PHASE II REMOVAL SITE EVALUATION

Colville Post and Pole Stevens County, Washington

Prepared for

U.S. Environmental Protection Agency - Region 10

December 2005

Note:

Some pages in this document have been purposefully skipped or blank pages inserted so that this document will copy correctly when duplexed.

PHASE II REMOVAL SITE EVALUATION

Colville Post & Pole Stevens County, Washington

Prepared for

U.S. Environmental Protection Agency – Region 10 1200 Sixth Avenue, Mail Stop ECL-116 Seattle, Washington 98101

Prepared by

Herrera Environmental Consultants, Inc. 2200 Sixth Avenue, Suite 1100 Seattle, Washington 98121 Telephone: 206/441-9080

December 19, 2005

Contents

Introduction	. 1
Site Description and History	. 3
Site Location	. 3
Site Setting and History	. 3
Generalized Geology and Hydrogeology	. 4
Previous Investigations	. 4
Field Observations	. 7
Decision Areas	. 7
Process Area	. 7
North Stockpile Area	. 7
South Stockpile Area	. 7
Geophysical Survey	
Methodology	. 9
Results	
Sample Collection Methods and Locations	
Process Area	
North Stockpile Area	
South Stockpile Area	
Investigation Derived Waste	
Immunoassay Field Screening Methods and Results	
Laboratory Methods and Sample Results	
Process Area	
Surface Soil	
Ground Water	
North Stockpile Area	
Surface Soil	
Subsurface Soil	
Ground Water	19
South Stockpile Area	
Surface Soil	
Subsurface Soil	
Ground Water	
Site-wide Summary of Ground Water Sampling Results	
Process Area	
North Stockpile Area	
South Stockpile Area	23

Removal Option	ons	5
Conclusion		7
References)
	Photographic Documentation	

- Appendix B
- Emergency Response Team Documentation Push Probe Boring Logs Immunoassay Test Kit Documentation and Correlation Analysis Data Data Validation and Laboratory Reports Appendix C Appendix D
- Appendix E

Tables

Table 1.	Immunoassay and fixed laboratory pentachlorophenol analytical results for soil samples collected in June 2005 at the Colville Post and Pole site in Stevens County, Washington	33
Table 2.	Immunoassay and fixed laboratory pentachlorophenol analytical results for ground water samples collected in June 2005 at the Colville Post and Pole site in Stevens County, Washington	35
Table 3.	Summary of laboratory chemical analysis, Colville Post and Pole site, Stevens County, Washington	\$6
Table 4.	Process Area surface soil analytical results for the Colville Post and Pole site located in Stevens County, Washington	;7
Table 5.	Process Area subsurface soil analytical results for the Colville Post and Pole site located in Stevens County, Washington	38
Table 6.	Process Area ground water analytical results for the Colville Post and Pole site located in Stevens County, Washington	59
Table 7.	North Stockpile Area surface soil analytical results for the Colville Post and Pole site located in Stevens County, Washington	10
Table 8.	North Stockpile Area subsurface soil analytical results for the Colville Post and Pole site located in Stevens County, Washington	1
Table 9.	North Stockpile Area ground water analytical results for the Colville Post and Pole site located in Stevens County, Washington	12
Table 10.	South Stockpile Area surface soil analytical results for the Colville Post and Pole site located in Stevens County, Washington	13
Table 11.	South Stockpile Area subsurface soil analytical results for the Colville Post and Pole site located in Stevens County, Washington	15
Table 12.	South Stockpile Area ground water analytical results for the Colville Post and Pole site located in Stevens County, Washington	! 7
Table 13.	Summary of removal options by Decision Area for the Colville Post and Pole site located near Colville, Washington	19

Figures

Figure 1.	Vicinity map of the Colville Post and Pole site, Stevens County, Washington
Figure 2.	Site map of the Colville Post and Pole site, Stevens County, Washington 51
Figure 3.	Sample locations for the Phase II Removal Site Evaluation at the Colville Post and Pole site, Stevens County, Washington
Figure 4.	Surface soil sample results for the Phase II Removal Site Evaluation at the Colville Post and Pole site, Stevens County, Washington
Figure 5.	Subsurface soil sample results for the Phase II Removal Site Evaluation at the Colville Post and Pole site, Stevens County, Washington
Figure 6.	Ground water sample results for the Phase II Removal Site Evaluation at the Colville Post and Pole site, Stevens County, Washington
Figure 7.	Ground water level contour map, June 17, 2005, for the Phase II Removal Site Evaluation at the Colville Post and Pole site, Stevens County, Washington

Work for this investigation was performed in accordance with generally accepted professional standards and practices for the type of work performed. While information regarding subsurface conditions, including soil and ground water quality, is believed to be generally representative of conditions at the site, conditions may change within short distances. Additional subsurface materials and contaminants may be present at locations not investigated during this study.

Bruce A. Carpenter, Washington State Licensed Geologist, No. 1328

Introduction

The U.S. Environmental Protection Agency (EPA) tasked the Herrera Environmental Consultants Inc. (Herrera) Superfund Technical Assessment and Response Team (START) under Technical Direction Document (TDD) 05-03-0009 to provide natural resources technical support and a Phase II assessment of the risks associated with the Colville Post and Pole site, located in Stevens County near Colville, Washington (Figure 1). This work was the second assessment at the site; the first Removal Site Evaluation was conducted in the fall of 2002 under TDD 02-06-0006 (Herrera 2003).

The purpose of natural resources technical support was to facilitate consultation between EPA and the U.S. Army Corps of Engineers (USACE) and Fish and Wildlife Service by conducting a wetland delineation and drafting a Biological Assessment in anticipation of future Removal Action activities at the site. The purpose of the Phase II assessment activities was to further characterize surface and subsurface soils in the South Stockpile Area, North Stockpile Area, and Process Area; characterize the waste wood chip and sawdust pile; characterize ground water quality; and determine the local ground water flow and direction. Immunoassay field screening was performed during assessment activities to identify areas for further study while in the field. In addition, immunoassay field screening was performed to evaluate its applicability to monitoring site conditions during future removal activities.

EPA tasked the Environmental Response Team (ERT) and their Response Engineering and Analytical Contract (REAC) contractor, as well as the Region 10 Environmental Services Assistance Team (ESAT), to provide support services during Phase II assessment field work activities. START personnel observed and documented site conditions; conducted a push probe investigation with support from ESAT; sampled surface soils, subsurface soils, ground water, and sediment; and conducted field screening analysis. The ERT conducted a geophysical survey; sampled surface soil and subsurface soils; and installed monitoring wells. A bench test of onsite soils for bioremediation treatment is also currently being conducted by ERT in anticipation of future Removal Action activities.

The START mobilized to the site on June 12, 2005 and conducted field work activities through June 18, 2005. The ERT, REAC, and ESAT mobilized to the site on June 11 and 12, 2005 and conducted field work activities through June 17, 2005.

Site Description and History

Site Location

- Site Name—Colville Post and Pole Site
- Site Location—369 Highway 395 North, Colville, Stevens County, Washington 99114
- Site Owner—Eugene Spring, P.O. Box 535, Colville, Washington 99114
- CERCLIS ID No. —WAD988518106
- Latitude—48°34'60" N
- Longitude—117°57'43" W
- Legal Description—southwest of U.S. Highway 395, northeast ¼ of the northeast ¼, Section 36, Township 36N, Range 38E of the Willamette Meridian.

Site Setting and History

The Colville Post and Pole site is a 27-acre former wood treatment facility located approximately 4 miles northwest of Colville, Washington (Figure 1). The property is surrounded by rural and semi-rural properties and bordered by the BNSF Railway Company railroad and U.S. Highway 395 on the north, the Clauser property to the west, the Delvin Hill property on the south, and a residential property across the highway to the east; a removal action was recently conducted at the Bonanza Mill site to the southeast (Figure 2). The site drains ultimately to the Colville River from a series of constructed and natural ditches located across the property. Stormwater from a culvert that conveys water from a ditch that parallels the site discharges to a pond located west of the treatment pad; however, runoff from the undiked areas around the process tanks also discharges to the onsite drainage. Historically, excess water in the pond was broadcast in the fields surrounding the process area (Herrera 2003).

Colville Post and Pole operated as a wood treating facility at this location since the 1940s until primary wood treatment operations were shut down in late 2004 and then ceased entirely by January 1, 2005. The facility is currently comprised mainly of the former process area where the majority of day-to-day operations occurred, large open areas to the north and south used to store treated wood and incidental items, and a large triangle-shaped area to the southwest that remains undeveloped and provides a buffer between the facility and the Colville River (Figure 2). For

complete site ownership and process history, please refer to the first Removal Site Evaluation report (Herrera 2003).

Generalized Geology and Hydrogeology

The site is located at an elevation of approximately 1,540 feet above mean sea level in the Colville Valley, a broad valley formed by glacio-fluvial activity. The generalized hydrogeologic framework for the valley includes an unconfined aquifer situated in sand and gravel deposits discharging to the Colville River, underlain by clay over 380 feet thick near the center of the valley. This clay, associated with an historic glacial lake, serves as an aquiclude, impeding downward migration of ground water. The confined sand and gravel aquifer below the clay layer is likely interconnected with an underlying bedrock aquifer, recharged through bedrock exposed at the valley flanks (Joseph 1990).

Twenty-two push-probe borings were completed on site during the first Removal Site Evaluation to determine site surficial geology and ground water quality. In general, the local surficial geology is a mixture of fill material, sands, and gravels encountered in the first 10 feet below ground surface (bgs), and silty clay encountered between 10 and 25 feet bgs. Static water was observed at approximately 6 to 10 feet bgs; however, no information was available regarding ground water flow direction.

A description of regional and site geology and hydrogeology is available in the first Removal Site Evaluation report (Herrera 2003); additional Phase II assessment information is located in the section entitled "Site-wide Summary of Ground Water Sampling Results" of the Laboratory Methods and Sample Results section of this report.

Previous Investigations

Previous investigations began in 1991 with a limited site assessment and soil excavation as a result of an above ground storage (AST) release. Multiple investigations of known and suspected releases have been conducted since 1991 by the site owner or regulatory agency. The primary contaminant of concern identified was pentachlorophenol (PCP), although other semi-volatile organic compounds (SVOCs), metals, and petroleum products were detected in the Process Area. For detailed information concerning previous investigations conducted prior to 2002, please refer to the first Removal Site Evaluation report (Herrera 2003).

In January 2005, the START was tasked to provide documentation and sampling in support of an integrated time-critical Removal Action and Site Assessment under TDD 04-12-0022. The purpose of the work was to document time-critical removal activities and provide source and target information for Hazard Ranking System (HRS) scoring requirements. The Removal Action objective was to stabilize the site by removing product within the Process Area treatment tanks, ASTs, and associated sumps and piping.

The summary of process product and waste removed included:

- 715 gallons of PCP treating solution
- 1,375 gallons of PCP sludge
- 800 pounds of PCP-contaminated soil
- 1,200 gallons of PCP-contaminated wastewater.

In addition, 46 wipe samples were collected to determine the presence of PCP contamination on items the owner could have sold to the public.

Sampling in support of HRS scoring indicated elevated concentrations of PCP found at all surface soil locations (ranging from 241 to 25,500 micrograms per kilogram [μ g/kg]). Three surface sediment samples collected along the surface water drainage pathway to the river contained elevated concentrations of PCP (ranging from 45.3 to 2,520 μ g/kg). Elevated levels of several SVOCs were detected in surface and sediment samples collected across the site. For further details, please refer to the Technical Report (Herrera 2005a).

In anticipation of future Removal Action activities at the site, in April 2005 the START also provided natural resources support to EPA. The preferred alternative identified in the 2003 Removal Site Evaluation report suggested actions in the Drainage Area may impact USACE-regulated wetlands. START biologists conducted a wetland delineation at the site in May 2005 and determined that one relatively undisturbed native wetland exists onsite with a hydraulic connection to the Colville River. The wetland would likely be regulated by the USACE during future actions. For further details, please refer to the Wetland Delineation Report (Herrera 2005b).

START biologists also provided technical support to EPA's formal consultation with the U.S. Fish and Wildlife Service. A list of threatened or endangered species was obtained by EPA and a Biological Assessment was drafted in anticipation of further Removal Action activities for 2005, both to be completed at a later date.

Field Observations

Decision Areas

Decision Areas were identified during the 2002 Removal Site Evaluation as portions of the site segregated for convenience of conducting independent assessment activities. The four Decision Areas were designated as the Process Area, North Stockpile Area, South Stockpile Area, and Drainage Area (Figure 2), based on observed and potential contamination impacts, land use, sampling strategies, and mitigation options.

During the Phase II Removal Site Evaluation, activities in the Drainage Area were limited to sampling for Site Assessment HRS scoring purposes. These activities are documented separately in log books and photographs provided to EPA; therefore, the Decision Area will not be discussed in this report. Photographic documentation is provided in Appendix A.

Process Area

The Process Area has not changed significantly since the January 2005 Removal Action when all product was removed from process vessels and piping and the empty AST tanks were cut in two and placed upside down on the drip pad. The Process Area is currently surrounded by chain link fence and occupied by the treatment building and tanks, boiler shed, drip pad system, and the machine shop. The adjacent peeler and chamfering machine shop, power equipment and transformers, and office were removed by the property owner prior to Phase II field activities.

Investigation-derived waste from the January 2005 Removal Action is also located on the drip pad, stored in 55-gallon drums.

North Stockpile Area

The North Stockpile Area was generally cleared by the property owner of all wood, timbers, and abandoned mill equipment and vehicles observed during previous investigations. The peeler and associated electrical equipment were also removed.

South Stockpile Area

The South Stockpile Area was generally cleared of all wood, timbers, and abandoned mill equipment and vehicles observed during previous investigations. The wood chip and sawdust pile did not appear to have been disturbed since the January 2005 Removal Action.

Geophysical Survey

The Response Engineering and Analytical Contract (REAC) provided support to the ERT by conducting surface geophysical surveys to locate buried metallic objects throughout the North and South Stockpile Areas from June 12 through June 14, 2005. Surveys were conducted using two types of electromagnetic (EM) instruments: a Geonics[™] EM31 terrain conductivity meter and a Geonics[™] EM61 high sensitivity metal detector. A copy of the report provided by REAC is included in Appendix B.

Methodology

The geophysical survey grid in the South Stockpile Area (Appendix B; Figure 2) was laid out with an east-west base-line and north-south survey lines spaced at 5 foot intervals. The EM-61 was employed in wheel mode to automatically collect readings at 0.6 foot intervals. The EM-31 was manually triggered to collect data along the survey lines at 2.5 foot intervals.

The geophysical survey grid in the North Stockpile Area (Appendix B; Figure 3) was laid out with an east-west base-line and north-south survey lines spaced at 10-foot intervals. The EM-61 was employed in wheel mode to automatically collect readings at 0.6-foot intervals. The EM-31 was manually triggered to collect data along the survey lines at 2.5-foot intervals. The area surveyed was interrupted with numerous objects such as steel tanks and beams, large logs, and concrete blocks, which account for large gaps in data collection. Coordinates were noted for all above ground metal, to eliminate those anomalies from the final plot.

Results

From the results of the EM-61 data plot, two anomalies (A and B) were located in the South Stockpile Area (Figure 2; Appendix B). The larger anomaly (B), located on the northern edge of the South Stockpile Area, was excavated to reveal numerous pieces of scrap metal at approximately 5 feet bgs; the top 4 feet consisted of wood chip debris. The excavation for the second anomaly (A) was dug to 4 feet and no metal was found. Based on the magnitude of the response and findings of anomaly A, no other areas in the South Stockpile Area were deemed worthy of excavation by the Region 10 On-Scene Coordinator (OSC).

After review of the North Stockpile Area and ground truthing of the surface metal, it was concluded that no anomalies required excavation.

Sample Collection Methods and Locations

Surface soil, subsurface soil, and ground water samples were collected according to detailed Standard Operating Procedures (SOPs) presented in the Colville Post and Pole Phase II Removal Site Evaluation SSSP. Soil samples were collected from hollow-stem auger split spoon samplers, from push-probe piston-type samplers, or from excavated pits with dedicated sampling equipment. Ground water samples were collected using peristaltic pumps with dedicated tubing. In general, the following number of samples were collected at each sample location:

- One surface soil sample collected from 0-6 inches bgs
- One subsurface soil sample collected at the saturation zone (soil-water interface)
- One ground water sample collected near the top of the water column.

Additional subsurface soil or ground water samples may have been collected from unique soil horizons observed during the logging of soil borings. In the event that a surface soil sample was unable to be collected due to surface debris (i.e., wood chips) or poor recovery in the push-probe sample sleeve, a subsurface soil sample was collected from the next interval. Soil boring logs for monitoring well locations are presented in Appendix B; soil boring logs for push-probe locations are presented in Appendix C.

After surface soil, subsurface soil, and ground water samples were collected for PCP immunoassay kit screening, additional volumes were placed in sample containers according to SOPs outlined in the SSSP. To determine the accuracy of the immunoassay kit as a screening tool for PCP, and to identify additional contaminants of concern (i.e., dioxins/furans, TPH, and other SVOCs), confirmation samples were submitted for laboratory analysis.

The total number and description of surface soil, subsurface soil, and ground water samples collected at each Decision Area is presented below.

Process Area

A total of three push-probe locations (PAP11, PAP12, and PAP13) were established in and adjacent to the Process Area based on the distribution of PCP concentrations determined from the 2002 Removal Site Evaluation (Herrera 2003) and 2005 Removal Action (Herrera 2005a) (Figure 3). The following number of samples were collected and screened for PCP:

- Three surface soil samples
- Six subsurface soil samples
- Four ground water samples (from three locations).

The following number of samples were submitted to the laboratory for analysis:

- Three surface soil samples (100 percent) for SVOC analysis
- Six subsurface soil samples (100 percent) for PCP analysis
- Three surface soil samples (100 percent) and three subsurface soil samples (50 percent) for TPH analysis
- One ground water sample from each location for SVOC and TPH analyses.

North Stockpile Area

A total of four push-probe locations (NAP07, NAP08, NAP09, and NAP10) and four monitoring well locations (NAW01, NAW04, NAW05, and NAW06) were established in the North Stockpile Area based on the distribution of PCP concentrations determined from the 2002 Removal Site Evaluation (Herrera 2003) and 2005 Removal Action (Herrera 2005a) (Figure 3). The following number of samples were collected and screened for PCP:

- Eight surface soil samples
- Nine subsurface soil samples
- Eight ground water samples.

The following number of samples were submitted to the laboratory for analysis:

- Eight surface soil samples (100 percent) for SVOC and dioxin/furan analyses
- Three of the eight surface soil samples (38 percent) for TPH analysis
- One of the nine subsurface soil samples (11 percent) for PCP analysis
- Eight ground water samples (100 percent) for SVOC and TPH analyses.

South Stockpile Area

A total of six push-probe locations (SAP01, SAP02, SAP03, SAP04, SAP05, and SAP06), four monitoring well locations (SAW02, SAW03, SAW07, and SAW08), and four additional subsurface soil locations (SAH05, SAH06, SAH07, and SAH08) were established in the South Stockpile Area based on the distribution of PCP concentrations determined from the 2002 Removal Site Evaluation (Herrera 2003) and 2005 Removal Action (Herrera 2005a) (Figure 3).

Additionally, three ground water samples from existing monitoring well locations (MW-1, MW-2, and MW-4) were collected and screened for PCP. The following number of samples were collected and screened for PCP:

- Four surface soil samples
- Twenty-one subsurface samples
- Thirteen ground water samples.

The following number of samples were submitted to the laboratory for analysis:

- Three of the four surface soil samples (75 percent) for SVOC analysis
- Two of the four surface soil samples (50 percent) for dioxin/furans analysis
- One of the four surface soil samples (25 percent) for TPH analysis
- Fourteen of the 21 subsurface soil samples (67 percent) for PCP analysis
- Three of the 21 subsurface samples (14 percent) for TPH analysis
- Thirteen ground water samples (100 percent) for SVOC and PCP analysis.

Investigation Derived Waste

All wastes, including purge water, drill cuttings, personal protective equipment, and field test kit wastes generated during this investigation were placed in 55-gallon drums and marked accordingly. The 55-gallon drums were stored on site in the Process Area. A 6-foot-high security fence with pad lock surrounds the Process Area. Disposal of investigation-derived waste will be arranged based on analytical results contained within this report.

Immunoassay Field Screening Methods and Results

Immunoassay field screening was performed at the site to identify areas for further study while in the field and to evaluate its applicability to monitoring site conditions during future removal activities. This was performed using laboratory confirmation analysis for comparison purposes (see Appendix D).

The PCP immunoassay kit provides real-time data for determining general PCP contamination levels in soil and ground water samples. It was used during the Phase II Removal Site Evaluation in accordance with the manufacturers directions and with the Site-Specific Sampling Plan (Herrera 2005c).

Initial screening locations were based on data gaps identified following the 2003 RSE and the 2005 RA. Those data gaps included current site ground water conditions (i.e., flow direction and depth to ground water), the potential for additional contaminant sources in the North Stockpile Decision Area and in the vicinity of the wood chip pile in the South Stockpile Decision Area, and extent of soil and ground water contamination in these areas. A total of 51 soil samples and 24 ground water samples were screeened using the immunoassay kit during Phase II field activities. A total of 42 soil samples previously had been screeened using the immunoassay kit during the 2005 RA. A statistical analysis of both data sets was performed to evaluate its applicability to monitoring site conditions during future removal activities (Appendix D). This analysis determined that the 2005 RA data set was not comparable to laboratory results, but that the 2005 RSE data set was comparable to laboratory results. The immunoassay field screening kit can be used during future removal activities to provide reliable soil results for concentrations ranging from 0 to 20 ppm when used according to the manufacturer's instructions. However, results of immunoassay field screening kit results for water at the site should be used with caution (see Appendix D).

Detected concentrations of PCP in soil were compared to the EPA Region 9 Preliminary Goal (PRG) soil screening level of 3 mg/kg (EPA 2004) to identify additional potential areas for further study while in the field. Immunoassay measurements exceeding the 3 mg/kg screening level were found at the following locations:

- PAP11 in surface soil (9.1 ppm) and in subsurface soil (16 ppm at 11 feet bgs)
- PAP12 in surface soil (7.0 ppm)
- PAP13 in surface soil (360 ppm)
- SAW08 in surface soil (50 ppm)

- SAH05 in subsurface soil (9.3 ppm at 4 feet bgs)
- SAH08 in subsurface soil (4.3 ppm at 6 feet bgs).

No additional study locations were deemed necessary based on the immunoassay measurements. Locations in the Process Area Decision Area significantly exceeded the PRG; however, soils in this area have been throughly characterized during previous investigations. The PRG was also significantly exceeded in surface soil at location SAW08. Because PCP was not detected above the PRG in subsurface soil, no additional study locations were identified based on this measurement.

The immunoassay kit screening results are presented in Tables 1 and 2, and the immunoassay kit data use and correlation results, correlation graphs, and data collection print-outs are included in Appendix D.

December 19, 2005

Laboratory Methods and Sample Results

Soil and ground water samples were collected to determine potential sources and extent of contamination, and to determine potential impacts to human health and the environment. All samples were collected and analyzed in accordance with the SSSP (Herrera 2005c). All push-probe and monitoring well locations are shown in Figure 3; locations of surface soil, subsurface soil, and ground water samples submitted to the laboratory for analysis are shown in Figures 4 to 6.

Surface and subsurface soils in the Process Area, North Stockpile Area, and the South Stockpile Area were first analyzed using a PCP field-portable immunoassay screening test kit. Based on the large size (27 acres) of the site, extent of contamination, and the anticipated number of soil sample locations, laboratory analysis of all samples was not deemed practical or cost-effective. Representative numbers of surface and subsurface soil samples were selected for laboratory analysis based on test results from each Decision Area. Table 3 summarizes the chemical analyses conducted by STL Seattle, located in Tacoma, Washington, on soil and ground water samples.

A total of 65 samples were submitted to the laboratory for analysis, including: 16 surface soil (including two field duplicates), 23 subsurface soil (including two field duplicates), and 26 ground water (including two field duplicates). The following sections describe results of detected constituents for each analyzed matrix in each Decision Area. Sample analysis quality assurance and quality control data validation and complete laboratory reporting documentation are available in Appendix E.

Laboratory analytical results are compared to Washington State Model Toxics Control Act (MTCA) method A and B cleanup values (unless otherwise noted) and EPA Region 9 PRGs for industrial land use. These values are indicated to assess the relative risk associated with contaminants detected on site. MTCA method A cleanup values pertain to petroleum hydrocarbons identified onsite as DRO. MTCA method B values for direct contact (based on residential risks to human health) have been chosen for non-petroleum chemicals as conservative cleanup values; nearby residents and farmland would likely preclude the use of MTCA method C values (based on industrial exposure risks to human health). Region 9 industrial PRGs have been selected to reflect the site's relatively isolated location, with minimal adjacent residences.

Specific surface soil locations were selected for analysis of dioxins and furans based on observed site conditions. When applicable, toxic equivalency (TEQ) is included in results tables. Values for TEQ were calculated using toxic equivalency factors (TEF) provided in *Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo –p-dioxin and – dibenzofurans (CDDs and CDFs) and Update* (EPA 1989).

The World Health Organization (WHO) re-evaluated previously established TEFs in 1994 and 1997 and implemented changes to international TEFs for dioxins and furans. The 1997 WHO

TEQs (Van den Berg et al. 1998) were calculated and have been included in the tables, where applicable. As indicated in the EPA Region 9 PRG User's Guide, Region 9 has adopted the 1997 WHO TEQs.

The OSWER Directive 9200.4-26 Approach for Addressing Dioxin in Soil at CERCLA and RCRA Sites (April 13, 1998) recommended cleanup values for dioxin in soil provides a starting point for setting cleanup levels at CERCLA removal sites. These values have been included with the MTCA cleanup levels and Region 9 PRGs.

Process Area

Surface Soil

Laboratory results for detected analytes in four surface soils (including one field duplicate) collected across the Process Area are provided in Table 4 and results for PCP and DROs are provided on Figure 4. MTCA method A and B cleanup levels, EPA Region 9 industrial PRGs, and OSWER dioxin action levels are provided for comparison.

Locations PASSP1200 (near wood storage area) and PASSP1300 (near the former ASTs) had elevated PCP concentrations exceeding both the MTCA method B cleanup level and EPA Region 9 industrial PRG.

DROs exceeded the MTCA method A cleanup value near the ASTs at PASSP1300.

Subsurface Soil

Laboratory results for detected analytes in eight subsurface soils (including two field duplicates) collected from three boring locations across the Process Area are provided in Table 5 and results for PCP and DROs are provided on Figure 5. MTCA method A and B cleanup levels and Region 9 industrial PRGs are provided for comparison.

Sample PASBP1111 (northwest of the treatment building at 11 feet bgs) had elevated PCP concentrations exceeding both the MTCA method B cleanup level and Region 9 industrial PRG. Detected subsurface concentrations in the Process Area ranged from 0.0278 to 24.2 mg/kg, with the highest concentration detected in sample PASBP1111.

DROs exceeded the MTCA method A cleanup level at location PASBP1111.

Ground Water

Laboratory results for detected analytes in three ground water samples collected across the Process Area are provided in Table 6 and results for PCP and DROs are provided on Figure 6.

MTCA method A and B cleanup levels and Region 9 industrial PRGs are provided for comparison.

Samples PAGWP1109 (northwest of the treatment building at 11 feet bgs) and PAGWP1308 (near the former ASTs at 8 feet bgs) had elevated PCP concentrations that exceeded the MTCA method B cleanup level and Region 9 industrial PRG. Product was observed in GWP11.

Napthalene exceeded the Region 9 tap water PRG at location PAGWP1109.

Benzo(a)anthracene exceeded both the Region 9 tap water PRG and MTCA method B cleanup level at locations PAGWP1109 and PAGWP1308.

Chrysene exceeded the MTCA method B cleanup level at location PAGWP1308.

North Stockpile Area

Surface Soil

Laboratory results for detected analytes in eight surface soils collected across the North Stockpile Area are provided in Table 7 and results for PCP, DROs, and dioxins are provided on Figure 4. MTCA method A and B cleanup levels, EPA Region 9 industrial PRGs, and OSWER action levels are provided for comparison.

None of the locations exceeded MTCA cleanup levels or Region 9 PRGs for detected SVOCs and petroleum hydrocarbons.

All eight surface soil samples were analyzed for dioxin/furans. The concentrations at all locations except NASSW0400 and NASSW0500 exceeded MTCA cleanup levels and Region 9 PRGs for industrial soils, but were less than OWSER directive cleanup values of 5 to 20 mg/kg.

Subsurface Soil

Laboratory results for detected analytes in one subsurface soil sample collected in the North Stockpile Area is provided in Table 8 and results for PCP and DROs are provided on Figure 5. MTCA method A and B cleanup levels and Region 9 industrial PRGs are provided for comparison.

PCP was not detected in the subsurface soil sample collected at location NASBP0804.

Ground Water

Laboratory results for detected analytes in nine ground water samples (including one field duplicate) collected across the North Stockpile Area are provided in Table 9 and results for PCP

and DROs are provided on Figure 6. MTCA method A and B cleanup levels and Region 9 tap water PRGs are provided for comparison.

PCP concentrations exceeded the MTCA method B cleanup level and the Region 9 PRG at five of the eight North Stockpile Area locations. Detected concentrations ranged from 40.1 μ g/L at NAGWP1005 to 875 μ g/L at NAGWP0906.

Napthalene exceeded the Region 9 tap water PRG at locations NAGWW0403, NAGWW0504, and NAGWW0603. All three samples were collected near the western property boundary of the site.

South Stockpile Area

Surface Soil

Laboratory results for detected analytes in three surface soils (including one field duplicate) collected across the South Stockpile Area are provided in Table 10 and results for PCP, DROs, and dioxins are provided on Figure 4. MTCA method A and B cleanup levels, EPA Region 9 industrial PRGs, and OSWER cleanup levels are provided for comparison.

Location SASSW0800 exceeded the MTCA method B cleanup levels for PCP.

Location SASSW0800 exceeded the MTCA method A cleanup level for DROs.

Samples SASSW0200 and SASSW0800 were analyzed for dioxin/furans. The detected concentrations for both samples exceeded MTCA cleanup levels; the detected concentration for sample SASSW0800 exceeded the Region 9 PRGs for industrial soils, but fell within the OWSER directive cleanup values of 5 to 20 mg/kg.

Subsurface Soil

Laboratory results for detected analytes in 14 subsurface soil samples collected in the South Stockpile Area are provided in Table 11 and results for PCP and DROs are provided on Figure 5. MTCA method A and B cleanup levels and Region 9 industrial PRGs are provided for comparison. PCP was detected at 10.3 mg/kg at location SASBH0501 and at 20.5 mg/kg at location SASBP0302, exceeding both the MTCA method B cleanup level and the Region 9 industrial PRG.

Ground Water

Laboratory results for detected analytes in 14 ground water samples (including one field duplicate) collected across the South Stockpile Area are provided in Table 12 and results for

PCP and DROs are provided on Figure 6. MTCA method A and B cleanup levels and EPA Region 9 tap water PRGs are provided for comparison.

Naphthalene exceeded the Region 9 PRG for tap water in samples SAGWW0203 (11.3 μ g/L), SAGWW0703 (12.2 μ g/L), and SAGWW0806 (13.7 μ g/L).

Site-wide Summary of Ground Water Sampling Results

Based on water levels measured in 11 monitoring wells on June 17, 2005, the general direction of ground water flow is toward the west with a very flat gradient (Figure 7). The silty clay aquiclude present across the site, at depths ranging from 10 to 23.5 feet bgs, impedes the downward migration of contaminated ground water. Alluvial sand and gravel deposits overlying the clay contribute to the lateral migration of contaminated ground water. No samples were collected from the underlying aquifer, expected to be hundreds of feet deep.

A range of ground water velocity may be calculated using the equation V = KI/Sy where: velocity equals hydraulic conductivity times hydraulic gradient divided by specific yield.

$$\begin{split} I &= 0.0017 \text{ ft/ft (estimated average across site)} \\ K &= 100 \text{ gal/day/ft}^2 \text{ for silty sand (Freeze and Cherry 1979)} \\ K &= 10,000 \text{ gal/day/ft}^2 \text{ for sandy gravel} \\ \text{Sy} &= 0.2 \text{ (dimensionless), } 0.1 \text{ to } 0.3 \text{ for sand, and } 0.15 \text{ to } 0.30 \text{ for gravel (Driscoll 1986).} \end{split}$$

Ground water flow velocity ranges from 0.1 to 11.4 ft/day across the Colville P & P site, based on the range of hydraulic conductivity and conversion from gallons to cubic feet.

DROs were detected in three of the 11 monitoring wells at concentrations of 283 and 284 μ g/L along the western property boundary and 212 μ g/L in the south stockpile area. PCP was detected in two of the 11 monitoring wells at concentrations of 153 and 256 μ g/L along the western property boundary. The presence of a plume of contaminated ground water migrating across the site from the Process Area to the western property boundary is supported by the presence of PCP at concentrations ranging from 40.1 to 875 μ g/L in ground water samples from three probe borings completed along the northern portion of the North Stockpile Area and from 55.8 to 2,690 μ g/L in two probe borings in the Process Area. Product was present in the Process Area sample that detected PCP at 2,690 μ g/L in ground water.

Ground water concentrations of DRO ranged from 237 to 606 μ g/L in six probe borings surrounding the wood chip pile; no PCP was detected. An elevated concentration of DRO detected at 32,900 μ g/L in a probe boring completed at the boundary of the Process Area is attributed to a release of diesel from the former ASTs.

Quarterly ground water monitoring will determine seasonal variations in ground water flow and trends of PCP and DRO concentrations in ground water.

Source, Exposure Pathway, and Targets

Process Area

The threat of exposure to occupants or trespassers and wildlife exists through ingestion and inhalation of contaminated surface soil found across the Process Area. Access to the Process Area has temporarily been restricted by a 6-foot-high security fence with a padlock, installed during the 2005 Removal Action; however, vandalism and/or tampering with the fence would facilitate access and potential exposure.

The contaminants of concern detected in surface and subsurface soils were also identified in the 2002 Removal Site Evaluation: PCP and DROs. Surface soil exposure pathways are via wind and/or occupant foot and vehicular traffic, and runoff to ditches. Subsurface soil exposure pathways are via exposure to excavated soil and as a continuous source to ground water, which is migrating towards the Clauser property to the west. Contaminants of concern detected in ground water included PCP, DROs, napthalene, benzo(a)anthracene, and chrysene.

North Stockpile Area

The threat of exposure to occupants or trespassers and wildlife exists through ingestion and inhalation of impacted surface soil in limited areas of the North Stockpile Area. Dioxins were detected in surface soils at concentrations below two of three cleanup guidelines. No SVOCs were detected in surface soils during this investigation; however, heavy oils were detected during the 2002 Removal Site Evaluation. Access to the North Stockpile Area continues to be restricted along the north and west property boundaries by a barbed wire fence and the BNSF Railway Company railroad located between the facility and U.S. Highway 395.

PCP was not detected in subsurface soil; however, PCP and napthalene were detected in ground water. The local ground water flow direction is westward, towards the adjacent property and drinking water well. The potential threat to human health, wildlife, and the environment exists by ingestion of, or contact with, water from the Clauser drinking water well, if contaminated. Contaminated ground water may also discharge to the Colville River, wetlands, and drainages.

South Stockpile Area

The threat of exposure to occupants or trespassers and wildlife exists through ingestion and inhalation of contaminated surface soil in limited areas of the South Stockpile Area. Access to the South Stockpile Area is restricted to the main facility entrance and the north property boundary by a wood rail or barbed wire fence and the BNSF Railway Company railroad.

Trespassers may access the South Stockpile Area via the adjacent property to the southeast of the site, which has unrestricted access.

Elevated concentrations of PCP, diesel-range petroleum hydrocarbons, and dioxins were detected in surface soil located in hot spots across the South Stockpile Area, and PCP was detected in subsurface soil. The extent of subsurface soil contamination is limited to isolated hot spots. Surface runoff could cause these contaminants to migrate to adjacent drainages and the Colville River.

Naphthalene was detected in ground water samples, indicating migration from hot spots in subsurface or surface soils.

December 19, 2005

Removal Options

Removal options were developed using the most appropriate engineering methods to address the source of contamination for each Decision Area according to the exposure pathway and targets and analytical results from the 2002 and 2005 Removal Site Evaluations, and previous engineering experience from similar sites. This section presents an update to the proposed Removal Action options documented in the 2002 Removal Site Evaluation as a generalized summary; options for each Decision Area are presented in Table 13.

The remaining Process Area buildings, structures, and equipment that may have been impacted by contact with process chemicals should be demolished and removed for disposal.

An option for control and/or containment of contaminated surface and subsurface soil is excavation. Contaminated material at and around the Process Area and all North and South Stockpile hot spots would be removed and may be replaced with a clean backfill soil or rock cap. The estimated volume of material remains highest within the Process Area, and difficult to estimate based on limited data; however, the 2002 estimate of up to approximately 17,000 cubic yards should be used as a guide.

An alternative to excavation in the Process Area is installing a bentonite slurry wall and soil or rock cap, and placing soil or rock caps in the identified hot spot locations in the North and South Stockpile Areas. Ground water monitoring is generally needed to determine the effectiveness of the slurry wall option, therefore additional well(s) to monitor its effectiveness are likely necessary.

Contaminated material would have to be transported offsite and treated by bioremediation, thermal desorption, incineration, or soil washing prior to disposal. Onsite containment and treatment is an option with a cost effective treatment method, long-term monitoring, and continued operations and maintenance. Due to recent and historic flooding onsite, the location for material containment should not be within the 100-year floodplain elevation.

Continued quarterly ground water monitoring will be necessary to track the flow, direction, and leading edge of the contaminant plume. The west adjacent property drinking water well should be sampled to determine potential impacts from the site and future actions to address potential offsite ground water contamination (i.e., pump and treat, additional bentonite slurry wall barriers, etc.). Depending on the results, a clean source of drinking water may have to be provided to the owner, as well as for other water uses (i.e., livestock, agricultural practices, etc.).

Conclusion

Phase II field observations and sample results confirmed limited free product in Process Area subsurface soil and ground water, and established a plume of PCP in ground water in the North Stockpile Area that appears to be flowing generally towards the west to the adjacent property. The confirmed presence of a thick clay aquiclude at depths ranging from 10 to 23.5 feet bgs likely provides a vertical barrier to deeper contaminant migration. Elevated surface and subsurface soil concentrations of PCP, diesel, and dioxin were detected in the Process Area and limited locations in the North and South Stockpile Areas. Impacts to ground water were detected in limited areas in the South Stockpile Area.

The preferred removal option includes demolition and removal of all Process Area structures and associated equipment that may have been impacted; draining and excavating the pond; selective excavation of surface and subsurface soil in the Process Area; and hot spot excavation in the South Stockpile Area and the North Stockpile Area.

Continued quarterly monitoring of the ground water wells will aid in confirming the size and concentration gradient of the contaminant plume.

Soil removal requires disposal with an associated treatment method. Onsite *ex situ* bioremediation treatment is currently being investigated by ERT; however, a second method must be determined in the event bioremediation is not feasible. Soil washing was previously identified as the most cost-effective method of treatment; however, the specific treatment method would be determined by the most cost-effective off-site disposal facility, including costs for transportation, treatment, and disposal.

Immunoassay field screening for pentachlorophenol was performed at the site to evaluate its applicability to monitoring site conditions during future removal activities. Based on statistical analysis of the immunoassay and laboratory results, it was determined that the immunoassay field screening kit can be used during future removal activities to provide reliable soil results for concentrations ranging from 0 to 20 ppm. However, results of the immunoassay field screening kit for water at the site should be used with caution (see Appendix D).

References

Driscoll, F.G. 1986. Groundwater and Wells. Johnson Filtration Systems, Inc., St. Paul, Minnesota.

Ecology. 1997. Analytical Methods for Petroleum Hydrocarbons. Publication 97-602. Washington Department of Ecology Toxics Cleanup Program and the Ecology Analytical Laboratory.

Ecology. 2001. Model Toxics Control Act Cleanup Regulation, Washington Administrative Code, Chapter 173-340. Washington Department of Ecology. Publication No. 94-06.

EPA. 1989. Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo –p-Dioxin and –Dibenzofurans and Udate, EPA-625/3-89/016.

EPA. 1998. OSWER Directive 9200.4-26. Approach for Addressing Dioxin in Soil at CERCLA and RCRA Sites. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C. April 13, 1998.

EPA. 2004. Preliminary Remediation Goals. Information obtained from agency website: http://www.epa.gov/region09/waste/sfund/prg/files/04prgtable.pdf>. U.S. Environmental Protection Agency, Region 9, San Francisco, California. Last updated October 2004.

Freeze, R.A. and J.A. Cherry. 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Herrera. 2003. Removal Site Evaluation, Colville Post & Pole, Colville, Washington. Prepared for U.S. Environmental Protection Agency, Region 10, by Herrera Environmental Consultants, Inc., Seattle, Washington, under contract No. 68-SO-0-03, TDD# 02-06-0006. May 2003.

Herrera. 2005a. Technical Report, Colville Post and Pole Removal Action Field Activities. Prepared for U.S. Environmental Protection Agency, Region 10, by Herrera Environmental Consultants, Inc., Seattle, Washington. April 2005.

Herrera. 2005b. Wetland Delineation Report, Colville Post and Pole, Colville, Washington. Prepared for U.S. Environmental Protection Agency, Region 10, by Herrera Environmental Consultants, Inc., Seattle, Washington. June 2005.

Herrera. 2005c. Site-Specific Sampling Plan, Colville Post and Pole Phase II Removal Site Evaluation, Stevens County, Washington. Prepared for U.S. Environmental Protection Agency, Region 10, by Herrera Environmental Consultants, Inc., Seattle, Washington, under contract No. 68-SO-01-03, TDD# 05-03-0009. June 2005.

Joseph, Nancy. 1990. Geologic map of the Colville 1:100,000 quadrangle, Washington – Idaho. Open file report 90-13. Washington Division of Geology and Earth Resources, Washington State Department of Natural Resources.

Van den Berg, M., L. Birnbaum, A.T.C. Bosveld, et al. 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect. 106(12):775-792.

December 19, 2005

TABLES AND FIGURES

Table 1.	Immunoassay and fixed laboratory pentachlorophenol analytical results for
	soil samples collected in June 2005 at the Colville Post and Pole site in
	Stevens County.

	Rap	oid Assay Kit	5	Laboratory Result
Sample ID	Run #	Dilution	(ppm)	(mg/kg)
NASSW0100	061505-01	1:1	0.1 U	0.0662 J
NASBW0106	061505-01	1:1	0.1 U	NA
NASBW0108	061505-01	1:1	0.1 U	NA
SASSW0200	061505-01	1:1	0.1	0.421
SASBW0206	061505-01	1:1	0.1 U	NA
SASBP0102	061505-01	1:1	0.1 U	0.0524 J
SASBP0104	061505-01	1:1	0.1 U	0.102 U
SASBP0203	061505-01	1:1	0.1 U	NA
SASBP0204	061505-01	1:1	0.1 U	0.113 U
SASBP0302	061505-01	1:1	0.1 U	20.5
SASBP0304	061505-01	1:1	0.1 U	NA
SASBP0401	061505-01	1:1	0.1 U	0.056 J
SASBP0404	061505-01	1:1	0.1 U	NA
SASSW0300	061505-01	1:1	0.1 U	0.0861 J
SASSW0300D	061505-01	1:1	0.1 U	0.0562 J
SASBW0308	061505-01	1:1	0.1 U	NA
SASBP053.5	061505-01	1:1	0.1 U	NA
SASBP0505	061505-01	1:1	0.1 U	0.116 U
SASBP0601	061505-01	1:1	0.1 U	NA
SASBP0604	061505-01	1:1	0.1 U	0.0347 J
NASSW0400	061505-02	1:1	0.1 U	0.115 U
NASBW0408	061505-02	1:1	0.1 U	NA
NASSP0700	061505-02	1:1	0.3	0.139
NASBP0704	061505-02	1:1	0.1 U	NA
NASSP0800	061505-02	1:1	0.1	0.21
NASBP0804	061505-02	1:1	0.1 U	0.112 U
NASSP0900	061505-02	1:1	0.1 U	0.0331 J
NASBP0904	061505-02	1:1	0.1 U	NA
NASSW0500	061505-02	1:1	0.1 U	0.128 U
NASBW0505	061505-02	1:1	0.1 U	NA
NASSP1000	061505-02	1:1	0.1 U	0.108 U
NASBP1004	061505-02	1:1	0.1 U	NA
NASBP1004D	061505-02	1:1	0.1 U	NA
PASSP1100	061605-01	1:1	9.1	4.23
PASBP1109	061605-01	1:1	0.1 U	0.0385 J
PASBP1111	061705-01	1:10	16	24.2
PASBP1204	061605-01	1:1	0.7	0.498

Table 1 (continued).Immunoassay and fixed laboratory pentachlorophenol analytical
results for soil samples collected in June 2005 at the Colville Post
and Pole site in Stevens County.

	Raj	pid Assay Kit	t	Laboratory Result
Sample ID	Run #	Dilution	(ppm)	(mg/kg)
PASBP1208	061605-01	1:1	0.1 U	0.0201 J
NASSW0600	061605-01	1:1	0.1	0.129
NASBW0605	061605-01	1:1	0.1	NA
SASSW0700	061605-01	1:1	0.1 U	NA
SASBW0704	061605-01	1:1	0.1 U	0.109 U
SASSW0800	061605-02	1:20	50	73.5
SASBW0804	061605-01	1:1	0.1 U	0.112 U
SASBW0806	061605-01	1:1	0.1 U	0.123 U
PASSP1300	061605-02	1:50	360	280
PASBP1306	061605-01	1:1	0.3	0.126 J
PASBP1308	061605-02	1:1	0.1 U	0.0278 J
SASBH0501	061605-02	1:1	9.3	10.3
SASBH0604	061605-02	1:1	0.1 U	0.235
SASBH0704	061605-02	1:1	0.9	1.39
SASBH0801	061605-02	1:1	4.3	5.8
PASSP1200	061705-01	1:10	7.0	31.3
PASSP1200D	061705-01	1:10	21	22.2

Bold values indicate results greater than USEPA Region 9 PRG screening level for pentachlorophenol of 3 mg/kg.

Italicized values indicate the reporting limit for the compound.

mg/kg - milligrams per kilogram.

ppm - parts per million.

J - The associated numerical value is an estimated quantity because the concentrations were less than the required detection limits or quality control criteria were not met.

U - The material was analyzed for, but was not detected. The associated numerical value is the laboratory reporting limit.

PRG - EPA Region 9 Preliminary Remediation Goals (EPA 2004).

NA - Not analyzed.

		Rapi	id Assay Kit		Laboratory Result
Sample ID	Run #	Dilution	Sample (ppb)	Duplicate (ppb)	(µg/L)
SAGWP0104	061505-03	1:1	0.2	0.3	2 U
SAGWP0203	061505-03	1:1	0.1	0.1	1.94 U
SAGWP0302	061505-03	1:1	0.2	0.2	1.9 U
SAGWP0404	061505-03	1:1	0.3	0.2	1.9 U
SAGWP0505	061505-03	1:1	3.6	3.1	1.92 U
SAGWP0602	061505-03	1:1	0.1	0.1	2 U
NAGWP0705	061505-03	1:1	1.1	1.3	1.9 U
NAGWP0805	061605-02	50	137	NA	121
NAGWP0906	061705-01	200	1300	NA	875
NAGWP1005	061605-01	10	91	NA	40.1
PAGWP1109	061705-02	800	860	NA	2690
PAGWP1111	061705-01	10	8.2	NA	NA
PAGWP1208	061605-02	1:1	$0.1 \ U$	NA	1.89 U
PAGWP1308	061705-01	50	41	NA	55.8
SAGWMW105	061705-01	1:1	$0.1 \ U$	$0.1 \ U$	1.9 U
SAGWMW205	061705-01	1:1	0.4	0.3	1.9 U
SAGWMW407	061705-01	1:1	$0.1 \ U$	$0.1 \ U$	1.9 U
NAGWW0106	061705-01	1:1	$0.1 \ U$	$0.1 \ U$	1.88 U
SAGWW0203	061705-01	1:1	$0.1 \ U$	$0.1 \ U$	1.9 U
SAGWW0305	061705-01	1:1	$0.1 \ U$	$0.1 \ U$	1.91 U
NAGWW0403	061705-01	1:1	$0.1 \ U$	$0.1 \ U$	1.9 U
NAGWW0504	062405-01	50	200	NA	256
NAGWW0603	062405-01	50	370	NA	153
SAGWW0703	061705-02	1:1	$0.1 \ U$	$0.1 \ U$	1.89 U
SAGWW0806	061705-02	1:1	0.6	0.6	1.9 U

Table 2.Immunoassay and fixed laboratory pentachlorophenol analytical results
for ground water samples collected at the Colville Post and Pole site in
Stevens County.

Italicized values indicate the reporting limit for the compound.

 μ g/L - micrograms per liter.

ppb - parts per billion.

U - The material was analyzed for, but was not detected. The associated numerical value is the laboratory reporting limit.

NA - Not analyzed.

Table 3.	Summary of laboratory chemical analysis, Colville Post and Pole site,
	Stevens County, Washington.

Matrix	Analytical Parameter	Analytical Method
Surface Soil	Semivolatile Organic Compounds (SVOCs)	EPA Method 8270C
	Diesel and Heavy Oil Range Petroleum Hydrocarbons	NWTPH-Dx
	Dioxins/Furans	EPA Method 8290
Subsurface Soil	Semivolatile Organic Compounds (SVOCs)	EPA Method 8270C
	Diesel and Heavy Oil Range Petroleum Hydrocarbons	NWTPH-Dx
Ground Water	Semivolatile Organic Compounds (SVOCs)	EPA Method 8270C
	Diesel and Heavy Oil Range Petroleum Hydrocarbons	NWTPH-Dx

December 19, 2005

			Loc		MTCA	EPA Region 9 PRGs for		
Compound	Units	PASSP1100	PASSP1200 PASSP1200D		PASSP1300	Cleanup Level	Industrial Soil	
NWTPH-Dx								
#2 Diesel	mg/kg	165 J	144 J	111 J	16400	2000 ^a	-	
Motor Oil	mg/kg	1220	246 J	177 J	197 J	2000 ^a	-	
SVOCs								
2-Methylnaphthalene	mg/kg	0.0179 J	0.193	0.117	0.0213 U	-	-	
Anthracene	mg/kg	0.0192 J	0.0247 J	0.0296	0.0213 U	24000	100000	
Bis(2-ethylhexyl)phthalate	mg/kg	0.131 J	0.115 J	0.243 U	0.213 U	71.4 (ca)	120	
Fluorene	mg/kg	0.0337	0.0261 U	0.116	0.0213 U	3200	26000	
Naphthalene	mg/kg	0.025 U	0.0392	0.0211 J	0.0213 U	1600	190	
Pentachlorophenol	mg/kg	4.23	31.3	22.2	280	8.33 (ca)	9	
Phenanthrene	mg/kg	0.046	0.184	0.191	0.0213 U	-	-	
Pyrene	mg/kg	0.025 U	0.0261 U	0.155	0.813	2400	29000	

Table 4. Process Area surface soil analytical results for the Colville Post and Pole site located in Stevens County, Washington.

Values reported on a dry-weight basis.

^a Method A cleanup level (Ecology 2001).

Bold values indicate results greater than MTCA method B cleanup levels and/or USEPA Region 9 PRGs for industrial soil.

Italicized values indicate the reporting limit for the compound.

NA - Not analyzed.

mg/kg - milligrams per kilogram.

ug/kg - micrograms per kilogram.

SVOCs - Semivolatile organic compounds

J - The associated numerical value is an estimated quantity because the concentrations were less than the required detection limits or quality control criteria were not met.

U - The material was analyzed for, but was not detected. The associated numerical value is the laboratory reporting limit.

(ca) - carcinogen; carcinogen values indicated if available.

PRG - EPA Region 9 Preliminary Remediation Goals (EPA 2004).

MTCA - Model Toxics Control Act (Ecology 2001).

					Loca	ition				MTCA Cleanup	EPA Region 9 PRGs for Industrial
Compound	Units	PASBP1109	PASBP1111	PASBP1111D	PASBP1204	PASBP1204D	PASBP1208	PASBP1306	PASBP1308	Level	Soil
NWTPH-Dx											
#2 Diesel	mg/kg	NA	5590	5820	9.39 J	36.9 U	NA	18.5 J	NA	2000 ^a	-
Motor Oil	mg/kg	NA	323	225 J	76.7 U	73.8 U	NA	131 U	NA	2000 ^a	-
SVOCs											
Pentachlorophenol	mg/kg	0.0385 J	24.2	25.7	0.498	0.187	0.0201 J	0.126 J	0.0278 J	8.33 (ca)	9

Table 5. Process Area subsurface soil analytical results for the Colville Post and Pole site located in Stevens County, Washington.

Values reported on a dry-weight basis.

^a Method A cleanup level (Ecology 2001).

Bold values indicate results greater than MTCA cleanup levels and/or EPA Region 9 PRGs for industrial soil.

Italicized values indicate the reporting limit for the compound.

NA - Not analyzed.

mg/kg - milligrams per kilogram.

SVOCs - Semivolatile organic compounds.

J - The associated numerical value is an estimated quantity because the concentrations were less than the required detection limits or quality control criteria were not met.

U - The material was analyzed for, but was not detected. The associated numerical value is the laboratory reporting limit.

(ca) - carcinogen; carcinogen values indicated if available.

PRG - EPA Region 9 Preliminary Remediation Goals (EPA 2004).

MTCA - Model Toxics Control Act (Ecology 2001).

Compound	Units –	PAGWP1109	PAGWP1208	PAGWP1308	MTCA Cleanup Level	EPA Region 9 PRGs for Tap Water
NWTPH-Dx						
#2 Diesel	mg/L	0.734 J	32.9	0.342 J	500 ^a	-
Motor Oil	mg/L	0.477 U	1.84 J	0.476 U	500 ^a	-
SVOCs						
2-METHYLNAPHTHALENE	ug/L	103	0.473 U	0.488 U	-	-
4-NITROANILINE	ug/L	3.03	1.89 U	1.95 U	-	3.2 (ca)
ACENAPHTHENE	ug/L	14.6	0.189 U	0.195 U	960	370
ANTHRACENE	ug/L	3.97	0.189 U	0.195 U	2400	1800
BENZO(A)ANTHRACENE	ug/L	0.191	0.189 U	0.172 J	0.012 (ca)	0.092 (ca)
BUTYLBENZYL PHTHALATE	ug/L	2.84 U	3.14	2.93 U	3200	7300
CHRYSENE	ug/L	0.189 U	0.189 U	0.151 J	0.012 (ca)	9.2 (ca)
DI-N-BUTYL PHTHALATE	ug/L	1.89 U	1.63 J	0.608 J	1600	3600
FLUORENE	ug/L	10.9	0.189 U	0.195 U	640	240
NAPHTHALENE	ug/L	24	0.473 U	0.488 U	160	6.2
PENTACHLOROPHENOL	ug/L	2690	1.89 U	55.8	0.792 (ca)	0.56 (ca)
PHENANTHRENE	ug/L	18.3	0.189 U	0.195 U	-	-
PYRENE	ug/L	3.86	0.189 U	0.195 U	480	180

Table 6. Process Area ground water results for the Colville Post and Pole site located in Stevens County, Washington.

^a Method A cleanup level (Ecology 2001).

Bold values indicate results greater than MTCA cleanup levels and/or EPA Region 9 PRGs for tap water.

Italicized values indicate the reporting limit for the compound.

mg/L - milligrams per liter.

ug/L - micrograms per liter.

SVOCs - Semivolatile organic compounds.

J - The associated numerical value is an estimated quantity because the concentrations were less than the required detection limits or quality control criteria were not met.

U - The material was analyzed for, but was not detected. The associated numerical value is the laboratory reporting limit.

(ca) - carcinogen; carcinogen values indicated if available.

PRG - EPA Region 9 Preliminary Remediation Goals (EPA 2004).

MTCA - Model Toxics Control Act (Ecology 2001).

									MTCA Cleanup	EPA Region 9 PRGs for	
Compound	Units	NASSW0100	NASSW0400	NASSW0500	NASSW0600	NASSP0700	NASSP0800	NASSP0900	NASSP1000	Level	Industrial Soil
NWTPH-Dx											
#2 Diesel	mg/kg	NA	NA	NA	37.3 J	8.13 J	25.7 J	NA	NA	2000^{a}	-
Motor Oil	mg/kg	NA	NA	NA	153 J	78.9	248	NA	NA	2000^{a}	-
SVOCs											
BIS(2-ETHYLHEXYL) PHTHALATE	mg/kg	0.0365 J	0.0252 J	0.0333 J	0.202 U	0.0311 J	0.211 U	0.207 U	0.0231 J	71.4 (ca)	120
DI-N-BUTYL PHTHALATE	mg/kg	0.114 U	0.115 U	0.128 U	0.0227 J	0.0988 U	0.0198 J	0.0191 J	0.108 U	8000	62000
PENTACHLOROPHENOL	mg/kg	0.0662 J	0.115 U	0.128 U	0.129	0.139	0.21	0.0331 J	0.108 U	8.33 (ca)	9
PHENANTHRENE	mg/kg	0.0228 U	0.0229 U	0.0255 U	0.0202 U	0.0198 U	0.0073 J	0.0207 U	0.0216 U	-	-
PYRENE	mg/kg	0.0228 U	0.0229 U	0.0255 U	0.0202 U	0.0142 J	0.015 J	0.0207 U	0.0216 U	2400	29000
Dioxins/Furans											
2,3,7,8-TCDD (TEQ 1987 EPA)	ug/kg	0.012	0.0007	0.00005	0.03	0.05	0.078	0.022	0.026	0.00667	$0.16/\left(5\text{ to }20\right)^{c}$
2,3,7,8-TCDD (TEQ 1997 WHO)	ug/kg	0.055	0.0038	0.0001	0.12	0.18	0.30	0.088	0.089	0.00667	$0.16 / (5 \text{ to } 20)^{\mathrm{c}}$

Table 7. North Stockpile Area surface soil analytical results for the Colville Post and Pole site located in Stevens County, Washington.

Values reported on a dry-weight basis.

^a Method A cleanup level (Ecology 2001).

^b Method B cleanup level (Ecology 2001).

^c OSWER Directive 9200.4-26 cleanup levels (EPA 1998).

Bold values indicate results greater than MTCA cleanup levels, EPA Region 9 PRGs for industrial soil, and/or OSWER cleanup values.

Italicized values indicate the reporting limit for the compound.

NA - Not analyzed.

mg/kg - milligrams per kilogram.

ug/kg - micrograms per kilogram.

SVOCs - Semivolatile organic compounds.

J - The associated numerical value is an estimated quantity because the concentrations were less than the required detection limits or quality control criteria were not met.

U - The material was analyzed for, but was not detected. The associated numerical value is the laboratory reporting limit.

(ca) - carcinogen; carcinogen values indicated if available.

PRG - EPA Region 9 Preliminary Remediation Goals (EPA 2004).

MTCA - Model Toxics Control Act (Ecology 2001).

Table 8. North Stockpile Area subsurface soil analytical results for the Colville Post and Pole site located in Stevens County, Washington.

		Location	МТСА	EPA Region 9 PRGs for
Compound	Units	NASBP0804	Cleanup Levels	Industrial Soil
NWTPH-Dx				
#2 Diesel	mg/kg	NA	2000 ^a	-
Motor Oil	mg/kg	NA	2000 ^a	-
SVOCs				
PENTACHLOROPHENOL	mg/kg	0.112 U	8.33 (ca)	9

Values reported on a dry-weight basis.

^a Method A cleanup level (Ecology 2001).

Bold values indicate results greater than MTCA cleanup levels and/or EPA Region 9 PRGs for industrial soil.

Italicized values indicate the reporting limit for the compound.

NA - Not analyzed.

mg/kg - milligrams per kilogram.

SVOCs - Semivolatile organic compounds.

J - The associated numerical value is an estimated quantity because the concentrations were less than the required detection limits or quality control criteria were not met.

U - The material was analyzed for, but was not detected. The associated numerical value is the laboratory reporting limit.

(ca) - carcinogen; carcinogen values indicated if available.

PRG - EPA Region 9 Preliminary Remediation Goals (EPA 2004).

MTCA - Model Toxics Control Act (Ecology 2001).

		Sample Location									MTCA Cleanup	EPA Region 9 PRGs for Tap
Compound	Units	NAGWP0705	NAGWP0805	5 NAGWP0906	NAGWP1005	NAGWW0106	5 NAGWW0106D	NAGWW0403	NAGWW0504	NAGWW0603	Level	Water
NWTPH-Dx												
#2 Diesel	mg/L	0.237 UJ	1.07 J	0.79 J	0.121 J	0.237 U	0.236 U	0.237 U	0.283 J	0.284 J	500 ^a	-
Motor Oil	mg/L	0.473 UJ	1.25 J	0.222 J	0.114 J	0.475 U	0.473 U	0.47 U	0.0952 J	0.473 U	500 ^a	-
SVOCs												
2,4,5-TRICHLOROPHENOL	µg/L	1.9 U	1.9 U	0.568 J	1.9 U	1.88 U	1.9 U	1.9 U	1.89 U	1.89 U	1600	3600
2,4-DICHLOROPHENOL	µg/L	1.9 U	1.9 U	0.828 J	1.9 U	1.88 U	1.9 U	1.9 U	1.89 U	1.89 U	48	110
2-METHYLNAPHTHALENE	µg/L	0.476 U	0.476 U	0.476 U	0.476 U	0.471 U	0.212 J	3.32	0.643	2.93	-	-
ACENAPHTHENE	µg/L	0.19 U	0.19 U	0.19 U	0.19 U	0.188 U	0.19 U	0.383	0.078 J	0.348	960	370
DIBENZOFURAN	µg/L	1.9 U	0.278 J	1.9 U	1.9 U	1.88 U	1.9 U	0.665 J	<i>1.89</i> U	0.653 J	-	12
FLUORANTHENE	µg/L	0.19 U	0.19 U	0.19 U	0.19 U	0.188 U	0.19 U	0.305	0.0945 J	0.238	640	1500
FLUORENE	µg/L	0.19 U	0.11 J	0.19 U	0.19 U	0.188 U	0.19 U	0.319	0.103 J	0.459	640	240
NAPHTHALENE	µg/L	0.476 U	0.476 U	0.476 U	0.476 U	0.471 U	0.365 J	11.9	2.7	10.8	160	6.2
PENTACHLOROPHENOL	µg/L	1.9 U	121	875	40.1	1.88 U	1.9 U	1.9 U	256	153	0.792 (ca)	0.56 (ca)
PHENANTHRENE	µg/L	0.19 U	0.19 U	0.19 U	0.19 U	0.0534 J	0.19 U	1.01	0.18 J	0.889	-	-
PYRENE	µg/L	0.19 U	0.19 U	0.19 U	0.19 U	0.188 U	0.19 U	0.122 J	<i>0.189</i> U	0.112 J	480	180

Table 9. North Stockpile Area ground water analytical results for the Colville Post and Pole site located in Stevens County, Washington.

^a Method A cleanup level (Ecology 2001)

Bold values indicate results greater than MTCA cleanup levels and/or EPA Region 9 PRGs for tap water

Italicized values indicate the reporting limit for the compound

mg/L - milligrams per liter.

ug/L - micrograms per liter.

SVOCs - Semivolatile organic compounds

J - The associated numerical value is an estimated quantity because the concentrations were less than the required detection limits or quality control criteria were not met.

U - The material was analyzed for, but was not detected. The associated numerical value is the laboratory reporting limit.

(ca) - carcinogen; carcinogen values indicated if available.

PRG - EPA Region 9 Preliminary Remediation Goals (EPA 2004).

MTCA - Model Toxics Control Act (Ecology 2001).

			Loc	ation		МТСА	EPA Region 9 PRGs for
Compound	Units	SASSW0200	SASSW0300	SASSW0300D	SASSW0800	Cleanup Level	Industrial Soil
NWTPH-Dx							
#2 Diesel	mg/kg	NA	NA	NA	7750	2000 ^a	-
Motor Oil	mg/kg	NA	NA	NA	352	2000 ^a	-
SVOCs							
ANTHRACENE	mg/kg	0.0228 U	0.0224 U	0.0213 U	0.426	24000 ^b	100000
PENTACHLOROPHENOL	mg/kg	0.421	0.0861 J	0.0562 J	73.5	8.33 (ca) ^b	9
PHENANTHRENE	mg/kg	0.00785 J	0.0224 U	0.0213 U	2.97	-	-
Dioxins/Furans							
2,3,7,8-TCDD (TEQ 1987 EPA)	µg/kg	0.043	NA	NA	1.3	0.00667	$0.16 / (5 \text{ to } 20)^{\mathrm{c}}$
2,3,7,8-TCDD (TEQ 1997 WHO)	µg/kg	0.15	NA	NA	7.2	0.00667	$0.16 / (5 \text{ to } 20)^{\mathrm{c}}$

Table 10. South Stockpile Area surface soil analytical results for the Colville Post and Pole site located in Stevens County, Washington.

Values reported on a dry-weight basis.

^a Method A cleanup level (Ecology 2001).

^b Method B cleanup level (Ecology 2001).

^c OSWER Directive 9200.4-26 cleanup levels (EPA 1998).

Bold values indicate results greater than MTCA cleanup levels, EPA Region 9 PRGs for industrial soil, and/or OSWER cleanup values.

Italicized values indicate the reporting limit for the compound.

NA - Not analyzed.

mg/kg - milligrams per kilogram.

ug/kg - micrograms per kilogram.

SVOCs - Semivolatile organic compounds.

J - The associated numerical value is an estimated quantity because the concentrations were less than the required detection limits or quality control criteria were not met.

U - The material was analyzed for, but was not detected. The associated numerical value is the laboratory reporting limit.

(ca) - carcinogen; carcinogen values indicated if available.

PRG - EPA Region 9 Preliminary Remediation Goals (EPA 2004).

MTCA - Model Toxics Control Act (Ecology 2001).

Table 11 Couth Stealmile Area subsurf	face sail analytical results for the C	alvilla Dast and Dala site logated in Stavans County
Table 11. South Stockpile Area subsuri	face son analytical results for the C	olville Post and Pole site located in Stevens County, `

								Lo	cation							MTCA Cleanup	EPA Region 9 PRGs for Industrial
Compound	Units	SASBH0501	SASBH0604	SASBH0704	SASBH0801	SASBP0102	SASBP0104	SASBP0204	SASBP0302	SASBP0401	SASBP0505	SASBP0604	SASBW0704	SASBW0804	SASBW0806	Level	Soil
NWTPH-Dx																	
#2 Diesel	mg/kg	90.2 J	NA	17.1 J	89 J	NA	2000^{a}	-									
Motor Oil	mg/kg	267 J	NA	69.4	193 J	NA	2000^{a}	-									
SVOCs																	
PENTACHLOROPHENOL	mg/kg	10.3	0.235	1.39	5.8	0.0524 J	0.102 U	0.113 U	20.5	0.056 J	0.116 U	0.0347 J	0.109 U	0.112 U	0.123 U	8.33 (ca)	9

Values reported on a dry-weight basis.

^a Method A cleanup level (Ecology 2001).

Bold values indicate results greater than MTCA cleanup levels and/or EPA Region 9 PRGs for industrial soil.

Italicized values indicate the reporting limit for the compound.

NA - Not analyzed.

mg/kg - milligrams per kilogram.

SVOCs - Semivolatile organic compounds.

J - The associated numerical value is an estimated quantity because the concentrations were less than the required detection limits or quality control criteria were not met.

U - The material was analyzed for, but was not detected. The associated numerical value is the laboratory reporting limit.

(ca) - carcinogen; carcinogen values indicated if available.

PRG - EPA Region 9 Preliminary Remediation Goals (EPA 2004).

MTCA - Model Toxics Control Act (Ecology 2001).

NWTPH-Dx - Northwest Total Petroleum Hydrocarbon Analysis (Ecology 1997).

, Washington.

