

# Groundwater Sampling Report

November 15, 2022

#### SITE INFORMATION

Yarrow Bay Marina 5207 Lake Washington Boulevard NE Kirkland, King County, Washington 98033

### PROJECT INFORMATION

Washington Department of Ecology Facility No.: 2486 Washington Department of Ecology VCP No.: NW1791 Washington Department of Ecology Cleanup Site No.: 8780 AEI Project No. 469497

# PREPARED FOR

Mr. Dale Myers
Toxics Cleanup Program
Washington State Department of
Ecology - NW Regional Office
3169 160<sup>th</sup> Avenue SE
Bellevue, WA 98008-5452

PREPARED BY AEI Consultants 2500 Camino Diablo Walnut Creek, California

# **TABLE OF CONTENTS**

| 1.0 BACKGROUND                                                                                                 | 4 |
|----------------------------------------------------------------------------------------------------------------|---|
| 2.0 FIELD ACTIVITIES                                                                                           |   |
| 2.1 Monitoring Well Condition Assessment 2.2 Groundwater Elevation Gauging 2.3 Groundwater Sampling Activities | 4 |
| 3.0 FINDINGS                                                                                                   | Ę |
| 3.1 Depth to Groundwater Observations                                                                          | 5 |
| 4.0 SUMMARY AND CONCLUSIONS                                                                                    | 6 |
| 5.0 REFERENCES                                                                                                 | 6 |
| 6.0 SIGNATURES                                                                                                 | 6 |

# **FIGURES**

Figure 1 Site Location Map

Figure 2 Site Map

**TABLES** 

Table 1 Groundwater Sample Data Summary

**APPENDICES** 

Appendix A Field Data Sheets

Appendix B Laboratory Analytical Report





### November 15, 2022

Mr. Dale Myers Toxics Cleanup Program Washington State Department of Ecology - Northwest Regional Office 3169 160th Avenue SE Bellevue, Washington 98008-5452

Subject: Groundwater Sampling Report

5207 Lake Washington Boulevard NE

Kirkland, Washington 98033

AEI Project No. 469497

Washington Department of Ecology Facility No.: 2486 Washington Department of Ecology VCP No.: NW1791 Washington Department of Ecology Cleanup Site No.: 8780

Dear Mr. Myers,

On behalf of Kirkland Yarrow Bay, LLC, AEI Consultants (AEI) has prepared this report to document the groundwater monitoring well sampling activities for the property located at 5207 Lake Washington Boulevard NE, in the city of Kirkland, King County, Washington (the "Site"). In a letter dated January 24, 2017, a *Restrictive Covenant No Further Action* (Restrictive Covenant) was granted by the Washington Department of Ecology that requested three consecutive years of groundwater sampling at the Site. The recent sampling was performed in an effort to satisfy the confirmation groundwater sampling activities as required in the Restrictive Covenant.

AEI appreciates the opportunity to support this important project. If you have any questions, please do not hesitate to contact me.

Sincerely,

Jeremy Smith

Senior Project Manager

AEI Consultants 2500 Camino Diablo

Walnut Creek, California 94597

Phone: 925.746.6000

Email: jasmith@aeiconsultants.com

# 1.0 BACKGROUND

A release of petroleum hydrocarbons was discovered at the Site in 2006. After the completion of investigation activities, a *Restrictive Covenant No Further Action* was granted by the Washington State Department of Ecology (WDOE) in their letter dated January 24, 2017, in which three consecutive years of sampling were requested. The first groundwater sampling event was completed on December 8, 2017 by ATC Group Services, LLC (ATC), as documented in their January 9, 2018 *Groundwater Monitoring Report - 2017 Annual Event*. Following the 2017 sampling event, a change of ownership resulted in the unintentional lapse of continued consecutive annual sampling activities. Upon discovery of the oversight during 2022, a sampling event was immediately scheduled in accordance with the no further action letter. The field activities outlined in the below report document the 2022 sampling event and are intended to satisfy the second sampling event required by WDOE in their 2017 letter.

# 2.0 FIELD ACTIVITIES

AEI performed the second groundwater monitoring event, including groundwater level gauging measurements and groundwater sampling. Table 1 summarizes the analytical results.

# 2.1 Monitoring Well Condition Assessment

Prior to conducting gauging and sampling activities on October 7, 2022, a monitoring well condition assessment of well MW-1 was completed. This assessment consisted of observing the condition of the casing, well box, well plug, bolts, and lid for indications of wear or failure. The inspection found that one bolt needed replacement as the bolt did not fit properly to secure the well box. Additional issues were not observed and the bolt fitting does not pose a condition that would impact the integrity the planned testing, thus sampling was completed as planned. Well condition report is included in field notes, presented in Appendix A.

# 2.2 Groundwater Elevation Gauging

Prior to the groundwater sampling activities, a depth-to-groundwater measurement was obtained at monitoring well MW-1 on October 7, 2022. Before the depth to water was measured, the well cap was removed from the well and the well was allowed to equilibrate for 10 minutes. Depth to groundwater was measured from the top of the well casing using an electric water level indicator calibrated to within 0.01 foot, and recorded on field sampling forms, presented in Appendix A.

# 2.3 Groundwater Sampling Activities

Following groundwater elevation gauging activities, a groundwater sample was obtained from the well. Prior to collection of the sample, the well was purged using low-flow sampling techniques with a peristaltic pump at a rate of approximately 200 milliliters per minute. During purging and sampling, groundwater quality parameters [e.g., temperature, pH, specific conductivity, dissolved oxygen, turbidity, and oxidation-reduction potential] were collected.

After the groundwater parameters had stabilized, a groundwater sample was collected from the well using the peristaltic pump. The groundwater sample was decanted into laboratory supplied, 40-milliliter (mL), hydrochloric acid-preserved, volatile organic analysis vials, and 1-liter amber bottles. Upon filling and capping each bottle, the bottles were checked for the



presence of air bubbles to ensure there was no visible headspace. The sample was labeled and placed in an insulated, ice-chilled cooler for transport under chain-of-custody protocol to Pace Analytical in Mount Juliet, Tennessee. The groundwater sample was analyzed for volatile organic compounds (VOCs) using United States Environmental Protection Agency (US EPA) Testing Method 8260B, total petroleum hydrocarbons (TPH) Gasoline Range Organics (GRO) using Testing Method NWTPH-Gx and TPH Diesel Range Organics (DRO) and TPH Residual Range Organics (RRO) using Testing Method NWTPH-Dx.

Appendix B contains the laboratory analytical report and chain-of-custody documentation.

No notable anomalies or variations to sampling methods are reported during the October 7, 2022, sampling activities.

# 3.0 FINDINGS

The findings from the groundwater gauging and sampling activities is summarized below.

# 3.1 Depth to Groundwater Observations

Depth to groundwater was recorded to be 3.92 feet below the top of well casing in the October 7, 2022, event.

# 3.2 Groundwater Analytical Results

For purposes of providing context to the data generated during this investigation, analytical results were compared to the WDOE Method Toxic Control Act (MTCA) Method A (unrestrictive land use) and Method B (common method for setting clean-up levels), Cleanup Levels and Risk Calculation (CLARC), as referenced in Ecology's CLARC Tables, revised July 2022. The presence of a chemical at concentrations below applicable cleanup levels can generally be assumed to not pose a significant threat to human health or the environment.

Table 1 presents the groundwater analytical results for monitoring event at the Site and the comparative screening levels. The groundwater analytical results from the October 2022 groundwater monitoring event can be summarized as follows (Note: J: The identification of the analyte is acceptable; however, the reported value is an estimate):

- TPH-GRO was not detected above the laboratory reporting limit (RL) in the groundwater sample collected and analyzed.
- TPH-DRO and TPH-RRO were detected at concentrations of 278 micrograms per liter (μg/L) and 312 μg/L, respectively. The detected concentrations are below the MTCA Method A cleanup levels of 500 μg/L.
- Benzene, toluene, ethylbenzene, and total xylenes (collectively "BTEX") were detected at concentrations of 0.0540, 0.407, 0.0470 J, and 0.288 μg/L, respectively. The detected concentrations are below the respective BTEX MTCA Method A cleanup levels of 5.0, 1,000, 700, and 1,000 μg/L. In addition, the detected concentrations are below the MTCA Method B cancer screening level for benzene of 0.8 μg/L and below the MTCA Method B non-cancer screening levels for toluene, ethylbenzene, and total xylenes of 640, 800, and 1,600 μg/L, respectively.



 Other VOCs were detected either below their respective Method A/B screening levels or below the laboratory RLs in the groundwater sample collected and analyzed as shown on Table 1.

# 4.0 SUMMARY AND CONCLUSIONS

AEI has performed groundwater monitoring and sampling at the Site as described above. The sampling activities were completed to meet the requirement in the *Restrictive Covenant No Further Action*, that was granted by the WDOE in their letter dated January 24, 2017. Results from the second round of the groundwater monitoring collected from well MW-1 indicates that the concentrations of TPH and VOCs were below their respective MTCA Methods A and B levels.

Based on the results, AEI recommends no further assessment beyond the third and final groundwater monitoring event to be conducted in October 2023.

# 5.0 REFERENCES

ATC Group Services Inc, 2018, *Groundwater Monitoring Report-2017 Annual Event. 5207 Lake Washington Boulevard NE, Kirkland, Washington 98033.* Dated January 9.

Washington State Department of Ecology, 2017, Environmental Covenant. 5207 Lake Washington Boulevard NE, Kirkland, Washington 98033. Dated January 24.

