Soil Gas and Ambient Air Sampling Report

Summary of December 8, 2021 & January 21, 2022 Sampling Events

SUBMITTED TO:

DTG Recycling Group

41 Rocky Top Road, Yakima, WA, 98908

SUBMITTED BY:

1100 Jadwin Avenue, Ste. 250, Richland, WA, 99352

February 25, 2022

INTRODUCTION

This report summarizes field activities and analytical results associated with soil gas sampling conducted December 8, 2021 and follow-up ambient air sampling conducted January 21, 2022, at the DTG Recycling Group landfill, located at 41 Rocky Top Road, in Yakima, Washington. Sampling activities were conducted by Freestone Environmental Services (Freestone). Freestone's field activity reports are included in Appendix A.

Soil gas and ambient air sampling were performed to supplement recent investigations made by DTG Staff and Department of Health representatives. The northeastern toe and western slope of the landfill (where sloughing of the landfill face has opened stress fractures in the upper soil horizon) indicates a possible source of fugitive odors emanating from the landfill operations. The occurrence of the odors, which are described as typical landfill odors, is variable and most noticeable in stable to stagnant atmospheric conditions. The intensity of the odors is greatest in areas where fractures in the earth are visibly venting or in once open-fractured areas that have then been purposely covered. DTG has initiated efforts to fill/cap the fractures to mitigate the release of odor-causing gases. Initial soil gas sampling was conducted on December 8, 2021, to characterize the odor-causing gasses. Based on the initial sampling results, DTG requested additional ambient air sampling at the landfill boundary, near surface fractures, and at specified intervals from a surface fracture. This ambient air sampling was conducted on January 21, 2022. Analytical results for both sampling events are summarized in this report.

DECEMBER 2021 FIELD SAMPLING ACTIVITIES

Freestone and DTG Staff measured surface temperature readings using an infrared temperature gauge and marked three sample locations with field marker flags near the supposed source of the odors during routine quarterly methane monitoring on December 3, 2021. The three proposed sample locations are in different locations than the routine quarterly methane monitoring. Surface and subsurface temperatures were recorded on December 8, 2021, at each sampling location using an infrared temperature gauge and digital thermometer, respectively. These measurements are provided in Table 1.

Soil gas samples were collected from the three previously marked locations on December 8, 2021. The weather conditions were partly cloudy, windy, and 46°F at the time of sampling. All soil gas samples were collected using a hand-pump

DTG Recycling Group

attached to a vacuum air sample box equipped with a 1.0-liter (L) Tedlar bag. Prior to sample collection, a minimum of 2 liters were evacuated from the tubing to ensure a representative sample. For the sample collection, the soil gas was drawn into the Tedlar bag, which was filled to the consistency of a 'soft pillow'. Two (2) samples were collected at each sampling location. The second sample was a backup sample in the event of a leak from the first sample. Only one (1) soil gas sample was tested by the laboratory from each location. Field activity photos are included in Appendix A.

After soil gas sample collection, each Tedlar bag was labeled with a sample identification number (Ex. A-1). The bags were placed in a cooler. Sample information and requested analyses were recorded on a signed chain of custody form and placed into the shipping container (the chain of custody can be found in Appendix B and C). The samples were shipped next day early air via UPS to Atmospheric Analysis & Consulting, Inc. located in Ventura, California.

The three sample locations are depicted in Figure 1 below. Samples A-1 and A-2 were collected on the upper slope of the upper road on the landfill surface. Sample A-3 was collected on the upper slope of the lower road on the landfill, below where samples A-1 and A-2 were taken.

For sample locations A-1 and A-2, there were visible vapors being released from fractures in the surface. Such fractures extended roughly 8 inches below the slope surface and were about two inches in width. Given such exposure, the ¼-inch Teflon tubing was inserted directly into the crevice of sample locations A-1 and A-2 until refusal was met. An infrared temperature gauge was aimed down each fracture to measure the surface temperature in addition to a 12-inch digital thermometer to measure the subsurface.

Sample A-3 was collected on the upper slope of the lower road with no fracture present. For this sample, a soil probe was utilized to insert the Teflon tubing approximately 8 inches below ground surface (bgs). The annulus around the tubing was sealed using granular bentonite to mitigate infiltration and sampling of surface ambient air (i.e., short circuiting).

	absurface temperatures a	c cuch sumple location
Sample	Subsurface Digital Thermometer (°F)	Surface Infrared Gauge (°F)
A-1	145 📃	149
A-2	62	61
A-3	57.4	57

Table 1. Surface and subsurface temperatures at each sample location

DTG Recycling Group

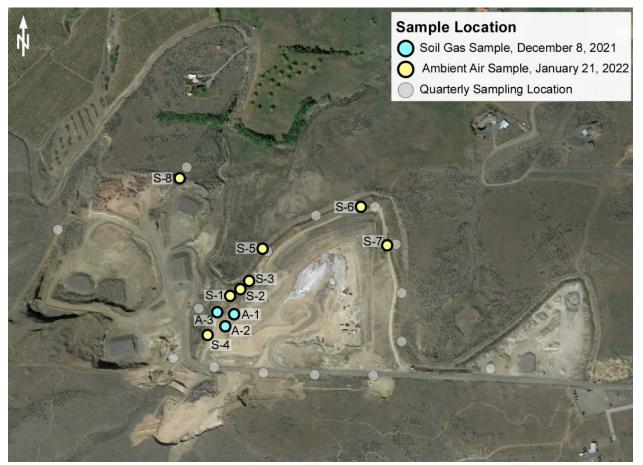


Figure 1. Soil gas sample, air sample, and quarterly methane monitoring locations at DTG Recycle

ANALYTICAL RESULTS FOR DECEMBER 2021 SAMPLING

Samples A-1, A-2, and A-3 were analyzed on December 9th for speciated sulfur compounds and December 13, 2021 for Volatile Organic Compounds (VOCs). The laboratory analytical packages for the December sampling event are included in Appendix B and C.

The soil gas samples were tested for VOCs (Table 2) and tentatively identified compounds (TICs; Table 3) using EPA Method TO-15 and for speciated sulfur compounds (Table 4) using method ASTM D5504. Tables 2 through 4 provide analytical results for detected analytes during the December 2021 soil gas sampling.

DTG Recycling Group

		Sample Concentra	ations
Analyte			
	A-1	A-2	A-3
1,2,4-Trimethylbenzene	2,010	754	176
1,3,5-Trimethylbenzene	2,120	696	158
1,4-Dioxane	5,570	1,620	438
2-Butanone (MEK)	14,400	2,390	U
2-Hexanone (MBK)	474	U	U
2-Propanol (IPA)	39,900	4,120	556
4-Ethyltoluene	1,830	606	130
4-Methyl-2-pentanone (MiBK)	380	U	U
Acetone	44,600	4,850	U
Benzene	116,000	25,300	1,470
Carbon Disulfide	U	586	424
Chlorobenzene	218	U	U
Chloroethane	1,110	316	U
Chloromethane	76,700	4,090	U
Cyclohexane	992	434	U
Ethanol	4,570	982	U
Ethylbenzene	13,600	9,400	2,040
Heptane	12,500	5,240	194
Hexane	19,500	8,470	150
m & p-Xylene	9,410	3,050	528
Methanol	125,000	11,900	1,290
o-Xylene	6,090	2,130	388
Propene	149,000	25,100	U
Styrene	2,320	510	114
Tetrahydrofuran	18,300	3,100	216
Toluene	17,900	11,800	1,540

Table 2. VOC Concentrations (ppbv)

U = Analyte not detected above the Sample Reporting Limit

DTG Recycling Group

Table 3. Tentatively Identified Compound Concentrations (ppbv)

Analyte		s Sample Concentra	
Analyte	A-1	A-2	A-3
Isobutane	4770		
2-Methyl-1-propene	12700	5660	
Butane	8790	4320	
2-Butene	5090	2140	
Pentane	12300	6220	
2-Methyl-2-butene	8760		
2-Methylpentane	6940	3120	
3-Methylfuran	14400		
2-Methylfuran		4980	
Octane	4300		
4,4,5-Trimethyl-2-hexane	4320		
3-Methylcyclopentene		3370	
Methylcyclopentane		2410	
5-Methyl-1,3-		2500	
cyclopentadiene		2500	
3-Methyl-1,3-pentadiene		16600	
Decane			268
2-Ethyl-1-hexanol			322
2,4-Dimethyl-2-decene			212
4-Undecene			228
Undecane			518
1-Ethyly-4-ethylbenzene			222
2,3-Dihydro-4-methyl-1H-			228
indene			220
Dodecane			378
2,4-diethyl-1-			222
methylbenzene			222

"--" = Not identified for this sample

DTG Recycling Group

lable 4. Spe	eciated Sulfur Con	centrations (ppm	iv)
Analyta	Soil Ga	s Sample Concentra	ations
Analyte	A-1	A-2	A-3
Hydrogen Sulfide	12.4	0.49	U
COS/SO2	0.472	0.055	0.137
Methyl Mercaptan	11.9	1.75	U
Ethyl Mercaptan	0.091		U
Dimethyl Sulfide	18.3	6.34	U
Carbon Disulfide	0.141	U	U
sec-Butyl Mercaptan /	1.0.9	0.220	11
Thiophene	1.08	0.329	U
Dimethyl Disulfide	0.386	0.319	U
2-Methylthiophene	0.606	0.211	U
3-Methylthiophene	0.355	0.112	U
Tetrahydrothiophene	0.406	0.109	U
Total Unidentified Sulfur	1.54	0.435	U
Total Reduced Sulfurs	47.2	10.1	U

U = Analyte not detected above the Sample Reporting Limit

JANUARY 2022 FIELD SAMPLING ACTIVITIES

Based on results from the December 2021 field sampling, DTG requested further interrogation of the ambient air concentrations at locations near existing fractures and at multiple locations along the landfill boundary. Summa cannisters equipped with a regulator were used for sampling to allow for the collection of the air sample over a 2-hr time interval to account for variable ambient conditions (i.e., wind, barometric pressures, temperature, source fluctuations). This time interval approach is a better assessment of variable ambient outdoor conditions compared to an instantaneous sample. Additionally, summa cannisters were chosen over Tedlar bags to allow for a greater sample hold time, more accurate ppby-level analysis, and the cannisters ability to capture samples in the relative breathing zone of workers. On January 21, 2022, Freestone and DTG staff walked down the proposed boundary sample locations and the landfill surface sample locations. It was anticipated that surface fractures similar to the December sampling would be evident in January, however, ongoing landfill cover activities resulted in no actively venting fractures at the landfill surface. A non-venting fracture was identified at location S-1 and ambient air samples were collected from the immediate area surrounding the fracture. As depicted in Figure 1, four (4) samples were collected from the landfill boundary. Three (3) surface samples were collected

DTG Recycling Group

from the vicinity of a fracture at intervals: within 1 ft, 5 ft, and 15 ft from the fracture, and one (1) upwind sample was collected for background comparison.

After sample collection the summa cannisters were packaged for shipping. Sample information and requested analyses were recorded on a signed chain of custody form (Appendix D) and placed into the shipping container. The samples were shipped ground via UPS to Atmospheric Analysis & Consulting, Inc. located in Ventura, California.

The weather conditions were partly cloudy and 37°F at the time of sampling. Wind conditions were variable between 0-3 mph and from a south-westerly direction. Prior to sample collection, all summa cannisters were placed in the sampling locations and positioned approximately 3-ft above ground surface. Surface temperatures were recorded at each sampling location using an infrared temperature gauge. For the sample collection, the flow regulator on the summa cannister was opened and time-on was recorded. The summa cannisters were monitored during the sampling period and the intake valve was closed leaving some vacuum pressure in the canister per the laboratory protocol. Sampling information is summarized in Table 5.

Sample	Sample Location	Surface Temperature at Sample Location (°F)	Time On	Time Off
S-1	Fracture	54	1249	1456
S-2	5-ft downwind	44	1250	1443
S-3	15-ft downwind	49	1250	1445
S-4	Upwind	34	1246	1440
S-5	Boundary	31	1300	1455
S-6	Boundary	44	1257	1446
S-7	Boundary	31	1253	1448
S-8	Boundary	45	1233	1415

Table 5. Ambient Air Sample Collection Information

ANALYTICAL RESULTS FOR JANUARY 2022 SAMPLING

Samples S-1, S-2, S-3, S-4, S-5, S-6, S-7, and S-8 were analyzed for VOCs and TICs using EPA Method TO-15 on January 27, 2022. Speciated sulfur compounds were not analyzed for this sampling event given that the primary objective was to identify the ambient distribution of the higher-risk organic compounds measured during the December 2021 sampling event. The laboratory analytical packages for the January sampling event are included in Appendix D. Tables 6 through 8 provide analytical results for detected analytes identified using EPA Method TO-15. Table 6 provides the VOC analytical results in ppbv and Table 7 provides a conversion to µg/m³ so that the results can be compared to Model Toxics Control Act (MTCA) Method B and C cleanup levels. MTCA Method B and C cleanup levels are provided for reference only. MTCA regulations apply to the cleanup and prevention of contaminated sites and therefore may not be applicable for decision making at this location. The TIC compounds provided in Table 8, are for information only since they were provided in the laboratory analytical report.

DTG Recycling Group

		<u>b. VOC C</u> Amb	ient Air				S	
Analyte	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8
1,2,4- Trimethylbenzene	U	U	U	U	U	U	U	U
1,3,5- Trimethylbenzene	U	U	U	U	U	U	U	U
1,4-Dioxane	U	U	U	U	U	U	U	U
2-Butanone (MEK)	U	U	1.95	U	U	U	U	U
2-Hexanone (MBK)	U	U	U	U	U	U	U	U
2-Propanol (IPA)	U	U	U	U	U	U	U	U
4-Ethyltoluene	U	U	U	U	U	U	U	U
4-Methyl-2- pentanone (MiBK)	U	U	U	U	U	U	U	U
Acetone	3.64	3.76	10.9	U	U	3.57	U	U
Benzene	13.3	13.0	26.8	U	U	U	U	U
Carbon Disulfide	U	U	U	U	U	U	U	U
Chlorobenzene	U	U	U	U	U	U	U	U
Chloroethane	U	U	U	U	U	U	U	U
Chloromethane	12.7	10.1	17.7	U	U	U	U	U
Cyclohexane	U	U	U	U	U	U	U	U
Ethanol	U	U	7.46	U	U	U	U	U
Ethyl Acetate	U	U	2.69	U	U	U	U	U
Ethylbenzene	1.85	1.99	5.82	U	U	U	U	U
Heptane	1.16	U	3.05	U	U	U	U	U
Hexane	1.96	1.84	4.02	U	U	U	U	U
m & p-Xylene	U	U	1.91	U	U	U	U	U
Methanol	U	U	28.8	U	U	U	9.46	U
o-Xylene	U	U	U	U	U	U	U	U
Propene	23.6	18.0	35.6	U	U	U	U	U
Styrene	U	U	U	U	U	U	U	U
Tetrahydrofuran	U	U	U	U	U	U	U	U
Toluene	4.49	3.98	23.8	U	U	U	U	U

Table 6. VOC Concentrations (ppbv)

U = Analyte not detected above the Sample Reporting Limit

DTG Recycling Group

Table 7. VOC Concentrations Compared to MTCA Cleanup Levels (µg/m³)

Table 7. VO			ent Air					<u> </u>	MTCA	CULs*
Analyte	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	Method B Noncancer	Method C Noncancer
1,2,4-Trimethylbenzene	U	U	U	U	U	U	U	U	27	60
1,3,5-Trimethylbenzene	U	U	U	U	U	U	U	U	27	60
1,4-Dioxane	U	U	U	U	U	U	U	U	14	30
2-Butanone (MEK)	U	U	5.7	U	U	U	U	U	2,300	5,000
2-Hexanone (MBK)	U	U	U	U	U	U	U	U	NA	NA
2-Propanol (IPA)	U	U	U	U	U	U	U	U	91	200
4-Ethyltoluene	U	U	U	U	U	U	U	U	NA	NA
4-Methyl-2-pentanone (MiBK)	U	U	U	U	U	U	U	U	1,400	3,000
Acetone	8.6	8.9	25.9	U	U	8.5	U	U	14,000	31,000
Benzene	42.5	41.5	85.6	U	U	U	U	U	14	30
Carbon Disulfide	U	U	U	U	U	U	U	U	320	700
Chlorobenzene	U	U	U	U	U	U	U	U	23	50
Chloroethane	U	U	U	U	U	U	U	U	NA	NA
Chloromethane	26.2	20.9	36.6	U	U	U	U	U	41	90
Cyclohexane	U	U	U	U	U	U	U	U	2,700	6,000
Ethanol	U	U	14.1	U	U	U	U	U	NA	NA
Ethylbenzene	8.0	8.6	25.3	U	U	U	U	U	460	1,000
Heptane	4.8	U	12.5	U	U	U	U	U	180	400
Hexane	6.9	6.5	14.2	U	U	U	U	U	320	700
m & p-Xylene	U	U	U	U	U	U	U	U	46	100
Methanol	U	U	37.7	U	U	U	12.4	U	9,100	20,000
o-Xylene	U	U	U	U	U	U	U	U	46	100
Propene	40.6	31.0	61.3	U	U	U	U	U	NA	NA
Styrene	U	U	U	U	U	U	U	U	460	1,000
Tetrahydrofuran	U	U	U	U	U	U	U	U	910	2,000
Toluene	16.9	15.0	89.7	U	U	U	U	U	2,300	5,000

*MTCA CULs derived from Cleanup Levels and Risk Calculations (CLARC) tables

NA = Analyte does not have a cleanup level in the CLARC tables

U = Analyte not detected above the Sample Reporting Limit

DTG Recycling Group

Table 8. Tentatively Identified Compound Concentrations (ppbv)

			mbient /		<u> </u>		S	
Analyte	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8
Isobutane								
2-Methyl-1-propene	4.86	4.88	7.37					
2-Methylbutane					4.37			
Butane	3.54	3.86	6.81					
2-Butene								
Pentane		3.96	9.07					
2-Methyl-2-butene	4.65	1.89	3.12					
2-Methylpentane								
3-Methylfuran								
2-Methylfuran			2.51					
Octane			1.73					
Hexamethylcyclotrisiloxane			5.04					
2,2,6-Trimethyloctane			4.07					
4,4,5-Trimethyl-2-hexane								
3-Methylcyclopentene								
Methylcyclopentane								
5-Methyl-1,3-cyclopentadiene								
3-Methyl-1,3-pentadiene								
Decane			1.70					
1-Methyl-4-(1-methylethyl)-benzene			8.02					
2-Ethyl-1-hexanol								
2,4-Dimethyl-2-decene								
4-Undecene								
Undecane								
1-Ethyly-4-ethylbenzene								
2,3-Dihydro-4-methyl-1H-indene								
Dodecane								
2,4-diethyl-1-methylbenzene								
Propane						1.74		

"--" = Not identified for this sample

OBSERVATIONS

The following observations are made based on the sampling results:

- Soil gas concentrations from samples collected December 2021, were highest (as expected) at the actively venting fracture locations A-1 and A-2. Elevated concentrations, particularly of VOC compounds correlated with heavy odors during the sample collection event.
- Soil gas concentrations were significantly lower at the A-3 location where venting was not occurring.
- The detected VOC compounds were similar at all three soil gas sampling locations A-1, A-2, and A-3 suggesting similar sources.
- Compared to the December 2021 analytical results, January 2022 were significantly lower or not detected, even in the three samples collected from the shallow fracture (samples S-1, S-2, and S-3). This was expected given that the January 2022 samples were collected from the ambient air and therefore subject to greater natural diffusion and dilution.
- VOC concentrations from the landfill boundary sample locations are largely non-detect except for occasional detections of acetone and methanol which are common laboratory contaminants.
- Because of the uncertainty of the identification of the TICs, the interpretation of the results and their meaning to this project is difficult.
- The detected analytes evident at the landfill surface locations in December 2021 and January 2022 are associated with a variety of sources including plastics, fuels, solvents, lubricants, and other decaying organic compounds. The benzene, toluene, ethylbenzene, and xylene (BTEX) compounds are typically associated with gasoline and diesel-range organics (i.e., fuels).
- The nature and concentration of detected analytes warrant increased consideration of PPE and IH monitoring while working proximate to the actively vented fracture locations. Ambient concentrations appear to dissipate quickly along the working surface of the landfill and particularly at the further reaches of the landfill boundary.

