

GROUND WATER MONITORING: THIRD QUARTER 2022

FUTURE KIDDIE ACADEMY PROPERTY

8701 Greenwood Avenue North Seattle, WA 98103

Prepared for:

Attn: Maninder Singh 1260 NE 85th Street

Suite-108 Kirkland, Washington 98033

Issued on:

August 24, 2022

EVREN NORTHWEST, INC. Project No. 1581-21001-02

Offices in Portland and Bend, OR / San Rafael, CA P.O. Box 14488, Portland, Oregon 97293 T. 503-452-5561 / E. ENW@EVREN-NW.com This

GROUND WATER MONITORING THIRD QUARTER 2022

Future Kiddie Academy Property

8701 Greenwood Avenue North Seattle, Washington 98103

Report for:

KIDDIE SACADEMY EDUCATIONAL CHILD CARE **Attn: Maninder Singh** 12620 NE 85th Street Suite-108 Kirkland, Washington 98033

and its assignees

Issued August 24, 2022 by:

Was

Sonsed Geolo

Fik RD Chapman

Exp 1/20 (23

Erik R.D. Chapman L.G. Senor Geologist Engineering Geologist 2037 Ded Geologist Lynn D. Green

EXP. 12/14/2022

Lynn D. Green, L.E.G. Principal Engineering Geologist

EVREN Northwest, Inc. Project No. 1581-21001-02 August 24, 2022

GROUND WATER: THIRD QUARTER 2022

Future Kiddie Academy Property, Seattle, Washington

Table of Contents

1.0	Introdu	uction1
2.0	Backgr	ound1
	2.1	Purpose1
	2.2	Scope of Work1
3.0	Site Se	tting2
4.0	Additio	onal Work Completed During 3 rd Quarter 20223
5.0	Metho	ds5
	5.1	Work Objectives
	5.2	Preparation Activities
	5.1	Ground Water Sample Collection
	5.2	Waste Management and Disposal
	5.3	Analytical Methods
	5.4	Cleanup Standards
6.0	Ground	d Water Monitoring8
		6.1.1 Water Level Measurements
	6.2	Monitoring Well Sampling
		6.2.1 Water Quality Parameters
	6.3	Laboratory Analytical Results9
	6.4	Quality Control / Quality Assurance
7.0	Discus	sion of Findings10
8.0	Propos	ed Monitoring Activities10
9.0	Limitat	ions11

List of Tables, Figures and Appendices

Tables

IN TEXT (labeled by Section – Number)

- 4-1 Ecology-Approved Modified Ground Water Monitoring and Sampling Program
- 4-2 Analytical Methods

AFTER TEXT (following 'Tables' tab)

- 1 Summary of Ground Water Elevations
- 2 Summary of Water Quality Parameters
- 3 Summary of Analytical Data, Ground Water Monitoring Wells

Figures

- 1 Site Vicinity Map
- 2 Site Plan
- 3 Ground Water Potentiometric Surface Map July 25, 2022

Appendices

- A Site Photographs
- B Field Sampling Data Sheets
- C Laboratory Analytical Report

List of Acronyms and Abbreviations

Amsl	above mean sea level
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, xylenes
BTOC	Below Top of Casing
Client	Kiddie Academy
COPCs	constituents of potential concern
CSM	conceptual site model
CUL	cleanup level
cVOC	chlorinated volatile organic constituent
DO	dissolved oxygen
DRO	diesel-range organics
Ecology	Washington Department of Ecology
ENW	EVREN Northwest, Inc.
EPA	US Environmental Protection Agency
F&BI	Friedman and Bruya, Inc.
Ft/ft	feet per foot
GRO	gasoline-related organics
LNAPL	light non-aqueous phase liquid
mg/L	milligrams per liter
mV	millivolts
μg/L	micrograms per liter
μS/cm	microSiemens per centimeter
MTCA	Model Toxics Control Act
ORP	oxidation-reduction potential
PAH	polynuclear aromatic hydrocarbon
PE	polyethylene
PQL	practical quantification limit
RRO	residual(oil)-range organics
SOW	scope of work
тос	top of casing
ТРН	total petroleum hydrocarbons
VOCs	volatile organic constituents
WAC	Washington Administrative Code

1.0 Introduction

At the request of Kiddie Academy (Client), EVREN Northwest, Inc. (ENW) conducted ground water monitoring at the commercial property located at 8701 Greenwood Avenue North in Seattle, Washington (subject property; see Figures 1 and 2). The scope of work completed during this investigation further assesses the data gaps identified in ENW's Work Plan¹ to fulfill Washington Department of Ecology's (Ecology's) change of use requirements² pursuant to Client's plans to redevelop the subject property as a child daycare facility.

This report summarizes previous environmental work and describes the ground water monitoring scope of work, findings, and conclusions. This work was authorized by Client on December 29, 2021.

2.0 Background

Site background is detailed in ENW's previously submitted work plan.¹ Based on this history, ENW prepared the *Data Gap Investigation Work Plan* (Work Plan),¹ which is the basis of the scope of work (SOW) outlined in the following section and followed in the ground water sampling activities presented in this report.

2.1 Purpose

The SOW described below was designed to address Ecology's comments as outlined in ENW's *Work Plan*¹ and support state cleanup requirements of Ecology's Model Toxics Control Act (MTCA), Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 Washington Administrative Code (WAC).

2.2 Scope of Work

This work was performed in accordance with the SOW provided in ENW's proposal dated December 7, 2021.

The SOW included the following tasks:

- Prepared an internal Sample/Analysis Plan for sample collection.
- Gauged water levels in 14 monitoring wells (Well-2 through Well-13, EMW01, and MW-8) and used low-flow purge and sampling methodology to sample select wells (WELL-2 thru WELL-5, WELL-11, WELL-12, EMW01, and MW-8).
- Submitted samples to an independent laboratory for analysis.
- Evaluated analytical data against MTCA Method A and B cleanup levels.

¹ ENW, December 8, 2021. December 2021 Work Plan for Focused Data Gap Investigation, Future Kiddie Academy, Former Texaco #2111544, 8701 Greenwood Avenue North, Seattle, Washington, Facility/Site ID# 6416: Prepared for Kiddie Academy.

² Ecology, March 8, 2021. Response to Change of Use Request at the Following Cleanup Site: Name: Texaco 211544, Address: 8701 Greenwood Ave N, Seattle, Washington, Facility/Site No.: 63538329, Cleanup Site ID No.: 6416.

• Completed this report describing the above activities and findings.

Appendix A presents photos of work conducted on site during this SOW.

3.0 Site Setting

A conceptual site model (CSM) is presented in ENW's *Work Plan*.¹ Key elements of the CSM are summarized in this section.

Site and Vicinity General Description. The subject property is located on the northwest corner of the intersection of Greenwood Avenue N and N 87th Street in the Greenwood neighborhood of North Seattle, Washington. The site is located approximately six miles north-northwest of downtown Seattle, Washington and approximately four miles west of Lake Washington. The King County Assessor's Office identifies the site as parcel number 2920700030 and describes the property as rectangular in shape and 32,728 square feet in area.

The subject property is in a mixed residential and commercial area of King County. The site is bordered to the north by single-family residences, west by an alley beyond which are single-family residences, to the east by Greenwood Avenue North, beyond which is a vacant commercial building and parking lot, and to the south by N 87th Avenue, beyond which is a multi-family residential building and street-level retail businesses.

The subject property was developed in 1997 with the current commercial building in the southern portion of the site. Other site improvements include an asphalt-paved parking lot in the northern portion of the site, drainage features and landscaped areas.

Geographic Setting. According to the U.S. Geological Survey Seattle North, Washington 7.5-minute quadrangle (Figure 1), the subject property lies at an approximate elevation of 260 feet above mean sea level (amsl). Topography in the vicinity of the subject property is indicated as sloping gently to the west-southwest.

Geologic Setting. Seattle is within the Puget Lowland, an elongate structural and topographic basin between the Cascade Range and Olympic Mountains. The Seattle area has experienced repeated glacial advancements during the past 2 million years causing cyclic glacial scouring and deposition and later modified by landsides and stream erosion. Seattle is located on a complex succession of glacial and nonglacial deposits that overlie an irregular bedrock surface. According to the Geologic Map of Northeastern Seattle (Part of the Seattle North 7.5' x 15' Quadrangle),³ the upper most geology beneath the site is mapped as Holocene age Peat deposits, which are accumulations of wood and other plant material forming layers of greater than about 1 meter and of mappable extent. These units are gradational within other non-glacial deposits. The mapped stratigraphy underlying these surficial deposits are mapped as Pleistocene age glacial deposits consisting of glacially transported silt, sand and subrounded to well-rounded gravel.

Previous investigations have identified a silt and peat layer present between approximately seven and 15 feet bgs that appears to act as a confining layer separating lower saturated soils from the overlying vadose

³ Booth, D.B., Goetz, K., Schimel, S.A., 2009, Geologic Map of Northeastern Seattle (Part of the Seattle North 7.5' x 15' Quadrangle), King County, Washington: U.S. Geological Survey Scientific Investigations Map 3065, Map 1:24,000.

zone. Between 14 and 17 feet below ground surface (bgs) across the site there is a transition to a gray gravel/silt hard pan layer with relatively high density compared to overlying native sediments.

Hydrogeology. No surface water bodies, lagoons, or manmade drainages are located on the subject property. The nearest surface water body is Green Lake, located approximately 0.95 miles southeast of the site. Well log data in the area indicates ground water occurs as shallow as 4 feet bgs. Previous investigations reported first ground water in borings occurring at the site between nine and 17 feet bgs. Shallow ground water has been reported to occur within a silty/sandy layer located directly above a sand and gravel hardpan layer at depth. Shallow ground water table recharged primarily by infiltrating precipitation during the wet season. At the subject site, first ground water was generally encountered within silts and sands below the overlying peat layer. Ground water has been reported to recharge slowly into existing monitoring wells. Stabilized static ground water levels in monitoring wells have been reported ranging from approximately 0.0 feet bgs to 7 feet bgs.

Constituents of Potential Concern (COPCs). According to ENW's Work Plan,¹

- On-site dry-cleaning-related COPCs include gasoline-range organics (GRO), diesel-range organics (DRO), and chlorinated volatile organic constituents (cVOCs).
- On-site gasoline service station-related COPCs and off-site COPCs from the north-adjoining property include GRO, DRO, residual(oil)-range organics (RRO), volatile organic constituents (VOCs), and polynuclear aromatic hydrocarbons (PAHs).

Nature and Extent and Associated Data Gaps. Data gaps¹ being addressed in this SOW are associated with the nature and extent of petroleum impacts in ground water, ground-water gradient and flow direction, and seasonal effects on ground water constituent concentrations as follows:

- Ground Water. Shallow reconnaissance ground water samples reported GRO, benzene and vinyl chloride at concentrations above MTCA Method A cleanup level (CUL) in Partner's boring B2 (proposed outdoor play area). Benzene, DRO and RRO were also present in temporary wells in Partner borings B4 and B5, located at the central portion of the north property boundary and along the west side of the on-site commercial building (Figure 3).
 - Four quarters of ground water monitoring of 12 on-site monitoring wells (Well-2 through Well-13) are proposed to establish a hydraulic gradient and ground water flow direction, and evaluate seasonal effects on dissolved constituent concentrations at the north-adjoining property boundary (Well-6, Well-8, and Well-12), within and downgradient of the proposed play area (Well-4, Well-5, and Well-13), the former dry cleaner area (Well-10 and Well-11), and west and southwest of the on-site commercial building (Well-2 and Well-3).

4.0 Additional Work Completed During 3rd Quarter 2022

The following remedial actions were completed in addition to the quarterly ground water monitoring and sampling activities conducted during the 3rd Quarter 2022.

Modification to Ground Water Monitoring Program. Based on the first three quarter results of ground water monitoring sampling showed consistently low concentration of dissolved constituents in some

wells, ENW submitted a request to modify the ground water monitoring program staring in July 2022 after installation of new monitoring well EMW01 in May 2022 and refurbishment of MW-8 in April 2022. ENW proposed eliminating several wells from further monitoring, other than depth to water measurements, with continued monitoring at five locations (including the new well locations just installed and/or refurbished). Ecology approved the modified ground water monitoring plan with some revisions in an email on June 8, 2022.

The modified schedule is as follows:

Well	DTW	TPH-G, -D, -O	Petroleum VOCs	CVOCs	PAHs	Pb+Cd
Well-2	Х	Х	Х		Х	
Well-3	Х	X	Х	Х	Х	
Well-4	Х	X			X	
Well-5	Х	X			X	
Well-6	Х					
Well-7	Х					
Well-8	Х					
Well-9	Х					
Well-10	Х					
Well-11	Х	Х	Х	X	Х	
Well-12	Х	Х	Х	Х	Х	Х
Well-13	Х					
EMW-01	Х	Х	Х		Х	
MW-8	Х	X	X		X	

Table 4-1. Ecology Approved Modified Ground Water Monitoring Program

X - Ecology proposed addition

Monitoring Well Development (Well EMW-01). On July 15, 2022, monitoring well EMW01 was developed through a process of surging and pumping until development water was clear of sediment and monitored ground-water parameters had stabilized. Development water and recovered sediment were placed in a Department of Transportation (DOT) approved 55-gallon drum.

Prior to developing the well, the following characteristics were noted:

- Recorded depth to water and well depth to the nearest 0.01 foot.
- Based on the above information, the height of the water column and well volume were calculated to determine minimum purge volume.

Development of each well was completed using a Waterra Hydrolift electric pump discharging at a rate of 1.5 to 4 gallons per minute. During pumping, water quality parameters were measured regularly to track the progress of development (pH, temperature, conductivity, ORP [oxygen-reduction potential], DO [dissolved oxygen], and turbidity).

The well was surged before pumping using a surge block. Additional surging was conducted throughout development by the nature of the pump action and by moving the intake up and down the well screen within the water column. This resulted in additional sediment being suspended and pumped to the surface.

Prior to development, depth to water and depth to bottom of well were measured at 2.9 feet and 18.2 feet BTOC, respectively. In total, 8.5 gallons were purged from the well. All purge water was contained in a 55-gallon drum. Once the water cleared substantially with pumping and surging, development ceased, and the pump was removed from the well. Water levels in monitor well EMW01 were noted to return to the original elevation quickly after removing the pump from the well.

Development data was recorded on a Well Development Measurements form, and included purge volumes, time of beginning and termination of purging, and observations regarding color and water quality parameters. A copy of the completed form for well EMW01 is included in Appendix B.

5.0 Methods

This section describes the methods used to conduct the SOW. Field activities for this project are documented in the photographic log included as Appendix A.

5.1 Work Objectives

Field work performed for this project was developed with the following specific objectives:

- To sample and evaluate ground water beneath the subject site from the shallow ground water table.
- To perform ground water monitoring in a safe manner for technical personnel.
- To conduct the work efficiently and cost-effectively, without interfering or otherwise affecting the condition and operation of the property.
- To document information and data generated in a professional manner that is valid for the intended use.

The remainder of this section describes the methods and procedures used for this investigation. A photographic log of all the field work is presented in Appendix A, Field Data Sampling Sheets are included in Appendix B, and laboratory analytical reports are included in Appendix C. Findings are presented in Section 6.

5.2 Preparation Activities

ENW performed or coordinated the following activities prior to conducting site characterization activities:

Plan Preparation. An in-house Sampling and Analysis Plan was prepared for the project.

One Call Notification. Prior to any subsurface site work, a call was placed with One Call Utility Notification Service to identify and locate all public utilities near each of the proposed sampling locations.

Planning. ENW scheduled and coordinated with the Client to begin site work.

5.1 Ground Water Sample Collection

Immediately following purging, ground water samples were collected using clean, dedicated PE tubing connected to a peristaltic pump set at its lowest setting (approximately 0.1 to 0.2 liters per minute). Samples were transferred slowly into laboratory-supplied containers minimizing turbulence. Samples for VOC analysis were confirmed to contain no air bubbles within the container before sealing. Each sample container was labeled with the sample identification, date, time, and sampler.

Samples were immediately placed in cooled storage pending delivery to the laboratory under chain-ofcustody protocols. All analyses were performed by Friedman & Bruya, Inc. (F&BI), of Seattle, Washington, using the US Environmental Protection Agency (EPA) Methods specified below. The laboratory report and chain-of-custody documents are presented in Appendix C.

5.2 Waste Management and Disposal

Purge and decontaminate water generated during sampling activities were placed into a 55-gallon drum, labeled, and left on-site in a secure location pending receipt of sample laboratory results. Sampling gloves, rags, and tubing were disposed of as solid waste.

5.3 Analytical Methods

Samples were analyzed according to the analytical methods presented in Table 4-1. Samples were analyzed by F&BI of Seattle, Washington. The laboratory analytical reports are included in Appendix C.

