Port of Seattle Lora Lake Apartments Site # **2022 Annual Compliance Monitoring Report** #### **Prepared for** Port of Seattle Aviation Environmental Programs Seattle-Tacoma International Airport 17900 International Boulevard, Suite 402 SeaTac, Washington 98188-4238 **November 2022** # FLOYDISNIDER strategy • science • engineering # **LIMITATIONS** This report has been prepared for the exclusive use of the Port of Seattle, their authorized agents, and regulatory agencies. It has been prepared following the described methods and information available at the time of the work. No other party should use this report for any purpose other than that originally intended, unless Floyd | Snider agrees in advance to such reliance in writing. The information contained herein should not be utilized for any purpose or project except the one originally intended. Under no circumstances shall this document be altered, updated, or revised without written authorization of Floyd | Snider. ### **2022 Annual Compliance Monitoring Report** This document was prepared for The Port of Seattle under the supervision of: Name: Amanda McKay Date: November 29, 2022 ### **Table of Contents** | 1.0 | Intro | duction | | 1-1 | |-----|-------|-----------|---|-----| | | 1.1 | BACKG | ROUND | 1-1 | | | | 1.1.1 | Site Description | 1-1 | | | | 1.1.2 | Remedial Actions Implemented | 1-2 | | | | 1.1.3 | Compliance Monitoring Requirements | 1-2 | | 2.0 | Lora | Lake Apa | rtments Parcel | 2-1 | | | 2.1 | COMPI | LIANCE MONITORING PLAN ACTIVITIES COMPLETED | 2-1 | | | | 2.1.1 | Groundwater Monitoring Completed | 2-1 | | | | 2.1.2 | Maintenance Activities Completed | 2-2 | | | 2.2 | GROUI | NDWATER COMPLIANCE MONITORING SUMMARY | 2-2 | | | 2.3 | GROUI | NDWATER ANALYTICAL SUMMARY | 2-2 | | | | 2.3.1 | Arsenic | 2-2 | | | | 2.3.2 | Data Validation | 2-2 | | | 2.4 | TEMPO | DRARY SOIL CAP INSPECTION | 2-3 | | 3.0 | Lora | Lake Pard | cel | 3-1 | | | 3.1 | COMPI | LIANCE MONITORING PLAN ACTIVITIES COMPLETED | 3-1 | | | | 3.1.1 | Groundwater Monitoring Completed | 3-1 | | | | 3.1.2 | Maintenance Activities Completed | 3-1 | | | 3.2 | GROU | NDWATER COMPLIANCE MONITORING SUMMARY | 3-1 | | | 3.3 | GROU | NDWATER ANALYTICAL SUMMARY | 3-1 | | | | 3.3.1 | Arsenic | 3-1 | | | | 3.3.2 | Dioxins/Furans | 3-2 | | | | 3.3.3 | Data Validation | 3-2 | | | | 3.3.4 | Sediment Remedy Confirmation Monitoring | 3-2 | | 4.0 | 1982 | Dredged | Material Containment Area | 4-1 | | | 4.1 | WILDL | IFE BARRIER INSPECTION | 4-1 | | 5.0 | Upco | ming Eve | ents and Next Steps | 5-1 | | | 5.1 | 2023 C | OMPLIANCE MONITORING | 5-1 | | 6.0 | Refer | ences | | 6-1 | #### **List of Tables** | Table 2.1 | Lora Lake Apartments Parcel Groundwater Analytical Data | |-----------|---| | Table 3.1 | Lora Lake Parcel Groundwater Analytical Data | ## **List of Figures** | Figure 1.1 | Site Map | |------------|---| | Figure 2.1 | Lora Lake Apartments Parcel 2022 Groundwater Analytical Results | | Figure 3.1 | Lora Lake Parcel 2022 Groundwater Analytical Results | ### **List of Appendices** | Appendix A | Groundwater Sample Collection Forms | |------------|---| | Appendix B | Laboratory Reports and Data Validation Summaries | | Appendix C | Soil Cap and Wildlife Barrier Inspection Logs and Photographs | | Appendix D | Post-Maintenance Photographs | #### **List of Abbreviations** | Abbreviation | Definition | |--------------|--| | ARI | Analytical Resources, Inc. | | CD | Consent Decree | | CMP | Compliance Monitoring Plan | | DMCA | 1982 Dredged Material Containment Area | | Ecology | Washington State Department of Ecology | | μg/L | Micrograms per liter | | pg/g | Picograms per gram | | pg/L | Picograms per liter | | Port | Port of Seattle | | Site | Lora Lake Apartments Site | | TEQ | Toxic equivalent | | USEPA | U.S. Environmental Protection Agency | #### 1.0 Introduction This Annual Compliance Monitoring Report was prepared by Floyd|Snider on behalf of the Port of Seattle (Port) to document the compliance monitoring events conducted in 2022 at the Lora Lake Apartments Site (Site) in Burien, Washington. Compliance monitoring activities were conducted in accordance with the 2015 Compliance Monitoring Plan (CMP), as revised and finalized in 2022 (Floyd|Snider 2022). The objective of this report is to describe the compliance monitoring program activities performed from January through December 2022. This report includes the results from compliance monitoring activities including groundwater compliance monitoring, sediment remedy compliance monitoring, and wildlife barrier and cap performance inspections at the Site. The cumulative data from these events will be used in the first 5-year periodic review, to be conducted following the 2024 monitoring event, to confirm the effectiveness of the remedial action and identify when site-wide compliance with groundwater cleanup standards for the Site have been achieved. #### 1.1 BACKGROUND #### 1.1.1 Site Description The Site is located at 15001 Des Moines Memorial Drive South in Burien, Washington, and straddles the boundary between the Cities of Burien and SeaTac, Washington (refer to Figure 1.1). The Site, as defined by Washington Administrative Code 173-340-200, consists of three areas: the Lora Lake Apartments Parcel, and areas within the Lora Lake Parcel and 1982 Dredged Material Containment Area (DMCA), where contamination has come to be located. Historical operations at the Lora Lake Apartments Parcel included barrel-washing and auto-wrecking operations, which along with site regrading led to soil and groundwater contamination throughout the Site. The Site is owned by the Port and located within the security fencing for the Seattle-Tacoma International Airport with the exception of the portion of the Lora Lake Apartments Parcel owned by the Washington State Department of Transportation (WSDOT), described below. Descriptions of the Site areas are as follows: - The Lora Lake Apartments Parcel is located on the west side of Des Moines Memorial Drive in the City of Burien and consists of approximately 8.3 acres of previously vacant land. A portion of the Lora Lake Apartments Parcel in the northeast corner was sold to WSDOT in May 2017 for the construction of State Road-518 off-ramp. This area is retained within the Site boundary although no longer owned by the Port. To the south of the Lora Lake Apartments Parcel is the former Seattle City Light Sunnydale Substation Parcel, which was purchased by the Port in 2011. Contamination has come to be located on a portion of the former Sunnydale Substation Parcel and this area therefore falls within the Site boundary. - The Lora Lake Parcel is located on the east side of Des Moines Memorial Drive in the City of SeaTac and consists of approximately 7.1 acres of land, including the former approximately 3-acre Lora Lake and a Port-constructed wetland habitat mitigation area. The DMCA is an approximately 2.75-acre area located adjacent to the Lora Lake Parcel, to the northeast. The DMCA was constructed in 1982, when King County dredged approximately 4 feet of Lora Lake sediments and placed the dredged material in a specifically constructed facility, now referred to as the DMCA. The Port and the Washington State Department of Ecology (Ecology) entered a Consent Decree (CD) in September 2015 under the mutual objective of providing remedial action at the Site. The CD required the Port to perform a final cleanup action and associated compliance monitoring at the Site as described in the Cleanup Action Plan (CAP; State of Washington 2015). #### 1.1.2 Remedial Actions Implemented As described in the CAP, the remedial actions at the Site were determined for each parcel. The Lora Lake Apartments Parcel remedial actions taken include excavation of soils with a dioxin/furan toxic equivalent (TEQ) greater than 100 picograms per gram (pg/g), construction of a temporary clean soil cap, and future implementation of a constructed engineered surface to contain remaining soils with concentrations greater than the dioxin/furan TEQ cleanup level of 13 pg/g at the time of future site redevelopment. The final engineered surface shall be installed by October 31, 2026, as approved by Ecology via email on September 8, 2021. The excavation and temporary clean soil cap were completed in 2018. The Lora Lake Parcel remedial actions taken include construction of a sand cap, followed by site restoration into an intermittent scrub/shrub wetland. The sand cap was completed in 2019, and the wetland restoration was completed in early 2020. DMCA remedial actions completed include construction of a wildlife barrier. Restrictive Covenants limiting future site uses have been implemented for all parcels, for protection from contact with contamination remaining in place. Restrictive Covenants for the Lora Lake Apartments Parcel, Lora Lake Parcel, DMCA, and the former Sunnydale Substation Parcel were filed with King County on January 28, 2022, after receipt of Ecology signatures. Compliance monitoring of the remedial actions is being conducted under the CMP (Floyd|Snider 2022). #### 1.1.3 Compliance Monitoring Requirements In accordance with Washington Administrative Code 173-340-410, compliance monitoring of site groundwater is required to confirm that human health and the environment are adequately protected, the remedial action has achieved the cleanup standards, and the cleanup action remains protective after cleanup standards have been met. The Ecology-approved CMP includes requirements for each of the three parcels of the Site. Requirements for the Lora Lake Apartments Parcel include analysis of groundwater for arsenic, pentachlorophenol, and dioxins/furans, and four consecutive events with
concentrations less than the established cleanup levels throughout the monitoring network prior to termination of sampling. The CMP also includes annual inspections of the soil cap to identify and document general condition, as well as any areas of exposed underlying soil, loss of barrier material, or substantial plant growth that may impact the functionality of the cap. Once constructed, annual monitoring of the permanent cap (redeveloped surface) will also be required to ensure integrity of the cap. The Lora Lake Parcel requirements include annual analysis of groundwater for arsenic and dioxins/furans. Groundwater data will be subject to a 5-year periodic review to assess appropriate monitoring frequency for the next 5 years, and subsequent 5-year reviews will set the frequency for the following 5-year period. Additionally, as described in the CMP, sediment remedy compliance will also be evaluated every 5 years, through a statistical comparison of Lora Lake Parcel groundwater quality to site vicinity groundwater quality, for assessment of the sediment cap performance to contain contamination in the now-contained subsurface sediment beneath the restored wetland. The first 5-year period review and sediment remedy compliance evaluation will be conducted after the 2024 monitoring event. Compliance monitoring requirements at the DMCA include annual wildlife barrier physical inspections to identify and document general condition, as well as any areas of exposed underlying soil, loss of barrier material, or substantial plant growth that may impact the functionality of the wildlife barrier. #### 2.0 Lora Lake Apartments Parcel #### 2.1 COMPLIANCE MONITORING PLAN ACTIVITIES COMPLETED #### 2.1.1 Groundwater Monitoring Completed Compliance monitoring at the Lora Lake Apartments Parcel began in December 2018. Four consecutive quarters of groundwater samples with pentachlorophenol and dioxin/furan concentrations less than cleanup levels were collected at MW-C1, MW-C2, and MW-C3 during the December 2018, March 2019, June 2019, and September 2019 monitoring events. With Ecology's approval, sampling for pentachlorophenol and dioxin/furan analysis was terminated after the September 2019 event. Sampling for dissolved arsenic continues as discussed below. Groundwater samples, as described in this report, were collected from the full monitoring network (MW-C1, MW-C2, MW-C3, and MW-C4) on March 30, 2020, and June 20, 2020. In August 2020, Floyd|Snider submitted the *Evaluation of Arsenic in Groundwater at the Lora Lake Apartments Site* memorandum (hereafter referred to as the Arsenic Evaluation Memorandum; Floyd|Snider 2020) to Ecology on behalf of the Port to describe outlier arsenic data trends observed at MW-C2 and propose a change in the monitoring approach. As described in the Arsenic Evaluation Memorandum, seasonal exceedances of arsenic concentrations correlated with elevated pH and high groundwater table elevation, likely associated with the crushed concrete fill placed after the demolition of the Lora Lake Apartments buildings and excavation of underlying impacted soil. This recycled concrete was placed above the historical high water table elevation but may be impacting pH and arsenic in groundwater during the wet season. Because the pattern observed at MW-C2 is unique to the location and not observed within the rest of the monitoring network, the Port requested termination of quarterly sampling of the full monitoring network. The Port proposed annual sampling of MW-C2 and downgradient location MW-C3 during the wet season to continue to confirm that elevated arsenic concentrations are not migrating off-site. On September 21, 2020, Ecology approved the proposed approach of terminating quarterly sampling at the Lora Lake Apartments Parcel and coordinating annual sampling of MW-C2 and the downgradient location, MW-C3, concurrent with Lora Lake annual monitoring each spring (refer to Appendix A of the 2020 Annual Compliance Monitoring Report [Floyd|Snider 2021]). Annual monitoring of MW-C2 and MW-C3 will monitor trends and confirm arsenic-impacted waters are not migrating off property. The first round of annual monitoring of MW-C2 and MW-C3 occurred on October 27, 2020, rather than in the spring, due to sampling schedule impacts related to the COVID-19 pandemic. The second and third rounds of annual monitoring of MW-C2 and MW-C3 occurred in March 2021 and March 2022, respectively, on the regular spring schedule. The 2022 annual monitoring is described in this report. #### 2.1.2 Maintenance Activities Completed In April 2022, the Port completed maintenance activities for items noted in the March 23, 2022, cap inspection, as detailed in Section 2.4. The Port completed repair of the missing section of fence and mowed site-wide. The maintenance items were completed by April 14, 2022. #### 2.2 GROUNDWATER COMPLIANCE MONITORING SUMMARY MW-C2 and MW-C3 were sampled in coordination with the Lora Lake Parcel annual groundwater monitoring event on March 24, 2022. The groundwater monitoring network is presented on Figure 2.1. Groundwater samples were collected using standard low-flow sampling methods. The collected samples were generally clear, with no apparent odor. Purge water was collected and placed in an on-site, labeled, 55-gallon drum for future disposal by the Port. All samples were submitted to Analytical Resources, Inc. (ARI) under chain-of-custody procedures for analysis of arsenic. Groundwater sample collection forms for the event are included in Appendix A. #### 2.3 GROUNDWATER ANALYTICAL SUMMARY This section summarizes the analytical results for arsenic. Analytical results are presented in Figure 2.1 and Table 2.1, and laboratory reports and data validation summaries are included in Appendix B. #### 2.3.1 Arsenic The arsenic concentrations in the sample collected from MW-C3 was 0.19 micrograms per liter (μ g/L), less than the Site cleanup level of 5 μ g/L. The arsenic concentration in the sample collected from MW-C2 was 24 μ g/L, exceeding the Site cleanup level. The elevated arsenic concentration on March 24, 2022, is consistent with the trend observed between 2019 and 2021. The likely cause of elevated arsenic at MW-C2 was evaluated and described in Section 2.1.1 and in the Arsenic Evaluation Memorandum (Floyd|Snider 2020). #### 2.3.2 Data Validation A Compliance Screening (Stages 1 and 2A) data quality review was performed on metals data resulting from laboratory analysis by U.S. Environmental Protection Agency (USEPA) Methods 200.8. The analytical data were validated by Floyd | Snider in accordance with the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA 2020). For all analyses, the analytical holding times were met, and the method blanks had no detections. The surrogate, matrix spike, matrix spike duplicate, and laboratory control sample recoveries and sample/sample duplicate relative percent differences all met USEPA requirements. No qualifiers were added to the analytical results for metals based on the data quality review. Metals data are determined to be of acceptable quality for use as reported by the laboratory, with some laboratory qualifiers being updated to conform to the final qualifiers used for data table reporting and database storage. #### 2.4 TEMPORARY SOIL CAP INSPECTION On March 23, 2022, a cap inspection was conducted to document the integrity of the temporary soil cap that was installed at the Lora Lake Apartments Parcel in October 2017. The cap inspection was conducted in accordance with the CMP. During the cap inspection, the following items were noted for maintenance: (1) areas in need of vegetation replacement near the biofiltration swale at the southeast portion of the property and along the northern fence line of the property, (2) a missing section of fence located at the southwest corner of the property near the former Sunnydale Substation Parcel, and (3) site-wide plant overgrowth requiring general maintenance and landscaping. The temporary soil cap inspection log and photographs are included in Appendix C. Instruction for required maintenance of the temporary soil cap was provided to the Port as part of required landscape operations and maintenance. Maintenance activities were completed on the Lora Lake Apartments Parcel in April 2022, as described in Section 2.1.2. Appendix D includes photographs of post-maintenance site conditions. Photographs reflect natural reseeding and/or moss growth in areas previously marked for maintenance due to vegetation loss and exposed soils, fence repairs, and site-wide maintenance and landscaping of plant overgrowth. #### 3.0 Lora Lake Parcel #### 3.1 COMPLIANCE MONITORING PLAN ACTIVITIES COMPLETED #### 3.1.1 Groundwater Monitoring Completed Annual monitoring was completed at the Lora Lake Parcel in October 2020 and March 2021. The third round of annual monitoring occurred on March 23 and 24, 2022, and is described in this report. In accordance with the CMP, on-site and vicinity well locations were sampled for arsenic and dioxins/furans. The full monitoring network includes on-site well locations MW-CP1, MW-CP2, MW-CP3, MW-CP4, MW-CP5, MW-CP6, and MW-CP-7, as well as vicinity well locations MW-C1/VB1, MW-VB2, MW-VB3, and HCOO-B312 (Figure 3.1). #### 3.1.2 Maintenance Activities Completed No maintenance actions were identified for the Lora Lake Parcel, and no maintenance activities were conducted during the year. #### 3.2 GROUNDWATER COMPLIANCE MONITORING SUMMARY This section summarizes the compliance monitoring events at the Lora Lake Parcel in 2022. The monitoring network is presented in Figure 3.1, and the groundwater sample collection forms are in Appendix A. The full monitoring network (MW-CP1, MW-CP2, MW-CP3, MW-CP4, MW-CP5, MW-CP6, MW-CP-7, MW-C1/VB1, MW-VB2, MW-VB3, and HCOO-B312) was sampled on March 23 and 24, 2022. Groundwater samples were collected using standard low-flow groundwater
sampling methods. Duplicate samples were collected at MW-C1/VB1 and MW-CP1 for laboratory quality control. Samples were generally clear with no visible turbidity and no apparent odor. Purge water was collected and placed in an on-site, labeled, 55-gallon drum for future disposal by the Port. All samples were submitted to ARI under chain-of-custody procedures for analysis of arsenic and dioxins/furans. #### 3.3 GROUNDWATER ANALYTICAL SUMMARY This section summarizes the analytical results for arsenic and dioxins/furans. Analytical results are presented in Figure 3.1 and Table 3.1, and laboratory reports and data validation summaries are included in Appendix B. #### 3.3.1 Arsenic Arsenic concentrations in all samples collected from all on-site wells and all vicinity wells were less than the Site cleanup level of 5 μ g/L. Within the monitoring well network, arsenic concentrations were typically less than 1 μ g/L, with the exception of an arsenic concentration of 3.7 μ g/L detected at MW-CP5 located south of the former Lora Lake footprint (Figure 3.1). #### 3.3.2 Dioxins/Furans Dioxin/furan concentrations from all on-site wells and vicinity wells were less than the Site cleanup level of 6.7 picograms per liter (pg/L). Dioxins/furans were detected in two of the on-site wells (MW-CP1 and MW-CP6) at concentrations of 2.29 pg/L and 1.94 pg/L, respectively. Dioxin/furan TEQ was additionally detected in two vicinity wells (MW-VB2 and HCOO-B312) at concentrations of 1.91 pg/L and 2.43 pg/L, respectively. #### 3.3.3 Data Validation A Compliance Screening (Stages 1 and 2A) data quality review was performed on metals data resulting from laboratory analysis by USEPA Method 200.8. The analytical data were validated by Floyd | Snider in accordance with the USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA 2020). A Full Validation (Level IV, Tier III Data Quality Review) was performed on dioxin/furan data resulting from laboratory analysis by USEPA Method 1613B. The dioxin/furan data were validated by EcoChem. EcoChem data validation reports are included in Appendix B. For all analyses, the analytical holding times were met, and the method blank had no detections. The matrix spike and laboratory control sample recoveries and sample/sample duplicate relative percent differences all met USEPA requirements. No qualifiers were added to the analytical results based on the data quality review. Metals data are determined to be of acceptable quality for use as reported by the laboratory. Data validation qualifiers were added to the analytical results for dioxins/furans, as needed. Dioxin/furan data, as qualified, were also determined to be acceptable for use. #### 3.3.4 Sediment Remedy Confirmation Monitoring As detailed in the CMP, the sediment cap is designed to achieve compliance with surface water quality criteria at the cap surface. The surface water quality criterion of 0.005 pg/L dioxin/furan TEQ is significantly less than current laboratory PQLs. As described in the CMP, statistical comparison of groundwater confirmation samples collected within and downgradient of the former Lora Lake cleanup area to vicinity background groundwater samples will be conducted for confirmation of the sediment remedy performance. This statistical comparison method for confirmation monitoring samples provides a measurable method to determine if groundwater samples collected immediately above the sediment cap are different than samples collected from site vicinity background locations. This statistical analysis will be conducted after 5 years of annual monitoring, after the 2024 monitoring event, to provide vicinity background and site data sets with a minimum of 20 results each. Statistical comparison will be conducted in accordance with the procedures described in the CMP. #### 4.0 1982 Dredged Material Containment Area #### 4.1 WILDLIFE BARRIER INSPECTION The DMCA wildlife barrier was inspected on March 24, 2022. Dust and organic debris associated with a large deciduous tree were documented at the southwest corner (station DMCA 09) of the DMCA area during the inspection. Dust and organic debris were also noted along the west cap boundary and at the northeast corner of the cap. The noted dust and organic debris will be cleared following leaf fall in the fall/winter. Overall, the general integrity and condition of the pervious pavement was in good condition, with no deficiencies observed. The wildlife barrier inspection log and photographs are included in Appendix C. #### 5.0 Upcoming Events and Next Steps #### 5.1 2023 COMPLIANCE MONITORING Annual groundwater and sediment remedy compliance monitoring at the Lora Lake Parcel will continue with the fourth annual monitoring event in spring 2023. Annual groundwater sampling of Lora Lake Apartments Parcel well locations MW-C2 and MW-C3 for arsenic monitoring will be coordinated with the Lora Lake Parcel sampling schedule. The temporary soil cap at the Lora Lake Apartments Parcel and the wildlife barrier at the DMCA will be inspected concurrent with the annual groundwater and sediment remedy compliance monitoring event. 9 September. #### 6.0 References - Floyd|Snider. 2020. Evaluation of Arsenic in Groundwater at the Lora Lake Apartments Site. Memorandum from Adia Jumper, Mark Jusayan, and Megan King, Floyd|Snider, to Sunny Becker, Washington State Department of Ecology. 17 August. 2021. Port of Seattle Lora Lake Apartments Site 2020 Annual Compliance Monitoring Report. March. 2022. Port of Seattle Lora Lake Apartments Site Compliance Monitoring Plan. Originally published September 2015, revised May 2020 and January 2022. State of Washington. 2015. Consent Decree re: Lora Lake Apartments Site, Burien, Washington. - U.S. Environmental Protection Agency (USEPA). 2020. *National Functional Guidelines for Inorganic Superfund Methods Data Review*. EPA-540-R-20-006. November. # **Lora Lake Apartments Site** # 2022 Annual Compliance Monitoring Report **Tables** FLOYD | SNIDER Table 2.1 Lora Lake Apartments Parcel Groundwater Analytical Data | | | Lo | ocation Name | | | | | | | MW-C1 | | | | | | | |--------------------------------|------------|----------|--------------|------------------|--------------------|------------------|--------------------|------------------|--------------------|------------------|--------------------|------------------|--------------------|------------------|--------------------|------------------| | | | | Sample ID | MW-C1-
121218 | MW-C1-
121218-D | MW-C1-
031519 | MW-C1-
031519-D | MW-C1-
062119 | MW-C1-
062119-D | MW-C1-
092019 | MW-C1-
092019-D | MW-C1-
121819 | MW-C1-
121819-D | MW-C1-
033020 | MW-C1-
033020-D | MW-C1-
061720 | | | | | Sample Date | 12/12/2018 | 12/12/2018 | 3/15/2019 | 3/15/2019 | 6/21/2019 | 6/21/2019 | 9/20/2019 | 9/20/2019 | 12/18/2019 | 12/18/2019 | 3/30/2020 | 3/30/2020 | 6/17/2020 | | Analyte | CAS No. | Site CUL | Units | | | | | | | | | | | | | | | Dissolved Metals by USE | PA 200.8 | | | | | | | | | | | | | | | | | Arsenic | 7440-38-2 | 5 | μg/L | 0.11 JQ | 0.11 JQ | 0.11 JQ | 0.096 JQ | 0.15 JQ | 0.12 JQ | 0.16 JQ | 0.15 JQ | 0.10 JQ | 0.091 JQ | 0.12 JQ | 0.13 JQ | 0.14 JQ | | Phenols by USEPA 8041A | l . | | | | | | | | | | | | | | | | | Pentachlorophenol | 87-86-5 | 1 | μg/L | 0.025 U | 0.025 U | 0.025 U | 0.025 U | 0.025 | 0.025 | 0.025 U | 0.025 U | | | | | | | Dioxins/Furans by USEP/ | A 1613B | | | | | | | | | | | | | | | | | 2,3,7,8-TCDD | 1746-01-6 | | pg/L | 0.520 U | 0.290 U | 2.68 U | 1.65 U | 1.01 U | 0.860 U | 2.11 U | 1.53 U | | | | | | | 1,2,3,7,8-PeCDD | 40321-76-4 | | pg/L | 0.490 U | 0.350 U | 3.25 U | 1.64 U | 1.02 U | 0.990 U | 1.17 U | 1.48 U | | | | | | | 1,2,3,4,7,8-HxCDD | 39227-28-6 | | pg/L | 0.470 U | 0.330 U | 3.02 U | 1.71 U | 0.850 U | 0.920 U | 1.28 U | 1.83 U | | | | | | | 1,2,3,6,7,8-HxCDD | 57653-85-7 | | pg/L | 0.430 U | 0.320 U | 2.95 U | 1.72 U | 0.790 U | 0.860 U | 1.11 U | 1.68 U | | | | | | | 1,2,3,7,8,9-HxCDD | 19408-74-3 | | pg/L | 0.470 U | 0.340 U | 3.11 U | 1.79 U | 0.850 U | 0.920 U | 1.22 U | 1.80 U | | | | | | | 1,2,3,4,6,7,8-HpCDD | 35822-46-9 | | pg/L | 1.48 U | 0.980 U | 11.0 U | 2.11 UJ | 1.54 UJ | 1.24 UJ | 2.04 U | 1.60 U | | | | | | | OCDD | 3268-87-9 | | pg/L | 3.37 J | 5.71 J | 148 J | 9.90 J | 4.65 UJ | 5.59 UJ | 7.48 UJ | 15.5 U | | | | | | | 2,3,7,8-TCDF | 51207-31-9 | | pg/L | 0.380 U | 0.340 U | 2.64 U | 1.67 U | 1.32 U | 1.10 U | 1.95 U | 1.45 U | | | | | | | 1,2,3,7,8-PeCDF | 57117-41-6 | | pg/L | 0.450 U | 0.310 U | 3.47 U | 1.71 U | 1.89 UJ | 1.50 U | 1.16 U | 1.42 U | | | | | | | 2,3,4,7,8-PeCDF | 57117-31-4 | | pg/L | 0.410 U | 0.280 U | 3.14 U | 1.53 U | 1.43 U | 1.24 U | 0.930 U | 1.15 U | | | | | | | 1,2,3,4,7,8-HxCDF | 70648-26-9 | | pg/L | 0.260 U | 0.240 U | 1.80 U | 1.01 U | 0.470 UJ | 0.430 U | 0.980 U | 1.34 U | | | | | I | | 1,2,3,6,7,8-HxCDF | 57117-44-9 | | pg/L | 0.260 U | 0.250 U | 1.86 U | 1.01 U | 0.500 UJ | 0.450 UJ | 0.960 U | 1.42 U | | | | | | | 1,2,3,7,8,9-HxCDF | 72918-21-9 | | pg/L | 0.280 U | 0.650 U | 2.10 U | 1.11 U | 0.530 UJ | 0.460 U | 1.04 U | 1.45 U | | | | | | | 2,3,4,6,7,8-HxCDF | 60851-34-5 | | pg/L | 0.260 U | 0.240 U | 1.66 U | 0.960 U | 0.450 UJ | 0.410 UJ | 0.980 U | 1.34 U | | | | | | | 1,2,3,4,6,7,8-HpCDF | 67562-39-4 | | pg/L | 0.270 U | 0.290 U | 1.74 U | 1.20 U | 0.420 UJ | 0.580 UJ | 1.02 U | 0.720 U | | | | | | | 1,2,3,4,7,8,9-HpCDF | 55673-89-7 | | pg/L | 0.370 U | 0.250 U | 2.36 U | 1.70 UJ | 0.600 UJ | 0.860 UJ | 1.69 U | 1.06 U | | | | | | | OCDF | 39001-02-0 | | pg/L | 1.22 UJ | 0.860 UJ | 11.2 UJ | 4.23 UJ | 1.53 UJ | 1.99 UJ | 2.65 UJ | 2.15 U | | | | | | | Dioxin/furan TEQ | | 6.7 | pg/L | 0.726 J | 0.512 J | 4.57 J | 2.48 J | 1.56 UJ | 1.43 UJ | 2.30 UJ | 2.33 U | | | | | ı | #### Notes: Blank cells are intentional. -- Not available 1 In 2018, location MW-C4 was found to be filled with sand and was not sampled in December 2018, March
2019, or June 2019. Following coordination with Ecology, this well was abandoned and a replacement well was installed within a few feet of the original well location in August 2019. #### **BOLD/RED** Analyte detected at a concentration greater than the site cleanup level. #### Abbreviations: CAS Chemical Abstracts Service OCDF Octachlorodibenzofuran CUL Cleanup level PeCDD Pentachlorodibenzo-p-dioxin Ecology Washington State Department of Ecology PeCDF Pentachlorodibenzofuran HpCDD Heptachlorodibenzo-p-dioxin pg/L Picograms per liter HpCDF Heptachlorodibenzofuran TCDD Tetrachlorodibenzo-p-dioxin HxCDD Hexachlorodibenzo-p-dioxin TCDF Tetrachlorodibenzofuran HxCDF Hexachlorodibenzofuran TEQ Toxic equivalent μg/L Micrograms per liter USEPA U.S. Environmental Protection Agency OCDD Octachlorodibenzodioxin #### Qualifiers: - J Analyte was detected; concentration is considered to be an estimate. - JQ Analyte was detected between the method detection limit and reporting limit; concentration is considered to be an estimate. - U Analyte was not detected at the given reporting limit. - UJ Analyte was not detected; concentration given is the reporting limit, which is considered to be an estimate. Lora Lake Apartments Site Table 2.1 Lora Lake Apartments Parcel Groundwater Analytical Data | | | Lo | cation Name | MW-C1 (Cont.) | | | | | MW | /-C2 | | | | | MW | /-C3 | |-------------------------|------------|----------|-------------|---------------|------------|-----------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------| | | | | | MW-C1- | MW-C2- MW-C3- | MW-C3- | | | | | Sample ID | 061720D | 121218 | 031519 | 062119 | 092019 | 121819 | 033020 | 061720 | 102820 | 031621 | 032422 | 121218 | 031519 | | | | • | Sample Date | 6/17/2020 | 12/12/2018 | 3/15/2019 | 6/21/2019 | 9/20/2019 | 12/18/2019 | 3/30/2020 | 6/17/2020 | 10/28/2020 | 3/16/2021 | 3/24/2022 | 12/12/2018 | 3/15/2019 | | Analyte | CAS No. | Site CUL | Units | | | | | | | | | | | | | | | Dissolved Metals by USE | | | | | | | | | | | | | | | | | | Arsenic | 7440-38-2 | 5 | μg/L | 0.14 JQ | 2.6 | 14 | 3.7 | 2.1 | 1.9 | 27 | 11 | 3.1 | 22 | 24 | 0.24 | 0.26 | | Phenols by USEPA 8041A | | | | | | | | | | | | | | | | | | Pentachlorophenol | 87-86-5 | 1 | μg/L | | 0.062 | 0.69 | 0.051 | 0.031 | | | | | | | 0.025 U | 0.025 U | | Dioxins/Furans by USEPA | A 1613B | | | | | | | | | | | | | | | | | 2,3,7,8-TCDD | 1746-01-6 | | pg/L | | 0.370 U | 2.41 U | 1.94 U | 1.95 U | | | | | | | 0.350 U | 0.650 U | | 1,2,3,7,8-PeCDD | 40321-76-4 | | pg/L | | 0.440 U | 3.25 U | 1.82 U | 1.17 U | | | | | | | 0.330 U | 0.670 U | | 1,2,3,4,7,8-HxCDD | 39227-28-6 | | pg/L | | 0.530 U | 3.69 U | 1.20 U | 1.50 U | | | | | | | 0.390 U | 0.770 U | | 1,2,3,6,7,8-HxCDD | 57653-85-7 | | pg/L | | 0.900 U | 4.96 J | 1.11 U | 1.29 U | | | | | | | 0.380 U | 0.730 U | | 1,2,3,7,8,9-HxCDD | 19408-74-3 | | pg/L | | 0.550 U | 3.65 U | 1.19 U | 1.42 U | | | | | | | 0.400 U | 0.780 U | | 1,2,3,4,6,7,8-HpCDD | 35822-46-9 | | pg/L | | 22.5 | 86.5 | 47.8 | 14.8 | | | | | | | 0.520 U | 1.03 U | | OCDD | 3268-87-9 | | pg/L | | 232 J | 553 | 515 J | 126 J | | | | | | | 3.23 J | 9.11 J | | 2,3,7,8-TCDF | 51207-31-9 | | pg/L | | 0.450 U | 3.49 U | 1.87 U | 1.69 U | | | | | | | 0.310 U | 0.710 U | | 1,2,3,7,8-PeCDF | 57117-41-6 | | pg/L | | 0.670 U | 2.62 U | 1.67 U | 1.42 U | | | | | | | 0.310 U | 0.820 U | | 2,3,4,7,8-PeCDF | 57117-31-4 | | pg/L | | 0.400 U | 2.35 U | 1.42 U | 1.10 U | | | | | | | 0.290 U | 0.750 U | | 1,2,3,4,7,8-HxCDF | 70648-26-9 | | pg/L | | 0.550 J | 1.87 U | 1.26 U | 1.11 U | | | | | | | 0.180 U | 0.540 U | | 1,2,3,6,7,8-HxCDF | 57117-44-9 | | pg/L | | 0.450 U | 1.89 U | 1.27 U | 1.12 U | | | | | | | 0.180 U | 0.510 U | | 1,2,3,7,8,9-HxCDF | 72918-21-9 | | pg/L | | 0.330 U | 2.08 U | 1.31 U | 1.25 U | | | | | | | 0.520 U | 0.540 U | | 2,3,4,6,7,8-HxCDF | 60851-34-5 | | pg/L | | 0.530 J | 1.70 U | 1.15 U | 1.10 U | | | | | | | 0.180 U | 0.500 U | | 1,2,3,4,6,7,8-HpCDF | 67562-39-4 | | pg/L | | 4.71 J | 13.8 | 12.0 U | 3.60 U | | | | | | | 0.140 U | 0.330 U | | 1,2,3,4,7,8,9-HpCDF | 55673-89-7 | | pg/L | | 0.580 U | 2.03 U | 1.84 U | 0.740 U | | | | | | | 0.180 U | 0.440 U | | OCDF | 39001-02-0 | | pg/L | | 21.2 J | 40.5 | 45.2 J | 13.8 J | | | | | | | 0.690 UJ | 1.02 U | | Dioxin/furan TEQ | | 6.7 | pg/L | | 1.09 J | 5.83 J | 3.35 J | 2.48 J | | | | | | | 0.520 J | 1.05 J | #### Notes: Blank cells are intentional. FLOYDISNIDER 1 In 2018, location MW-C4 was found to be filled with sand and was not sampled in December 2018, March 2019, or June 2019. Following coordination with Ecology, this well was abandoned and a replacement well was installed within a few feet of the original well location in August 2019. #### **BOLD/RED** Analyte detected at a concentration greater than the site cleanup level. #### Abbreviations: CAS Chemical Abstracts Service CUL Cleanup level PeCDD Pentachlorodibenzo-p-dioxin Ecology Washington State Department of Ecology PeCDF Pentachlorodibenzofuran HpCDD Heptachlorodibenzo-p-dioxin PpCDF Heptachlorodibenzofuran TCDD Tetrachlorodibenzo-p-dioxin HxCDD Hexachlorodibenzo-p-dioxin TCDF Tetrachlorodibenzofuran TEQ Toxic equivalent μg/L Micrograms per liter USEPA U.S. Environmental Protection Agency OCDD Octachlorodibenzodioxin #### Qualifiers: - J Analyte was detected; concentration is considered to be an estimate. - JQ Analyte was detected between the method detection limit and reporting limit; concentration is considered to be an estimate. - U Analyte was not detected at the given reporting limit. - UJ Analyte was not detected; concentration given is the reporting limit, which is considered to be an estimate. ⁻⁻ Not available FLOYD | SNIDER Table 2.1 Lora Lake Apartments Parcel Groundwater Analytical Data | | | L | ocation Name | MW-C3 (Cont.) | | | | | | | | | MW-C4 ⁽¹⁾ | | | | |-------------------------|------------|----------|-----------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|---------------------------------|------------------|-------------------------------|--------------------------------|-------------------------------|------------------| | | | | Sample ID Sample Date | MW-C3-
062119
6/21/2019 | MW-C3-
092019
9/20/2019 | MW-C3-
121819
12/18/2019 | MW-C3-
033020
3/30/2020 | MW-C3-
061720
6/17/2020 | MW-C3-
102820
10/28/2020 | MW-C3-
031621
3/16/2021 | MW-C3-
031621-D
3/16/2021 | MW-C3-
032422 | MW-C4-
092019
9/20/2019 | MW-C4-
121819
12/18/2019 | MW-C4-
033020
3/30/2020 | MW-C4-
061720 | | Analyte | CAS No. | Site CUL | Units | 6/21/2019 | 9/20/2019 | 12/18/2019 | 3/30/2020 | 6/17/2020 | 10/28/2020 | 3/16/2021 | 3/16/2021 | 3/24/2022 | 9/20/2019 | 12/18/2019 | 3/30/2020 | 6/17/2020 | | Dissolved Metals by USE | | Jite COL | Offics | | | | | | | | | | | | | | | Arsenic | 7440-38-2 | 5 | μg/L | 0.20 JQ | 0.22 | 0.22 | 0.25 | 0.22 | 0.22 | 0.19 JQ | 0.21 | 0.19 JQ | 0.47 | 0.42 | 0.37 | 0.49 | | Phenols by USEPA 8041A | | | M8/ - | 0.20 JQ | 0.22 | 0.22 | 0.23 | 0.22 | 0.22 | 0.13 3Q | 0.21 | 0.13 3Q | 0.17 | 0.12 | 0.37 | 0.15 | | Pentachlorophenol | 87-86-5 | 1 | μg/L | 0.025 | 0.025 U | | | | | | | | 0.025 U | | | | | Dioxins/Furans by USEPA | | | F-07 | | | | | | | | | | | | | | | 2,3,7,8-TCDD | 1746-01-6 | | pg/L | 2.01 U | 1.71 U | | | | | | | | 1.73 U | | | | | 1,2,3,7,8-PeCDD | 40321-76-4 | | pg/L | 1.14 U | 1.34 U | | | | | | | | 0.980 U | | | | | 1,2,3,4,7,8-HxCDD | 39227-28-6 | | pg/L | 1.02 U | 1.55 UJ | | | | | | | | 0.960 U | | | | | 1,2,3,6,7,8-HxCDD | 57653-85-7 | | pg/L | 0.940 U | 1.39 U | | | | | | | | 0.870 U | | | | | 1,2,3,7,8,9-HxCDD | 19408-74-3 | | pg/L | 1.01 U | 1.50 U | | | | | | | | 0.930 U | | | | | 1,2,3,4,6,7,8-HpCDD | 35822-46-9 | | pg/L | 1.45 U | 1.60 U | | | | | | | | 1.45 U | | | | | OCDD | 3268-87-9 | | pg/L | 4.34 J | 4.98 UJ | | | | | | | | 10.7 U | | | | | 2,3,7,8-TCDF | 51207-31-9 | | pg/L | 1.49 U | 1.92 U | | | | | | | | 1.82 U | | | | | 1,2,3,7,8-PeCDF | 57117-41-6 | | pg/L | 1.23 U | 1.19 U | | | | | | | | 1.03 U | | | | | 2,3,4,7,8-PeCDF | 57117-31-4 | | pg/L | 1.00 U | 0.960 U | | | | | | | | 0.850 U | | | | | 1,2,3,4,7,8-HxCDF | 70648-26-9 | | pg/L | 0.800 U | 0.750 U | | | | | | | | 0.720 U | | | | | 1,2,3,6,7,8-HxCDF | 57117-44-9 | | pg/L | 0.830 U | 0.720 U | | | | | | | | 0.700 U | | | | | 1,2,3,7,8,9-HxCDF | 72918-21-9 | | pg/L | 0.870 U | 0.830 U | | | | | | | | 0.750 U | | | | | 2,3,4,6,7,8-HxCDF | 60851-34-5 | | pg/L | 0.760 U | 0.740 U | | | | | · | | | 0.700 U | | · | | | 1,2,3,4,6,7,8-HpCDF | 67562-39-4 | | pg/L | 0.580 U | 0.550 U | | | | | | | | 0.590 U | | | | | 1,2,3,4,7,8,9-HpCDF | 55673-89-7 | | pg/L | 0.750 UJ | 0.810 U | | | | | | | | 0.860 U | | | | | OCDF | 39001-02-0 | | pg/L | 2.82 UJ | 2.76 UJ | | | | | | | | 2.80 U | | | | | Dioxin/furan TEQ | | 6.7 | pg/L | 2.15 J | 2.17 UJ | | | | | | | | 1.89 U | | | | #### Notes: Blank cells are intentional. -- Not available 1 In 2018, location MW-C4 was found to be filled with sand and was not sampled in December 2018, March 2019, or June 2019. Following coordination with Ecology, this well was abandoned and a replacement well was installed within a few feet of the original well location in August 2019. #### **BOLD/RED** Analyte detected at a concentration greater than the site cleanup level. #### Abbreviations: CAS Chemical Abstracts Service OCDF Octachlorodibenzofuran CUL Cleanup level PeCDD Pentachlorodibenzo-p-dioxin Ecology Washington State Department of Ecology PeCDF Pentachlorodibenzofuran HpCDD Heptachlorodibenzo-p-dioxin pg/L Picograms per liter HpCDF Heptachlorodibenzofuran TCDD Tetrachlorodibenzo-p-dioxin HxCDD Hexachlorodibenzo-p-dioxin TCDF Tetrachlorodibenzofuran HxCDF Hexachlorodibenzofuran TEQ Toxic
equivalent μg/L Micrograms per liter USEPA U.S. Environmental Protection Agency OCDD Octachlorodibenzodioxin #### Qualifiers: - J Analyte was detected; concentration is considered to be an estimate. - JQ Analyte was detected between the method detection limit and reporting limit; concentration is considered to be an estimate. - U Analyte was not detected at the given reporting limit. - UJ Analyte was not detected; concentration given is the reporting limit, which is considered to be an estimate. FLOYDISNIDER Table 3.1 **Lora Lake Parcel Groundwater Analytical Data** | | | Lo | cation Group | | | | | | On-Site | e Wells | | | | | | | |---------------------------|------------|----------|--------------|------------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|------------|-----------|-----------|--| | | | Lo | cation Name | | MW | -CP1 | | | | MW-CP2 | | | MW-CP3 | | | | | | | | Samula ID | MW-CP1- | MW-CP1- | MW-CP1- | MW-CP1- | MW-CP2- | MW-CP2- | MW-CP2- | MW-CP2- | MW-CP2- | MW-CP3- | MW-CP3- | MW-CP3- | | | | | | Sample ID | 102720 | 031721 | 032322 | 032322-D | 102720 | 102720-D | 031721 | 031721-D | 032322 | 102720 | 031721 | 032322 | | | | | | Sample Date | 10/27/2020 | 3/17/2021 | 3/23/2022 | 3/23/2022 | 10/27/2020 | 10/27/2020 | 3/17/2021 | 3/17/2021 | 3/23/2022 | 10/27/2020 | 3/17/2021 | 3/23/2022 | | | Analyte | CAS No. | Site CUL | Unit | | | | | | | | | | | | | | | Dissolved Metals by USEPA | 200.8 | | | | | | | | | | | | | | | | | Arsenic | 7440-38-2 | 5 | μg/L | 0.46 | 0.46 | 0.55 | 0.51 | 0.21 | 0.24 | 0.21 | 0.21 | 0.33 | 0.41 | 0.33 | 0.97 | | | Dioxin/Furans by USEPA 16 | 513B | | | | | | | | | | | | | | | | | 2,3,7,8-TCDD | 1746-01-6 | | pg/L | 1.05 U | 0.580 U | 1.38 U | 1.19 U | 0.960 U | 0.800 U | 0.630 U | 0.450 U | 1.44 U | 1.03 U | 0.800 U | 1.31 U | | | 1,2,3,7,8-PeCDD | 40321-76-4 | | pg/L | 0.870 U | 0.720 U | 1.60 U | 1.43 U | 0.950 U | 0.620 U | 0.760 U | 0.500 U | 1.93 U | 0.840 U | 0.730 U | 1.53 U | | | 1,2,3,4,7,8-HxCDD | 39227-28-6 | | pg/L | 1.37 U | 0.780 U | 1.74 U | 1.44 U | 1.06 U | 0.780 U | 0.700 U | 0.660 U | 1.69 U | 1.36 U | 0.650 U | 1.75 U | | | 1,2,3,6,7,8-HxCDD | 57653-85-7 | | pg/L | 1.20 U | 0.710 U | 1.65 U | 1.23 U | 0.900 U | 0.650 U | 0.650 U | 0.670 U | 1.65 U | 1.18 U | 0.620 U | 1.67 U | | | 1,2,3,7,8,9-HxCDD | 19408-74-3 | | pg/L | 1.43 U | 0.770 U | 1.83 U | 1.36 U | 1.09 U | 0.790 U | 0.690 U | 0.710 U | 1.80 U | 1.41 U | 0.650 U | 1.24 U | | | 1,2,3,4,6,7,8-HpCDD | 35822-46-9 | | pg/L | 9.24 U | 0.990 U | 1.79 J | 3.19 U | 1.68 U | 1.26 U | 0.820 U | 0.620 U | 1.64 U | 2.03 U | 0.700 U | 1.78 U | | | OCDD | 3268-87-9 | | pg/L | 165 J | 6.64 U | 17.3 U | 15.7 U | 27.0 UJ | 21.3 UJ | 6.64 U | 3.10 U | 3.60 U | 33.0 UJ | 9.26 U | 3.54 U | | | 2,3,7,8-TCDF | 51207-31-9 | | pg/L | 1.16 U | 0.640 U | 1.11 U | 0.780 U | 1.15 U | 0.800 U | 0.620 U | 0.530 U | 0.940 U | 1.4 U | 0.710 U | 0.950 U | | | 1,2,3,7,8-PeCDF | 57117-41-6 | | pg/L | 1.64 U | 0.700 U | 1.08 U | 1.60 U | 1.39 U | 1.11 U | 0.820 U | 0.940 U | 1.14 U | 1.3 U | 0.900 U | 1.02 U | | | 2,3,4,7,8-PeCDF | 57117-31-4 | | pg/L | 1.51 U | 0.630 U | 1.01 U | 0.750 U | 1.26 U | 0.990 U | 0.750 U | 0.690 U | 1.04 U | 1.17 U | 0.860 U | 0.960 U | | | 1,2,3,4,7,8-HxCDF | 70648-26-9 | | pg/L | 0.850 U | 0.640 U | 1.30 U | 1.85 U | 0.610 U | 0.440 U | 0.660 U | 0.620 U | 1.36 U | 0.790 U | 0.590 U | 1.31 U | | | 1,2,3,6,7,8-HxCDF | 57117-44-9 | | pg/L | 0.880 U | 0.660 U | 1.35 U | 1.83 J | 0.570 U | 0.430 U | 0.670 U | 0.630 U | 1.39 U | 0.740 U | 0.590 U | 1.30 U | | | 1,2,3,7,8,9-HxCDF | 72918-21-9 | | pg/L | 1.25 U | 0.740 U | 1.60 U | 1.15 U | 0.900 U | 0.630 U | 0.770 U | 0.710 U | 1.66 U | 1.200 U | 0.700 U | 1.69 U | | | 2,3,4,6,7,8-HxCDF | 60851-34-5 | | pg/L | 0.900 U | 0.620 U | 1.33 U | 0.990 U | 0.600 U | 0.460 U | 0.640 U | 0.610 U | 1.39 U | 0.820 U | 0.590 U | 1.33 U | | | 1,2,3,4,6,7,8-HpCDF | 67562-39-4 | | pg/L | 2.35 U | 0.620 U | 1.18 U | 0.900 U | 0.560 U | 0.550 U | 0.550 U | 0.940 U | 1.15 U | 0.880 U | 1.13 U | 1.25 U | | | 1,2,3,4,7,8,9-HpCDF | 55673-89-7 | | pg/L | 1.23 U | 0.790 U | 1.72 U | 1.20 U | 0.840 U | 0.790 U | 0.720 U | 0.690 U | 1.59 U | 1.14 U | 0.690 U | 1.71 U | | | OCDF | 39001-02-0 | | pg/L | 20.2 UJ | 18.8 U | 2.71 U | 1.70 U | 3.08 UJ | 2.88 UJ | 12.0 U | 6.36 U | 2.86 U | 2.84 UJ | 24.3 U | 2.66 U | | | Dioxin/furan TEQ | | 6.7 | pg/L | 1.78 J | 0.720 U | 2.29 J | 2.35 J | 0.480 UJ | 1.14 UJ | 0.760 U | 0.500 U | 1.93 U | 0.515 UJ | 0.800 U | 2.23 U | | #### Notes: -- Not available. 1 On October 28, 2020, MW-VB2 was dry and samples were unable to be collected. #### Abbreviations: CAS Chemical Abstracts Service OCDF Octachlorodibenzofuran CUL Cleanup level PeCDD Pentachlorodibenzo-p-dioxin HpCDD Heptachlorodibenzo-p-dioxin PeCDF Pentachlorodibenzofuran HpCDF Heptachlorodibenzofuran pg/L Picograms per liter HxCDD Hexachlorodibenzo-p-dioxin USEPA U.S. Environmental Protection Agency HxCDF Hexachlorodibenzofuran TCDD Tetrachlorodibenzo-p-dioxin TCDF Tetrachlorodibenzofuran μg/L Micrograms per liter TEQ Toxic equivalent NS Not sampled OCDD Octachlorodibenzodioxin #### Qualifiers: - J Analyte was detected; concentration is considered to be an estimate. - JQ Analyte was detected between the method detection limit and reporting limit; concentration is considered to be an estimate. - U Analyte was not detected at the given reporting limit. - UJ Analyte was not detected; concentration given is the reporting limit, which is considered to be an estimate. Table 3.1 FLOYDISNIDER **Lora Lake Apartments Site** Table 3.1 **Lora Lake Parcel Groundwater Analytical Data** | | | Lo | cation Group | | | | | | | Vicinity Wells | | | | | | | |----------------------------|------------|----------|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------| | | | Lo | ocation Name | | MW-CP4 | | | MW-CP5 | | | MW-CP6 | | | MW-CP7 | | HCOO-B312 | | | | | Sample ID | MW-CP4-
102720 | MW-CP4-
031621 | MW-CP4-
032322 | MW-CP5-
102720 | MW-CP5-
031621 | MW-CP5-
032322 | MW-CP6-
102720 | MW-CP6-
031621 | MW-CP6-
032322 | MW-CP7-
102720 | MW-CP7-
031621 | MW-CP7-
032322 | HCOO-B312-
102820 | | | | | Sample Date | 10/27/2020 | 3/16/2021 | 3/23/2022 | 10/27/2020 | 3/16/2021 | 3/23/2022 | 10/27/2020 | 3/16/2021 | 3/23/2022 | 10/27/2020 | 3/16/2021 | 3/23/2022 | 10/28/2020 | | Analyte | CAS No. | Site CUL | Unit | | | | | | | | | | | | | | | Dissolved Metals by USEPA | 200.8 | | | | | | | | | | | | | | | | | Arsenic | 7440-38-2 | 5 | μg/L | 0.098 JQ | 0.14 JQ | 0.093 JQ | 3.2 | 2.1 | 3.7 | 1.1 | 1.1 | 0.85 | 0.42 | 0.43 | 0.37 | 0.17 JQ | | Dioxin/Furans by USEPA 161 | L3B | | | | | | | | | | | | | | | | | 2,3,7,8-TCDD | 1746-01-6 | | pg/L | 1.05 U | 0.630 U | 1.22 U | 0.780 U | 0.690 U | 1.38 U | 0.930 U | 1.33 U | 0.980 U | 0.670 U | 1.15 U | 1.01 U | 0.870 U | | 1,2,3,7,8-PeCDD | 40321-76-4 | | pg/L | 0.940 U | 0.950 U | 1.31 U | 0.670 U | 0.930 U | 1.66 U | 0.920 UJ | 2.26 U | 1.41 U | 0.660 U | 1.08 U | 1.29 U | 0.910 U | | 1,2,3,4,7,8-HxCDD | 39227-28-6 | | pg/L | 1.41 U | 0.960 U | 1.53 U | 0.670 U | 0.720 U | 1.55 U | 1.40 U | 1.95 U | 1.50 U | 0.810 U | 1.36 U | 0.940 U | 1.08 U | | 1,2,3,6,7,8-HxCDD | 57653-85-7 | | pg/L | 1.21 U | 0.930 U | 1.54 U | 0.630 UJ | 0.720 U | 1.44 U | 1.20 U | 1.93 U | 1.44 U | 0.680 U | 1.29 U | 0.890 U | 1.00 U | | 1,2,3,7,8,9-HxCDD | 19408-74-3 | | pg/L | 1.46 U | 0.970 U | 1.66 U | 0.720 U | 0.740 U | 1.61 U | 1.44 U | 2.00 U | 1.59 U | 0.830 U | 1.36 U | 0.980 U | 1.16 U | | 1,2,3,4,6,7,8-HpCDD | 35822-46-9 | | pg/L | 2.57 U | 1.74 U | 1.47 U | 2.18 J | 2.12 U | 1.74 U | 1.32 U | 1.77 U | 2.46 J | 3.02 J | 1.85 U | 1.44 U | 1.10 U | | OCDD | 3268-87-9 | | pg/L | 54.1 UJ | 5.92 U | 5.33 U | 23.8 UJ | 10.6 U | 4.65 U | 28.6 UJ | 2.46 U | 34.6 U | 36.1 UJ | 10.5 U | 3.28 U | 10.2 UJ | | 2,3,7,8-TCDF | 51207-31-9 | | pg/L | 1.23 U | 0.550 U | 0.890 U | 0.780 U | 0.680 U | 0.950 U | 0.990 U | 1.34 U | 0.970 U | 0.740 U | 1.20 U | 0.790 U | 0.870 U | | 1,2,3,7,8-PeCDF | 57117-41-6 | | pg/L | 1.83 U | 0.850 U | 1.20 U | 1.32 U | 1.07 U | 1.09 U | 1.53 UJ | 1.83 U | 1.05 U | 1.14 U | 1.04 U | 1.15 U | 1.19 U | | 2,3,4,7,8-PeCDF | 57117-31-4 | | pg/L | 1.65 U | 0.770 U | 1.12 U | 1.18 U | 0.780 U | 1.07 U | 1.42 UJ | 1.73 U | 0.970 U | 1.01 U | 0.950 U | 0.910 U | 1.07 U | | 1,2,3,4,7,8-HxCDF | 70648-26-9 | | pg/L | 0.720 U | 0.660 U | 1.06 U | 0.590 U | 0.640 U | 1.10 U | 0.700 U | 1.59 U | 1.18 U | 0.540 U | 1.25 U | 0.940 U | 0.600 U | | 1,2,3,6,7,8-HxCDF | 57117-44-9 | | pg/L | 0.650 U | 0.630 U | 1.07 U | 0.570 U | 0.670 U | 1.07 U | 0.690 U | 1.63 U | 1.22 U | 0.500 U | 1.25 U | 0.960 U | 0.570 U | | 1,2,3,7,8,9-HxCDF | 72918-21-9 | | pg/L | 1.05 U | 0.810 U | 1.33 U | 0.760 U | 0.750 U | 1.35 U | 1.09 U | 2.04 U | 1.55 U | 0.790 U | 1.55 U | 1.27 U | 0.850 U | | 2,3,4,6,7,8-HxCDF | 60851-34-5 | | pg/L | 0.770 U | 0.660 U | 1.06 U | 0.560 U | 0.630 U | 1.04 U | 0.720 U | 1.81 U | 1.20 U | 0.570 U | 1.25 U | 0.960 U | 0.640 U | | 1,2,3,4,6,7,8-HpCDF | 67562-39-4 | | pg/L | 0.600 U | 1.07 U | 1.06 U | 0.680 U | 1.26 U | 1.25 U | 0.660 U | 1.02 U | 1.12 U | 0.510 U | 1.43 U | 0.760 U | 0.590 U | | 1,2,3,4,7,8,9-HpCDF | 55673-89-7 | | pg/L | 0.960 U | 1.49 U | 1.58 U | 0.760 U | 0.710 U | 1.68 U | 1.06 U | 1.44 U | 1.63 U | 0.730 U | 1.96 U | 1.11 U | 0.820 U | | OCDF | 39001-02-0 | | pg/L | 5.93 J | 18.2 U | 2.10 U | 4.01 UJ | 24.8 U | 2.40 U | 3.20 UJ | 15.3 U | 2.08 U | 5.16 UJ | 25.4 U | 2.03 U | 2.09 UJ | | Dioxin/furan TEQ | | 6.7 | pg/L | 1.73 J | 0.950 U | 1.98 U | 1.22 J | 0.930 U | 2.23 U | 0.465 UJ | 2.26 U | 1.94 J | 1.15 J | 1.15 U | 1.73 U | 0.455 UJ | #### Notes: -- Not available. 1 On October 28, 2020, MW-VB2 was dry and samples were
unable to be collected. #### Abbreviations: CAS Chemical Abstracts Service OCDF Octachlorodibenzofuran PeCDD Pentachlorodibenzo-p-dioxin CUL Cleanup level HpCDD Heptachlorodibenzo-p-dioxin HpCDF Heptachlorodibenzofuran PeCDF Pentachlorodibenzofuran pg/L Picograms per liter HxCDD Hexachlorodibenzo-p-dioxin TCDD Tetrachlorodibenzo-p-dioxin HxCDF Hexachlorodibenzofuran TCDF Tetrachlorodibenzofuran μg/L Micrograms per liter NS Not sampled TEQ Toxic equivalent USEPA U.S. Environmental Protection Agency OCDD Octachlorodibenzodioxin #### Qualifiers: J Analyte was detected; concentration is considered to be an estimate. JQ Analyte was detected between the method detection limit and reporting limit; concentration is considered to be an estimate. U Analyte was not detected at the given reporting limit. UJ Analyte was not detected; concentration given is the reporting limit, which is considered to be an estimate. Table 3.1 F L O Y D | S N I D E R Table 3.1 Lora Lake Parcel Groundwater Analytical Data | | | Lo | cation Group | | | | | | Vio | inity Wells (Cont | .) | | | | | | |----------------------------|------------|----------|--------------|------------|------------|------------|------------|------------|------------|-------------------|---------------------------|-----------|-----------|------------|-----------|-----------| | | | Lo | cation Name | HCOO-B31 | .2 (Cont.) | | MW-0 | C1/VB1 | | | | MW-VB2 | | | MW-VB3 | - | | | | | Sample ID | HCOO-B312- | HCOO-B312- | MW-C1/VB1- | MW-C101- | MW-C1/VB1- | MW-C1/VB1- | MW-C1/VB1- | | MW-VB2- | MW-VB2- | MW-VB3- | MW-VB3- | MW-VB3- | | | | | Sample 1D | 031621 | 032322 | 102820 | 102820 | 031721 | 032422 | 032422-D | | 031721 | 032422 | 102720 | 031621 | 032322 | | | | | Sample Date | 3/16/2021 | 3/23/2022 | 10/28/2020 | 10/28/2020 | 3/17/2021 | 3/24/2022 | 3/24/2022 | 10/28/2020 ⁽¹⁾ | 3/17/2021 | 3/24/2022 | 10/27/2020 | 3/16/2021 | 3/23/2022 | | Analyte | CAS No. | Site CUL | Unit | | | | | | | | | | | | | | | Dissolved Metals by USEPA | 200.8 | | | | | | | | | | | | | | | | | Arsenic | 7440-38-2 | 5 | μg/L | 0.17 JQ | 0.17 JQ | 0.16 JQ | 0.16 JQ | 0.11 JQ | 0.077 JQ | 0.090 JQ | NS | 0.47 | 0.35 | 0.45 | 0.39 | 0.38 | | Dioxin/Furans by USEPA 163 | L3B | | | | | | | | | | | | | | | | | 2,3,7,8-TCDD | 1746-01-6 | | pg/L | 2.89 UJ | 1.11 U | 0.750 U | 0.860 U | 0.460 U | 1.12 U | 1.11 U | NS | 0.750 U | 1.09 U | 1.10 U | 0.550 U | 1.09 U | | 1,2,3,7,8-PeCDD | 40321-76-4 | | pg/L | 3.16 UJ | 1.48 U | 0.900 U | 0.820 UJ | 0.560 U | 1.55 U | 1.49 U | NS | 1.00 U | 1.41 U | 0.910 U | 0.510 U | 1.72 U | | 1,2,3,4,7,8-HxCDD | 39227-28-6 | | pg/L | 3.33 U | 1.33 U | 1.03 U | 0.990 U | 1.08 U | 1.91 U | 1.47 U | NS | 0.900 U | 1.24 U | 1.07 U | 0.590 U | 1.56 U | | 1,2,3,6,7,8-HxCDD | 57653-85-7 | | pg/L | 3.21 U | 1.31 U | 0.920 U | 0.840 U | 1.03 U | 1.79 U | 1.42 U | NS | 0.860 U | 1.19 U | 0.960 U | 0.580 U | 1.43 U | | 1,2,3,7,8,9-HxCDD | 19408-74-3 | | pg/L | 3.36 U | 1.43 U | 1.08 U | 1.02 U | 1.08 U | 1.99 U | 1.56 U | NS | 0.910 U | 1.31 U | 1.13 U | 0.600 U | 1.61 U | | 1,2,3,4,6,7,8-HpCDD | 35822-46-9 | | pg/L | 6.85 UJ | 3.78 J | 1.76 U | 1.42 U | 2.16 U | 1.53 U | 2.91 U | NS | 1.32 U | 2.02 U | 1.74 U | 1.25 U | 3.18 U | | OCDD | 3268-87-9 | | pg/L | 16.4 UJ | 23.3 U | 49.1 UJ | 66.5 UJ | 10.8 U | 3.18 U | 5.59 U | NS | 7.27 U | 8.71 U | 35.3 UJ | 9.72 U | 23.9 U | | 2,3,7,8-TCDF | 51207-31-9 | | pg/L | 4.22 UJ | 0.640 U | 1.11 U | 0.810 U | 0.470 U | 0.730 U | 0.880 U | NS | 0.680 U | 0.770 U | 1.29 U | 0.660 U | 0.980 U | | 1,2,3,7,8-PeCDF | 57117-41-6 | | pg/L | 4.27 UJ | 0.950 U | 1.41 U | 1.29 U | 0.660 U | 1.09 U | 0.910 U | NS | 0.800 U | 0.830 J | 1.63 U | 0.680 U | 1.04 U | | 2,3,4,7,8-PeCDF | 57117-31-4 | | pg/L | 4.39 UJ | 1.70 U | 1.36 U | 1.18 UJ | 0.490 U | 1.03 U | 0.880 U | NS | 0.730 U | 0.900 U | 1.47 U | 0.620 U | 1.03 U | | 1,2,3,4,7,8-HxCDF | 70648-26-9 | | pg/L | 2.67 U | 0.920 U | 0.710 U | 0.650 U | 0.620 U | 1.15 U | 1.19 U | NS | 0.940 U | 1.17 U | 0.780 U | 0.460 U | 1.28 U | | 1,2,3,6,7,8-HxCDF | 57117-44-9 | | pg/L | 2.67 U | 0.970 U | 0.730 U | 0.590 U | 0.590 U | 1.17 U | 1.18 U | NS | 0.890 U | 1.15 U | 0.690 U | 0.450 U | 1.29 U | | 1,2,3,7,8,9-HxCDF | 72918-21-9 | | pg/L | 6.79 UJ | 1.21 U | 1.11 U | 0.940 U | 0.710 U | 1.55 U | 1.58 U | NS | 1.13 U | 1.48 U | 1.15 U | 0.570 U | 1.65 U | | 2,3,4,6,7,8-HxCDF | 60851-34-5 | | pg/L | 5.20 UJ | 1.07 J | 0.750 U | 0.690 U | 0.600 U | 1.17 U | 1.22 U | NS | 1.30 J | 1.14 U | 0.820 U | 0.450 U | 1.38 U | | 1,2,3,4,6,7,8-HpCDF | 67562-39-4 | | pg/L | 4.44 J | 1.28 U | 0.660 U | 0.770 U | 0.550 U | 1.01 U | 1.18 U | NS | 0.820 U | 0.840 U | 1.35 U | 1.24 U | 2.17 U | | 1,2,3,4,7,8,9-HpCDF | 55673-89-7 | | pg/L | 6.37 UJ | 1.89 U | 0.940 U | 1.25 U | 0.700 U | 1.52 U | 1.64 U | NS | 1.16 U | 1.23 U | 1.30 U | 0.680 U | 2.03 U | | OCDF | 39001-02-0 | | pg/L | 117 UJ | 2.82 U | 5.84 UJ | 10.2 J | 28.9 U | 1.96 U | 2.36 U | NS | 9.61 U | 2.61 U | 5.29 J | 23.3 U | 2.50 U | | Dioxin/furan TEQ | | 6.7 | pg/L | 5.45 J | 2.43 J | 0.450 UJ | 1.39 J | 0.560 U | 2.10 U | 2.15 U | NS | 1.46 J | 1.91 J | 1.67 J | 0.550 U | 2.21 U | #### Notes: - -- Not available. - 1 On October 28, 2020, MW-VB2 was dry and samples were unable to be collected. #### Abbreviations: CAS Chemical Abstracts Service CUL Cleanup level PeCDD Pentachlorodibenzo-p-dioxin HpCDD Heptachlorodibenzo-p-dioxin HpCDF Heptachlorodibenzofuran PeCDF Pentachlorodibenzofuran PpcDF Heptachlorodibenzofuran PpcDF Hexachlorodibenzofuran TCDD Tetrachlorodibenzo-p-dioxin HxCDF Hexachlorodibenzofuran TCDF Tetrachlorodibenzofuran μg/L Micrograms per liter TEQ Toxic equivalent NS Not sampled OCDD Octachlorodibenzodioxin #### Qualifiers: - J Analyte was detected; concentration is considered to be an estimate. - JQ Analyte was detected between the method detection limit and reporting limit; concentration is considered to be an estimate. USEPA U.S. Environmental Protection Agency - U Analyte was not detected at the given reporting limit. - UJ Analyte was not detected; concentration given is the reporting limit, which is considered to be an estimate. Table 3.1 # **Lora Lake Apartments Site** # 2022 Annual Compliance Monitoring Report **Figures** FLOYD | SNIDER strategy • science • engineering 2022 Annual Compliance Monitoring Report Lora Lake Apartments Site Burien, Washington Figure 2.1 Lora Lake Apartments Parcel 2022 Groundwater Analytical Results #### Legend - Combined Groundwater Confirmation and Sediment Cap Performance Site Vicinity Monitoring Location - Groundwater Confirmation Monitoring Location - ⊕ Sediment Cap Performance Monitoring Location - Sediment Cap Performance Site Vicinity Monitoring Location - ---- City Boundary Tax Parcel Boundary #### **Label Key** #### Notes: - \cdot Cleanup levels for arsenic and dioxins/furans are 5 μ g/L and 6.7 μ g/L, respectively. - All results are from samples collected on 3/23/22 or 3/24/22. - · Analytical results for duplicate samples are not presented. - · Tax parcel boundaries based on King County tax parcel data. - · City boundary data provided by King County. · Orthoimagery obtained from Nearmap, 2020. - Abbreviation: Abbreviation: As = Arsenic D/F = Dioxins/Furans μg/L = Micrograms per liter pg/L = Picograms per liter WSDOT = Washington State Department of Transportation #### Qualifiers: - J = Analyte was detected; concentration is considered to be an estimate. - JQ = Analyte was detected between the method detection limit and reporting limit; concentration is considered to be an estimate. - considered to be an estimate. U = Analyte was not detected at the given reporting limit. FLOYD | SNIDER strategy • science • engineering 300 2022 Annual Compliance Monitoring Report Lora Lake Apartments Site Burien, Washington Figure 3.1 Lora Lake Parcel 2022 Groundwater Analytical Results ## **Lora Lake Apartments Site** # 2022 Annual Compliance Monitoring Report # Appendix A Groundwater Sample Collection Forms | Project: <u>P65</u> | th | | | Date of Colle | ection: | 3/23/ | 22 | | |----------------------------------|----------------------------|-----------------|------------------|--------------------------|----------------------------|----------------------------|--------------------------|--------------------------| | Task: More | h GW | | | Field Pers | onnel: | B | | | | urge Data | | | | | | | | | | Well 1D: HL00 B3 | i d Secure: ☐ Yes [| □No Eco | logy Teg #: | Casi | ng Type/Diame | er/Screened | Interval 2" | | | Replacement Require | ed: Monument 🗖 L | .kd 🗖 Lock 🗖 | Bolts: Missing | (#) Stripped | (#) Q | ther Damage | e: | | | | ntaminated Prior to Place | | | | | | | | | - | тос): 11.13 | | - | - | | | | | | | or field measurement): | | | | | | edule 40 PVC P | ipe
Weight of Water | | | rging (from top of casing) | | | Diamete 1 1/2" | 9r O.D.
1.660" | I.D.
1.380" | (Gal/Linear Ft.)
0.08 | (Lbs/Lineal Ft.)
0.64 | | | 19:38 End pu | | | | 2.375" | 2.067° | 0.17 | 1,45 | | | 54 Purge water d | | 1 | 4"
6" | 3,500°
4,500°
6,625° | 3.068°
4.026"
6.065" | 0.38
0.66
1.5 | 3.2
5.51
12.5 | | Time Dep | th to Vol. er (ft) Purged | pH
(s.u.) | DO
(mg/L) | Specific
Conductivity | Turbidity
(NTU) | Tem;
(°C) | ORP | Comments | | ۱۷۵۱
د د مست <i>را</i> ر (د ا | er (ii) | (5.0.) | (mg/c) | (µs/cm) | (110) | (- / | 2 (1/12 | | | 4.42 11.
21:50 11 | 12 2 | 6.60 | 1.57 | 223.7 | 0.30 | | A 114. | | | 41.55 II | 13 (1 | 5.87 | 1.02 | 221.6 | 0.53 | 11.1 | 110.0 | | | 5.00 11 | 13 5.1 | 5.78 | 0.96 | 220.4 | 0-30 | 76.1 | 109.7 | | | 5:05 11 | 13 6.5 | 5.75 | 0.95 | 220.0 | 0.42 | 11.1 | 104.1 | - | | 15:10 11. | 13 43 | 5-43 | 0.86 | 218.7 | 0.36 | 11.9 | 108.7 | | | - | | | | 5 | - | | <u> </u> | _ | | | | | | | ÷ | | | | | ampling Data | | | | | | - 1 8 | | | | | 0-B312-03 | | | | | - | | | | | y/yr): 03/23/2 | | | | | | Kain | | | | ter 🔲 Surface Water 🤇 | _ | | | | | | | | Sample Collected wit | h; 🗆 Bailer 🞾 Pump 🤇 | Other: | Туре | :
Peristattic 🗆 E | Bladder ☐ Sub | mersible C | Other: | | | Water Quality Instrum | nent Data Collected with: | Type; 🔼 YSI P | roDSS Tud | bidity Meter 📋 Other | T | | | | | Sample Decon Proce | dure: Sample collecte | d with: 🔲 decon | taminated all tu | bing: □ disposable t | ubing 🖄 dedica | ited silicon a | nd poly tubing; 🔲 de | dicated tubing repla | | | Color, Turbidity, Odor, O | | | 4 | | | | | | | | urier). | 1110 | ()()() | | | | | | ample Analys | es | | | | | | | | | Analyte | Analysi | s Method | 7 . 7 | Container | Quantity Pr | eservative | Notes | | | | | | ILA. | noco | 4 | _ | | | | • | | | YON | LION | - | C samples | | | | | | | | | | GROUNDWATER OR SURFACE WATER SAM | IPLE COLLECTI | ON FOR | M | | | | | |--|----------------------------|--------------------|--|--------------------------|--------------------------|--|--| | Project: POSIA | Date of Collec | ction: | 7/24 | 122 | | | | | Task: <i>8140</i> | Field Perso | nnel: | 73 | | | | | | Purge Data | | | | | | | | | Well ID: <u>NWV ∠1~VB</u> Secure: ☐Yes ☐ No Ecology Tag #: | Casing | Type/Diamet | er/Screened | Interval 2/1 | | | | | Replacement Required: Monument Lid Lock Bolts: Mis | | | | | | | | | Depth Sounder decontaminated Prior to Placement in Well: ☐ Yes ☐ N | | | | | | | | | Depth of water (from TOC): 7.72 Time: 11:57 | <u> </u> | | | | | | | | Total Depth (from log or field measurement): | | | Volume of Schedule 40 PVC Pipe Volume Weighte | | | | | | After 5 minutes of purging (from top of casing): 7.92 | Diameter | O.D.
1.660" | 1.D.
1.380° | (Gal/Linear Ft.)
0.08 | (Lbs/Lineal Ft.)
0.64 | | | | Begin purge (time): 11:50 End purge (time): 12:57 | 2° 3° | 2,375"
3,500" | 2.067"
3.068" | 0.17
0.38 | 1.45
3.2 | | | | Valume purged: 8.5L Purge water disposal method drum | 4"
6" | 4,500°
6.625° | 4,026"
6.065" | 0.66
1.5 | 5.51
12.5 | | | | Time Depth to Vol. pH DO
Water (ft) Purged (s.u.) (mg/L) | Specific
Conductivity | Turbidity
(NTU) | Temp
(°C) | ORP
(mV) | Comments | | | | 12:05 7.93 5 700 100 | (µs/cm) | CHE | - 100 | 009 | | | | | 12:10 794 4 720 10.2 | 6 104.6 | 0.72 | 10.0 | 92.3 | PUMP Slower | | | | 12:15 1.87 5 6.69 10.18 | 106.7 | 0.76 | 10.2 | 96.2 | | | | | 12:20 1.87 6 6.53 10.17 | 7 105.3
1 104.B | 1.43 | 10.1 | 7 49.1 | - | | | | 12:30 187 8 6HC 10.12 | 104.8 | 1.80 | 10.0 | 2 103.3 | | | | | | | | | | | | | | | | - | | | N==== | | | | Sampling Data | | | | | | | | | Sample No: MW-C1-VB1-032422 | Location and Dep | oth: | | | | | | | Date Collected (mo/dy/yr): 03/24/22 Time Collected: | 12:33 | W | eather: | Sunny ~ | 40°F | | | | Type: Ground Water Surface Water Other: | Sample: | | | | | | | | Sample Collected with: Bailer Pump Other: | ype: 🗖 Peristaltic 🔲 Bla | adder □ Sub | mersible O | ther: | | | | | Water Quality Instrument Data Collected with: Type: XYSI ProDSS X | Tudbidity Meter 🔲 Other: | | _ | | | | | | Sample Decon Procedure: Sample collected with: decontaminated g | ∬ tubing; ☐ disposable tub | oing 🧖 dedica | ted silicon ar | nd poly tubing; 🗖 de | edicated tubing replaced | | | | Sample Description (Color, Turbidity, Odor, Other): | rino ado | ~ | | | | | | | Sample Analyses | | | | | | | | | | and the second | 0 | | | | | | | Analyte Analysis Method San | Ambre C | Quantity Pre | servative | Notes | | | | | 500 | ent Poly | 25 | _ | | | | | | | / | QC samples | | | | - | | | | | Duplicate Sample No: MW CI-VB 1 032422 Duplica | ate Time: 12:37 | MS/MSD | ☐ Yes 💆 | KNo. | | | | | | THE THIRD. | MONAIGO. | Date: | 3/24/2 | 2.2 | | | | Signature: | | | Date: _ | 10710 | | | | | Project:_ | POS-U | A SURFACE WATE | | e of Collec | | 1/2/12 | 2 | | |---------------|------------------------|---------------------------------|----------------------|------------------------------|--------------------|------------------|--------------------------|--------------------------| | Task: | 8140 | 寄 | F | ield Persor | nnel: A | JITS | | | | Purge Dat | ta | | | | | | | | | Well ID: 1 | W-Ch se | cure: 🗓 ves 🛘 No 🔻 Eco | logy Tag #: | Casing | Type/Diamet | er/Screened | Interval | | | Replacemen | it Required: M | onument 🔲 Lid 🖺 Lock 🗀 | Bolls: Missing (#) | Stripped (#) | 01 | her Damage | | | | | | d Prior to Placement in Well: 🖽 | / | | | | | | | Depth of wat | ler (from TOC): | 14.14 | 1:02 | | | | | | | Total Depth | (from tog or field m | neasurement): | | Diameter | O.D. | ie of Scho | edule 40 PVC P | ipe
Weight of Water | | | | m top of casing): 14.3 | | 1 ½° | 1.660° | 1.380° | (Gal/Linear Ft.)
0.08 | (Lbs/Lineal Ft.)
0.64 | | Begin purge | (time): | Bnd purge (lime): | 1:38 | 2*
3* | 2.375°
3.500° | 2.067*
3.068* | 0.17
0.38 | 1.45
3.2 | | Volume purg | jed: | Purge water disposal method / | or all dura | 4*
6* | 4.500°
6.625° | 4.026°
6.065° | 0.66
1.5 | 5.51
12.5 | | Time | Depth to
Water (ft) | Vol. pH
Purged (s.u.) | DO Sp
(mg/L) Con- | ecific
ductivity
s/cm) | Turbidity
(NTU) | Temp
(°C) | ORP
(mV) | Comments | | 11:15 | 14:37 | 2 12.33 | | 8 | 1.10 | 11.0 | 113.7 | | | 11:20 | 14.41 | 3.5 12-23 | | 90 | 1-15 | 11.1 | 106,2 | | | 11:25 | 441 | 3 12.14 | | 95 | 133 | 11.3 | | | | 4 : 30 | | 3.5 1107 | 0.75 | <u> X</u> X | 1120 | 11.2 | <u>95.1</u> | 9 | | | | | | | | | | | | | | | | | | * | | | | | | · | | | | | | | | Sampling | Data | | , | | | | | | | Sample No: | MAW-C | 12 022422 | Loc | ation and Dept | hr : | | | | | Dale Collecte | ed (mo/dy/yr): | 3/24/27 Time | Collected: 1) Z | 56 | w | eather: | • | | | Type: Gro | ound Water S | urface Water Other: | | Sample: [| Filtered [| Unfiltered | Filler Type: | | | | | er Pump Other: | | | | | | | | Water Qualit | y Instrument Data | Collected with: Type: TYSI Pr | roDSS Tudbidity Me | eter 🗆 Other: | | | | | | | | Sample collected with: decont | | | / | ed silicon an | d notv tuhina: □ dev | dicated tubing replaced | | | | , A | llo wish | hnt. | | 1000LW | 1.AV 6 | A h / | | | | rolatty, Odor, Other). | No. | 31117 | 7,0 | A boto | tu L. | | | Sample A | nalyses | | | 9 | | | | | | Analyte | | Analysis Method | Sample Conta | iner C | Quantity Pre | | Notes | A | | | | | The p | W/A | <i>/</i> | MAN | | | | | | | | | | | | | | | | | | 4 | | | | | | | | | 1 | F | | - | QC samp | les | | | | | | | | | Duplicate 5 | Sample No: | M | Duplicate Time: _ | MA | MS/MSD: | □ Yes □ | No | | | Signatu | | mary In | | / | • | Date: | 322 | 4 122. | | Vigitatul | | AXV | | | | | - / 0- | 1000 | https://floydsnider.sharepoint.com/Dept/Field/Shared Documents/Field Resources/Field Forms/Groundwate or Surface Water/Groundwater Sample Collection Form, doc | GROUND | WATER O | R SURFA | CE WATE | R SAMPI | E COLLE | CTION | I FOR | M | , | | |----------------|------------------------|------------------------|------------------------|--------------------------|--------------------------|------------|--------------------|------------------|--------------------------|--------------------------| | Project:_ | POS-LL | A | | | Date of Co | lection | n: | 3124/ | 22 | | | Task: | 3140 | | | | Field Pe | rsonne | əl: | 15 | | | | Purge Data | | | | | | | | | | | | Well ID: M | W-C3 Sec | cure: Yes 🛚 | No Eco | logy Tag #: <u> </u> | KA 3402-0 | asing Typ | e/Diamete | er/Screened | Interval | | | Replacement | Required: 🗀 Mo | onument 🗀 Lid | □ Lock □ | Bolts: Missing | (#)Strippe | ed (#) | 0: | her Damage | : | | | | er decontaminate | Control of the Control | | | | g Volume | (gal): | | | | | Depth of water | er (from TOC): | 16.21 | Time: | 1:02 | _ | | Value | a af Cah | edule 40 PVC P | lu a | | | from tog or fleld m | | | | Diam | eter | O.D. | I.D. | Volume | Weight of Water | | | es of purging (from | | | | 13 | 4" | 1.660" | 1.380° | (Gal/Linear Ft.)