								Locatio	n							MTCA Cleanup	EPA Region 9 PRGs for Tap
Compound	Units	SAGWMW105	SAGWMW105D	SAGWMW205	SAGWMW407	SAGWP0104	SAGWP0203			SAGWP0505	SAGWP0602	SAGWW0203	SAGWW0305	SAGWW0703	SAGWW0806	Level	Water
NWTPH-Dx																	
#2 Diesel	mg/L	0.237 U	<i>0.237</i> U	0.212 J	<i>0.237</i> U	0.606 J	0.274 J	0.271 J	0.0925 J	0.352 J	0.293 J	0.236 U	<i>0.238</i> U	0.236 U	<i>0.237</i> U	500 ^a	-
Motor Oil	mg/L	0.474 U	<i>0.473</i> U	<i>0.478</i> U	<i>0.473</i> U	0.606 J	0.443 J	0.277 J	0.473 U	0.205 J	0.616 J	0.472 U	0.475 U	<i>0.473</i> U	<i>0.474</i> U	500 ^a	-
SVOCs																	
2-METHYLNAPHTHALENE	μg/L	0.474 U	0.475 U	<i>0.474</i> U	0.475 U	0.5 U	0.485 U	<i>0.476</i> U	<i>0.476</i> U	<i>0.481</i> U	<i>0.5</i> U	3.01	4.07	3.78	4.02	-	-
3-&4-METHYLPHENOL	μg/L	<i>3.79</i> U	3.8 U	<i>3.8</i> U	3.8 U	4.64	3.88 U	<i>3.81</i> U	<i>3.81</i> U	3.85 U	4 U	3.8 U	<i>3.82</i> U	<i>3.79</i> U	<i>3.81</i> U	80	180
ACENAPHTHENE	μg/L	<i>0.19</i> U	<i>0.19</i> U	<i>0.19</i> U	<i>0.19</i> U	0.2 U	<i>0.194</i> U	<i>0.19</i> U	<i>0.19</i> U	<i>0.192</i> U	<i>0.2</i> U	0.377	0.597	0.453	0.432	960	370
ANTHRACENE	μg/L	<i>0.19</i> U	<i>0.19</i> U	<i>0.19</i> U	<i>0.19</i> U	0.2 U	<i>0.194</i> U	<i>0.19</i> U	<i>0.19</i> U	<i>0.192</i> U	<i>0.2</i> U	<i>0.19</i> U	<i>0.191</i> U	<i>0.189</i> U	0.0233 J	2400	1800
BENZOIC ACID	μg/L	<i>9.48</i> U	<i>9.51</i> U	<i>9.49</i> U	<i>9.51</i> U	11.4 J	2.39 J	9.52 J	9.52 UJ	9.62 UJ	<i>10</i> UJ	<i>9.51</i> U	9.55 U	9.47 U	9.52 U	64000	150000
BUTYLBENZYL PHTHALATE	μg/L	2.84 U	2.85 U	2.85 U	<i>2.85</i> U	1.29 J	<i>2.91</i> U	2.86 U	2.86 U	2.88 U	<i>3</i> U	2.85 U	2.87 U	2.84 U	2.86 U	3200	7300
DIBENZOFURAN	μg/L	<i>1.9</i> U	<i>1.9</i> U	<i>1.9</i> U	<i>1.9</i> U	2 U	<i>1.94</i> U	<i>1.9</i> U	<i>1.9</i> U	<i>1.92</i> U	2 U	0.667 J	1.07 J	0.808 J	0.776 J	-	12
DIETHYL PHTHALATE	μg/L	<i>1.9</i> U	<i>1.9</i> U	<i>1.9</i> U	<i>1.9</i> U	0.958 J	0.579 J	<i>1.9</i> U	<i>1.9</i> U	<i>1.92</i> U	2 U	<i>1.9</i> U	<i>1.91</i> U	<i>1.89</i> U	<i>1.9</i> U	12800	29000
DI-N-BUTYL PHTHALATE	μg/L	0.731 J	0.614 J	1.34 J	1.03 J	4.27	3.76 U	<i>1.9</i> U	<i>1.9</i> J	1.92 J	2 U	<i>1.9</i> J	<i>1.91</i> U	1.89 U	<i>1.9</i> U	1600	3600
DI-N-OCTYL PHTHALATE	μg/L	<i>1.9</i> U	<i>1.9</i> U	<i>1.9</i> U	<i>1.9</i> U	2 U	<i>1.94</i> U	<i>1.9</i> U	<i>1.9</i> U	<i>1.92</i> U	2 U	0.312 J	0.448 J	<i>1.89</i> U	<i>1.9</i> U	320	1500
FLUORANTHENE	μg/L	<i>0.19</i> U	<i>0.19</i> U	<i>0.19</i> U	<i>0.19</i> U	0.2 U	<i>0.194</i> U	<i>0.19</i> U	<i>0.19</i> U	<i>0.192</i> U	<i>0.2</i> U	0.311	0.348	0.395	0.323	640	1500
FLUORENE	μg/L	<i>0.19</i> U	<i>0.19</i> U	<i>0.19</i> U	<i>0.19</i> U	<i>0.2</i> U	<i>0.194</i> U	<i>0.19</i> U	<i>0.19</i> U	<i>0.192</i> U	<i>0.2</i> U	0.414	0.521	0.49	0.42	640	240
NAPHTHALENE	μg/L	0.474 U	0.475 U	0.474 U	0.475 U	0.5 U	0.485 U	0.476 U	<i>0.476</i> U	<i>0.481</i> U	0.5 U	11.3	13.2	12.2	13.7	160	6.2
PENTACHLOROPHENOL	μg/L	<i>1.9</i> U	<i>1.9</i> U	<i>1.9</i> U	<i>1.9</i> U	2 U	<i>1.94</i> U	<i>1.9</i> U	<i>1.9</i> U	<i>1.92</i> U	2 U	<i>1.9</i> U	<i>1.91</i> U	<i>1.89</i> U	<i>1.9</i> U	0.792 (ca)	0.56 (ca)
PHENANTHRENE	μg/L	0.0473 J	<i>0.19</i> U	<i>0.19</i> U	<i>0.19</i> U	0.2 U	<i>0.194</i> U	<i>0.19</i> U	<i>0.19</i> U	<i>0.192</i> U	<i>0.2</i> U	0.973	1.32	1.21	1.1	-	-
PHENOL	μg/L	<i>1.9</i> U	<i>1.9</i> U	<i>1.9</i> U	<i>1.9</i> U	1.98 J	<i>1.94</i> U	<i>1.9</i> U	<i>1.9</i> U	<i>1.92</i> U	2 U	<i>1.9</i> U	<i>1.91</i> U	<i>1.89</i> U	<i>1.9</i> U	9600	11000
PYRENE	μg/L	<i>0.19</i> U	<i>0.19</i> U	<i>0.19</i> U	<i>0.19</i> U	<i>0.2</i> U	<i>0.194</i> U	<i>0.19</i> U	<i>0.19</i> U	<i>0.192</i> U	<i>0.2</i> U	0.12 J	0.159 J	0.171 J	0.15 J	480	180

Table 12. South Stockpile Area ground water analytical results for the Colville Post and Pole site located in Stevens County, Washington.

^a Method A cleanup level (Ecology 2001).

Bold values indicate results greater than MTCA cleanup levels and/or EPA Region 9 PRGs for tap water.

Italicized values indicate the reporting limit for the compound.

mg/L - milligrams per liter.

 μ g/L - micrograms per liter.

SVOCs - Semivolatile organic compounds.

J - The associated numerical value is an estimated quantity because the concentrations were less than the required detection limits or quality control criteria were not met.

U - The material was analyzed for, but was not detected. The associated numerical value is the laboratory reporting limit.

(ca) - carcinogen; carcinogen values indicated if available.

PRG - EPA Region 9 Preliminary Remediation Goals (EPA 2004).

MTCA - Model Toxics Control Act (Ecology 2001).

Table 13.Summary of removal options by Decision Area for the Colville Post and Pole
site located near Colville, Washington.

Decision Area	Removal Option
Process Area ^b	No Action
	Option 1 – Excavation and Building Demolition
	Option 2 – Ground Water Monitoring, Slurry Wall, Soil Cap
North Stockpile Area	No Action
	Hot Spot Excavation, Ground Water Monitoring
	Hot Spot Soil/Rock Cap, Ground Water Monitoring
South Stockpile Area	No Action
	Hot Spot Excavation, Ground Water Monitoring
	Hot Spot Soil/Rock Cap, Ground Water Monitoring
Drainage Area	No Action
	Hot Spot Excavation, Ground and Surface Water Monitoring
	Hot Spot Soil/Rock Cap, Ground and Surface Water Monitoring

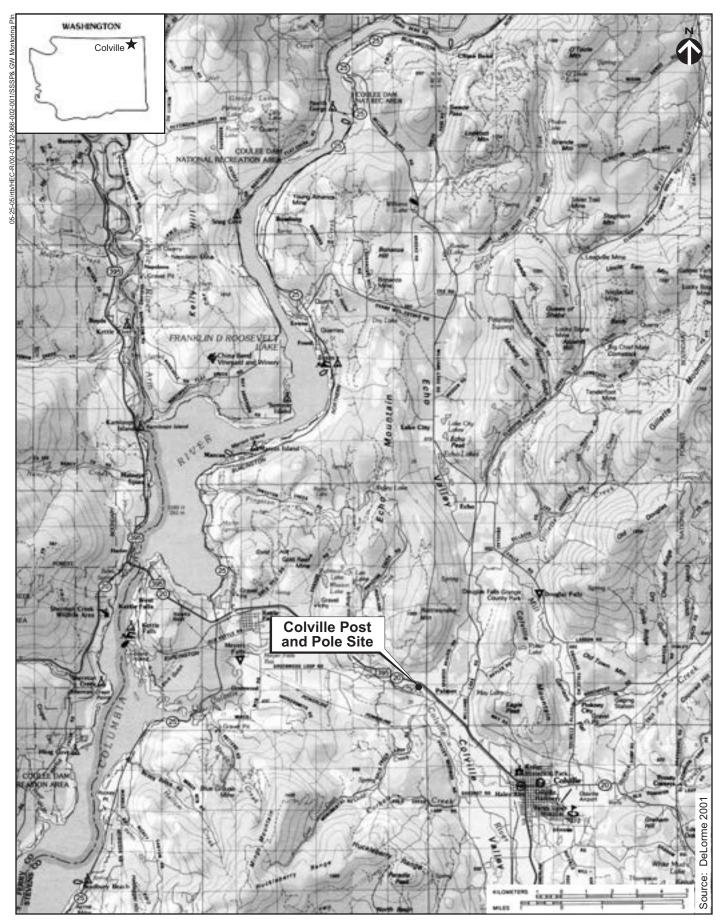


Figure 1. Vicinity map of the Colville Post and Pole site, Stevens County, Washington.



Figure 2. Site map of the Colville Post and Pole site, Stevens County, Washington.

Legend	
	Property boundary
	Wetland boundary
	Stream Decision area boundary
	Decision area boundary
	Ň
	Ň
0 75	150 300 Feet
	1 inch = 150 feet

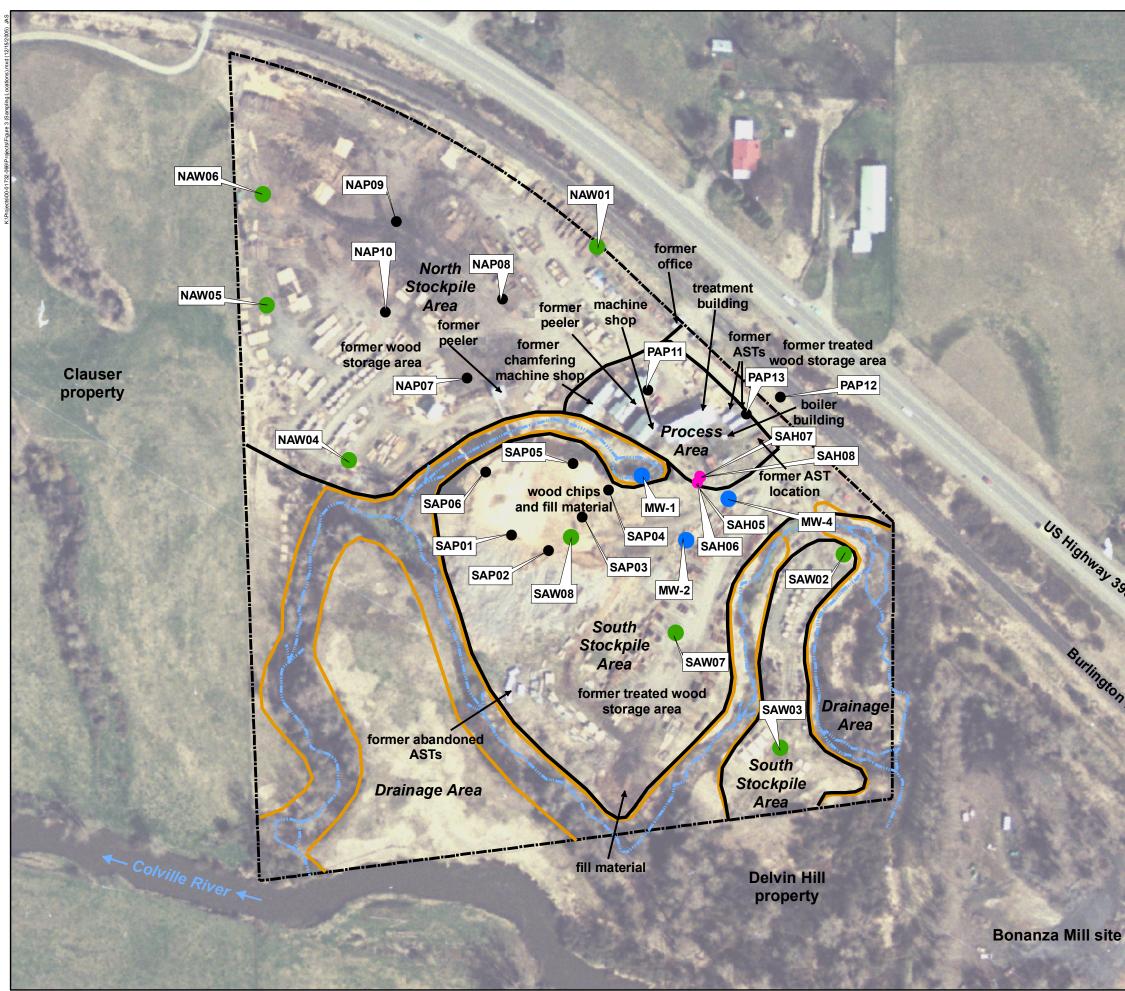
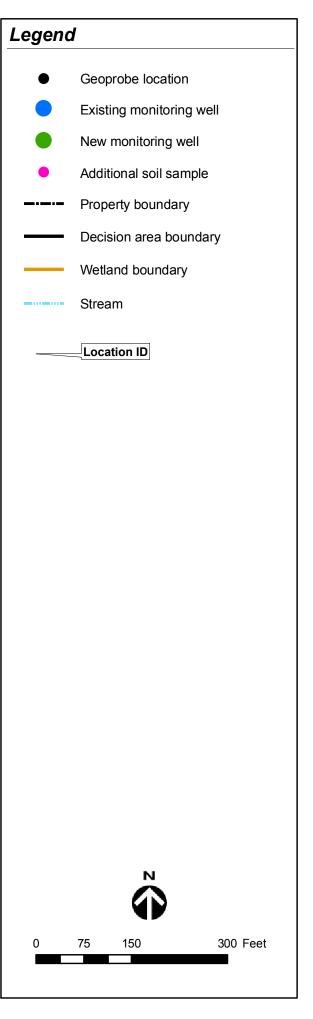



Figure 3. Sample locations for the Phase II Removal Site Evaluation at the Colville Post and Pole site, Stevens County, Washington.

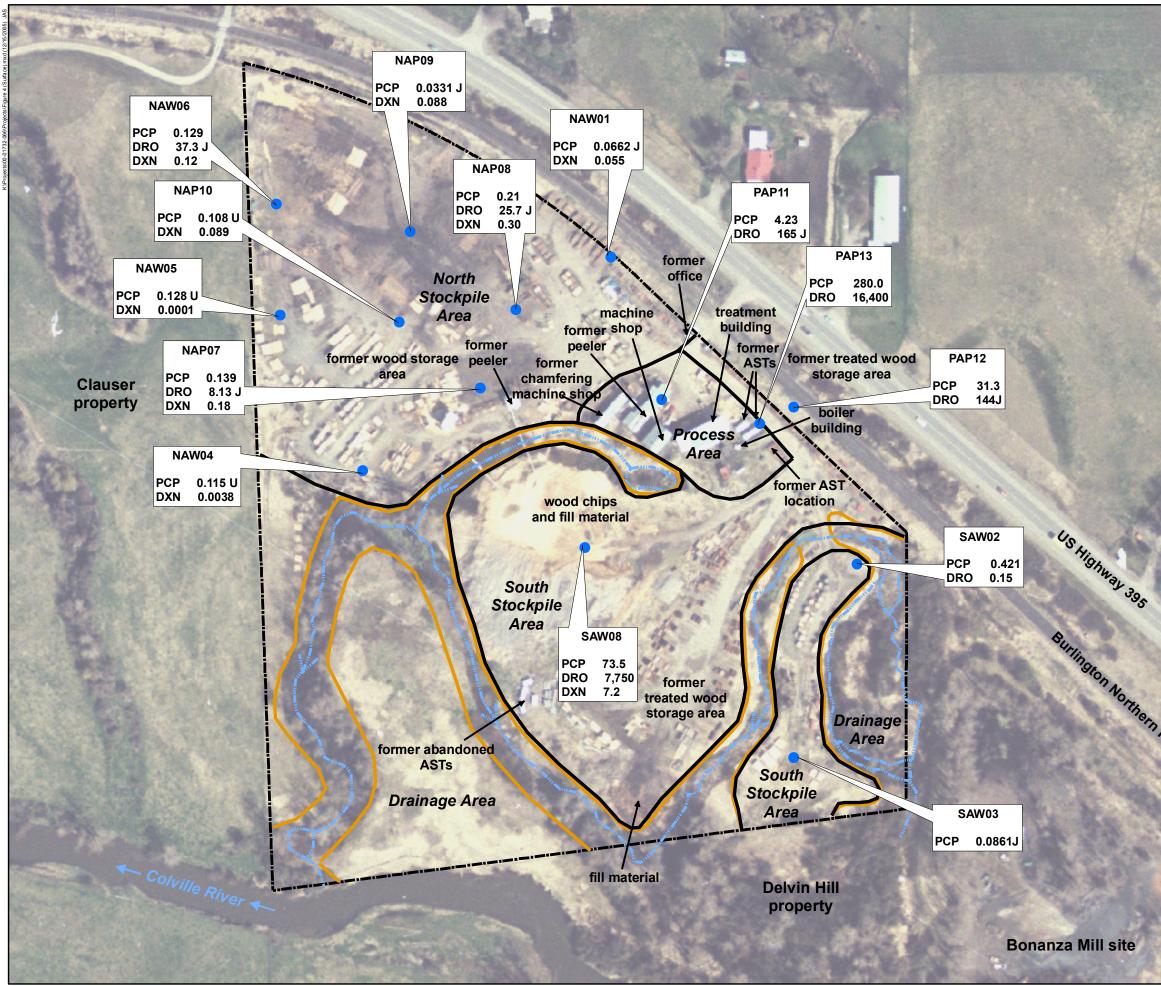
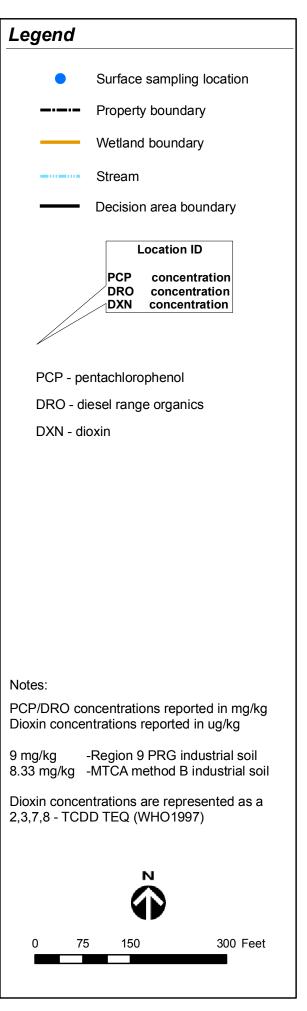



Figure 4. Surface soil sample results for the Phase II Removal Site Evaluation at the Colville Post and Pole site, Stevens County, Washington.

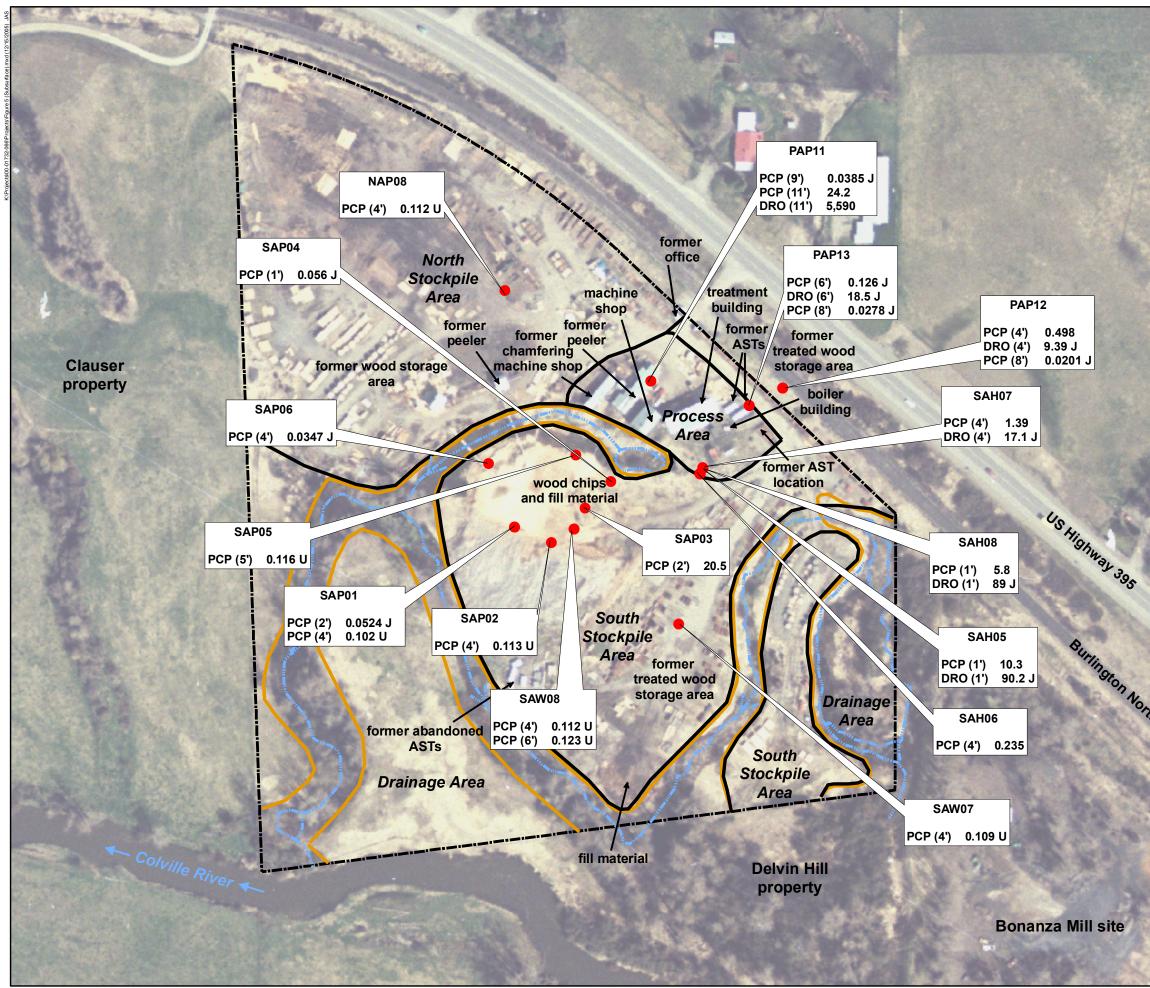
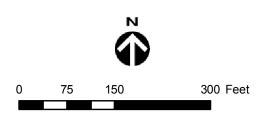



Figure 5. Subsurface soil sample results for the Phase II Removal Site Evaluation at the Colville Post and Pole site, Stevens County, Washington.

Legend Geoprobe location Property boundary Wetland boundary Stream Decision area boundary Location ID PCP (depth) concentration DRO (depth) concentration N/A - Not Analysed PCP - pentachlorophenol DRO - diesel range organics Notes: All concentrations reported in mg/kg Example cleanup levels for PCP: -Region 9 PRG industrial soil 9 mg/kg 8.33 mg/kg -MTCA method B industrial soil 300 Feet 0 75 150

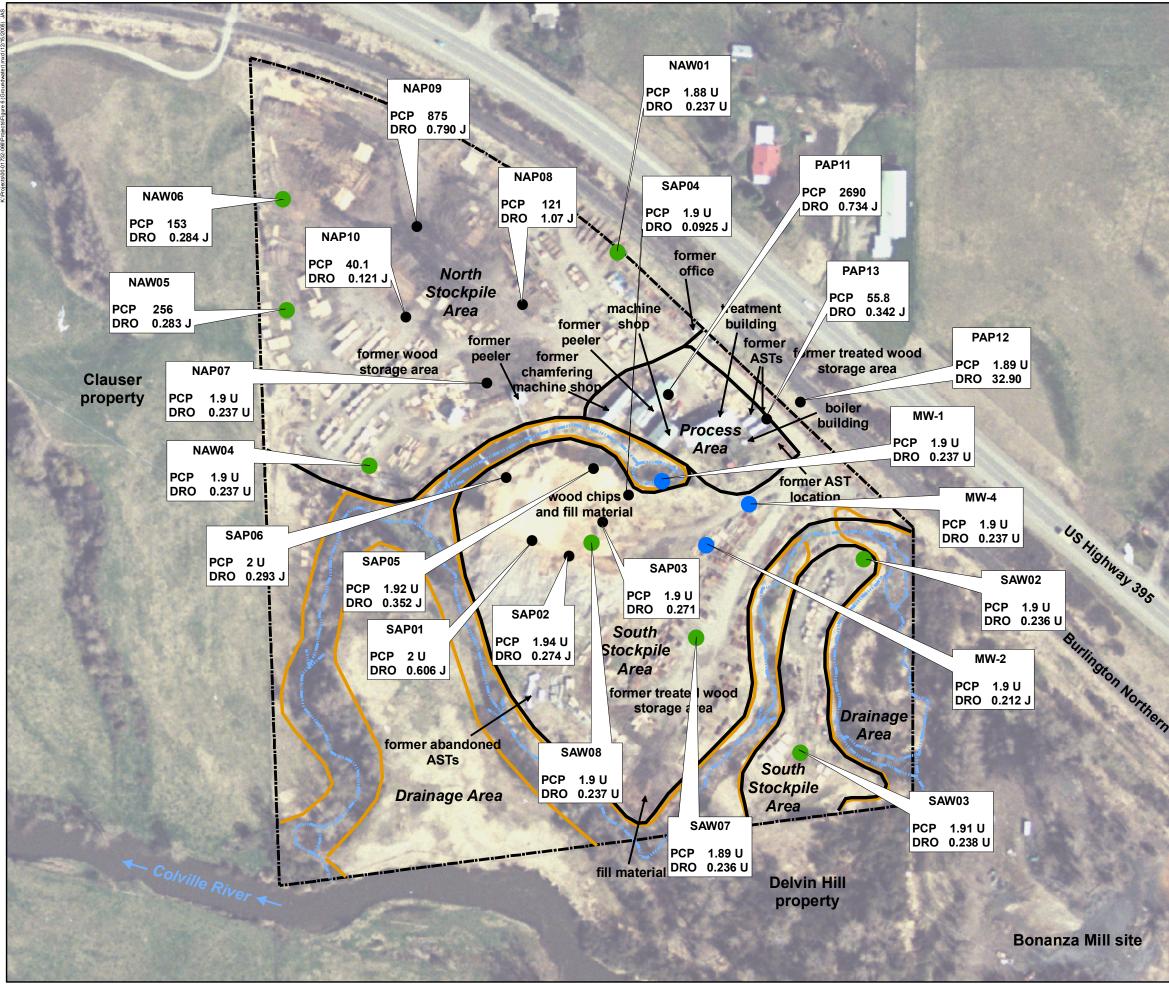
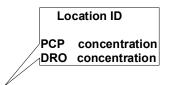



Figure 6. Ground water sample results for the Phase II Removal Site Evaluation at the Colville Post and Pole site, Stevens County, Washington.

- Geoprobe location
 - Existing monitoring well
- New monitoring well
- Property boundary ____
- Wetland boundary
- Stream
 - Decision area boundary

- PCP pentachlorophenol
- DRO diesel range organics

Notes:

PCP concentrations reported in ug/L DRO concentrations reported in mg/L

Example cleanup levels for PCP:

0.729	 0.56 ug/L Region 9 PRG tapwater 0.729 ug/L MTCA method B unrestricted ground water 7.29 ug/L MTCA method C industrial ground water 							
Ň								
0	75	150	300 Feet					

Surington Northern Railroad

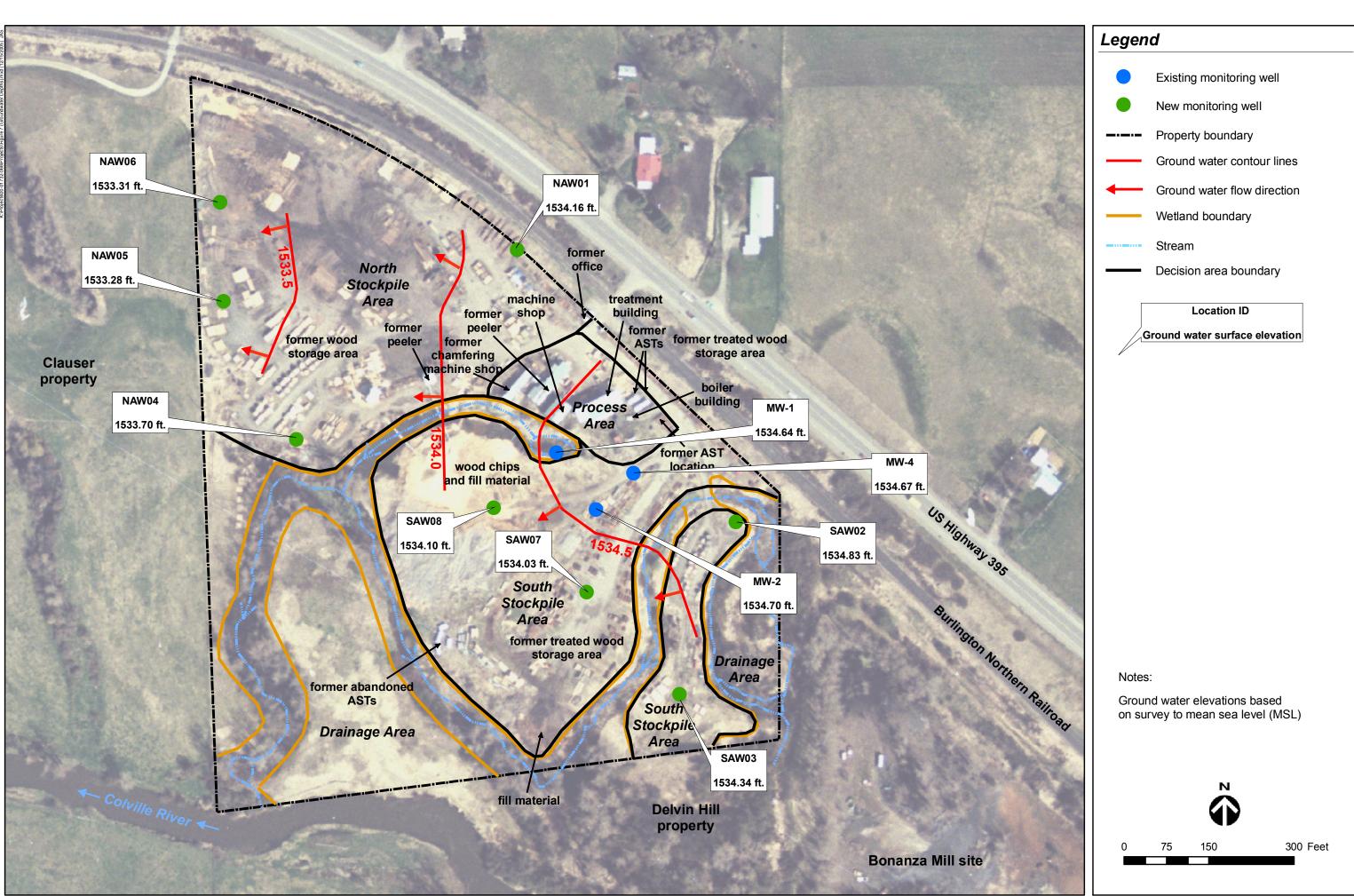


Figure 7. Ground water level contour map, June 17, 2005, for the Phase II Removal Site Evaluation at the Colville Post and Pole site, Stevens County, Washington.

APPENDIX A

Photographic Documentation

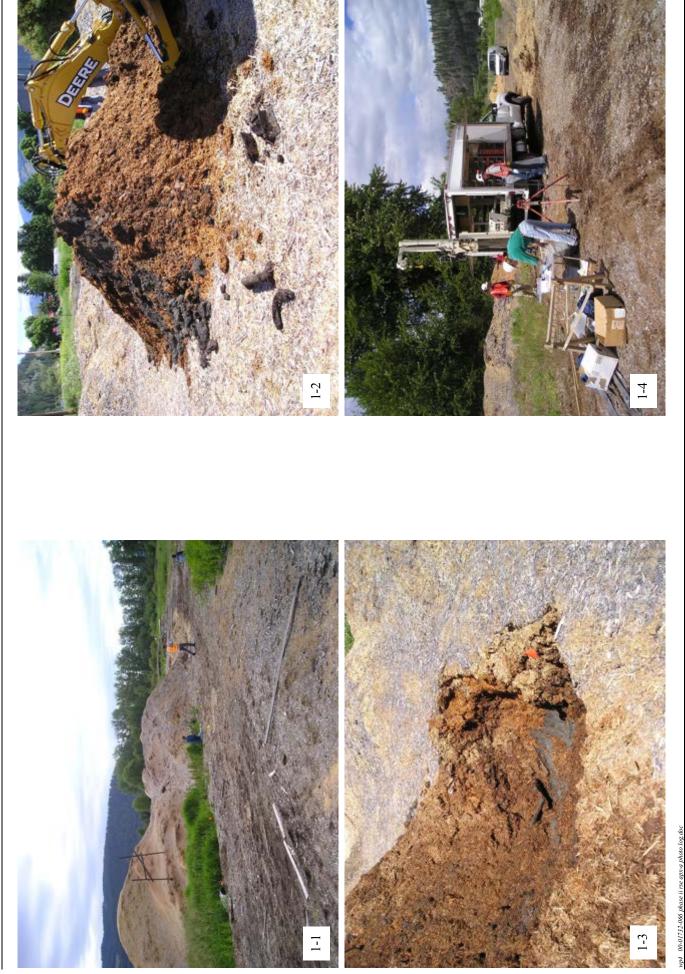

Colville Post & Pole Phase II Removal Site Evaluation
Photographic Log

Photo Number	Date	Time	Direction	By	Description
1-1	06/13/05	0810	Е	PF	View of the sawdust pile, looking from the access road at the culvert.
1-2	06/13/05	1000	NE	PF	Stockpiled soil, wood waste, and waste metal from excavation to investigate geophysical anomaly (A).
1-3	06/13/05	1000	Down, N	PF	View of excavation to investigate geophysical anomaly (A).
1-4	06/13/05	1300	NW	PF	View of push probe location SAP01.
1-5	06/13/05	1410	Ν	PF	Collecting ground water sample SAGWP01.
1-6	06/13/05	1545	Down, N	PF	View of excavation to investigate geophysical anomaly (B).
1-7	06/13/05	1600	W	PF	View of push probe location SAP02.
1-8	06/13/05	1600	SE	PF	View of push probe location SAP02.
1-9	06/14/05	0800	Ν	PF	View of monitoring well location NAW01.
1-10	06/14/05	0809	Е	PF	View of push probe location SAP03.
1-11	06/14/05	0945	NW	PF	Checking water level in existing monitoring well MW-1.
1-12	06/14/05	1030	SE	PF	View of push probe location SAP04.
1-13	06/14/05	1030	NW	PF	View of push probe location SAP04, looking from existing monitoring well MW-1.
1-14	06/14/05	1330	W	PF	View of monitoring well location SAW02, looking from the edge of the flagged wetland.
1-15	06/14/05	1400	W	PF	View of push probe location SAP05 location in the sawdust pile.
1-16	06/14/05	1530	SE	PF	View of monitoring well location SAW03.
1-17	06/14/05	1725	Ν	PF	View of push probe location SAP06, located in the NW corner of sawdust pile.
1-18	06/15/05	0824	NW	PF	View of push probe location NAP07.
1-19	06/15/05	1040	W	PF	View of monitoring well location NAW04.
1-20	06/15/05	1315	SE	PF	View of push probe location NAP08.
1-21	06/15/05	1435	Ν	PF	View of push probe location NAP08.
1-22	06/15/05	1530	SE	PF	View of push probe location NAP10.

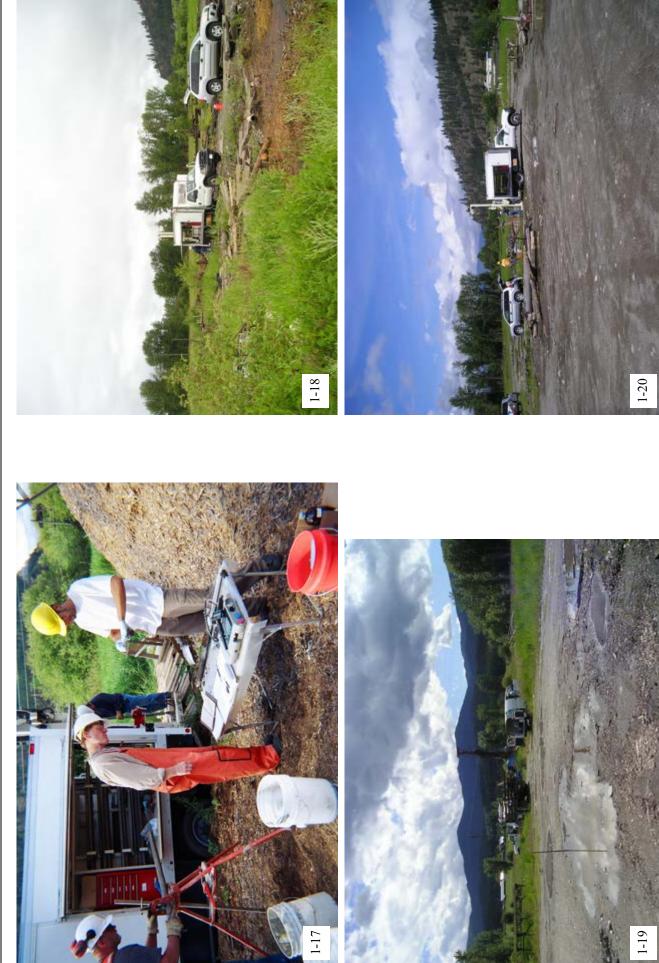
Photo Number	Date	Time	Direction	By	Description
1-23	06/16/05	1321	Е	PF	View of monitoring well location SAW08.
1-24	06/16/05	1326	NE	PF	Close-up of drillers working at SAW08.
1-25	06/16/05	1331	W	PF	View of monitoring well location SAW07, located to the left of the black drum.
1-26	06/16/05	1335	W	PF	View of push probe location PAP11 at NE corner of equipment building.
1-27	06/16/05	1340	SW	PF	View of push probe location PAP13 at the former AST location.
1-28	06/16/05	1419	NW	PF	Collecting subsurface soil samples SASBH0501 and SASBH0604.
1-29	06/16/05	1438	Ν	PF	Collecting subsurface soil samples SASBH0704 and SASBH0801.
1-30	06/17/05	1750	E	PF	View of drums of IDW. The drums shown in the photograph are described in the field logbook as drums 1-16; drum 17 is off camera to the left approximately 3 feet.
Push Pro	be				
2-1	06/14/05	0855	SE	ВН	View of push probe location SAP03. Soils of this sample were primarily clay
2-2	06/14/05	1050	left to right is bottom to top	BC	View of core collected from push probe location SAP04, which consisted of clay from 8 to 12 feet bgs.
2-3	06/14/05	1450	left to right is bottom to top	BC	View of core collected from push probe location SAP05, which consisted of stratified clay and gravel from 24 to 28 feet bgs.
2-4	06/15/05	0945	left to right is bottom to top	BC	View of core collected from push probe location NAP07, which consisted of clay from 12 to 16 feet bgs.
2-5	06/15/05	1050	left to right is bottom to top	BH	View of core collected from push probe location NAP08, which was saturated.
2-6	06/15/05	1400	left to right is bottom to top	BC	View of core collected from push probe location NAP09, which consisted of clay from 12 to 16 feet bgs.
2-7	06/15/05	1615	left to right is bottom to top	BC	View of core collected from push probe location NAP10, which consisted of clay from 12 to 16 feet bgs.
2-8	06/16/05	0830	left to right is bottom to top	BH	View of core collected from push probe location PAP11, which contained a product layer.
2-9	06/16/05	1415	left to right is bottom to top	BC	View of core collection from push probe location PAP13, which consisted of clay from 12 to 16 feet bgs.

Photo Number	Date	Time	Direction	By	Description
REAC					
3-1	06/14/05		Down	REAC	View of core collected from monitoring well NAW01.
3-2	06/14/05		Down	REAC	View of core collected from monitoring well NAW01.
3-3	06/14/05		Down	REAC	View of core collected from monitoring well NAW01.
3-4	06/14/05		Down	REAC	View of core collected from monitoring well NAW01.
3-5	06/14/05		Down	REAC	View of core collected from 10.5 to 12 feet bgs in monitoring well SAW02.
3-6	06/14/05		Down	REAC	View of core collected from 10.5 to 12 feet bgs in monitoring well SAW02.
3-7	06/14/05		Down	REAC	View of core collected from 13.5 to 15 feet bgs in monitoring well SAW03.
3-8	06/14/05		Down	REAC	View of core collected from 13.5 to 15 feet bgs in monitoring well SAW03.
3-9	06/15/05		Down	REAC	View of core collected from 16.5 to 18 feet bgs in monitoring well SAW04.
3-10	06/15/05		NW	REAC	Drilling monitoring well NAW05.
3-11	06/15/05		NW	REAC	Drilling monitoring well NAW05.
3-12	06/16/05		Down	REAC	View of core collected from ground surface to 1.5 feet bgs in monitoring well SAW08.

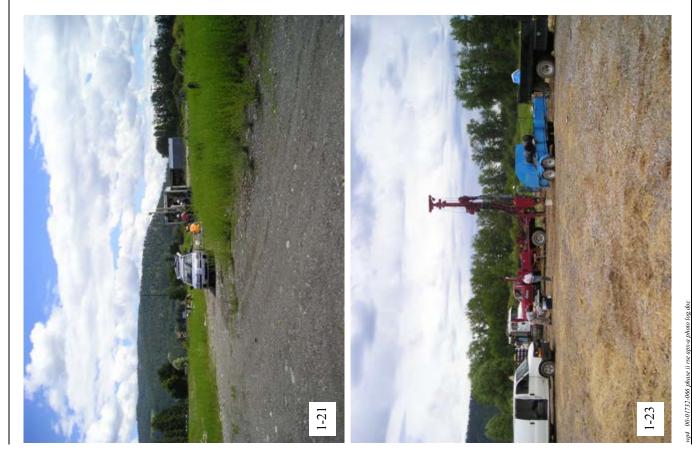
BC – Bruce Carpenter bgs – below ground surface BH – Brady Hanson PF – Paula Fedirchuk REAC – Response Engineering and Analytical Contract

December 13, 2005

wp4 00-01732-066 phase it rse apx-a photo log a December 13, 2005

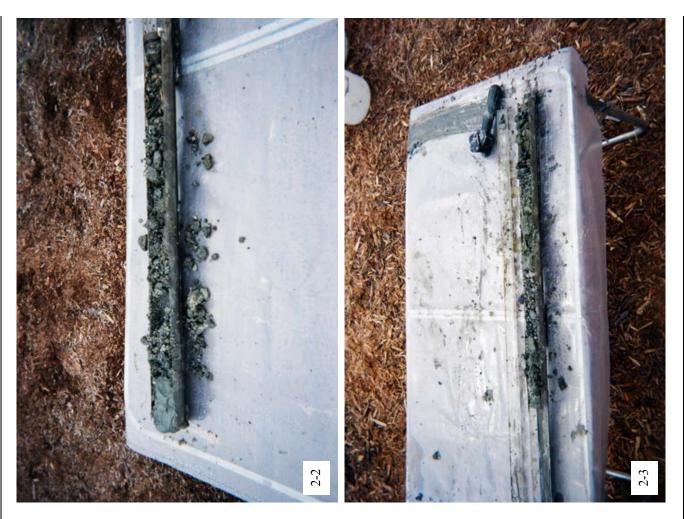


December 13, 2005


wp4 00-01732-066 phase it ree apr-a photo log do December 13, 2005

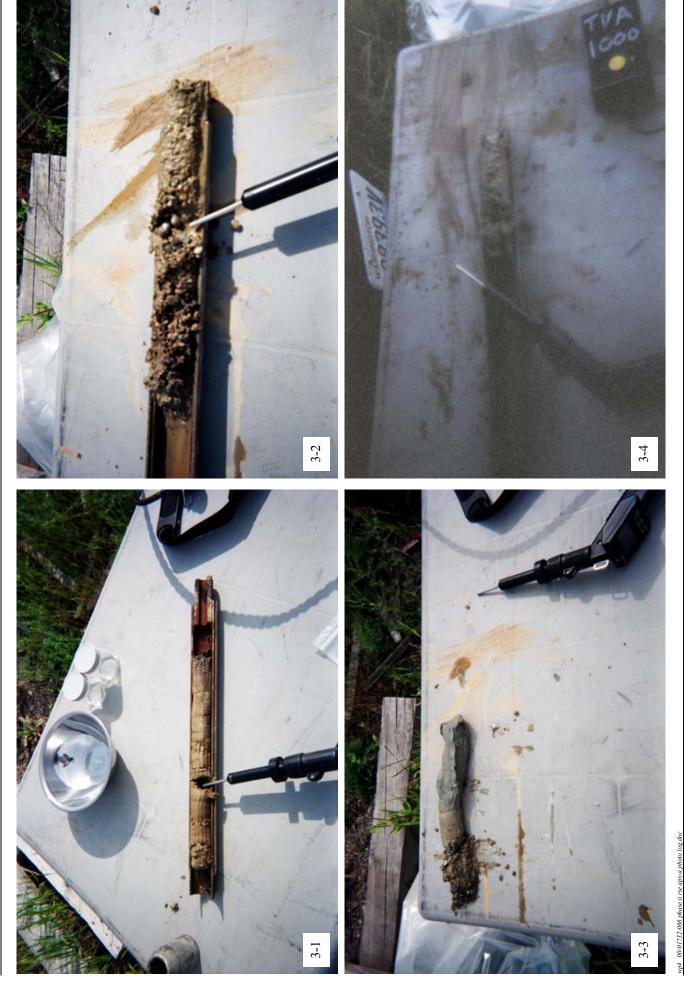
A-7

wp4 00-01732-066 phase if ree apr-a photo log dot December 13, 2005



wp4 00-01732-066 phase ii rse apx-a photo log.dou

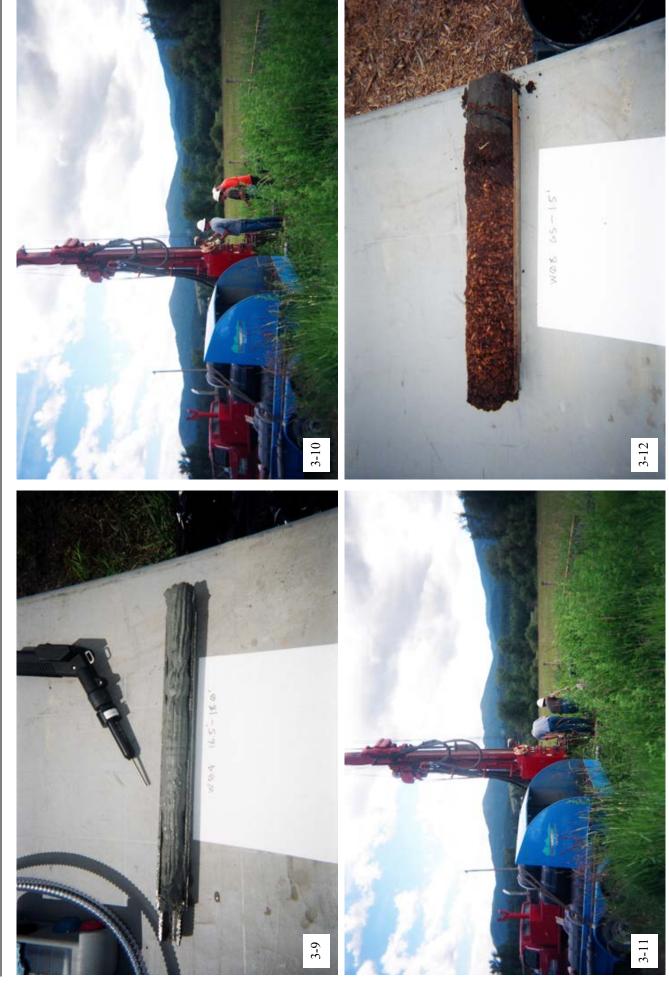
wp4 00-01732-066 phase it ree apx-a phato log doc December 13, 2005



A-13

A-14

December 13, 2005


A-15

A-16

Herrera Environmental Consultants

December 13, 2005

wp4 00-01732-066 phase it ree apx-a photo log doc December 13, 2005

A-17

APPENDIX B

Emergency Response Team Documentation

Lockheed Martin Technology Services Environmental Services REAC 2890 Woodbridge Avenue Building 209 Annex Edison, NJ 08837-3679 Telephone 732-321-4200 Facsimile 732-494-4021

LOCKHEED MARTIN

DATE: July 15, 2005

TO: Duane Newell, US EPA/ERT Work Assignment Manager

THROUGH: Dennis Miller, REAC Program Manager Dave T. Ferrell Miller, REAC Task Leader

FROM: Robert Phillips, REAC Geologist

SUBJECT: GEOPHYSICAL SURVEY AND MONITOR WELL INSTALLATION, COLVILLE POST AND POLE SITE, WORK ASSIGNMENT EAC00141 - TRIP REPORT

BACKGROUND

The Colville Post and Pole site (Site) is the former location of a wood treatment facility near the town of Colville, Washington (Figure 1). The treatment solution consists of 5 percent (%) pentachlorophenol (PCP) dissolved in diesel oil as a carrier. Site soil samples have been collected and analyzed for PCP and fuel contamination since 1989. Washington State Department of Ecology identified evidence of contamination around the treatment tanks and the above ground storage tanks (ASTs). Monitor wells were installed to evaluate the groundwater quality and results showed that groundwater was contaminated with heavy oils and PCP.

PURPOSE

Response Engineering and Analytical Contract (REAC) personnel provided support to the Environmental Response Team (ERT) in assisting Environmental Protection Agency (EPA) Region X personnel with locating possible buried drums at the Site using geophysical techniques. REAC personnel also supervised the installation of eight monitor wells by a drilling subcontractor. Soil cores were logged and screened to assess the extent of subsurface contamination and to determine sample collection depths. Sample management, custody and analysis is the responsibility of the Region X Superfund Technical Assessment and Response Team (START).

OBSERVATIONS AND ACTIVITIES

Geophysical survey

Methods. Two areas were surveyed with electromagnetic (EM) instruments to evaluate the presence of buried drums. The area surrounding the large sawdust pile, referred to as the "South Stockpile Area" was surveyed using a GeonicsTM EM-61 high sensitivity metal detector (Figure 2) and a GeonicsTM EM-31 terrain conductivity meter. The survey grid was laid out with an east-west baseline and north-south survey lines spaced at five foot intervals. The EM-61 was employed in wheel mode to automatically collect readings at 0.6-foot intervals. The EM-31 was triggered manually to collect data along the survey lines at 2.5-foot intervals. The "North Stockpile Area" was surveyed using the EM-61 on 10-foot line spacings oriented perpendicular to an east-west baseline. (Figure 3). The area surveyed was interrupted with numerous objects such as steel tanks

0141-DTW-071505

and beams, large logs and concrete blocks, which account for the large gaps in data collection. Coordinates were noted for all above ground metal, to eliminate those anomalies from the final plot.

Results. From the results of the EM-61 data plot, two anomalies ("A" and "B") were located in the South Stockpile Area for excavation (Figure 2). The largest anomaly on the north edge of the survey area was excavated to reveal numerous pieces of scrap metal at approximately five feet below ground surface, of which approximately four feet consisted of sawdust. The excavation for the second anomaly was dug to four feet and no metal was found. Based on the size of the response and findings of anomaly A, no other locations were deemed worthy of excavation by the Region X On-Scene Coordinator (OSC). After review of the North Stockpile Area and ground truthing of the surface metal, it was concluded that no large anomalies required excavation.

Monitor Well Installation

Methods. Using a Schram T300 drill rig, 9-inch hollow-stem augers were advanced through the overburden and the saturated zone until a layer of blue-grey silt was encountered at approximately 12 to 16 feet below grade. Continuous cores were collected using split-spoon samplers. Cores were logged and field screened using a Total Vapor AnalyzerTM (TVA) 1000. All wells were constructed of two-inch inside diameter Schedule 40 polyvinyl chloride (PVC) with 10 slot (0.010 inch) screens. The wells were screened from total depth to no less than 4 feet below ground surface (bgs). This allowed for one foot of sand pack above the screen interval, two feet of bentonite clay seal and one foot of grout to ground surface. Wells were completed with either flushmount vaults or three foot steel stick-ups as per request of the OSC.

Results. Well logs, including well construction details and TVA values are included as Appendix A. Core lithology varied very little from well to well, and indicated a layer of firm dark brown silty clay at the surface coarsening to silty sand above the water table. Cores from the saturated zone downward revealed medium sand to coarse sand and fine gravel, poorly sorted with 50% rounded 2-4 centimeter clasts. The coarse sand/fine gravel was sharply underlain by a tight dense blue-grey 100% silt layer. Total well depth (TD), screen interval and depth to water (DTW) are included in Table 1.

During well construction, soil samples were collected at the surface interval (0-12 inches) and again at the water table. Total volatile organic compounds (VOCs) were present in monitor well W08, located just south of the wood chip pile. A petroleum odor in the soil core at 4.5 feet bgs and a TVA reading of 63 parts per million (ppm) were noted.

CONCLUSIONS

No anomalies of the size and intensity that would indicate buried drums were apparent in either the North Stockpile Area or the South Stockpile Area. It was difficult to discern changes in conductivity that would indicate disturbed ground because of a four-foot thick surface layer of sawdust.

Based on the core logs and field screening, soil cores from W01 through W07 monitor wells indicated no gross contamination was present. Soil and groundwater analytical results will later be provided by Region X START contractor and may be used to verify this conclusion.

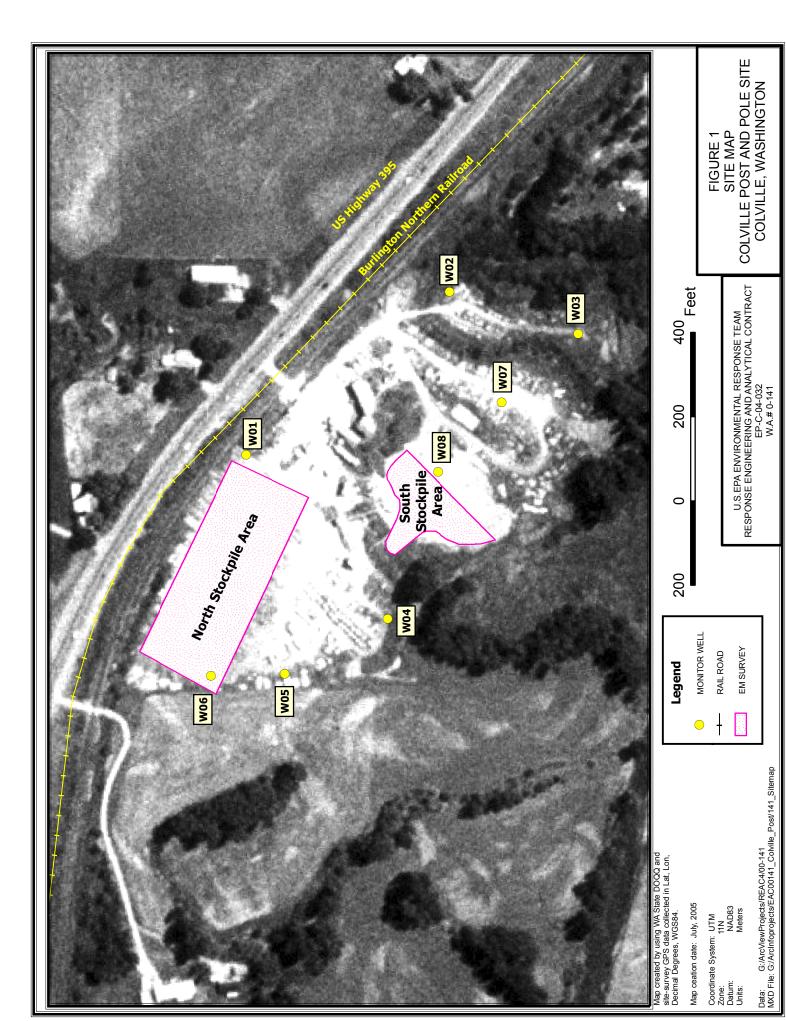
Cc: Central File - WA # EAC00141 Electronic File - L:/Archive/REAC4/141/D/TR/071505 Dennis Miller, REAC Program Manager (cover page only)

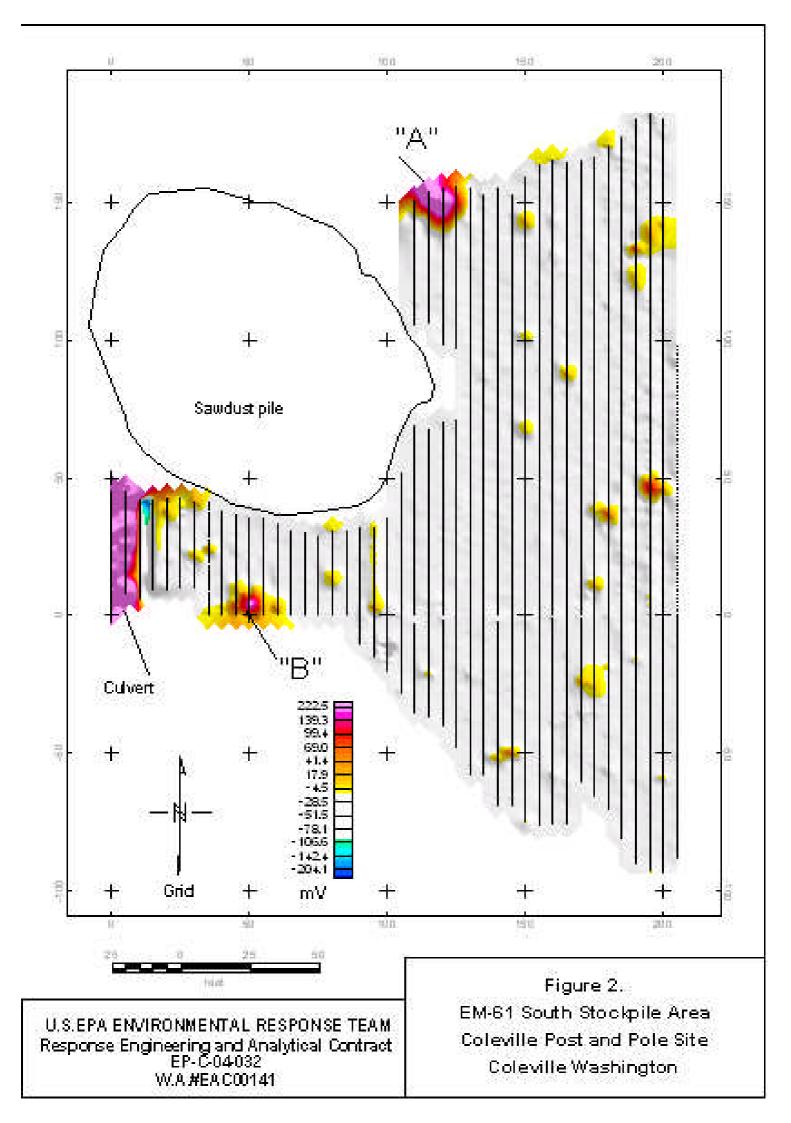
0141-DTR-071505

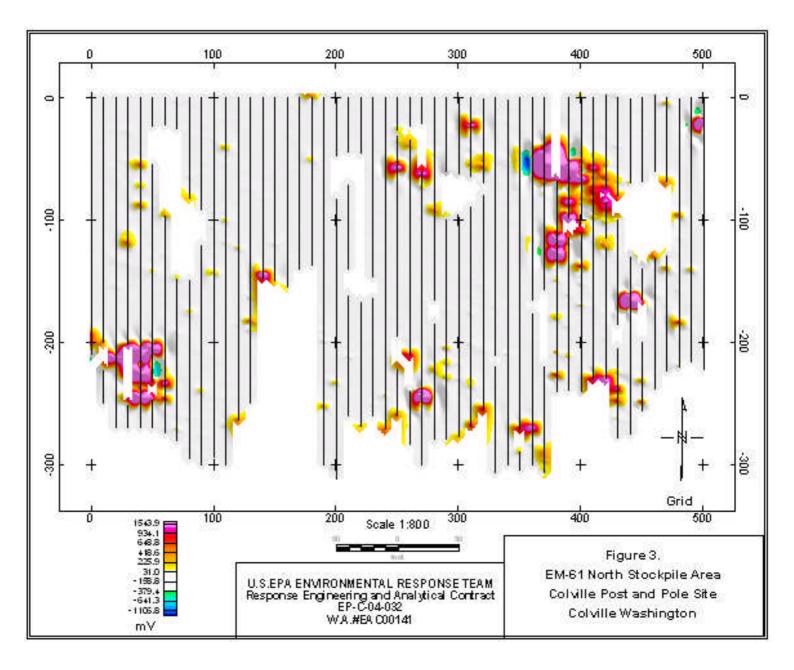
TABLE Monitor Well Construction Colville Post and Pole Site Trip Report July 2005

Table 1. Monitor Well Construction Colville Post and Pole Colville Washington July 2005

Well ID	TD (feet bgs)	DTW (feet bgs)	SI (feet bgs)
W01	14.5	6.24	5 -14
W02	11.6	3.31	4 - 12
W03	14.3	5.19	5 - 15
W04	15.4	3.06	4 - 16
W05	15.2	4.57	4 - 16
W06	12.8	3.28	5 - 13
W07	12.0	3.22	4 -12
W08	21.5	6.16	6 - 20


All measurement from top of casing (TOC) TD - total depth


DTW - depth to water


SI - screen interval

bgs - below ground surface

FIGURES Site Map and Geophysical Surveys Colville Post and Pole Site Trip Report July 2005

APPENDIX A Monitor Well Core Logs Colville Post and Pole Trip Report July 2005

0141-DTR-071505

Project n Project n Client HEC rep.		<u></u>		Drilling (Location Start dat Compl. c	te	or 6/14		Sampling method Ground elevation Air monitoring (Y/N)	WOI 	B55
Instrument reading (ppm) F1D	Sample type, interval	% recovery	Blow counts	Depth (feet, BGS)	Water level (feet, BGS)	Soil group	Soil description	Instrument(s)		Well Details
	Lont X	75 90 70 70 70 70 70 50 50	6.5.4 2.3.3 2.2.3 2.2.4 3.3.1 9.9.7 10.64 5.6% 3.2.3 1.31	1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0			TAN SUTY ESANA TAN SUTY E C. SAND 407 C. SAND 50° C. SAND 50°/0 SAME AS A	RD -> SILTY SAND MST SAND WET 6 4 MM RND SAT 70 1-2 CM RND SAT 2 CM RND	AT	19-5 2" PUL RISCE Y
									4. 5' 7' 7 7 7	EENT. SAND

.