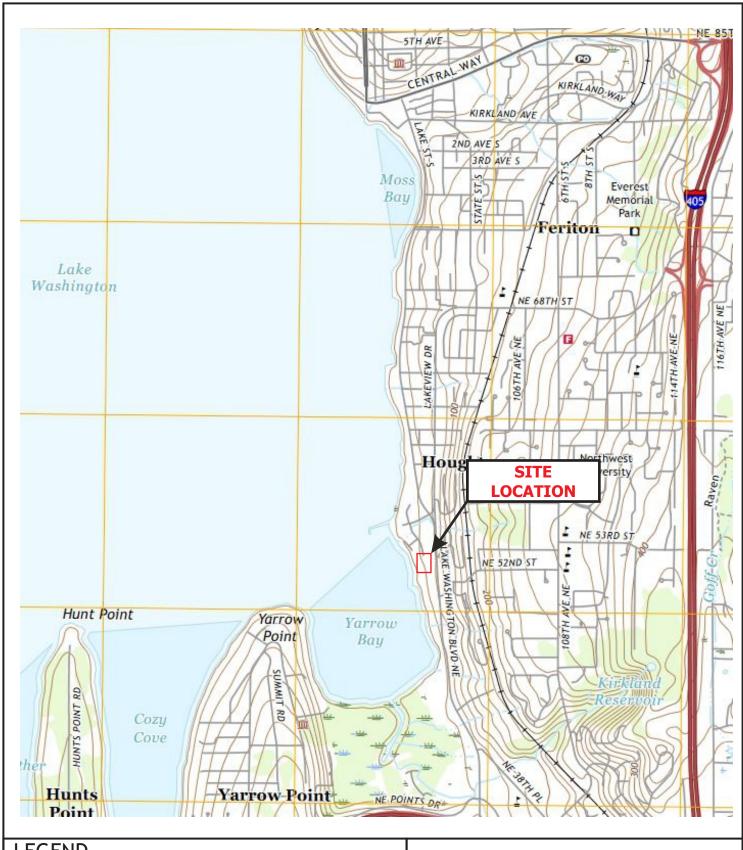
Washington State Department of Ecology, 2022, Method Toxic Control Act (MTCA) Cleanup Levels and Risk Calculation (CLARC) Master Table. July.

# 6.0 SIGNATURES

This document was prepared by, or under the direction, of the undersigned.

Natasha Budimirovic Project Geologist Jacquetine C. Day, L.G. 3011 Senior Geologist

(858) 531-6297


JACQUELINE CHRISTINE DAY

expires: 12/20/2023



# Figures



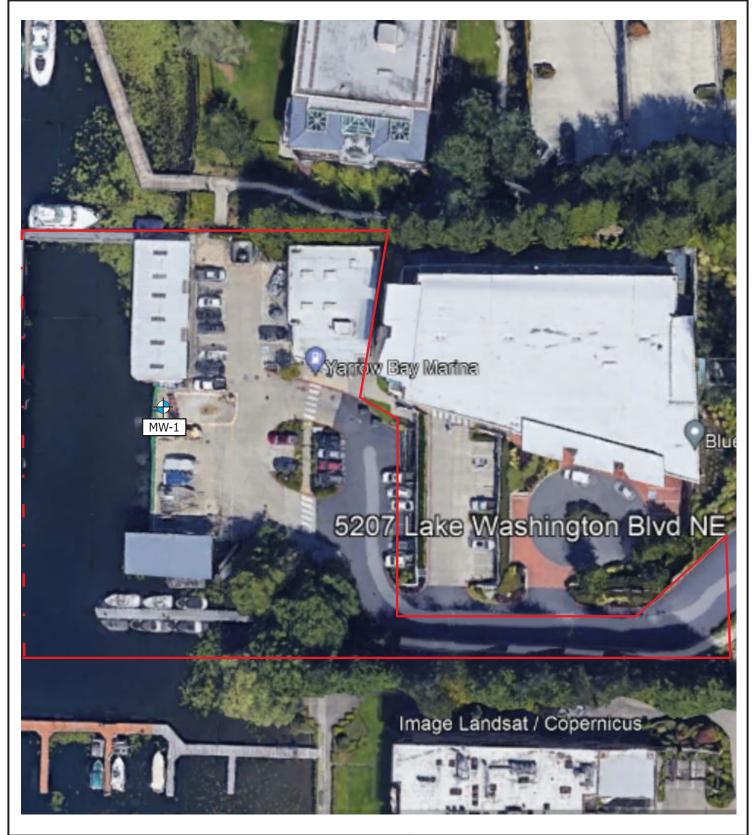


# **LEGEND**

Approximate Site Boundary

Map: Kirkland Quadrangle, Washington

Date: 2020 Source: USGS




# SITE LOCATION MAP



5207 Lake Washington Blvd. NE Kirkland, Washington

> FIGURE 1 Project No. 469497



# LEGEND



Approximate Property Boundary

Groundwater Monitoring Well Location





# SITE MAP



5207 Lake Washington Blvd. NE Kirkland, Washington

> FIGURE 2 Project No. 469497

# Tables



# Table 1: GROUNDWATER SAMPLE DATA SUMMARY 5207 Lake Washington Boulevard, Kirkland, Washington 98033 AEI Project Number: 469497

|                       |                         |                   | TPH               |                   |                   |                   |                        | ,                          | /OCs              |                               |                                       |                                           |
|-----------------------|-------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------|----------------------------|-------------------|-------------------------------|---------------------------------------|-------------------------------------------|
| Location<br>ID        | Date                    | TPH-GRO<br>(μg/L) | TPH-DRO<br>(μg/L) | TPH-RRO<br>(μg/L) | Benzene<br>(µg/L) | Toluene<br>(µg/L) | Ethylbenzene<br>(µg/L) | Total<br>Xylenes<br>(µg/L) | Acetone<br>(μg/L) | 2-Butanone<br>(MEK)<br>(μg/L) | Methyl tert-<br>butyl ether<br>(µg/L) | Remaining<br>VOCs<br>(µg/L)               |
| MW-1                  | 12/8/2017*<br>10/7/2022 | ND<50.0<br>ND<100 | ND<49.9<br>278    | ND<99.8<br>312    | ND<1.0<br>0.0540  | ND<1.0<br>0.407   | ND<1.0<br>0.0470 J     | ND<2.0<br>0.288            | NA<br>21.1        | NA<br>2.36                    | NA<br>0.0940                          | ND <rdl<br>ND<rdl< td=""></rdl<></rdl<br> |
| Comparison Values:    |                         |                   |                   |                   |                   |                   |                        |                            |                   |                               |                                       |                                           |
| WDOE CLARC Method A u |                         | 800               | 500               | 500               | 5.0<br>32         | 1,000<br>640      | 700<br>800             | 1,000<br>1,600             | 7,200             | 4,800                         | 20                                    | Various<br>Various                        |
| WDOE CLARC Method B o |                         |                   |                   |                   | 0.8               | 0 <del>4</del> 0  | 600                    | 1,000                      | 7,200             | 4,000                         | <br>24                                | Various<br>Various                        |
|                       | Contaminant Limit (MCL) |                   |                   |                   | 5.0               | 1,000             | 700                    | 10,000                     |                   |                               |                                       | Various                                   |

# Notes:

μg/L micrograms per liter

ND<RDL not detected above the laboratory reported detection limit

NA not analyzed

TPH-GRO total petroleum hydrocarbons as gasoline TPH-DRO total petroleum hydrocarbons as diesel

TPH-RRO total petroleum hydrocarbons as motor oil (residual range organics)

VOCs volatile organic compounds no comparison value established

J The identification of the analyte is acceptable; the reported value is an estimate.

\* Sampled by ATC Group Services Inc.

# Comparison Values:

WDOE CLARC Washington Department of Ecology Cleanup Levels and Risk Calculation for cancer and noncancer risk drivers for individual chemicals (WDOE, July 2022)

AEI Project No. 469497

AEI Consultants

# Appendix A Field Data Sheets



# Water Level Field Data Sheet ADDRESS CITY, California

| Project Name: Yoursey Day | acht Basin and Marins |                                 |   |
|---------------------------|-----------------------|---------------------------------|---|
| Project No.: 468497       |                       | Field Personnel: N BUD M 120VIC |   |
|                           | Bud NE, Kitchand, WA  | Date: 10[7/22                   | _ |

|         | Screen<br>Interval | Total<br>Depth | Depth to<br>Water | Casing<br>Diameter | LNAPL<br>Observed  | Time | Depth to<br>Water | Depth to<br>Bottom | R = Re   | Condition<br>G = Good<br>Needs Repl<br>placed durin | aced<br>ng event | Comments |
|---------|--------------------|----------------|-------------------|--------------------|--------------------|------|-------------------|--------------------|----------|-----------------------------------------------------|------------------|----------|
| Well ID | (ft BTOC)          |                | (ft BTOC)         | (in.)              | (Y/N) <sup>1</sup> |      | (ft BTOC)         | (ft BTOC)          | Well Cap | Bolts                                               | Well Lid         |          |
| MW-1    | -                  | 8.34           | 3,92              | 2                  | N                  | 1220 | 3.92              | 8.34               | 9        | N                                                   | 9                |          |
|         |                    |                |                   |                    | -                  |      |                   |                    | ,        |                                                     |                  |          |
|         |                    |                |                   |                    |                    |      |                   |                    |          |                                                     | and a            |          |
|         |                    |                |                   |                    |                    |      |                   |                    |          | The stant                                           |                  |          |
|         |                    |                |                   |                    |                    |      |                   |                    |          |                                                     | 1 100            |          |
|         |                    |                |                   |                    |                    |      | -                 |                    | .5553    | 200                                                 | 53               |          |
|         |                    |                |                   |                    |                    |      |                   |                    |          |                                                     |                  |          |
|         |                    |                |                   |                    |                    |      |                   |                    |          |                                                     |                  |          |
|         |                    |                |                   |                    |                    |      |                   |                    |          |                                                     |                  |          |
|         |                    |                |                   | ,                  |                    |      |                   |                    |          |                                                     |                  |          |
|         |                    |                |                   |                    |                    |      |                   |                    |          |                                                     |                  |          |
|         |                    |                |                   |                    |                    |      |                   |                    |          |                                                     |                  |          |
|         |                    |                |                   |                    |                    |      |                   |                    |          |                                                     |                  | - 100    |
|         |                    |                |                   |                    |                    |      |                   |                    |          |                                                     |                  |          |
|         |                    |                |                   |                    |                    |      |                   |                    |          |                                                     |                  | -        |

Note:

BTOC = below top of casing

N/A = not available NM = not measured

# **GROUNDWATER MONITORING WELL FIELD SAMPLING FORM**

Standard Purge Sampling

|                  | Y.                                               |                          |                             |                         | M                        | lonitoring                    | Well ID:                    |                           | MW-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------|--------------------------------------------------|--------------------------|-----------------------------|-------------------------|--------------------------|-------------------------------|-----------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                | Project Name:<br>Job Number:<br>Project Address: | 4684                     | ay Yacki<br>917<br>abe WA B | t Bosin                 | 6                        | Name                          | of Sampling:<br>of Sampler: | 10[7]<br>N. BUI           | 22<br>MIRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |                                                  | gl.                      | 10                          | TORING V                |                          |                               |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vell Casing Diam | eter (inches)                                    |                          | 1.101.11                    |                         | The second second        |                               | 2"                          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| tatic Depth to G |                                                  | et below top             | of casing)                  | L-Mail                  | 3,0                      | 12                            |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| otal Well Depth  |                                                  |                          |                             | j.                      | Vi illementario          | 34                            |                             | all and                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| creened Interva  |                                                  |                          |                             | 12                      | ٥                        | 107                           |                             | 5                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| alculated Purge  |                                                  |                          |                             |                         | 19V = 1                  | 1                             | Tom 1 2                     | 600 mL                    | gal/ft (4" w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | ,,                                               |                          |                             | uct Present?            | NO                       | Th                            | ickness (ft):               | Dec mer                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| red Tel          |                                                  |                          |                             | V                       | In Indiana in the second | are an entire of the state of | 7 7 10                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                                                  |                          | GROUND                      | VATER E                 | QUILIBR                  | ATION                         |                             | N                         | , di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Time             | Flow rate<br>(ml/min)                            | Cumulative Volume Purged | Temperature<br>(deg C)      | Conductivity<br>(µg/cm) | DO<br>(mg/L)             | pН                            | ORP<br>(meV)                | Turbidity<br>(NTU)        | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12:34            | 200                                              | Purged<br>3, 92          | 121,27                      | 602                     | 4.82                     | 10.70                         | -85.5                       | 92,3                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:37            | 200                                              | 4.12                     | 20,97                       | 540                     | 0.83                     | 9.27                          | -726                        | 54.4                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:40            | 200                                              | 4.19                     | 20,75                       | 420                     | 6.71                     | 8.76                          | -702                        | 55.4                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:43            | 200                                              | 4,28                     | 20,62                       | 417                     | 0.74                     | 8.79                          | -65.3                       | 56.7                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:46            | 200                                              | 4.35                     | 20,72                       | 410                     | 0.72                     | 8.73                          | -63.4                       | 55.9                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:49            | 200                                              | 4.41                     | 20.71                       | 403                     | 0,72                     | 8.70                          | -62.3                       | 55.2                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                                                  |                          |                             |                         |                          |                               |                             | 9"                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | 38 - No. 14                                      |                          |                             |                         |                          |                               |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| the state of     | S. M.                                            |                          |                             | III.                    | 518                      |                               | C Line                      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                                                  |                          |                             |                         |                          |                               |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| No.              |                                                  | No.                      |                             |                         |                          |                               |                             | 4                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.4              |                                                  | 1                        | 1                           |                         | N. W.                    | 0                             |                             |                           | The state of the s |
| 8                |                                                  |                          |                             |                         |                          |                               |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S. Carlotte      |                                                  |                          |                             | SAMPL                   | ING                      |                               |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Time      | DTW<br>(>90% Static)                             | Sample ID                | Containers                  | Ana                     | alysis                   | TAT                           |                             | Total Purge Volu<br>(gal) | me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1310             | ( 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2          | New-1                    | 10                          | TPH-GRO                 | 1320                     | 5 day                         |                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

collected 8 VEAS, 2 1-L ambor bottles

# Appendix B Laboratory Analytical Reports





AEI Consultants - CA

# Pace Analytical® ANALYTICAL REPORT

October 19, 2022

# **AEI Consultants - CA**

Sample Delivery Group: L1544628

Samples Received: 10/08/2022

Project Number: 468497

Description: Yarrow Bay Yacht Basin and Marina

Report To: Natasha Budimirovic

2500 Camino Diablo

Walnut Creek, CA 94597

















PAGE:

1 of 17

10/19/22 08:53

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

L1544628

468497

# TABLE OF CONTENTS

| Cp: Cover Page                                                | 1  |
|---------------------------------------------------------------|----|
| Tc: Table of Contents                                         | 2  |
| Ss: Sample Summary                                            | 3  |
| Cn: Case Narrative                                            | 4  |
| Sr: Sample Results                                            | 5  |
| MW-1 L1544628-01                                              | 5  |
| Qc: Quality Control Summary                                   | 7  |
| Volatile Organic Compounds (GC) by Method NWTPHGX             | 7  |
| Volatile Organic Compounds (GC/MS) by Method 8260D            | 8  |
| Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT | 14 |
| GI: Glossary of Terms                                         | 15 |
| Al: Accreditations & Locations                                | 16 |
| Sc: Sample Chain of Custody                                   | 17 |



















# SAMPLE SUMMARY

| MW-1 L1544628-01 GW                                           |           |          | Collected by<br>N Budimirovic | Collected date/time<br>10/07/22 13:10 | Received dat<br>10/08/22 09: |                |
|---------------------------------------------------------------|-----------|----------|-------------------------------|---------------------------------------|------------------------------|----------------|
| Method                                                        | Batch     | Dilution | Preparation                   | Analysis                              | Analyst                      | Location       |
|                                                               |           |          | date/time                     | date/time                             |                              |                |
| Volatile Organic Compounds (GC) by Method NWTPHGX             | WG1943931 | 1        | 10/17/22 14:51                | 10/17/22 14:51                        | BAM                          | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260D            | WG1942414 | 1        | 10/13/22 22:23                | 10/13/22 22:23                        | ACG                          | Mt. Juliet, TN |
| Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT | WG1941859 | 1        | 10/13/22 13:00                | 10/15/22 01:58                        | MWS                          | Mt. Juliet, TN |



















# CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.





















Brian Ford Project Manager

Sample Delivery Group (SDG) Narrative

MW-1

pH outside of method requirement.

Buar Ford

Lab Sample ID L1544628-01 Project Sample ID

**Method** NWTPHGX

# SAMPLE RESULTS - 01

Collected date/time: 10/07/22 13:10

# Volatile Organic Compounds (GC) by Method NWTPHGX

|                                    | Result | Qualifier | MDL  | RDL      | Dilution | Analysis         | <u>Batch</u> |
|------------------------------------|--------|-----------|------|----------|----------|------------------|--------------|
| Analyte                            | ug/l   |           | ug/l | ug/l     |          | date / time      |              |
| Gasoline Range<br>Organics-NWTPH   | U      |           | 31.6 | 100      | 1        | 10/17/2022 14:51 | WG1943931    |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 107    |           |      | 78.0-120 |          | 10/17/2022 14:51 | WG1943931    |



# ³Ss

# de (CC/MS) by Mothad 9260D

| Volatile Organic Co        | Result |           | MDL    | RDL    | Dilution | Analysis         | Batch                  |
|----------------------------|--------|-----------|--------|--------|----------|------------------|------------------------|
| nalyte                     | ug/l   | Qualifier | ug/l   | ug/l   | ווענוטו  | date / time      | pateri                 |
| •                          | 21.1   |           | 0.548  | 1.00   | 1        | 10/13/2022 22:23 | WC1042414              |
| cetone                     |        |           | 0.548  | 0.500  | 1        | 10/13/2022 22:23 | WG1942414              |
| crylonitrile               | U      |           | 0.0760 | 50.0   | 1        | 10/13/2022 22:23 | WG1942414              |
| crolein                    | 0.0540 |           | 0.758  | 0.0400 | 1        | 10/13/2022 22:23 | WG1942414<br>WG1942414 |
| enzene<br>romobenzene      | U.0540 |           | 0.0100 | 0.500  | 1        | 10/13/2022 22:23 | WG1942414<br>WG1942414 |
| romodichloromethane        | U      |           | 0.0420 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414              |
| romoform                   | U      |           | 0.0313 | 1.00   | 1        | 10/13/2022 22:23 | WG1942414<br>WG1942414 |
| romomethane                | U      |           | 0.239  | 0.500  | 1        | 10/13/2022 22:23 | WG1942414<br>WG1942414 |
| -Butylbenzene              | U      |           | 0.153  | 0.500  | 1        | 10/13/2022 22:23 | WG1942414<br>WG1942414 |
| ec-Butylbenzene            | U      |           | 0.101  | 0.500  | 1        | 10/13/2022 22:23 | WG1942414<br>WG1942414 |
| ert-Butylbenzene           | U      |           | 0.0620 | 0.200  | 1        | 10/13/2022 22:23 | WG1942414<br>WG1942414 |
| arbon tetrachloride        | U      |           | 0.0020 | 0.200  | 1        | 10/13/2022 22:23 | WG1942414<br>WG1942414 |
| Chlorobenzene              | U      |           | 0.0432 | 0.200  | 1        | 10/13/2022 22:23 | WG1942414<br>WG1942414 |
| Chlorodibromomethane       | U      |           | 0.0229 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414<br>WG1942414 |
| Chloroethane               | U      |           | 0.0180 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414<br>WG1942414 |
| Chloroform                 | U      |           | 0.0432 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414<br>WG1942414 |
| hloromethane               | U      |           | 0.0556 | 0.500  | 1        | 10/13/2022 22:23 | WG1942414<br>WG1942414 |
| -Chlorotoluene             | U      |           | 0.0368 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414              |
| -Chlorotoluene             | U      |           | 0.0452 | 0.200  | 1        | 10/13/2022 22:23 | WG1942414              |
| 2-Dibromo-3-Chloropropane  | U      |           | 0.204  | 1.00   | 1        | 10/13/2022 22:23 | WG1942414              |
| 2-Dibromoethane            | U      |           | 0.0210 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414              |
| ibromomethane              | U      |           | 0.0400 | 0.200  | 1        | 10/13/2022 22:23 | WG1942414              |
| 2-Dichlorobenzene          | U      |           | 0.0580 | 0.200  | 1        | 10/13/2022 22:23 | WG1942414              |
| 3-Dichlorobenzene          | U      |           | 0.0680 | 0.200  | 1        | 10/13/2022 22:23 | WG1942414              |
| 4-Dichlorobenzene          | U      |           | 0.0788 | 0.200  | 1        | 10/13/2022 22:23 | WG1942414              |
| ichlorodifluoromethane     | U      |           | 0.0327 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414              |
| 1-Dichloroethane           | U      |           | 0.0230 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414              |
| 2-Dichloroethane           | U      |           | 0.0190 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414              |
| 1-Dichloroethene           | U      |           | 0.0200 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414              |
| is-1,2-Dichloroethene      | U      |           | 0.0276 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414              |
| ans-1,2-Dichloroethene     | U      |           | 0.0572 | 0.200  | 1        | 10/13/2022 22:23 | WG1942414              |
| 2-Dichloropropane          | U      |           | 0.0508 | 0.200  | 1        | 10/13/2022 22:23 | WG1942414              |
| 1-Dichloropropene          | U      |           | 0.0280 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414              |
| 3-Dichloropropane          | U      |           | 0.0700 | 0.200  | 1        | 10/13/2022 22:23 | WG1942414              |
| is-1,3-Dichloropropene     | U      |           | 0.0271 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414              |
| ans-1,3-Dichloropropene    | U      |           | 0.0612 | 0.200  | 1        | 10/13/2022 22:23 | WG1942414              |
| ,2-Dichloropropane         | U      |           | 0.0317 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414              |
| i-isopropyl ether          | U      |           | 0.0140 | 0.0400 | 1        | 10/13/2022 22:23 | WG1942414              |
| thylbenzene                | 0.0470 | <u>J</u>  | 0.0212 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414              |
| exachloro-1,3-butadiene    | U      | _         | 0.508  | 1.00   | 1        | 10/13/2022 22:23 | WG1942414              |
| opropylbenzene             | U      |           | 0.0345 | 0.100  | 1        | 10/13/2022 22:23 | WG1942414              |
| -Isopropyltoluene          | U      |           | 0.0932 | 0.200  | 1        | 10/13/2022 22:23 | WG1942414              |
| -Butanone (MEK)            | 2.36   |           | 0.500  | 1.00   | 1        | 10/13/2022 22:23 | WG1942414              |
| lethylene Chloride         | U      |           | 0.265  | 1.00   | 1        | 10/13/2022 22:23 | WG1942414              |
| -Methyl-2-pentanone (MIBK) | U      |           | 0.400  | 1.00   | 1        | 10/13/2022 22:23 | WG1942414              |
| lethyl tert-butyl ether    | 0.0940 |           | 0.0118 | 0.0400 | 1        | 10/13/2022 22:23 | WG1942414              |
| aphthalene                 | U      |           | 0.124  | 0.500  | 1        | 10/13/2022 22:23 | WG1942414              |
| -Propylbenzene             | U      |           | 0.0472 | 0.200  | 1        | 10/13/2022 22:23 | WG1942414              |
|                            |        |           |        |        |          |                  |                        |













