sample Appearance/Comments
mw-58	24		11.72					`	, , ,	•
MW-34	211		12.39							
mw-59	2"		12.12							
MW-32A	211		12.05							
MW-52	24		10.23							
MWZOCO	ટ્રા		10.36							
MW-87	211		8 15							
Mannen	www		Marin							Garages
MONAL PROPERTY OF	MANON A	MARCAN	WAR XON							r
	S CAMPAN	MA ma	11.43	<u> </u>						4/4/07
MW-72	N2W	A A A								4
MANAGA V	DANGO		Severalism							6/14/2007
MW-7	6		11.41							6/14/100/
Mw.73	1.7		11.59							
MW.40	2		11.71							4
MM-201	2		10.89	*.						
MW-200	2		11.08							<u> </u>
61-WM	2		10.96		Mono	ment	Conp	lefely	file	
mw-41	2"		15.45			·		7		6/14
mw-95	20		13.10							
mw 209	Žα		1122							
mw-12	2 u		11.24							
mw-37	Zn		12.18						_)
~w-207	2"		13.84							J
	Romodial	System On-		N		Con	nments:			
System		al Upon Arri		- N			nments:			
Instructions:		n System 1			ing (Y/N)?	V		Time/Dat	te Downe	d:
	1	System (Y/N)			<u> </u>				te Restart	
	Purge Me	thod:	Law F	You_		Con	nments:			
Purge Water Dis	posal Method	l:	Treated thro	ugh mobile	carbon treat	tment unit	and disc	harged or	n-site	
	•		Placed in dr	ums on site			No. of dr	ums:		
		一	Transported		reatment		Facility/L			
		1	341110111				***************************************			
Measuring Devic	e(s): W	later 1	wel v	neter					<u></u>	

GROUNDWATER SAMPLING.

DELTA PR	ROJECT	NUMBER:	WA	2553	572-	·	CL	IENT:	Ç	~	90			
SITE No./J			West		2553		 PA			. 0				
SITE ADD	RESS/L	OCATION:	600	West	-laler		– DA		101	12/0	7	_		
FIELD PER	RSONNE	L:	Ar/	JR/SU	n/18	Gm	_	ATHER:	Clove	ly, wo	ind NE	- -		
		Well Diameter	Depth to Bottom	Depth to Water	Depth to LPH	LPH Thickness	Calc. Purge	Actual	Purge	Dissolved				
Well ID	Time	(in.)	(feet)	(feet)	(feet)	(feet)	(gal)	Purge (gal)	Method (B/LF/P)	Oxygen (mg/l)	Sample Appeara	nce/Comments		
MW 80		2	20.00											
MW-81		12	19.91	7.46										
MW-38		12	19.74	6.37							heeds neu	u plua		
$C1 \cdot 3$		5	44.85	9.43								- reg		
01-2		2	28.71	4.86			>							
CI = I		12	29.81	10.91										
MW-35		34	23.45	10.44						2		·		
Mar 60		2	7.01	19.68										
MW-57		12	19.52	10.65		•								
MW-86		2	19.60	9.01										
M1102	00	2	8	-								***************************************		
mw-74		unac	cessabh		wed	by s	treel	cor	Cac	ipren	J			
sanw-3	·	unak	de 40	EA,	= local	re'						vi		
mw-76		unai	ole to		ve									
mw-203		unal	oh to	Loc	ate						ar e	· .		
											et'			
				2,										
	22.000													
	 .					ž.				44.				
								-						
		Remedial	System On-	Site (Y/N)?	Y		Com	Comments:						
Syste			al Upon Arri		N			Comments:						
Instruction				24 hours be	fore gaugii	ng (Y/N)?	Y							
		Re-Start S Purge Met	ystem (Y/N)'	ew Ph	1		Time/Date Downed: Time/Date Restarted: Comments:							
Purge Water									Time/Date Restarted:					
urge water	Dishos	ai wemoa:		Freated throu		arbon treatn	K+			site				
: :::::::::::::::::::::::::::::::::::				Placed in drui		ي. جان	<u>N</u>	o. of drur	ns:					
**				Fransported c	off-site for tre	eatment	<u>f</u>	acility/Loc	cation:					
Measuring D	evice(s): 4)	atu L	wel 1	meter	·								
A VI A							:							
					¥		·			· · · · · · · · · · · · · · · · · · ·				

4.18

Delta Project No. WA255-3542-1

600 Westlake; Seattle, WA

TECH: ANIC Frohman / JAUGN

DATE:

Purge Purge Purge (dal) 9 (gal) 0 (gal) Ŏ, 9,7 Ó 0 Ø, Flow rate Flow rate Flow rate gal/min. gal/min. gal/min 0 0 Ø, \mathcal{O} Q O, 0 Ć 48,9 2169--48.C -63,2 -410,0 -36.9 ORP (m/ ORP (m/) -31.9 ORP (m/ 195 シグバ 10 0,426 025'0 917,0 10,493 0,5/2 5820 4774 0,479 0,578 0,57 0.57 55%0 0,43 TDS (g/L) 58 (g/L) TDS (g/L) TDS Õ 6:50 ,06 3,88 9777 1407 69'5 3,81 5,88 05/2/ Field Parameters Temp. 3,84 Field Parameters 3,78 Temp. Field Parameters Temp. () () 00 () () 0,70 76.0 0,80 mg/L) (mg/L) 0,97 (mg/L) 60% 8 00 8 ,530 Conductivity 0,523 0.723 Conductivity 2.599 9630 Conductivity 0,537 0,624 0,580 (ms/cm) CCS. 61 0,587 0.521 (ms/cm) 0,735 (ms/cm) Ó 6 23 5.89 9 ∞ Hd H 표 0 ر جئا Depth to Water Depth to Water Depth to Water 8,41 3.40 0 6 Comments: Comments: Comments: 14.8 (feet) (feet) 0 \mathcal{O} Q Q 0 Q 3 (1) イガ 7 4 1,1 12:33 55.0 アバゴ 05. [1 10/35 10:17 12:21 20% 0110 Time Time Ó Ö Round Round Round Sample Sample Sample Time: 4 ĸ N က 4 Ŋ Time: Time: 176-mwi Well ID Well ID Well ID

WA255-3542-1/Copy of WESTLAKE FIELD SHEETt 2007.xls

DATE:

								,		* · · · · · · · · · · · · · · · · · · ·																	6/12/2007
	ſ	Purge (gal)	0,1	0.2	0,2	0,2	2,0			Purge	(gal)	0,2	0/5	0.7	0,7	2,0			Purge	(gal)	9	0,2	0,2	0,2	0,2	ž	
	i	Flow rate gal/min.	~ 0	0.1	100	10),0			Flow rate	gal/min.	100	0,70),0)'Q	100		· · · · · · · · · · · · · · · · · · ·	Flow rate	gal/min.	0/0	(B.)	7,0	7.0	100		
•	0	ر (ک ایک	-12961	724,9	-121.6	0%//-	5121		*	ORP	· (\m)	-1442	~87.7	326	526-	136-			ORP	(mV)	-1123	-120,8	-122,9	=125,0	~126.8		
*	G G H	(a/L)	0,373	0,463	2/1/6	0,422	827.0			SQL	(a/L)	2250	0,418	0,417	8/1/0	6/1/0			TDS	(g/L)	0,567	0,617	0,626	6.636	0,640		
	Field Parameters	. (cmb.	16,37	16,83	52'91	40'L!	1021		Field Parameters	Temp.	(၃)	14.15	(4.08	01/6/	801h/	801/1		Field Parameters	Тетр.	(၁,)	15,64	15,77	68'51	15.98	16.00		
i	Field F	DC (mg/L)	16.0	0.87	2810	68.0	88'0		Field	Oa	(mg/L)	0,92	98,0	0.87	0,78	0,75		Field	00	(mg/L)	180	6179	6,77	92.0	8,75		
	-	Conductivity (ms/cm)	0,506	0,522	963 W	6,549	8550			Conductivity	(ms/cm)	0,5/5	1,509	0,500	0,509	0,510			Conductivity	(ms/cm)	0/1/0	17760	4660	60,909	6.814		
		Hd	1~3	1779	/h'9	2/7/9	hh:9			:	Ŧ.	5/3	6,20	617	6.20	61'9				∃. \$	6.35	95 4	15.9	ES'9	95.9		
		Depth to Water (feet)	3,84	5,8/8	3,85	3,85	388	Comments:		Depth to Water	(feet)	h21/2	4,25	477	21.25	1,25	Comments:		Depth to Water	(feet)	933	946	55%	19%	69.6	Comments:	-l- 2006
		Time	13:11	13:14	911,81	81:81	13,21	13,50			Time	13/4/1	13:45	13,42	13:51	13:55	00:41			Time	14'15	8/; 1-1	14:51	14.23	52/h!	14:30	F 3542 1)Com of MESTI AKE FIELD SHEETT 2007 vis
		Round	-	2	3	4	5	Sample Time:			Round	-	2	က	4	5	Sample / Time:			Round	Ψ-	2	ო	4	32	Sample Time:	MEST AVE
_		Well ID		Mw-49							Well ID		MW-30							Well ID		17 MUS					2542 41 Cany of

WA255-3542-1/Copy of WESTLAKE FIELD SHEET! 2Q07.xls

Delta Project No. WA255-3542-1 600 Westlake; Seattle, WA

TECH: Greg : Sarah

DATE: 10/13/07

0 のり 0.0 Purge 5 0.0 6 Purge Q A (gal) Ø Ø Purge (gal) Y Ö Flow rate Flow rate Flow rate gal/min. gal/min. 0 0.0 ω ORP (m) ORP (m/) ORP (mV) 29. 16.46 0.438 0.440 16.67 0.435 16.900.418 (g/L) TDS TDS (a/L) TDS (g/L) 6.09 Field Parameters Field Parameters Temp. Temp. Ġ. (၁ Field Parameters Temp. ပ္ပ (၃ 0.40 Q V D. 1063 0.4 (mg/L) (mg/L) (mg/L) 8 8 5 6 99 Conductivity Conductivity Conductivity カラハ 0.67 (ms/cm) (ms/cm) e. 22 g Ц 5.9 펍 핑 200 Depth to Water Depth to Water Depth to Water 4.89 Comments: 4.89 2 6 Comments: Comments: ल (feet) 2 12:35 10:110 12:39 3 61:01 のかご 4 10:08 Time: 10:30 Time から Time <u>=</u>3 Time プラ Time: 11:30 D:81 Round Round Sample Round Ŋ Sample Time: Sample MW.86 NE B DTW-9.01 Dtw 5.14 Well ID Well ID Well ID

