

Prepared for: Emerald Kalama Chemical, LLC Kalama, Washington Prepared by: RSEC Environmental & Engineering Consulting

2021-2022 Annual Remedial Action Report Emerald Kalama Chemical, LLC

August 2022

Prepared for: Emerald Kalama Chemical, LLC Kalama, Washington Prepared by: RSEC Environmental & Engineering Consulting

2021-2022 Remedial Action Annual Report Emerald Kalama Chemical, LLC

August 2022

State of Washington #52861

Contents

1.0	Introd	luction	1-1
	1.1	Background	1-1
	1.2	Summary of Remediation Activities and Contaminant Status	1-2
		1.2.1 North Impacted Area	1-2
		1.2.2 Central Impacted Area	
		1.2.3 West Impacted Area	
	1.3	Report Format	1-4
2.0	NIA W	/ell Monitoring & Interception Trench System	2-1
	2.1	Monitoring Program Description	2-1
	2.2	Visual Inspection of Integrity of NIA Trench	2-1
	2.3	Groundwater Levels and Flow	2-1
		2.3.1 NIA Upper Sand Aquifer Groundwater Levels	
		2.3.2 Upper Sand Aquifer Groundwater Flow	2-2
	2.4	Groundwater Quality	2-2
		2.4.1 Sampling and Analytical Procedures	2-2
		2.4.2 Upper Sand Aquifer Sampling Results	2-2
	2.5	NIA Trench & Sump System Monitoring	2-3
		2.5.1 Groundwater Extraction	
		2.5.2 Mass Removal	
		2.5.3 System Maintenance	
	2.6	Performance Evaluation	
	2.7	Recommended Changes to NIA Operation / Monitoring	2-5
3.0	WIA S	Shallow Wells & Interception Trench System	3-1
	3.1	Monitoring Program Description	3-1
	3.2	Groundwater Levels and Flow	3-1
	3.3	WIA Upper Sand Aquifer Groundwater Flow	3-1
	3.4	WIA Upper Sand Groundwater Quality	3-1
		3.4.1 Sampling and Analytical Procedures	3-1
		3.4.2 Upper Sand Aquifer Sampling Results	3-2
	3.5	WIA Shallow Trench Discharge Monitoring	3-2
	3.6	Recommended Changes to WIA Shallow Monitoring	3-2
4.0	WIA II	ntermediate Sand System	4-1
	4.1	Monitoring Program Description	4-1

4.2	Groundwater and River Elevations and Groundwater Flow	4-1
4.3	Groundwater Quality	4-1
	4.3.1 Sampling and Analytical Procedures	
	4.3.2 Intermediate Sand Aquifer Sampling Results	4-2
4.4	ISRW System Description and Performance	4-3
	4.4.1 ISRW System Arrangement and Operation	4-3
	4.4.2 ISRW Mass Removal	4-3
	4.4.3 ISRW System Maintenance	4-4
	4.4.4 ISRW Future Operations Plan	4-4
4.5	Recommended Changes to System Operation	4-5
Refer	ences	6

List of Appendices

5.0

Appendix A Ground Water Level Tables

Appendix B Laboratory Reports: Oct.-2021 and April-2022 (transmitted via e-file)

Appendix C 1998 ICM Annual Report, Section 4 Potentiometric Maps

List of Tables

- Table 2-1 NIA Groundwater Monitoring Program
- Table 2-2 NIA Groundwater Analytical Data
- Table 2-3 NIA Interception Trench Sump Pump Operation Data
- Table 2-4 NIA Mass Removal Discharge Data
- Table 3-1 WIA Upper Sand Groundwater Monitoring Program
- Table 3-2 WIA Upper Sand Groundwater Analytical Data
- Table 4-1
 Intermediate Sand Aquifer Monitoring Program
- Table 4-2 Intermediate Sand Aquifer Analytical Data
- Table 4-3 ISRW Groundwater Extraction Pump Operation Data
- Table 4-4 ISRW Mass Removal Discharge Data
- Table 4-5 ISRW Annual Mass Removals 1997 2022

List of Figures

- Figure 1-1 Site Layout Kalama Facility
- Figure 2-1 Upper Sand Aquifer Potentiometric Surface Map 10/4/2021
- Figure 2-2 Upper Sand Aquifer Potentiometric Surface Map 4/19&21/2022
- Figure 2-3 Upper Sand Benzene Concentrations (µg/L)
- Figure 2-4 Upper Sand Diphenyl Oxide Concentrations (µg/L)
- Figure 4-1 WIA Intermediate Sand Aquifer Potentiometric Surface Map 7/16/2021
- Figure 4-2 WIA Intermediate Sand Aquifer Potentiometric Surface Map 10/1/2021
- Figure 4-3 WIA Intermediate Sand Aquifer Potentiometric Surface Map 1/18/2022
- Figure 4-4 WIA Intermediate Sand Aquifer Potentiometric Surface Map 4/19/2022
- Figure 4-5 WIA Intermediate Sand Aquifer Benzene Concentrations (µg/L)
- Figure 4-6 WIA Intermediate Sand Aquifer Toluene Concentrations (µg/L)
- Figure 4-7 ISRW X-Section

August 2022

1.0 Introduction

This document presents the annual monitoring report for ongoing remediation activities pursuant to the 2008 Consent Decree (CD) between the Washington State Department of Ecology (Ecology), and BF Goodrich, Inc. and Emerald Kalama Chemical, LLC (Emerald), at the Emerald facility in Kalama, Washington. The CD requires operation of the remedial actions (RA) presented in the *Cleanup Action Plan* (CAP) (Exhibit B of the CD; RETEC 2004a). The RAs presented in the CAP constitute the final cleanup actions for the site. This report describes maintenance, operation, and compliance monitoring of the RAs from May 2021 through April 2022.

The remediation systems design, operations, and compliance monitoring are described in the following documents:

- Revised Design Report North Impacted Area Interception Trench (EMCON 1994)
- West Impacted Area Interim Corrective Measure Phase 3 Final Design Report (EMCON 1995)
- Shallow Interception Trench System Operation and Maintenance Guidelines (RETEC 1997)
- Feasibility Study (RETEC 2003)
- Corrective Action Plan (CAP; RETEC 2004a)
- Compliance Monitoring Plan (CMP; RETEC 2007)
- Engineering Design Report (EDR; ENSR/AECOM 2008)
- Operations and Maintenance Plan (O&M Plan; AECOM 2009).

Cleanup levels (CUL's) referred to in this document are those presented in the CAP and approved by Ecology on October 11, 2004 (RETEC 2004a). Additional relevant discussion of the location and behavior of contaminants in the intermediate sand at the site are also available in the RCRA WIA ICM Dispute Resolution September 23 – October 4,1996 Documents, ICM Scope of Work WIA (RETEC, November 1996), and ICM Annual Report (RETEC, April 1998) – collectively referred to herein as "ICM DR Documents".

1.1 Background

Historic spills at the Emerald facility resulted in impacts to the subsurface. These releases are described in the *Remedial Investigation Report, Rev. 2* (ThermoRetec 2000). As detailed in the Remedial Investigation Report, the impacts are contained within the upper sand unit at the remediation areas identified as the NIA and WIA, and the intermediate sand layer that extends under the WIA. The remediation monitoring and systems are therefore located in the North Impacted Area (NIA, shallow sand), West Impacted Area (WIA, shallow sand), and the intermediate sand unit beneath the WIA shallow sand. The layout of the Emerald facility is shown on Figure 1-1.

1.2 Summary of Remediation Activities and Contaminant Status

This section provides a summary description of remediation activities at the facility, and current contaminant(s) status in each area.

1.2.1 North Impacted Area

The NIA remediation consists of an interception trench system (Figure 1-1) that was constructed between October and November 1995 and continues to operate pursuant to the CD. The system objectives are to capture affected groundwater in the upper sand aquifer.

The upper sand aquifer is the uppermost hydrostratigraphic unit at the facility. In the NIA, the upper sand aquifer consists of approximately 9 to 17 feet of hydraulically placed sand fill overlying 3 to 7 feet of interbedded sands and silts. The interception trench is approximately 1,500 feet long and is constructed to variable depths such that it extends to the top of the underlying upper silt (collects groundwater from the shallow formation above the silt). The trench includes two collection sumps: an east sump collecting from approximately 950 feet of the trench, and a west sump collecting from the remaining approximately 550 feet of trench. Water from the sumps is pumped to the Emerald Low/High COD ModuTanks and then to the Emerald wastewater treatment system. The base and downgradient faces of the trench are lined with an impermeable geosynthetic liner. The liner contains groundwater within the trench and reduces the inflow of standing water that may be seasonally present in a wetland downgradient of the trench.

In the NIA east sump, diphenyl oxide (DPO) concentrations continue to be detected but have been below the approved cleanup level (CUL) and on generally downward trend since 2010. Benzene was uncharacteristically (compared to past sample data) detected above the CUL in the 20/21 sample period, but undetected at less than 0.50 ug/L including duplicate samples in this 21/22 sample period. Toluene continued to be undetected at less than 1.00 ug/L in the east sump samples. Toluene has never exceeded the CUL in the east Sump and has not been consistently above the analytical detection limit since 2008.

The NIA west sump DPO concentrations were below the CUL in both the October 2021 and April 2022 sample events. DPO concentrations in the west Sump have historically been above the CUL although on a generally decreasing trend. West sump benzene concentrations continued a decreasing trend with October 2021 continuing below the CUL as also indicated in October 2019 and 2020, and April data indicating just above the CUL at 2.7 ug/L. Toluene in the west sump continued at low detection level to non-detect concentrations far below the CUL.

The combined east and west sumps of the NIA pump an average of 20- to 30-million gallons of water through the EKC water treatment plant each year. The sumps pumped 29-million gallons of water in 2021-22 resulting in the removal of approximately 0.2 pounds of benzene, no toluene (not detected in 21/22 samples), and 39 pounds of DPO.

1.2.2 Central Impacted Area

The Central Impacted Area (CIA, Figure 1-1) contains portions of the shallow sand aquifer upgradient of the WIA and NIA. Remediation efforts in the CIA have targeted mass reduction of toluene via use of a soil vapor extraction system, and more recently, mass reduction of DPO via use of Waterloo Emitters[™]; a device intended to provide controlled release of oxygen to groundwater to enhance biodegradation. The soil vapor extraction system was successful in achieving the intended toluene removal goal and was closed with the approval of Ecology in December 2013. The CIA Waterloo Emitter[™] system consisted of 55 emitter wells connected to a pressurized oxygen supply and began operating in February 2009. The effectiveness of the oxygen emitter system was evaluated during the

2015-16 operation year, and it was determined that the system was not providing further benefit toward mass reduction of DPO. Ecology approved Emerald's request to cease operations and close the system in May 2017.

The monitoring well data within the CIA are reported in the NIA and WIA data tables and maps according to the shallow upper sand aquifer groundwater flow direction at the wells (northerly [NIA] and westerly [WIA]).

1.2.3 West Impacted Area

The WIA remediation has consisted of two components (Figure 1-1):

- Two shallow interception trenches (identified as north and south) parallel to the river in the upper sand aquifer. This portion of the WIA remediation has reached CUL and was shut down with Ecology approval in November 2018 as further described in Section 1.2.3.1.
- A groundwater capture system comprised of ten recovery wells with submersible pumps in the intermediate sand aquifer and aligned parallel to the river (ISRW system).

Summaries of WIA systems are provided in the following subsections.

1.2.3.1 WIA Shallow Interception Trench

The WIA shallow interception trench system was constructed as an ICM during November 1997. The system is comprised of a south and a north trench each with sump and pump. The system objective was to collect contaminated groundwater (originally focused on toluene) from the upper sand aquifer, preventing discharge to the Columbia River. Toluene has been below the CUL since 2008. With the absence of toluene, DPO was the only constituent that continued to be detected but has been below the CUL since 2013 in the North sump and 2011 in the South sump. With the below CUL concentrations and resultant lack of constituent mass, EKC requested Ecology approval to cease operation of the trenches. Ecology approved EKC's request in the November 14, 2018 Recommended Changes to System Operations Letter. Per EKC's proposal and Ecology's approval the WIA shallow trench system remains in place and operable but is no longer operated unless future groundwater data indicates reason to restart the system.

1.2.3.2 WIA Intermediate Sand Recovery Wells (ISRW)

The ISRW system was installed as an ICM during April 1997 and upgraded pursuant to the CAP during February 2009. The system objective is to minimize discharge of affected intermediate sand aquifer groundwater to the Columbia River and reduce the mass of constituents in the aquifer. This is accomplished by maintaining an inward gradient to the recovery wells from upgradient and somewhat from the river. Submersible pumps in the recovery wells transfer water to the Emerald low COD ModuTank (Fig 1-1) which discharges to the wastewater treatment plant.

The ISRW system includes 10 recovery wells (ISRW-1 through ISRW-10). Seven of the recovery wells (ISRW-1 through ISRW-7) were installed during February and March 1997. Recovery wells ISRW-1, ISRW-2b, ISRW-3, and ISRW-4 began operation during April 1997; these four wells were installed based on aquifer modeling to intercept the targeted intermediate sand aquifer flow, and subsequent operation data confirmed the modeled design basis (ICM DR Documents). At the request of Ecology, pumping of recovery wells ISRW-5, ISRW-6, and ISRW-7 was added during November and December 1997; this was done for added groundwater capture protection and operational backup redundancy of the system. Recovery wells ISRW-8, ISRW-9, and ISRW-10 were then added during February 2009 pursuant to the CAP and began operation during March 2009. These additional wells were requested by Ecology to ensure containment capability and redundancy even further.

An important ISRW operations understanding is that the 10-well system provides significant capture zone overlap and dewatering redundancy. As a result, the capture alignment is maintained even in the event of some ISRW's being temporarily off-line; for example, ISRW-1, -2, -3, and -4 captured the entire targeted alignment on their own when first constructed. EKC continues to maintain the system in a manner to keep all wells operational and maximize benzene and toluene mass removal.

Although they have decreased over time, benzene and toluene concentrations remain above their CUL in most of the ISRW's. The exception being ISRW-7 which has been consistently below the benzene and toluene CUL since 2018. As discussed in later sections of this report, the data show some wells collecting higher constituent concentrations whereas other wells are likely on the fringes of remaining constituents. Emerald continues to utilize the collected data to focus ISRW operations on constituent mass removal and minimizing discharge to the river. The ISRW wells pumped one million gallons of water to the EKC water treatment plant in 2021 – 2022 resulting in the removal of 217 pounds of toluene and 0.4 pounds of benzene.

1.3 Report Format

The NIA area groundwater monitoring and interception trench performance is described in Section 2. The WIA shallow groundwater monitoring is described in Section 3. The WIA intermediate sand groundwater monitoring and ISRW system performance is described in Section 4. References are provided in Section 5.

Note that NIA, CIA, and WIA shallow groundwater potentiometric maps are reported on combined figures 2-1 and 2-2 (potentiometric) and 2-3 and 2-4 (constituent concentrations) to provide a site-wide perspective of shallow groundwater

Supporting documentation includes Appendix A – potentiometric surface water level data tables; Appendix B - laboratory analytical reports (transmitted via e-file with e-copy of this report), and; Appendix C – 1998 ICM Annual Report Potentiometric Maps. A PDF of this entire document has also been transmitted via email e-file.

2.0 NIA Well Monitoring & Interception Trench System

2.1 Monitoring Program Description

The monitoring plan for the upper sand aquifer NIA interception trench consists of three primary components:

- 1. Collection of data to evaluate the ongoing groundwater quality in the NIA.
- 2. Collection of groundwater elevation data to monitor ongoing flow direction and gradient in the NIA including the barrier trench and sumps.
- 3. Visual inspection of ground surface integrity to assure no erosion or other damage of the length of interception trench.

The NIA monitoring program scope is described in the following sections and summarized in Table 2-1. All NIA monitoring locations are shown on Figure 2-1.

2.2 Visual Inspection of Integrity of NIA Trench

The entire 1,500-foot length of the NIA trench and barrier wall was inspected for ground surface indications of damage, leaks, or erosion during the April 2022 groundwater sampling event. This inspection involved walking the top of the soil berm above the barrier wall / trench alignment. No indications of damage, leaks or erosion were observed. The entire length is heavily vegetated, firm, and well established. As in the past, the inspection included removing areas of downed trees and brush presenting obstructions to trench operation and monitoring locations.

2.3 Groundwater Levels and Flow

NIA groundwater levels were measured semi-annually at the following locations:

- Shallow (upper) sand monitor wells and piezometers (KC-8, KC-9, KC-21, KC-23, PZ-102, PDW-117, MW-210, MW-230, MW-231, MW-232, MW-245, and MW-256) located upgradient of the trench. These locations include NIA and CIA areas from which groundwater is generally flowing northerly towards the NIA barrier and recovery trench.
- Three piezometers (NTP-1, NTP-2, NTP-3) installed along the length of the trench that monitor groundwater elevations in the trench.
- Wetland staff gauge.

Tables B NIA and CIA (Appendix A) summarize the groundwater and wetland elevation data. The data were used to construct shallow sand potentiometric surface maps (Figures 2-1 and 2-2) for October of 2021 and April of 2022.

2.3.1 NIA Upper Sand Aquifer Groundwater Levels

As expected, lower groundwater elevations were observed during the dry season October 2021, and higher elevations were observed during the wet season April 2022. Similarly, the wetland was dry in October and contained water in April. The winter and spring months bring precipitation and areal floodplain runoff to the wetland along with higher groundwater elevations. This is reflected by the wetland staff gauge April water level of 2.7-feet. As shown on Figures 2-1 and 2-2, in both October and April, water elevations in the trench were stable and below up-gradient groundwater elevations indicating the ongoing normal operation of the trench.

2.3.2 Upper Sand Aquifer Groundwater Flow

NIA aquifer groundwater flow is towards the north (Figures 2-1 and 2-2). This flow pattern was observed under both low and high groundwater table conditions (October and April respectively) and is consistent with historical monitoring results. The groundwater gradient is shallow in the CIA region of northerly flow and steepens as it approaches the containment recovery trench. The October gradient was 0.005 ft/ft and April was 0.006 ft/ft.

2.4 Groundwater Quality

The NIA groundwater quality monitoring network is comprised of six wells (MW-245, MW-256, MW-230, MW-231, PDW-117, and KC-9), and the east and west NIA trench sumps.

Monitoring results are described below and presented in Table 2-2. Areal distributions for benzene and DPO are provided on Figures 2-3 and 2-4 respectively and include an overlay of the potentiometric contours. Laboratory data reports are provided in Appendix B (e-file).

2.4.1 Sampling and Analytical Procedures

All sampling and laboratory analyses were completed in accordance with the *Sampling and Analysis Plan* (SAP; RETEC 2004c). The October 2021 groundwater samples were submitted to Specialty Laboratory (Portland, Oregon). The April 2022 samples were submitted to ALS Laboratories (Kelso, WA). It is anticipated that future samples will continue to be submitted to ALS Laboratories based on the availability of specific analyte standards. Samples were analyzed using one or both of the following methods per the sample analytical requirement (Table 2-1):

- Volatile organic compounds (VOCs) [benzene and toluene] using EPA Method 8260C.
- Semi-volatile organic compounds (SVOCs) [diphenyl oxide (DPO), and biphenyl (east and west sumps only)] using EPA Method 8270D.

2.4.2 Upper Sand Aquifer Sampling Results

The analytical results are detailed on Table 2-2. Benzene and DPO are the only two constituents detected at concentrations that exceed the CULs; benzene at three locations and DPO at two. Figures 2-3 (benzene) and 2-4 (DPO) provide areal map views of concentration data for these constituents.

VOCs

The 2021 – 2022 VOC (benzene and toluene) results for the NIA agree with the concentrations and trends of the existing historical data. The 20 / 21 Annual Report indicated benzene above the CUL in the east sump which had not been seen since 2012. As reported therein and shown on Table 2-2, additional quarterly samples were collected and indicated a steady decrease in the east sump benzene concentration. Samples for this 21 / 22 monitoring period did not indicate benzene in the east sump at detection levels of 0.5 and 0.3 ug/L. The 21/22 non-detect data further supports the 20/21 report statement that the east sump benzene data was a localized event indicative of the NIA trench operating as intended.

Monitor well KC-9 (upgradient of the NIA west sump) indicated a low exceedance of the benzene CUL in October 2021 (2.96 ug/L) and below the CUL in April 2022 (1.0 ug/L). Monitor location PDW-117 upgradient of KC-9 and the west sump showed continued lower benzene concentrations with a detection level (0.680 ug/L) result in October and below detection (<0.50 ug/L) in April. As noted, these data agree with and continue to indicate an overall downward trend of benzene in the downgradient / trench area of the NIA.

Further upgradient of the NIA trench in the northerly groundwater flow portion of the CIA area, well MW-230 has shown CUL level benzene concentrations and MW-231 has intermittent detections of benzene and toluene although consistent CUL exceedances at -231 are prior to 2015. As shown on Table 2-2, these concentrations have also steadily decreased over time with recent results at both wells varying from near the CUL (1.2 ug/L) to below detection level (<0.300 ug/L). As detailed in the 2019 – 2020 Annual Report, an outlier result of elevated benzene and toluene concentrations was indicated at MW-231 in April 2020. Additional sampling including a blind duplicate in May 2020 (Table 2-2) indicated below CUL / below detection limit results as have the three sample events since.

SVOCs

The 2021 – 2022 NIA SVOC monitoring results also agree with and continue the trend of the historical data. Diphenyl Oxide (DPO) is the only SVOC with historical and ongoing CUL exceedances in the NIA. As shown on Table 2-2, the ongoing detection concentrations of DPO are trending downward with intermittent up / down spikes. DPO CUL (410 ug/L) exceedances this year are indicated at two wells: KC-9 (2,630 and 1,400 ug/L) and PDW-117 (1,030 and 1,300 ug/L). MW-231 which has fluctuated above / below the CUL, and the west sump were both below the DPO CUL for the 21 / 22 sample set. The east Sump and MW's -230, -232, -245, and -256, have been below the DPO CUL generally since October 2011 or earlier (the exception being MW-230 since April 2017).

Biphenyl has been detected in portions of the NIA but has never exceeded the CUL (230 ug/L) in the sumps. After the 2017 – 18 sample year Ecology approved EKC's proposal to cease biphenyl sampling in the NIA wells but requested biphenyl sampling be resumed in the sumps. Beginning with the April 2019 sampling, biphenyl analysis has been included in both the East and West sumps. The east sump biphenyl results continued non-detect for 21 / 22, and the west were non-detect in October and just above detection at 5.4 ug/L in April 2022.

2.5 NIA Trench & Sump System Monitoring

The NIA interception trench system operated continuously throughout the monitoring period. Monitoring results are described below and summarized in Tables 2-3 and 2-4.

2.5.1 Groundwater Extraction

Table 2-3 summarizes the east and west sump pump operation data, the volume of water removed from the trench, and the average pumping rates during the 2021 - 2022 and past performance periods. Approximately 29 million gallons of water were pumped from the NIA interception trench during 21/22. The 29-million-gallon total volume is somewhat above average of typical annual volumes (27.4 million gallons is annual average since 1999). The NIA trench system water volumes are of course heavily dependent on annual precipitation totals and the flows vary with wetter / drier seasons. As shown on Table 2-3, the lowest average GPM and volumes were July thru October, with the highest being November thru April.

2.5.2 Mass Removal

Table 2-4 provides data for the east and west sump discharges and the approximate mass of contaminants removed during the 21/22 performance period. The contaminant mass calculations were determined by multiplying semi-annual sump sample concentration data by the cumulative pump discharge volume for the corresponding 6-month period. Approximately 0.2-pounds of benzene and 39 pounds of DPO were removed during this reporting period (toluene was not detected).

As discussed in Section 2.4.2, the concentrations of benzene, toluene and DPO in the NIA have decreased over the system operating time frame. The annual quantities of benzene, toluene and DPO

removed from the 2007-2008 monitoring period to present are summarized in the table below. Historical soil vapor extraction system operations also played a role in the NIA VOC reductions as shown by the significant reductions in benzene and toluene mass removals (and analytical sample concentrations) in the earlier years of NIA operations.

Performance	Benzene removed	Toluene removed	DPO removed
Period	(lbs)	(lbs)	(Ibs)
2021-22	0.2	0	39
2020-21	4.2	0.3	103.3
2019-20	0.5	0.5	89.9
2018-19	0.9	0.5	82.7
2017-18	1.5	0.7	97.8
2016-17	4.5	2.9	58.9
2015-16	3.5	2.4	35.1
2014-15	3.2	3.4	91.3
2013-14	5.4	7.5	90.1
2012-13	5.1	7.8	103.5
2011-12	6.4	24.0	98.0
2010-11	7.6	16.6	105
2009-10	6.0	38.1	103
2008-09	6.6	46.1	127
2007-08	26.4	254	207
Total	82	404.8	1,432

2.5.3 System Maintenance

EKC has maintained system flows via regular maintenance including pipe cleaning using compressed air agitation and line-pigging. Other significant maintenance efforts conducted from time to time as needed include vacuum removal of sediments from the sump bottoms, flushing the NIA trench collection pipe, replacing old PVC piping with stainless steel piping, and replacing/repairing pumps. In addition, the sump areas and outlying NIA wells and piezometers are maintained with tree and brush clearing for access along with paint and label identification upkeep.

2.6 **Performance Evaluation**

Overall, the NIA data set dating back to October 2007 is indicative of the groundwater constituent plume being in a state of ongoing intrinsic biodegradation, decreasing constituent concentrations, and continued recovery trench operation to contain any residuals that may eventually migrate to the trench. The following are conclusions about the performance and effectiveness of the NIA interception trench system, based on monitoring data collected during the 21/22 performance period:

• The NIA trench system removed 0.2-pounds of benzene and 39-pounds of DPO in the 21/22 operational year (toluene was non-detect). As expected with the continued decrease of

constituent concentrations, this is the lowest annual mass removal reported for the system despite above average water removal volume of 29-million gallons.

- The trench system continues to fulfill its purpose of hydraulic control of the NIA, preventing discharge of groundwater from the upper sand aquifer to the wetland. This is illustrated on potentiometric figures 2-1 and 2-2.
- The overall data set from 2007 to present indicates a continued decreasing trend in the concentration of detected contaminants.

2.7 Recommended Changes to NIA Operation / Monitoring

The Table 2-2 NIA data set provides 13 to 15 years of semi-annual groundwater sampling. The NIA data set presented in previous sections of this report continue to indicate stable constituent locations along with a downward trend of concentrations. No differentiating trend or behavior has been observed over this time between the semi-annual April and October sampling times. There are events of higher or lower concentrations but the overall trend and groundwater behavior at each well has been consistent. Based on the wealth and consistency of the data, Emerald proposes modifying the sampling schedule to an annual basis as follows:

- Cease groundwater sampling but continue elevation gauging at well MW-230: Well MW-230 data (Table 2-2) has indicated decreasing benzene concentrations marginally above the CUL (1.2 ug/L) along with occasional below CUL or non-detect results. Toluene has never shown an exceedance at MW-230 over the entire time of sampling since 2009. DPO while present, has not shown a CUL exceedance since 2016. Well MW-230 is located in the interior area of the CIA which has been shown to have a shallow to flat groundwater gradient with little potential for migration of the low concentration constituents (June 29, 2016, Evaluation Report of Oxygen Emitter Effectiveness [RSEC letter to Ecology]). As a result, there is not a continued benefit to groundwater sampling at MW-230. Groundwater elevation gauging at MW-230 would continue at the same time as monitoring of the other NIA wells.
- Cease groundwater sampling and elevation gauging at well MW-231: Well MW-231 data (Table 2-2) has similar characteristics to MW-230. Benzene and toluene concentrations have been below the CUL since 2014 (with one exception each) and what is believed to be an anomalous April 2020 event as discussed in Section 2.4.2 and shown on Table 2-2. The MW-231 DPO data is intermittently above/below the CUL and remains within a comparable range. Based on the steady-state concentrations and lack of decision-making / beneficial use for adding to this data, along with the well location within active rail tracks, Emerald proposes to cease sampling and gauging at this well.
- Modify sampling and gauging at all NIA wells to annual (April of each year): The NIA semi-annual sampling has provided a robust data set of seasonally high (April) and low (October) groundwater conditions since the 2007 / 2009 timeframe (Table 2-2). As noted, the data indicates stable constituent locations with overall downward concentration trends. Continued semi-annual sampling is not adding further beneficial data to this overall analysis. Emerald proposes that the NIA sampling and gauging schedule be modified to an annual basis once a year in April when groundwater elevations are higher providing for reliable sampling of the saturated zone. In the event future data indicates a need for a return to semi-annual sampling the schedule can be modified back to the semi-annual basis (we are not proposing to abandon these wells at this time).

3.0 WIA Shallow Wells & Interception Trench System

3.1 Monitoring Program Description

The monitoring plan for the shallow WIA wells consists of two primary components:

1) collection of water elevation data to define groundwater flow direction and gradient, and

2) collection of water quality data to evaluate the occurrence and movement, if any, of dissolved residual constituents of interest.

The WIA shallow well monitoring is described in the following sections and summarized in Table 3-1. All monitoring locations are shown on Figures 2-1 and 2-2.

3.2 Groundwater Levels and Flow

Water levels were measured semi-annually at the following upper sand (shallow) locations:

• KC-24R, PZ-104, PZ-107, USRW-2, KC-13, MW-238, MW-255, PZ-110, and the North and South trench sumps.

Table B-4 (Appendix A) summarizes semiannual groundwater elevation data. The data were used to construct the shallow potentiometric surface maps for October 2021 and April 2022 (Figures 2-1 and 2-2 respectively).

3.3 WIA Upper Sand Aquifer Groundwater Flow

In the WIA, groundwater flow within the upper sand aquifer is westerly from a nearly flat gradient in the PZ-104 / -107 / MW-230 area (Figures 2-1 and 2-2). This flow pattern was observed during both high and low water table conditions (April and October) and is consistent with historical monitoring results. The hydraulic gradient across the WIA upper sand is consistent at 0.007 ft/ft in both October and April.

The PZ-104 / -107 area and further east / upgradient is influenced by the shallow gradient in this area of the site (Figures 2-1 and 2-2) with little potentiometric gradient over much of this area. The June 29, 2016, Evaluation Report of Oxygen Emitter Effectiveness (RSEC letter to Ecology) provides detail of this lack of constituent migration, shallow groundwater gradient, and even indication of occasional reversing gradient.

3.4 WIA Upper Sand Groundwater Quality

Groundwater samples were collected from WIA upper sand wells USRW-2, PZ-104, and PZ-107. Well MW-230 is reported in the NIA Section 2.0 of this report (Table 2-2).

3.4.1 Sampling and Analytical Procedures

All sampling and laboratory analyses were completed in accordance with the SAP and analyte revisions approved by Ecology. The October 2021 groundwater samples were submitted to Specialty Laboratory (Portland, Oregon). The April 2022 samples were submitted to ALS Laboratories (Kelso, WA). It is anticipated future samples will continue to be submitted to ALS Laboratories based on

availability of specific analyte standards. Samples were analyzed using one or both of the following methods per the sample analytical requirement (Table 3-1):

- Volatile organic compounds (VOCs) [benzene and toluene] using EPA Method 8260C.
- Semi-volatile organic compounds (SVOCs) [DPO, biphenyl, and bis(2-ethylhexyl) phthalate] using EPA Method 8270D.

Laboratory data are included in Appendix B (e-file).

3.4.2 Upper Sand Aquifer Sampling Results

The WIA upper sand data are summarized in Table 3-2 and shown on Figures 2-3 (benzene) and 2-4 (DPO).

DPO concentrations in the area of the WIA shallow trench (USRW-2) agree with past data indicating continued downward trends below the 410 ug/L CUL with the 21/22 data indicating non-detect below 0.48 ug/L). USRW-2 DPO concentrations have been below the CUL since 2013 with one exception in 2015. The data set continues to support the approved November 2018 shutdown of the WIA Shallow Trench System.

Over 300-feet upgradient of the WIA trenches, in the nearly flat westerly flow portion of the CIA area, wells PZ-104 and PZ-107 continue to show detections of DPO and biphenyl. The concentration of DPO at PZ-104 has been relatively consistent over time and indicated 4,300 ug/L in October 2021 and 3,300 ug/L in April 2022. PZ-107 has shown more of a decreasing DPO trend below CUL results for October 2021 (21.8 ug/L) and April 2022 (64 ug/L). Biphenyl concentrations have been almost entirely below the 230 ug/L CUL at PZ-104 since 2009 and have trended downward at PZ-107 to below the CUL since 2019 excepting October 2020 (261 ug/L) with below CUL results in October 2021 (60.9 ug/L) and April 2022 (17 ug/L). It is noted that the Specialty Analytical Laboratory (Portland, Oregon) report for October 2021 had inconsistencies for PZ-104 DPO and biphenyl including the 3,430 ug/L blind duplicate result compared to the 81.5 ug/L original sample.

Benzene has generally been near the CUL at PZ-104 (0.940 ug/L and 1.7 ug/L October 2021 and April 2022 respectively) but not detected since 2018 at PZ-107 (not detected at 0.300 and 0.50 October and April).

3.5 WIA Shallow Trench Discharge Monitoring

The WIA shallow interception trench system was recommended to be shut down in the 2017-18 Annual Report and Ecology approved this recommendation in the November 14, 2018, Recommended Changes letter. Pumping of the shallow trench was ceased on November 28, 2018, and in accordance with Ecology's approval the system remains in place and operable. The north and south trench pumps are briefly operated approximately quarterly to assure continued operational status. The system will remain in place for possible future use if indicated by ongoing shallow WIA aquifer monitoring.

3.6 Recommended Changes to WIA Shallow Monitoring

Modify sampling and gauging at WIA shallow wells to annual (April of each year): Similar to the NIA data set, the Table 3-2 shallow WIA data set provides 13 to 15 years of semi-annual groundwater data. The WIA data set indicates constituent concentrations that have dropped to below their CUL with PZ-107 as the remaining location with consistent above CUL concentrations for DPO and at CUL concentrations for benzene. As with the NIA, no differentiating trend or behavior has been observed over this time between the semi-annual April and October sampling times. There are

events of higher or lower concentrations but the overall trend and groundwater behavior at each well has been consistent. Based on the amount and consistency of the data, there is not a clear benefit to continuing the semi-annual sampling. Emerald proposes that the WIA upper sand sampling and gauging schedule be modified to an annual basis once a year in April. In the event future data indicates a need for a return to semi-annual sampling the schedule can be modified back to the semi-annual basis.

4.0 WIA Intermediate Sand System

4.1 Monitoring Program Description

The monitoring plan for the WIA intermediate sand recovery well (ISRW) system consists of the following components: 1) weekly monitoring of recovery system operation and water volume production with appropriate operation adjustments; 2) semi-annual sampling of recovery wells discharge water quality; and 3) semi-annual water quality sampling and water elevation gauging of monitoring wells. WIA intermediate sand monitoring is described in the following sections and is summarized in Table 4-1. The behavior of the subject VOCs (benzene and toluene) in relation to the intermediate sand aquifer continue to be evaluated and compared with hypotheses used to design the system as described in the ICM DR Documents (RETEC 1996, RETEC 1998).

In addition to the required semi-annual (April and October) monitoring program, in 2018 EKC elected to collect water samples for benzene and toluene analysis from the 10 ISRW wells in July and January. This resulted in quarterly ISRW water quality data, and semi-annual monitor well sampling and water elevation data. The additional ISRW data are to assist in focusing benzene and toluene mass removal efforts at the ISRW wells as described further in the following sections.

4.2 Groundwater and River Elevations and Groundwater Flow

Intermediate sand aquifer groundwater elevations were measured semi-annually in October 2021 and April 2022 per Ecology approvals to date. In addition, ISRW groundwater elevation data is collected during the EKC elective additional quarterly sampling events. Groundwater elevations are recorded at the following locations:

- Recovery wells ISRW-1 through ISRW-10
- Monitoring wells KC-6, KC-14, MW-239, MW-243, and MW-250
- Piezometers PZ-117 and PZ-118.

Table B-3 (Appendix A) summarizes the quarterly groundwater elevation data. The data was used to construct WIA potentiometric surface maps quarterly for the intermediate sand zone (Figures 4-1 through 4-4). As shown on Figures 4-1 through 4-4, the ISRW well alignment maintains an inward groundwater depression capturing intermediate sand groundwater and some portion of river water. The ISRW water levels are controlled by the recovery pump operations and capture the intermediate sand groundwater along the alignment. Further discussion of the intermediate sand and ISRW system operation and performance is provided in Section 4.4.

4.3 Groundwater Quality

Groundwater samples were collected semi-annually (October and April) from 10 recovery wells (ISRW-1 through ISRW-10) and four monitoring wells: KC-14, MW-239, MW-243, and MW-250. Laboratory data reports are included in Appendix B (e-file). As noted earlier, EKC also elected to continue to collect two additional rounds (January and July) of groundwater samples for benzene and toluene analysis from just the 10 ISRW wells resulting in quarterly data for the ISRW wells.

4.3.1 Sampling and Analytical Procedures

All semi-annual monitoring program sampling and laboratory analyses were completed in accordance with the SAP (RETEC 2004c), and Ecology approved revisions reported in past Annual Reports. During 2021 groundwater samples were submitted to Specialty Analytical Laboratory

(Portland, OR) for VOCs [benzene and toluene] using EPA Method 8260C at the four monitoring wells and EPA Method 8021 for the 10 recovery wells. In the third quarter of 2021 (July) select duplicates were also submitted to ALS Laboratories (Kelso, WA) with all analyses being conducted using EPA Method 8260C (as noted on Table 4-2). Beginning with the January 2022 sampling, all samples are submitted to ALS Laboratories utilizing Method 8260C.

4.3.2 Intermediate Sand Aquifer Sampling Results

The monitor well and ISRW groundwater quality analytical results are summarized in Table 4-2, and Figures 4-5 and 4-6. In summary, the 2021-22 data set compares similarly with the recent past few years at the respective wells and the overall trends for the ISRW area. Several specific notes include:

- Well ISRW-7 remained off throughout this 21/22 reporting period. ISRW-7 has been below CUL's for benzene since 2018 (excepting two quarters in 2020) and toluene since 2017. ISRW-7 is located at the south end of the ISRW alignment and appears to be indicative of the contaminant plume reducing in size.
- Well ISRW-4 is the next most southerly well (compared to ISRW-7). ISRW-4 has indicated reduced concentrations of benzene approaching the CUL since 2020 and intermittently above / below CUL toluene results for many years. Pumping at ISRW-4 continues while this well appears to represent the southerly edge of remaining benzene and toluene plume.
- The remaining ISRW wells continue to show what has become characteristic behavior with some wells consistently having the highest benzene and toluene concentrations (ISRW-1, -2, -10, -5, -3, and -8) while ISRW-6 and -9 continue to have elevated results but also occasional lower concentrations or even below CUL.
- In general, ISRW recovery concentrations tend to be higher when the river elevation is higher (above 6-feet for example) and groundwater elevations are higher (January, April, and July depending on the water year). This of course results in higher water volume recovery, more of the impacted intermediate sand zone being saturated, and therefore more transport of constituents to the pumping wells.

During the 21/22 monitoring period, three of the four intermediate sand monitoring network wells (MW-243, KC-14, MW-250) indicate non-detect results for benzene and toluene with one exception: KC-14 indicated 2.8 ug/L benzene and 15 ug/L toluene. These results agree with the historical data at these wells. Monitor well MW-239 results were above CUL for benzene and somewhat below and then above CUL for toluene with concentrations that compare with historical data at this well. This data is interesting when compared with adjacent ISRW data. For example, KC-14 which indicates non-detect results is bracketed by ISRW's -3 and -8 which both indicate some of the higher ISRW removal concentrations in the network. MW-239 indicates consistently above CUL data while ISRW-4 adjacent to the south is often lower concentrations or below CUL, whereas ISRW-10 adjacent to the north indicates concentrations similar to or higher than MW-239. River flow direction likely influences the ISRW wells, particularly those closer to the river including ISRW-4 and -10 and may therefore play a role in the higher ISRW-10 concentrations compared to ISRW-4. In addition, MW-239 concentrations were comparatively lower in 21/22 compared to past years; this may be early indication of the southern plume edge continuing to move north (plume shrinkage) or may be the typical variability in the alignment sampling data - continued operations and monitoring will provide further analysis.

4.4 ISRW System Description and Performance

The following sections provide a description of the ISRW system arrangement, operations, and performance.

4.4.1 ISRW System Arrangement and Operation

Figure 4-7 provides a cross section of the 10 well alignment including screen depths, top of the intermediate sand layer, and the pump floats and intake locations. Each well contains a half-horsepower electric submersible pump that is controlled by two floats and a programmable logic control (PLC) system. The lower float is activated by rising water in the well and starts a delay timer (delays the start of the pump as set at the PLC panel). The pump starts at the end of the delay and pumps until the water drops back below the low float. Each well also has a high-level float which is activated in the event water in the well reaches that upper level in which case the pump immediately starts (no delay). The high-level start event occurs when either there is a failure with the low-level float (typically the float is fouled in some manner) or if surrounding groundwater levels are high enough to reach the high-level float before the delay timer starts the pump (in these cases the operator repairs the floats and/or reduces the delay programming). Each well head also has a numeric (non-electronic) flow totalizer for recording gallons pumped by each well, a backflow valve to prevent flow of water back into the well, and a valve for flow control. All ten wells pump into a single pipe trunk line that carries the water to the EKC Modu-tanks which then pump to the EKC water treatment plant.

Figure 4-7 is helpful in describing the arrangement of the floats and pump operations. The ISRW wells were primarily finished with 10-foot intake screens extending downward from the top of the intermediate sand. ISRW 1 – 7 were installed in 1997 as part of Interim Corrective Measures, and ISRW 8, 9, and 10 were installed in 2007 as part of the final remedy. The well pump intakes are set approximately at the bottom or just below the bottom of each well screen (each well has a 2-foot sump bottom below the screen), and the low floats are placed above the top of the well pump. The high floats are approximately four- to five-feet above the low floats. As shown on Figure 4-7, the river surface elevation fluctuates during the year but is typically above the top-of-sand elevation, is always above the low float and pump intake elevations, and hence the ISRW well water levels are maintained below the river elevation creating an inward water gradient.

The 2018 – 19 Annual Report provided details from the 1998 ICM Annual Report, Section 4, Intermediate Sand Recovery Well System including potentiometric maps (Figs 4-2e thru 4-2i) indicating intermediate sand groundwater capture of the ISRW alignment area via pumping only wells 1 through 4 (provided herein Appendix C for ease of reference). Based on this capture zone analysis and the cumulative mass removal data, an operational adjustment was proposed in the 2018 – 19 Report to focus pumping on wells with higher contaminant concentrations while maintaining the desired capture zone rather than always pumping all ten wells. This proposed operational adjustment was approved in the October 22, 2019, Ecology letter, Appendix A of the 2019 – 2020 Annual Report.

4.4.2 ISRW Mass Removal

Table 4-3 presents the ISRW water extraction volumes for the monitoring period including the total volume of groundwater pumped from each well. As shown, approximately 1-million gallons of groundwater were extracted from the WIA intermediate sand aquifer during the 2021–2022 performance period. Table 4-4 combines the 2021 – 2022 groundwater extraction volumes and average benzene and toluene concentrations to calculate the mass removals for the ISRW wells. Approximately 0.4-pounds of benzene and 217 pounds of toluene were removed during the 2021-2022 performance period.

Based on statements from historical reports and calculation of more recent data, approximately 52,545 pounds of toluene have been removed since ISRW system startup in April 1997 (approximately 7,300 gallons at 7.2 pounds per gallon over the life of the system). Similar calculations for benzene mass removal are not provided due to the historical analytical dilutions required for the toluene concentrations and therefore lack of specific benzene concentration data.

Table 4-5 provides annual water extraction volumes and mass removals for several years of system operations dating back to 1997-1998 (note individual annual data for all years since 1997 was not available). The Table 4-5 data over time indicates that the annual mass contaminant removals are decreasing, as expected with the decreasing VOC concentrations compared to earlier years of operations. The Table 4-5 data also indicates that the volume of water extracted has been decreasing over the period of operations. The lower extraction volumes are associated with multiple factors including NOAA precipitation data indicating below average precipitation for several years dating back to 2010, the more recent shut-down of ISRW-7 due to below CUL and non-detect results (ISRW-7 previously pumped 600,000 gallons of water in 2018 for example), and the continued pumping of the somewhat isolated intermediate sand has reduced the overall available water volume.

4.4.3 ISRW System Maintenance

The ISRW system operated continuously throughout the monitoring period, except during shortduration individual well shutdowns (typically 1 - 2 hours for an individual well while other wells continue to operate). The ISRW maintenance activities for the current reporting period included:

- Pump and float removal, cleaning, and reinstallation. This maintenance is conducted on an approximately monthly per well rolling schedule.
- As-needed replacement of electrical system fuses, capacitors, level floats, totalizers, and power cables due to normal wear.
- Replacement of submersible pumps and/or motors when required typically due to wear of bearings, pump mechanisms, and pump motors.
- Ongoing maintenance of above ground apparatus including well-heads, hoses, and connections.

These ongoing maintenance efforts have ensured continued uninterrupted operation of the ISRW system.

4.4.4 ISRW Future Operations Plan

The WIA ISRW system continues to minimize discharge of affected intermediate sand groundwater to the Columbia River and reduce the mass of constituents in the aquifer. Ongoing appropriate system monitoring and maintenance will continue to minimize pump down times and equipment replacement requirements.

ISRW operations will continue much as they have in the recent past. ISRW-7 is currently shut-down and expected to remain that way unless groundwater samples return to above CULs. ISRW-7 is believed to be influenced by river in-flow and therefore pumps large amounts of river water without any apparent benefit. With ISRW-7 off, it is possible some of the river in-flow continues through the intermediate sand formation to ISRW's -1, -4, and -10 possibly assisting in contaminant mass movement to these extraction wells. This possibility has not been directly proven by the data to date,

but likewise there is no apparent operational draw-back. EKC will continue to operate the system in accordance with the requirements and goals described herein.

4.5 Recommended Changes to System Operation

EKC is not proposing any revisions to the ISRW operations and monitoring program for this year.

5.0 References

- AECOM, 2009. *Operations and Maintenance Manual*. Prepared for Emerald Kalama Chemical, LLC. and BF Goodrich, by AECOM, Portland, Oregon. September 17, 2009.
- Ecology, 2003a. Agreed Order No. DE 98HW-S327: Ecology Approval of Noveon Kalama Cleanup Action Plan and Compliance Monitoring Plan. Correspondence from Leon Wilhelm, Department of Ecology, October 11, 2003.
- EMCON, 1994. Revised Design Report—North Impacted Area Interception Trench.
- EMCON, 1995. West Impacted Area Interim Corrective Measure Phase 3 Final Design Report: Kalama Facility, Kalama, Washington. Prepared for Kalama Chemical, Inc. EMCON Northwest, Inc., Kelso, Washington. November 20.
- ENSR/AECOM, 2008. *Engineering Design Report*. Prepared for Emerald Kalama Chemical, LLC. and BF Goodrich, by ENSR/AECOM, Seattle, Washington. April 11.
- RETEC, 1997. Shallow Interception Trench System Operation and Maintenance Guidelines for the West Impacted Area. Prepared for Kalama Chemical, Inc. Remediation Technologies, Inc., Seattle, Washington. December.
- RETEC, 2003. *Final Feasibility Study*. Prepared for Noveon Kalama, Inc. and Rogers Sugar, Ltd., by The RETEC Group, Inc., Seattle, Washington. December 22.
- RETEC, 2004a. *Cleanup Action Plan*. Prepared for Noveon Kalama, Inc., and Rogers Sugar, Ltd., by The RETEC Group, Inc., Seattle, Washington. June 30.
- RETEC, 2004b, *Compliance Monitoring Plan*. Prepared for Noveon Kalama, Inc., and Rogers Sugar Ltd., by the RETEC Group, Inc., Seattle, Washington. June 30.
- RETEC, 2004c. *Sampling and Analysis Plan.* Prepared for Noveon Kalama, Inc., and Rogers Sugar Ltd., by the RETEC Group, Inc., Seattle, Washington. April 21.
- RETEC, 2007. *Compliance Monitoring Plan*. Prepared for Noveon Kalama, Inc., and Rogers Sugar, Ltd., by The RETEC Group, Inc., Seattle, Washington. October 18.
- ThermoRetec, 2000. *Remedial Investigation, Revision 2.* Prepared for BFGoodrich Kalama, Inc., and Rogers Sugar, Ltd., by ThermoRetec Consulting Corporation, Seattle, Washington. December 15.
- RETEC, 1996. Kalama Chemical Site Materials for WIA ICM Dispute Resolution, by The RETEC Group, Inc. Seattle, Washington. September 1996.
- RETEC, 1998. Kalama Chemical Site Interim Corrective Measures Annual Report, by The RETEC Group, Inc. Seattle, Washington. April 1998.

RSEC Environmental & Engineering Consulting, Inc.

Tables

Table 2-1NIA Monitoring Program 2021 - 2022Emerald Kalama Chemical, Kalama, WA

Well Location	Sampling Frequency	Field Parameters	Analytical Parameters	Gauging Frequency
NTP-1, NTP-2, NTP-3, KC-8, KC-9, KC-21, KC- 23, MW-210, MW-231, MW-232, MW-230, PZ- 102, PDW-117, MW-245, MW-256, Wetland Staff Gauge		—		
East Sump, West Sump	Semiannually	—	Benzene, Toluene, Biphenyl, DPO	Semiannually
MW-231, KC-9, PDW-117, MW-230	Semiannually	Temperature, pH, ORP, conductivity, turbidity, DO	Benzene, Toluene, DPO	, ,
MW-245, MW-256	Semiannually	Temperature, pH, ORP, conductivity, turbidity, DO	DPO	
Observation Walk Length of NIA Containment Trench Ground Surface	Annually	Visual observation for surface damage that may impact trench & subsurface containment berm	_	—

Notes:

DO = dissolved oxygen; ORP = oxidation reduction potential; NIA = North Impacted Area; DEHP / Bis(2-ethylhexyl)phthalate not required at MW-232, -245 & -256 Ecy 112916 & 111418; DPO = Diphenyl Oxide; biphenyl add NIA E&W, remove -210, -231, -230, -9, -117 Ecy 111418. Cease sampling MW-210 & -232 (continue gauging) Ecy 111418.