APPENDIX A

FIELD SUMMARY REPORTS AND PHOTOS

	REESTONE		Environmental Services, Ir 1100 Jadwin Ave, Suite 2 Richland, Washington 993 509-943-52
	Fi	eld Report	
Date: 12	1812021	Client: DTG Recu	de
Location: T	TG Lordfill	Project: DTG	2
Field Person	nel: Tracu & Brocke	Weather: Party Clady	Windy Temperature: 46°
Time (24 Hours):	Activities:	0 0	
1000	PLEAT WITH DIG, 4-ans merer (Check in at off GasAlert Max	XTID, dore 215
1020	Find OUT UPS S	NOD OF TIME F	or semple 14
1900	Locate semple	Or 209%	as scripte
1220	Lacation Se	ling equipment	1
1342	Collecting sample Collecting sample Surface FemD=1	A-1 backup	dam vent
1336	Ground Temp= 1	45°F W/ prok	VENT 1
1358	Collecting Sample	A-2 brickp	A-2
1354	Ground Temp=	A-3 from hills	side
1420	Collect Sample 1 Soctare Temp=	7-3 backup	A-3
1417	Ground Temp=		outs to
1515	Ship scaples Ship scaples vi Hood back to In	C UPS NexTO	day air early-
	Miller Marine 10 Pte	of Used m	12/8/2021
Signature		27	Date: 28/20
Reviewed	- in princip		Date:

	VIRONMENTAL SERVICES, INC.	1100 Jadwin Ave, Suite 2 Richland, Washington 993
		509-943-52
Page	Field Repo	rt
Date:) /	Client: DTC	Recycle
Location:	TG Loodfill Project: TT	(1
Field Person	nel: Brooke, Traca Weather: Cle	willorty (loude Temperature: 37
Time (24 Hours):	Activities:	1 3 3
0915	FREESTORE ON SITE + SIGN	red in camean office
0415	Mar Bondes & Declad 15	4-Cros Monitor
1920	FEST DIFY Londen for	actively veryon
na.	cont - man and the	2d may may
1030	Discossion with RTA-	the Still collect
	Samples of a crack the	undory - OK if not
	Ventine	0
1/15	IST CODISTES DIGRED ON	11 crack 540F
1127	2nd conster placed 51	downwind: 440T-
130	2rd CONSTRE Dared 15'0	awnind of crack, 49°F
135	4Th conister placed, Upu	and Conister 34PF
1154	5Th conister placed 1st, bo	undary 31°F'
1157	Corch conister placed and be	oundary 44°F
1203	7th conister placed 3rd bou	ndery 31°5
1250	8th conister placed, 4th b	andred 450F
1233	Time on 8th conister	(5-8)
1246	Time on 4th conister	(SUD
1249	Time on 1st counister	(5-1)
1250	Time on 2nd courister	(5-2)
1250	Time on 3rd counister	(5-3)
1253	Time on Mm Canister	(5-7)
1257	Time on Let Counister	(S-6)
1300	Time on 5th carrister	
1415		Finther remain
1440	Turn off 3-4 canzister, 1	2 Hg remaining
1443		SHq
1445	Turn off S-3 conister	4 Hg
1448	Turn off S-Mrinister	Le Ha
Signature	A A A A A A A A A A A A A A A A A A A	Date: 12122
Reviewed B	r: NIA	Date: NIA-

5

0 5-10 14 14 5-11-

	FREEST	ONE		nental Services, Inc dwin Ave, Suite 250 , Washington 99352 509-943-5222
	age 212	Field Repor	t	
Date:	21 2022	Client: DTG	Recycle	
Location:	Dig lord.	Project: DT(1	
Field Perso	onnel: Trace Mally	and the second	Cr Te	mperature:
Time (24 Hours	Activities:	Dykstra		
1446	Turn off S-	6 conster C)in-Hg	
455	Turn off S-	5 conister, 0	in Has	
1450	Turonoff S-	1 CUDISTRC / 14	AHA	
1513	Signouro	of office + c	lose our ca	nisters
	tor Terurn			
2				
/				
,				

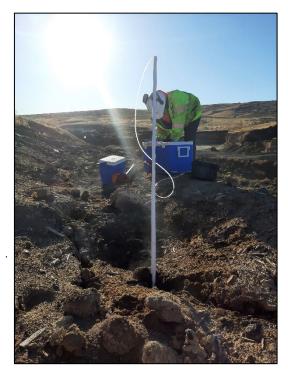


Photo 1: Sampling at location A-1. December 8, 2021

Photo 3: Sampling at location A-3. December 8, 2021

Photo 2: View of sampling down the vent at location A-1. December 8, 2021

Photo 4: Bentonite seal used during sampling at location A-3. December 8, 2021

Photo 5: Sampling at location S-1. January 21, 2022

Photo 7: Sampling at location S-4. January 21, 2022

Photo 6: View of air sampling at S-1, S-2 and S-3. January 21, 2022

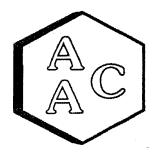


Photo 8: Air sampling at location S-6. January 21, 2022

AIR SAMPLING REPORT DTG Recycling Group

APPENDIX B

DECEMBER SOIL GAS SAMPLING ANALYTICAL LABORATORY REPORT FOR EPA METHOD TO-15 – VOLATILE ORGANIC COMPOUNDS AND TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT : Freestone Environmental PROJECT NAME : DTG Recycle AAC PROJECT NO. : 212309 : 12/21/2021 REPORT DATE

On December 9, 2020, Atmospheric Analysis & Consulting, Inc. received three (3) Tedlar bags for Volatile Organic Compounds and Tentatively Identified Compounds (TICs) analysis by EPA Method TO-15. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

	Client ID	Lab ID					
	Sample A-1	212309-26290					
a generale.	Sample A-2	212309-26292					
	Sample A-3	212309-26294					

This analysis is accredited under the laboratory's ISO/IEC 17025:2017 accreditation issued by the ANSI National Accreditation Board, Refer to certificate and scope of accreditation AT-1908. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. These samples were received in Tedlar Bags, which are considered inappropriate containers by EPA Method TO-15. Per NELAC requirements the analytical results should be considered estimated for these samples. AAC originally received six (6) samples, but per client request the analysis of samples "Sample A-1 backup", "Sample A-2 backup" & "Sample A-3 backup" were placed on hold. No other problems were encountered during receiving, preparation, and/or analysis of these samples.

The Technical Director or his designee, as verified by the following signature, has authorized release of the data contained in this hardcopy report.

If you have any questions or require further explanation of data results, please contact the undersigned.

Ducko (armony Sucha Parmar, Ph.D.

Technical Director

This report consists of 13 pages. the second s is all a subhase instance i sa arresta is

1996 - Merika Standard, and an angles angles 1996 - Santa Standard, ang angles a

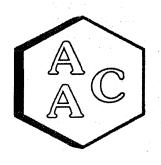
Executive concentration of a model for the

Learning that this date is to targetly at the consistent

2225 Sperry Ave., Ventura, CA 93003

www.aaclab.com • (805) 650-1642

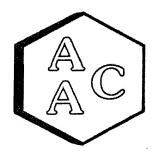
Page 1


Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 212309 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 12/09/2021 DATE REPORTED : 12/21/2021 ANALYST : MB

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	T	Sample A	-1			Sample A-	-2	0	
AAC ID		212309-262	290	Sample		212309-262	.91	Sample	Method
Date Sampled		12/08/202	1	Reporting		12/08/202	1	Reporting	Reporting
Date Analyzed		12/13/202	1	Limit		12/13/202	1	Limit	Limit
Can Dilution Factor		1.00		(SRL)		1.00		(SRL)	(MRL)
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	(MRL)
Chlorodifluoromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Propene	149000		2000	2000	25100		2000	2000	1,00
Dichlorodifluoromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Chloromethane	76700		2000	1000	4090		200	100	0.50
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Vinyl Chloride	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Methanol	125000		2000	10000	11900		200	1000	5.00
1,3-Butadiene	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0,50</td></srl<></td></srl<>	Ŭ	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0,50</td></srl<>	U	200	100	0,50
Bromomethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Chloroethane	1110		200	100	316		200	100	0.50
Dichlorofluoromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Ethanol	4570		200	400	982		200	400	2.00
Vinyl Bromide	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Acetone	44600		2000	4000	4850		200	400	2.00
Trichlorofluoromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
2-Propanol (IPA)	39900		2000	4000	4120		200	400	2.00
Acrylonitrile	<srl< td=""><td>U</td><td>200</td><td>400</td><td><srl< td=""><td>U</td><td>200</td><td>400</td><td>2.00</td></srl<></td></srl<>	U	200	400	<srl< td=""><td>U</td><td>200</td><td>400</td><td>2.00</td></srl<>	U	200	400	2.00
1,1-Dichloroethene	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Methylene Chloride (DCM)	<srl< td=""><td>U</td><td>200</td><td>200</td><td><srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<></td></srl<>	U	200	200	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00
Allyl Chloride	<srl< td=""><td>U</td><td>200</td><td>200</td><td><srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<></td></srl<>	U	200	200	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00
Carbon Disulfide	<srl< td=""><td>U</td><td>200</td><td>400</td><td>586</td><td></td><td>200</td><td>400</td><td>2.00</td></srl<>	U	200	400	586		200	400	2.00
Trichlorotrifluoroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
trans-1,2-Dichloroethene	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td><srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	Ū	200	100	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ū	200	100	0.50
1,1-Dichloroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Vinvl Acetate	<srl< td=""><td>U</td><td>200</td><td>200</td><td><srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<></td></srl<>	U	200	200	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00
2-Butanone (MEK)	14400		2000	2000	2390		200	200	1.00
cis-1.2-Dichloroethene	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Hexane	19500		200	100	8470		200	100	0.50
Chloroform	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Ethyl Acetate	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td><srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	Ū	200	100	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50
Tetrahydrofuran	18300		200	100	3100		200	100	0.50
1.2-Dichloroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
1.1.1-Trichloroethane	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td><srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	Ū	200	100	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50
Benzene	116000		2000	1000	25300		2000	1000	0.50


Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 212309 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 12/09/2021 DATE REPORTED : 12/21/2021 ANALYST : MB

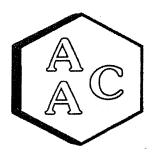
VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID		Sample A		Sample		Sample A-		Sample	
AAC ID		212309-262		Reporting		212309-262		Reporting	Method
Date Sampled		12/08/202				12/08/202			Reporting
Date Analyzed		12/13/202	1	Limit		12/13/202	1	Limit	Limit
Can Dilution Factor	· · · · ·	1.00		(SRL) [1.00			(SRL)	(MRL)
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	(
Carbon Tetrachloride	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Cyclohexane	992		200	100	434		200	100	0.50
1,2-Dichloropropane	<srl'< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl'<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Bromodichloromethane	<srl< td=""><td>. U</td><td>200 .</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	. U	200 .	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
1,4-Dioxane	5570		200	200	1620		200	200	1.00
Trichloroethene (TCE)	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
2,2,4-Trimethylpentane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Heptane	12500		200	100	5240		200	100	0.50
cis-1,3-Dichloropropene	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
4-Methyl-2-pentanone (MiBK)	380		200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
trans-1,3-Dichloropropene	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
1,1,2-Trichloroethane	<srl< td=""><td>Ura</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	Ura	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Toluene	17900		200	100	11800		200	100	0.50
2-Hexanone (MBK)	474		200	200	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00
Dibromochloromethane	<srl< td=""><td>Ú</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	Ú	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
1.2-Dibromoethane	<srl< td=""><td>Ū '</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	Ū '	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Tetrachloroethene (PCE)	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Chlorobenzene	218		200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Ethylbenzene	13600		200	100	9400		200	100	0.50
m & p-Xylene	9410		200	200	3050		200	200	1.00
Bromoform	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Styrene	2320		200	100	510		200	100	0.50
1.1.2.2-Tetrachloroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
o-Xvlene	6090		200	100	2130		200	100	0.50
4-Ethyltoluene	1830		200	100	606		200	100	0.50
1.3.5-Trimethylbenzene	2120		200	100	696		200	100	0.50
1.2.4-Trimethylbenzene	2010		200	100	754		200	100	0.50
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>U</td><td>200</td><td>200</td><td><srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<></td></srl<>	U	200	200	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00
1.3-Dichlorobenzene	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td><srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	Ū	200	100	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ū	200	100	0.50
1.4-Dichlorobenzene	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td><srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	Ŭ	200	100	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50
1,2-Dichlorobenzene	<srl< td=""><td>U</td><td>200</td><td>100</td><td><srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<>	U	200	100	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50
1.2.4-Trichlorobenzene	<srl< td=""><td>U</td><td>200</td><td>400</td><td><srl< td=""><td>Ū</td><td>200</td><td>400</td><td>2.00</td></srl<></td></srl<>	U	200	400	<srl< td=""><td>Ū</td><td>200</td><td>400</td><td>2.00</td></srl<>	Ū	200	400	2.00
Hexachlorobutadiene	<srl td="" <=""><td>U U</td><td>200</td><td>100</td><td><srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl>	U U	200	100	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50
BFB-Surrogate Std. % Recovery	<u>+</u>	114%				116%			70-130%

U - Compound was not detected at or above the SRL.

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 212309 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 12/09/2021 DATE REPORTED : 12/21/2021 ANALYST : MB

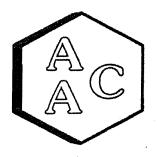

TENTATIVELY IDENTIFIED COMPOUNDS (TICs) BY EPA TO-15

<u>Client ID</u>		Sample A-1 212309-26290	
AACID			
Date Sampled		12/08/2021	
Date Analyzed		12/13/2021	
Can Dilution Factor		1.00	
Compound	Result*	Analysis DF	ID Quality [§]
Isobutane	4770	200	86
2-Methyl-1-propene	12700	200	90
Butane	8790	200	72
2-Butene	5090	200	81
Pentane	12300	200	91
2-Methyl-2-butene	8760	200	70
2-Methylpentane	6940	200	91
3-Methylfuran	14400	200	91
Octane	4300	200	91
4,4,5-Trimethyl-2-hexene	4320	200	64
BFB-Surrogate Std. % Recovery	114%		
	· · · · · · · · · · · · · · · · · · ·		
Client ID	1	Comple A 1	
Cacatin		Sample A-2	
AAC ID		212309-26291	· · · · · · · · · · · · · · · · · · ·
AAC ID Date Sampled		212309-26291 12/08/2021	······································
AAC ID		212309-26291	· · · · · · · · · · · · · · · · · · ·
AAC ID Date Sampled		212309-26291 12/08/2021	
AAC ID Date Sampled Date Analyzed	Result*	212309-26291 12/08/2021 12/13/2021	ID Quality [§]
AAC ID Date Sampled Date Analyzed Can Dilution Factor	Result* 5660	212309-26291 12/08/2021 12/13/2021 1.00	90
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane		212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF	
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane	5660	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200	90
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene	5660 4320	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200 200	90 72
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane 2-Butene	5660 4320 2140	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200 200 200	90 72 81
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane 2-Butene Pentane 2-Methylpentane 2-Methylpentane 2-Methylfuran	5660 4320 2140 6220	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200 200 200 200 200	90 72 81 90
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane 2-Butene Pentane 2-Methylpentane 2-Methylpentane 2-Methylfuran	5660 4320 2140 6220 3120	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200 200 200 200 200 200 200	90 72 81 90 91
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane 2-Butene Pentane 2-Methylpentane 2-Methylpuran 3-Methylcyclopentene	5660 4320 2140 6220 3120 4980	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200 200 200 200 200 200 200 20	90 72 81 90 91 94
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane 2-Butene Pentane 2-Butene Pentane 2-Methylpentane 2-Methylpuran 3-Methylcyclopentene Methylcyclopentane	5660 4320 2140 6220 3120 4980 3370	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200 200 200 200 200 200 200 20	90 72 81 90 91 94 90
AAC ID Date Sampled Date Analyzed Can Dilution Factor Compound 2-Methyl-1-propene Butane 2-Butene Pentane 2-Methylpentane 2-Methylpentane 2-Methylpuran 3-Methylcyclopentene	5660 4320 2140 6220 3120 4980 3370 2410	212309-26291 12/08/2021 12/13/2021 1.00 Analysis DF 200 200 200 200 200 200 200 20	90 72 81 90 91 94 90 91

* Results obtained via TICs analysis are estimated.

§ Spectral Library match quality ranges from 1-100.

R

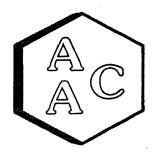

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 212309 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 12/09/2021 DATE REPORTED : 12/21/2021 ANALYST : MB

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	Comula .				
AAC ID		212309-262	92	Sample	Method
Date Sampled	1	12/08/202	1	Reporting	Reporting
Date Analyzed		12/13/202	1	Limit	Limit
Can Dilution Factor		1.00		(SRL)	
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	(MRL)
Chlorodifluoromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Propene	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00
Dichlorodifluoromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Chloromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Vinyl Chloride	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50
Methanol	1290		200	1000	5.00
1,3-Butadiene	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Bromomethane	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50
Chloroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Dichlorofluoromethane	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ū	200	100	0.50
Ethanol	<srl< td=""><td>Ū</td><td>200</td><td>400</td><td>2.00</td></srl<>	Ū	200	400	2.00
Vinyl Bromide	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ū	200	100	0.50
Acetone	<srl< td=""><td></td><td>200</td><td>400</td><td>2.00</td></srl<>		200	400	2.00
Trichlorofluoromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
2-Propanol (IPA)	556		200	400	2.00
Acrylonitrile	<srl< td=""><td>Ū</td><td>200</td><td>400</td><td>2.00</td></srl<>	Ū	200	400	2.00
1,1-Dichloroethene	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50
Methylene Chloride (DCM)	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00
Allyl Chloride	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00
Carbon Disulfide	424		200	400	2.00
Trichlorotrifluoroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
trans-1,2-Dichloroethene	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
1,1-Dichloroethane	<srl< td=""><td>U.</td><td>200</td><td>100</td><td>0.50</td></srl<>	U.	200	100	0.50
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ū	200	100	0.50
Vinyl Acetate	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00
2-Butanone (MEK)	<srl< td=""><td>U</td><td>200</td><td>200</td><td>1.00</td></srl<>	U	200	200	1.00
cis-1,2-Dichloroethene	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Hexane	150		200	100	0.50
Chloroform	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Ethyl Acetate	<srl< td=""><td>Ŭ</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ŭ	200	100	0.50
Tetrahydrofuran	216		200	100	0.50
1,2-Dichloroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
1,1,1-Trichloroethane	<srl< td=""><td>Ū</td><td>200</td><td>100</td><td>0.50</td></srl<>	Ū	200	100	0.50
Benzene	1470		200	100	0.50

Laboratory Analysis Report


CLIENT : Freestone Environmental PROJECT NO : 212309 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 12/09/2021 DATE REPORTED : 12/21/2021 ANALYST : MB

