

April 14, 2022

Supervisor, Hazardous Waste and Toxics Reduction Washington State Department of Ecology Southwest Regional Office P.O. Box 47775 Olympia, WA 98504-7775

RE: 2021 Annual Groundwater Monitoring Report, Emerald Services, Inc., Tacoma, Washington

Dear Supervisor:

Enclosed please find the 2021 Annual Groundwater Monitoring Report for Emerald Services, Inc. (Emerald) located at 1825 Alexander Avenue in Tacoma, Washington. The Emerald site operates as a full-service recycling and waste management facility. In 2016, Emerald was acquired by Safety-Kleen Systems, Inc. (S-K), a wholly owned subsidiary of Clean Harbors. As part of that acquisition, groundwater monitoring activities at the Emerald facility became the responsibility of the S-K Remediation Group.

This report is being submitted in accordance with the April 2010 Permit for Storage of Dangerous Waste (Permit) (Permit No. WAD 981 769 110) and the April 27, 2018 Groundwater Sampling and Analysis Work Plan. The report summarizes monitoring well inspection and groundwater monitoring activities completed from January 2021 through December 2021.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

S-K requested assistance from the Washington State Department of Ecology (Ecology) to discontinue groundwater monitoring and reporting in the 2019 Annual Report dated April 14, 2020. S-K continues to seek assistance in this matter. Monitoring of the Emerald site has been required by the Permit due to ongoing area-wide contamination issues. Groundwater results for the Emerald site have been consistent since site acquisition (2016) by S-K and Clean Harbors, and for several years prior to that. The exceedances of Model Toxics Control Act (MTCA) Cleanup Levels at the Emerald site are primarily limited to total petroleum hydrocarbons (TPH) in the northwestern wells downgradient of an adjacent

property, as well as arsenic that is attributable to the Asarco smelter site. The results indicate that Emerald has not contributed to the area-wide groundwater contamination. Therefore, Emerald has initiated discussions with Ecology proposing that Permit-required groundwater monitoring and reporting be discontinued. Additionally, Emerald submitted a draft covenant package to Ecology on November 11, 2021 to address remaining groundwater impacts at the site. Emerald will continue discussions with Ecology during the ongoing permit renewal process.

S-K appreciates Ecology's assistance with completion of this project. Should you have any questions or require additional information, please do not hesitate to contact me at (307) 742-6150.

Sincerely,

Brian Culnan, P.G.

Director - Facility Closures & Corrective Action

46Y-001-006

Attachments

cc: Katie Mitchell, Trihydro

Sheila Smith, Emerald (Electronic Copy)

Paul Davis, Emerald (1 Hard Copy)

Kaia Peterson, Ecology (2 Hard copies)

Greg Fink, PSC (1 Hard copy)

Bill Sullivan, Puyallup Indian Tribe (1 Hard copy)

2021 ANNUAL GROUNDWATER MONITORING REPORT EMERALD SERVICES INC. TACOMA, WASHINGTON

April 14, 2022

Project #: 46Y-001-006

SUBMITTED BY: Trihydro Corporation

1252 Commerce Drive, Laramie, WY 82070

PREPARED FOR: Safety-Kleen Systems, Inc.

1050 North 3rd Street, Suite M, Laramie, WY 82079

SOLUTIONS YOU CAN COUNT ON. PEOPLE YOU CAN TRUST.

Table of Contents

1.0	INTRO	ODUCTI	ON	1-1
2.0	2021	QUART	ERLY MONITORING AND WELL INSPECTIONS	2-1
3.0	2021		IDWATER MONITORING	
	3.1	Groun	ndwater Monitoring Procedures	3-1
		3.1.1		
		3.1.2	Groundwater Sampling Procedures	3-1
		3.1.3	Sample Handling Procedures	3-2
		3.1.4	Quality Assurance/Quality Control	
	3.2	Evalua	ation of Groundwater Monitoring Results	3-2
		3.2.1	Potentiometric Data	3-2
		3.2.2	Groundwater Quality Results	3-3
		3.2.3	Data Usability	3-4
4.0	FUTU	IRE ACT	TIVITIES	4-1
5.0	REFE	RENCE	rs.	5-1

List of Tables

- 4-1. Monitoring Well Construction Detail Summary, Emerald Services Inc., 1825 Alexander Avenue, Tacoma, Washington
- 4-2. Fluid Level Elevation Data Summary, Emerald Services Inc., 1825 Alexander Avenue, Tacoma, Washington
- 4-3. Field Parameter Data Summary, Emerald Services Inc., 1825 Alexander Avenue, Tacoma, Washington
- 4-4. Groundwater Quality Summary Volatile Organic Compounds, Emerald Services Inc.,
 1825 Alexander Avenue, Tacoma, Washington
- 4-5. Groundwater Quality Summary Total Petroleum Hydrocarbons, Emerald Services Inc.,
 1825 Alexander Avenue, Tacoma, Washington
- 4-6. Groundwater Quality Summary Total Arsenic and Total Lead, Emerald Services Inc.,1825 Alexander Avenue, Tacoma, Washington

List of Figures

- 1-1. Site Location Map, Emerald Services Inc., 1825 Alexander Avenue, Tacoma, Washington
- 1-2. Site Map and Monitoring Well Network, Emerald Services Inc., 1825 Alexander Avenue, Tacoma, Washington
- 4-1. Potentiometric Surface Map, June 2, 2021, Emerald Services Inc., 1825 Alexander Avenue, Tacoma, Washington
- 4-2. Potentiometric Surface Map, December 21, 2021, Emerald Services Inc., 1825 Alexander Avenue, Tacoma, Washington
- 4-3. 2021 Daily Precipitation and Hydrographs, Emerald Services Inc., 1825 Alexander Avenue, Tacoma, Washington

List of Appendices

- A. FIELD FORMS
 - A-1. QUARTERLY MONITORING WELL INSPECTION FORMS
 - A-2. SEMIANNUAL GROUNDWATER SAMPLING FORMS
- B. LABORATORY REPORTS
 - B-1. LABORATORY REPORT (JUNE 2021)
 - B-2. LABORATORY REPORT (DECEMBER 2021)
- C. DATA VALIDATION REPORTS
 - C-1. DATA VALIDATION REPORT (JUNE 2021)
 - C-2. DATA VALIDATION REPORT (DECEMBER 2021)

1.0 INTRODUCTION

Emerald Services, Inc. (Emerald) operates as a full-service recycling and waste management facility at 1825 Alexander Avenue, Tacoma, Washington (Figures 1-1 and 1-2). This report has been prepared in accordance with the requirements under Section 2.2.1 of the Permit for Storage of Dangerous Waste (Permit) (Permit No. WAD 981 769 110). The Washington State Department of Ecology (Ecology) issued a Dangerous Waste Storage Permit Modification on December 13, 2013. This annual groundwater report summarizes four monitoring well inspection and maintenance events (March 2021, June 2021, September 2021, and December 2021) and two fluid level gauging and groundwater sampling events (June 2021 and December 2021). Section 2 of the report presents a summary of quarterly well maintenance activities, and semiannual groundwater sampling procedures and results are included in Section 3. Future activities are briefly discussed in Section 4. A reference section is included as Section 5.

202204_TacomaAnnual_RPT.docx 1-1

2.0 2021 QUARTERLY MONITORING AND WELL INSPECTIONS

In accordance with the updated April 27, 2018 Groundwater Monitoring Sampling and Analysis Plan (SAP), well inspection and maintenance activities were conducted on a quarterly basis during the months of March 2021, June 2021, September 2021, and December 2021 (Trihydro 2018). The 2021 quarterly well inspection forms are included as Appendix A-1. Inspection and maintenance activities included the following for each well:

- 1. Evaluated access to monitoring wells.
- 2. Inspected well protective casing, cover, and bolts.
- 3. Determined whether wells were clearly labeled.
- 4. Evaluated padlock operation and condition.
- 5. Inspected J-plug cap operation and condition.
- 6. Inspected PVC well casing for cracks or signs of surface leakage such as staining inside of the well casing.
- 7. Inspected elevation measuring point marking.

Monitoring wells were in generally good condition during 2021. During the March 2021 inspection the gasket was replaced on MW-4.

202204_TacomaAnnual_RPT.docx 2-1

3.0 2021 GROUNDWATER MONITORING

Fluid level gauging and groundwater sampling activities were conducted in June 2021 and December 2021. Collection of groundwater samples from the onsite monitoring well network (MW-1, MW-2R, MW-3R, and MW-4) took place during the June 2021 monitoring event. Groundwater samples were collected from monitoring wells MW-3R and MW-4 in December 2021.

3.1 GROUNDWATER MONITORING PROCEDURES

The 2021 semiannual groundwater monitoring activities included fluid level gauging and collection of groundwater samples. Field activities were completed in accordance with the April 2018 SAP. Specific procedures are discussed below.

3.1.1 FLUID LEVEL GAUGING PROCEDURES

Fluid levels were gauged in onsite monitoring wells MW-1, MW-2R, MW-3R, and MW-4 on June 2, 2021 and December 21, 2021, using an oil/water interface probe. Fluid levels were collected within one hour of each other and prior to groundwater purging and sampling activities, with the exception of MW-2R during the June 2021 event. During the June 2021 event, monitoring well MW-2R was not immediately accessible (parked vehicle) and was gauged within two hours of all other wells, just outside of the one hour period. Light non-aqueous phase liquid (LNAPL) was not detected during either gauging event. Fluid levels and total depths were measured to an accuracy of 0.01 foot. Portions of the fluid level probe and cable that may have potentially come into contact with the water and/or well casing were decontaminated using a detergent/water solution and rinsed with distilled water prior to use at each well. A summary of well construction details is shown on Table 4-1. Fluid level measurements for each well were recorded on the field forms included as Appendix A-1 and are summarized on Table 4-2.

3.1.2 GROUNDWATER SAMPLING PROCEDURES

Groundwater sampling was conducted on the entire monitoring network during the June 2021 event. In accordance with the SAP, monitoring wells MW-3R and MW-4 were sampled during the December 2021 event due to June 2021 exceedances of total petroleum hydrocarbons (TPH). A peristaltic pump was used to purge and collect samples from the wells. New, dedicated tubing was lowered into each well with the intake located at the approximate center of the screened interval. The tubing was discarded after use at each well. Gloves were changed frequently, including between wells, following purging, before sample collection, and whenever the potential for cross-contamination was suspected. The flow rate of the pump was adjusted using a pump controller to minimize drawdown to the extent practical. Fluid levels were measured before purging and during sampling.

202204_TacomaAnnual_RPT.docx 3-1

Field parameters consisting of pH, specific conductance, temperature, dissolved oxygen (DO), turbidity, and oxidation/reduction potential (ORP) were measured with a field meter and recorded on field forms, included as Appendix A and summarized on Table 4-3. Measurements were recorded on a routine basis (approximately every 3 to 5 minutes) to document stabilization of field parameters. After field parameters stabilized to within 10 percent between three successive readings, samples were collected directly from the dedicated tubing, without disturbance to flow rate, and placed into prepared/pre-preserved sample containers provided by the analytical laboratory. Purged groundwater was containerized and was emptied into the onsite water treatment system.

3.1.3 SAMPLE HANDLING PROCEDURES

Samples were labeled and placed on ice in coolers. A complete chain-of-custody/sample analysis request (COC/SAR) form was placed in a zip-lock type bag and placed in the coolers prior to delivery during both 2021 monitoring events. Completed COC/SAR forms are included in Appendix B. The samples were hand delivered to TestAmerica in Tacoma, Washington.

During the 2021 events, groundwater samples were submitted for analysis of volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method SW8260D, arsenic and lead (totals) by USEPA Method 6020B, and total petroleum hydrocarbons diesel range organics (TPH-DRO) plus total petroleum hydrocarbons oil range organics (TPH-ORO) by Washington Ecology Method NW-TPHDx.

3.1.4 QUALITY ASSURANCE/QUALITY CONTROL

Quality control samples were submitted per the SAP. During both events, one duplicate (ERI-MW-50, ie. MW-4 Dup) was collected from monitoring well MW-4. The duplicate sample was analyzed for the same parameters as the parent sample. Additional quality assurance/quality control sampling included a trip blank.

3.2 EVALUATION OF GROUNDWATER MONITORING RESULTS

Potentiometric data and groundwater quality results of the 2021 semiannual monitoring events are summarized below.

3.2.1 POTENTIOMETRIC DATA

A summary of the 2021 fluid level measurements is included as Table 4-2. The June 2021 and December 2021 groundwater elevations were used to prepare potentiometric surface maps included as Figures 4-1 and 4-2, respectively. LNAPL was not present in any of the site monitoring wells. As indicated on Figures 4-1 and 4-2, the groundwater flow direction is predominately to the southwest. The approximate hydraulic gradient across the site was

3-2 202204_TacomaAnnual_RPT.docx

0.002 feet/feet (ft/ft) during both the June 2021 and December 2021 monitoring events. Groundwater elevations during the December 2021 event were generally higher but generally consistent compared to the June 2021 elevations, apart from MW-2R. Groundwater ranged from 2.65 feet below measuring point (ft-bmp, MW-2R) to 5.31 ft-bmp (MW-3R) in June 2021. During the December 2021 event, groundwater ranged from 1.39 ft-bmp (MW-2R) to 3.07 ft-bmp (MW-3R).

In accordance with the Permit, hydrographs of each monitoring well and a chart of daily precipitation are included in Figure 4-3. The daily precipitation data was collected from the Western Narrows Airport taken from the Midwestern Regional Climate Center website (MRCC 2021).

3.2.2 GROUNDWATER QUALITY RESULTS

Groundwater samples were submitted for analysis of VOCs, TPH-DRO, TPH-ORO, and total arsenic and total lead. Analytical data from the June 2021 and December 2021 monitoring events are presented on Tables 4-4 through 4-6. Detected constituent concentrations have been evaluated relative to Model Toxics Control Act (MTCA) Cleanup Levels.

Two constituents (TPH-DRO and TPH-ORO) were detected at concentrations exceeding MTCA Cleanup Levels in the groundwater samples collected in June 2021 (Tables 4-4 through 4-6). The June 2021 results are summarized below:

- 1. TPH-DRO was detected in samples MW-3R (0.8 milligram per liter [mg/L]), MW-4 (1.6 mg/L), and MW-4 Dup (1.7 mg/L) at a concentration exceeding the MTCA Method A Cleanup Level (0.5 mg/L).
- 2. TPH-ORO was detected in samples MW-3R (0.95 mg/L), MW-4 (0.57 mg/L), and MW-4 Dup (0.6 mg/L) at a concentration exceeding the MTCA Method A Cleanup Level (0.5 mg/L).
- 3. Remaining constituents in the June 2021 groundwater samples were either below the laboratory detection limit or respective MTCA Cleanup Levels.

Three constituents (TPH-DRO, TPH-ORO, and arsenic) were detected at concentrations exceeding MTCA Cleanup Levels in the groundwater samples collected in December 2021 (Tables 4-4 through 4-6). The December 2021 results are summarized below:

202204_TacomaAnnual_RPT.docx 3-3

- 1. TPH-DRO was detected in samples MW-3R (0.77 mg/L), MW-4 (1.2 mg/L), and MW-4 Dup (1.1 mg/L) at a concentration exceeding the MTCA Method A Cleanup Level (0.5 mg/L).
- 2. TPH-ORO was detected in samples MW-3R (1.2 mg/L), MW-4 (0.59 mg/L), and MW-4 Dup (0.56 mg/L) at a concentration exceeding the MTCA Method A Cleanup Level (0.5 mg/L).
- 3. Arsenic was detected in the sample collected from monitoring well MW-3R (9.2 micrograms per liter $[\mu g/L]$) at a concentration exceeding the MTCA Method A Cleanup Level (5 $\mu g/L$).
- 4. All other constituents in the December 2021 groundwater samples were either below the laboratory detection limit or respective MTCA Cleanup Levels.

The exceedances detected during the 2021 sampling events are generally consistent with historical results. TPH and arsenic exceedances are limited to samples collected from two wells on the north/northwestern part of the facility. Further, arsenic concentrations have previously been attributed to the area wide arsenic contamination resulting from the Asarco Smelter Plume. Additionally, arsenic concentrations may be influenced by impacts from the former Kaiser Facility.

3.2.3 DATA USABILITY

A Tier II Data Validation was performed on the analytical data for the June and December 2021 monitoring events. Tier II Data Validation Reports are presented in Appendix C, providing a detailed assessment of the precision, accuracy, method compliance, and completeness of the data packages submitted by the analytical laboratory.

Select data for samples collected in June 2021 and December 2021 events were qualified as estimated for the difference between the initial relative response factor (RRF) and the opening continuing calibration verification (CCV) relative response factor (RRF) being outside the acceptable limits. Remaining data that were not qualified met all site data quality objectives. The complete data package for these samples consisted of 320 and 192 data points for the June 2021 and December 2021 events, respectively, excluding blank samples. The completeness measure for the June and December 2021 data packages were calculated to be 100.00%. Complete details of data validation for this package can be found in the Tier II Data Validation Report Summary presented in Appendix C.

3-4 202204_TacomaAnnual_RPT.docx

4.0 FUTURE ACTIVITIES

In accordance with the site Permit and SAP, Emerald is required to conduct quarterly well inspections and maintenance. The first quarter 2022 well inspection and maintenance event was performed on March 7, 2022. Groundwater sampling and fluid level monitoring are scheduled to be conducted semiannually during the second and fourth quarter of 2022, with well inspection and maintenance scheduled for the third quarter of 2022.

Monitoring of the Emerald site has been required by permit due to ongoing area-wide contamination issues. Groundwater results for the Emerald site have been consistent since site acquisition (2016) by Safety-Kleen (S-K), and for several years prior to that. The exceedances of MTCA Cleanup Levels at the Emerald site are primarily limited to TPH in the northwestern wells downgradient of an adjacent property, as well as arsenic that is attributable to the Asarco smelter site. The results indicate that Emerald has not contributed to the area-wide groundwater contamination. Therefore, Emerald has initiated discussions with Ecology proposing that Permit-required groundwater monitoring and reporting be discontinued. Additionally, Emerald submitted a draft covenant package to Ecology on November 11, 2021 to address remaining groundwater impacts at the Site. Emerald will continue discussions with Ecology during the ongoing permit renewal process.

Emerald also understands that Ecology has developed an area-wide order to address ongoing corrective action of regional impacts. Based on recent discussions with Ecology, Emerald understands that future monitoring may ultimately be the responsibility of the area wide group/order. Emerald maintains there are inherent risks and undue costs associated with having groundwater monitoring wells at an industrial site like Emerald's that may not outweigh the benefit of accumulating additional groundwater monitoring data at this point in time. Therefore, Emerald has proposed that the wells be plugged and abandoned.

202204_TacomaAnnual_RPT.docx 4-1

5.0 REFERENCES

Department of Ecology. 2010. Permit for the Storage and Treatment of Dangerous Waste (WAD 981 769 110). April 2010.

Midwestern Regional Climate Center (MRCC). 2021. MRCC Application Tools Environment. Available from: http://mrcc.isws.illinois.edu/CLIMATE/.

Safety-Kleen. 2018. Revised Work Plan for Monitoring Well Decommissioning and Replacement, Emerald Services, Inc., Tacoma, Washington. March 27, 2018.

Trihydro. 2018. Groundwater Monitoring and Sampling Analysis Work Plan, Emerald Services, Inc., Tacoma, Washington. April 27, 2018.

202204_TacomaAnnual_RPT.docx 5-1

TABLES

TABLE 4-1. MONITORING WELL CONSTRUCTION DETAIL SUMMARY EMERALD SERVICES, INC., 1825 ALEXANDER AVENUE, TACOMA, WASHINGTON

Well	Measuring Point Elevation (ft-msl)	Depth to Well Screen (ft-bgs)	Screen Length (ft)	Well Diameter (inches)	Well Casing Material	Total Depth (ft-bgs)
MW-1	14.07	5	2.75	2	PVC	7.75
MW-2R	13.79	5.45	2.75	2	PVC	8.20
MW-3R	14.28	6	2	2	PVC	8
MW-4	14.11	4	5	2	PVC	9

Notes:

ft-msl - feet above mean sea level (NAVD 88)

ft-bgs - feet below ground surface

ft - feet

Total depths taken from as-built diagrams provided by Ecology (MW1 and MW-3R), a Trihydro boring log (MW-2R), and an Environmental Partners boring log (MW-4)

4-1-202204_WellConstruction_TBL-4-1.xlsx

TABLE 4-2. FLUID LEVEL ELEVATION DATA SUMMARY EMERALD SERVICES, INC., 1825 ALEXANDER AVENUE, TACOMA, WASHINGTON

Location	Date/Time Measured	Measuring Point Elevation	Ground Surface Elevation	Depth to Water	Water Elevation	Depth Gauged
		(ft-msl)	(ft-msl)	(ft-bmp)	(ft-msl)	(ft-bmp)
		S	econd Quarter			
MW-1	6/2/21 11:00	14.07	14.46	3.03	11.04	7.1
MW-2R	6/2/21 12:59	13.79	14.23	2.65	11.14	7.93
MW-3R	6/2/21 11:18	14.28	14.61	5.31	8.97	7.6
MW-4	6/2/21 11:10	14.11	14.4	3.23	10.88	9.25
		F	ourth Quarter			
MW-1	12/21/21 9:36	14.07	14.46	1.39	12.68	7.1
MW-2R	12/21/21 9:25	13.79	14.23	1.45	12.34	7.85
MW-3R	12/21/21 10:10	14.28	14.61	3.07	11.21	7.6
MW-4	12/21/21 9:44	14.11	14.4	1.42	12.69	9.18

Notes:

ft-msl - feet above mean sea level

ft-bmp - feet below measuring point

ft-bgs - feet below ground surface

TABLE 4-3. FIELD PARAMETER DATA SUMMARY EMERALD SERVICES, INC., 1825 ALEXANDER AVENUE, TACOMA, WASHINGTON

Location	Date	Temp. (°C)	Specific Cond. (mS/cm)	Dissolved Oxygen (mg/L)	pH (S.U.)	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Comments
				Sec	ond Quarter			
MW-1	6/2/21	15.55	0.491	0.16	6.87	17	4.0	clear
MW-2R	6/2/21	15.54	0.259	0.00	6.31	-1	0.4	clear
MW-3R	6/2/21	17.90	1.23	6.31	7.05	-115		slightly yellow
MW-4	6/2/21	18.60	0.691	1.09	6.87	-86	0.0	clear
				Fou	ırth Quarter			
MW-3R	12/21/21	13.38	1.37	0.00	6.49	-35	0.0	clear
MW-4	12/21/21	10.78	0.751	0.00	6.61	-39	0.0	clear

Notes:

°C - Degrees Celsius

mS/cm - millisiemens per centimeter

mg/L - milligrams per liter

S.U. - Standard Units

mV - millivolts

NTU - Nephelometric Turbidity Unit

-- - Not available

Location ID	Date Sampled	Benzene (ug/L)	Bromobenzene (ug/L)	Bromochloro- methane (ug/L)	Bromodichloro- methane (ug/L)	Bromoform (ug/L)	Bromomethane (ug/L)	n-Butylbenzene (ug/L)	sec-Butylbenzene (ug/L)	tert-Butylbenzene (ug/L)	Carbon tetrachloride (ug/L)	Chlorobenzene (ug/L)
MW-1	06/02/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1) UJ	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)
MW-2R	06/02/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1) UJ	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)
MW-3R	06/02/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1) UJ	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)
MW-3R	12/21/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)
MW-4	06/02/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1) UJ	ND(1)	ND(2)	ND(1) UJ	ND(1)
MW-4 Dup	06/02/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1) UJ	ND(1)	ND(2)	ND(1) UJ	ND(1)
MW-4	12/21/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)
MW-4 Dup	12/21/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)

MTCA Method A	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MTCA Method B	0.8	NA	NA	0.71	5.5	11	400	800	800	0.63	160
MTCA Method C	8	NA	NA	7.1	55	25	880	1,800	1,800	6.3	350

Notes:

MTCA - Model Toxics Control Act µg/L - micrograms per liter ND - Not detected above laboratory reporting limits MTCA Standards are from the Cleanup Levels and Risk Calculation (CLARC) Mater Spreadsheet, updated July 2021 Dup - Field Duplicate

UJ - Estimated reporting limit

Location ID	Date Sampled	Chloroethane (ug/L)	Chloroform (ug/L)	Chloromethane (ug/L)	2-Chlorotoluene (ug/L)	4-Chlorotoluene (ug/L)	1,2-Dibromo 3- chloropropane (ug/L)	Dibromo- chloromethane (ug/L)	1,2-Dibromoethane (ug/L)	Dibromomethane (ug/L)	1,2-Dichloro- benzene (ug/L)	1,3-Dichloro- benzene (ug/L)
MW-1	06/02/21	ND(1)	ND(1)	ND(1) UJ	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-2R	06/02/21	ND(1)	ND(1)	ND(1) UJ	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-3R	06/02/21	ND(1)	ND(1)	ND(1) UJ	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-3R	12/21/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-4	06/02/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-4 Dup	06/02/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-4	12/21/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-4 Dup	12/21/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)

MTCA Method A	NA	NA	NA	NA	NA	NA	NA	0.01	NA	NA	NA
MTCA Method B	NA	1.4	NA	160	NA	0.055	0.52	0.022	80	720	NA
MTCA Method C	NA	14	NA	350	NA	0.55	5.2	0.22	180	1,600	NA

Notes:

MTCA - Model Toxics Control Act

μg/L - micrograms per liter
ND - Not detected above laboratory reporting limits
MTCA Standards are from the Cleanup Levels and Risk Calculation (CLARC) Mater Spreadsheet, updated July 2021
Dup - Field Duplicate

UJ - Estimated reporting limit

Location ID	Date Sampled	1,4-Dichloro- benzene (ug/L)	Dichlorodifluoro- methane (ug/L)	1,1-Dichloroethane (ug/L)	1,2-Dichloroethane (ug/L)	1,1-Dichloroethene (ug/L)	cis-1,2-Dichloro- ethene (ug/L)	trans-1,2-Dichloro- ethene (ug/L)	1,2-Dichloro- propane (ug/L)	1,3-Dichloro- propane (ug/L)	2,2-Dichloro- propane (ug/L)	1,1-Dichloro- propene (ug/L)
MW-1	06/02/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-2R	06/02/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-3R	06/02/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-3R	12/21/21	ND(1)	ND(1) UJ	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-4	06/02/21	ND(1)	ND(1) UJ	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-4 Dup	06/02/21	ND(1)	ND(1) UJ	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-4	12/21/21	ND(1)	ND(1) UJ	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-4 Dup	12/21/21	ND(1)	ND(1) UJ	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)

MTCA Method A	NA	NA	NA	5	NA	NA	NA	NA	NA	NA	NA
MTCA Method B	8.1	1,600	7.7	0.48	400	16	160	1.2	NA	NA	NA
MTCA Method C	81	3,500	77	4.8	880	35	350	12	NA	NA	NA

Notes:

MTCA - Model Toxics Control Act µg/L - micrograms per liter ND - Not detected above laboratory reporting limits MTCA Standards are from the Cleanup Levels and Risk Calculation (CLARC) Mater Spreadsheet, updated July 2021 Dup - Field Duplicate

UJ - Estimated reporting limit

Location ID	Date Sampled	Cis-1,3- dichloro- propene	trans-1,3- Dichloro- propene	Ethylbenzene	Hexachloro- butadiene	Isopropyl-benzene	p-Isopropyl-toluene	Methylene Chloride	MTBE	Naphthalene	n-Propyl- benzene	Styrene
		ˈ (uˈg/L)	ˈ (uˈg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-1	06/02/21	ND(1) UJ	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(3)	ND(1)	ND(3)	ND(1)	ND(1)
MW-2R	06/02/21	ND(1) UJ	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(3)	7.5	ND(3)	ND(1)	ND(1)
MW-3R	06/02/21	ND(1) UJ	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(3)	ND(1)	ND(3)	ND(1)	ND(1)
MW-3R	12/21/21	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(3)	ND(1)	ND(3)	ND(1)	ND(1)
MW-4	06/02/21	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(3)	ND(1)	ND(3)	ND(1)	ND(1)
MW-4 Dup	06/02/21	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(3)	ND(1)	ND(3)	ND(1)	ND(1)
MW-4	12/21/21	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(3)	ND(1)	ND(3)	ND(1)	ND(1)
MW-4 Dup	12/21/21	ND(1)	ND(1)	ND(1)	ND(3)	ND(1)	ND(1)	ND(3)	ND(1)	ND(3)	ND(1)	ND(1)

MTCA Method A	NA	NA	700	NA	NA	NA	5	20	160	NA	NA
MTCA Method B	NA	NA	800	0.56	800	NA	5.8	24	160	800	1,600
MTCA Method C	NA	NA	1,800	5.6	1,800	NA	220	240	350	1,800	3,500

Notes:

MTCA - Model Toxics Control Act µg/L - micrograms per liter ND - Not detected above laboratory reporting limits MTCA Standards are from the Cleanup Levels and Risk Calculation (CLARC) Mater Spreadsheet, updated July 2021 Dup - Field Duplicate

UJ - Estimated reporting limit

		1,1,1,2-Tetrachloro- 1,1,2,2-Tetrachloro-			- .	1,2,3-Trichloro-	1,2,4-Trichloro-	1,1,1- Trichloro-	1,1,2- Trichloro-	T: 11 (1	Trichloro-	1,2,3-Trichloro-
Location ID	Date Sampled	ethane (ug/L)	ethane (ug/L)	Tetrachloroethene (ug/L)	Toluene (ug/L)	benzene (ug/L)	benzene (ug/L)	ethane (ug/L)	ethane (ug/L)	Trichloroethene (ug/L)	fluoromethane (ug/L)	propane (ug/L)
MW-1	06/02/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-2R	06/02/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-3R	06/02/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-3R	12/21/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-4	06/02/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-4 Dup	06/02/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-4	12/21/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
MW-4 Dup	12/21/21	ND(1)	ND(1)	ND(1)	ND(1)	ND(2)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)

MTCA Method A	NA	NA	5	1,000	NA	NA	200	NA	5	NA	NA
MTCA Method B	1.7	0.22	21	640	NA	1.5	16,000	0.77	0.54	2,400	0.00038
MTCA Method C	17	2.2	110	1,400	NA	15	35,000	7.7	9.5	5,300	0.015

Notes:

MTCA - Model Toxics Control Act µg/L - micrograms per liter ND - Not detected above laboratory reporting limits MTCA Standards are from the Cleanup Levels and Risk Calculation (CLARC) Mater Spreadsheet, updated July 2021 Dup - Field Duplicate

UJ - Estimated reporting limit

Location ID	Date Sampled	1,2,4-Trimethyl- benzene (ug/L)	1,3,5-Trimethyl- benzene (ug/L)	Vinyl Chloride (ug/L)	m,p-Xylene (ug/L)	o-Xylene (ug/L)
MW-1	06/02/21	ND(3)	ND(1)	ND(1)	ND(2)	ND(1)
MW-2R	06/02/21	ND(3)	ND(1)	ND(1)	ND(2)	ND(1)
MW-3R	06/02/21	ND(3)	ND(1)	ND(1)	ND(2)	ND(1)
MW-3R	12/21/21	ND(3)	ND(1)	ND(1)	ND(2)	ND(1)
MW-4	06/02/21	ND(3)	ND(1)	ND(1)	ND(2)	ND(1)
MW-4 Dup	06/02/21	ND(3)	ND(1)	ND(1)	ND(2)	ND(1)
MW-4	12/21/21	ND(3)	ND(1)	ND(1)	ND(2)	ND(1)
MW-4 Dup	12/21/21	ND(3)	ND(1)	ND(1)	ND(2)	ND(1)