Table 2-2 NIA Groundwater Analytical Data (10/2007 – 4/2022) Emerald Kalama Chemical, Kalama, WA

		(EPA N	(µg/L) ⁄lethod 8/8260)	SVOCs (µg/L) (EPA Method 8270C SIM)				
	Date	Benzene	Toluene	Benzoic Acid	Biphenyl	Bis (2- ethylhexyl) phthalate	Diphenyl Oxide	Phenol
Well	Cleanup Level	1.2	2,000	24,590	230	1.8	410	2,560
	10/20/2009	51	< 1.0	< 9.6 J	74	< 0.96	1,800	19
	4/22/2010 10/21/2010	23 22	< 1.0 < 1.0	<10 J < 9.8	79 39	< 1.0 <0.98	820 1,700	27 17
	10/10/2011	7.7	< 1.0	<9.3	100	<2.4	1,400	11
	4/18/2012 11/8/2012	16 5.7	< 1.0 < 1.0	9.6 <9.5 UJ	150 21	<0.93 <0.95	990 850	40 4.8
MW-210	4/11/2013	1.5 < 1.0	< 1.0	< 9.5	10	< 0.95	580	4.9
10100-210	10/15/2013 4/16/2014	< 1.0	< 1.0 < 1.0	<9.9 UJ <9.5	<0.99 <0.95	<0.99 <0.95	250 490	7.6 <1.9
	10/23/2014 4/22/2015	< 0.060 < 0.42	< 0.11 < 0.44	< 0.39 H < 0.39	< 0.095 H < 0.095	< 0.26 H 1.2 JB	590 H 330	1.2 JH 2.2 J
	10/20/2015	< 1.0	< 1.0	< 9.5	< 0.95	< 0.95	1,500 D	2.2 J 14
	4/13/2016 10/28/2016	< 1.0 < 1.0	< 1.0 < 1.0	< 9.5 NA	< 0.95 1.6	< 0.95 NA	44 780 D	8.5 NA
	4/11/2017	< 0.50	< 1.0	NA	1.8	NA	32	NA
	10/5/2017 4/26/2018	< 0.50 < 1.0	< 1.0 < 1.0	NA NA	< 0.97 < 0.96	NA NA	210 88	NA NA
	10/2/2018	< 0.30	< 1.0	NA	< 0.47	NA	654 D	NA
	10/22/2009	MW-2 ⁻ 32	10 Ecy Approv 9.9	ed Cease San 91 J	npling, Continu 380	ue Water Level	Gauging 11-1 520	4-18 12
	4/23/2010	18	5.9	< 200 J	350	<20	390	93
	10/20/2010 10/11/2011	23 44	5.2 5.2	74 22	470 450	6.8 <2.4	590 460	44 27
	4/18/2012	10	1.3	180	160	<0.95	220	38
	11/7/2012 4/11/2013	16 31	2.7 5.4	30 J 130	130 160	<0.95 <0.95	220 240	48 39
	10/16/2013	8.8	8.0	79,000 J	170	<1.1	420	210
MW-230	4/15/2014 10/23/2014	7.9 6.4	6.0 1.2	<48 < 0.39 H	500 490 H	<4.8 < 0.26 H	520 690 H	22 22 H
	10/23/2014 Dup	4.8	0.87 J	9.3 JH	520 H	< 0.26 H	690 H	23 H
	4/22/2015 10/21/2015	14 7.4	0.90 J 3.8	28 < 9.5	250 150	2.5 JB < 0.95	320 480 D	20 J 7.4
	10/21/2015 Dup 4/12/2016	7.5 11	3.6 < 1.0	< 9.5 15	160 200	< 0.95 < 0.95	400 D 260 D	6.8 11
	10/28/2016	10	1.0	60	190	< 0.95	450 D	51
	10/28/2016 Dup 4/11/2017	11 2.4	1.0 < 1.0	64 NA	200 110 D	<0.95 NA	420 180 D	45 NA
	4/11/2017 Dup	2.3	< 1.0	NA	99 D	NA	160 D	NA
	10/5/2017 10/5/2017 Dup	7.0 6.8	< 1.0 < 1.0	NA NA	190 160	NA NA	240 230	NA NA
	4/25/2018	1.4	< 1.0	NA	120	NA	120	NA
	4/25/2018 Dup 10/2/2018	1.5 1.8	< 1.0 1.6	NA NA	130 109 D	NA NA	130 192 D	NA NA
	10/2/2018 Dup	2.5	2.0	NA	89	NA	172 119 D	NA
	4/15/2019 4/15/2019 Dup	0.98 0.64	< 1.0 < 1.0	NA NA	NA NA	NA NA	119 D 129 D	NA NA
	10/15/2019 4/9/2020	1.75 <0.300	1.99 <1.00	NA NA	NA NA	NA NA	312 74.6 D	NA NA
	10/20/2020	1.70	1.13	NA	NA	NA	312 D	NA
	4/12/2021 10/6/2021	1.18 2.18	1.82 <1.00	NA NA	NA NA	NA NA	373 D 375 D	NA NA
	4/21/2022	<0.50 U	<0.50 U	NA	NA	NA	110	NA
	10/22/2009 4/22/2010	110 48	68,000 18,000	30 J 14 J	840 410	<0.95 <0.95	2,300 920	14 4.7
	10/20/2010	110	48,000	23	260	<0.96	710	2.5
	10/11/2011 4/18/2012	50 5.3	48,000 1,200	13 <9.5	560 32	<2.4 <0.95	1,700 110	44 4.0
	11/8/2012 4/11/2013	75 25	23,100 14,000	15 J 22	210 220	<0.95 <0.95	730 930	5.5 14
	10/16/2013	13	15,000	230 J	240	<0.95	820	3.9
MW-231	4/15/2014 10/23/2014	9.1 < 60	6,200 6,600	<9.5 < 0.39 H	77 450 H	<0.95 0.86 JH	370 2,200 H	3.4 3.5 JH
	4/22/2015	< 21	3,600	< 0.39	320	1.3 JB	1,700	2.6 J
	4/22/2015 Dup 10/19/2015	< 100 13 D	3,800 14,000 D	< 0.39 11	300 200	1.4 JB < 0.95	1,800 1,700 D	3.8 J 3.3
	4/11/2016	< 1.0	52	< 9.5	< 0.95	< 0.95	1.3	< 1.9
	4/11/2016 Dup 10/27/2016	< 1.0 < 2.0	63 1,800 D	< 9.5 NA	< 0.95 160	< 0.95 NA	5.5 850 D	< 1.9 NA
	4/10/2017	< 1.0	13	NA	17	NA	67.0	NA
	10/4/2017 4/26/2018	< 0.50 < 1.0	3,600 D < 1.0	NA NA	370 D 5.6	NA NA	1,200 D 26	NA NA
	10/2/2018	1.0 16.1	1,110 D	NA NA	163 NA	NA NA	639	NA NA
	4/12/2019 10/15/2019	1.1	61.9 2.68	NA	NA	NA	1060 D 1190 D	NA
	4/9/2020 5/12/2020	1,370 D 0.590	57,800 D <1.00	NA NA	NA NA	NA NA	91.0 D NA	NA NA
	5/12/2020 Dup	0.540	<1.00	NA	NA	NA	NA	NA
	10/20/2020 10/20/2020 Dup	0.710 0.770	2.88 3.22	NA NA	NA NA	NA NA	1,670 D 1,650 D	NA NA
	4/13/2021	< 0.300	< 1.00	NA	NA	NA	56.1	NA
	4/13/2021 Dup 10/6/2021	< 0.300 0.370	< 1.00 3.65	NA NA	NA NA	NA NA	52.9 51.1 D	NA NA
	4/21/2022	0.56	<0.50 U	NA < 9.7 J	NA <0.97	NA	45	NA 73
	10/22/2009 4/22/2010	< 1.0 < 1.0	< 1.0 < 1.0	< 9.7 J <10 J	< 1.0	<0.97 < 1.0	280 220	7.3 9.2
	10/20/2010	< 1.0 <1.0	< 1.0 < 1.0	< 9.6	< 0.96	<0.96	260	3.5
	10/10/2011 4/19/2012	<1.0	< 1.0	<9.3 <9.5	<0.93 <0.95	<0.93 <2.4	190 J 110	10 J 3.3
	11/8/2012 4/10/2013	<1.0 <1.0	< 1.0 < 1.0	<9.5 UJ 11	<0.95 <0.95	<0.95	200 160	7.0 6.7
MW-232	10/15/2013	<1.0	< 1.0	<10 UJ	<1.0	<1.0	130	23
	4/16/2014 10/21/2014	< 1.0 < 0.06	< 1.0 NA	<9.5 NA	<0.95 NA	<0.95 < 0.26	140 92	8.3 NA
	4/21/2015	< 0.42	NA	NA	NA	1.3 JB	190	NA
	10/20/2015 4/13/2016	< 0.50 < 0.50	NA NA	NA NA	NA NA	< 0.95 < 0.95	150 84	NA NA
	10/27/2016	NA	NA	NA	NA	NA	180	NA
	4/11/2017 10/5/2017	NA NA	NA NA	NA NA	NA NA	NA NA	96 160	NA NA
	4/25/2018 10/1/2018	NA NA	NA NA	NA NA	NA NA	NA NA	68 52 D	NA NA
	10/1/2010					NA ue Water Level		

Table 2-2 NIA Groundwater Analytical Data (10/2007 – 4/2022) Emerald Kalama Chemical, Kalama, WA

		VOCs (μg/L) (EPA Method 8021B/8260)		SVOCs (μg/L) (EPA Method 8270C SIM) Bis (2-				(EPA Method SVOCs (μg/L) 8021B/8260) (EPA Method 8270C SIM)		
	Date	Benzene	Toluene	Benzoic Acid	Biphenyl	ethylhexyl) phthalate	Diphenyl Oxide	Phenol		
Well	Cleanup Level 10/25/2007	1.2 4.4	2,000 < 1.0	24,590 <10 UJ	230 < 1.0	1.8 < 1.0	410 870	2,560 18		
	4/17/2008 10/24/2008	3.2	< 1.0 < 1.0	<9.6 UJ NA	<0.96 <0.98	<0.96 <0.98	1,600 700	23 17		
	4/20/2009	< 1.0 < 1.0	< 1.0 < 1.0	< 9.6 J	<0.96 <0.96	<0.96	770 400	12		
MW-245	10/22/2009 4/22/2010	< 1.0	< 1.0	< 9.6 J < 9.0 J	<0.99	<0.96 <0.99	470	7.3 14		
	10/21/2010 10/10/2011	< 1.0 <1.0	< 1.0 < 1.0	< 10 <9.3	< 1.0 <0.93	< 1.0 <0.93	320 330 J	15 12 J		
MW-245	4/19/2012 11/7/2012	<1.0 <1.0	< 1.0 < 1.0	<9.5 <9.5 UJ	<0.95 <0.95	<2.4 <0.95	350 180	8.3 2.1		
	4/10/2013 10/16/2013	<1.0 <1.0	< 1.0 < 1.0	<9.6 <9.5 UJ	<0.96 <0.95	<0.96 <0.95	260 150	7.5 5.7		
	4/15/2014	< 1.0	< 1.0	<9.5	<0.95	21	130	3.0		
	10/21/2014 4/21/2015	< 0.06 < 0.42	NA NA	NA NA	NA NA	< 0.26 1.1 JB	140 200	NA NA		
	10/20/2015 4/13/2016	< 0.50 < 0.50	NA NA	NA NA	NA NA	< 0.95 < 0.95	77 180	NA NA		
	10/27/2016 4/11/2017	NA NA	NA NA	NA NA	NA NA	< 0.96 < 0.95	140 130	NA NA		
	10/5/2017	NA	NA	NA	NA	< 2.5	96	NA		
	4/26/2018 10/1/2018	NA NA	NA NA	NA NA	NA NA	< 0.96 < 0.50	120 81	NA NA		
	4/12/2019 10/15/2019	NA NA	NA NA	NA NA	NA NA	NA NA	161 D 74	NA NA		
	4/7/2020 10/20/2020	NA NA	NA NA	NA NA	NA NA	NA NA	124 D 97.5 D	NA NA		
	4/12/2021	NA	NA	NA	NA	NA	105 D	NA		
	10/4/2021 4/21/2022	NA NA	NA NA	NA NA	NA NA	NA NA	101 D 97	NA NA		
_	10/25/2007 4/17/2008	< 1.0 < 1.0	< 1.0 < 1.0	<11 UJ < 9.5 UJ	< 1.1 <0.95	< 1.1 <0.95	200 120	6.6 1.9		
	10/28/2008 4/20/2009	< 1.0 < 1.0	< 1.0 < 1.0	17 J <9.6 J	<0.95 <0.96	<0.95 <0.96	150 47	4.7		
	10/22/2009	< 1.0	< 1.0	<9.5 J	<0.95	<0.95	22	<1.9		
MW-256	4/22/2010 10/21/2010	< 1.0 < 1.0	< 1.0 < 1.0	<9.0 J <9.9	<0.95 <0.99	<0.95 <0.99	28 25	<1.0 <2.0		
	10/10/2011 4/18/2012	< 1.0 < 1.0	< 1.0 < 1.0	<9.3 <9.7	<0.93 <0.97	<0.93 <2.4	31 J 5.9	<1.9 <2.0		
MW-256	11/8/2012 4/10/2013	< 1.0 < 1.0	< 1.0 < 1.0	<9.5 UJ <9.5	<0.95 <0.95	<0.95 <0.95	23 5.6	<1.9 <1.9		
	10/16/2013	< 1.0	< 1.0	<9.5 UJ	<0.95	<0.95	23	<1.9		
	4/15/2014 10/21/2014	< 1.0 < 0.06	< 1.0 NA	<9.5 NA	<0.95 NA	<0.95 NA	24 27	<1.9 NA		
	4/21/2015 10/20/2015	< 0.42 < 0.50	NA NA	NA NA	NA NA	NA NA	26 16	NA NA		
	4/13/2016 10/27/2016	< 0.50 NA	NA NA	NA NA	NA NA	NA NA	30 10	NA NA		
	4/11/2017	NA	NA	NA	NA	NA	1.5	NA		
	10/5/2017 4/26/2018	NA NA	NA NA	NA NA	NA NA	NA NA	23 5.0	NA NA		
	10/1/2018 4/12/2019	NA NA	NA NA	NA NA	NA NA	NA NA	14.9 17.5	NA NA		
	10/15/2019 4/7/2020	NA NA	NA NA	NA NA	NA NA	NA NA	21.3 <0.517	NA NA		
	10/20/2020	NA	NA	NA	NA	NA	21.6	NA		
	4/12/2021 10/4/2021	NA NA	NA NA	NA NA	NA NA	NA NA	8.64 8.24 D	NA NA		
	4/21/2022 10/22/2009	NA 28	NA 1.7	NA < 9.5 J	NA 1300	NA < 0.95	14 5,400	NA 21		
	4/23/2010 10/21/2010	5 14	< 1.0 < 1.0	< 9.0 J < 9.6	170 840	< 0.98 < 0.96	730 3,600	7.4 18		
	10/10/2011	10	<1.0	<9.3	420	<2.4	1,900	21		
	4/18/2012 11/8/2012	3.6 2.2	<1.0 <1.0	<9.5 <9.5 UJ	150 170	<0.93 <0.95	600 1,000	8.7 10		
KC-9	4/10/2013 10/16/2013	3.7 4.3	< 1.0 < 1.0	11 <9.5 UJ	110 99	<0.95 <0.95	810 1,300	5.1 6.6		
	4/15/2014 10/21/2014	2.8	< 1.0	<9.5	51 to constructiv	<0.95 on; not sampl	740	6.4		
	4/21/2015	5.8	< 0.44	5.4 J	150	1.2 JB	1,300	9.4 J		
	10/20/2015 4/13/2016	18 3.5	< 1.0 < 1.0	< 9.5 < 9.5	570 D 100	< 0.95	4,000 D 690 D	25 12		
	10/27/2016 4/11/2017	3.0 1.3	< 1.0 < 1.0	NA NA	120 62	NA NA	1,800 D 810 D	NA NA		
	10/5/2017 4/26/2018	2.2 2.9	< 1.0 < 1.0	NA NA	73 57	NA NA	1,900 D 1,600 D	NA NA		
	10/1/2018 4/15/2019	4.9	< 1.0 < 1.0	NA	53 D NA	NA	2,010 D 5,980 D	NA		
	10/15/2019	3.58	<1.00	NA	NA	NA	3,290 D	NA		
	4/7/2020 10/20/2020	<0.300 2.79	<1.00 <1.00	NA NA	NA NA	NA NA	1,930 D 2,660 D	NA NA		
	4/12/2021 10/4/2021	2.37 2.96	<1.00 <1.00	NA NA	NA NA	NA NA	2,870 D 2,630 D	NA NA		
	4/19/2022 10/22/2009	1.0	< 0.50 U 5.4	NA 36 J	NA 750	NA 6.5	1,400 D 1,700	NA 6.2		
	4/22/2010 10/20/2010	< 1.0	< 1.0 < 1.0	<9.0 J <9.9	47	<0.95 <0.99	140	5.6 15		
	10/11/2011	7.6	< 1.0	<9.5	57	<2.4	400	8.4		
	4/18/2012 11/8/2012	1.1 23	< 1.0 < 1.0	<9.5 <9.5 UJ	41 48	<0.95 <0.95	180 360	4.4 20		
PDW-117	4/11/2013 10/15/2013	4.4 5.9	< 1.0 < 1.0	<9.5 < 10 UJ	160 150	<0.95 <1.0	1,200 1,000	6.3 12		
	4/16/2014 10/23/2014	4.7	< 1.0 0.23 J	<9.5 4.8 JH	59 22 H	<0.95 < 0.26 H	740 1,700 H	6.3 8.6 JH		
	4/22/2015	3.6	< 0.44	< 0.40	8.7	< 0.26	1,900	16		
	10/20/2015 4/13/2016	7.1 < 1.0	< 1.0 < 1.0	< 9.5 < 9.5	34 38	< 0.95 < 0.95	2,500 D 310 D	19 4.9		
	10/28/2016 4/11/2017	< 1.0 < 1.0	< 1.0 < 1.0	NA NA	1.0 7.9	NA NA	140 150	NA NA		
	10/5/2017 4/26/2018	2 < 1.0	< 1.0 < 1.0	NA NA	< 0.97 < 0.96	NA NA	540 D 1,700 D	NA NA		
	10/2/2018 4/15/2019	2.6	< 1.0	NA	9.6 D	NA	524 D	NA		
	10/15/2019	0.99 2.06	< 1.0 <1.00	NA NA	NA NA	NA NA	4,600 D 1950 D	NA NA		
	4/9/2020	0.860	<1.00 <1.00	NA NA	NA NA	NA NA	2040 D 1560 D	NA NA		
	4/9/2020 Dup	0.930	1.00	1.1/1						
	4/9/2020 Dup 10/20/2020 4/12/2021	0.930 0.500 < 0.300	<1.00 <1.00 < 1.00	NA	NA NA	NA NA	1,570 D 1,070 D	NA		

Table 2-2
NIA Groundwater Analytical Data (10/2007 – 4/2022)
Emerald Kalama Chemical, Kalama, WA

		VOCs (EPA N 8021B		SVOCs (µg/L) (EPA Method 8270C SIM) Bic /2-				
	Date	Benzene	Toluene	Benzoic Acid	Biphenyl	Bis (2- ethylhexyl) phthalate	Diphenyl Oxide	Phenol
Well	Cleanup Level	1.2 7.5	2,000 30	24,590 < 9.5 U	230 29	1.8	410 910 D	2,560
	7/25/2007 10/24/2007	7.5 6	30 16	< 9.5 U < 9.0 UJ	13	<0.95 U <0.96	910 D 960	8 11
	1/17/2008	9.7 D	160 D	< 9.5 U	13	<0.95 U	650 D	8.1
	4/15/2008 7/28/2008	12 5.6	710 69	< 9.5 UJ < 9.6	19 21	<0.95 <0.96	730 600	27 5.6
	10/24/2008	7.9	57	NA	17	<0.90	1,200	14
	1/30/2009	2.3	< 1	< 9.5	13	< 0.95	580	6.2
	4/20/2009 10/21/2009	4.3 2.4	79 < 1.0	< 9.6 J < 11 J	7.6	<0.96 < 1.1	590 500	3.6 15
	4/22/2010	1.9	< 1.0	< 10 J	4.4	< 1.0	330	4.4
East Sump	10/21/2010 10/10/2011	14 9.7	< 1.0 < 1.0	< 10 <9.5	6.7 3.3 J	< 1.0 <0.95	760 310 J	18 5.1 J
Last Sump	4/19/2012	1.9	< 1.0	<9.5	4.4	<2.4	280	<1.9
	11/7/2012	<1.0	< 1.0	<9.5 UJ	2.4	<0.95	220	2.4
	4/10/2013 10/16/2013	<1.0 <1.0	< 1.0 < 1.0	<9.5 <9.5 UJ	2.0 1.8	<0.95 <0.95	200 260	2.8 2.8
	4/14/2014	< 1.0	< 1.0	<9.5	1.6	<0.95	190	<1.9
	10/21/2014 4/20/2015	< 0.06 < 0.42	< 0.11 1.2 J	NA NA	NA NA	NA NA	200 150	NA NA
	10/20/2015	< 1.0	< 1.0	NA	NA	NA	<0.95	NA
	4/13/2016	< 1.0	< 1.0	NA	NA	NA	260 D	NA
	10/27/2016 4/10/2017	< 1.0 < 1.0	< 1.0 < 1.0	NA NA	NA NA	NA NA	53 170	NA NA
	10/4/2017	< 0.50	< 1.0	NA	NA	NA	360 D	NA
	4/23/2018	< 1.0 < 0.3	< 1.0 < 1.0	NA NA	NA NA	NA NA	140 92 D	NA NA
	10/2/2018 4/12/2019	< 0.3	< 1.0 < 1.0	NA	< 0.644	NA	92 D 112	NA
	10/15/2019	<0.300	<1.00	NA	<0.473	NA	266	NA
	4/7/2020 10/19/2020	<0.300 54.5	<1.00 <1.00	NA NA	<0.475 <0.481	NA NA	80.5 D 216 D	NA NA
	10/19/2020 Dup	55.1	<1.00	NA	<0.483	NA	278	NA
	1/15/2021 4/8/2021	5.98 15.5	<1.00 <1.00	NA NA	NA <0.479	NA NA	NA 117 D	NA NA
	4/8/2021 7/16/21 ALS 8260	2.0	<1.00 <0.50 U	NA	×0.479 NA	NA	NA	NA
	7/16/21 Spclty 802	2.19	1.15	NA	NA <0.473	NA	NA	NA
	10/1/2021 Spclty 8: 10/1/2021 DUP	<0.300 <0.300	<1.00 <1.00	NA NA	<0.473	NA NA	104 H (lab) NA	NA NA
	4/14/2022 ALS	<0.50 U	<0.50 U	NA	<0.94	NA	99	NA
	4/14/2022 DUP 7/25/2007	<0.50 U 270 D	<0.50 U 1,900 D	NA 12	<0.94 180 D	NA <0.95 U	99 1.600 D	NA 9.5
	7/25/2007 Dup	270 D	1,500 D	11	160 D	2.5	1,600 D	14
	10/24/2007	270 J	1,300 J	32 J	190	<0.96	2,200	22 J
	10/24/2007 Dup 1/17/2008	450 J 410 D	2,000 J 8,300 D	20 J 9.8	210 45	<0.95 <0.96 U	2,100 620 D	16 J 62 D
	1/17/2008 Dup	400 D	7,900 D	< 9.7 U	42	<0.97 U	600 D	55 D
	4/15/2008 4/15/2008 Dup	79 83	820 780	< 9.5 UJ < 9.5 UJ	160 160	1.1 <0.95	1,200 1,200	8.7 8.4
	7/28/2008	200	740	< 9.5	140	<0.95	1,300	18
	7/28/2008 Dup 10/24/2008	200 140	740 1,700	< 9.5 26 J-	140 110	<0.95 <0.95	1,200 1,000	21 15
	1/30/2009	160	1,400	26	78	<0.95	880	2.5
	1/30/2009 Dup 4/20/2009	150 26	1,300 78	< 9.5 < 9.6 J	110 150	<0.95 <0.96	870 1,100	17 5.7
	4/20/2009 Dup	27	78	< 9.6 J	130	<0.96	1,000	5.3
	10/20/2009 10/21/2009 Dup	100 100	1,100 1,100	< 9.5 J < 9.5 J	5.0 J 59 J	<0.95 <0.95	570 J 970 J	31 28
	4/22/2010	56	77	< 9.0 J	46	<0.95	490	5
	4/22/2010 Dup	59	85	< 9.0 J	45	< 0.99	490	6.8
	10/21/2010 10/10/2011	42 33	69 210	< 9.8 <9.5	15 45 J	< 0.98 <0.95	470 730 J	100 8.7 J
West Sump	10/10/2011 Dup	33	210	<9.3	23 J	<0.93	560 J	20 J
	4/19/2012 4/19/2012 Dup	71 71	230 230	<9.5 <9.5	27 27	< 2.4 < 2.4	320 310	4.2 4.3
	11/7/2012	52	109	<9.5 UJ	49	<0.95	760	6.1
	11/7/2012 Dup 4/10/2013	48 34	101 23	<9.5 UJ 12	46 42	<0.95 <0.95	750 410	6.1 5.0
	4/10/2013 Dup	34	22	9.8	42 42	<0.95	410	5.3
	10/16/2013 10/16/2013 Dup	33	18 19	<9.5 <9.5	45 42	< 0.95	770	4.6
	10/16/2013 Dup 4/14/2014	33 67	19	<9.5 <9.5 UJ	42 47	<0.95 <0.95	750 520	5.1 7.4
	4/14/2014 Dup	72	120	<9.5 UJ	46	<0.95	520	8.4
	10/21/2014 10/21/2014 Dup	4.4 4.4	0.91 0.85	NA NA	NA NA	NA NA	830 980	NA NA
	4/20/2015	56	60	NA	NA	NA	550	NA
	10/20/2015 10/20/2015 Dup	4.4 4.5	< 1.0 < 1.0	NA NA	NA NA	NA NA	200 200	NA NA
	4/13/2016	74	51	NA	NA	NA	180	NA
	4/13/2016 Dup 10/27/2016	71 5.0	50 5.5	NA NA	NA NA	NA NA	190 1,100 D	NA NA
	10/27/2016 Dup	6.1	5.5 7.1	NA	NA	NA	1,100 D	NA
	4/10/2017 4/10/2017 Dup	65 D	40 D	NA	NA	NA	100	NA
	4/10/2017 Dup 10/4/2017	68 D 2.7	42 D 3.7	NA NA	NA NA	NA NA	100 790 D	NA NA
	10/4/2017 Dup	2.8	3.4	NA	NA	NA	770 D	NA
	4/23/2018 4/23/2018 Dup	21 21	8.6 8.6	NA NA	NA NA	NA NA	300 D 300 D	NA NA
	10/2/2018	3.3	< 1.0	NA	NA	NA	844 D	NA
	10/2/2018 Dup	2.9	< 1.0	NA	NA 27.9	NA	595 D	NA
	4/12/2019 4/12/2019 Dup	18.2 18.6	11.8 12.4	NA NA	37.8 37.8	NA NA	898 D 962 D	NA NA
	10/15/2019	1.11	<1.00	NA	22.1	NA	996 D	NA
	10/15/2019 Dup 4/7/2020	1.16 9.57	<1.00 11.8	NA NA	24.1 11.9	NA NA	1020 D 532 D	NA NA
	4/7/2020 Dup	9.57	11.8 10.7	NA	11.9 12.9	NA	532 D 603 D	NA
	10/19/2020	0.970	<1.00	NA	13.1	NA	874 D	NA
	1/15/2021	15.2	2.45	NA NA	NA	NA NA	NA 690 D	NA NA
	4/8/2021	4.51	1 2 2 5					
	4/8/2021 10/1/2021 4/14/2022	4.51 0.500	1.86 <1.00 <0.50 U	NA	8.82 <0.474	NA NA	119 H (lab)	NA

Notes:

Notes:
< - Result is non-detected above the laboratory detection limit.
< - Detection limit above cleanup level.
Bold indicates detection.
Dup - Field Duplicate Sample.
NA - Not analyzed per Ecology approval.
J - Estimated concentration.
UJ - Not detected, estimate concentration.
Bold and shaded Detection above cleanup level.
EPA = U.S. Environmental Protection Agency; µg/L micrograms per liter; mg/L = milligrams per liter; NIA = North Impacted Area;

Table 2-3NIA Interception Trench Sump Pump Operation Data (2021-2022)Emerald Kalama Chemical, Kalama, WA

	Total	Groundwater Ex	tracted		Average	Flow Pata ¹
Current Reporting Year:	Total Groundwater Extracted East Sump West Sump Combined			Days of	Average Flow Rate ¹ (gallons per (gallons per	
Monthly Data	(gallons)	(gallons)	(gallons)	Operation	day)	minute)
April 2022	2,075,648	1,242,962	3,318,610	29	114,435	79
March 2022	2,659,607	1,730,973	4,390,580	35	125,445	87
February 2022	1,578,331	1,517,279	3,095,610	28	110,558	77
January 2022	1,833,124	1,186,306	3,019,430	28	107,837	75
December 2021	2,125,359	1,362,671	3,488,030	28	124,573	87
November 2021	1,785,593	1,207,297	2,992,890	34	88,026	61
October 2021	554,670	630,720	1,185,390	34	34,864	24
September 2021	449,749	404,460	854,209	28	30,507	21
August 2021	456,969	530,632	987,601	28	35,271	24
July 2021	673,218	602,952	1,276,170	29	44,006	31
June 2021	1,232,558	983,642	2,216,200	34	65,182	45
May 2021	1,303,734	876,320	2,180,054	29	75,174	52
Data by Year (1999 – 2022)						
May 2021 - April 2022 Total			29,004,774	364	79,683	55
May 2020 - April 2021 Total			29,012,846	364	79,706	55
May 2019 - April 2020 Total			25,672,040	364	70,528	49
May 2018 - April 2019 Total			26,892,240	365	73,677	51
May 2017 - April 2018 Total			34,527,000	365	94,595	66
May 2016 - April 2017 Total			27,211,420	357	76,222	53
May 2015 - April 2016 Total			22,279,780	364	61,208	43
May 2014 - April 2015 Total			28,283,351	364	77,702	54
May 2013 - April 2014 Total			26,146,043	364	71,830	50
May 2012 - April 2013 Total			32,377,430	367	88,222	61
May 2011 - April 2012 Total			29,560,750	364	81,211	56
May 2010 - April 2011 Total			27,198,659	364	74,722	52
May 2009 - April 2010 Total			23,801,041	365	66,114	46
May 2008 - April 2009 Total			24,827,910	365	68,022	47
May 2007 - April 2008 Total			24,318,988	366	66,493	46
May 2006 - April 2007 Total			30,981,555	365	85,000	59
May 2005 - April 2006 Total			28,741,209	365	78,986	55
May 2004 - April 2005 Total			22,890,809	365	62,791	44
May 2003 - April 2004 Total			25,980,637	366	71,036	49
May 2002 - April 2003 Total			22,689,839	363	62,700	44
May 2001 - April 2002 Total			18,336,898	365	50,465	35
May 2000 - April 2001 Total			16,158,522	365	44,230	31
May 1999 - April 2000 Total			27,663,437	366	75,565	53
Notes:		Averages:	27,479,872		75,487	52

Averages:

¹ Calculated based on weekly totalizer readings.

NIA = North Impacted Area

Table 2-4 NIA Discharge Data (2021 – 2022) Emerald Kalama Chemical, Kalama, WA

East Sump

Chemical Name	Average Conce	entration (µg/L)*	May 2021 - October 2021	November 2021 - April 2022	Total Removal				
Chemical Name	10/1/2021	4/14/2022	Contaminant Removal (lb)	Contaminant Removal (lb)	(lb)				
Volatile Organic Compounds (EPA Method 8260)									
Benzene	0	0	0.00	0.00	0.00				
Toluene	0	0	0.00	0.000	0.00				
Semivolatile Organic Compounds (EPA Method 8270 mod.)									
Diphenyl Oxide	104	99	3.57	8.25	11.82				

West Sump

Chemical Name	Average Conce	entration (µg/L)*	May 2021 - October 2021	November 2021 - April 2022	Total Removal				
Chemical Name	10/1/2021	4/14/2022	Contaminant Removal (Ib)	Contaminant Removal (Ib)	(lb)				
Volatile Organic Compounds (EPA Me	ethod 8260)								
Benzene	0.5	2.7	0.01	0.16	0.17				
Toluene	0	0	0.00	0.00	0.00				
Semivolatile Organic Compounds (EPA Method 8270 mod.)									
Diphenyl Oxide	119	400	3.37	23.38	26.76				

Total

Chemical Name	May 2021 - October 2021 Contaminant Removal (Ib)	November 2021 - April 2022 Contaminant Removal (Ib)	Total Removal (Ib)
Volatile Organic Compounds (EPA Method 8260)			
Benzene	0.01	0.16	0.2
Toluene	0.00	0.00	0.0
Semivolatile Organic Compounds (EPA Method 8270 mod.)			
Diphenyl Oxide	6.95	31.63	38.6

Notes:

East Sump groundwater extracted = 14,098,242

West Sump groundwater extracted = 10,402,532

*Chemical concentrations are average for the period (May&Oct, Oct&April)

Contaminant removal results are rounded.

EPA = U.S. Environmental Protection Agency; Ib = pound; µg/L = micrograms per liter; NIA = North Impacted Area

Table 3-1 WIA Shallow Interception Trench Monitoring Program 2021 - 2022 Emerald Kalama Chemical, Kalama, WA

Well Location	Sampling Frequency	Field Parameters	Analytical Parameters	Gauging Frequency
KC-13, KC-24R, PZ-110, MW-238, MW- 255, N&S Sumps	Ι	_	—	
PZ-104, PZ-107	Semiannually	Temperature, pH, ORP, conductivity, turbidity, DO	Benzene, Toluene, Biphenyl, DEHP, DPO	Semiannually
USRW-2	Semiannually	Temperature, pH, ORP, conductivity, turbidity, DO	DPO	

Notes:

DO = dissolved oxygen; ORP = oxidation reduction potential; DPO = Diphenyl Oxide; DEHP = Bis (2-ethylhexyl) phthalate. Ecy 11-28-17 Approval of EKC recommendation: Remove Well KC-11 from sampling and gauging list (already sampled Oct 2017)

			(µg/L) 8021B / 8260)		(EPA	SVOCs (µg/L) Method 8270C	SIM)	
	Date	Benzene	Toluene	Benzoic Acid	Biphenyl	Bis (2- ethylhexyl) phthalate	Diphenyl Oxide	Phenol
Well	Cleanup Level	1.2	2,000	24,590	230	1.8	410	2,560
	10/20/2009	5.8	< 1.0	<9.7 J	550	<0.97	3,600	12
	4/23/2010	4.5	< 1.0	<9.0 J	180	<0.95	2,600	8.6
	10/20/2010	8.3	< 1.0	< 10	260	< 1.0	4,100	83
	10/10/2011	7.7	< 1.0	<9.5	150	<2.4	4,700	69
	4/19/2012	5.8	< 1.0	<9.5	29	<0.95	3,600	37
	11/8/2012	9.2	< 1.0	<9.5 UJ	36	<0.95	4,600	80
	4/11/2013	5.5	< 1.0	<9.5	47	<0.95	3,100	30
	10/16/2013	5.5	< 1.0	<9.5 UJ	4.9	<0.95	2,600	38
PZ-104	4/15/2014	2.9	< 1.0	<9.5	13	<0.95	2,400	37
	10/23/2014	5.3	< 0.11	< 0.40 H	10 H	< 0.26 H	4,800 H	38 H
	4/22/2015	3	< 0.44	< 0.40	6.4	1.3 JB	3000	52
	4/22/2015 Dup	3	< 0.44	< 0.39	6.3	1.2 JB	3100	46
	10/20/2015	1.9	< 1.0	< 9.5	2.3	< 0.95	3,300 D	48
	4/12/2016	< 1.0	< 1.0	< 9.5	2.8	69	1,700 D	31
	10/28/2016	1.9	< 1.0	NA	< 0.95	< 0.95	3,700 D	NA
	4/12/2017	< 0.50	< 1.0	NA	2.2	< 0.95	1,600	NA
	10/5/2017	2.2	< 1.0	NA	4.7	< 2.5	2,800 D	NA
	4/25/2018	< 1.0	< 1.0	NA	< 0.96	< 0.96	1,600 D	NA
	10/2/2018	4.3	6.8	NA	50.2 D	< 4.7 D	3,620 D	NA
	4/15/2019	4.3	6.0 < 1.0	NA	381 D	< 0.505	3,820 D 8,350 D	NA
	10/15/2019	5.29	<1.00	NA	0.665	< 0.303	2,740 D	NA
		9.29	<1.00	NA	79.7 D	47.3 D	2,740 D 4,740 D	NA
	4/9/2020	9.20 NA	<1.00 NA	NA	268 D	<0.484	4,740 D 12,100 D	NA
	5/12/2020	1.65	<1.00	NA	16.6	<0.484	3,140 D	NA
	10/20/2020		<1.00	NA	22.4 D	<0.478	3,140 D 3,420 D	NA
	10/20/2020 Dup N	5.67	<1.00	NA	86.1	<0.479	3,420 D 4,530 D	NA
	4/12/2021	0.970	<1.00	NA	81.5 D	<0.478	4,330 D 4,300 D	NA
	10/4/2021	0.970	<1.00	NA	3,430 D**	<47.9 D <47.8 D	4,300 D 4,080 D**	NA
	10/4/2021 Dup			NA NA	-	<47.8 D <1.9 U	-	NA
	4/21/2022	1.7	<0.50 U		54	<1.9 U <1.9 U	3,300 D	NA
	4/21/2022 Dup 4	1.6	<0.50 U	NA	44		2,900 D	
	10/22/2009	NA 5.2	NA 500	NA 1 200 J	NA 1 500	NA	NA 2 600	NA
	4/23/2010	5.3	590	1,300 J	1,500	<4.0	3,600	210
	10/20/2010	37	5,300	4,300	24,000	<200	65,000	< 390
	10/11/2011 ^s	100	5,300	38,000	110,000	3.4	300,000	220
	4/19/2012 ^s	18	130	7,400	1,700	600	4,300	140
	11/7/2012 ^s	19	227	900 J	4,400	30	12,000	41
	4/11/2013 ^s	160	2,000	8,000	140,000	1,200	330,000	270
PZ-107	10/16/2013 ^s	13	200	450 J	1,200	6.4	4,400	40
	4/15/2014 s	5.5	57	640	1,000	<9.5	2,800	53
	10/23/2014 s		00	2400	Not sampled	600	2 200	40
	4/23/2015 s	6.6	82	2100	720	6.2 B	2,200	19
	10/20/2015 s	12	530 D	2,600 D	5,700 D	62 D	20,000 D	< 48
	4/12/2016	2.5	30	1,200 D	930 D	<0.95	2,300 D	36
	10/28/2016	< 1.0	6.8	NA	760 D	< 0.96	2,100 D	NA
	4/12/2017	0.62	15	NA	860 D	< 9.5	1,900 D	NA
	10/5/2017	1.2	32 D	NA	440 D	2.7	1,100 D	NA
	4/25/2018	< 1.0	1.7	NA	670 D	< 9.6	1,600 D	NA
	10/3/2018	< 0.30	3.9	NA	404 D	< 4.7 D	936 D	NA
	4/15/2019	< 0.30	< 1.0	NA	269 D	<0.625	622 D	NA
	10/15/2019	<0.300	1.45	NA	209	<0.473	1,080 D	NA
	4/9/2020	<0.300	<1.00	NA	22.1	1.08	176 D	NA
	5/12/2020	NA	NA	NA	159 D	<0.487	1,430 D	NA
	10/20/2020	<0.300	<1.00	NA	261 D	<0.480	649 D	NA
	4/12/2021	<0.300	3.67	NA	33.4	<0.478	85.8 D	NA
	10/4/2021	<0.300	<1.00	NA	60.9	<0.345	21.8	NA
	4/21/2022	<0.50 U	<0.50 U	NA	17	<1.9 U	64	NA
	10/24/2007	1.1	< 1.0	< 9.8 UJ	< 0.98	< 0.98	720	30
	4/17/2008	1.1	< 1.0	< 9.7 UJ	< 0.97	< 0.97	560	16
	10/27/2008	3	< 1.0	11 J	< 0.95	< 0.95	960	20
	4/22/2009	1	< 1.0	< 9.6 J	< 0.96	< 0.96	1,300	9.1
	10/20/2009	1.3	< 1.0	< 9.8 J	< 0.98	< 0.98	820	41
	4/22/2010	< 1.0	< 1.0	< 9.0 J	< 0.98	< 0.98	1,000	38
	10/19/2010	< 1.0	< 1.0	< 9.6	< 0.96	< 0.96	340	5.7
	10/11/2011	< 1.0	< 1.0	<9.5	<0.95	<0.95	68	<1.9
	4/18/2012	< 1.0	2,400	<9.5	<0.95	<2.4	550	4.8
	11/8/2012	< 1.0	< 1.0	<9.5 UJ	<0.95	<0.95	590	7.8
MW-244	11/8/2012 Dup	< 1.0	< 1.0	<9.5 UJ	<0.95	<0.95	600	8.4
	4/11/2013	< 1.0	< 1.0	<9.5	<0.95	<0.95	530	14

Table 3-2 WIA Upper Sand Analytical Data (10/2007 – 4/2022) Emerald Kalama Chemical, Kalama, WA

4/11/2013 Dup	< 1.0	< 1.0	<9.5	<0.95	<0.95	610	14
10/17/2013	< 1.0	< 1.0	<9.5 UJ	<0.95	<0.95	410	8.2
4/15/2014	< 1.0	< 1.0	<9.5	<0.95	<0.95	600	9.4
10/22/2014	0.12 J	< 0.11	NA	NA	< 0.28	570	NA
4/21/2015	< 0.42	< 0.44	NA	NA	1.2 JB	450	NA
10/20/2015	NA	NA	NA	NA	NA	780 D	NA
4/13/2016	NA	NA	NA	NA	NA	190	NA
10/27/2016	NA	NA	NA	NA	NA	470 D	NA
4/11/2017	NA	NA	NA	NA	NA	68	NA
10/3/2017	NA	NA	NA	NA	NA	330 D	NA
4/24/2018	NA	NA	NA	NA	NA	340 D	NA
10/1/2018	NA	NA	NA	NA	NA	207	NA
4/15/2019	NA	NA	NA	NA	NA	269 D	NA
10/15/2019	NA	NA	NA	NA	NA	79.7 D	NA
4/9/2020	NA	NA	NA	NA	NA	156 D	NA
Cease sampling Oct	2020 Sampling	Round Per Ecy	10/21/20 Appro	oval			

		Em	ieraid Kalan	na Chemica	i, Kalama, v	VA			
						SVOCs (µg/L) Method 8270C	/OCs (μg/L) ethod 8270C SIM)		
	Date	Benzene	Toluene	Benzoic Acid	Biphenyl	Bis (2- ethylhexyl) phthalate	Diphenyl Oxide	Phenol	
Well	Cleanup Level	1.2	2,000	24,590	230	1.8	410	2,560	
	10/20/2009 *	NS	NS	NS	NS	NS	NS	NS	
	4/23/2010 *	NS	NS	NS	NS	NS	NS	NS	
	10/11/2011	< 1.0	2.8	26	28	<9.9	160	<9.9	
	4/19/2012	1.4	< 1.0	<9.5	<0.95	<2.4	4.6	<1.9	
	11/7/2012 *	NS <1.0	NS	NS	NS <0.95	NS	NS 29	NS <1.9	
	4/10/2013	1.0	<1.0 <1.0	<9.5 <10 UJ	<0.95	<0.95 <1.0	38 18	<1.9	
KC-11	10/16/2013 4/15/2014	< 1.0	< 1.0	<9.5	<0.95	<0.95	4.3	<1.9	
	10/22/2014 *	NS	NS	NS	NS	NS	NS	NS	
	4/22/2015	< 0.42	< 0.44	NA	NA	1.3 JB	4.9	NA	
	10/20/2015 *	NS	NS	NS	NS	NS	NS	NS	
	4/12/2016	NA	NA	NA	NA	NA	2.6	NA	
	10/27/2016	NA	NA	NA	NA	NA	3.2	NA	
	4/10/2017	NA	NA	NA	NA	NA	31	NA	
	10/4/2017	NA	NA	NA	NA	NA	NS	NA	
		-	-	& Gauging KC-					
	10/20/2009 *	NS	NS	NS	NS	NS	NS	NS	
	4/23/2010 *	NS	NS	NS	NS	NS	NS	NS	
	10/11/2011 *	NS	NS	NS	NS	NS	NS	NS	
	4/19/2012 *	NS	NS	NS	NS	NS	NS	NS	
	11/7/2012 *	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	
KC-13	4/10/2013 *	NS	NS	NS	NS	NS	NS	NS	
	10/16/2013 * 4/15/2014 *	NS	NS	NS	NS	NS	NS	NS	
	10/22/2014 *	NS	NS	NS	NS	NS	NS	NS	
	4/22/2015	< 0.42	< 0.44	NA	NA	1.7 JB	1.7 J	NA	
	10/20/2015 *	NS	NS	NS	NS	NS	NS	NS	
	4/12/2016 *	NS	NS	NS	NS	NS	NS	NS	
		Ce	ase Monitoring I	C-13, Continue	Gauging Per Eo	cy 11/29/16 Ltr.			
	10/25/2007	2.8	< 1.0	< 9.9 UJ	< 0.99	< 0.99	1,500	39	
	10/25/2007 Dup	2.7	< 1.0	< 9.9 UJ	< 0.99	< 0.99	1,400	40	
	4/17/2008	< 1.0	< 1.0	< 9.7 UJ	< 0.97	< 0.97	< 0.97	< 2	
	4/17/2008 Dup	< 1.0	< 1.0	< 9.7 UJ	< 0.97	< 0.97	< 0.97	< 2	
	10/28/2008	1.2 1.1	< 1.0 < 1.0	< 9.5 J < 9.5 J	< 0.95 < 0.95	< 0.95 < 0.95	1,500	22	
	10/28/2008 Dup 4/22/2009	< 1.0	< 1.0	< 9.5 J	< 0.95	< 0.95	1,600 1,000	23 10	
	4/22/2009 Dup	< 1.0	< 1.0	< 9.6 J	< 0.96	< 0.96	1,000	8.4	
	10/20/2009	1.2	< 1.0	< 11 J	< 1.1	< 1.1	800	41	
	10/20/2009 Dup	1.2	< 1.0	< 10 J	< 1.0	< 1.0	970	43	
	4/22/2010	< 1.0	< 1.0	< 10 J	< 1.0	< 1.0	850	20	
	4/22/2010 Dup	< 1.0	< 1.0	< 9.0 J	< 0.99	< 0.99	780	20	
	10/19/2010	< 1.0	< 1.0	< 9.8	5	< 0.98	880	43	
	10/11/2011	< 1.0	< 1.0	<9.5	<0.95	<0.95	310	5.5	
USRW-2	10/11/2011 Dup	< 1.0	< 1.0	<9.5	<0.95	<0.95	490	6.7	
	4/19/2012	< 1.0	< 1.0	<9.5	<0.95	<2.4	400	9.6	
	4/19/2012 Dup	< 1.0	< 1.0	<9.5	< 0.95	<2.4	400	9.3	
	11/7/2012	< 1.0	< 1.0	<9.5 UJ	<0.95	<0.95	500	11	
	11/7/2012 Dup	< 1.0	< 1.0	<9.5 UJ	< 0.95	< 0.95	410	9.4	
	4/11/2013	< 1.0 < 1.0	< 1.0 < 1.0	<9.5 <9.5 UJ	<0.95 <0.95	<0.95 <0.95	430 380	7.5 6.3	
	10/17/2013 10/17/2013 Dup	< 1.0	< 1.0	<9.5 UJ	<0.95	<0.95	380	8.1	
	4/15/2014	< 1.0	< 1.0	<9.5	<0.95	<0.95	330	6.1	
	4/15/2014 Dup	< 1.0	< 1.0	<9.5	<0.95	<0.95	340	6.4	
	10/23/2014	< 0.060	< 0.11	NA	NA	< 0.27 H	370 H	NA	
	10/23/2014 Dup	< 0.060	< 0.11	NA	NA	< 0.26 H	360 H	NA	
	4/22/2015	< 0.42	< 0.44	NA	NA	1.2 JB	270	NA	
	10/20/2015	NA	NA	NA	NA	NA	430 D	NA	
	4/13/2016	NA	NA	NA	NA	NA	340 D	NA	
	10/27/2016	NA	NA	NA	NA	NA	290 D	NA	
	4/11/2017	NA	NA	NA	NA	NA	< 1.0	NA	
	10/3/2017	NA	NA	NA	NA	NA	390 D	NA	
	4/25/2018	NA	NA	NA	NA	NA	140	NA	
	10/1/2018 4/15/2019	NA NA	NA NA	NA NA	NA NA	NA NA	204 < 1.0	NA NA	
	10/15/2019	NA	NA	NA	NA	NA	178 D	NA	
	4/9/2020	NA	NA	NA	NA	NA	1.43	NA	

Table 3-2 WIA Upper Sand Analytical Data (10/2007 – 4/2022) Emerald Kalama Chemical, Kalama, WA

10/6/2021	NA	NA	NA	NA	NA	<0.480	NA
4/19/2022	NA	NA	NA	NA	NA	< 1.0 U	NA

NA

NA

NA

NA

NA

NA

NA

NA

10/20/2020

4/12/2021

NA

NA

280

<0.478

NA

NA

			(µg/L) 8021B / 8260)	SVOCs (μg/L))				
	Date	Benzene	Toluene	Benzoic Acid	Biphenyl	Bis (2- ethylhexyl) phthalate	Diphenyl Oxide	Phenol
Well	Cleanup Level	1.2	2,000	24,590	230	1.8	410	2,560
	7/25/2007	< 1 U	< 1 U	< 9.5 U	< 0.95 U	< 0.95 U	550 D	38
	10/23/2007	< 1.0	< 1.0	< 9.0 UJ	< 0.95	< 0.95	600	13
	1/17/2008	< 1 U	< 1 U	< 11 U	< 1.1 U	< 1.1 U	330 D	8.4
	4/15/2008	< 1.0	< 1.0	< 9.5 UJ	< 0.95	< 0.95	490	5.2
	7/28/2008	< 1.0	< 1.0	< 9.5	< 0.95	< 0.95	950	19
	10/24/2008	140	1,500	27 J	120	< 0.95	1,100	16
	11/3/2008	< 1.0	< 1.0	< 10 J	< 1	< 1	140	38
	1/30/2009	< 1.0	< 1.0	< 9.8	< 0.98	< 0.98	710	24
	4/22/2009	< 1.0	< 1.0	< 11 J	< 1.1	3.7	570	15
	10/21/2009 *	NS	NS	NS	NS	NS	NS	NS
	4/21/2010	< 1.0	< 1.0	< 9.0 J	< 0.97	< 0.97	290	15
	10/19/2010	< 1.0	< 1.0	< 9.6	< 0.96	< 0.96	390	9.3
North Sump	10/11/2011	<1.0	< 1.0	<9.7	<0.97	<0.97	470	8.5
	4/19/2012	<1.0	< 1.0	<9.5	<0.95	<2.4	320	6.2
	11/7/2012	<1.0	< 1.0	<9.5 UJ	< 0.95	<0.95	380	11
	4/10/2013	<1.0	<1.0	<9.5	<0.95	<0.95	310	5.2
	10/16/2013	<1.0	<1.0	<9.5 UJ	<0.95	< 0.95	460	7.7
	4/14/2014	< 1.0	< 1.0	<9.7	<0.97	<0.97	340	8.7
	10/21/2014	< 0.060	< 0.11	NA	NA	< 0.30	210	NA
	4/20/2015	< 0.42	< 0.44	NA	NA	1.1 JB	370	NA
	10/19/2015	NA	NA	NA	NA	NA	180	NA
	4/12/2016	NA	NA	NA	NA	NA	140	NA
	10/24/2016	NA	NA	NA	NA	NA	99	NA
	4/10/2017	NA	NA	NA	NA	NA	130	NA
	10/4/2017	NA	NA	NA	NA	NA	190	NA
	4/23/2018	NA	NA	NA	NA	NA	190	NA
	10/2/2018	NA	NA	NA	NA	NA	268	NA
	10/2/2010			mping & Samplir				
	7/25/2007	2.2	1.9	< 9.6 U	<0.96 U	<0.96 U	73 D	28
	10/23/2007	< 1.0	2.5	< 9.0 UJ	<0.97	< 0.97	1.5 J	< 2.0
	1/17/2008	< 1 U	< 1 U	< 9.5 U	<0.95 U	<0.95 U	< 0.95	< 1.9 U
	4/15/2008	< 1.0	1.7	< 9.6 UJ	<0.96	<0.96	140	12
	7/28/2008	10	3	< 9.6	<0.96	<0.96	370	5.5
	1/30/2009	< 1.0	700	< 9.9	<0.99	<0.99	380	7.9
	4/22/2009	< 1.0	4.8	< 9.6 J	<0.96	<0.96	620	6.4
	10/21/2009 *	NS	NS	NS	NS	NS	NS	NS
	4/21/2010	< 1.0	< 1.0	< 9.0 J	< 0.97	<0.97	130 J	13 J
	10/19/2010	< 1.0	< 1.0	< 9.6	<0.96	<0.96	38	9.7
	10/11/2011	<1.0	<1.0	<9.5	<0.95	<0.95	550	11
South Sump	4/19/2012	<1.0	3.4	<9.7	<0.97	<0.97	110	2.8
	11/7/2012	<1.0	< 1.0	<9.5 UJ	<0.95	<0.95	130	2.2
	4/10/2013	<1.0	<1.0	11	<0.95	<0.95	76	6.7 J
	10/16/2013	<1.0	<1.0	<9.5 UJ	<0.95	<0.95	230	5.2
	4/14/2014	<1.0	<1.0	<9.5	<0.95	<0.95	130	3.3
	10/21/2014	< 0.060	< 0.11	NA	NA	< 0.26	200	NA
	4/20/2015	< 0.42	< 0.44	NA	NA	1.1 JB	160	NA
	10/19/2015	NA	NA	NA	NA	NA	320	NA
	4/12/2016	NA	NA	NA	NA	NA	1.6	NA
	10/24/2016	NA	NA	NA	NA	NA	< 0.95	NA
	4/10/2017	NA	NA	NA	NA	NA	< 0.96	NA
	10/4/2017	NA	NA	NA	NA	NA	< 0.90 65	NA
	4/23/2018	NA	NA	NA	NA	NA	71	NA
	10/2/2018	NA	NA	NA	NA	NA	63	NA
	10/2/2010							
		Ceased Sump Pumping & Sampling, Maintain Functionality - Ecy Approval 11-14-18						

Table 3-2 WIA Upper Sand Analytical Data (10/2007 – 4/2022) Emerald Kalama Chemical, Kalama, WA

 Ceased Sump Pumping & Sampling, Maintain Functionality - Ecy Approval 11-14-18

 Notes:
 < - Constituent Non-detect</td>

 Bold indicates detection.