WA255-3542-1\Copy of WESTLAKE FIELD SHEETt 2Q07.xls

人の次の強動を

CONOCO-PHILLIPS GROUNDWATER SAMPLING FIELD SHEET Delta Project No. WA255-3542-1

600 Westlake; Seattle, WA

тесн: *Greg ? Saral*

DATE:

(O.2) о 0 Purge 0 13 90 GW Purge つび Purge (gal) (gal) (gal) Flow rate Flow rate Flow rate gal/min. gal/min. gal/min. 00 $\omega \omega \omega$ ORP (m/) ORP (M (M ۇ ORP 90 (m/ ら $\overset{\circ}{\sim}$ 0.849 15.52 10.426 15.15 0.416 (d/L) 15.46 0.43 TDS 0.40 TDS (d/L) TDS (a/L) 0 15.88 36 Field Parameters Temp. Field Parameters Field Parameters Temp. Temp. ပ္ပ ပ္ပ 0 (mg/L) (mg/L) (ma/L) 8 8 00 308 Г Conductivity 0.00 Conductivity Conductivity 0.63 (ms/cm) (ms/cm) (ms/cm) 펍 펍 핌 Depth to Water Depth to Water Depth to Water Comments: 9 Comments: Comments: (feet) (feet) (feet) 3:26 4 67:81 13:49 ズジ 01:81 13: CO 14:25 13:14 14:14 Time 18:5 Time Time: 13:30 Time: 14'.1 Round Round Round Sample Sample Sample N Ch-WM 125-92 <u>7</u>8-7 Well ID Well ID Well ID

WA255-3542-1/Copy of WESTLAKE FIELD SHEETt 2007.xls

DATE: 6/13/07

TDS ORP. Flow rate Purge (9/L) (mV) gal/min. (gal) (32) (2.0.28 6.0 0.2.2) (0.027 7.1 6.2) (0.027 7.1 6.2) (0.027 7.1 6.2) (0.027 7.1 6.2)	TDS ORP Flow rate Purge (9/L) (mV) gal/min. (gal) 0.22 (5.0 0.2 0.2) 0.884 7.0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.	TDS ORP Flow rate Purge (g/L) (mV) gal/min. (gal) 7 0.111 21.1 0.2 7 0.110 20.7 0.2 7 0.110 20.7 0.2 7 0.110 20.7 0.2 7 0.10 19.7 0.2 8 0.110 2.4.1 0.2
Field Parameters Conductivity DO Temp (ms/cm) (mg/L) (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C	Field Parameters Conductivity Do Temp. PH (ms/cm) (mg/L) (°C) Conductivity DO Temp. PH (ms/cm) (mg/L) (°C) Conductivity DO Temp. C	Field Parameters Conductivity PH (ms/cm) (mg/L) (°C) 7.35 0.187 5.90 17.4(6.48 0.1108 1.95 17.5 6.46 0.1109 1.86 17.5 8 6.46 0.170 2.34 17.5
Well ID Round Time (feet) C1-3		Mwell ID Round Time (feet)

TECH: Javan /and

DATE:

			•						٨			
						Field P	Field Parameters					
Well ID	Round	Time	Depth to Water (feet)	Нα	Conductivity (ms/cm)	DO (mg/L)	Temp.	TDS (g/L)	ORP (mV)	Flow rate gal/min.	Purge (gal)	
1	-	15,02	10.17	6.31	0,656	0,92	15,65	91819	61181-	01/	0,2	
SMUS	2	15 1.05	10,17	6.21	8190	0,38	15.34	0,500	E321~	0.1	0,2	
	8	15:08	10,17	6,22	0.624	7.80	15,76	0,499	127,1	0,1	2,0	
	4	13:11	10,17	419	6190	SUD	15,12	0,501	-125.5	001	9,2	
	5	15:15	10,17	6119	0,624	0,72	15.17	0,503	-(24,6	0,1	0,2	
	Sample	0631	Comments:								30.44	
	Time: /	01-0								A A A A A A A A A A A A A A A A A A A		
						Field F	Field Parameters			1		
			Depth to Water		Conductivity	00	Temp.	TDS	ORP	Flow rate	Purge	
Well ID	Round	Time	(feet)	Hd	(ms/cm)	(mg/L)	. (C)	(a/L)	(mV)	gal/min.	(gal)	
	-	14:51	10,25	6.34	006'0	1,62	16,43	0,705	-12217	0,/	9,2	
7.15	2	15:45	10,28	bs'9	MYP A	1.08	14.44	A. 758	-1221	Q'(2'0	
	. 6	15,48	10:30	6.62	0.997	6.83	16.48	0,774	-126.0	0.1	0,2	
	4	05151	10,30	5919	1,001	01.70	16.42	0.779	-123.9	0)/	02	
	ည	75:51	16,31	879	4001	19.0	16.46	0,780	-123.4	ورز	20	
	Sample Time:	15.58	Comments:									
114 7007						Field F	Field Parameters					
			Depth to Water		Conductivity	00	Temp.	TDS	ORP	Flow rate	Purge	
Well ID	Round	Time	(feet)	Hd	(ms/cm)	(mg/L)	(0°)	(a/L)	(mV)	gal/min.	(gal)	
20	-	ol:L	6.36	6.74	TOT.0	2.83	15.65	0.542	8.	,	0.2	
OC. ME	2	7:25	و. و.	55.7	0.579	2.00	15.62	8hh.0	-122,8	7.	0.5	
	п	7:30	6.57	94.9	15.9	1.64	59 51	00h.o	-1 24.3		2.0	
	4	7:35	65.9	6.43	0.460	1.25	15.62	0.357	7.121-	t.	0.5	
	r2	017:1	6.59	6. UI	6.458	=	15.82	0.338	-129.0	7.	0.5	
	Sample	Sample MW-38	ents:	Je) (5	C20 15 510	gnificzutl	J SWIEGO	J. Week F	Significantly damage, I mpely to be replayed			
WA255-3542-1\Copy of WESTLAKE FIELD SHEETt 2Q07.xls	Time:	FIELD SHEETL		-	,			1 602211				6/12/2007

