

TO:	Matt Gladney, Bridge Development Partners
FROM:	Grant Hainsworth – CRETE Consulting Inc., PC
PROJECT:	Dawn Food Products – Seattle, WA
SUBJECT:	Summary of Soil and Groundwater Conditions
DATE:	February 5, 2021

This memorandum presents a summary of soil and groundwater conditions at the Dawn Food Products property located at 6901 Fox Avenue South in Seattle, Washington (Property). Soil and groundwater conditions were previously summarized in the Phase II Environmental Site Assessment dated March 6, 2020 (Crete 2020). The Phase II recommended additional site characterization. Additional soil and groundwater data were collected in June 2020 and subslab vapor and indoor air data were also collected in June 2020. Bridge Development Partners, LCC (Bridge) hired TRC Engineering Corporation to perform a third-party review of environmental site conditions and that review was summarized in a memorandum dated October 6, 2020. Based on the dated collected in June and the third-party review input, additional soil and groundwater data were collected in December 2020. This memorandum provides a summary of environmental site conditions based on the data collected at the property through December 2020 and provides a brief discussion of remedial investigation, feasibility study, and cleanup approaches.

The locations of boreholes advanced to collect soil and groundwater samples are identified on Figure 1. Figure 1 also illustrates historical structures and former shoreline and shipway locations for reference. Historical industrial activities and potential sources were described in previous documents and are not repeated herein. Table 1 provides a summary of groundwater analytical results and Tables 2 and 3 provide a summary of soil analytical results. Screening levels were developed based on the relevant exposure pathways at the site, consistent with how screening and cleanup levels would be developed for the property under the State cleanup regulation, the Model Toxics Control Action (MTCA). Specifically, the groundwater screening levels developed were consistent with the "most stringent surface water preliminary cleanup levels" according to Ecology Interim Policy 730: Taking into Account Federal Human Health Surface Water Quality Criteria under MTCA (Ecology January 11, 2021). Where a chemical concentration exceeds a screening level, the result is shaded to highlight the exceedance in the tables.

Extent of Groundwater and Soil Impacts

Figure 2 illustrates the estimated extent of groundwater concentrations that exceed screening levels. These impacts are grouped for discussion into three categories.

GWCC Groundwater Impacts

The light blue shaded area on Figure 2 identifies the estimate extent of groundwater contamination due to chlorinated solvent releases from the upgradient Great Western Chemical (GWCC) site. This area is primarily the result of vinyl chloride that exceeds both the groundwater screening level for vapor intrusion (not shown in Table 1) and for discharge to surface water. The vinyl chloride is the result of anaerobic degradation of chlorinated solvents such as trichlorethene (TCE) and tetrachloroethene (PCE). The presence of cis-1,2-dichloroethene (cis-1,2-DCE) in most of these samples provides support for the biodegradation pathway source. PCE is detected at one location (SB-15), the same location where

gasoline exceeds the groundwater screening level. This suggests that a minor release may have occurred on the property.

Gasoline Impacts

As mentioned above, gasoline exceeds the screening level in groundwater at 1 location (SB-15). Additional testing has confirmed that this area is limited in extent.

Metals Impacts

Groundwater samples were analyzed for both total and dissolved metals. Ecology typically accepts that groundwater is evaluated based on dissolved metals results and that the total metals results are biased high due to turbidity in the groundwater samples. As a result, this discussion focusses on the dissolved metals results. Arsenic, copper, nickel, and zinc exceed screening levels at multiple locations on the property (Figure 2). The bulk of these exceedances are concentrated near the waterfront in the vicinity of the former shipways. The isolated exceedances closer to Fox Avenue could be due to reducing groundwater conditions that are caused by the anaerobic degradation of the GWCC impacts.

For the waterfront area, arsenic and copper are often quantified in groundwater due to interference from sea water. The analytical methods used for this analysis were intended to account for some level of interference; however, the specific conductance data (7,000 to 24,000 μ S/cm) collected at the four temporary wells along the shoreline indicated that the seawater influence on groundwater was more significant than expected. More sophisticated analysis during the remedial investigation process may be warranted to assess this possibility.

Cadmium, lead, and mercury will continue to be assessed during the remedial investigation process since they were detected at a concentration exceeding the screening level in at least one sample, for either total or dissolved metals.

Soil Impacts

Figure 3 provides an estimate of the extent of soil with contamination exceeding screening levels. These impacts are focused in the waterfront area and are primarily due to arsenic, copper, nickel, and zinc, consistent with groundwater impacts. One soil sample exceeded a screening level for each of cadmium, chromium, mercury, and carcinogenic PAHs. These samples also had a concentration of nickel or zinc that exceeded screening levels except for the sample with chromium (SB-22 along the shoreline).

