

www.secor.com

DATE: May 15, 2008

CONOCOPHILLIPS OPERATIONS AND MAINTENANCE REPORT

ConocoPhillips Facility No.: 255353	Address: 600 Westlake Avenue North, Seattle, WA
ConocoPhillips Project Manager:	Kipp Eckert (RM&R 01396)
Consulting Co./Contact Person:	SECOR/Jennifer Yotz
Consultant Project No .:	01CP.01396.42
Primary Agency/Regulatory ID No.:	VCP No. NW 1714/Ecology Identifier No. 46445373

The site is a former retail service station located at 600 Westlake Avenue North in Seattle, Washington (Figure 1). Remediation at the site is conducted using air sparge (AS), soil vapor extraction (SVE), and enhanced fluid recovery (EFR). The primary components of the AS/SVE system are a Gast 6066 AS blower, a Rotron EN858 regenerative SVE blower with knock-out tank, and two 2,000 pound vapor-phase carbon vessels used to treat the vapor effluent. The AS/SVE system is connected to three groups of wells. The first group of wells is located on-site, and consists of 20 AS wells and 5 SVE wells (Figure 2). Another group of wells is located in Westlake Avenue, and consists of 21 AS and 9 horizontal SVE wells. The last group of wells connected to the AS/SVE system is located in Terry Avenue, and consists of 9 vertical SVE wells. In addition to the AS/SVE system, there is an EFR manifold that is connected to 6 EFR wells located in Terry Avenue. Remediation well locations for Westlake and Terry Avenues are illustrated in Figure 3.

Currently, the AS/SVE well groups in Westlake and Terry Avenues are active, and the well group located on-site is inactive. Operations and maintenance events are conducted with the AS/SVE system on a monthly basis. Bi-weekly EFR events are conducted using the EFR manifold located along Terry Avenue.

WORK PERFORMED THIS QUARTER [First-2008]:

Summary of Routine Operations and Maintenance Activities

- On January 10, 2008, SECOR International, Inc. (SECOR) conducted an EFR event on wells EFR-1, EFR-2, EFR-3, MW-48, MW-65, and MW-88; located in Terry Avenue. The AS and SVE systems were not in operation pending the installation of a new SVE blower.
- On January 24, 2008, SECOR personnel conducted an EFR event on wells EFR-1, EFR-2, EFR-3, MW-48, MW-65, and MW-88.
- On February 7, 2008, SECOR personnel conducted an EFR event on wells EFR-1, EFR-2, EFR-3, MW-48, MW-65, and MW-88.
- On February 21, 2008, SECOR personnel conducted an EFR event on wells EFR-1, EFR-2, EFR-3, MW-48, MW-65, and MW-88.
- On March 6, 2008, SECOR personnel conducted an EFR event on wells MW-48 and MW-88. The scope of the EFR events was changed to focus on the two wells that still have contamination (MW-48 and MW-88) with occasional EFR events on all six wells to verify that the other 4 are clean. In addition, the sampling was modified to collect air and water samples at

the beginning and the end of the EFR events. Additional SECOR personnel were also onsite with Custom Backhoe to install a new Rotron EN858, 10 horsepower SVE blower capable of producing 98 in. H₂O Vacuum at 400 standard cubic feet per minute (SCFM). The SVE blower was installed and the AS/SVE system was restarted using the new SVE blower.

- On March 10, 2008, SECOR personnel along with personnel from Clearcreek Contractors were
 onsite to inspect and repair the sump pump located on the City Investor's property. The SVE
 blower was operating upon arrival. The AS compressor was running but not pushing any air.
 Further inspection indicated that the compressor pump needed replacement. The AS system
 was shut down upon departure from the site.
- On March 20, 2008, SECOR personnel conducted an EFR event on wells EFR-1, EFR-2, EFR-3, MW-48, MW-65, and MW-88.
- On March 26, 2008, SECOR personnel along with personnel from Custom Backhoe were onsite to install a new AS compressor. Monthly operations and maintenance activities were conducted after the installation was complete. The AS/SVE system was fully operational upon departure from the site.

Field and analytical data from the operations and maintenance event are included in tables 1 through 4 of this document. The field and analytical data collected during the EFR events described above are included in Tables 5 through 7 of this document.

AS/SVE System Performance Monitoring

AS/SVE system performance monitoring is typically conducted at the site on a monthly basis; however the SVE system was down for much of the first quarter of 2008 due to a malfunctioning SVE blower and then a malfunctioning AS compressor later in the quarter. Installation of a new Rotron EN858, 10 horsepower SVE blower was completed on March 6, 2008 and installation of a refurbished Gast 6066-P122, 5 horsepower AS compressor was completed on March 26, 2008. A total of 1,323 pounds of petroleum hydrocarbons have been removed by the SVE system between the first quarter of 2004 and the end of first quarter 2008. A total of 0.7 pounds of petroleum hydrocarbons were removed during the first quarter of 2008. Field notes have been included in Attachment A. Current and historical operations and maintenance information is included in Tables 1 through 4.

Summary of Monthly Discharge Sampling

SECOR personnel collected air samples from the SVE system on March 26, 2008 in accordance with Puget Sound Clean Air Agency (PSCAA) Permit NO. 8905. Air samples were taken from the carbon influent, midpoint, and effluent. Samples were collected in 1-liter Tedlar[™] bags, screened for Volatile Organic Compounds (VOCs) using a portable photoionization detector (PID), and placed in a cooler without ice for delivery to Test America Laboratories in Bothell, Washington. Air samples were analyzed for total petroleum hydrocarbons as gasoline (TPH-g), benzene, toluene, ethyl benzene and total xylenes (collectively known as BTEX) per methods NWTPH-g and EPA 8021B, respectively. Analytical results are summarized in Table 2 and included in Attachment B.

No air samples were taken in January and February 2008 because the system was not operating.

Summary of the Enhanced Fluid Recovery Events

EFR events were conducted every-other week during the first guarter of 2008. The EFR events consisted of applying vacuum to 6 wells (EFR-1, EFR-2, EFR-3, MW-48, MW-65, and MW-88) and their associated vent wells located in Terry Avenue. Each of the wells has a stinger that is set below the surface of the water table. The stingers are plumbed to a manifold located in a fenced enclosure on the east side of the site. Vacuum was applied to the manifold using a vacuum truck. Well valves were opened three at a time, for approximately 4 hours per well grouping. The first well grouping consisted of wells EFR-1, EFR-2 and EFR-3. The second well grouping consisted of wells MW-48, MW-65 and MW-88. During the March 6, 2008 EFR event, the scope of work was changed so that vacuum was applied only to the two wells that have still have contamination, wells MW-48 and MW-88, for approximately 8 hours. Future EFR events will be focused on MW-48 and MW-88 with occasional events on all six wells to ensure that wells EFR-1, EFR-2, EFR-3, and MW-65 are still unimpacted. PID and vacuum readings were taken from each of the wells periodically. Between January and March 2008, the applied vacuum to the EFR wells ranged between 7 and 16 inches of mercury vacuum (in. Hg) (Table 5). A total volume of 9,700 gallons of water was removed during the first guarter 2008 EFR events. VOC monitoring and air sample results indicated consistent vapor concentrations from each of the wells. Well and enclosure locations are depicted in Figure 3. Field notes are included in Attachment A.

Air and water samples were taken from each well during the first EFR event of the month. Air samples were collected in 1-liter Tedlar[™] bags and screened for VOCs using a PID. Water samples were taken using a vacuum pump applied to a small air-water separator. Once the air water separator filled with water the sample was collected from a sample port at the bottom of the air-water separator. The air-water separator was decontaminated between each sample collection. The air and water samples were collected near the end of the EFR event for the first well grouping and near the beginning of the EFR event conducted on the second well grouping. During the March 6, 2008 EFR event, air and water samples were collected at the beginning and end of the event from wells MW-48 and MW-88. Future EFR events will follow this sampling protocol. Both air and water samples were taken to Test America Laboratories in Bothell, Washington. Air and water samples were analyzed for TPH-g and BTEX constituents per methods NWTPH-g and 8021B, respectively.

Due to a miscommunication between SECOR and Test America Laboratories, air samples collected during the February 7, 2008 EFR event were analyzed for BTEX constituents per EPA method 8260B. Additionally, SECOR discovered a unit conversion error in the laboratory report for samples collected on November 15, 2007. The data for this event has been corrected in the attached summary tables (Tables 6 and 7), and the revised analytical report has been included in Attachment B, with the analytical reports from the first quarter of 2008.

WORK PROPOSED FOR NEXT QUARTER [Second - 2008]:

- Continue to monitor the system operational performance and perform routine operations and maintenance activities on a monthly basis.
- Continue to conduct bi-weekly EFR events.
- Collect air and water samples from each of the applicable EFR wells near the beginning and end
 of each event.
- Collect SVE influent, midpoint, and effluent air samples.

Current Phase of Project:	Remediation	(Assessment, Remediation, etc.)
Frequency of Sampling:	Monthly influent, midpoint, and effluent air samples	(Quarterly, etc.)
Frequency of Monitoring:	Quarterly GWM / monthly O&M	(Monthly, etc.)
LPH Present On-Site:	No	(Yes/No)
LPH Recovered This Quarter:	None	(Gallons)
LPH Recovered to Date:	43,632	(Gallons)
Water Wells or Surface Waters Within 1,000 ft Radius and Respective Directions (if known):	Lake Union (400 feet north)	(Distance and Direction)
Current Remediation Techniques:	AS/SVE and EFR	(SVES, LPH Removal, etc.)
Permits for Discharge:	PSCAA No. 8905	(NPDES, POTW)
Approximate Depth to Groundwater:	2.89 to 15.33	(Feet)
Maximum Air TPH-G/Benzene Concentrations:	TPH-g = 2.63 ppmV (MW-88) benzene = not detected	(ppmV)

ATTACHMENTS:

Figure 1: Site Location Map

Figure 2: Site Plan with AS/SVE System Layout

Figure 3: Site Map with Westlake and Terry Ave System Layouts

Table 1: SVE Unit and Vapor Treatment Operation Summary

Table 2: SVE System Analytical Data

 Table 3: Air Sparge Unit Operational Summary

Table 4: Deep Air Sparge Unit Operational Summary

Table 5: EFR Field Data

Table 6: EFR Air Analytical Results

Table 7: EFR Water Analytical Results

Attachment A: AS/SVE Remediation System Operation and EFR Event Logs Attachment B: Laboratory Analytical Reports and Chain-of-Custody Record

Prepared By:

à T

Matthew Davis Project Geologist

Reviewed By:

Jennifer Yotz Senior Project Manager

cc: Michael Kuntz, Department of Ecology, Voluntary Cleanup Program

FIGURES

MERCER STREET

30 FT

LEGEND

- BIOSPARGE TRENCH AIR SPARGING WELL
- DEEP AIR SPARGING WELL
- MULTIPURPOSE WELL (MONITORING OR REMEDIATION)
- ON-SITE VAPOR EXTRACTION WELL AND APPROXIMATE LOCATION OF VE CONVEYANCE PIPING
- TRENCHING FOR DEEP SPARGE CONVEYANCE PIPING
- BIOSPARGE TRENCHING
- BIOSPARGE TRENCH HORIZONTAL VAPOR EXTRACTION PIPING

0

		APPROX. SC	CALE
compile	ty is made by SECOR International, Inc. as to th f from various sources. This information may no tronically, and may be updated without notificatio	t meet National Map Accuracy Standards. This	product was developed
ORTH N	SITE PL/ AS/SVE SYST		FIGURE:
	CHECKED BY:	APPROVED BY:	DATE:

P:\Staff\CONOCOPHILLIPS\5353 Westlake and Mercer\2007 O&M\4Q07\Report\Figures\5353 SYSTEM DRAWINGS.dwg, F3-SP, 3/4/2008 2:00:18 PM

TABLES

TABLE 1 SVE UNIT AND VAPOR TREATMENT OPERATION SUMMARY ConocoPhillips Site No. 255353 600 Westlake Avenue North

Seattle, Washington

_	Operational Time Since Last Event	Power Reading	Vapor Extraction Vacuum	Average Flowrate ¹	Influent Petroleum Hydrocarbon Concentration ²	Petroleum Hydrocarbon Concentration Between Carbons ³	Emission Petroleum Hydrocarbon Concentration ⁴	Estimated Petroleum Hydrocarbons Removed During Operating Period ⁵
Date	(days)	(KWH)	(inches H2O)	(SCFM)	(ppm)	(ppm)	(ppm)	(pounds)
01/29/04	45 ⁶	NM	3.0	192	1.2	0.0	0.0	4.2
02/28/04	30	32,432	3.0	192	1.2	0.0	0.0	2.8
03/30/04	31	35,592	3.0	192	2.7	0.2	0.0	6.4
04/28/04	29	38,516	3.5	183	0.1	0.1	0.1	0.2
05/27/04	29	41,465	3.5	183	9.8 ⁹	0.1	0.1	20.9
06/22/04	26	44,045	3.5	183	4.29	0.1	0.1	8.0
07/22/04	30	47,097	3.5	183	17.9 ⁹	11.1	1.8	39.4
08/16/04	23	49,449	3.5	183	6.4	0.2	0.1	10.8
09/21/04	26	52,907	3.7	175	10.5	0.3	0.2	19.2
10/28/04	37	58,559	3.5	183	14.1	5.4	1.1	38.3
11/22/04	25	62,578	3.5	183	4.9	0.1	0.0	9.0
12/17/04 ¹⁰	25	66,601	4.0	175	10.7	6.6	2.3	18.8
01/27/05 ¹¹	21	70,013	4.0	175	1.0	0.6	0.0	1.5
02/17/05	21	73,083	4.0	175	28.9	15.8	0.0	42.6
03/17/05	28	76,709	3.5	183	0.1	0.0	0.0	0.2
04/15/05	29	80,613	3.5	183	4.6	4.2	2.2	9.8
05/11/05	27	84,069	3.5	183	1.7	1.1	0.3	3.4
06/21/05	41	90,727	3.5	183	0.3	3.4	0.0	0.9
08/23/05	63	99,562	4.0	175	45.2	26.9	0.0	200
09/30/05	37	104,474	4.0	183	9.3	0.0	0.0	25.3
10/25/05	25	107.068	4.0	175	11.1	13.0	9.7	19.5
11/30/05	36	109,918	4.0	175	14.1	14.4	0.2	35.6
12/19/05	19	113,376	4.0	175	14.8	14.1	0.1	19.7
12/30/05	10	13,376	4.0	175	14.8	13.7	0.1	11.4
03/28/06	0	14,245	4.0	175	14.4	22.6	14.1	0.0
04/27/06	30	19,313	4.0	120	25.9	26.4	NM	37.4
02/23/07	0	21,831	NM	140	1.0	0.0	0.0	0.0
03/21/07	27	28,495	4.0	279	1.0	0.0	0.0	3.0
04/24/07	34	49,994	4.0	87.3	2.42	0.0	NM	2.9
04/24/07	41	50,539	4.0	87.3	0.09	0.0 9	0.0 9	0.0
06/05/07	21	50,539 NM	4.5	87.3	151 ⁹	10.5	18.0	111.1
07/31/07	32	68,120	4.3	87.3	0.09	0.0 9	5.59 ⁹	0.0
07/31/07	32	77,018	4.3	87.3	0.0 3.37	0.0 9	5.59 NM	3.5
08/30/07	30 18	77,018 NM	4.0 NM	87.3 NM	3.37 NM	0.0 NM	NM	3.5 NM
10/04/07	18 NM	NM	NM	NM	NM	NM	NM	NM
			NM	NM	NM			
10/24/07	NM	NM				NM Ta Kasakaut Daum Llia	NM	NM
11/26/07			S			To Knockout Drum Hig		
12/20/07						Due To Blower Malfunct		
01/31/08	<u> </u>					tallation of New Blowe		
02/29/08		NIKA	25			tallation of New Blowe		0.0
03/06/08	0	NM	25	378	0	0	0	0.0
03/26/08	20	NM	15	83.5	1	0	0	0.7
Fotal To Date	1,074 ⁷							1,323 8
Total for 2008	20							0.7

Notes:

KWH = kilowatt-hours

SCFM = standard cubic feet per minute

ppm = parts per million

NM = not measured

¹ Flowrate calculated based on air velocity measurments through a 4-inch pipe, recorded in the field.

² Influent petroleum hydrocarbon concentrations based on field measurements using a photoionization detector (PID), unless otherwise indicated.

³ Concentrations between carbon units based on field measurements using a PID, unless otherwise indicated.

⁴ Effluent concentrations based on field measurements using a PID, unless otherwise indicated.

⁵ Hydrocarbons removed during each operating period estimated using influent concentration, average flowrate, and operational time period.

⁶Operation and maintenance of the remedial system was performed on 12/15/03 by the previous consultant. Delta assumed operation and maintenance of the system

during January 2004.

⁷ Total operational time to date includes 107.1 days operated by previous consultant, from system startup on 8/20/03 through 12/15/03.

⁸ Total estimated petroleum hydrocarbons removed to date includes 616.9 pounds reportedly removed by previous consultant, from system startup on 8/20/03 through 12/15/03 ⁹ Petroleum hydrocarbon concentration from laboratory analysis.

¹⁰ At the request of ConocoPhillips, the remedial system was shut down upon departure of the site on 12/17/04, to be restarted at a later date.

¹¹ At the request of ConocoPhillips, the remedial system was restarted on 1/6/05.

¹² The on site remediation system was shut down so that the Westlake Avenue remediation well network could be temporarily connected to the on site system.

TABLE 2

SVE System Analytical Data

ConocoPhillips Site No. 255353 600 Westlake Avenue North Seattle, Washington

Sample ID	Date	TPH-g (ppmV)	Benzene (ppmV)	Toluene (ppmV)	Ethylbenzene (ppmV)	Total Xylenes (ppmV)
Total Influent	10/01/07	5.17	0.0783	0.0479	<0.0227	<0.0454
	10/24/07	5.14	0.0655	<0.0261	<0.0227	<0.0454
	03/26/08	4.14	<0.0308	0.0309	<0.0227	<0.0454
Mid-Point	10/01/07	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
	10/24/07	<2.36	<0.0308	0.04	<0.0227	<0.0454
	03/26/08	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
Total Effluent	10/24/07	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
	03/26/08	<2.36	<0.0308	<0.0261	<0.0227	<0.0454

TABLE 3AIR SPARGE UNIT OPERATIONAL SUMMARYConocoPhillips Site No. 255353

600 Westlake Avenue North Seattle, Washington

	Header						Air Flo	wrates pe	er Air Spar	ge Point	(SCFM)					
Date	Pressure (psig)	AS-1	AS-2	AS-3	AS-4	AS-5	AS-6	AS-7	AS-8	AS-9	AS-10	AS-11	AS-12	AS-13	AS-14	AS-15
01/29/04	5	11	12	12	10	11	12	13	8	8	3	<3	5	11	12	8
02/28/04	4	11	12	14	11	11	12	13	8	8	3	4	<3	10	11	9
03/30/04	5	11	12	14	11	12	12	14	8	8	<3	<3	<3	10	12	8
04/28/04	NM	10.5	11.5	14	10.5	11	11.5	13.5	8	7.5	<3	<3	<3	9	10.5	7
05/27/04	4.5	10	11	14	9	10	11	12	7	7	<3	<3	<3	5.5	9	7.5
06/22/04	4.5	11	11	14	10	11	11	12	12.5	11	<3	<3	<3	<3	10	8
07/22/04	4	12	13	16	11	12	12	13	8	5.5	<3	<3	<3	<3	10.5	8
08/16/04	4.5	10	11.5	16	9.5	11	12	10.5	8	5.5	<3	<3	<3	<3	9.5	10.5
09/21/04	4.5	10	10	11.5	8.5	9	9.5	11	6	4.5	<3	<3	4	<3	9.5	7
10/28/04	4.5	9.5	10	11.5	9.5	9	9.5	10.5	5.5	4	<3	<3	<3	<3	10	6
11/22/04	4.5	8.5	10	10.5	9	9	9.5	10.5	5	3.5	<3	<3	<3	<3	8	6
12/17/04 ¹	4.5	8.0	8.7	9.7	7.8	7.5	8.5	9.5	4	3.2	<3	<3	<3	<3	10	7
01/27/05 ²	4.5	8.0	8.7	9.5	7.6	7.5	8.2	9.4	3.8	3.2	<3	<3	<3	<3	10	5
02/17/05	4.5	8.0	8.8	9.7	7.7	7.5	8.3	9.2	3.6	3	<3	<3	<3	<3	9.7	5
03/17/05	4.5	6.0	9.5	11.5	8.5	8	9	8	3	3	<3	<3	<3	<3	10	<3
04/15/05	5	8.0	9	11	8	8	8.5	4	<3	<3	<3	<3	<3	<3	9	4.5
05/11/05	5	8.2	9	11.5	8	8	8.5	3	<3	<3	<3	<3	<3	<3	8.5	3
06/21/05	7	5.0	4.5	5	4.5	3	3.5	3.5 E	9	5 E	<3	<3	<3 E	<3	5.5	5 E
08/23/05	7	5.0	5	5.5	5	1	1	1	7	6	1	1	1	0	4	9
09/30/05	8	5.5	5.5	7	6	3	<3	<3E	5.5	6.5	<3	<3	<3	<3	4	<3
10/25/05	8.5	<3	5	6	5.5	<3	<3	<3	5.5	7.5	<3	<3	4E	<3	4	<3
11/30/05	2.2	14.0	8	4E	7.5	<3	3E	<3	5E	7.5E	-	<3	<3	<3	5.5	<3
12/30/05	4.2	13.5	10	<3	8	<3	<3	<3	<3	7	<3	<3	<3	<3	5.5	<3
03/28/06	4	8.5	3.2	2	4.2	2.5	2.5	2	2.5	3.8	3.8	8.6	4.8	5.8	4	2.5
04/27/06	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO
02/23/07	3	7	7	0	4.5	0	3.5	0	10	14.5	0	0	0	0	8	0
03/21/07	6	15	10	4	7	0	6	0	7	10	5.5	2.5	4.5	2	12	2
04/24/07	5	15.5	10	0	7	0	0	0	5.5	9	0	0	0	0	9	0
06/05/07	5	15	10	2.5	6	0	0	0	5	10	0	0	0	0	10	0
06/29/07	5	16	10	0	7	0	0	0	5	11	0	0	0	0	10	0
07/31/07	5	14.5	7.75	2	4	2	2	1.5	3.75	9	1.5	1.5	1.5	1.5	9.5	1.5
08/30/07	5.5	13	8	1.5	10	1.5	2	1.5	3	9	1.5	1.5	1.5	1.5	9	1.5
09/19/07	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO

TABLE 3 AIR SPARGE UNIT OPERATIONAL SUMMARY ConocoPhillips Site No. 255353

600 Westlake Avenue North

Seattle, Washington

	Header						Air Flo	wrates pe	er Air Spar	ge Point	(SCFM)					
Date	Pressure (psig)	AS-1	AS-2	AS-3	AS-4	AS-5	AS-6	AS-7	AS-8	AS-9	AS-10	AS-11	AS-12	AS-13	AS-14	AS-15
10/01/07	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
10/24/07	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
11/26/07	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO
12/20/07	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO
01/31/08	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO	NIO
02/29/08						System	Down Per	nding Insta	llation of N	lew Comp	ressor					
03/06/08	11.5	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
03/26/07	9	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Average:	4.9	10.3	9.1	8.5	7.8	6.3	6.8	7.0	6.2	7.0	1.8	1.9	2.0	4.0	8.7	4.7

Notes:

psig = pounds per square inch, gauge

SCFM = standard cubic feet per minute

NIO = not in operation

NM = not measured

¹ At the request of ConocoPhillips, the remedial system was shut down upon departure of the site on 12/17/04, to be restarted at a later date.

 2 At the request of ConocoPhillips, the remedial system was restarted on 1/6/05.

TABLE 4 DEEP AIR SPARGE UNIT OPERATIONAL SUMMARY ConocoPhillips Site No. 255353

600 Westlake Avenue North

Seattle, Washington

	Header		Air Flowrate	s per Air Sparge I	Point (SCFM)	
Date	Pressure (psig)	DAS-1	DAS-2	DAS-3	DAS-4	DAS-5
01/29/04	NIO	NIO	NIO	NIO	NIO	NIO
02/28/04	12	NIO	3	5	3.5	<3
03/30/04	NIO	NIO	NIO	NIO	NIO	NIO
04/28/04	NIO	NIO	NIO	NIO	NIO	NIO
05/27/04	NIO	NIO	NIO	NIO	NIO	NIO
06/22/04	NIO	NIO	NIO	NIO	NIO	NIO
07/22/04	NIO	NIO	NIO	NIO	NIO	NIO
08/16/04	NIO	NIO	NIO	NIO	NIO	NIO
09/21/04	NIO	NIO	NIO	NIO	NIO	NIO
09/22/04 ¹	10.5*	NIO	5*	22*	4*	7*
10/28/04	10.5	NIO	5	22	4	7
11/22/04	10.5	NIO	6	5.5	4	7.5
12/17/04 ²	11	NIO	6.5	3.5	4	6.5
01/27/05 ³	11	NIO	6.5	4	<3	5
02/17/05	11.5	NIO	7.5	4 E	4 E	4 E
03/17/05	13.5	NIO	4	<3	<3	5
04/15/05	11.5	NIO	9	3 E	3 E	4 E
05/11/05	11.5	NIO	9.2	3	<3 E	5 E
06/21/05	14.5	NIO	4.5	3.5 E	3 E	6.5
08/23/05	NM	NIO	NM	NM	NM	NM
09/30/05	16.5	NIO	5.5	3.5	<3	<3
10/25/05	13.5	NIO	5	3.5	6	5
11/30/05	12.5	NIO	6	7	<3	13
12/30/05	NIO	NIO	NIO	NIO	NIO	NIO
03/28/06	NIO	NIO	NIO	NIO	NIO	NIO
04/27/06	11.5	NIO	7	5	5	14.75
02/23/07	12.5	NIO	7	3	3	17
03/21/07	13.5	NIO	7.5	3.5	5.5	7.5
04/24/07	12	NIO	7	9	6	7
06/05/07	12.5	NIO	6.5	8.5	4	7
06/29/07	13	NIO	5	7	3.5	8
07/31/07	13	NIO	3	7.5	4.5	8
08/30/07	12.6	NIO	4	7	5	8
09/19/07	NM	NM	NM	NM	NM	NM
10/01/07	NM NM	NM NM	NM NM	NM NM	NM NM	NM
10/24/07 11/26/07	NIO	NIO	NIO	NIO	NIO	NM NIO
12/20/07	NIO	NIO	NIO	NIO	NIO	NIO
01/31/08	NIO	NIO	NIO	NIO	NIO	NIO
02/29/08	NIO	NIO	NIO	NIO	NIO	NIO
03/26/08	NIO	NIO	NIO	NIO	NIO	NIO

TABLE 4 DEEP AIR SPARGE UNIT OPERATIONAL SUMMARY

ConocoPhillips Site No. 255353 600 Westlake Avenue North Seattle, Washington

Notes:

psig = pounds per square inch, gauge SCFM = standard cubic feet per minute

NIO = not in operation

NM = not measured

- E = Erratic readings
- * Estimated value

¹ The DAS system was modified and restarted on 9/22/04. DAS pressure and flowrates are estimated based on values recorded during fourth guarter monitoring in October 2004.

 2 At the request of ConocoPhillips, the remedial system was shut down upon departure

of the site on 12/17/04, to be restarted at a later date.

 3 At the request of ConocoPhillips, the remedial system was restarted on 1/6/05.

TABLE 5EFR FIELD DATACONOCOPHILLIPS SITE 255353600 WESTLAKE AVENUE NSEATTLE, WA

Dete	Time	EFF	२-1	EFI	R-2	EF	R-3	MM	/-48	MW	-65	MM	/-88	Total Gallons of Water Removed
Date	Time	Vacuum (In. Hg)	VOCs (ppmV)	During Event										
10/24/07	8:30	3	NR	3	NR	3	NR	NA	NA	NA	NA	NA	NA	511
	12:30	NA	NA	NA	NA	NA	NA	3	NR	3	NR	3	NR	511
11/15/07	9:00	4.4	NR	4.4	NR	4.4	NR	NA	NA	NA	NA	NA	NA	
	11:00	4.4	0.0	4.4	0.0	4.4	0.0	NA	NA	NA	NA	NA	NA	1,018
	13:00	NA	NA	NA	NA	NA	NA	6.3	3.2	6.3	5.2	6.3	175	
11/29/07	9:15	5.9	0.3	5.5	0.1	5.5	0.2	NA	NA	NA	NA	NA	NA	
	13.15	NA	NA	NA	NA	NA	NA	6.6	3.7	6.6	1.7	6.3	14.8	1,425
	15:00	NA	NA	NA	NA	NA	NA	6.6	2.5	6.6	1.7	6.3	5.8	
12/13/07	9:00	6.3	0.5	6.3	0.6	6.3	0.5	NA	NA	NA	NA	NA	NA	
	12:30	6.3	0.4	6.3	0.0	6.3	0.0	NA	NA	NA	NA	NA	NA	1,636
	13:00	NA	NA	NA	NA	NA	NA	NR	1.5	NR	0	NR	5.6	
12/27/07	8:10	NA	NA	NA	NA	NA	NA	6.6	1.2	6.6	3.7	6.6	10.1	
	10:02	NA	NA	NA	NA	NA	NA	6.4	0.5	6.4	1.2	6.4	9.7	
	12:01	NA	NA	NA	NA	NA	NA	6.7	0	6.7	0.5	6.7	9.8	1,769
	12:12	6.4	5.7	6.5	1.2	6.4	0.5	NA	NA	NA	NA	NA	NA	1,709
	14:11	6.1	4.7	6.2	0.1	6.1	0	NA	NA	NA	NA	NA	NA	
	16.:22	6.3	NR	6.3	NR	6.2	NR	NA	NA	NA	NA	NA	NA	
01/10/08	9:05	9.0	0.0	9.0	5.3	9.0	0.0	NA	NA	NA	NA	NA	NA	
	10:25	9.0	0.0	9.0	0.0	9.0	0.0	NA	NA	NA	NA	NA	NA	
	11:30	9.0	0.0	9.0	0.0	9.0	0.0	NA	NA	NA	NA	NA	NA	
	12:25	9.0	0.0	9.0	0.0	9.0	0.0	NA	NA	NA	NA	NA	NA	1,253
	13:00	NA	NA	NA	NA	NA	NA	9	0.0	9	0.0	9	0.0	
	14:20	NA	NA	NA	NA	NA	NA	9	0.0	9	0.0	8.5	0.0	
	15:40	NA	NA	NA	NA	NA	NA	8.5	NR	9	NR	9	NR	
01/24/08	9:53	8.0	0.0	8.0	0.2	8.0	0.0	NA	NA	NA	NA	NA	NA	
	10:50	9.0	0.0	8.0	0.0	8.0	0.0	NA	NA	NA	NA	NA	NA	
	11:30	9.0	0.1	8.0	0.0	8.0	0.0	NA	NA	NA	NA	NA	NA	
	12:15	8.0	0.0	8.0	0.0	8.0	0.0	NA	NA	NA	NA	NA	NA	
	13:20	8.0	0.0	8.0	0.0	8.0	0.0	NA	NA	NA	NA	NA	NA	1,936
	13:30	NA	NA	NA	NA	NA	NA	8	0.0	8	0.0	9	0.0	1,000
	14:00	NA	NA	NA	NA	NA	NA	8	0.0	8	0.0	8	0.0	
	14:30	NA	NA	NA	NA	NA	NA	8	0.2	9	0.0	8	0.1	-
	15:30	NA	NA	NA	NA	NA	NA	8	0.0	8	0.0	8	0.1	-
	16:30	NA	NA	NA	NA	NA	NA	8	0.0	9	0.0	8	0.0	

TABLE 5EFR FIELD DATACONOCOPHILLIPS SITE 255353600 WESTLAKE AVENUE NSEATTLE, WA

Dete	Time	EFI	R-1	EF	R-2	EF	R-3	MW	-48	MW	-65	MW-88		Total Gallons of Water Removed
Date	Time	Vacuum (In. Hg)	VOCs (ppmV)	During Event										
02/07/08	10:35	14.0	0.0	14.0	0.1	14.0	0	NA	NA	NA	NA	NA	NA	
	11:15	15.0	0.0	15.0	0.4	14.0	0	NA	NA	NA	NA	NA	NA	
	11:35	16.0	0.0	16.0	0.2	16.0	0	NA	NA	NA	NA	NA	NA	
	12:35	16.0	0.0	16.0	0.0	16.0	0	NA	NA	NA	NA	NA	NA	
	12:50	NA	NA	NA	NA	NA	NA	13	0.0	13	0.0	13	0.0	
	13:30	NA	NA	NA	NA	NA	NA	13	0.2	13	1.1	13	0.0	1,497
	14:30	NA	NA	NA	NA	NA	NA	12	0.2	13	0.0	13	0.0	1,497
	15:00	NA	NA	NA	NA	NA	NA	12	0.0	13	0.0	13	0.0	
	16:00	NA	NA	NA	NA	NA	NA	12	0.0	12	0.0	12	0.0	
	16:30	NA	NA	NA	NA	NA	NA	12	0.0	13	0.0	13	0.0	
	17:00	NA	NA	NA	NA	NA	NA	13	0.0	13	0.0	12	0.0	
	17:30	NA	NA	NA	NA	NA	NA	13	0.0	13	0.0	13	0.0	
02/21/08	8:17	12.0	0.0	12.0	0.0	12.0	0	NA	NA	NA	NA	NA	NA	
	8:50	16.0	0.0	16.0	0.0	16.0	0	NA	NA	NA	NA	NA	NA	
	9:15	13.0	0.0	13.0	0.0	13.0	0	NA	NA	NA	NA	NA	NA	
	9:45	10.0	0.0	9.0	0.0	9.0	0	NA	NA	NA	NA	NA	NA	
	10:30	9.0	0.0	9.0	0.0	9.0	0	NA	NA	NA	NA	NA	NA	
	11:00	9.0	0.0	10.0	0.0	11.0	0	NA	NA	NA	NA	NA	NA	
	12:00	15.0	NR	15.0	NR	15.0	NR	NA	NA	NA	NA	NA	NA	1,077
	12:20	NA	NA	NA	NA	NA	NA	10	0.0	10	0.0	10	0.0	1,077
	13:00	NA	NA	NA	NA	NA	NA	12	0.0	11	0.0	12	0.0	
	13:51	NA	NA	NA	NA	NA	NA	12	0.0	12	0.0	12	0.0	
	14:15	NA	NA	NA	NA	NA	NA	12	0.0	12	0.0	12	0.0	
	15:00	NA	NA	NA	NA	NA	NA	12	0.0	12	0.0	12	0.0	
	15:25	NA	NA	NA	NA	NA	NA	12	0.0	12	0.0	12	0.0	
	16:10	NA	NA	NA	NA	NA	NA	12	0.0	12	0.0	12	0.0	
03/06/08	9:00	NA	NA	NA	NA	NA	NA	12	0.0	NA	NA	12	0.0	
	9:30	NA	NA	NA	NA	NA	NA	15	0.0	NA	NA	15	0.0	
	10:05	NA	NA	NA	NA	NA	NA	15	0.0	NA	NA	15	0.0	
	10:50	NA	NA	NA	NA	NA	NA	15	0.0	NA	NA	15	0.0	
	11:20	NA	NA	NA	NA	NA	NA	12	0.0	NA	NA	12	0.0	
	12:20	NA	NA	NA	NA	NA	NA	12	0.0	NA	NA	12	0.0	1.026
	12:45	NA	NA	NA	NA	NA	NA	15	0.0	NA	NA	15	0.0	1,936
	13:20	NA	NA	NA	NA	NA	NA	15	0.0	NA	NA	15	0.0	1
	14:00	NA	NA	NA	NA	NA	NA	13	0.0	NA	NA	13	0.0	1
	15:00	NA	NA	NA	NA	NA	NA	15	0.0	NA	NA	15	0.0	1
	15:39	NA	NA	NA	NA	NA	NA	14	0.0	NA	NA	14	0.0	1
	16:30	NA	NA	NA	NA	NA	NA	15	0.0	NA	NA	15	0.0	1
03/20/08	8:30	12.0	0.0	12.0	0.0	12.0	0	NA	NA	NA	NA	NA	NA	

TABLE 5EFR FIELD DATACONOCOPHILLIPS SITE 255353600 WESTLAKE AVENUE NSEATTLE, WA

Date	e Time EFR-1		R-1	EF	R-2	EF	R-3	MW	-48	MW	-65	MW	-88	Total Gallons of Water Removed
Date	rime	Vacuum	VOCs	Vacuum	VOCs	Vacuum		Vacuum	VOCs	Vacuum	VOCs	Vacuum		During Event
		(In. Hg)	(ppmV)											
	9:20	10.0	0.0	10.0	0.0	10.0	0	NA	NA	NA	NA	NA	NA	
	10:00	7.0	0.0	7.0	0.0	7.0	0	NA	NA	NA	NA	NA	NA	
	10:30	9.0	0.0	9.0	0.0	9.0	0	NA	NA	NA	NA	NA	NA	
	11:30	9.0	0.0	9.0	0.0	9.0	0	NA	NA	NA	NA	NA	NA	
	12:00	8.0	0.0	9.0	0.0	9.0	0	NA	NA	NA	NA	NA	NA	2,001
	12:10	NA	NA	NA	NA	NA	NA	7	0.0	8	0.0	8	0.0	
	13:00	NA	NA	NA	NA	NA	NA	9	0.0	10	0.0	11	0.0	
	13:30	NA	NA	NA	NA	NA	NA	9	0.1	9	0.0	9	0.0	
	14:10	NA	NA	NA	NA	NA	NA	7	0.0	7	0.0	7	0.0	
	15:15	NA	NA	NA	NA	NA	NA	12	0.0	12	0.0	12	0.0	

Notes:

In. Hg = Inches of Mercury Vacuum

VOCs - Volatile Organic Compounds measured using a Photo-ionization detector. VOCs are measured in parts per millions volume

NA - Not Applicable. Extraction not conducted at this well, during this event.

