Cleanup Action Plan Dakota Creek Industries¹ Anacortes, Washington

Facility Site ID: 2670 Cleanup Site ID: 5147

¹ This site is listed in Ecology's ISIS database as the Anacortes Port of Dakota Creek. For purposes of this Cleanup Action Plan, the Site is identified as the Dakota Creek Industries Site.

July 2022

ii

Contact Information

For more information contact:

Toxics Cleanup Program P.O. Box 47600 Olympia, WA 98504-7600

Phone: 360-407-6000

Washington State Department of Ecology — www.ecology.wa.gov

Headquarters, Olympia 360-407-6000 Northwest Regional Office, Bellevue 425-649-7000

Southwest Regional Office, Olympia 360-407-6300

Central Regional Office, Union Gap 509-575-2490

Eastern Regional Office, Spokane 509-329-3400

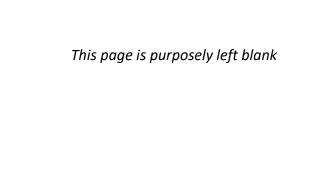
ADA Accessibility

The Department of Ecology is committed to providing people with disabilities access to information and services by meeting or exceeding the requirements of the Americans with Disabilities Act (ADA), Section 504 and 508 of the Rehabilitation Act, and Washington State Policy #188.

To request an ADA accommodation, contact Ecology by phone at 360-407-6000 or email at arianne.fernandez@ecy.wa.gov. For Washington Relay Service or TTY call 711 or 877-833-6341. Visit Ecology's website for more information.

iii July 2022

Cleanup Action Plan Dakota Creek Industries


Facility Site ID: 2670

Cleanup Site ID: 5147

Toxics Cleanup Program

Washington State Department of Ecology

Olympia, Washington

ii July 2022

Table of Contents

		<u>Page</u>
Table of	Contents	V
List of F	igures and Tables	vi
Figu	res	vi
Table	es	vii
List of A	ppendices	vii
List of A	cronyms and Abbreviations	viii
Executiv	e Summary	xi
Site 1	Background	xi
Ecolo	ogy Agreed Order and Regulatory Framework	xii
Natu	re and Extent of Contamination	xii
Clear	nup Action Plan Overview	xiv
Selec	ted Cleanup Action	XV
1.0 Intro	duction	1
1.1	General Facility Information and Site/Property Definitions	1
1.2	Regulatory Framework	2
1.3	Purpose	2
1.4	Cleanup Action Determination	3
2.0 Sum	nary of Site Conditions	4
2.1	Historical Operations and Use	4
2.2	Current Conditions, Utilities and Use	4
2.3	Future Land Use	5
2.4	Environmental Studies and Previous Cleanup Actions	5
2.5	Human Health and Environmental Concerns	9
3.0 Clear	nup Requirements	19
3.1	Indicator Hazardous Substances	19
3.2	Cleanup Standards	21
3.3	Points of Compliance	22
3.4	Applicable and Relevant and Appropriate Regulatory Requirements	23
4.0 Clear	nup Action Selection and Analysis	29
4.1	Areas Requiring Cleanup Action Evaluation	29

4.2	Remedial Technologies and Cleanup Action Alternatives Considered	30
4.3	Selected Remedy	32
5.0 Descript	tion of the Cleanup Action	34
5.1	Excavation and Off-Site Disposal of Contaminated Soil	34
5.2	Containment of In-place Contamination	34
5.3	Monitored Natural Attenuation	36
5.4	Institutional and Other Property Controls	37
5.5	Compliance Monitoring	38
5.6	Inadvertent Discovery of Cultural Resources	
5.7	Potential Habitat Restoration Opportunities	
5.8	Five-Year Review	
6.0 Referen	ces	43
	Vicinity Man	
Figures		
Figure 1.1	Vicinity Map	
Figure 1.2	Parcel Map	
Figure 1.3	Current Property Layout and Features	
Figure 2.1	Historical Property Layout and Features	
Figure 2.2	Marine Area Sediment Sampling Locations and Interim Action	
Figure 2.3	Marine Area Cross-Sections	
Figure 2.4	Upland Area Soil and Groundwater Sampling Locations and Cleanup Action	on Areas
Figure 2.5	Upland Area Cross-Sections	
Figure 2.6	Conceptual Site Model	
Figure 2.7	Summary of Soil Arsenic Results	
Figure 2.8	Summary of Soil Nickel Results	
Figure 2.9	Summary of Soil cPAH Results	
Figure 2.10	Summary of Groundwater Arsenic Results	
Figure 2.11	Summary of Groundwater Nickel Results	
Figure 2.12	Summary of Groundwater cPAH Results	
Figure 4.1	Assas Bass State Class Author Foot attack	
	Areas Requiring Clean Action Evaluation	

vi July 2022

Tables

Γable 2.1	Soil Screening Levels (embedded)
Table 2.2	Groundwater Screening Levels (embedded)
Table 3.1	Sediment Cleanup Levels
Гable 3.2	Soil and Groundwater Cleanup Levels
Γable 4.1	Cleanup Action Alternative Descriptions
Table 4.2	Evaluation of Cleanup Action Alternatives
Гable 4.3	Cleanup Action Alternative Evaluation Summary and Ranking

List of Appendices

Appendix A. Supplemental Soil Characterization Data Report

vii July 2022

List of Acronyms and Abbreviations

Acronym/Abbreviation **Definition** ARAR

Applicable or Relevant and Appropriate Requirement

AST Aboveground storage tank

Bank Cubic Yard bcy

Below ground surface bgs

BMP Best Management Practice

CAP Cleanup Action Plan

City City of Anacortes

CFR Code of Federal Regulations

cm Centimeter

CMP Compliance Monitoring Plan

cPAH Carcinogenic Polycyclic Aromatic Hydrocarbon per MTCA

CQAPP Construction Quality Assurance Project Plan

CSM Conceptual Site Model

COC Contaminant of Concern CUL Cleanup Level per MTCA

DAHP Department of Archaeology and Historic Preservation

DCA **Disproportionate Cost Analysis**

DCI **Dakota Creek Industries**

DP **Direct Push**

Ecology Washington State Department of Ecology

EDR Engineering Design Report

EICMMP Engineering and Institutional Controls Monitoring and

Maintenance Plan

EIS Environmental Impact Statement

FS **Feasibility Study**

Governor's Office of Indian AffairsHA **GOIA** Hand

Auger

HAZWOPER Hazardous Waste Operations and Emergency Response

HPAH High Molecular Weight Polycyclic Aromatic Hydrocarbons

> July 2022 viii

HSA Hollow Stem Auger

IHS Indicator Hazardous Substance

IDP Inadvertent Discovery Plan

Koc Soil Organic Carbon-Water Partition Coefficient

LPAH Low Molecular Weight Polycyclic Aromatic Hydrocarbons

mg/kg Milligrams per kilogram

Marine Area Portion of the Site below ordinary high water

MLLW Mean Lower Low Water

MS Manufacturing/Shipping

MTCA Model Toxics Control Act

OC Organic carbon

OHW Ordinary High Water

OSHA Occupational Safety and Health Act

PAH Polycyclic Aromatic Hydrocarbon

PCB Polychlorinated Biphenyl

Pier 1 Port of Anacortes Pier 1 Marine Terminal
Pier 2 Port of Anacortes Pier 2 Marine Terminal

PLP Potentially Liable Party

Port of Anacortes

POTW Publicly Owned Treatment Water

PQL Practical Quantitation Limits

RCW Revised Code of Washington

RI Remedial Investigation

ROW Rights-Of-Way

SEPA State Environmental Policy Act

Site Dakota Creek Industries Site

SMA Shoreline Management Act

SMS Sediment Management Standard
SVOC Semi-Volatile Organic Compound

SWPPP Storm Water Pollution Prevention Plan

TBT Tributyltin

ix July 2022

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TEE Terrestrial Ecological Evaluation

TEQ Toxicity Equivalency Quotient

TOC Total Organic Carbon

TP Test Pit

TS Total Solids

TVS Total Volatile Solids

μg/L Micrograms per Liter

Upland Area Portion of the Site above ordinary high water

USEPA United States Environmental Protection Agency

UST Underground Storage Tank

VCP Voluntary Cleanup Program

VOC Volatile Organic Compound

WAC Washington Administrative Code

WISHA Washington Industrial Safety and Health Act

x July 2022

Executive Summary

This document presents the Cleanup Action Plan (CAP) for the Anacortes Port Dakota Creek Industries (DCI) Site (Site) generally located between Commercial and R Avenue north of 3rd Street in Anacortes, Washington. While this site is listed in Ecology's ISIS database as the Anacortes Port of Dakota Creek Site, for purposes of this Cleanup Action Plan, it is identified as the Dakota Creek Industries Site. A preliminary CAP for the Site was prepared by the Port of Anacortes (Port) pursuant to an Agreed Order meeting the requirements of the Model Toxics Control Cleanup Act (MTCA) administered by Ecology under RCW 70A.305 and Chapter 173-340 of the Washington Administrative Code (WAC).

The Port completed independent soil cleanups and an Ecology-approved Interim Action (WAC 173-340-430) that removed contaminated soils in the Upland Area and all known contaminated Marine Area sediment. This CAP describes the final cleanup action for the remaining contamination located in the Upland soils and groundwater at the Site and sets forth functional requirements that the cleanup must meet, including follow-up monitoring. The cleanup action schedule will be attached as an exhibit to the Consent Decree.

Site Background

Since approximately 1879, the Site has been used for shipping, shipbuilding, ship repairs and other maritime-related industrial purposes and has contained various above ground storage tanks (ASTs), a rail spur, and associated buildings including machine shops, welding shops and equipment sheds to support industrial operations. Prior to 2008, the Marine Area contained multiple piers, docks and two marine railway boat lifts.

The west marine railway, located between the East Pier and Pier 1, was removed in the early 1990s. The east marine railway located between the East Pier and Pier 2 was removed in 2008 as part of the Project Pier 1 redevelopment activities. The Project Pier 1 redevelopment activities also included the removal of the L and East Docks and associated structures; dredging of approximately 170,000 cubic yards of sediment to remove sediment contamination and achieve the current navigation depths; installation of 670 linear feet of sheet pile bulkhead to reconfigure the southern shoreline; placement of 250 linear feet of riprap along the basin's east boundary and construction of the Central Pier.

Concurrent with the 2008 redevelopment activities, an interim action cleanup was completed under the terms of an Agreed Order, in accordance with the Ecology-approved RI/FS Work Plan and Interim Action Work Plan Addendum (GeoEngineers 2008) to remove approximately 26,000 cubic yards of contaminated sediment from the Marine Area and contaminated soil from the Upland Area. Cleanup objectives were met at the point of compliance for sediment in the Marine Area; therefore, no further action is required for sediment.

xi July 2022

DCI currently operates a shipyard at the Site and leases the property from the Port. DCI uses the facility for vessel construction and maintenance activities. The Site includes a portion of the Port's Pier 1 Marine Terminal, a centrally located outfitting dock (Central Pier), a syncrolift, upland fabrication areas, shops, a sandblast grit storage shed, stormwater treatment facility, warehouses and storage areas. The northern portion of Pier 1 (which is a deep water moorage terminal) is used by DCI to support dry dock operations.

Although the specific future uses of the Site will depend on the operations of the Port's lessees, the anticipated future use of the Site is continued industrial purposes including shipbuilding, ship repairs and other maritime-related industrial business. The property is currently leased to DCI for an additional 37 years.

Ecology Agreed Order and Regulatory Framework

Environmental studies completed at the Site since approximately 1991 identified that historical activities including vessel moorage, bulk fuel and oil storage, and shipbuilding activities resulted in the release of contaminants to soil, groundwater and sediment. In 1991, 2001 and 2002, independent cleanup actions were completed by the Port to address historical soil contamination.

On December 12, 2007, the Port entered Agreed Order No. DE-07TCPHQ-5080 with Ecology. Under the Agreed Order, the Port was required to complete an interim cleanup action in the Marine Area, evaluate the nature and extent of contamination in affected media on a Site-wide basis and develop and evaluate cleanup alternatives for addressing contamination remaining at the Site.

Completion of the Remedial Investigation/Feasibility Study (RI/FS) Work Plan, RI sampling and analysis, the Marine Area interim action, the RI/FS Report and a draft CAP fulfill the work requirements required of the Agreed Order. Field data collection in accordance with the Ecology-approved RI/FS Work Plan, summary of completed Interim Action activities and an evaluation of cleanup action alternatives are presented in the RI/FS Report (GeoEngineers 2022a).

Implementation of the selected cleanup action (summarized below) will be completed under a Consent Decree between the Port and Ecology.

Nature and Extent of Contamination

Based on a review of the Upland and Marine Area RI results, contaminants were found at concentrations above preliminary cleanup levels in sediment, groundwater and soil at the Site. Groundwater and sediment results indicate surface water is a transport pathway for contaminants. Surface water was not sampled but instead is addressed through development

xii July 2022

of groundwater cleanup levels protective of surface water, and through diversion of non-contact stormwater to a treatment system managed under a National Pollutant Discharge Elimination System (NPDES) permit. For the purposes of this document, we have consolidated terminology regarding preliminary, proposed, and final cleanup levels and address them as cleanup levels.

Sediment

Arsenic, copper, lead, mercury, zinc, tributyltin (TBT), low molecular weight PAHs (LPAHs), high molecular weight PAHs (HPAHs), cPAHs, polychlorinated biphenyls (PCBs), dioxin and furans were found above cleanup levels for Marine Area sediment (cleanup levels are listed in Table 3.1). However, interim action dredging and excavation activities completed between July and November 2008 in general accordance with the Ecology-approved RI/FS Work Plan and Interim Action Work Plan Addendum resulted in the removal of identified contaminants exceeding CULs from the Marine Area. Sediment samples collected from the base of the interim action dredge prism and sediment sample results from previous environmental studies within the Marine Area met cleanup level requirements; therefore, the in-water portion of the cleanup at the Site is considered complete and no further action is required.

Groundwater

Arsenic, nickel, and cPAHs were identified as groundwater contaminants for the Upland Area. Between 2015 and 2016, DCI replaced a significant portion of their gravel working surface with asphalt pavement which acts to prevent stormwater infiltration through the soil column. RI Groundwater monitoring results show a decrease in groundwater concentration over time which appear to indicate that the paved surfaces are limiting the infiltration, leaching and subsequent migration of contaminants through the soil column to groundwater. In addition, this data show that contaminants that remain in place in saturated zone soils have stabilized and are limiting migration downgradient toward the Guemes Channel since paving was completed.

Petroleum and chromium were detected in groundwater above cleanup levels; however, monitoring results collected during the RI show petroleum and chromium concentrations decreased over time to below cleanup levels.

Soil

Arsenic and nickel, and cPAHs were identified as soil contaminants for the Upland Area. In the eastern portion of the Site, arsenic and nickel exceeded CULs in fill deposits from the ground surface down to a depth of approximately 8 feet below ground surface (bgs). In the north central portion of the Site, arsenic and nickel exceeded CULs in fill deposits from the ground surface down to a depth of approximately 10 feet bgs. In the central portion of the Site, total cPAH calculated using the toxicity equivalency quotient (TEQ) methodology exceeded the soil cleanup level in historical fill deposits between approximately 5 and 13 feet bgs. In the southcentral portion of the Site, arsenic exceeded the soil cleanup levels in historical fill deposits from between approximately 5 and 8 feet bgs. In the western portion of the Site, arsenic and

xiii July 2022

nickel exceeded the CUL in fill deposits from the ground surface down to a depth of approximately 10 feet bgs. Results of soil/sediment samples collected at the Site from the underlying native surface show that the Upland Area CUL exceedances are limited to the overlying fill soil and do not extend to the underlying native surface.

Petroleum was also found in soils above cleanup levels; however, previous independent cleanup actions as described in section 2.4 removed these contaminants. Appendix A includes verification sampling data showing their associated cleanup levels were met for the Site.

Surface Water

Stormwater is either collected and treated before permitted discharge to Guemes Channel or infiltrates into the soil. The onsite stormwater treatment facility is overseen by Ecology's Water Quality Program. Collected stormwater does not come into contact with historically contaminated soils; therefore, no further remedial action is required under this CAP to be protective of the surface water pathway. The groundwater to surface water pathway is addressed via groundwater cleanup levels established for the Site, which will be protective of the surface water cleanup levels.

Cleanup Action Plan Overview

Potentially applicable response actions and associated remediation technologies were identified and screened for the development of cleanup action alternatives to address contaminants in two mediums at the Site (soil and groundwater)¹. When determining the final cleanup objectives and mediums that require further cleanup actions under this CAP, Ecology incorporated actions completed during Project Pier 1 redevelopment, independent cleanup actions, and interim cleanup actions in the Marine Area and Upland Area of the Site.

The screening process determined the most appropriate technologies and process options based on their expected implementability, reliability, effectiveness, and relative cost. Screening also considered modifying criteria associated with current and future land uses, consideration of potential historical and archaeological remains, and impacts to existing habitat resources. Cleanup action alternatives were then developed by combining technologies retained through the screening process to meet the Site cleanup standards. The design parameters used to develop the alternatives were based on both engineering judgment and the current knowledge of Site conditions and are conceptual-level designs for the implementation of the individual technologies. In accordance with the requirements of WAC 173-340-350 and WAC 173-340-360, cleanup action alternatives were evaluated against the following criterion:

xiv July 2022

¹ As previously discussed, interim action dredging and excavation activities completed in 2008 removed sediment contaminants exceeding CULs from the Marine Area. Sediment samples collected from the base of the interim action dredge prism and sediment sample results from previous environmental studies within the Marine Area provide the basis for sediment not being considered a medium of concern for the Site.

- Compliance with cleanup standards and applicable laws;
- Provision for a reasonable restoration time frame; and
- Use of permanent solutions to the maximum extent practicable by comparison of the following:
 - Protectiveness;
 - o Permanence;
 - Cost;
 - Effectiveness over the long term;
 - Short-term risk management;
 - Net environmental benefit;
 - Technical and administrative implementability; and,
 - Consideration of public concerns.

A MTCA disproportionate cost analysis (DCA) was then completed to determine which cleanup action alternative that otherwise meets the threshold requirements, achieves the highest level of environmental benefit while not being disproportionate in cost relative to the other alternatives.

Selected Cleanup Action

As a result of the cleanup action evaluation and screening process in the RI/FS, Cleanup Action Alternative 2 emerged as the preferred alternative which meets the minimum threshold requirements, achieves a high level of environmental benefit and is not disproportionate in cost relative to the other alternatives evaluated. Implementation of Cleanup Action Alternative 2 will result in contaminant mass reduction and will be used in conjunction with containment technologies and institutional controls to prevent direct human contact and reduce the potential for leaching and migration of residual contamination to surface water within a reasonable restoration time frame. As detailed below, Ecology reviewed the interim action completed for the Marine Area sediment and determined no further actions are required to meet cleanup levels.

In general, the selected remedy includes the removal of contaminant source area soil in which detected concentrations have the greatest potential to adversely impact groundwater. Remaining contamination at the Site will remain isolated below existing protective barriers (pavement caps) to prevent contact with Site workers, and institutional controls will be established to maintain the protective caps, prevent the use of groundwater as drinking water, and restrict or manage appropriately, potential future ground disturbances. Compliance monitoring will then be performed to verify the effectiveness of the removal action. At present,

xv July 2022

the existing monitoring results indicate that groundwater is in compliance with the cleanup standards at the conditional point of compliance separating the upland and marine portions of the Site. Long-term groundwater monitoring at the Site will be used to evaluate groundwater conditions over-time and assess contaminant concentrations relative to the cleanup standards and further natural attenuation of contaminants.

Consistent with Chapter 70A.305 Revised Code of Washington (RCW), as implemented by WAC 173-340, Ecology has determined that the selected Site cleanup action is protective of human health and the environment, will attain federal and state requirements that are applicable or relevant and appropriate, complies with cleanup standards, and provides for compliance monitoring. In addition, the selected cleanup action satisfies the preference expressed in WAC 173-340-360 for the use of permanent solutions to the maximum extent practicable and provides for a reasonable restoration time frame. It is anticipated to be completed within 1-2 years from finalization of this Cleanup Action Plan.

xvi July 2022

1.0 Introduction

This document presents the Cleanup Action Plan (CAP) for the Dakota Creek Industries Site (Site) located in Anacortes, Washington. The general location of the Site is shown in Figure 1.1. This CAP has been prepared pursuant to requirements of the Model Toxics Control Cleanup Act (MTCA) administered by the Washington State Department of Ecology (Ecology) under 70A.305 RCW and Chapter 173-340 of the Washington Administrative Code (WAC). This CAP provides a description of the cleanup action and sets forth functional requirements that the cleanup must meet to achieve the cleanup action objectives for the Site. The cleanup action schedule will be attached as an exhibit to the Consent Decree.

1.1 General Facility Information and Site/Property Definitions

Site Name: Anacortes Port of Dakota Creek

Facility Site ID No.: 2670 Cleanup Site ID No.: 5147

Property Address: 115 Q Avenue, Anacortes, Washington

Coordinates: N48.520606°, W122.610640°

Township/Range: NW¼, S18, T35N, R2E,

Parcel Numbers: P32866, P32867, P32903, P32904, P32905, P32906, P32907, P54924,

P55030, P55031, P56539

Owner: Port of Anacortes

The Site, as defined under the MTCA is where a hazardous substance has been deposited, stored, disposed of, or placed, or has otherwise come to be located. The Site includes the parcels listed above.

Dakota Creek Industries (DCI) currently leases multiple property parcels from the Port of Anacortes (Port) which are located within the Site boundary. These parcels are used for shipyard operations including vessel construction and maintenance activities (Figure 1.2). The lease area includes a portion of the Port's Pier 1 Marine Terminal, a centrally located outfitting dock (Central Pier), a syncro-lift, upland fabrication areas, shops, a sandblast grit storage shed, stormwater treatment facility, warehouses and storage areas. The northern portion of Pier 1 (which is a deep-water moorage terminal) is used by DCI to support dry dock operations. Current DCI operations and Site features are shown on Figure 1.3.

The parts of the Site offshore of Ordinary High Water (OHW) of the Site (henceforth referred to as the Marine Area) is located between the Port's Pier 1 and Pier 2 Marine Terminals (Pier 1 and Pier 2) and is maintained with a navigation depth of approximately -35 feet Mean Lower Low Water (MLLW) to support shipyard operations. To the west and south, the Marine Area is

separated from the uplands by vertical sheet pile bulkheads. To the east, the Marine Area is bound by Pier 2 which is an earth fill structure and a pile supported wharf along the northern most part of the facility. The slope of the earth fill is armored with large rock (riprap).

The parts of the Site landward of OHW (henceforth referred to as the Upland Area) are relatively flat with a ground surface elevation of approximately 15 feet MLLW. Most of the upland area is paved with asphalt or concrete. The limited unpaved parts of the Upland Area consist of a crushed gravel working surface that is maintained for fabrication layout and heavy equipment operations. Public access to the shipyard facility and the Port's Pier 1 and Pier 2 facilities is restricted with fencing, signage and security guards.

1.2 Regulatory Framework

Environmental studies completed at the Site since approximately 1991 have identified that historical uses including vessel moorage, bulk fuel and oil storage, and shipbuilding activities resulted in the release of contaminants to soil, groundwater and sediment.

On December 12, 2007, the Port entered into Agreed Order No. DE-07TCPHQ-5080 with Ecology. Pursuant to the Agreed Order, the Port completed a Remedial Investigation (RI) and Feasibility Study (FS) to:

- Evaluate the nature and extent of contamination in the affected media on a Site-wide basis;
- Complete an interim cleanup action in the Marine Area addressing identified sediment contamination; and to
- Develop and evaluate cleanup alternatives for addressing identified Upland Area contamination.

A detailed description of the previous environmental studies completed, the interim action activities performed, evaluation of the nature and extent of contaminants, and selection process for a preferred remedial alternative meeting the MTCA threshold requirements are presented in the RI/FS Report (GeoEngineers 2022a).

1.3 Purpose

A CAP is required as part of the Site cleanup process under MTCA Cleanup Regulations (Chapter 173-340 WAC). The purpose of the CAP is to identify the cleanup action for the Site. More specifically, this plan:

- Describes the Site;
- Summarizes current Site conditions;
- Summarizes the cleanup action alternatives considered in the remedy selection process;

- Describes the selected cleanup action for the Site and the rationale for selecting the alternative;
- Identifies Site-specific cleanup levels and points of compliance for each hazardous substance and medium of concern for the cleanup action;
- Identifies applicable state and federal laws for the cleanup action;
- Identifies residual contamination remaining on the site after cleanup (if applicable) and restrictions on future uses and activities at the site to ensure continued protection of human health and the environment;
- Discusses compliance monitoring requirements and contingencies; and
- Presents the schedule for implementing the CAP.

1.4 Cleanup Action Determination

Ecology has determined that the cleanup action described in this CAP will comply with the requirements for selection of a remedy under WAC 173-340-360. Specifically, these requirements include a cleanup action that will be protective of human health and the environment, attain federal and state requirements that are applicable or relevant and appropriate, comply with cleanup standards, provide for compliance monitoring, use permanent solutions to the maximum extent practicable, provide for a reasonable restoration time frame, and consider public concerns.

2.0 Summary of Site Conditions

2.1 Historical Operations and Use

The Site has been used for shipping, shipbuilding, ship repairs and other maritime-related industrial purposes since approximately 1879. Historically, various above ground storage tanks (ASTs), a rail spur, and associated buildings including machine shops, welding shops and equipment sheds were located at the Site to support industrial operations (Figure 2.1). Historical records indicate that a bulk oil storage and distribution facility with at least six ASTs was in operation in the central upland portion of the Site and that Pacific Tow Boat leased this portion of the Site to Standard Oil in between 1946 and 1969 who operated the bulk oil storage and distribution facility after which it was sold to the Dillingham Corporation. The Port acquired portions of the Site from the mid-1940s to the mid-1970s. By the mid-1970s, the structures associated with the bulk oil storage and distribution facility had been removed.

The southwest portion of the Site was historically used for residential purposes from the early 1900s until the late 1960s. In this area, the ground surface in this area was lower that the surrounding areas by several feet. Following the purchase of this area by the Port in 1975, the grade was raised to match the surrounding area using dredged sediments from the Guemes Channel. In about 1976, DCI began to lease the Site from the Port and has continued to operate the shipyard facility since that time.

Prior to 2008, multiple piers and docks and two marine railways used to lift vessels out of the water were located in the Marine Area (Figure 2.1). The west marine railway, located between the East Pier and Pier 1, was removed in the early 1990s. The east marine railway located between the East Pier and Pier 2 was removed in 2008 as part of the Project Pier 1 redevelopment activities. The Project Pier 1 redevelopment activities included the removal of L and East Docks, the east marine railway and associated marine structures, dredging of approximately 170,000 cubic yards of sediment to achieve removal of contaminated sediments and the current navigational depth of the Marine Area, installation of 670 linear feet of sheet pile bulkhead (open cell bulkhead) to reconfigure the southern shoreline, placement of 250 linear feet of riprap along the Marine Area's east boundary and construction of the Central Pier.

2.2 Current Conditions, Utilities and Use

Many of the historical structures/facilities noted in the previous section have been demolished and removed. The DCI lease area currently has three warehouses (No. 4, 9 and 10), sand shed, shop, paint storage shed, stormwater treatment facility and guard station at the main entrance located at the interception of Q Avenue and 3rd Street (Figure 1.3). In addition, multiple modular shelters are used at the Site. The location of these modular shelters varies and is dependent on DCI operations to support vessel construction and maintenance activities.

Typical of industrialized waterfronts, sections of the shoreline adjacent to the Site are armored with riprap or are separated from the Marine Area with sheet pile bulkheads to prevent erosion. In the Upland Area, the ground surface is mostly paved with asphalt or concrete. In limited portions of the Upland Area, the ground surface consists of a crushed gravel working surface that is maintained for fabrication layout and equipment storage.

There is little or no stormwater run-on to the Site, and precipitation falling onto the DCI lease area is captured by a network of stormwater drains and is treated at the facility prior to permitted discharge to Guemes Channel or the City of Anacortes (City) sanitary sewer. In the limited areas that are unpaved, stormwater infiltrates into the ground.

DCI currently has connections for power, water, sewer, and communications which extend into the adjacent rights-of-way (ROW), including Commercial Street and 3rd Avenue. DCI also maintains utilities including compressed air and electrical to support vessel construction and marine maintenance operations.

2.3 Future Land Use

At present, the property parcels containing the Site and adjacent properties are zoned by the City for industrial use (Manufacturing/Shipping [MS]) and are characterized by marine shipping, warehousing, bulk material storage, transportation, and other industrial uses. Although the specific future use of the Site is dependent on the operations of the Port's lessees, it is likely to continue to be for industrial purposes including shipbuilding, ship repairs and other maritime-related industrial business. Currently, the Port maintains a lease with DCI that extends through 2055 (an additional 34 years).

2.4 Environmental Studies and Previous Cleanup Actions

Various investigation and cleanup activities have been conducted at the Site since approximately 1991. The RI/FS report (GeoEngineers 2022a) describes previous environmental studies and cleanup actions performed as independent remedial actions prior to 2008, Ecology Agreed Order RI activities and the results of the 2008 Marine Area Interim Action. The purpose of the RI was to collect, develop, and evaluate sufficient information to allow the selection of an appropriate cleanup action for the Site. The purpose of the 2008 Marine Area Interim action was to remove sediment contamination within the Marine Area to allow the Port's Project Pier 1 Redevelopment to dredge to improve navigation. More recent soil sampling data (March 2021) collected following completion of the RI/FS is presented in Appendix A of this CAP. The March 2021 sampling event was completed to verify the completeness of previous cleanup actions performed at the Site.

Environmental studies performed to evaluate Site conditions for the Upland and Marine Areas, previous cleanup actions and interim action dredging activities are summarized in the following sections.

2.4.1 Marine Area Environmental Studies and Interim Action

Environmental investigations completed to assess sediment quality in and near the Marine Area included:

- Phase 2 Environmental Assessment (Otten Engineering 1997)
- Dredge Material Characterization (Anchor 2004)
- Marine Area Surface Dioxin Study (Floyd | Snider 2007)
- Fidalgo Bay Sediment Investigation (SAIC 2008)
- Ecology Agreed Order Remedial Investigation (GeoEngineers 2010)

These sediment investigations have resulted in the collection of surface samples ranging between 0 and 20 centimeters (cm) below the mudline at 20 locations and the collection of subsurface samples ranging between 3 and 7 feet below the mudline surface at 10 locations. Sediment samples were submitted for a combination of analyses including total organic carbon (TOC), total volatile solids (TVS), total solids (TS), and grain size, ammonia, sulfides, Sediment Management Standard (SMS) metals, semi-volatile organic compound (SVOCs), polycyclic aromatic hydrocarbons (PAHs), volatile organic compound (VOCs), polychlorinated biphenyls (PCBs), pesticides, tributyltin (TBT), and dioxins and furans.

In 2008, under the terms of Agreed Order No. DE-07TCPHQ-5080, the Port performed an interim action in the Marine Area in conjunction with the Port's Project Pier 1 Redevelopment to remove contaminated sediment from the Marine Area identified by the RI and previous studies. In addition, contaminated soil from the Upland Area based on sample results from environmental studies (summarized below) were removed as part of the installation of new underground utility infrastructure at the Site. The interim action included dredging to remove contaminated sediment deposits and up to 30 feet of native glaciomarine deposits. Confirmational sampling indicates that no identified sediment contamination above cleanup levels remains at the Site and no further action is required for sediments.

Sediment sampling locations within the Marine Area and the limits of the 2008 Interim Action are shown on Figure 2.2. Sediment stratigraphy prior to and following Marine Area dredging completed as part of the Interim Action and Project Pier 1 Redevelopment is shown on Figure 2.3.

2.4.2 Upland Area Studies and Cleanup Actions

Environmental investigations completed to assess soil and groundwater conditions in the Upland Area included:

- Phase 2 Environmental Site Assessment (Otten Engineering 1997)
- EPA Site Inspection (Weston 2001)
- Remedial Investigation Study (Landau 2002)
- Groundwater Characterization Study (Floyd | Snider 2007)
- Ecology Agreed Order Remedial investigation (GeoEngineers 2010)
- Supplemental Groundwater Investigation (GeoEngineers 2014)
- Upland Soil Data Gap Investigation (GeoEngineers 2015)
- Semi-Annual Groundwater Investigation (GeoEngineers 2018)
- Final RI/FS Report (Geoengineers 2022a)
- Supplemental Soil Investigation Data Report (Geoengineers 2022b)

Initial soil sampling in October 1991 following the removal of two underground storage tanks (USTs) located near the south end of L (Figure 2.1). During the removal of these tanks, approximately 20 cubic yards of petroleum impacted soil was removed from this area and transferred from the Site for landfill disposal. Verification sample results were reported below cleanup levels at the final excavation limits confirming the removal of the petroleum impacted soil observed during tank removal activities.

Between July 1997 and October 2001, additional investigations were performed at the Site to evaluate soil and groundwater conditions. As part of these environmental studies, a total of 98 soil samples were collected from 42 locations. In addition, two rounds of groundwater monitoring were completed at four wells between early September and late October 2001. Samples were submitted for a combination of chemical analysis including total/dissolved metals, gasoline-, diesel- and heavy oil-range petroleum hydrocarbons, VOCs, SVOCs including PAHs, pesticides and PCBs based on review of historical activities at the Site. Based on the investigation results, two separate cleanup actions were performed to address soil contamination:

- 2001 Hydraulic Winch Cleanup Action In 2001, a hydraulic winch and its timber frame located near the south end of the east marine railway were removed from the Site. During removal of this structure and associate components, approximately 30 cubic yards of petroleum impacted soil were excavated and transferred from the Site for landfill disposal. Verification samples at the final excavation limits were obtained to confirm the removal of the petroleum impacted soil observed during removal of the hydraulic winch and associated timber frame.
- **2002 Petroleum and Marine Railway Cleanup Actions** In 2002, the Port completed cleanup actions to address known soil contamination in the Petroleum Cleanup Action Area extending from the aluminum shop (building formerly identified as the equipment

maintenance shed) to the former bulk fuel storage ASTs; and the Marine Railway Cleanup Action Area located near the eastern marine railway structure. Cleanup actions to remove soil contamination (approximately 1,650 cubic yards) in these areas were completed under Ecology's Voluntary Cleanup Program (VCP). Verification samples at the final excavation limits were obtained to confirm the removal of the petroleum impacted soil from these areas.

Although verification sampling completed as part of these previous cleanup actions confirmed the removal of the petroleum-related contamination from these areas, the technical quality of these data could not be independently verified because the original laboratory data was not available for the RI/FS. As a result, the Port performed additional sampling and analysis within these areas in 2021 to confirm the previous removal of the petroleum-related contamination and to demonstrate that the previous removals meet the overall cleanup action objectives for the Site. Supplemental soil sampling activities are summarized in Appendix A. The supplemental soil sample results are below cleanup levels and confirms the completeness of the previous cleanup actions.

As described above, approximately 572 cubic yards of arsenic contaminated soil located on the east side of the site was removed during the 2008 Interim Action. Following completion of the 2008 Interim Action and reconfiguration of the DCI shoreline, the Upland Area Agreed Order RI soil and groundwater sampling activities were performed by the Port. The soil RI included the collection of samples from the Site using a combination of hollow stem auger (HSA) drilling, direct push (DP) drilling, test pit (TP) and hand auger (HA) drilling technologies. In June 2008, subsurface soil samples were collected from eleven HSA explorations, ten test pit explorations and three hand auger explorations to meet the objectives of the Ecology-approved RI/FS Work Plan.

In addition, the Port completed quarterly groundwater monitoring at MW-1 through MW-7 between May 2012 and February 2013 to evaluate whether previously identified contaminants in soil were adversely effecting groundwater. The results of the quarterly groundwater monitoring activities identified concentrations of arsenic, nickel and carcinogenic PAHs (cPAHs) exceeding cleanup levels established in the RI/FS Report for groundwater during one or more quarterly monitoring events. In 2014, a supplemental soil investigation was completed to further characterize the nature and extent of these contaminants in soil. During this supplemental soil investigation, 43 DP explorations were completed to further evaluate subsurface soil conditions.

Due to inconclusive evidence linking contaminant exceedances identified in soil to contaminant exceedances in groundwater, four additional rounds of groundwater monitoring were completed between February 2016 and August 2017 on a semi-annual basis to further evaluate the potential source of soil contamination to groundwater. In addition, a new monitoring well (MW-8) was installed north of MW-1 to serve as the point of compliance. To avoid potential

utilities, structural obstructions and minimize impacts to DCI's operations, MW-8 was positioned within Warehouse 9 located west of the Syncrolift Pier in an area which soil and groundwater conditions had not been previously evaluated. Three additional DP explorations were completed in July 2018 to evaluate soil conditions adjacent to and upgradient from monitoring well MW-8 based on the detected concentrations of arsenic and cPAHs in groundwater at this location.

Soil and groundwater sampling locations and the location of previous cleanup action areas are shown on Figure 2.4. Soil stratigraphy at the Site based on the result of the RI and previous studies is shown on Figure 2.5.

2.5 Human Health and Environmental Concerns

In accordance with WAC 173-340-700(5), the following criteria were considered when developing cleanup levels for a medium at the Site to evaluate human health and environmental concerns:

- Current and potential exposure pathways and potential receptors.
- Current and potential land resource use.
- Nature and extent of contamination.

These criteria also provide the substantive components of the Conceptual Site Model (CSM), as defined in WAC 173-340-200. Mediums, potential contaminant source, release and transport mechanisms, and exposure routes for the Site are illustrated in Figure 2.6.

Potential exposure pathways and receptors, and contaminants under evaluation for the Upland Area mediums (soil and groundwater) are summarized below. Further details and sources of the information presented in this section are provided in the RI/FS Report (GeoEngineers 2022a). Measures to protect surface water and sediment are included when determining appropriate cleanup levels and points of compliance for groundwater and soils.

Sediment was evaluated during the remedial investigation and subsequent interim actions. Sediment data results showed contamination above cleanup levels was discharged to Guemes Channel. This prompted an interim action dredge in 2008. Based on the sediment sample results representative of the post-dredge condition, contaminant concentrations exceeding SMS cleanup levels in sediment were removed from the Marine Area. Due to the completeness of the 2008 Interim Action dredging and subsequent dredging of up to 30 additional feet of underlying native material, no current sediment contamination is known to be present. Therefore, as the result of the 2008 Interim Action, no further action is proposed for sediment.

Sediment contamination shows that stormwater to surface water is a transport pathway for the site. Several upgrades and site modifications now treat or limit stormwater discharge to

Guemes Channel. Storm water either infiltrates into the remaining gravel surfaces and is contained in groundwater behind a bulkhead, or it is collected, treated, and discharged to Guemes Channel under a National Pollutant Discharge Elimination System (NPDES) permit.

2.5.1 Soil Conceptual Site Model

2.5.1.1 Soil Conditions

Site soils consist of multiple layers of fill overlying native marine sediment and glacial deposits. Recent fill deposits included material placed as part of the Project Pier 1 Redevelopment activities resulting in the expansion of the Upland Area northward of the historical shoreline after completion of the interim action dredging. To facilitate the infilling of this area, an open cell bulkhead was installed and the area behind the wall was backfilled to match the surrounding upland grade with clean imported material to meet the project design requirements. In other portions of the Site, historical fill deposits comprised of layers of sand, silty sand and silt with variable gravel content ranging from approximately 2 to 16 feet thick were likely placed during initial shoreline development in the 1960s to extend the historical shoreline northward. Contained in the historical fill deposits are occasional debris including concrete asphalt, brick and wood fragments. Historical fill deposits generally increase in thickness north of 3rd Street. Clean fill was also placed in the previously completed cleanup action excavations.

The southwestern portion of the Site was used for residential purposes from before 1925 until after approximately 1966 and was topographically lower than the surrounding ground surface until 1975. In 1975, this area was infilled with up to 7 feet of layered silt, clay and silty sand deposits with occasional wood debris and is commonly referred to as the 1975 Earth Fill Area.

Underlying the fill materials across the Site are native beach sands overlying glacial deposits. The beach sand deposits are typically poorly sorted and loose in nature and vary in thickness from 2 to 4 feet. Glacial deposits consist of a medium dense glaciomarine drift with varying amounts of silt, sand, and gravel that extend to all depths explored.

2.5.1.2 Potential Contaminant Source

Potential sources of soil contaminants at the Site include 1) surface leaks/spills from current and/or historical Site operations, 2) contaminated fill material placed during historical infilling of the Site, and 3) atmospheric deposition from off-site sources. Potential transport/secondary release mechanisms from the contaminated soil include leaching to groundwater and the migration of contaminants in groundwater to surface water through discharges at the shoreline.

2.5.1.3 Exposure Pathways and Receptors

The shoreline adjacent to the Site is armored with riprap or sheet pile bulkhead. In the Upland Area, the ground surface is mostly paved with asphalt or concrete. In limited portions of the

Upland Area, the ground surface consists of a crushed gravel working surface that is maintained for fabrication layout and equipment storage. A terrestrial ecological evaluation (TEE) determined that the existing land surface (asphalt, concrete, compacted gravel, buildings, etc.) at the Site and surrounding area make substantial wildlife exposure unlikely. During a visit in August 2008 to observe the condition of the Site, Ecology confirmed that the working surface provided little to no habitat value. Additional paving of the previous gravel surfaces has occurred since that time, further reducing the potential for habitat at the Site. Currently, the Site contains little to no vegetation that would serve as riparian or terrestrial habitat.

Based on current and future Site use, potential exposure pathways and receptors for contaminants in soil include:

- Contact (dermal, incidental ingestion or inhalation) by Site workers (including workers excavating soil); and
- Leaching of contaminants contained within the soil column to groundwater.

Visitors and terrestrial wildlife are not considered potential receptors of concern because access is limited to authorized personnel performing work at the Site, and because pavement and gravel working surfaces limit the area of suitable terrestrial habitat.

2.5.1.4 Cleanup Level and Point of Compliance

The Site meets the definition of an industrial property under MTCA (WAC 173-340-200) as it is zoned for industrial use and is used for industrial purposes. The surrounding properties are also zoned and used for industrial land use purposes. The Site also meets the requirements for use of industrial cleanup levels for soil as hazardous substances remaining at the property do not pose a threat to human health and the environment in nearby non-industrial areas (WAC 173-340-745[1][a][iii]). Residential areas are not located in proximity to the Site and the land use in the surrounding area restricts access to the Site. Access to the Site is also restricted through fencing and secure gates.

Based on zoning, current and anticipated future land use, soil cleanup levels were developed based on the most applicable conservative (lowest) published values from the following:

- MTCA standard Method C soil cleanup levels for industrial land use soil direct contact (WAC 173-340-745(5)(b)(iii)(B)).
- MTCA Method A soil cleanup levels for industrial land use (WAC 173-340-745[3]) are used for analytes without Method C soil cleanup levels, which include lead and petroleum hydrocarbons.
- Soil to groundwater transport pathway cleanup level using the MTCA fixed parameter three-phase partitioning model (WAC 173-340-747[4]) using default assumptions provided in WAC 173-340-747(4)(b) (Equation 747-1 and Equation 747-2) for saturated zone soils and

Ecology default model input parameter values (soil organic carbon-water partition coefficient [Koc] and Henry's Law constants [H]).

MTCA guidance document Polycyclic Aromatic Hydrocarbons and Benzo[a]pyrene: Changes
to MTCA Default Cleanup levels for 2017 that provides updated toxicity values for
benzo[a]pyrene and cPAH mixtures. This was developed to support Ecology's Cleanup Levels
and Risk Calculation tool and revised on July 2021.

In accordance with WAC 173-340-705(6), the cleanup levels were adjusted as necessary based on background concentrations and practical quantitation limits (PQLs) such that the soil cleanup level shall not be set at a level below the natural background concentration or the PQL, whichever is higher. Natural background concentrations (except for arsenic) are referenced from Ecology Publication 94-115 "Natural Background Soil Metals Concentrations in Washington State" (Ecology 1994) using 90th percentile values published for the Puget Sound Basin. Natural background for arsenic is established in regulation and published as the MTCA Method A value. Soil PQLs are referenced from an Ecology-accredited laboratory.

Because soil cleanup levels developed for the Site are based on the protection of surface water via groundwater and protection of sediment via groundwater transport pathways, the point of compliance for the soil is throughout the soil column in accordance with WAC 173-340-740(6)(b).

2.5.1.5 Contaminants

Soil contaminants were identified by comparing soil analytical results to cleanup levels at the point of compliance described above. All analytical data (including previously collected samples) collected from the Site that could be verified for technical quality were used to evaluate soil conditions. When evaluating cPAH mixtures (benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene), toxicity equivalency quotients (TEQs) were calculated for each sample with the corresponding result compared to the most conservative cleanup level for benzo(a)pyrene (WAC 173-340-708).

As a result of the screening process, soil concentrations of arsenic, nickel and cPAHs were detected at concentrations greater than the cleanup levels presented in the following table and are identified as Site indicator hazardous substances for soil.

Table 2.1: Soil Cleanup Levels

coc	Cleanup Level	Unit
Arsenic	20	mg/kg
Nickel	48	mg/kg

Total cPAH TEQ – Vadose Zone	2	mg/kg
Total cPAH TEQ – Saturated Zone	0.1	mg/kg

Notes:

TEQ – toxic equivalency quotient mg/kg – milligrams per kilogram

In the eastern portion of the Site, arsenic and nickel were detected at concentrations greater than the cleanup level in fill deposits from the ground surface down to a depth of approximately 8 feet below ground surface (bgs). In the north central portion of the Site, arsenic and nickel exceeded the cleanup level in fill deposits from the ground surface down to a depth of approximately 10 feet bgs. In the south and central portions of the Site, total cPAH TEQ concentrations exceeded the soil cleanup level in historical fill deposits between approximately 5 and 13 feet bgs. In the south-central portion of the Site, arsenic exceeded the soil cleanup levels in historical fill deposits from between approximately 5 and 8 feet bgs. In the western portion of the Site, arsenic and nickel exceeded the cleanup level in fill deposits from the ground surface down to a depth of approximately 10 feet bgs. Results of samples collected at the Site from the underlying native surface show that the Upland Area cleanup level exceedances are limited to the overlying fill soil and do not extend to the underlying native surface.

In addition, the results of previous environmental studies identified concentrations of gasoline-, diesel- and/or heavy oil-range petroleum hydrocarbons exceeding CULs in historical fill deposits from the ground surface to a depth of approximately 8 feet bgs in the central and eastern portions of the Site. As previously discussed, the independent cleanup actions performed by the Port in these areas resulted in the removal of petroleum-related contamination, and also likely resulted in the removal of arsenic, nickel and cPAH contamination within these areas. Supplemental soil investigation results presented in Appendix A confirm the completeness of these previous cleanup actions. Therefore, gasoline-, diesel- and/or heavy oil-range petroleum hydrocarbons are no longer considered Site contaminants for soil.

The nature and extent of arsenic, nickel and cPAHs in soil at the Site is illustrated on Figures 2.7 through 2.9.

2.5.2 Groundwater Conceptual Site Model

2.5.2.1 Groundwater Conditions

One shallow water-bearing hydrogeologic unit was identified at the Site. The shallow water-bearing unit occurs in the fill material at a depth of approximately 3 to 10 feet bgs (3 to 19 feet saturated thickness) across the Site. The confining unit, which underlies the shallow water-bearing unit, consists of native glaciomarine silt, sand and gravel deposits.

The predominant groundwater flow direction for the shallow water-bearing unit is to the north toward Guemes Channel. Tidal study results indicate that there is limited communication between tidally influenced marine water (Guemes Channel) and shallow groundwater at the Site except within approximately 150 feet of the shoreline. As part of the 2008 Interim Action, an open cell bulkhead was installed in the central portion of the Site to extend the Upland Area northward and create additional land to facilitate DCI operations. As a result, the open cell bulkhead (which now separates the Upland Area from the Marine Area) provides a physical barrier that restricts the direct discharge of groundwater north to Guemes Channel.

2.5.2.2 Potential Contamination Sources

The primary source of groundwater contaminants at the Site is leachate from contaminated soil. Site contaminants can be transported from the source areas and distributed by dispersive (solution) and advective (movement) transport mechanisms within the saturated zone. Capillary and adsorption forces are also present at and above the water table, causing contaminants to be retained in and onto fine-grain soils located above and below the saturated zone. These forces are affected by factors such as soil grain size, soil permeability, soil porosity, sorption/retardation characteristics of the soil, the volume of the release, and biodegradation of the contaminants.

Potential transport/secondary release mechanisms from contaminated groundwater include groundwater discharge into the adjacent marine surface water body (Guemes Channel) and contaminant volatilization into soil gas.

2.5.2.3 Groundwater Exposure Pathways and Receptors

In accordance with WAC 173-340-720(2), groundwater in the area of the Site is not a viable source of drinking water and is considered non-potable. Specifically, the groundwater at the Site is not a viable source of drinking water based on the following criteria:

- WAC 173-340-720(2)(a): Groundwater at the Site and surrounding area does not serve as a current source of drinking water.
- WAC 173-340-720(2)(b): Groundwater at the Site and surrounding area is not a potential
 future source of drinking water due to high concentrations of total dissolved solids (TDS) in
 samples collected from onsite monitoring wells. Specifically, samples collected from the
 monitoring wells have an average TDS concentration greater than 500 milligrams per liter
 (mg/L) which is the United States Environmental Protection Agency (USEPA) drinking water
 standard.
- WAC 173-340-720(2)(c): Based on the proximity to Guemes Channel (which is not classified as a domestic water supply) and groundwater-flow gradients at the Site, it is unlikely that hazardous substances will be transported from the Site to a current or potential future source of drinking water.

 WAC 173-340-720(2)(d): Groundwater at the Site and surrounding area is also considered non-potable due to the proximity of Marine Area/Guemes Channel (a surface water body not used as a domestic water supply), discharge of groundwater to the Marine Area, and the hydraulic connectivity between the groundwater and Marine Area demonstrated by the Tidal Study for the Site (GeoEngineers 2022a).

Based on the current and future Site use, potential exposure pathways and receptors for contaminants in groundwater include:

- Contact (dermal or incidental ingestion) by Site workers (including workers excavating soil below the water table);
- Contact (dermal or incidental ingestion) by aquatic receptors to impacted groundwater that may discharge to the Marine Area resulting in acute or chronic effects; and
- Ingestion of aquatic organisms affected by the discharge of impacted groundwater to the Marine Area.

2.5.2.4 Groundwater Cleanup Levels

According to WAC 173-340-720(1)(a), groundwater cleanup levels shall be based on estimates of the highest beneficial use and the reasonable maximum exposure expected to occur under both current and potential future site use conditions, unless it qualifies under WAC 173-340-720(2) for a different beneficial use. This site qualifies for a different beneficial use for reasons described in section 2.5.2.3. In particular, the Site meets the definition of an industrial property under WAC 173-340-200, and, groundwater at, or potentially affected by, the Site is not used for drinking water and is not a reasonable future source of drinking water due to its proximity to marine surface water and the availability of a municipal water supply.

Based on zoning, current and anticipated future land use and proximity to marine surface water (Guemes Channel), groundwater cleanup levels were developed based on WAC 173-340-720(6)(c)(i)(E) that states cleanup levels will not exceed the surface water cleanup levels derived under WAC 173-340-730. The most conservative (lowest) published values from available state and federal surface water criteria according to WAC 173-340-730(3), were evaluated to develop cleanup levels including:

- Water Quality Standards for Surface Waters of the State of Washington. These marine surface water criteria for protection of aquatic life (acute and chronic exposures) and human health (fish consumption) are published in WAC 173-201A.
- Federal Marine Water Quality Criteria for Washington State. These criteria are from United States Environmental Protection Agency's (EPA's) Final Revision of Federal Human Health Criteria Applicable to Washington from 40 CFR 131.45 (EPA 2016).

- Federal National Recommended Water Quality Criteria. These marine surface water criteria for protection of aquatic life (acute and chronic exposures) and human health (fish consumption) are established under Section 304 of the Clean Water Act.
- MTCA Method B standard formula values (for carcinogens and non-carcinogens) protective of human health (consumption of aquatic organisms) (WAC 173-340-730[3]).
- Surface water criteria are not currently available for gasoline-, diesel, and oil-range
 petroleum hydrocarbons. Therefore, as recommended in WAC 173-340-730(3)(b)(iii)(C), the
 MTCA Method A groundwater cleanup levels for gasoline-, diesel, and oil-range petroleum
 hydrocarbons were used as the MTCA Method B surface water cleanup levels for these
 analytes.
- Groundwater to sediment transport pathway cleanup level assuming equilibrium
 partitioning between sediment and groundwater in sediment pore spaces using Ecology's
 Lower Duwamish Waterway Preliminary Cleanup Level Workbook Supplemental
 Information document dated December 2018 to calculate groundwater concentrations
 protective of dry weight sediment cleanup objective (SCO) criteria.
- Groundwater to indoor air or vapor intrusion transport pathway based on values for industrial land use. As described above, the Site meets the definition of an industrial property under MTCA (WAC 173-340-200) as it is zoned for industrial use and is being used for industrial purposes now and for the foreseeable future.

In accordance with WAC 173-340-705(6), the cleanup levels were adjusted as necessary based on background concentrations and PQLs such that groundwater cleanup level shall not be set at a level below the natural background concentration or the PQL, whichever is higher. Natural background concentrations are based on Washington State groundwater background concentrations for metals (PTI 1989). Groundwater PQLs are referenced from an Ecology-accredited laboratory.

A conditional point of compliance was established downgradient and as close as technically possible to the remaining soil contamination. All wells will be located within the property boundary to monitor groundwater discharges prior to discharging to surface water.

2.5.2.5 Groundwater Contaminants

Groundwater contaminants were identified by comparing soil analytical results to the groundwater cleanup levels at the conditional point of compliance described above. Analytical data (including previously collected samples) collected from the Site that could be verified for technical quality were used to evaluate groundwater conditions. As with soil, TEQs were calculated when evaluating cPAH mixtures for each sample with the corresponding result compared to the most conservative screening level for benzo(a)pyrene (WAC 173-340-708).

As a result of the screening process, concentrations of arsenic, nickel and cPAHs were detected at concentrations greater than cleanup levels presented in the following table and are identified as Site contaminants for groundwater. Contaminants including chromium, dieselrange petroleum, and oil-range petroleum (see Table 3.2) were identified as groundwater contaminants in the Agreed Order. Data results showed all contaminants below cleanup levels due to prior cleanup actions and site modifications such as paving. Additional contaminants were identified and found above cleanup levels during the RI/FS including arsenic, nickel, and total cPAHs. These are identified as indicator hazardous substances for groundwater in the Consent Decree and will be addressed via the final cleanup action.

Table 2.2: Groundwater Cleanup Levels

сос	Cleanup Level	Unit
Arsenic	8	μg/L
Nickel	8.2	μg/L
Total cPAH TEQ	0.01	μg/L

Notes:

TEQ – toxic equivalency quotient

μg/L – micrograms per liter

At upgradient monitoring well locations (MW-1, MW-4, MW-5 and MW-7), concentrations of total/dissolved arsenic and nickel, and cPAHs were detected greater than the groundwater cleanup level in monitoring well MW-7 located in the southeast portion of the Site during one or more of the last four most recent monitoring events. Concentrations of arsenic, nickel and cPAHs were not detected greater than the cleanup levels at the other upland monitoring well locations during the last four monitoring events.

At the downgradient (conditional point of compliance) monitoring well locations (MW-2, MW-3, MW-6 and MW-8), the following contaminants were detected at concentrations greater than the groundwater cleanup level since completion of the 2015/2016 Upland Area paving activities previously discussed:

- Arsenic Total and dissolved arsenic was detected at concentrations greater than the
 groundwater cleanup level at MW-8 located in the northwest portion of the Site beneath
 Warehouse 9. However, soil sampling and analysis to further evaluate soil conditions in the
 vicinity of MW-8 did not identify any potential source materials for arsenic in saturated soil
 adjacent to or upgradient of this location.
- Nickel Dissolved nickel was detected at a concentration of 8.3 micrograms per liter (μg/L) which marginally exceeded the groundwater cleanup level of 8.2 μg/L at shoreline monitoring well location MW-2B during the February 2017 monitoring event. However,

total nickel at this location was not detected greater than the groundwater cleanup level during this event and dissolved nickel did not exceed the groundwater cleanup level in subsequent monitoring events at this location.

Total cPAHs TEQ – Concentrations of total cPAHs were detected at a level greater than the
groundwater cleanup level during one or more monitoring events at MW-8 located in the
northwest portion of the Site beneath Warehouse 9. However similar to arsenic, soil
sampling and analysis to further evaluate soil conditions in the vicinity of MW-8 did not
identify potential source materials for cPAHs in saturated soil adjacent to or upgradient of
this location.

A comparison of the initial (2008 to 2013) groundwater monitoring results to the recent semiannual groundwater monitoring results (2016 to 2017) show that the paved surfaces are limiting stormwater infiltration to soil and therefore, limiting leaching and subsequent migration of contaminants through the soil column to groundwater. In addition, these data support the conclusion that contaminants that remain in place in saturated zone soils have stabilized and are not migrating downgradient toward the Guemes Channel since paving was completed. Trend plots for groundwater COCs including arsenic, nickel and cPAHs for monitoring wells MW-1 through MW-8 are shown on Figures 2.10 through 2.12.

3.0 Cleanup Requirements

The MTCA cleanup regulations provide that a cleanup action must comply with cleanup levels for identified hazardous substances in media of concern, points of compliance, and applicable or relevant and appropriate requirements (ARARs) based on federal and state laws (WAC 173-340-710). Identified hazardous substances, cleanup levels, points of compliance, and ARARs for the selected cleanup remedy are summarized in the following sections.

3.1 Indicator Hazardous Substances

Under MTCA, "indicator hazardous substances" means the subset of hazardous substances present at a Site for monitoring and analysis during any phase of remedial action for the purpose of characterizing the Site or establishing cleanup requirements for that Site. Consistent with WAC 173-340-703, when defining cleanup requirements at a Site that is contaminated with a relatively large number of contaminants, Ecology may eliminate from consideration those hazardous substances that contribute a small percentage of the overall threat to human health and the environment. The remaining contaminants can then serve as indicator hazardous substances for purposes of defining Site cleanup requirements.

As outlined in Sections 2.5.1 and 2.5.2, soil and groundwater contaminants exceeding cleanup levels at the Site include arsenic, nickel and cPAHs. These contaminants are selected as indicator hazardous substances (IHSs) for the Site requiring cleanup action consideration. The cleanup levels for soil and groundwater are presented in Tables 2-1 and 2-2, respectively.

Based on the CSM and information presented to Ecology (RI/FS; Appendix A), the following mediums and associated cleanup levels are not considered IHSs for the site.

Sediment: The Port developed cleanup levels for sediment contaminants listed in the agreed order to determine the nature and extent of contamination and to evaluate the effectiveness of the interim cleanup action. Table 3-1 summarizes the cleanup levels for contaminants listed in the agreed order. Cleanup levels were also developed for additional sediment contaminants found during the remedial investigation. Details and cleanup levels for all contaminants are provided in the RI/FS. The interim cleanup actions summarized in section 2.4 removed contamination to below cleanup levels in site sediment. Due to the completeness of the interim action, contaminants listed in table 3-1 and the RI/FS no longer contribute to the overall threat to human health and the environment in sediment. No further action in sediment is necessary; therefore, cleanup levels for the final cleanup action are not established for sediment.

Table 3.1. Sediment Cleanup Levels

COC	Cleanup Level	Units	Cleanup Level	Units	Cleanup Level	Units
-----	------------------	-------	------------------	-------	------------------	-------

	Protection of benthic organisms (Organic Carbon 0.5% to 3.5%)		Protection of benthic organisms (Organic Carbon <0.5% or >3.5%)		Subtidal Sediment (below -3 ft MLLW)	
Copper	390	mg/kg	390	mg/kg	180,000	mg/kg
Lead	450	mg/kg	450	mg/kg	21	mg/kg
Zinc	410	mg/kg	410	mg/kg	1,400,000	mg/kg
Arsenic	57	mg/kg	57	mg/kg	11	mg/kg
Mercury	0.41	mg/kg	0.41	mg/kg	0.2	mg/kg
Total LPAH	370	(mg/kg OC normalized)	5,200	μg/kg		
Total HPAH	960	(mg/kg OC normalized)	12,000	μg/kg		
Total cPAH TEQ			1	-	21	μg/kg
Total PCB	12	(mg/kg OC normalized)	0.13		0.0035	mg/kg
bis(2-ethylhexyl) phthalate	47	(mg/kg OC normalized)	1,300	μg/kg	290	mg/kg
dibenzofuran	15	(mg/kg OC normalized)	540	μg/kg	4,100	mg/kg
Total dioxin/furan TEQ					5	ng/kg

Soil and groundwater: The Port developed cleanup levels for groundwater and soil contaminants listed in the agreed order to evaluate the nature and extent of contamination, the effectiveness of independent and interim cleanup actions, and to determine an appropriate final cleanup action for the site. Table 3.2 summarizes the cleanup levels for contaminants listed in the Agreed Order. Cleanup levels were also developed for additional contaminants found during the remedial investigation. Details and cleanup levels for all contaminants are provided in the RI/FS and Appendix A. Previous cleanup actions conducted in the Upland Area are summarized in section 2.4.

Verification sampling showed soils and groundwater meet cleanup level requirements for contaminants listed in Table 3.2 and the RI/FS except for the indicator hazardous substances. These contaminants no longer contribute to the overall threat to human health and the environment; therefore, they are not included as indicator hazardous substances for the medium evaluated.

Table 3.2. Soil and Groundwater Cleanup Levels

COC	Cleanup Level	Units				
Soil (vadose and saturated zone)						
Total petroleum hydrocarbons – Gasoline range	100	mg/Kg				
Total petroleum hydrocarbons – Diesel range	2,000	mg/Kg				
Groundwater						
Total petroleum hydrocarbons – Diesel range	500	μg/L				
Total petroleum hydrocarbons – Oil range	500	μg/L				
Chromium	50	μg/L				

3.2 Cleanup Standards

Cleanup standards consist of 1) cleanup levels that are protective of human health and the environment; and 2) the point of compliance at which the cleanup levels must be met. The final media-specific cleanup levels and points of compliance are summarized below.

