SEPTEMBER 2022 ADDITIONAL SUBSURFACE INVESTIGATION REPORT

FOR

HAHN MOTOR COMPANY 1201 SOUTH 1ST STREET YAKIMA, WASHINGTON 98901

Facility Site ID No. 502 Cleanup Site ID No. 4927 VCP Project No. CE0529

October 17, 2022

Prepared for:

Ms. Debra Manjarrez Manjarrez & De Leon Inc, PS 2010 West Nob Hill Blvd, Suite 1 Yakima, Washington 98902

And

Mr. Kyle Parker Department of Ecology Toxic Cleanup Program, Central Regional Office 1250 West Alder Street Union Gap, Washington 98903-0009

Prepared by: Brent Bergeron, LHG, LG Licensed Hydrogeologist and Geologist

Blue Mountain Environmental and Consulting Company, Inc. PO Box 545/125 Main St. Waitsburg, WA 99361 509-520-6519

PROJECT SUMMARY

Client:	Ms. Debra Manjarrez Manjarrez & De Leon Inc, PS 2010 West Nob Hill Blvd, Suite 1 Yakima, Washington 98902
Point of Contact:	Ms. Debra Manjarrez
Property:	Hahn Motor Company 1201 South 1 st Street Yakima, Washington 98901
Major Commercial Activity:	Automotive Sales and Automobile Repair
VCP Project ID Number:	CE0529
Licensed Hydrogeologist/Geologist:	Brent N. Bergeron, LHG, LG
License Number/Expiration:	LHG #2267, expires 1/3/2023 LG #2267, expires 1/3/2023
Project Number:	E20221/0805
Report Date:	October 17, 2022

Legal description: Tax Parcel 191330-13032 in the southwest quarter of the northeast quarter of Section 30, Township 13 North, Range 19 E.W.M; Latitude 46° 35' 17.37" North, Longitude 120° 29'52.41" West.

PROJECT SUMMARY	2
CONTENTS	3
1.0 INTRODUCTION	5
1.1 Location1.2 General Site Information1.3 Site History	5 5 6
2.0 GEOLOGY AND HYDROGEOLOGY	6
3.0 PREVIOUS ENVIRONMENTAL FIELD ACTIVITIES	7
4.0 SEPTEMBER 27 AND 28, 2022 ADDITIONAL SUBSURFACE INVESTIGATION ACTIVITIES	9
5.0 OCTOBER 3, 2022 GROUNDWATER SAMPLING EVENT	10
6.0 SOIL AND GROUNDWATER SAMPLE RESULTS	11
7.0 CONCLUSIONS	12
8.0 RECOMMENDATIONS	13
9.0 STATEMENT OF ENVIRONMENTAL PROFESSIONALS	14
10.0 REFERENCES	15

CONTENTS

TABLE OF CONTENTS

FIGURES

Figure No

Figure Title

1	SITE VICINITY MAP
2	SITE LOCATION MAP
3	SOIL BORINGS – SEPTEMBER 2022

TABLES

Table No	Table Title
1	Soil Sample Results - Total Petroleum Hydrocarbons (mg/Kg)
2	Soil Sample Results - Volatile Organic Compounds (mg/Kg)
3	Soil Sample Results - Total Metals (mg/Kg)
4	Soil Sample Results - Polynuclear Aromatic Hydrocarbons (mg/Kg)
5	Soil Sample - Polychlorinated Biphenyls Results via EPA Method 8082A
	(mg/Kg)
6	Groundwater Sample Results - Total Petroleum Hydrocarbons (µg/L)
7	Groundwater Sample Results - Volatile Organic Compounds (µg/L)
8	Groundwater Sample Results - Total Metals (µg/L)
9	Groundwater Sample Results - Polynuclear Aromatic Hydrocarbons (µg/L)
10	Groundwater Sample - Polychlorinated Biphenyls Results via EPA Method
	8082A (µg/L)

APPENDICES

Appendix No	<u>Appendix Title</u>
А	DEPARTMENT OF ECOLOGY LETTER REGARDING NEED FOR
	FURTHER ACTION – DATED FEBRUARY 23, 2016
В	BORING LOGS
С	GROUNDWATER SAMPLE FIELD LOGS
D	LABORATORY ANALYTICAL DOCUMENTATION

1.0 INTRODUCTION

On September 27 and 28, 2022, Blue Mountain Environmental and Consulting Company, Inc. (BMEC) mobilized to 1201 South 1st Street in Yakima, Washington 98901 (Site) and supervised Holt Services (Holt) during the advancement of six soil borings which were all completed as 2-inch diameter monitoring wells (MW1 through MW6).

On October 3, 2022 BMEC personnel returned to the Site to develop the six monitoring wells and collect groundwater samples. BMEC and the Washington Department of Ecology (Ecology) also refer to the Site as the Hahn Motor Company property, which is located at 1201 South 1st Street in Yakima, Washington 98901. A Site Vicinity Map of the property is included as **Figure 1**.

The Scope of Work (SOW) conducted during the September 2022 Additional Subsurface Investigation (SI) and October 3, 2022 GWSE activities were based on communication with Ecology via their "Further Action at the Site" letter dated February 23, 2016; results of the February 1, 2022 SI including recommendations in the ensuing report; and removal of the two dry wells located south of the main building on July 12 and 13, 2022.

A copy of the February 23, 2016 letter written by Ecology is included in Appendix A.

1.1 Location

The 1.5-acre (approximate) Site is located in the City of Yakima, Yakima County, Washington, at the southeast corner of the intersection of South 1st Street and East Arlington Street (**Figures 2** - **5**). The Site consists of one tax parcel (191330-13032) and is located in the southwest quarter of the northeast quarter of Section 30, Township 13 North, Range 19 E.W.M. The elevation is approximately 1,041 feet above mean sea level and the Site is relatively flat with primarily asphalt ground cover. The nearest major body of water is the Yakima River approximately 1.5 miles east of the Site. The Site is surrounded by commercial then residential property to the east, commercial property then light industry to the north, commercial property to the south. There are no flood zones or wetlands associated with the Site.

1.2 General Site Information

As of February 23, 2016, the property was owned by Mr. Richard Hahn. The current owner of the property is the Estate of Douglas F Bettarel, represented by Ms. Debra Manjarrez of Manjarrez and De Leon Inc, PS. BMEC is currently working for Manjarrez and De Leon Inc, PS.

One building is located on the Site (**Figures 2** – **5**). The rectangular building located on the northwest corner of the property consists of an automobile showroom with offices on the western half, bathrooms and break room near the center of the building, and an automobile repair and automobile wash bay in the eastern half of the building. During the visit to the Site on February 1, 2022, a minimum of one sump was noticed on the interior of the eastern half of the building. The sump appeared to drain to the south toward the drywells which BMEC investigated via soil and groundwater sampling on February 1, 2022. The drywells and all associated petroleum and metals impacted soils were removed on July 12 and 13, 2022, and replaced by a single dry well on July 14, 2022.

1.3 Site History

The existing facility was built in 1946 by Hahn Motors Company. A 2,000-gallon heating oil UST for the oil-fired boiler was installed in the northwest side of the building's basement to provide heat for the facility. A second 2,000-gallon underground storage tank (UST) was installed at the facility in the mid-1970's and both USTs were used to store used oil after the boiler was converted to burn used motor oil, which was plentiful available from the on-site conducted car services. Both tanks had to be removed in November 2007, after the DOE found out about the un-permitted use of waste-oil storage in these USTs, at which time a limited site assessment was conducted. Some petroleum-contaminated soil (PCS) was removed and attributed to over-filling of the tank(s). The approximate locations of the two former tanks are illustrated on **Figures 3 - 5**. Three soil samples were collected from the west, north, and east side of the eastern UST, yielding one heavy oil detection of 396 milligrams per kilogram (mg/Kg) in the west sample. Similarly, three soil samples were collected from the west, north, and east side of the eastern UST, yielding heavy oil detections ranging between 155 - 492 mg/Kg.

In 2017, Ecology conducted semi-annual groundwater sampling of the Yakima Railroad Area (YRRA) groundwater monitoring network which is a six-square mile area located along the railroad corridor in the cities of Yakima and Union Gap, Washington. The YRRA was defined in 1991. The subject site is located near the center of the YRRA which is impacted by chlorinated solvents, primarily tetrachloroethylene (PCE).

Fifteen of the 39 groundwater samples collected from wells in 2017 within the footprint of the YRRA yielded concentrations ranging from 5 to 9,110 micrograms per liter (μ g/L). The Washington State Department of Ecology Model Toxics Control Act (MTCA) Method A Cleanup Level for PCE in groundwater is 5 μ g/L. The subject site was declared as part of the YRRA due to the location inside the impacted area.

2.0 GEOLOGY AND HYDROGEOLOGY

Based on the subsurface investigation field activities conducted at the Site on September 27 and 28, 2022, the following geologic soil conditions were encountered in soil borings MW1 and MW3 through MW6:

- 0-0.25': Asphalt.
- 0.25 2': Brown SILT (ML);
- 2 20': Brown to dark brown, sandy, well-rounded, coarse GRAVEL & COBBLES, with little silt, loose (GW); and
- 20 -25': Brown gray, SAND & GRAVEL, well-rounded, coarse, loose, wet very wet (SP/GP).

Similar lithology was encountered in soil borings advanced at the Site on February 1, 2022. Copies of the boring logs for the six monitoring wells (MW1 through MW6) advanced on September 27 and 28, 2022, are included in **Appendix B**.

During the February 1, 2022, field activities, groundwater was encountered in soil borings SB1 at 11 feet bgs, SB3 at 16.3 feet bgs, SB4 at 18 feet bgs, and SB5 at 14.5 feet bgs. During the October 3, 2022, GWSE conducted at the Site, depths-to-groundwater ranged from 15.48 feet below top of casing (btoc) in well MW1, to 16.66 feet btoc in well MW2. The groundwater flow direction was determined to be to the southeast toward the Yakima River which is approximately 1.5 miles east of the Site with a hydraulic gradient of 0.005 feet per foot. The estimated flow direction in the deeper aquifer beneath the Site is also to the southeast with an approximate hydraulic gradient of 0.004 feet per foot.

3.0 PREVIOUS ENVIRONMENTAL FIELD ACTIVITIES

It was determined by Ecology on July 9, 2007, and documented via certified mail dated July 26, 2007, that Hahn Motor Company was in *Non-Compliance with the Underground Storage Tank Regulations Chapter 173-360* for not properly registering and upgrading their 2,000-gallon USTs prior to storage of waste oil. Via directive from Ecology as defined in the July 26, 2007 certified mail, both USTs were decommissioned by removal and backfill in November 2007. Approximately 50 cubic yards of PCS and asphalt were hauled off-site and disposed at the Anderson Disposal Facility in Yakima, Washington.

During the November 9, 2007, UST decommissioning activities, three soil samples were collected from the west, north, and east side of the eastern UST, yielding one heavy oil detection of 396 mg/Kg in the west sample. Similarly, three soil samples were collected from the west, north, and east side of the eastern UST, yielding heavy oil detections ranging between 155 – 492 mg/Kg. The MTCA Method A Cleanup Level for heavy oil is 2,000 mg/Kg. No gasoline range hydrocarbons were identified by laboratory analysis in any soil samples collected. Significant lead concentrations were detected in residual sampled and analyzed from the tank bottom(s).

In 2017, Ecology conducted semi-annual groundwater sampling of the YRRA groundwater monitoring network which is a six-square mile area located along the railroad corridor in the cities of Yakima and Union Gap, Washington. The YRRA was defined in 1991. The Site is located near the center of the YRRA which is impacted by chlorinated solvents, primarily PCE. Fifteen of the 39 groundwater samples collected from wells within the YRRA yielded concentrations ranging from 5 to 9,110 μ g/L. The MTCA Cleanup Level for TCE in groundwater is 5 μ g/L.

On February 1, 2022, BMEC hydrogeologist, Brent Bergeron, LHG, and BMEC environmental professional Yancy Meyer, supervised the advancement of six soil borings (SB1 through SB6) to depths varying between 15 feet and 25 feet bgs. The six soil borings were advanced via sonic drilling methodology by Environmental West Explorations (EWE) personnel. Continuous soil samples were brought to the surface via core barrel and sample bag methodology.

TPH-D was only quantified in one of the 21 soil samples at a concentration of 670 mg/Kg in sample SB1-2-1-22-10'. TPH-O was quantified in three of the 21 soil samples at concentrations of 1400 mg/Kg in sample SB1-2-1-22-10'; 6900 mg/Kg in sample SB5-2-1-22-10'; and 1100 mg/Kg in sample SB5-2-1-22-15'. The MTCA Method A Cleanup Level for TPH-D + TPH-O is 2000 mg/Kg which was only exceeded in samples SB1-2-1-22-10' and SB5-2-1-22-10'.

TPH-G was performed on one soil sample. TPH-G was quantified in sample SB1-2-1-22-10' at 220 mg/Kg which exceeds the MTCA Method A Cleanup Level of 30 mg/Kg.

VOCs were analyzed for in three soil samples (SB1-2-1-22-10', SB3-2-1-22-25', and SB5-2-1-22-20') and detected in sample SB1-2-1-22-10' at concentrations that due not exceed any MTCA Method A Cleanup Levels. No VOCs were detected in soil samples SB3-2-1-22-25' and SB5-2-1-22-20'.

Cadmium was detected in one sample (SB1-2-1-22-10') at 2.5 mg/Kg which exceeds the MTCA Method A Cleanup Level of 2 mg/Kg. Chromium was detected in all 21 samples at concentrations ranging from 2.9 mg/Kg in sample SB5-2-1-22-20' to 34 mg/Kg in sample SB2-2-1-22-5' which was the only soil sample to exceed the MTCA Method A Cleanup Level of 19 mg/Kg. Lead was detected in four of the 21 soil samples at concentrations ranging from 9.4 mg/Kg in sample SB5-2-1-22-5' to 45 mg/Kg in sample SB1-2-1-22-10'. None of the four lead detections exceed the MTCA Method A Cleanup Level of 250 mg/Kg.

PAHs were analyzed for in three soil samples and detected in sample SB1-2-1-22-10' at concentrations that due not exceed any MTCA Method A Cleanup Levels. No PAHs were detected in soil samples SB3-2-1-22-25' and SB5-2-1-22-20'.

TPH-D and/or TPH-O were detected above the laboratory MRLs in all three groundwater samples collected (SB1-2-1-22-GW, SB-32-1-2-GW, and SB-5-2-1-22-GW). Furthermore, TPH-D + TPH-O were detected in samples SB1-2-1-22-GW and SB5-2-1-22-GW at concentrations of 9800 μ g/L and 770 μ g/L, respectively, which exceeded the MTCA Method A Cleanup Level of 500 μ g/L. Groundwater sample SB1-2-1-22-GW was collected from immediately down-gradient of the dry well outside the automobile engine washing bay and groundwater sample SB5-2-1-22-GW was collected from the north side of the building.

VOCs were analyzed for in all three groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). A combination of VOCs including PCE, benzene, ethylbenzene, and naphthalene were detected in all three groundwater samples but not at concentrations exceeding established MTCA Method A Cleanup Levels.

Arsenic was detected in all three groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 5 μ g/L. Arsenic concentrations ranged from 51 μ g/L in SB3-2-1-22-GW to 130 μ g/L in SB5-2-1-22-GW. Chromium was detected in all three groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 50 μ g/L. Chromium concentrations ranged from 420 μ g/L in SB3-2-1-22-GW to 1100 μ g/L in SB5-2-1-22-GW. Lead was detected in all three groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 15 μ g/L. Lead concentrations ranged from 150 μ g/L in SB3-2-1-22-GW to 1200 μ g/L in SB1-2-1-22-GW. Cadmium was detected in groundwater samples SB1-2-1-22-GW and SB5-2-1-22-GW at 110 μ g/L and 6.4 μ g/L, respectively. The MTCA Method A Cleanup Level for cadmium in groundwater is 5 μ g/L. Groundwater sample SB1-2-1-22-GW was collected from immediately down-gradient of the dry well outside the automobile engine washing bay and groundwater sample SB5-2-1-22-GW was collected from the north side of the building.

PAHs were analyzed for in all three groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). A combination of PAHs including 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene were detected in all three groundwater samples; however, not at concentrations exceeding established MTCA Method A Cleanup Levels.

PCBs were analyzed for in groundwater samples (SB1-2-1-22-GW, SB3-2-1-22-GW, and SB5-2-1-22-GW). PCBs were not detected above the laboratory practical quantitation limits (PQLs) in any of the three samples.

From July 12 – 14, 2022, BMEC personnel supervised Clarke Construction personnel during the removal of both dry wells south of the main onsite building and collected 13 confirmation soil samples in the process. Confirmation samples indicated no contaminants above State of Washington Department of Ecology Model Toxics Control Act Cleanup Levels. On July 14, 2022, after receiving soil sample results, a new drywell was placed in the location of Former Drywell 2 to allow for stormwater drainage from the parking lot, and the excavation was backfilled, compacted to grade, and paved with asphalt.

4.0 SEPTEMBER 27 AND 28, 2022 ADDITIONAL SUBSURFACE INVESTIGATION ACTIVITIES

On September 27 and 28, 2022, BMEC hydrogeologist, Brent Bergeron, LHG, and BMEC environmental professional Yancy Meyer, supervised Anderson Environmental Contracting (AEC) personnel during the advancement of six soil borings (MW1 through MW6) to depths of 25 feet bgs. The six soil borings were advanced via sonic drilling methodology and completed as 2-inch diameter monitoring wells screened from 10 - 25 feet bgs. Continuous soil samples were brought to the surface via core barrel and sample bag methodology.

The rationale for choosing the locations of the six monitoring wells is as follows:

- MW1 Up-gradient well.
- MW2 Assess the potential impact to the shallow groundwater from the former UST(s) at that location.
- MW3 Assess the potential impact to the shallow groundwater from the former dry well(s).
- MW4 through MW6 Assess the impact to the shallow groundwater across the Site via downgradient wells, prior to the groundwater flowing offsite.

Soil collected from all six borings (MW1 through MW6) was field screened via visual observation, olfactorily evidence, and photo-ionization detector (PID). The PID measurements are listed on each of the six boring logs in **Appendix B**. The soil lithology for each boring was assessed by the field hydrogeologist and recorded on the boring logs, as well.

A total of 12 soil samples were collected from the six soil borings (MW1 through MW6) and relinquished to OnSite Environmental in Redmond, Washington for a combination of the following analyses:

Blue Mountain Environmental and Consulting Company, Inc. E2022/0805, September 2022 Additional Subsurface Investigation at Hahn Motor Co. at 1201 S. 1st St in Yakima, WA Page 9

- Total petroleum hydrocarbons diesel range (TPH-D) and TPH heavy oil range (TPH-O) via Northwest Method NWTPH-Dx;
- TPH gasoline range (TPH-G) via Northwest Method NWTPH-Gx;
- Resource Conservation and Recovery Act (RCRA) metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) via Environmental Protection Agency (EPA) Method 6010D/7470A Series for soil and EPA Method 200.8 for groundwater; and
- Volatile organic compounds (VOCs) via EPA Method 8260D.

Each soil sample was obtained in one 4-ounce soil container with Teflon-lined lid and two 40milliliter (mL) glass vials preserved with methanol. The locations of the six soil borings (MW1 through MW6) are illustrated on **Figures 3 - 5**. The laboratory analytical results of the 12 soil samples are discussed in Section 5.1.

A fresh pair of nitrile gloves was donned prior to collection of each successive soil sample. All soil cuttings were containerized in a series of 55-gallon drums which were properly labeled, sealed, and staged onsite near the eastern gate access. Used nitrile gloves and paper towels were placed in a trash bag and hauled offsite.

5.0 OCTOBER 3, 2022 GROUNDWATER SAMPLING EVENT

On October 3, 2022, BMEC personnel returned to the Site to conduct a GWSE involving all six monitoring wells (MW1 through MW6). Each of the six monitoring wells were developed via peristaltic pump and dedicated tubing followed by immediate sample collection. Groundwater parameters (pH, temperature, conductivity, and turbidity) were measured and recorded, prior to purging approximately 15 gallons of groundwater from each well. Each of the six groundwater samples consisted of four 40-mL glass vials preserved with hydrochloric acid (HCl); two unpreserved, 1-L amber glass jars; two 500-mL, amber glass jars preserved with HCl; and one 500-mL polyethylene container preserved with nitric acid. The locations of the six monitoring wells are illustrated on **Figures 3 - 5.** Copies of the groundwater sample field logs of the six groundwater samples collected are located in **Appendix C**.

A total of six groundwater samples were collected from the six wells and relinquished to OnSite Environmental in Redmond, Washington for a combination of the following analyses:

- TPH-D and TPH-O via Northwest Method NWTPH-Dx;
- TPH-G via Northwest Method NWTPH-Gx;
- RCRA metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) via EPA Method 6010D/7470A Series for soil and EPA Method 200.8 for groundwater; and
- VOCs via EPA Method 8260D.

Each of the six groundwater samples submitted to Onsite for RCRA metals were not field filtered. Instead, each of the six samples were filtered in the lab, prior to analysis.

Blue Mountain Environmental and Consulting Company, Inc.

E2022/0805, September 2022 Additional Subsurface Investigation at Hahn Motor Co. at 1201 S. 1st St in Yakima, WA Page 10

A fresh pair of nitrile gloves was donned prior to collection of each successive groundwater sample. All purged groundwater (approximately 90 gallons) were containerized in two separate 55-gallon drums which were properly labeled, sealed, and staged onsite. Used nitrile gloves and paper towels were placed in a trash bag and hauled offsite.

6.0 SOIL AND GROUNDWATER SAMPLE RESULTS

This section discusses the analytical results of the 12 soil samples collected during the September 27 and 28, 2022 Additional SI activities, as well as the analytical results of the six groundwater samples collected during the October 3, 2022 GWSE field activities. Each of the soil and groundwater samples was analyzed for a combination of TPH-D, TPH-O, TPH-G, VOCs, and RCRA metals.

6.1 Soil Sample Results

As indicated on **Table 2**, TPH-Dx was performed on 12 soil samples. TPH-D was only quantified in one of the 12 soil samples at a concentration of 76 mg/Kg in sample MW3-9-27-22-15'. TPH-O was quantified in three of the 12 soil samples at concentrations of 300 mg/Kg in sample MW3-9-27-22-15' to 1000 mg/Kg in sample MW6-9-27-22-21'. The MTCA Method A Cleanup Level for TPH-D + TPH-O is 2000 mg/Kg which was not exceeded in any of the 12 soil samples. TPH-G was performed on all 12 soil samples. TPH-G was not detected in any of the 12 soil samples.

As indicated on **Table 3**, VOCs were analyzed for in all 12 soil samples. Index parameters such as benzene, toluene, ethylbenzene, and total xylenes (BTEX) plus naphthalene were not detected in any of the 12 soil samples. Concentrations of detected VOCs such as 2-butonone, carbon disulfide, and acetone did not exceed applicable screening levels.

As indicated on **Table 4**, RCRA metals analyses was performed on all 12 soil samples. Arsenic, cadmium, mercury, selenium, and silver were not detected above the laboratory PQLs in any of the samples. Barium was detected in all 12 samples at concentrations ranging up to 65 mg/Kg in sample MW6-9-27-22-21'. A MTCA Method A Cleanup Level does not currently exist for barium. Chromium (hexavalent + trivalent) was detected in all 12 samples at concentrations ranging up to 16 mg/Kg in soil sample MW1-9-28-22-19'. None of the 12 chromium detections exceed the MTCA Method A Cleanup Level for chromium of 19 mg/Kg. Lead was detected in three of the 12 soil samples at concentrations ranging up to 11 mg/Kg in sample MW6-9-27-22-21'. None of the three lead detections exceed the MTCA Method A Cleanup Level for Chromium of 19 mg/Kg. Lead was detected in three of the 12 soil samples at concentrations ranging up to 11 mg/Kg in sample MW6-9-27-22-21'. None of the three lead detections exceed the MTCA Method A Cleanup Level of 250 mg/Kg.

A complete copy of the soil sample laboratory analytical results and accompanying chain-ofcustody documentation are included in **Appendix D**.

6.2 Groundwater Sample Results

As indicated on **Table 5**, TPH-D and/or TPH-O were not detected above the laboratory PQLs in all six groundwater samples collected from monitoring wells MW1 through MW6. Furthermore, TPH-G was not detected above the laboratory PQLs in the six groundwater samples.

Blue Mountain Environmental and Consulting Company, Inc. E2022/0805, September 2022 Additional Subsurface Investigation at Hahn Motor Co. at 1201 S. 1st St in Yakima, WA Page 11 As indicated on **Table 6**, VOCs were analyzed for in all six groundwater samples collected from monitoring wells MW1 through MW6. A combination of VOCs including PCE and BTEX were detected in all six groundwater samples but not at concentrations exceeding established MTCA Method A Cleanup Levels.

As indicated on **Table 7**, RCRA (total) metals were analyzed for in all six groundwater samples collected from monitoring wells MW1 through MW6. Mercury was detected in three of the groundwater samples at concentrations ranging from 0.61 μ g/L in well MW6 to 1.5 μ g/L in well MW4. The MTCA Method A Cleanup Level for mercury is 2 μ g/L. Selenium was detected in three of the groundwater samples at concentrations ranging from 5.9 μ g/L in well MW6 to 9.9 μ g/L in well MW4. No MTCA Method A Cleanup Level currently is established for selenium. Barium was detected in all six of the groundwater samples at concentrations ranging from 340 μ g/L in well MW1 to 2700 μ g/L in well MW4. No MTCA Method A Cleanup Level currently is established for barium. Cadmium and silver were not detected above the laboratory PQLs in any of the six groundwater samples.

Arsenic was detected in all six groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 5 μ g/L. Arsenic concentrations ranged from 12 μ g/L in the groundwater sample collected from well MW1 to 67 μ g/L in MW4. Chromium (hexavalent + trivalent) was detected in all six groundwater samples at concentrations exceeding the MTCA Method A Cleanup Level of 50 μ g/L. Chromium concentrations ranged from 81 μ g/L in well MW6 to 430 μ g/L in MW2. Lead was detected in all six groundwater samples at concentrations ranged from 16 μ g/L in MW2. Lead was detected in all six groundwater samples at concentrations ranged from 16 μ g/L in the groundwater collected from well MW1 to 160 μ g/L in well MW2. Locations of the six monitoring wells with the respective RCRA metal (totals) concentrations are illustrated on **Figure 4**.