MTCA Method A	NA	NA	0.2	NA	NA
MTCA Method B	NA	80	0.029	1,600	1,600
MTCA Method C	NA	180	0.29	3,500	3,500

Notes:

MTCA - Model Toxics Control Act µg/L - micrograms per liter ND - Not detected above laboratory reporting limits MTCA Standards are from the Cleanup Levels and Risk Calculation (CLARC) Mater Spreadsheet, updated July 2021 Dup - Field Duplicate

UJ - Estimated reporting limit

TABLE 4-5. GROUNDWATER QUALITY SUMMARY – TOTAL PETROLEUM HYDROCARBONS EMERALD SERVICES, INC., 1825 ALEXANDER AVENUE, TACOMA, WASHINGTON

Location ID	Date Sampled	Motor Oil	Diesel Range Organics
		(mg/L)	(mg/L)
MW-1	06/02/21	ND(0.37)	0.13
MW-2R	06/02/21	ND(0.37)	0.14
MW-3R	06/02/21	0.95	0.8
MW-3R	12/21/21	1.2	0.77
MW-4	06/02/21	0.57	1.6
MW-4 Dup	06/02/21	0.6	1.7
MW-4	12/21/21	0.59	1.2
MW-4 Dup	12/21/21	0.56	1.1

MTCA Method A	0.5	0.5
MTCA Method B	NA	NA
MTCA Method C	0.5	NA

Notes:

MTCA - Model Toxics Control Act

MTCA Standards are from the Cleanup Levels and Risk Calculation (CLARC) Mater Spreadsheet, updated July 2021

Bold - Value exceeds MTCA Standard

mg/L - milligrams per liter

ND - Not detected above laboratory reporting limits

Dup - Field Duplicate

TABLE 4-6. GROUNDWATER QUALITY SUMMARY – TOTAL ARSENIC AND TOTAL LEAD EMERALD SERVICES, INC., 1825 ALEXANDER AVENUE, TACOMA, WASHINGTON

Location ID	Date Sampled	Arsenic, Total	Lead, Total
		(ug/L)	(ug/L)
MW-1	06/02/21	ND(1)	ND(0.4)
MW-2R	06/02/21	ND(1)	ND(0.4)
MW-3R	06/02/21	3.3	ND(0.4)
MW-3R	12/21/21	9.2	ND(2)
MW-4	06/02/21	ND(1)	ND(0.4)
MW-4 Dup	06/02/21	ND(1)	ND(0.4)
MW-4	12/21/21	ND(5)	ND(2)
MW-4 Dup	12/21/21	ND(5)	ND(2)

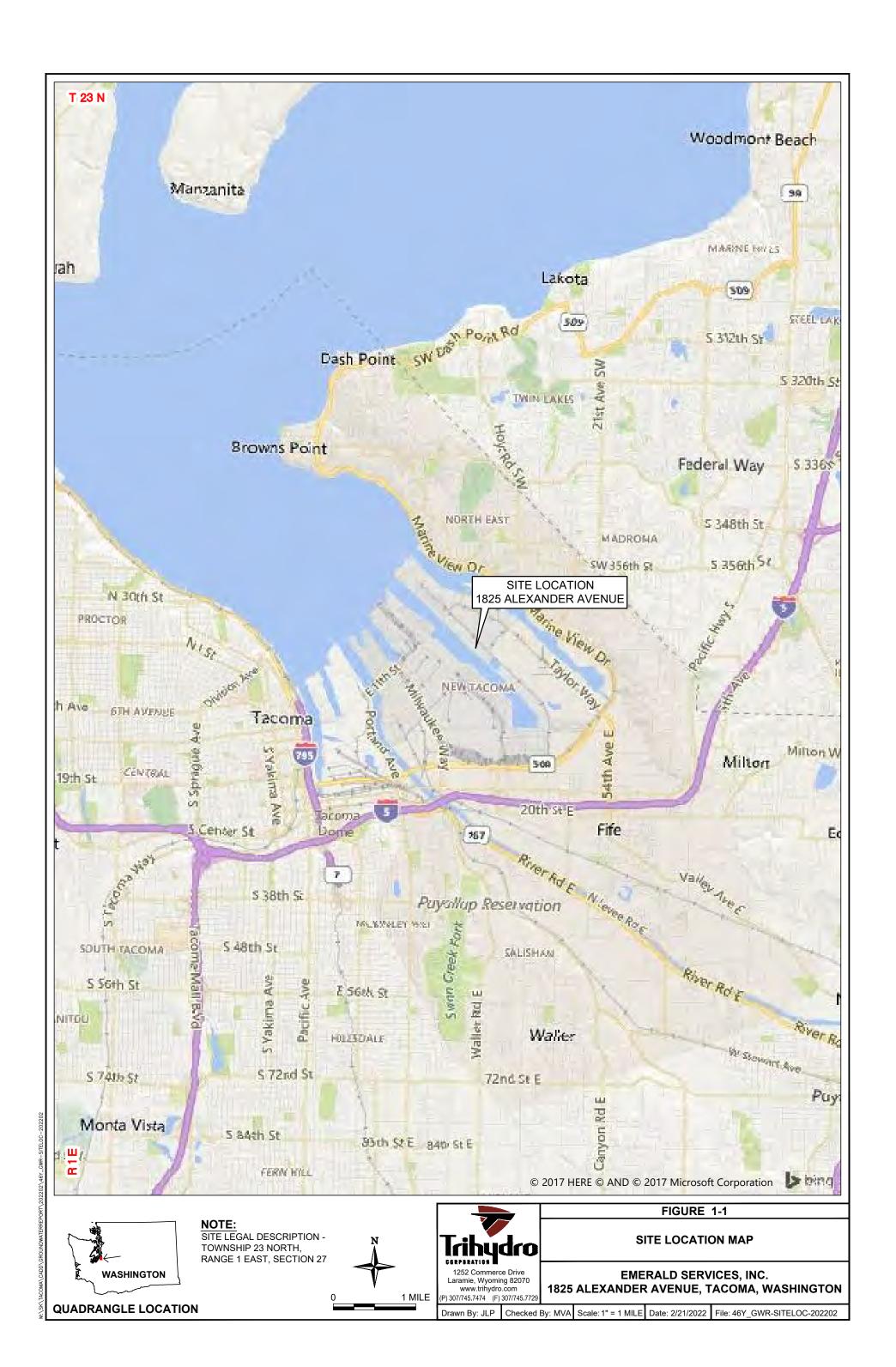
MTCA Method A	5	15
MTCA Method B	NA	NA
MTCA Method C	NA	NA

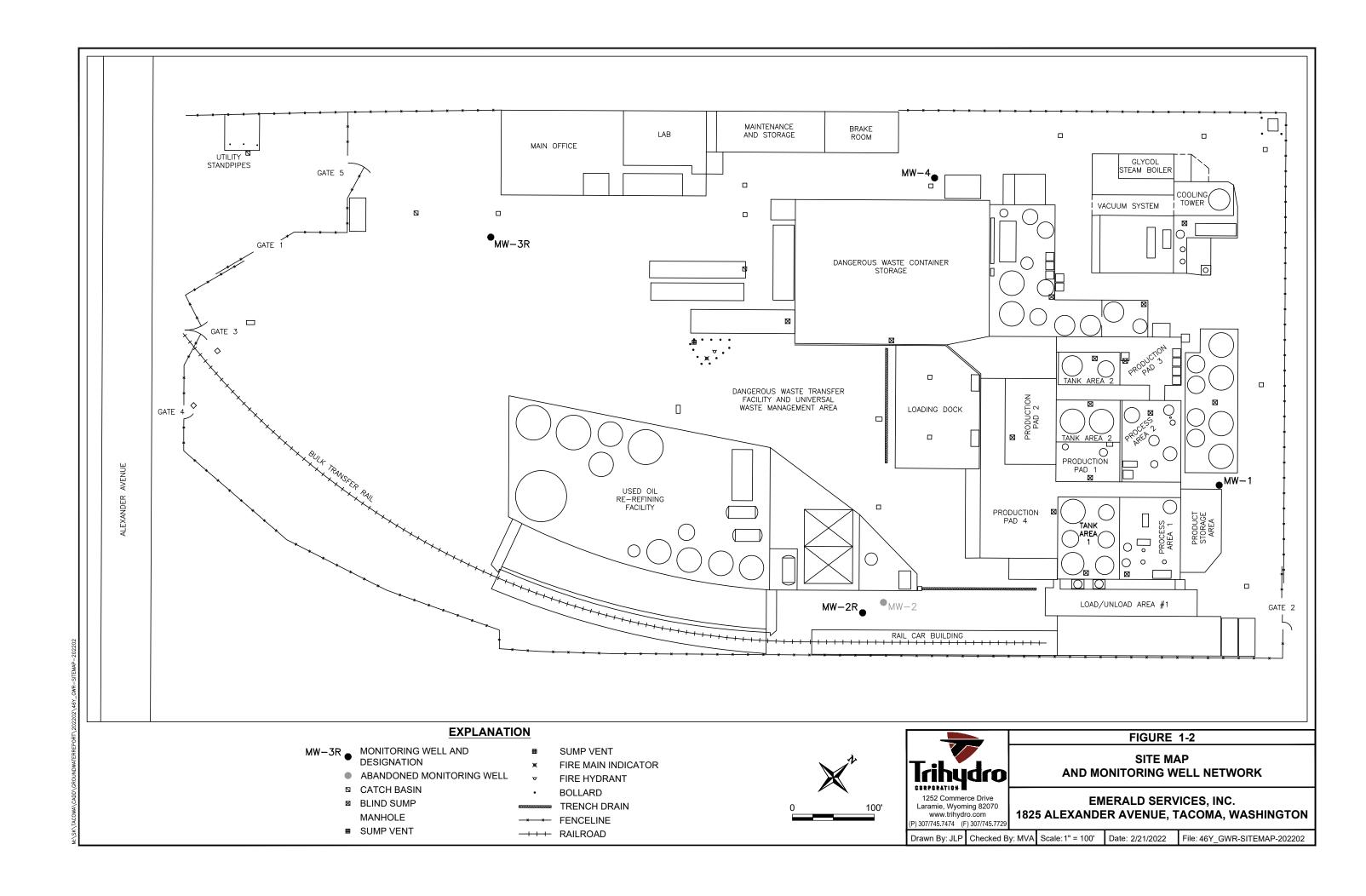
Notes:

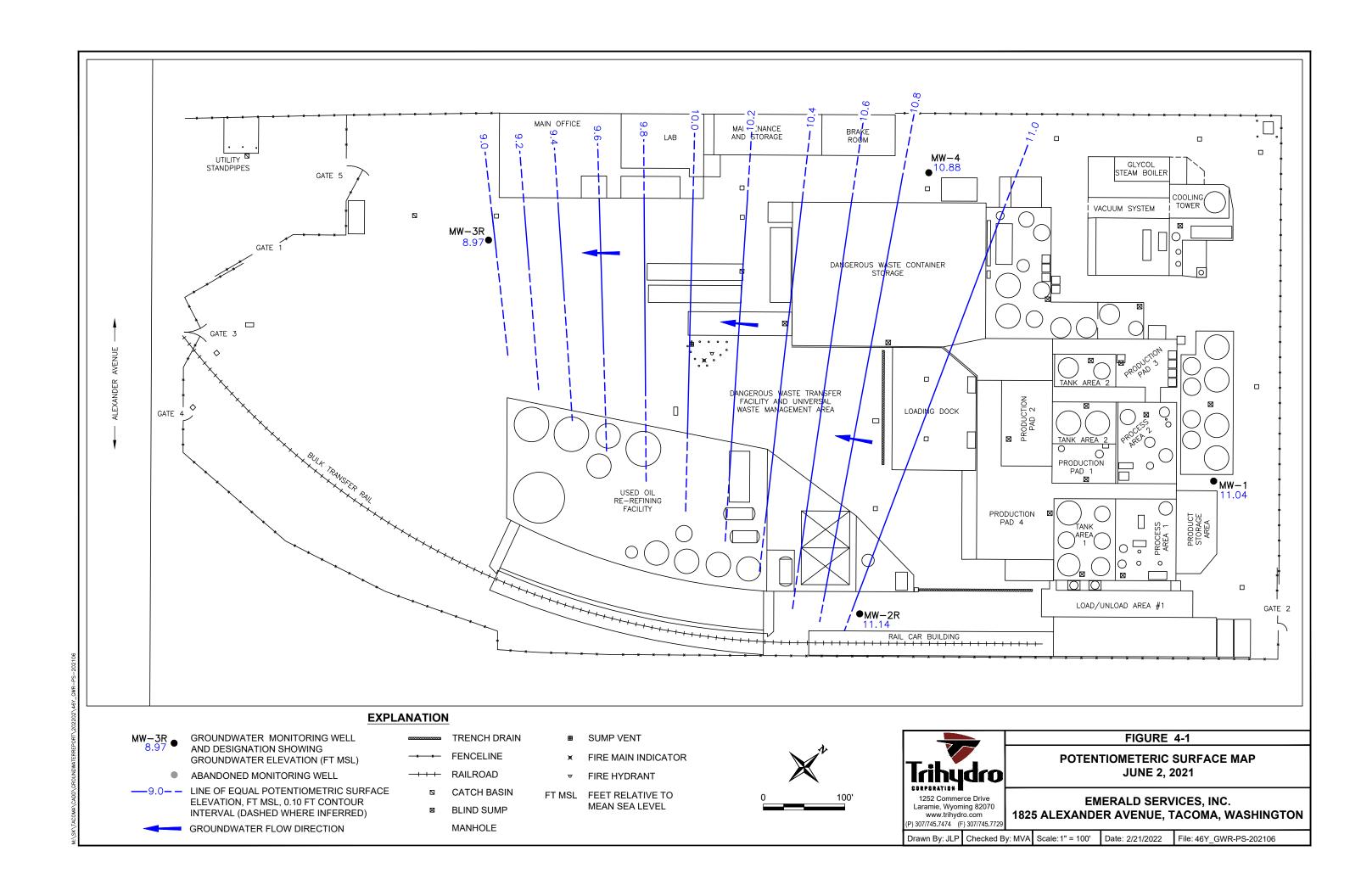
MTCA - Model Toxics Control Act

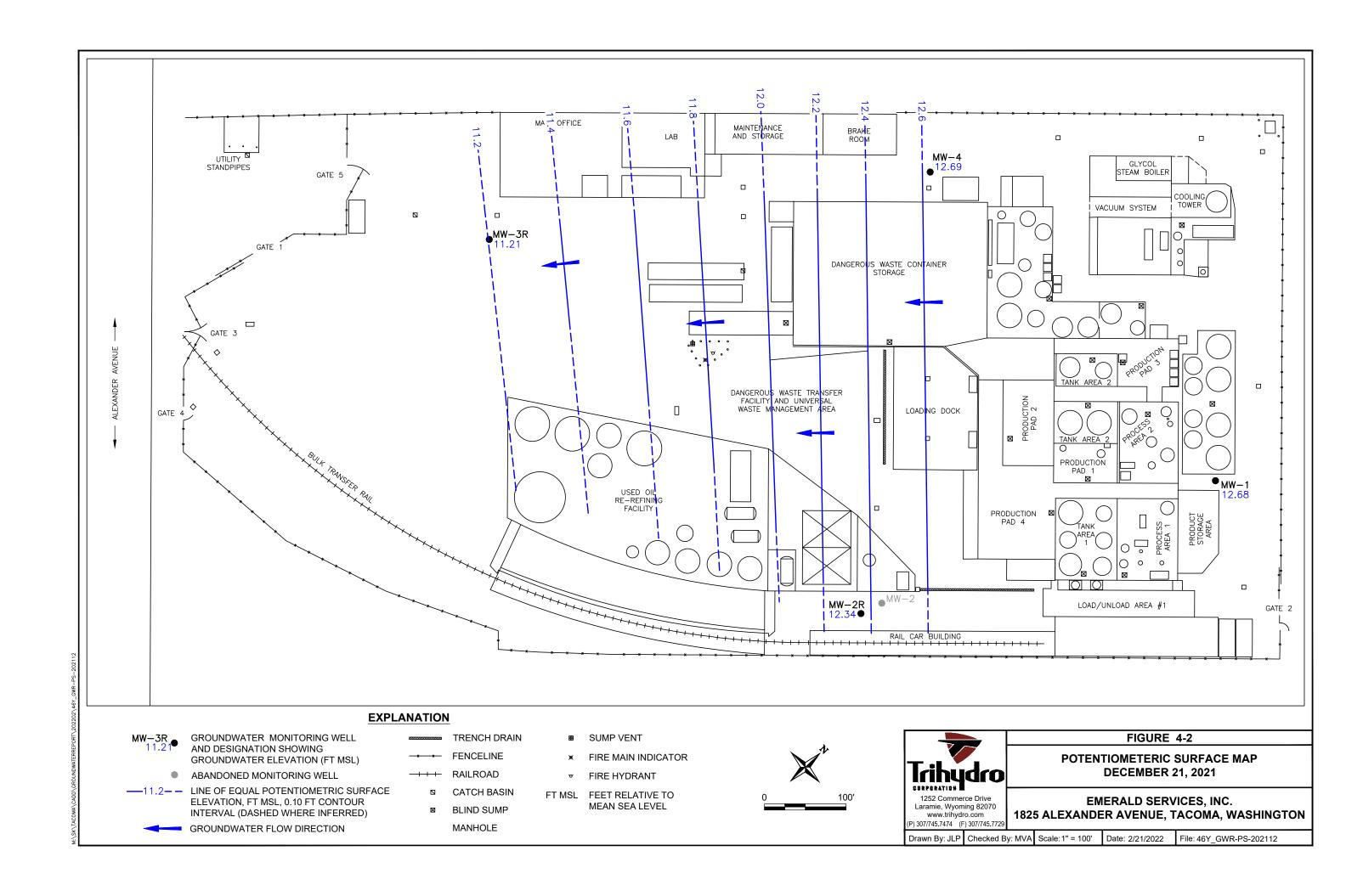
MTCA Standards are from the Cleanup Levels and Risk Calculation (CLARC) Mater Spreadsheet, updated July 2021

Bold - Value exceeds MTCA Standard(s)


μg/L - micrograms per liter


ND - Not detected above laboratory reporting limits


Dup - Field Duplicate


FIGURES

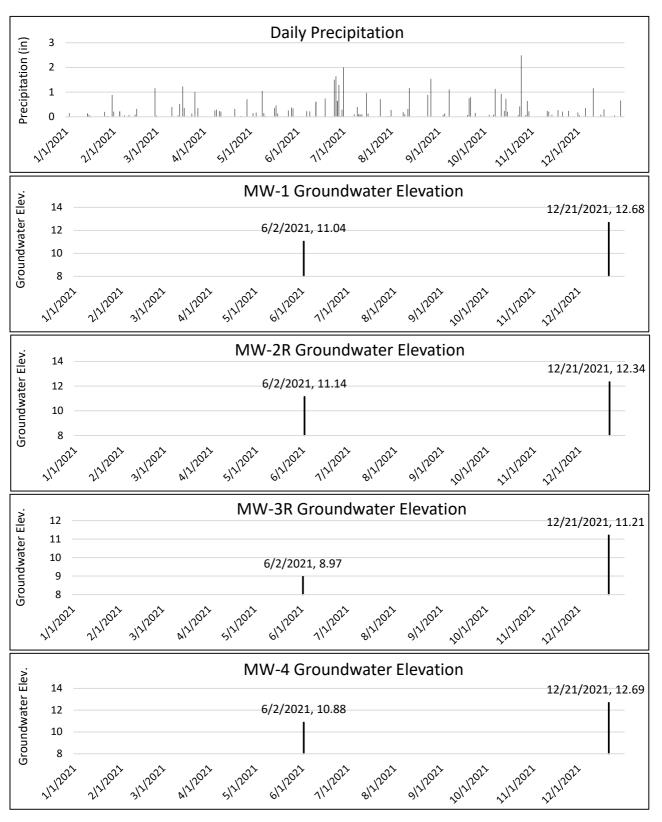


FIGURE 4-3. 2021 DAILY PRECIPITATION AND HYDROGRAPHS EMERALD ENVIRONMENTAL SERVICES, INC., TACOMA, WASHINGTON

Notes:

Elev. - Elevation reported in feet above mean sea level

Precipitation data is from the Western Narrows Airport taken from the Midwestern Regional Climate Center

APPENDIX A

FIELD FORMS

- A-1. QUARTERLY MONITORING WELL INSPECTION FORMS
- A-2. SEMIANNUAL GROUNDWATER SAMPLING FORMS.

APPENDIX A-1

QUARTERLY MONITORING WELL INSPECTION FORMS

Monitoring Well Inspection and Maintenance Form

General Information 3-31-21 Date: Emerald Services, Inc. Project Name: 1459 Time: MW-1 Station: Field Team: Sample ID: 160°F Musin Temperature: Weather Conditions: **Well Information** 2 Bottom Condition: Well Diameter (in): 7.75 Pump in Well: As-Built Well Depth (ft): Flush completion Well Type Measured Well Depth (ft): 0.07 Length of Tip (ft): -0.07 Well Depth (ft): Initial DTW (ft): Bolts: Well Condition: (2000 Gasket: J-Plug: Lock: Label: Monument: NA Other: NA **Repairs Needed Repairs Performed** Other Comments:

General Information	And the second s		
Project Name:	Emerald Services, Inc.	Date:	331.51
Station:	MW-2R	Time:	1440
Sample ID:	• •	Field Team:	MS
Weather Conditions:	clear/Waym	Temperature:	760°F
Well Information		_	
Well Diameter (in):		2 Bottom Condition:	
As-Built Well Depth (ft):		8.2 Pump in Well:	No
Measured Well Depth (ft):		Well Type	Flush completion
Length of Tip (ft):	(0.07	
Well Depth (ft):	-(0.07	
Initial DTW (ft):			
Well Condition:	Bolts: (-out) Gasket: (-out) J-Plug: (-out) Lock: (-out) Label: (-out) Monument: (-out) Other: Ran (but)	iside munt, mus	tly renoved
Repairs Needed	M		
Repairs Performed			
Other Comments:			
	V		

General Information			
Project Name:	Emerald Services, Inc.	Date:	3-31-21
Station:	MW-3R	Time:	1519
Sample ID:	-	Field Team:	.W2,
Weather Conditions:	clear Dam	Temperature:	2600
Well Information		_	
Well Diameter (in):		2 Bottom Condition:	- (
As-Built Well Depth (ft):		8 Pump in Well:	no
Measured Well Depth (ft):		Well Type	Flush completion
Length of Tip (ft):	C	0.07	
Well Depth (ft):	-0	0.07	
Initial DTW (ft):		- 1	
Well Condition:	Bolts: Gasket: J-Plug: Lock: Label: Monument: Other:		
Repairs Needed	N2		
Repairs Performed			
Other Comments:			

General Information			
Project Name:	Emeral Services, Inc.	Date:	2-31-21
Station:	MW-4	Time:	1513
Sample ID:		Field Team:	MS
Weather Conditions:	Clau Vun	Temperature:	260.6
Well Information			
Well Diameter (in):		2 Bottom Condition:	~ -
As-Built Well Depth (ft):		9 Pump in Well:	no
Measured Well Depth (ft):	-	 Well Type 	Flush completion
Length of Tip (ft):		0.07	
Well Depth (ft):	-(0.07	
Initial DTW (ft):	-		
Well Condition:	Bolts: Sow Reg	Sand	
	Monument:		
	Other:	to inside that	nent; mostly removed
Repairs Needed	·Nn		
Repairs Performed	Replaced Eask	(et	
Other Comments:	NV		

General Information

Project Name: Station:

Sample ID:

Weather Conditions:

Emerald Services, Inc.	Date:
MW-1	Time:
ERI-MW-1	Field Team:
Sunny	Temperature:

6/2/2021	
11:00	
MJ; KS	
72°F	

Well Information

Well Diameter (in):
As-Built Well Depth (ft):
Measured Well Depth (ft):
Length of Tip (ft):
Well Depth (ft):
Initial DTW (ft):

	Bottom Condition: Pump in Well:
7.10	Well Type
0.07	
-0.07	
3.03	

Good	
no	
Flush completion	

Well Condition:

Bolts:	Good
Gasket:	1
J-Plug:	
Lock:	
Label:	
Monument:	
Other:	Ψ
None	

Repairs Needed

Repairs Performed

Other Comments:

Monument:	
Other:	
None	
PID = 1.7 ppm	

General Information

Project Name: Station: Sample ID:

Weather Conditions:

Emerald Services, Inc.	Date:
MW-2R	Time:
ERI-MW-2R	Field Team:
Sunny	Temperature:

6/2/2021	
1259	
MJ;KS	
74 F	

Well Information

Well Diameter (in):
As-Built Well Depth (ft):
Measured Well Depth (ft):
Length of Tip (ft):
Well Depth (ft):
Initial DTW (ft):

2	Bottom Condition:
8.2	Pump in Well:
7.93	Well Type
0.07	
-0.07	
2.65]

Good	
No	
Flush completion	

* A c . 11	-			ь.
Well	LOI	าตเ	เนอ	n

Bolts: Good
Gasket:
J-Plug:
Lock:
Label:
Monument:
Other: v5-6" of water inside Well Casing; water
had Sheen

Repairs Needed

Repairs Performed

Other Comments:

What gauged within one hour of other wells due to maccessibility; work crew parked on well PID = 3.8 ppm

General Information

Project Name: Station: Sample ID:

Weather Conditions:

Emerald Services, Inc.	Date:
MW-3R	Time:
ERI-MN-3R	Field Team:
Sunny	Temperature:

6/2/2021	
1118	
MJ; KS	
72°F	

Well Information

Well Diameter (in):
As-Built Well Depth (ft):
Measured Well Depth (ft):
Length of Tip (ft):
Well Depth (ft):
Initial DTW (ft):

2	Bottom Condition:
8	Pump in Well:
7.60	Well Type
0.07	
-0.07	
5.31	

Good	
no	
Flush completion	

Well Condition:

Bolts:	Good	
Gasket:		
J-Plug: Lock:		
Label:		
Monument:		
Other:	V	

Repairs Needed

Repairs Performed

Other Comments:

None	
PID = 7.2ppm	

General Information

Project Name: Station: Sample ID:

Weather Conditions:

Emeral Services, Inc.	Date:
	Time:
ERI-MW-4 & ERI-MW-SO	Field Team:
Sunnu	Temperature:

6/2/2021	
11:10	
MJ; KS	
72°F	

Well Information

Well Diameter (in):
As-Built Well Depth (ft):
Measured Well Depth (ft):
Length of Tip (ft):
Well Depth (ft):
Initial DTW (ft):

2	Bottom Condition:
9	Pump in Well:
	Well Type
0.07	100
-0.07	
3.23	

Good	
no	
Flush completion	

			- *		
10/01	Cor	100	41	n.	٠,

Bolts:	Good
Gasket:	
J-Plug:	
Lock:	
Label:	
Monument:	
Other:	V

None

Repairs Needed

Repairs Performed

Other Comments:

Wates	below J.	plug	N4" deep	; removed	
Anna Propries	7.0	, ,			

General Information Project Name: Emerald Services, Inc. Date: 9-16-21 Station: MW-1 Time: ~~ Field Team: Sample ID: Weather Conditions: Temperature: **Well Information** Well Diameter (in): 2 Bottom Condition: As-Built Well Depth (ft): 7.75 Pump in Well: no Measured Well Depth (ft): Well Type Flush completion Length of Tip (ft): 0.07 Well Depth (ft): -0.07 Initial DTW (ft): (-00) Well Condition: Bolts: Gasket: J-Plug: Lock: Label: Monument: Other: **Repairs Needed** Non Non **Repairs Performed Other Comments:**

General Information 6-2021 Project Name: Emerald Services, Inc. Date: Station: MW-2R Time: Sample ID: Field Team: Sun Weather Conditions: 600 Temperature: Well Information Well Diameter (in): 2 Bottom Condition: As-Built Well Depth (ft): 8.2 Pump in Well: Measured Well Depth (ft): Well Type Flush completion Length of Tip (ft): 0.07 Well Depth (ft): -0.07Initial DTW (ft): Well Condition: Bolts: 5000 Gasket: J-Plug: Lock: Label: Monument: Other: NA **Repairs Needed** Nuc **Repairs Performed** Non Other Comments:

General Information

Monitoring Well Inspection and Maintenance Form

9-16-202 Project Name: Emerald Services, Inc. Date: Station: MW-3R Time: Field Team: Sample ID: Clear Con Weather Conditions: Temperature: Well Information 2 Bottom Condition: Well Diameter (in): As-Built Well Depth (ft): 8 Pump in Well: no Measured Well Depth (ft): Well Type Flush completion Length of Tip (ft): 0.07 Well Depth (ft): -0.07Initial DTW (ft): 6001 **Well Condition:** Bolts: Gasket: J-Plug: Lock: Label: Monument: Other: None **Repairs Needed** Noc **Repairs Performed** Other Comments:

General Information

Project Name: Station: Sample ID: Weather Conditions:

Emeral Services, Inc.	Date:
MW-4	Time:
-1	Field Team:
Clear Cool	Temperature

9-16-21	
0945	
W2	
65°F	

Well Information

Well Diameter (in):
As-Built Well Depth (ft):
Measured Well Depth (ft):
Length of Tip (ft):
Well Depth (ft):
Initial DTW (ft):

	Bottom Condition:
9	Pump in Well:
	Well Type
0.07	
-0.07	

no	
Flush completion	

Well Condition:	Bolts: Gran
	Gasket:
	J-Plug:
	Lock:
	Label:
	Monument: V)
	Other: NA
Repairs Needed	None
Repairs Performed	Norme
Other Comments:	Removed relatively small volon
	of standing worth below 3-plus
10	

General Information

Project Name:

Station:

Sample ID:

Weather Conditions:

Monitoring Well Inspection and Maintenance Form

Emerald Services, Inc.	Date:
MW-1	Time:
NA	Field Team: 🐚
Cool fragu 551°	Temperature:

19/91/91	
09:36	
KU	
2510	

Well Information

Well Diameter (in):
As-Built Well Depth (ft):
Measured Well Depth (ft):
Length of Tip (ft):
Well Depth (ft):
Initial DTW (ft):

2
7.75
7.10
0.07
-0.07
1.39

Bottom Condition:
Pump in Well:
Well Type

Flush completion

We	22 10		.20			
WU D	45 E	വര	α_{i}	T 24	α	a
-	-	~	with	6.03	OB:	ж,

Repairs Needed

Repairs Performed

Other Comments:

Bolts: Good	
Gasket: 6a2d	14
J-Plug: Good	
Lock: Good	
Label: Good	The state of the s
Monument: Gas &	A 27 ?
Other:	Processing .
PD= 0.0 PPM	NOTE AND DESCRIPTION OF THE PARTY OF THE PAR
	The state of the s
	The second second
Hayl bil	
Hard bottom	

General Information	manual ma			
Project Name:	Emerald Services, Inc.	Date:	19/31/81	
Station:	MW-2R	Time:	09:25	
Sample ID:	NA	Field Team:	Ku	
Weather Conditions:	Cool, clary	Temperature:	2340	
Well Information				
Well Diameter (in):		2 Bottom Condition:	Hard	
As-Built Well Depth (ft):		8.2 Pump in Well:	No	
Measured Well Depth (ft):	7.85	Well Type	Flush completion	
Length of Tip (ft):		.07		
Well Depth (ft):	-0	.07		
Initial DTW (ft):	1.45			
Well Condition:	Bolts: 1000 d Gasket: 600 d J-Plug: 600 d Lock: 600 d Monument: Other: 10 = 0.58	PM		
Repairs Needed				
Panaire Barfarmad	Standing	water about	J-Puz	
Repairs Performed				
ther Comments:		*		

	Monitoring Well Inspection	n and Maintenance Form		
General Information				-
Project Name:	Emerald Services, Inc.	Date:	12/21/21	_
Station:	MW-3R	Time:	10:10	
Sample ID:	ERI-MW-3R	Field Team:	ku	
Weather Conditions:	Cus 1 2 380	Temperature:	350	
Well Information				7
Well Diameter (in):		2 Bottom Condition:	Hered	4
As-Built Well Depth (ft):		8 Pump in Well:	no	4
Measured Well Depth (ft):	7.80	60 Well Type	Flush completion	
Length of Tip (ft):		.07		
Well Depth (ft):	-0	.07		
Initial DTW (ft):	307			
Well Condition:	Bolts: Good Gasket: Good J-Plug: Good Lock: Good Label: Good Monument: Good Other: DID=0.10 P	Pu		1
Repairs Needed				
Repairs Performed				
				_
Other Comments:				-

General Information

Project Name:

Station:

Sample ID:

Weather Conditions:

Monitoring Well Inspection and Maintenance Form

Emeral Services, Inc.	Date:	13/31/21
MW-4	Time:	0944
FRI-MW-4	Field Team:	Ku
COOL 20 3413	Temperature:	×34°

Well Information

Well Diameter (in):
As-Built Well Depth (ft):
Measured Well Depth (ft):
Length of Tip (ft):
Well Depth (ft):

Length of Tip (ft)
Well Depth (ft):
Initial DTW (ft):

	ı
2	
9	ľ
9.18	
0.07	
-0.07	
1.42	

Bottom Condition:
Pump in Well:
Nell Type

Flush completion

200	_	-		-	_		
3.8.7	AH	50	800	ed i	4.6	-	-
AA	en	Co		uı	u	O	ш

Repairs Needed

Repairs Performed

Other Comments:

Bolts:	200 d
Gasket: (Good
J-Plug:	Guid.
Lock:	Good
Label:	
Monument:	Crumbly
Other: F	PID = 0.2 PPM
Stand	ing water where J-Programme
	3
	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	4

APPENDIX A-2

SEMIANNUAL GROUNDWATER SAMPLING FORMS

GROUNDWAT SAMPLING LOG 3.03' Client: Safety-Kleen Static Water Level: **Project Number:** 46Y-001-001 Depth to Hydrocarbon: NA Total Well Depth: 7.75 ft-bgs **Project Name: Emerald Services** Screened Interval: 5 – 2.75 ft-bgs **Project Location:** Tacoma WA 6/2/2021 N5' Sample Date: Pump Inlet Depth: Arsenic/Lead 7060A/7421, TPH DRO/ORO Dx Extended, Sunny; 74°F Weather: **Laboratory Analysis:** VOCs 8260B Containers/Preservatives: 6 VOAs w/ HCL, (1) Liter poly w/HN03 Field Personnel: Katie Mitchell SAMPLE TIME: 12:30 QAQC Samples Collected: (yes) ((ho)) Water Quality Meter: Horiba Total Purge Volume: 2.59al SAMPLE ID: ERI-MW-1 If Yes, Sample ID:

MONITORING WELL ID: MW-1

Time	Pumping Rate (gpm)	Depth to Water (ft-bmp) +/- 0.33 ft	Temp (deg C) +/- 10%	Sp. Con. (mS/cm) +/- 10%	DO (mg/L) +/- 10%	pH (S.U.) +/- 10%	ORP (mV) +/- 10%	Turbidity (NTU) +/- 10%	Comments Groundwater appearance, odor, NAPL, purge interruptions, etc.
1202	950 L/Smin	3.06	16.73	0.497	2.68	6.64	180	4.7	Clear
1207	8001/5min	3.02	16.70	0.489	1.00	6.76	132	1.5	ti
1212	700L/5mm	3.09	16.10	0.498	0.41	6.87	71	3.9	1/
1217	800L/5min	3.08	15.84	0.498	0.78	6.88	52	4.6	l _f
1222	775 L/5mm	3.07	15.63	0.495	0.20	6.86	30	3.7	lı
1227	7754/5min	3.07	15.56	0.491	0.17	6.85	18	3.8	11
1232	776L/Smin	3.09	15.55	0.491	0.16	6.87	17	4.0	lt .

