JANUARY 2016

2015 Basewide Groundwater Monitoring Report

Sites SS-34, WP-44, DP-60, and Base Boundary Monitoring Wells

JBLM McChord Field, Washington

Department of the Army Corps of Engineers, Seattle District 4735 East Marginal Way South Seattle, Washington 98134-2329

CONTRACT NO. W912DW-11-D-1031 TASK ORDER NO. 0001

2015 BASEWIDE GROUNDWATER MONITORING REPORT

JANUARY 2016

SITES SS-34, WP-44, DP-60, AND BASE BOUNDARY MONITORING WELLS

JBLM McCHORD FIELD, WASHINGTON

DCN: TTEC-BTL-1031-003-16-001

Prepared for: U.S. ARMY CORPS OF ENGINEERS, SEATTLE DISTRICT

AND
PUBLIC WORKS – ENVIRONMENTAL DIVISION
JOINT BASE LEWIS-McCHORD, WASHINGTON

Prepared by:

A SUBCONTRACTOR TO SEALASKA ENVIRONMENTAL SERVICES, LLC POULSBO, WASHINGTON

CONTENTS

Section		Page
1. INTRODU	JCTION	1-1
1.1 SITE	SS-34	1-1
1.2 SITE	WP-44	1-2
	DP-60	
1.4 BAS	E BOUNDARY RESOURCE PROTECTION WELLS	1-4
	CTIVITIES	
	ESTIGATION-DERIVED WASTE	
2.2 DEV	IATIONS FROM THE 2015 QUALITY PROJECT PLAN	2-2
3. RESULTS	5	3-1
3.1 SITE	SS-34	3-1
3.2 SITE	WP-44	3-1
	DP-60	
3.4 BAS	E BOUNDARY RESOURCE PROTECTION WELLS	3-2
	IS OF DATA AND DISCUSSION	
	MARY STATISTICS OF BTEX AND TPH CONCENTRATIONS	
	PIRO-WILK TEST FOR NORMALITY	
4.3 LINE	EAR REGRESSION AND MANN-KENDALL TREND ANALYSES	4-2
	SIONS AND RECOMMENDATIONS	
	CLUSIONS	
5.2 REC	OMMENDATIONS	5-1
6. REFEREN	NCES	6-1
	APPENDICES	
	APPENDICES	
Appendix A.	McChord Field Resource Protection Well Inventory	
Appendix B.	Field Documentation	
Appendix C.	Laboratory Reports	
Appendix D.	Historical Data and Linear Graphs	
Appendix E.	Statistics Graphs	

TABLES

Table 1. Resource Protection Well Construction Details
 Table 2. Sampling Summary
 Table 3. Depth-to-Water and Water Quality Parameter Measurements – 2015
 Table 4. Constituents of Concern Concentrations – 2015
 Table 5. Descriptive Statistics
 Table 6. Test for Normality and Linear Regression Trends
 Table 7. Mann-Kendall Test on Non-Parametric Data

FIGURES

- Figure 1. Joint Base Lewis-McChord Location Map
 Figure 2. JBLM McChord Field, Sites SS-34, WP-44, DP-60, and Base Boundary Monitoring Locations 2015
- Figure 3. JBLM McChord Field, Sites SS-34, WP-44, DP-60, and Base Boundary Groundwater Elevation Contours 2015

ABBREVIATIONS AND ACRONYMS

μg/L micrograms per liter

BTEX benzene, toluene, ethylbenzene, and xylenes

CY calendar year

Ecology Washington State Department of Ecology
EPA U.S. Environmental Protection Agency
ESD Explanation of Significant Differences

FS Feasibility Study

IRP Installation Restoration Program

JBLM Joint Base Lewis-McChord MTCA Model Toxics Control Act

ND non-detect

NFRAP No Further Response Action Planned

NPL National Priorities List

QPP Quality Project Plan

RA-O Remedial Action and Operation

RAO Remedial Action Objective

RD Remedial Design

RI Remedial Investigation

ROD Record of Decision

TPH total petroleum hydrocarbons

TPH-D total petroleum hydrocarbons – diesel range
TPH-G total petroleum hydrocarbons – gasoline range
TPH-O total petroleum hydrocarbons – heavy oil range

VOC volatile organic compound
WTA Washrack Treatment Area

This page intentionally left blank.

1. INTRODUCTION

This groundwater monitoring report was prepared for Joint Base Lewis-McChord (JBLM) Public Works, JBLM, Washington (Figure 1) by Tetra Tech. All groundwater monitoring and analysis was completed by Tetra Tech and ALS, in accordance with the 2015 Quality Project Plan (QPP) (TtEC 2015). This report documents field activities conducted in 2015 for Remedial Action and Operation (RA-O) of groundwater monitoring at two Consent Decree sites, one No Further Response Action Planned (NFRAP) site and base boundary monitoring at JBLM McChord Field (Figure 2 shows monitoring locations, Figure 3 shows groundwater elevations). The following four sites or areas are addressed in this report:

- Site SS-34, an active bulk fuel storage area
- Site WP-44, an active motor pool
- Site DP-60, a former wash rack, oil water separator, and storm water infiltration ditches
- Base boundary resource protection wells

1.1 SITE SS-34

Site SS-34 is in the northwestern portion of JBLM McChord Field, east of the main gate. The site is associated with the JP-4 (now JP-8) bulk fuel storage area. Monitoring of the site began in the mid-1980s and currently continues on an annual basis. In general, detections of compounds above Model Toxics Control Act (MTCA) Method A cleanup levels have been reported at SS-34 and are related to total petroleum hydrocarbons (TPH); benzene, toluene, ethylbenzene, and xylenes (BTEX); gasoline range (C₇–C₁₂) TPH (TPH-G); and diesel range (C₁₂–C₂₄) TPH (TPH-D).

The Air Force chose intrinsic bioremediation (or natural attenuation) and long-term monitoring as the appropriate remedial action for Site SS-34. Evaluation of natural attenuation parameters from groundwater samples collected beginning in calendar year (CY) 1995 show evidence that the fuel contamination at the site is actively being degraded by naturally occurring bacteria. The Air Force incorporated the site into the Basewide Groundwater Monitoring and Natural Attenuation Monitoring Program in fall 1995.

Construction activities associated with expansion of the bulk fuels storage that began in late CY 2004 (after the September 2004 sampling event) required the decommissioning of resource protection well DM-04. Wells DM-06 and UA-02 have been utilized for sampling of the site since March 2005, since they are the two resource protection wells nearest to the former location of well DM-04. Well DM-04 was approximately 250 feet southeast of well AZ-06, and

approximately midway between well AZ-06 and well DM-06. Well UA-02 is approximately 250 feet west of the former location of well DM-04.

Site SS-34 is currently on Washington State Department of Ecology (Ecology) Hazardous Sites List (February 23, 2005) with a ranking of 3 (medium level of concern on scale of 1 to 5) and the status is listed as construction completed, operations and maintenance underway.

The remedial action objective (RAO) for the site is the continued natural attenuation of TPH concentrations until two consecutive rounds of sampling events indicate that the levels of contamination are below Ecology MTCA Method A cleanup levels (Air Force 1996).

1.2 SITE WP-44

Site WP-44 encompasses the Transportation Area (motor pool) at JBLM McChord Field. Monitoring of the site began in CY 1993 and currently continues on an annual basis. In general, detections of compounds exceeding MTCA Method A cleanup levels have been reported at the site and are related to BTEX, TPH-G, and TPH-D.

The Air Force chose intrinsic bioremediation (or natural attenuation) and long-term monitoring as the appropriate remedial action for Site WP-44 (Air Force 1996). A study completed in CY 1995 found evidence that the fuel contamination at the site was actively being degraded by naturally occurring bacteria (FWENC 1995). The Air Force incorporated the site into the Basewide Groundwater Monitoring and Natural Attenuation Monitoring Program in fall 1995.

In CY 1999, the Air Force demolished some of the older "temporary" buildings at the Transportation Area prior to re-paving the area. In fall 1999, during demolition of Building 762, a brick and mortar drywell was discovered beneath the foundation. Soils beneath the drywell were found to contain TPH and considered to be a potential source for the TPH contamination detected in the groundwater beneath the site.

In February 2000, the Air Force excavated and recycled approximately 427 tons of TPH-contaminated soil associated with the inactive drywell. Clean borrow material from a non-industrial portion of JBLM McChord Field was used to backfill the excavation prior to paving.

Since CY 2001, the Air Force and JBLM Public Works have measured static water levels and performed semiannual sampling at the two site resource protection wells. Beginning in CY 2010, groundwater monitoring at the site was reduced from semiannual to annual.

1.3 SITE DP-60

Site DP-60 encompasses the area defined by CH2M HILL (1982) as a former washrack (now inactive), two leach pits (now backfilled), an oil/water separator (skimmer), and Installation Restoration Program (IRP) Site DP-60, which includes storm drainage infiltration ditches

(now backfilled), and a thin layer of floating fuel. This area is referred to as the Washrack/ Treatment Area (WTA) and was listed on the National Priorities List (NPL) in 1987.

The WTA is within the northern industrial portion of JBLM McChord Field, west of the instrument runway, and is within the industrial and operational activity areas associated with aircraft maintenance and flight operation. Formerly, aircraft were washed and drained of fuel at the WTA. The site encompasses a grassy area between C Ramp and D Ramp and includes a number of buildings.

The Air Force conducted a Remedial Investigation (RI)/Feasibility Study (FS) (Ebasco Environmental 1992a) at the sites, and a Record of Decision (ROD) (Ebasco Environmental 1992b) was signed in 1992. Based on the pilot test conducted during the Remedial Design (RD), it was determined there was insufficient fuel to make fuel recovery feasible based on 19 test pits, 10 observation sumps, and 1 test trench adjacent to resource protection well CR-02. In an Explanation of Significant Differences (ESD), prepared and released to the public in 1994 to document the changes made to the remedial action selected in the ROD after the pilot test, natural attenuation and monitoring were presented as the most cost-effective methods of treating the fuel contamination. Ecology and the U.S. Environmental Protection Agency (EPA) concurred with the ESD, and the Air Force placed wells associated with the WTA into the Basewide Long-Term Monitoring Program in 1994.

In March 1995, EPA prepared a memorandum to incorporate a non-significant change to the ROD regarding this site—inclusion on the construction completion list—stating that "future response at this site does not require physical construction."

In June 1995, EPA accepted the Air Force's Final Remedial Action Report for the WTA (Air Force 1995), agreeing with the Air Force that semiannual sampling of resource protection wells CR-02 and TW-9 for BTEX, TPH, and lead was appropriate to track the progress of natural attenuation. Ecology was concerned about the presence of inorganic compounds at concentrations above MTCA cleanup levels. Cadmium, chromium, copper, and lead were monitored downgradient from and adjacent to Site SD-54 (historical leach pits) to provide early warning of potential exceedances of the regulatory cleanup levels.

In October 1995, EPA began the process to remove the WTA from the NPL. A Notice of Intent to Delete Sites SD-54 and DP-60 within the WTA from the NPL was published in the Federal Register on July 22, 1996. The deletion process was completed on September 26, 1996, when the Notice of Deletion was published in the Federal Register. The Air Force, in consultation with Ecology, reduced the sampling to annual frequency in resource protection wells CR-02 and TW-9. The reason for the reduction was based on the historical contaminant trend and the recommendations in the CY 1997 Annual Report (URSG and FWENC 1998). In September 1999, the Five-Year Review for the WTA was completed and signed by EPA and the Air Force.

In September 2004 the Air Force, EPA, and Ecology completed the second Five-Year Review of the WTA (Air Force 2004). The report recommended eliminating sampling associated with Site SD-54 and reducing sampling at Site DP-60 for TPH-diesel compounds, only, until the RAO of 1,000 micrograms per liter (µg/L) has been achieved.

1.4 BASE BOUNDARY RESOURCE PROTECTION WELLS

During CY 1994, the Air Force initiated long-term monitoring at the base boundary. The nine base boundary resource protection wells (CW-04, LT-2 through LT-7, LT-10, and LT-11) were installed to monitor the quality of shallow groundwater exiting the base along the western and northern boundaries. Currently, three of the nine wells are sampled annually on a rotating basis and indirectly monitor a number of NFRAP sites that are located in the northern and western parts of JBLM McChord Field. Most of these sites are near or under the existing runway, taxiway, or parking ramps. Sites in the northern and western portions of JBLM McChord Field are indirectly monitored by the base boundary wells. There have been no detections of volatile organic compounds (VOCs) above MTCA Method A cleanup levels during the CY 1994 through CY 2015 sampling events. Concentrations of total metals and dissolved metals reported in samples collected in CY 1994 and CY 1995 were within the background range for JBLM McChord Field.

Because of the increased mobility of VOCs in comparison to other chemical compounds, VOCs would likely be the first chemical compounds detected if contaminated groundwater begins to move off base. Using this rationale, the Air Force decided that sampling for VOCs would provide sufficient monitoring at the base boundary to detect unanticipated releases, an approach that also conserves environmental funds.

2. FIELD ACTIVITIES

JBLM IRP contractor Tetra Tech conducted sampling at sites SS-34 and WP-44 and the base boundary on 26 March and at site DP-60 on 24 June. During each monitoring event, an electronic water level indicator was used to measure depth-to-water in all resource protection wells scheduled for static water level measurements to the nearest 0.01 foot from the top of the well's PVC casing. Well construction details are presented in Table 1. Well construction details for all resource protection wells currently active on JBLM McChord Field are presented in Appendix A. A summary of the 2015 sampling program for Sites SS-34, WP-44, DP-60 and base boundary monitoring is presented in Table 2.

Resource protection wells were purged using standard low-flow purging procedures prior to sampling. A stainless steel Grundfos pump was used to purge water from the resource protection wells. The pump was decontaminated using a Liquinox® and tap water solution between each well. A variable frequency drive controller was used to limit the purging flow rate to less than one liter per minute. During purging, relative water levels were monitored with an electronic water level indicator. Water quality parameters such as pH, temperature, and turbidity were measured with a calibrated Horiba U-22 meter to verify stabilization. The Horiba was calibrated at the beginning of each day prior to sampling activities. Groundwater samples were collected immediately after field measurements had stabilized without turning off the pumping system. Depth-to-water and water quality parameter measurements during 2015 are presented in Table 3.

Groundwater samples collected from resource protection wells at sites SS-34 and WP-44 were analyzed for TPH-G using Ecology Method NWTPH-Gx, TPH-D and TPH-heavy oil range (TPH-O) using Ecology Method NWTPH-Dx, and BTEX using EPA Method 8260C. Groundwater samples collected from resource protection wells at site DP-60 were analyzed for TPH-D and TPH-O. Base boundary samples were analyzed for VOCs using EPA Method 8260C. Results are presented in Table 4.

Groundwater samples were shipped overnight to ALS in Kelso, Washington. Samples were received by the lab under proper chain-of-custody for analysis per the project sample and analysis plan. Field documentation is included in Appendix B. Copies of laboratory analytical reports are included in Appendix C.

2.1 INVESTIGATION-DERIVED WASTE

Investigation-derived waste was disposed of as follows:

- Purge water and decontamination water was collected in a 15-gallon poly drum, transported to building 731 on McChord Field and discharged to an oil water separator on-site.
- Personal protective equipment and garbage were disposed of in a JBLM dumpster as part of the normal JBLM solid waste stream.

2.2 DEVIATIONS FROM THE 2015 QUALITY PROJECT PLAN

Groundwater monitoring events were completed in accordance with the CY 2015 QPP (TtEC 2015). There were no deviations from the plan.

3. RESULTS

This section presents analytical results from samples collected in 2015. Results are presented in Table 4. Historical data tables and linear graphs for each site are presented in Appendix D.

3.1 SITE SS-34

Historically, BTEX compounds have been detected below their respective MTCA Method A cleanup levels of 5 μ g/L, 1,000 μ g/L, 700 μ g/L, and 1,000 μ g/L in samples collected from resource protection wells at site SS-34. No BTEX constituents above MTCA Method A cleanup levels were detected in any samples collected from SS-34 resource protection wells during CY 2015 (Table 4).

Historically, TPH-G, TPH-D, and TPH-O have been detected above their respective MTCA Method A cleanup levels of 1,000 μ g/L (TPH-G) and 500 μ g/L (TPH-D and TPH-O) in samples collected from resource protection well AZ-06 (Appendix D). TPH-G has been detected ranging from 200 μ g/L (March 2006) to 20,000 μ g/L (September 1995) and TPH-D has been detected in samples collected from AZ-06 ranging from 820 μ g/L (March 2006) to 160,000 μ g/L (September 2005). TPH-G, TPH-D, and TPH-O are generally detected at very low levels or not at all in samples collected from resource protection wells DM-06 and UA-02. TPH was not detected above MTCA Method A cleanup levels in any wells sampled at SS-34 in CY 2015.

3.2 SITE WP-44

No BTEX constituents were detected above the MTCA Method A cleanup levels in samples collected from resource protection wells CW-9 and CW-14b during CY 2015 (Table 4).

Historically TPH-G and TPH-D have been detected above their respective MTCA cleanup levels in samples collected from resource protection well CW-9 (Appendix D). TPH-G is generally detected at low levels in samples collected from resource protection well CW-14b. TPH-D concentrations range from non-detect (September 1997) to 6,800 μ g/L (March 2004) and TPH-O ranges from non-detect (multiple) to 1,500 μ g/L (March 2006).

There were no detections of TPH above MTCA Method A cleanup levels in the sample from resource protection well CW-9 during CY 2015. The reported TPH-D concentration from resource protection well CW-9 (2,700 μ g/L) was above the MTCA Method A cleanup level. TPH-O was also reported above MTCA Method A at 520 μ g/L in well CW-14b during CY 2015.

3.3 SITE DP-60

Analyzing samples collected at site DP-60 for BTEX and TPH-G was discontinued after the March 2006 sampling event. Site DP-60 has a site-specific cleanup level for TPH-D at $1,000 \, \mu \text{g/L}$. The cleanup level for TPH-O is $500 \, \mu \text{g/L}$

TPH-D and TPH-O were detected at 1,900 μ g/L and 470 μ g/L, respectively, in the sample collected from CR-02. TPH-D and TPH-O were detected at 970 μ g/L and 570 μ g/L in the sample collected from TW-9. Concentrations in CR-02 were higher in CY 2015 than in CY 2014, but within an order of magnitude. Concentrations in TW-9 were lower in CY 2015 than in CY 2014, but also within an order of magnitude.

3.4 BASE BOUNDARY RESOURCE PROTECTION WELLS

No VOCs were detected in samples collected from resource protection wells CW-4, LT-4 and/or LT-6 in CY 2015.

4. ANALYSIS OF DATA AND DISCUSSION

Data were analyzed to help support interpretation and evaluation of constituent concentrations detected in groundwater at sites SS-34, WP-44, and DP-60. Data from base boundary resource protection wells were not analyzed due to the infrequent detection of any VOCs in groundwater samples collected from these wells. Linear graphs of constituent concentration data from resource protection wells sampled at the three TPH sites are presented in Appendix D.

The Shapiro-Wilk test for normality, linear regression analysis, and Mann-Kendall test for trend were performed on the data using a Microsoft Excel[®] add in, Analyse It[®]. The Mann-Kendall test was performed on non-parametric data.

All concentration measurements not known to be in error were considered valid. Suspect "outliers" were not removed from the data set and were included in the graphs. Non-detect (ND) data, which represent concentration measurements below the analytical reporting limits, were evaluated at the reporting limit value (i.e., if the reporting limit was below $0.5 \,\mu g/L$ then the concentration value was set at $0.5 \,\mu g/L$).

4.1 SUMMARY STATISTICS OF BTEX AND TPH CONCENTRATIONS

Summary statistical analysis was performed on data from resource protection wells with a minimum of eight data points. Summary statistics were calculated using Microsoft Excel's Descriptive Statistics[®] tool. Table 5 presents summary descriptive statistics of constituent concentration data for each resource protection well associated with sites SS-34, WP-44, and DP-60.

4.2 SHAPIRO-WILK TEST FOR NORMALITY

Prior to analyzing BTEX and TPH concentration data for trends, data were tested for normal distribution. The null and alternate hypotheses are a summary of a test's objectives, which in this case is to test for the data's distribution. The null hypothesis is what is assumed to be true before given evidence that it may be false. The null hypothesis of all tests for normality is that a dataset is normally distributed. The alternate hypothesis, then, is that a dataset is not normally distributed (Helsel and Hirsch 2002). A significance level, or alpha level, of 0.05 was used when determining whether historical data from resource protection wells were normally distributed or not. P values, generated using the Shapiro-Wilk Test for Normality, were then compared to the alpha level. The alpha level is the "cutoff" point for the test statistic in making a decision whether the data are normally distributed or not. P values show the strength of the test in determining whether the data are normally distributed or not. P values range from 0 to 1; the closer a P value is to 1, the better the dataset is normally distributed. P values equal to or below 0.05 (alpha level) are not considered normally distributed.

Datasets that were not considered normally distributed were then transformed by taking the natural log of the original values. This is generally the most common transformation of water resources data. The Shapiro-Wilk Test for Normality was run on the transformed data with the same criteria as the datasets above. Results of the Shapiro-Wilk test are included in Table 6. Histograms are included in Appendix E.

4.3 LINEAR REGRESSION AND MANN-KENDALL TREND ANALYSES

Linear regression trend analyses were conducted on data that were found to be normally or log normally distributed. In this instance, the null hypothesis for the test is that there is no trend in the data (Helsel and Hirsch 2002). The alpha level for the linear regression analysis was set at 0.05. P values generated by the analysis were then compared to the alpha level. P values less than the alpha value suggested a trend in the data. Results are presented in Table 6. Linear regression graphs are presented in Appendix E.

The Mann-Kendall test for trend was performed on data that were not normally or log-normally distributed (non-parametric data). No assumptions need to be made about the distribution of the data in order to perform the Mann-Kendall test (Helsel and Hirsch 2002). The null hypothesis is the same as the linear regression test above in that there is no trend in the data. The alpha level was kept the same at 0.05 although the Mann-Kendall test computes a P value for a two-tailed prediction interval. The null hypothesis was rejected for P values smaller than 0.05 or larger than 0.95. Results are presented in Table 7. Mann-Kendall scatter plots are presented in Appendix E.

Review of the Site SS-34 data trend analysis indicates:

- No statistically significant upward trends for TPH-G and TPH-D data at Site SS-34
- An upward trend was calculated for TPH-G concentrations in resource protection well DM-06; however, not statistically significant

Review of the Site WP-44 data trend analysis indicates:

- No statistically significant upward trends for benzene, TPH-G, and TPH-D data at Site WP-44
- A statistically significant downward trend for benzene in resource protection well CW-14b
- A downward trend for benzene in resource protection well CW-9; however, not statistically significant

 An upward trend for TPH-G in resource protection well CW-9 and a downward trend for TPH-G in resource protection well CW-14b; however, neither trend statistically significant

Review of Site DP-60 data trend analysis indicates:

- Downward trends for TPH-G in resource protection wells CR-02 and TW-9; however, neither trend is statistically significant
- Downward trends for TPH-D in resource protection wells CR-02 and TW-9; however, neither trend is statistically significant
- Statistically significant downward trends for TPH-O in resource protection wells CR-02 and TW-9

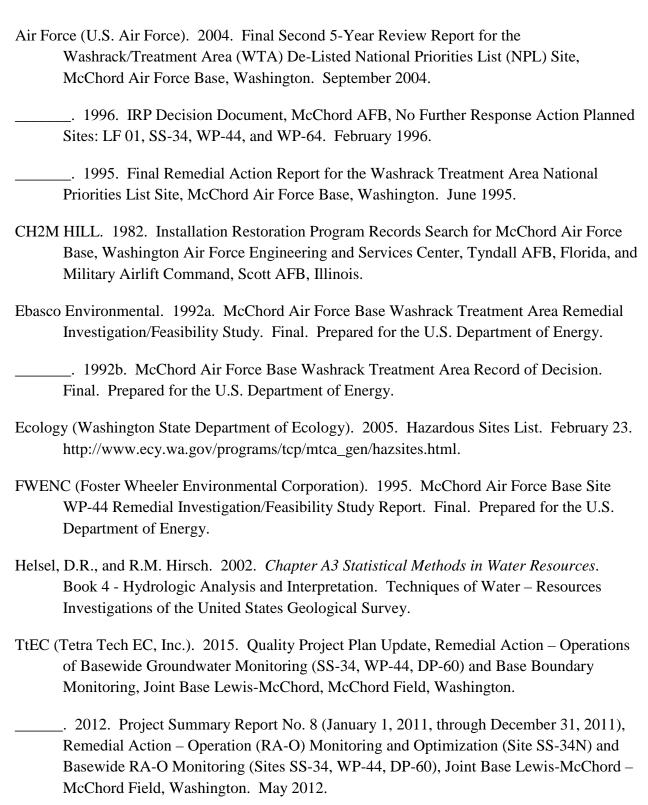
January 2016

This page intentionally left blank.

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

Conclusions are based on the trend analyses performed, review of the CY 2015 sampling data, and comparison of CY 2015 analytical data to site cleanup levels.


- Trend analyses at resource protection wells currently sampled at Site SS-34 remain unchanged from CY 2014; however, resource protection well AZ-06 was not sampled in CY 2014. Concentrations of benzene, TPH-D, and TPH-G were below regulatory levels in resource protection wells AZ-06, DM-06 and UA-02 during CY 2015.
- Trend analyses at resource protection wells currently sampled at Site WP-44 continue to show downward trends, except for TPH-G in resource protection well CW-9. The TPH-D and TPH-O concentrations in resource well CW-14b were the only compounds reported above regulatory levels during CY 2015.
- Trend analyses at resource protection wells currently sampled at Site DP-60 continue to show downward trends for TPH-D and TPH-O; however TPH-D concentrations in resource protection well CR-02 and TPH-O concentrations in resource protection well TW-9 were reported above regulatory levels during CY 2015.
- Analytical results indicate no VOC contaminants above regulatory limits at the base boundary resource protection wells during CY 2015.

5.2 RECOMMENDATIONS

- Continue groundwater monitoring at resource protection wells at Sites SS-34, WP-44, and DP-60 until analytical results indicate attenuation of contaminants to levels below site-specific regulatory limits.
- Continue groundwater monitoring at base boundary wells, per the schedule presented in the QPP update (TtEC 2015).

This page intentionally left blank.

6. REFERENCES

______. 2011. Quality Project Plans, Remedial Action–Operation of Basewide Groundwater Monitoring (SS-34, WP-44 and DP-60) and Base Boundary Monitoring, Joint Base Lewis-McChord – McChord Field, Washington. August 2011.

URSG and FWENC (URS Greiner, Inc. and Foster Wheeler Environmental Corporation). 1998. McChord Air Force Base Groundwater Monitoring Program for Multiple Sites, CY 1997 Annual Report. Final.

TABLES

This page intentionally left blank.

January 2016

Table 1. Resource Protection Well Construction Details

Well ID	North UTM	East UTM	Ground Elevation (ft/AMSL)	Meas. Pt. Elevation (ft/AMSL)	Total Depth (ft)	Screen Top (ft/bgs)	Screen Bottom (ft/bgs)	Screen Top Elevation (ft/AMSL)	Screen Bottom Elevation (ft/AMSL)	Completion Date		
Site SS-34 Monitoring Wells												
AZ-06	664957.66	1502943.598	292.4	292.17	53	13	53	279.17	239.17	29-Aug-83		
DM-06	664549.05	1502545.1	292.3	293.96	35	15	35	278.96	258.96	6-Jun-86		
UA-02	664750.37	1502512.89	292.2	293.56	37.7	17.7	37.7	275.86	255.86	8-Mar-88		
				Site WI	P-44 Moni	toring Wells						
CW-9	663418.00	1504325	300.2	299.9	32	22	32	277.9	267.9	5-Feb-93		
CW-14b	662984.00	1504374	305.3	305.28	46	43	46	262.28	259.28	6-May-93		
				Site DP	-60 Monit	oring Wells						
CR-02	665905.86	1505167.172	276.6	275.73	38	8	38	267.73	237.73	28-Aug-84		
TW-9	666225.66	1505092.889	276.62	276.62	24.5	4.5	24.5	272.12	252.12	15-Jan-96		
				Base Bou	ndary Mo	nitoring Wells	S					
CW-4	664934.9	1500760.2	282.71	284.29	26.9	16.9	26.9	267.39	257.39	5-Feb-93		
LT-2	670681.0	1509089.0	284.6	286.6	26.0	11.6	21.6	275.0	265.0	7-Aug-93		
LT-3	670734.0	1506793.0	276.40	275.89	31	11	31	264.89	244.89	17-Aug-93		
LT-4	670852.0	1505537.0	281.60	283.25	26.3	16.3	26.3	266.95	256.95	17-Aug-93		
LT-5	670140.0	1504739.0	278.60	279.79	30.5	20.5	30.5	259.29	249.29	17-Aug-93		
LT-6	668440.0	1503819.0	275.00	274.63	25	15	25	259.63	249.63	18-Aug-88		
LT-7	666017.0	1503734.0	274.00	273.53	19	9	19	264.53	254.53	17-Aug-93		
LT-10	669713.0	1504250.0	274.90	274.39	24.5	14.5	24.5	259.89	249.89	20-Sep-94		
LT-11 Abbreviations a	667648.0	1503719.0	273.50	273.37	27.5	17.5	27.5	255.87	245.87	20-Sep-94		

Abbreviations and Acronyms:

ft/AMSL – feet above mean sea level

Meas. Pt. Elevation – measure point elevation, elevation of top of casing

ft/bgs – feet below ground surface

Table 2. Sampling Summary

Columbde	tituents oncern Rationale for Sampling
Carre Carr	
CH-02 26-Mar-15 Annual Yes BTE3	K, TPH- Compliance monitoring with JBLM decision document D,O
UA-02 26-Mar-15 Annual Yes BTEX GR Site WP-44 Resource Protection Wells Annual Yes BTEX GR CW-9 26-Mar-15 Annual Yes BTEX GR CW-14b 26-Mar-15 Annual Yes BTEX GR Site DP-60 Resource Protection Wells CR-02 24-Jun-15 Annual Yes TPI TW-9 24-Jun-15 Annual Yes TPI TW-9 24-Jun-15 Annual Yes TPI TW-9 24-Jun-15 Spring every 3 years Yes V LT-9 26-Mar-15 Spring every 3 years Yes V LT-1 25-Mar-13 Spring every 3 years Yes V LT-3 26-Feb-14 Spring every 3 years Yes V LT-4 26-Mar-15 Spring every 3 years Yes V LT-5 26-Feb-14 Spring every 3 years Yes V LT-6 26-Mar-15 Spring every 3 years Yes V LT-7 26-Feb-14 Spring every 3 years Yes </td <td>K, TPH- Compliance monitoring with JBLM decision document D,O</td>	K, TPH- Compliance monitoring with JBLM decision document D,O
CW-9 26-Mar-15 Annual Yes BTEX CW-14b 26-Mar-15 Annual Yes BTEX Site DP-60 Resource Protection Wells CR-02 24-Jun-15 Annual Yes TPI TW-9 24-Jun-15 Annual Yes TPI Base Boundary Resource Protection Wells CW-4 26-Mar-15 Spring every 3 years Yes V LT-2 25-Mar-13 Spring every 3 years Yes V LT-3 26-Feb-14 Spring every 3 years Yes V LT-4 26-Mar-15 Spring every 3 years Yes V LT-5 26-Feb-14 Spring every 3 years Yes V LT-6 26-Mar-15 Spring every 3 years Yes V LT-7 26-Feb-14 Spring every 3 years Yes V	K, TPH- Compliance monitoring with JBLM decision document D,O
CW-14b 26-Mar-15 Annual Yes BTEX G. Site DP-60 Resource Protection Wells CR-02 24-Jun-15 Annual Yes TPI TW-9 24-Jun-15 Annual Yes TPI Base Boundary Resource Protection Wells CW-4 26-Mar-15 Spring every 3 years Yes V LT-2 25-Mar-13 Spring every 3 years Yes V LT-3 26-Feb-14 Spring every 3 years Yes V LT-4 26-Mar-15 Spring every 3 years Yes V LT-5 26-Feb-14 Spring every 3 years Yes V LT-6 26-Mar-15 Spring every 3 years Yes V LT-7 26-Feb-14 Spring every 3 years Yes V	·
G. Site DP-60 Resource Protection Wells CR-02 24-Jun-15 Annual Yes TPI TW-9 24-Jun-15 Annual Yes TPI Base Boundary Resource Protection Wells CW-4 26-Mar-15 Spring every 3 years Yes V LT-2 25-Mar-13 Spring every 3 years Yes V LT-3 26-Feb-14 Spring every 3 years Yes V LT-4 26-Mar-15 Spring every 3 years Yes V LT-5 26-Feb-14 Spring every 3 years Yes V LT-6 26-Mar-15 Spring every 3 years Yes V LT-7 26-Feb-14 Spring every 3 years Yes V	K, TPH- Compliance monitoring with JBLM decision document D,O
CR-02 24-Jun-15 Annual Yes TPI TW-9 24-Jun-15 Annual Yes TPI Base Boundary Resource Protection Wells CW-4 26-Mar-15 Spring every 3 years Yes V LT-2 25-Mar-13 Spring every 3 years Yes V LT-3 26-Feb-14 Spring every 3 years Yes V LT-4 26-Mar-15 Spring every 3 years Yes V LT-5 26-Feb-14 Spring every 3 years Yes V LT-6 26-Mar-15 Spring every 3 years Yes V LT-7 26-Feb-14 Spring every 3 years Yes V	K, TPH- Compliance monitoring with JBLM decision document D,O
TW-9 24-Jun-15 Annual Yes TPI Base Boundary Resource Protection Wells CW-4 26-Mar-15 Spring every 3 years Yes V LT-2 25-Mar-13 Spring every 3 years Yes V LT-3 26-Feb-14 Spring every 3 years Yes V LT-4 26-Mar-15 Spring every 3 years Yes V LT-5 26-Feb-14 Spring every 3 years Yes V LT-6 26-Mar-15 Spring every 3 years Yes V LT-7 26-Feb-14 Spring every 3 years Yes V	·
Base Boundary Resource Protection Wells CW-4 26-Mar-15 Spring every 3 years Yes V LT-2 25-Mar-13 Spring every 3 years Yes V LT-3 26-Feb-14 Spring every 3 years Yes V LT-4 26-Mar-15 Spring every 3 years Yes V LT-5 26-Feb-14 Spring every 3 years Yes V LT-6 26-Mar-15 Spring every 3 years Yes V LT-7 26-Feb-14 Spring every 3 years Yes V	H-D,O Compliance monitoring with JBLM decision document
CW-4 26-Mar-15 Spring every 3 years Yes V LT-2 25-Mar-13 Spring every 3 years Yes V LT-3 26-Feb-14 Spring every 3 years Yes V LT-4 26-Mar-15 Spring every 3 years Yes V LT-5 26-Feb-14 Spring every 3 years Yes V LT-6 26-Mar-15 Spring every 3 years Yes V LT-7 26-Feb-14 Spring every 3 years Yes V	H-D,O Compliance monitoring with JBLM decision document
LT-2 25-Mar-13 Spring every 3 years Yes V LT-3 26-Feb-14 Spring every 3 years Yes V LT-4 26-Mar-15 Spring every 3 years Yes V LT-5 26-Feb-14 Spring every 3 years Yes V LT-6 26-Mar-15 Spring every 3 years Yes V LT-7 26-Feb-14 Spring every 3 years Yes V	
LT-3 26-Feb-14 Spring every 3 years Yes V LT-4 26-Mar-15 Spring every 3 years Yes V LT-5 26-Feb-14 Spring every 3 years Yes V LT-6 26-Mar-15 Spring every 3 years Yes V LT-7 26-Feb-14 Spring every 3 years Yes V	OCs Early warning detection sampling, sampled in 2015
LT-4 26-Mar-15 Spring every 3 years Yes V LT-5 26-Feb-14 Spring every 3 years Yes V LT-6 26-Mar-15 Spring every 3 years Yes V LT-7 26-Feb-14 Spring every 3 years Yes V	OCs Early warning detection sampling, will be sampled next in 2016
LT-5 26-Feb-14 Spring every 3 years Yes V LT-6 26-Mar-15 Spring every 3 years Yes V LT-7 26-Feb-14 Spring every 3 years Yes V	OCs Early warning detection sampling, will be sampled next in 2017
LT-6 26-Mar-15 Spring every 3 years Yes V LT-7 26-Feb-14 Spring every 3 years Yes V	OCs Early warning detection sampling, sampled in 2015
LT-7 26-Feb-14 Spring every 3 years Yes V	OCs Early warning detection sampling, will be sampled next in 2017
1 0 7 7	OCs Early warning detection sampling, sampled in 2015
Y T 10	OCs Early warning detection sampling, will be sampled next in 2017
LT-10 25-Mar-13 Spring every 3 years Yes V	OCs Early warning detection sampling, will be sampled next in 2016
LT-11 25-Mar-13 Spring every 3 years Yes V	OCs Early warning detection sampling, will be sampled next in 2016

Notes:

Bold – Resource protection wells that were sampled in 2015.