Delta Project No. WA255-3542-1

600 Westlake; Seattle, WA

Smey

TECH: JAUON

L002/H1/90 DATE:

Purge 0 ر م 0.5 Purge ر 0 Purge 9.7 (gal) 6.7 0.5 (gal) 4، 0.5 0.5 0.2 0.7 9.7 0.7 Flow rate Flow rate 1.07 gal/min. Flow rate 0 gal/min. 10) 0, 0.7 107 gal/min 0.1 о 1 6.4 Ð 0.1 6.1 6 Ö . (0 Cless wi reddish color bio growth -60.2 1650 - 143.2 6.25-. 61.8 -122. -129.7 comments: Slow Keching to well; turned down pump flow rate -60.0 -133. -62,7 54.0 - 147.1 ORP ORP (m) (m/S) ORP (M) -35 - 64. 0.352 0.353 0.356 0.385 0,487 0.394 0.396 0.365 0.484 0.479 0.387 0.448 0.462 0.377 0.351 TDS (g/L) (g/L) TDS (g/L) TDS On U. 202 comments: - Slow recharge; His to turn down Flaurate. 121.77 Field Parameters 14.27 (<u>r</u>.3 14.24 14. 20 <u>7</u> % 5.07 14.58 14.26 14[.] 56 14.24 14.25 14.33 Temp. 4.2 Field Parameters Temp. Field Parameters Temp. (°C) (၁ ပ္ပ 1.03 96.9 0.98 1.32 0.75 86.0 60, (mg/L) (mg/L) 0.0 06 .66 0.7 20 00 8 0.431 o. 430 0.585 6.43S Conductivity 0.562 0.595 0.428 Conductivity Republicherque in well 165.0 Conductivity 0.538 0.465 0.430 (ms/cm) D. 478 0. 484 0.487 (ms/cm) 7447 Szmple: Clezr 6.70 6.67 クログ 6. 60 69.9 6.13 21.9 £.29 6.14 6.15 ر فر 6.19 6.17 Ha Depth to Water Depth to Water 2.96 Depth to Water 7 58 7.58 7.58 12.86 7.52 85 Comments: 156 (feet) = 43 <u>.</u> @MM-81 9.7. 90.7. 8: 00 6:05 00:01 8.**5**8 24:49 05:6 10:00 25:1 9055 ၉) : တ 8:50 5h:6 Time Sample MW-72 Time: 10:(0 Time: (): 00 8:60 Round Round Round Sample Sample n Time: M W.72 202 MW 18-MW Well ID Well ID Well ID