		Boring # $W \oslash 2$ Total depth <u>12' B65</u> Sheet <u>of</u>
Project name COLVILE	E P+P Drilling Contractor	Drilling method Z HSA Sampling method SPS
Client HEC rep.	Start date b)14 Compl. date 6/14	Ground elevation Air monitoring (Y/N)
	ŗ	Instrument(s)

Instrument reading (ppm)	Sample type, interval	% recovery	Blow counts	Depth (feet, BGS)	Water level (feet, BGS)	Soil group	Soil description		'ell ails
Ø	(one) X	<u>\</u> ø	7.13.12				ORDANIC MAT S-10 CM RND 10% F SANDY SILT GRD M/C SAND MOT M/C SAND 50% RND 4 MM WET M/C SAND 50% RND 2 CM SAT	1	۲. [*]
\bigtriangledown		4.15-	7.6.6				E SANAY SILT GRB M/C SAND MOT	1	<u>ً</u> د
0	*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	43	147	4.5			m/c shub 50% RNS 4 mm WET		DIX M
5	LOMP X	40	3.5.3	6.0	∇		M/2 SANG. 50% RND 22M SAT	A TANK ALL	Š
Prinsten akting		32	6.8.9	7.5			SAME	****	えど
*******		2.20	3.5.3	9.0			5ÅME	•	3
Prof. Holingham	N - Calay call	2.0	3.5.3	10.5			SAME AS ABOUT		1
		<u>90</u>	3.3.1.	12.0			BLUE/GREY TIGHT DENSE entry 011.5'	65	たいたや
									1
									5 N. 3
							3		
·									
								Ď	()
		******					<u>V</u>		SANE
		·····						Xee	, Č
·····		·····		•••••••••••••				V	
				•••••					
								\mathbb{R}	Ġ.
		······					Trate baby 100		
		•••••••					TOTAL DEFTH 12'		
				•••••					
		••••••							
						•••••			
	•••••				•••••				
· · · · · · · · · · · · · · · · · · ·	•••••••••			••••••		·····			
		· · · · · · · · · · · · · · · · · · ·		••••••	••••••				
	1		•••••	••••••	•••••				Ì
	•••••••		••••••			·····			
	•••••••	******			• • • • • • • • • • • • • • • • • • • •	•••••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		· · · · · · · · · · · · · · · · · · ·				•••••			

SOIL BORING AND MONITORING WELL **CONSTRUCTION RECORD**

		Boring # <u>N - C-</u> Total depth <u>15 B4-5</u> Sheet <u>0</u> f
Project name COLVICE For	Drilling Contractor	Drilling method X' HSA
Project number	Location	Sampling method SPS
Client	Start date 6/14	Ground elevation
HEC rep.	Compl. date 6/14	Air monitoring (Y/N)
	r	Instrument(s)

Instrument reading (ppm) F D	Sample type, interval	% recovery	Blow counts	Depth (feet, BGS)	Water level (feet, BGS)	Soil group	Soil description	Well Details
Ø	KOMP X	50	616-2.4	1-5		1	20% IN BRIDGING ZEM CLAST SUT	elky
Ø		50	12-64	3.0			SULTY CLAY DURY BROWN 10%.	
Ø		4.0	2.4.6	$\langle q_{i}, \leq \rangle$			TUR DO'SE BLAY CLAY	
2		<u> </u>	423	6.0	• • • • • • • • • • • • • • • • • • • •	*****	SILTY SLAT W/F. SANGLEDSF OF	
		100	1-1-2	15			CLAM SHE STLT WARK GREV MST	72N
U V	Sr¥P X	Q0	115	9,0	∇		M SAMD WELL SOFTED SAT WET	
		50	5-4-3	10.5	······································		SAME AS ABJUE SAT	X P T
		10	3.1.3	12.0		• • • • • • • • • • • • • • • • • • • •	M SAND SUB AND BOOK SORED 10%	
		ξØ.	7-8-7	13.5		*****	Rot SOFIEL ANGULAR JOK SLM 445T	SER MOLAT
		80	3.2.3	15.0		****	HOR SOFTED ANGULAR DO'L SEM CLAST M/C SAND 20% 2MM CLAST BLUE GREY & 19' DENSE TIGHT CHAPT	- 1 [™] - 1 [™] - 1 [™]
							RIA' DELLE TILLE	65
					***********		SUT	

						···		15
							······	
							4	
							5	
					·····	*****		
						•••••		X X
				••••••		•••••	7	25
						****	<u>v</u>	N V
					•••••••••••••••••••••••••••••••••••••••	*****		X
					•••••	• • - • • • • • • • • • • • • • • • • •	······	
					*'****			X
						•••••		
							TOTAL DEPTH 14	•
			*****		****		ASTAL PLITTP 1	
	••••••				••••••			Í
[·····		•••••••					
	····	·						
		•••••						
		•••••				••••		
	••••••		·····		••••••			
<u> </u>	•••••••••••••••••••••••••••••••••••••••	·····	••••••					
	•••••••	•••••				•••••		
		·····	••••••		•••••••			ĺ
	L							

							Boring # Total depth Sheet	<u>W84</u> of	<u>' 865</u>
Project name <u>Selvite Fit</u> Project number Client HEC rep.				Drilling C Location Start dat Compl. c	e _	or <u>6(13</u> 		'HSA SAS	
Instrument reading (ppm) ぞいひ	Sample type, interval	% recovery	Blow counts	Depth (feet, BGS)	Water level (feet, BGS)	Soil group	Soil description		Well Details
0-4 1-0 1.8 1.2 1.7 1.5 1.5 1.6	Comp 6	60 100 100 100 70 70 70 70 60 90 50 100	1.3.4 1.1 1. 1. 2.1.1 1.1.3 2.2.11 4.2.1 1 1. 1. 1. 2.2.11 1. 1. 1. 2.2.11 1. 1. 1. 1. 2.2.1.1 1. 1. 1. 2.2.1.1 1. 1. 1. 1. 2.2.2.11 1. 1. 1. 1. 1. 1. 1. 1. 1.	3.0 4.5 6.0 7.5 9.5 12.0 13.5 12.0 13.5			SAME AS ABOUE MST 10% F. SANDY SILT WET M. SAND LENS @ 8' SAT SILTY S 40% 5-10 MM RNA M. SAND WELL SOFT M. SAND C. SAND SIP C. GRAVEL POOR SOFT 21 C. SAND SIP C. GRAVEL POOR SOFT 21 C. SAND SOME POOR SOFT GRAVEL		2. Binn Price Rise R
							T	5 J D. 16	

		Boring # <u>W@5</u> Total depth <u> 6</u> Sheetof
Project name COLVILLE BEL	Drilling Contractor	Drilling method
Project number	Location	Sampling method SPS
Client	Start date 6/15	Ground elevation
НЕС гер	Compl. date	Air monitoring (Y/N)
Instrument Sample	Depth Water	

reading (ppm) 下いち	type, interval	% recovery	Blow counts	Depth (feet, BGS)	Water level (feet, BGS)	Soil group	Soil description	Well Details
*7	<u>kom</u> (90	2.3.3	1.5			DE BROWN SILTY KLAY DENSE DRY	
1.3	• • • • • • • • • • • • • • • • • • • •	100	1.2.3	3.0			SILTY SAND DAK GREY MST SILTY SAND 30% ZAN RHD WET	بح بر
1.2	*******	50	2-2.3	4.5			SILTY SAND 30% ZEM RHD WET	
2.15	Comi	50	9.8.11	6.0	A		C. GRAJEL WET M. SAND 50°/. C. GRAVEL SAT	14
22	***	<u>3</u> 0	4.7.9	7.5			M. SAHE SOM, C. GRAVEL SAT	0
•••••••		50	5.8.8	9.0			C. SANS F. GRAVEL FOOR SORT	
		30	6-6-3	10.5			SAME	Kan PC
	********	2_P	5.8.8	12.0			SARE	40
		42 40	4.7.9	13.5			Some	70
		40	5.5.8	15.0			SAME AS ABOUE	
No. 1101-05 No. 64	·	50	7.3.1	16.5			SAME TO 16' BLUE LARDY TIGHT BAKE SILT	. [# 79
				:		******	I I	· · · · · · · ·
							"*************************************	
					·-•··	•••••	62	-
		•••••••				·····		20
	•••••					.,,		PENT
						·····	3	
							4	L-
							5 7	X
·····	•••••••							K)
								X
								All N
•••••••••••••••••••••••••••••••••••••••			••••••	••••••	•••••••			× * *
			<u>،</u>	·····				
·····								
······				•••••••				
······								13
·		······						
•••••••••••••••••••••••••••••••••••••••	······			·····				
·····	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·					16' T.A.	
·····	·····	·····						
	·····	·····						
·····		·····			×	I		
·····		·····						11 1 A 1 A 1 A
	·····							

SOIL BORING AND MONITORING WELL CONSTRUCTION RECORD

								Boring #	WØ6	}	
								Total depth Sheet _	of		
Project n Project n Client HEC rep.	umber	vuee P		Drilling C Location Start dat Compl. c	e _	or 6/4 6/		Drilling method Sampling method Ground elevation Air monitoring (Y/N)	8" HSA <u>SPS</u>		
								Instrument(s)			
Instrument reading (ppm) FLN	Sample type, interval	% recovery	Blow counts	Depth (feet, BGS)	Water level (feet, BGS)	Soil group	Soil description			Well Details	
		50 30 50 50 40 30 10 10 100	4.0.7 3.2.3 1.1.1 0.0.2 1.5.5 1.4.2 4.5.2 4.5.3 0	1.5 3.0 4.5 6.0 7.5 12.0 13.5 15.0			C.SAND GRE SAME SAME SAME SAME AS AE	MST VCLAY MST V SAMPLER VET F SPAVEL PER SORT 2 (0 5 MP RNL		2" DAM WARKER BOT SANC	

			· .				Boring # <u>い</u> のつ Total depth <u>1</u> 4 Sheet of	
Project na	ame	······		Drilling (Contract	or	Drilling method	
Project nu	umber			Location			Sampling method	
Client		······································		Start da	-	411		
HEC rep.	·		······	Compl. o				
, i <u>n</u> o , op.			·····	Complet	Jale		Air monitoring (Y/N)	······
							Instrument(s)	
Instrument reading (ppm) モット	Sample type, interval	% recovery	Blow counts	Depth (feet, BGS)	Water level (feet, BGS)	Soil group	Soil description	Well Details
1.0	COMP X	50	6.8.5				DK BROWN DENSE SILT DRY	·····
0.8		-50	2.3.5	1			DK BROWNS SILT SHE M SAND WELL DET MST	-
1.1	Contx	50	44.5	4.5	V.		M/G SANG 200% ARAVES PHA 2-M LIFT	
1.2		2.10	3.3.3	6.0			POOR JORT FERAVEL RND 4 CM CLOT SAT	
·····		30	4.5.6	7.5			C. GRAVEL 20%0 6-8 CM SAT	
		60 20	5-9-11 7-10-7	9.0		•	C. SAND 50% GRAVEL RND 2-6 CM SAT	
		20	5.2.1	12.0		•	SAME	
~	~~~~~~	1200	0	13.5		•	THAT LENSE BUE GREY CLAY @14'	
				·····		1	THAT LEIKE BUE GREY CLAY @14'	
1,1.2,4 m H + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +					*****************			· · ·
		·····						
		·····					4.5	
		·····			·····			and the second second
					•••••	•••••		891
				•••••	····	•••••		
		********			• • • • • • • • • • • • • • • • • • • •			
					•••••••••••••••••	•••••	<u>برم</u> برم	X
•••••••••••••••••••••••••••••••••••••••					-			
					·····			
					••••••			143 172
••••••	······						14	<u></u>
·····	·····			·····				00046-11100000
		ч.					1	Ì
				1				
							· · · · · · · · · · · · · · · · · · ·	ł

Project na Project na		han the second		Drilling (or		Boring # Total depth Sheet Drilling method Sampling method	<u>19.</u> of <u>8" HSA</u> SPS	
Client				Start dat		11		-	<u></u>	······
HEC rep.			·········		-	6	<u>(16</u>	Ground elevation		-
			·····	Compl. c	iale		<u> </u>	Air monitoring (Y/N) Instrument(s)	<u> </u>	
Instrument reading (ppm)	Sample type, interval	% recovery	Blow counts	Depth (feet, BGS)	Water level (feet, BGS)	Soil group	Soil description	99999944		Well Details
6.1	COMP	100	2.55				wood atits 1)	SILTY SANG PETR	Lot opor	
t]·D		130	3.3.2	3.0			LK GREY SILT	1 SANG WELL SRT	MOTERMA	
63.0	COMP	100	3-2-1	4.5			SAME	7	MST	
24.0	<u> 2077</u> 42	100	1.00	6.0	∇		SAME		SAT	
<u>(</u>)	u dar anno 14 comar	60	1:58	7.5	·····		WE LET SIGTY	SAND SHE CSANE	+/GRAVEL	
<u> </u>		SØ	5.8.7	9.0			C-SAND GRAVI	EL 50% 22M RN	N WETS	T
Managaran and		40	5.6.9	10.5			SAME		SAT.	(
	· · · · · · · · · · · · · · · · · · ·	30	4.5.6	12.0	·····		SKME			
······	· · · · · · · · · · · · · · · · · · ·	30 50	7.7.2	13.5			SAME	ых <u>ж. у. ў. 7.</u> андын-	******	
		20 40	3.8.5	15.0	••••••		C. SAND LAD	SANGY SILL		
	····-	2.2	5 3		·····		C-SAND/GRAVE SAME	1 50% 2-4 cm R	INV A	
an a		2_D	515,3	1 <u>0.5</u>	•••••••••••••••••••••••••••••••••••••••		C-SAND GRAVE		55 J	52 3 5-5
							- 20103 - 2010	L W/ SIL Y ANY		
•••••••	••••••						·····			
									5	
	-*									
		••••••								
	····				•••••	·····				12
				•••••••	•••••••	•••••				Ň
	·····									
、										
·									195	
	······								·····	
·····			······	·		••••••••••				
	·····		·····•			•••••••••••••••••••••••••••••••••••••••				
	·····				·····					
						1				

APPENDIX C

Push Probe Boring Logs

Boring #	SAP01
Total depth	16 feet
Sheet 1	of 1

Project name <u>COLVILLE3</u>	Drilling Contractor _ESAT	Drilling method
Project number 01732-066	Location South of sawdust pile	Sampling method <u>4' sampler w/liner</u>
Client EPA		Ground elevation
HEC rep. <u>B. Carpenter/BH</u>	Start date	Air monitoring (Y/N)Yes
	Compl. date June 13, 2005	Instrument(s) FID/PID

Instrument reading (ppm)	Sample type, interval	% recovery	Depth (feet, BGS)	Water level	Soil group	Soil description
	Push-		1			Wood chips, dry
FID=20	Probe SASBP01-02	50	2		ML	Very dark grayish brown (10YR3/2) sandy SILT, moist
			4	⊻	SM	Very dark grayish brown (10YR3/2) silty SAND, moist Ground water level measured at 4 feet and encountered during
	SASBP01-04		5			drilling at 4 feet
FID=10 PID=0.2	Push- Probe	30	6			
			7		GM	Gray (10YR 5/1) sandy GRAVEL with silt, cobbles (2"), wet
			9 9			Gray (101K 3/1) saidy GKAVEL with sitt, coboles (2), wet
FID=0	Push- Probe	33	10			
	11000		11			
			12			
FID=0	Push-	50	13 14			
	Probe		15			
			16		СН	Gray (10YR5/1) silty CLAY, moist to wet
			17			Set temporary screen from 3.5 to 7.5 feet. Abandoned borehole by pressure grouting with bentonite.
			18			
	1		19			
			20	<u> </u>		

 Boring #
 SAP02

 Total depth
 16 feet

 Sheet
 1
 of

Project name _COLVILLE3	Drilling Contractor ESAT	Drilling method Push-probe
Project number 01732-066	Location	Sampling method4' sampler w/liner
Client EPA		Ground elevation
HEC rep. <u>B. Carpenter/BH</u>	Start date <u>June 13, 2005</u>	Air monitoring (Y/N)Yes
	Compl. date <u>June 13, 2005</u>	Instrument(s) FID/PID

Instrument reading (ppm)	Sample type, interval	% recovery	Depth (feet, BGS)	Water level	Soil group	Soil description
FID=0	Push- Probe	85	1 2			Wood chips, dry
PID=0	SASBP02-03		3	T ▼	ML	Ground water level measured at 3.4 feet Very dark grayish brown (10YR3/2) sandy SILT, moist
FID=20	SASBP02-04 Push-	50	5		SM GM	Ground water encountered during drilling at 4 feet Gray (10YR5/1) silty SAND, wet Gray (10YR 5/1) sandy GRAVEL with silt, cobbles (2"), wet
PID=0.4	Probe		7		-	
			9		ML	Lens of sandy SILT with gravel
FID=0 PID=2	Push- Probe	50	10 11 12			
			13		СН	Gray (10YR6/1) gravelly CLAY, with cobbles, silt, wet
FID=0 FID=0	Push- Probe	75	14 15			
			16 17			Set temporary screen from 3 to 7 feet. Abandoned borehole by pressure grouting with bentonite.
			18 19			
			20			

 Boring #
 SAP03

 Total depth
 20 feet

 Sheet
 1
 of

Project name COLVILLE3	Drilling Contractor ESAT	Drilling method Push-probe
Project number 01732-066	Location	Sampling method <u>4' sampler w/liner</u>
Client <u>EPA</u>		Ground elevation
HEC rep. <u>B. Carpenter/BH</u>	Start date June 14, 2005	Air monitoring (Y/N) Yes
	Compl. date June 14, 2005	Instrument(s) FID/PID

Instrument reading (ppm)	Sample type, interval	% recovery	Depth (feet, BGS)	Water Ievel	Soil group	Soil description
	Push- Probe		1			Wood chips, dry
FID=19 PID=0	SASBP03-02	75	3		SW	Gray (10YR6/1) and yellowish brown (10YR5/6) mottled gravelly SAND with silt, occasional cobles, moist
	SASBP03-04		4	⊻		Ground water encountered during drilling at 4 feet Ground water level measured at 4.3 feet
FID=2	Push-	50	5 6			
PID=0	Probe		7			
			8		GW	Dark gray (10YR4/1) cobbly (1.8") GRAVEL with sand, wet
FID=0	Push-	100	9 10			
PID=0	Probe		11			
			12		SM	Gray (10YR5/1) silty SAND, wet
FID=0	Push-	70	13 14			
FID=0	Probe		15			
			16			
FID=0	Push-	60	17 18		GM	Gray (10YR5/1) sandy GRAVEL with clay, wet
FID=0		19		SC	Gray (10YR5/1) clayey SAND, wet	
			20		СН	Gray (10YR5/1) silty CLAY, moist to wet Set temporary screen from 4 to 8 feet. Abandoned with grout.

Boring #	SAP04	
Total depth	12 feet	
Sheet 1	of	

•

Project name _COLVILLE3	Drilling Contractor ESAT	Drilling method Push-probe
Project number 01732-066	Location SE of sawdust pile	Sampling method4' sampler w/liner
Client EPA		Ground elevation
HEC rep. <u>B. Hanson/BAC</u>	Start date	_ Air monitoring (Y/N) _Yes
	Compl. date June 14, 2005	Instrument(s) FID/PID

Instrument reading (ppm)	Sample type, interval	% recovery	Depth (feet, BGS)	Water level	Soit group	Soil description
F1D=0 PID=0	SASBP04-01 Push- Probe	60	1 2 3		GW SM SW	Wood chips, dry Crushed GRAVEL, fill, dry Dark yellowish brown (10YR3/4) silty SAND, moist Light yellowish-brown (10YR6/4) gravelly SAND, with silt, moist
FID=0 PID=0	SASBP04-04 Push- Probe	35	4 5 6 7 8	¥ ∑		Ground water level measured at 3.95 feet Ground water encountered during drilling at 4 feet
FID=0 PID=0	Push- Probe	50	9 10 11		Сн	Gray (10YR5/1) silty CLAY, moist to wet
			13 14 15			Set temporary screen from 4 to 8 feet. Abandoned borehole by pressure grouting with bentonite.
			16 17 18 19 20			

 Boring #
 SAP05

 Total depth
 28 feet

 Sheet
 1
 of
 2

Project name <u>COLVILLE3</u> Project number <u>01732-066</u> Client <u>EPA</u> HEC rep. <u>B. Hanson/BAC</u>

 Drilling Contractor
 ESAT
 Drill

 Location
 East of sawdust pile
 San

 Gro
 Gro

 Start date
 June 14, 2005
 Air r

 Compl. date
 June 14, 2005
 Inst

Drilling method <u>Push-probe</u> Sampling method <u>4' sampler w/liner</u> Ground elevation Air monitoring (Y/N) <u>Yes</u> Instrument(s) FID/PID (malfunctioned)

Instrument reading (ppm)	Sample type, interval	% recovery_	Depth (feet, BGS)	Water level	Soil group	Soil description
FID=1.2 PID=2.2	Push- Probe SASBP05-3.5	50	1 2 3			Wood chips, dry
N/A	SASBP05-05 Push- Probe	50	4 5 6 7 8	▼	SM GW	Dark yellow-brown (10YR3/4) silty SAND, moist Ground water level measured at 5.00 feet. Ground water encountered during drilling at 6 feet. Gray (10YR5/1) sandy GRAVEL, with silt, wet
N/A	Push- Probe	10	9 10 11 12			Cobbles (2")
N/A	Push- Probe	20	13 14 15 16			
N/A	Push- Probe	30	17 18 19 20			

Boring # <u>SAP05</u> Total depth <u>28 feet</u> Sheet <u>2</u> of <u>2</u>

Project name COLVILLE3	Drilling Contractor ESAT	Drilling method _ Push-probe
Project number 01732-066	Location East of sawdust pile	Sampling method _4' sampler w/liner
Client <u>EPA</u>		Ground elevation
HEC repB. Hanson/BAC	Start date _June 14, 2005	Air monitoring (Y/N) Yes
	Compl. date June 14, 2005	Instrument(s) FID/PID (malfunctioned)

Instrument reading (ppm)	Sample type, interval	% recovery	Depth (feet, BGS)	Water level	Soil group	Soil description
			21		GW	Gray (10YR5/1) sandy GRAVEL, with silt, wet
N/A	Push- Probe	35	22			
			23			
			24		CII/ GW	Stratified (alternating layers) of light olive brown (2.5Y5/3) silty Clay and olive brown (2.5Y4/3) sandy GRAVEL, with cobbles
			25			(1.5"), wet
N/A	Push- Probe	60	26			
			27			
			28			Set temporary screen from 5 to 9 feet. Abandoned borehole by
			29 30			pressure grouting with bentonite.
			31			
			32			
			33			
			34			
			35			
			36			
			37			
			38			
			39			
		i	40		<u> </u>	

Boring #	SAP06
Total depth	12 feet
Sheet 1	of

Project name <u>COLVILLE</u> Project number <u>01732-066</u> Client <u>EPA</u> HEC rep. <u>B. Carpenter/BH</u> Drilling Contractor <u>ESAT</u> Location NW of sawdust pile

Start date <u>June 14, 2005</u> Compl. date <u>June 14, 2005</u>

Instrument reading (ppm)	Sample type, interval	% recovery	Depth (feet, BGS)	Water level	Soil group	Soil description
	SASBP06-01		1			Wood chips, dry
FID=0 PID=0.8	Push- Probe	50	2	•	ML	Ground water level measured at 1.9 feet Dark gray (10YR4/1) sandy SILT, with clay. grading to sandy SILT with mica flakes, moist
:	SASBP06-04		4	⊻		Ground water encountered during drilling at 4 feet.
FID=0 PID=0.9	Push- Probe	50	6 7		SM	Gray (10YR5/1) silty SAND, with wood chip, wet
			8			
			9		GW	Gray (10YR5/1) sandy GRAVEL, wet
FID=0 PID=0.9	Push- Probe	10	10		СН	Gray (10YR5/1) gravelly CLAY, moist to wet
	11000		11			
			12 13			Set temporary screen from 2 to 6 feet. Abandoned borehole by pressure grouting with bentonite.
			14			
!	5		15			
:			16			
			17			
			18 19			
			20			

Boring #	N	AP0 <u>7</u>	
Total dep	th	16 fe	et
Sheet	1	of	1

4' sampler w/liner

Push-probe

Drilling method

Sampling method

Ground elevation

Air monitoring (Y/N) __Yes

Instrument(s) FID/PID

Project name	COLVILLE3
Project number	01732-066
Client EPA	
HEC rep. BH	lanson/BAC

Drilling Contractor ESAT Location North side of wood peeler Start date June 15, 2005

Compl. date _____June 15, 2005

Instrument reading (ppm)	Sample type, interval	% recovery	Depth (feet, BGS)	Water level	Soil group	Soil description
	NASSP07-00		1		GW	Dark yellowish brown (10YR3/4), sandy GRAVEL with silt and Cobbles (1.5), moist
FID=1.0	Push- Probe	75	2		ML	Very dark grayish brown SILT, with sand, trace clay, moist
PID=0			3		SM	Brown (10YR5/3) silty SAND, moist
	NASBP07-04		4 5	⊻		Ground water encountered during drilling at 4 feet. Ground water level measured at 4.9 feet
FID=0.7	Push-	50	6		SP	Grayish brown (10YR5/2) with silt, trace gravel, mottled with iron
PID=0.9	Probe	50	7		or	staining, grades from medium to coarse, wet
			8			
-			9		GM	Yellowish brown (10YR5/4) sandy GRAVEL with silt, trace cobbles (1"), wet
FID=0.3 PID=0	Push- Probe	10	10			
			11			
			12		СН	Gray (10YR5/1) silty CLAY, moist to wet
			13			
FID=0.2 PID=0	Push- Probe	-	14			
			15			
			16			Set temporary screen from 5 to 9 feet. Abandoned borehole by
			17			pressure grouting with bentonite.
			18			
			19			
			20	ļ		

Boring # NAP08 Total depth 16 feet Sheet 1 of 1

method <u>4' sampler w/liner</u>

Project name	COLVILLE3
Project number	01732-066
Client EPA	
HEC rep. B I	Hanson/BAC

Drilling Contractor ESAT	Drilling method Push-probe
Location West of office trailer	Sampling method _4' sampler w
	Ground elevation
Start date _June 15, 2005	Air monitoring (Y/N) Yes
Compl. date June 15, 2005	Instrument(s) FID/PID

Instrument reading (ppm)	Sample type, interval	% recovery	Depth (feet, BGS)	Water level	Soil group	Soil description
FID=3.1	NASSP08-00 Push- Probe	75	1 2		GW	Dark yellowish brown (10YR3/4), sandy GRAVEL with silt, dry Color changes to very dark grayish brown (10YR3/2)
PID=0			3	$\overline{\Delta}$	SM	Very dark grayish brown (10YR3/2) silty SAND, moist Color changes to brown (10YR5/3) Ground water encountered during drilling at 4 feet.
	NASBP08-04		5			Very dark grayish brown (10YR3/2) silty SAND, wet Ground water level measured at 5.3 feet
FID=0.3 PID=0	Push- Probe	50	6 7		SP	Grayish brown (10YR5/2) SAND with silt, wet
			8			Trace gravel
F1D=0.8 P1D=0	Push- Probe	50	10 11		SW	Grayish brown (10YR5/2) gravelly SAND with silt, wet
			12 13			
FID=0 PID=0	Push- Probe	80	14		СН	Grayish brown (10YR5/2) silty CLAY, moist to wet
			15 16			Color changes to gray (10YR5/1)
			17			Set temporary screen from 5 to 9 feet. Abandoned borehole by pressure grouting with bentonite.
			18 19			
	 		20			

FID=0.3

PID=0

Push-

Probe

20

SOIL PROBE RECORD

Boring #	NAP09
Total depth	16 feet
Sheet 1	of 1

4' sampler w/liner

Drilling method Push-probe

Sampling method

Ground elevation

Project name <u>COLVILLE3</u> Project number <u>01732-066</u> Client <u>EPA</u> HEC rep. <u>B Hanson/BAC</u>

Drilling Contractor <u>ESAT</u> Location <u>~200 feet west of office trailer</u> Start date <u>June 15, 2005</u>

HEC rep.	B Hanson/BA	(C	Start da	te <u>Ju</u>	ne 15, 2	2005	Air monitoring (Y/N) Yes
			Compl. (date _	June 15	, 2005	Instrument(s) FID/PID
Instrument reading (ppm)	Sample type, interval	% recovery	Depth (feet, BGS)	Water level	Soil group	Soil description	
	NASSP09-00		1		GW	Dark yellowish brow	n (10YR3/4), sandy GRAVEL with silt, dry
FID=2.1 PID=0	Push- Probe	80	2 3 4		SM		own (10YR3/2) silty SAND, dry yish brown (10YR5/2), moist
FID=1.1	NASBP09-04 Push-	40	5	⊻		Ground water encour Color changes to darl Ground water level n	
PID=0	Probe		7				
FID=0.1	Push-	50	9		SW	Dark yellowish brow	n (10YR3/4) gravelly SAND, wet
PID=0	Probe	50	11		GW	Dark yellowish brow	n (10YR3/4) sandy GRAVEL with silt, wet
			12				

	13			
			СН	Grayish brown (10YR5/2) silty CLAY, moist
75	14	G	GW	Dark yellowish brown (10YR3/4) sandy GRAVEL with silt, wet
		(CH	Gray (10YR5/1) silty CLAY, moist to wet
	15			
	16			
				Set temporary screen from 6 to 10 feet. Abandoned borehole by
	17			pressure grouting with bentonite.
	18			
	10			
	19	ĺ		

Boring #	NAP10
Total depth	16 feet
Sheet 1	of _1

Project name <u>COLVILLE3</u>	Drilling Contractor ESAT	Drilling method
Project number01732-066	Location SW of NAP09	Sampling method4' sampler w/liner
Client EPA		Ground elevation
HEC repB. Carpenter/BH	Start date June 15, 2005	Air monitoring (Y/N) Yes
	Compl. dateJune 15, 2005	Instrument(s) FID/PID

Instrument reading (ppm)	Sample type, interval	% recovery	Depth (feet, BGS)	Water level	Soil group	Soil description
	NASSP10-00 Push-		1 2		SW ML	Dark yellowish brown (10YR5/4), gravelly SAND with silt, cobbles (1.8"), moist Very dark grayish brown (10YR3/2) sandy SILT, mica flakes, moist
FID=0 PID=0	Probe	75	3		SM	Grayish brown (10YR5/2) silty SAND, moist
	NASBP10-04		4 5			Ground water encountered during drilling at 4 feet Ground water level measured at 4.95 feet
FID=0 PID=0	Push- Probe	50	6		GW	Grayish brown (10YR5/2) sandy Gravel, with cobbles (1.5"), wet
			7			
FID=0	Push-	30	9 10			
PID=0	Probe	50				
			12 13			
FID=0	Push- Probe	85	14		СН	Pale brown (10YR6/3) silty CLAY, moist to wet Color changes to gray (10YR6/1)
			15 16			
			17			Set temporary screen from 5 to 9 feet. Abandoned borehole by pressure grouting with bentonite.
			18 19			
		1	20			

Boring #	PAP11
Total depth	12 feet
Sheet 1	of 1

Project name <u>COLVILLE3</u> Project number <u>01732-066</u> Client <u>EPA</u> HEC rep. <u>B. Hanson/BAC</u> Drilling Contractor <u>ESAT</u> Location <u>West portion of processing</u> area Start date <u>June 16, 2005</u> Compl. date <u>June 16, 2005</u>

	Drilling method	ish-probe
_	Sampling method	4' sampler w/liner
	Ground elevation	
_	Air monitoring (Y/N)	Yes
_	Instrument(s) FID/	PID

Instrument reading (ppm)	Sample type, interval	% recovery	Depth (feet, BGS)	Water level	Soil group	Soil description
	PASSP11-00 Push-	75	1 2		SM	Topsoil, fill Dark yellowish brown (10YR3/4) silty SAND with gravel, moist
FID=0.8 PID=0	Probe	75	3		MH	Yellowish brown (10YR5/4) sandy SILT, moist
			5	1	MH CH	Brown (10YR4/3) clayey SILT, moist Grayish brown (10YR5/2) silty CLAY, mottled, moist
F1D=0.1 PID=0.9	Push- Probe	60	6 7			Grayish brown (101 K5/2) sitty CLA1, motica, moist
<u>,</u>			8		- 014	
FID=14	PASBP11-09 Push-	60	9 10		SM	Brown (10YR5/3) silty Sand, mottled, moist to wet, Ground water and product encountered during drilling at 10.5 feet.
PID=5	Probe PASBP11-11		11 12		GW	Very dark grayish brown (10YR3/2), sandy GRAVEL, with silt, Wet, product present
			13			Set temporary screen from 8.5 to 12.5 feet. Abandoned borchole by pressure grouting with bentonite.
2			14 15			
			16			
			17 18			
			19			
			20		<u> </u>	

Boring #	PAP12
Total depth	16 feet
Sheet 1	of 1

Project name <u>COLVILLE3</u> Project number <u>01732-066</u> Client <u>EPA</u> HEC rep. <u>B. Hanson/BAC</u> Drilling Contractor <u>ESAT</u> Location <u>Road north of former ASTs</u> area Start date <u>June 16, 2005</u> Compl. date <u>June 16, 2005</u>

Drilling method	ush-probe
Sampling method	4' sampler w/liner
Ground elevation	
Air monitoring (Y/N)	Yes
Instrument(s) FID	/PID

Instrument reading (ppm)	Sample type, interval	% recovery	Depth (feet, BGS)	Water level	Soil group	Soil description
			1			Topsoil, fill
	Push-		2			
FID=0.8 PID=0	Probe	5	3	_		No recovery Ground water level measured at 3 feet.
			4			
	PASBP12-04		5		MH	Dark grayish brown (10YR4/2) clayey SIL \mathbf{T} , moist
			,		CH	Gray (10YR5/1) silty CLAY, moist
FID=0.6 PID=0	Push- Probe	80	6		:	
110-0	Tiobe		7			
			8		MH	Dark grayish brown (10YR4/2) clayey SILT, moist
	PASBP12-08				СН	Gray (10YR5/1) silty CLAY, moist
			9		SW	Brown (10YR5/3), gravelly SAND with silt, moist to wet
	Push- Probe	80	10			Ground water encountered during drilling at 9.5 feet.
			11		GM	Dark yellowish brown (10YR4/6) sandy GRAVEL with cobbles,
			12			trace silt, wet
			13			
	Push-	100	14		СН	Gray (10YR5/1) silty CLAY, moist to wet
	Probe		15			
			16			Set temporary screen from 8 to 12 feet. Abandoned borehole by
			17			pressure grouting with bentonite.
			18			
			19			
			20			

 Boring #
 PAP13

 Total depth
 16 feet

 Sheet
 1
 of
 1

Project name <u>COLVILLE3</u> Project number <u>01732-066</u> Client <u>EPA</u> HEC rep. <u>B. Hanson/BAC</u>

 Drilling Contractor
 ESAT
 Drilling method
 Push-probe

 Location
 Beneath former ASTs in PA
 Sampling method
 4' sampler w/liner

 Ground elevation
 Ground elevation

 Start date
 June 16, 2005
 Air monitoring (Y/N)
 Yes

 Compl. date
 June 16, 2005
 Instrument(s)
 FID/PID

Instrument reading (ppm)	Sample type, interval	% recovery	Depth (feet, BGS)	Water level	Soil group	Soil description
<u></u>	PASSP13-00		 1		<u>9</u>	Topsoil, fill
FID=1.6	Push- Probe	50	2		SM	Dark brown (10YR3/3) silty SAND with gravel, moist
PID=0	11000		3	_		Ground water level measured at 3 feet.
			4		ML	Very dark grayish brown (10YR3/2) sandy SILT, moist
	Push- Probe		5		СН	Very dark gray (10YR3/1) silty CLAY, moist
FID=4.4 PID=0	PASBP13-06	60	6		SM	Color changes to gray (10YR5/1) Very dark brown (10YR2/2) sandy SILT, moist
PID=0			7	⊻	ML	Light brownish gray (10YR6/2) sandy SILT with clay, wet
			8			Ground water encountered during drilling at 6.5 feet.
	PASBP13-08		9		GW	Light brownish gray (10YR6/2), sandy GRAVEL with cobbles (2"), trace silt, wet
FID=0.3 PID=0	Push- Probe	60	10			
			11			
			12			
			13		CH	Light gray (10YR5/1) silty CLAY, moist to wet
FID=0.2 P(D=0	Push- Probe	90	14			
110-0	11000		15			
			16			Contraction from 2 to 10 foot. Alter to the ball to
			17			Set temporary screen from 8 to 12 feet. Abandoned borehole by pressure grouting with bentonite.
			18			
			19			
			20			

Immunoassay Test Kit Documentation and Correlation Analysis Data

Immunoassay Field Screening

Immunoassay field screening with Rapid Assay test kits was used to determine areas requiring further study while in the field and to evaluate its applicability to monitoring site conditions during future removal activities. Statistical analyses were performed on the results from the Rapid Assay kits and corresponding laboratory results to evaluate the accuracy of the kit as a screening tool for PCP in both soil and ground water across the project area. The Rapid Assay kit and laboratory results were initially compared using a Wilcoxon signed rank test to determine if they were statistically different. After initial screening with this robust test, a graphical regression approach was used to analyze the relationship between laboratory and field data; these results can be seen in Figures D-1 and D-2. Analyses were performed on soil data collected both in January and June 2005. Because of differing field conditions and apparent differing results from the January and June data, analyses were also performed on immunoassay kit data collected in each of the two months. Additionally, analysis was performed on immunoassay kit data collected from water samples in June 2005. In all these analyses, statistical significance was assessed based on an alpha (α) of 0.05. Results from these statistical analyses are described in separate subsections below for soil and ground water data.

Soil Data

Two separate field events were conducted at the site using immunoassay field screening; the January 2005 effort supported the Removal Action (RA), the June 2005 effort supported the Phase II Removal Site Evaluation (RSE). The January work was performed under freezing conditions that required modifications to methods normally applied to the field screening process associated with sample collection (homogenization of frozen soil) and processing (extended period between extraction and analysis). In addition, it was discovered that the Rapid Assay kit was shipped from the vendor with contaminated developer. A replacement kit was then obtained after the initial sample extraction had been completed, with final analysis performed up to two weeks later. Immunoassay test kit sample numbers for the two field events are summarized in Table D-1.

Table D-1.	Field screening sample summary,	Colville Post and Pole, 2005.
------------	---------------------------------	-------------------------------

Month	Matrix	Samples Collected	Results Less Than Detection Limit	Results Greater Than Detection Limit
January/June	Soil	77	41	36
January	Soil	40	19	21
June	Soil	37	22	15
June	Water	24	17	7

This summary indicates that 50 to 60 percent of the soil sample results were below the detection limit of the field screening kit. Soil sample results ranged from the detection limit to 50 ppm, except for one value at 360 ppm (sample PASSP1300).

The Rapid Assay kit manufacturer suggests that their technology may be reliably applied to a range of PCP concentrations from 1 to 100 ppm. For this project, concentrations of 3 and 8.33 ppm are of primary interest, representing the EPA Region 9 Preliminary Remediation Goal (PRG) and the Model Toxics Control Act (MTCA) method B cleanup level, respectively. Based on the distribution of data that included a high percentage of non-detects at the low end and a single high value above the recommended kit application range, it was decided to censor the data by removing both extremes from the statistical analysis. It was felt that the high number of non-detects would unduly emphasize the low end of the distribution using a fabricated value (typically assumed to be ½ the detection limit of 1 ppm). Also, it was felt that the single high value was outside both the decision range (near the action levels identified) and well beyond the kit reliability maximum value. A summary of statistical parameters applied to both January and June data is provided in Table D-2; graphs showing the results of regression analysis are provided in Figures D-1 and D-2.

									Tests
Month	Matrix	Test	n	Mean	Min.	Max.	Std Dev	P-value ^a	Comparable?
Jan. & June	Soil	Lab	35	7.4	0.02	73.5	14.4	0.001	Na
		Field	35	4.2	0.06	50.0	9.3	0.001	No
Jan	Soil	Lab	21	4.1	0.02	25.5	7.1	0.000	N
		Field	21	1.3	0.06	9.7	2.2	0.006	No
June	Soil	Lab	14	12.4	0.13	73.5	20.5	0.064	Vaa
		Field	14	8.5	0.10	50.0	13.6	0.064	Yes
June	Water	Lab	6	250.2 ^b	40.1	875.0	315.7	0.240	Vaa
		Field	6	356.5	41.0	1,300.0	476.0	0.249	Yes

Table D-2.Descriptive statistics and results of Wilcoxon signed rank test for
immunoassay data.

January and June Combined Soil Data

When the January and June 2005 soil data were combined, a statistical comparison between field and lab data indicated that the tests were not comparable. Table D-2 indicates that for the June and January 2005 soil data, the Wilcoxon signed rank test is significant (p = 0.001). This means that the data distributions are significantly different and that the field kit will not reliably estimate lab results. A graphical analysis (Figure D-1) shows that there is a group of January data well outside the 95 percent confidence bands for the regression between the field and lab data. Thus, it can be concluded that when the January and June data are combined, the January

00-01732-066 apx-d1.wpd

data is adversely affecting the relationship between the two methods. In order to examine this more closely both the January and June data were analyzed separately.

January Soil Data

In January 2005, the Wilcoxon test (Table D-2) again indicates that there was a significant difference (p = 0.006) between the field data and lab data. A graphical analysis of the data (Figure D-1) indicates that there is a tight relationship between field values below 2 ppm and lab values below 3 ppm, but above these values the relationship breaks down and the kit consistently underestimates results obtained in the lab. We conclude that the kit does not estimate lab values accurately for the January data.

June Soil Data

When taken alone, the June 2005 soil analysis produced the best results for the field kit and lab comparison. The Wilcoxon test (Table D-2) indicates that the two data distributions were not significantly different (p = 0.064) and the regression analysis shows a tight fit between the lab and field data, with only one point falling outside the 95 percent confidence band. The regression equation in Figure D-2 can thus be used to estimate lab results from field results obtained under field conditions similar to those in June 2005; the equation is:

Lab value (ppm) = 0.4183 + 1.4143(field value (ppm))

The 95 percent confidence bans around the regression line indicates that, for a given field value, there is a range of lab values within which you can say, with 95 percent confidence, that the actual value lies. In other words, the range between the bands for a given field measurement provides an indication of the uncertainty in the converted lab result.

Ground Water Data

The results of immunoassay field screening and laboratory PCP analyses of ground water samples are summarized in Table D-2. Rapid Assay data indicate PCP concentrations in ground water up to 1,300 parts per billion (ppb); laboratory analyses indicate PCP concentrations ranging between 40.1 and 2,690 μ g/L (ppb). For the purpose of the statistical analysis, the result for sample PAGWP1109 was not included because the field sample extract was analyzed with an 800-times dilution to achieve a result within the linear range of the test kit. Several intermediate dilutions were required due to available field kit equipment (e.g., pipettors, volume of dilutent, etc.) and the potential to introduce errors was high.

As shown in Table D-1, the Rapid Assay test kit produced no false negatives and no false positives greater than two times the laboratory reporting limit, indicating that the field immunoassay data compared well to laboratory results (a sample was considered to be false

positive if the detected immunoassay result was more than two times the laboratory detection limit).

Results from the Wilcoxon signed rank test (p=0.249) show that the Rapid Assay kit and laboratory data for PCP in ground water are comparable (Table D-1). It should be noted that the comparison between the field and lab data is highly affected by the single maximum value for each test (Figure D-2). Because there are no other values near the maxima, the point could be considered an outlier; without this outlier the relationship between field and lab results presented would fall apart and the field and lab PCP tests would not be comparable. As such, we recommend the use of the following regression equation with caution for the conversion of field to lab results:

Lab value (ppb) = 19.604 + 0.6467(field value (ppm))

The 95 percent confidence bands in Figure D-2 present a range of uncertainty in converted lab results when using the regression equation.

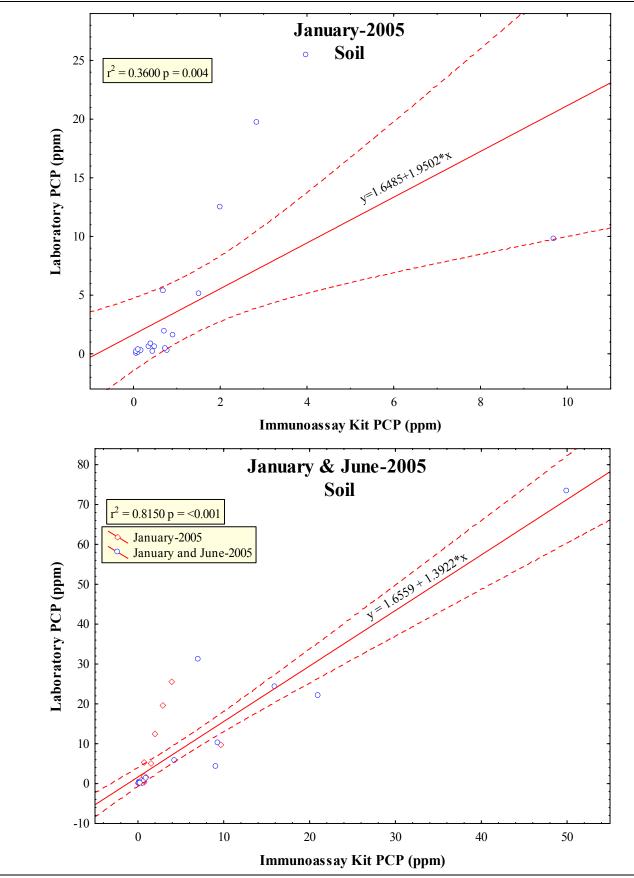


Figure D-1. January 2005 and combined January and June 2005 soil immunoassay test regression between field and laboratory data.

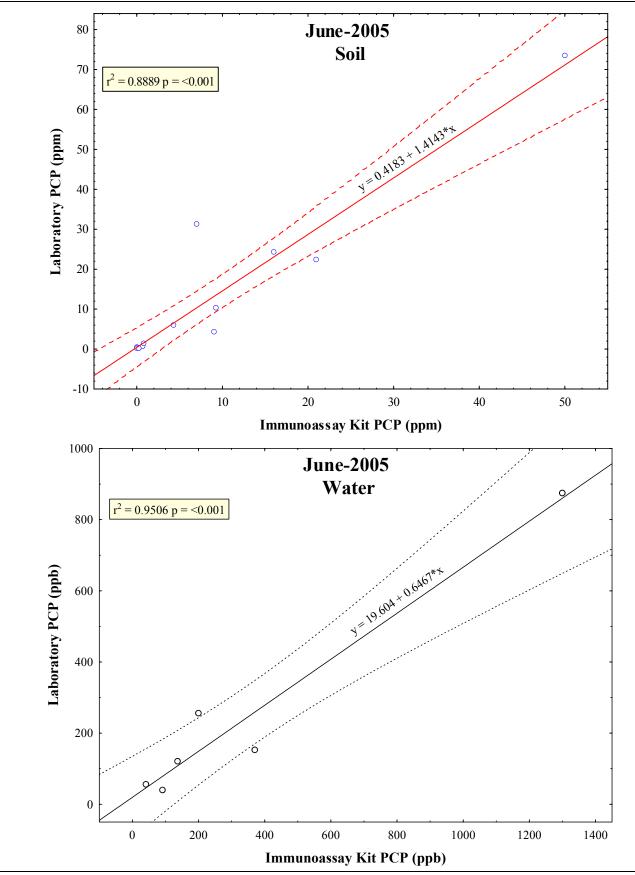
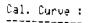
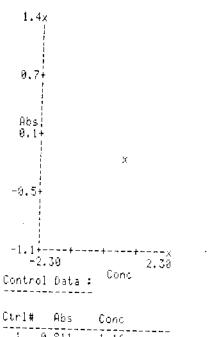


Figure D-2. June 2005 soil and water immunoassay test regression between field and laboratory data.

96-15- PUN ******	85 18:01 ○しり ** OHMI	5:46 <i>50</i> CRON *	5-01	
PROTOC	0L: I	PCP		
TECH I Lot # EXP Dr	:			
Data R Xforma Read M Wavele Units	educt:L: tion: ode : ngth : :	in.Ree Abs	Pression Ln/L9tB Sorbance 450 nm PP g /M	
Slope Intera	08 OF L) = e⊧t = r) =	 -Ю.6 Й.4)05 35 96	
Transf)	ormed Da	ata :		
	0 1. 9 0. 8 +0.			
Calibr	ator Dat	.a:		
Conc	Abs Diff	200	Predic %Diff	
	1.120 1.222 1.171			
Mean	1.171	6.2		
0.10	1.013 -0.005		0.10 -5.0	
Nean	1.000 0.011 1.006 0:003	0.9	0.11 9.6 0.10 2.7	
2.00	0.588 0.022		2.02	
Mean	0.002 0.620 -0.308 0.604 -0.150	3.7	1.69 -18.2 1.85 -8.1	
10.00	0.315 0.721		10.72 6.7	
Mean	0.315 0.721 0.320 0.326 0.318 0.318 0.521	1.2	6.7 10.33 3.2 10.52 5.0	


Cal. Curve :
1.8x
1.1+
fibs
0.4+
-0.3+
-1.0+++
Conc
Control Data :
Ctrl# Abs Conc 1 0.732 0.88
10: <u>175</u>
Samples Data :
Spl# Abs Conc
10:NASSW0100
2 1.211 nd
10: <u>NASBWØ1Ø6</u> 3 1.241 nd
10: NASEW 01 05
4 1.029 0.03
10: <u>SASSW0200</u>
5 1.194 nd 10: <u>SASBW0206</u>
6 1.185 nd
ID: SASBPO102
7 1.203 nd 101 SASBP0104
8 1,218 nd
10: <u>SASBPØZØZ</u>
9 1.286 nd 10: <u>SASBP Ø204</u>
10: <u>12EL20F_Q2724</u> 10: 1.143 0.0065
10: SASBP0302


	i 1		វាថ	
ID	:_S#	ASBP.	<u>Ø3Ø4</u>	4
1	2 1	.128	0.01nd	
10	: <u></u> 8	ASBP	<u>84Ø (</u>	,
		.207		1
ID	:_5	ASBP	Ø4ø	4
1	4 1	.059	0.05nd	
IC	ید:	AZZM	030	\mathcal{Q}
1	.5 1	1.074	0.04nd	
10	: SA	12211112	1.3QØI	DUP
1	.6 1	1.190	nd	
10	5	ASBW	030	8
1	l7 1	1.137	0.01nd	_
I):_S/	<u>asb</u> P	<u>Ø53</u>	5
:	18	1.194-	nd	
I): <u>3</u>	ASBE	<u>Ø50</u>	5
		1.176		
I	<u>, S</u>	ASBE	060	5/
		1.164		£
I	0:``	ASP	<u>Ø60'</u>	-/
		0.732		
I	i:	<u>CS-1</u>	Cru	<u>n.</u>

END OF RUN 06-15-05 11:52:47

·•• ,

•

Ctr1#	Abs	Conc
	0.811	
10:	LC	2

.

Cal. Curve :	
2.1x	
1.3+	
Abs. 0.5+	
	x
-0.2+	
-1.0++ -2.30	-+x 2.30 Conc
Control Data :	
Ctrl# Abs	
1 0.812	1.40
EQUATION OF LI Slope =	<u></u>
Slope = Intercept = Corr (r) ≐	-0.538 0.144 0.9986
Inansformed Da	ta :
	Abs
-2.30 1. 0.69 -0. 2.30 -1.	356 153 143
Calibrator Dat	a:
Conc Abs	 XCV Predic
Diff	201ff
0.00 1.570 1.575 Mean 1.573	Ø.2
0.10 1.218 0.032	0.13 24.0
0.10 1.218 0.032 1.283 -0.018 Mean 1.251 0.005	0.08 -21.5 3.6 0.11 4.8
2 00 0 277	
-0.345	į.63
0.716 -0.171	1.65 -20.9 1.83 -9.4
-2.00 0.737 -0.345 0.716 -0.171 Mean 0.726 -0.260	$\begin{array}{r} 1.65 \\ -20.9 \\ 1.83 \\ -9.4 \\ 2.0 \\ 1.74 \\ -15.0 \end{array}$
	$\begin{array}{r} 1.65\\-20.9\\1.83\\-9.4\\2.0\\1.74\\-15.0\\11.06\\9.6\\10.84\\7.8\\0.6\\10.95\\8.7\end{array}$

Please Wait 30 Minutes 06-15-05 18:00:00 06-15-05 19:49:22 RUN 061505-07 ********* DHMICRON ********* PROTOCOL : PCP TECH ID :_____ LOT # :_____ EXP DATE:_____ Data Reduct:Lin.Regression Ln/L9tB Xformation: Read Mode Absorbance Wavelength: 450 nm Units: PP& M EQUATION OF LINE : EQUATION or L.... Slope = -0.665 0.529 Intercept = 0.529 Corr (r) = 1.0000 Transformed Data : ----Conc Abs -2.30 2.062 0.69 0.061 2.30 -0.996 Calibrator Data: _____ Rbs XCV Predic Diff XDiff Conc 0.00 1.244 1.575 Nean 1.410) RRT VEP 0.10 1.218 0.14 0.10 1.210 0.037 1.283 -0.032 Mean 1.251 3.6 -0.000 26.9 0.87 -46.8 0.10-0.4 $1.94 \\ -3.3 \\ 2.12 \\ 5.5 \\ 5.5 \\ -5$ 2.00 0.737 -0.065 0.716 0.117 2.02 Mean 0.726 2.0 0.024 19.99 10.00 0.379 0.003 0.0 9.84 -1.6 9.92 -8.8 -0.158 Mean 0.330 0.6 -0.078

******* OHMICRON *******

Samples Data :

SP1# Abs. Conc 1 1.550 0.00nd 10: NASSIND400 1.527 0.90nd 2 10: NASBW0408 3 1.117 0.25 ID: MASSPØ700 4 1.549 0.00nd 10: NASBPOTOL 5 1.254 0.10 10: MASSPØ800 1.515 0.00nd 6 10: NASBPOR04 7 1.447 0.01nd 10: NASSPØ900 8 1.504 0.00nd 10: NASBPØ904 9 1.480 0.01nd 10: NASSW0500 1.551 10 0.00nd 10: NASBW0505 1.511 0.00nd 11 10: NASSP1000 1,494 12 0.01nd ID: NASBPIO04 1,538 13 0.00nd 10:NASBP1004DUP 14 0.808 1.18 ID: LCS-YEVUN

END OF RUN 06-15-05 20:16:56

TECH ID LOT # EXP DAT	1.		
Data Re Xformat Read Mo Wavelen Units	duct:Lin ion: de : sth : :	n.Regr L Abso	ession n/L9tB rbance 450 nm PPB
EQUATIO Slope Interce Corr (r			
Transfo	rmed Da	ta:	
Conc -2.30 0.69 2.30	 1.	Abs 643 066 091	
Calibra	tor Dat	a: 	
Conc	Abs Diff	%CV	Predic 2Diff
0.00 Mean	1.593 1.466 1.530	5.9	
0.10 Mean	1.251 0.031 1.313 ~0.021 1.282 0.003	3.4	0.13 23.6 0.03 -27.2 0.10 2.7
2.00 Mean	0.765 -0.346 0.714 0.074 0.740 -0.148	4.9	1.65 -20.9 2.07 3.6 1.85 -8.0
10.00	0.389 0.261 0.380 0.771 0.384	1.5	10.26 2.5 10.77 7.2 10.51

Cal. Curve : 1.6x 1.0+	A11
ิิิิ₩bs ชิ.3+ -ยี.4+	X
-1.1++ -2.30 Control Data	2.30 Conc
Ctrl# Abs 1 0.931 10:	
Samples Data Sel# Abs 1 1.173	Conc
1 1.173 10: <u>SAGWF</u> 2 1.120 10:/	POLOH XY3
3 1.268 1D:_ <u>SAGW</u> 4 1.323	PØ2Ø3 KX
10: 5 1.194 10:SA(ctu 6 1.202	0.19 1 <u>PØ3Ø4</u>
10:/	
:0: <u></u> 9 0.593	 3.59 С
10 0.625	<u>u Pló 5 (5 0</u> 0 3.12 V V

.

10:	SAGU	1PØ6Ø	2.X
12	1.296	0.09	0,01
ID:	10		
	0,853		
		VPØ7¢	
14	0.817	1.32	87,10
10:	17		
		62.93Hi	
ID:	NAGU	<u>N Pásá</u>	5 3/
16	0.157	UP <u>Ø8Ø</u> 65.22Hi	\bigtriangledown
		82.30Hi	
ID:_	NAG	sPØ9.0	No.V/
18	0,143	77.23Hi	$\langle \rangle$
ID:_	<u> </u>		
		56.71Hi	
ID:_	NAC	WPLØ	¥.হ্.৬ট/
20	0.164	60.22Ki	$\langle T \rangle$
ID:_	<u> </u>		
21	0.934	0.77	
ID:L	LCS	<u>-che</u>	сK

END OF RUN 06-15-05 21:49:14

06-16-05 19:5	i1:22
86-16-85 22:1 PUN (10)	8:19 1605-01 CRUN ********
PROTOCOL :	PCP
TECH ID : LOT # : EXP DATE:	
Data Reduct:L Xformation: Read Mode : Wavelen9th : Units :	in.Regression Ln/Lgt8 Absorbance 450 nm PFB ØM FoY
EQUATION OF L	INE : SOIL.
Slope =	-0.613
Intercept = Corr (r) =	0.359 1.0000
Transformed D)ata
Conc	Abs
-2.30 1	1.771
-2.30 1 0.69 -0 2.30 -1	4.066 1.052
Calibrator Da	ata:
Conc Abs Diff	s XCV Predic P XDiff
0.00 1.385 1.395	
Nean 1.390	, 0.5
0.10 1.196 _0.000	6 0.09
-0.008 1.179 0.008	9 0.11
0.000 Mean 1.188 -0.009	3 1.0 0.10
0.055	5 2.7
0.677 -0.050 Mean 0.672	3 -2.6
nean ୭.୦/2 ଡ.୦୬2	2 1.2 2.00 2 0.1
10.00 0.356	10.20
0.203 0.363 -0.210 Mean 0.360	2.0 9,79
-0.219 Mean 0.360	-2.1 1.3 9.99
~0.006	-9.1

∪ai, luñvè :
1.8x
1.1+
Ab≤ 0.4+
×
-0.3+
-1.1++
Control Data :
Ctrl# Abs Conc 1 0.746 (1.41)
Samples Data :
SPl# Abs Conc
1 0.234 24.31H1 10: NAGWP0805 5X
2 0.307 14.06Hi
10:/0X 3 0.140 63.64Hi
10: NAGWP0906 5X
4 0.174 42.81Hi 10: <u> </u>
5 0.279 17.10Hi
10: NAGWP1005 5X 6 9.375 9.11
10: <u>10 10</u> X
7 0.375 9.11 10: PASSPI100
8 1.317 0.82nd 10: <u>PASBP1109</u>
9 0.241 22.59Hi DNSCDILLI
10: <u>PASBP1111</u> 10 0.886 0.71
ID: PASBPIZ04

11 1 10:_P	.503 ASBI	nd 2120	8_
12 1 10:N	. 199 ASS	8.89 W06	<u>0</u> Ø
	.228 <u>45BU</u>	0.87 1 <i>060</i>	<u>5</u>
	.359 <u>ASSN</u>	0.88nd NQ70	<u>80</u>
	.312 <u>ASBU</u>	0.02nd VØ70	84
	1.171 ·	14.22Hi 1080	<u>C</u>
17 1 10:_S		nd NØ8 E	<u>94</u>
	1.329 S <u>AS</u> B	9.01nd WØ8/	<u>06</u>
_	a. 132 ASS	71.01H1 <u>P130</u>	<u>)Ø</u>
	1.058 ASB	0.27 P130	6
	0.749 - <u>CS_Y</u>	1.39 2-ru	$\frac{1}{2}$

END OF RUN 06-16-05 22:37:20

do-16-05	23:46:02
----------	----------

RUN OULOS-07-
TECH 10 :

EXP DATE:		
Data Reduct Xformation: Read Mode Wavelen9th Units	;	Regression Ln/LgtB Absorbance 450 nm PPS

EQUATION OF LINE :

Slope = -0.574 Intercept = 0.221 Corr (r) = 0.9992

Transformed Data :

Conc	Abs
-2.30	1.522
0.69	-0.116
2.30	-1.140

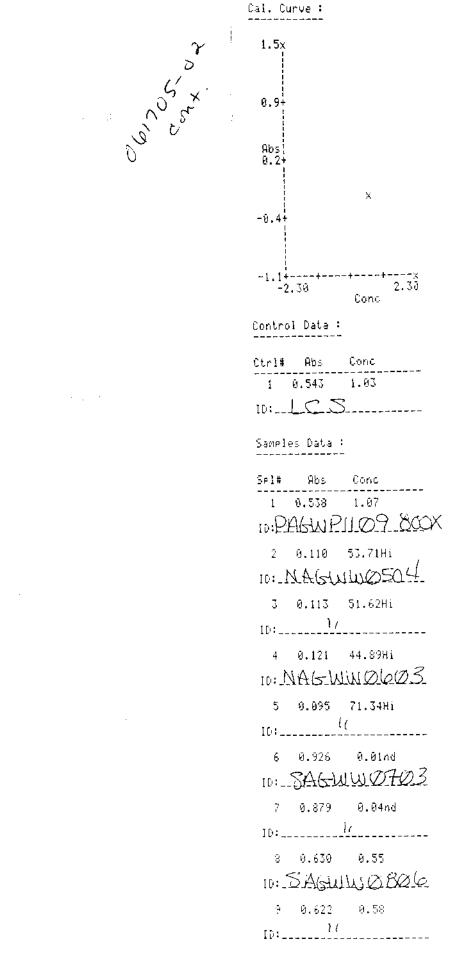
Calibrator Data:

Conc	Abs Diff	%CU	Predic XDiff
0.08	1.427		
Mean	1.418	0.9	
0.10	1.206 -0.029 1.121		0.07 -41.5 0.15 31.1
Meari	0.045 1.164 0.004	5.2	51.1 9.10 3.6
2.99	0.661 -0,139 0.674		$1,86 -7.5 \\1.74$
Mean	-0.259 0.663 -0.200	1.4	-14.9 1.30 -11.1
10.00	0.344 0.655 0.343		10.65 6.1 10.76
Mean	0.762 8.344 0.788	0.3	7.1 10.71 6.6

Cal. Curve : 1.5x 0.9÷ Abs; 0.2+ х -0.5+ -1.1+-2.30 -2.30 Conc Control Data : Ctrl# Abs Conc 1 0.761 1.13 ID:_____ Sameles Data : Sel# Abs Conc 1 0.584 2.73 10:NA6WP0805 50X 2 0.349 10.34Hi 10: NAGWP0906 100X 3 1.398 0.00nd - ADDED ID: PASBPILL LOX 4 0.603 2.48 10: <u>5 A. SSW080020X</u> 5 0.407 S 7.19 ID: PASBIBOO 500 1.335 p 0.01nd 6 10: PASE13086 8.365 9.33 <u>5</u>01 7 IN: SASBHOGON 8 1.345 0.01nd 604 IN SASBHOTOH 9 0.809 0.89 : SASBHO704

18 8.496 4.33 10: SASBH0801 11 8.266 18.95Hi 10: PASSP1200 12 8.249 21.72Hi 10: PASSP1200 DUP 13 8.125 85.78Hi 10: PAGWP109 14 1.293 8.83nd 10: PAGWP109 14 1.293 8.83nd 10: PAGWP108 15 8.178 43.32Hi 10: PAGWP1308 16 8.749 1.21 10: LCS VCFUN

END OF RUN 06-17-05 00:24:04


11 0.806 0.00nd 10: SAGWMW407 12 0.801 0.00nd ID:_____1[13 0.728 0.03nd 10: NADWW8186 14 0.738 0.02nd ID:_____I(15 0.832 nđ ID: SAGWIN 0203 16 0.330 0.00nd 10:_____i(0.812 170.09ndIN SAGWIN0305 18 0.744 0.02nd ί:<u>___</u>)(19 0.794 0.00nd : <u>SAGWW0403</u> 20 0.793 0.00nd

40 OF RUN -−17-05 16:38:08 Cal. Curve : ____ 1.3× 0.8+ Abs¦ 0,2+ х -0.3+ Conc Control Data : -----Ctrl# Abs Conc _____ 1 0.473 0.95 10: LCS Samples Data : Spl# Abs Conc. 1 0.289 6.34 10: NAL-WP0906 200X 2 0.164 31.70Hi ID: PAGWPILO9 100X 3 0.488 0.38 8 10: PRU-WP1777 50X 4 0.424 1.56 10: PASBPILL LOX 5 0.502 ~ 0.70 101 PAS BPILOO 10X 6 0.397 2.05 ID: PASSPIZED DUP IX 7 9.825 Angond 10: SAL W.8105 nd 8 0,866 10:_____ 9 0.560 8,37 ID: SALANDERZUSS 10 0.586 0.28 10:_____

********* OHMICEON ******* RUN 001705-01 Please Wait 30 Minutes 06-17-05 13:35:15 86-17-85 16:33:28 ********* OHMICRON ******* PROTOCOL : PCP TECH ID :_____ EXP DATE: Data Reduct:Lin.Regression Xformation: Ln/LgtB Read Mode : Absorbance Wavelength : 450 nm Units : PPB EQUATION OF LINE : ------Slope = -0.479 Intercept = 0.257 Corr (r) = 0.9993 Transformed Data : -----Conc Abs -2.30 1.343 ----------0.69 -0.028 2.30 -0.877 Calibrator Data: ---------Conc Abs XCU Predic Diff X01ff ------0.00 0.860 0.800 Mean 0.830 5.0 0.10 0.658 0.100.004 4.9 0.659 0.190.003 Mean 0.658 0.1 2.8 0.10 3.4 0.004 2.88 0.404 1.92-4.3 -0.083 0.415 1.71 -0.233 -16.8 Mean 0.409 1.9 1.8: -0.138 -1й.4 18.00 8.240 11.16 1.16310.4 9.243 10.19 0.193 1.9 Mean 0.244 2.2 10.65 0.665 6.2

06-17-05 17:16:20	1.5%	0.9X 1
******** OHMICRON ******* KUN 061705-02 PROTOCOL : PCP		
TECH ID :	0.9+	Q.4+
LOT # :EXP DATE:	Abs 8.2+	Abs
Data Reduct:Lin.Regression Xformation: Ln/LgtB Read Mode : Absorbance Wavelength : 450 nm Units : PPB	x	-0.1+ ×
Units : PPB	-8.4+	-0.6+
EQUATION OF LINE :	-1, 1++	-1.1+++
Slope = -0.571 Intercept = 0.205 Corr (r) = 0.9999	-2.30 2.30 -2.30 Conc	-1.1+++
Transformed Data :	Control Data :	Control Data :
Conc Abs	Ctrl# Abs Conc	Ctrl# Abs Conc
-2.30 1.529 0.69 -0.213 2.30 -1.096	1 0.535 1.08	1 0.540 0.63
2.30 -1.096	10	10:
Calibrator Data:	EQUATION OF LINE :	EQUATION OF LINE :
Conc Abs XCV Predic Díff XDiff	Slope ≈ -0.435 Intercept = -0.022 Corr (r) ≈ 0.9955	Slare = -0.574 Intercept = 0.210 Corr (r) = 0,9999
0.00 0.997 0.986 Mean 0.991 0.8	Transformed Data :	Transformed Data :
0.10 0.710 0.23 9.182 64.6	Conc Abs	Conc Abs
0.182 64.6 0.919 0.02 -0.033 -496.5 M≥an 0.815 18.1* 0.10 , -0.001 -1.4	-2.30 0.941 8.69 -0.213 2.30 -1.096	-2.30 1.542 0.69 -0.213 2.30 -1.096
2.00 0.425 2.36 0.360 15.3	Calibrator Data:	Calibrator Data:
0.461 1.83 -0.165 -9.0 Mean 0.443 5.6 2.03 0.080 3.8	Conc Abs XCV Predic Diff XDiff	Conc Abs XCV Predic Diff %Diff
10.00 0.248 9.75 -0.252 -2.6	0.00 0.997 0.936 Mean 0.991 0.8	0.00 0.997 0.986 Mean 0.991 0.8
0.243 9.75 -0.252 -2.6 Mean 0.248 0.0 9.75 -0.252 -2.6	8.10 8.710 0.11 8.013 11.2 8.716 0.11 8.006 5.7	0.10 0.917 0.82 -0.082 -456.9 0.716 0.27 0.174 63.5
	0.006 5.7 Nean 0.713 0.5 0.11 0.009 8.5	0.174 53.5 Mean 0.817 17.5* 0.10 -0.002 -1.5
	2.00 0.425 1.83 -0.168 -9.2 0.461 1.32	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	-0.684 -52.0 Mean 0.443 5.6 1.55 -0.449 -28.9	-0.155 -8.4 Mean 0.443 5.6 2.03 0.090 4.3
	$egin{array}{cccccccccccccccccccccccccccccccccccc$	10.00 0.248 9.72 -0.283 -2.9 -0.283 -2.9
	7ean 0.243 0.0 11.80 1.797 15.2	0.243 -2,5 -0.283 -2,5 Mean 0.248 0.0 -2.5 -0.283 -2.5

.

EXO OF RUN 06-17-05 18:10:01 ******** OHMICRON *******

	062	.40	•= 5-0}
06-24-8	5 15:53:	42	
*****	* OHMICR	:ŪN *≁	****
PROTOCO	L : PC	P)	
TECH ID LOT # EXP DATI	£		
Data Re Xformat Read Mo Wavelen Units	duct:Lir ion: de : 9th : ;	i.Re9r L Rb≤(ression In/L9t8 Orbance 450 nM PP8
EQUATIO Slope Interce Corr (r	et =	NE : -0.5; 0.2; 0.99;	53 12 95
Iransfo	rmed Dat	ta :	
Conc		Abs	
-2.30 0.69 2.30	1. -9. -1.	469 123 092	
Calibra	itor Dat	a: 	
Conc	Abs Diff	%CV	Predic 2D1ff
0.90	$1.341 \\ 1.358$		
Mean	$1.358 \\ 1.345$	0.4	
0.10 Mean	1.083 0.014 1.105 -0.007 1.094 9.003	1.5	0.11 12.0 0.09 -7.4 0.10 3.0
2.00	0.614 0.818		2.02 0.9
Mean	0.649 -0.331 0.631 -0.165	3.9	1.67 -13.9 1.83 -9.9
10.00	$0.332 \\ 1.013 \\ 0.344 \\ 7.54$		11.01 9.2 10.16
Nean	0.163 0.338 0.577	2,4	1.6 10.58 5.5

Cal. Curve :
1.5×
~
0.8+
Abs 8.2+
X
-9.5+
-1.1+++
-2.30 Conc Control Data :
Ctrl# Abs Cons
1 0.757 (0.93) 93%
ID:
SP1# <u>HbsConc</u>
1 0.220 (28.13Hi) 10:NAGWW0504 IOX
2 0.483 4.06
10: 50X
3 0.206 (32.24Hi) 10: NAUNW 0603 IOX
4 8.389 7.49
10: <u>11</u> 50X
5 1.285 0.81 nd
10: SAGWW0703
و ۲.255 S.S.M. ۱۵:
7 0.921 0.36
IDI SAGWWQ826
8 0.939 0.32 11 1D:
9 0.905 0.40
ID: SAGWMW205
10 1.317 0.00nd 10: <u>PAGWPIZOS</u>
11 1.327 0.00nd
(6):

12 0.373 8.31 ID: PASSPIJOO 13 0.845 0.57 ID: PASEPI204 14 1.138 0.07 10: NASSWØ600 15 1.195 0.03nd 10: NASSW0605 16 1.065 0.13 10: PASBP1306 17 0.354 9.44 ID: SASBH0501 18 0.494 3.94 10: SASBHOSOL 19 0.997 0.22 10: NASSP0700 20 1.098 0.10 10: NASSPØ800 21 8.756 (0.94) 944 10: LCS-rcrun

END OF RUN 06-24-05 16:15:55

06-24-05 16:27:15	5
******* OHMICROM	****
PROTOCOL : PCP- RUN OGAU TECH ID : LOT # : EXP DATE:	
Data Reduct:Lin. Xformation: Read Mode : Wavelen9th : Units :	Regression Ln/Lgt8 Absorbance 450 nm PPB
Calibrators: # of Cals : # of Reps :	5 2
Concentrations :	
#1: 0.02 #2: 5.00 #3: 10.00 #4: 25.00 #5: 100.00) PP8) PP8) PP8
Range : 0 Correlation: Rep. XCU :	.06 -100.00 0.990 10 %
END OF LISTING	
06-24-05 16:36:	49
******* OHMICE	QN *******
PROTOCOL : PC	PHABRA
TECH ID : LOT #. : EXP DATE:	
Data Reduct:Lin Xfornation: Read Mode : Wavelen9th : Units :	n.Regression Ln/LgtB Absorbance 450 nm PPB
EQUATION OF LI Slope = Intercept = Corr (r) =	
Corn (r) = Transformed Da	
Conc 1.61 1 2.30 0 3.22 0 4.61 -0	A03 .197 .803 .137 .683

1.