3.2.1 Soil

In accordance with WAC 173-340-745 where Ecology has determined that industrial land use represents the reasonable maximum exposure, soil cleanup levels shall be based on estimates of the reasonable maximum exposure expected to occur under both current and future site use conditions. Based on zoning, and current and anticipated future land use, the Site meets the definition of an industrial property (WAC 173-340-200). For industrial land use, soil cleanup levels must be as stringent as:

- Concentrations established under applicable state and federal laws.
- Concentrations protective of direct human contact with soil.
- Concentrations protective of groundwater as surface water.

Cleanup levels presented in the RI/FS (GeoEngineers 2022a) to screen the environmental data based on human health and environmental considerations (summarized in Section 2.5) were developed in accordance with MTCA requirements and take into account future land use, ecological risk considerations and constitute the final soil cleanup levels for the Site. Final soil cleanup levels for IHSs are presented in Table 2.1.

3.2.2 Groundwater

In accordance with WAC 173-340-720, groundwater cleanup levels shall be based on estimates of the highest beneficial use and the reasonable maximum exposure expected to occur under both current and potential future site use conditions. Because groundwater at, or potentially affected by, the Site is not used for drinking water at this time and is not a reasonable future source of drinking water due to its proximity to marine surface water and the availability of a municipal water supply, groundwater at the Site is non-potable. Therefore, the next highest beneficial use is as surface water and must be as stringent as:

- Concentrations established under applicable state and federal laws.
- Concentrations protective of direct human contact with groundwater.
- Concentrations protective of surface water.
- Concentrations protective of sediment.

CULs presented in the RI/FS (GeoEngineers 2022a) to screen the environmental data based on human health and environmental considerations (summarized in Section 2.5) were developed in accordance with MTCA requirements and take into account future land use, ecological risk considerations and constitute the final groundwater cleanup levels for the Site. Final groundwater cleanup levels for contaminants are presented in Table 2.2.

3.3 Points of Compliance

Under MTCA, the point of compliance is the point or location on a site where the cleanup levels must be attained. This section describes the points of compliance for groundwater and soil.

Soil: Under MTCA, the standard point of compliance for the soil cleanup levels based upon human health via direct contact is throughout the Site from the ground surface to 15 feet bgs per WAC 173-340-740(6)(d). This depth represents a reasonable estimate of the depth of soil that could be excavated and distributed at the soil surface as a result of site development activities. For cleanup actions that involve containment of hazardous substances, however, the soil cleanup levels will typically not have to be met at the point of compliance if the following criteria are demonstrated as required under WAC 173-340-740(6)(f):

 The selected remedy is permanent to the maximum extent practicable using the procedures in -360;

- The cleanup action is protective of human health;
- The cleanup action is demonstrated to be protective of terrestrial ecological receptors under -7490 and -7494;
- Institutional controls are put in place under -440 that prohibit or limit activities that could interfere with the long-term integrity of the containment system;
- Compliance monitoring under -410 and periodic reviews under -430 are designed to ensure the long-term integrity of the containment system; and
- The types, levels and amount of hazardous substances remaining on-site and the
 measures that will be used to prevent migration and contact with those substances are
 specified in the cleanup action plan.

The proposed cleanup action, which includes containment of some impacted soils above cleanup levels beneath buildings or pavement, meets the requirements for this alternative point of compliance.

Groundwater: Under MTCA, the standard point of compliance for groundwater is throughout the site from the uppermost level of the saturated zone extending vertically to the lowest most depth that could potentially affect the site. Because the groundwater cleanup levels are based on protection of marine surface water and not protection of groundwater as a drinking water source, the conditional point of compliance was established downgradient and as close as technically possible to the remaining soil contamination. All wells will be located within the property boundary to monitor groundwater discharges prior to discharging to surface water. Existing wells or new wells located between the upland source areas and the marine surface waters will be used to demonstrate compliance at this conditional point of compliance.

3.4 Applicable and Relevant and Appropriate Regulatory Requirements

3.4.1 Applicable Requirements

MTCA requires the cleanup standards to be "at least as stringent as all applicable state and federal laws" (WAC 173-340-700(6)(a)). Cleanup levels and points of compliance met applicable laws as described above. Besides establishing minimum requirements for cleanup standards, other regulatory requirements must be identified by the person conducting the cleanup and considered in the selection and implementation of the cleanup action. This section details the known and identified applicable state and federal laws that may impose certain technical and procedural requirements for performing cleanup actions. These requirements are described in WAC 173-340-710. Pursuant to WAC 173-340-710(2), Ecology has reviewed the identified

applicable requirements and determined the following regulations are applicable as described below.

3.4.2 Relevant and Appropriate Requirements

In addition, relevant and appropriate requirements include those cleanup standards, standards of control, and other environmental requirements, criteria, or limitations established under state or federal law that, while not legally applicable to the hazardous substance, cleanup action, location, or other circumstance at a site, address problems or situations sufficiently similar to those encountered at the site that their use is well suited to the particular site. WAC 173-340-710 through 173-340-760 identifies several requirements Ecology considers relevant and appropriate for establishing cleanup standards. Pursuant to WAC 173-340-710(2), Ecology did not identify additional relevant and appropriate regulations.

3.4.3 Exemptions

The cleanup action at the Site will be performed pursuant to MTCA under the terms of a Consent Decree between Ecology and the Port. Certain state law requirements, and the procedural requirements of any laws requiring or authorizing local government permits or approvals for the remedial action are exempt under RCW 70A.305.090(1) in accordance with WAC 173-340-710(9)(b).

Persons conducting a remedial action under an order or decree are exempt from the procedural requirements of the following Revised Code of Washington (RCW) laws:

- Chapter 70.94 [Washington State Clean Air Act]
 - Limited exemption: Non-federally delegated permits only
- Chapter 70.95 [Washington State Solid Waste Management Act]
- Chapter 70.105 [Washington State Hazardous Waste Management Act
 - Limited exemption: State only-designated dangerous waste
- Chapter 77.55 [Washington State Construction Projects in Water Act]
- Chapter 90.48 [Washington State Water Pollution Control]
 - Limited exemption: Non-federally delegated state waste discharge permit only
- Chapter 90.58 [Washington State Shoreline Management Act]
- Laws requiring or authorizing local government permits or approvals for the remedial action

However, the Port must comply with the substantive requirements of any state law or local government permit/approval which is exempt under this provision in accordance with WAC 173-340-710(9)(c). Ecology has reviewed the identified exemptions and determined the substantive requirements.

3.4.4 Continuing Obligation

Per WAC 173-340-710(9)(e), the Port has a continuing obligation to determine whether additional permits or approvals or substantive requirements are required. In the event that either the person conducting the remedial action or Ecology becomes aware of additional permits or approvals or substantive requirements that apply to the remedial action, they shall promptly notify the other party of this knowledge. Ecology, or the potentially liable person at Ecology's request, shall consult with the state or local agency on these additional requirements. Ecology shall make the final determination on the application of any additional substantive requirements at the Site, following consultation with appropriate state and local regulators.

3.4.4.1 Applicable Regulatory Requirements and Exemptions

Solid and Hazardous Waste Management

The Washington Hazardous Waste Management Act and the implementing regulations, the Dangerous Waste Regulations (Chapter 173-303 WAC), will apply if dangerous wastes are generated during the cleanup action. The PLP is required to designate waste and if dangerous waste is present, manage and dispose of the dangerous waste based on generator status and the requirements set forth by your chosen permitted disposal facility. Records describing designation and final disposal should be included in the construction completion report.

Exemption: The PLP is exempt from the procedural requirements for state only-designated dangerous waste set forth in RCW 70.105 but must meet the substantive requirements for designating state-only dangerous waste.

Related regulations include state and federal requirements for solid waste handling and disposal facilities (40 Code of Federal Regulations [CFR] 241, 257; Chapter 173-350 and -351 WAC) and land disposal restrictions (40 CFR 268; WAC 173-303-340).

Exemption: The PLP is exempt from the procedural requirements for solid waste set forth in RCW 70.95. The PLP must follow the substantive requirements for waste designation, handling, and disposal of solid waste set forth by the receiving facility. The receiving facility must provide permission to dispose of waste at the facility prior to delivering waste to the intended destination.

State Environmental Policy Act

The State Environmental Policy Act (SEPA) (Revised Code of Washington [RCW] 43.21C; WAC 197-11) and the SEPA procedures (WAC 173-802) are intended to ensure that state and local government officials consider environmental values when making decisions. Prior to taking any action on a proposal, including initiating a remedial construction activity, agencies must follow specific procedures to ensure that appropriate consideration has been given to the environment. This includes issuing an environmental determination and holding a public comment period. If there is a probable significant adverse environmental impact associated

with the project, then a Determination of Significance is issued and an Environmental Impact Statement (EIS) is required. If there is no probable significant adverse environmental impact associated with the project, then a Determination of Non-Significance is issued.

A SEPA environmental checklist was prepared by the Port for the proposed cleanup actions. The Port is the lead SEPA agency for this action. Ecology reviewed the SEPA checklist and the Port issued a Determination of Non-Significance which was released for public review and comment.

Shoreline Management Act

The Shoreline Management Act (SMA; RCW 90.58) and its implementing regulations establish requirements for substantial developments occurring within water areas of the state or within 200 feet of the shoreline. Local shoreline management plans are adopted under state regulations, creating an enforceable state law.

Exemption: The PLP is exempt from the procedural requirements set forth for Shorelands under RCW 90.58. However, the PLP must follow the substantive requirements. The City of Anacortes has set forth requirements based on local considerations such as shoreline use, economic development, public access, circulation, recreation, conservation, and historical and cultural features. The PLP must work with the City of Anacortes to meet the substantive requirements set forth in their Shoreline Master Program prior to initiating the cleanup action. The Shoreline Master Program must be consistent with the policies and requirements of the Shoreline Management Act and the State Shoreline Master Program Guidelines.

Water Pollution Control Act

Per WAC 173-340-710(7)(a), hazardous substances that are directly or indirectly released or proposed to be released to waters of the state shall be provided with all known, available and reasonable methods of treatment consistent with the requirements of chapters 90.48. Although State Waste Discharge Permits are exempt from procedural requirements, NPDES permits issued under 90.48 are required and may need to be implemented under a separate Agreed Order administered by Ecology's Water Quality Program.

Based on consultation with Ecology's Water Quality Program, the cleanup action will not require a construction stormwater general permit under the following conditions. Construction activities will disturb less than 1-acre. Construction stormwater generated during the planned remedial action will be separated from DCI's stormwater collection system, contained on-site, and managed using approved best management practices. A discharge authorization will be obtained from the City of Anacortes to discharge stormwater to the City of Anacortes sanitary sewer following appropriate treatment to meet discharge standards.

The Construction Quality Assurance Project Plan (CQAPP) will document planned best management practice procedures designed to prevent stormwater pollution by controlling erosion of exposed soil and by containing soil stockpiles and other materials that could

contribute pollutants to stormwater. It is anticipated that a CQAPP will be prepared as part of the remedial design process and supplemented as appropriate by the remediation contractor.

If conditions change then the Port must consult with Ecology to determine if a stormwater permit is required under the new conditions.

Clean Air Act

Air emission permits are required at MTCA cleanup sites if air emissions are sufficient enough to trigger the need for Title V air operating permits (7661A), prevention of significant deterioration permits (7475), or nonattainment new source review permits (7502(c)(5)). These permits are mandated by the Federal Clean Air Act (42 U.S.C.) and are required because an exemption would result in the state's loss of federal authorization to implement these permitting requirements in Washington. The local agency, the Northwest Clean Air Agency, determined a Title V permit is not required.

The cleanup action may generate dust from site grading or excavation work. Controls would need to be in place during construction (e.g., wetting or covering exposed soils and stockpiles), as necessary, to meet the substantive restrictions on off-site transport of airborne particulates by the local agency.

Archeological and Historical Preservation

The Archeological and Historical Preservation Act (16 USCA 496a-1) is applicable if any subject materials are discovered during remedial design or site grading and excavation/dredging activities.

The Port is using Remedial Action Grant money to fund up to 50% of the cleanup at the Site. Pursuant to Executive Order 21-02, all state agencies implementing or assisting capital projects using funds appropriated in the State's biennial Capital Budget are to consider how future proposed projects may impact significant cultural and historic places. To do so, agencies are required to notify the Department of Archaeology and Historic Preservation (DAHP), the Governor's Office of Indian Affairs (GOIA), and concerned tribes and afford them an opportunity to review and provide comments about potential project impacts.

Based on the results of a recent (October 2020) cultural resources survey and previous findings for the Site, the DAHP is requiring the development of an Inadvertent Discovery Plan. They also require an archeological monitor be present during ground disturbance activities completed near the fill/native soil contact given the proximity of these previous discoveries.

Health and Safety

Site cleanup-related construction activities will need to be performed in accordance with the requirements of the Washington Industrial Safety and Health Act (WISHA; RCW 49.17) and the federal Occupational Safety and Health Act (OSHA; 29 CFR 1910, 1926). These applicable

regulations include requirements that workers are to be protected from exposure to contaminants and that excavations are to be properly shored.

Minimum Standards for Construction and Maintenance of Wells

Groundwater monitoring wells will need to be installed as a part of the post-construction water quality confirmation monitoring. The new wells will be constructed in accordance with the requirements of WAC 173-160 to further ensure protection of groundwater resources at the Site.

Local Permitting

The City of Anacortes Land Disturbance and Grading Permit, Noise Ordinance, Publicly Owned Treatment Water (POTW) Discharge Authorization, and Stormwater Management Program are applicable to the site based on construction generating activities outlined in this CAP.

Exemption: Because the Site cleanup action will be performed under a Consent Decree, compliance with substantive requirements of the City of Anacortes permits, discharge authorizations and ordinances will be necessary.

4.0 Cleanup Action Selection and Analysis

Development and evaluation of cleanup action alternatives performed in the RI/FS are summarized in the following sections.

4.1 Areas Requiring Cleanup Action Evaluation

The RI soil data obtained by GeoEngineers between June 2008 and June 2021 from subsurface explorations and soil data from previous environmental studies were used to delineate the nature and extent of IHSs at the Site. Areas requiring cleanup action evaluation are shown on Figure 4.1 and summarized below.

- **Metals** Arsenic and/or nickel was detected at concentrations exceeding soil cleanup levels at the Site as follows:
 - In the eastern portion of the Site, arsenic and nickel exceeded soil cleanup levels in historical fill deposits from the ground surface down to a depth of approximately 8 feet bgs.
 - In the north central portion of the Site, arsenic and nickel exceeded soil cleanup levels in historical fill deposits from the ground surface down to a depth of approximately 10 feet bgs.
 - o In the south-central portion of the Site, arsenic exceeded the soil cleanup levels in historical fill deposits from between approximately 5 and 8 feet bgs.
 - In the western portion of the Site, nickel exceeded the soil cleanup levels in the 1975
 Earth fill area deposits from the ground surface down to a depth of approximately
 10 feet bgs.

Results of soil/sediment samples collected at the Site from the underlying native surface show that the observed arsenic and nickel exceedance are contained within the overlying fill soil. Although present, concentrations of arsenic and nickel in soil are not exacerbating contamination of the groundwater except for MW-7 based on the groundwater monitoring data summarized above. At all other locations, groundwater monitoring data shows decreasing concentrations possibly associated with 2015/2016 paving completed by DCI. Decreasing concentrations demonstrates hydraulic connectivity, but the paving modifications appear to have lowered the infiltration of stormwater and potential for leaching, thus lowering the potential contribution from soil contaminants to groundwater.

- **Total cPAH TEQ** Concentrations of cPAHs were detected at concentrations exceeding soil cleanup levels as follows:
 - o In the central portion of the Site, total cPAH TEQ concentrations exceeded the soil cleanup level in historical fill deposits between approximately 5 and 13 feet bgs.

Results of soil/sediment samples collected at the Site from the underlying native surface show that the observed cPAHs exceedance are contained within the overlying fill soil. Although soil at the Site contain total cPAH TEQ concentrations greater than the soil cleanup level, groundwater monitoring data (summarized above) shows that the observed soil contamination is not adversely affecting groundwater at the Site and that the contaminant concentration in groundwater is stable or is decreasing over-time.

4.2 Remedial Technologies and Cleanup Action Alternatives Considered

Potentially applicable remedial technologies for identified IHSs in Upland Area media of concern (i.e., soil and groundwater) were screened and evaluated for developing cleanup action alternatives in accordance with MTCA requirements (WAC 173-340-350). The screening process identified the most appropriate technologies and process options for addressing IHSs in soil and groundwater based on their implementability, reliability, and relative cost. Based on the results of screening, the following remedial technologies for soil and groundwater were retained for development of cleanup action alternatives:

- Institutional controls including environmental covenants, land use restrictions, groundwater use restrictions, fencing and signage.
- Containment and capping including low permeability caps comprised of asphalt or concrete pavement with drainage controls to restrict groundwater flow and contaminant migration.
- In situ treatment including stabilization.
- Monitored natural attenuation of contaminants in groundwater through natural processes.
- Removal of contaminants through soil excavation and offsite permitted disposal.

From the remedial technology screening process, six alternatives were developed for the Site to address soil and groundwater contamination that meet the MTCA threshold requirements including compliance with the cleanup standards and applicable laws, prevision for a reasonable restoration time frame, and use of permanent solutions to the maximum extent practicable.

For the Upland Area, the following alternatives varied as follows:

 Alternative 1 (Containment and Compliance Monitoring) considered containment technologies in conjunction with institutional controls to address Site contaminants. Capping in the form of asphalt paving is proposed for unpaved portions of the Site to further prevent stormwater infiltration through the soil column and mobility of contaminants in the subsurface. Long-term monitoring would then be performed to evaluate groundwater conditions to assess natural attenuation of Site contaminants and verify compliance with the cleanup standards.

- Alternative 2 (Partial Source Area Removal) considered the removal of the contaminant source areas, an estimated 3,600 bank cubic yards of soil, located in the southeast portion of the Site which is generally centered around sampling location SB-12 followed by Site restoration. At this location, concentrations of metals (arsenic and nickel) in soil exceed three times (3x) the cleanup level. Empirical evidence from groundwater monitoring data suggests that observed soil contamination at this location is adversely impacting groundwater while in other portions of the Site, observed contaminant concentrations are limiting groundwater impacts. As with the previous alternative, existing containment barriers as well as institutional controls would then be utilized to address remaining IHSs remaining in place and that long-term monitoring would be performed to evaluate groundwater conditions to assess natural attenuation of Site contaminants and verify compliance with the cleanup standards.
- Alternative 3 (Source Area In Situ Treatment) considered the use of in situ treatment technologies to stabilize contaminants in soil within the identified source areas (IHSs exceeding three times the soil cleanup level) to reduce the potential for leaching and contaminant migration in groundwater. As with previous alternatives, existing containment barriers as well as institutional controls would then be utilized to address remaining IHSs remaining in place and that long-term monitoring would be performed to evaluate groundwater conditions to assess natural attenuation of Site contaminants and verify compliance with the cleanup standards.
- Alternative 4 (Source Area Removal) considered the removal of the identified source areas, an estimated 9,000 bank cubic yards of soil, in which IHSs exceed three times the soil cleanup level. Existing containment barriers as well as institutional controls would then be utilized to address IHSs detected at concentrations less than three times the cleanup level remaining in place at the Site. In addition, long-term monitoring would be performed to evaluate groundwater conditions to assess natural attenuation of Site contaminants and verify compliance with the cleanup standards.
- Alternative 5 (Site-Wide In Situ Treatment) considered the use of in situ treatment
 technologies to stabilize identified contaminants in soil throughout the Site and to reduce
 the potential for leaching and contaminant migration in groundwater. Existing containment
 barriers as well as institutional controls would then be utilized to address remaining IHSs
 remaining in place and that long-term monitoring would be performed to evaluate
 groundwater conditions to assess natural attenuation of Site contaminants and verify
 compliance with the cleanup standards.
- Alternative 6 (Site-Wide Removal) considered the removal of identified soil contamination throughout the Site, an estimated 39,000 bank cubic yards of soil. Compliance monitoring

would then be performed to verify the effectiveness of the cleanup action. Due to the completeness of this alternative, engineering and institutional controls would not be required.

Each of the cleanup action alternatives were screened relative to MTCA threshold and other requirements in accordance with WAC 173-340-360(2)(a) and (2)(b), and evaluated according to disproportionate cost analysis (DCA) procedures in WAC 173-340-360(3)(e). Results of the evaluation identified Alternative 2 as the preferred alternative, because it meets threshold requirements, uses permanent solutions to the maximum extent practicable, considers public concerns, provides a reasonable restoration time frame, and is not disproportionate in cost.

Cleanup action alternatives are summarized in Table 4.1. Evaluation of the alternatives and results of the DCA are presented in Tables 4.2 and 4.3, respectively. Specific details regarding alternative development and evaluation are presented in the RI/FS Report (GeoEngineers 2022a).

4.3 Selected Remedy

Based on the comparative analysis presented in the RI/FS, Alternative 2 (shown on Figure 4.2) provides the greatest environmental benefit that is not disproportionate in cost relative to the other alternatives evaluated. This alternative for the Site relies on the existing empirical data that groundwater located downgradient of the impacted soils is not adversely impacted (i.e., does not exceed MTCA cleanup levels) by the presence of the identified soil contamination and will reduce risk to potential human and ecological receptors through:

- Removal of contaminated soil volume within the readily accessible portion of the Site (i.e., open space area in the southeast portion of the DCI lease area) exceeding soil cleanup levels;
- Use of existing engineering controls such as concrete and asphalt surfaces to isolate the remaining soil contamination at the Site from human and ecological receptors;
- Long-term monitoring of groundwater to confirm compliance with the cleanup standard at the conditional point of compliance (shoreline) and assess natural attenuation performance; and,
- Implementation of institutional controls (Environmental Covenant).

Implementation of this cleanup action will remove approximately 3,600 bank cubic yards of soil containing IHSs at concentrations greater than the soil cleanup levels where groundwater is being adversely impacted. The volume of contaminated soil remaining in place above cleanup levels and located upstream of groundwater showing a decreasing trend in IHS concentrations since paving was complete (estimated to be approximately 35,400 bank cubic yards) will be managed by engineering and institutional controls.

The Port conducted a 170,000 cy sediment dredge that resulted in the removal of some of the contaminated sediment. Approximately 26,000 cy of soil and sediment were removed during the subsequent interim action cleanup. An additional approximately 1,700 cy of soil were removed during independent cleanup actions.

The selected cleanup action meets the minimum requirements under WAC 173-340-360(2)(a) as follows:

- Protects Human Health and the Environment The selected remedy will protect human health and the environment on both a short-term and long-term basis. The remedy will permanently reduce the identified risks presently posed to groundwater quality and direct contact through a combination of source area removal, containment and natural attenuation.
- Complies with Cleanup Standards The selected remedy will comply with the cleanup standards for groundwater and soil at the point of compliance within a reasonable time frame.
- **Complies with Applicable State and Federal Laws** The selected remedy will comply with all state and federal laws and regulations.
- **Provides Compliance Monitoring** The selected remedy will include compliance monitoring for soil and groundwater to assess the effectiveness and permanence of the remedy.

The cleanup action also meets the other requirements under WAC 173-340-360(2)(b), as follows:

- Uses Permanent Solutions to the Maximum Extent Practicable The selected remedy
 utilizes source removal in conjunction with engineering and institutional controls which will
 remove the contaminant mass impacting groundwater and isolate the remaining
 contaminant mass which has been demonstrated to be stable in the subsurface and not
 impacting groundwater in the subsurface to preventing direct contact.
- Provides for Reasonable Restoration Time Frame The restoration time frame for the selected remedy is estimated to be 1 2 years, based on the expected time for groundwater to achieve compliance with cleanup levels in the source area and for institutional controls to be established. Engineering controls to isolate the remaining contamination are already in place at the Site.
- Considers Public Concerns The RI/FS Report and this document will be presented to the
 Public for review and comment prior to implementation. Additionally, residual
 contamination remaining in place below the paved surfaces are contained within the DCI
 lease area which is secured and prevents visitors from entering the Site. Local residents and
 homeowners will not be affected given the industrial nature and zoning of the adjacent
 properties.

5.0 Description of the Cleanup Action

As discussed in Section 4.4, the selected cleanup action comprises a combination of cleanup actions, which are generally described below. More specific plans will be developed in an Engineering Design Report (EDR), which will be prepared for Ecology approval prior to implementation of the cleanup action.

5.1 Excavation and Off-Site Disposal of Contaminated Soil

Soil in which concentrations of arsenic and nickel exceed soil cleanup levels will be excavated within the southeastern portion of the Site that is readily accessible (away from primary DCI operation areas and structures) and transported from the Site for disposal at a permitted landfill facility. Based on the results of previous environmental investigations, approximately 1,500 square yards of asphalt will be removed to access approximately 3,600 bank cubic yards of contaminated soil exceeding three times the soil cleanup level using commonly available excavation techniques. During remedial excavation activities existing utility infrastructure (power, phone, sewer, water, etc.) will remain undisturbed and protected in place to the extent practicable. In addition, excavation slopes and/or shoring will be required to protect adjacent utilities and DCI infrastructure.

Soil generated by the remedial excavation will be designated under WAC 173-303 and appropriately transported from the Site to an approved landfill facility for permitted disposal. Landfill disposal authorization will be obtained using the chemical analytical results from the existing environmental studies. However, additional characterization of the waste stream may be required by the receiving facility. Additional soil characterization, if required, will be completed during remedial design.

During backfilling activities, structurally suitable material will be placed in lifts throughout the remedial excavation area and compacted to meet compaction requirements determined during remedial design.

5.2 Containment of In-place Contamination

Under MTCA, the standard point of compliance for the soil cleanup levels based upon human health via direct contact is throughout the Site from the ground surface to 15 feet bgs per WAC 173-340-740(6)(d). This depth represents a reasonable estimate of the depth of soil that could be excavated and distributed at the soil surface as a result of site development activities. For cleanup actions that involve containment of hazardous substances, however, the soil cleanup levels will typically not have to be met at the point of compliance if the following criteria are demonstrated as required under WAC 173-340-740(6)(f):

- The selected remedy is permanent to the maximum extent practicable using the procedures in -360;
- The cleanup action is protective of human health;
- The cleanup action is demonstrated to be protective of terrestrial ecological receptors under -7490 and -7494;
- Institutional controls are put in place under -440 that prohibit or limit activities that could interfere with the long-term integrity of the containment system;
- Compliance monitoring under -410 and periodic reviews under -430 are designed to ensure the long-term integrity of the containment system; and
- The types, levels and amount of hazardous substances remaining on-site and the measures that will be used to prevent migration and contact with those substances are specified in the cleanup action plan.

The selected cleanup action for the Site is expected to remove the source area in the southeast portion of the Site minimizing disturbance to existing infrastructure (buildings, laydown, syncrolift rail, and utilities) and DCI operations. Following completion of the cleanup action, contamination will remain in place beneath portions of central and western DCI lease area at concentrations exceeding the soil cleanup levels. As described above and in accordance with -440, the selected cleanup alternative relies on utilizing existing engineering controls (i.e. asphalt and concrete surface cap, sheet pile bulkhead) for the purpose of removing exposure and discharge pathways. In accordance with -410 and -440, areas in which residual soil contamination remains in place will continue to be addressed using confirmational groundwater monitoring, cap integrity assessment reports and an environmental covenant (discussed in the following sections).

Use of existing paved surfaces will prevent direct contact exposures to contaminants that will remain in-place. In conjunction with the engineering controls, institutional controls that require maintenance of the paved surface as a physical barrier in perpetuity will be implemented as described below. Because the interim action and reconfiguration of the shoreline as part of the Project Pier 1 Redevelopment resulted in the removal of previously identified contamination north of the proposed remedial excavation area, a protective barrier is not required as part of the remedy in this area to prevent direct contact with residual contamination remaining in soil. However, the existing gravel working surface will be maintained for use by DCI operations using best management practices (BMPs). Ecology will be notified of any future development of the Site. Notification will include documentation describing measures to ensure the proper management of contaminated soil and/or groundwater (if encountered) and ensure that proper worker protection and safety is maintained. Ecology must review and concur prior to any work being performed. Specific details regarding long-term monitoring and maintenance of

the soil cap and procedures for worker protection and the management of contaminated soil and/or groundwater will be described in an Engineering and Institutional Controls Monitoring and Maintenance Plan (EICMMP) that will be prepared following implementation of the selected remedy (further discussed in Section 4.8).

5.3 Monitored Natural Attenuation

Natural attenuation means a variety of physical, chemical or biological processes that, under favorable conditions, act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of hazardous substances in the environment. A cleanup action that includes natural attenuation and conforms to the expectation in WAC 173-340-370(7) can be considered an active remedial measure. Ecology expects that natural attenuation of hazardous substances may be appropriate at sites where:

- a. Source control has been conducted to the maximum extent practicable;
- b. Leaving contaminants on-site during the restoration time frame does not pose an unacceptable threat to human health or the environment;
- c. There is evidence that natural biodegradation or chemical degradation is occurring and will continue to occur at a reasonable rate at the site; and
- d. Appropriate monitoring requirements are conducted to ensure that the natural attenuation process is taking place and that human health and the environment are protected.

As outlined in Section 4.0 Cleanup Action Selection and Analysis, the feasibility study and disproportionate cost analysis concluded that the alternative selected will include source control to the maximum extent practicable per WAC 173-340-370(7)(a). In accordance with -370(7)(c), groundwater monitoring results following paving activities by DCI between 2015 and 2016 show decreasing concentrations of IHSs, in some cases below cleanup levels. This indicates that the paved surfaces are limiting the infiltration, leaching and subsequent migration of soil contaminants to groundwater as evidenced by the monitoring data at the conditional point of compliance and in central and western upgradient wells. Per -370(7)(b), decreases in concentrations in monitoring wells downstream of the source were demonstrated within two years from completion of paving activities. Additional source control removal of the highest concentrations of contamination around the well with the highest groundwater concentration in combination with the paving/concrete cap engineering controls. The data show that contaminants in soil currently in place within the saturated zone are stable and limited from migrating down gradient toward the Guemes Channel since the paving was completed. It is expected that the existing paving and concrete will serve as a cap for the remaining contamination in place and maintenance of the existing paved surfaces will continue to limit infiltration and potential leaching of residual contamination. The existing monitoring

wells located in this area will be used to evaluate natural attenuation. In accordance with - 370(7)(d), a Compliance Monitoring Plan (CMP) will be developed for Ecology's review and concurrence as part of the remedial design detailing the sampling and analysis procedures and quality control measures appropriate to ensure that the natural attenuation process continues and is protective of human health and the environment.

5.4 Institutional and Other Property Controls

Institutional controls are measures undertaken to limit or prohibit activities that may interfere with the integrity of the cleanup action or that may result in exposures to hazardous substances at the Site. Institutional controls in the form of an Environmental Covenant will be required for all parcels within the Site boundary where contaminated soil above a cleanup level remains and where groundwater is above cleanup levels. The environmental covenants will be filed following implementation of the selected remedy.

The Environmental Covenant will impose restrictions on future uses of the Site containing residual contamination consistent with industrial land use and will prohibit the use of groundwater as drinking water.

Ecology will prepare the Environmental Covenant consistent with WAC 173-340-440 and RCW 64.70 and in consultation with the property owner. In addition to the Environmental Covenant, Property controls will include an EICMMP for any future ground-disturbing activities on the Property. The EICMMP will contain at least the following elements:

- A description of soil conditions on the Property including identification of specific areas and depths where contamination remains in place and at what concentration(s).
- Specific soil handling and management procedures for future subsurface work in areas where contaminated soils remain in place beneath the cap.
- Procedures for identifying, processing, and disposing of contaminated soils encountered during development activities in areas not expected to be contaminated.
- BMPs to prevent soil erosion to the storm drain system or directly to sediment in the Marine Area.
- Health and safety protocols specific to the soil handling and management procedures.
- Protocols for notifying Ecology of planned (or proposed) ground-disturbing activities as well
 as any instances in which a site control measure fails resulting in a release or new exposure
 pathway.
- Protocols for providing necessary data to agencies involved in environmental permitting for future construction activities.

- A description of remedial elements (e.g., pavement and monitoring wells) that will require routine inspection and maintenance.
- The procedures specified in the EICMMP will be applicable to future property
 redevelopment or maintenance that involves removal or disturbance of the in-place
 contaminated soil or disturbance of surface soils or other ground cover that may create a
 future erosion pathway, if warranted. In conjunction with the institutional controls and
 capping, other engineering controls may be implemented to prevent potential exposure to
 hazardous substances remaining in place following remedy implementation.

5.5 Compliance Monitoring

Compliance monitoring and contingency responses (as needed) will be implemented in accordance with WAC 173-340-410, Compliance Monitoring Requirements. Detailed requirements will be described in the CMP to be prepared as a part of the EDR. The objective of the CMP is to confirm that cleanup standards have been achieved, and also to confirm the long-term effectiveness of cleanup actions at the Site. The plan will contain discussions on duration and frequency of monitoring, the trigger for contingency response actions, and the rationale for termination of monitoring. The three types of compliance monitoring to be conducted include:

- Protection Monitoring to confirm that human health and the environment are adequately protected during the implementation of the cleanup action;
- Performance Monitoring to confirm that the cleanup action has attained cleanup standards and other performance standards; and
- **Confirmation Monitoring** to confirm the long-term effectiveness of the cleanup action once performance standards have been attained.

Compliance monitoring activities are described in Sections 5.5.1 through 5.5.3 below.

5.5.1 Protection Monitoring

Protection monitoring will include monitoring of worker health and safety and environmental protection practices such as stormwater, erosion, and sediment controls. The purpose of protection monitoring is to confirm that human health and the environment are adequately protected during the cleanup action. Personnel engaged in work that involves hazardous material excavation and handling will be required to comply with the provisions of WAC 173-340-810 (MTCA Cleanup Regulation, Worker Safety and Health) and be Hazardous Waste Operations and Emergency Response (HAZWOPER), OSHA, and WISHA certified. In addition, spill prevention and pollution control measures will be implemented and maintained throughout the duration of the cleanup action including all necessary stormwater management, surface water runoff control, temporary erosion and sediment control measures to meet the substantive requirements of the applicable local, state and federal regulations.

5.5.2 Performance Monitoring

Performance monitoring will involve collecting soil samples from the base and sidewalls of the remedial excavation to confirm the removal of soil exceeding the remediation goal of three times the cleanup level (Table 2.1) in the southeast portion of the DCI lease area. Performance monitoring activities will include the collection of discrete grab samples from the final limits of the remedial excavations, with the sampling density appropriately tailored to the location and size of the excavation. The confirmatory soil samples will be submitted for analysis of IHSs on a short turnaround to verify whether the remediation goal at the final limits of the remedial excavation has been achieved or to document remaining contaminant mass in portions of the Site that are not accessible (i.e., beneath existing utility or building infrastructure).

5.5.3 Confirmation Monitoring

To evaluate groundwater conditions within the remedial excavation area and verify that the selected cleanup action is protective of groundwater at the point of compliance, existing and/or new monitoring wells will be installed at the Site and sampled for IHSs. The exact number and location of the monitoring wells will be determined following completion of remedial actions based on the final dimensions of the excavation area and concurrence by Ecology.

Groundwater within the vicinity of the cleanup action area will be sampled following completion of the excavation. Samples will occur on a quarterly basis (either from retained or newly installed monitoring wells following remedial activities) until cleanup levels are met and then for a minimum of four consecutive quarters to confirm concentrations remain below cleanup levels. Additionally, groundwater in other portions of the Site will be monitored to evaluate contaminant stability and compliance with the cleanup standards. Groundwater samples will be analyzed for groundwater IHSs (Table 2.2), including total and dissolved arsenic and nickel, and cPAHs to ensure that groundwater within and/or downgradient of areas in which contaminated soils remain in place meet the cleanup standards for the Site.

5.6 Contingencies

Because the remedial action includes contained in-place soils, contingency measures are necessary to protect human health and the environment in the event the containment measures fail. Contingency measures will be included in the CMP and will contain the following:

- A section on contingency response actions and the groundwater confirmation monitoring triggers that will initiate a response.
- Contingency response action plan in the event the containment is breached for any reason. Ecology will be consulted, and measures will be taken to immediately stop activities and protect the contained in-place soil from further disturbance. Temporary measures to prevent re-mobilizing IHSs will be implemented until the breach can be fixed.

 Contingency response action plan to address the following. As the site remedy relies on limiting infiltration to prevent mobilization of contaminants into groundwater, activities that are adjacent but offsite will also need to be identified and assessed to determine if the activity will alter the groundwater infiltration and flow rate in a way that compromises the effectiveness of the engineering controls. Additional monitoring to confirm that engineering controls remain effective may be required.

5.6 Inadvertent Discovery of Cultural Resources

There is potential for encountering archaeological materials during excavation where native beach deposits are encountered. The cleanup action primarily addressed contaminated fill material, but portions of the excavation may encounter the fill-native interface. Where the excavation reaches the fill-native interface layer, an archeological monitor who meets the Secretary of Interior's qualifications (36 CFR Part 61) will be onsite to observe the excavation activities. If potential archaeological resources are identified during construction, work will be stopped immediately, and the Port and Ecology notified. If it is determined that the discovery is not culturally significant, work activities will resume.

An Inadvertent Discovery Monitoring Plan (IDP) will be developed as part the EDR detailing the procedures required in the event that potential archaeological resources or a suspected discovery is encountered. In general, the following steps shall be taken:

- 1. **Stop Work and Protect the Discovery Site.** If any agency employee, contractor, or subcontractor believes that he or she has uncovered any cultural resources, all work within a minimum of 30 feet of the discovery ("discovery site") will be stopped to provide for its total security, protection and integrity. The discovery site shall be secured, and vehicles, equipment, and unauthorized personnel will not be permitted to traverse the discovery site. Work may continue in other areas of the project.
- 2. **Notify the Port.** The agency employee, contractor, or subcontractor individual making the discovery will immediately notify the Port's representative who will in turn, notify the Port of the potential discovery.
- 3. **Notify the Project Archaeologist.** Immediately following the work stoppage and notification to the Port, the Project Archaeologist will be contacted by the Port.
- 4. **Identify the Find.** The Project Archaeologist, in coordination with the Port, is responsible for ensuring that appropriate steps have been taken to protect the discovery site. The Project Archaeologist will be qualified as a professional archaeologist under the Secretary of Interior's Professional Qualification Standards (as outlined in 36 CFR Part 61). As such, the Project Archaeologist shall be qualified to examine the find to determine if it is of cultural significance. If the discovery is determined not to be of cultural significance, work may proceed at the discovery site with no further delay.

- 5. **Notify Additional Parties.** If the discovery is determined by the Project Archaeologist to be a cultural resource, the Port or its designee will notify Ecology, the DAHP, the Samish Indian Nation, Swinomish Indian Tribal Community and the Lummi Nation. Confidentiality of the find will be maintained by Project leads and their contractors. In the event human remains are identified, law enforcement also will be notified.
- 6. Obtain Consent to Proceed with Construction. Construction work will not recommence at the discovery site until an approved treatment has been completed and the Tribes, DAHP, and/or jurisdictional agencies, as appropriate, have provided written or verbal consent to proceed. Treatment is the act of mitigating an adverse effect or a change in a historic property's qualifying characteristics in such a way as to diminish its integrity, or how one goes about implementing the mitigation measure(s) agreed upon in consultation.
- 7. **Submit Treatment Report to DAHP's WISAARD Database.** WISAARD is the state's digital repository for architectural and archaeological resources and reports.

5.7 Potential Habitat Restoration Opportunities

Under the Puget Sound Initiative, MTCA cleanup actions are expected, where appropriate, to coincidentally enhance and/or restore habitat. Given the industrial nature of the upland area of the Site and that no critical habitat is present, habitat restoration opportunities have not been identified for the selected cleanup action. Habitat restoration was completed in conjunction with the Port's Project Pier 1 Development which included the Marine Area interim action. Included was the creation of the O Avenue and Wymans restoration sites along the Guemes Channel near to the Site.

5.8 Five-Year Review

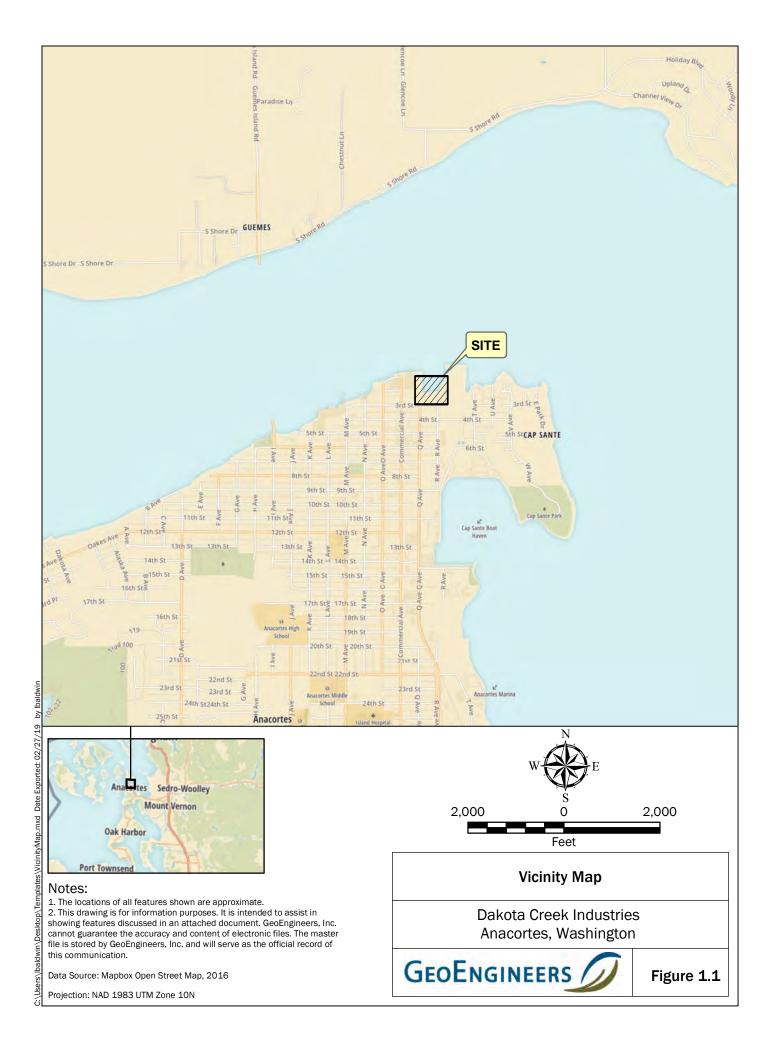
Because the selected cleanup action described above will result in hazardous substances remaining at the Site at concentrations exceeding cleanup levels, the cleanup level for one or more IHSs is based on a practical quantitation limit as provided for under WAC 173-340-707, and because environmental covenants are included as part of the remedy, Ecology will review the selected cleanup action described in this CAP every 5 years to ensure protection of human health and the environment. Consistent with the requirements of WAC 173-340-420, the 5-year review shall include the following:

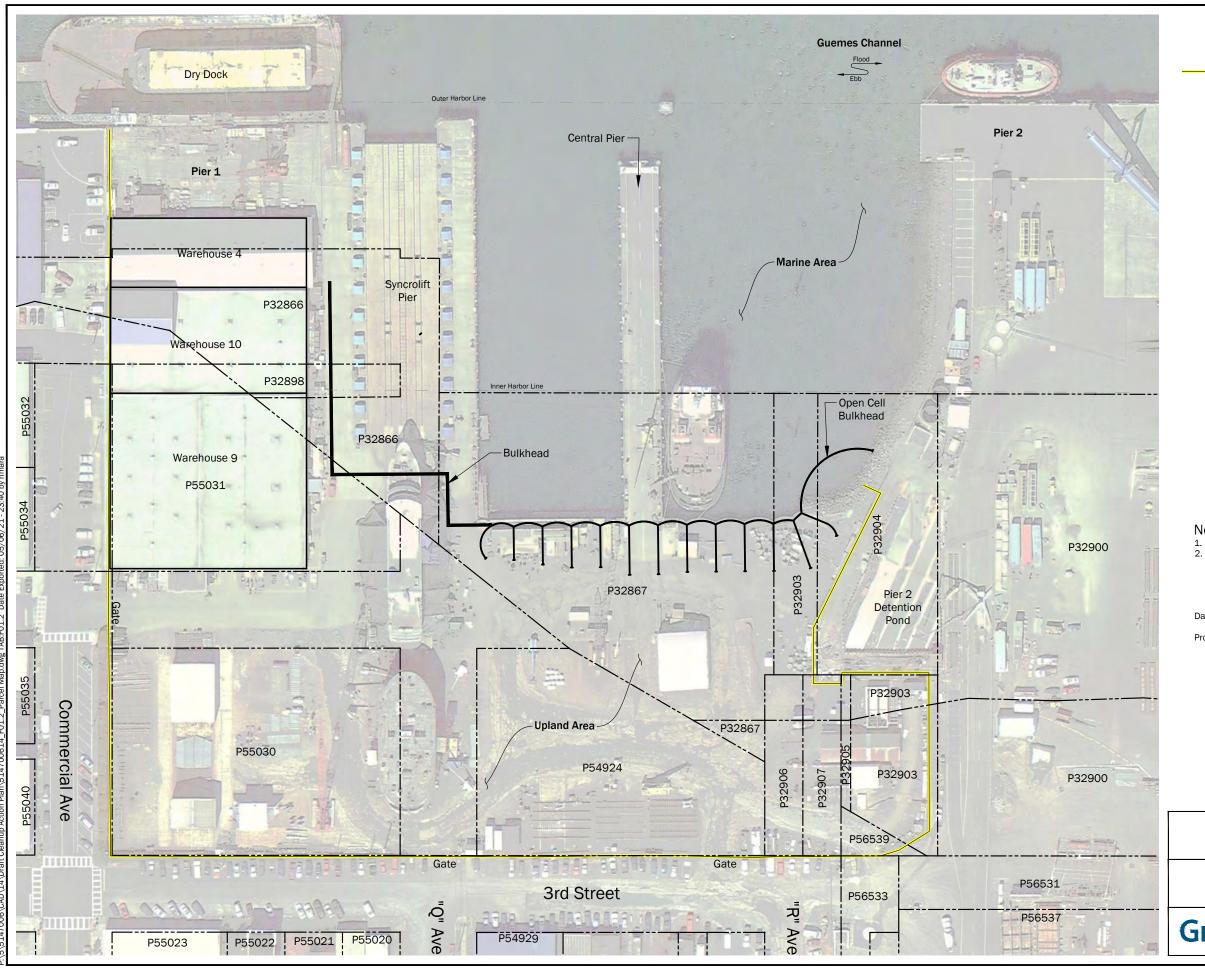
- A review of the title of the real property subject to the environmental covenant to verify that the covenant is properly recorded.
- A review of available monitoring data to verify the effectiveness of completed cleanup actions, including engineered caps and institutional controls, in limiting exposure to hazardous substances remaining at the Site.

- A review of new scientific information for individual hazardous substances or mixtures present at the Site.
- A review of new applicable state and federal laws for hazardous substances present at the Site.
- A review of current and projected future land and resource uses at the Site.
- A review of the availability and practicability of more permanent remedies.
- A review of the availability of improved analytical techniques to evaluate compliance with cleanup levels.

Ecology will publish a notice of all periodic reviews in the Site Register and will provide an opportunity for review and comment by the potentially liable persons and the public.

6.0 References


- Anchor Environmental, L.L.C. (Anchor). 2004. Sampling and Analysis Data Report, Supplemental Sediment Characterization, Dakota Creek Industries Shipyard Facility/Pier 1
 Redevelopment Area, Anacortes, Washington. Prepared for Seattle District, US Army Corps of Engineers. October.
- Ecology. 2021. Polycyclic Aromatic Hydrocarbons and Benzo[a]pyrene: Changes to MTCA Default Cleanup Levels for 2017. Supporting material for Cleanup Levels and Risk Calculation (CLARC). Revised July 2021. Floyd | Snider. 2007. Dakota Creek Industries Shipyard Facility, Sediment Sampling Data Report. Prepared for Port of Anacortes. January 3.
- GeoEngineers Inc. (GeoEngineers). 2010. Remedial Investigation Data Report, Dakota Creek Industries, Anacortes, Washington. Prepared for the Port of Anacortes. October 11.
- GeoEngineers Inc. (GeoEngineers). 2014. Email Correspondence RE: Dakota Creek Site: status check meeting and document request & status check/site visit meeting 3/5/2014 February 21.
- GeoEngineers Inc. (GeoEngineers). 2015. Email Correspondence RE: Dakota Creek Shipyard Cleanup April 10.
- GeoEngineers Inc. (GeoEngineers). 2018. Groundwater Monitoring Report, Dakota Creek Industries, Anacortes, Washington, Ecology Agreed Order No. DE-07TCPHQ-5080. Prepared for the Washington State Department of Ecology on Behalf of Port of Anacortes. August 6.
- GeoEngineers Inc. (GeoEngineers). 2022a. Remedial Investigation/Feasibility Study Report,
 Dakota Creek Industries, Anacortes, Washington, Ecology Agreed Order No. DE07TCPHQ-5080. Prepared for the Washington State Department of Ecology on Behalf of
 Port of Anacortes. April 27.
- GeoEngineers Inc. (GeoEngineers). 2022b. Supplemental Soil Investigation Data Report, Dakota Creek Industries, Anacortes, Washington, Ecology Agreed Order No. DE-07TCPHQ-5080. Prepared for the Washington State Department of Ecology on Behalf of Port of Anacortes. June 3.
- Landau Associates (Landau). 2002. Remedial Investigation/Feasibility Study, Dakota Creek Industries, Inc. Anacortes, Washington. Prepared for Port of Anacortes. March 20.
- Otten Engineering (Otten). 1997. Phase 2 Environmental Assessment, Dakota Creek Industries Site and Former Wastewater Treatment Plant Site, Port of Anacortes, Anacortes, Washington. Prepared for Port of Anacortes. October 1.


- Science Application International Corporation (SAIC). 2008. Fidalgo Bay Sediment Investigation Data Report, Anacortes, Washington. Prepared for the Washington State Department of Ecology. March 14.
- Weston. 2001. Dakota Creek Industries Shipyard Site Inspection Final Sampling and Quality Assurance Plan. Prepared for the U.S. Environmental Protection Agency, Contract No. 68-S0-01-02. June.

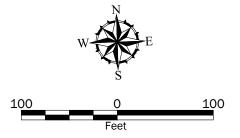
Appendices

Cleanup Action Plan

Appendix A. Supplemental Soil Investigation Data Report

Legend

Dakota Creek Industries (DCI) Property Boundary

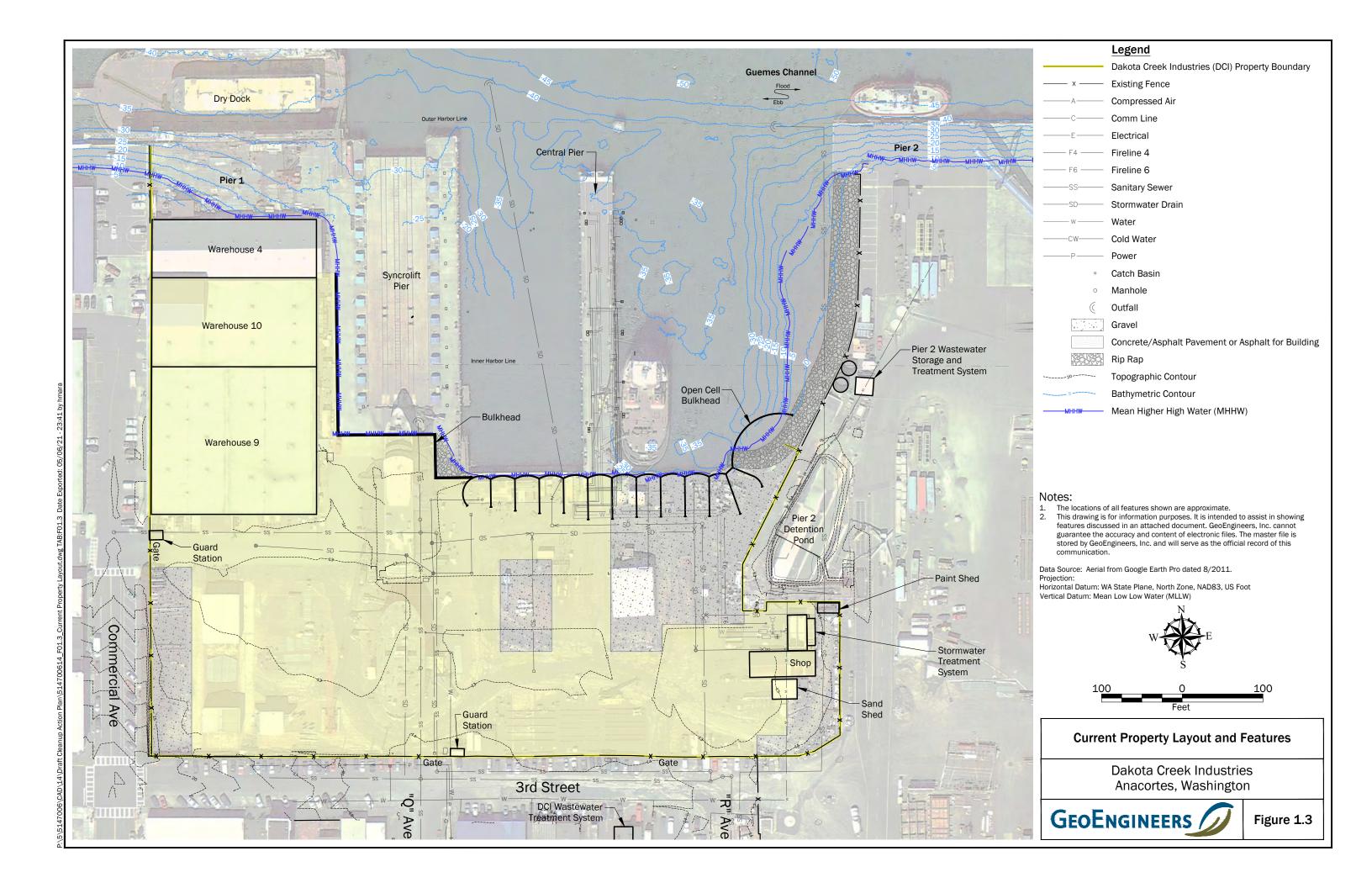

P32904 Skagit County Parcel Boundary and Number

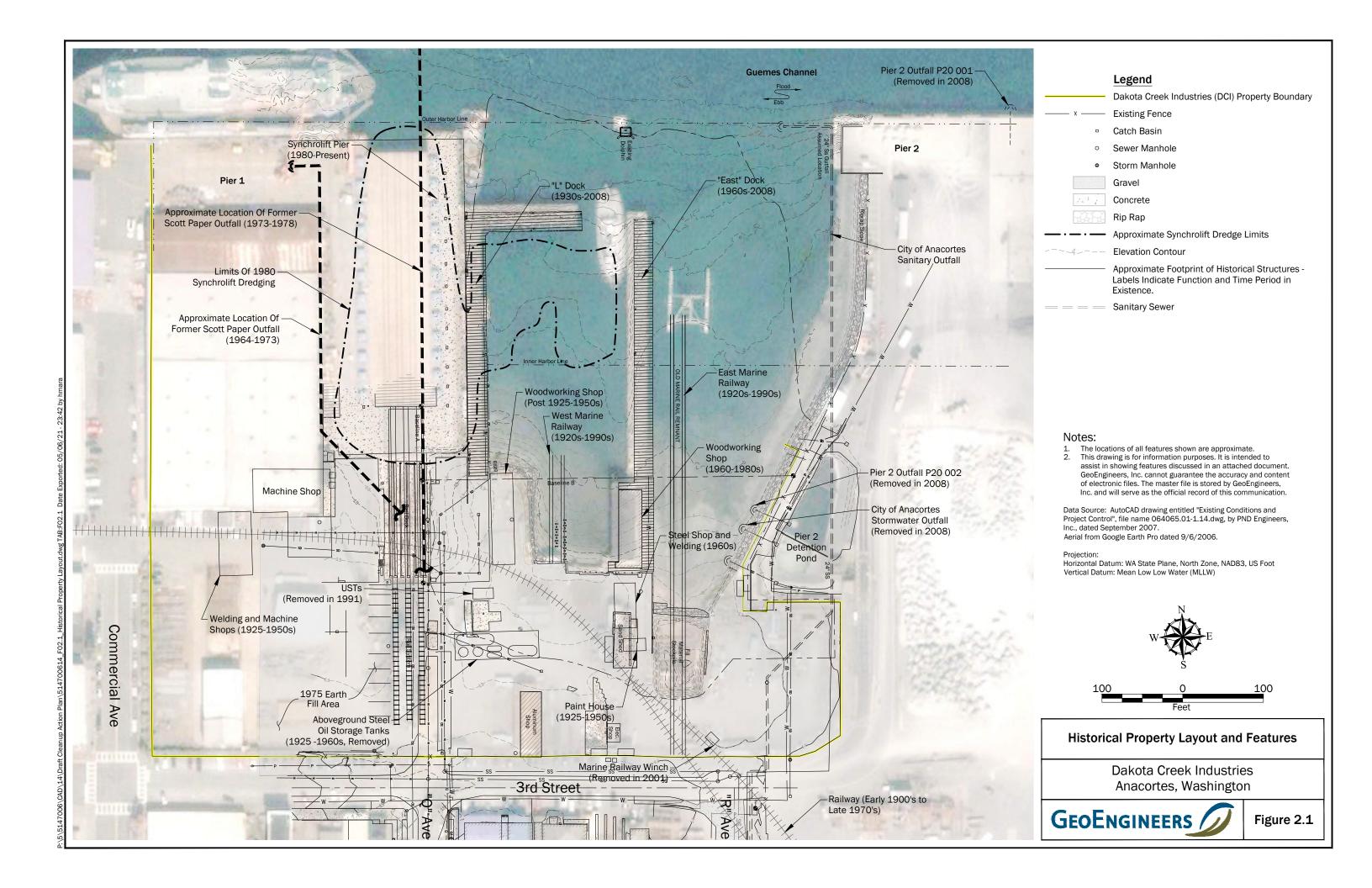
Notes:

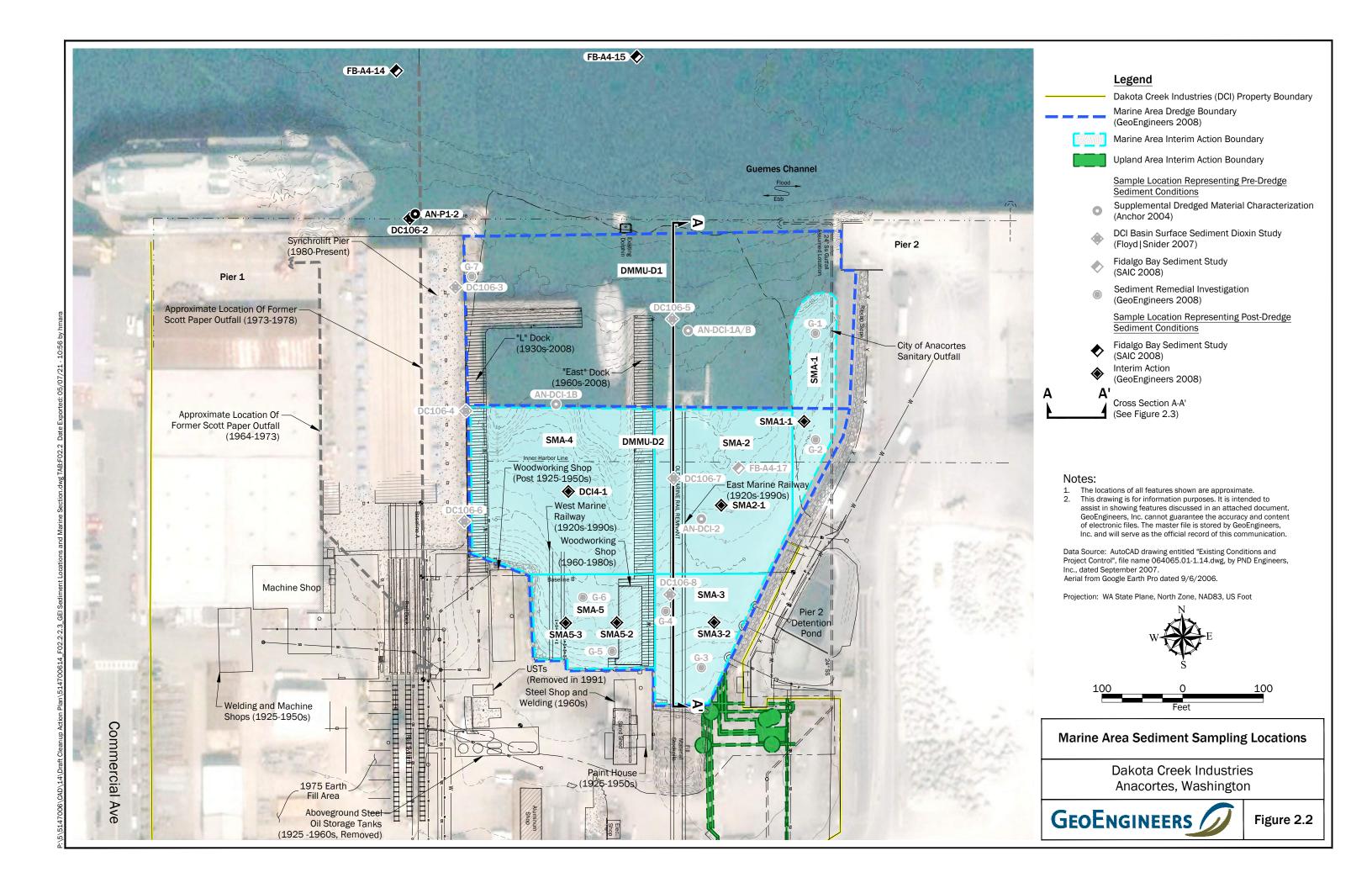
- The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, lead with large of the official record of this communication. Inc. and will serve as the official record of this communication.