Analytical Method	Constituents	Ground Water
NWTPH-Gx	Total Petroleum Hydrocarbons (TPH)–gasoline-range quantification (GRO)	All ground water monitoring wells
NWTPH-Dx	Total Petroleum Hydrocarbons (TPH)–Diesel-range quantification (DRO) and Residual oil-range quantification (RRO)	All ground water monitoring wells
EPA 8260B	Petroleum-related Volatile Organic Compounds (benzene, ethylbenzene, EDB, MTBE, toluene, total xylenes)	All ground water monitoring wells
EPA 8260B	Chlorinated Volatile Organic Compounds	Select ground water monitoring wells (Well-03, -04 and -10)
EPA 8270D SIM	Carcinogenic Polynuclear Aromatic Hydrocarbons (cPAHs)	All ground water monitoring wells
EPA 6020 ⁴	Total lead and cadmium	Select ground water monitoring wells (Well-12)

Table 4-2. Analytical Methods

5.4 Cleanup Standards

The State of Washington MTCA Regulations (Chapter 173-340 WAC) sets numeric cleanup levels for "routine cleanup actions". "Routine cleanup actions" are defined as those sites where: 1) cleanup

⁴ Cadmium and lead analysis requested by Ecology in an email dated April 25, 2022. The stated purpose of additional analysis was to characterize ground water contaminants migrating onto the subject site from the SMI cleanup property to the north (up gradient of the subject site).

standards for each hazardous substance are obvious and undisputed, allowing for an adequate margin of safety for protection of human health and the environment; 2) does not require preparation of an environmental impact statement, and 3) qualifies for an exclusion from conducting a terrestrial ecological evaluation. CULs are defined as the concentration of a hazardous substance in soil, water, air, or sediment that is determined to be protective of human health and the environment under specified exposure conditions. MTCA's three (3) methods for establishing cleanup levels are briefly described below.

Method A: Method A provides tables of cleanup levels that are protective of human health for the most common hazardous substances found in soil and ground water at sites. Note that these levels were developed by procedures of Method B. The Method A cleanup must meet the concentrations listed in the Method A table and, if not listed in the table, the concentration standards established under applicable state or federal laws. If neither the Method A table nor applicable state and federal laws provide an appropriate cleanup level, then natural background concentration or the practical quantification limit (PQL) may be used as the cleanup level. Method A is the simplest, most streamlined approach to cleanup, but is meant to be applied with sites that have releases of only a few, common, hazardous substances.

Method B: Method B provides cleanup levels using risk assessment equations developed for various exposure pathways, as well as by using standards specified by applicable state and federal laws. Standard Method B uses generic default assumptions; Modified Method B uses chemical-specific and/or site-specific parameters in calculating the cleanup levels. Natural background concentrations and PQLs are also considered in this method. Method B is considered the universal approach to site closure and is the method most commonly used.

Site-Specific Method B Total Petroleum Hydrocarbon Cleanup Levels: In accordance with Ecology guidance⁵, site-specific Method B cleanup levels for total petroleum hydrocarbons were calculated using Ecology's MTCATPH workbooks. MTCA regulation allows for modification of Methods B specified default assumptions based on site-specific or chemical-specific data. The Ecology-provided workbook provides the necessary tools for calculating protective soil and ground water concentrations under modified Method B. The Ecology-provided workbook provides the risk under current site conditions (forward calculation) following entry of measured soil or ground water concentrations. The workbook then executes a "forward" calculation using the equations in the regulation and solving for risk and generates protective soil and ground-water cleanup levels based on the site-specific conditions.

⁵ Ecology. August 2006. Workbook Tools for Calculating Soil and Ground Water Cleanup Levels under the Model Toxics Control Act Cleanup Regulation

6.0 Ground Water Monitoring

6.1.1 Water Level Measurements

On July 25, 2022:

- All well monuments were opened and well casing expanding plugs removed to allow water levels to equilibrate to ambient barometric pressure.
- Following equilibration, static water levels were measured in each well (prior to sample collection).
 - Depth to water in monitoring wells WELL-1 through WELL-13, EMW01 and MW-08 ranged from 0.00 feet (Well-4, -5, -7, -8, -10, -11 and -13) to 3.45 feet (MW-8) below TOC. Note that wells with 0.00 feet depth to water may be artisan.
- Inferred ground water elevation contours (presented on Figure 3) suggest a southwesterly ground water flow direction across the site, with flow in the northern portion of the site exhibiting a more westerly flow direction and the southern portion of the site exhibiting a more southwesterly flow direction. The hydraulic gradient across the northern part of the site (as measured between wells WELL-9 and WELL-3) was estimated at 0.0274 vertical feet per lineal foot (ft/ft) and in the southern part of the site (as measured between WELL-9 and WELL-2) was estimated at 0.021 ft/ft, suggesting a fairly consistent flow gradient across the site.

Water level data was recorded onto Ground Water Sampling Field forms included in Appendix B. Table 1 (behind "Tables" tab after text) presents a summary of monitoring well TOC elevations,⁶ depths to ground water, and the calculated water level elevations for previous monitoring events.

6.2 Monitoring Well Sampling

To produce representative samples, the wells were purged using a low-flow peristaltic pump and dedicated polyethylene (PE) tubing, recording various water quality parameters [pH, temperature, oxidation-reduction potential (ORP), dissolved oxygen (DO), turbidity, and conductivity] until stabilized. The results were recorded onto Ground Water Sampling Field Forms which are included in Appendix B.

6.2.1 Water Quality Parameters

Table 2 (behind "Tables" tab after text) presents a summary of water quality parameters collected during purging during the second quarter 2022. In general:

- Temperature ranged from 17.28 (EMW01) to 22.14 °C (Well-3).
- Electrical conductivity is a measure of groundwater's ability to carry an electrical current. Greater conductivity suggests a greater concentration of ions and charged molecules in ground water, including chloride and reduced metals. Conductivity ranged from 241 (MW-8) to 320 (WELL-2) microSiemens per centimeter (μS/cm).
- DO ranged from 0.22 milligrams per liter (mg/L) in EMW01 to 0.52 mg/L in Well-4.

⁶ The tops of casing of all wells have been surveyed to within 0.01 foot relative to mean sea level established by the City of Seattle benchmark #SNV-7595.

- Typically, concentrations of DO greater than 1 mg/L are suggestive of aerobic conditions. None of the monitoring wells are currently aerobic based on DO concentrations.
- pH measurements ranged between 6.62 (MW-8) and 7.94 (WELL-3), which is at the middle to upper range of pH of natural waters (6 to 9) in Washington.
- ORP ranged from -163 (WELL-3) to -43 (WELL-2) millivolts (mV).
 - Positive ORP readings generally suggest oxidizing conditions, which is conducive to degradation of petroleum hydrocarbons. ORP is currently negative in all wells measured, suggesting reductive conditions. ORP is difficult to measure in the field and additional data will be needed to determine trends in ORP at each location.

6.3 Laboratory Analytical Results

Table 3 (behind "Tables" tab after text) presents cumulative analytical results for ground water samples collected from WELL-2 through -5, WELL-11, WELL-12, EMW01, and MW-8 and screens laboratory results against generic MTCAL CULs.

Summary of third quarter 2022 analytical results:

- Total Petroleum Hydrocarbons (as GRO, DRO and RRO). DRO in monitoring wells WELL-2, WELL-5, WELL-11, and MW-8 was reported at 93x micrograms per liter (μ g/L), 98x μ g/L, 200x μ g/L, and 760x μ g/L, respectively. The DRO concentration in MW-8 exceeds the ground water cleanup level of 500 μ g/L. The laboratory flagged the results "x" indicting the sample chromatogram patterns do not resemble the fuel standard used for quantitation. To further evaluation whether the detection may be related to matrix interference, ENW requested DRO be re-analyzed using a silica gel filter. The silica gel filtered results are presented on Table 3, and results indicate:
 - $\circ~$ DRO increased from 80 $\mu g/L$ (in May 2021) to 120 $\mu g/L$ in WELL-2;
 - $\circ~$ DRO was detected at 67 $\mu g/L$ in WELL-5, consistent with previous testing in May 2021 and January 2021;
 - DRO was detected at 150 μg/L in WELL-11, consistent with previous testing in May 2021, January 2022, and April 2022; and,
 - o DRO was detected at 130 μg/L in MW-08.

All detected of DRO were below the Site-Specific calculated ground-water CUL for total petroleum hydrocarbons (500 μ g/L).

- **VOCs.** All wells were analyzed for gasoline-related VOCs (BTEX, EDB, EDC, and MTBE) and select wells were analyzed for a broader suite of VOC constituents, including dry-cleaning related halogenated VOCs. Naphthalene was the only VOC detected and only in Well-11 at a concentration less than MCTA Method A and B CULs.
- **PAHs.** PAHs were not detected in any of the monitoring wells.
- **Metals.** The ground water sample from Well-12 was analyzed for cadmium and lead to further assess potential impacts migrating onto the subject property from the adjoining property to the north. Laboratory analysis did not detect either metal constituent above laboratory MRLs.

6.4 Quality Control / Quality Assurance

The laboratory results of quality control samples are presented on Table 3 and summarized below.

- **Trip Bank.** All GRO-related VOCs were "non-detect," suggesting the samples were not affected by VOCs during storage on the site and during transport to the laboratory.
- Blind Sample Duplicate. Laboratory analysis of a blind sample duplicate collected from monitoring well EMW01 (sample "MWFD") did not detect any of the constituents analyzed, which represents a relative percent difference (RPD) of 0% for all constituents. Generally, an RPD of 20% represents the limit of acceptable variance for duplicate samples. Results of the quality control samples for all constituents suggest that the accuracy and precision of both field and laboratory testing methods are within the data quality objectives.

7.0 Discussion of Findings

Ground Water Plume Delineation. During this ground water monitoring event, ground water monitoring data from EMW01 and MW-8 were included in the analysis of the ground water plume delineation. Ground water flow during this event was generally southwesterly beneath the site, generally consistent with previous sampling events. No constituents were detected in down gradient wells to the west or southwest of historical source areas on the subject site, or in cross-gradient well EMW01. Based on currently available data, DRO was not reported in any of the monitoring wells above the site-specific cleanup level for total petroleum hydrocarbons (as a note, the laboratory indicated the presence of high levels of organics and recommended re-analysis of some samples using silica gel cleanup. The silica gel cleanup filtration removes biogenic material that can cause matrix interference during laboratory analysis, and these results are published on Table 3).

Monitoring wells WELL-4 and WELL-5 had detections of PAHs below CULS in previous round of monitoring. Ecology recommended additional data be gathered from well MW-8, WELL-4, and WELL-5 to monitoring current conditions. Laboratory analysis of samples from these wells did not detect VOCs and PAHs above laboratory MRL during this quarterly monitoring event.

8.0 Proposed Monitoring Activities

In consideration of recent ground water monitoring results and Ecology's suggestions for further investigation, the following activities are proposed for the next quarter:

- Continued monitoring and sampling of select wells based on the modified ground water monitoring and sampling program. The next quarterly monitoring event is scheduled for October 2022.
- Considering recent ground water monitoring data, including results of new monitoring well EMW01, and extent of remedial action performed in the past, recent investigations in the ROW that provided greater resolution on the distribution of residual impacts at the site, ENW will produce a site closure report following one of Ecology's model remedies outlined in their petroleum site closure guidance. The report will include appropriate tools that may be helpful in

getting the site to closure without a covenant, including use of the -part statistical method described in Chapter 10 of Ecology's Guidance for Remediation of Petroleum Contaminated Sites.

9.0 Limitations

The scope of this report is limited to observations made during on-site work; interviews with knowledgeable sources; and review of readily available published and unpublished reports and literature. As a result, these conclusions are based on information supplied by others as well as interpretations by qualified parties.

The focus of the site closure does not extend to the presence of the following conditions unless they were the express concerns of contacted personnel, report and literature authors or the work scope.

- Naturally occurring toxic or hazardous substances in the subsurface soils, geology, and water,
- Toxicity of substances common in current habitable environments, such as stored chemicals, products, building materials and consumables,
- Contaminants or contaminant concentrations that are not a concern now but may be under future regulatory standards,
- Unpredictable events that may occur after ENW's site work, such as illegal dumping or accidental spillage.

There is no practice that is thorough enough to absolutely identify the presence of all hazardous substances that may be present at a given site. ENW's investigation has been focused only on the potential for contamination that was specifically identified in the Scope of Work. Therefore, if contamination other than that specifically mentioned is present and not identified as part of a limited Scope of Work, ENW's environmental investigation shall not be construed as a guaranteed absence of such materials. ENW have endeavored to collect representative analytical samples for the locations and depths indicated in this report. However, no sampling program can thoroughly identify all variations in contaminant distribution.

We have performed our services for this project in accordance with our agreement and understanding with the client. This document and the information contained herein have been prepared solely for the use of the client.

ENW performed this study under a limited scope of services per our agreement. It is possible, despite the use of reasonable care and interpretation, that ENW may have failed to identify regulation violations related to the presence of hazardous substances other than those specifically mentioned at the closure site. ENW assumes no responsibility for conditions that we did not specifically evaluate or conditions that were not generally recognized as environmentally unacceptable at the time this report was prepared.

Monitoring Well Designation	Date	Surveyed Top of Casing (TOC) Elevation (feet AMSL) ¹	Depth to Water (DTW) (feet below TOC)	Relative Elevation (feet)
	1/26/2022		2.78	252.48
WELL-2	4/21/2022	255.26	2.64	252.62
	7/25/2022		3.20	252.06
		Minumum	2.64	252.06
		Maximum	3.20	252.62
	1/26/2022		1.54	257.99
WELL-3	4/21/2022	259.53	1.39	258.14
	7/25/2022		1.80	257.73
		Minumum	1.39	257.73
		Maximum	1.80	258.14
	1/26/2022		0.00	
WELL-4	4/21/2022	257.52	0.00	
	7/25/2022		0.00	
		Minumum	0.00	
		Maximum	0.00	
	1/26/2022		0.02	258.20
WELL-5	4/21/2022	258.22	0.00	
	7/25/2022		0.00	
		Minumum	0.00	258.20
		Maximum	0.02	258.20
	1/26/2022		1.05	258.26
WELL-6	4/21/2022	259.31	0.87	258.44
	7/25/2022	.	NM	NM
		Minumum	0.87	258.26
		Maximum	1.05	258.44
· · · · · · · · · · · · · · · · · · ·	1/26/2022		0.00	
WELL-7	4/21/2022	260.39	0.00	
	7/25/2022		NM	NM
		Minumum	0.00	
		Maximum	0.00	
	1/26/2022	000.40	2.31	261.11
WELL-8	4/21/2022	263.42	2.10	261.32
	7/25/2022	h.r.	NM	NM
		Minumum		261.11
	4/00/0000	Maximum	2.31	261.32
	1/26/2022	000 74	1.48	261.26
WELL-9	4/21/2022	262.74	1.51	261.23
	7/25/2022	Minumum	NM 1.48	NM
		Minumum	1.48 1.51	261.23 261.26
	1/26/2022	Maximum	0.10	261.42
WELL-10	1/26/2022 4/21/2022	261.52	0.35	261.42
VVELL-10		201.52	0.35 NM	
	7/25/2022	Minumum	0.10	NM 261.17
		Maximum	0.35	261.42
	1/26/2022		0.05	261.00
WELL-11	4/21/2022	261.05	0.00	
▝▝└└└┘╵╵	7/25/2022	201.00	0.00	
	112012022	Minumum	0.00	261.00
		Maximum	0.05	261.00
	1/26/2022	Maximum	0.95	260.16
WELL-12	4/21/2022	261.11	0.50	260.61
	7/25/2022		0.60	260.51
	.,_0,_0	Minumum	0.50	260.16
		Maximum	0.95	260.61
	1/26/2022		0.00	
WELL-13	4/21/2022	258.39	0.00	
	7/25/2022		NM	NM
	.,_0,2022	Minumum		
		Maximum	0.00	
EMW01	7/25/2022	258.92	2.75	256.17
		Minumum		256.17
		Maximum	2.75	256.17