Calibrator Data:				
Conc	Abs Diff	%CV P	redic %Diff	
	8.989 0.933 0.921	1.8		
5.00 Mean	0.711 -0.113 0.704 0.251 0.707	Ø.8	4.89 -2.3 5.25 4.8 5.07	
10.00	8.067		1.3 9.19	
Mean	-0.807 0.633 -0.355	0.7	-8.8 9.64 -3.7 9.42 -6.2	
25.00	$0.480 \\ 4.142$		29.14 14.2	
Mear	0.504 -0.287 0.492 1.841	3.4	24.71 -1.2 26.84 6.9	
100.00	-3,511		96.49 -3.6 98.73	
Mear	0.308 ~1.267 n 0.309 ~2.397	; } 0.7	-1.3	
				
Cal.	Curve :			
1.2	X			
0.7	x			
Ab: 0.	3+	х		
-9.	2+			
-0.	7++ 1.61	-++ C	tx 4.61 onc	
Sama 	≥les Dat	, <u>a</u> ;		
Sel	# Abs 	; Co	100 	
1 I C(:	<u>NAGU</u>	<u>VW</u> V	0504	/0X
	8.57 ⁻		.54 50	×
10;				

3 8.347 73.79 10: NAGWWO603 10X
4 0.544 13.73 11 50X
10:1 50 ×
5 0.812 1.41 10: <u>SAGWW0703</u>
6 0.840 0.84
10:(\
7 8.779 2.30 10: <u>SAGWWO806</u>
8 0.792 1.92
10:
9 8.636 9.42 10: SAGWMW205
10 0 776 2.39
ID: PAGWPI208
11 0.326 1.11 11 10:
12 0.213 220.43Hi
ID: PASSPILOO
13 0.612 11.36 10: PASBPI204
14 0.718 4.57 10: NASSW0600
15 8.752 3.17 10: NASBN0645
ыс й.718 4 . 57
ID: PASBP1306
17 8.208 249.84HI 10: <u>SASBH</u> 0501
18 0.317 92.18 10: 5A5BH 801
40 0.457 7.93
ID: NASSPO700
20 0.670 7.12 10: NASSP0800
101 NA 37 0 3 9 0

END OF RUN 06-24-05 16:44:18

Data Validation and Laboratory Reports

Herrera Environmental Consultants, Inc.

Memorandum

То	Project File C00-01732-066
СС	Paula Fedirchuk, Herrera Environmental Consultants
From	Gina Catarra and Rob Zisette, Herrera Environmental Consultants
Date	December 19, 2005
Subject	Semivolatile Organic Compounds Data Validation for Colville Post and Pole TDD #05-03-0009

This memorandum presents a review of soil, sediment, and ground water data collected from the Colville Post and Pole Site located in Stevens County, Washington. A total of 40 soil samples, five sediment sample, two wood chip samples, and 29 ground water samples were collected between June 13 and 17, 2005. STL Seattle of Tacoma, Washington analyzed the samples for semivolatile organic compounds (SVOCs) using U.S. EPA Method 8270C (USEPA 2004).

The laboratory's performance was reviewed in accordance with quality control (QC) specifications outlined in: the *Colville Post and Pole Phase II Removal Site Evaluation Site— Specific Sampling Plan* (SSSP) (Herrera 2005); the *Contract Laboratory Program National Functional Guidelines for Organic Data Review* (Functional Guidelines) (USEPA 1999), and the specified analytical method (USEPA 2004).

Quality control and raw laboratory data submitted by the laboratory were reviewed. Data qualifiers (flags) were added to the sample results in the laboratory reports. Data validation results are summarized below, followed by a summary of laboratory communications and definitions of data qualifiers.

Data Validation

Custody, Preservation, Holding Times, and Completeness—Acceptable with Discussion

Sample custody was properly maintained from sample collection to receipt at the laboratory. The samples were properly preserved and were received intact at the laboratory. The reported samples were extracted and analyzed within the required holding time of 7 days for water samples and 14 days for soil samples from collection to extraction, and 40 days from extraction to analysis. The laboratory data package is complete and contains test results for all samples listed on the chain-of-custody (COC).

1

Based on comparison of field analysis results to laboratory results, it was determined that sample bottles submitted for samples SAGWW0305 and NAGWW0504 were incorrectly identified by the laboratory. Sample identification numbers for these two samples were changed on the laboratory data sheets. Correct sample identification numbers were entered on the form by the data reviewer and are referred to in this memorandum.

Instrument Tuning and Mass Calibration—Acceptable with Discussion

The tuning compound decafluorotriphenylphosphine was analyzed at the required frequency and all relative abundance values were acceptable with the exceptions noted below.

The tuning criteria for m/z 51 and m/z 275 in relation to m/z 198 are 30 to 80 percent and 10 to 30 percent, respectively, as established by Functional Guidelines. The tuning criteria for m/z 51 and m/z 275 were not met for several instrument performance checks. No data have been qualified because the actual relative abundance at m/z 51 and m/z127 are not critical and all other criteria were met.

Initial Calibration—Acceptable with Qualification

Initial calibrations were analyzed at the required frequency. Initial calibration criteria (i.e., percent relative standard deviation [RSD] values less than or equal to 30 percent and relative response factors [RRFs] greater than 0.05) established by Functional Guidelines were met with the exceptions noted below.

The RSD value for bis (2-chloroisopropyl) ether (32 percent) for the initial calibration analyzed on 6/01/05 exceeded the 30 percent criterion. Eliminating either the low or high standard did not result in an adjusted RSD value that met the 30 percent criterion. Bis (2-chloroisopropyl) ether was not detected above the reporting limit for the associated samples; therefore, bis (2-chloroisopropyl) ether results for all associated samples were qualified as estimated detection limits (UJ), as shown in the table below.

Sample ID	Compound	Criteria	Qualifier
RB-1	Bis (2-chloroisopropyl) ether	Initial calibration %RSD greater than 30 percent	UJ
SAGWP0104	Bis (2-chloroisopropyl) ether	Initial calibration %RSD greater than 30 percent	UJ
SAGWP0203	Bis (2-chloroisopropyl) ether	Initial calibration %RSD greater than 30 percent	UJ
SAGWP0404	Bis (2-chloroisopropyl) ether	Initial calibration %RSD greater than 30 percent	UJ
SAGWP0302	Bis (2-chloroisopropyl) ether	Initial calibration %RSD greater than 30 percent	UJ
SAGWP0505	Bis (2-chloroisopropyl) ether	Initial calibration %RSD greater than 30 percent	UJ
SAGWP0602	Bis (2-chloroisopropyl) ether	Initial calibration %RSD greater than 30 percent	UJ
NAGWP0805	Bis (2-chloroisopropyl) ether	Initial calibration %RSD greater than 30 percent	UJ
NAGWP1005	Bis (2-chloroisopropyl) ether	Initial calibration %RSD greater than 30 percent	UJ
RB-2	Bis (2-chloroisopropyl) ether	Initial calibration %RSD greater than 30 percent	UJ

The RSD value for 4-nitrophenol (32 percent) for the initial calibration analyzed on June 23, 2005, and the RSD value for benzoic acid (34 percent) for the initial calibration analyzed on June 1, 2005, exceeded the 30 percent criterion. In accordance with Functional Guidelines (Semivolatile Data Review Section III.E.2), the RSD for the compound that exceeded the 30 percent criterion was recalculated, eliminating either the low or high standard in the calibration curve to determine linearity. The adjusted RSD values for 4-nitrophenol (27 percent) and benzoic acid (27 percent) met the 30 percent criterion when the high standard was eliminated, indicating that the calibration is linear in the lower portion of the curve. No data were qualified because 4-nitrophenol and benzoic acid were either not detected or were detected in the lower portion of the curve for all associated samples.

Continuing Calibration—Acceptable with Qualification

Continuing calibration verification (CCV) standards were analyzed at the required frequency. Continuing calibration criteria (i.e., relative percent difference values less than or equal to 25.0 percent and RRFs greater than 0.05) established by Functional Guidelines were met for all target compounds with the exceptions noted below.

The percent difference value for bis (2-chloroethyl) ether (66 percent) in the CCV standard analyzed at 23:06 on 6/23/05 exceeded the 25.0 percent criterion. The associated bis (2-chloroethyl) ether data were not qualified because bis (2-chloroethyl) ether was not detected at the reporting limit in any associated sample and the CCV percent difference was biased high.

The percent difference value for indeno (1,2,3-cd) pyrene (52 percent), benzyl alcohol (28 percent), diethylphthalate (56 percent), 3-nitroaniline (27 percent), and 2,6-dinitrotoluene (26 percent) in the CCV standard analyzed at 20:27 on 6/25/05 exceeded the 25.0 percent criterion. The associated indeno (1,2,3-cd) pyrene, benzyl alcohol, diethylphthalate, 3-nitroaniline, and 2,6-dinitrotoluene data were not qualified because these compounds were not detected at the reporting limit in any associated sample and the CCV percent differences were biased high.

The percent difference value for 2-methylphenol (26 percent), 3-&4-methylphenol (26 percent), benzoic acid (54 percent), dimethylphthalate (69 percent), and 3-nitroaniline (34 percent) in the CCV standard analyzed at 09:41 on 6/27/05 exceeded the 25.0 percent criterion. The associated 2-methylphenol, 3-&4-methylphenol, benzoic acid, dimethylphthalate, and 3-nitroaniline data were not qualified because these compounds were not detected at the reporting limit in any associated sample and the CCV percent differences were biased high.

The percent difference values for bis (2-chloroisopropyl) ether (69 percent), benzoic acid (31 percent), 2,6-dinitrotoluene (35 percent), and bis(2-chloroethyl)ether (38 percent) in the CCV standard analyzed at 15:04 on 6/23/05 exceeded the 25.0 percent criterion. The associated bis (2-chloroisopropyl) ether and bis(2-chloroethyl)ether data were not qualified because bis(2-chloroisopropyl)ether and bis(2-chloroethyl)ether were not detected at the reporting limit in any sample and the CCV percent difference was biased high. The associated benzoic acid and

Sample ID	Matrix	Compound	Criteria	Qualifier
RB-1	water	Benzoic acid	CCV $\%$ D > 25% due to low bias	UJ
RB-1	water	2,6-Dinitotoluene	CCV $\%$ D > 25% due to low bias	UJ
SAGWP0104	water	Benzoic acid	CCV %D > 25% due to low bias	J
SAGWP0104	water	2,6-Dinitotoluene	CCV %D > 25% due to low bias	UJ
SAGWP0203	water	Benzoic acid	CCV %D > 25% due to low bias	J
SAGWP0203	water	2,6-Dinitotoluene	CCV %D > 25% due to low bias	UJ
SAGWP0404	water	Benzoic acid	CCV %D > 25% due to low bias	UJ
SAGWP0404	water	2,6-Dinitotoluene	CCV %D > 25% due to low bias	UJ
SAGWP0302	water	Benzoic acid	CCV %D > 25% due to low bias	UJ
SAGWP0302	water	2,6-Dinitotoluene	CCV %D > 25% due to low bias	UJ
SAGWP0505	water	Benzoic acid	CCV $\%$ D > 25% due to low bias	UJ
SAGWP0505	water	2,6-Dinitotoluene	CCV %D > 25% due to low bias	UJ
SAGWP0602	water	Benzoic acid	CCV %D > 25% due to low bias	UJ
SAGWP0602	water	2,6-Dinitotoluene	CCV %D > 25% due to low bias	UJ
NAGWP0805	water	Benzoic acid	CCV %D > 25% due to low bias	UJ
NAGWP0805	water	2,6-Dinitotoluene	CCV %D > 25% due to low bias	UJ
NAGWP1005	water	Benzoic acid	CCV %D > 25% due to low bias	UJ
NAGWP1005	water	2,6-Dinitotoluene	CCV $\%$ D > 25% due to low bias	UJ
RB-2	water	Benzoic acid	CCV $\%$ D > 25% due to low bias	UJ
RB-2	water	2,6-Dinitotoluene	CCV %D > 25 % due to low bias	UJ

2,6-dinitrotoluene data were qualified as an estimated reporting limit (UJ) or estimated (J) because the CCV percent differences were biased low, as shown in the following table.

The percent difference values for bis (2-chloroisopropyl) ether (55 percent) and indeno (1,2,3-cd) pyrene (34 percent) in the CCV standard analyzed at 17:37 on 6/24/05 exceeded the 25.0 percent criterion. The associated indeno (1,2,3-cd) pyrene data were not qualified because indeno (1,2,3-cd) pyrene was not detected at the reporting limit in any associated sample and the CCV percent difference exceedance was biased high. The associated bis (2-chloroisopropyl) ether data were qualified as an estimated reporting limit (UJ), because bis (2-chloroisopropyl) ether was not detected at or above the reporting limit in any associated sample and the CCV percent difference was biased low, as shown in the following table.

Sample ID	Matrix	Compound	Criteria	Qualifier
BKSDH0900	water	Bis (2-chloroisopropyl) ether	CCV %D > 25% due to low bias	UJ
BKSSH1000	water	Bis (2-chloroisopropyl) ether	CCV % $D > 25$ % due to low bias	UJ
CRSDH0100	water	Bis (2-chloroisopropyl) ether	CCV % $D > 25$ % due to low bias	UJ
CRSDH0200	water	Bis (2-chloroisopropyl) ether	CCV % $D > 25$ % due to low bias	UJ
CRSDH0300	water	Bis (2-chloroisopropyl) ether	CCV % $D > 25$ % due to low bias	UJ
CRSDH0400	water	Bis (2-chloroisopropyl) ether	CCV % $D > 25$ % due to low bias	UJ
NASSP0700	water	Bis (2-chloroisopropyl) ether	CCV % $D > 25$ % due to low bias	UJ
NASSP0800	water	Bis (2-chloroisopropyl) ether	CCV % $D > 25$ % due to low bias	UJ
NASSP0900	water	Bis (2-chloroisopropyl) ether	CCV % $D > 25$ % due to low bias	UJ
NASSP1000	water	Bis (2-chloroisopropyl) ether	CCV % $D > 25$ % due to low bias	UJ
NASSW0100	water	Bis (2-chloroisopropyl) ether	CCV % $D > 25$ % due to low bias	UJ
NASSW0400	water	Bis (2-chloroisopropyl) ether	CCV % $D > 25$ % due to low bias	UJ
NASSW0500	water	Bis (2-chloroisopropyl) ether	CCV %D > 25% due to low bias	UJ
NASSW0600	water	Bis (2-chloroisopropyl) ether	CCV % $D > 25$ % due to low bias	UJ
PASSP1300	water	Bis (2-chloroisopropyl) ether	CCV %D > 25% due to low bias	UJ

The percent difference values for benzyl alcohol (37 percent), 4-nitrophenol (44 percent), bis (2-chloroethyl) ether (50 percent), hexachloroethane (59 percent), and bis (2-chloroethoxy) methane (54 percent) in the CCV standard analyzed at 16:06 on 7/07/05 exceeded the 25.0 percent criterion. Benzyl alcohol, 4-nitrophenol, bis (2-chloroethyl) ether, hexachloroethane, and bis (2-chloroethoxy) methane data were qualified as an estimated reporting limit (UJ), because these compounds were not detected at or above the reporting limit in any sample and the CCV percent difference exceedance was biased low, as shown in the following table.

Sample ID	Matrix	Compound	Criteria	Qualifier
SAGWW0703	water	5 compounds ^a	CCV %D > 25% due to low bias	UJ
NAGWW0603	water	5 compounds ^a	CCV %D > 25% due to low bias	UJ
SAGWW0203	water	5 compounds ^a	CCV %D > 25% due to low bias	UJ
NAGWW0403	water	5 compounds ^a	CCV % $D > 25$ % due to low bias	UJ
SAGWW0806	water	5 compounds ^a	CCV %D > 25% due to low bias	UJ
NAGWW0504	water	5 compounds ^a	CCV % $D > 25$ % due to low bias	UJ
SAGWW0305	water	5 compounds ^a	CCV % $D > 25$ % due to low bias	UJ
NAGWW0106	water	5 compounds ^a	CCV %D > 25% due to low bias	UJ
NAGWW0106D	water	5 compounds ^a	CCV % $D > 25$ % due to low bias	UJ
SAGWMW205	water	5 compounds ^a	CCV % $D > 25$ % due to low bias	UJ
SAGWMW407	water	5 compounds ^a	CCV % $D > 25$ % due to low bias	UJ
SAGWMW105	water	5 compounds ^a	CCV % $D > 25$ % due to low bias	UJ
SAGWMW105D	water	5 compounds ^a	CCV % $D > 25$ % due to low bias	UJ
PAGWP1308	water	5 compounds ^a	CCV % $D > 25$ % due to low bias	UJ
PAGWP1109	water	5 compounds ^a	CCV % $D > 25$ % due to low bias	UJ
PAGWP1208	water	5 compounds ^a	CCV % $D > 25$ % due to low bias	UJ
RB-33	water	5 compounds ^a	CCV %D > 25% due to low bias	UJ

^a The 5 compounds include: Benzyl alcohol, 4-nitrophenol, bis (2-chloroethyl) ether, hexachloroethane, and bis (2-chloroethoxy) methane.

Blank Analysis—Acceptable with Qualification

Method blanks were extracted and analyzed at the required frequency. The method blanks do not contain reportable levels of the target compounds and no data have been qualified, with the exceptions noted below.

Di-n-butyl phthalate was detected in the method blanks associated with work order numbers 128438 and 128439 at concentrations between the method detection limit (MDL) and the reporting limit (RL). Associated data with detected concentrations of di-n-butyl phthalate, between the MDL and the RL were qualified as undetected (U) at the level of the RL. The detected concentration of di-n-butyl phthalate for sample SAGWP0203 was greater than the RL but less than 10 times the detected level of di-n-butyl phthalate in the method blank. In accordance with Functional Guidelines, the di-n-butyl phthalate result for sample SAGEP0203 was qualified as undetected (U) at the reported concentration.

Bis (2-ethylhexyl) phthalate was detected in method blank SS1456 at a concentration between the method detection limit (MDL) and the reporting limit (RL). Associated data with detected concentrations of bis (2-ethylhexyl) phthalate between the MDL and the RL were qualified as undetected (U) at the level of the RL.

Surrogate Analysis—Acceptable with Discussion

Six surrogate compounds were analyzed with each sample and blank in accordance with the requirements in the method. All surrogate recovery values were within the control limits established by Functional Guidelines with the exceptions noted below.

Recovery of one surrogate from the acid or base/neutral fraction exceeded recovery limits established by Functional Guidelines for several samples. In accordance with Functional Guidelines, no data were qualified if only one surrogate from the acid or base/neutral fraction exceeded recovery limit criteria.

Recoveries of surrogates nitrobenzene-d5 (ranging from 115 to 125 percent) and 2fluorobiphenyl (ranging from 123 to 131 percent) exceeded the control limits (35 to 114 percent for nitrobenzene-d5 and 43 to 116 percent for 2-fluorobiphenyl) established by Functional Guidelines for ground water samples SAGWW0203, SAGWW0305, and NAGWW0504. Although two base/neutral fraction surrogates exceeded the control limit, no data were qualified because surrogate recovery criteria established by the laboratory (34 to 146 percent for nitrobenzene-d5 and 35 to 143 percent for 2-fluorobiphenyl) were met for samples SAGWW0203, SAGWW0305, and NAGWW0504.

Recovery of surrogates nitrobenzene-d5 (159 percent), 2,4,6-tribromophenol (131 percent), and terphenyl-d14 (143 percent) exceeded the control limits (ranging from 10 to 141 percent) established by Functional Guidelines for ground water sample SAGWMW205. Although two base/neutral fraction surrogates (nitrobenzene-d5 and terphenyl-d14) exceeded control limit

criteria, no data was qualified because surrogate exceedance was biased high and no base/neutral compounds were detected above the reporting limit for sample SAGWMW205.

Recoveries of surrogates 2-flurophenol (ranging from 125 to 140 percent) and phenol-d5 (ranging from 114 to 119 percent) exceeded the control limits (25 to 121 percent for 2-fluorophenol and 24 to 113 for phenol-d5) established by Functional Guidelines for sediment sample CRSDH0200 and soil samples PASBP1111, PASBP1204, PASBP1306, SASBP0604, and SASBW0804. Although two acid fraction surrogates exceeded the control limit, no data was qualified because surrogate recovery criteria established by the laboratory (36 to 145 percent for 2-fluorophenol and 38 to 149 percent for phenol-d5) were met for samples CRSDH0200, PASBP1111, PASBP1204, and SASBW0804.

Recovery of surrogates phenol-d5 (115 percent), nitrobenzene-d5 (177 percent), 2-fluorobiphenyl (218 percent), 2,4,6-tribromophenol (17 percent), and p-terphenyl-d14 (148 percent) exceeded the control limits (ranging from 18 to 137 percent) established by Functional Guidelines for soil sample PASSP1300. Although two acid fraction surrogates (phenol-d5 and 2,4,6-tribromophenol) exceeded the control limit criteria, no data were qualified because the surrogate recovery exceedances were marginal (2 percent for both phenol-d5 and 2,4,6-tribromophenol). Although three base/neutral fraction surrogates (nitrobenzene-d5, 2-fluorobiphenyl, and p-terphenyl-d14) exceeded control limit criteria, no data were qualified because the surrogate recovery exceedances were biased high and no base/neutral compounds were detected above the reporting limit for sample PASSP1300.

Internal Standard Evaluation—Acceptable

Internal standards were added to all samples, blanks, and QC samples as required. The response and retention time criteria established by Functional Guidelines were met.

Matrix Spike Analysis—Acceptable with Discussion

Matrix spike/matrix spike duplicate (MS/MSD) results were analyzed and reported at the required frequency. MS/MSD results were reported for ground water samples SAGWW0203 and NAGWP0705 and for soil samples PASSP1300, SASBH0501, SASBH0801, and SASBP0505. The percent recovery values (ranging from 10 to 104 percent for water and ranging from 38 to 97 for soil) met the control limits (ranging from 9 to 118 percent for water and ranging from 11 to 142 percent for soil) established by Functional Guidelines with the exceptions noted below.

Pentachlorophenol was not recovered in the MS or the MSD for samples PASSP1300 and SASBH0501, and was not recovered in the MSD for sample SASBH0801. However, pentachlorophenol was not recovered because the concentration of pentachlorophenol in the native sample was more than four times greater than the spike amount added for the MS/MSD analysis. No data were qualified because all other criteria for pentachlorophenol were met, as specified by Functional Guidelines.

The MS/MSD percent recovery values for pentachlorophenol (110 percent and 113 percent), acenaphthene (147 percent for MS), and 2,4-dinitrotoluene (159 percent and 109 percent) for sample SAGWW0203 exceeded the control limits (ranging from 9 to 118 percent) established by Functional Guidelines. No data were qualified because the exceedance for pentachlorophenol was marginal (7 and 10 percent), the MSD percent recovery for acenaphthene (104 percent) met control limit criteria (46 to 118 percent), and 2,4-dinitrotoluene was not detected above the reporting limit for any associated sample and the MS/MSD exceedance was biased high.

The MS/MSD percent recovery values for several compounds (ranging from 104 to 132 percent) for sample NAGWP0705 exceeded the control criteria (ranging from 9 to 127 percent) established by Functional Guidelines. No data were qualified because all percent recovery values met the control limits established by the laboratory.

Duplicate Analysis—Acceptable with Discussion

Matrix spike/matrix spike duplicate (MS/MSD) results were analyzed and reported at the required frequency. MS/MSD results were reported for ground water samples SAGWW0203 and NAGWP0705 and for soil samples PASSP1300, SASBH0501, SASBH0801, and SASBP0505. The relative percent difference (RPD) values (ranging from 1 to 37 percent for water and ranging from 0 to 37 percent for soil) met the control limits (ranging from 0 to less than 50 percent for both water and soil) established by Functional Guidelines with the exception noted below.

The MS/MSD RPD value for acenaphthene (34 percent) for sample SAGWW0203 exceeded the control limits (less than 31 percent) established by Functional Guidelines. No data were qualified because the exceedance was marginal (3 percent) and all other criteria were met.

Laboratory Control Sample Analysis—Acceptable

Blank spike/blank spike duplicates were extracted and analyzed at the frequency required by the analytical method. However, analysis of blank spike samples is not required by Functional Guideline and no percent recovery criteria have been established. The percent recovery values for the blank spikes (ranging from 9 to 125 percent) met the laboratory control limits (ranging from 1 to 160 percent).

Laboratory Reporting Limits—Acceptable with Qualification

Reporting limits (RLs) for the semivolatile organic compounds were specified in the SSP as CLP Contract Required Detection Limits (CRDL). The laboratory met the specified RLs.

Target compounds detected at concentrations between the method detection limit (MDL) and the RL were reported by the laboratory. The method detection limit and the reporting limit represent

different levels of accuracy. Positive values less than the reporting limit have been qualified (flagged) as estimated (J) by the laboratory.

Tentatively Identified Compounds

Tentatively identified compound reporting is not required for this project.

Overall Assessment of Data Quality

The usability of the data is based on the guidance documents listed above. Upon consideration of the information presented here, the data are acceptable as qualified.

Laboratory Communications

The laboratory was not contacted regarding the semivolatile organic compounds analyses.

Definition of Data Qualifiers

The following data validation qualifiers were used in the review of this data set. These qualifiers are from the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 1999).

- **J** The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- **U** The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- **UJ** The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- **R** The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

References

Herrera. 2005. Colville Post and Pole Phase II Removal Site Evaluation Site-Specific Sampling Plan (SSSP). Prepared by Herrera Environmental Consultants, Inc., for U.S. Environmental Protection Agency, Region 10, Seattle, Washington. June 2005.

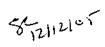
USEPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA 540/R-99/008. U.S. Environmental Protection Agency, Washington, D.C. October 1999.

USEPA. 2004. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 Third Edition, Updates I, II, IIA, IIB, IIIA, and IIIB. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. October 2004.

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids **Dilution Factor**

.

Herrera Environmental Consultants RB-1 128438-01 6/17/2005 6/20/2005 6/23/2005 -1


			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	4.38		2	120
Phenol - d5	22.8		1	102
Nitrobenzene - d5	79.1		34	146
2 - Fluorobiphenyl	98.2		35	143
2,4,6 - Tribromophenol	62		29	151
p - Terphenyl - d14	73.1		35	166

	Result		
Analyte	(ug/L)	RL	MDL Flags
Phenol	ND	2.41	0.0554
bis(2-Chloroethyl)ether	ND	2.41	0.39
2-Chlorophenol	ND	2.41	0.507
1,3-Dichlorobenzene	ND	2.41	0.442
1,4-Dichlorobenzene	ND	2.41	0.381
Benzyl Alcohol	ND	2.41	0.512
1.2-Dichlorobenzene	ND	2.41	0.335
2-Methylphenol	ND	2.41	0.471
bis(2-Chloroisopropyl)ether	NB- 2.41 4J	2.41	0.517
3-&4-Methylphenol	ND	4.82	0.531
N-nitroso-di-n-propylamine	ND	2.41	0.445
Hexachloroethane	ND	2.41	0.459
Nitrobenzene	ND	2.41	0.627
Isophorone	ND	2.41	0.341
2-Nitrophenol	ND	2.41	0.516
2,4-Dimethylphenol	ND	12	2.2
Benzoic Acid	NO 12 UJ	12	1.61
bis(2-Chloroethoxy)methane	ND	2.41	0.218
2,4-Dichlorophenol	ND	2.41	0.224
1,2,4-Trichlorobenzene	ND	2.41	0.148
Naphthalene	NÐ	0.602	0.21
4-Chloroaniline	ND	3.61	0.871
Hexachlorobutadiene	ND	2.41	0.177
4-Chloro-3-methylphenol	ND	2.41	0.294
2-Methylnaphthalene	ND	0.602	0.18
Hexachlorocyclopentadiene	ND	12	3.73

Semivolatile Organics by EPA Method 8270 data for 128438-01 continued...

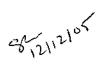
- م

,	Result			Eloge
Analyte	(ug/L)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND	2.41	0.387	
2,4,5-Trichlorophenol	ND	2.41	0.534 0.0578	
2-Chloronaphthalene	ND	0.241		
2-Nitroaniline	ND	2.41	0.36 0.47	
Dimethylphthalate	ND	2.41		
Acenaphthylene	ND	0.241	0.0289	
2,6-Dinitrotoluene	ND2.411	2.41	0.45B 0.681	
3-Nitroaniline	ND	2.41		
Acenaphthene	ND	0.241	0.041 2.49	
2,4-Dinitrophenol	ND	12	2.49 1.42	
4-Nitrophenol	ND	12	0.247	
Dibenzofuran	ND	2.41		
2,4-Dinitrotoluene	ND	2.41	0.692	
Diethylphthalate	ND	2.41	0.671	
4-Chlorophenylphenylether	ND	2.41	0.388	
Fluorene	ND	0.241	0.0205	
4-Nitroaniline	ND	2.41	0,467	
4,6-Dinitro-2-methylphenol	ND	12	3.73	
N-Nitrosodiphenylamine	ND	2.41	0.102	
4-Bromophenylphenylether	ND	2.41	0.264	
Hexachlorobenzene	ND	2.41	0,301	
Pentachiorophenol	ND	2.41	2.41	
Phenanthrene	ND	0.241	0.0446	
Anthracene	ND	0.241	0.0229	181
Di-n-butylphthalate	-	2.510 2.41U 2.41	0.448	101
Fluoranthene	ND	0.241	0.0687	
Pyrene	ND	0.241	0.0349	
Butylbenzylphthalate	ND	3.61	1.17	
3,3'-Dichlorobenzidine	ND	12	2.26	
Benzo(a)anthracene	ND	0.241	0,0627	
Chrysene	ND	0.241	0.101	
bis(2-Ethylhexyl)phthalate	ND	18.1	4.59	
Di-n-octylphthalate	ND	2.41	0.329	
Benzofluoranthenes	ND	1.2	0.143	
Benzo(a)pyrene	ND	0.241	0.0398	
Indeno(1,2,3-cd)pyrene	ND	0.241	0.0337	
Dibenz(a,h)anthracene	ND	0.241	0.0373	
Benzo(g,h,i)perylene	ND	0.241	0.0614	

98886

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor e - -

Herrera Environmental Consultants SAGWP0104 128438-02 6/17/2005 6/20/2005 6/23/2005 -1


			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	1.53	X9	2	120
Phenol - d5	34.2		1	102
Nitrobenzene - d5	60,6		34	146
	76.5		35	143
2 - Fluorobiphenyl	63.2		29	151
2,4,6 - Tribromophenol p - Terphenyl - d14	70.3		35	166

		Result		51	MDL	Flags
Analyte		(ug/L)	4.00	RL	0.046	J
Phenol			1.98	2	0.324	
bis(2-Chloraethyl)ether	ND			2	0.421	
2-Chlorophenol	ND			2	0.367	
1,3-Dichlorobenzene	ND			2		
1,4-Dichlorobenzene	ND			2	0.316	
Benzyl Alcohol	ND			2	0.425	
1,2-Dichlorobenzene	ND			2	0.278	
2-Methylphenol	ND			2	0.391	
bis(2-Chioroisopropyl)ether	ND (2117		2	0.429	
3-&4-Methylphenol			4.64	4	0.441	
N-nitroso-di-n-propylamine	ND			2	0.369	
Hexachloroethane	ND			2	0.381	
Nitrobenzene	ND			2 2 2	0.52	
Isophorone	ND			2	0.283	
2-Nitrophenol	ND			2	0.428	
2,4-Dimethylphenol	ND			10	1,83	
Benzoic Acid	• • -		11.4 5	10	1.34	
bis(2-Chloroethoxy)methane	ND			2	0.181	
2,4-Dichlorophenol	ND			2	0.186	
1,2,4-Trichlorobenzene	ND			2	0.123	
	ND			0.5	0.174	
Naphthalene	ND			3	0.723	
4-Chloroaniline	ND			2	0,147	
Hexachlorobutadiene	ND			2	0.244	
4-Chioro-3-methylphenol				0.5	0.149	
2-Methylnaphthalene	ND ND			10	3,1	
Hexachlorocyclopentadiene	ND			• -		

Semivolatile Organics by EPA Method 8270 data for 128438-02 continued...

<u>بر م</u>ح

	Res	ult			
Analyte	(ug/	L)	RL	MDL	Flags
2,4,6-Trichiorophenol	ND		2	0.321	
2,4,5-Trichlorophenol	ND		2	0.443	
2-Chloronaphthalene	ND		0.2	0.048	
2-Nitroaniline	ND		2	0.299	
Dimethylphthalate	ND		2	0.39	
Acenaphthylene	ND		0.2	0.024	
2,6-Dinitratoluene	NO-2 U	(.)	2	0.38	
3-Nitroaniline	ND		2	0.565	
Acenaphthene	ND		0.2	0.034	
2,4-Dinitrophenol	ND		10	2.07	
4-Nitrophenal	ND		10	1,18	
Dibenzofuran	ND		2	0.205	
2,4-Dinitrotoluene	NĎ		2	0.574	
Diethylphthalate		0,958	2	0.557	j
4-Chlorophenylphenylether	ND		2	0.322	
Fluorene	ND		0.2	0.017	
4-Nitroaniline	ND		2	0,388	
4,6-Dinitro-2-methylphenol	ND		10	3.1	
N-Nitrosodiphenylamine	ND		2	0.085	
4-Bromophenyiphenylether	ND		2	0.219	
Hexachlorobenzene	ND		2	0.25	
Pentachlorophenol	ND		2	2	
Phenanthrene	ND		0.2	0.037	
Anthracene	ND		0.2	0.019	_
Di-n-butylphthalate		4.27	2	0.372	, B 2
Fluoranthene	ND		0.2	0.057	
Pyrene	ND		0,2	0.029	
Butylbenzylphthalate		1.29	3	0.975	J
3,3'-Dichlorobenzidine	ND		10	1.87	
Benzo(a)anthracene	ND		0.2	0.052	
Chrysene	ND		0,2	0.084	
bis(2-Ethylhexyl)phthalate	ND		15	3.81	
Di-n-octylphthalate	ND		2	0.273	
Benzofluoranthenes	ND		1	0.119	
Benzo(a)pyrene	ND		0.2	0.033	
indeno(1,2,3-cd)pyrene	ND		0,2	0.028	
Dibenz(a,h)anthracene	ND		0.2	0.031	
Benzo(g,h,i)perylene	ND		0.2	0.051	
Delizo(g,ti,i)peryiene					

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids **Dilution Factor**

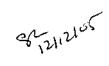
e---

Herrera Environmental Consultants SAGWP0203 128438-03 6/17/2005 6/20/2005 6/23/2005 -

1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	7.41		2	120
Phenol - d5	36.4		1	102
Nitrobenzene - d5	64		34	146
2 - Fluorobiphenyl	76.4		35	143
2,4,6 - Tribromophenol	70.5		29	151
p - Terphenyi - d14	77.9		35	166

	F	lesult			
Analyte	(ug/L)	RL	MDL	Flags
Phenol	ND		1.94	0.0447	
bis(2-Chloroethyl)ether	ND		1.94	0.315	
2-Chlorophenol	ND		1.94	0,409	
1,3-Dichlorobenzene	ND		1.94	0.356	
1,4-Dichlorobenzene	ND		1.94	0.307	
Benzyl Alcohol	ND		1.94	0.413	
1,2-Dichlorobenzene	ND		1.94	0.27	
2-Methylphenol	ND	1.1.1	1.94	0.38	
bis(2-Chloroisopropyl)ether	ND 1	94 U.J	1.94	0.417	
3-&4-Methylphenol	ND		3.88	0.428	
N-nitroso-di-n-propylamine	ND		1.94	0.358	
Hexachloroethane	ND		1.94	0.37	
Nitrobenzene	ND		1.94	0.505	
Isophorone	ND		1.94	0.275	
2-Nitrophenol	ND		1.94	0.416	
2,4-Dimethylphenol	ND		9.71	1,78	
Benzoic Acid		2.39 J	9.71	1.3	J
bis(2-Chloroethoxy)methane	ND		1.94	0.176	
2,4-Dichlorophenol	ND		1.94	0.181	
1,2,4-Trichlorobenzene	ND		1.94	0.119	
Naphthalene	ND		0.485	0.169	
4-Chioroaniline	ND		2.91	0.702	
Hexachlorobutadiene	ND		1.94	0.143	
4-Chloro-3-methylphenol	ND		1.94	0.237	
2-Methylnaphthalene	NÐ		0.485	0.145	
Hexachlorocyclopentadiene	ND		9.71	3.01	


50-12/12/0x

60300

Semivolatile Organics by EPA Method 8270 data for 128438-03 continued...

. م

	Re	sult			
Analyte	(u)	g/L)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND		1.94	0.312	
2,4,5-Trichlorophenol	ND		1.94	0.43	
2-Chloronaphthalene	ND		0.194	0.0466	
2-Nitroaniline	ND		1.94	0.29	
Dimethylphthalate	ND		1.94	0.379	
Acenaphthylene	ND		0.194	0.0233	
2,6-Dinitrotoluene	-ND-1.9	445	1.94	0.369	
3-Nitroaniline	ND		1.94	0.549	
Acenaphthene	ND		0.194	0.033	
2,4-Dinitrophenol	ND		9.71	2.01	
4-Nitrophenol	ND		9.71	1.15	
Dibenzofuran	ND		1.94	0.199	
2,4-Dinitrotoluene	ND		1.94	0.557	
Diethylphthalate		0.579	1.94	0.541	J
4-Chlorophenylphenylether	ND		1.94	0.313	
Fluorene	ND		0.194	0.0165	
4-Nitroaniline	ND		1,94	0.377	
4,6-Dinitro-2-methylphenol	ND		9.71	3.01	
N-Nitrosodiphenylamine	ND		1,94	0.0825	
4-Bromophenylphenylether	ND		1.94	0.213	
Hexachlorobenzene	ND		1.94	0.243	
Pentachlorophenol	ND		1.94	1.94	
Phenanthrene	ND		0.194	0.0359	
Anthracene	ND		0.194	0.0184	/
Di-n-butylphthalate		3.76 V	1.94	0.361	BrA
Fluoranthene	ND		0.194	0.0553	•
Pyrene	ND		0.194	0.0282	
Butylbenzylphthalate	ND		2.91	0.947	
3,3'-Dichlorobenzidine	ND		9.71	1.82	
Benzo(a)anthracene	ND		0.194	0.0505	
Chrysene	ND		0.194	0.0816	
bis(2-Ethylhexyl)phthalate	ND		14.6	3.7	
Di-n-octylphthalate	ND		1.94	0.265	
Benzofluoranthenes	ND		0.971	0.116	
Benzo(a)pyrene	ND		0,194	0.032	
Indeno(1,2,3-cd)pyrene	ND		0.194	0.0272	
Dibenz(a,h)anthracene	ND		0.194	0.0301	
Benzo(g,h,i)perylene	ND		0.1 94	0.0495	

Client Name: Client ID: Lab 1D: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor J--

Herrera Environmental Consultants SAGWP0404 128438-04 6/17/2005 6/20/2005 6/23/2005 -1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	Hìgh
2 - Fluorophenol	6.45		2	120
Phenal - d5	39.7		1	102
Nitrobenzene - d5	78.5		34	146
2 - Fluorobiphenyl	92.2		35	143
	63.1		29	151
2,4,6 - Tribromophenol p - Terphenyl - d14	76.9		35	166

a a b da	Resul (ug/L		MDL Flags
Analyte	ND	1.9	0.0438
Phenol	ND	1.9	0.309
bis(2-Chloroethyl)ether	ND	1.9	0.401
2-Chlorophenol	ND	1.9	0.35
1,3-Dichlorobenzene	ND	1,9	0.301
1,4-Dichlorobenzene	ND	1.9	0.405
Benzyl Alcohol	ND	1.9	0.265
1,2-Dichlorobenzene	ND	1.9	0.372
2-Methylphenol	ND- 1.9		0.409
bis(2-Chloroisopropyl)ether	ND	3.81	0.42
3-&4-Methylphenol	ND	1.9	0.351
N-nitroso-di-n-propylamine	ND	1.9	0.363
Hexachloroethane	ND	1.9	0.495
Nitrobenzene	ND	1,9	0.27
Isophorone	ND	1.9	0.408
2-Nitrophenol	ND	9,52	1.74
2,4-Dimethylphenol	NO 9.53	LUJ 9.52	1.28
Benzoic Acid	ND	1.9	0.172
bis(2-Chloroethoxy)methane 2,4-Dichlorophenol	ND	1.9	0.177
1,2,4-Trichlorobenzene	ND	1,9	0,117
	ND	0.476	0.166
Naphthalene	ND	2.86	0.689
4-Chioroaniline	ND	1.9	0.14
Hexachlorobutadiene	ND	1.9	0.232
4-Chioro-3-methylphenol	ND	0.476	0.142
2-Methylnaphthalene Hexachlorocyclopentadiene	ND	9.52	2,95

er 12/12/01

Semivolatile Organics by EPA Method 8270 data for 128438-04 continued...

e .

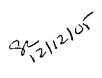
	Result		MDL Flags
Analyte	(ug/L)	RL	MDL Flags 0.306
2,4,6-Trichlorophenol	ND	1.9	0.422
2,4,5-Trichlorophenol	ND	1.9	0.0457
2-Chloronaphthalene	ND	0.19	0.285
2-Nitroaniline	ND	1.9	0.203
Dimethylphthalate	ND	1.9	0.0229
Acenaphthyiene	ND -	<u>ر 0.19</u>	0.362
2,6-Dinitrotoluene	ND 1.9U) 1.9	0.538
3-Nitroaniline	ND	1.9	0.0324
Acenaphthene	ND	0.19	1.97
2,4-Dinitrophenol	ND	9.52	1.12
4-Nitrophenol	ND	9.52	0.195
Dibenzofuran	ND	1.9	0.547
2,4-Dinitrotoluene	ND	1.9	0.53
Diethylphthalate	ND	1.9	0.307
4-Chlorophenylphenylether	ND	1.9	0.307
Fluorene	ND	0.19	
4-Nitroaniline	ND	1.9	0.37 2.95
4,6-Dinitro-2-methylphenol	ND	9.52	
N-Nitrosodiphenylamine	ND	1.9	0.081
4-Bromophenylphenylether	ND	1.9	0.209 0.238
Hexachlorobenzene	ND	1.9	1.9
Pentachlorophenol	ND	1.9	0.0352
Phenanthrene	ND	0.19	0.0352
Anthracene	ND	0.19	
Di-n-butylphthalate		0.458 1.9 U 1.9	
Fluoranthene	ND	0.19	0.0543 0.0276
Pyrene	ND	0.19	0.929
Butylbenzylphthalate	ND	2.86	
3,3'-Dichlorobenzidine	ND	9.52	1.78 0.0495
Benzo(a)anthracene	ND	0.19	0.0495
Chrysene	ND	0.19	3.63
bis(2-Ethylhexyl)phthalate	ND	14.3	0.26
Di-n-octylphthalate	ND	1.9	
Benzofiuoranthenes	ND	0.952	0.113
Benzo(a)pyrene	ND	0.19	0.0314
Indena(1,2,3-cd)pyrene	ND	0.19	0.0267
Dibenz(a,h)anthracene	ND	0.19	0.0295
Benzo(g,h,i)perylene	ND	0.19	0.0486
Deuro(Burukhor).erre			

8-12/12/05

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor .- **م**ح

Herrera Environmental Consultants SAGWP0302 128438-05 6/17/2005 6/20/2005 6/23/2005 -1

		Recovery Limits	
% Recovery 6.83 34 78.2 73.2 67.3 80.9	Flags	Low 2 1 34 35 29 35	High 120 102 146 143 151 166
	6.83 34 78.2 73.2 67.3	6.83 34 78.2 73.2 67.3	% Recovery Flags Low 6.83 2 34 1 78.2 34 73.2 35 67.3 29


Analyte	Result (ug/L)	RL	MDL Flags
Phenol	ND	1.9	0.0438
bis(2-Chloroethyl)ether	ND	1.9	0.309
2-Chlorophenol	ND	1.9	0.401
1,3-Dichlorobenzene	ND	1.9	0.35
1,4-Dichlorobenzene	ND	1.9	0.301
Benzyl Alcohol	ND	1.9	0.405
1,2-Dichlorobenzene	ND	1.9	0.265
2-Methylphenol	ND	1.9	0.372
bis(2-Chloroisopropyl)ether	LN P.I BM	1.9	0.409
3-&4-Methylphenol	ND	3,81	0.42
N-nitroso-di-n-propylamine	ND	1.9	0.351
Hexachloroethane	ND	1.9	0.363
Nitrobenzene	ND	1.9	0.495
Isophorone	ND	1.9	0.27
2-Nitrophenol	ND	1.9	0.408
2.4-Dimethylphenol	ND	9,52	1.74
Benzoic Acid	NB9.52 UN	9,52	1.28
bis(2-Chloroethoxy)methane	ND	1.9	0.172
2,4-Dichlorophenol	ND	1.9	0.177
1,2,4-Trichlorobenzene	ND	1.9	0.117
	ND	0.476	0.166
Naphthalene 4-Chloroaniline	ND	2.86	0.689
	ND	1.9	0.14
Hexachlorobutadiene	ND	1.9	0.232
4-Chloro-3-methylphenol	ND	0.476	0.142
2-Methyinaphthalene Hexachlorocyclopentadiene	ND	9.52	2.95

8-12/12/05

Semivolatile Organics by EPA Method 8270 data for 128438-05 continued...

200

	Result		
Analyte	(ug/L)	RL	MDL Flags
2,4,6-Trichlorophenol	ND	1.9	0.306
2,4,5-Trichlorophenol	ND	1.9	0.422
2-Chloronaphthalene	ND	0.19	0.0457
2-Nitroaniline	ND	1.9	0.285
Dimethylphthalate	ND	1.9	0.371
Acenaphthylene	ND	0,19	0.0229
2,6-Dinitrotoluene	LN P. I DM	1.9	0.362
3-Nitroaniline	ND	1.9	0.538
Acenaphthene	ND	0.19	0.0324
2,4-Dinitrophenol	ND	9.52	1.97
4-Nitrophenol	ND	9.52	1.12
Dibenzofuran	ND	1.9	0.195
2,4-Dinitrotoluene	ND	1.9	0.547
Diethylphthalate	ND	1.9	0.53
4-Chlorophenylphenylether	ND	1.9	0.307
Fluorene	ND	0.19	0.0162
4-Nitroaniline	ND	1.9	0.37
4,6-Dinitro-2-methylphenol	ND	9,52	2.95
N-Nitrosodiphenylamine	ND	1.9	0.081
4-Bromophenylphenylether	ND	1,9	0.209
Hexachlorobenzene	ND	1.9	0.238
Pentachlorophenol	ND	1,9	1.9
Phenanthrene	ND	0.19	0.0352
Anthracene	ND	0.19	0.0181
Di-n-butyiphthalate	ND	1.9	0.354
Fluoranthene	ND	0.19	0.0543
Pyrene	ND	0.19	0,0276
Butylbenzylphthalate	ND	2.86	0.929
3,3'-Dichlorobenzidine	ND	9.52	1.78
Benzo(a)anthracene	ND	0,19	0.0495
Chrysene	ND	0.19	0.08
bis(2-Ethylhexyl)phthalate	ND	14.3	3,63
Di-n-octylphthalate	ND	1.9	0.26
Benzofluoranthenes	ND	0.952	0.113
Benzo(a)pyrene	ND	0.19	0.0314
Indeno(1,2,3-cd)pyrene	ND	0.19	0.0267
Dibenz(a,h)anthracene	ND	0.19	0.0295
Benzo(g,h,i)perylene	ND	0.19	0.0486
Deuzo/Arithborhoue			

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor e -

Herrera Environmental Consultants SAGWP0505 128438-06 6/17/2005 6/20/2005 6/23/2005 1

Semivolatile Organics by EPA Method 8270

			Recov	ary Limits
Surrogate	% Recovery	Flags	Low 2	High 120
2 - Fluorophenol Phenol - d5	6.9 36.9		1	102
Nitrobenzene - d5	55.8		34 35	146 143
2 - Fluorobiphenyl 2,4,6 - Tribromophenol	68.5 53		29	151
p - Terphenyl - d14	63.8		35	166

	Result		
Analyte	(ug/L)	RL	MDL Flags
Phenol	ND	1.92	0.0442
bis(2-Chloroethyl)ether	ND	1.92	0.312
2-Chlorophenol	ND	1.92	0.405
1.3-Dichlorobenzene	ND	1.92	0.353
1,4-Dichlorobenzene	ND	1.92	0.304
Benzyl Alcohol	ND	1.92	0.409
1,2-Dichlorobenzene	ND	1.92	0.267
2-Methylphenol	ND	1.92	0.376
bis(2-Chloroisopropyl)ether	-ND 1.92 U.)	1,92	0.413
3-&4-Methylphenol	ND	3.85	0.424
N-nitroso-di-n-propylamine	ND	1.92	0.355
Hexachloroethane	ND	1.92	0.366
Nitrobenzene	ND	1.92	0.5
Isophorone	ND	1.92	0.272
2-Nitrophenol	ND	1.92	0.412
2,4-Dimethylphenol	ND	9.62	1.76
Benzoic Acid	NO 9.62 U.S	9.62	1.29
bis(2-Chloroethoxy)methane	ND	1.92	0.174
2,4-Dichlorophenol	ND	1.92	0.179
1,2,4-Trichlorobenzene	ND	1.92	0.118
Naphthalene	ND	0.481	0.167
4-Chioroaniline	ND	2.88	0.695
Hexachlorobutadiene	ND	1.92	0.141
4-Chloro-3-methylphenol	ND	1,92	0.235
2-Methyinaphthalene	ND	0.481	0.143
Hexachlorocyclopentadiene	ND	9.62	2.98
			,o<
			er2112105

00015

Semivolatile Organics by EPA Method 8270 data for 128438-06 continued...

- مح

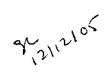
	Result			
Analyte	(ug/L)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND	1.92	0.309	
2,4,5-Trichlorophenol	ND	1.92	0.426	
2-Chloronaphthalene	ND	0,192	0.0462	
2-Nitroaniline	ND	1.92	0.288	
Dimethylphthalate	ND	1.92	0.375	
Acenaphthylene	ND .	0.192	0,0231	
2,6-Dinitrotoluene	ND 1.924	J 1.92	0.365	
3-Nitroaniline	ND	1.92	0.543	
Acenaphthene	ND	0.192	0.0327	
2,4-Dinitrophenol	ND	9.62	1.99	
4-Nitrophenol	ND	9.62	1.13	
Dibenzofuran	ND	1.92	0.197	
2,4-Dinitrotoluene	ND	1.92	0.552	
Diethylphthalate	ND	1,92	0,536	
4-Chlorophenylphenylether	ND	1.92	0,31	
Fluorene	ND	0.192	0.0163	
4-Nitroaniline	ND	1,92	0.373	
4,6-Dinitro-2-methylphenol	ND	9.62	2.98	
N-Nitrosodiphenylamine	ND	1.92	0.0817	
4-Bromophenylphenylether	ND	1.92	0.211	
Hexachlorobenzene	ND	1.92	0.24	
Pentachlorophenol	ND	1.92	1.92	
Phenanthrene	ND	0.192	0.0356	
Anthracene	ND	0.192	0.0183	
Di-n-butylphthalate		1.924 1.92	0.358	181
Fluoranthene	ND	0.192	0.0548	
Pyrene	ND	0.192	0.0279	
Butylbenzylphthalate	ND	2.88	0.938	
3,3'-Dichlorobenzidine	ND	9,62	1.8	
Benzo(a)anthracene	ND	0.192	0.05	
Chrysene	ND	0.192	0.0808	
bis(2-Ethylhexyl)phthaiate	ND	14.4	3.66	
Di-n-octylphthalate	ND	1.92	0.263	
Benzofiuoranthenes	ND	0.962	0.114	
Benzo(a)pyrene	ND	0.192	0.0317	
Indeno(1,2,3-cd)pyrene	ND	0.192	0.0269	
Dibenz(a,h)anthracene	ND	0.192	0.0298	
Benzo(g,h,i)perylene	ND	0.192	0.049	

St 12112105

e	
Client Name:	Herrera Environmental Consultants
Client ID:	SAGWP0602
Lab ID:	128438-07
Date Received:	6/17/2005
Date Prepared:	6/20/2005
Date Analyzed:	6/23/2005
% Solids	-
Dilution Factor	1

Semivolatile Organics by EPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fiuorophenol	4.79		2	120
Phenol - d5	20.8		1	102
Nitrobenzene - d5	57.9		34	146
2 - Fluorobiphenyl	63.2		35	143
2,4,6 - Tribromophenol	46.7		29	151
p - Terphenyl - d14	46.6		35	166


		Result			
Analyte		(ug/L)	RL.	MDL	Flags
Phenol	ND		2	0.046	
bis(2-Chloroethyl)ether	ND		2	0.324	
2-Chiorophenol	ND		2	0.421	
1,3-Dichlorobenzene	ND		2	0.367	
1,4-Dichlorobenzene	ND		2 2	0.316	
Benzyl Alcohol	ND		2	0.425	
1,2-Dichlorobenzene	NÐ		2 2	0.278	
2-Methylphenol	ND			0.391	
bis(2-Chloroisopropyl)ether	₩Ð	2 U J	2	0.429	
3-&4-Methylphenol	ND		4	0.441	
N-nitroso-di-n-propylamine	ND		2	0.369	
Hexachloroethane	ND		2	0.381	
Nitrobenzene	ND		2 2 2	0.52	
Isophorane	ND		2	0.283	
2-Nitrophenol	ND		2	0.428	
2,4-Dimethylphenol	ND		10	1.83	
Benzoic Acid	_ND	IDUJ	10	1.34	
bis(2-Chloroethoxy)methane	ND		2	0.181	
2,4-Dichlorophenol	ND		2	0.186	
1,2,4-Trichlorobenzene	ND		2	0.123	
Naphthalene	ND		0.5	0.174	
4-Chloroaniline	ND		3	0.723	
Hexachlorobutadiene	ND		2	0.147	
4-Chloro-3-methylphenol	ND		2	0.244	
2-Methylnaphthalene	ND		0.5	0.149	
Hexachlorocyclopentadiene	ND		10	3,1	

8-12/12/05

Semivolatile Organics by EPA Method 8270 data for 128438-07 continued...

e . .

	Result		
Analyte	(ug/L)	RL	MDL Flags
2,4,6-Trichlorophenol	ND	2	0.321
2,4,5-Trichlorophenol	ND	2	0.443
2-Chloronaphthalene	ND	0.2	0.048
2-Nitroaniline	ND	2	0,299
Dimethylphthalate	ND	2	0.39
Acenaphthylene	ND	0.2	0.024
2,6-Dinitrotoluene	ENG DH	2	0.38
3-Nitroaniline	ND	2	0,565
Acenaphthene	ND	0.2	0.034
2,4-Dinitrophenol	ND	10	2.07
4-Nitrophenol	ND	10	1.18
Dibenzofuran	ND	2	0.205
2,4-Dinitrotoluene	ND	2 2	0.574
Diethylphthalate	ND	2	0.557
4-Chlorophenylphenylether	ND	2	0.322
Fluorene	ND	0.2	0.017
4-Nitroaniline	ND	2	0.388
4,6-Dinitro-2-methylphenol	ND	10	3.1
N-Nitrosodiphenylamine	NÐ	2	0.085
4-Bromophenylphenylether	ND	2	0.219
Hexachiorobenzene	ND	2	0.25
Pentachlorophenol	ND	2	2
Phenanthrene	ND	0.2	0.037
Anthracene	ND	0.2	0.019
Di-n-butylphthalate	ND	2	0.372
Fluoranthene	ND	0.2	0.057
Pyrene	ND	0.2	0.029
Butylbenzylphthalate	ND	Э	0.975
3,3'-Dichlorobenzidine	NÐ	10	1.87
Benzo(a)anthracene	ND	0.2	0.052
Chrysene	ND	0.2	0.084
bis(2-Ethylhexyl)phthalate	ND	15	3.81
Di-n-octylphthalate	ND	2	0.273
Benzofluoranthenes	ND	1	0.119
Benzo(a)pyrene	ND	0.2	0.033
Indeno(1,2,3-cd)pyrene	ND	0.2	0.028
Dibenz(a,h)anthracene	ND	0.2	0.031
Benzo(g,h,i)perylene	ND	0.2	0.051
Conto (gining or from o			

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor e---

Herrera Environmental Consultants NAGWP805 128438-08 6/17/2005 6/20/2005 6/23/2005 -1

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenot	5.67		2	120
Phenol - d5	32.6		1	102
Nitrobenzene - d5	70.6		34	146
2 - Fluorabiphenyl	96.6		35	143
2.4,6 - Tribromophenol	78.3		29	15 1
p - Terphenyl - d14	81.9		35	166

	Result		
Analyte	(ug/L)	RL	MDL Flags
Phenol	ND	1.9	0.0438
bis(2-Chloroethyl)ether	ND	1.9	0.309
2-Chlorophenol	ND	1.9	0.401
1,3-Dichlorobenzene	ND	1.9	0.35
1,4-Dichlorobenzene	ND	1.9	0.301
Benzyl Alcohol	ND	1.9	0.405
1,2-Dichlorobenzene	ND	1.9	0.265
2-Methylphenol	ND	1.9	0.372
bis(2-Chloroisopropyl)ether	ND 1.9 UJ	1.9	0.409
3-&4-Methylphenol	ND	3.81	0.42
N-nitroso-di-n-propylamine	ND	1.9	0.351
Hexachioroethane	ND	1.9	0.363
Nitrobenzene	ND	1.9	0.495
Isophorone	ND	1.9	0.27
2-Nitrophenol	NÐ	1.9	0,408
2,4-Dimethylphenol	ND	9.52	1.74
Benzoic Acid	ND 9.52 UJ	9,52	1.28
bis(2-Chloroethoxy)methane	ND	1.9	0.172
2.4-Dichlorophenol	ND	1.9	0.177
1,2,4-Trichlorobenzene	ND	1.9	0.117
Naphthalene	ND	0.476	0.166
4-Chloroaniline	ND	2.86	0.689
Hexachlorobutadiene	NÐ	1.9	0.14
4-Chloro-3-methylphenol	ND	1.9	0.232
2-Methylnaphthalene	ND	0.476	0.142
Hexachlorocyclopentadiene	ND	9.52	2.95

8-2112105

Semivolatile Organics by EPA Method 8270 data for 128438-08 continued...

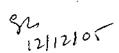
e.

		Result			
Analyte		(ug/L) F	રા	MDL	Flags
2,4,6-Trichlorophenol	ND		1.9	0.306	
2,4,5-Trichlorophenol	ND		1.9	0.422	
2-Chloronaphthalene	ND		0.19	0.0457	
2-Nitroaniline	ND		1.9	0.285	
Dimethylphthalate	ND		1.9	0.371	
Acenaphthylene	ND	I ALLE	0,19	0.0229	-
2,6-Dinitrotoluene		1.945	1.9	0.362	
3-Nitroaniline	ND		1.9	0.538	
Acenaphthene	ND		0.19	0.0324	
2,4-Dinitrophenol	ND		9.52	1.97	
4-Nitrophenol	ND		9.52	1.12	
Dibenzofuran		0.278	1.9	0.195	J
2,4-Dinitrotoluene	ND		1. 9	0.547	
Diethyiphthalate	ND		1.9	0.53	
4-Chlorophenylphenylether	ND		1.9	0.307	
Fluorene		0.11	0.19	0.0162	J
4-Nitroaniline	ND		1.9	0.37	
4,6-Dinitro-2-methylphenol	ND		9.52	2.95	
N-Nitrosodiphenylamine	ND		1.9	0.081	
4-Bromophenylphenylether	ND		1.9	0.209	
Hexachlorobenzene	ND		1.9	0.238	B (0
Pentachlorophenol		12 1	1. 9	1.9	D10
Phenanthrene	ND		0.19	0.0352	
Anthracene	ND		0.19	0.0181	
Di-n-butylphthalate		0.678-1.94		0.354	┙╋╋╸
Fluoranthene	ND		0.19	0.0543	
Pyrene	ND		0.19	0.0276	
Butylbenzyiphthalate	ND		2.86	0.929	
3.3'-Dichlorobenzidine	ND		9.52	1.78	
Benzo(a)anthracene	ND		0,19	0.0495	
Chrysene	ND		0.19	0.08	
bis(2-Ethylhexyi)phthalate	ND		14.3	3,63	
Di-n-octylphthalate	ND		1.9	0.26	
Benzofluoranthenes	ND		0.952	0.113	
Benzo(a)pyrene	ND		0.19	0.0314	
Indeno(1,2,3-cd)pyrene	ND		0.19	0.0267	
Dibenz(a,h)anthracene	ND		0.19	0.0295	
Benzo(g,h,i)perylene	ND		0.19	0.0486	
Courte (Stuthber house					

9/12/05

به المع	
Client Name:	Herrera Environmental Consultants
Client ID:	NAGWP1005
Lab ID:	128438-09
Date Received:	6/17/2005
Date Prepared:	6/20/2005
Date Analyzed:	6/23/2005
% Solids	•
Dilution Factor	1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	4.6		2	120
Phenol - d5	25.7		1	102
Nitrobenzene - d5	64.1		34	146
2 - Fluorobiphenyl	88.2		35	143
2,4,6 - Tribromophenol	77.9		29	151
p - Terphenyl - d14	80.3		35	166


	Result		
Analyte	(ug/L)	RL	MDL Flags
Phenol	ND	1.9	0.0438
bis(2-Chloroethyl)ether	ND	1.9	0.309
2-Chlorophenol	ND	1.9	0.401
1,3-Dichlorobenzene	ND	1.9	0.35
1,4-Dichlorobenzene	ND	1.9	0.301
Benzyl Alcohol	ND	1.9	0.405
1,2-Dichlorobenzene	ND	1.9	0.265
2-Methylphenol	ND	1.9	0.372
bis(2-Chloroisopropyl)ether	ND-1-9UJ	1.9	0.409
3-&4-Methylphenol	ND	3.81	0.42
N-nitroso-di-n-propylamine	ND	1.9	0.351
Hexachloroethane	ND	1,9	0,363
Nitrobenzene	ND	1.9	0.495
Isophorone	ND	1.9	0.27
2-Nitrophenol	ND	1.9	0.408
2,4-Dimethylphenol	ND	9.52	1.74
Benzoic Acid	-ND 9.52 UJ	9.52	1.28
bis(2-Chloroethoxy)methane	ND	1.9	0.172
2,4-Dichlorophenol	ND	1.9	0.177
1,2,4-Trichlorobenzene	ND	1.9	0.117
Naphthalene	ND	0.476	0.166
4-Chloroaniline	ND	2.86	0.689
Hexachlorobutadiene	ND	1.9	0.14
4-Chloro-3-methylphenol	ND	1.9	0.232
2-Methylnaphthalene	ND	0,476	0.142
Hexachlorocyclopentadiene	ND	9.52	2.95

Sp_2112105

0002i

Semivolatile Organics by EPA Method 8270 data for 128438-09 continued...

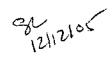
	Res				
Analyte	(ប្រជ្	'L) R		MDL	Flags
2,4,6-Trichlorophenol	ND		1.9	0.306	
2,4,5-Trichlorophenol	ND		1.9	0.422	
2-Chloronaphthalene	ND		0.19	0.0457	
2-Nitroaniline	ND		1. 9	0.285	
Dimethylphthalate	ND		1.9	0.371	
Acenaphthylene	ND		0,19	0.0229	
2,6-Dinitrotoluene	ND 1.91	ΛJ	1. 9	0,362	
3-Nitroaniline	ND		1.9	0.538	
Acenaphthene	ND		0.19	0.0324	
2,4-Dinitrophenol	ND		9.52	1.97	
4-Nitrophenol	ND		9.52	1.12	
Dibenzofuran	ND		1. 9	0.195	
2,4-Dinitrotoluene	ND		1.9	0.547	
Diethylphthalate	ND		1.9	0.53	
4-Chlorophenylphenylether	ND		1.9	0.307	
Fluorene	ND		0.19	0.0162	
4-Nitroaniline	ND		1.9	0.37	
4,6-Dinitro-2-methylphenol	ND		9.52	2.95	
N-Nitrosodiphenylamine	ND		1.9	0.081	
4-Bromophenylphenylether	ND		1.9	0.209	
Hexachlorobenzene	ND		1.9	0.238	
Pentachlorophenoi		40.1	1.9	1.9	D10
Phenanthrene	ND		0.19	0.0352	
Anthracene	ND		0.19	0,0181	
Di-n-butylphthalate		0.511 1.9 4	1.9	0.354	1-B1
Fluoranthene	ND		0.19	0.0543	
Pyrene	ND		0,19	0.0276	
Butylbenzylphthalate	ND		2.86	0.929	
3,3'-Dichlombenzidine	ND		9,52	1.78	
Benzo(a)anthracene	ND		0.19	0.0495	
Chrysene	ND		0.19	0.08	
bis(2-Ethylhexyl)phthalate	ND		14.3	3.63	
Di-n-octylphthalate	ND		1.9	0,26	
Benzofluoranthenes	ND		0.952	0.113	
Benzo(a)pyrene	ND		0.19	0.0314	
Indeno(1,2,3-cd)pyrene	ND		0.19	0.0267	
Dibenz(a,h)anthracene	ND		0.19	0.0295	
Benzo(g,h,i)perviene	ND		0.19	0.0486	

00022

	r-
Client Name:	Herrera Environmental Consultants
Client ID:	RB-2
Lab ID:	128438-10
Date Received:	6/17/2005
Date Prepared:	6/20/2005
Date Analyzed:	6/23/2005
% Solids	-
Dilution Factor	1

Semivolatile Organics by EPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	5.11		2	120
Phenol - d5	21.3		1	102
Nitrobenzene - d5	74.1		34	146
2 - Fluorobiphenyl	90.5		35	143
2,4,6 - Tribromophenol	66.1		29	1 51
p - Terphenyl - d14	80.8		35	166


	Result		
Analyte	(ug/L)	RL	MDL Flags
Phenol	ND	2.06	0.0474
bis(2-Chloroethyl)ether	ND	2.06	0.334
2-Chlorophenol	ND	2.06	0.434
1,3-Dichlorobenzene	ND	2.06	0.378
1,4-Dichlorobenzene	ND	2.06	0.326
Benzyl Alcohol	NÐ	2.06	0.438
1,2-Dichlarobenzene	ND	2.06	0.287
2-Methylphenol	ND or other the	2.06	0.403
bis(2-Chloroisopropyl)ether	-ND 3-06 (1)	2.06	0.442
3-&4-Methylphenol	ND	4.12	0.455
N-nitroso-di-n-propylamine	ND	2.06	0.38
Hexachloroethane	ND	2.06	0.393
Nitrobenzene	ND	2.06	0.536
Isophorone	ND	2.06	0.292
2-Nitrophenol	ND	2.06	0.441
2,4-Dimethylphenol	ND .	10.3	1,89
Benzoic Acid	TU C, J LOHA	10.3	1.38
bis(2-Chloroethoxy)methane	ND	2,06	0.187
2,4-Dichlorophenol	ND	2.06	0.192
1,2,4-Trichlorobenzene	ND	2.06	0.127
Naphthalene	ND	0.515	0.179
4-Chioroaniline	ND	3.09	0.745
Hexachlorobutadiene	ND	2.06	0.152
4-Chloro-3-methylphenol	ND	2.06	0.252
2-Methylnaphthalene	ND	0.515	0.154
Hexachlorocyclopentadiene	ND	10.3	3.2

SN 12/12/05

Semivolatile Organics by EPA Method 8270 data for 128438-10 continued...