Abbreviations and Acronyms:

BTEX – benzene, toluene, ethylbenzene, and xylenes analyzed using EPA Method 8260C

TPH-D – diesel-range total petroleum hydrocarbons analyzed using Method NWTPH-Dx

TPH-G – gasoline-range total petroleum hydrocarbons analyzed using Method NWTPH-Gx

TPH-O – heavy oil-range total petroleum hydrocarbons analyzed using Method NWTPH-Dx

VOC - total volatile organic compounds analyzed using EPA Method 8260C

Table 3. Depth-to-Water and Water Quality Parameter Measurements – 2015

Well ID	Date	Meas. Pt. Elevation (ft/AMSL)	Depth to SWL (ft)	SWL Elev. (ft/AMSL)	рН	Cond. (ms/cm)	DO (mg/L)	ORP (mV)	Temp °C
Site SS-34	Resource Protection	n Wells		· · ·			<u> </u>		
AZ-06	26-Mar-15	292.17	24.16	268.01	6.6	188	5.37	132	14.3
DM-06	26-Mar-15	293.96	29.35	264.61	6.4	133	3.83	221	14.1
UA-02	26-Mar-15	293.56	29.36	264.20	6.2	121	2.56	223	12.5
Site WP-44	Resource Protection	on Wells							
CW-9	26-Mar-15	299.90	20.96	278.94	7.0	217	6.35	142	16.4
CW-14b	26-Mar-15	305.28	27.93	277.35	7.5	382	5.35	-70	14.9
Site DP-60	Resource Protection	n Wells							
CR-02	24-Jun-15	275.73	8.15	267.58	-	-	-	-	-
TW-9	24-Jun-15	276.62	11.70	264.92	-	-	-	-	-
Base Boun	dary Resource Prote	ection Wells							
CW-4	26-Mar-15	284.29	20.16	264.13	6.0	64	9.94	238	11.6
LT-4	26-Mar-15	283.25	21.84	261.41	6.4	104	9.21	192	16.2
LT-6	26-Mar-15	274.63	14.57	260.06	6.7	139	9.78	164	13.5

Abbreviations and Acronyms:

- - not measured

Cond. (ms/cm) conductivity microsiemens per centimeter

DO (ppm) – dissolved oxygen parts per million

ft/AMSL – feet above mean sea level

Meas. Pt. Elevation – measure point elevation, elevation at top of casing

ORP (mv) – oxygen/reduction potential millivolts

SWL – static water level

Temp. (°C) – temperature degrees Celsius

Table 4. Constituents of Concern Concentrations – 2015

Well ID	Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	M&P Xylenes (μg/L)	O Xylenes (µg/L)	TPH-G (µg/L)	TPH-D (μg/L)	TPH-O (µg/L)
			Site S	SS-34 Resource Pro	tection Wells				
AZ-06	26-Mar-15	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	190 JY	280 Y	150 L
DM-06	26-Mar-15	< 0.5	0.13 J	< 0.5	< 0.5	< 0.5	<250	32 J	64 J
UA-02	26-Mar-15	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<250	23 J	100 J
			Site V	VP-44 Resource Pr	otection Wells				
CW-9	26-Mar-15	< 0.5	0.22 J	< 0.5	< 0.5	< 0.5	<250	37 J	57 J
CW-14b	26-Mar-15	0.11 J	0.07 J	< 0.5	< 0.5	< 0.5	110 JY	2,700 Y	520 L
			Site D	P-60 Resource Pro	tection Wells*				
CR-02	24-Jun-15	-	-	-	-	-	-	1900 Y	470 J
W-9	24-Jun-15	-	-	-	-	-	-	970 Y	570 Z
								500 or	
Site RG (MCL or MTCA)	5	1,000	700	1,000	1,000	1,000	1,000	500
Current M	ATCA Method A	5	1,000	700	1,000	1,000	800	500	500

	Base Boundary Monitoring Wells							
Well ID	Well ID Date Notes							
CW-4 26-Mar-15 No VOCs of concern detected in sample								
LT-4	1							
LT-6								

Notes:

Bold – Analyte detected above MCL remediation goal value.

Abbreviations and Acronyms:

 $\mu g/L - micrograms \ per \ liter$

MCL – maximum contaminant level per WAC 173-340-900

TPH-D – diesel-range total petroleum hydrocarbons

TPH-G – gasoline-range total petroleum hydrocarbons

TPH-O – heavy oil-range total petroleum hydrocarbons

J – The result is an estimated value.

- L The chromatographic fingerprint of the sample resembles a petroleum product with < amount of heavier molecular weight than calibration standard.
- Y The chromatographic fingerprint of the samples resembles a petroleum product but does not match the calibration standard.
- Z The chromatographic fingerprint of the sample does not resemble a petroleum product.

VOC - total volatile organic compounds analyzed using EPA Method 8260C

^{*} Site DP-60's site-specific cleanup level is 1,000 µg/L for TPH-D.

⁻ not measured, not applicable

Task Order 0001

Table 5. Descriptive Statistics

Well ID	First Sample Date	Last Sample Date	Constituent (µg/L)	Number of NDs	Number of Samples	Sample Mean	Standard Deviation	Minimum Conc.	Maximum Conc.	Date*	Normally or Log Normally Distributed?
				•	Si	te SS-34					
			Benzene	23	34	4.77	17.02	0.04	100	9/25/95	Non-detects
AZ-06	9/25/95	3/26/2015	TPH-G	2	34	3,596.91	3,675.03	25	20,000	9/25/95	No
			TPH-D	1	33	10,600.59	29,314.54	120	160,000	9/15/04	Yes
			Benzene	14	19	7.45	13.81	0.20	57	9/10/98	Non-detects
DM-04	9/25/95	9/15/2004	TPH-G	0	19	3,547.37	1,679.08	1,700	8,000	9/10/98	Yes
			TPH-D	0	19	7,406.32	15,568.96	670	69,000	9/10/98	Yes
			Benzene	8	10	0.37	0.26	0.2	1	4/3/12	Non-detects
DM-06	3/10/2005	3/26/2015	TPH-G	5	10	109.60	98.92	21	250	9/11/08	Yes
			TPH-D	5	10	112.90	58.42	32	230	3/10/05	Non-detects
			Benzene	10	10	0.34	0.26	0.2	1	4/3/12	Non-detects
UA-02	3/10/2005	3/26/2015	TPH-G	6	10	112.16	97.59	25	250	9/11/08	Non-detects
			TPH-D	7	10	81.60	34.16	23	130	4/3/12	Non-detects
					Sit	te WP-44					
			Benzene	3	35	18.38	18.24	0.5	70	3/15/01	No
CW-9	9/22/1995	3/26/2015	TPH-G	3	35	2,724.00	3,257.30	100	17,000	3/17/03	Yes
			TPH-D	6	35	801.26	592.28	37	2,000	9/13/05	Yes
			Benzene	3	35	2.10	2.19	0.11	9.2	9/8/03	Yes
CW-14b	9/22/1995	3/26/2015	TPH-G	2	35	236.89	90.52	100	480	3/17/03	Yes
			TPH-D	1	35	3,514.00	1,616.12	240	6,800	3/23/04	Yes
					Si	te DP-60					
			TPH-G	0	15	634.67	224.30	270	1,000	3/16/01	Yes
CR-02	4/5/1995	6/24/2015	TPH-D	0	24	5,648.33	11,283.04	860	55,000	3/17/98	No
			TPH-O	5	16	720.94	772.91	55	3,200	3/16/01	Yes
			TPH-G	0	15	533.33	290.51	210	1,200	4/5/95	Yes
TW-09	4/5/1995	6/24/2015	TPH-D	0	24	1,775.83	1,960.97	170	7,800	3/10/05	Yes
			TPH-O	5	16	960.00	1,111.11	110	4,100	3/10/05	Yes

Notes:

Linear concentration graphs not plotted if there are less than four data points or if non-detects are more than half of the data set.

Trend graphs not plotted if there are less than eight data points or if non-detects are half or more than half of the data set.

Linear concentration graphs are presented in Appendix D. Trend graphs are presented in Appendix E.

Abbreviations and Acronyms:

μg/L – micrograms per liter

ND - non-detect - constituent not detected above practical quantification limit

TPH-D – diesel range total petroleum hydrocarbons

TPH-G – gasoline range total petroleum hydrocarbons

TPH-O – heavy oil range total petroleum hydrocarbons

^{*} Date sample was collected from monitoring well with highest concentration.

⁻ not analyzed, not applicable

Table 6. Test for Normality and Linear Regression Trends

Wall ID	Constituent	D Wales	Normally	Log P	Log Normally	Linear Regression	Clama	Tuond	Statistically		
Well ID	(μg/L)	P Value	Distributed?	Value	Distributed?	P Value	Slope	Trend	Significant?		
Site SS-34											
AZ-06	TPH-G	< 0.0001	No	0.0007	No	=	-	=	-		
AZ-00	TPH-D	< 0.0001	No	0.0611	Yes	0.6123	-0.00006445	Down	No		
DM-04	TPH-G	0.011	No	0.471	Yes	0.0146	-0.0002286	Down	Yes		
DM-04	TPH-D	< 0.0001	No	0.056	Yes	0.2119	0.0003227	Up	No		
DM-06	TPH-G	0.003	No	0.165	Yes	0.0849	0.0004381	Up	No		
					Site WP-44						
	Benzene	0.0001	No	0.009	No	-	-	-	-		
CW-9	TPH-G	< 0.0001	No	0.1109	Yes	0.4683	0.00008167	Up	No		
	TPH-D	0.0064	No	0.0571	Yes	0.1952	-0.0001073	Down	No		
	Benzene	< 0.0001	No	0.3966	Yes	< 0.0001	-0.0003001	Down	Yes		
CW-14b	TPH-G	0.0683	Yes	-	-	0.0911	-0.01311	Down	No		
	TPH-D	0.0798	Yes	-	-	0.6877	-0.05684	Down	No		
					Site DP-60						
	TPH-G	0.688	Yes	-	-	0.2178	-0.05757	Down	No		
CR-02	TPH-D	< 0.0001	No	0.003	No	-	-	-	-		
	TPH-O	0.0002	No	0.802	Yes	0.0487	-0.0002658	Down	Yes		
	TPH-G	0.015	No	0.777	Yes	0.0661	-0.0001811	Down	No		
TW-9	TPH-D	< 0.0001	No	0.408	Yes	0.4999	-0.00005596	Down	No		
	TPH-O	0.0001	No	0.761	Yes	0.0231	-0.0003174	Down	Yes		

Abbreviations and Acronyms:

 $\mu g/L - micrograms \ per \ liter$

TPH-D – diesel range total petroleum hydrocarbons TPH-G – gasoline range total petroleum hydrocarbons

TPH-O – heavy oil range total petroleum hydrocarbons

⁻ not analyzed, not applicable

Table 7. Mann-Kendall Test on Non-Parametric Data

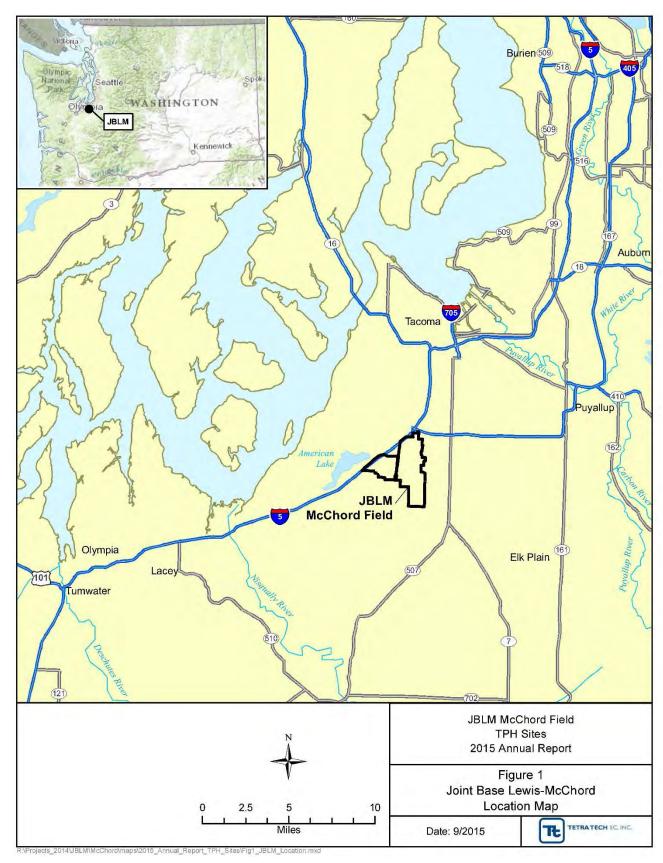
Well ID	Constituent (µg/L)	Tau Statistic	Two-Tailed P Value	Trend	Statistically Significant?
			Site SS-34		
AZ-06	TPH-G	-0.420	0.0005	Down	Yes
			WP-44		
CW-9	Benzene	-0.245	0.0394	Down	No
			DP-60		
CR-02	TPH-D	-0.062	0.6727	Down	No

Abbreviations and Acronyms:

µg/L – micrograms per liter

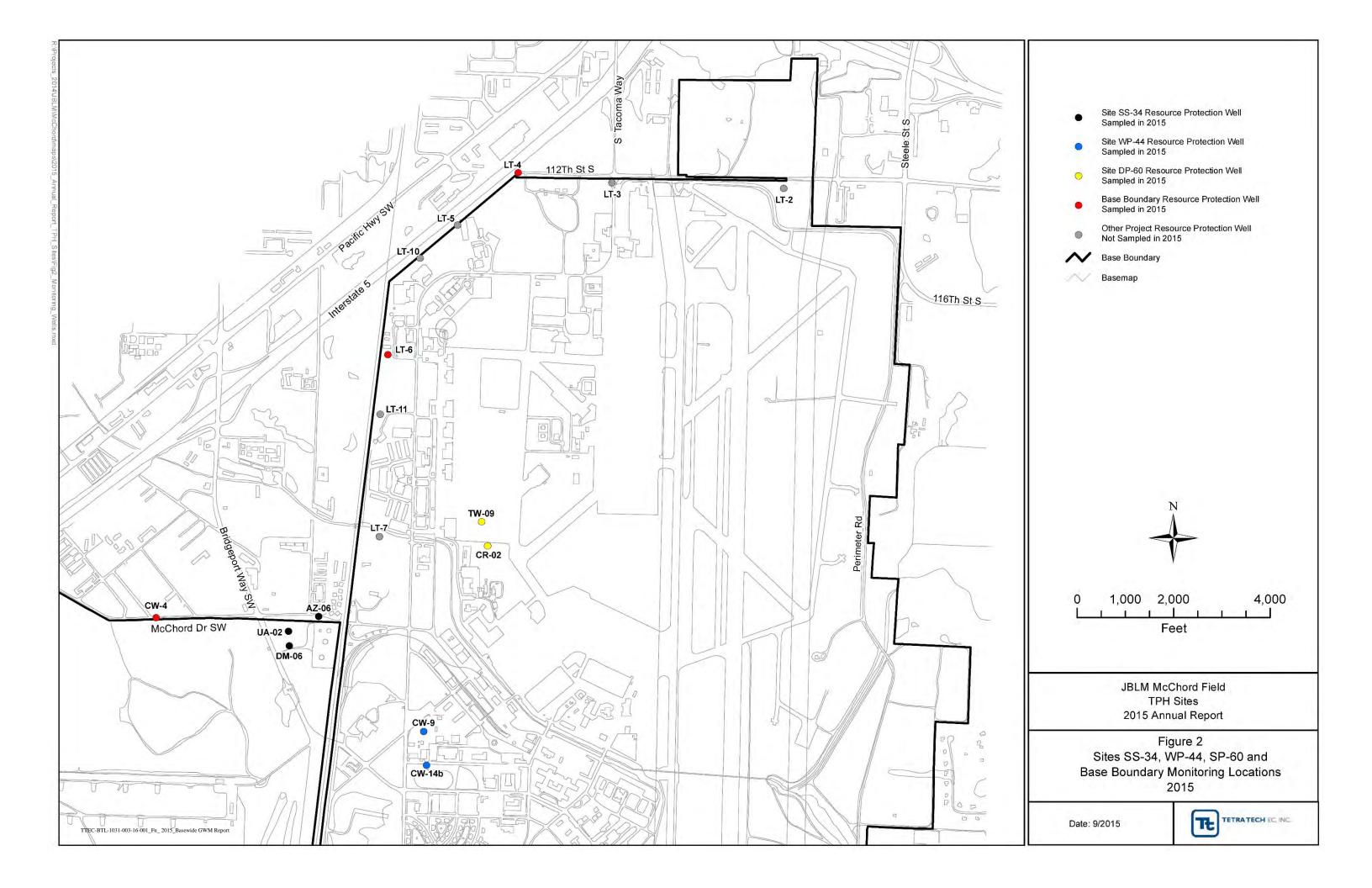
TPH-D – diesel-range total petroleum hydrocarbons

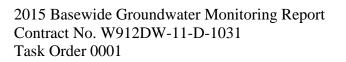
TPH-G – gasoline-range total petroleum hydrocarbons TPH-O – heavy oil-range total petroleum hydrocarbons


This page intentionally left blank.

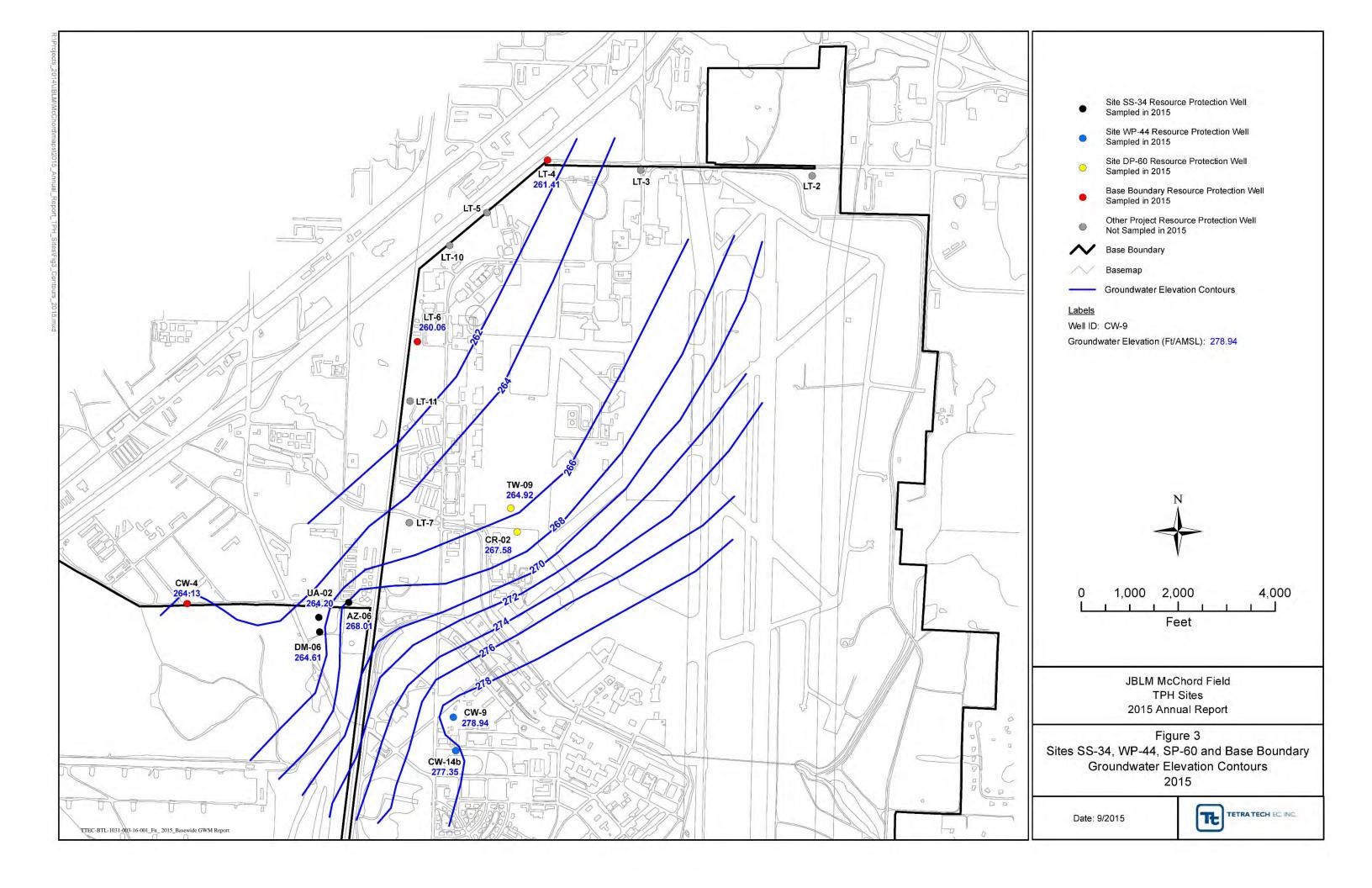
January 2016

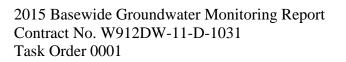
FIGURES


This page intentionally left blank.


January 2016

This page intentionally left blank.


January 2016



January 2016

This page intentionally left blank.

January 2016

This page intentionally left blank.

APPENDIX A McCHORD FIELD RESOURCE PROTECTION WELL INVENTORY

This page intentionally left blank.

January 2016

Appendix A - Well Inventory Output (6 February 2015) JBLM McChord Field

	North		Ground Elevation	Measure Point Elevation	Well Depth	Screen Top	Screen Bottom	Screen Top Elevation	Screen Bottom Elevation	Completion
Well ID	NAD27	East NAD27	(ft/AMSL)	(ft/AMSL)	(ft/bgs)		(ft/bgs)	(ft/AMSL)	(ft/AMSL)	Date
				Wells Complete						
AZ-04	664924.06	1502609.91	294.92	294.51	57.5	7.5	57.5	287.01	237.01	7/20/1983
AZ-06	664957.66	1502943.598	292.4	292.17	53	13	53	279.17	239.17	8/29/1983
CR-01	665914.45	1504969.16	277.16	275.73	38	8	38	267.73	237.73	6/12/1984
CR-02	665905.86	1505167.172	276.6	275.73	38	8	38	267.73	237.73	8/28/1984
CW- 1	663528.28	1502988.26	291.71	293.89	36	26	36	267.89	257.89	2/3/1993
CW- 2	663867.2	1502341.41	273.39	275.18	49.5	39.5	49.5	235.68	225.68	1/28/1993
CW- 3	664488.85	1501791.53	277.67	279.25	22.5	12.5	22.5	266.75	256.75	1/29/1993
CW- 4	664934.92	1500760.2	282.71	284.29	26.9	16.9	26.9	267.39	257.39	2/5/1993
CW- 9	663418	1504325	300.2	299.9	32	22	32	277.9	267.9	2/5/1993
CW-11	667981	1504396	277.76	277.5	30	20	30	257.5	247.5	1/29/1993
CW-12	664043.79	1511152.2	291.67	293.83	21	11	21	282.83	272.83	2/2/1993
CW-13	660349	1504502	297.2	297.15	26	16	26	281.15	271.15	5/3/1993
CW-14a	662984	1504389	305.5	305.49	35	25	35	280.49	270.49	5/6/1993
CW-14b	662984	1504374	305.3	305.28	46	43	46	262.28	259.28	5/6/1993
CW-14c	682970	1504381	306	305.69	169.5	159.5	169.5	146.19	136.19	11/23/1993
CW-15	663945	1504604	292.4	292.2	27	17	27	275.2	265.2	5/7/1993
CW-15c	663982	1504574	293	292.66	108.6	98.6	108.6	194.06	184.06	11/5/1993
CW-18c	662559	1504919	310.2	309.51	207.4	197.4	207.4	112.11	102.11	12/8/1993
CW-20	665214	1505366	281.2	280.75	21	11	21	269.75	259.75	10/22/1993
CW-21	663499	1504592	294.8	294.46	27.5	17.5	27.5	276.96	266.96	9/21/1994
CW-22	663641	1504141	302.45	301.96	31.5	21.5	31.5	280.46	270.46	9/20/1994
CW-23	663443	1504008	304.8	304.08	29.5	19.5	29.5	284.58	274.58	9/20/1994
CW-24	662980	1504134	305.15	304.62	33.7	23.7	33.7	280.92	270.92	9/21/1994
CW-25	665548	1503521	292.72	292.26	36	26	36	266.26	256.26	9/20/1994
CW-26	665725	1503445	292.9	292.73	36	26	36	266.73	256.73	9/20/1994
CW-29b	665207	1505269	284.3	284.03	23	18	23	266.03	261.03	8/8/1990
CW-31a	664888.82	1504246.75	296.58	296.28	99.5	89	99.5	207.28	196.78	7/18/1990
CW-32a	666768.19	1504428.52	276.86	276.58	110	100	110	176.58	166.58	8/10/1990
CW-33c	660084	1505235	302.97	302.32	80	70	80	232.32	222.32	9/23/1994

Appendix A - Well Inventory Output (6 February 2015) JBLM McChord Field

Well ID	North NAD27	East NAD27	Ground Elevation (ft/AMSL)	Measure Point Elevation (ft/AMSL)	Well Depth (ft/bgs)	Screen Top (ft/bgs)	Screen Bottom (ft/bgs)	Screen Top Elevation (ft/AMSL)	Screen Bottom Elevation (ft/AMSL)	Completion Date
CW-34c	658775	1505171	311.12	310.45	105	95	105	215.45	205.45	10/4/1994
CW-35	664008	1500738	283.13	286.52	33.5	23.5	33.5	263.02	253.02	9/4/1998
CW-36	663214.55	1501982.48	286.42	288.63	31.5	21.5	31.5	267.13	257.13	9/4/1998
CW-37	665577.74	1503740.203	294.18	293.77	39.5	29.5	39.5	264.27	254.27	10/29/1999
CW-38	665802.99	1503455.116	293.3	292.92	39	29	39	263.92	253.92	10/27/1999
CW-39	665622.18	1503439.123	293.3	292.795	51	31	51	261.795	241.795	10/28/1999
CW-40	665517.84	1503422.976	290	289.315	33	23	33	266.315	256.315	10/28/1999
CW-41	665412.16	1503395.226	295.61	295.09	39	29	39	266.09	256.09	10/28/1999
CW-41a	665412.32	1503387.095	296.66	296.18	90	80	90	216.18	206.18	3/22/2000
CW-43	665316.02	1503381.479	297.09	296.73	41	31	41	265.73	255.73	3/13/2000
CW-44	665408.22	1503528.644	292.82	292.47	37	27	37	265.47	255.47	3/13/2000
CW-45	666099.02	1502802.881	289.46	288.99	50	40	50	248.99	238.99	3/14/2000
CW-45a	666106.09	1502803.207	289.43	289.13	90	80	90	209.13	199.13	3/24/2000
CW-46	665915.78	1502808.78	288.9	288.44	50	40	50	248.44	238.44	3/14/2000
CW-47	665756.92	1502806.057	288.72	288.34	50	40	50	248.34	238.34	3/14/2000
CW-48	665587.67	1502797.647	289.93	289.31	40	30	40	259.31	249.31	3/15/2000
CW-49	665415.3	1502793.239	293.91	293.57	40	30	40	263.57	253.57	3/15/2000
CW-50	665353.38	1503921.084	292.08	291.37	60	40	60	251.37	231.37	6/5/2001
CW-51	665136.16	1503770.064	298.61	298.1	32	22	32	276.1	266.1	6/5/2001
CW-52	665186.62	1503372.15	298.32	297.79	30	20	30	277.79	267.79	6/5/2001
CW-53	666225.36	1502804.771	289.49	289.01	50	30	50	259.01	239.01	6/6/2001
CW-54	666528.21	1502836.345	271.5	270.98	35	25	35	245.98	235.98	6/12/2001
CW-55a	666048.07	1502616.473	288.84	288.38	45	35	45	253.38	243.38	6/8/2001
CW-55b	666048.29	1502622.197	288.79	288.26	80	70	80	218.26	208.26	6/8/2001
CW-56	666058.1	1502493.892	288.91	288.48	50	30	50	258.48	238.48	6/7/2001
CW-57	666063.95	1502331.804	287.8	287.27	50	40	50	247.27	237.27	6/7/2001
CW-58	666076.22	1502188.899	286.33	285.67	50	40	50	245.67	235.67	6/6/2001
CW-59	665851.69	1502179.108	285.49	285.01	35	25	35	260.01	250.01	6/6/2001
CW-60	665646.01	1502163.849	287.19	286.68	36	26	36	260.68	250.68	6/5/2001
CW-61	666415.29	1502159.969	286.59	286.24	50	40	50	246.24	236.24	6/11/2001

Appendix A - Well Inventory Output (6 February 2015)

JBLM McChord Field

Well ID	North NAD27	East NAD27	Ground Elevation (ft/AMSL)	Measure Point Elevation (ft/AMSL)	Well Depth (ft/bgs)	Screen Top (ft/bgs)	Screen Bottom (ft/bgs)	Screen Top Elevation (ft/AMSL)	Screen Bottom Elevation (ft/AMSL)	Completion Date
CW-62	666729.07	1502207.164	273.5	273.06	40	30	40	243.06	233.06	6/11/2001
CW-63	665664.07	1503843.52	276.74	276.15	25	15	25	261.15	251.15	3/11/2008
CW-64	665749.29	1503276.7	293.09	292.6	60	45	60	247.6	232.6	3/11/2008
CW-65	665843.11	1503220.25	291.61	291.06	60	45	60	246.06	231.06	3/10/2008
CW-65a	666133.29	1503481.255	273.58	273.29	80	70	80	203.29	193.29	6/8/2001
CW-66	665793.15	1503089.06	290.53	290.14	44	29	44	261.14	246.14	3/10/2008
CW-67	665813.85	1502808.89	288.7	288.3	54	39	54	249.3	234.3	6/15/2009
CW-68	665867.04	1502807.82	288.71	288.42	55	40	55	248.42	233.42	6/15/2009
CW-69	665966.43	1502809.94	288.56	288.26	55	40	55	248.26	233.26	6/16/2009
CW-70	666156.91	1502801.48	289.43	289.06	55	40	55	249.06	234.06	6/16/2009
CW-71	666023.71	1502712.2	289.07	288.72	55	40	55	248.72	233.72	6/17/2009
DA- 1a	657813.23	1502063.74	298.9	299.83	37.1	32.1	37.1	267.73	262.73	6/14/1989
DA- 1b	657820.18	1502073.91	299.3	300.76	67.8	62.8	67.8	237.96	232.96	6/13/1989
DA- 2a	659240.98	1502641.52	299.8	301.79	41.2	36.2	41.2	265.59	260.59	3/9/1989
DA- 2b	659241.85	1502650.15	299.9	301.3	70	65	70	236.3	231.3	3/9/1989
DA- 2c	659250.18	1502671.78	300.2	300.74	118	108	118	192.74	182.74	4/4/1989
DA- 4a	658040.99	1500941.48	283.5	285.05	41.6	36.6	41.6	248.45	243.45	3/31/1989
DA- 4b	658043.94	1500925.917	283	284.4	65.9	60.9	65.9	223.5	218.5	3/15/1989
DA- 6a	660132.47	1501596.222	295.7	295.27	38	33	38	262.27	257.27	3/16/1989
DA- 7b	660153.49	1500358.87	281.9	281.34	65.1	60.1	65.1	221.24	216.24	3/20/1989
DA- 7e	660134.99	1500343.84	281.3	280.98	125	115	125	165.98	155.98	11/14/1989
DA- 9a	660842.65	1500144.2	284.8	286.32	35.6	30.6	35.6	255.72	250.72	3/30/1989
DA- 9b	660842.62	1500150.77	284.3	285.92	65.5	60.5	65.5	225.42	220.42	3/30/1989
DA-11a	660907.18	1498677.45	271.2	272.79	24.7	19.7	24.7	253.09	248.09	3/22/1989
DA-11b	660912.5	1498687.05	271.1	272.99	50	45	50	227.99	222.99	3/21/1989
DA-12e	660550.12	1497151.43	272	273.11	133	123	133	150.11	140.11	10/13/1989
DA-13a	661371.08	1497409.91	272.1	273.65	30.9	25.9	30.9	247.75	242.75	3/13/1989
DA-21a	660537.71	1500254.8	281.4	283.55	32.6	27.6	32.6	255.95	250.95	10/30/1989
DA-21b	660545.83	1500252.89	281.6	283.24	63	58	63	225.24	220.24	10/27/1989
DA-25b	660323.69	1499246.47	275.2	276.9	70	65	70	211.9	206.9	10/13/1989