MW-8	7/25/2022	255.42	3.45	251.97
		Minumum	3.45	251.97
		Maximum	3.45	251.97

1 Survey conducted on March 15, 2022 and July 25, 2022, relative to NAD83 and NAVD88.

TOC = top of casing

		Tomp	Specific	Dissolved		Oxidation- Reduction			
Well ID	Data	Temp (°C)	Conductivity (µS/cm)	Oxygen	pН	Potential (mV)	Turbidity (NTU)		
Well ID	Date 1/26/2022	8.99	(μ 3/cm) 317	(mg/L) 1.15	рн 6.81	-22	102		
WELL-2	4/21/2022	11.12	336	0.36	7.49	-22	29.2		
	7/25/2022	18.65	320	0.33	7.26	-43	7.24		
	Minumum	8.99	317	0.33	6.81	-105	7.24		
	Maximum	18.65	336	1.15	7.49	-22	102		
	1/26/2022	10	277	1.34	7.85	-339	139		
WELL-3	4/21/2022	13.36	280	0.33	7.09	8.3	1.77		
	7/25/2022	22.14	279	0.39	7.94	-163	2.1		
	Minumum	10	277	0.33	7.09	-339	1.77		
	Maximum	22.14	280	1.34	7.94	8.3	139		
WELL-4	1/26/2022 4/21/2022	11.68 11.93	278 283	1.22 0.12	7.78 7.63	-643 1.7	139 21.01		
	7/25/2022	17.4	205	0.12	6.98	-122	4.1		
	Minumum	11.68	275	0.12	6.98	-643	4.1		
	Maximum	17.4	283	1.22	7.78	1.7	139		
	1/26/2022	12.50	278	1.24	7.65	-379	139		
WELL-5	4/21/2022	14.14	291	0.31	7.84	-147	25.4		
	7/25/2022	21.04	277	0.43	6.83	-120	7.8		
	Minumum	12.50	277	0.31	6.83	-379	7.8		
	Maximum	21.04	291	1.24	7.84	-120	139		
WELL-6	1/26/2022 4/21/2022	9.19 12.23	282 284	0.88 0.33	7.22 7.66	72 162.9	23.4 3.43		
VVELL-0	7/25/2022	NM	NM	0.33 NM	7.00 NM	NM	3.43 NM		
	Minumum	9.19	282	0.33	7.22	72	3.43		
	Maximum	12.23	284	0.88	7.66	162.9	23.4		
	1/26/2022	11.69	286	1.38	7.61	-348	143		
WELL-7	4/21/2022	14.35	301	0.40	7.79	-149	23.8		
	7/25/2022	NM	NM	NM	NM	NM	NM		
	Minumum	11.69	286	0.40	7.61	-348	23.8		
	Maximum	14.35	301	1.38	7.79	-149	143		
WELL-8	1/26/2022 4/21/2022	10.43 12.15	279 285	0.59 0.30	7.23 8.05	90 231	15.9 1		
VVELL-0	7/25/2022	NM	NM	0.30 NM	8.05 NM	NM	NM		
	Minumum	10.43	279	0.30	7.23	90	1		
	Maximum	12.15	285	0.59	8.05	231	15.9		
	1/26/2022	11.00	281	1.33	7.13	-204	140		
WELL-9	4/21/2022	13.12	298	0.57	7.74	-127	19		
	7/25/2022	NM	NM	NM	NM	NM	NM		
	Minumum	11.00 13.12	281 298	0.57 1.33	7.13 7.74	-204 -127	19 140		
	Maximum 1/26/2022	9.36	290	0.44	7.09	-127	140		
WELL-10	4/21/2022	9.36	282	0.44	7.09	57.1	0		
	7/25/2022	NM	NM	NM	NM	NM	NM		
	Minumum	9.36	279	0.19	7.09	-124	0		
	Maximum	13.75	282	0.44	7.87	57.1	18.1		
	1/26/2022	9.21	287	0.76	7.05	-142	3.6		
WELL-11	4/21/2022	13.34	285	0.34	7.66	-2.5	0		
	7/25/2022 Minumum	20.65 9.21	291 285	0.40	7.82 7.05	-60.9 -142	50.29 0		
	Minumum Maximum	9.21 20.65	285	0.34	7.05	-142 -2.5	0 50.29		
	1/26/2022	9.61	291	0.70	7.02	-2.5	14.5		
WELL-12	4/21/2022	13.05	286	0.26	8.03	106.3	0		
	7/25/2022	21.00	271	0.42	7.06	-135	42.1		
	Minumum	9.61	271	0.26	7.06	-135	0		
	Maximum	21.00	286	0.80	8.03	106.3	42.1		
	1/26/2022	11.13	277	0.60	7.19	-61	19.6		
WELL-13	4/21/2022 7/25/2022	15.59 NM	284 NM	0.33 NM	7.85 NM	-145 NM	6.7 NM		
	//25/2022 Minumum	11.13	277	0.33	7.19	-145	6.7		
	Maximum	15.59	284	0.60	7.19	-61	19.6		
EMW01	7/25/2022	17.28	314	0.22	7.62	-45	105		
MW-8	7/25/2022	19.00	241	0.27	6.62	-78	105		
			Geochemistry						
	Minumum	8.99	241	0.12	6.62	-643	0		

Windham	0.33	271	0.12	0.02	-040	U
Maximum	22.14	336	1.38	8.05	231	143
°C = degrees Celsius						
µS/cm = microsiemens per o	centimeter					

 μ S/cm = microsiemens per centimeter

mV = millivolt

NTU = Nephelometric Turbidity Unit

Table 3 - Summary of Analytical Data, Ground Water (Monitoring Wells)

	Location ID		W	ell-2		Well-3				Well-4					We	ell-5	Well-6			
	Sample ID	Well #2	WELL-2-220126	WELL-2-220421	Well-2-220725	Well #3	WELL-3-220126	WELL-3-220421	Well-3-220725	Well #4	WELL-4-220126	WELL-4-220421	Well-4-220725	Well #5	WELL-5-220126	WELL-5-220421	Well-5-220725	Well #6	WELL-6-220126	WELL-6-2204
	Date Sampled	5/4/2021	1/26/2022	4/21/2022	7/25/2022	5/4/2021	1/26/2022	4/21/2022	7/25/2022	5/4/2021	1/26/2022	4/21/2022	7/25/2022	5/4/2021	1/26/2022	4/21/2022	7/25/2022	5/4/2021	1/26/2022	4/21/2022
	Sampler	ES	ENW	ENW	ENW	ES	ENW	ENW	ENW	ES	ENW	ENW	ENW	ES	ENW	ENW	ENW	ES	ENW	ENW
		Southwest Corner	Southwest Corner	Southwest Corner	Southwest Corner	West of Building,	West of Building,	West of Building,	West of Building,	South of Proposed	South of Proposed	South of Proposed	South of Proposed	Proposed Play	Proposed Play	Proposed Play	Proposed Play	North Parking Area	North Parking	North Parkin
		of Site	of Site	of Site	of Site	Next to Alley	Next to Alley	Next to Alley	Next to Alley	Play Area	Play Area	Play Area	Play Area	Area	Area	Area	Area	- Northwest Corner	Area - Northwest	
	Location							· ·					,						Corner	Corner
nstituent of Interest	Note	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)
latile Organic Constituents (VOCs)																				
Benzene	C, V	<1 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)	<0.35 (ND)		<1 (ND)	<0.35 (ND)	<0.35 (ND)		<1 (ND)	<0.35 (ND)	<0.35 (ND)
Dichloroethane;1,1-	C, V								<1 (ND)											
Dichloroethylene;1,1-	nc, v		<1 (ND)				<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)			<1 (ND)				<1 (ND)	
Dichloroethylene;1,2-,cis	nc, v						<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)								
Dichloroethylene;1,2-,trans	nc, v						<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)								
Methylene Chloride	C, V						<5 (ND)	<5 (ND)	<5 (ND)		<5 (ND)	<5 (ND)								
Ethylene dibromide (EDB)	C, V		<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)			<1 (ND)	<1 (ND)			<1 (ND)	<1 (ND)
Dichloroethane;1,2- (EDC)	C, V		<0.2 (ND)	<0.2 (ND)	<0.2 (ND)		<0.2 (ND)	<0.2 (ND)	<0.2 (ND)		<0.2 (ND)	<0.2 (ND)			<0.2 (ND)	<0.2 (ND)			<0.2 (ND)	<0.2 (ND)
Ethylbenzene	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	1	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)	<1 (ND)
Methyl tert-butyl ether (MTBE)	C, V		<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)			<1 (ND)	<1 (ND)			<1 (ND)	<1 (ND)
Naphthalene	nc, v		<0.4 (ND)	<1 (ND)	<1 (ND)		<0.4 (ND)	<1 (ND)	<1 (ND)		<0.4 (ND)	<1 (ND)			<0.4 (ND)	<1 (ND)			<0.4 (ND)	<1 (ND)
Tetrachloroethylene (PCE)	C. V						<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)				(
Toluene	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)	<1 (ND)
Trichloroethane:1.1.1-	nc. v						<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)				(
Trichloroethylene (TCE)	C. V						<0.5 (ND)	<0.5 (ND)	<0.5 (ND)		<0.5 (ND)	<0.5 (ND)								
Vinvl chloride	C, V						<0.02 (ND)	<0.02 (ND)	<0.02 (ND)		<0.02 (ND)	<0.02 (ND)								
Xylenes	nc. v	<3 (ND)	<3 (ND)	<3 (ND)	<1 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<1 (ND)	<3 (ND)	<3 (ND)	<3 (ND)		<3 (ND)	<3 (ND)	<3 (ND)		<3 (ND)	<3 (ND)	<3 (ND)
lyaromatic Hydrocarbons (Carcinogenic)																				
Acenaphthene	nc. v		<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			1.5	1.4			4.1	3.8			<0.04 (ND)	<0.04 (ND
Anthracene	nc, v		<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND
Benz[a]anthracene	c. nv		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND
Benzo[a]pyrene	c, nv		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)
Benzo[b]fluoranthene	c, nv		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND
Benzo[k]fluoranthene	c, nv		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND
Chrysene	c, nv		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND
Dibenz[a,h]anthracene	c, nv		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND
Fluoranthene	nc. nv		<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			0.050	0.046			<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND
Fluorene	nc, v		<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			0.29	0.3			1.3	1.2			<0.04 (ND)	<0.04 (ND
Indeno[1,2,3-cd]pyrene	c. nv		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND
Naphthalene	C, V		<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)
1-Methylnaphthalene	nc, v		<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)
2-Methylnaphthalene	nc, v		<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)
Pyrene	nc. nv		<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND
tals	110, 117		(1.1.2)	10.01 (1.12)			(0.0 - (.1.2))	(0.0 - (.1.5)			(0.01 (1.12)	10.0 . (.1.0)			(0.0.1 (1.12)	(0.01 (0.0))			(1.0)	10.01 (110
Cadmium	c. nv																			
Total Lead	NA. nv																			
tal Petroleum Hydrocarbons	1N/4, 11V																			
GRO	nc, v	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (NE
DRO	nc, v	<100 (ND) 80 x	<100 (ND) <50 (ND)	<100 (ND) <50 (ND)	<100 (ND) 120 x *	<100 (ND) 300 x	<100 (ND) <50 (ND)	<100 (ND) <50 (ND)	<100 (ND) <50 (ND)	<100 (ND)	<100 (ND)	<100 (ND) <50 (ND)	<100 (ND) <50 (ND)	<100 (ND) 55 x	<100 (ND) 64	<100 (ND)	<100 (IND) 67 x *	<100 (ND) <50 (ND)	<100 (ND) <50 (ND)	<100 (NL <50 (ND
							/								ů.		* 1 11	· • • (· · =)		
RRO	nc, nv	410 x	<250 (ND)	<250 (ND)	<250 (ND)	510 x	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND

 $\begin{array}{l} -= \mbox{ not analyzed or not applicable}. \\ nv = \mbox{ not detected at or above the method reporting innit (wirk_) or practical$ $mularitiation. limit (POI) shown \\ NE = \mbox{ not established}. \end{array}$

(Y) indicates analyte not detected, but detection limit is above screening concentration.

µg/L = micrograms per Liter

c = carcinogenic nc = noncarcinogenic

v = volatile

nv = nonvolatile

GRO = gasoline-range organics.

DRO = glassific range organics. DRO = residual-range organics. Bolded/Shaded concentrations exceed MTCA Method A or B Cleanup Levels

(Y) indicates analyte not detected, but detection limit is above screening

concentration

J = the identification of the analyte is acceptable; the reported value is an

estimate ** Cleanup level of carcinogenic PAHs based on cleanup standard for Benzo(a)pyrene

* = Silica gel cleanup x = the sample chromatogram pattern does not resemble the fuel standard used for quantitation.

Table 3 - Summary of Analytical Data, Ground Water (Monitoring Wells)

	Location ID		Well-7			Well-8			Well-9			Well-10	I		VVe	ell-11	
	Sample ID	Well #7	WELL-7-220126	WELL-7-220421	Well #8	WELL-8-220126	WELL-8-220421	Well #9	WELL-9-220126	WELL-9-220421	Well #10	WELL-10-220126	WELL-10-220421	Well #11	WELL-11-220126	WELL-11-220421	Well-11-220725
	Date Sampled	5/4/2021	1/26/2022	4/21/2022	5/4/2021	1/26/2022	4/21/2022	5/4/2021	1/26/2022	4/21/2022	5/4/2021	1/26/2022	4/21/2022	5/4/2021	1/26/2022	4/21/2022	7/25/2022
	Sampler	ES	ENW	ENW	ES	ENW	ENW	ES	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW
		North Parking Area	North Parking Area	North Parking Area	North Parking Area			North Parking Area	North Parking Area	North Parking Area	Former Dry	Former Dry	Former Dry	Former Dry	Former Dry Cleaner	Former Dry Cleaner	Former Dry Cleane
		- Center	- Center	- Center	- Northeast Corner	 Northeast Corner 	- Northeast Corner	- East	- East	- East	Cleaner	Cleaner	Cleaner	Cleaner	I office by cleaner	I office by cleaner	I office bry cleane
	Location																
Constituent of Interest	Note	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)
Volatile Organic Constituents (VOCs)																	
Benzene	C, V	<1 (ND)	<0.35 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)
Dichloroethane;1,1-	C, V																<1 (ND)
Dichloroethylene;1,1-	nc, v		<1 (ND)			<1 (ND)			<1 (ND)		<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)
Dichloroethylene;1,2-,cis	nc, v										<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)			<1 (ND)
Dichloroethylene;1,2-,trans	nc, v										<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)			<1 (ND)
Methylene Chloride	C, V										<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)			<5 (ND)
Ethylene dibromide (EDB)	C, V		<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)	<1 (ND)
Dichloroethane;1,2- (EDC)	C, V		<0.2 (ND)	<0.2 (ND)		<0.2 (ND)	<0.2 (ND)		<0.2 (ND)	<0.2 (ND)	<1 (ND)	<0.2 (ND)	<0.2 (ND)	<1 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)
Ethylbenzene	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Methyl tert-butyl ether (MTBE)	C, V		<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)	<1 (ND)
Naphthalene	nc, v		<0.4 (ND)	<1 (ND)		<0.4 (ND)	<1 (ND)		<0.4 (ND)	<1 (ND)		<0.4 (ND)	<1 (ND)		26 jl	39	35
Tetrachloroethylene (PCE)	C, V										<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)			<1 (ND)
Toluene	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Trichloroethane;1,1,1-	nc, v										<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)			<1 (ND)
Trichloroethylene (TCE)	C, V										<1 (ND)	<0.5 (ND)	<0.5 (ND)	<1 (ND)			<0.5 (ND)
Vinyl chloride	C, V	 <3 (ND)	 <3 (ND)	 <3 (ND)	<3 (ND)	 <3 (ND)	 <3 (ND)	<3 (ND)	 <3 (ND)	 <3 (ND)	<0.2 (ND)	<0.02 (ND)	<0.02 (ND)	<0.2 (ND)	 <3 (ND)	 <3 (ND)	<0.02 ND
Xylenes	nc, v	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<1 (ND)
Polyaromatic Hydrocarbons (Carcinogenic)			0.04 (ND)	0.04 (ND)		0.04 (ND)	0.04 (ND)		0.04 (ND)	-0.04 (ND)		0.04 (ND)	0.04 (ND)		0.0	5.0	
Acenaphthene Anthracene	nc, v nc, v		<0.04 (ND) <0.04 (ND)	<0.04 (ND) <0.04 (ND)		<0.04 (ND) <0.04 (ND)	<0.04 (ND) <0.04 (ND)		<0.04 (ND) <0.04 (ND)	<0.04 (ND) <0.04 (ND)		<0.04 (ND) <0.04 (ND)	<0.04 (ND) <0.04 (ND)		6.9 <0.04 (ND)	5.6 <0.04 (ND)	
Benz[a]anthracene	C, NV		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND) <0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)
Benzo[a]pyrene	C, NV C, NV		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND) <0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)
Benzo[b]fluoranthene	C, NV		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)
Benzo[k]fluoranthene	c, nv		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)
Chrysene	C, NV		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)
Dibenz[a.h]anthracene	c, nv		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)
Fluoranthene	nc, nv		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)
Fluorene	nc, v		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		2.3	2.3	
Indeno[1,2,3-cd]pyrene	c, nv		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)
Naphthalene	C, V		<0.4 (ND)	<0.4 (ND)		<0.4 (ND)	<0.4 (ND)		<0.4 (ND)	<0.4 (ND)		<0.4 (ND)	<0.4 (ND)		26 il	14	
1-Methylnaphthalene	nc, v		<0.4 (ND)	<0.4 (ND)		<0.4 (ND)	<0.4 (ND)		<0.4 (ND)	<0.4 (ND)		<0.4 (ND)	<0.4 (ND)		2.8 jl	1.8	
2-Methylnaphthalene	nc, v		<0.4 (ND)	<0.4 (ND)		<0.4 (ND)	<0.4 (ND)		<0.4 (ND)	<0.4 (ND)		<0.4 (ND)	<0.4 (ND)		0.83	0.61	
Pyrene	nc, nv		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)		<0.04 (ND)	<0.04 (ND)	
Metals																	
Cadmium	c. nv																
Total Lead	NA. nv																
Fotal Petroleum Hydrocarbons													1				
GRO	nc, v	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)
DRO	nc, nv	<50 (ND)	<50 (ND)	<50 (ND)	53 x	<50 (ND)	<50 (ND)	110 x	<50 (ND)	<50 (ND)	55 x	<50 (ND)	<50 (ND)	150 x	170	130 x	150 x *
RRO	nc, nv	300 x	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)

-- = not analyzed or not applicable. NU = not detected at or adove the method reporting limit (MKL) or practicalmutaritiation. limit (POL) shownNE = not established.