0.08 | (Lbs/Lineal Ft.)
0.64 | | Begîn purge (| time): | End purg | je (time): <u>///.</u> | 33 | · 7 | " | 2.375°
3.500° | 2.067"
3.068" | 0.17
0.38 | 1.45
3.2 | | Volume purge | ed:44 | Purge water dis | posal method_ | dryn_ | . 4 | | 4.500°
6.625″ | 4.026"
6.065" | 0,66
1.5 | 5.51
12.5 | | Time | Depth to
Water (ft) | Vol.
Purged | p H
(s.u.) | DO
(mg/L) | Specific
Conductivity | | Turbidity
(NTU) | Temp
(°C) | ORP
(mV) | Comments | | 11:12 | 1626 | 12 | 6.33 | 11.37 | (µs/cm)
17.3 | | 01 | 10 | 5 187.6 | | | 11:20 | 16.26 | 2.3 | 6.33 | 11.17 | 78.8 | - | 2.93 | 10.6 | 192.5 | | | 11:25 | 16.26 | 3.1 | 6.33 | 11.06 | 84.3 | | 5.57 | 10.6 | 194.8 | | | <u>11:30</u> | 16.26 | _4_ | 6.34 | 10.97 | 86.7 | . <u>.</u> | 65 | 10.3 | 7 195.1 | | | | - | | | | - | 3 <u></u> 7 | | | | | | | | S | | Sampling | Data | | | | | | | | | | | Sample No: | MW-23 | -0324 | 22 | | Location and | l Depth: | | | | | | Date Collecte | d (mo/dy/yr): | 3/24/2 | 2 Time | e Collected: | 1:33 | | W | eather: | -old/cle | rar | | Type: 🗹 Gro | und Water 🔲 So | urface Water Ot | her: | | Sar | nple: 🗖 F | iltered 📮 | Unfiltered | Filter Type: | | | Sample Colle | cted with: 🗖 Baile | er Pump Ot | her: | Туре | : 🛒 Peristaltic [| ⊒ Bladdei | r 🗆 Subr | mersible C | Ther: | | | Water Quality | Instrument Data | Collected with: | Гуре; 🔁 YSI Р | roDSS <u>n</u> Tud | bidity Meter 🗖 Ot | her: | | | | | | Sample Deco | n Procedure: S | Sample collected | with: 🗆 decom | taminated <u>all</u> tul | oing; 🗆 disposabl | e tubing/l | dedica | ted silicon a | nd poly tubing; 🔲 de | dicated tubing replaced | | Sample Desc | ription (Color, Tur | rbidity, Odor, Oth | er): | leas; n | o ades | | | | | | | Sample A |
nalyses | | | | | | | | | | | Analyte | | Analysis | Method | Sample | Container | Qua | intity Pre | servative | Notes | | | | | | | 500M | L Poly | 1 |) | QC sampl | es | | | | | | | | | | | Dunlingto S | ample No: | | | Dunlicato | Time; | | AS/MSD- | □ Yes 』 | 1 No | | | Signatur | | F | | publicate | | s | | Date. | 3/24/ | 22 | | Project: POS - L | LA | Da | ite of Collect | ion: | 1231 | 23 | | |----------------------------------|--------------------------------|---|------------------------|-----------------------|------------------|--------------------------|--------------------------| | | | | Field Person | 14.00 | | TS | | | Purge Data | | | | | | | | | | ecure: 🖢 ves 🔲 No 💮 Eco | ology Tag #: | Casing ' | Type/Diameter | Screened | Interval | | | | onument Lid Lock E | | | | | | | | | ed Prior to Placement in Well: | | | | | | | | | 3.18Time: | | | | | | | | Total Depth (from log or field n | measurement): | • | | Volume | of Sche | edule 40 PVC P | ipe
Weight of Water | | After 5 minutes of purging (from | m top of casing): 3.18 | | Diameter | O.D.
1,660" | I.D.
1.380° | (Gal/Linear F1.)
0.08 | (Lbs/Lineal Ft.)
0.64 | | Begin purge (time): 135 | End purge (time): | 1445 | 2"
3" | 2.375°
3.500° | 2.067"
3.068" | 0.17
0.38 | 1.45
3.2 | | Volume purged: 354 | _ Purge water disposal method | ON THE OWN | 4.9 | 4.500*
6.625* | 4.026"
6.065" | 0,66
1.5 | 5,51
12,5 | | Time Depth to Water (ft) | Vol. pH
Purged (s.u.) | DO 5
(mg/L) Co | Specific
nductivity | Turbidity
(NTU) | Temp
(°C) | ORP
(mV) | Comments | | 1410 3.20 | 4.70 | 9.23 | (µs/cm) | 010 | 1.7 | 154.8 | | | 1415 320 | 1.5 (.1/1 | \$ 19 | 95: | 0.96 | 9,5 | 151.7 | | | 1420 3.20 | 5 6.67 | 7.76 3 | 60 | 6.40 | 4 | 155.7 | | | | | | | | | | | | | | - | | | | | | | | | 1 | | | | | | | | | | | | | | | | Sampling Data | | | | | | | | | Sample No: MM | 11-132327 | Le | ocation and Depti | hi | | | | | Date Collected (mo/dy/yr): | 3/23/23 Tim | ne Collected: | 20 | Wea | ather: | | | | Type: Ground Water S | Surface Water Other: | | Şample: [|]Filtered □M | difilered | Filter Type: | | | Sample Collected with: Bail | ler Pump Other: | Type: | ristaltic Blad | ger □ Subme | ersible Ol | her: | | | | Collected with: Type: | | / | , | | | | | | Sample collected with: decor | | | n buridicata | d eilioon an | d note tubing: □ do | dicated tubing capture | | Sample Description (Color, Tur | | nationales of the state | Cisposable Idoli | ig <u>La</u> dedicate | a salvoii qii | a poly tabling, 🖂 de | alcated toothig teplac | | | 7) 12 | O. MIN | -CPI-C | 22829 | 27// | D (a) | 14360 | | Sample Analyses | Analysis Method | Sample Cont | | uantity Pres | No. | Notes | | | | Alialysis Metriou | 1 7 7 | | | 4564 | | | | Sample Analyses Analyte | Analysis Metrod | 12 L an | bec | 4 | Silv | | | | | Alialysis Metrod | 12 L an | bry | 2 | aliv | | | | | Alialysis Metrod | 12 Law | by | 2 | an | | | | | Alialysis Metrod | 13 Lanu | ory . | 9 | | | | | | Alialysis Metrod | 12 Lanu | ory . | 9 | 40 | | | | | Alialysis incurou | 13 Lanu | ory . | 9 | 300 | | | | | Alialysis Metrod | 172 Lanu | ory . | 2 | | | | | | Alialysis incurat | 172 Lanu | ory . | 9 | | | | | Analyte | Alialysis Metrod | Duplicate Time: | ira ira | MS/MSD: [| 1 Vac F | Nic | | https://floydsnider.sharepoint.com/Dep/Fiel//Shared Documents/Field Resources/Field Forms/Sroundwater or Surface Water/Groundwater Sample collection Form.doc | GROUNDWATER
Project: やかう | | OL WAIL | | | | - 1 | | | | | |------------------------------|-----------------------|---------------|-------------------------|--|--|------------------|--------------------------|--------------------------|--|--| | Task: | 1.04 | | | Pate of Collection: 3 23 22 Field Personnel: AS+TS | | | | | | | | | - | | | 1 1010 1 0130 | mei. | (3 · C | , , | | | | | Purge Data | | | | | | | | | | | | Well ID: MW-CPZ | Secure: Yes | No Eco | logy Tag #: | Casing | Type/Diamet | er/Screened I | nterval | | | | | Replacement Required: | Monument 🔲 Lic | Lock C | Bolts: Missing | (#) \$tripped (#) | 0 | her Damage: | | | | | | Depth Sounder decontami | | - | - | One Casing Vol | umė (gal): 🔃 | | | | | | | Depth of water (from TOC) | 3.81 | Time: | 253 | | Malum | an af Caba | dula 40 DVC D | | | | | Total Depth (from log or fie | | | | Diameter | O.D. | I.D. | Volume | Weight of Water | | | | After 5 minutes of purging | (from top of casing): | 5.70 | * * - | 1 1/4" | 1.660* | 1.380" | (Gal/Linear Ft.)
0,08 | (Lbs/Lineal Ft.)
0.64 | | | | Begin purge (time): | | | | | 2.375°
3.500° | 2.067°
3.068* | 0.17
0.38 | 1.45
3,2 | | | | Volume purged: 3.5 | L Purge water dis | posal method_ | on site | ilmm 4 | 4.500°
6.625° | 4,026*
6,065* | 0,66
1.5 | 5.51
12.5 | | | | Time Depth to
Water (ft) | Vol. | pH
(s.u.) | DO
(mg/L) | Specific
Conductivity | Turbidity
(NTU) | Temp
(°C) | ORP
(mV) | Comments | | | | 1365 374 | 1 | 4.55 | 9.33 | (μs/cm)
ついず | 047 | 10. | 1 154.0 | | | | | 13010 3.70 | 1.5 | 6.51 | 3,53 | 205.4 | 0.27 | | | | | | | 1315 3:24 | | 6,50 | 7.81 | 2010.3 | 0.32 | (0.7 | 151,6 | | | | | | —X | | | | | - | | : | | | | | | | | - | | - | - | | | | Sampling Data | | | | | | | | | | | | Sample No: MW-C | P2-0323 | 22 | | Location and Den | th: | | | | | | | Date Collected (mo/dy/yr): | | | | | | | | | | | | Type: Ground Water | | | | | | | | | | | | Sample Collected with: | Bailes H Burns C | har | Tund | A Periotetic II Bla | delar Call | momible Of | her | | | | | | | / | - | | | | | | | | | Water Quality Instrument (| | | | | The state of s | | | | | | | Sample
Decon Procedure: | Sample collected | with: decon | taminated <u>all</u> tu | bing; 🗖 disposable tub: | | | d poly tubing; 🔲 de | dicated tubing replac | | | | Sample Description (Color | Turbidity, Odor, Oth | ier): | ur i | NO MY | BOLLO | MA- | dor | | | | | Sample Analyses | 459 | | | , | | | | | | | | 6007 | Analysia | Mathad | Comple | Container (| Quantity Pr | acon other | Notes | | | | | Analyte | Analysis | Method | 72 L | can have | 3 | SSELVATIVE | Notes | | | | | | | | 1/21 | 0014 | 1_ | | | | | | | | | | | * 5 | ţ | QC samples | A 31 | | | An . | | | And the second | | | | | 300 | D/IX | | Duntianta | Time: NA | MORAGO | :□Yes 🕏 | I No | | | | | Duplicate Sample No: | | ~ | publicate | rime: | MOUNTOD | . 🗆 163 🗀 | J NO | | | | https://floydenider.sharepoint.com/Dept/Field/Shared Documents/Field Resources/Field Forms/Groundwater or Surface Water/Groundwater Sample Collection Form doc | Project: POS-LL | OR SURFACE WATE | | Date of Collect | | | laz | | |----------------------------------|---------------------------------|-------------------|--------------------------|--------------------|------------------|--------------------------|--------------------------| | | ow . | | Field Person | | 5 | | | | Purge Data | | | | | | | | | we∎id: <u>MW≃P3</u> se | cure: Yes No Ecol | ogy Tag #: | Casing C | Type/Diamete | er/Screened (| nterval 2" | | | Replacement Required: | onument 🔲 Lid 🔲 Lock 🔲 | Bolts: Missing (a | #) Stripped (#) | Ot | her Damage: | _ | | | | ed Prior to Placement in Well: | | | | | | | | Depth of water (from TOC): | 3.11' Time: 1' | 2:53 | - | | | | | | Total Depth (from log or field n | neasurement): | | | | | dule 40 PVC Pi | ipe
Weight of Water | | After 5 minutes of purging (from | m top of casing): | | Diameter
1 1/4" | O.D.
1.660" | I.D.
1.380" | (Gal/Linear Ft.)
0.08 | (Lbs/Lineal Ft.)
0.64 | | Begin purge (time): 12:53 | End purge (time): | 3:36 | 2"
3" | 2.375"
3.500" | 2.067"
3.068" | 0.17
0.38 | 1.45
3.2 | | Votume purged: 7L | Purge water disposal method (| down | 4"
6" | 4.500"
6.625" | 4.026"
6.065" | 0.66
1.5 | 5,51
12.5 | | Time Depth to
Water (ft) | Vol. pH
Purged (s.u.) | DO
(mg/L) | Specific
Conductivity | Turbidity
(NTU) | Temp
(°C) | | Comments | | 13:00 3.11 | 7.26 | 1.35 | (µs/cm) | 240 | 81 | B5.2 | | | B105 3.11 | 34 6.72 | 1.03 | 199.0 | 0.89 | 8.1 | 85.2 | Pump Slas | | 13:10 3.11 | 45 659 | 0.89 | 199.2 | 0.73 | 8.L | 84.8 | | | 13:15 3:11 | 3,3 6,54 | 0.83 | 199.5 | 083 | 0./ | - <u>84.B</u> | - | | 13:20 3.1/ | 6.7 651 | U.TB | 1992 | 0.61 | 8.2 | 04.8 | × | | | · · · | | 5 | | - | | | | | 4 | | | | | | | | Sampling Data | - | | | | | | | | | 3-032322 | | I costion and Dont | h: | | | | | | 3/23 /22 Time | | 25 | 1A/ | eather: F | 3ain ~ 51 | OF | | | jurface Water Other: | | | | | | | | | ler Pump Other: | | | | | | | | | | | | | neisible O | ilci | | | | Collected with: Type: TYSI Pi | | | | | 10.00 | | | Sample Decon Procedure: | Sample collected with: decont | | / | ng dedica | ted silicon an | d poly tubing; 🗖 dec | dicated tubing replaced | | Sample Description (Color, Tu | rbidity, Odor, Other): | lear, | 10000 | | | | | | Sample Analyses | | | | | | | | | Analyte | Analysis Method | Samble (| Container C | uantity Pre | servative | Notes | | | | | 1LA | Mber | 2 | | | | | | | 500ml | Pely | 1 | - | | | | | | | | | | 74. | QC samples | | | | | | | | | - | | | | | | / | | | Duplicate Sample No: | | _ Duplicate Ti | ime: | MS/MSD: | □ Yes 🏂 | | 4 | | Signature: | 7 | | | | Date: | 3/23 | IND | https://floydsnider.sharepoint.com/Dept/Field/Shared Documents/Field Resources/Field Forms/Groundwater or Surface Water/Groundwater Sample Collection Form.doc | 20 | -LLA | | Date of Collec | tion: 3 | 123V | 22 | | |--|-------------------------------|----------------------|---|--------------------|------------------|--------------------------|--------------------------| | Task: | 140 | | Field Persor | nnel: | AST | TJ | | | urge Data | | | | | | | | | Well ID: MW- CP4 | Secure: No | Ecology Tag #: | Casing | Type/Diamete | er/Screened In | lerval | | | Replacement Required: [| Monument Did Lid Lid | ock 🗖 Bolks: Missing | (#) Stripped (#) | 00 | ner Damage: _ | | | | • | nated Prior to Placement in V | _ | _ | ıme (gal): | | | | | Depth of water (from TOC |):TIr | me: 11:30 | | M. I | | 1 10 DVO 61 | | | | eld measurement): | | Diameter | O.D. | I.D. | Volume | Weight of Water | | | (from top of casing): | | 1% | 1.660" | 1.380" | (Gal/Linear Ft.)
0.08 | (Lbs/Lineal Ft.)
0.64 | | Begin purge (time): | : 3 2 End purge (time) | 17:12 | | 2.375°
3.500° | 2.067°
3.068° | 0.17
0.38 | 1.45
3.2 | | Volume purged: U, E | Purge water disposal m | nethod on sill | comm 5° | 4.500*
6.625* | 4.026°
6.065″ | 0.66
1,5 | 5.51
12.5 | | Time Depth to
Water (ft) | Vol. pF
Purged (s.u
(よ) | | Specific
Conductivity
(µs/cm) | Turbidity
(NTU) | Temp
(°C) | ORP
(mV) | Comments | | 11:40 2.15 | 1.5 10. | | 184.1 | 9.73 | 10.1 | 181.5 | | | 11:45 3:15 | <u>a</u> (e. | | 183.3 | 072 | 10.1 | 1642 | | | 11:20 3.14 | _ 3.5 6.6
_ 3 Co. | | 183 U | 0.78 | 10.2 | 160.2 | <i>-</i> | | ///////////////////////////////////// | | <u> </u> | | <u> </u> | 10.3 | 100-4 | ÷ | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | Sampling Data | 20. 20.04.00 | | | | | | | | | 2102100 | | | th: | | | | | | 3/23/22 | | | | / | | | | | Surface Water Other: | | - Andrews Control of the | | | | | | Sample Collected with: | Bailer Pump Other: | Тура: | Peristaltic 🔲 Blad | dder ☐ Subr | nersible Oth | er: | | | Water Quality Instrument (| Data Collected with: Type; 🗅 | TYSI ProDSS Tudit | oidity Meter ☐ Other:_ | | | | | | Sample Decon Procedure: | Sample collected with: | | 47 | - | | 4 | dicated tubing replac | | Sample Description (Color | , Turbidity, Odor, Other): | den s | ' no d | ppor | ent | oller | | | | | | | 9 | | | | | ample Analyses | | | | | 100 | C | | | Sample Analyses Analyte | Analysis Metho | d Sample | Container C | Quantity Pre | servative | Notes | | | Sample Analyses Analyte | Analysis Method | 1/26 | Container C | Quantity Pre | servative | Notes | | | | Analysis Metho | d Sample | | | servative | Notes | * | | | Analysis Metho | 1/26 | | | servative | Notes | (4) | | | Analysis Metho | 1/26 | | | servative | Notes | | | | Analysis Metho | 1/26 | | | servative | Notes | | | | Analysis Metho | 1/26 | | | servative | Notes | * | | | Analysis Metho | 1/26 | | | servative | Notes | | | | Analysis Metho | 1/26 | | | servative | Notes | | | Analyte | Analysis Metho | 1/26 | ambor | 2 | □ Yes | | | https://floydsnider.sharepoint.com/Dept/Field/Shared Documents/Field Resources/Field Forms/Groundwater or Surface Water/Groundwater Sample Collection Form.doc | GROUNDWATER OR SURFACE WA | ATER SAMP | | | | 1-0 | | |---|-----------------------------|-------------------------------------|--------------------|------------------|--------------------------|--------------------------| | Project: POS-LL | | Date of Collection: 3/23/22 | | | | | | Task: March GW | | Field Persor | nnel: | <u>15</u> | | | | Purge Data | | | | | | | | Well ID: <u>MW-∠P5</u> Secure: KYes □ No | Ecology Tag #: | 3LK315 Casing | Type/Diamete | er/Screened I | Interval | | | Replacement Required: Monument Lid Loc | k 🔲 Bolts: Missing | g (#) Stripped (#) | <u></u> | her Damage: | | | | Depth Sounder decontaminated Prior to Placement in We | li: ☐ Yes ☐ No | One Casing Vol | ume (gal): | | | | | Depth of water (from TOC): 3. 73 | 11:49 | - | | | | |
| Total Depth (from log or field measurement): | ě | Diarneter | O.D. | i.D. | Volume | Ipe
Weight of Water | | After 5 minutes of purging (from top of casing): | .00 | 1 1/4" | 1,660" | 1.380" | (Gal/Linear Ft.)
0.08 | (Lbs/Lineal Ft.)
0.64 | | Begin purge (time): 11:44 End purge (time): | 12:37 | - 2"
3" | 2,375"
3,500° | 2.067"
3.068" | 0.17
0.38 | 1,45
3.2 | | Volume purged: Purge water disposal met | hod drum | 4*
6* | 4.500°
6.625° | 4.026"
6.065" | 0,66
1.5 | 5.51
12.5 | | Time Depth to Vol. pH Water (ft) Purged (s.u.) | DO
(mg/L) | Specific
Conductivity
(µs/cm) | Turbidity
(NTU) | Temp
(°C) | ORP
(mV) | Comments | | 12:00 3.94 2 6.5 | 3 1.01 | 421.2 | 2.53 | 9.9 | 902 | | | 12:05 3.95 2.9 6.3 | 7 0.84 | 421.7 | 1.35 | 2.6 | 79.3 | | | 12:10 3.95 2.45 6.30 | 0.77 | 425.6 | 0.00 | 43 | 41.9 | | | 12:20 395 50 62 | 8069 | 429.4 | 0.74 | 9.6 | 61.5 | | | | | | | | | | | | | - | | | | | | | | · | | | | | | Sampling Data | | | | | | | | Sample No: MW-CP5-032322 | | | | | ~1) - | | | Date Collected (mo/dy/yr): <u>03/23/22</u> | Time Collected: | 2:25 | W | eather: | DOWN COVER | casta 60° | | Type: Ground Water Surface Water Other: | | | _ | | | | | Sample Collected with: Bailer Denmp Other: | Туре | e: 🖪 Peristallic 🔲 Bla | dder □ Sub | mersible O | ther: | - | | Water Quality Instrument Data Collected with: Type: | /SI ProDSS⊅ É l-Tud | lbidity Meter 🗆 Other:_ | | | | | | Sample Decon Procedure: Sample collected with: d | econtaminated <u>all</u> tu | bing; 🗖 disposable tub | ing dedica | ted silicon ar | nd poly tubing; 🗖 de | edicated tubing replaced | | Sample Description (Color, Turbidity, Odor, Other): | Mean; | no ode | | | | | | Sample Analyses | | | | | | | | | C+=1 | - Section - | Octobrille Da | | Nistan | | | Analyte Analysis Method | 1 Z Z | e Container (| Quantity Pro | eservauve | Notes | | | | 600m | L Paly | 1 | _ | • | = | 2 | QC samples | | | | | | | | | | | | a.i | | | | Duplicate Sample No: | Duplicate | Time: | MS/MSD: | □ Yes 🐧 | ~ V | 4 - | | Signature: | | | | Date: | 3/23 | 122 | | Project: POS-L | 14 | | Date of Collec | tion: | 3/23/ | 22 | | | |-------------------------------|---------------------------------|---|-------------------------------------|--------------------|------------------|--------------------------|--------------------------|--| | Task: March | GW | | Field Personnel: T5 | | | | | | | urge Data | | | | | | | | | | Well ID: MW-CP6 | Secure: A Yes □ No E | cology Tag #: ይ | LK3H Casing | Type/Diamete | er/Screened | Interval 211 P | tossyrize | | | Replacement Required: | Monument Lid Lock | ☐ Bolts: Missing | (#) \$tripped (#) | 0 | her Damage | ^ | | | | | ated Prior to Placement in Well | | | | | | | | | Depth of water (from TOC): | 2.90Time: | 10:40 | | | | | | | | | d measurement): | | Diameter | O.D. | t.D. | Volume | Weight of Water | | | After 5 minutes of purging (I | from top of casing): | 02 | 1 1/4" | 1,660* | 1,380" | (Gal/Linear Ft.)
0.08 | (Lbs/Lineal Ft.)
0.64 | | | Begin purge (time): 10: | HO End purge (lime): _ | 11:25 | - 2°
3″ | 2.375"
3.500" | 2.067"
3.068" | 0.17
0.38 | 1.45
3.2 | | | Volume purged: 6. 75 | Purge water disposal metho | d drum | 4"
6" | 4.500"
6.625" | 4.026"
6.065" | 0.66
1.5 | 5.51
12.5 | | | Time Depth to
Water (ft) | Vol. pH
Purged (s.u.) | DO
(mg/L) | Specific
Conductivity
(µs/cm) | Turbidity
(NTU) | Temp
(°C) | ORP
(mV) | Comments | | | 10:50 2.95 | 2 6.7 | 7 1.20 | 199.6 | 6.63 | 11.6 | 133.5 | | | | 10:55 2.95 | 2.9 6.56 | 0.95 | 198.6 | 4.24 | 11.5 | 121.9 | | | | 11:00 2:96 | S.73 6.43
U. 9 /27 | 0.85 | 198.1 | 3.14 | 11.4 | 114.1 | - | | | 11:10 2.96 | 5.5 2.32 | 0.73 | 198.0 | 3.26 | 11.4 | 105.7 | * | | | | | | | | 7 | | | | | · · | | | - | - | | _ | | | | | | | - | | | - 0 | 1 | | | ampling Data | | | | | | | | | | Sample No: 🐠 🕹 | 46-03232 | | Location and Dep | | | | | | | Date Collected (mo/dy/yr);_ | 03/23/22 | īme Collected: 🧘 | 1:15 | w | eather: | loudy v | 55°F | | | Type Ground Water | Surface Water Other: | | Sample: | ☐ Filtered 🔑 | Unfiltered | Filter Type: | <i></i> | | | Sample Collected with: B | sailer Pump Other: | Туре | :ୀପ୍ Peristaltic 🗆 Bla | dder 🗆 Subi | mersible O | ther: | | | | Water Quality Instrument Da | ata Collected with. Type: 2 YS | l ProDSS 📮 Tudt | bidity Meter Other: | | | | | | | Sample Decon Procedure: | Sample collected with: 🕒 dec | contaminated <u>all</u> tub | bing; 🔲 disposable tubi | ing 💋 dedica | ted silicon ar | nd poly tubing; 🔲 de | edicated tubing repla | | | Sample Description (Color.) | Turbidity, Odor, Other): 5/12 | aht oder | C. O. CONDIA | Flork | in | Samole | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 7 75 00 - | | V | | | | ample Analyses | | | | | | | | | | Analyte | Analysis Method | Sample | Container (| Quantity Pre | servative | Cap und | er pressi | | | | | 500N | L Poly | 1 | 7 | 01/6 | o pressi | C samples | | | | | | | | | | Duplicate Sample No: _ | | Duplicate 1 | Time: | MS/MSD: | ☐ Yes _D | No | | | | - | ATT. | LA | 7 | | Date: | | 23/22 | | | Project: | Pb5-1 | 11 | MAI ER SAMFI | Date of Collect | | | • • • | | |--------------|-----------------------|--------------------------|-------------------------------|-------------------------|--------------------|------------------|---------------------|-------------------------| | | 8/40 | | | Field Personnel: AS+TS | | | | | | Purge Da | ta | | | | | | | | | Well ID: N | 1W-CP7 se | cure: Yes No | Ecology Tag #: | Casing | Type/Diamete | er/Screened I | nterval | | | Replaceme | nt Required: M | onument 🗆 Lid 🗇 i | Lock Bolts: Missing | ı (#) Stripped (#, | Ot | her Demage: | | | | | | ed Prior to Placement in | 3/ | | | | | | | Depth of wa | ater (from TOC): | 4.20 | ime: 10.28 | | | | | | | Total Depth | (from log or field n | neasurement): | | | | | dule 40 PVC P | ipe
Weight of Water | | After 5 minu | ates of purging (from | m top of casing): | ,30 | Diameter | 0.D.
1.660° | 1.D.
1,380° | (Gal/Linear Ft.) | (Lbs/Lineal Ft.) | | | | | e): 11:20 | | 2.375° | 2.067" | 0.08
0.17 | 0.64
1.45 | | | | | method on site | 3 | 3.500°
4.500° | 3,068°
4,026° | 0.38
0.66 | 3.2
5.51 | | Volume pur | ged: Depth to | | H DO | Specific | 8.625* | 6.065° | 1.5 | 12.5 | | Time | Water (ft) | | .u.) (mg/L) | Conductivity
(µs/cm) | Turbidity
(NTU) | Temp
(°C) | ORP
(mV) | Comments | | 10:40 | 4.30 | | 20 9.81 | 231,9 | O .S4 | 11.0 | 0 174.8 | | | 10:45 | 4.30 | 1.5 6 | 9.60 | 231.8 | 0.59 | 11.7 | | | | 10:50 | 4.30 | | 14 8,45 | 231.4 | 0.46 | 11.6 | 177,9 | | | 10:55 | 4.30 | 2.5 6 | 14 7.95 | 231,4 | 0.45 | 11.40 | 179.1 | - | | | - | | | · | | | | 2 | | | | | 2 (); | - | | | - | | | Sampling | g Data | | | | | | | | | Sample No: | MW-CP | 1-032322 | | Location and Dep | th: | | | | | | | | Time Collected: | مساله | | | | | | Type: 🖒 Gr | round Water 📋 S | urface Water Other: _ | | Sample: | ☐ Filtered ☐ | Unfiltered I | Filter Type: | | | Sample Coli | lected with: 🗆 Baij | er Pump Other; _ | Туре | Peristattic 🗆 Bla | dder 🗌 Subr | mersible Otl | her: | | | Water Quali | ty Instrument Data | Collected with: Type: I | YSI ProDSS Tud | bidity Meter 🗖 Other:_ | | | | | | Sample Dec | on Procedure: S | Sample collected with: [| decontaminated <u>all</u> tul | bing; 🔲 disposable tub | ing dedical | ted silicon and | d poly tubing: 🔲 de | dicated tubing replaced | | Sample Des | scription (Color, Tu | rbidity, Odor, Other): | cur n | a roper | ent o | dor | | | | | | | | () (| | | | | | Sample A | Analyses | | | | | | | | | Analyte | 9 | Analysis Meth | | Container (| Quantity Pre | servative | Notes | | | | | | 1/36 | PULLY | 1 | Mo | le | | | | | | 126 | 179.19 | 1 | 1 | ٠. | - | | | | | | y' | | | | | | | | | | | | | | | | | | | QC samp | les | | | | | | | | | Duplicate S | Sample No: | Ine | Duplicate * | Time: | MS/MSD: | □ Yes 🖯 | No | | | Signatu | 0 1/ | 1-0- | | | | | | | | Signatu | . <u>////</u> | | | | | Date: | 3/23/22 | | https://floydsnider.sharepoint.com/Depl/Field/Shared Documents/Field Resources/Field Forms/Groundwater or Surface Water/Groundwater Sample Collection Form.doc #### **GROUNDWATER OR SURFACE WATER SAMPLE COLLECTION FORM** Project: POS-CLA Date of Collection: 3/14/12 8140 Task: Field Personnel: **Purge Data** Well ID: MW-VB2 Ecology Tag #: BKA-340 Casing Type/Diameter/Screened Interval Replacement Required: Monument Lid Lock Bolts: Missing (#) ____ Stripped (#) ____ Other Damage: One Casing Volume (gal): Depth of water (from TOC): 8.60 Volume of Schedule 40 PVC Pipe Total Depth (from log or field measurement): Volume Weight of Water Diameter LD. O.D. (Gal/Linear Ft. (Lbs/Lineal Ft.) After 5 minutes of purging (from top of casing): ___ 1,660* 1,3801 1 1/4 80,0 0.64 Begin purge (time): 9:45 1.45 2" 2.375" 2.067" 0.17 End purge (time): 10:25 3" 3.500" 3.068" 3.2 0.38 4.500" 4.026" 0.66 5.51 Purge water disposal method div M Volume purged: 6.625" 6.065" 12.5 Depth to DΟ Specific ORP Comments Time Vol. рΗ Turbidity Temp Water (ft) Purged (mg/L) Conductivity (NTU) (mV) (s.u.) (°C) (µs/cm) 10:00 10:05 ORG Sampling Data Sample No: MW-VB2-032422 Location and Depth: Time Collected: 10:30 Date Collected (mo/dy/yr): 03/24/22 Weather: Type: Ground Water . \$urface Water Other: Sample: 🗖 Filtered 🔟 Unfiltered Filter Type:____ Type: Peristaltic Bladder Submersible Other: Sample Collected with: Bailer Pump Other: Water Quality Instrument Data Collected with: Type: XSI ProDSS XI Tudbidity Meter Dither: _ Sample Decon Procedure: Sample collected
with; 🗖 decontaminated all tubing; 🗖 disposable tubing 🗗 dedicated silicon and poly tubing; 🗖 dedicated tubing replaced Sample Description (Color, Turbidity, Odor, Other): Clear Sample Analyses Analyte Analysis Method Sample Container Quantity Preservative Notes L AMber 500 ml Poly QC samples Duplicate Sample No: MS/MSD: Tyes No. Duplicate Time: Date: 3/24/22 Signature: | Project:_ | 102-1 | IA | | | Date of Collec | ction: 3 | 3123) | 202 | | |----------------|-------------------------|------------------|------------------------|---------------------|-------------------------------------|--|------------------|--------------------------|--------------------------| | Task: | 140 | | | | Field Perso | | | | | | Purge Dat | a | | | | | | | | | | Well ID: MC. | N-VB3se | ecure: 🔯 Yes 🛭 |]No Eco | logy Tag #: | Casing | Type/Diamet | er/Screened In | iterval | | | Replacement | t Required: 🔲 M | lonument 🔲 Li | d 🗆 Lock 🗆 | Bolts: Missing (# |) Stripped (# |) 0 | lher Damage: | | | | | ler decontaminate | | _ | _ | | | | | | | Depth of water | er (from TOC): | 7.96 | Time: | 9:00 | | | | | | | Total Depth (| from log or field r | measurement): | | | Diameter | | | Volume | Weight of Water | | | es of purging (fro | | | | Diameter
1 1/4" | 0.D.
1,660° | 1.D.
1,380° | (Gal/Linear Ft.)
0,08 | (Lbs/Lineal Ft.)
0.64 | | Begin purge | (time): 9.0 | 3 End pur | ge (time): 🦰 | | 2"
3" | 2.375"
3.500" | 2.067*
3.068° | 0.17
0.38 | 1,45
3,2 | | Volume purge | ed: 4.5L | _Purge water di | sposal method <u>(</u> | on sibdum | M 6" | 4.500°
6.625° | 4.026*
6.065* | 0.66
1.5 | 5.51
12.5 | | Time | -Depth to
Water (ft) | Vol.
Purged | pH
(s.u.) | DO
(mg/L) | Specific
Conductivity
(µs/cm) | Turbidity
(NTU) | Temp
(°C) | ORP
(mV) | Comments | | 916 | 9.99 | 2 | 5.77 | 9.62 | 4 93. † | 0.27 | 11.6 | 197.9 | | | 4:30 | 9,99 | 2.5 | 5.79 | 9.05 | 289.1 | 6.42 | 11.4 | | | | 4:25 | 9,99 | _3_ | 5.82 | 8,40 | 787.7 | 0.52 | 11,7 | 191.8 | X | | | | | | | | | | | | | | | | | | | } | | | | | Sampling | Data | | | | | | | | | | Sample No: | MW-V | B3 - 03: | 2322 | | Location and Dep | oth: | | | | | Date Collecte | d (mo/dy/yr): | 3/23/2 | 2 Time | e Collected:9 | 136 | | eather: | | | | Type: Gro | und Water 🔲 S | urface Water O | ther: | | Sample: | ☐ Filtered □ | Unfiltered F | ifter Type: | | | Sample Colle | cled with: 🗖 Bail | ler 🗆 Pump O | ther: | Туре; 🕭 | Peristaltic Bla | dder 🗆 Subi | mersible Oth | er: | | | Water Quality | Instrument Data | Collected with: | Type: 🖸 YSI P | roDSS Tudbidi | ty Meter 🗖 Other: | | | | | | Sample Deco | n Procedure: | Sample collected | /
with: ☐ decont | aminated all tubino | ı: □ disoosable tub | ing 1 dedica | ted silicon and | noty tubing: 🔲 dec | licated tubing replace | | | | | 100 | | povent | | | pay tading, in det | nouted tability lepiace | | Sample A | nalyses | | | | | | | | | | Analyte | | Analysis | Method | Sample Co | | Quantity Pre | servative | Notes | | | | | | | 1200 | amber | 2 1 | ou - | | | | | | | | 1/26 | Poly | 1 1 | 3 | + | QC sample | es | | | | | | | | | | Duplicate Sa | ample No: | NA | | _ Duplicate Tim | ne: NA | MS/MSD- | □ Yes 🗹 | No. | | | - | B: | | | | 1 30. | | | | | | Signature | | | | | | | vate: | | | ### **Lora Lake Apartments Site** ### 2022 Annual Compliance Monitoring Report # Appendix B Laboratory Reports and Data Validation Summaries Two Union Square 601 Union Street, Suite 600 Seattle, WA 98101 tel: 206.292.2078 fax: 206.682.7867 ### **Data Validation Summary** Prepared by: Gretchen Heavner Date: November 1, 2022 Project No.: POS-LLA Sample Event(s): March 2022 Groundwater Monitoring Sample Delivery Group(s): ARI22C0456 Sample Media: Groundwater A Compliance Screening (Stages 1 & 2A) data quality review was performed on metals data resulting from laboratory analysis. The analytical data were validated in accordance with the *National Functional Guidelines for Inorganic Superfund Methods Data Review* (USEPA 2020a). Dixon/Furans were validated externally by EcoChem, please refer to the data validation report in Appendix B for details. A total of fifteen groundwater samples were submitted in one sample delivery group, ARI22C0456, to Analytical Resources, Inc. for chemical analysis. The analytical holding times were met and the method blank had no detections. The matrix spike and laboratory control sample recoveries and sample/sample duplicate relative percent differences all met U.S. Environmental Protection Agency (USEPA) requirements. No qualifiers were added to the analytical results based on the data quality review. Data are determined to be of acceptable quality for use as reported by the laboratory, with some laboratory qualifiers being updated to conform to the final qualifiers used for data table reporting and database storage. ### **REFERENCES** U.S. Environmental Protection Agency (USEPA). 2020a. *National Functional Guidelines for Inorganic Superfund Methods Data Review.* Prepared by the Office of Superfund Remediation and Technology Innovation. EPA-542-R-20-006/OLEM 9240.1-66. November. November 2022 Page 1 of 1 ### **DATA VALIDATION REPORT** ### **LORA LAKE - ANNUAL LAKESIDE GW MONITORING 2022** ### **Prepared for:** Floyd | Snider 601 Union Street, Suite 600 Seattle, WA 98101 ### **Prepared by:** EcoChem, Inc. 500 Union Street, Suite 1010 Seattle, WA 98101 EcoChem Project: C15231-3 June 1, 2022 **Approved for Release:** Christine Ransom Senior Project Chemist EcoChem, Inc. ### **PROJECT NARRATIVE** ### Basis for the Data Validation This report summarizes the results of data validation performed on groundwater and quality control (QC) sample data for the Lora Lake Lakeside GW Monitoring project. The dioxin data received full validation (EPA Stage 4). A complete list of samples is provided in the **Sample Index**. Analytical Resources in Tukwila, WA performed the analyses. The analytical method and EcoChem project chemists are listed in the table below. | Analysis | METHOD | PRIMARY REVIEW | SECONDARY REVIEW | |----------|-----------|----------------|------------------| | Dioxins | EPA 1613B | A. Bodkin | C. Ransom | The data were reviewed using guidance and quality control criteria documented in the analytical methods; *Port of Seattle Lora Lake Parcel, Remedial Investigation/Feasibility Study Work Plan* (Floyd Snider February 11, 2011); *National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review* (USEPA, September 2011); *National Functional Guidelines for High Resolution Superfund Methods Data Review* (USEPA, April 2016). EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R or DNR, the data should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above. Data qualifier definitions, reason codes, and validation criteria are included as **Appendix A**. A Qualified Data Summary Table is included in **Appendix B**. Data Validation Worksheets will be kept on file at EcoChem, Inc. A qualified laboratory electronic data deliverable (EDD) is also submitted with this report. # Sample Index Lora Lake - Annual Lakeside GW Monitoring 2022 | Г | T | ı | | |---------|--------------------|------------|---------------| | SDG | SAMPLE ID | LAB ID | 1613B Dioxins | | 22C0456 | MW-CP1-032322 | 22C0456-01 | ✓ | | 22C0456 | MW-CP1-032322-D | 22C0456-02 | ✓ | | 22C0456 | MW-CP2-032322 | 22C0456-03 | ✓ | | 22C0456 | MW-CP3-032322 | 22C0456-04 | ✓ | | 22C0456 | MW-CP4-032322 | 22C0456-05 | ✓ | | 22C0456 | MW-CP5-032322 | 22C0456-06 | ✓ | | 22C0456 | MW-CP6-032322 | 22C0456-07 | ✓ | | 22C0456 | MW-CP7-032322 | 22C0456-08 | ✓ | | 22C0456 | MW-VB3-032322 | 22C0456-09 | ✓ | | 22C0456 | HCOO-B312-032322 | 22C0456-10 | ✓ | | 22C0456 | MW-C1-VB1-032422 | 22C0456-11 | ✓ | | 22C0456 | MW-C1-VB1-032422-D | 22C0456-12 | ✓ | | 22C0456 | MW-VB2-032422 | 22C0456-15 | ✓ | ### DATA VALIDATION REPORT ### Lora Lake - Annual Lakeside GW Monitoring 2022 Dioxin/Furan Compounds by Method 1613B This report documents the review of analytical data from the analysis of groundwater samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc., Tukwila, Washington. Refer to the **SAMPLE INDEX** for a complete list of samples. | SDG | Number of Samples | VALIDATION LEVEL | |---------|-------------------|------------------| | 22C0456 | 13 Groundwater | EPA Stage 4 | ### **DATA PACKAGE COMPLETENESS** The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative. ### **EDD TO HARDCOPY VERIFICATION** Sample results and related quality control data were received as an electronic data deliverable (EDD) and laboratory report. The EDD was verified against the laboratory report (10%). No errors were noted. For laboratory sample 22C0546-15, the sample ID of MW-C1-VB-1-032422 did not match the ID of MW-VB2-032422 on the Chain-of-Custody (COC). The ID was corrected in the EDD during validation; no further action was taken. ### **TECHNICAL DATA VALIDATION** The quality control (QC) requirements reviewed are summarized in the following table: | √ | Sample Receipt, Preservation, and Holding Times | ✓ | Ongoing Precision and Recovery (OPR) | |----------
---|---|--------------------------------------| | ✓ | System Performance and Resolution Checks | 1 | Field Duplicates | | ✓ | Initial Calibration (ICAL) | ✓ | Target Analyte List | | √ | Calibration Verification | ✓ | Reported Results | | 2 | Blanks (Laboratory and Field) | 2 | Compound Identification | | ✓ | Labeled Compounds | 1 | Calculation Verification | [✓] Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed. ### **Blanks** To assess the impact of any blank contaminant on the reported sample results, an action level is established at five times (5x) the concentration reported in the blank. If a contaminant is reported ¹ Quality control results are discussed below, but no data were qualified. ² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below. in an associated field sample and the concentration is less than the action level, the result is qualified as not detected (U-7). No action is taken if the sample result is greater than the action level, or for non-detected results. OCDD was detected in the method blank. Results for this compound in the associated samples that were less than the 5x action level were qualified as not-detected (U-7). No field blanks were submitted. ### **Field Duplicates** The RPD control limit is 35% for results greater than 5x the reporting limit (RL). For results less than 5x the RL, the absolute difference between the sample and replicate must be less than the RL. Two sets of field duplicates were submitted: MW-CP1-032322 & MW-CP1-032322-D and MW-C1-VB1-032422 & MW-C1-VB1-032422-D. Field precision was acceptable. ### **Compound Identification** The method requires the confirmation of 2,3,7,8-TCDF using an alternate GC column as the DB5 column that is typically used cannot fully separate 2,3,7,8-TCDF from closely eluting non-target TCDF isomers. The laboratory uses an RTX-Dioxin2 column which provides adequate resolution of the TCDF isomers as indicated by the acceptable peak to valley ratios. Since the 2,3,7,8-TCDF resolution was acceptable, no confirmation was necessary. The laboratory assigned an "EMPC" flag (NUJ-flag in the EDD) to indicate that the ion ratio criterion for positive identification was not met. Since the ion abundance ratio is the primary identification criterion for high resolution mass spectroscopy, an outlier indicates that the reported result may be a false positive. These "EMPC" flagged results were qualified as not detected (U-25) at the reported concentration. ### **Calculation Verification** Several results were verified by recalculation from the raw data. No calculation or transcription errors were found. ### **OVERALL ASSESSMENT** As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable as demonstrated by the labeled compound and OPR/OPR Dup recoveries and precision was acceptable as demonstrated by the OPR/OPR Dup and field duplicate RPD values. Detection limits were elevated based on ion ratio outliers and method blank contamination. All data, as qualified, are acceptable for use. ### **APPENDIX A** # DATA QUALIFIER DEFINITIONS REASON CODES AND CRITERIA TABLES ## DATA VALIDATION QUALIFIER CODES Based on National Functional Guidelines The following definitions provide brief explanations of the qualifiers assigned to results in the data review process. | U | The analyte was analyzed for, but was not detected above the reported sample quantitation limit. | |----|---| | J | The analyte was positively identified; the associated
numerical value is the approximate concentration of the
analyte in the sample. | | NJ | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration. | | UJ | The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | | R | The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified. | DNR Do not report; a more appropriate result is reported The following is an EcoChem qualifier that may also be assigned during the data review process: from another analysis or dilution. ### **DATA QUALIFIER REASON CODES** | Group | Code | Reason for Qualification | |------------------------------------|------|--| | Sample Handling | 1 | Improper Sample Handling or Sample Preservation (i.e., headspace, cooler temperature, pH, summa canister pressure); Exceeded Holding Times | | | 24 | Instrument Performance (i.e., tune, resolution, retention time window, endrin breakdown, lock-mass) | | | 5A | Initial Calibration (RF, %RSD, r²) | | Instrument Performance | 5B | Calibration Verification (CCV, CCAL; RF, %D, %R) Use bias flags (H,L)¹ where appropriate | | | 5C | Initial Calibration Verification (ICV %D, %R) Use bias flags (H,L)¹ where appropriate | | | 6 | Field Blank Contamination (Equipment Rinsate, Trip Blank, etc.) | | Blank Contamination | 7 | Lab Blank Contamination (i.e., method blank, instrument blank, etc.) Use low bias flag (L)¹ for negative instrument blanks | | | 8 | Matrix Spike (MS and/or MSD) Recoveries Use bias flags (H,L)¹ where appropriate | | | 9 | Precision (all replicates: LCS/LCSD, MS/MSD, Lab Replicate, Field Replicate) | | Precision and Accuracy | 10 | Laboratory Control Sample Recoveries (a.k.a. Blank Spikes) Use bias flags (H,L)¹ where appropriate | | | 12 | Reference Material Use bias flags (H,L)¹ where appropriate | | | 13 | Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L)¹ where appropriate | | | 16 | ICP/ICP-MS Serial Dilution Percent Difference | | | 17 | ICP/ICP-MS Interference Check Standard Recovery Use bias flags (H,L)¹ where appropriate | | Interferences | 19 | Internal Standard Performance (i.e., area, retention time, recovery) | | | 22 | Elevated Detection Limit due to Interference (i.e., chemical and/or matrix) | | | 23 | Bias from Matrix Interference (i.e. diphenyl ether, PCB/pesticides) | | | 2 | Chromatographic pattern in sample does not match pattern of calibration standard | | | 3 | 2 nd column confirmation (RPD or %D) | | Identification and
Quantitation | 4 | Tentatively Identified Compound (TIC) (associated with NJ only) | | | 20 | Calibration Range or Linear Range Exceeded | | | 25 | Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.) | | Mara-Harris | 11 | A more appropriate result is reported (multiple reported analyses i.e., dilutions, reextractions, etc. Associated with "R" and "DNR" only) | | Miscellaneous | 14 | Other (See DV report for details) | | | 26 | Method QC information not provided | ¹H = high bias indicated L = low bias indicated ### **DATA QUALIFIER REASON CODES** | Group | Code | Reason for Qualification | |------------------------------------|------|--| | Sample Handling | 1 | Improper Sample Handling or Sample Preservation (i.e., headspace, cooler temperature, pH, summa canister pressure); Exceeded Holding Times | | | 24 | Instrument Performance (i.e., tune, resolution, retention time window, endrin breakdown, lock-mass) | | | 5A | Initial Calibration (RF, %RSD, r²) | | Instrument Performance | 5B | Calibration Verification (CCV, CCAL; RF, %D, %R) Use bias flags (H,L)¹ where appropriate | | | 5C | Initial Calibration Verification (ICV %D, %R) Use bias flags (H,L)¹ where appropriate | | | 6 | Field Blank Contamination (Equipment Rinsate, Trip Blank, etc.) | | Blank Contamination | 7 | Lab Blank Contamination (i.e., method blank, instrument blank, etc.) Use low bias flag (L)¹ for negative instrument blanks | | | 8 | Matrix Spike (MS and/or MSD) Recoveries Use bias flags (H,L)¹ where appropriate | | | 9 | Precision (all replicates: LCS/LCSD, MS/MSD, Lab Replicate, Field Replicate) | | Precision and Accuracy | 10 | Laboratory Control Sample Recoveries (a.k.a. Blank Spikes) Use bias flags (H,L)¹ where appropriate | | | 12 | Reference Material Use bias flags (H,L)¹ where appropriate | | | 13 | Surrogate Spike Recoveries (a.k.a. labeled compounds, recovery standards) Use bias flags (H,L)¹ where appropriate | | | 16 | ICP/ICP-MS Serial Dilution Percent Difference | | | 17 | ICP/ICP-MS Interference Check Standard Recovery Use bias flags (H,L)¹ where appropriate | | Interferences | 19 | Internal Standard Performance (i.e., area, retention time, recovery) | | | 22 | Elevated Detection Limit due to Interference (i.e., chemical and/or matrix) | | | 23 | Bias from Matrix Interference (i.e. diphenyl ether, PCB/pesticides) | | | 2 | Chromatographic pattern in sample does not match pattern of calibration standard | | | 3 | 2 nd column confirmation (RPD or %D) | | Identification and
Quantitation | 4 | Tentatively Identified Compound (TIC) (associated with NJ only) | | | 20 | Calibration Range or Linear Range Exceeded | | | 25 | Compound Identification (i.e., ion ratio, retention time, relative abundance, etc.) | | Mara-Harris | 11 | A more appropriate result is reported (multiple reported analyses i.e.,
dilutions, reextractions, etc. Associated with "R" and "DNR" only) | | Miscellaneous | 14 | Other (See DV report for details) | | | 26 | Method QC information not provided | ¹H = high bias indicated L = low bias indicated Table: HRMS-DXN Revision No.: 4 Last Rev. Date: 12/21/14 Page: 1 of 4 ### Dioxin/Furan Analysis by HRMS (Based on Dioxin NFG 2011 and Methods EPA 1613B and SW-846 8290) | QC Element | Acceptance Criteria | Source of Criteria | Action for Non-Conformance | Reason
Code | Discussion and Comments | |---|--|---|---|----------------|--| | Sample Handling | | | | | | | Cooler/Storage
Temperature
Preservation | Waters/Solids \leq 6°C & in the dark Tissues <-10°C & in the dark
Preservation Aqueous: If Cl_2 is present Thiosulfate must be added and if pH > 9 it must be adjusted to 7 - 9 | NFG ⁽¹⁾
Method ⁽²⁾ | J(pos)/R(ND) if thiosulfate not added if Cl_2 present;
J(pos)/UJ(ND) if pH not adjusted
J(pos)/UJ(ND) if temp > 20°C | 1 | EcoChem PJ, see TM-05 | | Holding Time | If properly stored, 1 year or: Extraction (all matrices): 30 days from collection Analysis (all matrices): 45 days from extraction | NFG ⁽¹⁾
Method ⁽²⁾ | If not properly stored or HT exceedance:
J(pos)/UJ(ND) | 1 | FcoChem PJ, see TM-05 Gross exceedance = > 1 year 2011 NFG Note: Under CWA, SDWA, and RCRA the HT for H2O is 7 days. | | Instrument Performa | nce | | | | | | Mass Resolution
(Tuning) | PFK (Perfluorokerosene) ≥10,000 resolving power at m/z 304.9824. Exact mass of m/z 380.9760 w/in 5 ppm of theoretical value (380.97410 to 380.97790) . Analyzed prior to ICAL and at the start and end of each 12 hr. shift. | NFG ⁽¹⁾
Method ⁽²⁾ | R(pos/ND) all analytes in all samples
associated with the tune | 24 | Notify PM | | Windows Defining
Mix | Peaks for first and last eluters must be within established
retention time windows for
each selector group (chlorination level) | NFG ⁽¹⁾
Method ⁽²⁾ | If peaks are not completely within windows (clipped): If natives are ok, J(pos)/UJ(ND) homologs (Totals) If natives are affected, R all results for that selector group | 24 | Notify PM | | Column Performance
Mix | Both mixes must be analyzed before ICAL and CCAL Valley < 25% (valley = (x/y)*100%) where x = ht. of TCDD (or TCDF) & y = baseline to bottom of valley For all isomers eluting near the 2378-TCDD (TCDF) peak (TCDD only for 8290) | NFG ⁽¹⁾
Method ⁽²⁾ | J(pos) if valley > 25% | 24 | EcoChem PJ, see TM-05, Rev. 2; Note: TCDF is evaluated only if second column confirmation is performed | | Initial Calibration Sensitivity | S/N ratio > 10 for all native and labeled compounds in CS1 std. | NFG ⁽¹⁾
Method ⁽²⁾ | If <10, elevate Det. Limit or R(ND) | 5A | | | Initial Calibration Selectivity | Ion Abundance ratios within QC limits
(Table 8 of method 8290)
(Table 9 of method 1613B) | NFG ⁽¹⁾
Method ⁽²⁾ | If 2 or more ion ratios are out for one compound in ICAL, J(pos) | 5A | EcoChem PJ, see TM-05, Rev. 2 | Table: HRMS-DXN Revision No.: 4 Last Rev. Date: 12/21/14 Page: 2 of 4 ### Dioxin/Furan Analysis by HRMS (Based on Dioxin NFG 2011 and Methods EPA 1613B and SW-846 8290) | QC Element | Acceptance Criteria | Source of Criteria | Action for Non-Conformance | | Discussion and Comments | |---|--|---|---|-----------------------|---| | Instrument Performa | nce (continued) | | | Code | | | Initial Calibration
(Minimum 5 stds.) | %RSD < 20% for native compounds
%RSD < 30% for labeled compounds
(%RSD < 35% for labeled compounds under 1613b) | NFG ⁽¹⁾
Method ⁽²⁾ | J(pos) natives if %RSD > 20% | 5A | | | Stability | Absolute RT of ¹³ C ₁₂ -1234-TCDD
>25 min on DB5 & >15 min on DB-225 | NFG ⁽¹⁾
Method ⁽²⁾ | Narrate, no action | | EcoChem PJ, see TM-05, Rev. 2 | | Continuing Calibration (Prior to each 12 hr. shift) Sensitivity | S/N ratio for CS3 standard > 10 | NFG ⁽¹⁾
Method ⁽²⁾ | If <10, elevate Det. Limit or R(ND) | 5B | | | Continuing Calibration (Prior to each 12 hr. shift) Selectivity | Ion Abundance ratios within QC limits
(Table 8 of method 8290)
(Table 9 of method 1613B) | NFG ⁽¹⁾
Method ⁽²⁾ | For congener with ion ratio outlier, J(pos) natives in all samples associated with CCAL. No action for labeled congener ion ratio outliers. | 25 | EcoChem PJ, see TM-05 | | Continuing
Calibration
(Prior to each 12 hr.
shift) | %D+/-20% for native compounds
%D +/-30% for labeled compounds
(Must meet limits in Table 6, Method 1613B) If %D in the closing CCAL are within 25%/35%, the mean
RF from the two CCAL may be used to calculate samples
(Section 8.3.2.4 of 8290). | NFG ⁽¹⁾
Method ⁽²⁾ | Labeled compounds: Narrate, no action. Native compounds: 1613: J(pos)/UJ(ND)if %D is outside Table 6 limits J(pos)/R(ND) if %D is +/-75% of Table 6 limits 8290: J(pos)/UJ(ND) if %D = 20% - 75% J(pos)/R(ND) if %D > 75% | 5B (H,L) ³ | | | Stability | Absolute RT of ¹³ C ₁₂ -1234-TCDD and ¹³ C ₁₂ -123789-HxCDD should be ± 15 seconds of ICAL RRT for all other compounds must meet criteria listed in Table 2 Method 1316. | NFG ⁽¹⁾
Method ⁽²⁾ | Narrate, no action | 5B | EcoChem PJ, see TM-05 | | Blank Contamination | | | | | | | Method Blank (MB) | MB: One per matrix per batch of (of ≤ 20 samples) No detected compounds > RL | NFG ⁽¹⁾
Method ⁽²⁾ | U(pos) if result is < 5X action level. | 7 | Hierarchy of blank review:
#1 - Review MB, qualify as needed | | Field Blank (FB) | FB: frequency as per QAPP
No detected compounds > RL | Metriou | U(pos) if result is < 5X action level. | 6 | #2 - Review FB , qualify as needed | Table: HRMS-DXN Revision No.: 4 Last Rev. Date: 12/21/14 Page: 3 of 4 ### Dioxin/Furan Analysis by HRMS (Based on Dioxin NFG 2011 and Methods EPA 1613B and SW-846 8290) | QC Element | Acceptance Criteria | Source of Criteria | Action for Non-Conformance | Reason
Code | Discussion and Comments | | | | | |---|--|--|---|-----------------------|---|--|---|--|---| | Precision and Accura | су | | | Code | | | | | | | MS/MSD
(recovery) | (recovery) per batch (of ≤ 20 samples) | | J(pos) if both %R > UCL - high bias $J(pos)/UJ(ND) \text{ if both } \%R < LCL - low bias}$ EcoChem standard policy $J(pos)/R(ND) \text{ if both } \%R < 10\% - \text{very low bias}$ $J(pos)/UJ(ND) \text{ if one > UCL } \& \text{ one < LCL, with no bias}$ | | J(pos)/UJ(ND) if both %R < LCL - low bias $J(pos)/R(ND)$ if both %R < 10% - very low bias | | $J(pos)/UJ(ND) \ if \ both \ \%R < LCL - low \ bias$ EcoChem standard policy $J(pos)/R(ND) \ if \ both \ \%R < 10\% - very \ low \ bias$ 8 (H | | No action if only one spike %R is outside criteria.
No action if parent concentration is >4x
the amount spiked. | | | Use most current laboratory control limits | | PJ if only one %R outlier | | Qualify parent sample only unless other QC indicates systematic problems. | | | | | | MS/MSD
(RPD) | MS/MSD not typically required for HRMS analyses. If lab analyzes MS/MSD then one set per matrix per batch (of ≤ 20 samples) Use most current laboratory control limits | EcoChem standard policy | J(pos) in parent sample if RPD > CL | 9 | Qualify parent sample only. | | | | | | LCS
(or OPR) | One per lab batch (of ≤ 20 samples) Use most current laboratory control limits or | NFG ⁽¹⁾
Method ⁽²⁾ | J(pos) if %R > UCL - high bias J(pos)/UJ(ND) if %R < LCL - low bias J(pos)/R(ND) if %R < 10% - very low bias | 10 (H,L) ³ | No action if only one spike %R is outside criteria, when LCSD is analyzed. | | | | | | | Limits from Table 6 of 1613B | | | | Qualify all associated samples. | | | | | | LCS/LCSD
(RPD) | LCSD not typically required for HRMS analyses. One set per matrix and batch of 20 samples RPD < 35% | Method ⁽²⁾
Ecochem standard policy | J(pos) assoc. compound in all samples if RPD > CL | 9 | Qualify all associated samples. | | | | | | Lab Duplicate
(RPD) | Lab Dup not typically required for HRMS analyses. One per
lab batch (of ≤ 20 samples) Use most current laboratory control limits | EcoChem standard policy | J(pos)/UJ(ND) if RPD > CL | 9 | | | | | | | Labeled Compounds
(Internal Standards) | Added to all samples
%R = 40% - 135% in all samples 8290
%R must meet limits in Table 7 Method 1613B | NFG ⁽¹⁾
Method ⁽²⁾ | J(pos) if $\Re R > UCL$ - high bias J(pos)/UJ(ND) if $\Re R < LCL$ - low bias J(pos)/R(ND) if $\Re R < 10\%$ - very low bias | 13 (H,L) ³ | | | | | | | Field Duplicates | Solids: RPD <50% OR difference < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR difference < 1X RL (for results < 5X RL) | EcoChem standard policy | Narrate and qualify if required by project | 9 | Use professional judgment | | | | | Table: HRMS-DXN Revision No.: 4 Last Rev. Date: 12/21/14 Page: 4 of 4 #### Dioxin/Furan Analysis by HRMS (Based on Dioxin NFG 2011 and Methods EPA 1613B and SW-846 8290) | QC Element | Acceptance Criteria | Source of Criteria | Action for Non-Conformance | | Discussion and Comments | | | |--|--|---|---|----|--|--|--| | Compound ID and Ca | lculation | | | | | | | | Quantitation/
Identification | All ions for each isomer must maximize within ± 2 seconds. S/N ratio >2.5 Ion ratios must meet criteria listed in Table 8 Method 8290, or Table 9 of 1613B; RRTs w/in limits in Table 2 of 1613B | NFG ⁽¹⁾
Method ⁽²⁾ | Narrate in report; qualify if necessary NJ(pos) for retention time outliers. 25 U(pos) for ion ratio outliers. | | EcoChem PJ, see TM-05 | | | | EMPC
(estimated maximum
possible
concentration) | If quantitation identification criteria are not met, laboratory should report an EMPC value. | NFG ⁽¹⁾
Method ⁽²⁾ | If laboratory correctly reported an EMPC value, qualify the native compound U(pos) to indicate that the value is a detection limit and qualify total homolog groups J (pos) | 25 | Use professional judgment See TM-18 | | | | Interferences | Interferences from chlorodiphenyl ether compounds | NFG ⁽¹⁾
Method ⁽²⁾ | J(pos)/UJ(ND) if present | 23 | See TM-16 | | | | interierences | Lock masses must not deviate ± 20% from values in Table 8 of 1613B | Method ⁽²⁾ | J(pos)/UJ(ND) if present | 24 | See TM-17 | | | | Second Column
Confirmation | All 2,3,7,8-TCDF hits must be confirmed on a DB-225
(or equiv) column. All QC criteria must also be met
for the confirmation analysis. | NFG ⁽¹⁾
Method ⁽²⁾ | Report the DB-225 value.