 Dup - Field Duplicate Sample.

 NA - Not analyzed, Ecy Apprvl.

 J - Estimated concentration.

 H - Sample prep or analyzed beyond specified holding time

 Bold and shaded
 Detection above cleanup level.

 * NS - Not sampled due to lack of water.

 EPA = U.S. Environmental Protection Agency; µg/L = micrograms per liter; SVOC = semivolatile organic compound; WIA = West Impacted Area

Table 4-1WIA Intermediate Sand Aquifer Groundwater Monitoring Program 2021 - 2022Emerald Kalama Chemical, Kalama, WA

Well Location	Sampling Frequency	Field Parameters	Analytical Parameters	Gauging Frequency
KC-6, PZ-117, PZ-118, Columbia River	_	_	_	
ISRW-1, ISRW-2B, ISRW-3, ISRW-4, ISRW-5, ISRW-6, ISRW-7, ISRW-8, ISRW-9, ISRW-10	Quarterly (Per EKC Temporary Request)	_	Benzene, Toluene (8021)	Quarterly (Per EKC Temporary Request)
KC-14, MW-239, MW-243, MW-250	Semi-Annual	Temperature, pH, ORP, conductivity, turbidity, DO	Benzene, Toluene (8260)	

Notes:

DO = dissolved oxygen; ORP = oxidation reduction potential; WIA = West Impacted Area

Table 4-2WIA Intrmdiate Sand Aquifer Anlyticl Data (10/2007 - 4/2022)Emerald Kalama Chemical, Kalama, WA

	Dete	VOCs ((EPA Method			
Well	Date	Benzene	Toluene		
	Cleanup Level	1.2	2,000		
	7/25/2007	290 D	2,000 D		
	7/25/2007 Dup	310 D	33,000 D		
	10/23/2007	380	61,000		
	10/23/2007 Dup	370	59,000		
	1/17/2008	390 D	65,000 D		
	1/17/2008 Dup	390 D	69,000 D		
	4/15/2008 4/15/2008 Dup	350 360	55,000 54,000		
	7/28/2008	550	56,000		
	7/28/2008 Dup	570	63,000		
	10/23/2008	250	27,000		
	10/23/2008 Dup	240	29,000		
	1/30/2009 1/30/2009 Dup	360 340	35,000		
	1/30/2009 Dup 4/20/2009	100	35,000 26,000 J		
	4/20/2009 Dup	110	45,000 J		
	10/21/2009	400	58,000		
	10/21/2009 Dup	410	58,000		
	4/21/2010	430	47,000		
ISRW-1	4/21/2010 Dup	440	49,000		
	10/19/2010 10/11/2011	190 250	23,000 49,000		
	10/11/2011 Dup	260	49,000		
	4/19/2012	200	36,000		
	4/19/2012 Dup	200	35,000		
	11/6/2012	153	40,600		
	11/6/2012 Dup	170	45,700		
	4/9/2013	230	66,000		
	4/9/2013 Dup 10/16/2013	230 160	66,000 49,000		
	10/16/2013 Dup	150	43,000		
	4/14/2014	240	55,000		
	4/14/2014 Dup	240	55,000		
	10/21/2014	< 600	68,000		
	4/20/2015	170	46,000		
	10/19/2015	110 D	33,000 D		
	4/11/2016 10/24/2016	200 D 120 D	61,000 D 48,000 D		
	4/10/2017	240 D	63,000 D		
	10/4/2017	160 D	48,000 D		
	4/23/2018 all on	200 D	72,000 D		
	4/26/2018 5-10off	270 D	110,000 D		
	5/16/2018 HiRVR 8/6/2018 Smr1/4	280 D 107	110,000 D 35,800 D		
	10/2/2018 31111/4	99 D	43,100 D		
	1/16/2019	87	51,800 D		
	4/12/2019	166	92,500		
	7/30/2019	45.0	12,300 D		
	10/15/2019 1/7/2020	30.3 91.2	11,100 D 45,800 D		
	4/7/2020 VOA#1(4/15)	37.3	43,800 D 4,140 D		
	4/7/2020 VOA#3(4/24)	NA	21,100 H		
	7/28/2020	89.8	19,700 D		
	10/19/2020	39.0	16,100 D		
	10/19/2020 Dup 1/15/2021	36.0 68.6	11,400 D 51,400 D		
	1/15/2021 Dup	86.6	50,600 D		
	4/8/2021	23.8 D	13,600 D		
	7/16/2021(ALS 8260)	34	26,000		
	7/16/2021(Spclty 8021)	34.2 D	21,900 D		
	10/1/2021(Spclty 8260)	<300 DQ	1,720 D 1.870 D		
	10/1/2021 Dup Spclty 1/18/2022 (ALS)	6.8 D <50 U,D	1,870 D 30,000 D		
	1/18/2022 Dup ALS (11)	<50 U,D	32,000 D		
	4/14/2022	<25 U,D	11,000 D		
Table 4-2WIA Intrmdiate Sand Aquifer AnlyticI Data (10/2007 - 4/2022)Emerald Kalama Chemical, Kalama, WA

	Date	9	(E			μg/L) 8021B/8260))		
Well	Dut	6	•	Benzen		Toluene			
	Cleanup	Level		1.2	-	2,000			
	7/25/2007			14	D	8,500			
	10/23/2007		-	7.6		3,000			
	1/17/2008			45	D	22,000			
	4/15/2008		-	60		20,000			
	7/28/2008			150		36,000			
	10/23/2008 1/30/2009		-	130 77		31,000 33,000			
	4/20/2009			230		150,000			
	10/21/2009		-	330		260,000	_		
	4/21/2010 10/11/2011			470		720,000			
	4/19/2012			95 300		83,000 23,000			
	11/6/2012			71		53,900			
	4/9/2013			130		61,000			
	10/16/2013			97		68,000			
	4/14/2014 10/21/2014		<	94 600		72,000 75,000			
	4/20/2015		`	94	J	72,000			
	10/19/2015			47	D	18,000			
	4/11/2016			160	D	110,000			
ISRW-2B	10/24/2016 4/10/2017		<	20 110	D	11,000 92,000			
	10/4/2017			130	D	74,000			
	4/23/2018	all on	-	54	D	9,800			
	4/26/2018	5-10off		130	D	89,000			
	8/6/2018	Smr1/4		58 59	_	23,600			
	10/2/2018 1/16/2019			96	D	43,200 77,200			
	4/12/2019			75		52,900			
	7/30/2019			42.6		16,600			
	10/15/2019			62.8		18,500			
	1/7/2020 4/7/2020 VOA	#1(4/15)		56.1 100		32,500 5,760			
	4/7/2020 VOA	· · /		NA		50,700			
	7/28/2020			53.3		18,400			
	10/19/2020			33.1		8,090			
	1/15/2021 4/8/2021			45.9 57.6		54,200 20,200			
	7/16/2021			68.4	D	32,500			
	10/1/2021	Spclty	-	96.0	D	17,000			
	1/18/2022	ALS ALS		69	D	37,000			
	4/14/2022 7/25/2007	AL5		27 150	D D	8,600 110,000			
	10/23/2007			110		82,000			
	1/17/2008			210	D	130,000	_		
	4/15/2008			150		100,000	_		
	7/28/2008 10/23/2008		<	150 500		110,000 140,000	_		
	1/30/2009		-	98		97,000	_		
	4/20/2009			13		14,000			
	10/21/2009			9.4		25,000			
	4/21/2010 10/19/2010			<u>17,000</u> 13		980,000 34,000			
ISRW-3	10/11/2011			20		47,000	_		
	4/19/2012			70		65,000	_		
	11/6/2012			25		45,000	_		
	4/9/2013 10/16/2013			50 16		58,000 22,000			
	4/14/2014			23		33,000	_		
	10/21/2014		<	600		47,000	_		
	4/20/2015			56	J	51,000	_		
	10/19/2015 4/11/2016			55 120	D D	71,000 150,000			
	4/11/2010			290	D	200,000			
	4/10/2017		<	50	U	74,000	_		
	10/4/2017			140	D	100,000	_		
	4/23/2018 4/26/2018	all on 5-10off	< <	50 100	U U	19,000			
	4/26/2018 8/6/2018	5-100ff Smr1/4	Ì	54	U	67,000 23,700	_		
	10/2/2018			54 54	D	30,800	_		
	1/16/2019			129		93,000	_		
	4/12/2019 7/30/2019			337		172,000			
	1/30/2019			97.4		63,400			

Table 4-2WIA Intrmdiate Sand Aquifer Anlyticl Data (10/2007 - 4/2022)Emerald Kalama Chemical, Kalama, WA

	Data		(F			(µg/L) 8021B/8260)					
Well	Date			Benzene		Toluene					
	Cleanun Le	wol		1.2	;	2,000					
	Cleanup Le	vei				•					
	1/7/2020 4/7/2020 VOA#1	(4/15)		204 117	D	142,000 17,200	D D				
	4/7/2020 VOA#3	()		NA		81,400	Н				
	7/28/2020			157		44,300	D				
	10/19/2020 1/15/2021			92.4 206	D	56,400 204,000	D D				
	4/8/2021			92.5	D	61,400	D				
	4/8/2021	Dup		106	D	72,500	D				
ISRW-3	7/16/2021		-	243	D	133,000	D				
	10/1/2021 1/18/2022	(ALS)		58.0 150	D D	17,800 100,000	D D				
	4/14/2022	ALS		120	D	73,000	D				
	7/25/2007			35	D	20,000	D				
	10/23/2007			350		65,000	_				
	1/17/2008 4/15/2008			130 430	D	34,000 77,000	D				
	7/28/2008			48		24,000					
	10/23/2008			130		55,000					
	1/30/2009			120		59,000					
	4/20/2009 10/21/2009			28 3.1		10,000 4,700					
	4/21/2010			3.7		7,300					
	10/19/2010			7.8		3,200					
ISRW-4	10/11/2011		/	20		14,000					
	4/19/2012 11/6/2012		< <	1.0 0.5		650 29					
	4/9/2013			0.57		200					
	10/16/2013		<	1.0		59					
	4/14/2014 10/21/2014		< <	1.0 600		35 32,000					
	4/20/2015			15		6,400					
	10/19/2015			8.8	D	29,000	D				
	4/11/2016			2.1		1,000	D				
	10/24/2016 4/10/2017		<	14 0.50	U	3,100 < 1.0	D				
	10/4/2017		` <	50	U	9,000	D				
	4/23/2018	all on	<	25	U	18,000	D				
	4/26/2018	5-10off	<	50	U	15,000	D				
	8/6/2018 10/2/2018	Smr1/4		6 34	D	526 6,280	D				
	1/16/2019			167	D	34,600	D				
	4/12/2019			140		27,800					
	7/30/2019			62.2	D	1,440	D				
	10/15/2019 1/7/2020			41.2 94.5	D	261 10,000	D				
	4/7/2020 VOA#1	(4/15)		30.6	<u> </u>	2,200	D				
	4/7/2020 VOA#3	()		NA		5,640	Η				
	7/28/2020			6.03		1,250	D				
	10/19/2020 1/15/2021			96.9 0.918		25,100 40	D				
	4/8/2021			6.76	D	40 296	D				
	7/16/2021			25.8	D	6,080	D				
	10/1/2021			7.30	-	78.8	-				
	1/18/2022 4/14/2022	(ALS) ALS		<u>10</u> 11	D D	3,800 690	D				
	7/25/2007	,		110	D	37,000	D				
	10/23/2007			110		45,000					
	1/17/2008			170	D	62,000	D				
	4/15/2008 7/28/2008			140 360		68,000 110,000					
ISRW-5	10/23/2008			130		47,000					
	1/30/2009			100		33,000					
	4/22/2009			79		52,000					
	10/21/2009 4/21/2010			40 7.5		20,000 2,400					
	-			26		7,900					
	10/19/2010			36		15,000					
	10/11/2011										
	10/11/2011 4/19/2012			30		12,000					
	10/11/2011 4/19/2012 11/6/2012			30 402		48,500					
	10/11/2011 4/19/2012			30		48,500 46,000					
	10/11/2011 4/19/2012 11/6/2012 4/9/2013 10/16/2013 4/14/2014			30 402 94 160 37		48,500 46,000 92,000 16,000					
	10/11/2011 4/19/2012 11/6/2012 4/9/2013 10/16/2013 4/14/2014 10/21/2014		<pre></pre>	30 402 94 160 37 600		48,500 46,000 92,000 16,000 19,000					
	10/11/2011 4/19/2012 11/6/2012 4/9/2013 10/16/2013 4/14/2014 10/21/2014 4/20/2015		<pre></pre>	30 402 94 160 37 600 76	J	48,500 46,000 92,000 16,000 19,000 25,000					
	10/11/2011 4/19/2012 11/6/2012 4/9/2013 10/16/2013 4/14/2014 10/21/2014		v	30 402 94 160 37 600	J D	48,500 46,000 92,000 16,000 19,000	D				
	10/11/2011 4/19/2012 11/6/2012 4/9/2013 10/16/2013 4/14/2014 10/21/2014 4/20/2015 10/19/2015			30 402 94 160 37 600 76 84		48,500 46,000 92,000 16,000 19,000 25,000 17,000					

Table 4-2WIA Intrmdiate Sand Aquifer Anlyticl Data (10/2007 - 4/2022)Emerald Kalama Chemical, Kalama, WA

	Date			µg/L) 8021B/8260	١				
Well	Dale	Benzene		Toluene					
	Cleanup Level	1.2		2,000					
	-		5		-				
	10/4/2017 4/23/2018	80 190	D D	53,000 110,000					
	8/6/2018 Smr1/4	88	U	59,700	- L C				
	10/2/2018	72	D	106,000	C				
	1/16/2019	79		60,300	C				
	4/12/2019	106		90,200					
	7/30/2019	72.5		56,000					
	10/15/2019 1/7/2020	20.9 58.6		15,900 71,900					
	4/7/2020 VOA#1(4/15)	42.2		11,000					
	4/7/2020 VOA#3(4/24)	NA		93,800	ŀ				
ISRW-5	5/12/20 VOA#1	66.9		74,700	C				
	5/12/20 VOA #3	68.4		74,300	C				
	7/28/2020	110		45,400					
	10/19/2020 1/15/2021	47.2 256	D	28,900 158,000	C C				
	4/8/2021	25.4	D	46,400					
	7/16/21 ALS 8260	31		38,000	_				
	7/16/21 Spclty 8021	27.6	D	36,300	C				
	10/1/2021 Spclty 8260	<30.0	D	21,300	C				
	1/18/2022 ALS	<100	U,D	78,000					
	4/14/2022 ALS 7/25/2007	<100 150	U,D	34,000 59,000					
	10/23/2007	150	U	59,000 47,000	L				
	1/17/2008	150	D	58,000	C				
	4/15/2008	190		69,000	_				
	7/28/2008	140		53,000					
	10/23/2008	< 200		62,000					
	1/30/2009	140		61,000					
	4/20/2009	15		16,000					
	10/21/2009	1.4		270					
	4/21/2010 10/19/2010	56		22,000					
ISRW-6	10/11/2011	49 4.3		42,000 1,000					
10110-0	4/19/2012	18		14,000					
	11/7/2012	2.0		1,420					
	4/9/2013	8.6		6,900					
	10/16/2013	1.1		1,200					
	4/14/2014	6.1		8,100					
	10/21/2014	1.3	J	890					
	4/20/2015	0.73	J	790					
	10/19/2015 4/11/2016	1.7 3.7	D	270 2,300					
	10/24/2016	140	D	57,000					
	4/12/2017	< 0.50	U	< 1.0	ι				
	10/4/2017	< 50	U	10,000	C				
	4/23/2018	1.8		1,400	C				
	5/16/2018 HiRvr	1.1		1,400	C				
	8/6/2018 Smr1/4	0.6		377					
	10/2/2018 1/16/2019	2.7 34	D	2,220	C C				
	4/12/2019	34	U	10,100 5,940	-				
	7/30/2019	45.4		2,470	D				
	10/15/2019	33.2		1,860	C				
	1/7/2020	7.90	D	341	C				
	4/7/2020 VOA#1(4/15)	1.35		120					
	4/7/2020 VOA#3(4/24) 7/28/2020	NA 0 750		630 1 340	F				
	10/19/2020	0.750 0.710		1,340 365	L				
	1/15/2021	< 3.00	D	3,120	C				
	4/8/2021	3.94	D	2,990	C				
	7/16/2021	57.5	D	16,900	C				
	10/1/2021	54.0	D	7,520	D				
	1/18/2022 ALS	46	D	18,000					
	4/14/2022 ALS 7/25/2007	140	D	31,000 24,000					
	10/23/2007	1,100 350		24,000 9,400	-				
	1/17/2008	540	D	19,000	0				
ISRW-7	4/15/2008	200		11,000					
	7/28/2008	520		32,000					
	10/23/2008	280		14,000					
	1/30/2009	120		9,100 5 900					
	4/20/2009 10/21/2009	83 3,400		5,900 45,000	_				
	4/21/2010	2,700		30,000					
	10/19/2010	17,000		18,000					
		4,000		27,000	-				

Table 4-2WIA Intrmdiate Sand Aquifer Anlyticl Data (10/2007 - 4/2022)Emerald Kalama Chemical, Kalama, WA

	Date	(EPA	VOCs (Method	(µg/L) 8021B/8260)					
Well	Date	Benze		Toluene					
	Cleanup Level	1.2		2,000					
	4/19/2012	1,10							
	11/6/2012	1,10		18,000 18,700					
	4/9/2013	180		9,900					
	10/16/2013	380		6,600					
	4/14/2014	900		14,000					
	10/21/2014	530)	1,800					
	4/20/2015	12		2,100					
	10/19/2015	170		1,700	C				
	4/11/2016 10/24/2016	54		4,300					
	4/10/2017	92 190		1,600 10,000					
	10/4/2017	190		2,800					
ISRW-7	4/23/2018	72		330	2				
	5/16/2018 HiRvr	270		1,700	C				
	8/6/2018 Smr1/4	8		46					
	10/2/2018	1.1		< 1.0					
	1/16/2019	0.6		< 1.00					
	4/12/2019	< 0.30		< 1.00					
	7/30/2019	0.50		3.24					
	10/15/2019	< 0.30		19.7 730	C				
	1/7/2020 4/7/2020 VOA#1(4/15)	7.2 4.5		124					
	4/7/2020 VOA#1(4/13) 4/7/2020 VOA#3(4/24)	4.5 NA		372	ŀ				
	7/28/2020	0.3		123	C				
	10/19/2020	< 0.30		28.7					
	1/15/2021	< 0.30	0	0.515					
	4/8/2021	< 0.30		< 0.500					
	7/16/2021	< 0.30		1.31					
	10/1/2021	< 0.30		< 1.00					
	1/18/2022 ALS 4/14/2022 ALS	< 0.50 < 0.50		0.66 < 0.50					
	4/14/2022 ALS	< 0.50 90		66,000					
	10/21/2009	45		50,000					
	4/21/2010	71		57,000					
	10/19/2010	31		72,000					
	10/11/2011	52		54,000					
	4/19/2012	53		40,000					
	11/6/2012	69		51,200					
ISRW-8	4/9/2013	58		33,000					
13810-0	10/16/2013	64		39,000					
	4/14/2014	61		40,000					
	10/21/2014	< 600		36,000					
	4/20/2015	84		51,000					
	10/19/2015	58		39,000					
	4/11/2016	< 100		79,000	0				
	10/24/2016 4/10/2017	140 17		74,000	0 0 0				
	4/10/2017 10/4/2017	17		20,000 84,000					
	4/23/2018	< 100		44,000					
	4/26/2018 5-10off	< 100 < 100		69,000					
	8/6/2018 Smr1/4	127		49,500					
	10/2/2018	170		61,800	0				
	1/16/2019	148	3	67,400	C				
	4/12/2019	164		107,000					
	7/30/2019	102		49,100	C				
	10/15/2019	130		34,800	_				
	1/7/2020	107		69,700	0 7				
	4/7/2020 VOA#1(4/15) 4/7/2020 VOA#3(4/24)	115 NA		7,240 62,700	С Н				
	7/28/2020	NA 111		33,200					
	10/19/2020	115		31,700					
	1/15/2021	81.		43,400	- C				
	4/8/2021	64.		45,800	2				
	7/16/2021 ALS 8260	70		52,000					
	7/16/21 Spclty 8021	71.		44,000					
	10/1/2021	60.		17,000					
	1/18/2022 ALS	77		45,000	0 0				
	4/14/2022 ALS	56 120		39,000 62,000	L				
	4/20/2009 10/21/2009	120 71	,	62,000 36,000	_				
	4/21/2010	81		42,000					
	10/19/2010	71		55,000					
ISRW-9	10/11/2011	4.1		920					
-	4/19/2012	22		16,000					
	11/6/2012	40		20,100					
	4/9/2013	47		35,000					
	10/16/2013	83		73,000					

Table 4-2WIA Intrmdiate Sand Aquifer Anlyticl Data (10/2007 - 4/2022)Emerald Kalama Chemical, Kalama, WA

	Date		/OCs (ethod	µg/L) 8021B/8260)					
Well	Dale	Benzer		Toluene					
	Cleanup Level	1.2		2,000					
	4/14/2014	39		35,000					
	10/21/2014	< 600		30,000					
	4/20/2015	79	J	64,000					
	10/19/2015	55	D	44,000 C					
	4/11/2016 10/24/2016	< 100 77	D	53,000 E 95,000 E					
	4/10/2017	19	D	19,000 E					
	10/4/2017	< 50	U	22,000 C					
	4/23/2018	< 100	U	83,000 E					
	5/16/2018 HiRvr 8/6/2018 Smr1/4	< 200 27	U	59,000 D 11,500 D					
	10/2/2018 31111/4	36		12,600 E					
	1/16/2019	28		25,300 C					
ISRW-9	4/12/2019	81.3		77,900					
	7/30/2019 10/15/2019	20.3 58.5		8,570 E 45,800 E					
	1/7/2020	64.4		45,800 L 71,700 D					
	4/7/2020 VOA#1(4/15)	45.7		3,440 C					
	4/7/2020 VOA#3(4/24)	NA		33,300 H					
	7/28/2020	31.2		18,600 D					
	10/19/2020 1/15/2021	26.3 42.0		14,200 D 48,800 D					
	4/8/2021	60.8	D	40,000 L 40,900 L					
	7/16/2021	9.98	D	7,430 D					
	10/1/2021 Spclty	< 15.0	D	4,360 E					
	1/18/2022 ALS	< 25	U,D	17,000 D					
	4/14/2022 ALS 4/20/2009	36 180	D	8,700 D					
	10/21/2009	3.8		38,000 1,400					
	4/21/2010	2		380					
	10/19/2010	< 1.0		63					
	10/11/2011	16		1,100					
	4/19/2012	85		15,000					
	11/6/2012 4/9/2013	< 1.0 34		2.5 3,300					
ISRW-10	10/16/2013	96		8,300					
	4/14/2014	< 1.0		7.7					
	10/21/2014	3.9		140					
	4/20/2015	< 0.42	_	13					
	10/19/2015 4/11/2016	52 49	D D	3,800 E 4,700 E					
	10/24/2016	190	D	29,000 D					
	4/10/2017	29		4,300 C					
	10/4/2017	110	D	43,000 E					
	4/23/2018	220	D	30,000 E					
	8/6/2018 10/2/2018	36 151		2,900 D 18,800 D					
	1/16/2019	204	D	78,300 E					
	4/12/2019	385		113,000					
	7/30/2019	160	D	43,900 E					
	10/15/2019	82.9	_	22,600 D					
	1/7/2020 4/7/2020 \/OA#1(4/15)	243	D	80,200 E					
	4/7/2020 VOA#1(4/15) 4/7/2020 VOA#3(4/24)	72.5 NA		4,300 E 29,300 ⊦					
	7/28/2020	319		34,900 C					
	10/19/2020	135	D	328,000 D					
	1/15/2021	145		50,200 C					
	4/8/2021	53.8	D	20,600 E					
	7/16/2021 ALS 8260 7/16/2021 Spclty 8021	150 148	D	74,000 61,600 D					
	10/1/2021 Spelly 8021	140	D	35,900 D					
	1/18/2022 ALS	110	D	47,000 D					
	4/14/2022 ALS	63	D	45,000 D					
_	10/24/2007	2.9		940					
	4/16/2008 10/27/2008	< 1.0 3.1		180 1,100					
	4/22/2009	3.1 < 1.0		1,100 99					
	10/20/2009	1.3		1,300					
	4/23/2010	0.92		690					
	10/19/2010	14		270,000					
	10/10/2011	< 1.0		420					
	4/18/2012 11/7/2012	1.4 < 1.0	J	140 J < 1.0					
		< 1.0 < 0.5		< 1.0 200					
KC-14	4/10/2013								
KC-14	4/10/2013 10/17/2013	4.2		88					
KC-14									
KC-14	10/17/2013	4.2		88					

Table 4-2WIA Intrmdiate Sand Aquifer Anlyticl Data (10/2007 - 4/2022)Emerald Kalama Chemical, Kalama, WA

	Dat	٥	((µg/L) 8021B/8260)					
Well	Dat	e		Benzene		Toluene					
	Cleanup	Level		1.2	-		2,000				
	4/22/2015	Dup	<	0.42		<	0.44	-			
	10/20/2015	Bup	<	1.0			<u> </u>	D			
	4/12/2016		<	1.0			20				
	10/24/2016		<	1.0			1.9	_			
	4/12/2017		_	2.5			160	D			
	10/4/2017 4/25/2018		< <	0.50		<	1.0 20				
	4/25/2018		`	NS			NS				
	4/15/2019			0.420			7.15				
	10/15/2019		<	0.300			1.14				
KC-14	4/9/2020		<	0.300			9.52				
	10/21/2020 4/13/2021		< <	0.300		< <	1.00 1.00				
	10/6/2021		/	0.300		/ /	1.00				
	4/19/2022			2.8			15				
	10/24/2007			660			120,000				
	4/16/2008			1200			190,000				
	10/27/2008		-	580		-	100,000				
	4/22/2009 10/20/2009		< <	1.0 1.0		<	1.0 1.4				
	4/23/2010			9.3			3,500				
	10/19/2010			7.7			260				
	10/11/2011			310			55,000				
	4/18/2012		<	1.0		<	1.0	-			
	11/7/2012 4/10/2013			413 71			35,300 390	D			
MW-239	10/17/2013		-	180			15,000	D			
	4/16/2014		<	1.0		<	1.0				
	10/23/2014			5.2			0.62				
	4/23/2015			80	J		8,400	D			
	10/20/2015			280	D		8,200	D			
	10/20/2015 4/12/2016	Dup		290 90	D D		8,500 810	D			
	4/12/2016	Dup		87	D		1,000	D			
	10/24/2016	Dup		340	D		43,000	D			
	10/24/2016	Dup		360	D		43,000	D			
	4/11/2017		<	0.50	U	۷	1.0	U			
	4/11/2017	Dup MV	<	0.50	U	<	1.0	U			
	10/3/2017 4/25/2018		-	580 130	D D		140,000 3,100	D D			
	4/25/2018	Dup MV	/9	140	D		3,200	D			
	10/3/2018			320	D		32,700	D			
	10/3/2018	Dup 97		370	D		40,200	D			
	4/15/2019	D 07		454	D		39,700	D			
	4/15/2019 10/15/2019	Dup 97		450	D		39,100	D D			
	10/15/2019	Dup 97		178 175			15,700 15,400	D			
	4/9/2020	Dup 01		160			11,200	D			
	4/9/2020	Dup 97	<	0.300			24.4				
	10/21/2020			341	D		17,300	D			
	10/21/2020	Dup 97		407	D		17,600	D			
	4/13/2021 10/6/2021		<	426 60.0	D DQ		32,300 1,470	D			
	10/6/2021	Dup97		54.0	DQ		1,470	D			
						I		D			
	4/19/2022	I -		91	D		2,200				
	4/19/2022	Dup97		91 87			2,100	D			
	4/19/2022 10/24/2007	•	<	91 87 1.0	D	<	2,100 1.0	D			
	4/19/2022 10/24/2007 4/17/2008	•	<	91 87 1.0 1.0	D	<	2,100 1.0 1.0	D			
	4/19/2022 10/24/2007 4/17/2008 10/27/2008	•	< <	91 87 1.0 1.0 1.0	D	v v	2,100 1.0 1.0 1.0	D			
	4/19/2022 10/24/2007 4/17/2008	•	<	91 87 1.0 1.0	D	<	2,100 1.0 1.0	D			
	4/19/2022 10/24/2007 4/17/2008 10/27/2008 4/22/2009 10/20/2009 4/22/2010	•	v v v v v	91 87 1.0 1.0 1.0 1.0 1.0 1.0 1.0	D	v v v v v	2,100 1.0 1.0 1.0 1.0 1.0 1.0 1.0				
	4/19/2022 10/24/2007 4/17/2008 10/27/2008 4/22/2009 10/20/2009 4/22/2010 10/19/2010	•	<u>v v v v v v</u>	91 87 1.0 1.0 1.0 1.0 1.0 1.0 1.0	D	v v v v v v	2,100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				
	4/19/2022 10/24/2007 4/17/2008 10/27/2008 4/22/2009 10/20/2009 4/22/2010 10/19/2010 10/11/2011	•	<u>v v v v v v v</u>	91 87 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	D	v v v v v v v	2,100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				
Μ\Δ/_242	4/19/2022 10/24/2007 4/17/2008 10/27/2008 4/22/2009 10/20/2009 4/22/2010 10/19/2010 10/11/2011 4/18/2012	•	<u>v v v v v v</u>	91 87 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	D	v v v v v v	2,100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				
MW-243	4/19/2022 10/24/2007 4/17/2008 10/27/2008 4/22/2009 10/20/2009 4/22/2010 10/19/2010 10/11/2011 4/18/2012 11/7/2012	•	v v v v v v v v	91 87 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	D	v v v v v v v v	2,100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				
MW-243	4/19/2022 10/24/2007 4/17/2008 10/27/2008 4/22/2009 10/20/2009 4/22/2010 10/19/2010 10/11/2011 4/18/2012	•	v v v v v v v v v	91 87 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	D	v v v v v v v v v	2,100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				
MW-243	4/19/2022 10/24/2007 4/17/2008 10/27/2008 4/22/2009 10/20/2009 4/22/2010 10/19/2010 10/11/2011 4/18/2012 11/7/2012 4/10/2013 10/17/2013 4/15/2014	•	v v v v v v v v v v	91 87 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	D	v v v v v v v v v v	2,100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				
MW-243	4/19/2022 10/24/2007 4/17/2008 10/27/2008 4/22/2009 10/20/2009 4/22/2010 10/19/2010 10/11/2011 4/18/2012 11/7/2012 4/10/2013 10/17/2013 4/15/2014 10/22/2014	•	v v v v v v v v v v v v v	91 87 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	D	v v v v v v v v v v v v v	2,100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				
MW-243	4/19/2022 10/24/2007 4/17/2008 10/27/2008 4/22/2009 10/20/2009 4/22/2010 10/19/2010 10/11/2011 4/18/2012 11/7/2012 4/10/2013 10/17/2013 4/15/2014 10/22/2014 4/21/2015	•	v v v v v v v v v v v v v v	91 87 1.0 0.06 0.42	D	v v v v v v v v v v v v v v	2,100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				
MW-243	4/19/2022 10/24/2007 4/17/2008 10/27/2008 4/22/2009 10/20/2009 4/22/2010 10/19/2010 10/11/2011 4/18/2012 11/7/2012 4/10/2013 10/17/2013 4/15/2014 10/22/2014 4/21/2015 10/20/2015	•	v v v v v v v v v v v v v v v	91 87 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	D	v v v v v v v v v v v v v v v	2,100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				
MW-243	4/19/2022 10/24/2007 4/17/2008 10/27/2008 4/22/2009 10/20/2009 4/22/2010 10/19/2010 10/11/2011 4/18/2012 11/7/2012 4/10/2013 10/17/2013 4/15/2014 10/22/2014 4/21/2015	•	v v v v v v v v v v v v v v	91 87 1.0 0.06 0.42	D	v v v v v v v v v v v v v v	2,100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				
MW-243	4/19/2022 10/24/2007 4/17/2008 10/27/2008 4/22/2009 10/20/2009 4/22/2010 10/19/2010 10/11/2011 4/18/2012 11/7/2012 4/10/2013 10/17/2013 4/15/2014 10/22/2014 4/21/2015 10/20/2015 4/13/2016	•	v v v v v v v v v v v v v v v v	91 87 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	D	v v v v v v v v v v v v v v v v	2,100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				
MW-243	4/19/2022 10/24/2007 4/17/2008 10/27/2008 4/22/2009 10/20/2009 4/22/2010 10/19/2010 10/11/2011 4/18/2012 11/7/2013 10/17/2013 10/17/2013 4/15/2014 10/22/2014 4/21/2015 10/20/2015 4/13/2016 10/24/2016 4/12/2017 10/4/2017	•	v v v v v v v v v v v v v v v v v v	91 87 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	D	v v v v v v v v v v v v v v v v v v v	2,100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				
MW-243	4/19/2022 10/24/2007 4/17/2008 10/27/2008 4/22/2009 10/20/2009 4/22/2010 10/19/2010 10/11/2011 4/18/2012 11/7/2012 4/10/2013 10/17/2013 4/15/2014 10/22/2014 4/21/2015 10/20/2015 4/13/2016 10/24/2016 4/12/2017	•	v v v v v v v v v v v v v v v v v v v	91 87 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	D	v v v v v v v v v v v v v v v v v v v	2,100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				

Table 4-2WIA Intrmdiate Sand Aquifer Anlyticl Data (10/2007 - 4/2022)Emerald Kalama Chemical, Kalama, WA

	Date	VOCs (EPA Method	
Well		Benzene	Toluene
	Cleanup Level	1.2	2,000
	4/15/2019	< 0.30	< 1.00
	10/15/2019	< 0.300	< 1.00
	4/9/2020	< 0.300	< 1.00
MW-243	10/21/2020	< 0.300	< 1.00
	4/13/2021	< 0.300	7.98
	10/6/2021	< 0.300 U	< 1.00 l
	4/19/2022	< 0.50 U	< 0.50 l
	10/24/2007	< 1.0	< 1.0
	4/16/2008	< 1.0	< 1.0
	10/27/2008	< 1.0	< 1.0
	4/22/2009	< 1.0	< 1.0
	10/20/2009 4/23/2010	< 1.0 < 1.0	< 1.0 < 1.0
	10/20/2010	< 1.0	< 1.0
	10/20/2010	< 1.0	< 1.0
MW-249	4/18/2012	< 1.0	< 1.0
	11/7/2012	< 1.0	< 1.0
	4/10/2013	< 1.0	< 1.0
	10/17/2013	< 1.0	< 1.0
	4/15/2014	< 1.0	< 1.0
	10/22/2014	< 0.060	< 1.0
	4/23/2015	< 0.42	< 1.0
	10/20/2015	< 1.0	< 1.0
	4/12/2016	< 1.0	< 1.0
		g Ceased Per 1129	
	10/25/2007	< 1.0	< 1.0
	4/17/2008	< 1.0	< 1.0
	4/17/2008 Dup	< 1.0 < 1.0	< 1.0
	10/27/2008 10/27/2008 Dup	< 1.0 < 1.0	3
	10/27/2008 Dup 4/23/2009	< 1.0	< 1.0
	4/23/2009 Dup	< 1.0	< 1.0
	10/20/2009 Dup	< 1.0	< 1.0
	10/20/2009	< 1.0	< 1.0
	4/23/2010 Dup	< 1.0	< 1.0
	4/23/2010	< 1.0	< 1.0
	10/19/2010	< 1.0	< 1.0
	10/11/2011	< 1.0	< 1.0
	10/11/2011 Dup	< 1.0	< 1.0
MW-250	4/18/2012	< 1.0	< 1.0
200	11/7/2012	< 1.0	< 1.0
	4/10/2013 4/10/2013 Dup	< 1.0 < 1.0	< 1.0 < 1.0
	10/17/2013 Dup	< 1.0	< 1.0
	10/17/2013 Dup	< 1.0	< 1.0
	4/15/2014	< 1.0	< 1.0
	4/15/2014 Dup	< 1.0	< 1.0
	10/22/2014	< 0.060	< 0.1
	10/22/2014 Dup	< 0.060	< 0.1
	4/23/2015	< 0.42	< 0.4
	4/23/2015 Dup	< 0.42	< 0.4
	10/20/2015	< 1.0	< 1.0
	4/12/2016	< 73 D	< 1.0
	10/24/2016	< 1.0	< 1.0
	4/12/2017	< 0.50	< 1.0
	10/4/2017	< 0.50	< 1.0
	4/25/2018	< 1.0	< 1.0
	10/3/2018	< 0.30	13.8
	4/15/2019	< 0.30	3.47
	10/16/2019 4/9/2020	< 0.30	< 1.0 13.8
	4/9/2020 10/21/2020	< 0.300 < 0.300	13.8 < 1.00
	4/13/2021	< 0.300	< 1.00
	10/6/2021	< 0.300	< 1.00
	4/19/2022	< 0.50	< 0.50

Notes:

(1) - ISRW pump wells sampled by peristaltic pump October 2015 & April 2016

- < Result is non-detected above the laboratory reporting limit.
- < Detection limit above cleanup level.

Bold indicates detection.

- Dup Field Duplicate Sample.
- D Laboratory analtyical dilution

J - Estimated concentration.

Bold and shaded

Detection above cleanup level.

- EPA = U.S. Environmental Protection Agency; µg/L micrograms per liter;
- VOC = volatile organic compound; WIA = West Impacted Area

Table 4-3
WIA ISRW Groundwater Extraction Pump Volume Data (2021 - 2022)
Emerald Kalama Chemical, Kalama, WA

Date					Groundwa	ter Extracte	d (gallons)				
Date	ISRW-1	ISRW-2	ISRW-3	ISRW-4	ISRW-5	ISRW-6	ISRW-7	ISRW-8	ISRW-9	ISRW-10	Total
April 2022	11,144	4,610	9,130	1,440	10,840	2,576	0	9,050	3,460	9,740	61,990
March 2022	29,019	8,770	14,820	2,527	15,800	7,547	0	14,910	5,840	15,300	114,533
February 2022	1,739	5,670	7,460	1,683	10,350	4,470	0	10,410	4,380	10,700	56,862
January 2022	18,367	11,370	14,760	3,130	22,030	11,175	0	15,580	9,120	15,800	121,332
December 2021	19,654	12,630	16,419	3,590	24,993	12,315	0	17,498	10,930	17,740	135,769
November 2021	18,228	10,761	10,000	1,938	13,831	7,235	0	12,260	8,800	14,360	97,413
October 2021	10,700	6,370	7,080	1,560	6,590	2,300	0	8,320	6,000	11,050	59,970
September 2021	6,764	4,374	4,749	1,156	4,488	1,041	0	5,823	4,479	8,274	41,148
August 2021	7,259	5,426	5,941	1,364	6,312	1,059	0	6,097	5,801	9,846	49,105
July 2021	21,441	5,389	6,191	1,411	7,409	1,515	0	5,984	4,786	10,462	64,588
June 2021	25,614	10,781	11,809	2,699	16,091	3,085	0	14,606	7,384	16,938	109,007
May 2021	31,186	7,854	9,258	2,098	6,850	2,880.0	0	10,672	5,854	13,256	89,908
Total	201,115	94,005	117,617	24,596	145,584	57,198	0	131,210	76,834	153,466	1,001,625

Table 4-4WIA ISRW Discharge Analytical/Mass Removal Data (2021 - 2022)Emerald Kalama Chemical, Kalama, WA

		Мау	2021 - Octobe	er 2021			Nover	mber 2021 - Apr	il 2022		May 2021 -	April 2022
Well	Groundwater Extracted (gallons)	Avg Benz (Apr, Jul, Oct) (ug/L)	Benz Remva (lb)	Avg Toluene (Apr, Jul, Oct) (ug/L)	Toluene Remvd (lb)	Groundwater Extracted (gallons)	Avg Benz (Oct, Jan, Apr) (ug/L)	Benz Remvd (Ib)	Avg Toluene (Oct, Jan, Apr) (ug/L)	Toluene Remvd (lb)	Benz Remvd (Ib)	Toluene Remvd (lb)
ISRW-1	102,964	25	0.02	13,018	11.2	98,151	7	0.0	15,318	13.1	0.0	24
ISRW-2B	40,194	74	0.02	23,233	7.8	53,811	64	0.0	20,867	7.0	0.0	15
ISRW-3	45,028	125	0.05	71,175	26.7	72,589	109	0.0	63,600	23.9	0.1	51
ISRW-4	10,288	13	0.00	2,152	0.2	14,308	9	0.0	1,523	0.1	0.0	0
ISRW-5	47,740	25	0.01	35,500	14.1	97,844	15	0.0	44,433	17.7	0.0	32
ISRW-6	11,880	39	0.00	9,137	0.9	45,318	80	0.0	18,840	1.9	0.0	3
ISRW-7	0	0.0	0.00	0	0.0	0	0	0.0	0	0.0	0.0	0
ISRW-8	51,502	67	0.03	39,700	17.0	79,708	64	0.0	33,667	14.5	0.1	32
ISRW-9	34,304	24	0.01	17,563	5.0	42,530	12	0.0	10,020	2.9	0.0	8
ISRW-10	69,826	160	0.09	48,025	28.0	83,640	100	0.1	42,633	24.8	0.2	53
Total	413,726		0.24		111	587,899		0.2		106	0.4	217

Notes:

Averages include duplicate samples.

Average concentration values are rounded.

ISRW = intermediate sand recovery well; lb = pounds; ug/L = micrograms per liter

 Table 4-5

 WIA ISRW Discharge Available Year Mass Removal Data (Not All Years Individually Listed)

 Emerald Kalama Chemical, Kalama, WA

No. 1	Groundwater								Annual	Benzene &	& Toluene	Removal E	By ISRW W	Vell (lbs)									
Year	Extracted	ISR	W-1	ISR	W-2	ISR	W-3	ISR	W-4	ISR	W-5	ISR	W-6	ISR	W-7	ISR	W-8	ISR	W-9	ISR	W-10	То	tals
(April - April)	(gallons)	Benz	Tol	Benz	Tol	Benz	Tol	Benz	Tol	Benz	Tol	Benz	Tol	Benz	Tol	Benz	Tol	Benz	Tol	Benz	Tol	Benz	Tol
2021-2022	1,001,625	0	24	0	15	0.1	51	0	0	0	32	0	3	0	0	0.1	32	0	8	0	53	0.4	217
2020-2021	1,737,727	0.1	41	0.1	31	0.1	61	0	2	0.1	102	0	0	0	1	0.2	81	0	34	0	145	1	498
2019-2020	1,087,500	0.1	34	0.1	30	0.1	34	0	1	0	26	0	1	0	0	0.2	78	0.1	75	0	10	1	289
2018-2019	1,658,473	0.2	76	0.1	45	0.1	54	0	10	0.1	109	0	3	0.1	0	0.4	184	0	49	0	11	1	541
2017-2018	2,213,000	1	157	0	76	0	164	0	6	0	173	0	10	1	20	0	128	0	84	0	18	2	836
2016-2017	3,004,478	0	119	0	97	0	256	0	1	0	154	0	25	1	59	0	107	0	155	0	9	3	982
2015-2016	3,534,000	0	87	0	174	0	135	0	17	0	12	0	2	11	216	0	150	0	137	0	1	12	931
2014-2015	4,388,000	0	99	1	279	0	56	0	3	0	5	0	1	3	21	2	520	1	266	0	0	8	1,250
2013-2014	4,418,508	1	137	0	69	0	21	0	5	0	15	0	9	10	157	1	338	0	288	0	1	12	1,040
2012-2013	7,786,000	2	443	0	188	0	71	0	0	0	25	0	13	16	324	1	723	0	136	0	1	19	1,924
2011-2012	9,825,000	3	515	1	187	0	85	0	34	0	20	0	44	45	399	1	1,071	0	91	0	11	50	2,457
2008-2009	6,307,000	NA	373	NA	231	NA	122	NA	103	NA	181	NA	159	NA	601	NA	225	NA	131	NA	48	NA	2,174
2004-2005	5,579,000	NA	930	NA	44	NA	373	NA	78	NA	680	NA	190	NA	541	NA	NA	NA	NA	NA	NA	NA	2,836
2001-2002	5,642,000	NA	797	NA	63	NA	967	NA	78	NA	646	NA	634	NA	531	NA	NA	NA	NA	NA	NA	NA	3,716
1997-1998	2,733,000	NA	874	NA	407	NA	953	NA	983	NA	355	NA	177	NA	257	NA	NA	NA	NA	NA	NA	NA	4,006

NOTES: ISRW-7 shut down October 2019. Operated intermitently since. Historically produced highest water volumes but lowest B&T concentrations (Below CUL or BDL more recently). 600K gal of water/year 2017-18 and 2018-19. 1997 - 1998 first full year of system operation

RSEC Environmental & Engineering Consulting, Inc.

Figures

C:\Users\alexi\Documents\Rich Traux\2022 Work\Fig_2-3 v5.29.2022

C:\Users\alexi\Documents\Rich Traux\2022 Work\Fig_2-4 v5.29.2022

---- C:\Users\alexi\Documents\Rich Traux\2022 Work\Fig_4-1 v5.29.2022.dwg - 5/29/2022

---- C:\Users\alexi\Documents\Rich Traux\2022 Work\Fig_4-2 v5.29.2022.dwg - 5/29/2022

---- C:\Users\alexi\Documents\Rich Traux\2022 Work\Fig_4-3 v5.29.2022.dwg - 5/29/2022

--- C:\Users\alexi\Documents\Rich Traux\2022 Work\Fig_4-5 v5.29.2022.dwg - 5/29/2022

---- C:\Users\alexi\Documents\Rich Traux\2022 Work\Fig_4-6 v5.29.2022.dwg - 5/29/2022

Figure 4-7 ISRW X-Sect.