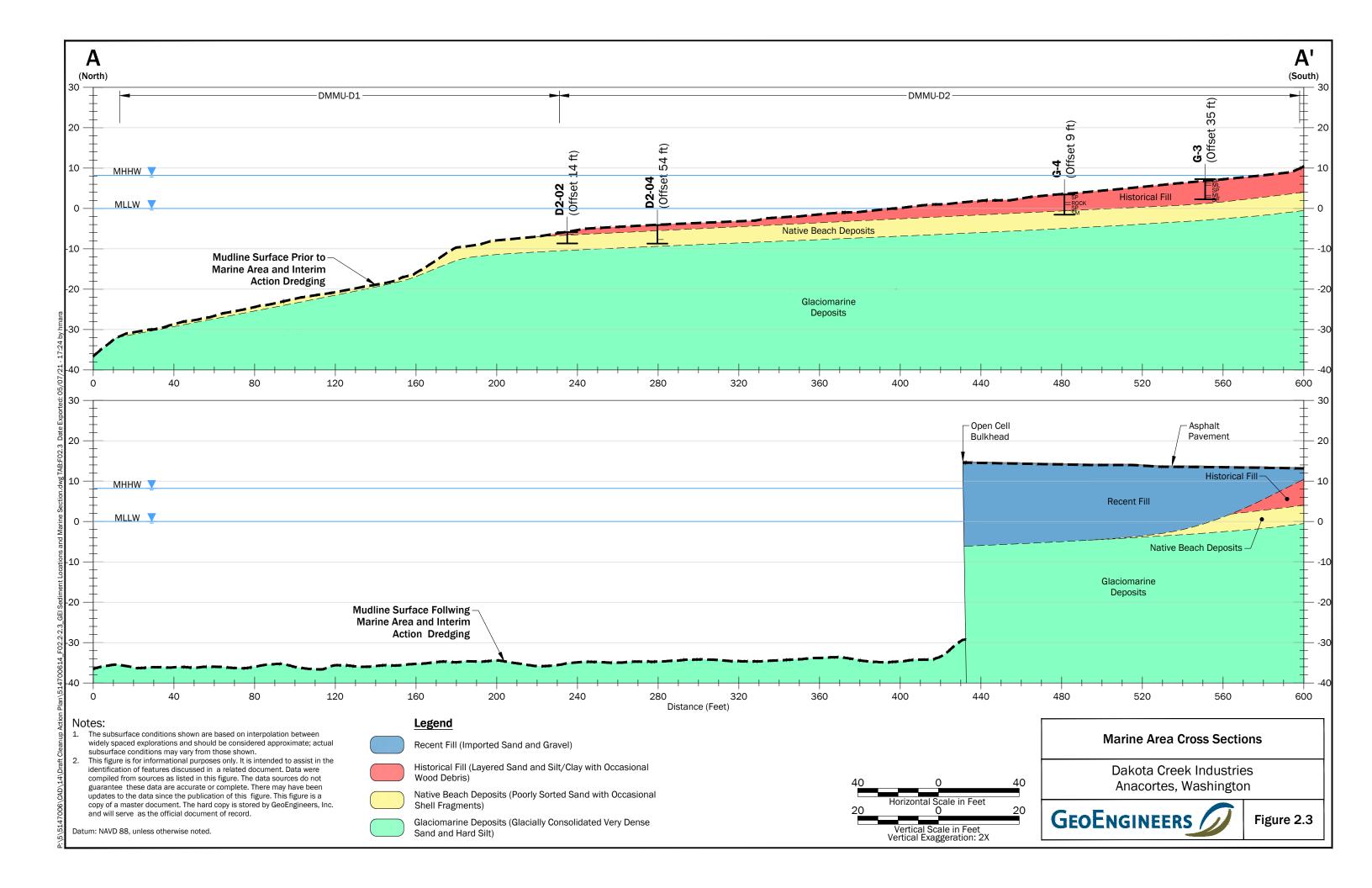
Data Source: Aerial from Google Earth Pro dated 8/2011.

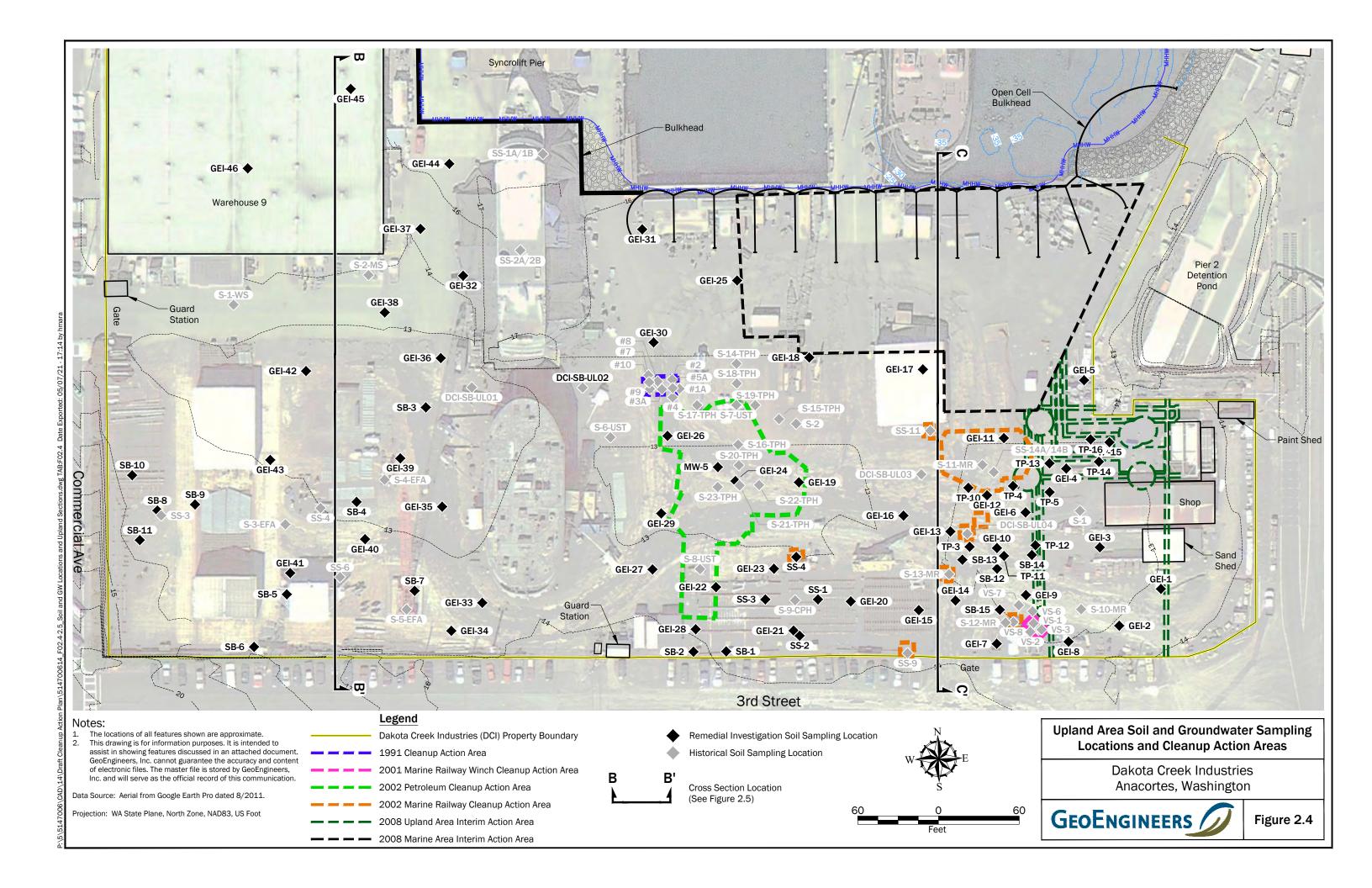
Projection: WA State Plane, North Zone, NAD83, US Foot

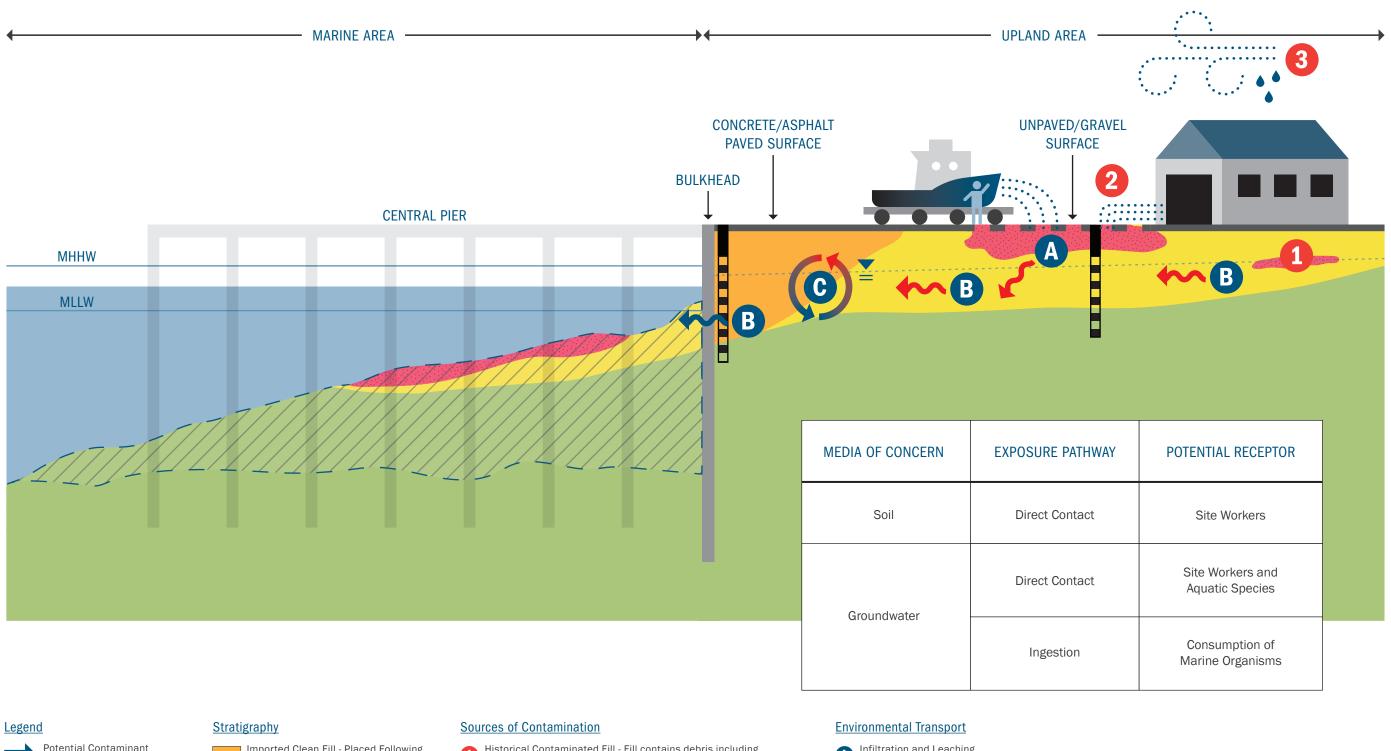



Parcel Map


Dakota Creek Industries Anacortes, Washington




Figure 1.2



Potential Contaminant Transport Pathway

MHHW Mean Higher High Water

MLLW Mean Lower Low Water

Monitoring Well

Mor

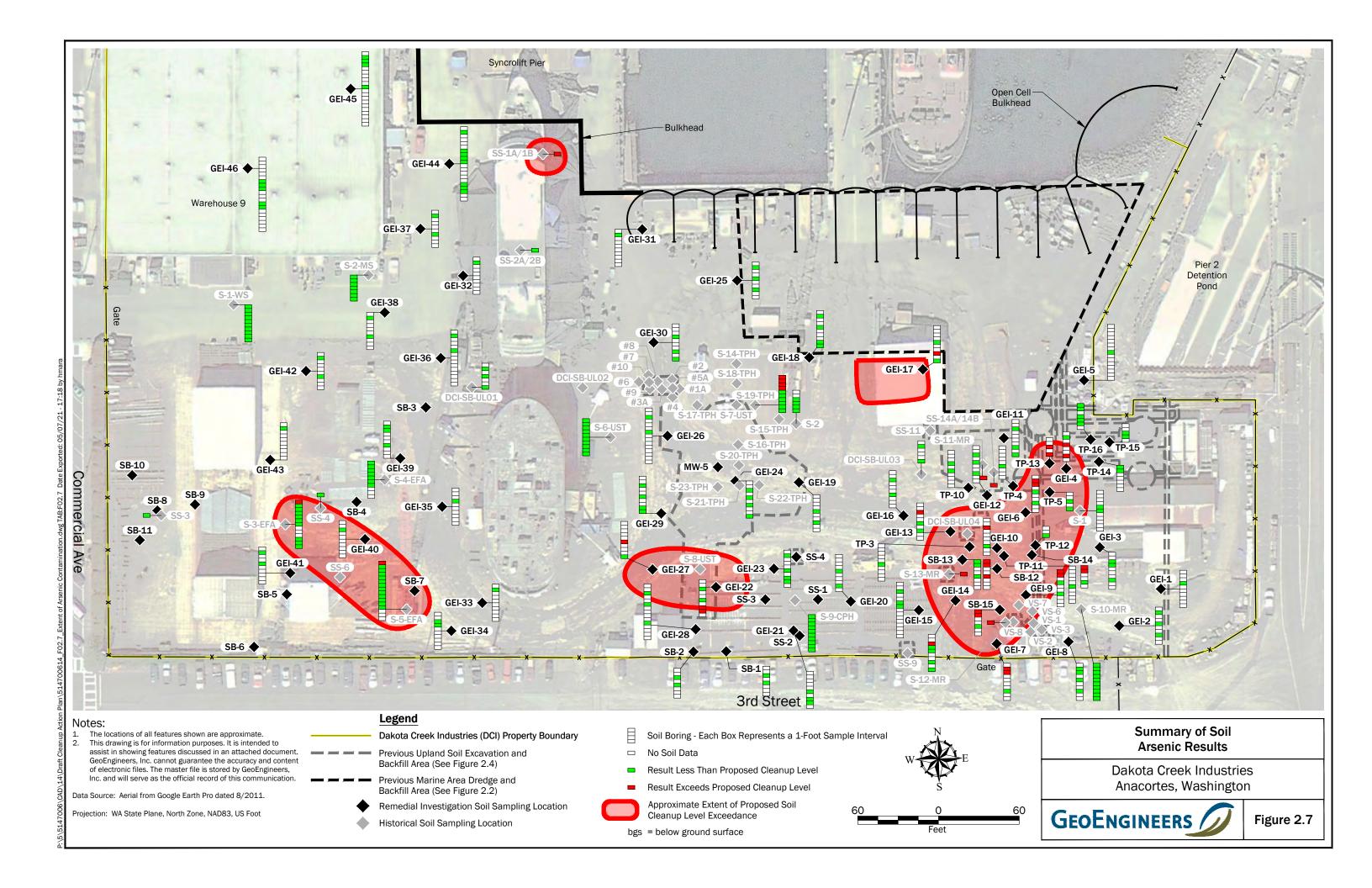
Imported Clean Fill - Placed Following 2002 Independent Cleanup Action or 2008 Interim Action Activities

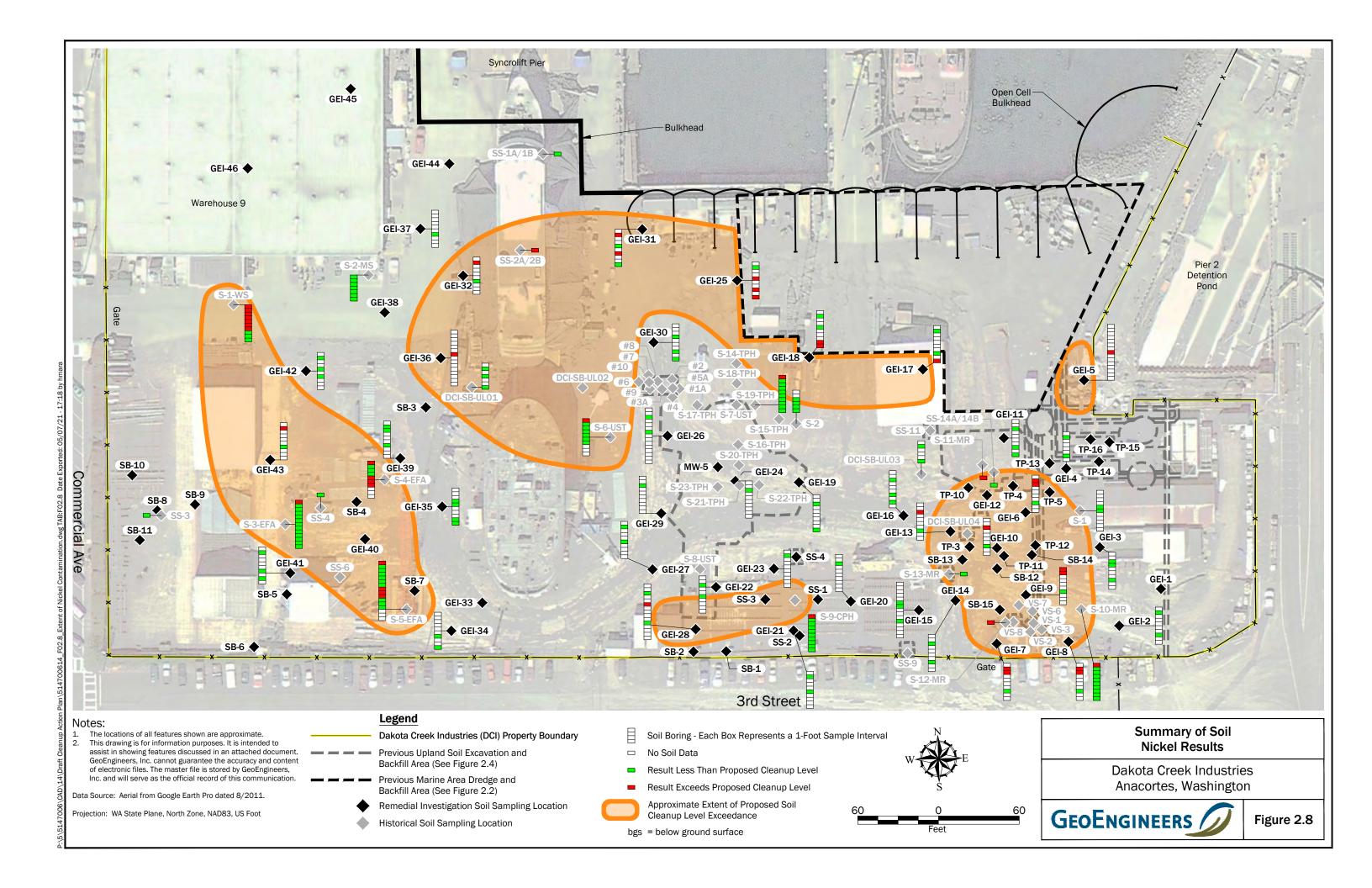
Artificial Fill

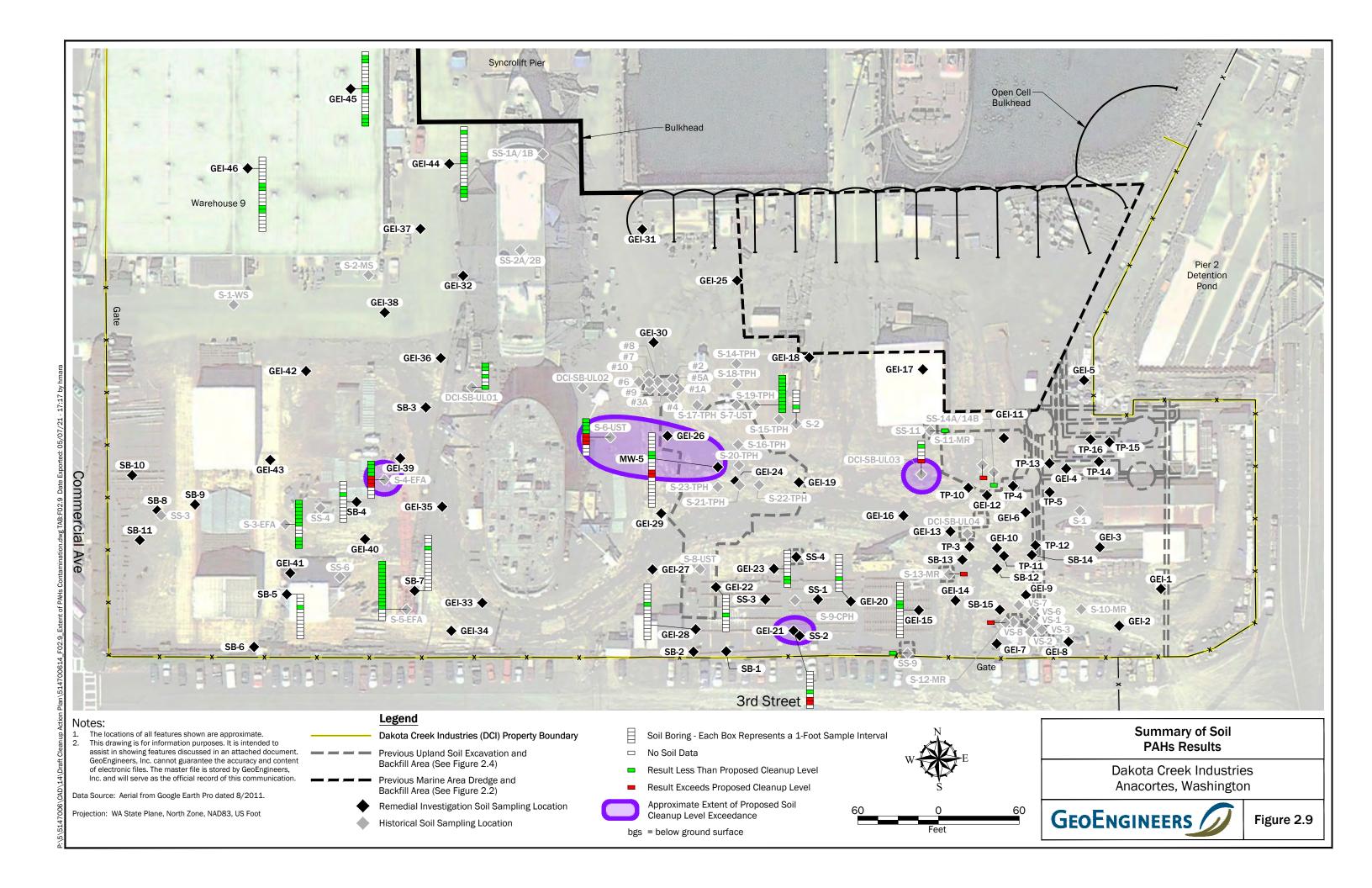
Native Deposits (Glaciomarine Drift and Beach Sands)

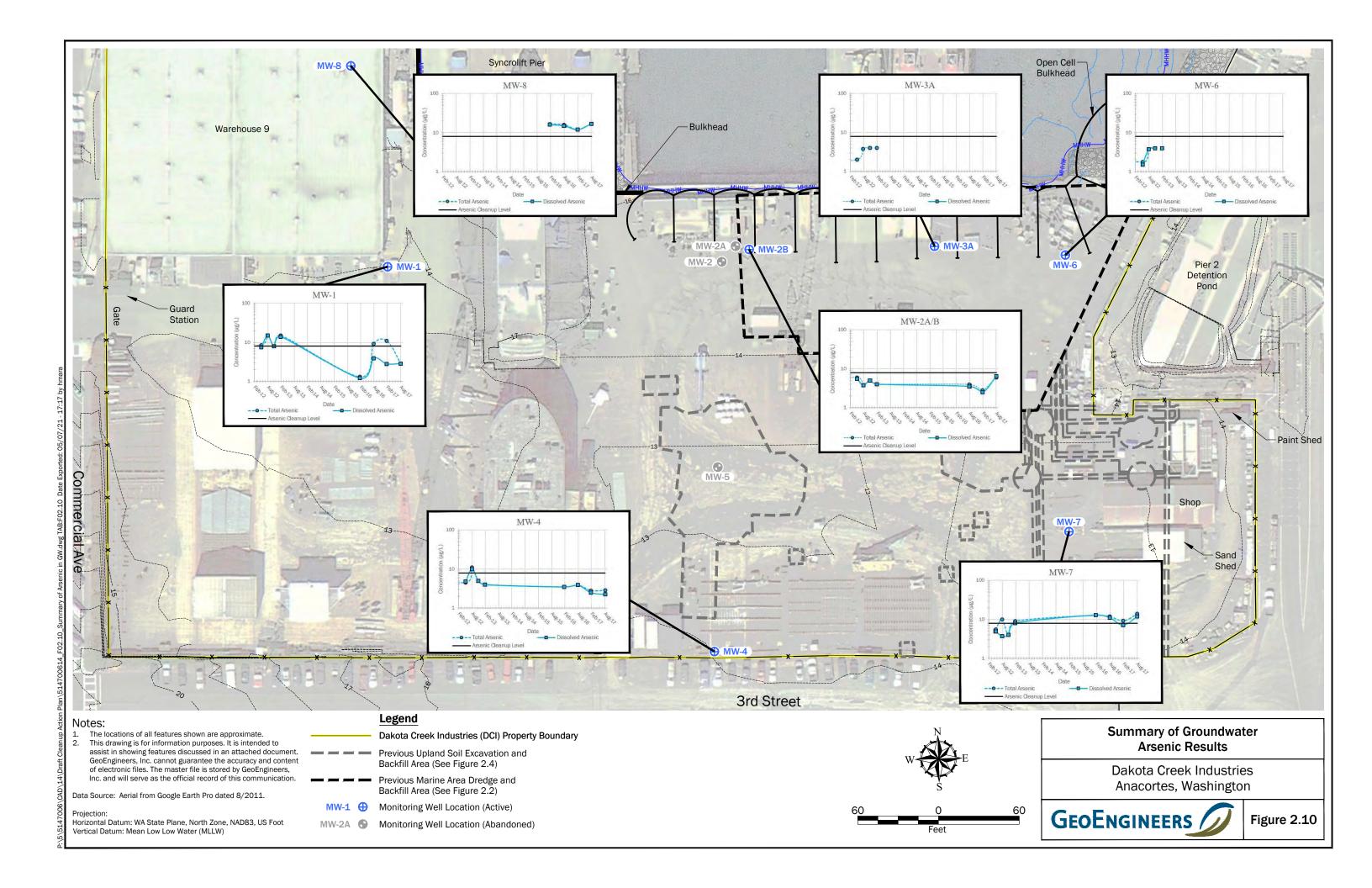
Contaminants

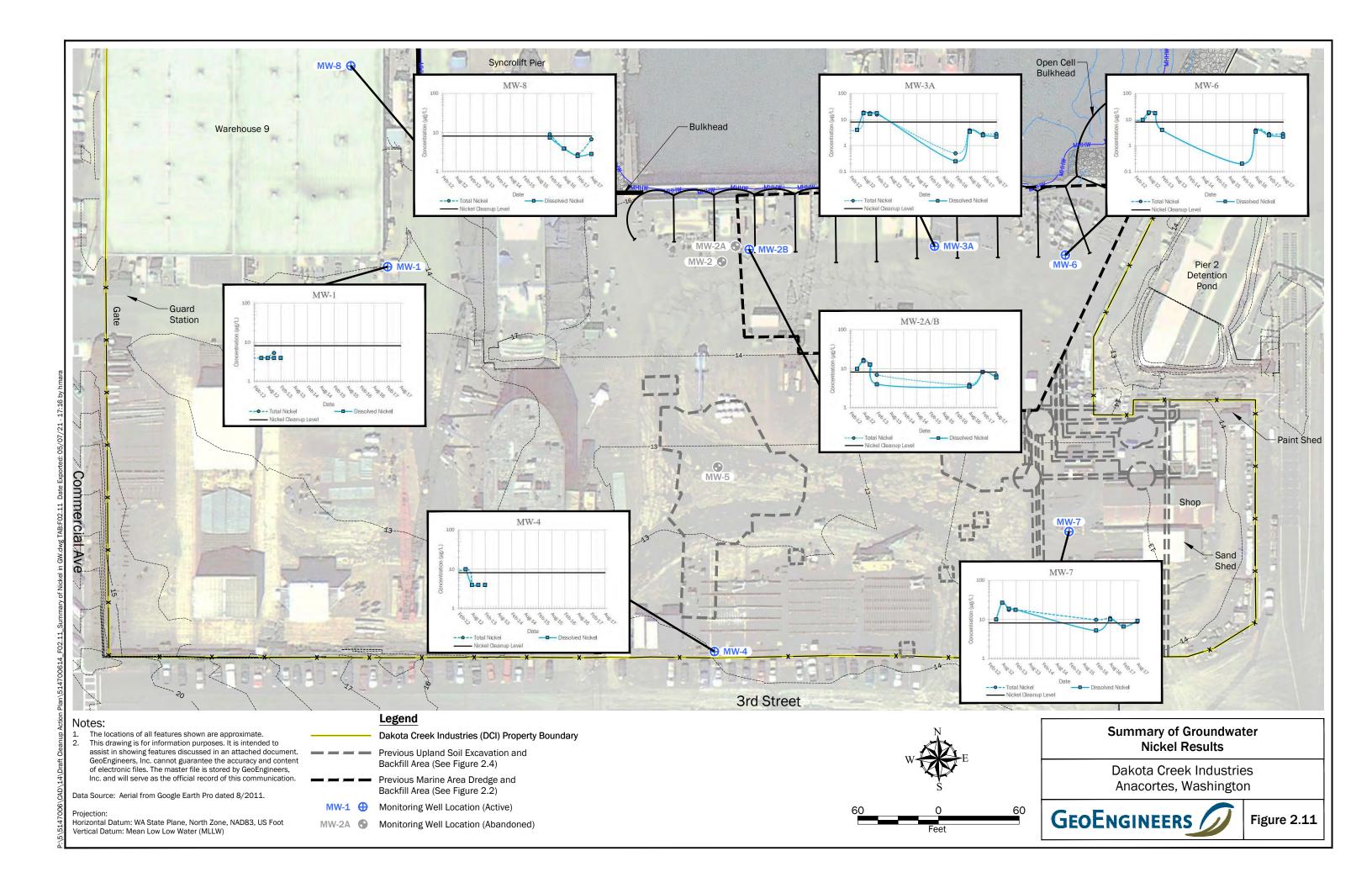
Removed During 2008 Interim Action and Marine Area Dredging

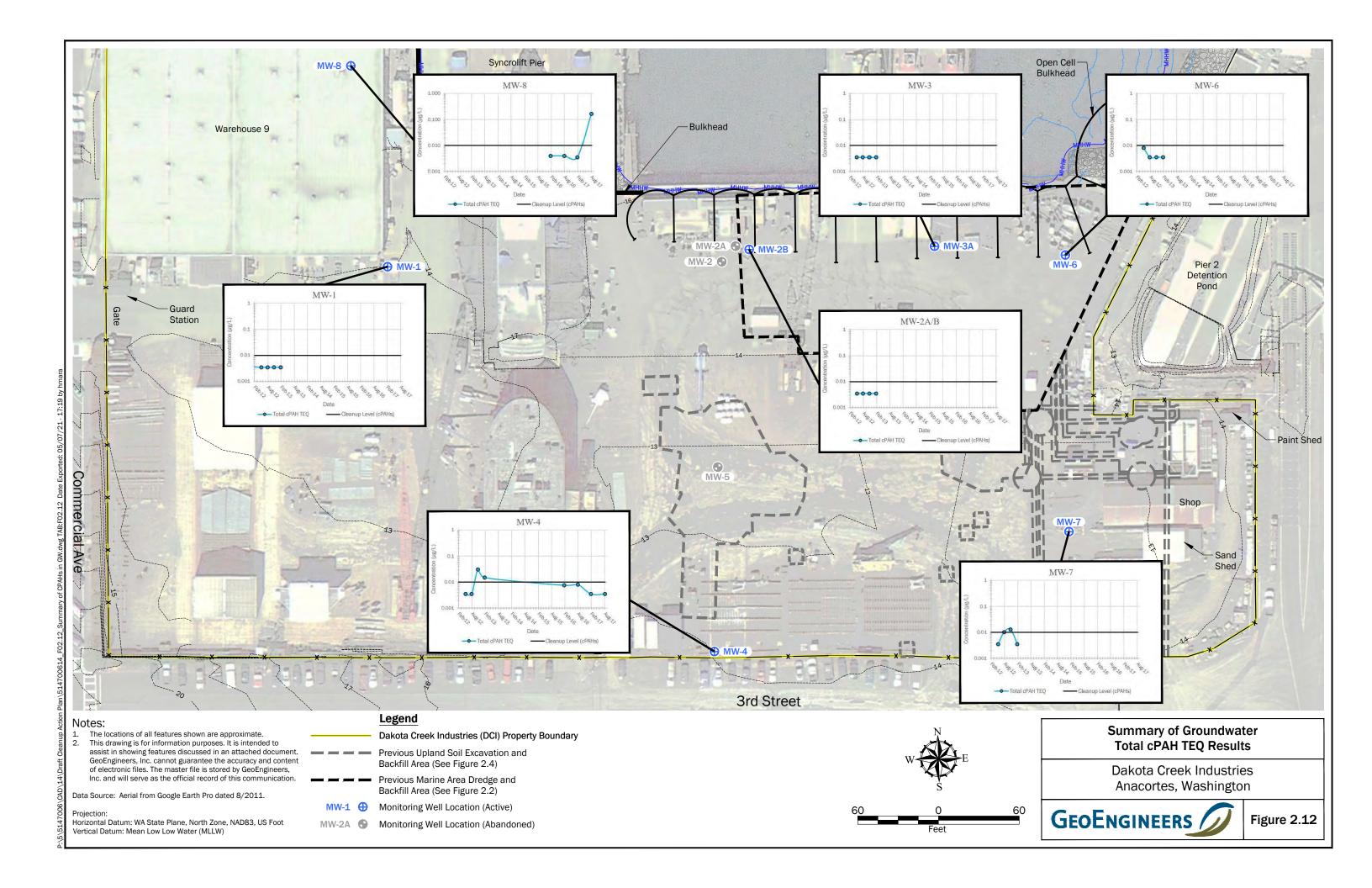

- Historical Contaminated Fill Fill contains debris including concrete asphalt, brick and wood fragments suggesting that they may have been re-used from other industrial sources
- 2 Industrial-Related Operations Direct discharge of paint chips, grinding and blast grit residues to the ground from vessel maintenance and repair activities.
- 3 Atmospheric Deposition Ongoing and historic combustion of fossil fuels from residents, machinery (boiler, power, etc.), vehicles, marine vessels, and wood burning.
- A Infiltration and Leaching (Unpaved Areas Only)
- B Shallow Unconfined Aquifer Solute Transport
- C Tidal Mixing

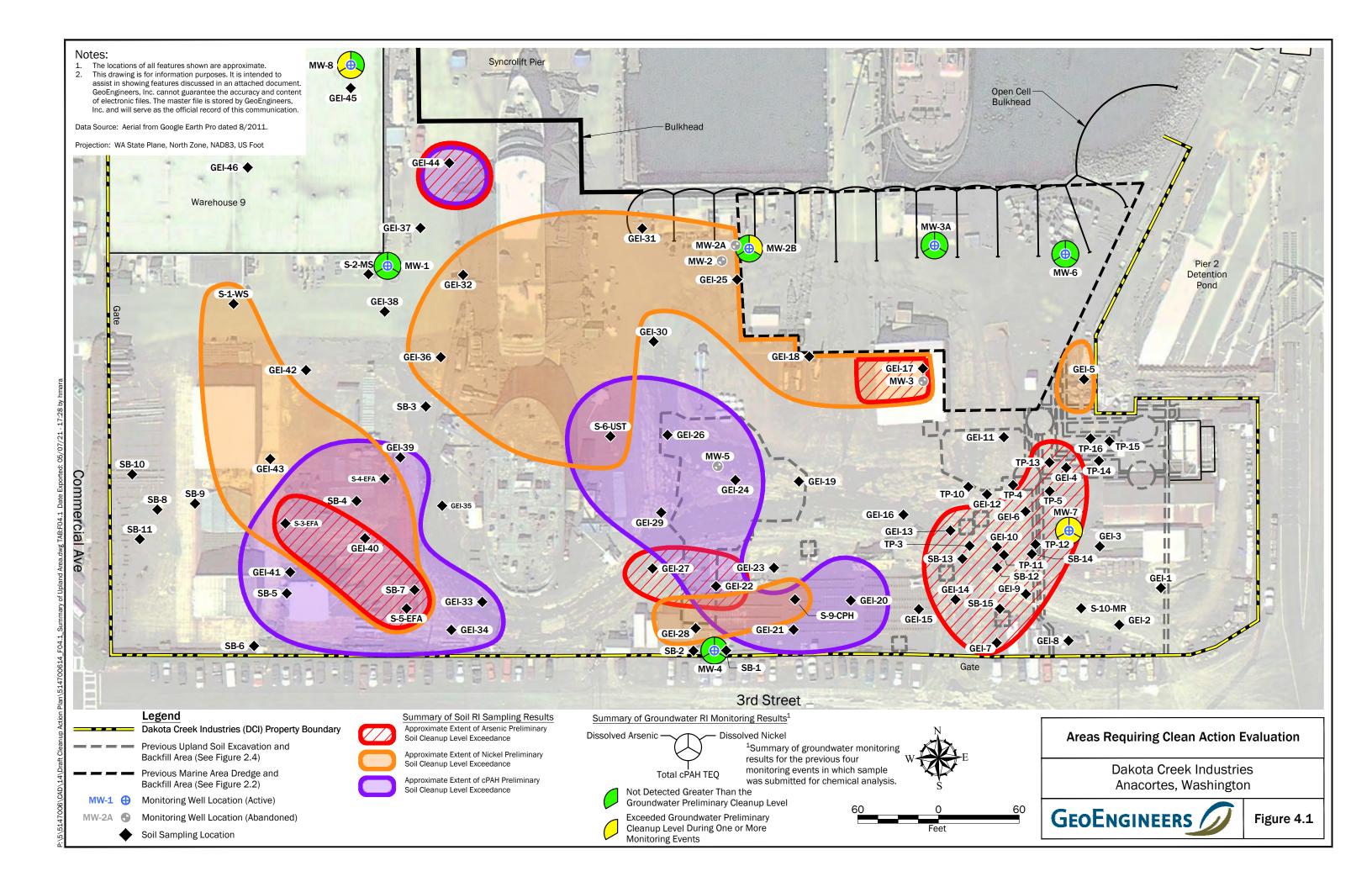

Current Site Configuration


Dakota Creek Industries Anacortes, Washington




Figure 2.6





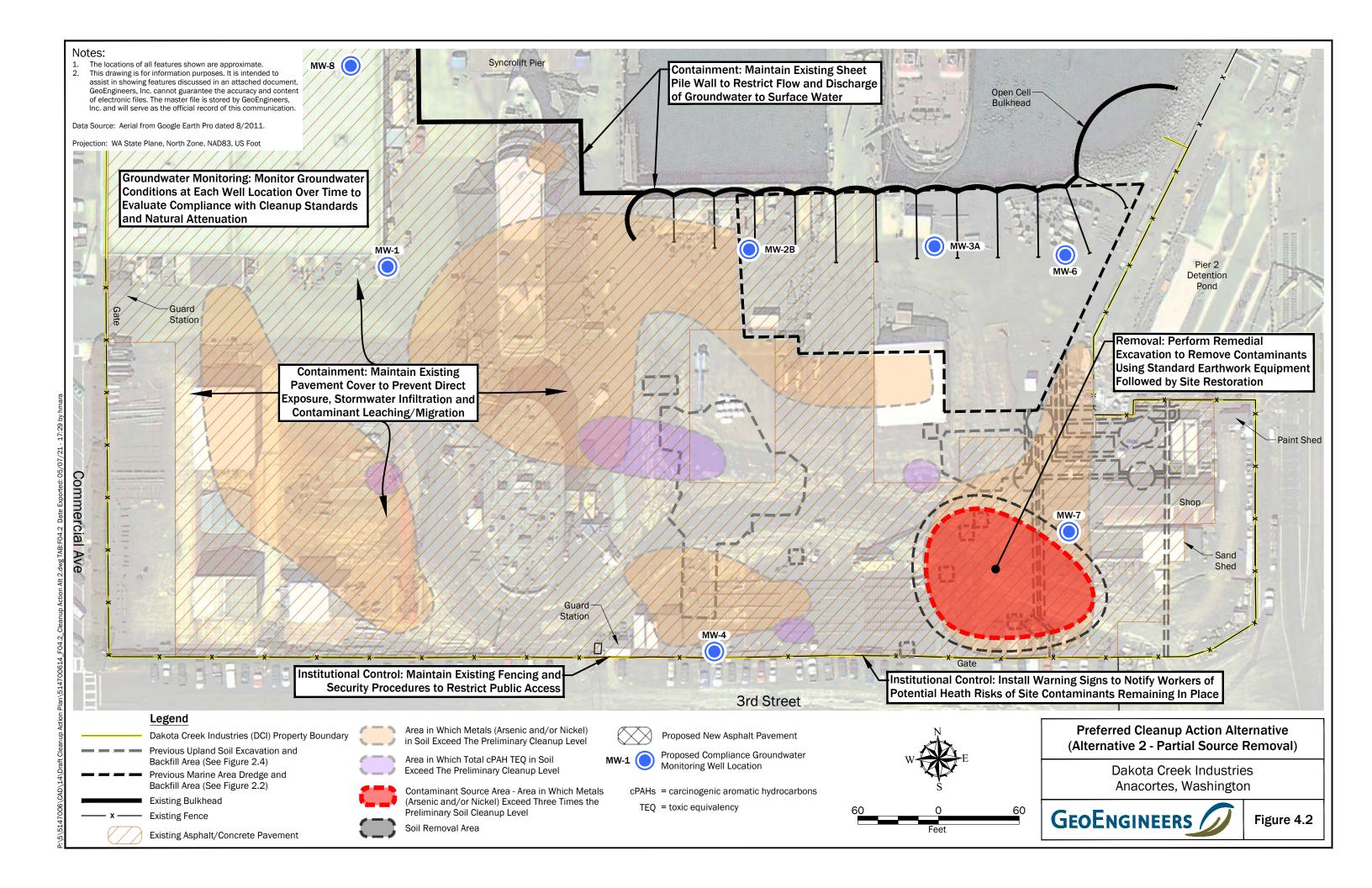


Table 4.1

Cleanup Action Alternative Descriptions

Dakota Creek Industries Anacortes, Washington

				Cleanup Action Alternative Components							
Matrix	Contaminants of Concern (COCs)	Cleanup Action Objectives (CAOs)	Alternative 1 - Containment and Compliance Monitoring	Alternative 2 - Partial Source Area Removal	Alternative 3 - Source Area In Situ Treatment	Alternative 4 - Source Area Removal	Alternative 5 - Site-Wide In Situ Treatment	Alternative 6 - Site-Wide Removal			
Soil and Groundwater	■ Arsenic ■ Nickel ■ Total cPAH TEQ	 ■ Prevent contact (dermal or incidental ingestion) by workers, visitors and other Site users with hazardous substances in soil and groundwater. ■ Prevent leaching of hazardous substances through the soil column to groundwater. ■ Prevent contact (dermal or incidental ingestion) by aquatic receptors to impacted groundwater that may discharge to the Marine Area resulting in acute or chronic effects. ■ Prevent the ingestion of aquatic organisms affected by the discharge of impacted groundwater to the Marine Area by higher trophic level ecological receptors. 	■ Maintenance of existing physical containment barriers including surface pavement and sheet pile bulkhead to prevent stormwater infiltration and contaminant leaching/migration through the soil column as well as to provide a physical barrier to prevent direct contact to Site COCs. ■ Installation of new physical containment barrier (i.e., asphalt/concrete pavement) to further prevent stormwater infiltration and contaminant leaching/migration through the soil column as well as to provide a physical barrier to prevent direct contact to Site COCs. ■ Compliance Groundwater Monitoring ■ Institutional Controls ■ Annual Cap Inspection	■ Asphalt demolition, soil removal and offsite disposal of COCs in the southwest Source Area generally centered around location SB-12. ■ Verification Soil Sampling ■ Site Restoration ■ Maintenance of existing physical containment barriers including surface pavement and sheet pile bulkhead to prevent stormwater infiltration and contaminant leaching/ migration through the soil column as well as to provide a physical barrier to prevent direct contact to Site COCs. ■ Compliance Groundwater Monitoring ■ Institutional Controls ■ Annual Cap Inspection	■ Installation of new physical containment barrier (i.e., asphalt/concrete pavement) to further prevent stormwater infiltration and contaminant leaching/migration through the soil column as well as to provide a physical barrier to prevent direct contact to Site COCs. ■ Maintenance of existing physical containment barriers including surface pavement and sheet pile bulkhead to prevent stormwater infiltration and contaminant leaching/migration through the soil column as well as to provide a physical barrier to prevent direct contact to Site COCs. ■ In situ soil treatment through injection of chemical reagents to immobilize/treat COCs in Source Areas generally centered around locations SB-12, GEI-17 and GEI-22. ■ Institutional Controls ■ Performance/Compliance Groundwater Monitoring ■ Institutional Controls ■ Annual Cap Inspection	■ Asphalt demolition, soil removal and offsite disposal of COCs in Source Areas generally centered around SB-12, GEI-17 and GEI-22. ■ Verification Soil Sampling ■ Site Restoration ■ Maintenance of existing physical containment barriers including surface pavement and sheet pile bulkhead to prevent stormwater infiltration and contaminant leaching/ migration through the soil column as well as to provide a physical barrier to prevent direct contact to Site COCs. ■ Compliance Groundwater Monitoring ■ Institutional Controls ■ Annual Cap Inspection	 Installation of new physical containment barrier (i.e., asphalt/concrete pavement) to further prevent stormwater infiltration and contaminant leaching/migration through the soil column as well as to provide a physical barrier to prevent direct contact to Site COCs. Maintenance of existing physical containment barriers including surface pavement and sheet pile bulkhead to prevent stormwater infiltration and contaminant leaching/migration through the soil column as well as to provide a physical barrier to prevent direct contact to Site COCs. In situ soil treatment through injection of chemical reagents to immobilize/treat COCs throughout the Site. Performance/Compliance Groundwater Monitoring Institutional Controls Annual Cap Inspection 	 Asphalt demolition, soil removal and offsite disposal of COCs throughout the Site. Verification Soil Sampling Site Restoration Compliance Groundwater Monitoring 			
	I	I stimated Alternative Cost (+50%/-30%) ¹	\$1,180,000	\$2,120,000	\$2,610,000	\$4,390,000	\$7,030,000	\$15,060,000			
	Estimated Volume	of Contaminated Soil Removed/Treated	N/A	3,600 bcy	9,000 bcy	9,000 bcy	46,500 bcy	46,500 bcy			
		Estimated Restoration Time frame	1-2 Years ²	1-2 Years ²	2-3 Years ²	2-3 Years ²	3-4 Years ²	3-4 Years ²			

Notes:

TEQ = Toxicity Equivalence

COC = Contaminant of Concern

bcy = bank (in-place) cubic yards

% = percent

N/A = Not Applicable

¹ Alternative cost estimates are presented in Appendix A.

² Compliance groundwater monitoring is expected to occur over a 5 year time frame (minimum). Additional long-term monitoring may be required to verify compliance with cleanup standards.

cPAH = Carcinogenic Polycyclic Aromatic Hydrocarbons

Table 4.2

Evaluation of Cleanup Action Alternatives

Dakota Creek Industries Feasibility Report Anacortes, Washington

Evaluation Criteria	Alternative 1 - Containment and Compliance Monitoring	Alternative 2 - Partial Source Area Removal	Alternative 3 - Source Area In Situ Treatment
Compliance with MTCA Threshold Crite	ria		
Protection of Human Health and the Environment	Yes - Alternative would protect human health and the environment through a combination of containment technologies and institutional controls.	Yes - Alternative would protect human health and the environment through a combination of source area removal, containment technologies, and institutional controls.	Yes - Alternative would protect human health and the environment through a combination of source area in situ treatment, containment technologies, and institutional controls.
Compliance With Cleanup Standards	Yes - Alternative is expected to comply with cleanup standards. This alternative utilizes containment technologies and institutional controls to prevent exposure to contaminants in the subsurface. Compliance would rely on long-term monitoring and maintenance of institutional controls. Future development of property could potentially require additional environmental cleanup or special provisions.	Yes - Alternative is expected to comply with cleanup standards. This alternative utilizes partial source area removal, containment technologies, and institutional controls to prevent exposure to contaminants in the subsurface. Compliance would rely on long-term monitoring and maintenance of institutional controls. Future development of property could potentially require additional environmental cleanup or special provisions.	Yes - Alternative is expected to comply with cleanup standards. This alternative utilizes in situ treatment and containment technologies, and institutional controls to prevent exposure to contaminants in the subsurface. Compliance would rely on long-term monitoring and maintenance of institutional controls. Future development of property could potentially require additional environmental cleanup or special provisions.
Compliance With Applicable State and Federal Regulations	Yes - Alternative complies with applicable state and federal regulations.	Yes - Alternative complies with applicable state and federal regulations.	Yes - Alternative complies with applicable state and federal regulations.
Provision for Compliance Monitoring	Yes - Alternative includes provisions for compliance monitoring.	Yes - Alternative includes provisions for compliance monitoring.	Yes - Alternative includes provisions for compliance monitoring.
Restoration Time Frame			
Restoration Time Frame	A significant portion of the containment barriers are currently in place. Additional containment in the form of asphalt paving of existing gravel surfaces is expected to occur over a 1-2 year period. Monitoring of containment elements (i.e., asphalt/concrete pavement and sheet pile wall) and groundwater conditions to document compliance with cleanup objectives. Compliance groundwater monitoring is expected to occur over a 5 year time frame (minimum). Additional long-term monitoring may be required to verify compliance with cleanup standards.	A significant portion of the containment barriers are currently in place. The removal of COCs in southeast source area followed by restoration is expected to occur over a 1-2 year period. Monitoring of containment elements (i.e., existing asphalt/concrete pavement and sheet pile wall) and groundwater conditions Site to document compliance with cleanup objectives. Compliance groundwater monitoring in portions of the Site containing residual contamination is expected to occur over a 5 year time frame (minimum). Additional long-term monitoring may be required to verify compliance with cleanup standards.	A significant portion of the containment barriers are currently in place. Additional containment in the form of asphalt paving of existing gravel surfaces and the injection of chemical reagents to treat source areas COCs are expected to occur over a 2-3 year period. More than one injection event may be necessary. Monitoring of containment elements (i.e., asphalt/concrete pavement and sheet pile wall) and groundwater conditions to document compliance with cleanup objectives. Compliance groundwater monitoring is expected to occur over a 5 year time frame (minimum). Additional long-term monitoring may be required to verify compliance with cleanup standards.
Relative Benefits Ranking (Scored from			
Protectiveness	Achieves a moderate-low level of protectiveness as all portions of the Site containing COCs receive a protective containment barriers under this alternative to prevent potential human exposure and/or stormwater infiltration. However, contamination will be left onsite throughout the uplands in a heavy industrial and active site.	Achieves a moderate-high level of protectiveness s this alternative improves overall environmental quality onsite by removing the source area with elevated contaminant levels in soil and groundwater greater than the PCULs in the eastern portion of the Site. The remaining residual contamination will utilize existing asphalt and sheetpile wall barriers to prevent worker exposure under this alternative. Short-term on-site and off-site risk of exposure are slightly increased due to removal action and off-site disposal of contaminated soil over	Achieves a moderate level of protectiveness as all portions of the Site containing COCs receive a protective containment barrier under this alternative. Achieves a higher score then Alternative 1 since this alternative improves overall environmental quality through in situ treatment of COCs in identified Source Areas. However, there is no contaminant mass removal under this alternative, therefore receives a slightly lower score than Alternative 2.

Evaluation Criteria	Alternative 1 - Containment and Compliance Monitoring	Alternative 2 - Partial Source Area Removal			
	Score = 2	Score = 6	Score = 5		
Permanence	Achieves a low level of permanence since COCs remain in-place and/or untreated. Alternative 1 relies on the installation of additional pavement combined with other technologies to reduce the mobility of COCs.	Achieves a moderate level of permanence. The alternative receives a higher score as compared to Alternative 1 and 3 due to the removal and off-site disposal of COCs which provides a relatively higher level reduction in the toxicity, mobility or volume of COCs.	Achieves a moderate level of permanence since under this alternative due to the treatment/stabilization of COCs in Source Areas through in situ technologies combined with other technologies to reduce the toxicity, mobility or volume of COCs. However the site is located along the shoreline of a marine system and it is relying on effective monitoring of the cap to remain in place and undamaged in a heavy industrial site. Therefore receives a lower score than Alternative 2.		
	Score = 2	Score = 6	Score = 6		
Long-Term Effectiveness	Provides a level of certainty in long-term effectiveness as all areas containing COCs receive a protective impermeable cap, which reduces exposure risk and contaminant leaching from vadose to saturated zone. However, relies on diligence of entity where history of leadership changes, frequent leasee modifications, and heavy industrial activity damage has been shown to alter priorities and increase risk of exposure. This puts a heavy and unidentified cost on PLP related to approval under the EC, reporting and repair costs along with potential contaminant release while exposed.	Provides a higher level of certainty in long-term effectiveness over Alternative 1 due to the permanent removal of COCs in the southeastern Source Area. However, it requires the central and western portions of the upland to remain under institutional controls which needs to be monitored in a heavy industrial and active site.	Provides a moderate level of certainty in long-term effectiveness. Slightly higher score than Alternative 2 is achieved due to in situ treatment of COCs within each of the Source Areas. However, it received a lower score than Alternative 4 as decreasing metals mobility through in situ reduction can be reversed under certain conditions.		
	Score = 8	Score = 7	Score = 8		
Management of Short-Term Risks	Achieves a high level of confidence in managing short-term risk to human health and environment since this alternative involves construction of pavement. Exposure risk to Site COCs during pavement construction is low to negligible.	Achieves a moderate level of confidence in managing short-term risk due to degree of health and safety risks associated with heavy earthwork construction, and potential for exposure to COCs during removal, on-site management, transport and disposal of contaminated material. Receives a slightly higher score than Alternative 4 due to the lesser degree of soil disturbance.	Achieves a moderate-high level of confidence in managing short-term risk as there is some potential for exposure to contamination during in-situ injection of reagents as well as other construction related risks. Since in situ treatment is limited to the Source Areas, the short-term risk are limited.		
	Score = 7	Score = 6	Score = 6		
Technical and Administrative Implementability	Achieves a high level of implementability since this alternative involves construction of an asphalt cap, which is a proven remedial technology.	Achieves a moderate level of implementability due to the design and coordination associated with implementation of soil removal. Implementation will be challenging since it will likely impact current site use at the property.	Achieves a moderate level of implementability due to the design and coordination associated with implementation of in situ treatment technologies. Implementation will be challenging since it may impact current site use at the Property.		
	Score = 3	Score = 7	Score = 6		
Consideration of Public Concerns	Residual contamination remaining in place below containment features could result in concerns by the public and nearby property owners and potentially affect the future development and Site use. However, the further addition of asphalt pavement to reduce the potential for contaminant migration and exposure would slightly reduce public concerns.	Residual contamination remaining in place below containment features could result in concerns by the public and nearby property owners and potentially affect the future development and Site use. However, the removal of source material to reduce the potential for contaminant migration and exposure would reduce public concerns.	Residual contamination remaining in place below containment features could result in concerns by the public and nearby property owners and potentially affect the future development and Site use. However, the further addition of asphalt pavement and in situ treatment of source areas to reduce the potential for contaminant migration and exposure would reduce public concerns.		

Notes:

COC = Contaminant of Concern
MTCA = Model Toxics Control Act

Table 4.2

Evaluation of Cleanup Action Alternatives Dakota Creek Industries Feasibility Report

Anacortes, Washington

Evaluation Criteria	Alternative 4 - Source Area Removal	Alternative 5 - Site-Wide In Situ Treatment	Alternative 6 - Site-Wide Removal	
Compliance with MTCA Threshold Crite	ria			
Protection of Human Health and the Environment	Yes - Alternative would protect human health and the environment through a combination of source area removal, containment technologies, and institutional controls.	Yes - Alternative would protect human health and the environment through a combination of site-wide in situ treatment, containment technologies, and institutional controls.	Yes - Alternative would protect human health and the environment through complete source removal.	
Compliance With Cleanup Standards	Yes - Alternative is expected to comply with cleanup standards. This alternative utilizes source area removal, containment technologies, and institutional controls to prevent exposure to contaminants in the subsurface. Compliance would rely on long-term monitoring and maintenance of institutional controls. Future development of property could potentially require additional environmental cleanup or special provisions.	Yes - Alternative is expected to comply with cleanup standards. This alternative utilizes site-wide in situ treatment, containment technologies, and institutional controls to prevent exposure to contaminants in the subsurface. Compliance would rely on long-term monitoring and maintenance of institutional controls. Future development of property could potentially require additional environmental cleanup or special provisions.	Yes - Alternative is expected to comply with cleanup standards to the greatest extent practicable. All contaminant exceedance will be removed for offsite disposal.	
Compliance With Applicable State and Federal Regulations	Yes - Alternative complies with applicable state and federal regulations.	Yes - Alternative complies with applicable state and federal regulations.	Yes - Alternative complies with applicable state and federal regulations.	
Provision for Compliance Monitoring	Yes - Alternative includes provisions for compliance monitoring.	Yes - Alternative includes provisions for compliance monitoring.	Yes - Alternative includes provisions for compliance monitoring.	
Restoration Time Frame				
Restoration Time Frame	A significant portion of the containment barriers are currently in place. Additional containment in the form of asphalt paving of existing gravel surfaces and the removal of COCs in identified source areas followed by restoration are expected to occur over a 2-3 year period. Monitoring of containment elements (i.e., asphalt/concrete pavement and sheet pile wall) and groundwater conditions to document compliance with cleanup objectives. Compliance groundwater monitoring to evaluate residual contamination in other portions of the Site is expected to occur over a 5 year time frame (minimum). Additional long-term monitoring may be required to verify compliance with cleanup standards.	A significant portion of the containment barriers are currently in place. The injection of chemical reagents to treat COCs Site-wide are expected to occur over a 3-4 year period. In situ treatment activities may require phasing during implementation to reduce disturbances to the DCI operations as well as more than one injection event if necessary. Monitoring of containment elements (i.e., asphalt/ concrete pavement and sheet pile wall) and groundwater conditions to document compliance with cleanup objectives. Compliance groundwater monitoring is expected to occur over a 5 year time frame (minimum). Additional long-term monitoring may be required to verify compliance with cleanup standards.	Complete removal of COCs Site-wide followed by restoration are expected to occur over a 3-4 year period. Removal activities may require phasing during implementation to reduce disturbances to the DCl operations. Compliance groundwater monitoring to verify the effectiveness of the cleanup action is expected to occur over a 1-2 year period following removal.	
Relative Benefits Ranking (Scored from	n 1-lowest to 10-highest)			
	Score = 7	Score = 8	Score = 9	
Protectiveness	Achieves a moderate-high level of protectiveness as all portion of the Site containing COCs receive a protective containment barrier under this alternative. Therefore, this alternative receives a slightly higher score than Alternative 2. This alternative improves overall environmental quality onsite by removing COCs in Source Areas through removal. Similar to Alternative 2, short-term on-site and off-site risk of exposure are increased due to removal action and off-site disposal.	Achieves a high level of protectiveness as all COCs are treated/stabilized through in-situ treatment. Overall environmental quality on Site is increased as well as exposure risk to contamination are reduced to high degree under this alternative. No risk of exposure off-site as contamination is not removed.	Achieves a high level of protectiveness as all COCs are removed from the site thereby increasing the overall environmental quality on site to the highest degree. However, short-term on-site and off-site risk of exposure are increased due to removal action and off-site disposal. Therefore gets a slightly higher score than Alternative 5.	