NR - Not recorded

TABLE 6EFR AIR ANALYTICAL RESULTSCONOCOPHILLIPS SITE 255353600 WESTLAKE AVENUE N

SEATTLE, WA

Well	Date	TPH-g (ppmV)	Benzene (ppmV)	Toluene (ppmV)	Ethylbenzene (ppmV)	Total Xylenes (ppmV)
EFR-1	11/15/2007 ^a	<2.36	<0.617	<0.523	<0.454	<0.908
	12/13/2007	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
	1/10/2008	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
	2/7/2008 ^a	<2.36	<0.617	<0.523	<0.454	<0.908
	3/20/2008	<2.36	<0.0308	<0.0261	<0.0227	0.0485
EFR-2	11/15/2007 ^a	<2.36	<0.617	<0.523	<0.454	<0.908
	12/13/2007	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
	1/10/2008	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
	2/7/2008 ^a	<2.36	<0.617	<0.523	<0.454	<0.908
	3/20/2008	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
EFR-3	11/15/2007 ^a	<5.9	<0.617	<0.523	<0.454	<0.908
	12/13/2007	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
	1/10/2008	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
	2/7/2008 ^a	<2.36	<0.617	<0.523	<0.454	<0.908
	3/20/2008	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
MW-48	11/15/2007 ^a	6.02	<0.617	<0.523	<0.454	<0.908
	12/13/2007	2.55	0.179	0.0458	0.144	0.300
	1/10/2008	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
	2/7/2008 ^a	<2.36	<0.617	<0.523	<0.454	<0.908
start	3/6/2008	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
end	3/6/2008	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
	3/20/2008	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
MW-65	11/15/2007 ^a	3.21	<0.617	<0.523	<0.454	<0.908
	12/13/2007	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
	1/10/2008	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
	2/7/2008 ^a	<2.36	<0.617	<0.523	<0.454	<0.908
	3/20/2008	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
MW-88	11/15/2007 ^a	539	<0.617	<0.523	<0.454	<0.908
	12/13/2007	7.98	0.0682	0.0792	0.532	0.596
	1/10/2008	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
	2/7/2008 ^a	<2.36	<0.617	<0.523	<0.454	<0.908
start	3/6/2008	<2.36	<0.0308	<0.0261	<0.0227	<0.0454
end	3/6/2008	2.63	<0.0308	0.0262	0.0308	0.108
	3/20/2008	<2.36	<0.0308	<0.0261	<0.0227	<0.0454

Notes: ppmV = parts per million Volume < - Analytical results were below the reported detection limits NA - Not Applicable NR - Not recorded

TABLE 7EFR WATER ANALYTICAL RESULTSCONOCOPHILLIPS SITE 255353600 WESTLAKE AVENUE NSEATTLE, WA

Well	Date	TPH-g (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)
EFR-1	11/15/2007	<50	<0.500	<0.500	<0.500	<3.00
	12/13/2007	<50	<0.500	<0.500	<0.500	<1.00
	1/10/2008	<50	<0.500	<0.500	<0.500	<1.00
	2/7/2008	<50	<0.500	<0.500	<0.500	<1.00
	3/20/2008	<50	<0.500	<0.500	<0.500	<1.00
EFR-2	11/15/2007	<50	<0.500	<0.500	<0.500	<3.00
	12/13/2007	<50	<0.500	<0.500	<0.500	<1.00
	1/10/2008	<50	<0.500	<0.500	<0.500	<1.00
	2/7/2008	<50	<0.500	<0.500	<0.500	<1.00
	3/20/2008	<50	<0.500	<0.500	<0.500	<1.00
EFR-3	11/15/2007	<50	<0.500	<0.500	<0.500	<3.00
	12/13/2007	<50	<0.500	<0.500	<0.500	<1.00
	1/10/2008	<50	<0.500	<0.500	<0.500	<1.00
	2/7/2008	<50	<0.500	<0.500	<0.500	<1.00
	3/20/2008	<50	<0.500	<0.500	<0.500	<1.00
MW-48	11/15/2007	223	1.13	6.69	<0.500	7.02
	12/13/2007	262	6.02	1.84	6.85	19.0
	1/10/2008	353	3.66	<0.500	10.3	21.3
	2/7/2008	333	0.798	<0.500	9.09	14.6
start	3/6/2008	125	0.652	<0.500	2.46	4.35
end	3/6/2008	64.4	0.516	<0.500	1.47	3.05
	3/20/2008	125	<0.500	<0.500	2.04	3.60
MW-65	11/15/2007	52.0	<0.500	0.640	<0.500	<3.00
	12/13/2007	<50	<0.500	<0.500	<0.500	<1.00
	1/10/2008	<50	<0.500	<0.500	<0.500	<1.00
	2/7/2008	148	0.931	<0.500	2.45	3.91
	3/20/2008	<50	<0.500	<0.500	<0.500	<1.00
MW-88	11/15/2007	2,980	2.00	19.6	<0.500	54.5
	12/13/2007	893	2.05	<0.500	42.9	55.0
	1/10/2008	933	2.64	<0.500	46.4	54.4
	2/7/2008	3750	1.81	<0.500	168	285.0
start	3/6/2008	1840	2.18	<0.500	69.9	120.0
end	3/6/2008	1810	2.23	<0.500	81.9	172.0
	3/20/2008	2910	4.51	0.795	130	239.0
MTCA Method A Cleanup Level for Groundwater		800 ^d	5	1000	700	1000

Notes:

 $(\mu g/L) = micrograms per liter$

< - Analytical results were below the reporting limits .

NA - Not Applicable

NR - Not recorded

ATTACHMENT A

AS/SVE Remediation System Operation and EFR Event Logs ConocoPhillips Company Facility Number 255353 600 Westlake Avenue North Seattle, Washington

SECOR Preve O Apr 2005 Rev. 0 Apr 2005 PROJECTIVE SJSS CLENT CLENT SLECOR PROJECTIVE SSSS CLENT CLENT CLENT SCOP CLENT CLENT CLENT SCOP CLENT CLENT SCOP SCOP CLENT SCOP SCO			Field Report							
FIELD OFFICE: CON DATE PAGE LIENT COP PROJECTION. TASK NO. SUBCONTRACTOR PROJECTION. TASK NO. SUBCONTRACTOR CASTAN Backbar LOCATION Search , WA WEATHER TEMP. (Involve Store and Castant for FER. ERIC STORKGESA: and Castant for FER. ERIC STORKGESA: and Castant for Martin and Vac Tauck and for FER. ERIC STORKGESA: and Castant for Martin and Vac Tauck and for FER. ERIC STORKGESA: and Castant for Martin Bask Relate. - Guyan Removing SUR Blower and Shotlow Storge Blowler. - Good - Redund Annulling SUR and Shotlow Storge Blowler. - GON Annulling SUR and Shotlow Storge Blowler. - GON ANNULL SUR COLOR. 1000 - REDUND RANNING SUR BLOWLER. - GON ANNULL SUR BLOWLER. - GON ANNULL SUR BLOWLER. - GON ANNULL SUR BLOWLER. - GON ANNULL SUR BLOWLER. - CONTINUED REDUCT AND SUBJEWES STORE BLOWLER. - NOTED S PARTY. - Noted 2 draw of haz waste Cabals. Storge Blower - TO INSTOR PRACTY. - Noted 2 draw of haz waste Cabals. Storke W/ Margue of Store. The draws are holding Wase from the dised take store. - Noted 2 draw of haz waste Cabals. Storke W/ Margue of Store. The draws are holding Wase from the dised take store. - Noted 2 draw of haz waste Cabals. Storke W/ Margue of Store. The draws are holding Wase from the dised take store. - Noted 2 draw of haz waste Cabals. Storke W/ Margue of Store. The draws are holding Wase from the dised take store. - Noted 2 draw of haz waste Cabals. Storke W/ Margue of Store. The draws are holding Wase from the dised take store. - Noted 2 draw of haz waste Cabals. Storke W/ Margue of Store. The draws are holding Wase from the dised take store. - Store. The draws are holding Wase from the dised take store. - Store. The draws are holding Wase from the dised take store. - Store. Reviewed BY: - Starf HOURS: - Reviewed BY:	SECOR			5010						
PROJECT NO. TASK NO. SUBCONTRACTOR 5353 LOCATION Search , WA WEATHER (100 y 6 FIELD ACTIVITIES/ISSUES/OBSERVATIONS 745- 01/2016 (100 y 6 Fred Vac Truck and for 145- 01/2016 (100 y 6 for 00 y 7 for 00 y 100 y 6 for 1450 (100 y 6 for 00 y 7 for 00 y 100 y 6 for 00 y 100 y 6 for 1450 (100 y 6 for 00 y 100 y 100 y 6 for 00 y 100 y 10		1			CLIENT	1,0110 / Ipi 2000				
TO: 5253 CUSTOM backlar LOCATION Start WA WEATHER TEMP. (Iwedy ESS'F CHRONOLOGY OF FIELD ACTIVITIES/ISSUES/OBSERVATIONS 745- ONSITE CASEY From CB ONSITE. 8 15- CONDUCTed His Meeting. Martie and Vac Truck andre For 18 15- CONDUCTed His Meeting. Martie and Vac Truck andre For 18 15- CONDUCTed His Meeting. Martie and Vac Truck andre For 18 15- CONDUCTed King. Martie and Vac Truck andre For 18 15- CONDUCTed King. Martie and Vac Truck andre For 18 15- CONDUCTed King. Martie and Vac Truck andre For 18 10- ERIC STONKARSON and Cascade ONSITE For Out! 10 Construct Remaining SUL and Shollow Shorge Clouder. - 900 - SCOTT Olechick of CB ONSITE. - CONSTRUCT From SANA Motor Freight: Nun Shorge Blower has been 103t in Shiftmer. 1000 - 12 Noted Vac Blower and Shollow Sforge Blower to intestor's franker. 1200 - Movid Old Suk Blower and Shollow Sforge Blower to intestor's franker. - Noted 2 draws w/ has waste Glods. Slove W/ Menager of Started Remainer. 1430 - Started Remainer. 1430 - Started Remainer System. Tools Reading. 1430 - Started Remainer. 1430 - Star			PROJECT NO.	LOF2 TASK NO.	SUBCONTRAC	TOR				
Supply, WA WEATHER (1000/y) 55° F CHRONOLOGY OF FIELD ACTIVITIES/ISSUES/OBSERVATIONS 745- ONSITE GASEY From CB ONSITE. 815- ONSITE GASEY From CB ONSITE. 815- ONSITE GASEY From CB ONSITE. 815- Conducted His Meeting. Martin and Vac Truck onster for REP. ERIC STORKGESON and Cascade ONSITE for OUN Box Relain. - Began Removing SUE Blower and Shollow Storge Clowler. - 900 - Scott Oledick of CB ONSITE. - CONTINUED Removing SUS Blower and Shollow Storge Clowler. - 900 - Scott Oledick of CB ONSITE. - CONTINUED Removing SUS and Shollow Storge Blower has been 103t in Shithmat. 1000 - REXELL of New Six Blowler. 1000 - REXELL of New Six Blowler. 1000 - Moved Cold SUR Blower and Shollow Storge Blower to INSECTORS Producty. 1000 - CB AFFSITE. "CONDUCTED Has are holding where fabrics. Storge Blower to INSECTORS Producty. 1420 - Startud Rumadiation segrent. Tools Reading. 1420 - Startud Rumadiation segrent. Tools Reading. 1420 - STARTUA Rumadiation segrent. Tools Reading.	то:		5353							
WEATHER (100) y SS° F CHRONOLOGY OF FIELD ACTIVITIES/ISSUES/OBSERVATIONS 745- ONSITU. GASU Fron CB ONSITU. 815- CONDUCTED HIS MUSTIG. MARTE and VAC TOUCH ONTH FOR 1815- CONDUCTED HIS MUSTIG. MARTE and VAC TOUCH ONTH FOR 1815- CONDUCTED HIS STOKATION. AND STORE CONTR. - BUGAN RUNNING SUE BLOWER and Shollow Storge Blowler. - 900 - SCOTT OUR DICK OF CB ONSITU. - CONTINUED RAMINING SUK and Shollow Storge Blowler. - 900 - SCOTT OUR DICK OF CB ONSITU. - CONTINUED RAMINING SUK and Shollow Storge Blower has been 103t in Shithmer. 1000 - PERSING Coll From SAIN MOTOR FRIGHT: NUN Storge Blower has been 103t in Shithmer. 1100 - INSTALLED BLOWER and Studiow Storge Blower to INVESTORS PROPERTY. - CONDUCTED HIS SITE WEAK. - NOTED 2 draws are bollow for Frieder. 1400 - STATUL RUNDING ARE MORE. 1400 - STATUL RUNDING ARE MORE. 1400 - STATUL RUNDING SUS SITE WEAK. - NOTED 2 draws are bolling WEAR FROM THE DISCLE TONK SUMP. 1400 - STATUL RUNDING SUSCENT TONK READING. 1400 - STATUL RUNDING SUSCENT. 1410 - OFFSITE. SUBCONTRACTOR HOURS: STAFF HOURS: WILLEAGE: REVIEWED BY:				A						
CHRONOLOGY OF FIELD ACTIVITIES/ISSUES/OBSERVATIONS 745- OLSITE. GREAY FROM CB ONSTRE. 815- CONDUCTED HIS MEATING. MATTER and Vac Truck on the for 1810. ERIC STONKALSSA: and Cascade ONSITE For Well BOX Relain. -Bugian Removing SUE Blower and Shollow Storge Blowler. - 900 - Scott Olkedick OF CB ONSTRE. - CONSTRUCT REMOVING SUE Blower and Shollow Storge Blower. - 900 - Scott Olkedick OF CB ONSTRE. - CONSTRUCT REMOVING SUE Blower and Shollow Storge Blower has been 10st in Shipman. 1000 - Mathematical Sub Storge Blower has been 10st in Shipman. 1200 - Moved Old SUE Blowler. 1200 - Moved Old SUE Blower and Shollow Storge Blower to intestors Property. 1200 - CB AFFSite. - Noted 2 draws up hat waste labols. Stoke W/ Margen of conducted H2S site welk. - Noted 2 draws are holding were from the disel takes sume. 1420 - Startud Remediation Storge M. Tools Readings. 1420 - Startud Remediation Storger M. Tools Readings. 1420 - Startud Remediation Storger M. Tools Readings. 1420 - STARTUR REVIEWED BY: MILEAGE: REVIEWED BY:			WEATHER	111						
745- OLSITE. GASEY From CB OLSITE. 815 - Conducted His Meeting. MATTE and Vac Truck and For HER. FRIC STONKORSON and Cascade OLSITE For Well Box Relate. - Bugan Removing SUE Blower and Shollow Storge Blowler. - 900 - Scott Olerdick of CB OLSITE. - CONTINUED Remaining SUK and Shollow Storge Blower has been 10st in ShiPMent. 1000 - VEREND coll From Stild Motor Freight. New storge Blower has been 10st in ShiPMent. 1200 - Mastelled New Sik Blowler. 1200 - Mastelled New Sik Blowler. - Conducted Higs Site Wolk. - Conducted Higs Site wolk. - Noted 2 draws are holding wore from the dised rack some. 1430 - Startul Remained of Starten Tools Reading. 1430 - Startul Remained of Starten Hours: SUBCONTRACTOR HOURS: STAFF HOURS: - WILEAGE: WILEAGE: WILEAGE: NULL Starten BY:						55 1				
815 - Conducted His Mearing. Marta and Vac Truck contro for RETE ERIC STORKARSON, and Cascade answer For Well Box Relater. -Bugan Removing SUR Blower and Shollow Storge Blowler. - 908 - Scott Olechick of CB ONSITE. - CONTINUED Remaining SUR and Storge Blowers. 1000 - REDUCT Coll From SAIA Motor Freight: New Storge Blower has been 10st in Shipman. 1100 - Installed New SUR Blowler. 1200 - Movid Old SUR Blowler and Shollow Storge Blower to intestors Producted. - Conducted Higs Site work. - Conducted Higs Site work. - Conducted Higs Site work. - Conducted Higs Site work. - Noted 2 draws w/ haz waste labols. Stoke 4/1 managen of Store. The drams are holding work from the dised rook storp. 1480 - Started Remadiction system. Tools leading. 1480 - Started Remadiction system. Tools leading. 1480 - Started Remadiction System. - Conducted Remadiction system. Tools leading. 1480 - Started Remadiction system. - Conducted Remadiction system. - Book Blowler Form The dised rook storp. - Conducted Remadiction system. - Construct Remadiction system. - Conducted Remadiction	CHRONOLOGY OF FI	IELD ACTIVITIES/IS	SUES/UBSERVAT	IONS						
815 - Conducted His Mearing. Marta and Vac Truck contro for RETE ERIC STORKARSON, and Cascade answer For Well Box Relater. -Bugan Removing SUR Blower and Shollow Storge Blowler. - 908 - Scott Olechick of CB ONSITE. - CONTINUED Remaining SUR and Storge Blowers. 1000 - REDUCT Coll From SAIA Motor Freight: New Storge Blower has been 10st in Shipman. 1100 - Installed New SUR Blowler. 1200 - Movid Old SUR Blowler and Shollow Storge Blower to intestors Producted. - Conducted Higs Site work. - Conducted Higs Site work. - Conducted Higs Site work. - Conducted Higs Site work. - Noted 2 draws w/ haz waste labols. Stoke 4/1 managen of Store. The drams are holding work from the dised rook storp. 1480 - Started Remadiction system. Tools leading. 1480 - Started Remadiction system. Tools leading. 1480 - Started Remadiction System. - Conducted Remadiction system. Tools leading. 1480 - Started Remadiction system. - Conducted Remadiction system. - Book Blowler Form The dised rook storp. - Conducted Remadiction system. - Construct Remadiction system. - Conducted Remadiction	745- ONSin	M. GASOY F	von CBans	140.						
Box Relain. -Bygan Removing SUR Blower and Shollow Storge Blowler. -900 - Scott Olderdick of CB ONSite. -CONTINUED Removing SUK and Storge Blowlers. 1000 - FREDEND Coll From SAIA Motor prejetr: New Storge Blower has been 10st in Shipment. 1100 - Installed New SUR Blowler. 1200 - Morted Old SUR Blowler. 1200 - Morted Old SUR Blowler. 1200 - CB AFFSite. - Conducted HZS site work. - Norted 2 draws are holding was from the disel rock surv. 1480 - Started Remodiation System. Tools feeding: 1410 - OFFSite. Equipment used: SUBCONTRACTOR HOURS: STAFF HOURS: WILEAGE: WILEAGE: REVIEWED BY:	815 - Conduct	in His Ma	Leting. MAR	to and	Vac Truck	ante for				
Box Relain. -Bygan Removing SUR Blower and Shollow Storge Blowler. -900 - Scott Olderdick of CB ONSite. -CONTINUED Removing SUK and Storge Blowlers. 1000 - FREDEND Coll From SAIA Motor prejetr: New Storge Blower has been 10st in Shipment. 1100 - Installed New SUR Blowler. 1200 - Morted Old SUR Blowler. 1200 - Morted Old SUR Blowler. 1200 - CB AFFSite. - Conducted HZS site work. - Norted 2 draws are holding was from the disel rock surv. 1480 - Started Remodiation System. Tools feeding: 1410 - OFFSite. Equipment used: SUBCONTRACTOR HOURS: STAFF HOURS: WILEAGE: WILEAGE: REVIEWED BY:	ER.	ERIC STO	prkarsor, ae	1 Cascad	e ONSITO F	For WON				
- 900 - Scart Okridick of CB ONSite. - CONTINUED REMAINING SUR ONE Slarge Blauers. 1000 - Received Coll From Stild Motor Freight. New slorge Blower has been 10st in Shipment. 1100 - Enstelled New Six Blower and Shellow Starge Blower to intestors froherry. 1200 - CB AFFSite. - Conducted H2S site wolk. - Noted 2 drams up has waste labols. Sloke up magen of store. The drams are helding was from the disel rate sum. 1420 - Started Remadices suggram. Tools leading. 1420 - STARTER Remadices suggram. Tools leading. 1420 - STARTER Remadices Reviewed BY: WILEAGE: REVIEWED BY:	Box Rela	lr								
- CONTINUED RAMMING SUK ad slorge Blauers. 1000-RECEVED Coll From SAIA Motor Freight: NUD slorge Blower has been 103t in Shipment. 1100 - Enstelled New SUR Blowber. 1200 - Montal Old SUR Blower and Shellow Starge Blower to intestors property. 1200 - CB AFFSite. - Conducted Higs site welk. - Noted 2 draws and has waste labels. Sloke W/ mogen of store. The drans are helding water From the dised tank sump. 1430 - Started Remediction system. Tools readings. 1410 - OFFSite. Equipment USED: WILEAGE: WILEAGE: REVIEWED BY:					Storge Blo	DINCY.				
1100 - INStalled New Sik Blowber. 1200 - Moviel Old Sk Blowen and Shellow Starge Blowen to iNdestors Protecting. 1200 - CB AFFSite; - Conducted H3S Site wolk. - Notel 3 drams up/haz waste labols. Sloke up/ manager of Store. The drams are holding work from the dised rank sume. 1430 - Started Remedietion system. Tools feedings. 1410 - offsite. Subcontractor Hours: Staff Hours: subcontractor Hours: Staff Hours: Mileage:	- 900 - Scot	t Ollerdick a	F CB ONSITE		•					
1100 - INStalled New Sik Blowber. 1200 - Moviel Old Sk Blowen and Shellow Starge Blowen to iNdestors Protecting. 1200 - CB AFFSite; - Conducted H3S Site wolk. - Notel 3 drams up/haz waste labols. Sloke up/ manager of Store. The drams are holding work from the dised rank sume. 1430 - Started Remedietion system. Tools feedings. 1410 - offsite. Subcontractor Hours: Staff Hours: subcontractor Hours: Staff Hours: Mileage:	- CONIM	not Remaining 5	sur ad ston	pc. Blowers	»)					
1100 - INStalled New Sik Blowber. 1200 - Moviel Old Sk Blowen and Shellow Starge Blowen to iNdestors Protecting. 1200 - CB AFFSite; - Conducted H3S Site wolk. - Notel 3 drams up/haz waste labols. Sloke up/ manager of Store. The drams are holding work from the dised rank sume. 1430 - Started Remedietion system. Tools feedings. 1410 - offsite. Subcontractor Hours: Staff Hours: subcontractor Hours: Staff Hours: Mileage:	1000-recived	Call Fram ST	AiA Motor Fr	eight. NL	1D Slorge	Blower				
1100 - INStalled New Sik Blowber. 1200 - Moviel Old Sk Blowen and Shellow Starge Blowen to iNdestors Protecting. 1200 - CB AFFSite; - Conducted H3S Site wolk. - Notel 3 drams up/haz waste labols. Sloke up/ manager of Store. The drams are holding work from the dised rank sume. 1430 - Started Remedietion system. Tools feedings. 1410 - offsite. Subcontractor Hours: Staff Hours: subcontractor Hours: Staff Hours: Mileage:	has been	lost in si	NPMost.							
to intestors frathering. 1300 - CB AFFSite. - CONDUCTED HZS site walk. - Noted 2 drams up has waste labols. 5 loke w/ magon of store. the drams are helding water from the disel tank sump. 1430 - Started Remedietion system. Tools feeding. 1410 - OFFSite. EQUIPMENT USED: SUBCONTRACTOR HOURS: STAFF HOURS: MILEAGE: REVIEWED BY:	1100 - INSta	Stud Naw 5	1 Blauber.							
1200 - CB AFFSITU: - CONDUNCTED H3S SITU Wolk. - Noted 3 draws us/ haz waste labols. Sloke us/ mages of store. The draws are holding water from the disel took sump. 1430 - Started Remedietion system. Tools reading. 1410 - OFFSite. EQUIPMENT USED: SUBCONTRACTOR HOURS: STAFF HOURS: MILEAGE: REVIEWED BY:	1200 - Moved	old sk bl	jowen and i	shallow S	forge Blower					
1200 - CB AFFSITU: - CONDUNCTED H3S SITU Wolk. - Noted 3 draws us/ haz waste labols. Sloke us/ mages of store. The draws are holding water from the disel took sump. 1430 - Started Remedietion system. Tools reading. 1410 - OFFSite. EQUIPMENT USED: SUBCONTRACTOR HOURS: STAFF HOURS: MILEAGE: REVIEWED BY:	to in	lestors further	<u>и</u> .		v					
- Noted 3 drams up har waste labols. Stoke up manager of store. The drams are holding water from the disel took sump. 1430 - Started Remedication system. Took reading. 1410 - DEFSite. EQUIPMENT USED: SUBCONTRACTOR HOURS: STAFF HOURS: MILEAGE: REVIEWED BY:	1300 - CB A	FFsite.	0							
STORE. The drans are holding water from the dissel took sume. 1430 - Started Remadiation system. Tools leading. 1410 - OFFSite. EQUIPMENT USED: SUBCONTRACTOR HOURS: STAFF HOURS: MILEAGE: REVIEWED BY:										
1410 - ٥FFSHt. EQUIPMENT USED: SUBCONTRACTOR HOURS: STAFF HOURS:	- Noted 3	: drame up	has waste	labols. 5	Poke w/ N	en agan of				
1410 - ٥FFSHt. EQUIPMENT USED: SUBCONTRACTOR HOURS: STAFF HOURS:	store.	the drans af	re holding c	Nator Fran	the disel	Tank SUMP.				
1410 - ٥FFSHt. EQUIPMENT USED: SUBCONTRACTOR HOURS: STAFF HOURS:	1430 - Startu	d Remadicition	SUSTEM.	Tools lea	dings.					
MILEAGE: REVIEWED BY:	1410 - OFFSite		σ		//					
MILEAGE: REVIEWED BY:										
MILEAGE: REVIEWED BY:			I		I *					
	EQUIPMENT USED:		SUBCONTRACTO	R HOURS:	STAFF H	HOURS:				
		<u></u>		,		······				
	CC:		PREPARED BY:	. <u> </u>	·					

 $\left(\right)$

()

	Eiald Da	nort		GEO-301
	Field Re	pon		Page 1 of 1
SECOR	··			Rev. 0 Apr 2005
	DATE	PAGE	CLIENT	
	<u>うんの</u> PROJECT NO.	TASK NO.	<u>COP</u> SUBCONTR	40700
	5353	TASK NO.	1	
-0;			Castom b	a clahoe
	Scattle M	A		
·····	WEATHER			TEMP.
	Cloudy			55°F
CHRONOLOGY OF FIELD ACTI	VITIES/ISSUES/OBSERVA	TIONS		
- Pressurg, game B - Pressurg, game B - Need Silencer on - - Move hoses so - - Clean up compound - Eone of F arou	<u>on Storge birts ne</u> sve kodrum They aren't Tripping	ud 6 Macion hyzarchs	(0-30) Vay ald	PS (Back Mount)
Are. and (Jubri Pile in	CITY :	We Tors	Property.
	165 - Started as started.	Sycrem @	15 36 -	Property.
- SUC and decl - terry are Mon - Water is ab	LUBY: Pile in TUS - STATTED AS STATTED Lifeld OPEN (all We served in ve lin	Ils alun 15 @ Mani	1536 - 1 Fall Tai	Property.
- SUE and deel - SUE and deel - terry are Mon - Water is ab - Westlake Man	Lubri Pile in 165 - Started as started. ifold OPen (all we served in ve lin ifold wells 100;	Ils alun 15 @ Mani	1536 - Fall Tar Falcl.	Property.
- System Not - Syle and deal - terry are Mon - Water is ab - Westlake Man - Ko Vac sot to	Lebri Pile in TES - STORTED as storted. ifold OPEN (all we served in ve lin ifold wells 100° 25 " H20	Ils alun 15 @ Mani	1536 - Fall Tar Falcl.	Property.
- Systen Not - Syle and deal - terryave Man - Water is ab - Westlake Man - Ko Unc Sot to - Storge SITTO []	Lebri Pile in TES - STORTED as storted. AFOLD OPEN (all was served in ve lin iFold wells 100; 25 " H20 .5 PSI	Is alon US alon (5@ Mani 10 open.	15 36 - <u> Fall Par</u> Folol. - Sy	property.
- SUSTER NOT - SUE and deel - terryave Man - Water is ob - Westlake Man - Ko Vac sot to - Storge SUTTO []	Lebri Pile in TES - STORTED as storted. AFOLD OPEN (all was served in ve lin iFold wells 100; 25 " H20 .5 PSI	Is alon US alon (5@ Mani 10 open.	15 36 - <u> Fall Par</u> Folol. - Sy	property.
- SUSTER NOT - SUE and deel - terryave Man - Water is ab - Westlake Man - Ko Vac sot to - Storge SITTO [] - Carbon INFluent	Lbri Pile in TUS - STATTED as started. IFOLD OPEN (all we served in ve lin IFOLD WENS 100: 25." H20 .5 PSI Flow(are = 7700	Ils alun 1/s alun 1/s @ Moni 1/o open. F/m @ 115	1536 - 1 Fall Tai Falcl. - Sy	Property. m) Stam Hours = 34/6 1
- Systen Not - Systen Not - Systen Not - Veryave Man - Water is ab - Westlake Man - Ko Vac sot to - Storge Sitto II - Carbon INFluent - INF PiD Veadin	Lbri Pile in TUS - STATTED as started. IFOLD OPEN (all we served in ve lin IFOLD WENS 100: 25." H20 .5 PSI Flow(are = 7700	54000 1/5 2PM 1/5 2PM 1/5 2PM 1/0 = 0.0	1536 - 1 Fall Tai Falcl. - Sy F EFF = 0.	Property. m) Stam Hours = 34/6 1
- SUSTER NOT - SUE and deel - terryave Man - Water is ab - Westlake Man - Ko Vac sot to - Storge SITTO [] - Carbon INFluent	Lbri Pile in TES - STORTED as storted. AFOLD OPEN (all we served in ve lin iFold wells 100: 25 " H20 .5 PSI Flow(are = 7700 g = A.O PPM N	54000 1/5 2PM 1/5 2PM 1/5 2PM 1/0 = 0.0	1536 - 1 Fall Tai Falcl. - Sy F EFF = 0.	Property. m) Stam Hours = 346 1 0

(

 (\bigcirc)

	Field Report							
SECOR					Page 1 of 1 Rev. 0 Apr 2005			
FIELD OFFICE:		DATE	PAGE	CLIENT				
		3/10/08 PROJECT NO.	TASK NO.	COP SUBCONTRAC	TOR			
то:		1396		Charcroek				
			٢٨					
		SLOTTIL V WEATHER	NTI	·	TEMP.			
	,	cloudy			TEMP. 50			
CHRONOLOGY OF FI	ELD ACTIVITIES/IS: ໃຈປີ 5	SUES/OBSERVAT	IONS					
900 - ONS	DAN'S	learcrools.	Conduct	H35 1	MRETING.			
azo - board	in Pulling	PUMP. PI	UC Dipling	at pamp	Brake			
- Pump	Syster is	artivioted	Bir an	external F	loot switch.			
	Pflars Floor							
dash	T TURN ON.				ð			
	read to hire		To inde	t and Re	Palv.			
1030 - Rupair								
Samo-				0				
	rack offsite	-						
1203 ADAL								
1235- (huck	ed up on sy	Stim. SI	10 57.11	anning.				
1235- (,huck total t	AF 5 3.2 M	M / M : D = 0.	O/EFF=	0.0				
	si running				•			
-NANCA	a likely a	-hot.	0	U				
- Took	Pictures of	Blower.						
- TOOK 1200- all off.	site.							
EQUIPMENT USED:		SUBCONTRACTO	OR HOURS:	STAFF I	HOURS:			
MILEAGE:		REVIEWED BY:						
CC:	· · · · · · · · · · · · · · · · · · ·	PREPARED BY:						

(

 \bigcirc .

				GEO-301
	Field F	Report		Page 1 of 1
SECOR				Rev. 0 Apr 20
FIELD OFFICE:		PAGE	CLIENT	
	26 (0) PROJECT NC	8 TASK NO.	SUBCONTRAC	TOR
TO:	5353			
	LOCATION			· · · · · · · · · · · · · · · · · · ·
	SLATTIN, WEATHER	NA		TEMP.
	Glondy			55°F
CHRONOLOGY OF FIELD AC				
- System readings - KO VAC = 15" - AS Pressure - Total Ve Flowrate Total din F Voc's = M'O Voc's = 0.0 Total EFF Voc's = 0.0	9 PS1 = 1700 ft/min 1.0	w/ 3" hose		
			······································	
Air SAMPLES				
TOTAL INF @ 150				
M.'D (2) 150-	•			<u> </u>
TOTALEFF@ 1510	2			
		· · ·		
EQUIPMENT USED:	SUBCONTRA	CTOR HOURS:	STAFF H	IOURS:
MILEAGE:	REVIEWED B	Y:		

1

()

WERE T REMY ROW 40°F MT, ND an-site. (473/396, [REM: 7070/ Somple 1't THU OF MONTON whe only THO THU OF MENTLY - TAKE LL CAP OFF - ADJUSTS WAR, SET - WAL @ 7-12 1/14 Pull - WAL 12 BUEIS, SAMPLE HZO/AIN AFTER (HR, PID READINGS EACH INK, (4 HRS) SHART: 8:35 8 TOP, · WAR 2nd 3 wells ít. (41+ns) Then ow 2nd set wells Before closing 1st 13+(3) = EFR1, EFR2, EFR3 heuid's 2 m/ (3) = MW-84, MW-40, MW-65 It when samplime : - How pump to Aws sepenator ATTACH Here, P - Pull to Fill I Me Disconnect take Hoo SAMPLE FM SAMPLE PORT 12:30 optime wens: MW 88, MW-46, MW-65 CLOSED EFE Wells - CHELLED VALLIN closed nearly. Decon, Brenicoun Eanprism 4:30: TURNED VAC TRULE OFF, 4 🖓 29 men # EFR OTH SUBET NEC. ON SITE @ 1 0400 DAILY HAS LOUR PERFORMADI JEZ WEATHER : PAN TEMp: 400 F Parsonert: M. DAUS M. Torhey. subcontrator: ANNW OFF SITE @ : 500 pm. * Mutting 1/10/000

F QLEAN PID SENSOR.

्रे

۰,

TPH6 BTEX

$ \begin{array}{c} \left[\begin{array}{c} \left[\begin{array}{c} \left[\begin{array}{c} \left[\begin{array}{c} \left[\begin{array}{c} \left[\left[\begin{array}{c} \left[\left[\begin{array}{c} \left[$	· · · · ·		· · ·	1		• •	- •
$ \begin{array}{c} EFR-1 & q:05 & q:i,h \\ FFR-2 & q:i,h \\ FFR-3 & q:i,h \\ FFR-2 &$	will tim	Ne Vac	PID, Carlin	brated @ 9.70	on 1/10/05)	HZC	
$\begin{array}{c} FR-3 \\ FR-3 \\ \hline FR-1 \\ \hline 10:75 \\ FR-1 \\ \hline 10:75 \\ FR-2 \\ \hline 10:75 \\ FR-3 \\ \hline 10:75 \\ $	EFR-1	05 9 ··· Hg	Ref 3 5.3	a log		EFR-26	10.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		os 7 inty	0. oppu		21		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EFR-1 10: EFR-2 10:	25 11 NHY	0.0	3 N		EFR-20	10:29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EFR-1 11 EFR-2 11 EFR-3 1	:30 9 in Hy. 1:30 9 in Hy.	0.0 0.U.		· · ·	iuw38 (
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EFR-2	12:25 dimAr					
Mu - 46 2:20 9 w Hy Mu - 46 2:20 9 w Hy MW - 65 2:20 9 w Hy MW - 46 3:40 9 is Hy MW - 46 3 is Hy MW - 46 3 is Hy MW - 46 3 is	MW-88 MW-66	1:00 9 in 1tg		-		MW-88 MW-46	13:20
MW-46 3:40 9 mtg MW-46 3:40 9 mtg AV 8.5 1/k	hand - 46	2:20 8514 2:20 9,74	14 0-0	,		1 2-11-1 	•
	MW-ed MW-46	z AU gmH	2		o tancs دم	1/2 Full and R 1/253 Gallons	
	MW - 65						
			۱ ب				

	Field Re	ort		GEO-301
	rieu nej			Page 1 of 1
SECOR				Rev. 0 Apr 2005
FIELD OFFICE: OICP REMAND	IDATE		CLIENT CP	
	PROJECT NO.	TASK NO.	SUBCONTRAC	TOR
TO: FIED OFFILE	255353		ELARD	
O PARATIONS = MAINTERNANCE	LOCATION		م مسلم السب	
FIELD SHEET 1/24/08	WEATHER	MERICAL	DEATINE V	TEMP.
	- Curpy /su			38°F
CHRONOLOGY OF FIELD ACTIVITIES				
07:55 MT ON-SITE, CA	NC-IN CHAC-I	NW/ CLO	THE & WEST	MAREINE
09:00 FILL ONT PTW, HASP	SIFE WALM	PPE, I	TELINEATURS	
08:50 CALL-IN TO BOEK2	(110 00000		· · · · · · · · · · · · · · · · · · ·	
9:25 VAC TRUCK ON-SIT	TE LAS GUE	h anaros	s on EU	LOT STREET
1. 25 VIC HOULD DE ST	BIAND BOE	AC FLORE	are ut id	RAINS
\$:30 HASP PTW, WURLE \$:47 RELOCATE TO COMPA	FLAN, FFE, U	AC SMOLE	ind image F	LEWIT, IONU
		ans vee		
9:53/ TAKING JAN SET OF 1	20ADIMAY		<u> </u>	
10:15 CHELK VAC		VE PUDIE IN	S City -JULASTO	25 LOT HAS & DRUNG
10:30 CHECK PHONE MESSAG		. <u> </u>		
10 40 DOAMS TAKES BATHROOM	BROAK, I WATCH	+ RE / D	ECIMENTON-S	-
10:531 TAKE READINGS 11:	00/ CALL TAKIN	m.		
11:20 MORE VAC READINGS, 1	Coul to St ABILITE	, Just	ABAE ZERO	on Tenore
11: RE READINGS / 17	LIA READINGS (IK, CALIBRAI	EPIDX2.	, NOT Much the
13:00 REARANDS / PREP SWITH	ent. / TACK	w/JEN	a wen D	eprit.
13: 45 / UAC TRULL 13 1/4 Full, N	long the m wells	: MW= 66 H	AN: 46, MN:	65 ;
19:20 VAC CONTINUES, P/N TA	ASH. / BUDDLE it	J "INVESTORS	LOT" SAINE LE	vel. / TAKE READINGS
15:45 Q Just OLER 1/2 TANK	HUN / DEA	ames @	15:30.	
	pw 1 icon	40000		
11:10 VAC Cout,				
16:31 FINAL SET OF REAL	Price / Con-	- AD-144	INTO OF SI	25
10. " BREAK DEN / BEOW E	and in the	- LAnney.		
17:00/ CHERE OUT WI CIENCE	1			
EQUIPMENT USED:	SUBCONTRACT	OR HOURS:	STAFI	HOURS:
pED, PUM9, LANGO, METCH		<u> </u>		
MILEAGE:	REVIEWED BY:	, silt	· · · · · · · · · · · · · · · · · · ·	
CC:	PREPARED BY:	M.A. JUNEY	\	

. . .