The highest detections of chromium (hexavalent + trivalent) and lead were in the groundwater sample collected from well MW2 which is located near the northwest property corner between the two former USTs. The second highest chromium and lead detections in groundwater were detected in the sample collected from well MW4 located in the northeast corner of the Site. The two highest arsenic concentrations were detected in wells MW4 and MW2, respectively.

A complete copy of the groundwater sample laboratory analytical results and accompanying chainof-custody documentation are included in **Appendix D**.

7.0 CONCLUSIONS

Based on the Additional SI field activities conducted at the Site on September 27 and 28, 2022, the following geologic soil conditions were encountered in soil borings MW1 and MW3 through MW6: Brown SILT (ML) to 2 feet bgs; brown to dark brown, sandy, well-rounded, coarse GRAVEL & COBBLES, with little silt, loose (GP) from 2 to 20 feet bgs; and brown – gray, SAND & GRAVEL, well-rounded, coarse, loose, wet – very wet (SP & GP) from 20 to 25 feet bgs.

Blue Mountain Environmental and Consulting Company, Inc. E2022/0805, September 2022 Additional Subsurface Investigation at Hahn Motor Co. at 1201 S. 1st St in Yakima, WA Page 12 During the October 3, 2022 GWSE conducted at the Site, depths-to-groundwater ranged from 15.48 feet below top of casing (btoc) in well MW1, to 16.66 feet btoc in well MW2. The groundwater flow direction was determined to be to the southeast toward the Yakima River which is approximately 1.5 miles east of the Site with a hydraulic gradient of 0.005 feet per foot.

TPH-Dx was performed on 12 soil samples. TPH-D was only quantified in one of the 12 soil samples at a concentration of 76 mg/Kg in sample MW3-9-27-22-15'. TPH-O was quantified in three of the 12 soil samples at concentrations of 300 mg/Kg in sample MW3-9-27-22-15' to 1000 mg/Kg in sample MW6-9-27-22-21'. The MTCA Method A Cleanup Level for TPH-D + TPH-O is 2000 mg/Kg which was not exceeded in any of the 12 soil samples. TPH-G was performed on all 12 soil samples. TPH-G was not detected in any of the 12 soil samples.

VOCs were analyzed for in all 12 soil samples. Index parameters such as BTEX plus naphthalene were not detected in any of the 12 soil samples. Concentrations of detected VOCs such as 2-butonone, carbon disulfide, and acetone did not exceed applicable screening levels.

RCRA metals analyses was performed on all 21 soil samples. Arsenic, cadmium, mercury, selenium, and silver were not detected above the laboratory PQLs in any of the samples. Barium was detected in all 12 samples at concentrations ranging up to 65 mg/Kg in sample MW6-9-27-22-21'. A MTCA Method A Cleanup Level does not currently exist for barium. Chromium (hexavalent + trivalent) was detected in all 12 samples at concentrations ranging up to 16 mg/Kg in soil sample MW1-9-28-22-19'. None of the 12 chromium detections exceed the MTCA Method A Cleanup Level for chromium of 19 mg/Kg. Lead was detected in three of the 12 soil samples at concentrations ranging up to 11 mg/Kg in sample MW6-9-27-22-21'. None of the three lead detections exceed the MTCA Method A Cleanup Level of 250 mg/Kg.

8.0 RECOMMENDATIONS

BMEC recommends the following actions:

- 1) Conduct a minimum of three additional quarterly groundwater sampling events (GWSEs) and submit the groundwater samples to the laboratory for RCRA metals analysis, TPH-Dx and TPH-Gx analysis, as well as VOC including PCE analysis.
- 2) Assess whether background metals concentrations in the shallow aquifer may be naturally elevated above MTCA Method A Cleanup Levels. If so, this phenomenon shall be factored into the assessment of metals in groundwater and the pursuit of NFA status.
- 3) Complete reports documenting all future field activities. BMEC plans to compare all future soil and groundwater sampling results to MTCA Method A Cleanup Levels.

9.0 STATEMENT OF ENVIRONMENTAL PROFESSIONALS

BMEC personnel performed these Additional SI field activities on September 27 and 28, 2022, as well as the October 3, 2022 GWSE activities, in accordance with generally accepted environmental practices and procedures. We employed the degree of care and skill ordinarily exercised under similar circumstances by reputable environmental professionals practicing in the discipline of environmental sciences. The soil and groundwater sampling activities completed were conducted in accordance with standard engineering and geologic standards. However, BMEC was limited by data gaps that were encountered due to previous field work inadequacies and improper documentation. This report is based on the limited data that was provided to BMEC and if additional field data or documentation exists that was not made available to BMEC, we cannot be held accountable for such data gaps or inconsistencies recognizable in this report.

Respectfully Submitted,

Blue Mountain Environmental and Consulting Company, Inc.

PTrabusiner

Peter Trabusiner, Engineer

Blue Mountain Environmental and Consulting Company, Inc. E2022/0805, September 2022 Additional Subsurface Investigation at Hahn Motor Co. at 1201 S. 1st St in Yakima, WA Page 14

10.0 REFERENCES

Blue Mountain Environmental and Consulting Company, Inc., DRYWELL DECOMMISSIONING AND CONTAMINATED SOIL REMOVAL REPORT FOR HAHN MOTOR COMPANY, 1201 SOUTH 1ST STREET, YAKIMA, WASHINGTON 98901, Facility Site ID No. 502, Cleanup Site ID No. 4927, VCP Project No. CE0529, August 1, 2022.

Blue Mountain Environmental and Consulting Company, Inc., FEBRUARY 1, 2022 SUBSURFACE INVESTIGATION REPORT FOR HAHN MOTOR COMPANY, 1201 SOUTH 1ST STREET, YAKIMA, WASHINGTON 98901, Facility Site ID No. 502, Cleanup Site ID No. 4927, VCP Project No. CE0529, March 4, 2022.

Google Maps, 2022.

PETCO INCORPORATED, Underground Storage Tank Decommissioning & Site Assessment Report For UST Site #200130, 1201 South 1st St., Yakima, Washington, February 2008.

Washington State Department of Ecology, Yakima Railroad Area PCE Contamination – Groundwater Quality Performance Monitoring Data Summary 2017, July 2018.

Washington State Department of Ecology, Model Toxics Control Act Statute and Regulation, Revised November 2007.

Washington State Department of Ecology, Letter – Re: Acceptance Letter -Voluntary Cleanup Program, 1201 South 1st Street, Yakima, Washington, November 12, 2021.

Washington State Department of Ecology, Letter – Re: Further Action at the Site, 1201 South 1st Street, Yakima, Washington, February 23, 2016.

FIGURE 1 – SITE VICINITY MAP

FIGURE 2 – SITE LOCATION MAP

FIGURE 3 – SOIL BORINGS FEBRUARY 1, 2022

FIGURE 4 – METALS IN GROUNDWATER 10/3/22 (mg/L)

FIGURE 5 – GROUNDWATER FLOW DIRECTION OCTOBER 3, 2022

TABLE 1

Former Hahn Motors 1201 S. 1st Street in Yakima, WA 98901

Monitoring Well Number	Date Measured	Top of Casing Elevation (feet NAVD88)	Depth-To-Water Below Top of Casing (feet btoc)*	Groundwater Elevation (feet NAVD88)	LNAPL Thickness (feet)	Volume of Groundwater Purged (gallons)	Screened Interval (feet bgs)	Sandpack Interval (feet bgs)	Bentonite Interval (feet bgs)
				Monitor	ing Wells				
MW1	10/3/22	1042.69	15.48	1027.21	0.00	15	10 - 25'	8 - 25'	2 - 8'
MW2	10/3/22	1042.89	16.66	1026.23	0.00	15	10 - 25'	8 - 25'	2 - 8'
MW3	10/3/02	1041.88	16.36	1025.52	0.00	15	10 - 25'	8 - 25'	2 - 8'
MW4	10/3/22	1041.13	16.14	1024.99	0.00	15	10 - 25'	8 - 25'	2 - 8'
MW5	10/3/22	1040.73	15.94	1024.79	0.00	15	10 - 25'	8 - 25'	2 - 8'
MW6	10/3/22	1040.06	15.57	1024.49	0.00	15	10 - 25'	8 - 25'	2 - 8'
Notes:									
NAVD88 = North	American Vertica	l Datum 1988							

btoc = below top of casing

LNAPL = light, non-aqueous phase liquid

NA = not available

		Soil Sample Results 7 Ya	TABLE 2- Total Petroleum Hydroc1201 South First Streetkima, Washington 98901	arbons (mg/Kg) ¹			
			TPH-Diesel and Heavy Oil by				
Sample I.D.	Depth (ft bsg)	Date Collected	TPH-D	TPH-O	TPH-Gasoline by Northwest Method NWTPH-Gx		
		SUBSURFA	CE INVESTIGATION (BMEC) - FEBRUARY	<u>2022</u>			
<u>MW1-9-28-22-10'</u>	10'	9/28/22	< 26	< 52	< 5.2		
<u>MW1-9-28-22-19'</u>	19'	9/28/22	< 27	< 54	< 5.7		
<u>MW2-9-28-22-13'</u>	13'	9/28/22	< 58	660	< 5.0		
<u>MW2-9-28-22-18'</u>	18'	9/28/22	< 28	< 55	< 5.8		
<u>MW3-9-27-22-15'</u>	15'	9/27/22	76	300	< 5.5		
<u>MW3-9-27-22-23'</u>	23'	9/27/22	< 27	< 54	< 6.0		
<u>MW4-9-27-22-16'</u>	16'	9/27/22	< 26	< 52	< 5.1		
<u>MW4-9-27-22-20'</u>	20'	9/27/22	< 26	< 53	< 5.0		
<u>MW5-9-27-22-15'</u>	15'	9/27/22	< 26	< 51	< 4.7		
<u>MW5-9-27-22-20'</u>	20'	9/27/22	< 27	< 54	< 4.5		
<u>MW6-9-27-22-15'</u>	15'	9/27/22	< 26	< 52	< 5.1		
<u>MW6-9-27-22-21'</u>	21'	9/27/22	< 37	1000	< 5.5		
		Ecology MTCA Method	A Soil Cleanup Levels for Unrestricted	I Land Use (mg/Kg)			
Notes:	Unrestricted Land L	lse	2,000	2,000	30/100 ¹		

¹ MTCA Method A Cleanup Level for Unrestricted Land Use for TPH-G is 30 ppm if benzene is detected in subsurface soils or groundwater. If benzene is not detected, Cleanup Level is 100 ppm.

MTCA = Model Toxics Control Act

NA= Not Analyzed

ft bsg = feet below surface grade

mg/Kg = milligrams per Kilogram or parts per million (ppm)

BOLD = sample yielded detectable concentration of analyzed compound

sample yielded detectable concentration of analyzed compound at levels exceeding MTCA Method A Cleanup levels for Unrestricted Land Use BOLD

	TABLE 3															
				Soil Sa	ample Resu	ults - Vo 1201 S Yakima,	latile Or South Fi Washin	ganic C rst Stree gton 98	ompoun et 901	lds (mg/	Kg) ¹					
				Volatile Organic Compounds (VOCs) by EPA Method 8260D (mg/Kg)												
Sample I.D.	Depth (ft bsg)	Date Collected	Benzene	Toluene	Ethylbenzene	Total Xylenes	EDB	EDC	2- Butanone	Carbon Disulfide	Acetone	MTBE	Naphthalene	124-TMB	135-TMB	
				-	ADDITIONAL SU	JBSURFACE	INVESTIGA	TION (BMEC)	- SEPTEMBI	ER 2022	-	-				
<u>MW1-9-28-22-10'</u>	10'	9/28/22	< 0.0011	< 0.0054	< 0.0011	< 0.0033	NA	< 0.0011	< 0.011	< 0.0016	< 0.054	< 0.0011	< 0.0054	< 0.0011	< 0.0011	
<u>MW1-9-28-22-19'</u>	19'	9/28/22	< 0.0011	< 0.0056	< 0.0011	< 0.0033	NA	< 0.0011	< 0.011	< 0.0016	< 0.056	< 0.0011	< 0.0056	< 0.0011	< 0.0011	
<u>MW2-9-28-22-13'</u>	13'	9/28/22	< 0.0011	< 0.0054	< 0.0011	< 0.0033	NA	< 0.0011	0.022	< 0.0016	0.13	< 0.0011	< 0.0054	< 0.0011	< 0.0011	
<u>MW2-9-28-22-18'</u>	18'	9/28/22	< 0.0012	< 0.0061	< 0.0012	< 0.0036	NA	< 0.0012	< 0.012	< 0.0018	0.13	< 0.0012	< 0.0061	< 0.0012	< 0.0012	
<u>MW3-9-27-22-15'</u>	15'	9/27/22	< 0.0011	< 0.0054	< 0.0011	< 0.0033	NA	< 0.0011	< 0.011	0.0037	< 0.054	< 0.0011	< 0.0054	< 0.0011	< 0.0011	
<u>MW3-9-27-22-23'</u>	23'	9/27/22	< 0.0011	< 0.0057	< 0.0011	< 0.0033	NA	< 0.0011	< 0.011	< 0.0017	< 0.057	< 0.0011	< 0.0057	< 0.0011	< 0.0011	
<u>MW4-9-27-22-16'</u>	16'	9/27/22	< 0.0012	< 0.0060	< 0.0012	< 0.0036	NA	< 0.0012	< 0.012	< 0.0017	< 0.060	< 0.0012	< 0.0060	< 0.0012	< 0.0012	
<u>MW4-9-27-22-20'</u>	20'	9/27/22	< 0.0011	< 0.0054	< 0.0011	< 0.0033	NA	< 0.0011	< 0.011	< 0.0016	< 0.054	< 0.0011	< 0.0054	< 0.0011	< 0.0011	
MW5-9-27-22-15	15'	9/27/22	< 0.0010	< 0.0052	< 0.0010	< 0.0030	NA	< 0.0010	< 0.010	< 0.0017	< 0.052	< 0.0010	< 0.0052	< 0.0010	< 0.0010	
<u>MW5-9-27-22-20'</u>	20'	9/27/22	< 0.0010	< 0.0052	< 0.0010	< 0.0030	NA	< 0.0010	< 0.010	0.0018	< 0.052	< 0.0010	< 0.0052	< 0.0010	< 0.0010	
<u>MW6-9-27-22-15'</u>	15'	9/27/22	< 0.0011	< 0.0054	< 0.0011	< 0.0033	NA	< 0.0011	< 0.011	< 0.0017	< 0.054	< 0.0011	< 0.0054	< 0.0011	< 0.0011	
<u>MW6-9-27-22-21'</u>	21'	9/27/22	< 0.0011	< 0.0053	< 0.0011	< 0.0033	NA	< 0.0011	< 0.011	< 0.0017	0.054	< 0.0011	< 0.0053	< 0.0011	< 0.0011	
				Ecolo	gy MTCA Metho	d A Soil Cl	eanup Leve	Is for Unre	stricted Lan	d Use (mg/l	Kg)					
Unrestricted	d Land Us	se	0.03	7	6	9	0.005	DNE	DNE	DNE	DNE	0.1	5	DNE	DNE	
MTCA = Model Toxics Control Act NA = Not Analyzed EDB = 1,2-Dibromoethane EDC = 1,2-Dichloroethane MTBE = Mehtyl tertiery-butyl ether 124-TMB = 1,2,4-trimethylbenzene																
135-TMB = 1,3,5-trimeth	nylbenzene	9														
DNE = Does Not Exist																
ft bsg = feet below surfa	ce grade															
mg/Kg = milligrams per	Kilogram c	or parts per m	illion (ppm)													
BOLD = sample yielded	detectable	e concentratio	on of analyzed	l compound			MTON		and the sector of the sector o							
BOLD	sample yi	ieided detecta	able concentra	ation of analy	zed compound at le	evels exceedi	ng MTCA Me	etnod A Clean	up levels for L	unrestricted La	and Use					

TABLE 4 Soil Sample Results - Total Metals (mg/Kg) ¹ Hahn Motors Company - 1201 South First Street Yakima, Washington 98901										
ġ	(ɓsc	cted			Total	Metals via EPA	Methods 6010D	0/7471B		
Sample	Depth (ft l	Date Colle	Arsenic	Barium	Cadmium	Chromium ³	Mercury ⁴	Lead	Selenium	Silver
				BMEC SUBSURFA	CE INVESTIGATION	- FEBRUARY 2022			•	•
SB1-2-1-22-5'	5'	2/1/22	< 10	30	< 0.52	7.9	< 0.26	< 5.2	< 10	< 1.0
<u>SB1-2-1-22-10'</u>	10'	2/1/22	< 11	61	2.5	12	< 0.27	45	< 11	< 1.1
SB1-2-1-22-15	15'	2/1/22	< 11	45	< 0.54	5.4	< 0.27	< 5.4	< 11	< 1.1
<u>SB2-2-1-22-5'</u>	5'	2/1/22	< 10	72	< 0.52	34	< 0.26	< 5.2	< 10	< 1.0
<u>SB2-2-1-22-10'</u>	10'	2/1/22	< 11	27	< 0.53	5.5	< 0.26	< 5.3	< 11	< 1.1
<u>SB2-2-1-22-15'</u>	15'	2/1/22	< 10	32	< 0.52	6.4	< 0.26	31	< 10	< 1.0
<u>SB3-2-1-22-5'</u>	5'	2/1/22	< 10	28	< 0.52	5.8	< 0.26	< 5.2	< 10	< 1.0
SB3-2-1-22-10'	10'	2/1/22	< 11	27	< 0.53	4.5	< 0.26	< 5.3	< 11	< 1.1
<u>SB3-2-1-22-25'</u>	25'	2/1/22	< 11	73	< 0.56	5.8	< 0.28	< 5.6	< 11	< 1.1
<u>SB4-2-1-22-5'</u>	5'	2/1/22	< 10	47	< 0.51	7.8	< 0.25	< 5.1	< 10	< 1.0
<u>SB4-2-1-22-10'</u>	10'	2/1/22	< 10	41	< 0.52	7.9	< 0.26	< 5.2	< 10	< 1.0
SB4-2-1-22-15	15'	2/1/22	< 11	31	< 0.53	6.4	< 0.27	< 5.3	< 11	< 1.0
<u>SB4-2-1-22-20'</u>	20'	2/1/22	< 11	36	< 0.54	6.1	< 0.27	< 5.4	< 11	< 1.1
<u>SB5-2-1-22-5'</u>	5'	2/1/22	< 10	39	< 0.51	7.4	< 0.26	< 5.1	< 10	< 1.0
<u>SB5-2-1-22-10'</u>	10'	2/1/22	< 11	24	< 0.53	5.2	< 0.26	9.4	< 11	< 1.1
<u>SB5-2-1-22-15'</u>	15'	2/1/22	< 12	66	< 0.58	4.3	< 0.29	< 5.8	< 12	< 1.2
<u>SB5-2-1-22-20'</u>	20'	2/1/22	< 12	79	< 0.58	2.9	< 0.29	< 5.8	< 12	< 1.2
<u>SB6-2-1-22-5'</u>	5'	2/1/22	< 11	53	< 0.53	11	< 0.27	21	< 11	< 1.1
<u>SB6-2-1-22-10'</u>	10'	2/1/22	< 10	48	< 0.52	8.4	< 0.26	< 5.2	< 10	< 1.0
SB6-2-1-22-15'	15'	2/1/22	< 10	44	< 0.52	6.9	< 0.26	< 5.2	< 10	< 1.0
SB6-2-1-22-20'	20'	2/1/22	< 11	52	< 0.53	10	< 0.26	< 5.3	< 11	< 1.1
			BMEC	ADDITIONAL SUBS	URFACE INVESTIG	ATION - SEPTEMBE	R 2022			
<u>MW1-9-28-22-10'</u>	10'	9/28/22	< 10	48	< 0.51	8.6	< 0.26	< 5.1	< 10	< 1.0
<u>MW1-9-28-22-19'</u>	19'	9/28/22	< 11	56	< 0.54	16	< 0.27	< 5.4	< 11	< 1.1
MW2-9-28-22-13'	13'	9/28/22	< 10	46	< 0.52	11	< 0.26	9.2	< 10	< 1.0
<u>MW2-9-28-22-18'</u>	18'	9/28/22	< 11	45	< 0.55	15	< 0.27	< 5.5	< 11	< 1.1
<u>MW3-9-27-22-15'</u>	15'	9/27/22	< 11	44	< 0.53	6.9	< 0.26	< 5.3	< 11	< 1.1
<u>MW3-9-27-22-23'</u>	23'	9/27/22	< 11	41	< 0.54	7.1	< 0.27	< 5.4	< 11	< 1.1
<u>MW4-9-27-22-16'</u>	16'	9/27/22	< 10	46	< 0.52	8.1	< 0.26	5.9	< 10	< 1.0
<u>MW4-9-27-22-20'</u>	20'	9/27/22	< 11	30	< 0.53	5.8	< 0.26	< 5.3	< 11	< 1.1
<u>MW5-9-27-22-15'</u>	15'	9/27/22	< 10	45	< 0.51	9.2	< 0.26	< 5.1	< 10	< 1.0
<u>MW5-9-27-22-20'</u>	20'	9/27/22	< 11	53	< 0.54	13	< 0.27	< 5.4	< 11	< 1.1
<u>MW6-9-27-22-15'</u>	15'	9/27/22	< 10	34	< 0.51	9.1	< 0.26	< 5.1	< 10	< 1.0
<u>MW6-9-27-22-21'</u>	21'	9/27/22	< 10	65	< 0.51	9.5	< 0.26	11	< 10	< 1.0
ļ,	Inrestricted Land Lis	8 0	Ecology N 20	DNE	Cleanup Levels for	10	se (ing/Kg)	250	DNE	DNE
Notes:		-	20			13		200	DIAL	DINE

¹ Table 2 contains total metal analysis results for all soil samples collected by Waste Watch. The 2009 metals results for soil samples collected by Ecology and Environment are included in tables located in Appendix D.

² Sample analysis performed past method-specified holding time per client's approval.

³ MTCA Method A Cleanup Level for Unrestricted Land Use for Chromium VI. Cleanup Level for Chromium III is 2,000 mg/Kg.

⁴ Mercury analyzed via EPA Method 7471A.

⁵ Soil sample SB24-7.5 was also analyzed for hexavalent chromium via EPA Method 7196A and yielded a non-detect (< 1.2 mg/Kg).</p>

MTCA = Model Toxics Control Act

NA = Not Analyzed

DNE = Does Not Exist

ft bsg = feet below surface grade

mg/Kg = milligrams per Kilogram or parts per million (ppm)

BOLD = sample yielded detectable concentration of analyzed compound BOLD sample yielded detectable concentration of analyzed compound at levels exceeding MTCA Method A Cleanup levels for Unrestricted Land Use

TABLE 5 Groundwater Sample Results - Total Petroleum Hydrocarbons (μg/L) 1201 South First Street Yakima, Washington 98901									
		TPH-Diesel and Heavy Oil by							
Sample I.D.	Date Collected	TPH-D	трн-о	TPH-Gasoline by Northwest Method NWTPH-Gx					
SUBSURFACE INVESTIGATION (BMEC) - 2 1 22									
SB1-2-1-22-GW	2/1/22	5000	4800	< 500					
SB3-2-1-22-GW	2/1/22	260	< 190	< 500					
SB5-2-1-22-GW	2/1/22	330	440	< 500					
	ADDITION	AL SUBSURFACE INVESTIGATION (BME	C) - SEPTEMBER 2022						
MW1-10-3-22-GW	10/3/22	< 200	< 200	< 100					
MW2-10-3-22-GW	10/3/22	< 210	< 210	< 100					
MW3-10-3-22-GW	10/3/22	< 200	< 200	< 100					
MW4-10-3-22-GW	10/3/22	< 210	< 210	< 100					
MW5-10-3-22-GW	103/22	< 210	< 210	< 100					
MW6-10-3-22-GW	10/3/22	< 210	< 210	< 100					
	Eco	logy MTCA Method A Groundwater Clean	nup Levels (μg/L)						
Cleanu	up Level	500	500	800/1,000 ¹					
Notes: ¹ MTCA Method A Cleanup Level for TPH-C MTCA = Model Toxics Control Act μg/L = micrograms per Liter or parts per bill BOLD = sample yielded detectable concent	G is 800 ppb if benzene is detected in subsurfation (ppb) tration of analyzed compound.	Cleanun Level	ed, Cleanup Level is 1,000 ppb.						