Evaluation Criteria	Alternative 4 - Source Area Removal	Alternative 5 - Site-Wide In Situ Treatment	Alternative 6 - Site-Wide Removal		
	Score = 7	Score = 8	Score = 10		
Permanence	Achieves a moderate-high level of permanence. The alternative receives a higher score due to the removal and off-site disposal of Source Area COCs which provides a relatively higher level reduction in the toxicity, mobility or volume of COCs than Alternative 3.	Achieves a high level of permanence by reducing toxicity, mobility and volume of COCs through Site-wide in-situ treatment of all COCs.	Achieves highest level of permanent reduction of mass, toxicity, and mobility of hazardous substances throughout the Site through removal and off-site permitted disposal. This alternative would eliminate/minimize to the need to perform additional cleanup actions.		
	Score = 7	Score = 8	Score = 10		
Long-Term Effectiveness	Provides a high level of certainty in long-term effectiveness due to the permanent removal of COCs in the Source Areas in addition to other technologies implemented similar to Alternative 2. However, it requires the entire upland to remain under institutional controls which needs to be monitored in a heavy industrial and active site.	Provides a high level of certainty in long-term effectiveness due to the site-wide treatment/stabilization of COCs. However, it requires the entire upland to remain under institutional controls which needs to be monitored in a heavy industrial and active site.	Achieves highest level of long-term effectiveness through removal of hazardous substances from the Site to the greatest degree feasible and utilizes approved off-site disposal facilities for final disposition		
_	Score = 5	Score = 4	Score = 3		
Management of Short-Term Risks	Achieves a moderate level of confidence in managing short-term risk due to degree of health and safety risks associated with heavy earthwork construction, and potential for exposure to COCs during removal, on-site management, transport and disposal of contaminated material.	Achieves a moderate-high level of confidence in managing short-term risk as there is some potential for exposure to contamination during in-situ injection of reagents as well as other construction related risks. Since in situ treatment is to be performed site-wide under this alternative, the short-term risk are higher than the risk associated with in situ treatment of Source Areas under Alternative 3. Therefore is scored slightly lower than Alternative 3.	Achieves a low level of confidence in managing short-term risk due to degree of health and safety risks associated with heavy earthwork construction, and potential for exposure to COCs during removal, on-site management, transport and disposal of contaminated material. Achieves a lower score than Alternative 4 due to higher volume of contaminated material that will be removed under this alternative.		
	Score = 6	Score = 5	Score = 4		
Technical and Administrative Implementability	Achieves a moderate level of implementability due to the design and coordination associated with implementation of soil removal. Implementation will be challenging since it will likely impact current site use at the property.	Achieves a low-moderate level of implementability due to the design and coordination associated with implementation of in situ treatment technologies. Receives a lower score than Alternative 3 since the extent of in situ treatment is larger making implementation more challenging.	Achieves a low-moderate level of implementability due to the design and coordination associated with implementation of soil removal. Receives a lower score than Alternative 4 since the extent of soil removal is larger making implementation more challenging.		
	Score = 7	Score = 9	Score = 8		
Consideration of Public Concerns	Residual contamination remaining in place below containment features could result in concerns by the public and nearby property owners and potentially affect the future development and Site use. However, the further addition of asphalt pavement and removal of source areas to reduce the potential for contaminant migration and exposure would reduce public concerns.	Site-wide in situ treatment to reduce the potential for contaminant migration and exposure would produce minimum public concerns. However, there may be public concern for the temporary disruptions to Site operations and increased traffic resulting from construction activities. However, long-term public concerns are expected to be low.	Soil contamination would be removed to the extent practical under this alterative. However, there may be public concern for the temporary disruptions to Site operations, increased traffic resulting from construction activities and potential spills during transport of contaminated soil to the landfill. However, long-term public concerns are expected to be low.		

Notes:

COC = Contaminant of Concern

Table 4.3

Cleanup Action Alternative Evaluation Summary and Ranking

Dakota Creek Industries Anacortes, Washington

Remedial Alternative	Alternative 1 - Containment and Compliance Monitoring	Alternative 2 - Partial Source Area Removal	Alternative 3 - Source Area In Situ Treatment Removal		Alternative 5 - Site-Wide In Situ Treatment	Alternative 6 - Site-Wide Removal
Evaluation						
Compliance with MTCA Threshold Criteria	Yes	Yes	Yes	Yes	Yes	Yes
Restoration Time Frame	1-2 Years ¹	1-2 Years ¹	2-3 Years ¹	2-3 Years ¹	3-4 Years ¹	3-4 Years
Estimated Volume of Contaminated Soil Removed/Treated	N/A	3,600 bcy	9,000 bcy	9,000 bcy	46,500 bcy	46,500 bcy
Relative Benefits Ranking ²						
Protectiveness (weighted as 30%)	0.6	1.8	1.5	2.1	2.4	2.7
Permanence (weighted as 20%)	0.4	1.2	1	1.4	1.6	2
Long-Term Effectiveness (weighted as 20%)	0.4	1.2 1.2 1.4		1.4	1.6	2
Management of Short-Term Risks (weighted as 10%)	0.8	0.7	0.8	0.5	0.4	0.3
Technical and Administrative Implementability (weighted as 10%)	0.7	0.6	0.6 0.6		0.5	0.4
Consideration of Public Concerns (weighted as 10%)	0.3	0.7	0.6	0.7	0.9	0.8
Overall Weighted Benefit Score	3.20	6.20	5.70	6.70	7.40	8.20
Disproportionate Cost Analysis						
Probable Remedy Cost (+50%/-30%, rounded)	\$1,180,000	\$2,120,000	\$2,610,000	\$4,390,000	\$7,030,000	\$15,060,000
Practicability of Remedy	Practicable	Practicable	Practicable	Practicable	Practicable	Practicable
Remedy Permanent to Maximum Extent Practicable	Yes	Yes	Yes	Yes	Yes	Yes
Relative Benefit Ranking to Remedial Cost (Benefit/\$1M)	2.71	2.92	2.18	1.53	1.05	0.54
Costs Disproportionate to Incremental Benefits	No	No	Yes	Yes	Yes	Yes
Overall Alternative Ranking	2 nd	1 st	3 rd	4 th	5 th	6 th

Note:

MTCA = Model Toxics Control Act

bcy = bank (in-place) cubic yards

% = percent

¹Compliance groundwater monitoring is expected to occur over a 5 year time frame (minimum). Additional long-term monitoring may be required to verify compliance with cleanup standards.

² Weightings were established by Ecology as referenced in their Opinion Letter dated December 28, 2009.

Cleanup Action Plan Dakota Creek Industries

Appendices

37 June 2021

Appendix A. Supplemental Soil Investigation Data Report

Supplemental Soil Investigation Data Report

Dakota Creek Industries Anacortes, Washington Ecology Agreed Order No. DE-07TCPHQ-5080

for

Washington State Department of Ecology on Behalf of Port of Anacortes

June 3, 2021

2101 4th Avenue, Suite 950 Seattle, Washington 206.728.2674

Supplemental Soil Investigation Data Report

Dakota Creek Industries Anacortes, Washington Ecology Agreed Order No. DE-07TCPHQ-5080

File No. 5147-006-14

June 3, 2021

Prepared for:	
Washington State Department of Ecology PO Box 47600 Olympia, Washington 98504-7600	
Attention: Arianne Fernandez	
On Behalf of:	
Port of Anacortes 100 Commercial Avenue Anacortes, Washington 98221	
Prepared by:	
GeoEngineers, Inc. 2101 4 th Avenue, Suite 950 Seattle, Washington 98121 206.728.2674	
Robert S. Trahan, LG Senior Environmental Scientist	John M. Herzog, PhD, LG Principal

RST:JMH:ch

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1 .0	INTRODUCTION	.1
2.0	BACKGROUND	.1
	Location and Description	
	Previous Upland Area Cleanup Actions	
3.0	SUPPLEMENTAL SOIL INVESTIGATION	.2
	Underground Utility Locate	
3.3.	Soil Sample Collection and Processing	. 3
3.5.	Decontamination	4
	Disposal of Investigation Derived Materials SOIL SAMPLING RESULTS	
	CULTURAL RESOURCE MONITORING	
6.0	CONCLUSIONS	.5
7.0	LIMITATIONS	.5
8.0	REFERENCES	.5

LIST OF TABLES

Table 1. Summary of Field Screening and Chemcial Analytical Data

LIST OF FIGURES

Figure 1. Vicinity Map

Figure 2. Site Plan

APPENDICES

Appendix A. Boring Logs

Appendix B. Laboraotry Data Packages

Appendix C. Data Validation Report

1.0 INTRODUCTION

This document provides the data results for the Supplemental Soil Investigation completed at the Dakota Creek Industries Site (Site) located in Anacortes, Washington. The Site is formally referenced in the Washington State Department of Ecology (Ecology) databases as Anacortes Port of Dakota Creek (Ecology Facility Site Identification No. 2670) and is located at 115 Q Avenue in Anacortes, Washington (Figure 1). The Site is owned by the Port of Anacortes (Port) and is currently leased to Dakota Creek Industries (DCI) who uses the property for shipbuilding and repair. Ecology is managing the Site as part of the Fidalgo and Padilla Bay component of their Puget Sound Initiative program.

Pursuant to Ecology Agreed Order No. DE-07TCPHQ-5080 dated December 2007 (AO), remedial investigation (RI) and Feasibility Study (FS) activities are being completed by the Port to evaluate Site conditions, supplement and fill identified data gaps, determine the nature and extent of contamination in sediment, soil and groundwater and determine cleanup alternatives for the Site. Results of previous sampling and analysis efforts, evaluation of remedial alternatives and selection of a preferred cleanup action for the Site are summarized in the RI/FS Report (GeoEngineers 2020).

On completion of their review of the RI/FS Report, Ecology determined that additional sampling and analysis was required in the Upland Area to confirm the completeness of previously completed cleanup actions because the technical quality of verification sampling data could not be independently validated.

The sample collection and chemical analysis data described below are being used to fill this identified data gap and confirm the completeness of the previously completed cleanup actions.

2.0 BACKGROUND

2.1. Location and Description

The Site is located at 115 Q Avenue in Anacortes, Washington and is an industrial facility used as a shipyard. The Site is comprised of both upland and marine areas and is bounded by the Port of Anacortes Pier 1 to the west and Pier 2 to the east, 3rd Street on the south, and the Guemes Channel to the north.

DCI currently leases the Site from the Port for shipbuilding and maintenance operations. The Site includes a portion of the Port's Pier 1 Marine Terminal (Pier 1), a centrally located outfitting dock (Central Pier), a synchrolift, upland fabrication areas, shops, a sandblast grit storage shed, warehouses and storage areas. The northern portion of Pier 1 (which is a deep-water moorage terminal) is used by DCI to support dry dock operations.

2.2. Regulatory Framework

On December 12, 2007, the Port entered Agreed Order No. DE-07TCPHQ-5080 with Ecology. Under the Agreed Order, RI activities were completed by the Port in accordance with the Ecology-approved RI/FS Work Plan to supplement and fill identified data gaps in existing data for the Site, and to determine the nature and extent of contamination in sediment, soil and groundwater. Environmental data collected from the Site is used in the RI and FS as required by the AO.

As a result of their review of the Draft RI/FS for the Site, Ecology required completion of supplemental sampling by the Port to confirm the completeness of previously completed 1991 UST cleanup action, 2001 Hydraulic Winch cleanup action, and 2002 Petroleum and Marine Railway Cleanup. The supplemental sampling was completed in accordance with the Ecology-approved RI/FS Work Plan Addendum (GeoEngineers, 2021). The results of the Supplemental Soil Investigation are being used to confirm the completeness of these previous cleanup actions and to support selection of the preferred cleanup action alternative for the Site.

2.3. Previous Upland Area Cleanup Actions

Cleanup actions previously completed in the Upland Area of the Site include:

- 1991 UST Cleanup Action In 1991, two USTs located near the south end of L dock were removed from the Site for permanent closure. During the removal of these tanks, approximately 20 cubic yards of petroleum impacted soil was removed from this area and transferred from the Site for landfill disposal. Verification samples at the final excavation limits were obtained to confirm the removal of the petroleum impacted soil observed during tank removal activities.
- 2001 Hydraulic Winch Cleanup Action In 2001, a hydraulic winch and its timber frame located near the south end of the east marine railway were removed from the Site. During removal of this structure and associate components, approximately 30 cubic yards of petroleum impacted soil were excavated and transferred from the Site for landfill disposal. Verification samples at the final excavation limits were obtained to confirm the removal of the petroleum impacted soil observed during removal of the hydraulic winch and associated timber frame.
- 2002 Petroleum and Marine Railway Cleanup Actions In 2002, the Port completed cleanup actions to address known soil contamination in the Petroleum Cleanup Action Area extending from the aluminum shop (building formerly identified as the equipment maintenance shed) to the former bulk fuel storage above ground storage tanks; and the Marine Railway Cleanup Action Area located near the eastern marine railway structure. Cleanup actions to remove soil contamination (approximately 1,650 cubic yards) in these areas were completed under Ecology's Voluntary Cleanup Program (VCP). Verification samples at the final excavation limits were obtained to confirm the removal of the petroleum impacted soil form these areas.

Although verification sampling completed as part of these previous cleanup actions confirmed the removal of the petroleum-related contamination from these areas, the technical quality of these data could not be verified due to the unavailability of the original laboratory data. As a result, Ecology has requested that additional sampling and analysis be performed for these areas to confirm the removal of the petroleum-related contamination and that the data be used to support selection of the preferred remedial alternative for the Site.

3.0 SUPPLEMENTAL SOIL INVESTIGATION

Additional investigation activities were completed in the Upland Area to further characterize soil conditions on March 18, 2021. As part of the investigation, sampling was performed within the footprint of the previously completed remedial excavations at the Site which extended to depths greater than 1 foot (i.e., remedial excavations extending beneath the former gravel working surface). In general, soil samples were collected from immediately below the base of the previous remedial excavations to match the previous

verification sample interval. The samples that were collected were submitted to an Ecology-accredited laboratory for analysis of contaminants of concern (COCs) previously identified for these areas including gasoline-, diesel- and heavy oil-range petroleum hydrocarbons and/or cPAHs.

Soil sampling and analysis activities included:

- Completion of seven (7) continuous soil borings using direct-push drilling (DP) methods to document soil conditions.
- Collection of soil samples for chemical analysis representative of the previous remedial excavation limit.

The locations of the previous cleanup action areas and sample locations to verify the completeness of the removal actions are shown on Figure 2. Sample locations were positioned within the previously completed remedial excavation footprints to provide adequate spatial coverage as well as to avoid utility conflicts and limit impacts to DCI operations. Soil sample collection and analysis completed as part of this supplemental investigation are summarized in the following sections.

3.1. Underground Utility Locate

Prior to drilling, an underground utility locate was performed to clear potential utilities and/or underground physical hazards within a 25-foot radius of each location.

3.2. Surveying

GeoEngineers field personnel recorded the soil boring locations, and other pertinent information, using hand-held Trimble global positioning system (GPS) unit during sampling activities. The accuracy of the measured horizontal coordinates is within approximately 3 feet.

3.3. Soil Sample Collection and Processing

Soil borings were completed to depths ranging between approximately 10 and 15 feet below ground surface (bgs) using a truck-mounted DP drilling rig owned and operated by a licensed driller in the State of Washington (Cascade Drilling). During drilling activities, a representative from GeoEngineers' staff was present to examine, field screen and classify the soils encountered and prepare a detailed boring log of each exploration. Boring logs detailing field screening results and soil types encountered are presented in Appendix A.

Based on the field screening results, soil types encountered and the estimated depth of the previous remedial excavations, selected samples were collected at each location to match the previous verification sample intervals. The samples were individually homogenized and placed into the appropriate laboratory-supplied sample containers. Samples for volatile analysis (i.e., gasoline) were collected from undisturbed soil at the center of the sampling interval prior to homogenization using United States Environmental Protection Agency (EPA) Method 5035A sampling procedures, consistent with Ecology guidance to reduce volatilization and biodegradation of the sample constituents. Immediately upon collection, the samples were placed into a cooler with ice and logged on the chain-of-custody using quality assurance and control procedures in accordance with the RI/FS Work Plan (GeoEngineers 2008).

3.4. Soil Sample Laboratory Analysis

Soil samples were submitted to OnSite Environmental, Inc. (OnSite) in Redmond, Washington, for a combination of the following chemical analysis:

- Gasoline-range petroleum hydrocarbons by NWTPH-Gx.
- Heavy oil- and diesel-range petroleum hydrocarbons by NWTPH-Dx using an acid-silica gel cleanup.
- Benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA 8260.
- cPAHs by EPA 8270-SIM.

3.5. Decontamination

The drilling equipment was decontaminated before beginning each exploration using a pressure washer. Decontamination procedures for this equipment consisted of the following:

- Wash with non-phosphate detergent solution (Liqui-Nox® and distilled water),
- Rinse with distilled water, and
- Place the decontaminated equipment on clean plastic sheeting or in a plastic bag.

Field personnel limited cross-contamination by changing gloves between sampling events. Wash water used to decontaminate the sampling equipment was placed in a sealed and labeled 35-gallon drum pending permitted offsite disposal.

3.6. Disposal of Investigation Derived Materials

Soil cuttings from borings completed during this investigation was placed in a labeled and sealed 35-gallon drum. The drum is being stored temporarily at a secure location pending permitted offsite disposal.

Incidental waste generated during sampling activities includes items such as gloves, plastic sheeting, paper towels and similar expended and discarded field supplies were considered *de minimis* and were disposed of at local trash receptacle pending landfill disposal.

4.0 SOIL SAMPLING RESULTS

Chemical analytical results are summarized in Table 1. Based on a review of the chemical analytical data, COCs either were not detected or were detected at concentrations less than the PCULs established for the Site.

The laboratory data presented in Appendix B were subjected to an EPA-defined Stage 2B validation (EPA Document 540-R-2017-01; EPA, 2017) and were determined to be acceptable for their intended use as qualified. The data validation review is presented in Appendix C.

5.0 CULTURAL RESOURCE MONITORING

Based on the consultation for the Site, the Department of Archaeology and Historic Preservation (DAHP) required that an archeological monitor be present during ground disturbance activities completed near the fill/native soil contact.

During the Supplemental Soil Investigation, a representative from Columbia Geotechnical Associates (Columbia) was present to observe soil encountered from each boring for evidence of potential cultural resource in accordance with an Ecology-approved Inadvertent Discover Monitoring Plan. A review of the soil borings by Columbia did not identify signs of cultural material or other evidence of historic or pre-historic use of the Site. Based on these findings, Columbia concluded that the Supplemental Soil Investigation did not affect or otherwise impact recorded or unrecorded cultural resources.

6.0 CONCLUSIONS

Remedial excavations were previously performed at the Site to remove soil contamination associated within the 1991 UST cleanup action, 2001 Hydraulic Winch cleanup action, and 2002 Petroleum and Marine Railway cleanup action areas. However, the technical quality of verification sampling data could not be independently validated due to the unavailability of the original laboratory data. As a result, supplemental soil sampling and analysis was performed on March 18, 2021 at the base of the previous excavations in accordance with the Ecology-approved RI/FS Work Plan Addendum to confirm the completeness of the previously completed cleanup actions. Chemical analytical data results identified that soils at the base of the previously completed investigations meet the cleanup levels of the Site and that soil contamination in these cleanup area areas was successfully removed. No additional consideration as to the completeness of these previous cleanup actions is warranted.

7.0 LIMITATIONS

This report has been prepared for the exclusive use of the Port of Anacortes, their authorized agents and regulatory agencies in their evaluation of the Dakota Creek Industries Site in Anacortes, Washington. No other party may rely on the product of our services unless we agree in advance and in writing to such reliance.

8.0 REFERENCES

- GeoEngineers 2008, "Final Work Plan, Remedial Investigation/Feasibility Study and Interim Action Work Plan Dakota Creek Industries," prepared for the Washington Department of Ecology on behalf of the Port of Anacortes, April 1, 2008.
- GeoEngineers 2020, "Remedial Investigation/Feasibility Study Report, Dakota Creek Industries, Anacortes, Washington, Ecology Agreed Order No. DE-07TCPHQ-5080," prepared for the Washington Department of Ecology on behalf of the Port of Anacortes, April 27, 2020.
- Lenz, Brett (Lenz) 2020, "A Cultural Resources Review of the Dakota Creek Industries Site, Skagit County, WA," prepared for the Port of Anacortes, November 2020.

United States Environmental Protection Agency (EPA) 2017, "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-2017-01," Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC, dated January 2017.

Table 1

Chemical Analytical Soil Data

Dakota Creek Industries Anacortes, Washington

Sample Location ¹		GEI-47	GEI-48	GEI-49	GEI-50	GEI-51	GEI-52	GEI-53		
Sample Identification		GEI-47-9.0	GEI-48-8.0	GEI-49-11.0	GEI-50-9.0	GEI-51-12.0	GEI-52-10.0	GEI-53-7.0		
Date Sampled		03/18/21	03/18/21	03/18/21	03/18/21	03/18/21	03/18/21	03/18/21	Propos	sed Soil
Sample Interval		9-10 feet	8-9 feet	11-12 feet	9-10 feet	12-1 3 feet	10-11 feet	7-8 feet	-	nup
Sample Horizon	Units	Saturated	Vadose	Saturated	Saturated	Saturated	Saturated	Vadose	Lev	/el ²
Field Screening										
Water Sheen	n/a	NS	NS	NS	NS	NS	NS	NS	NE	NE
Headspace Vapors	ppm	<1	<1	<1	<1	<1	<1	<1	NE	NE
Petroleum Hydrocarbons										
Gasoline-Range	mg/kg	5.7 U		6.3 U	5.8 U	6.6 U	9.9 U	-	30	30
Diesel-Range	mg/kg	30 U	31 U	30 U	30 U	31 U	39 U	27 U	2,000	2,000
Heavy Oil-Range	mg/kg	60 U	61 U	60 U	60 U	61 U	78 U	55 U	2,000	2,000
BETX Compounds										
Benzene	mg/kg	0.00084 U		0.00097 U	0.00091 U	0.001 U	0.0014 U		2,400	2,400
Ethylbenzene	mg/kg	0.0042 U	-	0.0049 U	0.0046 U	0.0052 U	0.0068 U		350,000	350,000
Toluene	mg/kg	0.00084 U		0.00097 U	0.00091 U	0.001 U	0.0014 U		280,000	280,000
Xylenes	mg/kg	0.0017 U		0.0019 U	0.0018 U	0.0021 U	0.0027 U		700,000	700,000
Carcinogenic Polycyclic Aromatic Hydro	carbons (cP	AHs)								
Benzo[a]anthracene	mg/kg				-			0.087	1.14	0.06
Benzo[a]pyrene	mg/kg	-	-		-		-	0.084	0.31	0.02
Benzo[b]fluoranthene	mg/kg							0.095	3.94	0.20
Benzo[k]fluoranthene	mg/kg				-			0.035	39.36	1.97
Chrysene	mg/kg	-			1		-	0.079	127.36	6.37
Dibenz[a,h]anthracene	mg/kg	-			-	-		0.010	0.57	0.03
Indeno[1,2,3-c,d]pyrene	mg/kg	-			-	-	-	0.053	11.10	0.56
cPAHs TEQ (ND = 0.5RL)	mg/kg	-	-		ı		-	0.113	0.31	0.016

Notes:

MTCA = Washington State Model Toxics Control Act

NE = not established

RL = reporting limit

-- = not analyzed

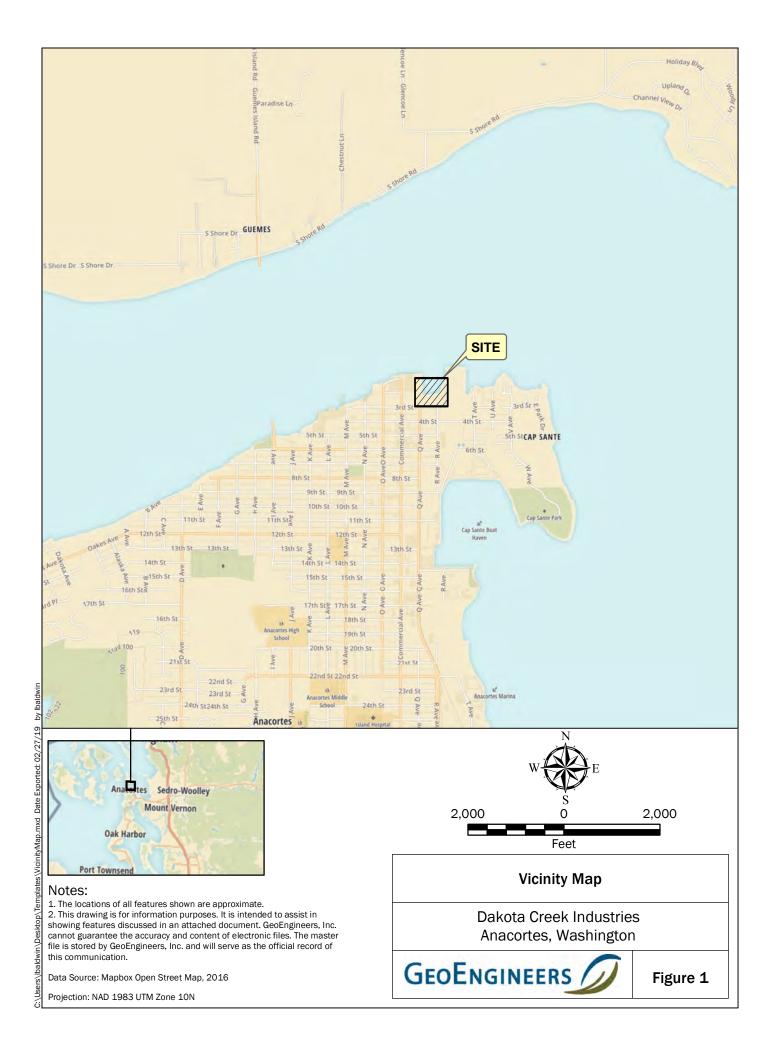
mg/kg = milligrams per kilogram

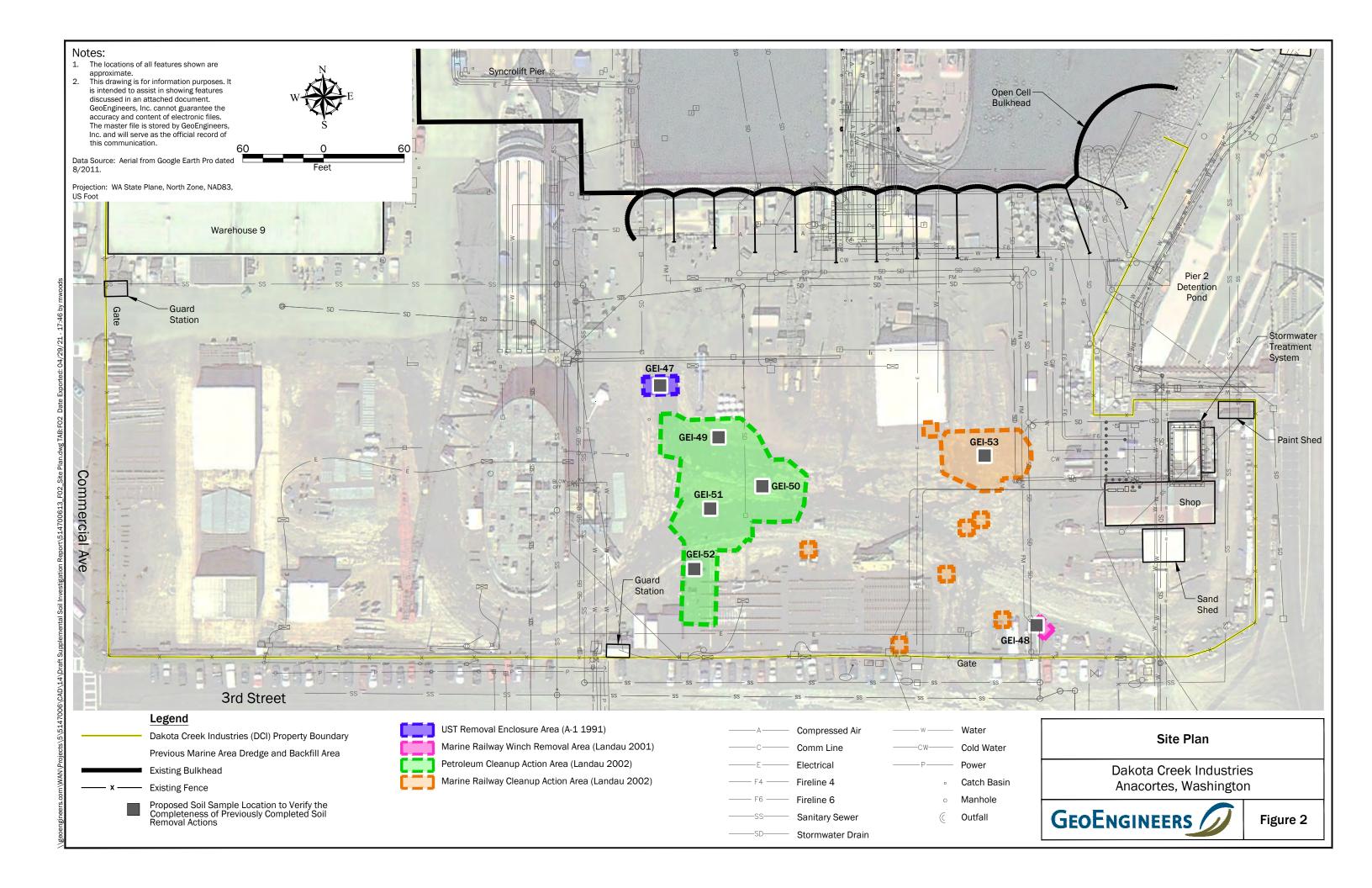
TEQ = toxic equivalent concentration

U = The analyte was not detected at a concentration greater than the value identified.

Bold font type indicates the analyte was detected at the reported concentration.

File No. 5147-006-14 Table 1 | June 3, 2021




NS = no sheen

ppm = parts per million

¹ Soil sampling locations are shown on Figure 2.

² Soil cleanup level is referenced from the Remedial Investigation/Feasibility Study Report (GeoEngineers 2021).

APPENDIX A Boring Logs

SOIL CLASSIFICATION CHART

	AAJOR DIVIS	IONE	SYM	BOLS	TYPICAL	
	MAJUR DIVIS	IUNS	GRAPH	LETTER	DESCRIPTIONS	
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
30123	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
MORE THAN 50%	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS	
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	
	MORE THAN 50% OF COARSE FRACTION PASSING	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
	ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES	
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	
				ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	
	HIGHLY ORGANIC S	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	

NOTE: Multiple symbols are used to indicate borderline or dual soil classifications

Sampler Symbol Descriptions

2.4-inch I.D. split barrel

Standard Penetration Test (SPT)

Continuous Coring

Shelby tube
Piston

Direct-Push
Bulk or grab

Blowcount is recorded for driven samplers as the number of blows required to advance sampler 12 inches (or distance noted). See exploration log for hammer weight and drop.

"P" indicates sampler pushed using the weight of the drill rig.

"WOH" indicates sampler pushed using the weight of the hammer.

ADDITIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL			
GRAPH	LETTER	DESCRIPTIONS			
	AC	Asphalt Concrete			
	cc	Cement Concrete			
33	CR	Crushed Rock/ Quarry Spalls			
1 71 71 71 71 71 71 71 71 71 71 71 71 71	SOD	Sod/Forest Duff			
	TS	Topsoil			

Groundwater Contact

T

Measured groundwater level in exploration, well, or piezometer

Measured free product in well or piezometer

Graphic Log Contact

Distinct contact between soil strata

Approximate contact between soil strata

Material Description Contact

Contact between geologic units

___ Contact between soil of the same geologic unit

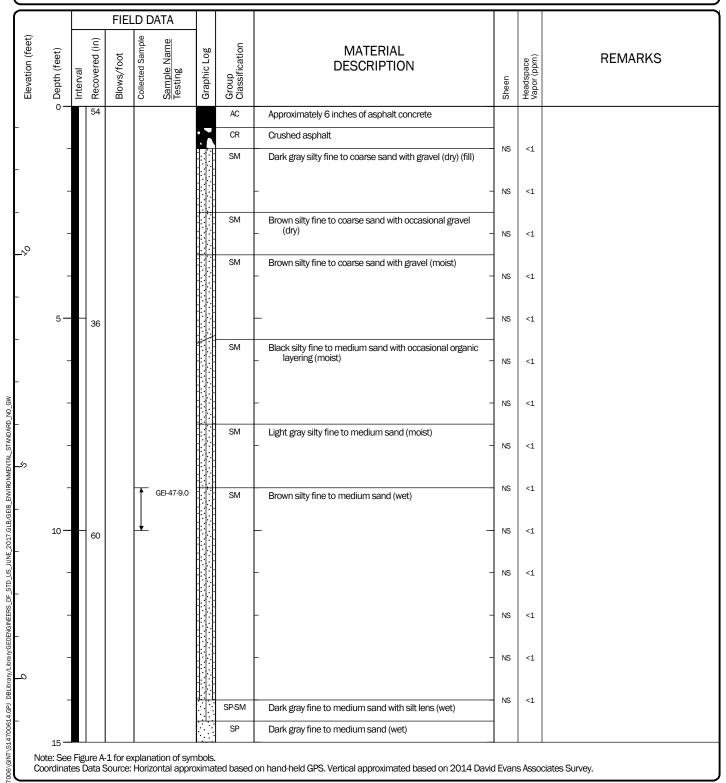
Laboratory / Field Tests

Percent fines %F %G Percent gravel ΑL Atterberg limits CA Chemical analysis СP Laboratory compaction test CS DD Consolidation test Dry density DS Direct shear HA Hydrometer analysis MC Moisture content MD Moisture content and dry density Mohs Mohs hardness scale OC **Organic content** Permeability or hydraulic conductivity PM Ы Plasticity index

PL Point load test
PP Pocket penetrometer
SA Sieve analysis
TX Triaxial compression
UC Unconfined compression
VS Vane shear

Sheen Classification

NS No Visible Sheen SS Slight Sheen MS Moderate Sheen HS Heavy Sheen


NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Key to Exploration Logs

Figure A-1

Start Drilled 3/18/2021	<u>End</u> 3/18/2021	Total Depth (ft)	15	Logged By Checked By	NRS RST	Driller Cascade Drilling LP		Drilling Method Direct-Push
Surface Elevation (ft) Vertical Datum		3.5 LLW		Hammer Data	Pneumatic		Drilling Equipment	Tracked DP Probe Rig
Easting (X) Northing (Y)		726.25 339.25		System Datum	W	WA State Plane North (US Feet) Groundwater not observed at time of expl		r not observed at time of exploration
Notes:								

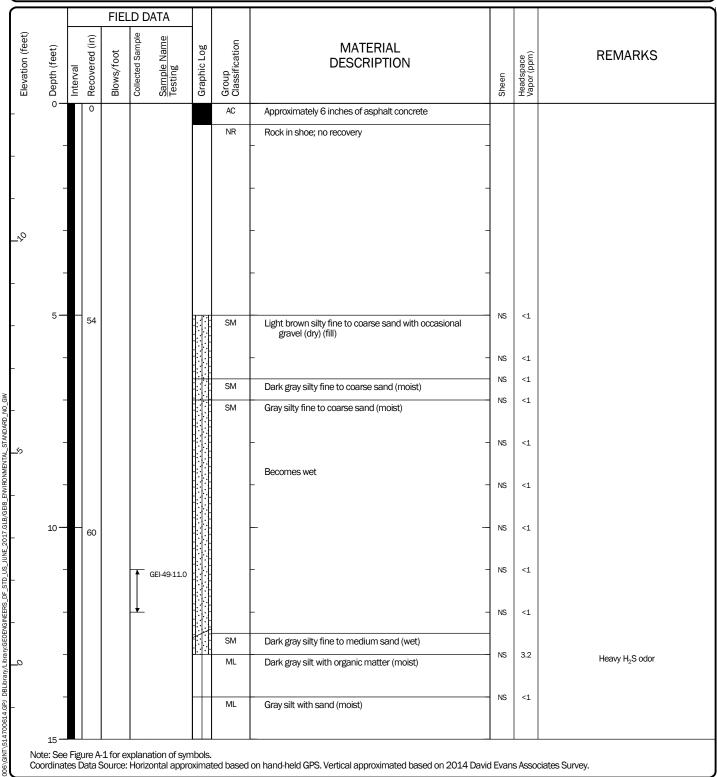
Project: Dakota Creek Industries

Project Location: Anacortes, Washington

Start Drilled 3/18/2021	<u>End</u> 3/18/2021	Total Depth (ft)	10	Logged By Checked By	NRS RST	Driller Cascade Drilling LP		Drilling Method Direct-Push
Surface Elevation (ft) Vertical Datum	13 MLLW			Hammer Data		Pneumatic	Drilling Equipment	Tracked DP Probe Rig
Easting (X) Northing (Y)				System Datum	W	A State Plane North (US Feet)	Groundwate	r not observed at time of exploration
Notes:								

			FIE	LD D	ATA						
Elevation (feet)		Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 —	60					AC	Approximately 6 inches of asphalt concrete			
						公	cc	Crushed concrete (dry)			
	_						SM	Gray silty fine to coarse sand with gravel (dry) (fill)	- NS	<1	
70	_						SIVI	Gray Sitty fine to coarse sand with graver (diy) (fill)	- NS	<1	
							SM	Brown silty fine to coarse sand with occasional gravel (dry)	NS.	<1	
-	-					1.1-1	ML	Dark gray silt (moist)	- NS	<1	
-	5—	48	3			1.01			NS	<1	
-	-						SM	Light brown silty fine to coarse sand (moist) Gray silty fine to coarse sand with occasional gravel	- NS	<1	
NO_GW _	_						SM	(moist) Dark brown silty fine to coarse sand with occasional	- NS	2.1	
0.17.GLB/GEIB_ENVIRONMENTAL_STANDARD_NO_GW	_				GEI-48-8.0		SM	gravel (moist) Brown silty fine to coarse sand (moist)	- NS	<1	
/GEI8_ENVIRON	-			+				Becomes wet	- NS	<1	
17.GLB,	10 —							Describe not			

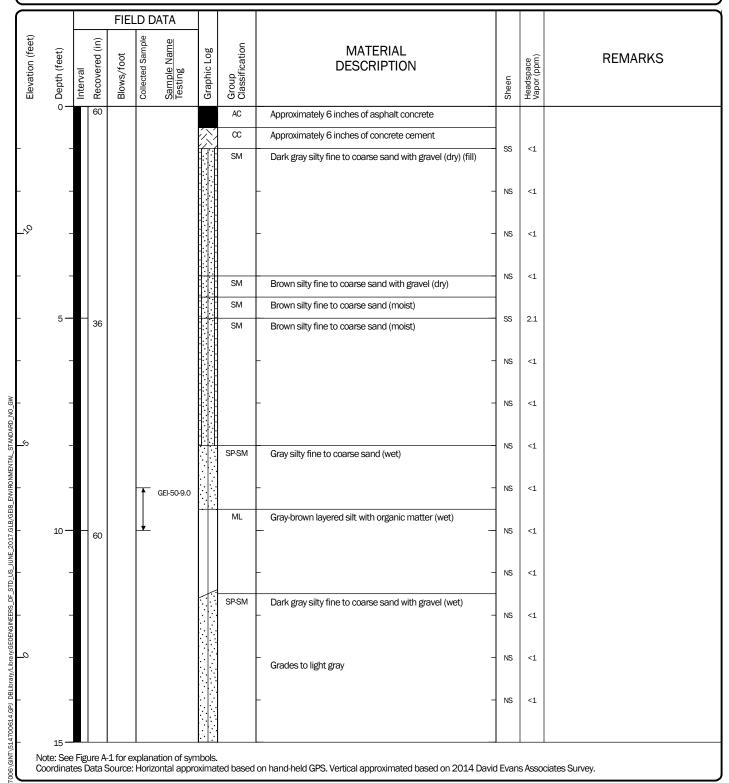
Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on hand-held GPS. Vertical approximated based on 2014 David Evans Associates Survey.


Log of Boring GEI-48

Project: Dakota Creek Industries

Project Location: Anacortes, Washington

Drilled 3/	<u>Start</u> /18/2021	<u>End</u> 3/18/2021	Total Depth (ft)	15	Logged By Checked By	NRS RST	Driller Cascade Drilling LP		Drilling Direct-Push
Surface Ele Vertical Dat		(ft) 13.25 MLLW			Hammer Data		Pneumatic	Drilling Equipment	Tracked DP Probe Rig
Easting (X) Northing (Y					System Datum	W	A State Plane North (US Feet)	Groundwate	er not observed at time of exploration
Notes:									



Project: Dakota Creek Industries

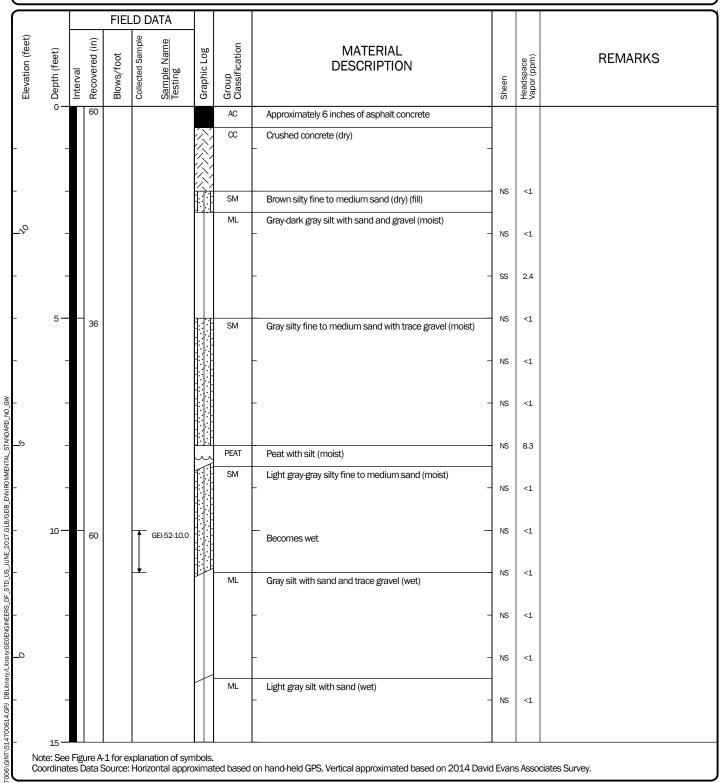
Project Location: Anacortes, Washington

Start Drilled 3/18/2021	<u>End</u> 3/18/2021	Total Depth (ft)	15	Logged By Checked By	NRS RST	Driller Cascade Drilling LP		Drilling Method Direct-Push
Surface Elevation (ft) Vertical Datum	13 MLLW			Hammer Data		Pneumatic	Drilling Equipment	Tracked DP Probe Rig
Easting (X) Northing (Y)	1209799.82 559561.74			System Datum	W	A State Plane North (US Feet)	Groundwate	er not observed at time of exploration
Notes:								

Project: Dakota Creek Industries

Project Location: Anacortes, Washington

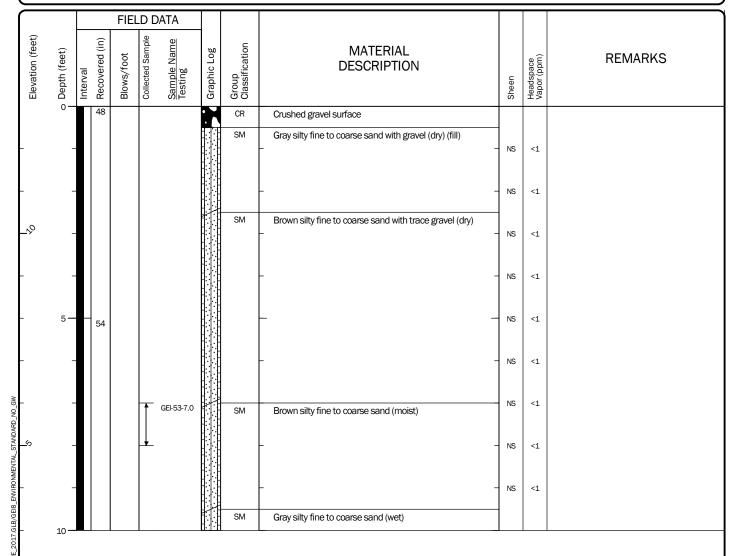
Start Drilled 3/18/2021	<u>End</u> 3/18/2021	Total Depth (ft)	15	Logged By Checked By	NRS RST	Driller Cascade Drilling LP		Drilling Method Direct-Push
Surface Elevation (ft) Vertical Datum	13 MLLW			Hammer Data		Pneumatic	Drilling Equipment	Tracked DP Probe Rig
Easting (X) Northing (Y)	1209760.69 559545.98			System Datum	W	A State Plane North (US Feet)	Groundwate	r not observed at time of exploration
Notes:								



Project: Dakota Creek Industries

Project Location: Anacortes, Washington

Start Drilled 3/18/2021	<u>End</u> 3/18/2021	Total Depth (ft)	15	Logged By Checked By	NRS RST	Driller Cascade Drilling LP		Drilling Method Direct-Push
Surface Elevation (ft) Vertical Datum	13 MLLW			Hammer Data		Pneumatic	Drilling Equipment	Tracked DP Probe Rig
Easting (X) Northing (Y)	1209747.08 559501.71			System Datum	W	A State Plane North (US Feet)	Groundwate	r not observed at time of exploration
Notes:								



Project: Dakota Creek Industries

Project Location: Anacortes, Washington

Start Drilled 3/18/2021	<u>End</u> 3/18/2021	Total Depth (ft)	10	Logged By Checked By	NRS RST	Driller Cascade Drilling LP		Drilling Method Direct-Push
Surface Elevation (ft) Vertical Datum		13 LLW		Hammer Data		Pneumatic	Drilling Equipment	Tracked DP Probe Rig
Easting (X) Northing (Y)		965.75 578.87		System Datum	WA State Plane North (US Feet)		Groundwate	r not observed at time of exploration
Notes:								

Note: See Figure A-1 for explanation of symbols.

 $Coordinates\ Data\ Source: Horizontal\ approximated\ based\ on\ hand-held\ GPS.\ Vertical\ approximated\ based\ on\ 2014\ David\ Evans\ Associates\ Survey.$

Log of Boring GEI-53

Project: Dakota Creek Industries

Project Location: Anacortes, Washington

Project Number: 5147-006-14

APPENDIX B Laboratory Data Packages

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

March 29, 2021

Robert Trahan GeoEngineers, Inc. 2101 4th Avenue, Suite 950 Seattle, WA 98121

Re: Analytical Data for Project 5147-006-14

Laboratory Reference No. 2103-219

Dear Robert:

Enclosed are the analytical results and associated quality control data for samples submitted on March 18, 2021.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 5147-006-14

Case Narrative

Samples were collected on March 18, 2021 and received by the laboratory on March 18, 2021. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 5147-006-14

ANALYTICAL REPORT FOR SAMPLES

Client ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
GEI-47-9.0	03-219-01	Soil	3-18-21	3-18-21	
GEI-48-8.0	03-219-02	Soil	3-18-21	3-18-21	
GEI-49-11.0	03-219-03	Soil	3-18-21	3-18-21	
GEI-50-9.0	03-219-04	Soil	3-18-21	3-18-21	
GEI-51-12.0	03-219-05	Soil	3-18-21	3-18-21	
GEI-52-10.0	03-219-06	Soil	3-18-21	3-18-21	
GEI-53-7.0	03-219-07	Soil	3-18-21	3-18-21	

Project: 5147-006-14

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil

Units: mg/kg (ppm)

0 0 (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-47-9.0					
Laboratory ID:	03-219-01					
Gasoline	ND	5.7	NWTPH-Gx	3-22-21	3-22-21	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	58-129				
Client ID:	GEI-49-11.0					
Laboratory ID:	03-219-03					
Gasoline	ND	6.3	NWTPH-Gx	3-22-21	3-22-21	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	58-129				
Client ID:	GEI-50-9.0					
Laboratory ID:	03-219-04					
Gasoline	ND	5.8	NWTPH-Gx	3-22-21	3-22-21	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	58-129				
Client ID:	GEI-51-12.0					
Laboratory ID:	03-219-05					
Gasoline	ND	6.6	NWTPH-Gx	3-22-21	3-22-21	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	58-129				
Client ID:	GEI-52-10.0					
Laboratory ID:	03-219-06					
Gasoline	ND	9.9	NWTPH-Gx	3-22-21	3-22-21	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	105	58-129				

Project: 5147-006-14

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

5 5 W. 1 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-47-9.0					
Laboratory ID:	03-219-01					
Diesel Range Organics	ND	30	NWTPH-Dx	3-19-21	3-22-21	X1
Lube Oil Range Organics	ND	60	NWTPH-Dx	3-19-21	3-22-21	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				
Client ID:	GEI-48-8.0					
Laboratory ID:	03-219-02					
· · · · · · · · · · · · · · · · · · ·	ND	31	NWTPH-Dx	3-19-21	3-22-21	X1
Diesel Range Organics Lube Oil Range Organics	ND ND	62	NWTPH-DX NWTPH-Dx	3-19-21 3-19-21	3-22-21 3-22-21	X1 X1
		Control Limits	INVVIPH-DX	3-19-21	3-22-21	<u> </u>
Surrogate:	Percent Recovery 80	50-150				
o-Terphenyl	00	30-130				
Client ID:	GEI-49-11.0					
Laboratory ID:	03-219-03					
Diesel Range Organics	ND	30	NWTPH-Dx	3-19-21	3-22-21	X1
Lube Oil Range Organics	ND	60	NWTPH-Dx	3-19-21	3-22-21	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	61	50-150				
· ·						
Client ID:	GEI-50-9.0					
Laboratory ID:	03-219-04					
Diesel Range Organics	ND	30	NWTPH-Dx	3-19-21	3-22-21	X1
Lube Oil Range Organics	ND	60	NWTPH-Dx	3-19-21	3-22-21	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	56	50-150				
Oli III	05154.400					
Client ID:	GEI-51-12.0					
Laboratory ID:	03-219-05					
Diesel Range Organics	ND	31	NWTPH-Dx	3-19-21	3-22-21	X1
Lube Oil Range Organics	ND D	61	NWTPH-Dx	3-19-21	3-22-21	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				
Client ID:	GEI-52-10.0					
Laboratory ID:	03-219-06					
Diesel Range Organics	ND	39	NWTPH-Dx	3-19-21	3-22-21	X1
Lube Oil Range Organics	ND ND	39 78	NWTPH-Dx	3-19-21 3-19-21	3-22-21 3-22-21	X1 X1
Surrogate:	Percent Recovery	Control Limits	INVVIIII-DA	U-10-21	U-22-2 I	Λ1
o-Terphenyl	77	50-150				
о гогрионут	, ,	JU-1JU				

Project: 5147-006-14

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

. ,				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-53-7.0					
Laboratory ID:	03-219-07					
Diesel Range Organics	ND	27	NWTPH-Dx	3-19-21	3-22-21	X1
Lube Oil Range Organics	ND	55	NWTPH-Dx	3-19-21	3-22-21	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				

Project: 5147-006-14

VOLATILE ORGANICS EPA 8260D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-47-9.0					
Laboratory ID:	03-219-01					
Benzene	ND	0.00084	EPA 8260D	3-19-21	3-19-21	
Toluene	ND	0.0042	EPA 8260D	3-19-21	3-19-21	
Ethylbenzene	ND	0.00084	EPA 8260D	3-19-21	3-19-21	
m,p-Xylene	ND	0.0017	EPA 8260D	3-19-21	3-19-21	
o-Xylene	ND	0.00084	EPA 8260D	3-19-21	3-19-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	74-131				
Toluene-d8	101	78-128				
4-Bromofluorobenzene	98	71-130				

Project: 5147-006-14

VOLATILE ORGANICS EPA 8260D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-49-11.0					_
Laboratory ID:	03-219-03					
Benzene	ND	0.00097	EPA 8260D	3-23-21	3-23-21	
Toluene	ND	0.0049	EPA 8260D	3-23-21	3-23-21	
Ethylbenzene	ND	0.00097	EPA 8260D	3-23-21	3-23-21	
m,p-Xylene	ND	0.0019	EPA 8260D	3-23-21	3-23-21	
o-Xylene	ND	0.00097	EPA 8260D	3-23-21	3-23-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	74-131				
Toluene-d8	102	78-128				
4-Bromofluorobenzene	101	71-130				

Project: 5147-006-14

VOLATILE ORGANICS EPA 8260D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-50-9.0					
Laboratory ID:	03-219-04					
Benzene	ND	0.00091	EPA 8260D	3-19-21	3-19-21	
Toluene	ND	0.0046	EPA 8260D	3-19-21	3-19-21	
Ethylbenzene	ND	0.00091	EPA 8260D	3-19-21	3-19-21	
m,p-Xylene	ND	0.0018	EPA 8260D	3-19-21	3-19-21	
o-Xylene	ND	0.00091	EPA 8260D	3-19-21	3-19-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	74-131				
Toluene-d8	101	78-128				
4-Bromofluorobenzene	95	71-130				

Project: 5147-006-14

VOLATILE ORGANICS EPA 8260D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-51-12.0					
Laboratory ID:	03-219-05					
Benzene	ND	0.0010	EPA 8260D	3-19-21	3-19-21	
Toluene	ND	0.0052	EPA 8260D	3-19-21	3-19-21	
Ethylbenzene	ND	0.0010	EPA 8260D	3-19-21	3-19-21	
m,p-Xylene	ND	0.0021	EPA 8260D	3-19-21	3-19-21	
o-Xylene	ND	0.0010	EPA 8260D	3-19-21	3-19-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	74-131				
Toluene-d8	99	78-128				
4-Bromofluorobenzene	97	71-130				

Project: 5147-006-14

VOLATILE ORGANICS EPA 8260D

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GEI-52-10.0					
Laboratory ID:	03-219-06					
Benzene	ND	0.0014	EPA 8260D	3-19-21	3-19-21	
Toluene	ND	0.0068	EPA 8260D	3-19-21	3-19-21	
Ethylbenzene	ND	0.0014	EPA 8260D	3-19-21	3-19-21	
m,p-Xylene	ND	0.0027	EPA 8260D	3-19-21	3-19-21	
o-Xylene	ND	0.0014	EPA 8260D	3-19-21	3-19-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	74-131				
Toluene-d8	99	78-128				
4-Bromofluorobenzene	93	71-130				

Project: 5147-006-14

PAHs EPA 8270E/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GE1-53-7.0					
Laboratory ID:	03-219-07					
Benzo[a]anthracene	0.087	0.0073	EPA 8270E/SIM	3-19-21	3-19-21	
Chrysene	0.079	0.0073	EPA 8270E/SIM	3-19-21	3-19-21	
Benzo[b]fluoranthene	0.095	0.0073	EPA 8270E/SIM	3-19-21	3-19-21	
Benzo(j,k)fluoranthene	0.035	0.0073	EPA 8270E/SIM	3-19-21	3-19-21	
Benzo[a]pyrene	0.084	0.0073	EPA 8270E/SIM	3-19-21	3-19-21	
Indeno(1,2,3-c,d)pyrene	0.053	0.0073	EPA 8270E/SIM	3-19-21	3-19-21	
Dibenz[a,h]anthracene	0.0097	0.0073	EPA 8270E/SIM	3-19-21	3-19-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	90	46 - 113				
Pyrene-d10	99	45 - 114				
Terphenyl-d14	100	49 - 121				

Project: 5147-006-14

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0322S1					
Gasoline	ND	5.0	NWTPH-Gx	3-22-21	3-22-21	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	58-129				

Analyte	Res	sult	Spike	Level	Source Result	Perc Reco		Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	03-2	19-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N/	4	NA	NA	30	
Surrogate:											
Fluorobenzene						88	87	58-129			

Project: 5147-006-14

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0319S1					
Diesel Range Organics	ND	25	NWTPH-Dx	3-19-21	3-22-21	X1
Lube Oil Range Organics	ND	50	NWTPH-Dx	3-19-21	3-22-21	X1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	SB03	19S1									
	ORIG	DUP									
Diesel Fuel #2	103	83.5	NA	NA		N.	Α	NA	21	NA	X1
Lube Oil Range	ND	ND	NA	NA		N.	Α	NA	NA	NA	X1
Surrogate:											
o-Terphenyl						94	72	50-150			

Project: 5147-006-14

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx CONTINUING CALIBRATION SUMMARY

	True	Calc.	Percent	Control
Lab ID	Value (ppm)	Value	Difference	Limits
CCV0322R-T2	100	108	-7.8	+/-15%
CCV0322R-T3	100	105	-4.9	+/-15%

Project: 5147-006-14

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0319S1					
Benzene	ND	0.0010	EPA 8260D	3-19-21	3-19-21	
Toluene	ND	0.0050	EPA 8260D	3-19-21	3-19-21	
Ethylbenzene	ND	0.0010	EPA 8260D	3-19-21	3-19-21	
m,p-Xylene	ND	0.0020	EPA 8260D	3-19-21	3-19-21	
o-Xylene	ND	0.0010	EPA 8260D	3-19-21	3-19-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	74-131				
Toluene-d8	99	78-128				
4-Bromofluorobenzene	97	71-130				
Laboratory ID:	MB0323S1					
Benzene	ND	0.0010	EPA 8260D	3-23-21	3-23-21	
Toluene	ND	0.0050	EPA 8260D	3-23-21	3-23-21	
Ethylbenzene	ND	0.0010	EPA 8260D	3-23-21	3-23-21	
m,p-Xylene	ND	0.0020	EPA 8260D	3-23-21	3-23-21	
o-Xylene	ND	0.0010	EPA 8260D	3-23-21	3-23-21	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	74-131				
Toluene-d8	99	78-128				
4-Bromofluorobenzene	101	71-130				

Project: 5147-006-14

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	ult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB03	19S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0487	0.0465	0.0500	0.0500	97	93	55-126	5	17	
Benzene	0.0570	0.0551	0.0500	0.0500	114	110	65-121	3	16	
Trichloroethene	0.0548	0.0536	0.0500	0.0500	110	107	74-126	2	16	
Toluene	0.0573	0.0556	0.0500	0.0500	115	111	71-121	3	16	
Chlorobenzene	0.0559	0.0545	0.0500	0.0500	112	109	72-123	3	16	
Surrogate:										
Dibromofluoromethane					101	104	74-131			
Toluene-d8					100	101	78-128			
4-Bromofluorobenzene					106	106	71-130			
Laboratory ID:	SB03	23S1								
-	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0413	0.0436	0.0500	0.0500	83	87	55-126	5	17	
Benzene	0.0433	0.0468	0.0500	0.0500	87	94	65-121	8	16	
Trichloroethene	0.0502	0.0514	0.0500	0.0500	100	103	74-126	2	16	
Toluene	0.0435	0.0464	0.0500	0.0500	87	93	71-121	6	16	
Chlorobenzene	0.0476	0.0486	0.0500	0.0500	95	97	72-123	2	16	
Surrogate:										
Dibromofluoromethane					99	96	74-131			
Toluene-d8					96	96	78-128			
4-Bromofluorobenzene					101	102	71-130			

Project: 5147-006-14

PAHS EPA 8270E/SIM QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0319S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270E/SIM	3-19-21	3-19-21	
Chrysene	ND	0.0067	EPA 8270E/SIM	3-19-21	3-19-21	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270E/SIM	3-19-21	3-19-21	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270E/SIM	3-19-21	3-19-21	
Benzo[a]pyrene	ND	0.0067	EPA 8270E/SIM	3-19-21	3-19-21	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270E/SIM	3-19-21	3-19-21	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270E/SIM	3-19-21	3-19-21	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	90	46 - 113				
Pyrene-d10	95	45 - 114				
Terphenyl-d14	99	49 - 121				

Project: 5147-006-14

PAHS EPA 8270E/SIM QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	03-1	93-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0745	0.0747	0.0833	0.0833	ND	89	90	56 - 136	0	25	
Chrysene	0.0739	0.0735	0.0833	0.0833	ND	89	88	49 - 130	1	22	
Benzo[b]fluoranthene	0.0753	0.0696	0.0833	0.0833	ND	90	84	51 - 135	8	26	
Benzo(j,k)fluoranthene	0.0722	0.0775	0.0833	0.0833	ND	87	93	56 - 124	7	23	
Benzo[a]pyrene	0.0728	0.0724	0.0833	0.0833	ND	87	87	54 - 133	1	26	
Indeno(1,2,3-c,d)pyrene	0.0716	0.0719	0.0833	0.0833	ND	86	86	52 - 134	0	20	
Dibenz[a,h]anthracene	0.0726	0.0726	0.0833	0.0833	ND	87	87	58 - 127	0	17	
Surrogate:											
2-Fluorobiphenyl						76	74	46 - 113			
Pyrene-d10						94	97	45 - 114			
Terphenyl-d14						98	96	49 - 121			

Project: 5147-006-14

% MOISTURE

			Date
Client ID	Lab ID	% Moisture	Analyzed
GEI-47-9.0	03-219-01	16	3-19-21
GEI-48-8.0	03-219-02	20	3-19-21
GEI-49-11.0	03-219-03	17	3-19-21
GEI-50-9.0	03-219-04	17	3-19-21
GEI-51-12.0	03-219-05	19	3-19-21
GEI-52-10.0	03-219-06	36	3-19-21
GEI-53-7.0	03-219-07	9	3-19-21

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference

Chain of Custody

	τ	7
3		1
(D	1
(0	
	7	7

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	2		00	7 GEI - 63 - 7 0	GE1-52-10.0	S GEI-51-12-0	GE1-50-9.0	3 GE1-49-11.0	2 GEI-48-80	1 GE1-47-140 9.0	Lab ID Sample Identification	NATE SOLOMON	Sampled by:	Project Manager:	5147 - 006 - 14	GEOENSIN EERS INC. Project Number:	Company:	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com
					U	6	0				1						03.18.2	Date Sampled			X Stan	2 Days	Sam		Tu (
Reviewed/Date					Q	ROFALIN	Company			i	240	1055	1115	1185	1020	1310	0945	Time Sampled	(outer)	(other)	X Standard (7 Days)	ys [Same Day	(Check One)	Turnaround Request (in working days)
· (b					200	EERS					1						2011	Matrix				3 Days] 1 Day		iest is)
								_				C	CV	S	a	NP .	S.			f Conta	iners				
					W	0	Date				-	×	×	>	×		×	NWTF		ix/BTEX	82	100			Lab
					128	100	91											NWTP	H-G	ix	0~				Laboratory N
					7	2				,	<	×	×	×	×	×	×				cid / SG C	lean-u	p)		ory
					16	1015	Time						-					Volatil			tiles 8260	0			Nun
					S	01		-					-	-	-						aters Only				umber:
Ch Ch	Da						00	,						1		-				les 827					
romat	ta Pac						mmei											-	_	evel PA DD/SIM	Hs) (low-level)			03
Chromatograms with final report	Data Package:						Comments/Special Instructions	5										PCBs	808	2A					1
s with	Standard						ecial II	-													esticides 8		100 (0)		7
final r							ISTRUCT		-					-	-						s Pesticio			VI.	0
eport							Suoi	-			-									A Metal				-	
	Level III																	Total N	/ITC	A Metal	S				
ectroni																		TCLP	Meta	als					
c Data	Level																	HEM (oil a	nd grea	se) 1664A				
Electronic Data Deliverables (EDDs)	N									,	•							CPA	ArH	E	PA 8	270	7- SI	M	
(EDDs)										2							X	% Moi:	sture	9					

Sample/Cooler Receipt and Acceptance Checklist

Client: GES Client Project Name/Number: 5147 - 506 - 14 DDSite Project Number: 03 - 219		Initiated by	2/11	0/2	1			
More Project Humber.		Date Initiat	ed:	010	,			-
1.0 Cooler Verification								
.1 Were there custody seals on the outside of the cooler?	Yes	No	N/A	1	2	3 4		
.2 Were the custody seals intact?	Yes	No	N/A	1	2	3 4		
.3 Were the custody seals signed and dated by last custodian?	Yes	No	(N/A)	1	2	3 4		
.4 Were the samples delivered on ice or blue ice?	Yes	No	N/A	1	2	3 4	,	
.5 Were samples received between 0-6 degrees Celsius?	(es)	No	N/A	Tem	pera	ture:	_6	
.6 Have shipping bills (if any) been attached to the back of this form?	Yes	WA						
.7 How were the samples delivered?	Client	Courier	UPS/FedE:	x OS	E Pi	ckup		Other
2.0 Chain of Custody Verification								
.1 Was a Chain of Custody submitted with the samples?	Yes	No		1	2	3 4		
.2 Was the COC legible and written in permanent ink?	es	No				3 4		
.3 Have samples been relinquished and accepted by each custodian?	res	No		1		3 4		
4 Did the sample labels (ID, date, time, preservative) agree with COC?	res	No		1		3 4		
5 Were all of the samples listed on the COC submitted?		No				3 4		
.6 Were any of the samples submitted omitted from the COC?	Yes	(10)				3 4		
3.0 Sample Verification 3.1 Were any sample containers broken or compromised?	Yes	6			0	2 4		
2.2 Were any sample labels missing or illegible?		(1)		1	2			
.3 Have the correct containers been used for each analysis requested?	Yes			1		3 4		
.4 Have the samples been correctly preserved?	(es)	No		1	2			
그 살아보다 그리는 이 그리는 생각이 되었다. 그 사람들은 사람들이 되었다. 그는 그는 그는 그를 모르는 그를 모르는 그를 모르는 것이다.	Yes	No	N/A			3 4		
.5 Are volatiles samples free from headspace and bubbles greater than 6mm?	Yes	No	NA	1		3 4		
.6 Is there sufficient sample submitted to perform requested analyses?	(es)	No			2			
7.7 Have any holding times already expired or will expire in 24 hours?	Yes	NO			2			
	Yes/1	No						
No series and soluting times already expired or will expire in 24 nours? Section 19	Yes #	No 1	N/A N/A	1	2			

^{1 -} Discuss issue in Case Narrative

^{2 -} Process Sample As-is

^{3 -} Client contacted to discuss problem

^{4 -} Sample cannot be analyzed or client does not wish to proceed

RAW DATA

- Gasoline Range Organics NWTPH-Gx
- Diesel and Heavy Oil Range Organics NWTPH-Dx
- Volatiles EPA 8260D
- PAHs EPA 8270E/SIM

Gasoline Range Organics NWTPH-Gx Data

Signal #1 : E:\BTEX\DATA\D210322\0322005.D\FID1A.CH Vial: 5 Signal #2 : E:\BTEX\DATA\D210322\0322005.D\FID2B.CH Acq On : 22 Mar 2021 16:14 Operator: Sample : 03-219-01s Inst : Daryl Misc : Multiplr: 1.00 Sample Amount: 0.00 IntFile Signal #1: events.e IntFile Signal #2: EVENTS2.E Quant Time: Mar 22 16:41 2021 Quant Results File: 210104B.RES Quant Method : E:\BTEX\METHODS\210104B.M (Chemstation Integrator) Title : Fid calibration Last Update : Mon Mar 15 10:12:08 2021 Response via: Initial Calibration DataAcq Meth : 210104B.M Volume Inj. aryl v)0 Signal #2 Phase: Signal #2 Info : Signal #1 Phase : Signal #1 Info : Compound R.T. Response Conc Units System Monitoring Compounds 4) S FLUOROBENZENE 6.96 5) S BROMOFLUOROBENZENE 12.30 12) S FLUOROBENZENE #2 6.96 17) S BROMOFLUOROBENZENE #2 12.30 1753240 30.219 PPB 1078255 33.598 PPB 653766 29.156 PPB 960650 32.770 PPB et Compounds
HAWAII GRO C-5-C12 RANGES 8.55 2972866 0.042 PPM 2013
Entire GAS Envelope (11-30 12.25 4003565 0.053 PPM 2014
GASOLINE (11-30-20) 13.55 960891 0.024 PPM 2014
MINERAL SPIRITS #2 (2-24-2 12.28 190374 0.029 PPM 2014
entire GAS envelope #2 (11 12.25 347613 0.013 PPM 2014
GASOLINE #2 (11-30-20) 13.55 185832 0.011 PPM 2014
MTBE #2 4.69 2139 0.033 PPB
BENZENE #2 6.73 6876 0.151 PPB
TOLUENE #2 9.10 11320 0.249 PPB
ETHYLBENZENE #2 9.10 11320 0.249 PPB
ETHYLBENZENE #2 11.07 2501 0.029 PPB
m,p-XYLENE #2 11.33 5538 0.091 PPB
O-XYLENE #2 11.82 3335 0.033 PPB Target Compounds 1) H 2) H Entire GAS Envelope (11-30 12.25 3) H GASOLINE (11-30-20) 13.55 7) H MINERAL SPIRITS #2 (2-24-2 12.28 8) H entire GAS envelope #2 (11 12.25 9) H GASOLINE #2 (11-30-20) 13.55 10) MTBE #2 4.69 10) BENZENE #2 TOLUENE #2 11) 13) 14) ETHYLBENZENE #2

15) m,p-XYLENE #2 16) o-XYLENE #2

{ · · ·

Quantitation Report (Not Reviewed) Signal #1 : E:\BTEX\DATA\D210322\0322005.D\FID1A.CH Vial: 5 / 1/4 Signal #2 : E:\BTEX\DATA\D210322\0322005.D\FID2B.CH Acq On : 22 Mar 2021 16:14 Operator: Sample : 03-219-01s Inst : Daryl Misc : Multiplr: 1.00 Sample Amount: 0.00 IntFile Signal #1: events.e IntFile Signal #2: EVENTS2.E Quant Time: Mar 22 16:41 2021 Quant Results File: 210104B.RES Quanta Method: E:\BTEX\METHODS\210104B.M (Chemstation Integrator) : Fid calibration Title Last Update : Mon Mar 15 10:12:08 2021 Response via : Multiple Level Calibration 3.11 DataAcq Meth: 210104B.M Volume Inj. Signal #1 Phase : Signal #2 Phase: Signal #1 Info Signal #2 Info : Response 0322005,D\FID1A 140000 120000 έ**λ**΄ (100000 80000 60000 40000 -131 20000 0 8,00 10.00 12.00 14.00 16.00 18.00 20.00 22,00 0322005.D\FID2B

Time Response 140000 120000 100000 14. 80000 60000 40000 20000 CHYAPENETT.