WestLake Bi-Monthly EFR Event Data Table DATE: リイズ Ioケ

.

-

ſ

Weil ID Time Vaccuum VOC's PID (PPM) [AIR Sample @ Water Sample @ EFR-1 $g/25$ $g/25$ $g/25$ $g/25$ $g/25$ $g/25$ EFR-2 $g/25$ $g/25$ $g/25$ $g/25$ $g/25$ $g/25$ EFR-3 $g/25$ $g/25$ $g/25$ $g/25$ $g/25$ $g/25$ EFR-1 $1/25$ $g/25$ $g/25$ $g/25$ $g/25$ $g/25$ EFR-1 $1/25$ $g/25$ $g/25$ $g/25$ $g/25$ $g/25$ EFR-2 $1/25$ $1/25$ $g/25$ $g/25$ $g/25$ $g/25$ $g/25$ EFR-1 $1/25$ $1/25$ $g/25$ $g/25$ $g/25$ $g/25$ $g/25$ $g/25$ EFR-3 $g/25$		- I	11 z		TAID Commits @	Water Comple @
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Well ID	Time	Vaccuum			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ch ca 1 817		A (2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		╾ ┠ ╍╵╸╸┥┯╸╸			}	<u> </u>
$ \begin{array}{c} & \text{PIR-1} & 10.50 & \text{PIR-1} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-2} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-2} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-2} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-2} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-3} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-3} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-3} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-3} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-3} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-3} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-3} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-3} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-3} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-3} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-3} & 10.50 & \text{PIR-1} & 0.0 \\ \hline \text{EFR-3} & 10.50 & 0.0 \\ \hline EFR$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EFN-0	9.3-1	S. m. n. y	0.0	1 <u> </u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EFR-1	10:50	a intry	0-0	7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.0	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EFR-3			0.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0			
EFF.3 $(1 + 2)$			9 in 11/2		4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- }	· /			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EFR-3	11 37 2	3 ivy	0.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1005110	10 9 110 100 1	0.0 10.0	٦	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			واستعدائه والشائد بالمتكر والقاصي			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EFB-3		of in the		1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h				1/10/08	1/10/08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-88	1:30 1 2:0	U BILLR 1 81	-18 0.00 1 0.0	1	
$\frac{MW-65}{MW-65} = \frac{1}{2!20} = \frac{1}{2!20} = \frac{1}{3!2} = \frac{1}{3!20} = \frac{1}{2!20} =$	MW-46	1:32 000	o antix 3M	118 0.0 000		
$\frac{MW-88}{MW-65} = \frac{7}{2!20} = \frac{9!nH_{C}}{8!nH_{C}} = \frac{0.0}{0.1}$ $\frac{1}{MW-65} = \frac{1}{2!20} = \frac{9!nH_{C}}{8!nH_{C}} = \frac{0.0}{0.1}$ $\frac{1}{MW-65} = \frac{1}{2!20} = \frac{8!nH_{C}}{8!nH_{C}} = \frac{0.0}{0.1}$ $\frac{1}{MW-65} = \frac{1}{2!20} = \frac{9!nH_{C}}{8!nH_{C}} = \frac{0.0}{0.1}$ $\frac{1}{MW-65} = \frac{1}{2!20} = \frac{9!nH_{C}}{8!nH_{C}} = \frac{0.0}{0.0}$ $\frac{1}{MW-65} = \frac{1}{4!20} = \frac{1}{8!nH_{C}} = \frac{1}{8$	MW-65	1:30 2:	W BINHA- B.	N80.0 0-0	N/	
$\frac{MW.46}{MW.65} = \frac{2:30}{7:20} = \frac{3:10}{5:40} = \frac{2.1}{0.2} = \frac{2.1}{0.2}$ $\frac{MW.68}{MW.46} = \frac{3:20}{3:20} = \frac{3:10}{5:40} = \frac{0.0}{0.0}$ $\frac{MW.68}{MW.46} = \frac{4:30}{3:20} = \frac{3:10}{5:40} = \frac{0.0}{0.0}$ $\frac{MW.68}{MW.46} = \frac{4:30}{4:30} = \frac{3:10}{5:40} = \frac{0.0}{0.0}$ $\frac{MW.68}{MW.46} = \frac{4:30}{4:30} = \frac{1/24}{5:40} = \frac{0.0}{0.0}$ $\frac{MW.65}{MW.65} = \frac{1/24}{1.50} = \frac{0.0}{1.2}$ $\frac{6.0}{1.2} = \frac{1}{1.2}$ $\frac{6.0}{1.2} = \frac{1}{1.2} = $		•	_ · · · · ·	•		
$\frac{WW-65}{WW-65} = \frac{2}{2! 20} = \frac{3}{3! 2! 4! 5!} = \frac{0.2}{0.2} = \frac{0.2}{3! 2! 4! 5!} = \frac{0.2}{0.2} = \frac{0.2}{3! 2! 4! 5!} = \frac{0.2}{0.2} = \frac{0.2}{3! 2! 4! 5!} = \frac{0.2}{0.2} = \frac{0.2}{0$			9in Hr		Philippe Il a L	un 1/10-1/2 Full on
$\frac{MW-88}{MW-46} = \frac{5}{2\cdot 3^{\circ}} = \frac{3}{2\cdot 2} = \frac{3}{2\cdot$			· • • • • • • • • • • • • • • • • • • •		1 January Hz C W	en jų ir juli.
$\frac{MW-46}{WW-65} = \frac{2}{3 \cdot 20} = \frac{2}{5} \frac{1}{124} = \frac{2}{5} 1$	MW-65	2:30	55, selt-x	0.2		
$\frac{MW-46}{WW-65} = \frac{2}{3 \cdot 20} = \frac{2}{5} \frac{1}{124} = \frac{2}{5} 1$	MM 99	6.00	0.44-	0.0	٦	
$\frac{MW-65}{3! 20} = \frac{8!(42)}{9!(43)} = \frac{9!(43)}{9!(43)} = 9!(4$					·{	
$\frac{MW-88}{MW-65} = \frac{4:30}{4:30} = \frac{9.1.41}{5.245} = \frac{0.0}{5.245} = \frac{0.0}{0.0}$ $\frac{10.0}{MW-65} = \frac{11.30}{4:30} = \frac{11.41}{5.245} = \frac{0.0}{0.0} = \frac{10.0}{10.0}$ $\frac{10.0}{10.0} = \frac{10.0}{10.0} = \frac{10.0}$					· 1	
$\frac{MW-46}{MW-65} = \frac{1}{4 \cdot 3^{2}} = \frac{1}{3 \cdot 163} = \frac{1}{3 \cdot 163} = \frac{1}{0 \cdot 0} = $			0.000		-4	
$\frac{MW-65}{W-53} = \frac{4}{3} = \frac{3}{3} = \frac{3}{3}$						
$\frac{1}{10000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$		4:30			- .	
$\begin{array}{c} \text{P+D} \text{CALIBONTED ON EITE 7000} \\ \text{K} \\$	MW-65	4:30	Orang	0.0		
$\begin{array}{c} \text{P+D} \text{CALIBONTED ON EITE 7000} \\ \text{K} \\$, , , , , , , , , , , , , , , , , , ,	· · ·		
$\begin{array}{c} \text{P+D} \text{CALIBONTED ON EITE 7000} \\ \text{K} \\$						
$\begin{array}{c} \text{P+D} \text{CALIBONTED ON EITE 7000} \\ \text{K} \\$				8:10 AL		
6471ME VAC: 9:30 > 1:30 1 > 3 1 > 3 1 > 3 1 > 3 1 > 3 1 > 3 1 > 5:30 46 5 1 4 Full Hyo 1 4 Full Hyo	PID G	PHILDATED ON	S. të 1/24 (a C			
133 1570 NAC: 1:30-5:30 46 46 45 145 1/4 Full Ho K GALLON TOTALO 193C X						
133 1570 NAC: 1:30-5:30 46 46 45 145 1/4 Full Ho K GALLON TOTALO 193C X	Strime 1	mc: 9:30 >	1030			
15700 NAC: 1:30-5.30 46 65 :45 1/4 Full Ho				GAPT . 94	TOTAL C	1936
45 45 :45 1/4 Full Hyo		Nº 130-5	.30	ormon		ь і г —
46 65 :45 1/4 Full Ho	1520 V	MC.				
:45 1/4 Full Ho	45-45	1				
:45 1/4 Full Ho	- X			*		
	-					
	11.	1 11 11				
:45 12+ Full						
	:45 12.	t full				
	• 6	•				
1				1		

WESTLAKE EFR	-ray reforce.	
		GEO-301
	Field Report	Page 1 of 1
SECOR	_	Rev. 0 Apr 2005
FIELD OFFICE: OICP	DATE PAGE CLIE	INT
REDUND	217105 1	
	PROJECTINO. Internet	EMONACTOR
то:	1396 3301 6	INERACIO SERVICE
· · · · · · · · · · · · · · · · · · ·	WAST LARGE B MA	CAPN .
	WEATHER	ITEMP.
	CIEAN	38.
CHRONOLOGY OF FIELD ACTIVITIES/	ISSUES/OBSERVATIONS	
CHRONOLOGY OF FIELD ACTIVITIES	PPE. 1 ADAM WAY	EMERACID SERVICES Itere
08:00/BEAN PTW/HAS		LUEAT. DAS
05:05 Called into J	E RUNDS : SET-UP DE	- R Stare clow
08:151 CHECK - IN WI	EQEON FROM WEST WARIN	- +
OS: 201 BEGIN VAC OF	= Puldle in PARKING	607
08:361 CONT. UAC OF	PUDICE IN WILL Lay 1	TRuce (min.
09:60 PICK-up TRASH, Se	T-up Eduipment. For SAM	spaine ero
09:22 J JEN fates WANK	-BT OFF Site w/ city	INSPECTURES
DE: 40 DUTE LADOW ON.	SILE, PERFORMS SAFE	
10:00 USC TRUCK ROTA	RWS. SET-UP & BEGIN U	AC ON WELL MANNEDD
Loigs Aure LANSON OFF->	ite, will REAMN IN PM	
12:50 Switch TO 240	of wells gozen traints	samples LAIR BUARD
1: QU Court		
2:30 / MDANIS ON-SITE!	DELIVER SAMPLES / ALICE O	N SILE & SAFETY RU
······································	/	
* DOCUMENT VAC MAI	WTENE LUB (
* WAJOH WIDSO ON EA	24 JOB.	
+ JMAr Durilia		
+ Sime farcily		
	+ CS & TRUMA OF 11-0 AN	S. Warth alt allist
D & Bucket From Daving site	3 55 G DRUM OF H2D AU	JE ONLY OUT GOING
		STAFF HOURS: 10
EQUIPMENT USED:	SUBCONTRACTOR HOURS:	ISTAFF HOURS.
MILEAGE:	REVIEWED BY:	······································
CC:	PREPARED BY: Mut Tolley.	

THIS INFORMATION FOR AUTHORIZED COMPANY USE ONLY SECOR INTERNATIONAL INCORPORATED ۲, c , c WestLake Bi-Monthly EFR Event Data Table

Weil ID Time Vaccuum / (u, b_{1}) IVO's PID (PPM) AIR Sample @ Water Sample @ EFR-1 1/2 % 1/4 0 0 12:40 112:43* EFR-3 1/2 % 1/4 0 0 12:44 12:42* EFR-3 1/2 % 1/4 0 0 12:44 12:15* EFR-1 1/1 15 1/5 0.40* 0 0 12:44 12:15* EFR-3 1/1 15 1/5 0.40* 0 0 12:44 12:15* EFR-3 1/1 15 1/6 0 0 0 0 0 0 EFR-3 1/1 15 1/6 0<	DATE	: 2/3	7/05				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		Vaccuum / in	(PPI	M) AIR Sample @	Water Sample @
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			18042	46		17:40	11:45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			·· • • • • • • • • • • • • •				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						12:94	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ELU-C		1.0 - 75				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EFR-	1	11:15	15 (in H)	K 0.0		÷ •
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EFR-2	2	4-15	IS AN	<u> </u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EFR-3	3	10-15	14 mite	0,0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			·		19 12		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u>//:35</u>				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				╺╼╊╸╒╺╾╸╴╘╘╘╾╸╸╺╴	.9. (7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			11-22				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EFR-	1	2:35	14 10 19			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 [2:35			· • • •	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EFR-	3	11:35	10 fait	. 0.0	Ain	And
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NANAZ G	00	1150	13 1.14	S 0.6		1:30
$\frac{MW-65}{MW-66} = \frac{1/30}{1/30} = \frac{1/3}{12} + \frac{1/4}{12} = \frac{0.0}{140} = \frac{1/40}{140} = \frac{1/3}{12} = \frac{1/3}{12} + \frac{1/3}{12} = \frac{1/3}{12} + \frac{1/3}{12} = \frac{1/3}{12} + \frac{1/3}{12} = 1/3$	· · · · · · · · · · · · · · · · · · ·		11:50			1:48	17.35
$\frac{1}{12} = \frac{1}{12} $				12 14	$\frac{1}{2}$	1:50	1:35
$\frac{WW-46}{WW-65} = \frac{1}{1:30} = \frac{15}{13} = \frac{16}{13} = \frac{9.6}{0.2}$ $\frac{WW-46}{WW-65} = \frac{1}{1:30} = \frac{15}{13} = \frac{14}{10} = \frac{9.6}{0.2}$ $\frac{WW-46}{WW-65} = \frac{1}{2.52} = \frac{15}{12} = \frac{14}{12} = \frac{9.6}{0.2} = \frac{1}{0.0}$ $\frac{WW-88}{WW-65} = \frac{3:00}{2.00} = \frac{1}{12} = \frac{12}{12} = \frac{9.0}{0.2} = \frac{10.0}{0.2}$ $\frac{WW-88}{WW-65} = \frac{3:00}{2.00} = \frac{13}{12} = \frac{12}{12} = \frac{9.0}{0.2} = \frac{10.0}{0.0}$ $\frac{WW-88}{WW-65} = \frac{3:00}{2.00} = \frac{13}{12} = \frac{12}{12} = \frac{9.0}{0.2} = \frac{10.0}{0.0}$ $\frac{10-12:50}{5} = (262(1-3))$ $\frac{10-12:50}{5} = (262(1-3))$ $\frac{10}{12} = \frac{13}{12} = \frac{0.0}{0}$ $\frac{13}{65} = \frac{13}{12} = \frac{0.0}{0}$ $\frac{13}{65} = \frac{0.0}{12} = \frac{13}{0.0}$ $\frac{13}{12} = \frac{0.0}{0}$ $\frac{13}{65} = \frac{0.0}{12} = \frac{0.0}{0}$ $\frac{13}{13} = \frac{0.0}{0}$ $\frac{13}{13} = \frac{0.0}{0}$ $\frac{13}{13} = \frac{0.0}{0}$ $\frac{13}{13} = \frac{0.0}{0}$ $\frac{10}{13} = \frac{0.0}{0}$ $\frac{10}{10} = \frac{0.0}{0}$			//_/_		0		
$\frac{WW-65}{WW-65} \frac{1}{1:30} \frac{1}$	MW-	88	1:30		77		
$\frac{MW-88}{MW-46} = \frac{12}{2.32} = \frac{15}{12} = \frac{14}{13} = \frac{0.0}{0.0} = \frac{12}{12} = \frac{12}{12} = \frac{14}{12} = \frac{0.0}{100} = \frac{10.0}{100} = \frac{12}{12} = \frac{12}{12} = \frac{12}{12} = \frac{0.0}{100} = \frac{10.0}{0.0} = \frac{10.0}{100} =$							
$\frac{WW-46}{WW-65} = \frac{1.32}{2.32} = \frac{1.3}{1.2} = \frac{1.45}{1.2} = \frac{3.0}{0.2}$ $\frac{WW-88}{WW-65} = \frac{3.00}{2.32} = \frac{1.30}{1.00} = \frac{1.3}{1.2} = \frac{1.2}{0.0} = \frac{0.0}{0.0} = \frac{1.00}{0.0}$ $\frac{WW-66}{WW-65} = \frac{3.00}{2.20} = \frac{1.30}{1.00} = \frac{1.3}{1.2} = \frac{0.0}{0.2} = \frac{1.00}{0.0}$ $\frac{10-12.50}{WW-65} = \frac{1.30}{2.20} = \frac{1.3}{1.2} = \frac{0.0}{0.0}$ $\frac{10-12.50}{MW-65} = \frac{1.30}{1.2} = \frac{1.3}{0.0}$ $\frac{10-12.50}{MW-65} = \frac{1.30}{1.2} = \frac{1.3}{0.0}$ $\frac{10-12.50}{1.2} = \frac{1.30}{1.2} = \frac{1.3}{0.0}$ $\frac{10-12}{1.2} = \frac{1.30}{1.2} = \frac{1.3}{0.0}$ $\frac{10-12}{1.2} = \frac{1.30}{0.0}$	(MW-	65	1:30	13 12	0+2		
$\frac{WW-46}{WW-65} = \frac{1.32}{2.32} = \frac{1.3}{1.2} = \frac{1.45}{1.2} = \frac{3.0}{0.2}$ $\frac{WW-88}{WW-65} = \frac{3.00}{2.32} = \frac{1.00}{1.00} = \frac{1.3}{1.2} = \frac{1.0}{0.0} = \frac{1.00}{0.0} = \frac{1.00}{0.0}$ $\frac{WW-65}{9.20} = \frac{1.00}{1.00} = \frac{1.3}{1.2} = \frac{1.0}{0.0} = \frac{1.00}{0.0} = \frac{1.00}{0.0}$ $\frac{10-12.50}{WW-65} = \frac{1.3}{2.20} = \frac{1.3}{1.2} = \frac{1.3}{0.0} = \frac{1.3}{0.0}$ $\frac{10-12.50}{1.2} = \frac{1.320}{1.00} = \frac{1.3}{1.2} = \frac{0.0}{0.0} = \frac{1.00}{0.0} = 1.00$	MANA/-	88	0'21	15 0	Hx 0.0]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				13 5	16 00		:
$ \frac{MW-46}{MW-65} = \frac{3}{3} \frac{20}{100} \frac{13}{12} = \frac{12}{17} = \frac{0.0}{0.05} + \frac{0.0}{0.05} $ $ \frac{10-12.50}{MW-65} = \frac{130}{100} = \frac{13}{12} = \frac{0.0}{0.05} + \frac{0.0}{0.05} $ $ \frac{10-12.50}{MW-65} = \frac{130}{13} = \frac{13}{0.0} $ $ \frac{10-12.50}{MW-65} = \frac{130}{13} = \frac{0.0}{0.0} $ $ \frac{10-12.50}{65} = \frac{130}{13} = \frac{0.0}{0.0} $ $ \frac{10-12.50}{65} = \frac{130}{13} = \frac{0.0}{0.0} $ $ \frac{10-12.50}{65} = \frac{100}{13} = \frac{0.0}{0.0} $ $ \frac{10-12.50}{65} = \frac{0.0}{13} = \frac{0.0}{0.0} $ $ \frac{10-12.50}{65} = \frac{0.0}{0.0} $ $ \frac{10-12.50}{65} = \frac{0.0}{0.0} $ $ \frac{10-12.50}{0.0} $ $ \frac{10-12.50}{0.$				12 12	125 0.2	1. A.	
$ \frac{MW-46}{MW-65} = \frac{3}{3} \frac{20}{100} \frac{13}{12} = \frac{12}{17} = \frac{0.0}{0.05} + \frac{0.0}{0.05} $ $ \frac{10-12.50}{MW-65} = \frac{130}{100} = \frac{13}{12} = \frac{0.0}{0.05} + \frac{0.0}{0.05} $ $ \frac{10-12.50}{MW-65} = \frac{130}{13} = \frac{13}{0.0} $ $ \frac{10-12.50}{MW-65} = \frac{130}{13} = \frac{0.0}{0.0} $ $ \frac{10-12.50}{65} = \frac{130}{13} = \frac{0.0}{0.0} $ $ \frac{10-12.50}{65} = \frac{130}{13} = \frac{0.0}{0.0} $ $ \frac{10-12.50}{65} = \frac{100}{13} = \frac{0.0}{0.0} $ $ \frac{10-12.50}{65} = \frac{0.0}{13} = \frac{0.0}{0.0} $ $ \frac{10-12.50}{65} = \frac{0.0}{0.0} $ $ \frac{10-12.50}{65} = \frac{0.0}{0.0} $ $ \frac{10-12.50}{0.0} $ $ \frac{10-12.50}{0.$							
$\frac{MW-65}{3.700} = \frac{1}{11.00} = \frac{1}{12} =$							
$\frac{1}{10} - 12.50 (EFR (33))$ $\frac{1}{1250} Switht Mor $							·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	to- 17.5	50 (E)	FV2 (-33)		·		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$MW. 35° \cdot 430$ $- 46 \cdot 43°$ $- 65 \cdot 430$ $- 65 \cdot 430$ $- 12 0.0$ $- 46 500 12 0.0$ $- 46 500 12 0.0$ $- 55 500 13 0.0$				- ¹ 13	0.0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					0 - 0	• · · ·	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	خسر	46	13°	13			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		65	4-3-2	12	0.0	*	
- 46 5200 12 0.0 65 5201 13 0.0						·	
- 46 5200 12 0.0 65 5201 13 0.0	mart	æ አ	5:00	112	Ô. 0		
65 57N 13 0, U				-	0		
MW 00 5:30 13 0.0	- \	65	SIN	13	0,0		
MW 00 5:30 13 0.0	/						
5-30 is view	MW	ተ	S		0		
		vv		13			
41 5°30 13 0-0		416	5-30	13	0,0		
12 (1)			5-70	13	() - D		
65 5:30 13 0.0		65	0·9 V	2	×		

	Field Rep	port		GEO-301 Page 1 of 1 Rev. 0 Apr 2005
SECOR FIELD OFFICE: OICP	DATE Z/ZI/08	PAGE		
REDMOND	PROJECT NO. 5353	TASK NO.		
TO: JOERANDE, KIPEUE MUKENOU.	WESTLAKE \$	Mencen W 1	pm	TEMP. 2
	F06 "1	GAUT "	Suil	
	ES/ISSUES/OBSERVA	WI Joe	Romos,	TRUE LOC. UNDER SITE WALK
ENTRATS CATU	INVESTONS_T'		SET-up US (EFR	1-3) Fon 4 N25
08:15 BELAN EFF	Delipertion	001		1
and Court TARIAL	READINGS.			
08:45 / CHECK VAL, OR.	STAKE BEADINE		ANZE 6	ARGES
09:17 PETURNI JEN	S FHONE CAN	o some AM	e pestin	Property heeled.
10:03 / NOTE & RAMPE	TRUCK age I	T event		
III and Condition WAS	ever	íų		
12.20 1 Switar Well 1:05 1 Tik TO T	Ament PATZIS	E Conce		Cw m
	Denne of C	taken	instos Fa	n KATING Abes
3.15 THOROTE DILLICS	and on-site, meson off-si	te.	TAKE M	MD. YS
3:25 TRAVISDIZ 4:15 true Rose	DIMES / SHI	or uac	DR Ober	
				· · · · · · · · · · · · · · · · · · ·
	Whe Game SUBCON	TRACTOR HC	URS:	STAFF HOURS:
EQUIPMENT USED: PIP, i A.R. PMD, tellior by	000			
MILEAGE:		ED BY:		
	INFORMATION FOR SECOR INTERN	AUTHORIZED (ATIONAL INCO	COMPANY USE	

 $\left(\begin{array}{c} \end{array} \right)$

 \bigcap

(

20-2121 EFM VAC TIME TANA 8:15 PPM 0.0 10mlg VAC MW - 48 1220 TIME Ë 0.0 0-0 12 Kg 10.11 12:20 MW - 96 8:17 EFR I 0.0 0.... 12:20 12 its MW-65 10 mb EFRZ 8:17 0.0 EFRS 12 143 6:17 13:00 11 11/1 0.0 MW- 75 0.0 12 11/2 0.0 16 "Ha 13.00 EFE- (4:50 MW- 96 0.0 0.0 16 "Hz 12:11/2 5:50 EFR-2 3.00 pm-LS <u>0</u>. 6 EFR.3 8:50 16 utig 12mlty 5.0 13:5.1 MW-955 13 in the 60 12.2.12 0.0 13:51 EF12-1 9:15 MW-AL 0.0 13:14 0.0 12n Hj nw-15 12:51 9:15 EFN-2 13:115× 0.0 1:15 EF12 -3 12. utto 0.3 14:15 MW - 66 10 m / 0.0 12:485 9:45 0.2 14:15 EFN-1 MW-AU 0.0 2 n Hz a:45 12.210, 02 19-15 MW-65 EFn-2 9 in the 0-0 9:45 EFR-3 0-0 12.5 4 1500 MW-55 6,6 9 milly 0...0 12.461 10-20 15.00 muiai EPR-1 0-0 0.0 q viltz 15.70 12.1-15 10:30 MW-65 672-2 000 grave 10:32 EFN-3 15:25 12:14 0-0 MW-56 0.0 quin 115 15:25 12.1 Hr 0.0 11,00 OFN-1 mw-ab 0D MW-48 15:25 12:14 0.0 10 . n H 8 11,00 67n.2 11:07 O.U. 11 12-EFN-Z MW-88 0.0 16:10 12:4 Hr 0.0 15 14 12.70 MJ-46 16:10 0,0 exp-1 12.2 Hr 16:10 15 mths 0-0 12.ml 12.00 NW-68 EFR-2 15 inlink V 12:4 EFn 3 Sturter welks 12:10

WestLake Bi-Monthly EFR Event Data Table DATE: 2 121 EFN

 \bigcirc

D,	ATE:	212	1 EF	n								<u> </u>	ater Sample	@
							VOC'	s PID	(PPM)	AIR S	ample	@ V	ater Gampie	<u> </u>
W	/ell ID	Time		Va	ccuum									1
F					15.7	9	0.0	0	-0			<u> </u>		
Ē	FR-1	4		1.20]	<u> </u>	-1	10.0	1	<u>्</u>			+		
ĨĒ	FR-2	- [4]	<u>, 7 14</u>	50 1	└╜揽┦	-1	10-0	·/,	<u>ृः छ</u>					
	FR-3	-6		5:30 Y	LIM HALL		<i>n-</i> 0							
F						9	0.0	1 0	-0]				
t	EFR-1	8.1	·		<u>in R</u>		10.0	-tc	ī.0]				
	EFR-2	4.6		700	<u>n</u> H.	10 1		-10	-9					
	EFR-3	8.5	0 1	5 <i>51</i>	<u></u>					_				
						16	0.0	+	/]				
Ī	EFR-1	9.16			3 <u>m</u> #8	1-15_	- 0.0		/					
	EFR-2	d 14	ን ነኒ	1200	<u>3 mtz -</u>	t-'i\$-								
	EFR-3	19:1	5	1200	<u>3.M.W</u>			_						
			<u>}'</u>		LA V	K.	/ 0.0		0.0/-					
	EFR-1	9.4	5/·	╄╼╼╼╊	10.14	-190-1	0.0		- 0 / 0 -	_				
	EFR-2		\$	┼╌╌┢	7 -1-15 . 9 14 h	-+-/	0.3		12.0					
	EFR-3	9:G	<u>, </u>	<u>↓</u>	1 14.40								1	
				16:00	In. Va	1 12	0.	0	0-0				┼╌╌╌╌	
	MW-8		20	<u>15</u> 00	10ints			0	0-0	╌┝╾			┼────	
	MW-4	<u>6</u> 12	20	15:00	10 10	-f72		0	1-0					
	MW-6	5 12	:20	<u> </u>	10					_				
				100.45	ГП —	1 11		0	0-0					
	MW-8		'0V ≈≠00	15:15	12	-+ר\$	0	0	0.0					
, A	MW-		700	15:25	12	-1ก	10	হা	0.0					
	МŴ-	65 13	:10	15.5					[
			1	11:00	12	117	20	2	0.0					
	MW-		551	16.10				.0	<u>T 0.0</u>					
	MW		3751	1610_	12			ער	0.1	·				
	ŴŴ	65 \	3.51	1610	10				1					
			1.4	<u> </u>	12			-0						
	ΜM		4-15	·	- ;i			j.0		4				
	ΜŴ		4-16 1-16	·- <u> </u>	-112			<u>v – </u>					•	
	ΜŴ	-65	415	<u>p</u>	_				-t					

SECOR

DAILY FIELD LOG

			Page: 1 o Date: ØS/Ø	Photos and a second
Client: CONOCOPHILLIPS Site No: \$353	WESTLAKE	Project No:		396:43
Scope of Work: X Quarter Monitering/Sampling	W/O Number: ##	###SEC00#		
Describe Daily Activities: BIWONTHLY EFR	WO Namber in			
Gauged ANT monitoring wells.	Number of drum	s left on site:		
Purgedmonitoring wells.			<u> </u>	
Sampled monitoring wells.		154	20 SAMPLA	zno
Field Notes:		MW- 58 0	9:30	4:20
Eield Notes: 07:50 DW-DITE CHECK.IN/PPE 07:50 DW-DITE CHECK.IN/PPE 07:50 DW-DITE CHECK.IN/PPE 07:50 DW-DITE CHECK.IN/PPE	h	MW-46		4:10
0 8:30 REVIEW WORK PLAN, SET-M3 PELINEASS	*	1st Ain		
0 5:40 BACK-MY VAC TRUCK INTO CITY INVES 0 9:00 NEAR MISS INCLODENT W/ ANMAN W	tons	MW-80 (MW-49)		
10.00 Consim whe ENGUT C complete samples' For AI				
10:30 TANEKERSINIS		ر		
170 TAKE 12 CADIWES				
11:30 NATE IVMT CHUSH				
11: 06 TAKE ROADINGS				
12:30 10 min break ranger HASP-		•		
2:44 cout Readines.				
3:50 PACO FROM TOST AMERICA ON-SITE	(Picking Sam	plus ren li	ua)	
4:10 MDAUIS, MTOLLEY REVIEW SITE WALK ANDIT	upkesp plaw	on ren	BUATUR S	Toten \$ SI
5.00 cout use 17:00 anothere we B	there some	sine /	Loro	
Arrived on Site: Arrived on Site:		Departed Site		opi
Decontamination Procedures: 3-Stage (Alconox Wash, Tap Wat	ier Rinse, & Disti	illed Water Ri	nse)	
Daily Health and Safety Log Completed?: '	Utility Locations Checl	ked?: 1/3-		
mportant Conversations:		, , ,		
TROOPERC, WAR PLAN, DAN	· .	· .		
mportant Changes in Scope of Work:		<u></u>	<u>.</u>	
Tes				
Veather Conditions: Fold / Gm Subcontracto	ors On Site: TCS	CASCADE 1	EMANU	
SECOR Personnel On Site: August Welch Math Tolly				
Signed:		Da	ate: <u>3/2/2</u>	18
				l

ŀ

EFR Table.xis

Well ID	Time	Vaccuum	VOC's PID (PPM)	نجر (AIR Sample @	¦∕∽≁ Water Sample @	Tim
				16:20		 1
NW-150	4.700					
EFR-3	1-4-00	!3		· · _ · · · · · · · · · · · · · ·		
AL-165	15.00	15	0-0]		
KARN-415	15.00		10-0-			
EFR-3			I]		
MO-46	15-39		0-0]		
EFR-3	15:39					
	<u></u>			J _		
End-to-	16,30	- 15	0-0]		
EFR-3	16.30	_ <u>_</u>		1		
	, ,			J		-
MW-88	4,200	12 12 14	Ous ppm	930 600	9:30	ł
MW-46 MW-65	<u></u>	_12 A. Mg		97.3 10.02	9:45	4
10100-05		<u> </u>				4
<u>MW-88</u>		15 in H1	0-0			
MW-46	- 932	_K_nHz	0-0	4		
10100-00	0.30			.		
MW-88	10:15	15 m H3	0.0 pm]		
MW-46 MW-65	<u></u>	15 m Vie	<i>0</i>			
1111 00		,		-		
<u>MW-88</u>	10,20	15 mHz 15 in Hz	O. Oppin			
MW-46 MW-65	w.5°		U	1		-
	11:20	12 in Hy	0-6 ртр	-		
mutos	<		j ·			
MW-4	\$ 11:20	112in 14	1 c. s ppm	-		
<u></u>	1	12:4 (4)	1 cont por	,		
niv-98	17:20					
	1	112 - 47	o.ope.	•		
vw-48	12-20					
	12-45	15.24	Ø0			
W 58						
N 98	12. 4'3	15,400	0- 5			
6.688	13:20	15 m 60	0-0			
Cresse	6 -	U U				
of: a) Email Erik > Concerning NASP P/U FOR FRI WORK TEN DAILY NOTES/LOC. 07:30 ON-SITE/PRE/HASP/PIW. CHECK-IN W/ JOU 07:50 VAC TRUCK ON SITE / CHECK IN W/ CIERN 05. × HASP. 04:10 SET-up TRUCK IN COMPUMD 08:20 Boo. w was even 0 5:34 TAKE READINGS 9:20 The readines TAKE ROADINGS 10.00 10:2. BEEN SAMPLING EFRI, EFRZ, EFRZ (1:30) FINISH SAMPLIN HOUS AND ON EPRILLIS WEILS. 12-10 Switch Wells TO MW. 88, MW 48, MW. 65. TAKE READING TAKE SAMPLES / READINGS. 1230 (sut. UNT / PAG on site FRAN TEST AMERICA, priking shunger 1 1-00 [t. pp Evert on site walk (BRIEF VEDNIE) 2:00 A REQUETS NEW EMERGENCY CONTACT SIGNS A EMAIL FNFD TO JUE/SEN. W/ CURRENT COMPANY & PHONE NUMBER. 2:20 CONTER JEW YOUTE & FALFORMENT LEFT VOILE MESSAGE 222 CALLER JUE ROUNDS FYIT REMEDIATION ATSTEM STATUS 3:00 CONTINUE TAKING PID, MC READINGS. continue EFR EVENOT (TAKE READINGS / VAC at DRUM SITE WI PUGGer Has. c1:00 |

WestLake Bi-Monthly EFR Event Data Table DATE: ミノっこうで

.

Well ID	Time	Vaccuum 🔐 🕅	VOC's PID (PPM)	AIR Sample @	Water Sample @
				1	10:50
EFR-1	08:30 11:30	129	00-100	10:30	
EFR-2	0530 1132	_129	0.0 6.3	10:32	11:00
EFR-3	08:30 1.30	12 4	0-0 0-6	10: 3A	11:15
	A-20 1200	10 5	0.0 0.3	1	
EFR-1 EFR-2	<u>a-20 1200</u>	AND AN AD MANAGE ME AND MANAGES AN AD AD ADDRESS AND AN		1	
EFR-3	4:22 12 VV		00 000	1	
Ern-J	A:20 11.20	112 1 4		1	
EFR-1	10.00	12	0.0	1	
EFR-2	10.00]	
EFR-3	10.00	- 7	0.0]	
				-	
EFR-1	6/30	9	0.0	1	
EFR-2	10:30	9	0.0	1	
EFR-3	10: 33	<u> </u>	(). Ū	J	
	1			1:05	12:40
MW-88 MW-4 8	12-10	3	6.~	1:07	12:55
MW-65	12:10	7		1:09	17:30
60-99191	116-10	D	<u> </u>		11.7.50
MW-88	1:00		00	1	
MW-4				1	
MW-65	100	-3	6.0		
MW-88	1:30	11	0.0]	
MW-4	1:30	1	6.1		
MW-65	1:34	1	0.0		
				7	
MW-88	2.10		0. 0	•	
MW-4	- 2:10	4	0.0	• •	
MW-65	2:10	17			
SAMPIG	s picked op f	of carever.			
2	3:15	T L.	0.0		
MW-00		، ب اس	0.0		
MW . 48	3:15	12	0.0		
pur GT					

ATTACHMENT B LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORD

ConocoPhillips Company Facility Number 255353 600 Westlake Avenue North SEATTLE, WASHINGTON

April 29, 2008

Matthew Davis Secor-Redmond PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052) Redmond, WA/USA 98073

RE: Westlake & Mercer

Enclosed are the results of analyses for samples received by the laboratory on 11/15/07 15:50. The following list is a summary of the Work Orders contained in this report, generated on 04/29/08 10:38.

If you have any questions concerning this report, please feel free to contact me.