If not performed use PJ. | 3 | DNR-11 DB5 result if both results from both columns are reported. EcoChem PJ, see TM-05 | | | | Calculation Check | Check 10% of field & QC sample results | EcoChem standard policy | Contact laboratory for resolution and/or corrective action | na | Full data validation only. | | | | Electronic Data Deliv | Electronic Data Deliverable (EDD) | | | | | | | | Verification of EDD to
hardcopy data | EcoChem verify @ 10% unless problems noted; then increase level up to 100% for next several packages. | | Depending on scope of problem, correct at EcoChem (minor issues) to resubmittal by laboratory (major issues). | na | EcoChem Project Manager and/or Database Administrator will work with lab to provide long-term corrective action. | | | | Dilutions, Re-
extractions and/or
Reanalyses | Report only one result per analyte | Standard reporting policy | Use "DNR" to flag results that will not be reported. | 11 | | | | (pos) - positive (detected) results; (ND) - not detected results ¹ National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) & Chlorinated Dibenzofurans (CDFs) Data Review, September 2011 ² Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by High-Resolution Gas Chromatography/High-Resolution Mass Spectrometry (HRGC/HRMS), USEPA SW-846, Method 8290 ² EPA Method 1613, Rev.B, Tetra-through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGS/HRMS, October 1994 ³ NFG 2013 suggests using "+ / -" to indicate bias; EcoChem has chosen "H" = high bias indicated; "L" = low bias indicated. ### **APPENDIX B** ### **QUALIFIED DATA SUMMARY TABLE** # Qualified Data Summary Table Lora Lake - Annual Lakeside GW Monitoring 2022 | | | | | | | | 5.7 | 5.7 | |--------------------|------------|----------|---------------------|--------|-------|----------|------------|------------| | SAMPLE ID | LAB ID | METHOD | ANALYTE | RESULT | UNITS | LAB QUAL | DV
QUAL | DV
CODE | | MW-CP1-032322 | 22C0456-01 | EPA1613B | OCDD | 17.3 | pg/L | J,B | U | 7 | | MW-CP1-032322-D | 22C0456-02 | EPA1613B | 1,2,3,4,6,7,8-HpCDD | 3.19 | pg/L | NUJ,J | U | 25 | | MW-CP1-032322-D | 22C0456-02 | EPA1613B | 1,2,3,4,7,8-HxCDD | 1.44 | pg/L | NUJ,J | U | 25 | | MW-CP1-032322-D | 22C0456-02 | EPA1613B | 1,2,3,4,7,8-HxCDF | 1.85 | pg/L | NUJ,J | U | 25 | | MW-CP1-032322-D | 22C0456-02 | EPA1613B | 1,2,3,7,8-PeCDF | 1.60 | pg/L | NUJ,J | U | 25 | | MW-CP1-032322-D | 22C0456-02 | EPA1613B | 2,3,4,6,7,8-HxCDF | 0.99 | pg/L | NUJ,J | U | 25 | | MW-CP1-032322-D | 22C0456-02 | EPA1613B | OCDD | 15.7 | pg/L | J,B | U | 7 | | MW-CP3-032322 | 22C0456-04 | EPA1613B | 1,2,3,7,8,9-HxCDD | 1.24 | pg/L | NUJ,J | U | 25 | | MW-CP4-032322 | 22C0456-05 | EPA1613B | OCDD | 5.33 | pg/L | NUJ,J,B | U | 25 | | MW-CP5-032322 | 22C0456-06 | EPA1613B | OCDD | 4.65 | pg/L | J,B | U | 7 | | MW-CP6-032322 | 22C0456-07 | EPA1613B | OCDD | 34.6 | pg/L | J,B | U | 7 | | MW-CP7-032322 | 22C0456-08 | EPA1613B | 1,2,3,7,8-PeCDF | 1.15 | pg/L | NUJ,J | U | 25 | | MW-CP7-032322 | 22C0456-08 | EPA1613B | OCDD | 3.28 | pg/L | NUJ,J,B | U | 25 | | MW-VB3-032322 | 22C0456-09 | EPA1613B | 1,2,3,4,6,7,8-HpCDD | 3.18 | pg/L | NUJ,J | U | 25 | | MW-VB3-032322 | 22C0456-09 | EPA1613B | 1,2,3,4,6,7,8-HpCDF | 2.17 | pg/L | NUJ,J | U | 25 | | MW-VB3-032322 | 22C0456-09 | EPA1613B | OCDD | 23.9 | pg/L | J,B | U | 7 | | HCOO-B312-032322 | 22C0456-10 | EPA1613B | 1,2,3,6,7,8-HxCDF | 0.97 | pg/L | NUJ,J | U | 25 | | HCOO-B312-032322 | 22C0456-10 | EPA1613B | 2,3,4,7,8-PeCDF | 1.70 | pg/L | NUJ,J | U | 25 | | HCOO-B312-032322 | 22C0456-10 | EPA1613B | OCDD | 23.3 | pg/L | NUJ,J,B | U | 25 | | MW-C1-VB1-032422 | 22C0456-11 | EPA1613B | OCDD | 3.18 | pg/L | NUJ,J,B | U | 25 | | MW-C1-VB1-032422-D | 22C0456-12 | EPA1613B | 1,2,3,4,6,7,8-HpCDD | 2.91 | pg/L | NUJ,J | U | 25 | | MW-C1-VB1-032422-D | 22C0456-12 | EPA1613B | 2,3,4,7,8-PeCDF | 0.88 | pg/L | NUJ,J | U | 25 | | MW-C1-VB1-032422-D | 22C0456-12 | EPA1613B | OCDD | 5.59 | pg/L | NUJ,J,B | U | 25 | | MW-VB2-032422 | 22C0456-15 | EPA1613B | OCDD | 8.71 | pg/L | J,B | U | 7 | 15 April 2022 Amanda McKay Floyd - Snider 601 Union Street Two Union Square, Suite 600 Seattle, WA 98101-2341 RE: Lora Lake 2021-2023 sec II. 5.3.21 Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above. Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer. Should you have any questions or problems, please feel free to contact us at your convenience. <u>Associated Work Order(s)</u> <u>Associated SDG ID(s)</u> 22C0456 N/A ---- I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclosed Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature. Analytical Resources, LLC The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Kelly Bottem, Client Services Manager ### Chain of Custody Record & Laboratory Analysis Request | ARI Assigned Number: 2200456 | Turn-around | Requested: | | , | Page: | ı | of | 2 | | | | al Resources, LLC | |--------------------------------|---------------------------------|------------|--------|-----------------------------|--------------------|-------------------|----------------|-----------------------------|-------|-----|-----------------------------|---| | ARI Client Company: Floyd) | nider | Phone: | 10-29 | 2-2078 | Date: | 312312 | lce
Prese | | | | 4611 So | al Chemists and Consultants
uth 134th Place, Suite 100
WA 98168 | | Client Contact: Amenda M | | 20 | | x 5075 | No. of
Coolers: | 1010 | Coole
Temps | 4.650 | 25319 | | | -6200 206-695-6201 (fax) | | Client Project Name: POS - L L | | | | | | | | Analysis F | | | | Notes/Comments | | Client Project #: | Samplers: | rum per | \$T.S. | wit | ied | Mans | | | | | | As sample to
be lab fitered | | Sample ID | Date | Time | Matrix | No. Containers | Dissolved | DIOXING
Furans | | | | | | | | MW-CPI-032322 | 3/23/20 | 1426 | gw | 3 | X | X | | | | | | | | MW-CP1-032322-D | 3123/22 | 1436 | gw | 3 | × | + | | | | | | | | MW-CP2-032322 | 3/23/22 | 13:26 | gw | 3 | Χ | X | | | | | | | |
MW-CP3-032322 | 3/23/22 | 13:25 | go | 3 | X | X | | | | | | | | MW-CP4-032322 | 3/23/22 | | gw | 3 | X | X | | | | | | | | * | 3/23/22 | | gw | 3 | X | X | | | | | | | | MW-CP6-032322 | 3/23/22 | 11:15 | gw | 3 | X | X | | | | | | | | MW-CP7-032322 | 3/23/22 | | an | 3 | X | X | | | | | | | | MW-VB3-032322 | 3/23/22 | 9:36 | gn) | 3 | X | X | | | | | | | | HCOD-B312-63+222 | 3/23/22 | | 200 | 3 | × | X | | | | | | | | Comments/Special Instructions | Relinquished by:
(Signature) | Z Z | BA | Received by:
(Signature) | 220 | 71 | | Relinquished
(Signature) | by: | | Received by:
(Signature) | | | - | Printed Name: | Scott | Ma I/ | Printed Name: | 1 | mila | 12e | Printed Name | 9: | 2=H | Printed Name | a; | | | Company: Floy Date & Time: | | Job | Company: | 1 | | | Company: | | | Company: | | | | Date & Time: | 72 1 | 3:37 | Date & Time: | 4/22 | j | 337 | Date & Time: | | | Date & Time: | | Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract. ### Chain of Custody Record & Laboratory Analysis Request | ARI Assigned Number:
22C045 C | Turn-around Requested: | | | | | 2 | of | 2 | 2 | | | Analytical Resources, LLC Analytical Chemists and Consultants | | | |----------------------------------|---------------------------------|--------|----------|-----------------------------|--------------------|---------|-----------------|-----------------------------|-----------|----|-------------------------|---|--|--| | ARI Client Company: Flyd Sni | der | Phone: | 1-292- | 2078 | Date: | 3124/22 | lce
Prese | nt? | | | 4611 Sc | outh 134th Place, Suite 100
, WA 98168 | | | | Client Contact: Amanda Mc | | | | | No. of
Coolers: | | Cooler
Temps | 4.600 | 25:19 | | 206-69 | 5-6200 206-695-6201 (fax) | | | | Client Project Name: Po5-LL P | | | | | | | | Analysis F | Requested | | | Notes/Comments | | | | Client Project #: | Camplero: | Junper | \$ T. S. | coit | Dissolved | Guran | | | | | | Dissince As he be lab Ritered | | | | Sample ID | Date | Time | Matrix | No. Containers | Disseh | PioxIN/ | | | | | | W 10- | | | | MW-C1-VB1-052482 | 3124122 | 12:33 | gn | 3 | × | * | | | | | | | | | | MW-C1-VB1-032422-0 | 1 | 12:37 | gn | 3 | X | X | | | | | | | | | | Muria-032422 | | 11:34 | ggw | 1 | X | | | | | | | | | | | MW-13-032422 | | 11:33 | on | i | X | | | | | | | | | | | MW-VB2-032422 | √ | 10.30 | gn | 3 | × | × | | | | | | | | | | | | | V | , | Comments/Special Instructions | Relinquished by:
(Signature) | 7. 5 | But | Received by:
(Signature) | 16 | | c '~ | Relinquished
(Signature) | l by: | 36 | Received by (Signature) | c. | | | | | Printed Name: | Scott | | Printed Name: | tri | Comin | rich! | Printed Nam | e: | | Printed Nan | ne: | | | | | Company:
Floyd | Snide | / | Company: | 3- | 7 | | Company: | | | Company: | | | | | | Date & Time: | 22 1 | 3:37 | Date & Time: | 1/22 | 133 | 7 | Date & Time | | | Date & Time | Y. | | | Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract. ### **Cooler Receipt Form** | ARI Client: Floggel | Snider | Project Name: | 5-114 | | | |-------------------------------------|--|---------------------------------------|-------------------|-----------|-----| | COC No(s): Assigned ARI Job No: 27 | A+A | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 2 | | | Assigned API Joh No. 27 | COUCLA | Delivered by: Fed-Ex UPS Cou | | | | | Preliminary Examination Phase | | Tracking No: | | - (| ENA | | | | | | | | | | d dated custody seals attached to t | | YE | S | NO | | | with the cooler? | | (YE | S | NO | | Were custody papers properly fi | illed out (ink, signed, etc.) | | YE YE | s | NO | | f 2 2 | recommended 2.0-6.0 °C for chem | istry) | 10 | | | | Time/33 7 | | 4.6/ (4.5) | 1.4 | | | | If cooler temperature is out of co | ompliance fill out form 00070F | | Jemp Gun ID#: | 7565 | | | Cooler Accepted by: | PL | _Date: 3/24/22 Tim | e:1337 | | | | | Complete custody forms an | d attach all shipping documents | | | | | Log-In Phase: | THE STATE OF S | | | | | | Was a temperature blank inclu | ded in the cooler? | | | | | | | | p Wet Ice Gel Packs Baggies Foam | Dia di Dan an Oil | YES | (NO | | | ropriate)? | | | 200 | - | | | stic bags? | | NA | YES | NO | | | ondition (unbroken)? | | Individually | Grouped | Not | | | | | | YES | NO | | | | | | YES | NO | | | | er of containers received? | | YES | NO | | | | | | YES | NO | | | r the requested an alyses? | | | YES | NO | | | | servation sheet, excluding VOCs) | NA | YES | NO | | | ubbles? | | (NA) | YES | NO | | | ele sent in each bottle? | | 5 | (YES) | NO | | Date VOC Trip Blank was mad | eat ARI | | (NA) | 02-200 | | | Were the sample(s) split by ARI? | NA YES Date/Time: | Equipment: | | Split by: | | | Mit | 1 Danha 2256hi | 77. | | | | | Samples Logged by: | Date: UNIV | Time:L | abels checked by: | | | | | ** Notify Project Manager o | f discrepancies or concerns ** | | | | | | | | | | | | Sample ID on Bottle | Sample ID on COC | Sample ID on Bottle | Sample | ID on COC | Additional Notes, Discrepand | ies, & Resolutions: | B | | | | | | | By: D | ate: | | | | | Printed: 3/26/2022 2:12:41PM ### WORK ORDER | 202002002000000000000000000000000000000 | | |---|--| | 22C0456 | | | 4400400 | | Samples will be discarded 90 days after submission of a final report unless other instructions are received. Client: Floyd - Snider Project Manager: Kelly Bottem Project: Lora Lake 2021-2023 sec II. 5.3.21 Project Number: Lora Lake 2021-2023 sec II. 5.3.21 ### **Preservation Confirmation** | Container ID | Container Type | pН | | |--------------|--------------------------|------------|--| | 22C0456-01 A | HDPE NM, 500 mL | 72 AM | | | 22C0456-01 B | Glass NM, Amber, 1000 mL | (M) | | | 22C0456-01 C | Glass NM, Amber, 1000 mL | 100 | | | 22C0456-02 A | HDPE NM, 500 mL | Sa fail
| | | 22C0456-02 B | Glass NM, Amber, 1000 mL | 16011 | | | 22C0456-02 C | Glass NM, Amber, 1000 mL | 19 | | | 22C0456-03 A | HDPE NM, 500 mL | 22 full | | | 22C0456-03 B | Glass NM, Amber, 1000 mL | 10 1011 | | | 22C0456-03 C | Glass NM, Amber, 1000 mL | | | | 22C0456-04 A | HDPE NM, 500 mL | > 2 fail | | | 22C0456-04 B | Glass NM, Amber, 1000 mL | 2 V 1011 | | | 22C0456-04 C | Glass NM, Amber, 1000 mL | | | | 22C0456-05 A | HDPE NM, 500 mL | >2 fail | | | 22C0456-05 B | Glass NM, Amber, 1000 mL | 12 1411 | | | 22C0456-05 C | Glass NM, Amber, 1000 mL | | | | 22C0456-06 A | HDPE NM, 500 mL | > 2 fail | | | 22C0456-06 B | Glass NM, Amber, 1000 mL | , 0 1011 | | | 22C0456-06 C | Glass NM, Amber, 1000 mL | | | | 22C0456-07 A | HDPE NM, 500 mL | > 2 FMI | | | 22C0456-07 B | Glass NM, Amber, 1000 mL | 12 10011 | | | 22C0456-07 C | Glass NM, Amber, 1000 mL | | | | 22C0456-08 A | HDPE NM, 500 mL | > 2 fail | | | 22C0456-08 B | Glass NM, Amber, 1000 mL | Z L I WII | | | 22C0456-08 C | Glass NM, Amber, 1000 mL | | | | 22C0456-09 A | HDPE NM, 500 mL | >7 Full | | | 22C0456-09 B | Glass NM, Amber, 1000 mL | - Z C T MI | | | 22C0456-09 C | Glass NM, Amber, 1000 mL | | | | 22C0456-10 A | HDPE NM, 500 mL | 72 full | | | 22C0456-10 B | Glass NM, Amber, 1000 mL | | | | 22C0456-10 C | Glass NM, Amber, 1000 mL | | | | 22C0456-11 A | HDPE NM, 500 mL | 72 fm | | | 22C0456-11 B | Glass NM, Amber, 1000 mL | 7 7 7 1 | | | 22C0456-11 C | Glass NM, Amber, 1000 mL | | | | 22C0456-12 A | HDPE NM, 500 mL | 72 full | | Reviewed By Date Printed: 3/26/2022 2:12:41PM ### WORK ORDER | | | _ | |------|---------|---| | 201 | *** *** | | | 111 | 10456 | | | 1.1. | 114 10 | | | Client: Floyd - S | nider | rission of a final report unless other instructions are received. Project Manager: Kelly Bottem | |-----------------------|-----------------------------|--| | Project: Lora Lal | se 2021-2023 sec II. 5.3.21 | Project Number: Lora Lake 2021-2023 sec II. 5.3.21 | | 22C0456-12 B | Glass NM, Amber, 1000 mL | | | 22C0456-12 C | Glass NM, Amber, 1000 mL | ~ | | 22C0456-13 A | HDPE NM, 500 mL | 72 891 | | 22C0456-14 A | HDPE NM, 500 mL | 77. 401 | | 22C0456-15 A | HDPE NM, 500 mL | 77- [61] | | 22C0456-15 B | Glass NM, Amber, 1000 mL | TAL | | 22C0456-15 C | Glass NM, Amber, 1000 mL | | | Preservation Confirme | d By | 03/21e/2022 | Reviewed By Date Printed: 3/26/2022 2:12:41PM ### WORK ORDER | 2200155 | | |---------|--| | 22C0456 | | | 4400400 | | Samples will be discarded 90 days after submission of a final report unless other instructions are received. Client: Floyd - Snider Project Manager: Kelly Bottem Project: Lora Lake 2021-2023 sec II. 5.3.21 Project Number: Lora Lake 2021-2023 sec II. 5.3.21 ### Preservation Confirmation | Container ID | Container Type | servation Con | pH | | |--------------|--------------------------|--|--------|--| | 22C0456-01 A | HDPE NM, 500 mL | 79.72 | • | (6) | | 22C0456-01 B | Glass NM, Amber, 1000 mL | | (FULL) | (1) | | 22C0456-01 C | Glass NM, Amber, 1000 mL | | | | | 22C0456-02 A | HDPE NM, 500 mL | 52 | fail | fi | | 22C0456-02 B | Glass NM, Amber, 1000 mL | 1 | 1001 | - V | | 22C0456-02 C | Glass NM, Amber, 1000 mL | | | | | 22C0456-03 A | HDPE NM, 500 mL | 77. | fail | | | 22C0456-03 B | Glass NM, Amber, 1000 mL | , , | INIT | <u> </u> | | 22C0456-03 C | Glass NM, Amber, 1000 mL | | | - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 | | 22C0456-04 A | HDPE NM, 500 mL | 37- | [701] | | | 22C0456-04 B | Glass NM, Amber, 1000 mL | | 1001 | | | 22C0456-04 C | Glass NM, Amber, 1000 mL | and the same of th | | | | 22C0456-05 A | HDPE NM, 500 mL | >2 | Pail | | | 22C0456-05 B | Glass NM, Amber, 1000 mL | | 1 1011 | <u> </u> | | 22C0456-05 C | Glass NM, Amber, 1000 mL | | | | | 22C0456-06 A | HDPE NM, 500 mL | >2 1 | Fait | | | 22C0456-06 B | Glass NM, Amber, 1000 mL | | DU I | - U | | 22C0456-06 C | Glass NM, Amber, 1000 mL | | | | | 22C0456-07 A | HDPE NM, 500 mL | 77 A | wil | | | 22C0456-07 B | Glass NM, Amber, 1000 mL | | 2011 | | | 22C0456-07 C | Glass NM, Amber, 1000 mL | | | | | 22C0456-08 A | HDPE NM, 500 mL | 57 F | art | | | 22C0456-08 B | Glass NM, Amber, 1000 mL | | 0011 | U | | 22C0456-08 C | Glass NM, Amber, 1000 mL | | | | | 22C0456-09 A | HDPE NM, 500 mL | >7 0 | -uil | | | 22C0456-09 B | Glass NM, Amber, 1000 mL | 767 | 1011 | | | 22C0456-09 C | Glass NM, Amber, 1000 mL | | | | | 22C0456-10 A | HDPE NM, 500 mL | 77- F | all | | | 22C0456-10 B | Glass NM, Amber, 1000 mL | 7 | VU.V | <u>U</u> | | 22C0456-10 C | Glass NM, Amber, 1000 mL | | | A STATE OF THE STA | | 22C0456-11 A | HDPE NM, 500 mL | 72 f | 11. | | | 22C0456-11 B | Glass NM, Amber, 1000 mL | | AA ! | | | 22C0456-11 C | Glass NM, Amber, 1000 mL | - making and the same | | | | 22C0456-12 A | HDPE NM, 500 mL | 77. E | wil | | Reviewed By Date ### WORK ORDER 22C0456 | Client: Floyd - Snider | | Project Manager: Kelly Bottem | |------------------------|-----------------------------|---| | | te 2021-2023 sec II. 5.3.21 | Project Number: Lora Lake 2021-2023 sec II. 5.3.21 | | 22C0456-12 B | Glass NM, Amber, 1000 mL | | | 22C0456-12 C | Glass NM, Amber, 1000 mL | × . | | 22C0456-13 A | HDPE NM, 500 mL | 72 2011 (1) | | 22C0456-14 A | HDPE NM, 500 mL | 72 (2) | | 22C0456-15 A | HDPE NM, 500 mL | 72 fail | | 22C0456-15 B | Glass NM, Amber, 1000 mL | TAN | | 22C0456-15 C | Glass NM, Amber, 1000 mL | | | Preservation Comprehe | d By | 03/710/2022 (1) filters 050,4 | | | | and preserved to py
with 0.75 Mc Corc. 14
(k2722) Mm 3/28/2 | Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 601 Union Street Two Union Square, Suite 600 Project Number: Lora Lake 2021-2023 sec II. 5.3.21 Seattle, WA 98101-2341 Project Manager: Amanda McKay 04/15/2022 10:57 Reported: ###
ANALYTICAL REPORT FOR SAMPLES | Laboratory ID | Sample ID | Matrix | Date Sampled | Date Received | |---------------|--------------------|--------|----------------|----------------| | 22C0456-01 | MW-CP1-032322 | Water | 03/23/22 14:26 | 03/24/22 13:35 | | 22C0456-02 | MW-CP1-032322-D | Water | 03/23/22 14:36 | 03/24/22 13:35 | | 22C0456-03 | MW-CP2-032322 | Water | 03/23/22 13:26 | 03/24/22 13:35 | | 22C0456-04 | MW-CP3-032322 | Water | 03/23/22 13:25 | 03/24/22 13:35 | | 22C0456-05 | MW-CP4-032322 | Water | 03/23/22 12:06 | 03/24/22 13:35 | | 22C0456-06 | MW-CP5-032322 | Water | 03/23/22 12:25 | 03/24/22 13:35 | | 22C0456-07 | MW-CP6-032322 | Water | 03/23/22 11:15 | 03/24/22 13:35 | | 22C0456-08 | MW-CP7-032322 | Water | 03/23/22 11:06 | 03/24/22 13:35 | | 22C0456-09 | MW-VB3-032322 | Water | 03/23/22 09:36 | 03/24/22 13:35 | | 22C0456-10 | HCOO-B312-032322 | Water | 03/23/22 15:00 | 03/24/22 13:35 | | 22C0456-11 | MW-C1-VB1-032422 | Water | 03/24/22 12:33 | 03/24/22 13:35 | | 22C0456-12 | MW-C1-VB1-032422-D | Water | 03/24/22 12:37 | 03/24/22 13:35 | | 22C0456-13 | MW-C2-032422 | Water | 03/24/22 11:36 | 03/24/22 13:35 | | 22C0456-14 | MW-C3-032422 | Water | 03/24/22 11:33 | 03/24/22 13:35 | | 22C0456-15 | MW-C1-VB2-032422 | Water | 03/24/22 10:30 | 03/24/22 13:35 | Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Project Number: Lora Lake 2021-2023 sec II. 5.3.21 601 Union Street Two Union Square, Suite 600 Seattle WA, 98101-2341 Reported: Project Manager: Amanda McKay 15-Apr-2022 10:57 ### **Case Narrative** ### Dioxin/Furans - EPA Method 1613 The sample(s) were extracted and analyzed within the recommended holding times. Analysis was performed using an application specific column developed by Restek. The RTX-Dloxin2 column has unique isomer separation for the 2378-TCDF, eliminating the need for confirmation analysis. Initial and continuing calibrations were within method requirements. Labeled internal standard areas were within limits. The cleanup surrogate percent recoveries were within control limits. The method blank(s) contained OCDD. Associated samples that contain OCDD have been flagged with a "B" qualifer. The OPR (Ongoing Precision and Recovery) standard percent recoveries were within control limits. ### **Dissolved Metals - EPA Method 6020B** The sample(s) were digested and analyzed within the recommended holding times. Initial and continuing calibrations were within method requirements. The method blank(s) were clean at the reporting limits. The blank spike (BS/LCS) percent recoveries were within control limits. The matrix spike (MS) percent recoveries and the duplicate (DUP) relative percent difference (RPD) were within advisory control limits. ### **QUALIFIERS AND NOTES** | Qualifier | Definition | |-----------|------------| | | | U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD). J Estimated concentration value detected below the reporting limit. EMPC Estimated Maximum Possible Concentration qualifier for HRGCMS Dioxin D The reported value is from a dilution B This analyte was detected in the method blank. DET Analyte DETECTED ND Analyte NOT DETECTED at or above the reporting limit NR Not Reported dry Sample results reported on a dry weight basis RPD Relative Percent Difference ### Form 1 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: <u>Floyd - Snider</u> Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Water Laboratory ID: 22C0456-01 B File ID: 22040807 Sampled: 03/23/22 14:26 Prepared: 04/02/22 06:55 Analyzed: 04/08/22 16:04 % Solids: N/A Preparation: EPA 1613 Initial/Final: 1060 mL / 20 uL Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Batch: BKC0836 Instrument: AUTOSPEC01 Column: RTX-Dioxin2 | CAS NO. | COMPOUND | DF/Split | Ion Ratio | Ratio Limits | EDL | RL | Result | Units | Q | |------------|---------------------|----------|-----------|--------------|------|------|--------|-------|------| | 51207-31-9 | 2,3,7,8-TCDF | 1 | | 0.655-0.886 | 1.11 | 9.43 | ND | pg/L | U | | 1746-01-6 | 2,3,7,8-TCDD | 1 | | 0.655-0.886 | 1.38 | 9.43 | ND | pg/L | U | | 57117-41-6 | 1,2,3,7,8-PeCDF | 1 | | 1.318-1.783 | 1.08 | 9.43 | ND | pg/L | U | | 57117-31-4 | 2,3,4,7,8-PeCDF | 1 | | 1.318-1.783 | 1.01 | 9.43 | ND | pg/L | U | | 40321-76-4 | 1,2,3,7,8-PeCDD | 1 | | 1.318-1.783 | 1.60 | 9.43 | ND | pg/L | U | | 70648-26-9 | 1,2,3,4,7,8-HxCDF | 1 | | 1.054-1.426 | 1.30 | 9.43 | ND | pg/L | U | | 57117-44-9 | 1,2,3,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.35 | 9.43 | ND | pg/L | U | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.33 | 9.43 | ND | pg/L | U | | 72918-21-9 | 1,2,3,7,8,9-HxCDF | 1 | | 1.054-1.426 | 1.60 | 9.43 | ND | pg/L | U | | 39227-28-6 | 1,2,3,4,7,8-HxCDD | 1 | | 1.054-1.426 | 1.74 | 9.43 | ND | pg/L | U | | 57653-85-7 | 1,2,3,6,7,8-HxCDD | 1 | | 1.054-1.426 | 1.65 | 9.43 | ND | pg/L | U | | 19408-74-3 | 1,2,3,7,8,9-HxCDD | 1 | | 1.054-1.426 | 1.83 | 9.43 | ND | pg/L | U | | 67562-39-4 | 1,2,3,4,6,7,8-HpCDF | 1 | | 0.893-1.208 | 1.18 | 18.9 | ND | pg/L | U | | 55673-89-7 | 1,2,3,4,7,8,9-HpCDF | 1 | | 0.893-1.208 | 1.72 | 9.43 | ND | pg/L | U | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDD | 1 | 1.002 | 0.893-1.208 | 1.49 | 9.43 | 1.79 | pg/L | J | | 39001-02-0 | OCDF | 1 | | 0.757-1.024 | 2.71 | 18.9 | ND | pg/L | U | | 3268-87-9 | OCDD | 1 | 0.786 | 0.757-1.024 | 3.36 | 47.2 | 17.3 | pg/L | J, B | Homologue Groups | 55722-27-5 | Total TCDF | 1 | 0.000 | | 9.43 | ND | pg/L | |------------|-------------|---|-------|--|------|------|------| | 41903-57-5 | Total TCDD | 1 | 0.000 | | 9.43 | ND | pg/L | | 30402-15-4 | Total PeCDF | 1 | 0.000 | | 9.43 | ND | pg/L | | 36088-22-9 | Total PeCDD | 1 | 0.000 | | 9.43 | ND | pg/L | | 55684-94-1 | Total HxCDF | 1 | 0.000 | | 9.43 | ND | pg/L | | 34465-46-8 | Total HxCDD | 1 | 0.000 | | 9.43 | ND | pg/L | | 38998-75-3 | Total HpCDF | 1 | 0.000 | | 9.43 | ND | pg/L | | 37871-00-4 | Total HpCDD | 1 | 0.000 | | 9.43 | 1.79 | pg/L | Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.023 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.29 RTX-Dioxin2 BKC0836 Batch: ### Form 2 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.2 AUTOSPEC01 Column: Matrix: Water Laboratory ID: 22C0456-01 File ID: 22040807 Sampled: <u>03/23/22 14:26</u> Prepared: <u>04/02/22 06:55</u> Analyzed: <u>04/08/22 16:04</u> Solids Wt%: N/A Preparation: EPA 1613 Initial/Final: 1060 mL / 20 uL Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Instrument: | Labels | DF/Split | Ion Ratio | Ratio Limits | EDL | % REC | QC LIMITS | Q | |---------------------------|----------|-----------|--------------|------|-------|------------|---| | 13C12-2,3,7,8-TCDF | | 0.791 | 0.655-0.886 | 2.74 | 94.7 | 24 - 169 % | | | 13C12-2,3,7,8-TCDD | | 0.793 | 0.655-0.886 | 2.48 | 108 | 25 - 164 % | | | 13C12-1,2,3,7,8-PeCDF | | 1.553 | 1.318-1.783 | 2.32 | 96.5 | 24 - 185 % | | | 13C12-2,3,4,7,8-PeCDF | | 1.582 | 1.318-1.783 | 2.45 | 97.7 | 21 - 178 % | | | 13C12-1,2,3,7,8-PeCDD | | 1.609 | 1.318-1.783 | 2.22 | 99.7 | 25 - 181 % | | | 13C12-1,2,3,4,7,8-HxCDF | | 0.506 | 0.434-0.587 | 2.44 | 96.1 | 26 - 152 % | | | 13C12-1,2,3,6,7,8-HxCDF | | 0.513 | 0.434-0.587 | 2.29 | 97.7 | 26 - 123 % | | | 13C12-2,3,4,6,7,8-HxCDF | | 0.528 | 0.434-0.587 | 2.62 | 97.6 | 28 - 136 % | | | 13C12-1,2,3,7,8,9-HxCDF | | 0.491 | 0.434-0.587 | 3.04 | 104 | 29 - 147 % | | | 13C12-1,2,3,4,7,8-HxCDD | | 1.255 | 1.054-1.426 | 3.14 | 97.4 | 32 - 141 % | | | 13C12-1,2,3,6,7,8-HxCDD | | 1.198 | 1.054-1.426 | 2.87 | 97.9 | 28 - 130 % | | | 13C12-1,2,3,4,6,7,8-HpCDF | | 0.442 | 0.374-0.506 | 3.14 | 93.1 | 28 - 143 % | | | 13C12-1,2,3,4,7,8,9-HpCDF | | 0.462 | 0.374-0.506 | 4.07 | 93.0 | 26 - 138 % | | | 13C12-1,2,3,4,6,7,8-HpCDD | | 1.093 | 0.893-1.208 | 3.91 | 99.5 | 23 - 140 % | | | 13C12-OCDD | | 0.869 | 0.757-1.024 | 5.11 | 104 | 17 - 157 % | | | 37C14-2,3,7,8-TCDD | | 328.000 | | 0.94 | 104 | 35 - 197 % | | ^{*} Values outside of QC limits ### Form 1 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: <u>Floyd - Snider</u> Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Water Laboratory ID: 22C0456-02 B File ID: 22040808 Sampled: 03/23/22 14:36 Prepared: 04/02/22 06:55 Analyzed: 04/08/22 16:52 % Solids: N/A Preparation: EPA 1613 Initial/Final: 1040 mL / 20 uL Result Basis: <u>Wet</u> Sequence: <u>SKD0114</u> Calibration: <u>FC00062</u> Batch: <u>BKC0836</u> Instrument: <u>AUTOSPEC01</u> Column: <u>RTX-Dioxin2</u> | CAS NO. | COMPOUND | DF/Split | Ion Ratio | Ratio Limits | EDL | RL | Result | Units | Q | |------------|---------------------|----------|-----------|--------------|------|------|--------|-------|---------| | 51207-31-9 | 2,3,7,8-TCDF | 1 | | 0.655-0.886 | 0.78 | 9.62 | ND | pg/L | U | | 1746-01-6 | 2,3,7,8-TCDD | 1 | | 0.655-0.886 | 1.19 | 9.62 | ND | pg/L | U | | 57117-41-6 | 1,2,3,7,8-PeCDF | 1 | 2.303 | 1.318-1.783 | 0.80 | 9.62 | 1.60 | pg/L | EMPC, J | | 57117-31-4 | 2,3,4,7,8-PeCDF | 1 | | 1.318-1.783 | 0.75 | 9.62 | ND | pg/L | U | | 40321-76-4 | 1,2,3,7,8-PeCDD | 1 | | 1.318-1.783 | 1.43 | 9.62 | ND | pg/L | U | | 70648-26-9 | 1,2,3,4,7,8-HxCDF | 1 | 0.957 | 1.054-1.426 | 0.89 | 9.62 | 1.85 | pg/L | EMPC, J | | 57117-44-9 | 1,2,3,6,7,8-HxCDF | 1 | 1.322 | 1.054-1.426 | 0.88 | 9.62 | 1.83 | pg/L | J | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 1 | 1.630 | 1.054-1.426 | 0.87 | 9.62 | 0.99 | pg/L | EMPC, J | | 72918-21-9 | 1,2,3,7,8,9-HxCDF | 1 | | 1.054-1.426 | 1.15 | 9.62 | ND | pg/L | U | | 39227-28-6 | 1,2,3,4,7,8-HxCDD | 1 | 1.697 | 1.054-1.426 | 1.30 | 9.62 | 1.44 | pg/L | EMPC, J | | 57653-85-7 | 1,2,3,6,7,8-HxCDD | 1 | | 1.054-1.426 | 1.23 | 9.62 | ND |
pg/L | U | | 19408-74-3 | 1,2,3,7,8,9-HxCDD | 1 | | 1.054-1.426 | 1.36 | 9.62 | ND | pg/L | U | | 67562-39-4 | 1,2,3,4,6,7,8-HpCDF | 1 | | 0.893-1.208 | 0.90 | 19.2 | ND | pg/L | U | | 55673-89-7 | 1,2,3,4,7,8,9-HpCDF | 1 | | 0.893-1.208 | 1.20 | 9.62 | ND | pg/L | U | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDD | 1 | 0.512 | 0.893-1.208 | 1.23 | 9.62 | 3.19 | pg/L | EMPC, J | | 39001-02-0 | OCDF | 1 | | 0.757-1.024 | 1.70 | 19.2 | ND | pg/L | U | | 3268-87-9 | OCDD | 1 | 0.788 | 0.757-1.024 | 2.33 | 48.1 | 15.7 | pg/L | J, B | Homologue Groups | 55722-27-5 | Total TCDF | 1 | 0.000 | | 9.62 | ND | pg/L | |------------|-------------|---|-------|--|------|------|------| | 41903-57-5 | Total TCDD | 1 | 0.000 | | 9.62 | ND | pg/L | | 30402-15-4 | Total PeCDF | 1 | 0.000 | | 9.62 | ND | pg/L | | 36088-22-9 | Total PeCDD | 1 | 0.000 | | 9.62 | ND | pg/L | | 55684-94-1 | Total HxCDF | 1 | 0.000 | | 9.62 | 1.83 | pg/L | | 34465-46-8 | Total HxCDD | 1 | 0.000 | | 9.62 | ND | pg/L | | 38998-75-3 | Total HpCDF | 1 | 0.000 | | 9.62 | ND | pg/L | | 37871-00-4 | Total HpCDD | 1 | 0.000 | | 9.62 | ND | pg/L | Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.696 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.35 RTX-Dioxin2 BKC0836 Batch: ### Form 2 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.2 AUTOSPEC01 Column: Matrix: Water Laboratory ID: 22C0456-02 File ID: 22040808 Sampled: <u>03/23/22 14:36</u> Prepared: <u>04/02/22 06:55</u> Analyzed: <u>04/08/22 16:52</u> Solids Wt%: $\underline{\text{N/A}}$ Preparation: $\underline{\text{EPA 1613}}$ Initial/Final: $\underline{\text{1040 mL}/\text{20 uL}}$ Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Instrument: | Labels | DF/Split | Ion Ratio | Ratio Limits | EDL | % REC | QC LIMITS | Q | |---------------------------|----------|-----------|--------------|------|-------|------------|---| | 13C12-2,3,7,8-TCDF | | 0.785 | 0.655-0.886 | 2.01 | 95.7 | 24 - 169 % | | | 13C12-2,3,7,8-TCDD | | 0.759 | 0.655-0.886 | 2.00 | 109 | 25 - 164 % | | | 13C12-1,2,3,7,8-PeCDF | | 1.572 | 1.318-1.783 | 3.18 | 96.9 | 24 - 185 % | | | 13C12-2,3,4,7,8-PeCDF | | 1.547 | 1.318-1.783 | 3.35 | 97.2 | 21 - 178 % | | | 13C12-1,2,3,7,8-PeCDD | | 1.604 | 1.318-1.783 | 1.73 | 98.9 | 25 - 181 % | | | 13C12-1,2,3,4,7,8-HxCDF | | 0.499 | 0.434-0.587 | 2.68 | 95.4 | 26 - 152 % | | | 13C12-1,2,3,6,7,8-HxCDF | | 0.512 | 0.434-0.587 | 2.51 | 94.2 | 26 - 123 % | | | 13C12-2,3,4,6,7,8-HxCDF | | 0.511 | 0.434-0.587 | 2.87 | 98.0 | 28 - 136 % | | | 13C12-1,2,3,7,8,9-HxCDF | | 0.517 | 0.434-0.587 | 3.34 | 101 | 29 - 147 % | | | 13C12-1,2,3,4,7,8-HxCDD | | 1.251 | 1.054-1.426 | 3.35 | 94.6 | 32 - 141 % | | | 13C12-1,2,3,6,7,8-HxCDD | | 1.227 | 1.054-1.426 | 3.06 | 95.3 | 28 - 130 % | | | 13C12-1,2,3,4,6,7,8-HpCDF | | 0.442 | 0.374-0.506 | 2.72 | 92.2 | 28 - 143 % | | | 13C12-1,2,3,4,7,8,9-HpCDF | | 0.452 | 0.374-0.506 | 3.52 | 97.9 | 26 - 138 % | | | 13C12-1,2,3,4,6,7,8-HpCDD | | 1.086 | 0.893-1.208 | 3.34 | 101 | 23 - 140 % | | | 13C12-OCDD | | 0.927 | 0.757-1.024 | 5.44 | 111 | 17 - 157 % | | | 37C14-2,3,7,8-TCDD | | 328.000 | | 1.14 | 106 | 35 - 197 % | | ^{*} Values outside of QC limits MW-CP2-032322 ### ORGANIC ANALYSIS DATA SHEET ### EPA 1613B Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: <u>Floyd - Snider</u> Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Water Laboratory ID: 22C0456-03 B File ID: 22040809 Sampled: 03/23/22 13:26 Prepared: 04/02/22 06:55 Analyzed: 04/08/22 17:40 % Solids: N/A Preparation: EPA 1613 Initial/Final: 1060 mL / 20 uL Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Batch: <u>BKC0836</u> Instrument: <u>AUTOSPEC01</u> Column: <u>RTX-Dioxin2</u> | CAS NO. | COMPOUND | DF/Split | Ion Ratio | Ratio Limits | EDL | RL | Result | Units | Q | |------------|---------------------|----------|-----------|--------------|------|------|--------|-------|---| | 51207-31-9 | 2,3,7,8-TCDF | 1 | | 0.655-0.886 | 0.94 | 9.43 | ND | pg/L | U | | 1746-01-6 | 2,3,7,8-TCDD | 1 | | 0.655-0.886 | 1.44 | 9.43 | ND | pg/L | U | | 57117-41-6 | 1,2,3,7,8-PeCDF | 1 | | 1.318-1.783 | 1.14 | 9.43 | ND | pg/L | U | | 57117-31-4 | 2,3,4,7,8-PeCDF | 1 | | 1.318-1.783 | 1.04 | 9.43 | ND | pg/L | U | | 40321-76-4 | 1,2,3,7,8-PeCDD | 1 | | 1.318-1.783 | 1.93 | 9.43 | ND | pg/L | U | | 70648-26-9 | 1,2,3,4,7,8-HxCDF | 1 | | 1.054-1.426 | 1.36 | 9.43 | ND | pg/L | U | | 57117-44-9 | 1,2,3,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.39 | 9.43 | ND | pg/L | U | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.39 | 9.43 | ND | pg/L | U | | 72918-21-9 | 1,2,3,7,8,9-HxCDF | 1 | | 1.054-1.426 | 1.66 | 9.43 | ND | pg/L | U | | 39227-28-6 | 1,2,3,4,7,8-HxCDD | 1 | | 1.054-1.426 | 1.69 | 9.43 | ND | pg/L | U | | 57653-85-7 | 1,2,3,6,7,8-HxCDD | 1 | | 1.054-1.426 | 1.65 | 9.43 | ND | pg/L | U | | 19408-74-3 | 1,2,3,7,8,9-HxCDD | 1 | | 1.054-1.426 | 1.80 | 9.43 | ND | pg/L | U | | 67562-39-4 | 1,2,3,4,6,7,8-HpCDF | 1 | | 0.893-1.208 | 1.15 | 18.9 | ND | pg/L | U | | 55673-89-7 | 1,2,3,4,7,8,9-HpCDF | 1 | | 0.893-1.208 | 1.59 | 9.43 | ND | pg/L | U | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDD | 1 | | 0.893-1.208 | 1.64 | 9.43 | ND | pg/L | U | | 39001-02-0 | OCDF | 1 | | 0.757-1.024 | 2.86 | 18.9 | ND | pg/L | U | | 3268-87-9 | OCDD | 1 | | 0.757-1.024 | 3.60 | 47.2 | ND | pg/L | U | Homologue Groups | 55722-27-5 | Total TCDF | 1 | 0.000 | | 9.43 | ND | pg/L | |------------|-------------|---|-------|--|------|----|------| | 41903-57-5 | Total TCDD | 1 | 0.000 | | 9.43 | ND | pg/L | | 30402-15-4 | Total PeCDF | 1 | 0.000 | | 9.43 | ND | pg/L | | 36088-22-9 | Total PeCDD | 1 | 0.000 | | 9.43 | ND | pg/L | | 55684-94-1 | Total HxCDF | 1 | 0.000 | | 9.43 | ND | pg/L | | 34465-46-8 | Total HxCDD | 1 | 0.000 | | 9.43 | ND | pg/L | | 38998-75-3 | Total HpCDF | 1 | 0.000 | | 9.43 | ND | pg/L | | 37871-00-4 | Total HpCDD | 1 | 0.000 | | 9.43 | ND | pg/L | Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.000 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.47 RTX-Dioxin2 BKC0836 Batch: ### Form 2 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.2 AUTOSPEC01 Column: Matrix: Water Laboratory ID: 22C0456-03 File ID: 22040809 Sampled: <u>03/23/22 13:26</u> Prepared: <u>04/02/22 06:55</u> Analyzed: <u>04/08/22 17:40</u> Solids Wt%: $\underline{\text{N/A}}$ Preparation: $\underline{\text{EPA 1613}}$ Initial/Final: $\underline{\text{1060 mL}/\text{20 uL}}$ Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Instrument: | Labels | DF/Split | Ion Ratio | Ratio Limits | EDL | % REC | QC LIMITS | Q | |---------------------------|----------|-----------|--------------|------|-------|------------|---| | 13C12-2,3,7,8-TCDF | | 0.796 | 0.655-0.886 | 2.49 | 101 | 24 - 169 % | | | 13C12-2,3,7,8-TCDD | | 0.777 | 0.655-0.886 | 2.46 | 107 | 25 - 164 % | | | 13C12-1,2,3,7,8-PeCDF | | 1.609 | 1.318-1.783 | 3.92 | 104 | 24 - 185 % | | | 13C12-2,3,4,7,8-PeCDF | | 1.560 | 1.318-1.783 | 4.14 | 104 | 21 - 178 % | | | 13C12-1,2,3,7,8-PeCDD | | 1.616 | 1.318-1.783 | 2.75 | 99.2 | 25 - 181 % | | | 13C12-1,2,3,4,7,8-HxCDF | | 0.516 | 0.434-0.587 | 3.78 | 101 | 26 - 152 % | | | 13C12-1,2,3,6,7,8-HxCDF | | 0.517 | 0.434-0.587 | 3.54 | 100 | 26 - 123 % | | | 13C12-2,3,4,6,7,8-HxCDF | | 0.506 | 0.434-0.587 | 4.04 | 101 | 28 - 136 % | | | 13C12-1,2,3,7,8,9-HxCDF | | 0.486 | 0.434-0.587 | 4.70 | 109 | 29 - 147 % | | | 13C12-1,2,3,4,7,8-HxCDD | | 1.272 | 1.054-1.426 | 3.15 | 95.7 | 32 - 141 % | | | 13C12-1,2,3,6,7,8-HxCDD | | 1.228 | 1.054-1.426 | 2.88 | 96.1 | 28 - 130 % | | | 13C12-1,2,3,4,6,7,8-HpCDF | | 0.458 | 0.374-0.506 | 4.60 | 113 | 28 - 143 % | | | 13C12-1,2,3,4,7,8,9-HpCDF | | 0.449 | 0.374-0.506 | 5.96 | 115 | 26 - 138 % | | | 13C12-1,2,3,4,6,7,8-HpCDD | | 1.096 | 0.893-1.208 | 4.19 | 116 | 23 - 140 % | | | 13C12-OCDD | | 0.915 | 0.757-1.024 | 6.92 | 124 | 17 - 157 % | | | 37C14-2,3,7,8-TCDD | | 328.000 | | 1.09 | 105 | 35 - 197 % | | ^{*} Values outside of QC limits ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: <u>Floyd - Snider</u> Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Water Laboratory ID: 22C0456-04 B File ID: 22040810 Sampled: 03/23/22 13:25 Prepared: 04/02/22 06:55 Analyzed: 04/08/22 18:28 % Solids: N/A Preparation: EPA 1613 Initial/Final: 970 mL / 20 uL Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Batch: <u>BKC0836</u> Instrument: <u>AUTOSPEC01</u> Column: <u>RTX-Dioxin2</u> | CAS NO. | COMPOUND | DF/Split | Ion Ratio | Ratio Limits | EDL | RL | Result | Units | Q | |------------|---------------------|----------|-----------|--------------|------|------|--------|-------|---------| | 51207-31-9 | 2,3,7,8-TCDF | 1 | | 0.655-0.886 | 0.95 | 10.3 | ND | pg/L | U | | 1746-01-6 | 2,3,7,8-TCDD | 1 | | 0.655-0.886 | 1.31 | 10.3 | ND | pg/L | U | | 57117-41-6 | 1,2,3,7,8-PeCDF | 1 | | 1.318-1.783 | 1.02 | 10.3 | ND | pg/L | U | | 57117-31-4 | 2,3,4,7,8-PeCDF | 1 | | 1.318-1.783 | 0.96 | 10.3 | ND | pg/L | U | | 40321-76-4 | 1,2,3,7,8-PeCDD | 1 | | 1.318-1.783 | 1.53 | 10.3 | ND | pg/L | U | | 70648-26-9 | 1,2,3,4,7,8-HxCDF | 1 | | 1.054-1.426 | 1.31 | 10.3 | ND | pg/L | U | | 57117-44-9 | 1,2,3,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.30 | 10.3 | ND | pg/L | U | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.33 | 10.3 | ND | pg/L | U | | 72918-21-9 | 1,2,3,7,8,9-HxCDF | 1 | | 1.054-1.426 | 1.69 | 10.3 | ND | pg/L | U | | 39227-28-6 | 1,2,3,4,7,8-HxCDD | 1 | | 1.054-1.426 | 1.75 | 10.3 | ND | pg/L | U | | 57653-85-7 | 1,2,3,6,7,8-HxCDD | 1 | | 1.054-1.426 | 1.67 | 10.3 | ND | pg/L | U | | 19408-74-3 | 1,2,3,7,8,9-HxCDD | 1 | 0.873 |
1.054-1.426 | 1.84 | 10.3 | 1.24 | pg/L | EMPC, J | | 67562-39-4 | 1,2,3,4,6,7,8-HpCDF | 1 | | 0.893-1.208 | 1.25 | 20.6 | ND | pg/L | U | | 55673-89-7 | 1,2,3,4,7,8,9-HpCDF | 1 | | 0.893-1.208 | 1.71 | 10.3 | ND | pg/L | U | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDD | 1 | | 0.893-1.208 | 1.78 | 10.3 | ND | pg/L | U | | 39001-02-0 | OCDF | 1 | | 0.757-1.024 | 2.66 | 20.6 | ND | pg/L | U | | 3268-87-9 | OCDD | 1 | | 0.757-1.024 | 3.54 | 51.5 | ND | pg/L | U | Homologue Groups | 55722-27-5 | Total TCDF | 1 | 0.000 | | 10.3 | ND | pg/L | |------------|-------------|---|-------|--|------|------|------| | 41903-57-5 | Total TCDD | 1 | 0.000 | | 10.3 | ND | pg/L | | 30402-15-4 | Total PeCDF | 1 | 0.000 | | 10.3 | ND | pg/L | | 36088-22-9 | Total PeCDD | 1 | 0.000 | | 10.3 | ND | pg/L | | 55684-94-1 | Total HxCDF | 1 | 0.000 | | 10.3 | 1.25 | pg/L | | 34465-46-8 | Total HxCDD | 1 | 0.000 | | 10.3 | ND | pg/L | | 38998-75-3 | Total HpCDF | 1 | 0.000 | | 10.3 | ND | pg/L | | 37871-00-4 | Total HpCDD | 1 | 0.000 | | 10.3 | ND | pg/L | Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.124 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.23 RTX-Dioxin2 Column: BKC0836 Batch: ### Form 2 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.2 AUTOSPEC01 Matrix: <u>Water</u> Laboratory ID: <u>22C0456-04</u> File ID: <u>22040810</u> Sampled: 03/23/22 13:25 Prepared: 04/02/22 06:55 Analyzed: 04/08/22 18:28 Solids Wt%: N/A Preparation: EPA 1613 Initial/Final: 970 mL / 20 uL Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Instrument: | Labels | DF/Split | Ion Ratio | Ratio Limits | EDL | % REC | QC LIMITS | Q | |---------------------------|----------|-----------|--------------|------|-------|------------|---| | 13C12-2,3,7,8-TCDF | | 0.796 | 0.655-0.886 | 2.28 | 90.8 | 24 - 169 % | | | 13C12-2,3,7,8-TCDD | | 0.764 | 0.655-0.886 | 2.15 | 103 | 25 - 164 % | | | 13C12-1,2,3,7,8-PeCDF | | 1.579 | 1.318-1.783 | 3.09 | 93.4 | 24 - 185 % | | | 13C12-2,3,4,7,8-PeCDF | | 1.584 | 1.318-1.783 | 3.26 | 90.1 | 21 - 178 % | | | 13C12-1,2,3,7,8-PeCDD | | 1.594 | 1.318-1.783 | 2.24 | 91.4 | 25 - 181 % | | | 13C12-1,2,3,4,7,8-HxCDF | | 0.501 | 0.434-0.587 | 3.52 | 91.9 | 26 - 152 % | | | 13C12-1,2,3,6,7,8-HxCDF | | 0.510 | 0.434-0.587 | 3.30 | 93.9 | 26 - 123 % | | | 13C12-2,3,4,6,7,8-HxCDF | | 0.515 | 0.434-0.587 | 3.76 | 91.8 | 28 - 136 % | | | 13C12-1,2,3,7,8,9-HxCDF | | 0.510 | 0.434-0.587 | 4.38 | 94.9 | 29 - 147 % | | | 13C12-1,2,3,4,7,8-HxCDD | | 1.265 | 1.054-1.426 | 2.85 | 92.0 | 32 - 141 % | | | 13C12-1,2,3,6,7,8-HxCDD | | 1.212 | 1.054-1.426 | 2.61 | 93.6 | 28 - 130 % | | | 13C12-1,2,3,4,6,7,8-HpCDF | | 0.449 | 0.374-0.506 | 3.84 | 86.9 | 28 - 143 % | | | 13C12-1,2,3,4,7,8,9-HpCDF | | 0.443 | 0.374-0.506 | 4.97 | 89.6 | 26 - 138 % | | | 13C12-1,2,3,4,6,7,8-HpCDD | | 0.995 | 0.893-1.208 | 3.59 | 95.6 | 23 - 140 % | | | 13C12-OCDD | | 0.892 | 0.757-1.024 | 5.56 | 94.5 | 17 - 157 % | | | 37C14-2,3,7,8-TCDD | | 328.000 | | 1.07 | 99.2 | 35 - 197 % | | ^{*} Values outside of QC limits ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: <u>Floyd - Snider</u> Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Water Laboratory ID: 22C0456-05 B File ID: 22040811 Sampled: 03/23/22 12:06 Prepared: 04/02/22 06:55 Analyzed: 04/08/22 19:16 % Solids: $\underline{\text{N/A}}$ Preparation: $\underline{\text{EPA 1613}}$ Initial/Final: $\underline{\text{1055 mL}/\text{20 uL}}$ Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Batch: <u>BKC0836</u> Instrument: <u>AUTOSPEC01</u> Column: <u>RTX-Dioxin2</u> | CAS NO. | COMPOUND | DF/Split | Ion Ratio | Ratio Limits | EDL | RL | Result | Units | Q | |------------|---------------------|----------|-----------|--------------|------|------|--------|-------|------------| | 51207-31-9 | 2,3,7,8-TCDF | 1 | | 0.655-0.886 | 0.89 | 9.48 | ND | pg/L | U | | 1746-01-6 | 2,3,7,8-TCDD | 1 | | 0.655-0.886 | 1.22 | 9.48 | ND | pg/L | U | | 57117-41-6 | 1,2,3,7,8-PeCDF | 1 | | 1.318-1.783 | 1.20 | 9.48 | ND | pg/L | U | | 57117-31-4 | 2,3,4,7,8-PeCDF | 1 | | 1.318-1.783 | 1.12 | 9.48 | ND | pg/L | U | | 40321-76-4 | 1,2,3,7,8-PeCDD | 1 | | 1.318-1.783 | 1.31 | 9.48 | ND | pg/L | U | | 70648-26-9 | 1,2,3,4,7,8-HxCDF | 1 | | 1.054-1.426 | 1.06 | 9.48 | ND | pg/L | U | | 57117-44-9 | 1,2,3,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.07 | 9.48 | ND | pg/L | U | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.06 | 9.48 | ND | pg/L | U | | 72918-21-9 | 1,2,3,7,8,9-HxCDF | 1 | | 1.054-1.426 | 1.33 | 9.48 | ND | pg/L | U | | 39227-28-6 | 1,2,3,4,7,8-HxCDD | 1 | | 1.054-1.426 | 1.53 | 9.48 | ND | pg/L | U | | 57653-85-7 | 1,2,3,6,7,8-HxCDD | 1 | | 1.054-1.426 | 1.54 | 9.48 | ND | pg/L | U | | 19408-74-3 | 1,2,3,7,8,9-HxCDD | 1 | | 1.054-1.426 | 1.66 | 9.48 | ND | pg/L | U | | 67562-39-4 | 1,2,3,4,6,7,8-HpCDF | 1 | | 0.893-1.208 | 1.06 | 19.0 | ND | pg/L | U | | 55673-89-7 | 1,2,3,4,7,8,9-HpCDF | 1 | | 0.893-1.208 | 1.58 | 9.48 | ND | pg/L | U | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDD | 1 | | 0.893-1.208 | 1.47 | 9.48 | ND | pg/L | U | | 39001-02-0 | OCDF | 1 | | 0.757-1.024 | 2.10 | 19.0 | ND | pg/L | U | | 3268-87-9 | OCDD | 1 | 1.297 | 0.757-1.024 | 1.85 | 47.4 | 5.33 | pg/L | EMPC, J, B | Homologue Groups | 55722-27-5 | Total TCDF | 1 | 0.000 | | 9.48 | ND | pg/L | |------------|-------------|---|-------|--|------|------|------| | 41903-57-5 | Total TCDD | 1 | 0.000 | | 9.48 | ND | pg/L | | 30402-15-4 | Total PeCDF | 1 | 0.000 | | 9.48 | ND | pg/L | | 36088-22-9 | Total PeCDD | 1 | 0.000 | | 9.48 | ND | pg/L | | 55684-94-1 | Total HxCDF | 1 | 0.000 | | 9.48 | ND | pg/L | | 34465-46-8 | Total HxCDD | 1 | 0.000 | | 9.48 | 2.34 | pg/L | | 38998-75-3 | Total HpCDF | 1 | 0.000 | | 9.48 | ND | pg/L | | 37871-00-4 | Total HpCDD | 1 | 0.000 | | 9.48 | ND | pg/L | Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.002 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 1.98 RTX-Dioxin2 BKC0836 ### Form 2 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.2 AUTOSPEC01 Column: Matrix: Water Laboratory ID: 22C0456-05 File ID: 22040811 Sampled: <u>03/23/22 12:06</u> Prepared: <u>04/02/22 06:55</u> Analyzed: <u>04/08/22 19:16</u> Solids Wt%: N/A Preparation: EPA 1613 Initial/Final: 1055 mL / 20 uL Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Instrument: **EDL** % REC Labels DF/Split Ion Ratio Ratio Limits QC LIMITS Q 13C12-2,3,7,8-TCDF 0.770 0.655-0.886 1.77 89.3 24 - 169 % 0.785 13C12-2,3,7,8-TCDD 0.655-0.886 2.03 101 25 - 164 % 13C12-1,2,3,7,8-PeCDF 1.610 1.318-1.783 2.51 91.1 24 - 185 % 1.575 1.318-1.783 90.6 21 - 178 % 13C12-2,3,4,7,8-PeCDF 2.65 1.664 1.318-1.783 2.09 93.5 25 - 181 % 13C12-1,2,3,7,8-PeCDD 0.504 91.4 0.434-0.587 3.05 26 - 152 % 13C12-1,2,3,4,7,8-HxCDF 0.507 0.434-0.587 2.86 90.1 26 - 123 % 13C12-1,2,3,6,7,8-HxCDF 13C12-2,3,4,6,7,8-HxCDF 0.500 0.434-0.587 3.26 92.0 28 - 136 % 13C12-1,2,3,7,8,9-HxCDF 0.502 0.434-0.587 3.80 94.1 29 - 147 % 1.293 2.30 88.9 32 - 141 % 13C12-1,2,3,4,7,8-HxCDD 1.054-1.426 13C12-1,2,3,6,7,8-HxCDD 1.250 1.054-1.426 2.11 90.0 28 - 130 % 0.463 0.374-0.506 2.81 87.8 28 - 143 % 13C12-1,2,3,4,6,7,8-HpCDF 13C12-1,2,3,4,7,8,9-HpCDF 0.459 26 - 138 % 0.374-0.506 3.64 88.9 13C12-1,2,3,4,6,7,8-HpCDD 1.046 0.893 - 1.2083.82 89.7 23 - 140 % 0.904 0.757-1.024 5.05 97.1 17 - 157 % 13C12-OCDD 37C14-2,3,7,8-TCDD 328.000 0.86 96.7 35 - 197 % Batch: ^{*} Values outside of QC limits ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: <u>Floyd - Snider</u> Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Water Laboratory ID: 22C0456-06 B File ID: 22040812 Sampled: 03/23/22 12:25 Prepared: 04/02/22 06:55 Analyzed: 04/08/22 20:04 % Solids: N/A Preparation: EPA 1613 Initial/Final: 1018 mL / 20 uL Result Basis: <u>Wet</u> Sequence: <u>SKD0114</u> Calibration: <u>FC00062</u> Batch: BKC0836 Instrument: AUTOSPEC01 Column: RTX-Dioxin2 | CAS NO. | COMPOUND | DF/Split | Ion Ratio | Ratio Limits | EDL | RL | Result | Units | Q | |------------|---------------------|----------|-----------|--------------|------|------|--------|-------|------| | 51207-31-9 | 2,3,7,8-TCDF | 1 | | 0.655-0.886 | 0.95 | 9.82 | ND | pg/L | U | | 1746-01-6 | 2,3,7,8-TCDD | 1 | | 0.655-0.886 | 1.38 | 9.82 | ND | pg/L | U | | 57117-41-6 | 1,2,3,7,8-PeCDF | 1 | | 1.318-1.783 | 1.09 | 9.82 | ND | pg/L | U | | 57117-31-4 | 2,3,4,7,8-PeCDF | 1 | | 1.318-1.783 | 1.07 | 9.82 | ND | pg/L | U | | 40321-76-4 | 1,2,3,7,8-PeCDD | 1 | | 1.318-1.783 | 1.66 | 9.82 | ND | pg/L | U | | 70648-26-9 | 1,2,3,4,7,8-HxCDF | 1 | | 1.054-1.426 | 1.10 | 9.82 | ND | pg/L | U | | 57117-44-9 | 1,2,3,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.07 | 9.82 | ND | pg/L | U | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.04 | 9.82 | ND | pg/L | U | | 72918-21-9 | 1,2,3,7,8,9-HxCDF | 1 | | 1.054-1.426 | 1.35 | 9.82 | ND | pg/L | U | | 39227-28-6 | 1,2,3,4,7,8-HxCDD | 1 | | 1.054-1.426 | 1.55 | 9.82 | ND | pg/L | U | | 57653-85-7 | 1,2,3,6,7,8-HxCDD | 1 | | 1.054-1.426 | 1.44 | 9.82 | ND | pg/L | U | | 19408-74-3 | 1,2,3,7,8,9-HxCDD | 1 | | 1.054-1.426 | 1.61 | 9.82 | ND | pg/L | U | | 67562-39-4 | 1,2,3,4,6,7,8-HpCDF | 1 | | 0.893-1.208 | 1.25 | 19.6 | ND | pg/L | U | | 55673-89-7 | 1,2,3,4,7,8,9-HpCDF | 1 | | 0.893-1.208 | 1.68 | 9.82 | ND | pg/L | U | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDD | 1 | | 0.893-1.208 | 1.74 | 9.82 | ND | pg/L | U | | 39001-02-0 | OCDF | 1 | | 0.757-1.024 | 2.40 | 19.6 | ND | pg/L | U | | 3268-87-9 | OCDD | 1 | 0.795 | 0.757-1.024 | 2.43 | 49.1 | 4.65 | pg/L | J, B | Homologue Groups | 55722-27-5 | Total TCDF | 1 |
0.000 | | 9.82 | ND | pg/L | |------------|-------------|---|-------|--|------|----|------| | 41903-57-5 | Total TCDD | 1 | 0.000 | | 9.82 | ND | pg/L | | 30402-15-4 | Total PeCDF | 1 | 0.000 | | 9.82 | ND | pg/L | | 36088-22-9 | Total PeCDD | 1 | 0.000 | | 9.82 | ND | pg/L | | 55684-94-1 | Total HxCDF | 1 | 0.000 | | 9.82 | ND | pg/L | | 34465-46-8 | Total HxCDD | 1 | 0.000 | | 9.82 | ND | pg/L | | 38998-75-3 | Total HpCDF | 1 | 0.000 | | 9.82 | ND | pg/L | | 37871-00-4 | Total HpCDD | 1 | 0.000 | | 9.82 | ND | pg/L | Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.001 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.23 Wet ### Form 2 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Lora Lake 2021-2023 sec II. 5.3.2 Client: Floyd - Snider Project: Calibration: FC00062 Laboratory ID: File ID: 22040812 Matrix: Water 22C0456-06 03/23/22 12:25 Prepared: 04/08/22 20:04 Sampled: 04/02/22 06:55 Analyzed: Solids Wt%: N/A Preparation: Initial/Final: $\underline{1018~mL\,/\,20~uL}$ EPA 1613 Sequence: SKD0114 BKC0836 AUTOSPEC01 Batch: Instrument: Column: RTX-Dioxin2 | Labels | DF/Split | Ion Ratio | Ratio Limits | EDL | % REC | QC LIMITS | Q | |---------------------------|----------|-----------|--------------|------|-------|------------|---| | 13C12-2,3,7,8-TCDF | | 0.785 | 0.655-0.886 | 1.96 | 88.3 | 24 - 169 % | | | 13C12-2,3,7,8-TCDD | | 0.759 | 0.655-0.886 | 2.46 | 99.3 | 25 - 164 % | | | 13C12-1,2,3,7,8-PeCDF | | 1.580 | 1.318-1.783 | 2.41 | 92.4 | 24 - 185 % | | | 13C12-2,3,4,7,8-PeCDF | | 1.559 | 1.318-1.783 | 2.54 | 90.8 | 21 - 178 % | | | 13C12-1,2,3,7,8-PeCDD | | 1.663 | 1.318-1.783 | 2.52 | 94.2 | 25 - 181 % | | | 13C12-1,2,3,4,7,8-HxCDF | | 0.501 | 0.434-0.587 | 3.20 | 89.4 | 26 - 152 % | | | 13C12-1,2,3,6,7,8-HxCDF | | 0.493 | 0.434-0.587 | 3.00 | 89.7 | 26 - 123 % | | | 13C12-2,3,4,6,7,8-HxCDF | | 0.507 | 0.434-0.587 | 3.42 | 92.0 | 28 - 136 % | | | 13C12-1,2,3,7,8,9-HxCDF | | 0.512 | 0.434-0.587 | 3.99 | 98.0 | 29 - 147 % | | | 13C12-1,2,3,4,7,8-HxCDD | | 1.244 | 1.054-1.426 | 3.17 | 92.0 | 32 - 141 % | | | 13C12-1,2,3,6,7,8-HxCDD | | 1.245 | 1.054-1.426 | 2.89 | 89.5 | 28 - 130 % | | | 13C12-1,2,3,4,6,7,8-HpCDF | | 0.459 | 0.374-0.506 | 3.73 | 88.4 | 28 - 143 % | | | 13C12-1,2,3,4,7,8,9-HpCDF | | 0.447 | 0.374-0.506 | 4.83 | 94.8 | 26 - 138 % | | | 13C12-1,2,3,4,6,7,8-HpCDD | | 1.071 | 0.893-1.208 | 3.75 | 94.3 | 23 - 140 % | | | 13C12-OCDD | | 0.909 | 0.757-1.024 | 5.75 | 99.2 | 17 - 157 % | | | 37C14-2,3,7,8-TCDD | | 328.000 | | 0.88 | 95.4 | 35 - 197 % | | ^{*} Values outside of QC limits Result Basis: ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: <u>Floyd - Snider</u> Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Water Laboratory ID: 22C0456-07 B File ID: 22040813 Sampled: 03/23/22 11:15 Prepared: 04/02/22 06:55 Analyzed: 04/08/22 20:52 % Solids: $\underline{\text{N/A}}$ Preparation: $\underline{\text{EPA 1613}}$ Initial/Final: $\underline{\text{1027 mL}/\text{20 uL}}$ Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Batch: BKC0836 Instrument: AUTOSPEC01 Column: RTX-Dioxin2 | CAS NO. | COMPOUND | DF/Split | Ion Ratio | Ratio Limits | EDL | RL | Result | Units | Q | |------------|---------------------|----------|-----------|--------------|------|------|--------|-------|------| | 51207-31-9 | 2,3,7,8-TCDF | 1 | | 0.655-0.886 | 0.97 | 9.74 | ND | pg/L | U | | 1746-01-6 | 2,3,7,8-TCDD | 1 | | 0.655-0.886 | 0.98 | 9.74 | ND | pg/L | U | | 57117-41-6 | 1,2,3,7,8-PeCDF | 1 | | 1.318-1.783 | 1.05 | 9.74 | ND | pg/L | U | | 57117-31-4 | 2,3,4,7,8-PeCDF | 1 | | 1.318-1.783 | 0.97 | 9.74 | ND | pg/L | U | | 40321-76-4 | 1,2,3,7,8-PeCDD | 1 | | 1.318-1.783 | 1.41 | 9.74 | ND | pg/L | U | | 70648-26-9 | 1,2,3,4,7,8-HxCDF | 1 | | 1.054-1.426 | 1.18 | 9.74 | ND | pg/L | U | | 57117-44-9 | 1,2,3,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.22 | 9.74 | ND | pg/L | U | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.20 | 9.74 | ND | pg/L | U | | 72918-21-9 | 1,2,3,7,8,9-HxCDF | 1 | | 1.054-1.426 | 1.55 | 9.74 | ND | pg/L | U | | 39227-28-6 | 1,2,3,4,7,8-HxCDD | 1 | | 1.054-1.426 | 1.50 | 9.74 | ND | pg/L | U | | 57653-85-7 | 1,2,3,6,7,8-HxCDD | 1 | | 1.054-1.426 | 1.44 | 9.74 | ND | pg/L | U | | 19408-74-3 | 1,2,3,7,8,9-HxCDD | 1 | | 1.054-1.426 | 1.59 | 9.74 | ND | pg/L | U | | 67562-39-4 | 1,2,3,4,6,7,8-HpCDF | 1 | | 0.893-1.208 | 1.12 | 19.5 | ND | pg/L | U | | 55673-89-7 | 1,2,3,4,7,8,9-HpCDF | 1 | | 0.893-1.208 | 1.63 | 9.74 | ND | pg/L | U | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDD | 1 | 1.067 | 0.893-1.208 | 1.46 | 9.74 | 2.46 | pg/L | J | | 39001-02-0 | OCDF | 1 | | 0.757-1.024 | 2.08 | 19.5 | ND | pg/L | U | | 3268-87-9 | OCDD | 1 | 0.839 | 0.757-1.024 | 2.26 | 48.7 | 34.6 | pg/L | J, B | Homologue Groups | 55722-27-5 | Total TCDF | 1 | 0.000 | | 9.74 | ND | pg/L | |------------|-------------|---|-------|--|------|------|------| | 41903-57-5 | Total TCDD | 1 | 0.000 | | 9.74 | ND | pg/L | | 30402-15-4 | Total PeCDF | 1 | 0.000 | | 9.74 | ND | pg/L | | 36088-22-9 | Total PeCDD | 1 | 0.000 | | 9.74 | 0.75 | pg/L | | 55684-94-1 | Total HxCDF | 1 | 0.000 | | 9.74 | ND | pg/L | | 34465-46-8 | Total HxCDD | 1 | 0.000 | | 9.74 | ND | pg/L | | 38998-75-3 | Total HpCDF | 1 | 0.000 | | 9.74 | ND | pg/L | | 37871-00-4 | Total HpCDD | 1 | 0.000 | | 9.74 | 2.46 | pg/L | Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.035 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 1.94 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Lora Lake 2021-2023 sec II. 5.3.2 Client: Floyd - Snider Project: Calibration: Laboratory ID: File ID: 22040813 Matrix: Water 22C0456-07 03/23/22 11:15 Prepared: Sampled: 04/02/22 06:55 Analyzed: 04/08/22 20:52 Solids Wt%: N/A Initial/Final: $\underline{1027~mL \ / \ 20~uL}$ Preparation: EPA 1613 Sequence: Wet SKD0114 FC00062 BKC0836 Instrument: AUTOSPEC01 Batch: Column: RTX-Dioxin2 | Labels | DF/Split | Ion Ratio | Ratio Limits | EDL | % REC | QC LIMITS | Q | |---------------------------|----------|-----------|--------------|------|-------|------------|---| | 13C12-2,3,7,8-TCDF | | 0.784 | 0.655-0.886 | 1.70 | 94.6 | 24 - 169 % | | | 13C12-2,3,7,8-TCDD | | 0.775 | 0.655-0.886 | 1.87 | 107 | 25 - 164 % | | | 13C12-1,2,3,7,8-PeCDF | | 1.548 | 1.318-1.783 | 2.71 | 94.2 | 24 - 185 % | | | 13C12-2,3,4,7,8-PeCDF | | 1.567 | 1.318-1.783 | 2.86 | 94.7 | 21 - 178 % | | | 13C12-1,2,3,7,8-PeCDD | | 1.586 | 1.318-1.783 | 2.07 | 97.4 | 25 - 181 % | | | 13C12-1,2,3,4,7,8-HxCDF | | 0.506 | 0.434-0.587 | 3.64 | 93.6 | 26 - 152 % | | | 13C12-1,2,3,6,7,8-HxCDF | | 0.517 | 0.434-0.587 | 3.41 | 92.9 | 26 - 123 % | | | 13C12-2,3,4,6,7,8-HxCDF | | 0.498 | 0.434-0.587 | 3.89 | 93.2 | 28 - 136 % | | | 13C12-1,2,3,7,8,9-HxCDF | | 0.507 | 0.434-0.587 | 4.53 | 96.8 | 29 - 147 % | | | 13C12-1,2,3,4,7,8-HxCDD | | 1.261 | 1.054-1.426 | 3.65 | 93.9 | 32 - 141 % | | | 13C12-1,2,3,6,7,8-HxCDD | | 1.242 | 1.054-1.426 | 3.34 | 90.1 | 28 - 130 % | | | 13C12-1,2,3,4,6,7,8-HpCDF | | 0.457 | 0.374-0.506 | 3.34 | 88.6 | 28 - 143 % | | | 13C12-1,2,3,4,7,8,9-HpCDF | | 0.468 | 0.374-0.506 | 4.33 | 92.3 | 26 - 138 % | | | 13C12-1,2,3,4,6,7,8-HpCDD | | 1.110 | 0.893-1.208 | 4.12 | 96.4 | 23 - 140 % | | | 13C12-OCDD | | 0.905 | 0.757-1.024 | 6.31 | 96.1 | 17 - 157 % | | | 37C14-2,3,7,8-TCDD | | 328.000 | | 0.86 | 103 | 35 - 197 % | | ^{*} Values outside of QC limits Result Basis: MW-CP7-032322 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS SDG: Laboratory: Analytical Resources, LLC 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 22040816 Matrix: Water Laboratory ID: 22C0456-08 B File ID: Sampled: 03/23/22 11:06 Prepared: 04/02/22 06:55 Analyzed: 04/08/22 23:23 % Solids: N/A Preparation: Initial/Final: 1053 mL / 20 uL EPA 1613 Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Column: Batch: BKC0836 Instrument: AUTOSPEC01 RTX-Dioxin2 | CAS NO. | COMPOUND | DF/Split | Ion Ratio | Ratio Limits | EDL | RL | Result | Units | Q | |------------|---------------------|----------|-----------|--------------|------|------|--------|-------|------------| | 51207-31-9 | 2,3,7,8-TCDF | 1 | | 0.655-0.886 | 0.79 | 9.50 | ND | pg/L | U | | 1746-01-6 | 2,3,7,8-TCDD | 1 | | 0.655-0.886 | 1.01 | 9.50 | ND | pg/L | U | | 57117-41-6 | 1,2,3,7,8-PeCDF | 1 | 1.900 | 1.318-1.783 | 0.94 | 9.50 | 1.15 | pg/L | EMPC, J | | 57117-31-4 | 2,3,4,7,8-PeCDF | 1 | | 1.318-1.783 | 0.91 | 9.50 | ND | pg/L | U | | 40321-76-4 | 1,2,3,7,8-PeCDD | 1 | | 1.318-1.783 | 1.29 | 9.50 | ND | pg/L | U | | 70648-26-9 | 1,2,3,4,7,8-HxCDF | 1 | | 1.054-1.426 | 0.94 | 9.50 | ND | pg/L | U | | 57117-44-9 | 1,2,3,6,7,8-HxCDF | 1 | | 1.054-1.426 | 0.96 | 9.50 | ND | pg/L | U | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 1 | | 1.054-1.426 | 0.96 | 9.50 | ND | pg/L | U | | 72918-21-9 | 1,2,3,7,8,9-HxCDF | 1 | | 1.054-1.426 | 1.27 | 9.50 | ND | pg/L | U | | 39227-28-6 | 1,2,3,4,7,8-HxCDD | 1 | | 1.054-1.426 | 0.94 | 9.50 | ND | pg/L | U | | 57653-85-7 | 1,2,3,6,7,8-HxCDD | 1 | | 1.054-1.426 | 0.89 | 9.50 | ND | pg/L | U | | 19408-74-3 | 1,2,3,7,8,9-HxCDD | 1 | | 1.054-1.426 | 0.98 | 9.50 | ND | pg/L | U | | 67562-39-4 | 1,2,3,4,6,7,8-HpCDF | 1 | | 0.893-1.208 | 0.76 | 19.0 | ND | pg/L | U | | 55673-89-7 | 1,2,3,4,7,8,9-HpCDF | 1 | | 0.893-1.208 | 1.11 | 9.50 | ND | pg/L | U | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDD | 1 | | 0.893-1.208 | 1.44 | 9.50 | ND | pg/L | U | | 39001-02-0 | OCDF | 1 | | 0.757-1.024 | 2.03 | 19.0 | ND | pg/L | U | | 3268-87-9 | OCDD | 1 | 0.662 | 0.757-1.024 | 1.95 | 47.5 | 3.28 | pg/L | EMPC, J, B | Homologue Groups | 55722-27-5 | Total TCDF | 1 | 0.000 | | 9.50 | ND | pg/L | |------------|-------------|---|-------|--|------|------|------| | 41903-57-5 | Total TCDD | 1 | 0.000 | |
9.50 | ND | pg/L | | 30402-15-4 | Total PeCDF | 1 | 0.000 | | 9.50 | 2.70 | pg/L | | 36088-22-9 | Total PeCDD | 1 | 0.000 | | 9.50 | ND | pg/L | | 55684-94-1 | Total HxCDF | 1 | 0.000 | | 9.50 | ND | pg/L | | 34465-46-8 | Total HxCDD | 1 | 0.000 | | 9.50 | 1.26 | pg/L | | 38998-75-3 | Total HpCDF | 1 | 0.000 | | 9.50 | ND | pg/L | | 37871-00-4 | Total HpCDD | 1 | 0.000 | | 9.50 | ND | pg/L | 0.035 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 1.73 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): RTX-Dioxin2 BKC0836 Batch: ### Form 2 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.2 AUTOSPEC01 Column: Matrix: Water Laboratory ID: 22C0456-08 File ID: 22040816 Sampled: <u>03/23/22 11:06</u> Prepared: <u>04/02/22 06:55</u> Analyzed: <u>04/08/22 23:23</u> Solids Wt%: N/A Preparation: EPA 1613 Initial/Final: 1053 mL / 20 uL Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Instrument: | Labels | DF/Split | Ion Ratio | Ratio Limits | EDL | % REC | QC LIMITS | Q | |---------------------------|----------|-----------|--------------|------|-------|------------|---| | 13C12-2,3,7,8-TCDF | | 0.794 | 0.655-0.886 | 1.51 | 94.2 | 24 - 169 % | | | 13C12-2,3,7,8-TCDD | | 0.758 | 0.655-0.886 | 2.11 | 105 | 25 - 164 % | | | 13C12-1,2,3,7,8-PeCDF | | 1.498 | 1.318-1.783 | 1.81 | 94.5 | 24 - 185 % | | | 13C12-2,3,4,7,8-PeCDF | | 1.603 | 1.318-1.783 | 1.91 | 95.4 | 21 - 178 % | | | 13C12-1,2,3,7,8-PeCDD | | 1.607 | 1.318-1.783 | 1.74 | 96.1 | 25 - 181 % | | | 13C12-1,2,3,4,7,8-HxCDF | | 0.507 | 0.434-0.587 | 2.42 | 94.1 | 26 - 152 % | | | 13C12-1,2,3,6,7,8-HxCDF | | 0.502 | 0.434-0.587 | 2.27 | 95.9 | 26 - 123 % | | | 13C12-2,3,4,6,7,8-HxCDF | | 0.496 | 0.434-0.587 | 2.59 | 94.4 | 28 - 136 % | | | 13C12-1,2,3,7,8,9-HxCDF | | 0.533 | 0.434-0.587 | 3.01 | 101 | 29 - 147 % | | | 13C12-1,2,3,4,7,8-HxCDD | | 1.249 | 1.054-1.426 | 3.43 | 94.4 | 32 - 141 % | | | 13C12-1,2,3,6,7,8-HxCDD | | 1.248 | 1.054-1.426 | 3.14 | 99.2 | 28 - 130 % | | | 13C12-1,2,3,4,6,7,8-HpCDF | | 0.440 | 0.374-0.506 | 3.14 | 96.9 | 28 - 143 % | | | 13C12-1,2,3,4,7,8,9-HpCDF | | 0.470 | 0.374-0.506 | 4.06 | 94.4 | 26 - 138 % | • | | 13C12-1,2,3,4,6,7,8-HpCDD | | 1.104 | 0.893-1.208 | 3.77 | 98.3 | 23 - 140 % | | | 13C12-OCDD | | 0.937 | 0.757-1.024 | 7.23 | 99.9 | 17 - 157 % | | | 37Cl4-2,3,7,8-TCDD | | 328.000 | | 0.79 | 99.9 | 35 - 197 % | | ^{*} Values outside of QC limits ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: <u>Floyd - Snider</u> Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Water Laboratory ID: 22C0456-09 B File ID: 22040817 Sampled: 03/23/22 09:36 Prepared: 04/02/22 06:55 Analyzed: 04/09/22 00:11 % Solids: N/A Preparation: EPA 1613 Initial/Final: 1030 mL / 20 uL Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Batch: BKC0836 Instrument: AUTOSPEC01 Column: RTX-Dioxin2 | CAS NO. | COMPOUND | DF/Split | Ion Ratio | Ratio Limits | EDL | RL | Result | Units | Q | |------------|---------------------|----------|-----------|--------------|------|------|--------|-------|---------| | 51207-31-9 | 2,3,7,8-TCDF | 1 | | 0.655-0.886 | 0.98 | 9.71 | ND | pg/L | U | | 1746-01-6 | 2,3,7,8-TCDD | 1 | | 0.655-0.886 | 1.09 | 9.71 | ND | pg/L | U | | 57117-41-6 | 1,2,3,7,8-PeCDF | 1 | | 1.318-1.783 | 1.04 | 9.71 | ND | pg/L | U | | 57117-31-4 | 2,3,4,7,8-PeCDF | 1 | | 1.318-1.783 | 1.03 | 9.71 | ND | pg/L | U | | 40321-76-4 | 1,2,3,7,8-PeCDD | 1 | | 1.318-1.783 | 1.72 | 9.71 | ND | pg/L | U | | 70648-26-9 | 1,2,3,4,7,8-HxCDF | 1 | | 1.054-1.426 | 1.28 | 9.71 | ND | pg/L | U | | 57117-44-9 | 1,2,3,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.29 | 9.71 | ND | pg/L | U | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.38 | 9.71 | ND | pg/L | U | | 72918-21-9 | 1,2,3,7,8,9-HxCDF | 1 | | 1.054-1.426 | 1.65 | 9.71 | ND | pg/L | U | | 39227-28-6 | 1,2,3,4,7,8-HxCDD | 1 | | 1.054-1.426 | 1.56 | 9.71 | ND | pg/L | U | | 57653-85-7 | 1,2,3,6,7,8-HxCDD | 1 | | 1.054-1.426 | 1.43 | 9.71 | ND | pg/L | U | | 19408-74-3 | 1,2,3,7,8,9-HxCDD | 1 | | 1.054-1.426 | 1.61 | 9.71 | ND | pg/L | U | | 67562-39-4 | 1,2,3,4,6,7,8-HpCDF | 1 | 2.553 | 0.893-1.208 | 1.39 | 19.4 | 2.17 | pg/L | EMPC, J | | 55673-89-7 | 1,2,3,4,7,8,9-HpCDF | 1 | | 0.893-1.208 | 2.03 | 9.71 | ND | pg/L | U | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDD | 1 | 1.720 | 0.893-1.208 | 2.45 | 9.71 | 3.18 | pg/L | EMPC, J | | 39001-02-0 | OCDF | 1 | | 0.757-1.024 | 2.50 | 19.4 | ND | pg/L | U | | 3268-87-9 | OCDD | 1 | 0.857 | 0.757-1.024 | 4.44 | 48.5 | 23.9 | pg/L | J, B | Homologue Groups | 55722-27-5 | Total TCDF | 1 | 0.000 | | 9.71 | ND | pg/L | |------------|-------------|---|-------|--|------|----|------| | 41903-57-5 | Total TCDD | 1 | 0.000 | | 9.71 | ND | pg/L | | 30402-15-4 | Total PeCDF | 1 | 0.000 | | 9.71 | ND | pg/L | | 36088-22-9 | Total PeCDD | 1 | 0.000 | | 9.71 | ND | pg/L | | 55684-94-1 | Total HxCDF | 1 | 0.000 | | 9.71 | ND | pg/L | | 34465-46-8 | Total HxCDD | 1 | 0.000 | | 9.71 | ND | pg/L | | 38998-75-3 | Total HpCDF | 1 | 0.000 | | 9.71 | ND | pg/L | | 37871-00-4 | Total HpCDD | 1 | 0.000 | | 9.71 | ND | pg/L | Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.061 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.21 Wet ### Form 2 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.2 SKD0114 Calibration: FC00062 Matrix: Water Laboratory ID: 22C0456-09 File ID: 22040817 Sampled: <u>03/23/22 09:36</u> Prepared: <u>04/02/22 06:55</u> Analyzed: <u>04/09/22 00:11</u> Solids Wt%: N/A Preparation: EPA 1613 Initial/Final: 1030 mL / 20 uL Batch: BKC0836 Instrument: AUTOSPEC01 Column: RTX-Dioxin2 Sequence: | Labels | DF/Split | Ion Ratio | Ratio Limits | EDL | % REC | QC LIMITS | Q | |---------------------------|----------|-----------|--------------|------|-------|------------|---| | 13C12-2,3,7,8-TCDF | | 0.786 | 0.655-0.886 | 1.54 | 76.5 | 24 - 169 % | | | 13C12-2,3,7,8-TCDD | | 0.763 | 0.655-0.886 | 1.92 | 85.5 | 25 - 164 % | | | 13C12-1,2,3,7,8-PeCDF | | 1.516 | 1.318-1.783 | 3.11 | 76.3 | 24 - 185 % | | | 13C12-2,3,4,7,8-PeCDF | | 1.515 | 1.318-1.783 | 3.28 | 76.2 | 21 - 178 % | | | 13C12-1,2,3,7,8-PeCDD | | 1.610 | 1.318-1.783 | 1.74 | 76.1 | 25 - 181 % | | | 13C12-1,2,3,4,7,8-HxCDF | | 0.502 | 0.434-0.587 | 3.54 | 77.8 | 26 - 152 % | | | 13C12-1,2,3,6,7,8-HxCDF | | 0.509 | 0.434-0.587 | 3.32 | 79.6 | 26 - 123 % | | | 13C12-2,3,4,6,7,8-HxCDF | | 0.542 | 0.434-0.587 | 3.78 | 80.5 | 28 - 136 % | | | 13C12-1,2,3,7,8,9-HxCDF | | 0.497 | 0.434-0.587 | 4.41 | 82.4 | 29 - 147 % | | | 13C12-1,2,3,4,7,8-HxCDD | | 1.249 | 1.054-1.426 | 2.44 | 78.0 | 32 - 141 % | | | 13C12-1,2,3,6,7,8-HxCDD | | 1.218 | 1.054-1.426 | 2.23 | 80.3 | 28 - 130 % | | | 13C12-1,2,3,4,6,7,8-HpCDF | | 0.433 | 0.374-0.506 | 3.35 | 75.4 | 28 - 143 % | | | 13C12-1,2,3,4,7,8,9-HpCDF | | 0.430 | 0.374-0.506 | 4.34 | 76.3 | 26 - 138 % | | | 13C12-1,2,3,4,6,7,8-HpCDD | | 1.096 | 0.893-1.208 | 3.46 | 76.4 | 23 - 140 % | | | 13C12-OCDD | | 0.904 | 0.757-1.024 | 6.63 | 73.0 | 17 - 157 % | | | 37C14-2,3,7,8-TCDD | | 328.000 | | 0.67 | 82.8 | 35 - 197 % | | ^{*} Values outside of QC limits Result Basis: ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: <u>Floyd - Snider</u> Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Water Laboratory ID: 22C0456-10 B File ID: 22040818 Sampled: 03/23/22 15:00 Prepared: 04/02/22 06:55 Analyzed: 04/09/22 00:59 % Solids: N/A Preparation: EPA 1613 Initial/Final: 1017 mL / 20 uL Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Batch: BKC0836 Instrument: AUTOSPEC01 Column: RTX-Dioxin2 | CAS NO. | COMPOUND | DF/Split | Ion Ratio | Ratio Limits | EDL | RL | Result | Units | Q | |------------|---------------------|----------|-----------|--------------|------|------|--------|-------|------------| | 51207-31-9 | 2,3,7,8-TCDF | 1 | | 0.655-0.886 | 0.64 | 9.83 | ND | pg/L | U | | 1746-01-6 | 2,3,7,8-TCDD | 1 | | 0.655-0.886 | 1.11 | 9.83 | ND | pg/L | U | | 57117-41-6 | 1,2,3,7,8-PeCDF | 1 | | 1.318-1.783 | 0.95 | 9.83 | ND | pg/L | U | | 57117-31-4 | 2,3,4,7,8-PeCDF | 1 | 0.393 | 1.318-1.783 | 0.92 | 9.83 | 1.70 | pg/L | EMPC, J | | 40321-76-4 | 1,2,3,7,8-PeCDD | 1 | | 1.318-1.783 | 1.48 | 9.83 | ND | pg/L | U | | 70648-26-9 | 1,2,3,4,7,8-HxCDF | 1 | | 1.054-1.426 | 0.92 | 9.83 | ND | pg/L | U | | 57117-44-9 | 1,2,3,6,7,8-HxCDF | 1 | 0.774 | 1.054-1.426 | 0.97 | 9.83 | 0.97 | pg/L | EMPC, J | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 1 | 1.075 | 1.054-1.426 | 0.94 | 9.83 | 1.07 | pg/L | J | | 72918-21-9 | 1,2,3,7,8,9-HxCDF | 1 | | 1.054-1.426 | 1.21 | 9.83 | ND | pg/L | U | | 39227-28-6 | 1,2,3,4,7,8-HxCDD | 1 | | 1.054-1.426 | 1.33 | 9.83 | ND | pg/L | U | | 57653-85-7 | 1,2,3,6,7,8-HxCDD | 1 | | 1.054-1.426 | 1.31 | 9.83 | ND | pg/L | U | | 19408-74-3 | 1,2,3,7,8,9-HxCDD | 1 | | 1.054-1.426 | 1.43 | 9.83 | ND | pg/L | U | | 67562-39-4 | 1,2,3,4,6,7,8-HpCDF | 1 | | 0.893-1.208 | 1.28 | 19.7 | ND | pg/L | U | | 55673-89-7 | 1,2,3,4,7,8,9-HpCDF | 1 | | 0.893-1.208 | 1.89 | 9.83 | ND | pg/L | U | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDD | 1 | 1.056 | 0.893-1.208 | 1.66 | 9.83 | 3.78 | pg/L | J | | 39001-02-0 | OCDF | 1 | | 0.757-1.024 | 2.82 | 19.7 | ND | pg/L | U | | 3268-87-9 | OCDD | 1 | 0.755 | 0.757-1.024 | 3.51 | 49.2 | 23.3 | pg/L | EMPC, J, B | Homologue Groups | 55722-27-5 | Total TCDF | 1 | 0.000 | | 9.83 | ND | pg/L | |------------|-------------|---|-------|--|------|------|------| | 41903-57-5 | Total TCDD | 1 | 0.000 | | 9.83 | ND | pg/L | | 30402-15-4 | Total PeCDF | 1 | 0.000 | | 9.83 | ND | pg/L | | 36088-22-9 | Total PeCDD | 1 | 0.000 | | 9.83 | ND | pg/L