- -

	Result			
Analyte	(ug/L)	RL	MDL.	Flags
2,4,6-Trichlorophenol	ND	2.06	0.331	
2,4,5-Trichlorophenol	ND	2.06	0.457	
2-Chloronaphthalene	ND	0.206	0.0495	
2-Nitroaniline	ND	2.06	0.308	
Dimethylphthalate	ND	2.06	0.402	
Acenaphthylene	ND	0.206	0.0247	
2,6-Dinitrotoluene	ND 20647		0.392	
3-Nitroaniline	ND	2.06	0.582	
Acenaphthene	ND	0.206	0.0351	
2,4-Dinitrophenol	ND	10.3	2.13	
4-Nitrophenol	ND	10.3	1.22	
Dibenzofuran	ND	2.06	0.211	
2,4-Dinitrotoluene	ND	2.06	0.592	
Diethylphthalate	ND	2.06	0,574	
4-Chlorophenylphenylether	ND	2.06	0.332	
Fiuorene	ND	0.206	0.0175	
4-Nitroaniline	ND	2.06	0.4	
4,6-Dinitro-2-methylphenol	ND	10.3	3.2	
N-Nitrosodiphenylamine	ND	2.06	0,0876	
4-Bromophenylphenylether	ND	2.06	0.226	
Hexachlorobenzene	ND	2,06	0.258	
Pentachlorophenol	ND	2.06	2.06	
Phenanthrene	ND	0.206	0.0381	
Anthracene	ND	0.206	0.0196	
Di-n-butyiphthalate	C	2.06 4 2.06	0.384	JB1-
Fluoranthene	ND	0,206	0.0588	
Pyrene	ND	0.206	0.0299	
Butylbenzylphthalate	ND	3.09	1.01	
3,3'-Dichlorobenzidine	ND	10.3	1.93	
Benzo(a)anthracene	ND	0.206	0.0536	
Chrysene	ND	0.206	0.0866	
bis(2-Ethylhexyl)phthalate	ND	15.5	3,93	
Di-n-octylphthalate		1.42 2.06	0.281	J
Benzofluoranthenes	ND	1.03	0,123	
Benzo(a)pyrene	ND	0.206	0.034	
Indeno(1,2,3-cd)pyrene	ND	0.206	0.0289	
Dibenz(a,h)anthracene	ND	0.206	0.032	
Benzo(g,h,i)perylene	ND	0.206	0.0526	
Conco (Shith) ber kenne				

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor

Herrera Environmental Consultants NAGWP0705 128439-01 6/17/2005 6/20/2005 6/24/2005

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	74.4		2	120
Phenol - d5	47.1		1	102
Nitrobenzene - d5	101		34	146
2 - Fluorobiphenyl	116		35	143
2,4,6 - Tribromophenol	107		29	151
p - Terphenyl - d14	114		35	166

	Result			
Analyte	(ug/L)	RL	MDL	Flags
Phenol	ND	1.9	0.0438	
bis(2-Chloroethyl)ether	ND	1.9	0.309	
2-Chlorophenol	ND	1.9	0.401	
1,3-Dichlorobenzene	ND	1.9	0.35	
1,4-Dichlorobenzene	ND	1.9	0.301	
Benzyl Alcohol	ND	1.9	0,405	
1,2-Dichlorobenzene	ND	1.9	0.265	
2-Methylphenol	ND	1.9	0.372	
bis(2-Chloroisopropyl)ether	ND	1.9	0.409	
3-&4-Methylphenol	ND	3.81	0.42	
N-nitroso-di-n-propylamine	ND	1.9	0.351	
Hexachloroethane	ND	1.9	0.363	
Nitrobenzene	ND	1.9	0.495	
Isophorone	ND	1.9	0.27	
2-Nitrophenol	ND	1.9	0.408	
2,4-Dimethylphenol	ND	9.52	1.74	
Benzoic Acid	ND	9.52	1.28	
bis(2-Chloroethoxy)methane	ND	1.9	0,172	
2,4-Dichlorophenol	ND	1.9	0.177	
1,2,4-Trichlorobenzene	ND	1.9	0.117	
Naphthalene	ND	0.476	0,166	
4-Chloroaniline	ND	2.86	0.689	
Hexachlorobutadiene	ND	1.9	0.14	
4-Chloro-3-methylphenol	ND	1.9	0.232	
2-Methylnaphthalene	NÐ	0.476	0.142	
Hexachlorocyclopentadiene	ND	9.52	2.95	

81212105

Semivolatile Organics by EPA Method 8270 data for 128439-01 continued...

e .

	[Result			
Analyte		(ug/L)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND		1.9	0.306	
2,4,5-Trichlorophenol	ND		1.9	0.422	
2-Chloronaphthalene	ND		0.19	0.0457	
2-Nitroaniline	ND		1.9	0.285	
Dimethylphthalate	ND		1.9	0.371	
Acenaphthylene	ND		0.19	0.0229	
2,6-Dinitrotoluene	ND		1.9	0.362	
3-Nitroaniline	ND		1.9	0.538	
Acenaphthene	ND		0.19	0.0324	
2,4-Dinitrophenol	ND		9.52	1.97	
4-Nitrophenol	ND		9.52	1.12	
Dibenzofuran	ND		1.9	0.195	
2,4-Dinitrotoluene	ND		1.9	0.547	
Diethylphthalate	ND		1.9	0.53	
4-Chlorophenyiphenylether	ND		1.9	0.307	
Fluorene	ND		0.19	0.0162	
4-Nitroaniline	ND		1.9	0.37	
4,6-Dinitro-2-methylphenol	ND		9.52	2.95	
N-Nitrosodiphenylamine	ND		1.9	0.081	
4-Bromophenylphenylether	ND		1.9	0.209	
Hexachlorobenzene	ND		1.9	0.238	
Pentachlorophenol	ND		1.9	1.9	
Phenanthrene	ND		0.19	0.0352	
Anthracene	ND		0.19	0.0181	
Di-n-butylphthalate		073 1.9 L	1 1.9	0.354	JB T
Fluoranthene	ND		0.19	0.0543	
Pyrene	ND		0,19	0.0276	
Butylbenzylphthalate	ND		2.86	0.929	
3,3'-Dichlorobenzidine	ND		9.52	1.78	
Benzo(a)anthracene	ND		0.19	0.0495	
Chrysene	ND		0.19	0.08	
bis(2-Ethylhexyl)phthalate	ND		14.3	3.63	
Di-n-octylphthalate	ND		1.9	0.26	
Benzofluoranthenes	ND		0.952	0.113	
Benzo(a)pyrene	ND		0.19	0.0314	
Indeno(1,2,3-cd)pyrene	ND		0.19	0.0267	
Dibenz(a,h)anthracene	ND		0.19	0.0295	
Benzo(g,h,i)perylene	ND		0.19	0.0486	

812/2/05

Client Name:	Herrera Environmental Consultants
Client ID:	NAGWP0906
Lab ID:	128439-02
Date Received:	6/17/2005
Date Prepared:	6/20/2005
Date Analyzed:	6/24/2005
% Solids	-
Dilution Factor	1

e . .

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	77.2		2	120
Phenol - d5	39,4		1	102
Nitrobenzene - d5	87.7		34	146
2 - Fluorobiphenyl	95.8		35	143
2,4,6 - Tribromophenol	101		29	151
p - Terphenyl - d14	94.9		35	166

		Result			
Analyte		(ug/L)	RL	MDL	Flags
Phenol	ND		1.9	0.0438	
bis(2-Chloroethyl)ether	ND		1.9	0.309	
2-Chlorophenol	ND		1.9	0.401	
1,3-Dichlorobenzene	ND		1.9	0.35	
1,4-Dichlorobenzene	ND		1.9	0.301	
Benzyl Alcohol	ND		1.9	0.405	
1,2-Dichlorobenzene	ND		1.9	0.265	
2-Methylphenol	ND		1.9	0.372	
bis(2-Chloroisopropyl)ether	ND		1.9	0.409	
3-&4-Methylphenol	ND		3.81	0.42	
N-nitroso-di-n-propylamine	ND		1.9	0.351	
Hexachloroethane	ND		1.9	0.363	
Nitrobenzene	ND		1.9	0.495	
Isophorone	ND		1.9	0.27	
2-Nitrophenol	ND		1.9	0.408	
2,4-Dimethylphenol	ND		9.52	1.74	
Benzoic Acid	ND		9.52	1.28	
bis(2-Chloroethoxy)methane	ND		1.9	0.172	
2,4-Dichlorophenol		0.8200.828	1.9	0.177	-+- J
1,2,4-Trichlorobenzene	ND		1.9	0.117	
Naphthalene	ND		0.476	0.166	
4-Chloroaniline	ND		2.86	, 0.689	
Hexachlorobutadiene	ND		1.9	0.14	
4-Chioro-3-methylphenol	ND		1.9	0.232	
2-Methylnaphthalene	ND		0.476	0.142	
Hexachlorocyclopentadiene	ND		9.52	2.95	

812112105

Semivolatile Organics by EPA Method 8270 data for 128439-02 continued...

... م

Analyte (ug/L) RL MDL Flags 2,4,6-Trichkorophenot ND 1.9 0.306 2,4,5-Trichkorophenol 0.568 1.9 0.422 J 2-Chloronaphthalene ND 0.19 0.0457 2-Nitroaniline ND 1.9 0.285 Dimethylphthalate ND 1.9 0.371
2,4,5-Trichlorophenol 0.568 1.9 0.422 J 2-Chloronaphthalene ND 0.19 0.0457 2-Nitroaniline ND 1.9 0.285 Dimethylphthalate ND 1.9 0.371
2-ChloronaphthaleneND0.190.04572-NitroanilineND1.90.285DimethylphthalateND1.90.371
2-NitroanilineND1.90.285DimethylphthalateND1.90.371
Dimethylphthalate ND 1.9 0.371
Acenaphthylene ND 0.19 0.0229
2,6-Dinitrotoluene ND 1.9 0.362
3-Nitroaniline ND 1.9 0.538
Acenaphthene ND 0.19 0.0324
2,4-Dinitrophenol ND 9.52 1.97
4-Nitrophenol ND 9.52 1.12
Dibenzofuran ND 1.9 0.195
2,4-Dinitrotoluene ND 1.9 0.547
Diethylphthalate ND 1.9 0.53
4-Chlorophenylether ND 1.9 0.307
Fluorene ND 0.19 0.0162
4-Nitroaniline ND 1.9 0.37
4,6-Dinitro-2-methylphenol ND 9.52 2.95
N-Nitrosodiphenylamine ND 1.9 0.081
4-Bromophenylphenylether ND 1.9 0.209
Hexachlorobenzene ND 1.9 0.238
Pentachlorophenol 875 1.9 1.9 -D100
Phenanthrene ND 0.19 0.0352
Anthracene ND 0.19 0,0181
Di-n-butylphthalate 0.354 JB1
Fluoranthene ND 0.19 0.0543
Pyrene ND 0.19 0.0276
Butylbenzylphthalate ND 2.86 0.929
3,3'-Dichlorobenzidine ND 9.52 1.78
Benzo(a)anthracene ND 0.19 0,0495
Chrysene ND 0.19 0.08
bis(2-Ethylhexyl)phthalate ND 14.3 3.63
Di-n-octylphthalate ND 1.9 0.26
Benzofluoranthenes ND 0.952 0.113
Benzo(a)pyrene ND 0.19 0.0314
Indeno(1,2,3-cd)pyrene ND 0.19 0.0267
Dibenz(a,h)anthracene ND 0.19 0.0295
Benzo(g,h,i)perylene ND 0.19 0.0486

Client Name:	Herrera Environmental Consultants		
Client ID:	SAGWW0703		
Lab ID:	128474-01		
Date Received:	6/20/2005		
Date Prepared:	6/23/2005		
Date Analyzed:	7/7/2005		
% Solids	-		
Dilution Factor	1		

. م

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	45.4		2	120
Phenol - d5	40.8		1	102
Nitrobenzene - d5	104		34	146
2 - Fluorobiphenyl	103		35	143
2,4,6 - Tribromophenol	110		29	151
p - Terphenyl - d14	115		35	166

	Result				
Analyte	(ug/L)		RL	MDL.	Flags
Phenol	ND		1.89	0.0436	
bis(2-Chloroethyl)ether	ND-1.894	য	1.89	0.307	
2-Chlorophenol	ND		1.89	0.399	
1,3-Dichlorobenzerie	ND		1.89	0.348	
1,4-Dichlorobenzene	ND	_	1.89	0.299	
Benzyl Alcohot	ND-1.894	15	1.89	0.402	
1,2-Dichlorobenzene	ND		1.89	0.263	
2-Methylphenol	ND		1.89	0.37	
bis(2-Chloroisopropyl)ether	ND		1.89	0.406	
3-&4-Methylphenol	ND		3,79	0.418	
N-nitroso-di-n-propylamine	ND case	-- -	1.89	0.349	
Hexachloroethane	ND 1.89 U.	J	1.89	0.361	
Nitrobenzene	ND		1.89	0.492	
Isophorone	ND		1.89	0.268	
2-Nitrophenol	ND		1.89	0.405	
2,4-Dimethylphenol	ND		9.47	1.73	
Benzoic Acid	ND	-	9.47	1.27	
bis(2-Chloroethoxy)methane	ND1.89 U3	3	1.89	0.171	
2,4-Dichlorophenol	ND		1.89	0.176	
1,2,4-Trichlorobenzene	ND		1.89	0.116	
Naphthalene		12.2	0.473	0,165	
4-Chloroaniline	ND		2.84	0.685	
Hexachlorobutadiene	ND		1.89	0.139	
4-Chloro-3-methylphenol	ND		1.89	0.231	
2-Methylnaphthalene		3.78	0.473	0.141	
Hexachlorocyclopentadiene	ND		9.47	2.94	

of Milles

Semivolatile Organics by EPA Method 8270 data for 128474-01 continued...

e--

	Re	sult			
Analyte	(u	g/L)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND		1.89	0.304	
2,4,5-Trichlorophenol	ND		1.89	0.42	
2-Chloronaphthalene	ND		0.189	0.0455	
2-Nitroaniline	ND		1.89	0.283	
Dimethylphthalate	ND		1.89	0.369	
Acenaphthylene	ND		0.189	0.0227	
2,6-Dinitrotoluene	ND		1.89	0.36	
3-Nitroaniline	ND		1.89	0.535	
Acenaphthene		0.453	0.189	0.0322	
2,4-Dinitrophenol	ND		9.47	1.96	
4-Nitrophenal	ND 9.4	it ud	9.47	1.12	
Dibenzofuran		0.808	1.89	0.194	J
2,4-Dinitrotoluene	ND		1.89	0.544	
Diethylphthalate	ND		1.89	0.527	
4-Chiorophenylphenylether	ND		1.89	0.305	
Fluorene		0.49	0.189	0.01 6 1	
4-Nitroaniline	ND		1.89	0. 367	
4,6-Dinitro-2-methylphenol	ND		9.47	2.94	
N-Nitrosodiphenylamine	ND		1.89	0.0805	
4-Bromophenylphenylether	ND		1.89	0.207	
Hexachlorobenzene	ND		1.89	0.237	
Pentachlorophenol	ND		1.89	1.89	
Phenanthrene		1.21	0.189	0.035	
Anthracene	ND		0.189	0.018	
Di-n-butylphthalate		.0.792 1.1	89U 1.89	0.352	-4
Fluoranthene		0.395	0.189	0.054	
Pyrene		0.171	0.189	0.0275	J
Butylbenzylphthalate	ND		2.84	0.923	
3,3'-Dichlorobenzidine	ND		9.47	1.77	
Benzo(a)anthracene	ND		0.189	0.0492	
Chrysene	ND		0,189	0.0795	
bis(2-Ethylhexyl)phthalate	ND		14.2	3.61	
Di-n-octylphthalate	ND		1.89	0.259	
Benzofluoranthenes	ND		0.947	0.113	
Benzo(a)pyrene	ND		0.189	0.0313	
Indeno(1,2,3-cd)pyrene	ND		0.189	0.0265	
Dibenz(a,h)anthracene	ND		0.189	0.0294	
Benzo(g,h,i)perylene	ND		0.189	0.0463	

grinnes

88987

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor A ...

Herrera Environmental Consultants NAGWW0603 128474-02 6/20/2005 6/23/2005 7/8/2005 -1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	64.6		2	120
Phenol - d5	43.5		1	102
Nitrobenzene - d5	107		34	146
2 - Fluorobiphenyl	117		35	143
2,4,6 - Tribromophenal	78.4		29	151
p - Terphenyl - d14	81.4		35	166

	Result				
Analyte	(ug/L)		RL	MDL	Flags
Phenol	ND		1.89	0.0435	
bis(2-Chloroethyl)ether	NB 1.89	u J	1.89	0.307	
2-Chiorophenol	ND		1.89	0.398	
1,3-Dichlorobenzene	ND		1.89	0.347	
1,4-Dichlorobenzene	ND		1.89	0.299	
Benzyl Alcohol	ND 1.894	2	1.89	0.402	
1,2-Dichlorobenzene	ND		1.89	0.263	
2-Methylphenol	ND		1.89	0.37	
bis(2-Chlorolsopropyl)ether	ND		1.89	0.406	
3-&4-Methylphenol	ND		3.78	0.417	
N-nitroso-di-n-propylamine	ND ,		1.89	0.349	
Hexachloroethane	-ND-1.89	uj	1.89	0.36	
Nitrobenzene	ND		1.89	0.492	
Isophorone	ND		1.89	0.268	
2-Nitrophenol	ND		1,89	0.405	
2,4-Dimethylphenol	ND		9.46	1.73	
Benzoic Acid	ND		9.46	1.27	
bis(2-Chloroethoxy)methane	ND 1.89 L	13	1.89	0.171	
2,4-Dichlorophenol	ND		1,89	0.176	
1,2,4-Trichlorobenzene	ND		1.89	0.116	
Naphthalene		10.8	0.473	0.165	
4-Chloroaniline	ND		2.84	0.684	
Hexachlorobutadiene	ND		1.89	0.139	
4-Chloro-3-methylphenol	ND		1,89	0.231	
2-Methylnaphthalene		2.93	0.473	0.141	
Hexachlorocyclopentadiene	ND		9.46	2.93	

eg introlos

Semivolatile Organics by EPA Method 8270 data for 128474-02 continued...

- م

Result				
Analyte	(ug/L)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND	1.89	0.304	
2,4,5-Trichlorophenol	ND	1.89	0.419	
2-Chloronaphthalene	ND	0.189	0.0454	
2-Nitroaniline	ND	1.89	0.283	
Dimethylphthalate	ND	1.89	0.369	
Acenaphthylene	ND	0.189	0.0227	
2,6-Dinitrotoluene	ND	1.89	0.36	
3-Nitroaniline	ND	1.89	0.535	
Acenaphthene	0.348	0.189	0.0322	
2,4-Dinitrophenol	ND and the set	9.46	1,96	
4-Nitrophenol	ND 9.46 UJ	9.46	1.12	
Dibenzofuran	0.653	1.89	0,194	J
2,4-Dinitrotoluene	ND	1.89	0.543	
Diethylphthalate	ND	1.89	0.527	
4-Chlorophenylphenylether	ND	1.89	0.305	
Fluorene	0.459	0.189	0.0161	
4-Nitroaniline	ND	1.89	0.367	
4,6-Dinitro-2-methylphenol	ND	9.46	2.93	
N-Nitrosodiphenylamine	ND	1.89	0.0804	
4-Bromophenyiphenylether	ND	1.89	0.207	
Hexachlorobenzene	ND	1.89	0.237	
Pentachiorophenol	153	3 1.89	1.89	D100
Phenanthrene	0.889	9 0,189	0.035	
Anthracene	ND	0.189	0.018	
Di-n-butylphthalate	-0.85	51,894 1.89	0.352	·- J-
Fluoranthene	0.238	3 0.189	0.0539	
Pyrene	0.112		0.0274	J
Butylbenzylphthalate	ND	2.84	0.922	
3,3'-Dichlorobenzidine	ND	9.46	1.77	
Benzo(a)anthracene	ND	0.189	0.0492	
Chrysene	ND	0.189	0.0795	
bis(2-Ethylhexyl)phthalate	ND	14.2	3.6	
Di-n-octylphthalate	ND	1.89	0.258	
Benzofluorantheries	ND	0.946	0.113	
Benzo(a)pyrene	ND	0.189	0.0312	
Indeno(1,2,3-cd)pyrene	ND	0.189	0.0265	
Dibenz(a,h)anthracene	ND	0.189	0.0293	
Benzo(g,h,i)perylene	ND	0.189	0.0482	

4 N121.5

60000

Ctient Name:	Herrera Environmental Consultants
Client ID:	SAGWW0203
Lab ID:	128474-03
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	7/7/2005
% Solids	-
Dilution Factor	1

ر ، مع

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	54.3		2	120
Phenol - d5	43.8		1	102
Nitrobenzene - d5	125		34	146
2 - Fluorobiphenyl	123		35	143
2.4.6 - Tribromophenol	108		29	151
p - Terphenyl - d14	116		35	166

	Result		
Analyte	(ug/L)	RL	MDL Flags
Phenol	ND	1,9	0.0437
bis(2-Chloroethyl)ether	NO- 1.9 43	Г 1.9	0.308
2-Chlorophenol	ND	1.9	0.4
1,3-Dichlorobenzene	ND	1.9	0.349
1,4-Dichlorobenzene		1.9	0.3
Benzyl Alcohol	ND 1.89 4J	1.9	0.404
1,2-Dichlorobenzene	ND	1.9	0.264
2-Methylphenol	ND	1.9	0.372
bis(2-Chloroisopropyl)ether	ND	1.9	0.408
3-&4-Methylphenol	ND	3.8	0.419
N-nitroso-di-n-propylamine	NO	1.9	0.351
Hexachloroethane	ND 1,9 UJ	1.9	0,362
Nitrobenzene	ND	1.9	0.494
	ND	1.9	0.269
lsopharone 2-Nitrophenol	ND	1,9	0.407
2,4-Dimethylphenol	ND	9.51	1.74
Benzoic Acid	10	0.51	1.27
bis(2-Chloroethoxy)methane	ND-1.9 UJ	1.9	0,172
	ND	1.9	0.177
2,4-Dichlorophenol	ND	1.9	0.117
1,2,4-Trichlorobenzene		11.3 0.475	0.165
Naphthalene	ND	2.85	0.687
4-Chloroaniline	ND	1.9	0.14
Hexachlorobutadiene	ND	1.9	0.232
4-Chloro-3-methylphenol		3.01 0.475	0.142
2-Methylnaphthalene Hexachlorocyclopentadiene	ND	9.51	2,95

Semivolatile Organics by EPA Method 8270 data for 128474-03 continued...

....

	Resu				MDL	Flags
Analyte	(ug/l	_)	RL	4.0	0.305	1 1099
2,4,6-Trichlorophenol	ND			1.9	0.421	
2,4,5-Trichlorophenol	ND			1.9	0.0456	
2-Chloronaphthalene	ND			0.19	0.284	
2-Nitroaniline	ND			1.9	0.371	
Dimethylphthalate	ND			1.9	0.0228	
Acenaphthylene	ND			0.19	0.361	
2,6-Dinitrotoluene	ND			1.9	0.537	
3-Nitroaniline	ND			1.9	0.0323	
Acenaphthene		0.377		0.19	1,97	
2,4-Dinitrophenol	ND ND-9.51	UT		9.51	1.12	
4-Nitrophenol	ND-7.5	<i>u</i> .		9.51	0.195	J
Dibenzofuran		0.667		1.9 1.9	0.546	Ŭ
2,4-Dinitrotoluene	ND			1.9	0.540	
Diethylphthalate	ND				0,305	
4-Chlorophenylphenylether	ND			1.9	0.0162	
Fluorene		0.414		0.19	0.369	
4-Nitroaniline	ND			1.9	2,95	
4,6-Dinitro-2-methylphenol	ND			9.51	0.0808	
N-Nitrosodiphenylamine	ND			1.9	0,208	
4-Bromophenylphenylether	ND			1.9	0.238	
Hexachlorobenzene	ND			1.9	1.9	
Pentachlorophenol	ND			1.9	0.0352	
Phenanthrene		0,973		0.19	0.0181	
Anthracene	ND		1.94	0.19	0.354	- J-
Di-n-butylphthalate		0 .686	1.19	1.9	0.0542	. 0
Fluoranthene		0.311		0.19	0,0276	J
Pyrene		0.12		0.19	0.927	Ũ
Butylbenzylphthalate	ND			2.85	1.78	
3,3'-Dichlorobenzidine	ND			9.51	0.0494	
Benzo(a)anthracene	ND			0.19	0.0798	
Chrysene	ND			0.19	3.62	
bis(2-Ethylhexyl)phthalate	ND			14.3	0.26	J
Di-n-octylphthalate		0.312		1.9	0.20	5
Benzofluoranthenes	ND			0.951	0.0314	
Benzo(a)pyrene	ND			0.19	0.0314	
Indeno(1,2,3-cd)pyrene	ND			0.19	0.0295	
Dibenz(a,h)anthracene	ND			0.19	0.0295	
Benzo(g,h,i)perylene	ND			0.19	0.0400	

5-12/12/01

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor . م

--- -

Herrera Environmental Consultants NAGWW0403 128474-04 6/20/2005 6/23/2005 7/7/2005 1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	37.3		2	120
Phenol - d5	21.2		1	102
Nitrobenzene - d5	111		34	146
2 - Fluorobiphenyl	90.8		35	143
2,4,6 - Tribromophenol	103		29	151
p - Terphenyl - d14	110		35	166

Analyte	Result (ug/L)		RL	MDL.	Flags
Phenol	ND ND		1.9	0.0436	
bis(2-Chloroethyl)ether	NB 1.9 4	J	1.9	0.307	
2-Chlorophenol	ND		1.9	0.399	
1,3-Dichlorobenzene	ND		1.9	0.348	
1,4-Dichlorobenzene	ND /		1.9	0.3	
Benzyl Alcohol	-ND 1.89 6	15	1.9	0.403	
1,2-Dichlorobenzene	ND		1.9	0.264	
2-Methylphenol	ND		1.9	0.371	
bis(2-Chloroisopropyl)ether	ND		1.9	0,407	
3-&4-Methylphenol	ND		3.79	0,418	
N-nitroso-di-n-propylamine	ND, a,		1.9	0.35	
Hexachloroethane	NO 1.9 1	1)	1.9	0.361	
Nitrobenzene	ND		1.9	0.493	
Isophorone	ND		1.9	0.268	
2-Nitrophenol	ND		1.9	0.406	
2,4-Dimethylphenol	ND		9,48	1.73	
Benzoic Acid	ND _	-	9,48	1.27	
bis(2-Chloroethoxy)methane	NB1.9 U	7	1.9	0.172	
2,4-Dichlorophenol	ND		1.9	0.176	
1,2,4-Trichlorobenzene	ND		1.9	0.117	
Naphthalene		11.9	0.474	0.165	
4-Chloroaniline	ND		2.84	0.685	
Hexachlorobutadiene	ND		1.9	0.139	
4-Chloro-3-methylphenol	ND		1.9	0.231	
2-Methylnaphthalene		3.32	0.474	0.141	
Hexachlorocyclopentadiene	ND		9.48	2.94	

5-12/12/05

Semivolatile Organics by EPA Method 8270 data for 128474-04 continued...

. -م

	Result				
Analyte	(ug/L)	R		MDL	Flags
2,4,6-Trichlorophenol	ND		1.9	0.304	
2,4,5-Trichlorophenol	ND		1.9	0.42	
2-Chloronaphthalene	NÐ		0.19	0.0455	
2-Nitroaniline	ND		1.9	0.283	
Dimethylphthalate	ND		1.9	0.37	
Acenaphthylene	ND		0.19	0.0227	
2,6-Dinitrotoluene	NÐ		1.9	0.36	
3-Nitroaniline	ND		1.9	0.536	
Acenaphthene		0.383	0.19	0.0322	
2,4-Dinitrophenol	ND	L	9.48	1.96	
4-Nitrophenol	NO 9.48	μS	9.48	1.12	
Dibenzofuran		0.665	1.9	0.194	J
2.4-Dinitrotoluene	ND		1.9	0.544	
Diethylphthalate	ND		1.9	0.528	
4-Chlorophenylphenylether	ND		1.9	0.305	
Fluorene		0.319	0.19	0.0161	
4-Nitroaniline	ND		1.9	0,368	
4,6-Dinitro-2-methylphenol	ND		9.48	2.94	
N-Nitrosodiphenylamine	ND		1.9	0.0806	
4-Bromophenylphenylether	ND		1.9	0.208	
Hexachlorobenzene	ND		1.9	0.237	
Pentachlorophenol	ND		1.9	1.9	
Phenanthrene		1.01	0.19	0.0351	
Anthracene	ND		0.19	0.018	
Di-n-butylphthalate		0.749 1.94	1.9	0.353	
Fluoranthene		0.305	0.19	0.054	
Pyrene		0.122	0.19	0.0275	J
Butylbenzylphthalate	ND		2.84	0.924	
3,3'-Dichlorobenzidine	ND		9.48	1.77	
Benzo(a)anthracene	ND		0.19	0.0493	
Chrysene	ND		0.19	0.0796	
bis(2-Ethylhexyl)phthalate	ND		14.2	3.61	
Di-n-octylphthalate	ND		1.9	0.259	
Benzofluoranthenes	ND		0.948	0.113	
	ND		0.19	0.0313	
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	ND		0.19	0.0265	
Dibenz(a,h)anthracene	ND		0.19	0.0294	
• • • • • • • • • • • • • • • • • • • •	ND		0.19	0.0483	
Benzo(g,h,i)perylene					

m 2/12/01

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor - م

Herrera Environmental Consultants SAGWW0806 128474-05 6/20/2005 6/23/2005 7/7/2005

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	36		2	120
Phenol - d5	22.5		1	102
Nitrobenzene - d5	122		34	146
2 - Fluorobiphenyl	102		35	143
2.4.6 - Tribromophenol	99.5		29	151
p - Terphenyl - d14	121		35	166

		Result (ug/L)	RL	MDL Flags
Analyte	ND	(ug/L)	1.9	0.0438
Phenol	NE	1.9 45	1.9	0.309
bis(2-Chloroethyl)ether	ND		1.9	0.401
2-Chlorophenol	ND		1.9	0.35
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND	,	1.9	0.301
Benzyl Alcahol	ND	1.\$945	1.9	0.405
1,2-Dichlorobenzene	ND		1.9	0.265
2-Methylphenol	ND		1.9	0.372
bis(2-Chloroisopropyl)ether	ND		1.9	0.409
3-&4-Methylphenol	ND		3.81	0.42
N-nitroso-di-n-propylamine	ND	_	1.9	0.351
Hexachloroethane	NÐ	1.9 U.J	1.9	0.363
Nitrobenzene	ND		1.9	0.495
Isophorone	ND		1.9	0.27
2-Nitrophenol	ND		1.9	0.408
2,4-Dimethylphenol	ND		9.52	1.74
Benzoic Acid	ND		9.52	1.28
bis(2-Chloroethoxy)methane	ДHÐ	IguJ	1.9	0.172
2,4-Dichlorophenol	ND		1.9	0.177
1,2,4-Trichlorobenzene	ND		1.9	0.117
Naphthalene		13.7	0.476	0.166
4-Chloroaniline	ND		2.86	0.689
Hexachlorobutadiene	ND		1.9	0.14
4-Chloro-3-methylphenol	ND		1.9	0.232
2-Methylnaphthalene		4.02	0.476	0.142
Hexachlorocyclopentadiene	ND		9.52	2.95

8-12/12/05

Semivolatile Organics by EPA Method 8270 data for 128474-05 continued...

e--

		Result			
Analyte		(ug/L)	RL		Flags
2,4,6-Trichlorophenol	ND		1.9	0.306	
2,4,5-Trichlorophenol	ND		1.9	0.422	
2-Chioronaphthalene	ND		0.19	0.0457	
2-Nitroaniline	ND		1.9	0.285	
Dimethylphthalate	ND		1.9	0.371	
Acenaphthylene	ND		0.19	0.0229	
2,6-Dinitrotoluene	ND		1.9	0.362	
3-Nitroaniline	ND		1.9	0.538	
Acenaphthene		0.432	0.19	0.0324	
2,4-Dinitrophenol	ND		9.52	1.97	
4-Nitrophenol	NB	9.52 45	9.52	1.12	
Dibenzofuran		0.776	1.9	0.195	J
2,4-Dinitrotoluene	ND		1.9	0.547	
Diethylphthalate	ND		1.9	0.53	
4-Chlorophenylphenylether	ND		1.9	0.307	
Fluorene		0.42	0.19	0.0162	
4-Nitroaniline	ND		1.9	0.37	
4,6-Dinitro-2-methylphenol	ND		9.52	2.95	
N-Nitrosodiphenylamine	ND		1.9	0.081	
4-Bromophenylphenylether	ND		1.9	0.209	
Hexachlorobenzene	ND		1,9	0.238	
Pentachlorophenol	ND		1.9	1.9	
Phenanthrene		1.1	0.19	0.0352	
Anthracene		0.0233	0.19	0.0181	J
Di-n-butylphthalate		-0.888	1.94 1.9	0.354	
Fluoranthene		0.323	0.19	0.0543	
Pyrene		0.15	0.19	0.0276	J
Butylbenzylphthalate	ND		2.86	0.929	
3,3'-Dichlorobenzidine	ND		9.52	1.78	
Benzo(a)anthracene	ND		0.19	0.0495	
Chrysene	ND		0.19	0.08	
bis(2-Ethylhexyl)phthalate	ND		14.3	3.63	
Di-n-octylphthalate	ND		1.9	0.26	
Benzofluoranthenes	ND		0.952	0.113	
Benzo(a)pyrene	ND		0.19	0.0314	
Indeno(1,2,3-cd)pyrene	ND		0.19	0.0267	
Dibenz(a,h)anthracene	ND		0.19	0.0295	
Benzo(g,h,i)perylene	ND		0.19	0.0486	

55,21,2105

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids	Herrera Environmental Consultants NAGWW0504 SAG-WN 128474-06 6/20/2005 6/23/2005 7/7/2005	NO305 812112105
Dilution Factor	1	

Semivolatile Organics by EPA Method 8270

e--

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	42.9		2	120
Phenol - d5	33.3		1	102
Nitrobenzene - d5	120		34	146
2 - Fluorobiphenyl	125		35	143
2,4,6 - Tribromophenol	81.3		29	151
p - Terphenyl - d14	108		35	166

	Result			
Analyte	(ug/L)	RL	MDL Flags	I
Phenol	ND	1.91	0.0439	
bis(2-Chloroethyl)ether	NO 1.91 UJ	1.91	0.309	
2-Chlorophenol	ND	1.91	0.402	
1,3-Dichlorobenzene	ND	1.91	0.351	
1,4-Dichlorobenzene	ND /all	1.91	0.302	
Benzyl Alcohol	NO1.\$914J	. 1.91	0.406	
1,2-Dichlorobenzene	ND	1.91	0.266	
2-Methylphenol	ND	1.91	0.373	
bis(2-Chloroisopropyl)ether	ND	1.91	0.41	
3-&4-Methylphenol	ND	3.82	0.421	
N-nitroso-di-n-propylamine	ND	1.91	0.352	
Hexachloroethane	NB 1.914J	1.91	0.364	
Nitrobenzene	ND	1.91	0.497	
Isophorone	ND	1.91	0.27	
2-Nitrophenol	ND	1.91	0.409	
2,4-Dimethylphenol	ND	9.55	1.75	
Benzoic Acid	ND	9.55	1.28	
bis(2-Chloroethoxy)methane	NB 1.914J	1.91	0.173	
2,4-Dichlorophenol	ND	1.91	0.178	
1,2,4-Trichlorobenzene	ND	1.91	0.117	
Naphthalene	13.2		0.166	
4-Chloroaniline	ND	2.87	0.691	
Hexachlorobutadiene	ND	1.91	0.14	
4-Chloro-3-methylphenol	ND	1.91	0.233	
2-Methylnaphthalene	4.07		0.142	
Hexachlorocyclopentadiene	ND	9.55	2.96	

Semivolatile Organics by EPA Method 8270 data for 128474-06 continued...

	Resu	lt			
Analyte	(ug/L	.}	RL	MDL	Flags
2,4,6-Trichlorophenol	ND		1.91	0.307	
2,4,5-Trichlorophenol	ND		1.91	0.423	
2-Chloronaphthalene	ND		0.191	0.0458	
2-Nitroaniline	ND		1,91	0.286	
Dimethylphthalate	ND		1.91	0.372	
Acenaphthylene	ND		0.191	0.0229	
2,6-Dinitrotoluene	ND		1.91	0.363	
3-Nitroaniline	ND		1.91	0.54	
Acenaphthene		0.597	0.191	0.0325	
2,4-Dinitrophenol	ND		9.55	1.98	
4-Nitrophenol	ND 9.55	, UJ	9.55	1.13	
Dibenzofuran		1.07	1.91	0.196	J
2,4-Dinitrotoluene	ND		1.91	0.548	
Diethylphthalate	ND		1.91	0.532	
4-Chlorophenylphenylether	ND		1.91	0.308	
Fiuorene		0.521	0.191	0.0162	
4-Nitroaniline	ND		1.91	0.371	
4,6-Dinitro-2-methylphenol	ND		9.55	2.96	
N-Nitrosodiphenylamine	ND		1.91	0.0812	
4-Bromophenylphenylether	ND		1.91	0,209	
Hexachlorobenzene	ND		1.91	0.239	
Pentachlorophenol	NÐ		1.91	1.91	
Phenanthrene		1.32	0.191	0.0353	
Anthracene	ND	,	o ^{0.191}	0.0181	
Di-n-butylphthalate		0.846- /		0.355	-
Fluoranthene		0.348	0.191	0.0544	
Pyrene		0.159	0.191	0.0277	J
Butylbenzylphthalate	ND		2.87	0.931	
3,3'-Dichiorobenzidine	ND		9.55	1.79	
Benzo(a)anthracene	ND		0.191	0.0497	
Chrysene	ND		0.191	0.0802	
bis(2-Ethylhexyl)phthalate	ND		14.3	3.64	
Di-n-octylphthalate		0.448	1,91	0.261	J
Benzofluoranthenes	ND		0,955	0.114	
Benzo(a)pyrene	ND		0.191	0.0315	
Indeno(1,2,3-cd)pyrene	ND		0.191	0.0267	
Dibenz(a,h)anthracene	ND		0,191	0.0296	
Benzo(g,h,i)perylene	ND		0.191	0.0487	

8-12/12/05

71000

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor ÷--

Herrera Environmental Consultants SAGWW0305 NAGWW0504

128474-07 6/20/2005 6/23/2005 7/7/2005

1

8-12/12/05

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	39.3		2	120
Phenol - d5	24.6		1	102
Nitrobenzene - d5	115		34	146
2 - Fluorobiphenyl	131		35	143
2,4,6 - Tribromophenol	91.7		29	151
p - Terphenyi - d14	96.5		35	166

	Result		
Analyte	(ug/L)	RL	MDL Flags
Phenol	ND	1.89	0.0435
bis(2-Chloroethyl)ether	NO 1.89 4J	1.89	0.307
2-Chlorophenol	ND	1.89	0.398
1,3-Dichlorobenzene	ND	1.89	0.347
1,4-Dichlorobenzene	ND	1.89	0.299
Benzyl Alcohol	NO 1.89 U.J	1.89	0.402
1,2-Dichlorobenzene	ND	1.89	0,263
2-Methylphenol	ND	1.89	0.37
bis(2-Chloroisopropyl)ether	ND	1.89	0.406
3-&4-Methylphenol	ND	3.78	0.417
N-nitroso-di-n-propylamine	ND	1.89	0.349
Hexachloroethane	NO 1.914J	1.89	0.36
Nitrobenzene	ND	1.89	0.492
Isophorone	ND	1.89	0.268
2-Nitrophenol	ND	1.89	0.405
2,4-Dimethylphenol	ND	9.46	1.73
Benzoic Acid	ND	9.46	1.27
bis(2-Chloroethoxy)methane	NO 1.914J	1.89	0.171
2,4-Dichlorophenol	ND	1.89	0.176
1,2,4-Trichlorobenzene	ND	1.89	0.116
Naphthalene	2.7	0.473	0.165
4-Chloroaniline	ND	2.84	0.684
Hexachlorobutadiene	ND	1.8 9	0.139
4-Chloro-3-methylphenol	ND	1.89	0.231
2-Methylnaphthalene	0.643	0.473	0.141
Hexachlorocyclopentadiene	ND	9.46	2.93

8/12/12/07

Semivolatile Organics by EPA Method 8270 data for 128474-07 continued...

e-

		Result				
Analyte		(ug/L)	RL		MDL	Flags
2,4,6-Trichlorophenol	ND			1.89	0.304	
2,4,5-Trichlorophenol	ND			1.89	0.419	
2-Chloronaphthalene	ND		1	0.189	0.0454	
2-Nitroaniline	ND			1.89	0.283	
Dimethylphthalate	ND			1.89	0.369	
Acenaphthylene	ND			0.189	0.0227	
2,6-Dinitrotoluene	ND			1.89	0.36	
3-Nitroaniline	ND			1.89	0.535	
Acenaphthene		0.078		0.189	0,0322	J
2,4-Dinitrophenol	ND			9.46	1.96	
4-Nitrophenol	ND-	9.46 UJ		9.46	1.12	
Dibenzofuran	ND			1.89	0.194	
2.4-Dinitrotoluene	ND			1.89	0.543	
Diethylphthalate	ND			1.89	0.527	
4-Chlorophenylphenylether	ND			1.89	0,305	
Fluorene		0.103		0.189	0,0161	Ĵ
4-Nitroaniline	ND			1.89	0.367	
4,6-Dinitro-2-methylphenol	ND			9.46	2.93	
N-Nitrosodiphenylamine	ND			1.89	0,0804	
4-Bromophenyiphenylether	ND			1.89	0.207	
Hexachlorobenzene	ND			1.89	0.237	
Pentachiorophenol		256		1.89	1.89	910 0
Phenanthrene		0.18		0,189	0.035	J
Anthracene		0.0204		0.189	0.018	Ł
Di-n-butylphthalate		0.737	1.894	1.89	0.352	┉┛┉╸
Fluoranthene		0,0945		0.189	0.0539	J
Pyrene	ND			0.189	0.0274	
Butylbenzylphthalate	ND			2.84	0.922	
3,3'-Dichlorobenzidine	ND			9.46	1.77	
Benzo(a)anthracene	ND			0,189	0.0492	
Chrysene	ND			0.189	0.0795	
bis(2-Ethylhexyl)phthalate	ND			14.2	3.6	
Di-n-octylphthalate	ND			1.89	0.258	
Benzofluoranthenes	ND			0.946	0,113	
Benzo(a)pyrene	ND			0.189	0.0312	
Indeno(1,2,3-cd)pyrene	ND			0.189	0.0265	
Dibenz(a,h)anthracene	ND			0.189	0.0293	
Benzo(g,h,i)perylene	ND			0.189	0.0482	

W12/12/05

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor

Herrera Environmental Consultants NAGWW0106 128474-08 6/20/2005 6/23/2005 7/7/2005

1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	36.7		2	120
Phenol - d5	0.813	X9	1	102
Nitrobenzene - d5	115		34	146
2 - Fluorobiphenyl	85		35	143
2,4,6 - Tribromophenol	49.9		29	151
p - Terphenyl - d14	109		35	166

	Result		
Analyte	(ug/L)	RL	MDL Flags
Phenol	ND	1.88	0.0433
bis(2-Chloroethyl)ether	NO-1.88 UJ	1.88	0.305
2-Chlorophenol	ND	1.88	0.396
1,3-Dichlorobenzene	ND	1,88	0.346
1,4-Dichlorobenzene	ND	1.88	0.298
Benzyl Alcohol	NO 1.80 4.J	1.88	0.4
1,2-Dichlorobenzene	ND	1.88	0.262
2-Methylphenol	ND	1.88	0.358
bis(2-Chloroisopropyl)ether	ND	1.88	0.404
3-&4-Methylphenol	ND	3.77	0.415
N-nitroso-di-n-propylamine	ND	1.88	0.347
Hexachloroethane	NO 1-88 UJ	1.88	0.359
Nitrobenzene	ND	1.88	0.49
Isophorone	ND	1.88	0.266
2-Nitrophenol	ND	1.88	0.403
2,4-Dimethylphenol	ND	9.42	1.72
Benzoic Acid	ND	9.42	1.26
bis(2-Chloroethoxy)methane	ND 1.88 UJ	1.88	0.17
2,4-Dichlorophenol	ND	1.88	0.175
1,2,4-Trichlorobenzene	ND	1,88	0.116
Naphthalene	ND	0.471	0,164
4-Chloroaniline	ND	2.82	0.681
Hexachlorobutadiene	ND	1.88	0.138
4-Chloro-3-methylphenol	ND	1.88	0.23
2-Methylnaphthalene	ND	0.471	0.14
Hexachlorocyclopentadiene	ND	9.42	2.92

8/12/12/05

Semivolatile Organics by EPA Method 8270 data for 128474-08 continued...

e 1

	Res	sult		
Analyte	(ug	ı/L) RL	MDL	Flags
2,4,6-Trichlorophenol	ND	1.88	0.302	
2,4,5-Trichlorophenol	NĎ	1.88	0.417	
2-Chloronaphthalene	ND	0.188	0.0452	
2-Nitroaniline	ND	1.88	0.282	
Dimethylphthalate	ND	1.88	0.367	
Acenaphthylene	ND	0.188	0.0226	
2,6-Dinitrotoluene	ND	1.88	0.358	
3-Nitroaniline	ND	1.88	0.532	
Acenaphthene	ND	0.188	0.032	
2,4-Dinitrophenol	ND	9.42	1.95	
4-Nitrophenol	ND J.4	-L NU 9.42	1.11	
Dibenzofuran	ND	1.88	0.193	
2,4-Dinitrotoluene	ND	1.88	0.54	
Diethylphthalate	ND	1.88	0.524	
4-Chlorophenylphenylether	ND	1.88	0.303	
Fluorene	ND	0.188	0.016	
4-Nitroaniline	ND	1.88	0.365	
4,6-Dinitro-2-methylphenol	ND	9.42	2.92	
N-Nitrosodiphenylamine	ND	1.88	0.08	
4-Bromophenylphenylether	ND	1.88	0.206	
Hexachlorobenzene	ND	1.88	0.235	
Pentachlorophenol	ND	1.88	1,88	
Phenanthrene		0.0534 0.188	0.0348	J
Anthracene	ND	0.188	0.0179	
Di-n-butylphthalate		4.01-1-884 1.88	0.35	.
Fluoranthene	ND	0.188	0.0537	
Pyrene	ND	D.188	0.0273	
Butylbenzylphthalate	ND	2.82	0.918	
3,3'-Dichlorobenzidine	ND	9.42	1.76	
Benzo(a)anthracene	ND	0.188	0.049	
Chrysene	ND	0.188	0.0791	
bis(2-Ethylhexyl)phthalate	ND	14.1	3.59	
Di-n-octy/phthalate	ND	1.88	0.257	
Benzofluoranthenes	ND	0.942	0.112	
Benzo(a)pyrene	ND	0.188	0.0311	
Indeno(1,2,3-cd)pyrene	ND	0.188	0.0264	
Dibenz(a,h)anthracene	ND	0.188	0.0292	
Benzo(g,h,i)perylene	ND	0.188	0.048	

Sr2112105

Client Name:	Herrera Environmental Consultants
Client ID:	NAGWW0106D
Lab (D:	128474-09
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	7/7/2005
% Solids	•
Dilution Factor	1

e--

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	Hìgh
2 - Fluorophenol	55.2		2	120
Phenol - d5	38,1		1	102
Nitrobenzene - d5	122		34	146
2 - Fluorobiphenyl	81.8		35	143
2,4,6 - Tribromophenol	77.8		29	151
p - Terphenyl - d14	119		35	166

	Result			
Analyte	(ug/L)	RL	MDL	Flags
Phenol	ND UT	1.9	0.0437	
bis(2-Chloroethyl)ether	NO 1.9 4J	1.9	0.308	
2-Chiorophenol	ND	1.9	0.4	
1,3-Dichlorobenzene	ND	1.9	0.349	
1,4-Dichlorobenzene	ND Jan	1.9	0.3	
Benzył Alcohol	-ND 1.89 43	1.0	0.404	
1,2-Dichlorobenzene	ND	1.9	0.264	
2-Methylphenol	ND	1.9	0,372	
bis(2-Chloroisopropyl)ether	ND	1.9	0.408	
3-&4-Methylphenol	ND	3.8	0,419	
N-nitroso-di-n-propylamine	ND	1.9	0.351	
Hexachioroethane	NO 1.9 4J	1.9	0.362	
Nitrobenzene	ND	1.9	0.494	
Isophorone	ND	1.9	0.269	
2-Nitrophenol	ND	1.9	0.407	
2,4-Dimethylphenol	ND	9.51	1.74	
Benzoic Acid	ND 194	Г 9.51	1.27	
bis(2-Chloroethoxy)methane	NB 1. TVI	1.9	0.172	
2,4-Dichlorophenol	ND	1.9	0.177	
1,2,4-Trichlorobenzene	ND	1.9	0.117	
Naphthalene	0.3	365 0.475	0.165	J
4-Chloroaniline	ND	2.85	0.687	
Hexachlorobutadiene	ND	1.9	0.14	
4-Chioro-3-methylphenol	ND	1.9	0.232	
2-Methylnaphthalene	0.1	212 0.475	0.142	J
Hexachiorocyclopentadiene	ND	9.51	2.95	

912/12/05

Semivolatile Organics by EPA Method 8270 data for 128474-09 continued...

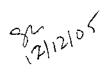
٠,

	Result		
Analyte	(ug/L)	RL	MDL Flags
2,4,6-Trichlorophenol	ND	1.9	0.305
2,4,5-Trichlorophenol	ND	1.9	0.421
2-Chloronaphthalene	ND	0.19	0.0456
2-Nitroaniline	ND	1.9	0.284
Dimethylphthalate	ND	1.9	0.371
Acenaphthylene	ND	0.19	0.0228
2,6-Dinitrotoluene	ND	1.9	0.361
3-Nitroaniline	ND	1.9	0.537
Acenaphthene	ND	0.19	0.0323
2,4-Dinitrophenol	ND	9.51	1.97
4-Nitrophenol	ND 9.51	U.J 9.51	1.12
Dibenzofuran	ND	1.9	0.195
2,4-Dinitrotoluene	ND	1.9	0.546
Diethylphthalate	ND	1.9	0.529
4-Chlorophenylphenylether	ND	1.9	0.306
Fluorene	ND	0.19	0.0162
4-Nitroaniline	ND	1.9	0.369
4,6-Dinitro-2-methylphenol	ND	9.51	2.95
N-Nitrosodiphenylamine	ND	1.9	0,0808
4-Bromophenylphenylether	ND	1.9	0,208
Hexachlorobenzene	ND	1.9	0.238
Pentachlorophenol	ND	1.9	1.9
Phenanthrene	ND	0,19	0.0352
Anthracene	ND	0.19	0.0181
Di-n-butylphthalate		4.51 1.9	0.354
Fluoranthene	ND	0.19	0.0542
Pyrene	ND	0.19	0.0276
Butylbenzylphthalate	ND	2.85	0.927
3,3'-Dichlorobenzidine	ND	9.51	1.78
Benzo(a)anthracene	ND	0.19	0.0494
Chrysene	ND	0.19	0.0798
bis(2-Ethylhexyl)phthalate	ND	14.3	3.62
Di-n-octylphthalate	ND	1.9	0.26
Benzofluoranthenes	ND	0.951	0.113
Benzo(a)pyrene	ND	0.19	0.0314
Indeno(1,2,3-cd)pyrene	ND	0.19	0.0266
Dibenz(a,h)anthracene	ND	0.19	0.0295
Benzo(g,h,i)perylene	ND	0.19	0.0485

8/2/12/05

Client Name: Client ID; Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor ÷.,

Herrera Environmental Consultants SAGWMW205 128474-10 6/20/2005 6/23/2005 7/7/2005 -1


			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	60.8	_	2	120
Phenol - d5	52.5		1	102
Nitrobenzene - d5	158	X9	34	146
2 - Fluorobiphenyl	114		35	143
2,4,6 - Tribromophenol	131		29	151
p - Terphenyl - d14	143		35	166

	Result			
Analyte	(ug/L)	RL	MDL Flags	;
Phenol	ND	1.9	0.0436	
bis(2-Chloroethyi)ether	NOTI 9 UJ	1.9	0.307	
2-Chlorophenol	ND	1.9	0.399	
1,3-Dichlorobenzene	ND	1.9	0.348	
1,4-Dichlorobenzene	ND	1.9	0.3	
Benzył Alcohol	NO1.94J	1.9	0.403	
1,2-Dichlorobenzene	ND	1.9	0.264	
2-Methylphenol	ND	1.9	0.371	
bis(2-Chloroisopropyl)ether	ND	1.9	0.407	
3-&4-Methylphenol	ND	3.8	0.418	
N-nitroso-di-n-propylamine	ND	1.9	0.35	
Hexachloroethane	NB-1,9 UJ	1.9	0,361	
Nitrobenzene	ND	1,9	0.493	
Isophorane	ND	1.9	0.269	
2-Nitrophenol	ND	1.9	0.406	
2,4-Dimethylphenol	ND	9.49	1.74	
Benzoic Acid	ND	9.49	1.27	
bis(2-Chloroethoxy)methane	NO-1.9 UJ	1,9	0.172	
2,4-Dichlorophenol	ND	1.9	0.176	
1,2,4-Trichlorobenzene	ND	1.9	0.117	
Naphthalene	ND	D.474	0.165	
4-Chloroaniline	ND	2.85	0.686	
Hexachlorobutadiene	ND	1.9	0.139	
4-Chloro-3-methylphenol	ND .	1.9	0.231	
2-Methylnaphthalene	ND	0.474	0.141	
Hexachlorocyclopentadiene	ND	9.49	2.94	

Semivolatile Organics by EPA Method 8270 data for 128474-10 continued...

- م

	Result			
Analyte	(ug/L)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND	1.9	0.305	
2,4,5-Trichlorophenol	ND	1.9	0.42	
2-Chloronaphthalene	ND	0.19	0.0455	
2-Nitroaniline	ND	1.9	0.284	
Dimethylphthalate	ND	1.9	0.37	
Acenaphthylene	ND	0.19	0.0228	
2,6-Dinitrotoluene	ND	1.9	0.361	
3-Nitroaniline	ND	1,9	0.536	
Acenaphthene	ND	D.19	0.0323	
2,4-Dinitrophenol	ND COLLET	- 9.49	1.96	
4-Nitrophenol	NO 9.49 UJ	9.49	1.12	
Dibenzofuran	ND	1.9	0.194	
2,4-Dinitrotoluene	ND	1.9	0,545	
Diethylphthalate	ND	1.9	0.528	
4-Chlorophenylphenylether	ND	1.9	0.306	
Fluorene	ND	0.19	0.0161	
4-Nitroaniline	ND	1.9	0.368	
4,6-Dinitro-2-methylphenol	ND	9.49	2.94	
N-Nitrosodiphenylamine	ND	1.9	0.0806	
4-Bromophenylphenylether	ND	1.9	0.208	
Hexachlorobenzene	ND	1.9	0.237	
Pentachiorophenol	ND	1.9	1.9	
Phenanthrene	ND	0,19	0.0351	
Anthracene	ND	0.19	0.018	
Di-n-butylphthalate	1,3412	0.19 4 - 1.9 1.9 3 Jul ²⁶ 0.19 3 Jul ²⁶ 0.19 0.19	0.353	ل سۍ
Fluoranthene	ND	an 165 0.19	0.0541	•
Pyrene	NÐ	0.19 N ¹²	0.0275	
Butylbenzylphthalate	ND	2.85	0.925	
3,3'-Dichlorobenzidine	ND	9.49	1.78	
Benzo(a)anthracene	ND	0.19	0.0493	
Chrysene	ND	0.19	0.0797	
bis(2-Ethylhexyl)phthalate	ND	14.2	3.61	
Di-n-octylphthalate	ND	1.9	0.259	
Benzofluoranthenes	ND	0.949	0.113	
Benzo(a)pyrene	ND	0.19	0.0313	
Indeno(1,2,3-cd)pyrene	ND	0.19	0.0266	
Dibenz(a,h)anthracene	ND	0.19	0.0294	
Benzo(g,h,i)perylene	ND	0.19	0.0484	

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor · ---

Herrera Environmental Consultants SAGWMW407 128474-11 6/20/2005 6/23/2005 7/7/2005 -1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	54.5		2	120
Phenol - d5	40.8		1	102
Nitrobenzene - d5	103		34	146
2 - Fluorobiphenyl	76.8		35	143
2,4,6 - Tribromophenol	90.9		29	151
p - Terphenyl - d14	108		35	166

	Result		
Analyte	(ug/L)	RL	MDL Flags
Phenol	ND	1.9	0.0437
bis(2-Chloroethyl)ether	NB-1.9 UJ	1.9	0.308
2-Chlorophenol	ND	1.9	0.4
1,3-Dichlorobenzene	ND	1.9	0.349
1,4-Dichlorobenzene	ND	1.9	0.3
Benzyl Alcohol	NOLAUJ	1.9	0.404
1,2-Dichlorobenzene	ND	1.9	0.264
2-Methylphenol	ND	1.9	0.372
bis(2-Chloroisopropyl)ether	ND	1,9	0.408
3-&4-Methylphenol	ND	3.8	0.419
N-nitroso-di-n-propylamine	ND	1.9	0.351
Hexachloroethane	NO 1.9 4 J	1.9	0.362
Nitrobenzene	ND	1.9	0.494
Isophorone	ND	1.9	0,269
2-Nitrophenol	ND	1.9	0.407
2,4-Dimethylphenol	ND	9.51	1.74
Benzoic Acid	ND	9,51	1,27
bis(2-Chloroethoxy)methane	NB 1.9 UJ	1.9	0.172
2,4-Dichlorophenol	ND	1.9	0.17 7
1,2,4-Trichlorobenzene	ND	1.9	0.117
Naphthalene	ND	0.475	0.165
4-Chloroaniline	ND	2.85	0.687
Hexachlorobutadiene	ND	1.9	0.14
4-Chloro-3-methylphenol	ND	1.9	0.232
2-Methylnaphthalene	ND	0.475	0.142
Hexachlorocyclopentadiene	ND	9.51	2.95

9/12/105

Semivolatile Organics by EPA Method 8270 data for 128474-11 continued...

- م

	Result			
Analyte	(ug/L)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND	1.9	0.305	-
2,4,5-Trichlorophenol	ND	1.9	0.421	
2-Chloronaphthalene	ND	0.19	0.0456	
2-Nitroaniline	ND	1.9	0.284	
Dimethylphthalate	ND	1.9	0.371	
Acenaphthylene	ND	0.19	0.0228	
2,6-Dinitrotoluene	ND	1.9	0.361	
3-Nitroaniline	ND	1.9	0.537	
Acenaphthene	ND	0.19	0.0323	
2,4-Dinitrophenol	ND	9.51	1.97	
4-Nitraphenol	ND 9.51 U		1.12	
Dibenzofuran	ND	1.9	0.195	
2,4-Dinitrotoluene	ND	1.9	0.546	
Diethylphthalate	ND	1.9	0.529	
4-Chlorophenylphenylether	ND	1.9	0.306	
Fluorene	ND	0.19	0.0162	
4-Nitroaniline	ND	t.9	0.369	
4,6-Dinitro-2-methylphenol	ND	9.51	2.95	
N-Nitrosodiphenylamine	ND	1.9	0.0808	
4-Bromophenylphenylether	ND	1.9	0.208	
Hexachlorobenzene	ND	1.9	0.238	
Pentachlorophenol	ND	1.9	1.9	
Phenanthrene	ND	0.19	0.0352	
Anthracene	ND	0.19	0.0181	
Di-n-butylphthalate	1.03 1	05 4-9 4 1.9 0.19 5- 0.19 12/14 0.19	0.354	1
Fluoranthene	ND	0.19	0.0542	
Pyrene	ND	12/12/05 0.19	0.0276	
Butylbenzylphthalate	ND	2.85	0.927	
3,3'-Dichlorobenzidine	ND	9.51	1.78	
Benzo(a)anthracene	ND	0.19	0.0494	
Chrysene	ND	0.19	0.0798	
bis(2-Ethylhexyl)phthalate	ND	14.3	3.62	
Di-n-octylphthalate	ND	1.9	0.26	
Benzofluoranthenes	ND	0.951	0.113	
Benzo(a)pyrene	ND	0.19	0.0314	
Indeno(1,2,3-cd)pyrene	ND	0.19	0.0266	
Dibenz(a,h)anthracene	ND	0.19	0.0295	
Benzo(g,h,i)perylene	ND	0.19	0.0485	

9 41210S

Client Name:	Herrera Environmental Consultants
Client ID:	SAGWMW105
Lab ID:	12847 4-12
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	7/7/2005
% Solids	_ · · ·
Dilution Factor	1

. م

.

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	44.1		2	120
Phenol - d5	28.2		1	102
Nitrobenzene - d5	125		34	146
2 - Fluorobiphenyl	92.9		35	143
2,4,6 - Tribromophenol	103		29	151
p - Terphenyl - d14	114		35	166

	Result		
Analyte	(ug/L)	RL.	MDL Flags
Phenol	ND	1.9	0.0436
bis(2-Chloroethyl)ether	NO 1.9 UJ	1.9	0.307
2-Chlorophenol	ND	1.9	0.399
1,3-Dichlorobenzene	ND	1.9	0.348
1,4-Dichlorobenzene	ND	1.9	0.3
Benzyl Alcohol	NO-1.9 U.J	1.9	0.403
1,2-Dichlorobenzene	ND	1.9	0.264
2-Methylphenol	ND	1.9	0.371
bis(2-Chloroisopropyl)ether	ND	1.9	0.407
3-&4-Methylphenol	ND	3.79	0.418
N-nitroso-di-n-propylamine	ND	1.9	0.35
Hexachloroethane	MB 1.9 UJ	1.9	0.361
Nitrobenzene	ND	1.9	0.493
Isophorone	ND	1.9	0.268
2-Nitrophenol	ND	1.9	0.406
2,4-Dimethylphenol	ND	9.48	1.73
Benzoic Acid	ND	9.48	1.27
bis(2-Chloroethoxy)methane	MD 1.9 4J	1,9	0.172
2,4-Dichlorophenol	ND	1.9	0,176
1,2,4-Trichlorobenzene	ND	1.9	0.117
Naphthalene	ND	0.474	0.165
4-Chloroaniline	ND	2.84	0.685
Hexachlorobutadiene	ND	1.9	0.139
4-Chloro-3-methylphenol	ND	1.9	0.231
2-Methylnaphthalene	ND	0.474	0.141
Hexachlorocyclopentadiene	ND	9.48	2.94

gr 12/12/05

Semivolatile Organics by EPA Method 8270 data for 128474-12 continued...

e--

	Result			
Analyte	(ug/L)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND	1.9	0.304	
2,4,5-Trichlorophenol	ND	1.9	0.42	
2-Chloronaphthalene	ND	0.19	0.0455	
2-Nitroaniline	ND	1.9	0.283	
Dimethylphthalate	ND	1.9	0.37	
Acenaphthylene	ND	0.19	0.0227	
2,6-Dinitrotoluene	ND	1.9	0,36	
3-Nitroaniline	ND	1.9	0.536	
Acenaphtherie	ND	0.19	0.0322	
2,4-Dinitrophenol	ND	9.48	1,96	
4-Nitrophenol	ND 9.48 UJ	9.48	1.12	
Dibenzofuran	ND	1.9	0.194	
2,4-Dinitrotoluene	ND	1.9	0.544	
Diethylphthalate	ND	1.9	0.528	
4-Chlorophenylphenylether	ND	1.9	0.305	
Fluorene	ND	0.19	0.0161	
4-Nitroaniline	ND	1.9	0.368	
4,6-Dinitro-2-methylphenol	ND	9.48	2.94	
N-Nitrosodiphenylamine	ND	1,9	0,0806	
4-Bromophenylphenylether	ND	1.9	0.208	
Hexachlorobenzene	ND	1.9	0.237	
Pentachlorophenol	ND	1.9	1.9	
Phenanthrene	0.0473	0.19	0.0351	J
Anthracene	ND 0,731 0.731 ND ND	0.19	0.018	
Di-n-butylphthalate	0,731 0.731	- 1.94 1.9	0.353	J - J
Fluoranthene	ND	<u>لائے _ 0.19</u>	0.054	
Pyrene	ND	1414 0.19	0.0275	
Butylbenzylphthalate	ND	2.84	0.924	
3,3'-Dichlorobenzidine	ND	9.48	1.77	
Benzo(a)anthracene	ND	0.19	0.0493	
Chrysene	ND	0.19	0.0796	
bis(2-Ethylhexyl)phthalate	ND	14.2	3.61	
Di-n-octy)phthalate	ND	1.9	0.259	
Benzofluoranthenes	ND	0.948	0.113	
Benzo(a)pyrene	ND	0.19	0.0313	
Indeno(1,2,3-cd)pyrene	ND	0.19	0.0265	
Díbenz(a,h)anthracene	ND	0.19	0.0294	
Benzo(g,h,i)perylene	ND	0.19	0.0483	
- or				

972112/05

Client Name:	Herrera Environmental Consultants				
Client ID:	SAGWMW105D				
Lab ID:	128474-13				
Date Received:	6/20/2005				
Date Prepared:	6/23/2005				
Date Analyzed:	7/7/2005				
% Solids	-				
Dilution Factor	1				

e--

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	45		2	120
Phenol - d5	41.9		1	102
Nitrobenzene - d5	118		34	146
2 - Fluorobiphenyl	83.8		35	143
2,4,6 - Tribromophenol	101		29	151
p - Terphenyl - d14	110		35	166

	Result		
Analyte	(ug/L)	RL	MDL Flags
Phenol	NDIRIT	1.9	0,0437
bis(2-Chloroethyl)ether	NO 1.9 UJ	1.9	0.308
2-Chlorophenol	ND	1.9	0.4
1,3-Dichlorobenzene	ND	1.9	0,349
1,4-Dichlorobenzene	ND	1.9	0.3
Benzyl Alcohol	NO 1945	1.9	0.404
1,2-Dichlorobenzene	ND	1.9	0.264
2-Methylphenol	ND	1.9	0.372
bis(2-Chloroisopropyl)ether	ND	1.9	0.408
3-&4-Methylphenol	ND	3.8	0.419
N-nitroso-di-n-propylamine	ND	1.9	0.351
Hexachloroethane	NO 1.9 UJ	1.9	0.362
Nitrobenzene	ND	1.9	0.494
Isophorone	ND	1.9	0.269
2-Nitrophenol	ND	1.9	0.407
2,4-Dimethylphenol	ND	9.51	1.74
Benzoic Acid	ND	9.51	1.27
bis(2-Chloroethoxy)methane	MET 1.9 UJ	1.9	0.172
2,4-Dichlorophenol	ND	1.9	0.177
1,2,4-Trichlorobenzene	ND	1.9	0.117
Naphthalene	ND	0.475	0.165
4-Chloroaniline	ND	2.85	0.687
Hexachlorobutadiene	ND	1.9	0.14
4-Chloro-3-methylphenol	ND	1.9	0.232
2-Methylnaphthalene	ND	0.475	0.142
Hexachlorocyclopentadiene	ND	9.51	2.95

8 12/12/05

Semivolatile Organics by EPA Method 8270 data for 128474-13 continued...