Work Order BQK0215 <u>Project</u> Westlake & Mercer ProjectNumber None

TestAmerica Seattle

americh Sandra Yakamavich, Project Manager

Secor-Redmond

PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052) Redmond, WA/USA 98073 Project Name:NProject Number:NProject Manager:N

Westlake & Mercer
None
Matthew Davis

Report Created: 04/29/08 10:38

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EFR-1	BQK0215-01	Air	11/15/07 12:30	11/15/07 15:50
EFR-2	BQK0215-02	Air	11/15/07 12:35	11/15/07 15:50
EFR-3	BQK0215-03	Air	11/15/07 12:40	11/15/07 15:50
MW-46	BQK0215-04	Air	11/15/07 13:23	11/15/07 15:50
MW-65	BQK0215-05	Air	11/15/07 13:27	11/15/07 15:50
MW-88	BQK0215-06	Air	11/15/07 13:20	11/15/07 15:50

TestAmerica Seattle

Jacamerich

Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	Westlake & Mercer	
PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052)	Project Number:	None	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	04/29/08 10:38

				1.000	TI */			n -		
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQK0215-01 (EFR-1)		Ai	ſ		Sampl	ed: 11/1	15/07 12:30			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	7K16021	11/16/07 12:17	11/17/07 00:18	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"	"	"	
Surrogate(s): 4-BFB (FID)			83.2%		70 - 150 %	"			"	
BQK0215-02 (EFR-2)		Air	r		Sampl	ed: 11/1	15/07 12:35			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	7K16021	11/16/07 12:17	11/17/07 00:48	(
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"	"	"	
Surrogate(s): 4-BFB (FID)			85.2%		70 - 150 %	"			"	
BQK0215-03 (EFR-3)		Air	r		Sampl	ed: 11/1	15/07 12:40			RL
Gasoline Range Hydrocarbons	NWTPH Modified	ND		25.0	mg/m³ Air	2.5x	7K16021	11/16/07 12:17	11/17/07 01:19	
Gasoline Range Hydrocarbons (v/v)		ND		5.90	ppmv	"	"	"	"	
Surrogate(s): 4-BFB (FID)			94.2%		70 - 150 %	1x			"	
BQK0215-04RE1 (MW-46)		Air	r		Sampled: 11/15/07 13:2					I
Gasoline Range Hydrocarbons	NWTPH Modified	25.5		10.0	mg/m³ Air	1x	7K19042	11/19/07 12:11	11/19/07 14:49	
Gasoline Range Hydrocarbons (v/v)	"	6.02		2.36	ppmv	"	"	"	"	
Surrogate(s): 4-BFB (FID)			87.8%		70 - 150 %	"			"	
BQK0215-05RE1 (MW-65)		Air	r		Sampl	ed: 11/1	15/07 13:27			I
Gasoline Range Hydrocarbons	NWTPH Modified	13.6		10.0	mg/m³ Air	1x	7K19042	11/19/07 12:11	11/19/07 15:49	
Gasoline Range Hydrocarbons (v/v)	"	3.21		2.36	ppmv	"		"	"	
Surrogate(s): 4-BFB (FID)			88.0%		70 - 150 %	"			"	
BQK0215-06RE1 (MW-88)		Air	ŗ		Sampl	ed: 11/1	15/07 13:20			н
Gasoline Range Hydrocarbons	NWTPH Modified	2290		100	mg/m³ Air	10x	7K19042	11/19/07 12:11	11/19/07 16:19	
	"								"	

TestAmerica Seattle

Sandra Jacamerich

Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 3 of 11

Secor-Redmond	Project Name:	Westlake & Mercer	
PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052)	Project Number:	None	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	04/29/08 10:38

		Volati	le Organio	Compo TestAm			ethod	l 8260B			
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BQK0215-01 ((EFR-1)		Air			Sample	ed: 11/1	15/07 12:30			
Benzene		EPA 8260B	ND		0.617	ppmv	1x	7K16009	11/16/07 09:26	11/16/07 13:04	
Ethylbenzene			ND		0.454	"	"	"	"		
Methyl tert-butyl eth	er	"	ND		0.482	"	"	"	"	"	
Toluene			ND		0.523	"	"	"	"		
o-Xylene		"	ND		0.454	"	"	"			
m,p-Xylene		"	ND		0.454		"	"	"		
Surrogate(s):	1,2-DCA-d4			114%		69 - 131 %	"			"	
0 ()	Toluene-d8			108%		72 - 131 %	"			"	
	4-BFB			100%		78 - 121 %	"			"	
BQK0215-02 ((EFR-2)		Ai	r		Sampl	ed: 11/1	15/07 12:35			
Benzene		EPA 8260B	ND		0.617	ppmv	1x	7K16009	11/16/07 09:26	11/16/07 13:30	
Ethylbenzene		"	ND		0.454	"	"	"		"	
Methyl tert-butyl eth	er	"	ND		0.482	"	"	"		"	
Toluene		"	ND		0.523	"	"	"		"	
o-Xylene		"	ND		0.454	"	"	"		"	
m,p-Xylene		"	ND		0.454		"	"	"		
Surrogate(s):	1,2-DCA-d4			114%		69 - 131 %	"			"	
	Toluene-d8			104%		72 - 131 %	"			"	
	4-BFB			100%		78 - 121 %	"			"	
BQK0215-03 ((EFR-3)		Ai	r		Sampl	ed: 11/1	15/07 12:40			
Benzene		EPA 8260B	ND		0.617	ppmv	1x	7K16009	11/16/07 09:26	11/16/07 16:20	
Ethylbenzene		"	ND		0.454	"	"	"	"	"	
Methyl tert-butyl eth	er	"	ND		0.482	"	"	"	"	"	
Toluene			ND		0.523	"	"	"	"		
o-Xylene		"	ND		0.454		"	"	"		
m,p-Xylene			ND		0.454		"	"	"		
Surrogate(s):	1,2-DCA-d4			114%		69 - 131 %	"			"	

TestAmerica Seattle

Mamerich Sandra Yakamavich, Project Manager

Toluene-d8

4-BFB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

107%

99.5%

72 - 131 %

78 - 121 %

" "

Secor-Redmond	Project Name:	Westlake & Mercer	
PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052)	Project Number:	None	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	04/29/08 10:38

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
	Methou							Trepareu	mulyzeu	itotes
BQK0215-04 (MW-46)		Ai	r		Sampl	ed: 11/1	5/07 13:23			
Benzene	EPA 8260B	ND		0.617	ppmv	1x	7K16009	11/16/07 09:26	11/16/07 16:45	
Ethylbenzene	"	ND		0.454	"		"		"	
Methyl tert-butyl ether	"	ND		0.482	"		"	"	"	
Foluene	"	ND		0.523	"		"	"	"	
o-Xylene	"	ND		0.454	"		"		"	
n,p-Xylene	"	ND		0.454	"	"			"	
Surrogate(s): 1,2-DCA-d4			118%		69 - 131 %	"			"	
Toluene-d8			106%		72 - 131 %	"			"	
4-BFB			98.2%		78 - 121 %	"			"	
3QK0215-05 (MW-65)		Air			Sampl	ed: 11/1	5/07 13:27			
Benzene	EPA 8260B	ND		0.617	ppmv	1x	7K16009	11/16/07 09:26	11/16/07 17:13	
Ethylbenzene	"	ND		0.454	"		"	"	"	
Methyl tert-butyl ether	"	ND		0.482	"		"	"	"	
Toluene	"	ND		0.523	"		"	"	"	
o-Xylene	"	ND		0.454	"		"		"	
n,p-Xylene	"	ND		0.454		"	"	"		
Surrogate(s): 1,2-DCA-d4			115%		69 - 131 %	"			"	
Toluene-d8			105%		72 - 131 %	"			"	
4-BFB			98.5%		78 - 121 %	"			"	
3QK0215-06 (MW-88)		Air	r		Sample	ed: 11/1	5/07 13:20			
Benzene	EPA 8260B	ND		0.617	ppmv	1x	7K16009	11/16/07 09:26	11/16/07 17:59	
Ethylbenzene	"	ND		0.454	"	"	"			
Aethyl tert-butyl ether	"	ND		0.482	"	"	"			
oluene	"	ND		0.523	"	"	"			
				0.454						
p-Xylene	"	ND		0.454						

TestAmerica Seattle

auamerich rdra Sandra Yakamavich, Project Manager

Toluene-d8

4-BFB

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

106%

97.1%

72 - 131 %

78 - 121 %

"

Secor-Redmond	Project Name:	Westlake & Mercer	
PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052)	Project Number:	None	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	04/29/08 10:38

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 7K16021	Air Pre	paration M	lethod: EPA	5030B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (7K16021-BLK1)								Extra	acted:	11/16/07 12	:17			
Gasoline Range Hydrocarbons	NWTPH	ND		10.0	mg/m³ Air	1x							11/16/07 15:30	
Gasoline Range Hydrocarbons (v/v)	Modified	ND		2.36	ppmv									
Benzene (v/v)	"	ND		0.0308	"									
Toluene (v/v)		ND		0.0261	"									
Ethylbenzene (v/v)		ND		0.0227	"									
Xylenes, total (v/v)		ND		0.0454	"									
Benzene	"	ND		0.100	mg/m³ Air								"	
Toluene		ND		0.100	"									
Ethylbenzene		ND		0.100	"									
Xylenes (total)		ND		0.200	"									
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	81.0% 101%	L	imits: 70-150% 75-125%	"							11/16/07 15:30 "	
LCS (7K16021-BS1)								Extra	acted:	11/16/07 12	:17			
Gasoline Range Hydrocarbons	NWTPH Modified	65.1		10.0	mg/m³ Air	1x		100	65.1%	(50-150)			11/16/07 16:17	
Surrogate(s): 4-BFB (FID)		Recovery:	76.0%	L	imits: 70-150%	"							11/16/07 16:17	
LCS (7K16021-BS2)								Extra	acted:	11/16/07 12	:17			
Benzene	NWTPH Modified	2.30		0.100	mg/m³ Air	1x		2.00	115%	(50-150)			11/16/07 17:17	
Toluene	"	2.28		0.100	"			"	114%				"	
Ethylbenzene		2.12		0.100	"				106%					
Xylenes (total)		6.72		0.200	"			6.00	112%					
Surrogate(s): 4-BFB (PID)		Recovery:	112%	L	imits: 75-125%	"							11/16/07 17:17	
LCS Dup (7K16021-BSD1)								Extra	acted:	11/16/07 12	:17			
Gasoline Range Hydrocarbons	NWTPH Modified	84.2		10.0	mg/m³ Air	1x		100	84.2%	(50-150)	25.69	% (50)	11/16/07 16:47	
Surrogate(s): 4-BFB (FID)		Recovery:	92.0%	L	imits: 70-150%	"							11/16/07 16:47	
LCS Dup (7K16021-BSD2)								Extra	acted:	11/16/07 12	:17			
Benzene	NWTPH Modified	2.14		0.100	mg/m³ Air	1x		2.00	107%	(50-150)	7.219	% (50)	11/16/07 18:17	
Foluene	"	1.97		0.100	"			"	98.7%		14.49	% "		
Ethylbenzene	"	1.95		0.100	"				97.6%		8.179	/o "	"	

TestAmerica Seattle

Sandra Jacamerich

Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Secor-Redmond	Project Name:	Westlake & Mercer
PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052)	Project Number:	None
Redmond, WA/USA 98073	Project Manager:	Matthew Davis

Report Created: 04/29/08 10:38

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 7K16021	Air Pre	paration M	ethod: EPA	5030B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (7K16021-DUP1)				QC Sourc	e: BQK0217-01			Extr	acted:	11/16/07 12	:17			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	ND				10.2%	(30)	11/16/07 20:47	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	ND				10.2%		"	
Benzene (v/v)	"	ND		0.0308	"		ND				NR	"		
Toluene (v/v)	"	ND		0.0261	"	"	ND				3.28%			
Ethylbenzene (v/v)	"	ND		0.0227	"	"	ND				37.2%		"	R
Xylenes, total (v/v)	"	ND		0.0454	"		ND				21.7%			
Benzene	"	ND		0.100	mg/m³ Air		ND				NR			
Toluene	"	ND		0.100	"	"	ND				3.28%			
Ethylbenzene	"	ND		0.100	"	"	ND				37.2%			R
Xylenes (total)	"	ND		0.200	"	"	ND				21.7%	"	"	
Surrogate(s): 4-BFB (FID)		Recovery:	86.6%	I	imits: 70-150%	"							11/16/07 20:47	
4-BFB (PID)			111%		75-125%	"							"	

QC Batch: 7K19042	Air Pro	eparation M	lethod: EPA	A 5030B (1	P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spiko Amt	e % REC	(Limits)	⁰ / _A (RPD (Limits)	Analyzed	Notes
Blank (7K19042-BLK1)								Ext	racted:	11/19/07 12	:11			
Gasoline Range Hydrocarbons (v/v)	NWTPH Modified	ND		2.36	ppmv	1x							11/19/07 13:18	
Gasoline Range Hydrocarbons	"	ND		10.0	mg/m³ Air	"							"	
Surrogate(s): 4-BFB (FID)		Recovery:	90.4%	L	imits: 70-150%	"							11/19/07 13:18	
LCS (7K19042-BS1)								Ext	racted:	11/19/07 12	:11			
Gasoline Range Hydrocarbons	NWTPH Modified	73.8		10.0	mg/m³ Air	1x		100	73.8%	(50-150)			11/19/07 13:49	
Surrogate(s): 4-BFB (FID)		Recovery:	92.3%	L	imits: 70-150%	"							11/19/07 13:49	
LCS Dup (7K19042-BSD1)								Ext	racted:	11/19/07 12	:11			
Gasoline Range Hydrocarbons	NWTPH Modified	77.9		10.0	mg/m³ Air	1x		100	77.9%	(50-150)	5.40%	(50)	11/19/07 14:19	
Surrogate(s): 4-BFB (FID)		Recovery:	92.5%	L	imits: 70-150%	"							11/19/07 14:19	
Duplicate (7K19042-DUP1)				QC Sourc	e: BQK0215-04	RE1		Ext	racted:	11/19/07 12	:11			
Gasoline Range Hydrocarbons	NWTPH Modified	27.5		10.0	mg/m³ Air	1x	25.5				7.43%	(30)	11/19/07 15:19	
Gasoline Range Hydrocarbons (v/v)	"	6.48		2.36	ppmv	"	6.02				7.43%	"	"	
4-BFB (FID)			91.6%		70-150%	"							"	

TestAmerica Seattle

Sandra Gauamerich Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Page 7 of 11

Secor-Redmond

PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052) Redmond, WA/USA 98073

Project Name: Project Number: Project Manager:

Westlake & Mercer None Matthew Davis

Report Created: 04/29/08 10:38

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results TestAmerica Seattle QC Batch: 7K16009 Air Preparation Method: EPA 5030B Spike Source 0/ Analyte Method Result MDL* MRL Units Dil (Limits) Analyzed (Limits) Notes RPD REC Result Amt Blank (7K16009-BLK1) Extracted: 11/16/07 09:26 11/16/07 11:47 EPA 8260B Acetone ND ---8.30 ppmv 1x ------ND 0.617 Benzene ---.. ND 0.307 Bromobenzen --------.. ... ND 0.373 Bromochloromethane -----------------... Bromodichloromethane ND 0.294 ---------Bromoform ND 0.191 .. Bromomethane ND 0.508 -----2-Butanone ND 6.69 -----------ND 0.359 n-Butylbenzene ____ --sec-Butylbenzene ND 0.359 --tert-Butylbenzene ND 0.359 -------------Carbon disulfide ND 0.633 ---------___ ------Carbon tetrachloride ND 0.313 ___ ___ ---Chlorobenzene ND 0.428 ---Chloroethane ND 0 7 4 7 -----------1-Chlorohexane ND 0.482 ---____ 0.404 Chloroform ND ------... Chloromethane ND 2.39 ------------------2-Chlorotoluene ND 0.381 ---------4-Chlorotoluene ND 0.381 ---Dibromochloromethane ND 0.232 ---1.2-Dibromo-3-chloropropane ND 1.16 ____ -----------1,2-Dibromoethane ND 0.257 ---Dibromomethane ND 0.277 ---1,2-Dichlorobenzene ND 0.328 --------------1,3-Dichlorobenzene ND 0.328 ---------------1,4-Dichlorobenzene ND 0.328 ------Dichlorodifluoromethane ND 0.350 0.487 1,1-Dichloroethane ND -------------1,2-Dichloroethane ND ---0 4 8 7 --___ ----------

TestAmerica Seattle

1.1-Dichloroethene

cis-1.2-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2.2-Dichloropropane

1,1-Dichloropropene

cis-1,3-Dichloropropene trans-1,3-Dichloropropene

trans-1.2-Dichloroethene

havamench

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

___ ---

without the written approval of the laboratory.

0.487

0.497

0 4 9 7

0.427

0.427

0.427

0 4 3 5

0.435

0.435

ND

ND

ND

ND

ND

ND

ND

ND

ND

Secor-Redmond

PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052) Redmond, WA/USA 98073

Project Name: Project Number: Project Manager:

Westlake & Mercer None Matthew Davis

Report Created: 04/29/08 10:38

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results TestAmerica Seattle QC Batch: 7K16009 Air Preparation Method: EPA 5030B Source Spike 0/ Analyte Method Result MDL* MRL Units Dil (Limits) (Limits) Analyzed Notes RPD REC Result Amt Blank (7K16009-BLK1) Extracted: 11/16/07 09:26 EPA 8260B 11/16/07 11:47 ND 0.454 Ethylbenzene --ppmv 1x ---_ ------___ Hexachlorobutadiene ND 0.185 " ------.. 0.482 ... Methyl tert-butyl ether ND ----------.. ... ND 4.81 2-Hexanone -----------------.. Isopropylbenzene ND 0.401 ------------.. p-Isopropyltoluene ND 0.359 ... 4-Methyl-2-pentanone ND 4.58 ---------Methylene chloride ND 2.84 ----------------Naphthalene ND 0.376 -------n-Propylbenzene ND 0.401 ---0.463 ---Styrene ND --------1,2,3-Trichlorobenzene ND 0.266 ------------------1,2,4-Trichlorobenzene ND 0.266 ___ ___ ---___ ---1,1,1,2-Tetrachloroethane ND 0.287 ---0 287 1122-Tetrachloroethane ND -----------Tetrachloroethene ND 0.289 ------____ ---ND 0.523 Toluene ---------ND .. 1.1.1-Trichloroethane 0.361 -----------------.. 1.1.2-Trichloroethane ND 0.361 ------------Trichloroethene ND 0.367 ____ ------0.351 .. Trichlorofluoromethane ND --------ND 0.327 1,2,3-Trichloropropane ----------------1,2,4-Trimethylbenzene ND 0.401 ------1,3,5-Trimethylbenzene 0.401 ND Vinyl chloride 0.772 ND --------------o-Xylene ND 0.454 ---------------" .. m,p-Xylene ND 0.454 ---------------------Surrogate(s): 1,2-DCA-d4 Limits: 69-131% " 11/16/07 11:47 Recovery: 100% Toluene-d8 106%

72-131% " 78-121%

4-BFB

TestAmerica Seattle

havament Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

99.5%

Secor-Redmond

PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052) Redmond, WA/USA 98073 Project Name: Project Number: Project Manager:

Westlake & Mercer None Matthew Davis

Report Created: 04/29/08 10:38

Volatile Organic Compounds by EPA Method 8260B - Laboratory Quality Control Results TestAmerica Seattle

OC Batch	n: 7K16009	Air Pre	paration M	lethod: EPA	5030B										
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (7K16009	9-BS1)								Ext	racted:	11/16/07 09	:26			
Benzene		EPA 8260B	2.49		0.617	ppmv	1x		3.09	80.6%	(50-150)			11/16/07 10:54	
Chlorobenzene		"	1.86		0.428	"	"		2.14	86.8%					
1,1-Dichloroethene			2.05		0.487	"			2.44	84.3%	"				
Toluene		"	2.19		0.523	"			2.62	83.6%					
Trichloroethene		"	1.51		0.367	"	"		1.83	82.5%				"	
Surrogate(s):	1,2-DCA-d4		Recovery:	98.6%	Lii	nits: 69-131%	"							11/16/07 10:54	
	Toluene-d8			101%		72-131%	"							"	
	4-BFB			98.7%		78-121%	"							"	
LCS Dup (7Ki	16009-BSD1)								Ext	racted:	11/16/07 09	:26			
Benzene		EPA 8260B	2.76		0.617	ppmv	1x		3.09	89.4%	(50-150)	10.4%	6 (50)	11/16/07 11:20	
Chlorobenzene		"	2.01		0.428	"			2.14	94.0%	"	7.97%	ó "		
1,1-Dichloroethene		"	2.15		0.487	"			2.44	88.4%	"	4.81%	ó "		
Toluene		"	2.43		0.523	"			2.62	92.8%		10.4%	ó "		
Trichloroethene			1.66		0.367	"	"		1.83	90.2%	"	8.98%	ó "	"	
Surrogate(s):	1,2-DCA-d4		Recovery:	97.3%	Lii	nits: 69-131%	"							11/16/07 11:20	
	Toluene-d8			103%		72-131%	"							"	
	4-BFB			99.2%		78-121%	"							"	

TestAmerica Seattle

Sandra Javamerich

Sandra Yakamavich, Project Manager

Secor-Re	dmo	nd	Project Name:	Westlake & Mercer						
PO Box 2	30, 1	2034 - (134th Ct NE Ste 102, zip 98052)	Project Number:	None	Report Created:					
Redmond	WA	/USA 98073	Project Manager:	Matthew Davis	04/29/08 10:38					
		Ν	otes and Definit	ions						
Report S	becif	ic Notes:								
С	-	Calibration Verification recovery was above the met	hod control limit for	this analyte. Analyte not detected, data not impacted.						
Н	-	Sample analysis performed past method-specified ho	olding time.							
H2	-	Initial analysis within holding time. Reanalysis for t	the required dilution	was past holding time.						
R4	-	Due to the low levels of analyte in the sample, the du	uplicate RPD calcula	tion does not provide useful information.						
RL4	-	Reporting limit raised due to insufficient sample vol-	ume.							
Laboratory Reporting Conventions:										
DET	-	Analyte DETECTED at or above the Reporting Limit.	Qualitative Analyse	es only.						
ND	-	Analyte NOT DETECTED at or above the reporting li	mit (MDL or MRL, a	as appropriate).						
NR/NA	-	Not Reported / Not Available								
dry	-	Sample results reported on a Dry Weight Basis. Resul	ts and Reporting Lin	nits have been corrected for Percent Dry Weight.						
wet	-	Sample results and reporting limits reported on a Wet on a Wet Weight Basis.	Weight Basis (as reco	eived). Results with neither 'wet' nor 'dry' are reported						
RPD	-	RELATIVE PERCENT DIFFERENCE (RPDs calculated)	ated using Results, n	ot Percent Recoveries).						
MRL	-	METHOD REPORTING LIMIT. Reporting Level at,	or above, the lowest	level standard of the Calibration Table.						
MDL*	-	· ·		cally derived limit based on 40CFR, Part 136, Appendix B to MRL. Results between the MDL and MRL are reported						
Dil	-	Dilutions are calculated based on deviations from the s found on the analytical raw data.	standard dilution perf	formed for an analysis, and may not represent the dilution						
Reporting Limits	-	Reporting limits (MDLs and MRLs) are adjusted based percent solids, where applicable.	d on variations in san	nple preparation amounts, analytical dilutions and						

- Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Electronic Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Signature Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

allamarich Sandra Yakamavich, Project Manager

Chain of Custody Record

STL Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.stl-inc.com

BQH0215

Client SECOR		Project Ta e				.<												Date 1/15/0-1				Chain of Custody Number 28124					
		Teleph	one N	Vumb	er (Ar	rea Co	de)/Fa	ax Nu	ımbe	r								Lab	Numb	er	/		-†				
Address 12034 134 Th CT. NE City State																	400		(1+	h list i	f			Pag	ge	of	
City State Rool Mand W1		Site Co	ontac	t				ab Co	ontac	Ct										needeo		~					
Project Name and Location (State)	10052	Carrier	·/Way	/bill N	umbe	er —								1	NTR B	1											
Wastlake & Murcar											E											Instruction					
Contract/Purchase Order/Quote No.				I	Vatrix	٢					4- 4X	, ,	25						Conditio	ns of Rece	ιρτ						
Sample I.D. and Location/Description (Containers for each sample may be combined on on	e line) Date	Time	Air	Aqueous	Sed.	Soil	Innrae	H2SO4	HND3		NaOH	ZnAc/	NaOH	rpl	2	2											
EFR-1	11/15/07	1230												\square				_	_						01		
EFR-2		1235	\prod																						02		
EFR-3		1240																							03		
M12-46		1323	Π																						04		
Mw-46 Mw-65		1327	Π																						05		
Mw - 88		1320	Π			_									Π										Оч		
		<u> </u>	1								T																
			\uparrow						1					\uparrow	┢	1											
			+	$\left \right $			-+-					\uparrow	-		+			-					-†				
			+	+		\rightarrow			+		+		+	+	+				-	\uparrow							
			-	+			-+-	+	+	+			+			-				+	-			-+	<u> </u>		
				-				+	+-				_		+-			_					+				
	ssible Hazard Identificati												San	nple i	Disn	nsal	_		l	 By Lat	 `				(A fee may be a		
			⊐ s	kin Irr	ritant	C] Poi	son B	3		Unkr	iown		•	•	o Client		•	hive F	-		^	Nonth		are retained lo		
Turn Around Time Required (business days)								Q)C Re	equire	emen	ts (Sp	pecify,)													
□ ,24 Hours ↓ 48 Hours □ 5 Days □ 1. Relianuished By ∧ ∧] 10 Days 🗌 15 Da	iys 🗌 Ott	her_		. Tir	me		-	Rec	ceive	d By													, [Date	Time	
1. reiniguisined by		11	15	<u> </u> の		5.2	50 White Weaver 11.15.07								155	<u> </u>											
2. Relinquished By		Date			Tir	ne		2	2. Red	ceive	d By														Date	Time	
3. Relinquished By		Date			Tir	me		3	3. Red	ceive	d By														Date	Time	
Comments			١			_					-							<u>.</u>							18	1	Γ
REPORT TO MATThe DISTRIBUTION: WHITE - Stays with the Samples; (CANARY - Returned to C	MDAV lient with Repo	i <u>S</u> prt; I	(CL PINK	Fiel	<mark>≥ (</mark> d Cop	<u>)</u> y	<u>R .</u>	CO	M															[0		0 580 (12/02

January 15, 2008

Matthew Davis Secor-Redmond PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073

RE: 5353 Seattle, Wa

Enclosed are the results of analyses for samples received by the laboratory on 01/10/08 13:54. The following list is a summary of the Work Orders contained in this report, generated on 01/15/08 12:42.

If you have any questions concerning this report, please feel free to contact me.

Work Order BRA0108 Project 5353 Seattle, Wa ProjectNumber 5353

TestAmerica Seattle

of allers

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond	
---------------	--

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073

Project Name:	5353 Seattle, Wa
Project Number:	5353
Project Manager:	Matthew Davis

Report Created: 01/15/08 12:42

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EFR-1	BRA0108-01	Water	01/10/08 10:00	01/10/08 13:54
EFR-2	BRA0108-02	Water	01/10/08 10:15	01/10/08 13:54
EFR-3	BRA0108-03	Water	01/10/08 10:20	01/10/08 13:54
MW-88	BRA0108-04	Water	01/10/08 13:07	01/10/08 13:54
MW-46	BRA0108-05	Water	01/10/08 13:12	01/10/08 13:54
MW-65	BRA0108-06	Water	01/10/08 13:15	01/10/08 13:54
EFR-1	BRA0108-07	Air	01/10/08 10:30	01/10/08 13:54
EFR-2	BRA0108-08	Air	01/10/08 10:29	01/10/08 13:54
EFR-3	BRA0108-09	Air	01/10/08 10:28	01/10/08 13:54
MW-88	BRA0108-10	Air	01/10/08 13:19	01/10/08 13:54
MW-46	BRA0108-11	Air	01/10/08 13:20	01/10/08 13:54
MW-65	BRA0108-12	Air	01/10/08 13:21	01/10/08 13:54

TestAmerica Seattle

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	01/15/08 12:42

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Not
BRA0108-01 (EFR-1)		W	ater		Sampl	ed: 01/1	10/08 10:00			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		50.0	ug/l	1x	8A11027	01/11/08 13:22	01/12/08 05:22	
Benzene	"	ND		0.500	"	"	"		"	
Toluene	"	ND		0.500	"	"	"			
Ethylbenzene	"	ND		0.500	"	"	"	"	"	
Xylenes (total)	"	ND		1.00	"	"	"	"		
Surrogate(s): 4-BFB (FID)			87.5%		58 - 144 %	"			"	
4-BFB (PID)			95.1%		68 - 140 %	"			"	
BRA0108-02 (EFR-2)		W	ater		Sampl	ed: 01/1	10/08 10:15			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		50.0	ug/l	1x	8A11027	01/11/08 13:22	01/12/08 05:55	
Benzene	"	ND		0.500	"	"	"		"	
Toluene	"	ND		0.500	"	"				
Ethylbenzene	"	ND		0.500	"	"	"	"	"	
Xylenes (total)	"	ND		1.00	"	"	"	"		
Surrogate(s): 4-BFB (FID)			88.5%		58 - 144 %	"			"	
4-BFB (PID)			93.2%		68 - 140 %	"			"	
BRA0108-03 (EFR-3)		W	ater		Sampl	ed: 01/1	10/08 10:20			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		50.0	ug/l	1x	8A11027	01/11/08 13:22	01/12/08 06:28	
Benzene	"	ND		0.500	"	"	"			
Toluene	"	ND		0.500	"	"	"	"	"	
Ethylbenzene	"	ND		0.500	"	"	"	"	"	
Xylenes (total)	"	ND		1.00	"	"	"	"		
Surrogate(s): 4-BFB (FID)			87.4%		58 - 144 %	"			"	
4-BFB (PID)			97.0%		68 - 140 %	"			"	
BRA0108-04 (MW-88)		W	ater		Sampl	ed: 01/1	10/08 13:07			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	933		50.0	ug/l	1x	8A11027	01/11/08 13:22	01/12/08 08:39	
Benzene	"	2.64		0.500	"	"	"	"	"	
Toluene	"	ND		0.500	"	"	"	"	"	
Ethylbenzene	"	46.4		0.500	"	"	"		"	
Xylenes (total)	"	54.4		1.00	"	"	"	"		
Surrogate(s): 4-BFB (FID)			98.5%		58 - 144 %	"			"	
(DED (DED)			1020/		(0 1/0 0)	"			"	

4-BFB (PID)

TestAmerica Seattle

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

0

Page 3 of 12

102%

68 - 140 %

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	01/15/08 12:42

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRA0108-05 (MW-46)		Wa	iter		Sampl	ed: 01/1	10/08 13:12			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	353		50.0	ug/l	1x	8A11027	01/11/08 13:22	01/12/08 09:12	
Benzene	"	3.66		0.500	"	"	"	"	"	
Toluene	"	ND		0.500	"	"	"	"	"	
Ethylbenzene	"	10.3		0.500		"	"	"	"	
Xylenes (total)	"	21.3		1.00	"	"	"	"		
Surrogate(s): 4-BFB (FID)			91.2%		58 - 144 %	"			"	
4-BFB (PID)			98.5%		68 - 140 %	"			"	
BRA0108-06 (MW-65)		Wa	iter		Sampl	ed: 01/1	10/08 13:15			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		50.0	ug/l	1x	8A11027	01/11/08 13:22	01/12/08 09:44	
Benzene	"	ND		0.500	"	"	"	"	"	
Toluene	"	ND		0.500	"	"	"	"		
Ethylbenzene	"	ND		0.500		"	"	"		
Xylenes (total)	"	ND		1.00		"	"	"		
Surrogate(s): 4-BFB (FID)			87.4%		58 - 144 %	"			"	
4-BFB (PID)			97.4%		68 - 140 %	"			"	

TestAmerica Seattle

alling C 0

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	01/15/08 12:42

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B

1	l'est/	Ameri	ca S	beatt	le
---	--------	-------	------	-------	----

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRA0108-07 (EFR-1)		Air	Air Sampled: 01/10/08 10:30							
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8A11013	01/11/08 09:18	01/11/08 16:29	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"		"	
Benzene (v/v)	"	ND		0.0308	"	"	"	"	"	
Toluene (v/v)	"	ND		0.0261	"	"	"		"	
Ethylbenzene (v/v)	"	ND		0.0227	"	"	"	"	"	
Xylenes, total (v/v)	"	ND		0.0454	"	"	"	"	"	
Benzene	"	ND		0.100	mg/m³ Air	"	"		"	
Toluene	"	ND		0.100	"	"	"	"	"	
Ethylbenzene	"	ND		0.100	"	"	"		"	
Xylenes (total)	"	ND		0.200	"	"		"	"	
Surrogate(s): 4-BFB (FID)			84.7%		70 - 150 %	"			"	
4-BFB (PID)			97.6%		75 - 125 %	"			"	

BRA0108-08 (EFR-2)		Air			Sampled: 01	/10/08 10:29			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0 mg/	m³ Air 1x	8A11013	01/11/08 09:18	01/11/08 17:29	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36 p	pmv "				
Benzene (v/v)	"	ND		0.0308	" "		"	"	
Toluene (v/v)	"	ND		0.0261					
Ethylbenzene (v/v)	"	ND		0.0227	" "		"	"	
Xylenes, total (v/v)	"	ND		0.0454	" "		"	"	
Benzene	"	ND		0.100 mg/	m ³ Air "				
Toluene	"	ND		0.100	" "		"	"	
Ethylbenzene	"	ND		0.100	" "		"	"	
Xylenes (total)		ND		0.200	" "	"		"	
Surrogate(s): 4-BFB (FID)			83.8%	70	- 150 % "			"	
4-BFB (PID)			98.4%	75	- 125 % "			"	

BRA0108-09 (EFR-3)		Air			Samp	led: 01/1	0/08 10:28			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8A11013	01/11/08 09:18	01/11/08 17:59	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv				"	
Benzene (v/v)	"	ND		0.0308					"	
Toluene (v/v)		ND		0.0261	"					
Ethylbenzene (v/v)		ND		0.0227	"					
Xylenes, total (v/v)		ND		0.0454	"					
Benzene		ND		0.100	mg/m³ Air					
Toluene		ND		0.100	"					
Ethylbenzene		ND		0.100	"					
Xylenes (total)		ND		0.200	"				"	

TestAmerica Seattle

ser ling C 0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	01/15/08 12:42

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRA0108-09 (EFR-3)		Air			Sampl	ed: 01/1	10/08 10:28			
Surrogate(s): 4-BFB (FID)			85.2%		70 - 150 %	lx			01/11/08 17:59	
4-BFB (PID)			99.3%		75 - 125 %	"			"	
BRA0108-10 (MW-88)		Air			Sampl	ed: 01/1	10/08 13:19			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8A11013	01/11/08 09:18	01/11/08 18:29	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"	"	"	
Benzene (v/v)	"	ND		0.0308	"	"	"	"		
Toluene (v/v)	"	ND		0.0261	"	"	"	"		
Ethylbenzene (v/v)	"	ND		0.0227	"	"	"	"	"	
Xylenes, total (v/v)	"	ND		0.0454	"	"	"	"		
Benzene	"	ND		0.100	mg/m³ Air	"	"	"		
Foluene	"	ND		0.100	"	"	"	"		
Ethylbenzene		ND		0.100	"	"	"	"		
Xylenes (total)	"	ND		0.200	"	"	"	"	"	
Surrogate(s): 4-BFB (FID)			85.0%		70 - 150 %	"			"	
4-BFB (PID)			99.3%		75 - 125 %	"			"	
BRA0108-11 (MW-46)		Air			Sampl	ed: 01/1	10/08 13:20			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8A11013	01/11/08 09:18	01/11/08 20:59	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"	"		
Benzene (v/v)	"	ND		0.0308	"	"	"	"		
foluene (v/v)		ND		0.0261	"	"	"	"		
Ethylbenzene (v/v)	"	ND		0.0227	"	"	"		"	
Xylenes, total (v/v)	"	ND		0.0454	"	"	"	"		
Benzene	"	ND		0.100	mg/m³ Air	"	"	"		
Foluene	"	ND		0.100	"	"	"			
Ethylbenzene	"	ND		0.100	"	"	"	"		
Xylenes (total)	"	ND		0.200	"	"	"	"	"	
Surrogate(s): 4-BFB (FID)			81.9%		70 - 150 %	"			"	
4-BFB (PID)			98.0%		75 - 125 %				"	

TestAmerica Seattle

Alling C 0

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	01/15/08 12:42

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRA0108-12 (MW-65)		Air			Sampl	ed: 01/1	0/08 13:21			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8A11013	01/11/08 09:18	01/11/08 21:29	
Gasoline Range Hydrocarbons (v/v)		ND		2.36	ppmv	"	"	"		
Benzene (v/v)	"	ND		0.0308	"	"	"	"	"	
Foluene (v/v)		ND		0.0261	"	"	"	"		
Ethylbenzene (v/v)		ND		0.0227	"	"	"	"		
Xylenes, total (v/v)	"	ND		0.0454	"	"	"		"	
Benzene		ND		0.100	mg/m³ Air	"	"	"		
Foluene	"	ND		0.100	"	"	"		"	
Ethylbenzene	"	ND		0.100	"	"	"	"	"	
Xylenes (total)	"	ND		0.200	"	"		"		
Surrogate(s): 4-BFB (FID)			83.4%		70 - 150 %	"			"	
4-BFB (PID)			97.7%		75 - 125 %	"			"	