2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20,00 0322005.D 210104B.M Tue Mar 23 14:41:47 2021

TBE #2

Signal #2 : E:\BTEX\DATA\D210322\0322007.D\FID2B.CH Acq On : 22 Mar 2021 18:14 Operator: Inst : Daryl Sample : 03-219-03s Misc : Multiplr: 1.00 Sample Amount: 0.00 IntFile Signal #1: events.e IntFile Signal #2: EVENTS2.E Quant Time: Mar 22 18:32 2021 Quant Results File: 210104B.RES Quant Method: E:\BTEX\METHODS\210104B.M (Chemstation Integrator) Title : Fid calibration Last Update : Mon Mar 15 10:12:08 2021 Response via: Initial Calibration DataAcq Meth: 210104B.M Volume Inj. 0.00Signal #1 Phase : Signal #2 Phase: Signal #2 Info : Signal #1 Info : Response Conc Units R.T. Compound System Monitoring Compounds 6.96 4) S FLUOROBENZENE 1673834 28.851 PPB BROMOFLUOROBENZENE 12.30
FLUOROBENZENE #2 6.96
BROMOFLUOROBENZENE #2 12.30 5) S 985718 30.710 PPB 12) S 634533 890841 28.294 PPB 17) S 30.389 PPB: Target Compounds HAWAII GRO C-5-C12 RANGES 8.55 2562505 0.034 PPM vm 3 Entire GAS Envelope (11-30 12.25 GASOLINE (11-30-20) 13.55 MINERAL SPIRITS #2 (2-24-2 12.28 2) H 3512067 0.045 PPM 672340 0.013 PPM 3) H 7) H 163246 0.027 PPM 326081 0.012 PPM 151912 0.008 PPM 7) H MINERAL SFIRITS #2 (2.25 8) H entire GAS envelope #2 (11 12.25 9) H GASOLINE #2 (11-30-20) 13.55 0) MTBE #2 4.69 0.012 PPM 0.008 PPM

6.73

9.11 11.09 11.34 11.82

10:1 10

BENZENE #2

TOLUENE #2

o-XYLENE #2

331, 1:

ETHYLBENZENE #2

m,p-XYLENE #2

10) 11)

13)

14)

15)

16)

1934 0.021 PPB

4995 0.044 PPB 1773 0.002 PPB

3543 0.029 PPB 2385 N.D. PPB

0.024 PPB

N.D. PPB

3.7 14

2547

Signal #1 : E:\BTEX\DATA\D210322\0322007.D\FID1A.CH

Signal #2 : E:\BTEX\DATA\D210322\0322007.D\FID2B.CH

: 22 Mar 2021 18:14 Operator:

Sample : 03-219-03s Inst : Daryl Misc Multiplr: 1.00

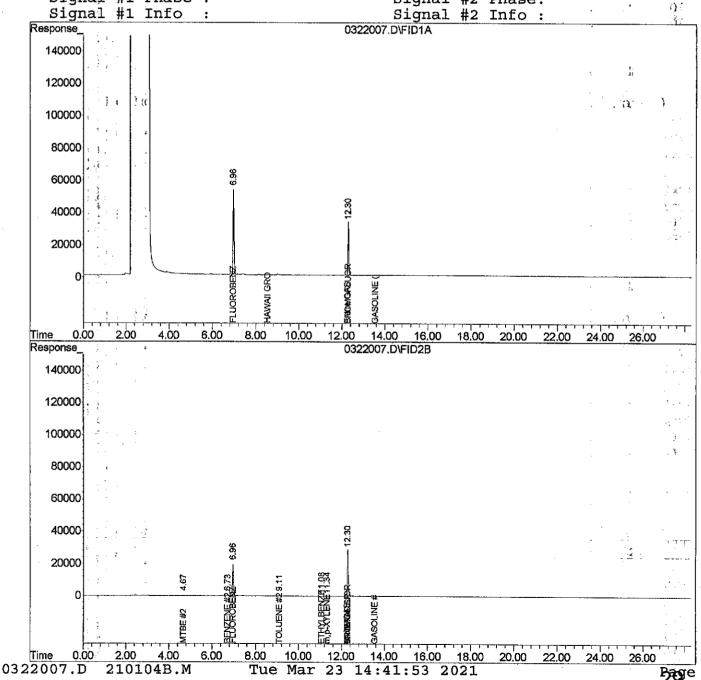
Sample Amount: 0.00

Vial:

IntFile Signal #1: events.e IntFile Signal #2: EVENTS2.E

Quant Time: Mar 22 18:32 2021 Quant Results File: 210104B.RES

Quant Method : E:\BTEX\METHODS\210104B.M (Chemstation Integrator)


Title : Fid calibration

Last Update : Mon Mar 15 10:12:08 2021 Response via : Multiple Level Calibration

DataAcq Meth: 210104B.M

Volume Inj.

Signal #1 Phase : Signal #2 Phase:

Signal #2 : E:\BTEX\DATA\D210322\0322008.D\FID2B.CH

Acq On : 22 Mar 2021 18:45 Operator:

Sample : 03-219-04s Inst : Daryl Misc : Multiplr: 1.00

Sample Amount: 0.00

Intfile Signal #1: events.e Intfile Signal #2: EVENTS2.E

Quant Time: Mar 22 19:06 2021 Quant Results File: 210104B.RES

Quant Method: E:\BTEX\METHODS\210104B.M (Chemstation Integrator)

Title : Fid calibration

Last Update : Mon Mar 15 10:12:08 2021

Response via : Initial Calibration

DataAcq Meth: 210104B.M

Volume Inj.

Signal #1 Phase: Signal #2 Phase: Signal #1 Info: Signal #2 Info:

Compound		R.T.	Response	Conc Units
System Monitoring Compounds				
4) S	FLUOROBENZENE	6.95	1691484	29.155 PPB
5) S	BROMOFLUOROBENZENE	12.29	1030215	32.099 PPB
12) S	FLUOROBENZENE #2	6.95	635677	28.345 PPB
17) S	BROMOFLUOROBENZENE #2	12.29	921379	31.431 PPB
Tar	get Compounds			
1) H	HAWAII GRO C-5-C12 RANGES	8.55	2222100	0.028 PPM
2) H	Entire GAS Envelope (11-30	12.25	3012105	0.035 PPM
3) H	GASOLINE (11-30-20)	13.55	638837	0.012 PPM
7) H	MINERAL SPIRITS #2 (2-24-2	12.28	104232	0.022 PPM
8) H	entire GAS envelope #2 (11	12.25	217876	0.'004 'PPM '
9) H	GASOLINE #2 (11-30-20)	13.55	98740	0.003 PPM
10)	MTBE, #2	4.66	265	N.D. PPB
11)	BENZENE #2	6.72	2721	0.029 PPB
13)	TOLUENE #2	9.10	7547	0.127 PPB
14)	ETHYLBENZENE #2	11.08	1691	N.D. PPB
15)	m,p-XYLENE #2	11.32	3809	0.037 PPB
16)	o-XYLENE #2	11.83	1306	N.D. PPB

Signal #1 : E:\BTEX\DATA\D210322\0322008.D\FID1A.CH Vial: 8

Signal #2 : E:\BTEX\DATA\D210322\0322008.D\FID2B.CH

: 22 Mar 2021 18:45 Operator:

Sample : 03-219-04s Inst : Daryl Misc Multiplr: 1.00

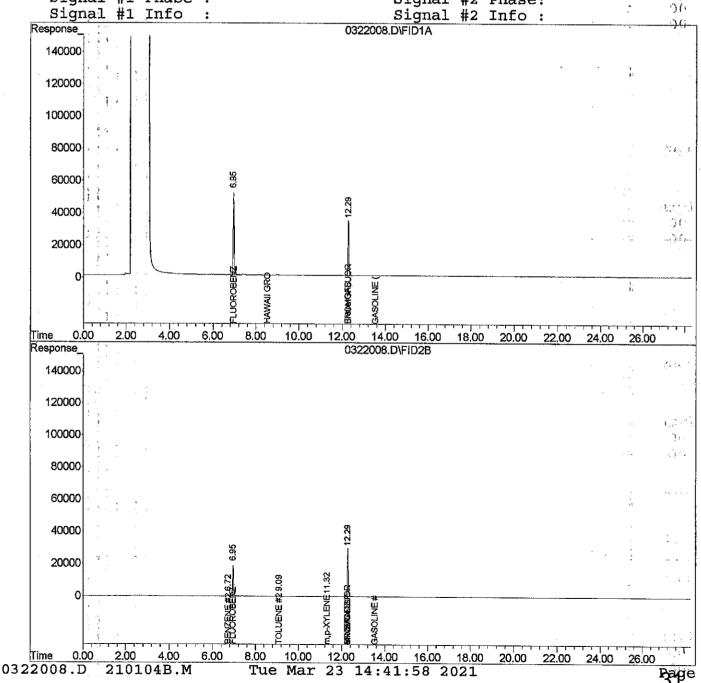
Sample Amount: 0.00

114-1

IntFile Signal #1: events.e IntFile Signal #2: EVENTS2.E

Quant Time: Mar 22 19:06 2021 Quant Results File: 210104B.RES

Quant Method : E:\BTEX\METHODS\210104B.M (Chemstation Integrator)


Title : Fid calibration

Last Update : Mon Mar 15 10:12:08 2021 Response via: Multiple Level Calibration

DataAcq Meth: 210104B.M

Volume Inj.

ucyl Signal #1 Phase : Signal #2 Phase:

 Signal #1: E:\BTEX\DATA\D210322\0322009.D\FID1A.CH
 Vial: 9

 Signal #2: E:\BTEX\DATA\D210322\0322009.D\FID2B.CH

 Acq On : 22 Mar 2021 19:15
 Operator: Inst : Daryl

 Sample : 03-219-05s
 Inst : Daryl

 Misc : Sample Amount: 0.00

Quant Time: Mar 22 19:40 2021 Quant Results File: 210104B.RES

Quant Method : E:\BTEX\METHODS\210104B.M (Chemstation Integrator)

Title : Fid calibration

Last Update : Mon Mar 15 10:12:08 2021

Response via : Initial Calibration

DataAcq Meth: 210104B.M

Volume Inj. :
Signal #1 Phase : Signal #2 Phase:
Signal #1 Info : Signal #2 Info :

	•			- V
	Compound	R.T.	Response	Conc Units
	,			
Syst	em Monitoring Compounds			
	FLUOROBENZENE	6.95	1734748	29.900 PPB
5) S	BROMOFLUOROBENZENE	12.29	1058238	32.973 PPB
12) S	FLUOROBENZENE #2	6.95	647726	28.886 PPB
17) S	BROMOFLUOROBENZENE #2	12.29	943326	32.179 PPB
Targ	et Compounds			
1) H	HAWAII GRO C-5-C12 RANGES		2216438	0.028 PPMRTYL
2) H	Entire GAS Envelope (11-30	12.25	2994079	0.035 PPM ⊖0
3) H			669729	0.013 PPM 🥬
	MINERAL SPIRITS #2 (2-24-2		135273	
	entire GAS envelope #2 (11		267947	0.008 PPM
9) H	GASOLINE #2 (11-30-20)	13.55	127600	0.006 PPM
10)	MTBE #2	4.67	179	N.D. PPB
11)		6.72	1334	N.D. PPB
13)	TOLUENE #2	9.09	3614	N.D. PPB
14)	ETHYLBENZENE #2	11.08	1842	0.005 PPB
15)	m,p-XYLENE #2	11.32	2960	0.011 PPB
16)	O-XYLENE #2	11.80	2120	N.D. PPB

540元

1111

Signal #2 : E:\BTEX\DATA\D210322\0322009.D\FID2B.CH

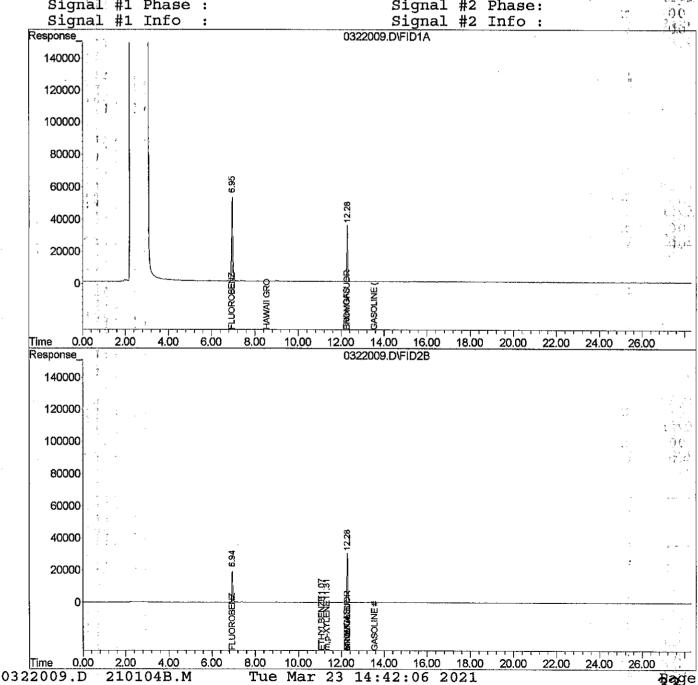
Acq On : 22 Mar 2021 19:15 Operator:

Sample: 03-219-05s Inst: Daryl Misc: Multiplr: 1.00

Sample Amount: 0.00°

IntFile Signal #1: events.e IntFile Signal #2: EVENTS2.E

Quant Time: Mar 22 19:40 2021 Quant Results File: 210104B.RES


Quant Method: E:\BTEX\METHODS\210104B.M (Chemstation Integrator)

Title : Fid calibration

Last Update : Mon Mar 15 10:12:08 2021 Response via : Multiple Level Calibration

DataAcq Meth: 210104B.M

Signal #1 : E:\BTEX\DATA\D210322\0322010.D\FID1A.CH Vial: 10 366 Signal #2 : E:\BTEX\DATA\D210322\0322010.D\FID2B.CH Acq On : 22 Mar 2021 20:00 Operator: : 03-219-06s Inst : Daryl Sample Misc Multiplr: 1.00 Sample Amount: 0.00 IntFile Signal #1: events.e IntFile Signal #2: EVENTS2.E Quant Time: Mar 22 20:14 2021 Quant Results File: 210104B.RES Quant Method: E:\BTEX\METHODS\210104B.M (Chemstation Integrator) : Fid calibration Last Update : Mon Mar 15 10:12:08 2021 Response via : Initial Calibration DataAcq Meth : 210104B.M 1 11 1

Volume Inj.

Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info:

	to the second control of the second control				
	Compound	R.T.	Response	Conc Units	
				1	
Syst	tem Monitoring Compounds			· · · · · · · · · · · · · · · · · · ·	
4) S	FLUOROBENZENE	6.94	1788561	30.827 ⁽¹ PPB)	
5) S	BROMOFLUOROBENZENE	12.28	1078774	33.614 PPB	
12) S	FLUOROBENZENE #2	6.94	671272	29.941 PPB	
17) S	BROMOFLUOROBENZENE #2	12.28	965911		
Targ	get: Compounds				
	HAWAII GRO C-5-C12 RANGES		2065020	0.025 PPM	
2) H	Entire GAS Envelope (11-30	12.25	2783699	0.031 PPM	
	GASOLINE (11-30-20)		578990	0.010 PPM 🗥	
	MIŅERAL SPIRITS #2 (2-24-2		106587	0.022 PPM	
8) H			229075	0.005 PPM	
9) H	GASOLINE #2 (11-30-20)	13.55	102321	0.003 PPM	
10)	MTBE #2,	4.72	509	N.D. PPB	
11)		6.72	1584	N.D. PPB	
13)	TOLUENE #2	9.09	5438	0.058 PPB	
14)	ETHYLBENZENE #2	11.02	332	N.D. PPB	
15)	m,p-XYLENE #2	11.32	2270	N.D. PPB	
16)	o-XYLENE #2	11.80	745	N.D. PPB	

3) C

11.

Signal #1 : E:\BTEX\DATA\D210322\0322010.D\FID1A.CH

Signal #2 : E:\BTEX\DATA\D210322\0322010.D\FID2B.CH

: 22 Mar 2021 20:00 Operator:

: 03-219-06s Sample Inst : Daryl Misc Multiplr: 1.00

Sample Amount: 0.00

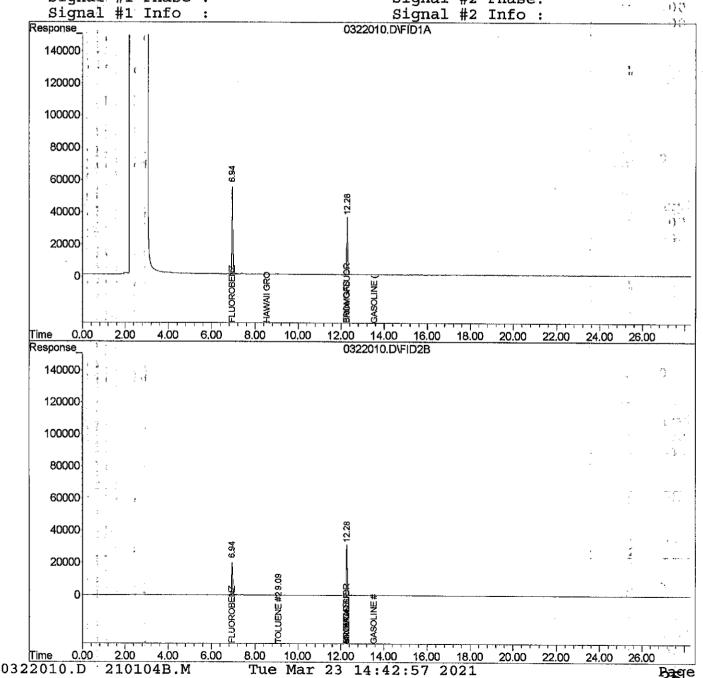
Vial: 10

')

IntFile Signal #1: events.e IntFile Signal #2: EVENTS2.E

Ouant Time: Mar 22 20:14 2021 Quant Results File: 210104B.RES

Quant Method: E:\BTEX\METHODS\210104B.M (Chemstation Integrator)


Title : Fid calibration

Last Update : Mon Mar 15 10:12:08 2021 Response via: Multiple Level Calibration

DataAcq Meth : 210104B.M

Volume Inj.

Signal #1 Phase : Signal #2 Phase:

3.35 C

Signal #1 : E:\BTEX\DATA\D210322\0322003.D\FID1A.CH Vial: 3 Signal #2 : E:\BTEX\DATA\D210322\0322003.D\FID2B.CH

Operator:

Acq On : 22 Mar 2021 10:56 Sample : MB0322S1 Inst : Daryl Misc Multiplr: 1.00

Sample Amount: 0.00

Quant Time: Mar 22 11:14 2021 Quant Results File: 210104B.RES

Quant Method: E:\BTEX\METHODS\210104B.M (Chemstation Integrator)

Title : Fid calibration

Last Update : Mon Mar 15 10:12:08 2021 Response via : Initial Calibration

DataAcq Meth: 210104B.M

Volume Inj.

Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info :

	Compound	R.T.	Response	Conc Units
			·	1.35
Syst	em Monitoring Compounds			
4) S	FLUOROBENZENE	6.95	2059248	35.488 PPB
	BROMOFLUOROBENZENE	12.29	1221963	38.083 PPB
		6.95	783262	34.960 PPB
17) S	BROMOFLUOROBENZENE #2	12.29	1107073	37.765 PPB
Targ	et Compounds			
1) H	HAWAII GRO C-5-C12 RANGES	8.55	2384337	0.031 PPM
2) H	Entire GAS Envelope (11-30	12.25	3798006	0.050 PPM
		13.55	851261	0.020 PPM).
7) H		12.28	170263	0.027 PPM_
	entire GAS envelope #2 (11		768918	0.042 PPM
9) H		13.55	195848	0.012 PPM
10)	MTBE #2,	4.77	354	N.D. PPB
11)	BENZENE #2	6.72	1614	N.D. PPB
13)		9.13	29736	0.848 PPB m kw
14)	ETHYLBENZENE #2	11.07	3910	
15)	m, p-XYLENE #2	11.31	7478	
16)	o-XYLENE #2	11.80	4472	0.075 PPB

Africa

Signal #1 : E:\BTEX\DATA\D210322\0322003.D\FID1A.CH Vial: 3 Signal #2 : E:\BTEX\DATA\D210322\0322003.D\FID2B.CH : 22 Mar 2021 10:56 Operator: Sample : MB0322S1 Inst : Daryl Misc Multiplr: 1.00 Sample Amount: 0.00 IntFile Signal #1: events.e IntFile Signal #2: EVENTS2.E Quant Time: Mar 22 11:14 2021 Quant Results File: 210104B.RES aue. Quant Method : E:\BTEX\METHODS\210104B.M (Chemstation Integrator) Title : Fid calibration Last Update : Mon Mar 15 10:12:08 2021 Response via : Multiple Level Calibration DataAcg Meth: 210104B.M Volume Inj. Signal #1 Phase : Signal #2 Phase: 01 Signal #1 Info Signal #2 Info : Response 0322003.D\FID1A 140000 ŝ 120000 ∂age 113 ίŁ, 100000 80000 60000 40000 .)' . 11 20000 0 *ैदार*् Time 8.00 10.00 12.00 14.00 16.00 18.00 20,00 22.00 24.00 Response 0322003.D\FID2B 140000 120000 100000 80000 60000 40000 20000 THAY PENETT! 0 4.00 6.00 8.00 10.00 12.00 14.00 16.00 24.00 18.00 20,00

Tue Mar 23 14:43:14 2021

0322003.D

210104B.M

Signal #1 : E:\BTEX\DATA\D210322\0322005.D\FID1A.CH Vial: 5 Signal #2 : E:\BTEX\DATA\D210322\0322005.D\FID2B.CH Acq On : 22 Mar 2021 16:14 Operator: Sample : 03-219-01s Inst : Daryl Misc : Multiplr: 1.00 Sample Amount: 0.00 Quant Time: Mar 22 16:41 2021 Quant Results File: 210104B.RES Quant Method : E:\BTEX\METHODS\210104B.M (Chemstation Integrator) Title : Fid calibration Last Update : Mon Mar 15 10:12:08 2021 Response via : Initial Calibration DataAcq Meth: 210104B.M Volume Inj. Signal #2 Phase:
Signal #2 Info: Signal #1 Phase : Signal #1 Info : R.T. Response Conc Units Compound System Monitoring Compounds 4) S FLUOROBENZENE 6.96 5) S BROMOFLUOROBENZENE 12.30 12) S FLUOROBENZENE #2 6.96 17) S BROMOFLUOROBENZENE #2 12.30 1753240 30.219 PPB 1078255 33.598 PPB 653766 29.156 PPB 960650 32.770 PPB Target Compounds HAWAII GRO C-5-C12 RANGES 8.55 2972866 0.042 PPMarya 4003565 0.053 PPM.00 1) H HAWAII GRO C-5-C12 RANGES 8.55
2) H Entire GAS Envelope (11-30 12.25
3) H GASOLINE (11-30-20) 13.55
7) H MINERAL SPIRITS #2 (2-24-2 12.28
8) H entire GAS envelope #2 (11 12.25
9) H GASOLINE #2 (11-30-20) 13.55
10) MTBE #2
4.69 960891 0.024 PPM 190374 0.029 PPM 347613 0.013 PPM 185832 0.011 PPM 2139 0.033 PPB 6876 0.151 PPB 11320 0.249 PPB 2501 0.029 PPB 5538 0.091 PPB 3335 0.033 PPB 10) BENZENE #2 6.73 9.10 11.07 11.33 11.82 11) 13) TOLUENE, #2 14) ETHYLBENZENE #2 15) 16) m,p-XYLENE #2 o-XYLENE #2

1.11

Signal #1 : E:\BTEX\DATA\D210322\0322005.D\FID1A.CH Vial: 5 Signal #2 : E:\BTEX\DATA\D210322\0322005.D\FID2B.CH

: 22 Mar 2021 16:14 Operator:

Sample : 03-219-01s Inst : Daryl Misc : Multiplr: 1.00

Sample Amount: 0.00

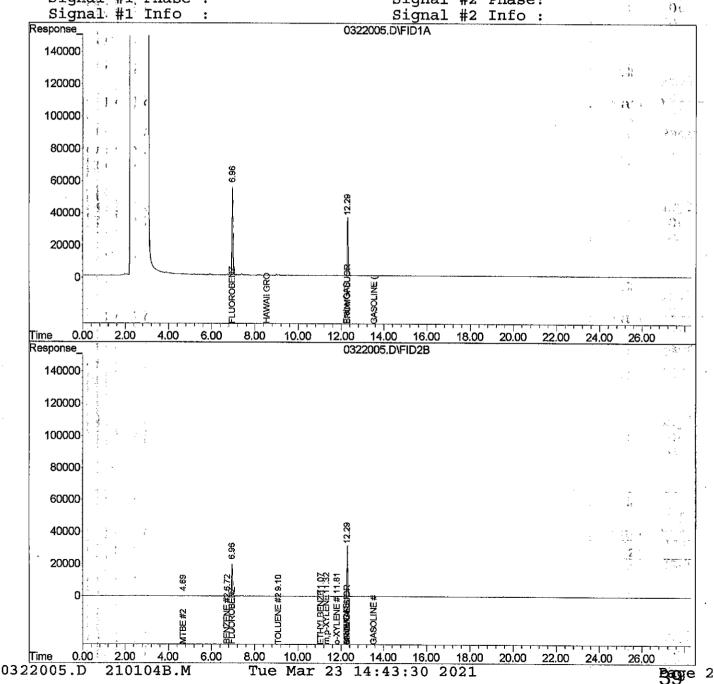
111

136 6

IntFile Signal #1: events.e IntFile Signal #2: EVENTS2.E

Quant Time: Mar 22 16:41 2021 Quant Results File: 210104B.RES

Quant Method: E:\BTEX\METHODS\210104B.M (Chemstation Integrator)


: Fid calibration

Last Update : Mon Mar 15 10:12:08 2021 Response via : Multiple Level Calibration

DataAcq Meth: 210104B.M

Volume Inj. : Signal #1 Phase :

Signal #2 Phase: Signal #1 Info

Signal #1 : E:\BTEX\DATA\D210322\0322006.D\FID1A.CH Vial: 6 Signal #2 : E:\BTEX\DATA\D210322\0322006.D\FID2B.CH Acq On : 22 Mar 2021 16:59 Operator: Sample : 03-219-01s DUP Inst : Daryl Misc Multiplr: 1.00 Sample Amount: 0.00 IntFile Signal #2: EVENTS2.E IntFile Signal #1: events.e Quant Time: Mar 22 17:15 2021 Quant Results File: 210104B.RES Quant Method : E:\BTEX\METHODS\210104B.M (Chemstation Integrator) Title : Fid calibration Last Update : Mon Mar 15 10:12:08 2021 Response via : Initial Calibration DataAcq Meth: 210104B.M Volume Inj.

Signal #1 Phase:
Signal #2 Phase:
Signal #2 Info:

Signal #2 Info:

	Compound	R.T.	Response	Conc Units
				4
Syst	em Monitoring Compounds			
	FLUOROBENZENE	6.94	1727940	29.783 PPB
	BROMOFLUOROBENZENE	12.29	1045202	32.566 PPB
		6.94	644551	28.743 PPB
17) S	BROMOFLUOROBENZENE #2	12.29	935650	31.917 PPB
	et Compounds			
1) H	HAWAII GRO C-5-C12 RANGES		2169123	0.027 PPM and
2) H	Entire GAS Envelope (11-30		2990365	0.035∴PPM.()∂
3) H	GASOLINE (11-30-20)		611100	0.0115PPM 30
	MINERAL SPIRITS #2 (2-24-2		133000	0.024 PPM
8) H	entire GAS envelope #2 (11	12.25	268567	0.008 PPM
9) H	GASOLINE #2 (11-30-20)	13.55	122726	0.005 PPM
10)	MTBE #2	4.67	196	N.D. PPB
11)		6.72	1019	N.D. PPB
13)		9.09	6787	0.102 PPB
14)	ETHYLBENZENE #2	11.07	967	N.D. PPB
15)	m, p-XYLENE #2	11.32	3637	0.032 PPB
16)	o-XYLENE #2	11.81	1924	N.D. PPB

(14)

(Not Reviewed)

Signal #1 : E:\BTEX\DATA\D210322\0322006.D\FID1A.CH Vial: 6

Signal #2: E:\BTEX\DATA\D210322\0322006.D\FID2B.CH

: 22 Mar 2021 16:59 Operator:

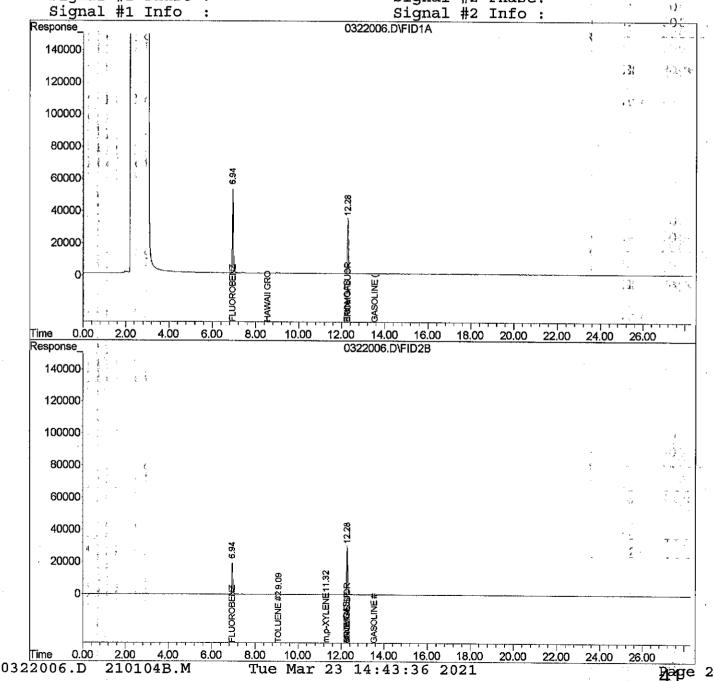
Sample : 03-219-01s DUP Inst : Daryl Misc Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: events.e IntFile Signal #2: EVENTS2.E

Quant Time: Mar 22 17:15 2021 Quant Results File: 210104B.RES 3.2.46

Quant Method : E:\BTEX\METHODS\210104B.M (Chemstation Integrator)


Title : Fid calibration

Last Update : Mon Mar 15 10:12:08 2021 Response via : Multiple Level Calibration

DataAcq Meth: 210104B.M

Volume Inj.

Signal #1 Phase: Signal #2 Phase:

Signal #1: E:\BTEX\DATA\D210322\0322001.D\FID1A.CH Vial: 1

Signal #2 : E:\BTEX\DATA\D210322\0322001.D\FID2B.CH

Acq On : 22 Mar 2021 9:41 Operator:

Sample : CCVD0322G-1 Inst : Daryl
Misc : V2-060-23 Multiplr: 1.00
Sample Amount: 0.00

IntFile Signal #1: events.e IntFile Signal #2: EVENTS2.E

Quant Time: Mar 22 10:02 2021 Quant Results File: 210104B.RES

Quant Method : E:\BTEX\METHODS\210104B.M (Chemstation Integrator)

Title : Fid calibration

Last Update : Mon Mar 15 10:12:08 2021

Response via: Initial Calibration

DataAcq Meth: 210104B.M

Volume Inj. :

Signal #1 Phase: Signal #2 Phase: Signal #1 Info: Signal #2 Info:

	Compound	R.T.	Response	Conc Units
	·			* 18
Sys	tem Monitoring Compounds			
4) S	FLUOROBENZENE	6.95	2527484	43.551 PPB
5) S	BROMOFLUOROBENZENE	12.29	1642265	
12) S	FLUOROBENZENE #2	6.95	905481	
17) S	BROMOFLUOROBENZENE #2	12,30	1244258	
Tar	get Compounds			•
1) H	HAWAII GRO C-5-C12 RANGES	8.55	118061765	2.276 PPM
2) H	Entire GAS Envelope (11-30	12.25	125143815	
3) H	GASOLINE (11-30-20)	13.55	65794016	
7) H			19673030	
8) H	entire GAS envelope #2 (11	12.25	33542675	
9) H	GASOLINE #2 (11-30-20)	13.55	26452986	2.346 PPM
10)	MTBE #2,	4.59	306601	•
11)	BENZENE #2	6.71	801682	23.567 PPB
13)	TOLUENE #2	9.09	6618881	215.084 PPB
14)	ETHYLBENZENE #2	11.05	1266843	46.346 PPB
15)	m, p-XYLENE #2	11.30	6053538	187.771 PPB
16)	o-XYLENE #2	11.80	2118414	77.272 PPB

Carre: .

i 7 1.

Signal #2 : E:\BTEX\DATA\D210322\0322001.D\FID2B.CH

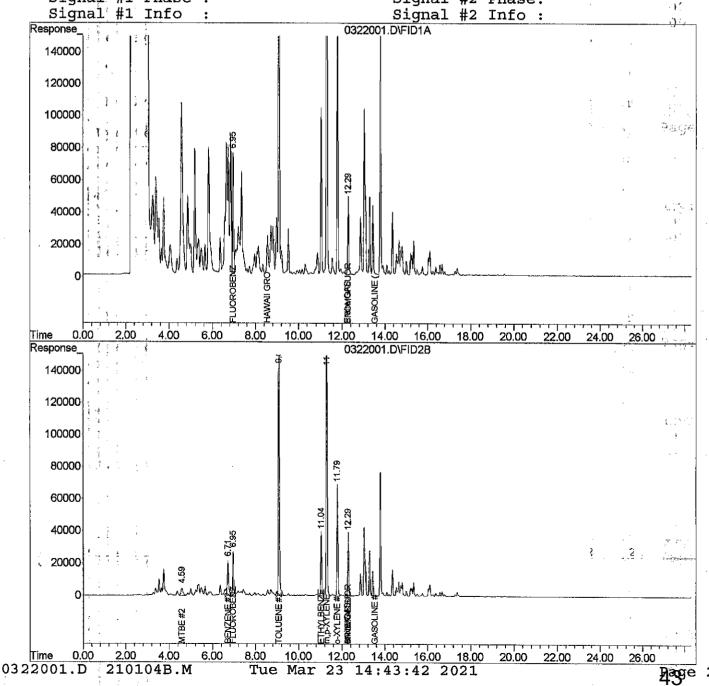
Acq On: 22 Mar 2021 9:41 Operator:

Sample : CCVD0322G-1 Inst : Daryl Misc : V2-060-23 Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: events.e IntFile Signal #2: EVENTS2.E

Quant Time: Mar 22 10:02 2021 Quant Results File: 210104B.RES


Quant Method: E:\BTEX\METHODS\210104B.M (Chemstation Integrator)

Title : Fid calibration

Last Update : Mon Mar 15 10:12:08 2021 Response via : Multiple Level Calibration

DataAcq Meth : 210104B.M

Volume Inj. : Signal #1 Phase : Signal #2 Phase:

Signal #1 : E:\BTEX\DATA\D210322\0322011.D\FID1A.CH Vial: 11 Signal #2 : E:\BTEX\DATA\D210322\0322011.D\FID2B.CH Acq On : 22 Mar 2021 20:30 Sample : CCVD0322G-2 Operator: Inst : Daryl Misc : V2-060-23 Multiplr: 1.00 Sample Amount: 0.00 Quant Time: Mar 22 20:48 2021 Quant Results File: 210104B.RES Quant Method: E:\BTEX\METHODS\210104B.M (Chemstation Integrator) Title : Fid calibration Last Update : Mon Mar 15 10:12:08 2021 Response via: Initial Calibration DataAcq Meth : 210104B.M Volume Inj. Signal #1 Phase: Signal #2 Phase: Signal #1 Info : Signal #2 Info : Compound R.T. Response Conc Units System Monitoring Compounds 4) S FLUOROBENZENE 6.97 140754 140754 381029 42323 2.452 PPB 11.837 PPB 5) S BROMOFLUOROBENZENE FLUOROBENZENE #2 12,27 FLUOROBENZENE #2 6.97 BROMOFLUOROBENZENE #2 12.27 12) S 42323 1.751 PPB 17) S 128635 4.388 PPB Target Compounds HAWAII GRO C-5-C12 RANGES 8.55 1) H 2.138 PPM * y ... 110968092 Entire GAS Envelope (11-30 12.25 GASOLINE (11-30-20) 13.55 2) H 116379590 2.094 PPM *** 3) H 65905713 2.296 PPM 7) H MINERAL SPIRITS #2 (2-24-2 12.28 1.778 PPM, 2.305 PPM 20141051 8) H entire GAS envelope #2 (11 12.25 33575752 9) H GASOLINE #2 (11-30-20) 13.55 27244775 2.416 PPM 10) MTBE #2 4.59 255844 14.541 PPB 11) BENZENE #2 6.70 800131 23.521 PPB 13) TOLUENE #2 6968225 226.442 PPB 9.08 14) ETHYLBENZENE #2 11.03 1349520 49.375 PPB 11.03 15) m, p-XYLENE #2 6324176 196.169 PPB 16) o-XYLENE #2 11.78 2220028 80.983 PPB

15 4 5

100

Signal #1 : E:\BTEX\DATA\D210322\0322011.D\FID1A.CH

Signal #2 : E:\BTEX\DATA\D210322\0322011.D\FID2B.CH

Operator:

: 22 Mar 2021 20:30

Inst : Daryl

Vial: 11

2985

Sample : CCVD0322G-2 ; V2-060-23 Misc

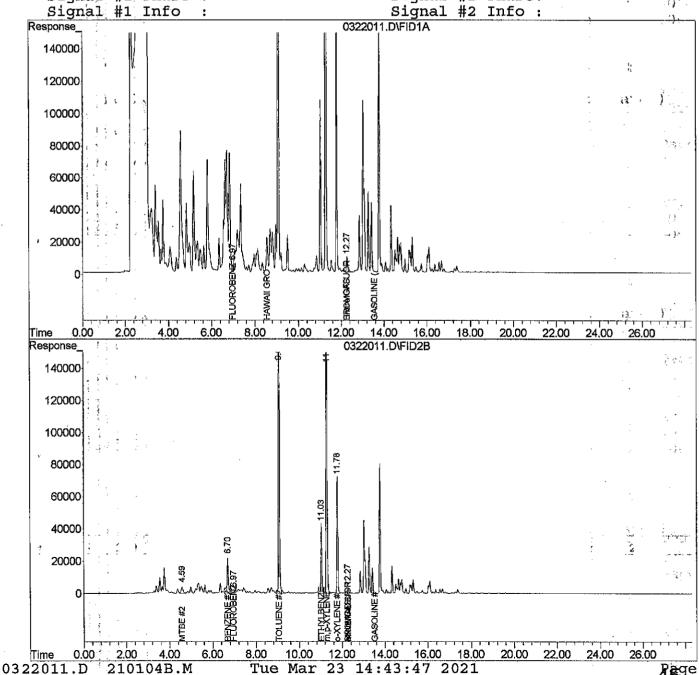
Multiplr: 1.00

Sample Amount: 0.00

IntFile Signal #1: events.e IntFile Signal #2: EVENTS2.E

Quant Time: Mar 22 20:48 2021 Quant Results File: 210104B.RES

Quant Method: E:\BTEX\METHODS\210104B.M (Chemstation Integrator)


: Fid calibration

Last Update : Mon Mar 15 10:12:08 2021 Response via : Multiple Level Calibration

DataAcq Meth: 210104B.M

Volume Inj. : Signal #1 Phase :

Signal #2 Phase:

Diesel and Heavy Oil Range Organics NWTPH-Dx Data

Data File : 0322-T60.D Signal(s) : FID2B.CH

: 22 Mar 2021 13:02 Acq On

Operator : JT

: 03-219-01 ACU Sample

Misc

ALS Vial : 60 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Mar 22 13:37:52 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title ; GCTPH

QLast Update : Fri Feb 05 08:11:56 2021 Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volume Inj. : Signal Phase : Signal Info :

System Monitoring Compounds 1) S O-Terphenyl (05-04-20) Spiked Amount 50.000 Target Compounds 2) H Gasoline 3) H Diesel Fuel #1 (05-27 10.000 21449267 3.513 PPM 4) H Diesel Fuel #2 (01-23 14.000 19596516 1.571 PPM 5) H Oil (05-01-20) 22.000 50353024 13.655 PPM 6) H Oil Acid Clean (05-01 22.000 50353024 5.052 PPM 7) H Diesel Fuel #2 Combo 14.000 16964172 1.073 PPM 7) H Diesel Fuel #2 Combo 14.000 16964172 1.073 PPM 8) H Oil Combo (05-01-20) 22.000 47179925 13.212 PPM 8) H Oil Acid Clean Combo 22.000 47179925 4.591 PPM 10) H Oil MO Combo (05-01-20) 22.000 44898471 13.136 PPM 10) H Oil Acid Clean MO Com 22.000 44898471 13.136 PPM 11) H Oil Acid Clean MO Com 22.000 19151829 2.463 PPM 12) H HAWAII 8015M DF2 (05 14.000 19151829 2.463 PPM 13) H HAWAII 8015M Oil (05 22.000 44325500 14.632 PPM 14) H Mineral Oil (05-01-20) 16.000 17991563 2.532 PPM 14) H Mineral Oil (05-01-20) 16.000 12271805 2.365 PPM	Compound	R.T.	Response	Conc Units
2) H Gasoline 3) H Diesel Fuel #1 (05-27 10.000 21449267 3.513 PPM 4) H Diesel Fuel #2 (01-23 14.000 19596516 1.571 PPM 5) H Oil (05-01-20) 22.000 50353024 13.655 PPM 6) H Oil Acid Clean (05-01 22.000 16964172 1.073 PPM 7) H Diesel Fuel #2 Combo 14.000 16964172 1.073 PPM 8) H Oil Combo (05-01-20) 22.000 47179925 13.212 PPM 9) H Oil Acid Clean Combo 22.000 47179925 4.591 PPM 10) H Oil MO Combo (05-01-20) 22.000 44898471 13.136 PPM 11) H Oil Acid Clean MO Com 22.000 44898471 4.422 PPM 12) H HAWAII 8015M DF2 (05 14.000 19151829 2.463 PPM 13) H HAWAII 8015M Oil (05-01-20) 16.000 17991563 2.532 PPM 14) H Mineral Oil (05-01-20) 16.000 12271805 2.365 PPM	System Monitoring Compounds 1) S O-Terphenyl (05-04-20) Spiked Amount 50.000	14.437	Recovery =	84.57%
16) H Diesel Fuel #2 ACU (0 14.000 19596516 1.057 FPM 16) H Diesel Fuel #2 ACU Co 14.000 16964172 0.611 PPM 17) H Diesel Fuel #2 ACU Co 14.000	2) H Gasoline 3) H Diesel Fuel #1 (05-27 4) H Diesel Fuel #2 (01-23 5) H Oil (05-01-20) 6) H Oil Acid Clean (05-01 7) H Diesel Fuel #2 Combo 8) H Oil Combo (05-01-20) 9) H Oil Acid Clean Combo 10) H Oil MO Combo (05-01-20) 11) H Oil Acid Clean MO Com 12) H HAWAII 8015M DF2 (05 13) H HAWAII 8015M Oil (05 14) H Mineral Oil (05-01-20) 15) H Mineral Oil Combo (05 Diesel Fuel #2 ACU (0	10.000 14.000 22.000 22.000 14.000 22.000 22.000 22.000 14.000 22.000 16.000 14.000	21449267 19596516 50353024 50353024 16964172 47179925 47179925 44898471 44898471 19151829 44325500 17991563 12271805 19596516	3.513 PPM 1.571 PPM 13.655 PPM 5.052 PPM 1.073 PPM 13.212 PPM 4.591 PPM 13.136 PPM 4.422 PPM 2.463 PPM 14.632 PPM 2.532 PPM 2.365 PPM 1.057 PPM

(f)=RT Delta > 1/2 Window

(m)=manual int.

Data File : 0322-T60.D Signal(s) : FID2B.CH

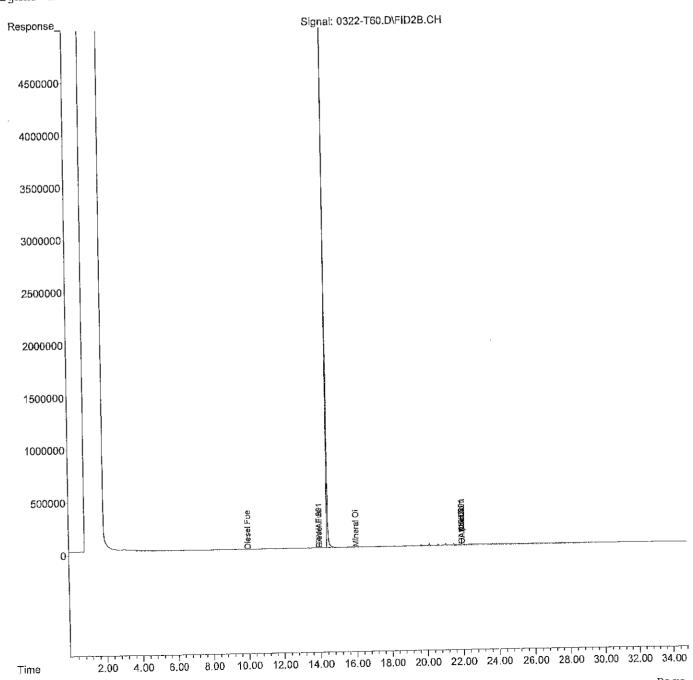
Acq On : 22 Mar 2021 13:02

Operator : JT

Sample : 03-219-01 ACU

Misc

ALS Vial : 60 Sample Multiplier: 1


Integration File: autoint1.e Quant Time: Mar 22 13:37:52 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021 Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Data File: 0322-T61.D Signal(s) : FID2B.CH

Acq On : 22 Mar 2021 13:44 Operator : JT

Sample : 03-219-02 ACU

Misc

Sample Multiplier: 1 ALS Vial : 61

Integration File: autointl.e Quant Time: Mar 22 14:20:15 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volume Inj. : Signal Phase : Signal Info :

	Compound	R.T.	Response	Conc Units
1) S Spiked A	Monitoring Compounds O-Terphenyl (05-04-20) Amount 50.000	14.440	121152173 Recovery =	39.991 PPM 79.98%
2) H 3) H 4) H 5) H 6) H 7) H 8) H 9) H 10) H	Compounds Gasoline Diesel Fuel #1 (05-27 Diesel Fuel #2 (01-23 Oil (05-01-20) Oil Acid Clean (05-01 Diesel Fuel #2 Combo Oil Combo (05-01-20) Oil Acid Clean Combo Oil MO Combo (05-01-20) Oil Acid Clean MO Com	4.000 10.000 14.000 22.000 22.000 14.000 22.000 22.000 22.000 22.000	18205184 20727295 16389569 41324395 41324395 14968808 39789334 39789334 38572440	NoCal PPM 3.242 PPM 0.254 PPM 8.747 PPM 1.047 PPM 0.234 PPM 9.136 PPM 1.268 PPM 9.553 PPM 1.504 PPM
11) H 12) H 13) H 14) H 15) H 16) H 17) H	HAWAII 8015M DF2 (05 HAWAII 8015M Oil (05 Mineral Oil (05-01-20) Mineral Oil Combo (05 Diesel Fuel #2 ACU (0 Diesel Fuel #2 ACU Co	14.000 22.000 16.000 16.000 14.000	16042563 38069070 13018489 9572329 16389569 14968808	1.214 PPM 11.102 PPM 0.698 PPM 1.331 PPM N.D. PPM N.D. PPM

(f)=RT Delta > 1/2 Window

(m)=manual int.

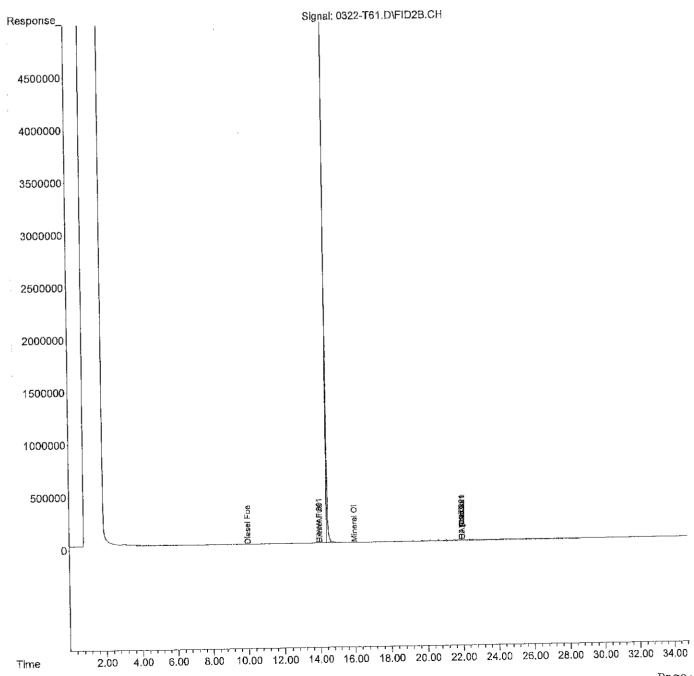
Data File : 0322-T61.D Signal(s) : FID2B.CH

: 22 Mar 2021 13:44 Acq On

Operator : JT

: 03-219-02 ACU Sample

Misc


Sample Multiplier: 1 ALS Vial : 61

Integration File: autoint1.e Quant Time: Mar 22 14:20:15 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH QLast Update : Fri Feb 05 08:11:56 2021 Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Data File: 0322-T62.D
Signal(s): FID2B.CH
Acq On: 22 Mar 2021 14:26
Operator: JT

sample : 03-219-03 ACU

Misc

Sample Multiplier: 1 ALS Vial : 62

Integration File: autoint1.e Quant Time: Mar 22 15:02:35 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH
QLast Update : Fri Feb 05 08:11:56 2021

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

(Response	Conc Units
1) S (Monitoring Compounds O-Terphenyl (05-04-20) mount 50.000	14.437	92662230 Recovery =	30.709 PPM 61.42%
2) H 3) H 4) H 5) H 6) H 7) H 10) H 11) H 12) H 13) H 14) H 15) H	Compounds Gasoline Diesel Fuel #1 (05-27 Diesel Fuel #2 (01-23 Oil (05-01-20) Oil Acid Clean (05-01 Diesel Fuel #2 Combo Oil Combo (05-01-20) Oil Acid Clean Combo Oil MO Combo (05-01-20) Oil Acid Clean MO Com HAWAII 8015M DF2 (05 HAWAII 8015M Oil (05 Mineral Oil (05-01-20) Mineral Oil Combo (05 Diesel Fuel #2 ACU (0 Diesel Fuel #2 ACU Co	14.000 22.000 22.000 14.000 22.000 22.000 22.000 22.000 14.000 22.000	18649307 36153498 35021905 45207670 45207670 32560014 41290162 41290162 39129027 39129027 34608741 38591257 31163278 26769887 35021905 32560014	2.770 PPM 7.635 PPM 9.964 PPM 1.943 PPM 9.868 PPM 1.760 PPM 8.673 PPM 11.396 PPM 7.389 PPM 7.923 PPM 6.535 PPM
17) H	DIESEI FUCI #2 Nee CO			

⁽f)=RT Delta > 1/2 Window

⁽m)=manual int.

Data File : 0322-T62.D Signal(s) : FID2B.CH

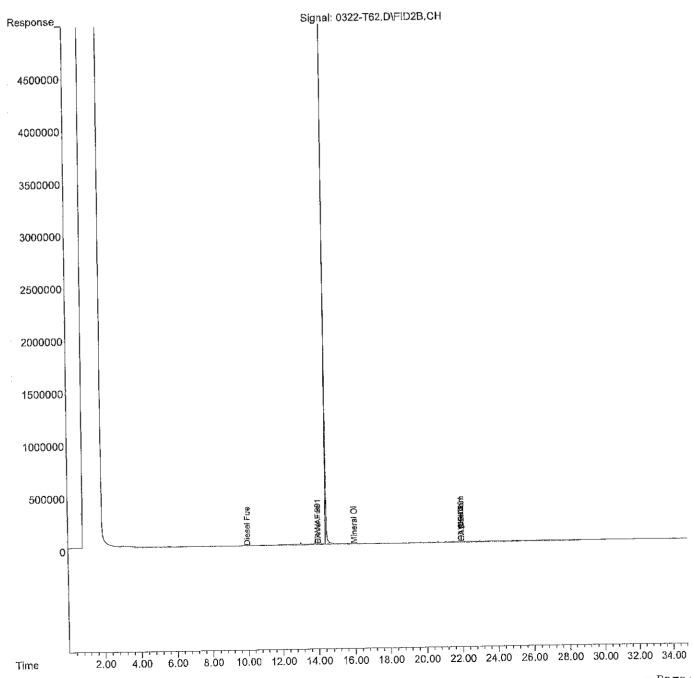
Acq On : 22 Mar 2021 14:26

Operator : JT

Sample : 03-219-03 ACU

Misc

ALS Vial : 62 Sample Multiplier: 1


Integration File: autoint1.e Quant Time: Mar 22 15:02:35 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021 Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Data File ; 0322-T63.D Signal(s) : FID2B.CH

; 22 Mar 2021 15:09 Acq On

Operator : JT

: 03-219-04 ACU Sample

Misc

Sample Multiplier: 1 ALS Vial : 63

Integration File; autoint1.e Quant Time: Mar 22 15:45:11 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH
QLast Update : Fri Feb 05 08:11:56 2021
Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volume Inj. : Signal Phase: Signal Info :

Compound	R.T.	Response	Conc Units
System Monitoring Compounds 1) S O-Terphenyl (05-04-20) Spiked Amount 50.000		84804985 Recovery =	28.149 PPM 56.30%
Target Compounds 2) H Gasoline	4.000	, m	NoCal PPM
-/	10.000	20274366	3.072 PPM
3) H Diesel Fuel #1 (05-27 4) H Diesel Fuel #2 (01-23	14.000	16871218	
5) U Oil (05-01-20)	22,000	40727686	8.423 PPM 0.782 PPM
6) н Oil Acid Clean (05-01	22.000	40727686	0.304 PPM
7) H Diesel Fuel #2 Combo	14.000	15136565 38911693	_
8) H Oil Combo (05-01-20)	22.000	38911693	0.874 PPM
9) H Oil Acid Clean Combo	22.000	37423822	8.902 PPM
10) H Oil MO Combo (05-01-20)	22.000 22.000	37423822	0.974 PPM
11) H Oil Acid Clean MO Com	14.000	16513917	1.403 PPM
12) H HAWAII 8015M DF2 (05 13) H HAWAII 8015M Oil (05	22.000	36917577	10.452 PPM
		14033693	1.072 PPM
2 6 1 7 0 1 - 1 0 -	16.000	10357741	1.632 PPM
		16871218	
16) H Diesel Fuel #2 ACU (0 17) H Diesel Fuel #2 ACU Co		15136565	N.D. PPM

(f)=RT Delta > 1/2 Window

(m) = manual int.