Protective Casing: Lock Condition: Lid Condition: Casing Diameter: Cap Condition: Comments: Commen

				G	ROUND	NAT 1SA	AMPLING	LOG	
		Safety-Kleer						ater Level:	2.65
Projec	ct Number:	46Y-001-00	1			D	epth to Hy	drocarbon:	NA
Pro	ject Name:	Emerald Se	rvices				Total V	Vell Depth:	8.2 ft-bgs
Project	t Location:	Tacoma WA					Screene	ed Interval:	4.45 - 8.2 ft-bgs
Sa	mple Date:	6/2/202	1				Pump I	nlet Depth:	~5.0°
	Weather:	Sunny; 7	4'F	, ,	0			y Analysis:	Arsenic/Lead 7060A/7421, TPH DRO/ORO Dx Extended, VOCs 8260B
Field	Personnel:	Katie Mitch	ell	14	Jon	Cont	ainers/Pre	servatives:	6 VOAs w/ HCl, (1) Liter poly w/HN03
SAM	PLE TIME:	1330			QAQC Sa	amples Colle	ected: (ye	s) (no)	Water Quality Meter: Horiba
S	AMPLE ID:	ERI-MW-2R			If Yes, Sa	ample ID:			Total Purge Volume: 3.0 gal
MONIT	ORING W	ELL ID: M	N-2R						
	Pumping Rate	Depth to Water (ft-bmp)	Temp (deg C)	Sp. Con. (mS/cm)	DO (mg/L)	pH (S.U.)	ORP (mV)	Turbidity (NTU)	Comments Groundwater appearance, odor, NAPL, purge interruptions,
Time	(gpm)	+/- 0.33 ft	+/- 10%	+/- 10%	+/- 10%	+/- 10%	+/- 10%	+/- 10%	etc.
1310	900L/5mm	3.05	15.66	0.270	6.07	6.41	3	2.0	Clean
1315	750L/5min	3,03	15.65	0.267	0.03	6.35	3	1.8	fs
1320	800L(Smin	3.04	15.60	0.264	0.00	6.31	3	1.6	11
1325	800L/smm	2.97	15.54	0.259	0.00	6.31	-1	0.4	ч
					FIELD	WELL INS	SPECTIO	N:	
Protecti	ve Casing:						Well I.D.	Visible:	
Lock	Condition:	15	66,			Con	dition of N	-	A.
Lid	Condition:		10/2/2021				Bolt Co	ndition:	72/20
Casing	Diameter:						Bumpe	Posts:	o al
Cap Condition:							Flush Mou		
	omments:								

				Gl	ROUNDV	VAT ISA	AMPLING	LOG			
	Client:	Safety-Klee	n				Static W	ater Level:	5.31		
Projec	t Number:	46Y-001-00				D	epth to Hyd	drocarbon:	NA		
Proj	ect Name:	Emerald Se	rvices				Total V	Vell Depth:	8 ft-bgs		
Project	Location:	Tacoma WA	\			-	Screene	ed Interval:	6 – 8 ft-bgs		
Sar	nple Date:	6/2/2021				 -	Pump li	nlet Depth:	7'		
	Weather:	Sunny'			0			/ Analysis:	Arsenic/Lead 7060A/742 VOCs 8260B	21, TPH DRO/ORO Dx Exter	nded,
Field F	Personnel:	Katie Mitch	ell	12,	18	Cont	ainers/Pres	servatives:	6 VOAs w/ HCL, (1) Lite		
SAMI	PLE TIME:	1425			QAQC Sa	mples Colle	ected: (ye	s) ((no))		Meter: Horiba	
SA	AMPLE ID:	ERI-MW-3R			If Yes, Sa	mple ID:			Total Purge Vo	olume: 29al	
MONIT	ORING W	ELL ID: M	N-3R				,				
Time	Pumping Rate	Depth to Water (ft-bmp)	Temp (deg C)	Sp. Con. (mS/cm)	DO (mg/L)	pH (S.U.)	ORP (mV)	Turbidity (NTU)		Comments ice, odor, NAPL, purge interr	ruptions,
Time	(gpm)	+/- 0.33 ft	+/- 10%	+/- 10%	+/- 10%	+/- 10%	+/- 10%	+/- 10%	C1 - 1-11	etc.	
1500	TISC/SMIN	6.03	18.54	1.20	0.08	652	-61		Slightly yell	COW	
1505	600L/Smin	6.01	18.65	1.21	0.00	6.55	-73		a . 19		
1510	800L/5mm	6.16	18.05	1.22	2.30	6.75	-97		je (f		
1515	775U Sman	6.35	17.80	1.22	4.18	6.81	-101		less yellow	to air introdu	
1520	900L/Smin	6.35	17.93	1.22	4.08	6.92	-109		more Clear	fintubing from	
1525	7001/5min	6.64	17.90	1.23	6.31	7.05	-115			pump was set lowest setting	
		ose to but fore sa		rece prov	to Sam	pling; a	llowed	to ree	honge to	\	
		V	V		FIELD \	WELL INS	SPECTIO	V:			
Protectiv	ve Casing:			-			Well I.D.	Visible: \	\ <u></u>		
	Condition:	B	~			Con	dition of M		15 6Kg/		
	Condition:		20/0				Bolt Co	-	6/2/2021		
	Diameter:		100				Bumpe		7		
-	Condition:				\		Flush Mou				
-	omments:			Repairs no	(saled2)	_					

				G	ROUNDY	VAT 1SA	AMPLING	LOG	
	Client:	Safety-Klee	n				Static W	ater Level:	3.23
Projec	t Number:	46Y-001-00	1			D		drocarbon:	NA
Proj	ect Name:	Emerald Se	rvices				Total V	Vell Depth:	9 ft-bgs
Project	Location:	Tacoma WA	٨				Screene	ed Interval:	4 – 9 ft-bgs
Sar	mple Date:	6/2/20.	21				Pump I	nlet Depth:	3.5'
	Weather:	Sunny; 7	5°F				Laboratory	y Analysis:	Arsenic/Lead 7060A/7421, TPH DRO/ORO Dx Extended, VOCs 8260B
	Personnel:	Katie Mitch	ell	1/	X-	Cont	ainers/Pres	servatives:	6 VOAs w/ HCL, (1) Liter poly w/HN03
SAM	PLE TIME:	1430			QAQC Sa	mples Colle	ected: (ye	s) (no)	Water Quality Meter: Horiba
SA	AMPLE ID:	ERI-MW-4			If Yes, Sa	mple ID:	ERI-MW-	50	Total Purge Volume: 29al
MONITORING WELL ID: MW-4									
Time	Pumping Rate (gpm)	Depth to Water (ft-bmp) +/- 0.33 ft	Temp (deg C) +/- 10%	Sp. Con. (mS/cm) +/- 10%	DO (mg/L) +/- 10%	pH (S.U.) +/- 10%	ORP (mV) +/- 10%	Turbidity (NTU) +/- 10%	Comments Groundwater appearance, odor, NAPL, purge interruptions, etc.
1405	3001/5min	3.25	18.62	0.535	0.03	6.88	-51	D. D	Clear
1410	800L/5min	3.26	19.18	0.577	0.10	6.72	-59	0.0	u
1415	800L/Smin	3.26	18.71	0.594	(.11 *	6.76	-70	0.0	11 *Bubbles in tube caused 1 m DO
1420	8001/5min	3,27	18.70	0.656	1.12 *	6.79	-78	0.0	11
1425	800L/SMM	3.26	18.63	0.658	1.08	683	-82	0.0	tı
1430	800L/5mm	3.26	18.60	0.691	1.09 *	6.87	-86	0.0	11

FIELD WELL INSPECTION: Protective Casing: Lock Condition: Lid Condition: Casing Diameter: Cap Condition: Cap C

GROUNDWATER SAMPLING LOG

Client:	Safety-Kleen	Static Water Level: Depth to Hydrocarbon:	
Project Number:	Emerald Services	Total Well Depth:	8 ft-bgs
Project Location:	Tacoma WA	Screened Interval: Pump Inlet Depth:	- 61 (-6
Sample Date:	Cool forgy	Laboratory Analysis:	Arsenic/Lead 7060A/7421, TPH DHO/ONO UX EXISTORU. VOCs 82608
Field Personnel:	Katie Mitchell	QAQC Samples Collected: (yes) (no)	6 VOAs wi HCL, (1) Liter poly with NG3 Water Quality Meter: Horriba, US2
SAMPLE TIME: SAMPLE ID:	#+00 1056 ERI-MW-3R	If Yes, Sample ID:	Total Purge Volume:

	Pumping Rate	Depth to Water (ft-bmp)	V-3R Temp (deg C) +/- 10%	Sp. Con. (mS/cm) +/- 10%	DO (mg/L) +/- 10%	pH (S.U.) +/- 10%	ORP (mV) +/- 10%	Turbidity (NTU) +/- 10%	Comments Groundwater appearance, odor, NAPL, purge interruptions, etc.
1 59	(gpm) A		13 33	139	053	669	-27	0.0	Clear
041	450	416	B25	139	0.00	657	31	0.0	
0.46	400	434	13.27	138	0.00	652	-35	0.0	
	350	4,60	15.53	1.38	6.00	6.50	-38	00	
1056		473	1338	137	0.00	649	-35	0.0	1
100	- 5A.TI	WCE					-	-	
							-		
	and a second	-	-	-	-				

Project Number: Project Name: Project Location: Sample Date: Weather: Field Personnel: SAMPLE TIME: SAMPLE ID:	Emerald Services Tacoma WA 12/21/21 Cool cloudy 234 Katie Mitchell 145 ERI-MW-4	GROUNDWATER SAMPLING LOG Static Water Level: Depth to Hydrocarbon: Total Well Depth: Screened Interval: Pump Inlet Depth: Laboratory Analysis: Containers/Preservatives: QAQC Samples Collected: (yes) (no) If Yes, Sample ID: ERI-MW-50	9 ft-bgs 4 - 9 ft-bgs **S Arsenic/Lead 7060A/7421, TPH DRO/ORO Dx Extended, VOCs 8260B
MONITORING W	/ELL ID: MW-4		

		Depth to							
Time	Pumping Rate (gpm)	Water (ft-bmp) +/- 0.33 ft	Temp (deg C) +/- 10%	Sp. Con. (mS/cm) +/- 10%	DO (mg/L) +/- 10%	pH (S.U.) +/- 10%	ORP (mV) +/- 10%	Turbidity (NTU) +/- 10%	Comments Groundwater appearance, odor, NAPL, purge interruptions, etc.
1125	350	144	10,01	0.971	1.00	6.69	-36	17.0	Clear
1130	350	1.45	10.56	0.890	000	6.66	-37	7.6	
1135	350	1.44	10.65	0.794	0.00	4.43	-38	10	
1140	350	144	10.75	0.763	0.00	6.62	-39	06	
1145	350	1.44		1	0.00	6.61	-39	00	
						A S			
		-	-			1	A REAL PROPERTY CONTRACTOR	The second secon	

APPENDIX B

LABORATORY REPORTS

- **B-1.** LABORATORY REPORT (JUNE 2021)
- **B-2.** LABORATORY REPORT (DECEMBER 2021)

APPENDIX B-1

LABORATORY REPORT (JUNE 2021)

Environment Testing America

ANALYTICAL REPORT

Eurofins FGS, Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

Laboratory Job ID: 580-103512-1

Client Project/Site: Emerald Services Tacoma

For:

Trihydro Corporation 1252 Commerce Drive Laramie, Wyoming 82070

Attn: Katie Mitchell

Authorized for release by: 6/21/2021 2:46:55 PM

Nathan Lewis, Project Manager I (253)922-2310

Nathan.Lewis@Eurofinset.com

.....LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Trihydro Corporation Project/Site: Emerald Services Tacoma Laboratory Job ID: 580-103512-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	5
Client Sample Results	6
QC Sample Results	18
Chronicle	28
Certification Summary	30
Sample Summary	31
Chain of Custody	32
Receipt Checklists	33

4

5

7

8

10

10

Case Narrative

Client: Trihydro Corporation

Project/Site: Emerald Services Tacoma

Job ID: 580-103512-1

Laboratory: Eurofins FGS, Seattle

Narrative

Job Narrative 580-103512-1

Comments

No additional comments.

Receipt

The samples were received on 6/2/2021 4:20 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 9.0° C.

GC/MS VOA

Method 8260D: The laboratory control sample (LCS) for analytical batch 580-358637 recovered outside control limits for the following analytes: Dichlorodifluoromethane, Tetrachloroethene and Ethylene Dibromide. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260D: The continuing calibration verification (CCV) associated with batch 580-358637 recovered above the upper control limit for Dichlorodifluoromethane, 1,1,2-Trichloro-1,2,2-trifluoroethane and Carbon tetrachloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: ERI-MW-4 (580-103512-4), ERI-MW-50 (580-103512-5), TRIP BLANK (580-103512-6) and (CCVIS 580-358637/3).

Method 8260D: The continuing calibration verification (CCV) associated with batch 580-358637 recovered outside acceptance criteria, low biased, for n-Butylbenzene. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Method 8260D: The continuing calibration verification (CCV) associated with batch 580-358759 recovered outside acceptance criteria, low biased, for Chloromethane, Bromomethane and cis-1,3-Dichloropropene. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Method 8260D: The method blank for preparation batch 358759 contained Methylene Chloride above the reporting limit (RL). None of the samples associated with this method blank contained the target compound; therefore, re-extraction and/or re-analysis of samples were not performed.

Method 8260D: The laboratory control sample duplicate (LCSD) for analytical batch 580-358759 recovered outside control limits for the following analytes: Methylene Chloride. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method NWTPH-Dx: The following samples contained a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: ERI-MW-1 (580-103512-1), ERI-MW-2R (580-103512-2), ERI-MW-3R (580-103512-3), ERI-MW-4 (580-103512-4) and ERI-MW-50 (580-103512-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 580-358299, so a LCS and LCSD were used instead.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 580-358158, so a LCS and LCSD were used instead.

-

Job ID: 580-103512-1

1

5

6

o

9

10

4 4

Case Narrative

Client: Trihydro Corporation

Project/Site: Emerald Services Tacoma

Job ID: 580-103512-1

Job ID: 580-103512-1 (Continued)

Laboratory: Eurofins FGS, Seattle (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

Definitions/Glossary

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins FGS, Seattle

6/21/2021

Page 5 of 33

3

4

Ę

6

_

10

1-

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Client Sample ID: ERI-MW-1

Date Collected: 06/02/21 12:30 Date Received: 06/02/21 16:20 Lab Sample ID: 580-103512-1

Matrix: Water

Method: 8260D - Volatile Or Analyte	Result	Qualifier R	L MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND		.0	ug/L		•	06/10/21 01:34	
Chloromethane	ND	1	.0	ug/L			06/10/21 01:34	
Vinyl chloride	ND	1	.0	ug/L			06/10/21 01:34	
Bromomethane	ND	1	.0	ug/L			06/10/21 01:34	
Chloroethane	ND		.0	ug/L			06/10/21 01:34	
Trichlorofluoromethane	ND		.0	ug/L			06/10/21 01:34	
1,1-Dichloroethene	ND		.0	ug/L			06/10/21 01:34	
Methylene Chloride	ND		.0	ug/L			06/10/21 01:34	
Methyl tert-butyl ether	ND		.0	ug/L			06/10/21 01:34	
trans-1,2-Dichloroethene	ND		.0 .0	ug/L			06/10/21 01:34	
1,1-Dichloroethane	ND		.0	ug/L			06/10/21 01:34	
2,2-Dichloropropane	ND		.0	ug/L			06/10/21 01:34	
cis-1,2-Dichloroethene	ND		.0 .0	ug/L			06/10/21 01:34	
Bromochloromethane	ND		.0	ug/L ug/L			06/10/21 01:34	
Chloroform	ND ND		.0	ug/L ug/L			06/10/21 01:34	
1,1,1-Trichloroethane	ND ND		.0 .0	ug/L ug/L			06/10/21 01:34	
Carbon tetrachloride	ND		.0	ug/L ug/L			06/10/21 01:34	
1,1-Dichloropropene	ND ND		.0	ug/L ug/L			06/10/21 01:34	
Benzene							06/10/21 01:34	
	ND ND		.0 .0	ug/L			06/10/21 01:34	
1,2-Dichloroethane Trichloroethene				ug/L				
	ND		.0	ug/L			06/10/21 01:34 06/10/21 01:34	
1,2-Dichloropropane	ND		.0	ug/L				
Dibromomethane	ND		.0	ug/L			06/10/21 01:34	
Bromodichloromethane	ND		.0	ug/L			06/10/21 01:34	
cis-1,3-Dichloropropene	ND		.0	ug/L			06/10/21 01:34	
Toluene	ND		.0	ug/L			06/10/21 01:34	
trans-1,3-Dichloropropene	ND		.0	ug/L			06/10/21 01:34	
1,1,2-Trichloroethane	ND		.0	ug/L			06/10/21 01:34	
Tetrachloroethene	ND		.0	ug/L			06/10/21 01:34	
1,3-Dichloropropane	ND		.0 - <u>-</u>	ug/L			06/10/21 01:34	
Dibromochloromethane	ND		.0	ug/L			06/10/21 01:34	
1,2-Dibromoethane	ND		.0	ug/L			06/10/21 01:34	
Chlorobenzene	ND		.0	ug/L			06/10/21 01:34	
1,1,1,2-Tetrachloroethane	ND		.0	ug/L			06/10/21 01:34	
Ethylbenzene	ND		.0	ug/L			06/10/21 01:34	
m-Xylene & p-Xylene	ND		.0	ug/L			06/10/21 01:34	
o-Xylene	ND		.0	ug/L			06/10/21 01:34	
Styrene	ND	1	.0	ug/L			06/10/21 01:34	
Bromoform	ND	1	.0	ug/L			06/10/21 01:34	
Isopropylbenzene	ND	1	.0	ug/L			06/10/21 01:34	
Bromobenzene	ND	1	.0	ug/L			06/10/21 01:34	
1,1,2,2-Tetrachloroethane	ND	1	.0	ug/L			06/10/21 01:34	
1,2,3-Trichloropropane	ND	1	.0	ug/L			06/10/21 01:34	
N-Propylbenzene	ND	1	.0	ug/L			06/10/21 01:34	
2-Chlorotoluene	ND	1	.0	ug/L			06/10/21 01:34	
4-Chlorotoluene	ND	1	.0	ug/L			06/10/21 01:34	
t-Butylbenzene	ND	2	.0	ug/L			06/10/21 01:34	
1,2,4-Trimethylbenzene	ND		.0	ug/L			06/10/21 01:34	
sec-Butylbenzene	ND		.0	ug/L			06/10/21 01:34	

Eurofins FGS, Seattle

Page 6 of 33 6/21/2021

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Client Sample ID: ERI-MW-1

Lab Sample ID: 580-103512-1 Date Collected: 06/02/21 12:30 **Matrix: Water**

Date Received: 06/02/21 16:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Isopropyltoluene	ND		1.0		ug/L			06/10/21 01:34	1
1,3-Dichlorobenzene	ND		1.0		ug/L			06/10/21 01:34	1
1,4-Dichlorobenzene	ND		1.0		ug/L			06/10/21 01:34	1
n-Butylbenzene	ND		1.0		ug/L			06/10/21 01:34	1
1,2-Dichlorobenzene	ND		1.0		ug/L			06/10/21 01:34	1
1,2-Dibromo-3-Chloropropane	ND		3.0		ug/L			06/10/21 01:34	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			06/10/21 01:34	1
Hexachlorobutadiene	ND		3.0		ug/L			06/10/21 01:34	1
Naphthalene	ND		3.0		ug/L			06/10/21 01:34	1
1,2,3-Trichlorobenzene	ND		2.0		ug/L			06/10/21 01:34	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			06/10/21 01:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)			80 - 120					06/10/21 01:34	1
1,2-Dichloroethane-d4 (Surr)	112		80 - 126					06/10/21 01:34	1
4-Bromofluorobenzene (Surr)	95		80 - 120					06/10/21 01:34	1
Dibromofluoromethane (Surr)	110		80 - 120					06/10/21 01:34	1
Method: NWTPH-Dx - North	west - Semi-V	olatile Pet	roleum Prod	ucts (G0	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)	0.13		0.12		mg/L		06/04/21 09:25	06/09/21 14:06	1
Motor Oil (>C24-C36)	ND		0.37		mg/L		06/04/21 09:25	06/09/21 14:06	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	60		50 - 150				06/04/21 09:25	06/09/21 14:06	

Analyte	Result	Qualifier	KL	MDL	Unit	,	Prepared	Analyzed	DII Fac
Arsenic	ND		0.0010		mg/L	 _	06/11/21 12:53	06/19/21 02:27	1
Lead	ND		0.00040		mg/L		06/11/21 12:53	06/19/21 02:27	1

6/21/2021

Client: Trihydro Corporation Job ID: 580-103512-1

RL

MDL Unit

D

Prepared

Project/Site: Emerald Services Tacoma

Client Sample ID: ERI-MW-2R

Analyte

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

N-Propylbenzene

2-Chlorotoluene

4-Chlorotoluene

t-Butylbenzene

sec-Butylbenzene

Date Collected: 06/02/21 13:30
Date Received: 06/02/21 16:20

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: 580-103512-2

Analyzed

Matrix: Water

Dil Fac

· ····································					
Dichlorodifluoromethane	ND	1.0	ug/L	06/10/21 02:01	1
Chloromethane	ND	1.0	ug/L	06/10/21 02:01	1
Vinyl chloride	ND	1.0	ug/L	06/10/21 02:01	1
Bromomethane	ND	1.0	ug/L	06/10/21 02:01	1
Chloroethane	ND	1.0	ug/L	06/10/21 02:01	1
Trichlorofluoromethane	ND	1.0	ug/L	06/10/21 02:01	1
1,1-Dichloroethene	ND	1.0	ug/L	06/10/21 02:01	1
Methylene Chloride	ND	*+ 3.0	ug/L	06/10/21 02:01	1
Methyl tert-butyl ether	7.5	1.0	ug/L	06/10/21 02:01	1
trans-1,2-Dichloroethene	ND	1.0	ug/L	06/10/21 02:01	1
1,1-Dichloroethane	ND	1.0	ug/L	06/10/21 02:01	1
2,2-Dichloropropane	ND	1.0	ug/L	06/10/21 02:01	1
cis-1,2-Dichloroethene	ND	1.0	ug/L	06/10/21 02:01	1
Bromochloromethane	ND	1.0	ug/L	06/10/21 02:01	1
Chloroform	ND	1.0	ug/L	06/10/21 02:01	1
1,1,1-Trichloroethane	ND	1.0	ug/L	06/10/21 02:01	1
Carbon tetrachloride	ND	1.0	ug/L	06/10/21 02:01	1
1,1-Dichloropropene	ND	1.0	ug/L	06/10/21 02:01	1
Benzene	ND	1.0	ug/L	06/10/21 02:01	1
1,2-Dichloroethane	ND	1.0	ug/L	06/10/21 02:01	1
Trichloroethene	ND	1.0	ug/L	06/10/21 02:01	1
1,2-Dichloropropane	ND	1.0	ug/L	06/10/21 02:01	1
Dibromomethane	ND	1.0	ug/L	06/10/21 02:01	1
Bromodichloromethane	ND	1.0	ug/L	06/10/21 02:01	1
cis-1,3-Dichloropropene	ND	1.0	ug/L	06/10/21 02:01	1
Toluene	ND	1.0	ug/L	06/10/21 02:01	1
trans-1,3-Dichloropropene	ND	1.0	ug/L	06/10/21 02:01	1
1,1,2-Trichloroethane	ND	1.0	ug/L	06/10/21 02:01	1
Tetrachloroethene	ND	1.0	ug/L	06/10/21 02:01	1
1,3-Dichloropropane	ND	1.0	ug/L	06/10/21 02:01	1
Dibromochloromethane	ND	1.0	ug/L	06/10/21 02:01	1
1,2-Dibromoethane	ND	1.0	ug/L	06/10/21 02:01	1
Chlorobenzene	ND	1.0	ug/L	06/10/21 02:01	1
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	06/10/21 02:01	1
Ethylbenzene	ND	1.0	ug/L	06/10/21 02:01	1
m-Xylene & p-Xylene	ND	2.0	ug/L	06/10/21 02:01	1
o-Xylene	ND	1.0	ug/L	06/10/21 02:01	1
Styrene	ND	1.0	ug/L	06/10/21 02:01	1
Bromoform	ND	1.0	ug/L	06/10/21 02:01	1
Isopropylbenzene	ND	1.0	ug/L	06/10/21 02:01	1
Bromobenzene	ND	1.0	ug/L	06/10/21 02:01	1
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	06/10/21 02:01	1

1.0

1.0

1.0

1.0

2.0

3.0

1.0

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Eurofins FGS, Seattle

06/10/21 02:01

06/10/21 02:01

06/10/21 02:01

06/10/21 02:01

06/10/21 02:01

06/10/21 02:01

06/10/21 02:01

Page 8 of 33 6/21/2021

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Lab Sample ID: 580-103512-2 Client Sample ID: ERI-MW-2R

Matrix: Water

Prepared

06/04/21 09:25 06/09/21 14:26

Analyzed

Dil Fac

Date Collected: 06/02/21 13:30 Date Received: 06/02/21 16:20

Surrogate

o-Terphenyl

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND		1.0		ug/L			06/10/21 02:01	1
1,3-Dichlorobenzene	ND		1.0		ug/L			06/10/21 02:01	1
1,4-Dichlorobenzene	ND		1.0		ug/L			06/10/21 02:01	1
n-Butylbenzene	ND		1.0		ug/L			06/10/21 02:01	1
1,2-Dichlorobenzene	ND		1.0		ug/L			06/10/21 02:01	1
1,2-Dibromo-3-Chloropropane	ND		3.0		ug/L			06/10/21 02:01	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			06/10/21 02:01	1
Hexachlorobutadiene	ND		3.0		ug/L			06/10/21 02:01	1
Naphthalene	ND		3.0		ug/L			06/10/21 02:01	1
1,2,3-Trichlorobenzene	ND		2.0		ug/L			06/10/21 02:01	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			06/10/21 02:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120					06/10/21 02:01	1
1,2-Dichloroethane-d4 (Surr)	110		80 - 126					06/10/21 02:01	1
4-Bromofluorobenzene (Surr)	95		80 - 120					06/10/21 02:01	1
Dibromofluoromethane (Surr)	110		80 - 120					06/10/21 02:01	1
Method: NWTPH-Dx - North	nwest - Semi-V	olatile Pet	roleum Prod	ucts (GC	C)				
Analyte		Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.14		0.12		mg/L		06/04/21 09:25	06/09/21 14:26	1
Motor Oil (>C24-C36)	ND		0.37		mg/L		06/04/21 09:25	06/09/21 14:26	1

Method: 6020B - Metals (ICP/M	IS) - Total Reco	overable					
Analyte	Result Qua	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	0.0010	mg/L		06/11/21 12:53	06/19/21 02:31	1
Lead	ND	0.00040	mg/L		06/11/21 12:53	06/19/21 02:31	1