TestAmerica Seattle

Carlenn 0

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond PO Box 230, 12034 - 134th Redmond, WA/USA 98073	Ct NE Ste 102			Project Nar Project Nur Project Mar	nber:	5353 S 5353 Matthew	e attle, W 7 Davis	a					Report Create 01/15/08 12:	
Gasoline Hydroca	rbons (Benzene	to Naphth	alene) and	BTEX by TestAmeri			EPA 8()21B -	Labo	oratory	Qualit	y Cont	rol Results	
QC Batch: 8A11027	Water F	Preparation	n Method: 1	EPA 5030B	5 (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	REC	(Limits)	% RPD	(Limits) Analyzed	Note
Blank (8A11027-BLK1)								Ext	racted:	01/11/08 13	3:22			
Gasoline Range Hydrocarbons	NWTPH-Gx/	ND		50.0	ug/l	1x							01/11/08 18:27	
Benzene	8021B "	ND		0.500	"	"								
Toluene	"	ND		0.500		"							"	
Ethylbenzene	"	ND		0.500		"							"	
Xylenes (total)	"	ND		1.00	"									
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	87.1% 96.1%	Lir	nits: 58-14- 68-14								01/11/08 18:27 "	
LCS (8A11027-BS1)								Ext	racted:	01/11/08 13	3:22			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	1050		50.0	ug/l	1x		1000	105%	(80-120)			01/11/08 19:00	
Surrogate(s): 4-BFB (FID)		Recovery:	94.8%	Lii	nits: 58-14-	4% "							01/11/08 19:00	
LCS (8A11027-BS2)								Ext	racted:	01/11/08 13	3:22			
Benzene	NWTPH-Gx/ 8021B	27.9		0.500	ug/l	1x		30.0	92.8%	(80-120)			01/11/08 19:33	
Toluene	8021B "	29.0		0.500	"			"	96.7%					
Ethylbenzene	"	28.4		0.500	"			"	94.8%					
Xylenes (total)	"	86.4		1.00	"			90.0	96.0%					
Surrogate(s): 4-BFB (PID)		Recovery:	96.4%	Lii	nits: 68-140)% "							01/11/08 19:33	
Duplicate (8A11027-DUP1)				QC Source	BRA0094	1-01		Ext	racted:	01/11/08 13	3:22			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	ND		50.0	ug/l	1x	ND				NR	(25)	01/11/08 20:39	
Benzene	"	ND		0.500	"		ND				NR	"		
Toluene	"	2.51		0.500	"	"	2.61				4.14%	, "	"	
Ethylbenzene	"	ND		0.500			ND				NR	"		
Xylenes (total)	"	ND		1.00	"		ND				NR	"		
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	87.4% 97.7%	Lir	nits: 58-14- 68-14								01/11/08 20:39 "	
Duplicate (8A11027-DUP2)				QC Source:	BRA0094	-02		Ext	racted:	01/11/08 13	3:22			
Gasoline Range Hydrocarbons	NWTPH-Gx/	81.1		50.0	ug/l	1x	84.1				3.61%	6 (25)	01/11/08 21:44	
Benzene	8021B "	0.711		0.500		"	0.598				17.3%	, "		
Toluene	"	3.34		0.500			3.48				4.04%	, "	"	
Ethylbenzene	"	ND		0.500	"	"	ND				NR	"		
Xylenes (total)	"	ND		1.00	"		ND				NR	"	"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	87.8% 95.1%	Lir	nits: 58-14- 68-14								01/11/08 21:44	

TestAmerica Seattle

Carlling

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	01/15/08 12:42

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 8A11027	Water F	reparation	Method: E	CPA 5030B	(P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike (8A11027-MS1)				QC Source:	BRA0094-01			Ext	racted:	01/11/08 13	:22			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	1140		50.0	ug/l	1x	ND	1000	114%	(75-131)			01/11/08 22:49	
Surrogate(s): 4-BFB (FID)		Recovery:	97.0%	Lin	nits: 58-144%	"							01/11/08 22:49	
Matrix Spike (8A11027-MS2)				QC Source:	BRA0094-02			Ext	racted:	01/11/08 13	:22			
Benzene	NWTPH-Gx/ 8021B	30.5		0.500	ug/l	1x	0.598	30.0	99.8%	(46-130)			01/11/08 23:22	
Toluene		35.0		0.500	"	"	3.48	"	105%	(60-124)			"	
Ethylbenzene	"	31.5		0.500	"	"	ND	"	105%	(56-141)				
Xylenes (total)	"	93.8		1.00	"	"	ND	90.0	104%	(66-132)			"	
Surrogate(s): 4-BFB (PID)		Recovery:	97.4%	Lin	nits: 68-140%	"							01/11/08 23:22	

TestAmerica Seattle

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	01/15/08 12:42

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 8A11013	Air Pre	paration M	ethod: EPA	5030B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (8A11013-BLK1)								Extr	acted:	01/11/08 09	:18			
Gasoline Range Hydrocarbons (v/v)	NWTPH	ND		2.36	ppmv	1x						(01/11/08 11:07	
Gasoline Range Hydrocarbons	Modified	ND		10.0	mg/m³ Air									
Benzene (v/v)		ND		0.0308	ppmv								"	
Toluene (v/v)		ND		0.0261	"									
Ethylbenzene (v/v)		ND		0.0227	"								"	
Xylenes, total (v/v)		ND		0.0454	"									
Benzene	"	ND		0.100	mg/m³ Air									
Toluene		ND		0.100	"								"	
Ethylbenzene		ND		0.100	"									
Xylenes (total)	"	ND		0.200	"								"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	85.7% 93.4%	L	imits: 70-150% 75-125%	"							<i>01/11/08 11:07</i> "	
LCS (8A11013-BS1)								Extr	acted:	01/11/08 09	:18			
Gasoline Range Hydrocarbons	NWTPH Modified	103		10.0	mg/m³ Air	1x		100	103%	(50-150)			01/11/08 13:01	
Surrogate(s): 4-BFB (FID)		Recovery:	77.1%	L	imits: 70-150%	"							01/11/08 13:01	
LCS (8A11013-BS2)								Extr	acted:	01/11/08 09	:18			
Benzene	NWTPH Modified	2.86		0.100	mg/m³ Air	1x		2.00	143%	(50-150)		(01/11/08 15:29	
Toluene	"	2.74		0.100	"			"	137%					
Ethylbenzene		2.97		0.100	"			"	148%				"	
Xylenes (total)		8.39		0.200	"			6.00	140%	"				
Surrogate(s): 4-BFB (PID)		Recovery:	100%	L	imits: 75-125%	"							01/11/08 15:29	
LCS Dup (8A11013-BSD1)								Extr	acted:	01/11/08 09	:18			
Gasoline Range Hydrocarbons	NWTPH Modified	99.8		10.0	mg/m³ Air	1x		100	99.8%	(50-150)	3.36%	% (50)	01/11/08 13:31	
Surrogate(s): 4-BFB (FID)		Recovery:	83.4%	L	imits: 70-150%	"							01/11/08 13:31	
LCS Dup (8A11013-BSD2)								Extr	acted:	01/11/08 09	:18			
Benzene	NWTPH Modified	2.58		0.100	mg/m³ Air	1x		2.00	129%	(50-150)	10.1%	6 (50)	01/11/08 15:59	
Toluene	"	2.45		0.100	"			"	122%	"	11.3%	6 "	"	
		2.52		0.100	"			"	12(0/		15.9%	/ "		
Ethylbenzene	"	2.53		0.100					126%		15.97	0		

TestAmerica Seattle

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	01/15/08 12:42

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 8A11013	Air Pre	paration M	lethod: EPA	5030B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (8A11013-DUP1)				QC Sourc	e: BRA0108-07			Extra	acted:	01/11/08 09	9:18			
Gasoline Range Hydrocarbons (v/v)	NWTPH Modified	ND		2.36	ppmv	1x	ND				NR	(30)	01/11/08 16:59	
Gasoline Range Hydrocarbons		ND		10.0	mg/m³ Air	"	ND				NR	"		
Benzene (v/v)	"	ND		0.0308	ppmv		ND				NR	"		
Toluene (v/v)		ND		0.0261	"		ND				81.6%	. "		R
Ethylbenzene (v/v)		ND		0.0227	"		ND				125%	"		R
Xylenes, total (v/v)		ND		0.0454	"		ND				115%	"		R
Benzene		ND		0.100	mg/m³ Air		ND				NR	"		
Toluene	"	ND		0.100	"		ND				81.6%	. "		R
Ethylbenzene	"	ND		0.100	"		ND				125%	"		R
Xylenes (total)		ND		0.200	"	"	ND				115%	"	"	R
Surrogate(s): 4-BFB (FID)		Recovery:	84.2%	I	imits: 70-150%	"							01/11/08 16:59	
4-BFB (PID)			97.8%		75-125%	"							"	

TestAmerica Seattle

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	01/15/08 12:42

Notes and Definitions

Report Specific Notes:

DET

R4 Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.

Laboratory Reporting Conventions:

- Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). NR/NA _ Not Reported / Not Available Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. dry Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet on a Wet Weight Basis. RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results. Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution
- found on the analytical raw data.
- Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits percent solids, where applicable.
- Electronic Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Signature Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

en Clima

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

Page 12 of 12

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Chain of Custody Record

Temperature on Receipt ____

Drinking Water? Yes D No D

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (1007) Client			Project	t Mana			nd	<									Da		1	<u>a</u> Q		Cha	ain of Custo	dy Nun 18		
Address	~		Teleph	one N	umbei		a Cod	 le)/Fax	c Nur	mber	<u> </u>						Lai) (ber	38		+	00	10	51	<u> </u>
12034 1341 CT. M.	JE																					Pa	igel		of	<u> </u>
Address <u>Address</u> <u>Address</u> <u>City</u> <u>Red Mond</u> Project Name and Location (State) <u>Address</u> <u>Address</u> <u>CT. N.</u> <u>State</u> <u>Zip</u> <u>WA</u> <u>9</u>	Code	52	Site Co	ontact				Lab	Cont	tact							nalysi: pre spi									
Project Name and Location (State)	<u> </u>		Carrier	/Wayl	oill Nui	mber		1						1												
5353 SLAPIL WX Contract/Purchase Order/Quote No.	7			1																					structio	
					Ма	trix				Conta Prese					ર્ો								Cona	uons	of Rec	ырі
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Da	te	Time	Air	Aqueous	Sed.		Unpres.	H2SO4	HN03	ΗCI	NaOH ZnAc/	NaOH	TPLA	B tcs								BRA	101	08	
EFR-1	1/10	108	1000											1											(21
EFR-2		-	1015																						(02
EFR-3	-		1020												$\ $											03
MW-88			1307																							04
MW = 46			1312		Π																			-		oś
Mus- 65			1315		T																					<u>06</u>
$\frac{N\omega-6S}{EFR-1}$ $\frac{FFR-2}{EFR-2}$			1030																						(07
EFR2			10 29	П																						08
EFR-3			028																						ť	29
MW-88			1319												Τ										_	0
Mu 46			320	1																						. (
MW-65		7	321											\square												12
Possible Hazard Identification	<u> </u>			1	mple	•					I				· · · ·		<u> </u>		(A	fee ma	ay be as	sesse	d if sample:	s are re	atained	
	Deiso	n B	Unknow	۱L	Retu	ım To	Clien	t L			-	y Lab		Archi	ive Fo	or	^	lonths	loi	nger tha	an 1 mo	nth)				
Turn Around Time Required	ave 🗍	21 Dave	R ou	har <	ta	da	M	/	QU	Hequ	lirem	enis (a	Speciny	/)												
1. Relinquisted By	ay3 []	21 Days	Date	101		Time		<u> </u>	1. B	eceiv	ved B	v										, <u> </u>	Date	<u>,</u>	Time	
Mande			1/10	10	8	13	5 \$	4	7	K	Ír	Í.	h										11010	8	135	4
2. Rélinquished By			Date			Time			2. R	eceiv	/ed B	ly .	~~~~										Date		Time	-
3. Relinquished By			Date			Time			3. R	eceiv	/ed B	ly											Date		Time	
Comments										-												 }	0.4°	 ` c	<u>م</u> ادى	

February 14, 2008

Matthew Davis Secor-Redmond PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073

RE: 5353 Seattle, Wa

Enclosed are the results of analyses for samples received by the laboratory on 02/07/08 15:20. The following list is a summary of the Work Orders contained in this report, generated on 02/14/08 16:46.

If you have any questions concerning this report, please feel free to contact me.

Work Order BRB0084 Project 5353 Seattle, Wa ProjectNumber 5353

TestAmerica Seattle

Kamevich Sandra Yakamavich, Project Manager

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073 Project Name: Project Number: Project Manager:

5353 Matthew Davis

5353 Seattle, Wa

Report Created: 02/14/08 16:46

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EFR-1	BRB0084-01	Water	02/07/08 11:45	02/07/08 15:20
EFR-2	BRB0084-02	Water	02/07/08 12:00	02/07/08 15:20
EFR- 3	BRB0084-03	Water	02/07/08 12:15	02/07/08 15:20
MW- 46	BRB0084-04	Water	02/07/08 13:33	02/07/08 15:20
MW- 65	BRB0084-05	Water	02/07/08 13:35	02/07/08 15:20
MW- 88	BRB0084-06	Water	02/07/08 13:30	02/07/08 15:20

TestAmerica Seattle

havamerich

Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	02/14/08 16:46

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRB0084-01 (EFR- 1)		Wa	nter		Sample	ed: 02/(07/08 11:45			
Benzene	NWTPH-Gx/802 1B	ND		0.500	ug/l	1x	8B08013	02/08/08 10:38	02/08/08 15:32	
Toluene	"	ND		0.500	"	"	"	"	"	
Ethylbenzene	"	ND		0.500	"	"	"		"	
Xylenes (total)	"	ND		1.00	"	"		"	"	
Surrogate(s): 4-BFB (FID)			85.8%		58 - 144 %	"			"	
4-BFB (PID)			106%		68 - 140 %	"			"	
BRB0084-01RE1 (EFR- 1)		Wa	nter		Sample	ed: 02/(07/08 11:45			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		50.0	ug/l	lx	8B11045	02/11/08 16:31	02/12/08 00:06	
Surrogate(s): 4-BFB (FID)			80.8%		58 - 144 %	"			"	
BRB0084-02 (EFR- 2)		Wa	nter		Sample	ed: 02/(07/08 12:00			
Benzene	NWTPH-Gx/802 1B	ND		0.500	ug/l	1x	8B08013	02/08/08 10:38	02/08/08 16:38	
Toluene	"	ND		0.500		"	"	"	"	
Ethylbenzene	"	ND		0.500	"	"	"		"	
Xylenes (total)	"	ND		1.00	"	"	"	"	"	
Surrogate(s): 4-BFB (FID)			91.4%		58 - 144 %	"			"	
4-BFB (PID)			105%		68 - 140 %	"			"	
BRB0084-02RE1 (EFR- 2)		Wa	ater		Sample	ed: 02/(07/08 12:00			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		50.0	ug/l	1x	8B11045	02/11/08 16:31	02/12/08 00:39	
Surrogate(s): 4-BFB (FID)			74.2%		58 - 144 %	"			"	
BRB0084-03 (EFR- 3)		Wa	ater		Sample	ed: 02/(07/08 12:15			
Benzene	NWTPH-Gx/802 1B	ND		0.500	ug/l	1x	8B08013	02/08/08 10:38	02/09/08 06:19	
Toluene	"	ND		0.500	"	"	"	"	"	
Ethylbenzene	"	ND		0.500	"	"	"		"	
Xylenes (total)	"	ND		1.00		"			"	
Surrogate(s): 4-BFB (PID)			105%		68 - 140 %	"			"	

TestAmerica Seattle

Warmerich

Secor-Redmond			Project Na	me:	5353 Sea	ttle, W	'a				
PO Box 230, 12034 - 134th Ct 1	NE Ste 102		Project Nu	mber:	5353				Report	Created:	
Redmond, WA/USA 98073			Project Ma	anager:	Matthew I	Davis			02/14/08 16:		
Gasoline	Hydrocarbons (B	Senzene to	Naphtha TestAm	,		X by]	NWTPH-	G and EPA	8021B		
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes	
BRB0084-03RE1 (EFR- 3)		W	ater		Sampl	ed: 02/0	07/08 12:15				
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	ND		50.0	ug/l	1x	8B11045	02/11/08 16:31	02/12/08 01:12		
Surrogate(s): 4-BFB (FID)			77.8%		58 - 144 %	"			"		
BRB0084-04 (MW- 46)		W	ater		Sampl	ed: 02/0	07/08 13:33				
Benzene	NWTPH-Gx/802 1B	0.798		0.500	ug/l	1x	8B08013	02/08/08 10:38	02/09/08 00:18		
Toluene	"	ND		0.500	"	"	"		"		
Ethylbenzene	"	9.09		0.500	"	"	"	"	"		
Xylenes (total)	"	14.6		1.00	"	"	"	"	"		
Surrogate(s): 4-BFB (PID)			108%		68 - 140 %	"			"		
BRB0084-04RE1 (MW- 46)		W	ater		Sampl	ed: 02/0	07/08 13:33				
Gasoline Range Hydrocarbons	NWTPH-Gx/802	333		50.0	ug/l	1x	8B11045	02/11/08 16:31	02/12/08 01:44		

1B" " Surrogate(s): 4-BFB (FID) 84.5% 58 - 144 %

BRB0084-05 (MW- 65)		W	ater		Sampl	ed: 02/0	07/08 13:35		
Benzene	NWTPH-Gx/802 1B	0.931		0.500	ug/l	1x	8B08013	02/08/08 10:38	02/08/08 23:45
Toluene	"	ND		0.500	"	"	"	"	
Ethylbenzene	"	2.45		0.500	"	"			
Xylenes (total)	"	3.91		1.00		"	"	"	"
Surrogate(s): 4-BFB (PID)			107%		68 - 140 %	"			"

Surrogate(s): 4-BFB (PID)

BRB0084-05RE1 (MW- 65)		Wate	er		Sampl	ed: 02/(07/08 13:35			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	148		50.0	ug/l	1x	8B11045	02/11/08 16:31	02/12/08 02:17	
Surrogate(s): 4-BFB (FID)		8	80.7%		58 - 144 %	"			"	
BDB0084.06 (MW 88)		Wate	r		Samul	ed• 02/(7/08 13.30			

BKB0084-00 (M	Water Samplet. 02/07/00 15:50										
Gasoline Range Hydrocarbons		NWTPH-Gx/802 1B	3750		50.0	ug/l	1x	8B08013	02/08/08 10:38	02/09/08 00:51	B1
Benzene		"	1.81		0.500	"	"	"	"	"	
Toluene		"	ND		0.500	"	"	"	"	"	
Surrogate(s): 4-	BFB (FID)			166%		58 - 144 %	"			"	ZX
4-	BFB (PID)			146%		68 - 140 %	"			"	ZX

TestAmerica Seattle

avaminich

Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	02/14/08 16:46

Gasoline	Hydrocarbons (B	Benzene to	Naphtha TestAm			X by I	NWTPH-	G and EPA	A 8021B	
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRB0084-06RE1 (MW- 88)		Wa	iter		Samp	led: 02/(07/08 13:30			
Ethylbenzene	NWTPH-Gx/802 1B	168		2.50	ug/l	5x	8B11045	02/11/08 16:31	02/12/08 06:41	
Xylenes (total)	"	285		5.00	"			"	"	
Surrogate(s): 4-BFB (PID)			104%		68 - 140 %	lx			"	

TestAmerica Seattle

Lauramerich andra

Sandra Yakamavich, Project Manager

Secor-Redmond PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073				Project Nan Project Nun Project Mar	5353 Seattle, Wa 5353 Matthew Davis							Report Created: 02/14/08 16:46		
Gasoline Hydrocart	oons (Benzene	to Naphth	alene) and	BTEX by TestAmeri		G and	I EPA 80)21B - 1	Labo	ratory (Qualit	y Cont	rol Results	
QC Batch: 8B08013	Water I	Preparation	Method:	EPA 5030B	(P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Not
Blank (8B08013-BLK1)								Extra	icted:	02/08/08 10):38			
Gasoline Range Hydrocarbons	NWTPH-Gx/	61.5		50.0	ug/l	1x							02/08/08 14:27	
Benzene	8021B "	ND		0.500		"								
Toluene		ND		0.500		"							"	
Ethylbenzene		ND		0.500										
Xylenes (total)		ND		1.00	"	"							"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	85.4% 109%	Lin	nits: 58-144% 68-140%	"							02/08/08 14:27	
LCS (8B08013-BS1)								Extra	octed:	02/08/08 10):38			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	867		50.0	ug/l	1x			86.7%	(80-120)			02/08/08 13:54	
Surrogate(s): 4-BFB (FID)	00210	Recovery:	90.1%	Lin	nits: 58-144%	"							02/08/08 13:54	
LCS (8B08013-BS2)								Extra	cted:	02/08/08 10):38			
Benzene	NWTPH-Gx/ 8021B	26.6		0.500	ug/l	1x			88.7%	(80-120)			02/08/08 15:00	
Foluene	"	27.6		0.500	"	"		"	92.0%					
Ethylbenzene	"	27.5		0.500	"	"		"	91.6%					
Kylenes (total)		85.8		1.00	"	"		90.0	95.3%				"	
Surrogate(s): 4-BFB (PID)		Recovery:	109%	Lin	nits: 68-140%	"							02/08/08 15:00	
Duplicate (8B08013-DUP1)				QC Source:	BRB0084-0	l		Extra	acted:	02/08/08 10):38			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	51.9		50.0	ug/l	1x	52.7				1.57%	ú (25)	02/08/08 16:05	
Benzene	"	ND		0.500	"	"	ND				NR	"		
Toluene	"	ND		0.500	"	"	ND				NR	"	"	
Ethylbenzene		ND		0.500	"	"	ND				NR	"	"	
Kylenes (total)	"	ND		1.00		"	ND				NR	"	"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	85.0% 109%	Lin	nits: 58-144% 68-140%								02/08/08 16:05 "	
Duplicate (8B08013-DUP2)				QC Source:	BRB0084-0	2		Extra	icted:	02/08/08 10):38			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	50.9		50.0	ug/l	1x	61.1				18.2%	(25)	02/08/08 17:11	
Benzene	"	ND		0.500		"	ND				NR	"	"	
oluene		ND		0.500	"	"	ND				NR	"	"	
Ethylbenzene		ND		0.500	"	"	ND				NR	"	"	
Kylenes (total)		ND		1.00		"	ND				NR	"	"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	91.1% 110%	Lin	nits: 58-144% 68-140%								02/08/08 17:11	

TestAmerica Seattle

Sandra Lauramerich

Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Secor-Redmond				Project Nan	ne:	5353 S	eattle, W	a							
PO Box 230, 12034 - 134th Ct	NE Ste 102			Project Nun	nber:	5353							Report Creat	ed:	
Redmond, WA/USA 98073				Project Manager:		Matthew Davis							02/14/08 16:46		
Gasoline Hydrocarb	ons (Ronzono	to Nanhth	alana) and I	RTFX by	NWTPH	C and	I F P A 80	71R _	Laho	ratory	Quali	ty Contr	ol Results		
Gasoniie Hydrocarb	ons (Benzene	to reapire		TestAmerio		-O and	I EI A OU	210 -	Lab	Ji ator y	Quan	ty Conti	of Results		
QC Batch: 8B08013	Water F	Preparation	n Method: E	PA 5030B	s (P/T)										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes	
Matrix Spike (8B08013-MS1)				QC Source:	BRB0084-()1		Extr	acted:	02/08/08 1	0:38				
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	1020		50.0	ug/l	1x	52.7	1000	97.1%	(75-131)		(02/08/08 17:44		
Surrogate(s): 4-BFB (FID)		Recovery:	95.3%	Lin	nits: 58-144%	ó "							02/08/08 17:44	1	
Matrix Spike (8B08013-MS2)				QC Source:	BRB0084-(2		Extr	acted:	02/08/08 1	0:38				
Benzene	NWTPH-Gx/	32.1		0.500	ug/l	1x	ND	30.0	107%	(46-130)		(02/08/08 18:17		
Toluene	8021B "	29.9		0.500			ND	"	99.6%	(60-124)					
Ethylbenzene	"	30.0		0.500	"		ND	"	100%	(56-141)			"		
Xylenes (total)	"	92.5		1.00	"		ND	90.0	103%	(66-132)			"		
Surrogate(s): 4-BFB (PID)		Recovery:	104%	Lin	nits: 68-140%	6 "							02/08/08 18:17		
QC Batch: 8B11045	Water F Method		104% n Method: E MDL*			Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note	
QC Batch: 8B11045		Preparation	1 Method: E	PA 5030B	6 (P/T)		Source Result	Amt	REC	(Limits) 02/11/08 14		(Limits)		Note	
QC Batch: 8B11045 Analyte Blank (8B11045-BLK1)	Method NWTPH-Gx/	Preparation	1 Method: E	PA 5030B	6 (P/T)			Amt	REC			. ,		Note	
QC Batch: 8B11045 Analyte Blank (8B11045-BLK1) Gasoline Range Hydrocarbons	Method	Preparation Result ND	1 Method: E MDL*	PA 5030B MRL 50.0	e (P/T) Units	Dil	Result	Amt	REC			. ,	Analyzed	Notes	
QC Batch: 8B11045 Analyte Blank (8B11045-BLK1) Gasoline Range Hydrocarbons Benzene	Method NWTPH-Gx/	Preparation Result	n Method: E MDL*	PA 5030B MRL	ug/l	Dil	Result	Amt	REC			. ,	Analyzed	Note	
QC Batch: 8B11045 Analyte Blank (8B11045-BLK1) Gasoline Range Hydrocarbons Benzene Toluene	Method NWTPH-Gx/	Preparation Result ND ND	n Method: E MDL*	PA 5030B MRL 50.0 0.500	Units ug/l	Dil	Result	Amt	REC			. ,	Analyzed	Notes	
QC Batch: 8B11045 Analyte Blank (8B11045-BLK1) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene	Method NWTPH-Gx/	Preparation Result ND ND	1 Method: E MDL* 	PA 5030B MRL 50.0 0.500 0.500	ug/l "	Dil	Result	Amt	REC			. ,	Analyzed	Note	
QC Batch: 8B11045 Analyte Blank (8B11045-BLK1) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene	Method NWTPH-Gx/	Preparation Result ND ND ND ND	1 Method: E MDL* 	PA 5030B MRL 50.0 0.500 0.500 0.500 1.00	ug/l "	Dil 1x " " "	Result 	Amt Extr 	REC			. ,	Analyzed	Notes	
QC Batch: 8B11045 Analyte Blank (8B11045-BLK1) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes (total) Surrogate(s): 4-BFB (FID) 4-BFB (PID)	Method NWTPH-Gx/	Preparation Result ND ND ND ND ND	1 Method: E MDL*	PA 5030B MRL 50.0 0.500 0.500 0.500 1.00	s (P/T) Units ug/l " " " "	Dil 1x " " "	Result 	Amt 	REC 		4:00 	. ,	Analyzed 02/11/08 16:13 " " " " 02/11/08 16:13		
QC Batch: 8B11045 Analyte Blank (8B11045-BLK1) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes (total) Surrogate(s): 4-BFB (FID)	Method NWTPH-Gx/	Preparation Result ND ND ND ND ND	1 Method: E MDL*	PA 5030B MRL 50.0 0.500 0.500 0.500 1.00	s (P/T) Units ug/l " " " "	Dil 1x " " "	Result 	Amt Extr Extr	REC 	02/11/08 1- 02/11/08 1-	4:00 	(Analyzed 02/11/08 16:13 " " " " 02/11/08 16:13		
QC Batch: 8B11045 Analyte Blank (8B11045-BLK1) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes (total) Surrogate(s): 4-BFB (FID) 4-BFB (PID) LCS (8B11045-BS1)	Method NWTPH-Gx/ 8021B " " " " "	Preparation Result ND ND ND ND ND ND Recovery:	1 Method: E MDL* 82.4% 94.5%	PA 5030B MRL 50.0 0.500 0.500 0.500 1.00 Lin 50.0	ug/1 " " " " " " " " " " " " " " " " " " "	Dil 1x " " " " " " " " " " " " " " " " " "	Result	Amt Extr Extr	REC -acted: 	02/11/08 1- 02/11/08 1-	4:00 	(Analyzed		
QC Batch: 8B11045 Analyte Blank (8B11045-BLK1) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes (total) Surrogate(s): 4-BFB (FID) 4-BFB (PID) LCS (8B11045-BS1) Gasoline Range Hydrocarbons Surrogate(s): 4-BFB (FID)	Method NWTPH-Gx/ 8021B " " " " "	Preparation Result ND ND ND ND Recovery: 940	1 Method: E MDL* 82.4% 94.5%	PA 5030B MRL 50.0 0.500 0.500 0.500 1.00 Lin 50.0	s (P/T) Units ug/l " " " " " " " " " " " " " " " " " " "	Dil 1x " " " " " " " " " " " " " " " " " "	Result	Amt Extr Extr 1000	REC 'acted:	02/11/08 1- 02/11/08 1-	4:00 4:00 	(Analyzed		
QC Batch: 8B11045 Analyte Blank (8B11045-BLK1) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes (total) Surrogate(s): 4-BFB (FID) 4-BFB (PID) LCS (8B11045-BS1) Gasoline Range Hydrocarbons Surrogate(s): 4-BFB (FID) LCS (8B11045-BS2)	Method NWTPH-Gx/ 8021B " " " " "	Preparation Result ND ND ND ND Recovery: 940	1 Method: E MDL* 82.4% 94.5%	PA 5030B MRL 50.0 0.500 0.500 0.500 1.00 Lin 50.0	s (P/T) Units ug/l " " " " " " " " " " " " " " " " " " "	Dil 1x " " " " " " " " " " " " " " " " " "	Result	Amt Extr Extr 1000	REC 'acted:	02/11/08 1- 02/11/08 1- (80-120) 02/11/08 1-	4:00 4:00 	(Analyzed		
QC Batch: 8B11045 Analyte Blank (8B11045-BLK1) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes (total) Surrogate(s): 4-BFB (FID) 4-BFB (PID) LCS (8B11045-BS1) Gasoline Range Hydrocarbons Surrogate(s): 4-BFB (FID) LCS (8B11045-BS2) Benzene	Method NWTPH-Gx/ 8021B " " " " " " NWTPH-Gx/ 8021B	Preparation Result ND ND ND ND Recovery: 940 Recovery:	Method: E MDL* 82.4% 94.5% 88.0%	PA 5030B MRL 50.0 0.500 0.500 1.00 Lin 50.0 Lin	ug/1 " " " " " " " " " " " " " " " " " " "	Dil 1x " " " 56 " 1x 66 "	Result	Amt Extr Extr 1000	REC "acted:	02/11/08 1- (80-120) (80-120)	4:00 4:00 	(Analyzed		
QC Batch: 8B11045 Analyte Blank (8B11045-BLK1) Gasoline Range Hydrocarbons Benzene Toluene Ethylbenzene Xylenes (total) Surrogate(s): 4-BFB (FID) 4-BFB (PID) LCS (8B11045-BS1) Gasoline Range Hydrocarbons	Method NWTPH-Gx/ 8021B " " " " " " " " " " " " " " " " " " "	Preparation Result ND ND ND ND ND ND Recovery: 940 Recovery: 26.9	A Method: E MDL* 82.4% 94.5% 88.0%	2PA 5030B MRL 50.0 0.500 0.500 1.00 <i>Lin</i> 50.0 <i>Lin</i> 0.500	s (P/T) Units ug/l " " " " " " " " " " " " " " " " " " "	Dil 1x " " " 56 " 1x 66 "	Result	Amt Extr Extr 1000 Extr 30.0	REC "acted: 94.0%	02/11/08 1- (80-120) "	4:00 4:00 	(Analyzed		

TestAmerica Seattle

auamerich andra

Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Secor-Redmond PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073					mber:	5353 S 5353 Matthey	eattle, W v Davis	Report Created: 02/14/08 16:46								
Gasoline Hydrocarb	ons (Benzene	to Naphth	alene) and	BTEX by TestAmeri			I EPA 80	21B -	Labo	oratory	Qualit	ty Cont	rol Results			
QC Batch: 8B11045	Water P	reparation	n Method:	EPA 5030B	B (P/T)											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes		
Duplicate (8B11045-DUP1)				QC Source	: BRB0094-	-03		Extr	acted:	02/11/08 1	6:31					
Gasoline Range Hydrocarbons	NWTPH-Gx/	ND		50.0	ug/l	1x	ND				NR	(25)	02/11/08 18:37			
Benzene	8021B	ND		0.500	"	"	ND				NR	"				
Toluene		ND		0.500	"	"	ND				NR	"				
Ethylbenzene		ND		0.500	"		ND				NR	"				
Xylenes (total)	"	ND		1.00	"	"	ND				NR	"	"			
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	81.0% 97.2%	Lii	mits: 58-1449 68-140								02/11/08 18:37 "			
Duplicate (8B11045-DUP2)				QC Source	: BRB0094-	-04		Extr	acted:	02/11/08 1	6:31					
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	ND		50.0	ug/l	1x	ND				NR	(25)	02/11/08 19:43			
Benzene	"	ND		0.500	"		ND				NR	"	"			
Toluene	"	ND		0.500	"		ND				NR	"				
Ethylbenzene		ND		0.500	"	"	ND				NR	"				
Xylenes (total)	"	ND		1.00	"	"	ND				NR	"	"			
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	74.9% 97.0%	Lii	mits: 58-1449 68-140								02/11/08 19:43 "			
Matrix Spike (8B11045-MS1)		OC Source: BRB0094-03							Extracted: 02/11/08 16:31							
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	1110		50.0	ug/l	1x	ND	1000	111%	(75-131)			02/11/08 20:49			
Surrogate(s): 4-BFB (FID)		Recovery:	90.8%	Lii	mits: 58-1449	% "							02/11/08 20:49			
Matrix Spike (8B11045-MS2)				QC Source	: BRB0094-	•04		Extr	acted:	02/11/08 1	6:31					
Benzene	NWTPH-Gx/	29.7		0.500	ug/l	1x	ND	30.0	99.2%	(46-130)			02/11/08 21:22			
Toluene	8021B	30.5		0.500	"	"	ND		102%	(60-124)			"			
Ethylbenzene	"	30.5		0.500	"	"	ND		102%				"			
Xylenes (total)	"	92.5		1.00	"	"	ND	90.0	103%	(66-132)						

Surrogate(s): 4-BFB (PID)

Recovery: 94.1%

Limits: 68-140% "

02/11/08 21:22

TestAmerica Seattle

Sandra Gerameinich Sandra Yakamavich, Project Manager

Secor-Re	dmon	ıd	Project Name:	5353 Seattle, Wa	
PO Box 2	230, 12	034 - 134th Ct NE Ste 102	Project Number:	5353	Report Created:
Redmond	l, WA/	USA 98073	Project Manager:	Matthew Davis	02/14/08 16:46
			Notes and Definit	tions	
Report S	pecifi	c Notes:			
В	-	Analyte was detected in the associated M	lethod Blank.		
В В1				ation in the sample is greater than 10x th	e concentration found in

DET - Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

- ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
- NR/NA _ Not Reported / Not Available
- dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
- wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
- RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic- Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.SignatureApplication of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.
Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

Hamevich Yakamavich, Project Manager

Test Analytical testing corporation

 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 425-420

 11922 E. First Ave, Spokane, WA 99206-5302
 509-924

 9405 SW Nimbus Ave, Beaverton, OR 97008-7145
 503-906

 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 907-563

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

		СН	AIN C	OF CU	JSTO	DDY I	REPO)RT							W	ork O	rder #:_	BRB	0084	1
CLIENT: SICOR						INVOIC	E TO:									1	TURNA	ROUND R	EQUEST	
	The state					1											in	Business Day	s *	
REPORT TO: 12034137 ADDRESS: Ridnend, NA	~ a. j.	Ľ																Inorganic An		,
Ridnend, WA	98052															10 7	5	4 3	2 1	<1
PHONE: $425-372-160 g$ PROJECT NAME: 5353 PROJECT NUMBER:	FAX: X-1	650				P.O. NU	MBER:								S		Petroleum	Hydrocarbon	Analyses	1 I
PROJECT NAME:								PRI	ESERVAT	IVE		T		<u></u>		5 STD		3 2	1 <1]
BROJECT ULIMPER													L							
5353							1	REQUES	STED AN	ALYSES		1		т <u>т</u> т				Specify:	d may incur Ru	uch Charges
SAMPLED BY: MATT	Tolly		60	オ																T
CLIENT SAMPLE IDENTIFICATION	/ SA	MPLING TE/TIME	6-90-1	から												MATRIX W, S, O)	# OF CONT.		TION / MENTS	TA WO ID
EFR-1	1/1/08	1145														\mathcal{W}				
EFO		1200														\mathcal{W}				
2 ETHI2		1200		-				+				1				Ŵ				
BEFR3		(215																		+
2 EFR-2 3 EFR-3 4 MW-46 5 MW-65 6 MW-88		(333 M														w				
MW-65		1335											1			6				
5 M () - CC		1330														ω				
6 MW-88	V	1350							-											
7												+					+			+
8							ļ				-			<u> </u>						+
9													ļ							+
RELEASED BY: MATALM 1	2 at 5		<u></u>	A		DATE	1/71	108		RECEIVED	D BY: ()	lety	war	aver			~ (. In		マリーカリ
RELEASED BY: MATHIN ! PRINT NAME: Martin	\sim	FIRM: Se	car				13.	20				olette	V W U	aver		FIRM		seatin	DATE:	315U
RELEASED BY:	v			•		DATE				RECEIVEI						FIRM	•		DATE: TIME:	
PRINT NAME: ADDITIONAL REMARKS:		FIRM:				TIME	i: 			PRINT NA	ME:			<u> </u>	<u> </u>	F 1KW		TEM	P: w/o	
TAT-1000.0907								_										<i>l</i> .	20 PAGE	OF

April 22, 2008

Matthew Davis Secor-Redmond PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052) Redmond, WA/USA 98073

RE: 5353 Seattle, Wa

Enclosed are the results of analyses for samples received by the laboratory on 02/07/08 15:17. The following list is a summary of the Work Orders contained in this report, generated on 04/22/08 15:00.

If you have any questions concerning this report, please feel free to contact me.

