Groundwater and Sediment
Characterization Report
Sites 303 and 304
Fleet and Industrial Supply Center (FISC)
Fuel Department
Manchester, Washington

Prepared for
Department of the Navy
Engineering Field Activity, Northwest
Naval Facilities Engineering Command

Contract No. N44255-98-D-4408 Delivery Order No. 5

December 20, 2000 J-7057-05

CONTENTS	<u>Page</u>
1.0 INTRODUCTION	1
2.0 PROJECT OBJECTIVES	2
3.0 SEDIMENT AND GROUNDWATER SAMPLING AND ANALYSIS	2
3.1 Groundwater and Seep Sampling and Analysis 3.2 Sediment Sampling and Analysis	2
4.0 GROUNDWATER SAMPLES ANALYTICAL RESULTS	4
4.1 Selection of Screening Levels 4.2 Total Petroleum Hydrocarbons (TPH) 4.3 Volatile Aromatic Organics (BTEX)	4 5 5
5.0 SEDIMENT SAMPLES ANALYTICAL RESULTS	5
5.1 Selection of Screening Levels 5.2 Polynuclear Aromatic Hydrocarbons (PAHs) 5.3 Phenols	6 6 7
6.0 CONCLUSIONS/PETROLEUM MANAGEMENT STRATEGY	7
7.0 LIMITATIONS	8
8.0 REFERENCES	8
TABLES	
 Summary of Groundwater Field Parameters Groundwater Elevation Measurements Analytical Results for Groundwater and Seep Samples Summary of Sediment Sampling Field Observations Analytical Results for Sediment Samples 	9 10 11 13 14
 Summary of Forensic Geochemical Analysis of Sample HC-SED-07 Forensic PAH Ratio Comparisons 	20 21

Hart Crowser J-7057-05

COI	NTENTS (Continued)	<u>Page</u>
FIG	URES	
1	Vicinity Map	
2	Site Plan	
3	Groundwater and Seep Sampling Plan, Site 303	
4	Groundwater and Seep Sampling Plan, Site 304	
5	Sediment Sampling Plan, Site 304	
6	Parent vs Substituted PAHs	
CHE	PENDIX A EMICAL DATA QUALITY REVIEW D CERTIFICATES OF ANALYSIS	A -1
Che	emical Data Quality Review	A -1
Gro	oundwater Analysis	A-2
Sec	liment Analysis	A-2
CEI	RTIFICATES OF ANALYSIS	
$\cup \square \Gamma$	THEICHTES OF ANALISIS	

COLUMBIA ANALYTICAL SERVICES, INC. AND ANALYTICAL RESOURCES INCORPORATED

GROUNDWATER AND SEDIMENT CHARACTERIZATION REPORT **SITES 303 AND 304** FLEET AND INDUSTRIAL SUPPLY CENTER (FISC) **FUEL DEPARTMENT** MANCHESTER, WASHINGTON

1.0 INTRODUCTION

This report presents the results of groundwater and sediment characterization activities conducted within Sites 303 (D-Tunnel Tanks) and 304 (Industrial Area) at the Fleet and Industrial Supply Center (FISC). The groundwater and sediment characterization was completed between September 7, 1999, and June 13, 2000, under Contract N44255-98-D-4408, Delivery Order No. 5, with the Engineering Field Activity, Northwest (EFA, NW) Naval Facilities Engineering Command. The primary objective of the sampling program was to demonstrate that groundwater within Sites 303 and 304 and sediments offshore of Site 304 have not been unacceptably impacted by fuel depot operations.

The Manchester FISC is located 7 miles west of Seattle across Puget Sound and 3 miles east of Bremerton on approximately 234 acres of land at Orchard Point in eastern Kitsap County as shown on Figure 1. Manchester FISC is bounded by the community of Manchester to the south, rural lands to the west, and by Puget Sound and Rich Passage to the east and north, respectively.

The site was developed into a major fuel storage facility at the beginning of World War II. The majority of Manchester FISC, which has also been referred to as the Manchester Naval Fuel Department, is currently used for fuel storage. The base consists of above-ground and underground petroleum storage tanks, associated product pipelines, a fuel pier, and various administrative and support buildings located as shown on Figure 2. Fuel products stored at Manchester FISC, either in the past or present, include Navy Special Fuel (Bunker C), marine diesel fuel, jet fuel, lubricating (lube) oil, and aviation gasoline. Petroleum product is typically transferred between the storage tanks and the fuel pier located at the southeastern corner of the base through a network of pipelines.

Several areas at Manchester FISC have been impacted by past releases of petroleum products. As shown on Figure 2, these areas have been identified as Site 302 (PCB Site), Site 303 (D-Tunnel Tanks), and Site 304 (Industrial Area). Historical releases and results of previous site investigations conducted in these areas are summarized in the Project Plan (Hart Crowser, 1999).

Page 1 Hart Crowser

2.0 PROJECT OBJECTIVES

The objectives of this study were to:

- ► Collect groundwater quality data at Sites 303 and 304 to determine whether the residual petroleum-containing soils are unacceptably impacting the adjacent marine environment;
- ▶ Obtain sediment quality data offshore of Site 304 to determine whether sediment has been unacceptably impacted by fuel depot operations; and
- ► Finalize a petroleum management strategy for Sites 303 and 304.

3.0 SEDIMENT AND GROUNDWATER SAMPLING AND ANALYSIS

Sediment and groundwater sampling was performed in general accordance with the project Work Plan dated June 17, 1999. The work completed as part of this investigation included:

- ► Groundwater Sampling Field Work. Collection of groundwater samples from five wells and two seeps on Site 303, and four wells and one seep on Site 304.
- ▶ **Sediment Sampling Field Work.** Collection of eleven surface sediment samples (and one duplicate sample) offshore of Site 304. Sediment samples from one location (HC-SED-11) could not be collected due to refusal on gravel.

3.1 Groundwater and Seep Sampling and Analysis

Nine groundwater samples were collected from existing monitoring wells shown on Figures 3 (Site 303) and 4 (Site 304). Prior to sampling, each well was monitored for the presence of floating free phase petroleum product using a product/water interface meter. No measurable quantities of product were observed in site wells or seeps. Groundwater elevations were also measured prior to sampling using an electronic water level probe during both low and high tide intervals.

In general, the wells were purged and sampled using low flow sampling (approximately 0.1 liter per minute) techniques. A peristaltic pump was used to purge groundwater within the wells until field parameters (including pH, temperature, specific conductivity, and dissolved oxygen) and turbidity

Page 2 Hart Crowser

stabilized. Field parameter measurements, purge volumes (if applicable), and general observations were recorded. Since the depth to water exceeds the range of peristaltic pumps at well OW-2, a disposable bailer was used to purge and collect the groundwater samples. Field parameter measurements and groundwater elevations are presented in Tables 1 and 2, respectively.

In addition, three seep samples were collected between January and June of 2000. HC-Seep 3 was not observed during the first seep sampling event in January; a sample from it was collected when flow was observed in June 2000. Prior to sampling, field parameters (including pH, temperature, specific conductivity, and dissolved oxygen) were recorded. Seep samples were collected using a peristaltic pump. The tubing intake was placed in a manner to minimize the introduction of air or sediment into the sample.

Most of the groundwater and seep samples were submitted to Columbia Analytical Services (CAS) of Kelso, Washington, for analysis of the following parameters:

- ▶ Petroleum hydrocarbons and volatile aromatics using NWTPH-G/BTEX and NWTPH-D extended methods:
- ► Total Suspended Solids (TSS);
- ► Alkalinity;
- ▶ Dissolved Iron;
- Nitrate: and
- ► Sulfate.

In addition, one trip blank was shipped with the groundwater samples and one trip blank was shipped with the June seep sample and submitted for analysis of TPH-G/BTEX.

3.2 Sediment Sampling and Analysis

Eleven surface (0 to 10 cm) sediment samples were collected in the vicinity of the fuel pier at the locations shown on Figure 5. Additionally, one blind field duplicate (HC-SED-100) was collected at location HC-SED-06. The sampling attempt at HC-SED-11 met with refusal on gravel, and no sample was removed. Undisturbed sediment samples were collected using standard van Veen "grab" type sampler methodology, in accordance with EPA-approved Puget Sound Estuary Protocols and the project Work Plan. Water depth, sample recovery depth, and sample locations were noted in the field. With the following exceptions, the upper 10 cm of sediment were homogenized and collected from the sampler. At locations HC-SED-01 and HC-SED-02, recovery was less than 10 cm because of sampling device refusal on eelgrass.

Page 3 Hart Crowser

The sediment samples were submitted to CAS for analysis of constituents of potential concern including:

- ► Total Metals (including As, Cd, Cu, Cr, Pb, Ni, and Zn);
- ► Volatile Organics;
- ► Polycyclic Aromatic Hydrocarbons (PAHs);
- ▶ Phenols:
- ► Polychlorinated Biphenyls (PCBs); and
- ► Total Organic Carbon (TOC).

To evaluate the source of PAHs in sample HC-SED-07, this sample was submitted to Analytical Resources, Incorporated (ARI) of Seattle, Washington, for expanded forensic PAH analysis.

4.0 GROUNDWATER SAMPLES ANALYTICAL RESULTS

Field parameters, groundwater elevations, and validated analytical results for groundwater samples are presented in Tables 1, 2, and 3, respectively. Groundwater quality data generated as part of this RI were reviewed by an environmental chemist to determine the validity of the data based on the Quality Assurance Project Plan (Hart Crowser, 1999) and general quality control criteria. Based on this review, the analytical results were deemed acceptable for the purposes of this work. Detection limits were below screening levels and no groundwater quality data were rejected based on data deficiencies. For reference, results of the data quality review and laboratory certificates of analysis from CAS and ARI are presented in Appendix A.

4.1 Selection of Screening Levels

Because site groundwater discharges into the adjacent marine surface water body (see Figures 3 and 4) and is not likely a current or potential source of drinking water, groundwater quality data are compared to Method B surface water criteria (including Washington State surface water quality standards – Chapter 173-201A WAC). Shallow groundwater beneath the site is fairly saline and would not likely be used as a domestic water supply due to its close proximity to a marine surface water body. Surface water criteria for petroleum hydrocarbons are based on Ecology's Water Quality Policy Number 9 "Guidelines for Oil and Grease Discharges."

Page 4 Hart Crowser

4.2 Total Petroleum Hydrocarbons (TPH)

Petroleum hydrocarbons were not detected in Sites 303 or 304 groundwater samples at concentrations exceeding Method B surface water criteria (Table 3). No measurable quantities of free phase product were detected in Sites 303 and 304 wells and seeps.

Elevated concentrations of diesel-range hydrocarbons were detected in Site 303 wells MW-1 (7.54 mg/L) and MW-2 (1.48 mg/L) and in seeps HC-SEEP 1 (0.76 mg/L) and HC-SEEP 2 (0.3 mg/L). Our review of chromatograms associated with the NWTPH-D extended analysis indicates that these detected hydrocarbons appear to be associated with a heavily weathered diesel-like product and are generally not present in a dissolved form. Since no hydrocarbon sheens were observed in these samples, hydrocarbons detected in the Site 303 groundwater samples are likely associated primarily with suspended particulates generated during the sampling process. Although low flow sampling techniques were used to sample these wells, elevated concentrations of suspended solids were observed (Table 3).

Diesel-range hydrocarbons were also detected in Site 304 well MW-4 (1.9 mg/L) and seep HC-SEEP 3 (0.26 mg/L). A petroleum-like odor was observed in well MW-4 but no hydrocarbon sheen was observed. No petroleum-like odors or sheens were observed in HC-SEEP 3.

4.3 Volatile Aromatic Organics (BTEX)

No volatile aromatic organics were detected in any of the groundwater or seep samples collected from Sites 303 and 304.

5.0 SEDIMENT SAMPLES ANALYTICAL RESULTS

A summary of the field observations and validated analytical results for sediment samples are presented in Tables 4 and 5. Forensic PAH results and ratio calculations for HC-SED-07 are presented in Tables 6 and 7, respectively. Sediment quality data generated as part of this RI were reviewed by an environmental chemist to determine the validity of the data based on the Quality Assurance Project Plan (Hart Crowser, 1999) and general quality control criteria. Based on this review, the analytical results were deemed acceptable for the purposes of this work. Detection limits were generally below screening levels (PAHs in one sample exceeded screening levels due to matrix interference) and no sediment quality data were rejected based on data deficiencies. For

Page 5 Hart Crowser

reference, results of the data quality review and laboratory certificates of analysis from CAS and ARI are presented in Appendix A.

5.1 Selection of Screening Levels

Sediment quality results were compared to the Washington State Department of Ecology Sediment Management Standards (SMS – Chapter 173-204 WAC). The sediment quality data were compared to the Marine Sediment Quality Standard (SQS) and Cleanup Screening Level (CSL) criteria.

In general, sediment constituent concentrations were below the SQS criteria. Two samples contained constituent concentrations that exceeded SQS criteria including high molecular weight PAHs (HPAHs) in sample HC-SED-07 and phenols in sample HC-SED-02 (Table 5).

5.2 Polynuclear Aromatic Hydrocarbons (PAHs)

PAH concentrations detected in sample HC-SED-07 were much higher than the range of concentrations observed in the other sediment sampling locations. Given the highly localized nature of the PAH occurrence and the prevalence of HPAHs relative to low molecular weight PAHs (LPAHs), it is unlikely to be associated with fuel oil releases. To further evaluate potential sources of the PAHs, we submitted sample HC-SED-07 to ARI for expanded forensic PAH analysis.

The source of PAHs can be determined using various ratios summarized below:

LPAH/HPAH. The ratio of LPAH to HPAH is higher in fuels than in combustionrelated (pyrogenic) and coal-derived sources.

TAH/pPAH. The ratio of total aliphatic hydrocarbons (TAH) to parent, or unsubstituted PAH (pPAH) is generally higher in petroleum fuels hydrocarbons relative to those in creosote sources.

sPAH/pPAH. The ratio of alkyl-substituted PAHs (sPAH) to parent PAHs (pPAH) varies with the source. Pyrogenic and coal-based sources typically contain greater concentrations of pPAHs relative to sPAHs. In addition, the normalized distributions of individual PAHs can be used to evaluate source. For a given PAH compound series (e.g., naphthalenes), fuels typically exhibit "bell-shaped" distributions of parent to substituted PAHs. Pyrogenic sources are dominated by the parent (C0) compound. Weathering can alter these distributions by reducing the parent to substituted PAH ratios – particularly for LPAHs.

Page 6 Hart Crowser

As shown in Table 7, forensic ratio comparisons indicate that PAHs in sample HC-SED-07 are derived primarily from combustion products (e.g., burnt wood) and/or from a severely weathered creosote-type product. Distribution of chrysene series compounds also suggests a pyrogenic source (Figure 6). No petroleum- or creosote-like staining or odors were observed in the HC-SED-07 sample. However, a black sandy silt layer containing a metal fragment was observed at this location. This black silt layer was not encountered in any of the other sampling locations and appears to be very localized.

5.3 Phenols

Elevated concentrations of phenol (1.1 mg/kg) and 3- and 4-methylphenol (3.4 mg/kg) were detected in sample HC-SED-02 (Table 5). Although the detected concentrations exceed Marine Sediment Management Standards chemical criteria (note that the sum of 3- and 4-methylphenol concentrations is being compared to the 4-methylphenol criteria), it appears that the phenols are derived from natural organic materials. Sample HC-SED-02 was collected in an area that contained abundant eelgrass and other biota (Table 4). No evidence of petroleum- or creosote-derived odors or sheens was observed in the sample. Detected concentrations of PAHs and other potential constituents of concern were very low and do not indicate the presence of anthropogenic sources.

Phenols are known to occur naturally in plants (Howard, 1989) and are often detected at sites with decaying wood or plant debris. The highest concentrations of phenols were observed in the two sediment samples that were collected in areas containing abundant eelgrass (including HC-SED-01 and HC-SED-02). Previous sediment sampling and analysis conducted prior to pier construction also encountered concentrations of phenol and 4-methylphenol that exceeded SQS criteria (Parametrix, 1990) but were not associated with an obvious anthropogenic source. Sediment collected from the dredge area was biologically tested and is suitable for open water disposal.

6.0 CONCLUSIONS/PETROLEUM MANAGEMENT STRATEGY

Results of groundwater and sediment quality testing at Sites 303 and 304 indicate that petroleum hydrocarbons are not being discharged into the marine environment at concentrations of concern. Given the lack of impacts to the adjacent marine environment and the Navy's current industrial land use, we do not believe that remedial actions are necessary to address residual petroleum contamination in Sites 303 and 304. If changes in land use occur (e.g., base closure), Ecology will be consulted regarding the need for remedial actions. This will be ensured by including a document in the official property records that

Page 7 Hart Crowser

describes the area of concern and the requirement to consult with Ecology prior to disposal. The Navy will be able to conduct digging and construction activities (e.g., street and utilities improvements or maintenance) subject to taking necessary preventive measures to protect against short-term and long-term risks from contamination. To ensure that areas of concern are identified, the Fuel Department Facility Map will be updated to show areas of contamination, by shading or cross-hatching, and annotated to show the type of contamination present. A facility Instruction (Department Instruction) will be prepared which will require checking the area of the dig against the Fuel Department Facility Map to identify conflicts or environmental concerns.

7.0 LIMITATIONS

Work for this project was performed, and this report prepared, in accordance with generally accepted professional practices for the nature and conditions of the work completed in the same or similar localities, at the time the work was performed. It is intended for the exclusive use of Department of the Navy Engineering Field Activity, Northwest for specific application to the referenced property. This report is not meant to represent a legal opinion. No other warranty, express or implied, is made.

8.0 REFERENCES

Hart Crowser, 1999. Project Plan Sites 303 and 304 Groundwater and Sediment Characterization. Manchester Fleet and Industrial Supply Center, Manchester, Washington. Prepared for EFA, NW Contract No. N44255-98-D-4408. Delivery Order No. 5.

Howard, 1989. Handbook of Environmental Fate and Exposure Data for Organic Chemicals – Volume I. Lewis Publishers.

Ecology, 1996. Model Toxics Control Act Cleanup Regulation. Chapter 173-340 WAC. January 1996.

Parametrix, 1990. Environmental Assessment – Fuel Pier Placement, Manchester Defense Fuel Support Point, Naval Supply Center Puget Sound. Manchester, Washington. Prepared for Department of Navy.

F:\docs\jobs\705705\Site303_12_00.doc

Page 8 Hart Crowser

Table 1 - Summary of Groundwater Field Parameters

		Field Parameters							
Sample ID	Date	Dissolved Oxygen in mg/L	Temperature in ^O C	рН	Conductivity in mS				
Site 303									
MW-1	9/7/99	2	11.6	6.9	440				
MW-2	9/7/99	2.1	13.7	6.9	577				
MW-3	9/7/99	1.9	13.2	6.9	611				
MW-4	1/20/00	1.2	8.2	8.0	42				
OW-2	9/7/99	2.7	11.7	6.3	720				
HC-Seep 1	1/20/00	3.1	9.6	7.6	3100				
HC-Seep 2	1/20/00	7.2	9.5	8.6	30				
Site 304									
MW-1	9/7/99	2.3	19.3	6.9	404				
MW-2	9/7/99	2.3	20	7.2	601				
MW-4	9/7/99	2.9	18.5	6.9	403				
MW-5	9/7/99	2.6	17.5	6.4	174				
HC-Seep 3	6/13/00	NA	14	7.0	490				

Table 2 - Groundwater Elevation Measurements

Depth to Water in Feet

		Top of		
		Casing	9/7/1999	
Site	Well	in Feet	Low tide	1/20/00
Site 303				
	MW-01	30	20.56	18.53
	MW-02	24.9	9.5	6.6
	MW-03	26.2	19.71	18.5
	MW-04	26.2	NA	1.65
	OW-2	NA	28.1	NA
Site 304				
	MW-01	14.67	4.21	3.82
	MW-02	14.61	4.33	2.46
	MW-04	14.67	5.35	4.77
	MW-05	17.06	8.88	7.74

Groundwater Elevation in Feet

Site	Well	9/7/99	1/20/00
Site 303			
	MW-01	9.44	11.47
	MW-02	15.4	18.3
	MW-03	6.49	7.7
	MW-04	-	24.55
	OW-2	-	-
Site 304			
	MW-01	10.46	10.85
	MW-02	10.28	12.15
	MW-04	9.32	9.9
	MW-05	8.18	9.32

Table 3 - Analytical Results for Groundwater and Seep Samples

Sample ID:	MTCA	HC-303	HC-303	HC-303	HC-303	HC-303	HC-304	HC-304	HC-304	HC-304	Trip Blank
	Surface Water	MW-1	MW-2	MW-3	MW-4	OW-2	MW-1	MW-2	MW-4	MW-5	
Sampling Date:	Method B	9/7/99	9/7/99	9/7/99	1/20/00	9/7/99	9/7/99	9/7/99	9/7/99	9/7/99	9/7/99
Conventionals in mg/L											
Total Alkalinity as CaCO ₃		173	263	189	165	82	178	292	208	72	NA
Nitrate as Nitrogen		0.2 U	0.2 U	2 U	0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.8	NA
Total Suspended Solids		76 J	90 J	61 J	5 U	646 J	14 J	8 J	16 J	5 J	NA
Sulfate		21.4	0.3	301	57.2	354	41.7	45.5	0.2 U	4.9	NA
Dissolved Metals in µg/L											
Iron		555	38500	20300	20 U	504	2010	1280	6980	52	NA
BETX in µg/L											
Benzene	43	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	6,910	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	48,500	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes, Total	16,000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
TPH in mg/L											
Gasoline	1.0	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
PHC as Gasoline	1.0	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.91	0.25 U	0.25 U
Non-PHC as Gasoline		0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Diesel	10	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	NA
PHC as Diesel	10	7.54	1.48	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.9	0.5 U	NA
Non-PHC as Diesel		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Heavy Fuel Oil	10	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Jet Fuel as Jet A	10	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	NA
Kerosene	10	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	NA
Lube Oil	10	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NA
Mineral Spirits	10	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	NA

Table 3 - Analytical Results for Groundwater and Seep Samples

Sample ID:				
	HC-SEEP 1	HC-SEEP 2	HC-SEEP 3	Trip Blank
Sampling Date:	1/20/00	1/20/00	6/13/00	6/13/00
Conventionals in mg/L				
Total Alkalinity as CaCO ₃	137	96	140	NA
Nitrate as Nitrogen	0.8	0.3	1 U	NA
Total Suspended Solids	5	5 U	2.8	NA
Sulfate	165	78	12.6	NA
Dissolved Metals in µg/L				
Iron	498	69.5	NA	NA
BETX in µg/L				
Benzene	0.5 U	0.5 U	1 U	1 U
Ethylbenzene	1 U	1 U	1 U	1 U
Toluene	1 U	1 U	1 U	1 U
Xylenes, Total	1 U	1 U	1 U	1 U
TPH in mg/L				
Gasoline	0.25 U	0.25 U	0.25 U	0.25 U
PHC as Gasoline	0.25 U	0.25 U	NA	NA
Non-PHC as Gasoline	0.25 U	0.25 U	NA	NA
Diesel	0.25 U	0.25 U	0.26	NA
PHC as Diesel	0.764	0.3 J	NA	NA
Non-PHC as Diesel	0.5 U	0.5 U	NA	NA
Heavy Fuel Oil	0.5 U	0.5 U	NA	NA
Jet Fuel as Jet A	0.25 U	0.25 U	NA	NA
Kerosene	0.25 U	0.25 U	NA	NA
Lube Oil	0.5 U	0.5 U	NA	NA
Mineral Spirits	0.25 U	0.25 U	NA	NA

PHC - Fingerprint not matching any target analytes in specified range. Non-PHC - Non petroleum hydrocarbon components eluting in specifed range.

U - Not detected at indicated detection limit.

J - Estimated value

NA Not analyzed.

Table 4 - Summary of Sediment Sampling Field Observations

Sample Location	Northing	Easting	Depth of Sample in cm	Depth to Mudline in Feet	Tide in Feet	Mudline Elevation in Feet	Visual Observations
HC-SED-01	210022.89	1220134.90	5	9.60	8.8	0.8	Gray, medium SAND with abundant eel grass and shell fragments. Kelp crab present. Refusal on eel grass.
HC-SED-02	210067.61	1220287.20	6.5	9.66	9.0	0.7	Dark gray, medium SAND with abundant eel grass. Shrimp and kelp crab present. Refusal on eel grass.
HC-SED-03	209921.26	1219865.10	10	9.25	9.4	-0.2	Gravelly, medium to coarse SAND with shell fragments.
HC-SED-04	209837.50	1219682.22	10	9.00	9.4	-0.4	Brown to gray, medium SAND with trace gravel and shell fragments. Soft shell clam, worms, and shrimp present.
HC-SED-05	209220.60	1219692.22	10	53.00	9.0	44.0	Dark gray, medium to fine SAND with trace silt. Tube worms present.
HC-SED-06	209558.34	1219791.62	10	50.00	9.0	41.0	Gray, slightly silty, medium SAND. Brittle star present.
HC-SED-07	209357.22	1220073.34	10	52.00	9.0	43.0	Brown to black, sandy SILT. Tube worms present.
HC-SED-08	209301.29	1220858.63	10	52.60	8.6	44.0	Gray, medium SAND with shell fragments. Tube worms present.
HC-SED-09	209444.71	1220301.60	10	52.00	8.4	43.6	Gray, medium SAND with abundant shell fragments and slight creosote-like odor. Hermit crab and worms present.
HC-SED-10	209527.38	1220478.42	10	50.10	7.9	42.2	Gray, medium SAND with scattered shell fragments. Abundant worms present.
HC-SED-11	209710.69	1220176.59	0	50.00	7.8	42.2	No recovery because of refusal on gravel.
HC-SED-12	209790.25	1220334.84	10	34.00	7.5	26.5	Gray, silty SAND with abundant silt stone and scattered shell fragments. One crab and abundant tubes worms present.

Sheet 1 of 6

Table 5 - Allalytical Res			•	110 055 55	110.055.55		110050
	Ecology SQS	Ecology CSL	HC-SED-01	HC-SED-02	HC-SED-03	HC-SED-04	HC-SED-05
	Criteria	Criteria					
Conventionals in %							
Total Solids			74.9	49.8	82.7	82.1	75.7
Total Organic Carbon			0.52	2.02	0.09	0.2	0.42
Metals in mg/kg dry wt.			0.02	2.02	0.07	0.2	0.12
Arsenic	57	93	3.7	5.6	2.2	2.2	1.6
Cadmium	5.1	6.7	0.26	0.4	0.03	0.07	0.1
Chromium	260	270	12.2	16.5	7.3	11	20
Copper	390	390	10.6	19.9	8.38	8.05	12.2
Lead	450	530	10.5	19.7	8.68	10.5	5.32
Nickel	430	330	9.1	13.4	6.9	8.9	16.7
Zinc	410	960	29.5	37.4	24	30.7	37.9
LPAHs in mg/kg OC	710	700	27.5	37.4	24	30.7	37.7
Acenaphthene	16	57	3.85 U	0.25 J	22.22 U	10.00 U	4.76 U
Acenaphthylene	66	66	3.85 U	0.25 J	22.22 U	1.50 J	4.76 U
Anthracene	220	1200	0.96 J	0.13 J	5.56 J	3.00 J	2.38 J
Fluorene	23	79	0.70 J	0.30 J	22.22 U	1.50 J	4.76 U
Naphthalene	99	170	0.30 J 0.19 J	0.30 J	22.22 U	0.50 J	0.24 J
Phenanthrene	100	480	8.08	3.07	22.22 J	17.00	2.38 J
Total LPAHs	370	780	9.6	4.9	27.8	23.5	5.0
HPAHs in mg/kg OC	370	700	7.0	4.7	27.0	23.3	5.0
Benzo(a)anthracene	110	270	4.62	2.48	22.22 J	10.00 J	35.71
Benzo(a)pyrene	99	210	3.85	1.98	11.11 J	10.00 J	12.14
Benzo(b)fluoranthene	77	210	3.85 J	2.08	11.11 J 11.11 J	5.00 J	14.76
Benzo(k)fluoranthene			3.85 J	1.68	10.00 J	5.00 J	12.14
Total Benzofluoranthenes	230	450	3.65 J 7.69 J	3.76	21.11 J	10.00 J	26.90
	31	430 78	1.09 J 1.92 J	3.76 0.99 J	6.67 J	4.00 J	4.76 J
Benzo(g,h,i)perylene Chrysene	110	460	6.54	3.22	22.22 J	10.50	30.95
Dibenz(a,h)anthracene	110	33	0.54 0.58 J	3.22 0.25 J	22.22 J 2.22 J	10.50 1.00 J	30.93 1.19 J
Fluoranthene	160	1200	13.85	5.94	58.89	24.00	57.14
			13.65 1.92 J	5.94 1.19		5.00 J	
Indeno(1,2,3-cd)pyrene	34 1000	88 1400	1.92 J 11.73		7.78 J		5.48
Pyrene		1400		4.90	44.44	26.50	12.62
Total HPAHs	960	5300	60.4	28.5	217.8	111.0	213.8
Semivolatiles in mg/kg OC	15	го	0.20 1	0.15 1	22.22.11	10.00 11	47/11
Dibenzofuran	15	58	0.38 J	0.15 J	22.22 U	10.00 U	4.76 U
Phenols in µg/kg dry wt.	20	20	7.11	7.11	7.11	7.11	7.11
2,4-Dimethylphenol	29	29	6 U	6 U	6 U 6 U	6 U	6 U
2-Methylphenol	63	63	6 U	6 U	20 U*	6 U	6 U
4-Methylphenol	670	670	140 *	3400 *		20 U*	23 *
Pentachlorophenol	360	690	61 U	61 U	61 U	61 U	61 U
Phenol	420	1200	200	1100	20 U	37	73
BTEX in mg/kg OC			0.07.11	0.50.11	F F / 11	25011	1 10 11
Benzene			0.96 U	0.50 U	5.56 U	2.50 U	1.19 U
Ethylbenzene			0.96 U	0.50 U	5.56 U	2.50 U	1.19 U
Toluene			0.96 U	0.50 U	5.56 U	2.50 U	1.19 U
m,p-Xylenes			0.96 U	0.50 U	5.56 U	2.50 U	1.19 U
o-Xylene			0.96 U	0.50 U	5.56 U	2.50 U	1.19 U

Table 5 - Analytical Results for Sediment Samples

Sheet 2 of 6

•			•				
	Ecology SQS Criteria	Ecology CSL Criteria	HC-SED-01	HC-SED-02	HC-SED-03	HC-SED-04	HC-SED-05
PCBs in mg/kg OC							
Aroclor 1016			1.92 U	0.50 U	11.11 U	5.00 U	2.38 U
Aroclor 1221			3.85 U	0.99 U	22.22 U	10.00 U	4.76 U
Aroclor 1232			1.92 U	0.50 U	11.11 U	5.00 U	2.38 U
Aroclor 1242			1.92 U	0.50 U	11.11 U	5.00 U	2.38 U
Aroclor 1248			1.92 U	0.50 U	11.11 U	5.00 U	2.38 U
Aroclor 1254			1.92 U	0.50 U	11.11 U	5.00 U	2.38 U
Aroclor 1260			1.92 U	0.50 U	5.56 J	5.00 U	2.38 U
Total PCBs	12	65	1.92 U	0.50 U	5.56 J	5.00 U	2.38 U

^{*} Represents sum of 3 & 4-Methylphenol

Boxed values exceed Ecology SQS criteria.

Boxed values exceed Ecology CSL criteria.

Italicized values represent detection limits greater than SQS criteria.

U - Not detected at indicated detection limit.

J - Estimated value.