Appendix A - Well Inventory Output (6 February 2015) JBLM McChord Field

Well ID	North NAD27	East NAD27	Ground Elevation (ft/AMSL)	Measure Point Elevation (ft/AMSL)	Well Depth (ft/bgs)	Screen Top (ft/bgs)	Screen Bottom (ft/bgs)	Screen Top Elevation (ft/AMSL)	Screen Bottom Elevation (ft/AMSL)	Completion Date
DA-28	661151	1498191	262.9	266.19	31.2	21.2	31.2	244.99	234.99	5/11/1993
DA-29	660731	1499446	269	268.63	48.2	38.2	48.2	230.43	220.43	5/12/1993
DA-30a	660565	1498800	271.1	270.63	33	23	33	247.63	237.63	5/11/1993
DA-30b	660562	1498790	270.7	270.36	59	49	59	221.36	211.36	5/10/1993
DA-31	659947	1500659	278.2	277.64	64	54	64	214	224	04/26/2010
DA-32	660125	1500401	282.6	282.2	64	54	64	218	228	04/27/2010
DB- 3	657783.96	1501150.95	289.62	289.24	35.1	30.1	35.1	259.14	254.14	3/23/1989
DB- 6	660741.14	1499440.41	269.7	269.29	14.4	9.4	14.4	259.89	254.89	3/29/1989
DB-11	659463	1501680	292.5	293.61	33	28	33	265.61	260.61	4/6/1989
DM-06	664549.05	1502545.1	292.3	293.96	35	15	35	278.96	258.96	6/6/1986
DO-1a	660451.27	1497987.56		270.9	48.2	18.2	48.2	252.7	222.7	3/22/1992
DO-2	661103	1498942		274.1	70	40	70	234.1	204.1	1/27/1992
DO-3	660763	1500015		282.2	94.6	64.6	94.6	217.6	187.6	2/17/1992
DO-5a	661294	1497825	270.8	270.4	9	4	9	266.4	261.4	5/12/1993
DO-5b	661294	1497825	270.8	270.5	18	13	18	257.5	252.5	5/12/1993
DR-05	661336.37	1499132.249	269.12	270.77	48	8	48	262.77	222.77	12/14/1984
DT-1	660459.75	1498225.65	272.15	271.77	28	18	28	253.77	243.77	9/3/1998
DT-2	661023.91	1499086.53	274.88	274.37	40	30	40	244.37	234.37	9/3/1998
DX-1	660358.44	1497957.04	274.3	270.54	70.7	38.7	70.7	231.84	199.84	2/29/1992
DX-2	661123.55	1498965.33	273.4	269.91	72.2	39.4	72.2	230.51	197.71	1/19/1992
DX-3	660751.21	1499988	281.2	277.68	97.2	69.2	97.2	208.48	180.48	2/13/1992
DZ-13	660321.4	1497985.852	273.7	272.61	28	18	28	254.61	244.61	5/20/1985
EH-4b	661034.98	1506530.14	298.9	301.2	57.6	52.6	57.6	248.6	243.6	5/21/1990
EPA-W-5	659816.94	1496604.37	265.9	266.84	45	40	45	226.84	221.84	8/11/1983
FTA-1a	661123.95	1510007.98	310.79	310.4	24	14	24	296.4	286.4	3/20/1997
FTA-2a	661166.87	1509541.23	308.57	311.05	26	16	26	295.05	285.05	3/20/1997
FTA-3a	661430.24	1509713.38	311.63	313.61	24.6	14.6	24.6	299.01	289.01	3/20/1997
FTA-4a	661322.08	1509564.1	309.54	311.83	26	16	26	295.83	285.83	3/20/1997
FTA-4b	661322.08	1509564.1	309.54	311.84	78	68	78	243.84	233.84	3/20/1997
FTA-5a	661000.2	1509718.862	309.24	311.79	22	12	22	299.79	289.79	3/5/1998

Appendix A - Well Inventory Output (6 February 2015)

JBLM McChord Field

Well ID	North NAD27	East NAD27	Ground Elevation (ft/AMSL)	Measure Point Elevation (ft/AMSL)	Well Depth (ft/bgs)	Screen Top (ft/bgs)	Screen Bottom (ft/bgs)	Screen Top Elevation (ft/AMSL)	Screen Bottom Elevation (ft/AMSL)	Completion Date
FTA-6a	661406.62	1509853.403	310.31	312.84	25	15	25	297.84	287.84	3/5/1998
IH-1a	658724.58	1511278.96	330	332.43	37.8	32.8	37.8	299.63	294.63	5/10/1990
IH-1b	658733.67	1511277.51	329.8	331.8	56.8	51.8	56.8	280	275	5/9/1990
IH-1c	658675.4	1511307.46	330.7	332.45	99.4	84.9	99.4	247.55	233.05	6/19/1990
IH-2a	659602.77	1509376.26	327.4	329.52	44.8	39.8	44.8	289.72	284.72	5/7/1990
IH-2b	659611.15	1509376.99	327.5	329.44	57.3	52.3	57.3	277.14	272.14	5/14/1990
IH-3a	659856.96	1509664.64	326	327.69	42.8	37.8	42.8	289.89	284.89	5/7/1990
IH-3b	659854.28	1509683.01	326.1	328.13	57.8	52.8	57.8	275.33	270.33	5/4/1990
IH-3c	659844.9	1509683	326.1	327.64	89.2	79.2	89.2	248.44	238.44	6/15/1990
IW- 1	665570.94	1503817.99	293.63	295.06	40	30	40	265.06	255.06	9/18/2002
IW- 2	665510.04	1503819.67	292.56	294.28	45	35	45	259.28	249.28	9/18/2002
IW-3	665459.31	1503819.11	291.78	293.04	37	27	37	266.04	256.04	9/18/2002
IW- 4	665409.84	1503819.25	291.04	292.92	25	15	25	277.92	267.92	9/19/2002
IW- 5	665516.95	1503770.69	292.78	294.79	25	15	25	279.79	269.79	9/19/2002
IW-6	665522.07	1503720.57	292.47	294.32	25	15	25	279.32	269.32	9/19/2002
IW- 7	665528.94	1503671.64	292.34	294.43	25	15	25	279.43	269.43	9/19/2002
IW-8	665426.73	1503670.51	289.25	291.06	20	10	20	281.06	271.06	9/19/2002
IW- 9	665496.39	1503522.29	289.8	291.36	30	20	30	271.36	261.36	9/19/2002
IW-10	665445.19	1503522.5	290.31	292.02	25	15	25	277.02	267.02	9/20/2002
IW-11	665344.3	1503520.45	297.95	299.56	30	20	30	279.56	269.56	9/20/2002
IW-12	665472.94	1503479.96	289.24	290.93	25	15	25	275.93	265.93	9/20/2002
IW-13	665340.37	1503464.01	297.96	299.6	30	20	30	279.6	269.6	9/20/2002
IW-14	665580.94	1503671.57	293.62	293.27	25	15	25	278.27	268.27	9/23/2002
IW-15	665479.9	1503671.67	291.07	292.96	25	15	25	277.96	267.96	9/23/2002
IW-16	665467.3	1503767.28	291.67	293.72	25	15	25	278.72	268.72	9/23/2002
IW-17	665563.21	1503596.56	293.51	293.09	30	15	30	278.09	263.09	4/5/2004
IW-18	665512.91	1503597.97	291.89		30	15	30	276.89	261.89	4/5/2004
IW-19	665459.54	1503605.37	289.74		30	15	30	274.74	259.74	4/5/2004
IW-20	665415.01	1503591.79	290.32		30	15	30	275.32	260.32	4/8/2004
IW-21	665632.82	1503671.34	294.21		35	20	35	274.21	259.21	4/6/2004

Appendix A - Well Inventory Output (6 February 2015) JBLM McChord Field

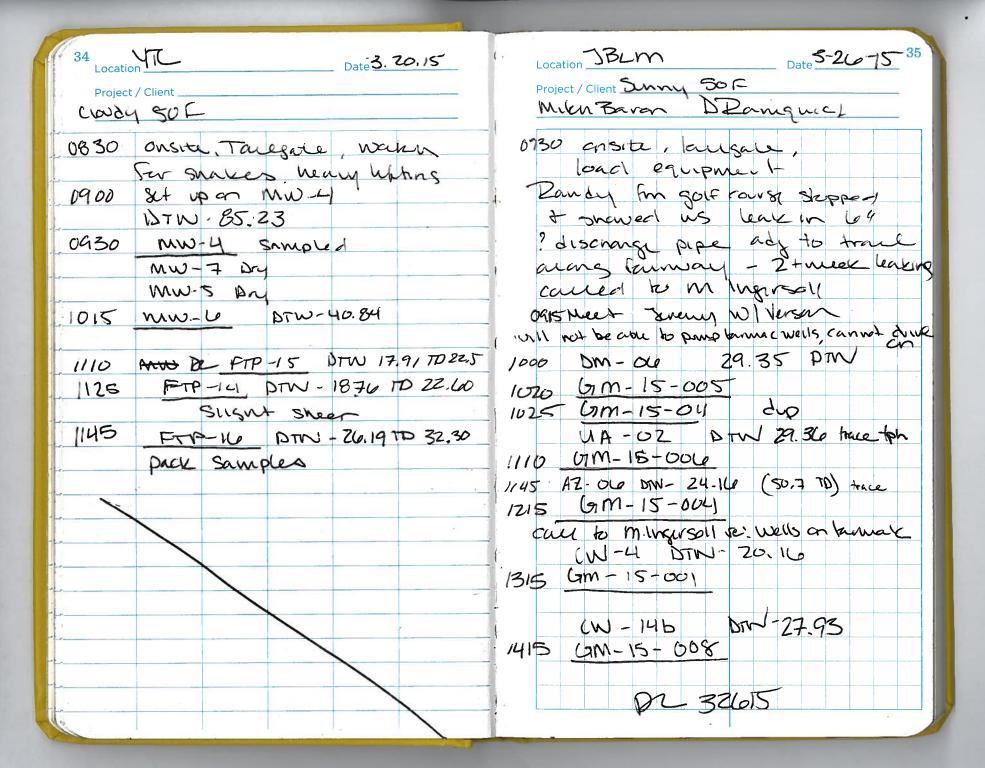
Well ID	North NAD27	East NAD27	Ground Elevation (ft/AMSL)	Measure Point Elevation (ft/AMSL)	Well Depth (ft/bgs)	Screen Top (ft/bgs)	Screen Bottom (ft/bgs)	Screen Top Elevation (ft/AMSL)	Screen Bottom Elevation (ft/AMSL)	Completion Date
IW-22	665365.46	1503603.36	296.04		35	20	35	276.04	261.04	4/6/2004
IW-24	665598.66	1503520.38	293.23		40	25	40	268.23	253.23	4/7/2004
IW-25	665294.31	1503519.51	299.61		35	20	35	279.61	264.61	4/8/2004
IW-28	665666.57	1503442.3	293.38		40	25	40	268.38	253.38	4/7/2004
IW-29	665569.69	1503431.05	291.99		45	30	45	261.99	246.99	4/6/2004
IW-30	665485.52	1503413.29	288.99		30	15	30	273.99	258.99	4/6/2004
IW-31	665364.49	1503386.85	296.94		37	22	37	274.94	259.94	4/7/2004
JZ-01	659666	1504693	295.5	297.61	72.5	12.5	72.5	285.11	225.11	7/19/1983
LT- 2	670681	1509089	284.6	286.55	21.6	11.6	21.6	274.95	264.95	8/17/1993
LT- 3	670734	1506793	276.4	275.89	31	11	31	264.89	244.89	8/17/1993
LT- 4	670852	1505537	281.6	283.25	26.3	16.3	26.3	266.95	256.95	8/17/1993
LT- 5	670140	1504739	278.6	279.79	30.5	20.5	30.5	259.29	249.29	8/17/1993
LT- 6	668440	1503819	275	274.63	25	15	25	259.63	249.63	8/18/1993
LT- 7	666017	1503734	274	273.53	19	9	19	264.53	254.53	8/17/1993
LT-8	660734	1509297	325.3	324.89	44.5	34.5	44.5	290.39	280.39	8/18/1993
LT- 9	661940	1507958	311.7	313.27	140	130	140	183.27	173.27	9/17/1993
LT-10	669713	1504250	274.9	274.39	24.5	14.5	24.5	259.89	249.89	9/20/1994
LT-11	667648	1503719	273.5	273.37	27.5	17.5	27.5	255.87	245.87	9/20/1994
MF-1	664418.35	1505134.83	280.11	279.62	19.5	4.5	19.5	275.12	260.12	12/18/2000
MF-2	664413.83	1505197.73	279.79	279.29	19.5	4.5	19.5	274.79	259.79	12/18/2000
MF-3	664485.87	1505135.34	280.32	279.99	19.5	4.5	19.5	275.49	260.49	12/18/2000
MF-4	664523.94	1505200.69	280.6	280.25	19.5	4.5	19.5	275.75	260.75	12/18/2000
MW-40	665329	1502172	291.98	294.04	70	60	70	234.04	224.04	1/29/1987
TW-09	666225.66	1505092.889	276.62	276.62	24.5	4.5	24.5	272.12	252.12	1/15/1996
UA-02	664750.37	1502512.89	292.2	293.56	37.7	17.7	37.7	275.86	255.86	3/8/1988
			ı	Wells Completed	in the Se	ea Level	Aquifer			
CW-14d	682970	1504381	306	305.71	275	265	275	40.71	30.71	11/23/1993
CW-15d	663982	1504574	293	292.67	265.4	255.4	265.4	37.27	27.27	11/5/1993
CW-18d	662559	1504949	310.2	309.74	330	320	330	-10.26	-20.26	12/8/1993
CW-31b	664888.82	1504246.75	296.58	296.29	196.5	186	196.5	110.29	99.79	7/18/1990

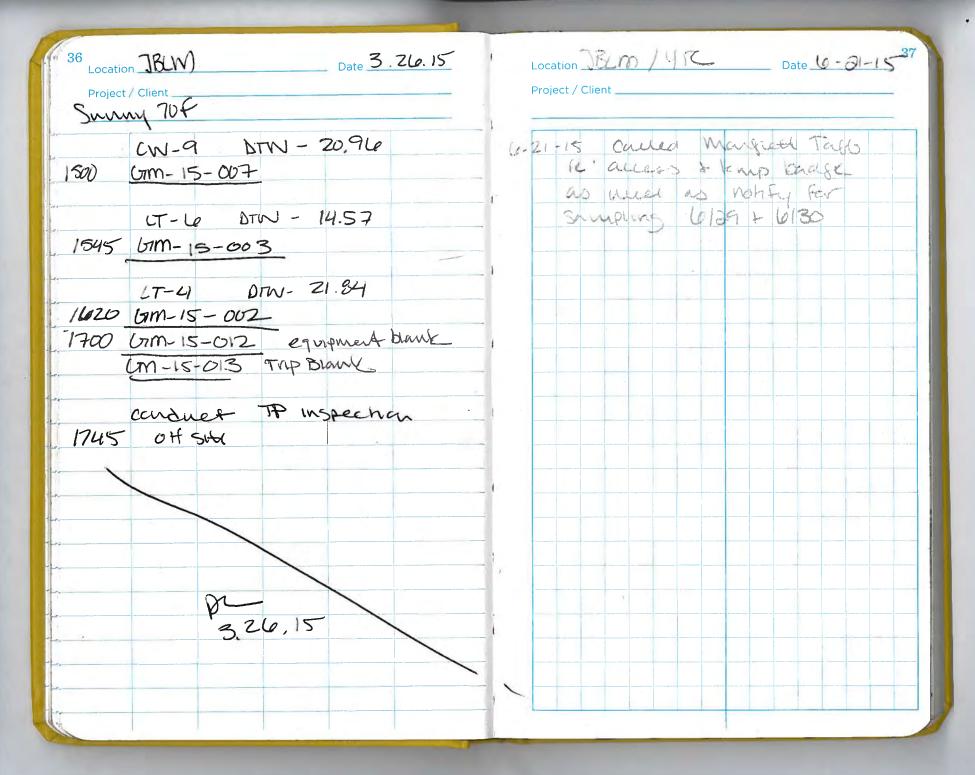
Appendix A - Well Inventory Output (6 February 2015)

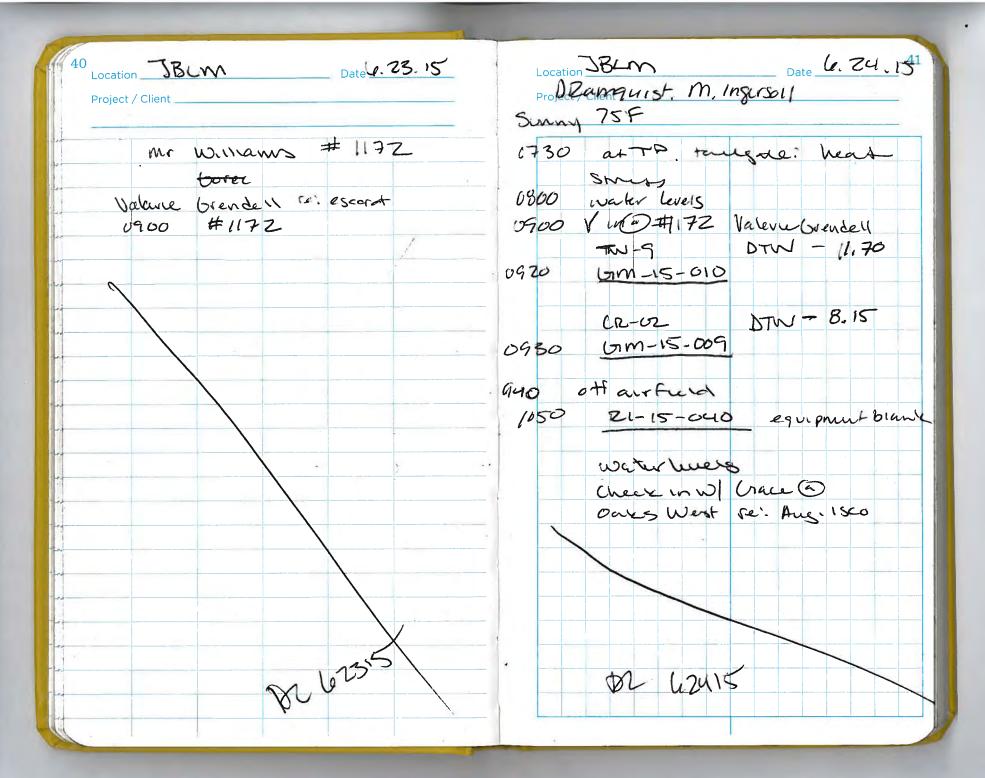
JBLM McChord Field

Well ID	North NAD27	East NAD27	Ground Elevation (ft/AMSL)	Measure Point Elevation (ft/AMSL)	Well Depth (ft/bgs)	Screen Top (ft/bgs)	Screen Bottom (ft/bgs)	Screen Top Elevation (ft/AMSL)	Screen Bottom Elevation (ft/AMSL)	Completion Date
CW-31c	664888.82	1504246.75	296.58	296.33	311	300.5	311	-4.17	-14.67	7/18/1990
CW-32b	666768.19	1504428.52	276.86	276.54	247	242	247	34.54	29.54	8/10/1990
CW-32c	666768.19	1504428.52	276.86	276.5	372.5	362	372.5	-85.5	-96	8/10/1990
CW-33d	660076	1505230	303.01	301.99	217	207	217	94.99	84.99	9/23/1994
CW-34d	658775	1505171	311.12	310.33	234	224	234	86.33	76.33	10/4/1994
DA- 2d	659250.18	1502671.78	300.2	300.79	202	192	202	108.79	98.79	4/4/1989
DA-12c	660599.77	1497486.34	273.4	274.19	230	220	230	54.19	44.19	4/4/1989
DA-12d	660599.77	1497486.34	273.4	274.19	305	295	305	-20.81	-30.81	4/4/1989

Notes:


ft/AMSL = Feet above mean sea level


ft/bgs = Feet below ground surface


APPENDIX B FIELD DOCUMENTATION

This page intentionally left blank.

January 2016

Project: 38400
Well No.: A2 -00 Date Well Purged: 32615 Date Well Sampled: 32615
The sumpled of the sumple of
Well Data
Measuring Point (MP): Top of Casing Depth to Water Below MP: 24. 16 Purge Method: Purge Meth
Water Sample Data
Sample Number: 1215 Sampling Method: 1215 Sampling Method: 1215
Sampling Personnel: IW HW
Remarks:
Checklist
Well capped and locked (pre-sampling) we non-locking
Water level measured
Appropriate sample containers filled and capped
Samples placed in cooler with blue ice
Well capped and locked (post-sampling)

Liters Out	Time.		Temp	DQ	Spec.	ORP.	Turb
3	1203	6.67	14.0	7.22	. 231	139	130
à	1206	4.40	14.0	5,45	186	143	137
10	1209	(0.4)	14,2	6.69	127	124	140
18	1212	6 64	14.5	5,79	,200	125	72
	121	U US	1911)	5.37	186	132	100
_		4.27					
	-					4 1	

Project:BL_M
Well No.: CW -4 Date Well Purged 32615 Date Well Sampled: 32615
Well Data
Measuring Point (MP): Top of Casing Depth to Water Below MP: 20, 16 Purge Method: 100 Haw
Water Sample Data
Sample Number: 15-001 Time Sample Collected: 1315 Sampling Method: 120 Haw Haw Sampling Personnel: D Rangust M Baran Remarks:
Checklist
Well capped and locked (pre-sampling)
Water level measured
Appropriate sample containers filled and capped
Samples placed in cooler with blue ice
Well capped and locked (post-sampling)

Liters Outz	Time	PH.	Temp	DO	Spec.	ORP.	Turb
5	13d	5.74	11.3	11.00	,00	256	72
0	1305	6.07	11.7	10.61	·047	226	45
14	1315	(2.0)	11.4	994	1066	231 238	30 24
					700	630	44
							9.5
					157 150		
				E		10	(6)

	Project:
	Well No.:Date Well Purged: 32415 Date Well Sampled:32415
	Well Data
	Measuring Point (MP): Top of Casing Depth to Water Below MP: Purge Method: Purge Method:
	Water Sample Data
	Sample Number: 1500 Time Sample Collected: 1500
	Sampling Personnel: De + MO Remarks:
	Checklist
	Well capped and locked (pre-sampling)
	Water level measured
	Appropriate sample containers filled and capped
,	Samples placed in cooler with blue ice
,	Well capped and locked (post-sampling)

Litersa. Out	Time	PH	Temp	DO	Spec. Cond.	ORP	Turb
4	1450	7.29	164	8.70	7222	121	77
10	1454	7.12	143	7.78	.223	127	36
13	1457	7.17	16.4	7.69	1221	140	14
	1.300	696	164	635	.217	142	13
	-			-			
	7						
						1	
		1					

Project: 36LM
Well No.: (W-146 Date Well Purged 32615 Date Well Sampled: 32615
Well Data
Measuring Point (MP): Top of Casing Depth to Water Below MP: 27 93 Purge Method: 100 Hand
Water Sample Data
Sample Number: Lim-15-000 Time Sample Collected: 1415 Sampling Method: Low Flow Sampling Personnel: D2 + MCS Remarks:
Checklist
Well capped and locked (pre-sampling)
Water level measured
Appropriate sample containers filled and capped
Samples placed in cooler with blue ice
Well capped and locked (post-sampling)

Liters	Time		Temp-	DO R	Spec.	ORP	Turb
3	1403	7.12	15.60	8,71	.294	10	48
9	1409	7.28	15,1	6.18	,353	-46 -46	400
15	1412	7.42	14.9	5.69	1367	-62	18
13	1913	7.49	14.9	5.35	,382	-70	13
-+							

Project: 3BLM
Well No.: Date Well Purged: 52015 Date Well Sampled: 32015
Well Data
Measuring Point (MP): Top of Casing Depth to Water Below MP: 29.35 Purge Method:
Water Sample Data
Sample Number: 5 M-15-005 Time Sample Collected: 1020 Sampling Method: 100 100 Sampling Personnel: D12 + M15 Remarks: 4M-15-01 dup 1025 Checklist
Well capped and locked (pre-sampling)
Water level measured
Appropriate sample containers filled and capped
Samples placed in cooler with blue ice
Well capped and locked (post-sampling)

Liters Out	Time		Temp	- DO	Spec Cond.	ORP	Turb
5	1014	U.37	13.8	4.51	129	208	72
9	1020	U.39	14.1	3.83	133	217	37
							37
				<u> </u>			

Project:JBLM
Well No.: 4 Date Well Purge Date Well Sampled: 3.7415
Well Data
Measuring Point (MP): Top of Casing Depth to Water Below MP: 21.84 Purge Method: 10w Flow
Water Sample Data
Sample Number: 5-002 Time Sample Collected: 1070 Sampling Method: 100 From Sampling Personnel: Dangust / M. Boron Remarks:
Checklist
Well capped and locked (pre-sampling)
Water level measured
Appropriate sample containers filled and capped
Samples placed in cooler with blue ice
Well capped and locked (post-sampling)

Liters Out	Time	PH	Temp-	DO	Spec. Cond.	ORP	Turb ₂ .
4	1614	686	14.5	11.28	1100	199	210
9	1417	6.35	15.3	995	106	202	110
n	1420	10.35	14.2	9.21	14	192	23
						.,,	

Project:BLM
Well No.: Lt-Le Date Well Purged 32015 Date Well Sampled: 3 2615
Well Data
Measuring Point (MP): Top of Casing Depth to Water Below MP: 4:57 Purge Method: 100 Flaw
Water Sample Data
Sample Number: 15-04 Time Sample Collected: 1545 Sampling Method: 16-16-16-16-16-16-16-16-16-16-16-16-16-1
Checklist
Well capped and locked (pre-sampling)
Water level measured
Appropriate sample containers filled and capped
Samples placed in cooler with blue ice
Well capped and locked (post-sampling)

Liters: Out	Time		Temp	_ DO.≨	Spec	ORP	Turb,
0	1539	7.0	14.3	10.05	.151	149	290
9	1542	6.81	13.6	10.0	.134	156	180
12	1545	6.72	B.5	9.78	.139	164	98
	20.01						
				<u> </u>		2	
							П
72							
2			L				

Project:
Well No.: NA-2 Date Well Purged: 324 15 Date Well Sampled: 324 15
Well Data
Measuring Point (MP): Top of Casing
Depth to Water Below MP: 29 36 Purge Method: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Water Sample Data
Sample Number: 1977-15-000 Time Sample Collected: 110
Sampling Personnel: D2 + MB
Remarks:
<u>Checklist</u>
Well capped and locked (pre-sampling)
Water level measured
Appropriate sample containers filled and capped
Samples placed in cooler with blue ice
Well capped and locked (post-sampling)

Liters Out	Time	PH.	Temp	DO	Spec. Cond.	ORP	Turb⊭
3	1107	4.24	12.4	3,83	-/23	215	210
9	1110	6.19	12,5	3.16	122	218	18
	11(0	16.19	1612	2.50	121	223	13
				 			
				 			
				 			
				 -		 	

APPENDIX C LABORATORY REPORTS

This page intentionally left blank.

January 2016

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

May 01, 2015

Analytical Report for Service Request No: K1503195

Scott Elkind Sealaska Environmental Services, LLC 18743 Front Street NE P.O. Box 869 Poulsbo, WA 98370

RE: JBLM / 106-45760003

Dear Scott.

Enclosed are the results of the sample(s) submitted to our laboratory March 28, 2015 For your reference, these analyses have been assigned our service request number **K1503195**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at gregory.salata@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Gregory Salata, Ph.D.

Client Services

Manager

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client: Sealaska Environmental Services, LLC Service Request No.: K1503195

Project: JBLM/ 106-45760003 Date Received: 03/28/15

Sample Matrix: Water

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier IV validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Eleven water samples were received for analysis at ALS Environmental on 03/28/15. The samples were received in good condition and consistent with the accompanying chain of custody form, except where noted on the cooler receipt and preservation form included in this report. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Diesel Range Organics by Method NWTPH-Dx

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) criterion for the replicate analysis of Diesel and Residual Range Organics in samples Batch QC were not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

No other anomalies associated with the analysis of these samples were observed.

Gasoline Range Organics by Method NWTPH-Gx

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) criterion for the replicate analysis of Gasoline Range Organics-NWTPH in sample GM-15-004 was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

No other anomalies associated with the analysis of these samples were observed.

Approved by Salota Saproved by Salota Salota

Volatile Organic Compounds by EPA Method 8260

Calibration Verification Exceptions:

The following analyte was flagged as outside the control criterion for Continuing Calibration Verification (CCV) MS13\0403F003.D: 2,2-Dichloropropane, trans-1,3-Dichloropropene and Bromoform. In accordance with the EPA Method, 80% or more of the CCV analytes must pass within 20% of the true value. The ALS SOP allows for 40% difference for the remaining analytes. The CCV met these criteria. The quality of the sample data was not significantly affected. No further corrective action was required.

Lab Control Sample Exceptions:

The control criterion was exceeded for 2,2-Dichloropropane in Laboratory Control Sample (LCS) KWG1502833-3. The recovery was within the marginal exceedance limits listed in DOD Quality Systems Manual 4.2. The data was flagged to indicate the issue. No further corrective action was required.

Sample Notes and Discussion:

Manual integration of one or more chromatographic peaks was required to correct the integration performed by the automated data processing program. The manual integration was performed in accordance with ALS policy, which is consistent with the National Environmental Laboratory Accreditation Program (NELAP), Department of Defense (DOD), and other certifying agencies. Refer to the raw data for the compounds impacted by the manual integration.

No other anomalies associated with the analysis of these samples were observed.