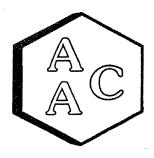
VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Client ID	T	Sample A-	Sample		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		1	212309-262	92		Method
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Date Sampled	1	12/08/202	1		Renorting
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Date Analyzed	1	12/13/202	1	Limit	
CompoundResultQualifierAnalysis DF(MRLxDF's)Carbon Tetrachloride $<$ SRLU2001000.50Cyclohexane $<$ SRLU2001000.50I.2-Dichloropropane $<$ SRLU2001000.50Bromodichloromethane $<$ SRLU2001000.50I.2-Dichloropropane $<$ SRLU2001000.50Dirichloroethene (TCE) $<$ SRLU2001000.502,2,4-Trimethylpentane $<$ SRLU2001000.504-Methyl-2-pentanone (MiBK) $<$ SRLU2001000.501,1,2-Trichloroptopene $<$ SRLU2001000.501,1,2-Trichloropthane $<$ SRLU2001000.502-Hexanone (MBK) $<$ SRLU2001000.501,2-Dirboroethane $<$ SRLU2001	Can Dilution Factor		1.00		(SRL)	
$\begin{array}{c c} Cyclohexane & < SRL & U & 200 & 100 & 0.50 \\ 1,2-Dichloropropane & < SRL & U & 200 & 100 & 0.50 \\ Bromodichloromethane & < SRL & U & 200 & 100 & 0.50 \\ If-Dioxane & 438 & 200 & 200 & 1.00 \\ Trichloroethene (TCE) & $	Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	(MRL)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Carbon Tetrachloride				100	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cyclohexane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2-Dichloropropane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bromodichloromethane	<srl< td=""><td>U .</td><td>200</td><td>100</td><td>0.50</td></srl<>	U .	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,4-Dioxane	438		200	200	1.00
Heptane 194 200 100 0.50 cis-1,3-Dichloropropene \leq SRL U 200 100 0.50 4-Methyl-2-pentanone (MiBK) \leq SRL U 200 100 0.50 trans-1,3-Dichloropropene \leq SRL U 200 100 0.50 1,1,2-Trichloroethane \leq SRL U 200 100 0.50 Toluene 1540 200 100 0.50 2-Hexanone (MBK) \leq SRL U 200 100 0.50 Dibromochloromethane \leq SRL U 200 100 0.50 12-Dibromoethane \leq SRL U 200 100 0.50 Tetrachloroethane \leq SRL U 200 100 0.50 Chlorobenzene \leq SRL U 200 100 0.50 Ehvlbenzene 228 200 200 1.00 0.50 Styrene S28 200 100 0.50 0.50 0.	Trichloroethene (TCE)	<srl< td=""><td></td><td></td><td>100</td><td>0,50</td></srl<>			100	0,50
cis-1_3-Dichloropropene $<$ SRL U 200 100 0.50 4-Methyl-2-pentanone (MiBK) SRL U 200 100 0.50 trans-1_3-Dichloropropene $<$ SRL U 200 100 0.50 trans-1_3-Dichloropropene $<$ SRL U 200 100 0.50 Toluene 1540 200 100 0.50 2-Hexanone (MBK) SRL U 200 100 0.50 1_2-Dibromochlarne $<$ SRL U 200 100 0.50 1_2-Dibromocthane $<$ SRL U 200 100 0.50 Tetrachloroethene (PCE) $<$ SRL U 200 100 0.50 Ethylbenzene 28 200 200 1.00 0.50 Bromoform $<$ SRL U 200 100 0.50 Styrene 114 200 100 0.50 1.1,2,2-Tetrachloroethane SRL U 200 100 0.50 1	2,2,4-Trimethylpentane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Heptane	194		200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	cis-1,3-Dichloropropene	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Toluene 1540 200 100 0.50 2-Hexanone (MBK) \leq SRL U 200 200 1.00 Dibromochloromethane \leq SRL U 200 100 0.50 L2-Dibromochlane \leq SRL U 200 100 0.50 Tetrachloroethane \leq SRL U 200 100 0.50 Tetrachloroethene (PCE) \leq SRL U 200 100 0.50 Ethylbenzene \leq SRL U 200 100 0.50 Ethylbenzene 2040 200 100 0.50 Bromoform \leq SRL U 200 100 0.50 Bromoform \leq SRL U 200 100 0.50 Styrene 114 200 100 0.50 0.50 1,1,2,2-Tetrachloroethane \leq SRL U 200 100 0.50 4,4Ethyltoluene 130 200 100 0.50 1,2,4-Trimethylbenzene		<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,1,2-Trichloroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Toluene	1540		200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2-Hexanone (MBK)	<srl< td=""><td>Ŭ</td><td>200</td><td>200</td><td>1.00</td></srl<>	Ŭ	200	200	1.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dibromochloromethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2-Dibromoethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
Ethylbenzene 2040 200 100 0.50 m & p-Xylene 528 200 200 1.00 Bromoform <srl< td=""> U 200 100 0.50 Styrene 114 200 100 0.50 1,1,2,2-Tetrachloroethane <srl< td=""> U 200 100 0.50 1,1,2,2-Tetrachloroethane <srl< td=""> U 200 100 0.50 1,2,2-Tetrachloroethane <srl< td=""> U 200 100 0.50 1,3,5-Trimethylbenzene 130 200 100 0.50 1,3,5-Trimethylbenzene 176 200 100 0.50 1,3-Uchlorobenzene <srl< td=""> U 200 100 0.50 1,3-Dichlorobenzene <srl< td=""> U 200 100 0.50 1,3-Dichlorobenzene <srl< td=""> U 200 100 0.50 1,4-Dichlorobenzene <srl< td=""> U 200 100 0.50 1,2-Dichlorobenzene <srl< <="" td=""><td>Tetrachloroethene (PCE)</td><td><srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<></td></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<></srl<>	Tetrachloroethene (PCE)	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chlorobenzene	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ethylbenzene	2040		200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	m & p-Xylene	528		200	200	1.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bromoform	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Styrene	114		200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,1,2,2-Tetrachloroethane	<srl< td=""><td>U</td><td>200</td><td>100</td><td>0.50</td></srl<>	U	200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		388		200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4-Ethyltoluene	130		200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.3.5-Trimethylbenzene	158		200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		176		200	100	0.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			U			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
1,2-Dichlorobenzene <srl< th=""> U 200 100 0.50 1,2,4-Trichlorobenzene <srl< td=""> U 200 400 2.00 Hexachlorobutadiene <srl< td=""> U 200 100 0.50</srl<></srl<></srl<>						
1,2,4-Trichlorobenzene <srl< th=""> U 200 400 2.00 Hexachlorobutadiene <srl< td=""> U 200 100 0.50</srl<></srl<>						
Hexachlorobutadiene <srl 0.50<="" 100="" 200="" td="" u=""><td></td><td></td><td></td><td></td><td></td><td></td></srl>						
BEB-NUTOVALE 102% //0-130%	BFB-Surrogate Std. % Recovery		102%	~~~~ I	<u>1××</u>	70-130%

U - Compound was not detected at or above the SRL.

 $\textcircled{\blue}{\blue}$

Laboratory Analysis Report


CLIENT : Freestone Environmental PROJECT NO : 212309 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 12/09/2021 DATE REPORTED : 12/21/2021 ANALYST : MB

TENTATIVELY IDENTIFIED COMPOUNDS (TICs) BY EPA TO-15

Client ID	Sample A-3					
AACID	212309-26292					
Date Sampled		12/08/2021				
Date Analyzed		12/13/2021				
Can Dilution Factor		1.00				
Compound	Result*	Analysis DF	ID Quality [§]			
Decane	268	200	95			
2-Ethyl-1-hexanol	322	200	90			
2,4-Dimethyl-2-decene	212	200	64			
4-Undecene	228	200	93			
Undecane	518	200	94			
1-Ethenyl-4-ethylbenzene	222	200	76			
2,3-Dihydro-4-methyl-1H-indene	228	200	83			
Dodecane	378	200	93			
2,4-Diethyl-1-methylbenzene	222	200	30			
BFB-Surrogate Std. % Recovery	102%					

* Results obtained via TICs analysis are estimated.

§ Spectral Library match quality ranges from 1-100.

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 12/13/2021 MATRIX : High Purity N₂ UNITS : PPB (v/v)

INSTRUMENT ID : GC/MS-04 CALIBRATION STD ID : PS101121-02 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

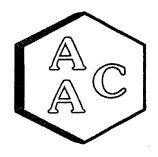
Continuing Calibration Verification of the 12/10/2021 Calibration

Analyte Compounds		Source ¹	CCV ²	% Recovery ³	Analyte Compounds (Continued)	Source ¹	CCV ²	% Recover
4-BFB (surrogate standard)		10.00	10.50	105	1,2-Dichloropropane	10.60	11.40	108
Chlorodifluoromethane		10,70	10.70	100	Bromodichloromethane	10.50	10.93	104
Propene		10.90	11.11	102	1,4-Dioxane	10.50	12.35	118
Dichlorodifluoromethane		10.30	11.42	111	Trichloroethene (TCE)	10.50	11.16	106
Dimethyl Ether		10.70	10.15	95	2,2,4-Trimethylpentane	10.60	11.63	110
Chloromethane		10.30	11.12	108	Methyl Methacrylate	10.60	11.58	109
Dichlorotetrafluoroethane		9.80	11.43	117	Heptane	10.60	11.33	107
Vinyl Chloride		10.10	12.20	121	cis-1,3-Dichloropropene	10.20	11.20	110
Acetaldehyde		20,50	21.50	105	4-Methyl-2-pentanone (MiBK)	10.20	11.04	108
Methanol		16.20	17.94	111	trans-1,3-Dichloropropene	10.10	11.48	114
1,3-Butadiene		10.70	13.08	122	1,1,2-Trichloroethane	10.80	11.32	105
Bromomethane		10.30	12.54	122	Toluene	10.80	11.97	111
Chloroethane		9,90	11.39	115	2-Hexanone (MBK)	10.70	11.85	111
Dichlorofluoromethane		10.40	12.22	118	Dibromochloromethane	10.60	11.30	107
Ethanol		10.50	12.62	120	. 1,2-Dibromoethane	10.90	11.85	109
Vinyl Bromide		10,60	12.41	117	Tetrachloroethene (PCE)	10.50	10.95	104
Acrolein		10.90	12.79	117	Chlorobenzene	10.90	11.63	107
Acetone		10.40	11.01	106	Ethylbenzene	10.90	12.81	118
Trichlorofluoromethane		10,20	11.22	110	m & p-Xylene	21.60	27.18	126
2-Propanol (IPA)	HR	10.90	14.76	135	Bromoform	10.80	12.06	112
Acrylonitrile		11.30	11.45	101	Styrene	10,70	13.20	123
1,1-Dichloroethene		10.70	12.05	113	1,1,2,2-Tetrachloroethane	10.70	12.03	112
Methylene Chloride (DCM)		10.90	11.56	106	o-Xylene	10.70	12.47	117
TertButanol (TBA)	HR	10.80	14.74	136	1,2,3-Trichloropropane	10.80	11.92	110
Allyl Chloride		10,90	10.05	92	Isopropylbenzene (Cumene)	10.80	12.55	116
Carbon Disulfide		10.50	11.58	110	α-Pinene	11.60	13.65	118
Trichlorotrifluoroethane		10.90	11.45	105	2-Chlorotoluene	10.90	12.20	112
rans-1,2-Dichloroethene		10.40	11.54	111	n-Propylbenzene	10.20	11.84	116
I,I-Dichloroethane		10.30	11.01	107	4-Ethyltoluene	10.60	12,53	118
Methyl Tert Butyl Ether (MTBE)		10.80	12.75	118	1,3,5-Trimethylbenzene	10.50	12.33	117
Vinyl Acetate		11.00	12.01	109	β-Pinene	9.30	11.20	120
2-Butanone (MEK)		10.50	10.86	103	1,2,4-Trimethylbenzene	10.50	12.36	118
sis-1,2-Dichloroethene		10.50	11.82	113	Benzyl Chloride (a-Chlorotoluene)	10.60	12.11	114
lexane		10.70	11.96	112	1,3-Dichlorobenzene	10.60	13.01	123
Chloroform		10.60	11.25	106	1,4-Dichlorobenzene	10.40	12.75	123
Ethyl Acetate		10.60	11.19	106	Sec-ButylBenzene	10.80	13.32	123
Fetrahydrofuran		10.60	12.29	116	1,2-Dichlorobenzene	10.30	12.24	119
,2-Dichloroethane		10.60	11.30	107	n-ButylBenzene	10.60	13.00	123
,1,1-Trichloroethane		10.50	10.92	104	1,2-Dibromo-3-Chloropropane	10.70	12.72	119
Benzene		10.60	11.74	111	1,2,4-Trichlorobenzene	10.50	11.43	109
Carbon Tetrachloride		10.70	11,18	104	Naphthalene	10.50	12.34	118
Cyclohexane		10.50	11.64	111	Hexachlorobutadiene	10.70	12.19	114

¹Concentration of analyte compound in certified source standard.

² Measured result from daily Continuing Calibration Verification (CCV).

 3 The acceptable range for analyte recovery is 100±30%.


HR - Recovery for this compound was high. Results should be considered biased high.

2225 Sperry Ave., Ventura, CA 93003

 (\mathbf{x})

.

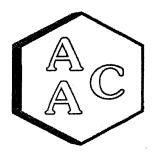
Page 8

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 12/13/2021 MATRIX : High Purity N₂ UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-04 CALIBRATION STD ID : PS101121-02 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Laboratory Control Spike Analysis

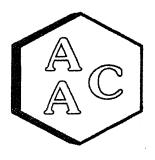

Sustan Manitoring Company da	Sample	Spike	LCS ¹	LCSD ¹	LCS	LCSD ¹	RPD ³
System Monitoring Compounds	Concentration	Added	Recovery	Recovery	% Recovery ²	% Recovery ²	KPD
4-BFB (surrogate standard)	0.0	10.00	10.50	10.44	105	104.4	0.6
1,1-Dichloroethene	0.0	10.70	12.05	11.87	113	111	1.5
Methylene Chloride (DCM)	0.0	10.90	11.56	11.34	106	104	1.9
Benzene	0.0	10.60	11.74	11.62	111	110	1.0
Trichloroethene (TCE)	0.0	10.50	11.16	11.15	106	106	0.1
Toluene	0.0	10.80	11.97	11.90	111	110	0.6
Tetrachloroethene (PCE)	0.0	10.50	10.95	10.95	104	104	0.0
Chlorobenzene	0.0	10.90	11.63	11.46	107	105	1.5
Ethylbenzene	0.0	10.90	12.81	12.83	118	118	0.2
m & p-Xylene	0.0	21.60	27.18	26.92	126	125	1.0
o-Xylene	0.0	10.70	12.47	12.33	117	115	1.1

¹ Laboratory Control Spike (LCS) / Laboratory Control Spike Duplicate (LCSD)

 2 The acceptable range for analyte recovery is 100 \pm 30%.

³ Relative Percent Difference (RPD) between LCS recovery and LCSD recovery (acceptable range is <25%).

QUALITY CONTROL / QUALITY ASSURANCE REPORT


ANALYSIS DATE : 12/13/2021 MATRIX : High Purity He or N₂ UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-04 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15 Method Blank Analysis

Analyte Compounds	MB 121321	Reporting Limit (RL)	Analyte Compounds (Continued)	MB 121321	Reporting Limit (RL)
4-BFB (surrogate standard)	97%	100±30%	1,2-Dichloropropane	<rl< td=""><td>0.5</td></rl<>	0.5
Chlorodifluoromethane	<rl< td=""><td>0.5</td><td>Bromodichloromethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Bromodichloromethane	<rl< td=""><td>0.5</td></rl<>	0.5
Propene	<rl< td=""><td>1.0</td><td>1,4-Dioxane</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	1.0	1,4-Dioxane	<rl< td=""><td>1.0</td></rl<>	1.0
Dichlorodifluoromethane	<rl< td=""><td>0.5</td><td>Trichloroethene (TCE)</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Trichloroethene (TCE)	<rl< td=""><td>0.5</td></rl<>	0.5
Dimethyl Ether	<rl< td=""><td>0.5</td><td>2,2,4-Trimethylpentane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	2,2,4-Trimethylpentane	<rl< td=""><td>0.5</td></rl<>	0.5
Chloromethane	<rl< td=""><td>0.5</td><td>Methyl Methacrylate</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Methyl Methacrylate	<rl< td=""><td>0.5</td></rl<>	0.5
Dichlorotetrafluoroethane	<rl< td=""><td>0.5</td><td>Heptane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Heptane	<rl< td=""><td>0.5</td></rl<>	0.5
Vinyl Chloride	<rl< td=""><td>0.5</td><td>cis-1,3-Dichloropropene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	cis-1,3-Dichloropropene	<rl< td=""><td>0.5</td></rl<>	0.5
Acetaldehyde	<rl< td=""><td>5.0</td><td>4-Methyl-2-pentanone (MiBK)</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	5.0	4-Methyl-2-pentanone (MiBK)	<rl< td=""><td>0.5</td></rl<>	0.5
Methanol	<rl< td=""><td>5.0</td><td>trans-1,3-Dichloropropene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	5.0	trans-1,3-Dichloropropene	<rl< td=""><td>0.5</td></rl<>	0.5
1,3-Butadiene	<rl< td=""><td>0.5</td><td>1,1,2-Trichloroethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,1,2-Trichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
Bromomethane	<rl< td=""><td>0.5</td><td>Toluene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Toluene	<rl< td=""><td>0.5</td></rl<>	0.5
Chloroethane	<rl< td=""><td>0.5</td><td>2-Hexanone (MBK)</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	2-Hexanone (MBK)	<rl< td=""><td>1.0</td></rl<>	1.0
Dichlorofluoromethane	<rl< td=""><td>0.5</td><td>Dibromochloromethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Dibromochloromethane	<rl< td=""><td>0.5</td></rl<>	0.5
Ethanol	<rl< td=""><td>2.0</td><td>1,2-Dibromoethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	2.0	1,2-Dibromoethane	<rl< td=""><td>0.5</td></rl<>	0.5
Vinyl Bromide	<rl< td=""><td>0.5</td><td>Tetrachloroethene (PCE)</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Tetrachloroethene (PCE)	<rl< td=""><td>0.5</td></rl<>	0.5
Acrolein	<rl< td=""><td>1.0</td><td>Chlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	1.0	Chlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Acetone	<rl< td=""><td>2.0</td><td>Ethylbenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	2.0	Ethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Trichlorofluoromethane	<rl< td=""><td>0.5</td><td>m & p-Xylene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	m & p-Xylene	<rl< td=""><td>1.0</td></rl<>	1.0
2-Propanol (IPA)	<rl< td=""><td>2.0</td><td>Bromoform</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	2.0	Bromoform	<rl< td=""><td>0.5</td></rl<>	0.5
Acrylonitrile	<rl< td=""><td>2.0</td><td>Styrene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	2.0	Styrene	<rl< td=""><td>0.5</td></rl<>	0.5
1,1-Dichloroethene	<rl< td=""><td>0.5</td><td>1,1,2,2-Tetrachloroethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,1,2,2-Tetrachloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
Methylene Chloride (DCM)	<rl< td=""><td>1.0</td><td>o-Xylene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	1.0	o-Xylene	<rl< td=""><td>0.5</td></rl<>	0.5
TertButanol (TBA)	<rl< td=""><td>0.5</td><td>1,2,3-Trichloropropane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,2,3-Trichloropropane	<rl< td=""><td>0.5</td></rl<>	0.5
Allyl Chloride	<rl< td=""><td>1.0</td><td>Isopropylbenzene (Cumene)</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	1.0	Isopropylbenzene (Cumene)	<rl< td=""><td>0.5</td></rl<>	0.5
Carbon Disulfide	<rl< td=""><td>2.0</td><td>α-Pinene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	2.0	α-Pinene	<rl< td=""><td>0.5</td></rl<>	0.5
Trichlorotrifluoroethane	<rl< td=""><td>0.5</td><td>2-Chlorotoluene</td><td><rl< td=""><td>0,5</td></rl<></td></rl<>	0.5	2-Chlorotoluene	<rl< td=""><td>0,5</td></rl<>	0,5
trans-1,2-Dichloroethene	<rl< td=""><td>0.5</td><td>n-Propylbenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	n-Propylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
I, I-Dichloroethane	<rl< td=""><td>0.5</td><td>4-Ethyltoluene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	4-Ethyltoluene	<rl< td=""><td>0.5</td></rl<>	0.5
Methyl Tert Butyl Ether (MTBE)	<rl< td=""><td>0.5</td><td>1,3,5-Trimethylbenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,3,5-Trimethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Vinyl Acetate	<rl< td=""><td>1.0</td><td>β-Pinene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	1.0	β-Pinene	<rl< td=""><td>0.5</td></rl<>	0.5
2-Butanone (MEK)	<rl< td=""><td>1.0</td><td>1,2,4-Trimethylbenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	1.0	1,2,4-Trimethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
cis-1,2-Dichloroethene	<rl< td=""><td>0.5</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	Benzyl Chloride (a-Chlorotoluene)	<rl< td=""><td>1.0</td></rl<>	1.0
Hexane	<rl< td=""><td>0.5</td><td>1,3-Dichlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,3-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Chloroform	<rl< td=""><td>0.5</td><td>1,4-Dichlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,4-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Ethyl Acetate	<rl< td=""><td>0.5</td><td>Sec-ButylBenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Sec-ButylBenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Fetrahydrofuran	<rl< td=""><td>0.5</td><td>1,2-Dichlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,2-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
,2-Dichloroethane	<rl< td=""><td>0.5</td><td>n-ButylBenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	n-ButylBenzene	<rl< td=""><td>0.5</td></rl<>	0.5
,1,1-Trichloroethane	<rl< td=""><td>0.5</td><td>1,2-Dibromo-3-Chloropropane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,2-Dibromo-3-Chloropropane	<rl< td=""><td>0.5</td></rl<>	0.5
Benzene	<rl< td=""><td>0.5</td><td>1,2,4-Trichlorobenzene</td><td><rl< td=""><td>2.0</td></rl<></td></rl<>	0.5	1,2,4-Trichlorobenzene	<rl< td=""><td>2.0</td></rl<>	2.0
Carbon Tetrachloride	<rl< td=""><td>0.5</td><td>Naphthalene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	Naphthalene	<rl< td=""><td>1.0</td></rl<>	1.0
Cyclohexane	<rl< td=""><td>0.5</td><td>Hexachlorobutadiene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Hexachlorobutadiene	<rl< td=""><td>0.5</td></rl<>	0.5