Investigation and Cleanup Approach

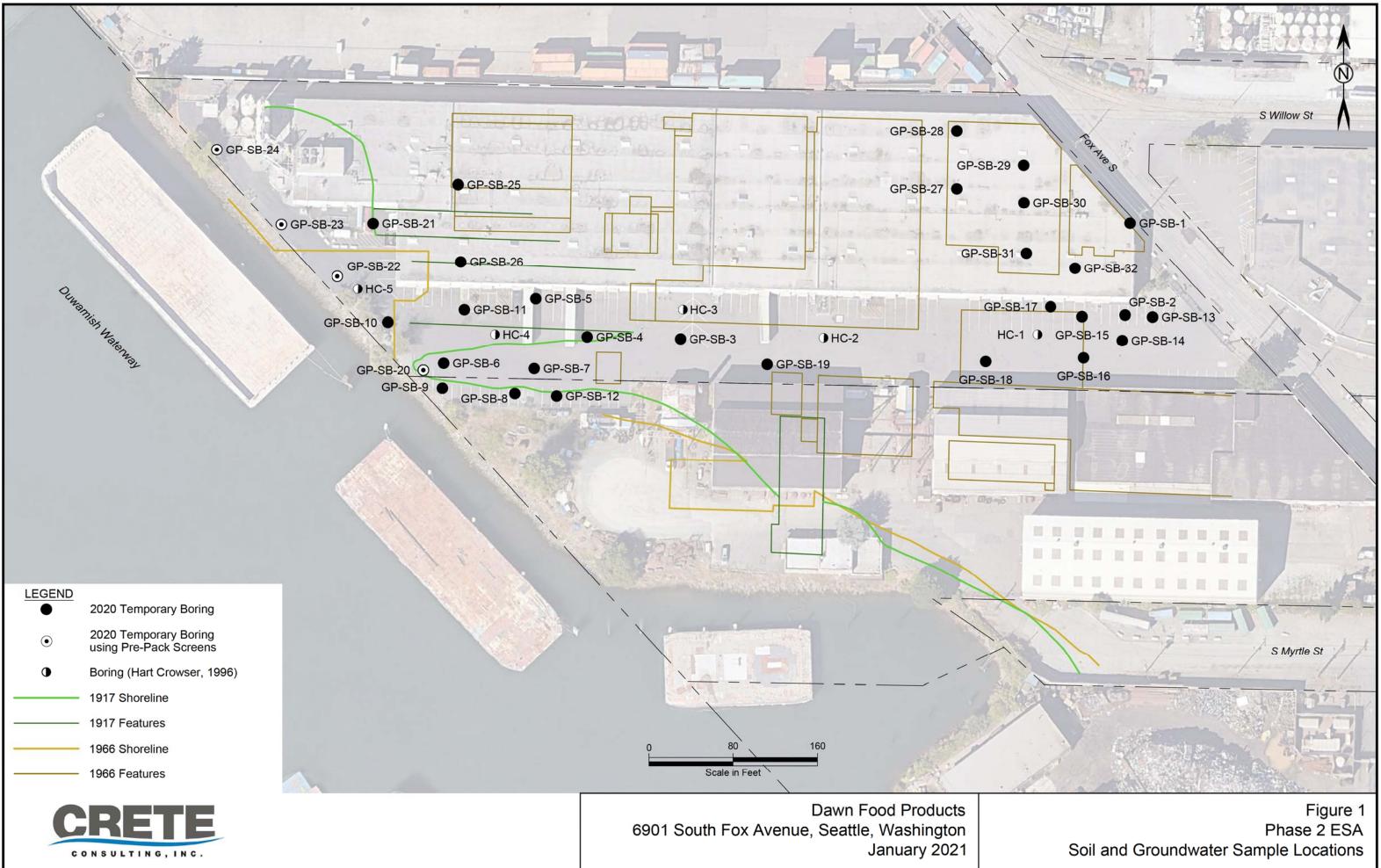
As part of the remedial investigation process, approximately 6 groundwater monitoring wells will likely be required by Ecology, 3 to 4 along the shoreline and 2 to 3 further upland in the area of gasoline and GWCC impacts. A tidal study will be performed for wells within about 100 to 200 feet of the shoreline to determine an appropriate tidal lag for groundwater sampling at the tidally influenced wells. Additional subslab vapor and indoor air samples will likely be required as well.

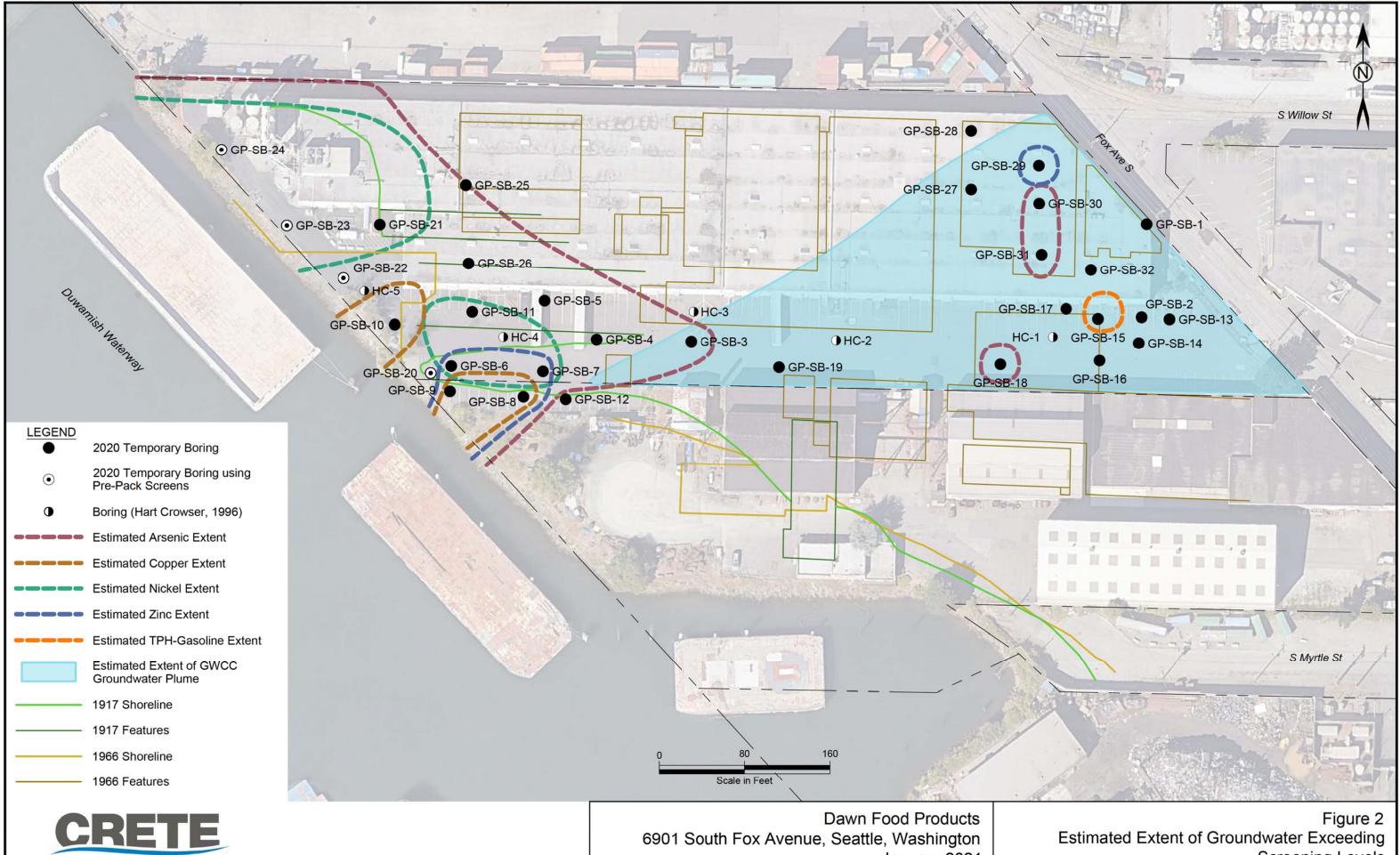
GWCC Groundwater Impacts

Groundwater impacts exceed screening levels and trigger the need to perform a vapor intrusion assessment under Ecology guidance. Subslab vapor and indoor air samples do not establish a clear link between groundwater impacts and subslab or indoor air quality; this is a common issue when assessing vapor intrusion. As part of the remedial investigation and feasibility study (RI/FS) process with Ecology, the goal will be to further evaluate this pathway. Even if the data indicate that the vapor intrusion pathway is not complete, Ecology may require such a significant amount of monitoring data that it may

more cost-effective to install a vapor mitigation system. As a result, the prior assumption that a subslab vapor depressurizations system may be required to address potential vapor mitigation is still relevant for planning purposes.