Table 5 - Alialytical Results for Seulment Samples									
	HC-SED-06	HC-SED-100	HC-SED-07	HC-SED-08	HC-SED-09				
		Dup of HC-SED-	06						
Conventionals in %									
Total Solids	66.8	68.1	47.4	71.5	77.8				
Total Organic Carbon	0.5	0.6	1.74	0.41	0.23				
Metals in mg/kg dry wt.									
Arsenic	3.2	3.4	21.1	2.7	4				
Cadmium	0.25	0.27	0.42	0.16	0.18				
Chromium	14.5	14.2	27.8	11.8	12.2				
Copper	13	13.9	124	8.66	7.63				
Lead	8.01	7.91	63.6	6.5	6.05				
Nickel	13.8	13.8	28	11.3	12.4				
Zinc	28.8	29.5	165	22.5	21.5				
PAHs in mg/kg OC									
Acenaphthene	4.00 U	3.33 U	7.47	4.88 U	1.30 J				
Acenaphthylene	4.00 U	0.67 J	2.64	4.88 U	1.30 J				
Anthracene	1.20 J	5.33	109.20	1.46 J	4.35 J				
Fluorene	4.00 U	1.17 J	17.24	4.88 U	2.17 J				
Naphthalene	0.20 J	0.50 J	2.99	0.24 J	2.17 J				
Phenanthrene	2.00 J	7.17	212.64	2.44 J	14.78				
Total LPAHs	3.4	14.8	352.2	4.1	26.1				
HPAHs in mg/kg OC	. .		002.2						
Benzo(a)anthracene	4.40	21.67	396.55	7.32	20.87				
Benzo(a)pyrene	4.00 J	13.50	264.37	5.61	15.65				
Benzo(b)fluoranthene	4.00 J	13.00	241.38	6.59	15.65				
Benzo(k)fluoranthene	4.00 J	13.00	195.40	4.88	12.17				
Total Benzofluoranthenes	8.00 J	26.00	436.78	11.46	27.83				
Benzo(g,h,i)perylene	1.80 J	4.67	109.20	2.44 J	8.70 J				
Chrysene	5.80	45.00	396.55	10.98	22.17				
Dibenz(a,h)anthracene	0.60 J	1.67 J	37.36	0.98 J	3.04 J				
Fluoranthene	7.00	18.33	747.13	10.00	30.43				
Indeno(1,2,3-cd)pyrene	2.00 J	6.67	149.43	4.88 J	10.87				
Pyrene	10.60	21.67	747.13	10.24	27.83				
Total HPAHs	52.2	185.2	3721.3	75.4	195.2				
Semivolatiles in mg/kg OC	JZ.Z	100.2	3121.3	73.4	170.4				
Dibenzofuran	0.20 J	0.50 J	4.83	4.88 U	1.30 J				
Phenols in µg/kg dry wt.	0.20 J	0.50 1	4.03	4.00 U	1.30 1				
2,4-Dimethylphenol	6 U	6 U	6 U	6 U	6 U				
2,4-Dimethylphenol	6 U	6 U	7	6 U	6 U				
4-Methylphenol	40 *	20 U*	80 *	20 U*	20 U*				
3 .	40 61 U	20 U 61 U	61 U	20 U 61 U	20 U 61 U				
Pentachlorophenol Phenol	20 U	20 U	80	20 U	20 U				
BTEX in mg/kg OC	20 U	20 U	οU	20 U	20 U				
	1.00.11	0.02.11	0.57.11	1 22 11	2 1 7 1 1				
Benzene	1.00 U	0.83 U	0.57 U	1.22 U	2.17 U				
Ethylbenzene	1.00 U	0.83 U	0.57 U	1.22 U	2.17 U				
Toluene	1.00 U	0.83 U	0.57 U	1.22 U	2.17 U				
m,p-Xylenes	1.00 U	0.83 U	0.57 U	1.22 U	2.17 U				
o-Xylene	1.00 U	0.83 U	0.57 U	1.22 U	2.17 U				

Sheet 4 of 6

	HC-SED-06	HC-SED-100 Dup of HC-SED-06	HC-SED-07	HC-SED-08	HC-SED-09
PCBs in mg/kg OC					
Aroclor 1016	2.00 U	1.67 U	0.57 U	2.44 U	4.35 U
Aroclor 1221	4.00 U	3.33 U	1.15 U	4.88 U	8.70 U
Aroclor 1232	2.00 U	1.67 U	0.57 U	2.44 U	4.35 U
Aroclor 1242	2.00 U	1.67 U	0.57 U	2.44 U	4.35 U
Aroclor 1248	2.00 U	1.67 U	0.57 U	2.44 U	4.35 U
Aroclor 1254	2.00 U	1.67 U	0.57 U	2.44 U	4.35 U
Aroclor 1260	3.20	1.67 U	0.98	2.44 U	4.35 U
Total PCBs	3.20	1.67 U	0.98	2.44 U	4.35 U

Table 5 - Analytical Results for Sediment Samples

	HC-SED-10	HC-SED-12
Conventionals in %		
Total Solids	73.2	61.3
Total Organic Carbon	0.39	0.5
Metals in mg/kg dry wt.		
Arsenic	3.9	6.3
Cadmium	0.15	0.12
Chromium	15.4	27.5
Copper	11	30.6
Lead	9.28	9.45
Nickel	16.2	27.4
Zinc	28.8	62.6
LPAHs in mg/kg OC		
Acenaphthene	5.13 U	4.00 U
Acenaphthylene	5.13 U	4.00 U
Anthracene	2.56 J	1.00 J
Fluorene	0.77 J	0.40 J
Naphthalene	0.26 J	0.40 J
Phenanthrene	5.13 J	2.00 J
Total LPAHs	8.7	3.8
HPAHs in mg/kg OC	0.7	0.0
Benzo(a)anthracene	7.44	4.00 J
Benzo(a)pyrene	5.13	2.00 J
Benzo(b)fluoranthene	5.38	2.00 J
Benzo(k)fluoranthene	5.13 J	1.80 J
Total Benzofluoranthenes		3.80 J
Benzo(g,h,i)perylene	2.56 J	1.20 J
Chrysene	9.23	4.60
Dibenz(a,h)anthracene	0.77 J	0.40 J
Fluoranthene	13.59	7.80
Indeno(1,2,3-cd)pyrene	2.56 J	1.40 J
Pyrene	12.82	6.40
Total HPAHs	75.1	35.4
Semivolatiles in mg/kg OC		33.4
Dibenzofuran	5.13 U	0.40 J
Phenols in µg/kg dry wt.	3.13 0	0.40 J
2,4-Dimethylphenol	6 U	6 U
2-Methylphenol	6 U	6 U
4-Methylphenol	26 *	65 *
Pentachlorophenol	61 U	61 U
Phenol	20 U	22
BTEX in mg/kg OC	20 0	~ ~
Benzene	1.28 U	1.00 U
Ethylbenzene	1.28 U	1.00 U
Toluene	1.28 U	1.00 U
m,p-Xylenes	1.28 U	1.00 U
o-Xylene	1.28 U	1.00 U

Table 5 - Analytical Results for Sediment Samples

		-
	HC-SED-10	HC-SED-12
PCBs in mg/kg OC		
Aroclor 1016	2.56 U	2.00 U
Aroclor 1221	5.13 U	4.00 U
Aroclor 1232	2.56 U	2.00 U
Aroclor 1242	2.56 U	2.00 U
Aroclor 1248	2.56 U	2.00 U
Aroclor 1254	2.56 U	2.00 U
Aroclor 1260	2.56 U	2.00 U
Total PCBs	2.56 U	2.00 U

Table 6 - Summary of Forensic Geochemical Analysis of Sample HC-SED-07

Sample ID: Sampling Date:	HC-SED-07 9/17/1999
PAHs in mg/kg	
Naphthalene	0.026
2-Methynaphthalene	0.02
1-Methylnaphthalene	0.009 J
C2-Naphthalenes	0.041
C3-Naphthalenes	0.052
C4-Naphthalenes	0.045
Acenaphthylene	0.079
Acenaphthene	0.037
Dibenzofuran	0.038
Fluorene	0.082
C1-Fluorenes	0.11
C2-Fluorenes	0.15
C3-Fluorenes	0.005 U
Dibenzothiophene	0.04
C1-Dibenzothiophenes	0.055
C2-Dibenzothiophenes	0.12
C3-Dibenzothiophenes	0.12
Phenanthrene	0.71
Anthracene	0.8
C1-Phenanthrenes/Anthracenes	0.89
C2-Phenanthrenes/Anthracenes	0.71
C3-Phenanthrenes/Anthracenes	0.36
C4-Phenanthrenes/Anthracenes	0.27
Fluoranthene	3.5
Pyrene	7.1
C1-Fluoranthenes/Pyrenes	3.4 2.5
Benzo(a)anthracene	2.5 2.8
Chrysene C1-Chrysenes	2.0 1.7
C2-Chrysenes	0.71
C3-Chrysenes	0.74
C4-Chrysenes	0.25
Benzo(b)fluoranthene	2.4
Benzo(k)fluoranthene	2.2
Benzo(a)pyrene	2.5
Indeno(1,2,3-cd)pyrene	1.2
Dibenz(a,h)anthracene	0.39
Benzo(g,h,i)perylene	1
Carbazole	0.18
T. I.A.V. I. V	2 222
Total Aliphatics C8-C44 in mg/kg	0.099

U = Not detected at the detection limit indicated.

J = Estimated value.

Table 7 - Forensic PAH Ratio Comparisons

		Combustion		
PAH Ratios	Creosote	Products	Fuel Oil	HC-SED-07
TAH/pPAH	0.085 (a)	1.2 - 960 (b)	66 (d)	2.72
LPAH/HPAH	2.1-6.1 (a)	0.61 (b)	0.81-5.2 (d)	0.277
sPAH/pPAH	0.19-0.39 (a)	0.28 - 0.77 (b)	29 (d)	0.33
C0/C2	6.79 (c)	5.39 (c)	0.36 (c)	3.94
Fo/FI	0.64 (c)	0.02 (c)	16.32 (c)	0.023

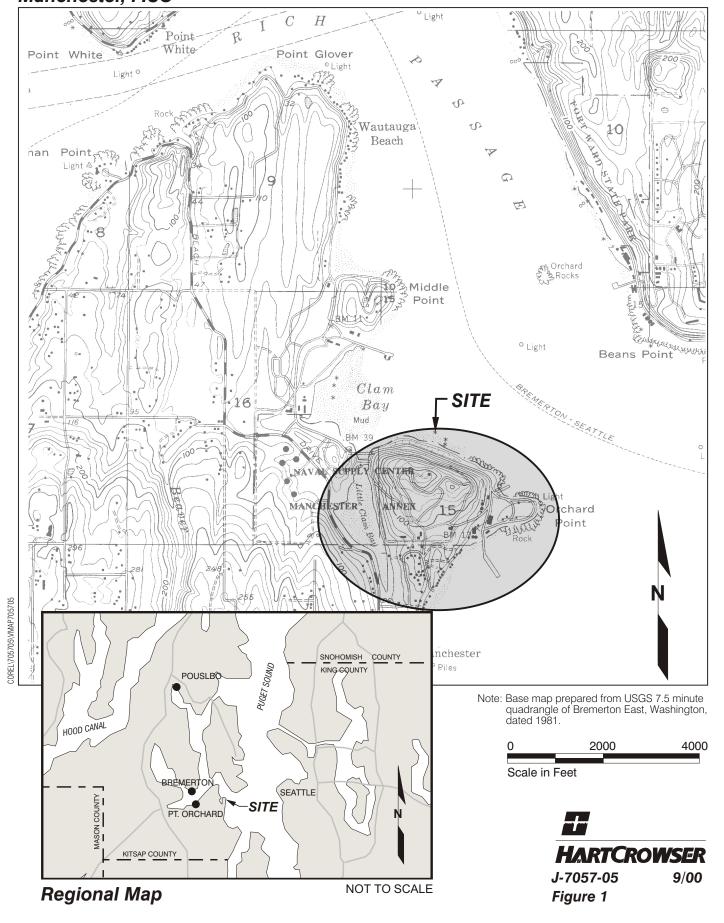
Notes:

TAH - Total Aliphatic Hydrocarbons

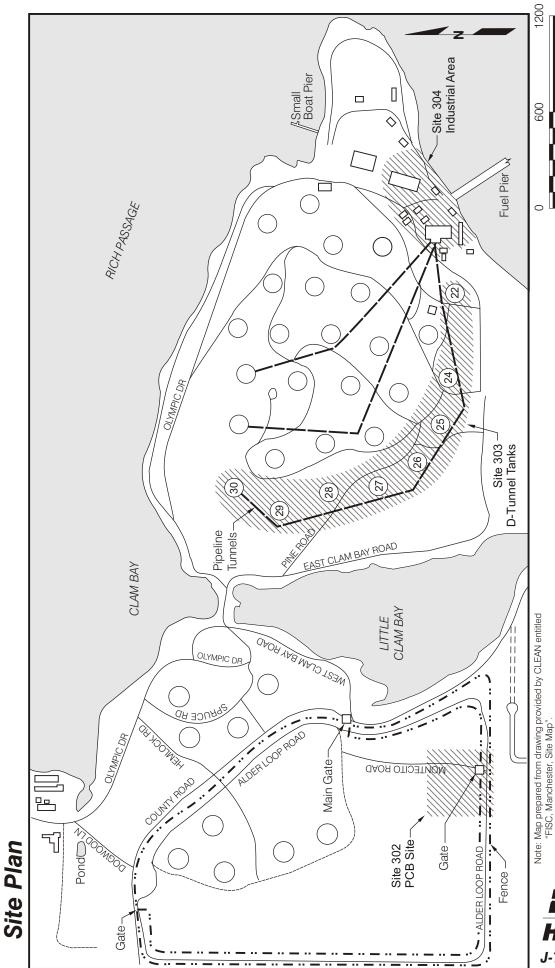
pPAH - Parent PAH Compounds

LPAH - Low Molecular Weight PAHs

HPAH - High Molecular Weight PAHs


sPAH - Substituted PAHs

CO/C2 - Chrysene (Parent)/C2 - Chrysene


Fo/FI - Fluorene/Fluoranthene

- (a) Data derived from Nestler (1974), Ingram et al. (1982), and Merrill and Wade (1985).
- (b) Data derived from Sporstol et al. (1983), Kurlong and Carpenter (1982), and Merrill and Wade (1985).
- (c) Battelle, 2000.
- (d) Data derived from Clark and Brown (1977), Furlong and Carpenter (1982), and Merrill and Wade (1985).

Vicinity Map Manchester, FISC


Approximate Scale in Feet

HARTCROWSERJ-7057-05 9/00
Figure 2

Groundwater and Seep Sampling Plan

20--- Contour in Feet

24.55 Groundwater Elevation in Feet January 2000

Groundwater Flow Direction

Monitoring Well Location and Number

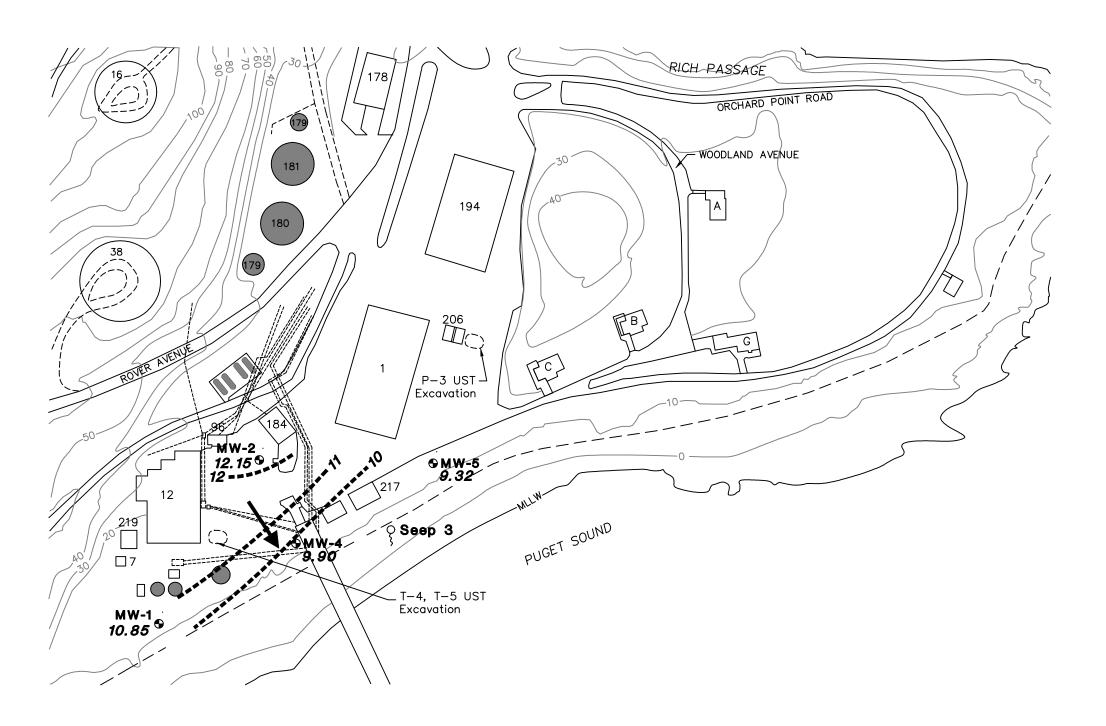
Groundwater Elevation

Seep Location and Number

₽MW-1

Note: Map prepared from drawing provided by CLEAN entitled "FISC, Manchester, Site Map".

100


Scale in Feet

200

Figure 3

Groundwater and Seep Sampling Plan Site 304

♦ MW-1 Groundwater Monitoring Well Location and Number

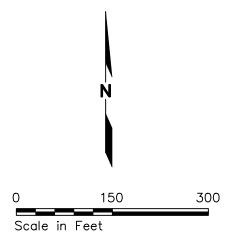
16) Underground Petroleum Storage Tank

180) Above—Ground Petroleum Storage Tank

— 30 — Elevation Contour in Feet above Mean Sea Level

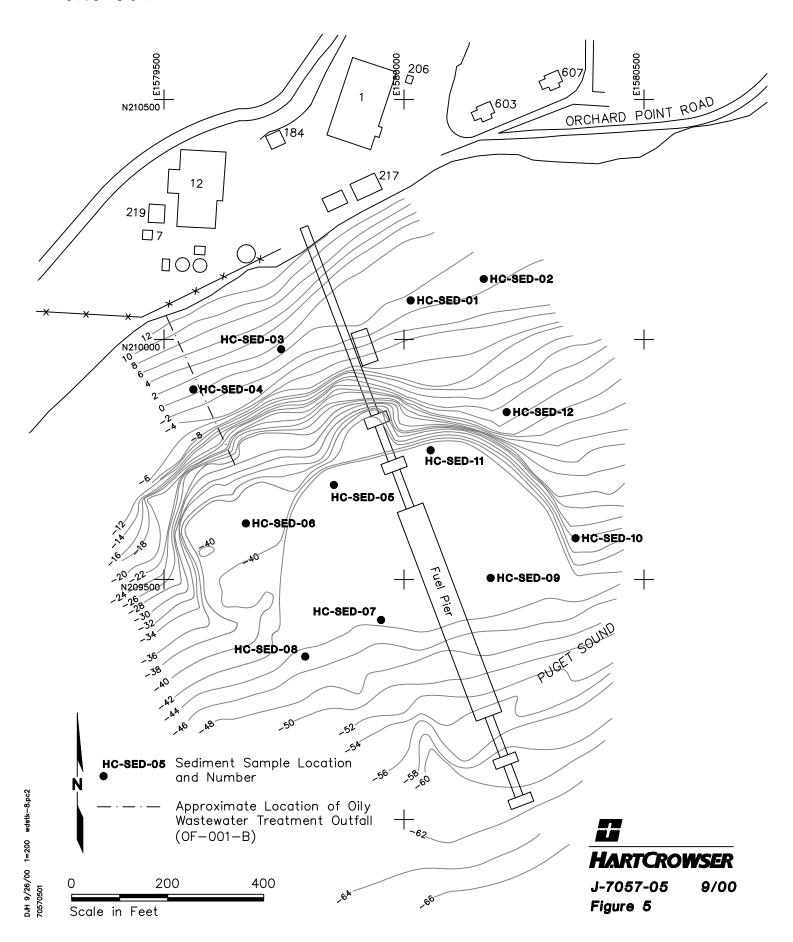
———— High Tide Level

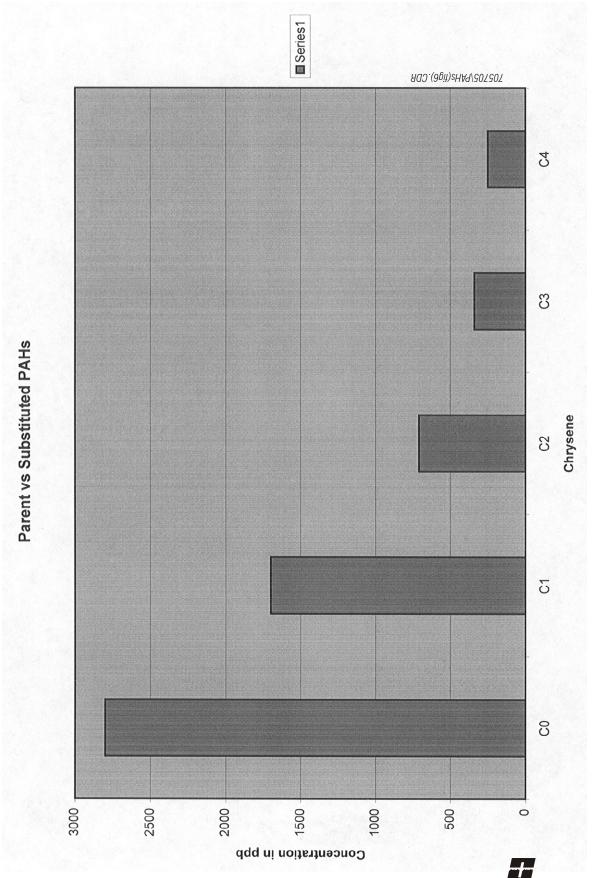
----- Utility Pipe


12 --- Groundwater Elevation Contour in Feet

12.15 Groundwater Elevation in Feet January 2000

Groundwater Flow Direction


Seep 3, Seep Location and Number


Note: Base map prepared from drawing provided by Comprehensive Long—Term Environmental Action Navy (CLEAN) entitled "Location of Removed UST and NPDES Sediment Sample Locations", dated May 1995.

Sediment Sampling Plan Site 304

HARTCROWSERJ-7057-05 9/00
Figure 6

APPENDIX A CHEMICAL DATA QUALITY REVIEW AND CERTIFICATES OF ANALYSIS

APPENDIX A CHEMICAL DATA QUALITY REVIEW AND CERTIFICATES OF ANALYSIS

Chemical Data Quality Review

Eleven sediment, nine groundwater, and three seep samples were collected between September 1999 and June 2000. One field duplicate sample and two trip blanks were also collected. The samples were submitted to Columbia Analytical Services of Kelso, Washington for analysis of the following:

Groundwater:

- ► NWTPH-Gx:
- ► NWTPH-Dx;
- ► BTEX (EPA Method 8021);
- ► Dissolved Iron (EPA Method 6010);
- ► Alkalinity (EPA Method 310.1);
- ▶ Nitrate/Sulfate (EPA Method 300.0); and
- ► Total Suspended Solids (EPA Method 160.2).

Sediment:

- ► Total Metals (EPA Method 200.8);
- ► PAHs/Phenols (EPA Method 8270SIM);
- ► BTEX (EPA Method 8260);
- ► PCBs (EPA Method 8082);
- ► Total Organic Carbon (ASTM D4129-82M); and
- ► Total Solids (EPA Method 160.3).

In addition, sample HC-SED-07 was analyzed for forensic geochemical analysis (PAHs and Total Aliphatics) by Analytical Resources, Incorporated (ARI) of Seattle, Washington.

The following criteria were evaluated in the standard data quality review process for the results:

- ► Holding Times;
- ► Method Blanks:
- ► Surrogate Recoveries;
- ► Blank Spike/Blank Spike Duplicate (BS/BSD) and Laboratory Control Sample Recoveries:
- ► Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries;
- ▶ Laboratory and Field Duplicate Relative Percent Differences (RPDs); and
- Reporting Limits.

Groundwater Analysis

NWTPH-Gx/NWTPH-Dx/BTEX. All required holding times were met. No method or trip blank contamination was detected. Surrogate, LCS, and MS/MSD recoveries were within laboratory control limits. Laboratory duplicate recoveries were acceptable. Reporting limits were acceptable.

Dissolved Iron. All required holding times were met. No method blank contamination was detected. LCS and MS recoveries were within control limits. Laboratory duplicate RPDs were within control limits. Reporting limits were acceptable.

Conventionals. TSS analysis for all samples in SDG 9906177 exceeded holding time by one day. Associated sample results were qualified as estimated (J). Other holding times were met. No method blank contamination was detected. MS recoveries and laboratory duplicate RPDs were within control limits. Reporting limits for nitrate in sample HC-303-MW-3 were elevated due to matrix interference.

Sediment Analysis

Total Metals. All required holding times were met. No method blank contamination was detected. LCS and MS recoveries were within control limits. Laboratory duplicate RPDs were within control limits. No criteria for field duplicates have been established; however, RPDs were compared against 75 percent for review. The results were within these criteria. Reporting limits were acceptable.

PAHs/Phenols. All required holding times were met. No method blank contamination was detected. Surrogate, LCS, and MS/MSD recoveries were within control limits. No criteria for field duplicates have been established; however, RPDs were compared against 75 percent for review. The results were within these criteria. Sample results below reporting limits were correctly flagged as estimated (J) by the laboratory.

BTEX. All required holding times were met. No method contamination was detected. Surrogate, LCS, and MS/MSD recoveries were within laboratory control limits. No criteria for field duplicates have been established; however, RPDs were compared against 75 percent for review. The results were within these criteria. Reporting limits were elevated in samples HC-SED-02 and HC-SED-07 due to low percent solids.

Page A-2 Hart Crowser

PCBs. Several samples were re-extracted and re-analyzed because of systematic error by the laboratory. Since sediment samples were frozen, all required holding times were met. No method blank contamination was detected. Surrogate recoveries of decachlorobiphenyl in samples HC-SED-05, HC-SED-08, and HC-SED-09 were above control limits. No qualifiers were assigned since sample results were non-detects. LCS recoveries extracted on September 23, 1999, were above laboratory control limits. No qualifiers were assigned since MS/MSD recoveries were acceptable. No criteria for field duplicates have been established; however, RPDs were compared against 75 percent for review. The results were within these criteria. Reporting limits were acceptable.

Total Organic Carbon. All required holding times were met. No method blank contamination was detected. LCS and MS recoveries were within laboratory control limits. Laboratory duplicate RPD was acceptable. No criteria for field duplicates have been established; however, RPDs were compared against 75 percent for review. The results were within these criteria. Reporting limits were acceptable.

Total Solids. All required holding times were met. No method blank contamination was detected. Laboratory duplicate RPDs were within control limits.

Total Aliphatic/PAHs. All required holding times were met. Naphthalene was detected below the reporting limit in the method blank. No qualifiers were assigned since the sample result was greater than ten times the blank contamination. MS/MSD recoveries of pyrene and benzo(a)pyrene were outside laboratory control limits due to high concentrations in the sample. No qualifiers were assigned since LCS recoveries were acceptable.

F:\docs\jobs\705705\Site303_12_00.doc

Page A-3 Hart Crowser

CERTIFICATES OF ANALYSIS COLUMBIA ANALYTICAL SERVICES, INC.

September 30, 1999

Service Request No: K9906177

Kym Anderson Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, WA 98102-3699

Re: Site 303/304/7057-05

Dear Kym:

Enclosed are the results of the sample(s) submitted to our laboratory on September 9, 1999. For your reference, these analyses have been assigned our service request number K9906177.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 243.

Respectfully submitted,

Columbia Analytical Services, Inc.

Richard Craven
Project Chemist

RAC/aw

Page 1 of

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEO Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

J Estimated concentration. The value is less than the method reporting limit, but

greater than the method detection limit.

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL. 00002

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Service Request: K9906177

Sample Matrix:

Water

Date Collected: 9/7/99 **Date Received:** 9/9/99

Basis: NA

Inorganic Parameters

Sample Name:

HC-303-MW-1

Lab Code:

K9906177-001

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	2	0.6	1	NA	9/16/99	173	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.03	2	NA	9/9/99	ND	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	5	1	NA	9/15/99	76 J	
Sulfate	mg/L (ppm)	300.0	0.2	0.02	5	NA	9/9/99	21.4	

1/18/00 TH

Approved By: MMK

0 0 0 0 3

1S22/020597p

06177WET.LJ1 - 1 9/22/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Basis: NA

Inorganic Parameters

Sample Name:

HC-303-MW-2

Lab Code:

K9906177-002

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	2	0.6	1	NA	9/16/99	263	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.03	1	NA	9/9/99	ND	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	5	1	NA	9/15/99	90 丁	
Sulfate	mg/L (ppm)	300.0	0.2	0.02	1	NA	9/9/99	0.3	

7/18/00 JHL

1S22/020597p

06177WET.LJ1 - 2 9/22/99

Date: 9/22/99

00,004

Analytical Report

Client: Project:

Hart Crowser, Inc. Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Basis: NA

Inorganic Parameters

Sample Name:

HC-303-MW-3

Lab Code:

K9906177-003

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	2	0.6	1	NA	9/16/99	189	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.03	20	NA	9/9/99	< 2	D
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	5	1	NA	9/15/99	61 T	
Sulfate	mg/L (ppm)	300.0	0.2	0.02	50	NA	9/9/99	301	

7/18/00 JHL

D

1S22/020597p

The MRL is elevated because of matrix interferences and because the sample required diluting.

Approved By: MMK

06177WET.LJ1 - 3 9/22/99

Date: 9/22/99

00005

Page No.

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Service Request: K9906177

Date Collected: 9/7/99 **Date Received:** 9/9/99

Basis: NA

Sample Matrix:

Water

Inorganic Parameters

Sample Name:

HC-303-OW2

Lab Code:

K9906177-004

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
,							•		
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	2	0.6	1	NA	9/16/99	82	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.03	2	NA	9/9/99	ND	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	5	1	NA	9/15/99	646 J	
Sulfate	mg/L (ppm)	300.0	0.2	0.02	50	NA	9/9/99	354	

7/18/00 JUL

06177WET.LJ1 - 4 9/22/99

Date: 9/77/39

00006 Page No.:

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Basis: NA

Inorganic Parameters

Sample Name:

HC-304-MW-1

Lab Code:

K9906177-005

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	2	0.6	1	NA	9/16/99	178	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.03	2	NA	9/9/99	ND	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	5	1	NA	9/15/99	14 J	
Sulfate	mg/L (ppm)	300.0	0.2	0.02	20	NA	9/9/99	41.7	

7/18/00 JHL

06177WET.LJ1 - 5 9/22/99

Date: 9/22/99

0.0007

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Service Request: K9906177

Date Collected: 9/7/99

Sample Matrix:

Water

Date Received: 9/9/99

Basis: NA

Inorganic Parameters

Sample Name:

HC-304-MW-2

Lab Code:

K9906177-006

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	2	0.6	1	NA	9/16/99	292	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.03	2	NA	9/9/99	ND	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	5	1	NA	9/15/99	8 J	
Sulfate	mg/L (ppm)	300.0	0.2	0.02	20	NA	9/9/99	45.5	

MMMR Approved By:

_____Date: 9/22/99

1S22/020597p

06177WET.LJ1 - 6 9/22/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Inorganic Parameters

Sample Name:

HC-304-MW-4

Lab Code:

K9906177-007

Test Notes:

Basis: NA

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	2	0.6	1	NA	9/16/99	208	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.03	1	NA	9/9/99	ND	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	5	1	NA	9/15/99	16 J	
Sulfate	mg/L (ppm)	300.0	0.2	0.02	1	NA	9/9/99	ND	

7/18/00 JHL

Approved By: WWW Date: 9/22/99

00009

1S22/020597p

06177WET.LJ2 - 7 9/22/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Service Request: K9906177 Date Collected: 9/7/99

Sample Matrix:

Water

Date Received: 9/9/99

Inorganic Parameters

Sample Name:

HC-304-MW-5

Lab Code:

K9906177-008

Test Notes:

Basis: NA

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	2	0.6	1	NA	9/16/99	72	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.03	1	NA	9/9/99	0.8	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	5	1	NA	9/15/99	5 T	
Sulfate	mg/L (ppm)	300.0	0.2	0.02	1	NA	9/9/99	4.9	

7/18/00 JHL

1S22/020597p

Approved By: MMK

Analytical Report

Client:

Hart Crowser, Inc.

Project: Sample Matrix: Site 303/304/7057-05

Water

Service Request: K9906177

Date Collected: NA

Basis: NA

Date Received: NA

Inorganic Parameters

Sample Name:

Method Blank

Lab Code:

K9906177-MB

Test Notes:

Analyte	Units	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	2	0.6	l	NA	9/16/99	ND	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.03	1	NA	9/9/99	ND	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	5	1	NA	9/15/99	ND	
Sulfate	mg/L (ppm)	300.0	0.2	0.02	1	NA	9/9/99	ND	

Date:

00011

06177WET.LJ1 - MBlank 9/22/99

Page No.:

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Service Request: K9906177 **Date Collected:** 9/7/99

Sample Matrix:

Water

Date Received: 9/9/99

Dissolved Iron

Prep Method:

CLAA

Units: ug/L (ppb)

Analysis Method: 6010B

Basis: NA

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
HC-303-MW-1	K9906177-001	20	1	9/21/99	9/23/99	555	
HC-303-MW-2	K9906177-002	20	1	9/21/99	9/23/99	38500	
HC-303-MW-3	K9906177-003	20	1	9/21/99	9/23/99	20300	
HC-303-OW2	K9906177-004	20	1	9/21/99	9/23/99	504	
HC-304-MW-1	K9906177-005	20	1	9/21/99	9/23/99	2010	
HC-304-MW-2	K9906177-006	20	1	9/21/99	9/23/99	1280	
HC-304-MW-4	K9906177-007	20	1	9/21/99	9/23/99	6980	
HC-304-MW-5	K9906177-008	20	1	9/21/99	9/23/99	52	
Method Blank	K9906177-MB	20	1	9/21/99	9/23/99	ND	

Approved By: _

1A/052595

00012

06177ICP.BR1 - Sample 9/24/99

Page No.:

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Volatile Petroleum Products Northwest TPH-Gx

Sample Name:

HC-303-MW-1

Lab Code:

K9906177-001

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor		Date Analyzed	Result	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
Non-PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	

PHC as Gasoline:

Volatile or Middle Distillate Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Gasoline:

Non-Petroleum Hydrocarbon components eluting in the purgable range of n-C6 - naphthalene.

Date: 9/24/99 Approved By:

1S22/020597p

06177VOA.ML1 - 1 9/22/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Volatile Petroleum Products Northwest TPH-Gx

Sample Name:

HC-303-MW-2

Units: ug/L (ppb)

Lab Code:

K9906177-002

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
Non-PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	

PHC as Gasoline:

Volatile or Middle Distillate Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Gasoline: Non-Petroleum Hydrocarbon components eluting in the purgable range of n-C6 - naphthalene.