						Groundw	ater San Hahn N	nple Res Motors C Yakiı	TAE sults - Vo Company ma, Was	BLE 6 olatile O y - 1201 shington	rganic C South 1 98901	Compou st Stree	nds (μg/ t	L)						
			Volatile Organic Compounds (VOCs) by EPA Method 8260D (μg/L)																	
Sample I.D.	Date Collected	Benzene	Toluene	Ethylbenzene	Total Xylenes	EDB	EDC	2-Hexanone	n-Propyl-benzene	MTBE	Naphthalene	124-TMB	135-TMB	p-IsopropyItoluene	n-Butylbenzene	Acetone	Cabon Disulfide	2-Butanone	Chloroform	PCE
	1	1	1	1				SUBSURF	ACE INVEST	FIGATION (B	MEC) - 2 1 22	2	1	, v			1	1		и Т
SB1-2-1-22-GW	2/1/22	< 0.40	19	7.1	48	< 0.40	< 0.40	0.43	1.8	< 0.40	3.4	15	5.5	4.6	2.9	120	1.9	< 10	< 0.40	< 0.40
SB3-2-1-22-GW	2/1/22	2.2	1.5	0.46	0.83	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	0.33	< 0.20	< 0.20	< 0.20	23	< 0.20	6.5	0.35	0.52
SB5-2-1-22-GW	2/1/22	0.82	< 1.0	< 0.20	< 0.60	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	32	< 0.20	7.7	5.2	1.3
						A	DDITIONAL	SUBSURF	ACE INVES	TIGATION (I	BMEC) - SE	PTEMBER 2	2022						·	
MW1-10-3-22-GW	10/3/22	< 0.20	< 1.0	< 0.20	< 0.60	< 0.20	< 0.20	< 2.0	< 0.20	< 0.20	< 1.3	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 5.0	6.1	2.4
MW2-10-3-22-GW	10/3/22	0.62	< 1.0	0.44	0.45	< 0.20	< 0.20	< 2.0	0.30	< 0.20	< 1.3	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 5.0	5.0	2.6
MW3-10-3-22-GW	10/3/22	< 0.20	< 1.0	< 0.20	< 0.60	< 0.20	< 0.20	< 2.0	< 0.20	< 0.20	< 1.3	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 5.0	4.8	2.2
MW4-10-3-22-GW	10/3/22	0.67	< 1.0	0.22	0.26	< 0.20	< 0.20	< 2.0	< 0.20	< 0.20	< 1.3	< 0.20	< 0.20	< 0.20	< 0.20	5.2	0.23	< 5.0	3.6	1.1
MW5-10-3-22-GW	10/3/22	1.7	2.2	0.68	1.45	< 0.20	< 0.20	2.3	0.34	< 0.20	< 1.3	0.25	< 0.20	0.30	0.25	11	< 0.20	< 5.0	5.6	1.6
MW6-10-3-22-GW	10/3/22	0.65	1.0	0.26	0.24	< 0.20	< 0.20	< 2.0	< 0.20	< 0.20	< 1.3	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 5.0	4.5	1.5
							Ecolo	gy MTCA Me	ethod A Gro	undwater C	leanup Lev	els (µg/L)							L	
Cleanup Le	vel	5	1,000	700	1,000	0.010	5	DNE	DNE	20	160	DNE	DNE	DNE	DNE	DNE	DNE	DNE	DNE	5
Notes: MTCA = Model Toxics (EDB = 1,2-Dibromoetha EDC = 1,2-Dichloroetha MTBE = Methyl tertiery- 124-TMB = 1,2,4-trimet 135-TMB = 1,3,5-trimet PCE = Tetrachloroethyl	Control Act ane butyl ether hylbenzene hylbenzene ene																			

DNE = Does Not Exist

μg/L = micrograms per Liter or parts per billion (ppb)

BOLD = sample yielded detectable concentration of analyzed compound.

TABLE 7
Groundwater Sample Results - Total Metals (µg/L)
1201 South First Street
Yakima, Washington 98901

Sample I.D.	Date Collected	Total Mercury by EPA Method 200.8 (μg/L)	Total Metals via EPA Method 200.8						
			Arsenic	Barium	Cadmium	Chromium ¹	Lead	Selenium	Silver
Grab Groundwater Samples Via Temporary Borings									
SB1-2-1-22-GW	2/1/22	1.1	120	2500	110	530	1200	6.3	< 11
SB3-2-1-22-GW	2/1/22	0.59	51	1800	< 4.4	420	150	< 5.6	< 11
SB5-2-1-22-GW	2/1/22	0.87	130	5800	6.4	1100	330	11	< 11
				Monitoring We	II Groundwater Sar	nples			
MW1-10-3-22-GW	10/3/22	< 0.50	12	340	< 4.4	110	16	< 5.6	< 11
MW2-10-3-22-GW	10/3/22	1.2	58	2400	< 4.4	430	160	7.6	< 11
MW3-10-3-22-GW	10/3/22	< 0.50	16	550	< 4.4	120	27	< 5.6	< 11
MW4-10-3-22-GW	10/3/22	1.5	67	2700	< 4.4	400	110	9.9	< 11
MW5-10-3-22-GW	10/3/22	< 0.50	18	790	< 4.4	210	36	< 5.6	< 11
MW6-10-3-22-GW	10/3/22	0.61	39	600	< 4.4	81	39	5.9	< 11
	-		Ecology	y MTCA Method A (Groundwater Clear	up Levels (μg/L)			
Cleanup Lev	Cleanup Levels 2 5 DNE 5 50 15 DNE DNE					DNE			
¹ MTCA Method A Cleanup Level for total chromium (chromium VI + chromium III) is 50 µg/L MTCA = Model Toxics Control Act EDB = 1,2-Dibromoethane EDC = 1,2-Dichloroethane MTBE = Mehtyl tertiery-butyl ether 124-TMB = 1,2.4-trimethylbenzene									
135-TMB = 1,3,5-trimethylbenzene DNE = Does Not Exist									
μg/L = micrograms per Liter or parts per billion (ppb)									
BOLD = sample yielded detectable concentration of analyzed compound									
BOLD	BOLD Concentration exceeds the MTCA Method A Cleanup Level								

APPENDIX A

DEPARTMENT OF ECOLOGY LETTER REGARDING NEED FOR FURTHER ACTION – DATED FEBRUARY 23, 2016

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY 1250 W Alder St * Union Gap, WA 98903-0009 * (509) 575-2490

ILE COPY

February 23, 2016

Richard Hahn 1219 N 22nd Avenue Yakima, WA 98902

Re: Further Action at the following Site:

Site Name:Hahn Motor CompanySite Address:1201 S 1st Street, YakimaFacility Site ID No.:502Cleanup Site ID No.:4927VCP Project No.:CE0434

Dear Mr. Hahn:

The Washington State Department of Ecology (Ecology) received your request for an opinion on your independent cleanup of the Hahn Motor Company facility (Site). This letter provides our opinion. We are providing this opinion under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW.

Issue Presented and Opinion

Is further remedial action necessary to clean up contamination at the Site?

YES. Ecology has determined that further remedial action is necessary to clean up contamination at the Site.

This opinion is based on an analysis of whether the remedial action meets the substantive requirements of MTCA, Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA"). The analysis is provided below.

Description of the Site

This opinion applies only to the Site described below. The Site is defined by the nature and extent of contamination associated with the following releases:

 Waste Oil and associated chemicals released from Underground Storage Tanks (USTs) into soil and groundwater. Rıchard Hahn Hahn Motor Company February 23 2016 Page 2

• Petroleum products and other chemicals released from interior sumps to soil and groundwater

Currently the Site is part of the Yakima Railroad Area's (FSID# 500) tetrachloroethylene (PCE) plume

Please note a parcel of real property can be affected by multiple sites At this time we have no information that the parcel(s) associated with this Site are affected by other sites

Basis for the Opinion

t

This opinion is based on the information contained in the following documents

- Earth Consultants Inc 1989 Preliminary Integrity Assessment of Two USTs and Three Industrial Waste Water Sumps 1201 S 1st St and 307 E Arlington St Yakima WA October 1989
- PETCO Inc 2008 UST Decommissioning & Site Assessment Report for UST Site #200130 1201 S 1st St Yakima WA February 2008
- Department of Ecology Correspondence File 1989 2015

Those documents are kept at the Central Regional Office (CRO) of Ecology for review by appointment only You can make an appointment by calling the CRO resource contact Jackie Cameron at 509 454 7658

This opinion is void if any of the information contained in those documents is materially false or misleading

Analysis of the Cleinup

Ecology has concluded that **further remedial action** is necessary to clean up contamination at the Site That conclusion is based on the following analysis

1 Characterization of the Site

Ecology has determined your characterization of the Site is not sufficient to establish cleanup standards and select a cleanup action

Richard Hahn Hahn Motor Company February 23 2016 Page 3

> Groundwater in the vicinity of the waste oil USTs has concentrations of petroleum exceeding cleanup levels and concentrations of petroleum in soil at the base of the UST excavation appear to increase with depth The testing performed did not meet Ecology s requirements for waste oil releases and other contaminants are suspected

١

Soil samples collected adjacent to the two interior sumps had concentrations or detections of petroleum products and Volatile Organic Compounds (VOCs) including PCE Additional contaminants and higher concentrations are suspected with further characterization of soil and groundwater

The automotive washing bay sump is believed to drain to a nearby drywell The drywell should be decommissioned and soil and groundwater in the vicinity should be characterized

WAC 173 340 350 requires sufficient investigations to characterize the distribution of hazardous substances present at the site and threat to human health and the environment Further investigation of both soil and groundwater near the USTs both sumps and drywell connected to the automotive washing bay sump are required to adequately characterize the Site

The investigation should consist of sufficient sampling and analyses to demonstrate a Contaminant of Potential Concern (COPC) is not affecting the Site **and** to define the location quantity extent and concentration of all Contaminants of Concern (COCs) known to be affecting the Site

The investigation should meet the analytical requirements and recommendations for waste oil releases as discussed in the following Ecology documents

- Guidance for Site Checks and Site Assessments for Underground Storage Tanks (Pub #90 52)
- Guidance for Remediation of Petroleum Contaminated Sites (Pub #10 09 057)
- Model Toxics Control Act Regulation and Statute (Pub #94 06)

2 Establishment of cleanup standards

Ecology has determined the cleanup levels and points of compliance you established for the Site **do not** meet the substantive requirements of MTCA

The characterization of the Site is not sufficient to establish cleanup standards and points of compliance

(

Rıchard Hahn Hahn Motor Company February 23 2016 Page 4

3 Selection of cleanup action

Ecology has determined the cleanup action you selected for the Site **does not** meet the substantive requirements of MTCA

The characterization of the site is not sufficient to select a cleanup action

4 Cleanup

Ecology has determined the cleanup you performed does not meet any cleanup standards at the Site

The interim action performed at the Site consisted of decommissioning USTs and limited removal of impacted soil surrounding the USTs

٨

Additional characterization is necessary to select a cleanup action

Limitations of the Opinion

1 Opinion does not settle liability with the state

Liable persons are strictly liable jointly and severally for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site This opinion **does not**

- Resolve or alter a person s hability to the state
- Protect liable persons from contribution claims by third parties

To settle liability with the state and obtain protection from contribution claims a person must enter into a consent decree with Ecology under RCW 70 105D 040(4)

2 Opimion does not constitute a determination of substantial equivalence

To recover remedial action costs from other hable persons under MTCA one must demonstrate that the action is the substantial equivalent of an Ecology conducted or Ecology supervised action This opinion does not determine whether the action you performed is substantially equivalent Courts make that determination *See* RCW 70 105D 080 and WAC 173 340 545

Richard Hahn Hahn Motor Company February 23 2016 Page 5

3 State is immune from liability

The state Ecology and its officers and employees are immune from all liability and no cause of action of any nature may arise from any act or omission in providing this opinion See RCW 70 105D 030(1)(1)

Contact Information

Thank you for choosing to clean up the Site under the Voluntary Cleanup Program (VCP) After you have addressed our concerns you may request another review of your cleanup Please do not hesitate to request additional services as your cleanup progresses We look forward to working with you

For more information about the VCP and the cleanup process please visit our web site www ecy wa gov/programs/tcp/vcp/vcpmain htm If you have any questions about this opinion please contact me by phone at (509) 454 7839 or e mail at Jennifer Lind@ecy wa gov

Sincerely

im, for Lind

Jennifer Lind CRO Toxics Cleanup Program

cc Doug and Connie Bettarel Dolores Mitchell VCP Financial Manager

MEMORANDUM

February 18, 2016

то:	Valerie Bound
PEER REVIEW:	
FROM:	Jennifer Lind 22
SUBJECT:	Hahn Motor Company – VCP request for NFA Opinion on Site Characterization and Remedial Action

VCP OPINION: Further Action Required

EXECUTIVE SUMMARY:

Further investigation of both soil and groundwater near the USTs, both sumps, and drywell connected to Sump #2 are required to adequately characterize the Site. Testing should follow Ecology's requirements for waste oil releases.

Ecology correspondence circa 1990 indicates Ecology was very clear that additional characterization of soil and groundwater is necessary.

Both the sumps and USTs are potential sources of PCE contributing to the YRRA PCE plume.

USTs: Groundwater has concentrations of petroleum exceeding CULs. Soil has concentrations of petroleum below CULs, but appears to be increasing with depth. No other analyses were performed for either media.

Sumps: Soil adjacent to the sumps has concentrations of petroleum below CULs, but appears to be increasing with depth. T, E, X, DCE, TCE, PCE, 1,1,1 Trichloroethane were detected below CULs, but higher concentrations are likely with proper sampling.

Drywell: Water from Sump #2 runs through an oil/water separator, then out to drywell. This drywell is prohibited and needs to be decommissioned.

Tank Sludge: Contained metals and chlorinated compounds.

SITE INFORMATION:

Site Name:	Hahn Motor Company
Address:	1201 S 1st St., Yakima
Tax Parcel No.:	191330-13002
Brief Legal Description:	BEG 30 FT S & 30 FT E OF NW COR SW1/4NE1/4,TH S 28.35 FT,TH SE'LY AL E LN S1ST ST.271.65 FT,TH E 140 FT,TH NW'LYPAR TO S 1ST ST.100 FT,TH E 50 FT,THNW'LY PAR TO S 1ST ST.202.89 FT TO SLN E WASH.STTH W TO POB.
CSID:	4927
FSID:	502

SITE HISTORY

1940s

In the mid 1940s Hahn Motors built the existing structure with a 2 000 gallon heating oil UST in the basement The use of the facility as an auto dealership and service garage appears to have remained consistent since construction

1970s

In the mid 1970s an additional 2 000 gallon UST was installed and the boiler was retrofitted to burn used motor oil

1989

An assessment of 2 USTs and 2 interior sumps was performed (a drywell at the N adjoining 5th Wheel Site was also assessed) The investigation consisted of 2 borings near the USTs (15 ft bgs) and 2 hand augers near the interior sumps (6 ft bgs) Groundwater samples were collected from the borings at about 14 ft bgs

Sump #? (Western) Located in an automotive servicing bay and described in the report as a battery storage area

<u>2/2016 Site Visit</u> No batteries currently stored Unknown if secondary containment was used The sump is reportedly self contained and pumped as necessary but no documentation available No hydraulic lift

Sump #? (Eastern) Located in an auto washing/detailing area of the service department

<u>2/2016 Site Visit</u> A pressure washer was used for engine cleaning Mr Hahn stated the sump water runs through an oil/water separator then out to a drywell. At the time of the site visit the sump was completely full of oily water

*Note Sump locations on figure and sample location descriptions are not consistent Unclear which is correct *

See attached tables of results

All soil samples were analyzed for TPH (EPA Method 418 1) The interior sump samples were also analyzed for VOCs (EPA Method 8240)

Groundwater samples were only analyzed for TPH (EPA Method 418 1)

Low levels of TPH were detected in soil samples ranging from 17 to 236 mg/kg However the analytical method used is not appropriate for lighter end fuels like gasoline TPH concentrations in samples collected at B 2 increased with depth to a max of 15 ft bgs (162 mg/kg)

The groundwater sample collected from B 2 had 5 000 ug/L TPH This concentration exceeds the CUL for any petroleum product

The USTs were used to store waste oil from at least 1975 It is unknown if other automotive fluids or cleaning solvents were also disposed of/stored in the USTs or what chemicals drained into the sumps. It is assumed the washing area sump is still in use as it is full of water (2/2016)

Ecology letter with comments 2/12/1990 Highlights

- Given the information in your preliminary assessment report additional site investigation and characterization is needed to define the extent of horizontal and vertical contamination at this site
- Further investigation should include both downgradient and upgradient (background contamination around the two tanks and three sumps

1992

PLSA submitted sampling results from the on site land farmed stockpile – Update This soil was from the interior catch basin at the 5th Wheel Site and was stockpiled at a 3rd location at the SW corner of South 6th Street and Arlington (property also owned by Hahn)

1993

Ecology internal file memo dated October 22 1993 describes soil sampling activities performed by PLSA – Update This sampling took place near the former interior catch basin at the 5th Wheel Site

2007

The USTs were decommissioned and removed in November 2007 No holes were observed in the tanks The USTs stored waste oil for heating purposes during winter months and were pumped out by a recycling company during the summer months

Name	Date Installed	Date Removed	Tank Type & Status	Size (gallons)	Contents	Signs of Release?
West Tank	~1946	Nov 2007	UST <u>assumed</u> steel and single walled Corrosion but no holes	2 000	Used Oil from auto servicing	overfilling only
East Tank	~1975	Nov 2007	UST <u>assumed</u> steel and single walled Corrosion but no holes	2 000	Used Oil from auto servicing	overfilling only

UST excavation sampling and analysis

Documentation of the decommissioning and site assessment are inadequate The activities that were documented **do not** meet the requirements of MTCA

A discussion or figure illustrating the depth of the USTs or the dimensions of the excavations was not provided. It is not known if the sample locations and depths selected are appropriate. Ecology requires a sample be collected from the beneath the tank. It appears from the limited information that all samples were collected from the sidewalls at various depths.

The excavation sidewall samples were only analyzed for diesel and heavy oil Ecology requires additional testing for waste oil releases

No samples had concentrations of heavy oil greater than the CUL however the deepest sample collected had the highest concentration (west tank S 6 12 ft bgs 492 mg/kg) Considering the high groundwater elevation is about 14 ft bgs both soil and groundwater should be analyzed for petroleum products VOCs/HVOCs fuel additives and blending compounds cPAHs PCBs and other analytes as required or necessary

<u>Tank Sludge</u>

The sludge and oil removed during decommissioning was properly disposed of as dangerous waste by Safety Kleen Documentation was provided

The sludge was analyzed for metals (As Cd Cr and Pb) and PCBs (non detect) A Chlor d tect test was performed by Ecology Hazardous Waste staff A max of >4 000 ppm chlorine compounds were detected (possible source of PCE in GW)
<u>Stockpiles</u>

4 stockpiles were segregated by their anticipated levels of contamination and moved to a vacant lot owned by Mr Hahn at the SW corner of S 6th St and E Arlington

Stockpile #1 the most contaminated (heavy oil = 4 980 mg/kg) was disposed of at the Anderson PCS facility in Yakima Documentation was provided

Stockpiles #2 #3 and #4 were classified as solid waste by the Yakima Health District The report states the stockpiles were disposed of at the New Waste Landfill No documentation was provided but Ecology did not see any indications of stockpiled material during the site visit (2/2016)

2014

The Site was sold to Doug and Connie Bettarel for use as a used car sales lot According to Mr Hahn no servicing has been performed since the ownership change (unconfirmed)

2016

Ecology Site Visit Mr Hahn and Wayne Griffith (retired general manager) escorted Jennifer Lind and Kyle Parker through the facility and answered questions regarding general operating practices

See the discussion above regarding the sumps

Three previously unknown drywells were identified by Mr Hahn and Mr Griffith Two of the drywells appear to be stormdrains and one of the drywells is likely connected to the easternmost sump Ecology contacted the City of Yakima stormwater engineer who thought it unlikely that the drywells were hooked up to the stormwater system None of the drywells are registered as required and the drywell connected to the sump is considered a prohibited UIC well under WAC 173 218 040(5)(b)(ii) and (v) Mary Shaleen Hansen (ECY UIC permitting) was contacted and will do a follow up compliance/outreach with the Site representative

The drywell should be decommissioned and appropriate sampling performed

<u>SOILS</u>

Subsurface Unconsolidated sand and gravel

Data Gaps Additional sampling and analyses (ALL required in Table 830 1) in near former USTs sumps and drywell connected to Sump #2

GROUNDWATER

Depth below ground surface (ft)	14 – 19 ft bgs at N adjoining 5 th Wheel Site
Confined/Unconfined	Shallow aquifer unconfined (source YRRA report)
Flow Direction & Gradient	YRRA is primarily to the E with an approximate gradient of 0 005 5th Wheel Site ranges from E to SE
Contaminant Plume Defined?	No
Data Gaps	Yes Groundwater collected near the USTs has petroleum concentrations exceeding CULs and soil contamination is present in contact with groundwater The nature of the contamination has not been characterized

REPORTS AND CORRESPONDENCE

- 1 Earth Consultants Inc 1989 Preliminary Integrity Assessment of Two USTs and Three Industrial Waste Water Sumps 1201 S 1st St and 307 E Arlington St Yakima WA October 1989
- 2 PETCO Inc 2008 UST Decommissioning & Site Assessment Report for UST Site #200130 1201 S 1st St Yakima WA February 2008
- 3 Department of Ecology Correspondence File 1989 2015

VCP OPINION OUTLINE

*

Characterization	Insufficient and unsubstantiated
	WAC 173 340 350 requires sufficient investigations to characterize the distribution of hazardous substances present at the site and threat to human health and the environment Further investigation of both soil and groundwater near the USTs both sumps and drywell connected to Sump #2 are required to adequately characterize the Site
	The investigation should consist of sufficient sampling and analyses to demonstrate a COPC is not affecting the Site and to define the location quantity extent and concentration of all COCs known to be affecting the Site
	The investigation should follow the analytical requirements and recommendations for waste oil releases as discussed in the following Ecology documents
	 Guidance for Site Checks and Site Assessments for Underground Storage Tanks (Pub #90 52)
	 Guidance for Remediation of Petroleum Contaminated Sites (Pub #10 09 057)
	Model Toxics Control Act Regulation and Statute (Pub #94 06)
Cleanup Levels	Do not meet the substantive requirements of MTCA Reasoning
	 The characterization of the Site is insufficient to establish cleanup standards
Point of Compliance	Does not meet the substantive requirements of MTCA
	Reasoning
	The following explanation or actions are necessary to establish or substantiate the cleanup standards
	 Whether the points of compliance are standard or conditional
	 The basis for the points of compliance (e.g. for soil the points may be based on protection of ground water quality)

Selection of Cleanup	Does not meet the substantive requirements of MTCA
Action	Reasoning

• The characterization of the Site is not sufficient to select a cleanup action

1989 - UST and Sump Assessment Groundwater Samples

		-	-		
Heavy Oil (ug/L) NWTPH-Dx	1	1	2,000		
Diesel (ug/L) NWTPH-Dx	1	1	2,000		
Gasoline (ug/L) NWTPH-Gx		1	30/100		
TPH (ug/L) 418.1	<5,000	5,000			
Date Analyzed	8/1989	8/1989	Method A CUL	than the CUL	
Date Sampled	2	٠ ،	MTCA	PQL is greater	
Depth (ft bgs)	14	14			
Sample Location	NE corner of West UST	NE corner of East UST		<3.2	
Sample Name	B-1	B-2	153	Notes 1	

2510concentration is greater than the CUL3510detected below the CUL

4 Method 418.1 is not appropriate for gasoline

1989 - UST and Sump Assessment Soil Samples

Sample Name	Sample Location	Depth (ft bgs)	Date Sampled	Date Analyzed	TPH (mg/kg) 418.1	Volat	lle Organic C (mg EPA	ompounds (V /kg) 8240	(OCs)		Hall	ogenated VO (mg/kg) EPA 8240	S	
						60	F	ш	×	vc	DCE	TCE	PCE	1,1,1 Trichloroeth ane
Sump #1	Adjacent to Eastern sump	6 foot composite	ć	8/1989	236	<0.001	-0.005	<0.0008	<0.0018	<0.002	<0.0008	<0.0006	0.0007	0.0052
Sump #2	Adjacent to Western sump	6 foot composite	2	8/1989	36.2	<0.0011	0.025	0.0022	0.0088	<0.0022	0.0017	0.0029	0.0073	0.0011
B-1	NE corner of West UST	8	ć	8/1989	16.9	1	1	1	1	1	1	ı	1	1
8-1	NE comer of West UST	15	ć	8/1989	17.2	Ŧ	1	r	1	т	1	r	-1	ı
B-2	NE corner of East UST	10	6	8/1989	16.7	1	1	1	ĩ	1	1	1	1	1
B-2	NE corner of East UST	15	2	8/1989	162	1	1.	1	1	1	1	1	1	ţ
B-2 dup.	NE corner of East UST	15	ć	8/1989	133	1	T	1	1	1	,	1	1	ı
			MTCA	Method A CUL		0.03	7	9	6			0.03	0.05	2
Notes	1 <3.2		PQL is greate	r than the CUL		0.005	0.005	0.005	0.005	0.01	0.005	0.005	0.005	0.005
	2 510		conc. is great	er than the CU	Ц	These are	the EPA Me	thod Estim	ated Quatit	ation Limit	s. The EQLS	s are based	on wet we	eight, and
	3 510		detected belo	ow the CUL		will be high	her with a l	ower % dry	weight. No	ot sure how	accurate t	he reported	d concentra	ations are.
	1 Method 418.1 is no	ot annronria	te for escoline			Detection	l imits are r	wol vilea						

A metriod 416.1 is not appropriate for gasonine
 5 Sump locations on figure and sample location descriptions are not consistent. Unclear which is correct.

. .