Limits

50 - 150

%Recovery Qualifier

61

Page 9 of 33

6/21/2021

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Client Sample ID: ERI-MW-3R

sec-Butylbenzene

Lab Sample ID: 580-103512-3 Date Collected: 06/02/21 15:30 Date Received: 06/02/21 16:20

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.0		ug/L			06/10/21 02:26	1
Chloromethane	ND		1.0		ug/L			06/10/21 02:26	1
Vinyl chloride	ND		1.0		ug/L			06/10/21 02:26	1
Bromomethane	ND		1.0		ug/L			06/10/21 02:26	1
Chloroethane	ND		1.0		ug/L			06/10/21 02:26	1
Trichlorofluoromethane	ND		1.0		ug/L			06/10/21 02:26	1
1,1-Dichloroethene	ND		1.0		ug/L			06/10/21 02:26	1
Methylene Chloride	ND	*+	3.0		ug/L			06/10/21 02:26	1
Methyl tert-butyl ether	ND		1.0		ug/L			06/10/21 02:26	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			06/10/21 02:26	1
1,1-Dichloroethane	ND		1.0		ug/L			06/10/21 02:26	1
2,2-Dichloropropane	ND		1.0		ug/L			06/10/21 02:26	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			06/10/21 02:26	1
Bromochloromethane	ND		1.0		ug/L			06/10/21 02:26	1
Chloroform	ND		1.0		ug/L			06/10/21 02:26	
1,1,1-Trichloroethane	ND		1.0		ug/L			06/10/21 02:26	
Carbon tetrachloride	ND		1.0		ug/L			06/10/21 02:26	
1,1-Dichloropropene	ND		1.0		ug/L			06/10/21 02:26	
Benzene	ND		1.0		ug/L			06/10/21 02:26	
1,2-Dichloroethane	ND ND		1.0		ug/L ug/L			06/10/21 02:26	1
Trichloroethene	ND ND				_				
			1.0		ug/L			06/10/21 02:26 06/10/21 02:26	
1,2-Dichloropropane	ND		1.0		ug/L				ا
Dibromomethane	ND		1.0		ug/L			06/10/21 02:26	1
Bromodichloromethane	ND		1.0		ug/L			06/10/21 02:26	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			06/10/21 02:26	1
Toluene	ND		1.0		ug/L			06/10/21 02:26	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			06/10/21 02:26	1
1,1,2-Trichloroethane	ND		1.0		ug/L			06/10/21 02:26	1
Tetrachloroethene	ND		1.0		ug/L			06/10/21 02:26	1
1,3-Dichloropropane	ND		1.0		ug/L			06/10/21 02:26	1
Dibromochloromethane	ND		1.0		ug/L			06/10/21 02:26	1
1,2-Dibromoethane	ND		1.0		ug/L			06/10/21 02:26	1
Chlorobenzene	ND		1.0		ug/L			06/10/21 02:26	1
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			06/10/21 02:26	1
Ethylbenzene	ND		1.0		ug/L			06/10/21 02:26	1
m-Xylene & p-Xylene	ND		2.0		ug/L			06/10/21 02:26	1
o-Xylene	ND		1.0		ug/L			06/10/21 02:26	1
Styrene	ND		1.0		ug/L			06/10/21 02:26	1
Bromoform	ND		1.0		ug/L			06/10/21 02:26	1
Isopropylbenzene	ND		1.0		ug/L			06/10/21 02:26	1
Bromobenzene	ND		1.0		ug/L			06/10/21 02:26	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			06/10/21 02:26	1
1,2,3-Trichloropropane	ND		1.0		ug/L			06/10/21 02:26	1
N-Propylbenzene	ND		1.0		ug/L			06/10/21 02:26	1
2-Chlorotoluene	ND		1.0		ug/L			06/10/21 02:26	1
4-Chlorotoluene	ND		1.0		ug/L			06/10/21 02:26	1
t-Butylbenzene	ND		2.0		ug/L			06/10/21 02:26	1
1,2,4-Trimethylbenzene	ND		3.0		ug/L			06/10/21 02:26	1

Eurofins FGS, Seattle

06/10/21 02:26

Page 10 of 33

ug/L

ND

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Lab Sample ID: 580-103512-3 Client Sample ID: ERI-MW-3R Date Collected: 06/02/21 15:30

Matrix: Water

Date Received: 06/02/21 16:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND		1.0		ug/L			06/10/21 02:26	1
1,3-Dichlorobenzene	ND		1.0		ug/L			06/10/21 02:26	1
1,4-Dichlorobenzene	ND		1.0		ug/L			06/10/21 02:26	1
n-Butylbenzene	ND		1.0		ug/L			06/10/21 02:26	1
1,2-Dichlorobenzene	ND		1.0		ug/L			06/10/21 02:26	1
1,2-Dibromo-3-Chloropropane	ND		3.0		ug/L			06/10/21 02:26	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			06/10/21 02:26	1
Hexachlorobutadiene	ND		3.0		ug/L			06/10/21 02:26	1
Naphthalene	ND		3.0		ug/L			06/10/21 02:26	1
1,2,3-Trichlorobenzene	ND		2.0		ug/L			06/10/21 02:26	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			06/10/21 02:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120					06/10/21 02:26	1
1,2-Dichloroethane-d4 (Surr)	112		80 - 126					06/10/21 02:26	1
4-Bromofluorobenzene (Surr)	93		80 - 120					06/10/21 02:26	1
Dibromofluoromethane (Surr)	109		80 - 120					06/10/21 02:26	1
Method: NWTPH-Dx - Norti	nwest - Semi-V	olatile Pet	roleum Prod	ucts (G0	C)				
Analyte		Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.80		0.12		mg/L		06/04/21 09:25	06/09/21 14:46	1
Motor Oil (>C24-C36)	0.95		0.39		mg/L		06/04/21 00:25	06/09/21 14:46	1

Method: NWTPH-Dx - Noi	thwest - Semi-Vol	latile Peti	roleum Prodi	ucts (GC	;)				
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.80		0.12		mg/L		06/04/21 09:25	06/09/21 14:46	1
Motor Oil (>C24-C36)	0.95		0.39		mg/L		06/04/21 09:25	06/09/21 14:46	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	71		50 - 150				06/04/21 09:25	06/09/21 14:46	1

Method: 6020B - Metals (ICP/N	/IS) - Total Recoveral	ole					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0033	0.0010	mg/L		06/11/21 12:53	06/19/21 02:35	1
Lead	ND	0.00040	mg/L		06/11/21 12:53	06/19/21 02:35	1

6/21/2021

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Client Sample ID: ERI-MW-4

Date Collected: 06/02/21 14:30 Date Received: 06/02/21 16:20

Lab Sample ID: 580-103512-4

Matrix: Water

D	Prepared	Analyzed	Dil Fac	
		06/09/21 02:14	1	
		06/09/21 02:14	1	
		06/09/21 02:14	1	
		06/09/21 02:14	1	
		06/09/21 02:14	1	
		06/09/21 02:14	1	
		06/09/21 02:14	1	
		06/09/21 02:14	1	
		06/09/21 02:14	1	
		06/00/21 02:14	1	

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND *+	1.0	ug/L		06/09/21 02:14	
Chloromethane	ND	1.0	ug/L		06/09/21 02:14	
Vinyl chloride	ND	1.0	ug/L		06/09/21 02:14	
Bromomethane	ND	1.0	ug/L		06/09/21 02:14	
Chloroethane	ND	1.0	ug/L		06/09/21 02:14	
Trichlorofluoromethane	ND	1.0	ug/L		06/09/21 02:14	
1,1-Dichloroethene	ND	1.0	ug/L		06/09/21 02:14	
Methylene Chloride	ND	3.0	ug/L		06/09/21 02:14	
Methyl tert-butyl ether	ND	1.0	ug/L		06/09/21 02:14	
trans-1,2-Dichloroethene	ND	1.0	ug/L		06/09/21 02:14	
1,1-Dichloroethane	ND	1.0	ug/L		06/09/21 02:14	
2,2-Dichloropropane	ND	1.0	ug/L		06/09/21 02:14	
cis-1,2-Dichloroethene	ND	1.0	ug/L		06/09/21 02:14	
Bromochloromethane	ND	1.0	ug/L		06/09/21 02:14	
Chloroform	ND	1.0	ug/L		06/09/21 02:14	
1,1,1-Trichloroethane	ND	1.0	ug/L		06/09/21 02:14	
Carbon tetrachloride	ND	1.0	ug/L		06/09/21 02:14	
1,1-Dichloropropene	ND	1.0	ug/L		06/09/21 02:14	
Benzene	ND	1.0	ug/L		06/09/21 02:14	
1.2-Dichloroethane	ND	1.0	ug/L		06/09/21 02:14	
Trichloroethene	ND ND	1.0	ug/L		06/09/21 02:14	
1,2-Dichloropropane	ND		.		06/09/21 02:14	
• •	ND ND	1.0	ug/L			
Dibromomethane Promodiable remethans	ND ND	1.0	ug/L		06/09/21 02:14	
Bromodichloromethane		1.0	ug/L		06/09/21 02:14	
cis-1,3-Dichloropropene	ND	1.0	ug/L		06/09/21 02:14	
Toluene	ND	1.0	ug/L		06/09/21 02:14	
trans-1,3-Dichloropropene	ND	1.0	ug/L		06/09/21 02:14	
1,1,2-Trichloroethane	ND	1.0	ug/L		06/09/21 02:14	
Tetrachloroethene	ND *+	1.0	ug/L		06/09/21 02:14	
1,3-Dichloropropane	ND	1.0	ug/L		06/09/21 02:14	
Dibromochloromethane	ND	1.0	ug/L		06/09/21 02:14	
1,2-Dibromoethane	ND *+	1.0	ug/L		06/09/21 02:14	
Chlorobenzene	ND	1.0	ug/L		06/09/21 02:14	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L		06/09/21 02:14	
Ethylbenzene	ND	1.0	ug/L		06/09/21 02:14	
m-Xylene & p-Xylene	ND	2.0	ug/L		06/09/21 02:14	
o-Xylene	ND	1.0	ug/L		06/09/21 02:14	
Styrene	ND	1.0	ug/L		06/09/21 02:14	
Bromoform	ND	1.0	ug/L		06/09/21 02:14	
Isopropylbenzene	ND	1.0	ug/L		06/09/21 02:14	
Bromobenzene	ND	1.0	ug/L		06/09/21 02:14	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		06/09/21 02:14	
1,2,3-Trichloropropane	ND	1.0	ug/L		06/09/21 02:14	
N-Propylbenzene	ND	1.0	ug/L		06/09/21 02:14	
2-Chlorotoluene	ND	1.0	ug/L		06/09/21 02:14	
4-Chlorotoluene	ND	1.0	ug/L		06/09/21 02:14	
t-Butylbenzene	ND	2.0	ug/L		06/09/21 02:14	
1,2,4-Trimethylbenzene	ND	3.0	ug/L		06/09/21 02:14	
sec-Butylbenzene	ND	1.0	ug/L		06/09/21 02:14	

Eurofins FGS, Seattle

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Client Sample ID: ERI-MW-4

Lab Sample ID: 580-103512-4 Date Collected: 06/02/21 14:30

Matrix: Water

Date Received: 06/02/21 16:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND		1.0		ug/L			06/09/21 02:14	1
1,3-Dichlorobenzene	ND		1.0		ug/L			06/09/21 02:14	1
1,4-Dichlorobenzene	ND		1.0		ug/L			06/09/21 02:14	1
n-Butylbenzene	ND		1.0		ug/L			06/09/21 02:14	1
1,2-Dichlorobenzene	ND		1.0		ug/L			06/09/21 02:14	1
1,2-Dibromo-3-Chloropropane	ND		3.0		ug/L			06/09/21 02:14	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			06/09/21 02:14	1
Hexachlorobutadiene	ND		3.0		ug/L			06/09/21 02:14	1
Naphthalene	ND		3.0		ug/L			06/09/21 02:14	1
1,2,3-Trichlorobenzene	ND		2.0		ug/L			06/09/21 02:14	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			06/09/21 02:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)			80 - 120					06/09/21 02:14	1
1,2-Dichloroethane-d4 (Surr)	111		80 - 126					06/09/21 02:14	1
4-Bromofluorobenzene (Surr)	104		80 - 120					06/09/21 02:14	1
Dibromofluoromethane (Surr)	108		80 - 120					06/09/21 02:14	1
Method: NWTPH-Dx - North	nwest - Semi-V	olatile Pet	roleum Pro	ducts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	1.6		0.11		mg/L		06/04/21 09:25	06/09/21 15:07	1

Method: NWTPH-Dx - No	rthwest - Semi-V	olatile Pet	roleum Prod	ucts (GC	C)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	1.6		0.11		mg/L		06/04/21 09:25	06/09/21 15:07	1
Motor Oil (>C24-C36)	0.57		0.37		mg/L		06/04/21 09:25	06/09/21 15:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	80		50 - 150				06/04/21 09:25	06/09/21 15:07	1

Method: 6020B - Metals (ICP/MS) - Total Recoverable										
	Analyte	Result Qual	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
	Arsenic	ND	0.0010	mg/L		06/11/21 12:53	06/19/21 02:39	1		
	Lead	ND	0.00040	mg/L		06/11/21 12:53	06/19/21 02:39	1		

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Client Sample ID: ERI-MW-50

Lab Sample ID: 580-103512-5 Date Collected: 06/02/21 00:01

Matrix: Water Date Received: 06/02/21 16:20

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil F
Dichlorodifluoromethane	ND *+	1.0	ug/L			06/09/21 02:39	
Chloromethane	ND	1.0	ug/L			06/09/21 02:39	
Vinyl chloride	ND	1.0	ug/L			06/09/21 02:39	
Bromomethane	ND	1.0	ug/L			06/09/21 02:39	
Chloroethane	ND	1.0	ug/L			06/09/21 02:39	
Trichlorofluoromethane	ND	1.0	ug/L			06/09/21 02:39	
1,1-Dichloroethene	ND	1.0	ug/L			06/09/21 02:39	
Methylene Chloride	ND	3.0	ug/L			06/09/21 02:39	
Methyl tert-butyl ether	ND	1.0	ug/L			06/09/21 02:39	
rans-1,2-Dichloroethene	ND	1.0	ug/L			06/09/21 02:39	
1,1-Dichloroethane	ND	1.0	ug/L			06/09/21 02:39	
2,2-Dichloropropane	ND	1.0	ug/L			06/09/21 02:39	
cis-1,2-Dichloroethene	ND	1.0	ug/L			06/09/21 02:39	
Bromochloromethane	ND	1.0	ug/L			06/09/21 02:39	
Chloroform	ND	1.0	ug/L			06/09/21 02:39	
1,1,1-Trichloroethane	ND	1.0	ug/L			06/09/21 02:39	
Carbon tetrachloride	ND	1.0	ug/L			06/09/21 02:39	
I,1-Dichloropropene	ND	1.0	ug/L			06/09/21 02:39	
Benzene	ND	1.0	ug/L			06/09/21 02:39	
I.2-Dichloroethane	ND	1.0	ug/L			06/09/21 02:39	
richloroethene	ND	1.0	ug/L			06/09/21 02:39	
,2-Dichloropropane	ND	1.0	ug/L			06/09/21 02:39	
Dibromomethane	ND	1.0	ug/L			06/09/21 02:39	
Bromodichloromethane	ND	1.0	ug/L			06/09/21 02:39	
sis-1,3-Dichloropropene	ND	1.0	ug/L ug/L			06/09/21 02:39	
Toluene	ND	1.0	ug/L			06/09/21 02:39	
rans-1,3-Dichloropropene	ND	1.0	ug/L			06/09/21 02:39	
I,1,2-Trichloroethane	ND ND *+	1.0 1.0	ug/L			06/09/21 02:39	
Tetrachloroethene			ug/L			06/09/21 02:39 06/09/21 02:39	
,3-Dichloropropane	ND ND	1.0	ug/L				
Dibromochloromethane	ND	1.0	ug/L			06/09/21 02:39	
I,2-Dibromoethane	ND *+	1.0	ug/L			06/09/21 02:39	
Chlorobenzene	ND	1.0	ug/L			06/09/21 02:39	
I,1,1,2-Tetrachloroethane	ND	1.0	ug/L			06/09/21 02:39	
Ethylbenzene	ND	1.0	ug/L			06/09/21 02:39	
n-Xylene & p-Xylene	ND	2.0	ug/L			06/09/21 02:39	
p-Xylene	ND	1.0	ug/L			06/09/21 02:39	
Styrene	ND	1.0	ug/L			06/09/21 02:39	
Bromoform	ND	1.0	ug/L			06/09/21 02:39	
sopropylbenzene	ND	1.0	ug/L			06/09/21 02:39	
Bromobenzene	ND	1.0	ug/L			06/09/21 02:39	
,1,2,2-Tetrachloroethane	ND	1.0	ug/L			06/09/21 02:39	
,2,3-Trichloropropane	ND	1.0	ug/L			06/09/21 02:39	
N-Propylbenzene	ND	1.0	ug/L			06/09/21 02:39	
2-Chlorotoluene	ND	1.0	ug/L			06/09/21 02:39	
l-Chlorotoluene	ND	1.0	ug/L			06/09/21 02:39	
-Butylbenzene	ND	2.0	ug/L			06/09/21 02:39	
I,2,4-Trimethylbenzene	ND	3.0	ug/L			06/09/21 02:39	
sec-Butylbenzene	ND	1.0	ug/L			06/09/21 02:39	

Eurofins FGS, Seattle

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Client Sample ID: ERI-MW-50 Lab Sample ID: 580-103512-5

Date Collected: 06/02/21 00:01 **Matrix: Water**

Date Received: 06/02/21 16:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	MD		1.0		ug/L			06/09/21 02:39	1
1,3-Dichlorobenzene	ND		1.0		ug/L			06/09/21 02:39	1
1,4-Dichlorobenzene	ND		1.0		ug/L			06/09/21 02:39	1
n-Butylbenzene	ND		1.0		ug/L			06/09/21 02:39	1
1,2-Dichlorobenzene	ND		1.0		ug/L			06/09/21 02:39	1
1,2-Dibromo-3-Chloropropane	ND		3.0		ug/L			06/09/21 02:39	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			06/09/21 02:39	1
Hexachlorobutadiene	ND		3.0		ug/L			06/09/21 02:39	1
Naphthalene	ND		3.0		ug/L			06/09/21 02:39	1
1,2,3-Trichlorobenzene	ND		2.0		ug/L			06/09/21 02:39	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			06/09/21 02:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120			-		06/09/21 02:39	1
1,2-Dichloroethane-d4 (Surr)	112		80 - 126					06/09/21 02:39	1
4-Bromofluorobenzene (Surr)	99		80 - 120					06/09/21 02:39	1
Dibromofluoromethane (Surr)	110		80 - 120					06/09/21 02:39	1
_ Method: NWTPH-Dx - North	nwest - Semi-V	olatile Pet	roleum Prodi	ucts (GC	C)				
Analyte		Qualifier	RL	•	Unit	D	Prepared	Analyzed	Dil Fac

Method: NWTPH-Dx - No	rthwest - Semi-Volatile Pe	etroleum Prod	ucts (GC)				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	1.7	0.11		mg/L		06/04/21 09:25	06/09/21 15:27	1
Motor Oil (>C24-C36)	0.60	0.36	ı	mg/L		06/04/21 09:25	06/09/21 15:27	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	91	50 - 150				06/04/21 09:25	06/09/21 15:27	1

Method: 6020B - Metals (ICP/MS) - Total Recoverable									
	Analyte	Result Qual	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	Arsenic	ND	0.0010	mg/L		06/11/21 12:53	06/19/21 02:42	1	
	Lead	ND	0.00040	mg/L		06/11/21 12:53	06/19/21 02:42	1	

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Client Sample ID: TRIP BLANK

Date Collected: 06/02/21 00:01 Date Received: 06/02/21 16:20 Lab Sample ID: 580-103512-6

Matrix: Water

Method: 8260D - Volatile Or Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane		*+	1.0		ug/L		-	06/09/21 03:04	
Chloromethane	ND		1.0		ug/L			06/09/21 03:04	
Vinyl chloride	ND		1.0		ug/L			06/09/21 03:04	
Bromomethane	ND		1.0		ug/L			06/09/21 03:04	
Chloroethane	ND		1.0		ug/L			06/09/21 03:04	
Trichlorofluoromethane	ND		1.0		ug/L			06/09/21 03:04	
1,1-Dichloroethene	ND		1.0		ug/L			06/09/21 03:04	
Methylene Chloride	ND		3.0		ug/L			06/09/21 03:04	
Methyl tert-butyl ether	ND		1.0		ug/L			06/09/21 03:04	
trans-1,2-Dichloroethene	ND		1.0		ug/L			06/09/21 03:04	
1,1-Dichloroethane	ND		1.0		ug/L			06/09/21 03:04	
2,2-Dichloropropane	ND		1.0		ug/L			06/09/21 03:04	
cis-1,2-Dichloroethene	ND		1.0		ug/L			06/09/21 03:04	
Bromochloromethane	ND		1.0		ug/L			06/09/21 03:04	
Chloroform	ND		1.0		ug/L			06/09/21 03:04	
1,1,1-Trichloroethane	ND		1.0		ug/L			06/09/21 03:04	
Carbon tetrachloride	ND		1.0		ug/L			06/09/21 03:04	
1,1-Dichloropropene	ND		1.0		ug/L			06/09/21 03:04	
Benzene	ND		1.0		ug/L			06/09/21 03:04	
1,2-Dichloroethane	ND ND		1.0		ug/L ug/L			06/09/21 03:04	
Trichloroethene	ND ND		1.0		_			06/09/21 03:04	
	ND				ug/L			06/09/21 03:04	
1,2-Dichloropropane			1.0		ug/L				
Dibromomethane	ND ND		1.0 1.0		ug/L			06/09/21 03:04 06/09/21 03:04	
Bromodichloromethane					ug/L				
cis-1,3-Dichloropropene	ND		1.0		ug/L			06/09/21 03:04	
Toluene	ND		1.0		ug/L			06/09/21 03:04	
trans-1,3-Dichloropropene	ND		1.0		ug/L			06/09/21 03:04	
1,1,2-Trichloroethane	ND	.	1.0		ug/L			06/09/21 03:04	
Tetrachloroethene	ND	^+	1.0		ug/L			06/09/21 03:04	
1,3-Dichloropropane	ND		1.0		ug/L			06/09/21 03:04	
Dibromochloromethane	ND		1.0		ug/L			06/09/21 03:04	
1,2-Dibromoethane	ND	*+	1.0		ug/L			06/09/21 03:04	
Chlorobenzene	ND		1.0		ug/L			06/09/21 03:04	
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			06/09/21 03:04	
Ethylbenzene	ND		1.0		ug/L			06/09/21 03:04	
m-Xylene & p-Xylene	ND		2.0		ug/L			06/09/21 03:04	
o-Xylene	ND		1.0		ug/L			06/09/21 03:04	
Styrene	ND		1.0		ug/L			06/09/21 03:04	
Bromoform	ND		1.0		ug/L			06/09/21 03:04	
Isopropylbenzene	ND		1.0		ug/L			06/09/21 03:04	
Bromobenzene	ND		1.0		ug/L			06/09/21 03:04	
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			06/09/21 03:04	
1,2,3-Trichloropropane	ND		1.0		ug/L			06/09/21 03:04	
N-Propylbenzene	ND		1.0		ug/L			06/09/21 03:04	
2-Chlorotoluene	ND		1.0		ug/L			06/09/21 03:04	
4-Chlorotoluene	ND		1.0		ug/L			06/09/21 03:04	
t-Butylbenzene	ND		2.0		ug/L			06/09/21 03:04	
1,2,4-Trimethylbenzene	ND		3.0		ug/L			06/09/21 03:04	
sec-Butylbenzene	ND		1.0		ug/L			06/09/21 03:04	

Eurofins FGS, Seattle

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Client Sample ID: TRIP BLANK

Date Collected: 06/02/21 00:01 Date Received: 06/02/21 16:20

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 580-103512-6

06/09/21 03:04

06/09/21 03:04

Matrix: Water

Analyte	Result Qu	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND ND		1.0		ug/L			06/09/21 03:04	1
1,3-Dichlorobenzene	ND		1.0		ug/L			06/09/21 03:04	1
1,4-Dichlorobenzene	ND		1.0		ug/L			06/09/21 03:04	1
n-Butylbenzene	ND		1.0		ug/L			06/09/21 03:04	1
1,2-Dichlorobenzene	ND		1.0		ug/L			06/09/21 03:04	1
1,2-Dibromo-3-Chloropropane	ND		3.0		ug/L			06/09/21 03:04	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			06/09/21 03:04	1
Hexachlorobutadiene	ND		3.0		ug/L			06/09/21 03:04	1
Naphthalene	ND		3.0		ug/L			06/09/21 03:04	1
1,2,3-Trichlorobenzene	ND		2.0		ug/L			06/09/21 03:04	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			06/09/21 03:04	1
Surrogate	%Recovery Qu	ualifier Lii	mits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99	80	- 120			•		06/09/21 03:04	1
1,2-Dichloroethane-d4 (Surr)	109	80	- 126					06/09/21 03:04	1

80 - 120

80 - 120

100

105

6/21/2021

6

4

6

8

9

10

QC Sample Results

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 580-358637/7

Matrix: Water

Analysis Batch: 358637

ilent Sample ID: Method Blank	
Prep Type: Total/NA	

Analyta	MB		D.	MDI IInit	D	Dronover	Anglijaad	Dil Fa-
Analyte		Qualifier	RL	MDL Unit	<u>D</u> .	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.0	ug/L			06/09/21 01:49	1
Chloromethane	ND		1.0	ug/L			06/09/21 01:49	1
Vinyl chloride	ND		1.0	ug/L			06/09/21 01:49	1
Bromomethane	ND		1.0	ug/L			06/09/21 01:49	1
Chloroethane	ND		1.0	ug/L			06/09/21 01:49	1
Trichlorofluoromethane	ND		1.0	ug/L			06/09/21 01:49	1
1,1-Dichloroethene	ND		1.0	ug/L			06/09/21 01:49	1
Methylene Chloride	ND		3.0	ug/L			06/09/21 01:49	1
Methyl tert-butyl ether	ND		1.0	ug/L			06/09/21 01:49	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			06/09/21 01:49	1
1,1-Dichloroethane	ND		1.0	ug/L			06/09/21 01:49	1
2,2-Dichloropropane	ND		1.0	ug/L			06/09/21 01:49	1
cis-1,2-Dichloroethene	ND		1.0	ug/L			06/09/21 01:49	1
Bromochloromethane	ND		1.0	ug/L			06/09/21 01:49	1
Chloroform	ND		1.0	ug/L			06/09/21 01:49	1
1,1,1-Trichloroethane	ND		1.0	ug/L			06/09/21 01:49	1
Carbon tetrachloride	ND		1.0	ug/L			06/09/21 01:49	1
1,1-Dichloropropene	ND		1.0	ug/L			06/09/21 01:49	1
Benzene	ND		1.0	ug/L			06/09/21 01:49	1
1,2-Dichloroethane	ND		1.0	ug/L			06/09/21 01:49	1
Trichloroethene	ND		1.0	ug/L			06/09/21 01:49	1
1,2-Dichloropropane	ND		1.0	ug/L			06/09/21 01:49	1
Dibromomethane	ND		1.0	ug/L			06/09/21 01:49	1
Bromodichloromethane	ND		1.0	ug/L			06/09/21 01:49	1
cis-1,3-Dichloropropene	ND		1.0	ug/L			06/09/21 01:49	1
Toluene	ND		1.0	ug/L			06/09/21 01:49	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			06/09/21 01:49	1
1,1,2-Trichloroethane	ND		1.0	ug/L			06/09/21 01:49	1
Tetrachloroethene	ND		1.0	ug/L			06/09/21 01:49	1
1,3-Dichloropropane	ND		1.0	ug/L			06/09/21 01:49	1
Dibromochloromethane	ND		1.0	ug/L			06/09/21 01:49	1
1,2-Dibromoethane	ND		1.0	ug/L			06/09/21 01:49	1
Chlorobenzene	ND		1.0	ug/L			06/09/21 01:49	1
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			06/09/21 01:49	1
Ethylbenzene	ND		1.0	ug/L			06/09/21 01:49	1
m-Xylene & p-Xylene	ND		2.0	ug/L			06/09/21 01:49	1
o-Xylene	ND		1.0	ug/L			06/09/21 01:49	
Styrene	ND		1.0	ug/L			06/09/21 01:49	1
Bromoform	ND		1.0	ug/L			06/09/21 01:49	1
Isopropylbenzene	ND		1.0	ug/L			06/09/21 01:49	
Bromobenzene	ND		1.0	ug/L			06/09/21 01:49	1
1,1,2,2-Tetrachloroethane	ND ND		1.0	ug/L			06/09/21 01:49	1
1,2,3-Trichloropropane	ND						06/09/21 01:49	ا
• •	ND ND		1.0	ug/L			06/09/21 01:49	1
N-Propylbenzene 2-Chlorotoluene			1.0	ug/L				1
	ND		1.0	ug/L			06/09/21 01:49	
4-Chlorotoluene	ND		1.0	ug/L			06/09/21 01:49	1
t-Butylbenzene	ND		2.0	ug/L			06/09/21 01:49	1
1,2,4-Trimethylbenzene	ND		3.0	ug/L			06/09/21 01:49	1

Eurofins FGS, Seattle

Page 18 of 33

Client: Trihydro Corporation

Project/Site: Emerald Services Tacoma

Job ID: 580-103512-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 580-358637/7

Matrix: Water

Analysis Batch: 358637

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND		1.0		ug/L			06/09/21 01:49	1
4-Isopropyltoluene	ND		1.0		ug/L			06/09/21 01:49	1
1,3-Dichlorobenzene	ND		1.0		ug/L			06/09/21 01:49	1
1,4-Dichlorobenzene	ND		1.0		ug/L			06/09/21 01:49	1
1,2-Dichlorobenzene	ND		1.0		ug/L			06/09/21 01:49	1
1,2-Dibromo-3-Chloropropane	ND		3.0		ug/L			06/09/21 01:49	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			06/09/21 01:49	1
Hexachlorobutadiene	ND		3.0		ug/L			06/09/21 01:49	1
Naphthalene	ND		3.0		ug/L			06/09/21 01:49	1
1,2,3-Trichlorobenzene	ND		2.0		ug/L			06/09/21 01:49	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			06/09/21 01:49	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
Toluene-d8 (Surr)	97		80 - 120	-		06/09/21 01:49	1	
1,2-Dichloroethane-d4 (Surr)	112		80 - 126			06/09/21 01:49	1	
4-Bromofluorobenzene (Surr)	96		80 - 120			06/09/21 01:49	1	
Dibromofluoromethane (Surr)	112		80 - 120			06/09/21 01:49	1	