WA255-3542-1\Copy of WESTLAKE FIELD SHEETt 2Q07.xls

Delta Project No. WA255-3542-1

600 Westlake; Seattle, WA

) zme y

TECH: JAVON

DATE: June 14, 2007

Purge Purge Purge 0.5 (gal) (gal) 0.7 0.5 2.0 (gal) ٦.0 5 7 <u>ح</u> Flow rate Flow rate Flow rate \$0.0 0.5 0.05 6 20.0 0.07 gal/min. gal/min. 0.5 9.5 0.05 0.5 .0. ö -0: ဝ ö - 130.6 -132.6 -61.2 -116.7 -124.9 -53.2 8.211--112.0 • S4. 6 -122.4 2211--74.6 8.121 . ORP (mV) ORP (m/) ORP (m) -114.1 -68 250 0.586 995.0 0.565 0.564 0.463 0.462 0.462 0.63 195.0 0.554 0.560 0.566 0.556 (d/L) (g/L) 0.461 (a/L) TDS TDS TDS <u>.</u> 36 15.06 7.0 4.50 (4.97 00 15.12 Temp. Field Parameters Field Parameters Field Parameters 4.48 15.17 14.54 Temp. Temp. 14.54 15.0 (C) (၃ (၃ ပ္ပ 3 0.74 0.48 0.65 6.36 0.75 95.0 (mg/L) 0.37 0.38 (mg/L) (mg/L) 84.0 969 0 0.695 0.48 ر اه 0.51 8 8 Mza.hole: 2 bolts don't tighten 8 15.0 10.0 1 0 201.0 p69.0 195.0 0.678 0.692 Conductivity 869°0 Conductivity Conductivity 669.0 0.568 0.565 0.681 207.0 O. S.63 0.562 ms/cm) (ms/cm) (ms/cm) Slow recharge Comments:
Rapid recharge 6.02 6.06 6.02 6.01 6.10 6.1 6.04 <u>-</u> ف 0 6.64 6.0 15.81 16.05 표 6.05 핆 <u>-</u> ف 표 Depth to Water Depth to Water 7.700 Depth to Water ペン 5 76 11.77 12.7 2 3 34. 11.72 $\frac{2}{\sqrt{}}$ Comments: Comments: 11.46 (feet) 7 (feet) 6 11:50 85:11 55:11 Sample MW.40 10:30 04:01 00:11 10:50 10:25 11:07 CH:11 1:05 9:1 1:15 Time 11:45 Sample M W-7 3 10:45 Time: (7:00 Sample MW-71 Time: 11:20 Round Round Round 2 က Time: MW.40 MW-73 L-MK Well ID Well ID Well ID

WA255-3542-1/Copy of WESTLAKE FIELD SHEETt 2Q07.xls

Delta Project No. WA255-3542-1

600 Westlake; Seattle, WA

James

Ayen |

L002[h]190 DATE:

Exterior = Completely filled with derk AICO mudification to dis out monument exterior is Clarked and sonesses to have subsided 6/12/2007 Purge Purge Purge Co.1 <u>[6</u> 1.07 1.07 20.05 [20.] 0.5 6.5 1.0 \overline{c} 0. 0 9 o O ģ My 19 6 | Very slow rechange; Flow rate 24 slow during punge 20.02 50:07 20.07 Flow rate 20.07 0.087 **6.0**5 Flow rate Flow rate 20.0 0.05 2.05 0.05 0.06 0.0 8 gal/min. 205 gal/min. slow recharge; Sample: clear; Manhole: bolts don't tighten <u>.</u> -78.2 -80.2 -90.3 comments: 6 W Samples - Contained significant air bubbles and froth 7 87 × 5.92 --932 -78.5 0.532 -43.8 0.544 - 43.5 .95.2 0.56-Monument - exterioris cracked and appears to have subsides ORP -42.3 ORP -44.2 ORP (m) (m) 5.24- 055.0 0.576 0.622 0.583 (7.89 0.473 17.83 0.485 0.545 0.731 0.738 0.536 0.697 0.734 TDS (g/L) (g/L) TDS TDS 88.۷۱ (6.37 17.81 15.06 (c) (6.35 (6.40 (5.09 (6.25° (7.03 15.06 (7.99 16.34 15.07 Field Parameters Field Parameters Temp. Field Parameters Temp. ပ္ပ် (0) 0.647 0.68 0.54 Ch.0 253.0 0.88 o. 783 | 0.84 25.0 0.84 0.62 -000 245 5.5 95.0 (mg/L) (mg/L) 0.81 0.6 90 8 0.661 0.837 846.0 05.3 0.679 Conductivity Conductivity 0.937 0.671 197.0 6.944 Conductivity 0.673 2,883 0.920 ms/cm) 6.49 و .2گر 6.35 6.32 11.47 6.26 6.39 6.47 5.32 **∃** 69 5.95 5.94 5.93 5.96 Depth to Water Depth to Water 1.24 11.36 Depth to Water | |-|-32 1.32 11.63 1:3r 1.36 (1.63 1.65 11.34 <u>.</u> Comments: Comments: 13:55 14:30 (3:20 14:35 32·h1 13:30 13:40 14:00 13:20 13:25 14:40 Sample MW-2 00 (H:20 Sample 14:50 F 13:05 13:15 3:45 13:10 Sample MW.201 0:10 Round Round Round က 4 Time: | 00 2·M W 102-MW (6)-MW Well ID Well ID Bolks downt Well ID tighten on MZNHOLE