Appendix A

Ground Water Level Tables

Table B NIA Upper Sand Gauging Data

			4/19&21/2022			10/4/2021			4/12/202	21		10/19/20	20		4/7/202	0		10/15/20	19		4/12/201	9
Well	MP Elevation	Time	Depth to Water	Ground- water Elevation	Time	Depth to Water	Ground- water Elevation	Time	Depth to Water	Ground- water Elevation	Time	Depth to Water	Ground- water Elevation	Time	Depth to Water	Ground- water Elevation	Time	Depth to Water	Ground- water Elevation	Time	Depth to Water	Ground- water Elevation
KC-8	24.57	1220 / 21	9.87	14.70	1740	13.29	11.28	1445	11.05	13.52	1251	12.78	11.79	1210	11.06	13.51	1155	13.4	11.17	1245	11.14	13.43
KC-9 (2)	21.07	1400 / 19	8.05	13.02	1245	10.73	10.34	1215	8.9	12.17	1332	10.26	10.81	1242	8.95	12.12	1105	10.8	10.27	1427	9.06	12.01
KC-21	24.61	1135 / 21	12.5	12.11	nm	nm	#VALUE!	1340	13.35	11.26	1256	14.72	9.89	1215	13.41	11.20	1140	15.11	9.50	1242	13.61	11.00
KC-23	23.87	1536 / 19	9	14.87	1640	11.87	12.00	1330	9.62	14.25	1335	11.42	12.45	1330	9.72	14.15	1130	11.9	11.97	1421	9.88	13.99
MW-210	26.44	1533 / 19	14.86	11.58	1234	16.75	9.69	1055	15.26	11.18	1324	16.49	9.95	1040	15.40	11.04	1122	17.77	8.67	1236	15.4	11.04
MW-232	24.59	1540 / 19	9.8	14.79	nm	nm	#VALUE!	1500	10.44	14.15	1350	12.54	12.05	1350	10.73	13.86	1215	13.04	11.55	1418	10.74	13.85
MW-245	25.81	1150 / 21	13.18	12.63	1705	15.74	10.07	1400	14.02	11.79	1249	15.48	10.33	1125	14.09	11.72	1010	15.8	10.01	0115	14.24	11.57
MW-256	19.09	1040 / 21	9.06	10.03	1200	10.36	8.73	1105	9.39	9.70	1322	10.02	9.07	1020	9.46	9.63	930	10.5	8.59	1232	9.40	9.69
PZ-102	25.76	1530 / 19	11.5	14.26	1237	14.17	11.59	1050	12.04	13.72	1326	13.69	12.07	1325	12.10	13.66	1120	14.12	11.64	1426	12.21	13.55
NTP-1	23.99	1230 / 21	16.72	7.27	1715	18.7	5.29	1338	18.5	5.49	1248	18.7	5.29	1220	18.14	5.85	1150	18.73	5.26	1230	18.66	5.33
NTP-2	16.91	1142 / 21	8.3	8.61	1750	10.9	6.01	1205	9.25	7.66	########	10.9	6.01	1105	9.77	7.14	1141	NM	NM	1239	10.54	6.37
NTP-3	15.61	1100 / 21	7.61	8.00	1215	8.8	NM	1140	7.6	NM	1320	8.9	NM	NM	NM	NM	945	8.8	6.81	1233	8.26	7.35
NTP-WS	14.79										1246	dry	dry	1051	9.2	5.59	dry		dry	1226	9.7	5.09
MW-201	14.76										obstructe	d	NM	1215	5.24	9.52	NM		NM	1249	4.8	9.96
MW-205	12.77										obstructe	d	NM	tree obstr	uction	NM	NM		NM	NM	NM	NM
East Sump	13.47	1115 / 21	6.12	7.35	1220	8.45	5.02	1200	6.3	7.17	1315	8.4	5.07	1045	8.05	5.42	1115	8.4	5.07	1234	7.83	5.64
West Sump	13.62	1138 / 21	6.55	7.07	1740	8.42	5.20	1335	8.4	5.22	1245	8.6	5.02	1050	8.07	5.55	1146	8.75	4.87	1225	9.24	4.38
Staff Gauge	8.17	1145 / 21	2.7	2.70			dry	1350	~2	1.30	1250	dry	dry	1100	1.3	1.30	1143	dry	dry	1330	~1.6	~1.6

 Stati Gadge
 0.17
 1140/21
 2.7
 2.70

 Notes:
 Wetlands staff gauge used to measure surface water elevation
 NM - Not Measured - due to either wetland flooding or other obstruction.
 NTP-ES8WS, MW-2018 & -205 Removed from gauging per Ecy 10/21/20 apprvl.
 (2) - New MP elevation starting April 20, 2015 data due to RR infrastructure changes

Table B CIA Upper Sand Gauging Data

			4/19&21/2022			10/4/2021			4/12/2021			10/19/2020			4/7/2020			10/15/2019			4/12/2019	
Well	MP Elevation	Time	Depth to Water	Ground- water Elevation	Time	Depth to Water	Ground- water Elevation	Time	Depth to Water	Ground- water Elevation	Time	Depth to Water	Ground- water Elevation	Time	Depth to Water	Ground- water Elevation	Time	Depth to Water	Ground- water Elevation	Time	Depth to Water	Ground- water Elevation
KC-9 (2)	21.07	1400 / 19	8.05	13.02	1245	10.73	10.34	1215	8.9	12.17	1332	10.26	10.81	1242	8.95	12.12	1330	10.8	10.27	1427	9.06	12.01
MW-210	26.44	1533 / 19	14.86	11.58	1234	16.75	9.69	1055	15.26	11.18	1324	16.49	9.95	1040	15.40	11.04	1122	17.77	8.67	1236	15.40	11.04
MW-230	26.16	1300 / 21	10.04	16.12	1503(10/1)	13.16	13.00	1610	10.2	15.96	1342	12.86	13.30	1340	10.42	15.74	1238	13.18	12.98	1350	10.62	15.54
MW-231 (2)	22.15	850 / 21	6.39	15.76	0830(10/6)	9.48	12.67	0930	6.76	15.39			22.15	4/9 - 1445	6.91	15.24	1900	9.49	12.66	1635	7.10	15.05
PDW-117	25.85	1445 / 19	10.82	15.03	1440	13.83	12.02	1000	11.38	14.47	1337	13.38	12.47	1035	11.49	14.36	1100	13.90	11.95	1422	11.62	14.23
PZ-104	24.83	1430 / 21	9.09	15.74	1457(10/1)	12.08	12.75	1510	9.32	15.51	1349	11.75	13.08	1350	9.53	15.30	1230	12.14	12.69	1345	9.66	15.17
PZ-107	25.5	1340 / 21	9.5	16.00	1500(10/1)	12.6	12.90	1810	9.68	15.82	1346	12.25	13.25	1345	9.90	15.60	1235	12.64	12.86	1347	10.03	15.47

Notes: Notes:

1 - Facility RR extension temporarily blocked well
 2 - New MP elevation starting April 20, 2015 data due to RR infrastructure changes

Table B WIA Upper Sand Gauging Data

			4/19&21/2022			10/1/2021			4/13/20	21		10/19/2	020		4/7/20	20		10/15/2	019		4/12/20)19
Well	MP Elevation	Time	Depth to Water	Ground-water Elevation	Time	Depth to Water	Ground-water Elevation	Time	Depth to Water	Ground-water Elevation	Time	Depth to Water	Ground-water Elevation	Time	Depth to Water	Ground-water Elevation	Time	Depth to Water	Ground-water Elevation	Time	Depth to Water	Ground-water Elevation
KC-13	23.34	0/21	10.84	12.5	1445	14.39	8.95	1448	11.29	12.05	918	13.14	10.2	1420	11.20	12.14	1315	14.4	8.94	1450	10.32	13.02
KC-24R	24.76	1450 / 21	9.63	15.13	1454	12.55	12.21	1445	10	14.76	936	12.16	12.6	1415	10.14	14.62	1245	12.57	12.19	1409	10.24	14.52
MW-238	25.10	0/21	12.60	12.5	1440	14.08	11.02	1452	13.42	11.68	920	14.19	10.91	1430	13.28	11.82	1318	15.01	10.09	1447	12.32	12.78
MW-244	25.98										914	16.54	9.44	1405	15.65	10.33	1305	16.92	9.06	1455	13.30	12.68
MW-255	21.96	1542 / 19	10.39	11.57	1451	12.75	9.21	1515	11.03	10.93	935	12.27	9.69	1400	10.98	10.98	1303	12.83	9.13	1405	9.63	12.33
PZ-110	25.76	0/21	11.89	13.87	1442	14.6	11.16	1500	12.29	13.47	925	14.23	11.53	1432	12.59	13.17	1320	14.59	11.17	1442	12.19	13.57
USRW-2	22.85	1310 / 19	9.75	13.1	1447	12.78	10.07	1720	10.38	12.47	932	12.22	10.63	1410	10.26	12.59	1416	12.88	9.97	1403	9.69	13.16
STP-1	23.15										939	12.55	10.6	1430	10.58	12.57	1418	12.9	10.25	1358	9.98	13.17
N. SUMP	23.29	1545 / 19	11.5	11.79	1449	13.85	9.44	1442	12.18	11.11	934	13.42	9.87	1403	12.00	11.29		nm		1400	10.7	12.59
S. SUMP	23.34	1543 / 19	10.9	12.44	1446	13.6	9.74	1440	10.68	12.66	930	12.92	10.42	1408	10.55	12.79		nm		1401	9.95	13.39

NOTES: KC-12, KC-15, KCP-6, PZ-106 REMOVED FROM GAUGING PER ECY 112916 LTR MW-244 & STP-1 Removed from gauging per Ecy 10/21/20 Apprvl

Table B WIA Intermediate Sand Gauging Data

	Updated MP	4/19	/2022 (#7	OFF)	1/18	3/2022 (#7	OFF)	10/1	/2021 (#7	OFF)	7/16	/2021 (#7	OFF)		4/13/2021		Jan	uary 15, 2	2021	Oct
	Elevation 7-	HT0543 +	5 / LT1417	′02	LT10:30a	+1.2/HT3:2	20p+4.4	1330 HT+	3/7-off		HT0840+3	3.5/LT1600)+0.3	1300LT+0).23/1740H	T+3.4				0630HT+2
Well	2019 (#4,5,7,8			GW Elev			GW Elev			GW Elev			GW Elev			GW Elev			GW Elev	
	stkup lowered	Time	DTW	(7-15-19	Time	DTW	(7-15-19	Time	DTW	(7-15-19	Time	DTW	(7-15-19	Time	DTW	(7-15-19	Time	DTW	(7-15-19	Time
	7-15-19)			MP)			MP)			MP)			MP)			MP)			MP)	
River	0 - MSL	930		6.30	1334		7.7	1400		3.7	1200		4+/-		2.5(+/- 0.53	?)	1220		10.7	910
KC-6	25.02	937	17.87	7.15	1426	16.93	8.09	1435	21.72	3.30		20.41	4.61	1303	20.64	4.38		14.34	10.68	921
KC-14	23.29	952	16.77	6.52	1342	15.83	7.46	1419	19.70	3.59		19.00	4.29	1300	19.84	3.45		13.52	9.77	915
MW-239	25.35	956	18.95	6.40	1413	17.55	7.80	1437	21.98	3.37		21.39	3.96	1215	21.95	3.40		15.54	9.81	919
MW-243	25.9	945	19.32	6.58	1338	18.48	7.42	1410	22.38	3.52		21.30	4.60	1330	21.85	4.05		15.80	10.10	912
MW-250	26.12	935	19.23	6.89	1416	18.34	7.78	1433	22.85	3.27		21.66	4.46	1135	21.83	4.29		15.93	10.19	923
PZ-117	25.92	940	19.12	6.80	1408	18.66	7.26	1430	22.78	3.14		21.51	4.41	1457	22.39	3.53		15.94	9.98	926
PZ-118	25.18	942	18.60	6.58	1405	17.68	7.50	1421	21.82	3.36		20.97	4.21	1450	21.63	3.55		15.39	9.79	928
ISRW-1	25.26	1035	27.30	-2.04	1400	26.1	-0.84	1426	27.40	-2.14		27.20	-1.94	1312	27.4	-2.14		26.70	-1.44	1007
ISRW-2b	24.47	1038	27.10	-2.63	1350	26.6	-2.13	1320	27.00	-2.53		27.00	-2.53	1320	27.0	-2.53		26.75	-2.28	958
ISRW-3	23.82	1009	27.10	-3.28	1320	26.7	-2.88	1334	26.80	-2.98		26.80	-2.98	1323	26.7	-2.88		26.80	-2.98	954
ISRW-4	24.33	1024	25.70	-1.37	1409	25.4	-1.07	1345	25.60	-1.27		25.50	-1.17	1308	25.6	-1.27		24.90	-0.57	1012
ISRW-5	24.07	1015	24.50	-0.43	1355	24.0	0.07	1340	22.70	1.37		25.00	-0.93	1315	24.9	-0.83		22.70	1.37	1003
ISRW-6	23.54	1000	25.60	-2.06	1325	24.5	-0.96	1332	24.80	-1.26		23.70	-0.16	1326	22.7	0.84		19.20	4.34	950
ISRW-7	24.83	1030	18.30	6.53	1423	16.9	7.93	1350	21.70	3.13		20.60	4.23	1305	21.3	3.53		15.50	9.33	1014
ISRW-8	23.88	1004	28.00	-4.12	1315	28.1	-4.22	1333	28.40	-4.52		27.80	-3.92	1325	28.0	-4.12		26.60	-2.72	952
ISRW-9	23.55	1012	27.30	-3.75	1345	27.2	-3.65	1336	27.10	-3.55		27.00	-3.45	1318	26.9	-3.35		27.00	-3.45	953
ISRW-10	24.35	1020	27.70	-3.35	1358	27.4	-3.05	1343	27.60	-3.25	1300	26.90	-2.55	1310	27.0	-2.65		25.90	-1.55	1010

Notes:

Rvr Gage Cleaned / good

d / good Rvr Gage unreadable / est

Wells MW-236, MW-249, and KC-17 removed from elevation gauging program per 11/29/16 Ecology approval Letter

River staff gauge used to estimate elevation of Columbia River, High/Low Tide based on NOAA Tide Table NM - Not measured.

ISRW 1 - 10 are pumping wells, water levels set by control floats & pump cycles

NOTE MW-249, KC17, MW-236 GAUGING CEASED 112916 ECY LTR

ober 19, 2	2020	7/14/202	0(See No	te below)		4/7/2020			1/7/2020		10/15/19	Semi-Anr	Smpling	7/3	30/19 inter	rim/Qtrly	4 /12/ 20	19 Semi-Annu	al SmpIng
.7/1330L1	Г+0.4	LT+1@7a	/HT+2.6@	noon	LT:1115 /	HT:4p		H 12:20 +	4.3		Lo-Tide @) Noon +0.	5' / Hi @ 6j	NOAA Tic	e Lo -0.46	6@1100/Hi+2.24(NOAA Tide Hi +	4.3@0900, Lo	-0.5@1800
DTW	GW Elev (7-15-19 MP)	Time	DTW	GW Elev (7-15-19 MP)	Time	DTW	GW Elev (7-15-19 MP)	Time	DTW	GW Elev (7-15-19 MP)	Time	DTW	GW Elev (7-15-19 MP)	Time	DTW	GW Elevation (new 7-15-19) MP Elev	Time	DTW	Ground-water Elevation
	4.3	1410		4.5?(est)	1635		7			7.1	1425		3.7	1100		2.90	1200		12.7
20.13	4.89	1450	20.09	4.93	1659	18.66	6.36	11-1230	19.10	5.92	1330	21.54	3.48	1122	21.09	3.93	1440	12.90	12.04
18.59	4.70		18.72	4.57	1640	17.13	6.16		17.11	6.18	1350	20.38	2.91	1106	20.14	3.15	1449	11.32	12.01
20.81	4.54	1456	21.00	4.35	1648	19.09	6.26		19.37	5.98	1355	22.41	2.94	1118	22.33	3.02	1444	13.30	12.00
20.95	4.95	1412	20.99	4.91	1638	20.20	5.70		19.99	5.91	1307	22.55	3.35	1103	21.90	4.00	1458	14.10	11.80
21.22	4.90	1446	21.50	4.62	1655	19.95	6.17		20.35	5.77	1332	22.86	3.26	1115	22.26	3.86	1441	14.19	11.87
21.12	4.80	1444	21.30	4.62	1651	20.26	5.66		20.45	5.47	1340	22.76	3.16	1110	22.25	3.67	1443	13.97	11.91
20.53	4.65	1431	20.58	4.60	1643	19.25	5.93		19.38	5.80	1345	22.10	3.08	1112	21.68	3.50	1448	13.38	11.75
29.00	-3.74	1434	28.3	-3.04	1708	24.6	0.66		27.00	-1.74	1343	28.62	-3.36	1143	28.90	-3.64	1145	25.7	-0.38
27.00	-2.53	1424	27.1	-2.63	1725	26.3	-1.83		26.60	-2.13	1347	26.90	-2.43	1140	26.70	-2.23	1152	25.3	-0.68
27.00	-3.18		26.3	-2.48	1730	26.7	-2.88		26.50	-2.68	1410	24.97	-1.15	1128	24.80	-0.98	1155	23.5	0.49
25.80	-1.47	1452	25.3	-0.97	1702	25.3	-0.92		24.50	-0.17	1337	24.72	-0.39	1153	24.90	-0.57	1140	26.1	-0.82
24.10	-0.03	1427	23.0	1.07	1710	23.0	1.07		23.00	1.07	1400	24.54	-0.47	1135	22.55	1.52	1147	22.3	3.2
20.70	2.84	1414	18.5	5.03	1735	18.5	5.07		23.80	-0.26	1415	24.83	-1.29	1120	24.35	-0.81	1159	24.8	-1.23
22.70	2.13		20.3	4.58	1700	18.7	6.10		19.06	5.77	1335	21.79	3.04	1200	23.00	1.83	1137	22.4	3.81
28.00	-4.12		27.8	-3.92	1732	27.9	-4.02		27.30	-3.42	1412	27.94	-4.06	1125	26.90	-3.02	1157	26.4	-1.60
27.20	-3.65		26.6	-3.05	1720	27.0	-3.45		27.20	-3.65	1403	26.50	-2.95	1145	27.05	-3.50	1150	26.8	-2.66
27.60	-3.25		27.2	-2.85	1705	27.3	-2.90		26.90	-2.55	1358	26.85	-2.50	1158	26.80	-2.45	1142	25.5	-2.15

Appendix B

Laboratory Reports: Oct.-2021 and April-2022 (transmitted via efile) July 2021 ISRW Quarterly Laboratory Reports Specialty Analytical & Selected Dupes to ALS Laboratory

Specialty Analytical

9011 SE Jannsen Rd Clackamas, OR 97015 TEL: (503) 607-1331 Website: www.specialtyanalytical.com

August 05, 2021 Rich Truax RSEC Environmental Inc. 958 Hood View Ct. Hood River, OR 97031 TEL: (541) 490-4223 FAX:

RE: EKC/ EKC-0721

Order No.: 2107129

Dear Rich Truax:

There were no problems with the analysis and all data for associated QC met EPA or laboratory specifications, except where noted in the Case Narrative, or as qualified with flags. Results apply only to the samples analyzed. Without approval of the laboratory, the reproduction of this report is only permitted in its entirety.

If you have any questions regarding these tests, please feel free to call.

Sincerely,

MAD

Marty French Lab Director

Specialty A	nalytical
-------------	-----------

 WO#:
 2107129

 Date Reported:
 8/5/2021

CLIENT: Project:	RSEC Environmental EKC/ EKC-0721	Inc.				
Lab ID:	2107129-001			Matrix:	GROU	JNDWATER
Client Sample ID	ISRW-1			Collection Date:	7/16/2	021 9:00:00 AM
Analyses		Result	RL Qua	l Units	DF	Date Analyzed
BTEX - RBC				SW8021B	sw	5030B Analyst: TB
Benzene		34.2	6.00	µg/L	20	7/20/2021 8:18:00 PM
Toluene		21900	500	µg/L	1000	7/19/2021 5:56:00 PM
Surr: 4-Bromoflu	uorobenzene	110	74.8 - 126	%Rec	20	7/20/2021 8:18:00 PM
Lab ID:	2107129-002			Matrix:	GROU	JNDWATER
Client Sample ID	ISRW-2b			Collection Date:	7/16/2	021 9:10:00 AM
Analyses		Result	RL Qua	l Units	DF	Date Analyzed
BTEX - RBC				SW8021B	sw	5030B Analyst: TB
Benzene		68.4	6.00	μg/L	20	7/21/2021 1:56:00 PM
Toluene		32500	500	μg/L	1000	7/19/2021 6:20:00 PM
Surr: 4-Bromoflu	uorobenzene	109	74.8 - 126	%Rec	1000	7/19/2021 6:20:00 PM
Lab ID:	2107129-003			Matrix:	GROU	JNDWATER
Client Sample ID	ISRW-3			Collection Date:	7/16/2	021 9:20:00 AM
Analyses		Result	RL Qua	l Units	DF	Date Analyzed
BTEX - RBC				SW8021B	sw	5030B Analyst: TB
Benzene		243	15.0	µg/L	50	7/21/2021 2:20:00 PM
Toluene		133000	500	µg/L	1000	7/19/2021 6:53:00 PN
Surr: 4-Bromoflu	uorobenzene	108	74.8 - 126	%Rec	1000	7/19/2021 6:53:00 PM
Lab ID:	2107129-004			Matrix:	GROU	JNDWATER
Client Sample ID	ISRW-4			Collection Date:	7/16/2	021 9:40:00 AM
		Result	RL Qua	l Units	DF	Date Analyzed
Analyses						
Analyses BTEX - RBC				SW8021B	sw	5030B Analyst: TB
		25.8	0.600	SW8021B μg/L	SW 2	5030B Analyst: TB 7/21/2021 2:44:00 PM
		25.8 6080	0.600			-

Qualifiers: H Holding times for preparation or analysis exceeded

S Spike Recovery outside accepted recovery limits

Specialty A	nalytical
-------------	-----------

 WO#:
 2107129

 Date Reported:
 8/5/2021

CLIENT: Project:	RSEC Environmenta EKC/ EKC-0721	al Inc.				
i i ojeci.						
Lab ID:	2107129-005			Matrix:	GROU	INDWATER
Client Sample ID	ISRW-5			Collection Date:	7/16/2	021 9:30:00 AM
Analyses		Result	RL Qual	Units	DF	Date Analyzed
BTEX - RBC				SW8021B	sw	5030B Analyst: TB
Benzene		27.6	6.00	µg/L	20	7/21/2021 3:08:00 PM
Toluene		36300	500	µg/L	1000	7/19/2021 7:31:00 PM
Surr: 4-Bromoflu	lorobenzene	108	74.8 - 126	%Rec	1000	7/19/2021 7:31:00 PM
Lab ID:	2107129-006			Matrix:	GROU	UNDWATER
Client Sample ID	ISRW-6			Collection Date:	7/16/2	021 9:50:00 AM
Analyses		Result	RL Qual	Units	DF	Date Analyzed
BTEX - RBC				SW8021B	sw	5030B Analyst: TB
Benzene		57.5	1.50	µg/L	5	7/21/2021 3:32:00 PM
Toluene		16900	500	µg/L	1000	7/20/2021 8:54:00 AN
Surr: 4-Bromoflu	uorobenzene	108	74.8 - 126	%Rec	1000	7/20/2021 8:54:00 AM
Lab ID:	2107129-007			Matrix:	GROL	INDWATER
Client Sample ID	ISRW-7			Collection Date:	7/16/2	021 10:10:00 AM
Analyses		Result	RL Qual	Units	DF	Date Analyzed
BTEX - RBC				SW8021B	sw	5030B Analyst: TB
Benzene		ND	0.300	µg/L	1	7/20/2021 7:31:00 PM
Toluene		1.31	0.500	µg/L	1	7/20/2021 7:31:00 PM
Surr: 4-Bromofle	lorobenzene	110	74.8 - 126	%Rec	1	7/20/2021 7:31:00 PM
Lab ID:	2107129-008			Matrix:	GROU	UNDWATER
Client Sample ID	ISRW-8			Collection Date:	7/16/2	021 10:00:00 AM
Analyses		Result	RL Qual	Units	DF	Date Analyzed
BTEX - RBC				SW8021B	sw	5030B Analyst: TB
Benzene		71.8	6.00	µg/L	20	7/21/2021 3:55:00 PN
Denzene						
Toluene		44000	500	μg/L	1000	7/20/2021 5:31:00 PM

Qualifiers: H Holding times for preparation or analysis exceeded

S Spike Recovery outside accepted recovery limits

Specialty .	Analytical
-------------	------------

 WO#:
 2107129

 Date Reported:
 8/5/2021

	EC Environmental Inc. C/ EKC-0721					
	7129-009			Matrix:	GROU	NDWATER
Client Sample ID ISR	W-9			Collection Date:	7/16/2	021 10:20:00 AM
Analyses	R	lesult	RL Q	ual Units	DF	Date Analyzed
BTEX - RBC				SW8021B	sw	5030B Analyst: TB
Benzene		9.98	6.00	µg/L	20	7/21/2021 4:19:00 PN
Toluene		7430	500	µg/L	1000	7/20/2021 5:55:00 PN
Surr: 4-Bromofluorob	enzene	110	74.8 - 126	%Rec	1000	7/20/2021 5:55:00 PM
Lab ID: 210	7129-010			Matrix:	GROU	NDWATER
Client Sample ID ISR	W-10			Collection Date:	7/16/2	021 10:30:00 AM
Analyses	R	lesult	RL Q	ual Units	DF	Date Analyzed
BTEX - RBC				SW8021B	sw	5030B Analyst: TB
Benzene		148	3.00	µg/L	10	7/21/2021 4:43:00 PN
Toluene		61600	500	µg/L	1000	7/20/2021 6:19:00 PN
Surr: 4-Bromofluorob	enzene	109	74.8 - 126	%Rec	1000	7/20/2021 6:19:00 PN
Lab ID: 210	7129-011			Matrix:	GROU	NDWATER
Client Sample ID NIA	A- E. Sump			Collection Date:	7/16/2	021 11:00:00 AM
Analyses	R	lesult	RL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS	S BY GC/MS			SW8260D	sw	5030B Analyst: CK
Benzene		2.19	0.300	µg/L	1	7/22/2021 5:44:00 PN
Toluene		1.15	1.00	µg/L	1	7/22/2021 5:44:00 PN
Surr: 1,2-Dichloroetha	ane-d4	112	75.3 - 126	%Rec	1	7/22/2021 5:44:00 PN
Surr: 4-Bromofluorob	enzene	102	78.1 - 120	%Rec	1	7/22/2021 5:44:00 PN
Surr: Dibromofluorom	lethane	96.6	74.2 - 122	%Rec	1	7/22/2021 5:44:00 PN
Surr: Toluene-d8		97.0	76.2 - 135	%Rec	1	7/22/2021 5:44:00 PM

S Spike Recovery outside accepted recovery limits

QC SUMMARY REPORT

WO#: **2107129**

8/5/2021

Client:RSEC EnviProject:EKC/ EKC	ronmental Inc. -0721					TestCode:	8260_W	
Sample ID: CCV MSVWS-3043	SampType: CCV	TestCode: 8260_W	Units: µg/L		Prep Da	te:	RunNo: 41178	
Client ID: CCV	Batch ID: 18224	TestNo: SW8260	SW 5030B		Analysis Da	te: 7/21/2021	SeqNo: 531207	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	I %RPD RPDLimit	Qual
Benzene	34.0	0.300 40.00	0	84.9	80	120		
Toluene	41.0	1.00 40.00	0	103	80	120		
Sample ID: MB	SampType: MBLK	TestCode: 8260_W	Units: µg/L		Prep Da	te:	RunNo: 41178	
Client ID: PBW	Batch ID: 18224	TestNo: SW8260	SW 5030B		Analysis Da	te: 7/21/2021	SeqNo: 531208	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	I %RPD RPDLimit	Qual
Benzene	ND	0.300						
Toluene	ND	1.00						
Surr: 1,2-Dichloroethane-d4	110	100.0		110	75.3	126		
Surr: 4-Bromofluorobenzene	101	100.0		101	78.1	120		
Surr: Dibromofluoromethane	93.1	100.0		93.1	74.2	122		
Surr: Toluene-d8	98.2	100.0		98.2	76.2	135		
Sample ID: LCS MSVWS-3043	SampType: LCS	TestCode: 8260_W	Units: µg/L		Prep Da	te:	RunNo: 41178	
Client ID: LCSW	Batch ID: 18224	TestNo: SW82601	SW 5030B		Analysis Da	te: 7/21/2021	SeqNo: 531210	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	I %RPD RPDLimit	Qual
Benzene	34.0	0.300 40.00	0	84.9	76.8	125		
Toluene	41.0	1.00 40.00	0	103	82	122		

Specialty Analytical

Qualifiers: H Holding times for preparation or analysis exceeded

S Spike Recovery outside accepted recovery limits
WO#: **2107129**

8/5/2021

Client: Project:	RSEC Envi EKC/ EKC-	ronmental Inc. 0721				TestCode: 8260_W											
Sample ID: LCS	MSVWS-3043	SampType: LCS	TestCo	de: 8260_W	Units: µg/L		Prep Da	te:		RunNo: 41 1							
Client ID: LCS	W	Batch ID: 18224	Test	lo: SW8260D	SW 5030B		Analysis Da	te: 7/21/20	21	SeqNo: 531	210						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual					
Sample ID: 2107	7141-001EMS	SampType: MS	TestCo	de: 8260_W	Units: µg/L		Prep Da	te:		RunNo: 411	178						
Client ID: Bato	hQC	Batch ID: 18224	TestNo: SW8260D		SW 5030B	Analysis Date: 7/		te: 7/22/20	21	SeqNo: 531	212						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual					
Benzene		47.2	0.300	40.00	0	118	74.1	136									
Toluene		39.9	1.00	40.00	1.770	95.4	68.4	135									

Specialty Analytical

Qualifiers: H Holding times for preparation or analysis exceeded

WO#: **2107129**

8/5/2021

Client: Project:	RSEC Envi EKC/ EKC	ronmental Inc. -0721						1	°estCode: E	BTEXRBC_W					
Sample ID	: CCV-R41145	SampType: CCV	TestCo	de: BTEXRBC	_W Units: µg/L		Prep Da	ite:		RunNo: 41 1	45				
Client ID:	ccv	Batch ID: 18234	TestN	No: SW8021B	SW 5030B		Analysis Da	ate: 7/19/20)21	SeqNo: 529	026				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual			
Benzene		45.3	0.300	50.00	0	90.6	85	115							
Toluene		53.9	0.500	50.00	0	108	85	115							
Sample ID	: LCS-R41145	SampType: LCS	TestCoo	de: BTEXRBC	_W Units: µg/L		Prep Da	ite:		RunNo: 41 1	45				
Client ID:	LCSW	Batch ID: 18234	TestN	No: SW8021B	SW 5030B		Analysis Da	ate: 7/19/20)21	SeqNo: 529	027				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual			
Benzene		45.3	0.300	50.00	0	90.6	85	115							
Toluene		53.9	0.500	50.00	0	108	85	115							
Sample ID	: MB-R41145	SampType: MBLK	TestCoo	de: BTEXRBC	_W Units: µg/L		Prep Da	ite:		RunNo: 41 1	45				
Client ID:	PBW	Batch ID: 18234	TestN	No: SW8021B	SW 5030B		Analysis Da	ate: 7/19/20)21	SeqNo: 529	028				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual			
Benzene		ND	0.300												
Toluene		ND	0.500												
Surr: 4-E	Bromofluorobenzene	108		100.0		108	74.8	126							

Specialty Analytical

Qualifiers: H Holding times for preparation or analysis exceeded

WO#: **2107129**

8/5/2021

Client: Project:	RSEC Envi EKC/ EKC	ronmental Inc. -0721						Т	BTEXRBC_W					
Sample ID: 0	CCV-R41145	SampType: CCV	TestCo	de: BTEXRBC	_W Units: μg/L		Prep Da	ite:		RunNo: 41 1	145			
Client ID: 0	ccv	Batch ID: 18234	Test	No: SW8021B	SW 5030B		Analysis Da	ate: 7/20/20	21	SeqNo: 529	9185			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Benzene		45.8	0.300	50.00	0	91.6	85	115						
Toluene		54.6	0.500	50.00	0	109	85	115						
Sample ID: (CCB-R41145	SampType: CCB	TestCo	de: BTEXRBC	_W Units: μg/L		Prep Da	ite:		RunNo: 41 1	145			
Client ID: (ССВ	Batch ID: 18234	Test	No: SW8021B	SW 5030B		Analysis Da	ate: 7/20/20	21	SeqNo: 529	9186			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Benzene		ND	0.300											
Toluene		ND	0.500											
Surr: 4-Bro	omofluorobenzene	109		100.0		109	74.8	126						
Sample ID: 2	2107129-010AMS	SampType: MS	TestCo	de: BTEXRBC	_ W Units: μg/L		Prep Da	ite:		RunNo: 41 1	145			
Client ID: I	ISRW-10	Batch ID: 18234	Test	No: SW8021B	SW 5030B		Analysis Da	ate: 7/20/20	21	SeqNo: 529	9190			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Benzene		45100	300	50000	110.0	90.0	67.8	118						
Toluene		117000	500	50000	61600	111	74.7	117						

Specialty Analytical

Qualifiers: H Holding times for preparation or analysis exceeded

Specialty Analytical

WO#: **2107129**

8/5/2021

Client:RSEC EnvProject:EKC/ EKC	rironmental Inc. C-0721			estCode: B	le: BTEXRBC_W						
Sample ID: CCV-R41145 Client ID: CCV	SampType: CCV Batch ID: 18234	TestCode: BTEXRBC TestNo: SW8021B			Prep Dat Analysis Da		21	RunNo: 41 1 SeqNo: 52 9			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	46.7	0.300 50.00	0	93.4	85	115					
Sample ID: CCB-R41145 Client ID: CCB	SampType: CCB Batch ID: 18234	TestCode: BTEXRBC			Prep Dat Analysis Da		21	RunNo: 41 1 SeqNo: 52 9			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene Surr: 4-Bromofluorobenzene	ND 108	0.300 100.0		108	74.8	126					

	. /
Ŋ	V/L
7/	M
/	

Specialty Analytical 9011 SE Jannsen Rd Clackamas, Oregon 97015 TEL: 503-607-1331 FAX: 503-607-1336 Website: www.specialtyanalytical.com

Sample Receipt Checklist

Client Name RSEC			Wor	k Order Number 2107129
RcptNo: 1	Date and Time Received 7/16	/2021 3:28:51 PM	Receive	d by: Marty French
Completed by		Revi	ewed by:	
Completed Date:	7/16/2021	Revi	ewed Date:	
Carrier name: <u>Client</u>				
Chain of custody prese	nt?	Yes 🖌	No 🗌	
Chain of custody signed	d when relinquished and received?	Yes 🖌	No 🗌	
Chain of custody agree	s with sample labels?	Yes 🖌	No 🗌	Not Present
Are matrices correctly i	dentified on Chain of custody?	Yes 🗹	No 🗌	
Is it clear what analyses	s were requested?	Yes 🗹	No 🗌	
Custody seals intact on	sample bottles?	Yes	No 🗌	Not Present
Samples in proper cont	ainer/bottle?	Yes 🖌	No 🗌	
Were correct preservat	ives used and noted?	Yes 🖌	No 🗌	NA
Sample containers inta	ct?	Yes 🖌	No 🗌	
Sufficient sample volum	ne for indicated test?	Yes 🖌	No 🗌	
Were container lables of	complete (ID, Pres, Date)?	Yes 🖌	No 🗌	
All samples received w	ithin holding time?	Yes 🖌	No 🗌	
Was an attempt made	to cool the samples?	Yes 🖌	No 🗌	NA
All samples received at	a temp. of > 0° C to 6.0° C?	Yes 🖌	No 🗌	NA
Response when tempe	rature is outside of range:			
Preservative added to b	pottles:		_	
Sample Temp. taken ar	nd recorded upon receipt?	Yes 🗹	No 🗌	To 5.6 °C
Water - Were bubbles a	absent in VOC vials?	Yes 🗹	No	No Vials
Water - Was there Chlo	orine Present?	Yes 📙	No	NA
Water - pH acceptable	upon receipt?	Yes 🗹	No 🔄	NA
Are Samples considere	d acceptable?	Yes 🖌	No	
Custody Seals present	?	Yes	No 🗹	
Traffic Report or Packir	ng Lists present?	Yes 🗌	No 🗹	
Airbill or Sticker?		Air Bill 🗌	Sticker	Not Present 🗹
Airbill No:				
Sample Tags Present?		Yes	No 🖌	
Sample Tags Listed on	COC?	Yes 🗌	No 🗹	
Tag Numbers:				
Sample Condition?		Intact 🗹	Broken	Leaking
Case Number:	SDG:	S	AS:	
		Adju	usted?	Checked by

Any No and/or NA (not applicable) response must be detailed in the comments section be

A A A A A A A A A A A A A A A A A A A	Specialty Analytical 9011 SE Jannsen Rd Clackamas, Oregon 97015 TEL: 503-607-1331 FAX: 503-607-1336 Website: www.specialtyanalytical.com
Client Contacted? Contact Mode: Client Instructions:	Yes ✓ No NA Person Contacted: Comments: Phone: Fax: Email: In Person:
Date Contacted: Regarding:	Contacted By:
CorrectiveAction:	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Date/Time	Acceived	Oate/Time	Relinquished x
Specialty Specialty Specialty Chain of Custody Record $2(v + 1)$ Analytical Free Boldon 133 Project No. finance $det Nine: det Nine: de Nine: de Nine: <$	Dete/Time	Received ×	Date/Time	Refinquished ×
Specialty containers Red Report Section (Chain of Custody Record Fax 503-607.138 Chain of Custody Record Project Name 210-11 PSEC CnV1(Cn nr-sch_a) Project Name EK Ordered by Project Name Project Name EK Collected Project Name Project Name Impound Name	$\frac{\text{Date/Time}}{7} \frac{1}{2} \frac$	\mathcal{M}	Depertinge -7/15/21	Relinquished
Specially Analytical Sector Chain of Custody Record Tax: 600-607-1336 210-71 Page: 1 at: 2 Sector Exc. Convictor.register Tax: 600-607-1336 Project Num: Exc C721 PD No: Exc C721 VD No: - C00000000 Invo - 2 Sample Sampl	Same Day: nd requests should be coordinated in advanc	2 Day:		Turn-around Tim
Specially Analytical chains of Sumsen Rd Fax: 503-607-1338 T/t/ 21 regilt regilt <thre< th=""> regilt regilt</thre<>	m Water, WW = Waste Water, M = Miscellaneous	DW = Drinking Water, GW = Ground Water,	eous, L=Liquid, O=Oli, P=Product, S=Soli, D=S	*Matrix: A=Air, AQ=Aqu
Specially Analytical chain of Custody Record Fac: 503-607-1336 Chain of Custody Record Project No (internal): $\gamma_{1,0}$ $\gamma_{1,1}$ PSEC Environment Fac: 503-607-1336 Project No: Exc - 072 L PO.No: Exc - 072 L Cooling: Laboratory Project No (internal): γ_{-1} γ_{-1} PSEC Environment Fac: 503-607-1336 Project No: Exc - 072 L PO.No: Exc - 072 L Cooling: Laboratory Project No (internal): γ_{-1} γ_{-1} PSEC Environment Fac: 503-607-1336 Project No: Exc - 072 L PO.No: Exc - 072 L Cooling: Laboratory Project No (internal): γ_{-1} γ_{-1} PSEC Environment Fac: 503-607-1326 Project No: Exc - 072 L PO.No: Exc - 072 L Cooling: Laboratory Project No: Exc - 072 L Coore Interreversiti			V 10301	"ISRW -
Specially Source and source and constrained constraints Chain of Custody Record 210 T is an end of the constraint of the constr			>	JSRW -0
Specialty Analytical some isoson real pare 503-607-138 The formation of Custody Record pare 503-607-138 calcemase of some pare 503-607-138 read of the formation project No. (internal): $m_{m} \rightarrow 1$ PSEC Enclosed on real table Project No. (internal): $m_{m} \rightarrow 1$ Integer No. (internal): $m_{m} \rightarrow 1$ PSE Enclosed on real table Project No. (internal): $m_{m} \rightarrow 1$ Integer No. (internal): $m_{m} \rightarrow 1$ PSE Enclosed on real table Project No. (internal): $m_{m} \rightarrow 1$ Integer No. (internal): $m_{m} \rightarrow 1$ PSE Enclosed on real table Project No. (internal): $m_{m} \rightarrow 1$ Integer No. (internal): $m_{m} \rightarrow 1$ PSE Most CR Project No. (internal): $m_{m} \rightarrow 1$ Integer No. (internal): $m_{m} \rightarrow 1$ Inter Sample Sample </td <td></td> <td></td> <td></td> <td>"JSRW-B</td>				"JSRW-B
Specially Analytical source of the sour				TERN - 5
Specialty Analytical Some of adamses OR 97015 Date: $T/(t/21)$ Page: 1 of: 2 Laboratory Record $2(OT n)$ Resc: S03-607-1336 Project Name: E/C Inter E/C Inter $T/(t/21)$ Page: 1 of: 2 Laboratory Project No (internal): $n_{u} \rightarrow 1$ RSEC C/NV/CO N= $503-607-1336$ Project Name: E/C C/T Internet: $N_{u} \rightarrow 1$ PSEC C/NV/CO N= $503-607-1336$ Project Name: E/C OTZ Laboratory Project No (internal): $n_{u} \rightarrow 1$ PSEC C/NV/CO N= $503-607-1336$ Project Name: E/C C/T Cooling: Q_{u} Simple Note: Cooling: Q_{u} Simple Note: Simple Note: <th< td=""><td>KFOW AQUICTS</td><td></td><td>and the second</td><td>TSRW-6</td></th<>	KFOW AQUICTS		and the second	TSRW-6
Specialty 9011 SE Jamson Rd Phone: 503-607-138 Chain of Custody Record $2LOT n$ RSEC CnVIC0 nmsh Lanson Rd Project No: $E K C$ Date: $T/LE/Z1$ Page: 1 of: 2 Laboratory Reject No (internal): m, J1 PSEC CnVIC0 nmsh Lanson Rd Project No: $E K C$ Project No: $E K C$ Temperature on Receipt: $-3 \cdot 4^{-1}$ PSB How J V.Q.J. CT. Collected by: $F. \nabla J \neq \chi$ Temperature on Receipt: $-3 \cdot 4^{-1}$ PSB How J V.Q.J. CT. Collected by: $F. \nabla J \neq \chi$ Custody Seal: $Y (N)$ /Intact / Broken Coole ap: How J Report To (PM): T Project No: $E K C - 67Z$ Strate Collected by: $C T = 0$ ap: How J A 22.2 Report To (PM): T Strate Collected: $C R = 0$ MDL TER.N EDD ap: A 4 70' $A 22.2$ Page and $C R = 0$ Page $T R = 0$ ap: A 1 - 4 70' $A 22.2$ Page $T R = 0$ Page $T R =$	TALY Swoch SHE			J- NAST.
Specialty Analytical sumsen Rd Phone: 503-607-1336 Chain of Custody Record 21071 RSEC Ch/If O N Mash Rs 503-607-1336 Project Name: EKC Frequent of the Castory Project No (internal): Rs 503-607-1336 Project Name: Project Name: EKC Contract of the Castory Project No (internal): Temperature on Receipt: Rs 503-607-1336 Project Name: Project Name: EKC Contract of the Castory Project No (internal): Temperature on Receipt: Contract / Exc - 672 (Conting: Laboratory Project No (internal): Temperature on Receipt: Contract / Encken Coole April Mash Volution Report To (PM): Project No: EKC - 672 (Conting: Custody Seal: V (interd / Broken Coole April Mash Rupor To (PM): Project No: EKC - 672 (Name) Multical Multical THER V EDD April Mash Sample Sample Sample Sample Sample Sample Sample Sample Comments NUL - 26 On 10 Inter if the option of the sample Sample Sample Sample Sample Comments NUL - 26 On 10 Inter if the sample Sample Sample Sample Comments NUL - 26 On 10 Inter if the sample Sample Sample Sample Comments <				"ISRN-L
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				ISRW-1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				TSRW-2
Specialty Analytical go11 SE Jamsen Rd Fax: 503-607-1336 Chain of Custody Record Date: 2(0 T i Taboratory Project No (inlemal): 2(0 T i Jaboratory Project No (inlemal): 2(0 T i Jaboratory Project No (inlemal): RSEC Environments Fax: 503-607-1336 Project Name: E K C - O721 PO No: E Acc - O72 Cooling: Temperature on Receipt:		<u>\</u>	1 7/142/0900	ITSRW-
Specialty Analytical 9011 SE Jannsen Rd Elackamas, OR 97015 Chain of Custody Record Date: 2(0.7.1) Analytical Phone: 503-607-1331 Date: 7/1/2/21 Page: of. 2 Laboratory Project No (internal): m. 7/1 PSEC EnVICONMENTAL Project Name: EKC - O721 PO No: EKC - 6/721 Cooling: Cooling: Cooling: Cooling: Shipped Via: Cooling: Cool	Comments	Pequestee	Sample Time	Sample Name
Specialty Analytical 9011 SE Jannsen Rd Clackamas, OR 97015 Chain of Custody Record 2(0-7) Analytical Phone: 503-607-1331 Date: 7/16/21 Page: of: 2 Laboratory Project No (internal): -// -// PSEC CnVICO nmch_f=1 Project Name: E K C OT 1 Laboratory Project No (internal): -// 1 PSB Hob_1 Vicult Chied by: E - OTZI PO No: E K C - OTZI PO No: E k C - OTZI Cooling: Cultody Seal: Y/N)Intact / Broken Coole .zip: Hob_1 River OR WA OTHER MDL TIERIV EDD .zip: Hob_1 AZ2_3 Report To (PM): PM Email: Cickw2/SScincCom Smple Dapost: Perunto dient Daspost by lab (aft)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Specialty Analytical9011 SE Jannsen Rd Clackamas, OR 97015 Fax: 503-607-1331Chain of Custody Record Page: 240.71 Laboratory Project No (internal):RSECCnV1C0.nm2n4_1Date: $7/16/2.1$ Page:of:2Laboratory Project No (internal): -71 PSBHazVicu CtProject No:CKC - 0721 PO No:CKC - 6721Cooling: $1000000000000000000000000000000000000$		(Kha (Skinc. L	× ×	AP Email:
Specialty Analytical 9011 SE Jannsen Rd Clackamas, OR 97015 Chain of Custody Record 2(0.7.1) Analytical Phone: 503-607-1331 Date: 7/1//21 Page: of: 2 Laboratory Project No (internal): 1 PSEC Environment 503-607-1336 Project Name: EKC - 0721 Po No: EKC - 672 (Cooling: Cooling:	Sample Disposal: Return to dient Subsposal by lab (after		1-490-4223	Telephone: 54
Specialty 9011 SE Jannsen Rd Chain of Custody Record 2(0.7.1) Analytical Phone: 503-607-1331 Date: 7/1/2/21 Page: of: 2 Laboratory Project No (internal): 1 PSEC Environment 503-607-1336 Project Name: EKC - 0721 Po No: EKC - 672 (Cooling: Cooling:	TIER IV	(WA)	1 RIVER OR, 97031	City, State, Zip: Ho
Specialty 9011 SE Jannsen Rd Chain of Custody Record 240-717 Analytical Phone: 503-607-1331 Date: 7/16/21 Page: of: 2 Laboratory Project No (internal): 1 RSEC Environment Project No: EKC - 0721 PO No: EKC - 6721 Cooling: 1 Auge: 1		لم ل	Hood View Ct.	Address: 958
Specialty 9011 SE Jannsen Rd Chain of Custody Record 2 (0.7.1) Analytical Phone: 503-607-1331 Date: $7/16/21$ Page: of: 2 Laboratory Project No (internal): 3.4 $7/10$ Analytical Fax: 503-607-1336 Date: $7/16/21$ Page: of: 2 Laboratory Project No (internal): 3.4	رَبِي Shipped Via: ط	KC-0721 PONO: EKC	Environmental	dient: RSEC
Specialty Glackamas, OR 97015 Date: 7/16/21 Page: 1 of 2 Laboratory Project No (internal):	~ 3.4 °c	143 143		
Chain of Custody Record		7/16/21 Page: 1 of		
		\cap		

www.specialtyanalytical.com

Relinquished ×	Pělinquished ×	x	n-around Time:	*Matrix: A=Air, AQ=Aqueous, L=Liquid, O=Oil, P=Product, S=Soil, SD=Sediment,	10	φ	0 7	6	5		2	NIA-E, SUMP	Sample Name	AP Email:	Telephone: 541.490.4223	ary, Sate, Zp: 1400 River SR 97031	Address: 958 Hox	aint RSEC Environmenta	Allalylical		
Date/ Fime	Date/ Time	THIZ 1	Standard (5-7 Business): 🔎	, O=Oil, P=Product, S=Soil, SD=So								7/1/1100 GW	Sample Sample Sample Date Time Matrix*		5.4223	21 08 97031		ironnental	Fax: 503-607-1336	Clackamas, OR 97015	9011 SE Jannsen Rd
		0251	₹ 3 Day: 21	diment, SL=Solid, W=Water, DW=Drinking Water,								3 X	# of Containers	PM Email: FICHON (SECINC.CO	Report To (PM):	· OR	Collected by: R.Tr.	Project No: EKC-0721 PO No: EKC	Project Name: EK	Date: 7/16/21	
Received ×	Received	Received	2 Day: Next Day: Expedited_turn-arou											020120.007		OTHER		1 PONO: EKC-072(Page: Z of: Z	Chain of Custod
Date/Time	Date/Time	$\frac{Datey Time}{4/10(2)}$ (SZC)	xt Day: Same Day: turn-around requests should be coordinated in advance	GW = Ground Water, SW = Sorm Water, WW = Waste Water , M = Miscellaneous									Comments		Sample Disposal: Return to dirent Constant Constant	MDL TIER IV EDD	Custody Seal: Y / N Intact / Broken Cooler / Bottle	Cooling: ILE Shipped ViaCL (ENT	Temperature on Receipt: 576°C	Laboratory Project No (internal): 2107 129	ustody Record

www.specialtyanalytical.com

Specialty Analytical 9011 SE Jannsen Ra Clackamas, Oregon 97015 TEL: 503-607-1331 FAX: 503-607-1336 Website: www.specialtyanalytical.com

Definition Only

WO#: **2107129** Date: **8/5/2021**

Definitions:

KEY TO FLAGS

A: This sample contains a Gasoline Range Organic not identified as a specific hydrocarbon product. The result was qualified against gasoline calibration standards.

A1: This sample contains a Diesel Range Organic not identified as a specific hydrocarbon product. The result was qualified against diesel calibration standards.

A2: This sample contains a Lube Oil Range Organic not identified as a specific hydrocarbon product. The result was qualified against lube oil calibration standards.

A3: The results was determined to be Non-Detect based on hydrocarbon pattern recognition. The product was carry-over from another hydrocarbon type.

A4: The product appears to be aged or degraded.

B: The blank exhibited a positive result greater than the reporting limit for this compound.

CN: See Case Narrative.

E: Result exceeds the calibration range for this compound. The result should be considered an estimate.

F: The positive result for this hydrocarbon is due to single component contamination. The product does not match any hydrocarbon in the fuels library.

FS: Follow-up testing is suggested.

G: Result may be biased high due to biogenic interferences. Clean up is recommended.

H: Sample was analyzed outside recommended holding time.

- HP: Sample was analyzed outside recommended holding time due to VOA having pH > 2.
- J: The results for this analyte is between the MDL and the PQL and should be considered an

WO#: **2107129** Date: **8/5/2021**

Definitions:

estimated concentration.

K: Diesel result is biased high due to amount of Oil contained in the sample.

L: Diesel result is biased high due to amount of Gasoline contained in the sample.

M: Oil result is biased high due to amount of Diesel contained in the sample.

N: Gasoline result is biased high due to amount of Diesel contained in the sample.

MC: Sample concentration is greater than 4x the spiked value, the spiked value is considered insignificant.

MI: Result is outside control limits due to matrix interference.

NH: Sample matrix is non-homogeneous

MSA: Value determined by Method of Standard Addition.

O: Laboratory Control Standard (LCS) exceeded laboratory control limits but meets CCV criteria. Data meets EPA requirements.

Q: Detection levels elevated due to sample matrix.

R: RPD control limits were exceeded

RF: Duplicate failed due to result being at or near the method-reporting limit.

RP: Matrix spike values exceed established QC limits; post digestion spike is in control.

S: Recovery is outside control limits.

SC: CCV or LCS exceeded high recovery control limits, but associated samples are non-detect. Data meets EPA requirements.

SL: LCS exceeded recovery control limits, but associated MS/MSD passing. Data meets EPA requirements.

Service Request No:K2108290

Rich Truax RSEC Environmental & Engineering Consulting, Inc. 958 Hood View Ct., Ste 101 Hood River, OR 97031

Laboratory Results for: Emerald Kalama Chem

Dear Rich,

Enclosed are the results of the sample(s) submitted to our laboratory July 16, 2021 For your reference, these analyses have been assigned our service request number **K2108290**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howaldblum

Howard Holmes Project Manager

> ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Client:	RSEC Environmental & Engineering Consulting, Inc. /
	ESB / WBE / DBE
Project:	Emerald Kalama Chem
Sample Matrix:	Water

Service Request: K2108290

Date Received: 07/16/2021

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Five water samples were received for analysis at ALS Environmental on 07/16/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Volatiles by GC/MS:

Method 8260C, 07/21/2021: The recovery of Toluene in the Matrix Spike (MS) KQ2114405-06 is elevated due to carry over from a high level field sample analyzed directly before the MS. The replicate Laboratory Control Samples (LCS/DLCS) KQ2114405-03 and KQ2114405-04 recoveries are acceptable indicating the batch was in control. The matrix spike recovery of Toluene was flagged to indicate the outlier. No further corrective action was taken.

Method 8260C, 07/21/2021: Samples required dilution due to the presence of elevated levels of target analyte. The reporting limits are adjusted to reflect the dilution.