Page 10

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 12/13/2021 MATRIX : Air UNITS : PPB (v/v)

INSTRUMENT ID : GC/MS-04 ANALYST : MB/RC DILUTION FACTOR¹ : x19.94

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15 Duplicate Analysis of AAC Sample ID: 212241-25954

Analyte Compounds	Sample	Duplicate	RPD ²	Analyte Compounds (Continued)	Sample	Duplicate	RPD ²
4-BFB (surrogate standard)	9.55	9.57	0.2	1,2-Dichloropropane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chlorodifluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Bromodichloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Bromodichloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Bromodichloromethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Propene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,4-Dioxane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,4-Dioxane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,4-Dioxane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dichlorodifluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Trichloroethene (TCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Trichloroethene (TCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Trichloroethene (TCE)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dimethyl Ether	<srl< td=""><td><srl< td=""><td>NA</td><td>2,2,4-Trimethylpentane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>2,2,4-Trimethylpentane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2,2,4-Trimethylpentane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chloromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Methyl Methacrylate</td><td><srl ***<="" td=""><td><srl ***<="" td=""><td>NA</td></srl></td></srl></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Methyl Methacrylate</td><td><srl ***<="" td=""><td><srl ***<="" td=""><td>NA</td></srl></td></srl></td></srl<>	NA	Methyl Methacrylate	<srl ***<="" td=""><td><srl ***<="" td=""><td>NA</td></srl></td></srl>	<srl ***<="" td=""><td>NA</td></srl>	NA
Dichlorotetrafluoroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Heptane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Heptane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Heptane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Vinyl Chloride	<srl< td=""><td><srl< td=""><td>NA</td><td>cis-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>cis-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	cis-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acetaldehyde	<srl< td=""><td><srl< td=""><td>NA</td><td>4-Methyl-2-pentanone (MiBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>4-Methyl-2-pentanone (MiBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	4-Methyl-2-pentanone (MiBK)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Methanol	<srl< td=""><td><srl< td=""><td>NA</td><td>trans-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>trans-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	trans-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
1,3-Butadiene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,1,2-Trichloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,1,2-Trichloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,1,2-Trichloroethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Bromomethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Toluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Toluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Toluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Chloroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>2-Hexanone (MBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>2-Hexanone (MBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2-Hexanone (MBK)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Dichlorofluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Dibromochloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Dibromochloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Dibromochloromethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Ethanol	<srl< td=""><td><srl< td=""><td>NA</td><td>1,2-Dibromoethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,2-Dibromoethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,2-Dibromoethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
/inyl Bromide	<srl< td=""><td><srl< td=""><td>NA</td><td>Tetrachloroethene (PCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Tetrachloroethene (PCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Tetrachloroethene (PCE)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acrolein	<srl< td=""><td><srl< td=""><td>NA</td><td>Chlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Chlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Chlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acetone	250	253	1.1	Ethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Frichlorofluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>m & p-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>m & p-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	m & p-Xylene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
-Propanol (IPA)	<srl< td=""><td><srl< td=""><td>NA</td><td>Bromoform</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Bromoform</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Bromoform	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Acrylonitrile	<srl< td=""><td><srl< td=""><td>NA</td><td>Styrene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Styrene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Styrene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
,1-Dichloroethene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,1,2,2-Tetrachloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,1,2,2-Tetrachloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,1,2,2-Tetrachloroethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Aethylene Chloride (DCM)	<srl< td=""><td><srl< td=""><td>NA</td><td>o-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>o-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	o-Xylene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
ertButanol (TBA)	<srl< td=""><td><srl< td=""><td>NA</td><td>1,2,3-Trichloropropane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,2,3-Trichloropropane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,2,3-Trichloropropane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Allyl Chloride	<srl< td=""><td><srl< td=""><td>NA</td><td>Isopropylbenzene (Cumene)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Isopropylbenzene (Cumene)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Isopropylbenzene (Cumene)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
Carbon Disulfide	<srl< td=""><td><srl< td=""><td>NA</td><td>a-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>a-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	a-Pinene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
richlorotrifluoroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>2-Chlorotoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>2-Chlorotoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2-Chlorotoluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
ans-1,2-Dichloroethene	<srl< td=""><td><srl< td=""><td>NA</td><td>n-Propylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>n-Propylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	n-Propylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
,1-Dichloroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>4-Ethyltoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>4-Ethyltoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	4-Ethyltoluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
fethyl Tert Butyl Ether (MTBE)	<srl< td=""><td><srl< td=""><td>NA</td><td>1,3,5-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,3,5-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,3,5-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
/inyl Acetate	<srl< td=""><td><srl< td=""><td>NA</td><td>β-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>β-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	β-Pinene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
-Butanone (MEK)	<srl< td=""><td><srl< td=""><td>NA</td><td>1,2,4-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,2,4-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,2,4-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA
is-1,2-Dichloroethene	<srl< td=""><td><srl< td=""><td>NA</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<>	NA	Benzyl Chloride (a-Chlorotoluene)	<srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td></srl<>	NA
lexane	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>1.3-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td></td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>1.3-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td></td></srl<></td></srl<></td></srl<>	NA	1.3-Dichlorobenzene	<srl< td=""><td><srl< td=""><td></td></srl<></td></srl<>	<srl< td=""><td></td></srl<>	
hloroform	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>1.4-Dichlorobenzene</td><td><srl <srl< td=""><td><srl< td=""><td> </td></srl<></td></srl<></srl </td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>1.4-Dichlorobenzene</td><td><srl <srl< td=""><td><srl< td=""><td> </td></srl<></td></srl<></srl </td></srl<>	NA	1.4-Dichlorobenzene	<srl <srl< td=""><td><srl< td=""><td> </td></srl<></td></srl<></srl 	<srl< td=""><td> </td></srl<>	
thyl Acetate	<srl< td=""><td><srl< td=""><td>NA</td><td>Sec-ButylBenzene</td><td><srl SRL</srl </td><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Sec-ButylBenzene</td><td><srl SRL</srl </td><td><srl< td=""><td>NA</td></srl<></td></srl<>	NA	Sec-ButylBenzene	<srl SRL</srl 	<srl< td=""><td>NA</td></srl<>	NA
etrahydrofuran	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>1.2-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td></td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>1.2-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td></td></srl<></td></srl<></td></srl<>	NA	1.2-Dichlorobenzene	<srl< td=""><td><srl< td=""><td></td></srl<></td></srl<>	<srl< td=""><td></td></srl<>	
2-Dichloroethane	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>n-ButylBenzene</td><td><srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl </td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>n-ButylBenzene</td><td><srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl </td></srl<>	NA	n-ButylBenzene	<srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA</td></srl<></srl 	NA
1,1-Trichloroethane	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>1,2-Dibromo-3-Chloropropane</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>1,2-Dibromo-3-Chloropropane</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<>	NA	1,2-Dibromo-3-Chloropropane	<srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td></srl<>	NA
enzene	<srl <srl< td=""><td><srl <srl< td=""><td>NA</td><td>1,2,4-Trichlorobenzene</td><td><srl <srl< td=""><td><srl <srl< td=""><td></td></srl<></srl </td></srl<></srl </td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA</td><td>1,2,4-Trichlorobenzene</td><td><srl <srl< td=""><td><srl <srl< td=""><td></td></srl<></srl </td></srl<></srl </td></srl<></srl 	NA	1,2,4-Trichlorobenzene	<srl <srl< td=""><td><srl <srl< td=""><td></td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td></td></srl<></srl 	
arbon Tetrachloride	<srl <srl< td=""><td><srl <srl< td=""><td>NA</td><td>Naphthalene</td><td><srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl </td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA</td><td>Naphthalene</td><td><srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl </td></srl<></srl 	NA	Naphthalene	<srl <srl< td=""><td><srl <srl< td=""><td>NA</td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA</td></srl<></srl 	NA

¹Dilution factor is the product of the Canister Dilution Factor and the Analysis Dilution Factor.

² Relative Percent Difference (RPD) between Sample analysis and Duplicate analysis (acceptable range is <25%).

SRL - Sample Reporting Limit (minimum)

Page 11

212309

CHAIN OF CUSTODY AND ANALYSIS REQUEST – Chain of Custody is a LEGAL DOCUMENT. Complete all relevant fields.

Atmospheric Analysis and Consultin	ng · Phone: 805	5-650-1642 ·	Email: info@	Daaclab.com	1534 East	tman Ave Su	uite A, Ventur	a, CA 93003	AAC Project No	.:
Client/Company Name	Project Name	e			1		lysis Requeste		Send Report To	(Name/Email/Address)
Freestone Environmented Project Manager Name	DTG & Project Num	eagle							Kiro Mura	
	Project Num	ber			fer	.0			kimmurra	y @ gofreestone kom
Kira Murray					K.	$ \delta $	-		1100 Jodwint	We, Suite 250 und
Turnaround Time	Sampler Nan	ne			างง	Ē			Send Invoice To	(Name/Email/Address)
🗆 Rush 24 h 🛛 🗆 Same Day	Print:	. Malla	20		DD	Γ			kiramurray	egofreesore con Aue, suite 250
🗆 Rush 48 h 🛛 🛛 🗖 Days	1	Print: Tracy Malleren				+			NOO Judinin	AUE, SUITE 250
🗆 Rush 72 h 🛛 🕅 Kannal	Signature:	Signature:			spenered Su Compands	VOCS				JChlord, WA
Client Comula Name		Sampling	Sampling	Container	22	Ŏ				Sample Received
Client Sample Name	Sample ID	Date	Time	Type/Qty	5	>			Lab ID	via:
Somple A-1	A-1	12/8/21	133Le	Tedlocity	X	χ	26290			□FedEx
Sample A-1 backup	A-1 backup	1218/21	1342	Tedler	X	X	26291			□UPS □Courier
Somple A-2	A-2	12/8/21	1355	Tedbo 1	X	X	26292			☐Other
Somple A-2 backup	A-2 backup	12/8/21	1358	Tedla 1	X	X	26293			Temperature
Somple A-3	A-3	1218121	1425	Tecller 1	X	X	26294			1°C
Sandle A3 backing	A-3 backing		1428	rediet 1	X	X	26295			Thermometer
	1	101010	1100				-069			Initials
	Jesed						<u>}</u>			Returned Eqmt
LNot	N 12/8	21					1500	5122		Total cans:
	min					Not	In fel			Unused cans:
										Flow Controllers:
Client Notes/Special Instructions:		10	- (~		EDD?	LAB USE ONL	Y	
Only run bac	kup So	mpes	17 71	we is	CC .		□Yes	Notes:		
leak / Droblem with	n orgin	al scr	qe				₩ NO			
elient Notes/Special Instructions: Only run backup Samples if there is leak (problem with orginal sample Relinquished By Date Received By							Date			
Print: Tracy Mallgren	1218121 Print:				1					
Signature:	~	Time 1500			_/		Time			
Relinquished By		Date	Received E Print:	зу Л/	\leq		Date 12/9/21			
Signature:		Time	Signature:	Chri	-1 . A	ulor.	Time 0722			
		· · · ·			- \	. <u> </u>	1	<u> Leijer et ditere</u>		<u>, and the second s</u>

212309

CHAIN OF CUSTODY AND ANALYSIS REQUEST – Chain of Custody is a LEGAL DOCUMENT. Complete all relevant fields.

Client/Company Name Project Nam	Atmospheric Analysis and Consultin	ng • Phone: 805	5-650-1642 ·	Email: info@	aaclab.com	1534 Eas	tman Ave S	vite A. Ventu	Ira. CA 93003	AAC Project N		
The Standard Line DTG. Lencycle File	Clienty Company Name	Project Name Anal										
Kircl Morray Sampler Name Sampler Name Signature Signat	Project Manager Name	DIGK	eagle					Î T				
Turnaround Time Sampler Name Turnaround Time Turnaround Time Turnaround Time Turnaround Time Turnaround Time Send Invoice To June/Parkade To Turne Rush 48 h S Samp Le Day Signature: Signature: Turnaround Time Turnaround Time Send Invoice To June/Parkade To Turne Rush 48 h S Samp Le Day Signature: Turnaround Time Turnaround Time Send Invoice To June/Parkade To Turne Send Invoice To June/Parkade To Turne Client Sample Name Sample D Sampling Turne		Project Num	ber 🖜			6	.^			kimmuso	1. Q acfreestore	
Image: Barle Day Print: Troccy Wolkgram Image: Barle Day Print: Troccy Wolkgram Image: Barle Day Image: Barle Day <td></td> <td></td> <td></td> <td></td> <td></td> <td>L L</td> <td>Ö</td> <td></td> <td></td> <td>1100 Jadwin</td> <td>Pue, 6 10 250</td>						L L	Ö			1100 Jadwin	Pue, 6 10 250	
Image: Barle Day Print: Troccy Wolkgram Image: Barle Day Print: Troccy Wolkgram Image: Barle Day Image: Barle Day <td></td> <td colspan="4">Sampler Name</td> <td>120</td> <td>Ľ</td> <td></td> <td></td> <td>Sena Invoice </td> <td>O (Name/Email/Address)</td>		Sampler Name				120	Ľ			Sena Invoice	O (Name/Email/Address)	
Client Sample Name Sample ID Date Time Type/Ctr Col Sample ID Sample Received Somple A-I H-I 12/6/2/2 13/2/2 13/2/2 12/2/2 1 Image: Type/Ctr Ima	_ cunic buy	Print: Tro	mila	ren			F			Kiramurra	10 cotroesoneric	
Client Sample Name Sample ID Date Time Type/Ctr Col Sample ID Sample Received Somple A-I H-I 12/6/2/2 13/2/2 13/2/2 12/2/2 1 Image: Type/Ctr Ima					_	2 2	+			100 Julion	HUG SUITE 250	
Client Sample Name Sample ID Date Time Type/Ctr Col Sample ID Sample Received Somple A-I H-I 12/6/2/2 13/2/2 13/2/2 12/2/2 1 Image: Type/Ctr Ima	LI Rush 72 h	Signature:	10/11		2	200	2					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Client Sample Name	Commis ID	Sampling	Sampling	Container	D G	ŏ			LAE		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						5	2			Lab ID		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		A-1	12821	1336	Tedlocity	X	χ	26790				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Somple A-1 backup	A-1 backup	17.18/71		redice	X	X					
Sample A-2 backup A2 backup [2] 8] (2] 1358 Tell 1 X X 26293 Sample A-3 A3 [2] 8] (2] 1425 Tell 1 X X 26294 Sample A-3 A3 backy [2] 8] (2] 1425 Tell 1 X X 26294 Sample A-3 A3 backy [2] 8] (2] 1425 Tell 1 X X 26297 ID Sample A-3 A3 backy [2] 8] (2] 1425 Tell 1 Y X 26297 ID Initials ISEC ISEC ISEC ISEC ISEC ID ID Initials ISEC ISEC ISEC ISEC ID ID Initials ISEC ISEC ISEC ISEC ISEC Initi				1255								
Sample A-3 Sample A-3 Sample A-3 Sample A-3 backy 12/8/21/1425 Faller 1 × × 26244 Sample A-3 backy 12/8/21/1425 Faller 1 × × 26244 I × × 26244 I × × 26247 Intitials Int				12.50				26292				
Somple A3 kackup A3 backy 12/8/21/428 teller 1 × × 2629			10 0.0	1500				26293				
2. CMARCH HS RACKUS HS backs 12/8/12/19/28 Tealer 1 X 2629 10		10				×		26294			· · · · · · · · · · · · · · · · · · ·	
Notes/Special Instructions: Notes/Special Instructions: Notes/Special Instructions: Notes/Special Instructions: Notes Confug run backup Samples if there is a Notes: Notes: Relinquished By Date Notes: Print: Signature: Date Relinquished By Date Print: Signature: Signature: Date Relinquished By Print: Signature: Date Print: Date Relinquished By Print: Date Received By Print: Date Print: Date Print: Date Print: Date Print: Date Print: Date	Sample H3 backup	H-3 backing	12/8/21	1428	Tedlet	X		26295			17 E 18 2 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
VSEC Returned Egmt Vol VSEC Mol VS						1						
Not Not Not Total cans: Image: Special Instructions: Not Not Image: Special Instructions: Image: Special	A	12 ect				1	-				a dan 🗋 a 🛊 🖗 dan salah salah salah s	
Elient Notes/Special Instructions: Only Only Only Controllers: Only Flow Controllers: Flow Controllers: Only Flow Controllers: Flow Controllers: Only Flow Controllers: Image: Controllers: Only Flow Controllers: Image: Controllers: Only Flow Controllers: Image: Controllers: Relinquished By Date Flow Controllers: Print: Signature: Signature: Signature: Date Received By Print: Signature: Time Date Received By Date Print: Signature: Time Signature: Date Received By Print: Signature: Date Signature: Time Date	Not	1218	21					1200	FIZ			
Elient Notes/Special Instructions: Only Only Only Controllers: Only Flow Controllers: Flow Controllers: Only Flow Controllers: Flow Controllers: Only Flow Controllers: Image: Controllers: Only Flow Controllers: Image: Controllers: Only Flow Controllers: Image: Controllers: Relinquished By Date Flow Controllers: Print: Signature: Signature: Signature: Date Received By Print: Signature: Time Date Received By Date Print: Signature: Time Signature: Date Received By Print: Signature: Date Signature: Time Date	No	W 101-					12-1	21	DI			
Ellient Notes/Special Instructions: Only run backup Samples if There is a EDD? LAB USE ONLY. Only run backup Samples if There is a Over the second sec							NO	Im !			Unused cans:	
Ellent Notes/Special Instructions: Only run backup Samples if There is a EDD? LAB USE ONLY. Only run backup Samples if There is a Ores: Ores: Ores: kak (problem with orginal Sample Date Only run Notes: Relinquished By Date III Bill Print: Signature: Date III Bill Print: Signature: Date Received By Date Print: Signature: Date Time Signature: Date Print: Date Signature: Date Received By Date Print: Signature: Date Date Print: Date Print: Date Signature: Date Print: Date Print: Date Print: Date Signature: Date Print: Date Print: Date Print: Date Signature: Date Print: Date			·	<u> </u>							Flow Controllers	
Only run backup Samples if there is a leak / problen with orginal Sample Relinquished By Print: Tracy Mallanen Signature: Relinquished By Print: Signature: Date Received By Print: Signature: Signatu	Stant Nata / Const Line of						_					
Received By Date Received By Print: Tracy Mallane 12/8/21 Signature: Time 1500 Relinquished By Date Print: Signature: Time Date Print: Date Signature: Date Print: Date Signature: Date Print: Date Signature: Date	Client Notes/Special Instructions:		mbe	·+++	no is		· · · · · · · · · · · · · · · · · · ·	EDD?	LAB USE ON	Y		
Received By Date Received By Print: Tracy Mallane 12/8/21 Signature: Time 1500 Relinquished By Date Print: Signature: Time Date Print: Date Signature: Date Print: Date Signature: Date Print: Date Signature: Date	Unig run bac	kup so	mpes	17 11	we is	C			Notes:			
Relinquished By Date Received By Print: Tracy Mallane 12/8/21 Signature: Time 1500 Relinquished By Date Print: Signature: Time Date Print: Date Signature: Date Print: Date Signature: Date Print: Date Signature: Date	leak (Droblem wit	th orgin	ial scm	YR				XIN O				
Print: ITALIANA IZI8121 Print: Signature: Time 1500 Signature: Time Relinquished By Date Received By Date Print: Date Received By Signature: Difference Date Signature: Date Received By Print: Date Print: Signature: Difference Date	Kelinaliispaa kv	0										
Signature: Time 1500 Signature: Time Relinquished By Date Received By Date Date Print: Print: Print: Date Date Signature: Time Date Date	Print: Tracy Mallanen		1218/21		ру	1		Date		가 있는 것은 것이다. 같은 것이 있는 것이 같이 있다.		
Print: Signature: Time Time Date Date 12/9/21	Signature:		Time 1500					Time				
			Date	1	By /			Date				
inc signature: / Caste / Line 0722			Time	1		$\frac{1}{1}$						
		······································			- fim	re[. //	ره م	Time 0729				

AAC COC Rev 3


Ups

AIR SAMPLING REPORT DTG Recycling Group

APPENDIX C

DECEMBER SOIL GAS SAMPLING

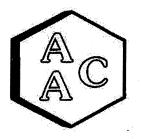
ANALYTICAL LABORATORY REPORT FOR METHOD ASTM D5504 - TOTAL REDUCED SULFUR

CLIENT: Freestone EnvironmentalPROJECT NAME: DTG RecycleAAC PROJECT NO.: 212309REPORT DATE: 12/20/2021

On December 9, 2021, Atmospheric Analysis & Consulting, Inc. received six (6) Tedlar Bags for Total Reduced Sulfur analysis by ASTM D-5504. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

Client ID	Lab No.
Sample A-1	212309-26290
Sample A-1 backup	212309-26291
Sample A-2	212309-26292
Sample A-2 backup	212309-26293
Sample A-3	212309-26294
Sample A-3 backup	212309-26295

This analysis is performed in accordance with AAC's Quality Manual. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

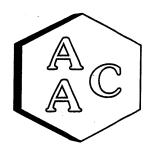

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. Per client request, the samples labeled "backup" (26291, 26293, 26295) were placed on hold and not analyzed. No problems were encountered during receiving, preparation, and/or analysis of these samples. The Technical Director or his/her designee, as verified by the following signature, has authorized release of the data.