Gasoline Impacts

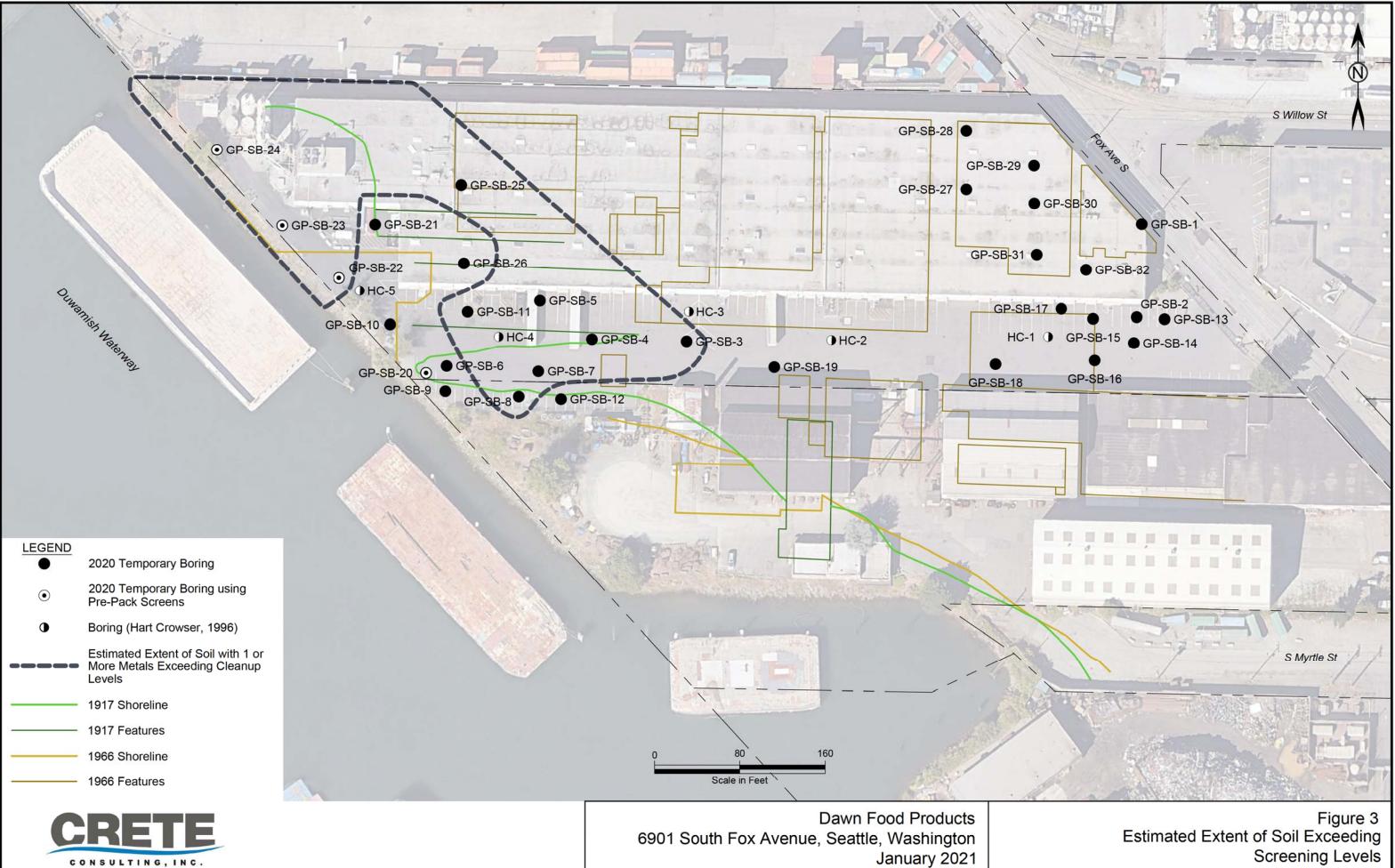

Additional data collection has determined that the gasoline impacted area is limited. This area is within the GWCC impacted groundwater area and it does not represent a risk to vapor intrusion or surface water. As a result, there is no driver for cleanup this area. A monitoring well will likely by placed in the vicinity as part of the remedial investigation and long-term groundwater monitoring program for the property.


Metals Impacts

As mentioned above, it is estimated that 3 to 5 groundwater monitoring wells will be placed in the nearshore area with metals impacts in soil and groundwater. During the remedial investigation process, monitoring approaches will be evaluated that could help reduce or eliminate the need for implementation of a significant cleanup process. These monitoring approaches could include using a more sophisticated analytical method or evaluating attenuation of metals in groundwater between the upland and the mudline, using either empirical sediment pore water sampling or attenuation modelling. During the feasibility study process, more passive cleanup approaches such as injecting amendments to reduce the solubilization of metals into groundwater will be evaluated using bench-scale testing. For planning purposes, the current assumption of the installation of a bioslurry permeable reactive barrier for about 450 to 500 feet along the shoreline and the Seattle Boiler property line is appropriate. It is currently assumed that the permeable reactive barrier will use a compound such as Enviroblend CS to limit discharge of metals in groundwater to surface water.

Enclosures:

Figures 1 and 2 Tables 1 to 3



CONSULTING, INC.

January 2021

Screening Levels

Table 1 Groundwater Analytical Data - Direct Push Borehole Groundwater Samples - Detected Compounds Only Bridge - Dawn Foods