# SAMPLE RESULTS - 01

Collected date/time: 10/07/22 13:10

# Volatile Organic Compounds (GC/MS) by Method 8260D

|                                | Result | Qualifier | MDL    | RDL      | Dilution | Analysis         | Batch     |
|--------------------------------|--------|-----------|--------|----------|----------|------------------|-----------|
| Analyte                        | ug/l   |           | ug/l   | ug/l     |          | date / time      |           |
| Styrene                        | U      |           | 0.109  | 0.500    | 1        | 10/13/2022 22:23 | WG1942414 |
| 1,1,1,2-Tetrachloroethane      | U      |           | 0.0200 | 0.100    | 1        | 10/13/2022 22:23 | WG1942414 |
| 1,1,2,2-Tetrachloroethane      | U      |           | 0.0156 | 0.100    | 1        | 10/13/2022 22:23 | WG1942414 |
| 1,1,2-Trichlorotrifluoroethane | U      |           | 0.0270 | 0.100    | 1        | 10/13/2022 22:23 | WG1942414 |
| Tetrachloroethene              | U      |           | 0.0280 | 0.100    | 1        | 10/13/2022 22:23 | WG1942414 |
| Toluene                        | 0.407  |           | 0.0500 | 0.200    | 1        | 10/13/2022 22:23 | WG1942414 |
| 1,2,3-Trichlorobenzene         | U      |           | 0.0250 | 0.500    | 1        | 10/13/2022 22:23 | WG1942414 |
| 1,2,4-Trichlorobenzene         | U      |           | 0.193  | 0.500    | 1        | 10/13/2022 22:23 | WG1942414 |
| 1,1,1-Trichloroethane          | U      |           | 0.0110 | 0.100    | 1        | 10/13/2022 22:23 | WG1942414 |
| 1,1,2-Trichloroethane          | U      |           | 0.0353 | 0.100    | 1        | 10/13/2022 22:23 | WG1942414 |
| Trichloroethene                | U      |           | 0.0160 | 0.0400   | 1        | 10/13/2022 22:23 | WG1942414 |
| Trichlorofluoromethane         | U      |           | 0.0200 | 0.100    | 1        | 10/13/2022 22:23 | WG1942414 |
| 1,2,3-Trichloropropane         | U      |           | 0.204  | 0.500    | 1        | 10/13/2022 22:23 | WG1942414 |
| 1,2,4-Trimethylbenzene         | U      |           | 0.0464 | 0.200    | 1        | 10/13/2022 22:23 | WG1942414 |
| 1,2,3-Trimethylbenzene         | U      |           | 0.0460 | 0.200    | 1        | 10/13/2022 22:23 | WG1942414 |
| 1,3,5-Trimethylbenzene         | U      |           | 0.0432 | 0.200    | 1        | 10/13/2022 22:23 | WG1942414 |
| Vinyl chloride                 | U      |           | 0.0273 | 0.100    | 1        | 10/13/2022 22:23 | WG1942414 |
| Xylenes, Total                 | 0.288  |           | 0.191  | 0.260    | 1        | 10/13/2022 22:23 | WG1942414 |
| (S) Toluene-d8                 | 97.4   |           |        | 75.0-131 |          | 10/13/2022 22:23 | WG1942414 |
| (S) 4-Bromofluorobenzene       | 103    |           |        | 67.0-138 |          | 10/13/2022 22:23 | WG1942414 |
| (S) 1,2-Dichloroethane-d4      | 112    |           |        | 70.0-130 |          | 10/13/2022 22:23 | WG1942414 |





Ss











# Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

|                               | Result | Qualifier | MDL  | RDL      | Dilution | Analysis         | <u>Batch</u> |
|-------------------------------|--------|-----------|------|----------|----------|------------------|--------------|
| Analyte                       | ug/l   |           | ug/l | ug/l     |          | date / time      |              |
| Diesel Range Organics (DRO)   | 278    |           | 66.7 | 200      | 1        | 10/15/2022 01:58 | WG1941859    |
| Residual Range Organics (RRO) | 312    |           | 83.3 | 250      | 1        | 10/15/2022 01:58 | WG1941859    |
| (S) o-Terphenyl               | 96.3   |           |      | 52.0-156 |          | 10/15/2022 01:58 | WG1941859    |

# WG1943931

# QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1544628-01

# Method Blank (MB)

| (MB) R3849375-2 10/17/2            | 22 09:56  |              |        |          |
|------------------------------------|-----------|--------------|--------|----------|
|                                    | MB Result | MB Qualifier | MB MDL | MB RDL   |
| Analyte                            | ug/l      |              | ug/l   | ug/l     |
| Gasoline Range<br>Organics-NWTPH   | U         |              | 31.6   | 100      |
| (S)<br>a,a,a-Trifluorotoluene(FID) | 107       |              |        | 78.0-120 |

<sup>†</sup>Cn

# Laboratory Control Sample (LCS)

| (LCS) R3849375-1 10/17/2           | 22 08:58     |            |          |             |               |
|------------------------------------|--------------|------------|----------|-------------|---------------|
|                                    | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                            | ug/l         | ug/l       | %        | %           |               |
| Gasoline Range<br>Organics-NWTPH   | 5500         | 5070       | 92.2     | 70.0-124    |               |
| (S)<br>a,a,a-Trifluorotoluene(FID) |              |            | 101      | 78.0-120    |               |









Volatile Organic Compounds (GC/MS) by Method 8260D

L1544628-01

#### Method Blank (MB)

| (MB) R3848459-3 10/13/22   | 2 16:38   |              |        |        |  |
|----------------------------|-----------|--------------|--------|--------|--|
|                            | MB Result | MB Qualifier | MB MDL | MB RDL |  |
| Analyte                    | ug/l      |              | ug/l   | ug/l   |  |
| Acetone                    | U         |              | 0.548  | 1.00   |  |
| Acrylonitrile              | U         |              | 0.0760 | 0.500  |  |
| Acrolein                   | U         |              | 0.758  | 50.0   |  |
| Benzene                    | U         |              | 0.0160 | 0.0400 |  |
| Bromobenzene               | U         |              | 0.0420 | 0.500  |  |
| Bromodichloromethane       | U         |              | 0.0315 | 0.100  |  |
| Bromoform                  | U         |              | 0.239  | 1.00   |  |
| Bromomethane               | U         |              | 0.148  | 0.500  |  |
| n-Butylbenzene             | U         |              | 0.153  | 0.500  |  |
| sec-Butylbenzene           | U         |              | 0.101  | 0.500  |  |
| tert-Butylbenzene          | U         |              | 0.0620 | 0.200  |  |
| Carbon tetrachloride       | U         |              | 0.0432 | 0.200  |  |
| Chlorobenzene              | U         |              | 0.0229 | 0.100  |  |
| Chlorodibromomethane       | U         |              | 0.0180 | 0.100  |  |
| Chloroethane               | U         |              | 0.0432 | 0.200  |  |
| Chloroform                 | U         |              | 0.0166 | 0.100  |  |
| Chloromethane              | U         |              | 0.0556 | 0.500  |  |
| 2-Chlorotoluene            | U         |              | 0.0368 | 0.100  |  |
| 1-Chlorotoluene            | U         |              | 0.0452 | 0.200  |  |
| ,2-Dibromo-3-Chloropropane | U         |              | 0.204  | 1.00   |  |
| ,2-Dibromoethane           | U         |              | 0.0210 | 0.100  |  |
| Dibromomethane             | U         |              | 0.0400 | 0.200  |  |
| l,2-Dichlorobenzene        | U         |              | 0.0580 | 0.200  |  |
| ,3-Dichlorobenzene         | U         |              | 0.0680 | 0.200  |  |
| 4-Dichlorobenzene          | U         |              | 0.0788 | 0.200  |  |
| Dichlorodifluoromethane    | U         |              | 0.0327 | 0.100  |  |
| ,1-Dichloroethane          | U         |              | 0.0230 | 0.100  |  |
| 2-Dichloroethane           | U         |              | 0.0190 | 0.100  |  |
| 1-Dichloroethene           | U         |              | 0.0200 | 0.100  |  |
| is-1,2-Dichloroethene      | U         |              | 0.0276 | 0.100  |  |
| ans-1,2-Dichloroethene     | U         |              | 0.0572 | 0.200  |  |
| ,2-Dichloropropane         | U         |              | 0.0508 | 0.200  |  |
| 1-Dichloropropene          | U         |              | 0.0280 | 0.100  |  |
| ,3-Dichloropropane         | U         |              | 0.0700 | 0.200  |  |
| is-1,3-Dichloropropene     | U         |              | 0.0271 | 0.100  |  |
| rans-1,3-Dichloropropene   | U         |              | 0.0612 | 0.200  |  |
| 2,2-Dichloropropane        | U         |              | 0.0317 | 0.100  |  |
| Di-isopropyl ether         | U         |              | 0.0140 | 0.0400 |  |
| Ethylbenzene               | U         |              | 0.0212 | 0.100  |  |
| Hexachloro-1,3-butadiene   | U         |              | 0.508  | 1.00   |  |