| | 55684-94-1 | Total HxCDF | 1 | 0.000 | | 9.83 | 1.07 | pg/L | | 34465-46-8 | Total HxCDD | 1 | 0.000 | | 9.83 | ND | pg/L | | 38998-75-3 | Total HpCDF | 1 | 0.000 | | 9.83 | ND | pg/L | | 37871-00-4 | Total HpCDD | 1 | 0.000 | | 9.83 | 3.78 | pg/L | Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.759 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.43 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Lora Lake 2021-2023 sec II. 5.3.2 Client: Floyd - Snider Project: Calibration: File ID: 22040818 Matrix: Water Laboratory ID: 22C0456-10 03/23/22 15:00 04/09/22 00:59 Sampled: Prepared: 04/02/22 06:55 Analyzed: Solids Wt%: N/A Preparation: Initial/Final: $\underline{1017~mL\,/\,20~uL}$ EPA 1613 Sequence: Wet SKD0114 FC00062 BKC0836 AUTOSPEC01 Batch: Instrument: Column: RTX-Dioxin2 | Labels | DF/Split | Ion Ratio | Ratio Limits | EDL | % REC | QC LIMITS | Q | |---------------------------|----------|-----------|--------------|------|-------|------------|---| | 13C12-2,3,7,8-TCDF | | 0.774 | 0.655-0.886 | 1.78 | 97.9 | 24 - 169 % | | | 13C12-2,3,7,8-TCDD | | 0.758 | 0.655-0.886 | 2.10 | 111 | 25 - 164 % | | | 13C12-1,2,3,7,8-PeCDF | | 1.582 | 1.318-1.783 | 3.69 | 100 | 24 - 185 % | | | 13C12-2,3,4,7,8-PeCDF | | 1.582 | 1.318-1.783 | 3.89 | 98.5 | 21 - 178 % | | | 13C12-1,2,3,7,8-PeCDD | | 1.593 | 1.318-1.783 | 2.22 | 101 | 25 - 181 % | | | 13C12-1,2,3,4,7,8-HxCDF | | 0.509 | 0.434-0.587 | 3.67 | 101 | 26 - 152 % | | | 13C12-1,2,3,6,7,8-HxCDF | | 0.501 | 0.434-0.587 | 3.44 | 104 | 26 - 123 % | | | 13C12-2,3,4,6,7,8-HxCDF | | 0.509 | 0.434-0.587 | 3.93 | 102 | 28 - 136 % | | | 13C12-1,2,3,7,8,9-HxCDF | | 0.504 | 0.434-0.587 | 4.58 | 108 | 29 - 147 % | | | 13C12-1,2,3,4,7,8-HxCDD | | 1.245 | 1.054-1.426 | 2.86 | 102 | 32 - 141 % | | | 13C12-1,2,3,6,7,8-HxCDD | | 1.231 | 1.054-1.426 | 2.62 | 104 | 28 - 130 % | | | 13C12-1,2,3,4,6,7,8-HpCDF | | 0.447 | 0.374-0.506 | 4.54 | 100 | 28 - 143 % | | | 13C12-1,2,3,4,7,8,9-HpCDF | | 0.473 | 0.374-0.506 | 5.87 | 103 | 26 - 138 % | | | 13C12-1,2,3,4,6,7,8-HpCDD | | 1.115 | 0.893-1.208 | 4.67 | 106 | 23 - 140 % | | | 13C12-OCDD | | 0.872 | 0.757-1.024 | 8.29 | 113 | 17 - 157 % | | | 37Cl4-2,3,7,8-TCDD | | 328.000 | | 0.80 | 106 | 35 - 197 % | | ^{*} Values outside of QC limits Result Basis: ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: <u>Floyd - Snider</u> Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Water Laboratory ID: 22C0456-11 B File ID: 22040819 Sampled: 03/24/22 12:33 Prepared: 04/02/22 06:55 Analyzed: 04/09/22 01:47 % Solids: $\underline{\text{N/A}}$ Preparation: $\underline{\text{EPA 1613}}$ Initial/Final: $\underline{\text{1000 mL}/\text{20 uL}}$ Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Batch: BKC0836 Instrument: AUTOSPEC01 Column: RTX-Dioxin2 | CAS NO. | COMPOUND | DF/Split | Ion Ratio | Ratio Limits | EDL | RL | Result | Units | Q | |------------|---------------------|----------|-----------|--------------|------|------|--------|-------|------------| | 51207-31-9 | 2,3,7,8-TCDF | 1 | | 0.655-0.886 | 0.73 | 10.0 | ND | pg/L | U | | 1746-01-6 | 2,3,7,8-TCDD | 1 | | 0.655-0.886 | 1.12 | 10.0 | ND | pg/L | U | | 57117-41-6 | 1,2,3,7,8-PeCDF | 1 | | 1.318-1.783 | 1.09 | 10.0 | ND | pg/L | U | | 57117-31-4 | 2,3,4,7,8-PeCDF | 1 | | 1.318-1.783 | 1.03 | 10.0 | ND | pg/L | U | | 40321-76-4 | 1,2,3,7,8-PeCDD | 1 | | 1.318-1.783 | 1.55 | 10.0 | ND | pg/L | U | | 70648-26-9 | 1,2,3,4,7,8-HxCDF | 1 | | 1.054-1.426 | 1.15 | 10.0 | ND | pg/L | U | | 57117-44-9 | 1,2,3,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.17 | 10.0 | ND | pg/L | U | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.17 | 10.0 | ND | pg/L | U | | 72918-21-9 | 1,2,3,7,8,9-HxCDF | 1 | | 1.054-1.426 | 1.55 | 10.0 | ND | pg/L | U | | 39227-28-6 | 1,2,3,4,7,8-HxCDD | 1 | | 1.054-1.426 | 1.91 | 10.0 | ND | pg/L | U | | 57653-85-7 | 1,2,3,6,7,8-HxCDD | 1 | | 1.054-1.426 | 1.79 | 10.0 | ND | pg/L | U | | 19408-74-3 | 1,2,3,7,8,9-HxCDD | 1 | | 1.054-1.426 | 1.99 | 10.0 | ND | pg/L | U | | 67562-39-4 | 1,2,3,4,6,7,8-HpCDF | 1 | | 0.893-1.208 | 1.01 | 20.0 | ND | pg/L | U | | 55673-89-7 | 1,2,3,4,7,8,9-HpCDF | 1 | | 0.893-1.208 | 1.52 | 10.0 | ND | pg/L | U | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDD | 1 | | 0.893-1.208 | 1.53 | 10.0 | ND | pg/L | U | | 39001-02-0 | OCDF | 1 | | 0.757-1.024 | 1.96 | 20.0 | ND | pg/L | U | | 3268-87-9 | OCDD | 1 | 2.230 | 0.757-1.024 | 2.42 | 50.0 | 3.18 | pg/L | EMPC, J, B | Homologue Groups | 55722-27-5 | Total TCDF | 1 | 0.000 | | 10.0 | ND | pg/L | |------------|-------------|---|-------|--|------|------|------| | 41903-57-5 | Total TCDD | 1 | 0.000 | | 10.0 | 1.47 | pg/L | | 30402-15-4 | Total PeCDF | 1 | 0.000 | | 10.0 | ND | pg/L | | 36088-22-9 | Total PeCDD | 1 | 0.000 | | 10.0 | ND | pg/L | | 55684-94-1 | Total HxCDF | 1 | 0.000 | | 10.0 | ND | pg/L | | 34465-46-8 | Total HxCDD | 1 | 0.000 | | 10.0 | ND | pg/L | | 38998-75-3 | Total HpCDF | 1 | 0.000 | | 10.0 | 7.16 | pg/L | | 37871-00-4 | Total HpCDD | 1 | 0.000 | | 10.0 | ND | pg/L | Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.001 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.10 RTX-Dioxin2 BKC0836 Batch: ### Form 2 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.2 AUTOSPEC01 Column: Matrix: Water Laboratory ID: 22C0456-11 File ID: 22040819 Sampled: <u>03/24/22 12:33</u> Prepared: <u>04/02/22 06:55</u> Analyzed: <u>04/09/22 01:47</u> Solids Wt%: N/A Preparation: EPA 1613 Initial/Final: 1000 mL / 20 uL Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Instrument: | Labels | DF/Split | Ion Ratio | Ratio Limits | EDL | % REC | QC LIMITS | Q | |---------------------------|----------|-----------|--------------|------|-------|------------|---| | 13C12-2,3,7,8-TCDF | | 0.774 | 0.655-0.886 | 1.75 | 97.6 | 24 - 169 % | | | 13C12-2,3,7,8-TCDD | | 0.770 | 0.655-0.886 | 2.26 | 108 | 25 - 164 % | | | 13C12-1,2,3,7,8-PeCDF | | 1.597 | 1.318-1.783 | 2.40 | 99.1 | 24 - 185 % | | | 13C12-2,3,4,7,8-PeCDF | | 1.585 | 1.318-1.783 | 2.53 | 98.1 | 21 - 178 % | | | 13C12-1,2,3,7,8-PeCDD | | 1.621 | 1.318-1.783 | 2.02 | 98.6 | 25 - 181 % | | | 13C12-1,2,3,4,7,8-HxCDF | | 0.499 | 0.434-0.587 | 3.44 | 98.4 | 26 - 152 % | | | 13C12-1,2,3,6,7,8-HxCDF | | 0.510 | 0.434-0.587 | 3.23 | 97.8 | 26 - 123 % | | | 13C12-2,3,4,6,7,8-HxCDF | | 0.499 | 0.434-0.587 | 3.68 | 97.8 | 28 - 136 % | | | 13C12-1,2,3,7,8,9-HxCDF | | 0.516 | 0.434-0.587 | 4.29 | 102 | 29 - 147 % | | | 13C12-1,2,3,4,7,8-HxCDD | | 1.269 | 1.054-1.426 | 2.91 | 98.6 | 32 - 141 % | | | 13C12-1,2,3,6,7,8-HxCDD | | 1.253 | 1.054-1.426 | 2.66 | 97.6 | 28 - 130 % | | | 13C12-1,2,3,4,6,7,8-HpCDF | | 0.427 | 0.374-0.506 | 3.76 | 97.4 | 28 - 143 % | | | 13C12-1,2,3,4,7,8,9-HpCDF | | 0.454 | 0.374-0.506 | 4.86 | 99.6 | 26 - 138 % | | | 13C12-1,2,3,4,6,7,8-HpCDD | | 1.077 | 0.893-1.208 | 5.09 | 101 | 23 - 140 % | | | 13C12-OCDD | | 0.900 | 0.757-1.024 | 4.72 | 104 | 17 - 157 % | | | 37C14-2,3,7,8-TCDD | | 328.000 | | 0.81 | 105 | 35 - 197 % | | ^{*} Values outside of QC limits ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: <u>Floyd - Snider</u> Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Water Laboratory ID: 22C0456-12 B File ID: 22040820 Sampled: 03/24/22 12:37 Prepared: 04/02/22 06:55 Analyzed: 04/09/22 02:35 % Solids: N/A Preparation: EPA 1613 Initial/Final: 1000 mL / 20 uL Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Batch: BKC0836 Instrument: AUTOSPEC01 Column: RTX-Dioxin2 | CAS NO. | COMPOUND | DF/Split | Ion Ratio | Ratio Limits | EDL | RL | Result | Units | Q | |------------|---------------------|----------|-----------|--------------|------|------|--------|-------|------------| | 51207-31-9 | 2,3,7,8-TCDF | 1 | | 0.655-0.886 | 0.88 | 10.0 | ND | pg/L | U | | 1746-01-6 | 2,3,7,8-TCDD | 1 | | 0.655-0.886 | 1.11 | 10.0 | ND | pg/L | U | | 57117-41-6 | 1,2,3,7,8-PeCDF | 1 | | 1.318-1.783 | 0.91 | 10.0 | ND | pg/L | U | | 57117-31-4 | 2,3,4,7,8-PeCDF | 1 | 1.130 | 1.318-1.783 | 0.86 | 10.0 | 0.88 | pg/L | EMPC, J | | 40321-76-4 | 1,2,3,7,8-PeCDD | 1 | | 1.318-1.783 | 1.49 | 10.0 | ND | pg/L | U | | 70648-26-9 | 1,2,3,4,7,8-HxCDF | 1 | | 1.054-1.426 | 1.19 | 10.0 | ND | pg/L | U | | 57117-44-9 | 1,2,3,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.18 | 10.0 | ND | pg/L | U | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.22 | 10.0 | ND | pg/L | U | | 72918-21-9 | 1,2,3,7,8,9-HxCDF | 1 | | 1.054-1.426 | 1.58 | 10.0 | ND | pg/L | U | | 39227-28-6 | 1,2,3,4,7,8-HxCDD | 1 | | 1.054-1.426 | 1.47 | 10.0 | ND | pg/L | U | | 57653-85-7 | 1,2,3,6,7,8-HxCDD | 1 | | 1.054-1.426 | 1.42 | 10.0 | ND | pg/L | U | | 19408-74-3 | 1,2,3,7,8,9-HxCDD | 1 | | 1.054-1.426 | 1.56 | 10.0 | ND | pg/L | U | | 67562-39-4 | 1,2,3,4,6,7,8-HpCDF | 1 | | 0.893-1.208 | 1.18 | 20.0 | ND | pg/L | U | | 55673-89-7 | 1,2,3,4,7,8,9-HpCDF | 1 | | 0.893-1.208 | 1.64 | 10.0 | ND | pg/L | U | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDD | 1 | 2.310 | 0.893-1.208 | 1.55 | 10.0 | 2.91 | pg/L | EMPC, J | | 39001-02-0 | OCDF | 1 | | 0.757-1.024 | 2.36 | 20.0 | ND | pg/L | U | | 3268-87-9 | OCDD | 1 | 1.474 | 0.757-1.024 | 2.41 | 50.0 | 5.59 | pg/L | EMPC, J, B | Homologue Groups | 55722-27-5 | Total TCDF | 1 | 0.000 | | 10.0 | ND | pg/L | |------------|-------------|---|-------|--|------|----|------| | 41903-57-5 | Total TCDD | 1 | 0.000 | | 10.0 | ND | pg/L | | 30402-15-4 | Total PeCDF | 1 | 0.000 | | 10.0 | ND | pg/L | | 36088-22-9 | Total PeCDD | 1 | 0.000 | | 10.0 | ND | pg/L | | 55684-94-1 | Total HxCDF | 1 | 0.000 | | 10.0 | ND | pg/L | | 34465-46-8 | Total HxCDD | 1 | 0.000 | | 10.0 | ND | pg/L | | 38998-75-3
| Total HpCDF | 1 | 0.000 | | 10.0 | ND | pg/L | | 37871-00-4 | Total HpCDD | 1 | 0.000 | | 10.0 | ND | pg/L | Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.295 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.15 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Lora Lake 2021-2023 sec II. 5.3.2 Client: Floyd - Snider Project: Calibration: File ID: 22040820 Matrix: Water Laboratory ID: 22C0456-12 03/24/22 12:37 Sampled: Prepared: 04/02/22 06:55 Analyzed: 04/09/22 02:35 Solids Wt%: N/A $\underline{1000~mL \ / \ 20~uL}$ Preparation: Initial/Final: EPA 1613 Sequence: Wet SKD0114 FC00062 BKC0836 AUTOSPEC01 Batch: Instrument: Column: RTX-Dioxin2 | Labels | DF/Split | Ion Ratio | Ratio Limits | EDL | % REC | QC LIMITS | Q | |---------------------------|----------|-----------|--------------|------|-------|------------|---| | 13C12-2,3,7,8-TCDF | | 0.778 | 0.655-0.886 | 1.83 | 93.7 | 24 - 169 % | | | 13C12-2,3,7,8-TCDD | | 0.757 | 0.655-0.886 | 1.99 | 105 | 25 - 164 % | | | 13C12-1,2,3,7,8-PeCDF | | 1.566 | 1.318-1.783 | 2.51 | 91.4 | 24 - 185 % | | | 13C12-2,3,4,7,8-PeCDF | | 1.629 | 1.318-1.783 | 2.65 | 95.4 | 21 - 178 % | | | 13C12-1,2,3,7,8-PeCDD | | 1.609 | 1.318-1.783 | 2.26 | 93.3 | 25 - 181 % | | | 13C12-1,2,3,4,7,8-HxCDF | | 0.503 | 0.434-0.587 | 3.25 | 98.0 | 26 - 152 % | | | 13C12-1,2,3,6,7,8-HxCDF | | 0.501 | 0.434-0.587 | 3.05 | 98.5 | 26 - 123 % | | | 13C12-2,3,4,6,7,8-HxCDF | | 0.498 | 0.434-0.587 | 3.48 | 96.9 | 28 - 136 % | | | 13C12-1,2,3,7,8,9-HxCDF | | 0.509 | 0.434-0.587 | 4.05 | 99.5 | 29 - 147 % | | | 13C12-1,2,3,4,7,8-HxCDD | | 1.265 | 1.054-1.426 | 2.97 | 96.4 | 32 - 141 % | | | 13C12-1,2,3,6,7,8-HxCDD | | 1.202 | 1.054-1.426 | 2.71 | 101 | 28 - 130 % | | | 13C12-1,2,3,4,6,7,8-HpCDF | | 0.476 | 0.374-0.506 | 4.10 | 90.1 | 28 - 143 % | | | 13C12-1,2,3,4,7,8,9-HpCDF | | 0.442 | 0.374-0.506 | 5.30 | 94.4 | 26 - 138 % | | | 13C12-1,2,3,4,6,7,8-HpCDD | | 1.074 | 0.893-1.208 | 4.66 | 96.2 | 23 - 140 % | | | 13C12-OCDD | | 0.849 | 0.757-1.024 | 5.23 | 99.5 | 17 - 157 % | | | 37Cl4-2,3,7,8-TCDD | | 328.000 | | 0.79 | 103 | 35 - 197 % | | ^{*} Values outside of QC limits Result Basis: ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: <u>Floyd - Snider</u> Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Water Laboratory ID: 22C0456-15 B File ID: 22040821 Sampled: 03/24/22 10:30 Prepared: 04/02/22 06:55 Analyzed: 04/09/22 03:23 % Solids: N/A Preparation: EPA 1613 Initial/Final: 1060 mL / 20 uL Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Batch: BKC0836 Instrument: AUTOSPEC01 Column: RTX-Dioxin2 | CAS NO. | COMPOUND | DF/Split | Ion Ratio | Ratio Limits | EDL | RL | Result | Units | Q | |------------|---------------------|----------|-----------|--------------|------|------|--------|-------|------| | 51207-31-9 | 2,3,7,8-TCDF | 1 | | 0.655-0.886 | 0.77 | 9.43 | ND | pg/L | U | | 1746-01-6 | 2,3,7,8-TCDD | 1 | | 0.655-0.886 | 1.09 | 9.43 | ND | pg/L | U | | 57117-41-6 | 1,2,3,7,8-PeCDF | 1 | 1.362 | 1.318-1.783 | 0.98 | 9.43 | 0.83 | pg/L | J | | 57117-31-4 | 2,3,4,7,8-PeCDF | 1 | | 1.318-1.783 | 0.90 | 9.43 | ND | pg/L | U | | 40321-76-4 | 1,2,3,7,8-PeCDD | 1 | | 1.318-1.783 | 1.41 | 9.43 | ND | pg/L | U | | 70648-26-9 | 1,2,3,4,7,8-HxCDF | 1 | | 1.054-1.426 | 1.17 | 9.43 | ND | pg/L | U | | 57117-44-9 | 1,2,3,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.15 | 9.43 | ND | pg/L | U | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 1 | | 1.054-1.426 | 1.14 | 9.43 | ND | pg/L | U | | 72918-21-9 | 1,2,3,7,8,9-HxCDF | 1 | | 1.054-1.426 | 1.48 | 9.43 | ND | pg/L | U | | 39227-28-6 | 1,2,3,4,7,8-HxCDD | 1 | | 1.054-1.426 | 1.24 | 9.43 | ND | pg/L | U | | 57653-85-7 | 1,2,3,6,7,8-HxCDD | 1 | | 1.054-1.426 | 1.19 | 9.43 | ND | pg/L | U | | 19408-74-3 | 1,2,3,7,8,9-HxCDD | 1 | | 1.054-1.426 | 1.31 | 9.43 | ND | pg/L | U | | 67562-39-4 | 1,2,3,4,6,7,8-HpCDF | 1 | | 0.893-1.208 | 0.84 | 18.9 | ND | pg/L | U | | 55673-89-7 | 1,2,3,4,7,8,9-HpCDF | 1 | | 0.893-1.208 | 1.23 | 9.43 | ND | pg/L | U | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDD | 1 | | 0.893-1.208 | 2.02 | 9.43 | ND | pg/L | U | | 39001-02-0 | OCDF | 1 | | 0.757-1.024 | 2.61 | 18.9 | ND | pg/L | U | | 3268-87-9 | OCDD | 1 | 0.797 | 0.757-1.024 | 2.23 | 47.2 | 8.71 | pg/L | J, B | Homologue Groups | 55722-27-5 | Total TCDF | 1 | 0.000 | | 9.43 | ND | pg/L | |------------|-------------|---|-------|--|------|------|------| | 41903-57-5 | Total TCDD | 1 | 0.000 | | 9.43 | ND | pg/L | | 30402-15-4 | Total PeCDF | 1 | 0.000 | | 9.43 | 0.83 | pg/L | | 36088-22-9 | Total PeCDD | 1 | 0.000 | | 9.43 | ND | pg/L | | 55684-94-1 | Total HxCDF | 1 | 0.000 | | 9.43 | ND | pg/L | | 34465-46-8 | Total HxCDD | 1 | 0.000 | | 9.43 | ND | pg/L | | 38998-75-3 | Total HpCDF | 1 | 0.000 | | 9.43 | ND | pg/L | | 37871-00-4 | Total HpCDD | 1 | 0.000 | | 9.43 | ND | pg/L | Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.028 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 1.91 RTX-Dioxin2 BKC0836 Batch: ### Form 2 ### ORGANIC ANALYSIS DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.2 AUTOSPEC01 Column: Matrix: Water Laboratory ID: 22C0456-15 File ID: 22040821 Sampled: <u>03/24/22 10:30</u> Prepared: <u>04/02/22 06:55</u> Analyzed: <u>04/09/22 03:23</u> Solids Wt%: N/A Preparation: EPA 1613 Initial/Final: 1060 mL / 20 uL Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Instrument: | Labels | DF/Split | Ion Ratio | Ratio Limits | EDL | % REC | QC LIMITS | Q | |---------------------------|----------|-----------|--------------|------|-------|------------|---| | 13C12-2,3,7,8-TCDF | | 0.776 | 0.655-0.886 | 1.39 | 80.7 | 24 - 169 % | | | 13C12-2,3,7,8-TCDD | | 0.757 | 0.655-0.886 | 1.66 | 92.0 | 25 - 164 % | | | 13C12-1,2,3,7,8-PeCDF | | 1.570 | 1.318-1.783 | 1.85 | 84.1 | 24 - 185 % | | | 13C12-2,3,4,7,8-PeCDF | | 1.554 | 1.318-1.783 | 1.96 | 82.6 | 21 - 178 % | | | 13C12-1,2,3,7,8-PeCDD | | 1.610 | 1.318-1.783 | 2.00 | 84.8 | 25 - 181 % | | | 13C12-1,2,3,4,7,8-HxCDF | | 0.505 | 0.434-0.587 | 3.32 | 82.8 | 26 - 152 % | | | 13C12-1,2,3,6,7,8-HxCDF | | 0.498 | 0.434-0.587 | 3.11 | 83.3 | 26 - 123 % | | | 13C12-2,3,4,6,7,8-HxCDF | | 0.504 | 0.434-0.587 | 3.55 | 82.7 | 28 - 136 % | | | 13C12-1,2,3,7,8,9-HxCDF | | 0.495 | 0.434-0.587 | 4.13 | 87.2 | 29 - 147 % | | | 13C12-1,2,3,4,7,8-HxCDD | | 1.253 | 1.054-1.426 | 3.13 | 82.3 | 32 - 141 % | | | 13C12-1,2,3,6,7,8-HxCDD | | 1.280 | 1.054-1.426 | 2.86 | 80.2 | 28 - 130 % | | | 13C12-1,2,3,4,6,7,8-HpCDF | | 0.466 | 0.374-0.506 | 2.92 | 80.5 | 28 - 143 % | | | 13C12-1,2,3,4,7,8,9-HpCDF | | 0.451 | 0.374-0.506 | 3.78 | 79.0 | 26 - 138 % | | | 13C12-1,2,3,4,6,7,8-HpCDD | | 1.065 | 0.893-1.208 | 3.75 | 82.2 | 23 - 140 % | | | 13C12-OCDD | | 0.932 | 0.757-1.024 | 5.01 | 81.2 | 17 - 157 % | | | 37C14-2.3.7.8-TCDD | | 328.000 | | 0.66 | 87.2 | 35 - 197 % | | ^{*} Values outside of QC limits ### PREPARATION BATCH SUMMARY EPA 1613B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Batch: <u>BKC0836</u> Batch Matrix: <u>Water</u> Preparation: <u>EPA 1613</u> | SAMPLE NAME | LAB SAMPLE ID | LAB FILE ID | DATE PREPARED | OBSERVATIONS | |--------------------|---------------|-------------|----------------|--------------| | MW-CP1-032322 | 22C0456-01 | 22040807 | 04/02/22 06:55 | | | MW-CP1-032322-D | 22C0456-02 | 22040808 | 04/02/22 06:55 | | | MW-CP2-032322 | 22C0456-03 | 22040809 | 04/02/22 06:55 | | | MW-CP3-032322 | 22C0456-04 | 22040810 | 04/02/22 06:55 | | | MW-CP4-032322 | 22C0456-05 | 22040811 | 04/02/22 06:55 | | | MW-CP5-032322 | 22C0456-06 | 22040812 | 04/02/22 06:55 | | | MW-CP6-032322 | 22C0456-07 | 22040813 | 04/02/22 06:55 | | | MW-CP7-032322 | 22C0456-08 | 22040816 | 04/02/22 06:55 | | | MW-VB3-032322 | 22C0456-09 | 22040817 | 04/02/22 06:55 | | | HCOO-B312-032322 | 22C0456-10 | 22040818 | 04/02/22 06:55 | | | MW-C1-VB1-032422 | 22C0456-11 | 22040819 | 04/02/22 06:55 | | | MW-C1-VB1-032422-D | 22C0456-12 | 22040820 | 04/02/22 06:55 | | | MW-C1-VB2-032422 | 22C0456-15 | 22040821 | 04/02/22 06:55 | | | Blank | BKC0836-BLK1 | 22040804 | 04/02/22 06:55 | | | LCS | BKC0836-BS1 | 22040805 | 04/02/22 06:55 | | | LCS Dup | BKC0836-BSD1 | 22040806 | 04/02/22 06:55 | | # HRGCMS Dioxin/Furan Preparation Bench Sheet EPA Methods 8290A & 1613B Batch: BKC0836 Aqueous Samples | | | 15010pt | 7558 1944 | 850900H | Jan 8568 | Kee 1436 | 大やのなられ | 5527 DEX 456 | I CIDALETO | \$952.4PM | | Kee 1327 | | h5219471 | NA ID/Lot Number | | 4/2/22 \$655 | Start Date/Time: | Solid Phase Extraction | 22C0456, 22C0489 | |--------------------|-----------------|--------------------|-----------------------|---------|--------------------|------------------|---------------|------------------|------------------|-------------------|-----------------|-----------------|--------------------------------|------------------|------------------|------------------|-----------------|------------------
--|---------------------------| | | | 4 | 3 | 7 | වර | 200 | Dec. | R | m | 7 | | 2.0 | | n dos | Initials | | 4/2/22 4948 | End Date/Time: | Separatory Funnel | 0489 | | | | 4/2/22 | 42/22 | 418122 | 4/7122 | 以一下 22 | 417122 | 751E/h | 4/2/22 | 1/2/22 | | 7/5/22 | | apr pur facially | Date | | 54648 | | ninel) | | | 22C0489-06 A | 22C0489-03 A | 22C0489-02 A | 22C0489-01 A | | 22C0456-15 B | 22C0456-12 B | 22CU430-11 B | מיוו לבויטטרר | 22C0456-10 B | 22C0456-09 B | 22C0456-08 B | 22C0456-07 B | 22C0456-06 B | 22C0456-05 B | 22C0456-04 B | 22C0456-03 B | 22C0456-02 B | 22C0456-01 B | The same of sa | Lab Number
& Container | | RP032422-16 | RP032422-13 | RP032422-12 | RF032422-11 | | MW-C1-VB2-032422 | WANGUARRI 022427 | | GERRIE GATE FANA | HC00-B117-653323 | MW-VB3-032322 | MW-CP7-032322 | MW-CP6-032322 | MW-CPS-032322 | MW-CP4-032322 | MW-CP3-032322 | MW-CP2-032322 | WA'CET-BETSTA'D | MW-CP1-032322 | Andrewson and the latter of th | Sample
Name | | \$1 \$1,000.000 TO | (1,000:00) [bud | (1,000.00) (\$\$5) | (1,000.00) 45 | | (1,000.000) J &666 | (1,000.00) / \$ | they (somewr) | The case one | (1,000.00)/\$17 | (1,000.00) C\$3\$ | (1,000.00) j女S} | (1,000.00) 1027 | \$1 \$ / (00:000't) | (1,000.00) 1055 | (1,000.00) 914 | (1,000.00) 10660 | 444/ (00.000,1) | \$ 94 (00 000 t) | (Target)/Actual | Sample Vol
(mL) | | C | 7 | J | 7 | | 7 | 7 | | i | J | 7 | ار | ٠ | J | 7 | ١ | | 7 | 7 | 7.9 | pH >9
Adjust | | Q) F | (P) F | (g)/F | (B) F | 2 | (P) F | (D) F | (D) | 9 | (D) | 9 | (D)/F | Ø _F | Ø/F | (P)/F | (P) F | ()
F | ()
F | (P)F | | Res Cl
Check | | <u>-</u> | Q 2 | 0 | Q ² |) (| Ō | 0/2 | 0 | ì | 0 2 | Ō | G/2 | 0 | Qu | <u>-</u> | 9 | - P | 03 | ē | 45 °C | RotoVap | | 20 | 20 | 20 | 20 | | 16 | 20 | Lo | | 20 | 20 | 20 | 20 | 20 | 20 | 70 | 20 | 20 | 20 | | No.4 | Hexane XAD2 12504 Dalance Reagents/Equipment Used Tumble ARI Work Orders: Method (circle one) Extraction Method Soxble SepF Shake ou CH2Cl2 Myll 4/8/22 1236/31PM 4/8/22 BKC0836-BLK1 BKC0836-BS1 BKC0836-BSD1 Prep Analyst / Date: M 4/2/22 814/1/22 M4/2/22 DAG 4/6/22 M4/8/22 (1,000.00) J 9 Blank (1,000.00) 7 6 20 000 Ō KI Strips Nonane pH Paper 0% Silica Activated Florisil Basic Silica Glasswool Acid Silica Na2SO4 # HRGCMS Dioxin/Furan Preparation Bench Sheet EPA Methods 8290A & 1613B Batch: BKC0836 Aqueous Samples | 122 H 14122 | i | Sign | 219123 | 0.8 ng/mL | 1951 CAD 13:01 | 1.0 ml. | Clean-up Standard | |-------------|---------|---------|------------------------|---------------------------|-----------------|---------|--| | | | | | I All Till All Contaction | | TOTAL | Dispussion Cal. | | , | | | | 50170 0270 1 | | | and the state of t | | 2 4 | avx. | M | 12/15/12 M axx2 4/2/22 | 0.2/1.0/2.0 ng/ml. | 1913267 | 1.0 mL | OPR | | 12/ch 2xm | XW | Z | 2/9/23 | 2/4 ng/mL | 1C441364 | 1.0 mL | Recovery Standard | | ess Date | Witness | Analyst | Expiration Date | Concentration | ID / Lot Number | Vol | Standards Used | | Analyst / Date: | Analyst / Date: | Analyst / Date: | |-----------------------------------|-------------------|------------------| | Silica-Plorisii Clean Y N V 17122 | Acid Clean
Y N | Werlfy Client ID | Printed 3/31/2022 12:56:51PM ### Organic Extractions Laboratory Analyst Notes | Extraction Parameter: <u>Drovin</u> Extraction Batch <u>Bkd</u> | 0489 | |---|-----------------------| | Total Solids Batch: N/A Work Order(s): 2200456, 220 | 489 | | Screens: Soil/Sediment/Solid/Other: | Analyst/Date | | ☐ No Anomalies (standard soil/wet sediment/sand/gravel)= | | | Standing Water Decanted (Not shared)= | • | | ☐ Standing Water Homogenized (Shared samples)= | | | ☐ Clay/Clumps (Difficult to homogenize)= | | | ☐ Rocks (%+size)? | | | Organics (Leaves/sticks/grass)= | | | Oily, obvious fuel/sulfur odors= | | | Received in 32oz jar(s)=Homogenized in Pyrex dish= | | | Previously Frozen = | | | Other (Details)= | | | | | | Aqueous: | | | BNO Anomalies 2200456, 018-458, 088-128, 2204489-41A, 03A | M 4/2/22 | | * Turbid/Color= \$68. Tan turbid , \$78: slightly tam, turbid, 158: silightly tam, clear. | m4/2/22 | | Particulates(%)=(Note: >5%=Notify Supervisor/Lead) 22C4489-07A = Ambel Clear, 16A | Amber tubil a 11/2/22 | | Remulsions 19/1- and 1200 has a | | | Extinuisions (10) - 22 Cep 298 - of cort - ~ 30/. Emilson Sounds Centre Codaes | a 4/2/22 | | DEmulsions (%)= 22 cap298- p207- ~ 30/. Emplsion, souples Centrafiedged Oily, obvious fuel/sulfur odors= | a 4/2/22 | | | a 4/2/22 | | Oily, obvious fuel/sulfur odors= | a 4/2/22 | | Oily, obvious fuel/sulfur odors= Other (Details)= | a 4/2/22 | | Oily, obvious fuel/sulfur odors= Other (Details)= | a 4/2/22 | | Oily, obvious fuel/sulfur odors= Other (Details)= Received in 1.0L Bottle(s)=No Bottle Rinse= | a 4/2/22 | | Oily, obvious fuel/sulfur odors= Other (Details)= Received in 1.0L Bottle(s)=No Bottle Rinse= | a 4/2/22 | | Oily, obvious fuel/sulfur odors= Other (Details)= Received in 1.0L Bottle(s)=No Bottle Rinse= Other Notes/Comments= (Note problems, concerns, corrective actions). | a 4/2/22 | | Oily, obvious fuel/sulfur odors= Other (Details)= Received in 1.0L Bottle(s)=No Bottle Rinse= | a 4/2/22 | | Oily, obvious fuel/sulfur odors= Other (Details)= Received in 1.0L Bottle(s)=No Bottle Rinse= Other Notes/Comments= (Note problems, concerns, corrective actions). | a 4/2/22 | | Oily, obvious fuel/sulfur odors= Other (Details)= Received in 1.0L Bottle(s)=No Bottle Rinse= Other Notes/Comments= (Note problems, concerns, corrective actions). | a 4/2/22 | ### Analytical Resources, Incorporated Analytical Chemists and Consultants ### Dioxin Extraction Laboratory – Glassware | | | Aph H | \$3A 2 | Ф2A 1 | 5CA489- DIA 20 | SISI 3 | | 二界 7 | TOB AC | 49B | \$ C13 \$ | |
\$6B 2 | OSB 10 | ahb I | \$3B 27 | \$2B | 3 14-95+402 | 2 108 | 651 | BILC4536- BILL 24 | ARI Sample ID 300 mL Flat | |---|---|-------|--------|-------|----------------|--------|------|------|--------|--------|-----------|-------|--------|--------|--------|---------|------|-------------|-------|-------|-------------------|---------------------------| | | | 1 | 0 | 2 | 3 | 5 | - | | | | R | 6 | 8 | 0, | _ | 7 | ~ T | 0 | | | -/ | Bottom Small Soxhlet | | | | 1 | | | | | | | | | | | | | | | | | | | 7 | Large Soxhlet | | | | f | | | | | | | | 200.00 | | | | | | | | | | 4 | 1 | 250 mL Beaker | | | | 52 | - | 30 | | 6 | N | 6 | 20 | 7 | | | 7.5 | 2 | #= | ジー | 2 | 7 | 21 | 24 | . 23 | Funnel | | | | W.32 | W-5 | 10-36 | M. 24 | W-16 | W-18 | W-30 | M-46 | 100 | | W-Q | | 10-36 | 51-m | W-18 | 11.0 | どーしょ | 82-M | W-22 | 10-6 | Column | | | | 81-3 | iu-28 | アンス | 5-W | 12 m | 47.3 | E-15 | 1.3 | 41-11 | | 22.04 | 2-26 | 7:3 | का - ज | W-16 | w-2 | E-3 | 15-m | W-32 | 10-1 a | Florisil Column | | | | W-39 | ナヤーの | iw-24 | ヤルーの | 2-3 | W-14 | 15-M | al-m | W-37 | 646 | 10-32 | SHW | 5 | TH-CH | 82~m | m-35 | カールカ | 10-4u | 1 hrm | w-23 | Turbo Tube | | | | 23 | S | 55 | n | 40 | 23 | ١ | 25 | 35 | 4 | 44 | 28 | ₹
t | B | 6 | | 3) | 7 | 38 | _ | Sep Funnel | | | | - | N | 34 | 7 | 5 | S. | 27 | _ | ā | 6 | ひ | 7 | 28 | 7 | 161 | 2 | = | 25 | 95 | 29 | Erlenmeyer
Flask | Centrifuge
Bottle | | 4 | Turbo-Vap | | 4 | Vortex Mixer | Heating Mantle | ### **CLEANUP BATCH SUMMARY** Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Cleanup Batch: CKD0049 Cleanup Type: Silica Gel Cleanup Method: EPA 3630C Silica Gel Cleanup Analysis: EPA 1613B | SAMPLE NAME | LAB SAMPLE ID | LAB FILE ID | DATE PREPARED | OBSERVATIONS | |--------------------|---------------|-------------|---------------|--------------| | MW-CP1-032322 | 22C0456-01 | 22040807 | 04/07/2022 | | | MW-VB3-032322 | 22C0456-09 | 22040817 | 04/07/2022 | | | MW-CP7-032322 | 22C0456-08 | 22040816 | 04/07/2022 | | | MW-CP6-032322 | 22C0456-07 | 22040813 | 04/07/2022 | | | MW-CP5-032322 | 22C0456-06 | 22040812 | 04/07/2022 | | | MW-CP4-032322 | 22C0456-05 | 22040811 | 04/07/2022 | | | MW-CP1-032322-D | 22C0456-02 | 22040808 | 04/07/2022 | | | MW-CP2-032322 | 22C0456-03 | 22040809 | 04/07/2022 | | | MW-CP3-032322 | 22C0456-04 | 22040810 | 04/07/2022 | | | MW-C1-VB2-032422 | 22C0456-15 | 22040821 | 04/07/2022 | | | Blank | BKC0836-BLK1 | 22040804 | 04/07/2022 | | | LCS | BKC0836-BS1 | 22040805 | 04/07/2022 | | | LCS Dup | BKC0836-BSD1 | 22040806 | 04/07/2022 | | | MW-C1-VB1-032422-D | 22C0456-12 | 22040820 | 04/07/2022 | | | MW-C1-VB1-032422 | 22C0456-11 | 22040819 | 04/07/2022 | | | HCOO-B312-032322 | 22C0456-10 | 22040818 | 04/07/2022 | | ### **CLEANUP BATCH SUMMARY** Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Cleanup Batch: CKD0050 Cleanup Type: Florisil Cleanup Method: EPA 3620B Florisil Cleanup (uL) Analysis: EPA 1613B | • | 1 () | | • | | |--------------------|---------------|-------------|---------------|--------------| | SAMPLE NAME | LAB SAMPLE ID | LAB FILE ID | DATE PREPARED | OBSERVATIONS | | MW-CP4-032322 | 22C0456-05 | 22040811 | 04/07/2022 | | | HCOO-B312-032322 | 22C0456-10 | 22040818 | 04/07/2022 | | | MW-C1-VB1-032422-D | 22C0456-12 | 22040820 | 04/07/2022 | | | LCS Dup | BKC0836-BSD1 | 22040806 | 04/07/2022 | | | MW-CP1-032322 | 22C0456-01 | 22040807 | 04/07/2022 | | | MW-CP1-032322-D | 22C0456-02 | 22040808 | 04/07/2022 | | | MW-C1-VB2-032422 | 22C0456-15 | 22040821 | 04/07/2022 | | | MW-CP3-032322 | 22C0456-04 | 22040810 | 04/07/2022 | | | MW-C1-VB1-032422 | 22C0456-11 | 22040819 | 04/07/2022 | | | MW-CP5-032322 | 22C0456-06 | 22040812 | 04/07/2022 | | | MW-CP6-032322 | 22C0456-07 | 22040813 | 04/07/2022 | | | MW-CP7-032322 | 22C0456-08 | 22040816 | 04/07/2022 | | | MW-VB3-032322 | 22C0456-09 | 22040817 | 04/07/2022 | | | Blank | BKC0836-BLK1 | 22040804 | 04/07/2022 | | | LCS | BKC0836-BS1 | 22040805 | 04/07/2022 | | | MW-CP2-032322 | 22C0456-03 | 22040809 | 04/07/2022 | | | | | | | | Analytical Resources, LLC ### Form 1 METHOD BLANK DATA SHEET EPA 1613B Dioxins/Furans by HRGC/HRMS SDG: <u>22C0456</u> Blank Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.2 Matrix: Water Laboratory ID: <u>BKC0836-BLK1</u> File ID: <u>22040804</u> Sampled: <u>N/A</u> Prepared: <u>04/02/22 06:55</u> Analyzed: <u>04/08/22 13:40</u> Solids Wt%: Preparation: <u>EPA 1613</u> Initial/Final: <u>1000 mL / 20 uL</u> Result Basis: Wet Sequence: SKD0114 Calibration: FC00062 Batch: BKC0836 Instrument: AUTOSPEC01 Column: RTX-Dioxin2 | CAS NO. | COMPOUND | DF/Split | Ion Ratio | Ratio Limits | EDL | RL | Result | Units | Q | |------------|---------------------|----------|-----------|--------------|------|------|--------|-------|---| | 51207-31-9 | 2,3,7,8-TCDF | 1 | 0.000 | 0.655-0.886 | 1.32 | 10.0 | ND | pg/L | U | | 1746-01-6 | 2,3,7,8-TCDD | 1 | 0.000 | 0.655-0.886 | 1.60 | 10.0 | ND | pg/L | U | | 57117-41-6 | 1,2,3,7,8-PeCDF | 1 | 0.000 | 1.318-1.783 | 1.37 | 10.0 | ND | pg/L | U | | 57117-31-4 | 2,3,4,7,8-PeCDF | 1 | 0.000 | 1.318-1.783 | 1.28 | 10.0 | ND | pg/L | U | | 40321-76-4 | 1,2,3,7,8-PeCDD | 1 | 0.000 | 1.318-1.783 | 1.89 | 10.0 | ND | pg/L | U | | 70648-26-9 | 1,2,3,4,7,8-HxCDF | 1 | 0.000 | 1.054-1.426 | 1.26 | 10.0 | ND | pg/L | U | | 57117-44-9 | 1,2,3,6,7,8-HxCDF | 1 | 0.000 | 1.054-1.426 | 1.20 | 10.0 | ND | pg/L | U | | 60851-34-5 | 2,3,4,6,7,8-HxCDF | 1 | 0.000 | 1.054-1.426 | 1.26 | 10.0 | ND | pg/L | U | | 72918-21-9 | 1,2,3,7,8,9-HxCDF | 1 | 0.000 | 1.054-1.426 | 1.53 | 10.0 | ND | pg/L | U | | 39227-28-6 | 1,2,3,4,7,8-HxCDD | 1 | 0.000 | 1.054-1.426 | 1.65 | 10.0 | ND | pg/L | U | | 57653-85-7 | 1,2,3,6,7,8-HxCDD | 1 | 0.000 | 1.054-1.426 | 1.59 | 10.0 | ND | pg/L | U | | 19408-74-3 | 1,2,3,7,8,9-HxCDD | 1 | 0.000 | 1.054-1.426 | 1.75 | 10.0 | ND | pg/L | U | | 67562-39-4 | 1,2,3,4,6,7,8-HpCDF | 1 | 0.000 | 0.893-1.208 | 1.40 | 20.0 | ND | pg/L | U | | 55673-89-7 | 1,2,3,4,7,8,9-HpCDF | 1 | 0.000 | 0.893-1.208 | 2.00 | 10.0 | ND | pg/L | U | | 35822-46-9 | 1,2,3,4,6,7,8-HpCDD | 1 | 0.000 | 0.893-1.208 | 1.81 | 10.0 | ND | pg/L | U | | 39001-02-0 | OCDF | 1 | 0.000 | 0.757-1.024 | 2.68 | 20.0 | ND | pg/L | U | | 3268-87-9 | OCDD | 1 | 0.996 | 0.757-1.024 | 2.43 | 50.0 | 8.29 | pg/L | J | Homologue Groups Laboratory: | 55722-27-5 | Total TCDF | 1 | 0.000 | | 10.0 | ND | pg/L | |------------|-------------|---|-------|--|------|----|------| | 41903-57-5 | Total TCDD | 1 | 0.000 | | 10.0 | ND | pg/L | | 30402-15-4 | Total PeCDF | 1 | 0.000 | | 10.0 | ND | pg/L | | 36088-22-9 | Total PeCDD | 1 | 0.000 | | 10.0 | ND | pg/L | | 55684-94-1 | Total HxCDF | 1 | 0.000 | | 10.0 | ND | pg/L | | 34465-46-8 | Total HxCDD | 1 | 0.000 | | 10.0 | ND | pg/L | | 38998-75-3 | Total HpCDF | 1 | 0.000 | | 10.0 | ND | pg/L | | 37871-00-4 | Total HpCDD | 1 | 0.000 | | 10.0 | ND | pg/L | Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.002 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 2.56 Wet Form 2 ### METHOD BLANK DATA SHEET ### **EPA 1613B** ### Dioxins/Furans by HRGC/HRMS Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.2 SKD0114 Calibration: FC00062 Matrix: Water Laboratory ID: <u>BKC0836-BLK1</u> File ID: <u>22040804</u> Sampled: $\underline{N/A}$ Prepared: $\underline{04/02/22\ 06:55}$ Analyzed: $\underline{04/08/22\ 13:40}$ Solids Wt%: N/A Preparation: EPA 1613 Initial/Final: 1000 mL / 20 uL Batch: BKC0836 Instrument: AUTOSPEC01 Column: RTX-Dioxin2 Sequence: | Labels | DF/Split | Ion Ratio | Ratio Limits | EDL | % REC | QC LIMITS | Q | |---------------------------|----------|-----------|--------------|------|-------|------------|---| | 13C12-2,3,7,8-TCDF | 1 | 0.790 | 0.655-0.886 | 0.00 | 96.2 | 24 - 169 % | | | 13C12-2,3,7,8-TCDD | 1 | 0.784 | 0.655-0.886 | 0.00 | 108 | 25 - 164 % | | | 13C12-1,2,3,7,8-PeCDF | 1 | 1.546 | 1.318-1.783 | 0.00 | 96.9 | 24 - 185 % | | | 13C12-2,3,4,7,8-PeCDF | 1 | 1.619 | 1.318-1.783 | 0.00 | 97.9 | 21 - 178 % | | | 13C12-1,2,3,7,8-PeCDD | 1 | 1.552 | 1.318-1.783 | 0.00 | 101 | 25 - 181 % | | | 13C12-1,2,3,4,7,8-HxCDF | 1 | 0.511 | 0.434-0.587 | 0.00 | 96.6 | 26 - 152 % | | | 13C12-1,2,3,6,7,8-HxCDF | 1 | 0.501 | 0.434-0.587 | 0.00 | 97.3 | 26 - 123 % | | | 13C12-2,3,4,6,7,8-HxCDF | 1 | 0.507 | 0.434-0.587 | 0.00 | 96.4 | 28 - 136 % | | | 13C12-1,2,3,7,8,9-HxCDF | 1 | 0.491 | 0.434-0.587 | 0.00 | 103 | 29 - 147 % | | | 13C12-1,2,3,4,7,8-HxCDD | 1 | 1.274 | 1.054-1.426 | 0.00 | 96.6 | 32 - 141 % | | | 13C12-1,2,3,6,7,8-HxCDD | 1 | 1.275 | 1.054-1.426 | 0.00 | 97.4 | 28 - 130 % | | | 13C12-1,2,3,4,6,7,8-HpCDF | 1 | 0.446 | 0.374-0.506 | 0.00 | 93.9 | 28 - 143 % | | | 13C12-1,2,3,4,7,8,9-HpCDF | 1 | 0.445 | 0.374-0.506 | 0.00 | 98.5 | 26 - 138 % | | | 13C12-1,2,3,4,6,7,8-HpCDD | 1 | 1.054 | 0.893-1.208 | 0.00 | 101 | 23 - 140 % | | | 13C12-OCDD | 1 | 0.895 | 0.757-1.024 | 0.01 | 106 | 17 - 157 % | | | 37Cl4-2,3,7,8-TCDD | 1 | 328.000 | | 0.00 | 107 | 35 - 197 % | | ^{*} Values outside of QC limits Result Basis: Blank ### LCS RECOVERY EPA 1613B Laboratory: <u>Analytical Resources, LLC</u> SDG: <u>22C0456</u> Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: <u>Water</u> Analyzed: <u>04/08/22 14:28</u> Batch: BKC0836 Laboratory ID: BKC0836-BS1 Preparation: <u>EPA 1613</u> Sequence Name: <u>LCS</u> Initial/Final: $\underline{1000 \text{ mL} / 20 \text{ uL}}$ | | SPIKE | LCS | | LCS | QC | |---------------------|--------|---------------|---|--------|----------| | | ADDED | CONCENTRATION | | % | LIMITS
 | COMPOUND | (pg/L) | (pg/L) | Q | REC. # | REC. | | 2,3,7,8-TCDF | 200 | 204 | | 102 | 75 - 158 | | 2,3,7,8-TCDD | 200 | 192 | | 95.9 | 67 - 158 | | 1,2,3,7,8-PeCDF | 1000 | 998 | | 99.8 | 80 - 134 | | 2,3,4,7,8-PeCDF | 1000 | 1010 | | 101 | 68 - 160 | | 1,2,3,7,8-PeCDD | 1000 | 1050 | | 105 | 70 - 142 | | 1,2,3,4,7,8-HxCDF | 1000 | 1040 | | 104 | 72 - 134 | | 1,2,3,6,7,8-HxCDF | 1000 | 1060 | | 106 | 84 - 130 | | 2,3,4,6,7,8-HxCDF | 1000 | 1030 | | 103 | 70 - 156 | | 1,2,3,7,8,9-HxCDF | 1000 | 1030 | | 103 | 78 - 130 | | 1,2,3,4,7,8-HxCDD | 1000 | 1020 | | 102 | 70 - 164 | | 1,2,3,6,7,8-HxCDD | 1000 | 983 | | 98.3 | 76 - 134 | | 1,2,3,7,8,9-HxCDD | 1000 | 1020 | | 102 | 64 - 162 | | 1,2,3,4,6,7,8-HpCDF | 1000 | 1020 | | 102 | 82 - 122 | | 1,2,3,4,7,8,9-HpCDF | 1000 | 989 | | 98.9 | 78 - 138 | | 1,2,3,4,6,7,8-HpCDD | 1000 | 1050 | | 105 | 70 - 140 | | OCDF | 2000 | 1710 | | 85.7 | 63 - 170 | | OCDD | 2000 | 1880 | В | 94.2 | 78 - 144 | ^{*} Indicates values outside of QC limits | | SPIKE | LCSD | | LCSD | | QC | LIMITS | |-------------------|-----------------|----------------------|---|-------------|-----------|-----|----------| | COMPOUND | ADDED
(pg/L) | CONCENTRATION (pg/L) | Q | %
REC. # | %
RPD# | RPD | REC. | | 2,3,7,8-TCDF | 200 | 200 | | 99.9 | 2.26 | 25 | 75 - 158 | | 2,3,7,8-TCDD | 200 | 194 | | 97.0 | 1.16 | 25 | 67 - 158 | | 1,2,3,7,8-PeCDF | 1000 | 993 | | 99.3 | 0.509 | 25 | 80 - 134 | | 2,3,4,7,8-PeCDF | 1000 | 978 | | 97.8 | 2.72 | 25 | 68 - 160 | | 1,2,3,7,8-PeCDD | 1000 | 1060 | | 106 | 0.495 | 25 | 70 - 142 | | 1,2,3,4,7,8-HxCDF | 1000 | 1020 | | 102 | 1.84 | 25 | 72 - 134 | | 1,2,3,6,7,8-HxCDF | 1000 | 1040 | | 104 | 1.98 | 25 | 84 - 130 | | 2,3,4,6,7,8-HxCDF | 1000 | 998 | | 99.8 | 3.53 | 25 | 70 - 156 | | 1,2,3,7,8,9-HxCDF | 1000 | 1030 | | 103 | 0.407 | 25 | 78 - 130 | | 1,2,3,4,7,8-HxCDD | 1000 | 1020 | | 102 | 0.535 | 25 | 70 - 164 | ^{*} Indicates values outside of QC limits ### LCS DUPLICATE RECOVERY/RPD EPA 1613B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: <u>Water</u> Analyzed: <u>04/08/22 15:16</u> Batch: BKC0836 Laboratory ID: BKC0836-BSD1 Preparation: <u>EPA 1613</u> Sequence Name: <u>LCS Dup</u> Initial/Final: 1000 mL / 20 uL | | SPIKE | LCSD | | LCSD | | QC | LIMITS | |---------------------|-----------------|----------------------|---|-------------|------------|-----|----------| | COMPOUND | ADDED
(pg/L) | CONCENTRATION (pg/L) | Q | %
REC. # | %
RPD # | RPD | REC. | | 1,2,3,6,7,8-HxCDD | 1000 | 997 | | 99.7 | 1.39 | 25 | 76 - 134 | | 1,2,3,7,8,9-HxCDD | 1000 | 1030 | | 103 | 0.705 | 25 | 64 - 162 | | 1,2,3,4,6,7,8-HpCDF | 1000 | 986 | | 98.6 | 3.16 | 25 | 82 - 122 | | 1,2,3,4,7,8,9-HpCDF | 1000 | 991 | | 99.1 | 0.214 | 25 | 78 - 138 | | 1,2,3,4,6,7,8-HpCDD | 1000 | 958 | | 95.8 | 9.08 | 25 | 70 - 140 | | OCDF | 2000 | 1660 | | 83.2 | 3.01 | 25 | 63 - 170 | | OCDD | 2000 | 1850 | В | 92.3 | 2.12 | 25 | 78 - 144 | ^{*} Indicates values outside of QC limits ### INITIAL CALIBRATION DATA EPA 1613B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FC00062 Instrument: AUTOSPEC01 Calibration Date: 03/23/2022 Column (1): RTX-Dioxin2 | | L | evel 01 | L | evel 02 | L | evel 03 | L | evel 04 | L | evel 05 | L | evel 06 | |-------------------------|------|-----------|------|-----------|------|-----------|------|-----------|------|-----------|------|-----------| | Compound | Conc | RRF | | 2,3,7,8-TCDF | | | 0.5 | 0.9637162 | 2 | 1.015644 | 10 | 0.9916337 | 40 | 0.9658295 | 200 | 0.986679 | | 2,3,7,8-TCDD | | | 0.5 | 1.255829 | 2 | 1.147744 | 10 | 1.07924 | 40 | 1.169757 | 200 | 1.186909 | | 1,2,3,7,8-PeCDF | 0.5 | 0.90743 | 2.5 | 0.9203157 | 10 | 0.8762971 | 50 | 0.9009024 | 200 | 0.9094881 | 1000 | 0.9192127 | | 2,3,4,7,8-PeCDF | 0.5 | 1.102915 | 2.5 | 1.00137 | 10 | 0.9832538 | 50 | 0.9606277 | 200 | 0.9875864 | 1000 | 1.009531 | | 1,2,3,7,8-PeCDD | 0.5 | 1.139582 | 2.5 | 1.139669 | 10 | 1.154561 | 50 | 1.164195 | 200 | 1.148213 | 1000 | 1.164707 | | 1,2,3,4,7,8-HxCDF | 0.5 | 1.101943 | 2.5 | 1.021312 | 10 | 1.034285 | 50 | 1.034282 | 200 | 1.036387 | 1000 | 1.044057 | | 1,2,3,6,7,8-HxCDF | 0.5 | 0.9378779 | 2.5 | 1.067899 | 10 | 1.025739 | 50 | 1.022493 | 200 | 1.036363 | 1000 | 1.026378 | | 2,3,4,6,7,8-HxCDF | 0.5 | 1.243336 | 2.5 | 1.098523 | 10 | 1.05323 | 50 | 1.063357 | 200 | 1.04721 | 1000 | 1.099998 | | 1,2,3,7,8,9-HxCDF | 0.5 | 1.144213 | 2.5 | 0.9266741 | 10 | 0.9535663 | 50 | 0.9862844 | 200 | 0.9697081 | 1000 | 0.9730174 | | 1,2,3,4,7,8-HxCDD | 0.5 | 0.9468227 | 2.5 | 0.9204612 | 10 | 0.9335842 | 50 | 0.9307683 | 200 | 0.9299661 | 1000 | 0.9420909 | | 1,2,3,6,7,8-HxCDD | 0.5 | 0.9668344 | 2.5 | 0.8371198 | 10 | 0.9827417 | 50 | 1.001829 | 200 | 0.9489363 | 1000 | 0.964721 | | 1,2,3,7,8,9-HxCDD | 0.5 | 0.9185552 | 2.5 | 0.8005933 | 10 | 0.8937062 | 50 | 0.8557187 | 200 | 0.8705659 | 1000 | 0.9021031 | | 1,2,3,4,6,7,8-HpCDF | 0.5 | 1.355939 | 2.5 | 1.185939 | 10 | 1.229098 | 50 | 1.190595 | 200 | 1.247265 | 1000 | 1.250453 | | 1,2,3,4,7,8,9-HpCDF | 0.5 | 1.245596 | 2.5 | 1.064446 | 10 | 1.189338 | 50 | 1.272289 | 200 | 1.187504 | 1000 | 1.193357 | | 1,2,3,4,6,7,8-HpCDD | 0.5 | 1.392898 | 2.5 | 1.298817 | 10 | 1.186511 | 50 | 1.209671 | 200 | 1.283217 | 1000 | 1.237548 | | OCDF | 1 | 1.343362 | 5 | 1.313106 | 20 | 1.286028 | 100 | 1.221583 | 400 | 1.31391 | 2000 | 1.339322 | | OCDD | | | 5 | 1.164481 | 20 | 1.084482 | 100 | 1.074982 | 400 | 1.05666 | 2000 | 1.065749 | | 13C12-2,3,7,8-TCDF | 100 | 1.739509 | 100 | 1.665883 | 100 | 1.725032 | 100 | 1.709088 | 100 | 1.806949 | 100 | 1.861871 | | 13C12-2,3,7,8-TCDD | 100 | 1.046454 | 100 | 1.031986 | 100 | 1.058097 | 100 | 1.129263 | 100 | 1.076662 | 100 | 1.145971 | | 13C12-1,2,3,7,8-PeCDF | 100 | 1.411277 | 100 | 1.327848 | 100 | 1.394647 | 100 | 1.387483 | 100 | 1.469082 | 100 | 1.660222 | | 13C12-2,3,4,7,8-PeCDF | 100 | 1.295623 | 100 | 1.259189 | 100 | 1.325419 | 100 | 1.330355 | 100 | 1.403424 | 100 | 1.580567 | | 13C12-1,2,3,7,8-PeCDD | 100 | 0.7461825 | 100 | 0.719498 | 100 | 0.7490906 | 100 | 0.7483488 | 100 | 0.7979726 | 100 | 0.8971815 | | 13C12-1,2,3,4,7,8-HxCDF | 100 | 1.100716 | 100 | 1.08919 | 100 | 1.092494 | 100 | 1.123218 | 100 | 1.104458 | 100 | 1.058628 | | 13C12-1,2,3,6,7,8-HxCDF | 100 | 1.173245 | 100 | 1.15071 | 100 | 1.165367 | 100 | 1.207758 | 100 | 1.178363 | 100 | 1.130592 | | 13C12-2,3,4,6,7,8-HxCDF | 100 | 1.008641 | 100 | 1.000944 | 100 | 1.017807 | 100 | 1.035996 | 100 | 1.06712 | 100 | 1.006736 | | 13C12-1,2,3,7,8,9-HxCDF | 100 | 0.8465629 | 100 | 0.8609997 | 100 | 0.8742316 | 100 | 0.8777903 | 100 | 0.9145932 | 100 | 0.8983098 | | 13C12-1,2,3,4,7,8-HxCDD | 100 | 0.9843949 | 100 | 0.9844106 | 100 | 0.9544472 | 100 | 0.980243 | 100 | 0.9919277 | 100 | 0.9541087 | | 13C12-1,2,3,6,7,8-HxCDD | 100 | 1.079961 | 100 | 1.110466 | 100 | 1.087945 | 100 | 1.054972 | 100 | 1.059159 | 100 | 1.006567 | ### INITIAL CALIBRATION DATA EPA 1613B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FC00062 Instrument: AUTOSPEC01 Calibration Date: 03/23/2022 Column (1): RTX-Dioxin2 | | Level 01 | | Level 02 | | Level 03 | | Level 04 | | Level 05 | | Level 06 | | |---------------------------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------| | Compound | Conc | RRF | | 13C12-1,2,3,4,6,7,8-HpCDF | 100 | 0.8848214 | 100 | 0.9021607 | 100 | 0.9602943 | 100 | 0.9452988 | 100 | 0.9320491 | 100 | 0.9282932 | | 13C12-1,2,3,4,7,8,9-HpCDF | 100 | 0.6638638 | 100 | 0.6979426 | 100 | 0.7089863 | 100 | 0.6920329 | 100 | 0.7647477 | 100 | 0.7617052 | | 13C12-1,2,3,4,6,7,8-HpCDD | 100 | 0.5718604 | 100 | 0.566726 | 100 | 0.5787793 | 100 | 0.5903204 | 100 | 0.5866903 | 100 | 0.5953127 | | 13C12-OCDD | 200 | 0.4953552 | 200 | 0.4548763 | 200 | 0.4868895 | 200 | 0.5134434 | 200 | 0.5322678 | 200 | 0.568517 | | 37C14-2,3,7,8-TCDD | 0.1 | 1.140006 | 0.5 | 1.172762 | 2 | 1.07291 | 10 | 1.09879 | 40 | 1.073551 | 200 | 1.1626 | | 13C12-1,2,3,4-TCDD | 100 | 1 | 100 | 1 | 100 | 1 | 100 | 1 | 100 | 1 | 100 | 1 | | 13C12-1,2,3,7,8,9-HxCDD | 100 | 1 | 100 | 1 | 100 | 1 | 100 | 1 | 100 | 1 | 100 | 1 | ### INITIAL CALIBRATION DATA EPA 1613B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FC00062 Instrument: AUTOSPEC01 Calibration Date: 03/23/2022 Column (1): RTX-Dioxin2 | COMPOUND | Mean RRF | RRF RSD | Linear
COD | Quad
COD | Limit Type
& Limit Q | |---------------------------|-----------|---------|---------------|-------------|-------------------------| | 2,3,7,8-TCDF | 0.9847005 | 2.2 | | | RSD () | | 2,3,7,8-TCDD | 1.167896 | 5.5 | | | RSD () | | 1,2,3,7,8-PeCDF | 0.9056077 | 1.8 | | | RSD () | | 2,3,4,7,8-PeCDF | 1.007547 | 4.9 | | | RSD () | | 1,2,3,7,8-PeCDD | 1.151821 | 1.0 | | | RSD () | | 1,2,3,4,7,8-HxCDF | 1.045378 | 2.7 | | | RSD () | | 1,2,3,6,7,8-HxCDF | 1.019458 | 4.2 | | | RSD () | | 2,3,4,6,7,8-HxCDF | 1.100942 | 6.7 | | | RSD () | | 1,2,3,7,8,9-HxCDF | 0.9922439 | 7.8 | | | RSD () | | 1,2,3,4,7,8-HxCDD | 0.9339489 | 1.0 | | | RSD () | | 1,2,3,6,7,8-HxCDD | 0.9503637 | 6.1 | | | RSD () | | 1,2,3,7,8,9-HxCDD | 0.8735404 | 4.8 | | | RSD () | | 1,2,3,4,6,7,8-HpCDF | 1.243215 | 5.0 | | | RSD () | | 1,2,3,4,7,8,9-HpCDF | 1.192088 | 6.0 | | | RSD () | | 1,2,3,4,6,7,8-HpCDD | 1.26811 | 5.9 | | | RSD () | | OCDF | 1.302885 | 3.4 | | | RSD () | | OCDD | 1.089271 | 4.0 | | | RSD () | | 13C12-2,3,7,8-TCDF | 1.751389 | 4.1 | | | RSD () | | 13C12-2,3,7,8-TCDD | 1.081405 | 4.3 | | | RSD () | | 13C12-1,2,3,7,8-PeCDF | 1.44176 | 8.1 | | | RSD () | | 13C12-2,3,4,7,8-PeCDF | 1.365763 | 8.5 | | | RSD () | | 13C12-1,2,3,7,8-PeCDD | 0.776379 | 8.3 | | | RSD () | | 13C12-1,2,3,4,7,8-HxCDF | 1.094784 | 2.0 | | | RSD ()
 | 13C12-1,2,3,6,7,8-HxCDF | 1.167672 | 2.2 | | | RSD () | | 13C12-2,3,4,6,7,8-HxCDF | 1.022874 | 2.4 | | | RSD () | | 13C12-1,2,3,7,8,9-HxCDF | 0.8787479 | 2.8 | | | RSD () | | 13C12-1,2,3,4,7,8-HxCDD | 0.974922 | 1.7 | | | RSD () | | 13C12-1,2,3,6,7,8-HxCDD | 1.066512 | 3.3 | | | RSD () | | 13C12-1,2,3,4,6,7,8-HpCDF | 0.9254863 | 3.0 | | | RSD () | | 13C12-1,2,3,4,7,8,9-HpCDF | 0.7148797 | 5.6 | | | RSD () | | 13C12-1,2,3,4,6,7,8-HpCDD | 0.5816149 | 1.9 | | | RSD () | ### INITIAL CALIBRATION DATA EPA 1613B SDG: 22C0456 Laboratory: Analytical Resources, LLC Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FC00062 Instrument: AUTOSPEC01 Calibration Date: 03/23/2022 Column (1): RTX-Dioxin2 | COMPOUND | Mean RRF | RRF RSD | Linear
COD | Quad
COD | Limit Type
& Limit | Q | |-------------------------|-----------|---------|---------------|-------------|-----------------------|---| | 13C12-OCDD | 0.5085582 | 7.7 | | | RSD () | | | 37C14-2,3,7,8-TCDD | 1.120103 | 4.0 | | | RSD () | | | 13C12-1,2,3,4-TCDD | 1 | 0.0 | | | RSD () | | | 13C12-1,2,3,7,8,9-HxCDD | 1 | 0.0 | | | RSD () | | ## SECOND-SOURCE CALIBRATION VERIFICATION EPA 1613B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FC00062 Laboratory ID: SKC0306-SCV1 Sequence: SKC0306 Sequence Name: <u>ICVCH</u> Standard ID: G001361 | ANALYTE | EXPECTED (ng/mL) | FOUND (ng/mL) | % DRIFT | QC LIMIT | |---------------------------|------------------|---------------|---------|----------| | 2,3,7,8-TCDF | 10.000 | 10.6 | 5.8 | | | 2,3,7,8-TCDD | 10.000 | 11.7 | 16.8 | | | 1,2,3,7,8-PeCDF | 50.000 | 53.1 | 6.3 | | | 2,3,4,7,8-PeCDF | 50.000 | 48.6 | -2.8 | | | 1,2,3,7,8-PeCDD | 50.000 | 55.1 | 10.1 | | | 1,2,3,4,7,8-HxCDF | 50.000 | 53.4 | 6.7 | | | 1,2,3,6,7,8-HxCDF | 50.000 | 54.5 | 9.0 | | | 2,3,4,6,7,8-HxCDF | 50.000 | 53.7 | 7.3 | | | 1,2,3,7,8,9-HxCDF | 50.000 | 54.7 | 9.4 | | | 1,2,3,4,7,8-HxCDD | 50.000 | 57.2 | 14.5 | | | 1,2,3,6,7,8-HxCDD | 50.000 | 52.2 | 4.4 | | | 1,2,3,7,8,9-HxCDD | 50.000 | 52.6 | 5.2 | | | 1,2,3,4,6,7,8-HpCDF | 50.000 | 56.3 | 12.7 | | | 1,2,3,4,7,8,9-HpCDF | 50.000 | 59.5 | 19.0 | | | 1,2,3,4,6,7,8-HpCDD | 50.000 | 55.0 | 9.9 | | | OCDF | 100.00 | 108 | 8.3 | | | OCDD | 100.00 | 111 | 10.7 | | | 13C12-2,3,7,8-TCDF | 100.00 | 102 | 1.8 | | | 13C12-2,3,7,8-TCDD | 100.00 | 82.0 | -18.0 | | | 13C12-1,2,3,7,8-PeCDF | 100.00 | 104 | 4.2 | | | 13C12-2,3,4,7,8-PeCDF | 100.00 | 107 | 7.2 | | | 13C12-1,2,3,7,8-PeCDD | 100.00 | 97.8 | -2.2 | | | 13C12-1,2,3,4,7,8-HxCDF | 100.00 | 118 | 18.2 | | | 13C12-1,2,3,6,7,8-HxCDF | 100.00 | 123 | 23.4 | | | 13C12-2,3,4,6,7,8-HxCDF | 100.00 | 112 | 12.1 | | | 13C12-1,2,3,7,8,9-HxCDF | 100.00 | 116 | 15.5 | | | 13C12-1,2,3,4,7,8-HxCDD | 100.00 | 115 | 14.8 | | | 13C12-1,2,3,6,7,8-HxCDD | 100.00 | 119 | 18.9 | | | 13C12-1,2,3,4,6,7,8-HpCDF | 100.00 | 121 | 20.6 | | | 13C12-1,2,3,4,7,8,9-HpCDF | 100.00 | 111 | 11.3 | | | 13C12-1,2,3,4,6,7,8-HpCDD | 100.00 | 111 | 11.0 | | | 13C12-OCDD | 200.00 | 217 | 8.5 | | | 37Cl4-2,3,7,8-TCDD | 10.000 | 10.5 | 5.3 | | # SECOND-SOURCE CALIBRATION VERIFICATION EPA 1613B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FC00062 Laboratory ID: SKC0306-SCV1 Sequence: SKC0306 Sequence Name: <u>ICVCH</u> Standard ID: G001361 ^{*} Indicates values outside of QC limits # SECOND-SOURCE CALIBRATION VERIFICATION #### **EPA 1613B** Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FC00062 Laboratory ID: SKC0306-SCV1 Sequence: SKC0306 Standard ID: G001361 | ANALYTE | EXPECTED (ng/mL) | FOUND
(ng/mL) | % DRIFT | QC LIMIT | |---------------------------|------------------|------------------|---------|----------| | OCDF | 100.00 | 108 | 8.3 | | | OCDD | 100.00 | 111 | 10.7 | | | 13C12-2,3,7,8-TCDF | 100.00 | 102 | 1.8 | | | 13C12-2,3,7,8-TCDD | 100.00 | 82.0 | -18.0 | | | 13C12-1,2,3,7,8-PeCDF | 100.00 | 104 | 4.2 | | | 13C12-2,3,4,7,8-PeCDF | 100.00 | 107 | 7.2 | | | 13C12-1,2,3,7,8-PeCDD | 100.00 | 97.8 | -2.2 | | | 13C12-1,2,3,4,7,8-HxCDF | 100.00 | 118 | 18.2 | | | 13C12-1,2,3,6,7,8-HxCDF | 100.00 | 123 | 23.4 | | | 13C12-2,3,4,6,7,8-HxCDF | 100.00 | 112 | 12.1 | | | 13C12-1,2,3,7,8,9-HxCDF | 100.00 | 116 | 15.5 | | | 13C12-1,2,3,4,7,8-HxCDD | 100.00 | 115 | 14.8 | | | 13C12-1,2,3,6,7,8-HxCDD | 100.00 | 119 | 18.9 | | | 13C12-1,2,3,4,6,7,8-HpCDF | 100.00 | 121 | 20.6 | | | 13C12-1,2,3,4,7,8,9-HpCDF | 100.00 | 111 | 11.3 | | | 13C12-1,2,3,4,6,7,8-HpCDD | 100.00 | 111 | 11.0 | | | 13C12-OCDD | 200.00 | 217 | 8.5 | | | 37Cl4-2,3,7,8-TCDD | 10.000 | 10.5 | 5.3 | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: <u>AUTOSPEC01</u> Calibration: <u>FC00062</u> Lab File ID: <u>22032302</u> Calibration Date: <u>03/23/2022</u> Sequence: SKC0306 Injection Date: 03/23/22 Lab Sample ID: SKC0306-ICV1 Injection Time: 09:30 Sequence Name: <u>CS3H1</u> | | | CONC. | (ng/mL) | RESI | RESPONSE FACTOR | | | % DRIFT/DIFF | | |---------------------------|------|--------|---------|-----------|-----------------|-----|------|--------------|--| | COMPOUND | TYPE | STD | ICV | ICAL | ICV | MIN | ICV | LIMIT | | | 2,3,7,8-TCDF | A | 10.000 | 9.96 | 0.9847005 | 0.9809363 | | -0.4 | +/-16 | | | 2,3,7,8-TCDD | A | 10.000 | 9.28 | 1.1678960 | 1.0833780 | | -7.2 | +/-22 | | | 1,2,3,7,8-PeCDF | A | 50.000 | 49.5 | 0.9056077 | 0.8962046 | | -1.0 | +/-18 | | | 2,3,4,7,8-PeCDF | A | 50.000 | 49.2 | 1.0075470 | 0.9908089 | | -1.7 | +/-18 | | | 1,2,3,7,8-PeCDD | A | 50.000 | 49.4 | 1.1518210 | 1.1376960 | | -1.2 | +/-22 | | | 1,2,3,4,7,8-HxCDF | A | 50.000 | 49.9 | 1.0453780 | 1.0438810 | | -0.1 | +/-10 | | | 1,2,3,6,7,8-HxCDF | A | 50.000 | 53.7 | 1.0194580 | 1.0954640 | | 7.5 | +/-12 | | | 2,3,4,6,7,8-HxCDF | A | 50.000 | 48.6 | 1.1009420 | 1.0707640 | | -2.7 | +/-12 | | | 1,2,3,7,8,9-HxCDF | A | 50.000 | 47.4 | 0.9922439 | 0.9414101 | | -5.1 | +/-10 | | | 1,2,3,4,7,8-HxCDD | A | 50.000 | 50.9 | 0.9339489 | 0.9506789 | | 1.8 | +/-22 | | | 1,2,3,6,7,8-HxCDD | A | 50.000 | 50.3 | 0.9503637 | 0.9557980 | | 0.6 | +/-22 | | | 1,2,3,7,8,9-HxCDD | A | 50.000 | 50.6 | 0.8735404 | 0.8833196 | | 1.2 | +/-18 | | | 1,2,3,4,6,7,8-HpCDF | A | 50.000 | 49.4 | 1.2432150 | 1.2292090 | | -1.1 | +/-10 | | | 1,2,3,4,7,8,9-HpCDF | A | 50.000 | 54.1 | 1.1920880 | 1.2904670 | | 8.3 | +/-14 | | | 1,2,3,4,6,7,8-HpCDD | A | 50.000 | 47.2 | 1.2681100 | 1.1964240 | | -5.7 | +/-14 | | | OCDF | A | 100.00 | 94.5 | 1.3028850 | 1.2317270 | | -5.5 | +/-37 | | | OCDD | A | 100.00 | 93.7 | 1.0892710 | 1.0202670 | | -6.3 | +/-21 | | | 13C12-2,3,7,8-TCDF | A | 100.00 | 95.8 | 1.7513890 | 1.6775571 | | -4.2 | +/-29 | | | 13C12-2,3,7,8-TCDD | A | 100.00 | 104 | 1.0814050 | 1.1218933 | | 3.7 | +/-18 | | | 13C12-1,2,3,7,8-PeCDF | A | 100.00 | 96.3 | 1.4417600 | 1.3890290 | | -3.7 | +/-24 | | | 13C12-2,3,4,7,8-PeCDF | A | 100.00 | 95.7 | 1.3657630 | 1.3070074 | | -4.3 | +/-23 | | | 13C12-1,2,3,7,8-PeCDD | A | 100.00 | 100 | 0.7763790 | 0.7764987 | | 0.02 | +/-38 | | | 13C12-1,2,3,4,7,8-HxCDF | A | 100.00 | 93.1 | 1.0947840 | 1.0188414 | | -6.9 | +/-24 | | | 13C12-1,2,3,6,7,8-HxCDF | A | 100.00 | 90.8 | 1.1676720 | 1.0599392 | | -9.2 | +/-30 | | | 13C12-2,3,4,6,7,8-HxCDF | A | 100.00 | 92.7 | 1.0228740 | 0.9477137 | | -7.3 | +/-27 | | | 13C12-1,2,3,7,8,9-HxCDF | A | 100.00 | 101 | 0.8787479 | 0.8903158 | | 1.3 | +/-26 | | | 13C12-1,2,3,4,7,8-HxCDD | A | 100.00 | 96.1 | 0.9749220 | 0.9371180 | | -3.9 | +/-15 | | | 13C12-1,2,3,6,7,8-HxCDD | A | 100.00 | 95.7 | 1.0665120 | 1.0210363 | | -4.3 | +/-15 | | | 13C12-1,2,3,4,6,7,8-HpCDF | A | 100.00 | 94.8 | 0.9254863 | 0.8777404 | | -5.2 | +/-22 | | | 13C12-1,2,3,4,7,8,9-HpCDF | A | 100.00 | 96.4 | 0.7148797 | 0.6888273 | | -3.6 | +/-23 | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: <u>AUTOSPEC01</u> Calibration: <u>FC00062</u> Lab File ID: <u>22032302</u> Calibration Date: <u>03/23/2022</u> Sequence: SKC0306 Injection Date: 03/23/22 Lab Sample ID: SKC0306-ICV1 Injection Time: 09:30 Sequence Name: <u>CS3H1</u> | | | CONC. | CONC. (ng/mL) | | RESPONSE FACTOR | | | % DRIFT/DIFF | | |---------------------------|------|--------|---------------|-----------|-----------------|-----|------|--------------|--| | COMPOUND | TYPE | STD | ICV | ICAL | ICV | MIN | ICV | LIMIT | | | 13C12-1,2,3,4,6,7,8-HpCDD | A | 100.00 | 104 | 0.5816149 | 0.6064523 | | 4.3 | +/-28 | | | 13C12-OCDD | A | 200.00 | 208 | 0.5085582 | 0.5280985 | | 3.8 | +/-52 | | | 37Cl4-2,3,7,8-TCDD | A | 10.000 | 9.59 | 1.1201030 | 1.0736877 | | -4.1 | | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: <u>AUTOSPEC01</u> Calibration: <u>FC00062</u> Lab File ID: <u>22040802</u> Calibration Date: <u>03/23/2022</u> Sequence: SKD0114 Injection Date: 04/08/22 Lab Sample ID: SKD0114-ICV1 Injection Time: 11:57 Sequence Name: <u>CS3M1</u> | | | CONC. | (ng/mL) | RESI | PONSE FACTO | OR | % DRII | % DRIFT/DIFF | | |---------------------------|------|--------|---------|-----------|-------------|-----|--------|--------------|--| | COMPOUND | TYPE | STD | ICV | ICAL | ICV | MIN | ICV | LIMIT | | | 2,3,7,8-TCDF | A | 10.000 | 9.54 | 0.9847005 | 0.9396065 | | -4.6 | +/-16 | | | 2,3,7,8-TCDD | A | 10.000 | 9.46 | 1.1678960 | 1.1043040 | | -5.4 | +/-22 | | | 1,2,3,7,8-PeCDF | A | 50.000 | 48.5 | 0.9056077 | 0.8783548 | | -3.0 | +/-18 | | | 2,3,4,7,8-PeCDF | A | 50.000 | 48.9 | 1.0075470 | 0.9846184 | | -2.3 | +/-18 | | | 1,2,3,7,8-PeCDD | A | 50.000 | 50.0 | 1.1518210 | 1.1527970 | | 0.08 | +/-22 | | | 1,2,3,4,7,8-HxCDF | A | 50.000 | 49.9 | 1.0453780 |
1.0427790 | | -0.2 | +/-10 | | | 1,2,3,6,7,8-HxCDF | A | 50.000 | 50.1 | 1.0194580 | 1.0210310 | | 0.2 | +/-12 | | | 2,3,4,6,7,8-HxCDF | A | 50.000 | 48.7 | 1.1009420 | 1.0713080 | | -2.7 | +/-12 | | | 1,2,3,7,8,9-HxCDF | A | 50.000 | 49.1 | 0.9922439 | 0.9737748 | | -1.9 | +/-10 | | | 1,2,3,4,7,8-HxCDD | A | 50.000 | 49.7 | 0.9339489 | 0.9274672 | | -0.7 | +/-22 | | | 1,2,3,6,7,8-HxCDD | A | 50.000 | 50.6 | 0.9503637 | 0.9612334 | | 1.1 | +/-22 | | | 1,2,3,7,8,9-HxCDD | A | 50.000 | 53.0 | 0.8735404 | 0.9140774 | | 5.9 | +/-18 | | | 1,2,3,4,6,7,8-HpCDF | A | 50.000 | 50.2 | 1.2432150 | 1.2492450 | | 0.5 | +/-10 | | | 1,2,3,4,7,8,9-HpCDF | A | 50.000 | 51.3 | 1.1920880 | 1.2235860 | | 2.6 | +/-14 | | | 1,2,3,4,6,7,8-HpCDD | A | 50.000 | 49.0 | 1.2681100 | 1.2414800 | | -2.1 | +/-14 | | | OCDF | A | 100.00 | 89.2 | 1.3028850 | 1.1616340 | | -10.8 | +/-37 | | | OCDD | A | 100.00 | 92.3 | 1.0892710 | 1.0055740 | | -7.7 | +/-21 | | | 13C12-2,3,7,8-TCDF | A | 100.00 | 104 | 1.7513890 | 1.8246476 | | 4.2 | +/-29 | | | 13C12-2,3,7,8-TCDD | A | 100.00 | 111 | 1.0814050 | 1.1978387 | | 10.8 | +/-18 | | | 13C12-1,2,3,7,8-PeCDF | A | 100.00 | 101 | 1.4417600 | 1.4522996 | | 0.7 | +/-24 | | | 13C12-2,3,4,7,8-PeCDF | A | 100.00 | 99.7 | 1.3657630 | 1.3621422 | | -0.3 | +/-23 | | | 13C12-1,2,3,7,8-PeCDD | A | 100.00 | 105 | 0.7763790 | 0.8145750 | | 4.9 | +/-38 | | | 13C12-1,2,3,4,7,8-HxCDF | A | 100.00 | 94.6 | 1.0947840 | 1.0354863 | | -5.4 | +/-24 | | | 13C12-1,2,3,6,7,8-HxCDF | A | 100.00 | 94.7 | 1.1676720 | 1.1058816 | | -5.3 | +/-30 | | | 13C12-2,3,4,6,7,8-HxCDF | A | 100.00 | 96.7 | 1.0228740 | 0.9891694 | | -3.3 | +/-27 | | | 13C12-1,2,3,7,8,9-HxCDF | A | 100.00 | 103 | 0.8787479 | 0.9086770 | | 3.4 | +/-26 | | | 13C12-1,2,3,4,7,8-HxCDD | A | 100.00 | 97.0 | 0.9749220 | 0.9458350 | | -3.0 | +/-15 | | | 13C12-1,2,3,6,7,8-HxCDD | A | 100.00 | 94.2 | 1.0665120 | 1.0050728 | | -5.8 | +/-15 | | | 13C12-1,2,3,4,6,7,8-HpCDF | A | 100.00 | 92.4 | 0.9254863 | 0.8552435 | | -7.6 | +/-22 | | | 13C12-1,2,3,4,7,8,9-HpCDF | A | 100.00 | 96.2 | 0.7148797 | 0.6875193 | | -3.8 | +/-23 | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: <u>AUTOSPEC01</u> Calibration: <u>FC00062</u> Lab File ID: <u>22040802</u> Calibration Date: <u>03/23/2022</u> Sequence: SKD0114 Injection Date: 04/08/22 Lab Sample ID: SKD0114-ICV1 Injection Time: 11:57 Sequence Name: <u>CS3M1</u> | | | CONC. | CONC. (ng/mL) | | RESPONSE FACTOR | | | % DRIFT/DIFF | | |---------------------------|------|--------|---------------|-----------|-----------------|-----|------|--------------|--| | COMPOUND | TYPE | STD | ICV | ICAL | ICV | MIN | ICV | LIMIT | | | 13C12-1,2,3,4,6,7,8-HpCDD | A | 100.00 | 101 | 0.5816149 | 0.5894842 | | 1.4 | +/-18 | | | 13C12-OCDD | A | 200.00 | 220 | 0.5085582 | 0.5592900 | | 10.0 | +/-52 | | | 37Cl4-2,3,7,8-TCDD | A | 10.000 | 10.3 | 1.1201030 | 1.1485696 | | 2.5 | +/-21 | | ^{*} Values outside of QC limits ### CONTINUING CALIBRATION CHECK EPA 1613B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: <u>AUTOSPEC01</u> Calibration: <u>FC00062</u> Lab File ID: <u>22032311</u> Calibration Date: <u>03/23/2022</u> Sequence: $\underline{SKC0306}$ Injection Date: $\underline{03/23/22}$ Lab Sample ID: SKC0306-CCV1 Injection Time: 17:34 Sequence Name: <u>CS3H2</u> | | | CONC. | (ng/mL) | RESPO | NSE FACTOR | (RRF) | % DRI | FT/DIFF | |---------------------------|------|--------|---------|-----------|------------|-------|-------|---------| | COMPOUND | TYPE | STD | CCV | ICAL | CCV | MIN | CCV | LIMIT | | 2,3,7,8-TCDF | A | 10.000 | 10.2 | 0.9847005 | 1.0020020 | | 1.8 | +/-16 | | 2,3,7,8-TCDD | A | 10.000 | 9.53 | 1.1678960 | 1.1128040 | | -4.7 | +/-22 | | 1,2,3,7,8-PeCDF | A | 50.000 | 50.3 | 0.9056077 | 0.9114834 | | 0.6 | +/-18 | | 2,3,4,7,8-PeCDF | A | 50.000 | 48.5 | 1.0075470 | 0.9781671 | | -2.9 | +/-18 | | 1,2,3,7,8-PeCDD | A | 50.000 | 51.0 | 1.1518210 | 1.1752140 | | 2.0 | +/-22 | | 1,2,3,4,7,8-HxCDF | A | 50.000 | 49.7 | 1.0453780 | 1.0391680 | | -0.6 | +/-10 | | 1,2,3,6,7,8-HxCDF | A | 50.000 | 53.3 | 1.0194580 | 1.0875140 | | 6.7 | +/-12 | | 2,3,4,6,7,8-HxCDF | A | 50.000 | 47.5 | 1.1009420 | 1.0448970 | | -5.1 | +/-12 | | 1,2,3,7,8,9-HxCDF | A | 50.000 | 50.9 | 0.9922439 | 1.0092520 | | 1.7 | +/-10 | | 1,2,3,4,7,8-HxCDD | A | 50.000 | 51.7 | 0.9339489 | 0.9659074 | | 3.4 | +/-22 | | 1,2,3,6,7,8-HxCDD | A | 50.000 | 49.4 | 0.9503637 | 0.9396596 | | -1.1 | +/-22 | | 1,2,3,7,8,9-HxCDD | A | 50.000 | 51.2 | 0.8735404 | 0.8938197 | | 2.4 | +/-18 | | 1,2,3,4,6,7,8-HpCDF | A | 50.000 | 50.5 | 1.2432150 | 1.2556780 | | 1.0 | +/-10 | | 1,2,3,4,7,8,9-HpCDF | A | 50.000 | 55.3 | 1.1920880 | 1.3196410 | | 10.7 | +/-14 | | 1,2,3,4,6,7,8-HpCDD | A | 50.000 | 50.5 | 1.2681100 | 1.2820410 | | 1.1 | +/-14 | | OCDF | A | 100.00 | 101 | 1.3028850 | 1.3101160 | | 0.6 | +/-37 | | OCDD | A | 100.00 | 97.2 | 1.0892710 | 1.0585940 | | -2.8 | +/-21 | | 13C12-2,3,7,8-TCDF | A | 100.00 | 101 | 1.7513890 | 1.7612010 | | 0.6 | +/-29 | | 13C12-2,3,7,8-TCDD | A | 100.00 | 104 | 1.0814050 | 1.1241821 | | 4.0 | +/-18 | | 13C12-1,2,3,7,8-PeCDF | A | 100.00 | 100 | 1.4417600 | 1.4432897 | | 0.1 | +/-24 | | 13C12-2,3,4,7,8-PeCDF | A | 100.00 | 99.4 | 1.3657630 | 1.3569953 | | -0.6 | +/-23 | | 13C12-1,2,3,7,8-PeCDD | A | 100.00 | 96.3 | 0.7763790 | 0.7479364 | | -3.7 | +/-38 | | 13C12-1,2,3,4,7,8-HxCDF | A | 100.00 | 106 | 1.0947840 | 1.1573961 | | 5.7 | +/-24 | | 13C12-1,2,3,6,7,8-HxCDF | A | 100.00 | 105 | 1.1676720 | 1.2254406 | | 4.9 | +/-30 | | 13C12-2,3,4,6,7,8-HxCDF | A | 100.00 | 108 | 1.0228740 | 1.1073766 | | 8.3 | +/-27 | | 13C12-1,2,3,7,8,9-HxCDF | A | 100.00 | 105 | 0.8787479 | 0.9200826 | | 4.7 | +/-26 | | 13C12-1,2,3,4,7,8-HxCDD | A | 100.00 | 99.9 | 0.9749220 | 0.9734916 | | -0.1 | +/-15 | | 13C12-1,2,3,6,7,8-HxCDD | A | 100.00 | 103 | 1.0665120 | 1.1004828 | | 3.2 | +/-15 | | 13C12-1,2,3,4,6,7,8-HpCDF | A | 100.00 | 108 | 0.9254863 | 1.0014791 | | 8.2 | +/-22 | | 13C12-1,2,3,4,7,8,9-HpCDF | A | 100.00 | 104 | 0.7148797 | 0.7442176 | | 4.1 | +/-23 | | 13C12-1,2,3,4,6,7,8-HpCDD | A | 100.00 | 104 | 0.5816149 | 0.6050627 | | 4.0 | +/-28 | | 13C12-OCDD | A | 200.00 | 212 | 0.5085582 | 0.5402455 | | 6.2 | +/-52 | | 37Cl4-2,3,7,8-TCDD | A | 10.000 | 9.61 | 1.1201030 | 1.0767516 | | -3.9 | | ^{*} Values outside of QC limits ## SECOND-SOURCE CONTINUING CALIBRATION CHECK EPA 1613B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: <u>AUTOSPEC01</u> Calibration: <u>FC00062</u> Lab File ID: 22032310 Calibration Date: 03/23/2022 Sequence: SKC0306 Injection Date: 03/23/22 Lab Sample ID: SKC0306-SCV1 Injection Time: 16:46 Sequence Name: <u>ICVCH</u> | | | CONC. | (ng/mL) | RESPO | NSE FACTOR | (RRF) | % DRII | FT/DIFF | |---------------------------|------|--------|---------|-----------|------------|-------|--------|---------| | COMPOUND | TYPE | STD | CCV | ICAL | CCV | MIN | CCV | LIMIT | | 2,3,7,8-TCDF | A | 10.000 | 10.6 | 0.9847005 | 1.0420290 | | 5.8 | | | 2,3,7,8-TCDD | A | 10.000 | 11.7 | 1.1678960 | 1.3643620 | | 16.8 | | | 1,2,3,7,8-PeCDF | A | 50.000 | 53.1 | 0.9056077 | 0.9626373 | | 6.3 | | | 2,3,4,7,8-PeCDF | A | 50.000 | 48.6 | 1.0075470 | 0.9798343 | | -2.8 | | | 1,2,3,7,8-PeCDD | A | 50.000 | 55.1 | 1.1518210 | 1.2683820 | | 10.1 | | | 1,2,3,4,7,8-HxCDF | A | 50.000 | 53.4 | 1.0453780 | 1.1156160 | | 6.7 | | | 1,2,3,6,7,8-HxCDF | A | 50.000 | 54.5 | 1.0194580 | 1.1110480 | | 9.0 | | | 2,3,4,6,7,8-HxCDF | A | 50.000 | 53.7 | 1.1009420 | 1.1816960 | | 7.3 | | | 1,2,3,7,8,9-HxCDF | A | 50.000 | 54.7 | 0.9922439 | 1.0852220 | | 9.4 | | | 1,2,3,4,7,8-HxCDD | A | 50.000 | 57.2 | 0.9339489 | 1.0691520 | | 14.5 | | | 1,2,3,6,7,8-HxCDD | A | 50.000 | 52.2 | 0.9503637 | 0.9921833 | | 4.4 | | | 1,2,3,7,8,9-HxCDD | A | 50.000 | 52.6 | 0.8735404 | 7916.042 | | 5.2 | | | 1,2,3,4,6,7,8-HpCDF | A | 50.000 | 56.3 | 1.2432150 | 1.4004930 | | 12.7 | | | 1,2,3,4,7,8,9-HpCDF | A | 50.000 | 59.5 | 1.1920880 | 1.4190220 | | 19.0 | | | 1,2,3,4,6,7,8-HpCDD | A | 50.000 | 55.0 | 1.2681100 | 1.3942330 | | 9.9 | | | OCDF | A | 100.00 | 108 | 1.3028850 | 1.4116330 | | 8.3 | | | OCDD | A | 100.00 | 111 | 1.0892710 | 1.2057030 | | 10.7 | | | 13C12-2,3,7,8-TCDF | A | 100.00 | 102 | 1.7513890 | 1.7836445 | | 1.8 | | | 13C12-2,3,7,8-TCDD | A | 100.00 | 82.0 | 1.0814050 | 0.8869403 | | -18.0 | | | 13C12-1,2,3,7,8-PeCDF | A | 100.00 | 104 | 1.4417600 | 1.5029657 | | 4.2 | | | 13C12-2,3,4,7,8-PeCDF | A | 100.00 | 107 | 1.3657630 | 1.4640575 | | 7.2 | | | 13C12-1,2,3,7,8-PeCDD | A | 100.00 | 97.8 | 0.7763790 | 0.7591495 | | -2.2 | | | 13C12-1,2,3,4,7,8-HxCDF | A | 100.00 | 118 | 1.0947840 | 1.2937706 | | 18.2 | | | 13C12-1,2,3,6,7,8-HxCDF | A | 100.00 | 123 | 1.1676720 | 1.4406458 | | 23.4 | | | 13C12-2,3,4,6,7,8-HxCDF | A | 100.00 | 112 | 1.0228740 | 1.1471395 | | 12.1 | | | 13C12-1,2,3,7,8,9-HxCDF | A | 100.00 | 116 | 0.8787479 | 1.0151048 | | 15.5 | | | 13C12-1,2,3,4,7,8-HxCDD | A | 100.00 | 115 | 0.9749220 | 1.1193836 | | 14.8 | | | 13C12-1,2,3,6,7,8-HxCDD | A | 100.00 | 119 | 1.0665120 | 1.2678870 | | 18.9 | | | 13C12-1,2,3,4,6,7,8-HpCDF | A | 100.00 | 121 | 0.9254863 | 1.1162468 | | 20.6 | | | 13C12-1,2,3,4,7,8,9-HpCDF | A | 100.00 | 111 | 0.7148797 | 0.7959489 | | 11.3 | | | 13C12-1,2,3,4,6,7,8-HpCDD | A | 100.00 | 111 | 0.5816149 | 0.6454744 | | 11.0 | | | 13C12-OCDD | A | 200.00 | 217 | 0.5085582 | 0.5515879 | | 8.5 | | | 37Cl4-2,3,7,8-TCDD | A | 10.000 | 10.5 | 1.1201030 | 1.1799099 | | 5.3 | | ^{*} Values outside of QC limits ### CONTINUING CALIBRATION CHECK EPA 1613B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: <u>AUTOSPEC01</u> Calibration: <u>FC00062</u> Lab File ID: 22040814 Calibration Date: 03/23/2022