DATE: 6/14/07

			Don'th to Water		Conductivity	Field F	Field Parameters	SOT	ORP	Flow rate	Pirde
Well ID	Round	Time	(feet)	Ħ	(ms/cm)	(mg/L)	(°C)	(a/L)	(mV)	gal/min.	(gal)
	-	13:11	1.54	5.99	0.519	1,00	17.64	0.393	4.16-		
MC10x	2	13:15	=.83.	0.0	0.485	0.35	18.20	6.30D	8.28		
	က	13:19	1.93	2.03	0:488	0.30	18.71	0.3601	-86.2		
	4	13:22	06.11	6.08	0.484	0.25	18.80	0.357	-84.9		
	ß	13:26	12.00	10.01	0,484	0.28	18.92	0.350	1,82.5		
	Sample	•	Comments:)							
	Time: 13:30	:30				-					
						Field F	Field Parameters				
			Depth to Water		Conductivity	00	Temp.	TDS	ORP	Flow rate	Purge
Well ID	Round	Time	(feet)	H.	(ms/cm)	(mg/L)	(°C)	(g/L)	(mV)	gal/min.	(gal)
28	-	X:00	10.61	5,26	0.082	1.67	17.43	0.519	F-79.2		
N S	2	14:04	12.91	000	0.676	0.35	17.16	0.517	-82.9		
	3	14:08	12.93	6.35	0.077	0.30	17.19	6.617	-84.60		
	4	14:11	12.92	80.0	0.600	0.36	17.13	0.519	-85.		
	5	14:15	12.95	6.3	030,0	0.58	17.19	0.519	-86.4		
	Sample	()	Comments:)		
	Time:	3.70									
		****				Field F	Field Parameters			····	
	······		Depth to Water		Conductivity	DO	Temp.	TDS	ORP	Flow rate	Purge
Well ID	Round	Time	(feet)	Hd	(ms/cm)	(mg/L)	(°C)	(a/L)	(MV)	gal/min.	(gal)
	۲										
	2										
	က										
	4						**				
	જ					-					
	Sample		Comments:								
	Time:										

WA255-3542-1/Copy of WESTLAKE FIELD SHEETt 2Q07.xls

Delta Project No. WA255-3542-1 600 Westlake; Seattle, WA

DATE: 💯 /

C.3 Purge Purge Purge (gal) (gal) (gal) ~ Flow rate Flow rate Flow rate gal/min. gal/min. gal/min. ġ. 0.305 -104.7 358 -102.6 -106.6 38.0 -120°9 0.62 ORP ORP (mV) ORP (m) -120. (m.V) 707-356 0,5160 0630 0.580 0.542 (a/L) (a/L) TDS (g/L) TDS TDS 1000 1000 10000 90 15,28 15.08 Temp. Field Parameters Field Parameters Field Parameters Ċ Temp. Temp. () () <u>(</u>) ပ္ပ \overline{v} (3) のいな 0.27 (mg/L) (mg/L) (mg/L) 44.0 8 8 0.55 0.976 0、4万と 0.855 Conductivity Conductivity Conductivity 50 0.736 0.678 のイグ (ms/cm) (ms/cm) (ms/cm) 6.93 3 34 40.0 6.3 핌 ۇ 9 6 Depth to Water Depth to Water Depth to Water 30 116.30 500 5,6 29 13.29 13.28 Comments: 13.39 D Die Comments: Comments: (feet) 3 13:36 12:42 13:39 12:30 12:33 11:36 11:20 11:29 Time 821// 11:32 01:11 Round Time: Round Round Sample Sample Sample က Time: MW-208 mw-95-Well ID Well ID Well ID

WA255-3542-1/Copy of WESTLAKE FIELD SHEETt 2Q07.xls

Delta Project No. WA255-3542-1

600 Westlake; Seattle, WA

TECH: Jallam/60

DATE:

Purge Purge (gal) (dal) N O 7/0 0 0 Flow rate Flow rate gal/min. gal/min. 6 0 Ø Ô Ø Ó 164,2 ORP (m) ORP (m/) (x) 0,453 2850 693 0,725 TDS (g/L) TDS (a/L) 7 12/2 コンプと Field Parameters Field Parameters Temp. 3 Temp. ပ္ပ 0,42 6 2 € 2/1/2 (mg/L) (mg/L) 8 8 6 Ò 19/201 Conductivity Conductivity 0,582 0,650 568 (ms/cm) 5,624 (ms/cm) Dap-1 6.08 80 80 펍 펍 Depth to Water Depth to Water 878 Comments: Comments: 8,97 .20 80°, h 00', /7 Time Time 14:15 3:30 2 Round Round Sample Sample Time: Time: Mw-54 15-52 Well ID Well ID Š

						Field P	Field Parameters				
			Depth to Water		Conductivity	C	Tomp	ų d	0	i	
			-		(11111111111111111111111111111111111111	2	D	<u>.</u>	۲ ک	Flow rate	Purge
Well ID	Round	Time	(feet)	Hd	(ms/cm)	(mg/L)	(0,)	(0/1)	(Xm)	rim/les	(100)
		してこと	+	100	2 2 7	7		(1,6)	() ()	gaviiii.	(gal)
7	_	3:	90,11	6.5%	1.362	6.XO	16,8% 1	しなる	メンバー	ં.	, 1
3	8	子になっ	3	6.42	4.52	53	7671	1,049	11/00) e) ^
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7 1 101		ころして	// >),
	က	121,31	11,95	77.9	1.363	6. So	16.7.S	4,052	4 11 1	,— «	٦, ٥
		1,1	200	- '			,		2 3	3	ا د
	4	1,35	11,79	6,44	1,366	0,43	16.83	7027	1/42	_	رر چ
	•	コンフ	7700 (1	1111	120	020	200	7 ()		1	Á
	2	07,7	して	5,7,5	0/01	0, 20	(6,73	(C)	-/75/-		ノグ
-										1	
	Sample	Sample IV L	Comments:								
	i	1									

WA255-3542-1/Copy of WESTLAKE FIELD SHEETt 2007.xls

Delta Project No. WA255-3542-1

600 Westlake; Seattle, WA

B AF

TECH:

6-15-09 DATE:

1.5 gal 1.5gal Purge (gal) Purge Purge (gal) (gal) Flow rate Flow rate Flow rate gal/min. gal/min gal/min Ö -135,0 Ç 135,5 -127. ORP (m/ ORP (m/S) ORP (m/ 12/2 5,45,0,540 の。子形 0,548 クがり 0.507 755 TDS (a/L) TDS (g/L) TDS (g/L) シェン 19,46 15.07 5004 15.50 15.84 Field Parameters Temp Field Parameters Temp. Field Parameters Temp. ပ္ပ ပ္ပ 22 0,20 <u>の</u> こ 1).79 (mg/L) (mg/L) 0,48 (mg/L) 00 8 8 0.680 Conductivity 0.697 Conductivity ·625 Conductivity 0697 0.639 0,080 (ms/cm) (ms/cm) 6.35 50 Ηd Hd 표 Depth to Water Depth to Water Depth to Water 14:50 10:45 4:12/10:63 10.92 4:08 10.63 70,75 10.64 Comments: Comments: Comments: (feet) (feet) , 14:42 14:46 五:00 Ha:HI 14:20 13:56 14:28 14:3H 14:55 Time Time Sample Round Sample Round Round Sample 2 Time: က Time: ~ က Start@13:52 MW-57 MW-35 0/-0/- MD Well ID DTW=10,63 Well ID Well ID

WA255-3542-1/Copy of WESTLAKE FIELD SHEETt 2007.xls

TECH: JE & AF

DATE:

						1	0.00				
						Fleid P	Fleid Parameters	C C C	0	i	(
OI III	Round	T B B	Depth to Water	Ŧ	Conductivity (ms/cm)	DO (ma/L)	lemp.	(a/c)	\$ S	Flow rate qal/min.	Purge (gal)
		コンドロ	C 7	90 9	7550	462	14.84	クなかり	1 hh	J. C	9
1.0001.11		7:48	2	60.0	0 55	700	るがす	0.422	159.6	0.	
Dr. 12 8 L	ı m	7.57	1 2 5		0.557	10.1	× 5	150.0	5.94-		
	4	7:50	アーア	613	0.566	0.83	14.87	0.456	-87.3	Ö	
34.1 +m10	5	8:00	(4.13	612	6.569	0,81	98 [°] h	0,459	-88.3	J.	
	Sample &	Sample 8:00	Comments:	-			-	<u>-</u>	S		pag
	Time:)									o
						Field P	Field Parameters				
			Depth to Water		Conductivity	00	Temp.	TDS	ORP	Flow rate	Purge
Well ID	Round	Time	(feet)	Н	(ms/cm)	(mg/L)	(°C)	(g/L)	(mV)	gal/min.	(gal)
	1										
	2										
-	3										
	4										
	25										
	Sample		Comments:								
	Time:										
						Field P	Field Parameters			·	
			Depth to Water		Conductivity	00	Temp.	TDS	ORP	Flow rate	Purge
Well ID	Round	Time	(feet)	Hd	(ms/cm)	(mg/L)	(్లి)	(g/L)	(mV)	gal/min.	(gal)
	-										
	2							- '			
	က			-							
	4			-	1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,						
	ß				*						
3	Sample		Comments:			N.					\
	Time										
			2007								

WA255-3542-1/Copy of WESTLAKE FIELD SHEETt 2Q07.xls

DATE: 6-15-07

j	г			Т—			-	~						1	,						,				-		
		Purge	(8al)					1. Spar	,	Ċ	aĥin.								Purge	(dal)						0	.
†		Flow rate	5	0	1,0	0	0.1			<u> </u>	dal/min	6.0	0,1	0.	10	9,1	- Z		Flow rate	gal/min.	40	0		5	0.1		
		ORP (mV)	58 S	-29.7	HO/-	ابه،	6,0			OBP	; (X	9.501-	0.141.	-193.6	-157.3	-150,5			ORP	(/m/	-57.3	7	-31.9	-31.3	3/1		
		TDS (a/L)	0.317	8620	2,306	0,317	54510	•		TDS	(a/L)	0,694	SHL:0	0,759	0.769	0774			SQL	(a/L)	J. 682	0.691) 100	o.izz	0.952		
	Field Parameters	Temp. (°C)	16.31	JG, 37	16,43 (16,46	(b,47)		Field Parameters	Temp.	(3,)	16.32	16,32	16,30	16.33	16.35		Field Parameters	Temp.	(0,0)	16.1	16.10	16.15 1	16.13	11.0		
ž	Field Pa	DO (mg/L)	0776	0.59	0,00	0,8,0	08'0		Field Pa	8	(mg/L)	0.33	O.201	27,0	2.58	7		Field Par	00	(mg/L)	0,67	P. 64	0.97	しいて	0.57	. *	
		Conductivity (ms/cm)	0.408	0,383	0,39	0,70	0,416			Conductivity	(ms/cm)	0,870	0.959	973	7.986	1,994			Conductivity	(ms/cm)	0.872	7885	1906	2.92	0.939 (
		Hd	625	6,27	6.27	10,0	(0,97/	a.			Hd	7,38	7.37	1,37	1.35 6	1.24 10				된.	6.05	657	6.49	6.19%	6.49		
		Depth to Water (feet)	180	08,1	XX	0 2	- 9	Comments:		Depth to Water	(feet)	19195	12,4	2.25	13,41	18:18-1	Comments:	·	Depth to Water	(feet)	1.26	15.31	13,22	13.2	13,36	Comments:	07 vls
		Time		8618	3000	27.00	2	8,45			Time	20,10	200	7,1,5	7,00						20	7.50	8	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90:01	i Olio	WA255-3542-1/Copy of WESTLAKE FIFI D SHEFT! 2007 vis
		Round	-	2			٦	Sample Time:			Round		2	8	4	20	Sample 7.50 Time:			Round	-			ý. 7	5	Sample Time:	WESTLAKE FI
		Well ID	S1 3,4	20	-	3	0416) A			Well ID	1 BAR	<i>V</i>	的也	キーピップ	10/1	(1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4			Well ID	MW-34		HH-21	2000			3542-1\Copy of
4		•			- -	01 11 10	つべるのとも							ころこ	y se		(i)					· ·	hh.21:010	STACK Grue			WA255-
					· L		t	2					•		7	(\bigwedge		હે			J	7	\C	7		