Sample ID	Screening	Marine	Fresh Water		GP-SB-1	GP-SB-2	GP-SB-3	GP-SB-5	GP-SB-6	GP-SB-7	GP-SB-08	GP-SB-09	Dup (GP-SB-09	GP-SB-10	GP-SB-11	GP-SB-12	GP-SB-13	GP-SB-14
Date Sampled	Level	Water Screening	Screening Level	Screening Level Source	1/2/2020	1/2/2020	1/2/2020	1/2/2020	1/2/2020	1/2/2020	6/9/2020	6/9/2020	6/9/2020	6/9/2020	6/9/2020	6/9/2020	6/9/2020	6/9/2020
	ι				Ac	14	0	54								imple results a		
				-												Aetals Total/D	issolved	
Aluminum - total		See dissolved		See dissolved	NA	NA	NA	NA	NA	NA								
Arsenic - total		See dissolved		See dissolved	NA	NA	7.22	29	23	37.9	14.0	10.2	10.7	48.7	3.68	1 U	NA	NA
Cadmium - total		See dissolved		See dissolved	NA	NA	1 U	2.87	10 U	10	1 UJ	1 UJ	1 U	1 UJ	1 U	1 U	NA	NA
Chromium - total		See dissolved		See dissolved	NA	NA	NA	NA	NA	NA								
Copper - total		See dissolved		See dissolved	NA	NA	25 U	1,460	66.1	5 U	8.84	4.65	3.68 J	53.5	4.01	2.4 UJ	NA	NA
Lead - total		See dissolved		See dissolved	NA	NA	24.2	632	10 U	10	12.6	1 U	1 U	63.9	1.11	1 U	NA	NA
Mercury - total		See dissolved		See dissolved	NA	NA	1 U	4.29	1 U	1 U	0.2 UJ	0.2 U	0.2 U	0.2 UJ	0.2 U	0.2 U	NA	NA
Nickel - total		See dissolved		See dissolved	NA	NA	5 U	66	42.4	24	6.11	4.24	4.74 J	18.2	10.8	2.23 J	NA	NA
Zinc - total		See dissolved		See dissolved	NA	NA	25 U	1,070	3770	22,800	562	342	502	104	32.2	17.9 J	NA	NA
Aluminum - dissolved	NC	NC	NC	No Criteria	NA	NA	NA	NA	NA	NA								
				MTCA Method A - Natural														
Arsenic - dissolved	5	0.14	0.018	Background	NA	NA	6.92	10	10.6	29.7	13.1	10.2	10.7	25.2	4.61 ca	1 Uca	NA	NA
Cadmium - dissolved	1	7.9	0.72	Practical Quantitation Limit	NA	NA	1 U	10	5 U	1 U	1 U	1 UJ	1 U	1 U	10	1 U	NA	NA
				Surface Water Aquatic Life														
Chromium - dissolved	10	50	10	Fresh/Chronic 173-201A WAC	NA	NA	NA	NA	NA	NA								
				Surface Water Aquatic Life														
Copper - dissolved	3.1	3.1	11	Marine/Chronic CWA §306	NA	NA	25 U	25 U	5 U	5 U	7.00	5.58	2.97	5.29	2.73	2.4 UJ	NA	NA
				Surface Water Aquatic Life														
Lead - dissolved	2.5	8.1	2.5	Fresh/Chronic CWA §304	NA	NA	10	10	5 U	1 U	1 U	1 U	10	1 U	1U	10	NA	NA
Mercury - dissolved	0.2	0.025	0.012	Practical Quantitation Limit	NA	NA	1 U	10	5 U	1 U	0.2 U	0.2 U	2 J	0.2 UJ	0.2 U	0.2 U	NA	NA
				Surface Water Aquatic Life														
Nickel - dissolved	8.2	8.2	52	Marine/Chronic 173-201A WAC	NA	NA	5 U	5 U	8.71	22.7	6.35	4.88	4.14	5.74	10.9	2.37 J	NA	NA
				Surface Water Aquatic Life														
Zinc - dissolved	81	81	100	Marine/Chronic 173-201A WAC	NA	NA	25 U	25 U	3,110	22,300	574	378	317	5 U	18.8	16.5 J	NA	NA
Gasoline Range Organics	1,000			MTCA Method A	100 U	800	NA	NA	NA	NA	100	380						
	,			•			•	•							Vola	atile Organic C	ompounds	
				Surface Water Human Health														
Benzene	0.44	1.6	0.44	Fresh/Chronic 173-201A WAC	0.35 U	NA	NA	NA	NA	NA	NA	NA	NA	NA				
cis-1,2-Dichloroethene	NC	NC	NC	No Criteria	16	400	1 U	1 U	10	NA	1 U	1 U	1U	NA	NA	1 U	NA	NA
				Surface Water Human Health														
Ethylbenzene	29	31	29	Fresh/Chronic 173-201A WAC	10	10	10	10	10	NA	1 U	1 U	10	NA	NA	NA	1 U	3.1
Phenanthrene	NC	NC	NC	No Criteria	NA	NA	NA	NA	0.04 U	NA	NS	0.02 U	0.039	NA	NA	NA	NA	NA
				Groundwater Vapor Intrusion														
Methyl t-butyl ether	600	NC	NC	Method B	1.1	10 U	10	10	10	NA	1 U	1 U	10	NA	NA	1U	NA	NA
				Groundwater Vapor Intrusion														
m, p-Xylene	330	NC	NC	Method B	2 U	20	2 U	20	2 U	NA	2 U	2 U	20	NA	NA	NA	1 U	5.6
				Surface Water Human Health													_ •	
Tetrachloroethene	2.4	2.9	2.4	Fresh/Chronic CWA §304	10	10 U	10	10	10	NA	10	1U	10	NA	NA	10	NA	NA
		2.0	161-T	Surface Water Human Health		100	10	10			10	10	10					
Toluene	57	130	57	Fresh/Chronic CWA §304	1U	10	1 U	10	10	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vinyl chloride	0.1	0.18	0.02	Practical Quantitation Limit	44	72	0.31	0.2 U	0.2 U	NA	0.1 U	NA	NA	NA	NA	NA	NA	NA
	0.1	0.10	0.02	Groundwater Vapor Intrusion	-14	12	0.51	0.2 0	0.20	110	0.10	110		11/1		110	11/5	
Xylenes, Total	330	NC	NC	Method B	NA	NA	NA	NA	NA	NA								
Ayrenes, rotar	550	NC NC	NC	Include D	10/4	144	144	11/4	10/4	1974	14/4	NA	10/4	19/4	144	1974	11/4	10/4

Notes:

Bold = detection

Shading denotes an exceedance of a screening level

ug/L - microgram per liter MTCA - Model Toxics Control Act NC - No Criterion

NA - Not Analyzed U = concentration below laboratory detection limit (non-detect value)

J = reported concentration is an estimate.