Howaldblum Approved by

Date

07/31/2021

SAMPLE DETECTION SUMMARY

CLIENT ID: ISRW-1		Lab	ID: K2108	8290-001	290-001					
Analyte	Results	Flag	MDL	MRL	Units	Method				
Benzene	34			25	ug/L	8260C				
Toluene	26000			500	ug/L	8260C				
CLIENT ID: ISRW-5		Lab	ID: K2108	3290-002						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Benzene	31			25	ug/L	8260C				
Toluene	38000			500	ug/L	8260C				
CLIENT ID: ISRW-8		Lab	ID: K2108	3290-003						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Benzene	70			25	ug/L	8260C				
Toluene	52000			500	ug/L	8260C				
CLIENT ID: ISRW-10		Lab	D: K2108	3290-004						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Benzene	150			25	ug/L	8260C				
Toluene	74000			500	ug/L	8260C				
CLIENT ID: NIA-ES		Lab	D: K2108	8290-005						
Analyte	Results	Flag	MDL	MRL	Units	Method				
Benzene	2.0			0.50	ug/L	8260C				

ALS				Cŀ	I AIN	OF	- C	US	зтс	D	Y			17	JC	81	29	Û	SR	#			
1317 South	n 13th Ave., I	Kelso, WA 9	8626	+1 36	60 577 7222	+1	800 6	95 72	22	+1 360	0 636	1068	(fax)	•	AGE			_ OF	5		. co	C#]
PROJECT NUMBER EMECALIA PROJECT NUMBER EKC-O PROJECT MANAGER RICKT COMPANY NAME RSECE ADDRESS 958 HOD	Kala 1721 NURAN VIRN	mental ct. 27031 Com	<u>Chei</u>	\sim	CONTAINERS	1000000	Hydrocart Band Brock	~~~~~	~~~~~			1 8151 []			(circle) NH2.0, 755, 10, 20, POA F		Allalinia AOX 1600 U.		#CO3 []	ON 175 DiMethane CO2D	Lethane Ethener	nayoussamu	REMARKS
ISRW-1 7/16/21	0900		GW	3		$\overline{\mathbf{x}}$	ſ	<u></u>		-		<u> </u>			<u>/ =</u>	$f \rightarrow$	<u> </u>		$\int \frac{1}{\sqrt{2}}$	\vdash	\vdash	<u>/</u>	Benzene
ISRW-5	6930			1		$\frac{1}{1}$										 							
ISRW-8	1000					\mathbf{H}																	+ Toluena
ISRW-10	1030					\mathbf{H}																	ONLY
NIA-ES V	1100		V	40		$\overline{\mathbf{v}}$																	
		1																					#5500 mot
																							mess
REPORT REQUIREMENTS	P.O. # Bill To:	CE INFORM	372	· [ls: Al als: Al	As S As S	ib Ba Sb Ba	a Be a Be	B Ca	Cd	Co (Or Cu	Fe	Pb N	lg Mi	n Ma	Ni	K Ag	Na	Se Si		Sn V Zn Hg Sn V Zn Hg (CIRCLE ONE)
II. Report Dup., MS, MSD as required		OUND REQU		ENTS	SPECIAL I	NSTR	UCTIC	NS/C	ОММ	ENTS:							<u>Quin</u>		<u>, </u>	116.13.			
III. CLP Like Summary (no raw data) IV. Data Validation Report V. EDD	5 day	dard (15 work de FAX Resul	ing days	s)		32 Or 260	60 ,\y 	Р . I . Ко	5 15 15 15 15	201 2W3	ie 5 n Na	noy	510 1 h 111)?19 ≈Ve { 5	ela	val pla	æ)		Cont	aine	r Sur 1181	pply Number
	Sample Shipment co				conta	ains U	ISDA	regul	ated	soil s	ample	es (ch	eck b	ox if	applic	cable)	I			I			
Signature Conv Action	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Signatu	///	RECE Port	IVED BY: 7/(131		Signa		RELI	NQUI		BY: e/Time	9			Signa	ture	RE	CEIVE		: /Time
Printed Name Firm	~	Printed	Name		Firm				Printe	d Nan	ne		Firn	n			· ·	Printe	d Nan	ne	****	Firm	

			Cooler Receip	t and P	Presorvati	ion Form			pm_HZ
lient	Sir Envir	amental				rvice Request	K21 104	7.90	
	7/10/21	Opened: _	7/10/21	By:	R	Unloaded:	7/10/2	By: _	- Pc
Samples w	ere received via?	USPS	Fed Ex	UPS	DHL	PDX	Courier	(Hand Del	livered
-	ere received in: (ci		ooler Box		velope	Other		The second	NA
Were custo	dy seals on coolers	?	NA & N	If yes, ho	- w many and	where?	Fint		
If present, v	vere custody seals	intact?	N N	If present	t, were they s	signed and dated	?	\odot	N
If no, take the Were sample	s received within t	a representative he method spe	e sample bottle contai cified temperature rar	ned withir 1ges?	n the cooler;		umn "Sampl	e Temp": NA Y	N
	hey received on ice ssue samples were		as collected? If not, Frozen Partially T		cooler # belo Thawed	ow and notify the	e PM.	NA (Y)	N
					Out of tem				
Temp Blank 9.6	Sample Temp	<u>IR Gun</u> 1202	Cooler #/COC ID / I	VA i	ndicate with '	X" If out of t	emp	Tracking Numb	er NA File
Were custo Were samp Were all sa Did all sam Were appro	ple labels and tags opriate bottles/cont H-preserved bottles	filled out (ink d condition (u ete (ie, analysis agree with cus ainers and volu s (see SMO GI	nbroken) s, preservation, etc.)?	tests indic	bated?		'e below	NA NA NA NA NA NA Y NA Y NA Y NA	N N N N N N N
Was C12/R		noue noudopao		10 00.011.				(NA) Y	N
Sa	mple ID on Bott	le	Sampl	e ID on C	200		k	lentified by:	
	Sample ID		Bottle Count Bottle Type	Head- space E	Broke pH	Reagent	Volume added	Reagent Lot Number	Initials Time
						ŜĦ			

.

lotes, Discrepancies, Resolutions:_____

Page 8 of 27

	Analytical Report	
Client:	RSEC Environmental & Engineering Consulting, Inc. / ESB /	Service Request: K2108290
Project:	Emerald Kalama Chem/EKC-0721	Date Collected: 07/16/21 09:00
Sample Matrix:	Water	Date Received: 07/16/21 13:00
Sample Name: Lab Code:	ISRW-1 K2108290-001	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	None

Date Analyzed Q	y v	Result	Analyte Name
07/21/21 19:11		34	Benzene
07/21/21 16:59)	26000	Toluene
		-	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	84	68 - 117	07/21/21 19:11	
Dibromofluoromethane	99	73 - 122	07/21/21 19:11	
Toluene-d8	102	65 - 144	07/21/21 19:11	

	Analytical Report	
Client:	RSEC Environmental & Engineering Consulting, Inc. / ESB /	Service Request: K2108290
Project:	Emerald Kalama Chem/EKC-0721	Date Collected: 07/16/21 09:30
Sample Matrix:	Water	Date Received: 07/16/21 13:00
Sample Name: Lab Code:	ISRW-5 K2108290-002	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	None

Result	MRL	Dil.	Date Analyzed	Q
31	25	50	07/21/21 19:38	
38000	500	1000	07/21/21 17:25	
	31	31 25	31 25 50	31 25 50 07/21/21 19:38

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	84	68 - 117	07/21/21 19:38	
Dibromofluoromethane	105	73 - 122	07/21/21 19:38	
Toluene-d8	100	65 - 144	07/21/21 19:38	

	Analytical Report	
Client:	RSEC Environmental & Engineering Consulting, Inc. / ESB /	Service Request: K2108290
Project:	Emerald Kalama Chem/EKC-0721	Date Collected: 07/16/21 10:00
Sample Matrix:	Water	Date Received: 07/16/21 13:00
Sample Name: Lab Code:	ISRW-8 K2108290-003	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	70	25	50	07/21/21 20:04	
Toluene	52000	500	1000	07/21/21 17:52	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	86	68 - 117	07/21/21 20:04	
Dibromofluoromethane	102	73 - 122	07/21/21 20:04	
Toluene-d8	99	65 - 144	07/21/21 20:04	

	Analytical Report	
Client:	RSEC Environmental & Engineering Consulting, Inc. / ESB /	Service Request: K2108290
Project:	Emerald Kalama Chem/EKC-0721	Date Collected: 07/16/21 10:30
Sample Matrix:	Water	Date Received: 07/16/21 13:00
Sample Name: Lab Code:	ISRW-10 K2108290-004	Units: ug/L Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	150	25	50	07/21/21 20:31	
Toluene	74000	500	1000	07/21/21 18:18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	84	68 - 117	07/21/21 20:31	
Dibromofluoromethane	102	73 - 122	07/21/21 20:31	
Toluene-d8	99	65 - 144	07/21/21 20:31	

	Analytical Report	
Client:	RSEC Environmental & Engineering Consulting, Inc. / ESB /	Service Request: K2108290
Project:	Emerald Kalama Chem/EKC-0721	Date Collected: 07/16/21 11:00
Sample Matrix:	Water	Date Received: 07/16/21 13:00
Sample Name:	NIA-ES	Units: ug/L
Lab Code:	K2108290-005	Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	2.0	0.50	1	07/21/21 18:45	
Toluene	ND U	0.50	1	07/21/21 18:45	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	84	68 - 117	07/21/21 18:45	
Dibromofluoromethane	106	73 - 122	07/21/21 18:45	
Toluene-d8	101	65 - 144	07/21/21 18:45	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:RSEC Environmental & Engineering Consulting, Inc. / ESB /Project:Emerald Kalama Chem/EKC-0721Sample Matrix:Water

Service Request: K2108290

SURROGATE RECOVERY SUMMARY

Analysis Method:	8260C
Extraction Method:	None

			Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	68-117	73-122	65-144
ISRW-1	K2108290-001	84	99	102
ISRW-5	K2108290-002	84	105	100
ISRW-8	K2108290-003	86	102	99
ISRW-10	K2108290-004	84	102	99
NIA-ES	K2108290-005	84	106	101
Method Blank	KQ2114405-05	86	100	101
Lab Control Sample	KQ2114405-03	94	101	105
Duplicate Lab Control Sample	KQ2114405-04	95	105	103
NIA-ES	KQ2114405-06	91	102	102
NIA-ES	KQ2114405-07	92	105	105

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:	RSEC Environmental & Engineering Consulting, Inc. / ESB / WBE / DBE				BE/ Servi	ce Request	: K21	08290		
Project:	Emerald Kalama Chem/EKC-0721				Date	Collected:	07/1	6/21		
Sample Matrix:	Water	Water			Date 1	Received:	07/1	6/21		
					Date	Analyzed:	07/2	1/21		
						Date 1	Extracted:	NA		
			Duplicate M	atrix Spik	e Summar	У				
		Vo	latile Organi	c Compou	inds by GC	/MS				
Sample Name:	NIA-ES						Units:	ug/L		
Lab Code:	K2108290-005						Basis:	NA		
Analysis Method:	8260C									
Prep Method:	None									
			Matrix S _I	oike	D	uplicate Mat	trix Spike			
			KQ211440	5-06		KQ21144(05-07			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Benzene	2.0	12.6	10.0	107	12.0	10.0	101	63-144	5	30
Toluene	ND U	16.3	10.0	163 *	10.8	10.0	108	71-136	41*	30

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

	Analytical Report		
Client:	RSEC Environmental & Engineering Consulting, Inc. / ESB /	Service Request:	K2108290
Project:	Emerald Kalama Chem/EKC-0721	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name:	Method Blank	Units:	ug/L
Lab Code:	KQ2114405-05	Basis:	NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	07/21/21 14:47	
Toluene	ND U	0.50	1	07/21/21 14:47	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	86	68 - 117	07/21/21 14:47	
Dibromofluoromethane	100	73 - 122	07/21/21 14:47	
Toluene-d8	101	65 - 144	07/21/21 14:47	

QA/QC Report

Client:	RSEC Envi DBE	ronmental & Engi	neering Co	nsulting, Inc	e. / ESB / WBE /	Service R	equest:	K210829	0
Project:	Emerald Ka	alama Chem/EKC-	0721			Date Ana	lyzed:	07/21/21	
Sample Matrix:	Water					Date Ext	racted:	NA	
		Dup	licate Lab	Control Sa	mple Summary				
		Vola	atile Orgai	nic Compou	inds by GC/MS				
Analysis Method:	8260C					Units:		ug/L	
Prep Method:	None					Basis:		NA	
						Analysis	Lot:	731965	
	La	ab Control Sampl	e	Ι	Duplicate Lab Cor	ntrol Samp	le		
		KQ2114405-03			KQ211440	5-04			
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Benzene	9.56	10.0	96	9.45	10.0	95	69-124	1	30
Toluene	9.47	10.0	95	9.49	10.0	95	69-124	<1	30

October 2021 Semi-Annual Data Set Laboratory Reports Specialty Analytical (Revised Report Due to Missing Requested Analytes)

Specialty Analytical

9011 SE Jannsen Rd Clackamas, OR 97015 TEL: (503) 607-1331 Website: www.specialtyanalytical.com

December 03, 2021 Rich Truax RSEC Environmental Inc. 958 Hood View Ct. Hood River, OR 97031 TEL: (541) 490-4223 FAX

RE: EKC-1021

Order No.: 2110025

Dear Rich Truax:

REVISED REPORT: Please see case narrative for information on revision.

There were no problems with the analysis and all data for associated QC met EPA or laboratory specifications, except where noted in the Case Narrative, or as qualified with flags. Results apply only to the samples analyzed. Without approval of the laboratory, the reproduction of this report is only permitted in its entirety.

If you have any questions regarding these tests, please feel free to call.

Sincerely,

di UN

Marty French Lab Director

 WO#:
 2110025

 Date Reported:
 12/3/2021

CLIENT: RSEC Environmenta Project: EKC-1021	l Inc.					
Lab ID: 2110025-001				Matrix:	GROU	NDWATER
Client Sample ID ISRW-1				Collection Date:	10/1/2	021 9:00:00 AM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS				SW8260D	sw	5030B Analyst: TB
Benzene	ND	300	Q	µg/L	1000	10/14/2021 5:12:00 PM
Toluene	1720	1000		µg/L	1000	10/14/2021 5:12:00 PM
Surr: 1,2-Dichloroethane-d4	127	75.3 - 126	SMI	%Rec	1000	10/14/2021 5:12:00 PM
Surr: 4-Bromofluorobenzene	98.2	78.1 - 120		%Rec	1000	10/14/2021 5:12:00 PM
Surr: Dibromofluoromethane	130	74.2 - 122	SMI	%Rec	1000	10/14/2021 5:12:00 PN
Surr: Toluene-d8	102	76.2 - 135		%Rec	1000	10/14/2021 5:12:00 PM
Lab ID: 2110025-002				Matrix:	GROU	NDWATER
Client Sample ID ISRW-2b				Collection Date:	10/1/2	021 9:10:00 AM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS				SW8260D	sw	5030B Analyst: TB
Benzene	96.0	30.0		µg/L	100	10/15/2021 1:37:00 PM
Toluene	17000	1000		µg/L	1000	10/14/2021 5:34:00 PM
Surr: 1,2-Dichloroethane-d4	128	75.3 - 126	SMI	%Rec	1000	10/14/2021 5:34:00 PM
Surr: 4-Bromofluorobenzene	98.4	78.1 - 120		%Rec	1000	10/14/2021 5:34:00 PM
Surr: Dibromofluoromethane	130	74.2 - 122	SMI	%Rec	1000	10/14/2021 5:34:00 PM
Surr: Toluene-d8	101	76.2 - 135		%Rec	1000	10/14/2021 5:34:00 PM
Lab ID: 2110025-003				Matrix:	GROU	NDWATER
Client Sample ID ISRW-3				Collection Date:	10/1/2	021 9:20:00 AM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
				SW8260D	SW	5030B Analyst: TB
VOLATILE ORGANICS BY GC/MS					100	···· ,
VOLATILE ORGANICS BY GC/MS Benzene	58.0	30.0		ua/L	100	10/15/2021 1.59.00 PN
	58.0 17800	30.0 1000		µg/L µg/L	100	
Benzene Toluene			SMI	μg/L μg/L %Rec		10/15/2021 1:59:00 PM 10/14/2021 5:56:00 PM 10/14/2021 5:56:00 PM
Benzene	17800	1000	SMI	μg/L	1000	10/14/2021 5:56:00 PN 10/14/2021 5:56:00 PN
Benzene Toluene Surr: 1,2-Dichloroethane-d4	17800 128	1000 75.3 - 126	SMI SMI	μg/L %Rec	1000 1000	10/14/2021 5:56:00 PM

Specialty	Analytical				I	Date Reported: 12/3/202
CLIENT: Project:	RSEC Environmenta EKC-1021	al Inc.				
Lab ID:	2110025-004			Matrix:	GROL	JNDWATER
Client Sample	ID ISRW-4			Collection Date:	10/1/2	021 9:30:00 AM
Analyses		Result	RL Qua	al Units	DF	Date Analyzed
VOLATILE OR	RGANICS BY GC/MS			SW8260D	sw	5030B Analyst: TB
Benzene		7.30	0.300	µg/L	1	10/15/2021 2:21:00 PM
Toluene		78.8	1.00	µg/L	1	10/15/2021 2:21:00 PM
Surr: 1,2-Die	chloroethane-d4	100	75.3 - 126	%Rec	1	10/15/2021 2:21:00 PM
Surr: 4-Bron	nofluorobenzene	98.0	78.1 - 120	%Rec	1	10/15/2021 2:21:00 PM
Surr: Dibron	nofluoromethane	99.4	74.2 - 122	%Rec	1	10/15/2021 2:21:00 PM
Surr: Toluer	ne-d8	98.2	76.2 - 135	%Rec	1	10/15/2021 2:21:00 PM
Lab ID:	2110025-005			Matrix:	GROU	JNDWATER
Client Sample	ID ISRW-5			Collection Date:	10/1/2	021 9:40:00 AM
Analyses		Result	RL Qua	ul Units	DF	Date Analyzed
VOLATILE OR	RGANICS BY GC/MS			SW8260D	sw	5030B Analyst: TB
Benzene		ND	30.0	µg/L	100	10/15/2021 2:44:00 PM
Toluene		21300	1000	µg/L	1000	10/14/2021 6:41:00 PM
Surr: 1,2-Die	chloroethane-d4	105	75.3 - 126	%Rec	1000	10/14/2021 6:41:00 PM
Surr: 4-Bron	nofluorobenzene	98.6	78.1 - 120	%Rec	1000	10/14/2021 6:41:00 PM
Surr: Dibron	nofluoromethane	104	74.2 - 122	%Rec	1000	10/14/2021 6:41:00 PM
Surr: Toluer	ne-d8	101	76.2 - 135	%Rec	1000	10/14/2021 6:41:00 PM
Lab ID:	2110025-006			Matrix:	GROU	JNDWATER
Client Sample	ID ISRW-6			Collection Date:	10/1/2	021 9:50:00 AM
Analyses		Result	RL Qua	al Units	DF	Date Analyzed
VOLATILE OR	RGANICS BY GC/MS			SW8260D	sw	5030B Analyst: TB
Benzene		54.0	30.0	µg/L	100	10/14/2021 7:03:00 PM
Toluene		7520	100	µg/L	100	10/14/2021 7:03:00 PM
Surr: 1,2-Die	chloroethane-d4	106	75.3 - 126	%Rec	100	10/14/2021 7:03:00 PM
Surr: 4-Bron	nofluorobenzene	99.4	78.1 - 120	%Rec	100	10/14/2021 7:03:00 PM
Surr: Dibron	nofluoromethane	105	74.2 - 122	%Rec	100	10/14/2021 7:03:00 PM
Surr: Toluer	ne-d8	100	76.2 - 135	%Rec	100	10/14/2021 7:03:00 PM

WO#: 2110025

Specially mary fical						Date Reported: 12/3/202
CLIENT: RSEC Environment Project: EKC-1021	al Inc.					
Lab ID: 2110025-007				Matr	ix: GROU	JNDWATER
Client Sample ID ISRW-7				Collection Da	te: 10/1/2	2021 10:00:00 AM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS				SW826	0D SW	5030B Analyst: TB
Benzene	ND	0.300		µg/L	1	10/14/2021 3:21:00 PM
Toluene	ND	1.00		µg/L	1	10/14/2021 3:21:00 PM
Surr: 1,2-Dichloroethane-d4	98.6	75.3 - 126		%Rec	1	10/14/2021 3:21:00 PM
Surr: 4-Bromofluorobenzene	97.4	78.1 - 120		%Rec	1	10/14/2021 3:21:00 PM
Surr: Dibromofluoromethane	99.4	74.2 - 122		%Rec	1	10/14/2021 3:21:00 PM
Surr: Toluene-d8	99.5	76.2 - 135		%Rec	1	10/14/2021 3:21:00 PM
Lab ID: 2110025-008				Matr	ix: GROU	JNDWATER
Client Sample ID ISRW-8				Collection Da	te: 10/1/2	2021 10:10:00 AM
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS				SW826	0D SW	5030B Analyst: TB
Benzene	60.0	30.0		μg/L	100	10/15/2021 3:06:00 PM
Toluene	17000	1000		μg/L	1000	10/14/2021 7:25:00 PM
Surr: 1,2-Dichloroethane-d4	131	75.3 - 126	SMI	%Rec	1000	10/14/2021 7:25:00 PM
Surr: 4-Bromofluorobenzene	98.5	78.1 - 120		%Rec	1000	10/14/2021 7:25:00 PM
Surr: Dibromofluoromethane	130	74.2 - 122	SMI	%Rec	1000	10/14/2021 7:25:00 PM
Surr: Toluene-d8	100	76.2 - 135		%Rec	1000	10/14/2021 7:25:00 PM
Lab ID: 2110025-009				Matr	ix: GROU	JNDWATER
Client Sample ID ISRW-9				Collection Da	te: 10/1/2	2021 10:20:00 AM
	Decarel4	ът	Onel	Unite	DF	Data Analyzad
Analyses	Result	RL	Quai	Units	Dľ	Date Analyzed
Analyses VOLATILE ORGANICS BY GC/MS	Kesun	<u> </u>	Quai	SW826		
e e		<u>KL</u> 15.0	Quai	SW826		5030B Analyst: TB
VOLATILE ORGANICS BY GC/MS Benzene	ND	15.0	Quai	SW826 µg/L	0D SW 50	5030B Analyst: TB 10/15/2021 3:29:00 PM
VOLATILE ORGANICS BY GC/MS Benzene Toluene	ND 4360	15.0 1000		SW826 µg/L µg/L	0 D SW 50 1000	5030B Analyst: TB 10/15/2021 3:29:00 PM 10/14/2021 7:47:00 PM
VOLATILE ORGANICS BY GC/MS Benzene Toluene Surr: 1,2-Dichloroethane-d4	ND 4360 130	15.0 1000 75.3 - 126	SMI	SW826 μg/L μg/L %Rec	0 D SW 50 1000 1000	5030B Analyst: TB 10/15/2021 3:29:00 PM 10/14/2021 7:47:00 PM 10/14/2021 7:47:00 PM
VOLATILE ORGANICS BY GC/MS Benzene Toluene	ND 4360	15.0 1000		SW826 µg/L µg/L	0 D SW 50 1000	5030B Analyst: TB 10/15/2021 3:29:00 PM 10/14/2021 7:47:00 PM

Specialty Analytical

WO#: 2110025

Date Reported: 12/3/2021

Surr: Toluene-d8

 WO#:
 2110025

 Date Reported:
 12/3/2021

CLIENT: RSEC Environmental Inc. EKC-1021 **Project:** Matrix: GROUNDWATER Lab ID: 2110025-010 Client Sample ID ISRW-10 Collection Date: 10/1/2021 10:30:00 AM Result **RL** Qual Units **Date Analyzed** Analyses DF **VOLATILE ORGANICS BY GC/MS** SW8260D SW 5030B Analyst: TB Benzene 127 30.0 100 10/15/2021 3:51:00 PM µg/L Toluene 35900 1000 µg/L 1000 10/14/2021 8:09:00 PM Surr: 1,2-Dichloroethane-d4 127 75.3 - 126 SMI %Rec 1000 10/14/2021 8:09:00 PM Surr: 4-Bromofluorobenzene 98.2 78.1 - 120 %Rec 1000 10/14/2021 8:09:00 PM Surr: Dibromofluoromethane 129 74.2 - 122 %Rec 1000 10/14/2021 8:09:00 PM SMI Surr: Toluene-d8 103 76.2 - 135 %Rec 1000 10/14/2021 8:09:00 PM Lab ID: Matrix: GROUNDWATER 2110025-011 Client Sample ID ISRW-11 Collection Date: 10/1/2021 10:40:00 AM Analyses Result **RL** Qual Units DF **Date Analyzed VOLATILE ORGANICS BY GC/MS** SW8260D SW 5030B Analyst: TB µg/L Benzene 6.80 6.00 20 10/15/2021 4:13:00 PM Toluene 1870 1000 10/14/2021 8:31:00 PM 1000 µg/L Surr: 1.2-Dichloroethane-d4 128 75.3 - 126 SMI %Rec 1000 10/14/2021 8:31:00 PM Surr: 4-Bromofluorobenzene 97.5 78.1 - 120 %Rec 1000 10/14/2021 8:31:00 PM Surr: Dibromofluoromethane 130 74.2 - 122 %Rec 1000 10/14/2021 8:31:00 PM SMI

76.2 - 135

%Rec

1000

10/14/2021 8:31:00 PM

103

Specialty Analytical

WO#: Date Reported:

2110025 12/3/2021

CLIENT: Project:	RSEC Environmental I EKC-1021	nc.					
Lab ID:	2110025-012				Matrix:	GROU	JNDWATER
Client Sample ID	E-Sump				Collection Date:	10/1/2	021 11:15:00 AM
Analyses		Result	RL	Oual	Units	DF	Date Analyzed

Biphenyl	ND	0.473	Н	µg/L	1	11/10/	2021 1:16:00 PM
Diphenyl ether	104	0.473	Н	µg/L	1	11/10/	2021 1:16:00 PM
Surr: 2,4,6-Tribromophenol	74.2	33.1 - 129.7	Н	%Rec	1	11/10/	2021 1:16:00 PM
Surr: 2-Fluorobiphenyl	83.8	33.1 - 126.2	Н	%Rec	1	11/10/	2021 1:16:00 PM
Surr: 2-Fluorophenol	67.3	13.4 - 127.1	Н	%Rec	1	11/10/	2021 1:16:00 PM
Surr: 4-Terphenyl-d14	80.5	41 - 140	Н	%Rec	1	11/10/	2021 1:16:00 PM
Surr: Nitrobenzene-d5	86.2	28.9 - 129.9	Н	%Rec	1	11/10/	2021 1:16:00 PM
Surr: Phenol-d6	62.2	10.6 - 128.5	н	%Rec	1	11/10/	2021 1:16:00 PM
VOLATILE ORGANICS BY GC/MS				SW8260D	SW 5	030B	Analyst: TB
	ND	0.300		SW8260D μg/L	SW 5		Analyst: TB 2021 3:44:00 PM
VOLATILE ORGANICS BY GC/MS	ND ND	0.300 1.00			SW 5 1 1	10/14/	,
VOLATILE ORGANICS BY GC/MS Benzene			SMI	µg/L	SW 5 1 1 1	10/14/ 10/14/	2021 3:44:00 PM
VOLATILE ORGANICS BY GC/MS Benzene Toluene	ND	1.00	SMI	μg/L μg/L	SW 5 1 1 1 1	10/14/ 10/14/ 10/14/	2021 3:44:00 PM 2021 3:44:00 PM
VOLATILE ORGANICS BY GC/MS Benzene Toluene Surr: 1,2-Dichloroethane-d4	ND 128	1.00 75.3 - 126	SMI SMI	μg/L μg/L %Rec	SW 5 1 1 1 1 1	10/14/ 10/14/ 10/14/ 10/14/	2021 3:44:00 PM 2021 3:44:00 PM 2021 3:44:00 PM

Specialty Analytical

WO#: Date Reported:

2110025 12/3/2021

CLIENT: Project: RSEC Environmental Inc. EKC-1021

Lab ID:	2110025-013				Matrix:	GRO	UNDWA	TER
Client Sample ID	E-Sump MS/MSD				Collection Date:	10/1/	2021 11:3	30:00 AM
Analyses		Result	RL	Qual	Units	DF	Date A	Analyzed
SEMIVOLATILE	ORGANICS-LOW LEVE	ΞL			SW8270E	sv	V 3510C	Analyst: mjf
Biphenyl		ND	0.474	н	µg/L	1	11/10	/2021 1:47:00 PM
Diphenyl ether		100	0.474	Н	µg/L	1	11/10	/2021 1:47:00 PM
Surr: 2,4,6-Trib	romophenol	79.3	33.1 - 129.7	Н	%Rec	1	11/10	/2021 1:47:00 PM
Surr: 2-Fluorobiphenyl		83.4	33.1 - 126.2	Н	%Rec	1	11/10	/2021 1:47:00 PM
Surr: 2-Fluorophenol		64.3	13.4 - 127.1	Н	%Rec	1	11/10	/2021 1:47:00 PM
Surr: 4-Terpher	ıyl-d14	79.6	41 - 140	Н	%Rec	1	11/10	/2021 1:47:00 PM
Surr: Nitrobenz	ene-d5	80.6	28.9 - 129.9	Н	%Rec	1	11/10	/2021 1:47:00 PM
Surr: Phenol-de	3	73.2	10.6 - 128.5	Н	%Rec	1	11/10	/2021 1:47:00 PM
VOLATILE ORGA	ANICS BY GC/MS				SW8260D	sv	V 5030B	Analyst: TB
Benzene		ND	0.300		µg/L	1	10/14	/2021 4:06:00 PM
Toluene		ND	1.00		µg/L	1	10/14	/2021 4:06:00 PM
Surr: 1,2-Dichlo	proethane-d4	129	75.3 - 126	SMI	%Rec	1	10/14	/2021 4:06:00 PM
Surr: 4-Bromofl	uorobenzene	96.7	78.1 - 120		%Rec	1	10/14	/2021 4:06:00 PM
Surr: Dibromofl	uoromethane	129	74.2 - 122	SMI	%Rec	1	10/14	/2021 4:06:00 PM
Surr: Toluene-c	18	98.7	76.2 - 135		%Rec	1	10/14	/2021 4:06:00 PM

Specialty	Analytical
Specially	¹ Mary fical

WO#: Date Reported:

2110025 12/3/2021

CLIENT: Project:	RSEC Environmental In EKC-1021	nc.					
Lab ID:	2110025-014						NDWATER
Client Sample ID	w-Sump				Collection Date:	10/1/20	021
Analyses		Result	RL	Qual	Units	DF	Date Analyzed

Analyses	Kesun	KL	Quai	Units	DF	Date	silalyzeu
SEMIVOLATILE ORGANICS-LOW LEVEL				SW8270E	SV	V 3510C	Analyst: mjf
Biphenyl	ND	0.474	Н	µg/L	1	11/10	/2021 2:18:00 PM
Diphenyl ether	119	0.474	Н	µg/L	1	11/10	/2021 2:18:00 PM
Surr: 2,4,6-Tribromophenol	85.2	33.1 - 129.7	Н	%Rec	1	11/10	/2021 2:18:00 PM
Surr: 2-Fluorobiphenyl	76.8	33.1 - 126.2	Н	%Rec	1	11/10	/2021 2:18:00 PM
Surr: 2-Fluorophenol	62.3	13.4 - 127.1	н	%Rec	1	11/10	/2021 2:18:00 PM
Surr: 4-Terphenyl-d14	84.7	41 - 140	н	%Rec	1	11/10	/2021 2:18:00 PM
Surr: Nitrobenzene-d5	86.9	28.9 - 129.9	Н	%Rec	1	11/10	/2021 2:18:00 PM
Surr: Phenol-d6	62.1	10.6 - 128.5	Н	%Rec	1	11/10	/2021 2:18:00 PM
VOLATILE ORGANICS BY GC/MS				SW8260D	SV	V 5030B	Analyst: TB
Benzene	0.500	0.300		µg/L	1	10/14	/2021 4:28:00 PM
Toluene	ND	1.00		µg/L	1	10/14	/2021 4:28:00 PM
Surr: 1,2-Dichloroethane-d4	128	75.3 - 126	SMI	%Rec	1	10/14	/2021 4:28:00 PM
Surr: 4-Bromofluorobenzene	97.8	78.1 - 120		%Rec	1	10/14	/2021 4:28:00 PM
Surr: Dibromofluoromethane	131	74.2 - 122	SMI	%Rec	1	10/14	/2021 4:28:00 PM
Surr: Toluene-d8	98.8	76.2 - 135		%Rec	1	10/14	/2021 4:28:00 PM

Page 8 of 20

WO#: **2110025**

12/3/2021

Client: RSEC Project: EKC-	C Environmental Inc. -1021					TestCode: {	8260_W	
Sample ID: CCV1 40ppb	SampType: CCV	TestCode: 8260_W	Units: µg/L		Prep Date:	:	RunNo: 42290	
Client ID: CCV	Batch ID: 18654	TestNo: SW8260D	SW 5030B		Analysis Date	10/14/2021	SeqNo: 541956	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzene	39.4	0.300 40.00	0	98.5	80	120		
Toluene	39.9	1.00 40.00	0	99.7	80	120		
Sample ID: MB	SampType: MBLK	TestCode: 8260_W	Units: µg/L		Prep Date:	:	RunNo: 42290	
Client ID: PBW	Batch ID: 18654	TestNo: SW8260D	SW 5030B		Analysis Date	10/14/2021	SeqNo: 541957	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzene	ND	0.300						
Toluene	ND	1.00						
Surr: 1,2-Dichloroethane	e-d4 121	100.0		121	75.3	126		
Surr: 4-Bromofluorobenz	zene 98.4	100.0		98.4	78.1	120		
Surr: Dibromofluorometh	hane 122	100.0		122	74.2	122		
Surr: Toluene-d8	99.5	100.0		99.5	76.2	135		
Sample ID: 2110025-011A	MS SampType: MS	TestCode: 8260_W	Units: µg/L		Prep Date:		RunNo: 42290	
Client ID: ISRW-11	Batch ID: 18654	TestNo: SW8260D	SW 5030B		Analysis Date	10/14/2021	SeqNo: 541973	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Benzene	53600	300 40000	0	134	74.1	136		
Toluene	43000	1000 40000	1870	103	68.4	135		

Specialty Analytical

WO#: **2110025**

12/3/2021

Client: Project:	RSEC Env EKC-1021	ironmental Inc.		TestCode: 8260_W								
Sample ID:	2110025-011AMS	SampType: MS	TestCode	e: 8260_W	Units: µg/L		Prep Date	e:		RunNo: 422	290	
Client ID:	ISRW-11	Batch ID: 18654	TestNo	: SW8260D	SW 5030B		Analysis Date	e: 10/14/2	2021	SeqNo: 54 ′	1973	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sample ID:	LCS	SampType: LCS	TestCode	e: 8260_W	Units: µg/L		Prep Date	e:		RunNo: 422	290	
Client ID:	LCSW	Batch ID: 18654	TestNo	: SW8260D	SW 5030B		Analysis Date	e: 10/14/2	2021	SeqNo: 541974		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		39.4	0.300	40.00	0	98.5	76.8	125				
Toluene		39.9	1.00	40.00	0	99.7	82	122				
Sample ID:	CCV1 40ppb	SampType: CCV	TestCode	e: 8260_W	Units: µg/L		Prep Date	e:		RunNo: 422	290	
Client ID:	CCV	Batch ID: 18654	TestNo	: SW8260D	SW 5030B		Analysis Date	e: 10/15/2	2021	SeqNo: 54 ′	1995	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene		37.8	1.00	40.00	0	94.6	80	120				
Sample ID:	ССВ	SampType: CCB	TestCode	e: 8260_W	Units: µg/L		Prep Date	e:		RunNo: 422	290	
Client ID:	ССВ	Batch ID: 18654	TestNo	: SW8260D	SW 5030B		Analysis Date	e: 10/15/2	2021	SeqNo: 54 ′	1997	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene		ND	1.00									

Specialty Analytical

WO#: **2110025**

12/3/2021

	nvironmental Inc.								
Project: EKC-102	21					TestCode: 8	3260_W		
Sample ID: CCB	SampType: CCB	TestCode: 8260_W	Units: µg/L		Prep Date:		RunNo: 42290		
Client ID: CCB	Batch ID: 18654	TestNo: SW8260D	SW 5030B		Analysis Date	10/15/2021	SeqNo: 541997		
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual	
Surr: 1,2-Dichloroethane-d4	100	100.0		100	75.3	126			
Surr: 4-Bromofluorobenzene	97.8	100.0		97.8	78.1	120			
Surr: Dibromofluoromethane	e 101	100.0		101	74.2	122			
Surr: Toluene-d8	99.2	100.0		99.2	76.2	135			
Sample ID: CCV1 40ppb	SampType: CCV	TestCode: 8260_W	Units: µg/L		Prep Date:		RunNo: 42292		
Client ID: CCV	Batch ID: 18654	TestNo: SW8260D	SW 5030B		Analysis Date	10/15/2021	SeqNo: 542163		
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual	
Benzene	38.2	0.300 40.00	0	95.6	80	120			
Toluene	37.8	1.00 40.00	0	94.6	80	120			
Sample ID: MB-18654	SampType: MBLK	TestCode: 8260_W	Units: µg/L		Prep Date:		RunNo: 42292		
Client ID: PBW	Batch ID: 18654	TestNo: SW8260D	SW 5030B		Analysis Date	10/15/2021	SeqNo: 542165		
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual	
Benzene	ND	0.300							
Toluene	ND	1.00							
Surr: 1,2-Dichloroethane-d4	100	100.0		100	75.3	126			
Surr: 4-Bromofluorobenzene	97.8	100.0		97.8	78.1	120			

Specialty Analytical
WO#: 2110025

12/3/2021

Client: Project:	RSEC Envi EKC-1021	ronmental Inc.						Т	SestCode: 8	3260_W		
Sample ID: MB-	18654	SampType: MBLK	TestCo	de: 8260_W	Units: µg/L		Prep Da	te:		RunNo: 42	292	
Client ID: PBV	V	Batch ID: 18654	Test	No: SW8260D	SW 5030B		Analysis Da	te: 10/15/2	2021	SeqNo: 54	2165	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Dibromo	fluoromethane	101		100.0		101	74.2	122				
Surr: Toluene	-d8	99.2		100.0		99.2	76.2	135				
Sample ID: LCS	40ppb	SampType: LCS	TestCo	de: 8260_W	Units: µg/L		Prep Da	te:		RunNo: 42	292	
Client ID: LCS	w	Batch ID: 18654	Test	No: SW8260D	SW 5030B		Analysis Da	te: 10/15/2	2021	SeqNo: 54	2166	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		38.2	0.300	40.00	0	95.6	76.8	125				
Toluene		37.8	1.00	40.00	0	94.6	82	122				
Sample ID: 2109	9242-002AMS	SampType: MS	TestCo	de: 8260_W	Units: µg/L		Prep Da	te:		RunNo: 42	292	
Client ID: Bate	:hQC	Batch ID: 18654	Test	No: SW8260D	SW 5030B		Analysis Da	te: 10/15/2	2021	SeqNo: 54	2173	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		49.5	0.300	40.00	0	124	74.1	136				
Toluene		37.9	1.00	40.00	0	94.7	68.4	135				

WO#: **2110025**

12/3/2021

Client: RSEC Project: EKC-	C Environmental Inc. 1021		TestCode: 827	70LL_W
Sample ID: LCS-18636	SampType: LCS	TestCode: 8270LL_W Units: µg/I	Prep Date: 10/6/2021	RunNo: 42603
Client ID: LCSW	Batch ID: 18636	TestNo: SW8270E SW 3510C	Analysis Date: 11/10/2021	SeqNo: 546528
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Diphenyl ether	36.7	0.500 40.00 0	91.8 50 130	
Sample ID: LCSD-18636	SampType: LCSD	TestCode: 8270LL_W Units: µg/I	Prep Date: 10/6/2021	RunNo: 42603
Client ID: LCSS02	Batch ID: 18636	TestNo: SW8270E SW 3510C	Analysis Date: 11/10/2021	SeqNo: 546529
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Diphenyl ether	35.6	0.500 40.00 0	89.0 50 130 36.73	3.10 30
Sample ID: MB-18636	SampType: MBLK	TestCode: 8270LL_W Units: µg/I	Prep Date: 10/6/2021	RunNo: 42603
Client ID: PBW	Batch ID: 18636	TestNo: SW8270E SW 3510C	Analysis Date: 11/10/2021	SeqNo: 546530
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Diphenyl ether	ND	0.500		
Surr: 2,4,6-Tribromophe	nol 84.3	100.0	84.3 33.1 129.7	
Surr: 2-Fluorobiphenyl	86.7	100.0	86.7 33.1 126.2	
Surr: 2-Fluorophenol	51.4	100.0	51.4 13.4 127.1	
Surr: 4-Terphenyl-d14	76.2	100.0	76.2 41 140	
Surr: Nitrobenzene-d5	79.2	100.0	79.2 28.9 129.9	
Surr: Phenol-d6	68.1	100.0	68.1 10.6 128.5	

WO#: **2110025**

12/3/2021

Client: RSEC En Project: EKC-102	nvironmental Inc. 21		TestCode:	8270LL_W
Sample ID: CCV	SampType: CCV	TestCode: 8270LL_W Units: µg/L	Prep Date:	RunNo: 42603
Client ID: CCV	Batch ID: 18636	TestNo: SW8270E SW 3510C	Analysis Date: 11/10/2021	SeqNo: 546741
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Va	I %RPD RPDLimit Qual
Diphenyl ether	18.4	0.500 20.00 0	92.2 80 120	
Sample ID: 2111025-013AMS	SampType: MS	TestCode: 8270LL_W Units: µg/L	Prep Date:	RunNo: 42603
Client ID: BatchQC	Batch ID: 18636	TestNo: SW8270E SW 3510C	Analysis Date: 11/10/2021	SeqNo: 546742
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Va	l %RPD RPDLimit Qual
Diphenyl ether	33.5	0.500 40.00 100.5	-168 30 140	SH
Sample ID: 2111025-013AMSI	D SampType: MSD	TestCode: 8270LL_W Units: µg/L	Prep Date:	RunNo: 42603
Client ID: BatchQC	Batch ID: 18636	TestNo: SW8270E SW 3510C	Analysis Date: 11/10/2021	SeqNo: 546743
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Va	l %RPD RPDLimit Qual
Diphenyl ether	32.2	0.500 40.00 100.5	-171 30 140 33.46	6 3.90 30 SH

71		90		sen Rd 97015 San 7-1336	nple Re	eceipt Checklist
Client Name RSEC				Work (Order Numbe	2110025
RcptNo: 1	Data and Time Dessive	10/1/2021 4:25:4		Dessived b	v Dich Sing	loir
	Date and Time Receive	10/1/2021 4.23.4		Received b	y Rich Sinc	1011
Completed by			Reviewe	d by:		
Completed Date:	<u>10/1/2021 4:44:11 F</u>	<u>PM</u>	Reviewe	d Date:		<u>10/4/2021 9:45:04 AM</u>
Carrier name <u>Client</u>						
Chain of custody present?		Yes	✓	No 🗌		
Chain of custody signed when	relinquished and received?	Yes	✓	No 🗌		
Chain of custody agrees with s	•	Yes		No 🗌	Not Presen	
Are matrices correctly identified	-	Yes		No 🗌		
Is it clear what analyses were r	requested?	Yes		No 🗌		
Custody seals intact on sample	e bottles?	Yes		No 🗌	Not Presen	\checkmark
Samples in proper container/bo	ottle?	Yes	_	No 🗌		_
Were correct preservatives use	ed and noted?	Yes	_	No	NA	
Sample containers intact?		Yes		No 🗌		
Sufficient sample volume for in				No 🗌		
Were container lables complet		Yes	_	No 🗌		
All samples received within hol	•	Yes Yes		No 🗌	N1.A	
Was an attempt made to cool t		Yes		No 🗌 No 🖌	NA NA	
All samples received at a temp				lected the same		
Response when temperature is Preservative added to bottles:	s outside of range.	Sample	es were cor	lected the same	e uay anu chii	ieu.
Sample Temp. taken and record	rded upon receint?	Yes		No 🗌	8 To	15 °
Water - Were bubbles absent i		Yes			No Vials	
Water - Was there Chlorine Pro		Yes			NA	
Water - pH acceptable upon re		Yes		No 🗌	NA	✓
Are Samples considered accer		Yes	_	No 🗌		
Custody Seals present?		Yes		No 🖌		
Traffic Report or Packing Lists	present?	Yes		No 🗹		
Airbill or Sticker?	P	Air Bill		ticker 🗌	Not Present	
Airbill No:						
Sample Tags Present?		Yes		No 🖌		
Sample Tags Listed on COC?		Yes		No 🔽		
Tag Numbers:						
Sample Condition?		Intact	✓ B	roken 🗌	Leaking	
Case Number:	SDG:		SAS:			
			Adjusted	J?	Cł	necked b

Any No and/or NA (not applicable) response must be detailed in the comments section be

A A A A A A A A A A A A A A A A A A A	Specialty Analytical 9011 SE Jannsen Rd Clackamas, Oregon 97015 TEL: 503-607-1331 FAX: 503-607-1336 Website: www.specialtyanalytical.com
Client Contacted? Contact Mode: Client Instructions:	Yes ✓ No NA Person Contacted: Comments: Phone: Fax: Email: In Person:
Date Contacted: Regarding:	Contacted By:
CorrectiveAction:	

Date/Time	Received x		me	Date/Time		Relinquished X
Date/Time	Aboctived x		me	Date/Time	**	Relinquistied x
Date/Time	× Pic/ dim/	162	Time/1/21	Date/Time		Keiinquished
Next Day: Same Day: Expedited turn-around requests should be coordinated in advance	3 Day: 2 Day: Next Day: Expedited turn-aro	X	Standard (5-7 Business): -	Standard (5	Turn-around Time:	Turn-ar
rm Water, WW ≍Waste Wate	lid, W = Water, DW = Drinking Water, GW = Ground Water, SW = Sorm Water, WW = Waste Water, M = Miscelianeous	:Sediment, SL≖Sol	roduct, S=Soil, SD=	, 0=011, P=F	Matrix: A = Air, AQ = Aqueous, L=Liquid, O = Oil, P = Product, S = Soil, SD = Sediment, SL = Solid, W = Water,	*Matrix: A=
		4	10301	4	15RW - 10	25 La
			020		، ج	JSRN ~
			ю́Ю		Ž P	· NUSE
			1000		SRW-7	NS T
			0750		E = 6	IT SAW
Frugi			0940		SRW - S	JSL.
			0730		W - 4	TS PW
Colos			0720		× 3	J SAW -
- Contin			010		SRW. 2h	TT S
Samples		XEV	0900 GW	igi	Σ -	JSRW-
	Requested Tress	# of Containers	Sample Time Matrix*	Sample Date	đ	Sample Name
	Ficher (Secincian	PM Email:	603	estrecine.	Cicharls	AP Email:
Sample Disposal: CReturn to dient CDP Bisposal by lab (after 60 days)	(PM):	Report To (PM):	23	ó-42	541-45	Telephone
MDL TIER IV	OR	State Collected:	9703)	C OR	City, State, ZID: Hond River OR 9703	Oty, State,
Custody Seal: Y (N)Intact / Broken Cooler / Bottle	RITCURY	Collected by:			758 How Vie	Address:
Cooling: T < C			mental	NVICAN	RJEC Environmental	Qient:
Temperature on Receipt:	Emerald Kalana		Phone: 503-607-1331 Fax: 503-607-1336	Phone Fax	Analytical	لد ح
2 Laboratory Project No (internal): 2		Date: 10/	9011 SE Jannsen Rd Clackamas, OR 97015	9011 : Clackan	Specialty	11/2 11/2

www.specialtyanalytical.com

Relinquished ×	Relinquished ×	Relinquished	Iurri-around lime:	ous, L≖Liquíc	10	G	α	7	5	5 VV -> () (m		E-SIMO MY MSD	Pr-SCMP	1 ISRW-11	Sample Name	AP Email: fich & rsecioc		<u>,</u> Zip:	š	dient RSEC Environmentel	Analytical		
Date/ Time	Daterfinne	> Date Time		0=0ii, P=Product, S=Soii, SD=Sodiment,						<	Ę		5	10/1 1040 GW	Sample Sample Sample Date Time Matrix*	10 3C. 00 37		02	Visuat	CONMENTE!	Fibile: 303-607-1336	Clackamas, OR 97015	9011 SE Jannsen Rd
× 27	× A		3 Day 2 Day.	SL=Solid, W=Water, DW=L						5	×	X X 🛛	4 × ×	3 ×	# of Containers	H Email: (10/20 Securic		ad: OR (WA)	アー	Project No: EAC-1021	5	Date: 10/./2021 F	0
Received ×	ceived	Received														LIC.COM		OTHER	ļ	PO No: (=+(-(2))	T-1-30	Page: Z of: Z Lat	Chain of Custody
Date' Time	Time	Date Time, 6 /21 6:25	Expedited tum-around requests should be coordinated in advance	GW = Gound Water, SW = Sorm Water, WW = Waste Water, M = Miscellaneous											Comments	/////	Sample Disposal: Return to client Defisiosal by lab (after 60 days)	MDL TIER IV EDD	Custody Seal: Y / M Intact / Broken Cooler / Bottle	Cooling: Ice Shipped Via: Client	Temperature on Receipt: $g - 15$ °C	Laboratory Project No (internal): $21/0025$	ustody Record

www.specialtyanalytical.com

9011 SE Jannsen Rd Clackamas, OR 97015 TEL: (503) 607-1331 Website: www.specialtyanalytical.com

December 06, 2021 Rich Truax RSEC Environmental Inc. 958 Hood View Ct. Hood River, OR 97031 TEL: (541) 490-4223 FAX

RE: Kalama Chemical/ EKC-1021

Order No.: 2110059

Dear Rich Truax:

REVISED REPORT: Please see case narrative for information on revision.

There were no problems with the analysis and all data for associated QC met EPA or laboratory specifications, except where noted in the Case Narrative, or as qualified with flags. Results apply only to the samples analyzed. Without approval of the laboratory, the reproduction of this report is only permitted in its entirety.

If you have any questions regarding these tests, please feel free to call.