Work Order BRB0080 Project 5353 Seattle, Wa ProjectNumber 5353

TestAmerica Seattle

amerch Sandra Yakamavich, Project Manager

Secor-Redmond

PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052) Redmond, WA/USA 98073

5353 Seattle, Wa Project Name: Project Number: Project Manager:

5353 Matthew Davis

Report Created: 04/22/08 15:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EFR-1	BRB0080-01	Air	02/07/08 12:40	02/07/08 15:17
EFR-2	BRB0080-02	Air	02/07/08 12:42	02/07/08 15:17
EFR-3	BRB0080-03	Air	02/07/08 12:44	02/07/08 15:17
MW-88	BRB0080-04	Air	02/07/08 13:45	02/07/08 15:17
MW-46	BRB0080-05	Air	02/07/08 13:48	02/07/08 15:17
MW-65	BRB0080-06	Air	02/07/08 13:50	02/07/08 15:17

TestAmerica Seattle

havamerich

Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052)	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	04/22/08 15:00

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B

			TestAm	erica Se	attle					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRB0080-01 (EFR-1)		Air Sampled: 02/07/08 12:40 ND 10.0 mg/m ³ Air 1x 8B07022 02/07/08 18:01 02/07/08 20:37 ND 2.36 ppmv " " " " " 81.4% 70 - 150 % " " " " " " Air Sampled: 02/07/08 12:42 " " " " " Air Sampled: 02/07/08 12:42 " " " " " Air ND 2.36 ppmv<" " " " " 81.4% 70 - 150 % " " " " " " Air Sampled: 02/07/08 12:44 " " " " " Air ND 10.0 mg/m ³ Air 1x 8807022 02/07/08 18:01 02/07/08 22:07								
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8B07022	02/07/08 18:01	02/07/08 20:37	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"	"	"	
Surrogate(s): 4-BFB (FID)			81.4%		70 - 150 %	"			"	
BRB0080-02 (EFR-2)		Air			Sampl	ed: 02/	07/08 12:42			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8B07022	02/07/08 18:01	02/07/08 21:07	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"	"	"	
Surrogate(s): 4-BFB (FID)			81.4%		70 - 150 %	"			"	
BRB0080-03 (EFR-3)		Air	1		Sampl	ed: 02/	07/08 12:44			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8B07022	02/07/08 18:01	02/07/08 22:07	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv		"	"	"	
Surrogate(s): 4-BFB (FID)			84.9%		70 - 150 %	"			"	
BRB0080-04 (MW-88)		Air			Sampl	ed: 02/	07/08 13:45			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8B07022	02/07/08 18:01	02/07/08 22:37	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"	"	"	
Surrogate(s): 4-BFB (FID)			84.5%		70 - 150 %	"			"	
BRB0080-05 (MW-46)		Air			Sampl	ed: 02/	07/08 13:48			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8B07022	02/07/08 18:01	02/07/08 23:07	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"	"	"	
Surrogate(s): 4-BFB (FID)			84.0%		70 - 150 %	"			"	
BRB0080-06 (MW-65)		Air			Sampl	ed: 02/	07/08 13:50			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8B07022	02/07/08 18:01	02/07/08 23:37	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv		"	"	"	
Surrogate(s): 4-BFB (FID)			84.8%		70 - 150 %	"			"	

TestAmerica Seattle

avamerich

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052)	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	04/22/08 15:00

		Volati	le Organic	Comport TestAme			ethod	1 8260B			
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRB0080-01 (I	EFR-1)		Air	r		Sampl	ed: 02/0	07/08 12:40			
Benzene		EPA 8260B	ND		0.617	ppmv	1x	8B08008	02/08/08 10:00	02/08/08 12:33	
Ethylbenzene		"	ND		0.454	"	"	"	"	"	
Methyl tert-butyl ethe	er	"	ND		0.482	"	"	"		"	
Toluene		"	ND		0.523	"	"	"		"	
o-Xylene		"	ND		0.454	"	"	"			
m,p-Xylene			ND		0.454		"	"	"		
Surrogate(s):	1,2-DCA-d4			86.1%		69 - 131 %	"			"	
	Toluene-d8			99.2%		72 - 131 %	"			"	
	4-BFB			100%		78 - 121 %	"			"	
BRB0080-02 (I	EFR-2)		Air	r		Sampl	ed: 02/(07/08 12:42			
Benzene		EPA 8260B	ND		0.617	ppmv	1x	8B08008	02/08/08 10:00	02/08/08 13:05	
Ethylbenzene		"	ND		0.454	"	"	"	"		
Methyl tert-butyl ethe	er	"	ND		0.482	"	"	"		"	
Toluene		"	ND		0.523	"	"	"		"	
o-Xylene		"	ND		0.454	"	"	"	"		
m,p-Xylene		"	ND		0.454	"	"	"	"		
Surrogate(s):	1,2-DCA-d4			101%		69 - 131 %	"			"	
	Toluene-d8			98.6%		72 - 131 %	"			"	
	4-BFB			101%		78 - 121 %	"			"	
BRB0080-03 (I	EFR-3)		Air	r		Sampl	ed: 02/(07/08 12:44			
Benzene		EPA 8260B	ND		0.617	ppmv	1x	8B08008	02/08/08 10:00	02/08/08 13:36	
Ethylbenzene		"	ND		0.454	"	"	"	"		
Methyl tert-butyl ethe	er		ND		0.482	"	"	"	"		
Toluene		"	ND		0.523	"	"	"	"		
o-Xylene		"	ND		0.454	"	"	"	"	"	
m,p-Xylene		"	ND		0.454	"	"	"	"	"	
Surrogate(s):	1,2-DCA-d4			100%		69 - 131 %	"			"	
	Toluene-d8			98.3%		72 - 131 %	"			"	
	4-BFB			100%		78 - 121 %	"			"	

TestAmerica Seattle

examinich ndra Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052)	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	04/22/08 15:00

		Volati	le Organic	Compou TestAme	-		ethod	8260B			
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRB0080-04	(MW-88)		Ai	r		Sampl	ed: 02/0	07/08 13:45			
Benzene		EPA 8260B	ND		0.617	ppmv	1x	8B08008	02/08/08 10:00	02/08/08 14:08	
Ethylbenzene		"	ND		0.454	"	"	"	"	"	
Methyl tert-butyl et	ther	"	ND		0.482	"	"	"	"	"	
Toluene		"	ND		0.523	"	"	"			
o-Xylene		"	ND		0.454	"	"	"	"	"	
m,p-Xylene		"	ND		0.454		"		"	"	
Surrogate(s):	1,2-DCA-d4			101%		69 - 131 %	"			"	
	Toluene-d8			99.7%		72 - 131 %	"			"	
	4-BFB			100%		78 - 121 %	"			"	
BRB0080-05	(MW-46)		Ai	·		Sampl	ed: 02/(07/08 13:48			
Benzene		EPA 8260B	ND		0.617	ppmv	1x	8B08008	02/08/08 10:00	02/08/08 14:39	
Ethylbenzene		"	ND		0.454	"	"	"	"	"	
Methyl tert-butyl et	ther	"	ND		0.482	"	"	"	"	"	
Toluene		"	ND		0.523	"	"	"		"	
o-Xylene		"	ND		0.454	"	"	"	"	"	
m,p-Xylene		"	ND		0.454		"		"		
Surrogate(s):	1,2-DCA-d4			101%		69 - 131 %	"			"	
	Toluene-d8			99.8%		72 - 131 %	"			"	
	4-BFB			101%		78 - 121 %	"			"	
BRB0080-06	(MW-65)		Ai	r		Sampl	ed: 02/(07/08 13:50			
Benzene		EPA 8260B	ND		0.617	ppmv	1x	8B08008	02/08/08 10:00	02/08/08 15:11	
Ethylbenzene		"	ND		0.454	"	"	"	"	"	
Methyl tert-butyl et	ther	"	ND		0.482	"	"	"		"	
Toluene		"	ND		0.523	"	"	"	"	"	
o-Xylene		"	ND		0.454	"	"	"	"	"	
m,p-Xylene		"	ND		0.454	"	"			"	

m,p-Xylene		ND	0.454			
Surrogate(s):	1,2-DCA-d4	100%	69 - 131 %	"	"	
	Toluene-d8	98.9%	72 - 131 %	"	"	
	4-BFB	99.7%	78 - 121 %	"	"	

TestAmerica Seattle

Sandra accamerich) ŀ Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052)	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	04/22/08 15:00

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica Seattle

Method	Result												
		MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	%∧ RPD	(Limits)	Analyzed	Notes
							Extr	acted:	02/07/08 10	:00			
NWTPH	ND		10.0	mg/m³ Air	1x							02/07/08 10:21	
Modified	ND		2.36	ppmv									
	ND		0.0308	"									
"	ND		0.0261	"								"	
"	ND		0.0227	"								"	
	ND		0.0454	"	"							"	
	ND		0.100	mg/m³ Air	"							"	
	ND		0.100	"	"								
	ND		0.100	"	"								
"	ND		0.200	"								"	
	Recovery:	86.8% 93.9%	L	imits: 70-150% 75-125%	" "							02/07/08 10:21 "	
							Extr	acted:	02/07/08 10	:00			
NWTPH Modified	116		10.0	mg/m³ Air	1x		100	116%	(50-150)			02/07/08 10:51	
	Recovery:	91.7%	L	imits: 70-150%	"							02/07/08 10:51	
							Extr	acted:	02/07/08 10	:00			
NWTPH Modified	1.14		0.100	mg/m³ Air	1x		2.00	57.2%	(50-150)			02/07/08 11:51	
"	1.49		0.100	"			"	74.3%					
	1.21		0.100	"			"	60.6%					
"	4.01		0.200	"			6.00	66.9%				"	
	Recovery:	97.9%	L	imits: 75-125%	"							02/07/08 11:51	
							Extr	acted:	02/07/08 10	:00			
NWTPH Modified	120		10.0	mg/m³ Air	1x		100	120%	(50-150)	3.79%	6 (50)	02/07/08 11:21	
	Recovery:	93.6%	L	imits: 70-150%	"							02/07/08 11:21	
							Extr	acted:	02/07/08 10	:00			
NWTPH Modified	1.25		0.100	mg/m³ Air	1x		2.00	62.6%	(50-150)	8.91%	6 (50)	02/07/08 12:21	
"	1.25		0.100	"	"		"	62.5%		17.3%	6 "	"	
"	1.29		0.100	"	"		"	64.3%		5.83%	6 "	"	
"	3.96		0.200	"	"		6.00	66.0%		1.35%	6 "	"	
	" " " " " " " " " " " " " " " " " " "	" ND NWTPH 116 Modified " " 1.49 " 1.21 " 4.01 " 1.21 " 4.01 Recovery: " NWTPH 120 Modified " " 1.25 " 1.25 " 1.29 " 3.96	" ND Modified " 1.49 " 1.49 " 1.40 " 4.01 " 4.01 Modified 1.20 Modified 1.25 " 1.25 " 1.29	" ND 0.0308 " ND 0.0261 " ND 0.0227 " ND 0.0454 " ND 0.100 " ND 0.100 " ND 0.100 " ND 0.100 " ND 0.200 Recovery: 86.8%	" ND 0.0308 " " ND 0.0261 " " ND 0.0227 " " ND 0.0454 " " ND 0.100 mg/m³ Air " ND 0.100 " " ND 0.100 " " ND 0.100 " " ND 0.100 " " ND 0.200 " " ND 0.100 " " ND 0.100 mg/m³ Air Modified 1.49 0.100 " " 1.21 0.100 " " 1.23 0.100 " " 1.20 10.0 mg/m³ Air Modified 1.2	" ND 0.0308 " " " ND 0.0261 " " " ND 0.0227 " " " ND 0.0454 " " " ND 0.100 mg/m³ Air " " ND 0.100 " " " ND 0.200 " " " ND 0.200 " " NWTPH 116 10.0 mg/m³ Air Ix Modified 1.49 0.100 " " " 1.21 0.100 " " " 1.21 0.100 " " Modified 1.	" ND 0.0308 " " ND 0.0261 " " " ND 0.0227 " " " ND 0.0454 " " ND 0.100 mg/m³ Air " " ND 0.100 " " ND 0.100 " " ND 0.200 " " ND 0.200 " " ND 0.200 " " NWTPH 116 10.0 mg/m³ Air 1x " 1.21 0.100 " " 1.21	" ND 0.0308 " " " ND 0.0227 " " " ND 0.0227 " " " ND 0.0454 " " " ND 0.000 mg/m² Åir " " ND 0.100 " " " ND 0.100 " " " ND 0.200 " " " ND 0.200 " " " ND 0.200 " " Extr Mdified 116 10.0 mg/m² Åir Ix - 100 Modified 1.49 0.100 " " - " - 10	" ND 0.0308 " " " ND 0.0227 " " " ND 0.0454 " " " ND 0.0454 " " " ND 0.100 " " " ND 0.100 " "	" ND 0.0308 " " ND 0.0227 " " " ND 0.0227 " " " ND 0.0454 " " " ND 0.000 " " " ND 0.100 " " " ND 0.100 " " " ND 0.200 " " " ND 0.200 " " "NUTPH 116 10.0 mg/m³ Air 1x 100 16% (50-150) Modified 1.49 0.100 " " </td <td>" ND 0.0308 " </td> <td>" ND 0.0308 " " <</td> <td>************************************</td>	" ND 0.0308 "	" ND 0.0308 " " <	************************************

TestAmerica Seattle

Sandra Jacamerich

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052)	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	04/22/08 15:00

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 8B07022	Air Pre	paration M	ethod: EPA	5030B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (8B07022-DUP1)				QC Sourc	e: BRB0045-01			Extra	acted:	02/07/08 13	:01			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	ND				15.9%	(30)	02/07/08 13:42	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	ND				15.9%			
Benzene (v/v)	"	0.0352		0.0308		"	0.0464				27.5%			
Toluene (v/v)	"	0.0438		0.0261	"		0.0547				22.1%			
Ethylbenzene (v/v)	"	ND		0.0227	"		ND				44.9%			R
Xylenes, total (v/v)	"	0.0498		0.0454	"		0.0673				29.8%			
Benzene	"	0.114		0.100	mg/m³ Air		0.151				27.5%			
Toluene	"	0.168		0.100	"		0.209				22.1%			
Ethylbenzene	"	ND		0.100	"		ND				44.9%			R
Xylenes (total)	"	0.220		0.200	"	"	0.297				29.8%	"	"	
Surrogate(s): 4-BFB (FID)		Recovery:	81.5%	L	imits: 70-150%	"							02/07/08 13:42	
4-BFB (PID)			99.9%		75-125%	"							"	

TestAmerica Seattle

Sandra Jacamerich

Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052)	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	04/22/08 15:00

		Volatile Organ	nic Compo	-		d 8260B -	Lab	oratory Q	Quality	v Cont	rol Resu	ılts			
QC Batcl	h: 8B08008	Air Pre	paration M	ethod: EPA											
Analyte		Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	Limits)	Analyzed	Note
Blank (8B0800	08-BLK1)								Ext	racted:	02/08/08 10	:00			
Benzene		EPA 8260B	ND		0.617	ppmv	1x							02/08/08 11:26	
Ethylbenzene		"	ND		0.454	"									
Methyl tert-butyl ethe	er	"	ND		0.482	"									
Toluene		"	ND		0.523	"									
o-Xylene		"	ND		0.454	"									
m,p-Xylene		"	ND		0.454	"									
Surrogate(s):	1,2-DCA-d4 Toluene-d8 4-BFB		Recovery:	104% 99.6% 102%	Lii	mits: 69-131% 72-131% 78-121%	" " "							02/08/08 11:26 "	
LCS (8B08008	3-BS1)								Ext	racted:	02/08/08 10	:00			
Benzene		EPA 8260B	2.88		0.617	ppmv	1x		3.09	93.4%	(50-150)			02/08/08 10:19	
Ethylbenzene		"	2.23		0.454	"			2.27	98.4%	(0-200)			"	
Methyl tert-butyl eth	er	"	1.68		0.482	"			2.41	69.8%	"			"	
Toluene		"	2.53		0.523	"			2.62	96.8%	(50-150)				
o-Xylene		"	2.07		0.454	"			2.27	90.9%	(0-200)			"	
m,p-Xylene		"	2.31		0.454	"			"	102%	"			"	
Surrogate(s):	1,2-DCA-d4 Toluene-d8 4-BFB		Recovery:	84.4% 100% 99.5%	Lii	mits: 69-131% 72-131% 78-121%	" "							02/08/08 10:19 " "	
LCS Dup (8B()8008-BSD1)								Ext	racted:	02/08/08 10	:00			
Benzene		EPA 8260B	2.84		0.617	ppmv	1x		3.09	91.9%	(50-150)	1.67%	(50)	02/08/08 10:51	
Ethylbenzene		"	2.21		0.454	"			2.27	97.3%	(0-200)	1.12%	(200)	"	
Methyl tert-butyl eth	er	"	1.60		0.482	"			2.41	66.4%	"	4.92%	"	"	
Toluene		"	2.47		0.523	"			2.62	94.3%	(50-150)	2.62%	(50)	"	
o-Xylene		"	2.06		0.454	"			2.27	90.7%	(0-200)	0.275%	(200)	"	
m,p-Xylene		"	2.30		0.454	"			"	101%	"	0.592%	"	"	
Surrogate(s):	1,2-DCA-d4 Toluene-d8 4-BFB		Recovery:	82.6% 101% 99.3%	Lii	mits: 69-131% 72-131% 78-121%	" "							02/08/08 10:51 "	

TestAmerica Seattle

Sandra havamerich Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Seattle, Wa	
PO Box 230, 12034 - (134th Ct NE Ste 102, zip 98052)	Project Number:	5353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Matthew Davis	04/22/08 15:00

Notes and Definitions

Report Specific Notes:

R4 - Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.

Laboratory Reporting Conventions:

- DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). NR/NA _ Not Reported / Not Available Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. dry Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet on a Wet Weight Basis. RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic
 Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

 Signature
 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

 Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

americh Yakamavich, Project Manager

rica	PORATION
erj	ANALYTICAL TESTING CORPORATION
Mm	VTICAL TES
	INNA
les	

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 11922 E. First Ave, Spokane, WA 99206-5302
 9405 SW Nimbus Ave, Beaverton, OR 97008-7145
 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

425-420-9200 FAX 420-9210 X 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210 ≻

E
Ř
Ö
A .
2
\succ
Â
0
ST
Ś
D
ΰ
Γ Ξ η
OF
7
H
H
5

		CH	AIN (CHAIN OF CUST	ODY R	ODY REPORT					Wor	k Order #	Work Order #: BRBUNGO	1080	
CLIENT: CP					INVOICE TO:	TO: SAME	Det 1					TURNA	TURNAROUND REQUEST	QUEST	
REPORT TO: SECOR INT.	the.											.=	in Business Days *	_	
ADDRESS: 12034 [34	12024 [34+4 we suite 102, Rooming wa-98052	ncen 'rolo	n fre	4-98052	4						2	Organic d	Inorganic Analy	- 58 -	5
PHONE 415 3721 60 FAX: 4 15 372 1650	FAX: 4 V 3	272 1650			P.O. NUMBER:	BER:						Petroleum	Hydroca	alyses	
PROJECT NAME:						PRESE	PRESERVATIVE		F		T	J J	3	₹ -	
PROJECT NUMBER:		4										out the	-		
			2			REQUESTE	REQUESTED ANALYSES	ES			+ Turna	OI HEK	ULHEN Specify: * Turnaround Reavests less than standard may incur Rush Charges.	ay incur Rush	Charges.
SAMPLED BY: CLIENT SAMPLE IDENTIFICATION	SAMI	SAMPLING DATE/TIME	7-HU 76	न्ध्र - भ्वर							MA (W,	MATRIX # OF (W, S, 0) CONT.	LOCATION	on / NTS	TA WO ID
EFR-1	2/4/08	:40	ЧX	×							¥	-	\$353	Ø	AM
662-2	80/t/2	11:42	ł								4	-		Ø	
EFR-3	2/4/08	50 : th								· · · · · · · · · · · · · · · · · · ·	1	- -		Ø	
MW - 66	2/1/08	1 :45										- -		14	
Jh MM	2/2/08	1,46									A			15	
MM - 6X	2/4/06	ا . گر									A		7	2	->>
	•		-												
									-						
							-								
RELEASED BY: A AUCH PRINT NAME:		FIRM	Sers		DATE: TIME:	80/1/	RECEI	RECEIVED BY: CH	RECEIVED BY: COLUTU WEAVED PRINT NAME: COLOTLO W CO	blitt Weaver Colette N eaver	<u> </u>	FIRM: TAL	PATE 02:07-08	DATE: 02. TIME: 42	80-LO
RELEASED BY:					DATE:		RECEI	RECEIVED BY:				FIRM		DATE TIME	110
PRINT NAME: ADDITIONAL REMARKS:		FIRM:	ŗ		IIME			NAME:					TEMP	TEMP: WO	1
TAL-1000 0907													1.011	LAGE	5

March 13, 2008

Joe Rounds Secor-Redmond PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073

RE: 5353 Westlake & Mercer

Enclosed are the results of analyses for samples received by the laboratory on 03/06/08 16:58. The following list is a summary of the Work Orders contained in this report, generated on 03/13/08 15:59.

If you have any questions concerning this report, please feel free to contact me.

Work Order BRC0071 Project 5353 Westlake & Mercer

ProjectNumber 1396

TestAmerica Seattle

Kamevich Sandra Yakamavich, Project Manager

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073 Project Name: Project Number: Project Manager:

5353 Westlake & Mercer 1396 Pr: Joe Rounds

Report Created: 03/13/08 15:59

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-48	BRC0071-01	Air	03/06/08 10:02	03/06/08 16:58
MW-88	BRC0071-02	Air	03/06/08 10:00	03/06/08 16:58
MW-48	BRC0071-03	Water	03/06/08 09:45	03/06/08 16:58
MW-88	BRC0071-04	Water	03/06/08 09:30	03/06/08 16:58

TestAmerica Seattle

havamerich

Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Westlake & Mercer	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	1396	Report Created:
Redmond, WA/USA 98073	Project Manager:	Joe Rounds	03/13/08 15:59

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0071-03 (MW-48)		W٤	ater		Sampl	ed: 03/(6/08 09:45			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	125		50.0	ug/l	1x	8C10015	03/10/08 09:18	03/10/08 14:50	
Benzene	"	0.652		0.500	"	"	"	"		
Toluene	"	ND		0.500	"	"	"	"		
Ethylbenzene	"	2.46		0.500	"	"	"	"	"	
Xylenes (total)	"	4.35		1.00		"		"		
Surrogate(s): 4-BFB (FID)			97.6%		58 - 144 %	"			"	
4-BFB (PID)			103%		68 - 140 %	"			"	
BRC0071-04 (MW-88)		Wa	ater		Sample	ed: 03/()6/08 09:30			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	1840		50.0	ug/l	1x	8C10015	03/10/08 09:18	03/11/08 05:37	
Benzene	"	2.18		0.500	"	"	"		"	
Toluene	"	ND		0.500	"	"	"			
Ethylbenzene	"	69.9		0.500	"	"	"			
Xylenes (total)	"	120		1.00		"		"	"	
Surrogate(s): 4-BFB (FID)			133%		58 - 144 %	"			"	
4-BFB (PID)			117%		68 - 140 %	"			"	

TestAmerica Seattle

Namerich

Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Westlake & Mercer	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	1396	Report Created:
Redmond, WA/USA 98073	Project Manager:	Joe Rounds	03/13/08 15:59

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0071-01 (MW-48)		Air			Sampl	ed: 03/0	6/08 10:02			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8C07014	03/07/08 09:42	03/07/08 14:24	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"	"	"	
Benzene (v/v)	"	ND		0.0308	"	"	"	"		
Toluene (v/v)	"	ND		0.0261	"	"	"	"	"	
Ethylbenzene (v/v)	"	ND		0.0227	"	"	"	"	"	
Xylenes, total (v/v)	"	ND		0.0454	"	"	"	"	"	
Benzene	"	ND		0.100	mg/m³ Air	"	"	"	"	
Toluene	"	ND		0.100	"	"	"	"	"	
Ethylbenzene		ND		0.100	"	"	"		"	
Xylenes (total)	"	ND		0.200	"	"		"		
Surrogate(s): 4-BFB (FID)			71.5%		70 - 150 %	"			"	
4-BFB (PID)			94.1%		75 - 125 %	"			"	

BRC0071-02 (MW-88)		Air			Sampl	ed: 03/0	6/08 10:00		
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0 m	g/m³ Air	1x	8C07014	03/07/08 09:42	03/07/08 15:24
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv		"	"	"
Benzene (v/v)	"	ND		0.0308	"		"	"	"
Toluene (v/v)	"	ND		0.0261	"		"	"	"
Ethylbenzene (v/v)	"	ND		0.0227	"		"		"
Xylenes, total (v/v)	"	ND		0.0454	"		"	"	"
Benzene	"	ND		0.100 m	g/m³ Air		"	"	"
Toluene	"	ND		0.100	"		"		"
Ethylbenzene	"	ND		0.100	"		"	"	"
Xylenes (total)	"	ND		0.200		"		"	"
Surrogate(s): 4-BFB (FID)			84.4%	:	70 - 150 %	"			"
4-BFB (PID)			96.0%		75 - 125 %	"			"

TestAmerica Seattle

Warmerich Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

www.testamericainc.com

Secor-Redmond PO Box 230, 12034 - 134th Ct Redmond, WA/USA 98073	NE Ste 102			Project Nar Project Nur Project Mar	nber:	5353 W 1396 Joe Rou	V estlake nds	& Mer	cer				Report Create 03/13/08 15:	
Gasoline Hydrocarb	oons (Benzene	to Naphth	alene) and	BTEX by TestAmeri		-G and	I EPA 80)21B -	Labo	ratory (Qualit	y Cont	rol Results	
QC Batch: 8C10015	Water F	Preparation	Method: I	EPA 5030B	B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	°‰ REC	(Limits)	% RPD	(Limits)) Analyzed	Note
Blank (8C10015-BLK1)								Ext	racted:	03/10/08 09	:18			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	ND		50.0	ug/l	1x							03/10/08 13:11	
Benzene	"	ND		0.500		"								
Toluene		ND		0.500	"	"							"	
Ethylbenzene		ND		0.500	"	"							"	
Xylenes (total)	•	ND		1.00	"	"							"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	96.1% 101%	Lii	mits: 58-1449 68-140								03/10/08 13:11 "	
LCS (8C10015-BS1)								Ext	racted:	03/10/08 09	:18			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	922		50.0	ug/l	1x		1000	92.2%	(80-120)			03/10/08 13:44	
Surrogate(s): 4-BFB (FID)	002115	Recovery:	106%	Lii	mits: 58-144%	% "							03/10/08 13:44	
LCS (8C10015-BS2)								Ext	racted:	03/10/08 09	:18			
Benzene	NWTPH-Gx/	26.4		0.500	ug/l	1x		30.0	88.1%	(80-120)			03/10/08 14:17	
Toluene	8021B "	27.3		0.500		"		"	90.9%					
Ethylbenzene		26.9		0.500	"	"		"	89.8%					
Xylenes (total)		80.9		1.00		"		90.0	89.9%					
Surrogate(s): 4-BFB (PID)		Recovery:	102%	Lii	mits: 68-140%	6 "							03/10/08 14:17	
Duplicate (8C10015-DUP1)				QC Source	: BRC0071-	03		Ext	racted:	03/10/08 09	:18			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	129		50.0	ug/l	1x	125				3.61%	6 (25)	03/10/08 15:23	
Benzene	"	0.605		0.500	"	"	0.652				7.48%	, "	"	
Toluene	"	ND		0.500	"	"	ND				15.3%	, "		
Ethylbenzene	"	2.35		0.500		"	2.46				4.90%	, " D		
Xylenes (total)	"	4.14		1.00	"	"	4.35				4.95%	, "		
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	97.9% 101%	Lin	mits: 58-1449 68-140								03/10/08 15:23 "	
Duplicate (8C10015-DUP2)				OC Source	: BRC0082-	01		Ext	racted:	03/10/08 09	2:18			
Gasoline Range Hydrocarbons	NWTPH-Gx/	66.2		50.0	ug/l	1x	64.4					ú (25)	03/10/08 16:29	
Benzene	8021B "	0.555		0.500			0.516				7.28%	. "		
Toluene		0.555 ND		0.500	"		ND				12.0%		"	
Ethylbenzene		1.38		0.500			1.47				6.31%			
Xylenes (total)		3.21		1.00			3.05				5.04%			
Surrogate(s): 4-BFB (FID)		Recovery:	98.2%		mits: 58-144%		2.00					-	03/10/08 16:29	
4-BFB (PID)			102%		68-140	% "							"	

TestAmerica Seattle

Sandra Lauramerich

Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Secor-Redmond	Project Name:	5353 Westlake & Mercer	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	1396	Report Created:
Redmond, WA/USA 98073	Project Manager:	Joe Rounds	03/13/08 15:59
Gasoline Hydrocarbons (Benzene to Naphth	alona) and BTEV by NW/TI	DH C and EDA 8021B L aborat	ary Quality Control Docults
Gasonne Hydrocarbons (Benzene to Naphu	· ·		ory Quanty Control Results
	TestAmerica Seat	le	

QC Batch: 8C10015	Water P	reparation	Method: E	PA 5030B	(P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike (8C10015-MS1)				QC Source:	BRC0071-03			Ext	racted:	03/10/08 09	:18			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	1100		50.0	ug/l	1x	125	1000	97.5%	(75-131)			03/10/08 17:35	
Surrogate(s): 4-BFB (FID)		Recovery:	107%	Lin	nits: 58-144%	"							03/10/08 17:35	
Matrix Spike (8C10015-MS2)				QC Source:	BRC0082-01			Ext	racted:	03/10/08 09	:18			
Benzene	NWTPH-Gx/ 8021B	29.8		0.500	ug/l	1x	0.516	30.0	97.7%	(46-130)			03/10/08 18:08	
Toluene		29.1		0.500	"	"	0.133	"	96.5%	(60-124)			"	
Ethylbenzene	"	30.5		0.500	"	"	1.47	"	96.7%	(56-141)				
Xylenes (total)	"	90.1		1.00	"		3.05	90.0	96.8%	(66-132)			"	
Surrogate(s): 4-BFB (PID)		Recovery:	102%	Lin	nits: 68-140%	"							03/10/08 18:08	

TestAmerica Seattle

havaminich Sandra

Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Westlake & Mercer	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	1396	Report Created:
Redmond, WA/USA 98073	Project Manager:	Joe Rounds	03/13/08 15:59

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 8C07014	Air Pre	paration M	lethod: EPA	5030B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (8C07014-BLK1)								Extr	acted:	03/07/08 09	:42			
Gasoline Range Hydrocarbons	NWTPH	ND		10.0	mg/m³ Air	1x							03/07/08 10:24	
Gasoline Range Hydrocarbons (v/v)	Modified	ND		2.36	ppmv									
Benzene (v/v)		ND		0.0308	"								"	
Toluene (v/v)		ND		0.0261	"								"	
Ethylbenzene (v/v)		ND		0.0227	"								"	
Xylenes, total (v/v)		ND		0.0454	"								"	
Benzene	"	ND		0.100	mg/m³ Air								"	
Toluene		ND		0.100	"								"	
Ethylbenzene	"	ND		0.100	"								"	
Xylenes (total)		ND		0.200	"									
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	89.9% 93.2%	L	imits: 70-150% 75-125%	"							03/07/08 10:24 "	
LCS (8C07014-BS1)								Extr	acted:	03/07/08 09	:42			
Gasoline Range Hydrocarbons	NWTPH Modified	99.2		10.0	mg/m³ Air	1x		100	99.2%	(50-150)			03/07/08 11:46	
Surrogate(s): 4-BFB (FID)		Recovery:	76.8%	L	imits: 70-150%	"							03/07/08 11:46	
LCS (8C07014-BS2)								Extr	acted:	03/07/08 09	:42			
Benzene	NWTPH Modified	1.61		0.100	mg/m³ Air	1x		2.00	80.6%	(50-150)			03/07/08 12:46	
Toluene	"	1.61		0.100	"			"	80.7%				"	
Ethylbenzene		1.57		0.100	"			"	78.5%				"	
Xylenes (total)		4.86		0.200	"			6.00	81.0%				"	
Surrogate(s): 4-BFB (PID)		Recovery:	98.0%	L	imits: 75-125%	"							03/07/08 12:46	
LCS Dup (8C07014-BSD1)								Extr	acted:	03/07/08 09	:42			
Gasoline Range Hydrocarbons	NWTPH Modified	93.9		10.0	mg/m³ Air	1x		100	93.9%	(50-150)	5.47%	6 (50)	03/07/08 12:16	
Surrogate(s): 4-BFB (FID)		Recovery:	90.1%	L	imits: 70-150%	"							03/07/08 12:16	
LCS Dup (8C07014-BSD2)								Extr	acted:	03/07/08 09	:42			
Benzene	NWTPH Modified	1.56		0.100	mg/m³ Air	1x		2.00	77.9%	(50-150)	3.43%	6 (50)	03/07/08 13:16	
Гoluene	"	1.50		0.100	"			"	74.8%		7.61%	6 "	"	
Ethylbenzene		1.53		0.100	"				76.7%		2.41%	6 "		

TestAmerica Seattle

Sandra Lauramerich

Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Secor-Redmond	Project Name:	5353 Westlake & Mercer	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	1396	Report Created:
Redmond, WA/USA 98073	Project Manager:	Joe Rounds	03/13/08 15:59

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 8C07014	Air Pre	paration M	lethod: EPA	5030B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (8C07014-DUP1)				QC Sourc	e: BRC0071-01			Extra	acted:	03/07/08 09	:42			
Gasoline Range Hydrocarbons (v/v)	NWTPH Modified	ND		2.36	ppmv	1x	ND				27.1%	(30)	03/07/08 14:54	
Gasoline Range Hydrocarbons		ND		10.0	mg/m³ Air	"	ND				27.1%	"		
Benzene (v/v)	"	ND		0.0308	ppmv		ND				NR	"		
Toluene (v/v)		ND		0.0261	"		ND				45.1%	"		F
Ethylbenzene (v/v)		ND		0.0227	"		ND				53.0%	"		F
Xylenes, total (v/v)		ND		0.0454	"		ND				58.6%	"		F
Benzene		ND		0.100	mg/m³ Air		ND				NR	"		
Toluene		ND		0.100	"		ND				45.1%	"		F
Ethylbenzene		ND		0.100	"		ND				53.0%	"		F
Xylenes (total)		ND		0.200	"		ND				58.6%	"	"	F
Surrogate(s): 4-BFB (FID)		Recovery:	83.3%	I	imits: 70-150%	"							03/07/08 14:54	
4-BFB (PID)			97.2%		75-125%	"							"	

TestAmerica Seattle

Sandra Jacamerich

Sandra Yakamavich, Project Manager

Secor-Redmond	
PO Box 230, 12034 - 134th Ct NE Ste 102	

Project Name: Project Number: Project Manager:

1396 Joe Rounds

5353 Westlake & Mercer

] (

Report Created: 03/13/08 15:59

Notes and Definitions

Report Specific Notes:

Redmond, WA/USA 98073

R4 - Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.

Laboratory Reporting Conventions:

- DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only. ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate). NR/NA _ Not Reported / Not Available Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight. dry Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet on a Wet Weight Basis. RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries). METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. _ *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results. Dil
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic
 Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

 Signature
 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

 Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

allamerch Yakamavich, Project Manager

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 4

 11922 E. First Ave, Spokane, WA 99206-5302
 5

 9405 SW Nimbus Ave,Beaverton, OR 97008-7145
 5

 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 5

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

					С	HAIN	OF C	CUSTO	DDY F	REP(ORT				W	ork Oı	rder #:	BRCO	071
CLIENT: SECOR-STAN	sta /	cp				INVOICE	TO:	SAME	-							J	TURNA	ROUND REQUE	ST
REPORT TO: JEE Rangs ADDRESS: 2034 134+4 REDNOWD, WA.	Ct NE 98052	Suite 102	3			P.O. NUME	BER:								[10 7 TD.	Organic & 5 Petroleum	Business Days * Inorganic Analyses 4 3 2 Hydrocarbon Analyse	
PHONE: 425 372 1600 PROJECT NAME: 5353 W	ESTLAKE	\$ MERCEN						PRES	ERVATIV	E	r		T			5	24	3 2 1	<1
PROJECT NUMBER: 1396	. 4				l			REQUEST	ED ANAL	YSES			l			,		Specify:	
SAMPLED BY: Mutt Tol	104.		5		aday										* 7	irnaround F	Requests les	ss than standard may inc	ur Rush Charges
CLIENT SAMPLE IDENTIFICATION		AMPLING DATE/TIME	-Hall	Brex												IATRIX W, S, O)	# OF CONT.	LOCATION/ COMMENTS	TA WO ID
1 MW - 48 (Air)	03/06	e 10:02	X	X												Air	1	5353 NIESHANC	WA
2 MW - 88 (Am)			X	X												Air		353 WELTING	w4
3						-													
MW-48 (H2)			X	X											iw	ten	3 000	5353	na
5 MW - 846 (Hi)	03/06	@ 9:30	X	X											w;	tten	31	5353	wA
s MW - 84 (Hi) added by DB oTrip Blank	3/4/08	0 1645													4	<u>ل</u>	4		
7																			
8																			
9																			
10																	1		
RELEASED BY: SECOR/STATE					_	DATE: (15/06	100	R	ECEIVED	BY:	19	<u> </u>		T .	CIDIA	TAI		3/6/08
PRINT NAME: MATT TOLL	Ey	FIRM: SEC	<u>or /s</u>	TANIC	<u>Ľ</u>	DATE:	151	ラフ	P	ECEIVED	BV	ranci	500 -	912	77	FIRM.	1// 0	DATE	
RELEASED BY: PRINT NAME:	1	FIRM:				TIME:			i	RINT NAM						FIRM:		TIME	:
ADDITIONAL REMARKS:									I				Ø	ab	1645			темр: ос 8.4 р	

TAL-1000(0108)

Ć

0

March 20, 2008

Joe Rounds Secor-Redmond PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073

RE: 5353 Westlake & Mercer

Enclosed are the results of analyses for samples received by the laboratory on 03/07/08 08:05. The following list is a summary of the Work Orders contained in this report, generated on 03/20/08 14:53.

If you have any questions concerning this report, please feel free to contact me.