Ca = The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

Table 1 Groundwater Analytical Data - Direct Push Borehole Groundwater Samples -Bridge - Dawn Foods

Sample ID	Screening	Marine	Fresh Water		GP-SB-15	GP-SB-16	GP-SB-17	GP-SB-18	GP-SB-19	GP-SB-20	GP-SB-21	GP-SB-22	GP-SB-23	GP-SB-24	GP-SB-25	GP-SB-27	GP-SB-28	GP-SB-29	GP-SB-30	GP-SB-31	GP-SB-32
Date Sampled	Level	Water Screening	Screening Level	Screening Level Source	6/9/2020	12/1/2020	12/1/2020	12/1/2020	12/1/2020	12/1/2020	12/1/2020	12/1/2020	12/1/2020	12/1/2020	12/5/2020	12/5/2020	12/5/2020	12/5/2020	12/12/2020	12/12/2020	12/12/2020
,	1	Screening	Level													Cer.					
Aluminum - total		See dissolved	1	See dissolved	NA	NA	NA	NA	100 U	NA	NA	NA									
Arsenic - total		See dissolved	1	See dissolved	NA	NA	NA	16.3	10 U	21.6	25	20	38.4	26.6	15.7	2.76	5.07	1.15	15.1	17.5	NA
Cadmium - total		See dissolved	1	See dissolved	NA	NA	NA	1 U	1 U	1 UJ	5 UJ	1 UJ	5 UJ	5 UJ	1 U	1 U	1 U	1 U	1 U	1 U	NA
Chromium - total		See dissolved	1	See dissolved	NA	NA	NA	12.1	4.25	13.7	10 U	10 U	13.8	10 U	18.6	10 U	23.7	1 U	11.4	3.19	NA
Copper - total	See dissolved		1	See dissolved	NA	NA	NA														
Lead - total	See dissolved		1	See dissolved	NA	NA	NA	1.55	1.08	5.85	10 U	1 U	11.1	10 U	12.4	10 U	10 U	1 U	3.44	1 U	NA
Mercury - total		See dissolved		See dissolved	NA	NA	NA	1 U	1 U	1 U	10 U	1 U	10 U	10 U	1 U	1 U	1 U	1 U	1 U	1 U	NA
Nickel - total		See dissolved	1	See dissolved	NA	NA	NA	9.65	6.54	8.30	12.8	10 U	15.4	10 U	18.6	10 U	12.2	3.10	12.0	5.77	NA
Zinc - total		See dissolved	1	See dissolved	NA	NA	NA	50 U	52.7	50 U	95.5	50 U	91.9	210	67.6	17.4	NA				
Aluminum - dissolved	NC	NC	NC	No Criteria	NA	NA	NA	NA	429	NA	NA	NA									
				MTCA Method A - Natural																	
Arsenic - dissolved	5	0.14	0.018	Background	NA	NA	NA	14.8	1.85	11.9	20	18.4	27.2	27.1	5.05	1 U	1 U	10	11.3	16.4	NA
Cadmium - dissolved	1	7.9	0.72	Practical Quantitation Limit	NA	NA	NA	10	1 U	1 U	1 UJ	1 U	1 UJ	1 UJ	1U	1 U	1 U	10	1 U	1 U	NA
				Surface Water Aquatic Life																	1
Chromium - dissolved	10	50	10	Fresh/Chronic 173-201A WAC	NA	NA	NA	1.72	10 U	4.06	10 U	2.14	10 U	10 U	1 U	1 U	1 U	10	1 U	1.19	NA
				Surface Water Aquatic Life																	1
Copper - dissolved	3.1	3.1	11	Marine/Chronic CWA §306	NA	NA	NA														
				Surface Water Aquatic Life																	1
Lead - dissolved	2.5	8.1	2.5	Fresh/Chronic CWA §304	NA	NA	NA	10	10	10	1 UJ	10	1 UJ	1 UJ	10	1 U	10	10	10	10	NA
Mercury - dissolved	0.2	0.025	0.012	Practical Quantitation Limit	NA	NA	NA	10	1U	1 U	1 UJ	1 U	1 UJ	1 UJ	1 U	1 U	1 U	10	10	1 U	NA
				Surface Water Aquatic Life																	1
Nickel - dissolved	8.2	8.2	52	Marine/Chronic 173-201A WAC	NA	NA	NA	5.30	10 U	4.26	14.8	10U	10 U	11.3	1.62	2.33	3.28	3.41	2.96	4.49	NA
				Surface Water Aquatic Life																	1
Zinc - dissolved	81	81	100	Marine/Chronic 173-201A WAC	NA	NA	NA	7.01	50U	5 U	50U	5 U	50U	50U	14.6	5 U	6.36	209	33.0	12.3	NA
Gasoline Range Organics	1,000			MTCA Method A	3300	100 U	100 U	NA	100 U	100 U											
	1	1	1	Conferent Weters University Unable	1	1	-	1	1	1			r					1	1		
Devenue	0.44	1.6	0.44	Surface Water Human Health	1.11		1.11														
Benzene	0.44	1.6	0.44	Fresh/Chronic 173-201A WAC	10	10	10	NA	10	10											
cis-1,2-Dichloroethene	NC	NC	NC	No Criteria	11	NA	NA	NA													
Ethydhonzono	29	31	29	Surface Water Human Health Fresh/Chronic 173-201A WAC	5.1	10	10	NA		1.11	1 111										
Ethylbenzene Phenanthrene	NC 29	NC	NC 29	No Criteria	5.1 NA	1 U NA	NA	NA NA	NA	NA NA	NA	NA NA	1 U NA	1 U NA							
Phenanthrene	NC	INC.	INC.	Groundwater Vapor Intrusion	INA	NA	NA	INA	NA	NA	NA	NA	NA	INA	NA	INA	INA	NA	INA	NA	INA
Methyl t-butyl ether	600	NC	NC	Method B	1U	NA	NA	NA													
wethyr t-butyr ether	600	NC	NC I	Groundwater Vapor Intrusion	10	NA	NA	INA	NA	NA .	NA	NA NA	NA	INA	NA	INA	INA	INA	INA	NA	INA
m, p-Xylene	330	NC	NC	Method B	NA	NA	NA														
	550	inc.	NC I	Surface Water Human Health	NA I	NA .	100		NA I	110	104	110	NA .	INA.	NA .	100	NA		NA	NA	
Tetrachloroethene	2.4	2.9	2.4	Fresh/Chronic CWA §304	2.5	NA	NA	NA													
retraction detriene	2.7	2.5	2.4	Surface Water Human Health	2.5	110	100	110	110	110	110			110	110	100	11/1			110	
Toluene	57	130	57	Fresh/Chronic CWA §304	8.1	1U	1 U	NA	10	10											
Vinyl chloride	0.1	0.18	0.02	Practical Quantitation Limit	1.8	NA	NA	NA													
viriyi chloride	0.1	0.10	0.02	Groundwater Vapor Intrusion	1.0	11/4	11/4	14/4	11/4	N/A	NA	11/4	11/4	N/A	174	N/A	11/4	11/A	11/4	11/4	17/4
Xylenes, Total	330	NC	NC	Method B	8.3	3 U	3 U	NA	3 U	3 U											
Notes:					0.5		50														
Bold = detection																					
ding denotes on everedence a																					

Shading denotes an exceedance of a screening level

ug/L - microgram per liter MTCA - Model Toxics Control Act NC - No Criterion

NA - Not Analyzed U = concentration below laboratory detection limit (non-detect value)

J = reported concentration is an estimate.