Sincerely,

an HO

Marty French Lab Director

Surr: Phenol-d6

WO#: 2110059 Date Reported:

11/10/2021 4:22:00 PM

12/6/2021

CLIENT: RSEC Environment Project: Kalama Chemical/					
Lab ID: 2110059-001			Matrix:	GRO	UNDWATER
Client Sample ID MW-256			Collection Date:	10/4/2	2021 12:00:00 PM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS-LOW LE	VEL		SW8270E	sw	/ 3510C Analyst: mjf
Diphenyl ether	8.24	4.79	µg/L	10	11/10/2021 3:51:00 PM
Surr: 2,4,6-Tribromophenol	76.5	33.1 - 129.7	%Rec	10	11/10/2021 3:51:00 PM
Surr: 2-Fluorobiphenyl	82.3	33.1 - 126.2	%Rec	10	11/10/2021 3:51:00 PM
Surr: 2-Fluorophenol	58.4	13.4 - 127.1	%Rec	10	11/10/2021 3:51:00 PM
Surr: 4-Terphenyl-d14	72.1	41 - 140	%Rec	10	11/10/2021 3:51:00 PM
Surr: Nitrobenzene-d5	79.2	28.9 - 129.9	%Rec	10	11/10/2021 3:51:00 PM
Surr: Phenol-d6	80.6	10.6 - 128.5	%Rec	10	11/10/2021 3:51:00 PM
Lab ID: 2110059-002			Matrix:	GRO	UNDWATER
Client Sample ID MW-245			Collection Date:	10/4/2	2021 5:50:00 PM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS-LOW LE	VEL		SW8270E	sw	/ 3510C Analyst: mjf
Diphenyl ether	101	4.82	µg/L	10	11/10/2021 4:22:00 PM
Surr: 2,4,6-Tribromophenol	84.6	33.1 - 129.7	%Rec	10	11/10/2021 4:22:00 PM
Surr: 2-Fluorobiphenyl	80.2	33.1 - 126.2	%Rec	10	11/10/2021 4:22:00 PM
Surr: 2-Fluorophenol	67.4	13.4 - 127.1	%Rec	10	11/10/2021 4:22:00 PM
Surr: 4-Terphenyl-d14	54.7	41 - 140	%Rec	10	11/10/2021 4:22:00 PM
Surr: Nitrobenzene-d5	68.1	28.9 - 129.9	%Rec	10	11/10/2021 4:22:00 PM

43.1 10.6 - 128.5

%Rec

10

WO#: Date Reported:

2110059 12/6/2021

CLIENT:	RSEC Environmental Inc.
Project:	Kalama Chemical/ EKC-1021

Lab ID: 2110059-003				Matrix:	GROU	JNDWATER	
Client Sample ID KC-9				Collection Date:	10/4/2	021 4:40:00 H	M
Analyses	Result	RL	Qual	Units	DF	Date Analy	zed
SEMIVOLATILE ORGANICS-LOW LEVEL	-			SW8270E	sw	3510C Ana	alyst: mjf
Diphenyl ether	2630	48.1		µg/L	100	11/10/2021	4:53:00 PM
Surr: 2,4,6-Tribromophenol	41.2	33.1 - 129.7		%Rec	100	11/10/2021	4:53:00 PM
Surr: 2-Fluorobiphenyl	37.6	33.1 - 126.2		%Rec	100	11/10/2021	4:53:00 PM
Surr: 2-Fluorophenol	29.4	13.4 - 127.1		%Rec	100	11/10/2021	4:53:00 PM
Surr: 4-Terphenyl-d14	38.9	41 - 140	S	%Rec	100	11/10/2021	4:53:00 PM
Surr: Nitrobenzene-d5	42.7	28.9 - 129.9		%Rec	100	11/10/2021	4:53:00 PM
Surr: Phenol-d6	48.1	10.6 - 128.5		%Rec	100	11/10/2021	4:53:00 PM
VOLATILE ORGANICS BY GC/MS				SW8260D	sw	5030B Ana	alyst: TB
Benzene	2.96	0.300		µg/L	1	10/15/2021	5:00:00 PM
Toluene	ND	1.00		µg/L	1	10/15/2021	5:00:00 PM
Surr: 1,2-Dichloroethane-d4	127	75.3 - 126	SMI	%Rec	1	10/15/2021	5:00:00 PM
Surr: 4-Bromofluorobenzene	98.2	78.1 - 120		%Rec	1	10/15/2021	5:00:00 PM
Surr: Dibromofluoromethane	126	74.2 - 122	SMI	%Rec	1	10/15/2021	5:00:00 PM
Surr: Toluene-d8	97.7	76.2 - 135		%Rec	1	10/15/2021	5:00:00 PM

2110059-004 Client Sample ID PDW-117

Matrix: GROUNDWATER **Collection Date:** 10/4/2021 4:00:00 PM

Analyses	Result	RL	Qual	Units	DF	Date A	nalyzed
SEMIVOLATILE ORGANICS-LOW LEVEL				SW8270E	sw	3510C	Analyst: mjf
Diphenyl ether	1030	48.4		µg/L	100	11/10/2	2021 5:24:00 PM
Surr: 2,4,6-Tribromophenol	46.1	33.1 - 129.7		%Rec	100	11/10/2	2021 5:24:00 PM
Surr: 2-Fluorobiphenyl	46.1	33.1 - 126.2		%Rec	100	11/10/2	2021 5:24:00 PM
Surr: 2-Fluorophenol	37.8	13.4 - 127.1		%Rec	100	11/10/2	2021 5:24:00 PM
Surr: 4-Terphenyl-d14	29.7	41 - 140	S	%Rec	100	11/10/2	2021 5:24:00 PM
Surr: Nitrobenzene-d5	18.4	28.9 - 129.9	S	%Rec	100	11/10/2	2021 5:24:00 PM
Surr: Phenol-d6	23.3	10.6 - 128.5		%Rec	100	11/10/2	2021 5:24:00 PM
VOLATILE ORGANICS BY GC/MS				SW8260D	SW	5030B	Analyst: TB
Benzene	0.680	0.300		µg/L	1	10/15/2	2021 5:22:00 PM
Toluene	ND	1.00		µg/L	1	10/15/2	2021 5:22:00 PM
Surr: 1,2-Dichloroethane-d4	129	75.3 - 126	SMI	%Rec	1	10/15/2	2021 5:22:00 PM
Surr: 4-Bromofluorobenzene	97.6	78.1 - 120		%Rec	1	10/15/2	2021 5:22:00 PM
Surr: Dibromofluoromethane	130	74.2 - 122	SMI	%Rec	1	10/15/2	2021 5:22:00 PM
Surr: Toluene-d8	96.9	76.2 - 135		%Rec	1	10/15/2	2021 5:22:00 PM

WO#: Date Reported:

2110059 12/6/2021

CLIENT:	RSEC Environmental Inc.
Project:	Kalama Chemical/ EKC-1021

Lab ID: 2110059-005			Matrix:	GROU	UNDWAT	ER	
Client Sample ID MW-231			Collection Date:	10/6/2021 8:50:00 AM			
Analyses	Result	RL Qu	al Units	DF	Date A	nalyzed	
SEMIVOLATILE ORGANICS-LOW LEV	/EL		SW8270E	sw	3510C	Analyst: mjf	
Diphenyl ether	51.1	4.80	µg/L	10	11/10/	2021 5:55:00 PM	
Surr: 2,4,6-Tribromophenol	62.7	33.1 - 129.7	%Rec	10	11/10/	2021 5:55:00 PM	
Surr: 2-Fluorobiphenyl	41.8	33.1 - 126.2	%Rec	10	11/10/	2021 5:55:00 PM	
Surr: 2-Fluorophenol	38.7	13.4 - 127.1	%Rec	10	11/10/	2021 5:55:00 PM	
Surr: 4-Terphenyl-d14	64.9	41 - 140	%Rec	10	11/10/	2021 5:55:00 PM	
Surr: Nitrobenzene-d5	58.8	28.9 - 129.9	%Rec	10	11/10/	2021 5:55:00 PM	
Surr: Phenol-d6	60.8	10.6 - 128.5	%Rec	10	11/10/	2021 5:55:00 PM	
VOLATILE ORGANICS BY GC/MS			SW8260D	SW	5030B	Analyst: TB	
Benzene	0.370	0.300	µg/L	1	10/19/	2021 8:56:00 PM	
Toluene	3.65	1.00	µg/L	1	10/19/	2021 8:56:00 PM	
Surr: 1,2-Dichloroethane-d4	102	75.3 - 126	%Rec	1	10/19/	2021 8:56:00 PM	
Surr: 4-Bromofluorobenzene	99.8	78.1 - 120	%Rec	1	10/19/	2021 8:56:00 PM	
Surr: Dibromofluoromethane	103	74.2 - 122	%Rec	1	10/19/	2021 8:56:00 PM	
Surr: Toluene-d8	97.3	76.2 - 135	%Rec	1	10/19/	2021 8:56:00 PM	

Lab ID: 2110059-006

Client Sample ID MW-230

Matrix: GROUNDWATER Collection Date: 10/6/2021 9:55:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS-LOW LEVEL				SW8270E	sw	3510C Analyst: mjf
Diphenyl ether	375	47.8		µg/L	100	11/10/2021 6:26:00 PM
Surr: 2,4,6-Tribromophenol	45.2	33.1 - 129.7		%Rec	100	11/10/2021 6:26:00 PM
Surr: 2-Fluorobiphenyl	31.8	33.1 - 126.2	S	%Rec	100	11/10/2021 6:26:00 PM
Surr: 2-Fluorophenol	24.4	13.4 - 127.1		%Rec	100	11/10/2021 6:26:00 PM
Surr: 4-Terphenyl-d14	39.1	41 - 140	S	%Rec	100	11/10/2021 6:26:00 PM
Surr: Nitrobenzene-d5	41.6	28.9 - 129.9		%Rec	100	11/10/2021 6:26:00 PM
Surr: Phenol-d6	52.2	10.6 - 128.5		%Rec	100	11/10/2021 6:26:00 PM
VOLATILE ORGANICS BY GC/MS				SW8260D	sw	5030B Analyst: TB
Benzene	2.18	0.300		µg/L	1	10/15/2021 5:44:00 PM
Toluene	ND	1.00		µg/L	1	10/15/2021 5:44:00 PM
Surr: 1,2-Dichloroethane-d4	128	75.3 - 126	SMI	%Rec	1	10/15/2021 5:44:00 PM
Surr: 4-Bromofluorobenzene	96.8	78.1 - 120		%Rec	1	10/15/2021 5:44:00 PM
Surr: Dibromofluoromethane	132	74.2 - 122	SMI	%Rec	1	10/15/2021 5:44:00 PM
Surr: Toluene-d8	96.5	76.2 - 135		%Rec	1	10/15/2021 5:44:00 PM

WO#: 2

2110059

Date Reported: 12/6/2021

CLIENT:RSEC Environmental Inc.Project:Kalama Chemical/ EKC-1021

Lab ID: 2110059-007				Matrix:	GROU	JNDWATER	
Client Sample ID PZ-104				10/4/2021 6:45:00 PM			
Analyses	Result	Result RL Qu		Units	DF	Date Analyzed	
SEMIVOLATILE ORGANICS-LOW LEVE	EL			SW8270E	sw	3510C Analyst: mjf	
Biphenyl	81.5	47.9		µg/L	100	11/10/2021 6:57:00 PM	
Bis(2-ethylhexyl)phthalate	ND	47.9	Q	µg/L	100	11/10/2021 6:57:00 PM	
Diphenyl ether	4300	47.9		µg/L	100	11/10/2021 6:57:00 PM	
Surr: 2,4,6-Tribromophenol	41.6	33.1 - 129.7		%Rec	100	11/10/2021 6:57:00 PM	
Surr: 2-Fluorobiphenyl	32.2	33.1 - 126.2	S	%Rec	100	11/10/2021 6:57:00 PM	
Surr: 2-Fluorophenol	30.5	13.4 - 127.1		%Rec	100	11/10/2021 6:57:00 PM	
Surr: 4-Terphenyl-d14	4.33	41 - 140	S	%Rec	100	11/10/2021 6:57:00 PM	
Surr: Nitrobenzene-d5	52.4	28.9 - 129.9		%Rec	100	11/10/2021 6:57:00 PM	
Surr: Phenol-d6	46.8	10.6 - 128.5		%Rec	100	11/10/2021 6:57:00 PM	
VOLATILE ORGANICS BY GC/MS				SW8260D	SW	5030B Analyst: TB	
Benzene	0.970	0.300		µg/L	1	10/15/2021 6:06:00 PM	
Toluene	ND	1.00		µg/L	1	10/15/2021 6:06:00 PM	
Surr: 1,2-Dichloroethane-d4	130	75.3 - 126	SMI	%Rec	1	10/15/2021 6:06:00 PM	
Surr: 4-Bromofluorobenzene	98.2	78.1 - 120		%Rec	1	10/15/2021 6:06:00 PM	
Surr: Dibromofluoromethane	133	74.2 - 122	SMI	%Rec	1	10/15/2021 6:06:00 PM	
Surr: Toluene-d8	97.9	76.2 - 135		%Rec	1	10/15/2021 6:06:00 PM	

WO#: 2

2110059

CLIENT:RSEC Environmental Inc.Project:Kalama Chemical/ EKC-1021

Lab ID: 2110059-008				Matrix:	GROU	JNDWATER	
Client Sample ID PZ-107		Collection Date: 10/4/2021 7:45:00 P					
Analyses	Result	Result RL Qual		Units	DF	Date Analyzed	
SEMIVOLATILE ORGANICS-LOW LEV	'EL			SW8270E	sw	3510C Analyst: mjf	
Biphenyl	60.9	0.345		µg/L	100	11/10/2021 7:28:00 PM	
Bis(2-ethylhexyl)phthalate	ND	0.345		µg/L	100	11/10/2021 7:28:00 PM	
Diphenyl ether	21.8	0.345		µg/L	100	11/10/2021 7:28:00 PM	
Surr: 2,4,6-Tribromophenol	74.3	33.1 - 129.7		%Rec	100	11/10/2021 7:28:00 PM	
Surr: 2-Fluorobiphenyl	69.1	33.1 - 126.2		%Rec	100	11/10/2021 7:28:00 PM	
Surr: 2-Fluorophenol	41.4	13.4 - 127.1		%Rec	100	11/10/2021 7:28:00 PM	
Surr: 4-Terphenyl-d14	49.7	41 - 140		%Rec	100	11/10/2021 7:28:00 PM	
Surr: Nitrobenzene-d5	68.4	28.9 - 129.9		%Rec	100	11/10/2021 7:28:00 PM	
Surr: Phenol-d6	73.2	10.6 - 128.5		%Rec	100	11/10/2021 7:28:00 PM	
VOLATILE ORGANICS BY GC/MS				SW8260D	sw	5030B Analyst: TB	
Benzene	ND	0.300		µg/L	1	10/15/2021 6:28:00 PM	
Toluene	ND	1.00		µg/L	1	10/15/2021 6:28:00 PM	
Surr: 1,2-Dichloroethane-d4	129	75.3 - 126	SMI	%Rec	1	10/15/2021 6:28:00 PM	
Surr: 4-Bromofluorobenzene	97.9	78.1 - 120		%Rec	1	10/15/2021 6:28:00 PM	
Surr: Dibromofluoromethane	132	74.2 - 122	SMI	%Rec	1	10/15/2021 6:28:00 PM	
Surr: Toluene-d8	98.1	76.2 - 135		%Rec	1	10/15/2021 6:28:00 PM	

WO#:

2110059

CLIENT:	RSEC Environmental Inc.
Project:	Kalama Chemical/ EKC-1021

Client Sample ID PZ-401		Collection Date:			10/4/2021 5:00:00 PM			
Analyses	Result	RL Qu	al Units	DF	Date Analyzed			
SEMIVOLATILE ORGANICS-LOW LEV	EL		SW8270E	sw	3510C Analyst: mjf			
Biphenyl	3430	47.8	µg/L	100	11/10/2021 7:59:00 PM			
Bis(2-ethylhexyl)phthalate	ND	47.8	µg/L	100	11/10/2021 7:59:00 PM			
Diphenyl ether	4080	19.1	µg/L	100	11/10/2021 7:59:00 PM			
Surr: 2,4,6-Tribromophenol	61.7	33.1 - 129.7	%Rec	100	11/10/2021 7:59:00 PM			
Surr: 2-Fluorobiphenyl	54.1	33.1 - 126.2	%Rec	100	11/10/2021 7:59:00 PM			
Surr: 2-Fluorophenol	30.4	13.4 - 127.1	%Rec	100	11/10/2021 7:59:00 PM			
Surr: 4-Terphenyl-d14	42.8	41 - 140	%Rec	100	11/10/2021 7:59:00 PM			
Surr: Nitrobenzene-d5	49.3	28.9 - 129.9	%Rec	100	11/10/2021 7:59:00 PM			
Surr: Phenol-d6	62.4	10.6 - 128.5	%Rec	100	11/10/2021 7:59:00 PM			
VOLATILE ORGANICS BY GC/MS			SW8260D	sw	5030B Analyst: TB			
Benzene	0.760	0.300	µg/L	1	10/15/2021 6:50:00 PM			
Toluene	ND	1.00	µg/L	1	10/15/2021 6:50:00 PM			
Surr: 1,2-Dichloroethane-d4	103	75.3 - 126	%Rec	1	10/15/2021 6:50:00 PM			
Surr: 4-Bromofluorobenzene	98.3	78.1 - 120	%Rec	1	10/15/2021 6:50:00 PM			
Surr: Dibromofluoromethane	103	74.2 - 122	%Rec	1	10/15/2021 6:50:00 PM			
Surr: Toluene-d8	98.3	76.2 - 135	%Rec	1	10/15/2021 6:50:00 PM			
Lab ID: 2110059-010			Matrix:	GROI	JNDWATER			
Client Sample ID USRW-2			Collection Date:					

Analyses	Result	RL Qual	Units	DF	Date Analyzed	
SEMIVOLATILE ORGANICS-LOW LEVEL	-		SW8270E	sw	3510C Analyst:	mjf
Diphenyl ether	ND	0.480	µg/L	100	11/10/2021 8:30:0	00 PM
Surr: 2,4,6-Tribromophenol	77.7	33.1 - 129.7	%Rec	100	11/10/2021 8:30:0	00 PM
Surr: 2-Fluorobiphenyl	66.9	33.1 - 126.2	%Rec	100	11/10/2021 8:30:0	00 PM
Surr: 2-Fluorophenol	53.5	13.4 - 127.1	%Rec	100	11/10/2021 8:30:0	00 PM
Surr: 4-Terphenyl-d14	76.2	41 - 140	%Rec	100	11/10/2021 8:30:0	00 PM
Surr: Nitrobenzene-d5	71.2	28.9 - 129.9	%Rec	100	11/10/2021 8:30:0	00 PM
Surr: Phenol-d6	76.7	10.6 - 128.5	%Rec	100	11/10/2021 8:30:0	00 PM

WO#: 211

2110059 12/6/2021

Date Reported: 12/6/20

CLIENT: RSEC Environmenta Project: Kalama Chemical/ E					
Lab ID: 2110059-011					UNDWATER
Client Sample ID KC-14			Collection Dat	e: 10/6/2	2021 12:20:00 PM
Analyses	Result	RL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS			SW8260	D SW	/ 5030B Analyst: TB
Benzene	ND	0.300	µg/L	1	10/19/2021 9:18:00 PM
Toluene	ND	1.00	µg/L	1	10/19/2021 9:18:00 PM
Surr: 1,2-Dichloroethane-d4	103	75.3 - 126	%Rec	1	10/19/2021 9:18:00 PM
Surr: 4-Bromofluorobenzene	97.7	78.1 - 120	%Rec	1	10/19/2021 9:18:00 PM
Surr: Dibromofluoromethane	106	74.2 - 122	%Rec	1	10/19/2021 9:18:00 PM
Surr: Toluene-d8	99.0	76.2 - 135	%Rec	1	10/19/2021 9:18:00 PM
Lab ID: 2110059-012			Matri	x: GRO	UNDWATER
Client Sample ID MW-239			Collection Dat	e: 10/6/2	2021 12:50:00 PM
Analyses	Result	RL Q	ual Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS			SW8260	D SW	/ 5030B Analyst: TB
Benzene	ND	60.0	Q µg/L	200	10/19/2021 10:25:00 PM
Toluene	1470	200	µg/L	200	10/19/2021 10:25:00 PM
Surr: 1,2-Dichloroethane-d4	101	75.3 - 126	%Rec	200	10/19/2021 10:25:00 PM
Surr: 4-Bromofluorobenzene	98.9	78.1 - 120	%Rec	200	10/19/2021 10:25:00 PM
Surr: Dibromofluoromethane	101	74.2 - 122	%Rec	200	10/19/2021 10:25:00 PM
Surr: Toluene-d8	101	76.2 - 135	%Rec	200	10/19/2021 10:25:00 PM
Lab ID: 2110059-013			Matri	x: GRO	UNDWATER
Client Sample ID MW-243			Collection Dat	e: 10/6/2	2021 11:30:00 AM
Analyses	Result	RL Q	ual Units	DF	Date Analyzed
			SW8260	D SW	/ 5030B Analyst: TB
VOLATILE ORGANICS BY GC/MS		0.000	μg/L	1	10/19/2021 9:40:00 PM
VOLATILE ORGANICS BY GC/MS Benzene	ND	0.300			
Benzene	ND ND	0.300 1.00		1	
Benzene Toluene	ND ND 102	0.300 1.00 75.3 - 126	μg/L %Rec	1 1	10/19/2021 9:40:00 PM 10/19/2021 9:40:00 PM
Benzene	ND	1.00	µg/L		10/19/2021 9:40:00 PM 10/19/2021 9:40:00 PM
Benzene Toluene Surr: 1,2-Dichloroethane-d4	ND 102	1.00 75.3 - 126	μg/L %Rec	1	10/19/2021 9:40:00 PM

Surr: Toluene-d8

WO#: 2110059

Date Reported: 12/6/2021

CLIENT: Project:	RSEC Environmenta Kalama Chemical/ E					
Lab ID:	2110059-014			Matrix:	GROU	JNDWATER
Client Sample	e ID MW-97			Collection Date:	10/6/2	2021 11:00:00 AM
Analyses		Result	RL Qu	al Units	DF	Date Analyzed
	RGANICS BY GC/MS			SW8260D	sw	5030B Analyst: TB
Benzene		54.0	30.0	µg/L	100	10/19/2021 10:47:00 PN
Toluene		1900	100	µg/L	100	10/19/2021 10:47:00 PM
Surr: 1,2-D	ichloroethane-d4	101	75.3 - 126	%Rec	100	10/19/2021 10:47:00 PM
Surr: 4-Bro	mofluorobenzene	97.5	78.1 - 120	%Rec	100	10/19/2021 10:47:00 PM
Surr: Dibro	mofluoromethane	102	74.2 - 122	%Rec	100	10/19/2021 10:47:00 PM
Surr: Tolue	ene-d8	101	76.2 - 135	%Rec	100	10/19/2021 10:47:00 PM
Lab ID:	2110059-015			Matrix:	GROL	JNDWATER
Client Sample	e ID MW-250			Collection Date:	10/6/2	2021 1:15:00 PM
Analyses		Result	RL Qua	al Units	DF	Date Analyzed
VOLATILE O	RGANICS BY GC/MS			SW8260D	sw	5030B Analyst: TB
Benzene		ND	0.300	µg/L	1	10/19/2021 10:03:00 PN
Toluene		ND	1.00	μg/L	1	10/19/2021 10:03:00 PM
Surr: 1,2-D	ichloroethane-d4	101	75.3 - 126	%Rec	1	10/19/2021 10:03:00 PM
Surr: 4-Bro	mofluorobenzene	98.1	78.1 - 120	%Rec	1	10/19/2021 10:03:00 PM
Surr: Dibro	mofluoromethane	103	74.2 - 122	%Rec	1	10/19/2021 10:03:00 PM

76.2 - 135

99.7

%Rec

1

10/19/2021 10:03:00 PM

WO#: **2110059**

12/6/2021

Client: Project:		ironmental Inc. emical/ EKC-1021						T	estCode: 8	8260_W		
Sample ID:	CCV1 40ppb	SampType: CCV	TestCo	de: 8260_W	Units: µg/L		Prep Dat	e:		RunNo: 42290		
Client ID:	CCV	Batch ID: 18654	Test	lo: SW8260D	SW 5030B		Analysis Dat	te: 10/14/2	021	SeqNo: 54 ′	1956	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		39.4	0.300	40.00	0	98.5	80	120				
Toluene		39.9	1.00	40.00	0	99.7	80	120				
Sample ID:	MB	SampType: MBLK	TestCoo	TestCode: 8260_W Units: µg/L		Prep Date:				RunNo: 42290		
Client ID:	PBW	Batch ID: 18654	Test	lo: SW8260D	SW 5030B		Analysis Date: 10/14/2021			SeqNo: 541957		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		ND	0.300									
Toluene		ND	1.00									
Surr: 1,2	2-Dichloroethane-d4	121		100.0		121	75.3	126				
Surr: 4-E	Bromofluorobenzene	98.4		100.0		98.4	78.1	120				
Surr: Dib	promofluoromethane	122		100.0		122	74.2	122				
Surr: To	luene-d8	99.5		100.0		99.5	76.2	135				
Sample ID:	2110025-011AMS	SampType: MS	TestCoo	de: 8260_W	Units: µg/L		Prep Dat	e:		RunNo: 422	290	
Client ID:	BatchQC	Batch ID: 18654	Test	lo: SW8260D	SW 5030B		Analysis Dat	te: 10/14/2	021	SeqNo: 54 ′	1973	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		53600	300	40000	0	134	74.1	136				
Toluene		43000	1000	40000	1870	103	68.4	135				

WO#: **2110059**

12/6/2021

Client: Project:		ironmental Inc. nemical/ EKC-1021			TestCode: 82							
Sample ID:	2110025-011AMS	SampType: MS	TestCode: 8260_W		Units: µg/L		Prep Da	te:		RunNo: 42		
Client ID:	BatchQC	Batch ID: 18654	TestN	lo: SW8260D	SW 5030B		Analysis Date: 10/14/2021			SeqNo: 541973		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sample ID:	LCS	SampType: LCS	TestCoo	TestCode: 8260_W Units: µg/L			Prep Da	te:	RunNo: 42290			
Client ID:	LCSW	Batch ID: 18654	TestN	lo: SW8260D	SW 5030B	Analysis Date: 10/14/2021			SeqNo: 541974			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		39.4	0.300	40.00	0	98.5	76.8	125				
Toluene		39.9	1.00	40.00	0	99.7	82	122				
Sample ID:	CCV1 40ppb	SampType: CCV	TestCoo	de: 8260_W	Units: µg/L	Prep Date:				RunNo: 42290		
Client ID:	CCV	Batch ID: 18654	TestN	lo: SW8260D	SW 5030B		Analysis Da	te: 10/15/2	2021	SeqNo: 54 '	1995	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene		37.8	1.00	40.00	0	94.6	80	120				
Sample ID:	ССВ	SampType: CCB	TestCoo	de: 8260_W	Units: µg/L		Prep Da	te:		RunNo: 42	290	
Client ID:	ССВ	Batch ID: 18654	TestN	lo: SW8260D	SW 5030B		Analysis Da	te: 10/15/2	2021	SeqNo: 54	1997	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene		ND	1.00									

WO#: **2110059**

12/6/2021

	ironmental Inc. emical/ EKC-1021						Т	SestCode: 8	3260_W		
Sample ID: CCB	SampType: CCB	TestCoo	le: 8260_W	Units: µg/L		Prep Dat	e:		RunNo: 42	290	
Client ID: CCB	Batch ID: 18654	TestN	lo: SW8260D	SW 5030B		Analysis Dat	te: 10/15/2	2021	SeqNo: 54	1997	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	100		100.0		100	75.3	126				
Surr: 4-Bromofluorobenzene	97.8		100.0		97.8	78.1	120				
Surr: Dibromofluoromethane	101		100.0		101	74.2	122				
Surr: Toluene-d8	99.2		100.0		99.2	76.2	135				
Sample ID: CCV1 40ppb	SampType: CCV	TestCoo	le: 8260_W	Units: µg/L		Prep Dat	e:		RunNo: 42	292	
Client ID: CCV	Batch ID: 18654	TestN	lo: SW8260D	SW 5030B		Analysis Dat	te: 10/15/2	2021	SeqNo: 54 2	2163	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	38.2	0.300	40.00	0	95.6	80	120				
Toluene	37.8	1.00	40.00	0	94.6	80	120				
Sample ID: MB-18654	SampType: MBLK	TestCoo	le: 8260_W	Units: µg/L		Prep Dat	e:		RunNo: 42	292	
Client ID: PBW	Batch ID: 18654	TestN	lo: SW8260D	SW 5030B		Analysis Dat	te: 10/15/2	2021	SeqNo: 54 2	2165	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.300									
Toluene	ND	1.00									
Surr: 1,2-Dichloroethane-d4	100		100.0		100	75.3	126				
Surr: 4-Bromofluorobenzene	97.8		100.0		97.8	78.1	120				

WO#: **2110059**

12/6/2021

Client: Project:	Itobe Entre	ironmental Inc. emical/ EKC-1021						Т	SestCode: 8	3260_W		
Sample ID:	MB-18654	SampType: MBLK	TestCo	de: 8260_W	Units: µg/L		Prep Dat	te:		RunNo: 42	292	
Client ID:	PBW	Batch ID: 18654	TestN	lo: SW8260D	SW 5030B		Analysis Da	te: 10/15/2	2021	SeqNo: 54	2165	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Dibro	omofluoromethane	101		100.0		101	74.2	122				
Surr: Tolu	ene-d8	99.2		100.0		99.2	76.2	135				
Sample ID: I	LCS 40ppb	SampType: LCS	TestCoo	de: 8260_W	Units: µg/L		Prep Dat	te:		RunNo: 42	292	
Client ID:	LCSW	Batch ID: 18654	Test	lo: SW8260D	SW 5030B		Analysis Da	te: 10/15/2	2021	SeqNo: 54 2	2166	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		38.2	0.300	40.00	0	95.6	76.8	125				
Toluene		37.8	1.00	40.00	0	94.6	82	122				
Sample ID: 2	2109242-002AMS	SampType: MS	TestCo	de: 8260_W	Units: µg/L		Prep Dat	te:		RunNo: 42	292	
Client ID:	BatchQC	Batch ID: 18654	TestN	lo: SW8260D	SW 5030B		Analysis Da	te: 10/15/2	2021	SeqNo: 54 2	2173	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		49.5	0.300	40.00	0	124	74.1	136				
Toluene		37.9	1.00	40.00	0	94.7	68.4	135				

WO#: **2110059**

12/6/2021

Client: Project:		ironmental Inc. emical/ EKC-1021						Т	estCode: 8	3260_W		
Sample ID: CC	/1 40ppb	SampType: CCV	TestCo	de: 8260_W	Units: µg/L		Prep Dat	e:		RunNo: 42	328	
Client ID: CC	V	Batch ID: 18583	Test	lo: SW8260D	SW 5030B		Analysis Dat	te: 10/19/2	2021	SeqNo: 54	2453	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		39.2	0.300	40.00	0	97.9	80	120				
Toluene		40.6	1.00	40.00	0	101	80	120				
Sample ID: MB		SampType: MBLK	TestCo	de: 8260_W	Units: µg/L		Prep Dat	e:		RunNo: 42	328	
Client ID: PB	N	Batch ID: 18583	Test	lo: SW8260D	SW 5030B		Analysis Dat	te: 10/19/2	2021	SeqNo: 54	2454	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		ND	0.300									
Toluene		ND	1.00									
Surr: 1,2-Dich	nloroethane-d4	127		100.0		127	75.3	126				S
Surr: 4-Brom	ofluorobenzene	97.6		100.0		97.6	78.1	120				
Surr: Dibrom	ofluoromethane	128		100.0		128	74.2	122				S
Surr: Toluene	e-d8	103		100.0		103	76.2	135				
Sample ID: 211	0059-014AMS	SampType: MS	TestCo	de: 8260_W	Units: µg/L		Prep Dat	e:		RunNo: 42	328	
Client ID: MW	-97	Batch ID: 18583	Test	lo: SW8260D	SW 5030B		Analysis Dat	te: 10/19/2	:021	SeqNo: 54	2461	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		3750	30.0	4000	54.00	92.5	74.1	136				
Toluene		5330	100	4000	1904	85.6	68.4	135				

WO#: **2110059**

12/6/2021

Client: Project:		ironmental Inc. emical/ EKC-1021						Т	estCode: 8	3260_W		
•	2110059-014AMS MW-97	SampType: MS Batch ID: 18583		de: 8260_W No: SW8260D	Units: µg/L SW 5030B		Prep Dat Analysis Dat		2021	RunNo: 42 SeqNo: 54 2		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sample ID: Client ID:	LCS 40ppb LCSW	SampType: LCS Batch ID: 18583		de: 8260_W No: SW8260D	Units: µg/L SW 5030B		Prep Dat Analysis Dat		2021	RunNo: 42 SeqNo: 54 2		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene Toluene		39.2 40.6	0.300 1.00	40.00 40.00	0 0	97.9 101	76.8 82	125 122				

WO#: **2110059**

12/6/2021

	SEC Environmental Inc. alama Chemical/ EKC-1021						Т	estCode: 8	270LL_W		
Sample ID: LCS-1863	6 SampType: LCS	TestCo	de: 8270LL_W	υ Units: μg/L		Prep Dat	e: 10/6/20	21	RunNo: 42	603	
Client ID: LCSW	Batch ID: 18636	Test	No: SW8270E	SW 3510C		Analysis Dat	e: 11/10/2	021	SeqNo: 54	6528	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bis(2-ethylhexyl)phthal	ate 37.2	0.500	40.00	0	93.1	50	130				
Diphenyl ether	36.7	0.500	40.00	0	91.8	50	130				
Sample ID: LCSD-186	36 SampType: LCSD	TestCo	de: 8270LL_W	/ Units: μg/L		Prep Dat	e: 10/6/20	21	RunNo: 42	603	
Client ID: LCSS02	Batch ID: 18636	Test	No: SW8270E	SW 3510C		Analysis Dat	e: 11/10/2	021	SeqNo: 54	6529	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bis(2-ethylhexyl)phtha	ate 36.8	0.500	40.00	0	92.0	50	130	37.24	1.16	30	
Diphenyl ether	35.6	0.500	40.00	0	89.0	50	130	36.73	3.10	30	
Sample ID: MB-18636	SampType: MBLK	TestCo	de: 8270LL_W	/ Units: µg/L		Prep Dat	e: 10/6/20	21	RunNo: 42	603	
Client ID: PBW	Batch ID: 18636	Test	No: SW8270E	SW 3510C		Analysis Dat	e: 11/10/2	021	SeqNo: 54	6530	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bis(2-ethylhexyl)phthal	ate ND	0.500									
Diphenyl ether	ND	0.500									
Surr: 2,4,6-Tribromo	phenol 84.3		100.0		84.3	33.1	129.7				
Surr: 2-Fluorobipher	ıyl 86.7		100.0		86.7	33.1	126.2				
Surr: 2-Fluoropheno	l 51.4		100.0		51.4	13.4	127.1				
Surr: 4-Terphenyl-d	14 76.2		100.0		76.2	41	140				

WO#: **2110059**

12/6/2021

		ironmental Inc. nemical/ EKC-1021						ſ	TestCode: {	8270LL_W		
Sample ID: MB-1863	36	SampType: MBLK	TestCo	de: 8270LL_W	/ Units: μg/L		Prep Dat	te: 10/6/20)21	RunNo: 42	603	
Client ID: PBW		Batch ID: 18636	Test	lo: SW8270E	SW 3510C		Analysis Dat	te: 11/10/2	2021	SeqNo: 54	6530	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Nitrobenzene	e-d5	79.2		100.0		79.2	28.9	129.9				
Surr: Phenol-d6		68.1		100.0		68.1	10.6	128.5				
Sample ID: CCV		SampType: CCV	TestCoo	de: 8270LL_W	/ Units: μg/L		Prep Dat	ie:		RunNo: 42	603	
Client ID: CCV		Batch ID: 18636	TestN	lo: SW8270E	SW 3510C		Analysis Dat	te: 11/10/2	2021	SeqNo: 54	6741	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bis(2-ethylhexyl)phth	alate	17.2	0.500	20.00	0	85.9	80	120				
Diphenyl ether		18.4	0.500	20.00	0	92.2	80	120				
Sample ID: 2111025	-013AMS	SampType: MS	TestCoo	de: 8270LL_W	/ Units: μg/L		Prep Dat	le:		RunNo: 42	603	
Client ID: BatchQC	•	Batch ID: 18636	Test	lo: SW8270E	SW 3510C		Analysis Dat	te: 11/10/2	2021	SeqNo: 54	6742	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bis(2-ethylhexyl)phth	alate	35.2	0.500	40.00	0	88.1	30	140				Н
Diphenyl ether		33.5	0.500	40.00	100.5	-168	30	140				SH

WO#: **2110059**

12/6/2021

Client: Project:		ronmental Inc. emical/ EKC-1021						Т	SestCode: 8	3270LL_W		
•	2111025-013AMSD BatchQC	SampType: MSD Batch ID: 18636		de: 8270LL_W No: SW8270E			Prep Da Analysis Da		2021	RunNo: 426 SeqNo: 546		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bis(2-ethylhe Diphenyl ethe	exyl)phthalate er	36.2 32.2	0.500 0.500	40.00 40.00	0 100.5	90.5 -171	30 30	140 140	35.24 33.46	2.72 3.90	30 30	H SH

71	90		Sample Receipt Checklist
Client Name RSEC			Work Order Numbe 2110059
RcptNo: 1 Date and Time Recei	ve 10/6/2021 2:54:3	7 PM	actived by Mandy Webs
	ve 10/0/2021 2.04.0		ceived by Mandy Wehe
Completed by		Reviewed by:	
Completed Date: <u>10/</u>	6/2021	Reviewed Date:	<u>10/6/2021 4:32:47 PM</u>
Carrier name <u>SA</u>			
Chain of custody present?		✓ No [
Chain of custody signed when relinquished and received	ved? Yes	✓ No [
Chain of custody agrees with sample labels?	Yes	✓ No L	Not Presen
Are matrices correctly identified on Chain of custody?		✓ No L	
Is it clear what analyses were requested?	Yes	✓ No	
Custody seals intact on sample bottles?	Yes	No [Not Presen 🗹
Samples in proper container/bottle?		✓ No L	
Were correct preservatives used and noted?		✓ No L	
Sample containers intact?		✓ No L	
Sufficient sample volume for indicated test?		✓ No L	
Were container lables complete (ID, Pres, Date)?		✓ No L	-
All samples received within holding time?		✓ No [
Was an attempt made to cool the samples?	Yes	✓ No L	
All samples received at a temp. of > 0° C to 6.0° C?	Yes	✓ No	
Response when temperature is outside of range:			
Preservative added to bottles:	Vee		
Sample Temp. taken and recorded upon receipt?		 ✓ No □ ✓ No □ 	
Water - Were bubbles absent in VOC vials?	Yes		
Water - Was there Chlorine Present?	Yes Yes		
Water - pH acceptable upon receipt? Are Samples considered acceptable?	Yes		
			_
Custody Seals present?		✓ No □	
Traffic Report or Packing Lists present?	Yes		
Airbill or Sticker?	Air Bill	Sticker	Not Present
Airbill No:	X		
Sample Tags Present?	Yes Yes	□ No ■ No ■	
Sample Tags Listed on COC? Tag Numbers:	Yes		
Sample Condition?	Intact	Broken	Leaking
Case Number: SDG:		SAS:	
		Adjusted?	Checked b
Any No and/or NA (not applicable) response must be	detailed in the comme	nts section be	

A A A A A A A A A A A A A A A A A A A	Specialty Analytical 9011 SE Jannsen Rd Clackamas, Oregon 97015 TEL: 503-607-1331 FAX: 503-607-1336 Website: www.specialtyanalytical.com
Client Contacted? Contact Mode: Client Instructions:	Yes ✓ No NA Person Contacted: Comments: Phone: Fax: Email: In Person:
Date Contacted: Regarding:	Contacted By:
CorrectiveAction:	

Turn-around Time: Relinquished	⁸ P2 - 107 P2 P2 - 401 ¹⁰ USRW - 2 Matrix: A=Air, AQ=Aqueous, L=Liquid.	* KC-9 * PDW-117 * MW-231 * MW-230 * MW-230	Sample Name 1 MW - 256 2 MW - 245	Telephone: 541-49 APEmail: CICLOS	dient: RSEC Envir Address: NSB Hord City. State, Zip: Hord River	Specialty Analytical
Standard (5-7 Business):	16/4 1945 GW 4 16/4 1700 GW 4 19/6 1055 GW 1	10/A 1640 GW 10/A 1600 GW 10/6 0850GW 10/6 0955 GW 10/6 0955 GW	Sample Sample Sample Date Time Matrix 16/4 1250 GW	490-4223 (Sacina Con	y connertal J View Ct W, GR 97631	9011 SE Jannsen Rd Clackamas, OR 97015 Phone: 503-607-1331 Fax: 503-607-1336
K 3 Day: 2 Day: Next Day: Expedited turn-arou K G-to Received H35 Received Acceived Acceived Received Acceived K	X X	$\begin{array}{c c} + & + & + & + \\ \times & \times & \times & \times \\ \times & \times & \times & \times \\ \times & \times & \times & \times \\ \times & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & $	+ of Containers	PM Email:	OTT PO	Chain of Custod Date: Page: of: Project Name: Kalana Chant (cl)
xt Day: Same Day:	GW = Gound Water, SW = Sorm Water, WW = Waste Water , M = Miscellaneous		Comments	Sample Disposal: Return to dirent September 20 days)	Cooling: Coo	Laboratory Project No (internal): 2110057 Temperature on Receipt: 2.3 °c

www.specialtyanalytical.com

*Matrix: A = Air, AQ = Aqueous, L=Liquid, Turn-around Time:	7 8 9 10	* MW-243 * MW-250 * MW-250	Sample Name 1 KC-14 2 MW-239	Telephone: 541-490-4223 AP Email: [] []	aient: RSEC Envicorm Address: 958 How View Aty, State, Zip: How River O	의원 지전 Analytical
0=01, P= Product, S=301, SD=Se btandard (5-7 Business): Date/Time Date/Time Date/Time Date/Time Date/Time		10/6 1130 1 16/6 1100 1 10/6 1315 4	Time Matrix 2 12.20 G.W 12.50 G.W	C C C C C C C C C C C C C C C C C C C	Envionmenter) local View Ct River, Oiz 97631	9011 SE Jannsen Rd Clackamas, OR 97015 Phone: 503-607-1331 Fax: 503-607-1336
s_{\perp} = solid, W = Water, DW = Drinkin 3 Day: 2 D \sim \mathcal{L} \mathcal				PM Email:	Project No: Etc. 1021 Collected by: RT State Collected: OR WA	C Date: Project Name: 人こんで
GW = Ground Wat Expedited				11 11	DTHER	hain of Custody ^{age: of:}
			Comments	Sample Disposal: Return to dirent XDisposal by lab (atter 60 days)	Cooling: Shipped Via: Shipped V	Y Record Laboratory Project No (internal): 2110059 Temperature on Receipt:

www.specialtyanalytical.com

January 2022 Quarterly ISRW Laboratory Reports

ALS Laboratory

Service Request No:K2200555

Rich Truax RSEC Inc 958 Hood View Ct. Hood River, OR 97031

Laboratory Results for: Lanxess Kalama

Dear Rich,

Enclosed are the results of the sample(s) submitted to our laboratory January 18, 2022 For your reference, these analyses have been assigned our service request number **K2200555**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howaldblum

Howard Holmes Project Manager

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Client: RSEC Inc Project: Lanxess Kalama Sample Matrix: Water Service Request: K2200555 Date Received: 01/18/2022

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Twelve water samples were received for analysis at ALS Environmental on 01/18/2022. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Volatiles by GC/MS:

Method 8260C, 01/25/2022:Samples required dilution due to the presence of elevated levels of target analyte. The reporting limits are adjusted to reflect the dilution.