APPENDIX B

BORING LOGS

Bla	dg 1		BORINGAM	ELL CONSTRUCTION LO	G		
Project N	lumber F7	022-08	05	Boring/Well Number (WW)		1.14	
Location Drilling M	1201 S.	First Str	set in Yakilma, WA	L Date Drilled 9/28/22 Casing Type/Diameter	0930		
Sampling	g Method C	ore Barre	V Sample Bag	Gravel Pack Type Silice	JE 40 PVC / O.	010"	
Top of C	asing Elevai	ion	·	Grout Type Dentonite	us ft bto / u	0.0.00	
Remarks	D. De	rgeron, L	HG	Ground Water Elevation/Date	■ 1027.21' NF	VD 88	-
PID (ppm) Blow Counts	Recovery (%) Sampling Method	Sample Depth (ft. BGL) U.S.C.S Crentic or		thologic Description	Contact Depth	Well D	lagran
ANFR	90 NA		0-0.5 Asphalt			MW	11
0.5			0.5-8: DK brown, Sil	ty. SAND, trace gr	avel, moist,		11
0.5			1005e - mao tirn	<i>n</i>			
0.4							
0.5		5			5.0		
0.4							
0.5				5			
0.3			8-10: Brown, Sandy	, GRAVEL & COBBL	ES, coarse,	0.0	00-
O.G	9-28-22-10	X 10	Founded, 1005	e, damp,	10.0	00+	0
0.6			tong (Silf	y, coarse rounde	ed GRAVEL,	0 -	•
5.0			indcesure, trim, moist			00 -	00
0.6						00-	6.0
0.9		15			15.0	00 -	
0.1		$\left - \right $			10/3	T	
1.1					1.1.1	10	6
1 MM	0-20 22-19		18.5-20: Brown-grow	Sandy rounded	COURSE	-	0
1	100 00 11	20	GRAVEL, 100	se, damp,		0 -	00
0.6			20-25'; Brown - grav	Y ; SAND & GRAVEL	, well-rounded,	00	00
F.0			Caurse, 4005	e, wet - V. wet.		00 -	00
09				9		00-	00
1.1		25		1		0 -	0
Ave			TD	=25'	25.0	0-	1.1
			· .				
				3.		1	
Distance of					· • 5		
L		30	L		30.0		1

roject (roject) cation rilling (amplin round	Numbe Name	rE7					
roject) ocation rilling amplin round	Name		022-1	08	05 PariseBile II Marker Marker		· · · · · ·
illing f Implin ound	a second s	Hahr 15,	Motor First 5	r C	Ompany - MW Install Date Drilled 9/28/22		
ound	Method Ig Meth		nic Dre Ba	rel	Screen Type/Slot Schedule 40 PVC	10.01	0.
pofC	Elevati Casing	on N Elevati	iA	_	Grout Type Bentonite		
gged	by D s	. De	rgeron	17	G Ground Water Elevation/Date 102.6.2	NAV	D88
Blow Counts	Recovery (%)	Sampling	Depth (R. BGL)	Staphic Log	Lithologic Descripțion	Contact	Well Diagram
NA	80	NA		10	0-0.5 : Asphalt		NW 2
5				1	0.5-3: Brown SILT, Some gravel, firm, damp.		
			\square	ľ	B-Wi Brown Early 11		
t	1.		5		COBBLE C 10: damp.		操作
3				1		5.0	
3				1.			
			\vdash				
3			10				6
3				T	10-11: PEA GRAVEL, moist	10,0	· · - · · · -
4	1		\square		11-17: Green-gray-brown, Sandy GRAVEL, round	bed.	0 - 00
MWZ	-9.28-	2-13	4		coarse, dry, loose		0 - 0 0
5			15				0 - 0
					-	15.0	0 - 00
							0 0 - 00
MW2	-9-28-	22-18			17-20: Dr. brn, gravelly SAND, well-graded,	10/3/22	0 - 00
2 .			20		, joose, timoist - well J		0 0 - 00
					20-25: SAA	20.0	0 - 0 0
T							0 - 00
6							0 0 - 0 0 0 - 0 0 0
4			25			25.0	0 - 00
						:	<u> </u>
			· .				
			30		1. ° • · · · · · · · · · · · · · · · · · ·		
						00.01	

0910 18

1	MW:	3	×	N		BORING	Swell Co	NSTRUCTIO	n log			
	(-)		X	70	A	-				i - 0	•	· j,
roject N ocation	ame	tahr	Mot	Dr (ampar	H-MWI	Borin	g/Well Number Drilled 9/2	122 102	20		
rilling M ampling	ethod Metho	Ser	ic pre P	Darre	V Same	le Bao	Casin Scree	g Type/Diamete	hedule 40	PVC /	0.01	<u>ال</u>
op of Ca	levations in the second	levati	A	_		g	Grout	Type Bent	nite			0.7
emarks	<u>y D.</u>	De	gero	0, 13	AG		Grour Drillin	nd Water Elevati g Co. Holt S	on/Date 10	25.52	NAVE	188
Blow Counts	Recovery (%)	Sampling Method	Depth (ft. BGL)	U.S.C.S Graphic Log			Lithologic	Descripțion	<u>.</u>		Contact Depth	Well Diagram
AN	100	NA			0-0.5	Asphalt						TH
2			-		0.5-13	· 74- FI	hh .			na i burr ni di ta fina	-	
H												
10 10			5								5.0	
.3				-						-		
2												0 0 0
45			10									80 9
.3	50										10.0	00_0
2	1		-			1	+5	•				0 0 - 0
2												0 0 - 0 9 - 9
·9/W3-	100	-15	(15		15-25	Brown	Dira		1 1		15.0	00
н						fine- to	coara	bandy,	cill long	GRAVE	4, 3	200-0
),4),9	-		-		•	to v. moi	iet.	., <i>indee</i>	Sin, icc	1 11101	ST 10	00-0
.6	9/2	7/22	20		12	•					20.0	00-0
1.8	•		-			· [00-0
OMWS	.9.71	-72-23					1 ²⁴ 5	144	÷			00-0
7	141		-					84-				
			25		-		TD=2	5'			25.0	0
							12-6					
	•				1			-				
			30		10					•	30.0	

Ida	Ц		*		AN	BORINGAWELL CONSTRUCTION LOG			
Canada	X		×	,	15			•,	···· ·y
ject	Numbe Name	Har	502 M	2-1 oto	08	OS Boring/Well Number (WW 4			
ling	n 20 Method	150	Fir	<u>sts</u>	itre	et in Yakilma, WA Casing Type/Diameter 6, OD	1		
nplic bund	tg Meti Elevat	ion	Ore	Bo	re	Sample Bag Gravel Pack Type Silica Sand	0.0	010"	
o of C	Casing by	Eleva	tion		17	Depth to Water/Date 6, 9, 4, 5, 6, 6, 7, 6, 6, 7, 6, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	10 3	22	
marie	s	T	J			Drilling Co. Holt Dequices	IVAN	188	
Blow Counts	Recovery (%)	Sampling	Sample Depth	(A. BGL)	Braphic Log	Lithologic Descripțion	Contact Depth	We	I Diagram
NF	180	INA	IL	T	Ť	0-0.5: Asphalt	-	1.1	W4
						0.5-2: Dark brown SILT, little rounded gravel, firm,			
				-	ľ	2-10:14 brown, Sandy, rounded coarse GRAVEL.		174	
	1			-		loose, dry,			
	1			+	1		5.0	(A)	
				•••					
	-								
				_					00
	100			0	+-		10,0	0	0-0
				-	1	10-Miltbrown-gray SAND& GRAVEL, rounded,			- 0
	1	1		-		course, dry, noce		8	- 0
								0	- 0
			11	5			450	0	- 0
MWA	-9/27/2	- 16	×_				8/20		- 00
			· -	-			144	00	- 00
-				- united				0	20
MW	1-9/24	2-20	2	D		19-20: Brown, Sandy, rounded coarse GRAVEL, da	mp,	0.	- 00
	1.		IL.			20-25; Light brown, gravelly SAND, rounded fre-	20.0	9.0	- 00
		1				to coarse, dry, loose.		Ð	- 0
[-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0	- 00
		1		-					- 00
				5	+	$TD = 2E^{1}$	25.0	0	- 0
				-		· · · · · · · · · · · · · · · · · · ·			
				-					
			L						
	1			_					
1	1	1	11.		1	14 .			

E

		the X		Borin	GAVELL CONST	RUCTION LOA	9			
Y Project I	Number E	2022 -	080						·y	.,
Project i Location	Vame Ha	n Moto	or Co	in Yaking WA	Lostall Date Drille	I Number MW 5 d 9/27/22	1450			
Drilling I Samplin	g Method Sc	ore Bo	wret	Sample Bag	Screen Ty Gravel Par	re/Slot Schedu	Le 40 PVC	10.0		
Top of C	asing Elevation	ntion			Grout Type Depth to W	Dentonite	H ft 11		1 20	
Remark	s	ergeron	LHI	<u>.</u>	Ground Wa Drilling Co.	Holt Service	1024.79	' NA	VD 88	
PID (ppm) Blow Counts	Recovery (%) Sampling	Sample Depth (ft. BGL)	Graphic Log	·	Lithologic Desc	nipijon		Contact Depth	Well Diag	jran
AI NA	75 NA	1	0.	0,5 : Asphalt	dry. rounded				I'W	2
0.6			. 1-	5': Brown, Sandy	, rounded co	arse GRAV	EL, dry, loos	e,		L
1.6				• •						
1.8		5								A COLOR
1.6			. 5	-20: Gray-brow	n, SAND& GR	AVEL, round	ed, coarse,	5.0		10
0.3				Grq,10056	Ξ,	,				-den be
1.4						÷			00	0
0.2	100	10	++-				AT-	10.0	8	0
0,2									• -	
0.1					· .					0
0.6									00-	•
5.1 MW5	19/27/22.15	X-15	++-					15.0	0 6 -	0
1.0							10,	3/22	2 0 -	
9.2 9.3						•			• -	
0.8 MW	9/27/22	20		_					0 -	
0.1	100		2	0-25 Brown;	medium SAN	D, tracer	gunded rom	20.0	• • -	0
0.5				gravel,	Wet - V, We	t, loose, we	ill-Sorted,		0 -	0
0.1								· ·	0 -	
0.2		25			4.			25.0		
					TD =25				10 01,-1	0
			-							

		-		MW6	<		BORINGAWELL CONSTRUCTION LOG					
Projec	t Nu	X mbe	FE	027	-1	JR	5				·:/	
Projec Locati	i Na	me) 20	tah 1 S.	Firs	tor	tre	2000 Dany - MW Install Date Drilled 9/27/22 123	0				
Sampl	ing l	Veth	50	ore l	300	rel	Sample Bag Gravel Bast T.	O PVC	10.0	010"		
Fop of	Cas	ing l	levai	ion	-		Grout Type Dentoile	nd				
Remai	tks	D	De	rgen	20,	77	G Ground Water Elevation/Date [O	24,49	NAV	3 22		_
(mdd) Cld		(%)	Sampling Method	Sample Dapth (ft. BGL)	U.S.C.S	Staphic Log	Lithologic Description		contact Depth	V	lell Diz	igram
UN N	AII	00	NA		-	0	-0.5': Asphalt		00	1 19	MW	6
.9				-			1.5-2: Brown SILT, little grave, damp.					1
39				-			2:10: Lt brown, sandy, tounded GRAVE	-h.,				
2.5	1			5	1		The to course -, ary, loose,					
0.6							1		5.0			
				-		-						福
.8	1			-						4	2 0	00
.2	1.	6		10					40.0			8
3.6	ľ			-			0-15: Gray to light brown GRAVEL, Well-+	ounded.	10.0		0 T	9 9
F.(1		-			coarse, Tittle sand, loose, dry.	,				00
2.6											0 -	9
WM P.	6-9	-27-2	2-15	15	\square	-	6-22' 600		15.0		0 -	00
5.6			Contraction of Contra	-			AAC 162-6	10	13/22	v. °	9 -	00
.0							• H			•	0-	00
24				-						a	- 01	00
.4 MIL	1	8	2-21	20	H	-			20.0			
0.5	0	GT									0 -	0
.3				-			3-24: Gray, coarse rounded GRAVFI	CORRI	FS	0		0
).8		1		25		-	1-25: Grand, dry, loose,	1	, , , , , , , , , , , , , , , , , , ,	0	0-	00
			Contract Contractor		T		TD=25'	, coaree, c	25.0	-	•	
		1		20								

APPENDIX C

GROUNDWATER SAMPLING FIELD DATA SHEETS

MONITORING WELL DEVELOPMENT FIELD DATA SHEET

WELL ID: Mich-1	Date: 9/27/22 10/3/
Facility Name/Project No.: Hahn Motor	-Company / E2022-0805
Well Developer/Company: B. Bergerc	DR/BNB ENV
Well Depth (TD) below Top of Casing (TOC):	2.5' Depth to Water (DTW) below TOC: 15,48'
Height of Groundwater Column (H) = TD - DTW	(Feet): 9.52 Well Radius [r] (Inches):
2-Inch Diameter Well:	Volume (V) of Groundwater Per Water Column in Gal = [0.163 Gal/Foot] X [H (Feet)] =55
4-Inch Diameter Well:	Volume (V) of Groundwater Per Water Column in Gal = [0.653 Gal/Foot] X [H (Feet)] =

Calculated Volume of Groundwater Needed to be Removed (Gal): 15.5

				GROUI	NDWATER PARAMETERS	
Volume Purged (Gal)	pН	Temp (deg C)	Cond (µS)	Turb (ntu)	Comments [i.e., Odor(s), Water Color/Silt Content, Sheen]	DO
1	7.85	Poil	428:1	>1000		- 0.
3	8:38	18.0	414,9	21000		
5	8,24	18.0	401.b	21000		
7	5.08	179	402.9	>1000		
4	8.05	18:0	398,0	21000		
11	7.98	17.8	395.8	21600		
13	7.89	17.8	388.4	182.1		
12	7100	17.8	388.	232.9		
						-
tual Volu DTES: D	me Purged	(Gal) 1	5 Deris	tattic r	DTW When Well Development Has Ended: 16.68'	

Weather:

Blue Mountain Environmental and Consulting Company, Inc. PO Box 545/125 Main Street Waitsburg, WA 99361 509-520-6519

GROUNDWATER SAMPLE FIELD LOG

DAY/DATE: 10/3/22	SHEET 1 of
PROJECT NAME: 1201 S. 1ST ST VAKIN	14 PROJECT NO: FROM CONC
PROJECT LOCATION: 1201 5 15T ST. VAK	MA
Weather: Image: Fair Image: Overcast Image: Fog Image: Rain Image: Snow Temp.: Image: Overcast Image: Snow Imag	Wind: Calm Light Moderate Strong Wind from: N NE E SE S SW W NW Precip.: None Mist Light Moderate Heavy

WELL NO. (or Boring, J	Location): -	SAMPLE NUMBER: MULL-10-3-77 (all		
Well depth: 25 Screen length: 15'		Laboratory:		
Well install date: 9-2	8-22	COC and/or RFA Number:		
Pre-purge SWL: 15.4	8	Casing diameter: 2"		
Time Sample Collecte	d: 1530	SWL at sample time: 16,68		
Sample Turbidity: 23	12.9	Sample Conductance: 388.		
Sample Color: Boo	L z	Sample pH: 7.88		
Sample Temperature: 17.8		Sample Odor: -		
Field Data				

Time (24 HR)	Temp	Cond	pН	Pump Rate or Bail No.	Turbidity
14.45	18,0	398.0	8,05	1	>1000
1903	17.8	395,8	7.98		21000
1518	17.8	388,4	7,89		785
1530	17.8	388.1	7.88		239.9

Sample Collection Method:

The monitor well was purged:

a of stagnant water in the casing and filter by slowly setting a pump or intake tubing within the approximate middle of the screened interval or slightly above the middle until the until the temperature, conductivity and pH stabilized. OR,

 \Box of stagnant water in the casing and filter by slowly setting a pump or intake tubing at approximately ______ feet above the bottom of the casing until the temperature, conductivity and pH stabilized. OR,

□ by hand bailing until temperature, conductivity and pH stabilized.

Samples were collected:

by setting a pump, or tubing attached to a pump, within the approximate middle of the screened interval until the temperature, conductivity and pH stabilized.

□ by setting a pump, or tubing attached to a pump, at approximately _____ feet above the bottom of the casing until the temperature, conductivity and pH stabilized.

□ with disposable bailers until the temperature, conductivity and pH stabilized.

Sample Shipment:

Water samples were placed in appropriate containers suitable for analyses requested. As necessary, the containers were prepared by the lab. The containers were filled to prevent air-entrapment, sealed, labeled, and placed in an ice chest at approximately 4°C (e.g. blu-ice) for transport to the laboratory.

Analysis Requested: (per laboratory protocols)

	DC:
□ SemiVOC; □ PAH; □ PCB; □ Pesticides; (🛛 8, □10, □13) Metals; □ TCLP; □ MTBE:	

OTHER: ET	>B	
SIGNATURE:	ANTA	
PRINT NAME:	VANCY MEVER	

Notes: 2-inch, Schedule 40 PVC casing = 0.163 gallons per foot; 6" Hole = 1.469 gallons per foot

0811GeoPro

Other

MONITORING WELL DEVELOPMENT FIELD DATA SHEET

WELLID: MIL-2	Date: 9/27/22 10/3/22
Facility Name/Project No .: Hahn Motor	Company / E2022-0805
Well Developer/Company: B. Bergeron	MB ENV
Well Depth (TD) below Top of Casing (TOC):2	5' Depth to Water (DTW) below TOC: 16,66
Height of Groundwater Column (H) = TD - DTW ((Feet): 8,44 Well Radius [r] (Inches): 1"
2-Inch Diameter Well:	Volume (V) of Groundwater Per Water Column in Gal = $[0.163]$ Gal/Foot] X [H (Feet)] = 1.37
4-Inch Diameter Well:	Volume (V) of Groundwater Per Water Column in Gal = [0.653 Gal/Foot] X [H (Feet)] =NA

Calculated Volume of Groundwater Needed to be Removed (Gal):_______

				GROUN	NDWATER PARAMETERS	
Volume Purged (Gal)	pH	Temp (deg C)	Cond (µS)	Turb (ntu)	Comments [i.e., Odor(s), Water Color/Silt Content. Sheen]	DO (mg/L)
1	781	17.6	470.1	21000		- 0- 1
3	8.00	17.5	452.5	71000		
5	8.11	17.5	443.7	21000		
7	8.05	17.5	434.0	>1000		
9	8.02	17.4	4129.8	21000		
11	8.02	17.4	477.5	21000		
13	7.94	174	427.2	931.8		
15	7.80	17.4	417.1	147.0		
				E HEAT		
			-			
	me Purged (פאסס פונא	(Gal)	5 Deriat	i dhic r	DTW When Well Development Has Ended: 17,26	
			1		many manager in the many	
/eather:					\mathcal{I}	

Blue Mountain Environmental and Consulting Company, Inc. PO Box 545/125 Main Street Waitsburg, WA 99361 509-520-6519

GROUNDWATER SAMPLE FIELD LOG

DAY/DATE: 10/3/22	SHEET 1 of
PROJECT NAME: 1201 S. 15 ST YAKIN	14 PROJECT NO .: EZOTT - DEC
PROJECT LOCATION: 1201 5. 15 ST. VAK	IMA
Weather: ☐Fair □Overcast □Fog □Rain □Snow Temp.: □<0 □0-32 □33-54 ⊠55-79 □>80 Humidity %: □<25 ☑26-49 □50-74 □>75	Wind: Calm Light Moderate Strong Wind from: N NE CE SE S SW W NW Precip.: None Mist Clight Moderate Heavy

WELL NO. (or Boring, Location): WW2	SAMPLE NUMBER: MUT-10-3-77-Ch		
Well depth: 25 Screen length: 15	Laboratory:		
Well install date: 9-28-22	COC and/or RFA Number:		
Pre-purge SWL: 16.66	Casing diameter: Z'		
Time Sample Collected: 1620	SWL at sample time: 17,26		
Sample Turbidity: 447.0	Sample Conductance: 417,1		
Sample Color: BROWN	Sample pH: 7.80		
Sample Temperature: 17.4	Sample Odor: -		

Field Data

Time (24 HR)	Temp	Cond	pH	Pump Rate or Bail No.	Turbidity	Other
1540	17,4	429.8	508		21000	
1555	17.4	474,5	8.02		21000	
1510	17.4	427.2	7.94		931.8	
1690	17.4	417,1	3.80		447,0	
		1				

Sample Collection Method:

The monitor well was purged:

interval or slightly above the middle until the until the temperature, conductivity and pH stabilized. OR,

 \Box of stagnant water in the casing and filter by slowly setting a pump or intake tubing at approximately ______ feet above the bottom of the casing until the temperature, conductivity and pH stabilized. OR,

□ by hand bailing until temperature, conductivity and pH stabilized.

Samples were collected:

by setting a pump, or tubing attached to a pump, within the approximate middle of the screened interval until the temperature, conductivity and pH stabilized.

□ by sotting a pump, or tubing attached to a pump, at approximately _____ feet above the bottom of the casing until the temperature, conductivity and pH stabilized.

□ with disposable bailers until the temperature, conductivity and pH stabilized.

Sample Shipment:

Water samples were placed in appropriate containers suitable for analyses requested. As necessary, the containers were prepared by the lab. The containers were filled to prevent air-entrapment, sealed, labeled, and placed in an ice chest at approximately 4°C (e.g. blu-ice) for transport to the laboratory.

Analysis Requested: (per laboratory protocols)

□ NWTPH-HCID; NWTPH-Gx; NWTPH-Dx; NWTPH-Gx/BTEX; VOC; HVOC;

□ SemiVOC; □ PAH; □ PCB; □ Pesticides; (🖾 8, □10, □13) Metals; □ TCLP; □ MTBE;

	100111	
SIGNATURE:	MX MA	
PRINT NAME:	VANCY MEYER	

Notes: 2-inch, Schedule 40 PVC casing = 0.163 gallons per foot; 6" Hole = 1.469 gallons per foot

MONITORING WELL DEVELOPMENT FIELD DATA SHEET

WELLID: MAY3	Date: 9/27/22 10/3/22
Facility Name/Project No .: Hahn Motor	Company / E2022-0805
Well Developer/Company: B. Bergeron	BNB ENV
Well Depth (TD) below Top of Casing (TOC):	Depth to Water (DTW) below TOC: 16.36
Height of Groundwater Column (H) = $TD - DTW$ (Feet): 8.64 Well Radius [r] (Inches): 1
2-Inch Diameter Well:	Volume (V) of Groundwater Per Water Column in Gal = [0.163 Gal/Foot] X [H (Feet)] = 40
4-Inch Diameter Well:	Volume (V) of Groundwater Per Water Column in Gal = [0.653 Gal/Foot] X [H (Feet)] =NA

Calculated Volume of Groundwater Needed to be Removed (Gal): 14,0

				GROUI	NDWATER PARAMETERS	
Volume Purged (Gal)	рН	Temp (deg C)	Cond (µS)	Turb (ntw)	Comments (i.e., Odor(s), Water Color/Silt Content, Sheen)	DO
1	7.41	185	479.0	21000		- 0.
3	7.48	18,3	440.6	2100		
5	7,18	18.4	4325	21000		
3	17.41	18.5	4323	2100		
9	7.34	18.5	442.0	71000		
11	7.47	18.3	4327	YEOD		
13	Fib	18.4	414,3	5673		
15	7.19	18.4	469	322.6		
			1			
						1
				1		
		The second s		and the second se		
			1			
		-				
tual Volu	me Purged	(Gal)	15	11	DTW When Well Development Has Ended: 16,37	!
TES:	eveloper	d via	Derist	altic c	Jump & dedicated tubin	
	1		1	1		
ather:						

Blue Mountain Environmental and Consulting Company, Inc. PO Box 545/125 Main Street Waitsburg, WA 99361 509-520-6519

GROUNDWATER SAMPLE FIELD LOG

DAY/DATE: 10/3/22	SHEET 1 of
PROJECT NAME: 1201 5. 1ST ST YAKIN	14 PROJECT NO .: F7077-0805
PROJECT LOCATION: 1201 5. 15 ST. VALI	MA
Weather: ☑Fair □Overcast □Fog □Rain □Snow Temp.: □<0 □0-32 □33-54 ⊠55-79 □>80 Humidity %: □<25 ☑26-49 □50-74 □>75	Wind: Calm Light Moderate Strong Wind from: N NE CE SE S SW W NW Precip.: None Mist Light Moderate Heavy

SAMPLE NUMBER: MJ 3-10-3-77-(1)		
Laboratory:		
COC and/or RFA Number:		
Casing diameter: 7"		
SWL at sample time: 16, 37		
Sample Conductance: 4 15,9		
Sample pH: 7,19		
Sample Odor: -		

Field Data

Time (24 HR)	Temp	Cond	pH	Pump Rate or Bail No.	Turbidity	Other
0920	18.5	442.0	7.34	1	71000	
0939	18,3	432.7	7.47		21000	
0950	18.4	4143	7.16		567.20	
1000	18.4	415.9	7.19		3226	
			10.00			

Sample Collection Method:

The monitor well was purged:

interval or slightly above the middle until the until the temperature, conductivity and pH stabilized. OR,

 \Box of stagnant water in the casing and filter by slowly setting a pump or intake tubing at approximately ______ feet above the bottom of the casing until the temperature, conductivity and pH stabilized. OR,

□ by hand bailing until temperature, conductivity and pH stabilized.

Samples were collected:

by setting a pump, or tubing attached to a pump, within the approximate middle of the screened interval until the temperature, conductivity and pH stabilized.

□ by setting a pump, or tubing attached to a pump, at approximately _____ feet above the bottom of the casing until the temperature, conductivity and pH stabilized.

□ with disposable bailers until the temperature, conductivity and pH stabilized.

Sample Shipment:

Water samples were placed in appropriate containers suitable for analyses requested. As necessary, the containers were prepared by the lab. The containers were filled to prevent air-entrapment, sealed, labeled, and placed in an ice chest at approximately 4°C (e.g. blu-ice) for transport to the laboratory.