Data File : 0322-T63.D Signal(s) : FID2B.CH

: 22 Mar 2021 15:09 Acq On

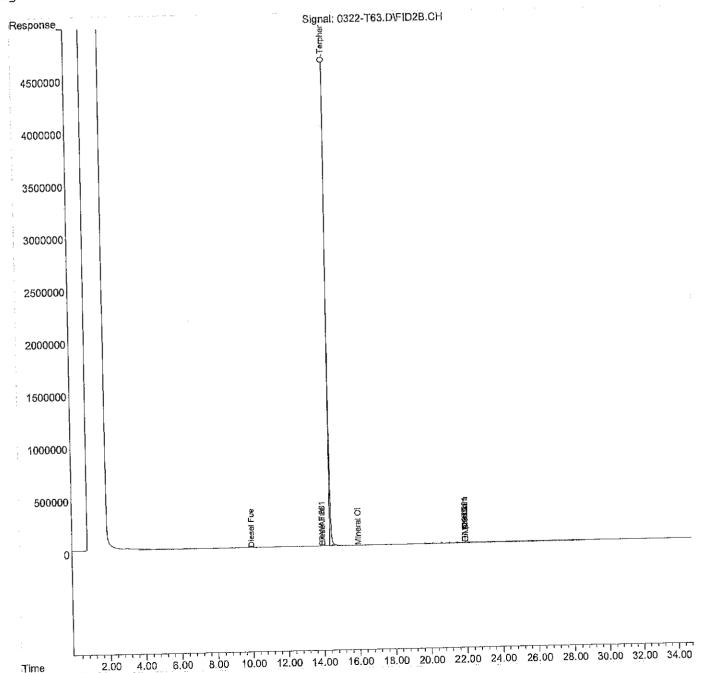
Operator : JT

: 03-219-04 ACU Sample

Misc

Sample Multiplier: 1 ALS Vial : 63

Integration File: autoint1.e Quant Time: Mar 22 15:45:11 2021


Quant Method: C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Data Path : C:\MSDCHEM\1\DATA\T210322.SEC\
Data File : 0322-T64.D
Signal(s) : FID2B.CH

Acq On : 22 Mar 2021 15:51 Operator : JT

Sample : 03-219-05 ACU

Misc

Sample Multiplier: 1 ALS Vial : 64

Integration File: autoint1.e Quant Time: Mar 22 16:27:26 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH
QLast Update : Fri Feb 05 08:11:56 2021

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volume Inj. : Signal Phase : Signal Info :

Compound	R.Т.	Response	Conc Units
System Monitoring Compounds 1) S O-Terphenyl (05-04-20) Spiked Amount 50.000		128304357 Recovery =	42.321 PPM 84.64%
Target Compounds 2) H Gasoline	4.000	18398873	NoCal PPM
2) H Gasoline 3) H Diesel Fuel #1 (05-27	10.000	-	7,599 PPM
4) H Diesel Fuel #2 (01-23	14.000		7.022 PPM 16.666 PPM
5) H Oil (05-01-20)	22.000	55890291 55890291	7.509 PPM
6) H Oil Acid Clean (05-01	22.000	20010271	6.312 PPM
7) H Diesel Fuel #2 Combo	14.000 22.000	51454483	
8) H Oil Combo (05-01-20)	22.000	51454483	6.513 PPM
9) H Oil Acid Clean Combo 10) H Oil MO Combo (05-01-20)		48454886	15.151 PPM
· · · · · · · · · · · · · · · · · · ·	22.000	48454886	6.063 PPM
11) H Oil Acid Clean Mo Com 12) H HAWAII 8015M DF2 (05	14.000	32372502	7.774 PPM
13) H HAWAII 8015M Oil (05	22.000	47848656	16.620 PPM 7.502 PPM
14) H Mineral Oil (05-01-20)	16,000	31468659	6.926 PPM
15) H Mineral Oil Combo (05	16.000	24168477 32872619	
16) H Diesel Fuel #2 ACU (0	14.000	29414720	
17) H Diesel Fuel #2 ACU Co	14.000		

(f)=RT Delta > 1/2 Window

(m)=manual int.

Data File : 0322-T64.D Signal(s) : FID2B.CH

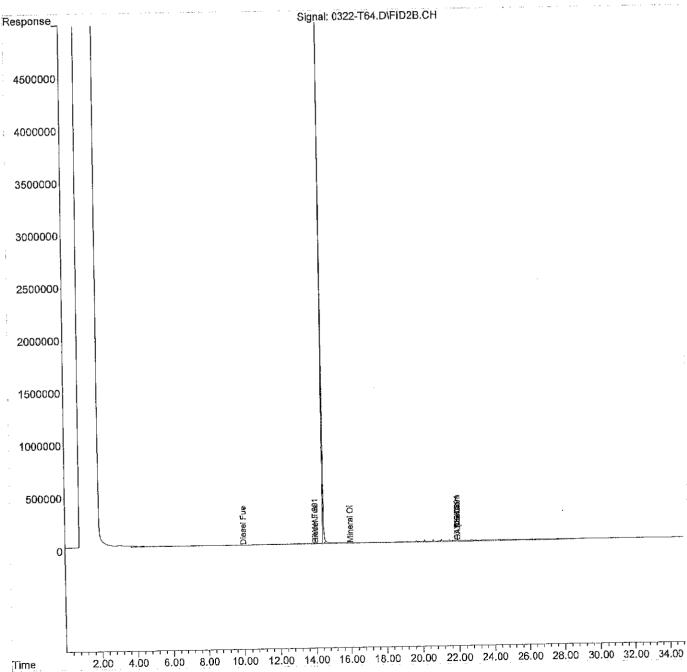
Acq On : 22 Mar 2021 15:51

Operator : JT

Sample : 03-219-05 ACU

Misc

ALS Vial : 64 Sample Multiplier: 1


Integration File: autoint1.e Quant Time: Mar 22 16:27:26 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021 Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Data Path : C:\MSDCHEM\1\DATA\T210322.SEC\Data File : 0322-T65.D

Signal(s) : FID2B.CH
Acq On : 22 Mar 2021 16:34
Operator : JT

: 03-219-06 ACU Sample

Misc

Sample Multiplier: 1 ALS Vial : 65

Integration File: autoint1.e Quant Time: Mar 22 17:10:33 2021

Quant Method: C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021 Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

System Monitoring Compounds 1) S O-Terphenyl (05-04-20) 14.443 Spiked Amount 50.000 Target Compounds	Recovery = 76.51%
marcat Compounds	18567860 NoCal PPM
Target Compounds 2) H Gasoline 4.000 3) H Diesel Fuel #1 (05-27 10.000 4) H Diesel Fuel #2 (01-23 14.000 5) H Oil (05-01-20) 22.000 6) H Oil Acid Clean (05-01 22.000 7) H Diesel Fuel #2 Combo 14.000 8) H Oil Combo (05-01-20) 22.000 9) H Oil Acid Clean Combo 22.000 10) H Oil MO Combo (05-01-20) 22.000 11) H Oil Acid Clean MO Com 22.000 12) H HAWAII 8015M DF2 (05 14.000 13) H HAWAII 8015M Oil (05 22.000 14) H Mineral Oil (05-01-20) 16.000 15) H Mineral Oil Combo (05 16.000 16) H Diesel Fuel #2 ACU (0 14.000	25238569 4.933 PPM 24266482 3.488 PPM 55046545 16.207 PPM 55046545 7.134 PPM 20931237 2.742 PPM 51837754 15.780 PPM 51837754 6.686 PPM 48941468 15.427 PPM 48941468 6.287 PPM 48941468 6.287 PPM 48360364 16.909 PPM 24331771 4.870 PPM 16499674 3.986 PPM

⁽f)=RT Delta > 1/2 Window

⁽m)=manual int.

Data File : 0322-T65.D Signal(s) : FID2B.CH

: 22 Mar 2021 16:34 Acq On

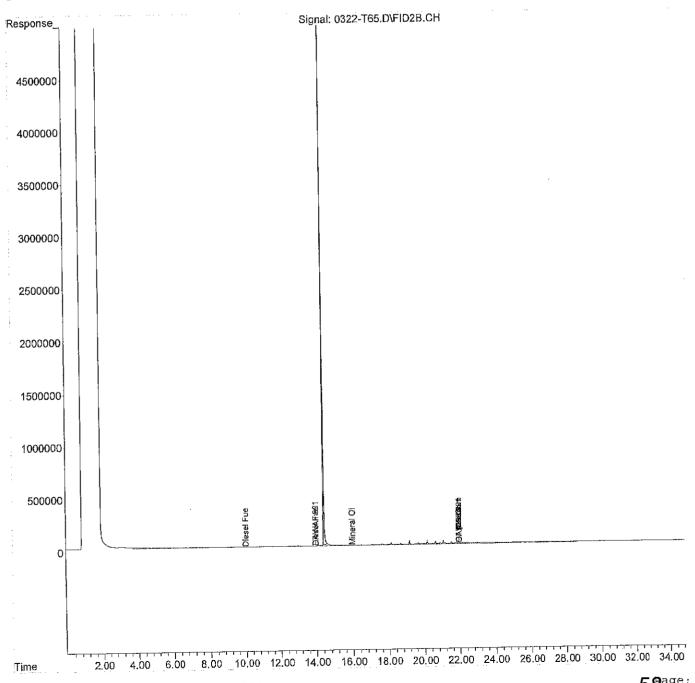
Operator : JT

: 03-219-06 ACU Sample

Misc

Sample Multiplier: 1 ALS Vial : 65

Integration File: autoint1.e Quant Time: Mar 22 17:10:33 2021


Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Data File : 0322-T66.D

Signal(s): FID2B.CH
Acq On : 22 Mar 2021 17:17
Operator : JT

Sample : 03-219-07 ACU

Misc

Sample Multiplier: 1 ALS Vial : 66

Integration File: autoint1.e Quant Time: Mar 22 17:53:39 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH QLast Update : Fri Feb 05 08:11:56 2021

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volume Inj. : Signal Phase : Signal Info :

-	Compound	R.T.	Response	Conc Units
1) S Spiked A	Monitoring Compounds O-Terphenyl (05-04-20) mount 50.000	14.443	118782951 Recovery =	39.219 PPM 78.44%
2) H	Compounds Gasoline	4.000	18385935 25603358	NoCal PPM 5.070 PPM
3) H 4) H	Diesel Fuel #1 (05-27 Diesel Fuel #2 (01-23	10.000	26761533 66265410	4.513 PPM
5) H	Oil (05-01-20) Oil Acid Clean (05-01	22.000	66265410 22534242	12.111 PPM 3.417 PPM
7) H	Diesel Fuel #2 Combo Oil Combo (05-01-20)	14.000	61959482 61959482	21.362 PPM 11.237 PPM
9) H 10) H	Oil Acid Clean Combo Oil MO Combo (05-01-20)	22.000 22.000	58337070 58337070	20.749 PPM 10.622 PPM
11) H 12) H	Oil Acid Clean MO Com HAWAII 8015M DF2 (05	22.000 14.000	26168495 57675371	5.282 PPM 22.165 PPM
13) H 14) H	HAWAII 8015M Oil (05 Mineral Oil (05-01-20)	22.000 16.000	28825839 18138042	6.527 PPM
15) H 16) H	Mineral Oil Combo (05 Diesel Fuel #2 ACU (0	16.000 14.000	26761533 22534242	3.602 PPM
17) H	Diesel Fuel #2 ACU Co	14.000	22034242	

(f)=RT Delta > 1/2 Window

(m)=manual int.

Data File : 0322-T66.D Signal(s) : FID2B.CH

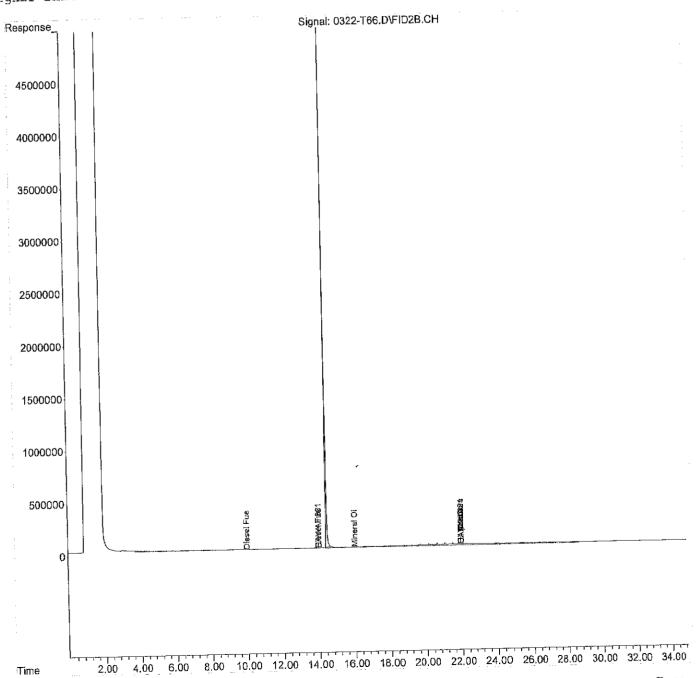
Acq On : 22 Mar 2021 17:17

Operator : JT

Sample : 03-219-07 ACU

Misc

ALS Vial : 66 Sample Multiplier: 1


Integration File: autoint1.e Quant Time: Mar 22 17:53:39 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021 Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Data File: 0322-T59.D Signal(s) ; FID2B.CH

Acq On : 22 Mar 2021 12:20

Operator : JT

: MB031951 ACU Sample

Misc

ALS Vial : 59 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Mar 22 12:55:37 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Compound	R.T.	Response	Conc Units	
System Monitoring Co 1) S O-Terphenyl (Spiked Amount 50.	mpounds 05-04-20) 14.436	132029213 Recovery	= 87.07%	
Target Compounds 2) H Gasoline	4.000	17065367 20857952	NoCal PPM 3.291 PPM	
3) H Diesel Fuel # 4) H Diesel Fuel # 5) H Oil (05-01-20 6) H Oil Acid Clea 7) H Diesel Fuel # 8) H Oil Combo (05 9) H Oil Acid Clea 10) H Oil MO Combo	22 (01-23 14.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000	19278671 47619784 47619784 16829017 44982033 44982033 42874546 42874546	1.440 PPM 12.170 PPM 3.840 PPM 1.016 PPM 12.000 PPM 3.603 PPM 11.990 PPM 3.488 PPM	
11) H Oil Acid Clea 12) H HAWAII 8015M 13) H HAWAII 8015M 14) H Mineral Oil 15) H Mineral Oil 16) H Diesel Fuel 17) H Diesel Fuel	DF2 (05 14.000 Oil (05 22.000 (05-01-20) 16.000 Combo (05 16.000 #2 ACU (0 14.000	18873596 42281351 17474460 12552824 19278671 16829017	2.351 PPM 13.479 PPM 2.341 PPM 2.473 PPM 0.945 PPM	

⁽f)=RT Delta > 1/2 Window

⁽m) = manual int.

Data File: 0322-T59.D Signal(s) : FID2B.CH

: 22 Mar 2021 12:20 Acq On

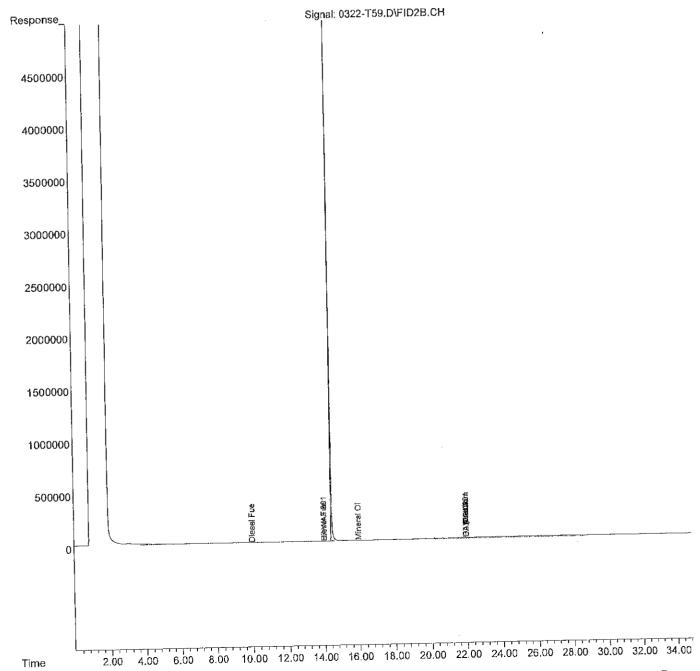
Operator : JT

: MB0319S1 ACU Sample

Misc

Sample Multiplier: 1 ALS Vial : 59

Integration File: autoint1.e Quant Time: Mar 22 12:55:37 2021


Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Data File: 0322-T68.D Signal(s): FID2B.CH

Acq On : 22 Mar 2021 18:42 Operator : JT

Sample : SB0319S1 DDP ACU

Misc

Sample Multiplier: 1 ALS Vial : 68

Integration File: autoint1.e Quant Time: Mar 22 19:18:28 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH
QLast Update : Fri Feb 05 08:11:56 2021

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Compound	R.T.	Response	Conc U	nits
System Monitoring Compount 1) S O-Terphenyl (05-0 Spiked Amount 50.000	ands 14-20) 14.443	141995524 Recovery :		
Target Compounds		20005410	No Co l	PPM
2) H Gasoline	4.000	39005112		
3) H Diesel Fuel #1 (0		261733378		
4) H Diesel Fuel #2 (0		267412272	103.338	
5) H Oil (05-01-20)	22.000	65954906	22,138	
6) H Oil Acid Clean (65954906		
7) H Diesel Fuel #2 Co		259990186		PPM
8) H Oil Combo (05-01-		49489740		
9) H Oil Acid Clean Co		49489740	5.630	
10) H Oil MO Combo (05	-01-20) 22.000	42785272		
11) H Oil Acid Clean MC	Com 22.000	42785272	3.447	
12) H HAWAII 8015M DF2	(05 14.000	266079981	101.668	
13) H HAWAII 8015M Oil	(05 22.000	42081796	13.366	
14) H Mineral Oil (05-	ni-20) 16.000	184385772		
15) H Mineral Oil Combo	- •	177443861		
16) H Diesel Fuel #2 A	- •	267412272	89,055	PPM
17) H Diesel Fuel #2 A	,	259990186	89.112	PPM

⁽f)=RT Delta > 1/2 Window

⁽m)=manual int.

Data File : 0322-T68.D Signal(s) : FID2B.CH

: 22 Mar 2021 18:42 Acq On

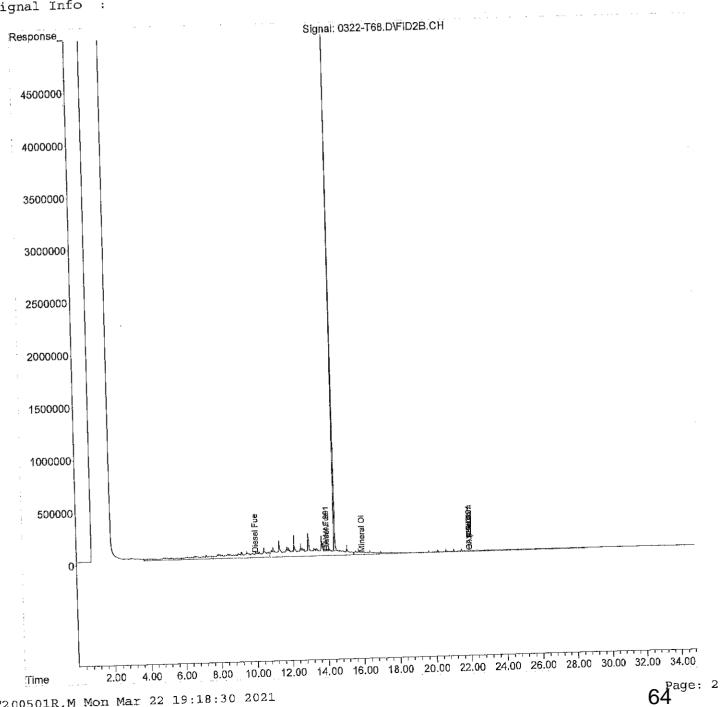
Operator : JT

: SB0319S1 DUP ACU Sample

Misc

Sample Multiplier: 1 ALS Vial : 68

Integration File: autoint1.e Quant Time: Mar 22 19:18:28 2021


Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021

Response via : Initial Calibration

6890 Scale Mode: Large solvent peaks clipped Integrator: ChemStation

Data File: 0322-T67.D Signal(s) : FID2B.CH

Acq On : 22 Mar 2021 18:00

Operator : JT

: SB0319S1 ACU DOP Sample

Misc

ALS Vial : 67 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Mar 22 18:36:11 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volume Inj. : Signal Phase : Signal Info :

Compound		Response	Conc Units
system Monitoring Compound 1) S O-Terphenyl (05-0) Spiked Amount 50.000 Target Compounds	nds 4-20) 14.439	109008632 Recovery =	36.034 PPM 72.07% NoCal PPM
2) H Gasoline 3) H Diesel Fuel #1 (0 4) H Diesel Fuel #2 (0	5-27 10.000 1-23 14.000	210867384 219166302	74.504 PPM 83.525 PPM 23.111 PPM
5) H Oil (05-01-20) 6) H Oil Acid Clean (0 7) H Diesel Fuel #2 Co	22.000 5-01 22.000 mbo 14.000	67745871 67745871 212007797	12.768 PPM 83.140 PPM
8) H Oil Combo (05-01- 9) H Oil Acid Clean Co	20) 22.000 ombo 22.000	52693203 52693203 46251999	7.070 PPM 13.903 PPM
11) H Oil Acid Clean MC 12) H HAWAII 8015M DF2	05 22.000 (05 14.000	46251999 218065808 45548267	5.046 PPM 82.378 PPM 15.322 PPM
13) H HAWAII 8015M Oil 14) H Mineral Oil (05-0 15) H Mineral Oil Combo)1-20) 16.000 5 (05 16.000	158170295 150577359 219166302	54.225 PPM 55.381 PPM 71.924 PPM
16) H Diesel Fuel #2 AC 17) H Diesel Fuel #2 AC	CU (0 14.000 CU Co 14.000	212007797	

(f)=RT Delta > 1/2 Window

(m)=manual int.

Data File : 0322-T67.D Signal(s) : FID2B.CH

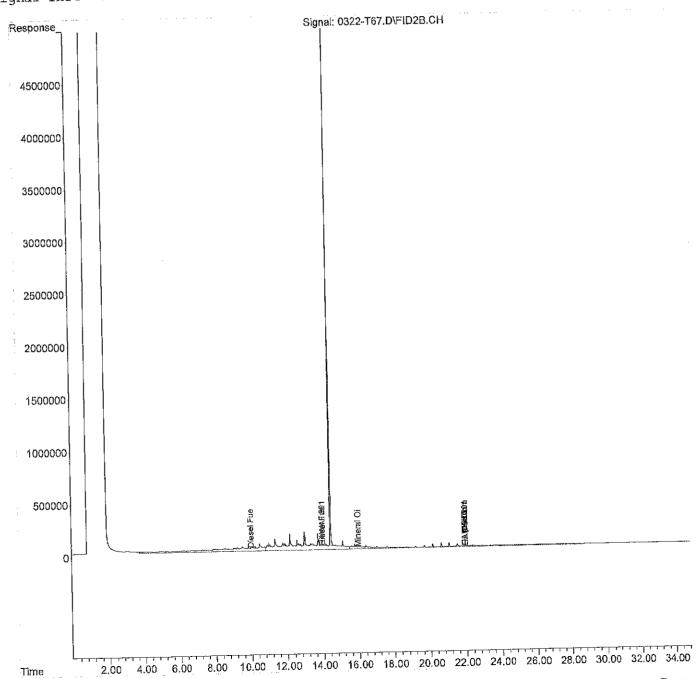
Acq On : 22 Mar 2021 18:00

Operator : JT

Sample : SB0319S1 ACU

Misc

ALS Vial : 67 Sample Multiplier: 1


Integration File: autoint1.e
Quant Time: Mar 22 18:36:11 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021 Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Data Fach : C:\MSDCHEM\1\DATA\5
Data File : 0322-T58.D
Signal(s) : FID2B.CH
Acq On : 22 Mar 2021 11:28
Operator : JT

Sample : CCV0322R-T2

Misc

Sample Multiplier: 1 ALS Vial : 58

Integration File: autoint1.e Quant Time: Mar 22 12:04:00 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Cc	ompound	R.T.	Response	Conc Units	-
1) S O- Spiked Amo	onitoring Compounds -Terphenyl (05-04-20) ount 50.000	0.000	0 Recovery = 47268895	N.D. PPM = 0.00% NoCal PPM	
2) H Ga 3) H D:	asoline iesel Fuel #1 (05-27	4.000 10.000	279763667	100.325 PPM	
4) H D: 5) H O: 6) H O: 7) H D: 8) H O: 9) H O 10) H O 11) H O 12) H H 13) H H	iesel Fuel #2 (01-23 il (05-01-20) il Acid Clean (05-01 iesel Fuel #2 Combo il Combo (05-01-20) il Acid Clean Combo il MO Combo (05-01-20) il Acid Clean MO Com AWAII 8015M DF2 (05 IAWAII 8015M Oil (05	14.000 22.000 14.000 22.000 22.000 22.000 22.000 14.000 22.000 16.000	278241328 67764241 67764241 271834292 52968911 52968911 47184752 47184752 276721665 46440323 181340921 175227633	108.313 PPM 16.404 PPM 7.194 PPM 14.431 PPM 5.477 PPM 105.944 PPM 15.826 PPM 62.770 PPM	
16) H D	Mineral Oil Combo (05 Diesel Fuel #2 ACU (0 Diesel Fuel #2 ACU Co	14.000 14.000	278241328 271834292	92.901 PPM	- -

⁽f)=RT Delta > 1/2 Window

⁽m) = manual int.

Data File : 0322-T58.D Signal(s) : FID2B.CH

: 22 Mar 2021 11:28 Acq On

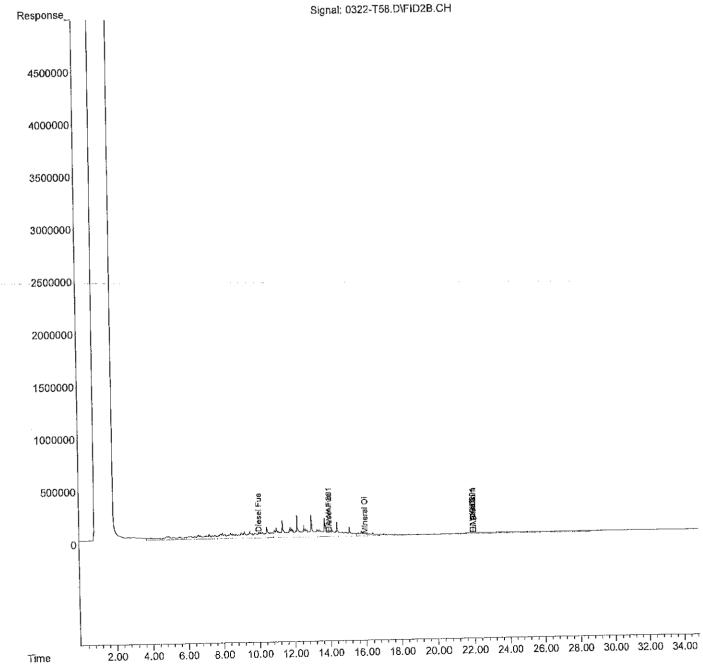
Operator : JT

: CCV0322R-T2 Sample

Misc

Sample Multiplier: 1 ALS Vial : 58

Integration File: autoint1.e Quant Time: Mar 22 12:04:00 2021


Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Data File: 0322-T69.D Signal(s) : FID2B.CH

Acq On : 22 Mar 2021 19:25

Operator : JT

Sample : CCV0322R-T3 :

Misc

Sample Multiplier: 1 ALS Vial : 69

Integration File: autoint1.e Quant Time: Mar 22 20:00:53 2021

Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021 Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Compound		Response	Conc Units
System Monitoring Compounds 1) S O-Terphenyl (05-04-20) Spiked Amount 50.000	0.000	0 Recovery =	N.D. PPM = 0.00%
Target Compounds 2) H Gasoline	4.000	47496951	NoCal PPM
3) H Diesel Fuel #1 (05-27	10.000	274534587	98.365 PPM
4) H Diesel Fuel #2 (01-23	14.000	271281450	104.927 PPM
5) H Oil (05-01-20)	22.000	53927280	15.599 PPM
6) H Oil Acid Clean (05-01	22.000	53927280	6.638 PPM
7) H Diesel Fuel #2 Combo	14.000	265680154	105.724 PPM
8) H Oil Combo (05-01-20)	22.000	40033180	9.271 PPM
9) H Oil Acid Clean Combo	22.000	40033180	1.378 PPM
10) H Oil MO Combo (05-01-20)	22.000	34956846	7.505 PPM N.D. PPM
11) H Oil Acid Clean MO Com	22.000	34956846	N.D. PPM 103.173 PPM
12) H HAWAII 8015M DF2 (05	14.000	269825223	9.000 PPM
13) H HAWAII 8015M Oil (05	22.000	34343541	60.161 PPM
14) H Mineral Oil (05-01-20)	16.000	174266327	62.786 PPM
15) H Mineral Oil Combo (05	16.000	169894397	
16) H Diesel Fuel #2 ACU (0	14.000	271281450 265680154	
17) H Diesel Fuel #2 ACU Co	14.000	265680154	21.104 IIM

⁽f)=RT Delta > 1/2 Window

⁽m)=manual int.

Data File : 0322-T69.D Signal(s) : FID2B.CH

: 22 Mar 2021 19:25 Acq On

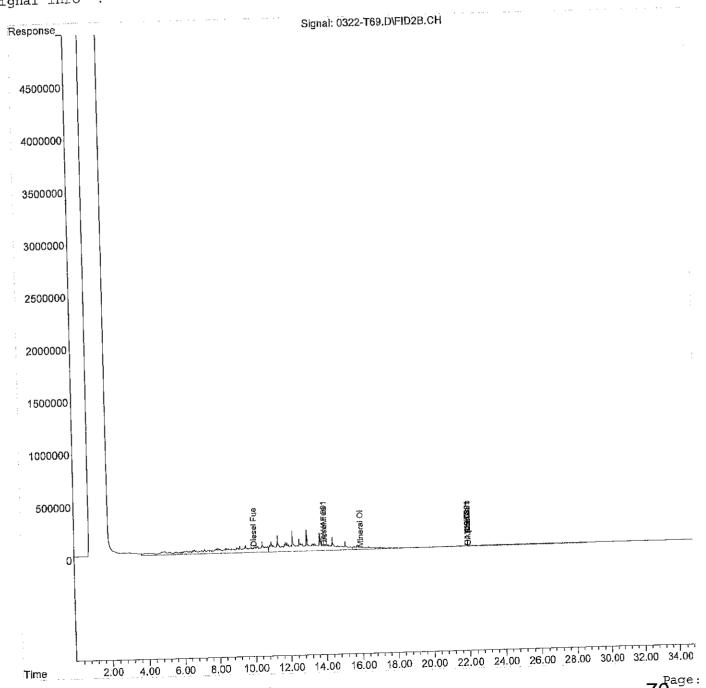
Operator : JT

: CCV0322R-T3 Sample

Misc

Sample Multiplier: 1 ALS Vial : 69

Integration File: autoint1.e Quant Time: Mar 22 20:00:53 2021


Quant Method : C:\MSDCHEM\1\METHODS\T200501R.M

Quant Title : GCTPH

QLast Update : Fri Feb 05 08:11:56 2021

Response via : Initial Calibration

Integrator: ChemStation 6890 Scale Mode: Large solvent peaks clipped

Volatiles Organics EPA 8260D Data

(QT Reviewed) Quantitation Report

Inst : Albert
Multiplr: 1.00

Misc

MS Integration Params: rteint.p Quant Time: Mar 22 9:02 2021 Quant Results File: A210315Q.RES

Quant Method : F:\HPCHEM\1\METHODS\A210315Q.M (RTE Integrator)
Title : 8260 Calibration
Last Update : Tue Mar 16 09:05:28 2021
Response via : Initial Calibration
DataAcq Meth : A210315Q

Internal Standards	R.T.	QIon	Response	Conc U	nits De	v(Min)
1) Pentafluorobenzene 28) 1,4-Difluorobenzene 38) Chlorobenzene-d5 55) 1,4-Dichlorobenzene-d4	3.69 4.37 7.09 9.35	168 114 117 152	857283 1454761 1265317 719004	50.00 50.00 50.00 50.00	ppb ppb	0.02 0.02 0.02 0.01
System Monitoring Compounds 23) Dibromofluoromethane Spiked Amount 50.000 36) Toluene-d8 Spiked Amount 50.000 54) 4-Bromofluorobenzene Spiked Amount 50.000	Range 74 5.74 Range 78	98 - 128 95	1720603 Recove 632794	ery = 50.70 ery = 48.90	98.76 ppb 101.40 ppb	0.01
Target Compounds 9) Acetone 11) Carbon Disulfide	1.34 1.47	43 76	21386 522850m	4.31 11.87	ppb	value 93

3/25/W

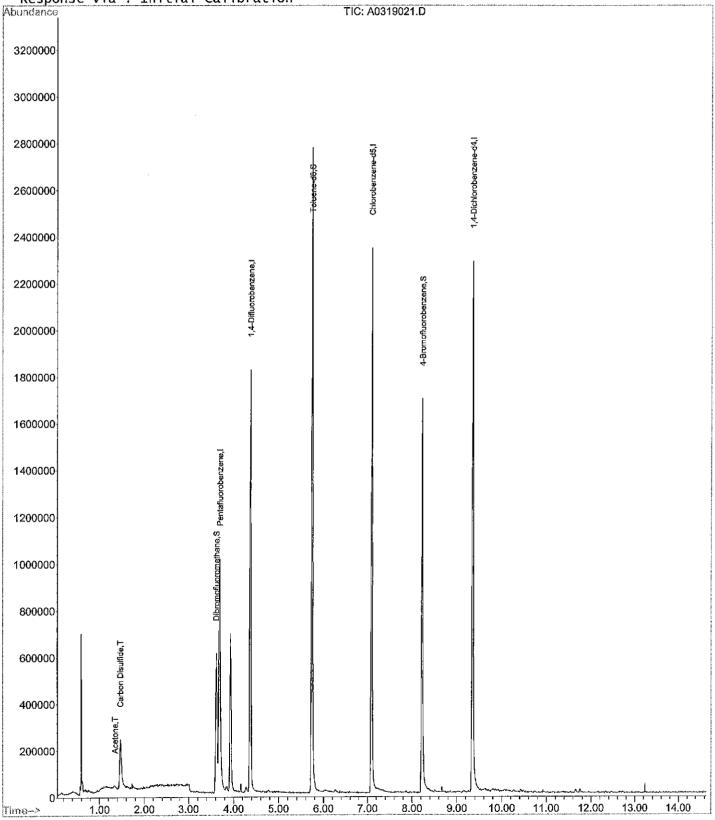
Vial: 21

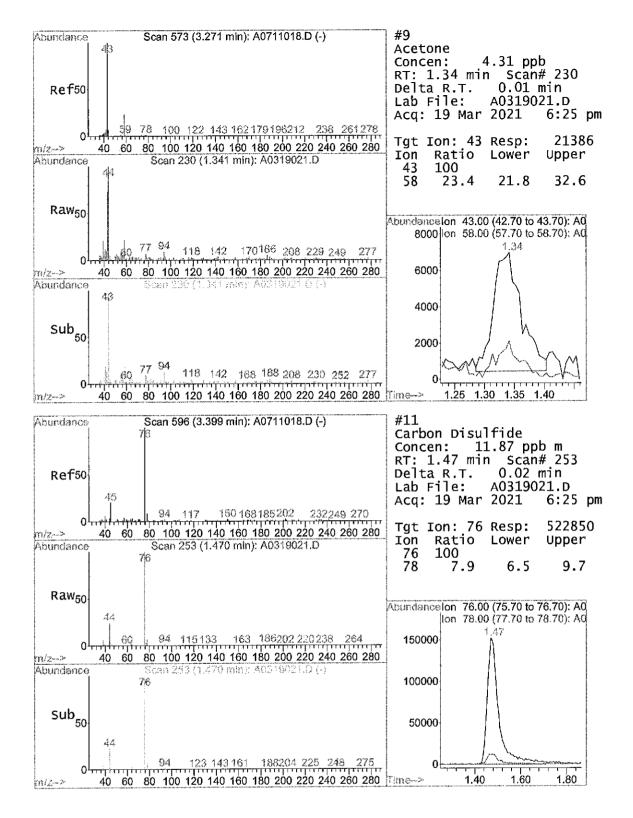
Operator: Inst : Albert

Misc

Multiplr: 1.00

MS Integration Params: rteint.p


Quant Time: Mar 22 9:02 2021 Quant Results File: A210315Q.RES


: F:\HPCHEM\1\METHODS\A210323Q.M (RTE Integrator) : 8260 Calibration Method

Title

: Wed Mar 24 09:41:12 2021 : Initial Calibration Last Update

Response via :

Data File: W032306.D

Acq On : 23 Mar 2021 11:02 am Operator : Sample : 03-219-03x RR

Misc

ALS Vial : 6 Sample Multiplier: 1

Quant Time: Mar 24 09:20:10 2021

Quant Method: C:\MSDCHEM\1\METHODS\W210203S.M

Quant Title : QLast Update : Thu Feb 04 07:56:41 2021 Response via : Initial Calibration

Compound	R.T.	QIon	Response		nits Dev	(Min)
Internal Standards					1-	0 00
 Pentafluorobenzene 	4.091		153077	50.00		0.00
28) 1,4-Difluorobenzene	4.697	114	209241	50.00		0.00
38) Chlorobenzene-d5	7.254	117	195295	50.00	ppb	0.00
55) 1,4-Dichlorobenzene-d4	9.466	152	108909	50.00	ppb	0.00
System Monitoring Compounds						
23) Dibromofluoromethane	4.045	111	71848	49.95	ppb	0.00
	Range 76	- 131	Recove	ry =	99,90%	
36) Toluene-d8	5.962	98	244926	51.14	ppb	0.00
Spiked Amount 50.000	Range 78	- 128	Recove	ry =	102.28%	
54) 4-Bromofluorobenzene			110849			0.00
Spiked Amount 50.000	Range 71					
Target Compounds					Qv	alue
11) Carbon Disulfide	2.361	76	6790	2.51	ppb #	95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File: W032306.D

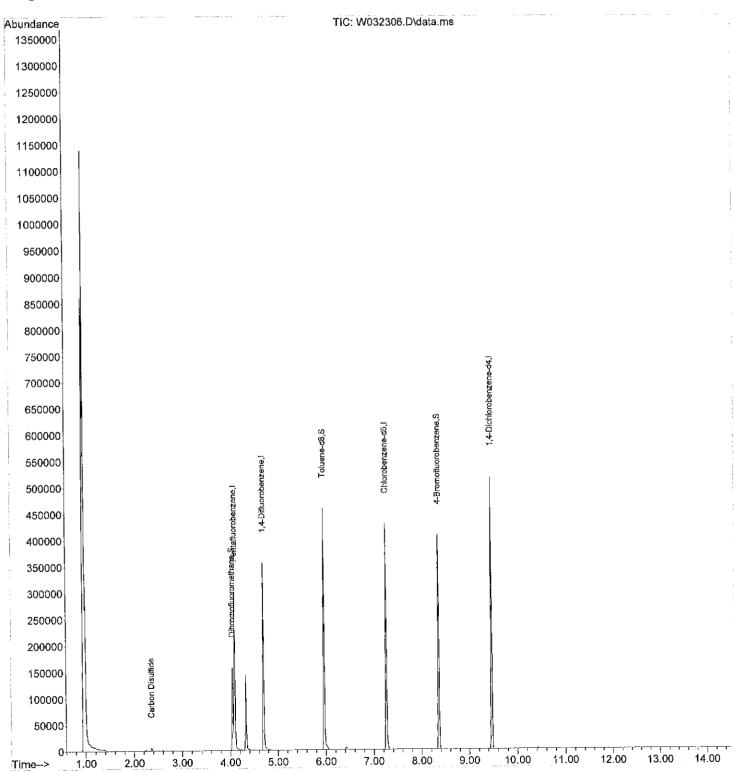
Acq On : 23 Mar 2021 11:02 am

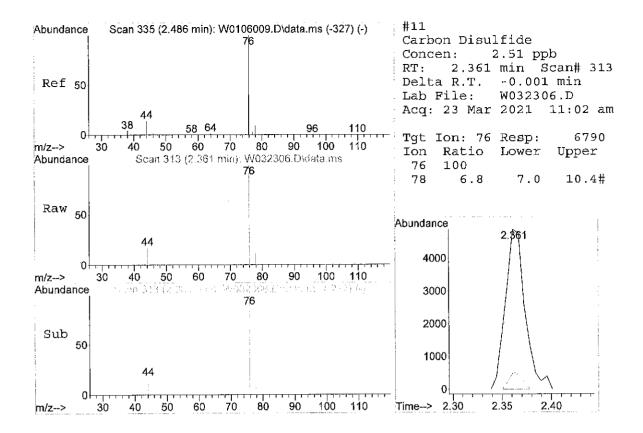
Operator

Sample : 03-219-03x RR

Misc

ALS Vial : 6 Sample Multiplier: 1


Quant Time: Mar 24 09:20:10 2021


Quant Method : C:\MSDCHEM\1\METHODS\W210203S.M

Quant Title :

QLast Update : Thu Feb 04 07:56:41 2021

Response via : Initial Calibration

Quantitation Report (QT Reviewed)

Quant Results File: A210315Q.RES

Operator:
Inst : Albert
Multiplr: 1.00 Misc MS Integration Params: rteint.p Quant Time: Mar 22 9:03 2021

Internal Standards	R.T. Q	Ion Response	Conc Unit	ts Dev(Min)
1) Pentafluorobenzene 28) 1,4-Difluorobenzene 38) Chlorobenzene-d5 55) 1,4-Dichlorobenzene-d4	4.37 1 7.09 1	168 827552 114 1444472 117 1256593 152 709715	50.00 pj 50.00 pj 50.00 pj 50.00 pj	ob 0.02 ob 0.02
System Monitoring Compounds 23) Dibromofluoromethane Spiked Amount 50.000 36) Toluene-d8 Spiked Amount 50.000 54) 4-Bromofluorobenzene Spiked Amount 50.000	Range 74 - 5.74 Range 78 - 8.22	111 443334 131 Recove 98 1698652 128 Recove 95 611821 130 Recove	ry = 5 50.41 p ry = 10 47.61 p	99.68% bb 0.01 00.82% bb 0.01
Target Compounds 9) Acetone 11) Carbon Disulfide 19) 2-Butanone	1.33 1.47 3.17	43 43473 76 416610m 43 7960	9.08 pj 9.80 pj 1.62 pj	pb

Data File : X:\VOLATILE\ALBERT\DATA\A210319\A0319022.D
Acq On : 19 Mar 2021 6:54 pm Opsample : 03-219-04x Vial: 22

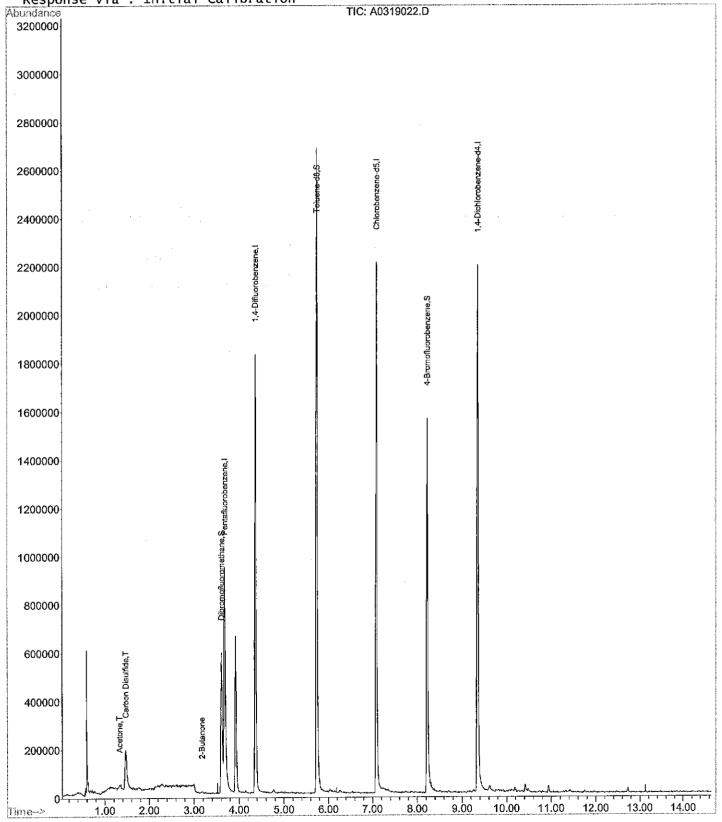
Acq On Sample

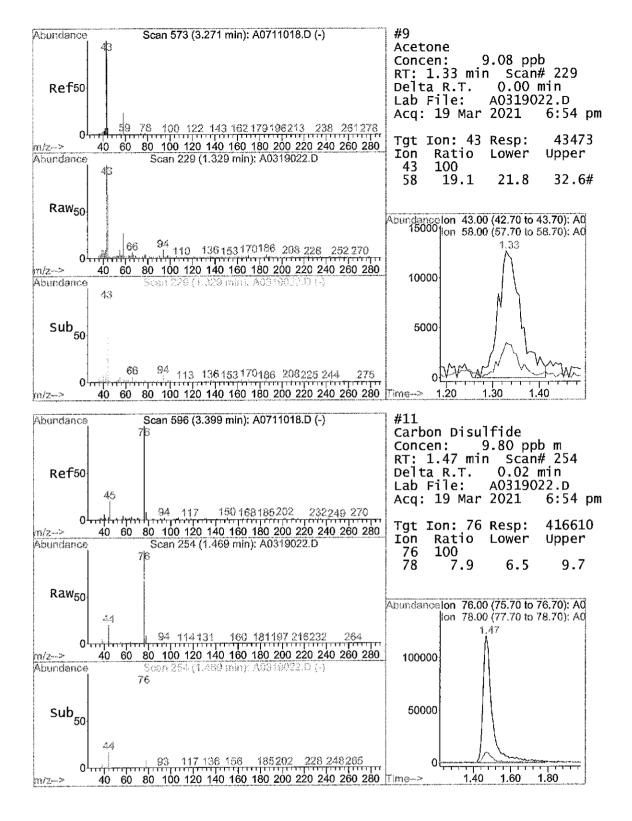
Operator: Inst : Albert

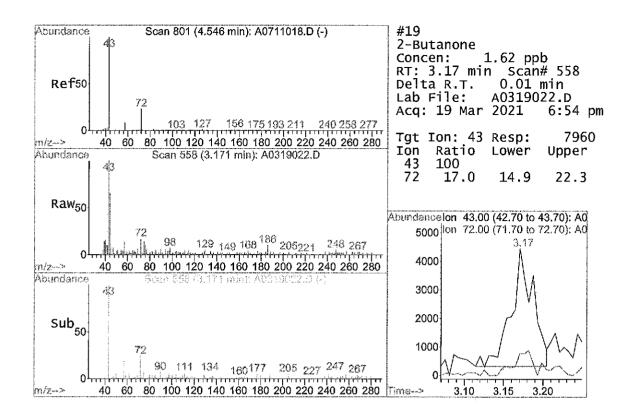
Misc

Multiplr: 1.00

MS Integration Params: rteint.p


Quant Time: Mar 22 9:03 2021 Quant Results File: A210315Q.RES


Method


: F:\HPCHEM\1\METHODS\A210323Q.M (RTE Integrator) : 8260 Calibration

Title

Last Update : Wed Mar 24 09:41:12 2021 Response via : Initial Calibration

(QT Reviewed) Quantitation Report

Acq On Sample

Inst : Albert
Multiplr: 1.00

Misc

MS Integration Params: rteint.p Quant Time: Mar 22 9:04 2021

Quant Results File: A210315Q.RES

Quant Method: F:\HPCHEM\1\METHODS\A210315Q.M (RTE Integrator)
Title: 8260 Calibration
Last Update: Tue Mar 16 09:05:28 2021
Response via: Initial Calibration
DataAcq Meth: A210315Q

Internal Standards	R.T. QIon	Response Conc	Units Dev(Min)
1) Pentafluorobenzene 28) 1,4-Difluorobenzene 38) Chlorobenzene-d5 55) 1,4-Dichlorobenzene-d4	3.68 168 4.37 114 7.09 117 9.34 152	1415217 50.0 1219275 50.0	0 ppb 0.02 0 ppb 0.02 0 ppb 0.02 0 ppb 0.00
System Monitoring Compounds 23) Dibromofluoromethane Spiked Amount 50.000 36) Toluene-d8 Spiked Amount 50.000 54) 4-Bromofluorobenzene Spiked Amount 50.000	5.74 98 Range 78 - 12	1 Recovery = 1639659 49.6 8 Recovery = 606306 48.6	7 ppb 0.00 99.34% 3 ppb 0.00
Target Compounds 9) Acetone 11) Carbon Disulfide	1.33 43 1.47 76	22625m 4.9 165013m 4.0	Qvalue O ppb 3 ppb

Data File : X:\VOLATILE\ALBERT\DATA\A210319\A0319023.D Acq On : 19 Mar 2021 7:23 pm Op Vial: 23

Acq On Sample

Operator:

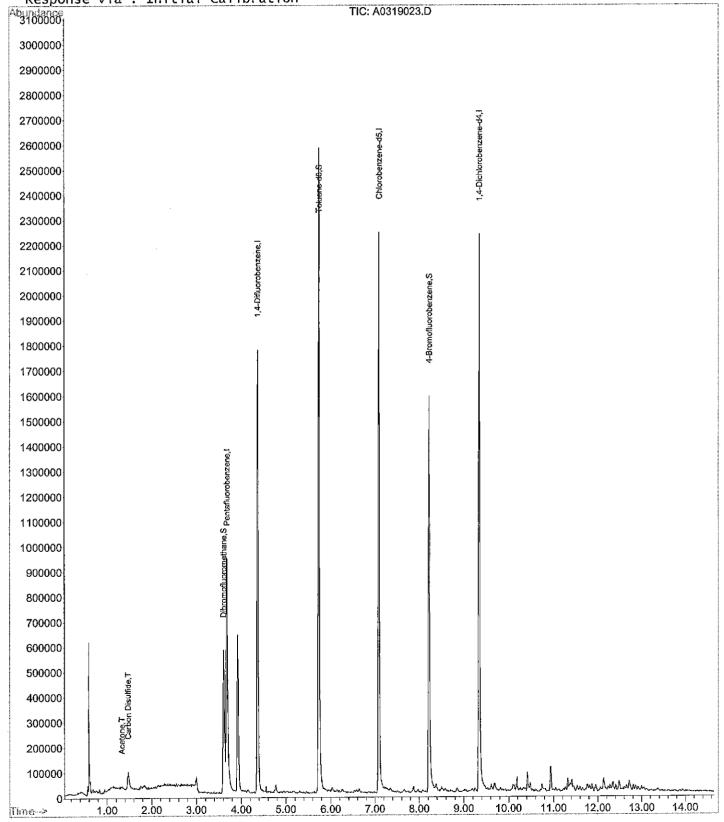
Misc

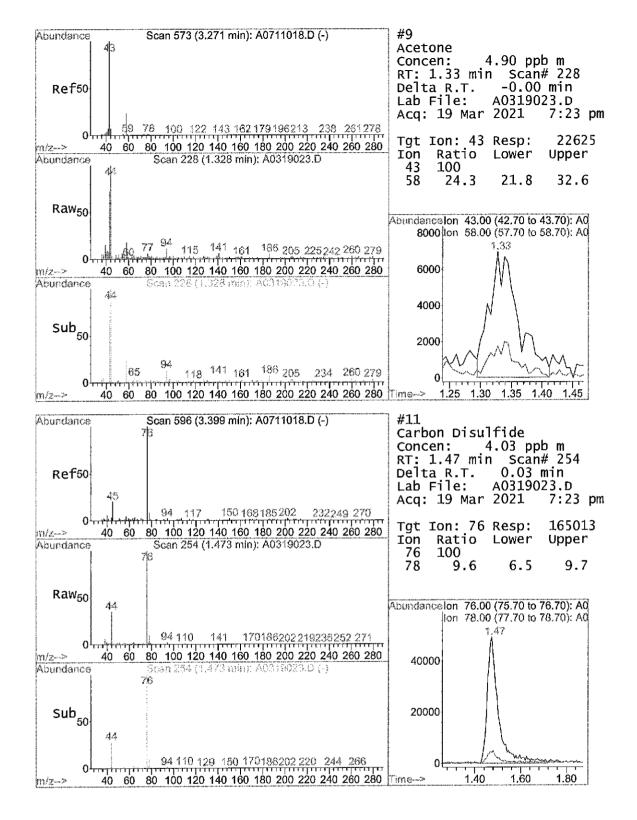
03-219-05x

: Albert Inst Multiplr: 1.00

MS Integration Params: rteint.p

Quant Time: Mar 22 9:04 2021


Quant Results File: A210315Q.RES


F:\HPCHEM\1\METHODS\A210323Q.M (RTE Integrator) Method

Title

8260 Calibration

wed Mar 24 09:41:12 2021 Initial Calibration Last Update Response via :

(QT Reviewed) Quantitation Report

Inst : Albert

Multiplr: 1.00 Misc MS Integration Params: rteint.p Quant Time: Mar 22 9:05 2021

Quant Results File: A210315Q.RES

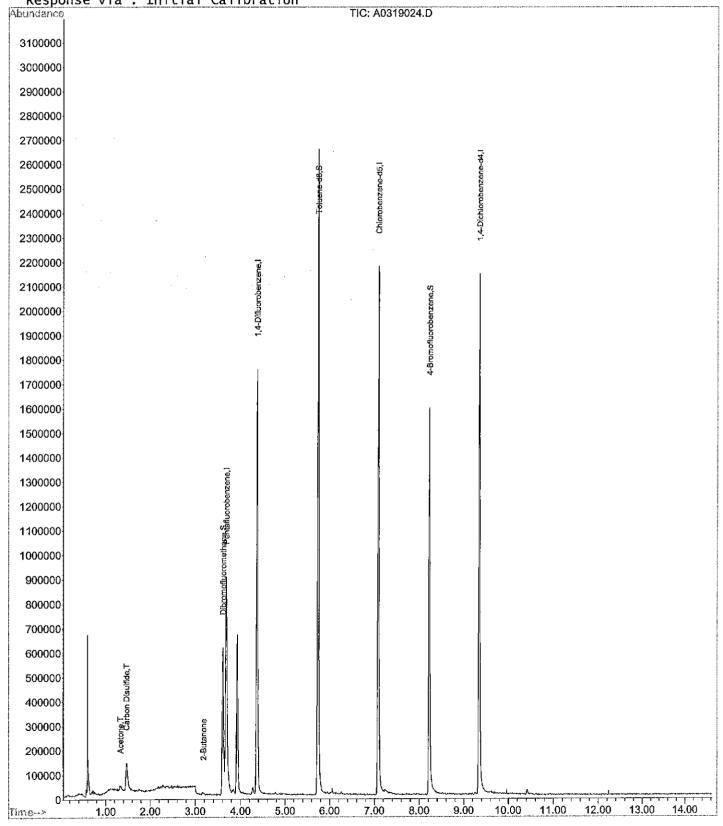
Internal Standards	R.T. Q	Ion Response	Conc Uni	ts Dev(Min)
1) Pentafluorobenzene 28) 1,4-Difluorobenzene 38) Chlorobenzene-d5 55) 1,4-Dichlorobenzene-d4	4.37 7.09	168 792833 114 1405002 117 1233810 152 654337	50.00 p 50.00 p 50.00 p 50.00 p	pb 0.02 pb 0.02
System Monitoring Compounds 23) Dibromofluoromethane Spiked Amount 50.000 36) Toluene-d8 Spiked Amount 50.000 54) 4-Bromofluorobenzene Spiked Amount 50.000	Range 74 - 5.74 Range 78 - 8.22	111 437310 131 Recove 98 1629762 128 Recove 95 587491 130 Recove	ry = 1 49.73 p ry = 46.56 p	02.64% pb 0.01 99.46% pb 0.01
Target Compounds 9) Acetone 11) Carbon Disulfide 19) 2-Butanone	1.34 1.47 3.18	43 40276 76 294307m 43 8731	8.78 p 7.22 p 1.86 p	pb

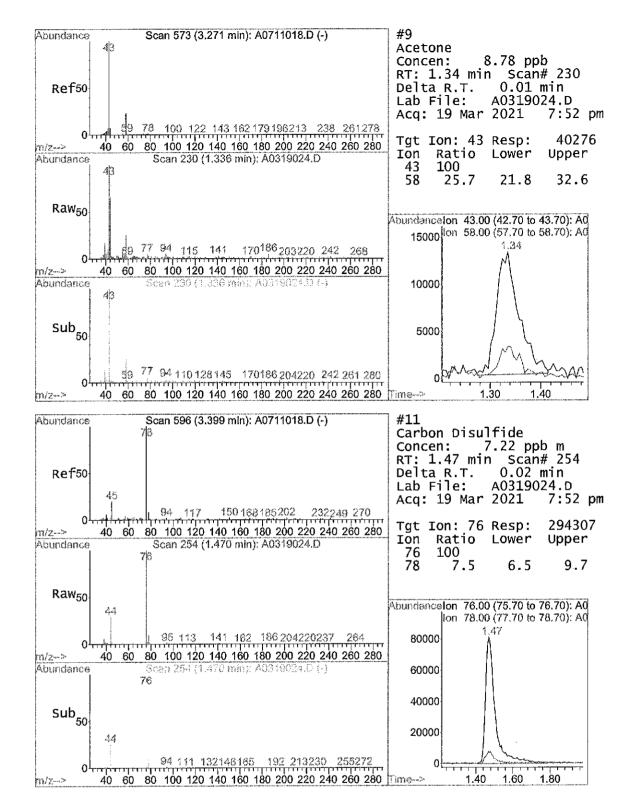
Data File : X:\VOLATILE\ALBERT\DATA\A210319\A0319024.D
Acq On : 19 Mar 2021 7:52 pm On Vial: 24

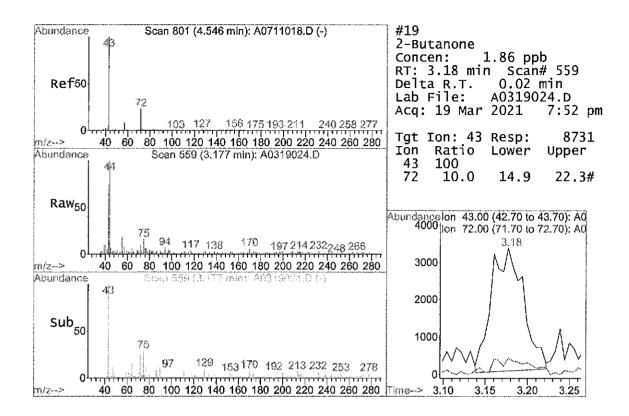
Acq On

Operator: : Albert Inst Multiplr: 1.00

: 03-219-06x Misc


Sample


MS Integration Params: rteint.p Quant Time: Mar 22 9:05 2021 Quant Results File: A210315Q.RES


: F:\HPCHEM\1\METHODS\A210323Q.M (RTE Integrator) Method

8260 Calibration Title

Last Update : Wed Mar 24 09:41:12 2021 Response via : Initial Calibration

Quantitation Report (QT Reviewed)

Data File: X:\VOLATILE\ALBERT\DATA\A210319\A0319006.D Vial: 6
Acq On : 19 Mar 2021 10:58 am Operator:
Sample: MB0319S1 Inst_: Al

Inst : Albert
Multiplr: 1.00

Misc

MS Integration Params: rteint.p Quant Time: Mar 22 8:30 2021

Quant Results File: A210315Q.RES

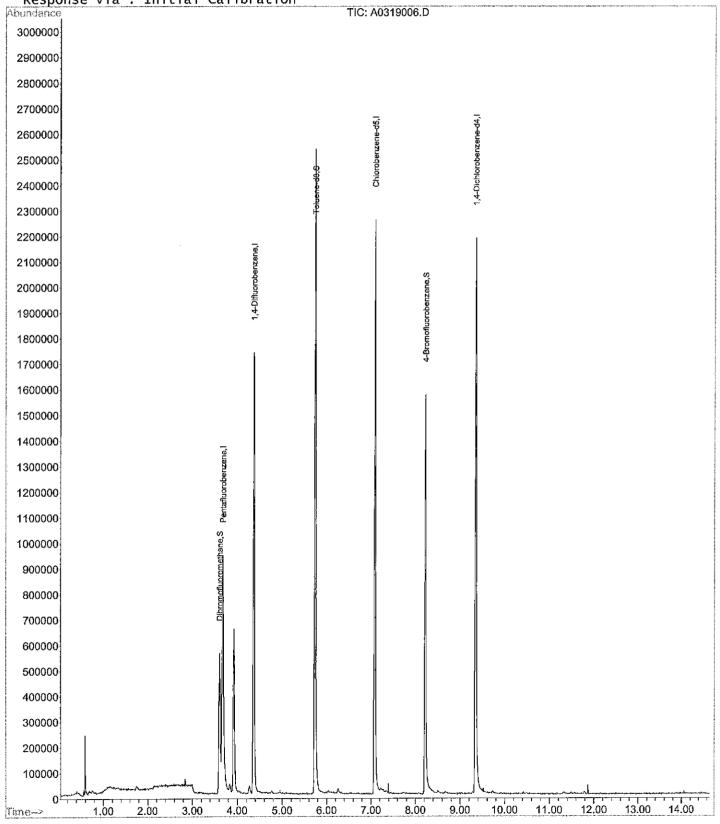
Quant Method : F:\HPCHEM\1\METHODS\A210315Q.M (RTE Integrator) title : 8260 Calibration Last Update : Tue Mar 16 09:05:28 2021 Response via : Initial Calibration DataAcq Meth : A210315Q