Approved By:

1S22/020597p

06177VOA.ML1 - 2 9/22/99

00014

Page No.:

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Volatile Petroleum Products Northwest TPH-Gx

Sample Name:

HC-303-MW-3

Lab Code:

K9906177-003

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
Non-PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	

PHC as Gasoline:

Volatile or Middle Distillate Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Gasoline:

Non-Petroleum Hydrocarbon components eluting in the purgable range of n-C6 - naphthalene.

Approved By:

1S22/020597p

06177VOA.ML1 - 3 9/22/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Volatile Petroleum Products Northwest TPH-Gx

Sample Name:

HC-303-OW2

Lab Code:

K9906177-004

Basis: NA

Units: ug/L (ppb)

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
Non-PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	

PHC as Gasoline: Non-PHC as Gasoline: Volatile or Middle Distillate Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-Petroleum Hydrocarbon components eluting in the purgable range of n-C6 - naphthalene.

Approved By:

Date: $\frac{9/24}{9}$

1S22/020597p

06177VOA.ML1 - 4 9/22/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Volatile Petroleum Products Northwest TPH-Gx

Sample Name:

HC-304-MW-1

Units: ug/L (ppb)

Lab Code:

K9906177-005

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
Non-PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	

PHC as Gasoline: Non-PHC as Gasoline: Volatile or Middle Distillate Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

on-PHC as Gasoline: Non-Petroleum Hydrocarbon components eluting in the purgable range of n-C6 - naphthalene.

Approved By:

19

Date: 9/24/99

1S22/020597p

06177VOA.ML1 - 5 9/22/99

Analytical Report

Client: Project: Hart Crowser, Inc. Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99 Date Received: 9/9/99

Volatile Petroleum Products Northwest TPH-Gx

Sample Name:

HC-304-MW-2

Lab Code:

K9906177-006

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
Non-PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	

PHC as Gasoline:

Volatile or Middle Distillate Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Gasoline: Non-Petroleum Hydrocarbon components eluting in the purgable range of n-C6 - naphthalene.

Approved By:

Date: 9/24/99

1S22/020597p

06177VOA.ML1 - 6 9/22/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Volatile Petroleum Products Northwest TPH-Gx

Sample Name:

HC-304-MW-4

Lab Code: Test Notes:

K9906177-007

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	910	
Non-PHC as Gasoline	FPA 5030B	NWTPH-Gv	250	1	NΛ	0/16/00	NID	

PHC as Gasoline:

Volatile or Middle Distillate Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Gasoline: Non-Petroleum Hydrocarbon components eluting in the purgable range of n-C6 - naphthalene.

Approved By:

1S22/020597p

Date: 9/24/49

06177VOA.ML2 - 1 9/22/99 QaQ. Q 1 9

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Volatile Petroleum Products Northwest TPH-Gx

Sample Name:

HC-304-MW-5

Units: ug/L (ppb)

Lab Code:

K9906177-008

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
Non-PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	

PHC as Gasoline:

Volatile or Middle Distillate Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Gasoline:

Non-Petroleum Hydrocarbon components eluting in the purgable range of n-C6 - naphthalene.

Approved By: Date: $\frac{q}{24}/\frac{qq}{9}$

1S22/020597p

06177VOA.ML2 - 2 9/22/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Service Request: K9906177

Date Collected: 9/7/99 **Date Received:** 9/9/99

Sample Matrix:

Water

Volatile Petroleum Products Northwest TPH-Gx

Sample Name:

Trip Blank

Units: ug/L (ppb)

Lab Code:

K9906177-009

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
Non-PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	

PHC as Gasoline:
Non-PHC as Gasoline:

Volatile or Middle Distillate Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-Petroleum Hydrocarbon components eluting in the purgable range of n-C6 - naphthalene.

Approved By:

1S22/020597p

06177VOA.ML2 - 3 9/22/99

Date: 9/24/99

0,0021

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: NA

Date Received: NA

Volatile Petroleum Products Northwest TPH-Gx

Sample Name:

Method Blank

 $Units: \ ug/L\ (ppb)$

Lab Code:

K990916-MB

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	
Non-PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	9/16/99	ND	

PHC as Gasoline:

Volatile or Middle Distillate Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Gasoline:

Non-Petroleum Hydrocarbon components eluting in the purgable range of n-C6 - naphthalene.

1S22/020597p

06177VOA.ML1 - MBlank 9/22/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

BTEX

Sample Name:

HC-303-MW-1

Lab Code:

K9906177-001

Units: ug/L (ppb)
Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030B	8021B	0.5	1	NA	9/16/99	ND	
Toluene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Ethylbenzene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Xylenes, Total	EPA 5030B	8021B	1	1	NA	9/16/99	ND	

Approved By: ____

1S22/052595

Date: 9/24/99

00023

06177VOA.ML3 - BTEX Sample 9/22/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

BTEX

Sample Name:

HC-303-MW-2

Lab Code:

K9906177-002

Test Notes:

Units: ug/L (ppb)
Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030B	8021B	0.5	1	NA	9/16/99	ND	
Toluene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Ethylbenzene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Xylenes, Total	EPA 5030B	8021B	1	1	NA	9/16/99	ND	

Approved By: _____

1S22/052595

Date: 9 24 /69

00024

06177VOA.ML3 - BTEX(2) 9/22/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

BTEX

Sample Name:

HC-303-MW-3

Lab Code:

K9906177-003

Basis: NA

Units: ug/L (ppb)

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030B	8021B	0.5	1	NA	9/16/99	ND	
Toluene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Ethylbenzene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Xylenes, Total	EPA 5030B	8021B	1	1	NA	9/16/99	ND	

Approved By:	19)	Date:	9/24/99
1S22/052595	O		

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99 **Date Received:** 9/9/99

BTEX

Sample Name:

HC-303-OW2

Lab Code:

K9906177-004

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030B	8021B	0.5	1	NA	9/16/99	ND	
Toluene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Ethylbenzene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Xylenes, Total	EPA 5030B	8021B	1	1	NA	9/16/99	ND	

Date: 9/24/99 Approved By:

1S22/052595

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Date Collected: 9/7/99

Service Request: K9906177

Sample Matrix:

Water

Date Received: 9/9/99

BTEX

Sample Name:

HC-304-MW-1

Lab Code: Test Notes: K9906177-005

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030B	8021B	0.5	1	NA	9/16/99	ND	
Toluene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Ethylbenzene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Xylenes, Total	EPA 5030B	8021B	1	1	NA	9/16/99	ND	

Approved By:	<u> </u>		Date:	q	124	199	7
1S22/052595	\mathcal{O}		-				

06177VOA.ML3 - BTEX(5) 9/22/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

BTEX

Sample Name:

HC-304-MW-2

Lab Code:

K9906177-006

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030B	8021B	0.5	1	NA	9/16/99	ND	
Toluene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Ethylbenzene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Xylenes, Total	EPA 5030B	8021B	1	1	NA	9/16/99	ND	

Date: 9/24/99 Approved By: 1S22/052595

Analytical Report

Client: Project: Hart Crowser, Inc. Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99 **Date Received:** 9/9/99

BTEX

Sample Name:

HC-304-MW-4

Lab Code:

K9906177-007

Units: ug/L (ppb)
Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030B	8021B	0.5	1	NA	9/16/99	ND	
Toluene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Ethylbenzene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Xylenes, Total	EPA 5030B	8021B	1	1	NA	9/16/99	ND	

Approved By:

1S22/052595

Date: 924 99

06177VOA.ML4 - BTEX(2) 9/22/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Received: 9/9/99

Date Collected: 9/7/99

BTEX

Sample Name:

HC-304-MW-5

Lab Code:

K9906177-008

Test Notes:

Units: ug/L (ppb)
Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030B	8021B	0.5	1	NA	9/16/99	ND	
Toluene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Ethylbenzene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Xylenes, Total	EPA 5030B	8021B	1	1	NA	9/16/99	ND	

Approved By: ______ Date: _____ Date: _____ 9 24 | 99

1822/052595

06177VOA.ML4 - BTEX(3) 9/22/99

Analytical Report

Client: Project: Hart Crowser, Inc. Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99 **Date Received:** 9/9/99

BTEX

Sample Name:

Trip Blank

Lab Code:

K9906177-009

Units: ug/L (ppb)
Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030B	8021B	0.5	1	NA	9/16/99	ND	
Toluene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Ethylbenzene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Xylenes, Total	EPA 5030B	8021B	1	1	NA	9/16/99	ND	

Approved By:

1S22/052595

Date: 9 W 9

0_PQ_eQ31

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: NA **Date Received:** NA

BTEX

Sample Name:

Method Blank

Lab Code: Test Notes: K990916-MB

Units: ug/L (ppb)

Basis: NA

	Prep	Analysis		Dilution	Date	Date		Result
Analyte	Method	Method	MRL	Factor	Extracted	Analyzed	Result	Notes
Benzene	EPA 5030B	8021B	0.5	1	NA	9/16/99	ND	
Toluene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Ethylbenzene	EPA 5030B	8021B	1	1	NA	9/16/99	ND	
Xvlenes, Total	EPA 5030B	8021B	1	1	NA	9/16/99	ND	

Approved By: Date: $\frac{9}{24/99}$

1S22/052595

06177VOA.ML3 - BTEX Blank 9/22/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Semivolatile Petroleum Products Northwest TPH-Dx

Sample Name:

HC-303-MW-1

Lab Code:

K9906177-001

Units: ug/L (ppb)
Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Mineral Spirits	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Jet Fuel as Jet A	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Kerosene	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Diesel	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Heavy Fuel Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
Lube Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	7540	
Non-PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	

PHC as Diesel Fuel: Non-PHC as Diesel: Extractable Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-Petroleum Hydrocarbon components eluting in the extractable range of n-C8 - n-C44.

Approved By:

W Date: 9/14/95

1S22/020597p

00033

06177PHC.MM1 - 1 9/23/99

Page No.:

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99 **Date Received:** 9/9/99

Semivolatile Petroleum Products Northwest TPH-Dx

Sample Name:

HC-303-MW-2

Units: ug/L (ppb)

Lab Code:

K9906177-002

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Mineral Spirits	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Jet Fuel as Jet A	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Kerosene	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Diesel	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Heavy Fuel Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
Lube Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	1480	
Non-PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	

PHC as Diesel Fuel:

Extractable Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Diesel:

Non-Petroleum Hydrocarbon components eluting in the extractable range of n-C8 - n-C44.

Approved By: ______ Date: _9/24/99

1S22/020597p

00034

06177PHC.MM1 - 2 9/23/99

Page No.:

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Service Request: K9906177 **Date Collected:** 9/7/99

Date Received: 9/9/99

Sample Matrix:

Water

Semivolatile Petroleum Products Northwest TPH-Dx

Sample Name:

HC-303-MW-3

Units: ug/L (ppb)

Lab Code:

K9906177-003

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Mineral Spirits	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Jet Fuel as Jet A	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Kerosene	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Diesel	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Heavy Fuel Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
Lube Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
Non-PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	

Extractable Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Diesel: Non-Petroleum Hydrocarbon components eluting in the extractable range of n-C8 - n-C44.

Approved By: _

1S22/020597p

E1 Date: 9/24/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Semivolatile Petroleum Products Northwest TPH-Dx

Sample Name:

HC-303-OW2

Lab Code:

K9906177-004

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Mineral Spirits	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Jet Fuel as Jet A	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Kerosene	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Diesel	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Heavy Fuel Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
Lube Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
Non-PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	

Extractable Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Diesel:

Non-Petroleum Hydrocarbon components eluting in the extractable range of n-C8 - n-C44.

1S22/020597p

Analytical Report

Client: **Project:** Hart Crowser, Inc. Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99 Date Received: 9/9/99

Semivolatile Petroleum Products Northwest TPH-Dx

Sample Name:

HC-304-MW-1

Lab Code:

K9906177-005

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Mineral Spirits	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Jet Fuel as Jet A	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Kerosene	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Diesel	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Heavy Fuel Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
Lube Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
Non-PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	

PHC as Diesel Fuel: Non-PHC as Diesel: Extractable Petroleum Hydrocarbon fingerprint not matching any of the target analytes. Non-Petroleum Hydrocarbon components eluting in the extractable range of n-C8 - n-C44.

Approved By: ___

a Date: 9/24/85

1S22/020597p

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Semivolatile Petroleum Products Northwest TPH-Dx

Sample Name:

HC-304-MW-2

Units: ug/L (ppb)

Lab Code:

K9906177-006

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Mineral Spirits	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Jet Fuel as Jet A	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Kerosene	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Diesel	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Heavy Fuel Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
Lube Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
Non-PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	

PHC as Diesel Fuel:

Extractable Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-Petroleum Hydrocarbon components eluting in the extractable range of n-C8 - n-C44. Non-PHC as Diesel:

Approved By: __

1S22/020597p

Es Date: 9/24/59

00038

06177PHC.MM1 - 6 9/23/99

Page No.:

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Semivolatile Petroleum Products Northwest TPH-Dx

Sample Name:

HC-304-MW-4

Units: ug/L (ppb)

Lab Code:

K9906177-007

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Mineral Spirits	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Jet Fuel as Jet A	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Kerosene	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Diesel	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Heavy Fuel Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
Lube Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	1900	
Non-PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	

PHC as Diesel Fuel: Non-PHC as Diesel: Extractable Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-Petroleum Hydrocarbon components eluting in the extractable range of n-C8 - n-C44.

Approved By: ___

E1 Date: 9/24/99

1S22/020597p

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Semivolatile Petroleum Products Northwest TPH-Dx

Sample Name:

HC-304-MW-5

Units: ug/L (ppb)

Lab Code:

K9906177-008

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Mineral Spirits	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Jet Fuel as Jet A	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Kerosene	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Diesel	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Heavy Fuel Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
Lube Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
Non-PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	

PHC as Diesel Fuel:

Extractable Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Diesel:

Non-Petroleum Hydrocarbon components eluting in the extractable range of n-C8 - n-C44.

1S22/020597p

00040

06177PHC.MM1 - 8 9/23/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: NA **Date Received:** NA

Semivolatile Petroleum Products Northwest TPH-Dx

Sample Name:

Method Blank

Lab Code:

K990913-WB

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Mineral Spirits	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Jet Fuel as Jet A	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Kerosene	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Diesel	EPA 3510C	NWTPH-Dx	250	1	9/13/99	9/20/99	ND	
Heavy Fuel Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
Lube Oil	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	
Non-PHC as Diesel	EPA 3510C	NWTPH-Dx	500	1	9/13/99	9/20/99	ND	

PHC as Diesel Fuel: Non-PHC as Diesel: Extractable Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-Petroleum Hydrocarbon components eluting in the extractable range of n-C8 - n-C44.

Approved By:

C1 Date: 9/14/99

1S22/020597p

) U U 4 1

06177PHC.MM1 - MBlank 9/23/99

APPENDIX A LABORATORY QC RESULTS

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99 **Date Extracted:** NA

Date Analyzed: 9/10-16/99

Basis: NA

Duplicate Summary Inorganic Parameters

Sample Name:

HC-303-MW-1

Lab Code:

K9906177-001DUP

Test Notes:

Analyte	Units	Analysis Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	2	173	176	174	2	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	ND	ND	ND	-	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	76	78	77	3	
Sulfate	mg/L (ppm)	300.0	0.2	21.4	21.0	21.2	2	

Approved By: _______R

06177WET.LJI - DUP 9/22/99

Date: 9/2/99

0.0043

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99 **Date Extracted:** NA

Date Analyzed: 9/10/99

Matrix Spike Summary Inorganic Parameters

Sample Name:

HC-303-MW-1

Lab Code:

K9906177-001MS

Test Notes:

Basis: NA

Analyte	Units	Analysis Method	MRL		Sample Result	Spiked Sample Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	4.0	ND	4.2	105	80-120	
Sulfate	mg/L (ppm)	300.0	0.2	10.0	21.4	32.5	111	80-120	

06177WET.LJ1 - MS 9/22/99

Date: 9/22/93

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix: Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99 **Date Extracted:** 9/21/99

Date Analyzed: 9/23/99

Duplicate Summary Dissolved Metals

Sample Name:

HC-303-MW-1

Lab Code:

K9906177-001DUP

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Iron	CLAA	6010B	20	555	545	504	2	

Date: 9/25/99 Approved By:

DUP/052595 06177ICP.BR1 - DUP 9/24/99 00045

Page No.:

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99 **Date Extracted:** 9/21/99

Date Analyzed: 9/23/99

Matrix Spike Summary **Dissolved Metals**

Sample Name:

HC-303-MW-1

Units: ug/L (ppb)

Lab Code: K9906177-001MS

Basis: NA

Test Notes:

CAS

Analyte	Prep Method	Analysis Method	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	Percent Recovery Acceptance Limits	Result Notes
Iron	CLAA	6010B	20	1000	555	1540	98	75-125	

Date: 9/25/99 Approved By: _ MS/052595

06177ICP.BR1 - Spike 9/24/99

QA/QC Report

Client: **Project:** Hart Crowser, Inc.

Site 303/304/7057-05

LCS Matrix:

Water

Service Request: K9906177

Date Collected: NA

Date Received: NA

Date Extracted: 9/21/99 Date Analyzed: 9/23/99

Laboratory Control Sample Summary

Total Metals

Sample Name:

Laboratory Control Sample

Lab Code:

K9906177-LCS

Units: ug/L (ppb) Basis: NA

Test Notes:

Source:

Inorganic Ventures

CAS

Percent

Recovery

Analyte

Prep

True **Analysis** Value Method

Result Recovery

Percent Acceptance Limits

Result Notes

Iron

CLAA

Method

6010B

2500

2480

99

85-115

Approved By:

LCS/032295 06177ICP.BR1 - LCSW 9/24/99

Date: __

QA/QC Report

Client: Project: Hart Crowser, Inc. Site 303/304/7057-05 **Service Request:** K9906177 **Date Analyzed:** 9/23/99

Iron EPA Method 6010B Units: μg/L (ppb)

INITIAL CALIBRATION VERIFICATION (ICV)

	True	Measured	Percent
	Value	Value	Recovery
ICV 1 Result	2500	2510	100

CONTINUING CALIBRATION VERIFICATION (CCV)

		True	Measured	Percent
		Value	Value	Recovery
CCV 1	Result	5000	5020	100
CCV 2	Result	5000	5100	102
CCV 3	Result	5000	5230	105
CCV 4	Result	5000	5060	101
CCV 5	Result	5000	4980	100
CCV 6	Result	5000	5060	101

CONTINUING CALIBRATION BLANK (CCB)

		MRL	Blank Value
CCB 1	Result	20	ND
CCB 2	Result	20	ND
CCB 3	Result	20	ND
CCB 4	Result	20	ND
CCB 5	Result	20	ND
CCB 6	Result	20	ND

Date: 9/25/79

00048

Q-CCV.XLT

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Date Extracted: NA

Date Analyzed: 9/16/99

Surrogate Recovery Summary Northwest TPH-Gx

Prep Method:

Analysis Method: NWTPH-Gx

EPA 5030B

Units: PERCENT

Basis: NA

Comula Noma	Tab Cada	Test	Percent Recovery
Sample Name	Lab Code	Notes	1,4-Difluorobenzene
HC-303-MW-1	K9906177-001		112
HC-303-MW-2	K9906177-002		110
HC-303-MW-3	K9906177-003		111
HC-303-OW2	K9906177-004		109
HC-304-MW-1	K9906177-005		111
HC-304-MW-2	K9906177-006		112
HC-304-MW-4	K9906177-007		109
HC-304-MW-5	K9906177-008		111
Trip Blank	K9906177-009		111
HC-303-MW-1	K9906177-001MS		109
HC-303-MW-1	K9906177-001DMS		109
Lab Control Sample	K990916-LCS		104
Method Blank	K990916-MB		112

CAS Acceptance Limits:

70-130

Approved By: 19

Date: 9/24/99

SUBJ (961497PML1 - SUR 9/22/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Date Extracted: NA **Date Analyzed:** 9/16/99

Matrix Spike/Duplicate Matrix Spike Summary

Northwest TPH-Gx

K9906177-001DMS

Sample Name:

HC-303-MW-1

Units: ug/L (ppb)

Lab Code:

K9906177-001MS,

Basis: NA

Test Notes:

Percent Recovery

	Prep	Analysis		Spike	Level	Sample	Spike l	Result			CAS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1000	1000	ND	1000	1300	100	130	59-135	26	

 Date: 9/24/99

00050 Page No.:

DMS/052297#6177VOA.ML1 - DMS 9/22/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

LCS Matrix:

Water

Service Request: K9906177

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: 9/16/99

Laboratory Control Sample Summary

Northwest TPH-Gx

Sample Name:

Lab Control Sample

Lab Code:

K990916-LCS

Units: ug/L (ppb) Basis: NA

Test Notes:

						CAS Percent Recovery	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	1000	1000	100	82-155	

Date: 9/24/99 Approved By:

LCS/020507A.ML1 - LCS 9/22/99

QA/QC Report

Client: **Project:** Hart Crowser, Inc. Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177 **Date Collected:** 9/7/99

Date Received: 9/9/99

Date Extracted: NA **Date Analyzed:** 9/16/99

Surrogate Recovery Summary

BTEX

Prep Method: AnalysisMethod: EPA 5030B

8021B

Units: PERCENT

Basis: NA

		Test	Percent Recovery
Sample Name	Lab Code	Notes	1,4-Difluorobenzene
HC-303-MW-1	K9906177-001		95
HC-303-MW-2	K9906177-002		95
HC-303-MW-3	K9906177-003		96
HC-303-OW2	K9906177-004		95
HC-304-MW-1	K9906177-005		96
HC-304-MW-2	K9906177-006		96
HC-304-MW-4	K9906177-007		94
HC-304-MW-5	K9906177-008		95
Trip Blank	K9906177-009		96
HC-303-MW-1	K9906177-001MS		100
HC-303-MW-1	K9906177-001DMS		100
Lab Control Sample	K990916-LCS		101
Method Blank	K990916-MB		96

CAS Acceptance Limits:

70-130

Approved By: _ SUR1/053595/VOA.ML3 - SUR 9/22/99 Date: __9/W/44

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99 **Date Extracted:** NA

Date Analyzed: 9/16/99

Matrix Spike/Duplicate Matrix Spike Summary

BTEX

Sample Name:

HC-303-MW-1

Units: ug/L (ppb)

Lab Code:

K9906177-001MS,

K9906177-001DMS

Basis: NA

Test Notes:

Percent Recovery

100 100	100 100	ND ND	100 100	100 100	100 100	100 100	67-131 64-129	<1 <1	
		100 100	100 100 ND	100 100 ND 100	100 100 ND 100 100	100 100 ND 100 100 100	100 100 ND 100 100 100 100	100 100 ND 100 100 100 100 64-129	100 100 ND 100 100 100 64-129 <1

Approved By: _	10	Date:	9/24/99
DMS/052595	8)	-	1

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

LCS Matrix:

Water

Service Request: K9906177

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: 9/16/99

Laboratory Control Sample Summary

BTEX

Sample Name: Lab Code:

Lab Control Sample

K990916-LCS

Units: ug/L (ppb)

Basis: NA

Test Notes:

	Prep	Analysis	True		Percent	CAS Percent Recovery Acceptance	Result
Analyte	Method	Method	Value	Result	Recovery	Limits	Notes
Benzene	EPA 5030B	8021B	100	99	99	69-118	
Toluene	EPA 5030B	8021B	100	100	100	66-124	
Ethylbenzene	EPA 5030B	8021B	100	100	100	63-127	

LC8/52505OA.ML3 - LCS 9/22/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Service Request: K9906177

Date Analyzed: 9/16/99

Continuing Calibration Verification (CCV) Summary
Northwest TPH-Gx

Sample Name:

CCV1

Units: ug/L (ppb)

Lab Code:

le:

0916F002

Basis: NA

Test Notes:

	Analysis	True		Percent	Result
Analyte	Method	Value	Result	Recovery	Notes
Gasoline	NWTPH-Gx	1000	877	88	
PHC as Gasoline	NWTPH-Gx	1000	877	88	
Non-PHC as Gasoline	NWTPH-Gx	1000	881	88	

Approved By:

Date: 9/24/99

LCS/52595

06177VOA.ML5 - CCV 9/22/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Service Request: K9906177

Date Analyzed: 9/16/99

Continuing Calibration Verification (CCV) Summary

BTEX

Sample Name: Lab Code:

CCV2

0916F003

Units: ug/L (ppb)

Basis: NA

Test Notes:

	Analysis	True		Percent	Result
Analyte	Method	Value	Result	Recovery	Notes
Benzene	8021B	100	99	99	
Toluene	8021B	100	99	99	
Ethylbenzene	8021B	100	98	98	
Xylenes, Total	8021B	300	291	97	

Approved By: LCS/52595

Date: 9/24/99

06177VOA.ML5 - CCV (2) 9/22/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Service Request: K9906177

Date Analyzed: 9/16/99

Continuing Calibration Verification (CCV) Summary Northwest TPH-Gx

Sample Name:

CCV3

Units: ug/L (ppb)

Lab Code:

0916F015

Basis: NA

Test Notes:

	Analysis	True		Percent	Result
Analyte	Method	Value	Result	Recovery	Notes
Gasoline	NWTPH-Gx	1000	851	85	
PHC as Gasoline	NWTPH-Gx	1000	851	85	
Non-PHC as Gasoline	NWTPH-Gx	1000	857	86	

Approved By:

Date: 9/24/99

00057 Page No.:

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Service Request: K9906177

Date Analyzed: 9/16/99

Continuing Calibration Verification (CCV) Summary Northwest TPH-Gx

Sample Name:

CCV4

 $Units: \ ug/L\ (ppb)$

Lab Code:

0916F024

Basis: NA

Test Notes:

Analyte	Analysis Method	True Value	Result	Percent Recovery	Result Notes
Gasoline	NWTPH-Gx	1000	905	91	110103
PHC as Gasoline Non-PHC as Gasoline	NWTPH-Gx NWTPH-Gx	1000 1000	905 906	91 91	

Approved By: ______

Date: 9/24/99

06177VOA.ML5 - CCV (4) 9/22/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K9906177

Date Collected: 9/7/99

Date Received: 9/9/99

Date Extracted: 9/13/99

Date Analyzed: 9/20/99

Surrogate Recovery Summary Northwest TPH-Dx

Prep Method: Analysis Method: NWTPH-Dx

EPA 3510C

Units: PERCENT

Basis: NA

		Test	Percent	Recovery
Sample Name	Lab Code	Notes	o-Terphenyl	n-Triacontane
HC-303-MW-1	K9906177-001		69	66
HC-303-MW-2	K9906177-002		76	71
HC-303-MW-3	K9906177-003		66	60
HC-303-OW2	K9906177-004		77	72
HC-304-MW-1	K9906177-005		72	66
HC-304-MW-2	K9906177-006		75	70
HC-304-MW-4	K9906177-007		70	65
HC-304-MW-5	K9906177-008		69	64
HC-304-MW-5	K9906177-008D		72	65
Lab Control Sample	K990913-WL		76	68
Method Blank	K990913-WB		82	78

CAS Acceptance Limits:

50-150

50-150

Approved By: _

SUR2/061197p 06177PHC.MM1 - SUR 9/23/99

Ex Date: 9/14/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Sample Matrix: Water

Service Request: K9906177

Date Collected: 9/7/99 Date Received: 9/9/99

Date Extracted: 9/13/99

Date Analyzed: 9/20/99

Duplicate Summary Northwest TPH-Dx

Sample Name:

HC-304-MW-5

Lab Code:

K9906177-008D

Test Notes:

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Mineral Spirits	EPA 3510C	NWTPH-Dx	250	ND	ND	ND	-	
Jet Fuel as Jet A	EPA 3510C	NWTPH-Dx	250	ND	ND	ND	-	
Kerosene	EPA 3510C	NWTPH-Dx	250	ND	ND	ND	-	
Diesel	EPA 3510C	NWTPH-Dx	250	ND	ND	ND	-	
Heavy Fuel Oil	EPA 3510C	NWTPH-Dx	500	ND	ND	ND	-	
Lube Oil	EPA 3510C	NWTPH-Dx	500	ND	ND	ND	-	
PHC as Diesel	EPA 3510C	NWTPH-Dx	500	ND	ND	ND	-	
Non-PHC as Diesel	EPA 3510C	NWTPH-Dx	500	ND	ND	ND	-	

PHC as Diesel Fuel: Non-PHC as Diesel: Extractable Petroleum Hydrocarbon fingerprint not matching any of the target analytes. Non-Petroleum Hydrocarbon components eluting in the extractable range of n-C8 - n-C44.

Approved By:

EL Date: 9/24/89

DUP/020597p 06177PHC.MM1 - DUP 9/23/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

LCS Matrix:

Water

Service Request: K9906177

Date Collected: NA

Date Received: NA

Date Extracted: 9/13/99 **Date Analyzed:** 9/20/99

Laboratory Control Sample Summary

Northwest TPH-Dx

Sample Name:

06177PHC.MM1 - LCS 9/23/99

Lab Control Sample

Lab Code:

K990913-WL

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Diesel	EPA 3510C	NWTPH-Dx	1600	1360	85	46-108	
Lube Oil	EPA 3510C	NWTPH-Dx	1600	1280	80	50-150	

00061

Page No.:

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

0920F005,0920F007

Service Request: K9906177

Date Analyzed: 9/20/99

Initial Calibration Verification (ICV) Summary

Northwest TPH-Dx

Sample Name:

ICV

Units: mg/L (ppm)

Basis: NA

Lab Code: Test Notes:

ICV Source:

NA

Analyte	Analysis Method	True Value	Result	Percent Recovery	Result Notes
Diesel	8015B	2000	2290	115	
Lube Oil	8015B	1000	998	100	

En Date: 9/24/97 Approved By: _

LCS/52595

06177PHC.MM2 - ICV 9/23/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

0920F035,0920F037

Service Request: K9906177

Date Analyzed: 9/20/99

Continuing Calibration Verification (CCV) Summary

Northwest TPH-Dx

Sample Name:

CCV1

Units: mg/L (ppm)

Basis: NA

Lab Code: Test Notes:

Analyte	Analysis Method	True Value	Result	Percent Recovery	Result Notes
Diesel	8015B	1000	1110	111	
Lube Oil	8015B	1000	1020	102	

LCS/52595

06177PHC.MM2 - CCV 9/23/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Service Request: K9906177

Date Analyzed: 9/20/99

Continuing Calibration Verification (CCV) Summary Northwest TPH-Dx

Sample Name:

CCV2

Units: mg/L (ppm)

Lab Code:

0920F063,0920F065

Basis: NA

Test Notes:

Analyte	Analysis Method	True Value	Result	Percent Recovery	Result Notes
Diesel	8015B	1000	1140	114	
Lube Oil	8015B	1000	1060	106	

Approved By: ______ Date: _9/24/59

LCS/52595

06177PHC.MM2 - CCV (2) 9/23/99

00064 Page No.:

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Site 303/304/7057-05

Service Request: K9906177

Date Analyzed: 9/21/99

Continuing Calibration Verification (CCV) Summary

Northwest TPH-Dx

Sample Name:

CCV3

Units: mg/L (ppm)

Lab Code:

0920F077,0920F079

Basis: NA

Test Notes:

Analyte	Analysis Method	True Value	Result	Percent Recovery	Result Notes
Diesel	8015B	1000	1110	111	
Lube Oil	8015B	1000	1030	103	

Ex __ Date: _ 9/24/99 Approved By: _ LCS/52595

06177PHC.MM2 - CCV (3) 9/23/99

Page No.:

QA/QC Report

Client: Project: Hart Crowser, Inc.

Site 303/304/7057-05

Service Request: K9906177

Date Analyzed: 9/20/99

Continuing Calibration Blank (CCB) Summary

Northwest TPH-Dx

Sample Name:

CCB1

Units: mg/L (ppm)

Lab Code:

le: 0920F011

Basis: NA

Test Notes:

Analyte	Analysis Method	MRL	Result	Result Notes
Diesel	8015B	0.25	ND	
Lube Oil	8015B	0.5	ND	

LCS/52595

UUU Page No.:

06177PHC.MM2 - CCB 9/23/99

QA/QC Report

Client:

Hart Crowser, Inc.