# WG1942414

# QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1544628-01

# Method Blank (MB)

| (MB) R3848459-3 10/13/22      | 2 16:38   |              |        |          |  |
|-------------------------------|-----------|--------------|--------|----------|--|
|                               | MB Result | MB Qualifier | MB MDL | MB RDL   |  |
| Analyte                       | ug/l      |              | ug/l   | ug/l     |  |
| sopropylbenzene               | U         |              | 0.0345 | 0.100    |  |
| p-Isopropyltoluene            | U         |              | 0.0932 | 0.200    |  |
| 2-Butanone (MEK)              | U         |              | 0.500  | 1.00     |  |
| Methylene Chloride            | U         |              | 0.265  | 1.00     |  |
| I-Methyl-2-pentanone (MIBK)   | U         |              | 0.400  | 1.00     |  |
| Methyl tert-butyl ether       | U         |              | 0.0118 | 0.0400   |  |
| Naphthalene                   | U         |              | 0.124  | 0.500    |  |
| n-Propylbenzene               | U         |              | 0.0472 | 0.200    |  |
| Styrene                       | U         |              | 0.109  | 0.500    |  |
| ,1,1,2-Tetrachloroethane      | U         |              | 0.0200 | 0.100    |  |
| ,1,2,2-Tetrachloroethane      | U         |              | 0.0156 | 0.100    |  |
| ,1,2-Trichlorotrifluoroethane | U         |              | 0.0270 | 0.100    |  |
| Tetrachloroethene             | U         |              | 0.0280 | 0.100    |  |
| Toluene                       | U         |              | 0.0500 | 0.200    |  |
| 1,2,3-Trichlorobenzene        | U         |              | 0.0250 | 0.500    |  |
| ,2,4-Trichlorobenzene         | U         |              | 0.193  | 0.500    |  |
| ,1,1-Trichloroethane          | U         |              | 0.0110 | 0.100    |  |
| ,1,2-Trichloroethane          | U         |              | 0.0353 | 0.100    |  |
| Frichloroethene               | U         |              | 0.0160 | 0.0400   |  |
| Frichlorofluoromethane        | U         |              | 0.0200 | 0.100    |  |
| 1,2,3-Trichloropropane        | U         |              | 0.204  | 0.500    |  |
| ,2,4-Trimethylbenzene         | U         |              | 0.0464 | 0.200    |  |
| ,2,3-Trimethylbenzene         | U         |              | 0.0460 | 0.200    |  |
| ,3,5-Trimethylbenzene         | U         |              | 0.0432 | 0.200    |  |
| /inyl chloride                | U         |              | 0.0273 | 0.100    |  |
| Kylenes, Total                | U         |              | 0.191  | 0.260    |  |
| (S) Toluene-d8                | 101       |              |        | 75.0-131 |  |
| (S) 4-Bromofluorobenzene      | 98.3      |              |        | 67.0-138 |  |
| (S) 1,2-Dichloroethane-d4     | 104       |              |        | 70.0-130 |  |

# Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3848459-1 | 10/13/22 15:23 • ( | LCSD) R3848459-2 | 10/13/22 15:42 |
|------------------|--------------------|------------------|----------------|
|------------------|--------------------|------------------|----------------|

| (200) 100 10 100 1 10/10/1 | 00           | ,          | - 10/10/22 10:11 | _        |           |             |               |                |      |            |
|----------------------------|--------------|------------|------------------|----------|-----------|-------------|---------------|----------------|------|------------|
|                            | Spike Amount | LCS Result | LCSD Result      | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits |
| Analyte                    | ug/l         | ug/l       | ug/l             | %        | %         | %           |               |                | %    | %          |
| Acetone                    | 25.0         | 29.0       | 32.5             | 116      | 130       | 10.0-160    |               |                | 11.4 | 31         |
| Acrylonitrile              | 25.0         | 27.6       | 25.3             | 110      | 101       | 45.0-153    |               |                | 8.70 | 22         |
| Acrolein                   | 25.0         | 27.4       | 31.1             | 110      | 124       | 10.0-160    |               |                | 12.6 | 31         |
| Benzene                    | 5.00         | 5.72       | 5.31             | 114      | 106       | 70.0-123    |               |                | 7.43 | 20         |

Volatile Organic Compounds (GC/MS) by Method 8260D

5.00

5.11

Methylene Chloride

Тс

Ss

Cn

Sr

<sup>°</sup>Qc

GI

Αl

Sc

# Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3848459-1 10/13/22 15:23 • (LCSD) R3848459-2 10/13/22 15:42 **RPD Limits** Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte ug/l % % % % % ug/l uq/l Bromobenzene 5.00 5.49 5.04 110 101 73.0-121 8.55 20 5.38 120 108 73.0-121 10.9 20 Bromodichloromethane 5.00 6.00 Bromoform 5.00 6.52 6.01 130 120 64.0-132 8.14 20 5.00 4.31 86.2 87.8 56.0-147 1.84 20 Bromomethane 4.39 5.00 5.55 111 106 68.0-135 20 n-Butylbenzene 5.30 4.61 5.00 106 100 74.0-130 20 sec-Butylbenzene 5.29 5.02 5.24 5.00 5.67 113 106 75.0-127 6.93 20 tert-Butylbenzene 5.29 Carbon tetrachloride 5.00 4.85 5.38 97.0 108 66.0-128 10.4 20 102 76.0-128 3.85 20 Chlorobenzene 5.00 5.30 5.10 106 20 Chlorodibromomethane 5.00 5.74 5.29 115 106 74.0-127 8.16 61.0-134 20 Chloroethane 5.00 4.84 4.92 96.8 98.4 1.64 20 Chloroform 5.00 5.04 4.70 101 94.0 72.0-123 6.98 Chloromethane 5.00 5.01 4.77 100 95.4 51.0-138 4.91 20 114 20 2-Chlorotoluene 5.00 5.70 5.20 104 75.0-124 9.17 5.00 97.8 75.0-124 7.67 20 4-Chlorotoluene 5.28 4.89 106 1,2-Dibromo-3-Chloropropane 5.00 4.95 5.15 99.0 103 59.0-130 3.96 20 98.8 74.0-128 20 1,2-Dibromoethane 5.00 5.36 4.94 107 8.16 Dibromomethane 5.00 5.84 4.96 117 99.2 75.0-122 16.3 20 101 76.0-124 0.997 20 1,2-Dichlorobenzene 5.00 5.04 4.99 99.8 5.00 5.29 5.29 106 106 76.0-125 0.000 20 1,3-Dichlorobenzene 20 1,4-Dichlorobenzene 5.00 5.24 4.96 105 99.2 77.0-121 5.49 5.00 5.84 5.14 117 103 43.0-156 12.8 20 Dichlorodifluoromethane 1,1-Dichloroethane 5.00 5.27 5.03 105 101 70.0-127 4.66 20 5.00 5.33 5.00 107 100 65.0-131 6.39 20 1,2-Dichloroethane 1,1-Dichloroethene 5.00 5.27 4.91 105 98.2 65.0-131 7.07 20 5.00 5.11 5.14 102 103 73.0-125 0.585 20 cis-1,2-Dichloroethene 20 trans-1,2-Dichloroethene 5.00 4.90 4.58 98.0 91.6 71.0-125 6.75 1,2-Dichloropropane 5.00 5.62 5.19 112 104 74.0-125 7.96 20 20 1,1-Dichloropropene 5.00 5.42 5.24 108 105 73.0-125 3.38 5.00 5.77 5.25 115 105 80.0-125 9.44 20 1,3-Dichloropropane 103 20 cis-1,3-Dichloropropene 5.00 5.68 5.16 114 76.0-127 9.59 20 5.00 5.69 5.37 114 107 73.0-127 5.79 trans-1,3-Dichloropropene 2,2-Dichloropropane 5.00 5.71 5.61 114 112 59.0-135 1.77 20 5.00 4.83 4.63 96.6 92.6 60.0-136 4.23 20 Di-isopropyl ether 5.00 5.31 5.12 106 102 74.0-126 3.64 20 Ethylbenzene 5.15 121 103 20 Hexachloro-1,3-butadiene 5.00 6.07 57.0-150 16.4 5.00 4.91 5.11 98.2 102 72.0-127 3.99 20 Isopropylbenzene p-Isopropyltoluene 5.00 5.34 5.26 107 105 72.0-133 1.51 20 2-Butanone (MEK) 25.0 100 96.8 30.0-160 24 25.0 24.2 3.25