Lab Sample ID: LCS 580-358637/4

Matrix: Water

Analysis Batch: 358637

Client Sample	ID: Lab Control Sam	ple
	Prep Type: Total/	NA

	Spike	LCS	LCS				%Rec.
nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	10.0	13.8	*+	ug/L		138	47 - 133
Chloromethane	10.0	7.57		ug/L		76	52 - 135
Vinyl chloride	10.0	8.51		ug/L		85	65 - 130
Bromomethane	10.0	8.56		ug/L		86	66 - 125
Chloroethane	10.0	8.86		ug/L		89	65 - 132
Trichlorofluoromethane	10.0	9.88		ug/L		99	64 - 130
1,1-Dichloroethene	10.0	12.0		ug/L		120	70 - 129
Methylene Chloride	10.0	11.3		ug/L		113	77 - 120
Methyl tert-butyl ether	10.0	10.3		ug/L		103	72 - 130
trans-1,2-Dichloroethene	10.0	10.9		ug/L		109	70 - 130
1,1-Dichloroethane	10.0	10.6		ug/L		106	81 - 129
2,2-Dichloropropane	10.0	10.1		ug/L		101	53 - 150
cis-1,2-Dichloroethene	10.0	10.8		ug/L		108	76 - 129
Bromochloromethane	10.0	11.2		ug/L		112	78 - 120
Chloroform	10.0	11.7		ug/L		117	73 - 127
1,1,1-Trichloroethane	10.0	12.0		ug/L		120	74 - 130
Carbon tetrachloride	10.0	12.3		ug/L		123	72 - 129
1,1-Dichloropropene	10.0	11.2		ug/L		112	74 - 131
Benzene	10.0	10.8		ug/L		108	82 - 122
1,2-Dichloroethane	10.0	10.5		ug/L		105	76 - 126
Trichloroethene	10.0	11.3		ug/L		113	81 - 125
1,2-Dichloropropane	10.0	10.2		ug/L		102	80 - 126
Dibromomethane	10.0	11.3		ug/L		113	80 - 120
Bromodichloromethane	10.0	11.0		ug/L		110	75 - 124
cis-1,3-Dichloropropene	10.0	8.63		ug/L		86	77 - 120

Eurofins FGS, Seattle

Page 19 of 33

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-358637/4

Matrix: Water

Analysis Batch: 358637

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Allalysis Datch. 330037	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Toluene	10.0	10.9		ug/L		109	80 - 120	
trans-1,3-Dichloropropene	10.0	10.2		ug/L		102	70 - 122	
1,1,2-Trichloroethane	10.0	11.6		ug/L		116	80 - 121	
Tetrachloroethene	10.0	12.1	*+	ug/L		121	76 - 120	
1,3-Dichloropropane	10.0	11.0		ug/L		110	79 - 120	
Dibromochloromethane	10.0	11.7		ug/L		117	60 - 125	
1,2-Dibromoethane	10.0	12.2	*+	ug/L		122	79 - 120	
Chlorobenzene	10.0	11.2		ug/L		112	80 - 120	
1,1,1,2-Tetrachloroethane	10.0	11.3		ug/L		113	79 - 120	
Ethylbenzene	10.0	11.2		ug/L		112	80 - 120	
m-Xylene & p-Xylene	10.0	11.3		ug/L		113	80 - 120	
o-Xylene	10.0	11.0		ug/L		110	80 - 125	
Styrene	10.0	11.2		ug/L		112	76 - 127	
Bromoform	10.0	11.3		ug/L		113	28 - 139	
Isopropylbenzene	10.0	11.5		ug/L		115	75 - 129	
Bromobenzene	10.0	10.2		ug/L		102	80 - 120	
1,1,2,2-Tetrachloroethane	10.0	9.44		ug/L		94	74 - 124	
1,2,3-Trichloropropane	10.0	10.5		ug/L		105	76 - 124	
N-Propylbenzene	10.0	10.2		ug/L		102	80 - 128	
2-Chlorotoluene	10.0	10.3		ug/L		103	80 - 120	
4-Chlorotoluene	10.0	9.99		ug/L		100	80 - 120	
t-Butylbenzene	10.0	9.67		ug/L		97	80 - 129	
1,2,4-Trimethylbenzene	10.0	9.81		ug/L		98	80 - 131	
sec-Butylbenzene	10.0	9.85		ug/L		98	78 - 131	
4-Isopropyltoluene	10.0	9.74		ug/L		97	77 - 131	
1,3-Dichlorobenzene	10.0	11.9		ug/L		119	69 - 127	
1,4-Dichlorobenzene	10.0	10.2		ug/L		102	80 - 120	
1,2-Dichlorobenzene	10.0	10.8		ug/L		108	80 - 120	
1,2-Dibromo-3-Chloropropane	10.0	10.4		ug/L		104	65 - 125	
1,2,4-Trichlorobenzene	10.0	12.3		ug/L		123	73 - 128	
Hexachlorobutadiene	10.0	10.4		ug/L		104	74 - 125	
Naphthalene	10.0	11.0		ug/L		110	75 - 134	
1,2,3-Trichlorobenzene	10.0	11.1		ug/L		111	74 - 139	
1,3,5-Trimethylbenzene	10.0	10.0		ug/L		100	80 - 131	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	103		80 - 120
1,2-Dichloroethane-d4 (Surr)	97		80 - 126
4-Bromofluorobenzene (Surr)	111		80 - 120
Dibromofluoromethane (Surr)	103		80 - 120

Lab Sample ID: LCSD 580-358637/5

Matrix: Water

Analysis Batch: 358637

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	10.0	12.5		ug/L		125	47 - 133	10	15
Chloromethane	10.0	7.68		ug/L		77	52 - 135	1	14

Eurofins FGS, Seattle

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Page 20 of 33

QC Sample Results

Client: Trihydro Corporation

Project/Site: Emerald Services Tacoma

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Job ID: 580-103512-1

Lab Sample ID: LCSD 580-358637/5

Matrix: Water

Analysis Batch: 358637

	Spike	Spike LCSD L					%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Vinyl chloride	10.0	8.07		ug/L		81	65 - 130	5	14
Bromomethane	10.0	7.96		ug/L		80	66 - 125	7	14
Chloroethane	10.0	8.35		ug/L		84	65 - 132	6	18
Trichlorofluoromethane	10.0	9.32		ug/L		93	64 - 130	6	14
1,1-Dichloroethene	10.0	11.4		ug/L		114	70 - 129	6	17
Methylene Chloride	10.0	10.7		ug/L		107	77 - 120	5	18
Methyl tert-butyl ether	10.0	9.77		ug/L		98	72 - 130	6	18
trans-1,2-Dichloroethene	10.0	10.3		ug/L		103	70 - 130	6	21
1,1-Dichloroethane	10.0	9.98		ug/L		100	81 - 129	6	15
2,2-Dichloropropane	10.0	9.59		ug/L		96	53 - 150	5	15
cis-1,2-Dichloroethene	10.0	10.3		ug/L		103	76 - 129	4	15
Bromochloromethane	10.0	11.0		ug/L		110	78 - 120	2	13
Chloroform	10.0	11.1		ug/L		111	73 - 127	5	14
1,1,1-Trichloroethane	10.0	11.5		ug/L		115	74 - 130	5	11
Carbon tetrachloride	10.0	11.7		ug/L		117	72 - 129	5	11
1,1-Dichloropropene	10.0	10.5		ug/L		105	74 - 131	7	14
Benzene	10.0	10.2		ug/L		102	82 - 122	6	14
1,2-Dichloroethane	10.0	10.6		ug/L		106	76 - 126	1	11
Trichloroethene	10.0	10.6		ug/L		106	81 - 125	6	13
1,2-Dichloropropane	10.0	10.2		ug/L		102	80 - 126	0	14
Dibromomethane	10.0	11.0		ug/L		110	80 - 120	3	11
Bromodichloromethane	10.0	10.9		ug/L		109	75 - 124	1	13
cis-1,3-Dichloropropene	10.0	8.75		ug/L		88	77 - 120	1	20
Toluene	10.0	10.7		ug/L		107	80 - 120	2	13
trans-1,3-Dichloropropene	10.0	9.87		ug/L		99	70 - 122	3	14
1,1,2-Trichloroethane	10.0	11.4		ug/L		114	80 - 121	2	14
Tetrachloroethene	10.0	11.6		ug/L		116	76 - 120	4	13
1,3-Dichloropropane	10.0	10.7		ug/L		107	79 - 120	3	13
Dibromochloromethane	10.0	11.4		ug/L		114	60 - 125	3	13
1,2-Dibromoethane	10.0	11.8		ug/L		118	79 - 120	3	12
Chlorobenzene	10.0	10.9		ug/L		109	80 - 120	2	10
1,1,1,2-Tetrachloroethane	10.0	11.0		ug/L		110	79 - 120	3	10
Ethylbenzene	10.0	10.9		ug/L ug/L		109	80 - 120	3	14
m-Xylene & p-Xylene	10.0	10.9		ug/L		109	80 - 120	4	14
o-Xylene	10.0	10.5		ug/L		106	80 - 125	4	16
Styrene	10.0	10.8		ug/L ug/L		108	76 ₋ 127	3	16
Bromoform	10.0	11.0		ug/L ug/L		110	28 - 139	3	15
Isopropylbenzene		11.0				110	75 ₋ 129	5	12
Bromobenzene	10.0 10.0	10.4		ug/L		104	80 ₋ 129	2	13
				ug/L			74 - 124		
1,1,2,2-Tetrachloroethane	10.0	9.45		ug/L		95		0	18
1,2,3-Trichloropropane	10.0	10.9		ug/L		109	76 - 124	4	16
N-Propylbenzene	10.0	10.1		ug/L		101	80 - 128	0	13
2-Chlorotoluene	10.0	10.3		ug/L		103	80 - 120	1	15
4-Chlorotoluene	10.0	10.0		ug/L		100	80 - 120	1	14
t-Butylbenzene	10.0	9.73		ug/L		97	80 - 129	1	14
1,2,4-Trimethylbenzene	10.0	9.91		ug/L		99	80 - 131	1	16
sec-Butylbenzene	10.0	9.79		ug/L		98	78 - 131	1	15
4-Isopropyltoluene	10.0	9.68		ug/L		97	77 - 131	1	20
1,3-Dichlorobenzene	10.0	11.3		ug/L		113	69 - 127	5	14

Eurofins FGS, Seattle

6/21/2021

Page 21 of 33

9

3

6

8

10

QC Sample Results

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-358637/5

Matrix: Water

Analysis Batch: 358637

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	10.0	10.4		ug/L		104	80 - 120	1	17
1,2-Dichlorobenzene	10.0	10.9		ug/L		109	80 - 120	1	15
1,2-Dibromo-3-Chloropropane	10.0	10.0		ug/L		100	65 - 125	4	17
1,2,4-Trichlorobenzene	10.0	11.0		ug/L		110	73 - 128	12	20
Hexachlorobutadiene	10.0	9.98		ug/L		100	74 - 125	4	22
Naphthalene	10.0	10.2		ug/L		102	75 - 134	7	23
1,2,3-Trichlorobenzene	10.0	10.5		ug/L		105	74 - 139	6	26
1,3,5-Trimethylbenzene	10.0	10.0		ug/L		100	80 - 131	0	14

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	103		80 - 120
1,2-Dichloroethane-d4 (Surr)	95		80 - 126
4-Bromofluorobenzene (Surr)	110		80 - 120
Dibromofluoromethane (Surr)	101		80 - 120

Lab Sample ID: MB 580-358759/7

Matrix: Water

Analysis Batch: 358759

Client Sample ID: Method Blank

Prep Type: Total/NA

-	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.0	ug/L			06/10/21 00:44	1
Chloromethane	ND		1.0	ug/L			06/10/21 00:44	1
Vinyl chloride	ND		1.0	ug/L			06/10/21 00:44	1
Bromomethane	ND		1.0	ug/L			06/10/21 00:44	1
Chloroethane	ND		1.0	ug/L			06/10/21 00:44	1
Trichlorofluoromethane	ND		1.0	ug/L			06/10/21 00:44	1
1,1-Dichloroethene	ND		1.0	ug/L			06/10/21 00:44	1
Methylene Chloride	3.57		3.0	ug/L			06/10/21 00:44	1
Methyl tert-butyl ether	ND		1.0	ug/L			06/10/21 00:44	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			06/10/21 00:44	1
1,1-Dichloroethane	ND		1.0	ug/L			06/10/21 00:44	1
2,2-Dichloropropane	ND		1.0	ug/L			06/10/21 00:44	1
cis-1,2-Dichloroethene	ND		1.0	ug/L			06/10/21 00:44	1
Bromochloromethane	ND		1.0	ug/L			06/10/21 00:44	1
Chloroform	ND		1.0	ug/L			06/10/21 00:44	1
1,1,1-Trichloroethane	ND		1.0	ug/L			06/10/21 00:44	1
Carbon tetrachloride	ND		1.0	ug/L			06/10/21 00:44	1
1,1-Dichloropropene	ND		1.0	ug/L			06/10/21 00:44	1
Benzene	ND		1.0	ug/L			06/10/21 00:44	1
1,2-Dichloroethane	ND		1.0	ug/L			06/10/21 00:44	1
Trichloroethene	ND		1.0	ug/L			06/10/21 00:44	1
1,2-Dichloropropane	ND		1.0	ug/L			06/10/21 00:44	1
Dibromomethane	ND		1.0	ug/L			06/10/21 00:44	1
Bromodichloromethane	ND		1.0	ug/L			06/10/21 00:44	1
cis-1,3-Dichloropropene	ND		1.0	ug/L			06/10/21 00:44	1
Toluene	ND		1.0	ug/L			06/10/21 00:44	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			06/10/21 00:44	1
1,1,2-Trichloroethane	ND		1.0	ug/L			06/10/21 00:44	1

Eurofins FGS, Seattle

Page 22 of 33

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 580-358759/7

Matrix: Water

Analysis Batch: 358759

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Tetrachloroethene ND 1.0 ug/L 06/10/21 00:44 1,3-Dichloropropane ND 1.0 ug/L 06/10/21 00:44 ND 1.0 06/10/21 00:44 Dibromochloromethane ug/L 1,2-Dibromoethane ND 1.0 ug/L 06/10/21 00:44 Chlorobenzene ND 1.0 ug/L 06/10/21 00:44 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 06/10/21 00:44 Ethylbenzene ND 1.0 ug/L 06/10/21 00:44 m-Xylene & p-Xylene ND ug/L 20 06/10/21 00:44 ND o-Xylene 1.0 ug/L 06/10/21 00:44 Styrene ND 1.0 ug/L 06/10/21 00:44 Bromoform ND ug/L 1.0 06/10/21 00:44 ND Isopropylbenzene 1.0 ug/L 06/10/21 00:44 Bromobenzene ND 1.0 ug/L 06/10/21 00:44 1,1,2,2-Tetrachloroethane ND ug/L 1.0 06/10/21 00:44 1,2,3-Trichloropropane ND 1.0 ug/L 06/10/21 00:44 ND 1.0 ug/L N-Propylbenzene 06/10/21 00:44 ug/L 2-Chlorotoluene ND 1.0 06/10/21 00:44 4-Chlorotoluene ND 1.0 ug/L 06/10/21 00:44 t-Butylbenzene ND 2.0 ug/L 06/10/21 00:44 1,2,4-Trimethylbenzene ND 3.0 ug/L 06/10/21 00:44 sec-Butylbenzene ND 1.0 ug/L 06/10/21 00:44 4-Isopropyltoluene ND 1.0 ug/L 06/10/21 00:44 06/10/21 00:44 1,3-Dichlorobenzene ND 1.0 ug/L 1,4-Dichlorobenzene ND 1.0 ug/L 06/10/21 00:44 ND 1.0 ug/L n-Butylbenzene 06/10/21 00:44 1,2-Dichlorobenzene ND 1.0 ug/L 06/10/21 00:44 1,2-Dibromo-3-Chloropropane ND 3.0 ug/L 06/10/21 00:44 1,2,4-Trichlorobenzene ND 1.0 ug/L 06/10/21 00:44 Hexachlorobutadiene ND 3.0 ug/L 06/10/21 00:44 Naphthalene ND 3.0 ug/L 06/10/21 00:44 1.2.3-Trichlorobenzene ND 2.0 ug/L 06/10/21 00:44 ND 1,3,5-Trimethylbenzene 1.0 ug/L 06/10/21 00:44

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99	80 - 120		06/10/21 00:44	1
1,2-Dichloroethane-d4 (Surr)	108	80 - 126		06/10/21 00:44	1
4-Bromofluorobenzene (Surr)	96	80 - 120		06/10/21 00:44	1
Dibromofluoromethane (Surr)	108	80 - 120		06/10/21 00:44	1

Lab Sample ID: LCS 580-358759/4

Matrix: Water

Analysis Batch: 358759

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	10.0	12.1		ug/L		121	47 - 133	
Chloromethane	10.0	8.76		ug/L		88	52 - 135	
Vinyl chloride	10.0	8.67		ug/L		87	65 - 130	
Bromomethane	10.0	8.41		ug/L		84	66 - 125	

Eurofins FGS, Seattle

Page 23 of 33

6

3

4

6

8

10

1

QC Sample Results

Client: Trihydro Corporation

Project/Site: Emerald Services Tacoma

Job ID: 580-103512-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-358759/4

Matrix: Water

Analysis Batch: 358759

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec.

6

							,	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloroethane	10.0	8.84		ug/L		88	65 - 132	
Trichlorofluoromethane	10.0	9.63		ug/L		96	64 - 130	
1,1-Dichloroethene	10.0	11.8		ug/L		118	70 - 129	
Methylene Chloride	10.0	11.9		ug/L		119	77 - 120	
Methyl tert-butyl ether	10.0	10.1		ug/L		101	72 - 130	
trans-1,2-Dichloroethene	10.0	10.6		ug/L		106	70 - 130	
1,1-Dichloroethane	10.0	10.4		ug/L		104	81 - 129	
2,2-Dichloropropane	10.0	9.31		ug/L		93	53 - 150	
cis-1,2-Dichloroethene	10.0	10.1		ug/L		101	76 - 129	
Bromochloromethane	10.0	10.2		ug/L		102	78 - 120	
Chloroform	10.0	11.0		ug/L		110	73 - 127	
1,1,1-Trichloroethane	10.0	11.3		ug/L		113	74 - 130	
Carbon tetrachloride	10.0	11.2		ug/L		112	72 - 129	
1,1-Dichloropropene	10.0	10.6		ug/L		106	74 - 131	
Benzene	10.0	10.4		ua/L		104	82 - 122	

Spike

LCS LCS

Benzene 10.0 10.4 ug/L 1,2-Dichloroethane 10.0 10.5 ug/L 105 76 - 126 Trichloroethene 10.0 10.6 ug/L 106 81 - 125 1,2-Dichloropropane 10.0 9.85 99 80 - 126 ug/L Dibromomethane 10.0 10.3 ug/L 103 80 - 120 Bromodichloromethane 10.0 10.4 ug/L 104 75 - 124 cis-1,3-Dichloropropene 10.0 8.00 ug/L 80 77 - 120 Toluene 10.0 10.1 ug/L 101 80 - 120 9.47 trans-1,3-Dichloropropene 10.0 ug/L 95 70 - 122 1,1,2-Trichloroethane 10.0 10.4 104 80 - 121 ug/L 10.0 107 Tetrachloroethene 10.7 ug/L 76 - 120 10.0 10.3 103 79 - 120 1,3-Dichloropropane ug/L 102 Dibromochloromethane 10.0 10.2 ug/L 60 - 1251,2-Dibromoethane 10.0 10.6 ug/L 106 79 - 120 Chlorobenzene 10.0 9.84 ug/L 98 80 - 1201,1,1,2-Tetrachloroethane 10.0 9.88 ug/L 99 79 - 120 Ethylbenzene 10.0 9.98 ug/L 100 80 - 120 m-Xylene & p-Xylene 10.0 10.2 ug/L 102 80 - 120 ug/L o-Xylene 10.0 9.77 98 80 - 125 10.0 10.0 ug/L 100 76 - 127 Styrene 100 Bromoform 10.0 9.96 ug/L 28 - 139 Isopropylbenzene 10.0 10.2 102 75 - 129 ug/L Bromobenzene 10.0 8.79 ug/L 88 80 - 120 86 1,1,2,2-Tetrachloroethane 10.0 8.64 ug/L 74 - 124 1,2,3-Trichloropropane 10.0 9.20 ug/L 92 76 - 124 10.0 87 80 - 128 N-Propylbenzene 8.69 ug/L 2-Chlorotoluene 10.0 8.89 ug/L 89 80 - 120 4-Chlorotoluene 10.0 92 9.15 ug/L 80 - 120 t-Butylbenzene 10.0 8.89 ug/L 89 80 - 129 1,2,4-Trimethylbenzene 10.0 9.09 ug/L 91 80 - 131 sec-Butylbenzene 10.0 9.54 ug/L 95 78 - 131 4-Isopropyltoluene 10.0 8.92 ug/L 89 77 - 131 1,3-Dichlorobenzene 10.0 11.3 ug/L 113 69 - 127 80 - 120 1,4-Dichlorobenzene 10.0 9.60 ug/L 96 78 - 120 n-Butylbenzene 10.0 8.41 ug/L 84

Eurofins FGS, Seattle

QC Sample Results

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-358759/4 **Matrix: Water**

Analysis Batch: 358759

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dichlorobenzene	10.0	10.3		ug/L		103	80 - 120	
1,2-Dibromo-3-Chloropropane	10.0	10.9		ug/L		109	65 - 125	
1,2,4-Trichlorobenzene	10.0	12.7		ug/L		127	73 - 128	
Hexachlorobutadiene	10.0	10.8		ug/L		108	74 - 125	
Naphthalene	10.0	11.5		ug/L		115	75 - 134	
1,2,3-Trichlorobenzene	10.0	11.6		ug/L		116	74 - 139	
1.3.5-Trimethylbenzene	10.0	8.91		ua/L		89	80 - 131	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
1,2-Dichloroethane-d4 (Surr)	100		80 - 126
4-Bromofluorobenzene (Surr)	105		80 - 120
Dibromofluoromethane (Surr)	102		80 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Lab Sample ID: LCSD 580-358759/5

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	10.0	12.3		ug/L		123	47 - 133	2	15
Chloromethane	10.0	7.70		ug/L		77	52 - 135	13	14
Vinyl chloride	10.0	8.48		ug/L		85	65 - 130	2	14
Bromomethane	10.0	8.37		ug/L		84	66 - 125	0	14
Chloroethane	10.0	8.70		ug/L		87	65 - 132	2	18
Trichlorofluoromethane	10.0	9.74		ug/L		97	64 - 130	1	14
1,1-Dichloroethene	10.0	12.0		ug/L		120	70 - 129	2	17
Methylene Chloride	10.0	12.2	*+	ug/L		122	77 - 120	2	18
Methyl tert-butyl ether	10.0	10.6		ug/L		106	72 - 130	6	18
trans-1,2-Dichloroethene	10.0	10.9		ug/L		109	70 - 130	3	21
1,1-Dichloroethane	10.0	10.9		ug/L		109	81 - 129	5	15
2,2-Dichloropropane	10.0	9.70		ug/L		97	53 - 150	4	15
cis-1,2-Dichloroethene	10.0	10.4		ug/L		104	76 - 129	4	15
Bromochloromethane	10.0	10.9		ug/L		109	78 - 120	6	13
Chloroform	10.0	12.0		ug/L		120	73 - 127	9	14
1,1,1-Trichloroethane	10.0	11.5		ug/L		115	74 - 130	2	11
Carbon tetrachloride	10.0	11.5		ug/L		115	72 - 129	3	11
1,1-Dichloropropene	10.0	10.9		ug/L		109	74 - 131	3	14
Benzene	10.0	11.1		ug/L		111	82 - 122	7	14
1,2-Dichloroethane	10.0	11.2		ug/L		112	76 - 126	7	11
Trichloroethene	10.0	11.1		ug/L		111	81 - 125	5	13
1,2-Dichloropropane	10.0	10.6		ug/L		106	80 - 126	7	14
Dibromomethane	10.0	10.8		ug/L		108	80 - 120	5	11
Bromodichloromethane	10.0	11.2		ug/L		112	75 - 124	7	13
cis-1,3-Dichloropropene	10.0	8.14		ug/L		81	77 - 120	2	20
Toluene	10.0	10.5		ug/L		105	80 - 120	4	13
trans-1,3-Dichloropropene	10.0	10.2		ug/L		102	70 - 122	7	14
1,1,2-Trichloroethane	10.0	11.1		ug/L		111	80 - 121	6	14
Tetrachloroethene	10.0	10.9		ug/L		109	76 - 120	2	13

Eurofins FGS, Seattle

Page 25 of 33

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-358759/5

Matrix: Water

Analysis Batch: 358759

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,3-Dichloropropane	10.0	11.0		ug/L		110	79 - 120	7	13
Dibromochloromethane	10.0	11.0		ug/L		110	60 - 125	7	13
1,2-Dibromoethane	10.0	11.4		ug/L		114	79 - 120	7	12
Chlorobenzene	10.0	10.4		ug/L		104	80 - 120	6	10
1,1,1,2-Tetrachloroethane	10.0	10.6		ug/L		106	79 - 120	7	10
Ethylbenzene	10.0	10.6		ug/L		106	80 - 120	6	14
m-Xylene & p-Xylene	10.0	10.8		ug/L		108	80 - 120	6	14
o-Xylene	10.0	10.4		ug/L		104	80 - 125	6	16
Styrene	10.0	10.6		ug/L		106	76 - 127	6	16
Bromoform	10.0	10.6		ug/L		106	28 - 139	6	15
Isopropylbenzene	10.0	10.7		ug/L		107	75 - 129	5	12
Bromobenzene	10.0	8.83		ug/L		88	80 - 120	0	13
1,1,2,2-Tetrachloroethane	10.0	8.76		ug/L		88	74 - 124	1	18
1,2,3-Trichloropropane	10.0	9.33		ug/L		93	76 - 124	1	16
N-Propylbenzene	10.0	8.75		ug/L		87	80 - 128	1	13
2-Chlorotoluene	10.0	8.97		ug/L		90	80 - 120	1	15
4-Chlorotoluene	10.0	9.14		ug/L		91	80 - 120	0	14
t-Butylbenzene	10.0	8.87		ug/L		89	80 - 129	0	14
1,2,4-Trimethylbenzene	10.0	9.00		ug/L		90	80 - 131	1	16
sec-Butylbenzene	10.0	9.69		ug/L		97	78 - 131	1	15
4-Isopropyltoluene	10.0	9.00		ug/L		90	77 - 131	1	20
1,3-Dichlorobenzene	10.0	11.8		ug/L		118	69 - 127	4	14
1,4-Dichlorobenzene	10.0	9.83		ug/L		98	80 - 120	2	17
n-Butylbenzene	10.0	8.31		ug/L		83	78 - 120	1	14
1,2-Dichlorobenzene	10.0	10.8		ug/L		108	80 - 120	4	15
1,2-Dibromo-3-Chloropropane	10.0	10.4		ug/L		104	65 - 125	5	17
1,2,4-Trichlorobenzene	10.0	12.6		ug/L		126	73 - 128	1	20
Hexachlorobutadiene	10.0	10.3		ug/L		103	74 - 125	5	22
Naphthalene	10.0	10.7		ug/L		107	75 - 134	7	23
1,2,3-Trichlorobenzene	10.0	11.0		ug/L		110	74 - 139	5	26
1,3,5-Trimethylbenzene	10.0	9.03		ug/L		90	80 - 131	1	14

LCSD LCSD

%Recovery Qualifier Surrogate Limits 80 - 120 Toluene-d8 (Surr) 102 80 - 126 1,2-Dichloroethane-d4 (Surr) 100 80 - 120 4-Bromofluorobenzene (Surr) 106 Dibromofluoromethane (Surr) 103 80 - 120

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

MB MB

Lab Sample ID: MB 580-358299/1-A

Matrix: Water

Analysis Batch: 358787

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 358299

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		0.11		mg/L		06/04/21 09:25	06/09/21 13:06	1
Motor Oil (>C24-C36)	ND		0.35		mg/L		06/04/21 09:25	06/09/21 13:06	1

Eurofins FGS, Seattle

Page 26 of 33

Job ID: 580-103512-1

Client: Trihydro Corporation

Project/Site: Emerald Services Tacoma

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 358299

Lab Sample ID: MB 580-358299/1-A

Lab Sample ID: LCS 580-358299/2-A

Matrix: Water

Matrix: Water

Matrix: Water

Analysis Batch: 358787

Analysis Batch: 358787

Analysis Batch: 358787

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 06/04/21 09:25 06/09/21 13:06 o-Terphenyl 75 50 - 150

LCS LCS

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 358299

%Rec.