Approved by Regard Salata

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

CHAIN OF CUSTODY

SR#	·
COC Setof	2
COC# *	

1317 South 13th Ave, Keiso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

							www.al	Isglob	oal.com			Page 1 of 1
Project Name	Project Number 45760003		14D					Ì			K1503195	
Project Manager Mark Ingursall				+			· ·				P() V)()	
Company Terra Tean		CONTAINERS	$ \mathcal{Z} $									
19803 North Co	cex Pany Bothell N	A. ¥	TPH GAS	12/1				ı				
406-270-6339	email Wark. whers 10 le han be Sampler Printed Name	in, $\frac{1}{2}$	3 3	12								
Sampler Signature	Sampler Frinted Name		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Vo(s	()							
Danie Lauct	Dana Ramquis	NUMBER	WTPH-Dx/NW_TPH, HOWENTH OF INTERNATIONAL GAS	2	8TEX				Remarks			
	SAMPLING		2 2	+	N	က	4	2	Remarks	-		
CLIENT SAMPLE ID	LABID Date Time	atrix		_								
1.6M-15-001		$\frac{1}{2}$		_\X		Ш				_		
26m-15-002	37615/1620	N/3		<u>V</u>		Ŀ						
361M-15-003		W/3		×	_	Ш				_		
4GM-15-004		N 8	XX	_	<u>X</u>	Ш				_		
5/am-15-005		N, 8	XX	-	乂	Ш				_		
6.GM-15-006	32615/1110	W 8	XX	<u>' </u>	×					╛		
7.(2M-15-007	32615/1500 N	N 8	XX		V					╛		
86m-15-008	32615/1415 1	N. 8	XX		X					╛		
9.GM-15-011	32615/1025	N 8	メメ	_	×	Ш						
10. JM-15-012	32615/1700	N 8	XX		<u>×</u>							
Report Requirements	Invoice Information								Circ	ircle wr	hich metals are to be analyzed	
I. Routine Report: Method Blank, Surrogate, as	P.O.# Bill To:	·	Τo	lai Me	tals: A	AI A	s Sh	n B	a Be B Ca Cd Cd	Co Ci	r Cu Fe Pb Mg Min Mo Ni K Ag	o Na Se Sr Ti Sn V Zn Ho
required	Вш то											7
II. Report Dup., MS, MSD as required								30			Cr Cu Fe Pb Mg Mn Mo Ni K	
III. CLP Like Summary	Turnaround Requirements	Specia	Instruc	tions	/Com	men	ts:		*Indicate	e Stat	te Hydrocarbon Procedure: AK CA	WI Northwest Other(Circle One)
(no raw data)	24 hr48 hr.											
IV. Data Validation Report	5 Day Standard										2 coolers	
V. EDD	Requested Report Date							_	_		2 000	
Relinquished By:	Received By:	Re	linquis	shed	By:			/!	Peopived by:	/:	Relinquished By:	Received By:
Signature	Signature	Signature					Sig	inat	han		Signature	Signature
Printed Name Dana Danguist	Printed Name	Printed Na	ame					intec	Name		Printed Name	Printed Name
Firm TEEC	Fedex	Firm						m/28	115 0990		Firm	Firm
Date/Time 3.23,15/1/00	Date/Time	Date/Time					Da	ite/T	ime		Date/Time	Date/Time

CHAIN OF CUSTODY

001			
1			
1			

SR#_	· · · · · · · · · · · · · · · · · · ·	-
COC Set_	1 of 2	
COC#		

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

										www.a	alsglol	bal.com	Page 1 of 1
Project Name—BLM	Project Nu	imber 5760003			,	Ţ							
Project Manager MC/45011				١		-				F			K1503195
Company tra Tech		· ·		NUMBER OF CONTAINERS	WTPH-DX/NW_TPHJ#0								
Addies 803 North Creek	Pky Bo	theil, WA		ĮĀ	Ŧ	3AS						-	
Phone # 6339	Mark	ingersoli@ktrad	ich.	00	W.	NW_							
Sampler Signature	Sampler P	Printed Name Co	m	R. O	Dx/I	-Gx/I	3	以					
March A	Da	na Kama	U134	JMBE	TPH	WTPH-Gx/NW_GAS	Vocs	BTEX			1		
	L	SAMPLING	1	ž	Ž	Š	<u> </u>	2		4	2	Remarks	
CLIENT SAMPLE ID	LABID	Date Time	Matrix				l						
1.61M-15-013		32015/-	W	3	1	X		X				Trip Blaux	
			W	1									
2. Temp Blank 3.													
4.													1
5.													· ·
6.		N 2-											1
7.		DZ 32	Q15	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									1
8.													1
9.													
10.									·				
Report Requirements		oice Information					-					Cir	rcle which metals are to be analyzed
I. Routine Report: Method Blank, Surrogate, as	P.O.#		— l			Total	l Mot	ale· Δ	. Δ		h B	a Ba B Ca Cd C	Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Tl Sn V Zn Hg
required	Bill To:												
II. Report Dup., MS, MSD			— L								Sb		Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr T! Sn V Zn Hg
as required III. CLP Like Summary	Turnard	ound Requireme	nts	pecia	Inst	ruction	ons/	Com	men	ts:		*Indicate	State Hydrocarbon Procedure: AK CA WI Northwest Other(Circle One)
(no raw data)	24	4 hr48 hr. Day											
IV. Data Validation Report	₩St	andard											
V. EDD		Requested Report Date		_									
Relinquished By:	F	Received By:	\top	Be	ling	rish	19\$	By:		Т		Received By:	Relinquished By: Received By:
X	10: 1		1/2	£4	<u> </u>	Â	<u> </u>						
Signature	Signature	· · · · · · · · · · · · · · · · · · ·	Sign		lyi	i				S	ignat	ure	Signature Signature
Printed Name Dang 1 Zang uist	Printed Na	ame	Printe	ed Na	me		_			Pi	rinte	d Name	Printed Name Printed Name
Firm TEEC	Firm	1 8x	Firm	128	1/5	0	90	40	ı	Fi	irm		Firm Firm
Date/Time 3 2715/1160	Date/Time		Date					_		D	ate/1	lime	Date/Time Date/Time
7													

Cooler Receipt and Preservation Form

PC	65

Page____

		_		Coolei	Keceipi	anu i	i esei v	auon roi	III	2.			
Client		ETRA	TELY				_Servic	e Request		,	95		
Received:	3/28	15	Opened:_	3/28	7/15	By:	An	Unloa	aded: <u>3</u>	128/15	_By:	AR	
. Samples v	vere rece	ived via?	Mail	Fed Ex	UPS	DH	L PI	OX Cou	ırier Ha	and Delivered			•
•		ived in: (c		Cooler	Box	Enve		Other		,		NA.	
-		on cooler	•	NA ?	N N		-		where?	1F	1B		
If present,		_		ď	N			ent, were the				Œ	N
	. 31 352 344			Corr.	Thermon	neter	<u> </u>	COC ID		Tracking N	lumber		
Cooler Temp Co		Raw Temp Blank		Factor	∦ ID			(NA)	G (7	7 7/ //	·// 0 7	*10	IA File
/	7	0:7 3.8	3.7	-0.1	308					2 <i>75515</i> 275 <i>515</i>			-
7 7 7	'>	<i>)</i> .•	21/	- 01	321				8030	- (33/)	_//_	<u> </u>	
. Packing n	naterial:	Inserts	Baggies	Bubble W	rap Gel P	acks	Wet Ice	Dry Ice	Sleeves	· · · · · · · · · · · · · · · · · · ·		····	
. Were cust	ody pape	ers properly	y filled out	(ink, signe	d, etc.)?						NA	Y	N
. Did all bo	ttles arri	ve in good	condition (unbroken)'	? Indicate	in the to	able belo	ow.			NA	Y	(N)
. Were all sa	ample lal	els compl	ete (i.e anal	ysis, prese	rvation, etc.)?			•		NA	Ø	N
. Did all san	nple labe	ls and tags	agree with	custody pa	apers? India	cate ma	ijor disci	repancies in	the table o	on page 2.	NA	(V)	N
. Were app	ropriate l	ottles/con	tainers and	volumes re	eceived for	the test	s indicate	ed?			NA	8	N
0. Were the	pH-pres	erved bottl	es (see SMC	GEN SOP) received at	the ap	propriate	pH? Indic	ate in the to	able below	MA	Y	N
1. Were VC	A vials 1	eceived w	ithout head	space? Ind	licate in the	table b	elow.				NA	(2)	N
2. Was C12	Res neg	ative?		-							NA	Y	N
	nple ID o - / <u></u>				Sample ID c 1- / ≤ - 6				7.40	Identified by:			
9101	-/>-	009		977	1-13-6	00_	7		TIM				
	ir dassa		ghtil då barrigh kin								5444 <u> </u>	eren den	
s	ample ID			Count C	Out of Head- Temp space	Brøke	рН	Reagent	Volume added	Reagent Lo Number		tials	Time
GM-	15-00	06	1 1 1	DA		X							
GM-1	<u> 5 - 0</u>	05	11	04		X							
			<u> </u>										
		· · · · · · · · · · · · · · · · · · ·							-	<u> </u>		<u> </u>	
			-					· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·						<u> </u>							
Votes, Discr	epancie:	s, & Reso	lutions:					-,		·.			
			· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	<u> </u>			
	<u> </u>												
												_	

Diesel and Residual Range Organics

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Service Request:

K1503195

Cover Page - Organic Analysis Data Package Diesel and Residual Range Organics

		Date	Date
Sample Name	Lab Code	Collected	Received
GM-15-004	K1503195-004	03/26/2015	03/28/2015
GM-15-005	K1503195-005	03/26/2015	03/28/2015
GM-15-006	K1503195-006	03/26/2015	03/28/2015
GM-15-007	K1503195-007	03/26/2015	03/28/2015
GM-15-008	K1503195-008	03/26/2015	03/28/2015
GM-15-011	K1503195-009	03/26/2015	03/28/2015
GM-15-012	K1503195-010	03/26/2015	03/28/2015

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 JBLM/106-45760003 **Date Collected:** 03/26/2015 **Project: Sample Matrix:** Water **Date Received:** 03/28/2015

Diesel and Residual Range Organics

Sample Name: GM-15-004 Units: ug/L Lab Code: K1503195-004 Basis: NA **Extraction Method:** EPA 3510C Level: Low

Analysis Method: NWTPH-Dx

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	280 Y	110	21	12	1	04/07/15	04/20/15	KWG1502945	
Residual Range Organics (RRO)	150 L	110	53	20	1	04/07/15	04/20/15	KWG1502945	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	99	50-150	04/20/15	Acceptable
n-Triacontane	104	50-150	04/20/15	Acceptable

Comments:

Page Printed: 04/22/2015 Form 1A - Organic 1 of 1 12:59:54 u:\Stealth\Crystal.rpt\Form1mNew.rpt Merged

SuperSet Reference:

RR177098

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 JBLM/106-45760003 **Date Collected:** 03/26/2015 **Project: Sample Matrix:** Water **Date Received:** 03/28/2015

Diesel and Residual Range Organics

Sample Name: GM-15-005 Units: ug/L Lab Code: K1503195-005 Basis: NA **Extraction Method:** EPA 3510C Level: Low

Analysis Method: NWTPH-Dx

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	32 J	100	20	11	1	04/07/15	04/20/15	KWG1502945	
Residual Range Organics (RRO)	64 J	100	50	19	1	04/07/15	04/20/15	KWG1502945	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	104	50-150	04/20/15	Acceptable	
n-Triacontane	108	50-150	04/20/15	Acceptable	

Comments:

Printed: 04/22/2015 Form 1A - Organic 1 of 1 12:59:58 Page u:\Stealth\Crystal.rpt\Form1mNew.rpt Merged SuperSet Reference: RR177098

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 JBLM/106-45760003 **Date Collected:** 03/26/2015 **Project: Sample Matrix:** Water **Date Received:** 03/28/2015

Diesel and Residual Range Organics

Sample Name: GM-15-006 Units: ug/L Lab Code: K1503195-006 Basis: NA **Extraction Method:** EPA 3510C Level: Low

Analysis Method: NWTPH-Dx

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	23 J	110	21	12	1	04/07/15	04/20/15	KWG1502945	
Residual Range Organics (RRO)	100 J	110	53	20	1	04/07/15	04/20/15	KWG1502945	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	85	50-150	04/20/15	Acceptable
n-Triacontane	87	50-150	04/20/15	Acceptable

Comments:

Printed: 04/22/2015 13:00:03 Form 1A - Organic 1 of 1 Page u:\Stealth\Crystal.rpt\Form1mNew.rpt Merged SuperSet Reference: RR177098

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 JBLM/106-45760003 **Date Collected:** 03/26/2015 **Project: Sample Matrix:** Water **Date Received:** 03/28/2015

Diesel and Residual Range Organics

Sample Name: GM-15-007 Units: ug/L Lab Code: K1503195-007 Basis: NA **Extraction Method:** EPA 3510C Level: Low

Analysis Method: NWTPH-Dx

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	37 J	100	20	11	1	04/07/15	04/21/15	KWG1502945	
Residual Range Organics (RRO)	57 J	100	50	19	1	04/07/15	04/21/15	KWG1502945	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	99	50-150	04/21/15	Acceptable
n-Triacontane	101	50-150	04/21/15	Acceptable

Comments:

Page Printed: 04/22/2015 Form 1A - Organic 1 of 1 13:00:08 u:\Stealth\Crystal.rpt\Form1mNew.rpt Merged SuperSet Reference: RR177098

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 JBLM/106-45760003 **Project: Date Collected:** 03/26/2015 **Date Received:** 03/28/2015 **Sample Matrix:** Water

Diesel and Residual Range Organics

Sample Name: GM-15-008 Units: ug/L Lab Code: K1503195-008 Basis: NA **Extraction Method:** EPA 3510C Level: Low

Analysis Method: NWTPH-Dx

Dilution Date Date **Extraction Analyte Name** Result Q LOQ LOD MDL **Factor** Extracted Analyzed Lot Note Diesel Range Organics (DRO) **2700** Y 100 04/07/15 04/21/15 KWG1502945 20 11 1 100 19 04/07/15 Residual Range Organics (RRO) **520** L 50 1 04/21/15 KWG1502945

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	103	50-150	04/21/15	Acceptable
n-Triacontane	106	50-150	04/21/15	Acceptable

Comments:

Form 1A - Organic Printed: 04/22/2015 13:00:12 Page 1 of 1 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt$

Merged

SuperSet Reference:

RR177098

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 JBLM/106-45760003 **Project: Date Collected:** 03/26/2015 **Date Received:** 03/28/2015 **Sample Matrix:** Water

Diesel and Residual Range Organics

Sample Name: GM-15-011 Units: ug/L Lab Code: K1503195-009 Basis: NA **Extraction Method:** EPA 3510C Level: Low **Analysis Method:** NWTPH-Dx

Dilution Date Date **Extraction Analyte Name** Result Q LOQ LOD MDL **Factor** Extracted Analyzed Lot Note Diesel Range Organics (DRO) 100 04/07/15 04/21/15 KWG1502945 **39** J 20 11 1 **100** J 100 19 04/07/15 Residual Range Organics (RRO) 50 1 04/21/15 KWG1502945

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	108	50-150	04/21/15	Acceptable
n-Triacontane	114	50-150	04/21/15	Acceptable

Comments:

 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt$

Form 1A - Organic Printed: 04/22/2015 13:00:16 Page 1 of 1

Merged

SuperSet Reference:

RR177098

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 JBLM/106-45760003 **Date Collected:** 03/26/2015 **Project: Sample Matrix:** Water **Date Received:** 03/28/2015

Diesel and Residual Range Organics

Sample Name: GM-15-012 Units: ug/L Lab Code: K1503195-010 Basis: NA **Extraction Method:** EPA 3510C Level: Low

Analysis Method: NWTPH-Dx

Analyte Name	Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	14 J	100	20	11	1	04/07/15	04/20/15	KWG1502945	
Residual Range Organics (RRO)	31 J	100	50	19	1	04/07/15	04/20/15	KWG1502945	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	78	50-150	04/20/15	Acceptable
n-Triacontane	84	50-150	04/20/15	Acceptable

Comments:

Printed: 04/22/2015 Form 1A - Organic 1 of 1 13:00:20 Page u:\Stealth\Crystal.rpt\Form1mNew.rpt Merged SuperSet Reference: RR177098

Gasoline Range Organics

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Service Request:

K1503195

Cover Page - Organic Analysis Data Package Gasoline Range Organics

		Date	Date
Sample Name	Lab Code	Collected	Received
GM-15-004	K1503195-004	03/26/2015	03/28/2015
GM-15-005	K1503195-005	03/26/2015	03/28/2015
GM-15-006	K1503195-006	03/26/2015	03/28/2015
GM-15-007	K1503195-007	03/26/2015	03/28/2015
GM-15-008	K1503195-008	03/26/2015	03/28/2015
GM-15-011	K1503195-009	03/26/2015	03/28/2015
GM-15-012	K1503195-010	03/26/2015	03/28/2015
GM-15-013	K1503195-011	03/26/2015	03/28/2015
GM-15-004	KWG1502850-1	03/26/2015	03/28/2015

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 **Project:** JBLM/106-45760003

Date Collected: 03/26/2015 **Date Received:** 03/28/2015 **Sample Matrix:** Water

Gasoline Range Organics

Sample Name: GM-15-004 Units: ug/L Lab Code: Basis: NA K1503195-004

Extraction Method: EPA 5030B Level: Low

Analysis Method: NWTPH-Gx

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	190 JY	250	25	13	1	03/30/15	03/31/15	KWG1502850	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	94	50-150	03/31/15	Acceptable	

Comments:

Printed: 04/07/2015 Form 1A - Organic Page 1 of 15:02:36

Page 41 of 777

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 **Project:** JBLM/106-45760003 **Date Collected:** 03/26/2015

Sample Matrix: Water **Date Received:** 03/28/2015

Gasoline Range Organics

Sample Name: GM-15-005 Units: ug/L Lab Code: Basis: NA K1503195-005

Extraction Method: EPA 5030B Level: Low

Analysis Method: NWTPH-Gx

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND II	250	25	13	1	03/30/15	03/31/15	KWG1502850	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	92	50-150	03/31/15	Acceptable	

Comments:

Printed: 04/07/2015 Form 1A - Organic Page 1 of 15:02:39

Page 42 of 777

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 **Project:** JBLM/106-45760003 **Date Collected:** 03/26/2015

Date Received: 03/28/2015 **Sample Matrix:** Water

Gasoline Range Organics

Sample Name: GM-15-006 Units: ug/L Lab Code: Basis: NA K1503195-006

Extraction Method: EPA 5030B Level: Low

Analysis Method: NWTPH-Gx

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND U	250	25	13	1	03/30/15	03/31/15	KWG1502850	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	96	50-150	03/31/15	Acceptable	

Comments:

Printed: 04/07/2015 Form 1A - Organic Page 1 of 15:02:43 1

Page 43 of 777

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water

Service Request: K1503195
Date Collected: 03/26/2015
Date Received: 03/28/2015

Level: Low

Gasoline Range Organics

 Sample Name:
 GM-15-007

 Lab Code:
 K1503195-007

Extraction Method: Analysis Method:

Gasoline Range Organics-NWTPH

Analyte Name

EPA 5030B

NWTPH-Gx

Result Q

ND U

Units:	ug/L
Basis:	NA

 MDL
 Dilution Factor
 Date Extraction Date Extracted
 Date Analyzed Lot Note

 13
 1
 03/30/15
 03/31/15
 KWG1502850

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	97	50-150	03/31/15	Acceptable	

LOD

25

LOQ

250

Comments:

Printed: 04/07/2015 15:02:47 Form 1A - Organic Page 1 of 1

Page 44 of 777

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water

Service Request: K1503195 **Date Collected:** 03/26/2015 **Date Received:** 03/28/2015

Gasoline Range Organics

 Sample Name:
 GM-15-008
 Units: ug/L

 Lab Code:
 K1503195-008
 Basis:
 NA

 Extraction Method:
 EPA 5030B
 Level:
 Low

Analysis Method: NWTPH-Gx

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	110 JY	250	25	13	1	03/30/15	03/31/15	KWG1502850	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	94	50-150	03/31/15	Acceptable

Comments:

Printed: 04/07/2015 15:02:51 Form 1A - Organic Page 1 of

Page 45 of 777

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 **Project:** JBLM/106-45760003 **Date Collected:** 03/26/2015

Date Received: 03/28/2015 **Sample Matrix:** Water

Gasoline Range Organics

Sample Name: GM-15-011 Units: ug/L Lab Code: Basis: NA K1503195-009

Extraction Method: EPA 5030B Level: Low

Analysis Method: NWTPH-Gx

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND U	250	25	13	1	03/30/15	03/31/15	KWG1502850	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	95	50-150	03/31/15	Acceptable	

Comments:

Printed: 04/07/2015 Form 1A - Organic Page 1 of 15:02:56 $u: \label{lem:linear_stal_rpt} u: \label{lem:linear_rpt} We w. rpt$ SuperSet Reference: Merged RR176637

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 **Project:** JBLM/106-45760003 **Date Collected:** 03/26/2015 **Date Received:** 03/28/2015 **Sample Matrix:** Water

Gasoline Range Organics

Sample Name: GM-15-012 Units: ug/L Lab Code: Basis: NA K1503195-010

Extraction Method: EPA 5030B Level: Low

Analysis Method: NWTPH-Gx

Analyte Name					Dilution	Date	Date	Extraction	
	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND U	250	25	13	1	03/30/15	03/31/15	KWG1502850	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	94	50-150	03/31/15	Acceptable	

Comments:

Printed: 04/07/2015 Form 1A - Organic Page 1 of 15:02:59

Page 47 of 777

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 **Project:** JBLM/106-45760003 **Date Collected:** 03/26/2015 **Date Received:** 03/28/2015 **Sample Matrix:** Water

Gasoline Range Organics

Sample Name: GM-15-013 Units: ug/L Lab Code: Basis: NA K1503195-011

Extraction Method: EPA 5030B Level: Low

Analysis Method: NWTPH-Gx

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics-NWTPH	ND U	250	25	13	1	03/30/15	03/31/15	KWG1502850	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	98	50-150	03/31/15	Acceptable

Comments:

Printed: 04/07/2015 Form 1A - Organic Page 1 of 15:03:03 1 SuperSet Reference: RR176637

Volatile Organic Compounds

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Service Request:

K1503195

Cover Page - Organic Analysis Data Package Volatile Organic Compounds

		Date	Date
Sample Name	Lab Code	Collected	Received
GM-15-001	K1503195-001	03/26/2015	03/28/2015
GM-15-002	K1503195-002	03/26/2015	03/28/2015
GM-15-003	K1503195-003	03/26/2015	03/28/2015
GM-15-004	K1503195-004	03/26/2015	03/28/2015
GM-15-005	K1503195-005	03/26/2015	03/28/2015
GM-15-006	K1503195-006	03/26/2015	03/28/2015
GM-15-007	K1503195-007	03/26/2015	03/28/2015
GM-15-008	K1503195-008	03/26/2015	03/28/2015
GM-15-011	K1503195-009	03/26/2015	03/28/2015
GM-15-012	K1503195-010	03/26/2015	03/28/2015
GM-15-013	K1503195-011	03/26/2015	03/28/2015
GM-15-004MS	KWG1502833-1	03/26/2015	03/28/2015
GM-15-004DMS	KWG1502833-2	03/26/2015	03/28/2015

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water Service Request: K1503195 **Date Collected:** 03/26/2015 **Date Received:** 03/28/2015

Units: ug/L

Basis: NA

Volatile Organic Compounds

Sample Name: GM-15-001 Lab Code: K1503195-001

Extraction Method: EPA 5030B Level: Low

Analysis Method: 8260C

Analyte Name	Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND	U	0.50	0.20	0.13	1	04/03/15	04/03/15	KWG1502833	
Chloromethane	ND	U	0.50	0.20	0.068	1	04/03/15	04/03/15	KWG1502833	
Vinyl Chloride	ND	U	0.50	0.10	0.075	1	04/03/15	04/03/15	KWG1502833	
Bromomethane	ND	U	0.50	0.30	0.10	1	04/03/15	04/03/15	KWG1502833	
Chloroethane	ND	U	0.50	0.20	0.16	1	04/03/15	04/03/15	KWG1502833	
Trichlorofluoromethane	ND	U	0.50	0.20	0.12	1	04/03/15	04/03/15	KWG1502833	
1,1-Dichloroethene	ND	U	0.50	0.20	0.080	1	04/03/15	04/03/15	KWG1502833	
Acetone	ND	U	20	10	3.3	1	04/03/15	04/03/15	KWG1502833	
Carbon Disulfide	ND	U	0.50	0.20	0.069	1	04/03/15	04/03/15	KWG1502833	
Methylene Chloride	ND	U	2.0	0.20	0.10	1	04/03/15	04/03/15	KWG1502833	
Methyl tert-Butyl Ether	ND	U	0.50	0.30	0.11	1	04/03/15	04/03/15	KWG1502833	
trans-1,2-Dichloroethene	ND	U	0.50	0.20	0.072	1	04/03/15	04/03/15	KWG1502833	
1,1-Dichloroethane	ND	U	0.50	0.20	0.077	1	04/03/15	04/03/15	KWG1502833	
2,2-Dichloropropane	ND	U	0.50	0.20	0.060	1	04/03/15	04/03/15	KWG1502833	*
cis-1,2-Dichloroethene	ND	U	0.50	0.20	0.067	1	04/03/15	04/03/15	KWG1502833	
2-Butanone (MEK)	ND	U	20	4.0	1.9	1	04/03/15	04/03/15	KWG1502833	
Bromochloromethane	ND	U	0.50	0.20	0.16	1	04/03/15	04/03/15	KWG1502833	
Chloroform	ND	U	0.50	0.20	0.072	1	04/03/15	04/03/15	KWG1502833	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	0.20	0.075	1	04/03/15	04/03/15	KWG1502833	
Carbon Tetrachloride	ND	U	0.50	0.20	0.096	1	04/03/15	04/03/15	KWG1502833	
1,1-Dichloropropene	ND	U	0.50	0.20	0.089	1	04/03/15	04/03/15	KWG1502833	
Benzene	ND	U	0.50	0.10	0.062	1	04/03/15	04/03/15	KWG1502833	
1,2-Dichloroethane (EDC)	ND	U	0.50	0.15	0.080	1	04/03/15	04/03/15	KWG1502833	
Trichloroethene (TCE)	ND	U	0.50	0.10	0.10	1	04/03/15	04/03/15	KWG1502833	
1,2-Dichloropropane	ND	U	0.50	0.20	0.095	1	04/03/15	04/03/15	KWG1502833	
Dibromomethane	ND	U	0.50	0.50	0.15	1	04/03/15	04/03/15	KWG1502833	
Bromodichloromethane	ND	U	0.50	0.30	0.091	1	04/03/15	04/03/15	KWG1502833	
cis-1,3-Dichloropropene	ND	U	0.50	0.20	0.18	1	04/03/15	04/03/15	KWG1502833	
4-Methyl-2-pentanone (MIBK)	ND	U	20	10	2.6	1	04/03/15	04/03/15	KWG1502833	
Toluene	ND	U	0.50	0.10	0.054	1	04/03/15	04/03/15	KWG1502833	
trans-1,3-Dichloropropene	ND	U	0.50	0.20	0.068	1	04/03/15	04/03/15	KWG1502833	*
1,1,2-Trichloroethane	ND	U	0.50	0.40	0.14	1	04/03/15	04/03/15	KWG1502833	
Tetrachloroethene (PCE)	ND	U	0.50	0.20	0.099	1	04/03/15	04/03/15	KWG1502833	
2-Hexanone	ND	U	20	10	2.7	1	04/03/15	04/03/15	KWG1502833	

Com	me	nts:

Printed: 05/01/2015 11:39:38 $u: \label{lem:linear_stal_rpt} u: \label{lem:linear_rpt} We w. rpt$

Merged

Form 1A - Organic

Page 66 of 777

RR176839

Page 1 of 3

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water Service Request: K1503195 **Date Collected:** 03/26/2015 **Date Received:** 03/28/2015

Volatile Organic Compounds

Sample Name: GM-15-001 Units: ug/L Lab Code: Basis: NA K1503195-001 **Extraction Method:** EPA 5030B Level: Low

Analysis Method: 8260C

Analyte Name	Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,3-Dichloropropane	ND	U	0.50	0.30	0.14	1	04/03/15	04/03/15	KWG1502833	
Dibromochloromethane	ND	U	0.50	0.50	0.14	1	04/03/15	04/03/15	KWG1502833	
1,2-Dibromoethane (EDB)	ND	U	2.0	0.20	0.10	1	04/03/15	04/03/15	KWG1502833	
Chlorobenzene	ND	U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
Ethylbenzene	ND	U	0.50	0.10	0.050	1	04/03/15	04/03/15	KWG1502833	
1,1,1,2-Tetrachloroethane	ND	U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
m,p-Xylenes	ND	U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
o-Xylene	ND	U	0.50	0.20	0.074	1	04/03/15	04/03/15	KWG1502833	
Styrene	ND	U	0.50	0.20	0.089	1	04/03/15	04/03/15	KWG1502833	
Bromoform	ND	U	0.50	0.50	0.16	1	04/03/15	04/03/15	KWG1502833	*
Isopropylbenzene	ND	U	2.0	0.20	0.051	1	04/03/15	04/03/15	KWG1502833	
1,1,2,2-Tetrachloroethane	ND	U	0.50	0.20	0.16	1	04/03/15	04/03/15	KWG1502833	
Bromobenzene	ND	U	2.0	0.20	0.12	1	04/03/15	04/03/15	KWG1502833	
n-Propylbenzene	ND	U	2.0	0.20	0.054	1	04/03/15	04/03/15	KWG1502833	
1,2,3-Trichloropropane	ND	U	0.50	0.50	0.20	1	04/03/15	04/03/15	KWG1502833	
2-Chlorotoluene	ND	U	2.0	0.20	0.10	1	04/03/15	04/03/15	KWG1502833	
1,3,5-Trimethylbenzene	ND	U	2.0	0.20	0.089	1	04/03/15	04/03/15	KWG1502833	
4-Chlorotoluene	ND	U	2.0	0.20	0.13	1	04/03/15	04/03/15	KWG1502833	
tert-Butylbenzene	ND	U	2.0	0.20	0.059	1	04/03/15	04/03/15	KWG1502833	
1,2,4-Trimethylbenzene	ND	U	2.0	0.20	0.069	1	04/03/15	04/03/15	KWG1502833	
sec-Butylbenzene	ND	U	2.0	0.10	0.062	1	04/03/15	04/03/15	KWG1502833	
4-Isopropyltoluene	ND	U	2.0	0.20	0.060	1	04/03/15	04/03/15	KWG1502833	
1,3-Dichlorobenzene	ND	U	0.50	0.20	0.10	1	04/03/15	04/03/15	KWG1502833	
1,4-Dichlorobenzene	ND	U	0.50	0.20	0.12	1	04/03/15	04/03/15	KWG1502833	
n-Butylbenzene	ND	U	2.0	0.10	0.054	1	04/03/15	04/03/15	KWG1502833	
1,2-Dichlorobenzene	ND	U	0.50	0.20	0.12	1	04/03/15	04/03/15	KWG1502833	
1,2-Dibromo-3-chloropropane	ND	U	2.0	0.80	0.20	1	04/03/15	04/03/15	KWG1502833	
1,2,4-Trichlorobenzene	ND	U	2.0	0.30	0.096	1	04/03/15	04/03/15	KWG1502833	
Hexachlorobutadiene	ND	U	2.0	0.30	0.11	1	04/03/15	04/03/15	KWG1502833	
Naphthalene	ND	U	2.0	0.30	0.088	1	04/03/15	04/03/15	KWG1502833	
1,2,3-Trichlorobenzene	ND	U	2.0	0.40	0.11	1	04/03/15	04/03/15	KWG1502833	

^{*} See Case Narrative

Comments:		

Printed: 05/01/2015 11:39:38 $u: \label{lem:linear_stal_rpt} u: \label{lem:linear_rpt} We w. rpt$

Merged

Form 1A - Organic

Page RR176839

2 of 3

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 **Project:** JBLM/106-45760003 **Date Collected:** 03/26/2015 **Date Received:** 03/28/2015 **Sample Matrix:** Water

Volatile Organic Compounds

Sample Name: GM-15-001 Units: ug/L Lab Code: Basis: NA K1503195-001

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	91	85-115	04/03/15	Acceptable
1,2-Dichloroethane-d4	105	70-120	04/03/15	Acceptable
Toluene-d8	94	85-120	04/03/15	Acceptable
4-Bromofluorobenzene	89	75-120	04/03/15	Acceptable

Comments:

Printed: 05/01/2015 Form 1A - Organic Page 3 of 3 11:39:38

Page 68 of 777

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water

Service Request: K1503195 **Date Collected:** 03/26/2015 **Date Received:** 03/28/2015

Units: ug/L

Basis: NA

Volatile Organic Compounds

 Sample Name:
 GM-15-002

 Lab Code:
 K1503195-002

Extraction Method: EPA 5030B Level: Low

Analysis Method: 8260C

Analyte Name	Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND	U	0.50	0.20	0.13	1	04/03/15	04/03/15	KWG1502833	
Chloromethane	ND	U	0.50	0.20	0.068	1	04/03/15	04/03/15	KWG1502833	
Vinyl Chloride	ND	U	0.50	0.10	0.075	1	04/03/15	04/03/15	KWG1502833	
Bromomethane	ND	U	0.50	0.30	0.10	1	04/03/15	04/03/15	KWG1502833	
Chloroethane	ND	U	0.50	0.20	0.16	1	04/03/15	04/03/15	KWG1502833	
Trichlorofluoromethane	ND	U	0.50	0.20	0.12	1	04/03/15	04/03/15	KWG1502833	
1,1-Dichloroethene	ND	U	0.50	0.20	0.080	1	04/03/15	04/03/15	KWG1502833	
Acetone	ND	U	20	10	3.3	1	04/03/15	04/03/15	KWG1502833	
Carbon Disulfide	ND	U	0.50	0.20	0.069	1	04/03/15	04/03/15	KWG1502833	
Methylene Chloride	ND	U	2.0	0.20	0.10	1	04/03/15	04/03/15	KWG1502833	
Methyl tert-Butyl Ether	ND	U	0.50	0.30	0.11	1	04/03/15	04/03/15	KWG1502833	
trans-1,2-Dichloroethene	ND	U	0.50	0.20	0.072	1	04/03/15	04/03/15	KWG1502833	
1,1-Dichloroethane	ND	U	0.50	0.20	0.077	1	04/03/15	04/03/15	KWG1502833	
2,2-Dichloropropane	ND	U	0.50	0.20	0.060	1	04/03/15	04/03/15	KWG1502833	*
cis-1,2-Dichloroethene	ND	U	0.50	0.20	0.067	1	04/03/15	04/03/15	KWG1502833	
2-Butanone (MEK)	ND	U	20	4.0	1.9	1	04/03/15	04/03/15	KWG1502833	
Bromochloromethane	ND	U	0.50	0.20	0.16	1	04/03/15	04/03/15	KWG1502833	
Chloroform	ND	U	0.50	0.20	0.072	1	04/03/15	04/03/15	KWG1502833	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	0.20	0.075	1	04/03/15	04/03/15	KWG1502833	
Carbon Tetrachloride	ND	U	0.50	0.20	0.096	1	04/03/15	04/03/15	KWG1502833	
1,1-Dichloropropene	ND	U	0.50	0.20	0.089	1	04/03/15	04/03/15	KWG1502833	
Benzene	ND	U	0.50	0.10	0.062	1	04/03/15	04/03/15	KWG1502833	
1,2-Dichloroethane (EDC)	ND	U	0.50	0.15	0.080	1	04/03/15	04/03/15	KWG1502833	
Trichloroethene (TCE)	ND	U	0.50	0.10	0.10	1	04/03/15	04/03/15	KWG1502833	
1,2-Dichloropropane	ND	U	0.50	0.20	0.095	1	04/03/15	04/03/15	KWG1502833	
Dibromomethane	ND	U	0.50	0.50	0.15	1	04/03/15	04/03/15	KWG1502833	
Bromodichloromethane	ND	U	0.50	0.30	0.091	1	04/03/15	04/03/15	KWG1502833	
cis-1,3-Dichloropropene	ND	U	0.50	0.20	0.18	1	04/03/15	04/03/15	KWG1502833	
4-Methyl-2-pentanone (MIBK)	ND	U	20	10	2.6	1	04/03/15	04/03/15	KWG1502833	
Toluene	0.25	J	0.50	0.10	0.054	1	04/03/15	04/03/15	KWG1502833	
trans-1,3-Dichloropropene	ND	U	0.50	0.20	0.068	1	04/03/15	04/03/15	KWG1502833	*
1,1,2-Trichloroethane	ND	U	0.50	0.40	0.14	1	04/03/15	04/03/15	KWG1502833	
Tetrachloroethene (PCE)	ND	U	0.50	0.20	0.099	1	04/03/15	04/03/15	KWG1502833	
2-Hexanone	ND	U	20	10	2.7	1	04/03/15	04/03/15	KWG1502833	

Comments:

 $\begin{array}{lll} Printed: & 05/01/2015 & 11:39:42 \\ u:\Stealth\Crystal.rpt\Form1mNew.rpt \end{array}$