Sequence: $\underline{SKD0114}$ Injection Date: $\underline{04/08/22}$ Lab Sample ID: SKD0114-CCV1 Injection Time: 21:40 Sequence Name: <u>CS3M2</u> | | | CONC. | (ng/mL) | RESPO | NSE FACTOR | (RRF) | % DRI | FT/DIFF | |---------------------------|------|--------|---------|-----------|------------|-------|-------|---------| | COMPOUND | TYPE | STD | CCV | ICAL | CCV | MIN | CCV | LIMIT | | 2,3,7,8-TCDF | A | 10.000 | 9.60 | 0.9847005 | 0.9448955 | | -4.0 | +/-16 | | 2,3,7,8-TCDD | A | 10.000 | 9.31 | 1.1678960 | 1.0874230 | | -6.9 | +/-22 | | 1,2,3,7,8-PeCDF | A | 50.000 | 47.7 | 0.9056077 | 0.8646126 | | -4.5 | +/-18 | | 2,3,4,7,8-PeCDF | A | 50.000 | 49.2 | 1.0075470 | 0.9917631 | | -1.6 | +/-18 | | 1,2,3,7,8-PeCDD | A | 50.000 | 51.3 | 1.1518210 | 1.1817770 | | 2.6 | +/-22 | | 1,2,3,4,7,8-HxCDF | A | 50.000 | 50.5 | 1.0453780 | 1.0555470 | | 1.0 | +/-10 | | 1,2,3,6,7,8-HxCDF | A | 50.000 | 52.5 | 1.0194580 | 1.0699360 | | 5.0 | +/-12 | | 2,3,4,6,7,8-HxCDF | A | 50.000 | 49.9 | 1.1009420 | 1.0985150 | | -0.2 | +/-12 | | 1,2,3,7,8,9-HxCDF | A | 50.000 | 49.5 | 0.9922439 | 0.9814199 | | -1.1 | +/-10 | | 1,2,3,4,7,8-HxCDD | A | 50.000 | 48.7 | 0.9339489 | 0.9087543 | | -2.7 | +/-22 | | 1,2,3,6,7,8-HxCDD | A | 50.000 | 49.0 | 0.9503637 | 0.9308148 | | -2.1 | +/-22 | | 1,2,3,7,8,9-HxCDD | A | 50.000 | 51.2 | 0.8735404 | 0.8945103 | | 2.5 | +/-18 | | 1,2,3,4,6,7,8-HpCDF | A | 50.000 | 48.9 | 1.2432150 | 1.2152670 | | -2.2 | +/-10 | | 1,2,3,4,7,8,9-HpCDF | A | 50.000 | 51.1 | 1.1920880 | 1.2178890 | | 2.2 | +/-14 | | 1,2,3,4,6,7,8-HpCDD | A | 50.000 | 50.8 | 1.2681100 | 1.2874970 | | 1.5 | +/-14 | | OCDF | A | 100.00 | 90.4 | 1.3028850 | 1.1782730 | | -9.6 | +/-37 | | OCDD | A | 100.00 | 91.1 | 1.0892710 | 0.9922090 | | -8.9 | +/-21 | | 13C12-2,3,7,8-TCDF | A | 100.00 | 104 | 1.7513890 | 1.8178042 | | 3.8 | +/-29 | | 13C12-2,3,7,8-TCDD | A | 100.00 | 114 | 1.0814050 | 1.2296401 | | 13.7 | +/-18 | | 13C12-1,2,3,7,8-PeCDF | A | 100.00 | 103 | 1.4417600 | 1.4852364 | | 3.0 | +/-24 | | 13C12-2,3,4,7,8-PeCDF | A | 100.00 | 99.9 | 1.3657630 | 1.3639797 | | -0.1 | +/-23 | | 13C12-1,2,3,7,8-PeCDD | A | 100.00 | 103 | 0.7763790 | 0.8026743 | | 3.4 | +/-38 | | 13C12-1,2,3,4,7,8-HxCDF | A | 100.00 | 98.3 | 1.0947840 | 1.0759761 | | -1.7 | +/-24 | | 13C12-1,2,3,6,7,8-HxCDF | A | 100.00 | 99.1 | 1.1676720 | 1.1574552 | | -0.9 | +/-30 | | 13C12-2,3,4,6,7,8-HxCDF | A | 100.00 | 97.6 | 1.0228740 | 0.9981999 | | -2.4 | +/-27 | | 13C12-1,2,3,7,8,9-HxCDF | A | 100.00 | 105 | 0.8787479 | 0.9243303 | | 5.2 | +/-26 | | 13C12-1,2,3,4,7,8-HxCDD | A | 100.00 | 99.5 | 0.9749220 | 0.9704202 | | -0.5 | +/-15 | | 13C12-1,2,3,6,7,8-HxCDD | A | 100.00 | 98.1 | 1.0665120 | 1.0465505 | | -1.9 | +/-15 | | 13C12-1,2,3,4,6,7,8-HpCDF | A | 100.00 | 95.4 | 0.9254863 | 0.8824820 | | -4.6 | +/-22 | | 13C12-1,2,3,4,7,8,9-HpCDF | A | 100.00 | 101 | 0.7148797 | 0.7185103 | | 0.5 | +/-23 | | 13C12-1,2,3,4,6,7,8-HpCDD | A | 100.00 | 101 | 0.5816149 | 0.5885963 | | 1.2 | +/-18 | | 13C12-OCDD | A | 200.00 | 218 | 0.5085582 | 0.5546576 | | 9.1 | +/-52 | | 37C14-2,3,7,8-TCDD | A | 10.000 | 10.5 | 1.1201030 | 1.1752684 | | 4.9 | +/-21 | ^{*} Values outside of QC limits ### CONTINUING CALIBRATION CHECK EPA 1613B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: <u>AUTOSPEC01</u> Calibration: <u>FC00062</u> Lab File ID: 22040826 Calibration Date: 03/23/2022 Sequence: SKD0114 Injection Date: 04/09/22 Lab Sample ID: SKD0114-CCV2 Injection Time: 07:22 Sequence Name: <u>CS3M3</u> | | | CONC. | (ng/mL) | RESPO | NSE FACTOR | (RRF) | % DRII | FT/DIFF | |---------------------------|------|--------|---------|-----------|------------|-------|--------|---------| | COMPOUND | TYPE | STD | CCV | ICAL | CCV | MIN | CCV | LIMIT | | 2,3,7,8-TCDF | A | 10.000 | 9.46 | 0.9847005 | 0.9319797 | | -5.4 | +/-16 | | 2,3,7,8-TCDD | A | 10.000 | 8.95 | 1.1678960 | 1.0452330 | | -10.5 | +/-22 | | 1,2,3,7,8-PeCDF | A | 50.000 | 48.3 | 0.9056077 | 0.8749294 | | -3.4 | +/-18 | | 2,3,4,7,8-PeCDF | A | 50.000 | 48.1 | 1.0075470 | 0.9700348 | | -3.7 | +/-18 | | 1,2,3,7,8-PeCDD | A | 50.000 | 51.0 | 1.1518210 | 1.1753500 | | 2.0 | +/-22 | | 1,2,3,4,7,8-HxCDF | A | 50.000 | 50.5 | 1.0453780 | 1.0549040 | | 0.9 | +/-10 | | 1,2,3,6,7,8-HxCDF | A | 50.000 | 51.4 | 1.0194580 | 1.0477150 | | 2.8 | +/-12 | | 2,3,4,6,7,8-HxCDF | A | 50.000 | 49.0 | 1.1009420 | 1.0790690 | | -2.0 | +/-12 | | 1,2,3,7,8,9-HxCDF | A | 50.000 | 48.1 | 0.9922439 | 0.9543209 | | -3.8 | +/-10 | | 1,2,3,4,7,8-HxCDD | A | 50.000 | 50.6 | 0.9339489 | 0.9455890 | | 1.2 | +/-22 | | 1,2,3,6,7,8-HxCDD | A | 50.000 | 52.3 | 0.9503637 | 0.9946256 | | 4.7 | +/-22 | | 1,2,3,7,8,9-HxCDD | A | 50.000 | 52.3 | 0.8735404 | 0.9134388 | | 4.6 | +/-18 | | 1,2,3,4,6,7,8-HpCDF | A | 50.000 | 49.6 | 1.2432150 | 1.2342050 | | -0.7 | +/-10 | | 1,2,3,4,7,8,9-HpCDF | A | 50.000 | 52.1 | 1.1920880 | 1.2425300 | | 4.2 | +/-14 | | 1,2,3,4,6,7,8-HpCDD | A | 50.000 | 49.1 | 1.2681100 | 1.2443880 | | -1.9 | +/-14 | | OCDF | A | 100.00 | 95.4 | 1.3028850 | 1.2433870 | | -4.6 | +/-37 | | OCDD | A | 100.00 | 95.5 | 1.0892710 | 1.0401180 | | -4.5 | +/-21 | | 13C12-2,3,7,8-TCDF | A | 100.00 | 102 | 1.7513890 | 1.7778342 | | 1.5 | +/-29 | | 13C12-2,3,7,8-TCDD | A | 100.00 | 111 | 1.0814050 | 1.2055098 | | 11.5 | +/-18 | | 13C12-1,2,3,7,8-PeCDF | A | 100.00 | 98.1 | 1.4417600 | 1.4144070 | | -1.9 | +/-24 | | 13C12-2,3,4,7,8-PeCDF | A | 100.00 | 98.4 | 1.3657630 | 1.3435364 | | -1.6 | +/-23 | | 13C12-1,2,3,7,8-PeCDD | A | 100.00 | 100 | 0.7763790 | 0.7783543 | | 0.3 | +/-38 | | 13C12-1,2,3,4,7,8-HxCDF | A | 100.00 | 99.4 | 1.0947840 | 1.0885831 | | -0.6 | +/-24 | | 13C12-1,2,3,6,7,8-HxCDF | A | 100.00 | 101 | 1.1676720 | 1.1761629 | | 0.7 | +/-30 | | 13C12-2,3,4,6,7,8-HxCDF | A | 100.00 | 101 | 1.0228740 | 1.0333502 | | 1.0 | +/-27 | | 13C12-1,2,3,7,8,9-HxCDF | A | 100.00 | 109 | 0.8787479 | 0.9615819 | | 9.4 | +/-26 | | 13C12-1,2,3,4,7,8-HxCDD | A | 100.00 | 97.0 | 0.9749220 | 0.9458114 | | -3.0 | +/-15 | | 13C12-1,2,3,6,7,8-HxCDD | A | 100.00 | 98.4 | 1.0665120 | 1.0499658 | | -1.6 | +/-15 | | 13C12-1,2,3,4,6,7,8-HpCDF | A | 100.00 | 100 | 0.9254863 | 0.9271072 | | 0.2 | +/-22 | | 13C12-1,2,3,4,7,8,9-HpCDF | A | 100.00 | 101 | 0.7148797 | 0.7205964 | | 0.8 | +/-23 | | 13C12-1,2,3,4,6,7,8-HpCDD | A | 100.00 | 102 | 0.5816149 | 0.5923495 | | 1.8 | +/-18 | | 13C12-OCDD | A | 200.00 | 220 | 0.5085582 | 0.5604733 | | 10.2 | +/-52 | | 37Cl4-2,3,7,8-TCDD | A | 10.000 | 9.90 | 1.1201030 | 1.1089535 | | -1.0 | +/-21 | ^{*} Values outside of QC limits | Lab Name: | Analytical | Resources, LLC | 2 | | SE | OG: | 22C0456 | | |--------------------|-------------|----------------|------|-------------|-----|-------------|----------------|--| | Instrument .ID: | AUTOSPE | EC01 | | | La | b File ID: | 22032303 | | | Date Analyzed: | 03/23/22 | | | | Tiı | ne Analyzed | : <u>10:49</u> | | | Lab Sample ID: | SKC0306- | RES1 | | | Se | quence: | SKC0306 | | | Percent Valley De | termination | for Column: | | RTX-Dioxin2 | ID: | 0.25 (r | nm) | | | 1278-TCDD/2378 | -TCDD: | 1 | 12.3 | | | | | | | 3467-TCDF/2378 | -TCDF: | 1 | 3.1 | | | | | | | Quality Control (C | QC) Limits: | ≤ 25% | | | | | | | | Lab Sample ID | Sample Name | Lab File ID | Data Analyzed | Time Analyzed | |---------------|-------------|-------------|---------------|---------------| | SKC0306-ICV1 | CS3H1 | 22032302 | 03/23/2022 | 09:30 | | SKC0306-RES1 | ISCH1 | 22032303 | 03/23/2022 | 10:49 | | SKC0306-CAL1 | CSLCH | 22032304 | 03/23/2022 | 11:36 | | SKC0306-CAL2 | CS1CH | 22032305 | 03/23/2022 | 12:45 | | SKC0306-CAL3 | CS2CH | 22032306 | 03/23/2022 | 13:37 | | SKC0306-CAL4 | CS3CH | 22032307 | 03/23/2022 | 14:24 | | SKC0306-CAL5 | CS4CH | 22032308 | 03/23/2022 | 15:11 | | SKC0306-CAL6 | CS5CH | 22032309 | 03/23/2022 | 15:59 | | SKC0306-SCV1 | ICVCH | 22032310 | 03/23/2022 | 16:46 | | SKC0306-CCV1 | CS3H2 | 22032311 | 03/23/2022 | 17:34 | | SKC0306-RES2 | ISCH2 | 22032312 | 03/23/2022 | 18:26 | | Lab Name: | Analytical | Resources, LL | .C | | | SDC | j: | 22C0456 | |-------------------|--------------|---------------|------|-----------|----|-------|-------------|----------| | Instrument .ID: | AUTOSPE | EC01 | | | | Lab | File ID: | 22032312 | | Date Analyzed: | 03/23/22 | | | | | Tim | e Analyzed: | 18:26 | | Lab Sample ID: | SKC0306- | RES2 | | | | Sequ | ience: | SKC0306 | | Percent Valley De | etermination | for Column: | | RTX-Dioxi | n2 | ID: _ | 0.25 (mr | m) | | 1278-TCDD/2378 | 3-TCDD: | | 13.4 | | | | | | | 3467-TCDF/2378 | -TCDF: | | 14.7 | | | | | | | | | | | | | | | | Quality Control (QC) Limits: $\leq 25\%$ | Lab Sample ID | Sample Name | Lab File ID | Data Analyzed | Time Analyzed | |---------------|-------------|-------------|---------------|---------------| | SKC0306-ICV1 | CS3H1 | 22032302 | 03/23/2022 | 09:30 | | SKC0306-RES1 | ISCH1 | 22032303 | 03/23/2022 | 10:49 | | SKC0306-CAL1 | CSLCH | 22032304 | 03/23/2022 | 11:36 | | SKC0306-CAL2 | CS1CH | 22032305 | 03/23/2022 | 12:45 | | SKC0306-CAL3 | CS2CH | 22032306 | 03/23/2022 | 13:37 | | SKC0306-CAL4 | CS3CH | 22032307 | 03/23/2022 | 14:24 | | SKC0306-CAL5 | CS4CH | 22032308 | 03/23/2022 | 15:11 | | SKC0306-CAL6 | CS5CH | 22032309 | 03/23/2022 | 15:59 | | SKC0306-SCV1 | ICVCH | 22032310 | 03/23/2022 | 16:46 | | SKC0306-CCV1 | CS3H2 | 22032311 | 03/23/2022 | 17:34 | | SKC0306-RES2 | ISCH2 | 22032312 | 03/23/2022 | 18:26 | | Lab Name: | Analytical Resources, Ll | LC | | SD | G: | 22C0456 | |--------------------|--------------------------|------|-------------|-------|--------------|----------| | Instrument .ID: | AUTOSPEC01 | | | Lab | File ID: | 22040803 | | Date Analyzed: | 04/08/22 | | | Tin | ne Analyzed: | 12:53 | | Lab Sample ID: | SKD0114-RES1 | | | Sec | quence: | SKD0114 | | Percent Valley De | termination for Column: | | RTX-Dioxin2 | ID: _ | 0.25 (mm) | | | 1278-TCDD/2378 | -TCDD: | 9.8 | | | | | | 3467-TCDF/2378 | -TCDF: | 13.6 | | | | | | Quality Control
(C | QC) Limits: ≤ 25% | | | | | | | Lab Sample ID | Sample Name | Lab File ID | Data Analyzed | Time Analyzed | |---------------|--------------------|-------------|---------------|---------------| | SKD0114-ICV1 | CS3M1 | 22040802 | 04/08/2022 | 11:57 | | SKD0114-RES1 | ISCM1 | 22040803 | 04/08/2022 | 12:53 | | BKC0836-BLK1 | Blank | 22040804 | 04/08/2022 | 13:40 | | BKC0836-BS1 | LCS | 22040805 | 04/08/2022 | 14:28 | | BKC0836-BSD1 | LCS Dup | 22040806 | 04/08/2022 | 15:16 | | 22C0456-01 | MW-CP1-032322 | 22040807 | 04/08/2022 | 16:04 | | 22C0456-02 | MW-CP1-032322-D | 22040808 | 04/08/2022 | 16:52 | | 22C0456-03 | MW-CP2-032322 | 22040809 | 04/08/2022 | 17:40 | | 22C0456-04 | MW-CP3-032322 | 22040810 | 04/08/2022 | 18:28 | | 22C0456-05 | MW-CP4-032322 | 22040811 | 04/08/2022 | 19:16 | | 22C0456-06 | MW-CP5-032322 | 22040812 | 04/08/2022 | 20:04 | | 22C0456-07 | MW-CP6-032322 | 22040813 | 04/08/2022 | 20:52 | | SKD0114-CCV1 | CS3M2 | 22040814 | 04/08/2022 | 21:40 | | SKD0114-RES2 | ISCM2 | 22040815 | 04/08/2022 | 22:32 | | 22C0456-08 | MW-CP7-032322 | 22040816 | 04/08/2022 | 23:23 | | 22C0456-09 | MW-VB3-032322 | 22040817 | 04/09/2022 | 00:11 | | 22C0456-10 | HCOO-B312-032322 | 22040818 | 04/09/2022 | 00:59 | | 22C0456-11 | MW-C1-VB1-032422 | 22040819 | 04/09/2022 | 01:47 | | 22C0456-12 | MW-C1-VB1-032422-D | 22040820 | 04/09/2022 | 02:35 | | 22C0456-15 | MW-C1-VB2-032422 | 22040821 | 04/09/2022 | 03:23 | | SKD0114-CCV2 | CS3M3 | 22040826 | 04/09/2022 | 07:22 | | SKD0114-RES3 | ISCM3 | 22040827 | 04/09/2022 | 08:15 | | Lab Name: | Analytical | Resources, LLC | | | SI | OG: | | 22C0456 | |--------------------|-------------|----------------|----|-------------|-----|------------|------|----------| | Instrument .ID: | AUTOSPE | CC01 | | | La | ıb File ID | : | 22040815 | | Date Analyzed: | 04/08/22 | | | | Tin | me Analy | zed: | 22:32 | | Lab Sample ID: | SKD0114- | RES2 | | | Se | quence: | | SKD0114 | | Percent Valley De | termination | for Column: | | RTX-Dioxin2 | ID: | 0.25 | (mm) | | | 1278-TCDD/2378 | -TCDD: | 9 | .8 | | | | | | | 3467-TCDF/2378 | -TCDF: | 1 | 15 | | | | | | | Quality Control (C | QC) Limits: | ≤ 25% | | | | | | | | Lab Sample ID | Sample Name | Lab File ID | Data Analyzed | Time Analyzed | |---------------|--------------------|-------------|---------------|---------------| | SKD0114-ICV1 | CS3M1 | 22040802 | 04/08/2022 | 11:57 | | SKD0114-RES1 | ISCM1 | 22040803 | 04/08/2022 | 12:53 | | BKC0836-BLK1 | Blank | 22040804 | 04/08/2022 | 13:40 | | BKC0836-BS1 | LCS | 22040805 | 04/08/2022 | 14:28 | | BKC0836-BSD1 | LCS Dup | 22040806 | 04/08/2022 | 15:16 | | 22C0456-01 | MW-CP1-032322 | 22040807 | 04/08/2022 | 16:04 | | 22C0456-02 | MW-CP1-032322-D | 22040808 | 04/08/2022 | 16:52 | | 22C0456-03 | MW-CP2-032322 | 22040809 | 04/08/2022 | 17:40 | | 22C0456-04 | MW-CP3-032322 | 22040810 | 04/08/2022 | 18:28 | | 22C0456-05 | MW-CP4-032322 | 22040811 | 04/08/2022 | 19:16 | | 22C0456-06 | MW-CP5-032322 | 22040812 | 04/08/2022 | 20:04 | | 22C0456-07 | MW-CP6-032322 | 22040813 | 04/08/2022 | 20:52 | | SKD0114-CCV1 | CS3M2 | 22040814 | 04/08/2022 | 21:40 | | SKD0114-RES2 | ISCM2 | 22040815 | 04/08/2022 | 22:32 | | 22C0456-08 | MW-CP7-032322 | 22040816 | 04/08/2022 | 23:23 | | 22C0456-09 | MW-VB3-032322 | 22040817 | 04/09/2022 | 00:11 | | 22C0456-10 | HCOO-B312-032322 | 22040818 | 04/09/2022 | 00:59 | | 22C0456-11 | MW-C1-VB1-032422 | 22040819 | 04/09/2022 | 01:47 | | 22C0456-12 | MW-C1-VB1-032422-D | 22040820 | 04/09/2022 | 02:35 | | 22C0456-15 | MW-C1-VB2-032422 | 22040821 | 04/09/2022 | 03:23 | | SKD0114-CCV2 | CS3M3 | 22040826 | 04/09/2022 | 07:22 | | SKD0114-RES3 | ISCM3 | 22040827 | 04/09/2022 | 08:15 | | Lab Name: | Analytical | Resources, LLC | 2 | | SI | OG: | | 22C0456 | | |--------------------|-------------|----------------|------|-------------|-------|------------|------|----------|--| | Instrument .ID: | AUTOSPE | EC01 | | | La | ab File ID | : | 22040827 | | | Date Analyzed: | 04/09/22 | | | | Ti | me Analy | zed: | 08:15 | | | Lab Sample ID: | SKD0114- | RES3 | | | Se | equence: | | SKD0114 | | | Percent Valley De | termination | for Column: | | RTX-Dioxin2 | 2 ID: | 0.25 | (mm) | | | | 1278-TCDD/2378 | -TCDD: | 1 | 17.7 | | | | | | | | 3467-TCDF/2378- | -TCDF: | 1 | 17.3 | | | | | | | | Quality Control (C | QC) Limits: | ≤ 25% | | | | | | | | | Lab Sample ID | Sample Name | Lab File ID | Data Analyzed | Time Analyzed | |---------------|--------------------|-------------|---------------|---------------| | SKD0114-ICV1 | CS3M1 | 22040802 | 04/08/2022 | 11:57 | | SKD0114-RES1 | ISCM1 | 22040803 | 04/08/2022 | 12:53 | | BKC0836-BLK1 | Blank | 22040804 | 04/08/2022 | 13:40 | | BKC0836-BS1 | LCS | 22040805 | 04/08/2022 | 14:28 | | BKC0836-BSD1 | LCS Dup | 22040806 | 04/08/2022 | 15:16 | | 22C0456-01 | MW-CP1-032322 | 22040807 | 04/08/2022 | 16:04 | | 22C0456-02 | MW-CP1-032322-D | 22040808 | 04/08/2022 | 16:52 | | 22C0456-03 | MW-CP2-032322 | 22040809 | 04/08/2022 | 17:40 | | 22C0456-04 | MW-CP3-032322 | 22040810 | 04/08/2022 | 18:28 | | 22C0456-05 | MW-CP4-032322 | 22040811 | 04/08/2022 | 19:16 | | 22C0456-06 | MW-CP5-032322 | 22040812 | 04/08/2022 | 20:04 | | 22C0456-07 | MW-CP6-032322 | 22040813 | 04/08/2022 | 20:52 | | SKD0114-CCV1 | CS3M2 | 22040814 | 04/08/2022 | 21:40 | | SKD0114-RES2 | ISCM2 | 22040815 | 04/08/2022 | 22:32 | | 22C0456-08 | MW-CP7-032322 | 22040816 | 04/08/2022 | 23:23 | | 22C0456-09 | MW-VB3-032322 | 22040817 | 04/09/2022 | 00:11 | | 22C0456-10 | HCOO-B312-032322 | 22040818 | 04/09/2022 | 00:59 | | 22C0456-11 | MW-C1-VB1-032422 | 22040819 | 04/09/2022 | 01:47 | | 22C0456-12 | MW-C1-VB1-032422-D | 22040820 | 04/09/2022 | 02:35 | | 22C0456-15 | MW-C1-VB2-032422 | 22040821 | 04/09/2022 | 03:23 | | SKD0114-CCV2 | CS3M3 | 22040826 | 04/09/2022 | 07:22 | | SKD0114-RES3 | ISCM3 | 22040827 | 04/09/2022 | 08:15 | # ANALYSIS BATCH (SEQUENCE) SUMMARY EPA 1613B Laboratory: <u>Analytical Resources, LLC</u> SDG: <u>22C0456</u> Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKC0306 Instrument: AUTOSPEC01 Calibration: FC00062 | Sample Name | Lab Sample ID | Lab File ID | Matrix | Analysis Date/Time | |-------------|---------------|-------------|--------|--------------------| | CS3H1 | SKC0306-ICV1 | 22032302 | NA | 03/23/22 09:30 | | ISCH1 | SKC0306-RES1 | 22032303 | NA | 03/23/22 10:49 | | CSLCH | SKC0306-CAL1 | 22032304 | NA | 03/23/22 11:36 | | CS1CH | SKC0306-CAL2 | 22032305 | NA | 03/23/22 12:45 | | CS2CH | SKC0306-CAL3 | 22032306 | NA | 03/23/22 13:37 | | CS3CH | SKC0306-CAL4 | 22032307 | NA | 03/23/22 14:24 | | CS4CH | SKC0306-CAL5 | 22032308 | NA | 03/23/22 15:11 | | CS5CH | SKC0306-CAL6 | 22032309 | NA | 03/23/22 15:59 | | ICVCH | SKC0306-SCV1 | 22032310 | NA | 03/23/22 16:46 | | CS3H2 | SKC0306-CCV1 | 22032311 | NA | 03/23/22 17:34 | | ISCH2 | SKC0306-RES2 | 22032312 | NA | 03/23/22 18:26 | # ANALYSIS BATCH (SEQUENCE) SUMMARY EPA 1613B Laboratory: <u>Analytical Resources, LLC</u> SDG: <u>22C0456</u> Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Calibration: FC00062 | Sample Name | Lab Sample ID | Lab File ID | Matrix | Analysis Date/Time | |--------------------|---------------|-------------|--------|--------------------| | CS3M1 | SKD0114-ICV1 | 22040802 | NA | 04/08/22 11:57 | | ISCM1 | SKD0114-RES1 | 22040803 | NA | 04/08/22 12:53 | | Blank | BKC0836-BLK1 | 22040804 | Water | 04/08/22 13:40 | | LCS | BKC0836-BS1 | 22040805 | Water | 04/08/22 14:28 | | LCS Dup | BKC0836-BSD1 | 22040806 | Water | 04/08/22 15:16 | | MW-CP1-032322 | 22C0456-01 | 22040807 | Water | 04/08/22 16:04 | | MW-CP1-032322-D | 22C0456-02 | 22040808 | Water | 04/08/22 16:52 | | MW-CP2-032322 | 22C0456-03 | 22040809 | Water | 04/08/22 17:40 | | MW-CP3-032322 | 22C0456-04 | 22040810 | Water | 04/08/22 18:28 | | MW-CP4-032322 | 22C0456-05 | 22040811 | Water | 04/08/22 19:16 | | MW-CP5-032322 | 22C0456-06 | 22040812 | Water | 04/08/22 20:04 | | MW-CP6-032322 | 22C0456-07 | 22040813 | Water | 04/08/22 20:52 | | CS3M2 | SKD0114-CCV1 | 22040814 | NA | 04/08/22 21:40 | | ISCM2 | SKD0114-RES2 | 22040815 | NA | 04/08/22 22:32 | | MW-CP7-032322 | 22C0456-08 | 22040816 | Water | 04/08/22 23:23 | | MW-VB3-032322 | 22C0456-09 | 22040817 | Water | 04/09/22 00:11 | | HCOO-B312-032322 | 22C0456-10 | 22040818 | Water | 04/09/22 00:59 | | MW-C1-VB1-032422 | 22C0456-11 | 22040819 | Water | 04/09/22 01:47 | | MW-C1-VB1-032422-D | 22C0456-12 | 22040820 | Water | 04/09/22 02:35 | | MW-C1-VB2-032422 | 22C0456-15 | 22040821 | Water | 04/09/22 03:23 | | CS3M3 | SKD0114-CCV2 | 22040826 | NA | 04/09/22 07:22 | | ISCM3 | SKD0114-RES3 | 22040827 | NA | 04/09/22 08:15 | #### ANALYSIS SEQUENCE Printed: 4/11/2022 12:27:30PM SKD0114 Instrument: AUTOSPEC01 Element Column ID: k2341 Calibration ID: FC00062 Tune File: FEB1622-1-5 EM Voltage: 360 Resolution check times: 11:50, 22:32, 08:15 | | | l | Ī | T | I | T I | | | | | |--------------|--------------------|--------------|-----------|-------|---------|---------|----------|---------|---------|----------| | Lab Number | Sample Name | Analysis | Container | Order | STD ID | ISTD ID | Analyzed | File ID | Analyst | Comments | | SKD0114-ICV1 | CS3M1 | QC | | 1 | J001522 | | | | | | | SKD0114-RES1 | ISCM1 | QC | | 2 | J012679 | | | | | | | BKC0836-BLK1 | Blank | QC | | 3 | | J011426 | | | | | | BKC0836-BS1 | LCS | QC | | 4 | | J011426 | | | | | | BKC0836-BSD1 | LCS Dup | QC | | 5 | | J011426 | | | | | | 22C0456-01 | MW-CP1-032322 | 1613B Dioxin | B 01 | 6 | | J011426 | | | | | | 22C0456-02 | MW-CP1-032322-D | 1613B Dioxin | B 01 | 7 | | J011426 | | | | | | 22C0456-03 | MW-CP2-032322 | 1613B Dioxin | B 01 | 8 | | J011426 | | | | | | 22C0456-04 | MW-CP3-032322 | 1613B Dioxin | B 01 | 9 | | J011426 | | | | | | 22C0456-05 | MW-CP4-032322 | 1613B Dioxin | B 01 | 10 | | J011426 | | | | | | 22C0456-06 | MW-CP5-032322 | 1613B Dioxin | B 01 | 11 | | J011426 | | | | | | 22C0456-07 | MW-CP6-032322 | 1613B Dioxin
| B 01 | 12 | | J011426 | | | | | | SKD0114-CCV1 | CS3M2 | QC | | 13 | J001522 | | | | | | | SKD0114-RES2 | ISCM2 | QC | | 14 | J012679 | | | | | | | 22C0456-08 | MW-CP7-032322 | 1613B Dioxin | B 01 | 15 | | J011426 | | | | | | 22C0456-09 | MW-VB3-032322 | 1613B Dioxin | B 01 | 16 | | J011426 | | | | | | 22C0456-10 | HCOO-B312-032322 | 1613B Dioxin | B 01 | 17 | | J011426 | | | | | | 22C0456-11 | MW-C1-VB1-032422 | 1613B Dioxin | B 01 | 18 | | J011426 | | | | | | 22C0456-12 | MW-C1-VB1-032422-D | 1613B Dioxin | B 01 | 19 | | J011426 | | | | | | 22C0456-15 | MW-C1-VB2-032422 | 1613B Dioxin | B 01 | 20 | | J011426 | | | | | | 22C0489-01 | RP032422-11 | 1613B Dioxin | A 01 | 21 | | J011426 | | | | | | 22C0489-02 | RP032422-12 | 1613B Dioxin | A 01 | 22 | | J011426 | | | | | #### ANALYSIS SEQUENCE Printed: 4/11/2022 12:27:30PM SKD0114 Instrument: AUTOSPEC01 Element Column ID: k2341 Calibration ID: FC00062 Tune File: FEB1622-1-5 EM Voltage: 360 Resolution check times: 11:50, 22:32, 08:15 | Lab Number | Sample Name | Analysis | Container | Order | STD ID | ISTD ID | Analyzed | File ID | Analyst | Comments | |--------------|-------------|--------------|-----------|-------|---------|---------|----------|---------|---------|----------| | 22C0489-03 | RP032422-13 | 1613B Dioxin | A 01 | 23 | | J011426 | | | | | | 22C0489-06 | RP032422-16 | 1613B Dioxin | A 01 | 24 | | J011426 | | | | | | SKD0114-CCV2 | CS3M3 | QC | | 25 | J001522 | | | | | | | SKD0114-RES3 | ISCM3 | QC | | 26 | J012679 | | | | | | seq_ARI_HRGCMS_Data.rpt Page 2 of 2 Laboratory: <u>Analytical Resources, LLC</u> SDG: <u>22C0456</u> Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKC0306 Instrument: AUTOSPEC01 Sample ID: SKC0306-ICV1 Calibration: FC00062 File ID: <u>22032302</u> Analyzed: <u>03/23/22 09:30</u> | Surrogate
Compound | Spike Level
ng/mL | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|----------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 100.00 | 95.8 | 71 - 129 | 24.792 | 24.76933 | 0.0227 | N/A | | | 13C12-2,3,7,8-TCDD | 100.00 | 104 | 82 - 118 | 25.4422 | 25.4145 | 0.0277 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 100.00 | 96.3 | 76 - 124 | 28.9212 | 28.8992 | 0.0220 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 100.00 | 95.7 | 77 - 123 | 30.2582 | 30.24362 | 0.0146 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 100.00 | 100 | 62 - 138 | 30.5255 | 30.5054 | 0.0201 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 100.00 | 93.1 | 76 - 124 | 33.9123 | 33.8999 | 0.0124 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 100.00 | 90.8 | 70 - 130 | 34.0572 | 34.04103 | 0.0162 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 100.00 | 92.7 | 73 - 127 | 34.9483 | 34.93782 | 0.0105 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 100.00 | 101 | 74 - 126 | 35.9957 | 35.97962 | 0.0161 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 100.00 | 96.1 | 85 - 115 | 35.082 | 35.0678 | 0.0142 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 100.00 | 95.7 | 85 - 115 | 35.2047 | 35.18663 | 0.0181 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 100.00 | 94.8 | 78 - 122 | 37.8787 | 37.86993 | 0.0088 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 100.00 | 96.4 | 77 - 123 | 40.0177 | 40.00348 | 0.0142 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 100.00 | 104 | 72 - 128 | 39.327 | 39.31458 | 0.0124 | N/A | | | 13C12-OCDD | 200.00 | 104 | 48 - 152 | 43.7762 | 43.75875 | 0.0175 | N/A | | | 37C14-2,3,7,8-TCDD | 10.000 | 95.9 | 0 - 200 | 25.4572 | 25.43467 | 0.0225 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKC0306 Instrument: AUTOSPEC01 Sample ID: SKC0306-SCV1 Calibration: FC00062 File ID: <u>22032310</u> Analyzed: <u>03/23/22 16:46</u> | Surrogate
Compound | Spike Level
ng/mL | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|----------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 100.00 | 102 | 0 - 200 | 24.7617 | 24.76933 | -0.0076 | N/A | | | 13C12-2,3,7,8-TCDD | 100.00 | 82.0 | 0 - 200 | 25.3967 | 25.4145 | -0.0178 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 100.00 | 104 | 0 - 200 | 28.8878 | 28.8992 | -0.0114 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 100.00 | 107 | 0 - 200 | 30.236 | 30.24362 | -0.0076 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 100.00 | 97.8 | 0 - 200 | 30.4922 | 30.5054 | -0.0132 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 100.00 | 118 | 0 - 200 | 33.8903 | 33.8999 | -0.0096 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 100.00 | 123 | 0 - 200 | 34.0352 | 34.04103 | -0.0058 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 100.00 | 112 | 0 - 200 | 34.9265 | 34.93782 | -0.0113 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 100.00 | 116 | 0 - 200 | 35.9737 | 35.97962 | -0.0059 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 100.00 | 115 | 0 - 200 | 35.0602 | 35.0678 | -0.0076 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 100.00 | 119 | 0 - 200 | 35.1827 | 35.18663 | -0.0039 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 100.00 | 121 | 0 - 200 | 37.8678 | 37.86993 | -0.0021 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 100.00 | 111 | 0 - 200 | 39.9958 | 40.00348 | -0.0077 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 100.00 | 111 | 0 - 200 | 39.305 | 39.31458 | -0.0096 | N/A | | | 13C12-OCDD | 200.00 | 108 | 0 - 200 | 43.7493 | 43.75875 | -0.0095 | N/A | | | 37C14-2,3,7,8-TCDD | 10.000 | 105 | 0 - 200 | 25.427 | 25.43467 | -0.0077 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKC0306 Instrument: AUTOSPEC01 Sample ID: SKC0306-CCV1 Calibration: FC00062 File ID: 22032311 Analyzed: 03/23/22 17:34 | Surrogate
Compound | Spike Level
ng/mL | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|----------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 100.00 | 101 | 71 - 129 | 24.7468 | 24.76933 | -0.0225 | N/A | | | 13C12-2,3,7,8-TCDD | 100.00 | 104 | 82 - 118 | 25.397 | 25.4145 | -0.0175 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 100.00 | 100 | 76 - 124 | 28.8772 | 28.8992 | -0.0220 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 100.00 | 99.4 | 77 - 123 | 30.2253 | 30.24362 | -0.0183 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 100.00 | 96.3 | 62 - 138 | 30.4817 | 30.5054 | -0.0237 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 100.00 | 106 | 76 - 124 | 33.8798 | 33.8999 | -0.0201 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 100.00 | 105 | 70 - 130 | 34.0247 | 34.04103 | -0.0163 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 100.00 | 108 | 73 - 127 | 34.916 | 34.93782 | -0.0218 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 100.00 | 105 | 74 - 126 | 35.9633 | 35.97962 | -0.0163 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 100.00 | 99.9 | 85 - 115 | 35.0497 | 35.0678 | -0.0181 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 100.00 | 103 | 85 - 115 | 35.1723 | 35.18663 | -0.0143 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 100.00 | 108 | 78 - 122 | 37.8575 | 37.86993 | -0.0124 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 100.00 | 104 | 77 - 123 | 39.9855 | 40.00348 | -0.0180 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 100.00 | 104 | 72 - 128 | 39.2948 | 39.31458 | -0.0198 | N/A | | | 13C12-OCDD | 200.00 | 106 | 48 - 152 | 43.741 | 43.75875 | -0.0177 | N/A | | | 37C14-2,3,7,8-TCDD | 10.000 | 96.1 | 0 - 200 | 25.4122 | 25.43467 | -0.0225 | N/A | | ^{*} Values outside of QC limits Laboratory: <u>Analytical Resources, LLC</u> SDG: <u>22C0456</u> Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: <u>SKD0114</u> Instrument: <u>AUTOSPEC01</u> Sample ID: <u>SKD0114-ICV1</u> Calibration: <u>FC00062</u> File ID: 22040802 Analyzed: 04/08/22 11:57 | Surrogate
Compound | Spike Level
ng/mL | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|----------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 100.00 | 104 | 71 - 129 | 24.535 | 24.76933 | -0.2343 | N/A | | | 13C12-2,3,7,8-TCDD | 100.00 | 111 | 82 - 118 | 25.17 | 25.4145 | -0.2445 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 100.00 | 101 | 76 - 124 | 28.6523 | 28.8992 | -0.2469 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 100.00 | 99.7 | 77 - 123 | 29.9893 | 30.24362 | -0.2543 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 100.00 | 105 | 62 - 138 | 30.2457 | 30.5054 | -0.2597 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 100.00 | 94.6 | 76 - 124 | 33.6437 | 33.8999 | -0.2562 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 100.00 | 94.7 | 70 - 130 | 33.7885 | 34.04103 | -0.2525 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 100.00 | 96.7 | 73 - 127 | 34.6908 | 34.93782 | -0.2470 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 100.00 | 103 | 74 - 126 | 35.7382 | 35.97962 | -0.2414 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 100.00 | 97.0 | 85 - 115 | 34.8245 | 35.0678 | -0.2433 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 100.00 | 94.2 | 85 - 115 | 34.936 | 35.18663 | -0.2506 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 100.00 | 92.4 | 78 - 122 | 37.6322 | 37.86993 | -0.2377 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 100.00 | 96.2 | 77 - 123 | 39.749 | 40.00348 | -0.2545 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 100.00 | 101 | 82 - 118 | 39.0693 | 39.31458 | -0.2453 | N/A | | | 13C12-OCDD | 200.00 | 110 | 48 - 152 | 43.4383 | 43.75875 | -0.3205 | N/A | | | 37Cl4-2,3,7,8-TCDD | 10.000 | 103 | 79 - 121 | 25.2003 | 25.43467 | -0.2344 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: <u>BKC0836-BLK1</u> Calibration: <u>FC00062</u>
File ID: <u>22040804</u> Analyzed: <u>04/08/22 13:40</u> | Surrogate
Compound | Spike Level pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 2000.0 | 96.2 | 24 - 169 | 24.5198 | 24.76933 | -0.2495 | N/A | | | 13C12-2,3,7,8-TCDD | 2000.0 | 108 | 25 - 164 | 25.1548 | 25.4145 | -0.2597 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 2000.0 | 96.9 | 24 - 185 | 28.6413 | 28.8992 | -0.2579 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 2000.0 | 97.9 | 21 - 178 | 29.9782 | 30.24362 | -0.2654 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 2000.0 | 101 | 25 - 181 | 30.2345 | 30.5054 | -0.2709 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 2000.0 | 96.6 | 26 - 152 | 33.6325 | 33.8999 | -0.2674 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 2000.0 | 97.3 | 26 - 123 | 33.7773 | 34.04103 | -0.2637 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 2000.0 | 96.4 | 28 - 136 | 34.6798 | 34.93782 | -0.2580 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 2000.0 | 103 | 29 - 147 | 35.727 | 35.97962 | -0.2526 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 2000.0 | 96.6 | 32 - 141 | 34.8137 | 35.0678 | -0.2541 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 2000.0 | 97.4 | 28 - 130 | 34.9362 | 35.18663 | -0.2504 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 2000.0 | 93.9 | 28 - 143 | 37.6323 | 37.86993 | -0.2376 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 2000.0 | 98.5 | 26 - 138 | 39.749 | 40.00348 | -0.2545 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 2000.0 | 101 | 23 - 140 | 39.0695 | 39.31458 | -0.2451 | N/A | | | 13C12-OCDD | 4000.0 | 106 | 17 - 157 | 43.4293 | 43.75875 | -0.3295 | N/A | | | 37Cl4-2,3,7,8-TCDD | 800.00 | 107 | 35 - 197 | 25.17 | 25.43467 | -0.2647 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: BKC0836-BS1 Calibration: FC00062 File ID: <u>22040805</u> Analyzed: <u>04/08/22 14:28</u> | Surrogate
Compound | Spike Level
pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|---------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 2000.0 | 93.5 | 24 - 169 | 24.5047 | 24.76933 | -0.2646 | N/A | | | 13C12-2,3,7,8-TCDD | 2000.0 | 106 | 25 - 164 | 25.1548 | 25.4145 | -0.2597 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 2000.0 | 98.0 | 24 - 185 | 28.63 | 28.8992 | -0.2692 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 2000.0 | 97.5 | 21 - 178 | 29.9668 | 30.24362 | -0.2768 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 2000.0 | 101 | 25 - 181 | 30.2343 | 30.5054 | -0.2711 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 2000.0 | 94.1 | 26 - 152 | 33.6212 | 33.8999 | -0.2787 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 2000.0 | 93.3 | 26 - 123 | 33.766 | 34.04103 | -0.2750 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 2000.0 | 93.5 | 28 - 136 | 34.6685 | 34.93782 | -0.2693 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 2000.0 | 101 | 29 - 147 | 35.7157 | 35.97962 | -0.2639 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 2000.0 | 98.7 | 32 - 141 | 34.8022 | 35.0678 | -0.2656 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 2000.0 | 97.5 | 28 - 130 | 34.9247 | 35.18663 | -0.2619 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 2000.0 | 92.9 | 28 - 143 | 37.6208 | 37.86993 | -0.2491 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 2000.0 | 100 | 26 - 138 | 39.7377 | 40.00348 | -0.2658 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 2000.0 | 101 | 23 - 140 | 39.0582 | 39.31458 | -0.2564 | N/A | | | 13C12-OCDD | 4000.0 | 108 | 17 - 157 | 43.4198 | 43.75875 | -0.3389 | N/A | | | 37C14-2,3,7,8-TCDD | 800.00 | 100 | 35 - 197 | 25.17 | 25.43467 | -0.2647 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: <u>BKC0836-BSD1</u> Calibration: <u>FC00062</u> File ID: <u>22040806</u> Analyzed: <u>04/08/22 15:16</u> | Surrogate
Compound | Spike Level
pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|---------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 2000.0 | 96.7 | 24 - 169 | 24.5198 | 24.76933 | -0.2495 | N/A | | | 13C12-2,3,7,8-TCDD | 2000.0 | 108 | 25 - 164 | 25.1548 | 25.4145 | -0.2597 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 2000.0 | 96.2 | 24 - 185 | 28.63 | 28.8992 | -0.2692 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 2000.0 | 96.8 | 21 - 178 | 29.978 | 30.24362 | -0.2656 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 2000.0 | 98.6 | 25 - 181 | 30.2343 | 30.5054 | -0.2711 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 2000.0 | 94.7 | 26 - 152 | 33.6323 | 33.8999 | -0.2676 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 2000.0 | 94.5 | 26 - 123 | 33.7772 | 34.04103 | -0.2638 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 2000.0 | 93.8 | 28 - 136 | 34.6797 | 34.93782 | -0.2581 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 2000.0 | 99.6 | 29 - 147 | 35.727 | 35.97962 | -0.2526 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 2000.0 | 96.9 | 32 - 141 | 34.8133 | 35.0678 | -0.2545 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 2000.0 | 96.7 | 28 - 130 | 34.9248 | 35.18663 | -0.2618 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 2000.0 | 94.3 | 28 - 143 | 37.621 | 37.86993 | -0.2489 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 2000.0 | 91.8 | 26 - 138 | 39.7377 | 40.00348 | -0.2658 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 2000.0 | 101 | 23 - 140 | 39.0693 | 39.31458 | -0.2453 | N/A | | | 13C12-OCDD | 4000.0 | 103 | 17 - 157 | 43.429 | 43.75875 | -0.3297 | N/A | | | 37C14-2,3,7,8-TCDD | 800.00 | 103 | 35 - 197 | 25.17 | 25.43467 | -0.2647 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: <u>22C0456-01</u> Calibration: <u>FC00062</u> File ID: <u>22040807</u> Analyzed: <u>04/08/22 16:04</u> | Surrogate
Compound | Spike Level
pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|---------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 1886.8 | 94.7 | 24 - 169 | 24.5048 | 24.76933 | -0.2645 | N/A | | | 13C12-2,3,7,8-TCDD | 1886.8 | 108 | 25 - 164 | 25.1398 | 25.4145 | -0.2747 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 1886.8 | 96.5 | 24 - 185 | 28.619 | 28.8992 | -0.2802 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 1886.8 | 97.7 | 21 - 178 | 29.9672 | 30.24362 | -0.2764 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 1886.8 | 99.7 | 25 - 181 | 30.2233 | 30.5054 | -0.2821 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 1886.8 | 96.1 | 26 - 152 | 33.6215 | 33.8999 | -0.2784 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 1886.8 | 97.7 | 26 - 123 | 33.7663 | 34.04103 | -0.2747 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 1886.8 | 97.6 | 28 - 136 | 34.6688 | 34.93782 | -0.2690 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 1886.8 | 104 | 29 - 147 | 35.716 | 35.97962 | -0.2636 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 1886.8 | 97.4 | 32 - 141 | 34.8025 | 35.0678 | -0.2653 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 1886.8 | 97.9 | 28 - 130 | 34.9138 | 35.18663 | -0.2728 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 1886.8 | 93.1 | 28 - 143 | 37.6102 | 37.86993 | -0.2597 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 1886.8 | 93.0 | 26 - 138 | 39.727 | 40.00348 | -0.2765 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 1886.8 | 99.5 | 23 - 140 | 39.0473 | 39.31458 | -0.2673 | N/A | | | 13C12-OCDD | 3773.6 | 104 | 17 - 157 | 43.4202 | 43.75875 | -0.3385 | N/A | | | 37C14-2,3,7,8-TCDD | 754.72 | 104 | 35 - 197 | 25.1548 | 25.43467 | -0.2799 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: <u>22C0456-02</u> Calibration: <u>FC00062</u> File ID: <u>22040808</u> Analyzed: <u>04/08/22 16:52</u> | Surrogate
Compound | Spike Level
pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|---------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 1923.1 | 95.7 | 24 - 169 | 24.5047 | 24.76933 | -0.2646 | N/A | | | 13C12-2,3,7,8-TCDD | 1923.1 | 109 | 25 - 164 | 25.1397 | 25.4145 | -0.2748 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 1923.1 | 96.9 | 24 - 185 | 28.6188 | 28.8992 | -0.2804 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 1923.1 | 97.2 | 21 - 178 | 29.9668 | 30.24362 | -0.2768 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 1923.1 | 98.9 | 25 - 181 | 30.2232 | 30.5054 | -0.2822 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 1923.1 | 95.4 | 26 - 152 | 33.6212 | 33.8999 | -0.2787 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 1923.1 | 94.2 | 26 - 123 | 33.766 | 34.04103 | -0.2750 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 1923.1 | 98.0 | 28 - 136 | 34.6683 | 34.93782 | -0.2695 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 1923.1 | 101 | 29 - 147 | 35.7155 | 35.97962 | -0.2641 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 1923.1 | 94.6 | 32 - 141 | 34.802 | 35.0678 | -0.2658 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 1923.1 | 95.3 | 28 - 130 | 34.9247 | 35.18663 | -0.2619 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 1923.1 | 92.2 | 28 - 143 | 37.6207 | 37.86993 | -0.2492 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 1923.1 | 97.9 | 26 - 138 | 39.7375 | 40.00348 | -0.2660 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 1923.1 | 101 | 23 - 140 | 39.058 | 39.31458 | -0.2566 | N/A | | | 13C12-OCDD | 3846.2 | 111 | 17 - 157 | 43.4197 | 43.75875 | -0.3391 |
N/A | | | 37C14-2,3,7,8-TCDD | 1538.5 | 106 | 35 - 197 | 25.17 | 25.43467 | -0.2647 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: <u>22C0456-03</u> Calibration: <u>FC00062</u> File ID: <u>22040809</u> Analyzed: <u>04/08/22 17:40</u> | Surrogate
Compound | Spike Level
pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|---------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 1886.8 | 101 | 24 - 169 | 24.5197 | 24.76933 | -0.2496 | N/A | | | 13C12-2,3,7,8-TCDD | 1886.8 | 107 | 25 - 164 | 25.1547 | 25.4145 | -0.2598 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 1886.8 | 104 | 24 - 185 | 28.6297 | 28.8992 | -0.2695 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 1886.8 | 104 | 21 - 178 | 29.9777 | 30.24362 | -0.2659 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 1886.8 | 99.2 | 25 - 181 | 30.234 | 30.5054 | -0.2714 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 1886.8 | 101 | 26 - 152 | 33.6317 | 33.8999 | -0.2682 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 1886.8 | 100 | 26 - 123 | 33.7765 | 34.04103 | -0.2645 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 1886.8 | 101 | 28 - 136 | 34.679 | 34.93782 | -0.2588 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 1886.8 | 109 | 29 - 147 | 35.7262 | 35.97962 | -0.2534 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 1886.8 | 95.7 | 32 - 141 | 34.8127 | 35.0678 | -0.2551 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 1886.8 | 96.1 | 28 - 130 | 34.9242 | 35.18663 | -0.2624 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 1886.8 | 113 | 28 - 143 | 37.6313 | 37.86993 | -0.2386 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 1886.8 | 115 | 26 - 138 | 39.7368 | 40.00348 | -0.2667 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 1886.8 | 116 | 23 - 140 | 39.0685 | 39.31458 | -0.2461 | N/A | | | 13C12-OCDD | 3773.6 | 124 | 17 - 157 | 43.4283 | 43.75875 | -0.3304 | N/A | | | 37Cl4-2,3,7,8-TCDD | 754.72 | 105 | 35 - 197 | 25.1698 | 25.43467 | -0.2649 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: <u>22C0456-04</u> Calibration: <u>FC00062</u> File ID: <u>22040810</u> Analyzed: <u>04/08/22 18:28</u> | Surrogate
Compound | Spike Level
pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|---------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 2061.9 | 90.8 | 24 - 169 | 24.5198 | 24.76933 | -0.2495 | N/A | | | 13C12-2,3,7,8-TCDD | 2061.9 | 103 | 25 - 164 | 25.1548 | 25.4145 | -0.2597 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 2061.9 | 93.4 | 24 - 185 | 28.63 | 28.8992 | -0.2692 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 2061.9 | 90.1 | 21 - 178 | 29.978 | 30.24362 | -0.2656 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 2061.9 | 91.4 | 25 - 181 | 30.2343 | 30.5054 | -0.2711 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 2061.9 | 91.9 | 26 - 152 | 33.6323 | 33.8999 | -0.2676 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 2061.9 | 93.9 | 26 - 123 | 33.7772 | 34.04103 | -0.2638 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 2061.9 | 91.8 | 28 - 136 | 34.6798 | 34.93782 | -0.2580 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 2061.9 | 94.9 | 29 - 147 | 35.7268 | 35.97962 | -0.2528 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 2061.9 | 92.0 | 32 - 141 | 34.8135 | 35.0678 | -0.2543 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 2061.9 | 93.6 | 28 - 130 | 34.9248 | 35.18663 | -0.2618 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 2061.9 | 86.9 | 28 - 143 | 37.632 | 37.86993 | -0.2379 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 2061.9 | 89.6 | 26 - 138 | 39.7377 | 40.00348 | -0.2658 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 2061.9 | 95.6 | 23 - 140 | 39.0583 | 39.31458 | -0.2563 | N/A | | | 13C12-OCDD | 4123.7 | 94.5 | 17 - 157 | 43.429 | 43.75875 | -0.3297 | N/A | | | 37Cl4-2,3,7,8-TCDD | 824.74 | 99.2 | 35 - 197 | 25.17 | 25.43467 | -0.2647 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: <u>22C0456-05</u> Calibration: <u>FC00062</u> File ID: 22040811 Analyzed: 04/08/22 19:16 | Surrogate
Compound | Spike Level
pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|---------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 1895.7 | 89.3 | 24 - 169 | 24.5045 | 24.76933 | -0.2648 | N/A | | | 13C12-2,3,7,8-TCDD | 1895.7 | 101 | 25 - 164 | 25.1395 | 25.4145 | -0.2750 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 1895.7 | 91.1 | 24 - 185 | 28.6187 | 28.8992 | -0.2805 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 1895.7 | 90.6 | 21 - 178 | 29.9667 | 30.24362 | -0.2769 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 1895.7 | 93.5 | 25 - 181 | 30.223 | 30.5054 | -0.2824 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 1895.7 | 91.4 | 26 - 152 | 33.6208 | 33.8999 | -0.2791 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 1895.7 | 90.1 | 26 - 123 | 33.7657 | 34.04103 | -0.2753 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 1895.7 | 92.0 | 28 - 136 | 34.6682 | 34.93782 | -0.2696 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 1895.7 | 94.1 | 29 - 147 | 35.7153 | 35.97962 | -0.2643 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 1895.7 | 88.9 | 32 - 141 | 34.8018 | 35.0678 | -0.2660 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 1895.7 | 90.0 | 28 - 130 | 34.9245 | 35.18663 | -0.2621 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 1895.7 | 87.8 | 28 - 143 | 37.6205 | 37.86993 | -0.2494 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 1895.7 | 88.9 | 26 - 138 | 39.7262 | 40.00348 | -0.2773 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 1895.7 | 89.7 | 23 - 140 | 39.0577 | 39.31458 | -0.2569 | N/A | | | 13C12-OCDD | 3791.5 | 97.1 | 17 - 157 | 43.4193 | 43.75875 | -0.3394 | N/A | | | 37C14-2,3,7,8-TCDD | 758.29 | 96.7 | 35 - 197 | 25.1698 | 25.43467 | -0.2649 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: <u>22C0456-06</u> Calibration: <u>FC00062</u> File ID: <u>22040812</u> Analyzed: <u>04/08/22 20:04</u> | Surrogate
Compound | Spike Level pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 1964.6 | 88.3 | 24 - 169 | 24.5047 | 24.76933 | -0.2646 | N/A | | | 13C12-2,3,7,8-TCDD | 1964.6 | 99.3 | 25 - 164 | 25.1548 | 25.4145 | -0.2597 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 1964.6 | 92.4 | 24 - 185 | 28.6302 | 28.8992 | -0.2690 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 1964.6 | 90.8 | 21 - 178 | 29.9782 | 30.24362 | -0.2654 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 1964.6 | 94.2 | 25 - 181 | 30.2345 | 30.5054 | -0.2709 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 1964.6 | 89.4 | 26 - 152 | 33.6213 | 33.8999 | -0.2786 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 1964.6 | 89.7 | 26 - 123 | 33.7662 | 34.04103 | -0.2748 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 1964.6 | 92.0 | 28 - 136 | 34.6687 | 34.93782 | -0.2691 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 1964.6 | 98.0 | 29 - 147 | 35.727 | 35.97962 | -0.2526 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 1964.6 | 92.0 | 32 - 141 | 34.8023 | 35.0678 | -0.2655 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 1964.6 | 89.5 | 28 - 130 | 34.9248 | 35.18663 | -0.2618 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 1964.6 | 88.4 | 28 - 143 | 37.6208 | 37.86993 | -0.2491 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 1964.6 | 94.8 | 26 - 138 | 39.7378 | 40.00348 | -0.2657 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 1964.6 | 94.3 | 23 - 140 | 39.0582 | 39.31458 | -0.2564 | N/A | | | 13C12-OCDD | 3929.3 | 99.2 | 17 - 157 | 43.42 | 43.75875 | -0.3387 | N/A | | | 37Cl4-2,3,7,8-TCDD | 785.85 | 95.4 | 35 - 197 | 25.17 | 25.43467 | -0.2647 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: <u>22C0456-07</u> Calibration: <u>FC00062</u> File ID: <u>22040813</u> Analyzed: <u>04/08/22 20:52</u> | Surrogate
Compound | Spike Level
pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|---------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 1947.4 | 94.6 | 24 - 169 | 24.4897 | 24.76933 | -0.2796 | N/A | | | 13C12-2,3,7,8-TCDD | 1947.4 | 107 | 25 - 164 | 25.1397 | 25.4145 | -0.2748 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 1947.4 | 94.2 | 24 - 185 | 28.6187 | 28.8992 | -0.2805 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 1947.4 | 94.7 | 21 - 178 | 29.9557 | 30.24362 | -0.2879 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 1947.4 | 97.4 | 25 - 181 | 30.2118 | 30.5054 | -0.2936 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 1947.4 | 93.6 | 26 - 152 | 33.61 | 33.8999 | -0.2899 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 1947.4 | 92.9 | 26 - 123 | 33.7548 | 34.04103 | -0.2862 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 1947.4 | 93.2 | 28 - 136 | 34.6573 | 34.93782 | -0.2805 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 1947.4 | 96.8 | 29 - 147 | 35.7045 | 35.97962 | -0.2751 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 1947.4 | 93.9 | 32 - 141 | 34.791 | 35.0678 | -0.2768 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 1947.4 | 90.1 | 28 - 130 | 34.9135 | 35.18663 | -0.2731 | N/A | | |
13C12-1,2,3,4,6,7,8-HpCDF | 1947.4 | 88.6 | 28 - 143 | 37.6095 | 37.86993 | -0.2604 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 1947.4 | 92.3 | 26 - 138 | 39.7263 | 40.00348 | -0.2772 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 1947.4 | 96.4 | 23 - 140 | 39.0468 | 39.31458 | -0.2678 | N/A | | | 13C12-OCDD | 3894.8 | 96.1 | 17 - 157 | 43.4105 | 43.75875 | -0.3483 | N/A | | | 37Cl4-2,3,7,8-TCDD | 778.97 | 103 | 35 - 197 | 25.1548 | 25.43467 | -0.2799 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: SKD0114-CCV1 Calibration: FC00062 File ID: 22040814 Analyzed: 04/08/22 21:40 | Surrogate
Compound | Spike Level
ng/mL | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|----------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 100.00 | 104 | 71 - 129 | 24.5047 | 24.76933 | -0.2646 | N/A | | | 13C12-2,3,7,8-TCDD | 100.00 | 114 | 82 - 118 | 25.1397 | 25.4145 | -0.2748 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 100.00 | 103 | 76 - 124 | 28.6188 | 28.8992 | -0.2804 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 100.00 | 99.9 | 77 - 123 | 29.9557 | 30.24362 | -0.2879 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 100.00 | 103 | 62 - 138 | 30.2232 | 30.5054 | -0.2822 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 100.00 | 98.3 | 76 - 124 | 33.61 | 33.8999 | -0.2899 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 100.00 | 99.1 | 70 - 130 | 33.7548 | 34.04103 | -0.2862 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 100.00 | 97.6 | 73 - 127 | 34.6573 | 34.93782 | -0.2805 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 100.00 | 105 | 74 - 126 | 35.7157 | 35.97962 | -0.2639 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 100.00 | 99.5 | 85 - 115 | 34.791 | 35.0678 | -0.2768 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 100.00 | 98.1 | 85 - 115 | 34.9135 | 35.18663 | -0.2731 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 100.00 | 95.4 | 78 - 122 | 37.6098 | 37.86993 | -0.2601 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 100.00 | 101 | 77 - 123 | 39.7265 | 40.00348 | -0.2770 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 100.00 | 101 | 82 - 118 | 39.047 | 39.31458 | -0.2676 | N/A | | | 13C12-OCDD | 200.00 | 109 | 48 - 152 | 43.4107 | 43.75875 | -0.3481 | N/A | | | 37Cl4-2,3,7,8-TCDD | 10.000 | 105 | 79 - 121 | 25.1548 | 25.43467 | -0.2799 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: <u>22C0456-08</u> Calibration: <u>FC00062</u> File ID: <u>22040816</u> Analyzed: <u>04/08/22 23:23</u> | Surrogate
Compound | Spike Level
pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|---------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 1899.3 | 94.2 | 24 - 169 | 24.4895 | 24.76933 | -0.2798 | N/A | | | 13C12-2,3,7,8-TCDD | 1899.3 | 105 | 25 - 164 | 25.1245 | 25.4145 | -0.2900 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 1899.3 | 94.5 | 24 - 185 | 28.6077 | 28.8992 | -0.2915 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 1899.3 | 95.4 | 21 - 178 | 29.9557 | 30.24362 | -0.2879 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 1899.3 | 96.1 | 25 - 181 | 30.212 | 30.5054 | -0.2934 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 1899.3 | 94.1 | 26 - 152 | 33.61 | 33.8999 | -0.2899 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 1899.3 | 95.9 | 26 - 123 | 33.7548 | 34.04103 | -0.2862 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 1899.3 | 94.4 | 28 - 136 | 34.6573 | 34.93782 | -0.2805 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 1899.3 | 101 | 29 - 147 | 35.7045 | 35.97962 | -0.2751 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 1899.3 | 94.4 | 32 - 141 | 34.791 | 35.0678 | -0.2768 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 1899.3 | 99.2 | 28 - 130 | 34.9023 | 35.18663 | -0.2843 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 1899.3 | 96.9 | 28 - 143 | 37.5985 | 37.86993 | -0.2714 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 1899.3 | 94.4 | 26 - 138 | 39.7153 | 40.00348 | -0.2882 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 1899.3 | 98.3 | 23 - 140 | 39.0358 | 39.31458 | -0.2788 | N/A | | | 13C12-OCDD | 3798.7 | 99.9 | 17 - 157 | 43.4015 | 43.75875 | -0.3573 | N/A | | | 37Cl4-2,3,7,8-TCDD | 759.73 | 99.9 | 35 - 197 | 25.1548 | 25.43467 | -0.2799 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: <u>22C0456-09</u> Calibration: <u>FC00062</u> File ID: 22040817 Analyzed: 04/09/22 00:11 | Surrogate
Compound | Spike Level
pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|---------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 1941.7 | 76.5 | 24 - 169 | 24.5045 | 24.76933 | -0.2648 | N/A | | | 13C12-2,3,7,8-TCDD | 1941.7 | 85.5 | 25 - 164 | 25.1397 | 25.4145 | -0.2748 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 1941.7 | 76.3 | 24 - 185 | 28.6188 | 28.8992 | -0.2804 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 1941.7 | 76.2 | 21 - 178 | 29.9668 | 30.24362 | -0.2768 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 1941.7 | 76.1 | 25 - 181 | 30.2232 | 30.5054 | -0.2822 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 1941.7 | 77.8 | 26 - 152 | 33.6212 | 33.8999 | -0.2787 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 1941.7 | 79.6 | 26 - 123 | 33.7548 | 34.04103 | -0.2862 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 1941.7 | 80.5 | 28 - 136 | 34.6685 | 34.93782 | -0.2693 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 1941.7 | 82.4 | 29 - 147 | 35.7157 | 35.97962 | -0.2639 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 1941.7 | 78.0 | 32 - 141 | 34.8022 | 35.0678 | -0.2656 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 1941.7 | 80.3 | 28 - 130 | 34.9137 | 35.18663 | -0.2729 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 1941.7 | 75.4 | 28 - 143 | 37.6097 | 37.86993 | -0.2602 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 1941.7 | 76.3 | 26 - 138 | 39.7265 | 40.00348 | -0.2770 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 1941.7 | 76.4 | 23 - 140 | 39.047 | 39.31458 | -0.2676 | N/A | | | 13C12-OCDD | 3883.5 | 73.0 | 17 - 157 | 43.4107 | 43.75875 | -0.3481 | N/A | | | 37Cl4-2,3,7,8-TCDD | 776.70 | 82.8 | 35 - 197 | 25.1547 | 25.43467 | -0.2800 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: <u>22C0456-10</u> Calibration: <u>FC00062</u> File ID: <u>22040818</u> Analyzed: <u>04/09/22 00:59</u> | Surrogate
Compound | Spike Level
pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|---------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 1966.6 | 97.9 | 24 - 169 | 24.4895 | 24.76933 | -0.2798 | N/A | | | 13C12-2,3,7,8-TCDD | 1966.6 | 111 | 25 - 164 | 25.1245 | 25.4145 | -0.2900 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 1966.6 | 100 | 24 - 185 | 28.6078 | 28.8992 | -0.2914 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 1966.6 | 98.5 | 21 - 178 | 29.9558 | 30.24362 | -0.2878 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 1966.6 | 101 | 25 - 181 | 30.212 | 30.5054 | -0.2934 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 1966.6 | 101 | 26 - 152 | 33.61 | 33.8999 | -0.2899 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 1966.6 | 104 | 26 - 123 | 33.755 | 34.04103 | -0.2860 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 1966.6 | 102 | 28 - 136 | 34.6575 | 34.93782 | -0.2803 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 1966.6 | 108 | 29 - 147 | 35.7047 | 35.97962 | -0.2749 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 1966.6 | 102 | 32 - 141 | 34.7912 | 35.0678 | -0.2766 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 1966.6 | 104 | 28 - 130 | 34.9027 | 35.18663 | -0.2839 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 1966.6 | 100 | 28 - 143 | 37.6098 | 37.86993 | -0.2601 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 1966.6 | 103 | 26 - 138 | 39.7155 | 40.00348 | -0.2880 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 1966.6 | 106 | 23 - 140 | 39.0472 | 39.31458 | -0.2674 | N/A | | | 13C12-OCDD | 3933.1 | 113 | 17 - 157 | 43.4017 | 43.75875 | -0.3571 | N/A | | | 37C14-2,3,7,8-TCDD | 786.63 | 106 | 35 - 197 | 25.1548 | 25.43467 | -0.2799 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: <u>22C0456-11</u> Calibration: <u>FC00062</u> File ID: 22040819 Analyzed: 04/09/22 01:47 | Surrogate
Compound | Spike Level
pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|---------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 2000.0 | 97.6 | 24 - 169 | 24.5047 | 24.76933 | -0.2646 | N/A | | | 13C12-2,3,7,8-TCDD | 2000.0 | 108 | 25 - 164 | 25.1397 | 25.4145 | -0.2748 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 2000.0 | 99.1 | 24 - 185 | 28.6188 | 28.8992 | -0.2804 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 2000.0 | 98.1 | 21 - 178 | 29.9557 | 30.24362 | -0.2879 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 2000.0 | 98.6 | 25 - 181 | 30.212 | 30.5054 | -0.2934 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 2000.0 | 98.4 | 26 - 152 | 33.61 | 33.8999 | -0.2899 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 2000.0 | 97.8 | 26 - 123 | 33.7548 | 34.04103 | -0.2862 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 2000.0 | 97.8 | 28 - 136 |
34.6573 | 34.93782 | -0.2805 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 2000.0 | 102 | 29 - 147 | 35.7155 | 35.97962 | -0.2641 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 2000.0 | 98.6 | 32 - 141 | 34.791 | 35.0678 | -0.2768 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 2000.0 | 97.6 | 28 - 130 | 34.9137 | 35.18663 | -0.2729 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 2000.0 | 97.4 | 28 - 143 | 37.6097 | 37.86993 | -0.2602 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 2000.0 | 99.6 | 26 - 138 | 39.7265 | 40.00348 | -0.2770 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 2000.0 | 101 | 23 - 140 | 39.047 | 39.31458 | -0.2676 | N/A | | | 13C12-OCDD | 4000.0 | 104 | 17 - 157 | 43.4107 | 43.75875 | -0.3481 | N/A | | | 37C14-2,3,7,8-TCDD | 800.00 | 105 | 35 - 197 | 25.1548 | 25.43467 | -0.2799 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: <u>22C0456-12</u> Calibration: <u>FC00062</u> File ID: <u>22040820</u> Analyzed: <u>04/09/22 02:35</u> | Surrogate
Compound | Spike Level
pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|---------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 2000.0 | 93.7 | 24 - 169 | 24.4895 | 24.76933 | -0.2798 | N/A | | | 13C12-2,3,7,8-TCDD | 2000.0 | 105 | 25 - 164 | 25.1395 | 25.4145 | -0.2750 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 2000.0 | 91.4 | 24 - 185 | 28.6077 | 28.8992 | -0.2915 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 2000.0 | 95.4 | 21 - 178 | 29.9557 | 30.24362 | -0.2879 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 2000.0 | 93.3 | 25 - 181 | 30.212 | 30.5054 | -0.2934 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 2000.0 | 98.0 | 26 - 152 | 33.6098 | 33.8999 | -0.2901 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 2000.0 | 98.5 | 26 - 123 | 33.7548 | 34.04103 | -0.2862 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 2000.0 | 96.9 | 28 - 136 | 34.6573 | 34.93782 | -0.2805 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 2000.0 | 99.5 | 29 - 147 | 35.7045 | 35.97962 | -0.2751 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 2000.0 | 96.4 | 32 - 141 | 34.791 | 35.0678 | -0.2768 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 2000.0 | 101 | 28 - 130 | 34.9135 | 35.18663 | -0.2731 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 2000.0 | 90.1 | 28 - 143 | 37.6097 | 37.86993 | -0.2602 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 2000.0 | 94.4 | 26 - 138 | 39.7263 | 40.00348 | -0.2772 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 2000.0 | 96.2 | 23 - 140 | 39.0468 | 39.31458 | -0.2678 | N/A | | | 13C12-OCDD | 4000.0 | 99.5 | 17 - 157 | 43.4013 | 43.75875 | -0.3575 | N/A | | | 37C14-2,3,7,8-TCDD | 800.00 | 103 | 35 - 197 | 25.1547 | 25.43467 | -0.2800 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: <u>22C0456-15</u> Calibration: <u>FC00062</u> File ID: 22040821 Analyzed: 04/09/22 03:23 | Surrogate
Compound | Spike Level