Ca = The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

Table 2 Summary of Borehole Soil Data - MetalsBridge - Dawn Foods

		Sample Depth	Vadose or								
Sample ID	Date Sampled	(feet bgs)	Saturated	Units	Aluminum	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury
GP-SB-5-7	1/2/20	7	Vadose	mg/kg	NA	5.09	1 U	NA	213	222	2
GP-SB-5-12	1/2/20	12	Saturated	mg/kg	NA	2.48	1 U	NA	19.1	3.09	1 U
GP-SB-6-4	1/2/20	4	Vadose	mg/kg	NA	4.98	1 U	NA	26.9	25	1 U
GP-SB-6-10	1/2/20	10	Saturated	mg/kg	NA	2.37	1 U	NA	12.7	2.17	1 U
GP-SB-08	6/9/2020	9 to 10	Vadose	mg/kg	NA	11.6	2.76	NA	78	227	1 U
GP-SB-09	6/9/2020	9 to 10	Vadose	mg/kg	NA	5.32	1 U	NA	25 U	4.23	1 U
GP-SB-10	6/9/2020	8 to 10	Vadose	mg/kg	NA	5 U	1 U	NA	35	18.6	1 U
GP-SB-11	6/9/2020	4 to 5	Vadose	mg/kg	NA	5 U	1 U	NA	83.1	48.2	1 U
GP-SB-12	6/9/2020	8.5 to 9.5	Saturated	mg/kg	NA	5 U	1 U	NA	25 U	1.04	1 U
GP-SB-18-03	12/1/2020	2 to 3	Vadose	mg/kg	NA	4.81	1 U	15.9 J / 15.7	NA	13.5	1 U
GP-SB-18-09.5	12/1/2020	9 to 9.5	Vadose	mg/kg	NA	1 U	1 U	7.66	NA	1 U	1 U
GP-SB-19-03.5	12/1/2020	3 to 3.5	Vadose	mg/kg	6790	3.56	1 U	9.41	NA	49.1	1 U
GP-SB-19-08.5	12/1/2020	8 to 8.5	Vadose	mg/kg	14500	3.48	1 U	9.91	NA	2.27	1 U
GP-SB-20-04.5	12/1/2020	3.5 to 4.5	Vadose	mg/kg	NA	3.41	1 U	8.53	NA	6.36	1 U
GP-SB-20-09	12/1/2020	7 to 9	Vadose	mg/kg	NA	2.49	1 U	8.34	NA	2.96	1 U
GP-SB-21-05	12/1/2020	3 to 5	Vadose	mg/kg	NA	1.75	1 U	9.89	NA	2.04	1 U
GP-SB-21-10	12/1/2020	7.5 to 10	Saturated	mg/kg	NA	6.11	1 U	7.63	NA	5.41	1 U
GP-SB-22-07	12/1/2020	5 to 7	Vadose	mg/kg	NA	4.87	1 U	98.4	NA	3.41	1 U
GP-SB-22-09	12/1/2020	9 to 10	Saturated	mg/kg	NA	2.09	1 U	9.35	NA	2.42	1 U
GP-SB-23-05	12/1/2020	3 to 5	Vadose	mg/kg	NA	13.6	1 U	11.6 J / 12.8	NA	7.66	1 U
GP-SB-23-11	12/1/2020	10 to 11	Saturated	mg/kg	NA	8.31	1 U	12.2	NA	7.16	1 U
GP-SB-24-10	12/1/2020	7.5 to 10	Saturated	mg/kg	NA	10.4	1 U	11.2	NA	6.27	1 U
GP-SB-24-12	12/1/2020	10 to 12	Saturated	mg/kg	NA	8.53	1 U	11.7	NA	4.35	1 U
GP-SB-25-08	12/5/2020	6 to 8	Vadose	mg/kg	NA	5.44	1 U	9.67	NA	48.3	1 U
GP-SB-25-13.5	12/5/2020	12 to 13.5	Saturated	mg/kg	NA	5.07	1 U	9.10	NA	3.37	1 U
GP-SB-26-06	12/5/2020	4 to 6	Vadose	mg/kg	NA	4.13	1 U	20.3	NA	20.0	1 U
GP-SB-26-12	12/5/2020	10 to 12	Vadose	mg/kg	NA	2.48	1 U	8.91	NA	3.01	1 U
GP-SB-27-08	12/5/2020	6 to 8	Vadose	mg/kg	NA	2.03	1 U	6.61	NA	1.08	1 U
GP-SB-27-12	12/5/2020	11 to 12	Vadose	mg/kg	NA	3.05	1 U	9.13	NA	6.60	1 U
GP-SB-27-14.5	12/5/2020	12 to 14.5	Saturated	mg/kg	NA	4.79	1 U	11.3	NA	3.83	1 U
GP-SB-28-04	12/5/2020	2 to 4	Vadose	mg/kg	NA	2.31	1 U	18.4	NA	34.0	1 U
GP-SB-28-08	12/5/2020	6 to 8	Vadose	mg/kg	NA	1.81	1 U	6.53	NA	1.04	1 U
GP-SB-28-12	12/5/2020	11.2 to 12	Saturated	mg/kg	NA	6.91	1 U	11.6	NA	5.49	1 U
GP-SB-28-13	12/5/2020	12 to 13	Saturated	mg/kg	NA	3.26	1 U	11.3	NA	2.81	1 U
GP-SB-29-06.5	12/5/2020	5.2 to 6.5	Vadose	mg/kg	NA	3.87	1 U	9.71	NA	3.31	1 U
GP-SB-29-10.5	12/5/2020	9.5 to 10.5	Vadose	mg/kg	NA	1.85	1 U	10.6	NA	1.83	1 U
GP-SB-29-12	12/5/2020	11 to 12	Saturated	mg/kg	NA	1.33	1 U	8.60	NA	1.42	1 U
GP-SB-30-05.5	12/12/2020	4 to 5.5	Vadose	mg/kg	NA	6.06	1 U	9.67	NA	24.8	1 U
GP-SB-30-08	12/12/2020	7 to 8	Vadose	mg/kg	NA	1.40	1 U	5.74	NA	1 U	1 U
GP-SB-30-13.3	12/12/2020	12.5 to 13.3	Saturated	mg/kg	NA	3.56	1 U	17.5	NA	5.90	1 U
GP-SB-31-06	12/12/2020	4.5 to 6	Vadose	mg/kg	NA	4.50	1 U	9.68	NA	16.5	1 U
GP-SB-31-08	12/12/2020	7 to 8	Vadose	mg/kg	NA	3.85	1 U	12.9	NA	2.50	1 U
GP-SB-31-14	12/12/2020	12.5 to 14	Saturated	mg/kg	NA	1.08	1 U	9.36	NA	1.79	1 U
Screening Level MTCA So	il Method A/B				80000	20	2	19	3,200	250	2
Screening Level MTCA So	il Protective of Ground	lwater Vadose (base	d on protection of su	urface water)	NC	7.3 ¹	1.10	180	36.4 ¹	1620	0.07 ¹
Screening Level MTCA So	il Protective of Ground	lwater Saturated (ba	sed on protection of	surface water)	NC	7.3 ¹	0.055	48.2 ¹	36.4 ¹	81	0.07 ¹
Notes:											