Merged

Form 1A - Organic

C (D C

RR176839

Page 1 of 3

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water

Service Request: K1503195

Date Collected: 03/26/2015

Date Received: 03/28/2015

Units: ug/L

Basis: NA

Level: Low

Volatile Organic Compounds

 Sample Name:
 GM-15-002

 Lab Code:
 K1503195-002

 Extraction Method:
 EPA 5030B

Analysis Method: 8260C

Analyte Name	Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,3-Dichloropropane	ND	U	0.50	0.30	0.14	1	04/03/15	04/03/15	KWG1502833	
Dibromochloromethane	ND	U	0.50	0.50	0.14	1	04/03/15	04/03/15	KWG1502833	
1,2-Dibromoethane (EDB)	ND	U	2.0	0.20	0.10	1	04/03/15	04/03/15	KWG1502833	
Chlorobenzene	ND	U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
Ethylbenzene	ND	U	0.50	0.10	0.050	1	04/03/15	04/03/15	KWG1502833	
1,1,1,2-Tetrachloroethane	ND	U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
m,p-Xylenes	ND	U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
o-Xylene	ND	U	0.50	0.20	0.074	1	04/03/15	04/03/15	KWG1502833	
Styrene	ND	U	0.50	0.20	0.089	1	04/03/15	04/03/15	KWG1502833	
Bromoform	ND	U	0.50	0.50	0.16	1	04/03/15	04/03/15	KWG1502833	*
Isopropylbenzene	ND	U	2.0	0.20	0.051	1	04/03/15	04/03/15	KWG1502833	
1,1,2,2-Tetrachloroethane	ND	U	0.50	0.20	0.16	1	04/03/15	04/03/15	KWG1502833	
Bromobenzene	ND	U	2.0	0.20	0.12	1	04/03/15	04/03/15	KWG1502833	
n-Propylbenzene	ND	U	2.0	0.20	0.054	1	04/03/15	04/03/15	KWG1502833	
1,2,3-Trichloropropane	ND	U	0.50	0.50	0.20	1	04/03/15	04/03/15	KWG1502833	
2-Chlorotoluene	ND	U	2.0	0.20	0.10	1	04/03/15	04/03/15	KWG1502833	
1,3,5-Trimethylbenzene	ND	U	2.0	0.20	0.089	1	04/03/15	04/03/15	KWG1502833	
4-Chlorotoluene	ND	U	2.0	0.20	0.13	1	04/03/15	04/03/15	KWG1502833	
tert-Butylbenzene	ND	U	2.0	0.20	0.059	1	04/03/15	04/03/15	KWG1502833	
1,2,4-Trimethylbenzene	ND	U	2.0	0.20	0.069	1	04/03/15	04/03/15	KWG1502833	
sec-Butylbenzene	ND	U	2.0	0.10	0.062	1	04/03/15	04/03/15	KWG1502833	
4-Isopropyltoluene	ND	U	2.0	0.20	0.060	1	04/03/15	04/03/15	KWG1502833	
1,3-Dichlorobenzene	ND	U	0.50	0.20	0.10	1	04/03/15	04/03/15	KWG1502833	
1,4-Dichlorobenzene	ND	U	0.50	0.20	0.12	1	04/03/15	04/03/15	KWG1502833	
n-Butylbenzene	ND	U	2.0	0.10	0.054	1	04/03/15	04/03/15	KWG1502833	
1,2-Dichlorobenzene	ND	U	0.50	0.20	0.12	1	04/03/15	04/03/15	KWG1502833	
1,2-Dibromo-3-chloropropane	ND	U	2.0	0.80	0.20	1	04/03/15	04/03/15	KWG1502833	
1,2,4-Trichlorobenzene	ND	U	2.0	0.30	0.096	1	04/03/15	04/03/15	KWG1502833	
Hexachlorobutadiene	ND	U	2.0	0.30	0.11	1	04/03/15	04/03/15	KWG1502833	
Naphthalene	ND	U	2.0	0.30	0.088	1	04/03/15	04/03/15	KWG1502833	
1,2,3-Trichlorobenzene	ND	U	2.0	0.40	0.11	1	04/03/15	04/03/15	KWG1502833	

^{*} See Case Narrative

Comments:			

 $\begin{array}{lll} Printed: & 05/01/2015 & 11:39:42 \\ u:\Stealth\Crystal.rpt\Form1mNew.rpt \end{array}$

Merged

Form 1A - Organic

SuperSet Reference:

2 of 3

Page

RR176839

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 **Project:** JBLM/106-45760003 **Date Collected:** 03/26/2015 **Date Received:** 03/28/2015 **Sample Matrix:** Water

Volatile Organic Compounds

Sample Name: GM-15-002 Units: ug/L Lab Code: K1503195-002 Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	93	85-115	04/03/15	Acceptable
1,2-Dichloroethane-d4	109	70-120	04/03/15	Acceptable
Toluene-d8	95	85-120	04/03/15	Acceptable
4-Bromofluorobenzene	93	75-120	04/03/15	Acceptable

Comments:

Printed: 05/01/2015 11:39:42 Form 1A - Organic Page 3 of 3

Page 71 of 777

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water

Date Collected: K1503195 **Date Collected:** 03/26/2015 **Date Received:** 03/28/2015

Units: ug/L

Basis: NA

Level: Low

Volatile Organic Compounds

Sample Name: GM-15-003 **Lab Code:** K1503195-003

Extraction Method: EPA 5030E **Analysis Method:** 8260C

EPA 5030B

Analyte Name	Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND	U	0.50	0.20	0.13	1	04/03/15	04/03/15	KWG1502833	
Chloromethane	ND	U	0.50	0.20	0.068	1	04/03/15	04/03/15	KWG1502833	
Vinyl Chloride	ND	U	0.50	0.10	0.075	1	04/03/15	04/03/15	KWG1502833	
Bromomethane	ND	U	0.50	0.30	0.10	1	04/03/15	04/03/15	KWG1502833	
Chloroethane	ND	U	0.50	0.20	0.16	1	04/03/15	04/03/15	KWG1502833	
Trichlorofluoromethane	ND	U	0.50	0.20	0.12	1	04/03/15	04/03/15	KWG1502833	
1,1-Dichloroethene	ND	U	0.50	0.20	0.080	1	04/03/15	04/03/15	KWG1502833	
Acetone	ND	U	20	10	3.3	1	04/03/15	04/03/15	KWG1502833	
Carbon Disulfide	ND	U	0.50	0.20	0.069	1	04/03/15	04/03/15	KWG1502833	
Methylene Chloride	ND	U	2.0	0.20	0.10	1	04/03/15	04/03/15	KWG1502833	
Methyl tert-Butyl Ether	ND	U	0.50	0.30	0.11	1	04/03/15	04/03/15	KWG1502833	
trans-1,2-Dichloroethene	ND	U	0.50	0.20	0.072	1	04/03/15	04/03/15	KWG1502833	
1,1-Dichloroethane	ND	U	0.50	0.20	0.077	1	04/03/15	04/03/15	KWG1502833	
2,2-Dichloropropane	ND	U	0.50	0.20	0.060	1	04/03/15	04/03/15	KWG1502833	*
cis-1,2-Dichloroethene	ND	U	0.50	0.20	0.067	1	04/03/15	04/03/15	KWG1502833	
2-Butanone (MEK)	ND	U	20	4.0	1.9	1	04/03/15	04/03/15	KWG1502833	
Bromochloromethane	ND	U	0.50	0.20	0.16	1	04/03/15	04/03/15	KWG1502833	
Chloroform	0.23	J	0.50	0.20	0.072	1	04/03/15	04/03/15	KWG1502833	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	0.20	0.075	1	04/03/15	04/03/15	KWG1502833	
Carbon Tetrachloride	ND	U	0.50	0.20	0.096	1	04/03/15	04/03/15	KWG1502833	
1,1-Dichloropropene	ND	U	0.50	0.20	0.089	1	04/03/15	04/03/15	KWG1502833	
Benzene	ND	U	0.50	0.10	0.062	1	04/03/15	04/03/15	KWG1502833	
1,2-Dichloroethane (EDC)	ND	U	0.50	0.15	0.080	1	04/03/15	04/03/15	KWG1502833	
Trichloroethene (TCE)	ND	U	0.50	0.10	0.10	1	04/03/15	04/03/15	KWG1502833	
1,2-Dichloropropane	ND	U	0.50	0.20	0.095	1	04/03/15	04/03/15	KWG1502833	
Dibromomethane	ND	U	0.50	0.50	0.15	1	04/03/15	04/03/15	KWG1502833	
Bromodichloromethane	ND	U	0.50	0.30	0.091	1	04/03/15	04/03/15	KWG1502833	
cis-1,3-Dichloropropene	ND	U	0.50	0.20	0.18	1	04/03/15	04/03/15	KWG1502833	
4-Methyl-2-pentanone (MIBK)	ND	U	20	10	2.6	1	04/03/15	04/03/15	KWG1502833	
Toluene	0.090	J	0.50	0.10	0.054	1	04/03/15	04/03/15	KWG1502833	
trans-1,3-Dichloropropene	ND	U	0.50	0.20	0.068	1	04/03/15	04/03/15	KWG1502833	*
1,1,2-Trichloroethane	ND	U	0.50	0.40	0.14	1	04/03/15	04/03/15	KWG1502833	
Tetrachloroethene (PCE)	ND	U	0.50	0.20	0.099	1	04/03/15	04/03/15	KWG1502833	
2-Hexanone	ND	U	20	10	2.7	1	04/03/15	04/03/15	KWG1502833	

Comments:

Printed: 05/01/2015 11:39:46 Form 1A - Organic Page 1 of 3

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water

 Service Request:
 K1503195

 Date Collected:
 03/26/2015

 Date Received:
 03/28/2015

Units: ug/L

Basis: NA

Level: Low

Volatile Organic Compounds

 Sample Name:
 GM-15-003

 Lab Code:
 K1503195-003

 Extraction Method:
 EPA 5030B

Analysis Method: 8260C

Analyte Name	Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,3-Dichloropropane	ND	U	0.50	0.30	0.14	1	04/03/15	04/03/15	KWG1502833	
Dibromochloromethane	ND	U	0.50	0.50	0.14	1	04/03/15	04/03/15	KWG1502833	
1,2-Dibromoethane (EDB)	ND	U	2.0	0.20	0.10	1	04/03/15	04/03/15	KWG1502833	
Chlorobenzene	ND	U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
Ethylbenzene	ND	U	0.50	0.10	0.050	1	04/03/15	04/03/15	KWG1502833	
1,1,1,2-Tetrachloroethane	ND	U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
m,p-Xylenes	ND	U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
o-Xylene	ND	U	0.50	0.20	0.074	1	04/03/15	04/03/15	KWG1502833	
Styrene	ND	U	0.50	0.20	0.089	1	04/03/15	04/03/15	KWG1502833	
Bromoform	ND	U	0.50	0.50	0.16	1	04/03/15	04/03/15	KWG1502833	*
Isopropylbenzene	ND	U	2.0	0.20	0.051	1	04/03/15	04/03/15	KWG1502833	
1,1,2,2-Tetrachloroethane	ND	U	0.50	0.20	0.16	1	04/03/15	04/03/15	KWG1502833	
Bromobenzene	ND	U	2.0	0.20	0.12	1	04/03/15	04/03/15	KWG1502833	
n-Propylbenzene	ND	U	2.0	0.20	0.054	1	04/03/15	04/03/15	KWG1502833	
1,2,3-Trichloropropane	ND	U	0.50	0.50	0.20	1	04/03/15	04/03/15	KWG1502833	
2-Chlorotoluene	ND	U	2.0	0.20	0.10	1	04/03/15	04/03/15	KWG1502833	
1,3,5-Trimethylbenzene	ND	U	2.0	0.20	0.089	1	04/03/15	04/03/15	KWG1502833	
4-Chlorotoluene	ND	U	2.0	0.20	0.13	1	04/03/15	04/03/15	KWG1502833	
tert-Butylbenzene	ND	U	2.0	0.20	0.059	1	04/03/15	04/03/15	KWG1502833	
1,2,4-Trimethylbenzene	ND	U	2.0	0.20	0.069	1	04/03/15	04/03/15	KWG1502833	
sec-Butylbenzene	ND	U	2.0	0.10	0.062	1	04/03/15	04/03/15	KWG1502833	
4-Isopropyltoluene	ND	U	2.0	0.20	0.060	1	04/03/15	04/03/15	KWG1502833	
1,3-Dichlorobenzene	ND	U	0.50	0.20	0.10	1	04/03/15	04/03/15	KWG1502833	
1,4-Dichlorobenzene	ND	U	0.50	0.20	0.12	1	04/03/15	04/03/15	KWG1502833	
n-Butylbenzene	ND	U	2.0	0.10	0.054	1	04/03/15	04/03/15	KWG1502833	
1,2-Dichlorobenzene	ND	U	0.50	0.20	0.12	1	04/03/15	04/03/15	KWG1502833	
1,2-Dibromo-3-chloropropane	ND	U	2.0	0.80	0.20	1	04/03/15	04/03/15	KWG1502833	
1,2,4-Trichlorobenzene	ND	U	2.0	0.30	0.096	1	04/03/15	04/03/15	KWG1502833	
Hexachlorobutadiene	ND	U	2.0	0.30	0.11	1	04/03/15	04/03/15	KWG1502833	
Naphthalene	ND	U	2.0	0.30	0.088	1	04/03/15	04/03/15	KWG1502833	
1,2,3-Trichlorobenzene	ND	U	2.0	0.40	0.11	1	04/03/15	04/03/15	KWG1502833	

^{*} See Case Narrative

Comments:	

 $\begin{array}{lll} Printed: & 05/01/2015 & 11:39:46 \\ u:\Stealth\Crystal.rpt\Form1mNew.rpt \end{array}$

Form 1A - Organic

Page 73 of 777

Page

2 of

3

Analytical Results

Client: Sealaska Environmental Services, LLC

Service Request: K1503195 **Project:** JBLM/106-45760003 **Date Collected:** 03/26/2015 **Date Received:** 03/28/2015 **Sample Matrix:** Water

Volatile Organic Compounds

Sample Name: GM-15-003 Units: ug/L Lab Code: Basis: NA K1503195-003

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	93	85-115	04/03/15	Acceptable
1,2-Dichloroethane-d4	110	70-120	04/03/15	Acceptable
Toluene-d8	96	85-120	04/03/15	Acceptable
4-Bromofluorobenzene	88	75-120	04/03/15	Acceptable

Comments:

Printed: 05/01/2015 11:39:46 Form 1A - Organic Page 3 of 3

Page 74 of 777

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water Service Request: K1503195 **Date Collected:** 03/26/2015 **Date Received:** 03/28/2015

Units: ug/L

Basis: NA

Level: Low

KWG1502833

Volatile Organic Compounds

Sample Name: GM-15-004 Lab Code: K1503195-004 **Extraction Method:**

Analysis Method:

Analyte Name Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene

EPA 5030B

ND U

0.50

8260C

Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
ND	U	0.50	0.10	0.062	1	04/03/15	04/03/15	KWG1502833	
ND	U	0.50	0.10	0.054	1	04/03/15	04/03/15	KWG1502833	
ND	U	0.50	0.10	0.050	1	04/03/15	04/03/15	KWG1502833	
ND	U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	

1

04/03/15

04/03/15

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	107	70-120	04/03/15	Acceptable	
Dibromofluoromethane	94	85-115	04/03/15	Acceptable	
Toluene-d8	97	85-120	04/03/15	Acceptable	
4-Bromofluorobenzene	88	75-120	04/03/15	Acceptable	

0.20

0.074

Comments:

Printed: 05/01/2015 Form 1A - Organic Page 1 of 11:39:50 1

Page 75 of 777

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water

Service Request: K1503195
Date Collected: 03/26/2015
Date Received: 03/28/2015

Volatile Organic Compounds

 Sample Name:
 GM-15-005
 Units:
 ug/L

 Lab Code:
 K1503195-005
 Basis:
 NA

 Extraction Method:
 EPA 5030B
 Level:
 Low

Analysis Method: 8260C

Analyte Name	Result O	LOO	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
rmary to rvame	rtesurt Q	LOQ	БОБ	MDL			•		11000
Benzene	ND U	0.50	0.10	0.062	1	04/03/15	04/03/15	KWG1502833	
Toluene	0.13 J	0.50	0.10	0.054	1	04/03/15	04/03/15	KWG1502833	
Ethylbenzene	ND U	0.50	0.10	0.050	1	04/03/15	04/03/15	KWG1502833	
m,p-Xylenes	ND U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
o-Xylene	ND U	0.50	0.20	0.074	1	04/03/15	04/03/15	KWG1502833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	107	70-120	04/03/15	Acceptable	
Dibromofluoromethane	92	85-115	04/03/15	Acceptable	
Toluene-d8	95	85-120	04/03/15	Acceptable	
4-Bromofluorobenzene	88	75-120	04/03/15	Acceptable	

Comments:

Printed: 05/01/2015 11:39:54 Form 1A - Organic Page 1 of 1

Page 76 of 777

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water

Service Request: K1503195

Date Collected: 03/26/2015

Date Received: 03/28/2015

Volatile Organic Compounds

Sample Name: GM-15-006 Lab Code: K1503195-006 Extraction Method: EPA 5030B

Analysis Method:

EPA 5030B 8260C Units: ug/L Basis: NA

Level: Low

Auglida Nama	D 14	0	1.00	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	Result	Ų	LOQ	LOD	MIDL	ractor	Extracted	Manyzeu	Lot	Note
Benzene	ND	U	0.50	0.10	0.062	1	04/03/15	04/03/15	KWG1502833	
Toluene	ND	U	0.50	0.10	0.054	1	04/03/15	04/03/15	KWG1502833	
Ethylbenzene	ND	U	0.50	0.10	0.050	1	04/03/15	04/03/15	KWG1502833	
m,p-Xylenes	ND	U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
o-Xylene	ND	U	0.50	0.20	0.074	1	04/03/15	04/03/15	KWG1502833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	110	70-120	04/03/15	Acceptable	
Dibromofluoromethane	92	85-115	04/03/15	Acceptable	
Toluene-d8	95	85-120	04/03/15	Acceptable	
4-Bromofluorobenzene	91	75-120	04/03/15	Acceptable	

Comments:

Printed: 05/01/2015 11:39:58 Form 1A - Organic Page 1 of 1

Page 77 of 777

RR176839

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water Service Request: K1503195 **Date Collected:** 03/26/2015 **Date Received:** 03/28/2015

Volatile Organic Compounds

Sample Name: GM-15-007 Lab Code: K1503195-007

Extraction Method: Analysis Method:

EPA 5030B 8260C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND U	0.50	0.10	0.062	1	04/03/15	04/03/15	KWG1502833	
Toluene	0.22 J	0.50	0.10	0.054	1	04/03/15	04/03/15	KWG1502833	
Ethylbenzene	ND U	0.50	0.10	0.050	1	04/03/15	04/03/15	KWG1502833	
m,p-Xylenes	ND U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
o-Xylene	ND U	0.50	0.20	0.074	1	04/03/15	04/03/15	KWG1502833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	111	70-120	04/03/15	Acceptable	
Dibromofluoromethane	94	85-115	04/03/15	Acceptable	
Toluene-d8	96	85-120	04/03/15	Acceptable	
4-Bromofluorobenzene	91	75-120	04/03/15	Acceptable	

Comments:

Printed: 05/01/2015 11:40:02 Form 1A - Organic Page 1 of 1

Page 78 of 777

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water

Service Request: K1503195
Date Collected: 03/26/2015
Date Received: 03/28/2015

Volatile Organic Compounds

 Sample Name:
 GM-15-008

 Lab Code:
 K1503195-008

Extraction Method: EPA 5030B **Analysis Method:** 8260C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	0.11	J	0.50	0.10	0.062	1	04/03/15	04/03/15	KWG1502833	
Toluene	0.070	J	0.50	0.10	0.054	1	04/03/15	04/03/15	KWG1502833	
Ethylbenzene	ND	U	0.50	0.10	0.050	1	04/03/15	04/03/15	KWG1502833	
m,p-Xylenes	ND	U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
o-Xylene	ND	U	0.50	0.20	0.074	1	04/03/15	04/03/15	KWG1502833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	111	70-120	04/03/15	Acceptable	
Dibromofluoromethane	95	85-115	04/03/15	Acceptable	
Toluene-d8	96	85-120	04/03/15	Acceptable	
4-Bromofluorobenzene	90	75-120	04/03/15	Acceptable	

Comments:

Printed: 05/01/2015 11:40:06 Form 1A - Organic Page 1 of 1

Page 79 of 777

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water

Service Request: K1503195

Date Collected: 03/26/2015

Date Received: 03/28/2015

Volatile Organic Compounds

 Sample Name:
 GM-15-011

 Lab Code:
 K1503195-009

Extraction Method: EPA 5030B **Analysis Method:** 8260C

Units: ug/L Basis: NA

Level: Low

Analyte Name	Result	Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND	U	0.50	0.10	0.062	1	04/03/15	04/03/15	KWG1502833	
Toluene	0.26	J	0.50	0.10	0.054	1	04/03/15	04/03/15	KWG1502833	
Ethylbenzene	ND	U	0.50	0.10	0.050	1	04/03/15	04/03/15	KWG1502833	
m,p-Xylenes	ND	U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
o-Xylene	ND	U	0.50	0.20	0.074	1	04/03/15	04/03/15	KWG1502833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	110	70-120	04/03/15	Acceptable	
Dibromofluoromethane	93	85-115	04/03/15	Acceptable	
Toluene-d8	96	85-120	04/03/15	Acceptable	
4-Bromofluorobenzene	91	75-120	04/03/15	Acceptable	

Comments:

Printed: 05/01/2015 11:40:11 Form 1A - Organic Page 1 of 1

Page 80 of 777

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water

Service Request: K1503195
Date Collected: 03/26/2015
Date Received: 03/28/2015

Volatile Organic Compounds

 Sample Name:
 GM-15-012

 Lab Code:
 K1503195-010

Extraction Method: EPA 5030B **Analysis Method:** 8260C

Units: ug/L Basis: NA

Level: Low

						Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND	U	0.50	0.10	0.062	1	04/03/15	04/03/15	KWG1502833	
Toluene	0.15	J	0.50	0.10	0.054	1	04/03/15	04/03/15	KWG1502833	
Ethylbenzene	ND	U	0.50	0.10	0.050	1	04/03/15	04/03/15	KWG1502833	
m,p-Xylenes	ND	U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
o-Xylene	ND	U	0.50	0.20	0.074	1	04/03/15	04/03/15	KWG1502833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	108	70-120	04/03/15	Acceptable	
Dibromofluoromethane	92	85-115	04/03/15	Acceptable	
Toluene-d8	96	85-120	04/03/15	Acceptable	
4-Bromofluorobenzene	87	75-120	04/03/15	Acceptable	

Comments:

Printed: 05/01/2015 11:40:14 Form 1A - Organic Page 1 of 1

Page 81 of 777

Analytical Results

Client: Sealaska Environmental Services, LLC

Project: JBLM/106-45760003

Sample Matrix: Water

Service Request: K1503195
Date Collected: 03/26/2015
Date Received: 03/28/2015

Volatile Organic Compounds

 Sample Name:
 GM-15-013

 Lab Code:
 K1503195-011

Extraction Method: EPA 5030B **Analysis Method:** 8260C

Units: ug/L Basis: NA

Level: Low

Analyta Nama	Dogult C	100	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	Result Q) LOQ	LOD	MDL	ractor	Extracted	Manyzeu	Lot	Note
Benzene	ND U	0.50	0.10	0.062	1	04/03/15	04/03/15	KWG1502833	
Toluene	ND U	0.50	0.10	0.054	1	04/03/15	04/03/15	KWG1502833	
Ethylbenzene	ND U	0.50	0.10	0.050	1	04/03/15	04/03/15	KWG1502833	
m,p-Xylenes	ND U	0.50	0.20	0.11	1	04/03/15	04/03/15	KWG1502833	
o-Xylene	ND U	0.50	0.20	0.074	1	04/03/15	04/03/15	KWG1502833	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	106	70-120	04/03/15	Acceptable	•
Dibromofluoromethane	92	85-115	04/03/15	Acceptable	
Toluene-d8	94	85-120	04/03/15	Acceptable	
4-Bromofluorobenzene	87	75-120	04/03/15	Acceptable	

Comments:

Printed: 05/01/2015 11:40:17 Form 1A - Organic Page 1 of 1

Page 82 of 777

July 27, 2015

Keir Craigie
Tetra Tech. Inc.

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1506912

RE: JBLM / 1064576003

Bothell, WA 98011

19803 North Creek Parkway

Dear Keir,

Enclosed are the results of the sample(s) submitted to our laboratory June 25, 2015 For your reference, these analyses have been assigned our service request number **K1506912**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3376. You may also contact me via email at gregory.salata@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Gregory Salata, Ph.D. Client Services

Manager

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client:Tetra Tech, IncorporatedService Request No.:K1506912Project:JBLM/ 1064576003Date Received:06/25/15

Sample Matrix: Water

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier IV validation deliverables including summary forms and all of the associated raw data for each of the analyses. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Two water samples were received for analysis at ALS Environmental on 06/25/15. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Diesel Range Organics by Method NWTPH-Dx

Sample Notes and Discussion:

Manual integration of one or more chromatographic peaks required to correct the integration performed by the automated data processing program. The manual integration was performed in accordance with ALS policy, which is consistent with the National Environmental Laboratory Accreditation Program (NELAP), Department of Defense (DOD), and other certifying agencies. The analytes that required manual integrations are identified on each sample report contained in this data package.

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) criterion for the replicate analysis of Diesel Range Organics (DRO) and Residual Range Organics (RRO) in sample Batch QC was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

No other anomalies associated with the analysis of these samples were observed.

Approved by Logary Saltette

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS) Environment	al				CH	IAI	N (OF	C	US	TC)D	Υ								ŞR	# _\	151	069	12	
		th 13th Ave.	, Kelso, W	A 98626	i 3 60).577.	7222	800	.695.7	222	360.	636.1	068 (fa	ax)		Р	AGE		_	OF	\angle		CO	-		
PHUJEUT NAMEJBLM								7	Hydrocat Control Branch	1	70	7	7	7.	\overline{T}	7	Circle) NH 3.8 105 504, F 147	<u>~</u>	7		7	\overline{T}			77	
PROJECT NUMBER 457400	S						/		SA		الا	9/	' /	81510	′ /	′ /	\[\frac{1}{2}\]	ş. \	. /	D905 D000 D800	$' \square /$	/ /	Cinane () Ethere()	_ /	/ /	
Micrie Ingers	المان					J ,	, /	/8	18	\(\frac{1}{2}\)	以後		~/	6/	_/	_ /_	7 / 2	ြည်	7	7	⁷ 602/		קַלֶּן		/ /	
Terraten						CONTAINERS		\\display{3}		ଘ/ଛୁଁ	<u></u>					/ \tilde{\xi}	1/2	/3	g/ ;	છું / :	¥ /	$Q_{\rm c}$	han Lan			
ADDITION NOTIFIC	reckf	treva	7			/ ¥	/	188	<u> </u>	\X	X	/ 8	\$ \$ \$	15.6		رِّخُ /	8,7		٤ [ا	² / 🗆	/	185		/ /	/ /	
Bother.	MA	98011	<u> </u>		/	\§ /	′ /	23	180	/4/s\	EN	් ල්		20	\a_ \	* *	OP	96	₹	00,00	1.01	S. 2.	/ /	' /		
E-MAIL AN HESS INGERCALL	a) teh	akch,	can		—/ .	ਨੇ /		00/ 10/0/		\$\\{\\					ō 3/		18/38/3	` <i>`</i> }/	/۵			\$ \$ {				
					_/ 5	$\tilde{\epsilon}/\epsilon$	la l		ર્કે જે જે			000	18/2] /£	ક\ફેં	٤ / ﴿	$\S'/$	3/3	8 8				MAL	
SAM, 11 3 SHUNATUR		\			NUMBER	/	emik 635		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	OILS GREEN STEAM BIEND	PCBS HEM		Chlorophen 8141) <u>(</u>) 3 5 6)/å	Alkalini	\\display \\display \display \	2 8 8	ON 175 Chases		/		
SAMPLE I.D.	DATE		LAB I.D.	MATRIX			/°	72.6	7 - 6	<u> </u>	1 4 x	4 8	0.5	120	75	/ હે ₹	ζ, Ω		₹	10.5		7—			REMARKS	
BM-15-009	62115	0930		W	2				X													ļ			CR-02	
4M-15-010	12115	6120		W	2				4,										_		<u> </u>				7W-9	
																									,	
																			_							
								-	ļ —		İ			_					_						- 	
	_	 						 	-																	_
				 	l				-	=											-					
	-	 		_			-			 			$\overline{}$		_											
	 	 		ļ	 	_			 		_															
	<u> </u>	 		ļ					ļ																	
									<u> </u>	ļ												ļ			<u> </u>	
REPORT REQUIREM	IENTS		ICE INFOR		¥	Circle	which	metals	are to	<u>be ana</u>	<u>alyzed:</u>															
I. Routine Report:	Method	P.O. # Bill To: _				Tot	al Meta	ls: Al	As	Sb B	a Be	в Са	Cd	Co	Or Ci	Fe	Pb M	g M	n Mo	o Ni	K Ag	Na	Se S	ir Ti	Sn V Z n Hg	J
Blank, Surrogate					_	Disso1	lv ed M et	als: A	ı As	Sb E	Ва Ве	ВС	a Cd	Со	Cr Cı	Fe	Pb N	lg M	n Me	o Ni	K Ag	Na	Se S	Sr TI	Sn V Zn Hg)
required						TINE	ICATI	E STA	ATE H	YDRO	CAR	BON	PROC	EDU	RE:	AK C	A V	/I N	IORT	HWE	ST O	THER:			(CIRCLE ON	E)
II. Report Dup., MS required	S, MSD as	TURNARO	OUND REC	UIREM	ENTS	SPE	CIAL I	NSTE	UCTIO)\S/C	COMM	ENTS	3 ;													
III. CLP Like Summi	284	24 hr		_ 48 hr.																						
iii. CLP Like Sairiiii.	ary	5 02	•																							
IV. Data Validation F	Report		idard (15 wo ride FAX Res		'S)																					
V. EDD	į		ide i Ax nes	Julis																						
_		Req	juested Rep	ort Date			ample	e Ship	omen	t cont	tains l	JSDA	regu	lated	soil s	ampl	es (ch	eck t	ox if	appl	icable	e)				
HELINOU	ISHED BY:				RECE	IVED	BY:				_		REL	INQU	ISHE	BY:				./^	$\overline{}$, RI	ECEIV	ED BY	1: 0920	<u>ラ</u>
12-ctr		5/1000	\ \frac{\frac{1}{5:252}}{6:252}	Perl	کہ	<u> </u>	hate/T			-	C:	ature			<u> </u>	te/Tim				4	P	¥٠	<u>h</u>	$ \varphi ^2$	<u> </u>	_
Signature	Data Tin	ĔC_	Signa				ate/Ti			_					- <u>-</u> Firi		-			K	بنزلا	1/1			H.S	_
Printed Name	Firm		i Printe	ed Name		- F	ırm				Print	ed Na	me .		FILL	Т3			1	Frint	ed Na	me		Firm	,	

Cooler Receipt and Preservation Form

PC Greg

Client / Pr	oject: Ta	horton	nh y	Cook	.i itt	ccipt	anu i			equest :	 K15 <u>() (</u>	1912		0					
Received:			Opened:	lalact	IK		By: 6	1)	=	ded: [6]		D., #4	$\overline{}$					
Received.	10/2-1	<u>. </u>	Opened	4/44	!		ву. <u>_с</u>			Omoac	ieu. 1877	دررد	By: 17						
1. Sample	es were rece	eived via?	Mail	Fed Ex) (UPS	DH	L	PDX	Cour	ier Ha	nd Delivered							
2. Sample	es were rece	eived in: (ci	rcle)	Cooler	_ B	ox	Enve	-		ther			N.A						
3. Were <u>c</u>	ustody seal	<u>s</u> on cooler	s?	NA (\mathfrak{P}	N	16	yes, h	ow mai	ny and v	here?	Fint	LBack						
If prese	ent, were cu	istody seals	intact?	(Y)	N		If pre	esent, w	ere they	signed ar	nd dated?	(Y) и					
Raw	Corrected.	Raw	Corrected	Corr.		nermon	neter	Cool	er/COC	ID(NA)		Tracking No	ımber	NA File					
Cooler Temp	Cooler Temp	Temp Blank	4.0	Factor	\rightarrow	<u> </u>	/				871/14	5105 3	m41	NA File					
				-	- - '						004-1-	UNUU_I							
									•										
			_		-														
							$=$ \bot												
	g material:			Bubble 1		<u> </u>	acks	Wet I	ce Di	ry Ice	Sleeves								
			filled out	_									NA (Y	у и					
		_	condition (able be	clow.				NA T	И					
	=	_	ete (i.e anal	•									NA (Y) и					
	-	_	agree with		•			-	•	icies in t	he table o	n page 2.	NA (Y) N					
			ainers and										NA Y						
	• •		es (see SMO		-		•		ate pH?	Indica	te in the ta	ble below	(NA) Y						
			thout heads	space? In	dicate	in the	table b	clow.				4	(NA) Y	N					
12. Was C	12/Res neg	ative?										(NA) Y	N					
١,	Pammia ID a	- Dawla			S	ala ID a	- 000					Idaalii ad buu							
	Sample ID o	n Bottle			Sam	ole ID o	n COC				Identified by:								
		· ·		•		•													
				-															
			· · · · · · · · · · · · · · · · · · ·			<u> </u>	ļ		<u> </u>	•	1								
	Sample ID		Bottle Bottle			Head- space	Broke	рН	Rea	agent	Volume added	Reagent Lot Number	Initials	Time					
	•						·												
										·									
	_		ļ									<u> </u>							
Notes, Dis	crepancie:	s, & Resol	utions:																

Page 10 of 286

Page_____of___

Diesel and Residual Range Organics

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

K1506912

Service Request:

Client: Tetra Tech, Incorporated **Project:**

JBLM/1064576003

Cover Page - Organic Analysis Data Package **Diesel and Residual Range Organics**

		Date	Date
Sample Name	Lab Code	Collected	Received
GM-15-009	K1506912-001	06/24/2015	06/25/2015
GM-15-010	K1506912-002	06/24/2015	06/25/2015

Analytical Results

Client: Tetra Tech, Incorporated **Project:** JBLM/1064576003

Sample Matrix: Water

Service Request: K1506912 **Date Collected:** 06/24/2015

Date Received: 06/25/2015

Units: ug/L

Basis: NA

Level: Low

Diesel and Residual Range Organics

 Sample Name:
 GM-15-009

 Lab Code:
 K1506912-001

 Extraction Method:
 METHOD

Analysis Method: NWTPH-Dx

Analyte Name	Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	1900 Y	260	21	12	1	07/07/15	07/09/15	KWG1506110	
Residual Range Organics (RRO)	470 J	520	52	20	1	07/07/15	07/09/15	KWG1506110	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	83	50-150	07/09/15	Acceptable
n-Triacontane	71	50-150	07/09/15	Acceptable

Comments:

 $\begin{array}{lll} Printed: & 07/13/2015 & 11:06:12 \\ u:\Stealth\Crystal.rpt\Form\ImNew.rpt \end{array}$

1 of 1

Analytical Results

Client: Tetra Tech, Incorporated **Project:** JBLM/1064576003

Sample Matrix: Water

Service Request: K1506912 **Date Collected:** 06/24/2015

Date Received: 06/25/2015

Diesel and Residual Range Organics

 Sample Name:
 GM-15-010

 Lab Code:
 K1506912-002

Basis: NA

Units: ug/L

Extraction Method: METHOD **Level:** Low **Analysis Method:** NWTPH-Dx

Analyte Name	Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	970 Y	280	22	12	1	07/07/15	07/09/15	KWG1506110	
Residual Range Organics (RRO)	570 Z	550	55	21	1	07/07/15	07/09/15	KWG1506110	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	74	50-150	07/09/15	Acceptable Acceptable
n-Triacontane	65	50-150	07/09/15	

Comments:

 Printed:
 07/13/2015
 11:06:17
 Form 1A - Organic
 Page
 1 of
 1

 u:\Stealth\Crystal.rpt\Form\ImNew.rpt
 Merged
 SuperSet Reference:
 RR179635

APPENDIX D HISTORICAL DATA AND LINEAR GRAPHS

This page intentionally left blank.