Analysis Requested: (per laboratory protocols)

□ NWTPH-HCID; ☑ NWTPH-Gx; ☑ NWTPH-Dx; □ NWTPH-Gx/BTEX; ☑ VOC; □ HVOC; □ SemiVOC; □ PAH; □ PCB; □ Pesticides; (☑ 8, □10, □13) Metals; □ TCLP; □ MTBE;

OTHER: ET	28	
SIGNATURE:	ANTA	
PRINT NAME:	VANCY MEYER	

Notes: 2-inch, Schedule 40 PVC casing = 0.163 gallons per foot, 6" Hole = 1.469 gallons per foot

0811GeoPro

MONITORING WELL DEVELOPMENT FIELD DATA SHEET

WELL ID: MILL-4	Date: 9/27/22 10/3/22
Facility Name/Project No.: Hahn Motor	Company / E2022-0805
Well Developer/Company: B. Bergero	D/BNB ENV
Well Depth (TD) below Top of Casing (TOC):	25 Depth to Water (DTW) below TOC: 16.14
Height of Groundwater Column (H) = TD - DTW	(Feet): 8,86 Well Radius [r] (Inches): 1"
2-Inch Diameter Well:	Volume (V) of Groundwater Per Water Column in Gal = [0.163 Gal/Foot] X [H (Feet)] = 44
4-Inch Diameter Well:	Volume (V) of Groundwater Per Water Column in Gal = [0.653 Gal/Foot] X [H (Feet)] =NA

Calculated Volume of Groundwater Needed to be Removed (Gal): 14,4

	r and the second s			GROUI	NDWATER PARAMETERS	
Volume Purged (Gal)	pH	Temp (deg C)	Cond (µS)	Turb (ntu)	Comments [i.e., Odor(s), Water Color/Silt Content, Sheen]	DO
1	7:62	19.1	437.3	21000		
3	7.61	19.2	431.1	2000		
5	343	18.6	413.9	>1000		
7	7.44	18.4	1414.5	>1000		
9	7.36	185	408.1	Sitce		
	7.32	184	40.5	21000		
13	f122	18.5	406.7	949.6		
15	7.22	18.5	106.3	9202		
			1			
	1					
ctual Volu OTES: D	me Purged (Gal)	15 Derist	altic p	DTW When Well Development Has Ended: 16.21'	
leather:				1	,	

Blue Mountain Environmental and Consulting Company, Inc. PO Box 545/125 Main Street Waitsburg, WA 99361 509-520-6519

GROUNDWATER SAMPLE FIELD LOG

DAY/DATE: 10/3/22	SHEET 1 of
PROJECT NAME: 1201 S. 1ST ST YAKIN	44 PROJECT NO .: EZO22-0805
PROJECT LOCATION: 1201 5. 15 ST. VAL	IMA
Weather: DFair Overcast DFog DRain Snow Temp.: <0	Wind: Calm Light Moderate Strong Wind from: N DNE DE DSE DS SSW DW DNW Precip.: DNone Mist DLight Moderate DHeavy

WELL NO. (or Boring, Loc	ation): NU-4	SAMPLE NUMBER: MULA - 10-2-77 (1)			
Well depth: 25 S	Screen length:15	Laboratory:			
Well install date: 9-27	-22	COC and/or RFA Number:			
Pre-purge SWL: 16, 14		Casing diameter: 2^{ν}			
Time Sample Collected:	1430	SWL at sample time: 16,2			
Sample Turbidity: 920.	2	Sample Conductance: 406.3			
Sample Color: BLOWN		Sample pH: 777			
Sample Temperature: 18	5	Sample Odor:			

Field Data

Time (24 HR)	. Fempet	Cond	the	Pump Rate or Bail No.	Turbidity	Other
1340	7:36	18.5	408.1	· · · · ·	Sibeso	
1355	7.32	18.4	410.5		21000	
1415	7.22	18.5	406.7		949.6	
1430	1.22	18:5	406.3		920.2	
-						

Sample Collection Method:

The monitor well was purged:

of stagnant water in the casing and filter by slowly setting a pump or intake tubing within the approximate middle of the screened interval or slightly above the middle until the until the temperature, conductivity and pH stabilized. OR,

□ of stagnant water in the casing and filter by slowly setting a pump or intake tubing at approximately ______ feet above the bottom of the casing until the temperature, conductivity and pH stabilized. OR,

□ by hand bailing until temperature, conductivity and pH stabilized.

Samples were collected:

by setting a pump, or tubing attached to a pump, within the approximate middle of the screened interval until the temperature, conductivity and pH stabilized.

□ by setting a pump, or tubing attached to a pump, at approximately _____ feet above the bottom of the easing until the temperature, conductivity and pH stabilized.

□ with disposable bailers until the temperature, conductivity and pH stabilized.

Sample Shipment:

Water samples were placed in appropriate containers suitable for analyses requested. As necessary, the containers were prepared by the lab. The containers were filled to prevent air-entrapment, sealed, labeled, and placed in an ice chest at approximately 4°C (e.g. blu-ice) for transport to the laboratory.

Analysis Requested: (per laboratory protocols)

🗆 NWTPH-HCID; 🖾 NWTPH-Gx; 🖾 NWTPH-Dx; 🗆 NWTPH-Gx/BTEX; 🖾 VOC: 🗆	HVOO
SemiVOC: PAH: PCB: Pesticides M18 110 113) Metals: TCI P. MI	DE.

Semivoc, LIFAH, LIPCB, LIPesticides; (A8, LIU, LI3) Metals; LITCLP; LIMTBE	
DOTHER: EDB	
SIGNATURE: MALL	
PRINT NAME: YANCY MEYEL	

Notes: 2-inch, Schedule 40 PVC casing = 0.163 gallons per foot: 6" Hole = 1.469 gallons per foot

0811GeoPro

MONITORING WELL DEVELOPMENT FIELD DATA SHEET

WELL ID: MUIS	Date: 9/27/22 10/3/22
Facility Name/Project No .: Hahn Motor	Company / E2022-0805
Well Developer/Company: B. Bergero	D/BNB ENV
Well Depth (TD) below Top of Casing (TOC):	25' Depth to Water (DTW) below TOC: 15.94'
Height of Groundwater Column (H) = TD - DTW	(Feet): 9,06 Well Radius [r] (Inches): 1"
2-Inch Diameter Well:	Volume (V) of Groundwater Per Water Column in Gal = [0.163 Gal/Foot] X [H (Feet)] = 48
4-Inch Diameter Well:	Volume (V) of Groundwater Per Water Column in Gal = [0.653 Gal/Foot] X [H (Feet)] =NA

Calculated Volume of Groundwater Needed to be Removed (Gal): 14.8

				GROU	NDWATER PARAMETERS	
Volume Purged (Gal)	pH	Temp (deg C)	Cond (µS)	Turb (ntu)	Comments [i.e., Odor(s), Water Color/Silt Content, Sheen]	DO (mg/L
	8:72	18.8	434:6	21000		- 0-
3	8.49	185	419.5	21000		
5	8.20	18.3	404.2	SIGO		
7	8:31	18.3	400.5	>1000		
9	8.18	18:2	397.3	21600		
1	815	18.3	393.4	21000		
13	7.99	18.4	393,0	878.0		
15	7-83	18:4	392,9	589.3		
						1000
	ne Purged (<u>Wel Opec</u>	Gal) 1	5 Derist	altic r	DTW When Well Development Has Ended: 16.09	
asther.	4			1	J	

Blue Mountain Environmental and Consulting Company, Inc. PO Box 545/125 Main Street Waitsburg, WA 99361 509-520-6519

GROUNDWATER SAMPLE FIELD LOG

DAY/DATE: 10/3/22	SHEET 1 of
PROJECT NAME: 1201 S. 1ST ST YAKIN	14 PROJECT NO.: F75772
PROJECT LOCATION: 1201 5. 15 ST. VAL	IMA
Weather: Image: Control of the second s	Wind: Calm Light Moderate Strong Wind from: N NE E E SE S S W W N W Precip.: None Mist Light Moderate Heavy

WELL NO. (or Boring, Location): MW-5	SAMPLE NUMBER: My Scilo-3-22-(1)		
Well depth: 25 Screen length: 15	Laboratory:		
Well install date: 9-27-22	COC and/or RFA Number:		
Pre-purge SWL: 15,94	Casing diameter: 7"		
Time Sample Collected: 1320	SWL at sample time: 16.09'		
Sample Turbidity: 589.3	Sample Conductance: 297.9		
Sample Color: Beaun	Sample pH: 7.83		
Sample Temperature 84	Sample Odor:		
Field Data			

Time (24 HR)	Temp	Cond	pН	Pump Rate or Bail No.	Turbidity	Other
1135	18:2	397+3	8.18		>1000	
11.55	18.3	393.4	8,15		>1000	
1310	18.4	393.0	7,99		878,0	
1320	18,4	392.9	7.83		589.3	
			1			

Sample Collection Method:

The monitor well was purged:

interval or slightly above the middle until the until the temperature, conductivity and pH stabilized. OR,

 \Box of stagnant water in the casing and filter by slowly setting a pump or intake tubing at approximately ______ feet above the bottom of the casing until the temperature, conductivity and pH stabilized. OR,

□ by hand bailing until temperature, conductivity and pH stabilized.

Samples were collected:

by setting a pump, or tubing attached to a pump, within the approximate middle of the screened interval until the temperature, conductivity and pH stabilized.

□ by setting a pump, or tubing attached to a pump, at approximately _____ feet above the bottom of the casing until the temperature, conductivity and pH stabilized.

□ with disposable bailers until the temperature, conductivity and pH stabilized.

Sample Shipment:

Water samples were placed in appropriate containers suitable for analyses requested. As necessary, the containers were prepared by the lab. The containers were filled to prevent air-entrapment, sealed, labeled, and placed in an ice chest at approximately 4°C (e.g. blu-ice) for transport to the laboratory.

Analysis Requested: (per laboratory protocols)

NWTPH-HCID; NWTPH-Gx; NWTPH-Dx; NWTPH-Gx/BTEX: VOC: HVC	20
□ SemiVOC; □ PAH; □ PCB; □ Pesticides: 188, □10, □13) Metals: □ TCL P: □ MTBE:	-

	PAH; \Box PCB; \Box Pesticides; ($\Delta 8$, $\Box 10$, $\Box 13$) Metals; \Box T	CLP: MTBE:
DTHER: En	B	
SIGNATURE:	ARINA	
PRINT NAME:	VANCYMEYER	

Notes: 2-inch, Schedule 40 PVC casing = 0.163 gallons per foot, 6" Hole = 1.469 gallons per foot

0811GeoPro

MONITORING WELL DEVELOPMENT FIELD DATA SHEET

WELL ID: Mid 6	Date: 9/27/22 10/3/2
Facility Name/Project No .: Hahn Motor	-Company / E2022-0805
Well Developer/Company: B. Bergerc	m/BNB Env
ل Well Depth (TD) below Top of Casing (TOC):	25 Depth to Water (DTW) below TOC: 15.57
Height of Groundwater Column (H) = TD - DTW	(Feet): <u>9,43</u> Well Radius [r] (Inches): <u>1</u> "
2-Inch Diameter Well:	Volume (V) of Groundwater Per Water Column in Gal = [0.163 Gal/Foot] X [H (Feet)] =
4-Inch Diameter Well:	Volume (V) of Groundwater Per Water Column in Gal = [0.653 Gal/Foot] X [H (Feet)] =NA

Calculated Volume of Groundwater Needed to be Removed (Gal):______

				GROUN	NDWATER PARAMETERS	
Volume Purged (Gal)	рН	Temp (deg C)	Cond (µS)	Turb (ntu)	Comments [i.e., Odor(s), Water Color/Silt Content, Sheen]	DO (mg/L
1	7,60	18:2	434.7	>1000		0
3	7.98	18,1	421.5	21000		
5	7.64	18:2	417.1	21000		
7	7.47	18.3	417.9	21000		
1	1.57	18:2	414,5	2100		
12	7.37	10:3	4043	2600		
15	718	18.2	4023	7211		
0	7.70	1016	40.0.0	CTIL		
						6
1. A. A. A.						
_						
ctual Volu	me Purged	(Gal)	5		DTW When Well Development Has Ended: 15.69'	
OTTO: D	audeon	Luio	Donin	-lli-	and a dedicated to big	
JIES:	everye	u viu	PUIS	whe	Jump + Creationer Turing	

Weather:

Blue Mountain Environmental and Consulting Company, Inc. PO Box 545/125 Main Street Waitsburg, WA 99361 509-520-6519

J

GROUNDWATER SAMPLE FIELD LOG

DAY/DATE: 10/3/22	SHEET 1 of
PROJECT NAME: 1201 S. 1ST ST YAKIN	4.4 PROJECT NO .: F7677 . STOC
PROJECT LOCATION: 1201 S. 15 ST. VAK	IMA
Weather: □Fair □Overcast □Fog □Rain □Snow Temp.: □<0	Wind: Calm Light Moderate Strong Wind from: N NE CE SE S SW W NW Precip.: None Mist CLight Moderate Heavy

WELL NO. (or Boring, Location): WILL	SAMPLE NUMBER: MV16-10-2-97 (01.1			
Well depth: 25 Screen length: 15'	Laboratory:			
Well install date: 9-27-22	COC and/or RFA Number:			
Pre-purge SWL: 15.57'	Casing diameter: 7"			
Time Sample Collected: 120	SWL at sample time: 5,69			
Sample Turbidity: 271.1	Sample Conductance: 403.8			
Sample Color: BLAIN	Sample pH: 7,48			
Sample Temperature: 18,2	Sample Odor: -			

Field Data

Time (24 HR)	Temp	Cond	pН	Pump Rate or Bail No.	Turbidity	Other
1020	18:2	414,3	157	1	>1000	
1110	18:2	407.8	7,48		24-3.8	
1(20	18:2	40318	7,48		271.1	f

Sample Collection Method:

The monitor well was purged:

interval or slightly above the middle until the until the temperature, conductivity and pH stabilized. OR,

 \Box of stagnant water in the casing and filter by slowly setting a pump or intake tubing at approximately ______ feet above the bottom of the casing until the temperature, conductivity and pH stabilized. OR,

□ by hand bailing until temperature, conductivity and pH stabilized.

Samples were collected:

by setting a pump, or tubing attached to a pump, within the approximate middle of the screened interval until the temperature, conductivity and pH stabilized.

□ by setting a pump, or tubing attached to a pump, at approximately _____ feet above the bottom of the casing until the temperature, conductivity and pH stabilized.

□ with disposable bailers until the temperature, conductivity and pH stabilized.

Sample Shipment:

Water samples were placed in appropriate containers suitable for analyses requested. As necessary, the containers were prepared by the lab. The containers were filled to prevent air-entrapment, sealed, labeled, and placed in an ice chest at approximately 4°C (e.g. blu-ice) for transport to the laboratory.

Analysis Requested: (per laboratory protocols)

NWTPH-HCID; NWTPH-Gx; NWTPH-D:	x; □ NWTPH-Gx/BTEX: ▼ VOC: □ HVOC
□ SemiVOC: □ PAH: □ PCB. □ Pesticides: 1818	TIO TIS) Metale: TTCL P. TMTDE.

DTHER:	B	,
SIGNATURE:	ANIA	
PRINT NAME:	VANEY MEYER	

Notes: 2-inch, Schedule 40 PVC casing = 0.163 gallons per foot; 6" Hole = 1.469 gallons per foot

APPENDIX D

LABORATORY ANALYTICAL DOCUMENTATION

October 10, 2022

Peter Trabusiner Blue Mountain Environmental, Inc. 1500 Adair Drive Richland, WA 99352

Re: Analytical Data for Project E2022/0805; 1201 S. 1st St Yakima Laboratory Reference No. 2209-309

Dear Peter:

Enclosed are the analytical results and associated quality control data for samples submitted on September 29, 2022.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: October 10, 2022 Samples Submitted: September 29, 2022 Laboratory Reference: 2209-309 Project: E2022/0805; 1201 S. 1st St Yakima

Case Narrative

Samples were collected on September 27 and 28, 2022 and received by the laboratory on September 29, 2022. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D Analysis

The percent recovery for Chloroethane is outside the control limits in the Spike Blank and Spike Blank Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

Sodium Bisulfate preservation has been proven to increase the frequency of detection and the concentration of Acetone and 2-Butanone due in part to chemical reactions in the sample. If Acetone is a potential site contaminant, Sodium Bisulfate should not be used.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3-9-27-22-15'					
Laboratory ID:	09-309-01					
Gasoline	ND	5.5	NWTPH-Gx	10-3-22	10-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	112	69-130				
Client ID:	MW3-9-27-22-23'					
Laboratory ID:	09-309-02					
Gasoline	ND	6.0	NWTPH-Gx	10-3-22	10-3-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	114	69-130				
Client ID:	MW6-9-27-22-15'					
Laboratory ID:	09-309-03					
Gasoline	ND	5.1	NWTPH-Gx	10-3-22	10-3-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	107	69-130				
Client ID:	MW6-9-27-22-21'					
Laboratory ID:	09-309-04					
Gasoline	ND	5.5	NWTPH-Gx	10-3-22	10-3-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	111	69-130				
Client ID:	MW5-9-27-22-15'					
Laboratory ID:	09-309-05					
Gasoline	ND	4.7	NWTPH-Gx	10-3-22	10-3-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	109	69-130				
Client ID:	MW5-9-27-22-20'					
Laboratory ID:	09-309-06					
Gasoline	ND	4.5	NWTPH-Gx	10-3-22	10-3-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	115	69-130				
Client ID:	MW4-9-27-22-16'					
Laboratory ID:	<u>0</u> 9-309-07					
Gasoline	ND	5.1	NWTPH-Gx	10-3-22	10-3-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	109	69-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW4-9-27-22-20'					
Laboratory ID:	09-309-08					
Gasoline	ND	5.0	NWTPH-Gx	10-3-22	10-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	111	69-130				
Client ID:	MW2-9-28-22-13'					
Laboratory ID:	09-309-09					
Gasoline	ND	5.0	NWTPH-Gx	10-3-22	10-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	113	69-130				
Client ID:	MW2-9-28-22-18'					
Laboratory ID:	09-309-10					
Gasoline	ND	5.8	NWTPH-Gx	10-3-22	10-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	69-130				
Client ID:	MW1-9-28-22-10'					
Laboratory ID:	09-309-11					
Gasoline	ND	5.2	NWTPH-Gx	10-3-22	10-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	116	69-130				
Client ID:	MW1-9-28-22-19'					
Laboratory ID:	09-309-12					
Gasoline	ND	5.7	NWTPH-Gx	10-3-22	10-5-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	112	69-130				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

,								Date	Date)	
Analyte		Result		PQL	Me	thod		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:		MB1003S1									
Gasoline		ND		5.0	NWT	PH-G	х	10-3-22	10-3-2	22	
Surrogate:	Per	rcent Recovery	Со	ntrol Limit	s						
Fluorobenzene		97		69-130							
Laboratory ID:		MB1003S2									
Gasoline		ND		5.0	NWT	PH-G	х	10-3-22	10-3-2	22	
Surrogate:	Per	cent Recovery	Со	ntrol Limit	s						
Fluorobenzene		102		69-130							
					•	-		-			
• • •	_	•	• •		Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	e Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-30	09-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						112	98	69-130			
Laboratory ID:	09-30)9-02									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	A	NA	NA	30	
Surrogate:											
Fluorobenzene						114	101	1 69-130			

5

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3-9-27-22-15'					
Laboratory ID:	09-309-01					
Diesel Range Organics	76	26	NWTPH-Dx	9-30-22	10-3-22	
Lube Oil	300	53	NWTPH-Dx	9-30-22	10-3-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	MW3-9-27-22-23'					
Laboratory ID:	09-309-02					
Diesel Range Organics	ND	27	NWTPH-Dx	9-30-22	9-30-22	
Lube Oil Range Organics	ND	54	NWTPH-Dx	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	111	50-150				
Client ID:	MING 0 07 00 4E					
	IVIVO-9-27-22-15					
	09-309-03	00		0.00.00	0.00.00	
Diesel Range Organics	ND	20		9-30-22	9-30-22	
Lube Oil Range Organics	ND	JZ Control Limito	NVV IPH-DX	9-30-22	9-30-22	
Surrogale.						
0-Terphenyi	100	50-750				
Client ID:	MW6-9-27-22-21'					
Laboratory ID:	09-309-04					
Diesel Range Organics	ND	37	NWTPH-Dx	9-30-22	10-1-22	U1
Lube Oil	1000	51	NWTPH-Dx	9-30-22	10-1-22	
Surrogate:	Percent Recoverv	Control Limits			-	
o-Terphenyl	88	50-150				
Client ID:	MW5-9-27-22-15'					
Laboratory ID:	09-309-05					
Diesel Range Organics	ND	26	NWTPH-Dx	9-30-22	10-1-22	
Lube Oil Range Organics	ND	51	NWTPH-Dx	9-30-22	10-1-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	MWE 0.07.00.001					
	WW5-9-27-22-20					
Laboratory ID:	09-309-06	07		0.00.00	0.00.00	
Diesel Range Organics	ND	27	NW IPH-DX	9-30-22	9-30-22	
Lube OII Range Organics		54	NW IPH-DX	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
o-rerphenyi	8/	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

6

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW4-9-27-22-16'					
Laboratory ID:	09-309-07					
Diesel Range Organics	ND	26	NWTPH-Dx	9-30-22	9-30-22	
Lube Oil Range Organics	ND	52	NWTPH-Dx	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				
Client ID:	NNA 0 07 00 001					
	WW4-9-27-22-20					
Laboratory ID:	09-309-08	00		0.00.00	0.00.00	
	ND	26	NWTPH-DX	9-30-22	9-30-22	
Lube Oil Range Organics		53	NWTPH-DX	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	MW2-9-28-22-13'					
Laboratory ID:	09-309-09					
Diesel Range Organics	ND	58	NWTPH-Dx	9-30-22	10-1-22	U1
Lube Oil	660	52	NWTPH-Dx	9-30-22	10-1-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	MW2-9-28-22-18'					
Laboratory ID:	09-309-10					
Diesel Range Organics	ND	28	NWTPH-Dx	9-30-22	9-30-22	
Lube Oil Range Organics	ND	55	NWTPH-Dx	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	116	50-150				
Client ID:	MW1-9-28-22-10'					
Laboratory ID:	09-309-11					
Diesel Range Organics		26	NWTPH-Dx	9-30-22	10-1-22	
Lube Oil Range Organics	ND	52	NWTPH-Dx	9-30-22	10-1-22	
Surrogate:	Percent Recovery	Control Limits		000 ==		
o-Terphenvl	94	50-150				
Client ID:	MW1-9-28-22-19'					
Laboratory ID:	09-309-12					
Diesel Range Organics	ND	27	NWTPH-Dx	9-30-22	10-7-22	
Lube Oil Range Organics	ND	54	NWTPH-Dx	9-30-22	10-7-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

7

Date of Report: October 10, 2022 Samples Submitted: September 29, 2022 Laboratory Reference: 2209-309 Project: E2022/0805; 1201 S. 1st St Yakima

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0930S1					
Diesel Range Organics	ND	25	NWTPH-Dx	9-30-22	9-30-22	
Lube Oil Range Organics	ND	50	NWTPH-Dx	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				

					Source	Perc	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-27	74-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		Ν	A	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		Ν	A	NA	NA	NA	
Surrogate:											
o-Terphenyl						78	76	50-150			
Laboratory ID:	09-27	74-02									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		Ν	A	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		Ν	A	NA	NA	NA	
Surrogate:											
o-Terphenyl						93	92	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	MW3-9-27-22-15'						
Laboratory ID:	09-309-01						
Dichlorodifluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
Chloromethane	ND	0.0054	EPA 8260D	9-30-22	9-30-22		
Vinyl Chloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
Bromomethane	ND	0.0054	EPA 8260D	9-30-22	9-30-22		
Chloroethane	ND	0.0054	EPA 8260D	9-30-22	9-30-22		
Trichlorofluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
1,1-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
Acetone	ND	0.054	EPA 8260D	9-30-22	9-30-22		
lodomethane	ND	0.0076	EPA 8260D	9-30-22	9-30-22		
Carbon Disulfide	0.0037	0.0016	EPA 8260D	9-30-22	9-30-22	Y	
Methylene Chloride	ND	0.0054	EPA 8260D	9-30-22	9-30-22		
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
Methyl t-Butyl Ether	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
1,1-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
Vinyl Acetate	ND	0.0054	EPA 8260D	9-30-22	9-30-22		
2,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
2-Butanone	ND	0.011	EPA 8260D	9-30-22	9-30-22		
Bromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
Chloroform	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
1,1,1-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
Carbon Tetrachloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
1,1-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
Benzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
1,2-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
Trichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
1,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
Dibromomethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
Bromodichloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22		
Methyl Isobutyl Ketone	ND	0.0054	EPA 8260D	9-30-22	9-30-22		
Toluene	ND	0.0054	EPA 8260D	9-30-22	9-30-22		
(trans) 1,3-Dichloropropene	e ND	0.0011	EPA 8260D	9-30-22	9-30-22		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3-9-27-22-15'					
Laboratory ID:	09-309-01					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Tetrachloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Hexanone	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Dibromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromoethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Ethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
m,p-Xylene	ND	0.0022	EPA 8260D	9-30-22	9-30-22	
o-Xylene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Styrene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromoform	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
lsopropylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Propylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
4-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
tert-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
sec-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
p-lsopropyltoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromo-3-chloropropane	e ND	0.0054	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Hexachlorobutadiene	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Naphthalene	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	75-130				
Toluene-d8	103	78-128				
4-Bromofluorobenzene	109	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881
Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3-9-27-22-23'					
Laboratory ID:	09-309-02					
Dichlorodifluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chloromethane	ND	0.0057	EPA 8260D	9-30-22	9-30-22	
Vinyl Chloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromomethane	ND	0.0057	EPA 8260D	9-30-22	9-30-22	
Chloroethane	ND	0.0057	EPA 8260D	9-30-22	9-30-22	
Trichlorofluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Acetone	ND	0.057	EPA 8260D	9-30-22	9-30-22	
lodomethane	ND	0.0080	EPA 8260D	9-30-22	9-30-22	
Carbon Disulfide	ND	0.0017	EPA 8260D	9-30-22	9-30-22	
Methylene Chloride	ND	0.0057	EPA 8260D	9-30-22	9-30-22	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Vinyl Acetate	ND	0.0057	EPA 8260D	9-30-22	9-30-22	
2,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Butanone	ND	0.011	EPA 8260D	9-30-22	9-30-22	
Bromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chloroform	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Carbon Tetrachloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Benzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Trichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Dibromomethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromodichloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Methyl Isobutyl Ketone	ND	0.0057	EPA 8260D	9-30-22	9-30-22	
Toluene	ND	0.0057	EPA 8260D	9-30-22	9-30-22	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3-9-27-22-23'					
Laboratory ID:	09-309-02					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Tetrachloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Hexanone	ND	0.0057	EPA 8260D	9-30-22	9-30-22	
Dibromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromoethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Ethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
m,p-Xylene	ND	0.0023	EPA 8260D	9-30-22	9-30-22	
o-Xylene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Styrene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromoform	ND	0.0057	EPA 8260D	9-30-22	9-30-22	
Isopropylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Propylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
4-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
tert-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
sec-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
p-Isopropyltoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromo-3-chloropropane	e ND	0.0057	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Hexachlorobutadiene	ND	0.0057	EPA 8260D	9-30-22	9-30-22	
Naphthalene	ND	0.0057	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	75-130				
Toluene-d8	104	78-128				
4-Bromofluorobenzene	108	71-130				