Spike Added Result Qualifier Limits Analyte Unit %Rec #2 Diesel (C10-C24) 2.00 182 mg/L 91 50 - 120 Motor Oil (>C24-C36) 2.00 2.04 mg/L 102 64 - 120

LCS LCS

Surrogate %Recovery Qualifier Limits o-Terphenyl 91 50 - 150

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 358299 %Rec. **RPD**

LCSD LCSD Spike Added Result Qualifier Unit Limits RPD Limit Analyte D %Rec #2 Diesel (C10-C24) 2.00 1.73 mg/L 87 50 - 120 5 26 Motor Oil (>C24-C36) 2.00 1.91 mg/L 96 64 - 120 6 24

LCSD LCSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 87 50 - 150

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: LCSD 580-358299/3-A

Lab Sample ID: MB 580-358992/14-A

Matrix: Water

Analysis Batch: 359767

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 358992**

MB MB

Analyte Result Qualifier RL**MDL** Unit D Prepared Analyzed Dil Fac Arsenic ND 0.0010 mg/L 06/11/21 12:53 06/19/21 01:33 ND 0.00040 06/11/21 12:53 06/19/21 01:33 Lead mg/L

LCS LCS

Lab Sample ID: LCS 580-358992/15-A

Matrix: Water

Analysis Batch: 359767

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 358992

> %Rec. Limits 107

Added Result Qualifier Analyte Unit D %Rec 1.00 80 - 120 Arsenic 1.07 mg/L Lead 1.00 1.04 mg/L 104 80 - 120

Spike

Lab Sample ID: LCSD 580-358992/16-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup **Prep Type: Total Recoverable**

Analysis Batch: 359767 Prep Batch: 358992 LCSD LCSD Spike **RPD** %Rec. Added Result Qualifier Unit Limits RPD Limit Analyte %Rec Arsenic 1.00 0 20 1.07 mg/L 107 80 - 120 1.00 1.03 mg/L 103 80 - 120 20 Lead

Eurofins FGS, Seattle

Page 27 of 33

Project/Site: Emerald Services Tacoma

Client: Trihydro Corporation

Client Sample ID: ERI-MW-1 Date Collected: 06/02/21 12:30

Lab Sample ID: 580-103512-1

Matrix: Water

Date Received: 06/02/21 16:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	358759	06/10/21 01:34	RJF	FGS SEA
Total/NA	Prep	3510C			358299	06/04/21 09:25	N1B	FGS SEA
Total/NA	Analysis	NWTPH-Dx		1	358787	06/09/21 14:06	W1T	FGS SEA
Total Recoverable	Prep	3005A			358992	06/11/21 12:53	JLS	FGS SEA
Total Recoverable	Analysis	6020B		1	359767	06/19/21 02:27	FCW	FGS SEA

Lab Sample ID: 580-103512-2

Matrix: Water

Date Collected: 06/02/21 13:30 Date Received: 06/02/21 16:20

Client Sample ID: ERI-MW-2R

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	358759	06/10/21 02:01	RJF	FGS SEA
Total/NA	Prep	3510C			358299	06/04/21 09:25	N1B	FGS SEA
Total/NA	Analysis	NWTPH-Dx		1	358787	06/09/21 14:26	W1T	FGS SEA
Total Recoverable	Prep	3005A			358992	06/11/21 12:53	JLS	FGS SEA
Total Recoverable	Analysis	6020B		1	359767	06/19/21 02:31	FCW	FGS SEA

Lab Sample ID: 580-103512-3 Client Sample ID: ERI-MW-3R

Matrix: Water

Date Collected: 06/02/21 15:30 Date Received: 06/02/21 16:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D			358759	06/10/21 02:26	RJF	FGS SEA
Total/NA	Prep	3510C			358299	06/04/21 09:25	N1B	FGS SEA
Total/NA	Analysis	NWTPH-Dx		1	358787	06/09/21 14:46	W1T	FGS SEA
Total Recoverable	Prep	3005A			358992	06/11/21 12:53	JLS	FGS SEA
Total Recoverable	Analysis	6020B		1	359767	06/19/21 02:35	FCW	FGS SEA

Client Sample ID: ERI-MW-4 Lab Sample ID: 580-103512-4 Date Collected: 06/02/21 14:30 **Matrix: Water**

Date Received: 06/02/21 16:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D			358637	06/09/21 02:14	CJ	FGS SEA
Total/NA	Prep	3510C			358299	06/04/21 09:25	N1B	FGS SEA
Total/NA	Analysis	NWTPH-Dx		1	358787	06/09/21 15:07	W1T	FGS SEA
Total Recoverable	Prep	3005A			358992	06/11/21 12:53	JLS	FGS SEA
Total Recoverable	Analysis	6020B		1	359767	06/19/21 02:39	FCW	FGS SEA

Client Sample ID: ERI-MW-50 Lab Sample ID: 580-103512-5

Date Collected: 06/02/21 00:01 Date Received: 06/02/21 16:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	358637	06/09/21 02:39	CJ	FGS SEA

Eurofins FGS, Seattle

Page 28 of 33

6/21/2021

Matrix: Water

Lab Chronicle

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Client Sample ID: ERI-MW-50

Lab Sample ID: 580-103512-5 Date Collected: 06/02/21 00:01

Matrix: Water

Date Received: 06/02/21 16:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			358299	06/04/21 09:25	N1B	FGS SEA
Total/NA	Analysis	NWTPH-Dx		1	358787	06/09/21 15:27	W1T	FGS SEA
Total Recoverable	Prep	3005A			358992	06/11/21 12:53	JLS	FGS SEA
Total Recoverable	Analysis	6020B		1	359767	06/19/21 02:42	FCW	FGS SEA

Client Sample ID: TRIP BLANK

Lab Sample ID: 580-103512-6

Date Collected: 06/02/21 00:01 **Matrix: Water**

Date Received: 06/02/21 16:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	358637	06/09/21 03:04	CJ	FGS SEA

Laboratory References:

FGS SEA = Eurofins FGS, Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Eurofins FGS, Seattle

Accreditation/Certification Summary

Client: Trihydro Corporation Job ID: 580-103512-1

Project/Site: Emerald Services Tacoma

Laboratory: Eurofins FGS, Seattle

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C788	07-13-21

3

5

7

8

Sample Summary

Client: Trihydro Corporation

Project/Site: Emerald Services Tacoma

Lab Sample ID Client Sample ID Matrix Collected Received Asset ID 580-103512-1 ERI-MW-1 Water 06/02/21 12:30 06/02/21 16:20 580-103512-2 ERI-MW-2R Water 06/02/21 13:30 06/02/21 16:20 580-103512-3 ERI-MW-3R Water 06/02/21 15:30 06/02/21 16:20 580-103512-4 ERI-MW-4 Water 06/02/21 14:30 06/02/21 16:20 580-103512-5 ERI-MW-50 Water 06/02/21 00:01 06/02/21 16:20 580-103512-6 TRIP BLANK Water 06/02/21 00:01 06/02/21 16:20

Job ID: 580-103512-1

•

4

5

7

8

9

Eurofins FGS, Seattle

5755 8th Street East Tacoma, WA 98424

Chain of Custody Record

eurofins

Environment Testing America

Phone: 253-922-2310 Fax: 425-420-9210											
Client Information	Sampler:	cha	Lab PM: Lewis, Nat	than A			Carrier	Tracking	No(s):		COC No: 580-43385-13876.1
Client Contact: Accounts Payothe Sitt - His	Phone: S25-45		E-Mait: Nathan.Le	wis@Eur	ofinset.com	· · · · · · · · · · · · · · · · · · ·	State o				Page: Page 1 of 1
Company: Triffydro Oorporation Schett-Ithen	1 444	PWSID:	<u> </u>			alysis Re	auest	ed			Job #:
Address:	Due Date Requested:										Preservation Codes:
1252 Commerce Drive City:	TAT Requested (days):										A - HCL M - Hexane B - NaOH N - None
City: Laramie Bill Satty Man State, Zip:	Num										C - Zn Acetate O - AsNaO2
WY. 82070	Compliance Project:	Δ Yes Δ No									D - Nitric Acid P - Na2O4S E - NaHSO4 Q - Na2SO3
Phone: 307-745-7474(Tel)	PO#: 46Y-001-004										F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4
Email:	WO #:		- 일.	S ^R							H - Ascorbic Acid T - TSP Dodecahydrate I - Ice U - Acetone
ap@trihydro.com Project Name:	Project #:		e (Yes or No	PRO TO	<u>₹</u>						J + DI Water V - MCAA K - EDTA W - pH 4-5
Emerald Services Tacoma Site:	58011140		<u> [] [</u>	(As,P	standard list						L - EDA Z - other (specify) Other:
246:	SSOW#:			6020B - Total Metals (As,Pb) NWTPH_Dx - Northwest - DRO/RRO	s, sta						9 Other:
		Sample Mat	rix 🖁 👼	ξar X	8260D - Votatiles,						
		Type (www.		F. D	ا ۲۰						
Sample Identification		ample (C=comp, o=was Fime G=grab) B1-Thisue		6020B NWTP	82601						Special Instructions/Note:
	- X X	Preservation Co	SPECIAL SECTION OF THE PERSON	D A	A					1 1	X
ERI-MW-1	6-2-21 12	130 G Wai	ter (V (A)	XX	$X \mid I$						6
ERI-MW-2R	12	530 Wai	ler								
ERI-MW-3R		Wat	er	\prod							
ERI-MW-4		시 3) Wai	er								
ERI-MW-50		- Wat	er	JA							
rip Blank		Vat	er		V						X
	***	Wat	er								
		Wat	er				T				
							 				
								580-10	03512 (Chain d	of Custody
ossible Hazard Identification			Sar	nple Disi	oosal (A fe	e mav be a	ssesse	d if san	noles a	re retai	ined longer than 1 month)
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Po	ison B Unknown	Radiological		[⊥] Return	To Client	L.X	Disposal	By Lab	,	□ _{Arc}	chive For Months
eliverable Requested: I, II, III, IV, Other (specify)	o stile 600		Spe	ecial Instri	ctions/QC	Requireme	nts:				
mpty Kit Relinquished by:	Date):	Time:				Me	thod of Si	nipment:	·	
elinguished by: Kelli Stata	Date/Tyme; 6/2/2021	1620 Company	ydso	Received	-KI	re	`	[ate/Time	121	21 1620 COMPANY 65
elinquished by:	Date/Time:	Company	ا ما ما	Received b	11-11			ژ سور	nto/Time	12/	Composi
elinquished by:	Date/Time:	Company	-	Received by	/:				Z_Çoi	: 4 e	O o Unc: SS o pany
						Po	ooler Ds icking:		Bus		FedEx:
Custody Seals Intact: Custody Seal No.:				Cooler Tem	perature(s) °C	and Oth	ıst. Seal		_No_>		UPS:
		Pac	e 32 of 3	33			ue Ice, V				Other Secret 11:01/2020 6/Z

niskenosko

SARCE COLUMN

8

Client: Trihydro Corporation

Job Number: 580-103512-1

Login Number: 103512 List Source: Eurofins FGS, Seattle

List Number: 1

Creator: Vallelunga, Diana L

Creator. Valleturiga, Diaria L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins FGS, Seattle

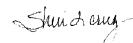
APPENDIX B-2

LABORATORY REPORT (DECEMBER 2021)

Environment Testing America

ANALYTICAL REPORT

Eurofins Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310


Laboratory Job ID: 580-108655-1

Client Project/Site: Emerald Services Tacoma FY 2017

For:

Trihydro Corporation 1252 Commerce Drive Laramie, Wyoming 82070

Attn: Katie Mitchell

Authorized for release by: 1/5/2022 6:11:49 PM Sheri Cruz, Project Manager I (253)922-2310 Sheri.Cruz@Eurofinset.com

Designee for

Nathan Lewis, Project Manager I (253)922-2310
Nathan Lewis @ Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Trihydro Corporation

Project/Site: Emerald Services Tacoma FY 2017

Laboratory Job ID: 580-108655-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	
Chronicle	19
Certification Summary	20
Sample Summary	21
Chain of Custody	
Receipt Checklists	23

Case Narrative

Client: Trihydro Corporation

Project/Site: Emerald Services Tacoma FY 2017

1 1 10 100 100011 1

Job ID: 580-108655-1

Laboratory: Eurofins Seattle

Narrative

Job Narrative 580-108655-1

Comments

No additional comments.

Receipt

The samples were received on 12/21/2021 12:30 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.7° C.

GC/MS VOA

Method 8260D: The CCV for analytical batch 580-377212 recovered outside control limits for the following analyte(s): Dichlorodifluoromethane. Dichlorodifluoromethane has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

Method 8260D: Surrogate recovery for the following sample was outside the upper control limit: ERI-MW-3R (580-108655-1). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: The following samples formed emulsions during the extraction procedure: ERI-MW-3R (580-108655-1). The emulsions were broken up using additional sodium sulfate filtration and methylene chloride rinses.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 580-377387, so a laboratory control sample and laboratory control sample duplicate were created and substituted for the MS/MSD/DUP.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 580-108655-1

3

4

5

6

9

10

Definitions/Glossary

Client: Trihydro Corporation Job ID: 580-108655-1

Project/Site: Emerald Services Tacoma FY 2017

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

S1+ Surrogate recovery exceeds control limits, high biased.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Seattle

Page 4 of 23 1/5/2022

Client: Trihydro Corporation Job ID: 580-108655-1

Project/Site: Emerald Services Tacoma FY 2017

Client Sample ID: ERI-MW-3R

Date Collected: 12/21/21 10:56
Date Received: 12/21/21 12:30

Lab Sample ID: 580-108655-1

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane		1.0	ug/L	-	01/01/22 04:34	
Chloromethane	ND	1.0	ug/L		01/01/22 04:34	
Vinyl chloride	ND	1.0	ug/L		01/01/22 04:34	
Bromomethane	ND	1.0	ug/L		01/01/22 04:34	
Chloroethane	ND	1.0	ug/L		01/01/22 04:34	
Trichlorofluoromethane	ND	1.0	ug/L		01/01/22 04:34	
1,1-Dichloroethene	ND	1.0	ug/L		01/01/22 04:34	
Methylene Chloride	ND	3.0	ug/L		01/01/22 04:34	
Methyl tert-butyl ether	ND	1.0	ug/L		01/01/22 04:34	
trans-1,2-Dichloroethene	ND	1.0	ug/L		01/01/22 04:34	
1,1-Dichloroethane	ND	1.0	ug/L		01/01/22 04:34	
2,2-Dichloropropane	ND	1.0	ug/L		01/01/22 04:34	
cis-1,2-Dichloroethene	ND	1.0	ug/L		01/01/22 04:34	
Bromochloromethane	ND	1.0	ug/L		01/01/22 04:34	
Chloroform	ND	1.0	ug/L		01/01/22 04:34	
1,1,1-Trichloroethane	ND	1.0	ug/L		01/01/22 04:34	
Carbon tetrachloride	ND	1.0	ug/L		01/01/22 04:34	
1,1-Dichloropropene	ND	1.0	ug/L		01/01/22 04:34	
Benzene	ND	1.0	ug/L		01/01/22 04:34	
1,2-Dichloroethane	ND	1.0	ug/L		01/01/22 04:34	
Trichloroethene	ND	1.0	ug/L		01/01/22 04:34	
1,2-Dichloropropane	ND	1.0	ug/L		01/01/22 04:34	
Dibromomethane	ND	1.0	ug/L ug/L		01/01/22 04:34	
Bromodichloromethane	ND ND	1.0	ug/L ug/L		01/01/22 04:34	
cis-1,3-Dichloropropene	ND	1.0	ug/L ug/L		01/01/22 04:34	
Toluene	ND	1.0	ug/L ug/L		01/01/22 04:34	
rans-1,3-Dichloropropene	ND ND	1.0	ug/L ug/L		01/01/22 04:34	
1,1,2-Trichloroethane	ND	1.0			01/01/22 04:34	
T, T,Z-Trichloroethane Tetrachloroethene	ND ND	1.0	ug/L		01/01/22 04:34	
1,3-Dichloropropane	ND ND	1.0	ug/L		01/01/22 04:34	
Dibromochloromethane	ND		ug/L		01/01/22 04:34	
		1.0	ug/L			
1,2-Dibromoethane	ND	1.0	ug/L		01/01/22 04:34	
Chlorobenzene	ND ND	1.0	ug/L		01/01/22 04:34	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L		01/01/22 04:34	
Ethylbenzene	ND	1.0	ug/L		01/01/22 04:34	
m-Xylene & p-Xylene	ND	2.0	ug/L		01/01/22 04:34	
o-Xylene	ND	1.0	ug/L		01/01/22 04:34	
Styrene	ND	1.0	ug/L		01/01/22 04:34	
Bromoform	ND	1.0	ug/L		01/01/22 04:34	
Isopropylbenzene	ND	1.0	ug/L		01/01/22 04:34	
Bromobenzene	ND	1.0	ug/L		01/01/22 04:34	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		01/01/22 04:34	
1,2,3-Trichloropropane	ND	1.0	ug/L		01/01/22 04:34	
N-Propylbenzene	ND	1.0	ug/L		01/01/22 04:34	
2-Chlorotoluene	ND	1.0	ug/L		01/01/22 04:34	
4-Chlorotoluene	ND	1.0	ug/L		01/01/22 04:34	
t-Butylbenzene	ND	2.0	ug/L		01/01/22 04:34	
1,2,4-Trimethylbenzene	ND	3.0	ug/L		01/01/22 04:34	
sec-Butylbenzene	ND	1.0	ug/L		01/01/22 04:34	

Eurofins Seattle

Page 5 of 23 1/5/2022

Client: Trihydro Corporation Job ID: 580-108655-1

Project/Site: Emerald Services Tacoma FY 2017

Client Sample ID: ERI-MW-3R

Date Collected: 12/21/21 10:56 Date Received: 12/21/21 12:30

Dibromofluoromethane (Surr)

Lab Sample ID: 580-108655-1

01/01/22 04:34

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND		1.0		ug/L			01/01/22 04:34	1
1,3-Dichlorobenzene	ND		1.0		ug/L			01/01/22 04:34	1
1,4-Dichlorobenzene	ND		1.0		ug/L			01/01/22 04:34	1
n-Butylbenzene	ND		1.0		ug/L			01/01/22 04:34	1
1,2-Dichlorobenzene	ND		1.0		ug/L			01/01/22 04:34	1
1,2-Dibromo-3-Chloropropane	ND		3.0		ug/L			01/01/22 04:34	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			01/01/22 04:34	1
Hexachlorobutadiene	ND		3.0		ug/L			01/01/22 04:34	1
Naphthalene	ND		3.0		ug/L			01/01/22 04:34	1
1,2,3-Trichlorobenzene	ND		2.0		ug/L			01/01/22 04:34	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			01/01/22 04:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	83		80 - 120			-		01/01/22 04:34	1
1,2-Dichloroethane-d4 (Surr)	98		80 - 120					01/01/22 04:34	1
4-Bromofluorobenzene (Surr)	131	S1+	80 - 120					01/01/22 04:34	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.77		0.11		mg/L		01/04/22 11:18	01/04/22 18:51	1
Motor Oil (>C24-C36)	1.2		0.36		mg/L		01/04/22 11:18	01/04/22 18:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	69		50 - 150				01/04/22 11:18	01/04/22 18:51	1

80 - 120

113

Method: 6020B - Metals (ICP/M	S) - Total Recoverable	•				
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Arsenic	0.0092	0.0050	mg/L	01/03/22 18:17	01/05/22 10:48	5
Lead	ND	0.0020	mg/L	01/03/22 18:17	01/05/22 10:48	5

1/5/2022

Client: Trihydro Corporation Job ID: 580-108655-1

RL

1.0

MDL Unit

ug/L

D

Prepared

Project/Site: Emerald Services Tacoma FY 2017

Client Sample ID: ERI-MW-4

Date Received: 12/21/21 12:30

Dichlorodifluoromethane

Analyte

Styrene

Bromoform

Isopropylbenzene

N-Propylbenzene

2-Chlorotoluene

4-Chlorotoluene

sec-Butylbenzene

t-Butylbenzene

1,1,2,2-Tetrachloroethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

Bromobenzene

Date Collected: 12/21/21 11:45

Result Qualifier

ND

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: 580-108655-2

Analyzed

01/01/22 04:58

Matrix: Water

Dil Fac

ND Chloromethane 1.0 ug/L 01/01/22 04:58 Vinyl chloride ND 1.0 ug/L 01/01/22 04:58 Bromomethane ND 1.0 ug/L 01/01/22 04:58 Chloroethane ND 1.0 ug/L 01/01/22 04:58 Trichlorofluoromethane ND 1.0 ug/L 01/01/22 04:58 1,1-Dichloroethene ND 1.0 ug/L 01/01/22 04:58 Methylene Chloride ND 3.0 ug/L 01/01/22 04:58 Methyl tert-butyl ether ND 1.0 ug/L 01/01/22 04:58 trans-1,2-Dichloroethene ND 1.0 ug/L 01/01/22 04:58 1,1-Dichloroethane ND 1.0 ug/L 01/01/22 04:58 2,2-Dichloropropane ND 1.0 ug/L 01/01/22 04:58 1 cis-1,2-Dichloroethene ND 1.0 ug/L 01/01/22 04:58 Bromochloromethane ND 1.0 ug/L 01/01/22 04:58 ND Chloroform 1.0 ug/L 01/01/22 04:58 1,1,1-Trichloroethane ND 1.0 ug/L 01/01/22 04:58 Carbon tetrachloride ND 1.0 ug/L 01/01/22 04:58 1,1-Dichloropropene ND 1.0 ug/L 01/01/22 04:58 Benzene ND 1.0 ug/L 01/01/22 04:58 1,2-Dichloroethane ND 1.0 ug/L 01/01/22 04:58 Trichloroethene ND 1.0 ug/L 01/01/22 04:58 1,2-Dichloropropane ND 1.0 ug/L 01/01/22 04:58 ND ug/L 01/01/22 04:58 Dibromomethane 1.0 Bromodichloromethane ND 1.0 ug/L 01/01/22 04:58 cis-1,3-Dichloropropene ND 1.0 ug/L 01/01/22 04:58 ND ug/L Toluene 1.0 01/01/22 04:58 trans-1,3-Dichloropropene ND 1.0 ug/L 01/01/22 04:58 ND ug/L 1,1,2-Trichloroethane 1.0 01/01/22 04:58 ug/L Tetrachloroethene ND 1.0 01/01/22 04:58 ND 1.0 ug/L 1,3-Dichloropropane 01/01/22 04:58 Dibromochloromethane ND 1.0 ug/L 01/01/22 04:58 1.2-Dibromoethane ND 1.0 ug/L 01/01/22 04:58 Chlorobenzene ND 1.0 ug/L 01/01/22 04:58 1,1,1,2-Tetrachloroethane ND 10 ug/L 01/01/22 04:58 Ethylbenzene ND 1.0 ug/L 01/01/22 04:58 m-Xylene & p-Xylene ND 2.0 ug/L 01/01/22 04:58 o-Xylene ND 1.0 ug/L 01/01/22 04:58

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

3.0

1.0

ug/L

Eurofins Seattle

01/01/22 04:58

01/01/22 04:58

01/01/22 04:58

01/01/22 04:58

01/01/22 04:58

01/01/22 04:58

01/01/22 04:58

01/01/22 04:58

01/01/22 04:58

01/01/22 04:58

01/01/22 04:58

01/01/22 04:58

Client: Trihydro Corporation Job ID: 580-108655-1

Project/Site: Emerald Services Tacoma FY 2017

Client Sample ID: ERI-MW-4

Date Collected: 12/21/21 11:45 Date Received: 12/21/21 12:30 Lab Sample ID: 580-108655-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND		1.0		ug/L			01/01/22 04:58	1
1,3-Dichlorobenzene	ND		1.0		ug/L			01/01/22 04:58	1
1,4-Dichlorobenzene	ND		1.0		ug/L			01/01/22 04:58	1
n-Butylbenzene	ND		1.0		ug/L			01/01/22 04:58	1
1,2-Dichlorobenzene	ND		1.0		ug/L			01/01/22 04:58	1
1,2-Dibromo-3-Chloropropane	ND		3.0		ug/L			01/01/22 04:58	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			01/01/22 04:58	1
Hexachlorobutadiene	ND		3.0		ug/L			01/01/22 04:58	1
Naphthalene	ND		3.0		ug/L			01/01/22 04:58	1
1,2,3-Trichlorobenzene	ND		2.0		ug/L			01/01/22 04:58	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			01/01/22 04:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		80 - 120			•		01/01/22 04:58	1
1,2-Dichloroethane-d4 (Surr)	100		80 - 120					01/01/22 04:58	1
4-Bromofluorobenzene (Surr)	100		80 - 120					01/01/22 04:58	1
Dibromofluoromethane (Surr)	100		80 - 120					01/01/22 04:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	1.2		0.11		mg/L		01/04/22 11:18	01/04/22 19:11	1
Motor Oil (>C24-C36)	0.59		0.36		mg/L		01/04/22 11:18	01/04/22 19:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	78		50 - 150				01/04/22 11:18	01/04/22 19:11	1

Method: 6020B - Metals (ICP/N	IS) - Total Recoverab	le					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND —	0.0050	mg/L		01/03/22 18:17	01/05/22 10:52	5
Lead	ND	0.0020	mg/L		01/03/22 18:17	01/05/22 10:52	5

1/5/2022

Client: Trihydro Corporation Job ID: 580-108655-1

Project/Site: Emerald Services Tacoma FY 2017

Client Sample ID: ERI-MW-50

Date Collected: 12/21/21 00:01 Date Received: 12/21/21 12:30 Lab Sample ID: 580-108655-3

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND	1.0	ug/L			01/01/22 05:22	
Chloromethane	ND	1.0	ug/L			01/01/22 05:22	
Vinyl chloride	ND	1.0	ug/L			01/01/22 05:22	
Bromomethane	ND	1.0	ug/L			01/01/22 05:22	
Chloroethane	ND	1.0	ug/L			01/01/22 05:22	
Trichlorofluoromethane	ND	1.0	ug/L			01/01/22 05:22	
1,1-Dichloroethene	ND	1.0	ug/L			01/01/22 05:22	
Methylene Chloride	ND	3.0	ug/L			01/01/22 05:22	
Methyl tert-butyl ether	ND	1.0	ug/L			01/01/22 05:22	
trans-1,2-Dichloroethene	ND	1.0	ug/L			01/01/22 05:22	
1,1-Dichloroethane	ND	1.0	ug/L			01/01/22 05:22	
2,2-Dichloropropane	ND	1.0	ug/L			01/01/22 05:22	
cis-1,2-Dichloroethene	ND	1.0	ug/L			01/01/22 05:22	
Bromochloromethane	ND	1.0	ug/L			01/01/22 05:22	
Chloroform	ND	1.0	ug/L			01/01/22 05:22	
1,1,1-Trichloroethane	ND	1.0	ug/L			01/01/22 05:22	
Carbon tetrachloride	ND ND	1.0	ug/L			01/01/22 05:22	
1,1-Dichloropropene	ND ND	1.0	ug/L			01/01/22 05:22	
Benzene	ND	1.0				01/01/22 05:22	
1,2-Dichloroethane	ND ND	1.0	ug/L			01/01/22 05:22	
	ND ND		ug/L			01/01/22 05:22	
Frichloroethene		1.0	ug/L				
1,2-Dichloropropane	ND	1.0	ug/L			01/01/22 05:22	
Dibromomethane	ND	1.0	ug/L			01/01/22 05:22	
3romodichloromethane	ND	1.0	ug/L			01/01/22 05:22	
cis-1,3-Dichloropropene	ND	1.0	ug/L			01/01/22 05:22	
Toluene	ND	1.0	ug/L			01/01/22 05:22	
rans-1,3-Dichloropropene	ND	1.0	ug/L			01/01/22 05:22	
1,1,2-Trichloroethane	ND	1.0	ug/L			01/01/22 05:22	
Tetrachloroethene	ND	1.0	ug/L			01/01/22 05:22	
1,3-Dichloropropane	ND	1.0	ug/L			01/01/22 05:22	
Dibromochloromethane	ND	1.0	ug/L			01/01/22 05:22	
1,2-Dibromoethane	ND	1.0	ug/L			01/01/22 05:22	
Chlorobenzene	ND	1.0	ug/L			01/01/22 05:22	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L			01/01/22 05:22	
Ethylbenzene	ND	1.0	ug/L			01/01/22 05:22	
m-Xylene & p-Xylene	ND	2.0	ug/L			01/01/22 05:22	
o-Xylene	ND	1.0	ug/L			01/01/22 05:22	
Styrene	ND	1.0	ug/L			01/01/22 05:22	
Bromoform	ND	1.0	ug/L			01/01/22 05:22	
sopropylbenzene	ND	1.0	ug/L			01/01/22 05:22	
Bromobenzene	ND	1.0	ug/L			01/01/22 05:22	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			01/01/22 05:22	
1,2,3-Trichloropropane	ND	1.0	ug/L			01/01/22 05:22	
N-Propylbenzene	ND	1.0	ug/L			01/01/22 05:22	
2-Chlorotoluene	ND	1.0	ug/L			01/01/22 05:22	
1-Chlorotoluene	ND	1.0	ug/L			01/01/22 05:22	
-Butylbenzene	ND	2.0	ug/L			01/01/22 05:22	
1,2,4-Trimethylbenzene	ND	3.0	ug/L			01/01/22 05:22	
sec-Butylbenzene	ND	1.0	ug/L			01/01/22 05:22	

Eurofins Seattle

Page 9 of 23 1/5/2022

2

_

0

9

Client: Trihydro Corporation Job ID: 580-108655-1

Project/Site: Emerald Services Tacoma FY 2017

Client Sample ID: ERI-MW-50

Date Collected: 12/21/21 00:01 Date Received: 12/21/21 12:30 Lab Sample ID: 580-108655-3

Matrix: Water

(:	Water	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND		1.0		ug/L			01/01/22 05:22	1
1,3-Dichlorobenzene	ND		1.0		ug/L			01/01/22 05:22	1
1,4-Dichlorobenzene	ND		1.0		ug/L			01/01/22 05:22	1
n-Butylbenzene	ND		1.0		ug/L			01/01/22 05:22	1
1,2-Dichlorobenzene	ND		1.0		ug/L			01/01/22 05:22	1
1,2-Dibromo-3-Chloropropane	ND		3.0		ug/L			01/01/22 05:22	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			01/01/22 05:22	1
Hexachlorobutadiene	ND		3.0		ug/L			01/01/22 05:22	1
Naphthalene	ND		3.0		ug/L			01/01/22 05:22	1
1,2,3-Trichlorobenzene	ND		2.0		ug/L			01/01/22 05:22	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			01/01/22 05:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120					01/01/22 05:22	1
1,2-Dichloroethane-d4 (Surr)	102		80 - 120					01/01/22 05:22	1
4-Bromofluorobenzene (Surr)	97		80 - 120					01/01/22 05:22	1
Dibromofluoromethane (Surr)	103		80 - 120					01/01/22 05:22	1
Method: NWTPH-Dx - Nort	hwest - Semi-V	olatile Pet	roleum Prod	ucts (G0	C)				
Analyte		Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	1.1		0.11		mg/L		01/04/22 11:18	01/04/22 19:31	1
Motor Oil (>C24-C36)	0.56		0.36		mg/L		01/04/22 11:18	01/04/22 19:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Method: 6020B - Metals (ICP/M	IS) - Total Re	ecoverable							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	0.	0050		mg/L		01/03/22 18:17	01/05/22 10:56	5
Lead	ND	0.	0020		mg/L		01/03/22 18:17	01/05/22 10:56	5

Client: Trihydro Corporation Job ID: 580-108655-1

Project/Site: Emerald Services Tacoma FY 2017

Client Sample ID: Trip Blank

Lab Sample ID: 580-108655-4 Date Collected: 12/21/21 00:01

Matrix: Water

Date Received: 12/21/21 12:30

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	1.0		ug/L			01/01/22 00:57	
Chloromethane	ND	1.0		ug/L			01/01/22 00:57	1
Vinyl chloride	ND	1.0		ug/L			01/01/22 00:57	1
Bromomethane	ND	1.0		ug/L			01/01/22 00:57	1
Chloroethane	ND	1.0		ug/L			01/01/22 00:57	1
Trichlorofluoromethane	ND	1.0		ug/L			01/01/22 00:57	1
1,1-Dichloroethene	ND	1.0		ug/L			01/01/22 00:57	1
Methylene Chloride	ND	3.0		ug/L			01/01/22 00:57	1
Methyl tert-butyl ether	ND	1.0		ug/L			01/01/22 00:57	1
trans-1,2-Dichloroethene	ND	1.0		ug/L			01/01/22 00:57	1
1,1-Dichloroethane	ND	1.0		ug/L			01/01/22 00:57	1
2,2-Dichloropropane	ND	1.0		ug/L			01/01/22 00:57	
cis-1,2-Dichloroethene	ND	1.0		ug/L			01/01/22 00:57	
Bromochloromethane	ND	1.0		ug/L			01/01/22 00:57	1
Chloroform	ND	1.0		ug/L ug/L			01/01/22 00:57	,
1,1,1-Trichloroethane	ND	1.0		ug/L			01/01/22 00:57	· · · · · · .
Carbon tetrachloride	ND	1.0		ug/L ug/L			01/01/22 00:57	,
1,1-Dichloropropene	ND	1.0		ug/L ug/L			01/01/22 00:57	,
Benzene	ND	1.0		ug/L			01/01/22 00:57	,
1,2-Dichloroethane	ND ND	1.0		•			01/01/22 00:57	,
T,2-Dictiloroethane Trichloroethene	ND ND			ug/L				
		1.0		ug/L			01/01/22 00:57	
1,2-Dichloropropane	ND	1.0		ug/L			01/01/22 00:57	,
Dibromomethane	ND	1.0		ug/L			01/01/22 00:57	,
Bromodichloromethane	ND	1.0		ug/L			01/01/22 00:57	
cis-1,3-Dichloropropene	ND	1.0		ug/L			01/01/22 00:57	•
Toluene	ND	1.0		ug/L			01/01/22 00:57	
trans-1,3-Dichloropropene	ND	1.0		ug/L			01/01/22 00:57	
1,1,2-Trichloroethane	ND	1.0		ug/L			01/01/22 00:57	•
Tetrachloroethene	ND	1.0		ug/L			01/01/22 00:57	•
1,3-Dichloropropane	ND	1.0		ug/L			01/01/22 00:57	
Dibromochloromethane	ND	1.0		ug/L			01/01/22 00:57	•
1,2-Dibromoethane	ND	1.0		ug/L			01/01/22 00:57	•
Chlorobenzene	ND	1.0		ug/L			01/01/22 00:57	
1,1,1,2-Tetrachloroethane	ND	1.0		ug/L			01/01/22 00:57	•
Ethylbenzene	ND	1.0		ug/L			01/01/22 00:57	•
m-Xylene & p-Xylene	ND	2.0		ug/L			01/01/22 00:57	
o-Xylene	ND	1.0		ug/L			01/01/22 00:57	1
Styrene	ND	1.0		ug/L			01/01/22 00:57	1
Bromoform	ND	1.0		ug/L			01/01/22 00:57	
Isopropylbenzene	ND	1.0		ug/L			01/01/22 00:57	•
Bromobenzene	ND	1.0		ug/L			01/01/22 00:57	•
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L			01/01/22 00:57	
1,2,3-Trichloropropane	ND	1.0		ug/L			01/01/22 00:57	1
N-Propylbenzene	ND	1.0		ug/L			01/01/22 00:57	
2-Chlorotoluene	ND	1.0		ug/L			01/01/22 00:57	•
4-Chlorotoluene	ND	1.0		ug/L			01/01/22 00:57	1
t-Butylbenzene	ND	2.0		ug/L			01/01/22 00:57	1
1,2,4-Trimethylbenzene	ND	3.0		ug/L			01/01/22 00:57	1
sec-Butylbenzene	ND	1.0		ug/L			01/01/22 00:57	1