January 2016

Site SS-34, JBLM McChord Field

Well ID	Date	Benzene (µg/L)	9	Toluene (µg/L)		Ethylbenzene (µg/L))	m,p-Xyleı (µg/L)	ne	o-Xylen (µg/L)	е	Total Xylenes (µg/L)	TPH-G (μg/L)		TPH-D (μg/L)		TPH-C (µg/L))
AZ-06	9/25/95	100	U	100	U	130	<u> </u>	390	<u> </u>	100	U	-	20,000	- -	2,700	<u> </u>	- 	<u> </u>
	3/27/96	2	U	2	U	2	U	-	ļ	-	1	3.9	740		1,400	<u> </u>	-	<u> </u>
	9/25/96		U	2	U	77	<u></u>	-	<u> </u>	-	<u> </u>	300	5,300	<u> </u>	2,400	1	-	<u>Ļ.</u>
	3/18/97	0.5	U	0.5	U	1.3		-	ļi	-	ļ	3.0	340		3,300	<u> </u>	- 	<u>↓</u>
	9/17/97	7.7	ļ. 	12	<u> </u>	50	<u> </u>	-	įį	-	<u> </u>	180	3,800	-i	5,200	<u> </u>	-	<u> </u>
	3/17/98	3.2	<u> </u>	2.5	U	40	<u> </u>	-	<u> </u>	-	1	120	4,300		1,500	1	- }	1
	9/10/98	8.1	<u> </u>	1.2	<u> </u>	65	ļ	-	ļļ	-	<u> </u>	130	4,600	- <u>-</u>	2,300	<u> </u>	- 	<u> </u>
	3/19/99	0.5	U	0.5	U	0.5	U	-	<u> </u>	-	ļļ	1.2	180		1,100	<u> </u>	<u>-</u>	<u> </u>
	9/16/99	0.5	U	5.9	ļļ	48	į	-	ļļ	-	ļļ	120	6,200	- -	3,600	<u> </u>	380	U
	3/31/00	11	<u> </u>	1.5	U	41	ļ	110	ļļ	2	<u> </u>	-	7,100	_]	3,700	D	L	U
	9/19/00	0.56	<u></u>	0.3	U	42	.i	59	<u> </u>	1.6	<u> </u>	-	6,200	- -	2,600	<u> </u>	800	U
	3/15/01	10	U	15	U	47		100		10	U	-	6,300	<u> </u>	1,600	<u>i</u>	820	U
	9/18/01	2	U	3	U	36	İ	32	<u> </u>	2	U	-	5,600	. .	3,300	<u> </u>	3,200	U
	3/13/02	2	U	3 3	U	11	<u> </u>	24	<u> </u>	2	U	-	3,000	_ _	8,300	D	910	U
	9/19/02	2	U		U	25	<u>.</u>	33		2	Ü	-	5,100	<u>.j</u>	22,000	D	800	U
	3/18/03	11	U	1.8		25	<u> </u>	46	<u> </u>	2.3	1		6,100	. <u>i</u>	3,900	D	800	Ū
	9/8/03	0.91		0.6	U	12	<u> </u>	18	<u>]</u> j	0.4	U	- <u> </u>	4,700	<u>.j</u>	3,700	<u> </u>	800	U
	3/23/04	2	U	3	U	14	<u> </u>	24		1.1	J	-	4,500	<u> </u>	22,000	D		<u> </u>
	9/15/04	0.2	U	0.3	U	14	<u>i.</u>	25	<u>i i</u>	0.33	<u>i.</u>	-	4,100	_ <u></u>	160,000	D	190	U
	3/10/05	1.1		1.4	J	11		22		0.51	J	-	4,400		1,700	D	420	U
	9/13/05	2	U	3	U	6.6		16		2	U	-	3,730		3,100][410	U
	3/9/06	0.2	U	0.3	U	0.33		0.71		0.17	J	-	200		820		240	U
	9/21/06	8	U	12	U	8	U	-		-		14.5	3,900		8,100	D	400	U
	3/8/07	0.2	U	0.3	U	0.21		1		0.2	U	1	600		1,500	T	200	U
	9/25/07	1.2		0.3	U	3.4		12		1.6	T	14	1,700]	4,000]	190	
	3/12/08	0.2	U	0.3	U	1.2		4		0.2	U	4.5	1,200	D	4,000	D	190	U
	9/11/08	0.43		0.5	U	3	Ī	13		0.6	Ţij	14	25	U	-	T	4,900	U
	3/19/09	0.2	U	0.5	U	0.3	J	0.97	J	0.5	U	0.97	1,300	7	7,000		1,100	T
	9/10/09	0.33		0.13	J	4.4	Ī	11		0.43	J	12	3,800]	60,000		480	U
	3/25/10	0.04	J	0.5	U	0.5	U	0.23	J	0.5	U	-	640		1,400		250	IJ
	3/24/11	0.5	U	0.11	J	0.5	U	0.17	J	0.5	U	-	1,600		11,000	7	240	U
	4/3/12	1	U	1	U	1	U	2	U	1	U	-	50	U	120	U	240	ŤŪ
	3/25/13	0.2	U	0.2	U	0.2	U	U.		0.2	U		800		1,400		200	U
	3/26/15	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	-	190	JΥ	280	Υ	150	TI
DM-04	9/25/95	3.9		3.7		270	Ì	360		6.1	İ	-	5,900		1,500		-	T
	3/27/96	2	U	2	U	230	Ī	-		-	Ţ	170	6,400		950	1	·	Ť

Site SS-34, JBLM McChord Field

Well ID	Date	Benzen (µg/L)	е	Toluene (μg/L)		Ethylbenzene (µg/L)		m,p-Xyleı (µg/L)	ne	o-Xylen (µg/L)	е	Total Xylenes (µg/L)	3	TPH-G (μg/L)		TPH-D (μg/L)		TPH-((µg/L)	_
DM-04	9/24/96	20	U	20	U	260		-		-	<u> </u>	610		4,500	<u> </u>	1,400			<u> </u>
Cont.	3/18/97	0.5	U	0.74	<u>[j</u>	120		-		-	<u> </u>	62		2,600	<u> </u>	1,400	. <u> </u>	<u> </u>	<u> </u>
	9/18/97	13	<u> </u>	1.1	<u>. </u>	120		- 	<u> </u>	-	Ļ	67	ļ	2,300	<u> </u>	670	. . [¦]	<u>'</u> -	<u> </u>
	3/17/98	23	<u> </u>	2.5	U	260		-		-	<u> </u>	200	ļ	4,100	<u> </u>	1,700	. . ^j	<u> </u> -	
	9/10/98	57	<u> </u>	10	U	320		-	<u> </u>	-	<u> </u>	370	ļ	8,000	<u>.j</u>	69,000	. ^j	<u></u>	
	3/19/99	2.5	U	16	<u> </u>	51		-	<u> </u>	-	<u>ļ.</u>	19	<u> </u>	2,500	<u>. </u>	20,000	. [¦]	<u></u>	
	9/16/99	10	U	10	<u>[</u>	220		 	<u>[</u>	-	<u> </u>	120		2,400	<u> </u>	1,900	<u> </u>		<u> </u>
į	3/31/00	1	U	1.5	U	110		31		1.8	<u>i</u>	-		3,800	<u>j</u>	3,500	<u></u>	430	<u> </u>
j	9/20/00	2	U	3	U	190		120		2	U	-		4,300	j	1,800	. !	820	JU
ļ	3/16/01	0.2	U	0.3	U	82		28	<u> </u>	1	<u> </u>	-		2,300	<u> </u>	3,900	<u>. </u>	3200	U
	9/18/01	2	U	3	U	94		48	<u>i i</u>	2	U	-		3,300	j	5,900	. <u>.</u>	1600	U
	3/13/02	2	U	3	U	42		20		2	U	-		1,800]	2,300		800	U
	9/19/02	0.2	U	0.74		63		38		1	I	-		2,700	<u> </u>	9,900		1,300	
	3/17/03	0.4	U	0.6	U	76		36		0.6	Ι	-		2,300]	3,600	1	800	U
	9/8/03	1	U	1.5	U	45		29		1	U			3,300]	5,700	1	850	U
	3/23/04	0.7		0.6	U	11		4.2		0.4	U	-		1,700]	2,400	_]	800	U
	9/15/04	0.2	U	0.3	U	110		64		0.93		-		3,200		3,200		910	U
DM-06	3/10/05	0.21		0.27	J	0.21		0.42	<u> </u>	0.2	U	·		91	<u> </u>	230	J	240	Įυ
ļ	9/21/06	0.2	U	0.3	U	0.2	U	-		-	<u> </u>	0.2	U	69	<u>. </u>	130	U	500	U
	9/25/07	0.46	<u> </u>	0.3	U	0.4		0.71		0.31	<u>i</u>	1		41	<u>.i</u>	71	. J ^j	210	U
j	9/11/08	0.2	U	0.5	U	0.5	U	0.18	J	0.5	U	L	J	49	j	170	U	670	Įυ
	3/19/09	0.2	U	0.5	U	0.5	U	1	U	0.5	U	L	U	25	U	130	. . !	380	U
	3/25/10	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U			21	J	46	J	500	Ü
į	4/6/12	1	U	1	U	1	U		U	1	U	-	ļ	50	U	L	U	4	U
	3/26/13	0.2	U	0.2	U	0.2	U		U	0.2	U	L	<u> </u>	250	U		U		Įυ
	2/26/14	0.2	U	0.2	U	0.2	U		U	0.2	U	-		250	U	100	U	200	U
Duplicate	2/26/14	0.2	U	0.2	U	0.2	U	0.4	U	0.2	U	L		250	U	L	U	200	Įυ
	3/26/15	0.5	U	0.13	J	0.5	U	0.5	U	0.5	U			250	U	32	J		J
UA-02	9/13/05	0.2	U	0.3	U	0.1	J	0.4	U	0.2	U			66]	100	U		U
	3/9/06	0.2	U	0.3	U	0.2	U	0.4	U	0.2	U	-		25	U	100	U	420	U
	3/7/07	0.2	U	0.3	U	0.2	U		U	0.2	U	· ·-	U	25	U	100	U	400	Įυ
	3/12/08	0.2	U	0.3	U	0.2	U	0.4	U	0.2	U		U	100	1	53	1	190	U
	9/10/09	0.2	U	0.5	U	0.5	U	1	U	0.5	U	0.5	U	66]	75	U	380	U
	3/24/11	0.5	U	0.11	J	0.5	U	0.5	U	0.5	U	-		40	J	35	J	43	J
	4/4/12	1	U	1	U	1	U	2	U	1	U	-		50	U	130	U	250	Įυ
	3/25/13	0.2	U	0.2	U	0.2	U	0.4	U	0.2	U	-	[250	U	100	U	200	Ū

Site SS-34, JBLM McChord Field

Well ID	Date	Benze (µg/L	_	Toluene (μg/L)		Ethylbenzene (µg/L)		m,p-Xylene (µg/L)		o-Xylene (µg/L)		Total Xylenes (µg/L)	TPH-G (µg/L)		TPH-D (µg/L)		TPH-O (μg/L)	
UA-02	2/26/14	0.2	U	0.2	U	0.2	U	0.4	U	0.2	U	-	250	U	100	U	200	U
Cont.	3/26/15	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	-	250	U	23	J	100	J
	MTCA Method A																	
Cleanup Level		5	<u>i</u>	1,000		700		1,000		1,000		-	1,000	į	500		500	

Notes:

TPH-G = Gasoline range total petroleum hydrocarbons

TPH-D = Diesel range total petroleum hydrocarbons

TPH-O = Heavy oil range total petroleum hydrocarbons

μg/L = Micrograms per liter

BOLD = Analyte detected at or above MTCA Method A cleanup level

D = Sample diluted prior to analysis

J = Estimated value

L = Chromatographic fingerprint resembles petroleum product w/ < amount of heavier constituents than calibration standard.

U = Analyte not detected above practical quantification limit reported

Y = Chromatographic fingerprint resembles petroleum product but does not match calibration standard.

- = No data, not applicable

Appendix D - Historical Data and Linear Graphs Site WP-44, JBLM McChord Field

												Total								
		Benzene		Toluene		Ethylbenze	ne	m,p-Xyle	ene	o-Xylen	е	Xylene	s	TPH-G	i	TPH-C)	TPH-O		
Well ID	Date 9/22/95	(µg/L)		(µg/L)		(µg/L)	(µg/L)			(µg/L)		(µg/L)		(µg/L)		(µg/L)		(µg/L	_)	
CW-9		32	!	2.4		90	1	55	1 1	10		-		7,600	!	1,000	U	-		
	3/25/96	9.2	†	2	U	2	U	-	· -		11	1	U	250		290	11			
	9/23/96	21	1	20	U	150		-	1-1		11	10	U	1,500		510	11	-		
	3/18/97	0.5	U	0.5	U	0.5	U	-	T-T		11	0.6	11	100	U	240	U			
	9/17/97	14	†	1.9	1	13		-	1		11	2.6	†1	1,100		320		-		
	3/16/98	13		0.5	U	7.7		-			††	0.5	U	350		240	U			
Duplicate	3/16/98	14	<u> </u>	0.5	U	8.4		-	1		11	0.5	U	360		240	U			
	9/10/98	26	†	0.84	1	11		-	1-1		11	0.59	11	1,600		930	71			
Duplicate	9/10/98	25		0.8	1	11		-	7		77	0.54	†1	1,600		1,100	7			
	3/18/99	0.5	U	0.5	U	0.5	U	-	1-1	-	11	0.5	U	100	U	240	U			
	9/16/99	8.9	†	1.7	1	24		-	† †	-	††	0.64	††	1,200	†	1,600		-	+	
Duplicate	9/16/99	10	†	2.5	11	30		-	·	-	·†	0.81	† <u> </u>	1,600	ļ	1,300	<u></u>	-		
	3/30/00	13	†	0.3	U	3.2	-1	0.4	U	0.25	11	-	11	890		250	11	380	U	
	9/19/00	20	ţ	0.93	ţ	34	-†	2.3	T-T	0.2	U	-	††	4,400	ļ	1,900	<u> </u>	820	U	
	3/15/01	70	†	5.5	!	25		27	11	2	U	-	+	1,500		660	<u> </u>	800	U	
	9/18/01	40	†	1.9	†	5.2	-1	3.1	1-1	1	U	-	†1	1,600		480	†i	830	U	
	3/12/02	1.5	†	0.3	U		-†	1.9	1	1.3	11		11	140		200	U	800	Ū	
	9/17/02	42	!	6	U		D		ΙυΙ	4	U		† <u>†</u>	2,900	† <u>-</u>	1,600	<u></u>			
Duplicate	9/17/02	42	D	3	U	120	-1	4	U	2	U	-	11	2,900		1,300	††	800	U	
	3/17/03	64	ļ	30	D	540	D	530	D	26	D		11	17,000		1,100	Ţ <u>1</u>			
	9/8/03	49	†	2.1	1	120		31	- † †	1.4	11		†1	8,600	<u> </u>	1,600	1 1	800	U	
	3/23/04	24	†	3	U	62		4.7	1-1	0.2	U	-	†1	4,900	ļ	1,200	† <u>-</u> 1	800	U	
	9/15/04	25	1	1.3	1	26		3.4	1-1	0.17	J	-	11	6,200		1,800	<u> </u>	820	U	
	3/10/05	47	†	6	1	9.9	-†	2.8	1-1	1	U	-	†1	3,800	ļ	730	1 1	190	U	
	9/13/05	30	†	2.3	!	23		3.1	11	0.66	J	-	† <u> </u>	4,840	†	2,000		470		
Duplicate	9/13/05	29	†	2.4	1	20	-1	3.2	1-1	0.79	J	-	††	4,310		2,100	† <u>-</u>	410	U	
	3/9/06	2.1	†	0.38	1	1.3		0.26	J	0.69	11	-	†1	300		550		440		
	9/21/06	9.48	†	3	U	5.13		-	ᠠ	-	·†	2	U	1,800	<u> </u>	1,900	<u> </u>	260		
	3/7/07	2.5	†	0.4	1	0.94	-1	0.54	1	0.96	11	1.5	11	520		600	11	400	U	
Duplicate	3/7/07	2.5	<u> </u>	0.39	!	1.1		0.51	††	0.9	11	1.4	††	400		590	<u> </u>	400	U	
	9/25/07	8.2	†	0.95	†	2.3		1.7	11	0.26	††	1.9	+	1,500		1,300	<u> </u>	290		
	3/12/08	11	Í	2.4	j	2.1		1.7	1-1	0.24	- 	2.1	Ţi	1,900	D		†i	190	U	
	9/11/08	8.8	†	1.5	1	0.73		0.43	IJ	0.5	U	0.43	J			980		210		
	3/19/09	9.8	İ	2.9	1	3.5		0.52	J	0.5	U	0.52	11	2,600	İ	620	<u> </u>	380	U	
	9/10/09	9	†	1.7	1	0.86	- -	0.48	J	0.5	U		J		Ţ	830	Ţ <u>†</u>	380	U	
	3/24/10	12	†	2.8	[1.4	U	0.75	17	0.33	J	-	11	3,300		360	††	500	U	
	3/24/11	1.1	†	0.34	J	0.5	U	0.14	IJ	0.5	U	-	11	2,900	1	97	J	85	J	
	4/3/12	7.4	f	2.8	1	2.6	-1	2	U	1	U		†1	2,200	Í	890	††	290	·	

Appendix D - Historical Data and Linear Graphs Site WP-44, JBLM McChord Field

Well ID	Date	Benzen (µg/L)	Benzene (µg/L)		Toluene (µg/L)		ene	m,p-Xyle (µg/L)		o-Xyler (µg/L)		Total Xylenes (µg/L)		TPH-G (μg/L)		TPH-[(µg/L)		TPH-O (µg/L)	
CW-9	3/25/13	8.6		3.9		1.7		0.4	U	0.2	U	-	I	2,600		120		200	U
Cont.	2/26/14	2.3	-11	1.4	11	0.81		1.5	-1	0.26		i - i		300		200		200	U
	3/26/15	0.5	U	0.22	J	0.5	U	0.5	ΙUΙ	0.5	ΙU		<u></u>	250	U	37	J	57	J
Duplicate	3/26/15	0.5	U	0.2	J	0.5	U	0.5	U	0.5	U	- !		250	U	39	J	31	J
CW-14b	9/22/95	3.3		1.1		2		10	11	1.1		-		460		2,600		-	\top
	3/25/96	2	11	2	U	2	U	-	1-1	-	1-1	3.1	<u>-</u>	280	11	2,500	†		
	9/23/96	2	U	2	U	3.9		-	17-7	-	1	6.2	- -	250	<u> </u>	2,300	1	-	
	3/18/97	1.6	11	0.5	U	0.5	U	-	-1	-	77	2.4		100	U	2,500			
	9/17/97	1.4	11	0.76	1	0.5	U	-	7-7	-	1	6.3		230	<u> </u>	240	U	 [
	3/16/98	1.4	11	0.5	U	0.5	U	-	17	-	1	1.2		160	<u> </u>	1,900	7-1	-	
	9/10/98	1.8	17	0.5	U	0.5	U	-	7-7	-	77	3.3		300	71	2,300	71	 }	
	3/18/99	2.1	11	0.57	T	0.5	U	-	17-7	-	1-1	1.5	<u> </u>	110		3,600	T		
	9/16/99	1	1 1	0.5	U	0.5	U	-	17-7	-		2.9		220		3,200		-	
	3/30/00	0.82	1-7	0.3	U	0.2	U	0.7	7-7	0.2	U	-		270	- -	4,200	D	650	
	9/19/00	0.78	11	0.3	U	0.23		1.6	77	0.2	U	-	<u></u>	250	T1	3,300	T	830	U
	3/15/01	1.3	T	0.3	U	0.75		1.9	77	0.2	U	- !	<u></u>	250	T1	5,200	D	3,200	U
	9/18/01	7	7-7	1.8	ŢŢ	0.77		1.4	77	0.27	77	-		230	- -	4,200	D	1,600	U
Duplicate	9/18/01	7.1		1.6		0.71		1.3		0.27		- !		250		4,900	D	1,600	U
	3/12/02	6		0.35		0.38		0.76		0.76		- [210		6,300	D	1,600	U
	9/17/02	5.6		0.6	U	3.1		2.4		0.4	U	- [350		4,700	D	800	U
	3/17/03	2.9		0.6	U	5.9		7.4	III	0.54		-		480		6,400	D	820	U
	9/8/03	9.2		0.59		1.8		1.7		0.27		-		370		6,800		800	U
Duplicate	9/8/03	9.2		0.57		2.1		1.7		0.2	U	-		420		7,100		800	U
	3/23/04	6.6		0.3	U	0.2		0.47	III	0.2	U	-		300		6,800	D	1,100	
	9/15/04	3.8		0.16	J	0.34		1.1		0.19	J	-		320		5,400	D	940	
Duplicate	9/15/04	3.8		0.16	J	0.32		1.1	\mathbb{I}	0.17	J	-		340		5,200	D	810	
	3/10/05	2.2]]	0.48		0.23		0.74	III	0.26		-		270	_[]	4,900	D	760	
	9/13/05	1.1		0.15	J	0.63		0.4	III	0.15		-		341		3,300		760	
	3/9/06	1	\prod	0.3	U	0.2	U	0.37	J	0.2	U	-		160		5,100	D	1,500	
Duplicate	3/9/06	1		0.3	U	0.2	U	0.35	J	0.2	U	-		140		5,100	D	1,300	
	9/21/06	0.91		0.32		0.2	U	-	III	-		0.33		170		3,700	D	530	
	3/7/07	0.95	<u>[</u>	0.3	U	V	U	L		0.2		0.48	<u>.</u>	170		4,100		1,100	
	9/25/07	0.88		0.3	U	0.2	U			0.2	U		<u>]</u>	130		2,700		300	
	3/12/08	0.69		0.3	U	0.2	U		U	0.2	U		U	140		3,100		450	
Duplicate	3/12/08	0.67	<u>[</u>	0.3	U	0.2	U	0.4	U	0.2	U		U	130		3,200		540	
	9/11/08	1		0.5	U	0.5	U	1	U	0.5	U	0.5	U	170		2,100		510	
Duplicate	9/11/08	0.94		0.5	U	0.5	U	1	U	0.5	U	0.5	U	160		2,300		520	
	3/19/09	0.87		0.5	U	0.5	U	1	U	0.5	U	0.5	U	220		2,200	[]	1,900	Ū

Site WP-44, JBLM McChord Field

Well ID	Date	Benzene (µg/L)		Toluene (µg/L)		Ethylbenzene (µg/L)		m,p-Xylene (µg/L)		o-Xylene (µg/L)		Total Xylenes (µg/L)		TPH-G (µg/L)		TPH-D (µg/L)		TPH-((µg/L	
CW-14 Dup	3/19/09	0.88		0.5	ļυ	0.5	U	1	U	0.5	U	0.5	U	200	<u> </u>	2,300		1,900	U
	9/10/09	0.54		0.5	U	0.5	U	1	U	0.5	U	0.5	U	180	$ \begin{bmatrix} 1 \\ \end{bmatrix} $	2,600		580	
Duplicate	9/10/09	0.57		0.5	U	0.5	U	1	ΙU	0.5	U	0.5	U	180	T-1	2,700	T-1	620	
	3/24/10	0.62		0.07	J	0.5	U	0.5	U	0.5	U	-		220	J	3,000	T-7	160	J
Duplicate	3/24/10	0.67	T-7	0.5	U	0.5	U	0.5	U	0.5	U	-		210	J	3,000		180	J
	3/24/11	0.56		0.07	J	0.5	U	0.5	U	0.5	U	-		160	J	2,700	T1	470	J
Duplicate	3/24/11	0.56		0.13	J	0.5	U	0.5	U	0.5	U	-	- i i	170	J	2,500	TT	480	J
;	4/4/12	1	U	1	U	1	U	2	U	1	U	-		210	<u>-</u>	3,300	77	920	
!	3/25/13	0.33	1	0.2	U	0.2	U	0.4	U	0.2	U	-	T7	250	U	250	T1	200	U
	2/26/14	0.2	U	0.2	U	0.2	U	0.4	U	0.2	U			250	U	280	11	480	
	3/26/15	0.11	J	0.07	J	0.5	U	0.5	U	0.5	U			110	JΥ	2,700	Υ	520	L
MTCA Method A Cleanup Level		5		1,000		700		1,000	0	1,00	0	-		1,000		500		500	

Notes:

TPH-G = Gasoline range total petroleum hydrocarbons

TPH-D = Diesel range total petroleum hydrocarbons

TPH-O = Heavy oil range total petroleum hydrocarbons

μg/L = Micrograms per liter

BOLD = Analyte detected at or above MTCA Method A cleanup level

D = Sample diluted prior to analysis

J = Estimated value

L = Chromatographic fingerprint resembles petroleum product w/ < amount of heavier constituents than calibration standard.

U = Analyte not detected above practical quantification limit reported

Y = Chromatographic fingerprint resembles petroleum product but does not match calibration standard.

- = No data, not applicable

Site DP-60, JBLM McChord Field

Well ID	Date			Toluen (µg/L)	е	Ethylbenzene (µg/L)		m,p-Xyle (µg/L)	ene	o-Xyler (µg/L))	Total Xylene: (µg/L)	S	TPH-G (μg/L)		TPH-D (μg/L)		TPH-O (μg/L)	
CR-02	4/5/95	1.1	 	2.1		1.5	Ļ	1.6		0.48	J	-	ļ	880		1,500	ļļ	- 	
	4/5/95	1	<u> </u>	1.7	<u>.</u>	1.5	Ļ	2.1	<u> </u>	0.81	J	-	<u>.</u>			- 	ļļ	 	. <u>.</u> []
	9/21/95	1	U		ļ	1	U		U	1	U	-	ļ	950		1,400	<u> </u>	<u>-</u>	<u>. </u>
	3/25/96	2.0.0	U	2.3	ļ	2	U	- 	. <u></u>	-	<u> </u>	2.0	ļ	790		1,300	<u> </u>	; - !	
	9/25/96	2.0.0	U	2	. .	2.6	<u> </u>	- 	.ii	-	<u>-ii</u>	4.2	<u>.</u>	550		1,800	ļi	-	<u> </u>
	3/18/97	0.5	U		<u>.</u>	8.9	<u> </u>	-	<u> </u>	-	<u> </u>	5.1	<u>į </u>	480	<u>j</u>	2,800	įj	<u> </u>	<u> </u>
	9/18/97	1.3	<u> </u>	3.2	<u>.</u>	8.6	<u> </u>	! 	<u></u> [-		6.7	<u>.</u>	670		2,500	<u> </u>	<u>-</u>	
	3/17/98	0.5	U	0.5	U		U	L	<u> </u>	-		0.5	U			55,000	<u> </u>	; - !	
	3/19/99	0.5	U		ļ	0.5	U	_	1	-	<u> </u>	1.6		410		2,800	<u> </u>	-	
Duplicate		0.5	U	L		0.5	<u> </u>	i 	<u> </u>	-	<u> </u>	1.7	<u> </u>	480	<u>i</u> _	2,800	<u>[</u> _j	<u> </u>	<u> </u>
	3/30/00	0.2	U		<u> </u>	0.27	<u> </u>	0.45	11	0.2	U	-	<u> </u>	800		4,300	D	460	<u>. [</u>
Duplicate	3/30/00	0.2	U	0.33		0.26	<u> </u>	0.46	<u> </u>	0.2	U	-		1,000		3,100	D	400	
	3/16/01	2	U	3	U	L	U	4	U	2	U	-		1,000	<u>i</u> _	4,800	D	3200	U
Duplicate	3/16/01	0.4	U	0.6	U	0.63		1.5][0.4	U	-		1,500		4,500	D	3200	U
	3/12/02	0.4	U	0.8		0.4	U	0.8	U	0.4	U	-		580		2,600	D	810	
Duplicate	3/12/02	0.4	U	0.75		0.4	U	0.8	U	0.4	U	-		550		4,300	D	1600	U
	3/18/03	0.4	U	0.6	ļυ	0.63	I	0.9		0.4	U	-		790		8,000	D	960	
	3/23/04	0.2	U	0.6		0.2	U	0.32		0.2	U	-		530		21,000	D	1700	
Duplicate	3/23/04	0.2	U	0.6		0.2	U	0.3	J	0.2	U	-		500		4,500	D	800	U
	3/10/05	0.2	U	0.93		0.23		0.59		0.14	J	-		460		4,100	D	340	
Duplicate	3/10/05	0.22	T-1	1.1		0.23	Ī	0.57		0.18	J	-		490		4,200	D	360	
	3/9/06	0.2	U	1.1		0.2	U	0.34	7	0.12	J	-		360		3,100	D	580	
	3/8/07	-	TI	-	Ī	-	T	-	1	-	TT	-		-		2,100	[500	
	3/12/08	-	TI	-		-	T	 -		-		-		-	<u>-</u>	1,500		280	
	3/19/09	-	7	-		-	ļ	_	11	-	7-7	-		-		1,000	, ,	380	U
	3/25/10	-	T-1	-		-	<u> </u>	-	11	-	7-7	-		-		1,700	[]	55	J
	6/29/11	-	T	-		-	Ī	-	T	-	7-7	-		- 1		1,900	[220	J
Duplicate	6/29/11	-	7	-	1	-	Ţ	† ! -	7	-	-1	-		- 1		2,300	<u></u>	270	J
	4/4/12	-	T	-	[-	Ī	-	1-1	-	7	-		-		1,500	[]	400	1
	3/25/13	-	T	-	1	-	T	i -	11	-	-†	-	İ	-		6,100		980	
	3/5/14	-	7	-	1	-	ļ		7	-	-11	-	ļ	-		860	r	200	
,	6/24/15	-	T	-	Ţ	-	T	 -	7i	-	7-1	-	[-		1,900	Υ		J
TW-9	4/4/95	4.4		1	U	1	U	5.9		1.4	1 1	-		1,200		540		-	
	4/4/95	3.9	†	1	U		U	L	1	1.5	-††	-		-		-	[
, ,	9/21/95	1	U		U	9.4	T	1	U		7-1	-		1,100		1,900	[<u></u>	Ţ
	9/21/95	1	U	1	U	1	U	1	U		- 1†	-		-			[-	1
	3/25/96	2	Ü	2	Ŭ	2	U	-	1	-	-†	1.6	†	790		600	<u> </u>	-	

Site DP-60, JBLM McChord Field

Well ID	Date	Benzen (µg/L)	- 1	Toluene (µg/L)	Э	Ethylbenzei (µg/L)	•		ne	o-Xylene (µg/L)		Total Xylenes (µg/L)	TPH-G (μg/L)		TPH-D (µg/L)		TPH-C (µg/L)	
TW-9	9/24/96	2	U	2	U	2	2 U		1	-		1.1	350	!	660		-	
Duplicate	9/24/96	2	U	2	U	2	U	-	[-		1.6	320	} 	880	}	-	1
	3/17/97	0.5	U	0.5	U	0.8	Ţ	-	[-	-1	1.3	270	<u> </u>	760	<u></u>	-	1
Duplicate	3/17/97	0.5	U	0.5	U	1.1	Ť	-	[-	<u> </u>	2.2	220	†	470		-	Ī
	9/16/97	0.5	U	0.5	U	1.1	Ť	-	 	-		2.8	470	} 	410	} 	-	7-1
Duplicate	9/16/97	0.5	U	0.5	U	1.3	Ţ	-	<u> </u>	-	-1	3.1	530	<u></u>	400		-	
	3/16/98	0.69	T-1	0.5	U	0.5	U	-		-		0.5	330	 -	3,600		-	1
	3/18/99	0.5	U	5	!	1.7	†	-	1	-	-†	6.6	620	 !	940		-	†1
	3/31/00	0.2	Īυ	<0.3	U	0.2	ĪŪ	1.3	1	0.2	U		430	T	2,600	D	1,000	71
	3/15/01	1	U	1.5	U	1	Ū	2	U	1	U		410	!	3,100		1,100	†1
	3/12/02	0.4	U	0.6	U	0.4	U	1.5	 -	0.4	U		580	 !	6,900	D	3,200	D
	3/18/03	0.2	Īυ	<0.3	U	0.69	Ť	1.4	<u> </u>	0.25	11	<u>-</u>	210	Ī	1,300	i	800	Īυ
Duplicate	3/18/03	0.2	U	<0.3	U	0.2	U	1.3	[0.25	-1	- [230	 -	1,200		800	U
	6/10/04	0.2	U	0.46		0.79	Ť	3.5		2			430	 !	1,700		800	U
Duplicate	6/10/04	0.2	U	0.44	<u> </u>	0.77	Ť	3.4	 	2	ŢŢ	j	570	ļ	1,900		800	U
	3/10/05	0.14	J	0.27	J	0.39	Ť	3.1		1.3	1	- [500	<u> </u>	7,800	D	4,100	D
	3/9/06	0.2	U	0.3	U	0.62	Ť	0.96		0.37	1	- [310	<u> </u>	1,300		640	1-1
	3/8/07	-	TT	-		-	Ţ	-]	-	ŢŢ	- [<u> </u>	[700		630	7-7
	3/12/08	-	TT	-	<u> </u>	-	Ţ	-	[-	1	- [-	<u> </u>	770	[260	1
	3/19/09	-	T	-		-	Ť	-		-	1	- [950	i	390	<u> </u>
	3/25/10	-	1	-	† <u> </u>	-	Ť	-	 	-	11	-		} 	730	;	110	
	6/29/11	-	TT	-	<u> </u>	-	Ī	-		-	1	- [-	<u></u>	680		180	1
	4/6/12	-	Ti	-		-	Ť	-	<u> </u>	-		- [-	<u> </u>	440		280	7
	3/25/13	-	1	-	[<u>}</u>	-	Ţ	-]	-	7		-	 !	170	}	200	U
	3/5/14	-	T	-		-	Ť	-]	-		- [- 	<u> </u>	3,100		1100	-
	6/24/15	-	T	-	 	-	T	-		-	1	<u>-</u>	- 		970	Υ	570	Ζ
MTCA M Cleanu		5		1,000		700		1,000		1,000		-	1,000		1,000*	ł.	500	

Notes:

TPH-G = Gasoline range total petroleum hydrocarbons

TPH-D = Diesel range total petroleum hydrocarbons

TPH-O = Heavy oil range total petroleum hydrocarbons

μg/L = Micrograms per liter

BOLD = Analyte detected at or above MTCA Method A cleanup level

D = Sample diluted prior to analysis

J = Estimated value

L = Chromatographic fingerprint resembles petroleum product w/ < amount of heavier constituents than calibration standard.