If you have any questions or require further explanation of data results, please contact the undersigned.

Sucha Parmar, Ph.D.

This report consists of 4 pages.

Technical Director


LABORATORY ANALYSIS REPORT

CLIENT : Freestone Environmental PROJECT NO. : 212309 MATRIX : AIR UNITS : ppmV SAMPLING DATE : 12/08/2021 RECEIVING DATE : 12/09/2021 ANALYSIS DATE : 12/09/2021 REPORT DATE : 12/20/2021

Client ID	Sample A-1	Sample A-2	Sample A-3
AAC ID	212309-26290	212309-26292	212309-26294
Analyte	Result	Result	Result
Hydrogen Sulfide	12.4	0.490	< 0.050
COS / SO2	0.472	0.055	0.137
Methyl Mercaptan	11.9	1.75	< 0.050
Ethyl Mercaptan	0.091	< 0.050	< 0.050
Dimethyl Sulfide	18.3	6.34	< 0.050
Carbon Disulfide	0.141	< 0.050	< 0.050
Isopropyl Mercaptan	< 0.050	< 0.050	< 0.050
tert-Butyl Mercaptan	< 0.050	< 0.050	< 0.050
n-Propyl Mercaptan	< 0.050	< 0.050	< 0.050
Methylethylsulfide	< 0.050	< 0.050	< 0.050
sec-Butyl Mercaptan / Thiophene	1.08	0.329	< 0.050
iso-Butyl Mercaptan	< 0.050	< 0.050	< 0.050
Diethyl Sulfide	< 0.050	< 0.050	< 0.050
n-Butyl Mercaptan	< 0.050	< 0.050	< 0.050
Dimethyl Disulfide	0.386	0.319	< 0.050
2-Methylthiophene	0.606	0.211	< 0.050
3-Methylthiophene	0.355	0.112	< 0.050
Tetrahydrothiophene	0.406	0.109	< 0.050
Bromothiophene	< 0.050	< 0.050	< 0.050
Thiophenol	< 0.050	< 0.050	< 0.050
Diethyl Disulfide	< 0.050	< 0.050	< 0.050
Total Unidentified Sulfur	1.54	0.435	< 0.050
Total Reduced Sulfurs	47.2	10.1	< 0.050

Total Reduced Sulfur Compounds Analysis by ASTM D-5504

All unidentified compound's concentrations expressed in terms of H_2S (TRS does not include COS and SO₂) Sample Reporting Limit (SRL) is equal to Reporting Limit x Canister Dil. Fac. x Analysis Dil. Fac.

Quality Control/Quality Assurance Report **ASTM D-5504**

Date Analyzed:	12/9/2021
Analyst:	DL
Units:	ppbV

Instrument ID: SCD#10 Calb. Date: 12/8/2021

Opening Calibration Verification Standard 519.8 ppbV H2S (SS1289)

erste ppet mas (borres)	7			
H_2S	Resp. (area)	Result	% Rec *	% RPD ****
Initial	2963	520	100.0	0.5
Duplicate	3006	527	101.4	1.9
Triplicate	2880	2880 505 97.2		2,4
527.0 ppbV H2S (SS1289)			
MeSH	Resp. (area)	Result	% Rec *	% RPD ****
Initial	3519	532	101.0	0.3
Duplicate	3542	536	101.7	1.0
Triplicate	3462	524	99.4	1.3
522.0 ppbV H2S (SS1289))			
DMS	Resp. (area)	Result	% Rec *	% RPD ****
Initial	3958	525	100.6	1.3
Duplicate	3887	516	98.8	0.5

514

Method Blank

Triplicate

Michiou Diank	
Analyte	Result
H ₂ S	<pql< td=""></pql<>
MeSH	<pql< td=""></pql<>
DMS	<pql< td=""></pql<>

3877

Duplicate Analysis

Duplicate Analysis			Sample ID	212124-25443
Analyte	Analyte Sample Result		Mean	% RPD ***
H ₂ S	<pql< td=""><td>Result PQL</td><td>0.0</td><td>0.0</td></pql<>	Result PQL	0.0	0.0
MeSH	<pql< td=""><td>- <pql< td=""><td>0.0</td><td>0.0</td></pql<></td></pql<>	- <pql< td=""><td>0.0</td><td>0.0</td></pql<>	0.0	0.0
DMS	<pol< td=""><td><pol< td=""><td>0.0</td><td>0.0</td></pol<></td></pol<>	<pol< td=""><td>0.0</td><td>0.0</td></pol<>	0.0	0.0

Matrix Spike & D	Spike & Duplicate			212124-25443	x10		
Analyte	lyte Sample Spike		MS	MSD	MS	MSD	% RPD ***
Analyte	Conc. Added	Result	Result	% Rec **	% Rec **	<i>70</i> KID	
H ₂ S	<pql< td=""><td>259.9</td><td>261.9</td><td>263.0</td><td>100.8</td><td>101.2</td><td>0.4</td></pql<>	259.9	261.9	263.0	100.8	101.2	0.4
MeSH	<pql< td=""><td>263.5</td><td>261.2</td><td>264.5</td><td>99.1</td><td>100.4</td><td>1.3</td></pql<>	263.5	261.2	264.5	99.1	100.4	1.3
DMS	<pql< td=""><td>261.0</td><td>265.1</td><td>264.9</td><td>101.6</td><td>101.5</td><td>0.1</td></pql<>	261.0	265.1	264.9	101.6	101.5	0.1

98.5

0.8

Closing Calibration Verification Standard

Analyte	Std. Conc.	Result	% Rec **
H ₂ S	519.8	500.2	96.2
MeSH	527.0	516.5	98.0
DMS	522.0	520.1	99.6

* Must be 95-105%, ** Must be 90-110%, *** Must be < 10%, **** Must be < 5% RPD from Mean result.

Has be yet in the formation of the forma

2225 Sperry Ave., Ventura, CA 93003

212309

CHAIN OF CUSTODY AND ANALYSIS REQUEST – Chain of Custody is a LEGAL DOCUMENT. Complete all relevant fields

Atmospheric Analysis and Consultin	ng · Phone: 80	5-650-1642	Email: info	Baselah asu			ompiete all r	elevant fields.		
Atmospheric Analysis and Consultin Client/Company Name	Project Nam	e	Email: mo	@aaciab.com	• 1534 Eas	tman Ave S	uite A, Venti	ura, CA 93003	AAC Project No	
Freestone Environmental Project Manager Name Kira Murray	DTG. Lecycle Project Number				for for	Ana Q	Ilysis Reques	ted	Kiro Mur	(Name/Email/Address) Cizy in Castressone com
Turnaround Time	Sampler Na				17	$ 0\rangle$			100 Jodwin AUL, Suite 250	
□ Rush 24 h □ Same Day □ Rush 48 h □ 5 Days □ Rush 72 h)℃Normal		cy Malle	ren Talf	>	spenered su compands	VOCS+TI			Send Invoice To Kircomorray 100 Zadwin PO Number	Name/Email/Address) what Confractione con Aue Soite 250 Lichlord, WA
Client Sample Name	Sample ID	Sampling	Sampling	Container	12 g	ŏ			LAB	USE ONLY
Somple A-1		Date	Time	Type/Qty					Lab ID	Sample Received
	A-1 A-1 backup	1218 21	133Ce	Tedlaria	X	X	26290			FedEx
C The second	A2	128/21	1342	Tedler 1	Х	×	26291			☐UPS □Courier
Somple A-2 backup	A-2 backup	12/8/21	1355	Tedbo 1	X	X	26292			
Somple A-3		101010	1358	Tella 1	×	X	26293			Temperature
V. J. DOLL	A-3	12/8/21	1425	Jedler 1	×	×	26294			°C
sample H3 backup	H-3 backy	12/8/21	1428	Tedlet 1	X	×	26295			Thermometer ID
	20.00								1	Initials
No1	Used M 12/8	21					175eg	8121		Returned Eqmt Total cans:
	10-					Not	(m 121			Unused cans:
Plight Notes (See 11)										Flow Controllers:
elient Notes/Special Instructions: Only run bac leak / pidblen wit	kup so h orgin	miples icil scri	if tr ple	ure is	a	- -	EDD? □Yes ∭No	LAB USE ONLY Notes:		
Relinguished By	<u> </u>	Date	Received E							
Print: Tracy Mallonen Signature:		1218/21	Print:	•	1		Date			
Relinquished By		Time 1500			4_		Time			
Print:		Date	Received E Print:	$\sim \sqrt{2}$			Date 12/9/1			
Signature:		Time	Signature:	Chri	-1 A	log	Time 0722		2011년 1918년 1911년 1911년 중 416년 1911년	
						· · · · · · · · · · · · · · · · · · ·	111100120			

Ups

AIR SAMPLING REPORT DTG Recycling Group

APPENDIX D

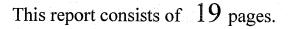
JANUARY AMBIENT AIR SAMPLING ANALYTICAL LABORATORY REPORT FOR EPA METHOD TO-15 – VOLATILE ORGANIC COMPOUNDS AND TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT: Freestone EnvironmentalPROJECT NAME: DTGAAC PROJECT NO.: 220168REPORT DATE: 1/31/2022

On January 26, 2022, Atmospheric Analysis & Consulting, Inc. received eight (8) Six-Liter Summa Canisters for Volatile Organic Compounds and TICs analysis by EPA Method TO-15. Upon receipt, the samples were assigned unique Laboratory ID numbers as follows:

Client ID	Lab ID	Return Pressure (mmHga)
S-1 Vent	220168-27344	701.0
S-2 5' from vent	220168-27345	623.0
S-3 15' from vent	220168-27346	694.5
S-4 Upwind	220168-27347	558.5
S-5 Boundary	220168-27348	546.5
S-6 Boundary	220168-27349	745.5
S-7 Boundary	220168-27350	634.0
S-8 Boundary	220168-27351	542.0

This analysis is accredited under the laboratory's ISO/IEC 17025:2017 accreditation issued by the ANSI National Accreditation Board. Refer to certificate and scope of accreditation AT-1908. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.


I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. Methanol was biased low as reflected in the daily CCV report; however, a low level standard was run to confirm the visibility this compound. No other problems were encountered during receiving, preparation, and/or analysis of these samples.

The Technical Director or his designee, as verified by the following signature, has authorized release of the data contained in this hardcopy report.

If you have any questions or require further explanation of data results, please contact the undersigned.

Imel Sucha Parmar, Ph.D

Technical Director

2225 Sperry Ave., Ventura, CA 93003

www.aaclab.com • (805) 650-1642

Laboratory Analysis Report

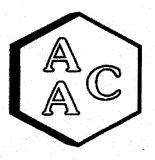
CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	·]	S-1 Vent	the second second	Gamala		S-2 5' from		Sample	1111
AACID		220168-273	344	Sample - Reporting -		220168-273		Method	
Date Sampled		01/21/2022 01/27/2022 1.48			· · ·	01/21/202	Reporting Limit	Reporting Limit (MRL)	
Date Analyzed						01/27/202			
Can Dilution Factor						1.70	(SRL)		
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	
Chlorodifluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Propene	23.6		1	1.48	18.0		1	1.70	1.00
Dichlorodifluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Chloromethane	12.7	1.1.1.1.1.1.1.	1	0.74	10.1	1.	1	0.85	0.50
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Vinyl Chloride	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Methanol	<srl< td=""><td>U</td><td>1</td><td>7.41</td><td><srl< td=""><td>U</td><td>1</td><td>8.50</td><td>5.00</td></srl<></td></srl<>	U	1	7.41	<srl< td=""><td>U</td><td>1</td><td>8.50</td><td>5.00</td></srl<>	U	1	8.50	5.00
1,3-Butadiene	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Bromomethane	<srl< td=""><td>• U •</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	• U •	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Chloroethane	<srl< td=""><td>U U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Dichlorofluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Ethanol	<srl< td=""><td>U</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<></td></srl<>	U	1	2.96	<srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<>	U	1	3.40	2.00
Vinyl Bromide	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Acetone	3.64		1	2.96	3.76		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3.40	2.00
Trichlorofluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
2-Propanol (IPA)	<srl< td=""><td>U</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2,00</td></srl<></td></srl<>	U	1	2.96	<srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2,00</td></srl<>	U	1	3.40	2,00
Acrylonitrile	<srl< td=""><td>U .</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<></td></srl<>	U .	1	2.96	<srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<>	U	1	3.40	2.00
1,1-Dichloroethene	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Methylene Chloride (DCM)	<srl< td=""><td>Ŭ</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
Allyl Chloride	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
Carbon Disulfide	<srl< td=""><td>Ŭ</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<></td></srl<>	Ŭ	1	2.96	<srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<>	U	1	3.40	2.00
Trichlorotrifluoroethane	<srl< td=""><td>U U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1 - 1 - 1 - 1 - 1 - 1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U U	1	0.74	<srl< td=""><td>U</td><td>1 - 1 - 1 - 1 - 1 - 1</td><td>0.85</td><td>0.50</td></srl<>	U	1 - 1 - 1 - 1 - 1 - 1	0.85	0.50
trans-1.2-Dichloroethene	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1.1-Dichloroethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<></td></srl<>	U	1	2.96	<srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<>	U	1	3.40	2.00
Vinvl Acetate	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
2-Butanone (MEK)	<srl< td=""><td>U U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U U	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
cis-1.2-Dichloroethene	<srl< td=""><td>Ŭ</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Hexane	1.96		1	0.74	1.84	1	1	0.85	0.50
Chloroform	<srl< td=""><td>U</td><td></td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U		0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Ethyl Acetate	<srl< td=""><td>Ŭ</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Tetrahydrofuran	<srl< td=""><td>Ŭ</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1.2-Dichloroethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1.1.1-Trichloroethane	<srl< td=""><td>Ŭ</td><td>i</td><td>0.74</td><td><srl< td=""><td>Ū</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	i	0.74	<srl< td=""><td>Ū</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	Ū	1	0.85	0.50
Benzene	13.3		i	0.74	13.0	1	1	0.85	0.50

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC


VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID AAC ID		S-1 Vent 220168-273		Sample		S-2 5' from v 220168-273		Sample	Method
Date Sampled	01/21/2022 01/27/2022 1.48			Reporting		01/21/202		Reporting	Reporting
Date Sumpted Date Analyzed				Limit		01/27/202	Limit	Limit	
Can Dilution Factor				(SRL)	1.000	1.70	(SRL)	(MRL)	
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	
Carbon Tetrachloride	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Cvclohexane	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
1.2-Dichloropropane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Bromodichloromethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1.4-Dioxane	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
Trichloroethene (TCE)	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
2.2.4-Trimethylpentane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Heptane	1.16		1	0.74	SRL SRL	U	1	0.85	0.50
cis-1.3-Dichloropropene	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td></td><td>3.40</td><td>2.00</td></srl<></td></srl<>	U	1	2.96	<srl< td=""><td>U</td><td></td><td>3.40</td><td>2.00</td></srl<>	U		3.40	2.00
trans-1.3-Dichloropropene	<srl< td=""><td>U</td><td></td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U		1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
1.1.2-Trichloroethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Toluene	4.49		1	0.74	3.98		1	0.85	0.50
2-Hexanone (MBK)	<srl< td=""><td>U</td><td>1</td><td>7.41</td><td><srl< td=""><td>U</td><td>1</td><td>8.50</td><td>5.00</td></srl<></td></srl<>	U	1	7.41	<srl< td=""><td>U</td><td>1</td><td>8.50</td><td>5.00</td></srl<>	U	1	8.50	5.00
Dibromochloromethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1,2-Dibromoethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Tetrachloroethene (PCE)	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Chlorobenzene	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Ethylbenzene	1.85	1. Sec. 1.	1	1.48	1.99	6 (1997) - 1997) 1997	1	1.70	1.00
m & p-Xylene	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
Bromoform	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
Styrene	<srl< td=""><td>U</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2,00</td></srl<></td></srl<>	U	1	2.96	<srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2,00</td></srl<>	U	1	3.40	2,00
1.1.2.2-Tetrachloroethane	<srl< td=""><td>U</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	U	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
o-Xvlene	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
4-Ethyltoluene	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U.</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U.</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U.	1	1.70	1.00
1.3.5-Trimethylbenzene	<srl< td=""><td>U</td><td>1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1,70</td><td>1.00</td></srl<></td></srl<>	U	1	1.48	<srl< td=""><td>U</td><td>1</td><td>1,70</td><td>1.00</td></srl<>	U	1	1,70	1.00
1.2.4-Trimethylbenzene	<srl< td=""><td>Ū</td><td>1 1</td><td>1.48</td><td><srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<></td></srl<>	Ū	1 1	1.48	<srl< td=""><td>U</td><td>1</td><td>1.70</td><td>1.00</td></srl<>	U	1	1.70	1.00
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>Ū</td><td>1</td><td>2.96</td><td><srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<></td></srl<>	Ū	1	2.96	<srl< td=""><td>U</td><td>1</td><td>3.40</td><td>2.00</td></srl<>	U	1	3.40	2.00
1.3-Dichlorobenzene	<srl< td=""><td>Ū</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1,4-Dichlorobenzene	<srl< td=""><td>Ŭ</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1.2-Dichlorobenzene	<srl< td=""><td>Ŭ</td><td>1</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
1.2.4-Trichlorobenzene	<srl< td=""><td>Ŭ · ·</td><td>1</td><td>7.41</td><td><srl< td=""><td>U</td><td>1</td><td>8,50</td><td>5.00</td></srl<></td></srl<>	Ŭ · ·	1	7.41	<srl< td=""><td>U</td><td>1</td><td>8,50</td><td>5.00</td></srl<>	U	1	8,50	5.00
Hexachlorobutadiene	<srl< td=""><td>Ŭ</td><td>i</td><td>0.74</td><td><srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<></td></srl<>	Ŭ	i	0.74	<srl< td=""><td>U</td><td>1</td><td>0.85</td><td>0.50</td></srl<>	U	1	0.85	0.50
BFB-Surrogate Std. % Recovery		90%				96%			70-130%

U - Compound was not detected at or above the SRL.