WA255-3542-1/Copy of WESTLAKE FIELD SHEET(2Q07,xls

Delta Project No. WA255-3542-1

& AFF

TECH:

600 Westlake; Seattle, WA

6-15-07 DATE:

Purge R Purge Purge (gal) (gal) (gal) 1.5 gal 0/5 0.15 Flow rate Flow rate Flow rate 5 0.15 gal/min. gal/min. 0 22 -64,3 ORP (mV) ORP (m) ORP (mV) rŽ -65, 068'6 クトレク 10,649 P470 010 76 10/ 0.59 TDS (g/L) TDS (a/L) TDS (g/L) 14.76 77.77 14.64 555 Field Parameters Temp. Field Parameters Field Parameters Temp. (၁) Temp. <u>(၃</u> 9 Š 0.2J 90,0 のエグ 0,25 (mg/L) (mg/L) (mg/L) 8 8 0,976 0.735 Conductivity Conductivity 1887 498 Conductivity 909 O (ms/cm) (ms/cm) 80 6,95 700 6,43 6.03 6.55 H 표 Depth to Water Depth to Water 12,52 Depth to Water 10,36 12.4°7 12.4g ダナグ 10.36 10.36 10.35 230 10,36 12.44 6.42 Comments: Comments: Sample 13:40 Comments: 13:32 10:56 13.20 80° / 84:01 6.67 Ch. (* 41.01 13.16 13.2H 13:28 Time Time Sample ///45 Time 8:1 Round Sample Round Round ო Time: Time: က m_{ν} MW-53 0611 = MLQ Start-11:20 32A DTW-10,23 Well ID start = 13:12 Well ID Start: 10:36 Well ID 275: Ta:

WA255-3542-1/Copy of WESTLAKE FIELD SHEETt 2Q07.xls

Delta Project No. WA255-3542-1

600 Westlake; Seattle, WA

TECH:

DATE:

Purge 82 Purge Purge のア 9 92 $\mathcal{G}_{i,j}$ (dal) (gal) (dal) 5.5 Ó θ_{i} 0, Ö Ø Flow rate Flow rate Flow rate gal/min. gal/min. gal/min Ó Ö 0 Q 6 Õ থ 0 \ddot{g} Ö 00 ତ Ō (Q) Q 107.9 110,6 728--78.3 -3615 *∞* ⊗ ⊗ 1 503 (M) ORP ORP (m) ORP (mV 38,5 5260 1.3/ ج ک 0,532 2640 0.472 0.834 5£8,0 0,409 8280 0.805 0.488 0,476 0,829 1850 0,531 0.821 TDS (g/L) (g/L) (g/L) TDS TDS 3,98 1387 275 349 5,78 3,99 5,80 50 15.79 3,94 15,79 ģ Field Parameters Field Parameters 16,04 5,75 Field Parameters Temp. Temp. Temp. (°C) 45 000 (mg/L) Q.95. mg/L) 0.59 七9.0 0.37 23 (mg/L) 0,35 8 8 6,33 0,4 Hechange 2090 0.645 Conductivity Conductivity 2,585 Conductivity かたやっの 5790 0,622 0,607 0,647 (ms/cm) (ms/cm) ,058 0.623 0.80 1056 1037 0 *ان* 121 95'9 5/00 33 のなり 5579 646 펍 님 표 96'9 6.39 7. Depth to Water Depth to Water Depth to Water 70 نج Comments: 12.57 Comments: (8,83 Comments: 2,53 10,84 (feet) 50 (feet) (feet) 18.84 18:03 18:01 18.81 8:29 90% 80,0 8132 8.37 26.36 8:27 Time Time 7.50 9.06 9.64 04:8 4:(5 Round Round Round Sample Sample Sample ~ က Time: Time: Mar 34 Mes-So Mw-33 Well ID Well ID Well ID

WA255-3542-1/Copy of WESTLAKE FIELD SHEETt 2Q07.xls

DATE:

WA255-3542-1/Copy of WESTLAKE FIELD SHEETt 2007.xls