Work Order BRC0082 Project 5353 Westlake & Mercer

ProjectNumber 1396

TestAmerica Seattle

of lines

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073 Project Name: Project Number: Project Manager:

5353 Westlake & Mercer 1396 : Joe Rounds

Report Created: 03/20/08 14:53

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-48 (H2O)	BRC0082-01	Water	03/06/08 16:10	03/07/08 08:05
MW-88 (H2O)	BRC0082-02	Water	03/06/08 16:20	03/07/08 08:05
MW-48 (AIR)	BRC0082-03	Air	03/06/08 16:42	03/07/08 08:05
MW-88 (AIR)	BRC0082-04	Air	03/06/08 16:40	03/07/08 08:05

TestAmerica Seattle

Carling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Westlake & Mercer	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	1396	Report Created:
Redmond, WA/USA 98073	Project Manager:	Joe Rounds	03/20/08 14:53

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0082-01 (MW-48 (H2O))		Wa	ater		Sampl	ed: 03/(6/08 16:10			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	64.4		50.0	ug/l	1x	8C10015	03/10/08 09:18	03/10/08 15:56	
Benzene	"	0.516		0.500	"	"	"		"	
Toluene	"	ND		0.500		"	"		"	
Ethylbenzene	"	1.47		0.500	"	"	"	"	"	
Xylenes (total)	"	3.05		1.00	"	"		"	"	
Surrogate(s): 4-BFB (FID)			96.3%		58 - 144 %	"			"	
4-BFB (PID)			106%		68 - 140 %	"			"	
BRC0082-02 (MW-88 (H2O))		Wa	ater		Sampl	ed: 03/(06/08 16:20			
Gasoline Range Hydrocarbons	NWTPH-Gx/802 1B	1810		50.0	ug/l	1x	8C10015	03/10/08 09:18	03/10/08 23:37	
Benzene	"	2.23		0.500	"	"	"			
Foluene	"	ND		0.500		"	"			
Ethylbenzene	"	81.9		0.500	"	"	"			
	"	172		1.00		"				

68 - 140 %

"

117%

4-BFB (PID)

TestAmerica Seattle

and theman C 0

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Westlake & Mercer	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	1396	Report Created:
Redmond, WA/USA 98073	Project Manager:	Joe Rounds	03/20/08 14:53

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0082-03 (MW-48 (AIR))		Air			Sampl	ed: 03/0	6/08 16:42			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8C07014	03/07/08 09:42	03/07/08 16:24	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"			
Benzene (v/v)	"	ND		0.0308	"				"	
Toluene (v/v)	"	ND		0.0261	"	"			"	
Ethylbenzene (v/v)	"	ND		0.0227	"				"	
Xylenes, total (v/v)	"	ND		0.0454	"	"			"	
Benzene	"	ND		0.100	mg/m³ Air				"	
Toluene	"	ND		0.100	"	"		"		
Ethylbenzene	"	ND		0.100	"	"			"	
Xylenes (total)	"	ND		0.200	"	"		"		
Surrogate(s): 4-BFB (FID)			83.5%		70 - 150 %	"			"	
4-BFB (PID)			97.9%		75 - 125 %	"			"	

BRC0082-04 (MW-88 (AIR))		Ai	r		Sampl	ed: 03/(6/08 16:40			
Gasoline Range Hydrocarbons	NWTPH Modified	11.2		10.0	mg/m³ Air	1x	8C07014	03/07/08 09:42	03/07/08 18:24	
Gasoline Range Hydrocarbons (v/v)	"	2.63		2.36	ppmv	"	"		"	
Benzene (v/v)	"	ND		0.0308	"	"	"		"	
Toluene (v/v)	"	0.0262		0.0261	"	"	"		"	
Ethylbenzene (v/v)	"	0.0308		0.0227	"	"	"		"	
Xylenes, total (v/v)	"	0.108		0.0454	"	"	"		"	
Benzene	"	ND		0.100	mg/m³ Air	"	"		"	
Toluene	"	0.100		0.100	"	"	"		"	
Ethylbenzene	"	0.136		0.100	"	"	"		"	
Xylenes (total)	"	0.475		0.200	"	"	"	"	"	
Surrogate(s): 4-BFB (FID)			82.2%		70 - 150 %	"			"	<i>C8</i>
4-BFB (PID)			96.7%		75 - 125 %	"			"	

TestAmerica Seattle

~ and damay C

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 4 of 9

Secor-Redmond PO Box 230, 12034 - 134th Co Redmond, WA/USA 98073	NE Ste 102			Project Nar Project Nur Project Mar	nber:	5353 W 1396 Joe Rou	v estlake o	& Mer	cer				Report Create 03/20/08 14	
Gasoline Hydrocart	oons (Benzene	to Naphth	alene) and	BTEX by TestAmeri			EPA 80	21B -	Labo	oratory (Qualit	y Cont	rol Results	
QC Batch: 8C10015	Water F	Preparation	n Method:	EPA 5030B	5 (P/T)									
Analyte	Method	Result	MDL [*]	MRL	Units	Dil	Source Result	Spike Amt	REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (8C10015-BLK1)								Ext	racted:	03/10/08 09	:18			
Gasoline Range Hydrocarbons	NWTPH-Gx/	ND		50.0	ug/l	1x							03/10/08 13:11	
Benzene	8021B "	ND		0.500									"	
Toluene		ND		0.500		"							"	
Ethylbenzene	"	ND		0.500		"							"	
Xylenes (total)		ND		1.00		"							"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	96.1% 101%	Lir	nits: 58-144 68-14								03/10/08 13:11 "	
LCS (8C10015-BS1)								Ext	racted:	03/10/08 09	:18			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	922		50.0	ug/l	1x		1000	92.2%	(80-120)			03/10/08 13:44	
Surrogate(s): 4-BFB (FID)	00210	Recovery:	106%	Lir	nits: 58-144	!% "							03/10/08 13:44	
LCS (8C10015-BS2)								Ext	racted:	03/10/08 09	:18			
Benzene	NWTPH-Gx/	26.4		0.500	ug/l	1x		30.0	88.1%	(80-120)			03/10/08 14:17	
Toluene	8021B "	27.3		0.500				"	90.9%	"			"	
Ethylbenzene	"	26.9		0.500		"		"	89.8%				"	
Xylenes (total)	"	80.9		1.00		"		90.0	89.9%	"			"	
Surrogate(s): 4-BFB (PID)		Recovery:	102%	Liı	nits: 68-140	% "							03/10/08 14:17	
Duplicate (8C10015-DUP1)				QC Source:	BRC0071	-03		Ext	racted:	03/10/08 09	:18			
Gasoline Range Hydrocarbons	NWTPH-Gx/	129		50.0	ug/l	1x	125					6 (25)	03/10/08 15:23	
Benzene	8021B	0.605		0.500		"	0.652				7.48%	ó "	"	
Toluene		0.003 ND		0.500		"	0.052 ND				15.3%		"	
Ethylbenzene		2.35		0.500		"	2.46				4.90%			
Xylenes (total)	"	4.14		1.00		"	4.35				4.95%		"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	97.9% 101%		nits: 58-144 68-14							-	03/10/08 15:23	
Duplicate (8C10015-DUP2)				OC Source	BRC0082	-01		Ext	racted:	03/10/08 09	:18			
Gasoline Range Hydrocarbons	NWTPH-Gx/	66.2		50.0	ug/l	1x	64.4					6 (25)	03/10/08 16:29	
Benzene	8021B	0.555		0.500		"	0.516				7.28%	ć "		
Foluene		0.333 ND		0.500		"	0.510 ND				12.0%		"	
Ethylbenzene		1.38		0.500		"	1.47				6.31%		"	
Xylenes (total)		3.21		1.00		"	3.05				5.04%		"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	98.2% 102%		nits: 58-144 68-14								03/10/08 16:29 "	

TestAmerica Seattle

Carlang

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Secor-Redmond	Project Name:	5353 Westlake & Mercer										
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	1396	Report Created:									
Redmond, WA/USA 98073	Project Manager:	Joe Rounds	03/20/08 14:53									
Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B - Laboratory Quality Control Results												
	TestAmerica Seattle											

QC Batch: 8C10015	Water P	reparation	Method: E	PA 5030B	(P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike (8C10015-MS1)				QC Source:	BRC0071-03			Ext	racted:	03/10/08 09	:18			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	1100		50.0	ug/l	1x	125	1000	97.5%	(75-131)			03/10/08 17:35	
Surrogate(s): 4-BFB (FID)		Recovery:	107%	Lin	nits: 58-144%	"							03/10/08 17:35	
Matrix Spike (8C10015-MS2)				QC Source:	BRC0082-01			Ext	racted:	03/10/08 09	:18			
Benzene	NWTPH-Gx/ 8021B	29.8		0.500	ug/l	1x	0.516	30.0	97.7%	(46-130)			03/10/08 18:08	
Toluene		29.1		0.500	"	"	0.133	"	96.5%	(60-124)				
Ethylbenzene	"	30.5		0.500	"	"	1.47	"	96.7%	(56-141)				
Xylenes (total)	"	90.1		1.00	"		3.05	90.0	96.8%	(66-132)			"	
Surrogate(s): 4-BFB (PID)		Recovery:	102%	Lin	nits: 68-140%	"							03/10/08 18:08	

TestAmerica Seattle

Calling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Westlake & Mercer	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	1396	Report Created:
Redmond, WA/USA 98073	Project Manager:	Joe Rounds	03/20/08 14:53

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 8C07014	Air Pre	eparation M	lethod: EPA	5030B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (8C07014-BLK1)								Extr	acted:	03/07/08 09	:42			
Gasoline Range Hydrocarbons (v/v)	NWTPH	ND		2.36	ppmv	1x							03/07/08 10:24	
Gasoline Range Hydrocarbons	Modified	ND		10.0	mg/m³ Air								"	
Benzene (v/v)		ND		0.0308	ppmv									
Toluene (v/v)		ND		0.0261	"									
Ethylbenzene (v/v)	"	ND		0.0227	"	"							"	
Xylenes, total (v/v)	"	ND		0.0454	"	"								
Benzene	"	ND		0.100	mg/m³ Air	"								
Toluene	"	ND		0.100	"	"								
Ethylbenzene	"	ND		0.100	"									
Xylenes (total)	"	ND		0.200	"	"								
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	89.9% 93.2%	Ι	imits: 70-150% 75-125%	"							03/07/08 10:24 "	
LCS (8C07014-BS1)								Extr	acted:	03/07/08 09	:42			
Gasoline Range Hydrocarbons	NWTPH Modified	99.2		10.0	mg/m³ Air	1x		100	99.2%	(50-150)			03/07/08 11:46	
Surrogate(s): 4-BFB (FID)		Recovery:	76.8%	L	imits: 70-150%	"							03/07/08 11:46	
LCS (8C07014-BS2)								Extr	acted:	03/07/08 09	:42			
Benzene	NWTPH Modified	1.61		0.100	mg/m³ Air	1x		2.00	80.6%	(50-150)			03/07/08 12:46	
Toluene	"	1.61		0.100	"	"		"	80.7%					
Ethylbenzene	"	1.57		0.100	"	"		"	78.5%					
Xylenes (total)	"	4.86		0.200	"	"		6.00	81.0%					
Surrogate(s): 4-BFB (PID)		Recovery:	98.0%	Ι	imits: 75-125%	"							03/07/08 12:46	
LCS Dup (8C07014-BSD1)								Extr	acted:	03/07/08 09	:42			
Gasoline Range Hydrocarbons	NWTPH Modified	93.9		10.0	mg/m³ Air	1x		100	93.9%	(50-150)	5.479	% (50)	03/07/08 12:16	
Surrogate(s): 4-BFB (FID)		Recovery:	90.1%	Ι	imits: 70-150%	"							03/07/08 12:16	
LCS Dup (8C07014-BSD2)								Extr	acted:	03/07/08 09	:42			
Benzene	NWTPH Modified	1.56		0.100	mg/m³ Air	1x		2.00	77.9%	(50-150)	3.439	% (50)	03/07/08 13:16	
Toluene	"	1.50		0.100	"	"		"	74.8%		7.61	% "	"	
Ethylbenzene	"	1.53		0.100	"			"	76.7%		2.41	% "	"	

TestAmerica Seattle Calling

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Secor-Redmond	Project Name:	5353 Westlake & Mercer	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	1396	Report Created:
Redmond, WA/USA 98073	Project Manager:	Joe Rounds	03/20/08 14:53

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 8C07014	Air Pre	paration M	lethod: EPA	5030B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (8C07014-DUP1)				QC Sourc	e: BRC0071-01			Extra	acted:	03/07/08 09	:42			
Gasoline Range Hydrocarbons (v/v)	NWTPH Modified	ND		2.36	ppmv	1x	ND				27.1%	(30)	03/07/08 14:54	
Gasoline Range Hydrocarbons	"	ND		10.0	mg/m³ Air	"	ND				27.1%	"		
Benzene (v/v)	"	ND		0.0308	ppmv		ND				NR	"		
Toluene (v/v)		ND		0.0261	"		ND				45.1%	"		R
Ethylbenzene (v/v)	"	ND		0.0227	"		ND				53.0%	"		R
Xylenes, total (v/v)	"	ND		0.0454	"		ND				58.6%	"		R
Benzene	"	ND		0.100	mg/m³ Air		ND				NR	"		
Toluene	"	ND		0.100	"		ND				45.1%	"		R
Ethylbenzene		ND		0.100			ND				53.0%	"	"	R
Xylenes (total)	"	ND		0.200	"	"	ND				58.6%	"	"	R
Surrogate(s): 4-BFB (FID)		Recovery:	83.3%	L	imits: 70-150%	"							03/07/08 14:54	
4-BFB (PID)			97.2%		75-125%	"							"	

TestAmerica Seattle

Carlling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	5353 Westlake & Mercer	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	1396	Report Created:
Redmond, WA/USA 98073	Project Manager:	Joe Rounds	03/20/08 14:53

Notes and Definitions

	Report S	pecific	Notes:
--	----------	---------	--------

- C8 Calibration Verification recovery was above the method control limit for this analyte. A high bias may be indicated.
 R4 Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.
 Laboratory Reporting Conventions:
 DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
 - ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
 - NR/NA _ Not Reported / Not Available
 - dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
 - wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
 - RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
 - MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
 - MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic
 Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

 Signature
 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

 Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

es Clark

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

	C Phills	105 S	Sit	č '	53	53	Chain of (_	P	5RC	20	082	2]	Page of _	
1		ł					Chain of (Cus	sto	dv	Re	cor	•d						On-si	ite '	Time	:			Ter	mp:		
Ź	300-	Projec	t N	ame	e	Ś	5353 WE	570	Lak	Ē									Off-	site	Time	e:			Ter	mp:		
7		BP BU	J/GI	EM	со	Po	rtfolio:		ex.	> 3	125	ı	396	• .					Sky (Condi	itions	s: ·				•		
							ct Number:					-							Mete	orolo	gical	l Ever	nts:					
Date:	03/06/68	DI Du	0014	iioi j			Requested Due	Date	(mr	n/dd	/vv)								Wind		7				Dir	rection:		
Dutt	01/00/00	-																										
Send 7	TO: SECON INT	(Jo	ER	in	Ser.)		P/GEM Facility 1			P	Z	-\$5	35	3													STANTEC	
Lab Na	me: TEST AMERI						BP/GEM Facility																				Suite 102	
Lab Ad	dress:						Site ID No. 🖌	35	3													P. 1	MA	,	980	282		
							Site Lat/Long:												e-ma				D		The	,		
							California Global I					A cr		<u>~) h</u>	m-									oject N				
Lab PM							BP/GEM PM Cont										XL.(ntract			<u>*•</u>	·		
	x: 425 420 9200)					Address: 12034 Redimense w	<u> </u>	3917		2	/ <u>C</u> ,	201 11	<u>ن</u> جن		-									tor (or BP/G	EM (Circle o	ne)
	Type & QC Level: M Account No.:						Tele/Fax: 425 3					21	r (~~~)						<u> </u>			k Rele				<u> </u>		
	ttle Order No:		1	M	atrix		TCIC/Pax. 925 3	+2	160		> + reser								juest						T			
Lao Bo		Π		T	T				┢──	-	T		<u> </u>										ŀ	1	1	•		
Item No.	Sample Description	Time	Soil/Solid	Water/Liquid	Sediments	Air	Laboratory No.	No. of containers	Unpreserved	H ₂ SO ₄	HNO ₃	HCI			BTEX 8021	BTEX/TPH-	EPA 8260	EPA 8270							Sa	-	oint Lat/Long omments	and
	MW-48 (Hu)	16:10		X	+		-01	3				<				X		†										
2	MW-35 (H==)	16.20	╢──	X	1		-02	3				×				X							1	1				
3	NOW OF LAST	10/20	┢──	+	+			-	╟──																			
	MW-45 CAIN)		┨──	+-	+	X	-03	1	X	+					<u>}</u>	X		1								- 		
		11	╢──	+	+	<u> </u>	╢───────────────	╟Ò	Ŕ		-	-				X					-		1.	\mathbf{T}			<u> </u>	
5	MW- 00 (MM)	16,40	╢──	+	+	X.	-04	╟┻	╟─	<u> </u>		┝	┼╌┼			`````	-	-					1.	+-		<u>.</u>		
6			┨	╋	–				╟──		-	-	·			<u> </u>	┨───				<u> </u>			+	╢─			
7		<u> </u>	-	∔	<u> </u>			┨	 	<u> </u>	<u> </u>	<u> </u>	$ \rightarrow $	_	<u> </u>													
8							J															 		<u> </u>	╨			
9																												
10				T																								
Sampl	er's Name: Matt To	siley			<u> </u>	Reli	nquished By / Affiliat	ion					Date		Tim	e	Acc	epted	By / A	ffilia	tion				D	ate	Time	
	er's Company: Secon		TEL			T.	NTT TOUS	. /	54	ing	ter		307	~	080	7 5	Co	lett	141	ar	аF	TAL	Seat	tle	D.	3.07.08	0805	
	ent Date: 03/06/04		•				1	7		1																		
Shipm	ent Method: DEWENY																											
	ent Tracking No:																											_
Specia	Instructions:																											
												-								<u> </u>						7	NI-	
Custo	iy Seals In Place Yes	No			Ter	nper	ature Blank Yes_]	No_	Ĺ		Coo	oler T	emp	perat	ure	on R	leceij	pt <u>3</u>	<u> </u>	F/C		Tri	p Bla			No	

March 31, 2008

Jennifer Yotz Secor-Redmond PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073

RE: 5353 Westlake & Mercer

Enclosed are the results of analyses for samples received by the laboratory on 03/20/08 16:55. The following list is a summary of the Work Orders contained in this report, generated on 03/31/08 10:39.

If you have any questions concerning this report, please feel free to contact me.

Work Order BRC0325 Project 5353 Westlake & Mercer <u>ProjectNumber</u> OPLC.01396.41/255353

TestAmerica Seattle

Kamerch Sandra Yakamavich, Project Manager

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073 Project Name: Project Number: Project Manager: 5353 Westlake & Mercer OPLC.01396.41/255353 Jennifer Yotz

Report Created: 03/31/08 10:39

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EFR-1 AIR	BRC0325-01	Air	03/20/08 10:30	03/20/08 16:55
EFR-2 AIR	BRC0325-02	Air	03/20/08 10:32	03/20/08 16:55
EFR-3 AIR	BRC0325-03	Air	03/20/08 10:34	03/20/08 16:55
MW-88 AIR	BRC0325-04	Air	03/20/08 13:05	03/20/08 16:55
MW-48 AIR	BRC0325-05	Air	03/20/08 13:07	03/20/08 16:55
MW-65 AIR	BRC0325-06	Air	03/20/08 13:09	03/20/08 16:55

TestAmerica Seattle

havamerich

Sandra Yakamavich, Project Manager

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073 Project Name: Project Number: Project Manager: 5353 Westlake & Mercer OPLC.01396.41/255353 Jennifer Yotz

Report Created: 03/31/08 10:39

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0325-01 (EFR-1 AIR)		Aiı	r		Sampl	ed: 03/2	20/08 10:30			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8C20010	03/20/08 18:00	03/20/08 19:55	
Gasoline Range Hydrocarbons (v/v)		ND		2.36	ppmv	"	"	"		
Benzene (v/v)	"	ND		0.0308	"	"	"	"	"	
Toluene (v/v)	"	ND		0.0261	"	"	"	"		
Ethylbenzene (v/v)	"	ND		0.0227	"	"	"	"		
Xylenes, total (v/v)	"	0.0485		0.0454	"	"	"	"		
Benzene	"	ND		0.100	mg/m³ Air	"	"	"	"	
Toluene		ND		0.100	"	"	"			
Ethylbenzene		ND		0.100	"	"	"			
Xylenes (total)	"	0.214		0.200	"	"	"	"		
Surrogate(s): 4-BFB (FID)			87.4%		70 - 150 %	"			"	
4-BFB (PID)			95.6%		75 - 125 %	"			"	

BRC0325-02 (EFR-2 AIR)		Air			Sample	ed: 03/2	0/08 10:32		
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8C20010	03/20/08 18:00	03/20/08 20:55
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"	"	"
Benzene (v/v)	"	ND		0.0308	"	"	"		"
Toluene (v/v)	"	ND		0.0261	"	"	"		"
Ethylbenzene (v/v)	"	ND		0.0227	"	"	"		"
Xylenes, total (v/v)	"	ND		0.0454	"	"	"	"	"
Benzene	"	ND		0.100	mg/m³ Air	"	"		"
Toluene	"	ND		0.100	"	"	"		"
Ethylbenzene	"	ND		0.100	"	"	"	"	"
Xylenes (total)	"	ND		0.200	"	"	"	"	"
Surrogate(s): 4-BFB (FID)			86.4%		70 - 150 %	"			"
4-BFB (PID)			95.4%		75 - 125 %	"			"

BRC0325-03 (EFR-3 AIR)		Air		Samp	led: 03/2	0/08 10:34			
Gasoline Range Hydrocarbons	NWTPH Modified	ND	 10.0	mg/m³ Air	1x	8C20010	03/20/08 18:00	03/20/08 21:25	
Gasoline Range Hydrocarbons (v/v)	"	ND	 2.36	ppmv	"	"	"	"	
Benzene (v/v)	"	ND	 0.0308	"	"	"	"	"	
Toluene (v/v)	"	ND	 0.0261	"	"	"		"	
Ethylbenzene (v/v)	"	ND	 0.0227	"	"	"	"	"	
Xylenes, total (v/v)	"	ND	 0.0454	"	"	"	"	"	
Benzene	"	ND	 0.100	mg/m³ Air	"	"		"	
Toluene	"	ND	 0.100	"	"	"		"	
Ethylbenzene	"	ND	 0.100	"	"	"	"	"	
Xylenes (total)	"	ND	 0.200	"	"	"		"	

TestAmerica Seattle

Mamerich

Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of autoch document. This analytical report shall not be reproduced except in full

of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Secor-Redmond	Project Name:	5353 Westlake & Mercer	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	OPLC.01396.41/255353	Report Created:
Redmond, WA/USA 98073	Project Manager:	Jennifer Yotz	03/31/08 10:39

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0325-03 (EFR-3 AIR)		Air			Sampl	ed: 03/2	20/08 10:34			
Surrogate(s): 4-BFB (FID)			85.8%		70 - 150 %	1x			03/20/08 21:25	
4-BFB (PID)			95.9%		75 - 125 %	"			"	
BRC0325-04RE1 (MW-88 AIR)		Air			Sample	ed: 03/2	20/08 13:05			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8C21023	03/21/08 12:00	03/21/08 21:08	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"	"	"	
Benzene (v/v)	"	ND		0.0308	"	"	"			
Toluene (v/v)	"	ND		0.0261	"	"	"		"	
Ethylbenzene (v/v)	"	ND		0.0227	"	"	"		"	
Xylenes, total (v/v)	"	ND		0.0454	"	"	"	"	"	
Benzene	"	ND		0.100	mg/m³ Air	"	"	"	"	
Toluene	"	ND		0.100	"		"		"	
Ethylbenzene	"	ND		0.100	"	"	"	"	"	
Xylenes (total)	"	ND		0.200		"		"		
Surrogate(s): 4-BFB (FID)			84.2%		70 - 150 %	"			"	
4-BFB (PID)			97.8%		75 - 125 %	"			"	
BRC0325-05RE1 (MW-48 AIR)		Air			Sample	ed: 03/2	20/08 13:07			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8C21023	03/21/08 12:00	03/21/08 23:08	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"	"	"	
Benzene (v/v)	"	ND		0.0308		"	"	"		
Toluene (v/v)	"	ND		0.0261	"	"	"			
Ethylbenzene (v/v)	"	ND		0.0227		"	"	"		
Kylenes, total (v/v)	"	ND		0.0454		"	"	"		
Benzene	"	ND		0.100	mg/m³ Air	"	"	"		
Toluene	"	ND		0.100		"	"	"		
Ethylbenzene	"	ND		0.100	"	"	"	"		
(total)	"	ND		0.200		"		"		
Surrogate(s): 4-BFB (FID)			83.4%		70 - 150 %	"			"	
4-BFB (PID)			94.6%		75 - 125 %				"	

TestAmerica Seattle

examerich

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Sandra Yakamavich, Project Manager

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073 Project Name: Project Number: Project Manager: 5353 Westlake & Mercer OPLC.01396.41/255353 Jennifer Yotz

Report Created: 03/31/08 10:39

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0325-06RE1 (MW-65 AIR)		Air			Sampl	ed: 03/2	20/08 13:09			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8C21023	03/21/08 12:00	03/21/08 23:38	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"	"		
Benzene (v/v)	"	ND		0.0308	"	"	"		"	
Toluene (v/v)	"	ND		0.0261	"	"	"		"	
Ethylbenzene (v/v)	"	ND		0.0227	"	"	"		"	
Xylenes, total (v/v)	"	ND		0.0454	"	"	"			
Benzene	"	ND		0.100	mg/m³ Air	"	"	"	"	
Toluene	"	ND		0.100	"	"	"			
Ethylbenzene	"	ND		0.100	"	"	"			
Xylenes (total)	"	ND		0.200	"	"		"		
Surrogate(s): 4-BFB (FID)			80.8%		70 - 150 %	"			"	
4-BFB (PID)			96.9%		75 - 125 %	"			"	

TestAmerica Seattle

accamerich)

Sandra Yakamavich, Project Manager

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073 Project Name: Project Number: Project Manager: 5353 Westlake & Mercer OPLC.01396.41/255353 Jennifer Yotz

Report Created: 03/31/08 10:39

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 8C20010	Air Pre	eparation M	lethod: EPA	5030B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (8C20010-BLK1)								Extr	acted:	03/20/08 09	:16			
Gasoline Range Hydrocarbons	NWTPH	ND		10.0	mg/m³ Air	1x							03/20/08 10:45	
Gasoline Range Hydrocarbons (v/v)	Modified	ND		2.36	ppmv								"	
Benzene (v/v)		ND		0.0308	"								"	
Toluene (v/v)		ND		0.0261	"								"	
Ethylbenzene (v/v)		ND		0.0227	"	"							"	
Xylenes, total (v/v)		ND		0.0454	"									
Benzene	"	ND		0.100	mg/m³ Air	"							"	
Toluene		ND		0.100	"	"								
Ethylbenzene	"	ND		0.100	"	"								
Xylenes (total)		ND		0.200	"	"							"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	88.6% 94.3%	I	imits: 70-150% 75-125%	"							03/20/08 10:45 "	
LCS (8C20010-BS1)								Extr	acted:	03/20/08 09	9:16			
Gasoline Range Hydrocarbons	NWTPH Modified	91.1		10.0	mg/m³ Air	1x		100	91.1%	(50-150)			03/20/08 11:45	
Surrogate(s): 4-BFB (FID)		Recovery:	75.6%	I	imits: 70-150%	"							03/20/08 11:45	
LCS (8C20010-BS2)								Extr	acted:	03/20/08 09	9:16			
Benzene	NWTPH Modified	2.02		0.100	mg/m³ Air	1x		2.00	101%	(50-150)			03/20/08 12:45	
Toluene	"	1.98		0.100	"			"	99.1%					
Ethylbenzene		1.92		0.100	"			"	95.8%					
Xylenes (total)		5.94		0.200	"			6.00	99.0%				"	
Surrogate(s): 4-BFB (PID)		Recovery:	96.6%	L	imits: 75-125%	"							03/20/08 12:45	
LCS Dup (8C20010-BSD1)								Extr	acted:	03/20/08 09	:16			
Gasoline Range Hydrocarbons	NWTPH Modified	87.0		10.0	mg/m³ Air	1x		100	87.0%	(50-150)	4.54%	% (50)	03/20/08 12:15	
Surrogate(s): 4-BFB (FID)		Recovery:	89.1%	L	imits: 70-150%	"							03/20/08 12:15	
LCS Dup (8C20010-BSD2)								Extr	acted:	03/20/08 09	:16			
Benzene	NWTPH Modified	1.74		0.100	mg/m³ Air	1x		2.00	87.1%	(50-150)	14.79	6 (50)	03/20/08 13:15	
Toluene	"	1.66		0.100	"			"	82.8%		17.9%	· · ·	"	
Ethylbenzene	"	1.68		0.100	"			"	83.9%	"	13.29	6 "		
Luiyioenzene														

TestAmerica Seattle

Savamerich

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073

Project Name: Project Number: Project Manager:

5353 Westlake & Mercer OPLC.01396.41/255353 Jennifer Yotz

Report Created: 03/31/08 10:39

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 8C20010	Air Pre	paration M	ethod: EPA	5030B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	%∧ REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Duplicate (8C20010-DUP2)				QC Sourc	e: BRC0325-01			Extr	acted:	03/20/08 09	:16			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	ND				24.9%	(30)	03/20/08 20:24	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	ND				24.9%			
Benzene (v/v)	"	ND		0.0308		"	ND				NR			
Toluene (v/v)	"	ND		0.0261	"		ND				114%			R
Ethylbenzene (v/v)	"	ND		0.0227	"		ND				NR			
Xylenes, total (v/v)	"	ND		0.0454	"	"	0.0485				147%			R
Benzene		ND		0.100	mg/m³ Air	"	ND				NR			
Toluene		ND		0.100	"	"	ND				114%			R
Ethylbenzene		ND		0.100	"		ND				NR			
Xylenes (total)	"	ND		0.200	"	"	0.214				147%	"	"	R
Surrogate(s): 4-BFB (FID)		Recovery:	88.3%	I	imits: 70-150%	"							03/20/08 20:24	
4-BFB (PID)			96.6%		75-125%	"							"	

QC Batch: 8C21023	Air Pre	paration M	ethod: EPA	5030B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (8C21023-BLK1)								Extr	acted:	03/21/08 12	:00			
Gasoline Range Hydrocarbons (v/v)	NWTPH Modified	ND		2.36	ppmv	1x							03/21/08 15:38	
Gasoline Range Hydrocarbons	"	ND		10.0	mg/m³ Air									
Benzene (v/v)	"	ND		0.0308	ppmv								"	
Toluene (v/v)	"	ND		0.0261	"	"							"	
Ethylbenzene (v/v)	"	ND		0.0227	"	"							"	
Xylenes, total (v/v)	"	ND		0.0454	"	"							"	
Benzene	"	ND		0.100	mg/m³ Air	"							"	
Toluene	"	ND		0.100	"	"							"	
Ethylbenzene	"	ND		0.100	"	"							"	
Xylenes (total)	"	ND		0.200	"	"							"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	86.2% 93.8%	L	imits: 70-150% 75-125%	"							03/21/08 15:38 "	3

TestAmerica Seattle

Sandra Jacamerich Sandra Yakamavich, Project Manager

Secor-Redmond PO Box 230, 12034 - 134th Ct Redmond, WA/USA 98073	NE Ste 102			Project Na Project Nu Project Ma	umber:		Vestlake)1396.41/2 : Yotz		cer				Report Create 03/31/08 10:	
Gasoline Hydrocarbon	s (Benzene to	Napthaler			• by NWT rica Seattle		and EPA	8021B	- La	lborator	y Qua	ality Co	ntrol Results	
QC Batch: 8C21023	Air Pre	eparation M	ethod: EPA	5030B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
LCS (8C21023-BS1)								Extr	acted:	03/21/08 12	2:00			
Gasoline Range Hydrocarbons	NWTPH Modified	87.2		10.0	mg/m³ Air	1x		100	87.2%	(50-150)			03/21/08 17:07	
Surrogate(s): 4-BFB (FID)		Recovery:	72.1%	L	imits: 70-15)% "							03/21/08 17:07	
LCS (8C21023-BS2)								Extr	acted:	03/21/08 12	:00			
Benzene	NWTPH Modified	1.74		0.100	mg/m³ Air	1x		2.00	86.8%	(50-150)			03/21/08 18:07	
Toluene	"	1.74		0.100	"			"	87.1%					
Ethylbenzene	"	1.69		0.100	"			"	84.6%					
Xylenes (total)	"	5.24		0.200	"			6.00	87.4%					
Surrogate(s): 4-BFB (PID)		Recovery:	97.0%	L	imits: 75-12.	5% "							03/21/08 18:07	
LCS Dup (8C21023-BSD1)								Extr	acted:	03/21/08 12	:00			
Gasoline Range Hydrocarbons	NWTPH Modified	81.8		10.0	mg/m³ Air	1x		100	81.8%	(50-150)	6.44%	6 (50)	03/21/08 17:37	
Surrogate(s): 4-BFB (FID)		Recovery:	86.6%	L	imits: 70-15	0% "							03/21/08 17:37	
LCS Dup (8C21023-BSD2)								Extr	acted:	03/21/08 12	:00			
Benzene	NWTPH	1.74		0.100	mg/m³ Air	1x		2.00	87.2%	(50-150)	0.471%	6 (50)	03/21/08 18:37	
Toluene	Modified	1.68		0.100	"				84.0%		3.54%	. "		
Ethylbenzene		1.71		0.100	"				85.4%		0.906%			
Xylenes (total)	"	5.20		0.200	"			6.00	86.7%		0.819%			
Surrogate(s): 4-BFB (PID)		Recovery:	97.9%		imits: 75-12.	5% "							03/21/08 18:37	
Dunkasta (9C21022 DUD1)				OC Source	e: BRC0292	04061		Fytu	aatad.	03/21/08 12				
Duplicate (8C21023-DUP1) Gasoline Range Hydrocarbons (v/v)	NWTPH	ND		2.36	ppmv	1x	ND					6 (30)	03/21/08 19:37	
	Modified													
Gasoline Range Hydrocarbons	"	ND		10.0	mg/m³ Air		ND				22.4%		"	
Benzene (v/v)	"	ND		0.0308	ppmv		ND				NR	"		
Toluene (v/v)	"	ND		0.0261	"		ND				91.8%]
Ethylbenzene (v/v)	"	ND		0.0227			ND				114%			1
Xylenes, total (v/v)	"	ND		0.0454	"		0.0496				106%	, " 		1
Benzene	"	ND		0.100	mg/m³ Air		ND				NR			
Toluene	"	ND		0.100	"	"	ND				91.8%		"	1
Ethylbenzene	"	ND		0.100	"	"	ND				114%			1
Xylenes (total)	"	ND		0.200	"	"	0.219				106%) "	"	1
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	82.8% 96.4%	L	imits: 70-15 75-12								03/21/08 19:37 "	

TestAmerica Seattle

Sandra Javamerich

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073 Project Name: Project Number: Project Manager: 5353 Westlake & Mercer OPLC.01396.41/255353 Jennifer Yotz

Report Created: 03/31/08 10:39

Notes and Definitions

Report Specific Notes:

R4 - Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.

Laboratory Reporting Conventions:

- DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
 ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
 NR/NA Not Reported / Not Available
 dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
- wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported
- on a Wet Weight Basis.
- RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic
 Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

 Signature
 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

 Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

accamente Yakamavich, Project Manager

Test Amalytical testing corporation

 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 425-420-9200
 FAX 420-9210

 11922 E. First Ave, Spokane, WA 99206-5302
 509-924-9200
 FAX 924-9290

 9405 SW Nimbus Ave, Beaverton, OR 97008-7145
 503-906-9200
 FAX 906-9210

 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 907-563-9200
 FAX 563-9210

01

02

07

of

09

Ol

Work Order #: BRC0325 **CHAIN OF CUSTODY REPORT** INVOICE TO: SAME TURNAROUND REQUEST CLIENT: SECOR-STANTEL / CA REPORT TO: JEN YOTZin Business Days * Organic & Inorganic Analyses ADDRESS: 12034 134+4 CT NE, SUITE 102 5 4 3 2 1 <1 10 7 REPMOND, WA. 98052 Petroleum Hydrocarbon Analyses P.O. NUMBER: 5 4 3 2 1 <1 *STD*. PHONE: 425 572 1584 FAX: 425 372 1600 PROJECT NAME: 5353 WESTLAKE EFR PRESERVATIVE PROJECT NUMBER: OICP. 01396.41 / 255353 OTHER | Specify: REQUESTED ANALYSES Turnaround Requests less than standard may incur Rush Charges SAMPLED BY: Mit TOIL Ľ KUK #OF LOCATION / TA MATRIX TH. SAMPLING CLIENT SAMPLE CONT. COMMENTS WO ID (W, S, O) 3 DATE/TIME **IDENTIFICATION** 2383 M 3/20/06 A 10:30 ETR- 1 An EFR. 2 Ain 10:32 10:34 EFR.3 A.n MW . 88 A. 13:05 MW . 48 A.L 13:07 V MW . US AIR 13:09 V DATE: 3/2 0/08 RECEIVED BY: 239 PRINT NAME: Frankisco Lung, Jr DATE: SILO RELEASED BY: FIRM: TAL-S TIME: 1315 PRINT NAME: MIH TOLLA FIRM: SECH TIME: 13:15-DATE: RECEIVED BY: DATE RELEASED BY: TIME: FIRM: PRINT NAME: TIME: FIRM: PRINT NAME: QL461655 TEMP: 19.7° ADDITIONAL REMARKS: PAGE OF

COC REV 09/2004

March 31, 2008

Jennifer Yotz Secor-Redmond PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073

RE: 255353

Enclosed are the results of analyses for samples received by the laboratory on 03/20/08 16:55. The following list is a summary of the Work Orders contained in this report, generated on 03/31/08 09:51.

If you have any questions concerning this report, please feel free to contact me.