Service Request: K9906177

Project:

Site 303/304/7057-05

Date Analyzed: 9/20/99

Continuing Calibration Blank (CCB) Summary Northwest TPH-Dx

Sample Name:

CCB2

Units: mg/L (ppm)

Lab Code:

0920F075

Basis: NA

Test Notes:

Analyte	Analysis Method	MRL	Result	Result Notes
Diesel	8015B	0.25	ND	Tittes
Lube Oil	8015B	0.5	ND	

Approved By: ______ Date: 9/24/55

06177PHC.MM2 - CCB (2) 9/23/99

00067

Page No.:

APPENDIX B CHAIN OF CUSTODY INFORMATION

Sample Custody Record

Samples Shipped to: <u>CAS</u>

2

3

4

5

8 9

Hart Crowser, Inc. 1910 Fairview Avenue East

Seattle, Washington 98102-3699

Phone: 206-324-9530 FAX: 206-328-5581

HARTCROWSER

JOB 7057-05 **REOUESTED ANALYSIS** 87EX LAB NUMBER CONTAINERS PROJECT NAME Site 303/304
HART CROWSER CONTACT K. Quder son OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS NWTPH6, 6 Š SAMPLED BY: KCA LAB NO. SAMPLE ID DESCRIPTION DATE TIME MATRIX 1430 extra volume for MS/MSD HC-303-MW-1 1450 HC-303-MW-Z 1515 HC-303-MW-3 16e15 HC-303-0W2 1215 HC-304-MW-1 1100 HC-304-MW-2 1020 4C-304-MW-4 HC-304-MW-5 TripBlank DATE DATE TOTAL NUMBER OF CONTAINERS **RELINQUISHED BY** SPECIAL SHIPMENT HANDLING OR STORAGE REQUIREMENTS: SAMPLE RECEIPT INFORMATION 9/8/99 **CUSTODY SEALS:** MATURE VM Andevson □N/A TIME **□YES** \square NO GOOD CONDITION □YES (C) 38 COMPANY **TEMPERATURE** SHIPMENT METHOD: HAND DATE DATE **□OVERNIGHT RELINOUISHED BY** COURIER COOLER NO.: STORAGE LOCATION: TURNAROUND TIME: SIGNATURE SIGNATURE ☐ 24 HOURS ☐ 1 WEEK TIME TIME PRINT NAME PRINT NAME ☐ STANDARD ☐ 48 HOURS See Lab Work Order No. ☐ 72 HOURS OTHER ____ COMPANY for Other Contract Requirements COMPANY

Columbia Analytical Services Inc. Cooler Receipt And Preservation Form

SHORT HOLD TIME

Project/C	lient <u></u> Hare	y CPOWSER	Work (Order K99 04	/77
Cooler rec	ceived on <u>9/9/</u>	99 and opened on	$\frac{9/9}{99}$ by	Sp	·
1.	Were custody	seals on outside of co	′ /	F	NO X
2.	Were seals int	act and signature & c	late correct?	/	NO (FE) NO
3.	COC#				
	Temperature of	of cooler(s) upon rece	eipt: $\frac{3.8}{}$	<u>5.6</u>	
	Temperature I	Blank:	6.0	<u>5.9</u>	
4.	Were custody	papers properly filled	d out (ink, signed,	etc.)?	YES NO
5.	Type of packi	ng material present	STYRO, BW	exp	
6.	Did all bottles	arrive in good condi	tion (unbroken)?	ł	Ø€S NO
7.	Were all bottle	e labels complete (i.e	. analysis, preserv	ation, etc.)?	Ø€8 NO
8.	Did all bottle	labels and tags agree	with custody pape	rs?	FS NO
9.	Were the corr	ect types of bottles us	ed for the tests ind	licated?	YES NO
10.	Were all of th	e preserved bottles re	eceived at the lab v	vith the appropriate	pH? YES NO
11.	Were VOA vi	als checked for abser	nce of air bubbles,	and if present, note	ed below? (ES)NO
12.	Did the bottle	s originate from CAS	S/K or a branch lab	ooratory?	XES NO
Explain a	ny discrepancie	S AIR BURBLE	IN TRIPBLA	NK (10+2)	
Samples t	that required pro	eservation or received	d outside of temper	rature range at the l	ab(circle)
Sa	ample ID	Reagent	Volume	Lot Number	Initials
		I		1	

October 27, 1999

Service Request No: K9906520

Kym Anderson Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, WA 98102-3699

Re: Manchester/Site 303/7057-05

Dear Kym:

Enclosed are the results of the sample(s) submitted to our laboratory on September 21, 1999. For your reference, these analyses have been assigned our service request number K9906520.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 243.

lar.

Respectfully submitted,

Columbia Analytical Services, Inc.

Richard Craven Project Chemist

RAC/11

Page 1 of

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

J Estimated concentration. The value is less than the method reporting limit, but

greater than the method detection limit.

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not ApplicableNAN Not AnalyzedNC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Client:

Hart Crowser Inc.

Service Request No.:

K9906520

Project:

Manchester/Site 303

Date Received:

21-September-99

Sample Matrix:

Sediment

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier IV data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), Initial/Continuing Calibration Verification Standards (ICV/CCV), and Initial/Continuing Calibration Blanks (ICB/CCB).

All EPA recommended holding except as noted below, times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

General Chemistry: There were no QC failures observed.

Metals: There were no OC failures observed.

EPA Method 8082: Review of the quality control data associated with the initial analysis of the samples for PCBs indicated a possible systematic error in the processing which might cause a high bias of sample results. There was also indications that one of the samples might have been contaminated with PCBs not native to the matrix. The questioned samples were reextracted and reanalyzed. Since the reanalysis was completed after hold times had expired both the initial and reanalysis data are provided. Since the samples were stored cooled, and PCBs do not degrade readily, we believe the delay did not impact the final results, and the reanalysis is more representative of actual sample concentration.

Volatile Organic Compounds: Samples HC-SED-02 and HC-SED-07 have elevated detection limits due to low percent solids in the samples.

There were no QC failures observed.

Semivolatile Organic Compounds: Due to a laboratory error the matrix spike samples failed to meet control limits in the initial analysis. The spikes were prepared again and reanalyzed, and met all criteria. The reanalysis was completed after hold times expired, however the delay did not affect the sample results.

The fluorophenol surrogate was outside control limits in the method blank. All sample surrogates were acceptable, and the laboratory control spike indicated the analysis was in control, so no corrective action was taken.

Approved by Juhan Olian

Date 10/28/95

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 Date Received: 9/21/99

Total Solids

Prep Method:

NONE

Units: PERCENT

Analysis Method: 160.3M

Basis: Wet

Test Notes:

		Date		Result
Sample Name	Lab Code	Analyzed	Result	Notes
HC-SED-01	K9906520-001	9/22/99	74.9	
HC-SED-02	K9906520-002	9/22/99	49.8	
HC-SED-03	K9906520-003	9/22/99	82.7	
HC-SED-04	K9906520-004	9/22/99	82.1	
HC-SED-05	K9906520-005	9/22/99	75.7	
HC-SED-06	K9906520-006	9/22/99	66.8	
HC-SED-07	K9906520-007	9/22/99	47.4	
HC-SED-08	K9906520-008	9/22/99	71.5	
HC-SED-09	K9906520-009	9/22/99	77.8	
HC-SED-10	K9906520-010	9/22/99	73.2	
HC-SED-12	K9906520-011	9/22/99	61.3	
HC-SED-100	K9906520-012	9/22/99	68.1	

Approved By: TSOLIDS.XLT_Sample/01071998a

00004

06520TS.AB1 - 012 9/23/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Carbon, Total Organic

Prep Method:

NONE

Analysis Method: ASTM D4129-82M

Basis: Dry

Units: PERCENT

Test Notes:

M

Modified

Approved By:

06520WET.LJ1 - Sample 10/6/99

1A/020597p

Date: 10-6-99

00005

TOTAL METALS - Cover Page -

	Γ	NORGANIC AN	ALYSIS DAT	'A PACKAGE		
Contract: Har	t Crowser, Inc.				SDG No.:	K9906520
Lab Code KLAB		Case No.:	7057-05		SAS No.:	
SOW No.: SW846	<u> </u>					
	Sample No.		Lab	Sample ID.		
	HC-SED-01			06520-001		
	HC-SED-02			06520-002		
	HC-SED-03			06520-003		
	HC-SED-04			06520-004	., ., .	
	HC-SED-05			06520-005		
	HC-SED-06			06520-006		
	HC-SED-07			06520-007		
	HC-SED-08			06520-008		
	HC-SED-09			06520-009		
	HC-SED-09D		к99	06520-009D		
	HC-SED-09S		K99	06520-009s		
	HC-SED-10		<u>K99</u>	06520-010		
	HC-SED-12		<u> 1899</u>	06520-011		
	HC-SED-100		<u> K99</u>	06520-012		
If yes-we	round corrections re raw data gener on of background	ated before	,		Yes/No Yes/No	
Comments:						
						
contract, both above. Release computer-readal	this data package technically and : e of the data con- ble data submitted Manager's designe	for completed tained in the d on floppy	ness, for o is hardcopy diskette ha	other than t y data packa as been auth	he conditions ge and in the orized by the	detailed
Signature:	3 8m		Name:	GREG	JASPER ANDLYTICA	
Date:	10/4/99		Title:	Senjon	ANDITICA	<u>(400006</u>

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

HC-SED-01

Contract: Hart Crowser, Inc

Lab Code: KLAB

Level (low/med): LOW

Case No.:7057-05

SAS No.:

SDG NO.: K9906520

Matrix (soil/water): SEDIMENT

Lab Sample ID: K9906520-001

Date Received: 09/21/99

% Solids: 74.9

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7440-38-2	Arsenic	3.7		•	MS
7440-43-9	Cadmium	0.26			MS
7440-47-3	Chromium	12.2	1 1		MS
7440-50-8	Copper	10.6			MS
7439-92-1	Lead	10.5			MS
7440-02-0	Nickel	9.1			MS
7440-66-6	Zinc	29.5			MS

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

HC-SED-02

Contract: Hart Crowser, Inc

Lab Code: KLAB

Case No.:7057-05

SAS No.:

SDG NO.: K9906520

Matrix (soil/water): SEDIMENT

Lab Sample ID: K9906520-002

Level (low/med): LOW

Date Received: 09/21/99

% Solids: 49.8

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	M
7440-38-2	Arsenic	5.6			MS
7440-43-9	Cadmium	0.40			MS
7440-47-3	Chromium	16.5			MS
7440-50~8	Copper	19.9			MS
7439-92-1	Lead	19.7	1 1		MS
7440-02-0	Nickel	13.4	1 1		MS
7440-66-6	Zinc	37.4			MS

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

HC-SED-03

Contract: Hart Crowser, Inc

Lab Code: KLAB

Level (low/med): LOW

Case No.: 7057-05

SAS No.:

SDG NO.: K9906520

Matrix (soil/water): SEDIMENT

Lab Sample ID: K9906520-003

Date Received: 09/21/99

% Solids: 82.7

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	c	Q	М
7440-38-2	Arsenic	2.2			MS
7440-43-9	Cadmium	0.03			MS
7440-47-3	Chromium	7.3	1 1		MS
7440-50-8	Copper	8.38			MS
7439-92-1	Lead	8.68			MS
7440-02-0	Nickel	6.9			MS
7440-66-6	Zinc	24.0			MS

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

HC-SED-04

Contract: Hart Crowser, Inc

Lab Code: KLAB

Case No.:7057-05

SAS No.:

SDG NO.: K9906520

Matrix (soil/water): SEDIMENT

Level (low/med): LOW

Lab Sample ID: K9906520-004

Date Received: 09/21/99

% Solids: 82.1

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	C	Q	М
7440-38-2	Arsenic	2.2	<u>i i</u>		MS
7440-43-9	Cadmium	0.07			MS
7440-47-3	Chromium	11.0			Ms
7440-50-8	Copper	8.05	<u> </u>		MS
7439-92-1	Lead	10.5	1 1		MS
7440-02-0	Nickel	8.9	ĪĪ		MS
7440-66-6	Zinc	30.7			MS

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

HC-SED-05

Contract: Hart Crowser, Inc

Lab Code: KLAB

Level (low/med): LOW

Case No.: 7057-05

SAS No.:

SDG NO.: K9906520

Matrix (soil/water): SEDIMENT

Lab Sample ID: K9906520-005

Date Received: 09/21/99

% Solids: 75.7

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7440-38-2	Arsenic	1.6			MS
7440-43-9	Cadmium	0.10			MS
7440-47-3	Chromium	20.0			MS
7440-50-8	Copper	12.2			MS
7439-92-1	Lead	5.32			MS
7440-02-0	Nickel	16.7			MS
7440-66-6	Zinc	37.9			MS

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

HC-SED-06

Contract: Hart Crowser, Inc

Lab Code: KLAB

Level (low/med): LOW

Case No.:7057-05

SAS No.:

SDG NO.: K9906520

Matrix (soil/water): SEDIMENT

Lab Sample ID: K9906520-006

Date Received: 09/21/99

% Solids: 66.8

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7440-38-2	Arsenic	3.2			MS
7440-43-9	Cadmium	0.25			MS
7440-47-3	Chromium	14.5			мѕ
7440-50-8	Copper	13.0	1		MS
7439-92-1	Lead	8.01			мѕ
7440-02-0	Nickel	13.8			MS
7440-66-6	Zinc	28.8		1	MS

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

HC-SED-07

Contract: Hart Crowser, Inc

Lab Code: KLAB

Case No.:7057-05

SAS No.:

SDG NO.: K9906520

Matrix (soil/water): SEDIMENT

Lab Sample ID: K9906520-007

Level (low/med): LOW

Date Received: 09/21/99

% Solids: 47.4

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7440-38-2	Arsenic	21.1			MS
7440-43-9	Cadmium	0.42			MS
7440-47-3	Chromium	27.8			MS
7440-50-8	Copper	124			MS
7439-92-1	Lead	63.6			MS
7440-02-0	Nickel	28.0			MS
7440-66-6	Zinc	165			MS

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

00013

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

HC-SED-08

Contract: Hart Crowser, Inc

Lab Code: KLAB

Level (low/med): LOW

Case No.: 7057-05

SAS No.:

SDG NO.: K9906520

Matrix (soil/water): SEDIMENT

Lab Sample ID: K9906520-008

Date Received: 09/21/99

% Solids: 71.5

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7440-38-2	Arsenic	2.7			MS
7440-43-9	Cadmium	0.16			MS
7440-47-3	Chromium	11.8			MS
7440-50-8	Copper	8.66			MS
7439-92-1	Lead	6.50		1	MS
7440-02-0	Nickel	11.3			MS
7440-66-6	Zinc	22.5		1	MS

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

HC-SED-09

Contract: Hart Crowser, Inc

Lab Code: KLAB

Case No.: 7057-05

SAS No.:

SDG NO.: K9906520

Matrix (soil/water): SEDIMENT

Lab Sample ID: K9906520-009

Level (low/med): LOW

Date Received: 09/21/99

% Solids: 77.8

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	c	Q	М
7440-38-2	Arsenic	4.0			MS
7440-43-9	Cadmium	0.18			MS
7440-47-3	Chromium	12.2	1 1		MS
7440-50-8	Copper	7.63	Ī		MS
7439-92-1	Lead	6.05	1 1		MS
7440-02-0	Nickel	12.4			MS
7440-66-6	Zinc	21.5			MS

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

HC-SED-10

Contract: Hart Crowser, Inc

Lab Code: KLAB

Case No.: 7057-05

SAS No.:

SDG NO.: K9906520

Matrix (soil/water): SEDIMENT

Lab Sample ID: <u>K9</u>906520-010

Level (low/med): LOW

Date Received: 09/21/99

% Solids: 73.2

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7440-38-2	Arsenic	3.9	l		мѕ
7440-43-9	Cadmium	0.15			MS
7440-47-3	Chromium	15.4		[мѕ
7440-50-8	Copper	11.0			MS
7439-92-1	Lead	9.28		ł	MS
7440-02-0	Nickel	16.2			MS
7440-66-6	Zinc	28.8	1		мѕ

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

HC-SED-12

Contract: Hart Crowser, Inc

Lab Code: KLAB

Level (low/med): LOW

Case No.: 7057-05

SAS No.:

SDG NO.: K9906520

Matrix (soil/water): SEDIMENT

Lab Sample ID: K9906520-011

Date Received: 09/21/99

% Solids: 61.3

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7440-38-2	Arsenic	6.3			Ms
7440-43-9	Cadmium	0.12			MS
7440-47-3	Chromium	27.5			MS
7440-50-8	Copper	30.6			MS
7439-92-1	Lead	9.45	1		MS
7440-02-0	Nickel	27.4			MS
7440-66-6	Zinc	62.6			MS

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

HC-SED-100

Contract: Hart Crowser, Inc

Lab Code: KLAB Case No.: 7057-05 SAS No.:

Level (low/med): LOW

SDG NO.: K9906520

Matrix (soil/water): SEDIMENT

Lab Sample ID: K9906520-012

Date Received: 09/21/99

% Solids: 68.1

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	м
7440-38-2	Arsenic	3.4	İ		MS
7440-43-9	Cadmium	0.27			MS
7440-47-3	Chromium	14.2			MS
7440-50-8	Copper	13.9			MS
7439-92-1	Lead	7.91			MS
7440-02-0	Nickel	13.8			MS
7440-66-6	Zinc	29.5			MS

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 **Date Received:** 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-01

Units: ug/Kg (ppb)

Lab Code:

K9906520-001

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	В
Aroclor 1221	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	В
Aroclor 1232	EPA 3540C	8082	15	4	1	9/23/99	10/5/99	ND	В
Aroclor 1242	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	В
Aroclor 1248	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	5	J

В

The MRL is elevated because of matrix interferences.

Approved By:

1S22/020597p

Date:

10-7-69

00,019

06520SVG.AY1 - 1 10/7/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520 **Date Collected:** 9/17/99

Date Received: 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-01

Units: ug/Kg (ppb)

Lab Code:

K9906520-001Re

Basis: Dry

Test Notes:

Η

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	10/20/99	10/23/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	

Η

The analysis was performed past the recommended hold time; see case narrative.

1S22/020597p

Date: <u>/0-28-9</u>9

00.20

06520SVG.JG1 - 1 10/27/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 Date Received: 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-02

Units: ug/Kg (ppb)

Basis: Dry

Lab Code:

K9906520-002 Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	15	4	1	9/23/99	10/5/99	ND	В
Aroclor 1221	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	В
Aroclor 1232	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	В
Aroclor 1242	EPA 3540C	8082	15	4	1	9/23/99	10/5/99	ND	В
Aroclor 1248	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	10	J

В

The MRL is elevated because of matrix interferences.

Approved By:

1S22/020597p

00021

06520SVG.AY1 - 2 10/7/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520 **Date Collected:** 9/17/99

Date Received: 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-02

Units: ug/Kg (ppb)

Lab Code:

K9906520-002Re

Basis: Dry

Test Notes:

Η

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	10/20/99	10/27/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	10/20/99	10/27/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	10/20/99	10/27/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	10/20/99	10/27/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	10/20/99	10/27/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	10/20/99	10/27/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	10/20/99	10/27/99	ND	

Н

The analysis was performed past the recommended hold time; see case narrative.

Approved By:

1S22/020597p

Date: 10-28-99

06520SVG.JG1 - 2 10/28/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-03

Units: ug/Kg (ppb)

Lab Code:

K9906520-003

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	15	4	1	9/23/99	10/5/99	ND	В
Aroclor 1221	EPA 3540C	8082	40	4	1	9/23/99	10/5/99	ND	В
Aroclor 1232	EPA 3540C	8082	25	4	1	9/23/99	10/5/99	ND	В
Aroclor 1242	EPA 3540C	8082	15	4	1	9/23/99	10/5/99	ND	В
Aroclor 1248	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	7	J

В

The MRL is elevated because of matrix interferences.

Approved By:

1S22/020597p

Date/0-7-99

00023

06520SVG.AY1 - 3 10/7/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-03

Units: ug/Kg (ppb)

Lab Code:

K9906520-003Re

Basis: Dry

Test Notes:

Η

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	10/20/99	10/23/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	5	J

Η

The analysis was performed past the recommended hold time; see case narrative.

1S22/020597p

Date: 10-28-99

06520SVG.JG1 - 3 10/27/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 **Date Received:** 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-04

Lab Code: Test Notes:

K9906520-004

Units: ug/Kg (ppb)

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	7	J

Approved By:

1S22/020597p

Data: 10-7-99

00025

06520SVG.AY1 - 4 10/7/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Units: ug/Kg (ppb)

Basis: Dry

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-04

Lab Code:

K9906520-004Re

Test Notes:

Н

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	10/20/99	10/24/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	10/20/99	10/24/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	10/20/99	10/24/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	10/20/99	10/24/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	10/20/99	10/24/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	10/20/99	10/24/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	10/20/99	10/24/99	ND	

Η

The analysis was performed past the recommended hold time; see case narrative.

Approved By:

1S22/020597p

Date: 10-28-99

00026

06520SVG.JG1 - 4 10/27/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-05

Units: ug/Kg (ppb)

Lab Code:

K9906520-005

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	

Approved By:

1S22/020597p

Date: 10-7-99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-06

Lab Code:

K9906520-006

Basis: Dry

Units: ug/Kg (ppb)

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	5	J

Approved By:

1S22/020597p

Date: 10-7-99

00028

06520SVG.AY1 - 6 10/7/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-06

Un

Units: ug/Kg (ppb)

Lab Code:

K9906520-006Re

Basis: Dry

Test Notes:

Η

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	10/20/99	10/24/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	10/20/99	10/24/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	10/20/99	10/24/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	10/20/99	10/24/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	10/20/99	10/24/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	10/20/99	10/24/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	10/20/99	10/24/99	16	

Η

The analysis was performed past the recommended hold time; see case narrative.

Approved By:

1S22/020597p

Date: 10-28-99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520 **Date Collected:** 9/17/99

Date Received: 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-07

Lab Code:

K9906520-007

Units: ug/Kg (ppb)
Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	В
Aroclor 1221	EPA 3540C	8082	40	4	1	9/23/99	10/5/99	ND	В
Aroclor 1232	EPA 3540C	8082	40	4	1	9/23/99	10/5/99	ND	В
Aroclor 1242	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	В
Aroclor 1248	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	137	
Aroclor 1260	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	

В

The MRL is elevated because of matrix interferences.

Approved By:

1S22/020597p

Date: 14-7.9

0000

06520SVG.AY2 - 7 10/7/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 **Date Received:** 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-07

Units: ug/Kg (ppb)

Lab Code: Test Notes: K9906520-007Re H Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	10/20/99	10/27/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	10/20/99	10/27/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	10/20/99	10/27/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	10/20/99	10/27/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	10/20/99	10/27/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	10/20/99	10/27/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	10/20/99	10/27/99	17	

Η

The analysis was performed past the recommended hold time; see case narrative.

Approved By:

1S22/020597p

Date: 10-28-99

00031

06520SVG.JG2 - 7 10/28/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 Date Received: 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-08

Lab Code:

K9906520-008

Units: ug/Kg (ppb) Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	

Approved By:

1S22/020597p

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520 Date Collected: 9/17/99

Date Received: 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-09

Lab Code: Test Notes: K9906520-009

Units: ug/Kg (ppb)

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	

Approved By:

1S22/020597p

06520SVG.AY2 - 9 10/7/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-10

Units: ug/Kg (ppb)

Lab Code:

K9906520-010

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	

Approved By:

1S22/020597p

Date: 10-7-99

06520SVG.AY2 - 10 10/7/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-12

Lab Code:

K9906520-011

Units: ug/Kg (ppb)
Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	

Approved By:

1S22/020597p

Data: 10

7-9**9**

00035

06520SVG.AY2 - 11 10/7/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-100

Units: ug/Kg (ppb)

Lab Code:

K9906520-012

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	

Approved By: 1S22/020597p

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: NA **Date Received:** NA

Polychlorinated Biphenyls (PCBs)

Sample Name:

Method Blank

Lab Code:

KWG9903203-4

Basis: Dry

Units: ug/Kg (ppb)

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	9/23/99	10/5/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	9/23/99	10/5/99	ND	

1S22/020597p

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: NA **Date Received:** NA

Polychlorinated Biphenyls (PCBs)

Sample Name:

Method Blank

Units: ug/Kg (ppb)

Lab Code:

KWG9903675-3

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Aroclor 1016	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	
Aroclor 1221	EPA 3540C	8082	20	4	1	10/20/99	10/23/99	ND	
Aroclor 1232	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	
Aroclor 1242	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	
Aroclor 1248	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	
Aroclor 1254	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	
Aroclor 1260	EPA 3540C	8082	10	4	1	10/20/99	10/23/99	ND	

Approved By: _

1S22/020597p

Date: 10-28 99

00038

06520SVG.JG1 - MB 10/27/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520 Date Collected: 9/17/99

Date Received: 9/21/99

Volatile Organic Compounds

Sample Name:

Lab Code:

HC-SED-01

Units: ug/Kg (ppb)

Basis: Dry

ND

Test Notes:

o-Xylene

K9906520-001

EPA 5030A

Analysis **Dilution** Date **Date** Result Prep Analyte Method Method MRL MDL Factor Extracted Analyzed Result Notes 9/30/99 Benzene EPA 5030A 8260B 5 2 1 NA ND 5 5 5 Toluene EPA 5030A 8260B 2 2 3 1 NA 9/30/99 ND Ethylbenzene ND EPA 5030A 8260B 9/30/99 1 NA 8260B m, p-Xylenes EPA 5030A 9/30/99 ND 1 NA

5

2

1

NA

9/30/99

8260B

Approved By: 06520 VOA:ML1 - 182p 10/14/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520 **Date Collected:** 9/17/99

Date Received: 9/21/99

Volatile Organic Compounds

Sample Name:

HC-SED-02

Units: ug/Kg (ppb)

Lab Code:

K9906520-002

Basis: Dry

Te

est	N	otes:		F

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030A	8260B	10	2	2	NA	9/30/99	ND	
Toluene	EPA 5030A	8260B	10	2	2	NA	9/30/99	ND	
Ethylbenzene	EPA 5030A	8260B	10	2	2	NA	9/30/99	ND	
m,p-Xylenes	EPA 5030A	8260B	10	3	2	NA	9/30/99	ND	
o-Xylene	EPA 5030A	8260B	10	2	2	NA	9/30/99	ND	

The MRL is elevated because of the low percent solids in the sample as received.

Approved By: 06520VOA:ML1 - 182p (2) 10/14/5

F

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 Date Received: 9/21/99

Volatile Organic Compounds

Sample Name:

HC-SED-03

Units: ug/Kg (ppb)

Test Notes:

Lab Code:

Basis: Dry

K9906520-003

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	
Toluene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	
Ethylbenzene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	
m,p-Xylenes	EPA 5030A	8260B	5	3	1	NA	9/30/99	ND	
o-Xylene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	

Approved By: 06520 VOA:ML1 - 182p (3) 10/1

Date: 10/19/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 Date Received: 9/21/99

Volatile Organic Compounds

Sample Name: Lab Code:

HC-SED-04

Units: ug/Kg (ppb)

Test Notes:

K9906520-004

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	
Toluene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	
Ethylbenzene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	
m,p-Xylenes	EPA 5030A	8260B	5	3	1	NA	9/30/99	ND	
o-Xylene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	

Approved By: 06520 VOA:ML1 - 182p (4) 10/14/99

_ Date: ____

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 Date Received: 9/21/99

Volatile Organic Compounds

Sample Name:

HC-SED-05

Units: ug/Kg (ppb)

Lab Code:

K9906520-005

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	
Toluene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	
Ethylbenzene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	
m,p-Xylenes	EPA 5030A	8260B	5	3	1	NA	9/30/99	ND	
o-Xylene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	

Approved By: 06520 VOA.ML1 - 182p (5) 10/14/99

Date: 10/9/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Volatile Organic Compounds

Sample Name:

Lab Code:

HC-SED-06

K9906520-006

Units: ug/Kg (ppb)

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	
Toluene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	
Ethylbenzene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	
m,p-Xylenes	EPA 5030A	8260B	5	3	1	NA	9/30/99	ND	
o-Xylene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	

Approved By: 06520VOA:ML1 - 182p (6) 10/14/99

Date: 10/15/99

0 Q Q 4 4

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 Date Received: 9/21/99

Volatile Organic Compounds

Sample Name:

HC-SED-07

Units: ug/Kg (ppb)

Lab Code: T

K9906520-007

Basis: Dry

`est	Notes:	1

	Prep	Analysis			Dilution	Date	Date		Result
Analyte	Method	Method	MRL	MDL	Factor	Extracted	Analyzed	Result	Notes
Benzene	EPA 5030A	8260B	10	2	2	NA	10/1/99	ND	
Toluene	EPA 5030A	8260B	10	2	2	NA	10/1/99	ND	
Ethylbenzene	EPA 5030A	8260B	10	2	2	NA	10/1/99	ND	
m,p-Xylenes	EPA 5030A	8260B	10	3	2	NA	10/1/99	ND	
o-Xylene	EPA 5030A	8260B	10	2	2	NA	10/1/99	ND	

The MRL is elevated because of the low percent solids in the sample as received.

F

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Volatile Organic Compounds

Sample Name: Lab Code:

Test Notes:

HC-SED-08

K9906520-008

Units: ug/Kg (ppb)

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	
Toluene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	
Ethylbenzene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	
m, p-Xylenes	EPA 5030A	8260B	5	3	1	NA	10/1/99	ND	
o-Xylene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	

Approved By: 06520 VOA:ML1 - 182p (8) 10/14/9

n Straff Date: 10/19/

Analytical Report

Client:

Hart Crowser, Inc.

Project: Sample Matrix: Manchester/Site 303/7057-05

Sediment

Service Request: K9906520 **Date Collected:** 9/17/99

Date Received: 9/21/99

Volatile Organic Compounds

Sample Name: Lab Code:

HC-SED-09

Units: ug/Kg (ppb)

K9906520-009

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	
Toluene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	
Ethylbenzene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	
m,p-Xylenes	EPA 5030A	8260B	5	3	1	NA	10/1/99	ND	
o-Xylene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	

Approved By:

Date: 10/21/99

00047

06520VOA.ML1 - 1S2p (9) 10/27/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Volatile Organic Compounds

Sample Name: Lab Code:

HC-SED-10

Units: ug/Kg (ppb)

Test Notes:

K9906520-010

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date l Analyzed	Result	Result Notes
Benzene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	
Toluene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	
Ethylbenzene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	
m,p-Xylenes	EPA 5030A	8260B	5	3	1	NA	10/1/99	ND	
o-Xylene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	

Approved By: 06520 VOA:-ML1 - 182p (10) 10/14/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 Date Received: 9/21/99

Volatile Organic Compounds

Sample Name: Lab Code:

Test Notes:

HC-SED-12

K9906520-011

Units: ug/Kg (ppb)

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	
Toluene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	
Ethylbenzene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	
m,p-Xylenes	EPA 5030A	8260B	5	3	1	NA	10/1/99	ND	
o-Xylene	EPA 5030A	8260B	5	2	1	NA	10/1/99	ND	

Approved By: 06520VOA:ML1 - 182p (11) 10/14/99

0,0049

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 **Date Received:** 9/21/99

Volatile Organic Compounds

Sample Name:

Lab Code:

HC-SED-100

K9906520-012

Units: ug/Kg (ppb)

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene Toluene Ethylbenzene	EPA 5030A EPA 5030A EPA 5030A	8260B 8260B 8260B	5 5 5	2 2 2	1 1 1	NA NA NA	10/1/99 10/1/99 10/1/99	ND ND ND	
<i>m,p</i> -Xylenes <i>o</i> -Xylene	EPA 5030A EPA 5030A	8260B 8260B	5	2	1	NA NA	10/1/99 10/1/99	ND ND	

Approved By: 06520 VOA.ML1 - 182p (12) 10/1

Date: __

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:

Method Blank

Units: ug/Kg (ppb)

Test Notes:

K990930-MB

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	
Toluene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	
Ethylbenzene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	
m,p-Xylenes	EPA 5030A	8260B	5	3	1	NA	9/30/99	ND	
o-Xylene	EPA 5030A	8260B	5	2	1	NA	9/30/99	ND	

Approved By: 06520 VOA:ML1 - 182p (13) 10/14/95

Analytical Report

Client: **Project:** Hart Crowser, Inc.

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 Date Received: 9/21/99

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name: Lab Code:

HC-SED-01 K9906520-001 Units: ug/Kg (ppb) Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Phenol	EPA 3550B	SIM	20	8	1	9/28/99	9/30/99	200	
2-Methylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
4-Methylphenol	EPA 3550B	SIM	20	20	1	9/28/99	9/30/99	140	*
2,4-Dimethylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
Naphthalene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	1	J
Acenaphthylene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	ND	
Acenaphthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	ND	
Dibenzofuran	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	2	J
Fluorene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	2	J
Pentachlorophenol	EPA 3550B	SIM	61	50	1	9/28/99	9/30/99	ND	
Phenanthrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	42	
Anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	5	J
Fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	72	
Pyrene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	61	
Benz(a)anthracene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	24	
Chrysene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	34	
Benzo(b)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	20	J
Benzo(k)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	20	J
Benzo(a)pyrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	20	
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	10	J
Dibenz(a,h)anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	3	J
Benzo(g,h,i)perylene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	10	J

3- and 4-Methylphenol coelute. Quantitated using 4-Methylphenol.

Approved By:

Laleiston Date: 10/6/99

00052

06520SVM.AY1 - 1 10/6/99

Analytical Report

Client: **Project:** Hart Crowser, Inc.

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520 **Date Collected:** 9/17/99

Date Received: 9/21/99

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name: Lab Code:

Test Notes:

HC-SED-02 K9906520-002 Units: ug/Kg (ppb)

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Phenol	EPA 3550B	SIM	400	8	10	9/28/99	9/30/99	1100	
2-Methylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
4-Methylphenol	EPA 3550B	SIM	400	20	10	9/28/99	9/30/99	3400	*
2,4-Dimethylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
Naphthalene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	2	J
Acenaphthylene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	3	J
Acenaphthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	5	J
Dibenzofuran	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	3	J
Fluorene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	6	J
Pentachlorophenol	EPA 3550B	SIM	61	50	1	9/28/99	9/30/99	ND	
Phenanthrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	62	
Anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	20	J
Fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	120	
Pyrene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	99	
Benz(a)anthracene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	50	
Chrysene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	65	
Benzo(b)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	42	
Benzo(k)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	34	
Benzo(a)pyrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	40	
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	24	
Dibenz(a,h)anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	5	J
Benzo(g,h,i)perylene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	20	J

3- and 4-Methylphenol coelute. Quantitated using 4-Methylphenol.

Approved By:

Luleist Date: 10/6/99

06520SVM.AY1 - 2 10/6/99

Analytical Report

Client: Project: Hart Crowser, Inc.