Page 3

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID		S-3 15' from			S-4 Upwin				
AACID		220168-273		Sample		220168-273	- Sample Reporting Limit	Method Reporting Limit	
Date Sampled		01/21/202		Reporting		01/21/202			
Date Analyzed		01/27/202		Limit		01/27/202			
Can Dilution Factor	1.50			(SRL)		1.87	(SRL)	(MRL)	
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	(MIKL)
Chlorodifluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Propene	35.6	- 10 A.	1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
Dichlorodifluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Chloromethane	17.7	1.1 Mar. 19	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Vinyl Chloride	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Methanol	28.8		1	7.51	<srl< td=""><td>U</td><td>1</td><td>9.36</td><td>5.00</td></srl<>	U	1	9.36	5.00
1,3-Butadiene	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Bromomethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Chloroethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Dichlorofluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Ethanol	7.46	1. A.	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
Vinyl Bromide	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Acetone	10.9	1997 - 19	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
Trichlorofluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
2-Propanol (IPA)	<srl< td=""><td>U</td><td>1</td><td>3.00</td><td><srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<></td></srl<>	U	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
Acrylonitrile	<srl< td=""><td>U</td><td>1</td><td>3.00</td><td><srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<></td></srl<>	U	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
1.1-Dichloroethene	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>··· 1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>··· 1</td><td>0.94</td><td>0.50</td></srl<>	U	··· 1	0.94	0.50
Methylene Chloride (DCM)	<srl< td=""><td>U</td><td>1</td><td>1.50</td><td><srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<></td></srl<>	U	1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
Allyl Chloride	<srl< td=""><td>U</td><td>1</td><td>1.50</td><td><srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<></td></srl<>	U	1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
Carbon Disulfide	<srl< td=""><td>U</td><td>1</td><td>3.00</td><td><srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<></td></srl<>	U	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
Trichlorotrifluoroethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
trans-1,2-Dichloroethene	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
1,1-Dichloroethane	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U.</td><td>1</td><td>3.00</td><td><srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<></td></srl<>	U.	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
Vinvl Acetate	<srl< td=""><td>U</td><td>1</td><td>1.50</td><td><srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<></td></srl<>	U	1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
2-Butanone (MEK)	1.95		1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
cis-1.2-Dichloroethene	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Hexane	4.02		1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Chloroform	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Ethyl Acetate	2.69		1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Tetrahydrofuran	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
1.2-Dichloroethane	<srl< td=""><td>Ŭ.</td><td></td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	Ŭ.		0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
1,1,1-Trichloroethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.75</td><td><srl< td=""><td>Ū</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.75	<srl< td=""><td>Ū</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	Ū	1	0.94	0.50
Benzene	26.8		1	0.75	<srl< td=""><td>Ū</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	Ū	1	0.94	0.50

Page 4

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID AAC ID		S-3 15' from 220168-273		Sample		S-4 Upwin 220168-273		Sample	Method
Date Sampled	01/21/2022			Reporting	1	01/21/202	Reporting Limit	Reporting Limit (MRL)	
Date Analyzed				Limit 🗍		01/27/202			
Can Dilution Factor		1.50				1.87	(SRL)		
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	(inite)
Carbon Tetrachloride	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Cyclohexane	<srl< td=""><td>Ŭ</td><td>1</td><td>1.50</td><td><srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
1.2-Dichloropropane	<pre><srl< pre=""></srl<></pre>	Ŭ	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Bromodichloromethane	<srl< td=""><td>Ū</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
1.4-Dioxane	<srl< td=""><td>U</td><td></td><td>1.50</td><td><srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<></td></srl<>	U		1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
Trichloroethene (TCE)	<srl< td=""><td>Ŭ</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
2.2.4-Trimethylpentane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Heptane	3.05		1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
cis-1.3-Dichloropropene	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1.</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1.</td><td>0.94</td><td>0.50</td></srl<>	U	1.	0.94	0.50
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>1</td><td>3.00</td><td><srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<></td></srl<>	U	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
rans-1,3-Dichloropropene	<srl< td=""><td>U</td><td>1</td><td>1.50</td><td><srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<></td></srl<>	U	1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
1,1,2-Trichloroethane	<srl< td=""><td>1 Ŭ</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	1 Ŭ	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Foluene	23.8	The state of the s	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
2-Hexanone (MBK)	<srl< td=""><td>U</td><td>i</td><td>7.51</td><td><srl< td=""><td>U</td><td>1</td><td>9.36</td><td>5.00</td></srl<></td></srl<>	U	i	7.51	<srl< td=""><td>U</td><td>1</td><td>9.36</td><td>5.00</td></srl<>	U	1	9.36	5.00
Dibromochloromethane	<pre> <srl< pre=""></srl<></pre>	Ŭ	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0,94</td><td>0.50</td></srl<>	U	1	0,94	0.50
1.2-Dibromoethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Tetrachloroethene (PCE)	<srl< td=""><td>Ŭ</td><td></td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	Ŭ		0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Chlorobenzene	<srl< td=""><td>U U</td><td>t i i i i i i i i i i i i i i i i i i i</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U U	t i i i i i i i i i i i i i i i i i i i	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Ethylbenzene	5.82	<u> </u>	ti i	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
m & p-Xylene	1.91		1	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
Bromoform	<srl< td=""><td>U</td><td>1</td><td>0.75</td><td><srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<></td></srl<>	U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
Styrene	<srl< td=""><td>Ŭ</td><td>1</td><td>3.00</td><td><srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<></td></srl<>	Ŭ	1	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
1,1,2,2-Tetrachloroethane	<pre> <srl< pre=""></srl<></pre>	Ŭ	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0,50</td></srl<>	U	1	0.94	0,50
p-Xvlene	<pre>SRL</pre>	U U	l i	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
4-Ethyltoluene	<srl< td=""><td>Ŭ</td><td>i</td><td>1.50</td><td><srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<></td></srl<>	Ŭ	i	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
1.3.5-Trimethylbenzene	<pre> <srl< pre=""></srl<></pre>	Ŭ	i	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
1.2.4-Trimethylbenzene	<pre><srl< pre=""></srl<></pre>	U U	1 i	1.50	<srl< td=""><td>U</td><td>1</td><td>1.87</td><td>1.00</td></srl<>	U	1	1.87	1.00
Benzyl Chloride (a-Chlorotoluene)	<pre><srl< pre=""></srl<></pre>	U U	<u>i</u>	3.00	<srl< td=""><td>U</td><td>1</td><td>3.74</td><td>2.00</td></srl<>	U	1	3.74	2.00
1.3-Dichlorobenzene	<pre><srl< pre=""></srl<></pre>	U U	1 i i	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
I.4-Dichlorobenzene	- SRL	U U	i i	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
1.2-Dichlorobenzene	- SRL	U U	1	0.75	<srl< td=""><td>U</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	U	1	0.94	0.50
2.4-Trichlorobenzene	<pre><srl< pre=""></srl<></pre>	U	1	7.51	<srl< td=""><td>U U</td><td>1</td><td>9.36</td><td>5.00</td></srl<>	U U	1	9.36	5.00
Hexachlorobutadiene	<pre><srl< pre=""></srl<></pre>	1 U	1	0.75	<srl< td=""><td>Ŭ</td><td>1</td><td>0.94</td><td>0.50</td></srl<>	Ŭ	1	0.94	0.50
BFB-Surrogate Std. % Recovery	- DIL	99%				94%	1		70-130%

U - Compound was not detected at or above the SRL.

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	1	S-5 Bounda	ary	Sample		S-6 Bounda		Sample	
AAC ID		220168-273	348			220168-273			Method
Date Sampled		01/21/202	2	Reporting		01/21/202		Reporting	Reporting
Date Analyzed		01/27/202	2	Limit	01/27/2022			Limit	Limit
Can Dilution Factor	1.92] (SRL) [1.40			(SRL)	(MRL)
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	
Chlorodifluoromethane	<srl< td=""><td>U</td><td></td><td>0.96</td><td><srl< td=""><td>U</td><td><u> </u></td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U		0.96	<srl< td=""><td>U</td><td><u> </u></td><td>0.70</td><td>0.50</td></srl<>	U	<u> </u>	0.70	0.50
Propene	<srl< td=""><td>U</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	U	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
Dichlorodifluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Chloromethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Vinyl Chloride	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Methanol	<srl< td=""><td>U</td><td>1</td><td>9.62</td><td><srl< td=""><td>U</td><td>1</td><td>6.98</td><td>5.00</td></srl<></td></srl<>	U	1	9.62	<srl< td=""><td>U</td><td>1</td><td>6.98</td><td>5.00</td></srl<>	U	1	6.98	5.00
1.3-Butadiene	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1 1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1 1</td><td>0.70</td><td>0.50</td></srl<>	U	1 1	0.70	0.50
Bromomethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0,70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0,70</td><td>0.50</td></srl<>	U	1	0,70	0.50
Chloroethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Dichlorofluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Ethanol	<srl< td=""><td>U</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	U	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
Vinyl Bromide	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Acetone	<srl< td=""><td>U</td><td>1</td><td>3.85</td><td>3.57</td><td>1.1</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	3.85	3.57	1.1	1	2.79	2.00
Trichlorofluoromethane	<srl< td=""><td>Ū</td><td>1.1.1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0,70</td><td>0.50</td></srl<></td></srl<>	Ū	1.1.1	0.96	<srl< td=""><td>U</td><td>1</td><td>0,70</td><td>0.50</td></srl<>	U	1	0,70	0.50
2-Propanol (IPA)	<srl< td=""><td>U</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	U	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
Acrylonitrile	<srl< td=""><td>U</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	U	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
1.1-Dichloroethene	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Methylene Chloride (DCM)	<srl< td=""><td>U</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	U	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
Allyl Chloride	<srl< td=""><td>U</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	U	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
Carbon Disulfide	<srl< td=""><td>U</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	U	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
Trichlorotrifluoroethane	<srl< td=""><td>Ū</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
trans-1.2-Dichloroethene	<srl< td=""><td>Ū</td><td></td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ū		0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
1.1-Dichloroethane	<srl< td=""><td>Ŭ</td><td></td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0,70</td><td>0.50</td></srl<></td></srl<>	Ŭ		0.96	<srl< td=""><td>U</td><td>1</td><td>0,70</td><td>0.50</td></srl<>	U	1	0,70	0.50
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	U	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
Vinvl Acetate	<srl< td=""><td>U</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1,40</td><td>1.00</td></srl<></td></srl<>	U	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1,40</td><td>1.00</td></srl<>	U	1	1,40	1.00
2-Butanone (MEK)	<srl< td=""><td>Ŭ</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
cis-1.2-Dichloroethene	<srl< td=""><td>Ŭ</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Hexane	<srl< td=""><td>Ŭ</td><td>1 1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	1 1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Chloroform	<srl< td=""><td>Ŭ</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Ethyl Acetate	<srl< td=""><td>Ŭ</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Tetrahydrofuran	<srl< td=""><td>Ŭ</td><td>i i</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0,50</td></srl<></td></srl<>	Ŭ	i i	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0,50</td></srl<>	U	1	0.70	0,50
1.2-Dichloroethane	<srl< td=""><td>Ŭ</td><td>i i</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	i i	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
1.1.1-Trichloroethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.96</td><td><srl< td=""><td>Ū</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.96	<srl< td=""><td>Ū</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	Ū	1	0.70	0.50
Benzene	<srl< td=""><td>U</td><td>1 1</td><td>0.96</td><td><srl< td=""><td>Ū</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1 1	0.96	<srl< td=""><td>Ū</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	Ū	1	0.70	0.50

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID		S-5 Bounda		Sample		S-6 Bounda		Sample	Method
AAC ID	220168-27348		Reporting Limit (SRL)		220168-273		Reporting	Reporting	
Date Sampled	01/21/2022			·	01/21/202		Limit		
Date Analyzed	01/27/2022			01/27/2022			(SRL)	Limit (MRL)	
Can Dilution Factor	1.92			1.40					
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	
Carbon Tetrachloride	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Cyclohexane	<srl< td=""><td>U</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	U	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
1.2-Dichloropropane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Bromodichloromethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U U</td><td>1</td><td>0.70</td><td>0,50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U U</td><td>1</td><td>0.70</td><td>0,50</td></srl<>	U U	1	0.70	0,50
1.4-Dioxane	<srl< td=""><td>U</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	U	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
Trichloroethene (TCE)	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
2.2.4-Trimethylpentane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Heptane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
cis-1.3-Dichloropropene	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1 1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1 1</td><td>0.70</td><td>0.50</td></srl<>	U	1 1	0.70	0.50
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	U	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
trans-1.3-Dichloropropene	<srl< td=""><td>U</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	U	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
1.1.2-Trichloroethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Toluene	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
2-Hexanone (MBK)	<srl< td=""><td>Ū</td><td>1</td><td>9.62</td><td><srl< td=""><td>U</td><td>1</td><td>6.98</td><td>5.00</td></srl<></td></srl<>	Ū	1	9.62	<srl< td=""><td>U</td><td>1</td><td>6.98</td><td>5.00</td></srl<>	U	1	6.98	5.00
Dibromochloromethane	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
1.2-Dibromoethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Tetrachloroethene (PCE)	<srl< td=""><td>Ū</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Chlorobenzene	<srl< td=""><td>Ŭ</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Ethylbenzene	<srl< td=""><td>Ū</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	Ū	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
m & p-Xylene	<srl< td=""><td>Ū.</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	Ū.	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
Bromoform	<srl< td=""><td>Ū.</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ū.	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
Stvrene	<srl< td=""><td>Ü</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	Ü	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
1.1.2.2-Tetrachloroethane	<srl< td=""><td>Ū</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
o-Xvlene	<srl< td=""><td>Ũ</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	Ũ	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
4-Ethyltoluene	<srl< td=""><td>Ŭ</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
1.3.5-Trimethylbenzene	<srl< td=""><td>Ŭ</td><td></td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	Ŭ		1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
1.2.4-Trimethylbenzene	<srl< td=""><td>Ŭ</td><td>1</td><td>1.92</td><td><srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.92	<srl< td=""><td>U</td><td>1</td><td>1.40</td><td>1.00</td></srl<>	U	1	1.40	1.00
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>Ŭ.</td><td>1</td><td>3.85</td><td><srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<></td></srl<>	Ŭ.	1	3.85	<srl< td=""><td>U</td><td>1</td><td>2.79</td><td>2.00</td></srl<>	U	1	2.79	2.00
1.3-Dichlorobenzene	<srl< td=""><td>U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U ·</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U	1	0.96	<srl< td=""><td>U ·</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U ·	1	0.70	0.50
1.4-Dichlorobenzene	<srl< td=""><td>U U</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	U U	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
1.2-Dichlorobenzene	<srl< td=""><td>Ū</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
1.2.4-Trichlorobenzene	<srl< td=""><td>U U</td><td>1</td><td>9.62</td><td><srl< td=""><td>Ü</td><td>1</td><td>6.98</td><td>5,00</td></srl<></td></srl<>	U U	1	9.62	<srl< td=""><td>Ü</td><td>1</td><td>6.98</td><td>5,00</td></srl<>	Ü	1	6.98	5,00
Hexachlorobutadiene	<srl< td=""><td>t ü</td><td>1</td><td>0.96</td><td><srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<></td></srl<>	t ü	1	0.96	<srl< td=""><td>U</td><td>1</td><td>0.70</td><td>0.50</td></srl<>	U	1	0.70	0.50
BFB-Surrogate Std. % Recovery		94%				89%			70-130%

U - Compound was not detected at or above the SRL.

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID		S-7 Bounda	ary	Sample S-8 Boundary				Sample	
AACID		220168-273	50		1.1	220168-273		Reporting	Method
Date Sampled		01/21/202	2	Reporting		01/21/202		1 A Y	Reporting
Date Analyzed		01/27/202	2	Limit 🗍		01/27/202	Limit	Limit	
Can Dilution Factor	a de transmission	1.61			1.91			(SRL)	(MRL)
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	
Chlorodifluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Propene	<srl< td=""><td>U</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	U	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	U	1	1.91	1.00
Dichlorodifluoromethane	<srl< td=""><td>U</td><td>1.</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1.	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Chloromethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Vinyl Chloride	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Methanol	9.46		1	8.06	<srl< td=""><td>U</td><td>1</td><td>9.54</td><td>5.00</td></srl<>	U	1	9.54	5.00
1.3-Butadiene	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Bromomethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1.00</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.81	<srl< td=""><td>U</td><td>1.00</td><td>0.95</td><td>0.50</td></srl<>	U	1.00	0.95	0.50
Chloroethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Dichlorofluoromethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Ethanol	<srl< td=""><td>Ŭ</td><td>1</td><td>3.22</td><td><srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<></td></srl<>	Ŭ	1	3.22	<srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	U	1	3.82	2.00
Vinyl Bromide	<pre> <srl< pre=""></srl<></pre>	U U	1	0.81	<srl< td=""><td>Ŭ</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	Ŭ	1	0.95	0.50
	<pre><srl< pre=""></srl<></pre>	t ŭ	1	3.22	<srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	U	1	3.82	2.00
Acetone Trichlorofluoromethane	<srl <srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<></srl 	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
2-Propanol (IPA)	<pre> <srl< pre=""></srl<></pre>	U U	1	3.22	<srl< td=""><td>Ŭ</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	Ŭ	1	3.82	2.00
	<srl SRL</srl 	U U	1	3.22	<srl< td=""><td>U U</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	U U	1	3.82	2.00
Acrylonitrile	<pre><srl <srl< pre=""></srl<></srl </pre>	U	1	0.81	<srl< td=""><td>U U</td><td>1i</td><td>0.95</td><td>0.50</td></srl<>	U U	1i	0.95	0.50
1.1-Dichloroethene	<pre> <srl <srl< pre=""></srl<></srl </pre>	U		1.61	<srl< td=""><td>Ŭ</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	Ŭ	1	1.91	1.00
Methylene Chloride (DCM)		U		1.61	<srl< td=""><td>U U</td><td></td><td>1.91</td><td>1.00</td></srl<>	U U		1.91	1.00
Allyl Chloride	< <u>SRL</u>	U U	<u> </u>	3.22	<srl< td=""><td>U U</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	U U	1	3.82	2.00
Carbon Disulfide	<srl< td=""><td></td><td>1</td><td>0.81</td><td><srl< td=""><td>U U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>		1	0.81	<srl< td=""><td>U U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U U	1	0.95	0.50
Trichlorotrifluoroethane	<srl< td=""><td>U</td><td></td><td>0.81</td><td>-SRL</td><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U		0.81	-SRL	U	1	0.95	0.50
trans-1,2-Dichloroethene	<srl< td=""><td>U</td><td></td><td>0.81</td><td><pre><srl< pre=""></srl<></pre></td><td>1 U</td><td>1 1</td><td>0.95</td><td>0.50</td></srl<>	U		0.81	<pre><srl< pre=""></srl<></pre>	1 U	1 1	0.95	0.50
1,1-Dichloroethane	<srl< td=""><td>U</td><td></td><td>3.22</td><td><srl <srl< td=""><td>U</td><td></td><td>3.82</td><td>2.00</td></srl<></srl </td></srl<>	U		3.22	<srl <srl< td=""><td>U</td><td></td><td>3.82</td><td>2.00</td></srl<></srl 	U		3.82	2.00
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td></td><td></td><td><srl <srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></srl </td></srl<>	U			<srl <srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></srl 	U	1	1.91	1.00
Vinyl Acetate	<srl< td=""><td>U</td><td></td><td>1.61</td><td></td><td>U</td><td></td><td>1.91</td><td>1.00</td></srl<>	U		1.61		U		1.91	1.00
2-Butanone (MEK)	<srl< td=""><td>U</td><td></td><td>1.61</td><td><srl< td=""><td></td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U		1.61	<srl< td=""><td></td><td>1</td><td>0.95</td><td>0.50</td></srl<>		1	0.95	0.50
cis-1,2-Dichloroethene	<srl< td=""><td>U</td><td></td><td>0.81</td><td><srl< td=""><td>UU</td><td></td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U		0.81	<srl< td=""><td>UU</td><td></td><td>0.95</td><td>0.50</td></srl<>	UU		0.95	0.50
Hexane	<srl< td=""><td>U</td><td></td><td>0.81</td><td><srl< td=""><td></td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U		0.81	<srl< td=""><td></td><td>1</td><td>0.95</td><td>0.50</td></srl<>		1	0.95	0.50
Chloroform	<srl< td=""><td>U</td><td></td><td>0.81</td><td><<u>SRL</u></td><td>U</td><td></td><td></td><td>0.50</td></srl<>	U		0.81	< <u>SRL</u>	U			0.50
Ethyl Acetate	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td> </td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td> </td><td>0.95</td><td>0.50</td></srl<>	U		0.95	0.50
Tetrahydrofuran	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td><u> </u></td><td>0.95</td><td></td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td><u> </u></td><td>0.95</td><td></td></srl<>	U	<u> </u>	0.95	
1,2-Dichloroethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td><u> </u></td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td><u> </u></td><td>0.95</td><td>0.50</td></srl<>	U	<u> </u>	0.95	0.50
1,1,1-Trichloroethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td></td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td></td><td>0.95</td><td>0.50</td></srl<>	U		0.95	0.50
Benzene	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1 1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1 1</td><td>0.95</td><td>0.50</td></srl<>	U	1 1	0.95	0.50