Notes:

Bold = detection

Shading indicates an exceedance of a screening level

MTCA Soil Protective of Groundwater Vadose/Saturated screening levels based on MTCA Eqn. 747-1 and the surface water values shown on Table 2.

1. Indicates that the calculated screening level has been adjusted up to natural background

feet bgs = feet below ground surface

mg/kg = milligrams per kilograms

U = laboratory detection limit

J = reported concentration is an estimate.

Nickel	Zinc
6.84	180
9.08	24.9
10.6	78.7
5.32	26.7
62.1	7110
11.8	71.9
14.2	57.6
174	459
5.40	34.5
4.71 J / 5.05	46.3 J / 55.3
3.00	24.2
5.04	40.1
9.19	57.1
8.16	29.7
6.79	26.8
11.5	19.3
5.18	27.7
17.4	30.2
12.4	19.4
15.2 J / 17.1	67.1 J / 77.5
14.2	55.4
15.0	51.7
12.4	43.3
6.49	140
11.4	29.2
14.7	39.8
9.48	22.8
5.45	18.5
7.43	32.3
7.00	20.7
22.9	36.9
5.68	17.5
12.8	39.5
7.09	16.5
6.13	19.9
3.88	28.1
3.93	18.4
7.62	58.6
4.2	12.1
12.4	54.6
6.97	99.8
6.59	22.8
4.82	23.2
1600	24,000
48 ¹	
48	100.9
48 ¹	85 ¹

Table 3 Summary of Borehole Soil Data - All Data Other Than Metals

Bridge - Dawn Foods

				1											1			
Consulta ID		CD CD 15	GP-SB-1510	CD CD 46 07	CD CD 46 44	CD CD 47 05	CD CD 47 40	CD CD 24 05	CD CD 24 40	CD CD 22 07		CD CD 22 05	CD CD 22 11	CD CD 24.40	CD CD 24.42	CD CD 25 00		
Sample ID	Screening Level	GP-SB-15	(Duplicate)	GP-SB-16-07	GP-SB-16-11	GP-SB-17-05	GP-SB-17-10	GP-SB-21-05	GP-SB-21-10	GP-SB-22-07	GP-SB-22-09	GP-SB-23-05	GP-SB-23-11	GP-SB-24-10	GP-SB-24-12	GP-SB-25-08	GP-SB-25-13.5	GP-SB-26-06
Date Sample	MTCA Soil Method	6/9/2020	6/9/2020	12/1/2020	12/1/2020	12/1/2020	12/1/2020	12/1/2020	12/1/2020	12/1/2020	12/1/2020	12/1/2020	12/1/2020	12/1/2020	12/1/2020	12/5/2020	12/5/2020	12/5/2020
Depth ft. bgs	A/B Unrestricted	10 to 11 Saturated	10 to 11 Saturated	6 to 7 Vadose	10 to 11 Saturated	4 to 5 Vadose	9 to 10 Saturated	3 to 5 Vadose	7.5 to 10 Saturated	5 to 7 Vadose	9 to 10 Saturated	3 to 5 Vadose	10 to 11 Saturated	7.5 to 10 Saturated	10 to 12 Saturated	6 to 8 Vadose	12 to 13.5 Saturated	4 to 6 Vadose
Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BTEX/GRO		116/16	116/16	116/16	116/16	116/16	116/16	116/16		/GRO	116/16	116/16	1116/16	1116/16	116/16	116/16	116/16	116/16
Benzene	Not Detected	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	Not Detected	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethyl Benzene	Not Detected	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Xylenes	Not Detected	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gasoline Range	100 ^A	5 U	6 U	5 U	5 U	5 U	5 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CVOCs	100	50		50	50	50	30	114		OCs	110	114	110		110	100	100	
Vinyl chloride	Not Detected	0.05 U	0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroethane	Not Detected	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethene	Not Detected	0.05 U	0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene chloride	Not Detected	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloroethene	Not Detected	0.05 U	0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	Not Detected	0.05 U	0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	Not Detected	0.05 U	0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethane (EDC)	Not Detected	0.05 U	0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	Not Detected	0.05 U	0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	Not Detected	0.05 U	0.05 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	Not Detected	0.02 U	0.02 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	Not Detected	0.025 U	0.025 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SVOCs			1							DCs				1	1		1	
Naphthalene	Not Detected	NA	NA	NA	NA	NA	NA	< 0.05	<0.01	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.01	<0.01
2-Methylnaphthalene	320	NA	NA	NA	NA	NA	NA	<0.05	<0.01	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	0.28	<0.01	<0.01
1-Methylnaphthalene	34	NA	NA NA	NA	NA NA	NA NA	NA NA	<0.05	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1.8 <0.05	<0.01	<0.01
Acenaphthylene Acenaphthene	Not Detected 4800	NA NA	NA	NA NA	NA	NA	NA	<0.05 <0.05	<0.01 <0.01	<0.05 <0.05	<0.05 <0.05	<0.05	<0.05	<0.05 <0.05	<0.05 <0.05	0.43	<0.01 <0.01	<0.01 <0.01
Fluorene	3200	NA	NA	NA	NA	NA	NA	<0.05	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.43	<0.01	<0.01
Phenanthrene	No Criterion	NA	NA	NA	NA	NA	NA	<0.05	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1.0	<0.01	<0.01
Anthracene	Not Detected	NA	NA	NA	NA	NA	NA	<0.05	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.01	<0.01
Fluoranthene	3200	NA	NA	NA	NA	NA	NA	< 0.05	< 0.01	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	0.21	<0.01	0.016
Pyrene	2400	NA	NA	NA	NA	NA	NA	< 0.05	< 0.01	< 0.05	0.062	< 0.05	< 0.05	< 0.05	< 0.05	0.24	<0.01	0.017
Benz(a)anthracene	see CPAH	NA	NA	NA	NA	NA	NA	<0.05	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.11	< 0.01	< 0.01
Chrysene	see CPAH	NA	NA	NA	NA	NA	NA	<0.05	<0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.14	<0.01	0.012
Benzo(a)pyrene	see CPAH	NA	NA	NA	NA	NA	NA	<0.05	< 0.01	<0.05	<0.05 J	<0.05	<0.05	<0.05 J	<0.05 J	0.15	<0.01	0.015
Benzo(b)fluoranthene	see CPAH	NA	NA	NA	NA	NA	NA	<0.05	<0.01	0.060	0.12 J	<0.05	<0.05	0.064 J	0.060 J	0.19	<0.01	0.019
Benzo(k)fluoranthene	see CPAH	NA	NA	NA	NA	NA	NA	<0.05	<0.01	<0.05	<0.05 J	<0.05	<0.05	<0.05 J	<0.05 J	0.063	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	see CPAH	NA	NA	NA	NA	NA	NA	<0.05	<0.01	<0.05	<0.05 J	<0.05	<0.05	<0.05 J	<0.05 J	0.11	<0.01	0.010
Dibenz(a,h)anthracene	see CPAH	NA	NA	NA	NA	NA	NA	<0.05	<0.01	<0.05	<0.05 J	<0.05	<0.05	<0.05 J	<0.05 J	<0.05	<0.01	<0.01
Benzo(g,h,i)perylene		NA	NA	NA	NA	NA	NA	<0.05	<0.01	<0.05	0.01 J	<0.05	< 0.05	0.064 J	0.051 J	0.10	<0.01	0.010
Total CPAHs	0.1	NA	NA	NA	NA	NA	NA	<0.05	<0.01	0.006	0.012	<0.05	<0.05	0.0064	0.006	0.199	<0.01	0.018
PCBs	Con Annalour	NA		NA				0.02.11		Bs	0.02.11	0.02.11	0.02.11	0.02.11	0.02.11	0.0211	0.02.11	0.0211
Aroclor 1221	See Aroclors	NA	NA	NA	NA	NA	NA	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Aroclor 1232	See Aroclors	NA	NA	NA	NA	NA	NA	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Aroclor 1016 Aroclor 1242	See Aroclors See Aroclors	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U	0.02 U 0.02 U
Aroclor 1242 Aroclor 1248	See Aroclors	NA	NA	NA	NA	NA	NA	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Aroclor 1254	See Aroclors	NA	NA	NA	NA	NA	NA	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Aroclor 1254 Aroclor 1260	See Aroclors	NA	NA	NA	NA	NA	NA	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Aroclor 1262	See Aroclors	NA	NA	NA	NA	NA	NA	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Aroclor 1268	See Aroclors	NA	NA	NA	NA	NA	NA	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Total Aroclors	1	NA	NA	NA	NA	NA	NA	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Notes:	-																	