Internal Standards	R.T.	QIon	Response	Conc Ur	nits De	ev(Min)
1) Pentafluorobenzene 28) 1,4-Difluorobenzene 38) Chlorobenzene-d5 55) 1,4-Dichlorobenzene-d4	3.68 4.37 7.08 9.35	168 114 117 152	808388 1416942 1220124 703650	50.00 50.00 50.00 50.00	ppb ppb	0.01 0.02 0.01 0.01
System Monitoring Compounds 23) Dibromofluoromethane Spiked Amount 50.000	3.61 Range 74	111 - 131	427482 Recove	49.20		0.01
36) Toluene-d8	5.74		1630248	49.32	ppb	0.01
Spiked Amount 50.000 54) 4-Bromofluorobenzene Spiked Amount 50.000	Range 78 8.21 Range 71		602250	48.27	98 64 ppb 96 54	0.00
Target Compounds						Qvalue

Data File : X:\VOLATILE\ALBERT\DATA\A210319\A0319006.D Acq On : 19 Mar 2021 10:58 am Op Vial: 6

Operator:

Inst : Albert
Multiplr: 1.00 sample : MB0319S1 Misc


MS Integration Params: rteint.p

Quant Time: Mar 22 8:30 2021 Quant Results File: A210315Q.RES

F:\HPCHEM\1\METHODS\A210323Q.M (RTE Integrator) 8260 Calibration Method

Title

Last Update : Wed Mar 24 09:41:12 2021 Response via : Initial Calibration

Data File: W032305.D

Acq On : 23 Mar 2021 10:30 am Operator :

Sample : MB0323S1 Misc :

ALS Vial : 5 Sample Multiplier: 1

Quant Time: Mar 24 09:19:39 2021

Quant Method : C:\MSDCHEM\1\METHODS\W210203S.M

Quant Title :

QLast Update : Thu Feb 04 07:56:41 2021 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards						
1) Pentafluorobenzene	4.091	168	152998	50.00	dgg	0.00
28) 1,4-Difluorobenzene	4.697	114	217051	50.00	dqq	0.00
38) Chlorobenzene-d5	7.255	117	200867	50.00	dqq	0.00
55) 1,4-Dichlorobenzene-d4	9.466	152	110826	50.00	ppb	0.00
, ,					- -	
System Monitoring Compounds						
23) Dibromofluoromethane	4.045	111	74483	51.81	ppb	0.00
Spiked Amount 50.000	Range 76	- 131	Recove	ry =	103,62%	
36) Toluene-d8	5.962	98	245226	49.36	ppb	0.00
Spiked Amount 50.000	Range 78	- 128	Recove	ry =	98.72%	
54) 4-Bromofluorobenzene	8.354	95	113261	50.37	ppb	0.00
Spiked Amount 50.000	Range 71	- 130	Recove	ry =	100.74%	
Target Compounds					Qva	alue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File: W032305.D

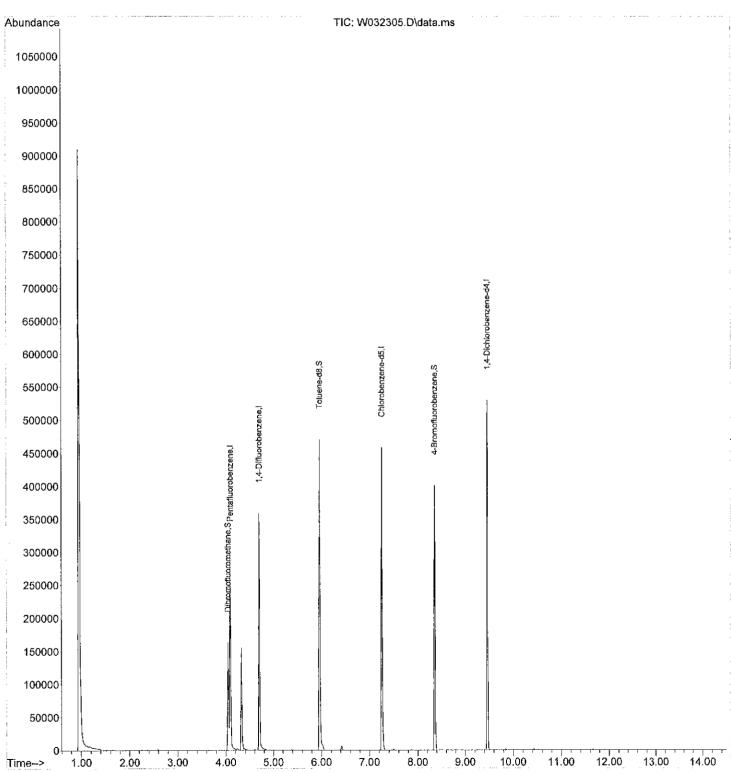
Acq On : 23 Mar 2021 10:30 am

Operator

Sample : MB0323S1

Misc

ALS Vial : 5 Sample Multiplier: 1


Quant Time: Mar 24 09:19:39 2021

Quant Method : C:\MSDCHEM\1\METHODS\W210203S.M

Quant Title :

QLast Update: Thu Feb 04 07:56:41 2021

Response via : Initial Calibration

Data File: X:\VOLATILE\ALBERT\DATA\A210319\A0319003.D Vial: 3
Acq On : 19 Mar 2021 9:21 am Operator:
Sample : SB0319S1 (CCV0319S1) Inst : Al
Misc : V4-077-16,V4-077-05 Multiplr: 1.
MS Integration Params: rteint.p

Inst : Albert Multiplr: 1.00

Quant Time: Mar 19 10:06 2021 Quant Results File: A210315Q.RES

Quant Method : F:\HPCHEM\1\METHODS\A210315Q.M (RTE Integrator) Title : 8260 Calibration

Last Update : Tue Mar 16 09:05:28 2021 Response via : Initial Calibration DataAcq Meth : A210315Q

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Pentafluorobenzene 28) 1,4-Difluorobenzene 38) Chlorobenzene-d5 55) 1,4-Dichlorobenzene-d4	3.68 4.37 7.08 9.34	168 114 117 152	878106 1512951 1348583 789146	50.00 ppb 50.00 ppb 50.00 ppb 50.00 ppb	$0.02 \\ 0.01$
Spiked Amount 50.000 Ran 54) 4-Bromofluorobenzene	3.61 ge 74 5.74 ge 78 8.22 ge 71	- 131 98 - 128 95	Recove 730652		.78% 0.00 .78% 0.00
Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 4) Vinyl Chloride 5) Bromomethane 6) Chloroethane 7) Trichlorofluoromethane 8) 1,1-Dichloroethene	0.64 0.70 0.69 0.78 0.80 0.90	61	143493 158872 136644 74007 61319 631763m 1144015m	38.10 ppb 42.04 ppb 41.02 ppb 48.84 ppb 48.81 ppb 48.75 ppb	97 # 73 91
7) Trichlorofluoromethane 8) 1,1-Dichloroethene 9) Acetone 10) Iodomethane 11) Carbon Disulfide 12) Methylene Chloride 13) (trans) 1,2-Dichloroethene 14) Methyl t-Butyl Ether 15) 1,1-Dichloroethane 16) Vinyl Acetate	T./)	43 142 76 49 61 73 63 43	240103 903729m 2319464 1108000 1133886m 1847953 1563056m 1943746	47.28 ppb 54.33 ppb 51.40 ppb 43.21 ppb 52.82 ppb 51.02 ppb 47.17 ppb	98 100 96 100
17) 2,2-Dichloropropane 18) (cis) 1,2-Dichloroethene 19) 2-Butanone 20) Bromochloromethane 21) Chloroform 22) 1,1,1-Trichloroethane 24) Carbon Tetrachloride	3.12 3.12 3.17 3.36 3.46	77 61 43 130 83	754006 1009275m 281229 298331 926837m	54.71 ppb 58.10 ppb 54.01 ppb 50.02 ppb 56.15 ppb	100 96 87 99 100
 25) 1,1-Dichloropropene 26) Benzene 27) 1,2-Dichloroethane 29) Trichloroethene 30) 1,2-Dichloropropane 31) Dibromomethane 32) Bromodichloromethane 	3.78 3.98 3.99 4.60 4.80 4.91 5.07	0.5	628052 814080 2229258 681281 571880 652790 320125 648983	54.40 ppb	96 100
33) 2-Chloroethyl Vinyl Ether 34) (cis) 1,3-Dichloropropene 35) Methyl Isobutyl Ketone 37) Toluene 39) (trans) 1,3-Dichloropropen 40) 1,1,2-Trichloroethane 41) Tetrachloroethene 42) 1,3-Dichloropropane	5.37 5.49 5.65 5.80 6.02 6.18 6.31 6.33	63 75 43 91 75 97 166	277357 966873 659218 2539902 766315 439800 634074	52.62 ppb 57.10 ppb 53.61 ppb 57.33 ppb 57.63 ppb 54.71 ppb 56.00 ppb	99 99 99 99 99
42) 1,3-Dichloropropane 43) 2-Hexanone 44) Dibromochloromethane 45) 1,2-Dibromoethane 46) Chlorobenzene 47) 1,1,1,2-Tetrachloroethane	6.44 6.54 6.64 7.11	76 43 129 107 112 133	815358 438635 469774 437869 1644918 509730	55.46 ppb 53.88 ppb 55.23 ppb 55.83 ppb 55.85 ppb 55.89 ppb	100 97 99 98 99 98

(QT Reviewed) Quantitation Report

Data File : X:\VOLATILE\ALBERT\DATA\A210319\A0319003.D Vial: 3
Acq On : 19 Mar 2021 9:21 am Operator:
Sample : SB0319S1 (CCV0319S1) Inst : A
Misc : V4-077-16,V4-077-05 Multiplr: 1 Inst : Albert Multiplr: 1.00

MS Integration Params: rteint.p Quant Time: Mar 19 10:06 2021

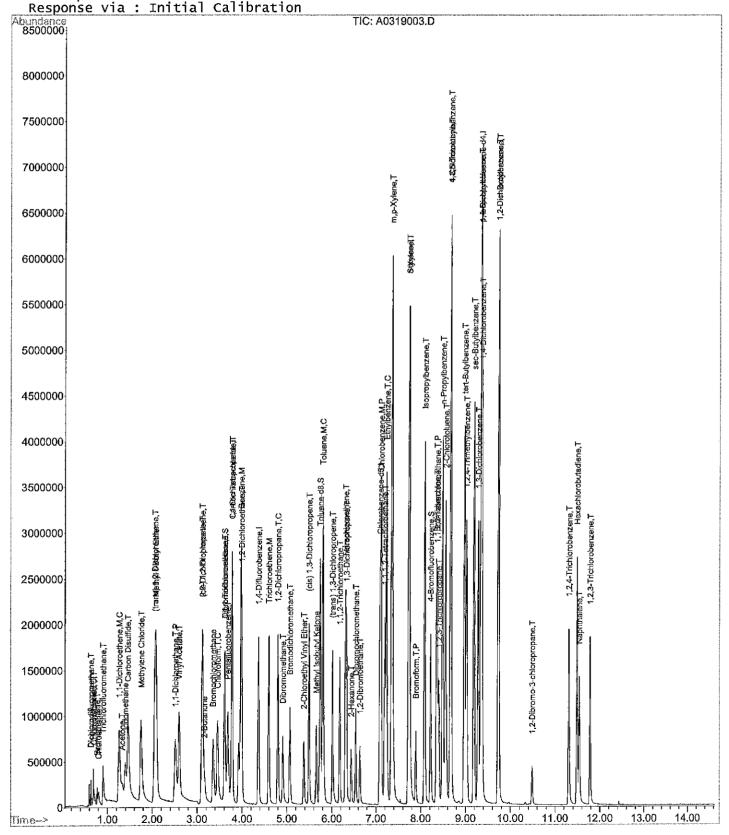
Quant Results File: A210315Q.RES

Quant Method : F:\HPCHEM\1\METHODS\A210315Q.M (RTE Integrator)
Title : 8260 Calibration
Last Update : Tue Mar 16 09:05:28 2021
Response via : Initial Calibration
DataAcq Meth : A210315Q

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
48) Ethylbenzene	7.23	91	2816706	56.67 ppb	99
49) m,p-xylene	7.35	91	4718620	112.01 ppb	99
50) o-xylene	7.72	91	2595601	53.26 ppb	. 99
51) Styrene	7.73	104	2130091	60.73 ppb	100
52) Bromoform	7.89	173	349211	55.95 ppb	99
53) Isopropylbenzene	8.08	105	2978316	61.05 ppb	100
56) Bromobenzene	8.35	156	675892	57.86 ppb	96
57) 1,1,2,2-Tetrachloroethane	8.37	83	732649	61.57 ppb	99
58) 1,2,3-Trichloropropane	8.40	75	458335	59.02 ppb	99
59) n-Propylbenzene	8.48	91	3907049	59.66 ppb	99
60) 2-Chlorotoluene	8.55	126	697742	57.17 ppb	99
61) 4-Chlorotoluene	8.66	126	744707	60.52 ppb	199
62) 1,3,5-Trimethylbenzene	8.66	105	2503817	62.94 ppb	100
63) tert-Butylbenzene	8.97	119	2057453	58.56 ppb	98
64) 1,2,4-Trimethylbenzene	9.02	105	2348974	49.27 ppb	99
65) sec-Butylbenzene	9.18	105	3577046	60.82 ppb	99
66) 1,3-Dichlorobenzene	9.28	146	1420515	58.19 ppb	99
67) p-Isopropyltoluene	9.33	119	2628084	58.57 ppb	99
68) 1,4-Dichlorobenzene	9.37	146	1466404	56.42 ppb	99
69) 1,2-Dichlorobenzene	9.72	146	1325721	60.13 ppb	100
70) n-Butylbenzene	9.74	91	2749556	64.09 ppb	100
71) 1,2-Dibromo-3-chloropropan	10.48	157	116026	55.97 ppb	93
72) 1,2,4-Trichlorobenzene	11.31	180	637851	47.43 ppb	97
73) Hexachlorobutadiene	11.50	225	460440	56.69 ppb	99
74) Naphthalene	11.54	128	1158883	44.82 ppb	99
75) 1,2,3-Trichlorobenzene	11.79	180	570382	46.03 ppb	97

Data File : X:\VOLATILE\ALBERT\DATA\A210319\A0319003.D
Acq On : 19 Mar 2021 9:21 am O Vial: 3

Operator:


Acq On Sample SB0319S1 (ccv0319s1) Albert Inst Misc V4-077-16, V4-077-05 Multiplr: 1.00 MS Integration Params: rteint.p

Quant Time: Mar 19 10:06 2021 Quant Results File: A210315Q.RES

F:\HPCHEM\1\METHODS\A210323Q.M (RTE Integrator) Method

8260 Calibration Title

Wed Mar 24 09:41:12 2021 Last Update

Data File : X:\VOLATILE\ALBERT\DATA\A210319\A0319004.D Vial: 4 Acq On : 19 Mar 2021 9:50 am Operator: Sample : SBD0319S1 Inst : A

Inst : Albert
Multiplr: 1.00 Misc: V4-077-16,V4-077-05 MS Integration Params: rteint.p

Quant Time: Mar 22 8:28 2021 Quant Results File: A210315Q.RES

Quant Method: F:\HPCHEM\1\METHODS\A210315Q.M (RTE Integrator)
Title: 8260 Calibration
Last Update: Tue Mar 16 09:05:28 2021
Response via: Initial Calibration

DataAcq Meth : A210315Q

Internal Standards	R.T.	QIon	Response	Conc Units	Dev	(Min)
 Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d4 	3.68	168 114 117 152	890397 1518929 1354323 798079	50.00 ppb 50.00 ppb 50.00 ppb 50.00 ppb		0.01 0.01 0.01 0.00
36) Toluene-d8 Spiked Amount 50.000 Ran 54) 4-Bromofluorobenzene	ge 74 5.74 ge 78 8.22	- 131 98 - 128 95	1795268 Recove 735322	51.79 ppb ry = 103. 50.67 ppb ry = 101. 53.09 ppb ry = 106.	. 58% . 34%	0.01 0.00 0.00
Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 4) Vinyl Chloride 5) Bromomethane 6) Chloroethane	0.63 0.70 0.69 0.78	85 50 62 96	142518 148071 131522 75582m	35.02 ppb 39.90 ppb 41.32 ppb		10e 99 100 98
6) Chloroethane 7) Trichlorofluoromethane 8) 1,1-Dichloroethene 9) Acetone 10) Iodomethane 11) Carbon Disulfide 12) Methylene Chloride	0.80 0.90 1.26 1.34 1.40 1.46	101 61	60395 620115m 1106252m 236060 912883m 2363943m	47.24 ppb 46.49 ppb	#	88 100
13) (trans) 1,2-Dichloroethene	2.06	49 61 73 63	1112482m 1120476m 1785574 1519112m	42.79 ppb 51.47 ppb 48.62 ppb 45.21 ppb		100 99
17) 2,2-Dichloropropane 18) (cis) 1,2-Dichloroethene 19) 2-Butanone 20) Bromochloromethane	3.36	77 61 43	1709817 737616 992636m 285592 325460 933307m	56.35 ppb 54.09 ppb		99 99 96
21) Chrorottim 22) 1,1,1-Trichloroethane 24) Carbon Tetrachloride 25) 1,1-Dichloropropene 26) Benzene 27) 1,2-Dichloroethane	4.00	97 117 75 78 62	933307m 697907 608332 797036 2187582 680476 562389 641043 311115	54.57 ppb 52.64 ppb 54.63 ppb 55.15 ppb 54.26 ppb		100 98 100 100 99
29) Trichloroethene 30) 1,2-Dichloropropane 31) Dibromomethane 32) Bromodichloromethane 33) 2-Chloroethyl Vinyl Ether 34) (cis) 1,3-Dichloropropene	4.60 4.80 4.91 5.07 5.37 5.49	130 63 174 83 63 75	641043 311115 634878 272503 934040	53.64 ppb 52.24 ppb 53.43 ppb 53.01 ppb 51.49 ppb 54.94 ppb		99 99 98 100 98 99
35) Methyl Isobutyl Ketone 37) Toluene 39) (trans) 1,3-Dichloropropen 40) 1,1,2-Trichloroethane 41) Tetrachloroethene	5.66 5.80 6.02 6.18 6.31	43 91 75 97 166	651267 2473737 753347 434518 616658	52.76 ppb 55.62 ppb 56.42 ppb 53.83 ppb 54.23 ppb		98 100 99 98 99
42) 1,3-Dichloropropane 43) 2-Hexanone 44) Dibromochloromethane 45) 1,2-Dibromoethane 46) Chlorobenzene 47) 1,1,1,2-Tetrachloroethane	6.33 6.44 6.54 6.64 7.11 7.19	76 43 129 107 112 133	806272 425831 463619 425254 1612450 494685	54.61 ppb 52.08 ppb 54.28 ppb 53.99 ppb 54.52 ppb 54.01 ppb		100 98 98 100 99 97

Quantitation Report (QT Reviewed)

Data File : X:\VOLATILE\ALBERT\DATA\A210319\A0319004.D
Acq On : 19 Mar 2021 9:50 am Op Vial: 4

Operator:

Inst : Albert Multiplr: 1.00

Sample: SBD0319S1
Misc: V4-077-16,V4-077-05
MS Integration Params: rteint.p
Quant Time: Mar 22 8:28 2021

Quant Results File: A210315Q.RES

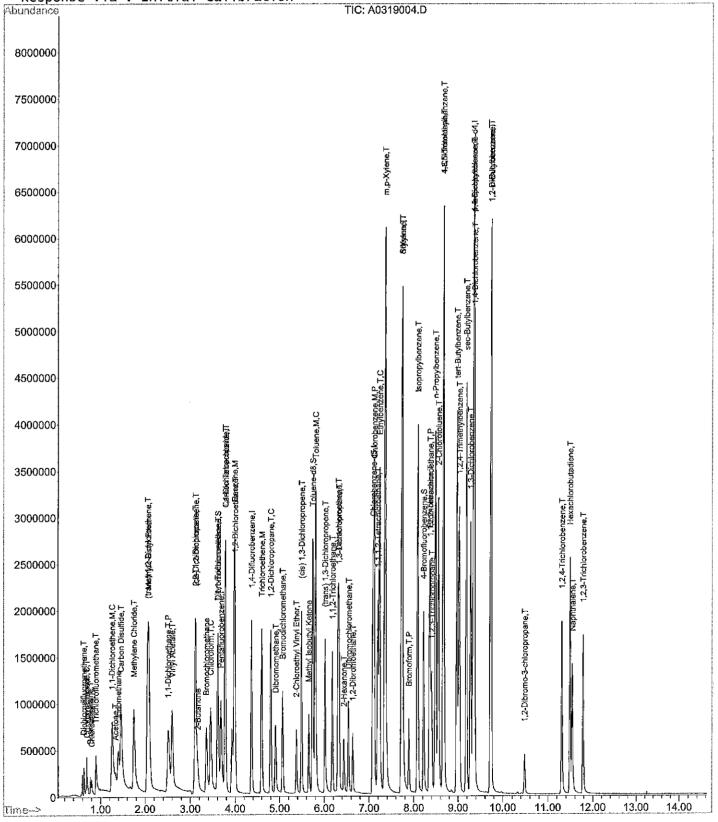
Quant Method : F:\HPCHEM\1\METHODS\A210315Q.M (RTE Integrator)
Title : 8260 Calibration
Last Update : Tue Mar 16 09:05:28 2021
Response via : Initial Calibration
DataAcq Meth : A210315Q

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
48) Ethylbenzene	7.23	91	2780085	55.69 ppb	99
49) m,p-xylene	7.35	91	4580505	108.27 ppb	99
50) o-Xylene	7.72	91	2510179	51.31 ppb	. 99
51) Styrene	7.73	104	2085447	59.20 ppb	100
52) Bromoform	7.89	173	335535	53.54 ppb	_ 99
53) Isopropylbenzene	8.08	105	2906714	59.33 ppb	100
56) Bromobenzene	8.35	156	641113	54.27 ppb	98
57) 1,1,2,2-Tetrachloroethane	8.37	83	719065	59.76 ppb	99
58) 1,2,3-Trichloropropane	8.40	75	458793	58.42 ppb	97
59) n-Propylbenzene	8.48	91	3803086	57.42 ppb	100
60) 2-Chlorotoluene	8.55	126	672782	54.51 ppb	99
61) 4-Chlorotoluene	8.66	126	726700	58.40 ppb	99
62) 1,3,5-Trimethylbenzene	8.66	105	2446220	60.80 ppb	99
63) tert-Butylbenzene	8.97	119	1980488	55.74 ppb	98
64) 1,2,4-Trimethylbenzene	9.02	105	2295827	47.79 ppb	99
65) sec-Butylbenzene	9.18	105	3460160	58.17 ppb	100
66) 1,3-Dichlorobenzene	9.28	146	1364938	55.29 ppb	99
67) p-Isopropyltoluene 68) 1,4-Dichlorobenzene	9.34	119	2565752	56.54 ppb	100
68) 1,4-Dichlorobenzene	9.36	146	1425152	54.22 ppb	99
69) 1,2-Dichlorobenzene	9.72	146	1276711	57.26 ppb	99
70) n-Butylbenzene	9.73	91	2698853	62.20 ppb	100
71) 1,2-Dibromo-3-chloropropan	10.48	157	114749	54.73 ppb	97
72) 1,2,4-Trichlorobenzene	11.31	180	613303	45.41 ppb	97
73) Hexachlorobutadiene	$\frac{11.49}{11.54}$		449913	54.77 ppb	99
74) Naphthalene	$\frac{11.54}{11.79}$	128	1105791	42.76 ppb	98
75) 1,2,3-Trichlorobenzene	11.78	180	549730	44.19 ppb	99

Data File : X:\VOLATILE\ALBERT\DATA\A210319\A0319004.D
Acq On : 19 Mar 2021 9:50 am O Vial: 4

Acq On Sample SBD0319S1

Operator: : Albert Inst Multiplr: 1.00


Misc : V4-077-16, V4-077-05 MS Integration Params: rteint.p Quant Time: Mar 22 8:28 2021

Quant Results File: A210315Q.RES

: F:\HPCHEM\1\METHODS\A210323Q.M (RTE Integrator) : 8260 Calibration Method

Title

Last Update : Wed Mar 24 09:41:12 2021 Response via : Initial Calibration

Data File : W032302.D

Data File : W032302.D

Acq On : 23 Mar 2021 9:04 am

Operator :

Sample : SB0323S1 (CCV0323S1)

Misc : V4-077-07,V4-077-08

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 23 09:30:56 2021

Quant Method : C:\MSDCHEM\1\METHODS\W210203S.M

Quant Title :

QLast Update: Thu Feb 04 07:56:41 2021 Response via : Initial Calibration

Compound	R.T.	Q1on	Response	Conc Ur	nits	Dev	(Min)
Internal Standards							- He en e
1) Pentafluorobenzene	4.091	168	158802	50.00	daa		0.00
28) 1,4-Difluorobenzene	4.697						0.00
38) Chlorobenzene-d5	7.254						0.00
55) 1,4-Dichlorobenzene-d4	9,466		109811	50.00			0.00
, -,							
System Monitoring Compounds							
23) Dibromofluoromethane	4.045			49.68			0.00
	Range 76			ry =	99.	36%	
36) Toluene-d8	5.962			47.77			0,00
	Range 78					54%	
54) 4-Bromofluorobenzene	8.360						0.00
Spiked Amount 50.000	Range 71	- 130	Recove:	ry =	100.	94왕	
Manual Carra and de						O	.]
Target Compounds 2) Dichlorodifluoromethane	1.091	85	60973	62.62	nnh	QV	alue 100
3) Chloromethane	1.216		51019	36.26	ppb	#	100
4) Vinyl Chloride	1.290		52627	41.29	ppb	ır	97
5) Bromomethane	1.511		22455m	42.80			٠,
6) Chloroethane	1.585		28572	42.18			98
7) Trichlorofluoromethane	1,777		99548	50.98			99
8) 1,1-Dichloroethene	2.191		67189	41.29			100
9) Acetone	2,242		16612	52.68			98
10) Iodomethane	2,310		45496m	40.51			
11) Carbon Disulfide	2.361	76	104460m	37.26			
12) Methylene Chloride	2.588	49	59032m	34.02	ppb		
13) (trans) 1,2-Dichloroet	. 2.815	61	66760m	40.42			
14) Methyl t-Butyl Ether	2.821		136563	52.01			97
15) 1,1-Dichloroethane	3.161		84093	41.05			98
16) Vinyl Acetate	3.218		90314	42.82			97
17) 2,2-Dichloropropane	3.643		79319	51.25			99
18) (cis) 1,2-Dichloroethene			79000	40.10			99
19) 2-Butanone	3.666		21693	45.59		ш	98 84
20) Bromochloromethane	3.841		29786	49.51		#	98
21) Chloroform22) 1,1,1-Trichloroethane	3.909 4.062	83 97	90908 91375	46.39 47.82		#	100
24) Carbon Tetrachloride	4.198		83972	47.44		117	92
25) 1,1-Dichloropropene	4.198		64569				98
26) Benzene	4.369		162160	43.32			98
27) 1,2-Dichloroethane	4.386	62	84296	48.94			99
29) Trichloroethene		130		50.16			98
30) 1,2-Dichloropropane	5.106	63	45775	40.91	ppb		97
31) Dibromomethane	5,202	174	34164	53.38			96
32) Bromodichloromethane	5,338	83	71009	48.98			96
33) 2-Chloroethyl Vinyl Ethe	er 5.610	63	11393	53.70	ppb	#	90
34) (cis) 1,3-Dichloroproper		75	79235	50.35			100
35) Methyl Isobutyl Ketone	5.871	43	49281	50.25		#	95
37) Toluene	6.018	91	185826	43.49			98
39) (trans) 1,3-Dichloropr		75	73391	53,20			99
40) 1,1,2-Trichloroethane	6.381		38083	46.65			97
41) Tetrachloroethene	6.506	166	53562	50.55			98
42) 1,3-Dichloropropane	6.529	76	70040	49.57	aqq		99

Data File : W032302.D

Acq On : 23 Mar 2021 9:04 am Operator :

Sample : SB0323S1 (CCV0323S1)
Misc : V4-077-07,V4-077-08
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 23 09:30:56 2021

Quant Method : C:\MSDCHEM\1\METHODS\W210203S.M

Quant Title :

QLast Update : Thu Feb 04 07:56:41 2021 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
43) 2-Hexanone	6.614	43	35909	44.81 ppb	# 94
44) Dibromochloromethane	6.733	129	54826	51,71 ppb	99
45) 1,2-Dibromoethane	6.829	107	43246	52,85 ppb	96
46) Chlorobenzene	7.283	112	126620	47.61 ppb	99
47) 1,1,1,2-Tetrachloroethane	7.362	133	49340	52.04 ppb	97
48) Ethylbenzene	7.391	91	224302	45.96 ppb	98
49) m,p-Xylene	7.498	91	359404	91.48 ppb	99
50) o-Xylene	7.867	91	186091	46.88 ppb	99
51) Styrene	7.878	104	141231	47.82 ppb	100
52) Bromoform	8.048	173	40197	60.85 ppb	99
53) Isopropylbenzene	8.218	105	234810	49.37 ppb	100
56) Bromobenzene	8.496	156	57434	49.48 ppb	100
57) 1,1,2,2-Tetrachloroethane	8.507	83	52675	52.03 ppb	99
58) 1,2,3-Trichloropropane	8.541	75	45633	56,39 ppb	95
59) n-Propylbenzene	8.609	91	275418	50.13 ppb	99
60) 2-Chlorotoluene	8.683	126	52961	50.72 ppb	99
61) 4-Chlorotoluene	8.791	126	55221	51.74 ppb	99
62) 1,3,5-Trimethylbenzene	8.785	105	197235	49.92 ppb	99
63) tert-Butylbenzene	9.097	119	175669	51.28 ppb	98
64) 1,2,4-Trimethylbenzene	9.142	105	199682	50.26 ppb	98
65) sec-Butylbenzene	9.307	105	243515	50.15 ppb	99
66) 1,3-Dichlorobenzene	9.403	146	106558	50.57 ppb	100
67) p-Isopropyltoluene	9.454	119	215695	50.40 ppb	98
68) 1,4-Dichlorobenzene	9.488	146	112923	52,17 ppb	99
69) 1,2-Dichlorobenzene	9.845	146	102216	51.96 ppb	100
70) n-Butylbenzene	9.851	91	198515	49.11 ppb	97
71) 1,2-Dibromo-3-chloropr	10,611	157	13736	64.94 ppb	99
72) 1,2,4-Trichlorobenzene	11.427	180	83683	57.23 ppb	100
73) Hexachlorobutadiene	11.609	225	54009	54.31 ppb	100
74) Naphthalene	11.660	128	183642	59.79 ppb	99
75) 1,2,3-Trichlorobenzene	11.904	180	75631	56.07 ppb	99

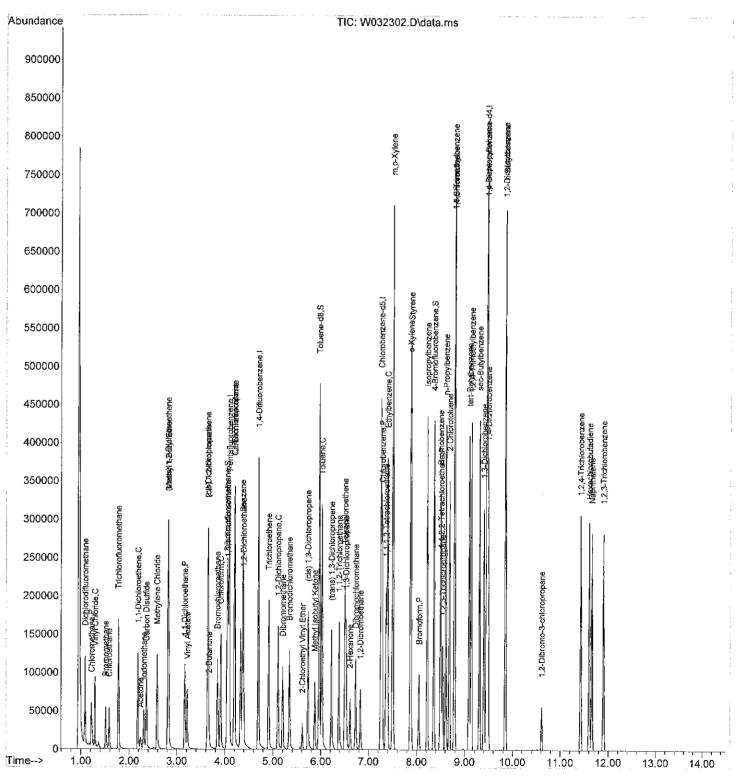
^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File: W032302.D

23 Mar 2021 Acq On 9:04 am

Operator

Sample : SB0323S1 (CCV0323S1) Misc : V4-077-07, V4-077-08 ALS Vial : 2 Sample Multiplier: 1


Quant Time: Mar 23 09:30:56 2021

Quant Method: C:\MSDCHEM\1\METHODS\W210203S.M

Quant Title

QLast Update: Thu Feb 04 07:56:41 2021

Response via : Initial Calibration

Data File: W032303.D

Acq On : 23 Mar 2021

Operator :

Sample : SBD0323S1 Misc : V4-077-07, V4-077-08 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 23 09:47:58 2021

Quant Method : C:\MSDCHEM\1\METHODS\W210203S.M

Quant Title :

QLast Update: Thu Feb 04 07:56:41 2021 Response via: Initial Calibration

Compound		R.T.	QIon	Response	Conc U	nits	Dev	(Min)
Internal Standard	ls							
1) Pentafluorok		4.091	168	158967	50,00	daa		0.00
28) 1,4-Difluoro		4.697		228116	50,00			0.00
38) Chlorobenzer		7.255		202771	50.00			0.00
55) 1,4-Dichloro	benzene-d4	9.466		110347	50.00			0.00
System Monitoring						_		
23) Dibromofluor			111		48.21			0.00
Spiked Amount	50.000		- 131		_		42%	
36) Toluene-d8	E0 000	5.962			48.02		0.49	0,00
Spiked Amount 54) 4-Bromofluor		Range 78 8.354		Recove 115646			04%	0 00
Spiked Amount		Range 71			50,95	ррь 101,	a n s	0.00
bpined imodife	30,000	Range /±	130	100000	y	101.	20%	
Target Compounds							Qva	alue
2) Dichlorodifl	uoromethane	1.092	85	61414	63.00	ppb		100
Chloromethar		1.216	50	52480	37.26		#	100
4) Vinyl Chlori		1,290		52494	41.14			96
5) Bromomethane		1.511		25535	48.62			99
6) Chloroethane		1.585		29630	43.70			97
7) Trichloroflu		1.778		107013	54.75			98
8) 1,1-Dichloro	ethene	2.191		71077	43.63			98
9) Acetone		2.242		15098	47.16			95
10) Iodomethane 11) Carbon Disul	£130	2.311 2.362		45443	40.42			99
12) Methylene Ch		2.588	49	106395 58835	37.91			99
13) (trans) 1,2-				67969	33.87 41.11			100 99
14) Methyl t-But		2.821	73	137706	52.39			96
15) 1,1-Dichloro	_	3.161	63	90163	43.96			100
16) Vinyl Acetat		3.218	43	89407	42.35			97
17) 2,2-Dichlord		3.643		81774	52.79			97
18) (cis) 1,2-Di		3,643	61	83334	42.25			99
19) 2-Butanone		3.666	43	20668	43.39			96
20) Bromochlorom	nethane	3.841	130	31424	52.18	ppb	#	82
21) Chloroform		3.915	83	97404	49.66			100
22) 1,1,1-Trichl		4.062		96351	50.37		#	100
24) Carbon Tetra		4.199		89837	50.70			99
25) 1,1-Dichloro	propene	4.199		69838	47.59			98
26) Benzene	othono	4.369		175511	46.84			97 25
27) 1,2-Dichloro 29) Trichloroeth		4.386 4.913	62°	88623 50661	51.40	ppp		95
30) 1,2-Dichloro		5.106	63	46661	51,39 42.00			97 99
31) Dibromometha		5,202	$\frac{174}{}$	33400	52,57			99 97
32) Bromodichlor		5,338	83	73449	51.02			99
	vl Vinyl Ethe		63	11025	52.34			95
34) (cis) 1,3-Di			75	82700	52.93			99
35) Methyl Isobu		5.871	43	45883	47.12		#	95
37) Toluene	•	6.019	91	197020	46.44		••	99
	Dichloropr		75	75965	55.09			99
40) 1,1,2-Trichl		6.381	97	39676	48,62			97
41) Tetrachloroe		6.506	166	56917	53.74	ppb		100
42) 1,3-Dichloro	propane	6.529	76	70643	50.02	ppb		99

Data File: W032303.D

Acq On : 23 Mar 2021 9:33 am Operator :

Sample : SBD0323S1 Misc : V4-077-07, V4-077-08 ALS Vial : 3 Sample Multiplier: 1

Quant Time: Mar 23 09:47:58 2021

Quant Method : C:\MSDCHEM\1\METHODS\W210203S.M

Quant Title : QLast Update : Thu Feb 04 07:56:41 2021 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
43) 2-Hexanone	6,614	43	32212	40.21 ppb	# 97
44) Dibromochloromethane	6.727	129	55201	52.08 ppb	98
45) 1,2-Dibromoethane	6.829	107	41730	51.02 ppb	97
46) Chlorobenzene	7.283	112	129140	48.58 ppb	96
47) 1,1,1,2-Tetrachloroethane	7,362	133	52365	55.26 ppb	97
48) Ethylbenzene	7.391	91	235044	48.18 ppb	100
49) m,p-Xylene	7.498	91	379471	96,64 ppb	99
50) o-Xylene	7.867	91	197991	49.90 ppb	98
51) Styrene	7.884	104	149056	50.49 ppb	100
52) Bromoform	8.048	173	38665	58.56 ppb	99
53) Isopropylbenzene	8,218	105	243307	51.18 ppb	99
56) Bromobenzene	8.496	156	59104	50.67 ppb	100
57) 1,1,2,2-Tetrachloroethane	8,502	83	51530	50.66 ppb	98
58) 1,2,3-Trichloropropane	8,542	75	43012	52.89 ppb	95
59) n-Propylbenzene	8.610	91	280173	50.75 ppb	98
60) 2-Chlorotoluene	8.683	126	55502	52.89 ppb	98
61) 4-Chlorotoluene	8.791	126	58187	54.26 ppb	98
62) 1,3,5-Trimethylbenzene	8.785	105	204610	51.53 ppb	100
63) tert-Butylbenzene	9.097	119	181460	52.72 ppb	99
64) 1,2,4-Trimethylbenzene	9.143	105	210712	52.78 ppb	99
65) sec-Butylbenzene	9.307	105	261359	53.56 ppb	100
66) 1,3-Dichlorobenzene	9.403	146	115615	54.60 ppb	99
67) p-Isopropyltoluene	9.454	119	231916	53.92 ppb	99
68) 1,4-Dichlorobenzene	9.488	146	118251	54.36 ppb	97
69) 1,2-Dichlorobenzene	9.846	146	110121	55.71 ppb	99
70) n-Butylbenzene	9.851	91	209601	51.61 ppb	97
71) 1,2-Dibromo-3-chloropr	10.611	157	12453	58.59 ppb	99
72) 1,2,4-Trichlorobenzene	11.427	180	86569	58.91 ppb	98
73) Hexachlorobutadiene	11.609	225	55387	55.43 ppb	99
74) Naphthalene	11.666	128	186545	60.44 ppb	98
75) 1,2,3-Trichlorobenzene	11.904	180	78370	57.82 ppb	99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

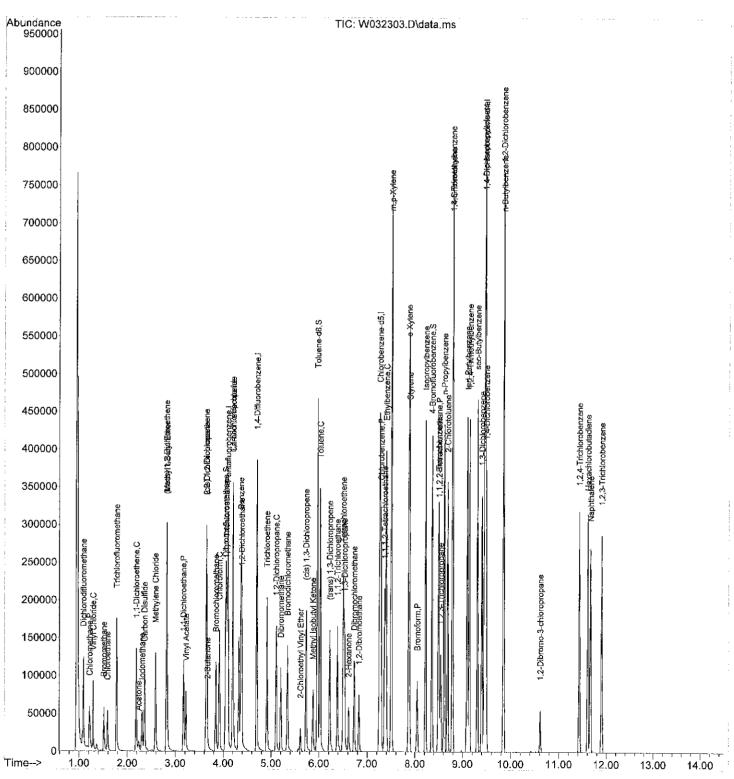
Data File: W032303.D

Acq On : 23 Mar 2021 9:33 am

Operator

Sample : SBD0323S1

Misc : V4-077-07, V4-077-08 ALS Vial : 3 Sample Multiplier: 1


Quant Time: Mar 23 09:47:58 2021

Quant Method : C:\MSDCHEM\1\METHODS\W210203S.M

Quant Title :

QLast Update: Thu Feb 04 07:56:41 2021

Response via : Initial Calibration

Evaluate Continuing Calibration Report

vial: 3

Operator:

Data File: X:\VOLATILE\ALBERT\DATA\A210319\A0319003.D
Acq On: 19 Mar 2021 9:21 am Operation of the second of the s Inst : Albert Multiplr: 1.00 MS Integration Params: rteint.p

Method : F:\HPCHEM\1\METHODS\A210315Q.M (RTE Integrator)
Title : 8260 Calibration
Last Update : Tue Mar 16 09:05:28 2021
Response via : Multiple Level Calibration

: 0.100 Min. Rel. Area : 50% Max. R.T. Dev 0.10min

Max. RRF Dev: 20% Max. Rel. Area: 200%

Mux.	RRI Dev 1 20% Max Ret	. Alea . 200%	
	Compound	Amount Calc.	%Dev Area% Dev(min)
1 I 2 P, T 4 C, T 7 T M, C 9 T T 10 T T 11 T T 12 T T 14 T, P 16 T T 17 T T 18 T T 19 20 T, C 22 T S T T 22 T S T T 23 T T 24 T T 26 T T	Pentafluorobenzene Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Acetone Iodomethane Carbon Disulfide Methylene Chloride (trans) 1,2-Dichloroethene Methyl t-Butyl Ether 1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropane (cis) 1,2-Dichloroethene 2-Butanone Bromochloromethane Chloroform 1,1,1-Trichloroethane Dibromofluoromethane Carbon Tetrachloride 1,1-Dichloropropene Benzene 1,2-Dichloroethane	50.000 50.000 50.000 29.039 50.000 38.101 50.000 41.024 50.000 48.837 50.000 48.837 50.000 48.747 50.000 48.747 50.000 54.332 50.000 51.399 50.000 51.399 50.000 52.817 50.000 52.817 50.000 52.817 50.000 52.076 50.000 52.076 50.000 54.713 50.000 54.713 50.000 54.713 50.000 55.1023 50.000 56.150 50.000 56.150 50.000 56.150 50.000 56.150 50.000 56.581 50.000 56.987 50.000 56.987 50.000 55.086	0.0 115 0.01 41.9# 71 0.00 23.8# 95 0.00 15.9 105 0.00 18.0 93 0.00 2.3 110 0.00 2.4 109 0.00 2.5 115 0.02 5.4 114 0.00 -8.7 114 0.01 -2.8 119 0.01 13.6 111 0.01 -5.6 120 0.01 -2.0 114 0.00 5.7 113 0.01 -4.2 109 0.01 -9.4 129 0.01 -9.4 129 0.01 -16.2 132 0.01 -9.4 129 0.01 -16.2 132 0.01 -9.4 129 0.01 -16.2 132 0.01 -1.3 124 0.01 -0.0 110 0.00 -12.3 125 0.02 -10.3 124 0.01 -0.8 116 0.01 -10.2 125 0.01 -13.2 127 0.01 -14.0 128 0.01 -10.2 125 0.00
28 I 29 M 30 T,C 31 T 32 T 33 T 34 T 35 36 S 37 M,C	1,4-Difluorobenzene Trichloroethene 1,2-Dichloropropane Dibromomethane Bromodichloromethane 2-Chloroethyl Vinyl Ether (cis) 1,3-Dichloropropene Methyl Isobutyl Ketone Toluene-d8 Toluene	50.000 54.761 50.000 53.404 50.000 55.198 50.000 54.399 50.000 52.616 50.000 57.100 50.000 53.612 50.000 49.888 50.000 57.329	-9.5 126 0.01 -6.8 125 0.00 -10.4 123 0.01 -8.8 127 0.01 -5.2 126 0.00 -14.2 130 0.00 -7.2 127 0.00 0.2 118 0.00 -14.7 130 0.00
41 T 42 T 43 T 44 T 45 T 46 M,P 47 T 48 T,C 49 T 50 T 51 T 52 T,P	m,p-Xylene o-Xylene Styrene Bromoform Isopropylbenzene	50.000 56.001 50.000 55.464 50.000 53.879 50.000 55.235 50.000 55.831 50.000 55.855 50.000 56.669 100.000 112.010 50.000 53.263 50.000 60.725 50.000 55.955	0.0 117 0.01 -15.3 132 0.01 -9.4 128 0.00 -12.0 127 0.01 -7.8 128 0.00 -10.5 128 0.01 -11.7 127 0.01 -11.7 130 0.01 -11.8 128 0.00 -13.3 128 0.01 -12.0 122 0.01 -6.5 130 0.01 -21.5# 129 0.01 -11.9 124 0.00 -22.1# 130 0.00

Evaluate Continuing Calibration Report

Vial: 3

Operator:

Data File: X:\VOLATILE\ALBERT\DATA\A210319\A0319003.D
Acq On: 19 Mar 2021 9:21 am Op
Sample: SB0319S1 (CCV0319S1) In
Misc: V4-077-16,V4-077-05 Mu
MS Integration Params: rteint.p Inst : Albert Multiplr: 1.00

: F:\HPCHEM\1\METHODS\A210315Q.M (RTE Integrator) : 8260 Calibration Method

Title

Last Update : Tue Mar 16 09:05:28 2021 Response via: Multiple Level Calibration

Min. RRF : 0.100 Min. Rel. Area : 50% Max. R.T. Dev 0.10min Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	Amount	calc.	%Dev Area% Dev(min)
54 S 55 I 56 T	4-Bromofluorobenzene 1,4-Dichlorobenzene-d4 Bromobenzene	50.000 50.000 50.000 50.000	52.979 50.000 57.864	-6.0 124 0.00 0.0 108 0.00 -15.7 131 0.00 -23.1# 125 0.00
57 T,P 58 T 59 T	1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane n-Propylbenzene	50.000 50.000	61.574 59.024 59.658	-18.0 125 0.01 -19.3 130 0.01
60 T 61 T 62 T	2-Chlorotoluene 4-Chlorotoluene 1,3,5-Trimethylbenzene	50.000 50.000 50.000	57.168 60.523 62.939	-14.3 133 0.01 -21.0# 128 0.01 -25.9# 126 0.00
63 T 64 T	tert-Butylbenzene 1,2,4-Trimethylbenzene	50.000 50.000 50.000	58.560 49.270 60.815	-17.1 132 0.01 1.5 128 0.01
65 T 66 T 67 T	sec-Butylbenzene 1,3-Dichlorobenzene p-Isopropyltoluene	50.000 50.000	58.190 58.571	-16.4 127 0.01 -17.1 123 0.00
68 T 69 T 70 T	1,4-Dichlorobenzene 1,2-Dichlorobenzene n-Butylbenzene	50.000 50.000 50.000	56.423 60.132 64.087	-12.8 126 0.01 -20.3# 126 0.00 -28.2# 123 0.01
71 T 72 T 73 T	1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene	50.000 50.000 50.000	55.966 47.431 56.687	-11.9 114 0.00 5.1 128 0.01 -13.4 130 0.01
74 T 75 T	Naphthalene 1,2,3-Trichlorobenzene	50.000	44.820 46.030	10.4 123 0.00 7.9 126 0.01

Inst : Albert Multiplr: 1.00

Quant Time: Mar 19 10:06 2021 Quant Results File: A210315Q.RES

Quant Method: F:\HPCHEM\1\METHODS\A210315Q.M (RTE Integrator)
Title: 8260 Calibration
Last Update: Tue Mar 16 09:05:28 2021
Response via: Initial Calibration

DataAcq Meth : A210315Q

Internal Standards	R.T.	QIon	Response	Conc Ur	nits	Dev(Min)
1) Pentafluorobenzene 28) 1,4-Difluorobenzene 38) Chlorobenzene-d5 55) 1,4-Dichlorobenzene-d4	3.68 4.37 7.08 9.34	168 114 117 152	878106 1512951 1348583 789146	50.00	ppb ppb	$\substack{0.02\\0.01}$
System Monitoring Compounds 23) Dibromofluoromethane Spiked Amount 50.000 Ra 36) Toluene-d8 Spiked Amount 50.000 Ra 54) 4-Bromofluorobenzene	3.61 ange 74 5.74 ange 78	111 - 131 - 98 - 128 - 95	Recove 1760640 Recove 730652	ry = 49.89 ry = 52.98	100, ppb 99, ppb	78% 0.00
Target Compounds 2) Dichlorodifluoromethane 3) Chloromethane 4) Vinyl Chloride 5) Bromomethane 6) Chloroethane 7) Trichlorofluoromethane	0.64 0.70 0.69 0.78 0.80 0.90	101	143493 158872 136644 74007 61319 631763m	42.04 41.02 48.84 48.81	ppb ppb ppb ppb	Qvalue 98 100 97 # 73 91
 8) 1,1-Dichloroethene 9) Acetone 10) Iodomethane 11) Carbon Disulfide 12) Methylene Chloride 13) (trans) 1,2-Dichloroethene 14) Methyl t-Butyl Ether 	1.26 1.33 1.40 1.46 1.75 2.06		1144015m 240103 903729m 2319464 1108000 1133886m 1847953	54.33 51.40 43.21 52.82	ppb ppb ppb ppb	98 100 96 100
15) 1,1-Dichloroethane 16) Vinyl Acetate 17) 2,2-Dichloropropane 18) (cis) 1,2-Dichloroethene 19) 2-Butanone 20) Bromochloromethane	2.08 2.52 2.60 3.12 3.12 3.17 3.36	63	1563056m 1943746 754006 1009275m 281229 298331	47.17 52.08 54.71 58.10 54.01	ppb ppb ppb ppb	100 100 96 87
21) Chloroform22) 1,1,1-Trichloroethane24) Carbon Tetrachloride25) 1,1-Dichloropropene26) Benzene	3.46 3.61 3.78 3.78 3.98	0.0	926837m 695691 628052 814080 2229258 681281 571880 652790 320125	EC 1E	ppb ppb ppb ppb ppb	99 100 100 100 98
29) Trichloroethene 30) 1,2-Dichloropropane 31) Dibromomethane 32) Bromodichloromethane 33) 2-Chloroethyl Vinyl Ether 34) (cis) 1,3-Dichloropropene	5.07 5.37 5.49	63 75	277357 966873	52.62 57.10	ppb ppb ppb ppb ppb	100 98 96 100 99
35) Methyl Isobutyl Ketone 37) Toluene 39) (trans) 1,3-Dichloroproper 40) 1,1,2-Trichloroethane 41) Tetrachloroethene 42) 1,3-Dichloropropane 43) 2-Hexanone	5.65 5.80 6.02 6.18 6.31 6.33 6.44	43 91 75 97 166 76 43	659218 2539902 766315 439800 634074 815358 438635	53.61 57.33 57.63 54.71 56.00 55.46 53.88	ppb ppb ppb ppb	99 99 98 99 99 100 97
44) Dibromochloromethane 45) 1,2-Dibromoethane 46) Chlorobenzene 47) 1,1,1,2-Tetrachloroethane	6.54 6.64 7.11 7.19	129 107 112 133	469774 437869 1644918 509730	55.23 55.83	ppb ppb ppb	99 98 99 98

m.

(QT Reviewed) Quantitation Report

Data File : X:\VOLATILE\ALBERT\DATA\A210319\A0319003.D Vial: 3 Acq On : 19 Mar 2021 9:21 am Operator:

Acq On

Acq On : 19 Mar 2021 5.21 am Sample : SB0319S1 (CCV0319S1) Misc : V4-077-16,V4-077-05 MS Integration Params: rteint.p Quant Time: Mar 19 10:06 2021 Inst : Albert Multiplr: 1.00

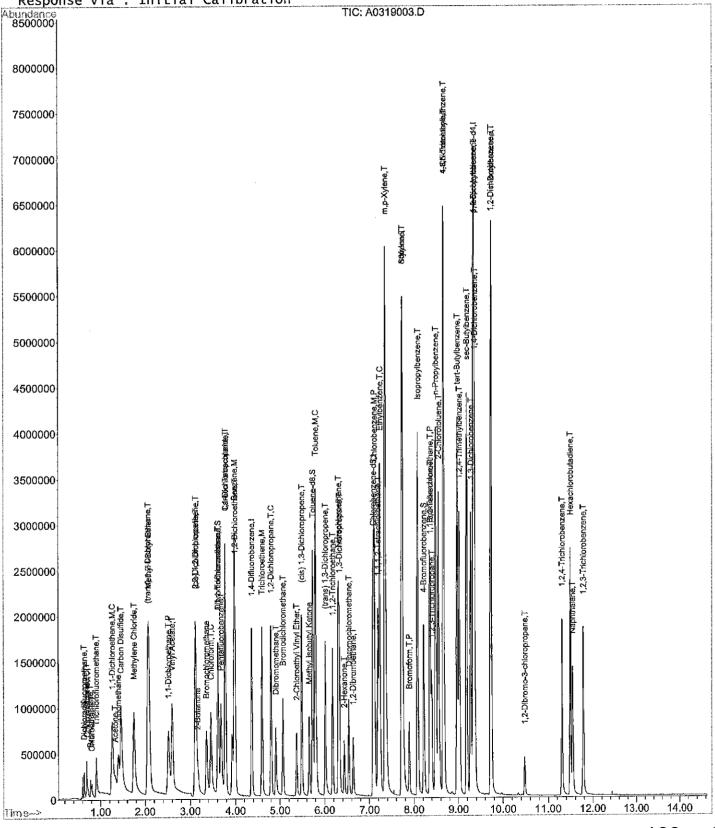
Quant Results File: A210315Q.RES

Quant Method: F:\HPCHEM\1\METHODS\A210315Q.M (RTE Integrator)
Title: 8260 Calibration
Last Update response via: Initial Calibration
DataAcq Meth: A210315Q

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
48) Ethylbenzene	7,23	91	2816706	56.67 ppb	99
49) m,p-Xylene	7.35	91	4718620	112.01 ppb	99
50) o-Xylene	7.72	91	2595601	53.26 ppb	. 99
51) Styrene	7.73	104	2130091	60.73 ppb	100
52) Bromoform	7.89	173	349211	55.95 ppb	99
53) Isopropylbenzene	8.08	105	2978316	61.05 ppb	100
56) Bromobenzene	8.35	156	675892	57.86 ppb	96
57) 1,1,2,2-Tetrachloroethane	8.37	83	732649	61.57 ppb	99
58) 1,2,3-Trichloropropane	8.40	75	458335	59.02 ppb	99
59) n-Propylbenzene	8.48	91	3907049	59.66 ppb	99
60) 2-Chlorotoluene	8.55	126	697742	57.17 ppb	99
61) 4-Chlorotoluene	8.66	126	744707	60.52 ppb	99
62) 1,3,5-Trimethylbenzene	8.66	105	2503817	62.94 ppb	100
63) tert-Butylbenzene	8.97	119		58.56 ppb	98
64) 1,2,4-Trimethylbenzene	9.02	105	2348974	49.27 ppb	99
65) sec-Butylbenzene	9.18	105	3577046	60.82 ppb	99
66) 1,3-Dichlorobenzene	9.28	146	1420515	58.19 ppb	99
67) p-Isopropyltoluene	9.33	119	2628084	58.57 ppb	99
68) 1,4-Dichlorobenzene	9.37	146	1466404	56.42 ppb	99
69) 1,2-Dichlorobenzene	9.72	146	1325721	60.13 ppb	100
70) n-Butylbenzene	9.74	91	2749556	64.09 ppb	100
71) 1,2-Dibromo-3-chloropropan	10.48	157	116026	55.97 ppb	93
72) 1,2,4-Trichlorobenzene	11.31	180	637851	47.43 ppb	97
73) Hexachlorobutadiene	11.50	225	460440	56.69 ppb	99
74) Naphthalene	$\frac{11.54}{11.70}$	128	1158883	44.82 ppb	99 97
75) 1,2,3-Trichlorobenzene	11.79	180	570382	46.03 ppb	97

Quantitation Report

Vial: 3


Data File: X:\VOLATILE\ALBERT\DATA\A210319\A0319003.D
Acq on: 19 Mar 2021 9:21 am Or
Sample: SB0319S1 (CCV0319S1) Ir
Misc: V4-077-16,V4-077-05 ML Operator: Inst : Albert Multiplr: 1.00

MS Integration Params: rteint.p Quant Time: Mar 19 10:06 2021 Quant Results File: A210315Q.RES

: F:\HPCHEM\1\METHODS\A210323Q.M (RTE Integrator) Method

: 8260 Calibration : Wed Mar 24 09:41:12 2021 Title

Last Update Response via : Initial Calibration

Evaluate Continuing Calibration Report

Data Path : C:\msdchem\1\data\W210323\

Data File: W032302.D

Acq On : 23 Mar 2021 Operator :

Sample : SB0323S1 (CCV0323S1) Misc : V4-077-07, V4-077-08 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 23 09:30:56 2021

Quant Method : C:\MSDCHEM\1\METHODS\W210203S.M

Quant Title :

QLast Update: Thu Feb 04 07:56:41 2021

Response via : Initial Calibration

Min. RRF ; 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 150%

·~ .		Compound	Amount	Calc,	%Dev Ai	rea%	Dev(min)
1	I	Pentafluorobenzene	50,000	50.000	0.0	90	0.00
2		Dichlorodifluoromethane	50.000	62.617	-25.2#	122	0.00
3	P	Chloromethane	50.000	36,257	27.5#	70	0,00
4	C	Vinyl Chloride	50,000	41.290	17.4	75	0.00
5		Bromomethane	50.000	42.804	14.4	80	0.00
6		Chloroethane	50.000	42,182	15.6	75	0.00
7		Trichlorofluoromethane	50.000	50.983	-2.0	93	0,00
8	C	1,1-Dichloroethene	50,000	41.289	17.4	71	0.00
9		Acetone	50.000	52.675	-5.3	100	0.00
10		Iodomethane	50.000	40.514	19.0	69	0.00
11		Carbon Disulfide	50,000	37.256	25.5#	69	0.00
12		Methylene Chloride	50.000	34.015	32.0#	65	0.00
13		(trans) 1,2-Dichloroethene	50.000	40.422	19.2	73	0.00
14		Methyl t-Butyl Ether	50.000	52,013	-4.0	91	0.00
15	P	1,1-Dichloroethane	50.000	41.047	17.9	73	0.00
16		Vinyl Acetate	50,000	42,824	14.4	78	0,00
17		2,2-Dichloropropane	50.000	51.254	~2.5	92	0.00
18		(cis) 1,2-Dichloroethene	50.000	40.099	19.8	73	0.00
19		2-Butanone	50.000	45.590	8.8	86	0.00
20		Bromochloromethane	50.000	49.515	1.0	87	0.00
21	C	Chloroform	50.000	46.394	7.2	80	0.00
22		1,1,1-Trichloroethane	50.000	47.820	4.4	88	0.00
23	S	Dibromofluoromethane	50.000	49.676	0,6	86	0.00
24		Carbon Tetrachloride	50.000	47.441	5.1	89	0.00
25		1,1-Dichloropropene	50.000	44.047	11.9	82	0.00
26		Benzene	50.000	43.319	13.4	78	0.00
27		1,2-Dichloroethane	50.000	48.941	2.1	84	0.00
28	I	1,4-Difluorobenzene	50.000	50.000	0.0	86	0.00
29		Trichloroethene	50.000	50.160	-0.3	86	0.00
30	C	1,2-Dichloropropane	50.000	40.906	18.2	72	0.00
31		Dibromomethane	50.000	53.383	-6.8	90	0,00
32		Bromodichloromethane	50.000	48.977	2.0	81	0.00
33		2-Chloroethyl Vinyl Ether	50.000	53.698	-7.4	98	0.00
34		(cis) 1,3-Dichloropropene	50.000	50.352	-0.7	84	0.00
35		Methyl Isobutyl Ketone	50,000	50.251	-0.5	83	0.00
36		Toluene-d8	50,000	47.769	4.5	81	0.00
37	С	Toluene	50.000	43.485	13.0	80	0.00
38	I	Chlorobenzene-d5	50,000	50.000	0.0	86	0.00
39		(trans) 1,3-Dichloropropene	50.000	53.201	-6.4	89	0.00
40		1,1,2-Trichloroethane	50.000	46.649	6.7	84	0.00
41		Tetrachloroethene	50.000	50.551	-1.1	87	0.00
42		1,3-Dichloropropane	50.000	49.570	0.9	84	0.00
43		2-Hexanone	50.000	44.807	10.4	84	0.00
44		Dibromochloromethane	50.000	51.706	-3.4	87	0.00
45		1,2-Dibromoethane	50.000	52.847	-5.7	93	0.00
46	P	Chlorobenzene	50.000	47.608	4.8	85	0.00