Manchester/Site 303/7057-05

Sample Matrix: Sediment Service Request: K9906520 **Date Collected: 9/17/99**

Date Received: 9/21/99

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name: Lab Code:

HC-SED-03

Units: ug/Kg (ppb) Basis: Dry

Test Notes:

K9906520-003

Analysis Dilution Date Date Result Prep Method Method MRL MDL Factor Extracted Analyzed Result **Notes** Analyte 9/29/99 ND Phenol **EPA 3550B** SIM 20 8 9/28/99 9/29/99 ND2-Methylphenol **EPA 3550B** SIM 6 9/28/99 6 1 20 9/28/99 9/29/99 ND4-Methylphenol EPA 3550B SIM 20 1 9/29/99 2,4-Dimethylphenol **EPA 3550B** SIM 6 6 9/28/99 ND 1 Naphthalene **EPA 3550B** SIM 20 1 9/28/99 9/29/99 ND Acenaphthylene **EPA 3550B** SIM 20 2 9/28/99 9/29/99 ND

20 2 9/29/99 Acenaphthene **EPA 3550B** SIM 9/28/99 ND 1 Dibenzofuran EPA 3550B SIM 20 9/29/99 ND1 1 9/28/99 20 Fluorene **EPA 3550B** SIM 2 1 9/28/99 9/29/99 ND Pentachlorophenol **EPA 3550B** SIM 61 50 9/28/99 9/29/99 ND 2 Phenanthrene **EPA 3550B** SIM 20 9/28/99 9/29/99 20 J J Anthracene SIM 20 1 9/28/99 9/29/99 5 **EPA 3550B** 1 9/29/99 20 53 Fluoranthene **EPA 3550B** SIM 2 9/28/99 1 EPA 3550B Pyrene SIM 20 3 9/28/99 9/29/99 40 1 Benz(a)anthracene **EPA 3550B** SIM 20 2 1 9/28/99 9/29/99 20 J Chrysene **EPA 3550B** SIM 20 3 1 9/28/99 9/29/99 20 J 9/29/99 SIM2 Benzo(b)fluoranthene **EPA 3550B** 20 1 9/28/99 10 J Benzo(k)fluoranthene **EPA 3550B** 20 2 9/28/99 9/29/99 9 J SIM 1 Benzo(a)pyrene **EPA 3550B** SIM 20 2 9/28/99 9/29/99 10 J 1 20 9/29/99 7 J Indeno(1,2,3-cd)pyrene **EPA 3550B** SIM 1 1 9/28/99 Dibenz(a,h)anthracene **EPA 3550B** SIM 20 9/28/99 9/29/99 2 J 1 1 J Benzo(g,h,i)perylene **EPA 3550B** SIM 20 1 1 9/28/99 9/29/99 6

3- and 4-Methylphenol coelute. Quantitated using 4-Methylphenol.

Approved By:

Lileistof

Date: 10 6 99

06520SVM.AY1 - 3 10/6/99

0,0054

Analytical Report

Client: Project: Hart Crowser, Inc.

Manchester/Site 303/7057-05

Sediment

Service Request: K9906520 Date Collected: 9/17/99

Date Collected: 9/17/99 **Date Received:** 9/21/99

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name: Lab Code:

Benzo(g,h,i)perylene

Sample Matrix:

HC-SED-04 K9906520-004

EPA 3550B

SIM

Units: ug/Kg (ppb)
Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Phenol	EPA 3550B	SIM	20	8	1	9/28/99	9/29/99	37	
2-Methylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/29/99	ND	
4-Methylphenol	EPA 3550B	SIM	20	20	1	9/28/99	9/29/99	ND	*
2,4-Dimethylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/29/99	ND	
Naphthalene	EPA 3550B	SIM	20	1	1	9/28/99	9/29/99	1	J
Acenaphthylene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	3	J
Acenaphthene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	ND	
Dibenzofuran	EPA 3550B	SIM	20	1	1	9/28/99	9/29/99	ND	
Fluorene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	3	J
Pentachlorophenol	EPA 3550B	SIM	61	50	1	9/28/99	9/29/99	ND	
Phenanthrene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	34	
Anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/29/99	6	J
Fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	48	
Pyrene	EPA 3550B	SIM	20	3	1	9/28/99	9/29/99	53	
Benz(a)anthracene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	20	J
Chrysene	EPA 3550B	SIM	20	3	1	9/28/99	9/29/99	21	
Benzo(b)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	10	J
Benzo(k)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	10	J
Benzo(a)pyrene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	20	J
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	20	1	1	9/28/99	9/29/99	10	J
Dibenz(a,h)anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/29/99	2	J
								_	_

20

1

9/28/99

9/29/99

 $\hbox{3- and 4-Methylphenol coelute.} \ \ Quantitated \ using \ \hbox{4-Methylphenol}.$

Approved By:

Paleistof

00055

06520SVM.AY1 - 4 10/6/99

Page No.:

J

Analytical Report

Client:

Hart Crowser, Inc.

Project: Manchester/Site 303/7057-05 Sample Matrix: Sediment

Service Request: K9906520

Date Collected: 9/17/99 Date Received: 9/21/99

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name:

Test Notes:

HC-SED-05 K9906520-005

Lab Code:

Units: ug/Kg (ppb)

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Phenol	EPA 3550B	SIM	20	8	1	9/28/99	9/30/99	73	
2-Methylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
4-Methylphenol	EPA 3550B	SIM	20	20	1	9/28/99	9/30/99	23	*
2,4-Dimethylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
Naphthalene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	1	J
Acenaphthylene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	ND	
Acenaphthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	ND	
Dibenzofuran	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	ND	
Fluorene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	ND	
Pentachlorophenol	EPA 3550B	SIM	61	50	1	9/28/99	9/30/99	ND	
Phenanthrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	10	J
Anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	10	J
Fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	240	
Pyrene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	53	
Benz(a)anthracene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	150	
Chrysene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	130	
Benzo(b)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	62	
Benzo(k)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	51	
Benzo(a)pyrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	51	
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	23	
Dibenz(a,h)anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	5	J
Benzo(g,h,i)perylene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	20	J

3- and 4-Methylphenol coelute. Quantitated using 4-Methylphenol.

Approved By:

Lulistyf Date: 10/6/99

00056

06520SVM.AY1 - 5 10/6/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name:

HC-SED-06

Lab Code:

Test Notes:

K9906520-006

Units: ug/Kg (ppb)

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Phenol	EPA 3550B	SIM	20	8	1	9/28/99	9/30/99	ND	
2-Methylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
4-Methylphenol	EPA 3550B	SIM	20	20	1	9/28/99	9/30/99	40	*
2,4-Dimethylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
Naphthalene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	1	J
Acenaphthylene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	ND	
Acenaphthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	ND	
Dibenzofuran	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	1	J
Fluorene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	ND	
Pentachlorophenol	EPA 3550B	SIM	61	50	1	9/28/99	9/30/99	ND	
Phenanthrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	10	J
Anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	6	J
Fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	35	
Pyrene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	53	
Benz(a)anthracene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	22	
Chrysene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	29	
Benzo(b)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	20	J
Benzo(k)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	20	J
Benzo(a)pyrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	20	J
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	10	J
Dibenz(a,h)anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	3	J
Benzo(g,h,i)perylene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	9	J

3- and 4-Methylphenol coelute. Quantitated using 4-Methylphenol.

Approved By:

Lalistoff Date: 10/6/99

06520SVM.AY2 - 6 10/6/99

Analytical Report

Client: Project:

Sample Matrix:

Hart Crowser, Inc.

Manchester/Site 303/7057-05

Sediment

Service Request: K9906520 **Date Collected:** 9/17/99

Date Received: 9/1//99

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name: Lab Code:

Benzo(g,h,i)perylene

HC-SED-07 K9906520-007

EPA 3550B

SIM

Units: ug/Kg (ppb)
Basis: Dry

Test Notes:

TOBE TIOLOG.									
Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Phenol	EPA 3550B	SIM	20	8	1	9/28/99	9/30/99	80	
2-Methylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	7	
4-Methylphenol	EPA 3550B	SIM	20	20	1	9/28/99	9/30/99	80	*
2,4-Dimethylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
Naphthalene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	52	
Acenaphthylene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	46	
Acenaphthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	130	
Dibenzofuran	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	84	
Fluorene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	300	
Pentachlorophenol	EPA 3550B	SIM	61	50	1	9/28/99	9/30/99	ND	
Phenanthrene	EPA 3550B	SIM	400	2	20	9/28/99	9/30/99	3700	
Anthracene	EPA 3550B	SIM	400	1	20	9/28/99	9/30/99	1900	
Fluoranthene	EPA 3550B	SIM	400	2	20	9/28/99	9/30/99	13000	
Pyrene	EPA 3550B	SIM	400	3	20	9/28/99	9/30/99	13000	
Benz(a)anthracene	EPA 3550B	SIM	400	2	20	9/28/99	9/30/99	6900	
Chrysene	EPA 3550B	SIM	400	3	20	9/28/99	9/30/99	6900	
Benzo(b)fluoranthene	EPA 3550B	SIM	400	2	20	9/28/99	9/30/99	4200	
Benzo(k)fluoranthene	EPA 3550B	SIM	400	2	20	9/28/99	9/30/99	3400	
Benzo(a)pyrene	EPA 3550B	SIM	400	2	20	9/28/99	9/30/99	4600	
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	400	1	20	9/28/99	9/30/99	2600	
Dibenz(a,h)anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	650	

400

20

9/28/99

9/30/99

1900

 $\hbox{3- and 4-Methylphenol coelute. } Quantitated using \hbox{4-Methylphenol}.$

Approved By:

Releistorf

Date: 10 6 99

00058

06520SVM.AY2 - 7 10/6/99

Analytical Report

Client: Hart Crowser, Inc.

Project: Manchester/Site 30

Sample Matrix: Sediment

Manchester/Site 303/7057-05 Sediment **Service Request:** K9906520 **Date Collected:** 9/17/99 **Date Received:** 9/21/99

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name: HC-SED-08 Lab Code: K9906520-008

Test Notes:

Units: ug/Kg (ppb)

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Phenol	EPA 3550B	SIM	20	8	1	9/28/99	9/30/99	ND	
2-Methylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
4-Methylphenol	EPA 3550B	SIM	20	20	1	9/28/99	9/30/99	ND	*
2,4-Dimethylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
Naphthalene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	1	J
Acenaphthylene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	ND	
Acenaphthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	ND	
Dibenzofuran	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	ND	
Fluorene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	ND	
Pentachlorophenol	EPA 3550B	SIM	61	50	1	9/28/99	9/30/99	ND	
Phenanthrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	10	J
Anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	6	J
Fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	41	
Pyrene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	42	
Benz(a)anthracene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	30	
Chrysene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	45	
Benzo(b)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	27	
Benzo(k)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	20	
Benzo(a)pyrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	23	
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	20	J
Dibenz(a,h)anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	4	J
Benzo(g,h,i)perylene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	10	J

 $\hbox{$3$- and 4-Methylphenol coelute. Quantitated using 4-Methylphenol.}$

Approved By:

Raliston

Date: 10/6/49

Analytical Report

Client: Project: Hart Crowser, Inc.

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520 Date Collected: 9/17/99

Date Received: 9/21/99

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name: Lab Code:

HC-SED-09

K9906520-009

Units: ug/Kg (ppb)

Basis: Dry

Test Notes:

	Prep	Analysis			Dilution	Date	Date		Result
Analyte	Method	Method	MRL	MDL	Factor	Extracted	Analyzed	Result	Notes
Phenol	EPA 3550B	SIM	20	8	1	9/28/99	9/30/99	ND	
2-Methylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
4-Methylphenol	EPA 3550B	SIM	20	20	1	9/28/99	9/30/99	ND	*
2,4-Dimethylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
Naphthalene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	5	J
Acenaphthylene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	3	J
Acenaphthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	3	J
Dibenzofuran	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	3	J
Fluorene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	5	J
Pentachlorophenol	EPA 3550B	SIM	61	50	1	9/28/99	9/30/99	ND	
Phenanthrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	34	
Anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	10	J
Fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	70	
Pyrene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	64	
Benz(a)anthracene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	48	
Chrysene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	51	
Benzo(b)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	36	
Benzo(k)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	28	
Benzo(a)pyrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	36	
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	25	
Dibenz(a,h)anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	7	J
Benzo(g,h,i)perylene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	20	J

3- and 4-Methylphenol coelute. Quantitated using 4-Methylphenol.

Approved By:

Eulistof

06520SVM.AY2 - 9 10/6/99

Analytical Report

Client: Project: Hart Crowser, Inc.

Manchester/Site 303/7057-05

Service Request: K9906520

Sample Matrix:

Sediment

Date Collected: 9/17/99 **Date Received:** 9/21/99

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name: Lab Code:

HC-SED-10

Units: ug/Kg (ppb)

Test Notes:

K9906520-010

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Phenol	EPA 3550B	SIM	20	8	1	9/28/99	9/30/99	ND	
2-Methylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
4-Methylphenol	EPA 3550B	SIM	20	20	1	9/28/99	9/30/99	26	*
2,4-Dimethylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
Naphthalene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	1	J
Acenaphthylene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	ND	
Acenaphthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	ND	
Dibenzofuran	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	ND	
Fluorene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	3	J
Pentachlorophenol	EPA 3550B	SIM	61	50	1	9/28/99	9/30/99	ND	
Phenanthrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	20	J
Anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	10	J
Fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	53	
Pyrene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	50	
Benz(a)anthracene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	29	
Chrysene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	36	
Benzo(b)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	21	
Benzo(k)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	20	J
Benzo(a)pyrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	20	
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	10	J
Dibenz(a,h)anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	3	J
Benzo(g,h,i)perylene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	10	J

3- and 4-Methylphenol coelute. Quantitated using 4-Methylphenol.

Approved By: _

Elleistof Date: 10/6/99

00061

06520SVM.AY2 - 10 10/6/99

Analytical Report

Client: **Project:** Hart Crowser, Inc.

Manchester/Site 303/7057-05

Date Collected: 9/17/99

Service Request: K9906520

Sample Matrix:

Sediment

Date Received: 9/21/99

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name: Lab Code:

HC-SED-12 K9906520-011 Units: ug/Kg (ppb) Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Phenol	EPA 3550B	SIM	20	8	1	9/28/99	9/30/99	22	
2-Methylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
4-Methylphenol	EPA 3550B	SIM	20	20	1	9/28/99	9/30/99	65	*
2,4-Dimethylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
Naphthalene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	2	J
Acenaphthylene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	ND	
Acenaphthene	EPA 3550B	SIM	20	2	ī	9/28/99	9/30/99	ND	
Dibenzofuran	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	2	J
Fluorene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	2	J
Pentachlorophenol	EPA 3550B	SIM	61	50	1	9/28/99	9/30/99	ND	
Phenanthrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	10	J
Anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	5	J
Fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	39	
Pyrene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	32	
Benz(a)anthracene	EPA 3550B	SIM	20	2	i	9/28/99	9/30/99	20	J
Chrysene	EPA 3550B	SIM	20	3	ī	9/28/99	9/30/99	23	
Benzo(b)fluoranthene	EPA 3550B	SIM	20	2	ī	9/28/99	9/30/99	10	J
Benzo(k)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	9	J
Benzo(a)pyrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	10	J
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	7	J
Dibenz(a,h)anthracene	EPA 3550B	SIM	20	ĺ	ī	9/28/99	9/30/99	2	J
Benzo(g,h,i)perylene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	6	J

3- and 4-Methylphenol coelute. Quantitated using 4-Methylphenol.

Approved By:

Lalistoy !

Date: 10 6 49

00062

06520SVM.AY3 - 11 10/6/99

Analytical Report

Client: **Project:** Hart Crowser, Inc.

Manchester/Site 303/7057-05

Date Collected: 9/17/99

Service Request: K9906520

Sample Matrix:

Sediment

Date Received: 9/21/99

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name: Lab Code:

HC-SED-100

Units: ug/Kg (ppb)

Test Notes:

K9906520-012

Basis: Dry

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Phenol	EPA 3550B	SIM	20	8	1	9/28/99	9/30/99	ND	
2-Methylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
4-Methylphenol	EPA 3550B	SIM	20	20	1	9/28/99	9/30/99	ND	*
2,4-Dimethylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/30/99	ND	
Naphthalene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	3	J
Acenaphthylene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	4	J
Acenaphthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	ND	
Dibenzofuran	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	3	J
Fluorene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	7	J
Pentachlorophenol	EPA 3550B	SIM	61	50	1	9/28/99	9/30/99	ND	
Phenanthrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	43	
Anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	32	
Fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	110	
Pyrene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	130	
Benz(a)anthracene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	130	
Chrysene	EPA 3550B	SIM	20	3	1	9/28/99	9/30/99	270	
Benzo(b)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	78	
Benzo(k)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	78	
Benzo(a)pyrene	EPA 3550B	SIM	20	2	1	9/28/99	9/30/99	81	
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	40	
Dibenz(a,h)anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	10	J
Benzo(g,h,i)perylene	EPA 3550B	SIM	20	1	1	9/28/99	9/30/99	28	

3- and 4-Methylphenol coelute. Quantitated using 4-Methylphenol.

Approved By: _

Ruleistorf

Date: (0 | 6 | 99

00063

06520SVM.AY3 - 12 10/6/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: NA Date Received: NA

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name:

Method Blank

Lab Code: Test Notes: KWG9903260-4

Units: ug/Kg (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Phenol	EPA 3550B	SIM	20	8	1	9/28/99	9/29/99	ND	
2-Methylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/29/99	ND	
4-Methylphenol	EPA 3550B	SIM	20	20	1	9/28/99	9/29/99	ND	*
2,4-Dimethylphenol	EPA 3550B	SIM	6	6	1	9/28/99	9/29/99	ND	
Naphthalene	EPA 3550B	SIM	20	1	1	9/28/99	9/29/99	ND	
Acenaphthylene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	ND	
Acenaphthene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	ND	
Dibenzofuran	EPA 3550B	SIM	20	1	1	9/28/99	9/29/99	ND	
Fluorene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	ND	
Pentachlorophenol	EPA 3550B	SIM	61	50	1	9/28/99	9/29/99	ND	
Phenanthrene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	ND	
Anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/29/99	ND	
Fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	ND	
Pyrene	EPA 3550B	SIM	20	3	1	9/28/99	9/29/99	ND	
Benz(a)anthracene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	ND	
Chrysene	EPA 3550B	SIM	20	3	1	9/28/99	9/29/99	ND	
Benzo(b)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	ND	
Benzo(k)fluoranthene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	ND	
Benzo(a)pyrene	EPA 3550B	SIM	20	2	1	9/28/99	9/29/99	ND	
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	20	1	1	9/28/99	9/29/99	ND	
Dibenz(a,h)anthracene	EPA 3550B	SIM	20	1	1	9/28/99	9/29/99	ND	
Benzo(g,h,i)perylene	EPA 3550B	SIM	20	1	1	9/28/99	9/29/99	ND	

3- and 4-Methylphenol coelute. Quantitated using 4-Methylphenol.

Approved By: __

Calistof

06520SVM.AY1 - MB 10/6/99

APPENDIX A LABORATORY QC RESULTS

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Duplicate Summary

Total Solids

Prep Method:

NONE

Analysis Method: 160.3M

Units: PERCENT

Basis: Wet

Test Notes:

Duplicate Relative Sample **Percent** Result Date Sample Average Difference Result Result **Notes** Sample Name Lab Code Analyzed HC-SED-01 K9906520-001DUP 9/22/99 74.9 74.8 74.9 <1

Approved By: TSOLIDS.XLT_DUP/09291998a Date: 16/4/89

06520TS.AB1 - DUP 9/23/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix: Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99 Date Extracted: NA

Date Analyzed: 10/1/99

Duplicate Summary Carbon, Total Organic

Sample Name:

HC-SED-01

Lab Code:

K9906520-001DUP

Units: PERCENT

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Carbon, Total Organic	NONE	ASTM D4129-82M	0.05	0.52	0.49	0.50	6	

M

Modified

Approved By:

DUP/020597p 06520WET.LJ1 - DUP 10/6/99

Date: 10-6-99

QA/QC Report

Client:

Hart Crowser, Inc.

Service Request: K9906520

Project:

Manchester/Site 303/7057-05

Date Collected: 9/17/99 Date Received: 9/21/99

Sample Matrix:

Sediment

Date Extracted: NA

Date Analyzed: 10/1/99

Matrix Spike Summary Carbon, Total Organic

Sample Name:

HC-SED-01

Units: PERCENT

Lab Code:

K9906520-001MS

Basis: Dry

Test Notes:

CAS

Percent

Spiked Recovery Sample Percent Acceptanc Result Prep **Analysis** Spike Sample Limits Method Result Result Recovery **Notes Analyte** Method MRL Level 2.92 0.52 3.44 100 75-125 Carbon, Total Organic NONE ASTM D4129-82M 0.05

M

06520WET.LJ1 - MS 10/6/99

Modified

Date: _____(0-6-99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

LCS Matrix:

Sediment

Service Request: K9906520

Date Collected: NA
Date Received: NA
Date Extracted: NA

Date Analyzed: 10/1/99

Laboratory Control Sample Summary

Carbon, Total Organic

Sample Name:

Lab Control Sample

Lab Code:

K9906520-LCS

Units: PERCENT

Basis: Dry

Test Notes:

CAS Percent Recovery Acceptance Result Analysis True Percent Prep Method Method Value Result Recovery Limits **Notes** Analyte Carbon, Total Organic NONE ASTM D4129-82M 1.16 1.15 99 85-115

M

Modified

06520WET.LJ1 - LCS 10/6/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Service Request: K9906520

Date Collected: NA
Date Received: NA

Date Analyzed: 10/1,6/99

Carbon, Total Organic ASTM D4129-82M Units: PERCENT Dry Weight Basis

CONTINUING CALIBRATION VERIFICATION (CCV)

	True	Measured	Percent
	Value	Value	Recovery
CCV 1 Result	20.0	19.4	97
CCV 2 Result	20.0	19.9	98
CCV 1 Result	20.0	19.9	100
CCV 2 Result	20.0	19.5	98

CONTINUING CALIBRATION BLANK (CCB)

			Blank
		MRL	Value
CCB 1	Result	0.05	ND
CCB 2	Result	0.05	ND
CCB 1	Result	0.05	ND
CCB 2	Result	0.05	ND

Approved By:

COMBOQCD/042695

Date: 10-6-99

00070

10/6/95

TOTAL METALS

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract: Hart Crowser, Inc

Lab Code: KLAB Case No.: 7057-05 SAS No.: SDG NO.: K9906520

Initial Calibration Source: ICV Source

Continuing Calibration Source: CCV Source

Concentration Units: ug/L

	Initial Calibration			Contin	_				
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	М
Arsenic	50	49.1	98	25	24.7	99	24.8	99	MS
Cadmium	25	25.5	102	25	25.5	102	25.3	101	MS
Chromium	20	19.4	97	25	24.4	98	24.6	98	мѕ
Copper	25	24.0	96	25	24.6	98	25.0	100	MS
Lead	50	50.5	101	25	25.0	100	25.0	100	мѕ
Nickel	50 l	47.8	96	25	24.7	99	24.9	100	мѕ
Zinc	50	49.2	98	25	24.9	100	25.0	100	MS

TOTAL METALS

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract: Hart Crowser, Inc

Lab Code: KLAB Case No.: 7057-05 SAS No.: SDG NO.: K9906520

Initial Calibration Source:

Continuing Calibration Source: CCV Source

Concentration Units: ug/L

	Initi	al Calibrat	ion	Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Arsenic		l		25	24.9	100	25.2	101	мѕ
Cadmium		1		25	24.9	100	24.9	100	MS
Chromium			Ī	25	24.5	98	25.5	102	MS
Copper				25	25.1	100	25.2	101	MS
Lead				25	25.4	102	24.8	99	MS
Nickel		[1	25	24.4	98	24.7	99	MS
Zinc				25	24.7	99	24.7	99	MS

TOTAL METALS - 2b -

CRDL STANDARD FOR AA AND ICP

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05 SAS No.:

SDG No.: K9906520

AA CRDL Standard Source:

ICP CRDL Standard Source:

ICP Std Source

Concentration Units: ug/L

	anni at-	ndard for A	3		CRDL Stand	ard for	ICP	
	CRDL Sta	indard for A	A	Init	ial		Final	
Analyte	True	Found	%R	True	Found	8R	Found	%R
Arsenic				1.0	0.98	98		
Cadmium				1.0	0.95	95		
Chromium				1.0	1.02	102		
Copper				1.0	0.96	96		
Lead				1.0	0.98	98		
Nickel				1.0	1.02	102		
Zinc				1.0	1.01	101		

TOTAL METALS - 3 -**BLANKS**

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05 SAS No.:

SDG NO.: K9906520

Preparation Blank Matrix (soil/water): SOIL

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

	Initial Calib. Blank			Co	ontinuing C Blank (u	Preparation Blank				
Analyte	(ug/L)	С	1	С	2	С	3	C	c c	М
Arsenic		ĪĪ	0.4	ט	0.4	ש	0.4	ט	0.2 ซ	МЗ
Cadmium	I	ii	0.04	ט	0.04	ט	0.04	ט	0.02 U	MS
Chromium	1	ii	0.1	ט	0.1	ט	0.1	ט	0.1 ј	MS
Copper	1	iii	0.06	ט	0.06	ט	0.06	ש	0.03 υ	MS
Lead	1		0.04	ט	0.04	[ט	0.04	ַ	0.02 ປ	MS
Nickel	l	Ī	0.4	ט	0.4	ט	0.4	U	0.2 U	MS
Zinc			0.4	ט	0.4	ש	0.4	ט	0.2 U	MS

TOTAL METALS - 5a -

SPIKE SAMPLE RECOVERY

SAMPLE NO.

HC-SED-09S

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05

SAS No.:

SDG NO.: K9906520

LOW

Matrix (soil/water): SEDIMENT

Level (low/med):

% Solids for Sample: 77.8

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	%R	Q	м
Arsenic	60 - 130	53.0		4.04		51.4	95		MS
Cadmium	60 - 130	13.0		0.183		12.9	99		MS
Chromium	60 - 130	62.1	$\overline{ig }$	12.2		51.4	97		MS
Copper	60 - 130	66.4		7.63		64.3	91		MS
Lead	60 - 130	131		6.05		129	97		MS
Nickel	60 - 130	128		12.4		129	90		MS
Zinc	60 - 130	138		21.5		129	90		мѕ

ငင	\mathbf{m}	ne	n	τ	s	:

TOTAL METALS

-6-**DUPLICATES**

SAMPLE NO.

HC-SED-09D

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05

SAS No.:

SDG NO.: K9906520

Matrix (soil/water): SEDIMENT

Level (low/med):

LOW

% Solids for Sample: 77.8

% Solids for Duplicate: 77.8

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

Analyte	Control Limit	Sample (S)	С	Duplicate	(D) C	RPD	Q	м
Arsenic	1		4.0		3.0	31	1	MS
Cadmium	1		0.18		0.13	32		MS
Chromium	1		12.2		10.8	12		MS
Copper			7.63		7.06	8		MS
Lead			6.05		5.46	10		MS
Nickel			12.4		10.7	15		MS
Zinc			21.5		18.7	14		MS

TOTAL METALS

- 7 -

LABORATORY CONTROL SAMPLE

Contract: Hart Crowser, Inc

Lab Code: KLAB Case No.: 7057-05 SAS No.:

SDG NO.: K9906520

Solid LCS Source:

Aqueous LCS Source: INORG VENT

	Aque	eous (ug/L)	Solid (mg/kg)									
Analyte	True	Found %R	True	Found C	Limits		&R					
Arsenic			82.4	73.3	62.0	138	89					
Cadmium			94.3	75.2	55.0	144	80					
Chromium		1	97.8	83.2	69.0	131	85					
Copper			81.3	66.1	50.0	113	81					
Lead			190	153	60.0	140	81					
Nickel			164	128	67.0	133	78					
Zinc			103	86.0	62.7	142	83					

TOTAL METALS -10METHOD DETECTION LIMITS

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05

SAS No.:

SDG NO.: K9906520

ICP ID Number: VG ICPMS

Date: 07/15/99

Flame AA ID Number: Furnace AA ID Number:

Analyte	Mass	Back- ground	MRL (ug/L)	MDL (ug/L)	м
Arsenic	75		1.0	0.4	MS
Cadmium	111		0.04	0.04	MS
Chromium	52		0.4	0.1	MS
Copper	65		0.20	0.06	MS
Lead	208		0.04	0.04	MS
Nickel	60		0.4	0.4	MS
Zinc	66		1.0	0.4	MS

Comments		 		 	 		 	
	-							
		 	 	 	 	,	 	

TOTAL METALS

- 12 -

ICP LINEAR RANGES

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05

SAS No.:

SDG NO.: K9906520

ICP ID Number: VG ICPMS

Date: 07/15/99

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	м
Arsenic	15.00	1000.0	MS
Cadmium	15.00	1000.0	MS
Chromium	15.00	200.0	MS
Copper	15.00	1000.0	MS
Lead	15.00	1000.0	MS
Nickel	15.00	1000.0	MS
Zinc	15.00	1000.0	MS

Comments:	
-----------	--

TOTAL METALS - 13 -PREPARATION LOG

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05

SAS No.:

SDG NO.: K9906520

Method MS

Sample No.	Preparation Date	Weight (grams)	Volume (mL)
К9906520-001	9/28/99	1.00	100
K9906520-002	9/28/99	2.00	100
K9906520-003	9/28/99	1.00	100
K9906520-004	9/28/99	1.00	100
K9906520-005	9/28/99	1.00	100
K9906520-006	9/28/99	2.00	100
K9906520-007	9/28/99	2.00	100
K9906520-008	9/28/99	1.00	100
K9906520-009	9/28/99	1.00	100
K9906520-009D	9/28/99	1.00	100
K9906520-009S	9/28/99	1.00	100
K9906520-010	9/28/99	1.00	100
К9906520-012	9/28/99	2.00	100
K9906520-011	9/28/99	2.00	100
LCSS	9/28/99	1.00	100
PBS	9/28/99	1.00	100

TOTAL METALS - 14 ANALYSIS RUN LOG

Contract Hart Crowser, Inc.

Lab Code: KLAB Case No.: 7057-05 SAS No.: SDG No.: K9906520

Instrument ID Number: VG ICPMS Method: MS

Start Date: 10/1/99 End Date: 10/1/99

										•			F	na	1y	te	5										
Sample	D/F	Time	% R	A	S	A	В	ı	С	С		С		F		М				ĸ	1	A	ı	Т		Z	
No.				L	В	s	A	_	D	A	- -	0	=	E	В	G	N	G	I	_	E	G	Α	Ъ	₩	N	N
so	1.00	08:25				X		_	x		X		X		x				Х						Ш	X	
S25	1.00	08:29				X			x		X		х		x				х							X	<u> </u>
ICV	1.00	08:33				x			X		X		X		х				X							X	<u> </u>
CCV1	1.00	08:37				X			X		X		X		X				X							х	
CCB1	1.00	08:41				X			X		X		X		X				X						<u> </u>	X	
CRDL1	1.00	08:45				X			X		X		X		x				X						\prod	X	
ZZZZZZ	1.00	08:49																									
ZZZZZZ	1.00	08:53																									
ZZZZZZ	1.00	08:57																							\prod		
ZZZZZZ	1.00	09:01																							П		
CCV2	1.00	09:05				х			х		x		X		х				x						\Box	х	
CCB2	1.00	09:09				х			Х		x		x		х				Х						П	x	
ZZZZZZ	1.00	09:13																							\Box		
ZZZZZZ	1.00	09:17							Γ	Г															П		
PBS	5.00	09:21				х			X		x		x		х				х						П	x	
LCSS	20.00	09:25				x			X		х		x		x				х						\sqcap	x	
K9906520-009	5.00	09:29				x			x		X		x		х				х						\Box	x	
K9906520-009D	5.00	09:33				Х			X		Х		X		x				Х						\Box	x	
K9906520-009S	5.00	09:37				X			x		x		х		х				х						П	x	
K9906520-001	5.00	09:41				х			x		x		х		х				X						П	x	
K9906520-002	5.00	09:45				х			х		x		х		х				х							х	
K9906520-003	5.00	09:49				Х			x		x		х		х				х			_			П	x	
CCV3	1.00	09:53				x			x		x		х		х				х							x	
CCB3	1.00	09:57				X			x		x		х		х				х							x	
K9906520-004	5.00	10:01				х			х		x		х		х				Х							х	
K9906520-005	5.00	10:05				x			х		x		х		х				х							x	
K9906520-006	5.00	10:09				x			x		x		х		x				x						ΠÌ	x	
K9906520-007	5.00	10:13				х			x	Ì	x		х	_	x	Ì			x	_					_	х	
K9906520-008	5.00	10:17				х			х		х		х	Ì	x				х						T	x	
K9906520-010	5.00	10:21				x		_	x		x		х	T	х	ij			х			_			Ť	x	Ţ
K9906520-011	5.00	10:25				х			х		х		х	Ì	x	T			х						Πİ	x	T
K9906520-012	5.00	10:29		П		х	П	_	х		х		х	ij	x				х	_					Πİ	x	
ZZZZZZ	1.00	10:33												j	İ	T									İ	Ť	
ZZZZZZ	1.00	10:37							İ	İ	Ī					T									一	T	Πİ

TOTAL METALS - 14 ANALYSIS RUN LOG

Contract Hart Crowser, Inc.