68.0-123

2.18

20

102

5.00

100

Volatile Organic Compounds (GC/MS) by Method 8260D

L1544628-01

# Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3848459-1 10/13/22 15:23 • (LCSD) R3848459-2 10/13/22 15:42

|                                | Spike Amount | LC2 Kesuit | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |  |
|--------------------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|-------|------------|--|
| Analyte                        | ug/l         | ug/l       | ug/l        | %        | %         | %           |               |                | %     | %          |  |
| 4-Methyl-2-pentanone (MIBK)    | 25.0         | 26.4       | 26.1        | 106      | 104       | 56.0-143    |               |                | 1.14  | 20         |  |
| Methyl tert-butyl ether        | 5.00         | 4.41       | 4.42        | 88.2     | 88.4      | 66.0-132    |               |                | 0.227 | 20         |  |
| Naphthalene                    | 5.00         | 4.98       | 5.71        | 99.6     | 114       | 59.0-130    |               |                | 13.7  | 20         |  |
| n-Propylbenzene                | 5.00         | 5.49       | 5.21        | 110      | 104       | 74.0-126    |               |                | 5.23  | 20         |  |
| Styrene                        | 5.00         | 4.86       | 4.75        | 97.2     | 95.0      | 72.0-127    |               |                | 2.29  | 20         |  |
| 1,1,1,2-Tetrachloroethane      | 5.00         | 5.16       | 4.94        | 103      | 98.8      | 74.0-129    |               |                | 4.36  | 20         |  |
| 1,1,2,2-Tetrachloroethane      | 5.00         | 5.20       | 4.70        | 104      | 94.0      | 68.0-128    |               |                | 10.1  | 20         |  |
| 1,1,2-Trichlorotrifluoroethane | 5.00         | 6.81       | 6.02        | 136      | 120       | 61.0-139    |               |                | 12.3  | 20         |  |
| Tetrachloroethene              | 5.00         | 5.02       | 5.16        | 100      | 103       | 70.0-136    |               |                | 2.75  | 20         |  |
| Toluene                        | 5.00         | 5.16       | 4.88        | 103      | 97.6      | 75.0-121    |               |                | 5.58  | 20         |  |
| 1,2,3-Trichlorobenzene         | 5.00         | 4.90       | 5.76        | 98.0     | 115       | 59.0-139    |               |                | 16.1  | 20         |  |
| 1,2,4-Trichlorobenzene         | 5.00         | 4.71       | 5.33        | 94.2     | 107       | 62.0-137    |               |                | 12.4  | 20         |  |
| 1,1,1-Trichloroethane          | 5.00         | 4.62       | 4.75        | 92.4     | 95.0      | 69.0-126    |               |                | 2.77  | 20         |  |
| 1,1,2-Trichloroethane          | 5.00         | 5.97       | 5.46        | 119      | 109       | 78.0-123    |               |                | 8.92  | 20         |  |
| Trichloroethene                | 5.00         | 5.39       | 5.21        | 108      | 104       | 76.0-126    |               |                | 3.40  | 20         |  |
| Trichlorofluoromethane         | 5.00         | 5.90       | 5.82        | 118      | 116       | 61.0-142    |               |                | 1.37  | 20         |  |
| 1,2,3-Trichloropropane         | 5.00         | 4.85       | 4.48        | 97.0     | 89.6      | 67.0-129    |               |                | 7.93  | 20         |  |
| 1,2,4-Trimethylbenzene         | 5.00         | 5.09       | 4.92        | 102      | 98.4      | 70.0-126    |               |                | 3.40  | 20         |  |
| 1,2,3-Trimethylbenzene         | 5.00         | 5.10       | 4.83        | 102      | 96.6      | 74.0-124    |               |                | 5.44  | 20         |  |
| 1,3,5-Trimethylbenzene         | 5.00         | 5.31       | 5.27        | 106      | 105       | 73.0-127    |               |                | 0.756 | 20         |  |
| Vinyl chloride                 | 5.00         | 5.93       | 5.45        | 119      | 109       | 63.0-134    |               |                | 8.44  | 20         |  |
| Xylenes, Total                 | 15.0         | 15.9       | 15.9        | 106      | 106       | 72.0-127    |               |                | 0.000 | 20         |  |
| (S) Toluene-d8                 |              |            |             | 99.4     | 95.9      | 75.0-131    |               |                |       |            |  |
| (S) 4-Bromofluorobenzene       |              |            |             | 97.1     | 101       | 67.0-138    |               |                |       |            |  |
| (S) 1,2-Dichloroethane-d4      |              |            |             | 97.4     | 98.6      | 70.0-130    |               |                |       |            |  |

# L1543992-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1543992-12 10/13/22 18:20 • (MS) R3848459-4 10/13/22 22:41 • (MSD) R3848459-5 10/13/22 23:00

|                      | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |
|----------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|
| Analyte              | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |
| Acetone              | 25.0         | U               | 40.3      | 35.3       | 161     | 141      | 1        | 10.0-160    | <u>J5</u>    |               | 13.2  | 40         |
| Acrylonitrile        | 25.0         | U               | 27.2      | 29.5       | 109     | 118      | 1        | 10.0-160    |              |               | 8.11  | 40         |
| Acrolein             | 25.0         | U               | 24.2      | 25.9       | 96.8    | 104      | 1        | 10.0-160    |              |               | 6.79  | 40         |
| Benzene              | 5.00         | U               | 3.68      | 3.76       | 73.6    | 75.2     | 1        | 10.0-149    |              |               | 2.15  | 37         |
| Bromobenzene         | 5.00         | U               | 3.93      | 4.46       | 78.6    | 89.2     | 1        | 10.0-156    |              |               | 12.6  | 38         |
| Bromodichloromethane | 5.00         | U               | 4.75      | 5.06       | 95.0    | 101      | 1        | 10.0-143    |              |               | 6.32  | 37         |
| Bromoform            | 5.00         | U               | 5.98      | 6.00       | 120     | 120      | 1        | 10.0-146    |              |               | 0.334 | 36         |
| Bromomethane         | 5.00         | U               | 2.98      | 2.86       | 59.6    | 57.2     | 1        | 10.0-149    |              |               | 4.11  | 38         |

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 AEI Consultants - CA
 468497
 L1544628
 10/19/22 08:53
 11 of 17

Volatile Organic Compounds (GC/MS) by Method 8260D

ACCOUNT:

AEI Consultants - CA

1544628-01

# L1543992-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| Original Result MS Result | 1 • (MSD) R38484<br>MSD Result       | MS Rec.                             | MSD Rec.                                                                        | Dilution                                                                                                | Rec. Limits                                                                                                               | MS Qualifier                                                                                                                                                     | MSD Qualifier                                                                                                                                                    | RPD                                                                                                                                                              | RPD Limits                                                                                                                                                                                  |
|---------------------------|--------------------------------------|-------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ug/l ug/l                 | ug/l                                 | %                                   | %                                                                               | Dilation                                                                                                | %                                                                                                                         | mo quamici                                                                                                                                                       | mob quamer                                                                                                                                                       | %                                                                                                                                                                | %                                                                                                                                                                                           |
| J 3.80                    | 4.01                                 | 76.0                                | 80.2                                                                            | 1                                                                                                       | 10.0-160                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 5.38                                                                                                                                                             | 40                                                                                                                                                                                          |
| J 3.70                    | 3.56                                 | 74.0                                | 71.2                                                                            | 1                                                                                                       | 10.0-159                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 3.86                                                                                                                                                             | 39                                                                                                                                                                                          |
| J 3.66                    | 3.68                                 | 73.2                                | 73.6                                                                            | 1                                                                                                       | 10.0-156                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 0.545                                                                                                                                                            | 39                                                                                                                                                                                          |
| J 3.73                    | 3.61                                 | 74.6                                | 72.2                                                                            | 1                                                                                                       | 10.0-145                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 3.27                                                                                                                                                             | 37                                                                                                                                                                                          |
| J 3.55                    | 3.66                                 | 71.0                                | 73.2                                                                            | 1                                                                                                       | 10.0-152                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 3.05                                                                                                                                                             | 39                                                                                                                                                                                          |
| J 5.06                    | 5.23                                 | 101                                 | 105                                                                             | 1                                                                                                       | 10.0-146                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 3.30                                                                                                                                                             | 37                                                                                                                                                                                          |
| J 3.40                    | 2.68                                 | 68.0                                | 53.6                                                                            | 1                                                                                                       | 10.0-146                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 23.7                                                                                                                                                             | 40                                                                                                                                                                                          |
| J 3.81                    | 3.62                                 | 76.2                                | 72.4                                                                            | 1                                                                                                       | 10.0-146                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 5.11                                                                                                                                                             | 37                                                                                                                                                                                          |
| J 3.25                    | 3.03                                 | 65.0                                | 60.6                                                                            | 1                                                                                                       | 10.0-159                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 7.01                                                                                                                                                             | 37                                                                                                                                                                                          |
| J 3.69                    | 3.94                                 | 73.8                                | 78.8                                                                            | 1                                                                                                       | 10.0-159                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 6.55                                                                                                                                                             | 38                                                                                                                                                                                          |
| J 3.58                    | 3.84                                 | 71.6                                | 76.8                                                                            | 1                                                                                                       | 10.0-155                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 7.01                                                                                                                                                             | 39                                                                                                                                                                                          |
| J 4.35                    | 6.48                                 | 87.0                                | 130                                                                             | 1                                                                                                       | 10.0-151                                                                                                                  |                                                                                                                                                                  | <u>J3</u>                                                                                                                                                        | 39.3                                                                                                                                                             | 39                                                                                                                                                                                          |
| J 4.54                    | 4.55                                 | 90.8                                | 91.0                                                                            | 1                                                                                                       | 10.0-148                                                                                                                  |                                                                                                                                                                  | <u>==</u>                                                                                                                                                        | 0.220                                                                                                                                                            | 34                                                                                                                                                                                          |
| J 5.25                    | 5.11                                 | 105                                 | 102                                                                             | 1                                                                                                       | 10.0-147                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 2.70                                                                                                                                                             | 35                                                                                                                                                                                          |
| J 3.93                    | 4.23                                 | 78.6                                | 84.6                                                                            | 1                                                                                                       | 10.0-155                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 7.35                                                                                                                                                             | 37                                                                                                                                                                                          |
| J 3.72                    | 4.13                                 | 74.4                                | 82.6                                                                            | 1                                                                                                       | 10.0-153                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 10.4                                                                                                                                                             | 38                                                                                                                                                                                          |
| J 3.95                    | 4.20                                 | 79.0                                | 84.0                                                                            | 1                                                                                                       | 10.0-151                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 6.13                                                                                                                                                             | 38                                                                                                                                                                                          |
| J 3.95                    | 3.25                                 | 79.0                                | 65.0                                                                            | 1                                                                                                       | 10.0-160                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 19.4                                                                                                                                                             | 35                                                                                                                                                                                          |
| J 3.53                    | 3.47                                 | 70.6                                | 69.4                                                                            | 1                                                                                                       | 10.0-147                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 1.71                                                                                                                                                             | 37                                                                                                                                                                                          |
| J 5.10                    | 5.27                                 | 102                                 | 105                                                                             | 1                                                                                                       | 10.0-148                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 3.28                                                                                                                                                             | 35                                                                                                                                                                                          |
| J 3.39                    | 3.08                                 | 67.8                                | 61.6                                                                            | 1                                                                                                       | 10.0-155                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 9.58                                                                                                                                                             | 37                                                                                                                                                                                          |
| J 3.70                    | 3.52                                 | 74.0                                | 70.4                                                                            | 1                                                                                                       | 10.0-149                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 4.99                                                                                                                                                             | 37                                                                                                                                                                                          |
| J 2.96                    | 2.98                                 | 59.2                                | 59.6                                                                            | 1                                                                                                       | 10.0-150                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 0.673                                                                                                                                                            | 37                                                                                                                                                                                          |
| J 4.08                    | 4.27                                 | 81.6                                | 85.4                                                                            | 1                                                                                                       | 10.0-148                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 4.55                                                                                                                                                             | 37                                                                                                                                                                                          |
| J 3.39                    | 3.19                                 | 67.8                                | 63.8                                                                            | 1                                                                                                       | 10.0-153                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 6.08                                                                                                                                                             | 35                                                                                                                                                                                          |
| J 4.51                    | 4.87                                 | 90.2                                | 97.4                                                                            | 1                                                                                                       | 10.0-154                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 7.68                                                                                                                                                             | 35                                                                                                                                                                                          |
| J 4.15                    | 4.66                                 | 83.0                                | 93.2                                                                            | 1                                                                                                       | 10.0-151                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 11.6                                                                                                                                                             | 37                                                                                                                                                                                          |
| J 4.63                    | 5.05                                 | 92.6                                | 101                                                                             | 1                                                                                                       | 10.0-148                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 8.68                                                                                                                                                             | 37                                                                                                                                                                                          |
| J 4.35                    | 4.24                                 | 87.0                                | 84.8                                                                            | 1                                                                                                       | 10.0-138                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 2.56                                                                                                                                                             | 36                                                                                                                                                                                          |
| J 4.34                    | 4.82                                 | 86.8                                | 96.4                                                                            | 1                                                                                                       | 10.0-147                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 10.5                                                                                                                                                             | 36                                                                                                                                                                                          |
| J 3.26                    | 3.61                                 | 65.2                                | 72.2                                                                            | 1                                                                                                       | 10.0-160                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 10.2                                                                                                                                                             | 38                                                                                                                                                                                          |
| J 4.74                    | 5.13                                 | 94.8                                | 103                                                                             | 1                                                                                                       | 10.0-160                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 7.90                                                                                                                                                             | 40                                                                                                                                                                                          |
| J 3.49                    | 3.56                                 | 69.8                                | 71.2                                                                            | 1                                                                                                       | 10.0-155                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 1.99                                                                                                                                                             | 38                                                                                                                                                                                          |
| J 3.76                    | 3.72                                 | 75.2                                | 74.4                                                                            | 1                                                                                                       | 10.0-160                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 1.07                                                                                                                                                             | 40                                                                                                                                                                                          |
| J 31.4                    | 28.3                                 | 126                                 | 113                                                                             | 1                                                                                                       | 10.0-160                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 10.4                                                                                                                                                             | 40                                                                                                                                                                                          |
|                           |                                      |                                     |                                                                                 |                                                                                                         |                                                                                                                           |                                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 37                                                                                                                                                                                          |
|                           |                                      |                                     |                                                                                 |                                                                                                         |                                                                                                                           |                                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 35                                                                                                                                                                                          |
|                           |                                      |                                     |                                                                                 |                                                                                                         |                                                                                                                           |                                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 35                                                                                                                                                                                          |
|                           |                                      |                                     |                                                                                 |                                                                                                         |                                                                                                                           |                                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 36                                                                                                                                                                                          |
|                           |                                      |                                     |                                                                                 |                                                                                                         |                                                                                                                           |                                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  | 38                                                                                                                                                                                          |
| )<br>)<br>)<br>)          | 3.20<br>29.2<br>4.22<br>4.48<br>3.45 | 29.2 29.5<br>4.22 5.24<br>4.48 5.51 | 29.2     29.5     117       4.22     5.24     84.4       4.48     5.51     89.6 | 29.2     29.5     117     118       4.22     5.24     84.4     105       4.48     5.51     89.6     110 | 29.2     29.5     117     118     1       4.22     5.24     84.4     105     1       4.48     5.51     89.6     110     1 | 29.2     29.5     117     118     1     10.0-160       4.22     5.24     84.4     105     1     11.0-147       4.48     5.51     89.6     110     1     10.0-160 | 29.2     29.5     117     118     1     10.0-160       4.22     5.24     84.4     105     1     11.0-147       4.48     5.51     89.6     110     1     10.0-160 | 29.2     29.5     117     118     1     10.0-160       4.22     5.24     84.4     105     1     11.0-147       4.48     5.51     89.6     110     1     10.0-160 | 29.2     29.5     117     118     1     10.0-160     1.02       4.22     5.24     84.4     105     1     11.0-147     21.6       4.48     5.51     89.6     110     1     10.0-160     20.6 |

SDG:

L1544628

DATE/TIME:

10/19/22 08:53

PAGE:

12 of 17

PROJECT:

468497

(S) 1,2-Dichloroethane-d4

# QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

L1544628-01

# L1543992-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

|                                | Spike Amount | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD   | RPD Limits |  |
|--------------------------------|--------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|-------|------------|--|
| Analyte                        | ug/l         | ug/l            | ug/l      | ug/l       | %       | %        |          | %           |              |               | %     | %          |  |
| Styrene                        | 5.00         | U               | 3.45      | 3.61       | 69.0    | 72.2     | 1        | 10.0-160    |              |               | 4.53  | 40         |  |
| 1,1,1,2-Tetrachloroethane      | 5.00         | U               | 3.90      | 4.45       | 78.0    | 89.0     | 1        | 10.0-149    |              |               | 13.2  | 39         |  |
| 1,1,2,2-Tetrachloroethane      | 5.00         | U               | 4.51      | 5.22       | 90.2    | 104      | 1        | 10.0-160    |              |               | 14.6  | 35         |  |
| 1,1,2-Trichlorotrifluoroethane | 5.00         | U               | 3.99      | 3.60       | 79.8    | 72.0     | 1        | 10.0-160    |              |               | 10.3  | 36         |  |
| Tetrachloroethene              | 5.00         | U               | 3.39      | 3.14       | 67.8    | 62.8     | 1        | 10.0-156    |              |               | 7.66  | 39         |  |
| Toluene                        | 5.00         | U               | 3.27      | 3.11       | 65.4    | 62.2     | 1        | 10.0-156    |              |               | 5.02  | 38         |  |
| 1,2,3-Trichlorobenzene         | 5.00         | U               | 4.40      | 5.40       | 88.0    | 108      | 1        | 10.0-160    |              |               | 20.4  | 40         |  |
| 1,2,4-Trichlorobenzene         | 5.00         | U               | 4.11      | 5.19       | 82.2    | 104      | 1        | 10.0-160    |              |               | 23.2  | 40         |  |
| 1,1,1-Trichloroethane          | 5.00         | U               | 3.56      | 3.52       | 71.2    | 70.4     | 1        | 10.0-144    |              |               | 1.13  | 35         |  |
| 1,1,2-Trichloroethane          | 5.00         | U               | 5.01      | 5.05       | 100     | 101      | 1        | 10.0-160    |              |               | 0.795 | 35         |  |
| Trichloroethene                | 5.00         | U               | 3.49      | 3.28       | 69.8    | 65.6     | 1        | 10.0-156    |              |               | 6.20  | 38         |  |
| Trichlorofluoromethane         | 5.00         | U               | 3.94      | 3.57       | 78.8    | 71.4     | 1        | 10.0-160    |              |               | 9.85  | 40         |  |
| 1,2,3-Trichloropropane         | 5.00         | U               | 4.93      | 5.01       | 98.6    | 100      | 1        | 10.0-156    |              |               | 1.61  | 35         |  |
| 1,2,4-Trimethylbenzene         | 5.00         | U               | 3.64      | 3.84       | 72.8    | 76.8     | 1        | 10.0-160    |              |               | 5.35  | 36         |  |
| 1,2,3-Trimethylbenzene         | 5.00         | U               | 3.70      | 3.98       | 74.0    | 79.6     | 1        | 10.0-160    |              |               | 7.29  | 36         |  |
| 1,3,5-Trimethylbenzene         | 5.00         | U               | 3.59      | 3.90       | 71.8    | 78.0     | 1        | 10.0-160    |              |               | 8.28  | 38         |  |
| Vinyl chloride                 | 5.00         | U               | 3.37      | 2.77       | 67.4    | 55.4     | 1        | 10.0-160    |              |               | 19.5  | 37         |  |
| Xylenes, Total                 | 15.0         | U               | 10.9      | 10.9       | 72.7    | 72.7     | 1        | 10.0-160    |              |               | 0.000 | 38         |  |
| (S) Toluene-d8                 |              |                 |           |            | 98.1    | 93.3     |          | 75.0-131    |              |               |       |            |  |
| (S) 4-Bromofluorobenzene       |              |                 |           |            | 98.9    | 101      |          | 67.0-138    |              |               |       |            |  |
|                                |              |                 |           |            |         |          |          |             |              |               |       |            |  |

117

111





















70.0-130

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L1544628-01

# Method Blank (MB)

| (MB) R3848828-1 10/14/22      | 19:26     |              |        |          |
|-------------------------------|-----------|--------------|--------|----------|
|                               | MB Result | MB Qualifier | MB MDL | MB RDL   |
| Analyte                       | ug/l      |              | ug/l   | ug/l     |
| Diesel Range Organics (DRO)   | U         |              | 66.7   | 200      |
| Residual Range Organics (RRO) | U         |              | 83.3   | 250      |
| (S) o-Terphenyl               | 96.0      |              |        | 52.0-156 |