Evaluate Continuing Calibration Report

Data Path : C:\msdchem\1\data\W210323\

Data File: W032302.D

Acq On : 23 Mar 2021 Operator : 9:04 am

Sample : SB0323S1 (CCV0323S1)
Misc : V4-077-07, V4-077-08
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 23 09:30:56 2021

Quant Method : C:\MSDCHEM\1\METHODS\W210203S.M

Quant Title : QLast Update : Thu Feb 04 07:56:41 2021

Response via : Initial Calibration

Min, RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 150%

		Compound	Amount	Calc.	%Dev A	rea%	Dev(min)
47		1,1,1,2-Tetrachloroethane	50.000	52.045	-4.1	89	0.00
48	C	Ethylbenzene	50.000	45.958	8.1	83	0.00
49		m,p-Xylene	100.000	91.484	8.5	83	0.00
50		o-Xylene	50.000	46.877	6.2	85	0.00
51		Styrene	50,000	47.816	4.4	82	0.00
52	P	Bromoform	50.000	60.849	-21.7#	101	0.00
53		Isopropylbenzene	50.000	49.374	1.3	87	0.00
54	S	4-Bromofluorobenzene	50.000	50.467	-0.9	84	0.00
55	I	1,4-Dichlorobenzene-d4	50.000	50.000	0.0	84	0.00
56		Bromobenzene	50.000	49.475	1.0	88	0.00
57	P	1,1,2,2-Tetrachloroethane	50,000	52.034	-4.1	88	0.00
58		1,2,3-Trichloropropane	50.000	56.385	-12.8	97	0,00
59		n-Propylbenzene	50.000	50.133	-0,3	86	0,00
60		2-Chlorotoluene	50.000	50.718	-1,4	88	0.00
61		4-Chlorotoluene	50.000	51.744	-3.5	89	0.00
62		1,3,5-Trimethylbenzene	50.000	49.916	0.2	87	0.00
63		tert-Butylbenzene	50.000	51.285	~2.6	88	0.00
64		1,2,4-Trimethylbenzene	50,000	50,261	-0.5	87	0.00
65		sec-Butylbenzene	50.000	50.147	-0.3	85	0.00
66		1,3-Dichlorobenzene	50.000	50.573	-1.1	88	0.00
67		p-Isopropyltoluene	50,000	50.397	-0.8	86	0.00
68		1,4-Dichlorobenzene	50.000	52. 1 66	-4.3	91	0.00
69		1,2-Dichlorobenzene	50.000	51.963	-3.9	87	0.00
70		n-Butylbenzene	50.000	49.114	1.8	84	0.00
71		1,2-Dibromo-3-chloropropane	50.000	64,939	-29.9#	114	0.00
72		1,2,4-Trichlorobenzene	50.000	57.226	-14.5	100	0.00
73		Hexachlorobutadiene	50.000	54.315	-8,6	95	0.00
74		Naphthalene	50.000	59.793	-19.6	105	0.00
75		1,2,3-Trichlorobenzene	50.000	56.070	-12.1	97	0.00

^{(#) =} Out of Range

SPCC's out = 0 CCC's out = 0

Data Path : C:\msdchem\1\data\W210323\
Data File : W032302.D

Acq On : 23 Mar 2021 Operator : 9:04 am

Sample : SB0323S1 (CCV0323S1)
Misc : V4-077-07, V4-077-08
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 23 09:30:56 2021

Quant Method : C:\MSDCHEM\1\METHODS\W210203S.M

Quant Title : QLast Update : Thu Feb 04 07:56:41 2021 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits	Dev	(Min)
Internal Standards		2.55	450000		,		
1) Pentafluorobenzene	4.091	168	158802	50.00			0.00
28) 1,4-Difluorobenzene	4,697			50.00			0.00
38) Chlorobenzene-d5	7,254		202863	50.00			0.00
55) 1,4-Dichlorobenzene-d4	9.466	152	109811	50.00	dqq		0.00
System Monitoring Compounds					_		
23) Dibromofluoromethane	4.045	111	74123	49.68			0.00
<u> </u>			Recover			36%	
36) Toluene-d8	5.962	98		47.77			0.00
Spiked Amount 50.000		- 128				54%	
54) 4-Bromofluorobenzene	8.360			50.47			0.00
Spiked Amount 50.000	Range 71	- 130	Recove	ry =	100.	.94%	
Target Compounds						Qva	alue
Dichlorodifluoromethane	1.091	85	60973	62.62	ppb		100
Chloromethane	1.216	50	51019	36.26	ppb	#	100
4) Vinyl Chloride	1,290	62	52627	41.29	ppb		97
5) Bromomethane	1.511	96	22455m	42,80	ppb		
6) Chloroethane	1.585	64	28572	42,18	dqq		98
7) Trichlorofluoromethane	1.777	101	99548				99
8) 1,1-Dichloroethene	2.191	61	67189	41.29			100
9) Acetone	2.242		16612	52,68			98
10) Iodomethane	2.310	142	45496m	40.51			
11) Carbon Disulfide	2.361		104460m	37.26			
12) Methylene Chloride	2.588	49	59032m	34.02			
13) (trans) 1,2-Dichloroet			66760m	40.42			
14) Methyl t-Butyl Ether	2.821		136563	52.01			97
15) 1,1-Dichloroethane	3.161	63	84093	41.05			98
16) Vinyl Acetate	3,218		90314	42.82			97
17) 2,2-Dichloropropane	3.643		79319	51,25			99
18) (cis) 1,2-Dichloroethene			79000	40.10			99
19) 2-Butanone	3.666	43	21693	45.59			98
20) Bromochloromethane	3.841	130	29786	49.51		#	84
21) Chloroform	3.909	83	90908	46.39		11	98
22) 1,1,1-Trichloroethane	4.062	97	91375	47.82		#	100
24) Carbon Tetrachloride	4.198	117	83972	47,44		17	92
25) 1,1-Dichloropropene	4.198			44.05			98
26) Benzene	4.369	78	64569 162160	43.32			98
27) 1,2-Dichloroethane	4.386	62	84296	48.94			99
29) Trichloroethene	4.913	130	49808	50.16			98
· ·	5.106	63	45775	40.91			97
30) 1,2-Dichloropropane	5.202	174	34164	53.38			96
31) Dibromomethane							96
32) Bromodichloromethane	5.338	83 63	71009	48.98 53.70		#	90
33) 2-Chloroethyl Vinyl Ethe		63 75	11393 79235	50.35		17	100
34) (cis) 1,3-Dichloropropen						#	95
35) Methyl Isobutyl Ketone	5.871	43	49281	50,25		Ħ	95 98
37) Toluene	6.018	9 1	185826	43.49			
39) (trans) 1,3-Dichloropr		75	73391	53,20			99 97
40) 1,1,2-Trichloroethane	6.381	97 166	38083	46,65			97
41) Tetrachloroethene	6.506	166	53562	50.55			98
42) 1,3-Dichloropropane	6.529	76	70040	49,57	ppp		99

Data Path : C:\msdchem\1\data\W210323\

Data File: W032302.D

Acq On : 23 Mar 2021 Operator : 9:04 am

Sample : SB0323S1 (CCV0323S1)
Misc : V4-077-07, V4-077-08
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 23 09:30:56 2021

Quant Method: C:\MSDCHEM\1\METHODS\W210203S.M

Quant Title :

QLast Update: Thu Feb 04 07:56:41 2021 Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
43)	2-Hexanone	6.614	43	35909	44.81 ppb	# 94
44)		6.733	129	54826	51.71 ppb	99
45)	1,2-Dibromoethane	6.829	107	43246	52.85 ppb	96
46)	Chlorobenzene	7.283	112	126620	47.61 ppb	99
47)	1,1,1,2-Tetrachloroethane	7.362	133	49340	52.04 ppb	97
48)	Ethylbenzene	7.391	91	224302	45.96 ppb	98
49)	m,p-Xylene	7.498	91	359404	91.48 ppb	99
50)	o-Xylene	7.867	91	186091	46.88 ppb	99
51)	Styrene	7.878	104	141231	47.82 ppb	100
52)		8.048	173	40197	60.85 ppb	99
53)	Isopropylbenzene	8.218	105	234810	49.37 ppb	100
56)	Bromobenzene	8.496	156	57434	49.48 ppb	100
57)	1,1,2,2-Tetrachloroethane	8.507	83	52675	52.03 ppb	99
58)	1,2,3-Trichloropropane	8.541	75	45633	56.39 ppb	95
59)	n-Propylbenzene	8.609	91	275418	50.13 ppb	99
60)	2-Chlorotoluene	8.683	126	5296 1	50.72 ppb	99
61)	4-Chlorotoluene	8.791	126	55221	51.74 ppb	99
62)	1,3,5-Trimethylbenzene	8.785	105	197235	49.92 ppb	99
63)	tert-Butylbenzene	9.097	119	175669	51.28 ppb	98
64)	1,2,4-Trimethylbenzene	9.142	105	199682	50.26 ppb	98
65)	sec-Butylbenzene	9.307	105	243515	50.15 ppb	99
66)	1,3-Dichlorobenzene	9.403	146	106558	50.57 ppb	100
67)	p-Isopropyltoluene	9.454	119	215695	50.40 ppb	98
68)	1,4-Dichlorobenzene	9.488	146	112923	52.17 ppb	99
69)	1,2-Dichlorobenzene	9.845	146	102216	51.96 ppb	100
70)	n-Butylbenzene	9.851	91	198515	49.11 ppb	97
71)		1 0.611	157	13736	64.94 ppb	99
72)	1,2,4-Trichlorobenzene	11.427	180	83683	57.23 ppb	100
73)	Hexachlorobutadiene	11,609	225	54009	54.31 ppb	100
74)	Naphthalene	1 1.660	128	183642	59.79 ppb	99
75) 	1,2,3-Trichlorobenzene	11.904	180	7563 1	56.07 ppb	99

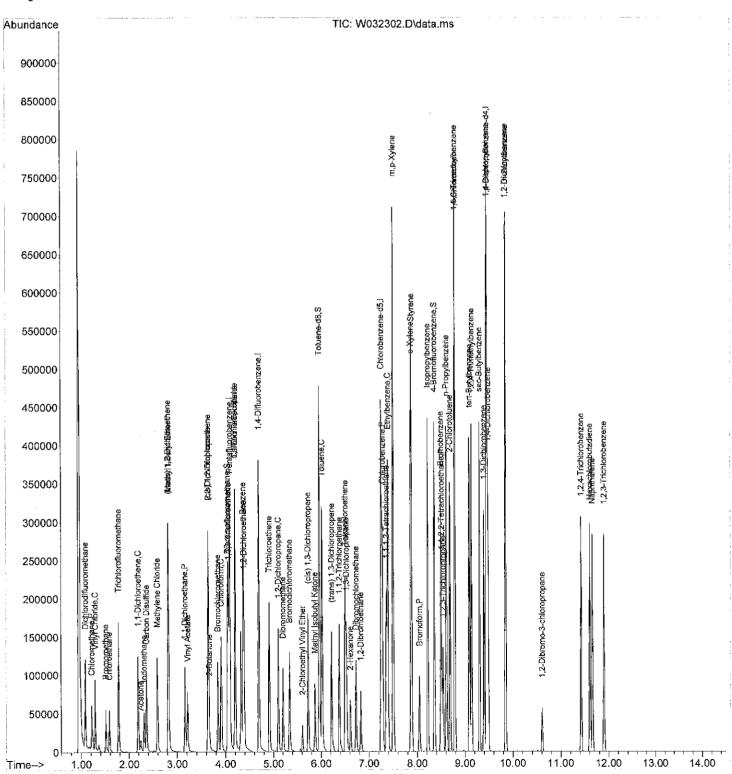
^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\msdchem\1\data\W210323\

Data File: W032302.D

Acq On : 23 Mar 2021 9:04 am

Operator :


Sample : SB0323S1 (CCV0323S1)
Misc : V4-077-07,V4-077-08
ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 23 09:30:56 2021

Quant Method : C:\MSDCHEM\1\METHODS\W210203S.M

Quant Title :

QLast Update : Thu Feb 04 07:56:41 2021

PAHs EPA 8270E/SIM Data

Data Path : X:\semivols\Quaggy\DATA\Q210319\

Data File : Q0319010.D

Acg On : 19 Mar 2021

Operator :

Sample : 03-219-07

Misc

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Mar 19 18:45:06 2021

Quant Method : C:\MSDCHEM\1\METHODS\QSIM0317.M

Quant Title : PAH'S BY SIMS

QLast Update : Thu Mar 18 09:45:16 2021

Compound	R.T.	QIon	Response	Conc Units Dev(Min)	
Internal Standards					
1) Naphthalene-d8	3.780	136	153877	2000.00 ppb 0.00	4.
6) Acenaphthene-d10	5.016	164	88878	2000.00 ppb 0.00	
10) Phenanthrene-d10	6.026	188	166828	2000.00 ppb 0.00	
17) Chrysene-d12	8.036	240	133994	2000.00 ppb 0.00	
21) Perylene-d12	9.429	264	140142	2000.00 ppb 0.01	
System Monitoring Compounds					
2) Nitrobenzene-d5	0.000	82	. 0	0.00 ppb	•
Spiked Amount 1000.000	Range 24		Recove		
7) 2-Fluorobiphenyl	4.568		48829	900.48 ppb 0.00	*
Spiked Amount 1000.000	Range 25	- 89	Recove		1.
11) Pyrene-d10	7.006		59264	994.19 ppb 0.00	
Spiked Amount 1000.000	Range 40	- 110	Recove	ry = 99.42%	•
18) Terphenyl-d14	7.169			1002.24 ppb 0.00	
Spiked Amount 1000.000	Range 39	- 92	Recove	ery = 100.22%#	
Target Compounds				Qvalue	
2-Methylnaphthalene	4.295	142	11472	225.64 ppb 99	
5) 1-Methylnaphthalene	4.365	142	5233	105.73 ppb 96	
12) Fluorene	5.393	166	2619	45.58 ppb 100	•
13) Phenanthrene	6.037	178	36831	413.73 ppb 97	7
14) Anthracene	6.072	178	7908	88.92 ppb 98	21
15) Fluoranthene	6.861	202	91971	904.90 ppb 96	3-22-21
16) Pyrene	7.015	202	86260	854.27 ppb 97	7-72-21
(19) Benzo[a] anthracene	8.024	228	43832	477,90 ppb 92	
(20) Chrysene	8.053	228	39095	430.16 ppb 96	
22) Benzo[b] fluoranthene	9.063	252	50089m		
23) Benzo(j,k)fluoranthene	9.087	252	17356m		
24) Benzo[a]pyrene	9.365	252	39786		÷
25) Indeno(1,2,3-c,d)pyrene		276	25052m	289.52 ppb	:
26 Dibenz[a,h]anthracene	10.434		4535m	52.85 ppb	
27) Benzo[g,h,i]perylene	10.627	276	26952	298.27 ppb 89	
		 .			

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data Path: X:\semivols\Quaggy\DATA\Q210319\

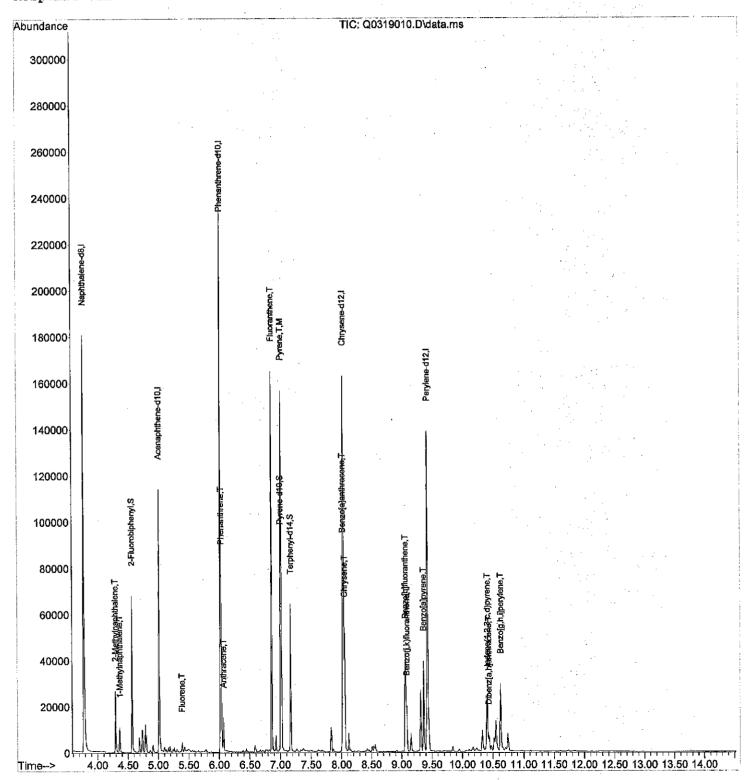
Data File: Q0319010.D

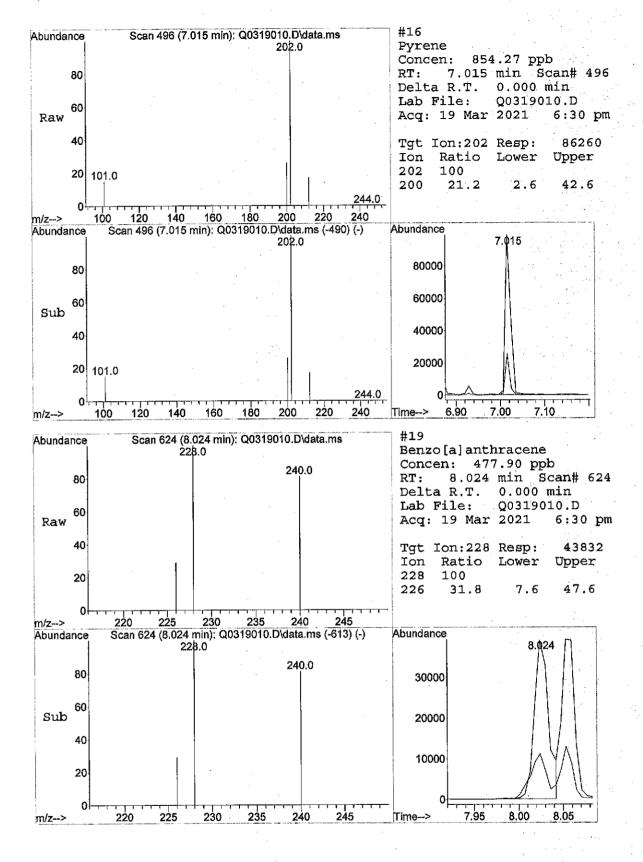
Acq On : 19 Mar 2021 6:30 pm

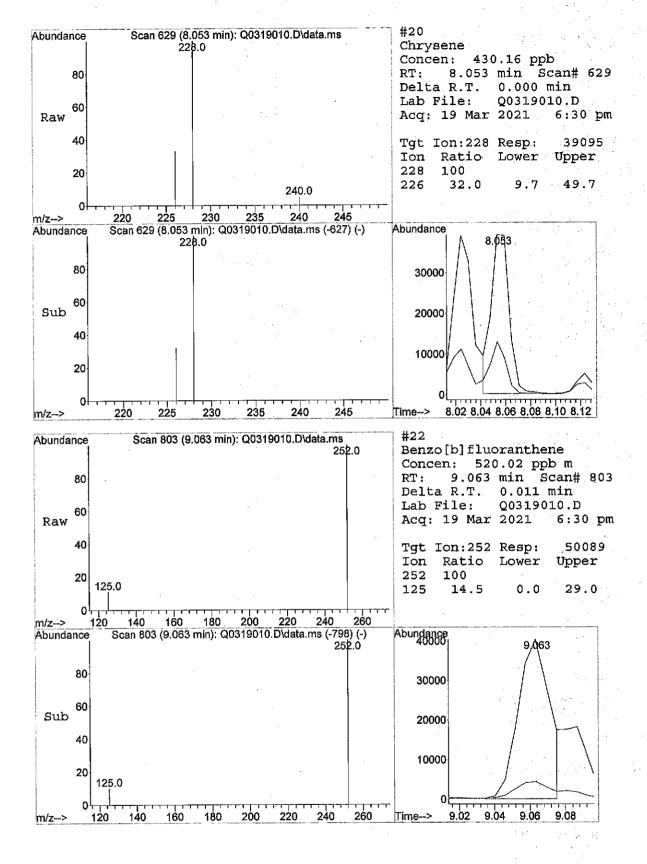
Operator

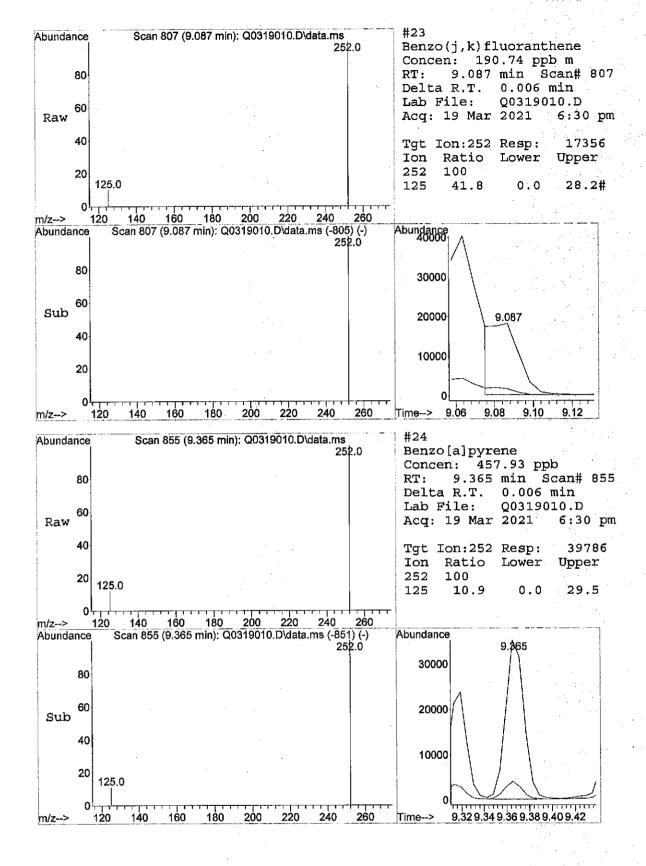
Sample : 03-219-07

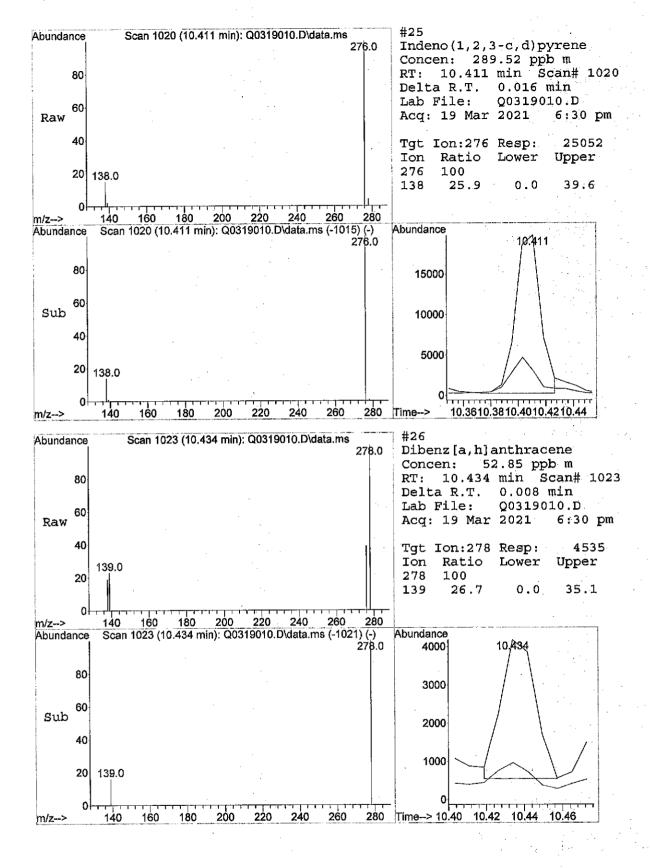
Misc


ALS Vial : 10 Sample Multiplier: 1


Quant Time: Mar 19 18:45:06 2021


Quant Method: C:\MSDCHEM\1\METHODS\QSIM0317.M


Quant Title : PAH'S BY SIMS


QLast Update: Thu Mar 18 09:45:16 2021 Response via: Initial Calibration

Quantitation Report (Not Reviewed)

Data Path : X:\semivols\Quaggy\DATA\Q210319\

Data File : Q0319002.D

Acq On : 19 Mar 2021 3:28 pm

Operator :

Sample : MB0319S1

Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 19 15:43:16 2021

Quant Method : C:\MSDCHEM\1\METHODS\QSIM0317.M

Quant Title : PAH'S BY SIMS

QLast Update : Thu Mar 18 09:45:16 2021

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ui	nits De	ev(Min)
Internal Standards						
1) Naphthalene-d8	3.780	136	149668	2000.00	dqq (0.00
6) Acenaphthene-d10	5.016		86419	2000.00	dqq (0.00
10) Phenanthrene-d10	6.037	188	166748	2000.00		
17) Chrysene-d12	8.082	240	134331	2000.0	dqq (0.05
21) Perylene-d12	9.458	264	136397			
System Monitoring Compounds			_		•	
	0.000					
Spiked Amount 1000.000	Range 24	- 92				
7) 2-Fluorobiphenyl	4.573	172	47556	901.96	ppb	0.00
Spiked Amount 1000.000	Range 25	- 89	Recove	ry =	90.2	0%#
11) Pyrene-d10	7.054	212	56590	949.58	ppb	0.05
Spiked Amount 1000.000	Range 40	- 110	Recove	ry =	94,9	5 %
18) Terphenyl-d14	7.227	244	41822	991.23	ppb	0.06
Spiked Amount 1000.000	Range 39	- 92	Recove	ry =	99.1	28#
Target Compounds			• • • • • • • • • • • • • • • • • • •		. (Qvalue
<pre>19) Benzo[a] anthracene</pre>	8.082	228	607	Below	Cal	73

(#) = qualifier out of range (m) = manual integration (+) = signals summed

ZΤ

3-32-01

Data Path : X:\semivols\Quaggy\DATA\Q210319\

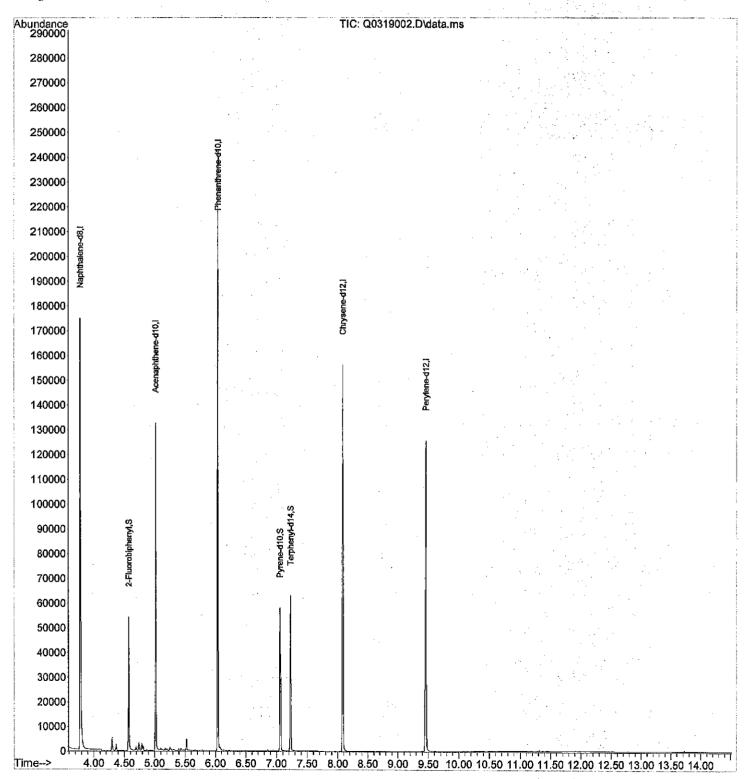
Data File: Q0319002.D

Acq On : 19 Mar 2021 3:28 pm

Operator

Sample : MB0319S1

Misc


ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 19 15:43:16 2021

Quant Method : C:\MSDCHEM\1\METHODS\QSIM0317.M

Quant Title : PAH'S BY SIMS

QLast Update : Thu Mar 18 09:45:16 2021

Data File: Q0319007.D
Acq On: 19 Mar 2021 5:22 pm
Operator:

Sample : 03-193-01

Misc

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Mar 19 17:37:02 2021

Quant Method : C:\MSDCHEM\1\METHODS\QSIM0317.M

Quant Title : PAH'S BY SIMS QLast Update : Thu Mar 18 09:45:16 2021 Response via : Initial Calibration

Compound	R.T. QIon	Response	Conc Units Dev(Min)	
Internal Standards				• ·
1) Naphthalene-d8	3,780 136	156382	2000.00 ppb 0	.00
6) Acenaphthene-d10	5.015 164			.00
10) Phenanthrene-d10	6.026 188		2000.00 ppb 0	
17) Chrysene-d12	8.042 240			.01
21) Perylene-d12	9.429 264			.01
System Monitoring Compounds				
2) Nitrobenzene-d5	0.000 82	0	0.00 ppb	
Spiked Amount 1000,000	Range 24 - 9		ery = 0.00%#	
7) 2-Fluorobiphenyl	4.568 172		713.06 ppb 0.00)
Spiked Amount 1000.000				
11) Pyrene-d10	7.015 212	56106	927.95 ppb 0.00)
Spiked Amount 1000.000	Range 40 - 11	0 Recove	ery = 92.80%	
18) Terphenyl-d14	7.178 244	38342	909.00 ppb 0.00)
Spiked Amount 1000.000	Range 39 - 9	2 Recove	ery = 90.90%	
Target Compounds			Qvalue	
3) Naphthalene	3.795 128	288		, ブ
4) 2-Methylnaphthalene	4.295 142		1 54	<u> </u>
5) 1-Methylnaphthalene	4.364 142		1.15 ppb 94	3~3つ-11
8) Acenaphthylene	4.908 152		0.27 ppb 100	0.00.41
9) Acenaphthene	5.015 153		0.70 ppb 100	
12) Fluorene	0.000	0	N.D.	
13) Phenanthrene	6.037 178	174	1.93 ppb # 56	5
14) Anthracene	6.072 178	22	0.24 ppb # 5°	7
15) Fluoranthene	6.861 202	44	0.43 ppb # 74	Ł
16) Pyrene	7.015 202	118	1.15 ppb # 53	3 ···
19) Benzo[a]anthracene	8.036 228	538	Below Cal 72	2
20) Chrysene	8.036 228	538	5.91 p pb 69	0.33
22) Benzo[b]fluoranthene			0.45 ppb #	
23) Benzo(j,k)fluoranthene	9.069 252	42	-0-47 ppb #	0.25
24) Benzo[a]pyrene	9.365 252		0.31 ppb # 74	<u>.</u>
25) Indeno(1,2,3-c,d)pyrene	10.411 276	36	0.42 ppb # 5	,
26) Dibenz[a,h]anthracene	10,442 278	32	0.38 ppb # 64	(
27) Benzo[g,h,i]perylene	10.634 276	67	0.76 ppb 60) -

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : Q0319007.D

Acq On : 19 Mar 2021 5:22 pm

Operator

Sample : 03-193-01

Misc :

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Mar 19 17:37:02 2021

Quant Method : C:\MSDCHEM\1\METHODS\QSIM0317.M

Ouant Title : PAH'S BY SIMS

QLast Update : Thu Mar 18 09:45:16 2021

Data File: Q0319008.D Acq On: 19 Mar 2021 Operator: 5:45 pm

Sample : 03-193-01 MS

Misc

ALS Vial : 8 Sample Multiplier: 1

Quant Time: Mar 19 17:59:40 2021

Quant Method : C:\MSDCHEM\1\METHODS\QSIM0317.M

Quant Title : PAH'S BY SIMS

QLast Update: Thu Mar 18 09:45:16 2021 Response via: Initial Calibration

Compound	R.T. QIon	Response	Conc Units Dev(M	(in)
Internal Standards 1) Naphthalene-d8 6) Acenaphthene-d10 10) Phenanthrene-d10 17) Chrysene-d12 21) Perylene-d12	3.780 136 5.016 164 6.026 188 8.036 240 9.429 264	88922 167959 134021	2000.00 ppb 2000.00 ppb 2000.00 ppb 2000.00 ppb 2000.00 ppb	0.00 0.00 0.00
System Monitoring Compounds 2) Nitrobenzene-d5 Spiked Amount 1000.000 7) 2-Fluorobiphenyl Spiked Amount 1000.000 11) Pyrene-d10 Spiked Amount 1000.000 18) Terphenyl-d14 Spiked Amount 1000.000	0.000 82 Range 24 - 9 4.568 172 Range 25 - 8 7.005 212 Range 40 - 11 7.169 244 Range 39 - 9	2 Recove	759.50 ppb 0 ery = 75.95% 939.22 ppb 0 ery = 93.92% 980.05 ppb 0	0.00
Target Compounds 3) Naphthalene 4) 2-Methylnaphthalene 5) 1-Methylnaphthalene 8) Acenaphthylene 9) Acenaphthene 12) Fluorene 13) Phenanthrene 14) Anthracene 15) Fluoranthene 16) Pyrene 19) Benzo[a]anthracene 20) Chrysene 21) Benzo[b]fluoranthene 22) Benzo[j,k)fluoranthene 23) Benzo[a]pyrene 24) Benzo[a]pyrene 25) Indeno(1,2,3-c,d)pyrene 26) Dibenz[a,h]anthracene 27) Benzo[g,h,i]perylene	5.031 153 5.393 166 6.037 178 6.072 178 6.861 202 7.015 202 8.024 228 8.059 228 9.057 252 9.086 252 9.365 252 10.411 276	17392 17690 29721 19356 23027 36182 36567 45112 42765 41044 40328 41959 37958 36547 43860	350.88 ppb 366.61 ppb 343.98 ppb 351.11 ppb 398.02 ppb 403.70 ppb 408.41 ppb 440.87 ppb 420.67 ppb 446.94 ppb 443.63 ppb	100 99 96 100 100 100 97 98 97 96 97 96 97 99 98 97 99 99 98 93 95 91 91

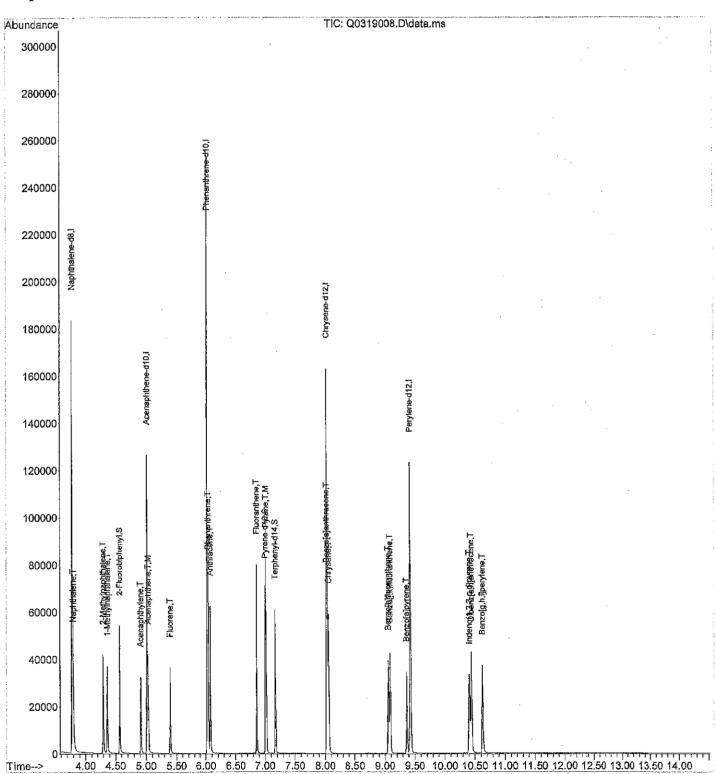
^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : Q0319008.D

: 19 Mar 2021 5:45 pm Acq On

Operator

: 03-193-01 MS Sample


Misc

Sample Multiplier: 1 ALS Vial : 8

Quant Time: Mar 19 17:59:40 2021

Quant Method : C:\MSDCHEM\1\METHODS\QSIM0317.M

Quant Title : PAH'S BY SIMS QLast Update : Thu Mar 18 09:45:16 2021

Data File : Q0319009.D

Acq On : 19 Mar 2021 6:07 pm

Operator :

Sample : 03-193-01 MSD

Misc

ALS Vial : 9 Sample Multiplier: 1

Quant Time: Mar 19 18:22:19 2021

Quant Method : C:\MSDCHEM\1\METHODS\QSIM0317.M

Quant Title : PAH'S BY SIMS

QLast Update: Thu Mar 18 09:45:16 2021 Response via: Initial Calibration

Compound	R.T.	QIon	Response	Conc Units Dev	v(Min)	
Internal Standards 1) Naphthalene-d8 6) Acenaphthene-d10 10) Phenanthrene-d10 17) Chrysene-d12 21) Perylene-d12	3.780 5.015 6.026 8.036 9.429	188 240	88993 169028 133702	2000.00 ppb 2000.00 ppb 2000.00 ppb	0.0)))
System Monitoring Compounds 2) Nitrobenzene-d5 Spiked Amount 1000.000 7) 2-Fluorobiphenyl Spiked Amount 1000.000 11) Pyrene-d10 Spiked Amount 1000.000 18) Terphenyl-d14 Spiked Amount 1000.000	Range 24 4.567 Range 25 7.005 Range 40	172 - 89 212 - 110 244	Recove 40165 Recove 58844 Recove 40262	ery = 0.009 739.11 ppb ery = 73.919 974.20 ppb ery = 97.429 958.65 ppb	0.00	
Target Compounds 3) Naphthalene 4) 2-Methylnaphthalene 5) 1-Methylnaphthalene 8) Acenaphthylene 9) Acenaphthene 12) Fluorene 13) Phenanthrene 14) Anthracene 15) Fluoranthene 16) Pyrene 19) Benzo[a]anthracene 20) Chrysene 21) Benzo[b]fluoranthene 23) Benzo[j,k)fluoranthene	4.364 4.908 5.031 5.393 6.037 6.072 6.861 7.015 8.024 8.059 9.057 9.086	142 142 152 153 166 178 178 202 202 228 228 252 252	44197 44729 41042 40002 38902 40935	329.73 ppb 335.36 ppb 353.86 ppb 339.03 ppb 344.02 ppb 383.67 ppb 391.85 ppb 401.16 ppb 429.19 ppb 437.21 ppb 448.00 ppb 441.10 ppb 417.38 ppb 464.93 ppb	value 100 99 97 100 100 100 97 97 96 98 98	3-22-21
24) Benzo[a]pyrene 25) Indeno(1,2,3-c,d)pyrene 26) Dibenz[a,h]anthracene 27) Benzo[g,h,i]perylene	10.442 10.627	276 278	44247 36156 38120	528.45 ppb 435.49 ppb	96 96 91 91	H313H

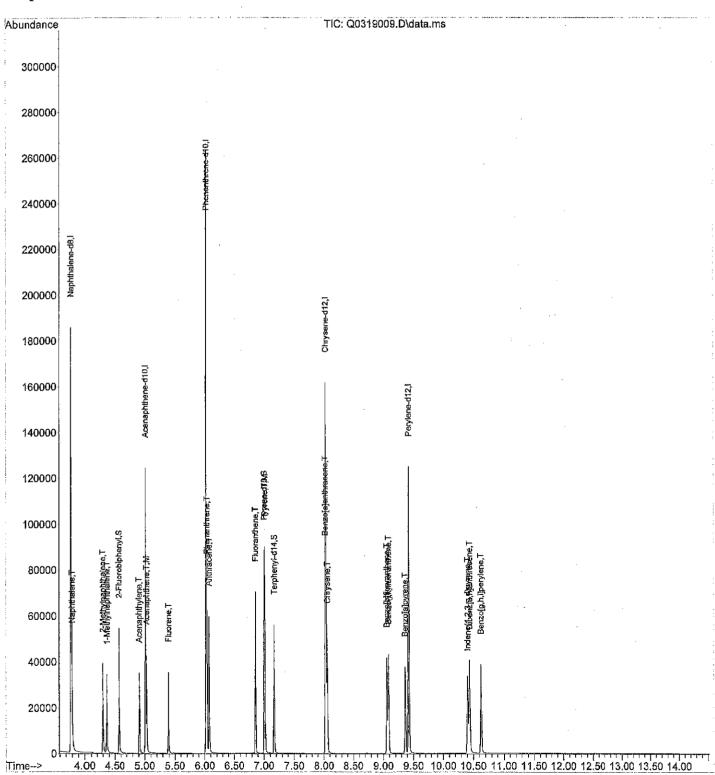
^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Data File : Q0319009.D

6:07 pm Acq On : 19 Mar 2021

Operator

: 03-193-01 MSD Sample


Misc

Sample Multiplier: 1 : 9 ALS Vial

Ouant Time: Mar 19 18:22:19 2021

Quant Method : C:\MSDCHEM\1\METHODS\QSIM0317.M

Quant Title : PAH'S BY SIMS QLast Update : Thu Mar 18 09:45:16 2021

Evaluate Continuing Calibration Report

Data Path : C:\msdchem\1\data\Q210319\
Data File : Q0319001.D
Acq On : 19 Mar 2021 2:54 pm
Operator :

Sample : PAH CCV0319-1 Misc : SV5-200-27

ALS Vial : 1 Sample Multiplier: 1

Quant Time: Mar 19 15:08:38 2021

Quant Method : C:\MSDCHEM\1\METHODS\QSIM0317.M

Quant Title : PAH'S BY SIMS QLast Update : Thu Mar 18 09:45:16 2021

Response via : Initial Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

		Compound	Amount Calc.	%Dev Are	ea% Dev(min)
1 2 3 4 5	S T T	Naphthalene-d8 Nitrobenzene-d5 Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	2000.000 2000.000 500.000 0.000 500.000 510.832 500.000 437.148 500.000 457.517	0.0 100.0# -2.2 12.6 8.5	99 0.00 83 0.00
7 8	I S T T,M	Acenaphthene-d10 2-Fluorobiphenyl Acenaphthylene Acenaphthene	2000.000 2000.000 500.000 453.058 500.000 420.544 500.000 416.630	0.0 9.4 15.9 16.7	98 0.00 90 0.00 86 0.00 84 0.00
10 11 12 13 14 15	S T T	Phenanthrene-d10 Pyrene-d10 Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	2000.000 2000.000 500.000 488.291 500.000 459.722 500.000 441.903 500.000 467.137 500.000 457.460 500.000 470.360	0.0 2.3 8.1 11.6 6.6 8.5 5.9	93 0.01 89 0.04 91 0.00 88 0.01 90 0.01 87 0.03 95 0.04
17 18 19 20	S T	Chrysene-d12 Terphenyl-d14 Benzo[a]anthracene Chrysene	2000.000 2000.000 500.000 490.345 500.000 465.559 500.000 445.148	0.0 1.9 6.9 11.0	97 0.04 96 0.04 92 0.04 89 0.04
21 22 23 24 25 26 27	T T T T	Perylene-d12 Benzo[b]fluoranthene Benzo(j,k)fluoranthene Benzo[a]pyrene Indeno(1,2,3-c,d)pyrene Dibenz[a,h]anthracene Benzo[g,h,i]perylene	2000.000 2000.000 500.000 441.072 500.000 448.238 500.000 441.425 500.000 436.745 500.000 431.370 500.000 432.389	0.0 11.8 10.4 11.7 12.7 13.7	97 0.04 92 0.03 89 0.03 91 0.03 93 0.03 88 0.03 90 0.02

^{(#) =} Out of Range

SPCC's out = 0 CCC's out = 0

Data File: Q0319001.D Acq On: 19 Mar 2021 Operator: 2:54 pm

Sample : PAH CCV0319-1 : SV5-200-27 Misc

ALS Vial : 1 Sample Multiplier: 1

Quant Time: Mar 19 15:08:38 2021

Quant Method : C:\MSDCHEM\1\METHODS\QSIM0317.M

Quant Title : PAH'S BY SIMS QLast Update : Thu Mar 18 09:45:16 2021 Response via : Initial Calibration

Compound	R.T. QIon	Response Co	onc Units Dev(Min)
Internal Standards 1) Naphthalene-d8 6) Acenaphthene-d10 10) Phenanthrene-d10 17) Chrysene-d12 21) Perylene-d12	3.780 136 5.016 164 6.032 188 8.071 240 9.452 264	89883 20 167069 20 137324 20	000.00 ppb 0.00 000.00 ppb 0.00 000.00 ppb 0.01 000.00 ppb 0.04
System Monitoring Compounds 2) Nitrobenzene-d5 Spiked Amount 1000.000 7) 2-Fluorobiphenyl Spiked Amount 1000.000 11) Pyrene-d10 Spiked Amount 1000.000 18) Terphenyl-d14 Spiked Amount 1000.000		24942 45 Recovery 29290 48 Recovery 21216 49	33.06 ppb 0.00 = 45.31% 88.29 ppb 0.04 = 48.83% 90.35 ppb 0.04
Target Compounds 3) Naphthalene 4) 2-Methylnaphthalene 5) 1-Methylnaphthalene 8) Acenaphthylene 9) Acenaphthene 12) Fluorene 13) Phenanthrene 14) Anthracene 15) Fluoranthene 16) Pyrene 19) Benzo[a]anthracene 20) Chrysene 22) Benzo[b]fluoranthene 23) Benzo(j,k)fluoranthene 24) Benzo[a]pyrene 25) Indeno(1,2,3-c,d)pyrene 26) Dibenz[a,h]anthracene 27) Benzo[g,h,i]perylene	9.389 252	21955 43 22369 45 36729 42 23216 41 26456 45 39396 44 41603 46 45562 45 47563 47 43779 46 41463 44 43603 44 41859 44 39361 44 47491 53 37986 43	Qvalue 0.83 ppb 99 7.15 ppb 99 7.52 ppb 98 0.54 ppb 100 6.63 ppb 100 9.72 ppb 100 9.72 ppb 97 7.14 ppb 97 7.46 ppb 98 0.36 ppb 94 5.56 ppb 96 5.15 ppb 100 1.07 ppb 97 8.24 ppb 97 1.42 ppb 97 1.42 ppb 96 1.37 ppb 99 1.37 ppb 99 2.39 ppb 92

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

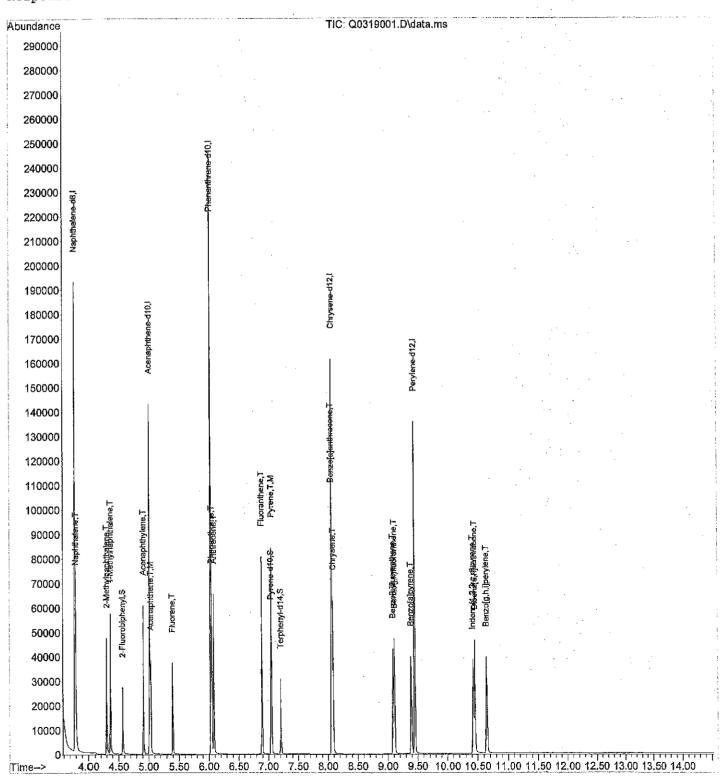
Data File : Q0319001.D

Acq On : 19 Mar 2021 2:54 pm

Operator

Sample : PAH CCV0319-1

Misc : SV5-200-27


ALS Vial : 1 Sample Multiplier: 1

Quant Time: Mar 19 15:08:38 2021

Quant Method: C:\MSDCHEM\1\METHODS\QSIM0317.M

Quant Title : PAH'S BY SIMS

QLast Update : Thu Mar 18 09:45:16 2021

APPENDIX CData Validation Report

Data Validation Report

2101 4th Street, Suite 950, Seattle, WA 98121, Telephone: 206.728.2674, Fax: 206.728.2732

www.geoengineers.com

Project: Dakota Creek Industries Cleanup Site – Supplemental Soil Investigation

GEI File No: 05147-006-14 **Date:** May 3, 2021

This report documents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2B data validation (USEPA Document 540-R-08-005; USEPA, 2009) of analytical data from the analyses of direct push soil boring samples collected as the Supplemental Soil Investigation, and the associated laboratory and field quality control (QC) samples. The samples were obtained from the Dakota Creek Industries Shipyard Site (Site) located in Anacortes, Washington.

OBJECTIVE AND QUALITY CONTROL ELEMENTS

GeoEngineers, Inc. (GeoEngineers) completed the data validation consistent with the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA 2017a) and Inorganic Superfund Data Review (USEPA 2017b) (National Functional Guidelines) to determine if the laboratory analytical results meet the project objectives and are usable for their intended purpose. Data usability was assessed by determining if:

- The samples were analyzed using well-defined and acceptable methods that provide reporting limits below applicable regulatory criteria;
- The precision and accuracy of the data are well-defined and sufficient to provide defensible data; and
- The quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

In accordance with the Remedial Investigation/Feasibility Work Plan Addendum, Dakota Creek Industries Site (GeoEngineers 2021), the data validation included review of the following QC elements:

- Data Package Completeness
- Chain-of-Custody Documentation
- Holding Times and Sample Preservation
- Surrogate Recoveries
- Method Blanks
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples/Laboratory Control Sample Duplicates
- Field and Laboratory Duplicates
- Instrument Tuning
- Internal Standards
- Initial Calibrations (ICALs)

- Continuing Calibrations (CCALs)
- Reporting Limits

VALIDATED SAMPLE DELIVERY GROUPS

This data validation included review of the sample delivery groups (SDGs) listed below in Table 1.

TABLE 1: SUMMARY OF VALIDATED SAMPLE DELIVERY GROUPS

Laboratory SDG	Samples Validated	
2103-219	GEI-47-9.0, GEI-48-8.0, GEI-49-11.0, GEI-50-9.0, GEI-51-12.0, GEI-52-10.0, GEI-52-10.0	

CHEMICAL ANALYSIS PERFORMED

Onsite Environmental (Onsite), located in Redmond, Washington, performed accredited laboratory analyses on all soil samples. Onsite used one or more of the following methods:

- Polycyclic Aromatic Hydrocarbons (PAHs) by Method SW8270-SIM
- Gasoline-range Hydrocarbons by NWTPH-Gx
- Diesel-range and Heavy Oil-range Hydrocarbons by NWTPH-Dx (Includes sulfuric acid & silica gel)
- Volatile Organic Compounds by Method SW8260

DATA VALIDATION SUMMARY

The results for each of the QC elements are summarized below.

Data Package Completeness

Onsite provided all required deliverables for the data validation according to the National Functional Guidelines. The laboratory followed adequate corrective action processes and all identified anomalies were discussed in the relevant laboratory case narrative.

Chain-of-Custody Documentation

Chain-of-custody (COC) forms were provided with the laboratory analytical reports. The COCs were accurate and complete when submitted to the lab. Documents were properly signed and dated by field and laboratory personel, analyses were properly requested and checked by the laboratory.

Holding Times and Sample Preservation

The sample holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses. The sample coolers arrived at the laboratory at the appropriate temperatures of between 2 and 6 °C.

GEOENGINEERS

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the organic analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added to the samples at a known concentration and percent recoveries are calculated following analysis. All surrogate percent recoveries for field samples were within the laboratory control limits.

Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For all sample batches, method blanks were analyzed at the required frequency. None of the analytes of interest were detected above the reporting limits in any of the method blanks.

Matrix Spikes/Matrix Spike Duplicates

Since the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis on one sample from the associated batch, known as the parent sample. One aliquot of the sample is analyzed in the normal manner and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a percent recovery (%R) is calculated. Matrix spike duplicate (MSD) analyses are generally performed for organic analyses as a precision check and analyzed in the same sequence as a matrix spike. Using the result values from the MS and MSD, the relative percent difference (RPD) is calculated. The %R control limits for MS and MSD analyses are specified in the laboratory documents, as are the RPD control limits for MS/MSD sample sets.

For inorganic methods, the matrix spike is followed by a post-digestion spike sample if any element %R values were outside the control limits in the matrix spike. All metals %R control limits for matrix spikes are 75% to 125%.

One MS/MSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the %R and RPD values were within the proper control limits.

Laboratory Control Samples/Laboratory Control Sample Duplicates

A laboratory control sample (LCS) is a blank sample that is spiked with a known amount of analyte and then analyzed. An LCS is similar to an MS, but without the possibility of matrix interference. Given that matrix interference is not an issue, the LCS/LCSD control limits for accuracy and precision are usually more rigorous than for MS/MSD analyses. Additionally, data qualification based on LCS/LCSD analyses would apply to all samples in the associated batch, instead of just the parent sample. The percent recovery control limits for LCS and LCSD analyses are specified in the laboratory documents, as are the RPD control limits for LCS/LCSD sample sets.

One LCS/LCSD analysis should be performed for every analytical batch or every 20 field samples, whichever is more frequent. The frequency requirements were met for all analyses and the percent recovery and RPD values were within the proper control limits.

Laboratory Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. For organic analyses, the RPD control limits are specified in the laboratory documents. For inorganic analyses, the RPD control limit for soil samples is 35 percent. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met.

Field Duplicates

In order to assess precision, field duplicate samples are collected and analyzed along with the reviewed sample batches. The duplicate samples are analyzed for the same parameters as the associated parent samples. Precision is determined by calculating the Relative Percent Difference (RPD) between each pair of samples. If one or more of the sample analytes has a concentration greater than five times the reporting limit for that sample, then the absolute difference is used instead of the RPD. The RPD control limit for soil samples is 50 percent, while the absolute difference control limit is equal to twice the reporting limit.

Instrument Tuning

Instrument tuning for analyses by gas chromatography/mass spectrometry (GC/MS) are completed to ensure that mass resolution, identification, and sensitivity of the analyses are acceptable. Instrument tuning should be performed at the beginning of each 12-hour period during which samples or standards are analyzed. The frequency and specified acceptance criteria were met for each applicable analysis.

Internal Standards (Low Resolution Mass Spectrometry)

Like the surrogate, an internal standard is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Internal standards are used only for the mass spectrometry instrumentation and are usually added to the sample aliquot after extraction has taken place. The internal standard should be analyzed at the beginning of a 12-hour sample run and the control limits for internal standard recoveries are 50 percent to 200 percent of the calibration standard. All internal standard recoveries were within the control limits, with the following exceptions:

Initial Calibrations (ICALs)

The initial calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. For all organic analyses, the percent relative standard deviation (%RSD) and relative response factors (RRF) values were within the laboratory control limits and also the control limits stated in the National Functional Guidelines for Organic Superfund Data Review (USEPA 2017). For all inorganic analyses, the calibrations were within the laboratory control limits and also the control limits stated in the National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA 2017).

Continuing Calibrations (CCALs)

The continuing calibrations were conducted according to the laboratory methods and consisted of the appropriate number of standards. F For the NWTPH-Gx analyses, the %R values were within the control limits of $\pm 20\%$. For the NWTPH-Dx analyses, the %R values were within the control limits of $\pm 15\%$. For organic analyses, the percent difference (%D) and relative response factors (RRF) values were within the control limits in the National Functional Guidelines for Organic Superfund Data Review (USEPA 2017). For all inorganic analyses, the %D values were within the laboratory control limits and also the control limits stated in the National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA 2017).

GEOENGINEERS

Reporting Limits

The reporting limits were met by the laboratory for all target analytes throughout this sampling event.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS/LCSD, and MS/MSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD, MS/MSD, and field/laboratory duplicate RPD values.

No data points were qualified for any reason.

REFERENCES

- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.
- U.S. Environmental Protection Agency (USEPA 2017a). "National Functional Guidelines for Organic Superfund Methods Data Review," EPA-540-R-2017-002. January 2017.
- U.S. Environmental Protection Agency (USEPA 2017b). "National Functional Guidelines for Inorganic Superfund Methods Data Review," EPA-540-R-2017-001. January 2017.

GeoEngineers, Inc., "Remedial Investigation/Feasibility Work Plan Addendum, Dakota Creek Industries Site, Anacortes, Washington, Ecology Agreed Order No. DE-07TCPHQ-5080," GEI File No. 5147-006-14, March 1, 2021

Exhibit C

EXHIBIT C DAKOTA CREEK INDUSTRIES SITE SCOPE OF WORK AND SCHEDULE

	Deliverables	Due ¹	
A. Administrative			
A.1	File Consent Decree in Court (CD Effective Date)	Within 30 days of execution by Port and Ecology	
A.2	Quarterly Progress Reports to Ecology	Following the CD Effective Date through the completion of construction activities, quarterly on the 10 th of the month beginning after the effective date of the CD. Thereafter, annually on the CD anniversary date.	
	B. Soil Remo	oval and Capping	
B.1	Draft Engineering Design Report (EDR) ²	Within 120 days of Effective Date (A.1)	
B.2	Draft Final EDR	Within 30 days of receipt of Ecology's comments on Draft EDR (B.1)	
B.3	Conduct Construction	Complete within one year from 100% Plans and Specifications per WAC 173-340-400(4)(b)	
B.4	Draft Construction Completion Report	Submit to Ecology within 90 days of completion of construction	
B.5	Final Construction Completion Report	Submit to Ecology within 30 days following Ecology approval of draft Construction Completion Report	
	C. Environn	nental Covenant	
C.1	Draft Environmental Covenant and Draft Engineering and Institutional Controls Monitoring and Maintenance Plan (EICMMP)	Submit to Ecology with Final Construction Completion Report (B.7)	
C.2	Final Environmental Covenant and Final EICMMP	Submit to Ecology within 30 days following Ecology approval of draft (C.1)	
C.3	Proof of recording of Environmental Covenant	Submit to Ecology within 30 days following Final Environmental Covenant (C.2)	
	D. Groun	ndwater MNA	
D.1	Draft Groundwater MNA Compliance Monitoring Plan (CMP)	Submit to Ecology with draft EDR (B.1)	
D.2	Final Groundwater MNA CMP	Submit to Ecology within 30 days following Ecology approval of draft (D.1)	
D.3	Groundwater MNA CMP implementation	Start within 180 days of completing construction	
D.4	Draft Annual Groundwater MNA Report	Submit to Ecology annually within 90 days after receipt of current year's analytical data	
D.5	Final Annual Groundwater MNA Report	Submit to Ecology within 30 days following Ecology approval of draft (D.4)	

¹ Schedule is in calendar days. Deliverable due date may be modified with Ecology concurrence without amendment to the Consent Decree.

² The EDR includes: a Storm Water Pollution Plan or Construction Quality Assurance Project Plan, an Inadvertent Monitoring Plan, Proposed Best Management Practices, and Substantive Requirements of Procedurally Exempt Permits.

Exhibit D

EXHIBIT D LIST OF REQUIRED PERMITS OR APPROVALS

APPLICABLE PERMITS OR APPROVALS & REQUIREMENTS

The cleanup action to be performed at the Site requires the following permit and environmental review process:

State Environmental Policy Act Integrated Compliance

Compliance with SEPA (RCW 43.21C.036 and WAC 197-11-250 through 259) will be achieved by conducting SEPA review in accordance with applicable regulatory requirements, including and Ecology guidance as presented in Ecology Policy 130A (Ecology 2004). The Port of Anacortes will act as the SEPA lead agency and will coordinate SEPA review.

Exhibit E

EXHIBIT E APPLICABLE SUBSTANTIVE REQUIREMENTS OF PROCEDURALLY EXEMPT PERMITS OR APPROVALS

APPLICABLE PERMITS OR APPROVALS & REQUIREMENTS

The cleanup action to be performed at the Site is exempt from the procedural requirements of the following permits and approvals but must meet the substantive requirements:

City of Anacortes Grading Permit

Pursuant to the City of Anacortes Grading Ordinance (AMC Ch. 19.78), a grading permit is required from the City for all grading projects that are not categorically exempt. The City grading ordinance identifies a number of standards and requirements for obtaining a grading permit. The City standards and requirements will be integrated into the construction plans and specifications where applicable for the cleanup action to insure it complies with the substantive requirements of the City grading ordinance.

City of Anacortes Construction Stormwater Permit

Pursuant to the City of Anacortes Stormwater Management ordinance (AMC Ch. 19.76), the cleanup action must meet the requirements of a City Stormwater Permit. The substantive requirements include preparation of a stormwater site plan, construction stormwater pollution prevention, source control of pollution, preservation of natural drainage systems and outfalls, on-site stormwater management, runoff treatment, flow control, wetlands protection, and operation and maintenance.

City of Anacortes Shoreline Substantial Development Permit

Pursuant to the City of Anacortes Shoreline Master Program (AMC Ch. 18.16), the cleanup action must meet the requirements of a City Shoreline Substantial Development Permit (SSDP). The cleanup action will occur within the regulated shoreline area. The substantive requirements include meeting the general conditions for a SSDP and applicable general regulations and use activities policies.

City of Anacortes Discharge Permit

Pursuant to the City of Anacortes Sewer System Code (AMC 13.04.131) it is unlawful to discharge materials into the Anacortes sanitary and stormwater sewer other than an authorized sewer connection or designated dump station without the expressed written authorization of the director of public works. Should the contractor elect to discharge dewatering decant into the City treatment system, the substantive requirements of this authorization will be followed.