(Y) indicates analyte not detected, but detection limit is above screening concentration.

µg/L = micrograms per Liter

c = carcinogenic nc = noncarcinogenic

v = volatile nv = nonvolatile

GRO = gasoline-range organics.

DRO = desel-range organics. DRO = residual-range organics. Bolded/Shaded concentrations exceed MTCA Method A or B Cleanup Levels

(Y) indicates analyte not detected, but detection limit is above screening concentration.

J = the identification of the analyte is acceptable; the reported value is an

estimate
** Cleanup level of carcinogenic PAHs based on cleanup standard
for Benzo(a)pyrene

* = Silica gel cleanup x = the sample chromatogram pattern does not resemble the fuel standard used for quantitation.

Table 3 - Summary of Analytical Data, Ground Water (Monitoring Wells)

	Location ID		We	ell #12			Well-13		EMW01	MW-8		04	VQC								1
	Sample ID	Well #12	WELL-12-220126	WELL-12-220421	Well-12-220725	Well #13	WELL-13-220126	WELL-13-220421	EMW01-220725	MW-8-220725	WELL-FD-220127		Well-FD-220725	Trip Blank		MTON MULLIN			EDA D IV		
	Date Sampled	6/2/2021	1/26/2022	4/21/2022	7/25/2022	6/2/2021	1/26/2022	4/21/2022	7/25/2022	7/25/2022	1/26/2022	4/21/2022	7/25/2022	7/25/2022	Maximum	MTCA Method A	MTCA Mathed D	MTCA Site-	EPA Region IX		Constituent o
	Sampler	ES	ENW	ENW	ENW	ES	ENW	4/21/2022 ENW	ENW	ENW	ENW	4/21/2022 ENW	ENW	ENW	Ground Water	Cleanup Levels for Ground	MTCA Method B Cleanup Levels	Specific	Regional Screening Levels	Background	Potential
	Sampler	E3	LINW	LINVV	LINVY	E3	LINVV	LINV	LINV	LINW	LINVV	LINW	LINVV	LINW	Concentration	Water	for Ground	Calculated	(Tapwater)	Concentrations	Concern
		North Property			South of Loading	SW Corner of Site	Field duplicate of	Field duplicate of	Field duplicate of		(QA/QC not	(Unrestricted	Water (lowest)	Ground Water	Last Updated	(metals) ²	(COPC)?3				
		Boundary	Boundary	Boundary	Boundary	Boundary	Proposed Play Area	Proposed Play Area	Dock	next to Well-2	Well #10	Well #4	EMW01	Trip Blank	included)	Land Use)		Cleanup Level	May 2012		()
	Location	Doundary	Douridary	Doundary	Doundary	Doundary			DOCK	TIEXT TO WEII-2	VVCII #10	VVCII #4	LIVIVOI								
Constituent of Interest	Note	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µq/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	µg/L (ppb)	Y/N					
Volatile Organic Constituents (VOCs)		19 (11-7	13 11 1	13 11 1	13 11-7	13 11-7	13 11 17	19 (11)	15 41-7	13 11-7	13 41-7	13 11-7	19 MI 7	19 11-7	19 41-7	1.3 (1.7	19 11-7	19 01-7	19 (11-7	13 01 7	
Benzene	C. V	<1 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<1 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<1 (ND)	5	0.8		0.39	NE	(Y)
Dichloroethane:1.1-	C. V	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)				`						<1 (ND)		7.7		2.4	NE	N
Dichloroethylene;1,1-	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)				<1 (ND)	<1 (ND)			<1 (ND)	NE	400		340	NE	N
Dichloroethylene;1,2-,cis	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)						<1 (ND)	<1 (ND)			<1 (ND)	NE	16		73	NE	N
Dichloroethylene;1,2-,trans	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)						<1 (ND)	<1 (ND)			<1 (ND)	NE	160		110	NE	N
Methylene Chloride	C, V				<5 ND						<5 (ND)	<5 (ND)			<5 (ND)	5	5.8		4.8	NE	N
Ethylene dibromide (EDB)	C, V		<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	0.01	0.022		6.50E-03	NE	(Y)
Dichloroethane;1,2- (EDC)	C, V		<0.2 (ND)	<0.2 (ND)	<0.2 (ND)		<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<1 (ND)	5	0.48		0.15	NE	(Y)
Ethylbenzene	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	700	800		1.3	NE	Ň					
Methyl tert-butyl ether (MTBE)	C, V		<1 (ND)	<1 (ND)	<1 (ND)		<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	20	24		12	NE	N
Naphthalene	nc, v		<0.4 (ND)	<1 (ND)	<1 (ND)		<0.4 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<0.4 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	39	160	160		0.14	NE	N
Tetrachloroethylene (PCE)	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)						<1 (ND)	<1 (ND)			<1 (ND)	5	21		0.11	NE	N
Toluene	nc, v	2.0	<1 (ND)	<1 (ND)	<1 (ND)	9.4	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	9.4	1000	640		860	NE	N
Trichloroethane;1,1,1-	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)						<1 (ND)	<1 (ND)			<1 (ND)	200	16000		9100	NE	N
Trichloroethylene (TCE)	C, V	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)						<0.5 (ND)	<0.5 (ND)			<1 (ND)	5	0.54		2	NE	(Y)
Vinyl chloride	C, V				<0.02 (ND)						<0.02 (ND)	<0.02 (ND)			<0.2 (ND)	0.2	0.029		0.016	NE	(Y)
Xylenes	nc, v	<3 (ND)	<3 (ND)	<3 (ND)	<1 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<1 (ND)	<1 (ND)	<3 (ND)	<3 (ND)	<1 (ND)	<1 (ND)	<3 (ND)	1000	1600		190	NE	N
Polyaromatic Hydrocarbons (Carcinogenic)																					
Acenaphthene	nc, v		<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	1.2			6.9	NE	480		400	NE	Y
Anthracene	nc, v		<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	NE	2400		1300	NE	Y
Benz[a]anthracene	c, nv		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 ND	<0.02 ND	<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	**	**		0.029	NE	(Y)
Benzo[a]pyrene	c, nv		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 ND	<0.02 ND	<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	0.1 (**)	0.023 (**)		0.0029	NE	(Y)
Benzo[b]fluoranthene	c, nv		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 ND	<0.02 ND	<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	**	**		0.029	NE	(Y)
Benzo[k]fluoranthene	c, nv		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 ND	<0.02 ND	<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	**	**		0.29	NE	(Y)
Chrysene	c, nv		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 ND	<0.02 ND	<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	**	**		2.9	NE	(Y)
Dibenz[a,h]anthracene	c, nv		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 ND	<0.02 ND	<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	**	**		0.0029	NE	(Y)
Fluoranthene	nc, nv		<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	0.052			<0.05 (ND)	NE	640		630	NE	N
Fluorene	nc, v		<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	0.28			2.3	NE	320		220	NE	N
Indeno[1,2,3-cd]pyrene	c, nv		<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	<0.04 (ND)	<0.02 ND	<0.02 ND	<0.04 (ND)	<0.04 (ND)	<0.02 (ND)		<0.04 (ND)	**	**		0.029	NE	(Y)
Naphthalene	C, V		<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)			26 jl	160	160		0.14		N
1-Methylnaphthalene	nc, v		<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)			2.8 jl	NE	1.5		0.97	NE	Y
2-Methylnaphthalene	nc, v		<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)			<0.4 (ND)	<0.4 (ND)			0.83	NE	32		27		N
Pyrene	nc, nv		<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)			<0.04 (ND)	NE	240		87	NE	N
Metals				((1))	((1))																
Cadmium	c, nv			<1 (ND)	<1 (ND)										<1 (ND)	5	8		6.9	<1	#REF!
Total Lead	NA, nv			<1 (ND)	<1 (ND)										<1 (ND)	15	15		NE	NE	N
Total Petroleum Hydrocarbons		100 (1)5	400 (115)	400 (110)	400 (110)	100 (115)	100 (115)	100 (110)	400 (115)	100 (110)	100 (1)51	100 (115)	100 (115)		100 (1)5	000	NE		NE	N/F	
GRO	nc, v	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)		<100 (ND)	800	NE	500	NE	NE	N					
DRO	nc, nv	<50 (ND)	<50 (ND)	<50 (ND)	130 x *	<50 (ND)	<50 (ND)	<50 (ND)		300 x	500	NE	500	NE	NE	N					
RRO	nc, nv	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND) *	<250 (ND)	<250 (ND)	<250 (ND)		510 x	500	NE		NE	NE	Y					

 $\begin{array}{l} -= \mbox{ not analyzed or not applicable}. \\ nv = \mbox{ not detected at or above the method reporting limit (nrkL) or practical minimit (POI) shown \\ NE = \mbox{ not established}. \end{array}$

(Y) indicates analyte not detected, but detection limit is above screening concentration.

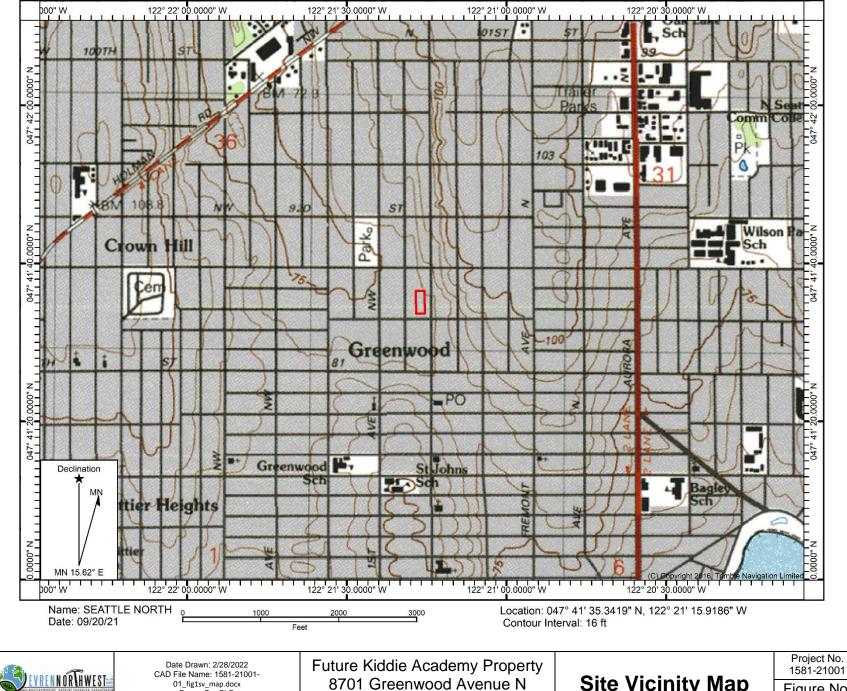
µg/L = micrograms per Liter

c = carcinogenic nc = noncarcinogenic

v = volatile

nv = nonvolatile

GRO = gasoline-range organics. DRO = diesel-range organics.

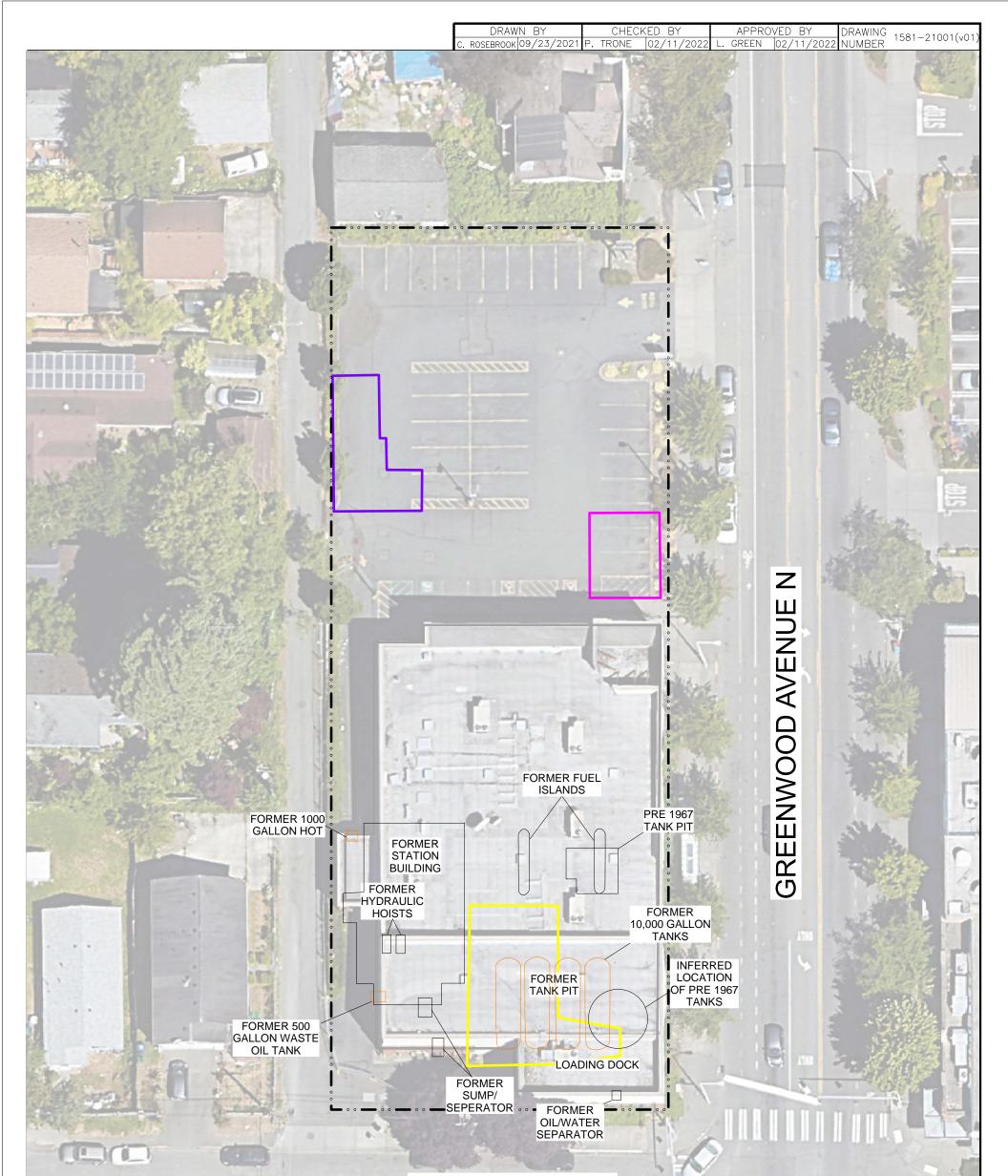

RRO = residual-range organics. Bolded/Shaded concentrations exceed MTCA Method A or B Cleanup Levels

(Y) indicates analyte not detected, but detection limit is above screening

concentration.

UNICENTRATION. J = the identification of the analyte is acceptable; the reported value is an estimate ** Cleanup level of carcinogenic PAHs based on cleanup standard for Benzo(a)pyrene

* = Silica gel cleanup x = the sample chromatogram pattern does not resemble the fuel standard used for quantitation.



01_fig1sv_map.docx Drawn By: CLR Approved By: LDG

8701 Greenwood Avenue N Seattle, Washington

Site Vicinity Map Figure No.