Howaldblum

Approved by

Date ____

02/09/2022

Page 3 of 42

SAMPLE DETECTION SUMMARY

Analyte Results Flag MDL MRL Units Method Toluene 30000 500 ug/L 8280C CLIENT ID: ISRW-2 Lab ID: K2200555-002 Analyte Results Flag MDL MRL Units Method Benzene 69 50 ug/L 8260C S260C	CLIENT ID: ISRW-1		Lab	D: K2200	555-001		
CLIENT ID: ISRW-2 Lab ID: K2200555-002 Analyte Results Flag MDL MRL Units Method Benzene 69 50 ug/L 8260C Toluene 37000 1000 ug/L 8260C CLIENT ID: ISRW-3 Lab ID: K2200555-003 Analyte Results Flag MDL MRL Units Method Benzene 150 100 ug/L 8260C 260C 7000 1300 ug/L 8260C Toluene 100000 1300 ug/L 8260C 826	Analyte	Results	Flag	MDL	MRL	Units	Method
AnalyteResultsFlagMDLMRLUnitsMethodBenzene6950ug/L8260CToluene370001000ug/L8260CCLIENT ID: ISRW-3Lab ID: K2200555-003MRLUnitsMethodBenzene150100ug/L8260CToluene1000001300ug/L8260CCLIENT ID: ISRW-4Lab ID: K2200555-003MRLMethodAnalyteResultsFlagMDLMRLUnitsAnalyteResultsFlagMDLMRLUnitsBenzene1010ug/L8260CToluene100100ug/L8260CToluene3800100ug/L8260CToluene3800100ug/L8260CCLIENT ID: ISRW-5Lab ID: K2200555-006MRLUnitsAnalyteResultsFlagMDLMRLUnitsToluene780001300ug/L8260CCLIENT ID: ISRW-6Lab ID: K2200555-006Maluk8260CAnalyteResultsFlagMDLMRLUnitsBenzene4625ug/L8260CToluene0.660.50ug/L8260CCLIENT ID: ISRW-6Lab ID: K2200555-007MAluk8260CAnalyteResultsFlagMDLMRLUnitsDenzene7750ug/L8260CCLIENT ID: ISRW-6Lab ID: K2200555-009MalukMethod	Toluene	30000			500	ug/L	8260C
Benzene 69 50 ug/L 8260C Toluene 37000 1000 ug/L 8260C CLIENT ID: ISRW-3 Lab ID: K2200555-003 Units Method Benzene 150 NDL ML Units Method Benzene 150 1000 ug/L 8260C 8260C Toluene 100000 1300 ug/L 8260C 8260C CLIENT ID: ISRW-4 Lab ID: K2200555-004 8260C Analyte Results Flag MDL MRL Units Method Benzene 10 10 ug/L 8260C 8260C 620C	CLIENT ID: ISRW-2		Lab	ID: K2200	555-002		
Toluene370001000ug/L8280CCLIENT ID:ISRW-3Lab ID:K2200555-003AnalyteResultsFlagMDLMRLUnitsMethodBenzene1501300ug/L8260CToluene1000001300ug/L8260CELIENT ID:ISRW-4Lab ID:K2200555-004MethodAnalyteResultsFlagMDLMRLUnitsMethodBenzene1010ug/L8260C3260CToluene3800100ug/L8260CCLIENT ID:ISRW-5Lab ID: K2200555-005MethodAnalyteResultsFlagMDLMRLUnitsToluene780001300ug/L8260CCLIENT ID:ISRW-6Lab ID: K2200555-005MethodAnalyteResultsFlagMDLMRLUnitsBenzene4625ug/L8260CCLIENT ID:ISRW-7Lab ID: K2200555-005MethodAnalyteResultsFlagMDLMRLUnitsBenzene4625ug/L8260CCLIENT ID:ISRW-7Lab ID: K2200555-008MethodAnalyteResultsFlagMDLMRLUnitsAnalyteResultsFlagMDLMRLUnitsDenzene7750ug/L8260CCLIENT ID:ISRW-9Lab ID: K2200555-009MalukMethodAnalyteResults <t< td=""><td>Analyte</td><td>Results</td><td>Flag</td><td>MDL</td><td>MRL</td><td>Units</td><td>Method</td></t<>	Analyte	Results	Flag	MDL	MRL	Units	Method
Lab ID: K2200555-003AnalyteResultsFlagMDLMRLUnitsMethodBenzene150100ug/L8260CToluene1000001300ug/L8260CCELIENT ID: ISRW-4Lab ID: K2200555-004AnalyteResultsFlagMDLMRLUnitsMethodBenzene1010ug/L8260C8260CToluene3800100ug/L8260C8260CCLIENT ID: ISRW-5Lab ID: K2200555-005MalkMethodAnalyteResultsFlagMDLMRLUnitsToluene780001300ug/L8260CCLIENT ID: ISRW-6Lab ID: K2200555-006MethodAnalyteResultsFlagMDLMRLUnitsBenzene4625ug/L8260CToluene18000500ug/L8260CCLIENT ID: ISRW-7Lab ID: K2200555-007MalyteMethodAnalyteResultsFlagMDLMRLUnitsToluene0.660.50ug/L8260CCLIENT ID: ISRW-8Lab ID: K2200555-007Method8260CCLIENT ID: ISRW-8Lab ID: K2200555-008MethodAnalyteResultsFlagMDLMRLUnitsMalyteResultsFlagMDLMRLUnitsGenzene7750ug/L8260CToluene17000500ug/L8260C<	Benzene	69			50	ug/L	8260C
Analyte Results Flag MDL MRL Units Method Benzene 150 100 ug/L 8260C Toluene 100000 1300 ug/L 8260C CLIENT ID: ISRW-4 Lab ID: K2200555-004 4 Analyte Results Flag MDL MRL Units Method Benzene 10 10 ug/L 8260C 3200 100 ug/L 8260C Culene 3800 100 ug/L 8260C 3200 100 ug/L 8260C CLIENT ID: ISRW-5 Lab ID: K2200555-005	Toluene	37000			1000	ug/L	8260C
Benzene 150 100 ug/L 8280C Toluene 100000 1300 ug/L 8260C CLIENT ID: ISRW-4 Lab ID: K2200555-004 Method Analyte Results Flag MDL MRL Units Method Benzene 10 10 ug/L 8260C S260C CLIENT ID: ISRW-5 Lab ID: K2200555-005 Analyte Results Flag MDL MRL Units Method Toluene 3800 I300 ug/L 8260C S260C	CLIENT ID: ISRW-3		Lab	ID: K2200	555-003		
Toluene 10000 1300 ug/L 8260C CLIENT ID: ISRW-4 Lab ID: K2200555-004 MRL Units Method Benzene 10 10 ug/L 8260C Toluene 3800 100 ug/L 8260C CLIENT ID: ISRW-5 Lab ID: K2200555-005 MRL Units Method Analyte Results Flag MDL MRL Units Method Toluene 3800 1300 ug/L 8260C CLIENT ID: ISRW-5 Lab ID: K2200555-005 Method 8260C Analyte Results Flag MDL MRL Units Method Benzene 46 25 ug/L 8260C Toluene 18000 500 ug/L 8260C CLIENT ID: ISRW-7 Lab ID: K2200555-007 Method Analyte Results Flag MDL MRL Units Method Benzene 77 50 ug/L 8260C 260C <td>Analyte</td> <td>Results</td> <td>Flag</td> <td>MDL</td> <td>MRL</td> <td>Units</td> <td>Method</td>	Analyte	Results	Flag	MDL	MRL	Units	Method
Lab ID: K2200555-004AnalyteResultsFlagMDLMRLUnitsMethodBenzene1010ug/L8260CToluene3800100ug/L8260CCLIENT ID: ISRW-5Lab ID: K2200555-005AnalyteResultsFlagMDLMRLUnitsMethodToluene780001300ug/L8260CCLIENT ID: ISRW-6Lab ID: K2200555-006AnalyteResultsFlagMDLMRLUnitsMethodBenzene4625ug/L8260CToluene18000500ug/L8260CCLIENT ID: ISRW-7Lab ID: K2200555-007AnalyteResultsFlagMDLMRLUnitsBenzene0.660.50ug/L8260CCLIENT ID: ISRW-7Lab ID: K2200555-007AnalyteResultsFlagMDLMRLUnitsToluene0.660.50ug/L8260CCLIENT ID: ISRW-8Lab ID: K2200555-008AnalyteResultsFlagMDLMRLUnitsBenzene7750ug/L8260CCLIENT ID: ISRW-9Lab ID: K2200555-009AnalyteResultsFlagMDLMRLUnitsAnalyteResultsFlagMDLMRLUnitsBenzene17000500ug/L8260CCLIENT ID: ISRW-10	Benzene	150			100	ug/L	8260C
AnalyteResultsFlagMDLMRLUnitsMethodBenzene1010ug/L8260CToluene3800100ug/L8260CCLIENT ID: ISRW-5Lab ID: K2200555-005AnalyteMRLUnitsMethodToluene780001300ug/L8260CCLIENT ID: ISRW-6Lab ID: K2200555-006MRLUnitsMethodAnalyteResultsFlagMDLMRLUnitsMethodBenzene4625ug/L8260C260CToluene18000500ug/L8260C260CCLIENT ID: ISRW-7Lab ID: K2200555-007MRL0.8260CAnalyteResultsFlagMDLMRLUnitsToluene0.660.50ug/L8260CCLIENT ID: ISRW-7Lab ID: K2200555-007Malyte8260CCLIENT ID: ISRW-7Lab ID: K2200555-007MRL0.8260CCLIENT ID: ISRW-8Lab ID: K2200555-008MRL0.8260CCLIENT ID: ISRW-8Lab ID: K2200555-009MRL0.8260CAnalyteResultsFlagMDLMRLUnitsAnalyteResultsFlagMDLMRLUnitsIouene17000500ug/L8260CCLIENT ID: ISRW-9Lab ID: K2200555-010MRLUnitsMethodAnalyteResultsFlagMDLMRLUnitsMethodToluene17000500ug/L8260C8260C <td>Toluene</td> <td>100000</td> <td></td> <td></td> <td>1300</td> <td>ug/L</td> <td>8260C</td>	Toluene	100000			1300	ug/L	8260C
Benzene 10 10 ug/L 8260C Toluene 3800 100 ug/L 8260C CLIENT ID: ISRW-5 Lab ID: K2200555-005 Method Analyte Results Flag MDL MRL Units Method Toluene 78000 1300 ug/L 8260C 8260C CLIENT ID: ISRW-6 Lab ID: K2200555-006 Method 8260C 8260C Analyte Results Flag MDL MRL Units Method Benzene 46 25 ug/L 8260C 8260C 8260C CLIENT ID: ISRW-7 Lab ID: K2200555-007 4260C 8260C 8260C<	CLIENT ID: ISRW-4		Lab	ID: K2200	555-004		
Toluene 3800 100 ug/L 8260C CLIENT ID: ISRW-5 Lab ID: K2200555-005 Kalyte Method Analyte Results Flag MDL MRL Units Method Toluene 78000 1300 ug/L 8260C CLIENT ID: ISRW-6 Lab ID: K2200555-006 K2200555-006 K2200555-006 Analyte Results Flag MDL MRL Units Method Benzene 46 25 ug/L 8260C CLIENT ID: ISRW-7 Lab ID: K2200555-007 Kalyte 8260C Analyte Results Flag MDL MRL Units Method Toluene 0.66 0.50 ug/L 8260C CLIENT ID: ISRW-8 Lab ID: K2200555-008 Kalyte Method Benzene 77 50 ug/L 8260C CLIENT ID: ISRW-9 Lab ID: K2200555-009 Method 8260C Analyte Results Flag MDL MRL Un	Analyte	Results	Flag	MDL	MRL	Units	Method
CLIENT ID: ISRW-5Lab ID: K2200555-005AnalyteResultsFlagMDLMRLUnitsMethodToluene780001300ug/L8260C2000000000000000000000000000000000000	Benzene	10			10	ug/L	8260C
AnalyteResultsFlagMDLMRLUnitsMethodToluene780001300ug/L8260CCLIENT ID: ISRW-6Lab ID: K2200555-006AnalyteResultsFlagMDLMRLUnitsMethodBenzene4625ug/L8260CToluene18000500ug/L8260CCLIENT ID: ISRW-7Lab ID: K2200555-0078260CAnalyteResultsFlagMDLMRLUnitsToluene0.660.50ug/L8260CCLIENT ID: ISRW-8Lab ID: K2200555-0084260C8260CCLIENT ID: ISRW-8Lab ID: K2200555-0084260CAnalyteResultsFlagMDLMRLUnitsBenzene7750ug/L8260CToluene450001000ug/L8260CCLIENT ID: ISRW-9Lab ID: K2200555-00940008260CCLIENT ID: ISRW-9Lab ID: K2200555-00940008260CCLIENT ID: ISRW-9Lab ID: K2200555-00940008260CCLIENT ID: ISRW-10Lab ID: K2200555-0108260CCLIENT ID: ISRW-10Lab ID: K2200555-0108260CCLIENT ID: ISRW-10Lab ID: K2200555-0104000AnalyteResultsFlagMDLMRLID: ISRW-10Lab ID: K2200555-0104000AnalyteResultsFlagMDLMRLBenzene110100ug/L8260C	Toluene	3800			100	ug/L	8260C
Toluene 7800 1300 ug/L 8260C CLIENT ID: ISRW-6 Lab ID: K2200555-006	CLIENT ID: ISRW-5		Lab	ID: K2200	555-005		
CLIENT ID: ISRW-6Lab ID: K2200555-006AnalyteResultsFlagMDLMRLUnitsMethodBenzene4625ug/L8260CToluene18000500ug/L8260CCLIENT ID: ISRW-7Lab ID: K2200555-007AnalyteResultsFlagMDLMRLUnitsMethodToluene0.660.50ug/L8260CCLIENT ID: ISRW-8Lab ID: K2200555-007AnalyteResultsFlagMDLMRLUnitsBenzene0.660.50ug/L8260CCLIENT ID: ISRW-8Lab ID: K2200555-008MethodAnalyteResultsFlagMDLMRLUnitsBenzene7750ug/L8260CCLIENT ID: ISRW-9Lab ID: K2200555-009Malyte8260CAnalyteResultsFlagMDLMRLUnitsToluene17000500ug/L8260CCLIENT ID: ISRW-10Lab ID: K2200555-019Malyte8260CAnalyteResultsFlagMDLMRLUnitsAnalyteResultsFlagMDLMRLMethodBenzene110100ug/L8260C8260CCLIENT ID: ISRW-10Lab ID: K2200555-010Kalyte8260CAnalyteResultsFlagMDLMRLUnitsBenzene110100ug/L8260C	Analyte	Results	Flag	MDL	MRL	Units	Method
AnalyteResultsFlagMDLMRLUnitsMethodBenzene4625ug/L8260CToluene18000500ug/L8260CCLIENT ID: ISRW-7Lab ID: K2200555-007AnalyteResultsFlagMDLMRLUnitsMethodToluene0.660.50ug/L8260CCLIENT ID: ISRW-8Lab ID: K2200555-008MRLUnitsMethodAnalyteResultsFlagMDLMRLUnitsMethodBenzene7750ug/L8260C8260CToluene450001000ug/L8260C8260CCLIENT ID: ISRW-9Lab ID: K2200555-0098260C8260CCLIENT ID: ISRW-9Lab ID: K2200555-0098260C8260CCLIENT ID: ISRW-10Lab ID: K2200555-0098260C8260CCLIENT ID: ISRW-10Lab ID: K2200555-0108260C8260CAnalyteResultsFlagMDLMRLUnitsToluene17000500ug/L8260CCLIENT ID: ISRW-10Lab ID: K2200555-0108260C8260CAnalyteResultsFlagMDLMRLUnitsBenzene110100ug/L8260C	Toluene	78000			1300	ug/L	8260C
Benzene 46 25 ug/L 8260C Toluene 18000 500 ug/L 8260C CLIENT ID: ISRW-7 Lab ID: K2200555-007 MRL Units Method Analyte Results Flag MDL MRL Units Method Toluene 0.66 0.50 ug/L 8260C 8260C CLIENT ID: ISRW-8 Lab ID: K2200555-008 Method 8260C Analyte Results Flag MDL MRL Units Method Benzene 77 50 ug/L 8260C 8260C <td>CLIENT ID: ISRW-6</td> <td></td> <td>Lab</td> <td>ID: K2200</td> <td>555-006</td> <td></td> <td></td>	CLIENT ID: ISRW-6		Lab	ID: K2200	555-006		
Toluene18000500ug/L8260CCLIENT ID: ISRW-7Lab ID: K2200555-007MethodAnalyteResultsFlagMDLMRLUnitsMethodToluene0.660.50ug/L8260CCLIENT ID: ISRW-8Lab ID: K2200555-008Kethod8260CAnalyteResultsFlagMDLMRLUnitsMethodBenzene7750ug/L8260CToluene7750ug/L8260CCLIENT ID: ISRW-9Lab ID: K2200555-009KethodAnalyteResultsFlagMDLMRLUnitsAnalyteResultsFlagMDLMRLUnitsMethodCLIENT ID: ISRW-9Lab ID: K2200555-009Kethod8260CKethodCLIENT ID: ISRW-10ResultsFlagMDLMRLUnitsMethodBenzene17000100ug/L8260C8260CCLIENT ID: ISRW-10Lab ID: K2200555-010Kethod8260CAnalyteResultsFlagMDLMRLUnitsMethodBenzene110100ug/L8260C8260CKethod	Analyte	Results	Flag	MDL	MRL	Units	Method
CLIENT ID: ISRW-7Lab ID: K2200555-007AnalyteResultsFlagMDLMRLUnitsMethodToluene0.660.50ug/L8260CCLIENT ID: ISRW-8Lab ID: K2200555-008MethodAnalyteResultsFlagMDLMRLUnitsMethodBenzene7750ug/L8260CToluene450001000ug/L8260CCLIENT ID: ISRW-9AnalyteResultsFlagMDLMRLUnitsMaiyteResultsFlagMDLMRLUnitsMethodToluene17000500ug/L8260C200C200CCLIENT ID: ISRW-10Lab ID: K2200555-010K2200555-010K2200555-010K2200555-010AnalyteResultsFlagMDLMRLUnitsMethodBenzene110100ug/L8260C8260C	Benzene	46			25	ug/L	8260C
AnalyteResultsFlagMDLMRLUnitsMethodToluene0.660.50ug/L8260CCLIENT ID: ISRW-8Lab ID: K2200555-008AnalyteResultsFlagMDLMRLUnitsMethodBenzene7750ug/L8260CToluene450001000ug/L8260CCLIENT ID: ISRW-9Lab ID: K2200555-009MRLUnitsMethodAnalyteResultsFlagMDLMRLUnitsMethodToluene17000500ug/L8260C200CCLIENT ID: ISRW-9Lab ID: K2200555-009MRLUnitsMethodAnalyteResultsFlagMDLMRLUnitsMethodToluene17000500ug/L8260C200CCLIENT ID: ISRW-10Lab ID: K2200555-010MRLMethodBenzene110100ug/L8260C	Toluene	18000			500	ug/L	8260C
Toluene 0.66 0.50 ug/L 8260C CLIENT ID: ISRW-8 Lab ID: K2200555-008 Units Method Analyte Results Flag MDL MRL Units Method Benzene 77 50 ug/L 8260C Toluene 45000 1000 ug/L 8260C CLIENT ID: ISRW-9 Lab ID: K2200555-009 Method Analyte Results Flag MDL MRL Units Method Toluene 17000 Ug/L 8260C Second Second Second Analyte Results Flag MDL MRL Units Method Toluene 17000 Eab ID: K2200555-010 Second Second Second CLIENT ID: ISRW-10 Lab ID: K2200555-010 Method Second Second Second Analyte Results Flag MDL MRL Units Method Benzene 110 100 ug/L 8260C	CLIENT ID: ISRW-7		Lab	ID: K2200	555-007		
CLIENT ID: ISRW-8Lab ID: K2200555-008AnalyteResultsFlagMDLMRLUnitsMethodBenzene7750ug/L8260CToluene450001000ug/L8260CCLIENT ID: ISRW-9Lab ID: K2200555-009MethodAnalyteResultsFlagMDLMRLUnitsToluene17000500ug/L8260CCLIENT ID: ISRW-10Lab ID: K2200555-010StoreMethodGuidene17000500ug/L8260CCLIENT ID: ISRW-10100UnitsMethodBenzene110100ug/L8260C	Analyte	Results	Flag	MDL	MRL	Units	Method
AnalyteResultsFlagMDLMRLUnitsMethodBenzene7750ug/L8260CToluene450001000ug/L8260CCLIENT ID: ISRW-9Lab ID: K2200555-009MDLMRLUnitsMethodAnalyteResultsFlagMDLMRLUnitsMethodToluene17000500ug/L8260C10001000CLIENT ID: ISRW-10Lab ID: K2200555-010K2200555-010K2200555-010K2200555-010AnalyteResultsFlagMDLMRLUnitsMethodBenzene110100ug/L8260C8260C	Toluene	0.66			0.50	ug/L	8260C
Benzene 77 50 ug/L 8260C Toluene 45000 1000 ug/L 8260C CLIENT ID: ISRW-9 Lab ID: K2200555-009 MRL Units Method Analyte Results Flag MDL MRL Units Method Toluene 17000 500 ug/L 8260C 8260C CLIENT ID: ISRW-10 Results Flag MDL MRL Units Method Analyte Results Flag MDL MRL 8260C 8260C CLIENT ID: ISRW-10 Results Flag MDL MRL 8260C Benzene 110 100 ug/L 8260C 8260C	CLIENT ID: ISRW-8		Lab	ID: K2200	555-008		
Toluene450001000ug/L8260CCLIENT ID: ISRW-9Lab ID: K2200555-009AnalyteResultsFlagMDLMRLUnitsMethodToluene17000500ug/L8260CCLIENT ID: ISRW-10Lab ID: K2200555-010UnitsMethodAnalyteResultsFlagMDLMRLUnitsMethodBenzene110100ug/L8260C	Analyte	Results	Flag	MDL	MRL	Units	Method
CLIENT ID: ISRW-9AnalyteResultsFlagMDLMRLUnitsMethodToluene17000500ug/L8260CCLIENT ID: ISRW-10AnalyteResultsFlagMDLMRLUnitsMethodBenzene110100ug/L8260C	Benzene	77			50	ug/L	8260C
AnalyteResultsFlagMDLMRLUnitsMethodToluene17000500ug/L8260CCLIENT ID: ISRW-10AnalyteResultsFlagMDLMRLUnitsMethodBenzene110100ug/L8260C	Toluene	45000			1000	ug/L	8260C
Toluene 17000 500 ug/L 8260C CLIENT ID: ISRW-10 Lab ID: K2200555-010 Lab ID: K2200555-010 Method Analyte Results Flag MDL MRL Units Method Benzene 110 100 ug/L 8260C 100	CLIENT ID: ISRW-9		Lab	ID: K2200	555-009		
CLIENT ID: ISRW-10Lab ID: K2200555-010AnalyteResultsFlagMDLMRLUnitsMethodBenzene110100ug/L8260C	Analyte	Results	Flag	MDL	MRL	Units	Method
AnalyteResultsFlagMDLMRLUnitsMethodBenzene110100ug/L8260C	Toluene	17000			500	ug/L	8260C
Benzene 110 100 ug/L 8260C	CLIENT ID: ISRW-10		Lab	ID: K2200	555-010		
Ŭ	Analyte		Flag	MDL	MRL	Units	Method
Toluene 47000 1000 ug/L 8260C	Benzene	110			100	ug/L	8260C
	Toluene	47000			1000	ug/L	8260C

SAMPLE DETECTION SUMMARY

CLIENT ID: ISRW-11	Lab ID: K2200555-011												
Analyte	Results	Flag	MDL	MRL	Units	Method							
Toluene	32000			500	ug/L	8260C							

ALS	CHAIN OF CUSTODY																									
	317 South	n 13th Ave., I	Kelso, WA 9	8626	+13	60 577	7222	+1	800 6	95 72	22	+1 36	636	1068	(fax)	F	PAGE		[_ OF	-13 ⁴⁴	2	_ 6 0	ノし)C#	-C-	<u>–</u>
PROJECT NUMBER PROJECT MANAGER COMPANY NAME R56 ADDRESS 95 CITY/STATE/2IP H 000	B HO J RIV	KC- h Tru nyiran er or rsech	nment- 2W Ct 970 NG, CI			TIPER OF CONTAINERS	Semivolatile O.	Volatile Or B270 B270 by GCA.	Hydrocardics and Din PAH	OI & Green Construction	PCBS HEM DI 1684 CO	Pesticida Con	Chionophic Bridges	Metals, Tetra 8151M 8151	Cyanization Dissolved	Colicie DH C Hex-Chinger	(circle) MAZ, D. SQL, POLE	TOX 002 11 COD, TKN, TOC NO2	Allialini AOX JAT	Dioxins/Find CO3 [] 506[]	Ĭ,	on 175 (Junethane C2)	JEthane Tethener		REM	ARKS
ISRW-1	1/18/22	0900		GW	3			\times													ſ	ſ		<u> </u>	[
TSRW-2	Ì	0915		1	,	5.00		i																		
TSRW-3		6930		/	1			Τ																		
ISRW-4		0945		-		2-2-2-2																				
ISRW-5		1000				10.000																				
ISRW-6		1015		and the second se																						
ISRW-7		1030			Surger Contraction of Contraction																					
TSRW-8		104-5			and the second se								ĺ													
ISRW-9		1100																								
ISRW-10	$\overline{\mathbf{v}}$	1115		$\overline{\mathbf{v}}$	J	Verdes 1		\checkmark																		
REPORT REQUIREMENTS X I. Routine Report: Method Blank, Surrogate, as required INVOICE INFORMATIO P.O. # <u>LKC-0122</u> Bill To: <u>R56.C</u> (LCL OD (SeCINC.)					Total Metals: AI As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr TI Sn V Zn Hg COM Dissolved Metals: AI As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr TI Sn V Zn Hg *INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI NORTHWEST OTHER: (CIRCLE ON												in Hg E ONE)									
required 24 hr48 hr. 11. CLP Like Summary (no raw data) 24 hr48 hr. 5 day 5 day 5 Standard (15 working days) Provide FAX Results V. EDD													V		11			Supp 		iber						
	SUED DY		Jested Repor		DEAT			Snip	ment	conta	ontains USDA regulated soil samples (check bo								ox if							
Risch I CUSX Date/Time Signature					md-	, Ďa	BY: -134 ate/Time	<u>H</u>		RELINQUISHED) BY: :e/Tim	9			RECEIVED I					BY: ate/Time		
Printed Name Firm Printed Name				Name	تىن بىر	Fi	m				Printed Name Fi									Printed Name Firm						

ALS			~	SF	{#	$\sqrt{7}$	200555										
1317 Sout	n 13th Ave., Kelso, WA	98626 +1 36	60 577 7222	+1 800 695	7222 +1	360 636	1068 (fa>	<) P,	AGE	2			. COCI	#			
PROJECT NUMBER <u>LAC</u> PROJECT NUMBER <u>LAC</u> PROJECT NUMBER <u>LAC</u> PROJECT MANAGER <u>RILL</u> COMPANY NAME <u>RSEC</u> ADDRESS <u>958</u> <u>H655</u> CITY/STATE/ZIP <u>H655</u> <u>RILL</u> E-MAIL ADDRESS <u>FILL</u> <u>SAMPLER'S SIGNATURE</u> SAMPLE I.D. DATE	CI22 Truck ENVICONNEN I VIEWCT. OR 9703 SECINC. CON	401	Semivolatile OMTAINERS		DI & GREASEN TO BELOW ILY DI POLO POLO POLO POLO POLO POLO POLO POL	608/1 Congeners	Metals, Total 0:5-8151M 8151 See List below Dissonce	Oyanide T Hex-Chrom	(6110-00) 785, CI 804, P. 4. 7. NO2 DOC. NO3-N. COD. TUN. P. 4. F. NO2 TOC. 2-NO2 TRV	-0X 9020[] 3. T.P.hos Alkalinity,AOX_1650[T	RSK 175 LIMEthane CO2 L	thane Ethene				
I5RW-11 1/18/12	1130	GW 3		<				1		1		1	ff				
REPORT REQUIREMENTS I. Routine Report: Method Blank, Surrogate, as required II. Report Dup., MS, MSD as	06-00M	*INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI NORTHWEST OTHER: (CIRCLE ONE)											TI Sn V Zn Hg				
required III. CLP Like Summary (no raw data) IV. Data Validation Report	required 24 hr 48 hr 5 day Standard (15 working days) IV. Data Validation Report Provide FAX Results							BENZARTOLUEME ONLY - All Samples									
V. EDD	Requested Rep	art Data		hinment co	ntaine LIS		lated coll	leamolo	e (cheok	hoy if -	annliacht						
Signature Date/Tir		VED BY: <u>1-18-22</u> Date Time		ntains USDA regulated soil samples (check b RELINQUISHED BY: Signature Date/Time						Signature	BY:						
Printed Name Firm	ture <i>Hallan</i> d d Name	Firm		Printed	Name	F	ïrm		1	Printed Na	irm						
Client	SEC -14-22	Opened:	Cooler R) ~7	d Preservat	ion Form ervice Reques Unloaded:	11	22 BV	рм <u>Н</u> 555								
---	---	---	---	---	-----------------------------	---	-----------------	--	--------------------	----------							
 Samples we Samples we 	ere received via? ere received in: (cir ly seals on coolers?	USPS	Fed Ex	UPS Box		PDX Other	Courie	OJ.	elivereð NA	<u> </u>							
If present, w	ere custody seals in	ntact?	Ŷ	N If pr	esent, were they	signed and date	:d?	Ŷ) N								
Temp Blank	Sample Temp	IR Gun 11201	Cooler #/CO		Out of ten indicate with		fied	Tracking Num	ber NA	File							
		πω															
 Were custod Were sample Were all sam Did all samp Were appro Were the pl 	terial: Inserts H ly papers properly f es received in good nple labels complet ple labels and tags priate bottles/conta H-preserved bottles vials received with es negative?	illed out (ink condition (u e (ie, analysis agree with cu iners and vol (see SMO G	signed, etc.)? hbroken) , preservation, stody papers? umes received EN SOP) receiv	etc.)? for the tests i red at the app	propriate pH? Ind		le below	NA NA NA NA NA NA Y NA Y	N N N N N N N N N								
15. Were 100m	l sterile microbiolo	gy bottles fill	ed exactly to th	e 100ml mar	k? <u>NA</u>	Y N		Under filled	Overfilled								
	mple ID on Bottl	e	Bottle C Bottle T	- 「白豆」 「白豆」 「白豆」 「白豆」		Reagent	Volume added	dentified by: Reagent Lot Number	Initials	Time							
	······································																

1/13/22

;____

Page _____ of ____

Analytical Report **Client:** RSEC Inc Service Request: K2200555 **Date Collected:** 01/18/22 09:00 **Project:** Lanxess Kalama/LKC-0122 Sample Matrix: Water **Date Received:** 01/18/22 15:40 Sample Name: ISRW-1 Units: ug/L Lab Code: K2200555-001 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	50	100	01/20/22 20:47	
Toluene	30000	500	1000	01/20/22 20:20	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
4-Bromofluorobenzene	68	68 - 117	01/20/22 20:47		
Dibromofluoromethane	106	73 - 122	01/20/22 20:47		
Toluene-d8	99	65 - 144	01/20/22 20:47		

Analytical Report **Client:** RSEC Inc Service Request: K2200555 Date Collected: 01/18/22 09:15 **Project:** Lanxess Kalama/LKC-0122 Sample Matrix: Water **Date Received:** 01/18/22 15:40 Sample Name: ISRW-2 Units: ug/L Lab Code: K2200555-002 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	69	50	100	01/25/22 20:16	
Toluene	37000	1000	2000	01/25/22 16:18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	79	68 - 117	01/25/22 20:16	
Dibromofluoromethane	100	73 - 122	01/25/22 20:16	
Toluene-d8	97	65 - 144	01/25/22 20:16	

Analytical Report **Client:** RSEC Inc Service Request: K2200555 **Date Collected:** 01/18/22 09:30 **Project:** Lanxess Kalama/LKC-0122 Sample Matrix: Water **Date Received:** 01/18/22 15:40 Sample Name: ISRW-3 Units: ug/L Lab Code: K2200555-003 Basis: NA

Volatile Organic Compounds by GC/MS

Result	MRL	Dil.	Date Analyzed	Q
150	100	200	01/25/22 20:43	
100000	1300	2500	01/25/22 16:45	
	150	150 100	150 100 200	150 100 200 01/25/22 20:43

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	80	68 - 117	01/25/22 20:43	
Dibromofluoromethane	95	73 - 122	01/25/22 20:43	
Toluene-d8	111	65 - 144	01/25/22 20:43	

Analytical Report **Client:** RSEC Inc Service Request: K2200555 Date Collected: 01/18/22 09:45 **Project:** Lanxess Kalama/LKC-0122 Sample Matrix: Water **Date Received:** 01/18/22 15:40 Sample Name: ISRW-4 Units: ug/L Lab Code: K2200555-004 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	10	10	20	01/25/22 21:09	
Toluene	3800	100	200	01/25/22 17:11	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	76	68 - 117	01/25/22 21:09	
Dibromofluoromethane	97	73 - 122	01/25/22 21:09	
Toluene-d8	118	65 - 144	01/25/22 21:09	

Analytical Report Service Request: K2200555 **Client:** RSEC Inc **Date Collected:** 01/18/22 10:00 **Project:** Lanxess Kalama/LKC-0122 Sample Matrix: Water **Date Received:** 01/18/22 15:40 Sample Name: ISRW-5 Units: ug/L Lab Code: K2200555-005 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	100	200	01/25/22 21:36	
Toluene	78000	1300	2500	01/25/22 17:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	77	68 - 117	01/25/22 21:36	
Dibromofluoromethane	100	73 - 122	01/25/22 21:36	
Toluene-d8	98	65 - 144	01/25/22 21:36	

Analytical Report **Client:** RSEC Inc Service Request: K2200555 Date Collected: 01/18/22 10:15 **Project:** Lanxess Kalama/LKC-0122 Sample Matrix: Water **Date Received:** 01/18/22 15:40 Sample Name: ISRW-6 Units: ug/L Lab Code: K2200555-006 Basis: NA

Volatile Organic Compounds by GC/MS

Result	MRL	Dil.	Date Analyzed	Q
46	25	50	01/25/22 22:02	
18000	500	1000	01/25/22 18:04	
	46	46 25	46 25 50	46 25 50 01/25/22 22:02

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	77	68 - 117	01/25/22 22:02	
Dibromofluoromethane	97	73 - 122	01/25/22 22:02	
Toluene-d8	106	65 - 144	01/25/22 22:02	

Analytical Report **Client:** RSEC Inc Service Request: K2200555 **Date Collected:** 01/18/22 10:30 **Project:** Lanxess Kalama/LKC-0122 Sample Matrix: Water **Date Received:** 01/18/22 15:40 Sample Name: ISRW-7 Units: ug/L Lab Code: K2200555-007 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	01/25/22 15:52	
Toluene	0.66	0.50	1	01/25/22 15:52	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	68	68 - 117	01/25/22 15:52	
Dibromofluoromethane	110	73 - 122	01/25/22 15:52	
Toluene-d8	108	65 - 144	01/25/22 15:52	

Analytical Report Service Request: K2200555 **Client:** RSEC Inc Date Collected: 01/18/22 10:45 **Project:** Lanxess Kalama/LKC-0122 Sample Matrix: Water **Date Received:** 01/18/22 15:40 Sample Name: ISRW-8 Units: ug/L Lab Code: K2200555-008 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	77	50	100	01/25/22 22:28	
Toluene	45000	1000	2000	01/25/22 18:30	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	73	68 - 117	01/25/22 22:28	
Dibromofluoromethane	98	73 - 122	01/25/22 22:28	
Toluene-d8	106	65 - 144	01/25/22 22:28	

Analytical Report **Client:** RSEC Inc Service Request: K2200555 **Date Collected:** 01/18/22 11:00 **Project:** Lanxess Kalama/LKC-0122 Sample Matrix: Water **Date Received:** 01/18/22 15:40 Sample Name: ISRW-9 Units: ug/L Lab Code: K2200555-009 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	25	50	01/25/22 22:54	
Toluene	17000	500	1000	01/25/22 18:57	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	76	68 - 117	01/25/22 22:54	
Dibromofluoromethane	97	73 - 122	01/25/22 22:54	
Toluene-d8	99	65 - 144	01/25/22 22:54	

Analytical Report RSEC Inc Service Request: K2200555 Lanxess Kalama/LKC-0122 Water ISRW-10

Lab Code: K2200555-010 Date Collected: 01/18/22 11:15 **Date Received:** 01/18/22 15:40

> Units: ug/L Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** None

Client:

Project:

Sample Matrix:

Sample Name:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	110	100	200	01/25/22 23:21	
Toluene	47000	1000	2000	01/25/22 19:23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	87	68 - 117	01/25/22 23:21	
Dibromofluoromethane	95	73 - 122	01/25/22 23:21	
Toluene-d8	97	65 - 144	01/25/22 23:21	

Analytical Report RSEC Inc Service Request: K2200555 **Date Collected:** 01/18/22 11:30 **Project:** Lanxess Kalama/LKC-0122 Sample Matrix: Water **Date Received:** 01/18/22 15:40 Sample Name: ISRW-11 Units: ug/L Lab Code: K2200555-011 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** None

Client:

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	50	100	01/25/22 23:47	
Toluene	32000	500	1000	01/25/22 19:50	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	86	68 - 117	01/25/22 23:47	
Dibromofluoromethane	97	73 - 122	01/25/22 23:47	
Toluene-d8	102	65 - 144	01/25/22 23:47	

Analytical Report **Client:** RSEC Inc Service Request: K2200555 **Date Collected:** 01/18/22 **Project:** Lanxess Kalama/LKC-0122 Sample Matrix: Water **Date Received:** 01/18/22 15:40 Sample Name: Trip Blank Units: ug/L Lab Code: K2200555-012 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	01/28/22 19:48	
Toluene	ND U	0.50	1	01/28/22 19:48	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	82	68 - 117	01/28/22 19:48	
Dibromofluoromethane	97	73 - 122	01/28/22 19:48	
Toluene-d8	104	65 - 144	01/28/22 19:48	

QA/QC Report

Client:RSEC IncProject:Lanxess Kalama/LKC-0122Sample Matrix:Water

Service Request: K2200555

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds by GC/MS

Analysis Method:8260CExtraction Method:None

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	68-117	73-122	65-144
ISRW-1	K2200555-001	68	106	99
ISRW-2	K2200555-002	79	100	97
ISRW-3	K2200555-003	80	95	111
ISRW-4	K2200555-004	76	97	118
ISRW-5	K2200555-005	77	100	98
ISRW-6	K2200555-006	77	97	106
ISRW-7	K2200555-007	68	110	108
ISRW-8	K2200555-008	73	98	106
ISRW-9	K2200555-009	76	97	99
ISRW-10	K2200555-010	87	95	97
ISRW-11	K2200555-011	86	97	102
Trip Blank	K2200555-012	82	97	104
Method Blank	KQ2201114-05	80	103	122
Method Blank	KQ2201665-05	81	101	101
Method Blank	KQ2202087-05	74	106	111
Lab Control Sample	KQ2201114-03	85	94	108
Duplicate Lab Control Sample	KQ2201114-04	95	93	101
Lab Control Sample	KQ2201665-03	93	98	103
Duplicate Lab Control Sample	KQ2201665-04	87	104	106
Lab Control Sample	KQ2202087-03	80	103	97
Duplicate Lab Control Sample	KQ2202087-04	99	94	105

Analytical Report **Client:** RSEC Inc Service Request: K2200555 **Project:** Lanxess Kalama/LKC-0122 Date Collected: NA Sample Matrix: Water Date Received: NA Sample Name: Method Blank Units: ug/L Lab Code: KQ2201114-05 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	01/20/22 12:23	
Toluene	ND U	0.50	1	01/20/22 12:23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	80	68 - 117	01/20/22 12:23	
Dibromofluoromethane	103	73 - 122	01/20/22 12:23	
Toluene-d8	122	65 - 144	01/20/22 12:23	

Analytical Report **Client:** RSEC Inc Service Request: K2200555 **Project:** Lanxess Kalama/LKC-0122 Date Collected: NA Sample Matrix: Water Date Received: NA Sample Name: Method Blank Units: ug/L Basis: NA Lab Code: KQ2201665-05

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	01/28/22 15:23	
Toluene	ND U	0.50	1	01/28/22 15:23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	81	68 - 117	01/28/22 15:23	
Dibromofluoromethane	101	73 - 122	01/28/22 15:23	
Toluene-d8	101	65 - 144	01/28/22 15:23	

Analytical Report **Client:** RSEC Inc Service Request: K2200555 **Project:** Lanxess Kalama/LKC-0122 Date Collected: NA Sample Matrix: Water Date Received: NA Sample Name: Method Blank Units: ug/L Lab Code: KQ2202087-05 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	01/25/22 15:25	
Toluene	ND U	0.50	1	01/25/22 15:25	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	74	68 - 117	01/25/22 15:25	
Dibromofluoromethane	106	73 - 122	01/25/22 15:25	
Toluene-d8	111	65 - 144	01/25/22 15:25	

QA/QC Report

Client: Project: Sample Matrix:	RSEC Inc Lanxess Ka Water	-			mple Summary	Service R Date Ana Date Extr	lyzed:	K220055 01/20/22 NA	5
		Vola	atile Orgai	nic Compou	inds by GC/MS				
Analysis Method:	8260C					Units:		ug/L	
Prep Method:	None					Basis:		NA	
						Analysis	Lot:	752212	
	La	b Control Sampl KQ2201114-03	e	Γ	Ouplicate Lab Con KQ220111	-	le		
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Benzene	10.1	10.0	101	9.78	10.0	98	69-124	3	30
Toluene	10.3	10.0	103	9.80	10.0	98	69-124	4	30

QA/QC Report

Client: Project: Sample Matrix:	RSEC Inc Lanxess Ka Water	-			ample Summary ands by GC/MS	Service R Date Ana Date Ext	lyzed:	K220055 01/28/22 NA	5
Analysis Method: Prep Method:	8260C None		-	-		Units: Basis: Analysis	Lot:	ug/L NA 753051	
	La	ab Control Sampl KQ2201665-03	e	Ι	Duplicate Lab Cor KQ220166	-	ole % Rec		
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	Limits	RPD	RPD Limit
Benzene Toluene	9.72 10.3	10.0 10.0	97 103	9.51 10.1	10.0 10.0	95 101	69-124 69-124	2 2	30 30

QA/QC Report

Client: Project: Sample Matrix:	RSEC Inc Lanxess Ka Water	lama/LKC-0122				Service F Date Ana Date Ext	alyzed:	K220055 01/25/22 NA	5
		Dup	licate Lab	Control Sa	mple Summary				
		Vola	atile Organ	nic Compou	inds by GC/MS				
Analysis Method:	8260C					Units:		ug/L	
Prep Method:	None					Basis:		NA	
						Analysis	Lot:	752651	
	La	ab Control Sampl KQ2202087-03	e	Ι	Duplicate Lab Con KQ220208	-	ble		
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Benzene	10.9	10.0	109	10.1	10.0	101	69-124	8	30
Toluene	10.5	10.0	105	10.2	10.0	102	69-124	3	30

April 2022 Semi-Annual Data Set Laboratory Report

ALS Laboratory

Service Request No:K2204273

Rich Truax RSEC Inc 958 Hood View Ct. Hood River, OR 97031

Laboratory Results for: Lanxess Kalama Chemical

Dear Rich,

Enclosed are the results of the sample(s) submitted to our laboratory April 21, 2022 For your reference, these analyses have been assigned our service request number **K2204273**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howaldblum

Howard Holmes Project Manager

> ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Client:RSEC IncProject:Lanxess Kalama ChemicalSample Matrix:Ground Water

Service Request: K2204273 Date Received: 04/21/2022

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Seven ground water samples were received for analysis at ALS Environmental on 04/21/2022. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Semivolatiles by GC/MS:

Method 8270D, 05/09/2022: Some samples required dilution due to the presence of elevated levels of target analyte. The reporting limits are adjusted to reflect the dilution.

Volatiles by GC/MS:

No significant anomalies were noted with this analysis.

Hunddolum

Approved by

Date

05/09/2022

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: PZ-107		Lab	ID: K2204	273-001		
Analyte	Results	Flag	MDL	MRL	Units	Method
Biphenyl	17			0.94	ug/L	8270D
Diphenyl Ether	64			1.0	ug/L	8270D
CLIENT ID: PZ-104		Lab	ID: K2204	273-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Benzene	1.7			0.50	ug/L	8260C
Biphenyl	54			0.94	ug/L	8270D
Diphenyl Ether	3300			20	ug/L	8270D
CLIENT ID: MW-401		Lab	ID: K2204	273-003		
Analyte	Results	Flag	MDL	MRL	Units	Method
Benzene	1.6			0.50	ug/L	8260C
Biphenyl	44			0.94	ug/L	8270D
Diphenyl Ether	2900			20	ug/L	8270D
CLIENT ID: MW-230		Lab	ID: K2204	273-004		
Analyte	Results	Flag	MDL	MRL	Units	Method
Diphenyl Ether	110			1.0	ug/L	8270D
CLIENT ID: MW-231		Lab	ID: K2204	273-005		
Analyte	Results	Flag	MDL	MRL	Units	Method
Benzene	0.56			0.50	ug/L	8260C
Diphenyl Ether	45			1.0	ug/L	8270D
CLIENT ID: MW-245		Lab	ID: K2204	273-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
Diphenyl Ether	97			1.0	ug/L	8270D
CLIENT ID: MW-256		Lab	DID: K2204	273-007		
Analyte	Results	Flag	MDL	MRL	Units	Method
Diphenyl Ether	14			1.0	ug/L	8270D

	CHAIN OF CUSTODY SR# K2304223												04/223												
		13th Ave.,	Kelso, WA	98626	+1 3	60 577	7222	+1	800 6	95 72	22	+1 36	0 636	1068	(fax)	F	AGE			_ OF			- - C()))))))))	
PROJECT NAME LKC-0422 PROJECT NUMBER LKC-0422 PROJECT NUMBER LKC-0422 PROJECT NUMBER LKC-0422 PROJECT MAINAGER Rich Trugx COMPANY NAME RS6C ADDRESS 958 YINSTATE/ZIP Hod J. River, OR 97031 PHONE & 560 SAMPLER'S SIGNATURE 960 SAMPLE I.D. DATE DATE TIME LAD MATRIX																									
	P	\sim			1	¥				Sil &				etal	Xanii			3/ð	likan.			i)	/		REMARKS
SAMPLE I.D. P2-107	DATE	TIME Ofoo	LAB I.D.	MATRIX	1		f .	/ <u>→</u> @ ★	<u>/</u>	\sim	/ - •	<u> </u>		12.8	$\frac{1}{2}$	<u>/ </u>	/ 2 ~	\vdash	$\stackrel{\sim}{\vdash}$	<u> </u>	·/~~a		<u></u>		4
	4/20	+		GW	5		X	+										 			1	H	<u>n</u> :		70 constits.
P2-104	4/2	0945		GW	5		×	X	 									 		 				- // -	
MW-401	4/20	1015		GW	5	200.5210 V	×	X													 			+ <i>'</i> // -	
MW-230	4/z¢	1100		G₩	5		\times	X											<u> </u>			1	PΡ	<u>p</u>	poly*
MW-230	4/20	1145		GW	5		×	×	ļ									ļ			ļ	* [<u>рр</u>	<u>b</u>	oniv×
MW-245	A/z¢	1230		GW	2	58.0808	X	ļ														<u> </u>	<u>≥P</u>	ϕ	ONLY X
MW-256	ARD	1315		Gw	2		X														3	4 1	90	þč	NLYX
		,	,																						
* All Colle	Hed	4/24	22																				1	1	
Noardly	A.V.D	CHB;	Trip	Bla	nk	54	F9	ree	6x	4											1	1	†	1	
REPORT REQUIRER			ICE INFOR	MATION	V		which	Å		be ana	lyzed:		L		t		L	L	L				1		
X I. Routine Report:		£	$\frac{1}{10000000000000000000000000000000000$. (a b	Tot	al Meta	ls: Al	As	Sb Ba	a Be	B Ca	ı Cd	Co (Cr Cı	J Fe	Pb M	ig M	n Mo	o Ni	K Ag) Na	Se	Sr TI	Sn V Zn Hg
Blank, Surrogat			i lordi i	<u></u>		1	ved Met	als: Al	As	Sb B	a Be	B C	a Cd	Со	Cr Cı	ı Fe	Pb N	1g M	in M	o Ni	K Aç	j Na	Se	Sr Tl	Sn V Zn Hg
required						*INE	ICATI	E STA	TEH	YDRO	CAR	BON	PROC	EDUI	RE:	AK (CA V	VIN	IORT	HWE	ST O	THER	*		(CIRCLE ONE)
II. Report Dup., M required	II. Report Dup., MS, MSD as TURNAROUND REQUIREMENTS SPECIAL INSTRUCTIONS/COMMENTS: Container Supply Number																								
· · · · · · · · · · · · · · · · · · ·	$\frac{24 \text{ hr.}}{48 \text{ hr.}} = \frac{48 \text{ hr.}}{8260} = \frac{8260}{1.2} \frac{1.2}{3} \frac{1.2}{1.2} \frac{1.2}{3} \frac{1.2}{1.2} 1.2$																								
(no raw data)	() j	5 da	iy ndard (15 wo	rkina dav	o)	82	20:	b ,	pher	VI.	Ы	5(2.	-ethy	rlh	474	1)2	nthe	4					2305		
IV. Data Validation	Report		/ide FAX Res	• ·	3)	*	_	-	.لم`	aha	مار	iv ch	(D	Pal	1	. 1		1	/						
V. EDD						PE	R Re	M	rs .	, ,	7 0	2104													
	******		quested Rep	ort Date			ample	e Ship	oment	: cont	ains l	JSDA	regu	lated	soil s	ampl	es (ch	eck b	if xoc	fappl	icable				
RELINOU	ISHED BY	•	$ \wedge$	and the second se	REC	EIVED	BY:	1 . M-	142	30			RELI	NQU	ISHEI) BY:						R	ECEI	VED B	Y:
Signature	Date/Tir	ne		ture,	0. ~		+17 ate/Ti	12/ ne			Sign	ature			Da	te/Tim	e			Sign	ature		· , ,	Dat	e/Time
Printed Name	Firm	5 (Alish Printe	ture 1 (fe - f) d Name	lee	<u>کلا</u> ر _ F	A1S					ed Na	me		Firr						ed Na	ime		Firm	

1			Cooler Receip	t and	Prese	ervațio	n Form			PM	<u> </u>
lient4	1 X-loss		·····			Şerv	ice Request	K22(04273	/	
eceived:	4/21/22-	Opened:*_	4/21/22	By:_	-	₹~_	_Unloaded:_	4/2	1/22By:	-AL	<u></u>
Samples w	ere received via?	USPS	Fed Ex	UPS	. <i>1</i>) DHL	PDX	Cour	ier Hand D	elivered	
Samples w	ere received in: (cir	cle) Ca	oler Box		nvèlop		Other			NA	
Were custo	iy seals on coolers?		NA Y N	lf yes, l	how ma	ny and w	here?				
If present, v	vere custody seals in	ntact?	Y N	If prese	nt, were	e they sig	ned and dated	d?	Y	N	
Temp Blank	Sample Temp	iR Gun	Cooler #/COC ID / N	A	Out (Indicat	of temp e with "X"	PM Notifi If out of	led	Tracking Num	ber NA	Filed
9.3	• -	TROI	123051							\bigcirc	
5.3		(L									
-	erature Blank preser		NA Y N sample bottle contair	•		-			e column above: nple Temp":		
If no, were t	hey received on ice	and same day received: F	ified temperature ran as collected? If not, r rozen Partially Th ble Wrap Gel Pack	iotate th hawed	Thaw	ed	and notify th <i>Sleeves</i>	e PM.	NA Y NA Y	N	5
	ly papers properly i	• •	-						NA (Y	/ N	
Were all sau	es received in good nple labels complet ple labels and tags	e (ie, analysis,	preservation, etc.)?						NA Y NA Y NA Y	N N N	
	-	- 1	mes received for the	tests ind	icated?				NA Y) N	
Were the p	H-preserved bottles	(see SMO GE	N SOP) received at th	ne appro	priate p	H? Indic	ate in the tabl	le below	NA Y	N	
. Were VOA	vials received with	out headspace	? Indicate in the table	e below.					NA Y) N	
Was C12/R	es negative?					$\left(\right)$		¥	In ANA F) и	
. Were 100m	l sterile microbiolo	gy bottles fille	d exactly to the 100m	nl mark?	1		Y N		Under filled	Overfille	:d
Sa	mple ID on Bott	e	Sample	e ID on	coc				Identified by:		
		·····	Bottle Count	Head-				Volume	Reagent Lot		
	Sample ID	······	Bottle Type		Broke	рН	Reagent	added	Number	Initials	Time
			4	<u> </u>				┟────┤			
				 				<u> </u>			
			1	1	1	1		1		1	

Notes, Discrepancies, Resolutions:_

r

n

Analytical Report **Client:** RSEC Inc Service Request: K2204273 **Date Collected:** 04/21/22 09:00 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Ground Water Date Received: 04/21/22 16:30 PZ-107 Sample Name: Units: ug/L Lab Code: K2204273-001 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	04/22/22 18:58	
Toluene	ND U	0.50	1	04/22/22 18:58	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	88	68 - 117	04/22/22 18:58	
Dibromofluoromethane	101	73 - 122	04/22/22 18:58	
Toluene-d8	98	65 - 144	04/22/22 18:58	

Analytical Report **Client:** RSEC Inc Service Request: K2204273 **Date Collected:** 04/21/22 09:45 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Ground Water Date Received: 04/21/22 16:30 PZ-104 Sample Name: Units: ug/L Lab Code: K2204273-002 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	1.7	0.50	1	04/22/22 19:23	
Toluene	ND U	0.50	1	04/22/22 19:23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	68 - 117	04/22/22 19:23	
Dibromofluoromethane	100	73 - 122	04/22/22 19:23	
Toluene-d8	98	65 - 144	04/22/22 19:23	

Analytical Report **Client:** RSEC Inc Service Request: K2204273 Date Collected: 04/21/22 10:15 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Ground Water Date Received: 04/21/22 16:30 Sample Name: MW-401 Units: ug/L Lab Code: K2204273-003 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	1.6	0.50	1	04/22/22 19:48	
Toluene	ND U	0.50	1	04/22/22 19:48	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	89	68 - 117	04/22/22 19:48	
Dibromofluoromethane	100	73 - 122	04/22/22 19:48	
Toluene-d8	97	65 - 144	04/22/22 19:48	

Analytical Report **Client:** RSEC Inc Service Request: K2204273 **Date Collected:** 04/21/22 11:00 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Ground Water Date Received: 04/21/22 16:30 Sample Name: MW-230 Units: ug/L Lab Code: K2204273-004 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	04/22/22 20:12	
Toluene	ND U	0.50	1	04/22/22 20:12	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	88	68 - 117	04/22/22 20:12	
Dibromofluoromethane	101	73 - 122	04/22/22 20:12	
Toluene-d8	98	65 - 144	04/22/22 20:12	

Analytical Report **Client:** RSEC Inc Service Request: K2204273 **Date Collected:** 04/21/22 11:45 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Ground Water Date Received: 04/21/22 16:30 Sample Name: MW-231 Units: ug/L Lab Code: K2204273-005 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	0.56	0.50	1	04/22/22 20:36	
Toluene	ND U	0.50	1	04/22/22 20:36	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	68 - 117	04/22/22 20:36	
Dibromofluoromethane	99	73 - 122	04/22/22 20:36	
Toluene-d8	99	65 - 144	04/22/22 20:36	

Analytical Report **Client:** RSEC Inc Service Request: K2204273 Date Collected: 04/21/22 09:00 **Project:** Lanxess Kalama Chemical/LKC-0422 **Sample Matrix:** Ground Water Date Received: 04/21/22 16:30 PZ-107 Sample Name: Units: ug/L Lab Code: K2204273-001 Basis: NA

Semivolatile Organic Compounds by GC/MS SIM

Analysis Method:	8270D
Prep Method:	EPA 3520C

Analyte Name	Result	MRL	Dil.	Date Analyze	d Date Ex	stracted	Q
Biphenyl	17	0.94	1	05/07/22 03:22	2 4/2:	5/22	
Bis(2-ethylhexyl) Phthalate	ND U	1.9	1	05/07/22 03:22	2 4/2:	5/22	
Diphenyl Ether	64	1.0	1	05/07/22 03:22	2 4/2	5/22	
Surrogate Name		% Rec	Control	Limits Date	Analvzed	0	
2-Fluorobiphenyl		88	48 - 1		/22 03:22	Č.	
Phenol-d6		86	38 - 1	107 05/07	/22 03:22		

Analytical Report **Client:** RSEC Inc Service Request: K2204273 Date Collected: 04/21/22 09:45 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Ground Water Date Received: 04/21/22 16:30 PZ-104 Sample Name: Units: ug/L Lab Code: K2204273-002 Basis: NA

Semivolatile Organic Compounds by GC/MS SIM

Analysis Method:	8270D
Prep Method:	EPA 3520C

Analyte Name	Result	MRL	Dil.	Date A	nalyzed	Date Ex	xtracted	Q
Biphenyl	54	0.94	1	05/07/2	22 03:47	4/2	5/22	
Bis(2-ethylhexyl) Phthalate	ND U	1.9	1	05/07/2	22 03:47	4/25	5/22	
Diphenyl Ether	3300	20	20	05/09/2	22 09:23	4/2	5/22	
Surrogate Name		% Rec	Control	Limits	Date An	alvzed	Q	
2-Fluorobiphenyl		93	48 -	114	05/07/22	03:47		
Phenol-d6		90	38 -	107	05/07/22	03:47		

Analytical Report **Client:** RSEC Inc Service Request: K2204273 Date Collected: 04/21/22 10:15 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Ground Water Date Received: 04/21/22 16:30 Sample Name: MW-401 Units: ug/L Lab Code: K2204273-003 Basis: NA

Semivolatile Organic Compounds by GC/MS SIM

Analysis Method:	8270D
Prep Method:	EPA 3520C

Analyte Name	Result	MRL	Dil.	Date A	nalyzed	Date Ex	xtracted	Q
Biphenyl	44	0.94	1	05/07/2	22 04:11	4/2	5/22	
Bis(2-ethylhexyl) Phthalate	ND U	1.9	1	05/07/2	22 04:11	4/2	5/22	
Diphenyl Ether	2900	20	20	05/09/2	22 09:48	4/2	5/22	
Surrogate Name		% Rec	Control	Limits	Date An	alyzed	Q	
2-Fluorobiphenyl		88	48 -	114	05/07/22	2 04:11		
Phenol-d6		82	38 -	107	05/07/22	2 04:11		

		Analytical Repo	rt					
Client:	RSEC Inc			Service Re	equest: K2204273			
Project:	Lanxess Kalama Chemical/LKC	-0422		Date Col	lected: 04/21/22 11:0	00		
Sample Matrix:	Ground Water			Date Rec	ceived: 04/21/22 16:3	30		
Sample Name:	MW-230				Units: ug/L			
Lab Code:	K2204273-004				Basis: NA			
Semivolatile Organic Compounds by GC/MS SIM								
Analysis Method:	8270D							
Prep Method:	EPA 3520C							
Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q		
Diphenyl Ether	110	1.0	1	05/07/22 04:36	4/25/22			
Surrogate Name		% Rec	Cont	rol Limits Date A	nalyzed Q			

85

88

92

48 - 114

22 - 146

38 - 107

05/07/22 04:36

05/07/22 04:36

05/07/22 04:36

2-Fluorobiphenyl

p-Terphenyl-d14

Phenol-d6

		Analytical R	eport				
Client:	RSEC Inc			Service Re	equest: K2204273		
Project:	Lanxess Kalama Chemical/LKC-	0422		Date Col	lected: 04/21/22 11:	45	
Sample Matrix:	Ground Water			Date Ree	ceived: 04/21/22 16:	30	
Sample Name:	MW-231				Units: ug/L		
Lab Code:	K2204273-005				Basis: NA		
Semivolatile Organic Compounds by GC/MS SIM							
Analysis Method:	8270D						
Prep Method:	EPA 3520C						
Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q	
Diphenyl Ether	45	1.0	1	05/07/22 05:01	4/25/22		
					_		

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q		
2-Fluorobiphenyl	79	48 - 114	05/07/22 05:01			
p-Terphenyl-d14	92	22 - 146	05/07/22 05:01			
Phenol-d6	83	38 - 107	05/07/22 05:01			
		Analytical R	eport			
------------------	------------------------------	-----------------	-------------	----------------	-----------------------------	-----
Client:	RSEC Inc			Service R	equest: K2204273	
Project:	Lanxess Kalama Chemical/LKC-	0422		Date Col	llected: 04/21/22 12:	.30
Sample Matrix:	Ground Water			Date Re	ceived: 04/21/22 16:	30
Sample Name:	MW-245				Units: ug/L	
Lab Code:	K2204273-006				Basis: NA	
	Semivolati	le Organic Comp	ounds by GC	/MS SIM		
Analysis Method:	8270D					
Prep Method:	EPA 3520C					
Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Diphenyl Ether	97	1.0	1	05/07/22 05:25	4/25/22	
~						

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	84	48 - 114	05/07/22 05:25	
p-Terphenyl-d14	103	22 - 146	05/07/22 05:25	
Phenol-d6	83	38 - 107	05/07/22 05:25	

		Analytical R	eport			
Client:	RSEC Inc			Service Re	equest: K2204273	
Project:	Lanxess Kalama Chemical/LKC-	-0422		Date Col	lected: 04/21/22 13:1	15
Sample Matrix:	Ground Water			Date Rec	ceived: 04/21/22 16:3	30
Sample Name:	MW-256				Units: ug/L	
Lab Code:	K2204273-007				Basis: NA	
	Semivolati	ile Organic Compo	ounds by GC/	/MS SIM		
Analysis Method:	8270D					
Prep Method:	EPA 3520C					
Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Diphenyl Ether	14	1.0	1	05/07/22 05:50	4/25/22	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	87	48 - 114	05/07/22 05:50	
p-Terphenyl-d14	103	22 - 146	05/07/22 05:50	
Phenol-d6	87	38 - 107	05/07/22 05:50	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:RSEC IncProject:Lanxess Kalama Chemical/LKC-0422Sample Matrix:Ground Water

Service Request: K2204273

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds by GC/MS

Analysis Method:8260CExtraction Method:None

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	68-117	73-122	65-144
PZ-107	K2204273-001	88	101	98
PZ-104	K2204273-002	90	100	98
MW-401	K2204273-003	89	100	97
MW-230	K2204273-004	88	101	98
MW-231	K2204273-005	93	99	99
Method Blank	KQ2206697-05	90	100	98
Lab Control Sample	KQ2206697-03	101	103	103
Duplicate Lab Control Sample	KQ2206697-04	100	104	103

	Analytical Repo	rt
Client:	RSEC Inc	Service Request: K2204273
Project:	Lanxess Kalama Chemical/LKC-0422	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank KQ2206697-05	Units: ug/L Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	04/22/22 15:42	
Toluene	ND U	0.50	1	04/22/22 15:42	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	68 - 117	04/22/22 15:42	
Dibromofluoromethane	100	73 - 122	04/22/22 15:42	
Toluene-d8	98	65 - 144	04/22/22 15:42	

QA/QC Report

Client: Project: Sample Matrix:	RSEC Inc Lanxess Ka Ground Wa	Dup	licate Lab		umple Summary 1nds by GC/MS	Service F Date Ana Date Ext	alyzed:	K220427 04/22/22 NA	3
Analysis Method: Prep Method:	8260C None					Units: Basis: Analysis	Lot:	ug/L NA 761628	
Lab Control SampleDuplicate Lab Control SampleKQ2206697-03KQ2206697-04									
Analyte Name Benzene Toluene	Result 10.9 10.5	Spike Amount 10.0 10.0	% Rec 109 105	Result 11.0 10.8	Spike Amount 10.0 10.0	% Rec 110 108	% Rec Limits 69-124 69-124	RPD <1 3	RPD Limit 30 30

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client:RSEC IncProject:Lanxess Kalama Chemical/LKC-0422Sample Matrix:Ground Water

Service Request: K2204273

SURROGATE RECOVERY SUMMARY

Semivolatile Organic Compounds by GC/MS SIM

Analysis Method:	8270D
Extraction Method:	EPA 3520C

		2-Fluorobiphenyl	p-Terphenyl-d14	Phenol-d6
Sample Name	Lab Code	48-114	22-146	38-107
PZ-107	K2204273-001	88		
PZ-107	K2204273-001			86
PZ-104	K2204273-002	93		
PZ-104	K2204273-002			90
MW-401	K2204273-003	88		
MW-401	K2204273-003			82
MW-230	K2204273-004	85	88	92
MW-231	K2204273-005	79	92	83
MW-245	K2204273-006	84	103	83
MW-256	K2204273-007	87	103	87
Method Blank	KQ2206402-03	89	112	85
Lab Control Sample	KQ2206402-01	100	106	96
Duplicate Lab Control Sample	KQ2206402-02	97	106	94

	Analy	tical Report
Client:	RSEC Inc	Service Request: K2204273
Project:	Lanxess Kalama Chemical/LKC-0422	Date Collected: NA
Sample Matrix:	Ground Water	Date Received: NA
Sample Name: Lab Code:	Method Blank KQ2206402-03	Units: ug/L Basis: NA

Semivolatile Organic Compounds by GC/MS SIM

Analysis Method:	8270D
Prep Method:	EPA 3520C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Biphenyl	ND U	0.94	1	05/06/22 23:18	4/25/22	
Bis(2-ethylhexyl) Phthalate	ND U	1.9	1	05/06/22 23:18	4/25/22	
Diphenyl Ether	ND U	1.0	1	05/06/22 23:18	4/25/22	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	89	48 - 114	05/06/22 23:18	
p-Terphenyl-d14	112	22 - 146	05/06/22 23:18	
Phenol-d6	85	38 - 107	05/06/22 23:18	

QA/QC Report

Client: Project: Sample Matrix:	RSEC In Lanxess Ground	Kalama C	hemical/LKC-042	22		D	ervice Req Pate Analyz Pate Extrac	zed:	K2204273 05/06/22 - 04/25/22	
	Duplicate Lab Control Sample Summary									
			Semivolatile O	rganic Co	ompounds	by GC/MS SIM	[
Analysis Method:	8270D					τ	nits:		ug/L	
Prep Method:	EPA 352	20C				В	asis:		NA	
						Α	nalysis Lo	t:	763330	
		La	b Control Samp	e	D	uplicate Lab Co	ntrol Sam	ple		
			KQ2206402-01			KQ22064	02-02	-		
Analyte Name		Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Biphenyl		5.01	5.00	100	4.85	5.00	97	70-130	3	30
Bis(2-ethylhexyl) Phth	nalate	5.04	5.00	101	4.95	5.00	99	64-122	2	30
Diphenyl Ether		5.25	5.00	105	5.09	5.00	102	70-130	3	30

Service Request No:K2203995

Rich Truax RSEC Inc 958 Hood View Ct. Hood River, OR 97031

Laboratory Results for: Lanxess Kalama Chemical

Dear Rich,

Enclosed are the results of the sample(s) submitted to our laboratory April 14, 2022 For your reference, these analyses have been assigned our service request number **K2203995**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howaldblum

Howard Holmes Project Manager

> ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Client:RSEC IncProject:Lanxess Kalama ChemicalSample Matrix:Water

Service Request: K2203995 Date Received: 04/14/2022

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Thirteen water samples were received for analysis at ALS Environmental on 04/14/2022. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Semivolatiles by GC/MS:

Method 8270D, 05/09/2022: Some samples required dilution due to the presence of elevated levels of target analyte. The reporting limits are adjusted to reflect the dilution.