# <sup>2</sup>Tc





# <sup>4</sup>Cn

# Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3848828-2 10/14/2    | 22 19:55 • (LCS | D) R3848828- | 3 10/14/22 20: | 18       |           |             |               |                |      |            |  |
|-----------------------------|-----------------|--------------|----------------|----------|-----------|-------------|---------------|----------------|------|------------|--|
|                             | Spike Amount    | LCS Result   | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits |  |
| Analyte                     | ug/l            | ug/l         | ug/l           | %        | %         | %           |               |                | %    | %          |  |
| Diesel Range Organics (DRO) | 1500            | 1830         | 1630           | 122      | 109       | 50.0-150    |               |                | 11.6 | 20         |  |
| (S) o-Terphenyl             |                 |              |                | 92.0     | 90.5      | 52.0-156    |               |                |      |            |  |













# **GLOSSARY OF TERMS**

# Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

# Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                               |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                      |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                  |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                              |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |

| Qualifier De | escriptio | n |
|--------------|-----------|---|
|--------------|-----------|---|

| J  | The identification of the analyte is acceptable; the reported value is an estimate.                    |
|----|--------------------------------------------------------------------------------------------------------|
| J3 | The associated batch QC was outside the established quality control range for precision.               |
| J5 | The sample matrix interfered with the ability to make any accurate determination; spike value is high. |



















# **ACCREDITATIONS & LOCATIONS**

| Pace Analy | tical National | 12065 Lebanon | Rd Mount Ju | iliet TN 37122 |
|------------|----------------|---------------|-------------|----------------|

| Alabama 40660                         | Nebraska                    | NE-OS-15-05      |  |  |  |
|---------------------------------------|-----------------------------|------------------|--|--|--|
| Alaska 17-026                         | Nevada                      | TN000032021-1    |  |  |  |
| Arizona AZ0612                        | New Hampshire               | 2975             |  |  |  |
| Arkansas 88-0469                      | New Jersey-NELAP            | TN002            |  |  |  |
| California 2932                       | New Mexico <sup>1</sup>     | TN00003          |  |  |  |
| Colorado TN00003                      | New York                    | 11742            |  |  |  |
| Connecticut PH-0197                   | North Carolina              | Env375           |  |  |  |
| Florida E87487                        | North Carolina <sup>1</sup> | DW21704          |  |  |  |
| Georgia NELAP                         | North Carolina <sup>3</sup> | 41               |  |  |  |
| Georgia <sup>1</sup> 923              | North Dakota                | R-140            |  |  |  |
| daho TN00003                          | Ohio-VAP                    | CL0069           |  |  |  |
| llinois 200008                        | Oklahoma                    | 9915             |  |  |  |
| ndiana C-TN-01                        | Oregon                      | TN200002         |  |  |  |
| owa 364                               | Pennsylvania                | 68-02979         |  |  |  |
| Kansas E-10277                        | Rhode Island                | LAO00356         |  |  |  |
| Kentucky <sup>1 6</sup> KY90010       | South Carolina              | 84004002         |  |  |  |
| Kentucky <sup>2</sup> 16              | South Dakota                | n/a              |  |  |  |
| ouisiana Al30792                      | Tennessee 1 4               | 2006             |  |  |  |
| ouisiana LA018                        | Texas                       | T104704245-20-18 |  |  |  |
| Maine TN00003                         | Texas <sup>5</sup>          | LAB0152          |  |  |  |
| Maryland 324                          | Utah                        | TN000032021-11   |  |  |  |
| Massachusetts M-TN003                 | Vermont                     | VT2006           |  |  |  |
| Michigan 9958                         | Virginia                    | 110033           |  |  |  |
| Minnesota 047-999-395                 | Washington                  | C847             |  |  |  |
| Mississippi TN00003                   | West Virginia               | 233              |  |  |  |
| Missouri 340                          | Wisconsin                   | 998093910        |  |  |  |
| Montana CERT0086                      | Wyoming                     | A2LA             |  |  |  |
| A2LA – ISO 17025 1461.01              | AIHA-LAP,LLC EMLAP          | 100789           |  |  |  |
| A2LA – ISO 17025 <sup>5</sup> 1461.02 | DOD                         | 1461.01          |  |  |  |
| Canada 1461.01                        | USDA                        | P330-15-00234    |  |  |  |



<sup>\*</sup> Not all certifications held by the laboratory are applicable to the results reported in the attached report.

EPA-Crypto

TN00003



















 $<sup>^* \, \</sup>text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$ 

| AEI Consultants - CA                                                         |                                                              |                                              | Billing Information:              |                                                   |                         |                           | -                   | Analysis / Container / Preservative |                    |                                             |         |                                                                                                 |               |                                        |                                                            | Chain of Custody Page of                                                                  |                                                                       |  |  |
|------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|-----------------------------------|---------------------------------------------------|-------------------------|---------------------------|---------------------|-------------------------------------|--------------------|---------------------------------------------|---------|-------------------------------------------------------------------------------------------------|---------------|----------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| AEI Consultants - CA  2500 Camino Diablo Walnut Creek, CA 94597              |                                                              | 2500 Camino Diablo<br>Walnut Creek, CA 94597 |                                   |                                                   | Pres<br>Cak             |                           |                     |                                     |                    |                                             |         |                                                                                                 |               |                                        | PEOPLE                                                     | RCC°<br>advancing science                                                                 |                                                                       |  |  |
| Natahsa Budimirovic; Jeremy Smith                                            |                                                              |                                              | jasmi                             | Email To: nbudimirovic@aeiconsultants.com         |                         |                           |                     |                                     |                    |                                             |         |                                                                                                 |               |                                        |                                                            | MT JL<br>12065 Lebanon Rd Mor<br>Submitting a sample via                                  |                                                                       |  |  |
| Project Description: Yarran Bay Yacht Basiv                                  | n and Hari                                                   | City/State<br>Collected:                     | Kirkli                            | and, wa                                           | Please Ci               | rcle.                     |                     | -                                   |                    |                                             |         |                                                                                                 |               |                                        |                                                            | constitutes acknowledg<br>Pace Terms and Conditi<br>https://info.pacelabs.co<br>terms.pdf | ment and acceptance of the<br>ons found at:<br>om/hubfs/pas-standard- |  |  |
| Priorie: 323-740-0000                                                        |                                                              | 8497                                         | Lab Project # AEICONWCCA-EVERETTW |                                                   |                         |                           | НСІ                 | -HCI-B                              |                    | -                                           |         | _                                                                                               |               |                                        |                                                            | SDG#                                                                                      | 544628                                                                |  |  |
| Collected by (print):  N BUD I H NOUC                                        | Collected by (print):  N BUD   H LIKONC   Site/Facility ID # |                                              |                                   | P.O. #                                            | ). #                    |                           | b-Add               | nlAmb                               | тр нс              | mb-Hc                                       | -HCI    | mb HC                                                                                           |               |                                        |                                                            | Acctnum: AEICONWO                                                                         | J149                                                                  |  |  |
| Collected by (signature):  Rush? (Lab MUST Be Same Day Five I Next Day 5 Day |                                                              | Day                                          | ts Needed No                      |                                                   | EPH-HOLD 1L-Amb-Add HCI | NWTPHDXLVI 40mlAmb-HCI-BT | NWTPHGX 40mlAmb HCl | NWTPHGX 40mlAmb-HCl                 | V8260C 40mlAmb-HCI | VPH-HOLD 40mlAmb HCl                        |         |                                                                                                 |               | Prelogin: P95! PM: 110 - Brian PB: 105 | 217672<br>255782<br>ian, Ford                              |                                                                                           |                                                                       |  |  |
| Sample ID                                                                    | Comp/Grab                                                    | Matrix *                                     | Depth                             | Date                                              | Time                    | of<br>Cntrs               | рн-н                | WTP                                 | IWTP               | IWTP                                        | /8260   | урн-ни                                                                                          |               |                                        |                                                            |                                                                                           | dEX 2nd Day Sample # (lab only)                                       |  |  |
| MW-1                                                                         | Grab                                                         | GW                                           | -                                 | 1017122                                           | 1310                    | 10                        | 液                   | X                                   | Х                  | X                                           | X       | Æ                                                                                               |               |                                        |                                                            |                                                                                           | -01                                                                   |  |  |
|                                                                              |                                                              |                                              |                                   |                                                   |                         |                           |                     |                                     |                    |                                             |         |                                                                                                 |               |                                        |                                                            |                                                                                           |                                                                       |  |  |
|                                                                              | /                                                            |                                              |                                   |                                                   |                         |                           |                     |                                     |                    |                                             |         |                                                                                                 |               |                                        |                                                            |                                                                                           |                                                                       |  |  |
| SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater | Flow Other Bottl                                             |                                              |                                   |                                                   |                         |                           |                     |                                     |                    |                                             | COC Sic | Sample Receipt Checklist eal Present/Intact: NP Y N igned/Accurate: NP N es arrive intact: NP N |               |                                        |                                                            |                                                                                           |                                                                       |  |  |
| OT - Other                                                                   | Samples returned via:UPSFedExCourier Tracking # 0721 0       |                                              |                                   |                                                   |                         |                           |                     |                                     | 53 3813 3965       |                                             |         |                                                                                                 |               |                                        |                                                            | Correct bottles used: Sufficient volume sent:  If Applicable VOA Zero Headspace: Y N      |                                                                       |  |  |
| Relinquished by: (Signature)  Date:  10/7/2                                  |                                                              |                                              | 2 14                              | Time: Received by: (Signature 2 1420 Surpred with |                         |                           | Edt                 | 32                                  |                    | Trip Blank Received: Ye / No Het / MeoH TBR |         |                                                                                                 |               |                                        | Preservation Correct/Checked: Y N RAD Screen <0.5 mR/hr: N |                                                                                           |                                                                       |  |  |
| Relinquished by : (Signature) Date:                                          |                                                              | Time:                                        | Recei                             | ed by: (Signatu                                   | ıre)                    |                           |                     | 4                                   | 2.0+(              | )=5.                                        | Bottle  | Received:                                                                                       | d: If preserv |                                        | rvation required by Login: Date/Time                       |                                                                                           |                                                                       |  |  |
| Relinquished by : (Signature) Date:                                          |                                                              | Time:                                        | Time: Received for lab by: (Sig   |                                                   |                         |                           | nature)             |                                     |                    | Date: Time: 09 00                           |         |                                                                                                 | Hold:         |                                        |                                                            | Condition:<br>NCF / OK                                                                    |                                                                       |  |  |