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-9-27-22-15'					
Laboratory ID:	09-309-03					
Dichlorodifluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chloromethane	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Vinyl Chloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromomethane	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Chloroethane	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Trichlorofluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Acetone	ND	0.054	EPA 8260D	9-30-22	9-30-22	
lodomethane	ND	0.0075	EPA 8260D	9-30-22	9-30-22	
Carbon Disulfide	ND	0.0016	EPA 8260D	9-30-22	9-30-22	
Methylene Chloride	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Vinyl Acetate	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
2,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Butanone	ND	0.011	EPA 8260D	9-30-22	9-30-22	
Bromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chloroform	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Carbon Tetrachloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Benzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Trichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Dibromomethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromodichloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Methyl Isobutyl Ketone	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Toluene	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
(trans) 1,3-Dichloropropene	e ND	0.0011	EPA 8260D	9-30-22	9-30-22	

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-9-27-22-15'					
Laboratory ID:	09-309-03					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Tetrachloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Hexanone	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Dibromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromoethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Ethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
m,p-Xylene	ND	0.0022	EPA 8260D	9-30-22	9-30-22	
o-Xylene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Styrene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromoform	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Isopropylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Propylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
4-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
tert-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
sec-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
p-Isopropyltoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromo-3-chloropropane	e ND	0.0054	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Hexachlorobutadiene	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Naphthalene	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	75-130				
Toluene-d8	103	78-128				
4-Bromofluorobenzene	108	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-9-27-22-21'					
Laboratory ID:	09-309-04					
Dichlorodifluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chloromethane	ND	0.0053	EPA 8260D	9-30-22	9-30-22	
Vinyl Chloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromomethane	ND	0.0053	EPA 8260D	9-30-22	9-30-22	
Chloroethane	ND	0.0053	EPA 8260D	9-30-22	9-30-22	
Trichlorofluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Acetone	0.054	0.053	EPA 8260D	9-30-22	9-30-22	
lodomethane	ND	0.0075	EPA 8260D	9-30-22	9-30-22	
Carbon Disulfide	ND	0.0016	EPA 8260D	9-30-22	9-30-22	
Methylene Chloride	ND	0.0053	EPA 8260D	9-30-22	9-30-22	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Vinyl Acetate	ND	0.0053	EPA 8260D	9-30-22	9-30-22	
2,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Butanone	ND	0.011	EPA 8260D	9-30-22	9-30-22	
Bromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chloroform	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Carbon Tetrachloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Benzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Trichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Dibromomethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromodichloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Methyl Isobutyl Ketone	ND	0.0053	EPA 8260D	9-30-22	9-30-22	
Toluene	ND	0.0053	EPA 8260D	9-30-22	9-30-22	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	

15

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-9-27-22-21'					
Laboratory ID:	09-309-04					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Tetrachloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Hexanone	ND	0.0053	EPA 8260D	9-30-22	9-30-22	
Dibromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromoethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Ethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
m,p-Xylene	ND	0.0021	EPA 8260D	9-30-22	9-30-22	
o-Xylene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Styrene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromoform	ND	0.0053	EPA 8260D	9-30-22	9-30-22	
Isopropylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Propylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
4-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
tert-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
sec-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
p-Isopropyltoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromo-3-chloropropane	e ND	0.0053	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Hexachlorobutadiene	ND	0.0053	EPA 8260D	9-30-22	9-30-22	
Naphthalene	ND	0.0053	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	75-130				
Toluene-d8	102	78-128				
4-Bromofluorobenzene	105	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW5-9-27-22-15'					
Laboratory ID:	09-309-05					
Dichlorodifluoromethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Chloromethane	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
Vinyl Chloride	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Bromomethane	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
Chloroethane	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
Trichlorofluoromethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Acetone	ND	0.052	EPA 8260D	9-30-22	9-30-22	
lodomethane	ND	0.0072	EPA 8260D	9-30-22	9-30-22	
Carbon Disulfide	0.0020	0.0016	EPA 8260D	9-30-22	9-30-22	Y
Methylene Chloride	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Vinyl Acetate	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
2,2-Dichloropropane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
2-Butanone	ND	0.010	EPA 8260D	9-30-22	9-30-22	
Bromochloromethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Chloroform	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Carbon Tetrachloride	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloropropene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Benzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Trichloroethene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloropropane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Dibromomethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Bromodichloromethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Methyl Isobutyl Ketone	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
Toluene	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW5-9-27-22-15'					
Laboratory ID:	09-309-05					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Tetrachloroethene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,3-Dichloropropane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
2-Hexanone	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
Dibromochloromethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Chlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Ethylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
m,p-Xylene	ND	0.0021	EPA 8260D	9-30-22	9-30-22	
o-Xylene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Styrene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Bromoform	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
Isopropylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Bromobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
n-Propylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
2-Chlorotoluene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
4-Chlorotoluene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
tert-Butylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
sec-Butylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
p-Isopropyltoluene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
n-Butylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromo-3-chloropropane	e ND	0.0052	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Hexachlorobutadiene	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
Naphthalene	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	75-130				
Toluene-d8	104	78-128				
4-Bromofluorobenzene	107	71-130				

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW5-9-27-22-20'					
Laboratory ID:	09-309-06					
Dichlorodifluoromethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Chloromethane	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
Vinyl Chloride	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Bromomethane	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
Chloroethane	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
Trichlorofluoromethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Acetone	ND	0.052	EPA 8260D	9-30-22	9-30-22	
lodomethane	ND	0.0073	EPA 8260D	9-30-22	9-30-22	
Carbon Disulfide	0.0018	0.0016	EPA 8260D	9-30-22	9-30-22	Y
Methylene Chloride	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Vinyl Acetate	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
2,2-Dichloropropane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
2-Butanone	ND	0.010	EPA 8260D	9-30-22	9-30-22	
Bromochloromethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Chloroform	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Carbon Tetrachloride	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloropropene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Benzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Trichloroethene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloropropane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Dibromomethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Bromodichloromethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Methyl Isobutyl Ketone	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
Toluene	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW5-9-27-22-20'					
Laboratory ID:	09-309-06					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Tetrachloroethene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,3-Dichloropropane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
2-Hexanone	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
Dibromochloromethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Chlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Ethylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
m,p-Xylene	ND	0.0021	EPA 8260D	9-30-22	9-30-22	
o-Xylene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Styrene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Bromoform	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
lsopropylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Bromobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
n-Propylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
2-Chlorotoluene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
4-Chlorotoluene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
tert-Butylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
sec-Butylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
p-Isopropyltoluene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
n-Butylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromo-3-chloropropane	e ND	0.0052	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Hexachlorobutadiene	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
Naphthalene	ND	0.0052	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	75-130				
Toluene-d8	106	78-128				
4-Bromofluorobenzene	111	71-130				

20

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW4-9-27-22-16'					
Laboratory ID:	09-309-07					
Dichlorodifluoromethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Chloromethane	ND	0.0060	EPA 8260D	9-30-22	9-30-22	
Vinyl Chloride	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Bromomethane	ND	0.0060	EPA 8260D	9-30-22	9-30-22	
Chloroethane	ND	0.0060	EPA 8260D	9-30-22	9-30-22	
Trichlorofluoromethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Acetone	ND	0.060	EPA 8260D	9-30-22	9-30-22	
lodomethane	ND	0.0084	EPA 8260D	9-30-22	9-30-22	
Carbon Disulfide	ND	0.0018	EPA 8260D	9-30-22	9-30-22	
Methylene Chloride	ND	0.0060	EPA 8260D	9-30-22	9-30-22	
(trans) 1,2-Dichloroethene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Methyl t-Butyl Ether	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Vinyl Acetate	ND	0.0060	EPA 8260D	9-30-22	9-30-22	
2,2-Dichloropropane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
2-Butanone	ND	0.012	EPA 8260D	9-30-22	9-30-22	
Bromochloromethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Chloroform	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Carbon Tetrachloride	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloropropene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Benzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloroethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Trichloroethene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloropropane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Dibromomethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Bromodichloromethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
(cis) 1,3-Dichloropropene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Methyl Isobutyl Ketone	ND	0.0060	EPA 8260D	9-30-22	9-30-22	
Toluene	ND	0.0060	EPA 8260D	9-30-22	9-30-22	
(trans) 1,3-Dichloropropene	e ND	0.0012	EPA 8260D	9-30-22	9-30-22	

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW4-9-27-22-16'					
Laboratory ID:	09-309-07					
1,1,2-Trichloroethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Tetrachloroethene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,3-Dichloropropane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
2-Hexanone	ND	0.0060	EPA 8260D	9-30-22	9-30-22	
Dibromochloromethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromoethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Chlorobenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Ethylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
m,p-Xylene	ND	0.0024	EPA 8260D	9-30-22	9-30-22	
o-Xylene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Styrene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Bromoform	ND	0.0060	EPA 8260D	9-30-22	9-30-22	
Isopropylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Bromobenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichloropropane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
n-Propylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
2-Chlorotoluene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
4-Chlorotoluene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,3,5-Trimethylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
tert-Butylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trimethylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
sec-Butylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,3-Dichlorobenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
p-Isopropyltoluene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,4-Dichlorobenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,2-Dichlorobenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
n-Butylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromo-3-chloropropane	e ND	0.0060	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Hexachlorobutadiene	ND	0.0060	EPA 8260D	9-30-22	9-30-22	
Naphthalene	ND	0.0060	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichlorobenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	75-130				
Toluene-d8	105	78-128				
4-Bromofluorobenzene	109	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW4-9-27-22-20'					
Laboratory ID:	09-309-08					
Dichlorodifluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chloromethane	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Vinyl Chloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromomethane	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Chloroethane	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Trichlorofluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Acetone	ND	0.054	EPA 8260D	9-30-22	9-30-22	
lodomethane	ND	0.0076	EPA 8260D	9-30-22	9-30-22	
Carbon Disulfide	ND	0.0016	EPA 8260D	9-30-22	9-30-22	
Methylene Chloride	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Vinyl Acetate	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
2,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Butanone	ND	0.011	EPA 8260D	9-30-22	9-30-22	
Bromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chloroform	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Carbon Tetrachloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Benzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Trichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Dibromomethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromodichloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Methyl Isobutyl Ketone	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Toluene	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
(trans) 1,3-Dichloropropene	e ND	0.0011	EPA 8260D	9-30-22	9-30-22	

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW4-9-27-22-20'					
Laboratory ID:	09-309-08					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Tetrachloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Hexanone	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Dibromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromoethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Ethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
m,p-Xylene	ND	0.0022	EPA 8260D	9-30-22	9-30-22	
o-Xylene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Styrene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromoform	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Isopropylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Propylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
4-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
tert-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
sec-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
p-Isopropyltoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromo-3-chloropropane	e ND	0.0054	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Hexachlorobutadiene	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Naphthalene	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	75-130				
Toluene-d8	105	78-128				
4-Bromofluorobenzene	107	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW2-9-28-22-13'					
Laboratory ID:	09-309-09					
Dichlorodifluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chloromethane	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Vinyl Chloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromomethane	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Chloroethane	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Trichlorofluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Acetone	0.13	0.054	EPA 8260D	9-30-22	9-30-22	
lodomethane	ND	0.0075	EPA 8260D	9-30-22	9-30-22	
Carbon Disulfide	ND	0.0016	EPA 8260D	9-30-22	9-30-22	
Methylene Chloride	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Vinyl Acetate	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
2,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Butanone	0.022	0.011	EPA 8260D	9-30-22	9-30-22	
Bromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chloroform	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Carbon Tetrachloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Benzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Trichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Dibromomethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromodichloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Methyl Isobutyl Ketone	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Toluene	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW2-9-28-22-13'					
Laboratory ID:	09-309-09					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Tetrachloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Hexanone	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Dibromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromoethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Ethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
m,p-Xylene	ND	0.0021	EPA 8260D	9-30-22	9-30-22	
o-Xylene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Styrene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromoform	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Isopropylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Propylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
4-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
tert-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
sec-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
p-Isopropyltoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromo-3-chloropropane	e ND	0.0054	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Hexachlorobutadiene	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Naphthalene	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	75-130				
Toluene-d8	102	78-128				
4-Bromofluorobenzene	106	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW2-9-28-22-18'					
Laboratory ID:	09-309-10					
Dichlorodifluoromethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Chloromethane	ND	0.0061	EPA 8260D	9-30-22	9-30-22	
Vinyl Chloride	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Bromomethane	ND	0.0061	EPA 8260D	9-30-22	9-30-22	
Chloroethane	ND	0.0061	EPA 8260D	9-30-22	9-30-22	
Trichlorofluoromethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Acetone	ND	0.061	EPA 8260D	9-30-22	9-30-22	
lodomethane	ND	0.0086	EPA 8260D	9-30-22	9-30-22	
Carbon Disulfide	ND	0.0018	EPA 8260D	9-30-22	9-30-22	
Methylene Chloride	ND	0.0061	EPA 8260D	9-30-22	9-30-22	
(trans) 1,2-Dichloroethene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Methyl t-Butyl Ether	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Vinyl Acetate	ND	0.0061	EPA 8260D	9-30-22	9-30-22	
2,2-Dichloropropane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
2-Butanone	ND	0.012	EPA 8260D	9-30-22	9-30-22	
Bromochloromethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Chloroform	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Carbon Tetrachloride	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloropropene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Benzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloroethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Trichloroethene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloropropane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Dibromomethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Bromodichloromethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
(cis) 1,3-Dichloropropene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Methyl Isobutyl Ketone	ND	0.0061	EPA 8260D	9-30-22	9-30-22	
Toluene	ND	0.0061	EPA 8260D	9-30-22	9-30-22	
(trans) 1,3-Dichloropropene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW2-9-28-22-18'					
Laboratory ID:	09-309-10					
1,1,2-Trichloroethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Tetrachloroethene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,3-Dichloropropane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
2-Hexanone	ND	0.0061	EPA 8260D	9-30-22	9-30-22	
Dibromochloromethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromoethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Chlorobenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Ethylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
m,p-Xylene	ND	0.0024	EPA 8260D	9-30-22	9-30-22	
o-Xylene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Styrene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Bromoform	ND	0.0061	EPA 8260D	9-30-22	9-30-22	
Isopropylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Bromobenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichloropropane	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
n-Propylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
2-Chlorotoluene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
4-Chlorotoluene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,3,5-Trimethylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
tert-Butylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trimethylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
sec-Butylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,3-Dichlorobenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
p-Isopropyltoluene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,4-Dichlorobenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,2-Dichlorobenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
n-Butylbenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromo-3-chloropropane	e ND	0.0061	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Hexachlorobutadiene	ND	0.0061	EPA 8260D	9-30-22	9-30-22	
Naphthalene	ND	0.0061	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichlorobenzene	ND	0.0012	EPA 8260D	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	75-130				
Toluene-d8	103	78-128				
4-Bromofluorobenzene	103	71-130				

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW1-9-28-22-10'					
Laboratory ID:	09-309-11					
Dichlorodifluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chloromethane	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Vinyl Chloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromomethane	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Chloroethane	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Trichlorofluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Acetone	ND	0.054	EPA 8260D	9-30-22	9-30-22	
lodomethane	ND	0.0076	EPA 8260D	9-30-22	9-30-22	
Carbon Disulfide	ND	0.0016	EPA 8260D	9-30-22	9-30-22	
Methylene Chloride	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Vinyl Acetate	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
2,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Butanone	ND	0.011	EPA 8260D	9-30-22	9-30-22	
Bromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chloroform	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Carbon Tetrachloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Benzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Trichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Dibromomethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromodichloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Methyl Isobutyl Ketone	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Toluene	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	

29

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW1-9-28-22-10'					
Laboratory ID:	09-309-11					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Tetrachloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Hexanone	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Dibromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromoethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Ethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
m,p-Xylene	ND	0.0022	EPA 8260D	9-30-22	9-30-22	
o-Xylene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Styrene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromoform	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Isopropylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Propylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
4-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
tert-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
sec-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
p-Isopropyltoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromo-3-chloropropane	e ND	0.0054	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Hexachlorobutadiene	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
Naphthalene	ND	0.0054	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	75-130				
Toluene-d8	103	78-128				
4-Bromofluorobenzene	109	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW1-9-28-22-19'					
Laboratory ID:	09-309-12					
Dichlorodifluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chloromethane	ND	0.0056	EPA 8260D	9-30-22	9-30-22	
Vinyl Chloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromomethane	ND	0.0056	EPA 8260D	9-30-22	9-30-22	
Chloroethane	ND	0.0056	EPA 8260D	9-30-22	9-30-22	
Trichlorofluoromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Acetone	ND	0.056	EPA 8260D	9-30-22	9-30-22	
lodomethane	ND	0.0079	EPA 8260D	9-30-22	9-30-22	
Carbon Disulfide	0.0022	0.0017	EPA 8260D	9-30-22	9-30-22	Y
Methylene Chloride	ND	0.0056	EPA 8260D	9-30-22	9-30-22	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Methyl t-Butyl Ether	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Vinyl Acetate	ND	0.0056	EPA 8260D	9-30-22	9-30-22	
2,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Butanone	ND	0.011	EPA 8260D	9-30-22	9-30-22	
Bromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chloroform	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Carbon Tetrachloride	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Benzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Trichloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Dibromomethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromodichloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Methyl Isobutyl Ketone	ND	0.0056	EPA 8260D	9-30-22	9-30-22	
Toluene	ND	0.0056	EPA 8260D	9-30-22	9-30-22	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW1-9-28-22-19'					
Laboratory ID:	09-309-12					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Tetrachloroethene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Hexanone	ND	0.0056	EPA 8260D	9-30-22	9-30-22	
Dibromochloromethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromoethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Chlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Ethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
m,p-Xylene	ND	0.0023	EPA 8260D	9-30-22	9-30-22	
o-Xylene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Styrene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromoform	ND	0.0056	EPA 8260D	9-30-22	9-30-22	
Isopropylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Bromobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Propylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
2-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
4-Chlorotoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
tert-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
sec-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
p-Isopropyltoluene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
n-Butylbenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromo-3-chloropropane	e ND	0.0056	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Hexachlorobutadiene	ND	0.0056	EPA 8260D	9-30-22	9-30-22	
Naphthalene	ND	0.0056	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260D	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	75-130				
Toluene-d8	102	78-128				
4-Bromofluorobenzene	109	71-130				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0930S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Chloromethane	ND	0.0050	EPA 8260D	9-30-22	9-30-22	
Vinyl Chloride	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Bromomethane	ND	0.0050	EPA 8260D	9-30-22	9-30-22	
Chloroethane	ND	0.0050	EPA 8260D	9-30-22	9-30-22	
Trichlorofluoromethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Acetone	ND	0.050	EPA 8260D	9-30-22	9-30-22	
lodomethane	ND	0.0070	EPA 8260D	9-30-22	9-30-22	
Carbon Disulfide	ND	0.0015	EPA 8260D	9-30-22	9-30-22	
Methylene Chloride	ND	0.0050	EPA 8260D	9-30-22	9-30-22	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Vinyl Acetate	ND	0.0050	EPA 8260D	9-30-22	9-30-22	
2,2-Dichloropropane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
2-Butanone	ND	0.010	EPA 8260D	9-30-22	9-30-22	
Bromochloromethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Chloroform	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Carbon Tetrachloride	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1-Dichloropropene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Benzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Trichloroethene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2-Dichloropropane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Dibromomethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Bromodichloromethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260D	9-30-22	9-30-22	
Toluene	ND	0.0050	EPA 8260D	9-30-22	9-30-22	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0930S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Tetrachloroethene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,3-Dichloropropane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
2-Hexanone	ND	0.0050	EPA 8260D	9-30-22	9-30-22	
Dibromochloromethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromoethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Chlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Ethylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
m,p-Xylene	ND	0.0020	EPA 8260D	9-30-22	9-30-22	
o-Xylene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Styrene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Bromoform	ND	0.0050	EPA 8260D	9-30-22	9-30-22	
Isopropylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Bromobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
n-Propylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
2-Chlorotoluene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
4-Chlorotoluene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
tert-Butylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
sec-Butylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
p-Isopropyltoluene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
n-Butylbenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260D	9-30-22	9-30-22	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Hexachlorobutadiene	ND	0.0050	EPA 8260D	9-30-22	9-30-22	
Naphthalene	ND	0.0050	EPA 8260D	9-30-22	9-30-22	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260D	9-30-22	9-30-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	75-130				
Toluene-d8	104	78-128				
4-Bromofluorobenzene	106	71-130				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: October 10, 2022 Samples Submitted: September 29, 2022 Laboratory Reference: 2209-309 Project: E2022/0805; 1201 S. 1st St Yakima

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

0.0				Per	cent	Recovery		RPD	
Analyte	Res	ult	Spike Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS									
Laboratory ID:	SB09	30S1							
	SB	SBD	SB SBD	SB	SBD				
Dichlorodifluoromethane	0.0516	0.0534	0.0500 0.0500	103	107	30-160	3	26	
Chloromethane	0.0550	0.0566	0.0500 0.0500	110	113	59-131	3	26	
Vinyl Chloride	0.0563	0.0591	0.0500 0.0500	113	118	68-136	5	23	
Bromomethane	0.0544	0.0607	0.0500 0.0500	109	121	48-155	11	32	
Chloroethane	0.0881	0.0878	0.0500 0.0500	176	176	67-141	0	16	I,I
Trichlorofluoromethane	0.0518	0.0562	0.0500 0.0500	104	112	76-127	8	19	
1,1-Dichloroethene	0.0599	0.0627	0.0500 0.0500	120	125	75-129	5	19	
Acetone	0.0569	0.0592	0.0500 0.0500	114	118	49-158	4	37	
lodomethane	0.0357	0.0376	0.0500 0.0500	71	75	37-140	5	27	
Carbon Disulfide	0.0335	0.0354	0.0500 0.0500	67	71	41-143	6	19	
Methylene Chloride	0.0586	0.0605	0.0500 0.0500	117	121	60-124	3	18	
(trans) 1,2-Dichloroethene	0.0572	0.0608	0.0500 0.0500	114	122	79-133	6	15	
Methyl t-Butyl Ether	0.0524	0.0539	0.0500 0.0500	105	108	73-125	3	17	
1,1-Dichloroethane	0.0577	0.0606	0.0500 0.0500	115	121	79-125	5	17	
Vinyl Acetate	0.0472	0.0484	0.0500 0.0500	94	97	51-145	3	41	
2,2-Dichloropropane	0.0541	0.0580	0.0500 0.0500	108	116	79-126	7	18	
(cis) 1,2-Dichloroethene	0.0563	0.0598	0.0500 0.0500	113	120	75-131	6	15	
2-Butanone	0.0537	0.0567	0.0500 0.0500	107	113	54-145	5	32	
Bromochloromethane	0.0562	0.0576	0.0500 0.0500	112	115	80-126	2	15	
Chloroform	0.0540	0.0562	0.0500 0.0500	108	112	80-123	4	15	
1,1,1-Trichloroethane	0.0532	0.0560	0.0500 0.0500	106	112	78-124	5	21	
Carbon Tetrachloride	0.0524	0.0547	0.0500 0.0500	105	109	74-127	4	18	
1,1-Dichloropropene	0.0566	0.0605	0.0500 0.0500	113	121	80-123	7	15	
Benzene	0.0527	0.0544	0.0500 0.0500	105	109	80-122	3	18	
1,2-Dichloroethane	0.0544	0.0553	0.0500 0.0500	109	111	75-124	2	15	
Trichloroethene	0.0516	0.0554	0.0500 0.0500	103	111	80-129	7	18	
1,2-Dichloropropane	0.0561	0.0585	0.0500 0.0500	112	117	80-123	4	15	
Dibromomethane	0.0507	0.0518	0.0500 0.0500	101	104	80-123	2	15	
Bromodichloromethane	0.0540	0.0565	0.0500 0.0500	108	113	80-129	5	15	
(cis) 1,3-Dichloropropene	0.0534	0.0558	0.0500 0.0500	107	112	80-130	4	15	
Methyl Isobutyl Ketone	0.0537	0.0555	0.0500 0.0500	107	111	63-137	3	27	
Toluene	0.0525	0.0549	0.0500 0.0500	105	110	80-120	4	18	
(trans) 1,3-Dichloropropene	0.0496	0.0526	0.0500 0.0500	99	105	80-124	6	15	

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Per	cent	Recovery		RPD	
Analyte	Res	ult	Spike Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS									
Laboratory ID:	SB09	30S1							
	SB	SBD	SB SBD	SB	SBD				
1,1,2-Trichloroethane	0.0463	0.0484	0.0500 0.0500	93	97	80-120	4	15	
Tetrachloroethene	0.0476	0.0516	0.0500 0.0500	95	103	77-126	8	15	
1,3-Dichloropropane	0.0495	0.0517	0.0500 0.0500	99	103	77-123	4	15	
2-Hexanone	0.0480	0.0505	0.0500 0.0500	96	101	53-137	5	29	
Dibromochloromethane	0.0492	0.0516	0.0500 0.0500	98	103	80-128	5	16	
1,2-Dibromoethane	0.0512	0.0543	0.0500 0.0500	102	109	80-122	6	20	
Chlorobenzene	0.0474	0.0515	0.0500 0.0500	95	103	80-120	8	18	
1,1,1,2-Tetrachloroethane	0.0480	0.0515	0.0500 0.0500	96	103	80-120	7	15	
Ethylbenzene	0.0483	0.0521	0.0500 0.0500	97	104	80-120	8	15	
m,p-Xylene	0.0948	0.102	0.100 0.100	95	102	80-120	7	15	
o-Xylene	0.0471	0.0506	0.0500 0.0500	94	101	80-120	7	15	
Styrene	0.0484	0.0526	0.0500 0.0500	97	105	80-122	8	15	
Bromoform	0.0474	0.0509	0.0500 0.0500	95	102	78-126	7	15	
Isopropylbenzene	0.0486	0.0533	0.0500 0.0500	97	107	80-125	9	15	
Bromobenzene	0.0460	0.0484	0.0500 0.0500	92	97	79-124	5	15	
1,1,2,2-Tetrachloroethane	0.0498	0.0515	0.0500 0.0500	100	103	75-122	3	17	
1,2,3-Trichloropropane	0.0494	0.0520	0.0500 0.0500	99	104	72-125	5	20	
n-Propylbenzene	0.0472	0.0499	0.0500 0.0500	94	100	77-126	6	16	
2-Chlorotoluene	0.0459	0.0488	0.0500 0.0500	92	98	75-128	6	15	
4-Chlorotoluene	0.0463	0.0499	0.0500 0.0500	93	100	78-127	7	16	
1,3,5-Trimethylbenzene	0.0465	0.0496	0.0500 0.0500	93	99	77-128	6	15	
tert-Butylbenzene	0.0464	0.0486	0.0500 0.0500	93	97	73-130	5	20	
1,2,4-Trimethylbenzene	0.0448	0.0479	0.0500 0.0500	90	96	77-125	7	16	
sec-Butylbenzene	0.0463	0.0507	0.0500 0.0500	93	101	75-130	9	17	
1,3-Dichlorobenzene	0.0453	0.0487	0.0500 0.0500	91	97	78-123	7	17	
p-Isopropyltoluene	0.0460	0.0493	0.0500 0.0500	92	99	75-130	7	18	
1,4-Dichlorobenzene	0.0449	0.0483	0.0500 0.0500	90	97	77-121	7	17	
1,2-Dichlorobenzene	0.0453	0.0488	0.0500 0.0500	91	98	80-120	7	15	
n-Butylbenzene	0.0480	0.0520	0.0500 0.0500	96	104	76-131	8	20	
1,2-Dibromo-3-chloropropane	0.0457	0.0499	0.0500 0.0500	91	100	61-137	9	28	
1,2,4-Trichlorobenzene	0.0434	0.0480	0.0500 0.0500	87	96	77-127	10	17	
Hexachlorobutadiene	0.0446	0.0488	0.0500 0.0500	89	98	77-125	9	22	
Naphthalene	0.0441	0.0488	0.0500 0.0500	88	98	68-129	10	19	
1,2,3-Trichlorobenzene	0.0440	0.0482	0.0500 0.0500	88	96	77-124	9	19	
Surrogate:									
Dibromofluoromethane				104	103	75-130			
Toluene-d8				105	104	78-128			
4-Bromofluorobenzene				107	108	71-130			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