pg/L | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|---------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 1886.8 | 80.7 | 24 - 169 | 24.4895 | 24.76933 | -0.2798 | N/A | | | 13C12-2,3,7,8-TCDD | 1886.8 | 92.0 | 25 - 164 | 25.1247 | 25.4145 | -0.2898 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 1886.8 | 84.1 | 24 - 185 | 28.6078 | 28.8992 | -0.2914 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 1886.8 | 82.6 | 21 - 178 | 29.9445 | 30.24362 | -0.2991 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 1886.8 | 84.8 | 25 - 181 | 30.212 | 30.5054 | -0.2934 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 1886.8 | 82.8 | 26 - 152 | 33.599 | 33.8999 | -0.3009 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 1886.8 | 83.3 | 26 - 123 | 33.7437 | 34.04103 | -0.2973 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 1886.8 | 82.7 | 28 - 136 | 34.6462 | 34.93782 | -0.2916 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 1886.8 | 87.2 | 29 - 147 | 35.7047 | 35.97962 | -0.2749 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 1886.8 | 82.3 | 32 - 141 | 34.78 | 35.0678 | -0.2878 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 1886.8 | 80.2 | 28 - 130 | 34.9025 | 35.18663 | -0.2841 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 1886.8 | 80.5 | 28 - 143 | 37.5985 | 37.86993 | -0.2714 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 1886.8 | 79.0 | 26 - 138 | 39.7153 | 40.00348 | -0.2882 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 1886.8 | 82.2 | 23 - 140 | 39.0358 | 39.31458 | -0.2788 | N/A | | | 13C12-OCDD | 3773.6 | 81.2 | 17 - 157 | 43.3923 | 43.75875 | -0.3665 | N/A | | | 37Cl4-2,3,7,8-TCDD | 754.72 | 87.2 | 35 - 197 | 25.1397 | 25.43467 | -0.2950 | N/A | | ^{*} Values outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0114 Instrument: AUTOSPEC01 Sample ID: SKD0114-CCV2 Calibration: FC00062 File ID: <u>22040826</u> Analyzed: <u>04/09/22 07:22</u> | Surrogate
Compound | Spike Level
ng/mL | %
Recovery | Recovery
Limits | RT | Calibration
Mean RT | RT Diff | RT Diff
Limit | Q | |---------------------------|----------------------|---------------|--------------------|---------|------------------------|---------|------------------|---| | 13C12-2,3,7,8-TCDF | 100.00 | 102 | 71 - 129 | 24.5048 | 24.76933 | -0.2645 | N/A | | | 13C12-2,3,7,8-TCDD | 100.00 | 111 | 82 - 118 | 25.1398 | 25.4145 | -0.2747 | N/A | | | 13C12-1,2,3,7,8-PeCDF | 100.00 | 98.1 | 76 - 124 | 28.619 | 28.8992 | -0.2802 | N/A | | | 13C12-2,3,4,7,8-PeCDF | 100.00 | 98.4 | 77 - 123 | 29.956 | 30.24362 | -0.2876 | N/A | | | 13C12-1,2,3,7,8-PeCDD | 100.00 | 100 | 62 - 138 | 30.2233 | 30.5054 | -0.2821 | N/A | | | 13C12-1,2,3,4,7,8-HxCDF | 100.00 | 99.4 | 76 - 124 | 33.6102 | 33.8999 | -0.2897 | N/A | | | 13C12-1,2,3,6,7,8-HxCDF | 100.00 | 101 | 70 - 130 | 33.755 | 34.04103 | -0.2860 | N/A | | | 13C12-2,3,4,6,7,8-HxCDF | 100.00 | 101 | 73 - 127 | 34.6575 | 34.93782 | -0.2803 | N/A | | | 13C12-1,2,3,7,8,9-HxCDF | 100.00 | 109 | 74 - 126 | 35.7158 | 35.97962 | -0.2638 | N/A | | | 13C12-1,2,3,4,7,8-HxCDD | 100.00 | 97.0 | 85 - 115 | 34.7912 | 35.0678 | -0.2766 | N/A | | | 13C12-1,2,3,6,7,8-HxCDD | 100.00 | 98.4 | 85 - 115 | 34.9138 | 35.18663 | -0.2728 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDF | 100.00 | 100 | 78 - 122 | 37.6098 | 37.86993 | -0.2601 | N/A | | | 13C12-1,2,3,4,7,8,9-HpCDF | 100.00 | 101 | 77 - 123 | 39.7265 | 40.00348 | -0.2770 | N/A | | | 13C12-1,2,3,4,6,7,8-HpCDD | 100.00 | 102 | 82 - 118 | 39.0472 | 39.31458 | -0.2674 | N/A | | | 13C12-OCDD | 200.00 | 110 | 48 - 152 | 43.4108 | 43.75875 | -0.3479 | N/A | | | 37Cl4-2,3,7,8-TCDD | 10.000 | 99.0 | 79 - 121 | 25.155 | 25.43467 | -0.2797 | N/A | | ^{*} Values outside of QC limits # HOLDING TIME SUMMARY Analysis: EPA 1613B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 | Sample Name | Date
Collected | Date
Received | Date
Prepared | Days
to
Prep | Max
Days to
Prep | Date
Analyzed | Days
to
Analysis | Max
Days to
Analysis | Q | |----------------------------------|-------------------|-------------------|-------------------|--------------------|------------------------|-------------------|------------------------|----------------------------|---| | MW-CP1-032322
22C0456-01 | 03/23/22
14:26 | 03/24/22
13:35 | 04/02/22
06:55 | 9 | 365 | 04/08/22
16:04 | 6 | 365 | | | MW-CP1-032322-D
22C0456-02 | 03/23/22
14:36 | 03/24/22
13:35 | 04/02/22
06:55 | 9 | 365 | 04/08/22
16:52 | 6 | 365 | | | MW-CP2-032322
22C0456-03 | 03/23/22
13:26 | 03/24/22
13:35 | 04/02/22
06:55 | 9 | 365 | 04/08/22
17:40 | 6 | 365 | | | MW-CP3-032322
22C0456-04 | 03/23/22
13:25 | 03/24/22
13:35 | 04/02/22
06:55 | 9 | 365 | 04/08/22
18:28 | 6 | 365 | | | MW-CP4-032322
22C0456-05 | 03/23/22
12:06 | 03/24/22
13:35 | 04/02/22
06:55 | 9 | 365 | 04/08/22
19:16 | 7 | 365 | | | MW-CP5-032322
22C0456-06 | 03/23/22
12:25 | 03/24/22
13:35 | 04/02/22
06:55 | 9 | 365 | 04/08/22
20:04 | 7 | 365 | | | MW-CP6-032322
22C0456-07 | 03/23/22
11:15 | 03/24/22
13:35 | 04/02/22
06:55 | 9 | 365 | 04/08/22
20:52 | 7 | 365 | | | MW-CP7-032322
22C0456-08 | 03/23/22
11:06 | 03/24/22
13:35 | 04/02/22
06:55 | 9 | 365 | 04/08/22
23:23 | 7 | 365 | | | MW-VB3-032322
22C0456-09 | 03/23/22
09:36 | 03/24/22
13:35 | 04/02/22
06:55 | 9 | 365 | 04/09/22
00:11 | 7 | 365 | | | HCOO-B312-032322
22C0456-10 | 03/23/22
15:00 | 03/24/22
13:35 | 04/02/22
06:55 | 9 | 365 | 04/09/22
00:59 | 7 | 365 | | | MW-C1-VB1-032422
22C0456-11 | 03/24/22
12:33 | 03/24/22
13:35 | 04/02/22
06:55 | 8 | 365 | 04/09/22
01:47 | 7 | 365 | | | MW-C1-VB1-032422-D
22C0456-12 | 03/24/22
12:37 | 03/24/22
13:35 | 04/02/22
06:55 | 8 | 365 | 04/09/22
02:35 | 7 | 365 | | | MW-C1-VB2-032422
22C0456-15 | 03/24/22
10:30 | 03/24/22
13:35 | 04/02/22
06:55 | 8 | 365 | 04/09/22
03:23 | 7 | 365 | | ^{*} Indicates hold time exceedance. # METHOD DETECTION AND REPORTING LIMITS # **EPA 1613B** Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Solid Instrument: AUTOSPEC01 | Analyte | MDL | RL | Units | |---------------------|-------|------|-------| | 2,3,7,8-TCDF | 0.058 | 1.00 | ng/kg | | 2,3,7,8-TCDD | 0.150 | 1.00 | ng/kg | | 1,2,3,7,8-PeCDF | 0.240 | 1.00 | ng/kg | | 2,3,4,7,8-PeCDF | 0.220 | 1.00 | ng/kg | | 1,2,3,7,8-PeCDD | 0.170 | 1.00 | ng/kg | | 1,2,3,4,7,8-HxCDF | 0.280 | 1.00 | ng/kg | | 1,2,3,6,7,8-HxCDF | 0.200 | 1.00 | ng/kg | | 2,3,4,6,7,8-HxCDF | 0.170 |
1.00 | ng/kg | | 1,2,3,7,8,9-HxCDF | 0.190 | 1.00 | ng/kg | | 1,2,3,4,7,8-HxCDD | 0.170 | 1.00 | ng/kg | | 1,2,3,6,7,8-HxCDD | 0.180 | 1.00 | ng/kg | | 1,2,3,7,8,9-HxCDD | 0.220 | 1.00 | ng/kg | | 1,2,3,4,6,7,8-HpCDF | 0.210 | 1.00 | ng/kg | | 1,2,3,4,7,8,9-HpCDF | 0.240 | 1.00 | ng/kg | | 1,2,3,4,6,7,8-HpCDD | 0.560 | 2.50 | ng/kg | | OCDF | 1.10 | 2.50 | ng/kg | | OCDD | 4.60 | 10.0 | ng/kg | # METHOD DETECTION AND REPORTING LIMITS # **EPA 1613B** Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Water Instrument: AUTOSPEC01 | Analyte | MDL | RL | Units | |---------------------|------|------|-------| | 2,3,7,8-TCDF | 1.20 | 10.0 | pg/L | | 2,3,7,8-TCDD | 1.30 | 10.0 | pg/L | | 1,2,3,7,8-PeCDF | 4.20 | 10.0 | pg/L | | 2,3,4,7,8-PeCDF | 4.00 | 10.0 | pg/L | | 1,2,3,7,8-PeCDD | 4.00 | 10.0 | pg/L | | 1,2,3,4,7,8-HxCDF | 3.80 | 10.0 | pg/L | | 1,2,3,6,7,8-HxCDF | 3.90 | 10.0 | pg/L | | 2,3,4,6,7,8-HxCDF | 3.50 | 10.0 | pg/L | | 1,2,3,7,8,9-HxCDF | 3.60 | 10.0 | pg/L | | 1,2,3,4,7,8-HxCDD | 4.10 | 10.0 | pg/L | | 1,2,3,6,7,8-HxCDD | 3.80 | 10.0 | pg/L | | 1,2,3,7,8,9-HxCDD | 3.40 | 10.0 | pg/L | | 1,2,3,4,6,7,8-HpCDF | 11.0 | 20.0 | pg/L | | 1,2,3,4,7,8,9-HpCDF | 3.60 | 10.0 | pg/L | | 1,2,3,4,6,7,8-HpCDD | 6.00 | 10.0 | pg/L | | OCDF | 16.0 | 20.0 | pg/L | | OCDD | 39.0 | 50.0 | pg/L | | Total TCDF | | 10.0 | pg/L | | Total TCDD | | 10.0 | pg/L | | Total PeCDF | | 10.0 | pg/L | | Total PeCDD | | 10.0 | pg/L | | Total HxCDF | | 10.0 | pg/L | | Total HxCDD | | 10.0 | pg/L | | Total HpCDF | | 10.0 | pg/L | | Total HpCDD | | 10.0 | pg/L | # CERTIFICATE OF ANALYSIS DOCUMENTATION ### CS3WT Calibration and Verification Solution (EPA-1613CS3) combined with Window Defining and 2,3,7,8-TCDD Resolution Testing Congeners PRODUCT CODE: CS3WT LOT NUMBER: CS3WT0617 SOLVENT(S): Nonane/Toluene DATE PREPARED: (mm/dd/yyyy) 06/27/2017 LAST TESTED: (mm/dd/yyyy) 06/27/2017 **EXPIRY DATE:** (mm/dd/yyyy) 06/27/2024 **RECOMMENDED STORAGE:** Store ampoule in a cool, dark place G001361 1613 CS3WT CCAL STD Expires 6/27/2024 Prepared By Joshua Rains 2/13/2018 ### **DESCRIPTION:** CS3WT is a solution/mixture of native and 13 C $_{12}$ -labelled chlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). The components and their concentrations are given in Table A. CS3WT was designed and prepared to be used as a HRMS calibration standard according to U.S. EPA Method 1613B. It is to be used for calibration verification in place of EPA-1613CS3 (Lot: 13CS30617). It also contains the PCDD and PCDF window defining congeners for a DB-5 (or equivalent) capillary column as well as the TCDD isomers required to test and confirm the resolution of 2,3,7,8-TCDD. The individual ¹³C-labelled PCDDs and PCDFs all have chemical purities of >98% and isotopic purities of ≥99%. The 2,3,7,8-³⁻Cl₄-tetrachlorodibenzo-p-dioxin has a chemical purity of >98% and an isotopic (³¬Cl) purity of ≥95%. The individual native 2,3,7,8-substituted PCDD and PCDF congeners all have chemical purities of >98%; the other congeners (window defining and resolution testing) should only be considered semi-quantitative. This current lot of CS3WT (CS3WT0617) is to be used with the 1613 calibration solutions having the following lot numbers: | PRODUCT CODE | LOT NUMBER | |---------------|-------------| | EPA-1613CS1 | 13CS10617 | | EPA-1613CS2 | 13CS20617 | | EPA-1613CS3 | 13CS30617 | | EPA-1613CS4 | 13CS40617 | | EPA-1613CS5 | 13CS50617 | | EPA-1613CSL | 13CSL0617 | | EPA-1613CS0.5 | 13CS0.50617 | FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com # **DOCUMENTATION/ DATA ATTACHED:** Table A: Components and Concentrations of the Solution/Mixture Figure 1: HRGC/HRMS Data (SIR; 10,000 mass resolving power) # **ADDITIONAL INFORMATION:** - See page 3 for further details. - Only the 2,3,7,8-substituted PCDDs and PCDFs should be used for quantitation. The other congeners (window defining and 2378-TCDD resolution testing) should be considered semi-quantitative (within ±20% of their design value). Impurities have been identified where possible. Form#:13, Issued 2004-11-10 Revision#:4, Revised 2017-03-06 #### **INTENDED USE:** The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains. #### **HAZARDS:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### **SYNTHESIS / CHARACTERIZATION:** Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$\mathbf{x_1},\,\mathbf{x_2},...\mathbf{x_n}$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) has been assigned to the quantitative analytes in this mixture. Conversely, semi-quantitative analytes have been assigned an uncertainty of ±20%. ### **TRACEABILITY:** All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** CS3WT; Components and Concentrations (ng/ml, in nonane/4.5% toluene) Table A: | QUANTITATIVE ANALYTES (ng/ml, ±5% | <u>6)</u> | SEMI-QUANTITATIVE ANALYTES (ng/ml, ± | <u>20%)</u> | |--|-----------|--|------------------------------| | Native PCDDs & PCDFs: | | Window Definers:* | | | 2,3,7,8-TCDD | 10 | 1,3,6,8-TCDD | 10 | | 2,3,7,8-TCDF | 10 | 1,2,8,9-TCDD | 10 | | 1,2,3,7,8-PeCDD | 50 | 1,3,6,8-TCDF | 10 | | 1,2,3,7,8-PeCDF | 50 | 1,2,8,9-TCDF | 10 | | 2,3,4,7,8-PeCDF | 50 | 1,2,4,6,8/1,2,4,7,9-PeCDD | 50 | | 1,2,3,4,7,8-HxCDD | 50 | 1,2,3,8,9-PeCDD | 50 | | 1,2,3,6,7,8-HxCDD | 50 | 1,3,4,6,8-PeCDF | 50 | | 1,2,3,7,8,9-HxCDD
1,2,3,4,7,8-HxCDF | 50
50 |
1,2,3,8,9-PeCDF
1,2,4,6,7,9-HxCDD | 50
50 | | 1,2,3,6,7,8-HxCDF | 50 | 1,2,3,4,6,8-HxCDF | 50 | | 1,2,3,7,8,9-HxCDF | 50 | 1,2,3,4,6,7,9-HpCDD | 50 | | 2,3,4,6,7,8-HxCDF | 50 | 1,2,0,1,0,1,0 110000 | 00 | | 1,2,3,4,6,7,8-HpCDD <i>(WD)</i> | 50 | 2378-TCDD Resolution Testing Isomers: | | | 1,2,3,4,6,7,8-HpCDF (WD) | 50 | 1,2,3,4-TCDD | 5 | | 1,2,3,4,7,8,9-HpCDF (WD) | 50 | 1,2,3,7/1,2,3,8-TCDD | 5 | | OCDD | 100 | 1,2,3,9-TCDD | 10 | | OCDF | 100 | | | | Labelled PCDDs & PCDFs: | | | | | ¹³ C _{.2} -2,3,7,8-TCDD | 100 | | | | ¹³ C, ₃ -2,3,7,8-TCDF | 100 | * 1,2,3,4,6,7-HxCDD (last eluting HxCDD) no | t included: coelutes with | | ¹³ C _{.2} -1,2,3,7,8-PeCDD | 100 | 1,2,3,7,8,9-HxCDD. Use 1,2,3,4,6,7,9-HpCl | | | ¹³ C _{.2} -1,2,3,7,8-PeCDF | 100 | , , , , , , , , , , , , , , , , , , , | | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 100 | * 1,2,3,4,8,9-HxCDF (last eluting HxCDF) not | included; can interfere with | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 100 | 1,2,3,7,8,9-HxCDF. Use 1,2,3,4,6,7,8-HpCL | OF to set window. | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 100 | | | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 100 | | | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 100 | | | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 100 | | | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 100 | | | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 100 | | | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 100 | | | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 100 | | | | ¹³ C ₁₂ -OCDD | 200 | | | | Cleanup Standard: | | | | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 10 | | | | Internal Standards: | | | | | ¹³ C _{.,} -1,2,3,4-TCDD | 100 | | | | ¹³ C _{.2} -1,2,3,7,8,9-HxCDD | 100 | | | | 1,2,0,1,0,0 11,000 | 100 | | | WD - Window Definer Certified By: B.G. Chittim, General Manager Date: <u>07/19/2017</u> (mm//dd/yyyy) Figure 1: CS3WT; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: CS3WT; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: CS3WT; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: CS3WT; HRGC/HRMS Data (60 m DB-5 Column) 27jun CS3WT-n2 27-Jun-2017 21:09:44 1ul_CS3WT (new) 443.7398 100-3.11e6 **OCDF** % 40.50 42.00 42.50 40.00 41.00 41.50 459.7348 100-2.66e6 OCDD % 40.00 40.50 41.00 41.50 42.00 42.50 471.7750 100-5.04e6 ¹³C₁₂ - OCDD % Time 42.50 40.50 41.00 41.50 42.00 40.00 Figure 1: CS3WT; HRGC/HRMS Data (60 m DB-5 Column) ### **HRGC/HRMS:** Agilent 6890N (HRGC) Autospec Ultima (HRMS) # **Chromatographic Conditions:** Column: 60 m DB-5 (0.25 mm id, 0.25 µm film thickness) Agilent J&W Flow: Constant at 1 ml/min Oven: 150 °C (1 min) Injector: 280 °C (Splitless Injection) 12 °C/min to 200 °C Ionization: El+ 3 °C/min to 235 °C lonization: EI+ $3 \,^{\circ}\text{C/min}$ to 235 $\,^{\circ}\text{C}$ Detector: 280 $\,^{\circ}\text{C}$ 235 $\,^{\circ}\text{C}$ (8 min) SIR at 10,000 mass resolving power $8 \,^{\circ}\text{C/min}$ to 310 $\,^{\circ}\text{C}$ 310 $\,^{\circ}\text{C}$ (8 min) # **CERTIFICATE OF ANALYSIS DOCUMENTATION** # **EPA-1613PAR** U.S. EPA Method 1613 Native PCDD/PCDF **Precision and Recovery Stock Solution** PRODUCT CODE: EPA-1613PAR LOT NUMBER: 13PAR1019 **SOLVENT(S):** Nonane/Toluene DATE PREPARED: (mm/dd/yyyy) 10/16/2019 LAST TESTED: (mm/dd/yyyy) 10/17/2019 10/17/2026 EXPIRY DATE: (mm/dd/yyyy) **RECOMMENDED STORAGE:** Store ampoule in a cool, dark place **I000197** 1613B Stock OPR Std-40/200/400ng/mL Expires 10/17/2026 Prepared By Joshua Rains 1/8/2020 #### **DESCRIPTION:** EPA-1613PAR is a solution/mixture of all the 2,3,7,8-substituted chlorinated dibenzo-p-dioxins (PCDDs) and 2,3,7,8-substituted dibenzofurans (PCDFs). The components and their concentrations are given in Table A. EPA-1613PAR was designed for, and prepared to be used according to, U.S. EPA Method 1613 (Revision B). The individual PCDDs and PCDFs all have chemical purities of >98%. #### **DOCUMENTATION/ DATA ATTACHED:** Table A: Components and Concentrations of the Solution/Mixture Figure 1: HRGC/HRMS Data (SIR; 10,000 mass resolving power) #### ADDITIONAL INFORMATION: See page 2 for further details. #### FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com #### **INTENDED USE:** The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains. #### **HANDLING:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### **SYNTHESIS / CHARACTERIZATION:** Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $$\mathbf{x_1},\,\mathbf{x_2},...\mathbf{x_n}$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ### **TRACEABILITY:** All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### **LIMITED WARRANTY:** At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ### **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). ARAB ACCREDITED SO17032 REFERENCE MATERIAL PRODUCER **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** #### Table A: EPA-1613PAR; Components and Concentrations (ng/ml, ± 5% in nonane/ 2.4% toluene) | Component | Concentration (ng/ml) | | | | | |---|-----------------------|--|--|--|--| | PCDDs: | | | | | | | 2,3,7,8-Tetrachlorodibenzo-p-dioxin | 40 | | | | | | 1,2,3,7,8-Pentachlorodibenzo-p-dioxin | 200 | | | | | | 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin | 200 | | | | | | 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin | 200 | | | | | | 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin | 200 | | | | | | 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin | 200 | | | | | | Octachlorodibenzo-p-dioxin | 400 | | | | | | PCDFs: | | | | | | | 2,3,7,8-Tetrachlorodibenzofuran | 40 | | | | | | 1,2,3,7,8-Pentachlorodibenzofuran | 200 | | | | | | 2,3,4,7,8-Pentachlorodibenzofuran | 200 | | | | | | 1,2,3,4,7,8-Hexachlorodibenzofuran | 200 | | | | | | 1,2,3,6,7,8-Hexachlorodibenzofuran | 200 | | | | | | 1,2,3,7,8,9-Hexachlorodibenzofuran | 200 | | | | | | 2,3,4,6,7,8-Hexachlorodibenzofuran | 200 | | | | | |
1,2,3,4,6,7,8-Heptachlorodibenzofuran | 200 | | | | | | 1,2,3,4,7,8,9-Heptachlorodibenzofuran | 200 | | | | | | Octachlorodibenzofuran | 400 | | | | | Certified By: B.G. Chittim, General Manager Date: 11/07/2019 (mm/dd/yyyy) M459 17OCT EPA-1613PAR-n 17-Oct-2019 15:37:10 EPA-1613PAR (13PAR1019) 305.8987 100¬ 2,3,7,8 - TCDF 1.65e6 **%**∃ 22.00 23.00 24.00 25.00 26.00 27.00 321.8936 100-2,3,7,8-TCDD 1.21e6 22.00 23.00 24.00 25.00 26.00 27.00 339.8597 100-2,3,4,7,8 - PeCDF 1,2,3,7,8 - PeCDF 1.55e7 28.50 29.00 30.50 31.00 29.50 30.00 31.50 32.00 355.8546 100-1,2,3,7,8-PeCDD 8.32e6 28.50 29.00 29.50 30.00 30.50 31.00 32.00 31.50 373.8208 1,2,3,4,7,8 - HxCDF A. B. 100-1,2,3,6,7,8 - HxCDF 2,3,4,6,7,8 - HxCDF 1,2,3,7,8,9 - HxCDF В. 1.72e7 C. 33.00 33.50 34.00 35.00 35.50 34.50 389.8157 100∃ 1,2,3,4,7,8 - HxCDD 1,2,3,6,7,8 - HxCDD 1,2,3,7,8,9 - HxCDD A. B. 1.01e7 0 33.00 33.50 34.00 34.50 35.00 35.50 407.7818 100-1,2,3,4,6,7,8 - HpCDF 1.25e7 1,2,3,4,7,8,9 - HpCDF 0 36.50 37.50 37.00 38.00 38.50 39.00 423.7766 100∃ 1,2,3,4,6,7,8-HpCDD 6.75e6 0 36.50 37.00 37.50 38.00 38.50 39.00 443.7398 100¬ OCDF 1.37e7 0 40.50 41.00 40.00 41.50 42.00 42.50 459.7348 100∃ OCDD 9.39e6 % 0 Time 40.00 40.50 41.00 41.50 42.00 42.50 43.00 Figure 1: EPA-1613PAR; HRGC/HRMS Data (60 m DB-5 Column) ### **HRGC/HRMS:** Agilent 6890N (HRGC) Autospec Ultima (HRMS) ### **Chromatographic Conditions:** Column: 60 m DB-5 (0.25 mm id, 0.25 µm film thickness) Agilent J&W Flow: Constant at 1 ml/min Oven: $150 \,^{\circ}\text{C}$ (1 min) Injector: $280 \,^{\circ}\text{C}$ (Splitless Injection) $12 \,^{\circ}\text{C/min}$ to $200 \,^{\circ}\text{C}$ Ionization: EI+ $3 \,^{\circ}\text{C/min}$ to $235 \,^{\circ}\text{C}$ Ionization: E1+ 3 °C/min to 235 °C Detector: 280 °C 235 °C (8 min) SIR at 10,000 mass resolving power 8 °C/min to 310 °C 310 °C (8 min) 310 °C (8 min) # **CERTIFICATE OF ANALYSIS DOCUMENTATION** # **EPA-1613CVS** U.S. EPA Method 1613 Calibration and Verification Solutions plus Supplemental Calibration Solutions EPA-1613CSL & EPA-1613CS0.5 | PRODUCT CODES: | EPA-1613CVS | LOT NUMBERS: | (see below) | |----------------|-------------|---------------------|-------------| | | EPA-1613CS1 | | 13CS11019 | | | EPA-1613CS2 | | 13CS21019 | | | EPA-1613CS3 | | 13CS31019 | | | EPA-1613CS4 | | 13CS41019 | | | EPA-1613CS5 | | 13CS51019 | Note: EPA-1613CSL and EPA-1613CS0.5 are lower level extensions to this calibration set that must be ordered separately. EPA-1613CS0.5 13CS0.51019 EPA-1613CSL 13CSL1019 SOLVENT(S): Nonane/Toluene DATE PREPARED: (mm/dd/yyyy) 10/22/2019 LAST TESTED: (mm/dd/yyyy) 10/24/2019 EXPIRY DATE: (mm/dd/yyyy) 10/24/2026 1613 CS1 CAL STD Expires 10/24/2026 Prepared By Joshua Rains 6/23/2020 1005456 **RECOMMENDED STORAGE:** Store ampoules in a cool, dark place ### **DESCRIPTION:** EPA-1613CVS is a series of 5 calibration solutions containing native (12C₁₂) and mass-labelled (13C₁₂ and 37Cl₄) chlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). The components of each solution, and their concentrations, are given in Table A. They were designed for, and prepared to be used according to, U.S. EPA Method 1613 (Revision B). They are to be used as received. EPA-1613CSL and EPA-1613CS0.5 are lower level extensions to EPA-1613CVS. Neither is required by the method, but either or both can be used to extend the calibration to lower levels. The individual native PCDDs and PCDFs all have chemical purities of >98%. The individual ¹³C-labelled PCDDs and PCDFs all have chemical purities of >98% and isotopic purities of ≥99%. The 2,3,7,8-3⁷Cl,-Tetrachlorodibenzo-p-dioxin has a chemical purity of >98% and an isotopic (³⁷CI) purity of ≥95%. #### FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com # **DOCUMENTATION/ DATA ATTACHED:** Table A: Components and Concentrations Table B: 5-point HRGC/HRMS Calibration and RRF Summary Table C: 7-point HRGC/HRMS Calibration and RRF Summary Figure 1: HRGC/HRMS Data for EPA-1613CS3 (SIR; 10,000 mass resolving power) # **ADDITIONAL INFORMATION:** See page 3 for further details. #### **INTENDED USE:** The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a series of standards for the identification and quantification of specific chemical compounds. #### **HANDLING:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### **SYNTHESIS / CHARACTERIZATION:** Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values, and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{o}(y)$, of a value y and the uncertainty of the independent parameters $$\mathbf{x_1}, \, \mathbf{x_2}, ... \mathbf{x_n}$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analytes is performed on a routine basis. ### **LIMITED WARRANTY:** At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. #### **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). ARAB ACCREDITED ISO17034 REFERENCE MATERIAL PRODUCER **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Table A: EPA-1613CVS (with EPA-1613CSL and EPA-1613CS0.5); Components and Concentrations (ng/ml, ± 5% in nonane/toluene) | Compound | Concentration (ng/ml) | | | | | | | | | | |--|-----------------------|------|------|------|-------|------|-------|--|--|--| | Native PCDDs and PCDFs: | CS1 | CS2 | CS3 | CS4 | CS5 | CSL | CS0.5 | | | | | 2,3,7,8-TCDD | 0.5 | 2 | 10 | 40 | 200 | 0.1 | 0.25 | | | | | 2,3,7,8-TCDF | 0.5 | 2 | 10 | 40 | 200 | 0.1 | 0.25 | | | | | 1,2,3,7,8-PeCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | | | | 1,2,3,7,8-PeCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | | | | 2,3,4,7,8-PeCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | | | | 1,2,3,4,7,8-HxCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | | | | 1,2,3,6,7,8-HxCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | | | | 1,2,3,7,8,9-HxCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | | | | 1,2,3,4,7,8-HxCDF
 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | | | | 1,2,3,6,7,8-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | | | | 1,2,3,7,8,9-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | | | | 2,3,4,6,7,8-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | | | | 1,2,3,4,6,7,8-HpCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | | | | 1,2,3,4,6,7,8-HpCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | | | | 1,2,3,4,7,8,9-HpCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | | | | OCDD | 5.0 | 20 | 100 | 400 | 2000 | 1.0 | 2.5 | | | | | OCDF | 5.0 | 20 | 100 | 400 | 2000 | 1.0 | 2.5 | | | | | Labelled PCDDs and PCDFs: | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | ¹³ C ₁₂ -2,3,7,8-TCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | ¹³ C ₁₂ -OCDD | 200 | 200 | 200 | 200 | 200 | 200 | 200 | | | | | Cleanup Standard: | | | | | | | | | | | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 0.5 | 2 | 10 | 40 | 200 | 0.1 | 0.25 | | | | | Internal Standards: | | | | | | | | | | | | ¹³ C ₁₂ -1,2,3,4-TCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | | | | Percent toluene (v/v) | 3.6% | 3.7% | 4.2% | 6.1% | 16.2% | 3.6% | 3.6% | | | | Certified By: B.G. Chittim, General Manager Date: 10/25/2019 (mm/dd/yyyy) Table B: EPA-1613CVS; 5-point HRGC/HRMS Calibration and RRF Summary | Calibration RRF Summary | | | Calibration Standard | | | | | | |--|------|-------|----------------------|------|------|------|-------|------| | Calibration Filename: 24oct_EPA1613CVS-CAL.QLD | | | | CS1 | CS2 | CS3 | CS4 | CS5 | | Name | Mean | S. D. | %RSD | | | | RRF#4 | | | | | | | | | | | | | 2,3,7,8-TCDF | 0.93 | 0.013 | 1.4 | 0.92 | 0.95 | 0.93 | 0.92 | 0.95 | | 1,2,3,7,8-PeCDF | 0.93 | 0.015 | 1.6 | 0.92 | 0.92 | 0.93 | 0.93 | 0.95 | | 2,3,4,7,8-PeCDF | 1.04 | 0.019 | 1.8 | 1.03 | 1.02 | 1.05 | 1.05 | 1.07 | | 1,2,3,4,7,8-HxCDF | 0.96 | 0.035 | 3.7 | 0.94 | 0.92 | 0.98 | 0.99 | 1.00 | | 1,2,3,6,7,8-HxCDF | 0.93 | 0.013 | 1.4 | 0.92 | 0.94 | 0.94 | 0.91 | 0.94 | | 2,3,4,6,7,8-HxCDF | 0.96 | 0.022 | 2.3 | 0.95 | 0.94 | 0.97 | 0.97 | 0.99 | | 1,2,3,7,8,9-HxCDF | 0.89 | 0.021 | 2.4 | 0.87 | 0.88 | 0.90 | 0.90 | 0.92 | | 1,2,3,4,6,7,8-HpCDF | 0.91 | 0.011 | 1.2 | 0.90 | 0.90 | 0.90 | 0.92 | 0.92 | | 1,2,3,4,7,8,9-HpCDF | 0.91 | 0.010 | 1.1 | 0.90 | 0.90 | 0.92 | 0.91 | 0.92 | | OCDF | 1.19 | 0.056 | 4.7 | 1.11 | 1.17 | 1.19 | 1.23 | 1.26 | | | | | | | | | | | | 2,3,7,8-TCDD | 1.05 | 0.023 | 2.2 | 1.01 | 1.06 | 1.05 | 1.05 | 1.07 | | 1,2,3,7,8-PeCDD | 0.97 | 0.018 | 1.9 | 0.95 | 0.95 | 0.98 | 0.97 | 0.99 | | 1,2,3,4,7,8-HxCDD | 1.00 | 0.019 | 1.9 | 1.01 | 1.00 | 1.00 | 0.96 | 1.01 | | 1,2,3,6,7,8-HxCDD | 0.98 | 0.032 | 3.2 | 0.93 | 0.98 | 0.99 | 1.01 | 1.01 | | 1,2,3,7,8,9-HxCDD | 0.97 | 0.016 | 1.6 | 0.95 | 0.96 | 0.98 | 0.99 | 0.98 | | 1,2,3,4,6,7,8-HpCDD | 1.01 | 0.025 | 2.5 | 1.01 | 0.97 | 1.02 | 1.03 | 1.04 | | OCDD | 1.00 | 0.013 | 1.3 | 1.00 | 0.99 | 1.02 | 1.02 | 1.00 | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDF | 1.57 | 0.047 | 3.0 | 1.52 | 1.55 | 1.55 | 1.57 | 1.65 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 1.21 | 0.078 | 6.5 | 1.13 | 1.20 | 1.17 | 1.20 | 1.34 | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 1.17 | 0.081 | 6.9 | 1.09 | 1.15 | 1.13 | 1.17 | 1.31 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 1.33 | 0.020 | 1.5 | 1.35 | 1.33 | 1.33 | 1.32 | 1.30 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 1.51 | 0.034 | 2.2 | 1.47 | 1.48 | 1.53 | 1.53 | 1.54 | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 1.38 | 0.012 | 0.9 | 1.38 | 1.38 | 1.40 | 1.37 | 1.36 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 1.19 | 0.014 | 1.2 | 1.18 | 1.16 | 1.20 | 1.19 | 1.20 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 1.31 | 0.033 | 2.5 | 1.31 | 1.26 | 1.33 | 1.31 | 1.35 | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 1.08 | 0.046 | 4.3 | 1.06 | 1.03 | 1.09 | 1.08 | 1.15 | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDD | 1.13 | 0.036 | 3.2 | 1.10 | 1.11 | 1.11 | 1.13 | 1.19 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 0.79 | 0.047 | 5.9 | 0.74 | 0.78 | 0.75 | 0.79 | 0.86 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 0.87 | 0.027 | 3.1 | 0.85 | 0.83 | 0.89 | 0.88 | 0.89 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 1.04 | 0.010 | 1.0 | 1.05 | 1.05 | 1.04 | 1.05 | 1.03 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 0.81 | 0.017 | 2.1 | 0.81 | 0.80 | 0.80 | 0.81 | 0.84 | | 13C ₁₂ -OCDD | 0.74 | 0.055 | 7.4 | 0.70 | 0.70 | 0.73 | 0.72 | 0.83 | | | | | | | | | | | | ¹³ C ₁₂ -1,2,3,4-TCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 0.97 | 0.026 | 2.6 | 0.95 | 0.94 | 0.99 | 0.99 | 0.99 | Table C: EPA-1613CVS (with EPA-1613CSL and EPA-1613CS0.5); 7-point HRGC/HRMS Calibration and RRF Summary | Calibration RRF Summary | | | | Calibration Standard | | | | | | | |--|------|-------|------|----------------------|-------|------|------|------|-------|------| | Calibration Filename: 24oct_EPA1613CVS-CAL.QLD | | | | CSL | CS0.5 | CS1 | CS2 | CS3 | CS4 | CS5 | | Name | Mean | S. D. | %RSD | RRF#1 | RRF#2 | | | | RRF#6 | | | | | | | | | | | | | | | 2,3,7,8-TCDF | 0.92 | 0.045 | 4.8 | 0.96 | 0.83 | 0.92 | 0.95 | 0.93 | 0.92 | 0.95 | | 1,2,3,7,8-PeCDF | 0.93 | 0.013 | 1.4 | 0.94 | 0.92 | 0.92 | 0.92 | 0.93 | 0.93 | 0.95 | | 2,3,4,7,8-PeCDF | 1.02 | 0.058 | 5.7 | 0.90 | 1.00 | 1.03 | 1.02 | 1.05 | 1.05 | 1.07 | | 1,2,3,4,7,8-HxCDF | 0.96 | 0.029 | 3.0 | 0.96 | 0.97 | 0.94 | 0.92 | 0.98 | 0.99 | 1.00 | | 1,2,3,6,7,8-HxCDF | 0.92 | 0.030 | 3.3 | 0.90 | 0.86 | 0.92 | 0.94 | 0.94 | 0.91 | 0.94 | | 2,3,4,6,7,8-HxCDF | 0.94 | 0.047 | 5.0 | 0.87 | 0.89 | 0.95 | 0.94 | 0.97 | 0.97 | 0.99 | | 1,2,3,7,8,9-HxCDF | 0.88 | 0.029 | 3.3 | 0.83 | 0.88 | 0.87 | 0.88 | 0.90 | 0.90 | 0.92 | | 1,2,3,4,6,7,8-HpCDF | 0.90 | 0.033 | 3.7 | 0.83 | 0.93 | 0.90 | 0.90 | 0.90 | 0.92 | 0.92 | | 1,2,3,4,7,8,9-HpCDF | 0.91 | 0.018 | 1.9 | 0.89 | 0.94 | 0.90 | 0.90 | 0.92 | 0.91 | 0.92 | | OCDF | 1.18 | 0.052 | 4.4 | 1.15 | 1.14 | 1.11 | 1.17 | 1.19 | 1.23 | 1.26 | | | | | | | | | | | | | | 2,3,7,8-TCDD | 1.03 | 0.051 | 5.0 | 1.03 | 0.92 | 1.01 | 1.06 | 1.05 | 1.05 | 1.07 | | 1,2,3,7,8-PeCDD | 0.95 | 0.042 | 4.4 | 0.87 | 0.98 | 0.95 | 0.95 | 0.98 | 0.97 | 0.99 | | 1,2,3,4,7,8-HxCDD | 0.97 | 0.066 | 6.8 | 0.83 | 0.98 | 1.01 | 1.00 | 1.00 | 0.96 | 1.01 | | 1,2,3,6,7,8-HxCDD | 0.96 | 0.044 | 4.5 | 0.90 | 0.92 | 0.93 | 0.98 | 0.99 | 1.01 | 1.01 | | 1,2,3,7,8,9-HxCDD | 0.94 | 0.054 | 5.7 | 0.83 | 0.92 | 0.95 | 0.96 | 0.98 | 0.99 | 0.98 | | 1,2,3,4,6,7,8-HpCDD | 1.01 | 0.033 | 3.3 | 0.95 | 1.03 | 1.01 | 0.97 | 1.02 | 1.03 | 1.04 | | OCDD | 1.00 | 0.023 | 2.3 | 0.95 | 1.00 | 1.00 | 0.99 | 1.02 | 1.02 | 1.00 | | | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDF | 1.56 | 0.042 | 2.7 | 1.52 | 1.54 | 1.52 | 1.55 | 1.55 | 1.57 | 1.65 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 1.20 | 0.066 | 5.5 | 1.18 | 1.17 | 1.13 | 1.20 | 1.17 | 1.20 | 1.34 | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 1.16 | 0.071 | 6.1 | 1.12 | 1.13 | 1.09 | 1.15 | 1.13 | 1.17 | 1.31 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 1.33 | 0.018 | 1.4 | 1.32 | 1.35 | 1.35 | 1.33 | 1.33 | 1.32 | 1.30 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 1.53 | 0.045 | 3.0 | 1.60 | 1.56 | 1.47 | 1.48 | 1.53 | 1.53 | 1.54 | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 1.39 | 0.019 | 1.4 | 1.39 | 1.42 | 1.38 | 1.38 | 1.40 | 1.37 | 1.36 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 1.19 | 0.012 | 1.0 | 1.19 | 1.19 | 1.18 | 1.16 | 1.20 | 1.19 | 1.20 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 1.31 | 0.028 | 2.2 | 1.30 | 1.33 | 1.31 | 1.26 | 1.33 | 1.31 | 1.35 | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 1.07 | 0.045 | 4.2 | 1.02 | 1.08 | 1.06 | 1.03 | 1.09 | 1.08 | 1.15 | | | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDD | 1.12 | 0.033 | 3.0 | 1.09 | 1.11 | 1.10 | 1.11 | 1.11 | 1.13 | 1.19 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 0.78 | 0.040 | 5.1 | 0.75 | 0.78 | 0.74 | 0.78 | 0.75 | 0.79 | 0.86 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 0.87 | 0.025 | 2.9 | 0.86 | 0.90 | 0.85 | 0.83 | 0.89 | 0.88 | 0.89 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 1.05 | 0.015 | 1.5 | 1.08 | 1.06 | 1.05 | 1.05 | 1.04 | 1.05 | 1.03 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 0.81 | 0.016 | 2.0 | 0.79 | 0.81 | 0.81 | 0.80 | 0.80 | 0.81 | 0.84 | | ¹³ C ₁₂ -OCDD | 0.73 | 0.046 | 6.3 | 0.71 | 0.72 | 0.70 | 0.70 | 0.73 | 0.72 | 0.83 | | | | | | | | | | | | | | ¹³ C ₁₂ -1,2,3,4-TCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 0.97 | 0.053 | 5.4 | 0.90 | 1.07 | 0.95 | 0.94 | 0.99 | 0.99 | 0.99 | Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) 24oct EPA-1613CS3 24-Oct-2019 11:56:04 13CS31019 443.7398 100-1.96e7 **OCDF** % 40.50 42.50 43.00 40.00 41.00 41.50 42.00 459.7348 100-1.64e7 OCDD % 40.00 40.50 41.00 41.50 42.00 42.50 43.00 471.7750 100-3.28e7 ¹³C₁₂ - OCDD % Time 43.00 41.50 42.00 42.50 40.50 41.00
40.00 Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) ### **HRGC/HRMS:** Agilent 6890N (HRGC) Autospec Ultima (HRMS) # **Chromatographic Conditions:** Column: 60 m DB-5 (0.25 mm id, 0.25 µm film thickness) Agilent J&W Flow: Constant at 1 ml/min Oven: $150 \, ^{\circ}\text{C}$ (1 min) Injector: $280 \, ^{\circ}\text{C}$ (Splitless Injection) $12 \, ^{\circ}\text{C/min}$ to $200 \, ^{\circ}\text{C}$ Ionization: EI+ $3 \, ^{\circ}\text{C/min}$ to $235 \, ^{\circ}\text{C}$ Detector: 280 °C 235 °C (8 min) SIR at 10,000 mass resolving power 8 °C/min to 235 °C 3 °C/min to 235 °C 235 °C (8 min) 8 °C/min to 310 °C 310 °C (8 min) # CERTIFICATE OF ANALYSIS DOCUMENTATION # **EPA-1613CVS** U.S. EPA Method 1613 Calibration and Verification Solutions plus Supplemental Calibration Solutions EPA-1613CSL & EPA-1613CS0.5 | PRODUCT CODES: | EPA-1613CVS | LOT NUMBERS: | (see below) | |----------------|-------------|--------------|-------------| | | EPA-1613CS1 | | 13CS11019 | | | EPA-1613CS2 | | 13CS21019 | | | EPA-1613CS3 | | 13CS31019 | | | EPA-1613CS4 | | 13CS41019 | | | EPA-1613CS5 | | 13CS51019 | Note: EPA-1613CSL and EPA-1613CS0.5 are lower level extensions to this calibration set that must be ordered separately. EPA-1613CS0.5 13CS0.51019 EPA-1613CSL 13CSL1019 **SOLVENT(S):** Nonane/Toluene DATE PREPARED: (mm/dd/yyyy) 10/22/2019 LAST TESTED: (mm/dd/yyyy) 10/24/2019 EXPIRY DATE: (mm/dd/yyyy) 10/24/2026 **RECOMMENDED STORAGE:** Store ampoules in a cool, dark place 1005457 1613 CS2 CAL STD Expires 10/24/2026 Prepared By Joshua Rains 6/23/2020 # **DESCRIPTION:** EPA-1613CVS is a series of 5 calibration solutions containing native ($^{12}C_{12}$) and mass-labelled ($^{13}C_{12}$ and $^{37}Cl_4$) chlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). The components of each solution, and their concentrations, are given in Table A. They were designed for, and prepared to be used according to, U.S. EPA Method 1613 (Revision B). They are to be used as received. EPA-1613CSL and EPA-1613CS0.5 are lower level extensions to EPA-1613CVS. Neither is required by the method, but either or both can be used to extend the calibration to lower levels. The individual native PCDDs and PCDFs all have chemical purities of >98%. The individual 13 C-labelled PCDDs and PCDFs all have chemical purities of >98% and isotopic purities of \geq 99%. The 2,3,7,8- 37 Cl₄-Tetrachlorodibenzo-p-dioxin has a chemical purity of \geq 98% and an isotopic (37 Cl) purity of \geq 95%. #### FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com Table A: Components and Concentrations Table B: 5-point HRGC/HRMS Calibration and RRF Summary Table C: 7-point HRGC/HRMS Calibration and RRF Summary Figure 1: HRGC/HRMS Data for EPA-1613CS3 (SIR; 10,000 mass resolving power) # **ADDITIONAL INFORMATION:** The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a series of standards for the identification and quantification of specific chemical compounds. ## **HANDLING:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## **SYNTHESIS / CHARACTERIZATION:** Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values, and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{o}(y)$, of a value y and the uncertainty of the independent parameters $$\mathbf{x_1}, \, \mathbf{x_2}, ... \mathbf{x_n}$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. ## **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analytes is performed on a routine basis. # **LIMITED WARRANTY:** At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ## **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). ARAB ACCREDITED ISO17034 REFERENCE MATERIAL PRODUCER Table A: EPA-1613CVS (with EPA-1613CSL and EPA-1613CS0.5); Components and Concentrations (ng/ml, ± 5% in nonane/toluene) | Compound | | | Conc | entration (| ng/ml) | | | |--|------|------|------|-------------|--------|------|-------| | Native PCDDs and PCDFs: | CS1 | CS2 | CS3 | CS4 | CS5 | CSL | CS0.5 | | 2,3,7,8-TCDD | 0.5 | 2 | 10 | 40 | 200 | 0.1 | 0.25 | | 2,3,7,8-TCDF | 0.5 | 2 | 10 | 40 | 200 | 0.1 | 0.25 | | 1,2,3,7,8-PeCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,7,8-PeCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 2,3,4,7,8-PeCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,7,8-HxCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,6,7,8-HxCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,7,8,9-HxCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,7,8-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,6,7,8-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,7,8,9-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 2,3,4,6,7,8-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,6,7,8-HpCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,6,7,8-HpCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,7,8,9-HpCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | OCDD | 5.0 | 20 | 100 | 400 | 2000 | 1.0 | 2.5 | | OCDF | 5.0 | 20 | 100 | 400 | 2000 | 1.0 | 2.5 | | Labelled PCDDs and PCDFs: | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -2,3,7,8-TCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -OCDD | 200 | 200 | 200 | 200 | 200 |
200 | 200 | | Cleanup Standard: | | | | | | | | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 0.5 | 2 | 10 | 40 | 200 | 0.1 | 0.25 | | Internal Standards: | | | | | | | | | ¹³ C ₁₂ -1,2,3,4-TCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | Percent toluene (v/v) | 3.6% | 3.7% | 4.2% | 6.1% | 16.2% | 3.6% | 3.6% | B.G. Chittim, General Manager Table B: EPA-1613CVS; 5-point HRGC/HRMS Calibration and RRF Summary | Calibration RRF Summary | | | | | Calibration Standard | | | | | | |--|------|-------|------|------|----------------------|------|-------|------|--|--| | Calibration Filename: 24oct_EPA1613CVS-CAL | QLD | | | CS1 | CS2 | CS3 | CS4 | CS5 | | | | Name | Mean | S. D. | %RSD | | | | RRF#4 | | | | | | | | | | | | | | | | | 2,3,7,8-TCDF | 0.93 | 0.013 | 1.4 | 0.92 | 0.95 | 0.93 | 0.92 | 0.95 | | | | 1,2,3,7,8-PeCDF | 0.93 | 0.015 | 1.6 | 0.92 | 0.92 | 0.93 | 0.93 | 0.95 | | | | 2,3,4,7,8-PeCDF | 1.04 | 0.019 | 1.8 | 1.03 | 1.02 | 1.05 | 1.05 | 1.07 | | | | 1,2,3,4,7,8-HxCDF | 0.96 | 0.035 | 3.7 | 0.94 | 0.92 | 0.98 | 0.99 | 1.00 | | | | 1,2,3,6,7,8-HxCDF | 0.93 | 0.013 | 1.4 | 0.92 | 0.94 | 0.94 | 0.91 | 0.94 | | | | 2,3,4,6,7,8-HxCDF | 0.96 | 0.022 | 2.3 | 0.95 | 0.94 | 0.97 | 0.97 | 0.99 | | | | 1,2,3,7,8,9-HxCDF | 0.89 | 0.021 | 2.4 | 0.87 | 0.88 | 0.90 | 0.90 | 0.92 | | | | 1,2,3,4,6,7,8-HpCDF | 0.91 | 0.011 | 1.2 | 0.90 | 0.90 | 0.90 | 0.92 | 0.92 | | | | 1,2,3,4,7,8,9-HpCDF | 0.91 | 0.010 | 1.1 | 0.90 | 0.90 | 0.92 | 0.91 | 0.92 | | | | OCDF | 1.19 | 0.056 | 4.7 | 1.11 | 1.17 | 1.19 | 1.23 | 1.26 | | | | | | | | | | | | | | | | 2,3,7,8-TCDD | 1.05 | 0.023 | 2.2 | 1.01 | 1.06 | 1.05 | 1.05 | 1.07 | | | | 1,2,3,7,8-PeCDD | 0.97 | 0.018 | 1.9 | 0.95 | 0.95 | 0.98 | 0.97 | 0.99 | | | | 1,2,3,4,7,8-HxCDD | 1.00 | 0.019 | 1.9 | 1.01 | 1.00 | 1.00 | 0.96 | 1.01 | | | | 1,2,3,6,7,8-HxCDD | 0.98 | 0.032 | 3.2 | 0.93 | 0.98 | 0.99 | 1.01 | 1.01 | | | | 1,2,3,7,8,9-HxCDD | 0.97 | 0.016 | 1.6 | 0.95 | 0.96 | 0.98 | 0.99 | 0.98 | | | | 1,2,3,4,6,7,8-HpCDD | 1.01 | 0.025 | 2.5 | 1.01 | 0.97 | 1.02 | 1.03 | 1.04 | | | | OCDD | 1.00 | 0.013 | 1.3 | 1.00 | 0.99 | 1.02 | 1.02 | 1.00 | | | | | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDF | 1.57 | 0.047 | 3.0 | 1.52 | 1.55 | 1.55 | 1.57 | 1.65 | | | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 1.21 | 0.078 | 6.5 | 1.13 | 1.20 | 1.17 | 1.20 | 1.34 | | | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 1.17 | 0.081 | 6.9 | 1.09 | 1.15 | 1.13 | 1.17 | 1.31 | | | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 1.33 | 0.020 | 1.5 | 1.35 | 1.33 | 1.33 | 1.32 | 1.30 | | | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 1.51 | 0.034 | 2.2 | 1.47 | 1.48 | 1.53 | 1.53 | 1.54 | | | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 1.38 | 0.012 | 0.9 | 1.38 | 1.38 | 1.40 | 1.37 | 1.36 | | | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 1.19 | 0.014 | 1.2 | 1.18 | 1.16 | 1.20 | 1.19 | 1.20 | | | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 1.31 | 0.033 | 2.5 | 1.31 | 1.26 | 1.33 | 1.31 | 1.35 | | | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 1.08 | 0.046 | 4.3 | 1.06 | 1.03 | 1.09 | 1.08 | 1.15 | | | | | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDD | 1.13 | 0.036 | 3.2 | 1.10 | 1.11 | 1.11 | 1.13 | 1.19 | | | | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 0.79 | 0.047 | 5.9 | 0.74 | 0.78 | 0.75 | 0.79 | 0.86 | | | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 0.87 | 0.027 | 3.1 | 0.85 | 0.83 | 0.89 | 0.88 | 0.89 | | | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 1.04 | 0.010 | 1.0 | 1.05 | 1.05 | 1.04 | 1.05 | 1.03 | | | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 0.81 | 0.017 | 2.1 | 0.81 | 0.80 | 0.80 | 0.81 | 0.84 | | | | ¹³ C ₁₂ -OCDD | 0.74 | 0.055 | 7.4 | 0.70 | 0.70 | 0.73 | 0.72 | 0.83 | | | | | | | | | | | | | | | | ¹³ C ₁₂ -1,2,3,4-TCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 0.97 | 0.026 | 2.6 | 0.95 | 0.94 | 0.99 | 0.99 | 0.99 | | | Table C: EPA-1613CVS (with EPA-1613CSL and EPA-1613CS0.5); 7-point HRGC/HRMS Calibration and RRF Summary | Calibration RRF Summary | | | | Calibration Standard | | | | | | | |--|------|-------|------|----------------------|-------|-------|-------|-------|-------|-------| | Calibration Filename: 24oct_EPA1613CVS-CAl | QLD | | | CSL | CS0.5 | CS1 | CS2 | CS3 | CS4 | CS5 | | Name | Mean | S. D. | %RSD | RRF#1 | RRF#2 | RRF#3 | RRF#4 | RRF#5 | RRF#6 | RRF#7 | | 2,3,7,8-TCDF | 0.92 | 0.045 | 4.8 | 0.96 | 0.83 | 0.92 | 0.95 | 0.93 | 0.92 | 0.95 | | 1,2,3,7,8-PeCDF | 0.93 | 0.013 | 1.4 | 0.94 | 0.92 | 0.92 | 0.92 | 0.93 | 0.93 | 0.95 | | 2,3,4,7,8-PeCDF | 1.02 | 0.058 | 5.7 | 0.90 | 1.00 | 1.03 | 1.02 | 1.05 | 1.05 | 1.07 | | 1,2,3,4,7,8-HxCDF | 0.96 | 0.029 | 3.0 | 0.96 | 0.97 | 0.94 | 0.92 | 0.98 | 0.99 | 1.00 | | 1,2,3,6,7,8-HxCDF | 0.92 | 0.030 | 3.3 | 0.90 | 0.86 | 0.92 | 0.94 | 0.94 | 0.91 | 0.94 | | 2,3,4,6,7,8-HxCDF | 0.94 | 0.047 | 5.0 | 0.87 | 0.89 | 0.95 | 0.94 | 0.97 | 0.97 | 0.99 | | 1,2,3,7,8,9-HxCDF | 0.88 | 0.029 | 3.3 | 0.83 | 0.88 | 0.87 | 0.88 | 0.90 | 0.90 | 0.92 | | 1,2,3,4,6,7,8-HpCDF | 0.90 | 0.033 | 3.7 | 0.83 | 0.93 | 0.90 | 0.90 | 0.90 | 0.92 | 0.92 | | 1,2,3,4,7,8,9-HpCDF | 0.91 | 0.018 | 1.9 | 0.89 | 0.94 | 0.90 | 0.90 | 0.92 | 0.91 | 0.92 | | OCDF | 1.18 | 0.052 | 4.4 | 1.15 | 1.14 | 1.11 | 1.17 | 1.19 | 1.23 | 1.26 | | 2,3,7,8-TCDD | 1.03 | 0.051 | 5.0 | 1.03 | 0.92 | 1.01 | 1.06 | 1.05 | 1.05 | 1.07 | | 1,2,3,7,8-PeCDD | 0.95 | 0.042 | 4.4 | 0.87 | 0.98 | 0.95 | 0.95 | 0.98 | 0.97 | 0.99 | | 1,2,3,4,7,8-HxCDD | 0.97 | 0.066 | 6.8 | 0.83 | 0.98 | 1.01 | 1.00 | 1.00 | 0.96 | 1.01 | | 1,2,3,6,7,8-HxCDD | 0.96 | 0.044 | 4.5 | 0.90 | 0.92 | 0.93 | 0.98 | 0.99 | 1.01 | 1.01 | | 1,2,3,7,8,9-HxCDD | 0.94 | 0.054 | 5.7 | 0.83 | 0.92 | 0.95 | 0.96 | 0.98 | 0.99 | 0.98 | | 1,2,3,4,6,7,8-HpCDD | 1.01 | 0.033 | 3.3 | 0.95 | 1.03 | 1.01 | 0.97 | 1.02 | 1.03 | 1.04 | | OCDD | 1.00 | 0.023 | 2.3 | 0.95 | 1.00 | 1.00 | 0.99 | 1.02 | 1.02 | 1.00 | | CODD | 1.00 | 0.020 | 2.0 | 0.00 | 1.00 | 1.00 | 0.00 | 1.02 | 1.02 | 1.00 | | ¹³ C ₁₂ -2,3,7,8-TCDF | 1.56 | 0.042 | 2.7 | 1.52 | 1.54 | 1.52 | 1.55 | 1.55 | 1.57 | 1.65 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 1.20 | 0.066 | 5.5 | 1.18 | 1.17 | 1.13 | 1.20 | 1.17 | 1.20 | 1.34 | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 1.16 | 0.071 | 6.1 | 1.12 | 1.13 | 1.09 | 1.15 | 1.13 | 1.17 | 1.31 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 1.33 | 0.018 | 1.4 | 1.32 | 1.35 | 1.35 | 1.33 | 1.33 | 1.32 | 1.30 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 1.53 | 0.045 | 3.0 | 1.60 | 1.56 | 1.47 | 1.48 | 1.53 | 1.53 | 1.54 | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 1.39 | 0.019 | 1.4 | 1.39 | 1.42 | 1.38 | 1.38 | 1.40 | 1.37 | 1.36 | | ¹³ C _{.2} -1,2,3,7,8,9-HxCDF | 1.19 | 0.012 | 1.0 | 1.19 | 1.19 | 1.18 | 1.16 | 1.20 | 1.19 | 1.20 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 1.31 | 0.028 | 2.2 | 1.30 | 1.33 | 1.31 | 1.26 | 1.33 | 1.31 | 1.35 | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 1.07 | 0.045 | 4.2 | 1.02 | 1.08 | 1.06 | 1.03 | 1.09 | 1.08 | 1.15 | | 130 0070 7000 | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDD | 1.12 | 0.033 | 3.0 | 1.09 | 1.11 | 1.10 | 1.11 | 1.11 | 1.13 | 1.19 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 0.78 | 0.040 | 5.1 | 0.75 | 0.78 | 0.74 | 0.78 | 0.75 | 0.79 | 0.86 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 0.87 | 0.025 | 2.9 | 0.86 | 0.90 | 0.85 | 0.83 | 0.89 | 0.88 | 0.89 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 1.05 | 0.015 | 1.5 | 1.08 | 1.06 | 1.05 | 1.05 | 1.04 | 1.05 | 1.03 | | ¹³ C ₁₋ -1,2,3,4,6,7,8-HpCDD | 0.81 | 0.016 | 2.0 | 0.79 | 0.81 | 0.81 | 0.80 | 0.80 | 0.81 | 0.84 | | ¹³ C ₁₂ -OCDD | 0.73 | 0.046 | 6.3 | 0.71 | 0.72 | 0.70 | 0.70 | 0.73 | 0.72 | 0.83 | | ¹³ C ₁₂ -1,2,3,4-TCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 0.97 | 0.053 | 5.4 | 0.90 | 1.07 | 0.95 | 0.94 | 0.99 | 0.99 | 0.99 | Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) 24oct EPA-1613CS3 24-Oct-2019 11:56:04 13CS31019 443.7398 100-1.96e7 **OCDF** % 40.50 42.50 43.00 40.00 41.00 41.50 42.00 459.7348 100-1.64e7 OCDD % 40.00 40.50 41.00 41.50 42.00 42.50 43.00 471.7750 100-3.28e7 ¹³C₁₂ - OCDD % Time 43.00 41.50 42.00 42.50 40.50 41.00 40.00 Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) # **HRGC/HRMS:** Agilent 6890N (HRGC) Autospec Ultima (HRMS) # **Chromatographic Conditions:** Column: 60 m DB-5 (0.25 mm id, 0.25 µm film thickness) Agilent J&W Flow: Constant at 1 ml/min Oven: $150 \, ^{\circ}\text{C}$ (1 min) Injector: $280 \, ^{\circ}\text{C}$ (Splitless Injection) $12 \, ^{\circ}\text{C/min}$ to $200 \, ^{\circ}\text{C}$ Ionization: EI+ $3 \, ^{\circ}\text{C/min}$ to $235 \, ^{\circ}\text{C}$ Detector: 280 °C 235 °C (8 min) SIR at 10,000 mass resolving power 8 °C/min to 235 °C 3 °C/min to 235 °C 235 °C (8 min) 8 °C/min to 310 °C 310 °C (8 min) # CERTIFICATE OF ANALYSIS DOCUMENTATION ## **EPA-1613CVS** U.S. EPA Method 1613 Calibration and Verification Solutions plus Supplemental Calibration Solutions EPA-1613CSL & EPA-1613CS0.5 | PRODUCT CODES: | EPA-1613CVS | LOT NUMBERS: | (see below) | |----------------|-------------|---------------------|-------------| | | EPA-1613CS1 | | 13CS11019 | | | EPA-1613CS2 | | 13CS21019 | | | EPA-1613CS3 | | 13CS31019 | | | EPA-1613CS4 | | 13CS41019 | | | EPA-1613CS5 | | 13CS51019 | Note: EPA-1613CSL and EPA-1613CS0.5 are lower level extensions to this calibration set that must be ordered separately. EPA-1613CS0.5 13CS0.51019 EPA-1613CSL 13CSL1019 SOLVENT(S): Nonane/Toluene DATE PREPARED: (mm/dd/yyyy) 10/22/2019 LAST TESTED: (mm/dd/yyyy) 10/24/2019 EXPIRY DATE: (mm/dd/yyyy) 10/24/2026 **RECOMMENDED STORAGE:** Store ampoules in a cool, dark place **I005458** 1613 CS4 CAL STD Expires 10/24/2026 Prepared By Joshua Rains 6/23/2020 # **DESCRIPTION:** EPA-1613CVS is a series of 5 calibration solutions containing native (
$^{12}C_{12}$) and mass-labelled ($^{13}C_{12}$ and $^{37}Cl_4$) chlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). The components of each solution, and their concentrations, are given in Table A. They were designed for, and prepared to be used according to, U.S. EPA Method 1613 (Revision B). They are to be used as received. EPA-1613CSL and EPA-1613CS0.5 are lower level extensions to EPA-1613CVS. Neither is required by the method, but either or both can be used to extend the calibration to lower levels. The individual native PCDDs and PCDFs all have chemical purities of >98%. The individual 13 C-labelled PCDDs and PCDFs all have chemical purities of >98% and isotopic purities of \geq 99%. The 2,3,7,8- 37 Cl₄-Tetrachlorodibenzo-p-dioxin has a chemical purity of >98% and an isotopic (37 Cl) purity of \geq 95%. ## FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com Table A: Components and Concentrations Table B: 5-point HRGC/HRMS Calibration and RRF Summary Table C: 7-point HRGC/HRMS Calibration and RRF Summary Figure 1: HRGC/HRMS Data for EPA-1613CS3 (SIR; 10,000 mass resolving power) # **ADDITIONAL INFORMATION:** The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a series of standards for the identification and quantification of specific chemical compounds. ## **HANDLING:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## **SYNTHESIS / CHARACTERIZATION:** Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values, and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{o}(y)$, of a value y and the uncertainty of the independent parameters $$\mathbf{x_1}, \, \mathbf{x_2}, ... \mathbf{x_n}$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. ## **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analytes is performed on a routine basis. # **LIMITED WARRANTY:** At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ## **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). ARAB ACCREDITED ISO17034 REFERENCE MATERIAL PRODUCER Table A: EPA-1613CVS (with EPA-1613CSL and EPA-1613CS0.5); Components and Concentrations (ng/ml, ± 5% in nonane/toluene) | Compound | | | Conc | entration (| ng/ml) | | | |--|------|------|------|-------------|--------|------|-------| | Native PCDDs and PCDFs: | CS1 | CS2 | CS3 | CS4 | CS5 | CSL | CS0.5 | | 2,3,7,8-TCDD | 0.5 | 2 | 10 | 40 | 200 | 0.1 | 0.25 | | 2,3,7,8-TCDF | 0.5 | 2 | 10 | 40 | 200 | 0.1 | 0.25 | | 1,2,3,7,8-PeCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,7,8-PeCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 2,3,4,7,8-PeCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,7,8-HxCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,6,7,8-HxCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,7,8,9-HxCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,7,8-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,6,7,8-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,7,8,9-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 2,3,4,6,7,8-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,6,7,8-HpCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,6,7,8-HpCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,7,8,9-HpCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | OCDD | 5.0 | 20 | 100 | 400 | 2000 | 1.0 | 2.5 | | OCDF | 5.0 | 20 | 100 | 400 | 2000 | 1.0 | 2.5 | | Labelled PCDDs and PCDFs: | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -2,3,7,8-TCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -OCDD | 200 | 200 | 200 | 200 | 200 | 200 | 200 | | Cleanup Standard: | | | | | | | | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 0.5 | 2 | 10 | 40 | 200 | 0.1 | 0.25 | | Internal Standards: | | | | | | | | | ¹³ C ₁₂ -1,2,3,4-TCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | Percent toluene (v/v) | 3.6% | 3.7% | 4.2% | 6.1% | 16.2% | 3.6% | 3.6% | B.G. Chittim, General Manager Table B: EPA-1613CVS; 5-point HRGC/HRMS Calibration and RRF Summary | Calibration RRF Summary | | | | | Calibration Standard | | | | | | |--|------|-------|------|------|----------------------|------|-------|------|--|--| | Calibration Filename: 24oct_EPA1613CVS-CAL | QLD | | | CS1 | CS2 | CS3 | CS4 | CS5 | | | | Name | Mean | S. D. | %RSD | | | | RRF#4 | | | | | | | | | | | | | | | | | 2,3,7,8-TCDF | 0.93 | 0.013 | 1.4 | 0.92 | 0.95 | 0.93 | 0.92 | 0.95 | | | | 1,2,3,7,8-PeCDF | 0.93 | 0.015 | 1.6 | 0.92 | 0.92 | 0.93 | 0.93 | 0.95 | | | | 2,3,4,7,8-PeCDF | 1.04 | 0.019 | 1.8 | 1.03 | 1.02 | 1.05 | 1.05 | 1.07 | | | | 1,2,3,4,7,8-HxCDF | 0.96 | 0.035 | 3.7 | 0.94 | 0.92 | 0.98 | 0.99 | 1.00 | | | | 1,2,3,6,7,8-HxCDF | 0.93 | 0.013 | 1.4 | 0.92 | 0.94 | 0.94 | 0.91 | 0.94 | | | | 2,3,4,6,7,8-HxCDF | 0.96 | 0.022 | 2.3 | 0.95 | 0.94 | 0.97 | 0.97 | 0.99 | | | | 1,2,3,7,8,9-HxCDF | 0.89 | 0.021 | 2.4 | 0.87 | 0.88 | 0.90 | 0.90 | 0.92 | | | | 1,2,3,4,6,7,8-HpCDF | 0.91 | 0.011 | 1.2 | 0.90 | 0.90 | 0.90 | 0.92 | 0.92 | | | | 1,2,3,4,7,8,9-HpCDF | 0.91 | 0.010 | 1.1 | 0.90 | 0.90 | 0.92 | 0.91 | 0.92 | | | | OCDF | 1.19 | 0.056 | 4.7 | 1.11 | 1.17 | 1.19 | 1.23 | 1.26 | | | | | | | | | | | | |
| | | 2,3,7,8-TCDD | 1.05 | 0.023 | 2.2 | 1.01 | 1.06 | 1.05 | 1.05 | 1.07 | | | | 1,2,3,7,8-PeCDD | 0.97 | 0.018 | 1.9 | 0.95 | 0.95 | 0.98 | 0.97 | 0.99 | | | | 1,2,3,4,7,8-HxCDD | 1.00 | 0.019 | 1.9 | 1.01 | 1.00 | 1.00 | 0.96 | 1.01 | | | | 1,2,3,6,7,8-HxCDD | 0.98 | 0.032 | 3.2 | 0.93 | 0.98 | 0.99 | 1.01 | 1.01 | | | | 1,2,3,7,8,9-HxCDD | 0.97 | 0.016 | 1.6 | 0.95 | 0.96 | 0.98 | 0.99 | 0.98 | | | | 1,2,3,4,6,7,8-HpCDD | 1.01 | 0.025 | 2.5 | 1.01 | 0.97 | 1.02 | 1.03 | 1.04 | | | | OCDD | 1.00 | 0.013 | 1.3 | 1.00 | 0.99 | 1.02 | 1.02 | 1.00 | | | | | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDF | 1.57 | 0.047 | 3.0 | 1.52 | 1.55 | 1.55 | 1.57 | 1.65 | | | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 1.21 | 0.078 | 6.5 | 1.13 | 1.20 | 1.17 | 1.20 | 1.34 | | | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 1.17 | 0.081 | 6.9 | 1.09 | 1.15 | 1.13 | 1.17 | 1.31 | | | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 1.33 | 0.020 | 1.5 | 1.35 | 1.33 | 1.33 | 1.32 | 1.30 | | | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 1.51 | 0.034 | 2.2 | 1.47 | 1.48 | 1.53 | 1.53 | 1.54 | | | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 1.38 | 0.012 | 0.9 | 1.38 | 1.38 | 1.40 | 1.37 | 1.36 | | | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 1.19 | 0.014 | 1.2 | 1.18 | 1.16 | 1.20 | 1.19 | 1.20 | | | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 1.31 | 0.033 | 2.5 | 1.31 | 1.26 | 1.33 | 1.31 | 1.35 | | | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 1.08 | 0.046 | 4.3 | 1.06 | 1.03 | 1.09 | 1.08 | 1.15 | | | | | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDD | 1.13 | 0.036 | 3.2 | 1.10 | 1.11 | 1.11 | 1.13 | 1.19 | | | | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 0.79 | 0.047 | 5.9 | 0.74 | 0.78 | 0.75 | 0.79 | 0.86 | | | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 0.87 | 0.027 | 3.1 | 0.85 | 0.83 | 0.89 | 0.88 | 0.89 | | | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 1.04 | 0.010 | 1.0 | 1.05 | 1.05 | 1.04 | 1.05 | 1.03 | | | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 0.81 | 0.017 | 2.1 | 0.81 | 0.80 | 0.80 | 0.81 | 0.84 | | | | ¹³ C ₁₂ -OCDD | 0.74 | 0.055 | 7.4 | 0.70 | 0.70 | 0.73 | 0.72 | 0.83 | | | | | | | | | | | | | | | | ¹³ C ₁₂ -1,2,3,4-TCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 0.97 | 0.026 | 2.6 | 0.95 | 0.94 | 0.99 | 0.99 | 0.99 | | | Table C: EPA-1613CVS (with EPA-1613CSL and EPA-1613CS0.5); 7-point HRGC/HRMS Calibration and RRF Summary | Calibration RRF Summary | | | | Calibration Standard | | | | | | | |--|-------|-------|------|----------------------|-------|------|------|------|-------|------| | Calibration Filename: 24oct EPA1613CVS-CA | L.QLD | | | CSL | CS0.5 | CS1 | CS2 | CS3 | CS4 | CS5 | | Name | Mean | S. D. | %RSD | RRF#1 | RRF#2 | | | | RRF#6 | | | | | | | | | | | | | | | 2,3,7,8-TCDF | 0.92 | 0.045 | 4.8 | 0.96 | 0.83 | 0.92 | 0.95 | 0.93 | 0.92 | 0.95 | | 1,2,3,7,8-PeCDF | 0.93 | 0.013 | 1.4 | 0.94 | 0.92 | 0.92 | 0.92 | 0.93 | 0.93 | 0.95 | | 2,3,4,7,8-PeCDF | 1.02 | 0.058 | 5.7 | 0.90 | 1.00 | 1.03 | 1.02 | 1.05 | 1.05 | 1.07 | | 1,2,3,4,7,8-HxCDF | 0.96 | 0.029 | 3.0 | 0.96 | 0.97 | 0.94 | 0.92 | 0.98 | 0.99 | 1.00 | | 1,2,3,6,7,8-HxCDF | 0.92 | 0.030 | 3.3 | 0.90 | 0.86 | 0.92 | 0.94 | 0.94 | 0.91 | 0.94 | | 2,3,4,6,7,8-HxCDF | 0.94 | 0.047 | 5.0 | 0.87 | 0.89 | 0.95 | 0.94 | 0.97 | 0.97 | 0.99 | | 1,2,3,7,8,9-HxCDF | 0.88 | 0.029 | 3.3 | 0.83 | 0.88 | 0.87 | 0.88 | 0.90 | 0.90 | 0.92 | | 1,2,3,4,6,7,8-HpCDF | 0.90 | 0.033 | 3.7 | 0.83 | 0.93 | 0.90 | 0.90 | 0.90 | 0.92 | 0.92 | | 1,2,3,4,7,8,9-HpCDF | 0.91 | 0.018 | 1.9 | 0.89 | 0.94 | 0.90 | 0.90 | 0.92 | 0.91 | 0.92 | | OCDF | 1.18 | 0.052 | 4.4 | 1.15 | 1.14 | 1.11 | 1.17 | 1.19 | 1.23 | 1.26 | | | | | | | | | | | | | | 2,3,7,8-TCDD | 1.03 | 0.051 | 5.0 | 1.03 | 0.92 | 1.01 | 1.06 | 1.05 | 1.05 | 1.07 | | 1,2,3,7,8-PeCDD | 0.95 | 0.042 | 4.4 | 0.87 | 0.98 | 0.95 | 0.95 | 0.98 | 0.97 | 0.99 | | 1,2,3,4,7,8-HxCDD | 0.97 | 0.066 | 6.8 | 0.83 | 0.98 | 1.01 | 1.00 | 1.00 | 0.96 | 1.01 | | 1,2,3,6,7,8-HxCDD | 0.96 | 0.044 | 4.5 | 0.90 | 0.92 | 0.93 | 0.98 | 0.99 | 1.01 | 1.01 | | 1,2,3,7,8,9-HxCDD | 0.94 | 0.054 | 5.7 | 0.83 | 0.92 | 0.95 | 0.96 | 0.98 | 0.99 | 0.98 | | 1,2,3,4,6,7,8-HpCDD | 1.01 | 0.033 | 3.3 | 0.95 | 1.03 | 1.01 | 0.97 | 1.02 | 1.03 | 1.04 | | OCDD | 1.00 | 0.023 | 2.3 | 0.95 | 1.00 | 1.00 | 0.99 | 1.02 | 1.02 | 1.00 | | | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDF | 1.56 | 0.042 | 2.7 | 1.52 | 1.54 | 1.52 | 1.55 | 1.55 | 1.57 | 1.65 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 1.20 | 0.066 | 5.5 | 1.18 | 1.17 | 1.13 | 1.20 | 1.17 | 1.20 | 1.34 | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 1.16 | 0.071 | 6.1 | 1.12 | 1.13 | 1.09 | 1.15 | 1.13 | 1.17 | 1.31 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 1.33 | 0.018 | 1.4 | 1.32 | 1.35 | 1.35 | 1.33 | 1.33 | 1.32 | 1.30 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 1.53 | 0.045 | 3.0 | 1.60 | 1.56 | 1.47 | 1.48 | 1.53 | 1.53 | 1.54 | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 1.39 | 0.019 | 1.4 | 1.39 | 1.42 | 1.38 | 1.38 | 1.40 | 1.37 | 1.36 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 1.19 | 0.012 | 1.0 | 1.19 | 1.19 | 1.18 | 1.16 | 1.20 | 1.19 | 1.20 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 1.31 | 0.028 | 2.2 | 1.30 | 1.33 | 1.31 | 1.26 | 1.33 | 1.31 | 1.35 | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 1.07 | 0.045 | 4.2 | 1.02 | 1.08 | 1.06 | 1.03 | 1.09 | 1.08 | 1.15 | | | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDD | 1.12 | 0.033 | 3.0 | 1.09 | 1.11 | 1.10 | 1.11 | 1.11 | 1.13 | 1.19 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 0.78 | 0.040 | 5.1 | 0.75 | 0.78 | 0.74 | 0.78 | 0.75 | 0.79 | 0.86 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 0.87 | 0.025 | 2.9 | 0.86 | 0.90 | 0.85 | 0.83 | 0.89 | 0.88 | 0.89 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 1.05 | 0.015 | 1.5 | 1.08 | 1.06 | 1.05 | 1.05 | 1.04 | 1.05 | 1.03 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 0.81 | 0.016 | 2.0 | 0.79 | 0.81 | 0.81 | 0.80 | 0.80 | 0.81 | 0.84 | | ¹³ C ₁₂ -OCDD | 0.73 | 0.046 | 6.3 | 0.71 | 0.72 | 0.70 | 0.70 | 0.73 | 0.72 | 0.83 | | | | | | | | | | | | | | ¹³ C ₁₂ -1,2,3,4-TCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 0.97 | 0.053 | 5.4 | 0.90 | 1.07 | 0.95 | 0.94 | 0.99 | 0.99 | 0.99 | Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) 24oct EPA-1613CS3 24-Oct-2019 11:56:04 13CS31019 443.7398 100-1.96e7 **OCDF** % 40.50 42.50 43.00 40.00 41.00 41.50 42.00 459.7348 100-1.64e7 OCDD % 40.00 40.50 41.00 41.50 42.00 42.50 43.00 471.7750 100-3.28e7 ¹³C₁₂ - OCDD % Time 43.00 41.50 42.00 42.50 40.50 41.00 40.00 Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) # **HRGC/HRMS:** Agilent 6890N (HRGC) Autospec Ultima (HRMS) # **Chromatographic Conditions:** Column: 60 m DB-5 (0.25 mm id, 0.25 µm film thickness) Agilent J&W Flow: Constant at 1 ml/min Oven: $150 \, ^{\circ}\text{C}$ (1 min) Injector: $280 \, ^{\circ}\text{C}$ (Splitless Injection) $12 \, ^{\circ}\text{C/min}$ to $200 \, ^{\circ}\text{C}$ Ionization: EI+ $3 \, ^{\circ}\text{C/min}$ to $235 \, ^{\circ}\text{C}$ Detector: 280 °C 235 °C (8 min) SIR at 10,000 mass resolving power 8 °C/min to 235 °C 3 °C/min to 235 °C 235 °C (8 min) 8 °C/min to 310 °C 310 °C (8 min) # CERTIFICATE OF ANALYSIS DOCUMENTATION ## **EPA-1613CVS** U.S. EPA Method 1613 Calibration and Verification Solutions plus Supplemental Calibration Solutions EPA-1613CSL & EPA-1613CS0.5 | PRODUCT CODES: | EPA-1613CVS | LOT NUMBERS: | (see below) | |----------------|-------------|---------------------|-------------| | | EPA-1613CS1 | | 13CS11019 | | | EPA-1613CS2 | | 13CS21019 | | | EPA-1613CS3 | | 13CS31019 | | | EPA-1613CS4 | | 13CS41019 | | | EPA-1613CS5 | | 13CS51019 | Note: EPA-1613CSL and EPA-1613CS0.5 are lower level extensions to this calibration set that must be ordered separately. EPA-1613CS0.5 13CS0.51019 EPA-1613CSL 13CSL1019 **SOLVENT(S):** Nonane/Toluene DATE PREPARED: (mm/dd/yyyy) 10/22/2019 LAST TESTED: (mm/dd/yyyy) 10/24/2019 EXPIRY DATE: (mm/dd/yyyy) 10/24/2026 **RECOMMENDED STORAGE:** Store ampoules in a cool, dark place 1005459 1613 CS5 CAL STD Expires 10/24/2026 Prepared By Joshua Rains 6/23/2020 # **DESCRIPTION:** EPA-1613CVS is a series of 5 calibration solutions containing native ($^{12}C_{12}$) and mass-labelled ($^{13}C_{12}$ and $^{37}Cl_4$) chlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). The components of each solution, and their concentrations, are given in Table A. They were designed for, and prepared to be used according to, U.S. EPA Method 1613 (Revision B). They are to be used as received. EPA-1613CSL and EPA-1613CS0.5 are lower level extensions to EPA-1613CVS. Neither is required by the method, but either or both can be used to extend the calibration to lower levels. The individual native PCDDs and PCDFs all have chemical purities of >98%. The individual 13 C-labelled PCDDs and PCDFs all have chemical purities of >98% and isotopic purities of \geq 99%. The 2,3,7,8- 37 Cl₄-Tetrachlorodibenzo-p-dioxin has a chemical purity of \geq 98% and an isotopic (37 Cl) purity of \geq 95%. ## FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com Table A: Components and Concentrations Table B: 5-point HRGC/HRMS Calibration and RRF Summary Table C: 7-point HRGC/HRMS Calibration and RRF Summary Figure 1: HRGC/HRMS Data for EPA-1613CS3 (SIR; 10,000 mass resolving power) # **ADDITIONAL INFORMATION:** The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a series of standards for the identification and quantification of specific chemical compounds. ## **HANDLING:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous
chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## **SYNTHESIS / CHARACTERIZATION:** Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values, and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{o}(y)$, of a value y and the uncertainty of the independent parameters $$\mathbf{x_1}, \, \mathbf{x_2}, ... \mathbf{x_n}$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. ## **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analytes is performed on a routine basis. # **LIMITED WARRANTY:** At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ## **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). ARAB ACCREDITED ISO17034 REFERENCE MATERIAL PRODUCER Table A: EPA-1613CVS (with EPA-1613CSL and EPA-1613CS0.5); Components and Concentrations (ng/ml, ± 5% in nonane/toluene) | Compound | | | Conc | entration (| ng/ml) | | | |--|------|------|------|-------------|--------|------|-------| | Native PCDDs and PCDFs: | CS1 | CS2 | CS3 | CS4 | CS5 | CSL | CS0.5 | | 2,3,7,8-TCDD | 0.5 | 2 | 10 | 40 | 200 | 0.1 | 0.25 | | 2,3,7,8-TCDF | 0.5 | 2 | 10 | 40 | 200 | 0.1 | 0.25 | | 1,2,3,7,8-PeCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,7,8-PeCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 2,3,4,7,8-PeCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,7,8-HxCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,6,7,8-HxCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,7,8,9-HxCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,7,8-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,6,7,8-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,7,8,9-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 2,3,4,6,7,8-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,6,7,8-HpCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,6,7,8-HpCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,7,8,9-HpCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | OCDD | 5.0 | 20 | 100 | 400 | 2000 | 1.0 | 2.5 | | OCDF | 5.0 | 20 | 100 | 400 | 2000 | 1.0 | 2.5 | | Labelled PCDDs and PCDFs: | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -2,3,7,8-TCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -OCDD | 200 | 200 | 200 | 200 | 200 | 200 | 200 | | Cleanup Standard: | | | | | | | | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 0.5 | 2 | 10 | 40 | 200 | 0.1 | 0.25 | | Internal Standards: | | | | | | | | | ¹³ C ₁₂ -1,2,3,4-TCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | Percent toluene (v/v) | 3.6% | 3.7% | 4.2% | 6.1% | 16.2% | 3.6% | 3.6% | B.G. Chittim, General Manager Table B: EPA-1613CVS; 5-point HRGC/HRMS Calibration and RRF Summary | Calibration RRF Summary | | | | | Calibration Standard | | | | | | |--|------|-------|------|------|----------------------|------|-------|------|--|--| | Calibration Filename: 24oct_EPA1613CVS-CAL | QLD | | | CS1 | CS2 | CS3 | CS4 | CS5 | | | | Name | Mean | S. D. | %RSD | | | | RRF#4 | | | | | | | | | | | | | | | | | 2,3,7,8-TCDF | 0.93 | 0.013 | 1.4 | 0.92 | 0.95 | 0.93 | 0.92 | 0.95 | | | | 1,2,3,7,8-PeCDF | 0.93 | 0.015 | 1.6 | 0.92 | 0.92 | 0.93 | 0.93 | 0.95 | | | | 2,3,4,7,8-PeCDF | 1.04 | 0.019 | 1.8 | 1.03 | 1.02 | 1.05 | 1.05 | 1.07 | | | | 1,2,3,4,7,8-HxCDF | 0.96 | 0.035 | 3.7 | 0.94 | 0.92 | 0.98 | 0.99 | 1.00 | | | | 1,2,3,6,7,8-HxCDF | 0.93 | 0.013 | 1.4 | 0.92 | 0.94 | 0.94 | 0.91 | 0.94 | | | | 2,3,4,6,7,8-HxCDF | 0.96 | 0.022 | 2.3 | 0.95 | 0.94 | 0.97 | 0.97 | 0.99 | | | | 1,2,3,7,8,9-HxCDF | 0.89 | 0.021 | 2.4 | 0.87 | 0.88 | 0.90 | 0.90 | 0.92 | | | | 1,2,3,4,6,7,8-HpCDF | 0.91 | 0.011 | 1.2 | 0.90 | 0.90 | 0.90 | 0.92 | 0.92 | | | | 1,2,3,4,7,8,9-HpCDF | 0.91 | 0.010 | 1.1 | 0.90 | 0.90 | 0.92 | 0.91 | 0.92 | | | | OCDF | 1.19 | 0.056 | 4.7 | 1.11 | 1.17 | 1.19 | 1.23 | 1.26 | | | | | | | | | | | | | | | | 2,3,7,8-TCDD | 1.05 | 0.023 | 2.2 | 1.01 | 1.06 | 1.05 | 1.05 | 1.07 | | | | 1,2,3,7,8-PeCDD | 0.97 | 0.018 | 1.9 | 0.95 | 0.95 | 0.98 | 0.97 | 0.99 | | | | 1,2,3,4,7,8-HxCDD | 1.00 | 0.019 | 1.9 | 1.01 | 1.00 | 1.00 | 0.96 | 1.01 | | | | 1,2,3,6,7,8-HxCDD | 0.98 | 0.032 | 3.2 | 0.93 | 0.98 | 0.99 | 1.01 | 1.01 | | | | 1,2,3,7,8,9-HxCDD | 0.97 | 0.016 | 1.6 | 0.95 | 0.96 | 0.98 | 0.99 | 0.98 | | | | 1,2,3,4,6,7,8-HpCDD | 1.01 | 0.025 | 2.5 | 1.01 | 0.97 | 1.02 | 1.03 | 1.04 | | | | OCDD | 1.00 | 0.013 | 1.3 | 1.00 | 0.99 | 1.02 | 1.02 | 1.00 | | | | | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDF | 1.57 | 0.047 | 3.0 | 1.52 | 1.55 | 1.55 | 1.57 | 1.65 | | | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 1.21 | 0.078 | 6.5 | 1.13 | 1.20 | 1.17 | 1.20 | 1.34 | | | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 1.17 | 0.081 | 6.9 | 1.09 | 1.15 | 1.13 | 1.17 | 1.31 | | | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 1.33 | 0.020 | 1.5 | 1.35 | 1.33 | 1.33 | 1.32 | 1.30 | | | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 1.51 | 0.034 | 2.2 | 1.47 | 1.48 | 1.53 | 1.53 | 1.54 | | | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 1.38 | 0.012 | 0.9 | 1.38 | 1.38 | 1.40 | 1.37 | 1.36 | | | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 1.19 | 0.014 | 1.2 | 1.18 | 1.16 | 1.20 | 1.19 | 1.20 | | | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 1.31 | 0.033 | 2.5 | 1.31 | 1.26 | 1.33 | 1.31 | 1.35 | | | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 1.08 | 0.046 | 4.3 | 1.06 | 1.03 | 1.09 | 1.08 | 1.15 | | | | | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDD | 1.13 | 0.036 | 3.2 | 1.10 | 1.11 | 1.11 | 1.13 | 1.19 | | | | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 0.79 | 0.047 | 5.9 | 0.74 | 0.78 | 0.75 | 0.79 | 0.86 | | | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 0.87 | 0.027 | 3.1 | 0.85 | 0.83 | 0.89 |
0.88 | 0.89 | | | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 1.04 | 0.010 | 1.0 | 1.05 | 1.05 | 1.04 | 1.05 | 1.03 | | | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 0.81 | 0.017 | 2.1 | 0.81 | 0.80 | 0.80 | 0.81 | 0.84 | | | | ¹³ C ₁₂ -OCDD | 0.74 | 0.055 | 7.4 | 0.70 | 0.70 | 0.73 | 0.72 | 0.83 | | | | | | | | | | | | | | | | ¹³ C ₁₂ -1,2,3,4-TCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 0.97 | 0.026 | 2.6 | 0.95 | 0.94 | 0.99 | 0.99 | 0.99 | | | Table C: EPA-1613CVS (with EPA-1613CSL and EPA-1613CS0.5); 7-point HRGC/HRMS Calibration and RRF Summary | Calibration RRF Summary | | | | Calibration Standard | | | | | | | |--|-------|-------|------|----------------------|-------|------|------|------|-------|------| | Calibration Filename: 24oct EPA1613CVS-CA | L.QLD | | | CSL | CS0.5 | CS1 | CS2 | CS3 | CS4 | CS5 | | Name | Mean | S. D. | %RSD | RRF#1 | RRF#2 | | | | RRF#6 | | | | | | | | | | | | | | | 2,3,7,8-TCDF | 0.92 | 0.045 | 4.8 | 0.96 | 0.83 | 0.92 | 0.95 | 0.93 | 0.92 | 0.95 | | 1,2,3,7,8-PeCDF | 0.93 | 0.013 | 1.4 | 0.94 | 0.92 | 0.92 | 0.92 | 0.93 | 0.93 | 0.95 | | 2,3,4,7,8-PeCDF | 1.02 | 0.058 | 5.7 | 0.90 | 1.00 | 1.03 | 1.02 | 1.05 | 1.05 | 1.07 | | 1,2,3,4,7,8-HxCDF | 0.96 | 0.029 | 3.0 | 0.96 | 0.97 | 0.94 | 0.92 | 0.98 | 0.99 | 1.00 | | 1,2,3,6,7,8-HxCDF | 0.92 | 0.030 | 3.3 | 0.90 | 0.86 | 0.92 | 0.94 | 0.94 | 0.91 | 0.94 | | 2,3,4,6,7,8-HxCDF | 0.94 | 0.047 | 5.0 | 0.87 | 0.89 | 0.95 | 0.94 | 0.97 | 0.97 | 0.99 | | 1,2,3,7,8,9-HxCDF | 0.88 | 0.029 | 3.3 | 0.83 | 0.88 | 0.87 | 0.88 | 0.90 | 0.90 | 0.92 | | 1,2,3,4,6,7,8-HpCDF | 0.90 | 0.033 | 3.7 | 0.83 | 0.93 | 0.90 | 0.90 | 0.90 | 0.92 | 0.92 | | 1,2,3,4,7,8,9-HpCDF | 0.91 | 0.018 | 1.9 | 0.89 | 0.94 | 0.90 | 0.90 | 0.92 | 0.91 | 0.92 | | OCDF | 1.18 | 0.052 | 4.4 | 1.15 | 1.14 | 1.11 | 1.17 | 1.19 | 1.23 | 1.26 | | | | | | | | | | | | | | 2,3,7,8-TCDD | 1.03 | 0.051 | 5.0 | 1.03 | 0.92 | 1.01 | 1.06 | 1.05 | 1.05 | 1.07 | | 1,2,3,7,8-PeCDD | 0.95 | 0.042 | 4.4 | 0.87 | 0.98 | 0.95 | 0.95 | 0.98 | 0.97 | 0.99 | | 1,2,3,4,7,8-HxCDD | 0.97 | 0.066 | 6.8 | 0.83 | 0.98 | 1.01 | 1.00 | 1.00 | 0.96 | 1.01 | | 1,2,3,6,7,8-HxCDD | 0.96 | 0.044 | 4.5 | 0.90 | 0.92 | 0.93 | 0.98 | 0.99 | 1.01 | 1.01 | | 1,2,3,7,8,9-HxCDD | 0.94 | 0.054 | 5.7 | 0.83 | 0.92 | 0.95 | 0.96 | 0.98 | 0.99 | 0.98 | | 1,2,3,4,6,7,8-HpCDD | 1.01 | 0.033 | 3.3 | 0.95 | 1.03 | 1.01 | 0.97 | 1.02 | 1.03 | 1.04 | | OCDD | 1.00 | 0.023 | 2.3 | 0.95 | 1.00 | 1.00 | 0.99 | 1.02 | 1.02 | 1.00 | | | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDF | 1.56 | 0.042 | 2.7 | 1.52 | 1.54 | 1.52 | 1.55 | 1.55 | 1.57 | 1.65 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 1.20 | 0.066 | 5.5 | 1.18 | 1.17 | 1.13 | 1.20 | 1.17 | 1.20 | 1.34 | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 1.16 | 0.071 | 6.1 | 1.12 | 1.13 | 1.09 | 1.15 | 1.13 | 1.17 | 1.31 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 1.33 | 0.018 | 1.4 | 1.32 | 1.35 | 1.35 | 1.33 | 1.33 | 1.32 | 1.30 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 1.53 | 0.045 | 3.0 | 1.60 | 1.56 | 1.47 | 1.48 | 1.53 | 1.53 | 1.54 | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 1.39 | 0.019 | 1.4 | 1.39 | 1.42 | 1.38 | 1.38 | 1.40 | 1.37 | 1.36 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 1.19 | 0.012 | 1.0 | 1.19 | 1.19 | 1.18 | 1.16 | 1.20 | 1.19 | 1.20 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 1.31 | 0.028 | 2.2 | 1.30 | 1.33 | 1.31 | 1.26 | 1.33 | 1.31 | 1.35 | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 1.07 | 0.045 | 4.2 | 1.02 | 1.08 | 1.06 | 1.03 | 1.09 | 1.08 | 1.15 | | | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDD | 1.12 | 0.033 | 3.0 | 1.09 | 1.11 | 1.10 | 1.11 | 1.11 | 1.13 | 1.19 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 0.78 | 0.040 | 5.1 | 0.75 | 0.78 | 0.74 | 0.78 | 0.75 | 0.79 | 0.86 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 0.87 | 0.025 | 2.9 | 0.86 | 0.90 | 0.85 | 0.83 | 0.89 | 0.88 | 0.89 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 1.05 | 0.015 | 1.5 | 1.08 | 1.06 | 1.05 | 1.05 | 1.04 | 1.05 | 1.03 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 0.81 | 0.016 | 2.0 | 0.79 | 0.81 | 0.81 | 0.80 | 0.80 | 0.81 | 0.84 | | ¹³ C ₁₂ -OCDD | 0.73 | 0.046 | 6.3 | 0.71 | 0.72 | 0.70 | 0.70 | 0.73 | 0.72 | 0.83 | | | | | | | | | | | | | | ¹³ C ₁₂ -1,2,3,4-TCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 0.97 | 0.053 | 5.4 | 0.90 | 1.07 | 0.95 | 0.94 | 0.99 | 0.99 | 0.99 | Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) 24oct EPA-1613CS3 24-Oct-2019 11:56:04 13CS31019 443.7398 100-1.96e7 **OCDF** % 40.50 42.50 43.00 40.00 41.00 41.50 42.00 459.7348 100-1.64e7 OCDD % 40.00 40.50 41.00 41.50 42.00 42.50 43.00 471.7750 100-3.28e7 ¹³C₁₂ - OCDD % Time 43.00 41.50 42.00 42.50 40.50 41.00 40.00 Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) # **HRGC/HRMS:** Agilent 6890N (HRGC) Autospec Ultima (HRMS) # **Chromatographic Conditions:** Column: 60 m DB-5 (0.25 mm id, 0.25 µm film thickness) Agilent J&W Flow: Constant at 1 ml/min Oven: $150 \, ^{\circ}\text{C}$ (1 min) Injector: $280 \, ^{\circ}\text{C}$ (Splitless Injection) $12 \, ^{\circ}\text{C/min}$ to $200 \, ^{\circ}\text{C}$ Ionization: EI+ $3 \, ^{\circ}\text{C/min}$ to $235 \, ^{\circ}\text{C}$ Detector: 280 °C 235 °C (8 min) SIR at 10,000 mass resolving power 8 °C/min to 235 °C 3 °C/min to 235 °C 235 °C (8 min) 8 °C/min to 310 °C 310 °C (8 min) # CERTIFICATE OF ANALYSIS DOCUMENTATION ## **EPA-1613CVS** U.S. EPA Method 1613 Calibration and Verification Solutions plus Supplemental Calibration Solutions EPA-1613CSL & EPA-1613CS0.5 | PRODUCT CODES: | EPA-1613CVS | LOT NUMBERS: | (see below) | |----------------|-------------|---------------------|-------------| | | EPA-1613CS1 | | 13CS11019 | | | EPA-1613CS2 | | 13CS21019 | | | EPA-1613CS3 | | 13CS31019 | | | EPA-1613CS4 | | 13CS41019 | | | EPA-1613CS5 | | 13CS51019 | Note: EPA-1613CSL and EPA-1613CS0.5 are lower level extensions to this calibration set that must be ordered separately. EPA-1613CS0.5 13CS0.51019 EPA-1613CSL 13CSL1019 **SOLVENT(S):** Nonane/Toluene DATE PREPARED: (mm/dd/yyyy) 10/22/2019 LAST TESTED: (mm/dd/yyyy) 10/24/2019 EXPIRY DATE: (mm/dd/yyyy) 10/24/2026 **RECOMMENDED STORAGE:** Store ampoules in a cool, dark place 1005460 1613 CSL CAL STD Expires 10/24/2026 Prepared By Joshua Rains 6/23/2020 # **DESCRIPTION:** EPA-1613CVS is a series of 5 calibration solutions containing native ($^{12}C_{12}$) and mass-labelled ($^{13}C_{12}$ and $^{37}Cl_4$) chlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). The components of each solution, and their concentrations, are given in Table A. They were designed for, and prepared to be used according to, U.S. EPA Method 1613 (Revision B). They are to be used as received. EPA-1613CSL and EPA-1613CS0.5 are lower level extensions to EPA-1613CVS. Neither is required by the method, but either or both can be used to extend the calibration to lower levels. The individual native PCDDs and PCDFs all have chemical purities of >98%. The individual 13 C-labelled PCDDs and PCDFs all have chemical purities of >98% and isotopic purities of \geq 99%. The 2,3,7,8- 37 Cl₄-Tetrachlorodibenzo-p-dioxin has a chemical purity of >98% and an isotopic (37 Cl) purity of \geq 95%. ## FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com Table A: Components and Concentrations Table B: 5-point HRGC/HRMS Calibration and RRF Summary Table C: 7-point HRGC/HRMS Calibration and RRF Summary Figure 1: HRGC/HRMS Data for EPA-1613CS3 (SIR; 10,000 mass resolving power) # **ADDITIONAL INFORMATION:** The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a series of standards for the identification and quantification of specific chemical compounds. ## **HANDLING:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. ## **SYNTHESIS / CHARACTERIZATION:** Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. ### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values, and associated
uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{o}(y)$, of a value y and the uncertainty of the independent parameters $$\mathbf{x_1}, \, \mathbf{x_2}, ... \mathbf{x_n}$$ on which it depends is: $$u_c(y(x_1, x_2, ... x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. ## **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analytes is performed on a routine basis. # **LIMITED WARRANTY:** At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ## **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523). ARAB ACCREDITED ISO17034 REFERENCE MATERIAL PRODUCER Table A: EPA-1613CVS (with EPA-1613CSL and EPA-1613CS0.5); Components and Concentrations (ng/ml, ± 5% in nonane/toluene) | Compound Native PCDDs and PCDFs: | Concentration (ng/ml) | | | | | | | |--|-----------------------|------|------|------|-------|------|-------| | | CS1 | CS2 | CS3 | CS4 | CS5 | CSL | CS0.5 | | 2,3,7,8-TCDD | 0.5 | 2 | 10 | 40 | 200 | 0.1 | 0.25 | | 2,3,7,8-TCDF | 0.5 | 2 | 10 | 40 | 200 | 0.1 | 0.25 | | 1,2,3,7,8-PeCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,7,8-PeCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 2,3,4,7,8-PeCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,7,8-HxCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,6,7,8-HxCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,7,8,9-HxCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,7,8-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,6,7,8-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,7,8,9-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 2,3,4,6,7,8-HxCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,6,7,8-HpCDD | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,6,7,8-HpCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | 1,2,3,4,7,8,9-HpCDF | 2.5 | 10 | 50 | 200 | 1000 | 0.5 | 1.25 | | OCDD | 5.0 | 20 | 100 | 400 | 2000 | 1.0 | 2.5 | | OCDF | 5.0 | 20 | 100 | 400 | 2000 | 1.0 | 2.5 | | Labelled PCDDs and PCDFs: | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -2,3,7,8-TCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -OCDD | 200 | 200 | 200 | 200 | 200 | 200 | 200 | | Cleanup Standard: | | | | | | | | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 0.5 | 2 | 10 | 40 | 200 | 0.1 | 0.25 | | Internal Standards: | | | | | | | | | ¹³ C ₁₂ -1,2,3,4-TCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | Percent toluene (v/v) | 3.6% | 3.7% | 4.2% | 6.1% | 16.2% | 3.6% | 3.6% | B.G. Chittim, General Manager Table B: EPA-1613CVS; 5-point HRGC/HRMS Calibration and RRF Summary | Calibration RRF Summary | | | | | Calibr | ation Sta | andard | | |--|------|-------|------|------|--------|-----------|--------|------| | Calibration Filename: 24oct_EPA1613CVS-CAL | QLD | | | CS1 | CS2 | CS3 | CS4 | CS5 | | Name | Mean | S. D. | %RSD | | | | RRF#4 | | | | | | | | | | | | | 2,3,7,8-TCDF | 0.93 | 0.013 | 1.4 | 0.92 | 0.95 | 0.93 | 0.92 | 0.95 | | 1,2,3,7,8-PeCDF | 0.93 | 0.015 | 1.6 | 0.92 | 0.92 | 0.93 | 0.93 | 0.95 | | 2,3,4,7,8-PeCDF | 1.04 | 0.019 | 1.8 | 1.03 | 1.02 | 1.05 | 1.05 | 1.07 | | 1,2,3,4,7,8-HxCDF | 0.96 | 0.035 | 3.7 | 0.94 | 0.92 | 0.98 | 0.99 | 1.00 | | 1,2,3,6,7,8-HxCDF | 0.93 | 0.013 | 1.4 | 0.92 | 0.94 | 0.94 | 0.91 | 0.94 | | 2,3,4,6,7,8-HxCDF | 0.96 | 0.022 | 2.3 | 0.95 | 0.94 | 0.97 | 0.97 | 0.99 | | 1,2,3,7,8,9-HxCDF | 0.89 | 0.021 | 2.4 | 0.87 | 0.88 | 0.90 | 0.90 | 0.92 | | 1,2,3,4,6,7,8-HpCDF | 0.91 | 0.011 | 1.2 | 0.90 | 0.90 | 0.90 | 0.92 | 0.92 | | 1,2,3,4,7,8,9-HpCDF | 0.91 | 0.010 | 1.1 | 0.90 | 0.90 | 0.92 | 0.91 | 0.92 | | OCDF | 1.19 | 0.056 | 4.7 | 1.11 | 1.17 | 1.19 | 1.23 | 1.26 | | | | | | | | | | | | 2,3,7,8-TCDD | 1.05 | 0.023 | 2.2 | 1.01 | 1.06 | 1.05 | 1.05 | 1.07 | | 1,2,3,7,8-PeCDD | 0.97 | 0.018 | 1.9 | 0.95 | 0.95 | 0.98 | 0.97 | 0.99 | | 1,2,3,4,7,8-HxCDD | 1.00 | 0.019 | 1.9 | 1.01 | 1.00 | 1.00 | 0.96 | 1.01 | | 1,2,3,6,7,8-HxCDD | 0.98 | 0.032 | 3.2 | 0.93 | 0.98 | 0.99 | 1.01 | 1.01 | | 1,2,3,7,8,9-HxCDD | 0.97 | 0.016 | 1.6 | 0.95 | 0.96 | 0.98 | 0.99 | 0.98 | | 1,2,3,4,6,7,8-HpCDD | 1.01 | 0.025 | 2.5 | 1.01 | 0.97 | 1.02 | 1.03 | 1.04 | | OCDD | 1.00 | 0.013 | 1.3 | 1.00 | 0.99 | 1.02 | 1.02 | 1.00 | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDF | 1.57 | 0.047 | 3.0 | 1.52 | 1.55 | 1.55 | 1.57 | 1.65 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 1.21 | 0.078 | 6.5 | 1.13 | 1.20 | 1.17 | 1.20 | 1.34 | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 1.17 | 0.081 | 6.9 | 1.09 | 1.15 | 1.13 | 1.17 | 1.31 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 1.33 | 0.020 | 1.5 | 1.35 | 1.33 | 1.33 | 1.32 | 1.30 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 1.51 | 0.034 | 2.2 | 1.47 | 1.48 | 1.53 | 1.53 | 1.54 | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 1.38 | 0.012 | 0.9 | 1.38 | 1.38 | 1.40 | 1.37 | 1.36 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 1.19 | 0.014 | 1.2 | 1.18 | 1.16 | 1.20 | 1.19 | 1.20 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 1.31 | 0.033 | 2.5 | 1.31 | 1.26 | 1.33 | 1.31 | 1.35 | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 1.08 | 0.046 | 4.3 | 1.06 | 1.03 | 1.09 | 1.08 | 1.15 | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDD | 1.13 | 0.036 | 3.2 | 1.10 | 1.11 | 1.11 | 1.13 | 1.19 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 0.79 | 0.047 | 5.9 | 0.74 | 0.78 | 0.75 | 0.79 | 0.86 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 0.87 | 0.027 | 3.1 | 0.85 | 0.83 | 0.89 | 0.88 | 0.89 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 1.04 | 0.010 | 1.0 | 1.05 | 1.05 | 1.04 | 1.05 | 1.03 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 0.81 | 0.017 | 2.1 | 0.81 | 0.80 | 0.80 | 0.81 | 0.84 | | ¹³ C ₁₂ -OCDD | 0.74 | 0.055 | 7.4 | 0.70 | 0.70 | 0.73 | 0.72 | 0.83 | | | | | | | | | | | | ¹³ C ₁₂ -1,2,3,4-TCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 0.97 | 0.026 | 2.6 | 0.95 | 0.94 | 0.99 | 0.99 | 0.99 | Table C: EPA-1613CVS (with EPA-1613CSL and EPA-1613CS0.5); 7-point HRGC/HRMS Calibration and RRF Summary | Calibration RRF Summary | | | | Calibration Standard | | | | | | | |--|------|-------|------|----------------------|-------|-------|-------|-------|-------|-------| | Calibration Filename: 24oct_EPA1613CVS-CAl | QLD | | | CSL | CS0.5 | CS1 | CS2 | CS3 | CS4 | CS5 | | Name | Mean | S. D. | %RSD | RRF#1 | RRF#2 | RRF#3 | RRF#4 | RRF#5 | RRF#6 | RRF#7 | | 2,3,7,8-TCDF | 0.92 | 0.045 | 4.8 | 0.96 | 0.83 | 0.92 | 0.95 | 0.93 | 0.92 | 0.95 | | 1,2,3,7,8-PeCDF | 0.93 | 0.013 | 1.4 | 0.94 | 0.92 | 0.92 | 0.92 | 0.93 | 0.93 | 0.95 | | 2,3,4,7,8-PeCDF | 1.02 | 0.058 | 5.7 | 0.90 | 1.00 | 1.03 | 1.02 | 1.05 | 1.05 | 1.07 | | 1,2,3,4,7,8-HxCDF | 0.96 | 0.029 | 3.0 | 0.96 | 0.97 | 0.94 | 0.92 | 0.98 | 0.99 | 1.00 | | 1,2,3,6,7,8-HxCDF | 0.92 | 0.030 | 3.3 | 0.90 | 0.86 | 0.92 | 0.94 | 0.94 | 0.91 | 0.94 | | 2,3,4,6,7,8-HxCDF | 0.94 | 0.047 | 5.0 | 0.87 | 0.89 | 0.95 | 0.94 | 0.97 | 0.97 | 0.99 | | 1,2,3,7,8,9-HxCDF | 0.88 | 0.029 | 3.3 | 0.83 | 0.88 | 0.87 | 0.88 | 0.90 | 0.90 | 0.92 | | 1,2,3,4,6,7,8-HpCDF | 0.90 | 0.033 | 3.7 | 0.83 | 0.93 | 0.90 | 0.90 | 0.90 | 0.92 | 0.92 | | 1,2,3,4,7,8,9-HpCDF | 0.91 | 0.018 | 1.9 | 0.89 |
0.94 | 0.90 | 0.90 | 0.92 | 0.91 | 0.92 | | OCDF | 1.18 | 0.052 | 4.4 | 1.15 | 1.14 | 1.11 | 1.17 | 1.19 | 1.23 | 1.26 | | 2,3,7,8-TCDD | 1.03 | 0.051 | 5.0 | 1.03 | 0.92 | 1.01 | 1.06 | 1.05 | 1.05 | 1.07 | | 1,2,3,7,8-PeCDD | 0.95 | 0.042 | 4.4 | 0.87 | 0.98 | 0.95 | 0.95 | 0.98 | 0.97 | 0.99 | | 1,2,3,4,7,8-HxCDD | 0.97 | 0.066 | 6.8 | 0.83 | 0.98 | 1.01 | 1.00 | 1.00 | 0.96 | 1.01 | | 1,2,3,6,7,8-HxCDD | 0.96 | 0.044 | 4.5 | 0.90 | 0.92 | 0.93 | 0.98 | 0.99 | 1.01 | 1.01 | | 1,2,3,7,8,9-HxCDD | 0.94 | 0.054 | 5.7 | 0.83 | 0.92 | 0.95 | 0.96 | 0.98 | 0.99 | 0.98 | | 1,2,3,4,6,7,8-HpCDD | 1.01 | 0.033 | 3.3 | 0.95 | 1.03 | 1.01 | 0.97 | 1.02 | 1.03 | 1.04 | | OCDD | 1.00 | 0.023 | 2.3 | 0.95 | 1.00 | 1.00 | 0.99 | 1.02 | 1.02 | 1.00 | | CODD | 1.00 | 0.020 | 2.0 | 0.00 | 1.00 | 1.00 | 0.00 | 1.02 | 1.02 | 1.00 | | ¹³ C ₁₂ -2,3,7,8-TCDF | 1.56 | 0.042 | 2.7 | 1.52 | 1.54 | 1.52 | 1.55 | 1.55 | 1.57 | 1.65 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 1.20 | 0.066 | 5.5 | 1.18 | 1.17 | 1.13 | 1.20 | 1.17 | 1.20 | 1.34 | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 1.16 | 0.071 | 6.1 | 1.12 | 1.13 | 1.09 | 1.15 | 1.13 | 1.17 | 1.31 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 1.33 | 0.018 | 1.4 | 1.32 | 1.35 | 1.35 | 1.33 | 1.33 | 1.32 | 1.30 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 1.53 | 0.045 | 3.0 | 1.60 | 1.56 | 1.47 | 1.48 | 1.53 | 1.53 | 1.54 | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 1.39 | 0.019 | 1.4 | 1.39 | 1.42 | 1.38 | 1.38 | 1.40 | 1.37 | 1.36 | | ¹³ C _{.2} -1,2,3,7,8,9-HxCDF | 1.19 | 0.012 | 1.0 | 1.19 | 1.19 | 1.18 | 1.16 | 1.20 | 1.19 | 1.20 | | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 1.31 | 0.028 | 2.2 | 1.30 | 1.33 | 1.31 | 1.26 | 1.33 | 1.31 | 1.35 | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 1.07 | 0.045 | 4.2 | 1.02 | 1.08 | 1.06 | 1.03 | 1.09 | 1.08 | 1.15 | | 130 0070 7000 | | | | | | | | | | | | ¹³ C ₁₂ -2,3,7,8-TCDD | 1.12 | 0.033 | 3.0 | 1.09 | 1.11 | 1.10 | 1.11 | 1.11 | 1.13 | 1.19 | | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 0.78 | 0.040 | 5.1 | 0.75 | 0.78 | 0.74 | 0.78 | 0.75 | 0.79 | 0.86 | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 0.87 | 0.025 | 2.9 | 0.86 | 0.90 | 0.85 | 0.83 | 0.89 | 0.88 | 0.89 | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 1.05 | 0.015 | 1.5 | 1.08 | 1.06 | 1.05 | 1.05 | 1.04 | 1.05 | 1.03 | | ¹³ C ₁₋ -1,2,3,4,6,7,8-HpCDD | 0.81 | 0.016 | 2.0 | 0.79 | 0.81 | 0.81 | 0.80 | 0.80 | 0.81 | 0.84 | | ¹³ C ₁₂ -OCDD | 0.73 | 0.046 | 6.3 | 0.71 | 0.72 | 0.70 | 0.70 | 0.73 | 0.72 | 0.83 | | ¹³ C ₁₂ -1,2,3,4-TCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 1.00 | 0.000 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 0.97 | 0.053 | 5.4 | 0.90 | 1.07 | 0.95 | 0.94 | 0.99 | 0.99 | 0.99 | Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) 24oct EPA-1613CS3 24-Oct-2019 11:56:04 13CS31019 443.7398 100-1.96e7 **OCDF** % 40.50 42.50 43.00 40.00 41.00 41.50 42.00 459.7348 100-1.64e7 OCDD % 40.00 40.50 41.00 41.50 42.00 42.50 43.00 471.7750 100-3.28e7 ¹³C₁₂ - OCDD % Time 43.00 41.50 42.00 42.50 40.50 41.00 40.00 Figure 1: EPA-1613CS3; HRGC/HRMS Data (60 m DB-5 Column) ## **HRGC/HRMS:** Agilent 6890N (HRGC) Autospec Ultima (HRMS) # **Chromatographic Conditions:** Column: 60 m DB-5 (0.25 mm id, 0.25 µm film thickness) Agilent J&W Flow: Constant at 1 ml/min Oven: $150 \, ^{\circ}\text{C}$ (1 min) Injector: $280 \, ^{\circ}\text{C}$ (Splitless Injection) $12 \, ^{\circ}\text{C/min}$ to $200 \, ^{\circ}\text{C}$ Ionization: EI+ $3 \, ^{\circ}\text{C/min}$ to $235 \, ^{\circ}\text{C}$ Detector: 280 °C 235 °C (8 min) SIR at 10,000 mass resolving power 8 °C/min to 235 °C 3 °C/min to 235 °C 235 °C (8 min) 8 °C/min to 310 °C 310 °C (8 min) # CERTIFICATE OF ANALYSIS DOCUMENTATION # CS3WT Calibration and Verification Solution (EPA-1613CS3) combined with Window Defining and 2,3,7,8-TCDD Resolution Testing Congeners PRODUCT CODE: LOT NUMBER: SOLVENT(S): DATE PREPARED: (mm/dd/yyyy) CS3WT1020 Nonane/Toluene 12/02/2020 LAST TESTED: (mm/dd/yyyy) 12/10/2020 EXPIRY DATE: (mm/dd/yyyy) 12/10/2027 **RECOMMENDED STORAGE:** Store ampoule in a cool, dark place J001522 1613 CS3WT CCAL STD Expires 12/10/2027 Prepared By Joshua Rains 2/10/2021 #### **DESCRIPTION:** CS3WT is a solution/mixture of native (${}^{12}C_{12}$) and mass-labelled (${}^{13}C_{12}$) polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). The components and their concentrations are given in Tables A and B. CS3WT is an HRGC/HRMS calibration solution that was designed and prepared to be used according to U.S. EPA Method 1613, Revision B, in place of EPA-1613CS3 (lot: 13CS31020). Additionally, it contains the PCDD and PCDF isomers required to set retention time windows as well as test and establish isomer specificity for 2,3,7,8-TCDD on a DB-5 (or equivalent) capillary column. The individual ¹³C-labelled PCDDs and PCDFs all have chemical purities of >98% and isotopic purities of ≥99%. The 2,3,7,8-(³⁻Cl₄)tetrachlorodibenzo-*p*-dioxin has a chemical purity of >98% and an isotopic (³¬Cl) purity of ≥95%. The individual native 2,3,7,8-substituted PCDD and PCDF congeners all have chemical purities of >98%; the other congeners (window defining and resolution testing) should only be considered semi-quantitative. This current lot of CS3WT is to be used with the 1613 calibration solutions having the following lot numbers: | PRODUCT CODE | <u>LOT NUMBER</u> | |---------------|-------------------| | EPA-1613CS1 | 13CS11020 | | EPA-1613CS2 | 13CS21020 | | EPA-1613CS3 | 13CS31020 | | EPA-1613CS4 | 13CS41020 | | EPA-1613CS5 | 13CS51020 | | EPA-1613CSL | 13CSL1020 | | EPA-1613CS0.5 | 13CS0.51020 | #### FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com ## **DOCUMENTATION/ DATA ATTACHED:** Table A: Quantitative Components and Concentrations of the Solution/Mixture Table B: Semi-Quantitative Components and Concentrations of the Solution/Mixture Figure 1: HRGC/HRMS Data (SIR; 10,000 mass resolving power) ## **ADDITIONAL INFORMATION:** - See page 3 for further details. - Only the 2,3,7,8-substituted PCDDs and PCDFs should be used for quantitation. The other congeners (window defining and 2,3,7,8-TCDD resolution testing) should be considered semi-quantitative (within ±20% of their design value). Impurities have been identified where possible. Form#:13, Issued 2004-11-10 Revision#:9, Revised 2020-12-23 #### **INTENDED USE:** The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains. #### **HANDLING:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### **SYNTHESIS / CHARACTERIZATION:** Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $$x_1, x_2, ...x_n$$ on which it depends is: $$u_c(y(x_1, x_2, ...x_n)) = \sqrt{\sum_{i=1}^n u(y, x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5\%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) has been assigned to the quantitative components in this product. A maximum combined percent relative uncertainty of $\pm 20\%$ has been assigned to the semi-quantitative components in this product. #### TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025
accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### **LIMITED WARRANTY:** At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. # **QUALITY MANAGEMENT:** Revision#:9, Revised 2020-12-23 This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A1226), and ISO 17034 by ANSI National Accreditation Board (ANAB; AR-1523). CS3WT1020 (3 of 10) **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Form#:13, Issued 2004-11-10 Table A: CS3WT; Quantitative Components and Concentrations (ng/mL, ± 5%, in nonane/4.5% toluene) | Compound | | Acronym | CAS# | Concentration (ng/mL) | |--|--------------------------|--|-------------|-----------------------| | Native PCDDs: | Designation ^a | | | | | 2,3,7,8-Tetrachlorodibenzo-p-dioxin | | 2,3,7,8-TCDD | 1746-01-6 | 10.0 | | 1,2,3,7,8-Pentachlorodibenzo-p-dioxin | | 1,2,3,7,8-PeCDD | 40321-76-4 | 50.0 | | 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin | | 1,2,3,4,7,8-HxCDD | 39227-28-6 | 50.0 | | 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin | | 1,2,3,6,7,8-HxCDD | 57653-85-7 | 50.0 | | 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin | Last HxCDD⁵ | 1,2,3,7,8,9-HxCDD | 19408-74-3 | 50.0 | | 1,2,3,4,6,7,8-Heptachlorodibenzo- <i>p</i> -dioxin | Last HpCDD | 1,2,3,4,6,7,8-HpCDD | 35822-46-9 | 50.0 | | Octachlorodibenzo- <i>p</i> -dioxin | | OCDD | 3268-87-9 | 100 | | Native PCDFs: | Designation ^a | | | | | 2,3,7,8-Tetrachlorodibenzofuran | | 2,3,7,8-TCDF | 51207-31-9 | 10.0 | | 1,2,3,7,8-Pentachlorodibenzofuran | | 1,2,3,7,8-PeCDF | 57117-41-6 | 50.0 | | 2,3,4,7,8-Pentachlorodibenzofuran | | 2,3,4,7,8-PeCDF | 57117-31-4 | 50.0 | | 1,2,3,4,7,8-Hexachlorodibenzofuran | | 1,2,3,4,7,8-HxCDF | 70648-26-9 | 50.0 | | 1,2,3,6,7,8-Hexachlorodibenzofuran | | 1,2,3,6,7,8-HxCDF | 57117-44-9 | 50.0 | | 1,2,3,7,8,9-Hexachlorodibenzofuran | | 1,2,3,7,8,9-HxCDF | 72918-21-9 | 50.0 | | 2,3,4,6,7,8-Hexachlorodibenzofuran | | 2,3,4,6,7,8-HxCDF | 60851-34-5 | 50.0 | | 1,2,3,4,6,7,8-Heptachlorodibenzofuran | First HpCDF° | 1,2,3,4,6,7,8-HpCDF | 67562-39-4 | 50.0 | | 1,2,3,4,7,8,9-Heptachlorodibenzofuran | Last HpCDF | 1,2,3,4,7,8,9-HpCDF | 55673-89-7 | 50.0 | | Octachlorodibenzofuran | | OCDF | 39001-02-0 | 100 | | Mass-Labelled PCDDs: | | | | | | 2,3,7,8-Tetrachloro(¹³C ₁₂)dibenzo- <i>p</i> -dioxin | | ¹³ C ₁₂ -2,3,7,8-TCDD | 76523-40-5 | 100 | | 1,2,3,7,8-Pentachloro(¹³C ₁₂)dibenzo- <i>p</i> -dioxi | n | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 109719-79-1 | 100 | | 1,2,3,4,7,8-Hexachloro(¹³ C ₁₂)dibenzo- <i>p</i> -diox | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 109719-80-4 | 100 | | 1,2,3,6,7,8-Hexachloro(¹³C ₁₂)dibenzo- <i>p</i> -diox | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 109719-81-5 | 100 | | 1,2,3,4,6,7,8-Heptachloro(¹³ C ₁₂)dibenzo- <i>p</i> -d | lioxin | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 109719-83-7 | 100 | | Octachloro(13C ₁₂)dibenzo-p-dioxin | | ¹³ C ₁₂ -OCDD | 114423-97-1 | 200 | | Mass-Labelled PCDFs: | | 1- | | | | 2,3,7,8-Tetrachloro(¹³C ₁₂)dibenzofuran | | ¹³ C ₁₂ -2,3,7,8-TCDF | 89059-46-1 | 100 | | 1,2,3,7,8-Pentachloro(¹³C₁₂)dibenzofuran | | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 109719-77-9 | 100 | | 2,3,4,7,8-Pentachloro(¹³C,₂)dibenzofuran | | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 116843-02-8 | 100 | | 1,2,3,4,7,8-Hexachloro(¹³C ₁₂)dibenzofuran | | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 114423-98-2 | 100 | | 1,2,3,6,7,8-Hexachloro(¹³ C ₁₂)dibenzofuran | | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 116843-03-9 | 100 | | 1,2,3,7,8,9-Hexachloro(¹³ C ₁₂)dibenzofuran | | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 116843-04-0 | 100 | | 2,3,4,6,7,8-Hexachloro(¹³ C ₁₂)dibenzofuran | | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 116843-05-1 | 100 | | 1,2,3,4,6,7,8-Heptachloro(13C,2)dibenzofura | n | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 109719-84-8 | 100 | | 1,2,3,4,7,8,9-Heptachloro(¹³C ₁₂)dibenzofura | | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 109719-94-0 | 100 | | Cleanup Standard: | | - | | | | 2,3,7,8-(³⁷ Cl ₄)Tetrachlorodibenzo- <i>p</i> -dioxin | | ³⁷ Cl ₄ -2,3,7,8-TCDD | 85508-50-5 | 10.0 | | Internal Standards: | | | | | | 1,2,3,4-Tetrachloro(¹³ C ₁₂)dibenzo- <i>p</i> -dioxin | | ¹³ C ₁₂ -1,2,3,4-TCDD | 114423-99-3 | 100 | | 1,2,3,7,8,9-Hexachloro(¹³C ₁₂)dibenzo- <i>p</i> -diox | kin | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDD | 109719-82-6 | 100 | ^a First/Last eluting isomer for the specified homologue group (see Table B for additional Window Definers). $^{^{\}scriptscriptstyle b,\,c}$ – see Table B for footnote. <u>Table B:</u> CS3WT; Semi-Quantitative Components and Concentrations (ng/mL, ± 20%, in nonane/4.5% toluene) | Compound | | Acronym | CAS# | Concentration (ng/mL) | |---|--------------------------|------------------------------------|--------------------------|-----------------------| | PCDD Window Definers: | Designation | | | | | 1,3,6,8-Tetrachlorodibenzo-p-dioxin | First TCDD | 1,3,6,8-TCDD | 33423-92-6 | 10.0 | | 1,2,8,9-Tetrachlorodibenzo-p-dioxin | Last TCDD | 1,2,8,9-TCDD | 62470-54-6 | 10.0 | | 1,2,4,6,8-/1,2,4,7,9-Pentachlorodibenzo- <i>p</i> -dioxin | First PeCDD | 1,2,4,6,8-PeCDD
1,2,4,7,9-PeCDD | 71998-76-0
82291-37-0 | 50.0 ^d | | 1,2,3,8,9-Pentachlorodibenzo-p-dioxin | Last PeCDD | 1,2,3,8,9-PeCDD | 71925-18-3 | 50.0 | | 1,2,4,6,7,9-Hexachlorodibenzo-p-dioxin | First HxCDD | 1,2,4,6,7,9-HxCDD | 39227-62-8 | 50.0 | | 1,2,3,4,6,7,9-Heptachlorodibenzo-p-dioxin | First HpCDD | 1,2,3,4,6,7,9-HpCDD | 58200-70-7 | 50.0 | | PCDF Window Definers: | Designation ^a | | | | | 1,3,6,8-Tetrachlorodibenzofuran | First TCDF | 1,3,6,8-TCDF | 71998-72-6 | 10.0 | | 1,2,8,9-Tetrachlorodibenzofuran | Last TCDF | 1,2,8,9-TCDF | 70648-22-5 | 10.0 | | 1,3,4,6,8-Pentachlorodibenzofuran | First PeCDF | 1,3,4,6,8-PeCDF | 83704-55-6 | 50.0 | | 1,2,3,8,9-Pentachlorodibenzofuran | Last PeCDF | 1,2,3,8,9-PeCDF | 83704-54-5 | 50.0 | | 1,2,3,4,6,8-Hexachlorodibenzofuran | First HxCDF | 1,2,3,4,6,8-HxCDF | 69698-60-8 | 50.0 | | 2,3,7,8-TCDD Resolution Testing Isomers: | | | | | | 1,2,3,4-Tetrachlorodibenzo-p-dioxin | | 1,2,3,4-TCDD | 30746-58-8 | 5.00 | | 1,2,3,7-/1,2,3,8-Tetrachlorodibenzo-p-dioxin | | 1,2,3,7-TCDD
1,2,3,8-TCDD | 67028-18-6
53555-02-5 | 5.00 ^d | | 1,2,3,9-Tetrachlorodibenzo-p-dioxin | | 1,2,3,9-TCDD | 71669-26-6 | 10.0 | ^a First/Last eluting isomer for the specified homologue group (see Table A for additional Window Definers). Certified By: B.G. Chittim, General Manager Date: 09/17/2021 ^b 1,2,3,4,6,7-HxCDD (last eluting HxCDD) not included; coelutes with 1,2,3,7,8,9-HxCDD on a 60 m DB-5 column. Use 1,2,3,7,8,9-HxCDD (see Table A) and 1,2,3,4,6,7,9-HpCDD to approximate the end of the HxCDD window. ^{° 1,2,3,4,8,9-}HxCDF (last eluting HxCDF) not included; can interfere with 1,2,3,7,8,9-HxCDF on a 60 m DB-5 column. Use 1,2,3,4,6,7,8-HpCDF (see Table A) to approximate the end of the HxCDF window. ^d Total concentration of isomers. Figure 1: CS3WT; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: CS3WT; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: CS3WT; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: CS3WT; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: CS3WT; HRGC/HRMS Data (60 m DB-5 Column) # **CERTIFICATE OF ANALYSIS DOCUMENTATION** # **EPA-1613CSS** J012606 U.S. EPA Method 1613 Cleanup Standard **Spiking Solution** 1613B Stock Cleanup Std Expires 10/31/2028 Prepared By Joshua Rains 11/29/2021 **PRODUCT CODE: EPA-1613CSS LOT NUMBER:** 13CSS1021 SOLVENT(S): Nonane DATE PREPARED: (mm/dd/yyyy) 10/29/2021 10/31/2021 LAST TESTED: (mm/dd/yyyy) EXPIRY DATE: (mm/dd/yyyy) 10/31/2028 **RECOMMENDED STORAGE:** Store ampoule in a cool, dark place #### **DESCRIPTION:** EPA-1613CSS contains 2,3,7,8-(37CI) tetrachlorodibenzo-p-dioxin at the concentration given in Table A. EPA-1613CSS was designed and prepared to be used according to U.S. EPA Method 1613, Revision B. 2,3,7,8-(³⁷Cl.)Tetrachlorodibenzo-p-dioxin has a chemical purity of >98% and an isotopic (³⁷Cl) purity of ≥95%. ## **DOCUMENTATION/ DATA ATTACHED:** Table A: Components and Concentrations of the Solution Figure 1: HRGC/HRMS Data (SIR; 10,000 mass resolving power) ### **ADDITIONAL INFORMATION:** See page 2 for further details. #### EPA-1613CSS; Components and Concentrations (ng/mL, ± 5% in nonane) Table A: | Compound | Acronym | CAS# | Concentration (ng/mL) | |---|---|------------|-----------------------| | 2,3,7,8-(3 ⁷ Cl ₄)Tetrachlorodibenzo- <i>p</i> -dioxin | ³⁷ Cl ₄ -2,3,7,8-TCDD | 85508-50-5 | 40.0 | FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By: B.G. Chittim, General Manager Date: 11/05/2021 Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com #### **INTENDED USE:** The products prepared by Wellington Laboratories
Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains. #### **HANDLING:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### **SYNTHESIS / CHARACTERIZATION:** Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_c(y)$, of a value y and the uncertainty of the independent parameters $$\mathbf{x_1},\,\mathbf{x_2},...\mathbf{x_n}$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ## TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### LIMITED WARRANTY: At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ## **QUALITY MANAGEMENT:** This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A1226), and ISO 17034 by ANSI National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Form#:13, Issued 2004-11-10 Revision#:9, Revised 2020-12-23 Figure 1: EPA-1613CSS; HRGC/HRMS Data (60 m DB-5 Column) # CERTIFICATE OF ANALYSIS DOCUMENTATION # **EPA-1613LCS** J012607 U.S. EPA Method 1613 Labelled Compound Stock Solution 1613B Stock Surr Std Expires 10/31/2028 Prepared By Joshua Rains 11/29/2021 PRODUCT CODE: EPA-1613LCS LOT NUMBER: 13LCS1021 SOLVENT(S): Nonane/Toluene DATE PREPARED: (mm/dd/yyyy) 10/29/2021 LAST TESTED: (mm/dd/yyyy) 10/31/2021 EXPIRY DATE: (mm/dd/yyyy) 10/31/2028 **RECOMMENDED STORAGE:** Store ampoule in a cool, dark place #### **DESCRIPTION:** EPA-1613LCS is a solution/mixture of mass-labelled ($^{13}C_{12}$) polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). The components and their concentrations are given in Table A. EPA-1613LCS was designed and prepared to be used according to U.S. EPA Method 1613, Revision B. The individual ¹³C-labelled PCDDs and PCDFs all have chemical purities of >98% and isotopic purities of ≥99%. ## **DOCUMENTATION/ DATA ATTACHED:** Table A: Components and Concentrations Figure 1: HRGC/HRMS Data (SIR; 10,000 mass resolving power) #### **ADDITIONAL INFORMATION:** See page 2 for further details. FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com #### **INTENDED USE:** The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains. #### **HANDLING:** This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request. #### **SYNTHESIS / CHARACTERIZATION:** Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS. #### **HOMOGENEITY:** Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5% RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment. #### **UNCERTAINTY:** The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation: The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters $$\mathbf{x_1},\,\mathbf{x_2},...\mathbf{x_n}$$ on which it depends is: $$u_c(y(x_1,x_2,...x_n)) = \sqrt{\sum_{i=1}^n u(y,x_i)^2}$$ where x is expressed as a relative standard uncertainty of the individual parameter. The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of ±5% (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products. ## TRACEABILITY: All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established. #### **EXPIRY DATE / PERIOD OF VALIDITY:** Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in
the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis. #### **LIMITED WARRANTY:** At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications. ## **QUALITY MANAGEMENT:** Revision#:9, Revised 2020-12-23 This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A1226), and ISO 17034 by ANSI National Accreditation Board (ANAB; AR-1523). **For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** Form#:13, Issued 2004-11-10 Table A: EPA-1613LCS; Components and Concentrations (ng/mL, ± 5% in nonane/3.2% toluene) | Compound | Acronym | CAS# | Concentration (ng/mL) | |---|--|-------------|-----------------------| | Mass-Labelled PCDDs: | | | | | 2,3,7,8-Tetrachloro(13C ₁₂)dibenzo-p-dioxin | ¹³ C ₁₂ -2,3,7,8-TCDD | 76523-40-5 | 100 | | 1,2,3,7,8-Pentachloro(13C ₁₂)dibenzo-p-dioxin | ¹³ C ₁₂ -1,2,3,7,8-PeCDD | 109719-79-1 | 100 | | 1,2,3,4,7,8-Hexachloro(13C ₁₂)dibenzo-p-dioxin | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDD | 109719-80-4 | 100 | | 1,2,3,6,7,8-Hexachloro(13C ₁₂)dibenzo-p-dioxin | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDD | 109719-81-5 | 100 | | 1,2,3,4,6,7,8-Heptachloro(13C ₁₂)dibenzo-p-dioxin | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD | 109719-83-7 | 100 | | Octachloro(13C ₁₂)dibenzo-p-dioxin | ¹³ C ₁₂ -OCDD | 114423-97-1 | 200 | | Mass-Labelled PCDFs: | | | | | 2,3,7,8-Tetrachloro(13C ₁₂)dibenzofuran | ¹³ C ₁₂ -2,3,7,8-TCDF | 89059-46-1 | 100 | | 1,2,3,7,8-Pentachloro(13C ₁₂)dibenzofuran | ¹³ C ₁₂ -1,2,3,7,8-PeCDF | 109719-77-9 | 100 | | 2,3,4,7,8-Pentachloro(13C ₁₂)dibenzofuran | ¹³ C ₁₂ -2,3,4,7,8-PeCDF | 116843-02-8 | 100 | | 1,2,3,4,7,8-Hexachloro(13C ₁₂)dibenzofuran | ¹³ C ₁₂ -1,2,3,4,7,8-HxCDF | 114423-98-2 | 100 | | 1,2,3,6,7,8-Hexachloro(13C ₁₂)dibenzofuran | ¹³ C ₁₂ -1,2,3,6,7,8-HxCDF | 116843-03-9 | 100 | | 1,2,3,7,8,9-Hexachloro(13C ₁₂)dibenzofuran | ¹³ C ₁₂ -1,2,3,7,8,9-HxCDF | 116843-04-0 | 100 | | 2,3,4,6,7,8-Hexachloro(13C ₁₂)dibenzofuran | ¹³ C ₁₂ -2,3,4,6,7,8-HxCDF | 116843-05-1 | 100 | | 1,2,3,4,6,7,8-Heptachloro(13C ₁₂)dibenzofuran | ¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF | 109719-84-8 | 100 | | 1,2,3,4,7,8,9-Heptachloro(13C ₁₂)dibenzofuran | ¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF | 109719-94-0 | 100 | Certified By: B.G. Chittim, General Manager Date: 11/05/2021 (mm/dd/yyyy) Figure 1: EPA-1613LCS; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613LCS; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613LCS; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613LCS; HRGC/HRMS Data (60 m DB-5 Column) Figure 1: EPA-1613LCS; HRGC/HRMS Data (60 m DB-5 Column) Agilent 6890N HRGC Autospec Ultima HRMS ## **Chromatographic Conditions:** Column: 60 m DB-5 (0.25 mm id, 0.25 µm film thickness) Agilent J&W Flow: Constant at 1.4 mL/min Oven: 150°C (1 min) Injector: 280°C (Splitless Injection) 12°C/min to 200°C Ionization: EI+ 3°C/min to 235°C Ionization: EI+ 3°C/min to 235°C Detector: 280°C 235°C (8 min) SIR at 10,000 mass resolving power 8°C/min to 310°C 310°C (8 min) 310°C (8 min) MW-CP1-032322 Dissolved Metals Laboratory: <u>Analytical Resources, LLC</u> Client: Floyd - Snider Project: <u>Lora Lake 2021-2023 sec II. 5.3.21</u> Matrix: <u>Water</u> Laboratory ID: <u>22C0456-01 A 01</u> SDG: <u>22C0456</u> Sampled: 03/23/22 14:26 Prepared: 04/07/22 12:08 File ID: <u>XDT_m1220411-083</u> % Solids: $\underline{0.00}$ Preparation: $\underbrace{\text{REN EPA } 600/4-79-020 4.1.4 \text{ HNO3}}_{\text{matrix}}$ Analyzed: $\underline{04/11/22 \ 22:43}$ Batch: BKD0201 Sequence: SKD0140 Initial/Final: 25 mL / 25 mL | CAS | NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |--------|------|--------------------|----------------------|--------------------|--------|-------|---| | 7440-3 | 88-2 | Arsenic, Dissolved | 0.551 | 1 | 0.0373 | 0.200 | | MW-CP1-032322-D Dissolved Metals Laboratory: <u>Analytical Resources, LLC</u> Client: Floyd - Snider Project: <u>Lora Lake 2021-2023 sec II. 5.3.21</u> Matrix: <u>Water</u> Laboratory ID: <u>22C0456-02 A 01</u> SDG: <u>22C0456</u> Sampled: 03/23/22 14:36 Prepared: 04/07/22 12:08 File ID: <u>XDT_m1220411-079</u> % Solids: $\underline{0.00}$ Preparation: $\underbrace{\text{REN EPA } 600/4-79-020 4.1.4 \text{ HNO3}}_{\text{matrix}}$ Analyzed: $\underline{04/11/22 \ 22:25}$ Batch: BKD0201 Sequence: SKD0140 Initial/Final: 25 mL / 25 mL | CAS NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |-----------|--------------------|----------------------|--------------------|--------|-------|---| | 7440-38-2 | Arsenic, Dissolved | 0.511 | 1 | 0.0373 | 0.200 | | MW-CP2-032322 Dissolved Metals Laboratory: <u>Analytical Resources, LLC</u> Client: Floyd - Snider Project: <u>Lora Lake 2021-2023 sec II. 5.3.21</u> Matrix: <u>Water</u> Laboratory ID: <u>22C0456-03 A 01</u> SDG: <u>22C0456</u> Sampled: 03/23/22 13:26 Prepared: 04/07/22 12:08 File ID: XDT_m1220411-080 % Solids: <u>0.00</u> Preparation: <u>REN_EPA 600/4-79-020 4.1.4 HNO3</u> Analyzed: <u>04/11/22 22:28</u> Batch: <u>BKD0201</u> Sequence: <u>SKD0140</u> Initial/Final: <u>25 mL / 25 mL</u> | CAS NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |-----------|--------------------|----------------------|--------------------|--------|-------|---| | 7440-38-2 | Arsenic, Dissolved | 0.327 | 1 | 0.0373 | 0.200 | | MW-CP3-032322 Dissolved Metals Laboratory: <u>Analytical Resources, LLC</u> Client: Floyd - Snider Project: <u>Lora Lake 2021-2023 sec II. 5.3.21</u> Matrix: <u>Water</u> Laboratory ID: <u>22C0456-04 A 01</u> SDG: <u>22C0456</u> Sampled: 03/23/22 13:25 Prepared: 04/07/22 12:08 File ID: <u>XDT_m1220411-081</u> % Solids: <u>0.00</u> Preparation: <u>REN_EPA 600/4-79-020 4.1.4 HNO3</u> Analyzed: <u>04/11/22 22:36</u> Batch: <u>BKD0201</u> Sequence: <u>SKD0140</u> Initial/Final: <u>25 mL / 25 mL</u> | CAS NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |-----------|--------------------|----------------------|--------------------|--------|-------|---| | 7440-38-2 | Arsenic, Dissolved | 0.968 | 1 | 0.0373 | 0.200 | | MW-CP4-032322 Dissolved Metals Laboratory: <u>Analytical Resources, LLC</u> Client: Floyd - Snider Project: <u>Lora Lake 2021-2023 sec II. 5.3.21</u> Matrix: <u>Water</u> Laboratory ID: <u>22C0456-05 A 01</u> SDG: <u>22C0456</u> Sampled: 03/23/22 12:06 Prepared: 04/07/22 12:08 File ID: <u>XDT_m1220411-082</u> % Solids: $\underline{0.00}$ Preparation: $\underbrace{\text{REN EPA } 600/4-79-020 4.1.4 \text{ HNO3}}_{\text{matrix}}$ Analyzed: $\underline{04/11/22 \ 22:39}$ Batch: BKD0201 Sequence: SKD0140 Initial/Final: 25 mL / 25 mL | CAS NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |-----------|--------------------|----------------------|--------------------|--------|-------|---| | 7440-38-2 | Arsenic, Dissolved | 0.0930 | 1 | 0.0373 | 0.200 | J | MW-CP5-032322 Dissolved Metals Laboratory: <u>Analytical Resources, LLC</u> Client: Floyd - Snider Project: <u>Lora Lake 2021-2023 sec II. 5.3.21</u> Matrix: <u>Water</u> Laboratory ID: <u>22C0456-06 A 01</u> SDG: <u>22C0456</u> Sampled: 03/23/22 12:25 Prepared: 04/07/22 12:08 File ID: <u>XDT_m1220412-060</u> % Solids: $\underline{0.00}$ Preparation: $\underbrace{\text{REN EPA 600/4-79-020 4.1.4 HNO3}}_{\text{matrix}}$ Analyzed: $\underline{04/12/22 23:09}$ Batch: BKD0201 Sequence: SKD0163 Initial/Final: 25 mL / 25 mL | CAS NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |-----------|--------------------|----------------------|--------------------|--------|-------|---| | 7440-38-2 | Arsenic, Dissolved | 3.73 | 1 | 0.0373 | 0.200 | | MW-CP6-032322 Dissolved Metals Laboratory: <u>Analytical Resources, LLC</u> Client: Floyd - Snider Project: <u>Lora Lake 2021-2023 sec II. 5.3.21</u> Matrix: <u>Water</u> Laboratory ID: <u>22C0456-07 A 01</u> SDG: <u>22C0456</u> Sampled: 03/23/22 11:15 Prepared: 04/07/22 12:08 File ID: <u>XDT_m1220411-090</u> % Solids: <u>0.00</u> Preparation: <u>REN_EPA 600/4-79-020 4.1.4 HNO3</u> Analyzed: <u>04/11/22 23:12</u> Batch: <u>BKD0201</u> Sequence: <u>SKD0140</u> Initial/Final: <u>25 mL / 25 mL</u> | CAS N | NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |---------|-----|--------------------|----------------------|--------------------|--------|-------|---| | 7440-38 | 8-2 | Arsenic, Dissolved | 0.852 | 1 | 0.0373 | 0.200 | | MW-CP7-032322 Dissolved Metals Laboratory: <u>Analytical Resources, LLC</u> Client: Floyd - Snider Project: <u>Lora Lake 2021-2023 sec II. 5.3.21</u> Matrix: <u>Water</u> Laboratory ID: <u>22C0456-08 A 01</u> SDG: <u>22C0456</u> Sampled: 03/23/22 11:06 Prepared: 04/07/22 12:08 File ID: <u>XDT_m1220411-091</u> % Solids: $\underline{0.00}$ Preparation: $\underbrace{\text{REN EPA } 600/4-79-020 4.1.4 \text{ HNO3}}_{\text{matrix}}$ Analyzed: $\underline{04/11/22 \ 23:16}$ Batch: BKD0201 Sequence: SKD0140 Initial/Final: 25 mL / 25 mL | CAS NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |-----------|--------------------|----------------------|--------------------|--------|-------|---| | 7440-38-2 | Arsenic, Dissolved | 0.366 | 1 | 0.0373 | 0.200 | | MW-VB3-032322 Dissolved Metals Laboratory: <u>Analytical Resources, LLC</u> Client: Floyd - Snider Project: <u>Lora Lake 2021-2023 sec II. 5.3.21</u> Matrix: <u>Water</u> Laboratory ID: <u>22C0456-09 A 01</u> SDG: <u>22C0456</u> Sampled: 03/23/22 09:36
Prepared: 04/07/22 12:08 File ID: <u>XDT_m1220411-092</u> % Solids: $\underline{0.00}$ Preparation: $\underbrace{\text{REN EPA } 600/4-79-020 4.1.4 \text{ HNO3}}_{\text{matrix}}$ Analyzed: $\underline{04/11/22 \ 23:19}$ Batch: BKD0201 Sequence: SKD0140 Initial/Final: 25 mL / 25 mL | CAS NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |-----------|--------------------|----------------------|--------------------|--------|-------|---| | 7440-38-2 | Arsenic, Dissolved | 0.381 | 1 | 0.0373 | 0.200 | | HCOO-B312-032322 Dissolved Metals Laboratory: <u>Analytical Resources, LLC</u> Client: Floyd - Snider Project: <u>Lora Lake 2021-2023 sec II. 5.3.21</u> Matrix: <u>Water</u> Laboratory ID: <u>22C0456-10 A 01</u> SDG: <u>22C0456</u> Sampled: 03/23/22 15:00 Prepared: 04/07/22 12:08 File ID: <u>XDT_m1220411-093</u> % Solids: $\underline{0.00}$ Preparation: $\underbrace{\text{REN EPA } 600/4-79-020 4.1.4 \text{ HNO3}}_{\text{matrix}}$ Analyzed: $\underline{04/11/22 \ 23:23}$ Batch: BKD0201 Sequence: SKD0140 Initial/Final: 25 mL / 25 mL | CAS NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |-----------|--------------------|----------------------|--------------------|--------|-------|---| | 7440-38-2 | Arsenic, Dissolved | 0.170 | 1 | 0.0373 | 0.200 | J | MW-C1-VB1-032422 Dissolved Metals Laboratory: <u>Analytical Resources, LLC</u> Client: Floyd - Snider Project: <u>Lora Lake 2021-2023 sec II. 5.3.21</u> Matrix: <u>Water</u> Laboratory ID: <u>22C0456-11 A 01</u> SDG: <u>22C0456</u> Sampled: 03/24/22 12:33 Prepared: 04/07/22 12:08 File ID: <u>XDT_m1220411-094</u> % Solids: $\underline{0.00}$ Preparation: $\underbrace{\text{REN EPA } 600/4-79-020 4.1.4 \text{ HNO3}}_{\text{matrix}}$ Analyzed: $\underline{04/11/22 \ 23:27}$ Batch: BKD0201 Sequence: SKD0140 Initial/Final: 25 mL / 25 mL | | CAS NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |---|-----------|--------------------|----------------------|--------------------|--------|-------|---| | Ī | 7440-38-2 | Arsenic, Dissolved | 0.0770 | 1 | 0.0373 | 0.200 | J | MW-C1-VB1-032422-D Dissolved Metals Laboratory: <u>Analytical Resources, LLC</u> Client: Floyd - Snider Project: <u>Lora Lake 2021-2023 sec II. 5.3.21</u> Matrix: <u>Water</u> Laboratory ID: <u>22C0456-12 A 01</u> SDG: <u>22C0456</u> Sampled: 03/24/22 12:37 Prepared: 04/07/22 12:08 File ID: <u>XDT_m1220411-095</u> % Solids: $\underline{0.00}$ Preparation: $\underbrace{\text{REN EPA } 600/4-79-020 4.1.4 \text{ HNO3}}_{\text{matrix}}$ Analyzed: $\underline{04/11/22 \ 23:30}$ Batch: BKD0201 Sequence: SKD0140 Initial/Final: 25 mL / 25 mL | CAS NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |-----------|--------------------|----------------------|--------------------|--------|-------|---| | 7440-38-2 | Arsenic, Dissolved | 0.0900 | 1 | 0.0373 | 0.200 | J | MW-C2-032422 Dissolved Metals Laboratory: <u>Analytical Resources, LLC</u> Client: Floyd - Snider Project: <u>Lora Lake 2021-2023 sec II. 5.3.21</u> Matrix: <u>Water</u> Laboratory ID: <u>22C0456-13 A 01</u> SDG: <u>22C0456</u> Sampled: 03/24/22 11:36 Prepared: 04/07/22 12:08 File ID: <u>XDT_m1220411-096</u> % Solids: $\underline{0.00}$ Preparation: $\underbrace{\text{REN EPA 600/4-79-020 4.1.4 HNO3}}_{\text{matrix}}$ Analyzed: $\underline{04/11/22 \ 23:34}$ Batch: BKD0201 Sequence: SKD0140 Initial/Final: 25 mL / 25 mL | CAS NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |-----------|--------------------|----------------------|--------------------|--------|-------|---| | 7440-38-2 | Arsenic, Dissolved | 24.0 | 1 | 0.0373 | 0.200 | | MW-C3-032422 Dissolved Metals Laboratory: <u>Analytical Resources, LLC</u> Client: Floyd - Snider Project: <u>Lora Lake 2021-2023 sec II. 5.3.21</u> Matrix: <u>Water</u> Laboratory ID: <u>22C0456-14 A 01</u> SDG: <u>22C0456</u> Sampled: 03/24/22 11:33 Prepared: 04/07/22 12:08 File ID: <u>XDT_m1220411-097</u> % Solids: $\underline{0.00}$ Preparation: $\underbrace{\text{REN EPA } 600/4-79-020 4.1.4 \text{ HNO3}}_{\text{matrix}}$ Analyzed: $\underline{04/11/22 \ 23:38}$ Batch: BKD0201 Sequence: SKD0140 Initial/Final: 25 mL / 25 mL | CAS NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |-----------|--------------------|----------------------|--------------------|--------|-------|---| | 7440-38-2 | Arsenic, Dissolved | 0.194 | 1 | 0.0373 | 0.200 | J | MW-C1-VB2-032422 Dissolved Metals Laboratory: <u>Analytical Resources, LLC</u> Client: Floyd - Snider Project: <u>Lora Lake 2021-2023 sec II. 5.3.21</u> Matrix: <u>Water</u> Laboratory ID: <u>22C0456-15 A 01</u> SDG: <u>22C0456</u> Sampled: 03/24/22 10:30 Prepared: 04/07/22 12:08 File ID: <u>XDT_m1220411-101</u> % Solids: $\underline{0.00}$ Preparation: $\underbrace{\text{REN EPA } 600/4-79-020 4.1.4 \text{ HNO3}}_{\text{matrix}}$ Analyzed: $\underline{04/11/22 \ 23:57}$ Batch: BKD0201 Sequence: SKD0140 Initial/Final: 25 mL / 25 mL | CAS NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |-----------|--------------------|----------------------|--------------------|--------|-------|---| | 7440-38-2 | Arsenic, Dissolved | 0.351 | 1 | 0.0373 | 0.200 | | ## PREPARATION BATCH SUMMARY EPA 6020B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Batch: BKD0201 Batch Matrix: Water Preparation: REN EPA 600/4-79-020 4.1.4 HNO3 matrix | SAMPLE NAME | LAB SAMPLE ID | LAB FILE ID | DATE PREPARED | OBSERVATIONS | |--------------------|---------------|------------------|----------------|--------------| | MW-CP1-032322 | 22C0456-01 | XDT_m1220411-083 | 04/07/22 12:08 | | | MW-CP1-032322-D | 22C0456-02 | XDT_m1220411-079 | 04/07/22 12:08 | | | MW-CP2-032322 | 22C0456-03 | XDT_m1220411-080 | 04/07/22 12:08 | | | MW-CP3-032322 | 22C0456-04 | XDT_m1220411-081 | 04/07/22 12:08 | | | MW-CP4-032322 | 22C0456-05 | XDT_m1220411-082 | 04/07/22 12:08 | | | MW-CP5-032322 | 22C0456-06 | XDT_m1220412-060 | 04/07/22 12:08 | | | MW-CP6-032322 | 22C0456-07 | XDT_m1220411-090 | 04/07/22 12:08 | | | MW-CP7-032322 | 22C0456-08 | XDT_m1220411-091 | 04/07/22 12:08 | | | MW-VB3-032322 | 22C0456-09 | XDT_m1220411-092 | 04/07/22 12:08 | | | HCOO-B312-032322 | 22C0456-10 | XDT_m1220411-093 | 04/07/22 12:08 | | | MW-C1-VB1-032422 | 22C0456-11 | XDT_m1220411-094 | 04/07/22 12:08 | | | MW-C1-VB1-032422-D | 22C0456-12 | XDT_m1220411-095 | 04/07/22 12:08 | | | MW-C2-032422 | 22C0456-13 | XDT_m1220411-096 | 04/07/22 12:08 | | | MW-C3-032422 | 22C0456-14 | XDT_m1220411-097 | 04/07/22 12:08 | | | MW-C1-VB2-032422 | 22C0456-15 | XDT_m1220411-101 | 04/07/22 12:08 | | | Blank | BKD0201-BLK1 | XDT_m1220408-080 | 04/07/22 12:08 | | | LCS | BKD0201-BS1 | XDT_m1220408-081 | 04/07/22 12:08 | | | MW-CP1-032322 | BKD0201-DUP1 | XDT_m1220411-084 | 04/07/22 12:08 | | | MW-CP1-032322 | BKD0201-MS1 | XDT_m1220411-085 | 04/07/22 12:08 | | # Form I METHOD BLANK DATA SHEET EPA 6020B Blank Dissolved Metals Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Batch: <u>BKD0201</u> Laboratory ID: <u>BKD0201-BLK1</u> Prepared: <u>04/07/22 12:08</u> Matrix: <u>Water</u> Preparation: <u>REN_EPA 600/4-79-020 4</u> Analyzed: <u>04/08/22 21:56</u> Sequence: SKD0126 Calibration: FD00028 Instrument: ICPMS1 | CAS NO. | Analyte | Concentration (ug/L) | Dilution
Factor | MDL | MRL | Q | |-----------|-------------|----------------------|--------------------|--------|-------|---| | 7440-38-2 | Arsenic-75a | ND | 1 | 0.0373 | 0.200 | U | #### LCS / LCS DUPLICATE RECOVERY #### **EPA 6020B** Dissolved Metals Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: <u>Water</u> Analyzed: <u>04/08/22 22:01</u> Batch: BKD0201 Laboratory ID: BKD0201-BS1 Preparation: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Sequence Name: LCS Initial/Final: 25 mL / 25 mL | | SPIKE | LCS | | LCS | QC | |-------------------------|--------|---------------|---|--------|----------| | | ADDED | CONCENTRATION | | % | LIMITS | | COMPOUND | (ug/L) | (ug/L) | Q | REC. # | REC. | | Arsenic-75a (dissolved) | 25.0 | 24.4 | | 97.7 | 80 - 120 | ^{*} Indicates values outside of QC limits # **DUPLICATES** ### **EPA 6020B** Dissolved Metals Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Water Laboratory ID: BKD0201-DUP1 Batch: <u>BKD0201</u> Lab Source ID: <u>22C0456-01</u> Preparation: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Initial/Final: 25 mL / 25 mL Source Sample Name: MW-CP1-032322 % Solids: | ANALYTE | CONTROL
LIMIT | SAMPLE
CONCENTRATION | DUPLICATE
CONCENTRATION | RPD
% | Q | |-------------------------|------------------|-------------------------|----------------------------|----------|---| | Arsenic-75a (dissolved) | 20 | 0.551 | 0.500 | 9.71 | | ^{*:} Values outside of QC limits L: Analyte concentration is <=5 times the reporting limit and the replicate control limit defaults to Dup = +/- RL instead of 20% RPD ### MS / MS DUPLICATE RECOVERY EPA 6020B Dissolved Metals Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: <u>Water</u> Analyzed: <u>04/11/22 22:50</u> Batch: BKD0201 Laboratory ID: BKD0201-MS1 Preparation: REN EPA 600/4-79-020 4.1.4 HNO3 matrix Sequence Name: Matrix Spike Initial/Final: 25 mL / 25 mL Source Sample: MW-CP1-032322 | | SPIKE
ADDED | SAMPLE
CONCENTRATION | _ | MS
CONCENTRATION | | MS
% | QC
LIMITS | |-------------------------|----------------|-------------------------|---|---------------------|---|---------|--------------| | COMPOUND | (ug/L) | (ug/L) | Q | (ug/L) | Q | REC.# | REC. | | Arsenic-75a (dissolved) | 25.0 | 0.551 | | 26.7 | | 105 | 75 - 125 | ^{*} Values outside of QC limits #### **EPA 6020B** Laboratory:
Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FD00028 Instrument: ICPMS1 Calibration Date: 04/08/2022 15:11 | | L | evel 01 | L | evel 02 | L | evel 03 | L | evel 04 | L | evel 05 | Le | evel 06 | |------------------------|------|---------|------|---------|------|---------|------|---------|------|---------|------|---------| | Compound | Conc | RF | | Arsenic-75a, Dissolved | 0 | 0 | 0.2 | 175 | 10 | 178.6 | 20 | 177.55 | 50 | 173.62 | 100 | 176.01 | #### **EPA 6020B** Laboratory: Analytical Resources, LLC SDG: 22C0456 Project: Client: Floyd - Snider Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FD00028 Instrument: ICPMS1 Calibration Date: 04/08/2022 15:11 | COMPOUND | Mean RF | RF RSD | Linear COD | Quad COD | COD Limit | Q | |------------------------|----------|--------|------------|----------|-----------|---| | Arsenic-75a, Dissolved | 146.7967 | 49.0 | 0.9999 | | 0.998 | | #### **EPA 6020B** Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FD00031 Instrument: ICPMS1 Calibration Date: 04/11/2022 15:20 | | L | evel 01 | L | evel 02 | L | evel 03 | L | evel 04 | L | evel 05 | Le | evel 06 | |------------------------|------|---------|------|---------|------|---------|------|---------|------|---------|------|---------| | Compound | Conc | RF | | Arsenic-75a, Dissolved | 0 | 0 | 0.2 | 175 | 10 | 179.4 | 20 | 179.45 | 50 | 178.1 | 100 | 174.45 | #### **EPA 6020B** Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FD00031 Instrument: ICPMS1 Calibration Date: 04/11/2022 15:20 | COMPOUND | Mean RF | RF RSD | Linear COD | Quad COD | COD Limit | Q | |------------------------|----------|--------|------------|----------|-----------|---| | Arsenic-75a, Dissolved | 147.7333 | 49.0 | 0.9999 | | 0.998 | | #### **EPA 6020B** Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FD00036 Instrument: ICPMS1 Calibration Date: 04/12/2022 17:01 | | L | evel 01 | L | evel 02 | L | evel 03 | L | evel 04 | Lo | evel 05 | Lo | evel 06 | |------------------------|------|---------|------|---------|------|---------|------|---------|------|---------|------|---------| | Compound | Conc | RF | | Arsenic-75a, Dissolved | 0 | 0 | 0.2 | 130 | 10 | 124.4 | 20 | 125.9 | 50 | 124.5 | 100 | 129.83 | #### **EPA 6020B** Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FD00036 Instrument: ICPMS1 Calibration Date: 04/12/2022 17:01 | COMPOUND | Mean RF | RF RSD | Linear COD | Quad COD | COD Limit | Q | |------------------------|----------|--------|------------|----------|-----------|---| | Arsenic-75a, Dissolved | 105.7717 | 49.0 | 0.9996 | | 0.998 | | # INITIAL AND CONTINUING CALIBRATION CHECK #### EPA 6020B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: ICPMS1 Calibration: FD00028 Control Limt: <u>+/- 10.00%</u> Sequence: <u>SKD0126</u> | Lab Sample ID | Analyte | True | Found | %R | Units | Method | |---------------|-------------------------|--------|-------|------|-------|-----------| | SKD0126-ICV1 | Arsenic-75a (dissolved) | 50.000 | 49.2 | 98.4 | ug/L | EPA 6020B | | SKD0126-CCV1 | Arsenic-75a (dissolved) | 50.000 | 49.2 | 98.4 | ug/L | EPA 6020B | | SKD0126-CCV2 | Arsenic-75a (dissolved) | 50.000 | 50.6 | 101 | ug/L | EPA 6020B | | SKD0126-CCV3 | Arsenic-75a (dissolved) | 50.000 | 49.3 | 98.6 | ug/L | EPA 6020B | | SKD0126-CCV4 | Arsenic-75a (dissolved) | 50.000 | 49.2 | 98.5 | ug/L | EPA 6020B | | SKD0126-CCV5 | Arsenic-75a (dissolved) | 50.000 | 49.6 | 99.2 | ug/L | EPA 6020B | | SKD0126-CCV6 | Arsenic-75a (dissolved) | 50.000 | 48.9 | 97.9 | ug/L | EPA 6020B | | SKD0126-CCV7 | Arsenic-75a (dissolved) | 50.000 | 49.6 | 99.1 | ug/L | EPA 6020B | | SKD0126-CCV8 | Arsenic-75a (dissolved) | 50.000 | 49.8 | 99.5 | ug/L | EPA 6020B | | SKD0126-CCV9 | Arsenic-75a (dissolved) | 50.000 | 49.7 | 99.4 | ug/L | EPA 6020B | | SKD0126-CCVA | Arsenic-75a (dissolved) | 50.000 | 50.1 | 100 | ug/L | EPA 6020B | | SKD0126-CCVB | Arsenic-75a (dissolved) | 50.000 | 49.4 | 98.9 | ug/L | EPA 6020B | | SKD0126-CCVC | Arsenic-75a (dissolved) | 50.000 | 49.8 | 99.7 | ug/L | EPA 6020B | | SKD0126-CCVD | Arsenic-75a (dissolved) | 50.000 | 49.9 | 99.7 | ug/L | EPA 6020B | | SKD0126-CCVE | Arsenic-75a (dissolved) | 50.000 | 49.5 | 98.9 | ug/L | EPA 6020B | ^{*} Values outside of QC limits # INITIAL AND CONTINUING CALIBRATION CHECK #### **EPA 6020B** Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: ICPMS1 Calibration: FD00031 Control Limt: +/- 10.00% Sequence: SKD0140 Lab Sample ID Analyte True Found %R Units Method SKD0140-ICV1 104 ug/L EPA 6020B 50.000 52.1 Arsenic-75a (dissolved) 101 SKD0140-CCV1 50.000 50.3 ug/L EPA 6020B Arsenic-75a (dissolved) 101 SKD0140-CCV2 Arsenic-75a (dissolved) 50.000 50.6 ug/L EPA 6020B SKD0140-CCV3 50.000 52.2 104 ug/L EPA 6020B Arsenic-75a (dissolved) SKD0140-CCV4 Arsenic-75a (dissolved) 50.000 50.2 100 ug/L EPA 6020B 101 SKD0140-CCV5 Arsenic-75a (dissolved) 50.000 50.7 ug/L EPA 6020B SKD0140-CCV6 Arsenic-75a (dissolved) 50.000 51.4 103 ug/L EPA 6020B 102 SKD0140-CCV7 Arsenic-75a (dissolved) 50.000 51.1 ug/L EPA 6020B ug/L SKD0140-CCV8 Arsenic-75a (dissolved) 50.000 52.3 105 EPA 6020B SKD0140-CCV9 50.000 52.4 105 ug/L EPA 6020B Arsenic-75a (dissolved) SKD0140-CCVA Arsenic-75a (dissolved) 50.000 51.8 104 ug/L EPA 6020B 50.000 105 SKD0140-CCVB Arsenic-75a (dissolved) 52.6 ug/L EPA 6020B SKD0140-CCVC 50.000 104 EPA 6020B Arsenic-75a (dissolved) 52.1 ug/L SKD0140-CCVD Arsenic-75a (dissolved) 50.000 51.6 103 ug/L EPA 6020B ^{*} Values outside of QC limits # INITIAL AND CONTINUING CALIBRATION CHECK #### **EPA 6020B** Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: ICPMS1 Calibration: FD00036 Control Limt: <u>+/- 10.00%</u> Sequence: <u>SKD0163</u> | Lab Sample ID | Analyte | True | Found | %R | Units | Method | |---------------|-------------------------|--------|-------|------|-------|-----------| | SKD0163-ICV1 | Arsenic-75a (dissolved) | 50.000 | 48.3 | 96.6 | ug/L | EPA 6020B | | SKD0163-CCV1 | Arsenic-75a (dissolved) | 50.000 | 46.4 | 92.9 | ug/L | EPA 6020B | | SKD0163-CCV2 | Arsenic-75a (dissolved) | 50.000 | 49.9 | 99.8 | ug/L | EPA 6020B | | SKD0163-CCV3 | Arsenic-75a (dissolved) | 50.000 | 49.7 | 99.4 | ug/L | EPA 6020B | | SKD0163-CCV4 | Arsenic-75a (dissolved) | 50.000 | 47.5 | 94.9 | ug/L | EPA 6020B | | SKD0163-CCV5 | Arsenic-75a (dissolved) | 50.000 | 47.0 | 94.0 | ug/L | EPA 6020B | | SKD0163-CCV6 | Arsenic-75a (dissolved) | 50.000 | 49.2 | 98.4 | ug/L | EPA 6020B | | SKD0163-CCV7 | Arsenic-75a (dissolved) | 50.000 | 45.8 | 91.7 | ug/L | EPA 6020B | | SKD0163-CCV8 | Arsenic-75a (dissolved) | 50.000 | 46.6 | 93.2 | ug/L | EPA 6020B | | SKD0163-CCV9 | Arsenic-75a (dissolved) | 50.000 | 46.0 | 92.1 | ug/L | EPA 6020B | | SKD0163-CCVA | Arsenic-75a (dissolved) | 50.000 | 46.1 | 92.3 | ug/L | EPA 6020B | | SKD0163-CCVB | Arsenic-75a (dissolved) | 50.000 | 46.1 | 92.2 | ug/L | EPA 6020B | | SKD0163-CCVC | Arsenic-75a (dissolved) | 50.000 | 45.4 | 90.7 | ug/L | EPA 6020B | | SKD0163-CCVD | Arsenic-75a (dissolved) | 50.000 | 45.8 | 91.5 | ug/L | EPA 6020B | | SKD0163-CCVE | Arsenic-75a (dissolved) | 50.000 | 45.6 | 91.2 | ug/L | EPA 6020B | | SKD0163-CCVF | Arsenic-75a (dissolved) | 50.000 | 46.5 | 92.9 | ug/L | EPA 6020B | | SKD0163-CCVG | Arsenic-75a (dissolved) | 50.000 | 46.1 | 92.2 | ug/L | EPA 6020B | | SKD0163-CCVH | Arsenic-75a (dissolved) | 50.000 | 45.9 | 91.8 | ug/L | EPA 6020B | ^{*} Values outside of QC limits #### INSTRUMENT BLANKS EPA 6020B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: ICPMS1 Calibration: FD00028 Sequence: SKD0126 Date Analyzed: 04/08/22 15:47 | | • | • | | | | | | |---------------|-------------------------|----------|-------------|-------|-------|---|--| | Lab Sample ID | Analyte | Found | MDL | MRL | Units | C | | | SKD0126-IBL1 | Arsenic-75a (dissolved) | 0.00400 | 0.0373 | 0.200 | ug/L | | | | SKD0126-ICB1 | Arsenic-75a (dissolved) | 0.00400 | 0.0373 | 0.200 | ug/L | | | | SKD0126-CCB1 | Arsenic-75a (dissolved) | -0.00200 | 0.0373 | 0.200 | ug/L | | | | SKD0126-IBL2 | Arsenic-75a (dissolved) | 0.331 | 0.0373 | 0.200 | ug/L | | | | SKD0126-IBL3 | Arsenic-75a (dissolved) | 0.186 | 0.0373 | 0.200 | ug/L | | | | SKD0126-CCB2 | Arsenic-75a (dissolved) | 0.152 | 0.0373 | 0.200 | ug/L | | | | SKD0126-CCB3 | Arsenic-75a (dissolved) | 0.00500 | 0.0373 | 0.200 | ug/L | | | | SKD0126-CCB4 | Arsenic-75a (dissolved) | -0.0250 | 0.0373 | 0.200 | ug/L | | | | SKD0126-IBL4 | Arsenic-75a (dissolved) | -0.0280 | 0.0373 | 0.200 | ug/L | | | | SKD0126-CCB5 | Arsenic-75a (dissolved) | -0.0260 | 0.0373 | 0.200 | ug/L | | | | SKD0126-CCB6 | Arsenic-75a (dissolved) | -0.00300 | 0.0373 | 0.200 | ug/L | | | | SKD0126-IBL5 | Arsenic-75a (dissolved) | -0.00400 | 0.0373 | 0.200 | ug/L | | | | SKD0126-CCB7 | Arsenic-75a (dissolved) | -0.00600 | 0.0373 | 0.200 | ug/L | | | | SKD0126-IBL6 | Arsenic-75a (dissolved) | -0.00200 | 0.0373 | 0.200 | ug/L | | | | SKD0126-IBL7 | Arsenic-75a (dissolved) | -0.00500 | 0.0373 | 0.200 | ug/L | | | | SKD0126-CCB8 | Arsenic-75a (dissolved) | 0.00200 | 0.0373 | 0.200 | ug/L | | | | SKD0126-IBL8 | Arsenic-75a (dissolved) | -0.00100 | 0.0373 | 0.200 | ug/L | | | | SKD0126-CCB9 | Arsenic-75a (dissolved) | 0.00200 | 0.0373 | 0.200 | ug/L | | | | SKD0126-CCBA | Arsenic-75a (dissolved) | -0.00400 | 0.0373 | 0.200 | ug/L | | | | SKD0126-IBL9 | Arsenic-75a (dissolved) |