Laboratory Analysis Report


CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID AAC ID	-	S-7 Bound: 220168-273		Sample	S-8 Boundary 220168-27351			Sample Reporting	Method
Date Sampled	01/21/2022 01/27/2022 1.61			Reporting Limit		01/21/202	Limit	Reporting	
Date Analyzed					01/27/2022			(SRL)	Limit (MRL)
Can Dilution Factor				(SRL)	1.91				
Compound	Result	Qualifier	Analysis DF	(MRLxDF's)	Result	Qualifier	Analysis DF	(MRLxDF's)	(
Carbon Tetrachloride	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Cyclohexane	<srl< td=""><td>U</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	U	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	U	1	1.91	1.00
1.2-Dichloropropane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Bromodichloromethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
1.4-Dioxane	<srl< td=""><td>U</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	U	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	U	1	1.91	1.00
Trichloroethene (TCE)	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
2.2.4-Trimethylpentane	<srl< td=""><td>U</td><td> 1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Heptane	<srl< td=""><td>Ū</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
cis-1.3-Dichloropropene	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>1</td><td>3.22</td><td><srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<></td></srl<>	U	1	3.22	<srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	U	1	3.82	2.00
trans-1.3-Dichloropropene	<srl< td=""><td>Ŭ</td><td>1.101</td><td>1.61</td><td><srl< td=""><td>U</td><td>1.1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	Ŭ	1.101	1.61	<srl< td=""><td>U</td><td>1.1</td><td>1.91</td><td>1.00</td></srl<>	U	1.1	1.91	1.00
1,1,2-Trichloroethane	<srl< td=""><td>Ū.</td><td>1.00</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ū.	1.00	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Foluene	<srl< td=""><td>Ŭ</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1.00</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.81	<srl< td=""><td>U</td><td>1.00</td><td>0.95</td><td>0.50</td></srl<>	U	1.00	0.95	0.50
2-Hexanone (MBK)	<srl< td=""><td>Ŭ</td><td>1</td><td>8.06</td><td><srl< td=""><td>U</td><td>1</td><td>9.54</td><td>5.00</td></srl<></td></srl<>	Ŭ	1	8.06	<srl< td=""><td>U</td><td>1</td><td>9.54</td><td>5.00</td></srl<>	U	1	9.54	5.00
Dibromochloromethane	<srl< td=""><td>Ŭ</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
1.2-Dibromoethane	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Tetrachloroethene (PCE)	<srl< td=""><td>Ū</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Chlorobenzene	<srl< td=""><td>Ŭ</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ŭ	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Ethylbenzene	<srl< td=""><td>Ŭ</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	U	1	1.91	1.00
m & p-Xylene	<srl< td=""><td>Ū</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	Ū	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	U	1	1.91	1.00
Bromoform	<srl< td=""><td>Ū</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ū	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
Styrene	<srl< td=""><td>Ū</td><td>1</td><td>3.22</td><td><srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<></td></srl<>	Ū	1	3.22	<srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	U	1	3.82	2.00
1.1.2.2-Tetrachloroethane	<srl< td=""><td>U I</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U I	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
p-Xylene	<srl< td=""><td>Ŭ</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1,91</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1,91</td><td>1.00</td></srl<>	U	1	1,91	1.00
4-Ethyltoluene	<srl< td=""><td>Ŭ</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1,00</td></srl<></td></srl<>	Ŭ	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1,00</td></srl<>	U	1	1.91	1,00
1.3.5-Trimethylbenzene	<srl< td=""><td>U</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	U	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	U	1	1.91	1.00
1.2.4-Trimethylbenzene	<srl< td=""><td>Ŭ</td><td>1</td><td>1.61</td><td><srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<></td></srl<>	Ŭ	1	1.61	<srl< td=""><td>U</td><td>1</td><td>1.91</td><td>1.00</td></srl<>	U	1	1.91	1.00
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>Ū</td><td>1</td><td>3.22</td><td><srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<></td></srl<>	Ū	1	3.22	<srl< td=""><td>U</td><td>1</td><td>3.82</td><td>2.00</td></srl<>	U	1	3.82	2.00
1,3-Dichlorobenzene	<srl< td=""><td>U</td><td>1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	U	1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
1.4-Dichlorobenzene	<srl< td=""><td>U</td><td>1 1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0,50</td></srl<></td></srl<>	U	1 1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0,50</td></srl<>	U	1	0.95	0,50
1.2-Dichlorobenzene	<srl< td=""><td>Ŭ</td><td>1 1</td><td>0.81</td><td><srl< td=""><td>Ū</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl<>	Ŭ	1 1	0.81	<srl< td=""><td>Ū</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	Ū	1	0.95	0.50
1.2.4-Trichlorobenzene	<srl< td=""><td>Ū</td><td>i i</td><td>8.06</td><td><srl< td=""><td>U</td><td>1</td><td>9.54</td><td>5.00</td></srl<></td></srl<>	Ū	i i	8.06	<srl< td=""><td>U</td><td>1</td><td>9.54</td><td>5.00</td></srl<>	U	1	9.54	5.00
Hexachlorobutadiene	<srl <<="" td=""><td>1 Ŭ</td><td>1 1</td><td>0.81</td><td><srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<></td></srl>	1 Ŭ	1 1	0.81	<srl< td=""><td>U</td><td>1</td><td>0.95</td><td>0.50</td></srl<>	U	1	0.95	0.50
BFB-Surrogate Std. % Recovery	1 2412	99%	1			93%			70-130%

U - Compound was not detected at or above the SRL.

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v)

DATE RECEIVED : 01/26/2022 **DATE REPORTED : 01/31/2022** ANALYST : MB/RC


TENTATIVELY IDENTIFIED COMPOUNDS (TICs) BY EPA TO-15

Client ID		S-1 Vent	
AAC ID		220168-27344	
Date Sampled	which is a set of	01/21/2022	an a
Date Analyzed		01/27/2022	
Can Dilution Factor		1.48	
Compound	Result*	Analysis DF	ID Quality [§]
2-Methyl-1-propene	4.86	1	74
Butane	3.54	1	42
2-Methylbutane	4.65	1	64
3FB-Surrogate Std. % Recovery	90%		

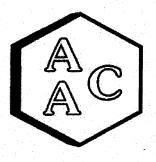
Client ID		S-2 5' from vent	
AAC ID		220168-27345	
Date Sampled	Algeria de la composición de la composi	01/21/2022	alla <u>na secon</u>
Date Analyzed	and the second second	01/27/2022	and the second
Can Dilution Factor		1.70	and the second second
Compound	Result*	Analysis DF	ID Quality [§]
2-Methyl-1-propene	4.88	1	81
Butane	3.86	1	53
2-Butene	1.87	1	72
Pentane	3.96	1	47
2-Methyl-2-butene	1.89	1	59
BFB-Surrogate Std. % Recovery	96%		

* Results obtained via TICs analysis are estimated. § Spectral Library match quality ranges from 1-100.

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO: 220168 MATRIX : AIR UNITS : PPB (v/v)

DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC


TENTATIVELY IDENTIFIED COMPOUNDS (TICs) BY EPA TO-15

Client ID		S-3 15' from vent	
AAC ID		220168-27346	
Date Sampled		01/21/2022	
Date Analyzed		01/27/2022	
Can Dilution Factor		1.50	
Compound	Result*	Analysis DF	ID Quality [§]
2-Methyl-1-propene	7.37	1	86
Butane	6.81	1	58
Pentane	9.07	1	72
2-Methyl-2-butene	3.12	1	83
2-Methylfuran	2.51	an an an <mark>1</mark> 946 a' far	90
Octane	1.73	1	64
Hexamethylcyclotrisiloxane	5.04	1	64
2,2,6-Trimethyloctane	4.07	1	64
Decane	1.70	1	72
1-Methyl-4-(1-methylethyl)-benzene	8.02	1	97
FB-Surrogate Std. % Recovery	99%		

Client ID		S-4 Upwind	
AACID		220168-27347	
Date Sampled	1. S.	01/21/2022	
Date Analyzed		01/27/2022	
Can Dilution Factor		1.87	and the second
Compound	Result*	Analysis DF	ID Quality [§]
No Library	Search Compound	s Detected	منتوع بحري كالتجميعين
BFB-Surrogate Std. % Recovery	94%		

* Results obtained via TICs analysis are estimated. § Spectral Library match quality ranges from 1-100.

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO : 220168 MATRIX : AIR UNITS : PPB (v/v) DATE RECEIVED : 01/26/2022 DATE REPORTED : 01/31/2022 ANALYST : MB/RC

TENTATIVELY IDENTIFIED COMPOUNDS (TICs) BY EPA TO-15

	S-5 Boundary	
	220168-27348	
	01/21/2022	and an end of the
	01/27/2022	
	1.92	
Result*	Analysis DF	ID Quality [§]
4.37	1	64
94%		
A STATE OF A STATE OF A STATE	01/21/2022	
and the second	01/41/2042	
	01/27/2022	
Result*	01/27/2022	ID Quality [§]
Result*	01/27/2022 1.40	ID Quality [§] 9
	4.37	220168-27348 01/21/2022 01/27/2022 1.92 Result* Analysis DF 4.37 94% S-6 Boundary 220168-27348

§ Spectral Library match quality ranges from 1-100.

Spectral Elorary match quanty ranges from 1 100

Laboratory Analysis Report

CLIENT : Freestone Environmental PROJECT NO: 220168 MATRIX : AIR UNITS : PPB (v/v)

DATE RECEIVED : 01/26/2022 **DATE REPORTED : 01/31/2022** ANALYST : MB/RC

TENTATIVELY IDENTIFIED COMPOUNDS (TICs) BY EPA TO-15

	and the second	and a second				
Client ID		S-7 Boundary				
AAC ID	and the second second	220168-27350				
Date Sampled	01/21/2022					
Date Analyzed		01/27/2022				
Can Dilution Factor		1.61				
Compound	Result*	ID Quality [§]				
No Library S	earch Compounds	Detected				
3FB-Surrogate Std. % Recovery	99%					
Client ID		S-8 Boundary				
AAC ID		220168-27351				
Date Sampled		01/21/2022				
Date Analyzed		01/27/2022				
Can Dilution Factor		1.91	in a start and			
Compound	Result*	Analysis DF	ID Quality [§]			
No Library S	earch Compounds	Detected				
3FB-Surrogate Std. % Recovery	93%					

* Results obtained via TICs analysis are estimated. § Spectral Library match quality ranges from 1-100.

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 01/27/2022 MATRIX : High Purity N₂ UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-02 CALIBRATION STD ID : MS1-010522-01 ANALYST : RC

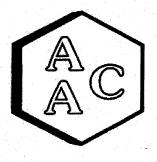
VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Continuing Calibration Verification of the 01/07/2022 Calibration

Analyte Compounds	Source ¹	CCV ²	% Recovery ³	Analyte Compounds (Continued)	Source ¹	CCV ²	% Recovery ³
4-BFB (surrogate standard)	10.00	10.17	102	1,2-Dichloropropane	10.50	9.41	90
Chlorodifluoromethane	10.50	10.00	95	Bromodichloromethane	10.40	9.81	94
Propene	10.60	9.19	87	1,4-Dioxane	10.40	11.22	108
Dichlorodifluoromethane	10.40	9.14	88	Trichloroethene (TCE)	10.40	11.53	111
Dimethyl Ether	10.80	8.54	79	2,2,4-Trimethylpentane	10.40	11.15	107
Chloromethane	10.40	7.51	72	Methyl Methacrylate	11.00	9.63	88
Dichlorotetrafluoroethane	10.30	8.99	87	Heptane	10.50	11.17	106
Vinyl Chloride	10.50	8.48	81	cis-1,3-Dichloropropene	10.40	10.85	104
Acetaldehyde	22.50	17.99	80	4-Methyl-2-pentanone (MiBK)	10.40	9.62	93
Methanol LR	20.10	12.17	61	trans-1,3-Dichloropropene	10.50	9.17	87
1.3-Butadiene	10.60	8.53	80	1,1,2-Trichloroethane	10.50	10.72	102
Bromomethane	10.40	8.04	.77	Toluene	10.60	11.88	112
Chloroethane	10.30	7.70	75	2-Hexanone (MBK)	10.50	8.77	84
Dichlorofluoromethane	10.50	8.19	78	Dibromochloromethane	10.30	10.53	102
Ethanol	11.20	8,10	72	1,2-Dibromoethane	10.60	10.59	100
Vinyl Bromide	10.50	8.42	80	Tetrachloroethene (PCE)	10.40	11.05	106
Acrolein LR	11.10	7.53	68	Chlorobenzene	10.60	10.92	103
Acetone	10.60	7.82	74	Ethylbenzene	10.50	11.43	109
Trichlorofluoromethane	10.50	7.87	75	m & p-Xylene	21.00	22.27	106
2-Propanol (IPA)	11.00	8.02	73	Bromoform	10.50	10.61	101
Acrylonitrile	11.40	8.49	74	Styrene	10.50	10.38	99
1.1-Dichloroethene	10.40	8.56	82	1,1,2,2-Tetrachloroethane	10.50	10,80	103
Methylene Chloride (DCM)	10.50	8.40	80	o-Xylene	10.50	10,90	104
TertButanol (TBA)	11.30	8.23	73	1,2,3-Trichloropropane	10.40	10.72	103
Allyl Chloride	10.40	8.41	81	Isopropylbenzene (Cumene)	10.40	11.69	112
Carbon Disulfide	10.50	7.88	75	α-Pinene	11.40	10.14	89
Trichlorotrifluoroethane	10.40	8.21	79	2-Chlorotoluene	10.40	11.86	114
trans-1.2-Dichloroethene	10,60	10.97	103	n-Propylbenzene	10.50	12.09	115
1.1-Dichloroethane	10.50	9.81	93	4-Ethyltoluene	10.30	10.79	105
Methyl Tert Butyl Ether (MTBE)	10,50	8.53	81	1,3,5-Trimethylbenzene	10.30	10.47	102
Vinyl Acetate	11.00	9.86	90	β-Pinene	11.30	8.00	71
2-Butanone (MEK)	10.60	9.27	87	1,2,4-Trimethylbenzene	10.30	10.53	102
cis-1,2-Dichloroethene	10.50	10,54	100	Benzyl Chloride (a-Chlorotoluene)	10.40	9.34	90
Hexane	10,70	10.20	95	1,3-Dichlorobenzene	10.40	11.57	111
Chloroform	10.60	10.23	97	1,4-Dichlorobenzene	10.30	12.09	117
Ethyl Acetate	10.60	9.92	94	Sec-ButylBenzene	10.40	10.96	105
Tetrahydrofuran	10.00	8.90	87	1,2-Dichlorobenzene	10.60	12.49	118
1.2-Dichloroethane	10.50	9.91	94	n-ButylBenzene	10.40	10.07	97
1.1.1-Trichloroethane	10.30	9.98	96	1,2-Dibromo-3-Chloropropane	10.40	10.54	101
Benzene	10.60	10,70	101	1,2,4-Trichlorobenzene	11.00	9.29	84
Carbon Tetrachloride	10.00	10.70	101	Naphthalene	11.50	9.95	87
Cyclohexane	10.20	10.94	105	Hexachlorobutadiene	11.00	11.36	103

¹Concentration of analyte compound in certified source standard.

² Measured result from daily Continuing Calibration Verification (CCV).


³ The acceptable range for analyte recovery is $100\pm30\%$.

LR - Recovery for this compound was low. Results should be considered estimated.

Page 14

www.aaclab.com • (805) 650-1642

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 01/27/2022MATRIX : High Purity N₂ UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-02 CALIBRATION STD ID : MS1-010522-01 ANALYST : RC

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

System Monitoring Compounds	Sample Concentration	Spike Added	LCS ¹ Recovery	LCSD ¹ Recovery	LCS ¹ % Recovery ²	LCSD ¹ % Recovery ²	RPD ³
4-BFB (surrogate standard)	0.0	10.00	10.17	10.65	101.7	106.5	4.6
1,1-Dichloroethene	0.0	10.40	8.56	7.98	82	77	7.0
Methylene Chloride (DCM)	0.0	10.50	8.40	8.25	80	79	1.8
Benzene	0.0	10.60	10.70	10.56	101	100	1.3
Trichloroethene (TCE)	0.0	10.40	11.53	10.49	111	101	9.4
Toluene	0.0	10.60	11.88	11.69	112	110	1.6
Tetrachloroethene (PCE)	0.0	10.40	11.05	10.52	106	101	4.9
Chlorobenzene	0.0	10.60	10.92	10.67	103	101	2.3
Ethylbenzene	0.0	10.50	11.43	10.95	109	104	4.3
m & p-Xylene	0.0	21.00	22.27	22.69	106	108	1.9
o-Xylene	0.0	10.50	10.90	10.50	104	100	3.7

Laboratory Control Spike Analysis

¹Laboratory Control Spike (LCS) / Laboratory Control Spike Duplicate (LCSD)

² The acceptable range for analyte recovery is $100\pm30\%$.

³ Relative Percent Difference (RPD) between LCS recovery and LCSD recovery (acceptable range is <25%).