36

Matrix: Soil Units: mg/Kg (ppm)

	,			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3-9-27-22-15'					
Laboratory ID:	09-309-01					
Arsenic	ND	11	EPA 6010D	10-4-22	10-4-22	
Barium	44	2.6	EPA 6010D	10-4-22	10-4-22	
Cadmium	ND	0.53	EPA 6010D	10-4-22	10-4-22	
Chromium	6.9	0.53	EPA 6010D	10-4-22	10-4-22	
Lead	ND	5.3	EPA 6010D	10-4-22	10-4-22	
Mercury	ND	0.26	EPA 7471B	10-6-22	10-6-22	
Selenium	ND	11	EPA 6010D	10-4-22	10-4-22	
Silver	ND	1.1	EPA 6010D	10-4-22	10-4-22	

Client ID:	MW3-9-27-22-23'					
Laboratory ID:	09-309-02					
Arsenic	ND	11	EPA 6010D	10-4-22	10-4-22	
Barium	41	2.7	EPA 6010D	10-4-22	10-4-22	
Cadmium	ND	0.54	EPA 6010D	10-4-22	10-4-22	
Chromium	7.1	0.54	EPA 6010D	10-4-22	10-4-22	
Lead	ND	5.4	EPA 6010D	10-4-22	10-4-22	
Mercury	ND	0.27	EPA 7471B	10-6-22	10-6-22	
Selenium	ND	11	EPA 6010D	10-4-22	10-4-22	
Silver	ND	1.1	EPA 6010D	10-4-22	10-4-22	

Client ID:	MW6-9-27-22-15'					
Laboratory ID:	09-309-03					
Arsenic	ND	10	EPA 6010D	10-4-22	10-4-22	
Barium	34	2.6	EPA 6010D	10-4-22	10-4-22	
Cadmium	ND	0.51	EPA 6010D	10-4-22	10-4-22	
Chromium	9.1	0.51	EPA 6010D	10-4-22	10-4-22	
Lead	ND	5.1	EPA 6010D	10-4-22	10-4-22	
Mercury	ND	0.26	EPA 7471B	10-6-22	10-6-22	
Selenium	ND	10	EPA 6010D	10-4-22	10-4-22	
Silver	ND	1.0	EPA 6010D	10-4-22	10-4-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

	,			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-9-27-22-21'					
Laboratory ID:	09-309-04					
Arsenic	ND	10	EPA 6010D	10-4-22	10-4-22	
Barium	65	2.6	EPA 6010D	10-4-22	10-4-22	
Cadmium	ND	0.51	EPA 6010D	10-4-22	10-4-22	
Chromium	9.5	0.51	EPA 6010D	10-4-22	10-4-22	
Lead	11	5.1	EPA 6010D	10-4-22	10-4-22	
Mercury	ND	0.26	EPA 7471B	10-6-22	10-6-22	
Selenium	ND	10	EPA 6010D	10-4-22	10-4-22	
Silver	ND	1.0	EPA 6010D	10-4-22	10-4-22	

Client ID:	MW5-9-27-22-15'					
Laboratory ID:	09-309-05					
Arsenic	ND	10	EPA 6010D	10-4-22	10-4-22	
Barium	45	2.6	EPA 6010D	10-4-22	10-4-22	
Cadmium	ND	0.51	EPA 6010D	10-4-22	10-4-22	
Chromium	9.2	0.51	EPA 6010D	10-4-22	10-4-22	
Lead	ND	5.1	EPA 6010D	10-4-22	10-4-22	
Mercury	ND	0.26	EPA 7471B	10-6-22	10-6-22	
Selenium	ND	10	EPA 6010D	10-4-22	10-4-22	
Silver	ND	1.0	EPA 6010D	10-4-22	10-4-22	

Client ID:	MW5-9-27-22-20'					
Laboratory ID:	09-309-06					
Arsenic	ND	11	EPA 6010D	10-4-22	10-4-22	
Barium	53	2.7	EPA 6010D	10-4-22	10-4-22	
Cadmium	ND	0.54	EPA 6010D	10-4-22	10-4-22	
Chromium	13	0.54	EPA 6010D	10-4-22	10-4-22	
Lead	ND	5.4	EPA 6010D	10-4-22	10-4-22	
Mercury	ND	0.27	EPA 7471B	10-6-22	10-6-22	
Selenium	ND	11	EPA 6010D	10-4-22	10-4-22	
Silver	ND	1.1	EPA 6010D	10-4-22	10-4-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Matrix: Soil Units: mg/Kg (ppm)

	,			Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW4-9-27-22-16'					
Laboratory ID:	09-309-07					
Arsenic	ND	10	EPA 6010D	10-4-22	10-4-22	
Barium	46	2.6	EPA 6010D	10-4-22	10-4-22	
Cadmium	ND	0.52	EPA 6010D	10-4-22	10-4-22	
Chromium	8.1	0.52	EPA 6010D	10-4-22	10-4-22	
Lead	5.9	5.2	EPA 6010D	10-4-22	10-4-22	
Mercury	ND	0.26	EPA 7471B	10-6-22	10-6-22	
Selenium	ND	10	EPA 6010D	10-4-22	10-4-22	
Silver	ND	1.0	EPA 6010D	10-4-22	10-4-22	

Client ID:	MW4-9-27-22-20'					
Laboratory ID:	09-309-08					
Arsenic	ND	11	EPA 6010D	10-4-22	10-4-22	
Barium	30	2.6	EPA 6010D	10-4-22	10-4-22	
Cadmium	ND	0.53	EPA 6010D	10-4-22	10-4-22	
Chromium	5.8	0.53	EPA 6010D	10-4-22	10-4-22	
Lead	ND	5.3	EPA 6010D	10-4-22	10-4-22	
Mercury	ND	0.26	EPA 7471B	10-6-22	10-6-22	
Selenium	ND	11	EPA 6010D	10-4-22	10-4-22	
Silver	ND	1.1	EPA 6010D	10-4-22	10-4-22	

Client ID:	MW2-9-28-22-13'					
Laboratory ID:	09-309-09					
Arsenic	ND	10	EPA 6010D	10-4-22	10-4-22	
Barium	46	2.6	EPA 6010D	10-4-22	10-4-22	
Cadmium	ND	0.52	EPA 6010D	10-4-22	10-4-22	
Chromium	11	0.52	EPA 6010D	10-4-22	10-4-22	
Lead	9.2	5.2	EPA 6010D	10-4-22	10-4-22	
Mercury	ND	0.26	EPA 7471B	10-6-22	10-6-22	
Selenium	ND	10	EPA 6010D	10-4-22	10-4-22	
Silver	ND	1.0	EPA 6010D	10-4-22	10-4-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW2-9-28-22-18'					
Laboratory ID:	09-309-10					
Arsenic	ND	11	EPA 6010D	10-4-22	10-4-22	
Barium	45	2.7	EPA 6010D	10-4-22	10-4-22	
Cadmium	ND	0.55	EPA 6010D	10-4-22	10-4-22	
Chromium	15	0.55	EPA 6010D	10-4-22	10-4-22	
Lead	ND	5.5	EPA 6010D	10-4-22	10-4-22	
Mercury	ND	0.27	EPA 7471B	10-6-22	10-6-22	
Selenium	ND	11	EPA 6010D	10-4-22	10-4-22	
Silver	ND	1.1	EPA 6010D	10-4-22	10-4-22	

Client ID:	MW1-9-28-22-10'					
Laboratory ID:	09-309-11					
Arsenic	ND	10	EPA 6010D	10-4-22	10-4-22	
Barium	48	2.6	EPA 6010D	10-4-22	10-4-22	
Cadmium	ND	0.51	EPA 6010D	10-4-22	10-4-22	
Chromium	8.6	0.51	EPA 6010D	10-4-22	10-4-22	
Lead	ND	5.1	EPA 6010D	10-4-22	10-4-22	
Mercury	ND	0.26	EPA 7471B	10-6-22	10-6-22	
Selenium	ND	10	EPA 6010D	10-4-22	10-4-22	
Silver	ND	1.0	EPA 6010D	10-4-22	10-4-22	

Client ID:	MW1-9-28-22-19'					
Laboratory ID:	09-309-12					
Arsenic	ND	11	EPA 6010D	10-4-22	10-4-22	
Barium	56	2.7	EPA 6010D	10-4-22	10-4-22	
Cadmium	ND	0.54	EPA 6010D	10-4-22	10-4-22	
Chromium	16	0.54	EPA 6010D	10-4-22	10-4-22	
Lead	ND	5.4	EPA 6010D	10-4-22	10-4-22	
Mercury	ND	0.27	EPA 7471B	10-6-22	10-6-22	
Selenium	ND	11	EPA 6010D	10-4-22	10-4-22	
Silver	ND	1.1	EPA 6010D	10-4-22	10-4-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1004SM1					
Arsenic	ND	10	EPA 6010D	10-4-22	10-4-22	
Barium	ND	2.5	EPA 6010D	10-4-22	10-4-22	
Cadmium	ND	0.50	EPA 6010D	10-4-22	10-4-22	
Chromium	ND	0.50	EPA 6010D	10-4-22	10-4-22	
Lead	ND	5.0	EPA 6010D	10-4-22	10-4-22	
Selenium	ND	10	EPA 6010D	10-4-22	10-4-22	
Silver	ND	1.0	EPA 6010D	10-4-22	10-4-22	
Laboratory ID:	MB1006S1					
Mercury	ND	0.25	EPA 7471B	10-6-22	10-6-22	

					Source	Pe	rcent	Recovery		RPD		
Analyte	Re	sult	Spike	Level	Result	Recovery		Limits	RPD	Limit	Flags	
DUPLICATE												
Laboratory ID:	09-27	74-01										
	ORIG	DUP										
Arsenic	ND	ND	NA	NA			NA	NA	NA	20		
Barium	136	123	NA	NA			NA	NA	10	20		
Cadmium	ND	ND	NA	NA			NA	NA	NA	20		
Chromium	44.4	47.3	NA	NA			NA	NA	6	20		
Lead	7.10	6.05	NA	NA			NA	NA	16	20		
Selenium	ND	ND	NA	NA			NA	NA	NA	20		
Silver	ND	ND	NA	NA		NA		NA	NA	20		
Laboratory ID:	09-27	74-01										
Mercury	ND	ND	NA	NA			NA	NA	NA	20		
MATRIX SPIKES												
Laboratory ID:	09-27	74-01										
,	MS	MSD	MS	MSD		MS	MSD					
Arsenic	94.7	92.1	100	100	ND	95	92	75-125	3	20		
Barium	224	221	100	100	136	88	85	75-125	2	20		
Cadmium	42.5	42.2	50.0	50.0	ND	85	84	75-125	1	20		
Chromium	136	135	100	100	44.4	92	90	75-125	1	20		
Lead	251	248	250	250	7.10	97	96	75-125	1	20		
Selenium	87.7	86.8	100	100	ND	88	87	75-125	1	20		
Silver	20.6	20.5	25.0	25.0	ND	82	82	75-125	1	20		
Laboratory ID:	09-27	74-01										
Mercury	0.546	0.544	0.500	0.500	0.0563	98	98	80-120	0	20		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

41

% MOISTURE

		Date
Lab ID	% Moisture	Analyzed
09-309-01	5	9-30-22
09-309-02	8	9-30-22
09-309-03	3	9-30-22
09-309-04	2	9-30-22
09-309-05	2	9-30-22
09-309-06	8	9-30-22
09-309-07	4	9-30-22
09-309-08	5	9-30-22
09-309-09	3	9-30-22
09-309-10	9	9-30-22
09-309-11	3	9-30-22
09-309-12	7	9-30-22
	Lab ID 09-309-01 09-309-02 09-309-03 09-309-04 09-309-05 09-309-06 09-309-07 09-309-07 09-309-08 09-309-09 09-309-10 09-309-11 09-309-12	Lab ID % Moisture 09-309-01 5 09-309-02 8 09-309-03 3 09-309-04 2 09-309-05 2 09-309-06 8 09-309-07 4 09-309-08 5 09-309-09 3 09-309-10 9 09-309-11 3 09-309-12 7

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Sign	10 MUZ-9-	7 MW2-9-	8 MU4-9-	7 MW4-9-	4 MW5-9-:	5 MW5-9-	4 MW6-9-:	3 MW6-9-2	2 MW3-9-2	1 MN3-9-2	Lab ID Sample	Window by. Y.Me	P. TRASU SINER	1201 SLITST.	E2022/08	Project Number	Phone: (425) 883-	Analytical Laboratory	Environm
					Vaniletalla	ALXIA	ature /	18-22-18'	28-22-13	27-22-20'	27-22-16	77-22-20	27-22-15	27-22-21	27-22-15	7-72-23'	7-22-15	Identification	NEL	B. BERLERON	YAKIMA	20		3881 • www.onsite-env.com	 Testing Services Redmond WA 08052 	nental Inc.
					2000	Brec	Company	4 0910 V	1-22-22 0900 1	4 1715 V	1710	1520	1515	1310	1305	1 1110	427-22 1105 Sol	Date Time Sampled Sampled Matrix	(other)		Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	(Check One)	Turnaround Request (in working days)	Chain o
					1/19/22 1300	9-28-22 1400	Date Time	444									5 XXX	NWTF NWTF NWTF NWTF Volati Halog	PH-HCI PH-GX/ PH-GX PH-DX les 826 enated	D BTEX (8 (Acid / 5 0 Volatile	ers 3021 [] 8 6G Clea is 8260 ers 00/	260[]) n-up[];)		Laboratory Number	Custody
	Data Package: Standard Devel III Devel IV						Comments/Special Instructions	*									×	Semity (with I PAHs PCBs Organ Organ Chlori Total I Total I Total I Total I	volatile: ow-lev 8270/5 8082 wochlori ophosy nated / RCRA N Metals	s 8270/5 el PAHs SIM (low ine Pest phorus Acid He Metals grease	ers Only SIM .) r-level) cicides 8 Pesticid rbicides	081 es 827(8151)/SIM		no-309	Page 1 of 2
C. C. L. C. Marrie								Ł								-	×	% Mo	sture							

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	Project Number: E2022/0805 Project Name: 1201 S. 15757. YAKIMA Project Manager: PTABUSINER / B. BERLERAN Sampled by: Y. MEYEP MUI-9-28-22-10' PMUI-9-28-22-10' PMUI-9-28-22-10'	14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Analytical Laboratory Testing Services
Reviewed/Date					AL ORE	Brec	Company	Same Day 1 Day 2 Days 3 Days X Standard (7 Days) Date Time Sampled Sampled Matrix 7:28-22 1030 Soic 1 040 L	(in working days) (Check One)	Chain c
-					9/12/12/1800	9-28-22 1400	Date Time	Number of Containers NWTPH-HCID NWTPH-Gx/BTEX (8021] 8260]) NWTPH-Gx/BTEX (8021] 8260]) NWTPH-Gx/BTEX (8021] 8260]) NWTPH-Gx NWTPH-Gx NWTPH-DX (Acid / SG Clean-up]) Volatiles 8260 Halogenated Volatiles 8260	Laboratory Numbe	of Custody
Chromatograms with final report 🗌 Electronic Data Deliverables	Data Package: Standard 🗌 Level III 🗌 Level IV 🗍					0	Comments/Special Instructions	EDB EPA 8011 (Waters Only) Semivolatiles 8270/SIM (with low-level PAHs) PAHs 8270/SIM (low-level) PCBs 8082 Organochlorine Pesticides 8081 Organophosphorus Pesticides 8081 Organophosphorus Pesticides 8151 Chlorinated Acid Herbicides 8151 Total RCRA Metals Total MTCA Metals TCLP Metals HEM (oil and grease) 1664 EOB		Page 2 of 2
(EDDs)								X % Moisture	_	

October 10, 2022

Peter Trabusiner Blue Mountain Environmental, Inc. 1500 Adair Drive Richland, WA 99352

Re: Analytical Data for Project E2022/0805; 1201 S. 1st St Yakima Laboratory Reference No. 2210-034

Dear Peter:

Enclosed are the analytical results and associated quality control data for samples submitted on October 5, 2022.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 10, 2022 Samples Submitted: October 5, 2022 Laboratory Reference: 2210-034 Project: E2022/0805; 1201 S. 1st St Yakima

Case Narrative

Samples were collected on October 3, 2022 and received by the laboratory on October 5, 2022. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260D Analysis

The percent recovery for Bromomethane is outside the control limits in the Spike Blank and Spike Blank Duplicate. The method allows for a percentage of the compounds to fall outside of the control limits due to the large number of analytes being spiked.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

GASOLINE RANGE ORGANICS NWTPH-Gx

Matrix: Water						
Units: ug/L (ppb)						
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3-10-3-22-GW					
Laboratory ID:	10-034-01					
Gasoline	ND	100	NWTPH-Gx	10-7-22	10-7-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	65-122				
Client ID:	MW6-10-3-22-GW					
Laboratory ID:	10-034-02					
Gasoline	ND	100	NWTPH-Gx	10-7-22	10-7-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	65-122				
Client ID:	MW5-10-3-22-GW					
Laboratory ID:	10-034-03					
Gasoline	ND	100	NWTPH-Gx	10-7-22	10-7-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	65-122				
Client ID:	MW4-10-3-22-GW					
Laboratory ID:	10-034-04					
Gasoline	ND	100	NWTPH-Gx	10-7-22	10-7-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	65-122				
Client ID:	MW1-10-3-22-GW					
Laboratory ID:	10-034-05					
Gasoline	ND	100	NWTPH-Gx	10-7-22	10-7-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	65-122				
Client ID:	MW2-10-3-22-GW					
Laboratory ID:	10-034-06					
Gasoline	ND	100	NWTPH-Gx	10-7-22	10-7-22	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	65-122				

GASOLINE RANGE ORGANICS NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

							Date	Date)	
Analyte		Result		PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK										
Laboratory ID:		MB1007W1								
Gasoline		ND		100	NW	ГРН-Gx	10-7-22	10-7-2	22	
Surrogate:	Pe	rcent Recove	ry Co	ontrol Lim	its					
Fluorobenzene		101	-	65-122						
					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spik	e Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	10-03	34-01								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA		NA	NA	NA	30	
Surrogate:										
Fluorobenzene						102 102	2 65-122			

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3-10-3-22-GW					
Laboratory ID:	10-034-01					
Diesel Range Organics	ND	0.20	NWTPH-Dx	10-7-22	10-7-22	
Lube Oil Range Organics	ND	0.20	NWTPH-Dx	10-7-22	10-7-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
Client ID:	MW6-10-3-22-GW					
Laboratory ID:	10-034-02					
Diesel Range Organics	ND	0.21	NWTPH-Dx	10-7-22	10-7-22	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	10-7-22	10-7-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	79	50-150				
	10.024.02					
Laboratory ID.	10-034-03	0.01		10 7 00	10 7 00	
Lubo Oil Pango Organics		0.21		10-7-22	10-7-22	
Lube Oli Kange Organics	Porcont Pocovory	Control Limite		10-7-22	10-7-22	
o-Ternhenvl	80	50-150				
o respicily	00	00 100				
Client ID:	MW4-10-3-22-GW					
Laboratory ID:	10-034-04					
Diesel Range Organics	ND	0.21	NWTPH-Dx	10-7-22	10-7-22	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	10-7-22	10-7-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	76	50-150				
Client ID:	MW1-10-3-22-GW					
Laboratory ID:	10-034-05			40 7 00	40 7 00	
Diesel Range Organics	ND	0.20	NWTPH-Dx	10-7-22	10-7-22	
Lube Oil Range Organics		0.20	NWIPH-DX	10-7-22	10-7-22	
Surrogate:	Percent Recovery	Control Limits				
0-Terphenyi	90	50-150				
Client ID:	MW2-10-3-22-GW					
Laboratory ID:	10-034-06					
Diesel Range Organics	ND	0.21	NWTPH-Dx	10-7-22	10-7-22	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	10-7-22	10-7-22	
Surrogate:	Percent Recovery	Control Limits		-		
o-Terphenyl	77	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

5

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1007W1					
Diesel Range Organics	ND	0.16	NWTPH-Dx	10-7-22	10-7-22	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	10-7-22	10-7-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	109	50-150				

Analyte	Res	sult	Spike	Level	Source Result	Perce Recov	ent very	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE											
Laboratory ID:	SB10	07W1									
	ORIG	DUP									
Diesel Fuel #2	0.421	0.407	NA	NA		NA		NA	3	NA	
Surrogate: o-Terphenyl						95	92	50-150			

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3-10-3-22-GW					
Laboratory ID:	10-034-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chloromethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Vinyl Chloride	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromomethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Chloroethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Acetone	ND	5.0	EPA 8260D	10-6-22	10-6-22	
lodomethane	ND	7.1	EPA 8260D	10-6-22	10-6-22	
Carbon Disulfide	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methylene Chloride	ND	1.0	EPA 8260D	10-6-22	10-6-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Vinyl Acetate	ND	1.0	EPA 8260D	10-6-22	10-6-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Butanone	ND	5.0	EPA 8260D	10-6-22	10-6-22	
Bromochloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chloroform	4.8	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Benzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Trichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Dibromomethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromodichloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	10-6-22	10-6-22	
Toluene	ND	1.0	EPA 8260D	10-6-22	10-6-22	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	10-6-22	10-6-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

7

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3-10-3-22-GW					
Laboratory ID:	10-034-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Tetrachloroethene	2.2	0.20	EPA 8260D	10-6-22	10-6-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Hexanone	ND	2.0	EPA 8260D	10-6-22	10-6-22	
Dibromochloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Ethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
m,p-Xylene	ND	0.40	EPA 8260D	10-6-22	10-6-22	
o-Xylene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Styrene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromoform	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Isopropylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
n-Propylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
p-Isopropyltoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
n-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260D	10-6-22	10-6-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Naphthalene	ND	1.3	EPA 8260D	10-6-22	10-6-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	75-127				
Toluene-d8	99	80-127				
4-Bromofluorobenzene	99	78-125				

8

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-10-3-22-GW					
Laboratory ID:	10-034-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chloromethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Vinyl Chloride	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromomethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Chloroethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Acetone	ND	5.0	EPA 8260D	10-6-22	10-6-22	
lodomethane	ND	7.1	EPA 8260D	10-6-22	10-6-22	
Carbon Disulfide	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methylene Chloride	ND	1.0	EPA 8260D	10-6-22	10-6-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Vinyl Acetate	ND	1.0	EPA 8260D	10-6-22	10-6-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Butanone	ND	5.0	EPA 8260D	10-6-22	10-6-22	
Bromochloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chloroform	4.5	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Benzene	0.65	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Trichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Dibromomethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromodichloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	10-6-22	10-6-22	
Toluene	1.0	1.0	EPA 8260D	10-6-22	10-6-22	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	10-6-22	10-6-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW6-10-3-22-GW					
Laboratory ID:	10-034-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Tetrachloroethene	1.5	0.20	EPA 8260D	10-6-22	10-6-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Hexanone	ND	2.0	EPA 8260D	10-6-22	10-6-22	
Dibromochloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Ethylbenzene	0.26	0.20	EPA 8260D	10-6-22	10-6-22	
m,p-Xylene	ND	0.40	EPA 8260D	10-6-22	10-6-22	
o-Xylene	0.24	0.20	EPA 8260D	10-6-22	10-6-22	
Styrene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromoform	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Isopropylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
n-Propylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
p-Isopropyltoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
n-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260D	10-6-22	10-6-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Naphthalene	ND	1.3	EPA 8260D	10-6-22	10-6-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	75-127				
Toluene-d8	97	80-127				
4-Bromofluorobenzene	98	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW5-10-3-22-GW					
Laboratory ID:	10-034-03					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chloromethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Vinyl Chloride	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromomethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Chloroethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Acetone	11	5.0	EPA 8260D	10-6-22	10-6-22	
lodomethane	ND	7.1	EPA 8260D	10-6-22	10-6-22	
Carbon Disulfide	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methylene Chloride	ND	1.0	EPA 8260D	10-6-22	10-6-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Vinyl Acetate	ND	1.0	EPA 8260D	10-6-22	10-6-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Butanone	ND	5.0	EPA 8260D	10-6-22	10-6-22	
Bromochloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chloroform	5.6	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Benzene	1.7	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Trichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Dibromomethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromodichloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	10-6-22	10-6-22	
Toluene	2.2	1.0	EPA 8260D	10-6-22	10-6-22	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	10-6-22	10-6-22	