Eurofins Seattle

1/5/2022

Client: Trihydro Corporation Job ID: 580-108655-1

Project/Site: Emerald Services Tacoma FY 2017

Client Sample ID: Trip Blank

Date Received: 12/21/21 12:30

Date Collected: 12/21/21 00:01

Lab Sample ID: 580-108655-4

Matrix: Water

Analyte	Result (Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND		1.0	ug/L			01/01/22 00:57	1
1,3-Dichlorobenzene	ND		1.0	ug/L			01/01/22 00:57	1
1,4-Dichlorobenzene	ND		1.0	ug/L			01/01/22 00:57	1
n-Butylbenzene	ND		1.0	ug/L			01/01/22 00:57	1
1,2-Dichlorobenzene	ND		1.0	ug/L			01/01/22 00:57	1
1,2-Dibromo-3-Chloropropane	ND		3.0	ug/L			01/01/22 00:57	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			01/01/22 00:57	1
Hexachlorobutadiene	ND		3.0	ug/L			01/01/22 00:57	1
Naphthalene	ND		3.0	ug/L			01/01/22 00:57	1
1,2,3-Trichlorobenzene	ND		2.0	ug/L			01/01/22 00:57	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L			01/01/22 00:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120		_		01/01/22 00:57	1
1,2-Dichloroethane-d4 (Surr)	106		80 - 120				01/01/22 00:57	1
4-Bromofluorobenzene (Surr)	99		80 - 120				01/01/22 00:57	1
Dibromofluoromethane (Surr)	104		80 - 120				01/01/22 00:57	1

د

2

9

10

QC Sample Results

Client: Trihydro Corporation Job ID: 580-108655-1

Project/Site: Emerald Services Tacoma FY 2017

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 580-377212/6

Matrix: Water

Analysis Batch: 377212

Client Sa	mple ID: Method Blank	
	Prep Type: Total/NA	

Ameliate	MB		DI	MDI IInit	ь.	Duamanad	Analysasal	Dil Ess
Analyte Dichlorodifluoromethane		Qualifier	RL 1.0	MDL Unit	<u>D</u> .	Prepared	Analyzed 01/01/22 00:32	Dil Fac
	ND ND			ug/L				1
Chloromethane	ND ND		1.0	ug/L			01/01/22 00:32 01/01/22 00:32	1
Vinyl chloride			1.0	ug/L				1
Bromomethane	ND		1.0	ug/L			01/01/22 00:32	1
Chloroethane	ND		1.0	ug/L			01/01/22 00:32	1
Trichlorofluoromethane	ND		1.0	ug/L			01/01/22 00:32	1
1,1-Dichloroethene	ND		1.0	ug/L			01/01/22 00:32	1
Methylene Chloride	ND		3.0	ug/L			01/01/22 00:32	1
Methyl tert-butyl ether	ND		1.0	ug/L			01/01/22 00:32	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			01/01/22 00:32	1
1,1-Dichloroethane	ND		1.0	ug/L			01/01/22 00:32	1
2,2-Dichloropropane	ND		1.0	ug/L			01/01/22 00:32	1
cis-1,2-Dichloroethene	ND		1.0	ug/L			01/01/22 00:32	1
Bromochloromethane	ND		1.0	ug/L			01/01/22 00:32	1
Chloroform	ND		1.0	ug/L			01/01/22 00:32	1
1,1,1-Trichloroethane	ND		1.0	ug/L			01/01/22 00:32	1
Carbon tetrachloride	ND		1.0	ug/L			01/01/22 00:32	1
1,1-Dichloropropene	ND		1.0	ug/L			01/01/22 00:32	1
Benzene	ND		1.0	ug/L			01/01/22 00:32	1
1,2-Dichloroethane	ND		1.0	ug/L			01/01/22 00:32	1
Trichloroethene	ND		1.0	ug/L			01/01/22 00:32	1
1,2-Dichloropropane	ND		1.0	ug/L			01/01/22 00:32	1
Dibromomethane	ND		1.0	ug/L			01/01/22 00:32	1
Bromodichloromethane	ND		1.0	ug/L			01/01/22 00:32	1
cis-1,3-Dichloropropene	ND		1.0	ug/L			01/01/22 00:32	1
Toluene	ND		1.0	ug/L			01/01/22 00:32	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			01/01/22 00:32	1
1,1,2-Trichloroethane	ND		1.0	ug/L			01/01/22 00:32	1
Tetrachloroethene	ND		1.0	ug/L			01/01/22 00:32	1
1,3-Dichloropropane	ND		1.0	ug/L			01/01/22 00:32	1
Dibromochloromethane	ND		1.0	ug/L			01/01/22 00:32	1
1,2-Dibromoethane	ND		1.0	ug/L			01/01/22 00:32	1
Chlorobenzene	ND		1.0	ug/L			01/01/22 00:32	1
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			01/01/22 00:32	1
Ethylbenzene	ND		1.0	ug/L			01/01/22 00:32	1
m-Xylene & p-Xylene	ND		2.0	ug/L			01/01/22 00:32	1
o-Xylene	ND		1.0	ug/L			01/01/22 00:32	
Styrene	ND		1.0	ug/L			01/01/22 00:32	1
Bromoform	ND		1.0	ug/L			01/01/22 00:32	1
Isopropylbenzene	ND		1.0				01/01/22 00:32	
	ND ND			ug/L			01/01/22 00:32	1
Bromobenzene			1.0	ug/L				1
1,1,2,2-Tetrachloroethane	ND		1.0	ug/L			01/01/22 00:32	
1,2,3-Trichloropropane	ND		1.0	ug/L			01/01/22 00:32	1
N-Propylbenzene	ND		1.0	ug/L			01/01/22 00:32	1
2-Chlorotoluene	ND		1.0	ug/L			01/01/22 00:32	1
4-Chlorotoluene	ND		1.0	ug/L			01/01/22 00:32	1
t-Butylbenzene	ND		2.0	ug/L			01/01/22 00:32	1
1,2,4-Trimethylbenzene	ND		3.0	ug/L			01/01/22 00:32	1

Eurofins Seattle

1/5/2022

Page 13 of 23

QC Sample Results

Client: Trihydro Corporation Job ID: 580-108655-1

Project/Site: Emerald Services Tacoma FY 2017

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 580-377212/6

Matrix: Water

Analysis Batch: 377212

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB N	ИB							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND		1.0		ug/L			01/01/22 00:32	1
4-Isopropyltoluene	ND		1.0		ug/L			01/01/22 00:32	1
1,3-Dichlorobenzene	ND		1.0		ug/L			01/01/22 00:32	1
1,4-Dichlorobenzene	ND		1.0		ug/L			01/01/22 00:32	1
n-Butylbenzene	ND		1.0		ug/L			01/01/22 00:32	1
1,2-Dichlorobenzene	ND		1.0		ug/L			01/01/22 00:32	1
1,2-Dibromo-3-Chloropropane	ND		3.0		ug/L			01/01/22 00:32	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			01/01/22 00:32	1
Hexachlorobutadiene	ND		3.0		ug/L			01/01/22 00:32	1
Naphthalene	ND		3.0		ug/L			01/01/22 00:32	1
1,2,3-Trichlorobenzene	ND		2.0		ug/L			01/01/22 00:32	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			01/01/22 00:32	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	80 - 120		01/01/22 00:32	1
1,2-Dichloroethane-d4 (Surr)	103	80 - 120		01/01/22 00:32	1
4-Bromofluorobenzene (Surr)	102	80 - 120		01/01/22 00:32	1
Dibromofluoromethane (Surr)	99	80 - 120		01/01/22 00:32	1

Lab Sample ID: LCS 580-377212/4

Matrix: Water

Analysis Batch: 377212

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	10.0	8.10		ug/L		81	20 - 150	
Chloromethane	10.0	9.04		ug/L		90	25 - 150	
Vinyl chloride	10.0	9.61		ug/L		96	31 - 150	
Bromomethane	10.0	10.2		ug/L		102	36 - 150	
Chloroethane	10.0	9.74		ug/L		97	38 - 150	
Trichlorofluoromethane	10.0	9.84		ug/L		98	45 - 148	
1,1-Dichloroethene	10.0	9.80		ug/L		98	70 - 129	
Methylene Chloride	10.0	10.3		ug/L		103	77 - 125	
Methyl tert-butyl ether	10.0	10.6		ug/L		106	72 - 120	
trans-1,2-Dichloroethene	10.0	10.3		ug/L		103	75 - 120	
1,1-Dichloroethane	10.0	10.2		ug/L		102	80 - 120	
2,2-Dichloropropane	10.0	10.5		ug/L		105	66 - 126	
cis-1,2-Dichloroethene	10.0	10.1		ug/L		101	76 - 120	
Bromochloromethane	10.0	10.3		ug/L		103	78 - 120	
Chloroform	10.0	10.6		ug/L		106	78 - 127	
1,1,1-Trichloroethane	10.0	10.3		ug/L		103	74 - 130	
Carbon tetrachloride	10.0	10.2		ug/L		102	72 - 129	
1,1-Dichloropropene	10.0	10.2		ug/L		102	74 - 120	
Benzene	10.0	10.7		ug/L		107	80 - 122	
1,2-Dichloroethane	10.0	9.94		ug/L		99	69 - 126	
Trichloroethene	10.0	10.5		ug/L		105	80 - 125	
1,2-Dichloropropane	10.0	10.0		ug/L		100	80 - 120	
Dibromomethane	10.0	9.37		ug/L		94	80 - 120	
Bromodichloromethane	10.0	10.0		ug/L		100	75 - 124	

Eurofins Seattle

Page 14 of 23

QC Sample Results

Spike

Added

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

Client: Trihydro Corporation

Project/Site: Emerald Services Tacoma FY 2017

Job ID: 580-108655-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-377212/4

Matrix: Water

t-Butylbenzene

sec-Butylbenzene

4-Isopropyltoluene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

1,3,5-Trimethylbenzene

Hexachlorobutadiene

1,2-Dibromo-3-Chloropropane

n-Butylbenzene

Naphthalene

1,2,4-Trimethylbenzene

cis-1,3-Dichloropropene

Analyte

Analysis Batch: 377212

Client Sample ID: Lab Control Sample

%Rec

98

Prep Type: Total/NA

%Rec.

Limits

77 - 120

75 - 123

80 - 120

78 - 122

77 - 126

77 - 127

80 - 120

57 - 133

80 - 120

65 - 133

61 - 148

74 - 131

63 - 150

65 - 150

80 - 122

95

94

98

97

89

97

98

94

77

103

107

93

101

93

Toluene	10.0	10.4		104	80 - 120
			ug/L		
trans-1,3-Dichloropropene	10.0	9.12	ug/L	91	76 - 122
1,1,2-Trichloroethane	10.0	9.31	ug/L	93	80 - 121
Tetrachloroethene	10.0	9.87	ug/L	99	76 - 125
1,3-Dichloropropane	10.0	9.61	ug/L	96	79 - 120
Dibromochloromethane	10.0	9.95	ug/L	100	73 - 125
1,2-Dibromoethane	10.0	9.62	ug/L	96	79 - 126
Chlorobenzene	10.0	9.92	ug/L	99	80 - 120
1,1,1,2-Tetrachloroethane	10.0	9.63	ug/L	96	79 - 120
Ethylbenzene	10.0	10.1	ug/L	101	80 - 120
m-Xylene & p-Xylene	10.0	9.64	ug/L	96	80 - 120
o-Xylene	10.0	9.71	ug/L	97	80 - 120
Styrene	10.0	9.67	ug/L	97	76 - 122
Bromoform	10.0	9.43	ug/L	94	56 - 139
Isopropylbenzene	10.0	9.95	ug/L	100	80 - 123
Bromobenzene	10.0	9.24	ug/L	92	80 - 120
1,1,2,2-Tetrachloroethane	10.0	8.42	ug/L	84	74 - 124
1,2,3-Trichloropropane	10.0	8.52	ug/L	85	76 - 124
N-Propylbenzene	10.0	9.58	ug/L	96	80 - 122
2-Chlorotoluene	10.0	9.29	ug/L	93	80 - 120
4-Chlorotoluene	10.0	9.09	ug/L	91	73 - 129

9.46

9.43

9.81

9.68

8.86

9.70

9.85

9.43

7.73

10.3

10.7

9.25

10.1

9.31

LCS LCS

9.78

Result Qualifier

Unit

ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	105		80 - 120
1,2-Dichloroethane-d4 (Surr)	97		80 - 120
4-Bromofluorobenzene (Surr)	102		80 - 120
Dibromofluoromethane (Surr)	99		80 - 120

QC Sample Results

Spike

Added

10.0

Client: Trihydro Corporation Job ID: 580-108655-1

Project/Site: Emerald Services Tacoma FY 2017

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-377212/5

Matrix: Water

Analyte

Analysis Batch: 377212

Dichlorodifluoromethane

Client Sample ID: Lab Control Sample Dup

	Prep Type: Total/NA							
_	LCSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit	
8.22	- Qualifier	ug/L		82	20 - 150	2	33	
9.05		ug/L		91	25 - 150	0	26	
9.65		ug/L		97	31 - 150	0	26	
10.5		ug/L		105	36 - 150	2	33	
9.76		ug/L		98	38 - 150	0	28	
9.84		ug/L		98	45 - 148	0	35	
9.59		ug/L		96	70 - 129	2	23	
10.3		ug/L		103	77 - 125	0	18	
10.7		ug/L		107	72 - 120	1	18	
10.2		ug/L		102	75 - 120	1	21	
10.3		ug/L		103	80 - 120	0	15	
10.3		ug/L		103	66 - 126	1	22	
10.1		ug/L		101	76 - 120	1	20	
10.1		ug/L		101	78 - 120	2	13	
10.5		ug/L		105	78 - 127	1	14	
10.1		ug/L		101	74 - 130	2	19	
10.1		ug/L		101	72 - 129	1	19	
10.2		ug/L		102	74 - 120	0	14	
10.4		ug/L		104	80 - 122	2	14	
9.73		ug/L		97	69 - 126	2	11	
10.5		ug/L		105	80 - 125	0	13	
10.1		ug/L		101	80 - 120	0	14	
9.42		ug/L		94	80 - 120	1	11	
9.99		ug/L		100	75 - 124	0	13	

10.0		J.				55
10.0	9.05	ug/L	91	25 - 150	0	26
10.0	9.65	ug/L	97	31 - 150	0	26
10.0	10.5	ug/L	105	36 - 150	2	33
10.0	9.76	ug/L	98	38 - 150	0	28
10.0	9.84	ug/L	98	45 - 148	0	35
10.0	9.59	ug/L	96	70 - 129	2	23
10.0	10.3	ug/L	103	77 - 125	0	18
10.0	10.7	ug/L	107	72 - 120	1	18
10.0	10.2	ug/L	102	75 - 120	1	21
10.0	10.3	ug/L	103	80 - 120	0	15
10.0	10.3	ug/L	103	66 - 126	1	22
10.0	10.1	ug/L	101	76 - 120	1	20
10.0	10.1	ug/L	101	78 - 120	2	13
10.0	10.5	ug/L	105	78 - 127	1	14
10.0	10.1	ug/L	101	74 - 130	2	19
10.0	10.1	ug/L	101	72 - 129	1	19
10.0	10.2	ug/L	102	74 - 120	0	14
10.0	10.4	ug/L	104	80 - 122	2	14
10.0	9.73	ug/L	97	69 - 126	2	11
10.0	10.5	=	105	80 - 125	0	13
10.0	10.1		101	80 - 120	0	14
10.0	9.42		94	80 - 120	1	11
10.0	9.99	-	100	75 - 124	0	13
10.0	9.75		98	77 - 120	0	35
10.0	10.3		103	80 - 120	1	13
10.0	8.99	-	90	76 - 122	1	20
10.0	9.29		93	80 - 121	0	14
10.0	10.1	-	101	76 - 125	2	13
10.0	9.50	ug/L	95	79 - 120	1	19
10.0	9.81		98	73 - 125	1	13
10.0	9.27	ug/L	93	79 - 126	4	12
10.0	9.59	ug/L	96	80 - 120	3	10
10.0	9.49	ug/L	95	79 - 120	1	16
10.0	9.75	-	98	80 - 120	4	14
10.0	9.62	ug/L	96	80 - 120	0	14
10.0	9.85	ug/L	98	80 - 120	1	16
10.0	9.42	•	94	76 - 122	3	16
10.0	9.32	ug/L	93	56 - 139	1	21
	9.81	ug/L	98		1	19
		•	93		1	24
10.0		-	84		0	25
					1	26
					1	22
		-				20
						29
10.0		~g/ -			-	
10.0	9.44	ug/L	94	75 - 123	0	21
	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 9.05 10.0 9.65 10.0 10.5 10.0 9.76 10.0 9.84 10.0 10.3 10.0 10.7 10.0 10.2 10.0 10.3 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.1 10.0 10.4 10.0 10.4 10.0 9.73 10.0 10.1 10.0 9.42 10.0 9.42 10.0 9.42 10.0 9.75 10.0 10.1 10.0 9.50 10.0 9.50 10.0 9.50 10.0 9.50 10.0 9.59 10.0 9.59 10.0 9.59 10.0 9.49 10.0 9.59 10.0 9.85 10.0 9.85 10.0	10.0 9.05 ug/L 10.0 9.65 ug/L 10.0 10.5 ug/L 10.0 9.76 ug/L 10.0 9.84 ug/L 10.0 9.59 ug/L 10.0 10.3 ug/L 10.0 10.7 ug/L 10.0 10.3 ug/L 10.0 10.1 ug/L 10.0 9.73 ug/L 10.0 9.75 ug/L 10.0 9.99 ug/L 10.0 9.99 ug/L 10.0 9.29 ug/L 10.0 9.29 ug/L 10.0 9.50 ug/L 10.0 9.50 ug/L 10.0 9.50 ug/L 10.0 9.59 ug/L	10.0 9.05 ug/L 91 10.0 9.65 ug/L 97 10.0 10.5 ug/L 105 10.0 9.76 ug/L 98 10.0 9.84 ug/L 98 10.0 9.59 ug/L 96 10.0 10.3 ug/L 103 10.0 10.7 ug/L 107 10.0 10.3 ug/L 103 10.0 10.3 ug/L 103 10.0 10.3 ug/L 103 10.0 10.3 ug/L 103 10.0 10.1 ug/L 101 10.0 10.1 ug/L 102 10.0 10.4 ug/L 104 10.0 9.73 ug/L 97 10.0 10.5 ug/L 105 10.0 10.1 ug/L 105 10.0 10.1 ug/L 101 10.0 9.42 ug/L 94 10.0 9.99 ug/L 97 10.0 10.3 ug/L 94 10.0 9.99 ug/L 99 10.0 9.75 ug/L 98 10.0 10.3 ug/L 99 10.0 9.81 ug/L 90 10.0 9.50 ug/L 95 10.0 9.59 ug/L 98 10.0 9.62 ug/L 98 10.0 9.75 ug/L 98 10.0 9.85 ug/L 98 10.0 9.81 ug/L 98 10.0 9.82 ug/L 98 10.0 9.84 ug/L 98 10.0 9.85 ug/L 98 10.0 9.81 ug/L 98 10.0 9.82 ug/L 98 10.0 9.84 ug/L 98 10.0 9.85 ug/L 98 10.0 9.84 ug/L 98 10.0 9.85 ug/L 98 10.0 9.84 ug/L 98 10.0 9.84 ug/L 98 10.0 9.85 ug/L 98 10.0 9.84 ug/L 98 10.0 9.84 ug/L 98 10.0 9.84 ug/L 98 10.0 9.85 ug/L 98 10.0 9.84 ug/L 98 10.0 9.85 ug/L 98 10.0 9.84 ug/L 98 10.0 9.84 ug/L 98 10.0 9.85 ug/L 98 10.0 9.84 ug/L 98	10.0 9.05 ug/L 97 31.150 10.0 9.65 ug/L 97 31.150 10.0 10.5 ug/L 98 38.150 10.0 9.76 ug/L 98 38.150 10.0 9.76 ug/L 98 38.150 10.0 9.84 ug/L 98 45.148 10.0 9.59 ug/L 96 70.129 10.0 10.3 ug/L 107 72.120 10.0 10.3 ug/L 102 75.120 10.0 10.3 ug/L 103 80.120 10.0 10.3 ug/L 101 76.120 10.0 10.1 ug/L 101 76.120 10.0 10.1 ug/L 101 78.120 10.0 10.1 ug/L 101 78.120 10.0 10.1 ug/L 101 74.130 10.0 10.1 ug/L 101 72.129 10.0 10.1 ug/L 101 74.130 10.0 10.1 ug/L 101 72.129 10.0 10.2 ug/L 102 74.120 10.0 10.4 ug/L 104 80.122 10.0 9.73 ug/L 97 69.126 10.0 10.5 ug/L 105 80.125 10.0 10.1 ug/L 101 80.120 10.0 9.42 ug/L 94 80.120 10.0 9.75 ug/L 94 80.120 10.0 9.75 ug/L 98 77.120 10.0 10.3 ug/L 99 76.122 10.0 9.29 ug/L 99 76.122 10.0 9.29 ug/L 99 76.122 10.0 9.29 ug/L 99 79.120 10.0 9.50 ug/L 99 79.120 10.0 9.62 ug/L 96 80.120 10.0 9.85 ug/L 98 80.120 10.0 9.81 ug/L 98 73.125 10.0 9.92 ug/L 96 80.120 10.0 9.81 ug/L 98 80.120 10.0 9.85 ug/L 98 80.120 10.0 9.85 ug/L 98 80.120 10.0 9.81 ug/L 99 80.120 10.0 9.82 ug/L 96 80.120 10.0 9.85 ug/L 98 80.120 10.0 9.85 ug/L 98 80.120 10.0 9.86 ug/L 99 80.120 10.0 9.86 ug/L 99 80.120	10.0 9.05 ug/L 91 25.150 0 10.0 9.65 ug/L 97 31.150 0 10.0 10.5 ug/L 98 31.150 0 10.0 9.76 ug/L 98 38.150 0 10.0 9.76 ug/L 98 38.150 0 10.0 9.84 ug/L 98 45.148 0 10.0 9.59 ug/L 103 77.125 0 10.0 10.3 ug/L 107 72.120 1 10.0 10.7 ug/L 107 72.120 1 10.0 10.2 ug/L 103 80.120 0 10.0 10.3 ug/L 103 80.120 0 10.0 10.3 ug/L 101 76.120 1 10.0 10.1 ug/L 101 78.120 2 10.0 10.1 ug/L 101 78.120 2 10.0 10.1 ug/L 101 78.120 2 10.0 10.1 ug/L 101 74.130 2 10.0 10.1 ug/L 101 72.129 1 10.0 10.1 ug/L 101 72.129 1 10.0 10.2 ug/L 102 74.120 0 10.0 10.4 ug/L 104 80.122 2 10.0 9.73 ug/L 105 80.125 0 10.0 10.5 ug/L 101 80.120 0 10.0 10.1 ug/L 101 80.120 0 10.0 9.42 ug/L 101 80.120 0 10.0 9.75 ug/L 103 80.120 1 10.0 9.59 ug/L 98 77.120 0 10.0 9.59 ug/L 99 76.122 1 10.0 9.59 ug/L 98 77.120 0 10.0 9.59 ug/L 99 76.122 1 10.0 9.59 ug/L 99 76.122 1 10.0 9.59 ug/L 99 76.122 1 10.0 9.59 ug/L 98 80.120 1 10.0 9.42 ug/L 98 80.120 1 10.0 9.42 ug/L 98 80.120 1 10.0 9.42 ug/L 98 80.120 1 10.0 9.44 ug/L 98 80.120 1 10.0 9.49 ug/L 98 80.120 1 10.0 9.49 ug/L 98 80.120 1 10.0 9.45 ug/L 98 80.120 1 10.0 9.45 ug

Client: Trihydro Corporation

Project/Site: Emerald Services Tacoma FY 2017

Job ID: 580-108655-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-377212/5

Matrix: Water

Analysis Batch: 377212

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD **RPD** Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Limit sec-Butylbenzene 10.0 9.64 96 78 - 122 2 15 ug/L ug/L 4-Isopropyltoluene 10.0 9.51 95 77 - 126 2 20 35 1,3-Dichlorobenzene 10.0 8.93 ug/L 89 77 - 127 1,4-Dichlorobenzene 10.0 9.72 ug/L 97 80 - 120 17 10.0 97 57 - 133 n-Butylbenzene 9.66 ug/L 14 1,2-Dichlorobenzene 10.0 9.48 ug/L 95 80 - 120 15 1,2-Dibromo-3-Chloropropane 10.0 7.69 ug/L 77 65 - 133 1 25 27 1,2,4-Trichlorobenzene 10.0 9.28 ug/L 93 61 - 148 10 105 Hexachlorobutadiene 10.0 10.5 ug/L 74 - 131 2 22 Naphthalene 86 63 - 150 7 33 10.0 8.62 ug/L 1,2,3-Trichlorobenzene 10.0 9.09 91 33 ug/L 65 - 150 11 1,3,5-Trimethylbenzene 10.0 9.40 ug/L 94 80 - 122 21

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	105		80 - 120
1,2-Dichloroethane-d4 (Surr)	96		80 - 120
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	99		80 - 120

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-377387/1-A

Matrix: Water

Analysis Batch: 377440

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		0.11		mg/L		01/04/22 11:18	01/04/22 17:30	1
Motor Oil (>C24-C36)	ND		0.35		mg/L		01/04/22 11:18	01/04/22 17:30	1

MB MB Surrogate Qualifier Limits Prepared %Recovery Analyzed 79 50 - 150 01/04/22 11:18 01/04/22 17:30 o-Terphenyl

Lab Sample ID: LCS 580-377387/2-A

Matrix: Water

Analysis Batch: 377440

C3 300-31130112-A	Chefit Sample ID. Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 377387 %Rec.