Work Order BRC0330 <u>Project</u> 255353 ProjectNumber None

TestAmerica Seattle

Hamevich Sandra Yakamavich, Project Manager

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073 Project Name: Project Number: Project Manager:

r: None er: Jennifer Yotz

255353

Report Created: 03/31/08 09:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EFR-1 H2O	BRC0330-01	Water	03/20/08 10:50	03/20/08 16:55
EFR-2 H2O	BRC0330-02	Water	03/20/08 11:00	03/20/08 16:55
EFR-3 H2O	BRC0330-03	Water	03/20/08 11:15	03/20/08 16:55
MW-88 H2O	BRC0330-04	Water	03/20/08 12:40	03/20/08 16:55
MW-48 H2O	BRC0330-05	Water	03/20/08 12:55	03/20/08 16:55
MW-65 H2O	BRC0330-06	Water	03/20/08 12:30	03/20/08 16:55

TestAmerica Seattle

Jacamerich andra

Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	255353	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	None	Report Created:
Redmond, WA/USA 98073	Project Manager:	Jennifer Yotz	03/31/08 09:51

Gasoline Hydrocarbons (Benzene to Naphthalene) and BTEX by NWTPH-G and EPA 8021B TestAmerica Seattle

					100-	T T 1 /					
Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0330-01	(EFR-1 H2O)		W	ater		Sampl	ed: 03/2	20/08 10:50			
Gasoline Range Hyd	lrocarbons	NWTPH-Gx/802 1B	ND		50.0	ug/l	1x	8C21042	03/21/08 15:35	03/22/08 06:22	
Benzene		"	ND		0.500	"	"	"		"	
Toluene		"	ND		0.500	"		"		"	
Ethylbenzene		"	ND		0.500	"		"	"	"	
Xylenes (total)		"	ND		1.00	"	"	"	"	"	
Surrogate(s):	4-BFB (FID)			87.5%		58 - 144 %	"			"	
	4-BFB (PID)			102%		68 - 140 %	"			"	
BRC0330-02	(EFR-2 H2O)		w	ater		Sampl	ed: 03/2	20/08 11:00			
Gasoline Range Hyd	lrocarbons	NWTPH-Gx/802 1B	ND		50.0	ug/l	1x	8C21042	03/21/08 15:35	03/22/08 06:54	
Benzene		"	ND		0.500	"	"	"		"	
Toluene		"	ND		0.500	"		"		"	
Ethylbenzene		"	ND		0.500	"		"	"	"	
Xylenes (total)		"	ND		1.00	"	"	"	"	"	
Surrogate(s):	4-BFB (FID)			88.1%		58 - 144 %	"			"	
	4-BFB (PID)			102%		68 - 140 %	"			"	
BRC0330-03	(EFR-3 H2O)		W	ater		Sampl	ed: 03/2	20/08 11:15			
Gasoline Range Hyd	irocarbons	NWTPH-Gx/802 1B	ND		50.0	ug/l	1x	8C21042	03/21/08 15:35	03/22/08 09:04	
Benzene		"	ND		0.500	"		"	"	"	
Toluene		"	ND		0.500	"	"	"		"	
Ethylbenzene		"	ND		0.500	"		"	"	"	
Xylenes (total)		"	ND		1.00	"	"	"	"	"	
Surrogate(s):	4-BFB (FID)			88.5%		58 - 144 %	"			"	
	4-BFB (PID)			103%		68 - 140 %	"			"	
BRC0330-04	(MW-88 H2O)		W	ater		Sampl	ed: 03/2	20/08 12:40			
Gasoline Range Hy	drocarbons	NWTPH-Gx/802 1B	2910		50.0	ug/l	1x	8C21042	03/21/08 15:35	03/22/08 09:37	I
Benzene		"	4.51		0.500	"	"	"		"	
Toluene		"	0.795		0.500	"	"	"	"	"	
Surrogate(s):	4-BFB (FID)			143%		58 - 144 %	"			"	
	4-BFB (PID)			127%		68 - 140 %	"			"	

TestAmerica Seattle

Warmerich

Project Name:	255353	
Project Number:	None	Report Created:
Project Manager:	Jennifer Yotz	03/31/08 09:51
	Project Number:	Project Number: None

	Wa								
	vva	iter		Sampl	ed: 03/2	20/08 12:40			
NWTPH-Gx/802 1B	130		2.50	ug/l	5x	8C24017	03/24/08 09:58	03/25/08 03:26	
"	239		5.00		"		"	"	
		106%		68 - 140 %	lx			"	
	Wa	iter		Sampl	ed: 03/2	20/08 12:55			
NWTPH-Gx/802 1B	ND		0.500	ug/l	1x	8C21042	03/21/08 15:35	03/22/08 10:09	
"	ND		0.500	"	"				
"	2.04		0.500	"	"	"		"	
"	3.60		1.00	"	"	"	"	"	
		102%		68 - 140 %	"			"	
	Wa	iter		Sampl	ed: 03/2	20/08 12:55			
NWTPH-Gx/802 1B	125		50.0	ug/l	1x	8C24037	03/24/08 13:42	03/25/08 02:44	
		90.0%		58 - 144 %	"			"	
	Wa	iter		Sampl	ed: 03/2	20/08 12:30			
NWTPH-Gx/802 1B	ND		0.500	ug/l	1x	8C21042	03/21/08 15:35	03/22/08 10:42	
"	ND		0.500	"	"	"			
"	ND		0.500		"			"	
"	ND		1.00		"		"	"	
		101%		68 - 140 %	"			"	
	Wa	iter		Sample	ed: 03/2	20/08 12:30			
NWTPH-Gx/802 1B	ND		50.0	ug/l	1x	8C24037	03/24/08 13:42	03/25/08 05:26	
· · ·	IB " NWTPH-Gx/802 IB NWTPH-Gx/802 IB	1В 239 " 239 NWTPH-Gx/802 ND 1B ND " 2.04 " 2.04 " 3.60	IB 239 J06% J06% WTPH-Gx/802 ND ND ND ND ND ND ND ND NUTPH-Gx/802 125 IB NUTPH-Gx/802 ND IB ND NUTPH-Gx/802 ND IB ND NUTPH-Gx/802 ND ND ND IB ND ND ND IB ND ND ND IB ND ND ND IB ND ND ND ND ND ND -	IB 239 5.00 I06% I06% Water NWTPH-Gx/802 ND 0.500 " ND 0.500 " ND 0.500 " 2.04 0.500 " 2.04 0.500 " 2.04 0.500 " 3.60 1.00 " 125 50.0 IB 90.0% 50.0 NWTPH-Gx/802 ND 50.0 IB ND 0.500 " ND 1.00	1B 239 5.00 " 106% 68 - 140 % 68 - 140 % 68 - 140 % Water Sample NWTPH-Gx/802 ND 0.500 ug/ 1B ND 0.500 " 1B ND 0.500 " 1B ND 0.500 " 102% 68 - 140 % 68 - 140 % 68 - 140 % Water Sample Sample NWTPH-Gx/802 125 50.0 ug/1 1B 90.0% 58 - 144 % 100 100 100 NWTPH-Gx/802 ND 50.0 ug/1 100 100 100 NWTPH-Gx/802 ND 50.00 ug/1 100 100 100 100 ND 0.500 " 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	IB 239 5.00 " " 106% 68 - 140 % 1x Vater Sample: 03/2 NWTPH-Gx/802 ND 0.500 ug/l 1x " ND 0.500 ug/l 1x " ND 0.500 " " " 2.04 0.500 " " " 2.04 0.500 " " " 2.04 0.500 " " 102% 68 - 140 % " " 102% 68 - 140 % " NWTPH-Gx/802 125 50.0 ug/l 1x 1x 1B 90.0% 58 - 144 % " " 1x 1x NWTPH-Gx/802 ND 50.0 ug/l 1x 1x 1B ND 50.0 ug/l 1x 1x " ND 50.0 ug/l 1x 1x	IB 239 5.00 " " " 106% 68 - 140 % 1x 1 Water Sample: 0.500 ug/l ix & 8C21042 IB ND 0.500 " " " " 2.04 0.500 " " " " 2.04 0.500 " " " " 3.60 1.00 " " " Water Sample: 0.500 " " " NWTPH-Gx/802 125 50.0 ug/l 1x 8C24037 IB 90.0% 58 - 140 % " "	IB IO IO IO IO IO IO IO IO IO IB 239 5.00 " " " " " " IO IO6% 68 - 140 % Ix " " " " Vater Sampled: 03/20/08 12:55 NWTPH-Gx/802 ND 0.500 ug/l 1x 8C21042 03/21/08 15:35 NWTPH-Gx/802 ND 0.500 " " " " '' 2.04 0.500 " " " " '' 2.04 0.500 " " " " '' 2.04 0.500 " " " " '' 2.04 0.500 " " " " '' 2.04 1.00 " " " " '' 2.04 50.0 ug/l Ix 8C24037 03/24/08 13:42 '' '' '' '' " " " '' '' '' '' '' '' <	Initial B Initi

TestAmerica Seattle

Sandra havamerich

Secor-Redmond PO Box 230, 12034 - 134th Ct Redmond, WA/USA 98073	NE Ste 102			Project Nar Project Nur Project Mar	nber:	255353 None Jennifer							Report Create 03/31/08 09:	
Gasoline Hydrocarb	oons (Benzene	to Naphth	alene) and	BTEX by TestAmeri			I EPA 80	21B -	Labo	oratory	Quality	y Cont	rol Results	
QC Batch: 8C21042	Water P	reparation	Method: 1	EPA 5030B	B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Blank (8C21042-BLK1)								Ext	racted:	03/21/08 1	5:35			
Gasoline Range Hydrocarbons	NWTPH-Gx/	73.2		50.0	ug/l	1x							03/21/08 18:58	
Benzene	8021B "	ND		0.500										
Toluene	"	ND		0.500									"	
Ethylbenzene	"	ND		0.500										
Xylenes (total)		ND		1.00										
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	88.1% 102%	Lii	mits: 58-144 68-140								03/21/08 18:58 "	
LCS (8C21042-BS1)								Ext	racted:	03/21/08 1	5:35			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	1020		50.0	ug/l	1x		1000	102%	(80-120)			03/21/08 19:31	
Surrogate(s): 4-BFB (FID)		Recovery:	93.2%	Lii	mits: 58-144	% "							03/21/08 19:31	
LCS (8C21042-BS2)										03/21/08 1				
Benzene	NWTPH-Gx/ 8021B	29.4		0.500	ug/l	lx		30.0	98.0%	(80-120)			03/21/08 20:03	
Toluene	"	30.7		0.500	"			"	102%					
Ethylbenzene	"	31.4		0.500	"			"	105%					
Xylenes (total)	"	92.1		1.00	"	"		90.0	102%				"	
Surrogate(s): 4-BFB (PID)		Recovery:	101%	Lii	mits: 68-140	% "							03/21/08 20:03	
Duplicate (8C21042-DUP1)				QC Source	: BRC0265	-03		Ext	racted:	03/21/08 1	5:35			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	1360		50.0	ug/l	1x	1410				3.76%	(25)	03/21/08 21:09	
Benzene	8021B "	9.30		0.500			9.56				2.72%	"	"	
Toluene		ND		0.500			ND				21.4%	"		
Ethylbenzene	"	37.6		0.500	"	"	38.8				3.14%	"	"	
Xylenes (total)	"	68.5		1.00		"	70.6				3.02%	"	"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	133% 120%	Lii	mits: 58-144 68-140								03/21/08 21:09 "	
Duplicate (8C21042-DUP2)				QC Source	: BRC0265	-04		Ext	racted:	03/21/08 1	5:35			
Benzene	NWTPH-Gx/	2.43		0.500	ug/l	lx	2.38				2.08%	(25)	03/22/08 02:34	
Toluene	8021B "	19.4		0.500			20.0				2.93%	"	"	
Ethylbenzene	"	12.8		0.500			13.2				3.43%		"	
Xylenes (total)		79.2		1.00			82.0				3.47%			
Surrogate(s): 4-BFB (PID)		Recovery:	107%	Lii	mits: 68-140	% "							03/22/08 02:34	

TestAmerica Seattle

Sandra Lauramerich

Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

Secor-Redmond				Project Nam	ie:	255353								
PO Box 230, 12034 - 134th Ct	NE Ste 102			Project Num	iber:	None							Report Create	ed:
Redmond, WA/USA 98073				Project Man	ager:	Jennifer	Yotz						03/31/08 09	:51
Gasoline Hydrocarb	ons (Benzene t	to Naphth	,	BTEX by TestAmeric		-G and	I EPA 80	21B -	Labo	oratory	Quali	ty Cont	rol Results	
QC Batch: 8C21042	Water P	reparation	Method: E	PA 5030B	(P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)) Analyzed	Notes
Matrix Spike (8C21042-MS1)				QC Source:	BRC0265-	03		Extr	acted:	03/21/08 1	5:35			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	2300		50.0	ug/l	1x	1410	1000	89.3%	(75-131)			03/21/08 22:14	
Surrogate(s): 4-BFB (FID)		Recovery:	139%	Lim	nits: 58-1449	% "							03/21/08 22:14	
Matrix Spike (8C21042-MS2)				QC Source:	BRC0265-	03		Extr	acted:	03/21/08 1	5:35			
Benzene	NWTPH-Gx/ 8021B	40.4		0.500	ug/l	1x	9.56	30.0	103%	(46-130)			03/21/08 23:19	
Toluene	"	33.5		0.500	"	"	0.290	"	111%	(60-124)			"	
Ethylbenzene		68.4		0.500	"	"	38.8	"	98.5%	(56-141)			"	
Xylenes (total)	"	162		1.00	"	"	70.6	90.0	102%	(66-132)			"	
Surrogate(s): 4-BFB (PID)		Recovery:	118%	Lim	nits: 68-1409	% "							03/21/08 23:19	
Matrix Spike Dup (8C21042-MS	SD1)			QC Source:	BRC0265-	03		Extr	acted:	03/21/08 1	5:35			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	2220		50.0	ug/l	1x	1410	1000	81.3%	(75-131)	3.51%	6 (25)	03/21/08 22:46	
Surrogate(s): 4-BFB (FID)		Recovery:	136%	Lim	nits: 58-1449	% "							03/21/08 22:46	
Matrix Spike Dup (8C21042-MS	SD2)			QC Source:	BRC0265-	03		Extr	acted:	03/21/08 1	5:35			
Benzene	NWTPH-Gx/ 8021B	40.2		0.500	ug/l	1x	9.56	30.0	102%	(46-130)	0.559	% (40)	03/21/08 23:51	
Toluene		33.2		0.500	"	"	0.290	"	110%	(60-124)	0.890	% "		
Ethylbenzene		68.7		0.500	"	"	38.8	"	99.5%	(56-141)	0.435	% "	"	
Xylenes (total)	"	160		1.00	"	"	70.6	90.0	99.3%	(66-132)	1.42%	6 "		

Surrogate(s): 4-BFB (PID)

Recovery: 120% Limits: 68-140% "

03/21/08 23:51

TestAmerica Seattle

Sandra Javamerich Sandra Yakamavich, Project Manager

Secor-Redmond PO Box 230, 12034 - 134th Ct	NE Ste 102			Project Nar Project Nur		255353 None							Report Create	d:
Redmond, WA/USA 98073	112 500 102			Project Mar		Jennifer	Yotz						03/31/08 09:	
Gasoline Hydrocarb	oons (Benzene t	o Naphth	alene) and	•			EPA 80)21B -	Labo	ratory (Qualit	y Con	trol Results	
				TestAmeri	ca Seattl	e								
QC Batch: 8C24017	Water P	reparation	Method:	EPA 5030B	(P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limit	s) Analyzed	No
Blank (8C24017-BLK1)								Ext	racted:	03/24/08 09	:58			
Gasoline Range Hydrocarbons	NWTPH-Gx/	ND		50.0	ug/l	1x							03/24/08 13:13	
Benzene	8021B "	ND		0.500	"								"	
Toluene	"	ND		0.500	"	"								
Ethylbenzene	"	ND		0.500	"									
Xylenes (total)	"	ND		1.00	"									
Surrogate(s): 4-BFB (FID)		Recovery:	92.0%	Lii	nits: 58-14	4% "							03/24/08 13:13	
4-BFB (PID)			102%	Eli	68-1-								"	
LCS (8C24017-BS1)								Ext	racted:	03/24/08 09	:58			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	922		50.0	ug/l	1x		1000	92.2%	(80-120)			03/24/08 13:46	
Surrogate(s): 4-BFB (FID)		Recovery:	103%	Liı	nits: 58-14	4% "							03/24/08 13:46	
LCS (8C24017-BS2)								Ext	racted:	03/24/08 09	:58			
Benzene	NWTPH-Gx/	29.0		0.500	ug/l	lx		30.0	96.8%	(80-120)			03/24/08 14:19	
	8021B	20 5		0.500	"			"	00.00/	"				
Toluene		29.7		0.500					98.8%					
Ethylbenzene		29.4		0.500					98.1%					
Xylenes (total)		88.9		1.00				90.0	98.8%				02/2//00 1/ 10	
Surrogate(s): 4-BFB (PID)		Recovery:	103%	Lir	nits: 68-14	0% "							03/24/08 14:19	
Duplicate (8C24017-DUP1)				QC Source:	BRC033	9-02		Ext	racted:	03/24/08 09	:58			
Gasoline Range Hydrocarbons	NWTPH-Gx/	ND		50.0	ug/l	1x	ND				3.23%	(25)	03/24/08 15:25	
Benzene	8021B "	ND		0.500	"		ND				NR	"		
Toluene	"	ND		0.500	"		ND				NR	"		
Ethylbenzene	"	ND		0.500	"	"	ND				NR	"		
Xylenes (total)	"	ND		1.00	"	"	ND				NR	"		
Surrogate(s): 4-BFB (FID)		Recovery:	93.9%	Lii	nits: 58-14	4% "							03/24/08 15:25	
4-BFB (PID)		need to ty.	102%	20	68-1-								"	
Duplicate (8C24017-DUP2)				QC Source:	BRC033	9-03		Ext	racted:	03/24/08 09	:58			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	168		50.0	ug/l	1x	182				8.22%	(25)	03/24/08 16:31	
Benzene	8021B "	ND		0.500	"		ND				8.70%	"		
Toluene	"	9.60		0.500	"		9.89				3.01%	"		
Ethylbenzene	"	0.650		0.500	"	"	0.698				7.12%	"	"	
Xylenes (total)	"	3.19		1.00	"	"	3.16				1.01%	"		
Surrogate(s): 4-BFB (FID)		Recovery:	97.3%	Lii	nits: 58-14								03/24/08 16:31	
4-BFB (PID)			101%		68-1-	40% "								

TestAmerica Seattle

havaminich Sandra

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

Secor-Redmond PO Box 230, 12034 - 134th Ct Redmond, WA/USA 98073	NE Ste 102			Project Nan Project Nur Project Mar	nber:	255353 None Jennifer							Report Create 03/31/08 09:	
Gasoline Hydrocarbo	ons (Benzene	to Naphth		BTEX by TestAmeri		[-G and	I EPA 80	21B -	Labo	oratory	Qualit	y Contr	ol Results	
QC Batch: 8C24017	Water I	Preparation	Method: E	CPA 5030B	8 (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike (8C24017-MS1)				QC Source:	: BRC0339-	02		Extr	acted:	03/24/08 09	9:58			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	1070		50.0	ug/l	1x	35.0	1000	103%	(75-131)		(03/24/08 17:36	
Surrogate(s): 4-BFB (FID)		Recovery:	104%	Lin	nits: 58-144	% "							03/24/08 17:36	
Matrix Spike (8C24017-MS2)				QC Source:	: BRC0339-	03		Extr	acted:	03/24/08 09	9:58			
Benzene	NWTPH-Gx/ 8021B	31.3		0.500	ug/l	1x	0.0990	30.0	104%	(46-130)		(03/24/08 18:10	
Toluene	0021B "	43.9		0.500	"	"	9.89		113%	(60-124)			"	
Ethylbenzene Xylenes (total)	"	35.0 106		0.500 1.00	"		0.698 3.16	" 90.0	114% 114%	(56-141) (66-132)				
Surrogate(s): 4-BFB (PID)		Recovery:			nits: 68-140		5.10	90.0	11470	(00-132)			03/24/08 18:10	
QC Batch: 8C24037	Water F	Preparation Result	n Method: F MDL*	CPA 5030B MRL	B (P/T) Units	Dil	Source	Spike	0/0	(Limits)	0/0	(Limits)	Analyzed	Notes
		ittouit			0	21	Result	Amt	REC		RPD	(2		110105
Blank (8C24037-BLK1) Gasoline Range Hydrocarbons	NWTPH-Gx/	ND		50.0	ug/l	1x		Extr	acted:	03/24/08 13	5:42	(03/24/08 22:23	
Ethylbenzene	8021B	ND		0.500	"	"	_						"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	88.7% 100%		mits: 58-144 68-140								03/24/08 22:23 "	
LCS (8C24037-BS1)								Extr	acted:	03/24/08 13	3:42			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	955		50.0	ug/l	1x		1000	95.5%	(80-120)		(03/24/08 22:56	
Ethylbenzene	8021B "	15.5		0.500	"			17.1	90.5%	"				
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	93.9% 91.9%	Lin	nits: 58-144 68-140								03/24/08 22:56 "	
Duplicate (8C24037-DUP1)				QC Source:	: BRC0265-	02RE1		Extr	acted:	03/24/08 13	3:42			
Gasoline Range Hydrocarbons	NWTPH-Gx/ 8021B	501		50.0	ug/l	1x	523				4.33%	(25)	03/25/08 00:01	
Ethylbenzene	8021B "	6.30		0.500	"	"	6.48				2.79%	"	"	
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	90.2% 101%	Lin	nits: 58-144 68-140								03/25/08 00:01 "	
Matrix Spike (8C24037-MS1)				QC Source:	: BRC0265-	04RE1		Extr	acted:	03/24/08 13	3:42			
Gasoline Range Hydrocarbons	NWTPH-Gx/	1340		50.0	ug/l	1x	890	1000	44.6%	(75-131)		(03/25/08 03:16	Ν
Ethylbenzene	8021B	25.5		0.500	"		18.6	17.1	40.4%	(56-141)			"	Ν
Surrogate(s): 4-BFB (FID)		Recovery:	95.4%	Lin	nits: 58-144	% "							03/25/08 03:16	

TestAmerica Seattle

Sandra Javamerich

The results in this report apply to the samples analyzed in accordance with the chain

of custody document. This analytical report shall not be reproduced except in full,

Secor-Redmond	Project Name:	255353	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	None	Report Created:
Redmond, WA/USA 98073	Project Manager:	Jennifer Yotz	03/31/08 09:51

Gasoline Hydrocarbo	ons (Benzene	to Naphth	alene) and l	BTEX by	NWTPH-	G and	I EPA 80	21B - La	boratory	Quali	ty Contro	ol Results	
				TestAmeri	ca Seattle								
QC Batch: 8C24037	Water I	reparation	Method: E	CPA 5030B	5 (P/T)								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RF	C (Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike (8C24037-MS1)				QC Source:	BRC0265-04	RE1		Extracte	d: 03/24/08 1	3:42			
Surrogate(s): 4-BFB (PID)		Recovery:	92.5%	Lin	nits: 68-140%	1x						03/25/08 03:16	

TestAmerica Seattle

havaminich Sandra

Sandra Yakamavich, Project Manager

Secor-Redmond	Project Name:	255353	
PO Box 230, 12034 - 134th Ct NE Ste 102	Project Number:	None	Report Created:
Redmond, WA/USA 98073	Project Manager:	Jennifer Yotz	03/31/08 09:51

Notes and Definitions

Report Specific Notes:

- B
 Analyte was detected in the associated Method Blank.

 B1
 Analyte was detected in the associated method blank. Analyte concentration in the sample is greater than 10x the concentration found in the method blank.

 M2
 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

 Laboratory Reporting Conventions:
 DET
 Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

 ND
 Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
- NR/NA _ Not Reported / Not Available
- dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
- wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
- RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic- Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.SignatureApplication of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.
Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

amerch) Yakamavich, Project Manage

Test Analytical testing corporation

 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244
 425-420-9200
 FAX 420-9210

 11922 E. First Ave, Spokane, WA 99206-5302
 509-924-9200
 FAX 924-9290

 9405 SW Nimbus Ave, Beaverton, OR 97008-7145
 503-906-9200
 FAX 906-9210

 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 907-563-9200
 FAX 563-9210

			CI	HAIN	OF (CUS	TODY H	REF	PORT								Work (Drder #:	BRO	1037	30	
CLIENT:	San						INVOIC	E TO	:	< Ai	1							TURNA	ROUND R	EQUEST		
REPORT TO: ADDRESS: PHONE: 425 3:	H 134+4	ty ct net. Rev	372 1650	980	5 `		Jen 12031 P.O. NU	л у 1 <u>3</u> мвен	: /UTZ. 891 ⁻¹⁰ CH R:	NE, I	e c on	into 1	ntA.	980	52		STD.	Organic &	h Business Day & Inorganic Ar 4 3 n Hydrocarbon	nalyses	<1	
PROJECT NAME:	11. 1000	11M								ESERV			-			,		5 4	3 2	1 <1]	
PROJECT NUMBI	ER:			ALI	Hq				REQUI	ESTED A	NALYSE	s				1		D. OTHER				
SAMPLED BY:						. [ľ									* Turnaroun	d Requests le	ess than standa	rd may incur R	ush Charges.	
CLIENT S IDENTIFI			MPLING TE/TIME	して	2461												MATRIX (W, S, O		-	ATION / MENTS	TA WO ID	
IEFR.I	4-0	3hdor	10:50														ч	3	539	53	wA	C
1 EFR. 1 2 EFR. 2 3 EFR. 3	Hzr		11:00							_		_								f	<u> </u>	þ
3 ET R.3	H21		11:15																	<u> </u>		0
4 MU. 58	42		12:40																		\downarrow	þ
5 Mw - 45	1420		12:55																		++	
6 MW-65	1120		12:30					ļ											<u> </u>	<u></u>	+	
7		4						 											<u> </u>	ļ	++	
8																				<u> </u>	<u> \</u>	
9															_				<u> </u>	<u> </u>	<u> </u>	
10											_										110/05	1
RELEASED BY: PRINT NAME:	At Tollar	,	FIRM:	Gim					20108		RECEIV PRINT N	ED BY:	cni (7. .sco	Lung	i Jr	FIR	MTA	1-5	TIME:)		
RELEASED BY:	· · · · · · · · · · · · · · · · · · ·			~~~~``````````````````````````````````			DATE	:	/		RECEIV	ED BY:								DATE:		
PRINT NAME: ADDITIONAL REMAN	RKS:		FIRM:				TIME	:			PRINT	NAME:					FIR QU	4616.	55 TEM	TIME:		-
COC REV 09/2004																		w,	10 1	PAG	E OF	

April 02, 2008

Jennifer Yotz Secor-Redmond PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073

RE: 5353 Westlake EFR

Enclosed are the results of analyses for samples received by the laboratory on 03/26/08 16:00. The following list is a summary of the Work Orders contained in this report, generated on 04/02/08 15:47.

If you have any questions concerning this report, please feel free to contact me.

Work Order BRC0389 Project 5353 Westlake EFR <u>ProjectNumber</u> O1CP.01396.41/255353

TestAmerica Seattle

of lines

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073 Project Name: Project Number: Project Manager: **5353 Westlake EFR** O1CP.01396.41/255353 Jennifer Yotz

Report Created: 04/02/08 15:47

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Total Inf	BRC0389-01	Air	03/26/08 15:05	03/26/08 16:00
Mid	BRC0389-02	Air	03/26/08 15:07	03/26/08 16:00
Total Eff	BRC0389-03	Air	03/26/08 15:10	03/26/08 16:00

TestAmerica Seattle

Carling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073

Project Name: Project Number: Project Manager:

5353 Westlake EFR O1CP.01396.41/255353 Jennifer Yotz

Report Created: 04/02/08 15:47

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B TestAmerica Seattle

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0389-01 (Total Inf)		Air			Sampl	ed: 03/2	6/08 15:05			
Gasoline Range Hydrocarbons	NWTPH Modified	17.6		10.0	mg/m³ Air	1x	8C26017	03/26/08 18:00	03/26/08 20:44	
Gasoline Range Hydrocarbons (v/v)	"	4.14		2.36	ppmv	"	"		"	
Benzene (v/v)	"	ND		0.0308	"	"	"		"	
Toluene (v/v)	"	0.0309		0.0261	"	"	"		"	
Ethylbenzene (v/v)	"	ND		0.0227	"	"	"		"	
Xylenes, total (v/v)	"	ND		0.0454	"	"	"		"	
Benzene	"	ND		0.100	mg/m³ Air	"	"		"	
Toluene	"	0.118		0.100	"	"	"		"	
Ethylbenzene	"	ND		0.100	"	"	"		"	
Xylenes (total)	"	ND		0.200	"	"	"	"	"	
Surrogate(s): 4-BFB (FID)			82.2%		70 - 150 %	"			"	
4-BFB (PID)			93.8%		75 - 125 %	"			"	

BRC0389-02 (Mid)		Air			Sample	ed: 03/2	6/08 15:07			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	8C26017	03/26/08 18:00	03/26/08 21:14	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	"	"	"	
Benzene (v/v)	"	ND		0.0308	"	"	"	"		
Toluene (v/v)	"	ND		0.0261	"	"	"			
Ethylbenzene (v/v)	"	ND		0.0227	"	"	"	"	"	
Xylenes, total (v/v)	"	ND		0.0454	"	"	"	"		
Benzene	"	ND		0.100	mg/m³ Air	"	"			
Toluene	"	ND		0.100	"	"	"	"	"	
Ethylbenzene	"	ND		0.100	"	"	"			
Xylenes (total)	"	ND		0.200	"	"	"		"	
Surrogate(s): 4-BFB (FID)			81.8%		70 - 150 %	"			"	
4-BFB (PID)			95.8%		75 - 125 %	"			"	

BRC0389-03 (Total Eff)		Air		Samp	led: 03/2	6/08 15:10			
Gasoline Range Hydrocarbons	NWTPH Modified	ND	 10.0	mg/m³ Air	1x	8C26017	03/26/08 18:00	03/26/08 21:44	
Gasoline Range Hydrocarbons (v/v)	"	ND	 2.36	ppmv		"	"	"	
Benzene (v/v)	"	ND	 0.0308	"		"	"	"	
Toluene (v/v)	"	ND	 0.0261	"	"	"	"	"	
Ethylbenzene (v/v)	"	ND	 0.0227	"	"	"	"	"	
Xylenes, total (v/v)		ND	 0.0454	"	"	"	"	"	
Benzene	"	ND	 0.100	mg/m³ Air	"	"	"	"	
Toluene	"	ND	 0.100	"	"	"	"	"	
Ethylbenzene		ND	 0.100	"	"	"	"	"	
Xylenes (total)	"	ND	 0.200	"	"	"	"	"	

TestAmerica Seattle

alling. C

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

without the written approval of the laboratory.

Page 3 of 7

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073 Project Name: Project Number: Project Manager: **5353 Westlake EFR** O1CP.01396.41/255353 Jennifer Yotz

Report Created: 04/02/08 15:47

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B TestAmerica Seattle

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
BRC0389-03	(Total Eff)		Air			Sampl	ed: 03/2	6/08 15:10			
Surrogate(s):	4-BFB (FID)			83.5%		70 - 150 %	lx			03/26/08 21:44	
	4-BFB (PID)			96.6%		75 - 125 %	"			"	

TestAmerica Seattle

Alling C

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073 Project Name: Project Number: Project Manager: **5353 Westlake EFR** O1CP.01396.41/255353 Jennifer Yotz

Report Created: 04/02/08 15:47

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 8C26017	Air Pro	eparation M	lethod: EPA	5030B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	e % REC	(Limits)	% RPD	(Limits)	Analyzed	Note
Blank (8C26017-BLK1)								Ext	racted:	03/26/08 09	9:36			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x							03/26/08 10:10	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"								
Benzene (v/v)		ND		0.0308	"	"								
Toluene (v/v)	"	ND		0.0261	"	"								
Ethylbenzene (v/v)	"	ND		0.0227	"	"								
Xylenes, total (v/v)	"	ND		0.0454	"	"								
Benzene	"	ND		0.100	mg/m³ Air	"								
Toluene	"	ND		0.100	"	"								
Ethylbenzene	"	ND		0.100	"									
Xylenes (total)	"	ND		0.200	"									
Surrogate(s): 4-BFB (FID) 4-BFB (PID)		Recovery:	89.0% 94.3%	Ι	imits: 70-150% 75-125%	"							03/26/08 10:10 "	
LCS (8C26017-BS1)								Ext	racted:	03/26/08 09	9:36			
Gasoline Range Hydrocarbons	NWTPH Modified	78.1		10.0	mg/m³ Air	1x		100	78.1%	(50-150)			03/26/08 12:18	
Surrogate(s): 4-BFB (FID)		Recovery:	75.1%	I	imits: 70-150%	"							03/26/08 12:18	
LCS (8C26017-BS2)								Ext	racted:	03/26/08 09	9:36			
Benzene	NWTPH Modified	1.17		0.100	mg/m³ Air	1x		2.00	58.6%	(50-150)			03/26/08 13:18	
Toluene	"	1.25		0.100	"	"		"	62.3%					
Ethylbenzene	"	1.24		0.100	"	"		"	61.8%					
Xylenes (total)	"	3.87		0.200	"	"		6.00	64.6%					
Surrogate(s): 4-BFB (PID)		Recovery:	95.9%	I	imits: 75-125%	"							03/26/08 13:18	
LCS Dup (8C26017-BSD1)							Extracted: 03/26/08 09:36							
Gasoline Range Hydrocarbons	NWTPH Modified	74.2		10.0	mg/m³ Air	1x		100	74.2%	(50-150)	5.129	% (50)	03/26/08 12:48	
Surrogate(s): 4-BFB (FID)		Recovery:	88.4%	I	imits: 70-150%	"							03/26/08 12:48	
LCS Dup (8C26017-BSD2)								Ext	racted:	03/26/08 09	9:36			
Benzene	NWTPH Modified	1.04		0.100	mg/m³ Air	1x		2.00	52.0%	(50-150)	11.99	% (50)	03/26/08 13:48	
Foluene	"	1.06		0.100	"	"		"	53.0%		16.19	% "	"	
Ethylbenzene	"	1.10		0.100	"			"	54.9%		11.89	% "	"	
Xylenes (total)	"	3.36		0.200	"			6.00	56.0%		14.3	% "		
Surrogate(s): 4-BFB (PID)		Recovery:	97.0%	Ι	imits: 75-125%	"							03/26/08 13:48	

TestAmerica Seattle

Alling Ć 0

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full,

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073 Project Name: Project Number: Project Manager: **5353 Westlake EFR** O1CP.01396.41/255353 Jennifer Yotz

Report Created: 04/02/08 15:47

Gasoline Hydrocarbons (Benzene to Napthalene) and BTEX in Air by NWTPH-G and EPA 8021B - Laboratory Quality Control Results TestAmerica Seattle

QC Batch: 8C26017	Air Pre	paration M	ethod: EPA	5030B (P/T)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Duplicate (8C26017-DUP1)				QC Sourc	e: BRC0384-01			Extr	acted:	03/26/08 09	9:36			
Gasoline Range Hydrocarbons	NWTPH Modified	ND		10.0	mg/m³ Air	1x	ND				8.35%	(30)	03/26/08 15:14	
Gasoline Range Hydrocarbons (v/v)	"	ND		2.36	ppmv	"	ND				8.35%	, "		
Benzene (v/v)	"	ND		0.0308	"	"	ND				NR	"		
Toluene (v/v)	"	ND		0.0261	"	"	ND				55.0%	, "		R4
Ethylbenzene (v/v)	"	ND		0.0227	"	"	ND				55.1%	, "		R4
Xylenes, total (v/v)	"	ND		0.0454	"		ND				41.0%	, "		R4
Benzene	"	ND		0.100	mg/m³ Air		ND				NR	"		
Toluene	"	ND		0.100	"		ND				55.0%	. "		R4
Ethylbenzene	"	ND		0.100	"		ND				55.1%	. "		R4
Xylenes (total)	"	ND		0.200	"	"	ND				41.0%	, "	"	R4
Surrogate(s): 4-BFB (FID)		Recovery:	84.4%	I	imits: 70-150%	"							03/26/08 15:14	
4-BFB (PID)			95.8%		75-125%	"							"	

TestAmerica Seattle

Carling 0

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

Secor-Redmond

PO Box 230, 12034 - 134th Ct NE Ste 102 Redmond, WA/USA 98073 Project Name: Project Number: Project Manager: **5353 Westlake EFR** O1CP.01396.41/255353 Jennifer Yotz

Report Created: 04/02/08 15:47

Notes and Definitions

Report Specific Notes:

R4 - Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.

Laboratory Reporting Conventions:

- DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.
 ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).
- NR/NA _ Not Reported / Not Available
- dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.
- Wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported on a Wet Weight Basis.
- RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).
- MRL METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.
- MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.
- Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.
- Reporting Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.
- Electronic
 Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

 Signature
 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

 Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Seattle

gent ling

Curtis D. Armstrong For Sandra Yakamavich, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Page 7 of 7

TestAmerica

 11720 North Čreek Pkwy N Suite 400, Bothell, WA 98011-8244
 425-424

 11922 E. First Ave, Spokane, WA 99206-5302
 509-92

 9405 SW Nimbus Ave,Beaverton, OR 97008-7145
 503-90

 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119
 907-56

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

THE LEADER IN ENVIRONMENTAL TESTING

	CHAIN OF C	USTODY REPORT	Work Order #: BRC0389
CLIENT: SPEOR	INVOICE TO:		TURNAROUND REQUEST
			in Business Days *
ADDRESS: 12034 134th CTI NE			Organic & Inorganic Analyses
Redmond, WA 18052		10 7 5 4 3 2 1 <1 STD. Petroleum Hydrocarbon Analyses	
PHONE: 425-372-1600 FAX: 2-1650	P.O. NUMBER:	- · ·	
PROJECT NAME: 5353		PRESERVATIVE	
PROJECT NUMBER:		OTHER Specify:	
5353 SAMPLED BY: MATT ICA V. 5		* Turnaround Requests less than standard may incur Rush Charges.	
	Btax Bray		MATRIX # OF LOCATION/ TA
CLIENT SAMPLE SAMPLING IDENTIFICATION DATE/TIME	BT BT		(W, S, O) CONT. COMMENTS WO ID
1 TOTAL INF 3/26/08 1505			Air 1 OI
2 MiO 1507			50
			V V 03
3 TOTAL EFF V 1310	·		
4			
5			
6			
7			
8			
9			
10			DATE: 3/36/48
PRINT NAME: MANA TO FIRM: See	DATE: 3/24 OR TIME: 160	RECEIVED BY:	DATE: 3/2018
RELEASED BY:	DATE:	RECEIVED BY:	DATE:
PRINT NAME: FIRM:	TIME:	PRINT NAME:	FIRM: TIME:
ADDITIONAL REMARKS:			TEMP: 18.2 Cuto PAGE OF

TAL-1000(0108)