Case No.: 7057-05

SAS No.:

SDG No.: K9906520

Instrument ID Number:

VG ICPMS

Method:

MS

Start Date: 10/1/99

Lab Code: KLAB

End Data

End Date: 10/1/99

		Analytes				s																		
Sample No.	D/F	Time	* R	A L		A S	B A	B E	C D	C A	C R	С 0	1	F E		M G	M N	H G	l	K	A G	T L	z N	
CCV4	1.00	10:41				х			x		x		x		x				x				X	
CCB4	1.00	10:45				X			x		Х		x		X				x				X	

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Date Extracted: 9/23/99

Date Analyzed: 10/5/99

Surrogate Recovery Summary Polychlorinated Biphenyls (PCBs)

Prep Method: Analysis Method: EPA 3540C

8082

Units: PERCENT

Basis: NA

		Test	Percent Recovery
Sample Name	Lab Code	Notes	Decachlorobiphenyl
HO SED OF	K9906520-001		173 A
HC-SED-01			
HC-SED-02	K9906520-002		164 A
HC-SED-03	K9906520-003		180 A
HC-SED-04	K9906520-004		170 A
HC-SED-05	K9906520-005		165 A
HC-SED-06	K9906520-006		172 A
HC-SED-07	K9906520-007		203 A
HC-SED-08	K9906520-008		151 A
HC-SED-09	K9906520-009		166 A
HC-SED-10	K9906520-010		112
HC-SED-12	K9906520-011		121
HC-SED-100	K9906520-012		118
HC-SED-04	K9906520-004MS		127
HC-SED-04	K9906520-004DMS		121
Lab Control Sample	KWG9903203-3		184 A
Method Blank	KWG9903203-4		143 A

CAS Acceptance Limits:

20-142

Α

Outside acceptance limits; see case narrative.

Approved By:

SUR1/110697p

06520SVG.AY1 - SUR 10/7/99

Date: 10-7-99

00083

Page No.:

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99 **Date Extracted:** 10/20/99

Date Analyzed: 10/23 - 27/99

Surrogate Recovery Summary Polychlorinated Biphenyls (PCBs)

Prep Method:

EPA 3540C

Analysis Method: 8082

0000

Units: PERCENT

Basis: NA

		Test	Percent Recovery
Sample Name	Lab Code	Notes	Decachlorobiphenyl
HC-SED-01	K9906520-001Re		99
HC-SED-02	K9906520-002Re		108
HC-SED-03	K9906520-003Re		106
HC-SED-04	K9906520-004Re		106
HC-SED-06	K9906520-006Re		99
HC-SED-07	K9906520-007Re		118
HC-SED-03	K9906520-003MS		105
HC-SED-03	K9906520-003DMS		104
Lab Control Sample	KWG9903675-3		112
Method Blank	KWG9903675-4		107

CAS Acceptance Limits:

20-142

Approved By:

SUR1/110697p 06520SVG.JG1 - SUR 10/28/99 Date: 10-28-99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Date Extracted: 9/23/99

Date Analyzed: 10/5/99

Matrix Spike/Duplicate Matrix Spike Summary

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-04

Units: ug/Kg (ppb)

Lab Code:

K9906520-004MS,

K9906520-004DMS

Basis: Dry

Test Notes:

Percent Recovery

											CAS	Relative	
	Prep	Analysis		Spike	Level	Sample	Spike	Result			Acceptance	Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Aroclor 1016	EPA 3540C	8082	10	250	250	ND	275	278	110	111	30-150	1	
Aroclor 1260	EPA 3540C	8082	10	250	250	7	324	339	127	133	30-150	5	

06520SVG.AY1 - DMS 10/7/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99

Date Extracted: 10/20/99

Date Analyzed: 10/23-24/99

Matrix Spike/Duplicate Matrix Spike Summary

Polychlorinated Biphenyls (PCBs)

Sample Name:

HC-SED-03

Lab Code:

K9906520-003MS,

K9906520-003DMS

Units: ug/Kg (ppb)

Basis: Dry

Test Notes:

Н

Percent Recovery

	Prep	Analysis		Spike	e Level	Sample	Spike	Result			CAS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Aroclor 1016 Aroclor 1260	EPA 3540C EPA 3540C	8082 8082	10 10	400 400	400 400	ND 5	410 500	387 480	103 124	97 119	30-150 30-150	6 4	

 Date: 10-28-99

Pa 0 10 0 8 6

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

LCS Matrix:

Sediment

Service Request: K9906520

Date Collected: NA

Date Received: NA

Date Extracted: 9/23/99 Date Analyzed: 10/5/99

Laboratory Control Sample Summary

Polychlorinated Biphenyls (PCBs)

Units: ug/Kg (ppb)

Basis: Dry

Sample Name:

Lab Control Sample KWG9903203-3

Lab Code:

Test Notes:

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Aroclor 1016	EPA 3540C	8082	270	445	165	30-150	A
Aroclor 1260	EPA 3540C	8082	270	534	198	30-150	A

Outside acceptance limits; see case narrative.

Approved By:

Α

LCS/080797p 06520SVG.AY1 - LCS 10/7/99 Date: 10-7-99

0.0.087

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

LCS Matrix:

Sediment

Service Request: K9906520

Date Collected: NA

Date Received: NA **Date Extracted:** 10/20/99

Date Analyzed: 10/23/99

Laboratory Control Sample Summary

Polychlorinated Biphenyls (PCBs)

Sample Name:

Lab Control Sample

Units: ug/Kg (ppb)

Basis: Dry

Lab Code:

KWG9903675-1

Test Notes:

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Aroclor 1016	EPA 3540C	8082	400	330	82	30-150	
Aroclor 1260	EPA 3540C	8082	400	495	124	30-150	

Approved By:

Date: 10-28-99

LCS/080797p 06520SVG.JG1 - LCS 10/27/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 Date Received: 9/21/99

Date Extracted: NA

Date Analyzed: 9/30-10/1/99

Surrogate Recovery Summary

Prep Method: Analysis Method: 8260B

EPA 5030A

Volatile Organic Compounds

Units: PERCENT

Basis: Dry

	Tes	t Percei	nt Rec	overy
Sample Name	Lab Code Note	Dibromofluoromethane	Toluene-d8	4-Bromofluorobenzene
HC-SED-01	K9906520-001	105	102	106
HC-SED-02	K9906520-002	102	102	106
HC-SED-03	K9906520-003	105	100	107
HC-SED-04	K9906520-004	108	101	108
HC-SED-05	K9906520-005	109	103	108
HC-SED-06	K9906520-006	119	102	107
HC-SED-07	K9906520-007	108	102	108
HC-SED-08	K9906520-008	109	104	109
HC-SED-09	K9906520-009	109	103	112
HC-SED-10	K9906520-010	111	104	111
HC-SED-12	K9906520-011	112	103	112
HC-SED-100	K9906520-012	111	103	111
HC-SED-01	K9906520-001MS	103	101	103
HC-SED-01	K9906520-001DMS	103	101	105
Lab Control Sample	K990930-LCS	104	100	103
Method Blank	K990930-MB	107	101	105

CAS Acceptance Limits:

75-132

85-109

49-131

Approved By:

SUB3/262/9A.ML1 - SUR3 10/14/99

__ Date: __

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99

Date Received: 9/21/99 Date Extracted: NA

Date Analyzed: 9/30/99

Matrix Spike/Duplicate Matrix Spike Summary

Volatile Organic Compounds

Sample Name:

HC-SED-01

Units: ug/Kg (ppb)

Lab Code:

K9906520-001MS,

K9906520-001DMS

Basis: Dry

Test Notes:

Percent Recovery

	Prep	Analysis		Spike	Level	Sample	Spike	Result			CAS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Benzene	EPA 5030A	8260B	5	57	66	ND	46	53	81	80	57-121	1	
Toluene	EPA 5030A	8260B	5	57	66	ND	44	50	77	76	34-134	1	

Approved By: DMS/052595

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

LCS Matrix:

Sediment

Service Request: K9906520

Date Collected: NA

Date Received: NA
Date Extracted: NA

Date Analyzed: 9/30/99

Laboratory Control Sample Summary

Volatile Organic Compounds

Sample Name:

Lab Control Sample

Lab Code:

K990930-LCS

Units: ug/Kg (ppb)

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Benzene	EPA 5030A	8260B	50	48	96	78-116	
Toluene	EPA 5030A	8260B	50	48	96	77-118	

Approved By:

LC8/525050A.ML1 - LCS 10/14/99

Jun Sutrell

Date:

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 Date Received: 9/21/99

Date Extracted: 9/28-10/5/99 **Date Analyzed:** 9/29-10/12/99

Surrogate Recovery Summary

Base Neutral/Acid Semivolatile Organic Compounds

Prep Method:

Analysis Method: SIM

EPA 3550B

Units: PERCENT

Basis: NA

		Test		P e r	c e n t	R e c	o v e r y	
Sample Name	Lab Code	Notes	2FPHL	PHLD6	NBZ	2FBPH	246TBPHL	TPH
HC-SED-01	K9906520-001		43	54	49	52	72	81
HC-SED-02	K9906520-002		49	63	60	60	84	79
HC-SED-03	K9906520-003		52	64	69	74	62	90
HC-SED-04	K9906520-004		57	69	64	64	83	92
HC-SED-05	K9906520-005		65	66	63	75	77	92
HC-SED-06	K9906520-006		55	64	59	64	74	90
HC-SED-07	K9906520-007		47	48	58	65	81	79
HC-SED-08	K9906520-008		55	54	64	67	83	86
HC-SED-09	K9906520-009		58	56	61	71	76	85
HC-SED-10	K9906520-010		57	71	73	67	86	94
HC-SED-12	K9906520-011		58	71	70	66	88	96
HC-SED-100	K9906520-012		55	53	60	62	86	81
HC-SED-03	K9906520-003MS		68	75	67	69	77	86
HC-SED-03	K9906520-003DMS		66	74	70	66	73	84
Lab Control Sample	KWG9903260-3		61	69	71	69	80	91
Method Blank	KWG9903260-4		30 A	42	62	69	39	91
	CAS Acceptance Limits:		31-106	37-104	22-123	15-117	12-116	19-140

2FPHL	2-Fluorophenol
PHLD6	Phenol-d5
NBZ	Nitrobenzene-d5
2FBPH	2-Fluorobiphenyl
246TBPHL	2,4,6-Tribromophenol

TPH p-Terphenyl-d14

Α

Outside acceptance limits; see case narrative.

Approved By: __

SUR6/052595

Date: 10[18799

00092

06520SVM.AY1 - sur 10/18/99

Page No.:

QA/QC Report

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9906520

Date Collected: 9/17/99 **Date Received:** 9/21/99

Date Extracted: 10/5/99 **Date Analyzed:** 10/12/99

Matrix Spike/Duplicate Matrix Spike Summary Base Neutral/Acid Semivolatile Organic Compounds

K9906520-003DMS

Sample Name:

HC-SED-03

Units: ug/Kg (ppb)

Lab Code:

K9906520-003MS,

Basis: Dry

Test Notes:

Η

Percent Recovery

	Prep	Analysis		Spike	Level	Sample	Spike	Result			CAS Advisory	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Phenol	EPA 3550B	SIM	20	240	240	ND	180	180	75	75	20-99	<1	
Acenaphthene	EPA 3550B	SIM	20	240	2 40	ND	170	170	71	71	26-104	<1	
Pentachlorophenol	EPA 3550B	SIM	61	240	240	ND	150	130	62	54	10-145	14	
Pyrene	EPA 3550B	SIM	20	240	240	40	220	200	75	67	18-144	10	

Н

The analysis was performed past the recommended hold time; see case narrative.

Approved By:	LW	Date:	10/18/06	
DMS/052595			• ,	

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

LCS Matrix:

Sediment

Service Request: K9906520

Date Collected: NA

Date Received: NA

Date Extracted: 9/28/99 Date Analyzed: 9/29/99

Laboratory Control Sample Summary

Base Neutral/Acid Semivolatile Organic Compounds

Sample Name:

Lab Control Sample KWG9903260-3

Units: ug/Kg (ppb)

Lab Code:

Test Notes:

Basis: NA

CAS Percent Recovery Result Prep **Analysis** True **Percent** Advisory Analyte Method Method Value Result Recovery Limits **Notes** Phenol EPA 3550B SIM 240 160 67 21-110 240 67 Acenaphthene EPA 3550B SIM 160 29-109 Pentachlorophenol SIM 240 79 EPA 3550B 190 10-120 Pyrene EPA 3550B SIM 240 200 83 39-149

00094 Approved By: LCS/52505VM.AY1 - lcs 10/18/99 Page No.:

APPENDIX B CHAIN OF CUSTODY INFORMATION

Sample Custody Record

DATE 9/17/49 PAGE 1 OF 1 HARTCROWSER

Hart Crowses, Inc. 1910 Fairview Aveptie East Seattle, Washington 9810 3699

JOB NUMI	10B NUMBER 47057-05 LAB NUMBER							TESTING						ွ	0 (
	MANAGER_							2 -	SIM					NER	·
PROJECT	MAGG	- 420	E. S. /	/ <	SITE 303		_	Metal -SIM	\(\)					ITAII	OBSERVATIONS/COMMENTS/
PROJECT	NAME / / ///	JOPES !	1		J., C 000			13 V	-					CONTAINERS	COMPOSITING INSTRUCTIONS
SAMPLED	BY:		λ											OF	
	(\mathcal{O})	u .	DAvi	-99C	•			PAR	phenu Pr Be	-ı 🔾 i	Ĕ			NO.	
LAB NO.	AB NO. SAMPLE TIME date STATION MATRIX							170	90	18	2				
	HC-SBB-01	105	8 (7.)	7.99	#1	50	2							3	
	HC-SB4-02	• -		1	#2									W	
-	Hc-580-03		1	T	#3									3	
		-		11	#4					1 1				3	
	HC-580-04				#-4 #-5			1		+ +				3	
	H-580-05		į.	+				-+-		+			<u> </u>	3	,
	HC-589-06	130€)	+	46	4				+-+		_			
	14c-Spe 03 1328 #7							<u> </u>	<u> </u>	1 1				3	
	HC-580-08	1410		1	#8					1				3	
	HC-550-09		I .	14	-9									3	
	HC-560-10		I .	#	-10									3	
	HC-580-12		I		-[2									3	
	HC-SE0-100			d ľ	+100	1	1							3	
	NQUISHED BY		DATE	Γ	RECEIVED BY		DATE	TOTAL	NUMBE	R			27		METHOD OF SHIPMENT
00	Q 11							OF CO	NTAINER	RS			36	ı	FED-EX
SIGNATURE	Charles The			SIGN	ATURE			epec.	AL SHIP	MENT/L	IANDI	ING	*****		
بعي ذال نعي	<u>1</u> Dame	<u>~</u>	TIME	DDIN	TED NAME		TIME		ORAGE F						
PHINTED NAM	CUMUSE	W _		FRIN	IED NAME				* 1	L- 11-	10	, 0	. n	; A	J :
COMPANY	0200-0			сом	PANY				C X	$r>$, $rac{1}{2}$	ひょし	N, W	don	b, ſ` ′~~	l'il Ropa buo Ornito
REL	NQUISHED BY	<u> </u>	DATE	1	RECEIVED BY	-	DATE	DATE DISTRIBUTION:							
								1. PROVIDE WHITE AND YELLOW COPIES TO LABORATORY							
SIGNATURE	,			SIGN	ATURE		TIME]	URN PIN						<u> </u>
PRINTED NAM	1E		TIME	PRIN	TED NAME		TIME	l .							O SIGN FOR RECEIPT
															RT CROWSER
COMPANY			1	COM	PANY			1							

Columbia Analytical Services Inc. Cooler Receipt And Preservation Form

Project	/Client Hart	-Crowser	Work	Order K99 <u>06520</u>)							
Cooler	received on $\frac{9/2}{2}$	1/99 and opened on	9/2/99 by_	au								
1.		ly seals on outside of comany and where?	ider?		YES NO							
2.	Were seals i	Were seals intact and signature & date correct? YES NO										
3.	COC#											
	Temperature	e of cooler(s) upon recei	ipt: <u>4.7</u>	-								
	Temperature	Blank:	6.2									
4.	Were custod	y papers properly filled	out (ink, signed	, etc.)?	YES NO							
5.	Type of paci	king material present	Bubble	WAP								
6.	Did all bottle	es arrive in good condit	ion (unbroken)?	0	(YES) NO							
7.	Were all bot	tle labels complete (i.e.	analysis, preserv	vation, etc.)?	YES NO							
8.	Did all bottle	Did all bottle labels and tags agree with custody papers?										
9.	Were the co	Were the correct types of bottles used for the tests indicated?										
10.	Were all of	Were all of the preserved bottles received at the lab with the appropriate pH? YES NO										
11.	Were VOA	vials checked for absen-	ce of air bubbles.	, and if present, noted belo	ow? YES NO							
12.	Did the bott	les originate from CAS/	/K or a branch la	boratory?	AES NO							
Explain	any discrepanc	ies										
		·····										
Sample	s that required p	reservation or received	outside of tempe	erature range at the lab(cire	cle)							
	Sample ID	Reagent	Volume	Lot Number	Initials							
	· · · · · · · · · · · · · · · · · · ·											
<u> </u>												

December 20, 1999

Service Request No: K9908644

Kym Anderson Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, WA 98102-3699

Re: Manchester/Site 303/7057-05

Dear Kym:

Enclosed are the results of the sample(s) submitted to our laboratory on December 2, 1999. For your reference, these analyses have been assigned our service request number K9908644.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 243.

Respectfully submitted,

Columbia Analytical Services, Inc.

Richard Craven Project Chemist

RAC/ee

Page 1 of

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

J Estimated concentration. The value is less than the method reporting limit, but

greater than the method detection limit.

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

POL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Client: Project:

Hart Crowser Inc.

Manchester/Site 303

Sample Matrix:

Sediment

Service Request No.:

K9908644

Date Received:

2-December-99

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for sample(s) designated for Tier III data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS) and Laboratory Control Sample (LCS).

All EPA recommended holding times have been met for analyses in this sample delivery group.

The following difficulties were experienced during analysis of this batch:

Request for analysis for this work was received after hold times had expired.

Due to high background levels of Pyrene and Benzo(a)pyrene the spike recoveries of those analytes were unreliable, and not applicable for method performance evaluation.

Approved by Jakan Ohm

Date /3/17/95

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9908644

Date Collected: 9/17/99

Date Received: 12/2/99

Total Solids

Prep Method:

NONE

Units: PERCENT

Analysis Method: 160.3M

Basis: Wet

Test Notes:

Sample Name

Lab Code

Date Analyzed

Result

Result Notes

HC-SED-07

K9908644-001

12/6/99

56.0

Approved By: TSOLIDS.XLT_Sample/01071998a

08644TS.AB1 - 001 12/7/99

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9908644

Date Collected: 9/17/99

Date Received: 12/2/99

Polynuclear Aromatic Hydrocarbons

Sample Name:

HC-SED-07

HC-SED-07

Units: ug/Kg (ppb)

Lab Code:

K9908644-001

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Naphthalene	EPA 3550B	SIM					•		110000
2-Methylnaphthalene		SIM	5 5	0.4 0.5	2 2	12/7/99	12/14/99	26 20	
	EPA 3550B					12/7/99	12/14/99		т
1-Methylnaphthalene	EPA 3550B	SIM SIM	5	0.3	2	12/7/99	12/14/99	9	J
C2-Naphthalenes	EPA 3550B		5	5	2	12/7/99	12/14/99	41	
C3-Naphthalenes	EPA 3550B	SIM SIM	5 5	5 5	2 2	12/7/99	12/14/99	52 45	
C4-Naphthalenes	EPA 3550B				2	12/7/99	12/14/99		
Acenaphthylene	EPA 3550B	SIM	5	0.2	2	12/7/99	12/14/99	79	
Acenaphthene	EPA 3550B	SIM	5	0.5	2	12/7/99	12/14/99	37	
Dibenzofuran	EPA 3550B	SIM	5	0.5	2	12/7/99	12/14/99	38	
Fluorene	EPA 3550B	SIM	5	0.5	2	12/7/99	12/14/99	82	
C1-Fluorenes	EPA 3550B	SIM	5	5	2	12/7/99	12/14/99	110	
C2-Fluorenes	EPA 3550B	SIM	5	5	2	12/7/99	12/14/99	150	
C3-Fluorenes	EPA 3550B	SIM	5	5	2 2	12/7/99	12/14/99	ND	
Dibenzothiophene	EPA 3550B	SIM	5	0.3	2	12/7/99	12/14/99	40	
C1-Dibenzothiophenes	EPA 3550B	SIM	5	5	2 2	12/7/99	12/14/99	55	
C2-Dibenzothiophenes	EPA 3550B	SIM	5	5	2	12/7/99	12/14/99	120	
C3-Dibenzothiophenes	EPA 3550B	SIM	5	5	2	12/7/99	12/14/99	120	
Phenanthrene	EPA 3550B	SIM	5	0.8	2	12/7/99	12/14/99	710	
Anthracene	EPA 3550B	SIM	5	0.6	2	12/7/99	12/14/99	800	
C1-Phenanthrenes/Anthrace	EPA 3550B	SIM	5	5	2	12/7/99	12/14/99	890	
C2-Phenanthrenes/Anthrace	EPA 3550B	SIM	5	5	2	12/7/99	12/14/99	710	
C3-Phenanthrenes/Anthrace	EPA 3550B	SIM	5	5	2	12/7/99	12/14/99	360	
C4-Phenanthrenes/Anthrace	EPA 3550B	SIM	5	5	2	12/7/99	12/14/99	270	
Fluoranthene	EPA 3550B	SIM	100	0.6	20	12/7/99	12/15/99	3500	
Pyrene	EPA 3550B	SIM	100	0.8	20	12/7/99	12/15/99	7100	
C1-Fluoranthenes/Pyrenes	EPA 3550B	SIM	5	5	2	12/7/99	12/14/99	3400	
Benz(a)anthracene	EPA 3550B	SIM	100	0.7	20	12/7/99	12/15/99	2500	
Chrysene	EPA 3550B	SIM	100	0.6	20	12/7/99	12/15/99	2800	
C1-Chrysenes	EPA 3550B	SIM	5	5	2	12/7/99	12/14/99	1700	
C2-Chrysenes	EPA 3550B	SIM	5	5	2	12/7/99	12/14/99	710	
C3-Chrysenes	EPA 3550B	SIM	5	5	2	12/7/99	12/14/99	340	
C4-Chrysenes	EPA 3550B	SIM	5	5	2	12/7/99	12/14/99	250	
Benzo(b)fluoranthene	EPA 3550B	SIM	100	8.0	20	12/7/99	12/15/99	2400	
Benzo(k)fluoranthene	EPA 3550B	SIM	100	0.6	20	12/7/99	12/15/99	2200	
Benzo(a)pyrene	EPA 3550B	SIM	100	0.5	20	12/7/99	12/15/99	2500	
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	100	0.7	20	12/7/99	12/15/99	1200	
Dibenz(a,h)anthracene	EPA 3550B	SIM	5	0.5	2	12/7/99	12/14/99	390	
Benzo(g,h,i)perylene	EPA 3550B	SIM	5	0.4	2	12/7/99	12/14/99	1000	
Carbazole	EPA 3550B	SIM	5	0.6	2	12/7/99	12/14/99	180	

Η

The extraction was performed past the recommended hold time; see case narrative.

Approved By: ... 986445YM.AYI -1 12/16/99

(Leeves

DEC 16 1999

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9908644

Date Collected: NA Date Received: NA

Polynuclear Aromatic Hydrocarbons

Sample Name:

Method Blank

Units: ug/Kg (ppb)

Lab Code:

KWG9904334-4

Basis: Dry

Test Notes:

Amaluta	Prep Method	Analysis Mothed	MDI	MDI	Dilution	Date	Date	Doggald	Result
Analyte	Method	Method	MRL	MDL	Factor	Extracted	Analyzed	Result	Notes
Naphthalene	EPA 3550B	SIM	5	0.4	1	12/7/99	12/14/99	0.6	J
2-Methylnaphthalene	EPA 3550B	SIM	5	0.5	1	12/7/99	12/14/99	ND	
1-Methylnaphthalene	EPA 3550B	SIM	5	0.3	1	12/7/99	12/14/99	ND	
C2-Naphthalenes	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
C3-Naphthalenes	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
C4-Naphthalenes	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
Acenaphthylene	EPA 3550B	SIM	5	0.2	1	12/7/99	12/14/99	ND	
Acenaphthene	EPA 3550B	SIM	5	0.5	1	12/7/99	12/14/99	ND	
Dibenzofuran	EPA 3550B	SIM	5	0.5	1	12/7/99	12/14/99	ND	
Fluorene	EPA 3550B	SIM	5	0.5	1	12/7/99	12/14/99	ND	
C1-Fluorenes	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
C2-Fluorenes	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
C3-Fluorenes	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
Dibenzothiophene	EPA 3550B	SIM	5	0.3	1	12/7/99	12/14/99	ND	
C1-Dibenzothiophenes	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
C2-Dibenzothiophenes	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
C3-Dibenzothiophenes	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
Phenanthrene	EPA 3550B	SIM	5	0.8	1	12/7/99	12/14/99	ND	
Anthracene	EPA 3550B	SIM	5	0.6	1	12/7/99	12/14/99	ND	
C1-Phenanthrenes/Anthrace	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
C2-Phenanthrenes/Anthrace	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
C3-Phenanthrenes/Anthrace	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
C4-Phenanthrenes/Anthrace	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
Fluoranthene	EPA 3550B	SIM	5	0.6	1	12/7/99	12/14/99	ND	
Pyrene	EPA 3550B	SIM	5	0.8	1	12/7/99	12/14/99	ND	
C1-Fluoranthenes/Pyrenes	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
Benz(a)anthracene	EPA 3550B	SIM	5	0.7	1	12/7/99	12/14/99	ND	
Chrysene	EPA 3550B	SIM	5	0.6	1	12/7/99	12/14/99	ND	
C1-Chrysenes	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
C2-Chrysenes	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
C3-Chrysenes	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
C4-Chrysenes	EPA 3550B	SIM	5	5	1	12/7/99	12/14/99	ND	
Benzo(b)fluoranthene	EPA 3550B	SIM	5	0.8	1	12/7/99	12/14/99	ND	
Benzo(k)fluoranthene	EPA 3550B	SIM	5	0.6	1	12/7/99	12/14/99	ND	
Benzo(a)pyrene	EPA 3550B	SIM	5	0.5	1	12/7/99	12/14/99	ND	
Indeno(1,2,3-cd)pyrene	EPA 3550B	SIM	5	0.7	1	12/7/99	12/14/99	ND	
Dibenz(a,h)anthracene	EPA 3550B	SIM	5	0.5	1	12/7/99	12/14/99	ND	
Benzo(g,h,i)perylene	EPA 3550B	SIM	5	0.4	1	12/7/99	12/14/99	0.7	J
Carbazole	EPA 3550B	SIM	5	0.6	1	12/7/99	12/14/99	ND	

Approved By: Date: 1S44/052595

DEC 16 1999

APPENDIX A LABORATORY QC RESULTS

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9908644

Date Collected: 9/17/99

Date Received: 12/2/99

Duplicate Summary

Total Solids

Prep Method:

NONE

Units: PERCENT

Analysis Method: 160.3M

Basis: Wet

Test Notes:

Duplicate Relative Sample Date Sample Percent Result Average Difference Lab Code **Analyzed** Result Result **Notes** Sample Name 56.0 50.6 53.3 10 HC-SED-07 K9908644-001DUP 12/6/99

Approved By: <u>(</u> TSOLIDS.XLT_DUP/09291998a Date: 12/10/59

08644TS.AB1 - DUP 12/7/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9908644

Date Collected: 9/17/99

Date Received: 12/2/99

Date Extracted: 12/7/99

Date Analyzed: 12/14-15/99

Surrogate Recovery Summary Polynuclear Aromatic Hydrocarbons

Prep Method:

Analysis Method: SIM

EPA 3550B

Units: PERCENT

Basis: NA

Sample Name	Lab Code	Test Notes	Perc Fluorene-d10	e n t R e c o Fluoranthene-d10	v e r y Terphenyl-d14
HC-SED-07	K9908644-001		100	98	99
HC-SED-07	K9908644-001MS		106	112	96
HC-SED-07	K9908644-001DMS		105	103	97
Lab Control Sample	KWG9904334-3		83	85	86
Method Blank	KWG9904334-4		89	85	98

CAS Acceptance Limits:

13-144

13-144

15-145

DEC 16 1999 Date:

Approved By:

SUR3/052595 08644SVM.AY1 - SUR 12/16/99

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

Sample Matrix:

Sediment

Service Request: K9908644

Date Collected: 9/17/99

Date Received: 12/2/99
Date Extracted: 12/7/99

Date Analyzed: 12/14/99

Matrix Spike/Duplicate Matrix Spike Summary Polynuclear Aromatic Hydrocarbons

Sample Name:

HC-SED-07

Lab Code:

K9908644-001MS,

K9908644-001DMS

Units: ug/Kg (ppb)

Basis: Dry

Test Notes:

Η

Percent Recovery

	Prep	Analysis		Spike	e Level	Sample	Spike	Result			CAS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Acenaphthene	EPA 3550B	SIM	5	140	150	37	190	180	109	95	12-133	14	
Pyrene	EPA 3550B	SIM	100	140	150	7100	NA	NA	NC	NC	10-160	NC	
Benzo(a)pyrene	EPA 3550B	SIM	100	140	150	2500	NA	NA	NC	NC	10-160	NC	

NA

Not Applicable; see case narrative.

H

The extraction was performed past the recommended hold time; see case narrative.

(Leines DEC 16 1999

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester/Site 303/7057-05

LCS Matrix:

Sediment

Service Request: K9908644

Date Collected: NA
Date Received: NA

Date Extracted: 12/7/99

Date Analyzed: 12/15/99

Laboratory Control Sample Summary

Polynuclear Aromatic Hydrocarbons

Sample Name:

Lab Control Sample

Lab Code:

KWG9904334-3

Units: ug/Kg (ppb)

Basis: Dry

Test Notes:

	Door	A a locado	Torso		Downant	CAS Percent Recovery	Result
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits	Notes
Acenaphthene	EPA 3550B	SIM	500	380	76	36-119	
Pyrene	EPA 3550B	SIM	500	410	82	37-137	
Benzo(a)pyrene	EPA 3550B	SIM	500	440	88	24-137	

C(Laires DEC 16 1999

January 12, 2000

Service Request No: K9909278

Mike Ehlebract Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, WA 98102-3699

Dear Mike:

Enclosed are the results of the rush sample(s) submitted to our laboratory on December 2, 1999. For your reference, these analyses have been assigned our service request number K9909278.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

The carbon range for diesel is C-12 through C-24. The aliphatic range reported is C-8 through C-44.

Please call if you have any questions. My extension is 3343.

Respectfully submitted,

Columbia Analytical Services, Inc.

Richard A. Craven Project Chemist

RAC/ee

Page 1 of

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

J Estimated concentration. The value is less than the method reporting limit, but

greater than the method detection limit.

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Analytical Report

Client:

Hart Crowser, Inc.

Project:

NA

Sample Matrix:

Sediment

Service Request: K9909278

Date Collected: 9/17/99

Date Received: 12/2/99

Total Aliphatics

Sample Name:

HC-SED-07

Lab Code:

K9909278-001

Units: mg/Kg (ppm)

Basis: Dry

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Total Aliphatics C8 - C44	3550B	GC-FID	50	1	12/28/99	1/5/00	99	G

The MRL is elevated because an insufficient sample quantity was available for optimum analysis.

Approved By: _

M

Date: 1/12/00

1S22/020597p

G

00003

Page No.:

Analytical Report

Client:

Hart Crowser, Inc.

Project:

NA

Service Request: K9909278

Date Collected: NA

Sample Matrix:

Sediment

Date Received: NA

Total Aliphatics

Sample Name:

Method Blank

Units: mg/Kg (ppm)

Lab Code:

K991228-SB

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Total Aliphatics C8 - C44	3550B	GC-FID	20	1	12/28/99	1/5/00	ND	

Approved By:	W	Date:	1/6/00
11 2		-	

1S22/020597p

APPENDIX A LABORATORY QC RESULTS

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Sample Matrix:

NA

Sediment

Service Request: K9909278

Date Collected: 9/17/99

Date Received: 12/2/99 Date Extracted: 12/28/99

Date Analyzed: 1/5/00

Surrogate Recovery Summary

Total Aliphatics

Prep Method:

3550B

Analysis Method: GC-FID

Units: PERCENT

Basis: NA

		Test	Percent Recovery
Sample Name	Lab Code	Notes	1-Chlorohexadecane
HG GED 07	770000270 001		95
HC-SED-07	K9909278-001		
HC-SED-07	K9909278-001MS		92
HC-SED-07	K9909278-001DMS		81
Lab Control Sample	K991228-SL		89
Method Blank	K991228-SB		91

CAS Acceptance Limits:

50-150

Approved By:	
SUR1/092199p 09278PHC.MM1 - SUR1 1/6/00	

Date: 1/4/00

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

NA

Sample Matrix:

Sediment

Service Request: K9909278

Date Collected: 9/17/99

Date Received: 12/2/99

Date Extracted: 12/28/99

Date Analyzed: 1/5/00

Matrix Spike/Duplicate Matrix Spike Summary

Total Aliphatics

Sample Name:

HC-SED-07

Lab Code:

K9909278-001MS,

K9909278-001DMS

Units: mg/Kg (ppm)

Basis: Dry

Test Notes:

Percent Recovery

											CAS	Relative	
	Prep	Analysis		Spike	Level	Sample	Spike	Result			Acceptance	Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Total Aliphatics C8 - C	3550B	GC-FID	50	460	480	99	615	596	112	104	50-150	7	

14 Date: 1/6/00 Approved By:

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

LCS Matrix:

NA

Sediment

Service Request: K9909278

Date Collected: NA

Date Received: NA Date Extracted: 12/28/99

Date Analyzed: 1/5/00

Laboratory Control Sample Summary

Total Aliphatics

Sample Name:

Lab Control Sample

Lab Code:

K991228-SL

Units: mg/Kg (ppm)

Basis: Dry

Test Notes:

					CAS Percent Recovery			
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits	Result Notes	
Total Aliphatics C8 - C44	3550B	GC-FID	140	149	106	60-140		

Date: //60 Approved By:

LCS/072197p 09278PHC.MM1 - LCS 1/6/00

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

NA

Service Request: K9909278 **Date Analyzed:** 1/5/00

Continuing Calibration Verification (CCV) Summary
Total Aliphatics C8 - C44
GC-FID Method
Units:µg/mL (ppm)

Sample Name	True Value	Result	Percent Recovery
CCV1	1750	1550	89
CCV2	1750	1570	90

Approved By: ______ Date: _____//60

CCV1A/120594 09278PHC.MM1 - CCV1A 1/6/00

Page No.:

February 14, 2000

Service Request No: K2000512

Kym Anderson Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, WA 98102-3699

Re: Manchester Site 303/304/7057-05

Dear Kym:

Enclosed are the results of the sample(s) submitted to our laboratory on January 22, 2000. For your reference, these analyses have been assigned our service request number K2000512.