- 67

	Result			
Analyte	(ug/L)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND	1.9	0.305	
2,4,5-Trichlorophenol	ND	1.9	0.421	
2-Chloronaphthalene	ND	0.19	0.0456	
2-Nitroaniline	ND	1.9	0.284	
Dimethylphthalate	ND	1.9	0.371	
Acenaphthylene	ND	0.19	0.0228	
2,6-Dinitrotoluene	ND	1.9	0.361	
3-Nitroaniline	ND	1,9	0.537	
Acenaphthene	ND	0.19	0.0323	
2,4-Dinitrophenol	ND	- 9.51	1.97	
4-Nitrophenol	NO 9.51 43	9,51	1.12	
Dibenzofuran	ND	1.9	0.195	
2,4-Dinitrotoluene	ND	1.9	0.546	
Diethylphthalate	ND	1.9	0.529	
4-Chlorophenylphenylether	ND	- 1.9	0.306	
Fluorene	ND	0.19	0.0162	
4-Nitroaniline	ND	1.9	0.369	
4,6-Dinitro-2-methylphenol	ND	9.51	2.95	
N-Nitrosodiphenylamine	ND	1.9	0.0808	
4-Bromophenylphenylether	ND	1.9	0.208	
Hexachlorobenzene	ND	1.9	0.238	
Pentachlorophenol	ND	1.9	1.9	
Phenanthrene	ND	0.19	0.0352	
Anthracene	ND	0.19	0.0181	
Di-n-butylphthalate	ND ND ND ND	F].94 1.9	0.354	4 7
Fluoranthene	ND	0.19	0.0542	
Pyrene	ND	0.19	0.0276	
Butylbenzylphthalate	ND /	12/2/05 2.85	0.927	
3,3'-Dichlorobenzidine	ND	9.51	1.78	
Benzo(a)anthracene	ND	0,19	0.0494	
Chrysene	ND	0.19	0,0798	
bis(2-Ethylhexyl)phthalate	ND	14.3	3.62	
Di-n-octylphthalate	ND	1.9	0.26	
Benzofluoranthenes	ND	0.951	0.113	
Benzo(a)pyrene	ND	0.19	0,0314	
Indeno(1,2,3-cd)pyrene	ND	0.19	0.0266	
Dibenz(a,h)anthracene	ND	0.19	0.0295	
Benzo(g,h,i)perylene	ND	0.19	0.0485	

Jul 2/05

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor .-م

Негтега Environmental Consultants PAGWP1308 128474-14 6/20/2005 6/23/2005 7/8/2005

-1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	66.5	~	2	120
Phenol - d5	47.4		1	102
Nitrobenzene - d5	123		34	146
2 - Fluorobiphenyl	77.3		35	143
2,4,6 - Tribromophenol	95.1		29	151
p - Terphenyl - d14	106		35	166

	Result			
Analyte	(ug/L)	RL	MDL	Flags
Phenol	ND	1.95	0.0449	
bis(2-Chloroethyl)ether	NO- 1.95 UJ	1.95	0.316	
2-Chlorophenol	ND	1.95	0.411	
1,3-Dichlorobenzene	ND	1.95	0.358	
1,4-Dichlorobenzene	ND	1,95	0.308	
Benzyl Alcohol	NB-1.954J	1.95	0.415	
1,2-Dichlorobenzene	ND	1.95	0.271	
2-Methylphenol	ND	1.95	0.381	
bis(2-Chloroisopropyl)ether	ND	1.95	0.419	
3-&4-Methylphenol	ND	3.9	0.43	
N-nitroso-di-n-propylamine	ND	1.95	0.36	
Hexachloroethane	NO-1,95 UJ	1.95	0.372	
Nitrobenzene	ND	1.95	0.507	
Isophorone	ND	1,95	0.276	
2-Nitrophenol	ND	1,95	0.418	
2,4-Dimethylphenol	ND	9.76	1.79	
Benzoic Acid	ND	9.76	1.31	
bis(2-Chloroethoxy)methane	NO 1.95 U.J	1.95	0.177	
2,4-Dichlorophenol	ND	1.95	0.181	
1,2,4-Trichlorobenzene	ND	1.95	0.12	
Naphthalene	ND	0.488	0.17	
4-Chloroaniline	ND	2.93	0.705	
Hexachlorobutadiene	ND	1.95	0.143	
4-Chloro-3-methylphenol	ND	1.95	0.238	
2-Methylnaphthalene	ND	0.488	0.145	
Hexachlorocyclopentadiene	ND	9.76	3.02	

\$12/12/05

Semivolatile Organics by EPA Method 8270 data for 128474-14 continued...

e-

	Resu	lt		
Analyte	(ug/L	.) RL	MDL	Flags
2,4,6-Trichlorophenol	ND	1.95	0.313	•
2,4,5-Trichlorophenol	ND	1.95	0.432	
2-Chloronaphthalene	ND	0.195	0.0468	
2-Nitroaniline	ND	1.95	0.292	
Dimethylphthalate	NÐ	1.95	0.38	
Acenaphthylene	ND	0.195	0.0234	
2,6-Dinitrotoluene	ND	1.95	0.371	
3-Nitroaniline	ND	1.95	0.551	
Acenaphthene	ND	0.195	0.0332	
2,4-Dinitrophenol	ND _	9.76	2.02	
4-Nitrophenol	ND 9.76	_ℓ	1.15	
Dibenzofuran	ND	1.95	0.2	
2,4-Dinitrotaluene	ND	1.95	0.56	
Diethylphthalate	ND	1.95	D.543	
4-Chiorophenylphenylether	ND	1.95	0.314	
Fluorene	ND	0.195	0.0166	
4-Nitroaniline	ND	1.95	0.379	
4,6-Dinitro-2-methylphenol	ND	9.76	3.02	
N-Nitrosodiphenylamine	ND	1.95	0.0829	
4-Bromophenylphenylether	ND	1.95	0.214	
Hexachlorobenzene	ND	1.95	0.244	
Pentachlorophenol		55.8 1.95	1.95	ĐIO
Phenanthrene	ND	0.195	0.0361	
Anthracene	ND	0.195	0.0185	
Di-n-butylphthalate		0.608 1.95	0.363	J
Fluoranthene	ND	0.195	0.0556	
Pyrene	ND	0.195	0.0283	
Butylbenzylphthalate	NÐ	2.93	0.951	
3,3'-Dichlorobenzidine	ND	9.76	1.83	
Benzo(a)anthracene		0.172 0.195	0.0507	J
Chrysene		0.151 0.195	0.082	J
bis(2-Ethylhexyl)phthalate	ND	14.6	3.72	
Di-n-octylphthalate	ND	1.95	0.266	
Benzofluoranthenes	ND	0.976	0.116	
Benzo(a)pyrene	ND	0,195	0.0322	
Indeno(1,2,3-cd)pyrene	ND	0.195	0.0273	
Dibenz(a,h)anthracene	ND	0.195	0.0302	
Benzo(g,h,i)perylene	ND	0.195	0.0498	

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor . سرمي

Herrera Environmental Consultants PAGWP1109 128474-15 6/20/2005 6/23/2005 7/8/2005 -1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	46.7		2	120
Phenol - d5	45.4		1	102
Nitrobenzene - d5	115		34	146
2 - Fluorobiphenyl	74.7		35	143
2,4,6 - Tribromophenol	26.2	X9	29	151
p - Terphenyl - d14	71.5		35	166

	Result				
Analyte	(ug/L)	I	RL	MDL	Flags
Phenol	ND	· - 1	1.89	0.0435	
bis(2-Chloroethyl)ether	NO 1.89 1	15	1.89	0.307	
2-Chlorophenol	ND		1.89	0.398	
1,3-Dichlorobenzene	ND		1.89	0.347	
1,4-Dichlorobenzene	ND		1.89	0.299	
Benzyl Alcohol	NO1.896	1.7	1.89	0.402	
1,2-Dichlorobenzene	ND		1.89	0.263	
2-Methylphenol	ND		1.89	0.37	
bis(2-Chloroisopropyl)ether	ND		1.89	0,406	
3-&4-Methylphenol	ND		3.78	0.417	
N-nitroso-di-n-propylamine	ND 1.89	4.5	1.89	0.349	
Hexachloroethane	1.01 DH	40	1.89	0.36	
Nitrobenzene	ND		1.89	0.492	
Isophorone	ND		1.89	0,268	
2-Nitrophenol	ND		1.89	0.405	
2,4-Dimethylphenol	ND		9.46	1.73	
Benzoic Acid	ND		9.46	1.27	
bis(2-Chloroethoxy)methane	NO 1.89 (15	1.89	0.171	
2,4-Dichlorophenol	ND		1.89	0.176	
1,2,4-Trichlorobenzene	ND		1.89	0.116	
Naphthalene		24	0.473	0,165	
4-Chloroaniline	ND		2.84	0.684	
Hexachlorobutadiene	ND		1.89	0.139	
4-Chloro-3-methylphenol	ND		1.89	0.231	
2-Methylnaphthalene		103	0.473	0.141	D100
Hexachlorocyclopentadiene	ND		9.46	2.93	

8,212/05

Semivolatile Organics by EPA Method 8270 data for 128474-15 continued...

- م

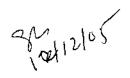
	R	esult			
Analyte	(0	ug/L)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND		1.89	0.304	
2,4,5-Trichlorophenol	ND		1.89	0.419	
2-Chloronaphthalene	ND		0.189	0.0454	
2-Nitroaniline	ND		1.89	0.283	
Dimethylphthalate	ND		1.89	0.369	
Acenaphthyiene	ND		0.189	0.0227	
2,6-Dinitrotoluene	ND		1.89	0.36	
3-Nitroaniline	ND		1.89	0.535	
Acenaphthene		14.6	0.189	0.0322	
2,4-Dinitrophenol	ND		9.46	1.96	
4-Nitrophenol	NO 9.	46 U J	9.46	1.12	
Dibenzofuran	ND		1,89	0.194	
2,4-Dinitrotoluene	ND		1.89	0.543	
Diethylphthalate	ND		1.89	0.527	
4-Chlorophenylphenylether	ND		1.89	0.305	
Fluorene		10.9	0.189	0.0161	
4-Nitroaniline		3.03	1.89	0.367	
4,6-Dinitro-2-methylphenol	ND		9.46	2.93	
N-Nitrosodiphenylamine	ND		1.89	0.0804	
4-Bromophenylphenylether	ND		1.89	0.207	
Hexachlorobenzene	ND		1.89	0.237	_
Pentachlorophenol		2690	1.89	1.89	-D1000
Phenanthrene		18.3	0.189	0.035	
Anthracene		3.97	0,189	0,018	
Di-n-butylphthalate	ND		1.89	0.352	
Fluoranthene	ND		0.189	0.0539	
Pyrene		3.86	0.189	0.0274	
Butylbenzylphthalate	ND		2.84	0.922	
3,3'-Dichlorobenzidine	ND		9,46	1.77	
Benzo(a)anthracene		0.191	0.189	0.0492	
Chrysene	ND		0.189	0.0795	
bis(2-Ethylhexyl)phthalate	ND		14.2	3.6	
Di-n-octylphthalate	ND		1.89	0.258	
Benzofluoranthenes	ND		0.946	0.113	
Benzo(a)pyrene	ND		0.189	0.0312	
Indeno(1,2,3-cd)pyrene	ND		0.189	0.0265	
Dibenz(a,h)anthracene	ND		0.189	0.0293	
Benzo(g,h,i)perylene	ND		0.189	0.0482	
1987 - 1991 - P					

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor - م

Herrera Environmental Consultants PAGWP1208 128474-16 6/20/2005 6/23/2005 7/8/2005 1

Semivolatile Organics by EPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	38.1		2	120
Phenol - d5	39.6		1	102
Nitrobenzene - d5	116		34	146
2 - Fluorobiphenyt	83.2		35	143
2,4,6 - Tribromophenol	78.8		29	151
p - Terphenyl - d14	105		35	166


	Result			
Analyte	(ug/L)	RL	MDL Flags	
Phenol	ND	1.89	0.0436	
bis(2-Chloroethyl)ether	NO 1.894J	1.89	0.307	
2-Chlorophenol	ND	1.89	0.399	
1,3-Dichlorobenzene	ND	1.89	0.348	
1,4-Dichlorobenzene	ND	1.89	0,299	
Benzyl Alcohol	NO1.89UJ	1.89	0.402	
1,2-Dichlorobenzene	ND	1.89	0.263	
2-Methylphenol	ND	1.89	0.37	
bis(2-Chloroisopropyl)ether	ND	1.89	0.406	
3-&4-Methylphenol	ND	3.79	0.418	
N-nitroso-di-n-propylamine	ND	1.89	0.349	
Hexachloroethane	NO 1.894J	1.89	0.361	
Nitrobenzene	ND	1.89	0.492	
Isophorone	ND	1.89	0.268	
2-Nitrophenol	ND	1.89	0.405	
2,4-Dimethylphenol	ND	9.47	1.73	
Benzoic Acid	ND	9.47	1.27	
bis(2-Chloroethoxy)methane	NO 1.89 UJ	1.89	0,171	
2,4-Dichlorophenol	ND	1.89	0.176	
1,2,4-Trichlorobenzene	ND	1,89	0.116	
Naphthalene	ND	0,473	0.165	
4-Chloroaniline	ND	2.84	0.685	
Hexachlorobutadiene	ND	1.89	0.139	
4-Chloro-3-methylphenol	ND	1.89	0.231	
2-Methylnaphthalene	ND	0.473	0.141	
Hexachlorocyclopentadiene	ND	9.47	2.94	

5 12/12/05

Semivolatile Organics by EPA Method 8270 data for 128474-16 continued...

e --

	Result			
Analyte	(ug/L)	RL	MDL Fla	lgs
2,4,6-Trichlorophenol	ND	1.89	0,304	
2,4,5-Trichlorophenol	ND	1.89	0.42	
2-Chloronaphthalene	ND	0.189	0.0455	
2-Nitroaniline	ND	1.89	0.283	
Dimethylphthalate	ND	1.89	0.369	
Acenaphthylene	ND	0.189	0.0227	
2,6-Dinitrotoluene	ND	1.89	0.36	
3-Nitroaniline	ND	1.89	0.535	
Acenaphthene	ND	0.189	0.0322	
2,4-Dinitrophenol	ND .	9.47	1.96	
4-Nitrophenol	NO 9.47 UJ	9.47	1.12	
Dibenzofuran	ND	1.89	0.194	
2,4-Dinitrotoluene	ND	1.89	0.544	
Diethylphthalate	ND	1.89	0.527	
4-Chlorophenylphenylether	NĎ	1.89	0.305	
Fluorene	ND	0.189	0.0161	
4-Nitroaniline	ND	1.89	0.367	
4,6-Dinitro-2-methylphenol	ND	9.47	2.94	
N-Nitrosodiphenylamine	ND	1.89	0.0805	
4-Bromophenylphenylether	ND	1.89	0.207	
Hexachlorobenzene	ND	1.89	0.237	
Pentachlorophenol	ND	1.89	1.89	
Phenanthrene	ND	0.189	0.035	
Anthracene	ND	0.189	0.018	
Di-n-butylphthalate	1.63	1.89	0.352 .	J
Fluoranthene	ND	0.189	0.054	
Pyrene	ND	0,189	0.0275	
Butylbenzylphthalate	3.14	2.84	0.923	
3,3'-Dichlorobenzidine	ND	9.47	1.77	
Benzo(a)anthracene	ND	0.189	0.0492	
Chrysene	ND	0.189	0.0795	
bis(2-Ethylhexyl)phthalate	ND	14.2	3.61	
Di-n-octylphthalate	ND	1.89	0.259	
Benzofluoranthenes	ND	0.947	0,113	
Benzo(a)pyrene	ND	0.189	0.0313	
Indeno(1,2,3-cd)pyrene	ND	0.189	0.0265	
Dibenz(a,h)anthracene	ND	0.189	0.0294	
Benzo(g,h,i)perylene	ND	0.189	0.0483	

Client Name:	Herrera Environmental Consultants
Client ID:	RB-3
Lab ID:	128474-17
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	7/8/2005
% Solids	-
Dilution Factor	1

...م

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	38.4		2	120
Phenol - d5	26.3		1	102
Nitrobenzene - d5	104		34	146
2 - Fluorobiphenyl	78.5		35	143
2,4,6 - Tribromophenol	90.2		29	151
p - Terphenyl - d14	99.1		35	166


	Result		
Analyte	(ug/L)	RL	MDL Flags
Phenol	ND	2.09	0.048
bis(2-Chloroethyl)ether	NO 2.09 4J	2.09	0.338
2-Chlorophenol	ND	2.09	0.439
1,3-Dichlorobenzene	ND	2.09	0,383
1,4-Dichlorobenzene	ND	2.09	0.33
Benzyl Alcohol	NO 2,09 UJ	2.09	0.444
1,2-Dichlorobenzene	ND	2,09	0.29
2-Methylphenol	ND	2.09	0.408
bis(2-Chloraisopropyl)ether	ND	2,09	0.448
3-&4-Methylphenol	ND	4.18	0.46
N-nitroso-di-n-propylamine	ND - O (L)	2.09	0.385
Hexachloroethane	NO 2.09 U)	2.09	0.398
Nitrobenzene	ND	2.09	0.543
Isophorone	ND	2.09	0.295
2-Nitrophenol	ND	2.09	0.447
2,4-Dimethylphenol	ND	10.4	1.91
Benzoic Acid	ND	10.4	1.4
bis(2-Chloroethoxy)methane	ND 2.09 UJ	2.09	0.189
2,4-Dichlorophenol	ND	2.09	0.194
1,2,4-Trichlorobenzene	ND	2.09	0.128
Naphthalene	ND	0.522	0,182
4-Chloroaniline	ND	3.13	0.755
Hexachlorobutadiene	ND	2.09	0.153
4-Chloro-3-methylphenol	ND	2.09	0,255
2-Methylnaphthalene	ND	0.522	0,156
Hexachlorocyclopentadiene	ND	10.4	3.24

9/11/05

Semivolatile Organics by EPA Method 8270 data for 128474-17 continued...

e-

	Result			
Analyte	(ug/L)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND	2.09	0.335	
2,4,5-Trichlorophenol	ND	2.09	0.462	
2-Chloronaphthalene	ND	0.209	0.0501	
2-Nitroaniline	ND	2.09	0.312	
Dimethylphthalate	ND	2.09	0.407	
Acenaphthylene	ND	0.209	0.0251	
2,6-Dinitrotoluene	ND	2.09	0.397	
3-Nitroaniline	ND	2.09	0.59	
Acenaphthene	ND	0.209	0.0355	
2,4-Dinitrophenol	ND ,	10.4	2.16	
4-Nitrophenol	NO 10,4	FUJ 10.4	1.23	
Dibenzofuran	ND	2.09	0.214	
2,4-Dinitrotoluene	ND	2.09	0.599	
Diethylphthalate	ND	2.09	0.581	
4-Chlorophenylphenylether	NĎ	2.09	0.336	
Fluorene	ND	0.209	0.0177	
4-Nitroaniline	ND	2.09	0.405	
4,6-Dinitro-2-methylphenol	ND	10.4	3.24	
N-Nitrosodiphenylamine	ND	2.09	0.0887	
4-Bromophenylphenylether	ND	2.09	0.229	
Hexachlorobenzene	ND	2.09	0.261	
Pentachlorophenol	ND	2.09	2.09	
Phenanthrene	ND	0.209	0.0386	
Anthracene	ND	0.209	0.0198	
Di-n-butylphthalate		14 2.094 2.09	0.388	-
Fluoranthene	ND	0.209	0.0595	
Pyrene	ND	0.209	0.0303	
Butylbenzylphthalate	ND	3.13	1.02	
3,3'-Dichlorobenzidine	ND	10.4	1.95	
Benzo(a)anthracene	ND	0.209	0.0543	
Chrysene	ND	0.209	0.0877	
bis(2-Ethylhexyl)phthalate	ND	15.7	3.98	
Di-n-octylphthalate	ND	2.09	0.285	
Benzofluoranthenes	ND	1.04	0.1 24	
Benzo(a)pyrene	ND	0.209	0.0344	
Indeno(1,2,3-cd)pyrene	ND	0.209	0.0292	
Dibenz(a,h)anthracene	ND	0,209	0.0324	
Benzo(g,h,i)perylene	ND	0.209	0.0532	

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor . . م

Herrera Environmental Consultants BKSDH0900 128479-01 6/20/2005 6/23/2005 6/24/2005 61.15 1

Semivolatile Organics by EPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenat	119		36	145
Phenol - d5	111		38	149
Nitrobenzene - d5	96.1		38	141
2 - Fluorobiphenyl	100		42	140
2,4,6 - Tribromophenal	97.4		28	143
p - Terphenyl - d14	113		42	151

Sample results are on a dry weight basis.

	Result		
Analyte	(ug/kg)	RL.	MDL Flags
Phenol	ND	79.5	11.5
bis(2-Chloroethyl)ether	ND	159	25
2-Chlorophenol	ND	79.5	10.7
1,3-Dichlorobenzene	ND	79.5	13.5
1,4-Dichlorobenzene	ND	79.5	13.4
Benzyl Alcohol	ND	79.5	31.6
1,2-Dichlorobenzene	ND	79.5	10.8
2-Methylphenol	ND _	79.5	15
bis(2-Chloroisopropyl)ether	ND-3974J	397	127
3-&4-Methylphenol	91.3	79.5	18.8
N-nitroso-di-n-propylamine	ND	79,5	21.3
Hexachloroethane	ND	79.5	26.9
Nitrobenzene	ND	159	47.8
Isophorone	ND	159	8.01
2-Nitrophenol	ND	79.5	18.1
2,4-Dimethylphenol	ND	31.8	12.2
Benzoic Acid	ND	954	254
bis(2-Chloroethoxy)methane	ND	159	30.5
2,4-Dichlorophenol	ND	79.5	14.1
1,2,4-Trichiorobenzene	NÐ	79.5	13.5
Naphthalene	ND	31.8	14.1
4-Chloroaniline	ND	159	14.8
Hexachlorobutadiene	ND	79.5	11.6
4-Chloro-3-methylphenol	ND	79.5	14.2
2-Methylnaphthalene	ND	31.8	8.27
Hexachlorocyclopentadiene	ND	79.5	12.6

or 21/2/05

Semivolatile Organics by EPA Method 8270 data for 128479-01 continued...

. - في

		esult			5 1
Analyte		ig/kg)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND		79.5	12.6 12.3	
2,4,5-Trichlorophenol	ND		79.5		
2-Chloronaphthalene	ND		31.8	10.7	
2-Nitroaniline	ND		31.8	8,63	
Dimethylphthalate	ND		159	31.2	
Acenaphthylene	ND		31.8	9.36	
2,6-Dinitrotoluene	ND		79.5	17	
3-Nitroaniline	ND		159	46.6	
Acenaphthene	ND		31.8	8.15	
2,4-Dinitrophenol	ND		795	111	
4-Nitrophenol	ND		795	130	
Dibenzofuran	ND		79.5	7.34	
2,4-Dinitrotoluene	ND		159	27	
Diethylphthalate	ND		159	57.4	
4-Chlorophenylphenylether	ND		159	34.2	
Fluorene	ND		31.8	10.3	
4-Nitroaniline	ND		318	65.2	
4,6-Dinitro-2-methylphenol	ND		159	28.6	
N-Nitrosodiphenylamine	ND		31.8	9.09	
4-Bromophenylphenylether	ND		159	29.2	
Hexachlorobenzene	ND		31.8	8.41	
Pentachlorophenol		127	159	30.8	J
Phenanthrene	ND		31.8	9.44	
Anthracene	ND		31.8	6.04	
Di-n-butylphthalate	ND		159	28.9	
Fluoranthene	ND		31.8	16.1	
Pyrene		23.1	31.8	5.4	J
Butylbenzylphthalate	ND		318	34	
3,3'-Dichlorobenzidine	ND		318	69	
Benzo(a)anthracene	NÐ		31.8	16.1	
Chrysene	ND		31.8	11.4	
bis(2-Ethylhexyl)phthalate		65.1	318	29.1	J
Di-n-octylphthalate	ND		318	29.2	
Benzofluoranthenes	ND		63.6	14.4	
Benzo(a)pyrene	ND		31.8	10.1	
Indeno(1,2,3-cd)pyrene	ND		31.8	7.25	
Dibenz(a,h)anthracene	ND		31.8	9.87	
Benzo(g,h,i)perylene	ND		31.8	7.65	
Cours/81.11/borline					

Client Name:	Herrera Environmental Consultants
Client ID:	BKSSH1000
Lab ID:	128479-02
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	94.64
Dilution Factor	1

₹--

Semivolatile Organics by EPA Method 8270

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	106		36	145
Phenol - d5	85.5		38	14 9
Nitrobenzene - d5	106		38	141
2 - Fluorobiphenyl	102		42	140
2,4,6 - Tribromophenol	109		28	143
p - Terphenyl - d14	107		42	151

Sample results are on a dry weight basis.

	Result	RL	MDL Flags
Analyte	(ug/kg)	52	7.52
Phenol	ND		16.3
bis(2-Chloroethyl)ether	ND	104	7
2-Chlarophenol	ND	52	8.87
1,3-Dichlorobenzene	ND	52	8,75
1,4-Dichlorobenzene	ND	52	20.7
Benzyi Alcohol	ND	52	
1,2-Dichlorobenzene	ND	52	7,07
2-Methylphenol	ND	52	9.82
bis(2-Chloroisopropyl)ether	NO 240 UJ	260	83.1
3-&4-Methylphenol	ND	52	12.3
N-nitroso-di-n-propylamine	ND	52	13.9
Hexachloroethane	ND	52	17.6
Nitrobenzene	ND	104	31.3
Isophorone	ND	104	5.24
2-Nitrophenol	ND	52	11.9
2,4-Dimethylphenol	ND	20.8	7.96
Benzoic Acid	ND	624	167
bis(2-Chloroethoxy)methane	ND	104	20
2,4-Dichlorophenol	ND	52	9.23
1,2,4-Trichlorobenzene	ND	52	8.83
Naphthalene	ND	20.8	9.22
4-Chloroaniline	ND	104	9.68
Hexachlorobutadiene	ND	52	7.61
4-Chloro-3-methylphenol	ND	52	9.29
2-Methylnaphthalene	ND	20,8	5.41
Hexachlorocyclopentadiene	ND	52	8.25

45 711210S

Semivolatile Organics by EPA Method 8270 data for 128479-02 continued...

<u>م</u>

	Result			
Analyte	(ug/kg))	RL	MDL Flags
2,4,6-Trichlorophenol	ND		52	8.23
2,4,5-Trichlorophenol	ND		52	8.08
2-Chioronaphthalene	ND		20.8	7.02
2-Nitroaniline	NÐ		20.8	5.65
Dimethylphthalate	ND		104	20.4
Acenaphthylene	ND		20.8	6.13
2,6-Dinitrotoluene	ND		52	11.1
3-Nitroaniline	ND		104	30.5
Acenaphthene	ND		20.8	5.34
2,4-Dinitrophenol	ND		520	72.7
4-Nitrophenol	ND		520	85.2
Dibenzofuran	ND		52	4.81
2,4-Dinitrotoluene	ND		104	17.7
Diethylphthalate	ND		104	37.6
4-Chlorophenylphenylether	ND		104	22.4
Fluorene	ND		20.8	6.72
4-Nitroaniline	ND		208	42.7
4,6-Dinitro-2-methylphenol	ND		104	18.7
N-Nitrosodiphenylamine	ND		20.8	5.95
4-Bromophenylphenylether	ND		104	19.1
Hexachlorobenzene	ND		20.8	5.5
Pentachlorophenol		23	104	20.2 J
Phenanthrene	ND		20.8	6.18
Anthracene	ND		20.8	3.95
Di-n-butylphthalate	ND		104	18.9
Fluoranthene	ND		20.8	10.5
Pyrene	ND		20.8	3.54
Butylbenzylphthalate	ND		208	22.3
3,3'-Dichlorobenzidine	ND		208	45.2
Benzo(a)anthracene	ND		20.8	10.5
Chrysene	ND		20.8	7.44
bis(2-Ethylhexyl)phthalate		37.1	208	19 J
Di-n-octylphthalate	ND		208	19.1
Benzofluoranthenes	ND		41.6	9.43
Benzo(a)pyrene	ND		20.8	6.59
Indeno(1,2,3-cd)pyrene	ND		20.8	4,75
Dibenz(a,h)anthracene	ND		20.8	6.46
Benzo(g,h,i)perylene	ND		20.8	5.01

00011

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor ۰ م

Herrera Environmental Consultants CRSDH0100 128479-03 6/20/2005 6/23/2005 6/24/2005 63.31 1

Semivolatile Organics by EPA Method 8270

			Recove	ery Llmits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	103		36	145
Phenol - d5	86.1		38	149
Nitrobenzene - d5	92,9		38	141
2 - Fluorobiphenyl	90.6		42	140
2.4.6 - Tribromophenol	95.5		28	143
p - Terphenyl - d14	95.9		42	151

Sample results are on a dry weight basis.

	Result	RL	MDL Flags
Analyte	(ug/kg)	68.3	9.87
Phenol	ND	137	21.4
bis(2-Chloroethyl)ether	ND	68.3	9.19
2-Chlorophenal	ND	68.3	11.6
1,3-Dichlorobenzene	ND	68.3	11.5
1,4-Dichlorobenzene	ND		27.2
Benzyl Alcohol	ND	68.3	9.27
1,2-Dichlorobenzene	ND	68.3	12.9
2-Methylphenol	ND 24145	68.3	109
bis(2-Chloroisopropyl)ether	ND	341	16.1
3-&4-Methylphenol	196	68.3	
N-nitroso-di-n-propylamine	ND	68.3	18.3
Hexachloroethane	ND	68.3	23.1
Nitrobenzene	ND	137	41.1
Isophorone	ND	137	6.88
2-Nitrophenol	ND	68.3	15.6
2,4-Dimethylphenol	ND	27.3	10.4
Benzoic Acid	ND	819	218
bis(2-Chloroethoxy)methane	ND	137	26.2
2,4-Dichlorophenol	ND	68.3	12.1
1,2,4-Trichiorobenzene	ND	68.3	11.6
Naphthalene	ND	27.3	12.1
4-Chloroaniline	ND	137	12.7
Hexachlorobutadiene	ND	68.3	9.98
4-Chloro-3-methylphenol	ND	68.3	12.2
	ND	27.3	7.1
2-Methylnaphthalene Hexachlorocyclopentadiene	ND	68.3	10.8

of allabr

Semivolatile Organics by EPA Method 8270 data for 128479-03 continued...

÷.

	Res				
Analyte	(ug/	'kg)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND		68.3	10.8	
2,4,5-Trichlorophenol	ND		68.3	10.6	
2-Chloronaphthalene	ND		27.3	9.22	
2-Nitroaniline	ND		27.3	7.41	
Dimethylphthalate	ND		137	26.8	
Acenaphthylene	ND		27.3	8.04	
2,6-Dinitrotoluene	ND		68.3	14.6	
3-Nitroaniline	ND		137	40	
Acenaphthene	ND		27.3	7	
2,4-Dinitrophenol	ND		683	95.4	
4-Nitrophenol	ND		683	112	
Dibenzofuran	ND		68.3	6.31	
2,4-Dinitrotoluene	ND		137	23.2	
Diethyiphthalate	ND		137	49.3	
4-Chlorophenylphenylether	ND		137	29.4	
Fluorene	ND		27.3	8.82	
4-Nitroaniline	ND		273	56	
4,6-Dinitro-2-methylphenol	ND		137	24.6	
N-Nitrosodiphenylamine	ND		27.3	7.81	
4-Bromophenylphenylether	ND		137	25.1	
Hexachlorobenzene	ND		27.3	7.22	
Pentachlorophenol	ND		137	26.5	
Phenanthrene		15.4	27.3	8.11	J
Anthracene	ND		27.3	5.19	
Di-n-butyiphthalate	ND		137	24.9	
Fluoranthene		35.5	27.3	13.8	
Pyrene		22.7	27.3	4.64	J
Butylbenzylphthalate	ND		273	29.2	
3,3'-Dichlorobenzidine	NĎ		273	59.3	
Benzo(a)anthracene	ND		27.3	13.8	
Chrysene	ND		27.3	9.76	
bis(2-Ethylhexyl)phthalate		53.3	273	25	J
Di-n-octylphthalate	ND		273	25.1	
Benzofluoranthenes		14.5	54,6	12.4	J
Benzo(a)pyrene	ND		27.3	8.64	
Indeno(1,2,3-cd)pyrene	ND		27.3	6.23	
Dibenz(a,h)anthracene	ND		27.3	8.48	
Benzo(g,h,i)perylene	ND		27.3	6.57	
Bouro/Alubhorhous	• • —				

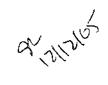
Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor e--

Herrera Environmental Consultants CRSDH0200 128479-04 6/20/2005 6/23/2005 6/24/2005 65.42 1

Semivolatile Organics by EPA Method 8270

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	140		36	145
Phenol - d5	119		38	149
Nitrobenzene - d5	118		38	141
2 - Fluorobiphenyl	111		42	140
	108		28	143
2,4,6 - Tribromophenol p - Terphenyl - d14	115		42	151

Sample results are on a dry weight basis.


	Result (ug/kg)	RL	MDL Flags
Analyte	(Uging) ND	64.4	9.32
Phenol (ND	129	20.2
bis(2-Chloroethyl)ether	ND	64.4	8.67
2-Chlorophenol	ND	64.4	11
1,3-Dichlorobenzene	ND	64.4	10.8
1,4-Dichlorobenzene	ND	64.4	25.7
Benzyl Alcohol	ND	64.4	8,75
1,2-Dichlorobenzene	NO	64.4	12.2
2-Methylphenol	ND 322 UJ	322	103
bis(2-Chloroisopropyl)ether	291	64.4	15.2
3-&4-Methylphenol	ND	64.4	17.3
N-nitroso-di-n-propylamine	ND	64.4	21.8
Hexachloroethane	ND	129	38.8
Nitrobenzene		129	6.5
Isophorone	ND ND	64.4	14.7
2-Nitrophenoi		25.8	9,86
2,4-Dimethylphenol	ND	773	206
Benzoic Acid	ND	129	24.7
bis(2-Chioroethoxy)methane	ND	64.4	11.4
2,4-Dichlorophenol	ND	64. 4	10.9
1,2,4-Trichlorobenzene	ND	25.8	11.4
Naphthalene	ND		12
4-Chloroaniline	ND	129	9.42
Hexachlorobutadiene	ND	64.4	11.5
4-Chloro-3-methylphenol	ND	64.4	6.7
2-Methylnaphthalene	ND	25.B	
Hexachlorocyclopentadiene	ND	64.4	10.2

08/211210×

Semivolatile Organics by EPA Method 8270 data for 128479-04 continued...

è-

		lesult		NO	Flags
Analyte	•	ıg/kg)	RL	MDL 10.2	гауз
2,4,6-Trichlorophenol	ND		64.4	10.2	
2,4,5-Trichlorophenol	ND		64.4	8.7	
2-Chloronaphthalene	ND		25.8	0.7	
2-Nitroaniline	ND		25.8	25.3	
Dimethylphthalate	ND		129	25.3 7.59	
Acenaphthylene	ND		25.8		
2,6-Dinitrotoluene	ND		64.4	13.8 37.8	
3-Nitroaniline	ND		129		
Acenaphthene	ND		25.8	6.61 90.1	
2,4-Dinitrophenol	ND		644		
4-Nitrophenol	ND		644	106	
Dibenzofuran	ND		64.4	5.96	
2,4-Dinitrotoluene	ND		129	21.9	
Diethylphthalate	ND		129	46.5	
4-Chlorophenylphenylether	ND		129	27.7	
Fluorene	ND		25.8	8.33	
4-Nitroaniline	ND		258	52.8	
4,6-Dinitro-2-methylphenol	ND		129	23.2	
N-Nitrosodiphenylamine	ND		25.8	7.37	
4-Bromophenylphenylether	ND		129	23.7	
Hexachlorobenzene	ND		25.8	6.82	
Pentachlorophenol	ND		129	25	
Phenanthrene	ND		25.8	7.66	
Anthracene	ND		25.8	4.9	
Di-n-butylphthalate	ND		129	23.5	
Fluoranthene	ND		25.8	13	
Pyrene	ND		25.8	4.38	
Butylbenzylphthalate	ND		258	27.6	
3,3'-Dichlorobenzidine	ND		258	55.9	
Benzo(a)anthracene	ND		25.8	13	
Chrysene	ND		25.8	9.22	
bis(2-Ethylhexyl)phthalate		34.1	258	23.6	J
Di-n-octyiphthalate	ND		258	23.7	
Benzofluoranthenes	ND		51.6	11.7	
Benzo(a)pyrene	ND		25.8	8.16	
Indeno(1,2,3-cd)pyrene	ND		25.8	5.88	
Dibenz(a,h)anthracene	ND		25.8	8	
Benzo(g,h,i)perylene	ND		25.8	6.2	

00015

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor ۰. م

.d J

Herrera Environmental Consultants CRSDH0300 128479-05 6/20/2005 6/23/2005 6/24/2005 43.93 1

Semivolatile Organics by EPA Method 8270

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	119		36	145
Phenol - d5	93.2		38	149
Nitrobenzene - d5	101		38	141
2 - Fluorobiphenyl	99.5		42	140
2.4.6 - Tribromophenol	102		28	143
p - Terphenyl - d14	110		42	151

Sample results are on a dry weight basis.

	Result		
Analyte	(ug/kg)	RL	MDL Flags
Phenol	ND	102	14.7 32
bis(2-Chloroethyl)ether	ND	204	13.7
2-Chlorophenol	ND	102	
1,3-Dichlorobenzene	ND	102	17.3
1,4-Dichlorobenzene	ND	102	17.1
Benzyl Alcohol	ND	102	40.5
1,2-Dichlorobenzene	ND	102	13.8
2-Methylphenol	ND	102	19.2
bis(2-Chloroisopropyl)ether	ND 509 UJ	509	163
3-&4-Methylphenol	47.9	102	24 J
N-nitroso-di-n-propylamine	ND	102	27.3
Hexachloroethane	ND	102	34.4
Nitrobenzene	ND	204	61.3
Isophorone	ND	204	10.3
2-Nitrophenol	ND	102	23.2
2,4-Dimethylphenol	ND	40.7	15.6
Benzoic Acid	ND	1220	326
bis(2-Chloroethoxy)methane	ND	204	39.1
2,4-Dichlorophenol	ND	102	18.1
1,2,4-Trichlorobenzene	ND	102	17.3
Naphthalene	ND	40.7	18
4-Chloroaniline	ND	204	18.9
Hexachlorobutadiene	ND	102	14.9
4-Chloro-3-methylphenol	ND	102	18.2
2-Methylnaphthalene	ND	40.7	10.6
Hexachlorocyclopentadiene	ND	102	16.1

of 21/2/0×

Semivolatile Organics by EPA Method 8270 data for 128479-05 continued...

e-

	Result				
Analyte	(ug/kg)		RL	MDL Flags	
2,4,6-Trichlorophenol	NÐ		102	16.1	
2,4,5-Trichlorophenol	ND		102	15.8	
2-Chloronaphthalene	ND		40.7	13.7	
2-Nitroaniline	ND		40.7	11.1	
Dimethylphthalate	ND		204	39.9	
Acenaphthylene	ND		40.7	12	
2,6-Dinitrotoluene	ND		102	21.8	
3-Nitroaniline	ND		204	59.7	
Acenaphthene	ND		40.7	10,4	
2,4-Dinitrophenol	ND		1020	142	
4-Nitrophenol	ND		1020	167	
Dibenzofuran	ND		102	9.41	
2,4-Dinitrotoluene	ND		204	34.6	
Diethylphthalate	ND		204	73.5	
4-Chlorophenylphenylether	ND		204	43.8	
Fluorene	ND		40.7	13.2	
4-Nitroaniline	ND		407	83.5	
4,6-Dinitro-2-methylphenol	ND		204	36.7	
N-Nitrosodiphenylamine	ND		40.7	11.6	
4-Bromophenylphenylether	ND		204	37.5	
Hexachlorobenzene	ND		40.7	10.8	
Pentachlorophenol	ND		204	39.5	
Phenanthrene	ND		40.7	12.1	
Anthracene	ND		40.7	7.74	
Di-n-butylphthalate	ND		204	37.1	
Fluoranthene	ND		40.7	20.6	
Pyrene	ND		40.7	6.92	
Butylbenzylphthalate	ND		407	43.6	
3,3'-Dichlorobenzidine	ND		407	88.4	
Benzo(a)anthracene	ND		40.7	20.6	
Chrysene	ND		40.7	14.6	
bis(2-Ethylhexyl)phthalate		57	407	37.3 J	
Di-n-octylphthalate	ND		407	37.5	
Benzofluoranthenes	ND		81.5	18.4	
Benzo(a)pyrene	ND		40.7	12.9	
Indeno(1,2,3-cd)pyrene	ND		40.7	9.29	
Dibenz(a,h)anthracene	ND		40.7	12.6	
Benzo(g,h,i)perylene	ND		40.7	9.79	
inger state of					

Client Name:	Herrera Environmental Consultants
Client ID:	CRSDH0400
Lab ID:	128479-06
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	56.35
Dilution Factor	4

÷-

Semivolatile Organics by EPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	111		36	145
Phenol - d5	97.2		38	149
Nitrobenzene - d5	102		38	141
2 - Fluorobiphenyl	92,5		42	140
2,4,6 - Tribromophenol	102		28	143
p - Terphenyl - d14	112		42	151

Sample results are on a dry weight basis.

	Result		
Analyte	(ug/kg)	RL	MDL Flags
Phenol	ND	75.1	10.9
bis(2-Chloroethyl)ether	ND	150	23.6
2-Chlorophenol	ND	75.1	10.1
1,3-Dichlorobenzene	ND	75.1	12.8
1,4-Dichlorobenzene	ND	75,1	12.6
Benzyl Alcohol	ND	75.1	29.9
1,2-Dichlorobenzene	ND	75.1	10.2
2-Methylphenol	ND	75.1	14.2
bis(2-Chloroisopropyl)ether	ND 3754J	375	120
3-&4-Methylphenol	380	75.1	17.7
N-nitroso-di-n-propylamine	ND	75.1	20.1
Hexachloroethane	ND	75.1	25.4
Nitrobenzene	ND	150	45.2
Isophorone	ND	150	7.57
2-Nitraphenol	ND	75.1	17.1
2,4-Dimethylphenol	ND	30	11.5
Benzoic Acid	ND	901	240
bis(2-Chioroethoxy)methane	ND	150	28.8
2,4-Dichlorophenol	ND	75.1	13.3
1,2,4-Trichlorobenzene	ND	75.1	12.7
Naphthalene	ND	30	13.3
4-Chlomaniline	ND	150	14
Hexachlorobutadiene	ND	75.1	11
4-Chloro-3-methylphenol	ND	75.1	13.4
2-Methylnaphthalene	ND	30	7.81
Hexachlorocyclopentadiene	ND	75.1	11.9

er Lindes

Semivolatile Organics by EPA Method 8270 data for 128479-06 continued...

	F	tesult			
Analyte		ıg/kg)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND		75.1	11.9	
2,4,5-Trichlorophenol	ND		75.1	11.7	
2-Chloronaphthalene	ND		30	10.1	
2-Nitroaniline	ND		30	8,15	
Dimethylphthalate	ND		150	29.4	
Acenaphthylene	ND		30	8.84	
2,6-Dinitrotoluene	ND		75.1	16.1	
3-Nitroaniline	ND		150	44	
Acenaphthene	ND		30	7. 7	
2,4-Dinitrophenol	ND		751	105 .	
4-Nitrophenol	ND		751	123	
Dibenzofuran	ND		75.1	6.94	
2,4-Dinitrotoluene	ND		150	25.5	
Diethylphthalate	ND		150	54.2	
4-Chlorophenylphenylether	ND		150	32.3	
Fluorene	ND		30	9.7	
4-Nitroaniline	ND		300	61.6	
4,6-Dinitro-2-methylphenol	ND		150	27	
N-Nitrosodiphenylamine	ND		30	8.59	
4-Bromophenylphenylether	ND		150	27.6	
Hexachlorobenzene	ND		30	7,94	
Pentachlorophenol	ND		150	29.1	
Phenanthrene	ND		30	8.92	
Anthracene	ND		30	5.71	
Di-n-butyiphthalate	ND		150	27.3	
Fluoranthene	ND		30	15.2	
Pyrene	ND		30	5.11	
Butylbenzylphthalate	ND		300	32.1	
3,3'-Dichlorobenzidine	ND		300	65.2	
Benzo(a)anthracene	ND		30	15.2	
Chrysene	ND		30	10.7	
bis(2-Ethylhexyl)phthalate		37.9	300	27.5	J
Di-n-octylphthalate	ND		300	27.6	
Benzofluoranthenes	ND		60.1	13.6	
Benzo(a)pyrene	ND		30	9.5	
Indeno(1,2,3-cd)pyrene	ND		30	6.85	
Dibenz(a,h)anthracene	ND		30	9,32	
Benzo(g.h,i)perylene	ND		30	7,22	

- هې	
Client Name:	Herrera Environmental Consultants
Client ID:	NASBP08049
Lab ID:	128479-07
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	79.71
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recove	ery Limits
Surrogate 2 - Fluorophenol Phenol - d5	% Recovery 134 111	Flags	Low 36 38	High 145 149
2 - Fluorobiphenyl	96.1		42	140

Sample results are on a dry weight basis.

Analyte Pentachlorophenol	Result (ug/kg) ND	RL 112	MDL Flags 21.7
• • • • • •			

•

or white

هچ	
Client Name:	Herrera Environmental Consultants
Client ID:	NASSP0700
Lab ID:	128479-08
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	92.22
Dilution Factor	l l

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate 2 - Fluorophenol Phenol - d5 Nitrobenzene - d5 2 - Fluorobiphenyl 2,4,6 - Tribromophenol	% Recovery 131 107 111 108 101	Flags	Low 36 38 38 42 28	High 145 149 141 140 143
p - Terphenyl - d14	120		42	151

Sample results are on a dry weight basis.

	Result		
Analyte	(ug/kg)	RL	MDL Flags
Phenol	ND	49.4	7.14
bis(2-Chloroethyi)ether	ND	8.89	15.5
2-Chlorophenol	ND	49.4	6.65
1,3-Dichlorobenzene	ND	49.4	8.42
1,4-Dichlorobenzene	ND	49.4	8.31
Benzyl Alcohoi	ND	49.4	19.7
1,2-Dichlarobenzene	ND	49.4	6.71
2-Methylphenol	ND	49.4	9.33
bis(2-Chloroisopropyl)ether	ND ND247 VJ	247	78.9
3-&4-Methylphenol	ND	49.4	11.7
N-nitroso-di-n-propylamine	ND	49.4	13.2
Hexachloroethane	ND	49.4	16.7
Nitrobenzene	ND	98.8	29.7
Isophorone	ND	98.8	4.98
2-Nitrophenol	ND	49.4	11.3
2,4-Dimethylphenol	ND	19.8	7.56
Benzoic Acid	ND	593	158
bis(2-Chloroethoxy)methane	NÐ	98.8	19
2,4-Dichlorophenol	ND	49.4	8.76
1,2,4-Trichlorobenzene	ND	49.4	8.39
Naphthalene	ND	19.8	8.75
4-Chloroaniline	ND	98.8	9.19
Hexachlorobutadiene	ND	49.4	7.22
4-Chloro-3-methylphenol	ND	49.4	8.82
2-Methyinaphthalene	ND	19.8	5.14
Hexachlorocyclopentadiene	ND	49.4	7.84
пеласногосусюренкалене			7.84

08021

Semivolatile Organics by USEPA Method 8270 data for 128479-08 continued...

- م

	Result			ND	Flags
Analyte	(ug/kg)	RL	MDL 7.82	riags
2,4,6-Trichlorophenol	ND		49.4	7.67	
2,4,5-Trichlorophenol	ND		49.4	6.67	
2-Chloronaphthalene	ND		19.8	5.37	
2-Nitroaniline	ND		19.8		
Dimethylphthalate	ND		98.8	19.4 5.82	
Acenaphthylene	ND		19.8	5.62 10.6	
2,6-Dinitrotoluene	ND		49.4		
3-Nitroaniline	ND		98.8	28.9 5.07	
Acenaphthene	ND		19.8	69.1	
2,4-Dinitrophenol	ND		494		
4-Nitrophenol	ND		494	80.9	
Dibenzofuran	ND		49.4	4,56	
2,4-Dinitrotoluene	ND		98.8	16.8	
Diethylphthalate	ND		98.8	35.7	
4-Chlorophenylphenylether	ND		98.8	21.2	
Fluorene	ND		19.8	6.38	
4-Nitroaniline	ND		198	40.5	
4,6-Dinitro-2-methylphenol	ND		98.8	17.8	
N-Nitrosodiphenylamine	ND		19.8	5.65	
4-Bromophenylphenylether	ND		98.8	18.2	
Hexachlorobenzene	ND		19.8	5.23	
Pentachlorophenol		139	98.8	19.2	
Phenanthrene	ND		19.8	5.87	
Anthracene	ND		19.8	3.75	
Di-n-butyiphthalate	ND		98.8	18	
Fluoranthene	ND		19.8	9.98	
Pyrene		14.2	19.8	3.36	ſ
Butylbenzylphthalate	ND		198	21.1	
3,3'-Dichlorobenzidine	ND		198	42.9	
Benzo(a)anthracene	ND		19.8	9.98	
Chrysene	ND		19.8	7.06	L
bis(2-Ethylhexyl)phthalate		31.1	1 9 8	18.1	ſ
Di-n-octylphthalate	ND		198	18.2	
Benzofluoranthenes	ND		39.5	8.95	
Benzo(a)pyrene	ND		19.8	6.25	
Indeno(1,2,3-cd)pyrene	ND		19.8	4.51	
Dibenz(a,h)anthracene	ND		19.8	6.14	
Benzo(g,h,i)perylene	ND		19.8	4.75	
Dento/8/1/1/ber/10/16					

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor

. - في

Herrera Environmental Consultants NASSP0800 128479-09 6/20/2005 6/23/2005 6/25/2005 89.26 1

Semivolatile Organics by USEPA Method 8270

			Recove	ery Limits
Surrogate 2 - Fluorophenal Phenal - d5 Nitrobenzene - d5 2 - Fluorobiphenyl	% Recovery 139 111 120 110	Flags	Low 36 38 38 42 28	High 145 149 141 140 143
2,4,6 - Tribromophenol p - Terphenyl - d14	105 120		42	151

	Result	RL	MDL Flags
Analyte	(ug/kg)	52.8	7.63
Phenol	ND	106	16.6
bis(2-Chloraethyl)ether	ND	52.8	7.1
2-Chlorophenol	ND		8.99
1,3-Dichlorobenzene	ND	52.8	8.88
1,4-Dichlorobenzene	ND	52.8	21
Benzyl Alcohol	ND	52.8	7,17
1,2-Dichlorobenzene	ND	52.8	9.96
2-Methylphenol	ND	52.8	9.90 84.3
bis(2-Chloroisopropyl)ether	-NB 264 UJ	264	
3-&4-Methylphenol	ND	52.8	12.5
N-nitroso-di-n-propylamine	ND	52.8	14.1
Hexachloroethane	ND	52.8	17.8
Nitrobenzene	ND	106	31.8
Isophorone	ND	106	5,32
2-Nitrophenol	ND	52.8	12
2,4-Dimethylphenol	ND	21.1	8.07
Benzoic Acid	ND	633	169
bis(2-Chloroethoxy)methane	ND	106	20.3
2,4-Dichlorophenol	ND	52.8	9.36
1,2,4-Trichlorobenzene	ND	52.8	8.96
Naphthalene	ND	21.1	9.35
4-Chloroaniline	ND	106	9.82
Hexachlorobutadiene	ND	52.8	7.72
4-Chloro-3-methylphenol	ND	52.8	9.42
2-Methylnaphthalene	ND	21.1	5.49
Hexachlorocyclopentadiene	ND	52.8	8.37

or 2112/04

,

Semivolatile Organics by USEPA Method 8270 data for 128479-09 continued...

e---

	Res				Flago
Analyte	(ug/	kg)	RL	MDL 8.35	Flags
2,4,6-Trichlorophenol	ND		52.8		
2,4,5-Trichlorophenol	ND		52.8	8.19	
2-Chloronaphthalene	, ND		21.1	7.12	
2-Nitroaniline	ND		21.1	5,73	
Dimethylphthalate	ND		106	20.7	
Acenaphthylene	ND		21.1	6.22	
2,6-Dinitrotoluene	ND		52.8	11.3	
3-Nitroaniline	ND		106	30.9	
Acenaphthene	ND		21.1	5.41	
2,4-Dinitrophenol	ND		528	73.8	
4-Nitrophenol	ND		528	86.4	
Dibenzofuran	ND		52.8	4.88	
2,4-Dinitrotoluene	ND		106	17.9	
Diethylphthalate	ND		106	38.1	
4-Chlorophenylphenylether	ND		106	22.7	
Fluorene	ND		21.1	6,82	
4-Nitroaniline	ND		211	43,3	
4,6-Dinitro-2-methylphenol	ND		106	19	
N-Nitrosodiphenylamine	ND		21.1	6.04	
4-Bromophenylphenylether	ND		106	19.4	
Hexachlorobenzene	ND		21.1	5.58	
Pentachlorophenol		210	106	20.5	
Phenanthrene		7.3	21.1	6,27	J
Anthracene	ND		21.1	4.01	
Di-n-butylphthalate		19.8	106	19.2	J
Fluoranthene	ND		21. 1	10.7	
Pyrene		15	21.1	3.59	J
Butylbenzylphthalate	ND		211	22.6	
3,3'-Dichlorobenzidine	ND		211	45.8	
Benzo(a)anthracene	ND		21.1	10.7	
Chrysene	ND		21.1	7.55	
bis(2-Ethylhexyl)phthalate	ND		211	19.3	
Di-n-octylphthalate	ND		211	19.4	
Benzofluoranthenes	ND		42.2	9,56	
Benzo(a)pyrene	ND		21.1	6.68	
Indeno(1,2,3-cd)pyrene	ND		21.1	4.81	
Dibenz(a,h)anthracene	ND		21.1	6.55	
Benzo(g,h,i)perylene	ND		21.1	5.08	
Potteo/8101/borliene					

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids **Dilution Factor**

e-

Herrera Environmental Consultants NASSP0900 128479-10 6/20/2005 6/23/2005 6/25/2005 88.01 1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	104		36	145
Phenol - d5	90.9		38	149
Nitrobenzene - d5	84.2		38	141
2 - Fluorobiphenyl	95.2		42	140
2,4,6 - Tribromophenol	86.1		28	143
p - Terphenyl - d14	99.1		42	151

	Result		MDL Flags
Analyte	(ug/kg)	RL	MDL Flags 7.5
Phenol	ND	51.9	16.3
bis(2-Chloroethyl)ether	ND	104	6.98
2-Chlorophenol	ND	51.9	8.84
1,3-Dichlorobenzene	ND	51.9	8.72
1,4-Dichlorobenzene	ND	51.9	20.6
Benzyl Alcohol	ND	51.9	7.04
1,2-Dichlorobenzene	ND	51.9	9.79
2-Methylphenöl	ND 259 45	51.9	82.9
bis(2-Chloroisopropyl)ether		259	12.2
3-&4-Methylphenol	ND	51.9	13.9
N-nitroso-di-n-propylamine	ND	51.9	17.5
Hexachloroethane	ND	51.9	31.2
Nitrobenzene	DND	104	5,23
Isophorone	ND	104	11.8
2-Nitrophenol	ND	51.9	7.93
2,4-Dimethylphenol	ND	20.7	166
Benzoic Acid	ND	622	19.9
bis(2-Chloroethoxy)methane	ND	104	9.2
2,4-Dichlorophenol	ND	51.9	9.2 8.81
1,2,4-Trichlorobenzene	ND	51.9	9.19
Naphthalene	ND	20.7	
4-Chloroaniline	ND	104	9.65
Hexachlorobutadiene	ND	51.9	7,58
4-Chioro-3-methylphenol	ND	51.9	9.26
2-Methylnaphthalene	ND	20.7	5.39
Hexachlorocyclopentadiene	ND	51.9	8.23
			of Thype

Semivolatile Organics by USEPA Method 8270 data for 128479-10 continued...

2.1

	Resu		RL	MDL	Flags
Analyte	(ug/k)	g)	51,9	8.2	
2,4,6-Trichlorophenol	ND		51.9	8.05	
2,4,5-Trichlorophenol	ND		20.7	7	
2-Chloronaphthalene	ND		20.7	5.63	
2-Nitroaniline	ND		104	20.3	
Dimethylphthalate	ND		20.7	6.11	
Acenaphthylene	ND		51.9	11.1	
2,6-Dinitrotoluene	ND		104	30.4	
3-Nitroaniline	ND		20.7	5.32	
Acenaphthene	ND		519	72.5	
2,4-Dinitrophenol	ND		519	84.9	
4-Nitrophenol	ND		51.9	4.79	
Dibenzofuran	ND		104	17.6	
2,4-Dinitrotoluene	ND		104	37,4	
Diethylphthalate	ND		104	22.3	
4-Chlorophenylphenylether	ND		20.7	6.7	
Fluorene	ND		207	42.5	
4-Nitroaniline	ND			18.7	
4,6-Dinitro-2-methylphenol	ND		104 20.7	5.93	
N-Nitrosodiphenylamine	ND			19.1	
4-Bromophenylphenylether	ND		104	5.49	
Hexachlorobenzene	ND		20.7 104	20.1	J
Pentachlorophenol		33.1		6.16	Ũ
Phenanthrene	ND		20.7	3.94	
Anthracene	ND		20.7	18.9	L
Di-n-butylphthalate		19.1	104	10.5	U U
Fluoranthene	ND		20.7	3.53	
Pyrene	ND		20.7	22.2	
Butylbenzylphthalate	ND		207	45	
3,3'-Dichlorobenzidine	ND		207	10.5	
Benzo(a)anthracene	ND		20.7	7.42	
Chrysene	ND		20.7	19	
bis(2-Ethylhexyl)phthalate	ND		207	19.1	
Di-n-octylphthalate	ND		207	9.4	
Benzofluoranthenes	ND		41.5	9.4 6.57	
Benzo(a)pyrene	ND		20.7	4.73	
Indeno(1,2,3-cd)pyrene	ND		20.7	4.73 6.44	
Dibenz(a,h)anthracene	ND		20.7	4.99	
Benzo(g,h,i)perylene	ND		20.7	4.53	

cr~112105

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor e--

Herrera Environmental Consultants NASSP1000 128479-11 6/20/2005 6/23/2005 6/25/2005 90.96 1

Semivolatile Organics by USEPA Method 8270

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	128		36	145
Phenol - d5	102		38	149
Nitrobenzene - d5	94.4		38	141
2 - Fluorobiphenyl	108		42	140
2,4,6 - Tribromophenol	91.8		28	143
p - Terphenyl - d14	103		42	151

	Result	_,	MDL Flags
Analyte	(ug/kg)	RL	мос гадз 7.81
Phenol -	ND	54	17
bis(2-Chloroethyl)ether	ND	108	7.27
2-Chlorophenol	ND	54	9.21
1,3-Dichlorobenzene	ND	54	9.09
1,4-Dichlorobenzene	ND	54	21.5
Benzyl Alcohol	ND	54	7.34
1,2-Dichlorobenzene	ND	54	10.2
2-Methylphenol	ND	54	86.4
bis(2-Chloroisopropyl)ether	ND 276 VJ	270	
3-&4-Methylphenol	ND	54	12.8
N-nitroso-di-n-propylamine	ND	54	14.5
Hexachloroethane	ND	54	18.3
Nitrobenzene	ND	108	32.5
Isophorone	ND	108	5.45
2-Nitrophenol	ND	54	12.3
2.4-Dimethylphenol	ND	21.6	8.27
Benzoic Acid	ND	648	173
bis(2-Chloroethoxy)methane	ND	108	20.8
2,4-Dichlorophenol	ND	54	9.59
1,2,4-Trichlorobenzene	ND	54	9.18
Naphthalene	ND	21.6	9.58
4-Chioroaniline	ND	108	10.1
Hexachlorobutadiene	ND	54	7.9
4-Chloro-3-methylphenol	ND	54	9.65
2-Methylnaphthalene	ND	21.6	5.62
Hexachlorocyclopentadiene	ND	54	8.57
			05/2/12/15

80827

Semivolatile Organics by USEPA Method 8270 data for 128479-11 continued...

e ...

		Result		
Analyte		(ug/kg)	RL	MDL Flags
2,4,6-Trichlarophenol	ND		54	8.55
2,4,5-Trichlorophenol	ND		54	8.39
2-Chloronaphthalene	ND		21.6	7.3
2-Nitroaniline	ND		21.6	5.87
Dimethylphthalate	ND		108	21.2
Acenaphthylene	ND		21.6	6.37
2,6-Dinitrotoluene	ND		54	11.6
3-Nitroaniline	ND		108	31.7
Acenaphthene	ND		21.6	5.54
2,4-Dinitrophenol	ND		540	75.5
4-Nitrophenol	ND		540	88.5
Dibenzofuran	ND		54	4.99
2,4-Dinitrotoluene	ND		108	18.4
Diethylphthalate	ND		108	39
4-Chlorophenylphenylether	ND		108	23.2
Fluorene	ND		21.6	6.98
4-Nitroaniline	ND		216	44.3
4,6-Dinitro-2-methylphenol	ND		108	19.5
N-Nitrosodiphenylamine	ND		21.6	6,18
4-Bromophenylphenylether	ND		108	19.9
Hexachlorobenzene	ND		21.6	5.72
Pentachlorophenol	ND		108	21
Phenanthrene	ND		21.6	6.42
Anthracene	ND		21.6	4.11
Di-n-butylphthalate	ND		108	19.7
Fluoranthene	ND		21.6	10.9
Pyrene	ND		21.6	3.67
Butylbenzylphthalate	ND		216	23.1
3,3'-Dichlorobenzidine	ND		216	46.9
Benzo(a)anthracene	ND		21.6	10.9
Chrysene	ND		21.6	7.73
bis(2-Ethylhexyl)phthalate		23.1	216	19.8 J
Di-n-octyiphthalate	ND		216	19.9
Benzofluoranthenes	ND		43.2	9.79
Benzo(a)pyrene	ND		21.6	6.84
Indeno(1,2,3-cd)pyrene	ND		21.6	4.93
Dibenz(a,h)anthracene	ND		21.6	6,71
Benzo(g,h,i)perylene	ND		21.6	5.2
Douzo(8), https://doi.org				

م	,
Client Name:	Herrera Environmental Consultants
Client ID:	NASSW0100
Lab ID:	128479-12
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/25/2005
% Solids	76,45
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	118		36	145
Phenol - d5	97.5		38	149
Nitrobenzene - d5	101		38	141
2 - Fluorobiphenyl	101		42	140
2,4,6 - Tribromophenol	95.1		28	143
p - Terphenyl - d14	105		42	151

		esult	. .	MDI	Finan
Analyte	•	ig/kg)	RL	MDL	Flags
Phenol	ND		57	8.24	
bis(2-Chloroethyl)ether	ND		114	17.9	
2-Chlorophenol	ND		57	7.67	
1,3-Dichlorobenzene	ND		57	9.71	
1,4-Dichlorobenzene	ND		57	9.58	
Benzyl Alcohol	ND		57	22.7	
1,2-Dichlorobenzene	ND		57	7.74	
2-Methylphenol	ND		57	10.8	
bis(2-Chloroisopropyl)ether	ND-2	65 UJ	285	91	
3-&4-Methylphenol	ND		57	13.4	
N-nitroso-di-n-propylamine	ND		57	15.3	
Hexachloroethane	ND		57	19.3	
Nitrobenzene	ND		114	34.3	
Isophorone	ND		114	5.74	
2-Nitrophenol	ND		57	13	
2,4-Dimethylphenol	ND		22.8	8.72	
Benzoic Acid	ND		684	182	
bis(2-Chloroethoxy)methane	ND		114	21.9	
2,4-Dichlorophenol	ND		57	10.1	
1,2,4-Trichlorobenzene	ND		57	9.67	
Naphthalene	ND		22.8	10.1	
4-Chloroaniline	ND		114	10.6	
Hexachlorobutadiene	ND		57	8.33	
4-Chloro-3-methylphenol	ND		57	10.2	
2-Methylnaphthalene	ND		22.8	5.92	
Hexachlorocyclopentadiene	ND		57	9.03	,

95,2112/02

Semivolatile Organics by USEPA Method 8270 data for 128479-12 continued...

e. .

	-	Result		MDL Flags
Analyte	•	ug/kg)	RL 57	9.01
2,4,6-Trichlorophenol	ND		57	8.84
2,4,5-Trichlorophenol	ND			7.69
2-Chloronaphthalene	ND		22.8	6.19
2-Nitroaniline	ND		22.8 114	22.3
Dimethylphthalate	ND			6.71
Acenaphthylene	ND		22.8	12.2
2,6-Dinitrotoluene	ND		57	33.4
3-Nitroaniline	ND		114	5.84
Acenaphthene	ND		22.8	5.64 79.6
2.4-Dinitrophenol	ND		570	
4-Nitrophenol	ND		570	93.3
Dibenzofuran	ND		57	5.26
2,4-Dinitrotoluene	ND		114	19.4
Diethylphthalate	ND		114	41.1
4-Chlorophenylphenylether	ND		114	24.5
Fluorene	ND		22.8	7.36
4-Nitroaniline	ND		228	46.7
4.6-Dinitro-2-methylphenol	ND		114	20.5
N-Nitrosodiphenylamine	ND		22.8	6.52
4-Bromophenylphenylether	ND		114	21
Hexachiorobenzene	ND		22.8	6.03
Pentachlorophenol		66.2	114	22.1 J
Phenanthrene	ND		22.8	6.77
Anthracene	ND		22.8	4,33
Di-n-butylphthalate	ND		114	20.7
Fluoranthene	ND		22.8	11.5
Pyrene	ND		22.8	3.87
Butyibenzylphthalate	ND		228	24.4
3,3'-Dichlorobenzidine	ND		228	49.4
Benzo(a)anthracene	ND		22.8	11.5
Chrysene	ND		22.8	8.15
bis(2-Ethylhexyl)phthalate		36,5	228	20.8 J
Di-n-octylphthalate	ND		228	21
Benzofluoranthenes	ND		45.6	10.3
Benzo(a)pyrene	ND		22.8	7.21
Indeno(1,2,3-cd)pyrene	ND		22.8	5.2
Dibenz(a,h)anthracene	ND		22.8	7.08
Benzo(g,h,i)perylene	ND		22.8	5,48
Centro (g.n., per yiene				

05 min 105

00030

- * -	- -
Client Name:	Herrera Environmental Consultants
Client ID:	NASSW0400
Lab ID:	128479-13
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/25/2005
% Solids	79.25
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	121		36	145
Phenol - d5	89.8		38	149
Nitrobenzene - d5	104		38	141
2 - Fluorobiphenyl	90,8		42	140
2,4,6 - Tribromophenol	92.2		28	143
p - Terphenyl - d14	96.1		42	151

	Result		
Analyte	(ug/kg)	RL	MDL Flags
Phenol .	ND	57.3	8.28
bis(2-Chloroethyl)ether	ND	115	18
2-Chloropheno!	ND	57.3	7.71
1,3-Dichlorobenzene	ND	57.3	9.76
1,4-Dichlorobenzene	ND	57.3	9.63
Benzyl Alcohol	ND	57.3	22.8
1,2-Dichlorobenzene	ND	57.3	7.78
2-Methylphenol	ND	57.3	10.8
bis(2-Chloroisopropyl)ether	CN WEG IN	286	91.5
3-&4-Methylphenol	ND	57.3	13.5
N-nitroso-di-n-propylamine	ND	57.3	15,4
Hexachloroethane	ND	57.3	19.4
Nitrobenzene	ND	115	34.5
Isophorone	ND	115	5.77
2-Nitrophenol	ND	57.3	13.1
2,4-Dimethylphenol	ND	22.9	8.76
Benzoic Acid	ND	687	183
bis(2-Chloroethoxy)methane	ND	115	22
2,4-Dichlorophenol	ND	57.3	10.2
1,2,4-Trichlorobenzene	ND	57.3	9.73
Naphthalene	ND	22.9	10.1
4-Chloroaniline	ND	115	10.7
Hexachlorobutadiene	ND	57.3	8.37
	ND	57.3	10.2
4-Chioro-3-methylphenol	ND	22.9	5.96
2-Methylnaphthalene	ND	57.3	9.08
Hexachlorocyclopentadiene			1

Semivolatile Organics by USEPA Method 8270 data for 128479-13 continued...

÷...