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 01/27/2022 MATRIX : High Purity He or N₂ UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-02 ANALYST : RC

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Method Blank Analysis

Analyte Compounds	MB 012722	Reporting Limit (RL)	Analyte Compounds (Continued)	MB 012722	Reporting Limit (RL) 0.5	
4-BFB (surrogate standard)	93%	100±30%	1,2-Dichloropropane	<rl< td=""></rl<>		
Chlorodifluoromethane	<rl< td=""><td>0.5</td><td>Bromodichloromethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Bromodichloromethane	<rl< td=""><td>0.5</td></rl<>	0.5	
Propene	<rl< td=""><td>1.0</td><td>1,4-Dioxane</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	1.0	1,4-Dioxane	<rl< td=""><td>1.0</td></rl<>	1.0	
Dichlorodifluoromethane	<rl< td=""><td>0.5</td><td>Trichloroethene (TCE)</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Trichloroethene (TCE)	<rl< td=""><td>0.5</td></rl<>	0.5	
Dimethyl Ether	<rl< td=""><td>0.5</td><td>2,2,4-Trimethylpentane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	2,2,4-Trimethylpentane	<rl< td=""><td>0.5</td></rl<>	0.5	
Chloromethane	<rl< td=""><td>0.5</td><td>Methyl Methacrylate</td><td><rl< td=""><td>2.0</td></rl<></td></rl<>	0.5	Methyl Methacrylate	<rl< td=""><td>2.0</td></rl<>	2.0	
Dichlorotetrafluoroethane	<rl< td=""><td>0.5</td><td>Heptane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Heptane	<rl< td=""><td>0.5</td></rl<>	0.5	
Vinyl Chloride	<rl< td=""><td>0.5</td><td>cis-1,3-Dichloropropene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	cis-1,3-Dichloropropene	<rl< td=""><td>0.5</td></rl<>	0.5	
Acetaldehyde	<rl< td=""><td>5.0</td><td>4-Methyl-2-pentanone (MiBK)</td><td><rl< td=""><td>2.0</td></rl<></td></rl<>	5.0	4-Methyl-2-pentanone (MiBK)	<rl< td=""><td>2.0</td></rl<>	2.0	
Methanol	<rl< td=""><td>5.0</td><td>trans-1,3-Dichloropropene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	5.0	trans-1,3-Dichloropropene	<rl< td=""><td>1.0</td></rl<>	1.0	
3-Butadiene	<rl< td=""><td>0.5</td><td>1,1,2-Trichloroethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,1,2-Trichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5	
Bromomethane	<rl< td=""><td>0.5</td><td>Toluene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Toluene	<rl< td=""><td>0.5</td></rl<>	0.5	
Chloroethane	<rl< td=""><td>0.5</td><td>2-Hexanone (MBK)</td><td><rl< td=""><td>5.0</td></rl<></td></rl<>	0.5	2-Hexanone (MBK)	<rl< td=""><td>5.0</td></rl<>	5.0	
Dichlorofluoromethane	<rl< td=""><td>0.5</td><td>Dibromochloromethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Dibromochloromethane	<rl< td=""><td>0.5</td></rl<>	0.5	
Ethanol	<rl< td=""><td>2.0</td><td>1,2-Dibromoethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	2.0	1,2-Dibromoethane	<rl< td=""><td>0.5</td></rl<>	0.5	
Vinyl Bromide	<rl< td=""><td>0.5</td><td>Tetrachloroethene (PCE)</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	Tetrachloroethene (PCE)	<rl< td=""><td>0.5</td></rl<>	0.5	
Acrolein	<rl< td=""><td>1.0</td><td>Chlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	1.0	Chlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5	
Acetone	<rl< td=""><td>2.0</td><td>Ethylbenzene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	2.0	Ethylbenzene	<rl< td=""><td>1.0</td></rl<>	1.0	
Trichlorofluoromethane	<rl< td=""><td>0.5</td><td>m & p-Xylene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	m & p-Xylene	<rl< td=""><td>1.0</td></rl<>	1.0	
2-Propanol (IPA)	<rl< td=""><td>2.0</td><td>Bromoform</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	2.0	Bromoform	<rl< td=""><td>0.5</td></rl<>	0.5	
Acrylonitrile	<rl< td=""><td>2.0</td><td>Styrene</td><td><rl< td=""><td>2.0</td></rl<></td></rl<>	2.0	Styrene	<rl< td=""><td>2.0</td></rl<>	2.0	
1.1-Dichloroethene	<rl< td=""><td>0.5</td><td>1,1,2,2-Tetrachloroethane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,1,2,2-Tetrachloroethane	<rl< td=""><td>0.5</td></rl<>	0.5	
Methylene Chloride (DCM)	<rl< td=""><td>1.0</td><td>o-Xylene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	1.0	o-Xylene	<rl< td=""><td>1.0</td></rl<>	1.0	
TertButanol (TBA)	<rl< td=""><td>0.5</td><td>1,2,3-Trichloropropane</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,2,3-Trichloropropane	<rl< td=""><td>0.5</td></rl<>	0.5	
Allyl Chloride	<rl< td=""><td>1.0</td><td>Isopropylbenzene (Cumene)</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	1.0	Isopropylbenzene (Cumene)	<rl< td=""><td>0.5</td></rl<>	0.5	
Carbon Disulfide	<rl< td=""><td>2.0</td><td>α-Pinene</td><td><rl< td=""><td>2.0</td></rl<></td></rl<>	2.0	α-Pinene	<rl< td=""><td>2.0</td></rl<>	2.0	
Trichlorotrifluoroethane	<rl< td=""><td>0.5</td><td>2-Chlorotoluene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	2-Chlorotoluene	<rl< td=""><td>0.5</td></rl<>	0.5	
trans-1,2-Dichloroethene	<rl< td=""><td>0.5</td><td>n-Propylbenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	n-Propylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5	
1.1-Dichloroethane	<rl< td=""><td>0.5</td><td>4-Ethyltoluene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	4-Ethyltoluene	<rl< td=""><td>1.0</td></rl<>	1.0	
Methyl Tert Butyl Ether (MTBE)	<rl< td=""><td>2.0</td><td>1,3,5-Trimethylbenzene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	2.0	1,3,5-Trimethylbenzene	<rl< td=""><td>1.0</td></rl<>	1.0	
Vinyl Acetate	<rl< td=""><td>1.0</td><td>β-Pinene</td><td><rl< td=""><td>5.0</td></rl<></td></rl<>	1.0	β-Pinene	<rl< td=""><td>5.0</td></rl<>	5.0	
2-Butanone (MEK)	<rl< td=""><td>1.0</td><td>1,2,4-Trimethylbenzene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	1.0	1,2,4-Trimethylbenzene	<rl< td=""><td>1.0</td></rl<>	1.0	
cis-1,2-Dichloroethene	<rl< td=""><td>0.5</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><rl< td=""><td>2.0</td></rl<></td></rl<>	0.5	Benzyl Chloride (a-Chlorotoluene)	<rl< td=""><td>2.0</td></rl<>	2.0	
Hexane	<rl< td=""><td>0.5</td><td>1,3-Dichlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,3-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5	
Chloroform	<rl< td=""><td>0.5</td><td>1,4-Dichlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,4-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5	
Ethyl Acetate	<rl< td=""><td>0.5</td><td>Sec-ButylBenzene</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	Sec-ButylBenzene	<rl< td=""><td>1.0</td></rl<>	1.0	
Tetrahydrofuran	<rl< td=""><td>0.5</td><td>1,2-Dichlorobenzene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	0.5	1,2-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5	
1.2-Dichloroethane	<rl< td=""><td>0.5</td><td>n-ButylBenzene</td><td><rl< td=""><td>2.0</td></rl<></td></rl<>	0.5	n-ButylBenzene	<rl< td=""><td>2.0</td></rl<>	2.0	
1.1.1-Trichloroethane	<rl< td=""><td>0.5</td><td>1,2-Dibromo-3-Chloropropane</td><td><rl< td=""><td>1.0</td></rl<></td></rl<>	0.5	1,2-Dibromo-3-Chloropropane	<rl< td=""><td>1.0</td></rl<>	1.0	
Benzene	< <u>RL</u>	0.5	1,2,4-Trichlorobenzene	<rl< td=""><td>5.0</td></rl<>	5.0	
Carbon Tetrachloride	<rl< td=""><td>0.5</td><td>Naphthalene</td><td><rl< td=""><td>5.0</td></rl<></td></rl<>	0.5	Naphthalene	<rl< td=""><td>5.0</td></rl<>	5.0	
Cyclohexane	<rl< td=""><td>1.0</td><td>Hexachlorobutadiene</td><td><rl< td=""><td>0.5</td></rl<></td></rl<>	1.0	Hexachlorobutadiene	<rl< td=""><td>0.5</td></rl<>	0.5	

QUALITY CONTROL / QUALITY ASSURANCE REPORT

ANALYSIS DATE : 01/27/2022 MATRIX : Air UNITS : PPB (v/v) INSTRUMENT ID : GC/MS-02 ANALYST : RC DILUTION FACTOR¹ : x1.91

VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Duplicate Analysis of AAC Sample ID: 220168-27351

Analyte Compounds	Sample Duplicate <u>RP</u> L		RPD ²	Analyte Compounds (Continued)	Sample	Duplicate	RPD ²	
4-BFB (surrogate standard)	9.28	9.50	2.3	1,2-Dichloropropane	<srl< td=""><td><srl< td=""><td colspan="2">NA</td></srl<></td></srl<>	<srl< td=""><td colspan="2">NA</td></srl<>	NA	
Chlorodifluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Bromodichloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Bromodichloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Bromodichloromethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Propene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,4-Dioxane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,4-Dioxane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,4-Dioxane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Dichlorodifluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Trichloroethene (TCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Trichloroethene (TCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Trichloroethene (TCE)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Dimethyl Ether	<srl< td=""><td><srl< td=""><td>NA</td><td>2,2,4-Trimethylpentane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>2,2,4-Trimethylpentane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2,2,4-Trimethylpentane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Chloromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Methyl Methacrylate</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Methyl Methacrylate</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Methyl Methacrylate	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Dichlorotetrafluoroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Heptane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Heptane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Heptane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Vinyl Chloride	<srl< td=""><td><srl< td=""><td>NA</td><td>cis-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>cis-1,3-Dichloropropene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	cis-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Acetaldehyde	<srl< td=""><td><srl< td=""><td>NA</td><td>4-Methyl-2-pentanone (MiBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>4-Methyl-2-pentanone (MiBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	4-Methyl-2-pentanone (MiBK)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Methanol J	7.31	6,20	16.4	trans-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
1.3-Butadiene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,1,2-Trichloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,1,2-Trichloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,1,2-Trichloroethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Bromomethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Toluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Toluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Toluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Chloroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>2-Hexanone (MBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>2-Hexanone (MBK)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2-Hexanone (MBK)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Dichlorofluoromethane	<srl< td=""><td><srl< td=""><td>NA</td><td>Dibromochloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Dibromochloromethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Dibromochloromethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Ethanol	<srl< td=""><td><srl< td=""><td>NA</td><td>1,2-Dibromoethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,2-Dibromoethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,2-Dibromoethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Vinyl Bromide	<srl< td=""><td><srl< td=""><td>NA</td><td>Tetrachloroethene (PCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Tetrachloroethene (PCE)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Tetrachloroethene (PCE)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Acrolein	<srl< td=""><td><srl< td=""><td>NA</td><td>Chlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Chlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Chlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Acetone J	2.12	2.29	7.8	Ethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Frichlorofluoromethane	<srl< td=""><td><srl< td=""><td>NA NA</td><td>m & p-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA NA</td><td>m & p-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA NA	m & p-Xylene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
2-Propanol (IPA)	<srl< td=""><td><srl< td=""><td>NA</td><td>Bromoform</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Bromoform</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Bromoform	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Acrylonitrile	<srl< td=""><td><srl< td=""><td>NA</td><td>Styrene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Styrene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Styrene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
.1-Dichloroethene	<srl< td=""><td><srl< td=""><td>NA</td><td>1,1,2,2-Tetrachloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,1,2,2-Tetrachloroethane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,1,2,2-Tetrachloroethane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Methylene Chloride (DCM)	<srl< td=""><td><srl< td=""><td>NA</td><td>o-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>o-Xylene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	o-Xylene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
FertButanol (TBA)	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>1,2,3-Trichloropropane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>1,2,3-Trichloropropane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,2,3-Trichloropropane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Allyl Chloride	<srl< td=""><td><srl< td=""><td>NA</td><td>Isopropylbenzene (Cumene)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>Isopropylbenzene (Cumene)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Isopropylbenzene (Cumene)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Carbon Disulfide	<srl< td=""><td><srl< td=""><td>NA</td><td>α-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>α-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	α-Pinene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Trichlorotrifluoroethane	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>2-Chlorotoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>2-Chlorotoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	2-Chlorotoluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
rans-1,2-Dichloroethene	<srl< td=""><td><srl< td=""><td>NA</td><td>n-Propylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>n-Propylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	n-Propylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
1.1-Dichloroethane	<srl< td=""><td><srl< td=""><td>NA</td><td>4-Ethyltoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>4-Ethyltoluene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	4-Ethyltoluene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td><srl< td=""><td>NA</td><td>1,3,5-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,3,5-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,3,5-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Vinyl Acetate	<srl< td=""><td><srl< td=""><td>NA</td><td>β-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>β-Pinene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	β-Pinene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
2-Butanone (MEK)	<srl< td=""><td><srl< td=""><td>NA</td><td>1,2,4-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,2,4-Trimethylbenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,2,4-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
sis-1.2-Dichloroethene	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>Benzyl Chloride (a-Chlorotoluene)</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Hexane	<srl< td=""><td><srl< td=""><td>NA</td><td>1,3-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<>	<srl< td=""><td>NA</td><td>1,3-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1,3-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
	<srl <srl< td=""><td><srl< td=""><td>NA</td><td>1.4-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td><td>1.4-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	NA	1.4-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Chloroform	<srl <srl< td=""><td><srl <srl< td=""><td>NA</td><td>Sec-ButylBenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA</td><td>Sec-ButylBenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></srl 	NA	Sec-ButylBenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Ethyl Acetate	<srl <srl< td=""><td><srl SRL</srl </td><td>NA</td><td>1.2-Dichlorobenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></srl 	<srl SRL</srl 	NA	1.2-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Tetrahydrofuran	<srl <srl< td=""><td><srl <srl< td=""><td>NA</td><td>n-ButylBenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA</td><td>n-ButylBenzene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></srl 	NA	n-ButylBenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
1,2-Dichloroethane		<srl <srl< td=""><td>NA</td><td>1,2-Dibromo-3-Chloropropane</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<></srl 	NA	1,2-Dibromo-3-Chloropropane	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
1,1,1-Trichloroethane	<srl (SRL</srl 		NA	1,2,4-Trichlorobenzene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Benzene	<srl< td=""><td><srl (SRL</srl </td><td>NA</td><td>Naphthalene</td><td><srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></td></srl<>	<srl (SRL</srl 	NA	Naphthalene	<srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<>	<srl< td=""><td>NA</td></srl<>	NA	
Carbon Tetrachloride	<srl <srl< td=""><td><srl <srl< td=""><td>NA</td><td>Hexachlorobutadiene</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<></srl </td></srl<></srl 	<srl <srl< td=""><td>NA</td><td>Hexachlorobutadiene</td><td><srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl </td></srl<></srl 	NA	Hexachlorobutadiene	<srl <srl< td=""><td><srl< td=""><td>NA</td></srl<></td></srl<></srl 	<srl< td=""><td>NA</td></srl<>	NA	

¹ Dilution factor is the product of the Canister Dilution Factor and the Analysis Dilution Factor.

² Relative Percent Difference (RPD) between Sample analysis and Duplicate analysis (acceptable range is <25%).

SRL - Sample Reporting Limit (minimum)

J - Estimated value between the detection limit and the minimum reporting limit, shown for duplication purposes only.

220 168

CHAIN OF CUSTODY AND ANALYSIS REQUEST – Chain of Custody is a LEGAL DOCUMENT. Complete all relevant fields.

	Atmospheric Analysis and Consulting \cdot Phone: 805-650-1642 \cdot Email: info@aaclab.com \cdot					man Ave Su	lite A, Ventur	AAC Project No.:		
lient/Company Name						Anal	ysis Requeste	Send Report To (Name/Email/Address)		
Freestone	DTG					-			Kira Mure	cy.
roject Manager Name	Project Num	ber			N N				eramurray	egofreesioner
Kira Murray					S S				100 Jadwin Ave, Suiter50	
urnaround Time	Sampler Nan	ne			HA F	•		c	Exhlord, WA 99352 Send Invoice To (Name/Email/Address) Fire Murray	
🗆 Rush 24 h 🛛 🗆 Same Day										
$\Box \operatorname{Rush} 48 h \qquad \Box 5 \operatorname{Days}$			WOLS +				Kirc Murray Kirc murray Ogofreestonk co 1100 Jadwin Ave PO Number			
$\exists \text{ Rush 72 h} X \text{ Normal}$	Print: Tra Signature:									
					Ed Q				LAB USE ONLY	
Client Sample Name	Sample ID	Sampling Date	Sampling Time	Container Type/Qty	1 1 2	· · · · .			Lab ID	Sample Received
SI MAGE	5-1		1249- 1450	CONISTER 1	1. N.	0.00				\Box FedEx
S-1 Vent		1/21/22			×	2734				
S-2 5' from vent	5-2	1/21/22	1251443	Conister T	×	27345				
3-3 15 from vent	5-3	1/21/22	1250- 1445	Canister 1	×	27346			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	□Other
5-3 15 from vent 3-4 - PEUTOLIQUE	5-4	1/21/22	1246-10	CONISTER 1	×	27347				Temperature
5-5 Boundary	5-5	17122	1300 1495	conster		2734B		· ·		C°C°C
D-6 Boundary	5-6	1/21/22	1	conister	×	27349				ID
5-7 Bounchary	5-7	1/21/22	1253-1448	CANISTER	×	27350				Initials
5-8 Barrebrig	5-8	1/21/22	1415-1233-	CONST	×	27351				Returned Eqmt
			TM 1/21/2	conster						Total cans:
			ipin							Unused cans:
										Flow Controllers:
								4		
Client Notes/Special Instructions:							EDD?	LAB USE ONLY		
				•			□Yes	Notes:		
•							A No			
elinquished By		Date	Received E				Data			
rint:		Dale	Print:	у			Date			
ignature: Time Signature:				/		Time				
Relinquished By Date Received By										
Print: Print:				1 1 1 1		Date Virin				
ignature:		Time	Signature:	// china	Mril.	y	Time 1232			

AAC COC Rev 3

Issued 02/04/2021

220 168

CHAIN OF CUSTODY AND ANALYSIS REQUEST – Chain of Custody is a LEGAL DOCUMENT. Complete all relevant fields. Atmospheric Analysi

Atmospheric Analysis and Consult	ing · Phone: 80	5-650-1642	· Email: info	Maaclah com	4524 5		omplete a	li relevant f	ields.			
Atmospheric Analysis and Consult Client/Company Name	Project Nam	ne	Lindii. Into	waaciab.com	• 1534 Eas	tman Ave S	buite A, Ve	ntura, CA 9	3003	AAC Project N	lo.:	
FRESTONE	DTG				Analysis Requested					Send Report To (Name/Email/Address)		
Project Manager Name	Project Num	ber		r .						Kira Mur	ren	
Kira Murray					10 N					Pranurrai	> @ and reasons	
Turnaround Time	Sampler Name				TICS					Lichbod, WA 99252		
—												
□ Rush 24 h □ Same Day □ Rush 48 h □ 5 Days	Print: Trc	ic mall	ويهدون		WH+					Send Invoice To (Name/Email/Address)		
$\Box \operatorname{Rush} 72 h$	11.11				1 1 -					King Murray gorreestoner king murray of gorreestoner 1100 Jacun Ave PO Number		
	- grind di cia	ajnur_			L'US					PO Number	ve	
Client Sample Name	Sample ID	Sampling	Sampling	Container	VOLS				LA		B USE ONLY	
$\leq \lambda$		Date	Time	Type/Oty	MA					Lab ID	Sample Received	
J-1 Vent	5-1	1/21/22	1249-	CONISTER	X	2734					via:	
S-2 5' from vent	5-2	1/21/22	125143	conster 1	×						GredEx	
5-5 15 tomavent	5-3	1121/22	1250-1445	Canister 1		27345						
5-4 -PTW 42427 alburch	5-4		1445		×	27346						
		1/21/22		conister 1	X	27347					Temperature	
2-3 Boundary	55	12122	1300 195	conister	X	27348					- °C	
2-6 Boundary	5-6	121/22	1257-1446	conister	×		·				Thermometer	
-7 Bounchry	5-7	1/21/22	1253-	CANISTAT	×	27349	<u> </u>				1D	
D-8 Barrhay	5-8			CONSTER		27350					Initials	
3	50	1/CI/CC	1415-1233-	cont	×	27351					Returned Eqmt	
			TM	CONSTER	-						Total cans:	
· · · · · · · · · · · · · · · · · · ·			1/21/2						· · · ·	<u>- Malaking di sang</u> Dési di sangkarak		
				:							Unused cans:	
					· · · ·		·				Flow Controllers:	
lient Notes/Special Instructions:												
							EDD?	and the second	JSE ONLY			
			· · · · ·				□Yes XQNo	Note	S :			
elinquished By							Varia 10		• 1	2309 x200	[\$700)	
rint:		Date	Received B	у	1		Date		41	2301 2200	1 1 2 0 0 0	
gnature:		T	Print:		//		Juic				실행 2013년 2013년 1월 1997년 1987년 2013년 1월 1997년 1월 1987년 1월 1997년 1월 19	
linguished By		Time Date	Signature:				Time					
nt:		Date	Received By Print:				Date Date					
gnature:		Time	Signature:	/Calma	N-1		Time 127	て				
	······			1 mile	Mile,	r	lime '0					
		1101	ፍ	J ALLE 1	- 6	Ente						
AC COC Rev 3		VYS	0	a cary d	ox	trute	chs					

Page_ of

A