All analyses were performed according to our laboratory's quality assurance program. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the samples analyzed.

Please call if you have any questions. My extension is 3343.

Respectfully submitted,

Columbia Analytical Services, Inc.

Richard Craven Project Chemist

RAC/aw

Page 1 of 4

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

J Estimated concentration. The value is less than the method reporting limit, but

greater than the method detection limit.

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NANot ApplicableNANNot AnalyzedNCNot Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected at or above the MRL

NIOSH National Institute for Occupational Safety and Health

POL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater

than or equal to the MDL.

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00

Date Received: 1/22/00

Basis: NA

Inorganic Parameters

Sample Name:

HC-SEEP#1

Lab Code:

K2000512-001

Test Notes:

Analyte	Units	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	2	1	NA	1/28/00	137	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	5	NA	1/24/00	0.8	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	1	NA	1/24/00	5	
Sulfate	mg/L (ppm)	300.0	0.2	50	NA	1/24/00	165	

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00 **Date Received:** 1/22/00

Basis: NA

Inorganic Parameters

Sample Name:

HC-SEEP#2

Lab Code:

K2000512-002

Test Notes:

Analyte	Units	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	2	1	NA	1/28/00	96	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	2	NA	1/24/00	0.3	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	1	NA	1/24/00	ND	
Sulfate	mg/L (ppm)	300.0	0.2	20	NA	1/24/00	78.0	

Approved By:

1S22/020597p

 $\sqrt{}$

______Date: 2/7/00

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00

Date Received: 1/22/00

Basis: NA

Inorganic Parameters

Sample Name:

HC-303-MW4

Lab Code:

K2000512-003

Test Notes:

Analyte	Units	Analysis Method	MRL	Dilution Factor		Date Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	2	1	NA	1/28/00	165	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	2	NA	1/24/00	0.5	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	l	NA	1/24/00	ND	
Sulfate	mg/L (ppm)	300.0	0.2	20	NA	1/24/00	57.2	

Approved By: _

1S22/020597p

Date: 2

00512WET.LJ1 - 3 2/7/00

Page No.: 0 0 0 0 5

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Basis: NA

Date Collected: NA Date Received: NA

Inorganic Parameters

Sample Name:

Method Blank

Lab Code:

K2000512-MB

Test Notes:

Analyte	Units	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	2	1	NA	1/28/00	ND	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	1	NA	1/24/00	ND	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	1	NA	1/24/00	ND	
Sulfate	mg/L (ppm)	300.0	0.2	1	NA	1/24/00	ND	

Approved By: ___ 1S22/020597p

00512WET.LJ1 - MBlank 2/7/00

PO 000 6

DISSOLVED METALS COVER PAGE - INORGANIC ANALYSIS DATA PACKAGE

COVER PAGE - INORGANIC ANALYSIS DATA PACKAGE						
Contract: Hart Crowser, Inc.	SDG No.: K2000512					
Lab Code: KLAB Case No.: 7057-	05 SAS No.:					
SOW No.: SW-846						
Sample No. HC-SEEP#1	Lab Sample ID. K2000512-001 K2000512-002					
HC-SEEP#2 HC-SEEP#2D	K2000512-002D					
HC-SEEP#2S	K2000512-002S					
HC-303-MW4	K2000512-003					
Were ICP interelement corrections applied?	Yes/No YES					
Were ICP background corrections applied?	Yes/No YES					
If yes-were raw data generated before application of background corrections?	Yes/No NO					
Comments:						
I certify that this data package is in compliant contract, both technically and for completeness, above. Release of the data contained in this ha computer-readable data submitted on floppy disks Manager or the Manager's designee, as verified by	for other than the conditions detailed ardcopy data package and in the atte has been authorized by the Laboratory					
Signature: Silu Marnel Name	tle: Sr. Chemist					
Date: 2/3/2010 Ti	tle: Sr. Chemist					

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE	NO.
--------	-----

HC-SEEP#1

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Level (low/med):

Case No.: 7057-05

SAS No.:

SDG NO.: K2000512

Matrix (soil/water):

WATER

Lab Sample ID: <u>K2000512-0</u>01

Date Received: 01/22/00

Concentration Units (ug/L or mg/kg dry weight): μ G/L

CAS No.	Analyte	Concentration	С	Q	м
7439-89-6	Iron	498			P

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE	NO.
HC-SEE	P#2

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05

SAS No.:

SDG NO.: K2000512

Matrix (soil/water):

Level (low/med):

WATER

LOW

Lab Sample ID: K2000512-002

Date Received: 01/22/00

Concentration Units (ug/L or mg/kg dry weight): μ G/L

CAS No.	Analyte	Concentration	С	Q	М
7439-89-6	Iron	69.5			P

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO.

HC-303-MW4

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Level (low/med):

Case No.: 7057-05

SAS No.:

SDG NO.: K2000512

Matrix (soil/water): WATER

WATER

Lab Sample ID: K2000512-003

Date Received: 01/22/00

Concentration Units (ug/L or mg/kg dry weight): μ G/L

CAS No.	Analyte	Concentration	С	Q	М
7439-89-6	Iron	20.0	U		Þ

Color Before:

Clarity Before:

Texture:

Color After:

Clarity After:

Artifacts:

Comments:

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00

Date Received: 1/22/00

Semivolatile Petroleum Products Northwest TPH-Dx

Sample Name:

HC-SEEP#1

Units: ug/L (ppb)

Lab Code:

K2000512-001

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Mineral Spirits	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Jet Fuel as Jet A	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Kerosene	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Diesel	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Heavy Fuel Oil	EPA 3510C	NWTPH-Dx	500	30	1	1/25/00	1/27/00	ND	
Lube Oil	EPA 3510C	NWTPH-Dx	500	30	1	1/25/00	1/27/00	ND	
PHC as Diesel	EPA 3510C	NWTPH-Dx	500	20	1	1/25/00	1/27/00	764	
Non-PHC as Diesel	EPA 3510C	NWTPH-Dx	500	20	1	1/25/00	1/27/00	ND	

PHC as Diesel Fuel:

Extractable Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Diesel:

Non-Petroleum Hydrocarbon components eluting in the extractable range of n-C8 - n-C44.

Approved By: Marthe Date: 2/7/100

1S22/020597p

00512PHC.LL1 - 1 2/4/00

Page No.:

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512 Date Collected: 1/20/00

Date Received: 1/22/00

Semivolatile Petroleum Products Northwest TPH-Dx

Sample Name:

HC-SEEP#2

Lab Code:

K2000512-002

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Mineral Spirits	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Jet Fuel as Jet A	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Kerosene	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Diesel	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Heavy Fuel Oil	EPA 3510C	NWTPH-Dx	500	30	1	1/25/00	1/27/00	ND	
Lube Oil	EPA 3510C	NWTPH-Dx	500	30	1	1/25/00	1/27/00	ND	
PHC as Diesel	EPA 3510C	NWTPH-Dx	500	20	1	1/25/00	1/27/00	300	J
Non-PHC as Diesel	EPA 3510C	NWTPH-Dx	500	20	1	1/25/00	1/27/00	ND	

PHC as Diesel Fuel:

Extractable Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Diesel: Non-Petroleum Hydrocarbon components eluting in the extractable range of n-C8 - n-C44.

Approved By: Mmanthe Date: 2/7/10

1S22/020597p

00512PHC.LL1 - 2 2/4/00

Page No.:

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00 Date Received: 1/22/00

Semivolatile Petroleum Products Northwest TPH-Dx

Sample Name:

HC-303-MW4

Lab Code:

K2000512-003

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Mineral Spirits	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Jet Fuel as Jet A	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Kerosene	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Diesel	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Heavy Fuel Oil	EPA 3510C	NWTPH-Dx	500	30	1	1/25/00	1/27/00	ND	
Lube Oil	EPA 3510C	NWTPH-Dx	500	30	1	1/25/00	1/27/00	ND	
PHC as Diesel	EPA 3510C	NWTPH-Dx	500	20	1	1/25/00	1/27/00	ND	
Non-PHC as Diesel	EPA 3510C	NWTPH-Dx	500	20	1	1/25/00	1/27/00	ND	

PHC as Diesel Fuel: Non-PHC as Diesel: Extractable Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-Petroleum Hydrocarbon components eluting in the extractable range of n-C8 - n-C44.

Approved By: MManthe

Date: 2/1/10

1S22/020597p

Page No.:

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: NA Date Received: NA

Semivolatile Petroleum Products Northwest TPH-Dx

Sample Name:

Method Blank

Units: ug/L (ppb)

Lab Code:

K000125-WB

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Mineral Spirits	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Jet Fuel as Jet A	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Kerosene	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Diesel	EPA 3510C	NWTPH-Dx	250	20	1	1/25/00	1/27/00	ND	
Heavy Fuel Oil	EPA 3510C	NWTPH-Dx	500	30	1	1/25/00	1/27/00	ND	
Lube Oil	EPA 3510C	NWTPH-Dx	500	30	1	1/25/00	1/27/00	ND	
PHC as Diesel	EPA 3510C	NWTPH-Dx	500	20	1	1/25/00	1/27/00	ND	
Non-PHC as Diesel	EPA 3510C	NWTPH-Dx	500	20	1	1/25/00	1/27/00	ND	

PHC as Diesel Fuel: Non-PHC as Diesel:

Extractable Petroleum Hydrocarbon fingerprint not matching any of the target analytes. Non-Petroleum Hydrocarbon components eluting in the extractable range of n-C8 - n-C44.

Approved By: MManthe Date: 2/7/07

1S22/020597p

00014

00512PHC.LL1 - MBlank 2/4/00

Page No.:

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00

Date Received: 1/22/00

Volatile Petroleum Products Northwest TPH-Gx

Sample Name:

HC-SEEP#1

Units: ug/L (ppb)

Basis: NA

Lab Code:

K2000512-001

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	1/25/00	ND	
PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	1/25/00	ND	
Non-PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	1/25/00	ND	

PHC as Gasoline:

Volatile or Middle Distillate Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-Petroleum Hydrocarbon components eluting in the purgable range of n-C6 - naphthalene. Non-PHC as Gasoline:

Approved By:

1S22/020597p

Q.C.015

00512VOA.ST3 - 1 2/2/00

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00

Date Received: 1/22/00

Volatile Petroleum Products Northwest TPH-Gx

Sample Name:

HC-SEEP#2

Lab Code:

K2000512-002

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	1/25/00	ND	
PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	1/25/00	ND	
Non-PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	1/25/00	ND	

PHC as Gasoline:

Volatile or Middle Distillate Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Gasoline:

Non-Petroleum Hydrocarbon components eluting in the purgable range of n-C6 - naphthalene.

Approved By:

1S22/020597p

Date: <u>L-L-0</u>0

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00

Date Received: 1/22/00

Volatile Petroleum Products Northwest TPH-Gx

Sample Name:

HC-303-MW4

Lab Code:

K2000512-003

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	1/25/00	ND	
PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	1/25/00	ND	
Non-PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	1/25/00	ND	

PHC as Gasoline:

Volatile or Middle Distillate Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Gasoline:

Non-Petroleum Hydrocarbon components eluting in the purgable range of n-C6 - naphthalene.

Approved By:

1S22/020597p

00512VOA.ST3 - 3 2/2/00

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: NA **Date Received:** NA

Volatile Petroleum Products Northwest TPH-Gx

Sample Name:

Method Blank

Units: ug/L (ppb)

Lab Code:

K000125-MB

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	1/25/00	ND	
PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	1/25/00	ND	
Non-PHC as Gasoline	EPA 5030B	NWTPH-Gx	250	1	NA	1/25/00	ND	

PHC as Gasoline:

Volatile or Middle Distillate Petroleum Hydrocarbon fingerprint not matching any of the target analytes.

Non-PHC as Gasoline:

Non-Petroleum Hydrocarbon components eluting in the purgable range of n-C6 - naphthalene.

Approved By: Date: <u>\(\ell - \ell - 00 \)</u>

10-0.018

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00

Date Received: 1/22/00

BTEX

Sample Name:

HC-SEEP#1

Lab Code:

K2000512-001

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030B	8021B	0.5	1	NA	1/25/00	ND	
Toluene	EPA 5030B	8021B	1	1	NA	1/25/00	ND	
Ethylbenzene	EPA 5030B	8021B	1	1	NA	1/25/00	ND	
Xylenes, Total	EPA 5030B	8021B	1	1	NA	1/25/00	ND	

Approved By:

1S22/020597p

Date: <u>1-\-00</u>

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Service Request: K2000512

Date Collected: 1/20/00 **Date Received:** 1/22/00

Sample Matrix:

Water

BTEX

Sample Name:

HC-SEEP#2

Lab Code:

K2000512-002

Units: ug/L (ppb)
Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030B	8021B	0.5	1	NA	1/25/00	ND	
Toluene	EPA 5030B	8021B	1	1	NA	1/25/00	ND	
Ethylbenzene	EPA 5030B	8021B	1	1	NA	1/25/00	ND	
Xylenes, Total	EPA 5030B	8021B	1	1	NA	1/25/00	ND	

00512VOA.ST1 - 2 1/31/00

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00

Date Received: 1/22/00

BTEX

Sample Name:

HC-303-MW4

K2000512-003

Lab Code: Test Notes: Units: ug/L (ppb) Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	EPA 5030B	8021B	0.5	1	NA	1/25/00	ND	
Toluene	EPA 5030B	8021B	1	1	NA	1/25/00	ND	
Ethylbenzene	EPA 5030B	8021B	1	1	NA	1/25/00	ND	
Xylenes, Total	EPA 5030B	8021B	1	1	NA	1/25/00	ND	

Approved By:

1S22/020597p

Date: 2-\-00

Analytical Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: NA **Date Received:** NA

BTEX

Sample Name:

Method Blank

Lab Code: Test Notes:

K000125-MB

Units: ug/L (ppb)

Basis: NA

	Prep	Analysis		Dilution	Date	Date		Result
Analyte	Method	Method	MRL	Factor	Extracted	Analyzed	Result	Notes
Benzene	EPA 5030B	8021B	0.5	1	NA	1/25/00	ND	
Toluene	EPA 5030B	8021B	1	1	NA	1/25/00	ND	
Ethylbenzene	EPA 5030B	8021B	1	1	NA	1/25/00	ND	
Xvlenes, Total	EPA 5030B	8021B	1	1	NA	1/25/00	ND	

Approved By:

1S22/020597p

MS

Date: 2-1-00

APPENDIX A

LABORATORY

QC

RESULTS

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00 Date Received: 1/22/00

Date Extracted: NA

Date Analyzed: 1/24-28/00

Basis: NA

Duplicate Summary Inorganic Parameters

Sample Name:

HC-SEEP#2 #

Lab Code:

K2000512-001DUP

Test Notes:

Analyte	Units	Analysis Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	2	137	140	138	2	
Nitrate as Nitrogen	mg/L (ppm)	300.0	0.2	0.8	0.8	0.8	< 1	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	5	ND	ND	ND	-	L
Sulfate	mg/L (ppm)	300.0	0.2	165	155	160	6	

Duplicate analysis was performed on Sample HC-SEEP#2; Lab Code K2000512-002.

Approved By: __ DUP/020597p 00512WET.LJ1 - DUP 2/7/00

L

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00

Date Received: 1/22/00 Date Extracted: NA

Date Analyzed: 1/24/00

Basis: NA

Matrix Spike Summary **Inorganic Parameters**

Sample Name:

HC-SEEP#2

Lab Code:

K2000512-001MS

Test Notes:

CAS Percent Spiked Recovery Sample Percent Acceptanc **Analysis** Spike Sample Result Method Result Result Limits Units MRL Level Recovery **Notes** Analyte 300.0 10.0 9.8 90 80-120 Nitrate as Nitrogen mg/L (ppm) 0.2 8.0 Sulfate mg/L (ppm) 300.0 0.2 100 165 259 94 80-120

Approved By: __ MS/072898p

Date: 2/1/06

00512WET.LJ1 - MS 2/7/00

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

LCS Matrix:

Water

Service Request: K2000512

Date Collected: NA

Date Received: NA
Date Extracted: NA

Date Analyzed: 1/24-28/00

Laboratory Control Sample Summary

Inorganic Parameters

Sample Name:

Lab Control Sample

Lab Code:

K2000512-LCS

Test Notes:

Basis: NA

Analyte	Units	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Alkalinity as CaCO3, Total	mg/L (ppm)	310.1	219	220	100	85-115	
Nitrate as Nitrogen	mg/L (ppm)	300.0	9.3	9.4	101	90-110	
Solids, Total Suspended (TSS)	mg/L (ppm)	160.2	489	442	90	85-115	
Sulfate	mg/L (ppm)	300.0	200	202	101	90-110	

Approved By: LCS/072898p

00512WET.LJ1 - LCS 2/7/00

Date: 2/7/08

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Service Request: K2000512

Date Collected: NA
Date Received: NA
Date Analyzed: 1/24/00

Nitrtate as Nitrogen EPA Method 300.0 Units: mg/L (ppm)

CONTINUING CALIBRATION VERIFICATION (CCV)

	True Value	Measured Value	Percent Recovery
CCV 6 Result	2.0	2.0	100
CCV 7 Result	2.0	2.0	100
CCV 8 Result	2.0	2.0	100

CONTINUING CALIBRATION BLANK (CCB)

	MRL	Blank Value
CCB 6 Result	0.2	ND
CCB 7 Result	0.2	ND
CCB 8 Result	0.2	ND

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Service Request: K2000512

Date Collected: NA
Date Received: NA
Date Analyzed: 1/24/00

Sulfate

EPA Method 300.0 Units: mg/L (ppm)

CONTINUING CALIBRATION VERIFICATION (CCV)

	True Value	Measured Value	Percent Recovery	
CCV 6 Result	5.0	5.1	102	
CCV 7 Result	5.0	5.1	102	
CCV 8 Result	5.0	5.1	102	

CONTINUING CALIBRATION BLANK (CCB)

	MRL	Blank Value
CCB 6 Result	0.2	ND
CCB 7 Result	0.2	ND
CCB 8 Result	0.2	ND

-2A-

INITIAL AND CONTINUING CALIBRATION VERIFICATION

SAS No.:

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05

SDG NO.: K2000512

Initial Calibration Source: Inorganic Ventures

Continuing Calibration Source: Inorganic Ventures

Concentration Units: ug/L

	Initial C	alibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Iron	2500.0	2477.50 99.1	5000.0	5075.90	101.5	5114.6	4 102.3	P

-2A-

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract: Hart Crowser, Inc.

Lab Code: KLAB Case No

Case No.: 7057-05 SAS No.:

SDG NO.: K2000512

Initial Calibration Source:

Continuing Calibration Source: Inorganic Ventures

Concentration Units: ug/L

	Initial	Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М
Iron			5000.0	5176.86	103.5			P

DISSOLVED METALS -2B-

CRDL STANDARD FOR AA AND ICP

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05 SAS No.:

SDG No.: K2000512

AA CRDL Standard Source:

ICP CRDL Standard Source:

Inorganic Ventures

Concentration Units: ug/L

	CRDL St	andard for AA		CRDL Stan	dard f		
Analyte	True	Found %R	True	tial Found	8R	Final Found	%R
Iron	1		40.0	42.94	107.3	3	

-3-

BLANKS

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05

SAS No.:

SDG NO.: K2000512

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib. Blank			Con	tinuing Blank	Calibr	ation		Preparation Blank		
Analyte	(ug/L)	С	1	C	2	С	3	С		c	М
Iron	20.	0 0	20.	0 0	20.	ַס ט	20	. d ʊ	20.000	ַ ט	P

-4-

ICP INTERFERENCE CHECK SAMPLE

Contract: Hart Crowser, Inc.

Lab Code: KLAB Case No.: 7057-05 SAS No.:

SDG NO.: K2000512

ICP ID Number: TJA ICP-OES ICS Source: Inorganic Ventures

Concentration Units): ug/L

	True		Init	tial Found		Final	Found	
Analyte	Sol.A	Sol.AB	Sol.A	Sol.AB	%R	Sol.A	Sol.AB	%R
Iron	200000	200000	17816	4 175999.2	88.0	178166	176769.3	88.4

	Columbia .	Analytical	Services,	Inc.
--	------------	------------	-----------	------

-5A-

SPIKE SAMPLE RECOVERY

SAMPLE 1	N	O	
----------	---	---	--

HC-SEEP#2S

Contract: Hart Crowser, Inc.

Lab Code: KLAB Case No.:7057-05 SAS No.:

SDG NO.: K2000512

Matrix (soil/water): WATER

Level (low/med):

LOW

% Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): µG/L

31	Control	Spiked	Sample		Sample	Spike			
Analyte	Limit %R	Result	(SSR)	С	Result (SR)	Added (SA)	%R	Q	M
Iron	75 - 125		1142.2600		69.5100	1000.00	107.3		P

Comments:		 _		
		 _		

00034

	Columbia	Analytical	Services.	Inc
--	----------	------------	-----------	-----

-6-

DUPLICATES

SAMPLE NO.

HC-SEEP#2D

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05

SAS No.:

SDG NO.: K2000512

Matrix (soil/water): WATER

Level (low/med): LOW

% Solids for Sample: 0.0

% Solids for Duplicate:

Concentration Units (ug/L or mg/kg dry weight):

μG/L

Analyte	Control Limit	Sample (S)	С	Duplicate	(D) C	RPD	Q	м
Iron	20.0		69.5100		67.6200	2.8		P

LABORATORY CONTROL SAMPLE

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05 SAS No.:

SDG NO.: K2000512

Solid LCS Source:

Aqueous LCS Source: Inorganic Ventures

	Aqueous	(ug/L)			Solid (mg	/kg)	
Analyte	True	Found	%R	True	Found C	Limits	%R
Iron	2500.0	2440.76	97.6				

Columbia Analytical Ser	rvices	. Inc.
-------------------------	--------	--------

-9-

ICP SERIAL DILUTIONS

SAMPLE NO.

HC-SEEP#1L

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.:7057-05

SAS No.:

SDG NO.: K2000512

Matrix (soil/water): WATER

Level (low/med):

LOW

Concentration Units: ug/L

Analyte	Initial Sample Result (I)	Serial Dilution Result (S)	% Differ- ence	Q	м
Iron	498.04	534.05	7.2		P

DISSOLVED METALS -10-

METHOD DETECTION LIMITS

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05

SAS No.:

SDG NO.: K2000512

ICP ID Number: TJA ICP-OES

Date: 10/15/99

Flame AA ID Number:

Furnace AA ID Number:

Analyte	Wave- length	Back- ground	MRL (ug/L)	М
Iron	259.90		20.0	P

 _

-11A-

ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Contract: Hart Crowser, Inc.

Lab Code: KLAB

SAS No.: Case No.: 7057-05

SDG NO.: K2000512

ICP ID Number: TJA ICP-OES

Date: 1/15/99

	Wave-	I	nterelement	Correction F	actors for:	
Analyte	length (nm)	Al	Ca	Fe	Mg	As
Aluminum	308.20	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Antimony	206.80	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Arsenic	193.60	0.0079000	0.000000	0.0007540	0.0000000	0.0000000
Barium	493.40	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Beryllium	313.00	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Cadmium	228.60	0.0000000	0.000000	-0.0000540	0.0000000	0.0111000
Calcium	317.90	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Chromium	267.70	0.0000000	0.0000000	-0.0000158	0.0000000	0.0000000
Cobalt	228.60	-0.0000150	0.000000	0.0000166	0.0000000	0.0000000
Copper	324.70	0.0000000	0.0000000	-0.0000578	0.0000000	0.0000000
Iron	259.90	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Lead	220.30	0.0008100	0.000000	0.0002360	0.0000000	0.0000000
Magnesium	383.20	0.0000000	0.0000000	0.0284000	0.0000000	0.0000000
Manganese	257.60	0.0000000	0.000000	-0.0001990	0.0000000	0.0000000
Nickel	231.60	0.0000000	0.0000000	0.0000384	0.0000000	0.0000000
Potassium	766.50	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Selenium	196.00	0.0002900	0.0000000	-0.0022000	0.0000000	0.0000000
Silver	328.00	0.0000000	0.000000	-0.0001800	0.0000000	0.0000000
Sodium	588.90	0.000000	0.0000000	0.0000000	0.0000000	0.0000000
Thallium	190.80	0.000000	0.000000	0.0038400	0.0000000	0.0000000
Vanadium	292.40	0.0000000	0.000000	-0.0000150	0.0000000	0.0000000
Zinc	213.80	0.0000000	0.000000	0.0001240	0.0000000	0.0000000

Comments:	 	 -		 	 	
	 			 	 	00020

-11**B-**

ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05 SAS No.:

SDG NO.: K2000512

ICP ID Number: TJA ICP-OES

Date: 1/15/99

	Wave-	I	nterelement	Correction E	actors for:	
Analyte	length (nm)	Со	Cr	Mn	Ti	v
Aluminum	308.20	-0.0166000	0.0000000	0.0000000	0.0000000	0.000000
Antimony	206.80	-0.0023200	0.0084200	0.0000000	0.0015800	-0.0083500
Arsenic	193.60	0.0007400	0.0012500	-0.0009020	0.0000000	0.0188000
Barium	493.40	0.0000000	0.000000	0.000000	0.0000000	0.0000000
Beryllium	313.00	0.0000000	0.000000	0.0000000	0.0000420	0.0042500
Cadmium	228.60	-0.0065100	0.000000	0.0000000	0.0000000	0.0001070
Calcium	317.90	0.0000000	0.0000000	0.0000000	0.0000000	0.0010600
Chromium	267.70	0.0000000	0.000000	0.0000000	0.0001280	0.0009890
Cobalt	228.60	0.0000000	0.0003600	0.0000000	0.0017000	0.0000000
Copper	324.70	0.0000000	0.0000000	0.0000000	-0.0004020	-0.0000960
Iron	259.90	0.0000000	0.000000	0.0016600	0.0000000	0.0005780
Lead	220.30	-0.0211000	-0.0006150	0.0000000	0.0007240	0.000000
Magnesium	383.20	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Manganese	257.60	0.0000000	0.0000480	0.0000000	0.0000000	-0.0000930
Nickel	231.60	0.0004700	0.0000000	0.0000000	0.0000000	0.0000000
Potassium	766.50	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Selenium	196.00	0.0012700	0.0000000	0.0000000	0.0000000	0.000000
Silver	328.00	0.0000000	0.0000000	0.0001630	0.0000000	-0.0051700
Sodium	588.90	0.0000000	0.000000	0.000000	0.0000000	0.000000
Thallium	190.80	0.0000000	0.000000	-0.0136000	0.0000000	0.000000
Vanadium	292.40	0.0000000	-0.0025100	-0.0001070	0.0003060	0.0000000
Zinc	213.80	0.0000000	0.0000000	0.0000000	-0.0000600	0.0000000

Comments:	 	 			 	 	
	 	 	******	-	 	 	

SW-846

-12-

ICP LINEAR RANGES (QUARTERLY)

Contract: Hart Crowser, Inc.

Lab Code: KLAB Case No.: 7057-05 SAS No.:

SDG NO.: K2000512

ICP ID Number: TJA ICP-OES

Date: 10/15/99

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	м
Iron	l 5.00	400000.0	P

Comments:___

-13-

PREPARATION LOG

Contract: Hart Crowser, Inc.

Lab Code: KLAB

Case No.: 7057-05

SAS No.:

SDG NO.: K2000512

Method P

Sample No.	Preparation Date	Weight (grams)	Volume (mL)
HC-303-MW4	1/26/00		50
HC-SEEP#1	1/26/00		50
HC-SEEP#2	1/26/00		50
HC-SEEP#2D	1/26/00		50
HC-SEEP#2S	1/26/00		50
LCSW	1/26/00		50
PBW	1/26/00		50

-14-

ANALYSIS RUN LOG

Contract Hart Crowser, Inc.

Case No.: 7057-05 Lab Code KLAB

SAS No.:

SDG No.: K2000512

Instrument ID Number:

TJA ICP-OES

Method:

Start Date: 1/26/00

End Date: 1/26/00

											•		7	\na	ly	te	s										
Sample	D/F	Time	% R	Α				В	С		С			F			М			K			N		v	Z	
No.				L	В	s	A	E	D	A	R	0		E	В	G	N	G	I		E	G	A	L	<u></u>	N	N
S0		20:28											_	x													_
S	1.00	20:30																								_	_
S		20:32											<u> </u>	X													_
ICV	1.00	20:33												X													
ZZZZZZ	1.00	20:37																								L	_
ICB	1.00	20:40												X													_
CCV1	1.00	20:45												X													
ZZZZZZ	1.00	20:49																									_
CCB1	1.00	20:53												X													
MRL	5.00	20:57												x													
ICSA	1.00	20:59												x													
ICSAB	1.00	21:02												X													
PBW	1.00	21:17												X													
LCSW	1.00	21:19												x													
HC-SEEP#1	1.00	21:22												x													
HC-SEEP#2	1.00	21:24												x													
HC-SEEP#2D	1.00	21:26												x													
HC-SEEP#2S	1.00	21:28												x													
HC-SEEP#1L	5.00	21:30												x													
CCV2	1.00	21:33							Γ					x													
CCB2	1.00	21:35												X													
HC-303-MW4	1.00	21:39												X													
ICSA	1.00	21:42												x													
ICSAB	1.00	21:44												x													
CCV3	1.00	21:47												x													
CCB3	1.00	21:59												x													

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00

Date Received: 1/22/00

Date Extracted: 1/25/00

Date Analyzed: 1/27/00

Surrogate Recovery Summary Northwest TPH-Dx

Prep Method: Analysis Method: NWTPH-Dx

EPA 3510C

Units: PERCENT

Basis: NA

		Test	Percent	Recovery
Sample Name	Lab Code	Notes	o-Terphenyl	n-Triacontane
HC-SEEP#1	K2000512-001		79	76
HC-SEEP#2	K2000512-002		74	71
HC-303-MW4	K2000512-003		74	69
HC-SEEP#2	K2000512-002D		74	68
Lab Control Sample	K000125-WL		85	79
Method Blank	K000125-WB		84	79

CAS Acceptance Limits:

50-150

50-150

Approved By: MManthe

Date: 2/7/00

SUR2/061197p 00512PHC.LL1 - SUR 2/7/00

Page No.:

00044

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Sample Matrix: Water

Manchester Site 303/304/7057-05

Service Request: K2000512 Date Collected: 1/20/00 Date Received: 1/22/00 Date Extracted: 1/25/00 Date Analyzed: 1/27/00

Duplicate Summary Northwest TPH-Dx

Sample Name:

HC-SEEP#2

Lab Code:

K2000512-002D

Test Notes:

Units: ug/L (ppb) Basis: NA

Duplicate Relative Sample Prep **Analysis** Sample **Percent** Result Method Result Result Average Difference **Notes** Analyte Method **MRL** ND ND Mineral Spirits EPA 3510C NWTPH-Dx 250 ND Jet Fuel as Jet A EPA 3510C NWTPH-Dx 250 ND ND ND Kerosene EPA 3510C NWTPH-Dx 250 ND NDND Diesel EPA 3510C NWTPH-Dx 250 ND ND NDNWTPH-Dx 500 ND ND Heavy Fuel Oil EPA 3510C ND Lube Oil NWTPH-Dx 500 ND ND ND EPA 3510C PHC as Diesel EPA 3510C NWTPH-Dx 500 300 300 300 <1 Non-PHC as Diesel EPA 3510C NWTPH-Dx 500 ND ND ND

PHC as Diesel Fuel: Non-PHC as Diesel: Extractable Petroleum Hydrocarbon fingerprint not matching any of the target analytes. Non-Petroleum Hydrocarbon components eluting in the extractable range of n-C8 - n-C44.

Approved By:

MMunthe

Date: 2 7 10

DUP/020597p

00512PHC.LL1 - DUP 2/4/00

Page No.:

00045

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

LCS Matrix:

Water

Service Request: K2000512

Date Collected: NA

Date Received: NA Date Extracted: 1/25/00

Date Analyzed: 1/27/00

Laboratory Control Sample Summary

Northwest TPH-Dx

Sample Name:

Lab Control Sample

Units: ug/L (ppb)

Lab Code:

K000125-WL

Basis: NA

Test Notes:

Analyta	Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Analyte Diesel Lube Oil	EPA 3510C EPA 3510C	NWTPH-Dx NWTPH-Dx	1600 1600	1240 1470	78 92	46-108 50-150	Notes

Approved By: MManthe

Date: 2/7/00

LCS/020597p

00512PHC.LL1 - LCS 2/4/00

QA/QC Report

Client: Project: Hart Crowser, Inc.