Analyte (ug/kg) FL MDL Flags 24,6-Trichlorophenol ND 57.3 9.06 2.4,5-Trichlorophenol ND 22.9 7.73 2-Nitroaniline ND 22.9 6.22 Dimethylphthalate ND 22.9 6.75 2.Actionaphthylene ND 21.3 3.12.3 3-Nitroaniline ND 57.3 9.06 Acenaphthylene ND 57.3 12.3 3-Nitroaniline ND 57.3 80.1 Acenaphthene ND 57.3 9.38 2.4-Dinitrobluene ND 57.3 9.2.9 2.4-Dinitrobluene ND 115 19.5 Dibehylphthalate ND 115 14.4 4-Chlorophenylphenylether ND 22.9 7.4 4-Sorophenylphenylether ND 22.9 4.7 4-Nitrosoliphenylphenylether ND 22.9 6.55 N-Nitrosoliphenylphenylether ND 22.9 6.55 <th></th> <th>Resul</th> <th></th> <th></th>		Resul		
2/4,6-1 Inchorophenol ND 57.3 8.89 2-A,5-Trichlorophenol ND 22.9 7.73 2-Nitroaniline ND 22.9 6.22 Dimethylphtalate ND 21.5 2.5 Acenaphthylene ND 22.9 6.75 2,6-Dintrotoluene ND 22.9 6.75 2,6-Dintrotoluene ND 22.9 5.88 2,6-Dintrotoluene ND 21.5 3.6 Acenaphthene ND 22.9 5.88 2,4-Dintrophenol ND 57.3 80.1 4-Nitrophenol ND 57.3 52.9 2,4-Dintrotoluene ND 115 19.5 Dibenzofuran ND 115 41.4 4-Chiorophenylphenylether ND 115 24.6 Fluorene ND 22.9 7.4 4-Nitroaniline ND 22.9 7.4 4-Nitroaniline ND 22.9 6.65 A-Broinchoeznene ND		•		
2/4,5-incholophenol ND 22.9 7.73 2-Nitroganiline ND 22.9 6.22 Dimethylphthalate ND 115 22.5 Acenaphthylene ND 21.9 6.75 2,6-Dinitrotoluene ND 57.3 12.3 3-Nitroaniline ND 22.9 5.83 Acenaphthene ND 22.9 5.83 2,4-Dinitrophenol ND 57.3 80.1 4-Nitrophenol ND 57.3 82.9 2,4-Dinitrobuene ND 115 19.5 2,4-Dinitrobuene ND 115 19.5 2,4-Dinitrobuene ND 115 24.6 Fluorene ND 115 24.6 Versodiphenylphenylether ND 115 22.9 V-Nitrosodiphenylphenylether ND 115 22.9 Versodiphenylphenylether ND 115 22.1 Versodiphenylphenylether ND 115 22.9 N-Nitrosodiphenylphe				
2Introdulptification ND 22.9 6.22 Dimethylphthalate ND 115 22.5 Acenaphthylene ND 22.9 6.75 2.6-Dinitrotoluene ND 115 33.6 Acenaphthylene ND 115 33.6 Acenaphthene ND 22.9 5.88 2,4-Dinitrophenol ND 573 80.1 4-Nitrophenol ND 573 82.9 2,4-Dinitrobuene ND 115 19.5 Diethylphthalate ND 115 24.6 -Kitrophenylphenol ND 115 24.6 -Kitrophenylphenol ND 115 24.6 -Kitrophenylphenylether ND 115 24.6 -Fluorene ND 22.9 7.4 4.6-Dinitro-2-methylphenol ND 115 21.1 -Karoaniline ND 22.9 6.65 N-Nitrosodiphenylamine ND 22.9 6.65 N-Hexachlorobenzene	2,4,5-Trichlorophenol			
2-Nitroaniane ND 115 22.5 Acenaphthylene ND 57.3 12.3 3-Nitroaniline ND 115 33.6 Acenaphtherne ND 22.9 6.88 2.4-Dinitrophenol ND 57.3 93.8 2.4-Dinitrophenol ND 57.3 93.8 2.4-Dinitrophenol ND 57.3 52.9 2.4-Dinitrophenol ND 57.3 52.9 2.4-Dinitrotoluene ND 115 14.1 - Nitrophenol ND 115 41.4 4-Chlorophenylphenylether ND 115 24.6 Fluorene ND 115 20.6 N-Nitrosodiphenylphenylether ND 22.9 7.4 4-Nitroaniline ND 22.9 6.06 Pentachlorophenol ND 115 22.1 Hexachlarobenzene ND 22.9 6.8 Anthracene ND 22.9 4.35 Di-n-butylphthalate ND <td>2-Chloronaphthalene</td> <td></td> <td></td> <td></td>	2-Chloronaphthalene			
Dimension ND 22.9 6.75 Acenaphthylene ND 57.3 12.3 3-Nitroaniline ND 115 33.6 Acenaphthene ND 22.9 5.88 2,4-Dinitrophenol ND 57.3 80.1 4-Nitrophenol ND 57.3 82.9 2,4-Dinitrobuene ND 57.3 5.29 2,4-Dinitrobuene ND 115 19.5 Diethylphthalate ND 115 24.6 -Chlorophenylphenylether ND 115 24.6 Fluorene ND 22.9 7.4 4-Nitroaniline ND 22.9 7.4 4-Nitroaniline ND 22.9 6.55 4-Storophenylphenylether ND 115 20.6 N-Nitrosodiphenylamine ND 22.9 6.65 4-Bromophenylphenylether ND 115 22.1 Phenanthrene ND 22.9 6.8 Anthracene ND <t< td=""><td>2-Nitroaniline</td><td></td><td></td><td></td></t<>	2-Nitroaniline			
Accentapititylene ND 57.3 12.3 2-6-Dintrotaluene ND 115 33.6 Acenaphthene ND 22.9 5.88 2,4-Dintrophenol ND 57.3 80.1 4-Nitrophenol ND 573 93.8 Dibenzofuran ND 57.3 5.29 2,4-Dintrotaluene ND 115 19.5 Diethylphthalate ND 115 41.4 4-Chiorophenylphenylether ND 22.9 7.4 4-Nitrophenylphenylether ND 22.9 47 4-Chiorophenylphenylether ND 22.9 6.5 V.6-Dinitro-2-methylphenol ND 115 21.1 Hexachlorophenylphenylether ND 115 22.9 A-Binitro-2-methylphenol ND 22.9 6.6 N-Nitrosodiphenylamine ND 22.9 6.6 ND 115 22.2 2.4 Phenanthrene ND 22.9 4.35 Di-n-otylph	Dimethylphthalate			
2,6-Dimmotorulatie ND 115 33.6 3-Nitroaniline ND 115 33.6 3-Nitroaniline ND 22.9 5.88 2,4-Dinitrophenol ND 573 93.8 1benzofuran ND 57.3 5.29 2,4-Dinitrotoluene ND 115 114.4 Obserzofuran ND 115 41.4 4-Nitrophenol ND 115 44.6 Fluorene ND 115 24.6 Fluorene ND 22.9 7.4 4-Nitroaniline ND 22.9 7.4 4-Nitroaniline ND 22.9 6.55 N-Nitrosodiphenylether ND 115 21.1 Hexachlorobenzene ND 22.9 6.06 Pentachlorobenzene ND 22.9 6.8 Anthracene ND 22.9 3.89 Di-n-butylphthalate ND 22.9 3.89 Butylbenzylphthalate ND 22.9	Acenaphthylene			
Accenaphtheme ND 22.9 5.88 2,4-Dinitrophenol ND 573 80.1 4-Nitrophenol ND 573 93.8 Diberzofuran ND 573 93.8 Diberzofuran ND 573 93.8 Diberzofuran ND 573 5.29 2,4-Dinitrobluene ND 115 19.5 Diethylphthalate ND 115 24.6 Fluorene ND 22.9 7.4 4-Nitroaniline ND 22.9 7.4 4.6-Dinitro-2-methylphenol ND 115 20.6 N-Nitrosodiphenylamine ND 22.9 6.55 4-Bromophenylphenylether ND 115 21.1 Hexachlorobenzene ND 22.9 6.06 Pentachlorophenol ND 115 20.8 Phenanthrene ND 22.9 4.35 Di-n-butylphthalate ND 22.9 3.89 Butylbenzylphthalate ND	2,6-Dinitrotoluene			
Actemaphinene ND 573 80.1 2.4-Dinitrophenol ND 573 93.8 Dibenzofuran ND 57.3 5.29 2.4-Dinitrophenol ND 115 19.5 Dibenzofuran ND 115 19.5 Diethylphthalate ND 115 41.4 4-Chiorophenylphenylether ND 115 24.6 Fluorene ND 22.9 7.4 4.Nitroaniline ND 22.9 4.7 4.6-Dinitro-2-methylphenol ND 21.5 20.6 N-Nitrosodiphenylamine ND 22.9 6.55 4-Bromophenylphenylether ND 115 22.2 Phenanthrene ND 115 22.2 Phenanthrene ND 115 22.2 Phenanthrene ND 22.9 6.8 Anthracene ND 22.9 6.8 Pyrene ND 22.9 3.69 Burylphthalate ND 22.9	3-Nitroaniline			
2.4-Dintrophenol ND 573 93.8 4-Nitrophenol ND 57.3 5.29 2.4-Dinitrotoluene ND 115 19.5 Diebrzofuran ND 115 41.4 4-Chiorophenylphenylether ND 115 24.6 Fluorene ND 115 24.6 Fluorene ND 22.9 7.4 4-Nitroaniline ND 22.9 47 4.6-Dinitro-2-methylphenol ND 22.9 6.55 N-Nitrosodiphenylathire ND 115 21.1 Hexachiorophenol ND 115 22.2 Phenanthrene ND 115 22.2 Phenanthrene ND 115 22.2 Phenanthrene ND 115 20.6 Anthracene ND 115 20.8 Di-n-butylphthalate ND 22.9 4.35 Di-n-butylphthalate ND 22.9 3.89 Butylbenzylphthalate ND <td< td=""><td>Acenaphthene</td><td></td><td></td><td></td></td<>	Acenaphthene			
A-Nitrophenol ND 57.3 5.29 Dibenzofuran ND 115 19.5 Diethylphthalate ND 115 41.4 4-Chlorophenylphenylether ND 115 24.6 Fluorene ND 22.9 7.4 4-Nitroaniline ND 22.9 47 4,6-Dinitro-2-methylphenol ND 115 20.6 N-Nitrosodiphenylamine ND 22.9 6.55 4-Bromophenylphenylether ND 115 21.1 Hexachlorophenzene ND 115 22.2 Phenanthrene ND 115 22.2 Phenanthrene ND 115 22.2 Phenanthrene ND 115 22.2 Phenanthrene ND 115 20.6 Fluoranthene ND 115 20.8 Fluoranthene ND 22.9 3.89 Butylbenzylphthalate ND 22.9 3.89 Butylbenzylphthalate ND	2,4-Dinitrophenol			
Diberzoruran ND 115 19.5 2,4-Dinitrotoluene ND 115 41.4 4-Chlorophenylphenylether ND 115 24.6 Fluorene ND 22.9 7.4 4-Nitroaniline ND 22.9 47 4,6-Dinitro-2-methylphenol ND 115 20.6 N-Nitrosodiphenylamine ND 22.9 6.55 4-Bromophenylphenylether ND 115 21.1 Hexachlorobenzene ND 115 22.2 Phenathlrene ND 115 22.2 Phenathlrene ND 115 22.2 Phenathlrene ND 22.9 6.8 Anthracene ND 22.9 4.35 Di-n-butylphthalate ND 22.9 3.69 Butylbenzylphthalate ND 22.9 3.69 Butylbenzylphthalate ND 22.9 4.9.7 Benzo(a)anthracene ND 22.9 4.9.7 Benzo(a)anthracene	4-Nitrophenol			
2.4-Dintrototioner ND 115 41.4 Diethylphthalate ND 115 24.6 Fluorene ND 22.9 7.4 4-Nitroaniline ND 22.9 47 4.6-Dinitro-2-methylphenol ND 22.9 47 4.6-Dinitro-2-methylphenol ND 22.9 6.55 N-Nitrosodiphenylamine ND 22.9 6.55 4-Bromophenylphenylether ND 115 21.1 Hexachlorobenzene ND 115 22.2 Phenanthrene ND 115 22.2 Phenanthrene ND 22.9 6.8 Anthracene ND 22.9 4.35 Di-n-butylphthalate ND 22.9 3.69 Butylbenzylphthalate ND 22.9 3.69 Butylbenzylphthalate ND 22.9 44.5 3.3'-Dichorobenzidine ND 22.9 41.6 Phenzof(ua) anthracene ND 22.9 41.6 Di-n-octyl	Dibenzofuran			
Diemyiphthalate ND 115 24.6 4-Chlorophenyiphenyiether ND 22.9 7.4 4-Nitroaniline ND 22.9 47 4-Nitroaniline ND 22.9 47 4.6-Dinitro-2-methylphenol ND 115 20.6 N-Nitrosodiphenylamine ND 22.9 6.55 4-Bromophenylphenylether ND 115 21.1 Hexachlorobenzene ND 22.9 6.06 Pentachlorophenol ND 21.5 22.2 Phenanthrene ND 22.9 6.8 Anthracene ND 22.9 6.8 Anthracene ND 22.9 4.35 Di-n-butylphthalate ND 22.9 3.89 Butylbenzylphthalate ND 22.9 3.89 Butylbenzylphthalate ND 22.9 49.7 Berzo(a)anthracene ND 22.9 41.6 Chrysene ND 22.9 21.1 Benzofluoranthenes	2,4-Dinitrotoluene			
4-Chiorophenylphenylether ND 115 24.6 Fluorene ND 22.9 7.4 4-Nitroaniline ND 229 47 4.6-Dinitro-2-methylphenol ND 115 20.6 N-Nitrosodiphenylamine ND 22.9 6.55 4-Bromophenylphenylether ND 115 21.1 Hexachlarobenzene ND 12.9 6.06 Pentachlorophenol ND 115 22.2 Phenanthrene ND 115 22.2 Phenanthrene ND 22.9 6.8 Anthracene ND 22.9 6.8 Anthracene ND 22.9 4.35 Di-n-butylphthalate ND 22.9 11.6 Pyrene ND 22.9 3.89 Butylbenzylphthalate ND 22.9 4.9.7 Benzo(a)anthracene ND 22.9 49.7 Benzo(a)anthracene ND 22.9 21.1 Di-n-octylphthalate ND 22.9 21.1 Dis(2-Ethythexyl)phthalate ND	Diethylphthalate			
Fluorene ND 22.9 7.4 4-Nitroaniline ND 229 47 4-Shitroaniline ND 229 47 4-Solintro-2-methylphenol ND 115 20.6 N-Nitrosodiphenylamine ND 115 21.1 Hexachlarobenzene ND 115 21.1 Hexachlarobenzene ND 115 22.2 Phenanthrene ND 22.9 6.06 Pentachlorophenol ND 115 22.2 Phenanthrene ND 22.9 6.8 Anthracene ND 22.9 4.35 Di-n-butylphthalate ND 22.9 11.6 Pyrene ND 22.9 11.6 Pyrene ND 22.9 24.5 Sutylbenzylphthalate ND 22.9 49.7 Benzo(a)anthracene ND 22.9 49.7 Benzo(a)anthracene ND 22.9 21.1 Di-n-octylphthalate ND 22.9 </td <td></td> <td>ND</td> <td></td> <td></td>		ND		
4-Nitroaniline ND 115 20.6 4,6-Dinitro-2-methylphenol ND 22.9 6.55 4-Bromophenylphenylether ND 115 21.1 Hexachlorobenzene ND 22.9 6.06 Pentachlorobenzene ND 115 22.2 Phenanthrene ND 115 22.2 Phenanthrene ND 22.9 6.8 Anthracene ND 22.9 4.35 Di-n-butylphthalate ND 115 20.8 Fluoranthene ND 22.9 3.89 Butylbenzylphthalate ND 22.9 3.89 Butylbenzylphthalate ND 22.9 4.5 3,3'-Dichlorobenzidine ND 22.9 4.9,7 Benzo(a)anthracene ND 22.9 41.6 Chrysene ND 22.9 21.1 Di-n-octylphthalate ND 22.9 21.1 Di-n-octylphthalate ND 22.9 21.1 Benzofluoranthenes ND 22.9 21.1 Benzofluoranthenes ND <td></td> <td>ND</td> <td></td> <td></td>		ND		
4,6-Dintro-2-triedityphenol ND 22.9 6.55 4-Bromophenylphenylether ND 115 21.1 Hexachlorobenzene ND 22.9 6.06 Pentachlorobenzene ND 115 22.2 Phenanthrene ND 22.9 6.8 Anthracene ND 22.9 6.8 Di-n-butylphthalate ND 115 20.8 Fluoranthene ND 22.9 3.89 Butylbenzylphthalate ND 22.9 3.89 Butylbenzylphthalate ND 22.9 49.7 S,3'-Dichlorobenzidine ND 22.9 49.7 Benzo(a)anthracene ND 22.9 49.7 Benzo(a)anthracene ND 22.9 8.19 bis(2-Ethylhexyl)phthalate 25.2 229 21 J Di-n-octylphthalate ND 22.9 21.1 J Benzofluoranthenes ND 45.8 10.4 Benzofluoranthenes 10.4 Benzofluoranthenes ND 22.9 7.25 11.6 10.4	4-Nitroaniline			
N-Nitrosodiphenylamine ND 115 21.1 4-Bromophenylphenylether ND 115 21.1 Hexachlorobenzene ND 22.9 6.06 Pentachlorophenol ND 115 22.2 Phenanthrene ND 22.9 6.8 Anthracene ND 22.9 4.35 Di-n-butylphthalate ND 115 20.8 Fluoranthene ND 22.9 3.89 Butylbenzylphthalate ND 22.9 3.89 Butylbenzylphthalate ND 22.9 49.7 Benzo(a)anthracene ND 22.9 49.7 Benzo(a)anthracene ND 22.9 49.7 Benzo(a)anthracene ND 22.9 21 J Di-n-octylphthalate 25.2 229 21 J Di-n-octylphthalate ND 22.9 7.25 J Benzo(a)pyrene ND 45.8 10.4 Benzo(a)pyrene ND 22.9 5.22	4,6-Dinitro-2-methylphenol	ND		
4-Bromophenylphenylether ND 115 21.1 Hexachlorobenzene ND 22.9 6.06 Pentachlorophenol ND 115 22.2 Phenanthrene ND 22.9 6.8 Anthracene ND 22.9 4.35 Di-n-butylphthalate ND 115 20.8 Fluoranthene ND 22.9 3.89 Butylbenzylphthalate ND 22.9 3.89 Butylbenzylphthalate ND 22.9 49.7 S,3'-Dichlorobenzidine ND 22.9 41.6 Pyrene ND 22.9 49.7 Benzo(a)anthracene ND 22.9 49.7 Benzo(a)anthracene ND 22.9 21 J Di-n-octylphthalate 25.2 22.9 21 J Di-n-octylphthalate ND 22.9 21.1 J Benzofluoranthenes ND 45.8 10.4 Benzo(a)pyrene ND 22.9 5.22	N-Nitrosodiphenylamine	ND		
HexachlorobenzeneND22.96.06PentachlorophenolND11522.2PhenanthreneND22.96.8AnthraceneND22.94.35Di-n-butylphthalateND11520.8FluorantheneND22.93.89ButylbenzylphthalateND22.93.89ButylbenzylphthalateND22.944.53,3'-DichlorobenzidineND22.949.7Benzo(a)anthraceneND22.949.7Benzo(a)anthraceneND22.98.19bis(2-Ethythexyl)phthalate25.222921Di-n-octylphthalateND45.810.4BenzofluoranthenesND45.810.4Benzo(a)pyreneND22.95.22Indeno(1,2,3-cd)pyreneND22.95.22Dibenz(a,h)anthraceneND22.97.11Dienz(a,h)anthraceneND22.95.21		ND		
PentachlorophenolND22.96.8PhenanthreneND22.94.35AnthraceneND11520.8Di-n-butylphthalateND11520.8FluorantheneND22.93.89PyreneND22.93.89ButylbenzylphthalateND22.93.89ButylbenzylphthalateND22.944.53,3'-DichlorobenzidineND22.949.7Benzo(a)anthraceneND22.98.19Di-n-octylphthalateND22.921Di-n-octylphthalateND22.921.1BenzofluoranthenesND45.810.4Benzo(a)pyreneND22.97.25Indeno(1,2,3-cd)pyreneND22.95.22Dibenz(a,h)anthraceneND22.97.11Dibenz(a,h)anthraceneND22.95.21	, , ,	ND		
Phenanthrene ND 22.9 6.8 Anthracene ND 22.9 4.35 Di-n-butylphthalate ND 115 20.8 Fluoranthene ND 22.9 11.6 Pyrene ND 22.9 3.89 Butylbenzylphthalate ND 22.9 24.5 S,3'-Dichlorobenzidine ND 22.9 49.7 Benzo(a)anthracene ND 22.9 49.7 Benzo(a)anthracene ND 22.9 8.19 bis(2-Ethylhexyl)phthalate 25.2 229 21 J Di-n-octylphthalate ND 22.9 21.1 J Benzofluoranthenes ND 45.8 10.4 Benzo(a)pyrene ND 22.9 7.25 Indeno(1,2,3-cd)pyrene ND 22.9 5.22 Dibenz(a,h)anthracene ND 22.9 5.21	Pentachiorophenol	ND		
AnthraceneND11520.8Di-n-butylphthalateND22.911.6FluorantheneND22.93.89PyreneND22924.53,3'-DichlorobenzidineND22949.7Benzo(a)anthraceneND22.98.19ChryseneND22.98.19bis(2-Ethylhexyl)phthalate25.222921Di-n-octylphthalateND22.921.1BenzofluoranthenesND45.810.4Benzo(a)pyreneND22.97.25Indeno(1,2,3-cd)pyreneND22.95.22Dibenz(a,h)anthraceneND22.95.51	Phenanthrene	ND		
Di-n-bitryipinalateND22.911.6FluorantheneND22.93.89PyreneND22.93.89ButylbenzylphthalateND22924.53,3'-DichlorobenzidineND22949.7Benzo(a)anthraceneND22.98.19ChryseneND22.98.19bis(2-Ethylhexyl)phthalate25.222921Di-n-octylphthalateND22.921.1Benzo(a)pyreneND45.810.4Benzo(a)pyreneND22.95.22Indeno(1,2,3-cd)pyreneND22.95.22Dibenz(a,h)anthraceneND22.97.11	Anthracene			
FluorantheneND22.911.6PyreneND22.93.89ButylbenzylphthalateND22924.53,3'-DichlorobenzidineND22949.7Benzo(a)anthraceneND22.911.6ChryseneND22.98.19bis(2-Ethylhexyl)phthalate25.222921Di-n-octylphthalateND22.921.1BenzofluoranthenesND45.810.4Benzo(a)pyreneND22.97.25Indeno(1,2,3-cd)pyreneND22.95.22Dibenz(a,h)anthraceneND22.95.51	Di-n-butylphthalate	ND		
PyreneND22.93.89ButylbenzylphthalateND22924.53,3'-DichlorobenzidineND22949.7Benzo(a)anthraceneND22.911.6ChryseneND22.98.19bis(2-Ethylhexyl)phthalate25.222921Di-n-octylphthalateND22.921.1BenzofluoranthenesND45.810.4Benzo(a)pyreneND22.97.25Indeno(1,2,3-cd)pyreneND22.95.22Dibenz(a,h)anthraceneND22.95.21		ND		
ButylbenzylphthalateND22924.53,3'-DichlorobenzidineND22949.7Benzo(a)anthraceneND22.911.6ChryseneND22.98.19bis(2-Ethylhexyl)phthalate25.222921Di-n-octylphthalateND22.921.1Benzo(a)pyreneND45.810.4Benzo(a)pyreneND22.97.25Indeno(1,2,3-cd)pyreneND22.95.22Dibenz(a,h)anthraceneND22.97.11		ND		
3,3'-DichlorobenzidineND22949.7Benzo(a)anthraceneND22.911.6ChryseneND22.98.19bis(2-Ethythexyl)phthalate25.222921Di-n-octylphthalateND22.921.1BenzofluoranthenesND45.810.4Benzo(a)pyreneND22.97.25Indeno(1,2,3-cd)pyreneND22.95.22Dibenz(a,h)anthraceneND22.97.11		ND		
Benzo(a) anthraceneND22.911.6ChryseneND22.98.19bis(2-Ethythexyl) phthalate25.222921Di-n-octyl phthalateND22921.1BenzofluoranthenesND45.810.4Benzo(a) pyreneND22.97.25Indeno(1,2,3-cd) pyreneND22.95.22Dibenz(a,h) anthraceneND22.97.11		ND		
ChryseneND22.98.19bis(2-Ethylhexyl)phthalate25.222921JDi-n-octylphthalateND22921.1BenzofluoranthenesND45.810.4Benzo(a)pyreneND22.97.25Indeno(1,2,3-cd)pyreneND22.95.22Dibenz(a,h)anthraceneND22.97.11	•	ND		
bis(2-Ethythexyl)phthalate25.222921JDi-n-octylphthalateND22921.1BenzofluoranthenesND45.810.4Benzo(a)pyreneND22.97.25Indeno(1,2,3-cd)pyreneND22.95.22Dibenz(a,h)anthraceneND22.97.11	• •	ND		
Di-n-octylphthalateND22921.1BenzofluoranthenesND45.810.4Benzo(a)pyreneND22.97.25Indeno(1,2,3-cd)pyreneND22.95.22Dibenz(a,h)anthraceneND22.97.11	,		T0 : D	
BenzofluoranthenesND45.810.4Benzo(a)pyreneND22.97.25Indeno(1,2,3-cd)pyreneND22.95.22Dibenz(a,h)anthraceneND22.97.11		ND		
Benzo(a)pyrene ND 22.9 7.25 Indeno(1,2,3-cd)pyrene ND 22.9 5.22 Dibenz(a,h)anthracene ND 22.9 7.11		ND		
Indeno(1,2,3-cd)pyrene ND 22.9 5.22 Dibenz(a,h)anthracene ND 22.9 7.11		ND		
Dibenz(a,h)anthracene ND 22.9 7.13		ND		
00.0 651	• • • • • • •	ND		
	• /	ND	22.9	5.51

Client Name:	Herrera Environmental Consultants
Client ID:	NASSW0500
Lab ID:	128479-14
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/25/2005
% Solids	78.37
Dilution Factor	1

÷...

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	120		36	145
Phenol - d5	91.1		38	149
Nitrobenzene - d5	92.9		38	141
2 - Fluorobiphenyl	99.2		42	140
2,4,6 - Tribromophenol	94		28	143
p - Terphenyl - d14	96.9		42	151

	Result		
Analyte	(ug/kg)	RL	MDL Flags
Phenol	ND	63.8	9.22
bis(2-Chloroethyl)ether	ND	128	20
2-Chiorophenol	ND	63.8	8.58
1,3-Dichlorobenzene	ND	63.8	10.9
1,4-Dichlorobenzene	ND	63.8	10.7
Benzyl Alcohol	ND	63.8	25.4
1,2-Dichlorobenzene	ND	63.8	8.66
2-Methylphenol	ND .	63.8	12
bis(2-Chloroisopropyl)ether	NO BIGUJ	319	102
3-&4-Methyipheno!	ND	63.8	15.1
N-nitroso-di-n-propylamine	ND	63.8	17.1
Hexachloroethane	ND	63.8	21.6
Nitrobenzene	ND	128	38. 4
Isophorone	ND	128	6.43
2-Nitrophenol	ND	63.8	14.5
2,4-Dimethylphenol	ND	25.5	9.76
Benzoic Acid	ND	765	204
bis(2-Chloroethoxy)methane	ND	128	24.5
2,4-Dichlorophenol	ND	63.8	11.3
1,2,4-Trichlorobenzene	ND	63.8	10.8
Naphthalene	ND	25.5	11.3
4-Chloroaniline	ND	128	11.9
Hexachlorobutadiene	ND	63.8	9.32
4-Chloro-3-methylphenol	ND	63.8	11.4
2-Methylnaphthalene	ND	25.5	6.63
Hexachlorocyclopentadiene	ND	63.8	10.1
riexaciiorocyclopendalorio			, () (
			9/21/210

88833

Semivolatile Organics by USEPA Method 8270 data for 128479-14 continued...

م

		Result		
Anałyte		(ug/kg)	RL	MDL Flags
2,4,6-Trichlorophenol	ND		63.8	10.1
2,4,5-Trichlorophenol	ND		63.8	9.9
2-Chloronaphthalene	ND		25.5	8.61
2-Nitroaniline	ND		25.5	6.93
Dimethylphthalate	ND		128	25
Acenaphthylene	ND		25.5	7.51
2,6-Dinitrotoluene	ND		63.8	13.6
3-Nitroaniline	ND		128	37.4
Acenaphthene	ND		25,5	6.54
2,4-Dinitrophenol	ND		638	89.2
4-Nitrophenol	ND		638	104
Dibenzofuran	ND		63.8	5.89
2,4-Dinitrotoluene	ND		128	21.7
Diethylphthalate	ND		128	46
4-Chlorophenylphenylether	ND		128	27.4
Fluorene	ND		25.5	8.24
4-Nitroaniline	ND		255	52.3
4,6-Dinitro-2-methylphenol	ND		128	23
N-Nitrosodiphenylamine	ND		25.5	7.3
4-Bromophenylphenylether	ND		128	23.5
Hexachlorobenzene	ND		25.5	6.75
Pentachlorophenoi	ND		128	24.7
Phenanthrene	ND		25.5	7.58
Anthracene	ND		25.5	4.85
Di-n-butylphthalate	ND		128	23.2
Fluoranthene	ND		25.5	12.9
Pyrene	ND		25.5	4.34
Butylbenzylphthalate	ND		255	27.3
3,3'-Dichlorobenzidine	ND		255	55.4
Benzo(a)anthracene	ND		25.5	12.9
Chrysene	ND		25.5	9.12
bis(2-Ethylhexyl)phthalate		33.3	255	23.3 J
Di-n-octylphthalate	ND		255	23.5
Benzofluoranthenes	ND		51	11.6
Benzo(a)pyrene	ND		25.5	8.07
Indeno(1,2,3-cd)pyrene	ND		25.5	5,82
Dibenz(a,h)anthracene	ND		25.5	7,92
Benzo(g,h,i)perylene	ND		25.5	6.14

01/21/2/5

00034

Client Name:	Herrera Environmental Consultants
Client ID:	NASSW0600
Lab ID:	128479-15
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/25/2005
% Solids	82.97
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	94.3		36	145
Phenol - d5	91.5		38	149
Nitrobenzene - d5	83.4		38	141
2 - Fluorobiphenyl	87		42	140
2,4,6 - Tribromophenol	83.7		28	143
p - Terphenyl - d14	85.7		42	151

Sample results are on a dry weight basis.

	Result		
Analyte	(ug/kg)	RL	MDL Flags
Phenol ,	ND	50.4	7.29
bis(2-Chloroethyl)ether	ND	101	15.8
2-Chlorophenol	ND	50.4	6.79
1,3-Dichlorobenzene	ND	50.4	8,59
1,4-Dichlorobenzene	ND	50.4	8.48
Benzyl Alcohol	ND	50.4	20.1
1,2-Dichlorobenzene	ND	50.4	6.85
2-Methylphenol	ND	50.4	9.52
bis(2-Chloroisopropyl)ether	ND-252UJ	252	80.6
3-&4-Methylphenol	ND	50.4	11.9
N-nitroso-di-n-propylamine	ND	50.4	13.5
Hexachloroethane	ND	50.4	17
Nitrobenzene	ND	101	30.4
Isophorone	ND	101	5.08
2-Nitrophenol	ND	50.4	11.5
2,4-Dimethylphenol	ND	20.2	7.72
Benzoic Acid	ND	605	161
bis(2-Chloroethoxy)methane	ND	101	19.4
2,4-Dichlorophenol	ND	50.4	8.95
1,2,4-Trichlorobenzene	ND	50.4	8.56
Naphthalene	ND	20.2	8.94
4-Chloroaniline	ND	101	9.38
Hexachlorobutadiene	ND	50.4	7.37
4-Chloro-3-methylphenol	ND	50.4	9.01
2-Methylnaphthalene	ND	20.2	5.25
Hexachlorocyclopentadiene	ND	50.4	8

00035

Semivolatile Organics by USEPA Method 8270 data for 128479-15 continued...

ج

	Re	sult			
Analyte	(ug	/kg)	RL	MDL	Flags
2,4,6-Trichlorophenol	NĎ		50.4	7.98	
2,4,5-Trichlorophenol	ND		50. 4	7.83	
2-Chloronaphthalene	ND		20.2	6.81	
2-Nitroaniline	ND		20.2	5.48	
Dimethylphthalate	ND		101	19.8	
Acenaphthylene	ND		20.2	5.94	
2,6-Dinitrotoluene	ND		50.4	10.8	
3-Nitroaniline	ND		101	29.6	
Acenaphthene	ND		20.2	5.17	
2,4-Dinitrophenol	ND		504	70.5	
4-Nitrophenol	ND		504	82.6	
Dibenzofuran	ND		50.4	4.66	
2,4-Dinitrotoluene	ND		101	17.1	
Diethylphthalate	ND		101	36.4	
4-Chlorophenylphenylether	ND		101	21.7	
Fluorene	ND		20.2	6.52	
4-Nitroaniline	ND		202	41.4	
4,6-Dinitro-2-methylphenol	ND		101	18.2	
N-Nitrosodiphenylamine	ND		20.2	5.77	
4-Bromophenylphenylether	ND		101	18.6	
Hexachlorobenzene	ND		20.2	5,34	
Pentachiorophenol		129	101	19.6	
Phenanthrene	ND		20.2	5.99	
Anthracene	ND		20.2	3,83	
Di-n-butylphthalate		22.7	101	18.4	J
Fluoranthene	ND		20.2	10.2	
Pyrene	ND		20.2	3.43	
Butylbenzylphthalate	ND		202	21.6	
3,3'-Dichlorobenzidine	ND		202	43.8	
Benzo(a)anthracene	ND		20.2	10.2	
Chrysene	ND		20.2	7.21	
bis(2-Ethylhexyl)phthalate	ND		202	18.5	
Di-n-octylphthalate	ND		202	18.6	
Benzofluoranthenes	ND		40.3	9.14	
Benzo(a)pyrene	ND		20.2	6.39	
Indeno(1,2,3-cd)pyrene	ND		20.2	4.6	
Dibenz(a,h)anthracene	ND		20.2	6.26	
Benzo(g,h,i)perylene	ND		20.2	4.85	

or with

	e-
Client Name:	Herrera Environmental Consultants
Client ID:	PASBP1109
Lab ID:	128479-16
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/25/2005
% Solids	81.29
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits 👘
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	109		36	145
Phenol - d5	85,3		38	149
2 - Fluorobiphenyl	91.6		4 2	140

Sample results are on a dry weight basis.

.

	Result		
Analyte	(ug/kg)	RL	MDL Flags
Pentachlorophenol	38.5	109	21.1 J

05 7/12/12

	e -	
Client Name:	H	lerrera Environmental Consultants
Client ID:		PAS8P1111
Lab ID:		128479-17
Date Received:		6/20/2005
Date Prepared:		6/23/2005
Date Analyzed:		6/25/2005
% Solids		86.3
Dilution Factor		1

Semivolatile Organics by USEPA Method 8270

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	125		36	145
Phenol - d5	115		38	149
2 - Fluorobiphenyl	72.7		42	140

	Result			
Analyte	(ug/kg)	RL	MDL	Flags
Pentachlorophenol	24200	112	21.6	D100

04/21/2102

المحم	
Client Name:	Herrera Environmental Consultants
Client ID:	PASBP1111D
Lab ID:	128479-18
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/25/2005
% Solids	89.85
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	107	-	36	145
Phenol - d5	98.6		38	149
2 - Fluorobiphenyl	83.2		42	140

	Result			
Analyte	(ug/kg)	RL	MDL	Flags
Pentachiorophenol	25700	105	20.4	D10

04,211210

Client Name:	Herrera Environmental Consultants
Client ID:	PASBP1204
Lab ID:	128479-19
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/25/2005
% Solids	64,41
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	127		36	145
Phenol - d5	114		38	149
2 - Fluorobiphenyl	98.1		42	140

	Result			
Analyte	(ug/kg)	RL	MDL	Flags
Pentachlorophenol	498	143	27.8	

otalivios

	e	
Client Name:		Herrera Environmental Consultants
Client ID:		PASBP1204D
Lab ID:		128479-20
Date Received:		6/20/2005
Date Prepared:		6/24/2005
Date Analyzed:		6/25/2005
% Solids		64.04
Dilution Factor		1

Semivolatlle Organics by USEPA Method 8270

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
2 - Fluorophenol	107		36	145	
Phenol - d5	95.5		38	149	
2 - Fluorobiphenyl	95,1		42	140	

	Result			
Analyte	(ug/kg)	RL	MDL	Flags
Pentachlorophenol	187	151	29.3	

01/2/12/05

Herrera Environmental Consultants
PASBP1208
128479-21
6/20/2005
6/24/2005
6/26/2005
88.36
1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	Hìgh
2 - Fluorophenol	123		36	145
Phenol - d5	105		38	149
2 - Fluorobiphenyl	99.3		42	140

	Result			
Analyte	(ug/kg)	RL	MDL	Flags
Pentachlorophenol	20.1	98.9	19.2	J

arainolog

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed:	Herrera Environmental Consultants PASBP1306 128479-22 6/20/2005 6/24/2005 6/26/2005 32.9
W Solids	32.9
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	135	-	36	145
Phenot - d5	117		38	149
2 - Fluorobiphenyl	91		42	140

	Result			F 4
Analyte	(ug/kg)	RL	MDL	Flags
Pentachlorophenol	126	284	55.1	J

94-211210

e	
Client Name:	Herrera Environmental Consultants
Client ID:	PASBP1308
Lab ID:	128479-23
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/26/2005
% Solids	89.34
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
2 - Fluorophenol	119		36	145	
Phenol - d5	98.7		38	149	
2 - Fluorobiphenyl	95.9		42	140	

	Result			
Analyte	(ug/kg)	RL	MDL	Flags
Pentachlorophenol	27.8	107	20.8	J

01/21/210

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor ÷---

Herrera Environmental Consultants PASSP1100 128479-24 6/20/2005 6/24/2005 6/26/2005 74.27 1

Semivolatile Organics by USEPA Method 8270

,

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	110		36	145
Phenol - d5	92		38	149
Nitrobenzene - d5	96.6		38	141
2 - Fluorobiphenyl	103		42	140
2,4,6 - Tribromophenol	96.4		28	143
p - Terphenyl - d14	116		42	151

Sample results are on a dry weight basis.

	Resu	Ħ			
Analyte	(ug/kį	3)	RL	MDL	Flags
Phenol	ND		62.6	9.05	
bis(2-Chloroethyi)ether	ND		125	19.7	
2-Chlorophenol	ND		62.6	8.43	
1,3-Dichlorobenzene	ND		62.6	10.7	
1,4-Dichlorobenzene	ND		62.6	10.5	
Benzyl Alcohol	ND		62. 6	24.9	
1,2-Dichlorobenzene	ND		62.6	8.5	
2-Methylphenol	ND		62.6	11.8	
bis(2-Chloroisopropyl)ether	ND		313	100	
3-&4-Methylphenol	ND		62.6	14.8	
N-nitroso-di-n-propylamine	ND		62.6	16.8	
Hexachioroethane	ND		62.6	21.2	
Nitrobenzene	ND		125	37.7	
Isophorone	ND		125	6.31	
2-Nitrophenol	ND		62.6	14.3	
2,4-Dimethylphenol	ND		25	9.58	
Benzoic Acid	ND		751	200	
bis(2-Chloroethoxy)methane	ND		125	24	
2,4-Dichlorophenol	ND		62.6	11.1	
1,2,4-Trichlorobenzene	ND		62.6	10.6	
Naphthalene	ND		25	11.1	
4-Chloroaniline	ND		125	11.6	
Hexachlorobutadiene	ND		62.6	9.15	
4-Chloro-3-methylphenol	ND		62.6	11.2	
2-Methylnaphthalene		17.9	25	6.51	J
Hexachlorocyclopentadiene	ND		62.6	9,93	

8/2/12/05

00045

Semivolatile Organics by USEPA Method 8270 data for 128479-24 continued...

		Result			
Analyte	(ug/kg)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND		62.6	9.9	
2,4,5-Trichlorophenol	ND		62.6	9.72	
2-Chloronaphthalene	ND		25	8.45	
2-Nitroaniline	ND		25	6.8	
Dimethylphthalate	ND		125	24,5	
Acenaphthylene	ND		25	7.37	
2,6-Dinitrotoluene	ND		62.6	13.4	
3-Nitroaniline	ND		125	36.7	
Acenaphthene	ND		25	6.42	
2,4-Dinitrophenol	ND		626	87.5	
4-Nitrophenol	ND		626	103	
Dibenzofuran	ND		62.6	5.78	
2,4-Dinitrotoluene	NÐ		125	21.3	
Diethylphthalate	ND		125	45.2	
4-Chiorophenylphenylether	ND		125	26.9	
Fluorene		33.7	25	8,09	
4-Nitroaniline	ND		250	51.3	
4,6-Dinitro-2-methylphenol	ND		125	22.5	
N-Nitrosodiphenylamine	ND		25	7.16	
4-Bromophenylphenylether	ND		125	23	
Hexachlorobenzene	ND		25	6.62	
Pentachlorophenol		4230	125	24.3	~ 010
Phenanthrene		46	25	7.44	
Anthracene		19.2	25	4.76	J
Di-n-butylphthalate	ND		125	22.8	
Fluoranthene	ND		25	12.6	
Pyrene	ND		25	4.26	
Butylbenzylphthalate	ND		250	26.8	
3,3'-Dichlorobenzidine	ND		250	54,3	
Benzo(a)anthracene	ND		25	12.6	
Chrysene	ND		25	8,95	
bis(2-Ethylhexyl)phthalate		131	250	22,9	J
Di-n-octylphthalate	ND		250	23	
Benzofluoranthenes	ND		50.1	11.3	
Benzo(a)pyrene	ND		25	7.92	
Indeno(1,2,3-cd)pyrene	ND		25	5.71	
Dibenz(a,h)anthracene	ND		25	7.77	
Benza(g,h,i)perylene	ND		25	6.02	

or 21/2/04

00046

. هي	
Client Name:	Herrera Environmental Consultants
Client ID:	PASSP1200
Lab ID:	128479-25
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/26/2005
% Solids	75.14
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	125		36	145
Phenol - d5	109		38	149
Nitrobenzene - d5	109		38	141
2 - Fluorobiphenyl	93.3		42	140
2,4,6 - Tribromophenol	88.7		28	143
p - Terphenyl - d14	92.9		42	151

		Result		
Analyte		(ug/kg)	RL	MDL Flags
Phenol	ND		65.2	9.43
bis(2-Chloroethyl)ether	ND		130	20.5
2-Chlarophenol	ND		65.2	8.78
1,3-Dichlorobenzene	ND		65.2	11.1
1,4-Dichlorobenzene	ND		65.2	11
Benzyl Alcohol	ND		65.2	26
1,2-Dichlorobenzene	ND		65.2	8.85
2-Methylphenol	ND		65.2	12.3
bis(2-Chloroisopropyl)ether	ND		326	104
3-&4-Methylphenol	ND		65.2	15.4
N-nitroso-di-n-propylamine	ND		65.2	17.5
Hexachloroethane	ND		65.2	22
Nitrobenzene	ND		130	39.3
Isophorone	ND		130	6.57
2-Nitrophenol	ND		65.2	14.9
2,4-Dimethylphenol	ND		26.1	9.98
Benzoic Acid	ND		782	209
bis(2-Chloroethoxy)methane	ND		130	25
2,4-Dichlorophenol	ND		65.2	11.6
1,2,4-Trichlorobenzene	ND		65.2	11.1
Naphthalene		39.2	26.1	11.6
4-Chloroaniline	ND		130	12.1
Hexachlorobutadiene	ND		65.2	9.53
4-Chloro-3-methylphenol	ND		65.2	11.6
2-Methylnaphthalene		193	26.1	6.78
Hexachlorocyclopentadiene	ND		65.2	10.3

07/2112105 \$

Semivolatile Organics by USEPA Method 8270 data for 128479-25 continued...

Analyte(ug/kg)RLMDLFlags2,4,6-TrichlorophenolND65.210.32,4,5-TrichlorophenolND65.210.12-ChloronaphthaleneND26.18.82-NitroanilineND26.17.08DimethylphthalateND13025.6AcenaphthyleneND26.17.682.6-DinitrotolueneND65.214
2,4,5-TrichlorophenolND65.210.12-ChloronaphthaleneND26.18.82-NitroanilineND26.17.08DimethylphthalateND13025.6AcenaphthyleneND26.17.68
2-ChloronaphthaleneND26.18.82-NitroanilineND26.17.08DimethylphthalateND13025.6AcenaphthyleneND26.17.68
2-NitroanilineND26.17.08DimethylphthalateND13025.6AcenaphthyleneND26.17.68
DimethylphthalateND13025.6AcenaphthyleneND26.17.68
Acenaphthylene ND 26.1 7.68
, ionaphingieno
D.C. Dipitrotalyana ND 65.2 14
3-Nitroaniline ND 130 38.2
Acenaphthene ND 26.1 6.69
2,4-Dinitrophenol ND 652 91.2
4-Nitrophenol ND 652 107
Dibenzofuran ND 65.2 6.02
2,4-Dinitrotoluene ND 130 22.2
Diethylphthalate ND 130 47.1
4-Chlorophenylphenylether ND 130 28
Fluorene ND 26.1 8.42
4-Nitroaniline ND 261 53.5
4,6-Dinitro-2-methylphenol ND 130 23.5
N-Nitrosodiphenylamine ND 26.1 7.46
4-Bromophenylphenylether ND 130 24
Hexachlorobenzene ND 26.1 6.9
Pentachlorophenol 31300 130 25.3 Dr0
Phenanthrene 184 26.1 7.75
Anthracene 24.7 26.1 4.96 J
Di-n-butylphthalate ND 130 23.7
Fluoranthene ND 26.1 13.2
Pyrene ND 26.1 4.43
Butylbenzylphthalate ND 261 27.9
3,3'-Dichlorobenzidine ND 261 56.6
Benzo(a)anthracene ND 26.1 13.2
Chrysene ND 26.1 9.32
bis(2-Ethylhexyl)phthalate 115 261 23.9 J
Di-n-octylphthalate ND 261 24
Benzofluoranthenes ND 52.2 11.8
Benzo(a)pyrene ND 26.1 8.25
Indeno(1,2,3-cd)pyrene ND 26.1 5.95
Dibenz(a,h)anthracene ND 26.1 8.1
Benzo(g,h,i)perylene ND 26.1 6.27

00048

Client Name:	Herrera Environmental Consultants
Client ID:	PASSP1200D
Lab ID:	128479-26
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/26/2005
% Solids	77.62
Dilution Factor	1

. . .

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenot	119		36	145
Phenol - d5	109		38	149
Nitrobenzene - d5	97.1		38	141
2 - Fluorobiphenyl	102		42	140
2,4,6 - Tribromophenol	102		28	143
p - Terphenyl - d14	112		42	151

Sample results are on a dry weight basis.

		Result		
Analyte		(ug/kg)	RL	MDL Flags
Phenol	ND		60.7	8.78
bis(2-Chloroethyl)ether	ND		121	19.1
2-Chlorophenol	ND		60.7	8,17
1,3-Dichlorobenzene	ND		60.7	10.3
1,4-Dichlorobenzene	ND		60.7	10.2
Benzyl Alcohol	ND		60.7	24.2
1,2-Dichlorobenzene	ND		60.7	8.24
2-Methylphenol	ND		60.7	11.5
bis(2-Chioroisopropyi)ether	ND		303	97
3-&4-Methylphenol	ND		60.7	14.3
N-nitroso-di-n-propylamine	ND		60.7	16.3
Hexachloroethane	ND		60.7	20.5
Nitrobenzene	ND		121	36.5
Isophorone	ND		121	6.12
2-Nitrophenol	ND		60. 7	13.8
2,4-Dimethylphenol	ND		24.3	9.29
Benzoic Acid	ND		728	194
bis(2-Chloroethoxy)methane	ND		121	23.3
2,4-Dichlorophenol	ND		60.7	10.8
1,2,4-Trichlorobenzene	ND		60.7	10.3
Naphthalene		21.1	24.3	10.8 J
4-Chloroaniline	ND		121	11.3
Hexachlorobutadiene	ND		60.7	8.87
4-Chloro-3-methylphenol	ND		60.7	10.8
2-Methylnaphthalene		117	24.3	6.31
Hexachlorocyclopentadiene	ND		60.7	9.62

12/12/105

00049

Semivolatile Organics by USEPA Method 8270 data for 128479-26 continued...

		Result			
Analyte		(ug/kg)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND		60.7	9.6	
2,4,5-Trichlorophenol	NĎ		60.7	9.42	
2-Chloronaphthalene	ND		24.3	8.19	
2-Nitroaniline	ND		24.3	6.59	
Dimethylphthalate	ND		121	23.8	
Acenaphthylene	ND		24.3	7.15	
2,6-Dinitrotoluene	ND		60.7	13	
3-Nitroaniline	ND		121	35.6	
Acenaphthene	ND		24.3	6.23	
2,4-Dinitrophenol	ND		607	84.8	
4-Nitrophenol	ND		607	99.4	
Dibenzofuran	ND		60.7	5.61	
2,4-Dinitrotoluene	ND		121	20.6	
Diethylphthalate	ND		121	43.8	
4-Chlorophenylphenylether	ND		121	26.1	
Fluorene		116	24.3	7.84	
4-Nitroaniline	NĎ		243	49.8	
4,6-Dinitro-2-methylphenol	ND		121	21.8	
N-Nitrosodiphenylamine	ND		24.3	6.94	
4-Bromophenylphenylether	ND		121	22.3	
Hexachlorobenzene	ND		24.3	6.42	-
Pentachlorophenol		22200	121	23,5	, P1 0
Phenanthrene		191	24.3	7.21	
Anthracene		29.6	24.3	4,61	
Di-n-butylphthalate	ND		121	22.1	
Fluoranthene	ND		24.3	12.3	
Pyrene		155	24.3	4.13	
Butylbenzylphthalate	ND		243	26	
3,3'-Dichlorobenzidine	ND		243	52.7	
Benzo(a)anthracene	ND		24.3	12.3	
Chrysene	ND		24.3	8.68	
bis(2-Ethylhexyl)phthalate	ND		243	22.2	
Di-n-octylphthalate	ND		243	22.3	
Benzofluoranthenes	ND		48.5	11	
Benzo(a)pyrene	ND		24.3	7.68	
Indena(1,2,3-cd)pyrene	NÐ		24.3	5.53	
Dibenz(a,h)anthracene	ND		24.3	7.54	
Benzo(g,h,i)perylene	ND		24.3	5.84	
•••					

Client Name:	Herrera Environmental Consultants
Client ID:	PASSP1300
Lab ID:	12847 9- 27
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	87.85
Dilution Factor	1

Semivolatile Organics by EPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	117		36	145
Phenoi - d5	115		38	149
Nitrobenzene - d5	177	X9	38	141
2 - Fluorobiphenyl	218	X9	42	140
2,4,6 - Tribromophenol	16.7	X9	28	143
p - Terphenyl - d14	148		42	151

	Result		
Analyte	(ug/kg)	RL	MDL Flags
Phenol	ND	53.3	7.71
bis(2-Chloroethyl)ether	ND	10 7	16.7
2-Chlorophenol	ND	53.3	7,17
1,3-Dichlorobenzene	ND	53.3	9.08
1,4-Dichlorobenzene	ND	53.3	8.96
Benzyl Alcohol	ND	53.3	21.2
1,2-Dichlorobenzene	ND	53.3	7.24
2-Methylphenol	ND	53.3	10.1
bis(2-Chloroisopropyl)ether	ND 246UJ	266	85.2
3-&4-Methylphenol	ND	53.3	12.6
N-nitroso-di-n-propylamine	ND	53.3	14.3
Hexachloroethane	ND	53.3	18
Nitrobenzene	ND	107	32.1
Isophorone	ND	107	5.37
2-Nitrophenol	ND	53.3	12.2
2,4-Dimethylphenol	ND	21.3	8.15
Benzoic Acid	ND	640	171
bis(2-Chloroethoxy)methane	ND	107	20.5
2,4-Dichlorophenol	ND	53.3	9.46
1,2,4-Trichlorobenzene	ND	53.3	9.05
Naphthalene	ND	21.3	9.44
4-Chloroaniline	ND	107	9.91
Hexachlorobutadiene	ND	53.3	7.79
4-Chloro-3-methylphenol	ND	53.3	9.52
2-Methylnaphthalene	ND	21.3	5.54
Hexachlorocyclopentadiene	ND	53.3	8.45

91210K

Semivolatile Organics by EPA Method 8270 data for 128479-27 continued...

		Result			
Analyte		ug/kg)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND		53.3	8.43	
2,4,5-Trichlorophenol	ND		53,3	8.27	
2-Chloronaphthalene	ND		21.3	7.2	
2-Nitroaniline	ND		21.3	5.79	
Dimethylphthalate	ND		107	20.9	
Acenaphthylene	ND		21.3	6.28	
2,6-Dinitrotoluene	ND		53.3	11.4	
3-Nitroaniline	NĎ		107	31.2	
Acenaphthene	ND		21.3	5.47	
2,4-Dinitrophenol	ND		533	74.5	
4-Nitrophenol	ND		533	87.3	
Dibenzofuran	ND		53.3	4.92	
2,4-Dinitrotoluene	ND		107	18.1	
Diethylphthalate	ND		107	38.5	
4-Chlorophenylphenylether	ND		107	2 2.9	
Fluorene	ND		21.3	6.89	
4-Nitroaniline	ND		213	43.7	
4,6-Dinitro-2-methylphenol	ND		107	19.2	
N-Nitrosodiphenylamine	ND		21.3	6.1	
4-Bromophenylphenylether	ND		107	19.6	
Hexachlorobenzene	ND		21.3	5.64	_
Pentachlorophenol		280000	107	20.7	D100
Phenanthrene	ND		21.3	6.33	
Anthracene	ND		21.3	4.05	
Di-n-butylphthalate	ND		107	19.4	
Fluoranthene	ND		21.3	10.8	
Pyrene		812	21.3	3.62	
Butylbenzylphthalate	ND		213	22.8	
3,3'-Dichlorobenzidine	ND		213	46.3	
Benzo(a)anthracene	ND		21.3	10.8	
Chrysene	ND		21.3	7.62	
bis(2-Ethylhexyl)phthalate	ND		213	19.5	
Di-n-octylphthalate	ND		213	19.6	
Benzofluoranthenes	ND		42.6	9.66	
Benzo(a)pyrene	ND		21.3	6.75	
Indeno(1,2,3-cd)pyrene	ND		21.3	4.86	
Dibenz(a,h)anthracene	ND		21.3	6.62	
Benzo(g,h,i)perylene	ND		21.3	5.13	

00052

er.	Herrera Environmental Consultants
Client Name:	
Client ID:	SASBH0501
Lab ID:	128479-28
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/25/2005
% Solids	93.78
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
2 - Fluorophenol	116	-	36	145	
Phenol - d5	95.4		38	149	
2 - Fluorobiphenyl	101		42	140	

	Result			
Analyte	(ug/kg)	RL	MDL	Flags
Pentachiorophenol	10300	103	19,9	,D10

2/2/12/07

e	tioners Environmental Consultante
Client Name:	Herrera Environmental Consultants
Client ID:	SASBH0604
Lab ID:	128479-29
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/26/2005
% Solids	91.09
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	123	_	36	145
Phenol - d5	99.2		38	149
2 - Fluorobiphenyl	108		42	140

Sample results are on a dry weight basis.

.

	Result		
Analyte	(ug/kg)	RL	MDL Flags
Pentachlorophenol	235	105	20.4

3,2112106

e	
Client Name:	Herrera Environmental Consultants
Client ID:	SASBH0704
Lab ID:	128479-30
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/26/2005
% Solids	81.63
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	Recovery Limits	
Surrogate 2 - Fluorophenol Phenol - d5	% Recovery 114 105	Flags	Low 36 38	High 145 149	
2 - Fluorobiphenyl	96.6		42	140	

	Result			7 1
Analyte Pentachlorophenol	(ug/kg) 1390	RL 120	MDL 23,3	Flags
r entabligiophoner				

35-2112105

- مع	
Client Name:	Herrera Environmental Consultants
Client ID:	SASBH0801
Lab ID:	128479-31
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/26/2005
% Solids	. 83.8
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	118		36	145
Phenal - d5	108		38	149
2 - Fluorobiphenyl	104		42	140

	Result	DI	MDL.	Flags
Analyte Pentachlorophenol	(ug/kg) 5800	RL 111		DIO

2/12/05

۰۰ ه م	
Client Name:	Herrera Environmental Consultants
Client ID:	SASBP0102
Lab ID:	128479-32
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/26/2005
% Solids	82.89
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

				Recovery Limits		
Surrogate 2 - Fluorophenol Phenol - d5	% Recovery 122 104	Flags	Low 36 38	High 145 149		
2 - Fluorobiphenyl	105		42	140		

Analyte	Result (ug/kg) 52.4	RL 118	MDL 22.9	Flags J
Pentachlorophenol	52.4	140	2.2.0	Ū

95-2112105

e-	
Client Name:	Herrera Environmental Consultants
Client ID:	SASBP0104
Lab ID:	128479-33
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/26/2005
% Solids	91.67
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recove	ery Limits
Surrogate 2 - Fluorophenol Phenol - d5	% Recovery 121 107	Flags	Low 36 38	High 145 149
2 - Fluorobiphenyl	109		42	140

Analyte Pentachlorophenol	Result (ug/kg) ND	RL 102	MDL Flags 19.7

8/2/12/05

e	
Client Name:	Herrera Environmental Consultants
Client ID:	SASBP0204
Lab ID:	128479-34
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/26/2005
% Solids	85.04
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate 2 - Fluorophenol Phenol - d5	% Recovery 144 107	Flags	Low 36 38	High 145 149
2 - Fluorobiphenyl	108		42	140

Analyte	Result (ug/kg)	RL	MDL	Flags
Pentachlorophenol	ND	113	21.9	

2/2/12/07

· • • •		
Client Name:	Herrera Environmental Consultants	
Client ID:	SASBP0302	
Lab ID:	128479-35	
Date Received:	6/20/2005	
Date Prepared:	6/24/2005	
Date Analyzed:	6/26/2005	
% Solids	94.7	
Dilution Factor	1	

Semivolatile Organics by USEPA Method 8270

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	110		36	145
Phenol - d5	93.9		38	149
2 - Fluorobiphenyl	97.4		42	140

Sample results are on a dry weight basis.

.

	Result		
Analyte	(ug/kg)	RL	MDL Flags
Pentachlorophenol	20500	95.3	18.5 -D1 0

35-112105

.

.

مم	
Client Name:	Herrera Environmental Consultants
Client ID:	SASBP0401
Lab ID:	128479-36
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/26/2005
% Solids	90
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	145		36	145
Phenol - d5	115		38	149
2 - Fluorobiphenyl	108		42	140

	Result	-	1101	
Analyte	(ug/kg)	RL	MDL	Flags
Pentachlorophenol	56	109	21.1	J

05/21/2/05

Client Name: Client ID:	Herrera Environmental Consultants SASBP0505 128479-37
Lab ID: Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/28/2005
% Solids	84.53
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits		
Surrogate 2 - Fluorophenol Phenol - d5	% Recovery 92.8 103	Flags	Low 36 38	High 145 149	
2 - Fluorobiphenyl	107		42	140	

	Result		
Analyte	(ug/kg)	RL 116	MDL. Flags 22.5
Pentachlorophenol	ND	110	12.0

9,2112105

e	
Client Name:	Herrera Environmental Consultants
Client ID:	SASBP0604
Lab ID:	128479-38
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/26/2005
% Solids	73.01
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	129		36	145
Phenol - d5	118		38	149
2 - Fluorobiphenyl	99.7		42	140

	Result		
Analyte Pentachlorophenol	(ug/kg) 34.7	RL 128	MDL Flags 24.8 J
Fentachiorophenor			

of 2/12/04

Client Name:	Herrera Environmental Consultants
Client ID:	SASBW0704
Lab ID:	128479-39
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/26/2005
% Solids	89.95
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	Hìgh
2 - Fluorophenol	113		36	145
Phenol - d5	100		38	149
2 - Fluorobiphenyl	95.3		42	140

Sample results are on a dry weight basis.

	Result	D		Flaga
Analyte	(ug/kg)	RL	MDL	Flags
Pentachlorophenol	ND	109	21.2	

۰.

95-2112104

Client Name:	Herrera Environmental Consultants
Client ID:	SASBW0804
Lab ID:	12847 9- 40
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/26/2005
% Solids	81,35
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	139		36	145
Phenol - d5	118		38	149
2 - Fluorobiphenyl	103		42	140

	Result			
Analyte	(ug/kg)	RL	MDL	Flags
Pentachlorophenol	ND	112	21.8	

942112105

- هم	
Client Name:	Herrera Environmental Consultants
Client ID:	SASBW0806
Lab ID:	128479-41
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/26/2005
% Solids	79.3
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

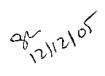
			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	137		36	145
Phenol - d5	112		38	149
2 - Fluorobiphenyl	105		42	140

	Result		
Analyte	(ug/kg)	RL	MDL Flags
Pentachlorophenol	ND	123	23.9

9-21/2105

Client Name:	Herrera Environmental Consultants
Client ID:	SASSW0200
Lab ID:	128479-42
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/27/2005
% Solids	87.37
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270


			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	99.5		36	145
Phenol - d5	112		38	149
Nitrobenzene - d5	103		38	141
2 - Fluorobiphenyl	97.1		42	140
2,4,6 - Tribromophenol	95.5		28	143
p - Terphenyl - d14	106		42	151

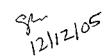
	Result		
Analyte	(ug/kg)	RL	MDL Flags
Phenol	ND	57.1	8.25
bis(2-Chloroethyl)ether	ND	114	17.9
2-Chloropheno!	ND	57.1	7.68
1,3-Dichlorobenzene	ND	57.1	9.72
1,4-Dichlorobenzene	NÐ	57.1	9.6
Benzyl Alcohol	ND	57.1	22.7
1,2-Dichlorobenzene	ND	57.1	7.75
2-Methylphenol	ND	57.1	10.8
bis(2-Chloroisopropyl)ether	ND	285	91.2
3-&4-Methylphenol	ND	57.1	13.5
N-nitroso-di-n-propylamine	ND	57.1	15.3
Hexachloroethane	ND	57.1	19.3
Nitrobenzene	ND	114	34.4
Isophorone	ND	114	5,75
2-Nitrophenol	ND	57.1	13
2,4-Dimethylphenol	ND	22.8	8.73
Benzoic Acid	ND	685	183
bis(2-Chloroethoxy)methane	ND	114	21.9
2,4-Dichlorophenol	ND	57.1	10.1
1,2,4-Trichlorobenzene	ND	57.1	9.69
Naphthalene	ND	22.8	10.1
4-Chioroaniiine	ND	114	10.6
Hexachlorobutadiene	ND	57.1	8.34
4-Chloro-3-methylphenol	ND	57.1	10.2
2-Methyinaphthalene	ND	22.8	5.93
Hexachlorocyclopentadiene	ND	57.1	9.05

07,2112105

Semivolatile Organics by USEPA Method 8270 data for 128479-42 continued...

	Result			
Analyte	(ug/kg)		MDL	Flags
2,4,6-Trichlorophenol	ND	57.1		
2,4,5-Trichlorophenol	ND	57.1		
2-Chloronaphthalene	ND	22.4		
2-Nitroaniline	ND	22.0		
Dimethylphthalate	ND	114		
Acenaphthylene	ND	22.3		
2,6-Dinitrotoluene	ND	57.		
3-Nitroaniline	ND	11		
Acenaphthene	ND	22.		
2,4-Dinitrophenol	ND	57		
4-Nitrophenol	ND	57		
Dibenzofuran	ND	57.		
2,4-Dinitrotoluene	ND	11		
Diethylphthalate	ND	11		
4-Chiorophenylphenylether	ND	11		
Fluorene	ND	22.		
4-Nitroaniline	ND	22		
4,6-Dinitro-2-methylphenol	ND	11		
N-Nitrosodiphenylamine	ND	22.		
4-Bromophenylphenylether	ND	11		
Hexachlorobenzene	ND	22.		
Pentachlorophenol		421 11		
Phenanthrene		7.85 22		J
Anthracene	ND	22		
Di-n-butylphthalate	ND	11		
Fluoranthene	ND	22		
Pyrene	ND	22		
Butylbenzylphthalate	ND	22		
3,3'-Dichlorobenzidine	ND	22		
Benzo(a)anthracene	ND	22		
Chrysene	ND	22		
bis(2-Ethylhexyl)phthalate		20.8 228 U 22		181-
Di-n-octylphthalate	ND	22		
Benzofluoranthenes	ND	45		
Benzo(a)pyrene	ND	22		
Indeno(1,2,3-cd)pyrene	ND	22		
Dibenz(a,h)anthracene	ND	22		
Benzo(g,h,i)perylene	ND	22	.8 5.49	

Client Name:	Herrera Environmental Consultants
Client ID:	SASSW0300
Lab ID:	128479-43
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/27/2005
•	6/27/2005 88.11 1


Semivolatile Organics by USEPA Method 8270

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	91.6		36	145
Phenol - d5	108		38	149
Nitrobenzene - d5	99.2		38	141
2 - Fluorobiphenyl	86.2		42	140
2,4,6 - Tribromophenol	87.5		28	143
p - Terphenyl - d14	88.2		42	151

	Result		 -
Analyte	(ug/kg)	RL	MDL Flags
Phenol	ND	56	8.09
bis(2-Chloroethyl)ether	ND	112	17.6
2-Chlorophenol	ND	56	7.53
1,3-Dichlorobenzene	ND	56	9.54
1,4-Dichlorobenzene	ND	56	9.41
Benzyl Alcohol	ND	56	22.3
1,2-Dichlorobenzene	ND	5 6	7.6
2-Methylphenol	ND	56	10.6
bis(2-Chloroisopropyl)ether	ND	280	89.4
3-&4-Methylphenol	ND	56	13.2
N-nitroso-di-n-propylamine	ND	56	15
Hexachloroethane	ND	56	18.9
Nitrobenzene	ND	112	33.7
Isophorone	ND	112	5.64
2-Nitrophenol	ND	56	12.8
2,4-Dimethylphenol	NÐ	22.4	8.56
Benzoic Acid	ND	672	179
bis(2-Chloroethoxy)methane	ND	112	21.5
2,4-Dichlorophenol	ND	56	9.93
1,2,4-Trichlorobenzene	ND	56	9.5
Naphthalene	ND	22.4	9.92
4-Chloroaniline	ND	112	10.4
Hexachlorobutadiene	ND	56	8.18
4-Chioro-3-methylphenol	ND	56	10
2-Methylnaphthalene	ND	22.4	5.82
Hexachlorocyclopentadiene	ND	56	8.88

Semivolatile Organics by USEPA Method 8270 data for 128479-43 continued...

	I	Result			
Analyte	(ug/kg)	RL	MDL	Flags
2,4,6-Trichlorophenol	ND		56	8.85	
2,4,5-Trichlorophenol	ND		56	8.69	
2-Chloronaphthalene	ND		22.4	7.56	
2-Nitroaniline	ND		22.4	6.08	
Dimethyiphthalate	ND		112	21.9	
Acenaphthylene	ND		22.4	6.59	
2,6-Dinitrotoluene	ND		56	12	
3-Nitroaniline	ND		112	32.8	
Acenaphthene	ND		22.4	5.74	
2,4-Dinitrophenol	ND		560	78.2	
4-Nitrophenol	ND		560	91.7	
Dibenzofuran	ND		56	5.17	
2,4-Dinitrotoluene	ND		112	19	
Diethylphthalate	ND		112	40.4	
4-Chlorophenylphenylether	ND		112	24.1	
Fluorene	ND		22.4	7.23	
4-Nitroaniline	ND		2.24	45.9	
4,6-Dinitro-2-methylphenol	ND		112	20.1	
N-Nitrosodiphenylamine	ND		22.4	6.4	
4-Bromophenylphenylether	ND		112	20.6	
Hexachiorobenzene	ND		22.4	5.92	
Pentachlorophenol		86.1	112	21.7	J
Phenanthrene	ND		22.4	6.65	
Anthracene	ND		22.4	4.25	
Di-n-butylphthalate	ND		1 12	20.4	
Fluoranthene	ND		22.4	11.3	
Pyrene	ND		22.4	3.81	
Butylbenzylphthalate	ND		224	24	
3,3'-Dichlorobenzidine	ND		224	48.6	
Benzo(a)anthracene	ND		22.4	11.3	
Chrysene	ND		22.4	8	
bis(2-Ethylhexyl)phthalate		182 224		20.5	JBT
Di-n-octylphthalate	ND		224	20.6	
Benzofluoranthenes	ND		44.8	10.1	
Benzo(a)pyrene	ND		22.4	7.09	
Indeno(1,2,3-cd)pyrene	ND		22.4	5.1	
Dibenz(a,h)anthracene	ND		22.4	6.95	
Benzo(g,h,i)perylene	ND		22.4	5.38	

Client Name:	Herrera Environmental Consultants
Client ID:	SASSW0300D
Lab ID:	128479-44
Date Received:	6/20/2005
Date Prepared:	6/24/2005
Date Analyzed:	6/27/2005
% Solids	86.59
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenol	76.4		36	145
Phenal - d5	88.4		38	149
Nitrobenzene - d5	84.1		38	141
2 - Fluorobiphenyl	89.5		42	140
2,4,6 - Tribromophenol	85.7		28	143
p - Terphenyl - d14	94.5		42	151

Sample results are on a dry weight basis.

	Result		
Analyte	(ug/kg)	RL	MDL Flags
Phenol	ND	53.2	7.69
bis(2-Chloroethyl)ether	ND	106	16.7
2-Chlorophenol	ND	53.2	7.16
1,3-Dichlorobenzene	ND	53.2	9.06
1,4-Dichlorobenzene	ND	53.2	8.95
Benzyi Alcohol	ND	53.2	21.2
1,2-Dichlorobenzene	ND	53.2	7.22
2-Methylphenol	ND	53,2	10
bis(2-Chloroisopropyl)ether	ND	266	85
3-&4-Methylphenol	ND	53.2	12.6
N-nitroso-di-n-propylamine	ND	53.2	14.3
Hexachloroethane	ND	53.2	18
Nitrobenzene	ND	106	32
Isophorone	ND	106	5,36
2-Nitrophenol	ND	53.2	12.1
2,4-Dimethylphenol	ND	21.3	8.14
Benzoic Acid	ND	638	170
bis(2-Chloroethoxy)methane	ND	106	20.4
2,4-Dichlorophenol	ND	53.2	9.44
1,2,4-Trichlorobenzene	ND	53.2	9.03
Naphthalene	ND	21.3	9,43
4-Chioroaniline	ND	106	9,89
Hexachlorobutadiene	ND	53.2	7.78
4-Chloro-3-methylphenol	ND	53.2	9.5
2-Methylnaphthalene	ND	21.3	5.53
Hexachlorocyclopentadiene	ND	53.2	8.44

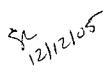
.