1

N 87TH STREET

1.0

LEGEND:	NOTES:	
SUBJECT BUILDINGS	1. BASE MAP DEVELOPED FROM AN AERIAL PHOTOGRAPH MAP DATED 2019 AND ENW FIELD NOTES.	
SUBJECT PROPERTY BOUNDARIES	2. ALL BUILDING, STREET, AND FEATURE LOCATIONS ARE APPROXIMATE.	PO BOX 14488, PORTLAND, OREGON 97293 P: (503)452-5561, E: ENW@EVREN-NW.COM
FORMER GAS STATION PER 1950 HISTORICAL SANBORN MAP FORMER VANITY CLEANERS PER CITY DIRECTORY 1951–1955, LOCATION BASED ON 1950–1966 SANBORN MAP	3. SYMBOLS REPRESENT LOCATION AND DO NOT ALWAYS REPRESENT EXACT SHAPE, SIZE, OR ORIENTATION.	FIGURE 2 SITE PLAN WITH HISTORICAL
FORMER LAUNDRY PER 1930 HISTORICAL SANBORN MAP	APPROXIMATE SCALE	FEATURES OF INTEREST
* FORMER FEATURES PER 1994 EMCON NORTHWEST INC. AND TEXACO 1991 AND ENVIRO. RESOLUTION INC. 1994 AND 1996	0 30 60 FEET	FUTRUE KIDDIE ACADEMY PROPERTY 8701 GREENWOOD AVENUE N SEATTLE, WASHINGTON

LEGEND:

SUBJECT BUILDING

SUBJECT PROPERTY BOUNDARIES

PRIOR PCS EXCAVATION MARGINS

MONITORING WELL LOCATION PER ENVIRONMENTAL SPECIALTIES MAY 2021

INFERRED AREA OF RESIDUAL PETROLEUM IMPACTED SOIL EXCEEDING THE SITE-SPECIFIC CUL FOR TOTAL PETREOLUM HYDROCARBONS (>1706 MG/KG)

GROUND WATER POTENTIOMETRIC SURFACE CONTOURS (THIRD QUARTER 2022)

NOTES:

0

- 1. BASE MAP DEVELOPED FROM AN AERIAL PHOTOGRAPH MAP DATED 2019 AND ENW FIELD NOTES.
- 2. ALL BUILDING, STREET, AND FEATURE LOCATIONS ARE APPROXIMATE.
- 3. SYMBOLS REPRESENT LOCATION AND DO NOT ALWAYS REPRESENT EXACT SHAPE, SIZE, OR ORIENTATION.

-(N)

60 FEET

APPROXIMATE SCALE

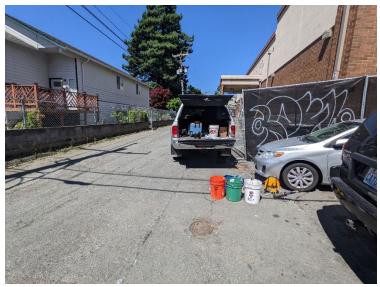
30

PO BOX 14488, PORTLAND, OREGON 97293 P: (503)452-5561, E: ENW@EVREN-NW.COM

FIGURE 3 GROUND WATER POTENTIOMETRIC SURFACE MAP - THIRD QUARTER 2022

PROPOSED KIDDIE ACADEMY PROPERTY 8701 GREENWOOD AVENUE N SEATTLE, WASHINGTON

Appendix A


Site Photographs

New monitoring well EMW01 being developed on June 2, 2022.

Purging and sampling EMW01 with a peristaltic pump and field meter with flow-through cell, view looking west.

Low-flow purge and sampling set up on Well #2 in the southwestern corner of the site.

Low-flow purge and sampling at MW-8, view south.

8701 Greenwood Avenue N	Site	Project No. 1581-21001-02
Seattle, Washington	Photographs	Appendix A

Appendix B

Field Sampling Data Sheets

Well Development Measurements Site: Brownessed Service Monitoring Well: Date: Aller Depth to Well: Date: Aller Depth to Well: Depth to Well: Depth to Well: Depth to Bottom of Well: B: Z n Vel of Water Charm: Depth to Bottom of Well: Depth to Bottom of Well: Well: Depth to Bottom of Well: Depth to Bottom of Well: Well: Depth to Bottom of Well: Depth to Bottom of Well: Well: Depth to Bottom of Well: Depth to Bottom of Well: Well: Depth to Bottom of Well: Depth to Bottom of Well: Well: Depth to Well: Depth to Well: Depth to Well: Well: Depth to Well: Depth to Well: Depth to Well: Well: Depth to Well: Depth to Well: Depth to Well: Well: Depth to Well: Depth to Well: Depth to Well: Well: Depth to Well: Depth to Well: Depth to Well: Well: Depth to Well: Depth to Well: Depth to Well: Well: Depth to Well: Depth to Well: Depth to Well: Well: Depth to Well: Depth to Well: Depth to Well: Well: Depth to Well: </th <th></th> <th>S)EV</th> <th>RENNORTHY</th> <th>/EST#</th> <th></th> <th></th> <th>đ.</th> <th></th> <th></th> <th></th>		S)EV	RENNORTHY	/EST#			đ.			
Site: $Brown A Graenwood Sea. Project No: 1561 - 2(000)Monitoring Well: tudy 0 Date: 41552Depth to Bottom of Well: 162 n 1^{t} 1D of CasingVol. Of Water fung installation? II = 1 n 1^{t} ID of CasingVol. of Water (Well: 0.02 get. Conversion Factor: 2^{s} - 0.164 galft.Added water fung installation? How much?Weather:Weather:Weather:ITme Volue 0 (0.0) FWeather:ITme Volue 0 (0.0) FVol. 0 $		Anonora	00		Well De	evelopm	ent Mea	asuremen	ts	
Depth to Water: Depth to Bottom of Well: IS-2 n N* ID Depth to Bottom of Well: IS-3 n Conversion Factor: 2"-0.164 gal/IL. Added water during installation? How much? How much? How much? Wester Column: Well information How much? How much? Wester Column: Well information? How much? Wester Column: Well information? How much? Time Value Column Well Openation Appenance of Water Time Value of Water Column: Besture: How much? 10:557 Besture: Installe on the factor of Water 10:557 Besture: Installe on the factor of Water 11:20 I. Besture: Installe on the factor of Water 11:20 I. I. I. I. I. 11:15 2 I. I. I. I. I. 11:16 2 I. I. I. I. I. I. 11:17 2 I. I. I. I. I. I. I. I.			and the second second	L. Gra	enwood	d Sea			10.: 1581-21001-	21
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			g wen	C MO	vol	Well Ir	oformatic	the second se	HISP2	
Height of Water Column. <u>Left 15.3</u> <u>n</u> Vol. of Water in Well: <u>0.612</u> <u>eel.</u> <u>Conversion Factor 2"-0.164 gal/ft.</u> <u>Added water during installator?</u> <u>How much?</u> <u>How much</u>					7	ft		and an		
Added water during installation? How much? Weather: Guide Y arameters During Development Time Volume of Water Time for water Temper- ature 10:55 0.5.9 10:57 0.5.9 10:57 0.5.9 10:57 0.5.9 10:57 0.5.9 11:15 0.5.12.70 11:15 0.5.12.70 11:15 0.5.12.70 11:15 0.5.12.70 11:15 0.5.12.70 11:15 0.5.12.70 11:15 0.5.12.70 11:15 0.5.12.70 11:15 0.5.12.70 11:15 0.5.12.70 11:15 0.5.12.70 11:15 0.5.12.70 11:15 0.5.12.70 11:17 0.00 11:18 0.5.12.70 11:19 0.00 11:18 0.5.12.70 11:19 0.00 11:19 0.00 11:19 0.00 11:17 0.00 11:18 0.00		Height of W	ater Column: _	1577	White states and state	6 A 17 A 19	Lc.	ID 9	+ Cabing	
Weather: During Development Image: Standard					gal.					
Weter Quality Parameters During Development Time Value Temper Image: The State Temper PH Conductivity ORP Dissolved Appearance of Water. 107:54 Temper PH Conductivity CRP Oxygen Appearance of Water. 107:54 Temper PH Conductivity CRP Conductivity CRP 107:57 Temper The Conductivity CRP Conductivity Conductivity Conductivity 107:57 Temper Temper The Conductivity Conductivity Conductivity Conductivity 107:57 Temper Temper Temper Conductivity Conductivity Conductivity 111:57 Temper Temper Temper Temper Temper State Temper 111:57 Temper Temper Temper Temper Temper Temper 11:23 Temper Temper Tempe		Weather:			OF			How much	<i>(</i>	
Time Volume of Water Temper hater (C) pH Conductivity (mSkm) ORP (mmU) Discolution Organ Appearance of Water. 10:52 0.55 0.5 9.4 152.0.5 152.0.5 152.0.5 10:57 0.57 0.5 0.5 1.5 152.0.5 152.0.5 11:05 1.5 0.5 0.5 1.5 152.0.5 152.0.5 11:06 1.5 1.7.71 0.4 0.4 152.7 100.0 11:17 2.0 162.0 6.301 167.7 100.0 100.00 11:18 54.0.4 0.27.0 100.0 100.00 100.00 11:17 2.0 162.0 27.0 70.00 gray brown 11:18 0.12.0.0 11.2.0 10.20 11.2.0 100.0 100.0 11:20 -2.25 1.2.3 10.2 11.2.0 100.0 100.0 11:23 1.2.3 10.2 12.2.0 10.0 100.0 100.0 11:23 1.2.5 1.2.0 12.2.0 10.0 100.0 100.0 11:32 1.2.5 1.2.0 1.2.2.0 10.0 100.0 100.0 11:32 1.2.5 1.2.0	8			00						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Volume of Water	Temper-		Conduc- tivit	y ORP		1 ·····	
10:56 0.5 gel 150 with advalue refiace of 55 final 10:57 9 9 9 9 9 1000 Provide refiace of 55 final 11:06 1.5 17.71 646 0.301 167 10.82 71000 Provide 11:17 2.0 1629 662 0280 76 11.96 71000 graf brown fuch e 11:19 2.0 1629 662 0280 76 11.96 71000 graf brown fuch e 11:18 9 9 16 20 280 76 11.96 71000 graf brown fuch e 11:18 9 9 16 20 280 76 11.96 71000 graf brown fuch e 11:23 9 16 5 17.3 303 1 1128 10 gray (brown fuch e 11:23 9 16 5 17.3 303 1 1128 10 gray (brown fuch e 11:33 74.25 6 16 with down fuch e 11:32 9 100 17.000 17.000 17.000 17.000 17.000 17.000 19.000 10.0000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.00000 10.0000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.00000 10.000000 10.000000 10.0000000 10.00000000		100000	Removed				(± mv)		Appearance of Water	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			inte	1		P	1	(
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			0. 9. 9.2		6.			footvalu	e veptace w/ s	5 Botrah
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1-0		- AN	en t	1	fter	Dak mown /s	ands
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		11:06	1.5	17.7(087			
$1 \cdot 18$ $1 \cdot 20$ -235 $1 \cdot 40$ $1 \cdot 23$			0	11.20	1	4				
11:18 gray hen. / fort. d 11:20 -225 11:23 begin adding 11:30 begin adding 11:30 begin adding 11:37 begin adding 11:37 begin adding 11:45 begin adding <tr< td=""><td></td><td>11:19</td><td>2.0</td><td>16.59</td><td>2.2.4.4.4.5.0202111</td><td></td><td></td><td>11.96</td><td>71000 gray bro</td><td>own furth e</td></tr<>		11:19	2.0	16.59	2.2.4.4.4.5.0202111			11.96	71000 gray bro	own furth e
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11:18			v.q	n an	1		3	
123 base and in the second of the second			~ 275		Vily	n dn	1		gray heren / for	d.d
Image: Second		1:23	, .		beg	in ad	hip		0)	•
1.33 -4.25 Slow don't fam dry and locoNTR 11.32 - Ant 11.43 14.02 7.5 0.303 -14 11.74 7.000 MTR 5 11.43 14.02 7.45 0.303 -14 11.74 7.000 MTR 5 11.45 5.5 16.4 100K5 improved - Parameter Date & Time Calibrated Calibration Results - - PH - - - - - - DO - - - - - - Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.) - - - - Do - - - - - - - - Develop by pumping 5 to 10 well volumes out - or until water clears after surging. - -<		HEF	3.5	15.65	713	.303	- ((28		oun? 100
11:32 - Int - Int -	3	14-	r4.25		tat	Pin	21	1		102
11.43 14.02 7.45 0.303 -14 11.44 7.000 mms - 11.45 5.5 0.4 1.00K5 mp marked -	4 13 141 - 14	11:32	100	- 404			~ (@	un on	J our 1000	SNTL
11:45 5.5 3.4 Jokk un med 11:52 7-25 Pump Gallbration Meter Calibration Meter Number: Meter Number: Parameter Date & Time Calibrated Calibration Results PH Conductivity ORP DO Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.) Develop by pumping 5 to 10 well volumes out - or until water clears after surging.		· 61	-90		v	un dany			71000 MTUS	
Image: Notes: Image: Network Image:				14.02	7.15	the state of the second st		11.70	1 () () () () () () () () () (
Meter Calibration Meter Number: Parameter Date & Time Calibrated Calibration Results pH		1 and the second		. 0		(0)	ols		ed .	
Parameter Date & Time Calibrated Calibration Results pH		11.50	4-15	Meter	Calibrat	ion	goin	<u>a ve</u>		over 10
Conductivity Image: Conductivity ORP Image: Conductivity DO Image: Conductivity Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.) Image: Conductivity Develop by pumping 5 to 10 well volumes out - or until water clears after surging. Image: Conductivity		The second se	neter		& Time Calibr	rated			with a second	- 1911
DO Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.) Develop by pumping 5 to 10 well volumes out - or until water clears after surging.		and the statement of th		1.1						14.94
Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.) Develop by pumping 5 to 10 well volumes out - or until water clears after surging.		Start at the second sec	4							
	. ji	Votes: (well cor	ndition, nearby activ	vities or chan	ges in land u	use, odors, pro	blems, devia	tions from plan,	etc.)	
Stop Pump @ 11:57 ~ B.5 gallone out mestly clean yet over (000 NTUS	1									
mestly clean yet over (000 Notice		5	to pu	mp (D /I	1:57	~	8.5	gallone out	5Y)
			1.2711 1.172		111097	ly c	lean	yet	un 1000 NS	the
					1 10-01	J.		1-1-1		1

EVREN Northwest GROUND WATER FIELD SAMPLING DATA FORM (FIELD)

PROJECT NAME:	8701	Greenwood	Avenue	N.	Seattle

PROJECT NUMBER: 1581-21001-01

Event: Ground Monitoring

Date: 07-25-22

Field Personnel:	Dan S. a	nd Bailey F.						Monitoring Well ID): Valell-12	
Weather Condition	s: 🤞	WALK	72*					Start Time		
DTW (prior to purgi	ng): 🥠	60 1								
			V	VELL PI	JRGING IN	FORMATION	I			Les carette
Time	DTW During Purging (feet)	Pumping Rate (L/min)	Temperat (degree		Specific Conductivity 1S/cm), ±3%	Dissolved Oxygen (mg/L), ±10%	Water pH (S.U.), , ±0.1%			Total Quantity Purged (gallons/liters)
11:37	1,25	90w~	21.7	_	*********	***************************************	6.9.1	- 59	10,7	,2
10741	1.30	JacO2P			.270	039	1.03	-113	303	1.4
11:45	1.33	Ango-C	21.5		210	0,40	7.04	-121	32.3	2.9
11,49	1.36	200ml	and an	**********	.171	0,41	1.05	-130	20.2	3.2
11:41	1136	200ml			1271	0,42	7.06	-135	12.1	<u> </u>
Tubing: Purge Pumping Rate Decontamination met Well Conversion Fact Recommended Well	hod: ors: 2" = 0.17 ga				ELL COND	ITION		/ell casing (in. diam) Pump/Intake Depth		
QA/QC Sample:	Duplic	cate	Lab QA	/QC		nent Blank	None			1
Sampling Method:	10-11 - 2	fos Pump	Peristalt		Bladde		Dual			
			Par ensian				Valve			
				SAME	PLE INFOR					
Analytic Paramete		Destinat Laborate	ory	Preser		Bottle Size	Number of bottles	Sampl	e ID	Time Sampled
Gx MTCA VOCa		F + E	5	HC		40ml		July 2-61	1-22000	11:50
MTCA VOCs				HC		40ml	4			
Dx				nor		500 ml ambe				
cPAH		" "		nor		1L amber	1			
Total Pb,		1.000		HN	03	250ml poly	1			
Method of Transporta All samples were imm	ediately placed ir			ice or "blu	e lce"		Yes	🗆 No		
Field Observations/N	lotes of samplin	ig event:					4			
			7							-
		11				10	/(
Signature of Field Pe	ersonnel:	1			2	\sim				

GROUND WATER FIELD SAMPLING DATA FORM (FIELD) **EVREN Northwest** wood Avenue N. Seattle