Site DP-60, JBLM McChord Field

							Total			
		Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Xylenes	TPH-G	TPH-D	TPH-O
Well ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)

U = Analyte not detected above practical quantification limit reported

Y = Chromatographic fingerprint resembles petroleum product but does not match calibration standard.

Z = Chromatographic fingerprint does not resemble a petroleum product.

^{- =} No data, not applicable

^{* =} Site specific clean up level

Base Boundary Monitoring Wells, JBLM McChord Field

Well ID	Date	TCE (µg/L)	cis-1,2- DCE (µg/L)	1,1-DCE (µg/L)	Vinyl Chloride (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	m,p- Xylene (µg/L)	o-Xylene (µg/L)	Total Xylenes (µg/L)
CW-4	3-Apr-95	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.39 J	1.0 U	1.0 U	1.0 U	-
	21-Sep-95	0.5 U	-	0.5 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
	22-Mar-96	1.2 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U		<u> </u>	1.0 U
	12-Mar-97	0.2 U	0.2 U	0.2 U	1.0 U	0.5 U	0.5 U	0.5 U		†	0.5 U
	12-Mar-98	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	 -	·	0.5 U
	17-Mar-99	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	 -	· -	0.5 U
	13-Mar-01	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	13-Mar-03	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	 	-	-
	11-Mar-05	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	-	-
	8-Mar-06	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	 -	-	-
	21-Sep-07	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	<u> </u>	-	-
	11-Mar-08	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	ļ -	-
	8-Sep-09	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	 - 	<u> </u>	-
	4-Apr-12	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	26-Mar-15	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
LT-2	31-Mar-95	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
	19-Sep-95	0.3 U	-	0.5 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
	21-Mar-96	1.2 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U	-	<u> </u>	1.0 U
	10-Mar-97	0.2 U	0.2 U	0.2 U	1.0 U	0.5 U	0.5 U	0.5 U	-	<u> </u>	0.5 U
	12-Mar-98	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	; i - 	į -	0.5 U
	16-Mar-99	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	i 	<u> </u>	0.5 U
	13-Mar-01	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.6 U
	13-Mar-03	0.5 U	0.5 U	0.5 U	0.5 U	_	-	-	 	<u> </u>	-
	11-Mar-05	0.5 U	0.5 U	0.5 U	0.5 U	i - -	-	- 	i 	<u> </u>	-
	6-Mar-07	0.5 U	0.5 U	0.5 U	0.5 U	 	-	-	 	<u> </u>	-
	18-Mar-09	0.5 U	0.5 U	0.5 U	0.5 U	_	-	-	-	<u> </u>	-
	25-Mar-13	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.4 U	0.2 U	-
LT-3	31-Mar-95	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
	19-Sep-95	0.3 U	-	0.5 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
	19-Sep-96	2.9	5.2	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U	 	<u> </u>	1.0 U
	10-Mar-97	0.2 U	0.2 U	0.2 U	1.0 U	0.5 U	0.5 U	0.5 U	i - 	.j	0.5 U
	15-Sep-97	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	i 	<u> </u>	0.5 U
	7-Sep-98	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	 	ļ -	0.5 U
	15-Sep-99	0.2 U	0.2 U	0.2 U	1.0 U	0.5 U	0.5 U	0.5 U	-	. .	0.5 U
	5-Sep-03	0.5 U	0.5 U	0.5 U	0.5 U	i -	-	-	i 	<u> </u>	-
	8-Mar-06	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	<u> </u>	-

Base Boundary Monitoring Wells, JBLM McChord Field

Well ID	Date	TCE (µg/L)	cis-1,2- DCE (µg/L)	1,1-DCE (µg/L)	Vinyl Chloride (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	m,p- Xylene (µg/L)	o-Xylene (µg/L)	Total Xylenes (µg/L)
LT-3 Cont.	21-Sep-07	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	-	-
	8-Sep-09	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	 -	-	-
	23-Mar-10	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	 	-	-
	26-Feb-14	0.2 U	0.2 U	0.2 U	0.2 U	-	-	-	-	-	-
LT-4	31-Mar-95	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
	21-Mar-96	1.2 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U	-	-	1.0 U
	10-Mar-97	0.2 U	0.2 U	0.2 U	1.0 U	0.5 U	0.5 U	0.5 U	-	-	0.5 U
	12-Mar-98	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	-	-	0.5 U
	22-Mar-00	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-
	12-Mar-02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	0.5 U
	16-Mar-04	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	-	-
	6-Mar-07	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	-	-
	18-Mar-09	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	<u> </u>	-
	23-Mar-11	0.17 J	0.5 U	0.5 U	0.5 U	-	0.08 J	-	-	<u> </u>	-
Duplicate	23-Mar-11	0.18 J	0.5 U	0.5 U	0.5 U	-	0.5 U	-	-	-	-
	26-Mar-15	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
LT-5	31-Mar-95	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
	19-Sep-95	0.3 U	-	0.5 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
	19-Sep-96	1.4	1.7	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U	-	-	1.0 U
	10-Mar-97	0.2 U	0.2 U	0.2 U	1.0 U	0.5 U	0.5 U	0.5 U	-	<u> </u>	0.5 U
	15-Sep-97	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	-	-	0.5 U
	7-Sep-98	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	-	-	0.5 U
	13-Sep-00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.6 U
	19-Sep-02	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	-	-
	15-Sep-04	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	-	-
	16-Sep-06	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	-	-
	8-Sep-08	0.22J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	0.5 U
	9-Sep-10	0.10 J	0.5 U	0.5 U	0.5 U	-	0.12 J	-	-	-	-
Duplicate	8-Sep-08	0.22J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	0.5 U
	26-Feb-14	0.2 U	0.2 U	0.2 U	0.2 U	-	-	-	-	-	-
LT-6	31-Mar-95	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
	20-Sep-95	0.5 U	-	0.5 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
	20-Sep-96	1.2 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U	 - 	-	1.0 U
	18-Sep-97	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U			0.5 U
	8-Sep-98	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U		ļ	0.5 U
	15-Sep-99	0.2 U	0.2 U	0.2 U	1.0 U	0.5 U	0.5 U	0.5 U	-	-	0.5 U

Base Boundary Monitoring Wells, JBLM McChord Field

Well ID	Date	TCE (µg/L)	cis-1,2- DCE (µg/L)	1,1-DCE (µg/L)	Vinyl Chloride (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	m,p- Xylene (µg/L)	o-Xylene (μg/L)	Total Xylenes (µg/L)
LT-6 Cont.	18-Sep-01	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	(F-3)	(1-3)	0.5 U
L1-0 Cont.	5-Sep-03	0.5 U	0.5 U	0.5 U	0.5 U	0.5 0	0.5 0	0.5 0	 !	<u> </u>	0.5 0
	16-Sep-05	0.5 U	0.5 U	0.5 U	0.5 U					ļ	
	11-Mar-08	0.5 U	0.5 U	0.5 U	0.5 U	i 			<u>-</u>	<u> </u>	
Duplicate	11-Mar-08	0.5 U	0.5 U	0.5 U	0.5 U				 !	<u> </u>	
Duplicate	6-Apr-12	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	26-Mar-15	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
LT-7	31-Mar-95	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
	20-Sep-95	0.5 U		0.5 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	_
	19-Sep-96	1.2 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U	- 1.0 0	- 1.0 0	1.0 U
Duplicate	19-Sep-96	1.2 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U			1.0 U
	15-Sep-97	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	 ! -	† ! -	0.5 U
Duplicate	15-Sep-97	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.77	0.5 U	-	†	0.5 U
	7-Sep-98	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	1.5	0.5 U		†	0.5 U
	13-Sep-00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.6 U
	19-Sep-02	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	·	-
Duplicate	19-Sep-02	0.5 U	0.5 U	0.5 U	0.5 U	 -	-	-		†	-
	15-Sep-04	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	 -	-	-
	16-Sep-06	0.67	-	- !	f ! !	-	-	-	-	-	-
Duplicate	16-Sep-06	0.71	-	-	i -	-	-	-	-	-	-
	8-Sep-08	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	0.5 U
	23-Mar-10	0.5 U	0.5 U	0.5 U	0.5 U	_	-	-	-	-	-
	26-Feb-14	0.2 U	0.2 U	0.2 U	0.2 U	-	-	-	-	-	-
LT-10	31-Mar-95	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
	19-Sep-95	0.3 U	-	0.5 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
	22-Mar-96	1.2 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U	-	-	1.0 U
	11-Mar-97	0.2 U	0.2 U	0.2 U	1.0 U	0.5 U	0.5 U	0.5 U	-	-	0.5 U
	12-Mar-98	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U			0.5 U
	16-Mar-99	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U		-	0.5 U
	13-Mar-01	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.6 U
	13-Mar-03	0.5 U	0.5 U	0.5 U	0.5 U		-	-	- 	-	-
	11-Mar-05	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	<u> </u>	-
	8-Mar-06	0.5 U	0.5 U	0.5 U	0.5 U		-	-	- -	ļ -	-
Duplicate	8-Mar-06	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	<u> </u>	-
	21-Sep-07	0.5 U	0.5 U	0.5 U	0.5 U	i -	-	-	-	<u> </u>	-
Duplicate	21-Sep-07	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	-	-

Base Boundary Monitoring Wells, JBLM McChord Field

Well ID	Date	TCE (µg/L)	cis-1,2- DCE (µg/L)	1,1-DCE (µg/L)	Vinyl Chloride (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	m,p- Xylene (µg/L)	o-Xylene (µg/L)	Total Xylenes (µg/L)
LT-10 Cont.	8-Sep-09	0.5 U	0.5 U	0.5 U	0.5 U	- 1	-	-	-	-	-
Duplicate	8-Sep-09	0.5 U	0.5 U	0.5 U	0.5 U		-	-		 	-
	25-Mar-13	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.4 U	0.2 U	-
LT-11	4-Apr-95	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.64 J	1.0 U	0.25 J	1.0 U	-
Duplicate	4-Apr-95	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.52 J	1.0 U	1.0 U	1.0 U	-
	20-Sep-95	0.5 U	-	0.5 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
Duplicate	20-Sep-95	0.5 U	-	0.5 U	0.5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	-
	21-Mar-96	1.2 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U	-	- 	1.0 U
	11-Mar-97	0.2 U	0.2 U	0.2 U	1.0 U	0.5 U	0.5 U	0.5 U	-	-	0.5 U
	12-Mar-98	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.5 U	0.5 U	-	<u> </u>	0.5 U
	22-Mar-00	0.2 U	0.2 U	0.2 U	1.0 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-
	12-Mar-02	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	-	-	0.5 U
	16-Mar-04	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	<u> </u>	-
	6-Mar-07	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	-	-
Duplicate	6-Mar-07	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	-	-
	18-Mar-09	0.5 U	0.5 U	0.5 U	0.5 U	-	-	-	-	<u> </u>	-
Duplicate	18-Mar-09	0.5 U	0.5 U	0.5 U	0.5 U	- -	-	-	- 	- -	-
	25-Mar-13	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.4 U	0.2 U	-

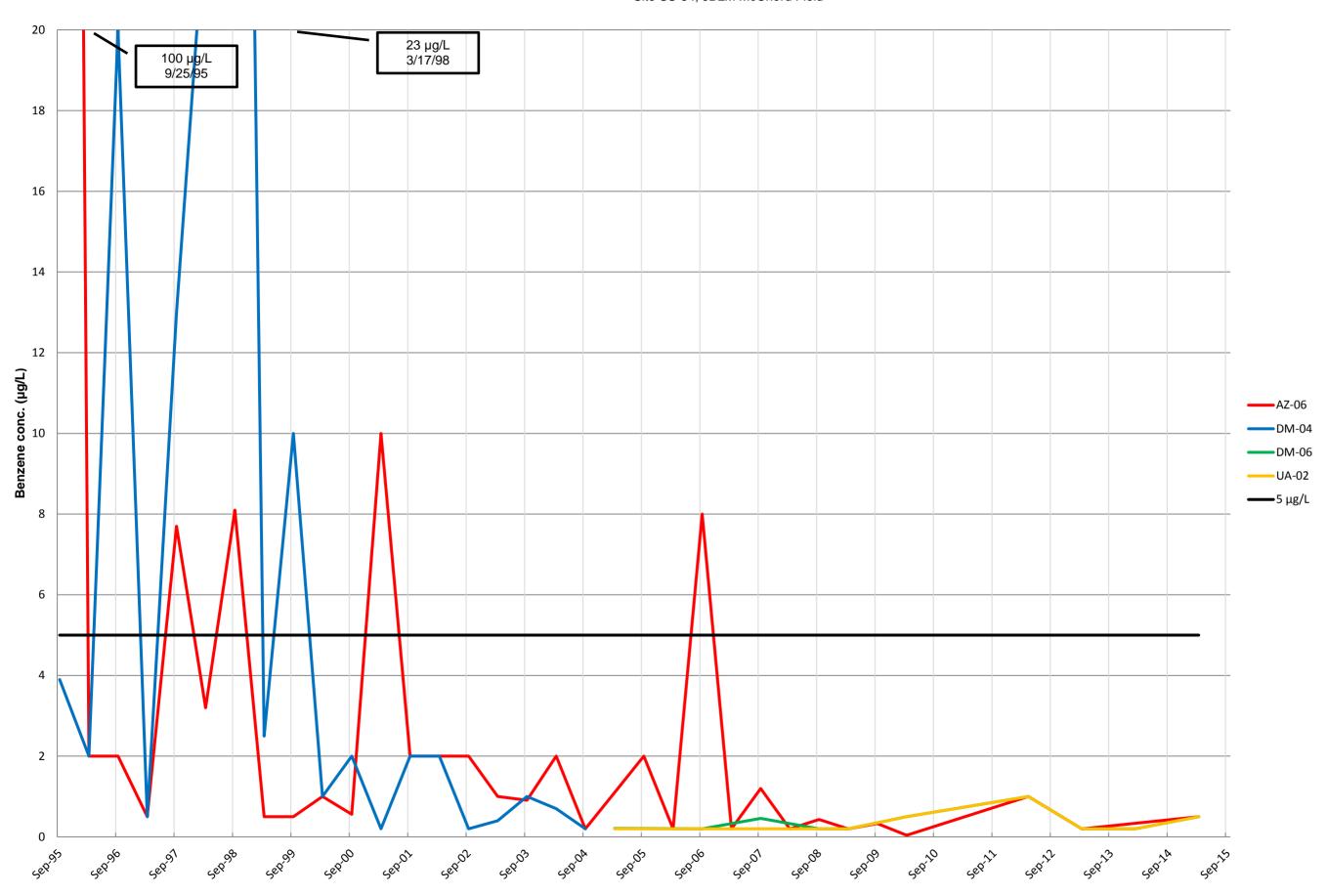
Notes:

TCE = Trichloroethylene

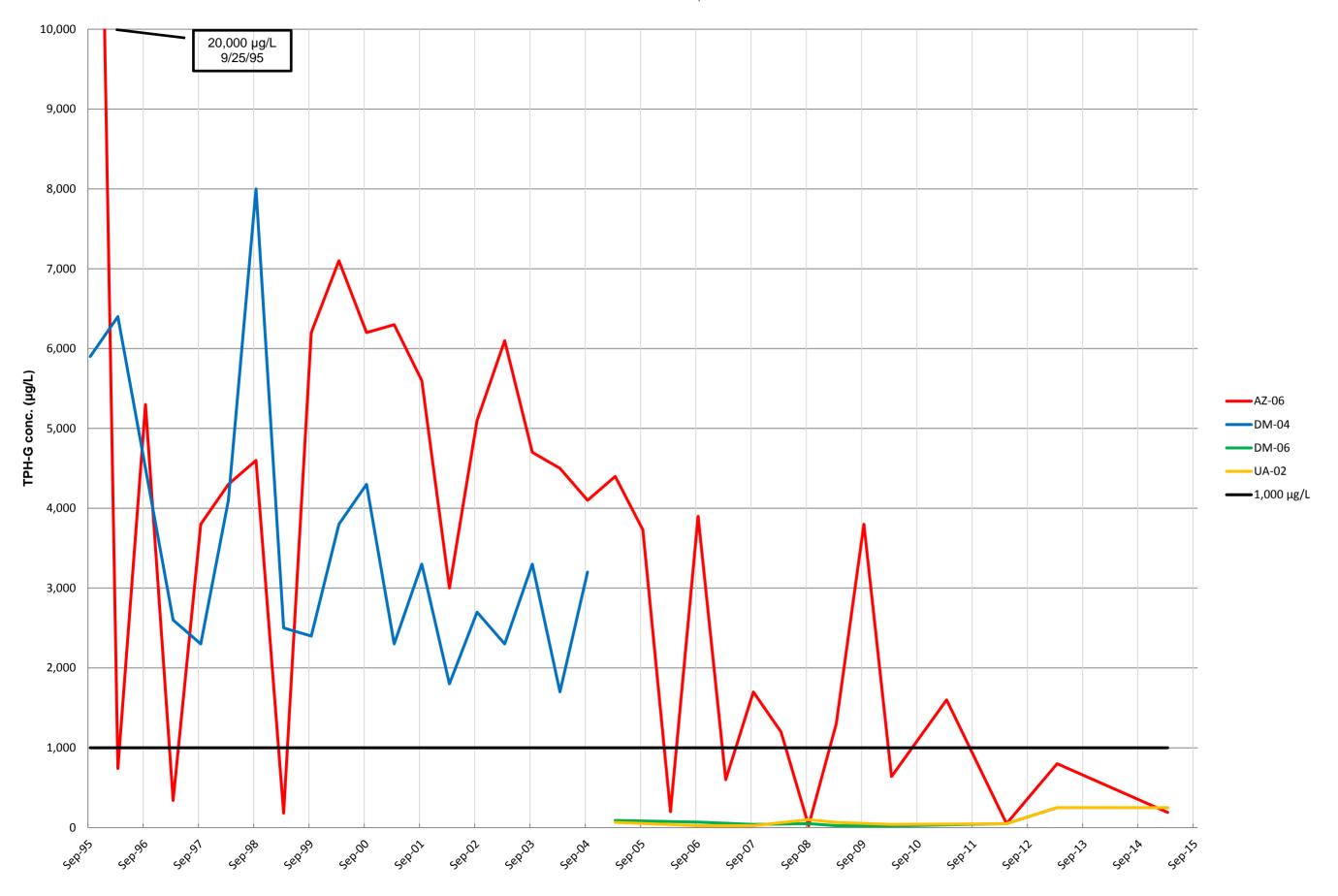
cis-1,2-DCE = cis-1,2-dichloroethylene

1,1-DCE = 1.1-dichloroethylene

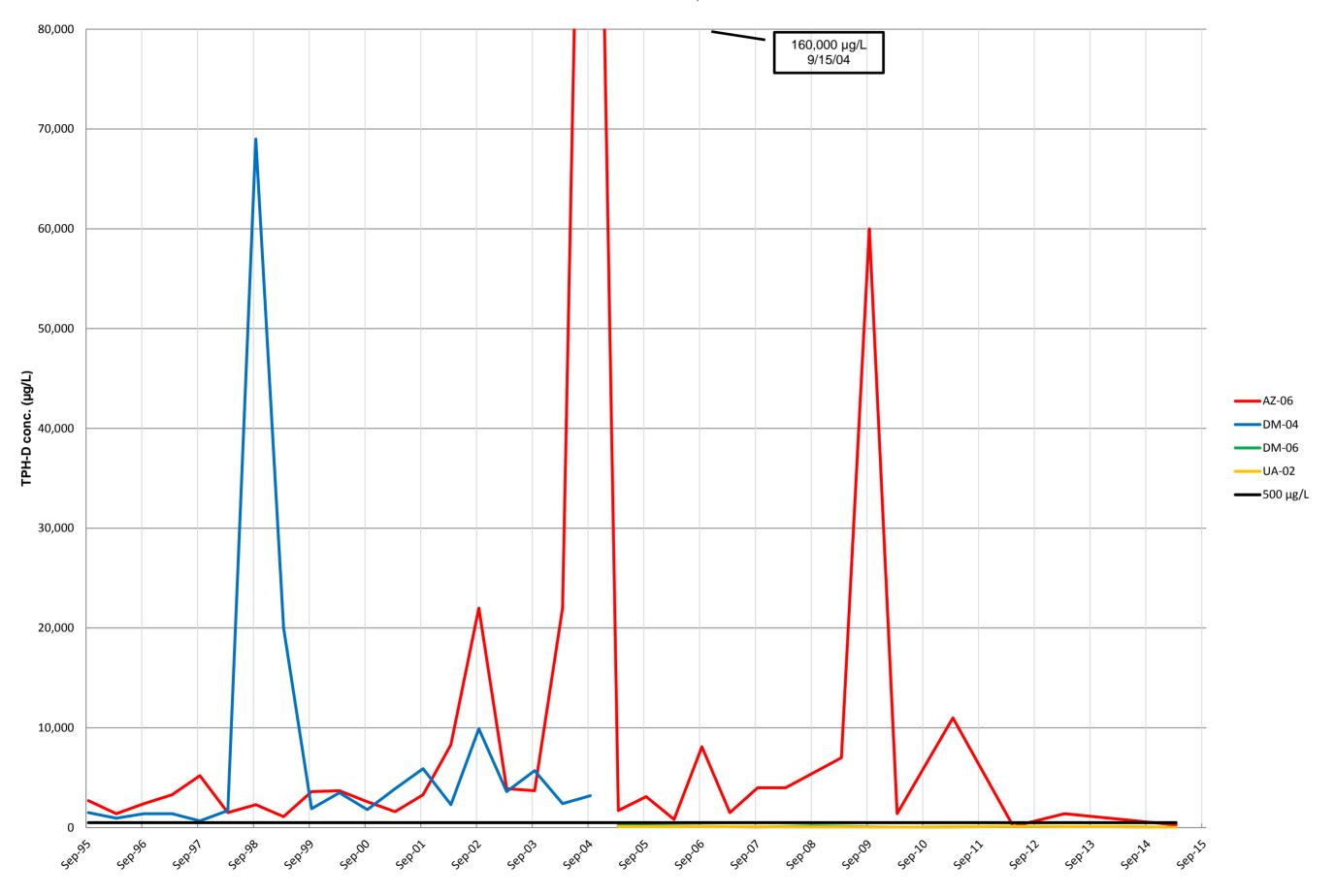
μg/L = Micrograms per liter

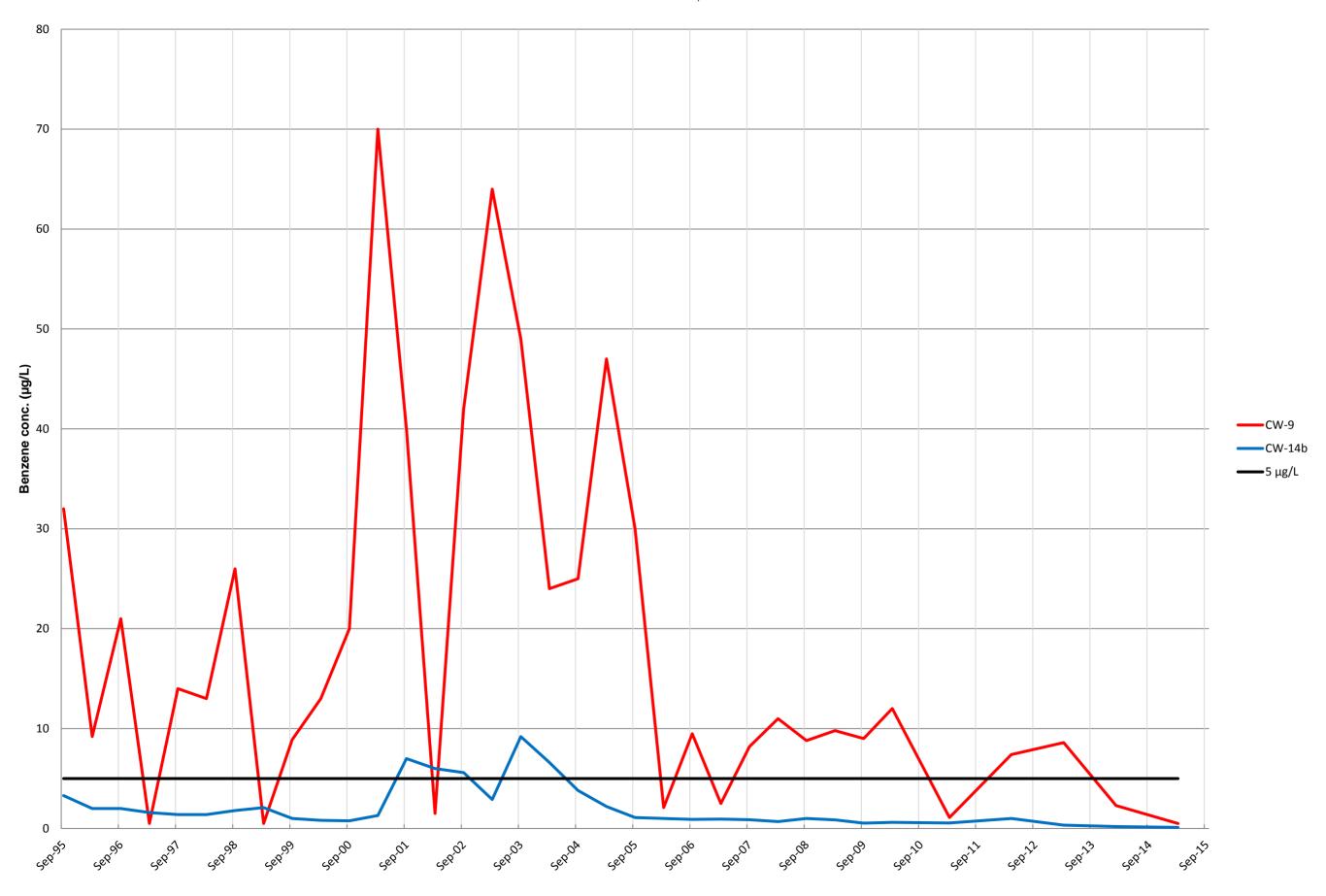

BOLD = Analyte detected above practical quantification limit

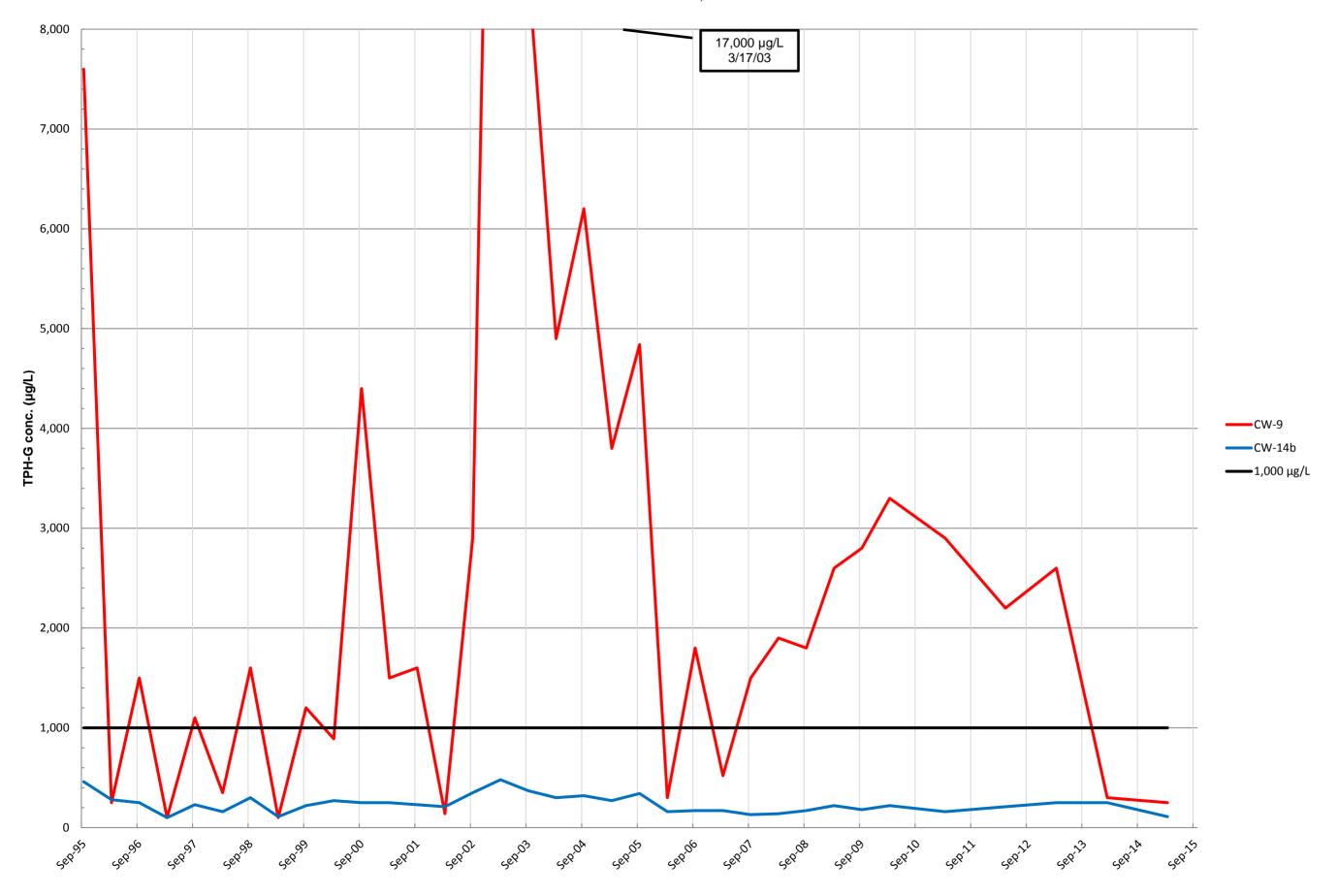
J = Estimated value

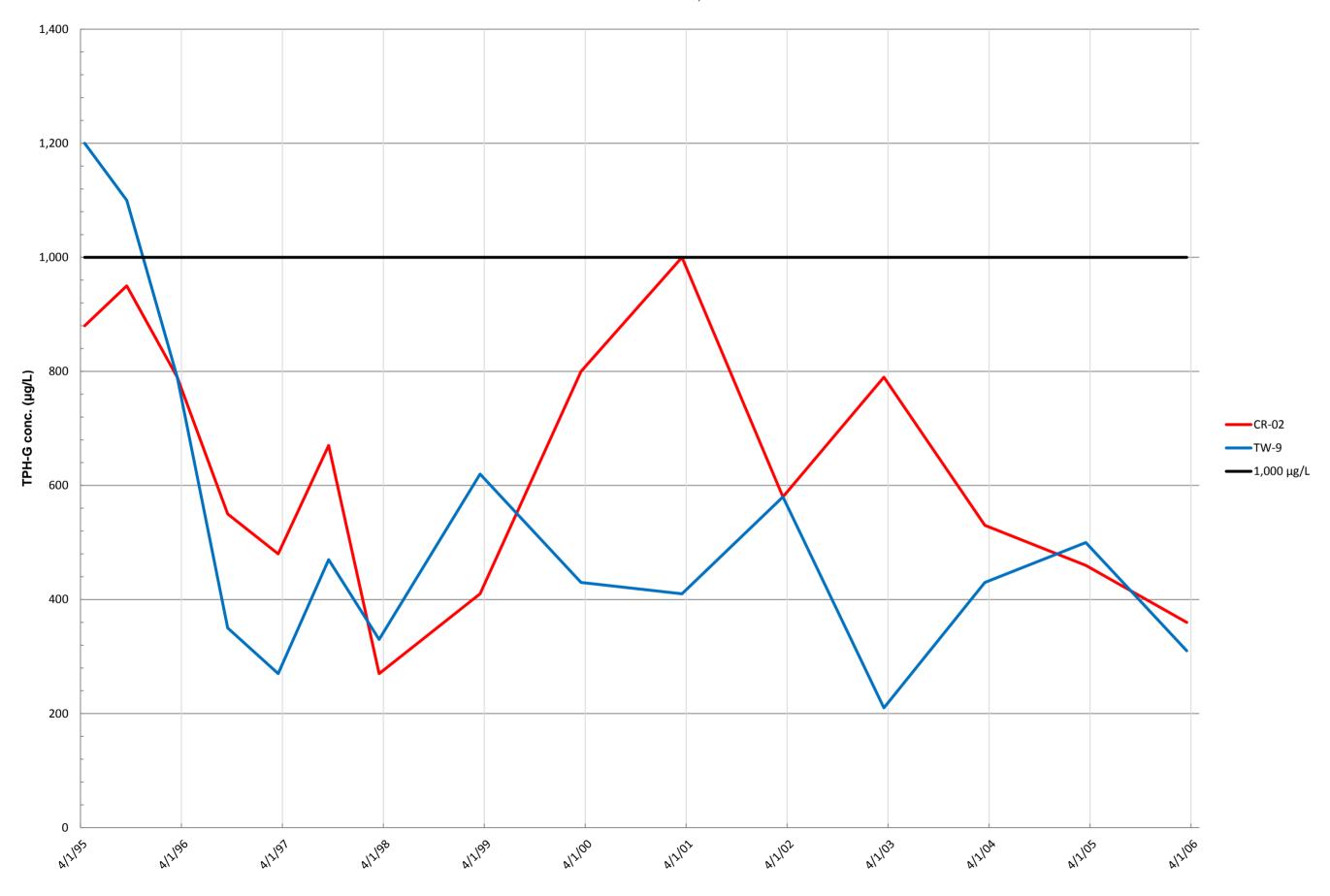

U = Analyte not detected above practical quantification limit reported

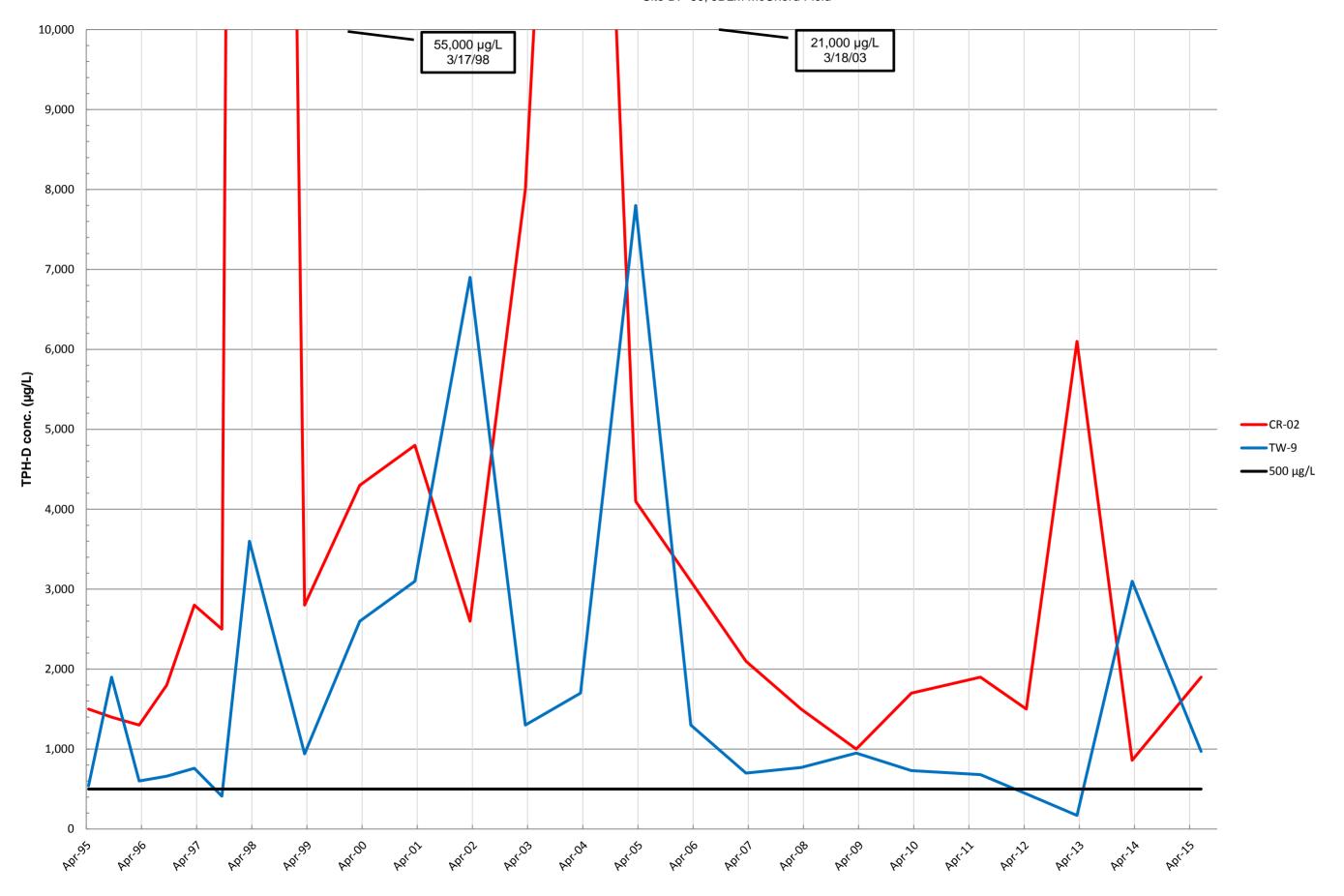
- = No data, not applicable

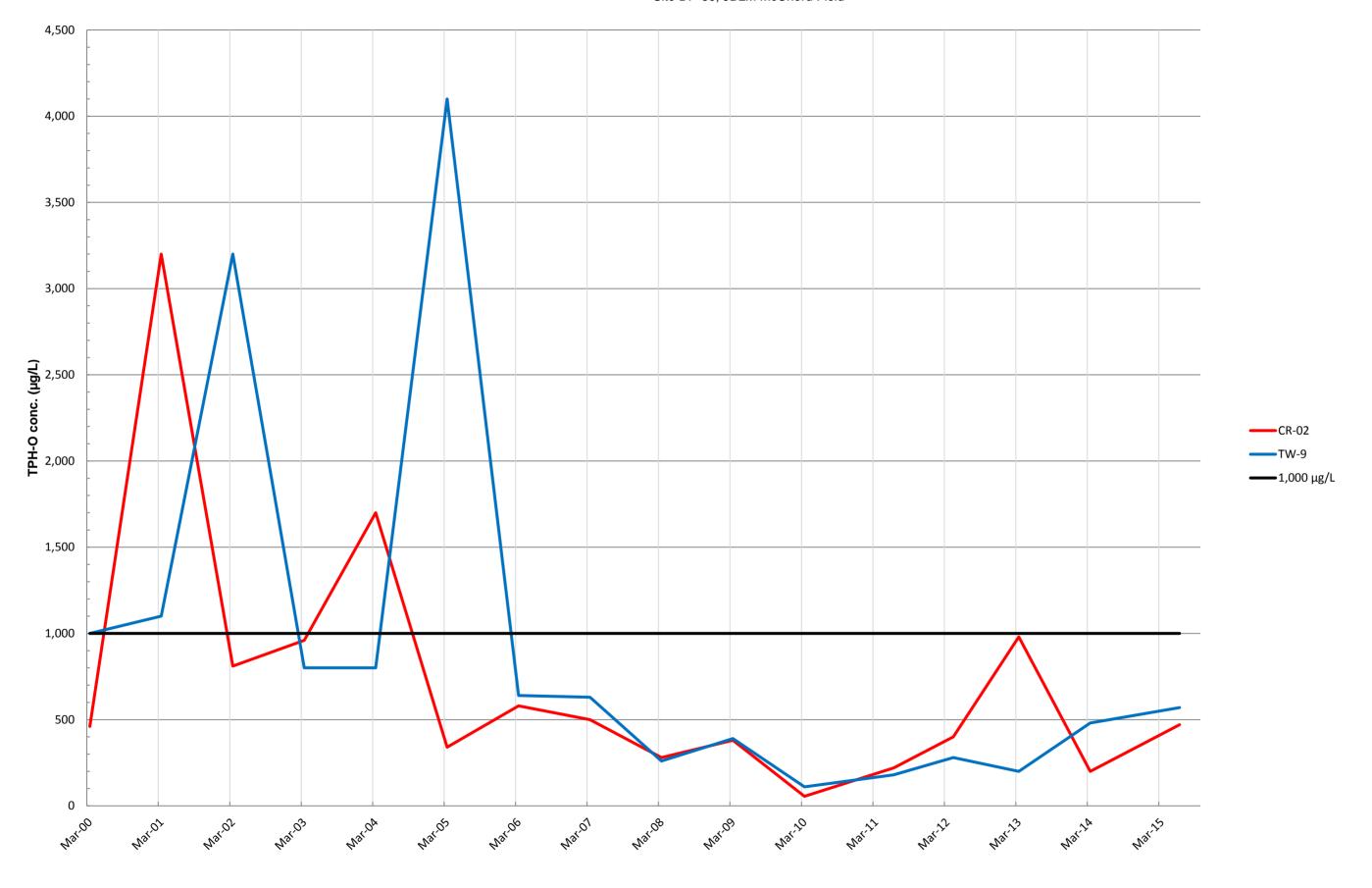

Benzene Concentration Linear Graph Site SS-34, JBLM McChord Field


TPH-G Concentration Linear Graph Site SS-34, JBLM McChord Field


TPH-D Concentration Linear Graph Site SS-34, JBLM McChord Field

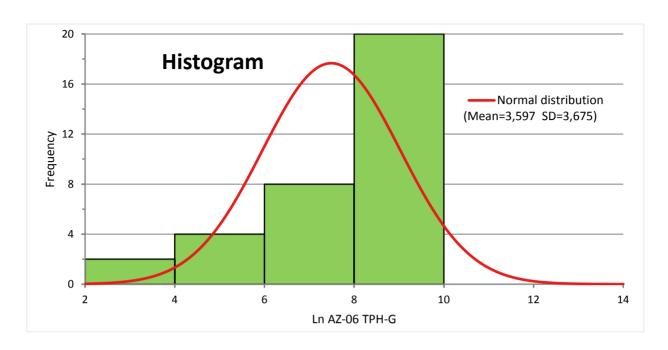

Benzene Concentration Linear Graph Site WP-44, JBLM McChord Field

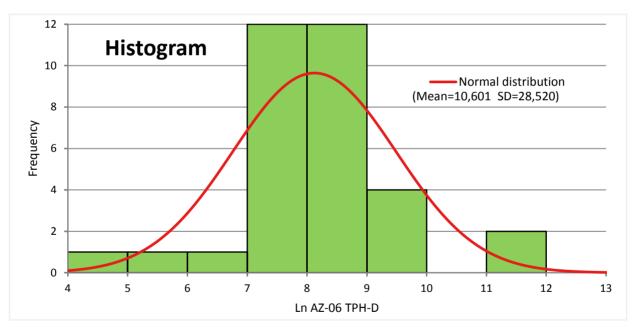

TPH-G Concentration Linear Graph Site WP-44, JBLM McChord Field


TPH-G Concentration Linear Graph Site DP-60, JBLM McChord Field

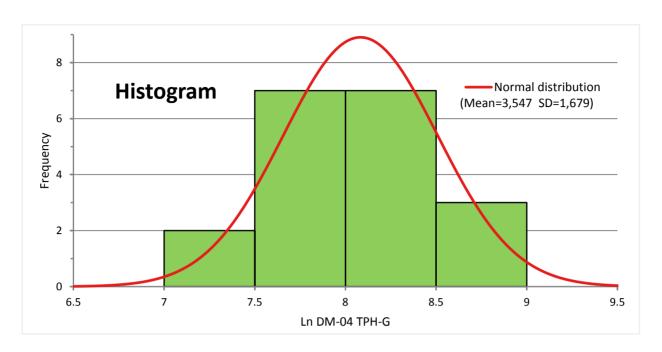
TPH-D Concentration Linear Graph Site DP-60, JBLM McChord Field

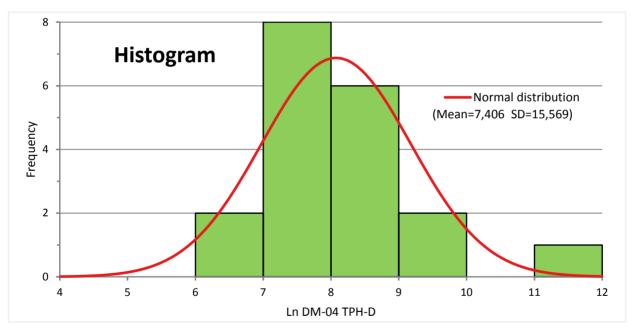
TPH-O Concentration Linear Graph Site DP-60, JBLM McChord Field

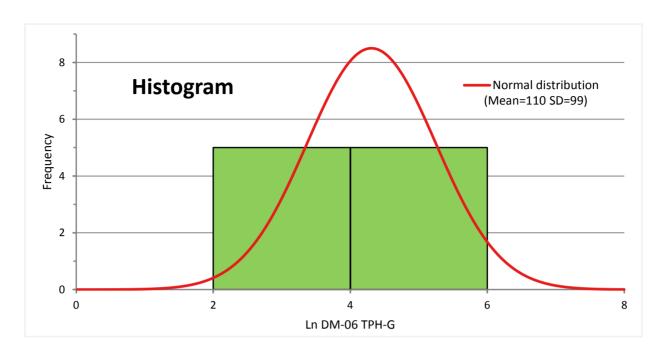


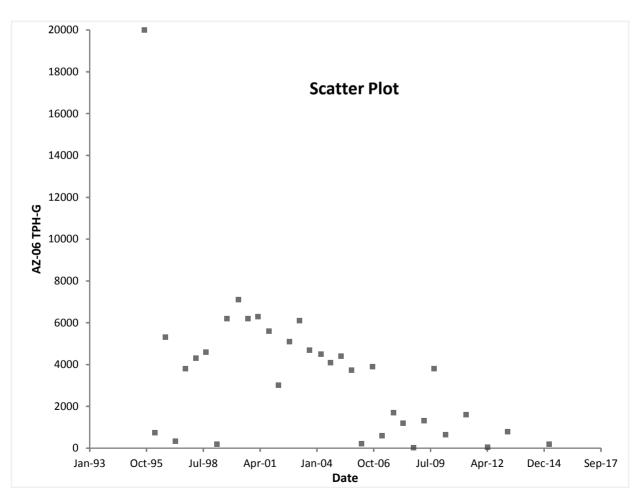

APPENDIX E STATISTICS GRAPHS

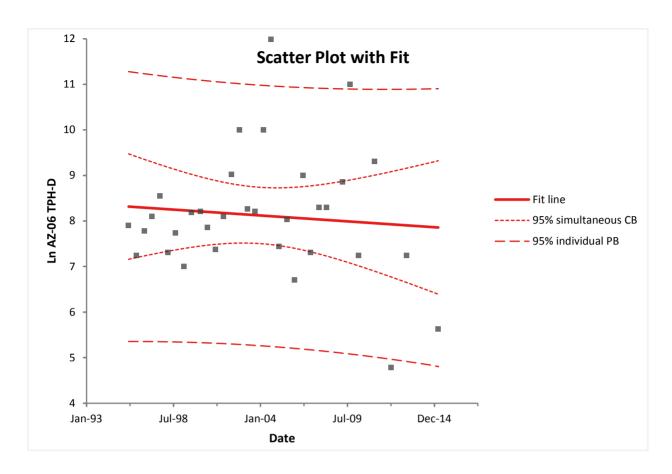
This page intentionally left blank.

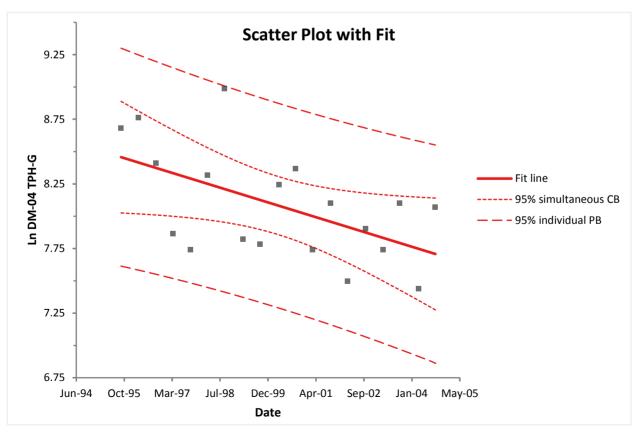

January 2016

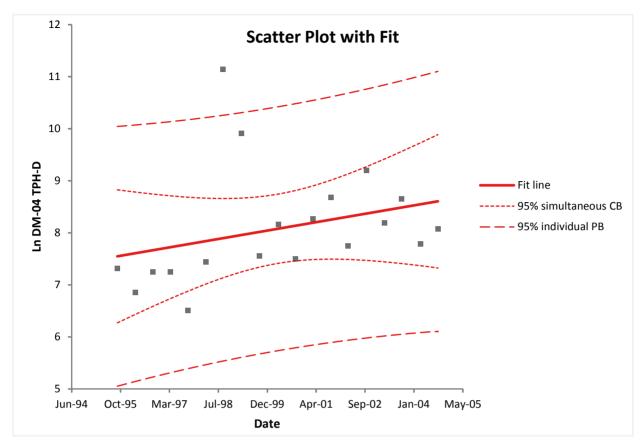

Appendix E. Statistics Graphs Site SS-34, JBLM McChord Field

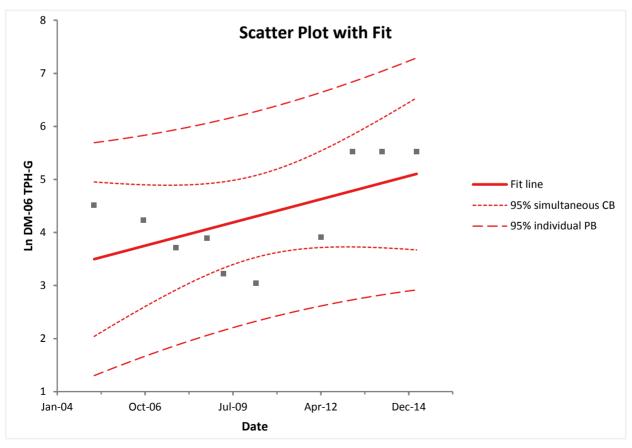


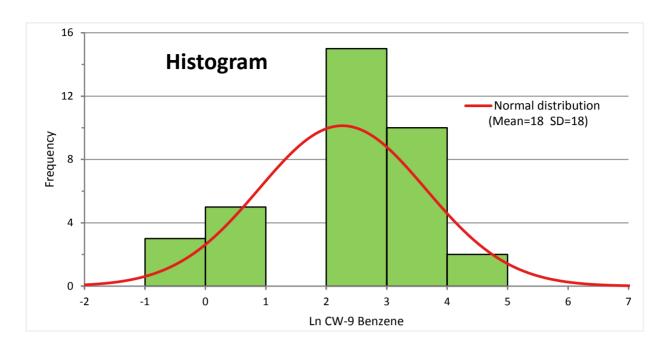

Appendix E. Statistics Graphs Site SS-34, JBLM McChord Field

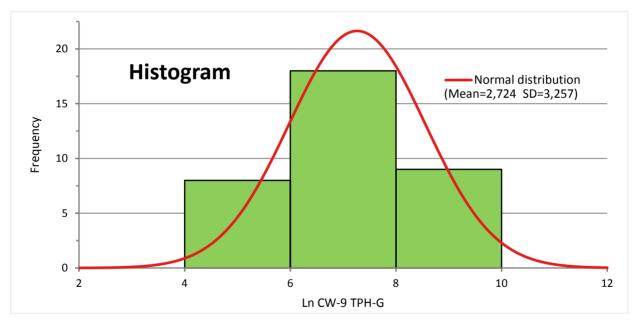


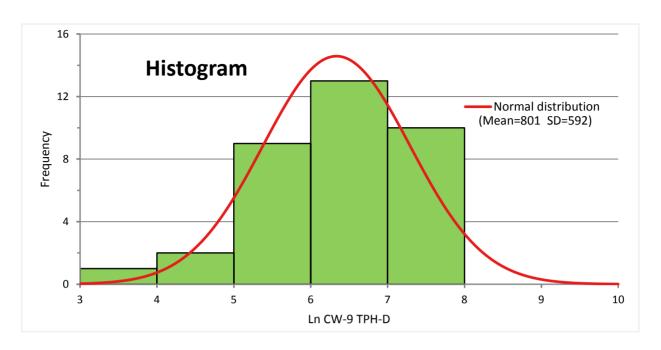


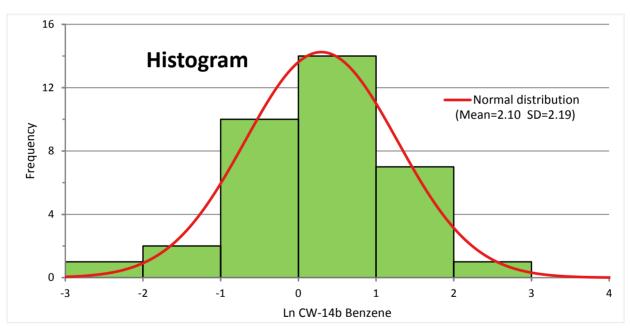

Appendix E. Statistics Graphs Site SS-34, JBLM McChord Field

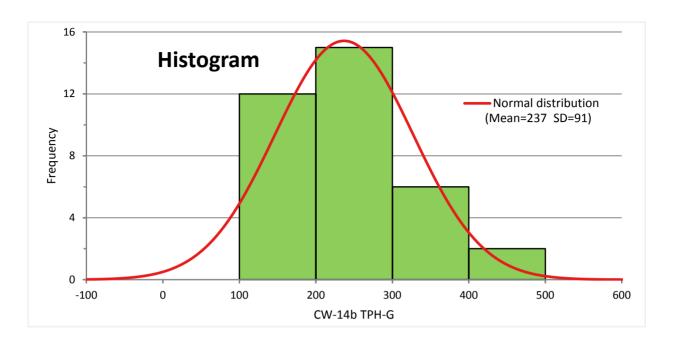


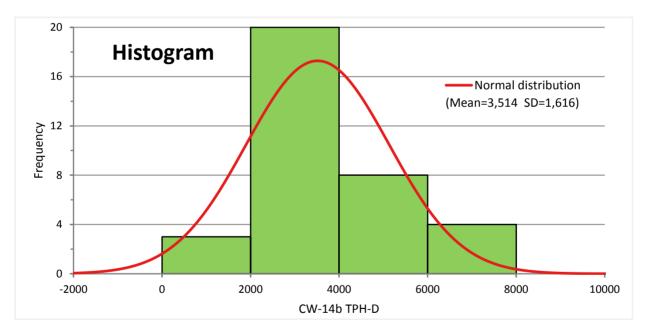


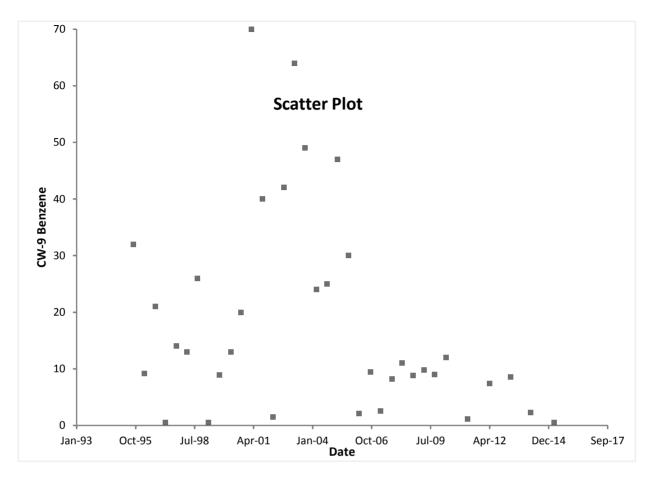


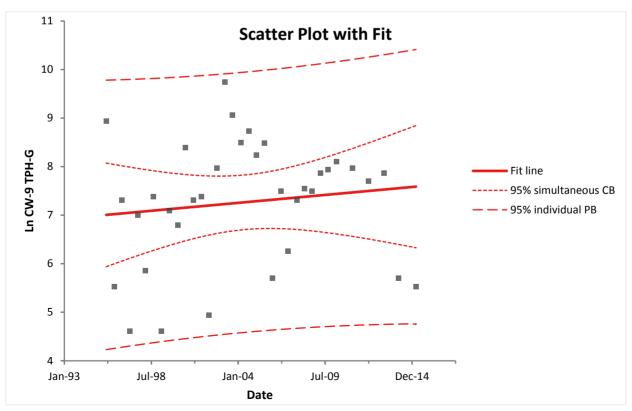


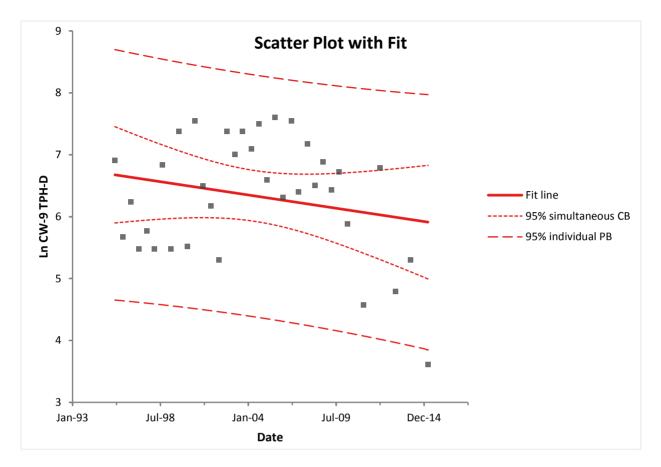

Appendix E. Statistic Graphs Site WP-44, JBLM McChord Field

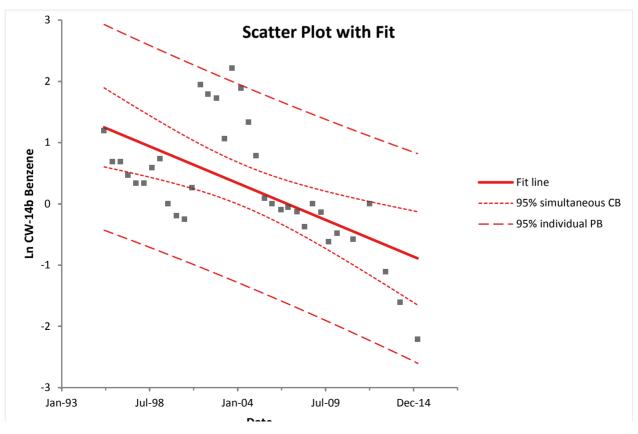


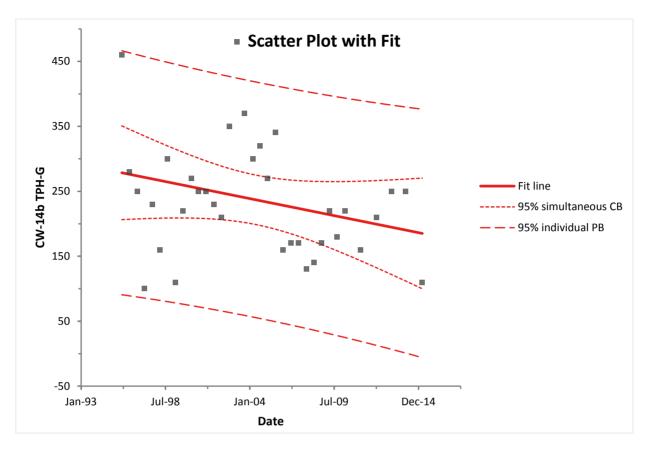

Appendix E. Statistic Graphs Site WP-44, JBLM McChord Field

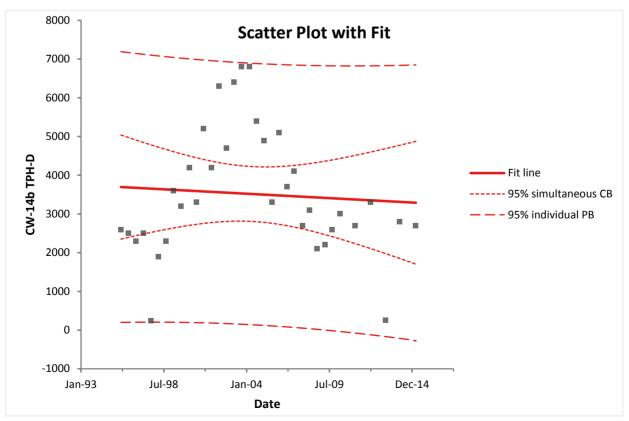


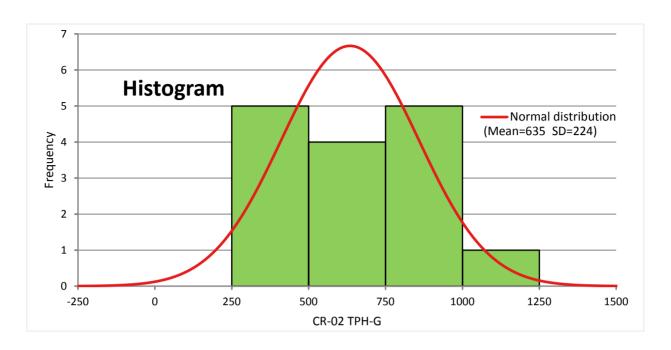


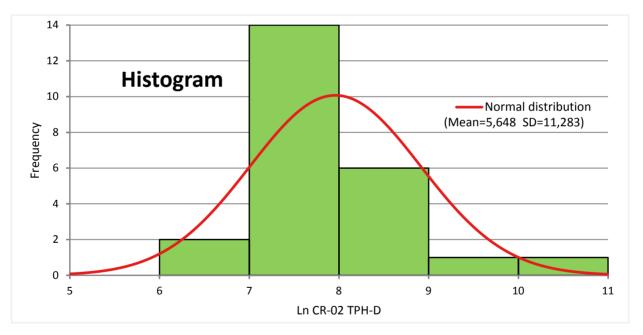

Appendix E. Statistic Graphs Site WP-44, JBLM McChord Field

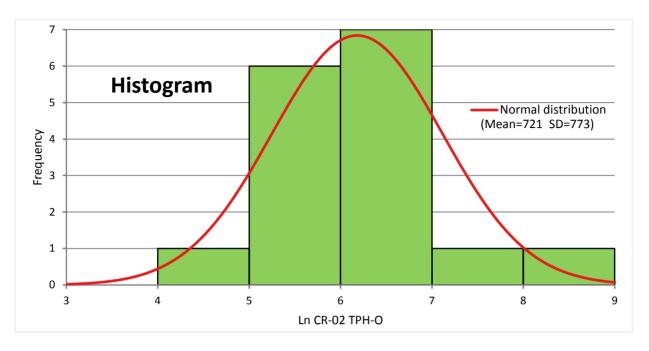


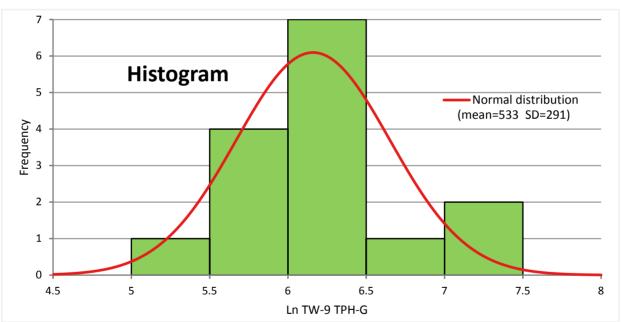


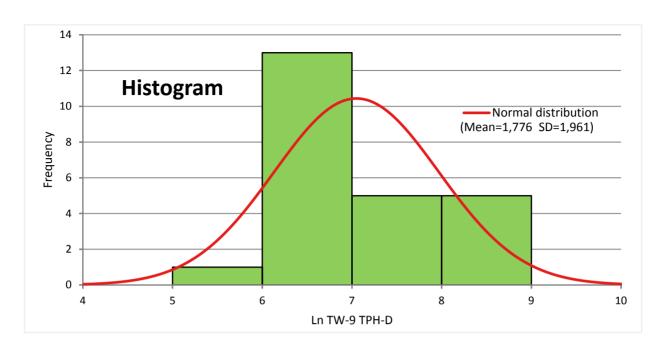


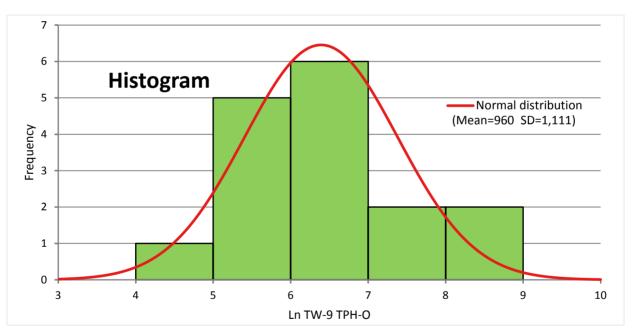


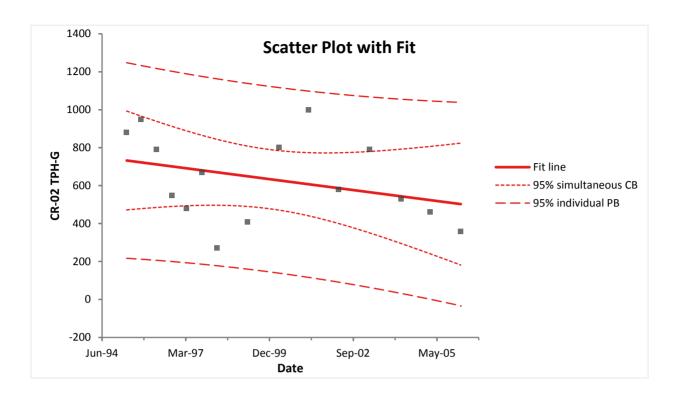

Date

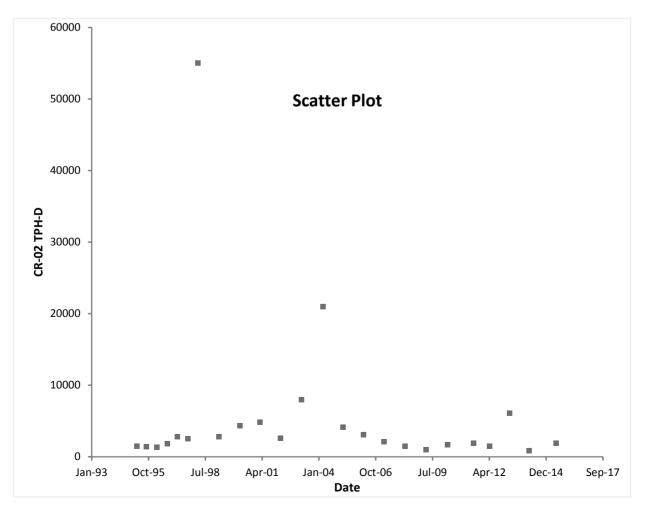


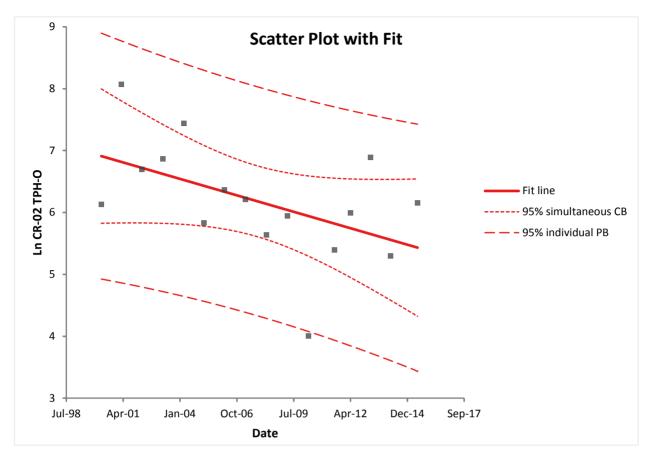

Appendix E. Statistics Graphs Site DP-60, JBLM McChord Field




Appendix E. Statistics Graphs Site DP-60, JBLM McChord Field






Appendix E. Statistics Graphs Site DP-60, JBLM McChord Field