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW5-10-3-22-GW					
Laboratory ID:	10-034-03					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Tetrachloroethene	1.6	0.20	EPA 8260D	10-6-22	10-6-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Hexanone	2.3	2.0	EPA 8260D	10-6-22	10-6-22	
Dibromochloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Ethylbenzene	0.68	0.20	EPA 8260D	10-6-22	10-6-22	
m,p-Xylene	0.65	0.40	EPA 8260D	10-6-22	10-6-22	
o-Xylene	0.80	0.20	EPA 8260D	10-6-22	10-6-22	
Styrene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromoform	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Isopropylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
n-Propylbenzene	0.34	0.20	EPA 8260D	10-6-22	10-6-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2,4-Trimethylbenzene	0.25	0.20	EPA 8260D	10-6-22	10-6-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
p-Isopropyltoluene	0.30	0.20	EPA 8260D	10-6-22	10-6-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
n-Butylbenzene	0.25	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260D	10-6-22	10-6-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Naphthalene	ND	1.3	EPA 8260D	10-6-22	10-6-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	75-127				
Toluene-d8	95	80-127				
4-Bromofluorobenzene	101	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW4-10-3-22-GW					
Laboratory ID:	10-034-04					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chloromethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Vinyl Chloride	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromomethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Chloroethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Acetone	5.2	5.0	EPA 8260D	10-6-22	10-6-22	
lodomethane	ND	7.1	EPA 8260D	10-6-22	10-6-22	
Carbon Disulfide	0.23	0.20	EPA 8260D	10-6-22	10-6-22	
Methylene Chloride	ND	1.0	EPA 8260D	10-6-22	10-6-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Vinyl Acetate	ND	1.0	EPA 8260D	10-6-22	10-6-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Butanone	ND	5.0	EPA 8260D	10-6-22	10-6-22	
Bromochloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chloroform	3.6	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Benzene	0.67	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Trichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Dibromomethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromodichloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	10-6-22	10-6-22	
Toluene	ND	1.0	EPA 8260D	10-6-22	10-6-22	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	10-6-22	10-6-22	

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW4-10-3-22-GW					
Laboratory ID:	10-034-04					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Tetrachloroethene	1.1	0.20	EPA 8260D	10-6-22	10-6-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Hexanone	ND	2.0	EPA 8260D	10-6-22	10-6-22	
Dibromochloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Ethylbenzene	0.22	0.20	EPA 8260D	10-6-22	10-6-22	
m,p-Xylene	ND	0.40	EPA 8260D	10-6-22	10-6-22	
o-Xylene	0.26	0.20	EPA 8260D	10-6-22	10-6-22	
Styrene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromoform	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Isopropylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
n-Propylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
p-Isopropyltoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
n-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260D	10-6-22	10-6-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Naphthalene	ND	1.3	EPA 8260D	10-6-22	10-6-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	75-127				
Toluene-d8	95	80-127				
4-Bromofluorobenzene	99	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW1-10-3-22-GW					
Laboratory ID:	10-034-05					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chloromethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Vinyl Chloride	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromomethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Chloroethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Acetone	ND	5.0	EPA 8260D	10-6-22	10-6-22	
lodomethane	ND	7.1	EPA 8260D	10-6-22	10-6-22	
Carbon Disulfide	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methylene Chloride	ND	1.0	EPA 8260D	10-6-22	10-6-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Vinyl Acetate	ND	1.0	EPA 8260D	10-6-22	10-6-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Butanone	ND	5.0	EPA 8260D	10-6-22	10-6-22	
Bromochloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chloroform	6.1	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Benzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Trichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Dibromomethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromodichloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	10-6-22	10-6-22	
Toluene	ND	1.0	EPA 8260D	10-6-22	10-6-22	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	10-6-22	10-6-22	

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW1-10-3-22-GW					
Laboratory ID:	10-034-05					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Tetrachloroethene	2.4	0.20	EPA 8260D	10-6-22	10-6-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Hexanone	ND	2.0	EPA 8260D	10-6-22	10-6-22	
Dibromochloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Ethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
m,p-Xylene	ND	0.40	EPA 8260D	10-6-22	10-6-22	
o-Xylene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Styrene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromoform	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Isopropylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
n-Propylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
p-Isopropyltoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
n-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260D	10-6-22	10-6-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Naphthalene	ND	1.3	EPA 8260D	10-6-22	10-6-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	95	75-127				
Toluene-d8	96	80-127				
4-Bromofluorobenzene	100	78-125				

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW2-10-3-22-GW					
Laboratory ID:	10-034-06					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chloromethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Vinyl Chloride	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromomethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Chloroethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Acetone	ND	5.0	EPA 8260D	10-6-22	10-6-22	
lodomethane	ND	7.1	EPA 8260D	10-6-22	10-6-22	
Carbon Disulfide	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methylene Chloride	ND	1.0	EPA 8260D	10-6-22	10-6-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Vinyl Acetate	ND	1.0	EPA 8260D	10-6-22	10-6-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Butanone	ND	5.0	EPA 8260D	10-6-22	10-6-22	
Bromochloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chloroform	5.0	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Benzene	0.62	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Trichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Dibromomethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromodichloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	10-6-22	10-6-22	
Toluene	ND	1.0	EPA 8260D	10-6-22	10-6-22	
(trans) 1,3-Dichloropropene	e ND	0.20	EPA 8260D	10-6-22	10-6-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

17

VOLATILE ORGANICS EPA 8260D
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW2-10-3-22-GW					
Laboratory ID:	10-034-06					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Tetrachloroethene	2.6	0.20	EPA 8260D	10-6-22	10-6-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Hexanone	ND	2.0	EPA 8260D	10-6-22	10-6-22	
Dibromochloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Ethylbenzene	0.44	0.20	EPA 8260D	10-6-22	10-6-22	
m,p-Xylene	ND	0.40	EPA 8260D	10-6-22	10-6-22	
o-Xylene	0.45	0.20	EPA 8260D	10-6-22	10-6-22	
Styrene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromoform	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Isopropylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
n-Propylbenzene	0.30	0.20	EPA 8260D	10-6-22	10-6-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
p-Isopropyltoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
n-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dibromo-3-chloropropane	e ND	1.0	EPA 8260D	10-6-22	10-6-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Naphthalene	ND	1.3	EPA 8260D	10-6-22	10-6-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	75-127				
Toluene-d8	98	80-127				
4-Bromofluorobenzene	102	78-125				

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

Matrix: Water Units: ug/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1006W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chloromethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Vinyl Chloride	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromomethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Chloroethane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Trichlorofluoromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Acetone	ND	5.0	EPA 8260D	10-6-22	10-6-22	
lodomethane	ND	7.1	EPA 8260D	10-6-22	10-6-22	
Carbon Disulfide	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methylene Chloride	ND	1.0	EPA 8260D	10-6-22	10-6-22	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methyl t-Butyl Ether	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Vinyl Acetate	ND	1.0	EPA 8260D	10-6-22	10-6-22	
2,2-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Butanone	ND	5.0	EPA 8260D	10-6-22	10-6-22	
Bromochloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chloroform	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,1-Trichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Carbon Tetrachloride	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1-Dichloropropene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Benzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Trichloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Dibromomethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromodichloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260D	10-6-22	10-6-22	
Toluene	ND	1.0	EPA 8260D	10-6-22	10-6-22	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260D	10-6-22	10-6-22	

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1006W1					
1,1,2-Trichloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Tetrachloroethene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,3-Dichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Hexanone	ND	2.0	EPA 8260D	10-6-22	10-6-22	
Dibromochloromethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dibromoethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Chlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Ethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
m,p-Xylene	ND	0.40	EPA 8260D	10-6-22	10-6-22	
o-Xylene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Styrene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromoform	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Isopropylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Bromobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2,3-Trichloropropane	ND	0.20	EPA 8260D	10-6-22	10-6-22	
n-Propylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
2-Chlorotoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
4-Chlorotoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
tert-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
sec-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,3-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
p-Isopropyltoluene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,4-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
n-Butylbenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260D	10-6-22	10-6-22	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Hexachlorobutadiene	ND	1.0	EPA 8260D	10-6-22	10-6-22	
Naphthalene	ND	1.3	EPA 8260D	10-6-22	10-6-22	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260D	10-6-22	10-6-22	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	75-127				
Toluene-d8	97	80-127				
4-Bromofluorobenzene	99	78-125				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

20

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 1 of 2

_

.

_

Matrix: Water Units: ug/L

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB10	06W1								
	SB	SBD	SB	SBD	SB	SBD				
Dichlorodifluoromethane	13.3	12.2	10.0	10.0	133	122	34-166	9	21	
Chloromethane	11.7	12.0	10.0	10.0	117	120	63-138	3	18	
Vinyl Chloride	11.9	11.4	10.0	10.0	119	114	71-135	4	20	
Bromomethane	15.4	16.0	10.0	10.0	154	160	20-151	4	36	١,١
Chloroethane	10.6	10.2	10.0	10.0	106	102	76-125	4	20	
Trichlorofluoromethane	10.7	10.3	10.0	10.0	107	103	75-131	4	19	
1,1-Dichloroethene	10.5	10.6	10.0	10.0	105	106	78-125	1	19	
Acetone	9.27	10.3	10.0	10.0	93	103	76-125	11	18	
lodomethane	7.06	8.24	10.0	10.0	71	82	10-155	15	40	
Carbon Disulfide	10.1	9.78	10.0	10.0	101	98	58-129	3	17	
Methylene Chloride	10.3	10.5	10.0	10.0	103	105	80-120	2	15	
(trans) 1,2-Dichloroethene	10.5	10.6	10.0	10.0	105	106	80-125	1	17	
Methyl t-Butyl Ether	10.4	10.8	10.0	10.0	104	108	80-122	4	15	
1,1-Dichloroethane	10.6	10.6	10.0	10.0	106	106	80-125	0	17	
Vinyl Acetate	8.89	9.54	10.0	10.0	89	95	80-131	7	15	
2,2-Dichloropropane	12.5	12.5	10.0	10.0	125	125	80-146	0	21	
(cis) 1,2-Dichloroethene	11.1	11.1	10.0	10.0	111	111	80-129	0	17	
2-Butanone	9.97	11.4	10.0	10.0	100	114	80-129	13	16	
Bromochloromethane	11.9	11.9	10.0	10.0	119	119	80-125	0	18	
Chloroform	10.3	10.3	10.0	10.0	103	103	80-123	0	16	
1,1,1-Trichloroethane	10.3	10.3	10.0	10.0	103	103	80-123	0	18	
Carbon Tetrachloride	10.4	10.2	10.0	10.0	104	102	80-126	2	17	
1,1-Dichloropropene	10.6	10.6	10.0	10.0	106	106	80-126	0	18	
Benzene	10.3	10.3	10.0	10.0	103	103	80-121	0	16	
1,2-Dichloroethane	10.5	10.9	10.0	10.0	105	109	80-124	4	15	
Trichloroethene	10.7	10.5	10.0	10.0	107	105	80-122	2	18	
1,2-Dichloropropane	10.8	10.9	10.0	10.0	108	109	80-123	1	15	
Dibromomethane	11.0	11.2	10.0	10.0	110	112	80-123	2	15	
Bromodichloromethane	10.9	10.8	10.0	10.0	109	108	80-125	1	15	
(cis) 1,3-Dichloropropene	11.3	11.2	10.0	10.0	113	112	80-129	1	15	
Methyl Isobutyl Ketone	10.3	11.2	10.0	10.0	103	112	80-124	8	15	
Toluene	10.4	10.1	10.0	10.0	104	101	80-120	3	18	
(trans) 1,3-Dichloropropene	11.7	11.6	10.0	10.0	117	116	80-134	1	17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

_ _ _

VOLATILE ORGANICS EPA 8260D QUALITY CONTROL page 2 of 2

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB100	D6W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1,2-Trichloroethane	10.1	10.5	10.0	10.0	101	105	77-126	4	20	
Tetrachloroethene	11.0	10.8	10.0	10.0	110	108	80-124	2	18	
1,3-Dichloropropane	10.3	10.5	10.0	10.0	103	105	80-120	2	15	
2-Hexanone	10.4	10.9	10.0	10.0	104	109	80-130	5	16	
Dibromochloromethane	11.3	11.2	10.0	10.0	113	112	80-128	1	15	
1,2-Dibromoethane	11.0	11.3	10.0	10.0	110	113	80-127	3	15	
Chlorobenzene	10.7	10.3	10.0	10.0	107	103	80-120	4	17	
1,1,1,2-Tetrachloroethane	11.2	11.0	10.0	10.0	112	110	80-125	2	17	
Ethylbenzene	10.6	10.4	10.0	10.0	106	104	80-125	2	18	
m,p-Xylene	21.0	20.4	20.0	20.0	105	102	80-127	3	18	
o-Xylene	10.7	10.5	10.0	10.0	107	105	80-126	2	18	
Styrene	11.6	11.4	10.0	10.0	116	114	80-130	2	17	
Bromoform	11.2	11.4	10.0	10.0	112	114	80-130	2	15	
Isopropylbenzene	11.4	11.2	10.0	10.0	114	112	80-129	2	18	
Bromobenzene	10.4	10.1	10.0	10.0	104	101	76-128	3	16	
1,1,2,2-Tetrachloroethane	10.2	10.6	10.0	10.0	102	106	74-130	4	15	
1,2,3-Trichloropropane	10.1	10.3	10.0	10.0	101	103	71-129	2	25	
n-Propylbenzene	11.0	10.6	10.0	10.0	110	106	80-129	4	19	
2-Chlorotoluene	10.7	10.5	10.0	10.0	107	105	80-128	2	18	
4-Chlorotoluene	11.0	10.6	10.0	10.0	110	106	80-130	4	19	
1,3,5-Trimethylbenzene	11.0	10.6	10.0	10.0	110	106	80-131	4	18	
tert-Butylbenzene	11.1	10.8	10.0	10.0	111	108	80-130	3	18	
1,2,4-Trimethylbenzene	10.8	10.5	10.0	10.0	108	105	80-130	3	18	
sec-Butylbenzene	11.5	11.1	10.0	10.0	115	111	80-130	4	18	
1,3-Dichlorobenzene	10.8	10.6	10.0	10.0	108	106	80-126	2	17	
p-Isopropyltoluene	11.4	10.9	10.0	10.0	114	109	80-132	4	18	
1,4-Dichlorobenzene	10.2	9.94	10.0	10.0	102	99	80-121	3	17	
1,2-Dichlorobenzene	10.7	10.7	10.0	10.0	107	107	79-125	0	15	
n-Butylbenzene	11.5	11.3	10.0	10.0	115	113	80-138	2	19	
1,2-Dibromo-3-chloropropane	9.93	10.0	10.0	10.0	99	100	73-133	1	15	
1,2,4-Trichlorobenzene	10.3	10.9	10.0	10.0	103	109	80-139	6	18	
Hexachlorobutadiene	10.9	11.1	10.0	10.0	109	111	80-151	2	18	
Naphthalene	7.79	9.16	10.0	10.0	78	92	68-144	16	25	
1,2,3-Trichlorobenzene	9.67	11.6	10.0	10.0	97	116	75-146	18	28	
Surrogate:										
Dibromofluoromethane					96	98	75-127			
Toluene-d8					100	101	80-127			
4-Bromofluorobenzene					104	105	78-125			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

22

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW3-10-3-22-GW					
Laboratory ID:	10-034-01					
Arsenic	16	3.3	EPA 200.8	10-10-22	10-10-22	
Barium	550	28	EPA 200.8	10-10-22	10-10-22	
Cadmium	ND	4.4	EPA 200.8	10-10-22	10-10-22	
Chromium	120	11	EPA 200.8	10-10-22	10-10-22	
Lead	27	1.1	EPA 200.8	10-10-22	10-10-22	
Mercury	ND	0.50	EPA 7470A	10-10-22	10-10-22	
Selenium	ND	5.6	EPA 200.8	10-10-22	10-10-22	
Silver	ND	11	EPA 200.8	10-10-22	10-10-22	

Client ID:	MW6-10-3-22-GW					
Laboratory ID:	10-034-02					
Arsenic	39	3.3	EPA 200.8	10-10-22	10-10-22	
Barium	600	56	EPA 200.8	10-10-22	10-10-22	
Cadmium	ND	4.4	EPA 200.8	10-10-22	10-10-22	
Chromium	81	11	EPA 200.8	10-10-22	10-10-22	
Lead	39	2.2	EPA 200.8	10-10-22	10-10-22	
Mercury	0.61	0.50	EPA 7470A	10-10-22	10-10-22	
Selenium	5.9	5.6	EPA 200.8	10-10-22	10-10-22	
Silver	ND	11	EPA 200.8	10-10-22	10-10-22	

Client ID:	MW5-10-3-22-GW					
Laboratory ID:	10-034-03					
Arsenic	18	3.3	EPA 200.8	10-10-22	10-10-22	
Barium	790	56	EPA 200.8	10-10-22	10-10-22	
Cadmium	ND	4.4	EPA 200.8	10-10-22	10-10-22	
Chromium	210	11	EPA 200.8	10-10-22	10-10-22	
Lead	36	1.1	EPA 200.8	10-10-22	10-10-22	
Mercury	ND	0.50	EPA 7470A	10-10-22	10-10-22	
Selenium	ND	5.6	EPA 200.8	10-10-22	10-10-22	
Silver	ND	11	EPA 200.8	10-10-22	10-10-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW4-10-3-22-GW					
Laboratory ID:	10-034-04					
Arsenic	67	3.3	EPA 200.8	10-10-22	10-10-22	
Barium	2700	140	EPA 200.8	10-10-22	10-10-22	
Cadmium	ND	4.4	EPA 200.8	10-10-22	10-10-22	
Chromium	400	56	EPA 200.8	10-10-22	10-10-22	
Lead	110	5.6	EPA 200.8	10-10-22	10-10-22	
Mercury	1.5	0.50	EPA 7470A	10-10-22	10-10-22	
Selenium	9.9	5.6	EPA 200.8	10-10-22	10-10-22	
Silver	ND	11	EPA 200.8	10-10-22	10-10-22	

Client ID:	MW1-10-3-22-GW					
Laboratory ID:	10-034-05					
Arsenic	12	3.3	EPA 200.8	10-10-22	10-10-22	
Barium	340	28	EPA 200.8	10-10-22	10-10-22	
Cadmium	ND	4.4	EPA 200.8	10-10-22	10-10-22	
Chromium	110	11	EPA 200.8	10-10-22	10-10-22	
Lead	16	1.1	EPA 200.8	10-10-22	10-10-22	
Mercury	ND	0.50	EPA 7470A	10-10-22	10-10-22	
Selenium	ND	5.6	EPA 200.8	10-10-22	10-10-22	
Silver	ND	11	EPA 200.8	10-10-22	10-10-22	

Client ID:	MW2-10-3-22-GW					
Laboratory ID:	10-034-06					
Arsenic	58	3.3	EPA 200.8	10-10-22	10-10-22	
Barium	2400	140	EPA 200.8	10-10-22	10-10-22	
Cadmium	ND	4.4	EPA 200.8	10-10-22	10-10-22	
Chromium	430	56	EPA 200.8	10-10-22	10-10-22	
Lead	160	5.6	EPA 200.8	10-10-22	10-10-22	
Mercury	1.2	0.50	EPA 7470A	10-10-22	10-10-22	
Selenium	7.6	5.6	EPA 200.8	10-10-22	10-10-22	
Silver	ND	11	EPA 200.8	10-10-22	10-10-22	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1010WM1					
Arsenic	ND	3.3	EPA 200.8	10-10-22	10-10-22	
Barium	ND	28	EPA 200.8	10-10-22	10-10-22	
Cadmium	ND	4.4	EPA 200.8	10-10-22	10-10-22	
Chromium	ND	11	EPA 200.8	10-10-22	10-10-22	
Lead	ND	1.1	EPA 200.8	10-10-22	10-10-22	
Selenium	ND	5.6	EPA 200.8	10-10-22	10-10-22	
Silver	ND	11	EPA 200.8	10-10-22	10-10-22	
Laboratory ID:	MB1010W1					
Mercury	ND	0.50	EPA 7470A	10-10-22	10-10-22	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-20	67-05									
	ORIG	DUP									
Arsenic	ND	ND	NA	NA		1	NA	NA	NA	20	
Barium	ND	ND	NA	NA		1	NA	NA	NA	20	
Cadmium	ND	ND	NA	NA		1	NA	NA	NA	20	
Chromium	ND	ND	NA	NA		1	NA	NA	NA	20	
Lead	ND	ND	NA	NA		1	NA	NA	NA	20	
Selenium	ND	ND	NA	NA		1	٨٨	NA	NA	20	
Silver	ND	ND	NA	NA		1	NA	NA	NA	20	
Laboratory ID:	09-20	67-05									
Mercury	ND	ND	NA	NA		1	NA	NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	09-20	67-05									
	MS	MSD	MS	MSD		MS	MSD				
Arsenic	117	112	111	111	ND	105	101	75-125	4	20	
Barium	140	132	111	111	16.1	112	105	75-125	6	20	
Cadmium	111	108	111	111	ND	100	98	75-125	2	20	
Chromium	124	120	111	111	ND	112	108	75-125	4	20	
Lead	119	113	111	111	ND	107	102	75-125	5	20	
Selenium	107	102	111	111	ND	97	92	75-125	5	20	
Silver	122	115	111	111	ND	110	103	75-125	6	20	
Laboratory ID:	09-20	67-05									
Mercury	12.6	12.7	12.5	12.5	ND	101	101	75-125	0	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Water

Matrix:

1,2-DIBROMOETHANE (EDB) EPA 8011

Units: ug/L (ppb) Date Date PQL Analyte Result Method Prepared Analyzed Flags **Client ID:** MW3-10-3-22-GW 10-034-01 Laboratory ID: EDB 0.14 EPA 8011 10-7-22 10-7-22 U1 ND Surrogate: Percent Recovery Control Limits TCMX F 208 50-163 Client ID: MW6-10-3-22-GW Laboratory ID: 10-034-02 EDB 0.010 EPA 8011 10-10-22 10-10-22 ND Surrogate: Percent Recovery Control Limits TCMX 73 50-163 MW5-10-3-22-GW **Client ID:** 10-034-03 Laboratory ID: EDB ND 0.010 EPA 8011 10-7-22 10-7-22 Surrogate: Percent Recovery Control Limits TCMX 74 50-163 Client ID: MW4-10-3-22-GW Laboratory ID: 10-034-04 EDB ND 0.010 EPA 8011 10-7-22 10-7-22 Surrogate: Percent Recovery Control Limits TCMX 50-163 110 Client ID: MW1-10-3-22-GW Laboratory ID: 10-034-05 EDB ND 0.010 EPA 8011 10-10-22 10-10-22 Surrogate: Percent Recovery Control Limits TCMX 50-163 63 MW2-10-3-22-GW **Client ID:** Laboratory ID: 10-034-06 EDB 10-7-22 10-7-22 ND 0.010 EPA 8011 Surrogate: Percent Recovery Control Limits TCMX 77 50-163

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

1,2-DIBROMOETHANE (EDB) EPA 8011 QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

								Date	Date)	
Analyte		Result		PQL	Me	ethod		Prepared	Analyz	ed	Flags
METHOD BLANK											
Laboratory ID:		MB1007W2	1								
EDB		ND		0.010	EP/	A 801	1	10-7-22	10-7-2	22	
Surrogate:	Pe	rcent Reco	very Cor	ntrol Limi	ts						
TCMX		71		50-163							
Laboratory ID:		MB1010W ²	1								
EDB		ND		0.010	EP	A 801	1	10-10-22	10-10-	22	
Surrogate:	Pe	rcent Reco	very Cor	ntrol Limi	ts						
TCMX		72		50-163							
					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	e Level	Result	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB10	07W1									
	SB	SBD	SB	SBD		SB	SBD				
EDB	0.0735	0.0727	0.100	0.100	N/A	74	73	71-125	1	15	
DBCP	0.0771	0.0774	0.100	0.100	N/A	77	77	61-126	0	15	
Surrogate:											
TCMX						85	79	50-163			
Laboratory ID:	SB10	10W1									
	SB	SBD	SB	SBD		SB	SBD				
EDB	0.0741	0.0829	0.100	0.100	N/A	74	83	71-125	11	15	
DBCP	0.0820	0.0864	0.100	0.100	N/A	82	86	61-126	5	15	
Surrogate:											

72

59

50-163

TCMX

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Relinquished	Received	Relinquished	Signature	6 MUZ-10-3-22-CN	5 MWI-10-3-22-GW	1 MUL4 - 10-3-22-GN	3 MUS-10-3-22-64	2 MN6-10-3-22-GW	1 MW3-10-3-22-CW	Lab ID Sample Identification	Project Manager: P. TOASUSINES BERLERSN Sampled by: Y. MEYER	Company: BMEC Project Number: E2022/0805 Project Name: 1201 5.155 YAKIMA	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date					S ONE	BAEC	Company	1 1620 1	1530	1430	1310	1120	10-2-22 1000 H20 1	Date Time Sampled Sampled Matrix	(other)	Same Day 1 Day 2 Days X 3 Days Standard (7 Days)	(in working days)	Chain of
					10/5/2 131	104-22 1000	Date Time	4 4 4					o XXX X	NWTP NWTP NWTP NWTP Volatil Haloge	PH-Gx/BTEX (80) PH-Gx/BTEX (80) PH-Gx PH-Dx (Acid / SG es 8260 enated Volatiles	\$ 21 8260) 3 Clean-up) 8260	Laboratory Numb	Custody
Chromatograms with final report	Data Package: Standard 🛛 Level III 🗌 Le						Comments/Special Instructions	<					×	EDB E Semiv (with k PAHs i PCBs Organ Organ Chlorir Total F Total N TCLP	PA 8011 (Waters olatiles 8270/SIN ow-level PAHs) 8270/SIM (low-le 8082 ochlorine Pestic ophosphorus Pe nated Acid Herb RCRA Metals ATCA Metals Metals	s Only) A evel) ides 8081 isticides 8270/SIM icides 8151	er: 10-034	Page
	evel IV							*					×	HEM (oil and grease) 1664				of 1