PROJECT NAME: 87	701 Green	ß
------------------	-----------	---

Event: Ground Monitoring

PROJECT NUMBER: 1581-21001-01 Date: 07 (25/22

· **,** ·

Field Personnel:	k	nd Bailey F.	niet				Monitoring Well II		
Weather Condition		Sumy	76. 5-	- ^			Start Time	e: (o.:	22
DTW (prior to purg	ling):	0.0`	WEL	DURCING	NFORMATIO	N			and a second
Time	DTW During Purging (feet)	Pumping Rate ⊷(L/min)	Temperature (degree C)	Specific Conductivity (mS/cm), ±3%	Dissolved Oxygen	Water pH	ORP (mV), , ±10 mV	Turbidity (NTU), , ±10% (Total Quantity Purged 'gallons/liters)
10:30		150		entering		1	les cell		
0:22	-0.70	11	21.68	289.45	0.37	7.62	-20.0	0.74	0.4
10:30	0.90	ار	Z0.35	288.45	•	7.70	-27.4	3.63	10
10.10	0.10	100	21.13	289.2B	0.24	772	-40.8	7.50	1.40
្ត ៧៧	0.96	<u>i (</u>	20.87	288.15		7.81	-50.6	15.40	160
10.49	0.96	<u>l(</u>	20.92	288.41	0.40	7.72	- 50.0	29.99	2.20
[D.52	1.09	<u> </u>	20.45	290.83	, 0.40	782	- 60.9	50.29	260
	-	· · · · · · · · · · · · · · · · · · ·		fut to	.10 -			•	
		1	(el	red ca	ngk-				
		1							
		1							
							1		
								-	
	<u> </u>		\sim		<u> </u>		<u> </u>	Total Purgec	1.0
Tubing:	1/41	YDRE	Ada	· Ned	<u> </u>				6
Purge Pumping Ra	te (approx, L/m):	15	D mt/min		/		Nell casing (in. diar	n): 2 "	
Decontamination m		i		, ·			. Pump/Intake Dep		(
Well Conversion Fa		gal / foot; 5/8" = 0	0.02 gal/foot			<u></u>			
				WELL CON	DITION				
Recommended We	II Repairs/Addition	nal Notes:	a la desenta de la construcción de						
								,	
							1		
QA/QC Sample:	L Dup	licate	Lab QA/QC		pment Blank	None Dual			
ampling Method:	🔲 Gru	ndfos Pump	Peristaltic F	Pump 🔲 Blad	der Pump	Valve			
	<u> </u>	·····		SAMPLE INFO	RMATION			agrava a sta	N AN AN AN AN
Analy	tical	Destinat	ion		Bottle	Number			Time
Param	eters	Laborato	and the second	Preservative	Size	of bottles	and the second	ple ID	Sampled
G		F + E	3 ·	HCI	40ml	2		-220725	_
§	s/CVOCs	"		HCI	40ml	4	111-11-		
D		۲		none	500 ml am		1001.		
cPA	Hs	ű		none	1L ambe	er 1			
f Transpo	rtation of samples	S: FedEx		H1 1 1. V			No		
	nmediately placed		d packed with ice	or "blue ice"		Yes		······································	
<u>irvation</u>	is/Notes of samp	aing event.	<u>l</u>						
			$\langle 1$						
laid	Personnel:								
		$ \mathcal{A}$	KI						
1997 - 1997 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -			1)					
	0.53	09							
	נייי שן	4							

EVREN Northwest GROUND WATER FIELD SAMPLING DATA FORM (FIELD) PROJECT NAME: 8701 Greenwood Avenue N. Seattle PROJECT NUMBER: 1

PROJEC	CT NAME:	8701	Greenwood	Avenue	N.	69
Event:	Ground I	Monitori	ng			

PROJECT NUMBER: 1581-21001-01

Date: 07-25-22

Field Personnel:	Dan S. a	nd Bailey F.					Monitoring Well I	D: Well-5	
Weather Conditions	s: Š	unner 7	00	***********************		******	Start Time	And the second s	
DTW (prior to purgi	ng): 🔨 🏹 🗢	170 F	some (,7007					
			WELL	PURGING IN	FORMATION				
Time 10:3)- 10:3)- 10:36 10:34 10:32- 10:56 40:56	DTW During Purging (feet) Toc Toc Toc Toc Toc Toc Toc	Pumping Rate (L/min)	WELL Temperature (degree C) 23.74 24.55	Specific Conductivity (mS/cm), ±3%	IFORMATION Dissolved Oxygen (mg/L), ±10% 0, 127 4, 0, 3 0, 143 0, 143 0, 143	Water pH (S.U.),, ±0.1% 5.93 6.76 6.95 6.74 6.74 6.74 6.95 6.95	ORP (mV), , ±10 mV - 53 - 11 - 63 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	Turbidity (NTU), , ±10%	Total Quantity Purged (gallons/liters) ().(-).(-).(-).(-).(-).(-).(-).
Tubing: Purge Pumping Rate Decontamination met Well Conversion Fact Recommended Well	(approx. L/m): hod:	al / foot; 5/8" = 0.	·	WELL CONE			/ell casing (in. diam Pump/Intake Deptl		
QA/QC Sample:	Dupli	cate	Lab QA/QC	Equipr	nent Blank	None None		1	1
	Statement of the second second	20220	and the second second						
Sampling Method:	Grun	dfos Pump	Peristaltic Pur	np 🗌 Bladde	er Pump	Valve			
			SA	MPLE INFOR	RMATION				
Analytic Paramete		Destination Laborator		servative	Bottle Size	Number of bottles	Samp	and the second se	Time Sampled
Gx		F + B		HCI	40ml	2	Nul 05-6	W-226126	W 62
Dv				/			-		
Dx	_			none	500 ml ambe		<u> </u>	*	
cPAH	s			none	1L amber	1			
Mathematica									
Method of Transporta All samples were imm		FedEx	Courier	051					
Field Observations/			packed with ice or	Diue Ice		Yes	🗌 No		
	votes of samplin	ng event.							
Signature of Field Pe	ersonnel:) [[
				/					

EVREN Northwest

GROUND WATER FIELD SAMPLING DATA FORM (FIELD)

PROJECT NAME: 8701 Greenwood Avenue N. Seattle Event: Ground Monitoring PROJECT NUMBER: 1581-21001-01

Date: 07-25-22

Field Personnel: Weather Conditions DTW (prior to purgir	: .		73° asing (SOT			Monitoring Well I Start Tim		12:36
and the second				PURGING	NFORMATION				
Time 12:44 12:44 12:44 12:48 12:48 12:52	DTW During Purging (feet) TOC TOC TOC TOC	Pumping Rate (L/min) 200 ML 200 ML 200 ML	Temperature (degree C) 17.66 17.66 17.61 17.43	Specific Conductivity (mS/cm), ±3% .275 .275 .275 .275 .275 .275	6 (mg/L), ±10% (55 55 55 55	Water pH (S.U.), , ±0.1% 6.44 6.44 6.47 6.43	-103 -110 -114 -119	7.2 5.3 4.7 4.2	Total Quantity Purged (gallons/liters) 3.2 3.2
		2001	<u>0</u> 27.72		• 52	6.43	- 122	4,1	<u>4.0</u>
Tubing:	nod: prs: 2" = 0.17 ga	al / foot; 5/8" = 0		WELL CON			Vell casing (in. diam . Pump/Intake Dept		:
QA/QC Sample: Sampling Method:	Duplic	cate Ifos Pump	Lab QA/QC	1000	pment Blank der Pump	☐ None ☐ Dual Valve			
		1200		AMPLE INFC	RMATION				
Analytic Paramete		Destinat Laborate	ory Pr	eservative	Bottle Size	Number of bottles	Sam		Time Sampled
Gx Dx		F + E "		HCI none	40ml 500 ml amber	2	MELLO4-CU	-110725	12:57
cPAHs	3	u		none	1L amber	1			
Method of Transportat All samples were imm Field Observations/N	ediately placed ir			"blue Ice"		Yes	□ No		
Signature of Field Pe	rsonnel:	Â	<u> </u>						
)						

EVREN Northwest

GROUND WATER FIELD SAMPLING DATA FORM (FIELD)

PROJECT NAME:	8701	Greenwood	Avenue	Ν.	Seattle
	C.2. NUCL 202				

PROJECT NUMBER: 1581-21001-01 Date:

Event: Ground Monitoring

Field Personnel:	Dan S. a	nd Bailey F.					Monitoring Well I	D: Well-3	
Weather Condition	a second s		(B				Start Tim	Annalis Manfred and the second s	
DTW (prior to purg	ing):	601						and the second se	A
			WELL	PURGING IN	FORMATION				
Time 13:34 13:35	DTW During Purging (feet)	Pumping Rate (L/min)	Temperature (degree C)	Specific Conductivity (mS/cm), ±3%	Dissolved Oxygen (mg/L) , ±10%	Water pH (S.U.), , ±0.1%	ORP (mV), , ±10 mV 75 101	Turbidity (NTU), , ±10%	Total Quantity Purged (gallons/liters)
13:42	3.41	150ml	21.64	.2.17	192	1-22	-125	5.3	1.19
13:50	2,90 1,000 3,95 8.89	150ml 150ml 100ml 100ml	20,58	*279 *279	10, 90, 90, 90, 90, 90, 90, 90, 90, 90, 9	7 A3 7 49 7 49 7 50 7 50 7 68	-138 -197 -155 -161 -163	2.5	2.4 2.5 2.5 2.5
								Total Purgeo	
Purge Pumping Rate Decontamination me Well Conversion Fac Recommended Well	thod: ctors: 2" = 0.17 g		02 gal/foot	WELL CONE	DITION		/ell casing (in. diam Pump/Intake Dept		
								·	
QA/QC Sample: Sampling Method:	Dupli		Lab QA/QC	(<u>)</u>	ment Blank er Pump	☐ None ☐ Dual Valve			
		California and		AMPLE INFOR	RMATION				
Analyti Paramet	ters	Destinatio Laborator		eservative	Bottle Size	Number of bottles	Samı	ole ID	Time Sampled
Gx		F + B		HCI	40ml	2	WELL03-	Gw. Mon	5 A. 05
MTCA VOCs Dx	/ CVUCs			HCI none	40ml 500 ml ambe	4			
cPAH	ls			none	1L amber	er 1 1			
0174	10			none	TL amber				
Method of Transporta All samples were imr Field Observations/	nediately placed i		Courier packed with ice or	"blue Ice"		Yes	🗋 No		
Signature of Field P	ersonnel:	42		M					

EVREN Northwest GROUND WATER FIELD SAMPLING DATA FORM (FIELD)

PROJECT NUMBER: 1581-21001-01

Date:

PRO	JECI	ΓNAME:	8701	Greenwood	Avenue	N.	Seattle
-		o					

Event: Ground Monitoring

eld Personnel:	Dan S. a						1 1			
eather Conditions	s:	Sum	4	&°	F			Start 1	Time:	3:19
TW (prior to purgi	ng):	3,20		ster				an a		
1			1	WELL	PURGING IN	IFORMATION				Total
Time	DTW During Purging (feet)	Pumping Rate	Tempera (degree		Specific Conductivity (mS/cm), ±3%	Dissolved Oxygen (mg/L), ±10% (\$	Water pH	ORP ~(mV), , ±10 n	Turbidity 1אל (NTU), , ±1	
Time	(leet)	(L/min)	1	<u> </u>						10
	210	170		<u>2</u> W	enter	\ Aim '	2.15	Nev Ce 34.0	~	
3.21	3.67		- []·	40	312.10		7.70	- 3 2	0.7	
13:29	9.60		14	.00 50	320.90	5 0.36 0.28	7.41	-9.7	6.8	
3:33	2.10	(00	, r.	.23		0.20	7.21		egg)	r an 1-9
	-2.35	10	(0)	.06	317-01	0.27 0.33	7.23	- 15.1	5 3.50	7.2
13:37	5.5	1	6	100		0.30	7,20	- 24-	1 40	
13:41	6.20				316.17		- 7 Lo	. 12	7 7-20	
15:49	¥'.)•		(1 0-	65	1110		- f. C.P.	[-2-	6 1 23	7 2.1
				ht	VON					
) ()e	Xec	& Gom	e				
					I	-				
	L									
		1				1		I		
						<u> </u>			Total F	Purged: Sin
Tubing	1/		F (And	laca Leal				Total F	Purged: 3.1
ubing:	<u> </u>	VVFV		ded	heated			/ell casing (in		
Purge Pumping Rate	e (approx. L/m):		E (00/M)/	deð Ímin	heated			/ell casing (in. Pump/Intake I	diam):	
Purge Pumping Rate	e (approx. L/m): ethod:		00/11/		heated			/ell casing (in. . Pump/Intake I	diam):	
Purge Pumping Rate	e (approx. L/m): ethod:		00/11/		WELLCON				diam):	
Purge Pumping Rate Decontamination me Vell Conversion Fac	e (approx. L/m): ethod: ctors: 2" = 0.17	gal / foot; 5/8" = (00/11/		WELL CON				diam):	
Purge Pumping Rate	e (approx. L/m): ethod: ctors: 2" = 0.17	gal / foot; 5/8" = (00/11/		WELL CON	DITION			diam):	
Purge Pumping Rate Decontamination me Vell Conversion Fac	e (approx. L/m): ethod: ctors: 2" = 0.17	gal / foot; 5/8" = (00/11/		WELL CON	DITION			diam):	
Purge Pumping Rate Decontamination me Vell Conversion Far Recommended Wel	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Additio	gal / foot; 5/8" = (0.02 gal/foot	t					diam):	
Purge Pumping Rate Decontamination me Vell Conversion Far Recommended Wel QA/QC Sample:	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Additic	gal / foot; 5/8" = 0 nal Notes:	0.02 gal/foot		Equi	oment Blank	Approx		diam):	
Purge Pumping Rate Decontamination me Vell Conversion Far Recommended Wel QA/QC Sample:	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Additic	gal / foot; 5/8" = (0.02 gal/foot		Equi		Approx		diam):	
Purge Pumping Rate Decontamination me Vell Conversion Fac	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Additic	gal / foot; 5/8" = 0 nal Notes: plicate undfos Pump	0.02 gal/foot	t QA/QC staltic Pu	Equi	oment Blank der Pump PRMATION	Approx None Dual Valve		diam):	
Purge Pumping Rate Decontamination me Vell Conversion Far Recommended Wel QA/QC Sample: Sampling Method: Analyt	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Additio	gal / foot; 5/8" = (nal Notes: plicate undfos Pump	0.02 gal/foot	t QA/QC staltic Pu	mp 🗌 Equi AMPLE INFC	oment Blank der Pump PRMATION Bottle	Approx None Dual Valve Number	Pump/Intake	diam):	2 ¹⁰ Pv C
Purge Pumping Rate Decontamination me Vell Conversion Far Recommended Wel QA/QC Sample: Sampling Method: Analyt Parame	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Additio	gal / foot; 5/8" = 0 nal Notes: plicate undfos Pump Destinat Laborat	0.02 gal/foot	t QA/QC staltic Pu	mp D Blad AMPLE INFC	oment Blank der Pump PRMATION Bottle Size	Approx None Dual Valve Number	Pump/Intake	diam):	2 ¹⁰ Pv C
Purge Pumping Rate Decontamination me Vell Conversion Far Recommended Wel QA/QC Sample: Sampling Method: Analyt Parame G>	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Additic I Repairs/Additic Gruent Comparison I Repairs/Additic	gal / foot; 5/8" = (nal Notes: plicate undfos Pump Destinat Laborat	0.02 gal/foot	t QA/QC staltic Pu	mp Equi MP Blad AMPLE INFC reservative HCl	oment Blank der Pump PRMATION Bottle Size 40ml	Approx None Dual Valve Number	Pump/Intake	diam):	2 ¹⁰ Pv C
Purge Pumping Rate Decontamination me Vell Conversion Far Recommended Wel QA/QC Sample: Sampling Method: Analyt Parame G> MTCA \	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Addition I Repairs/Addition Gruentical eters	gal / foot; 5/8" = (nal Notes: Dicate undfos Pump Destinat Laborat	0.02 gal/foot	t QA/QC staltic Pu	mp Equip MP Blade AMPLE INFC reservative HCl HCl	oment Blank der Pump PRMATION Bottle Size 40ml 40ml	Approx None Dual Valve Number	Pump/Intake	diam):	2 ¹¹ Pv C
Purge Pumping Rate Decontamination me Vell Conversion Fac Recommended Wel DA/QC Sample: Sampling Method: Analyt Parame G> MTCA N D>	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Additio I Repairs/Additio Gruentical eters VOCs K	gal / foot; 5/8" = (nal Notes: plicate undfos Pump Destinat Laborat " "	0.02 gal/foot	t QA/QC staltic Pu	mp Equip MP Blad AMPLE INFC reservative HCI HCI None	oment Blank der Pump PRMATION Bottle Size 40ml	Approx None Dual Valve Number	Pump/Intake	diam):	2 ^N Pv C
Purge Pumping Rate Decontamination me Vell Conversion Far Recommended Wel QA/QC Sample: Sampling Method: Analyt Parame G> MTCA \	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Additio I Repairs/Additio Gruentical eters VOCs K	gal / foot; 5/8" = (nal Notes: Dicate undfos Pump Destinat Laborat	0.02 gal/foot	t QA/QC staltic Pu	mp Equip MP Blade AMPLE INFC reservative HCl HCl	oment Blank der Pump PRMATION Bottle Size 40ml 40ml	Approx None Dual Valve Number	Pump/Intake	diam):	2 ¹¹ Pv C
Purge Pumping Rate Decontamination me Vell Conversion Far Recommended Wel QA/QC Sample: Sampling Method: Analyt Parame G> MTCA N D>	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Additio I Repairs/Additio Gruentical eters VOCs K	gal / foot; 5/8" = (nal Notes: plicate undfos Pump Destinat Laborat " "	0.02 gal/foot	t QA/QC staltic Pu	mp Equip MP Blad AMPLE INFC reservative HCI HCI None	oment Blank der Pump PRMATION Bottle Size 40ml 40ml 500 ml ambe	Approx None Dual Valve Number	Pump/Intake	diam):	2 ¹⁰ Pv C
Purge Pumping Rate Decontamination me Vell Conversion Far Recommended Wel QA/QC Sample: Sampling Method: CPA MTCA \ D> CPA Method of Transpor	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Additic I Repairs/Additic Dup Gru tical eters < VOCs < Hs rtation of sample	gal / foot; 5/8" = 0 nal Notes: Dicate undfos Pump Destinat Laborat F + 1 " " "	0.02 gal/foot 0.02 gal/foot Lab C Perist tion tory B x Courto	t QA/QC staltic Pu S Pr	mp Equip Equip Blade AMPLE INFC reservative HCl HCl HCl none none	oment Blank der Pump PRMATION Bottle Size 40ml 40ml 500 ml ambe	Approx None Dual Valve Number of bottles 2 4 r 1 1		diam):	2 ¹⁰ Pv C
Purge Pumping Rate Decontamination me Vell Conversion Far Recommended Wel QA/QC Sample: Sampling Method: Analyt Parame G> MTCA N D> cPA Method of Transpor All samples were in	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Addition I Repairs/Addition Dup Gruent tical eters VOCs K Hs I Repairs/Addition I Repairs/I	gal / foot; 5/8" = (nal Notes: plicate undfos Pump Destinat Laborat " " " " s: FedE: d into a cooler ar	0.02 gal/foot 0.02 gal/foot Lab C Perist tion tory B x Courto	t QA/QC staltic Pu S Pr	mp Equip Equip Blade AMPLE INFC reservative HCl HCl HCl none none	oment Blank der Pump PRMATION Bottle Size 40ml 40ml 500 ml ambe	Approx None Dual Valve Number	Pump/Intake	diam):	2 ¹⁰ Pv C
Purge Pumping Rate Decontamination me Vell Conversion Far Recommended Wel QA/QC Sample: Sampling Method: Analyt Parame G> MTCA N D>	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Addition I Repairs/Addition Dup Gruent tical eters VOCs K Hs I Repairs/Addition I Repairs/I	gal / foot; 5/8" = (nal Notes: plicate undfos Pump Destinat Laborat " " " " s: FedE: d into a cooler ar	0.02 gal/foot 0.02 gal/foot Lab C Perist tion tory B x Courto	t QA/QC staltic Pu S Pr	mp Equip Equip Blade AMPLE INFC reservative HCl HCl HCl none none	oment Blank der Pump PRMATION Bottle Size 40ml 40ml 500 ml ambe	Approx None Dual Valve Number of bottles 2 4 r 1 1		diam):	2 ¹⁰ Pv C
Purge Pumping Rate Decontamination me Vell Conversion Far Recommended Wel QA/QC Sample: Sampling Method: Analyt Parame G> MTCA N D> cPA Method of Transpor All samples were in	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Addition I Repairs/Addition Dup Gruent tical eters VOCs K Hs I Repairs/Addition I Repairs/I	gal / foot; 5/8" = 0 nal Notes: plicate indfos Pump Destinat Laborat F + I " " s: FedE: d into a cooler ar pling event:	0.02 gal/foot	t QA/QC staltic Pu S Pr	mp Equi mp Blade AMPLE INFC reservative HCl HCl HCl none none	oment Blank der Pump PRMATION Bottle Size 40ml 40ml 500 ml amber 1L amber	Approx None Dual Valve Number of bottles 2 4 r 1 1 1 1		diam):	2 ¹⁰ Pv C
Purge Pumping Rate Decontamination me Vell Conversion Far Recommended Wel QA/QC Sample: Sampling Method: Analyt Parame G> MTCA N D> cPA Method of Transpor All samples were in	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Addition I Repairs/Addition Dup Gruent tical eters VOCs K Hs I Repairs/Addition I Repairs/I	gal / foot; 5/8" = 0 nal Notes: plicate indfos Pump Destinat Laborat F + I " " s: FedE: d into a cooler ar pling event:	0.02 gal/foot	t QA/QC staltic Pu S Pr	mp Equip Equip Blade AMPLE INFC reservative HCl HCl HCl none none	oment Blank der Pump PRMATION Bottle Size 40ml 40ml 500 ml ambe	Approx None Dual Valve Number of bottles 2 4 r 1 1		diam):	2 ¹⁰ Pv C
Purge Pumping Rate Decontamination me Vell Conversion Fac Recommended Wel QA/QC Sample: Sampling Method: Analyt Parame G> MTCA N D> cPA Method of Transpor All samples were in	e (approx. L/m): ethod: ctors: 2" = 0.17 I Repairs/Addition I Repairs/Addition Dup Gruent tical eters VOCs K Hs I Repairs/Addition I Repairs/I	gal / foot; 5/8" = 0 nal Notes: plicate indfos Pump Destinat Laborat F + I " " s: FedE: d into a cooler ar pling event:	0.02 gal/foot 0.02 gal/foot Lab C Perist tion tory B x Courto	t QA/QC staltic Pu S Pr	mp Equi mp Blade AMPLE INFC reservative HCl HCl HCl none none	oment Blank der Pump PRMATION Bottle Size 40ml 40ml 500 ml amber 1L amber	Approx None Dual Valve Number of bottles 2 4 r 1 1 1 1		diam):	2 ¹⁰ Pv C