Volatiles by GC/MS:

Method 8260C, 04/15/2022:Samples K2203995-001 (ISRW-1), K2203995-002 (ISRW-2), K2203995-003 (ISRW-3), K2203995-004 (ISRW-4), K2203995-005 (ISRW-5), K2203995-006 (ISRW-6), K2203995-008 (ISRW-8), K2203995-009 (ISRW-9), and K2203995-010 (ISRW-100 required dilutions due to the presence of elevated levels of target analytes. The reporting limits are adjusted to reflect the dilution.

Howaldblum

Approved by

Date

05/09/2022

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: ISRW-1		Lab	ID: K2203	8995-001				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Toluene	11000			500	ug/L	8260C		
CLIENT ID: ISRW-2	Lab ID: K2203995-002							
Analyte	Results	Flag	MDL	MRL	Units	Method		
Benzene	27			13	ug/L	8260C		
Toluene	8600			250	ug/L	8260C		
CLIENT ID: ISRW-3		Lab	ID: K2203	8995-003				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Benzene	120			100	ug/L	8260C		
Toluene	73000			2500	ug/L	8260C		
CLIENT ID: ISRW-4		Lab	ID: K2203	8995-004				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Benzene	11			2.5	ug/L	8260C		
Toluene	690			25	ug/L	8260C		
CLIENT ID: ISRW-5		Lab	ID: K2203	8995-005				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Toluene	34000			1300	ug/L	8260C		
CLIENT ID: ISRW-6		Lab	ID: K2203	8995-006				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Benzene	140			50	ug/L	8260C		
Toluene	31000			1300	ug/L	8260C		
CLIENT ID: ISRW-8		Lab	ID: K2203	3995-008				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Benzene	56			50	ug/L	8260C		
Toluene	39000			2500	ug/L	8260C		
LIENT ID: ISRW-9		Lab	ID: K2203	8995-009				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Benzene	36			13	ug/L	8260C		
Toluene	8700			250	ug/L	8260C		
CLIENT ID: ISRW-10		Lab	ID: K2203	8995-010				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Benzene	63			50	ug/L	8260C		
Toluene	45000			500	ug/L	8260C		
CLIENT ID: W-Sump		Lab	ID: K2203	8995-011				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Benzene	2.7			0.50	ug/L	8260C		
Biphenyl	5.4			0.94	ug/L	8270D		

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: W-Sump		Lab	DID: K2203	8995-011		
Analyte	Results	Flag	MDL	MRL	Units	Method
Diphenyl Ether	400			5.0	ug/L	8270D
CLIENT ID: E-Sump		Lab	DID: K2203	8995-012		
Analyte	Results	Flag	MDL	MRL	Units	Method
Diphenyl Ether	99			1.0	ug/L	8270D

	CHAIN OF CUSTODY	SR# K2203995
	+1 360 577 7222 +1 800 695 7222 +1 360 636 1068 (fax) PAG	EOF COC#
PROJECT NAME / GOXESS KG/GMG PROJECT NUMBER LKC - OA22 PROJECT MANAGER RICL TUGX COMPANY NAME RSEC	NEPS NEPS NEPS NEPS Numphil Simpatil Si	.105 Turb. P04, F, NO2, COD, TKN, TOC, AX, 1650[] 506[] AX, 1650[] 506[] IS Hane [] Ethane[] Ethene[] See See
ADDRESS 958 Hood VIRW Ct. CITY/STATE/ZIP HOOD RIVES OR 9703' E-MAIL ADDRESS FICH OUTSECIAC. COM PHONE # 541.490.4223 FAX# SAMPLER'S SIGNATURE PACE SAMPLE I.D. DATE TIME LABI.D. MATRIX	NUMBER OF CONTAINERS Seminolatile Of Barics by GCMS Hydrocarbons Strong Strong Case I Hen Congeners PESticides/Hencicles Metals Feral See List below Noted Metals Feral See List below No. See Distrong Circle Hex.Chromin	DOLE MH3-N. 105, Tuth. PO4, F, NC TOX 90201 TKN, TOC, AOX 105, TKN, TOC, AMaimin 1 1 03, TCN, TOC, AMAININ 1 10, TCN, TOC, AMAININ 1 10, TCN, TOC, TSSN 175, TMAINAN 1 10, TCN, TOC, BSSN 175, TMAINAN 1 10, TCN, TOC, TSSN 175, TMAINAN 1 10, TCN, TOC, AMAINAN 1 10, TCN, TOC, TSSN 175, TCN, TOC, TOC, TOC, TSSN 175, TCN, TOC, TOC, TOC, TSSN 175, TCN, TOC, TOC, TSSN 175, TCN, TOC, TOC, TOC, TOC, TSSN 175, TCN, TOC, TOC, TOC, TOC, TOC, TSSN 175, TCN, TOC, TOC, TOC, TOC, TOC, TOC, TOC, TOC
ISRW-1 9/422 1100 GU		
ISRW-2 , 110 1		
ISRW-3 /120		
ISRW-4 1130		
ISRW-5 1140		
T5RW-6 1150		
ISRW-7 1200		
ISRW-8 /210		
ISRW-9 / 1220		
ISRW-10 6 1236 4		
REPORT REQUIREMENTS INVOICE INFORMATIO X I. Routine Report: Method Blank, Surrogate, as required II. Report Dup., MS, MSD as TURNAROUND REQUIREM	Z Total Metals: AI As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Corr Dissolved Metals: AI As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb *INDICATE STATE HYDROCARBON PROCEDURE: AK CA	Mg Mn Mo Ni K Ag Na Se Sr TI Sn V Zn Hg WI NORTHWEST OTHER: (CIRCLE ONE)
required III. CLP Like Summary (no raw data) IV. Data Validation Report V. EDD Requested Report Date IV. Data Validation Report Requested Report Date IV. EDD Requested Report Date IV. Data Validation Report Requested Report Date IV. Data Validation Report Requested Report Date IV. Data Validation Report IV. EDD IV. EV. EV. EV. EV. EV. EV. EV. EV. EV. E	10) For non-detects need benzene <20% if possible	
RELINQUISHED BY: 4/14/02 Signature Printed Name Signature Printed Name Signature Printed Name	RECEIVED BY: 1545 RELINQUISHED BY: 4/14122	RECEIVED BY: Signature Date/Time Printed Name Firm

PROJECT NUMBER LAC-0422
PROJECT NAME PROJECT NUMBER LAKC-0422 PROJECT NUMBER LACC-0422 PROJECT NUMBER LACC-0422 PROJECT NUMBER LACC-0422 PROJECT NUMBER LACC-0422 PROJECT NAMAGER LACC-0422 PROJECT NAMAGER LACC-0422 PROJECT NAMAGER LACC-0422 PROJECT NAMAGER LACC-0422 PROJECT NAMAGER LACC-0422 PROJECT NAMAGER LACC-0422 PROJECT NAMAGER LACC-0422 PROJECT NAMAGER LACC-0422 PROJECT NAMAGER LACC-0422 PROJECT NAMAGER LACC-04222 PROJECT NAMAGER LACC-0422 PROJECT NAMAGER LACC-0422 PROJECT NAMAGER LACC-04222 PROJECT NAMAGER LACC-0
W-SUMP 4/422 1300 GW 5 XX
E-50mp 1315 5
MS/MSDARES V 1315 V B VV
REPORT REQUIREMENTS INVOICE INFORMATION Circle which metals are to be analyzed:
P.O. # <u>4kc-0432</u> Total Matalay All As Sh. Ba Ba B. Ca
Blank, Surrogate, as
required *INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI NORTHWEST OTHER: (CIRCLE ON
$\frac{24 \text{ hr.}}{48 \text{ hr.}} = \frac{24 \text{ hr.}}{8260} = \frac{3260}{87} \left(\left(\left(2.0 \right) \frac{8}{8} \right) + \frac{1}{2} \left(\left(\frac{1}{2} \right) \frac{1}{8} \right) + \frac{1}{2} \left(\left(\frac{1}{8} \right) \frac{1}{8} \right) + \frac{1}{2} \left(\left(\frac$
$\frac{5 \text{ day}}{123051}$
IV. Data Validation ReportProvide FAX Results
V. EDD
Requested Report Date Shipment contains USDA regulated soil samples (check box if applicable)
RECEIVED BY: RECEIVED BY: RECEIVED BY: RECEIVED BY: RECEIVED BY:
1. 4/14R 414/22
Signature Date/Time Signature Date/Time Signature Date/Time Date/Time Date/Time Date/Time Printed Name Firm Printed Name Firm Printed Name Firm Printed Name Firm Firm Printed Name Firm Firm Printed Name Firm <

			Cooler Receipt :	and F		Natio	n Form			PM	H
Client 🕅	SFI				16361		vice Request	K22 ()	2995	`	
Received:	114120	Opened:	4114127	By:	····	Sen	Unloaded:		1177 F	sv: h Ad	\mathcal{T}
					- <i>Y</i> ->						
-	ere received via?	USPS		PS E		HL	PDX	Cou	rier <u>Hand</u>	Delivered	
-	ere received in: (cir ly seals on coolers?	· (NA Y N I		nvelope		Other	C.a.	L	<i>NA</i>	
	vere custody seals in						gned and date	ξ_¥⊖∟ ∠ d?	<u>\</u> /		
p, /			<u>.</u>				B		(
	an a					4 9 - 96 - 69	PN				ilan sa
Temp Blank	Sample Temp	IR Gun	Cooler #/COC ID / NA		Out o	f temp		1	Tracking N	umber NA	Filed
6.9	9.2	11202	9	7				winp //			
<u></u>		11502				·***			<u></u>		
			,,,,,,,				_				
					•						
5. Were sample If no, were t	s received within the	he method spece e and same day	sample bottle containe sified temperature range as collected? If not, no Frozen Partially The	es? state the		# belov			mple Temp": NA NA	Y (N Y N	3
	-						<u>.</u>				
_	aterial: Inserts A		ble Wrap Gel Packs	rei	lce L	ry Ice	Sleeves			Ŷ N	-
	les received in good		0, ,						NA (Y N	
-	-		, preservation, etc.)?						NA	$\overline{\mathbf{Y}}$ N	
10. Did all sam	ple labels and tags	agree with cus	stody papers?						NA (Ŷ N	
11. Were appro	opriate bottles/cont	ainers and volu	mes received for the te	ests indi	icated?				NA	N N	
12. Were the p	H-preserved bottle	s (see SMO GE	EN SOP) received at the	e approj	priate pl	H? Indi	cate in the tab	ole below	NA	N N	
		hout headspace	? Indicate in the table	below.					NA	N N	
14. Was C12/F	Res negative?								NA (Y N	
15. Were 100n	nl sterile microbiol	ogy bottles fille	ed exactly to the 100ml	mark?	Ľ		Y N		Under filled	l Overfill	ed
Sa	ample ID on Bott	ie	Sample	ID on	202				Identified by		e Maria tatulu da
						<u>, 17 (19) (19)</u>		<u>, second second</u>			
••••									*** * ** ** * * * * ** **		
ŧ											
	Sample ID			Head- space	Broke	рН	Reagent	Volume		t initiais	Time

Notes, Discrepancies, Resolutions:	Preceived 2 trip blanks not on	(∂)	(
		10 P. No.	440

Page ____ of__

Analytical Report **Client:** RSEC Inc Service Request: K2203995 **Date Collected:** 04/14/22 11:00 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/14/22 15:45 Sample Name: ISRW-1 Units: ug/L Lab Code: K2203995-001 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	25	50	04/15/22 18:30	
Toluene	11000	500	1000	04/15/22 15:28	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	100	68 - 117	04/15/22 18:30	
Dibromofluoromethane	115	73 - 122	04/15/22 18:30	
Toluene-d8	94	65 - 144	04/15/22 18:30	

Analytical Report **Client:** RSEC Inc Service Request: K2203995 **Date Collected:** 04/14/22 11:10 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/14/22 15:45 Sample Name: ISRW-2 Units: ug/L Lab Code: K2203995-002 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	27	13	25	04/15/22 18:53	
Toluene	8600	250	500	04/15/22 15:51	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	68 - 117	04/15/22 18:53	
Dibromofluoromethane	117	73 - 122	04/15/22 18:53	
Toluene-d8	94	65 - 144	04/15/22 18:53	

Analytical Report **Client:** RSEC Inc Service Request: K2203995 **Date Collected:** 04/14/22 11:20 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/14/22 15:45 Sample Name: ISRW-3 Units: ug/L Lab Code: K2203995-003 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	120	100	200	04/15/22 19:16	
Toluene	73000	2500	5000	04/15/22 16:14	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	68 - 117	04/15/22 19:16	
Dibromofluoromethane	117	73 - 122	04/15/22 19:16	
Toluene-d8	95	65 - 144	04/15/22 19:16	

Analytical Report **Client:** RSEC Inc Service Request: K2203995 **Date Collected:** 04/14/22 11:30 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/14/22 15:45 Sample Name: ISRW-4 Units: ug/L Lab Code: K2203995-004 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	11	2.5	5	04/15/22 19:39	
Toluene	690	25	50	04/15/22 18:08	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	68 - 117	04/15/22 19:39	
Dibromofluoromethane	114	73 - 122	04/15/22 19:39	
Toluene-d8	94	65 - 144	04/15/22 19:39	

Analytical Report **Client:** RSEC Inc Service Request: K2203995 **Date Collected:** 04/14/22 11:40 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/14/22 15:45 Sample Name: ISRW-5 Units: ug/L Lab Code: K2203995-005 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	100	200	04/15/22 20:02	
Toluene	34000	1300	2500	04/15/22 16:36	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	102	68 - 117	04/15/22 20:02	
Dibromofluoromethane	114	73 - 122	04/15/22 20:02	
Toluene-d8	93	65 - 144	04/15/22 20:02	

Analytical Report **Client:** RSEC Inc Service Request: K2203995 **Date Collected:** 04/14/22 11:50 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/14/22 15:45 Sample Name: ISRW-6 Units: ug/L Lab Code: K2203995-006 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method:8260CPrep Method:None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	140	50	100	04/15/22 20:24	
Toluene	31000	1300	2500	04/15/22 16:59	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	99	68 - 117	04/15/22 20:24	
Dibromofluoromethane	116	73 - 122	04/15/22 20:24	
Toluene-d8	94	65 - 144	04/15/22 20:24	

Analytical Report **Client:** RSEC Inc Service Request: K2203995 **Date Collected:** 04/14/22 12:00 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/14/22 15:45 Sample Name: ISRW-7 Units: ug/L Lab Code: K2203995-007 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	04/25/22 20:10	
Toluene	ND U	0.50	1	04/25/22 20:10	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	83	68 - 117	04/25/22 20:10	
Dibromofluoromethane	103	73 - 122	04/25/22 20:10	
Toluene-d8	105	65 - 144	04/25/22 20:10	

Analytical Report **Client:** RSEC Inc Service Request: K2203995 **Date Collected:** 04/14/22 12:10 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/14/22 15:45 Sample Name: ISRW-8 Units: ug/L Lab Code: K2203995-008 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	56	50	100	04/15/22 20:47	
Toluene	39000	2500	5000	04/15/22 17:22	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	68 - 117	04/15/22 20:47	
Dibromofluoromethane	108	73 - 122	04/15/22 20:47	
Toluene-d8	94	65 - 144	04/15/22 20:47	

Analytical Report **Client:** RSEC Inc Service Request: K2203995 **Date Collected:** 04/14/22 12:20 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/14/22 15:45 Sample Name: ISRW-9 Units: ug/L Lab Code: K2203995-009 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	36	13	25	04/15/22 21:10	
Toluene	8700	250	500	04/15/22 17:45	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	68 - 117	04/15/22 21:10	
Dibromofluoromethane	117	73 - 122	04/15/22 21:10	
Toluene-d8	94	65 - 144	04/15/22 21:10	

Analytical Report **Client:** RSEC Inc Service Request: K2203995 **Date Collected:** 04/14/22 12:30 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/14/22 15:45 Sample Name: ISRW-10 Units: ug/L Lab Code: K2203995-010 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	63	50	100	04/25/22 21:24	
Toluene	45000	500	1000	04/25/22 20:59	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	84	68 - 117	04/25/22 21:24	
Dibromofluoromethane	104	73 - 122	04/25/22 21:24	
Toluene-d8	97	65 - 144	04/25/22 21:24	

Analytical Report **Client:** RSEC Inc Service Request: K2203995 **Date Collected:** 04/14/22 13:00 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/14/22 15:45 Sample Name: W-Sump Units: ug/L Lab Code: K2203995-011 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	2.7	0.50	1	04/25/22 20:35	
Toluene	ND U	0.50	1	04/25/22 20:35	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	85	68 - 117	04/25/22 20:35	
Dibromofluoromethane	103	73 - 122	04/25/22 20:35	
Toluene-d8	98	65 - 144	04/25/22 20:35	

Analytical Report **Client:** RSEC Inc Service Request: K2203995 Date Collected: 04/14/22 13:15 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/14/22 15:45 Sample Name: E-Sump Units: ug/L Lab Code: K2203995-012 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	04/15/22 13:34	
Toluene	ND U	0.50	1	04/15/22 13:34	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	68 - 117	04/15/22 13:34	
Dibromofluoromethane	106	73 - 122	04/15/22 13:34	
Toluene-d8	97	65 - 144	04/15/22 13:34	

Analytical Report **Client:** RSEC Inc Service Request: K2203995 **Date Collected:** 04/14/22 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/14/22 15:45 Sample Name: Trip Blank Units: ug/L Lab Code: K2203995-013 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	04/25/22 14:51	
Toluene	ND U	0.50	1	04/25/22 14:51	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	87	68 - 117	04/25/22 14:51	
Dibromofluoromethane	100	73 - 122	04/25/22 14:51	
Toluene-d8	98	65 - 144	04/25/22 14:51	

	Analytical Report		
Client:	RSEC Inc	Service Request:	K2203995
Project:	Lanxess Kalama Chemical/LKC-0422	Date Collected:	04/14/22 13:00
Sample Matrix:	Water	Date Received:	04/14/22 15:45
Sample Name:	W-Sump	Units:	ug/L
Lab Code:	K2203995-011	Basis:	NA
	Semivolatile Organic Compounds by GC/MS SIM		
Analysis Method:	8270D		
Prep Method:	EPA 3520C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Biphenyl	5.4	0.94	1	05/07/22 00:31	4/20/22	
Diphenyl Ether	400	5.0	5	05/09/22 08:10	4/20/22	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	99	48 - 114	05/07/22 00:31	
Phenol-d6	97	38 - 107	05/07/22 00:31	

		Analytical R	eport						
Client:	RSEC Inc			Service R	equest: K2203995				
Project:	Lanxess Kalama Chemical/LKC-0	0422		Date Col	llected: 04/14/22 13:	15			
Sample Matrix:	Water			Date Re	ceived: 04/14/22 15:4	45			
Sample Name:	E-Sump				Units: ug/L				
Lab Code:	K2203995-012				Basis: NA				
Semivolatile Organic Compounds by GC/MS SIM									
Analysis Method:	8270D								
Prep Method:	EPA 3520C								
Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q			
Biphenyl	ND U	0.94	1	05/07/22 00:56	4/20/22				
Diphenyl Ether	99	1.0	1	05/07/22 00:56	4/20/22				

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	97	48 - 114	05/07/22 00:56	
Phenol-d6	94	38 - 107	05/07/22 00:56	

QA/QC Report

Client:RSEC IncProject:Lanxess Kalama Chemical/LKC-0422Sample Matrix:Water

Service Request: K2203995

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds by GC/MS

Analysis Method:8260CExtraction Method:None

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	68-117	73-122	65-144
ISRW-1	K2203995-001	100	115	94
ISRW-2	K2203995-002	97	117	94
ISRW-3	K2203995-003	98	117	95
ISRW-4	K2203995-004	96	114	94
ISRW-5	K2203995-005	102	114	93
ISRW-6	K2203995-006	99	116	94
ISRW-7	K2203995-007	83	103	105
ISRW-8	K2203995-008	97	108	94
ISRW-9	K2203995-009	98	117	94
ISRW-10	K2203995-010	84	104	97
W-Sump	K2203995-011	85	103	98
E-Sump	K2203995-012	98	106	97
Trip Blank	K2203995-013	87	100	98
Method Blank	KQ2206109-05	97	100	97
Method Blank	KQ2206814-05	89	99	99
Lab Control Sample	KQ2206109-03	93	102	96
Duplicate Lab Control Sample	KQ2206109-04	94	104	97
Lab Control Sample	KQ2206814-03	101	104	104
Duplicate Lab Control Sample	KQ2206814-04	101	103	103
E-Sump	KQ2206109-06	94	102	97
E-Sump	KQ2206109-07	94	103	97

QA/QC Report

Client: Project: Sample Matrix:	RSEC Inc Lanxess Kalama C Water	hemical/LK	XC-0422			Date Date	e Request Collected: Received: Analyzed:	04/1	03995 4/22 4/22 5/22	
						Date 1	Extracted:	NA		
	Duplicate Matrix Spike Summary									
		Vo	latile Organi	c Compou	nds by GC	C/MS				
Sample Name:	E-Sump						Units:	ug/L		
Lab Code:	K2203995-012						Basis:	NA		
Analysis Method:	8260C									
Prep Method:	None									
			Matrix Sp KQ220610		D	uplicate Mat KQ220610	-			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Benzene	ND U	10.3	10.0	103	10.3	10.0	103	63-144	<1	30
Toluene	ND U	8.59	10.0	86	8.61	10.0	86	71-136	<1	30

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

	Analytical Report	
Client:	RSEC Inc	Service Request: K2203995
Project:	Lanxess Kalama Chemical/LKC-0422	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	KQ2206109-05	Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	04/15/22 13:11	
Toluene	ND U	0.50	1	04/15/22 13:11	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	68 - 117	04/15/22 13:11	
Dibromofluoromethane	100	73 - 122	04/15/22 13:11	
Toluene-d8	97	65 - 144	04/15/22 13:11	

	Analytical Report	Report		
Client:	RSEC Inc	Service Request: K2203995		
Project:	Lanxess Kalama Chemical/LKC-0422	Date Collected: NA		
Sample Matrix:	Water	Date Received: NA		
Sample Name:	Method Blank	Units: ug/L		
Lab Code:	KQ2206814-05	Basis: NA		

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	04/25/22 14:01	
Toluene	ND U	0.50	1	04/25/22 14:01	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	89	68 - 117	04/25/22 14:01	
Dibromofluoromethane	99	73 - 122	04/25/22 14:01	
Toluene-d8	99	65 - 144	04/25/22 14:01	

QA/QC Report

Client: Project: Sample Matrix:	RSEC Inc Lanxess Kalama Chemical/LKC-0422 Water					Service F Date Ana Date Ext	lyzed: 04/15/22		
Duplicate Lab Control Sample Summary Volatile Organic Compounds by GC/MS									
Analysis Method: Prep Method:	8260C None					Units: Basis: Analysis	Lot:	ug/L NA 760737	
	Lab Control SampleDuplicate Lab CoKQ2206109-03KQ220610					-	ble		
Analyte Name Benzene Toluene	Result 9.57 7.89	Spike Amount 10.0 10.0	% Rec 96 79	Result 10.7 8.98	Spike Amount 10.0 10.0	% Rec 107 90	% Rec Limits 69-124 69-124	RPD 11 13	RPD Limit 30 30

QA/QC Report

Client: Project: Sample Matrix:	RSEC Inc Lanxess Kalama Chemical/LKC-0422 Water					Service R Date Ana Date Ext	lyzed:	K220399 04/25/22 NA	5
		Dup	licate Lab	Control Sa	mple Summary				
		Vola	atile Orgai	nic Compou	inds by GC/MS				
Analysis Method:	8260C					Units:		ug/L	
Prep Method:	None					Basis:		NA	
						Analysis	Lot:	761826	
	La	Lab Control SampleDuplicate Lab ControlKQ2206814-03KQ2206814-0					ble		
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Benzene	11.4	10.0	114	10.9	10.0	109	69-124	5	30
Toluene	11.2	10.0	112	10.7	10.0	107	69-124	5	30
QA/QC Report

Client: RSEC Inc **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water

Service Request: K2203995

SURROGATE RECOVERY SUMMARY

Semivolatile Organic Compounds by GC/MS SIM

Analysis Method: 8270D **Extraction Method:**

EPA 3520C

Sample Name Lab Code 48-114 38-107 W-Sump K2203995-011 99 97 E-Sump K2203995-012 97 94 Method Blank KQ2206194-04 97 93 Lab Control Sample KQ2206194-03 97 93	Phenol-d6
E-SumpK2203995-0129794Method BlankKQ2206194-049793	38-107
Method Blank KQ2206194-04 97 93	97
	94
Lab Control Sample KQ2206194-03 97 93	93
	93
E-Sump KQ2206194-01 99 97	97
E-Sump KQ2206194-02 93 92	92

QA/QC Report

Client: Project: Sample Matrix:	RSEC Inc Lanxess Kalama C Water	hemical/Lk	XC-0422			Date Date Date	e Request Collected: Received: Analyzed: Extracted:	04/14 04/14 05/7/	4/22 /22	
			Duplicate M	atrix Spik	e Summar	·y				
		Semivol	atile Organi	c Compou	nds by GC	/MS SIM				
Sample Name:	E-Sump						Units:	ug/L	,	
Lab Code:	K2203995-012						Basis:	NA		
Analysis Method:	8270D									
Prep Method:	EPA 3520C									
			Matrix Sp KQ220619		D	uplicate Mat KQ220619	-			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Biphenyl	ND U	4.57	4.72	97	4.77	5.00	95	70-130	4	30
Diphenyl Ether	99	105	4.72	131 #	107	5.00	158 #	70-130	2	30

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

	Analytic	ll Report	
Client:	RSEC Inc	Service Request:	K2203995
Project:	Lanxess Kalama Chemical/LKC-0422	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name:	Method Blank	Units:	ug/L
Lab Code:	KQ2206194-04	Basis:	NA
	Semivolatile Organic Cor	npounds by GC/MS SIM	

Analysis Method:8270DPrep Method:EPA 3520C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Biphenyl	ND U	0.94	1	05/06/22 22:29	4/20/22	
Diphenyl Ether	ND U	1.0	1	05/06/22 22:29	4/20/22	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	97	48 - 114	05/06/22 22:29	
Phenol-d6	93	38 - 107	05/06/22 22:29	

QA/QC Report

Client: Project: Sample Matrix:	RSEC Inc Lanxess Kalama Ch Water		ontrol Sample Summary	Service Request: Date Analyzed: Date Extracted:	K2203995 05/06/22 04/20/22
			anic Compounds by GC/MS	SIM	
Analysis Method: Prep Method:	8270D EPA 3520C			Units: Basis: Analysis Lot:	ug/L NA 763330
			Lab Control Sample KQ2206194-03		
Analyte Name Biphenyl Diphenyl Ether		Result 4.79 5.04	Spike Amount 5.00 5.00	% Rec 96 101	% Rec Limits 70-130 70-130

Service Request No:K2204138

Rich Truax RSEC Inc 958 Hood View Ct. Hood River, OR 97031

Laboratory Results for: Lanxess Kalama Chemical

Dear Rich,

Enclosed are the results of the sample(s) submitted to our laboratory April 19, 2022 For your reference, these analyses have been assigned our service request number **K2204138**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howaldblum

Howard Holmes Project Manager

> ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. dba ALS Environmental

Client:RSEC IncProject:Lanxess Kalama ChemicalSample Matrix:Water

Service Request: K2204138 Date Received: 04/19/2022

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Eight water samples were received for analysis at ALS Environmental on 04/19/2022. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Semivolatiles by GC/MS:

Method 8270D, 05/09/2022:Some samples required dilution due to the presence of elevated levels of target analyte. The reporting limits are adjusted to reflect the dilution.

Volatiles by GC/MS:

Method 8260C, 04/26/2022:Samples K2204138-002 (MW-239) and K2204138-003 (MW-97) required dilutions due to the presence of elevated levels of target analytes. The reporting limits are adjusted to reflect the dilution.

Howard blue

Approved by

Date

05/09/2022

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: MW-239		Lab	ID: K2204	138-002				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Benzene	91			2.5	ug/L	8260C		
Toluene	2200			50	ug/L	8260C		
CLIENT ID: MW-97		Lab	ID: K2204	138-003				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Benzene	87			5.0	ug/L	8260C		
Toluene	2100			50	ug/L	8260C		
CLIENT ID: KC-14	Lab ID: K2204138-004							
Analyte	Results	Flag	MDL	MRL	Units	Method		
Benzene	2.8			0.50	ug/L	8260C		
Toluene	15			0.50	ug/L	8260C		
CLIENT ID: PDW-117		Lab	ID: K2204	138-007				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Diphenyl Ether	1300			10	ug/L	8270D		
CLIENT ID: KC-9		Lab	ID: K2204	138-008				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Benzene	1.0			0.50	ug/L	8260C		
Diphenyl Ether	1400			10	ug/L	8270D		

ALS) Environmental	Cł	HAIN	OF (CUS	STC	DY								SR#	+[1(2	20	54	(38	
1317 South 13th Ave., Kelso, WA 9	98626 +1 3	60 577 7222	+1 80	0 695 7	222 +	1 360 6	36 1068	3 (fax)	Р	AGE						. CC)C#_			
PROJECT NUMBER LANXESS Kalama (AKC-0422	Chem. 12	24	le Ogamics by GCMS	BIEX	1904 01 01 01 01 12	67					5 [°] /	/		a /		Lethane Ethener		7	/ /	
PROJECT MANAGER RICH TRUCK		7.1					8151[]	' /		4	18			$\tilde{p}/$		Ä			/	
COMPANY NAME REEC		CONTAINERS				1 21						165017	7/2	/	0	ane			/	
ADDRESS 958 HOOD VIEW Ct.] [] []		6 D21			151		15	SP -	ĔĔ		- L / I	/			/	/	/	
CITYSTATE/ZIP HOW RIVER OR 9703	3)	ខ្ញុ					80		Tex.		5/5/	<u>ବ</u> ୍ଚି/	ပ်ိဳ႔	n	[]Methane[1		/	/	
E-MAIL ADDRESS (ICL a) (Secinc. CON)	/	5/						10 V			¥/	7/5	ans, la	8 8	Met as	/				
PHONE # 541-490-4223 FAX #	/ ي	<u>'</u>		Car	E E		end all		I a	8/3	ર્ફ્ / કુ	1	SEL S							
SAMPLER'S SIGNATURE	Allow Allow																			
SAMPLE I.D. DATE TIME LAB I.D.	MATRIX/ ≷	1 10	<u>8/_</u>	<u>'ő/ö</u>		128/0	DE Ze	<u>૿/ </u>	<u>) 3</u> 2	<u>] 3</u> 0	<u> ~</u>]	₹/	<u>م چ</u> [28			\square		EMARKS	
MW-250 4/19 1000	GW 3		\times																	
MW-239 1 1045			×																	
MW-97 1100			X																	
KG-14 / 1145			X															1		
MW-243 1236			\times																	
USRW-2 1315	12	X																I		
PDW-117 1400	5	×	×															Ĩ		
KC-9 V 1500	1 5	\checkmark	×																	
						,	1													
TB Supplied & CABI	No.	Antily	1515	B	6/10	ste				ĺ								1		
		Circle which	metais are		/	<u> </u>					การการการสำนา	าวาาวามรีแอแม	£	Ę.,	·····		i,	.L		
P.O. # <u>ZRC-0</u>	422	Total Meta	uls: Al A	s Sb I	Ba Be I	B Ca C	d Co	Cr Ci	u Fe	Pb Mo	o Mn	Мо	Ni K	Aa	Na	Se S	sr Tl	Sn V	Zn Ha	
I. Routine Report: Method Bill To: Blank, Surrogate, as III To:	Cash	Dissolved Met																	_	
required	<u></u>																			
II. Report Dup., MS, MSD as TURNAROUND REQU	UIREMENTS	*INDICAT SPECIAL I	NSTRUC	TIONS/	COMMI	ENTS:	UCEDU	INE:	AK U	AW			CON	aine	er Si			(CIR mper	CLE ONE	뵈
required24 hr	48 hr.	82/01	Rose	<i>(</i>	. D.	L./	. 4 1	ilan	بہ ط	1										
III. CLP Like Summary5 day		UL60			~ 1.20	8/-)	+(0)	NO Z	0/1	'Y										
(no raw data) Standard (15 work	king days)	8270	. n.	-1-	l	<u>c</u> 1	and the second se	Ĭ							12	3051				
	as TURNAROUND REQUIREMENTS SPECIAL INSTRUCTIONS/COMMENTS: 24 hr. 48 hr. 5 day Standard (15 working days) Provide FAX Results Requested Report Plate Sample Shipment contains USDA regulated soil samples (check box if ap							$\lambda \kappa$	í					· •••••	,					
V. EDD Requested Repo	irt Øate	Sample	e Shipme	ent con	itains U	SDA re	gulated	i soil s	sample	es (che	eck bo	or ox if a		ンド able)	0-1	D.p.	ery	(0)	(ide]	
RELINQUISHED BY: 4/15/22/16/15	·····	EIVED BY:	9/7/	21			ELINQU					I	*********				ED BY			
Signature Date/Time Signatu	ure ///	ENTERT	me Ar	\overline{S}	Signa	ture		Da	te/Time	3			ignatu	ire			Date	e/Time		Hassing Support
Printed Name Firm Printed	I Name	Firm	114	FU-	Printe	d Name		Fin	m			F	rinted	Nam	те		Firm))		

		~		• • • •				PM_///	_
Clie Rec	nt eived:4	RSEC	PEnv Opened:	Cooler Receipt ar ironmenta 4/19/22		n Form Ce Request K22_ Unloaded:	0.4/35 4/9/22 By:	~	
2. (3. V	Samples we Were <u>custo</u> e	ere received via? ere received in: (cir <u>dy seals</u> on coolers' vere custody seals i	?	(\land)	S DHL Envelope es, how many and wh resent, were they sign	Other	Courier Hand De	elivered NA N	-
Ten	np Blank	Sample Temp	IR Gun	Cooler #/COC ID / NA	Out of temp Indicate with "X"	PM Notified If out of temp	Tracking Num	ber NA FI	ied
		5.t	1101	123051		••••••••••••••••••••••••••••••••••••••			
4. W	as a Tempe	erature Blank prese	nt in cooler?	NA Y N Ify	es, notate the tempera	ature in the approp	riate column above:		
5. W	ere sample	s received within the	he method spe	e sample bottle contained w cified temperature ranges? as collected? If not, notate			NA (Y) N N	
6. I	Packing ma	ssue samples were n aterial: <i>Inserts</i> I dy papers properly i	Baggies Bul		\square	Sleeves	NA (Y) N	
8. V 9. V 10. J	Were sampl Were all sar Did all sam	es received in good nple labels complet ple labels and tags	l condition (un te (ie, analysis, agree, with cus	broken) , preservation, etc.)? stody papers?			NA NA NA Y) N N N N N	
12. 13.	Were the pl Were VOA	H-preserved bottles vials received with	s (see SMO GE	umes received for the tests EN SOP) received at the ap c? Indicate in the table bel	propriate pH? Indica	te in the table belo	NA (Y	N) N	
		tes negative?	gy bottles fille	ed exactly to the 100ml ma	urk? NA	Y N	NA Y	> N Overfilled	<u></u>
	Sa	mple ID on Bott	l e	Sample ID	on COC	· · · ·	identified by:		

Sample ID	Bottie Count Bottle Type	Head- space		рH	Reagent	Volume added	Reagent Lot Number	Initials	Time
	•								
Notes, Discrepancies, Resolutions:	il not	rec	/	Ry	i Black	k			

лf

Analytical Report **Client:** RSEC Inc Service Request: K2204138 **Date Collected:** 04/19/22 10:00 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/19/22 16:15 Sample Name: MW-250 Units: ug/L Lab Code: K2204138-001 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	04/26/22 14:04	
Toluene	ND U	0.50	1	04/26/22 14:04	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	71	68 - 117	04/26/22 14:04	
Dibromofluoromethane	108	73 - 122	04/26/22 14:04	
Toluene-d8	94	65 - 144	04/26/22 14:04	

Analytical Report **Client:** RSEC Inc Service Request: K2204138 **Date Collected:** 04/19/22 10:45 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/19/22 16:15 Sample Name: MW-239 Units: ug/L Lab Code: K2204138-002 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	91	2.5	5	04/26/22 17:09	_
Toluene	2200	50	100	04/26/22 16:16	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	89	68 - 117	04/26/22 17:09	
Dibromofluoromethane	102	73 - 122	04/26/22 17:09	
Toluene-d8	90	65 - 144	04/26/22 17:09	

Analytical Report **Client:** RSEC Inc Service Request: K2204138 **Date Collected:** 04/19/22 11:00 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/19/22 16:15 Sample Name: MW-97 Units: ug/L Lab Code: K2204138-003 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	87	5.0	10	04/26/22 17:36	
Toluene	2100	50	100	04/26/22 16:43	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	88	68 - 117	04/26/22 17:36	
Dibromofluoromethane	100	73 - 122	04/26/22 17:36	
Toluene-d8	89	65 - 144	04/26/22 17:36	

Analytical Report **Client:** RSEC Inc Service Request: K2204138 **Date Collected:** 04/19/22 11:45 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/19/22 16:15 Sample Name: KC-14 Units: ug/L Lab Code: K2204138-004 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	2.8	0.50	1	04/26/22 14:31	
Toluene	15	0.50	1	04/26/22 14:31	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	74	68 - 117	04/26/22 14:31	
Dibromofluoromethane	108	73 - 122	04/26/22 14:31	
Toluene-d8	94	65 - 144	04/26/22 14:31	

Analytical Report **Client:** RSEC Inc Service Request: K2204138 **Date Collected:** 04/19/22 12:30 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/19/22 16:15 Sample Name: MW-243 Units: ug/L Lab Code: K2204138-005 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	04/26/22 14:57	
Toluene	ND U	0.50	1	04/26/22 14:57	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	74	68 - 117	04/26/22 14:57	
Dibromofluoromethane	106	73 - 122	04/26/22 14:57	
Toluene-d8	92	65 - 144	04/26/22 14:57	

Analytical Report **Client:** RSEC Inc Service Request: K2204138 **Date Collected:** 04/19/22 14:00 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/19/22 16:15 Sample Name: PDW-117 Units: ug/L K2204138-007 Lab Code: Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	04/26/22 15:23	
Toluene	ND U	0.50	1	04/26/22 15:23	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	74	68 - 117	04/26/22 15:23	
Dibromofluoromethane	110	73 - 122	04/26/22 15:23	
Toluene-d8	94	65 - 144	04/26/22 15:23	

Analytical Report **Client:** RSEC Inc Service Request: K2204138 **Date Collected:** 04/19/22 15:00 **Project:** Lanxess Kalama Chemical/LKC-0422 Sample Matrix: Water Date Received: 04/19/22 16:15 KC-9 Sample Name: Units: ug/L Lab Code: K2204138-008 Basis: NA

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	1.0	0.50	1	04/26/22 15:50	
Toluene	ND U	0.50	1	04/26/22 15:50	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	75	68 - 117	04/26/22 15:50	
Dibromofluoromethane	112	73 - 122	04/26/22 15:50	
Toluene-d8	95	65 - 144	04/26/22 15:50	

		Analytical Repo	ort				
Client:	RSEC Inc			S	ervice Request:	K2204138	
Project:	Lanxess Kalama Chemical/LKC-04	22]	Date Collected:	04/19/22 13:	15
Sample Matrix:	Water				Date Received:	04/19/22 16:	15
Sample Name:	USRW-2				Units:	ug/L	
Lab Code:	K2204138-006				Basis:	NA	
	Semivolatile	Organic Compour	nds by GC/	'MS SIM			
Analysis Method:	8270D						
Prep Method:	EPA 3520C						
Analyte Name	Result	MRL	Dil.	Date Ana	alyzed Date	Extracted	Q
Diphenyl Ether	ND U	1.0	1	05/07/22	02:09	4/25/22	
Surrogate Name		% Rec	Contr	ol Limits	Date Analyze	d Q	
2-Fluorobiphenyl		90		3 - 114	05/07/22 02:0		
p-Terphenyl-d14		100		2 - 146	05/07/22 02:0		

89

38 - 107

05/07/22 02:09

Phenol-d6

8 14:00 16:15
16:15
I Q
Q

98

38 - 107

05/07/22 02:33

Phenol-d6

		Analytical Repo	ort					
Client:	RSEC Inc			S	ervice Requ	uest: K	2204138	
Project:	Lanxess Kalama Chemical/LKC-0	422			Date Collec	ted: 0	4/19/22 15:0	00
Sample Matrix:	Water				Date Recei	ved: 0	4/19/22 16:1	5
Sample Name:	KC-9				U	nits: u	g/L	
Lab Code:	K2204138-008				B	asis: N	A	
	Semivolatile	e Organic Compour	nds by GC/I	MS SIM				
Analysis Method:	8270D							
Prep Method:	EPA 3520C							
Analyte Name	Result	MRL	Dil.	Date An	alyzed	Date Ex	stracted	Q
Diphenyl Ether	1400	10	10	05/09/22	2 08:59	4/2	5/22	
Surrogate Name		% Rec	Contro	ol Limits	Date Ana	lyzed	Q	
2-Fluorobiphenyl		87		- 114	05/07/22			
p-Terphenyl-d14		100		- 146	05/07/22			

85

38 - 107

05/07/22 02:58

Phenol-d6

QA/QC Report

Client:RSEC IncProject:Lanxess Kalama Chemical/LKC-0422Sample Matrix:Water

Service Request: K2204138

SURROGATE RECOVERY SUMMARY

Volatile Organic Compounds by GC/MS

Analysis Method:8260CExtraction Method:None

		4-Bromofluorobenzene	Dibromofluoromethane	Toluene-d8
Sample Name	Lab Code	68-117	73-122	65-144
MW-250	K2204138-001	71	108	94
MW-239	K2204138-002	89	102	90
MW-97	K2204138-003	88	100	89
KC-14	K2204138-004	74	108	94
MW-243	K2204138-005	74	106	92
PDW-117	K2204138-007	74	110	94
KC-9	K2204138-008	75	112	95
Method Blank	KQ2206919-05	73	103	93
Lab Control Sample	KQ2206919-03	90	97	100
Duplicate Lab Control Sample	KQ2206919-04	90	93	98

	Analytical Report	
Client:	RSEC Inc	Service Request: K2204138
Project:	Lanxess Kalama Chemical/LKC-0422	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	KQ2206919-05	Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method:	8260C
Prep Method:	None

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Benzene	ND U	0.50	1	04/26/22 13:37	
Toluene	ND U	0.50	1	04/26/22 13:37	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	73	68 - 117	04/26/22 13:37	
Dibromofluoromethane	103	73 - 122	04/26/22 13:37	
Toluene-d8	93	65 - 144	04/26/22 13:37	

QA/QC Report

Client: Project: Sample Matrix:	RSEC Inc Lanxess Kalama Chemical/LKC-0422 Water Duplicate Lab Control Sample Summary Volatile Organic Compounds by GC/MS					Service R Date Ana Date Extr	lyzed:	K220413 04/26/22 NA	8
		V OI	athe Organ	ne Compot	inds by GC/MS				
Analysis Method:	8260C					Units:		ug/L	
Prep Method:	None					Basis:		NA	
						Analysis	Lot:	761999	
	Lab Control Sample Duplicate Lab Control Sample KQ2206919-03 KQ2206919-04								
							% Rec		
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	Limits	RPD	RPD Limit
Benzene	11.9	10.0	119	10.8	10.0	108	69-124	10	30
Toluene	11.2	10.0	112	10.2	10.0	102	69-124	9	30

QA/QC Report

Client:RSEC IncProject:Lanxess Kalama Chemical/LKC-0422Sample Matrix:Water

Service Request: K2204138

SURROGATE RECOVERY SUMMARY

Semivolatile Organic Compounds by GC/MS SIM

Analysis Method:8270DExtraction Method:EPA 3520C

		2-Fluorobiphenyl	p-Terphenyl-d14	Phenol-d6
Sample Name	Lab Code	48-114	22-146	38-107
USRW-2	K2204138-006	90	100	89
PDW-117	K2204138-007	92	99	98
KC-9	K2204138-008	87	100	85
Method Blank	KQ2206402-03	89	112	85
Lab Control Sample	KQ2206402-01	100	106	96
Duplicate Lab Control Sample	KQ2206402-02	97	106	94

Analytical Report										
Client:	RSEC Inc		Service I	Request: K2204138						
Project:	Lanxess Kalama Chemic	al/LKC-0422		Date Co	ollected: NA					
Sample Matrix:	Water				eceived: NA					
Sample Name:	Method Blank				Units: ug/L					
Lab Code:	KQ2206402-03				Basis: NA					
	Semivolatile Organic Compounds by GC/MS SIM									
Analysis Method:	8270D									
Prep Method:	EPA 3520C									
Analyte Name	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q				
Diphenyl Ether	ND	U 1.0	1	05/06/22 23:18	4/25/22					

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
2-Fluorobiphenyl	89	48 - 114	05/06/22 23:18	
p-Terphenyl-d14	112	22 - 146	05/06/22 23:18	
Phenol-d6	85	38 - 107	05/06/22 23:18	

QA/QC Report

Client: Project: Sample Matrix:	RSEC Inc Lanxess Kalama Chemical/LKC-0422 Water						Request: Ilyzed: racted:	K220413 05/06/22 04/25/22	8 - 05/07/22
		-			mple Summary				
		Semivola	atile Organ	ic Compou	inds by GC/MS S	IM			
Analysis Method:	8270D					Units:		ug/L	
Prep Method:	EPA 3520C					Basis:		NA	
						Analysis	Lot:	763330	
	La	ub Control Sampl	e	Ι	Duplicate Lab Co	ntrol Samp	ole		
		KQ2206402-01			KQ220640	02-02			
							% Rec		
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	Limits	RPD	RPD Limit
Diphenyl Ether	5.25	5.00	105	5.09	5.00	102	70-130	3	30

Appendix C

1998 ICM Annual Report, Section 4 Potentiometric Maps