Semivolatile Organics by USEPA Method 8270 data for 128479-44 continued...

	Result		
Analyte	(ug/kg	•	MDL Flags
2,4,6-Trichlorophenol	ND	53.2	8.42
2,4,5-Trichlorophenol	ND	53.2	8.26
2-Chioronaphthalene	ND	21.3	7.18
2-Nitroaniline	ND	21.3	5.78
Dimethylphthalate	ND	106	20.9
Acenaphthylene	ND	21.3	6.27
2.6-Dinitrotoluene	ND	53.2	11.4
3-Nitroaniline	ND	106	31.2
Acenaphthene	ND	21.3	5.46
2,4-Dinitrophenol	ND	532	74.4
4-Nitrophenol	ND	532	87.1
Dibenzofuran	ND	53.2	4.92
2,4-Dinitrotoluene	ND	106	18.1
Diethylphthalate	ND	106	38.4
4-Chlorophenylphenylether	ND	106	22.9
Fluorene	ND	21.3	6.87
4-Nitroaniline	ND	213	43.6
4,6-Dinitro-2-methylphenol	ND	106	19.2
N-Nitrosodiphenylamine	ND	21.3	6.09
4-Bromophenylphenylether	ND	106	19.6
Hexachlorobenzene	ND	21.3	5.63
Pentachlorophenol		56.2 106	20.6 J
Phenanthrene	ND	21.3	6.32
Anthracene	ND	21.3	4.04
Di-n-butylphthalate	ND	106	19.4
Fluoranthene	ND	21.3	10.7
Pyrene	ND	21.3	3.62
Butylbenzylphthalate	ND	213	22.8
3,3'-Dichlarobenzidine	ND	213	46.2
Benzo(a)anthracene	ND	21.3	10.7
Chrysene	ND	21.3	7.61
bis(2-Ethylhexyl)phthalate		89.5 213 4 213	19.5 JBT
Di-n-octylphthalate	ND	213	19.6
Benzofluoranthenes	ND	42.6	9.64
Benzo(a)pyrene	ND	21.3	6.73
Indeno(1,2,3-cd)pyrene	ND	21.3	4.85
Dibenz(a,h)anthracene	ND	21.3	6.61
Benzo(g,h,i)perylene	ND	21.3	5.12

82 12/12/05

Semivolatile Organics by USEPA Method 8270


			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
2 - Fluorophenot	71.4		36	145
Phenol - d5	88.8		38	149
Nitrobenzene - d5	110		38	141
2 - Fluorobiphenyl	102		42	140
	0	X9	28	143
2,4,6 - Tribromophenol p - Terphenyl - d14	160	X9	42	151

	Result	R1.	MDL Flags
Analyte	(ug/kg)	507	73.3
Phenol	ND	1010	159
bis(2-Chloroethyl)ether	ND	507	68.3
2-Chlorophenol	ND	507	66.4
1,3-Dichlorobenzene	ND	507	85.3
1,4-Dichlombenzene	ND	507 507	202
Benzyl Alcohol	ND	507	68.9
1,2-Dichlorobenzene	ND	507	95.8
2-Methylphenol	ND	2540	810
bis(2-Chloroisopropyl)ether	ND	2540	120
3-&4-Methylphenol	ND		136
N-nitroso-di-n-propylamine	ND	507	171
Hexachloroethane	ND	507	305
Nitrobenzene	ND	1010	51.1
Isophorone	ND	1010	116
2-Nitrophenol	ND	507	
2,4-Dimethylphenol	ND	203	77.6
Benzoic Acid	ND	6090	1620
bis(2-Chloroethoxy)methane	ND	1010	195
2,4-Dichlorophenol	ND	507	90
1,2,4-Trichlorobenzene	ND	507	86.1
Naphthalene	ND	203	89.9
4-Chloroaniline	ND	1010	94.3
Hexachlorobutadiene	ND	507	74.1
4-Chloro-3-methylphenol	ND	507	90.6
2-Methylnaphthalene	ND	203	52.7
Hexachlorocyclopentadiene	ND	507	80.4

3/21/2/05

Semivolatile Organics by USEPA Method 8270 data for 128479-45 continued...

	Resi		RL.	MDL	Flags
Analyte	(ug/k	(g)	FL 507	80.2	, lugo
2,4,6-Trichlorophenol	ND		507	78.7	
2,4,5-Trichlorophenol	ND		203	68.5	
2-Chloronaphthalene	ND		203	55.1	
2-Nitroaniline	ND		1010	199	
Dimethylphthalate	ND		203	59.7	
Acenaphthylene	ND		203 507	109	
2,6-Dinitrotoluene	ND		1010	297	
3-Nitroaniline	ND		203	52	
Acenaphthene	ND		5070	709	
2,4-Dinitrophenol	ND		5070	831	
4-Nitrophenol	ND		5070	46.9	
Dibenzofuran	ND		1010	172	
2,4-Dinitrotoluene	ND		1010	366	
Diethylphthalate	ND			218	
4-Chlorophenylphenylether	ND		1010	65.5	
Fluorene	ND		203	416	
4-Nitroaniline	ND		2030	183	
4,6-Dinitro-2-methylphenol	ND		1010	58	
N-Nitrosodiphenylamine	ND		203	187	
4-Bromophenylphenylether	ND		1010	53.7	
Hexachlorobenzene	ND		203	197	JE10
Pentachlorophenol		73500	1010	60,3	
Phenanthrene		2970	203	38.5	
Anthracene		426	203	185	
Di-n-butylphthalate	ND		1010	103	
Fluoranthene	ND		203	34.5	
Pyrene	ND		203	217	
Butylbenzylphthalate	ND		2030	440	
3,3'-Dichlorobenzidine	ND		2030	102	
Benzo(a)anthracene	ND		203	72.5	
Chrysene	ND		203	186	
bis(2-Ethylhexyl)phthalate	ND		2030	187	
Di-n-octylphthalate	ND		2030	91.9	
Benzofluoranthenes	ND		406	64.2	
Benzo(a)pyrene	ND		203	46.3	
Indeno(1,2,3-cd)pyrene	ND		203	40.3	
Dibenz(a,h)anthracene	ND		203	48.8	
Benzo(g,h,i)perylene	ND		203	40,0	

Client Name:	Herrera Environmental Consultants
Client ID:	SAWCH1104
Lab ID:	12847 9- 46
Date Received:	6/20/2005
Date Prepared:	7/1/2005
Date Analyzed:	7/2/2005
% Solids	-
Dilution Factor	1

TCLP Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate 2 - Fluorophenol Phenol - d5	<mark>% Recovery</mark> 40.7 74.6	Flags	Low 2 1	High 120 102
2 - Fluorobiphenyl	48.9		35	143

Analyte	Result (ug/L)	RL	MDL Flags
Pentachlorophenoi	ND	20	20

38,2112105

Herrera Environmental Consultants SAWCH1201 128479-47 6/20/2005 6/24/2005 6/27/2005 32.92 1
1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate 2 - Fluorophenol Phenol - d5	% Recovery 85.5 84.9	Flags	Low 36 38	High 145 149
2 - Fluorobiphenyl	89.4		42	140

Analyte	Result (ug/kg)	RL	MDL	Flags
Pentachlorophenol	ND	577	112	

9,2112105

Client Name Project Name

Date Received

Herrera Environmental Consultants Colville 3/00-01732-066 06-20-05

Sample Preparation Information for Toxicity Characteristic Leaching Procedure (TCLP) EPA Method 1311

Client Sample ID Lab ID SAWCH1201 128479-47

% Solids:	100
No. of Extractions:	1
Type of Extraction(s):	Rotary
Extraction Fluid:	#1
Date Filtered:	06-28-05

Client Name:	Herrera Environmental Consultants
Client ID:	SAWCH1201 128479-47
Lab ID: Date Received:	6/20/2005
Date Prepared:	7/1/2005
Date Analyzed: % Solids	7/2/2005
% Solids Dilution Factor	1

TCLP Semivolatlle Organics by USEPA Method 8270

			Recovery Limits	
Surrogate 2 - Fluorophenol Phenol - d5	% Recovery 33.2 68.6	Flags	Low 2 1	High 120 102
2 - Fluorobiphenyl	37.1		35	143

A wala da	Result (ug/L)	RL	MDL Flags
Analyte Pentachiorophenol	ND	20	20

of playor

Client Name Project Name Date Received Herrera Environmental Consultants Colville 3/00-01732-066 06-20-05

Sample Preparation Information for Toxicity Characteristic Leaching Procedure (TCLP) EPA Method 1311

Client Sample ID Lab ID SAWCH1104 128479-46

% Solids:	100
No. of Extractions:	1
Type of Extraction(s):	Rotary
Extraction Fluid:	#1
Date Filtered:	06-28-05

Client Name: Client ID: Lab ID: Date Received: Date Prepared:	Herrera Environmental Consultants SAWCH1104 128479-46 6/20/2005 6/24/2005 6/27/2005
Date Analyzed: % Solids	6/27/2005 27.86
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate 2 - Fluorophenol Phenol - d5	% Recovery 83.6 99.6	Flags	Low 36 38	High 145 149
2 - Fluorobiphenyl	106		42	140

Analyte Pentachlorophenol	Result (ug/kg) 1660	RL 645	MDL Flags 125
Pentachiorophenol	1000		

20/21/2/04

Herrera Environmental Consultants, Inc.

Memorandum

То	Project File C00-01732-066
СС	Paula Fedirchuk, Herrera Environmental Consultants
From	Gina Catarra and Rob Zisette, Herrera Environmental Consultants
Date	December 19, 2005
Subject	Petroleum Hydrocarbon Data Validation for Colville Post and Pole, TDD-#05-03-0009

This memorandum presents a review of soil, sediment, and ground water data collected from the Colville Post and Pole Site located in Stevens County, Washington. A total of 16 soil samples and 30 ground water samples were collected between June 13 and 17, 2005. STL Seattle of Tacoma, Washington analyzed the samples for petroleum hydrocarbons using Ecology's NWTPH-Dx Method (Ecology 1997).

The laboratory's performance was reviewed in accordance with quality control (QC) specifications outlined in: the *Colville Post and Pole Phase II Removal Site Evaluation Site-Specific Sampling Plan* (SSSP) (Herrera 2005); the *Contract Laboratory Program National Functional Guidelines for Organic Data Review* (Functional Guidelines) (USEPA 1999), and the specified analytical method (Ecology 1997).

Quality control and raw laboratory data submitted by the laboratory were reviewed. Data qualifiers (flags) were added to the sample results in the laboratory reports. Data validation results are summarized below, followed by a summary of laboratory communications and definitions of data qualifiers.

Data Validation

Custody, Preservation, Holding Times, and Completeness—Acceptable

Sample custody was properly maintained from sample collection to receipt at the laboratory. The samples were properly preserved and were received intact at the laboratory. The reported samples were extracted and analyzed within the required holding time of 7 days for water samples and 14 days for soil samples from collection to extraction, and 40 days from extraction to analysis. The laboratory data package is complete and contains test results for all samples listed on the chain-of-custody (COC).

1

Initial Calibration—Acceptable

Initial calibrations were analyzed at the required frequency. Initial calibration criteria (i.e., linear correlation of greater than or equal to 0.990 and percent relative standard deviation [RSD] values less than or equal to 15 percent) established by method were met.

Continuing Calibration—Acceptable

Continuing calibration verification (CCV) standards were analyzed at the required frequency. Continuing calibration criteria (i.e., relative percent difference values less than or equal to 15 percent) established by the method were met.

Blank Analysis—Acceptable

Method blanks were extracted and analyzed at the required frequency. The method blanks did not contain reportable levels of the target compounds and no data have been qualified.

Surrogate Analysis—Acceptable with Qualification

One surrogate compound (o-terphenyl) was analyzed with each sample and blank in accordance with method requirements. All surrogate recovery values were within the control limits (50 to 150 percent) established by the method with the exceptions noted below.

Recovery of surrogate o-terphenyl did not meet the control limit (50 to 150 percent) for samples NAGWP0705 (22 percent), SAGWP0203 (44 percent), PASBP1204 (46 percent), PASBP1204D (48 percent), and PASBP1306 (45 percent). No data were qualified for samples PASBP1204, SAGWP0203, PASBP1204D, and PASBP1306 because the exceedance was marginal (ranging from 2 to 6 percent). Results for sample NAGWP0705 were qualified as an estimated reporting limit (UJ) because the exceedance was biased low and the target compounds were not detected above the reporting limit.

Surrogate o-terphenyl was not recovered for sample PASSP1300. No data were qualified because sample PASSP1300 was analyzed at a 10 times dilution due to the high concentration of target compounds in the native sample.

Matrix Spike Analysis—Acceptable with Discussion

Matrix spike/matrix spike duplicate (MS/MSD) results were analyzed and reported at the required frequency. MS/MSD results were reported for ground water samples NAGWP0705 and SAGWW0203 and for soil samples PASSP1300, SASBH0501, and SASBH0801. The percent recovery values (ranging from 77 to 102 percent for water and ranging from 80 to 113 for soil) met the control limits (50 to 150 percent) established by the method with the exception noted below.

Diesel was not recovered in the MS or the MSD for sample PASSP1300 because the concentration of diesel in the native sample was more than four times greater than the spike amount added for the MS/MSD analysis. No data were qualified because all other criteria were met.

Duplicate Analysis—Acceptable

Matrix spike/matrix spike duplicate (MS/MSD) results were analyzed and reported at the required frequency. MS/MSD results were reported for ground water samples NAGWP0705 and SAGWW0203 and for soil samples PASSP1300, SASBH0501, and SASBH0801. The relative percent difference (RPD) values (ranging from 0 to 22 percent) met the control limits (less than 27 percent) established by the laboratory.

Laboratory Control Sample Analysis—Acceptable

Blank spike/blank spike duplicates were extracted and analyzed at the frequency required by the analytical method. The percent recovery values for the blank spikes (ranging from 94 to 112 percent) met the laboratory control limits (ranging from 70 to 125 percent) and no data were qualified.

Laboratory Reporting Limits—Acceptable with Qualification

Reporting limits (RLs) for the petroleum hydrocarbon compounds met the method specified RLs.

Target compounds detected at concentrations between the method detection limit (MDL) and the RL were reported by the laboratory. The method detection limit and the reporting limit represent different levels of accuracy. Positive values less than the reporting limit have been qualified (flagged) as estimated (J) by the laboratory.

Compounds Identification—Acceptable with Qualification

The laboratory identified several samples with detected concentrations for diesel and motor oil compounds that do not match the standard petroleum elution patterns. These results have been qualified as estimated (J) as shown in the following table.

Sample ID	Compound	Criteria	Qualifier
SAGWP0104	#2 Diesel	Does not match standard petroleum elution pattern	J
SAGWP0104	Motor oil	Does not match standard petroleum elution pattern	J
SAGWP0203	#2 Diesel	Does not match standard petroleum elution pattern	J
SAGWP0302	#2 Diesel	Does not match standard petroleum elution pattern	J
SAGWP0505	#2 Diesel	Does not match standard petroleum elution pattern	J
SAGWP0602	#2 Diesel	Does not match standard petroleum elution pattern	J
SAGWP0602	Motor oil	Does not match standard petroleum elution pattern	J
NAGWP0805	#2 Diesel	Does not match standard petroleum elution pattern	J
NAGWP0805	Motor oil	Does not match standard petroleum elution pattern	J
NAGWP0906	#2 Diesel	Does not match standard petroleum elution pattern	J
NAGWW0605	#2 Diesel	Does not match standard petroleum elution pattern	J
NAGWW0504	#2 Diesel	Does not match standard petroleum elution pattern	J
PAGWP1308	#2 Diesel	Does not match standard petroleum elution pattern	J
PAGWP1109	#2 Diesel	Does not match standard petroleum elution pattern	J
NASSW0600	#2 Diesel	Does not match standard petroleum elution pattern	J
NASSW0600	Motor oil	Does not match standard petroleum elution pattern	J
PASSP1200	#2 Diesel	Does not match standard petroleum elution pattern	J
PASSP1200	Motor oil	Does not match standard petroleum elution pattern	J
PASSP1200D	#2 Diesel	Does not match standard petroleum elution pattern	J
PASSP1200D	Motor oil	Does not match standard petroleum elution pattern	J
SASBH0501	#2 Diesel	Does not match standard petroleum elution pattern	J
SASBH0501	Motor oil	Does not match standard petroleum elution pattern	J
SASBH0801	#2 Diesel	Does not match standard petroleum elution pattern	J
SASBH0801	Motor oil	Does not match standard petroleum elution pattern	J

Overall Assessment of Data Quality

The usability of the data is based on the guidance documents listed above. Upon consideration of the information presented here, the data are acceptable as qualified.

Laboratory Communications

The laboratory was not contacted regarding the semivolatile organic compounds analyses.

Definition of Data Qualifiers

The following data validation qualifiers were used in the review of this data set. These qualifiers are from the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA 1999).

- **J** The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- **R** The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

References

Ecology. 1997. Analytical Methods for Petroleum Hydrocarbons. Publication No. ECY 97-602. Washington State Department of Ecology Toxics Cleanup Program and the Ecology Environmental Laboratory. June 1997.

Herrera. 2005. Colville Post and Pole Phase II Removal Site Evaluation Site-Specific Sampling Plan (SSSP). Prepared by Herrera Environmental Consultants, Inc., for U.S. Environmental Protection Agency, Region 10, Seattle, Washington. June 2005.

USEPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA 540/R-99/008. U.S. Environmental Protection Agency, Washington, D.C. October 1999.

- مع	
Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor	Herrera Environmental Consultants RB-1 128438-01 6/17/2005 6/21/2005 - 1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	87.6		50	150

Analuto	Result (mg/L)	RL	MDL Flags
Analyte #2 Dieseł Motor Oil	0.102 ND	0.25 0.499	0.0765 J 0.0948

9 12/12/5×

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids	Herrera Environmental Consultants SAGWP0104 128438-02 6/17/2005 6/21/2005 6/21/2005
Dilution Factor	1 .

Diesel and Motor Oll by NWTPH-Dx Modified

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
o-terpheny!	53.5		50	150

Analyte #2 Diesel	Result (mg/L) 0,606 0,606	RL 0.251 0.502	MDL 0.0768 0.0952	Flags X2 T X2 T	
Motor Oil	0.000	0.004	**	U	

cr 2112101

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor	Herrera Environmental Consultants SAGWP0203 128438-03 6/17/2005 6/21/2005 6/21/2005 1
Dilution Factor	1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limit		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	44.3	N	50	150	

Analyte #2 Diosel	Result (mg/L) 0.274	RL 0.241	MDL 0.0737	Flags
#2 Diesel Motor Oil	0.443	0.481	0.0914	J

8/2112/06

Client Name: Client ID:	Herrera Environmental Consultants SAGWP0404
Lab ID:	128438-04 6/17/2005
Date Received: Date Prepared:	6/21/2005
Date Analyzed:	6/21/2005
% Solids	•
Dilution Factor	l l
	Neter Oil by NWTPH-Dy Modified

2.

,

.

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	Hlgh
o-terphenyl	92.2		50	150

Analyte	Result (mg/L)	RL	MDL Flags	
#2 Diesel	0.0925	0.236	0.0724 J 0.0897	
Motor Oil	ND	0.473	0.0091	

01/21/2/05

,

Client Name:	Herrera Environmental Consultants
Client ID:	SAGWP0302
Lab ID:	128438-05
Date Received:	6/17/2005
Date Prepared:	6/21/2005
Date Analyzed:	6/21/2005
% Solids	-
Dilution Factor	1

e...

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	90.4		50	150

Analyte #2 Diesel	Result (mg/L) 0.271 0.277	RL 0.238 0.477	MDL 0.073 0.0905	Flags X2 () J
Motor Oil	0.277	0.417	010000	

8-2112105

Client Name:	Herrera Environmental Consultants
Client ID:	SAGWP0505
Lab ID:	128438-06
Date Received:	6/17/2005
Date Prepared:	6/21/2005
Date Analyzed:	6/21/2005
% Solids	-
Dilution Factor	1

. . **.**

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	87.6		50	150

Analyte #2 Diesel	Result (mg/L) 0.352 0.205	RL 0.241 0.483	MDL 0.0739 0.0916	Flags X2j J
Motor Oil	0.205	0.483	0,0916	J

a nintor

في	,
Client Name:	Herrera Environmental Consultant:
Client ID:	SAGWP0602
Lab ID:	128438-07
Date Received:	6/17/2005
Date Prepared:	6/21/2005
Date Analyzed:	6/21/2005
% Solids	-
Dilution Factor	1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terpheny!	54.6		50	150

Analyte #2 Diesel	Result (mg/L) 0.293 0.616	RL 0.243 0.485	MDL 0.0744 0.0922	Flags X2- X2-
-	+			

01/21/2/05

مي	
Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor	Herrera Environmental Consultants NAGWE805 128438-08 6/17/2005 6/21/2005 6/21/2005 - 1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	84.7		50	150

Analyte #2 Diesel	Result (mg/L) 1.07 1.25	RL 0.237 0.475	MDL 0.0728 0.0902	Flags X2 J X2 J
Motor Oil	1.25	0.475	0.0902	$\lambda z $

8/21/2/05

.

Client Name:	Herrera Environmental Consultar
Client ID:	NAGWP1005
Lab ID:	128438-09
Date Received:	6/17/2005
Date Prepared:	6/21/2005
Date Analyzed:	6/21/2005
% Solids	•
Dilution Factor	1

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	86.2		50	150

Analyte	Result (mg/L)	RL	MDL	Flags
#2 Diesel	0.121	0.237	0.0727	J
Motor Oil	0.114	0.474	0.0901	

34-2112105

Client Name:	Herrera Environmental Consultants
Client ID:	RB-2
Lab ID:	128438-10
Date Received:	6/17/2005
Date Prepared:	6/21/2005
Date Analyzed:	6/21/2005
% Solids	-
Dilution Factor	1

			Recove	ary Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	68.2		50	150

Analyte	Result (mg/L)	RL	MDL Flags
#2 Diesel	ND	0.251	0.0768
Motor Oil	ND	0.501	0.0951

9,212105

	STL Seattle	
Client Name: Client ID:	Herrera Environmental Consultants NAGWP0705	
Lab ID:	128439-01	
Date Received:	6/17/2005	
Date Prepared: Date Analyzed:	6/21/2005 6/21/2005	
% Solids	-	
Dilution Factor	1	

			Recove	ery Llmits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	22	ХЭ	50	150

		Result			
Analyte		(mg/L)	RL	MDL	Flags
#2 Diesel	_HÐ'	0.237 UJ	0,237	0.0725	
		0,473 UJ	0.473	0.0898	

8,212/05

Client Name:	Herrera Environmental Consultants
Client ID:	NAGWP0906
Lab ID:	128439-02
Date Received:	6/17/2005
Date Prepared:	6/21/2005
Date Analyzed:	6/21/2005
% Solids	-
Dilution Factor	1

<u>، م</u>

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	94.2		50	150

	Result			
Analyte	(mg/L)	RL	MDL	Flags
#2 Diesel	0.79	0.237	0.0726	X2 .)
Motor Oil	0.222	0.474	0.09	J

a/21/2/05

Client Name:	Herrera Environmental Consultants
Client ID:	SAGWW0703
Lab ID:	128474-01
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	-
Dilution Factor	1

- م

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	86.5		50	150

	Result		
Analyte	(mg/L)	RL	MDL Flags
#2 Diesel	ND	0.236	0.0724
Motor Oil	ND	0.473	0.0897

Client Name: Client ID:	Herrera Environmental Consultants NAGWW0603 128474-02
Lab ID: Date Received: Date Prepared:	6/20/2005 6/23/2005
Date Analyzed: % Solids	6/24/2005
Dilution Factor	1

e-

			Recov	ery Limits
Surrogate o-terphenyl	% Recovery 88.5	Flags	Low 50	High 150

Analyte #2 Diesel	Result (mg/L) 0.284	RL 0.236 0.473	MDL 0.0724 0.0897	Flags X2
Motor Oil	ND	0.473	0.0897	

Client Name:	Herrera Environmental Consultant
Client ID:	SAGWW0203
Lab ID:	128474-03
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	-
Dilution Factor	1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	81.7		50	150

Analyte	Result (mg/L)	RL	MDL Flags
#2 Diesel	ND	0.236	0.0723
Motor Oil	ND	0.472	0.0897

Client Name:	Herrera Environmental Consultants
Client ID:	NAGWW0403
Lab ID:	128474-04
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	-
Dilution Factor	1

e---

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	81.1		50	150

	Result		
Analyte	(mg/L)	RL	MDL Flags
#2 Diesel	ND	0.237	0.0726
Motor Oil	ND	0.474	0.09

Client Name:	Herrera Environmental Consultants
Client ID:	SAGWW0806
Lab ID:	128474-05
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	-
Dilution Factor	1

e-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	84.9		50	150

Analyte	Result (mg/L)	RL	MDL Flags
#2 Diesel	ND	0.237	0,0727
Motor Oil	ND	0.474	0.0901

Herrera Environmental Consultants	
NAGWW0504	
128474-06	
6/20/2005	
6/23/2005	
6/24/2005	
-	
· 1	

. - **م**و

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	79.6		50	150

	Result			
Analyte	(mg/L)	RL	MDL	Flags
#2 Dieset	0.283	0.237	0.0728	X2-1)
Motor Oil	0,0952	0.475	0.0902	J

Client Name:	Herrera Environmental Consultants
Client ID:	SAGWW0305
Lab ID:	128474-07
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	-
Dilution Factor	1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	77.7		50	150

	Result		
Analyte	(mg/L)	RL	MDL Flags
#2 Diesel	ND	0.238	0.0728
Motor Oil	ND	0.475	0.0902

Client Name:	Herrera Environmental Consultant
Client ID:	NAGWW0106
Lab ID:	128474-08
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	-
Dilution Factor	1

			Recove	ery Limits
Surrogate	<mark>% Recovery</mark>	Flags	Low	High
o-terphenyl	76		50	150

Analyte	Result (mg/L)	RL	MDL Flags
#2 Diesel	ND	0.237	0.0728
Motor Oil	ND	0.475	0.0902

Client Name:	Herrera Environmental Consultants
Client ID:	NAGWW0106D
Lab ID:	128474-09
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	•
Dilution Factor	1

. .

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	80.7		50	150

*	Result		
Analyte	(mg/L)	RL	MDL Flags
#2 Diesel	ND	0.236	0.0724
Motor Oil	ND	0.473	0.0897

Client Name:	Herrera Environmental Consultants
Client ID:	SAGWMW205
Lab ID:	1284 74 -10
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	-
Dilution Factor	1

.

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	78.9		50	150

	Result				
Analyte	(mg/L)		RL	MDL	Flags
#2 Diesel		0.212	0.239	0.0732	J
Motor Oil	ND		0.478	0.0907	

-

Client Name:	Herrera Environmental Consultants
Client ID:	SAGWMW407
Lab ID:	128474-11
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	-
Dilution Factor	1

e---

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	73.6		50	150

	Result		
Analyte	(mg/L)	RL	MDL Flags
#2 Diesel	ND	0.237	0.0725
Motor Oil	ND	0.473	0.0899

Client Name:	Herrera Environmental Consultants
Client ID:	SAGWMW105
Lab ID:	128474-1 2
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	-
Dilution Factor	1

e--

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	75.9		50	150

Analyte	Result (mg/L)	RL	MDL Flags
#2 Diesel	ND	0,237	0.0726
Motor Oil	ND	0.474	0.09

Client Name:	Herrera Environmental Consultant	
Client ID:	SAGWMW105D	
Lab ID:	128474-13	
Date Received:	6/20/2005	
Date Prepared:	6/23/2005	
Date Analyzed:	6/24/2005	
% Solids	-	
Dilution Factor	1	

. - ام

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	75		50	150

	Result		
Analyte	(mg/L)	RL	MDL Flags
#2 Diesel	ND	0.237	0.0725
Motor Oil	ND	0.473	0.0898

Client Name:	Herrera Environmental Consultants	
Client ID:	PAGWP1308	
Lab ID:	128474-14	
Date Received:	6/20/2005	
Date Prepared:	6/23/2005	
Date Analyzed:	6/24/2005	
% Solids	-	
Dilution Factor	1	

e--

,

			Recove	ery Llmits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	86		50	150

	Result			
Analyte	(mg/L)	RL	MDL	Flags
#2 Diesel	0.342	0,238	0.073	*2 .)
Motor Oil	ND	0.476	0,0904	

Client Name:	Herrera Environmental Consultants
Client ID:	PAGWP1109
Lab ID:	128474-15
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	•
Dilution Factor	1

. - م

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	79		50	150

	Result			
Analyte	(mg/L)	RL	MDL	Flags
#2 Diesel	0.734	0.239	0.0731	X2 J
Motor Oil	ND	0.477	0.0906	

.

Client Name:	Herrera Environmental Consultants
Client ID:	PAGWP1208
Lab ID:	128474-16
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/27/2005
% Solids	-
Dilution Factor	5

e.

			Recov	ery Limits
Surrogate	% Recovery	Fiags	Low	High
o-terphenyl	175	X9	50	1 50

	Result			
Analyte	(mg/L)	RL	MDL	Flags
#2 Diesel	32.9	1.18	0.361	
Motor Oil	1.84	2.36	0.447	J

Client Name:	Herrera Environmental Consultants
Client ID:	RB-3
Lab ID:	128474-17
Date Received:	6/20/2005
Date Prepared:	6/23/2005
Date Analyzed:	6/24/2005
% Solids	-
Dilution Factor	1

-م

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	75.5		50	150

	Result		
Analyte	(mg/L)	RL	MDL Flags
#2 Diesel	ND	0.249	0.0762
Motor Oil	ND	0.498	0.0945

e-

Client Name:	Herrera Environmental Consultants
Client ID:	PAGWP1109
Lab ID:	128474-15
Date Received:	6/20/2005
Date Prepared:	6/22/2005
Date Analyzed:	6/22/2005
% Solids	•
Dilution Factor	1

NWTPH-HCID - Hydrocarbon Identification Method for Water Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-bromo-4-fluorobenzene	34.4	X9	50	150
o-terphenyl	42.8	Х9	50	150

	Result		
Analyte	(mg/L)	RL	Flags
Gasoline (Toluene-nC12)	>0.0946	0.0946	
#2 Diesel (>nC12-nC24)	>0.237	0.237	
Motor Oil (>nC24-nC32)	>0.473	0.473	

Client Name: Client ID: Lab ID:	Herrera Environmental Consultants NASSP0700 128479-08
Date Received: Date Prepared:	6/20/2005 6/29/2005 6/29/2005
Date Analyzed: % Solids Dilution Factor	92.22 _ 1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	56.3		50	150

Sample results are on a dry weight basis.

Analyte	Result (mg/kg)	RL	MDL	Flags
#2 Diesel	8.13	24.7	5.94	J
Motor Oil	78.9	49.4	8.64	

.

er 21/2/05

Client Name:	Herrera Environmental Consultants
Client ID:	NASSP0800
Lab ID:	128479-09
Date Received:	6/20/2005
Date Prepared:	6/29/2005
Date Analyzed:	6/29/2005
% Solids	89.26
Dilution Factor	1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	59.4		50	150

Analyte	Result (mg/kg)	RL	MDL	Flags
#2 Diesel	25.7	26.4	6.35	J
Motor Oil	248	52.7	9.23	

25-2112105

	Listen - Carling - antal Canadianta
Client Name:	Herrera Environmental Consultants
Client ID:	NASSW0600
Lab ID:	128479-15
Date Received:	6/20/2005
Date Prepared:	6/29/2005
Date Analyzed:	6/29/2005
% Solids	82.97
Dilution Factor	1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	62.3		50	150

Analyte	Result (mg/kg)	RL	MDL	Flags
#2 Diesel	37.3	28.4	6.84	XZ
Motor Oil	153	56.8	9,94	X2 J

035-2112105

.

Client Name:	Herrera Environmental Consultants
Client ID:	PASBP1111
Lab ID:	128479-17
Date Received:	6/20/2005
Date Prepared:	6/29/2005
Date Analyzed:	6/30/2005
% Solids	86.3
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-temhenyl	113		50	150

Analyte	Result (mg/kg)	RL	MDL Flags
#2 Diesel	5590	130	31.3
Motor Oil	323	260	45.6

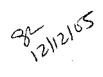
8/2/12/05

Client Name:	Herrera Environmental Consultants
Client ID:	PASBP1111D
Lab ID:	128479-18
Date Received:	6/20/2005
Date Prepared:	6/29/2005
Date Analyzed:	6/30/2005
% Solids	89.85
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

		Recove	ery Limits
% Recovery 113	Flags	Low 50	High 150
	-		% Recovery Flags Low

	Result	D'		Flags
Analyte	(mg/kg)	RL	MDL	гадъ
#2 Diesel	5820	117	28.2	
Motor Oil	225	234	41	J


05/2/12/155

Client Name: Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids	Herrera Environmental Consultants PASBP1204 128479-19 6/20/2005 6/29/2005 6/29/2005 64.41 1
Dilution Factor	1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	45.8	X9	50	150

Analyte	Result (mg/kg)	RL	MDL Flags
#2 Diesel	9.39	38.4	9.24 J
Motor Oil	ND	76.7	13.4

Client Name:	Herrera Environmental Consultants
Client ID:	PASBP1204D
Lab ID:	128479-20
Date Received:	6/20/2005
Date Prepared:	6/29/2005
Date Analyzed:	6/30/2005
% Solids	64.04
Dilution Factor	1

Diesel and Motor Oll by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	47.6	X9	50	150

	Result		
Analyte	(mg/kg)	RL	MDL Flags
#2 Diesel	ND	36.9	8.89
Motor Oil	ND	73,8	12.9

05-2112105

Client Name:	Herrera Environmental Consultants
Client ID:	PASBP1306
Lab ID:	128479-22
Date Received:	6/20/2005
Date Prepared:	6/29/2005
Date Analyzed:	6/30/2005
% Solids	32.9
Dilution Factor	1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	50 Low	High
o-terphenyl	44.7	X9		150

Analyte	Result (mg/kg)	RL	MDL Flags
#2 Diesel	18.5	65.3	1 5.7 J
Motor Oil	ND	131	22.9

00/21/2/05

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	64.8		50	150

Sample results are on a dry weight basis.

.

Analyte	Result (mg/kg)	RL	MDL	Flags
#2 Diesel	165	33.2	7.99	,X1 J
Motor Oil	1220	66.3	11.6	

05-2112105

X1 - Chromatogram suggests this might be overlap from motor oil range

Client Name:	Herrera Environmental Consultants
Client ID:	PASSP1200
Lab ID:	128479-25
Date Received:	6/20/2005
Date Prepared:	6/29/2005
Date Analyzed:	6/30/2005
% Solids	75.14
Dilution Factor	1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	61		50	150

Analyte	Result (mg/kg)	RL.	MDL	Flags
#2 Diesel	144	32.8	7.9	XZ 💚
Motor Oil	246	65.6	11.5	XZ J

25-2112105

e	Herrera Environmental Consultants
Client Name:	-
Client ID:	PASSP1200D
Lab ID:	128479-26
Date Received:	6/20/2005
Date Prepared:	6/29/2005
Date Analyzed:	6/30/2005
% Solids	77.62
Dilution Factor	1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate o-terphenyl	% Recovery 62.7	Flags	Low 50	Hi gh 150

Sample results are on a dry weight basis.

.

Analyte	Result (mg/kg)	RL	MDL	Flags
#2 Diesel	111	29.6	7.13	X2 ()
Motor Oil	177	59.2	10.4	X2]

05/2112/05

Herrera Environmental Consultants PASSP1300 128479-27 6/20/2005 6/29/2005 6/30/2005 87.85 10
10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits		
Surrogate	* Recovery	Flags	Low	High	
o-terphenyl		X8	50	150	

Analyte	Result (mg/kg)	RL	MDL Flags	
#2 Diesel	16400	264	63.6	
Motor Oil	197	528	92.5 J	

3/21/2/05

Client Name:	Herrera Environmental Consultants
Client ID:	SASBH0501
Lab ID:	128479-28
Date Received:	6/20/2005
Date Prepared:	6/29/2005
Date Analyzed:	6/30/2005
% Solids	93.78
Dilution Factor	1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	79.5		50	150

Analyte	Result (mg/kg)	RL	MDL	Flags
#2 Diesel	90.2	26.2	6.3	XZ J
Motor Oil	267	52.3	9.16	ل محلا

9/2112/05

Client Name:	Herrera Environmental Consultants
Client ID:	SASBH0704
Lab ID:	128479-30
Date Received:	6/20/2005
Date Prepared:	6/29/2005
Date Analyzed:	6/30/2005
% Solids	81.63
Dilution Factor	1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	70.9		50	150

Analyte	Result (mg/kg)	RL	MDL	Flags
#2 Diesel	17.1	27.6	6.64	J
Motor Oil	69.4	55.2	9.66	

35-211210×

Client Name:	Herrera Environmental Consultants
Client ID: Lab ID:	SASBH0801 128479-31
Date Received:	6/20/2005
Date Prepared: Date Analyzed:	6/29/2005 6/30/2005
% Solids	83.8
Dilution Factor	1

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	70.4		50	150

Analyte	Result (mg/kg)	RL	MDL	Flags
#2 Diesel	89	28.5	6.86	- X2 - }
Motor Oil	193	57	9.98	X 2]

05-2112105

Client Name:	Herrera Environmental Consultants
Client ID:	SASSW0800
Lab ID:	128479-45
Date Received:	6/20/2005
Date Prepared:	6/29/2005
Date Analyzed:	6/30/2005
% Solids	84.66
Dilution Factor	5

Diesel and Motor Oll by NWTPH-Dx Modified

			Recov	ary Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	120		50	150

Analyte	Result (mg/kg)	RL.	MDL Flags
#2 Diesel	7750	137	33
Motor Oil	352	274	48.1

3/2/12/105

- م

Client Sample ID: BKSSH1000

Trace Level Organic Compounds

Lot-Sample #: G5F220307-001 Date Sampled: 06/16/05 Prep Date: 06/28/05 Prep Batch #: 5179566 Dilution Factor: 1	Work Order #: HD6HW1AC Date Received: 06/22/05 Analysis Date: 07/07/05	Matrix SOLID
---	--	--------------

		DETECTION	UNITS	METHOD
PARAMETER	RESULT	LIMIT	pg/g	SW846 8290
Total TCDF	ND	0.21		SW846 8290
Total PeCDF	ND	0.65	pg/g	SW846 8290
Total HxCDF	13		pg/g	SW846 8290
Total HpCDF	23		pg/g	SW846 8290
Total TCDD	ND	0.22	pa/a	SW846 8290
Total PeCDD	ND	0.43	ba\a	SW846 8290
Total HxCDD	2.8		ba\a	SW846 8290
Total HpCDD	66		ba\a	SW846 8290 SW846 8290
2,3,7,8-TCDD	ND	0.22	ਙਬ∖਼ਬ	
1,2,3,7,8-PeCDD	ND	0.43	ba\a	SW846 8290
1,2,3,4,7,8-HxCDD	ND	0.43	ba\a	SW846 8290
1,2,3,6,7,8-HxCDD	ND	1.8	ba\a	SW846 8290
1,2,3,7,8,9-HxCDD	ND	0.83	ba\a	SW846 8290
1,2,3,4,6,7,8-HpCDD	40		ba\a	SW846 8290
OCDD	340		ba',a	5W846 8290
2,3,7,8-TCDF	ND	0.18	pa/a	SW846 8290
	ND	0.34	ba\a	SW846 8290
1,2,3,7,8-PeCDF	ND	0.29	pa\a	SW846 8290
2,3,4,7,8~PeCDF	ND	1.6	pg/g	SW846 8290
1,2,3,4,7,8-HxCDF	ND	0.42	ba\a	SW846 8290
1,2,3,6,7,8-HxCDF	ND	0.46	ba\a	SW846 8290
2,3,4,6,7,8-HxCDF	ND	0.48	pg/g	SW846 8290
1,2,3,7,8,9-HxCDF	6.8		ba\a	SW846 8290
1,2,3,4,6,7,8-HpCDF	ND	0.49	pa/a	SW846 8290
1,2,3,4,7,8,9-HpCDF OCDF	5.8 J		ba\a	SW846 8290

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	85	(40 - 135)
13C-1,2,3,7,8-PeCDD	79	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	79	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	87	(40 - 135)
	62	(40 - 135)
13C-OCDD	86	(40 - 135)
13C-2,3,7,8-TCDF	78	(40 - 135)
13C-1,2,3,7,8-PeCDF	81	(40 - 135)
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	77	(40 - 135)

NOTE(S):

% Moisture....: 4.3

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than the reporting limit.

- - ·

% Moisture....: 11

Client Sample ID: NASSP0700

Trace Level Organic Compounds

Lot-Sample #: G5F220307-002 Date Sampled: 06/15/05 Prep Date: 06/28/05 Prep Batch #: 5179566	Work Order #: HD6JD1AC Date Received: 06/22/05 Analysis Date: 07/08/05	Matrix SOLID
Dilution Factor: 1		

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Total TCDF	<u></u>		ba',a	SW846 8290
Total PeCDF	210		pg\a	SW846 8290
Total HxCDF	1400		ba'\a	SW846 8290
Total HpCDF	3100		pa'a	SW846 8290
Total TCDD	9.4		ba',a	SW846 8290
Total PeCDD	79		pg/g	SW846 8290
Total HxCDD	1300		ba',a	SW846 8290
Total HpCDD	11000		ba\a	SW846 8290
2,3,7,8-TCDD	2.2		ba\a	SW846 8290
1,2,3,7,8-PeCDD	27		ba',a	SW846 8290
1,2,3,4,7,8-HxCDD	68		bà',a	SW846 8290
1,2,3,6,7,8-HxCDD	270		ba\a	SW846 8290
1,2,3,7,8,9-HxCDD	270 Ø		ba\a	SW846 8290
1,2,3,4,6,7,8-HpCDD	6100 🗷 🗇		bala	SW846 8290
OCDD	60000		ba\a	SW846 8290
2,3,7,8-TCDF	1.7 CON		ba\a	SW846 8290
1,2,3,7,8-PeCDF	7.9		ba\a	SW846 8290
2,3,4,7,8-PeCDF	18		ba\a	SW846 8290
1,2,3,4,7,8-HxCDF	ND D	83	ba\a	SW846 8290
1,2,3,6,7,8-H×CDF	ND D	54	ba\a	SW846 8290
2,3,4,6,7,8-HxCDF	ND D	74	ba\a	SW846 8290
1,2,3,7,8,9-HxCDF	ND D	58	bala	SW846 8290
1,2,3,4,6,7,8-HpCDF	990		bala	SW846 B290
1,2,3,4,7,8,9-HpCDF	56		ba∖a	SW846 8290
OCDF	4100		ba\a	SW846 8290

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	62	(40 - 135)
13C-1,2,3,7,8-PeCDD	76	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	85	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	54	(40 - 135)
13C-OCDD	48	(40 - 135)
13C-2,3,7,8-TCDF	44	(40 - 135)
13C-1,2,3,7,8-PeCDF	42	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	65	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	30 *	(40 ~ 135)

(Continued on next page)

20/12/12/05

۴-

Client Sample ID: NASSP0700

Trace Level Organic Compounds

Lot-Sample #...: G5F220307-002 Work Order #...: HD6JD1AC Matrix.....: SOLID

NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

D Result was obtained from the analysis of a dilution.

E Estimated result. Result concentration exceeds the calibration range.

CON Confirmation analysis.

Surrogate recovery is outside stated control limits.

% Moisture....: 11

Client Sample ID: NASSP0800

Trace Level Organic Compounds

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	06/15/05 06/28/05 5179566	Work Order #: HD6JF1AC Date Received: 06/22/05 Analysis Date: 07/08/05	
Dilution Factor:	1		

		DETECTION		
	RESULT	LIMIT	UNETS	METHOD
PARAMETER	15		pg/g	SW846 8290
Total TCDF	130		ba\a	SW846 8290
Total PeCDF	1500		ba\a	SW846 B290
Total HxCDF	5100	,	pg/g	SW846 8290
Total HpCDF	6.4		pg/g	SW846 8290
Total TCDD	110		pg/g	SW846 8290
Total PeCDD	2200		pg/g	SW846 8290
Total HxCDD	17000		ba\a	SW846 8290
Total HpCDD	2.3		pa\a	SW846 8290
2,3,7,8-TCDD	44		pg/g	SW846 8290
1,2,3,7,8-PeCDD	44 92		ba\a	SW846 8290
1,2,3,4,7,8-HxCDD	510		pg/g	SW846 8290
1,2,3,6,7,8-HxCDD	310 Ø		pg/g	SW846 8290
1,2,3,7,8,9-HxCDD	10000 x J		pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDD	110000 2		ba\a	SW846 8290
OCDD			bà\à Fa\à	SW846 8290
2,3,7,8-TCDF	2.8 CON		pg/g	SW846 8290
1,2,3,7,8-PeCDF	11		pa\a	SW846 8290
2,3,4,7,8-PeCDF	17		pg/g	SW846 8290
1,2,3,4,7,8-HxCDF	91		pg/g	
1,2,3,6,7,8-HxCDF	56		pg/g	SW846 8290
2,3,4,6,7,8-HxCDF	66		ba\a 52\2	SW846 8290
1,2,3,7,8,9-HxCDF	24		pala pala	SW846 8290
1,2,3,4,6,7,8-HpCDF	1400		ba\a 52\a	SW846 8290
1,2,3,4,7,8,9-HpCDF	100		ba\a ba\a	SW846 8290
OCDF	6600 Ø		P3/3	

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	67	(40 - 135)
13C-1,2,3,7,8-PeCDD	60	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	63	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	88	(40 - 135)
	44	(40 - 135)
13C-OCDD	48	(40 - 135)
13C-2,3,7,8-TCDF	67	(40 - 135)
13C-1,2,3,7,8-PeCDF	71	(40 - 135)
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	70	(40 - 135)

(Continued on next page)

8-211215

4

Client Sample ID: NASSP0800

Trace Level Organic Compounds

Lot-Sample #...: G5F220307-003 Work Order #...: HD6JF1AC Matrix...... SOLID

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

D Result was obtained from the analysis of a dilution.

E Estimated result. Result concentration exceeds the calibration range.

e - -

1999

% Moisture....: 12

Client Sample ID: NASSP0900

Trace Level Organic Compounds

Lot-Sample #: G5F220307-004 Date Sampled: 06/15/05 Prep Date: 06/28/05 Prep Batch #: 5179566	Work Order #: HD6JG1AC Date Received: 06/22/05 Analysis Date: 07/07/05	Matrix SOLID
Dilution Factor: 1		

		DETECTION		
PARAMETER	RESULT	LIMIT	UNETS	METHOD
Total TCDF	1.7		pg/g	SW846 8290
Total PeCDF	27		ba',a	SW846 8290
Total HxCDF	470		pg/g	SW846 8290
Total HpCDF	1300		pg/g	SW846 8290
Total TCDD	0.80		ba\a	SWB46 8290
Total PeCDD	23		ba',a	SW846 8290
Total HxCDD	640		ba\a	SW846 8290
Total HpCDD	5700		pg/g	SW846 8290
2,3,7,8-TCDD	0.80 J		ba',â	SW846 8290
1,2,3,7,8-PeCDD	12		pa\a	SW846 8290
1,2,3,4,7,8-HxCDD	26		ba\a	SW846 8290
1,2,3,6,7,8-HxCDD	150		pg/g	SW846 8290
1,2,3,7,8,9-HxCDD	80		ba\a	SW846 8290
1,2,3,4,6,7,8~HpCDD	3400 🗹 🕚		pa\a	SW846 8290
OCDD	27000 × J		ba\a	SW846 8290
2,3,7,8-TCDF	0.71 J,CON		pa\a	SW846 8290
1,2,3,7,8-PeCDF	4.0 J		ba\a	SW846 8290
2,3,4,7,8-PeCDF	4.5 J		ba\a	SW846 8290
1,2,3,4,7,8-HxCDF	27		ba\a	SW846 8290
1,2,3,6,7,8-HxCDF	16		ba\a	SW846 8290
2,3,4,6,7,8-HxCDF	19		ba\a	SW846 8290
1,2,3,7,8,9-HxCDF	ND	1.8	bala	SW846 8290
1,2,3,4,6,7,8-HpCDF	390		bala	SW846 8290
1,2,3,4,7,8,9-HpCDF	26		ba\a	SW846 8290
OCDF	1200		ba\a	SW846 8290

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	78	(40 - 135)
13C-1,2,3,7,8-PeCDD	72	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	76	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	100	(40 - 135)
13C-OCDD	88	(40 - 135)
13C-2,3,7,8-TCDF	76	(40 - 135)
13C-1,2,3,7,8-PeCDF	77	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	77	(40 - 135)
13C-1,2,3,4,6,7,8~HpCDF	87	(40 - 135)

(Continued on next page)

3 1211210S

- م

Client Sample ID: NASSP0900

Trace Level Organic Compounds

Lot-Sample #...: G5F220307-004 Work Order #...: HD6JG1AC Matrix...... SOLID

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than the reporting limit.

E Estimated result. Result concentration exceeds the calibration range.

 \mathcal{E}^{*}

Dilution Factor: 1

% Moisture....: 8.8

Client Sample ID: NASSP1000

Trace Level Organic Compounds

Lot-Sample #: G5F220307-005 Date Sampled: 06/15/05 Prep Date: 06/28/05 Prep Batch #: 5179566	Work Order #: HD6JH1AC Date Received: 06/22/05 Analysis Date: 07/07/05	
---	--	--

		DETECTION		METHOD
PARAMETER	RESULT	LIMIT	UNITS	
Total TCDF	2.1		ba\a	SW846 8290
Total PeCDF	36		b ā\ā	SW846 8290
Total HxCDF	420		ља\а	SW846 8290
Total HpCDF	1300		ba\a	SW846 8290
Total TCDD	3.2		pg/g	SW846 8290
Total PeCDD	35		pg/g	SW846 8290
Total HxCDD	640		ba\a ba\a	SW846 8290
Total HpCDD	5000		ba\a ba\a	SW846 8290
2,3,7,8-TCDD	1.0 J		Ъа\а Ба\а	SW846 8290
1,2,3,7,8-PeCDD	19		ba\a Fa\a	SW846 8290
1,2,3,4,7,8-HxCDD	37		pg/g	SW846 8290
1,2,3,6,7,8-HxCDD	130		pa\a	SW846 8290
1,2,3,7,8,9-HxCDD	90 2900 x J		ba\a	SW846 8290
1,2,3,4,6,7,8-HpCDD	22000 E)		pa,a	SW846 8290
OCDD			pg/g	SW846 8290
2,3,7,8-TCDF	1.1 J,CON		ba\a	SW846 8290
1,2,3,7,8-PeCDF	4.3 J		ba\a	SW846 8290
2,3,4,7,8-PeCDF	4.4 J 21		bā\a	SW846 8290
1,2,3,4,7,8-HxCDF	14		pg/g	SW846 8290
1,2,3,6,7,8-HxCDF	14		pa/a	SW846 8290
2,3,4,6,7,8-HxCDF	15 ND	1.9	pg/g	SW846 8290
1,2,3,7,8,9-HxCDF	380	2.12	ba\a	SW846 8290
1,2,3,4,6,7,8-HpCDF	20		pa/a	SW846 8290
1,2,3,4,7,8,9-HpCDF OCDF	1100		ba\a	SW846 B290

INTERNAL STANDARDS 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-0CDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF	PERCENT RECOVERY 80 75 85 120 114 79 78	RECOVERY LIMITS (40 - 135) (40 - 135)
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF		•

(Continued on next page)

es julier

.

.

Client Sample ID: NASSP1000

Trace Level Organic Compounds

Lot-Sample #...: G5F220307-005 Work Order #...: HD6JH1AC Matrix.....: SOLID

NOTE (S) :

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than the reporting limit.

E Estimated result, Result concentration exceeds the calibration range.

٠ م

- م-

Client Sample ID: NASSW0100

Trace Level Organic Compounds

Lot-Sample #: G5F220307-006		Matrix SOLID
Date Sampled: 06/14/05	Date Received: 06/22/05	
Prep Date 06/28/05	Analysis Date: 07/07/05	
Prep Batch #: 5179566		
Dilution Factor: 1		

.

% Moisture....: 28

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Total TCDF	ND	0.57	pg/g	SW846 8290
Total PeCDF	22		pg/g	SW846 8290
Total HxCDF	460		pg/g	SW846 8290
Total HpCDF	1100		pg/g	SW846 8290
Total TCDD	1.8		pg/g	SW846 8290
Total PeCDD	12		pg/g	SW846 8290
Total HxCDD	300		₽d\d	SW846 8290
Total HpCDD	3300		pg/g	SW846 8290
2,3,7,8-TCDD	ND	0.49	ba\a	SW846 8290
1,2,3,7,8-PeCDD	7.3		pa'a	SW846 8290
1,2,3,4,7,8-HxCDD	16		ba'\a	SW846 8290
1,2,3,6,7,8-HxCDD	65		pg/g	SW846 8290
1,2,3,7,8,9-HxCDD	43		pa/a	SW846 8290
1,2,3,4,6,7,8-HpCDD	1900		pa/a	SW846 8290
OCDD	22000 x)		ba\a	SW846 8290
2,3,7,8-TCDF	ND	0.50	ba\a	SW846 8290
1,2,3,7,8-PeCDF	ND	1.8	pg/g	SW846 8290
2,3,4,7,8-PeCDF	5.2 J		ba\a	SW846 8290
1,2,3,4,7,8-HxCDF	53		ba\a	SW846 8290
1,2,3,6,7,8-HxCDF	16		ba\a	SW846 8290
2,3,4,6,7,8-HxCDF	15		pg/g	SW846 8290
1,2,3,7,8,9-HxCDF	ND	1.4	ba\a	SW846 8290
1,2,3,4,6,7,8-HpCDF	300		ba\a	SW846 8290
1,2,3,4,7,8,9-HpCDF	27		ba\a	SW846 8290
OCDF	690		pg/g	SW846 8290

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	79	(40 - 135)
13C-1,2,3,7,8-PeCDD	69	(40 - 135)
13C-1,2,3,6,7,8~HxCDD	78	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	108	(40 - 135)
13C-OCDD	110	(40 - 135)
13C-2,3,7,8-TCDF	76	(40 - 135)
13C-1,2,3,7,8-PeCDF	75	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	81	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	96	(40 ~ 135)

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

E Estimated result. Result concentration exceeds the calibration range.

J Estimated result. Result is less than the reporting limit.

e - -

Client Sample ID: NASSW0400

Trace Level Organic Compounds

Lot-Sample #: G5F22 Date Sampled: 06/15 Prep Date: 06/28 Prep Batch #: 51795	5/05Date Received3/05Analysis Date	1: 06/22/05	rix: SOL	UD.
Dilution Factor: 1				

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Total TCDF		0.52	pa/a	SW846 8290
Total PeCDF	ND	0.96	bà\à	SW846 8290
Total HxCDF	26		ba\a	SW846 8290
Total HpCDF	75		pg/g	SW846 8290
Total TCDD	ND	0.49	ba\a	SW846 8290
Total PeCDD	ND	0.92	pg/g	SW846 8290
Total HXCDD	34		bà\a	SW846 8290
Total HpCDD	330		pg∕g	SW846 8290
2,3,7,8-TCDD	ND	0.48	pg/g	SW846 3290
1,2,3,7,8-PeCDD	ND	0.92	bd\d	SW846 8290
1,2,3,4,7,8-HxCDD	ND	1.3	pg/g	SW846 8290
1,2,3,6,7,8-HxCDD	6.5		pg/g	SW846 8290
1,2,3,7,8,9-HxCDD	4.9 J		pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDD	190		pa/a	SW846 8290
OCDD	1600		pg/g	SW846 8290
2,3,7,8-TCDF	ND	0.52	pg/g	SW846 8290
1,2,3,7,8-PeCDF	ND	0.57	pg/g	SW846 8290
2,3,4,7,8-PeCDF	ND	0.56	pg/g	SW846 8290
1,2,3,4,7,8-HxCDF	3.3 J		pg/g	SW846 8290
1,2,3,6,7,8-HxCDF	ND	0.84	pg/g	SW846 8290
	ND	1.1	ba\a	SW846 8290
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND	0.96	bala	SW846 8290
1,2,3,4,6,7,8-HpCDF	22		ba\a	SW846 8290
1,2,3,4,7,8,9-HpCDF	ND	2.3	pg/g	SW846 8290
QCDF	53		ba\a	SW846 8290

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	80	(40 - 135)
13C-1,2,3,7,8-PeCDD	73	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	74	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	89	(40 - 135)
13C-OCDD	81	(40 - 135)
13C-2,3,7,8-TCDF	78	(40 - 135)
13C-1,2,3,7,8-PeCDF	76	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	75	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	86	(40 - 135)

NOTE(S):

% Moisture....: 23

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than the reporting limit.

Matrix..... SOLID

٠.

Client Sample ID: NASSW0500

Trace Level Organic Compounds

Lot-Sample #: G5F220307-008 Date Sampled: 06/15/05 Prep Date: 06/28/05 Prep Batch #: 5179566	Work Order #: HD6JP1AC Date Received: 06/22/05 Analysis Date: 07/07/05	Matrix SOLID
Dilution Factor: 1		

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Total TCDF	ND	0.21	pg/g	SW846 8290
Total PeCDF	ND	0.30	ba\a	SW846 8290
Total HXCDF	ND	0,82	pg∕g	SW846 8290
Total HpCDF	8.2		pg/g	SW846 8290
Total TCDD	ND	0.27	pgig	SW846 8290
Total PeCDD	ND	0,54	bala	SW846 8290
Total HxCDD	ND	1.1	bala	SW846 8290
Total HpCDD	22		ba\a	SW846 8290
2,3,7,8-TCDD	ND	0.27	bã∖ã	SW846 8290
1,2,3,7,8-PeCDD	ND	0.54	pg/g	SW846 8290
1,2,3,4,7,8-HxCDD	ND	0.61	pg/g	SW846 8290
1,2,3,6,7,8-HxCDD	ND	0.52	pg/g	SW846 8290
1,2,3,7,8,9-HxCDD	ND	0.53	ba\a	SW846 8290
1,2,3,4,6,7,8-HpCDD	12		pg/g	SW846 8290
OCDD	120		pg/g	SW846 8290
2,3,7,8-TCDF	ND	0.21	pgig	SW846 8290
1,2,3,7,8-PeCDF	ND	0.30	pg/g	SW846 8290
2,3,4,7,8-PeCDF	ND	0.29	ba\a	SW846 8290
1,2,3,4,7,8-H×CDF	ND	0.56	bala	SW846 8290
1,2,3,6,7,8-HxCDF	ND	0.53	pa\a	SW846 8290
2,3,4,6,7,8-HxCDF	ND	0.57	pg/g	SW846 3290
1,2,3,7,8,9-HxCDF	ND	0.61	₽g∕g	SW846 8290
1,2,3,4,6,7,8-HpCDF	ND	2.1	bala	SW846 8290
1,2,3,4,7,8,9-HpCDF	ND	0.25	bala	SW846 8290
OCDF	14		bā∖ā	SW846 8290

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	82	(40 - 135)
13C-1,2,3,7,8-PeCDD	67	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	75	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	89	(40 - 135)
13C-0CDD	74	(40 - 135)
13C-2,3,7,8-TCDF	83	(40 - 135)
13C-1,2,3,7,8-PeCDF	76	(40 - 135)
	81	(40 - 135)
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	80	(40 - 135)

NOTE(S):

% Moisture....: 23

Results and reporting limits have been adjusted for dry weight.

Client Sample ID: NASSW0600

Trace Level Organic Compounds

Lot-Sample #: G5F220307-009 Date Sampled: 06/16/05 Prep Date: 06/28/05	Work Order #: HD6JR1AC Date Received: 06/22/05 Analysis Date: 07/07/05	Matrix SOLID
Prep Batch #: 5179566		
Dilution Factor: 1		

% Moisture....: 15

		DETECTION		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Total TCDF	3.9		pg/g	SW846 8290
Total PeCDF	54		pg/g	SW846 8290
Total HxCDF	690		pg/g	SW846 8290
Total HpCDF	2400		pg/g	SW846 8290
Total ICDD	2.1		pg/g	SW846 8290
Total PeCDD	28		pg/g	SW846 8290
Total HxCDD	860		pa'a	SW846 8290
Total HpCDD	8600		pg/g	SW846 8290
2,3,7,8-TCDD	0.87 J		pg/g	SW846 8290
1,2,3,7,8-PeCDD	14		pg/g	SW846 8290
1,2,3,4,7,8-HxCDD	35		pg/g	SW846 8290
1,2,3,6,7,8-HxCDD	220		ba\a	SW846 8290
1,2,3,7,8,9-HxCDD	100		ba',a	SW846 8290
1,2,3,4,6,7,8-HpCDD	5000 x J		bd/d	SW846 8290
OCDD	46000 B J		ba\a	SW846 8290
2.3.7.8-TCDF	1.1 J,CON		ba\a	SW846 8290
1,2,3,7,8-PeCDF	5.4 J		pa/a	SW846 8290
2,3,4,7,8-PeCDF	6.3		pg/g	SW846 8290
1,2,3,4,7,8-HxCDF	36		ba\a	SW846 8290
1,2,3,6,7,8-HxCDF	18		pg/g	SW846 8290
2,3,4,6,7,8-HxCDF	21		ba',a	SW846 8290
1,2,3,7,8,9-HxCDF	ND	2.7	ba\a	SW846 8290
1,2,3,4,6,7,8-HpCDF	500		pa'a	SW846 8290
1,2,3,4,7,8,9-HpCDF	38		baya	SW846 8290
OCDF	3500		ba\a	SW846 8290

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	85	(40 - 135)
13C-1,2,3,7,8-PeCDD	80	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	84	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	113	(40 - 135)
13C-OCDD	102	(40 - 135)
13C-2,3,7,8-TCDF	87	(40 - 135)
13C-1,2,3,7,8-PeCDF	86	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	84	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	97	(40 - 135)

(Continued on next page)

Cr JILIOC

Client Sample ID: NASSW0600

Trace Level Organic Compounds

Lot-Sample #...: G5F220307-009 Work Order #...: HD6JR1AC

A ..

Matrix..... SOLID

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

J Estimated result. Result is less than the reporting limit.

E Estimated result. Result concentration exceeds the calibration range.

CON Confirmation analysis.

.

1

% Moisture....: 0.0

Client Sample ID: SASSW0200

Trace Level Organic Compounds

Lot-Sample #: G5F220 Date Sampled: 06/14/ Prep Date: 06/28/	05 Date Received:	06/22/05	SOLID
Prep Batch #: 517956	6		
Dilution Factor: 1			

		DETECTION		
PARAMETER	RESULT	LIMIT	UNETS	METHOD
Total TCDF	6.8		pa\a	SW846 8290
Total PeCDF	71		ba',a	SW846 8290
Total HxCDF	710		ba',a	SW846 8290
Total HpCDF	2100		ba'a	SW846 8290
Total TCDD	12		ba',a	SW846 8290
Total PeCDD	130		ba\a	SW846 8290
Total HxCDD	1300		ba \a	SW846 8290
Total HpCDD	8100		ba\a	SW846 8290
2,3,7,8-TCDD	2.8		ba',a	SW846 8290
1,2,3,7,8-PeCDD	31		ba\a	SW846 8290
1,2,3,4,7,8~HxCDD	62		ba\a	SW846 8290
1,2,3,6,7,8-HxCDD	210		ba\a	SW846 8290
1,2,3,7,8,9-HxCDD	160		ba\a	SW846 8290
1,2,3,4,6,7,8-HpCDD	4500 E 🕽		ba\a	SW846 8290
OCDD	32000 X J		ba\a	SW846 8290
2,3,7,8-TCDF	0.97 J,CON		ba\a	SW846 8290
1,2,3,7,8-PeCDF	4.8 J		ba\a	SW846 8290
2,3,4,7,8-PeCDF	6.6		ba',a	SW846 8290
1,2,3,4,7,8-HxCDF	39		ba\a	SW846 8290
1,2,3,6,7,8-HxCDF	25		ba\a	SW846 8290
2,3,4,6,7,8-HxCDF	30		ba\a	SW846 8290
1,2,3,7,8,9-H×CDF	ND	1.8	ba\a	SW846 8290
1,2,3,4,6,7,8-HpCDF	660		ba\a	SW846 8290
1,2,3,4,7,8,9-HpCDF	35		ba\a	SW846 8290
OCDF	2500		ba\a	SW846 8290

	PERCENT	RECOVERY
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	80	(40 - 135)
13C-1,2,3,7,8-PeCDD	75	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	79	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	104	(40 - 135)
13C-0CDD	96	(40 - 135)
13C-2,3,7,8-TCDF	80	(40 - 135)
13C-1,2,3,7,8-PeCDF	78	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	80	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	92	(40 - 135)

(Continued on next page)

57/21/2/05

Client Sample ID: SASSW0200

Trace Level Organic Compounds

Lot-Sample #...: G5F220307-010 Work Order #...: HD6JT1AC Matrix........ SOLID

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

E Estimated result. Result concentration exceeds the calibration range.

.

- م

J Estimated result. Result is less than the reporting limit.

e . .

Client Sample ID: SASSW0800

Trace Level Organic Compounds

Lot-Sample #: G5F220307-011		Matrix SOLID
Date Sampled: 06/16/05	Date Received: 06/22/05	
Prep Date: 06/28/05	Analysis Date: 07/08/05	
Prep Batch #: 5179566		
Dilution Factor: 1		

% Moisture....: 15

		DETECTION		
PARAMETER	RESULT	LIMIT	UNLITS	METHOD
Total TCDF	80		pa/a	SW846 8290
Total PeCDF	8300		ba\a	SW846 8290
Total HxCDF	99000		ba\a	SW846 8290
Total HpCDF	140000		ba\a	SW846 8290
Total TCDD	ND	6.7	ba\a	SW846 8290
Total PeCDD	170		pg/g	SW846 8290
Total HxCDD	21000		ba',a	SW846 8290
Total HpCDD	340000		ba\a	SW846 8290
2,3,7,8-TCDD	ND	6.7	bà\a	SW846 8290
1,2,3,7,8-PeCDD	170		ba\a	SW846 8290
1,2,3,4,7,8-HxCDD	120		ba\a	SW846 8290
1,2,3,6,7,8-HxCDD	11000 E J		ba\a	SW846 8290
1,2,3,7,8,9-HxCDD	670 B		pg/g	SW846 8290
1,2,3,4,6,7,8-HpCDD	190000 <i>X</i>		ba\a	SW846 8290
OCDD	860000 DAY J		₽dd	SW846 8290
2,3,7,8-TCDF	25 CON		ba\a	SW846 8290
1,2,3,7,8-PeCDF	770		pa\a	SW846 8290
2,3,4,7,8-PeCDF	1900		ba\a	SW846 B290
1,2,3,4,7,8-HxCDF	14000 B J		pa\a	SW846 8290
1,2,3,6,7,8-HxCDF	3000 B J		ba\a	SW846 8290
2,3,4,6,7,8-HxCDF	3100 B J		ba\a	SW846 8290
1,2,3,7,8,9-HxCDF	3900 8 5		₽a\a	SW846 8290
1,2,3,4,6,7,8-HpCDF	41000 B J		₽a\a	SW846 8290
1,2,3,4,7,8,9-HpCDF	2300		ba\a	SW846 8290
OCDF	9900 J		pa/a	SW846 B290
	PERCENT	RECOVERY		

	PERCENT	RECOVERI
INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	77	(40 - 135)
13C-1,2,3,7,8-PeCDD	43	(40 - 135)
13C-1,2,3,6,7,8-HxCDD	59	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDD	134	(40 - 135)
13C-OCDD	96	(40 - 135)
13C-2,3,7,8-TCDF	115	(40 - 135)
13C-1,2,3,7,8-PeCDF	107	(40 - 135)
13C-1,2,3,4,7,8-HxCDF	69	(40 - 135)
13C-1,2,3,4,6,7,8-HpCDF	83	(40 - 135)

(Continued on next page)

52/12/05

Client Sample ID: SASSW0800

Trace Level Organic Compounds

Lot-Sample #...: G5F220307-011 Work Order #...: HD6J01AC Matrix.....: SOLID

₹-

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

E Estimated result. Result concentration exceeds the calibration range.

D Result was obtained from the analysis of a dilution.