EVREN Northwest GROUND WATER FIELD SAMPLING DATA FORM (FIELD)

PROJECT NAME:	8701	Greenwood	Avenue	N.	Seattle
I NOULUI IMAML.	0.0.	91001111000a	MACHINE		ocactic

Event: Ground Monitoring

PROJECT NUMBER: 1581-21001-01 Date: _______〇マー2ょくつて____

C

Field Personnel: Weather Conditions DTW (prior to purgi	s:	nd Bailey F. Gunny 2.75	J70 btoc					Monitoring Well ID Start Time		ų
			<u> </u>	NELL P	PURGING IN	FORMATION				
Time (1.45 (1.45 (1.46 (1.50 (1.50 (1.50 (2.00 (2.00 (2.10 (2.10) (2.10	DTW During Purging (feet) 3.44 3.44 3.44 3.44 3.74 3.74 3.74 3.74	Pumping Rate (L/min) (00) (00) (00) (00) (00) (00) (00) (0		ture C) (W 8 2 2 2 2 3 7 7 6 3	Specific Conductivity $mS/cm), \pm 3\%$ euter, 311.43 310.00	Dissolved Oxygen (mg/L), ±10% (.12 I.16 0.02 0.45	Water pH S.U.), ±0.1% S.U.), ±0.1% S.U.), ±0.1% S.U.)	ORP (mV),,±10 mV Sow cell 37.7 20.6 .54 .54 .54 .54 .54 .54 .54 .54 .54 .54	25.0 116.0 115.66 (23.57 106.61 8139 80.01	Total Quantity Purged (gallore [iters) (gallore [iters) (.10 (.30 (.10 (.30 (.10)(.10) (.1
Tubing: Purge Pumping Rate Decontamination mel Well Conversion Fac Recommended Well	thod: tors: 2" = 0.17 g				/mia			/ell casing (in. diam) Pump/Intake Depth	1	1.D. Pa
QA/QC Sample: Sampling Method:	Dupli Dupli	icate dfos Pump	Lab QA			ment Blank er Pump	☐ None ☐ Dual Valve			
			·····	SAN	IPLE INFOR	r	-			
Analytic Paramet		Destinatio Laborato	1	Prese	ervative	Bottle Size	Number of bottles	Sampl	e ID	Time Sampled
Gx MTCA V Dx	OCs	F + B "		H	ICI ICI one	40ml 40ml 500 ml amber	2 4 1	Emwol.	-220725	Diya
cPAH	S	"		no	one	1L amber	1	WELL-FI)-22072	- 9:35
Method of Transporta All samples were imn Field Observations/	nediately placed		packed with	ice or "b	lue Ice"		Yes	No No	· · ·	
Signature of Field P	ersonnel:		C	L	>				· · ·	

EVREN Northwest GROUND WATER FIELD SAMPLING DATA FORM (FIELD)

DDO IFOT NAME.	0704	Creations	A	B.B.	C 441 -
PROJECT NAME:	0/01	Greenwood	Avenue	ne.	Seame
		0.00			004640

Event: Ground Monitoring

PROJECT N	UMBER:	1581-21001-01			
Date:	07/	25	22		

Field Personnel:	Dan S. a	and Bailey F.					Monitoring Well I	D: MW-8	
Weather Conditions	5:	Gun	NY 60°	F .			Start Tim		:27
DTW (prior to purgi	ng):	3.45	1 bloc						
				PURGING IN	IFORMATION				
Time	DTW During Purging (feet)	Pumping Rate (L/min)	Temperature (degree C)	Specific Conductivity (mS/cm), ±3%		Water pH (S.U.), , ±0.1 %		Turbidity (NTU), , ±10%	Total Quantity Purged (gallons/liters)
14,30	3.50	125		ever ne	Inen.	h for			<u> </u>
(4:34	3,00	(1	29.56	230.6	D.19	201	-61.5	5.15	0.70
10738	2 00	11	1.50	240.37	······	6.91	- 76.5	6.61	0.60
User	928	1	18.72	241.24	0.36	685	-79.4	11.84	1.40
W:46	11.40	11	9.05	711 75	0.27	6.62	-79.6	27.74	2.40
V=1, / = 1, 2	41-		-1.00	241.25		V. VC	= , ,	10.01	<u> </u>
			(n)	Vent	Cand				
				Jun	Sugre				
						·			
	*******				<u></u>				
1	, 1	II			I			Total Purge	l
Tubing:	14 V	LDPE	1						
Purge Pumping Rate	non non non non and a summarian		125 m1/4	. (w		W	ell casing (in. diam		Par
Decontamination mel	hod:	L					Pump/Intake Dept	· · ····	
Well Conversion Fac	tors: 2" = 0.17 g	al / foot; 5/8" = 0.	02 gal/foot		กรรณาสารางสารางสารางสารางการสารางสารางสารางส				
gels All the set				WELL COND	DITION				
Recommended Well	Repairs/Additior	al Notes:	V .	t		\wedge			
			X	Odar	\sim (Jultur	- Seco	er (c/Ce	
			0.						
QA/QC Sample:	🔲 Dup	icate	🔲 Lab QA/QC	🔲 Equipr	nent Blank	None			
Sampling Method:	🔲 Grur	ndfos Pump	Peristaltic Pun	np 🔲 Bladde	er Pump	Dual			
n an		/				Valve			
Analytic	اد	Destinatio	·····	MPLE INFOR	Bottle	Number			
Paramet		Laborato		servative	Size	of bottles	Sam	ole ID	Time Sampled
Gx		F + B	-	HCI	40ml		and the second data was a second data with the second data was a second data was		
MTCA V	OCs	"		HCI	40ml	4	Mw-8	77.07	25
Dx		ĸ		none	500 ml ambei	r 1	Mus - 8	<i>7 2</i> -	16.02
cPAH	S	"		none	1L amber	1	11103		15.00
									-VY
Method of Transporta	tion of samples:	FedEx	Qourier)						
All samples were imm		÷		"blue lce"		🗙 Yes	🗌 No		
Field Observations/	Notes of sampl	ing event:							
~									
Signature of Field P	ersonnel:	L							-
			Y K						
			- 1	•)					
			l						

Appendix C

Laboratory Analytical Report

Summary: DATA VALID? UYES

Analytical Laboratory Data Validation Check Sheet

Project Name: 8701 Greenwood Avenue North-Seattle Project Number: 1581	<u>-21001-0</u>	2	
Date of Review: 8/8/2022 Lab. Name: F&BI Lab Batch ID	# <u>: 2074</u>	22	-
 <u>Chain of Custody</u> 1.) Are all requested analyses reported? 2.) Were the requested methods used? 3.) Trip blank submitted? 4.) Field blank submitted? 	⊠yes ⊠yes ⊠yes □yes	□no □no □no ⊠no	
 <u>Timing</u> 5.) Samples extracted within holding times? If not, are all discrepancies footnoted? 6.) Analysis performed within holding times? If not, are all discrepancies footnoted? 	⊠yes ⊡yes ⊠yes □yes	□no □no □no □no	⊠NA ⊠NA
 Quality Assurance/Quality Control 7.) Are the required reporting limits reported? (MRLs vs MDLs/PQLs) 8.) Are all reported values above either MRL or MDL? 9.) Are all values between the MDL & PQL tagged as trace? 10a.) Are reporting limits raised for other reason besides high analyte conc.? 10b.) If so, are they footnoted? 11.) Lab method blank completed? 12.) Lab, Field, or Trip Blank(s) report detections? If yes, indicate blank type, chemical(s) and concentration(s): 	⊠yes ⊠yes □yes □yes ⊠yes □yes	□ no □ no □ no □ no □ no □ no ⊠ no	⊠NA ⊠NA
 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? 	⊠yes □yes □yes ⊠yes □yes	□no □no □no □no □no □no	□NA □NA □NA
Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? Do all surrogate spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? The reported values of several surrogates fell outside the control limits (vo). 17.) Is there a spike recovery for all Laboratory Control Samples? Do all LCS/LCSD spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? 18.) Are all LCS/LCSD RPDs within acceptable limits? If not, are all discrepancies footnoted?	⊠yes ⊡yes ⊠yes ⊠yes ⊡yes ⊡yes □yes	□ no □ no □ no □ no □ no □ no □ no □ no	□NA □NA □NA □NA □NA ⊠NA
 Precision 19.) Are all matrix spike/matrix spike duplicate recoveries within acceptable limits? If not, are all discrepancies footnoted? 20.) Are all matrix spike/matrix spike duplicate RPDs within acceptable limits? If not, are all discrepancies footnoted? 21.) Do all RPD calculations for Field Duplicates meet accepted criteria? 	⊠yes ⊡yes ⊡yes ⊠yes	□no □no □no □no □no	□NA ⊠NA □NA ⊠NA □NA
,	,	-	

Comments:

Several samples have chromatographic patterns that do not resemble the fuel standard for quantitation (x).

Initial Review By: LP

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 8, 2022

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on July 26, 2022 from the 1581-21001-02, F&BI 207422 project. There are 33 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Neil Woller, Paul Trone, Evan Bruggeman ENW0808R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 26, 2022 by Friedman & Bruya, Inc. from the Evren Northwest 1581-21001-02, F&BI 207422 project. Samples were logged in under the laboratory ID's listed below.