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 377387

Dil Fac

	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
#2 Diesel (C10-C24)	4.00	2.89	mg/L		72	50 - 120
Motor Oil (>C24-C36)	4.00	3.27	mg/L		82	64 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	62		50 - 150

QC Sample Results

Client: Trihydro Corporation Job ID: 580-108655-1

Project/Site: Emerald Services Tacoma FY 2017

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCSD 580-377387/3-A

Matrix: Water

Analysis Batch: 377440

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 377387 %Rec. **RPD**

Spike LCSD LCSD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit #2 Diesel (C10-C24) 4.00 3.06 mg/L 76 50 - 120 6 26 Motor Oil (>C24-C36) 4.00 3.44 mg/L 86 64 - 120 5 24

LCSD LCSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 72 50 - 150

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 580-377342/21-A

Matrix: Water

Analysis Batch: 377487

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 377342

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 0.0010 01/03/22 18:17 01/05/22 09:41 Arsenic ND mg/L ND 0.00040 01/03/22 18:17 01/05/22 09:41 Lead mg/L

Lab Sample ID: LCS 580-377342/22-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 377487

MB MB

Prep Batch: 377342 %Rec. %Rec Limits

80 - 120

20

5

105

LCS LCS Spike Analyte Added Result Qualifier Unit Arsenic 1.00 1.07 107 80 - 120 mg/L Lead 1.00 1.10 mg/L 110 80 - 120

Lab Sample ID: LCSD 580-377342/23-A Client Sample ID: Lab Control Sample Dup **Matrix: Water Prep Type: Total Recoverable**

1.00

Lead

Analysis Batch: 377487 Prep Batch: 377342 LCSD LCSD RPD Spike %Rec. Added RPD Limit **Analyte** Result Qualifier Unit %Rec Limits Arsenic 1.00 1.04 mg/L 104 80 - 120 2 20

1.05

mg/L

Eurofins Seattle

1/5/2022

Client: Trihydro Corporation

Project/Site: Emerald Services Tacoma FY 2017

Client Sample ID: ERI-MW-3R

Date Collected: 12/21/21 10:56 Date Received: 12/21/21 12:30 Lab Sample ID: 580-108655-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	377212	01/01/22 04:34	B1M	FGS SEA
Total/NA	Prep	3510C			377387	01/04/22 11:18	M1E	FGS SEA
Total/NA	Analysis	NWTPH-Dx		1	377440	01/04/22 18:51	JAE	FGS SEA
Total Recoverable	Prep	3005A			377342	01/03/22 18:17	TMH	FGS SEA
Total Recoverable	Analysis	6020B		5	377487	01/05/22 10:48	FCW	FGS SEA

Client Sample ID: ERI-MW-4

Date Collected: 12/21/21 11:45

Lab Sample ID: 580-108655-2

Matrix: Water

Date Received: 12/21/21 12:30

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	377212	01/01/22 04:58	B1M	FGS SEA
Total/NA Total/NA	Prep Analysis	3510C NWTPH-Dx		1	377387 377440	01/04/22 11:18 01/04/22 19:11		FGS SEA FGS SEA
Total Recoverable Total Recoverable	Prep Analysis	3005A 6020B		5	377342 377487	01/03/22 18:17 01/05/22 10:52	TMH FCW	FGS SEA FGS SEA

Client Sample ID: ERI-MW-50

Date Collected: 12/21/21 00:01

Lab Sample ID: 580-108655-3

Matrix: Water

Date Collected: 12/21/21 00:01 Date Received: 12/21/21 12:30

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D			377212	01/01/22 05:22	B1M	FGS SEA
Total/NA	Prep	3510C			377387	01/04/22 11:18	M1E	FGS SEA
Total/NA	Analysis	NWTPH-Dx		1	377440	01/04/22 19:31	JAE	FGS SEA
Total Recoverable Total Recoverable	Prep Analysis	3005A 6020B		5	377342 377487	01/03/22 18:17 01/05/22 10:56	TMH FCW	FGS SEA FGS SEA

Client Sample ID: Trip Blank

Date Collected: 12/21/21 00:01

Lab Sample ID: 580-108655-4

Matrix: Water

Date Collected: 12/21/21 00:01 Date Received: 12/21/21 12:30

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D			377212	01/01/22 00:57	B1M	FGS SEA

Laboratory References:

FGS SEA = Eurofins Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Accreditation/Certification Summary

Client: Trihydro Corporation Job ID: 580-108655-1

Project/Site: Emerald Services Tacoma FY 2017

Laboratory: Eurofins Seattle

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C788	07-13-22

3

4

5

0

10

Sample Summary

Client: Trihydro Corporation Project/Site: Emerald Services Tacoma FY 2017

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-108655-1	ERI-MW-3R	Water	12/21/21 10:56	12/21/21 12:30
580-108655-2	ERI-MW-4	Water	12/21/21 11:45	12/21/21 12:30
580-108655-3	ERI-MW-50	Water	12/21/21 00:01	12/21/21 12:30
580-108655-4	Trip Blank	Water	12/21/21 00:01	12/21/21 12:30

Job ID: 580-108655-1

Eurofins FGS, Seattle

5755 8th Street East Tacoma, WA 98424

Chain of Custody Record

💸 eurofins

Environment Testing

Ver: 06/08/2021

Phone: 253-922-2310 Fax: 425-420-9210																			
Client Information	Vate Mitchell Lei			.ab PM: _ewis, N a	ithan A	١.			Carrier Tracking N			king No	ing No(s):			COC No: 580-46421-14	819.1		
Client Contact: Katie Mitchell	936-697-1881 Nat			:-Mail: Nathan.Le	ewis@	Euro	ofinse	t.com		State of Origin:				Page: Page 1 of 1					
Company: Trihydro Corporation	PWSiD:							An	alysi	s Red	Requested Job# 108655								
Address: 1252 Commerce Drive		al TA	σ															Preservation C	odes:
City: Laramie	TAT Requested (d	na FAT	•												j			A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
State, Zip: WY, 82070	Compliance Proje				$\exists 1$													D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Phone: 307-745-7474(Tel)	PO#: 46Y-001-004																	F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S2O3 S - H2SO4 T - TSP Dodecahyd
Email: kmitchell@trihydro.com	WO #:				Ž o		- DRO/RRO	, i										I - Ice J - DI Water	U - Acetone V - MCAA
Project Name: Emerald Services Tacoma FY 2017	Project #: 58011140				e (Yes	s,Pb)	t. DR(standard list									containers	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Site:	SSOW#:				owe G	Metals (As, Pb)	- Northwest	s, stan									of con	Other:	
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp,	Matrix (Wawater Sasolid, Owaste/of	A Filte	- Total	NWTPH_Dx - No	8260D · Volatiles,								-	Total Number		
Manipe delikinedia)	Sample Date			ation Code	SHOCKOCK . TOSSOC TORSON	OF DESCRIPTIONS	2000000	A									뒿	Special I	nstructions/Note:
ERI-MW-3R	12/21/21	10.50	6	Water		X	X	X		-0.00									
RI-MW-4	1	1145	6	Water		X	X	X											
ERI-MW-50	V		6	Water		X	X	X											
				Water				_						_					
				Water		<u> </u>	_					_		_					
rip Blank	12/21/21	F-m	-	Water		-	-	X	_		1				ļ			· · · · · · · · · · · · · · · · · · ·	
rip Blank				Water			-	\dashv				_			-				
		*******				+	\dashv	+	_	-		_	_				4		
							+		-	+		_		-	 		\dashv		
					+		1							-	-	1	+	·····	
ossible Hazard Identification Non-Hazard Flammable Skin Irritant Pois reliverable Requested: I. II. III. IV. Other (specify)	on B Unkno	own	Radiological	1		J Re	turn	To CI	ient	e <i>may</i> [Require	—l _{Di}	sposa	e d if s al By L	ampi .ab	es ar			l longer than 1 e For	month) Months
mpty Kit Relinquished by:		Date:			Time:	eciai ii	istru	CROFIS	/WC r	require	emeni		othod o	of Shipr	nont:				
	Date/Time: 12/2		430	Company TEIHYOX			Tow	,	\{\bar{\}_{\alpha}}	<u>مرا</u>		<u>ال</u> آ	Cinod C	Date	/Time:	22	12	1 123c	
•	Date/Time:			Company		Receive		(<u> </u>						/Time:				Company
linquished by:	Date/Time:			Company		Receive	ed by:							Date	/Time:				Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No		T VALE		Page		ANTE	Temp	1 1 1 1 1 1 1 1	(s) °Cر دازیا	and Oth	er Rem کر	arks:	/ω	ret,	ريحا	6	14	4.7/1	Ver: 06/08/2021

Client: Trihydro Corporation Job Number: 580-108655-1

Login Number: 108655 List Source: Eurofins Seattle

List Number: 1

Creator: Blankinship, Tom X

Creator: Blankinship, Tom X		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

APPENDIX C

DATA VALIDATION REPORTS

- C-1. DATA VALIDATION REPORT (JUNE 2021)
- C-2. DATA VALIDATION REPORT (DECEMBER 2021)

APPENDIX C-1

DATA VALIDATION REPORT (JUNE 2021)

Client: Safety-Kleen Systems	Laboratory: Eurofins TestAmerica Inc.
Project Name: Spring 2021 Groundwater Monitoring	Sample Matrix: Groundwater
Project Number: 46Y-001-005 Task: 0002	Sample Start Date: 06/02/2021
Date Validated: 07/01/2021	Sample End Date: 06/02/2021

Parameters Included:

- Volatile Organic Compounds (VOC) by Test Methods for Evaluating Solid Waste (SW-846) Method 8260D
- Semivolatile Petroleum Products and Total Petroleum Hydrocarbons (TPH) by Washington Department of Ecology Method NWTPH-Dx
- Total Metals (Arsenic and Lead) by SW-846 Method 6020B

Laboratory Project ID: 580-103512-1

Data Validator: Maggie Van Amburg, Staff Scientist

Reviewer: Charles Ballek, Senior Chemist

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Eurofins TestAmerica in Seattle, Washington, evaluating samples from the Safety-Kleen Systems site, located in Tacoma, Washington.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values from:

- Field duplicate pairs
- Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) pairs

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

- LCS/LCSD samples
- Organic system monitoring compounds (surrogates)

Field accuracy was established by collecting and analyzing the following samples to monitor for possible ambient or cross contamination during sampling and transportation.

Trip blanks

Method compliance was established by reviewing sample integrity, holding times, detection limits, surrogate recoveries, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS/LCSD percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
ERI-MW-1	580-103512-1
ERI-MW-2	580-103512-2
ERI-MW-3R	580-103512-3
ERI-MW-4	580-103512-4
ERI-MW-50	580-103512-5
Trip Blank	580-103512-6

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (\odot) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness*
- √ Laboratory Identified Issues (Item 1)
- ✓ CoC Documentation (Item 3)
- ✓ Holding Times and Preservation (Items 6 and 7)
- Initial and Continuing Calibrations (Items 9 and 10)
- ✓ Laboratory Blanks (Items 11 and 12)
- O Matrix Spike (MS) and Matrix Spike Duplicate (MSD) (Items 13 and 14)
- ✓ LCS/LCSD (Items 15 and 16)
- ✓ System Monitoring Compounds (i.e., Surrogates) (Item 17)
- ✓ Trip Blanks (Items 18 and 19)
- ✓ Field Duplicates (Items 20 and 21)
- O Laboratory Duplicates (Item 22)
- O Data Relationships (Item 23)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for organic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Organic Superfund Methods Data Review, document number EPA-540-R-2017-002, November 2020 with additional reference to the USEPA CLP National Functional Guidelines for Organic Data Review, document number EPA 540/R-99/008, October 1999.
- Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Methods Data Review, document number EPA-540-R-2017-001, November 2020 with additional reference to the USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA 540-R-04-004, October 2004.
- Review of field duplicates was conducted according to the USEPA Region I New England Environmental Data Review Supplement for Region 1 Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement2, September 2020
- Trihydro Data Validation Variance Documentation, February 2021.

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives. If values are assigned qualifiers other than an R (rejected, data not usable), the data may be used for site evaluation; however, consideration should be given to the reasons for qualification when interpreting sample concentrations. Data points that are assigned an R qualifier should not be used for site evaluation purposes.

If applicable, text was identified in **bold font** in the Validation Criteria Checklist to indicate that further action and/or qualification of the data were required. Data may have been qualified with J data flags by the laboratory if the result was greater than or equal to the method detection limit (MDL) but less than the reporting limit (RL). These laboratory-applied J flags were preserved, if present, and included in the Data Qualification Summary table at the end of this report. If applicable, data validation qualifiers were added for the items noted with crossed circles in the Validation Criteria section above. Please see the Data Qualification Summary table at the end of this report for a complete list of samples and analytes qualified.

If data would be qualified with more than one flag, one qualifier was assigned based on the severity; however, all reasons for qualification were retained. Data that would be qualified with both J+ and J- flags were evaluated based on validation criteria and assigned the appropriate flag. The hierarchy of qualifiers from the most to least severe is as follows:

■ R > JB/U > NJ > J+/J- > J/UJ

Data qualifiers used during this validation are included in the following table.

<u>Qualifier</u>	<u>Definition</u>
UJ	Estimated reporting limit

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete data package consisted of 320 data points. The data completeness calculation does not include any submitted blank sample results. Data points were not rejected. The data completeness measure for this data package is calculated to be 100% and is acceptable.

1. Was the report free of non-conformances identified by the laboratory?

No

Comments: The laboratory noted the following non-conformance regarding the analytical data.

<u>Method 8260D</u>: The laboratory control sample (LCS) for analytical batch 580-358637 recovered outside control limits for the following analytes: Dichlorodifluoromethane, Tetrachloroethene and Ethylene Dibromide. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

The continuing calibration verification (CCV) associated with batch 580-358637 recovered above the upper control limit for Dichlorodifluoromethane, 1,1,2-Trichloro-1,2,2-trifluoroethane and Carbon tetrachloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: ERI-MW-4 (580-103512-4), ERI-MW-50 (580-103512-5), TRIP BLANK (580-103512-6) and (CCVIS 580-358637/3).

The continuing calibration verification (CCV) associated with batch 580-358637 recovered outside acceptance criteria, low biased, for n-Butylbenzene. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

The continuing calibration verification (CCV) associated with batch 580-358759 recovered outside acceptance criteria, low biased, for Chloromethane, Bromomethane and cis-1,3-Dichloropropene. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

The method blank for preparation batch 358759 contained Methylene Chloride above the reporting limit (RL). None of the samples associated with this method blank contained the target compound; therefore, re-extraction and/or re-analysis of samples were not performed.

The laboratory control sample duplicate (LCSD) for analytical batch 580-358759 recovered outside control limits for the following analytes: Methylene Chloride. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

<u>Method NWTPH-Dx</u>: The following samples contained a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: ERI-MW-1 (580-103512-1), ERI-MW-2R (580-103512-2), ERI-MW-3R (580-103512-3), ERI-MW-4 (580-103512-4) and ERI-MW-50 (580-103512-5). Since the results were reported as a carbon range and not as TPH-Diesel, qualification was not applied based on this observation.

2. Were the data free of data qualification flags and/or notes used by the laboratory? If no, define.

No

Comments: The laboratory used the following data qualification flags with this data set.

*+ - LCS and/or LCDS is outside acceptance limits, high biased.

3. Were sample CoC forms and custody procedures complete?

Yes

Comments: The CoC records from field to laboratory were complete, and custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt. Custody seals were not present and were not required since the samples were delivered to the laboratory by field personnel and custody was maintained at all times.

4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?

Yes

Comments: The reporting limits for the analyses were reviewed and appeared to be acceptable. Dilutions were not applied for the analyses of the submitted samples.

5. Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC?

Yes

Comments: The reported analytical methods were in compliance with the CoC, and the laboratory reported the requested constituents in accordance with the CoC.

6. Were samples received in good condition within method-specified requirements?

Nο

Comments: Samples were received at the laboratory on ice, in good condition, and with the cooler temperature outside the recommended temperature range of $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$ at 9.0°C as noted in the Case Narrative and on the CoC.

The cooler temperature above 6°C was acceptable since the samples were received at the laboratory on the same day (within 24 hours) of the last sample collection time, and temperature equilibrium had not been established.

7. Were samples extracted/digested and analyzed within method-specified or technical holding times?

No

Comments: The samples were extracted/digested and analyzed within method-specific holding times.

8. Were reported units appropriate for the sample matrix/matrices and analytical method(s)? Specify if wet or dry units were used for soil.

Yes

Comments: The results were reported in concentration units of micrograms per liter (μ g/L) and milligrams per liter (μ g/L), which were acceptable for the sample matrix and the analyses requested.

9. Did the laboratory provide any specific initial and/or continuing calibration results?

No

Comments: Detailed initial and continuing calibration data were not included as part of this data set.

10. If initial and/or continuing calibration results were provided, were the results within acceptable limits?

No

Comments: Detailed initial and continuing calibration data were not included as part of this data set.

However, the laboratory noted that the recoveries for dichlorodifluoromethane, 1,1,2-trichloro-1,2,2-trifluoroethane carbon tetrachloride, and n-butylbenzene were outside the control limits in the continuing calibration verification (CCV) for Method 8260D batch 358637. Dichlorodifluoromethane, carbon tetrachloride, and n-butylbenzene were not detected in the associated samples analyzed in this batch and the results were assigned UJ qualifiers due to the calibration non-conformances. 1,1,2-Trichloro-1,2,2-trifluoroethane was not a target analyte for this project and qualification of sample results was not required based on this CCV information.

The laboratory identified that the recoveries for chloromethane, bromomethane and cis-1,3-dichloropropene were outside the acceptance limits in the CCV for Method 8260D batch 358759, Chloromethane, bromomethane and cis-1,3-dichloropropene were not detected in the associated samples in batch 358759 and the results were assigned UJ qualifiers due to the calibration non-conformances.

11. Was the total number of laboratory blank samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of laboratory blank samples prepared was equal to at least 5% of the total number of samples.

12. Were target analytes reported as not detected in the laboratory blanks?

No

Comments: Target analytes were reported as not detected in the laboratory blanks samples, with the following exception.

The target analyte methylene chloride was detected in the laboratory blank for Method 8260B batch 358759 at a concentration of 3.57 mg/L. Methylene Chloride was not detected in the associated samples; therefore, qualification of sample results based on the method blank detection was not required.

13. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

No

Comments: The total number of matrix spike samples prepared was not equal to at least 5% of the total number of samples. The matrix spike sample source for each analytical batch in this sample set has been indicated below

<u>Method</u>	<u>Analytes</u>	<u>Batch</u>	MS Sample Source
6020B	Arsenic and Lead	358992	Not Prepared
8260D	VOCs	358759, 358637	Not Prepared
NWTPH-Dx	C10-C24 and Motor Oil	358299	Not Prepared

Not Prepared - Matrix spikes were not prepared for this batch. Other QC data were used to evaluate accuracy and precision.

14. For MS/MSDs prepared from project samples, were percent recoveries and RPDs within data validation or laboratory quality control (QC) limits?

N/A

Comments: MS samples were not prepared using project samples as the sample source.

15. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number of samples.

16. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits?

No

Comments: The LCS and LCSD percent recoveries and LCS/LCSD RPDs were within laboratory QC limits, with the following exceptions.

Method	<u>Analyte</u>	<u>Batch</u>	LCS Recovery	LCSD Recovery	LCS/LCSD QC Limits
8260D	Dichlorodifluoromethane	358637	138%	Acceptable	47-133%
8260D	Tetrachloroethene	358637	121%	Acceptable	76-120%
8260D	1,2-Dibromoethane	358637	122%	Acceptable	79-120%
8260D	Methylene Chloride	358759	Acceptable	122%	77-120%

The identified analytes were not detected in the associated samples and qualification of the results was not required based on the evidence of potential high bias.

17. Were surrogate recoveries within laboratory QC limits?

Yes

Comments: Surrogate recoveries were within laboratory QC limits.

18. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of trip, field, and equipment blanks collected was equal to at least 10% of the number of samples. One trip blank sample, Trip Blank, was collected as part of this sample set.

19. Were target analytes reported as not detected in the trip blank, field blank, and/or equipment blank samples?

Yes

Comments: Target analytes were reported as not detected in the trip blank sample.

20. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of field duplicates collected was equal to at least 10% of the number of samples. Sample ERI-MW-50 was collected as a field duplicate of sample ERI-MW-4.

21. Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)?

Yes

Comments: As indicated in the Field Duplicate Summary Table at the end of this report, field duplicate RPD values were within the data validation QC limits of 0-30% for water samples. Qualification of sample data was not required.

22. For laboratory duplicates prepared from project samples, were RPDs within data validation or laboratory QC limits?

N/A

Comments: Laboratory duplicates were not prepared for this dataset.

23. Were the following data relationships realistic and acceptable?

 Target analytes were reported by more than one method (e.g., 8260/8270, EPH/8270), and the results were in agreement? N/A

Comments: Target analytes were not reported by more than one method.

• Both total and dissolved metals analyses were performed, and the total metals results were greater than or equal to the dissolved metals results?

N/A

Comments: Dissolved metals were not analyzed for the samples in this data set.

FIELD DUPLICATE SUMMARY

Client Sample ID: ERI-MW-4 Field Duplicate Sample ID: ERI-MW-50								
Analyte Method		Laboratory Result	Duplicate Result	Relative Percent Difference (RPD)				
C10-C24	NWTPH-Dx	1.6 mg/L	1.7 mg/L	6.1%				
Motor Oil	NWTPH-Dx	0.57 mg/L	0.60 mg/L	5.1%				

Field duplicate RPD control limits are not to exceed 30% for water as established by USEPA Region 1 - New England Environmental Data Review Supplement for Region 1 Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement2, September 2020.

DATA QUALIFICATION SUMMARY

Abbreviation	Reason
HDRRF	The %D between the initial calibration RRF and the opening CCV RRF was outside the acceptable limits.

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Bromomethane	SW 8260	ERI-MW-1	580-103512-1	ND	1	μg/L	UJ	HDRRF
Bromomethane	SW 8260	ERI-MW-2R	580-103512-2	ND	1	μg/L	UJ	HDRRF
Bromomethane	SW 8260	ERI-MW-3R	580-103512-3	ND	1	μg/L	UJ	HDRRF
Carbon tetrachloride	SW 8260	ERI-MW-4	580-103512-4	ND	1	μg/L	UJ	HDRRF
Carbon tetrachloride	SW 8260	ERI-MW-50	580-103512-5	ND	1	μg/L	UJ	HDRRF
Carbon tetrachloride	SW 8260	TRIP BLANK	580-103512-6	ND	1	μg/L	UJ	HDRRF
Chloromethane	SW 8260	ERI-MW-1	580-103512-1	ND	1	μg/L	UJ	HDRRF
Chloromethane	SW 8260	ERI-MW-2R	580-103512-2	ND	1	μg/L	UJ	HDRRF
Chloromethane	SW 8260	ERI-MW-3R	580-103512-3	ND	1	μg/L	UJ	HDRRF
cis-1,3-Dichloropropene	SW 8260	ERI-MW-1	580-103512-1	ND	1	μg/L	UJ	HDRRF
cis-1,3-Dichloropropene	SW 8260	ERI-MW-2R	580-103512-2	ND	1	μg/L	UJ	HDRRF
cis-1,3-Dichloropropene	SW 8260	ERI-MW-3R	580-103512-3	ND	1	μg/L	UJ	HDRRF
Dichlorodifluoromethane	SW 8260	ERI-MW-4	580-103512-4	ND	1	μg/L	UJ	HDRRF
Dichlorodifluoromethane	SW 8260	ERI-MW-50	580-103512-5	ND	1	μg/L	UJ	HDRRF
Dichlorodifluoromethane	SW 8260	TRIP BLANK	580-103512-6	ND	1	μg/L	UJ	HDRRF
n-Butylbenzene	SW 8260	ERI-MW-4	580-103512-4	ND	1	μg/L	UJ	HDRRF
n-Butylbenzene	SW 8260	ERI-MW-50	580-103512-5	ND	1	μg/L	UJ	HDRRF
n-Butylbenzene	SW 8260	TRIP BLANK	580-103512-6	ND	1	μg/L	UJ	HDRRF

1_202204_TierII_580-103512-1 _DV_APP-C-1.docx

APPENDIX C-2

DATA VALIDATION REPORT (DECEMBER 2021)

Client: Safety-Kleen Systems	Laboratory: Eurofins TestAmerica Inc.		
Project Name: Tacoma 2021 Groundwater Monitoring	Sample Matrix: Groundwater		
Project Number: 46Y-001-005 Task: 0002	Sample Start Date: 12/21/2021		
Date Validated: 01/19/2022	Sample End Date: 12/21/2021		

Parameters Included:

- Volatile Organic Compounds (VOC) by Test Methods for Evaluating Solid Waste (SW-846) Method 8260D
- Semivolatile Petroleum Products and Total Petroleum Hydrocarbons (TPH) by Washington Department of Ecology Method NWTPH-Dx
- Total Metals (Arsenic and Lead) by SW-846 Method 6020B

Laboratory Project ID: 580-108655-1

Data Validator: Daran O'Hollearn, Lead Project Scientist

Reviewer: Mike Phillips, Senior Chemist

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Eurofins TestAmerica in Seattle, Washington, evaluating samples from the Safety-Kleen Systems site, located in Tacoma, Washington.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values from:

- Field duplicate pairs
- Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) pairs

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

- LCS/LCSD samples
- Organic system monitoring compounds (surrogates)

Field accuracy was established by collecting and analyzing the following samples to monitor for possible ambient or cross contamination during sampling and transportation.

Trip blanks

Method compliance was established by reviewing sample integrity, holding times, detection limits, surrogate recoveries, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS/LCSD percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number			
ERI-MW-3R	580-108655-1			
ERI-MW-4	580-108655-2			
ERI-MW-50	580-108655-3			
Trip Blank	580-108655-4			

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (\odot) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ✓ CoC Documentation (Item 3)
- ✓ Holding Times and Preservation (Items 6 and 7)
- Initial and Continuing Calibrations (Items 9 and 10)
- ✓ Laboratory Blanks (Items 11 and 12)
- O Matrix Spikes (MS) and Matrix Spike Duplicates (MSD) (Items 13 and 14)
- ✓ LCS/LCSD (Items 15 and 16)
- ✓ System Monitoring Compounds (i.e., Surrogates) (Item 17)
- ✓ Trip Blanks (Items 18 and 19)
- √ Field Duplicates (Items 20 and 21)
- Laboratory Duplicates (Item 22)
- O Data Relationships (Item 23)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for organic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Organic Superfund Methods Data Review, document number EPA-540-R-20-005, November 2020 with additional reference to the USEPA CLP National Functional Guidelines for Organic Data Review, document number EPA 540/R-99/008, October 1999.
- Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Methods Data Review, document number EPA-542-R-20-006, November 2020 with additional reference to the USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA 540-R-04-004, October 2004.
- Review of field duplicates was conducted according to the USEPA Region 1 New England Environmental Data Review Supplement for Region 1 Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement2, September 2020.
- Trihydro Data Validation Variance Documentation, February 2021.

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives. If values are assigned qualifiers other than an R (rejected, data not usable), the data may be used for site evaluation; however, consideration should be given to the reasons for qualification when interpreting sample concentrations. Data points that are assigned an R qualifier should not be used for site evaluation purposes.

If applicable, text was identified in **bold font** in the Validation Criteria Checklist to indicate that further action and/or qualification of the data were required. Data may have been qualified with J data flags by the laboratory if the result was greater than or equal to the method detection limit (MDL) but less than the reporting limit (RL). These laboratory-applied J flags were preserved, if present, and included in the Data Qualification Summary table at the end of this report. If applicable, data validation qualifiers were added for the items noted with crossed circles in the Validation Criteria section above. Please see the Data Qualification Summary table at the end of this report for a complete list of samples and analytes qualified.

If data would be qualified with more than one flag, one qualifier was assigned based on the severity; however, all reasons for qualification were retained. Data that would be qualified with both J+ and J- flags were evaluated based on validation criteria and assigned the appropriate flag. The hierarchy of qualifiers from the most to least severe is as follows:

■ R > JB/U > NJ > J+/J- > J/UJ

Data qualifiers used during this validation are included in the following table.

<u>Qualifier</u>	<u>Definition</u>			
UJ	Estimated reporting limit			

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete data package consisted of 192 data points. The data completeness calculation does not include any submitted blank sample results. Data points were not rejected. The data completeness measure for this data package is calculated to be 100% and is acceptable.

1. Was the report free of non-conformances identified by the laboratory?

No

Comments: The laboratory noted the following non-conformance regarding the analytical data.

<u>Method 8260D</u>: The Continuing Calibration Verification (CCV) for analytical batch 580-377212 recovered outside control limits for the following analyte: Dichlorodifluoromethane. Dichlorodifluoromethane has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified.

Surrogate recovery for the following sample was outside the upper control limit: ERI-MW-3R (580-108655-1). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

<u>Method 3510C/ NWTPH-Dx</u>: The following samples formed emulsions during the extraction procedure: ERI-MW-3R (580-108655-1). The emulsions were broken up using additional sodium sulfate filtration and methylene chloride rinses.

Insufficient sample volume was available to perform a MS/MSD associated with preparation batch 580-377387, so a LCS and LCSD were created and substituted for the MS/MSD.

Were the data free of data qualification flags and/or notes used by the laboratory?If no, define.

No

Comments: The laboratory used the following data qualification flag with this data set.

S1+- Surrogate recovery exceeds control limits, high biased.

3. Were sample CoC forms and custody procedures complete?

Yes

Comments: The CoC records from field to laboratory were complete, and custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt. The laboratory noted that the shipping containers were sealed, and custody seals were present and intact.

4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?

Yes

Comments: The reporting limits for the analyses were reviewed and appeared to be acceptable. The following dilutions were applied to the project samples.

Method 6020B: Samples ERI-MW-3R, ERI-MW-4, and ERI-MW-50 were diluted by a factor of 5 times for the analyses of total arsenic and total lead.

5. Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC?

Yes

Comments: The reported analytical methods were in compliance with the CoC, and the laboratory reported the requested constituents in accordance with the CoC.

6. Were samples received in good condition within method-specified requirements?

Yes

Comments: Samples were received at the laboratory on ice, in good condition, and with the cooler temperature within the recommended temperature range of 4° C \pm 2° C at 4.7C as noted in the Case Narrative and on the CoC.

7. Were samples extracted/digested and analyzed within method-specified or technical holding times?

Yes

Comments: The samples were extracted/digested and analyzed within method-specific holding times.

8. Were reported units appropriate for the sample matrix/matrices and analytical method(s)? Specify if wet or dry units were used for soil.

Yes

Comments: The results were reported in concentration units of micrograms per liter ($\mu g/L$) and milligrams per liter (mg/L), which were acceptable for the sample matrix and the analyses requested.

VALIDATION CRITERIA CHECKLIST 9. Did the laboratory provide any specific initial and/or continuing calibration results? No Comments: Detailed initial and continuing calibration data were not included as part of this data set. 10. If initial and/or continuing calibration results were provided, were the results within Nο acceptable limits? Comments: Detailed initial and continuing calibration data were not included as part of this data set. Although detailed initial and continuing calibration data were not included as part of this data set, the laboratory reported in the case narrative that the CCV associated with Method 8260D batch 377212 recovered outside the control limits for dichlorodifluoromethane. Dichlorodifluoromethane was not detected in the samples associated with batch 377212. The results for dichlorodifluoromethane in samples ERI-MW-3R, ERI-MW-4, ERI-MW-50, and Trip Blank were qualified as UJ due to this calibration non-conformance. 11. Was the total number of laboratory blank samples prepared equal to at least 5% of Yes the total number of samples or analyzed as required by the method? Comments: The total number of laboratory blank samples prepared was equal to at least 5% of the total number of samples. 12. Were target analytes reported as not detected in the laboratory blanks? Yes Comments: Target analytes were reported as not detected in the laboratory blanks. 13. Was the total number of MS samples prepared equal to at least 5% of the total No number of samples or analyzed as required by the method? Comments: The total number of matrix spike samples prepared was not equal to at least 5% of the total number of samples. Matrix spikes were not prepared for the analyses in this data set. 14. For MS/MSDs prepared from project samples, were percent recoveries and RPDs N/A within data validation or laboratory quality control (QC) limits? Comments: MS/MSD samples were not prepared using project samples as the sample source. 15. Was the total number of LCSs analyzed equal to at least 5% of the total number of Yes samples or analyzed as required by the method? Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number of samples. 16. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or Yes laboratory QC limits? Comments: The LCS and LCSD percent recoveries and LCS/LCSD RPDs were within laboratory QC limits. 17. Were surrogate recoveries within laboratory QC limits? Nο Comments: Surrogate recoveries were within laboratory QC limits, with the following exception. Method 8260D: The reported recovery for the surrogate 4-bromofluorobenzene was outside the laboratory acceptance range of 80-120% at 131% for sample ERI-MW-3R. The associated target analytes were not detected in the sample, and qualification of the results was not required based on the evidence of potential high bias. 18. Were the number of trip blank, field blank, and/or equipment blank samples Yes collected equal to at least 10% of the total number of samples or as required by the

Comments: The number of trip, field, and equipment blanks collected was equal to at least 10% of the number of samples.

One trip blank sample, Trip Blank, was collected as part of this sample set.

project guidelines, QAPP, SAP, or permit?

VALIDATION CRITERIA CHECKLIST						
19. Were target analytes reported as not detected in the trip blank, field blank, and/or equipment blank samples?	Yes					
Comments: Target analytes were reported as not detected in the trip blank sample.						
20. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	Yes					
Comments: The number of field duplicates collected was equal to at least 10% of the number of samples. Sample ERI-MW-50 was collected as a field duplicate of sample ERI-MW-4.						
21. Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)?	Yes					
Comments: As indicated in the Field Duplicate Summary Table at the end of this report, field duplicate RPD values were within the data validation QC limits of 0-30% for water samples. Qualification of sample data was not required.						
22. For laboratory duplicates prepared from project samples, were RPDs within data validation or laboratory QC limits?	N/A					
Comments: Laboratory duplicate samples were not prepared for this sample set.						
23. Were the following data relationships realistic and acceptable?						
 Target analytes were reported by more than one method (e.g., 8260/8270, EPH/8270), and the results were in agreement? 	N/A					
Comments: Target analytes were not reported by more than one method.						
Both total and dissolved metals analyses were performed, and the total metals results were greater than or equal to the dissolved metals results?	N/A					
Comments: Dissolved metals were not analyzed for the samples in this data set.						

FIELD DUPLICATE SUMMARY

Client Sample ID: ERI-MW-4 Field Duplicate Sample ID: ERI-MW-50							
Analyte	Method	Laboratory Result	Duplicate Result	Relative Percent Difference (RPD)			
C10-C24	NWTPH-Dx	1.2 mg/L	1.1 mg/L	8.7%			
Motor Oil	NWTPH-Dx	0.59 mg/L	0.56 mg/L	5.2% +/-RL			

Field duplicate RPD control limits are not to exceed 30% for water as established by USEPA Region 1 - New England Environmental Data Review Supplement for Region 1 Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement2, September 2020.

+/-RL – Indicates that the detections in both of the samples were within two times the reporting limit. Qualification of data was not required.

DATA QUALIFICATION SUMMARY

Ab	breviation	Reason
	HDRRF	The %D between the initial calibration RRF and the opening CCV RRF was outside the acceptable limits.

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Dichlorodifluoromethane	8260D	ERI-MW-3R	580-108655-1	ND	1.0	μg/L	UJ	HDRRF
Dichlorodifluoromethane	8260D	ERI-MW-4	580-108655-2	ND	1.0	μg/L	UJ	HDRRF
Dichlorodifluoromethane	8260D	ERI-MW-50	580-108655-3	ND	1.0	μg/L	UJ	HDRRF
Dichlorodifluoromethane	8260D	Trip Blank	580-108655-4	ND	1.0	μg/L	UJ	HDRRF

2_202204_TierII_580-108655-1_DV_APP-C-2.docx