Notes:

Bold = detection

Shading denotes an exceedance of a screening level feet bgs = feet below ground surface mg/kg = milligrams per kilograms

U = laboratory detection limit

J = reported concentration is an estimate.

MTCA - Model Toxics Control Act

^A - No benzene present in soil

Table 3 Summary of Borehole Soil Data Bridge - Dawn Foods

Sample ID		GP-SB-26-12	GP-SB-27-08	GP-SB-27-12	GP-SB-28-08	GP-SB-28-13	GP-SB-29-10.5	GP-SB-30-05.5	GP-SB-30-13.3	GP-SB-31-06	GP-SB-31-14	GP-SB-32-04	GP-SB-32-12
Date Sample	Screening Level	12/5/2020	12/5/2020	12/5/2020	12/5/2020	12/5/2020	12/5/2020	12/12/2020	12/12/2020	12/12/2020	12/12/2020	12/12/2020	12/12/2020
Depth ft. bgs	MTCA Soil Method	10 to 12	6 to 8	11 to 12	6 to 8	12/3/2020 12 to 13	9.5 to 10.5	4 to 5.5	12.5 to 13.3	4.5 to 6	12,12,2020 12.5 to 14	2 to 4	10.3 to 12
Departa bgs	A/B Unrestricted	Vadose	Vadose	Vadose	Vadose	Saturated	Vadose	Vadose	Saturated	Vadose	Saturated	Vadose	Vadose
Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
BTEX/GRO			BTEX/GRO							0.0	/GRO		
Benzene	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	0.02 U	0.02 U	0.02 U	0.02 U
Toluene	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	0.02 U	0.02 U	0.02 U	0.02 U
Ethyl Benzene	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	0.02 U	0.02 U	0.02 U	0.02 U
Total Xylenes	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	0.06 U	0.06 U	0.06 U	0.06 U
Gasoline Range	100 ^A	NA	NA	NA	NA	NA	NA	NA	NA	5 U	5 U	5.6	5 U
CVOCs	100	100	CVOCs	100		110		110			OCs	5.0	50
Vinyl chloride	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chloroethane	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethene	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methylene chloride	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloroethene	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloroethane	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichloroethane (EDC)	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	Not Detected	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SVOCs			SVOCs							SVO	OCs		
Naphthalene	Not Detected	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	320	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1-Methylnaphthalene	34	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	Not Detected	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	4800	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	3200	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	No Criterion	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	Not Detected	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	3200	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	2400	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benz(a)anthracene	see CPAH	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene	see CPAH	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	see CPAH	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	see CPAH	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	see CPAH	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	see CPAH see CPAH	<0.05 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	see CPAH	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total CPAHs	0.1	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs	0.1	<0.05	PCBs	NA .	NA NA	INA		INA	INA .		CBs	INA .	INA .
Aroclor 1221	See Aroclors	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	NA	NA
Aroclor 1221 Aroclor 1232	See Aroclors	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	NA	NA
Aroclor 1016	See Aroclors	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	NA	NA
Aroclor 1242	See Aroclors	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	NA	NA
Aroclor 1242	See Aroclors	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	NA	NA
Aroclor 1254	See Aroclors	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	NA	NA
Aroclor 1260	See Aroclors	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.057	0.02 U	0.02 U	NA	NA
Aroclor 1262	See Aroclors	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	NA	NA
Aroclor 1268	See Aroclors	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	NA	NA
Total Aroclors	1	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.057	0.02 U	0.02 U	NA	NA
Notos	1	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.02.0	0.057	0.02.0	0.02.0		11/1

Notes:

Bold = detection

Shading denotes an exceedance of a screening level feet bgs = feet below ground surface mg/kg = milligrams per kilograms

U = laboratory detection limit

J = reported concentration is an estimate.

MTCA - Model Toxics Control Act

^A - No benzene present in soil