Evren Northwest
Well-2-220725
Well-3-220725
Well-4-220725
Well-5-220725
Well-11-220725
Well-12-220725
EMW01-220725
MW-8-220725
Well-FD-220725
Trip Blank-220725

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: 1581-21001-02, F&BI 207422 Date Extracted: 07/27/22 Date Analyzed: 07/28/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery)</u> (Limit 51-134)
Well-2-220725 207422-01	<100	106
$\underset{\scriptscriptstyle 207422\cdot02}{\text{Well-3-220725}}$	<100	103
Well-4-220725 207422-03	<100	96
Well-5-220725 207422-04	<100	100
Well-11-220725 207422-05	<100	108
Well-12-220725 207422-06	<100	102
EMW01-220725 207422-07	<100	100
MW-8-220725 207422-08	<100	101
$\underset{207422-09}{\text{Well-FD-}220725}$	<100	98
Method Blank 02-1710 MB	<100	96

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: 1581-21001-02, F&BI 207422 Date Extracted: 07/27/22 Date Analyzed: 08/03/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx Sample Extracts Passed Through a Silica Gel Column Prior to Analysis Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Residual Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 41-152)
$\underset{207422 \cdot 01}{\text{Well} - 2 - 220725}$	120 x	<250	139
$\underset{207422\cdot04}{\text{Well-5-220725}}$	67 x	<250	125
$\underset{207422\cdot05}{\text{Well-}11\cdot220725}$	150 x	<250	119
MW-8-220725 207422-08	130 x	<250	138
Method Blank 02-1847 MB	<50	<250	100

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: 1581-21001-02, F&BI 207422 Date Extracted: 07/27/22 Date Analyzed: 07/27/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	$\frac{\text{Residual Range}}{(\text{C}_{25}\text{-}\text{C}_{36})}$	Surrogate <u>(% Recovery)</u> (Limit 41-152)
$\underset{207422\cdot01}{\text{Well-2-220725}}$	93 x	<250	148
$\underset{207422\cdot02}{\text{Well-3-220725}}$	<50	<250	145
Well-4-220725 $_{207422-03}$	<50	<250	137
Well-5-220725 207422-04	98 x	<250	145
Well-11-220725 $_{207422-05}$	200 x	<250	140
Well-12-220725 207422-06	<50	<250	118
EMW01-220725 ²⁰⁷⁴²²⁻⁰⁷	<50	<250	153 vo
MW-8-220725 207422-08	760 x	350 x	147
Well-FD-220725 207422-09	<50	<250	143
Method Blank 02-1847 MB	<50	<250	111

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed:	Well-12-220725 07/26/22 07/26/22 07/26/22	Client: Project: Lab ID: Data File:	Evren Northwest 1581-21001-02, F&BI 207422 207422-06 207422-06.138
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	WE
Analyte:	Concentration ug/L (ppb)		
Cadmium	<1		
Lead	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	Method Blank	Client:	Evren Northwest
Date Received:	NA	Project:	1581-21001-02, F&BI 207422
Date Extracted:	07/26/22	Lab ID:	I2-507 mb
Date Analyzed:	07/26/22	Data File:	I2-507 mb.132
Matrix:	Water	Instrument:	ICPMS2
Units:	ug/L (ppb)	Operator:	WE
Analyte: Cadmium Lead	Concentration ug/L (ppb) <1 <1	oporation	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Well-2-220' 07/26/22 07/26/22 07/26/22 Water ug/L (ppb)	725	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-01 072644.D GCMS11 RF
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 95 99 96	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Hexane Methyl t-butyl ethe 1,2-Dichloroethane Benzene Toluene 1,2-Dibromoethane Ethylbenzene m,p-Xylene o-Xylene Naphthalene	e (EDC)	<5 <1 <0.2 <0.35 <1 <1 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Well-3-2207 07/26/22 07/26/22 07/27/22 Water ug/L (ppb)	725	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-02 072645.D GCMS11 RF
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 98 99	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Compounds: Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Hexane Methyl t-butyl ethe 1,2-Dichloroethane 1,2-Dichloroethane Benzene	ethene ene (EDC) ne er (MTBE) (EDC)	ug/L (ppb) <0.02 <1 <1 <5 <1 <1 <1 <0.2 <1 <0.5 <1 <5 <1 <0.2 <1 <0.5 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene		<0.35 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Well-11-220 07/26/22 07/26/22 07/27/22 Water ug/L (ppb)	0725	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-05 072646.D GCMS11 RF
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 103 99 96	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Compounds: Vinyl chloride Chloroethane 1,1-Dichloroethane Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,1-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Hexane Methyl t-butyl ethe 1,2-Dichloroethane 1,2-Dichloroethane Benzene	ene (EDC) ne er (MTBE) (EDC)	ug/L (ppb) <0.02 <1 <1 <5 <1 <1 <1 <0.2 <1 <0.5 <1 <5 <1 <0.2 <1 <0.5 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene		<0.35 <1 <1 <2 <1 35		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Well-12-220 07/26/22 07/26/22 07/27/22 Water ug/L (ppb))725	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-06 072647.D GCMS11 RF
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 103 101 98	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Compounds: Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Hexane Methyl t-butyl ethe 1,2-Dichloroethane 1,2-Dichloroethane Benzene	ethene (EDC) ne er (MTBE) (EDC)	ug/L (ppb) <0.02 <1 <1 <5 <1 <1 <1 <0.2 <1 <0.2 <1 <0.5 <1 <5 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.2 <1 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		
Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene		<1 <1 <2 <1 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	EMW01-22 07/26/22 07/26/22 07/27/22 Water ug/L (ppb)	0725	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-07 072648.D GCMS11 RF
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 93 94 98	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Hexane Methyl t-butyl ethe 1,2-Dichloroethane Benzene Toluene 1,2-Dibromoethane Ethylbenzene m,p-Xylene o-Xylene Naphthalene	(EDC)	<5 <1 <0.2 <0.35 <1 <1 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-8-2207 07/26/22 07/26/22 07/27/22 Water ug/L (ppb)	25	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-08 072649.D GCMS11 RF
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 102 101 102	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Hexane Methyl t-butyl etho 1,2-Dichloroethane Benzene Toluene 1,2-Dibromoethane Ethylbenzene m,p-Xylene o-Xylene Naphthalene	e (EDC)	<5 <1 <0.2 <0.35 <1 <1 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Well-FD-22 07/26/22 07/26/22 07/27/22 Water ug/L (ppb)	0725	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-09 072650.D GCMS11 RF
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 93 101 97	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Hexane Methyl t-butyl etho 1,2-Dichloroethane Benzene Toluene 1,2-Dibromoethane Ethylbenzene m,p-Xylene o-Xylene Naphthalene	e (EDC)	<5 <1 <0.2 <0.35 <1 <1 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Trip Blank 07/26/22 07/26/22 07/27/22 Water ug/L (ppb)	-220725	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-10 072651.D GCMS11 RF
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz Compounds:		% Recovery: 103 104 101 Concentration ug/L (ppb)	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Hexane Methyl t-butyl etho 1,2-Dichloroethane Benzene Toluene 1,2-Dibromoethane Ethylbenzene m,p-Xylene o-Xylene Naphthalene	e (EDC)	<5 <1 <0.2 <0.35 <1 <1 <1 <1 <2 <1 <1 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 07/26/22 07/26/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 02-1778 mb 072640.D GCMS11 RF
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenze		% Recovery: 103 105 94	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroe 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Hexane Methyl t-butyl ethe 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dibromoethane Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	thene ene (EDC) ne r (MTBE) (EDC)	$\begin{array}{c} < 0.02 \\ < 1 \\ < 1 \\ < 5 \\ < 1 \\ < 1 \\ < 1 \\ < 0.2 \\ < 1 \\ < 0.5 \\ < 1 \\ < 5 \\ < 1 \\ < 0.2 \\ < 1 \\ < 0.35 \\ < 1 \\ < 1 \\ < 2 \\ < 1 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Well-2-22072 07/26/22 07/26/22 07/26/22 Water ug/L (ppb)	25	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-01 072623.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol			Upper Limit: 60 49 144 128 142 138
Compounds:	(Concentration ug/L (ppb)		
Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ene ene rene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Well-3-22072 07/26/22 07/26/22 07/26/22 Water ug/L (ppb)	25	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-02 072624.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	$\% \ { m Recovery:} \ 22 \ 14 \ 87 \ 85 \ 75 \ 100\ \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \ 100 \$		Upper Limit: 60 49 144 128 142 138
Compounds:	(Concentration ug/L (ppb)		
Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ene ene rene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Well-4-22072 07/26/22 07/26/22 07/26/22 Water ug/L (ppb)	5	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-03 072625.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	% Recovery: 18 13 82 86 66 99	Lower Limit: 10 10 15 25 10 41	Upper Limit: 60 49 144 128 142 138
Compounds:	(Concentration ug/L (ppb)		
Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ene ene rene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Well-5-22072 07/26/22 07/26/22 07/26/22 Water ug/L (ppb)	25	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-04 072626.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	% Recovery: 22 14 92 83 59 103		Upper Limit: 60 49 144 128 142 138
Compounds:	(Concentration ug/L (ppb)		
Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ene ene rene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Well-11-220 07/26/22 07/26/22 07/26/22 Water ug/L (ppb)	725	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-05 072618.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol	% Recovery: 21 13 82 77 89 93	Lower Limit: 11 50 44 10 50	Upper Limit: 65 65 150 108 140 150
Compounds:		Concentration ug/L (ppb)		
Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ene ene rene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Well-12-220724 07/26/22 07/26/22 07/26/22 Water ug/L (ppb)	5	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-06 072619.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14		6 Recovery: 19 12 82 79 82 98	Lower Limit: 11 50 44 10 50	Upper Limit: 65 65 150 108 140 150
Compounds:		oncentration ug/L (ppb)		
Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ene ene rene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID:	EMW01-220	725	Client:	Evren Northwest
Date Received:	07/26/22		Project:	1581-21001-02, F&BI 207422
Date Extracted:	07/26/22		Lab ID:	207422-07
Date Analyzed:	07/26/22		Data File:	072620.D
Matrix:	Water		Instrument:	GCMS12
Units:	ug/L (ppb)		Operator:	VM
Surrogates:	nol	% Recovery:	Lower	Upper
2-Fluorophenol		21	Limit:	Limit:
Phenol-d6		12	11	65
Nitrobenzene-d5		80	50	150
2-Fluorobiphenyl		84	44	108
2,4,6-Tribromopher		83	10	140
Terphenyl-d14		94	50	150
Compounds:		Concentration ug/L (ppb)		
Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ene ene cene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-8-22072 07/26/22 07/26/22 07/26/22 Water ug/L (ppb)	5	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-08 072621.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14	nol		Lower Limit: 11 50 44 10 50	Upper Limit: 65 150 108 140 150
Compounds:		Concentration ug/L (ppb)		
Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ene ene cene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Well-FD-220 07/26/22 07/26/22 07/26/22 Water ug/L (ppb)	0725	Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 207422-09 072622.D GCMS12 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol		Lower Limit: 11 10 50 44 10 50	Upper Limit: 65 150 108 140 150
Compounds:		Concentration ug/L (ppb)		
Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ene ene rene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 07/26/22 07/26/22 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Evren Northwest 1581-21001-02, F&BI 207422 02-1832 mb3 072621.D GCMS9 VM
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher Terphenyl-d14		Recovery: 22 13 87 86 81 99		Upper Limit: 60 49 144 128 142 138
Compounds:		centration g/L (ppb)		
Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac	ene ene rene	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: 1581-21001-02, F&BI 207422

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 207423-01 (Duplicate)								
	Reporting	Samp	le Du	plicate	RPD			
Analyte	Units	Resul	lt R	esult	(Limit 20)			
Gasoline	ug/L (ppb)	<100) <	:100	nm			
Laboratory Code: Lab	oratory Contro	l Sample	Percent					
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria	-			
Gasoline	ug/L (ppb)	1,000	103	69-134				

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: 1581-21001-02, F&BI 207422

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample Silica Gel								
			Percent	Percent				
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD		
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)		
Diesel Extended	ug/L (ppb)	2,500	100	104	63-142	4		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: 1581-21001-02, F&BI 207422

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	108	108	63-142	0

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: 1581-21001-02, F&BI 207422

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Cod	le: 207421-02 (Matrix Sp	oike)	_	_		
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recovery MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)
Cadmium Lead	ug/L (ppb) ug/L (ppb)	$5\\10$	<1 <1	98 89	99 88	75-125 75-125	1 1

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	\mathbf{Spike}	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Cadmium	ug/L (ppb)	5	95	80-120
Lead	ug/L (ppb)	10	94	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: 1581-21001-02, F&BI 207422

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 207422-01 (Matrix Spike)

	iaci in Spino)	Percent						
	Reporting	Spike	Sample	Recovery	Acceptance			
Analyte	Units	Level	Result	MS	Criteria			
Vinyl chloride	ug/L (ppb)	10	< 0.02	92	50-150			
Chloroethane	ug/L (ppb)	10	<1	94	50 - 150			
1,1-Dichloroethene	ug/L (ppb)	10	<1	91	50 - 150			
Hexane	ug/L (ppb)	10	<5	84	50 - 150			
Methylene chloride	ug/L (ppb)	10	<5	95	50 - 150			
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	99	50 - 150			
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	100	50 - 150			
1,1-Dichloroethane	ug/L (ppb)	10	<1	98	50 - 150			
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	99	50 - 150			
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	90	50 - 150			
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	94	50 - 150			
Benzene	ug/L (ppb)	10	< 0.35	98	50 - 150			
Trichloroethene	ug/L (ppb)	10	< 0.5	93	50 - 150			
Toluene	ug/L (ppb)	10	<1	98	50 - 150			
Tetrachloroethene	ug/L (ppb)	10	<1	94	50 - 150			
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	<1	101	50 - 150			
Ethylbenzene	ug/L (ppb)	10	<1	94	50 - 150			
m,p-Xylene	ug/L (ppb)	20	<2	94	50 - 150			
o-Xylene	ug/L (ppb)	10	<1	93	50 - 150			
Naphthalene	ug/L (ppb)	10	<1	96	50 - 150			

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: 1581-21001-02, F&BI 207422

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory Co	inter of Sumple		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	86	88	70-130	2
Chloroethane	ug/L (ppb)	10	89	94	70-130	5
1,1-Dichloroethene	ug/L (ppb)	10	97	91	70-130	6
Hexane	ug/L (ppb)	10	85	84	54 - 136	1
Methylene chloride	ug/L (ppb)	10	90	93	43-134	3
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	95	99	70-130	4
trans-1,2-Dichloroethene	ug/L (ppb)	10	96	100	70 - 130	4
1,1-Dichloroethane	ug/L (ppb)	10	94	97	70 - 130	3
cis-1,2-Dichloroethene	ug/L (ppb)	10	95	108	70 - 130	13
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	89	90	70-130	1
1,1,1-Trichloroethane	ug/L (ppb)	10	91	94	70-130	3
Benzene	ug/L (ppb)	10	94	97	70-130	3
Trichloroethene	ug/L (ppb)	10	90	95	70 - 130	5
Toluene	ug/L (ppb)	10	101	100	70 - 130	1
Tetrachloroethene	ug/L (ppb)	10	100	99	70 - 130	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	98	96	70 - 130	2
Ethylbenzene	ug/L (ppb)	10	94	94	70 - 130	0
m,p-Xylene	ug/L (ppb)	20	95	95	70 - 130	0
o-Xylene	ug/L (ppb)	10	94	93	70 - 130	1
Naphthalene	ug/L (ppb)	10	97	97	70-130	0

ENVIRONMENTAL CHEMISTS

Date of Report: 08/08/22 Date Received: 07/26/22 Project: 1581-21001-02, F&BI 207422

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample 1/0.5

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Benz(a)anthracene	ug/L (ppb)	5	90	87	70-130	3
Chrysene	ug/L (ppb)	5	88	84	70-130	5
Benzo(a)pyrene	ug/L (ppb)	5	91	88	70-130	3
Benzo(b)fluoranthene	ug/L (ppb)	5	94	85	70-130	10
Benzo(k)fluoranthene	ug/L (ppb)	5	87	89	70-130	2
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	92	90	70-130	2
Dibenz(a,h)anthracene	ug/L (ppb)	5	91	90	70-130	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282	3012 16 th Avenue West Seattle, WA 98119-2029	Friedman & Bruya, Inc.	, , , ,	Trip Blank-22	MELL-FD-220725	JCROEY - G-MM	EMWの1-230725	NEM - 12 - JODAS	204900-11-MAM	MEHL - 5 - 220725	WELL-4- 220725	WELL - 3 - Jaozas	WELL-2-220725	Sample ID		Phone 503-452-5561	City, State, ZIP Portland, Oregon 97214	Address 40 SE 24th Ave	Company EVREN-NW	LOTHTL Report To Lynn Green
Received by:	Received by: Relinquished by:	Kelinquished by		1/201/2-220725/10A-B	1 4 60 Set	508	A OFAH	ras Ou A-I	ra5 0544	25 104 2	25 03 A-D	1 20 50	15 01 A1H	Lab ID		Email lynng@evren-nw.com	'egon 97214			
	rth	AS O	SIGNATURE	<						*****			102 Jas Jaa	Date Sampled		om				
				(9:35	15:03	12:49	11:50	11.10	502	45:21	14,05	90:11	Time Sampled		Project S	REMARKS	ז ס	PROJEC	SAMPLE CHAIN OF CUST
	Am	~		٤	Gw	Gw	(JW)	GW	66	Gin	GW	GW	S.	Sample Type		1.1	73	501-21001-02	PROJECT NAME	MPLE CHAIN OF SAMPLERS (signature)
	K	7	PRIN	8	ත	ත	S	0	ය	F		භ	S	# of Jars		Ye	2005	20	2	OF ture)
:	Sme	5	PRINT NAME		X	X	X	K	X	X X	X	X	×	NWTPH-Dx			and	Ŷ	د	
	de la	\sum	ME			\sim	1				X	\times	K	NWTPH-Gx BTEX EPA 8021			o PA45		A	TODY
		T		X	X	×	×	×	X			X	X	VOCs EPA 8260	-		ž		<u> </u>	
					X	X	\times	\propto	×	X	$ \times $	$\underline{\times}$	\times	PAHs EPA 8270	ANALYSES		IN			
	,							X	X		<u>`</u>	X		PCBs EPA 8082			INVOICE TO		PO #	1-26-
Sa	T	D	CON					X	$\left \right\rangle$					CVOCS total Pb, cd	REQU		ETO		++	12
aples	B	25	COMPANY			٠		~	•	•	· · ·		•	Dx -156	REQUESTED	L				-112
rece		\geq	Y													Archiv Other	Dis	Rush	Stands	
bevi		~														hive S er	SAM.	charg	ndard SH	Page #
Samples received at <u>5</u> °C	7/26/22	07/26/22	DATE									8/3/	• pe	Notes		Archive Samples Other	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:	Standard Turnaround	AR
	0	<u>à</u>	TIME									122 ME	per LG	tes		and the second se)SAL	ed by:	ld	CO3/AI/WWY