Manchester Site 303/304/7057-05

Service Request: K2000512

Date Analyzed: 1/27/00

Continuing Calibration Verification (CCV) Summary

Northwest TPH-Dx Units: µg/mL (ppm)

Analyte	True Value	CCV1 Result	Percent Recovery		Percent Recovery		Percent Recovery
Diesel	1000	969	97	1000	100	1010	101
Lube Oil	1000	1060	106	1090	109	1110	111

Approved By: MMarthe

CCV 1-4/102194

Date: 2/7/10

00512PHC.LL1 - CCV 2/4/00

PO 00 47

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Service Request: K2000512

Date Collected: 1/20/00

Date Received: 1/22/00

Date Extracted: NA

Date Analyzed: 1/25/00

Surrogate Recovery Summary

Northwest TPH-Gx

Prep Method:

EPA 5030B

Analysis Method: NWTPH-Gx

Units: PERCENT

Basis: NA

		Test	Percent Recovery
Sample Name	Lab Code	Notes	1,4-Difluorobenzene
HO CEPPIII	W2000512 001		24
HC-SEEP#1	K2000512-001		94
HC-SEEP#2	K2000512-002		94
HC-303-MW4	K2000512-003		94
HC-SEEP#2	K2000512-002MS		106
HC-SEEP#2	K2000512-002DMS		110
Lab Control Sample	K200125-LCS		110
Method Blank	K200125-MB		96

CAS Acceptance Limits:

70-130

Approved By:

SUR1/061197p 00512VOA.ST3 - SUR 1/31/00

Date: 2-2-00

Q.C.C 48

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00 Date Received: 1/22/00

Date Extracted: NA

Date Analyzed: 1/25/00

Matrix Spike Summary Northwest TPH-Gx

Sample Name:

HC-SEEP#2

Units: ug/L (ppb)

Lab Code:

K2000512-002MS

Basis: NA

Test Notes:

CAS

Analyte	Prep Method	Analysis Method	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	Percent Recovery Acceptance Limits	Result Notes
Gasoline	EPA 5030B	NWTPH-Gx	250	1000	ND	920	92	59-135	

Date: Approved By: MS/0392970 A.ST3 - MS 1/31/00

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00

Date Received: 1/22/00

Date Extracted: NA

Date Analyzed: 1/25/00

Matrix Spike/Duplicate Matrix Spike Summary

Northwest TPH-Gx

K2000512-002DMS

Sample Name:

HC-SEEP#2

Units: ug/L (ppb)

Lab Code:

K2000512-002MS,

Basis: NA

Test Notes:

							Percent Recovery								
											CAS	Relative			
	Prep	Analysis		Spike	Level	Sample	Spike	Result			Acceptance	Percent	Result		
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes		
Gasoline	EPA 5030B	NWTPH-Gx	250	1000	1000	ND	920	960	92	96	59-135	4			

MS

Date: 2-2-00

QA/QC Report

Client: Project:

Hart Crowser, Inc.

Manchester Site 303/304/7057-05

LCS Matrix:

Water

Service Request: K2000512

Date Collected: NA

Date Received: NA **Date Extracted:** NA

Date Analyzed: 1/25/00

Laboratory Control Sample Summary

Northwest TPH-Gx

Sample Name:

Lab Control Sample

K000125-LCS

Units: ug/L (ppb)
Basis: NA

Lab Code: Test Notes:

CAS Percent Recovery Result **Percent** Acceptance Prep **Analysis** True Limits **Notes** Method Method Value Result Recovery Analyte 60-120 910 91 Gasoline EPA 5030B NWTPH-Gx 1000

Approved By: LCS/020597p

AL

Date: 2-2-60

QA/QC Report

Client:

Hart Crowser, Inc.

Service Request: K2000512

Project:

Manchester Site 303/304/7057-05

Date Analyzed: 1/25/00

Continuing Calibration Verification (CCV) Summary Northwest TPH-Gx

Sample Name:

CCV1

Units: ug/L (ppb)

Lab Code:

0125F012

Basis: NA

Test Notes:

	Analysis	True		Percent	Result
Analyte	Method	Value	Result	Recovery	Notes
Gasoline	EPA 5030B	1000	939	94	
PHC as Gasoline	EPA 5030B	1000	974	97	
Non-PHC as Gasoline	EPA 5030B	1000	977	98	

Approved By:

LCS/52595 00512VOA.ST4 - CCV 1/31/00 Date: 2-2-00

Page No.:

QA/QC Report

Client:

Hart Crowser, Inc.

Service Request: K2000512

Project:

Manchester Site 303/304/7057-05

Date Analyzed: 1/26/00

Continuing Calibration Verification (CCV) Summary Northwest TPH-Gx

Sample Name:

CCV2

Units: ug/L (ppb)

Lab Code:

0125F029

Basis: NA

Test Notes:

	Analysis	True		Percent	Result
Analyte	Method	Value	Result	Recovery	Notes
Gasoline	EPA 5030B	1000	944	94	
PHC as Gasoline	EPA 5030B	1000	977	98	
Non-PHC as Gasoline	EPA 5030B	1000	980	98	

Approved By:

LCS/52595 00512VOA.ST4 - CCV (2) 1/31/00 All

Date: 2-2-00

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00

Date Received: 1/22/00

Date Extracted: NA Date Analyzed: 1/25/00

Surrogate Recovery Summary

BTEX

Prep Method:

EPA 5030B

Analysis Method: 8021B

Units: PERCENT

Basis: NA

		Test	Percent Recovery
Sample Name	Lab Code	Notes	1,4-Difluorobenzene
HC-SEEP#1	K2000512-001		104
HC-SEEP#2	K2000512-002		105
HC-303-MW4	K2000512-003		105
HC-SEEP#2	K2000512-002MS		126
HC-SEEP#2	K2000512-002DMS		128
Lab Control Sample	K000125-LCS		126
Method Blank	K000125-MB		105

CAS Acceptance Limits:

70-130

Approved By:

SUR1/110697p 00512VOA.ST1 - SUR 2/1/00

______Date: 2-1-00

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00

Date Received: 1/22/00 **Date Extracted:** NA

Date Analyzed: 1/25/00

Matrix Spike Summary

BTEX

Sample Name:

HC-SEEP#2

Lab Code:

K2000512-002MS

Units: ug/L (ppb)

Basis: NA

Test Notes:

CAS Percent Spiked Recovery Sample Percent Acceptance Prep **Analysis** Spike Sample Result Method Result Result Recovery Limits **Notes Analyte** Method **MRL** Level EPA 5030B 67-131 8021B 0.5 16 ND 14 88 Benzene 74 89 64-129 Toluene EPA 5030B 8021B 1 ND 66 Ethylbenzene EPA 5030B 8021B 1 17 ND 15 88 61-126

Approved By:

MS/020597p 00512VOA.ST1 - MS 1/31/00 Als

Date: 1-1-00

Page No.:

00055

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

Sample Matrix:

Water

Service Request: K2000512

Date Collected: 1/20/00

Date Received: 1/22/00

Date Extracted: NA

Date Analyzed: 1/25/00

Matrix Spike/Duplicate Matrix Spike Summary

BTEX

Sample Name:

HC-SEEP#2

Units: ug/L (ppb)

Lab Code:

K2000512-002MS,

K2000512-002DMS

Basis: NA

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL		e Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Benzene	EPA 5030B	8021B	0.5	16	16	ND	14	14	88	88	67-131	<1	
Toluene	EPA 5030B	8021B	1	74	74	ND	66	66	89	89	64-129	<1	
Ethylbenzene	EPA 5030B	8021B	1	17	17	ND	15	15	88	88	61-126	<1	

Date: ___ Approved By:

QA/QC Report

Client:

Hart Crowser, Inc.

Project:

Manchester Site 303/304/7057-05

LCS Matrix:

Water

Service Request: K2000512

Date Collected: NA Date Received: NA

Date Extracted: NA

Date Analyzed: 1/25/00

Laboratory Control Sample Summary

BTEX

Sample Name:

Lab Control Sample

Units: ug/L (ppb)

Lab Code:

K000125-LCS

Basis: NA

Test Notes:

						CAS Percent Recovery	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits	Result Notes
Benzene	EPA 5030B	8021B	16	13	81	69-118	
Toluene	EPA 5030B	8021B	74	66	89	66-124	
Ethylbenzene	EPA 5030B	8021B	17	15	88	63-127	

Date: _ 2-1-00 Approved By:

LCS/080797p 00512VOA.ST1 - LCS 2/1/00

Page No.:

QA/QC Report

Client:

Hart Crowser, Inc.

Service Request: K2000512

Project:

Manchester Site 303/304/7057-05

Date Analyzed: 1/25/00

Continuing Calibration Verification (CCV) Summary

BTEX

Sample Name:

CCV1

Units: ug/L (ppb)

Lab Code:

0125F013

Basis: NA

Test Notes:

	Analysis	True		Percent	Result
Analyte	Method	Value	Result	Recovery	Notes
Benzene	8021B	100	109	109	
Toluene	8021B	100	102	102	
Ethylbenzene	8021B	100	105	105	
Xylenes, Total	8021B	300	301	100	

Approved By:

LCS/52595

Date: 2-1-00

QA/QC Report

Client: Project: Hart Crowser, Inc.

Manchester Site 303/304/7057-05

Service Request: K2000512

Date Analyzed: 1/26/00

Continuing Calibration Verification (CCV) Summary

BTEX

Sample Name:

CCV2

Units: ug/L (ppb)

Lab Code:

0125F030

Basis: NA

Test Notes:

Analyte	Analysis Method	True Value	Result	Percent Recovery	Result Notes
Benzene	8021B	100	110	110	
Toluene	8021B	100	104	104	
Ethylbenzene	8021B	100	106	106	
Xylenes, Total	8021B	300	304	101	

Approved By:

LCS/52595

_____ Date: 2-1-09

APPENDIX B

CHAIN OF

CUSTODY

DOCUMENTS

Sample Custody Record

Hart Crowser, Inc. 1910 Fairview Avenue Fast Seattle, Washington 98102 2699

K2000517 **HARTCROWSER** Samples Shipped to: <u>CAS</u> Phone: 206-324-9530 FAX: 206-328-5581

_{ЈОВ} <u>705</u> 7-			REQUESTED ANALYSIS								S			0	5				
PROJECT NAME MART CROWSER CONTA	ancles of		2/13	1201	_	18	K,	<u>, 7</u>	'	¥					CONTAINERS				
PROJECT NAME	ATICHUS I	y sue		1 207		70	70	NI	<u> </u>	(O)					NTA			COMMENTS/ NSTRUCTIONS	
HART CROWSER CONTA	ct <u>Una</u>	revson			N	2	4	7	0	ساحا			ļ		OF CO	CON		131ROCHON3	ļ
					$ \tilde{\chi} $	7	5	7	m	$\cancel{2}$ - \cancel{N}					NO. 0				
SAMPLED BY:	A/MW	E			1	2 2 2	3	Ŧ.	≥ 0						2				
LAB NO. SAMPLE ID	DESCRIPTION	N DATE	TIME	MATRIX															
HC-SEE	PH 1	Vzdoo	2100	water	X	X	X	X	XX	$\langle \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;$	_				7			-	
HC.SEE		10-10	1630)	X	X	X	X	VX	X					8 7	(expe	7 fer	MS/MSD)	
HC-303			1715	-	V	父	\bigcirc	χ	$\langle \rangle \rangle$						7		100		
FIC-Su	7,100 1		• 7 , 5		/			/		7					/				
										-			-	-					\dashv
									_			+++							-
							-		_	-									-
						-										110		0 II -	+
						_		_						-		*>	ample	filtened	1
																<u>ln</u>	the f	reld	
																			i
RELINQUISHED BY	DATE	RECEIVED BY		DATE	SPI	ECIAL	SHII	PMEN	IAH TV	NDLING	OR			-1,		TOTA	L NUMBER C	F CONTAINERS	
16	1/20/00	cual. ()	~ d	1/2400	STO	ORAG	ie re	QUIR	REMEN	TS:	_					APLE RECEIPT IN	VFORMATION		
SKNATURE Anders	TIME	SIGNATURE PRINT NAME (LASSE) COMPANY	50a	TIME	5	ton	ed	α	X	4av	+ Cv	ws	er			JSTODY SEALS: Yes 🗆	NO	□N/A	
		PRINT NAME		INVIL	1 4	Ð	C	1.		- D					\$270241310000HE	OOD CONDITION YES	HERCONS CHARLES TO THE PARTY OF		
HOVY Crowsor	1100	COMPANY	SO		4	V	8	<i>//</i>	1						TE	MPERATURE	NO		
DELINOUIGUED DV	DATE	RECEIVED BY		DATE	-										0 114 PGF LONG PGF	IIPMENT METHO COURIER	DD: □HAND □OVERN		
RELINQUISHED BY	DATE	VECEIAED BA		DAIL	CO	OLEF	N∩		•••		STOI	RAGE L	OCATIO		7.30.310.0	RNAROUND TI			
SIGNATURE		SIGNATURE			1	A		••			3.01		Z	• • • •		24 HOURS	□ 1 WEEK		
PRINT NAME	TIME	PRINT NAME		TIME	<u> </u>							17			_	48 HOURS		.RD	
									der No.							72 HOURS			
COMPANY		COMPANY			tor	Utne	er COI	ııırac	t Requ	ii eillef	15								

Columbia Analytical Services Inc. SHORT HOLD TIME Cooler Receipt And Preservation Form

Project/C	Client	yes CRO	Work	Order K20 0512	· · · · · · · · · · · · · · · · · · ·					
Cooler re	eceived on 1/22/	99 and opened or	n <i>1/72/99</i> by _	AD						
1.	Were custody seals on outside of cooler? If yes, how many and where? / F									
2.	Were seals intact and signature & date correct?									
3.	COC#									
	Temperature of	cooler(s) upon rec	ceipt: S.L							
	Temperature B	lank:	1,8	***************************************						
4.	Were custody p	papers properly fille	ed out (ink, signed	, etc.)?	Æ NO					
5.	Type of packing material present BWAN, SMN									
6.	Did all bottles arrive in good condition (unbroken)?									
7.	Were all bottle labels complete (i.e. analysis, preservation, etc.)?									
8.	Did all bottle labels and tags agree with custody papers?									
<i>9</i> .	Were the correct types of bottles used for the tests indicated? NO									
10.	Were all of the preserved bottles received at the lab with the appropriate pH? YES NO									
11.	Were VOA vials checked for absence of air bubbles, and if present, noted below?									
12.	Did the bottles originate from CAS/K or a branch laboratory?XES									
Explain a	any discrepancies									
Samples	that required pres	servation or receive	ed outside of tempe	rature range at the lab(ci	rcle)					
S	ample ID	Reagent	Volume	Lot Number	Initials					
HC - 3	03 - MW4	HNO3	ZML	M78025	1p					
					.,					

CERTIFICATES OF ANALYSIS ANALYTICAL RESOURCES INCORPORATED

CERTIFICATES OF ANALYSIS ANALYTICAL RESOURCES INCORPORATED

July 5, 2000

Mike Ehlebracht Hart Crowser, Inc. 1910 Fairview Ave. East Seattle, WA 98102

RE: Client Project: 4654-39 Manchester FISC

ARI Job: BT23

Dear Mike:

Please find enclosed a copy of chain-of-custody (COC) records and analytical results for the above referenced project. Analytical Resources, Inc. (ARI) accepted one water sample in good condition on June 13, 2000.

The samples were analyzed for extended diesel range hydrocarbons referencing WDOE method WTPH-D extended with a silica gel clean-up; gasoline range hydrocarbons referencing WDOE method WTPH-G, BTEX referencing US EPA method 8020, alkalinity referencing standard method 2320, total suspended solids referencing US EPA method 160.2, and nitrate and sulfate referencing US EPA method 300.0.

The sample was analyzed on the ion chromatograph for nitrate and sulfate at a ten times dilution due to the level of sulfate in the sample.

No further analytical complications were noted. A copy of this report and the supporting data will remain on file with ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mary Lou Fox Project Manager 206-389-6155

marylou@arilabs.com

MLF/mlf Enclosure

Sample Custody Record Samples Shipped to: ARI

11.5

Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, Washington 98102-3699 Phone: 206-324-9530 FAX: 206-328-5581

100 U/5U-39 LADAUMED							REQUESTED ANALYSIS													
PROJECT NAME Manchester F15C HART CROWSER CONTACT Mike Ellebrould						3											NE K			
PROJECT NAME Manchester +15C						Brek	1	7	VO.	>		ŀ					_	SERVATIONS/COMI		
HART CR	OWSER CONTAC	T Mike	: Elleb	racht		· •	8	. 5	S	,							5 COM	MPOSITING INSTRU	CTIONS	
						9	7-) .3		hy						6	5	273	-1150	
SAMPLED BY: MWE						J-HQT	TP#-1.85	Alkelinik	2	15						}	o Y	523 9399	.990	
LAB NO.	SAMPLE ID	DESCRIPTIO	N DATE	TIME	MATRIX												<u> </u>	, , , , , , , , , , , , , , , , , , ,		
	SEEP3/CIZ	00	6/13/00	12:00	H2O	X	V	X	X	X							7			
-	SEEP3/C13 TRIPBU	and			10	X		,												
	71-17-100																			
															-					
																				_
									1				\dashv						11 001000000	
																-				
								-					-			-	-			
													_						AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	
													-							
																				_
RELINQUISHED BY DATE RECEIVED BY DATE				SPECIAL SHIPMENT HANDLING OR STORAGE REQUIREMENTS: SAMPLE RECEIPT INFORMATION CUSTODY SEALS:										NTAINERS						
SIGNATURE SIGNATURE MILE ELICHTACH TIME PRINT NAME HANT Crowser 14:55 COMPANY TIME PRINT NAME COMPANY																				
SIGNATURE	Khiel coch	1 TIME	SIGNATURE		TIME	-										COSTODIT SEALS. □YES □NO □N/A				
PRINT NAM	CALEBY MA	11111	PRINT NAME														GOOD CONDITION			
COMPANY 19:55 COMPANY						TEMPERATURE														
RELINQUISHED BY DATE RECEIVED BY DATE					1										. 16	SHIPMENT METH	OD: □HAND □OVERNIGHT			
		143a)			co	OOLE	R NO	O.:			STO	ORAC	SE LOC	ATION:	1	TURNAROUND TI	ME:		<u>شنش</u>
SIGNATURE			SIGNATURE		TIAAF	-											☐ 24 HOURS	☐ 1 WEEK		
PANAMAN	# DEVU	TIME	PRINT NAME		TIME	\ c^	اد ا م	h Wa	ork Or	der No							☐ 48 HOURS	X STANDARD		
COMPANY					See Lab Work Order No 48 HOURS 31ANDARD 148 HOURS															
1 1000 L						1	Total Contract requirement													

TOTAL GASOLINE RANGE HYDROCARBONS WTPHG Range Toluene to C12 by GC/FID

QC Report No: BT23-Hart Crowser, Incorporated

Matrix: Water Project: Manchester FISC

4654-39

Data Release Authorized:

Date Received: 06/13/00

Reported: 06/24/00

	Client	Date I	Dilution		Gas	Surr A	Surr B
Lab ID	Sample ID	Analyzed	Factor	Gas Range	ID	Rec	Rec
BT23-0614MB	Method Blank	06/14/00	1:1	0.25 U	NO	102%	98.8%
00-9399-BT23A	SEEP3/61300	06/15/00	1:1	0.25 U	NO	105%	105%
00-9400-BT23B	Trip Blank	06/15/00	1:1	0.25 U	NO	104%	102%

Surrogate A is Trifluorotoluene. Surrogate B is Bromobenzene.

Values reported in ppm (mg/L). Quantitation on total peaks in the gasoline range from Toluene to C12.

Data Qualifiers

- U Compound not detected at the given detection limit.
- X Value detected above linear range of instrument. Dilution required.
- J Indicates an estimated value below the calculated detection limit.
- S No value reported due to saturation of the detector. Dilution required.
- D Indicates the surrogate was not detected because of dilution of the extract.
- NR Indicates no recovery due to matrix interference.

FORM-1 TPH-g

WATER TPHg SYSTEM MONITORING COMPOUND SUMMARY

Matrix: Water QC Report No: BT23

LIMS ID	Lab ID	Client ID	TFT	вв	TOT OUT
00-9399MB	061400MB	Method Blank	102%	98.8%	0
00-9399LCI	BT23LCD	LCDuplicate	%	ક	0
00-9399	BT23A	SEEP3/61300	105%	105%	0
00-9400	BT23B	Trip Blank	104%	102%	0

				MB/LCS	SAMPLE
				QC LIMITS	QC LIMITS
(TFT)	=	Trifluorotoluene	(6	0.0-130)	(60.0-130)
(BB)	=	Bromobenzene	(6	0.0-130)	(60.0-130)

ADVISORY LIMITS

- # Column to be used to flag recovery values
- * Values outside of required QC limits
- D System Monitoring Compound diluted out

Page 1 for BT23

FORM-II TPHg

Sample No: Method Blank

Lab Sample ID: BT23MB

QC Report No: BT23-Hart Crowser, Incorporated

LIMS ID: 00-9399

Project: Manchester FISC

Matrix: Water

4654-39

Date Sampled: NA

Date Received: NA

Data Release Authorized: (/

Reported: 06/24/00

سار

Date analyzed: 06/14/00

Volume Purged: 5.0 mL

Dilution: 1:1

Reported in ppb (ug/L)

CAS Number	Analyte	Value		
71-43-2	Benzene	1.0 U		
108-88-3	Toluene	1.0 U		
100-41-4	Ethylbenzene	1.0 U		
	m,p-Xylene	1.0 U		
95-47-6	o-Xylene	1.0 U		

BETX 8020 Surrogate Recovery

Trifluorotoluene 100% Bromobenzene 97.4%

Data Qualifiers

- U Indicates compound was analyzed for, but not detected at the given detection limit.
- J Indicates an estimated value when that result is less than the calculated detection limit.
- E Indicates a value above the linear range of the detector.
 Dilution Required
- S Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- B Found in associated method blank.
- Y Indicates a raised reporting limit due to matrix interferences. The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.

INCORPORATED

Sample No: SEEP3/61300

Lab Sample ID: BT23A

QC Report No: BT23-Hart Crowser, Incorporated

LIMS ID: 00-9399

Project: Manchester FISC

Matrix: Water

4654-39

Date Sampled: 06/13/00

Date Received: 06/13/00

Data Release Authorized: ()

Reported: 06/24/00

Date analyzed: 06/15/00

Volume Purged: 5.0 mL

Dilution: 1:1

Reported in ppb (ug/L)

CAS Number	Analyte	Value
71-43-2	Benzene	1.0 U
108-88-3	Toluene	1.0 U
100-41-4	Ethylbenzene	1.0 U
	m,p-Xylene	1.0 U
95-47-6	o-Xylene	1.0 U

BETX 8020 Surrogate Recovery

Trifluorotoluene 105% Bromobenzene 104%

Data Qualifiers

- U Indicates compound was analyzed for, but not detected at the given detection limit.
- J Indicates an estimated value when that result is less than the calculated detection limit.
- Ε Indicates a value above the linear range of the detector. Dilution Required
- S Indicates no value reported due to saturation of the detector.
- Indicates the surrogate was diluted out. D
- В Found in associated method blank.
- Indicates a raised reporting limit due to matrix interferences. Y The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.
- NA Indicates compound was not analyzed.
- NR Indicates no recovery due to interferences.

INCORPORATED

Sample No: Trip Blank

Lab Sample ID: BT23B

QC Report No: BT23-Hart Crowser, Incorporated

LIMS ID: 00-9400

Project: Manchester FISC

Matrix: Water

4654-39

Date Sampled: 06/13/00

Date Received: 06/13/00

Data Release Authorized: ()r

Reported: 06/24/00

Date analyzed: 06/15/00

Volume Purged: 5.0 mL

Dilution: 1:1

Reported in ppb (ug/L)

CAS Number	Analyte	Value
71-43-2	Benzene	1.0 U
108-88-3	Toluene	1.0 U
100-41-4	Ethylbenzene	1.0 U
	m,p-Xylene	1.0 U
95-47-6	o-Xylene	1.0 U

BETX 8020 Surrogate Recovery

Trifluorotoluene 102% Bromobenzene 101%

Data Qualifiers

- Indicates compound was analyzed for, but not detected at the U given detection limit.
- J Indicates an estimated value when that result is less than the calculated detection limit.
- Indicates a value above the linear range of the detector. Dilution Required
- Indicates no value reported due to saturation of the detector.
- D Indicates the surrogate was diluted out.
- В Found in associated method blank.
- Indicates a raised reporting limit due to matrix interferences. Y The analyte may be present at or below the listed concentration, but in the opinion of the analyst, confirmation was inadequate.
- NA Indicates compound was not analyzed.
- Indicates no recovery due to interferences.

ORGANICS ANALYSIS DATA SHEET BETX by Method 8020

Lab Sample ID: BT23LCS

LIMS ID: 00-9399 Matrix: Water QC Report No: BT23-Hart Crowser, Incorporated

Project: Manchester FISC

4654-39

Data Release Authorized: (1)
Reported: 06/24/00 4/11

LCS/LCSDUPLICATE ANALYSIS

Date Analyzed: 06/14/00

CONSTITU	ENT	SPIKE FOUND	SPIKE ADDED	% REC	% RPD
Lab Cont	rol Sample				
	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	26.1 25.1 24.6 49.5 24.6	25.0 25.0 25.0 50.0 25.0	104% 100% 98.4% 99.0% 98.4%	
LCDuplic	rate				
	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	25.7 24.6 24.3 49.0 24.2	25.0 25.0 25.0 50.0 25.0	103% 98.4% 97.2% 98.0% 96.8%	1.5% 2.0% 1.2% 1.0% 1.6%

BETX SURROGATE REC	LCS	LCSD
Trifluorotoluene	105%	93.5%
Bromobenzene	106%	94.8%

Values reported in parts per billion (ug/L)

BETX SPIKE CONTROL LIMITS

Percent Recovery 75-130%

WATER BETX SYSTEM MONITORING COMPOUND SUMMARY

Matrix: Water QC Report No: BT23

LIMS ID	Lab ID	Client ID	TFT	ВВ	TOT OUT
00-9399MB	061400MB	Method Blank	100%	97%	0
00-9399LC	061400LC	Lab Control	105%	106%	0
00-9399LCD	BT23LCD	LCDuplicate	94%	95%	0
00-9399	BT23A	SEEP3/61300	105%	104%	0
00-9400	BT23B	Trip Blank	102%	101%	0

	MB/LCS	SAMPLE
	QC LIMITS	QC LIMITS
(TFT) = Trifluorotoluene	(60-130)	(60-130)
(BB) = Bromobenzene	(60-130)	(60-130)

ADVISORY LIMITS

- # Column to be used to flag recovery values
- * Values outside of required QC limits
- D System Monitoring Compound diluted out

Page 1 for BT23

FORM-II BETX

TOTAL DIESEL RANGE HYDROCARBONS WA TPHd Range C12 to C24 by GC/FID and Motor Oil Silica-Cleaned

LIMS ID: 00-9399

QC Report No: BT23-Hart Crowser, Incorporated

Matrix: Water

Project: Manchester FISC

4654-39

Data Release Authorized: 4/13/60

Date Received: 06/13/00

Reported: 06/23/00

	Date	Dilution	Diesel	*HC	Motor Oil	Surrogate
Lab ID Sample ID	Analyzed	Factor	Range	ID	Range	Recovery
BT23MB Method Blank	06/16/00	1:1	0.25	U	0.50 U	87.0%
BT23A SEEP3/61300	06/17/00	1:1	0.26	NO	0.50 U	79.0%

Surrogate is Methyl-Arachidate.

ID indicates, in the opinion of the analyst, the petroleum product with the best pattern match. 'NO' indicates that there was not a good match for any of the requested products. Values reported in ppm (mg/L).

Diesel quantitation on total peaks in the range from C12 to C24.

Motor Oil quantitation on total peaks in the Motor Oil Standard range.

Data Qualifiers

- U Compound not detected at the given detection limit.
- Value detected above linear range of instrument. Dilution required.
- Indicates an estimated value below the calculated detection limit.
- No value reported due to saturation of the detector. Dilution required.
- Indicates the surrogate was not detected because of dilution of the extract. D
- Е Indicates a value above the linear range of the detector. Dilution required.
- Indicates no recovery due to matrix interference.

FORM-1 WA TPHD

TOTAL DIESEL RANGE HYDROCARBONS WA TPHd Range C12 to C24 by GC/FID Silica-Cleaned

Lab Sample ID: BT23SB QC Report No: BT23-Hart Crowser, Incorporated

LIMS ID: 00-9399

Project: Manchester FISC

4654-39

Matrix: Water

Data Release Authorized: 4(12)

Reported: 06/23/00

LABORATORY CONTROL SAMPLE RECOVERY REPORT

Date analyzed: 06/16/00

CONSTITUENT	SPIKE	SPIKE	%
	FOUND	ADDED	RECOVERY
Diesel Range Hydrocarbons	1.82	2.50	72.8%

TPHd Surrogate Recovery

Surr Rec

81.0%

Values reported in parts per million (mg/L)

QA Report - Method Blank Analysis

QC Report No: BT23-Hart Crowser, Incorporated

Project: Manchester FISC

4654-39

Date Received: NA

Data Release Authorized

Matrix: Water

Reported: 07/03/00 Dr. M.A. Perkin

METHOD BLANK RESULTS CONVENTIONALS

Analysis

Date & Batch	Constituent	Units		Re	sult
06/16/00 06160#1	Total Suspended Solids	mg/L	<	1.0	υ
06/13/00 06130#1	N-Nitrate	mg-N/L	<	0.1	υ
06/13/00 06130#1	Sulfate	mg/L	<	0.1	U

Final Report Laboratory Analysis of Conventional Parameters

Sample No: SEEP3/61300

Lab Sample ID: BT23A

QC Report No: BT23-Hart Crowser, Incorporated

LIMS ID: 00-9399 Project: Manchester FISC

Matrix: Water

4654-39

Date Sampled: 06/13/00

Date Received: 06/13/00

Reported: 07/03/00 Dr. M.A. Perkins

Data Release Authorized:

Analysis

Analyte	Date & Batch	Method	RL	Units		Result
Alkalinity	06/27/00	SM 2320	1.0	mg/L CaCO3		140
	06270#1					
Total Suspended Solids	06/16/00	EPA 160.2	1.1	mg/L		2.8
_	06160#1					
N-Nitrate	06/13/00	EPA 300.0	1.0	mg-N/L	<	1.0 U
	06130#1			_		
Sulfate	06/13/00	EPA 300.0	1.0	mg/L		12.6
	06130#1			<u>-</u> .		

RL Analytical reporting limit

U Undetected at reported detection limit

Report for BT23 received 06/13/00

QA Report - Laboratory Control Samples

QC Report No: BT23-Hart Crowser, Incorporated

Project: Manchester FISC

4654-39

Date Received: NA

Data Release Authorized:

Reported: 07/03/00 Dr. M.A. Perkins

LABORATORY CONTROL SAMPLES CONVENTIONALS

		Measured	True				
Constituent	Units	Value	Value	Recovery			
Laboratory Control Sample							
Alkalinity	mg/L CaCO3	118	118	100%			
Date analyzed: 06/27/00	Batch ID: 06270)#1					

QA Report - Standard Reference Material Analysis

QC Report No: BT23-Hart Crowser, Incorporated

Project: Manchester FISC

4654-39

Date Received: NA

Data Release Authorized

Reported: 07/03/00 Dr. M.A. Perkins

STANDARD REFERENCE MATERIAL ANALYSIS CONVENTIONALS

					True	
Constituent		Units	v	alue	Value	Recovery
SPEX #15-121 N-Nitrate Date analyzed:	06/13/00	mg-N/L Batch ID:		2.8	3.0	93.3%
SPEX #17-44 Sulfate Date analyzed:	06/13/00	mg/L Batch ID:	06130#1	3.1	3.0	103%

QA Report - Replicate Analysis

QC Report No: BT23-Hart Crowser, Incorporated

Project: Manchester FISC

4654-39

Date Received: 06/13/00

Data Release Authorized:

Matrix: Water

Reported: 07/03/00 Dr. M.A. Perkins

DUPLICATE ANALYSIS RESULTS CONVENTIONALS

Constituent	Units	Sample Value	Duplicate Value	RPD
ARI ID: 00-9399, BT23 A	Client Sample	ID: SEEP3/61300	ı	
Alkalinity	mg/L CaCO3	140	150	6.9%
N-Nitrate	mg-N/L	< 1.0 U	< 1.0 U	NA
Sulfate	mg/L	12.6	12.9	2.4%

QA Report - Matrix Spike/Matrix Spike Duplicate Analysis

QC Report No: BT23-Hart Crowser, Incorporated

Matrix: Water

Project: Manchester FISC

4654-39

Date Received: 06/13/00

Data Release Authorized

Reported: 07/03/00 Dr. M.A

Perkins

MATRIX SPIKE QA/QC REPORT CONVENTIONALS

Constituent	Units	Sample Value	Spike Value	Spike Added	Recovery
ARI ID: 00-9399, BT23 A	Client Sample II	: SEEP3/613	00		
N-Nitrate	mg-N/L	< 1.0	8.9	10.0	89.1%
Sulfate	mg/L	12.6	22.5	10.0	99.0%

MS/MSD Recovery Limits: 75 - 125 $\mbox{\ensuremath{\$}}$

Water MS/MSD QA Report Page 1 for BT23 received 06/13/00