0.0120 | 0.0373 | 0.200 | ug/L | | | | SKD0126-CCBB | Arsenic-75a (dissolved) | -0.00700 | 0.0373 | 0.200 | ug/L | | | | SKD0126-IBLA | Arsenic-75a (dissolved) | -0.00200 | 0.0373 | 0.200 | ug/L | | | | SKD0126-CCBC | Arsenic-75a (dissolved) | 0.00100 | 0.0373 | 0.200 | ug/L | | | | SKD0126-IBLB | Arsenic-75a (dissolved) | 0.00200 | 0.0373 | 0.200 | ug/L | | | | SKD0126-CCBD | Arsenic-75a (dissolved) | 0.00900 | 0.0373 | 0.200 | ug/L | | | | SKD0126-IBLC | Arsenic-75a (dissolved) | -0.00200 | 0.0373 | 0.200 | ug/L | | | | SKD0126-CCBE | Arsenic-75a (dissolved) | 0.0380 | 0.0373 | 0.200 | ug/L | | | #### INSTRUMENT BLANKS EPA 6020B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID:ICPMS1Calibration:FD00031Sequence:SKD0140Date Analyzed:04/11/22 15:56 | Lab Sample ID | Analyte | Found | MDL | MRL | Units | С | |---------------|-------------------------|----------|--------|-------|-------|---| | SKD0140-IBL1 | Arsenic-75a (dissolved) | 0.0100 | 0.0373 | 0.200 | ug/L | | | SKD0140-ICB1 | Arsenic-75a (dissolved) | 0.00800 | 0.0373 | 0.200 | ug/L | | | SKD0140-CCB1 | Arsenic-75a (dissolved) | 0.00700 | 0.0373 | 0.200 | ug/L | | | SKD0140-IBL2 | Arsenic-75a (dissolved) | 0.0220 | 0.0373 | 0.200 | ug/L | | | SKD0140-IBL3 | Arsenic-75a (dissolved) | 0.00500 | 0.0373 | 0.200 | ug/L | | | SKD0140-CCB2 | Arsenic-75a (dissolved) | 0.00800 | 0.0373 | 0.200 | ug/L | | | SKD0140-CCB3 | Arsenic-75a (dissolved) | 0.0100 | 0.0373 | 0.200 | ug/L | | | SKD0140-IBL4 | Arsenic-75a (dissolved) | 0.00 | 0.0373 | 0.200 | ug/L | | | SKD0140-CCB4 | Arsenic-75a (dissolved) | 0.00300 | 0.0373 | 0.200 | ug/L | | | SKD0140-IBL5 | Arsenic-75a (dissolved) | 0.00100 | 0.0373 | 0.200 | ug/L | | | SKD0140-CCB5 | Arsenic-75a (dissolved) | 0.00800 | 0.0373 | 0.200 | ug/L | | | SKD0140-CCB6 | Arsenic-75a (dissolved) | 0.00 | 0.0373 | 0.200 | ug/L | | | SKD0140-IBL6 | Arsenic-75a (dissolved) | 0.00500 | 0.0373 | 0.200 | ug/L | | | SKD0140-IBL7 | Arsenic-75a (dissolved) | 0.00500 | 0.0373 | 0.200 | ug/L | | | SKD0140-CCB7 | Arsenic-75a (dissolved) | 0.00700 | 0.0373 | 0.200 | ug/L | | | SKD0140-CCB8 | Arsenic-75a (dissolved) | 0.00 | 0.0373 | 0.200 | ug/L | | | SKD0140-IBL8 | Arsenic-75a (dissolved) | -0.00300 | 0.0373 | 0.200 | ug/L | | | SKD0140-CCB9 | Arsenic-75a (dissolved) | 0.00400 | 0.0373 | 0.200 | ug/L | | | SKD0140-IBL9 | Arsenic-75a (dissolved) | -0.0100 | 0.0373 | 0.200 | ug/L | | | SKD0140-CCBA | Arsenic-75a (dissolved) | -0.00500 | 0.0373 | 0.200 | ug/L | | | SKD0140-IBLA | Arsenic-75a (dissolved) | -0.0120 | 0.0373 | 0.200 | ug/L | | | SKD0140-CCBB | Arsenic-75a (dissolved) | 0.00300 | 0.0373 | 0.200 | ug/L | | | SKD0140-IBLB | Arsenic-75a (dissolved) | -0.00900 | 0.0373 | 0.200 | ug/L | | | SKD0140-CCBC | Arsenic-75a (dissolved) | -0.00200 | 0.0373 | 0.200 | ug/L | | | SKD0140-IBLC | Arsenic-75a (dissolved) | -0.00500 | 0.0373 | 0.200 | ug/L | | | SKD0140-CCBD | Arsenic-75a (dissolved) | 0.00500 | 0.0373 | 0.200 | ug/L | | #### INSTRUMENT BLANKS EPA 6020B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: ICPMS1 Calibration: FD00036 Sequence: SKD0163 Date Analyzed: 04/12/22 17:38 | 1 | ec. <u>BIRD0105</u> | | | naryzea. On | | | |---------------|-------------------------|----------|--------|-------------|-------|---| | Lab Sample ID | Analyte | Found | MDL | MRL | Units | С | | SKD0163-IBL1 | Arsenic-75a (dissolved) | 0.00400 | 0.0373 | 0.200 | ug/L | | | SKD0163-ICB1 | Arsenic-75a (dissolved) | 0.00700 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCB1 | Arsenic-75a (dissolved) | -0.00700 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBL2 | Arsenic-75a (dissolved) | 0.0420 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBL3 | Arsenic-75a (dissolved) | -0.00500 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCB2 | Arsenic-75a (dissolved) | -0.00100 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBL4 | Arsenic-75a (dissolved) | -0.0100 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBL5 | Arsenic-75a (dissolved) | -0.0100 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCB3 | Arsenic-75a (dissolved) | -0.00100 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCB4 | Arsenic-75a (dissolved) | 0.00200 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBL6 | Arsenic-75a (dissolved) | -0.00100 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCB5 | Arsenic-75a (dissolved) | 0.0150 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBL7 | Arsenic-75a (dissolved) | -0.00500 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCB6 | Arsenic-75a (dissolved) | -0.00100 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBL8 | Arsenic-75a (dissolved) | 0.00200 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBL9 | Arsenic-75a (dissolved) | -0.00300 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCB7 | Arsenic-75a (dissolved) | -0.00400 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBLA | Arsenic-75a (dissolved) | 0.00200 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCB8 | Arsenic-75a (dissolved) | 0.0130 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCB9 | Arsenic-75a (dissolved) | 0.00600 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBLB | Arsenic-75a (dissolved) | -0.00100 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCBA | Arsenic-75a (dissolved) | 0.00 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBLC | Arsenic-75a (dissolved) | 0.00300 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCBB | Arsenic-75a (dissolved) | 0.00300 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBLD | Arsenic-75a (dissolved) | 0.0180 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCBC | Arsenic-75a (dissolved) | 0.00900 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBLE | Arsenic-75a (dissolved) | 0.00100 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCBD | Arsenic-75a (dissolved) | 0.00500 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCBE | Arsenic-75a (dissolved) | 0.00300 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBLF | Arsenic-75a (dissolved) | 0.0220 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCBF | Arsenic-75a (dissolved) | 0.0100 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBLG | Arsenic-75a (dissolved) | 0.0120 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCBG | Arsenic-75a (dissolved) | 0.0140 | 0.0373 | 0.200 | ug/L | | | SKD0163-IBLH | Arsenic-75a (dissolved) | 0.0110 | 0.0373 | 0.200 | ug/L | | | SKD0163-CCBH | Arsenic-75a (dissolved) | 0.0230 | 0.0373 | 0.200 | ug/L | | | | | • | | | | | Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: $\underline{SKD0126}$ Instrument: $\underline{ICPMS1}$ Calibration: FD00028 | Sample Name | Lab Sample ID | Lab File ID | Matrix | Analysis Date/Time | |----------------------|---------------|----------------------|--------|--------------------| | CAL 0 | SKD0126-CAL1 | XDT_m1220408-014 | NA | 04/08/22 15:11 | | CAL 1 - LOW CHECK | SKD0126-CAL2 | XDT_m1220408-015 | NA | 04/08/22 15:16 | | CAL 2 | SKD0126-CAL3 | XDT_m1220408-016 | NA | 04/08/22 15:21 | | CAL 3 | SKD0126-CAL4 | XDT_m1220408-017 | NA | 04/08/22 15:27 | | CAL 4 | SKD0126-CAL5 | XDT_m1220408-018 | NA | 04/08/22 15:32 | | CAL 5 | SKD0126-CAL6 | XDT_m1220408-019 | NA | 04/08/22 15:39 | | RINSE | SKD0126-IBL1 | XDT_m1220408-020 | NA | 04/08/22 15:47 | | Initial Cal Check | SKD0126-ICV1 | XDT_m1220408-022 | NA | 04/08/22 15:54 | | Initial Cal Blank | SKD0126-ICB1 | XDT_m1220408-023 | NA | 04/08/22 16:05 | | Calibration Check | SKD0126-CCV1 | XDT_m1220408-024 | NA | 04/08/22 16:10 | | Calibration Blank | SKD0126-CCB1 | XDT_m1220408-025 | NA | 04/08/22 16:18 | | Instrument RL Check | SKD0126-CRL1 | XDT_m1220408-026 | NA | 04/08/22 16:24 | | Interference Check A | SKD0126-IFA1 | XDT_m1220408-027 | NA | 04/08/22 16:29 | | Interference Check B | SKD0126-IFB1 | XDT_m1220408-028 | NA | 04/08/22 16:34 | | LR300 | SKD0126-HCV2 | XDT_m1220408-030 | NA | 04/08/22 16:45 | | LR200 | SKD0126-HCV1 | XDT_m1220408-031 | NA | 04/08/22 16:53 | | Instrument Blank | SKD0126-IBL2 | XDT_m1220408-032 | NA | 04/08/22 16:59 | | Instrument Blank | SKD0126-IBL3 | XDT_m1220408-033 | NA | 04/08/22 17:06 | | Calibration Check | SKD0126-CCV2 | XDT_m1220408-034 | NA | 04/08/22 17:13 | | Calibration Blank | SKD0126-CCB2 | XDT_m1220408-035 | NA | 04/08/22 17:21 | | Calibration Check | SKD0126-CCV3 | XDT_m1220408-037 | NA | 04/08/22 17:37 | | Calibration Blank | SKD0126-CCB3 | XDT_m1220408-038 | NA | 04/08/22 17:45 | | ZZZZZ | 22C0483-01 | XDT_m1220408_PRE-042 | Solid | 04/08/22 18:14 | | ZZZZZ | 22C0358-01 | XDT_m1220408_PRE-043 | Solid | 04/08/22 18:19 | | ZZZZZ | 22C0536-01 | XDT_m1220408_PRE-046 | Solid | 04/08/22 18:34 | | Calibration Check | SKD0126-CCV4 | XDT_m1220408-049 | NA | 04/08/22 18:51 | | Calibration Blank | SKD0126-CCB4 | XDT_m1220408-050 | NA | 04/08/22 18:59 | | ZZZZZ | 22C0313-01 | XDT_m1220408_PRE-053 | Solid | 04/08/22 19:17 | | ZZZZZ | 22C0313-01 | XDT_m1220408_PRE-053 | Solid | 04/08/22 19:17 | Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: <u>SKD0126</u> Instrument: <u>ICPMS1</u> | Sample Name | Lab Sample ID | Lab File ID | Matrix | Analysis Date/Time | |-------------------|---------------|----------------------|--------|--------------------| | ZZZZZ | 22C0314-01 | XDT_m1220408_PRE-056 | Solid | 04/08/22 19:33 | | Instrument Blank | SKD0126-IBL4 | XDT_m1220408-060 | NA | 04/08/22 19:54 | | Calibration Check | SKD0126-CCV5 | XDT_m1220408-061 | NA | 04/08/22 19:59 | | Calibration Blank | SKD0126-CCB5 | XDT_m1220408-062 | NA | 04/08/22 20:07 | | Calibration Check | SKD0126-CCV6 | XDT_m1220408-064 | NA | 04/08/22 20:19 | | Calibration Blank | SKD0126-CCB6 | XDT_m1220408-065 | NA | 04/08/22 20:27 | | ZZZZZ | 22D0005-02 | XDT_m1220408_PRE-070 | Solid | 04/08/22 20:57 | | ZZZZZ | 22D0005-01 | XDT_m1220408_PRE-071 | Solid | 04/08/22 21:03 | | ZZZZZ | 22D0022-01 | XDT_m1220408-072 | Solid | 04/08/22 21:09 | | Instrument Blank | SKD0126-IBL5 | XDT_m1220408-075 | NA | 04/08/22 21:26 | | Calibration Check | SKD0126-CCV7 | XDT_m1220408-076 | NA | 04/08/22 21:31 | | Calibration Blank | SKD0126-CCB7 | XDT_m1220408-077 | NA | 04/08/22
21:39 | | ZZZZZ | BKD0163-BLK1 | XDT_m1220408-078 | Water | 04/08/22 21:46 | | ZZZZZ | BKD0163-BS1 | XDT_m1220408-079 | Water | 04/08/22 21:51 | | Blank | BKD0201-BLK1 | XDT_m1220408-080 | Water | 04/08/22 21:56 | | LCS | BKD0201-BS1 | XDT_m1220408-081 | Water | 04/08/22 22:01 | | Instrument Blank | SKD0126-IBL6 | XDT_m1220408-084 | NA | 04/08/22 22:19 | | Instrument Blank | SKD0126-IBL7 | XDT_m1220408-087 | NA | 04/08/22 22:36 | | Calibration Check | SKD0126-CCV8 | XDT_m1220408-088 | NA | 04/08/22 22:41 | | Calibration Blank | SKD0126-CCB8 | XDT_m1220408-089 | NA | 04/08/22 22:49 | | Instrument Blank | SKD0126-IBL8 | XDT_m1220408-099 | NA | 04/08/22 23:46 | | Calibration Check | SKD0126-CCV9 | XDT_m1220408-100 | NA | 04/08/22 23:51 | | Calibration Blank | SKD0126-CCB9 | XDT_m1220408-101 | NA | 04/08/22 23:59 | | Calibration Check | SKD0126-CCVA | XDT_m1220408-103 | NA | 04/09/22 00:10 | | Calibration Blank | SKD0126-CCBA | XDT_m1220408-104 | NA | 04/09/22 00:18 | | ZZZZZ | BKD0202-BLK2 | XDT_m1220408-105 | Water | 04/09/22 00:23 | | ZZZZZ | BKD0202-BS2 | XDT_m1220408-106 | Water | 04/09/22 00:28 | | Instrument Blank | SKD0126-IBL9 | XDT_m1220408-114 | NA | 04/09/22 01:15 | | Calibration Check | SKD0126-CCVB | XDT m1220408-115 | NA | 04/09/22 01:20 | Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: <u>SKD0126</u> Instrument: <u>ICPMS1</u> | Sample Name | Lab Sample ID | Lab File ID | Matrix | Analysis Date/Time | |-------------------|---------------|------------------|--------|--------------------| | Calibration Blank | SKD0126-CCBB | XDT_m1220408-116 | NA | 04/09/22 01:28 | | Instrument Blank | SKD0126-IBLA | XDT_m1220408-126 | NA | 04/09/22 02:25 | | Calibration Check | SKD0126-CCVC | XDT_m1220408-127 | NA | 04/09/22 02:31 | | Calibration Blank | SKD0126-CCBC | XDT_m1220408-128 | NA | 04/09/22 02:39 | | ZZZZZ | 22C0372-06 | XDT_m1220408-131 | Water | 04/09/22 02:54 | | ZZZZZ | 22C0372-06 | XDT_m1220408-131 | Water | 04/09/22 02:54 | | ZZZZZ | 22C0372-06 | XDT_m1220408-131 | Water | 04/09/22 02:54 | | ZZZZZ | 22C0372-06 | XDT_m1220408-131 | Water | 04/09/22 02:54 | | ZZZZZ | 22C0372-06 | XDT_m1220408-131 | Water | 04/09/22 02:54 | | ZZZZZ | 22C0372-04 | XDT_m1220408-132 | Water | 04/09/22 03:00 | | ZZZZZ | 22C0372-04 | XDT_m1220408-132 | Water | 04/09/22 03:00 | | ZZZZZ | 22C0372-04 | XDT_m1220408-132 | Water | 04/09/22 03:00 | | ZZZZZ | 22C0372-04 | XDT_m1220408-132 | Water | 04/09/22 03:00 | | ZZZZZ | 22C0372-08 | XDT_m1220408-133 | Water | 04/09/22 03:05 | | ZZZZZ | 22C0372-08 | XDT_m1220408-133 | Water | 04/09/22 03:05 | | ZZZZZ | 22C0372-08 | XDT_m1220408-133 | Water | 04/09/22 03:05 | | ZZZZZ | 22C0372-08 | XDT_m1220408-133 | Water | 04/09/22 03:05 | | ZZZZZ | 22C0372-02 | XDT_m1220408-134 | Water | 04/09/22 03:10 | | ZZZZZ | 22C0372-02 | XDT_m1220408-134 | Water | 04/09/22 03:10 | | ZZZZZ | 22C0372-02 | XDT_m1220408-134 | Water | 04/09/22 03:10 | | ZZZZZ | 22C0372-02 | XDT_m1220408-134 | Water | 04/09/22 03:10 | | ZZZZZ | 22C0372-02 | XDT_m1220408-134 | Water | 04/09/22 03:10 | | Instrument Blank | SKD0126-IBLB | XDT_m1220408-138 | NA | 04/09/22 03:36 | | Calibration Check | SKD0126-CCVD | XDT_m1220408-139 | NA | 04/09/22 03:41 | | Calibration Blank | SKD0126-CCBD | XDT_m1220408-140 | NA | 04/09/22 03:49 | | ZZZZZ | 22C0403-02 | XDT_m1220408-146 | Water | 04/09/22 04:23 | | ZZZZZ | 22C0403-02 | XDT_m1220408-146 | Water | 04/09/22 04:23 | | Instrument Blank | SKD0126-IBLC | XDT_m1220408-150 | NA | 04/09/22 04:49 | | Calibration Check | SKD0126-CCVE | XDT_m1220408-151 | NA | 04/09/22 04:54 | Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: SKD0126 Instrument: ICPMS1 | Sample Name | Lab Sample ID | Lab File ID | Matrix | Analysis Date/Time | |-------------------|---------------|------------------|--------|--------------------| | Calibration Blank | SKD0126-CCBE | XDT_m1220408-152 | NA | 04/09/22 05:02 | Laboratory: <u>Analytical Resources, LLC</u> SDG: <u>22C0456</u> Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: $\underline{SKD0140}$ Instrument: $\underline{ICPMS1}$ Calibration: FD00031 | Sample Name | Lab Sample ID | Lab File ID | Matrix | Analysis Date/Time | |----------------------|---------------|------------------|--------|--------------------| | CAL 0 | SKD0140-CAL1 | XDT_m1220411-011 | NA | 04/11/22 15:20 | | CAL 1 - LOW CHECK | SKD0140-CAL2 | XDT_m1220411-012 | NA | 04/11/22 15:25 | | CAL 2 | SKD0140-CAL3 | XDT_m1220411-013 | NA | 04/11/22 15:30 | | CAL 3 | SKD0140-CAL4 | XDT_m1220411-014 | NA | 04/11/22 15:35 | | CAL 4 | SKD0140-CAL5 | XDT_m1220411-015 | NA | 04/11/22 15:41 | | CAL 5 | SKD0140-CAL6 | XDT_m1220411-016 | NA | 04/11/22 15:48 | | RINSE | SKD0140-IBL1 | XDT_m1220411-017 | NA | 04/11/22 15:56 | | Initial Cal Check | SKD0140-ICV1 | XDT_m1220411-019 | NA | 04/11/22 16:03 | | Initial Cal Blank | SKD0140-ICB1 | XDT_m1220411-020 | NA | 04/11/22 16:11 | | Calibration Check | SKD0140-CCV1 | XDT_m1220411-021 | NA | 04/11/22 16:18 | | Calibration Blank | SKD0140-CCB1 | XDT_m1220411-022 | NA | 04/11/22 16:26 | | Instrument RL Check | SKD0140-CRL1 | XDT_m1220411-023 | NA | 04/11/22 16:32 | | Interference Check A | SKD0140-IFA1 | XDT_m1220411-024 | NA | 04/11/22 16:37 | | Interference Check B | SKD0140-IFB1 | XDT_m1220411-025 | NA | 04/11/22 16:42 | | LR200 | SKD0140-HCV1 | XDT_m1220411-026 | NA | 04/11/22 16:48 | | LR300 | SKD0140-HCV2 | XDT_m1220411-027 | NA | 04/11/22 16:53 | | Instrument Blank | SKD0140-IBL2 | XDT_m1220411-028 | NA | 04/11/22 17:01 | | Instrument Blank | SKD0140-IBL3 | XDT_m1220411-029 | NA | 04/11/22 17:08 | | Calibration Check | SKD0140-CCV2 | XDT_m1220411-030 | NA | 04/11/22 17:16 | | Calibration Blank | SKD0140-CCB2 | XDT_m1220411-031 | NA | 04/11/22 17:24 | | Calibration Check | SKD0140-CCV3 | XDT_m1220411-033 | NA | 04/11/22 17:36 | | Calibration Blank | SKD0140-CCB3 | XDT_m1220411-034 | NA | 04/11/22 17:44 | | Instrument Blank | SKD0140-IBL4 | XDT_m1220411-044 | NA | 04/11/22 18:51 | | Calibration Check | SKD0140-CCV4 | XDT_m1220411-045 | NA | 04/11/22 18:56 | | Calibration Blank | SKD0140-CCB4 | XDT_m1220411-046 | NA | 04/11/22 19:04 | | ZZZZZ | 22D0114-01 | XDT_m1220411-050 | Solid | 04/11/22 19:26 | | Instrument Blank | SKD0140-IBL5 | XDT_m1220411-056 | NA | 04/11/22 20:02 | | Calibration Check | SKD0140-CCV5 | XDT_m1220411-057 | NA | 04/11/22 20:07 | | Calibration Blank | SKD0140-CCB5 | XDT_m1220411-058 | NA | 04/11/22 20:15 | Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: <u>SKD0140</u> Instrument: <u>ICPMS1</u> | Sample Name | Lab Sample ID | Lab File ID | Matrix | Analysis Date/Time | |--------------------|---------------|------------------|--------|--------------------| | Calibration Check | SKD0140-CCV6 | XDT_m1220411-060 | NA | 04/11/22 20:27 | | Calibration Blank | SKD0140-CCB6 | XDT_m1220411-061 | NA | 04/11/22 20:36 | | Instrument Blank | SKD0140-IBL6 | XDT_m1220411-066 | NA | 04/11/22 21:05 | | Instrument Blank | SKD0140-IBL7 | XDT_m1220411-071 | NA | 04/11/22 21:39 | | Calibration Check | SKD0140-CCV7 | XDT_m1220411-072 | NA | 04/11/22 21:44 | | Calibration Blank | SKD0140-CCB7 | XDT_m1220411-073 | NA | 04/11/22 21:52 | | Calibration Check | SKD0140-CCV8 | XDT_m1220411-075 | NA | 04/11/22 22:04 | | Calibration Blank | SKD0140-CCB8 | XDT_m1220411-076 | NA | 04/11/22 22:10 | | MW-CP1-032322-D | 22C0456-02 | XDT_m1220411-079 | Water | 04/11/22 22:25 | | MW-CP2-032322 | 22C0456-03 | XDT_m1220411-080 | Water | 04/11/22 22:28 | | MW-CP3-032322 | 22C0456-04 | XDT_m1220411-081 | Water | 04/11/22 22:36 | | MW-CP4-032322 | 22C0456-05 | XDT_m1220411-082 | Water | 04/11/22 22:39 | | MW-CP1-032322 | 22C0456-01 | XDT_m1220411-083 | Water | 04/11/22 22:43 | | MW-CP1-032322 | BKD0201-DUP1 | XDT_m1220411-084 | Water | 04/11/22 22:46 | | MW-CP1-032322 | BKD0201-MS1 | XDT_m1220411-085 | Water | 04/11/22 22:50 | | Instrument Blank | SKD0140-IBL8 | XDT_m1220411-086 | NA | 04/11/22 22:55 | | Calibration Check | SKD0140-CCV9 | XDT_m1220411-087 | NA | 04/11/22 22:59 | | Calibration Blank | SKD0140-CCB9 | XDT_m1220411-088 | NA | 04/11/22 23:05 | | MW-CP6-032322 | 22C0456-07 | XDT_m1220411-090 | Water | 04/11/22 23:12 | | MW-CP7-032322 | 22C0456-08 | XDT_m1220411-091 | Water | 04/11/22 23:16 | | MW-VB3-032322 | 22C0456-09 | XDT_m1220411-092 | Water | 04/11/22 23:19 | | HCOO-B312-032322 | 22C0456-10 | XDT_m1220411-093 | Water | 04/11/22 23:23 | | MW-C1-VB1-032422 | 22C0456-11 | XDT_m1220411-094 | Water | 04/11/22 23:27 | | MW-C1-VB1-032422-D | 22C0456-12 | XDT_m1220411-095 | Water | 04/11/22 23:30 | | MW-C2-032422 | 22C0456-13 | XDT_m1220411-096 | Water | 04/11/22 23:34 | | MW-C3-032422 | 22C0456-14 | XDT_m1220411-097 | Water | 04/11/22 23:38 | | Instrument Blank | SKD0140-IBL9 | XDT_m1220411-098 | NA | 04/11/22 23:43 | | Calibration Check | SKD0140-CCVA | XDT_m1220411-099 | NA | 04/11/22 23:47 | | Calibration Blank | SKD0140-CCBA | XDT_m1220411-100 | NA | 04/11/22 23:53 | Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: $\underline{SKD0140}$ Instrument: $\underline{ICPMS1}$ | Sample Name | Lab Sample ID | Lab File ID | Matrix | Analysis Date/Time | |-------------------|---------------|------------------|--------|--------------------| | | 1 | | | | | MW-C1-VB2-032422 | 22C0456-15 | XDT_m1220411-101 | Water | 04/11/22 23:57 | | Instrument Blank | SKD0140-IBLA | XDT_m1220411-110 | NA | 04/12/22 00:31 | | Calibration Check | SKD0140-CCVB | XDT_m1220411-111 | NA | 04/12/22 00:34 | | Calibration Blank | SKD0140-CCBB | XDT_m1220411-112 | NA | 04/12/22 00:41 | | Instrument Blank | SKD0140-IBLB | XDT_m1220411-122 | NA | 04/12/22 01:19 | | Calibration Check | SKD0140-CCVC | XDT_m1220411-123 | NA | 04/12/22 01:22 | | Calibration Blank |
SKD0140-CCBC | XDT_m1220411-124 | NA | 04/12/22 01:29 | | ZZZZZ | BKD0293-BLK1 | XDT_m1220411-125 | Water | 04/12/22 01:32 | | ZZZZZ | BKD0293-BS1 | XDT_m1220411-126 | Water | 04/12/22 01:36 | | Instrument Blank | SKD0140-IBLC | XDT_m1220411-133 | NA | 04/12/22 02:03 | | Calibration Check | SKD0140-CCVD | XDT_m1220411-134 | NA | 04/12/22 02:07 | | Calibration Blank | SKD0140-CCBD | XDT_m1220411-135 | NA | 04/12/22 02:13 | Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: <u>SKD0163</u> Instrument: <u>ICPMS1</u> Calibration: FD00036 | Sample Name | Lab Sample ID | Lab File ID | Matrix | Analysis Date/Time | |----------------------|---------------|------------------|--------|--------------------| | CAL 0 | SKD0163-CAL1 | XDT_m1220412-004 | NA | 04/12/22 17:01 | | CAL 1 - LOW CHECK | SKD0163-CAL2 | XDT_m1220412-005 | NA | 04/12/22 17:06 | | CAL 2 | SKD0163-CAL3 | XDT_m1220412-006 | NA | 04/12/22 17:11 | | CAL 3 | SKD0163-CAL4 | XDT_m1220412-007 | NA | 04/12/22 17:17 | | CAL 4 | SKD0163-CAL5 | XDT_m1220412-008 | NA | 04/12/22 17:23 | | CAL 5 | SKD0163-CAL6 | XDT_m1220412-009 | NA | 04/12/22 17:30 | | RINSE | SKD0163-IBL1 | XDT_m1220412-010 | NA | 04/12/22 17:38 | | Initial Cal Check | SKD0163-ICV1 | XDT_m1220412-012 | NA | 04/12/22 17:49 | | Initial Cal Blank | SKD0163-ICB1 | XDT_m1220412-013 | NA | 04/12/22 17:57 | | Calibration Check | SKD0163-CCV1 | XDT_m1220412-015 | NA | 04/12/22 18:09 | | Calibration Blank | SKD0163-CCB1 | XDT_m1220412-016 | NA | 04/12/22 18:17 | | Instrument RL Check | SKD0163-CRL1 | XDT_m1220412-018 | NA | 04/12/22 18:29 | | Interference Check A | SKD0163-IFA1 | XDT_m1220412-019 | NA | 04/12/22 18:34 | | Interference Check B | SKD0163-IFB1 | XDT_m1220412-020 | NA | 04/12/22 18:40 | | LR300 | SKD0163-HCV2 | XDT_m1220412-022 | NA | 04/12/22 18:53 | | LR200 | SKD0163-HCV1 | XDT_m1220412-023 | NA | 04/12/22 19:01 | | Instrument Blank | SKD0163-IBL2 | XDT_m1220412-024 | NA | 04/12/22 19:06 | | Instrument Blank | SKD0163-IBL3 | XDT_m1220412-025 | NA | 04/12/22 19:13 | | Calibration Check | SKD0163-CCV2 | XDT_m1220412-028 | NA | 04/12/22 19:39 | | Calibration Blank | SKD0163-CCB2 | XDT_m1220412-029 | NA | 04/12/22 19:47 | | Instrument Blank | SKD0163-IBL4 | XDT_m1220412-036 | NA | 04/12/22 20:29 | | Instrument Blank | SKD0163-IBL5 | XDT_m1220412-039 | NA | 04/12/22 20:50 | | Calibration Check | SKD0163-CCV3 | XDT_m1220412-040 | NA | 04/12/22 20:55 | | Calibration Blank | SKD0163-CCB3 | XDT_m1220412-041 | NA | 04/12/22 21:03 | | Calibration Check | SKD0163-CCV4 | XDT_m1220412-044 | NA | 04/12/22 21:24 | | Calibration Blank | SKD0163-CCB4 | XDT_m1220412-045 | NA | 04/12/22 21:32 | | Instrument Blank | SKD0163-IBL6 | XDT_m1220412-055 | NA | 04/12/22 22:34 | | Calibration Check | SKD0163-CCV5 | XDT_m1220412-056 | NA | 04/12/22 22:39 | | Calibration Blank | SKD0163-CCB5 | XDT_m1220412-057 | NA | 04/12/22 22:47 | Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: <u>SKD0163</u> Instrument: <u>ICPMS1</u> | Sample Name | Lab Sample ID | Lab File ID | Matrix | Analysis Date/Time | |-------------------|---------------|------------------|--------|--------------------| | MW-CP5-032322 | 22C0456-06 | XDT_m1220412-060 | Water | 04/12/22 23:09 | | Instrument Blank | SKD0163-IBL7 | XDT_m1220412-067 | NA | 04/12/22 23:54 | | Calibration Check | SKD0163-CCV6 | XDT_m1220412-068 | NA | 04/12/22 23:59 | | Calibration Blank | SKD0163-CCB6 | XDT_m1220412-069 | NA | 04/13/22 00:07 | | Instrument Blank | SKD0163-IBL8 | XDT_m1220412-076 | NA | 04/13/22 00:51 | | ZZZZZ | 22C0395-06 | XDT_m1220412-077 | Water | 04/13/22 00:56 | | ZZZZZ | 22C0395-06 | XDT_m1220412-077 | Water | 04/13/22 00:56 | | ZZZZZ | 22C0395-06 | XDT_m1220412-077 | Water | 04/13/22 00:56 | | ZZZZZ | 22C0395-06 | XDT_m1220412-077 | Water | 04/13/22 00:56 | | ZZZZZ | 22C0395-08 | XDT_m1220412-078 | Water | 04/13/22 01:03 | | ZZZZZ | 22C0395-08 | XDT_m1220412-078 | Water | 04/13/22 01:03 | | ZZZZZ | 22C0395-08 | XDT_m1220412-078 | Water | 04/13/22 01:03 | | ZZZZZ | 22C0395-08 | XDT_m1220412-078 | Water | 04/13/22 01:03 | | Instrument Blank | SKD0163-IBL9 | XDT_m1220412-079 | NA | 04/13/22 01:12 | | Calibration Check | SKD0163-CCV7 | XDT_m1220412-080 | NA | 04/13/22 01:17 | | Calibration Blank | SKD0163-CCB7 | XDT_m1220412-081 | NA | 04/13/22 01:25 | | ZZZZZ | 22C0395-10 | XDT_m1220412-086 | Water | 04/13/22 01:57 | | ZZZZZ | 22C0395-10 | XDT_m1220412-086 | Water | 04/13/22 01:57 | | ZZZZZ | 22C0395-10 | XDT_m1220412-086 | Water | 04/13/22 01:57 | | ZZZZZ | 22C0395-10 | XDT_m1220412-086 | Water | 04/13/22 01:57 | | ZZZZZ | 22C0395-04 | XDT_m1220412-087 | Water | 04/13/22 02:02 | | ZZZZZ | 22C0395-04 | XDT_m1220412-087 | Water | 04/13/22 02:02 | | ZZZZZ | 22C0395-04 | XDT_m1220412-087 | Water | 04/13/22 02:02 | | ZZZZZ | 22C0395-02 | XDT_m1220412-088 | Water | 04/13/22 02:07 | | ZZZZZ | 22C0395-02 | XDT_m1220412-088 | Water | 04/13/22 02:07 | | ZZZZZ | 22C0395-02 | XDT_m1220412-088 | Water | 04/13/22 02:07 | | Instrument Blank | SKD0163-IBLA | XDT_m1220412-091 | NA | 04/13/22 02:28 | | Calibration Check | SKD0163-CCV8 | XDT_m1220412-092 | NA | 04/13/22 02:34 | | Calibration Blank | SKD0163-CCB8 | XDT_m1220412-093 | NA | 04/13/22 02:42 | Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: <u>SKD0163</u> Instrument: <u>ICPMS1</u> | Sample Name | Lab Sample ID | Lab File ID | Matrix | Analysis Date/Time | |-------------------|---------------|------------------|--------|--------------------| | Calibration Check | SKD0163-CCV9 | XDT_m1220412-095 | NA | 04/13/22 02:52 | | Calibration Blank | SKD0163-CCB9 | XDT_m1220412-096 | NA | 04/13/22 03:00 | | ZZZZZ | 22C0403-02 | XDT_m1220412-102 | Water | 04/13/22 03:32 | | Instrument Blank | SKD0163-IBLB | XDT_m1220412-106 | NA | 04/13/22 03:59 | | Calibration Check | SKD0163-CCVA | XDT_m1220412-107 | NA | 04/13/22 04:04 | | Calibration Blank | SKD0163-CCBA | XDT_m1220412-108 | NA | 04/13/22 04:12 | | Instrument Blank | SKD0163-IBLC | XDT_m1220412-118 | NA | 04/13/22 05:14 | | Calibration Check | SKD0163-CCVB | XDT_m1220412-119 | NA | 04/13/22 05:19 | | Calibration Blank | SKD0163-CCBB | XDT_m1220412-120 | NA | 04/13/22 05:27 | | Instrument Blank | SKD0163-IBLD | XDT_m1220412-130 | NA | 04/13/22 06:26 | | Calibration Check | SKD0163-CCVC | XDT_m1220412-131 | NA | 04/13/22 06:31 | | Calibration Blank | SKD0163-CCBC | XDT_m1220412-132 | NA | 04/13/22 06:39 | | Instrument Blank | SKD0163-IBLE | XDT_m1220412-142 | NA | 04/13/22 07:38 | | Calibration Check | SKD0163-CCVD | XDT_m1220412-143 | NA | 04/13/22 07:43 | | Calibration Blank | SKD0163-CCBD | XDT_m1220412-144 | NA | 04/13/22 07:51 | | Calibration Check | SKD0163-CCVE | XDT_m1220412-146 | NA | 04/13/22 08:02 | | Calibration Blank | SKD0163-CCBE | XDT_m1220412-147 | NA | 04/13/22 08:10 | | ZZZZZ | BKD0333-BLK1 | XDT_m1220412-148 | Water | 04/13/22 08:15 | | ZZZZZ | BKD0333-BS1 | XDT_m1220412-149 | Water | 04/13/22 08:20 | | ZZZZZ | 22C0433-06 | XDT_m1220412-152 | Water | 04/13/22 08:37 | | ZZZZZ | 22C0433-06 | XDT_m1220412-152 | Water | 04/13/22 08:37 | | ZZZZZ | 22C0433-06 | XDT_m1220412-152 | Water | 04/13/22 08:37 | | ZZZZZ | 22C0433-06 | XDT_m1220412-152 | Water | 04/13/22 08:37 | | ZZZZZ | 22C0433-06 | XDT_m1220412-152 | Water | 04/13/22 08:37 | | ZZZZZ | 22C0433-06 | XDT_m1220412-152 | Water | 04/13/22 08:37 | | ZZZZZ | 22C0433-06 | XDT_m1220412-152 | Water | 04/13/22 08:37 | | ZZZZZ | 22C0433-06 | XDT_m1220412-152 | Water | 04/13/22 08:37 | | ZZZZZ | 22C0433-06 | XDT_m1220412-152 | Water | 04/13/22 08:37 | | ZZZZZ | 22C0433-06 | XDT m1220412-152 | Water | 04/13/22 08:37 | Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: <u>SKD0163</u> Instrument: <u>ICPMS1</u> | Sample Name | Lab Sample ID | Lab File ID | Matrix | Analysis Date/Time | |-------------------|---------------|------------------|--------|--------------------| | ZZZZZ | 22C0433-04 | XDT_m1220412-153 | Water | 04/13/22 08:42 | | ZZZZZ | 22C0433-04 | XDT_m1220412-153 | Water | 04/13/22 08:42 | | ZZZZZ | 22C0433-04 | XDT_m1220412-153 | Water | 04/13/22 08:42 | | ZZZZZ | 22C0433-04 | XDT_m1220412-153 | Water | 04/13/22 08:42 | | ZZZZZ | 22C0433-04 | XDT_m1220412-153 | Water | 04/13/22 08:42 | | ZZZZZ | 22C0433-04 | XDT_m1220412-153 | Water | 04/13/22 08:42 | | ZZZZZ | 22C0433-04 | XDT_m1220412-153 | Water | 04/13/22 08:42 | | ZZZZZ | 22C0433-04 | XDT_m1220412-153 | Water | 04/13/22 08:42 | | ZZZZZ | 22C0433-04 | XDT_m1220412-153 | Water | 04/13/22 08:42 | | ZZZZZ | 22C0433-04 | XDT_m1220412-153 | Water | 04/13/22 08:42 | | Instrument Blank | SKD0163-IBLF | XDT_m1220412-157 | NA | 04/13/22 09:08 | | Calibration Check | SKD0163-CCVF | XDT_m1220412-158 | NA | 04/13/22 09:14 | | Calibration Blank | SKD0163-CCBF | XDT_m1220412-159 | NA | 04/13/22 09:22 | | ZZZZZ | 22C0433-02 | XDT_m1220412-165 | Water | 04/13/22 09:54 | | ZZZZZ | 22C0433-02 | XDT_m1220412-165 | Water | 04/13/22 09:54 | | ZZZZZ | 22C0433-02 | XDT_m1220412-165 | Water | 04/13/22 09:54 | | ZZZZZ | 22C0433-02 | XDT_m1220412-165 | Water | 04/13/22 09:54 | | ZZZZZ | 22C0433-02 | XDT_m1220412-165 | Water | 04/13/22 09:54 | | ZZZZZ | 22C0433-02 | XDT_m1220412-165 | Water | 04/13/22 09:54 | | ZZZZZ | 22C0433-02 | XDT_m1220412-165 | Water | 04/13/22 09:54 | | ZZZZZ | 22C0433-02 | XDT_m1220412-165 | Water | 04/13/22 09:54 | | ZZZZZ | 22C0433-02 | XDT_m1220412-165 | Water | 04/13/22 09:54 | | ZZZZZ | 22C0433-02 | XDT_m1220412-165 | Water | 04/13/22 09:54 | | Instrument Blank | SKD0163-IBLG | XDT_m1220412-169 | NA | 04/13/22 10:20 | | Calibration Check | SKD0163-CCVG | XDT_m1220412-170 | NA | 04/13/22 10:26 | | Calibration Blank | SKD0163-CCBG | XDT_m1220412-171 | NA | 04/13/22 10:34 | | ZZZZZ | 22C0435-08 | XDT_m1220412-176 | Water | 04/13/22 11:02 | |
ZZZZZ | 22C0435-08 | XDT_m1220412-176 | Water | 04/13/22 11:02 | | ZZZZZ | 22C0435-08 | XDT_m1220412-176 | Water | 04/13/22 11:02 | Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Sequence: $\underline{SKD0163}$ Instrument: $\underline{ICPMS1}$ | Sample Name | Lab Sample ID | Lab File ID | Matrix | Analysis Date/Time | |-------------------|---------------|------------------|--------|--------------------| | | | | | | | ZZZZZ | 22C0435-08 | XDT_m1220412-176 | Water | 04/13/22 11:02 | | ZZZZZ | 22C0435-08 | XDT_m1220412-176 | Water | 04/13/22 11:02 | | ZZZZZ | 22C0435-08 | XDT_m1220412-176 | Water | 04/13/22 11:02 | | ZZZZZ | 22C0435-08 | XDT_m1220412-176 | Water | 04/13/22 11:02 | | ZZZZZ | 22C0435-08 | XDT_m1220412-176 | Water | 04/13/22 11:02 | | ZZZZZ | 22C0435-08 | XDT_m1220412-176 | Water | 04/13/22 11:02 | | ZZZZZ | 22C0435-08 | XDT_m1220412-176 | Water | 04/13/22 11:02 | | Instrument Blank | SKD0163-IBLH | XDT_m1220412-180 | NA | 04/13/22 11:28 | | Calibration Check | SKD0163-CCVH | XDT_m1220412-181 | NA | 04/13/22 11:33 | | Calibration Blank | SKD0163-CCBH | XDT_m1220412-182 | NA | 04/13/22 11:41 | Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: ICPMS1 Calibration: FD00028 Sequence: SKD0126 Standard ID: K003019 | Lab Sample ID | Analyte | True | Found | %R | Units | |---------------|-------------------------|------|--------|----|-------| | SKD0126-IFA1 | Arsenic-75a (dissolved) | 0 | 0.0330 | | ug/L | ^{*} Indicates %R outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: ICPMS1 Calibration: FD00028 Sequence: SKD0126 Standard ID: K003019 | Lab Sample ID | Analyte | True | Found | %R | Units | |---------------|-------------------------|--------|--------|------|-------| | SKD0126-IFB1 | Arsenic-75a (dissolved) | 20.000 | 19.274 | 96.4 | ug/L | ^{*} Indicates %R outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: ICPMS1 Calibration: FD00031 Sequence: SKD0140 Standard ID: K003019 | Lab Sample ID | Analyte | True | Found | %R | Units | |---------------|-------------------------|------|--------|----|-------| | SKD0140-IFA1 | Arsenic-75a (dissolved) | 0 | 0.0200 | | ησ/Г. | ^{*} Indicates %R outside of QC limits Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: ICPMS1 Calibration: FD00031 Sequence: SKD0140 Standard ID: K003019 | Lab Sample ID | Analyte | True | Found | %R | Units | |---------------|-------------------------|--------|--------|------|-------| | SKD0140-IFB1 | Arsenic-75a (dissolved) | 20.000 | 19.983 | 99.9 | ug/L | ^{*} Indicates %R outside of QC limits Standard ID: K003019 Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: ICPMS1 Calibration: FD00036 | Lab Sample ID | Analyte | True | Found | %R | Units | |---------------|-------------------------|------|--------|----|-------| | SKD0163-IFA1 | Arsenic-75a (dissolved) | 0 | 0.0080 | | ug/L | ^{*} Indicates %R outside of QC limits Sequence: SKD0163 Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: ICPMS1 Calibration: FD00036 Sequence: SKD0163 Standard ID: K003019 | Lab Sample ID | Analyte | True | Found | %R | Units | |---------------|-------------------------|--------|--------|------|-------| | SKD0163-IFB1 | Arsenic-75a (dissolved) | 20.000 | 17.329 | 86.6 | ug/L | ^{*} Indicates %R outside of QC limits # DETECTION LEVEL STANDARD EPA 6020B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: ICPMS1 Calibration: FD00028 Sequence: SKD0126 Lab Sample ID: SKD0126-CRL1 | Analyte | True | Found | %R | Units | QC Limts | |-------------------------|---------|-------|------|-------|----------| | Arsenic-75a (dissolved) | 0.20000 | 0.182 | 91.0 | ug/L | 50 - 150 | ^{*} Values outside of QC limits # DETECTION LEVEL STANDARD EPA 6020B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: ICPMS1 Calibration: FD00031 Sequence: SKD0140 Lab Sample ID: SKD0140-CRL1 | Analyte | True | Found | %R | Units | QC Limts | |-------------------------|---------|-------|-----|-------|----------| | Arsenic-75a (dissolved) | 0.20000 | 0.238 | 119 | ug/L | 50 - 150 | ^{*} Values outside of QC limits # DETECTION LEVEL STANDARD EPA 6020B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Instrument ID: ICPMS1 Calibration: FD00036 Sequence: SKD0163 Lab Sample ID: SKD0163-CRL1 | Analyte | True | Found | %R | Units | QC Limts | |-------------------------|---------|-------|------|-------|----------| | Arsenic-75a (dissolved) | 0.20000 | 0.189 | 94.5 | ug/L | 50 - 150 | ^{*} Values outside of QC limits ## **EPA 6020B** **Laboratory:** Analytical Resources, LLC **SDG:** 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FD00028 Laboratory ID: SKD0126-HCV1 Sequence: SKD0126 Standard ID: K003127 | ANALYTE | EXPECTED
(ug/L) | FOUND
(ug/L) | % DRIFT | QC LIMIT | |-------------------------|--------------------|-----------------|---------|----------| | Arsenic-75a (dissolved) | 200.00 | 202 | 0.8 | 10.00 | ^{*} Values outside of QC limits ## **EPA 6020B** Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FD00028 Laboratory ID: SKD0126-HCV2 Sequence: SKD0126 Standard ID: K002820 | ANALYTE | EXPECTED
(ug/L) | FOUND
(ug/L) | % DRIFT | QC LIMIT | |-------------------------|--------------------|-----------------|---------|----------| | Arsenic-75a (dissolved) | 300.00 | 307 | 2.4 | 10.00 | ^{*} Values outside of QC limits ## **EPA 6020B** **Laboratory:** Analytical Resources, LLC **SDG:** 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FD00031 Laboratory ID: SKD0140-HCV1 Sequence: SKD0140 Standard ID: K003127 | ANALYTE | EXPECTED
(ug/L) | FOUND
(ug/L) | % DRIFT | QC LIMIT | |-------------------------|--------------------|-----------------|---------|----------| | Arsenic-75a (dissolved) | 200.00 | 204 | 1.8 | 10.00 | ^{*} Values outside of QC limits ## **EPA 6020B** Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FD00031 Laboratory ID: SKD0140-HCV2 Sequence: SKD0140 Standard ID: K002820 | ANALYTE | EXPECTED
(ug/L) | FOUND
(ug/L) | % DRIFT | QC LIMIT | |-------------------------|--------------------|-----------------|---------|----------| | Arsenic-75a (dissolved) | 300.00 | 313 | 4.3 | 10.00 | ^{*} Values outside of QC limits ## **EPA 6020B** **Laboratory:** Analytical Resources, LLC **SDG:** 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FD00036 Laboratory ID: SKD0163-HCV1 Sequence: SKD0163 Standard ID: K003127 | ANALYTE | EXPECTED
(ug/L) | FOUND
(ug/L) | % DRIFT | QC LIMIT | |-------------------------|--------------------|-----------------|---------|----------| | Arsenic-75a (dissolved) | 200.00 | 192 | -4.1 | 10.00 | ^{*} Values outside of QC limits ## **EPA 6020B** Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Calibration: FD00036 Laboratory ID: SKD0163-HCV2 Sequence: SKD0163 Standard ID: K003531 | ANALYTE | EXPECTED
(ug/L) | FOUND
(ug/L) | % DRIFT | QC LIMIT | |-------------------------|--------------------|-----------------|---------|----------| | Arsenic-75a (dissolved) | 300.00 | 299 | -0.2 | 10.00 | ^{*} Values outside of QC limits # HOLDING TIME SUMMARY Analysis: EPA 6020B Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 | Sample Name | Date
Collected | Date
Received | Date
Prepared | Days
to
Prep | Max
Days to
Prep | Date
Analyzed | Days
to
Analysis | Max
Days to
Analysis | Q | |----------------------------------|-------------------|-------------------|-------------------|--------------------|------------------------|-------------------|------------------------|----------------------------|---| | MW-CP1-032322
22C0456-01 | 03/23/22
14:26 | 03/24/22
13:35 | 04/07/22
12:08 | 14 | 180 | 04/11/22
22:43 | 19 | 180 | | | MW-CP1-032322-D
22C0456-02 | 03/23/22
14:36 | 03/24/22
13:35 | 04/07/22
12:08 | 14 | 180 | 04/11/22
22:25 | 19 | 180 | | | MW-CP2-032322
22C0456-03 | 03/23/22
13:26 | 03/24/22
13:35 | 04/07/22
12:08 | 14 | 180 | 04/11/22
22:28 | 19 | 180 | | | MW-CP3-032322
22C0456-04 | 03/23/22
13:25 | 03/24/22
13:35 | 04/07/22
12:08 | 14 | 180 | 04/11/22
22:36 | 19 | 180 | | | MW-CP4-032322
22C0456-05 | 03/23/22
12:06 | 03/24/22
13:35 | 04/07/22
12:08 | 15 | 180 | 04/11/22
22:39 | 19 | 180 | | | MW-CP5-032322
22C0456-06 | 03/23/22
12:25 | 03/24/22
13:35 | 04/07/22
12:08 | 14 | 180 | 04/12/22
23:09 | 20 | 180 | | | MW-CP6-032322
22C0456-07 | 03/23/22
11:15 | 03/24/22
13:35 | 04/07/22
12:08 | 15 | 180 | 04/11/22
23:12 | 19 | 180 | | | MW-CP7-032322
22C0456-08 | 03/23/22
11:06 | 03/24/22
13:35 | 04/07/22
12:08 | 15 | 180 | 04/11/22
23:16 | 20 | 180 | | | MW-VB3-032322
22C0456-09 | 03/23/22
09:36 | 03/24/22
13:35 | 04/07/22
12:08 | 15 | 180 | 04/11/22
23:19 | 20 | 180 | | | HCOO-B312-032322
22C0456-10 | 03/23/22
15:00 | 03/24/22
13:35 |
04/07/22
12:08 | 14 | 180 | 04/11/22
23:23 | 19 | 180 | | | MW-C1-VB1-032422
22C0456-11 | 03/24/22
12:33 | 03/24/22
13:35 | 04/07/22
12:08 | 13 | 180 | 04/11/22
23:27 | 18 | 180 | | | MW-C1-VB1-032422-D
22C0456-12 | 03/24/22
12:37 | 03/24/22
13:35 | 04/07/22
12:08 | 13 | 180 | 04/11/22
23:30 | 18 | 180 | | | MW-C2-032422
22C0456-13 | 03/24/22
11:36 | 03/24/22
13:35 | 04/07/22
12:08 | 14 | 180 | 04/11/22
23:34 | 18 | 180 | | | MW-C3-032422
22C0456-14 | 03/24/22
11:33 | 03/24/22
13:35 | 04/07/22
12:08 | 14 | 180 | 04/11/22
23:38 | 19 | 180 | | | MW-C1-VB2-032422
22C0456-15 | 03/24/22
10:30 | 03/24/22
13:35 | 04/07/22
12:08 | 14 | 180 | 04/11/22
23:57 | 19 | 180 | | | Duplicate
BKD0201-DUP1 | 03/23/22
14:26 | 03/24/22
13:35 | 04/07/22
12:08 | 14 | 180 | 04/11/22
22:46 | 19 | 180 | | | Matrix Spike
BKD0201-MS1 | 03/23/22
14:26 | 03/24/22
13:35 | 04/07/22
12:08 | 14 | 180 | 04/11/22
22:50 | 19 | 180 | | ^{*} Indicates hold time exceedance. # METHOD DETECTION AND REPORTING LIMITS ## **EPA 6020B** Laboratory: Analytical Resources, LLC SDG: 22C0456 Client: Floyd - Snider Project: Lora Lake 2021-2023 sec II. 5.3.21 Matrix: Water Instrument: ICPMS1 | Analyte | MDL | RL | Units | |-------------------------|--------|-------|-------| | Arsenic-75a (dissolved) | 0.0373 | 0.200 | ug/L | inorganicventures.com Christiansburg, VA 24073 · USA ## CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com #### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). ### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGAG10 Lot Number: P2-AG688237 Matrix: 7% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Silver Starting Material: Ag Shot Starting Material Lot#: 2217 3 Starting Material Purity: 99.9993% #### 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $10004 \pm 30 \mu g/mL$ **Density:** 1.054 g/mL (measured at 20 \pm 4 °C) **Assay Information:** Assay Method #1 9984 ± 32 μg/mL ICP Assay NIST SRM 3151 Lot Number: 160729 Assay Method #2 10016 ± 26 μg/mL Volhard NIST SRM 999c Lot Number: 999c - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, $X_{CRM/RM}$, where two or more methods of characterization are Certified Value, $X_{CRM/RM}$, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char a})$ $\mathbf{X}_{\mathbf{a}}$ = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A the variance $\mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty ### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` Ag < 0.000253 O Na 0.005800 s M Fu < 0.005563 M Se < 0.018179 M Zn 0 ΑI 0.006296 O Fe 0.002932 M Nb < 0.000253 M Si 0.022487 M Zr < 0.005559 М As < 0.002403 M Ga < 0.000253 M Nd < 0.000253 M Sm < 0.000253 M Au 0.001635 M Gd < 0.000253 O Ni < 0.005472 M Sn 0.001928 0 B < 0.009978 M Ge < 0.000754 M Os < 0.000254 O Sr 0.000086 М Ba < 0.000785 M Hf < 0.000253 M P < 0.053784 M Ta < 0.000253 М Be < 0.002407 M Ha < 0.001332 M Pb 0.003281 M Tb < 0.000253 M Bi 0.001671 M Ho < 0.000253 M Pd < 0.001382 M Te < 0.003715 Ω Ca 0.007116 M In < 0.003483 M Pr < 0.000253 M Th < 0.000253 M Cd < 0.000253 M lr 0.000254 M Pt < 0.000253 M Ti < 0.002706 M Ce < 0.000573 O K 0.004010 M Rb < 0.000253 M TI < 0.000253 M Co < 0.000253 M La < 0.000253 M Re < 0.000253 M Tm < 0.000253 0 Cr < 0.005043 O li < 0.000214 M Rh < 0.000253 M U 0.000253 M Cs < 0.002769 M lu < 0.000253 M Ru < 0.000254 M V 0.000822 0 Cu 0.004614 O Mg 0.001035 M S < 0.560935 M W < 0.002146 M Dy < 0.000253 M Mn < 0.000253 M Sb < 0.006899 M Υ < 0.000253 Er < 0.000253 M 0.000479 M Sc < 0.000733 M Yb < 0.000253 Mo < ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element ## 6.0 INTENDED USE - For the calibration of analytical instruments and validation of analytical methods as appropriate. #### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 107.87 + 16 Ag(H2O)6+ Chemical Compatibility -Stable in HNO3, and HF. Avoid basic media. Ag forms more insoluble salts than any other metal. It also is subject to photochemical reduction to the metal in HCl media although $10 \mu g/mL$ solutions in 10% HCl [AgClx1-x] are commonly used in the analytical laboratory. The most common solubility problems exist with arsenate, arsenite , bromide, chloride, iodide, carbonate , chromate, cyanide, iodate, oxalate, oxide, sulfate, sulfide, tartrate, and thiocyanate in aqueous media. The addition of nitric acid renders many of these salts soluble. **Stability** - 2-100 ppb levels stable for 75+ days when mixed with equivalent levels of all other elements including the precious metals (where chloride is present) when in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO3 / LDPE container. **Ag Containing Samples (Preparation and Solution)** -Metal (Soluble in HNO3); Oxides (Soluble in HNO3); Ores (Digestion with conc. HNO3). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|--------------------|-------|---| | ICP-MS 107 amu | 1 ppt | N/A | 91Zr16O | | ICP-OES 243.779 nm | 0.12/0.01 µg/mL | 1 | Mn, Th, Ni, Rh | | ICP-OES 328.068 nm | 0.007/0.0007 μg/mL | 1 | Ce, Rh, V | | ICP-OES 338.289 nm | 0.013/0.001 µg/mL | 1 | Ce, Cr, Th | ### 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. ### 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be
homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. #### 10.0 QUALITY STANDARD DOCUMENTATION ## 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 #### 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 ### 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com ### 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY ### 11.1 Certification Issue Date January 29, 2020 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. ### 11.2 Lot Expiration Date - January 29, 2024 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. #### 11.3 Period of Validity | - Sealed TCT Bag Open Date: | | |-----------------------------|--| | | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. Paul R & inco ## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Approved By:** Michael Booth Manager, Quality Control **Certifying Officer:** Paul Gaines CEO, Senior Technical Director inorganicventures.com Christiansburg, VA 24073 · USA ## CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com ### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGAL10 Lot Number: S2-AL700843 Matrix: 7% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Aluminum Starting Material: Al(NO3)3 * 9H2O Starting Material Lot#: P2-2302 Starting Material Purity: 99.9913% ## 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $10011 \pm 31 \mu g/mL$ **Density:** 1.087 g/mL (measured at 20 \pm 4 °C) **Assay Information:** Assay Method #1 10015 ± 44 μg/mL ICP Assay NIST SRM 3101a Lot Number: 140903 Assay Method #2 10008 ± 25 μg/mL EDTA NIST SRM 928 Lot Number: 928 Assay Method #3 10014 ± 36 μg/mL Calculated NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, $X_{CRM/RM}$, where two or more methods of characterization are Certified Value, $X_{CRM/RM}$, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char a})$ $\mathbf{X}_{\mathbf{a}}$ = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A the variance $\mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty ### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. ## 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` M Ag < 0.001500 M Eu < 0.000680 O Na 0.510200 M Se < 0.009183 0.014000 M Zn Al < O Fe 0.114284 M Nb < 0.000680 O Si 0.053060 O Zr 0.003673 s М As < 0.006800 O Ga 0.191835 M Nd < 0.000680 M Sm < 0.000680 M Au < 0.000680 M Gd < 0.004100 O Ni 0.001102 M Sn < 0.006800 0 B < 0.021000 M Ge < 0.001400 M Os < 0.008700 O Sr 0.006530 0 Ва 0.012652 M Hf < 0.002700 n P < М Ta < 0.000680 0 Be < 0.001300 M Ha < 0.006100 M Pb 0.006530 M Tb < 0.000680 Μ Bi < 0.008100 M Ho < 0.000680 M Pd < 0.000680 M Te < 0.030000 0 Ca 0.071428 M In < 0.000900 M Pr < 0.000680 M Th < 0.000680 M Cd < 0.001400 M Ir 0.000680 M Pt < 0.000680 O Ti 0.001142 TI < M Ce < 0.002700 O K 0.053060 M Rb < 0.014000 M 0.000680 0 Co 0.001979 M La < 0.002900 M Re < 0.000680 M Tm < 0.000680 0.000680 M 0 Cr 0.014285 O Τi 0.000142 M Rh < U 0.001400 M Cs 0.005306 M Lu < 0.000680 M Ru < 0.000680 M V 0.005400 0 Cu 0.003469 O Mg 0.069387 i S < M W < 0.012000 Dy < М 0.005400 O Mn 0.001653 M Sb < 0.004200 M Y < 0.000680 0.000680 M 0.012000 M Sc < 0.002100 M Yb < 0.000680 Fr Mo < ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element ## 6.0 INTENDED USE - For the calibration of analytical instruments and validation of analytical methods as appropriate. #### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 26.98 +3 6 Al(H2O)6+3 Chemical Compatibility - Soluble in HCl, HNO3, HF and H2SO4. Avoid neutral media. Soluble in strongly basic NaOH forming the Al(OH)4(H2O)21- species. Stable with most metals and inorganic anions. The phosphate is insoluble in water and only slightly soluble in acid. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO3 / LDPE container. Al Containing Samples (Preparation and Solution) -Metal (Best dissolved in HCI / HNO3); a- Al2O3 (Na2CO3 fusion in Pt0); Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|------------------|-------|---|
| ICP-MS 27 amu | 30 ppt | N/A | 12C15N, 13C14N, | | | | | 1H12C14N, | | | | | 11B16O, | | | | | 54Cr2+, | | | | | 54Fe2+ | | ICP-OES 167.078 nm | 0.1/0.009 μg/mL | 1 | Fe | | ICP-OES 394.401 nm | 0.05/0.006 μg/mL | 1 | U, Ce | | ICP-OES 396.152 nm | 0.03/0.006 μg/mL | 1 | Mo, Zr, Ce | ### 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. ## 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. ## 10.0 QUALITY STANDARD DOCUMENTATION ## 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 #### 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 #### 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com ## 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY #### 11.1 Certification Issue Date January 27, 2021 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. ### 11.2 Lot Expiration Date - January 27, 2025 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. ## 11.3 Period of Validity | - Sealed TCT Bag Open Date: | | |-----------------------------|--| | | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. #### 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Approved By: Michael Booth Director, Quality Control **Certifying Officer:** **Paul Gaines** Paul R Lines Chairman / Senior Technical Director inorganicventures.com Christiansburg, VA 24073 · USA ## CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com #### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGAS10 Lot Number: R2-AS691113 Matrix: 2% (v/v) HNO3 Value / Analyte(s): 10 000 μg/mL ea: Arsenic Starting Material: As Pieces Starting Material Lot#: 2208 Starting Material Purity: 99.9980% #### 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $9981 \pm 55 \mu g/mL$ **Density:** 1.028 g/mL (measured at 20 \pm 4 °C) Assay Information: Assay Method #1 9981 ± 55 μg/mL ICP Assay NIST SRM 3103a Lot Number: 100818 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRWRM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. ## Characterization of CRM/RM by Two or More Methods Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ X_i = mean of Assay Method i with standard uncertainty u_{char i} $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of the variance: $\mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM}$ = k ($u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2$)^{1/2} k = coverage factor = 2 ${\bf u_{char}} = [\Sigma(({\bf w_i})^2 ({\bf u_{char}}_i)^2)]^{1/2}$ where ${\bf u_{char}}_i$ are the errors from each characterization method $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty $egin{align*} \mathbf{u_{lts}} = \mathrm{long} \ \mathrm{term} \ \mathrm{stability} \ \mathrm{standard} \ \mathrm{uncertainty} \ \mathrm{(storage)} \ \mathbf{u_{ts}} = \mathrm{transport} \ \mathrm{stability} \ \mathrm{standard} \ \mathrm{uncertainty} \ \end{aligned}$ Characterization of CRM/RM by One Method Certified Value, $X_{CRM/RM}$, where one method of characterization is used is the mean of individual results: X_{CRM/RM} = (X_a) (u_{char a}) Xa = mean of Assay Method A with u_{char a} = the standard uncertainty of characterization Method A CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 uchar a = the errors from characterization u_{bb}^{-} = bottle to bottle homogeneity standard uncertainty u_{lts}^{-} = long term stability standard uncertainty (storage) u_{ts} = transport stability standard uncertainty #### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRWRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRWRM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRMRMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRMRMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` M Aq < 0.001578 M Eu < 0.000526 O Na 0.036136 M Se < 0.014204 O Zn < 0.003390 0.003156 0 ΑI 0.006694 M Fe 0.002633 O Nb < 0.011526 O Si 0.139479 M Zr < As < M Ga < 0.000526 M Nd < 0.000526 M Sm < 0.000526 s M Au < 0.000526 M Gd < 0.000526 O Ni < 0.005537 M Sn < 0.001052 0.000526 M Sr < Μ В 0.017011 M Ge < 0.000526 M Os < 0.000526 Μ Ba < 0.000526 M Hf < 0.000526 O P < 0.056500 M Ta < 0.000526 0.001130 M Hg < 0.002104 M Pb < 0.000526 M Tb < 0 Be < 0.000526 Bi < 0.002104 M Ho < 0.000526 M Pd < 0.000526 M Te < 0.003682 Μ 0 Ca 0.005657 M ln < 0.000526 M Pr < 0.002630 M Th < 0.000526 Cd < 0.000526 M lr < 0.000526 M Pt < 0.000526 O Ti < 0.001017 M Μ Ce < 0.000526 O K 0.003865 M Rb < 0.002104 M TI < 0.000526 M Co < 0.003156 M La < 0.000526 M Re < 0.000526 M Tm < 0.000526 M Cr 0.000877 M Li < 0.000526 M Rh < 0.000526 M U < 0.000526 M Cs < 0.002104 M Lu < 0.000526 M Ru < 0.000526 M V < 0.001578 Μ Cu < 0.003156 O Mg 0.000235 O S < 0.056500 M W < 0.000526 M Dy < 0.000526 M Mn < 0.001052 M Sb < 0.000526 M Y < 0.000526 Μ Er < 0.000526 M Mo < 0.000526 M Sc < 0.002104 M Yb < 0.000526 ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element #### 6.0 INTENDED USE - For the calibration of analytical instruments and validation of analytical methods as appropriate. ## 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRMRM is negligible. After opening the sealed TCT bag transpiration of the CRMRM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at 20° ± 4° C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 74.92; mix of +3 and +5; 6; H3AsO4 and HAsO2 Chemical Compatibility - Arsenic has no cationic chemistry. It is soluble in HCI, HNO3,H3PO4, H2SO4 and HF aqueous matrices water and NH4OH. It is stable with most inorganic anions (forms arsenate when boiled with chromate) but many cationic metals form the insoluble arsenates under pH neutral conditions. When fluorinated
and / or under acidic conditions arsenate formation is typically not a problem at moderate to low concentrations. **Stability -** 2-100 ppb levels stable for months alone or mixed with other elements at equivalent levels in 1% HNO3 / LDPE container. As Containing Samples (Preparation and Solution) - Metal (soluble in 1:1 H2O / HNO3); Oxides (the oxide exists in crystalline and amorphous forms where the amorphic form is more water soluble. The oxides typically dissolve in dilute acidic solutions when boiled); Minerals (one gram of powered sample is fused in a Ni crucible with 10 grams of a 1:1 mix of K2CO3 and KNO3 and the melt extracted with hot water); Organic Matrices (0.2 to 0.5 grams of sample are fused with 15 grams of a 1:1 Na2CO3 / Na2O2 mix in a Ni crucible. The fuseate is extracted with water and acidified with HNO3). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|------------------|-------|---| | ICP-MS 75 amu | 20 ppt | N/A | 40Ar35Cl, | | | | | 59Co16O, | | | | | 36Ar38Ar1H,8Ar37C | | | | | I,Ar39K, | | | | | 150Nd2+,150Sm2+ | | ICP-OES 189.042 nm | 0.05/0.005 μg/mL | 1 | Cr | | ICP-OES 193.696 nm | 0.1/0.01 μg/mL | 1 | V, Ge | | ICP-OES 228.812 nm | 0.1/0.01 μg/mL | 1 | Cd, Pt, Ir, Co | #### 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. ## 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. ## 10.0 QUALITY STANDARD DOCUMENTATION #### 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 ## 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 #### 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com ## 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY #### 11.1 Certification Issue Date March 25, 2020 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. #### 11.2 Lot Expiration Date - March 25, 2024 - The date after which this CRMRM should not be used. - The lot expiration date reflects the period of time that the stability of a CRWRM can be supported by long term stability studies conducted on properly stored and handled CRWRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. ## 11.3 Period of Validity | - Sealed TCT Bag Open Date: | |-----------------------------| |-----------------------------| - This CRMRM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRMRM being stored and handled in accordance with the instructions given in Sec. 7.1. ## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Approved By:** Michael Booth Manager, Quality Control Michael 2 Booth Paul R & ine **Certifying Officer:** Paul Gaines CEO, Senior Technical Director inorganicventures.com Christiansburg, VA 24073 · USA ## CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com #### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGBA10 Lot Number: P2-BA682107 Matrix: 2% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Barium Starting Material: Ba(NO3)2 Starting Material Lot#: Mixed Lots Starting Material Purity: 99.9995% ### 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $10072 \pm 32 \mu g/mL$ **Density:** 1.024 g/mL (measured at 20 \pm 4 °C) **Assay Information:** Assay Method #1 10054 ± 80 μg/mL ICP Assay NIST SRM 3104a Lot Number: 140909 Assay Method #2 10075 ± 30 μg/mL Gravimetric NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. ``` Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: X_{CRM/RM} = \Sigma(w_i) (X_i) X_{CRM/RM} = (X_a) (u_{char a}) \mathbf{X}_{\mathbf{a}} = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A \mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2) CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} k = coverage factor = 2 k = coverage factor = 2 \mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2} where \mathbf{u_{char}}_i are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty ``` ### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` М Ag < 0.001538 O Eu < 0.028728 O Na 0.006767 M Se < 0.007964 O Zn 0.004335 М ΑI 0.005194 M Fe 0.016554 M Nb < 0.000200 O Si < 0.020780 M Zr < 0.000271 М As < 0.000519 M Ga < 0.000200 M Nd < 0.000200 M Sm < 0.082480 М Au < 0.003452 M Gd < 0.000200 M Ni < 0.001290 M Sn < 0.000200 M B < 0.002519 M Ge < 0.000430 M Os < 0.000752 O Sr 0.027070 Ba < M Hf < 0.002746 O P < 0.044677 M Ta < 0.001008 s M Be < 0.000430 M Ha < 0.001063 M Pb < 0.002257 M Tb < 0.000200 M Bi < 0.002971 M Ho < 0.000200 M Pd < 0.000286 M Te < 0.001470 0 Ca 0.026224 M In < 0.000200 M Pr < 0.000200 M Th < 0.000200 M Cd < 0.000200 M Ir 0.000446 M Pt < 0.000200 M Ti < 0.000324 M Ce < 0.004362 O K 0.011526 M Rb 0.001487 M TI < 0.000200 M Co < 0.000200 O La < 0.091587 M Re < 0.000200 M Tm < 0.000954 M Cr < 0.002191 O li < 0.002181 M Rh < 0.000200 M U 0.000200 M Cs < 0.001640 M lu < 0.002934 M Ru < 0.000200 M V 0.000229 Cu < M 0.003646 O Mg 0.002379 O S < 0.073041 M W < 0.001627 М Dy < 0.000200 M Mn < 0.000902 M Sb < 0.000514 O Υ < 0.019637 Er < 0.000556 M 0.000455 M Sc < 0.000478 M Yb < 0.001991 Mo < ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element ## 6.0 INTENDED USE - For the calibration of analytical instruments and validation of analytical methods as appropriate. #### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte
concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT **Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -** 137.33 +2 6 Ba(H2O)6+2 **Chemical Compatibility -** Soluble in HCI, and HNO3. Avoid H2SO4, HF and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate, iodate, molybdate, sulfite and tungstate in neutral aqueous media. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1 -10,000 ppm solutions chemically stable for years in 1-3.5% HNO3 / LDPE container. **Ba Containing Samples (Preparation and Solution) -**Metal(is best dissolved in diluted HNO3); Ores(Carbonate fusion in Pt0 followed by HCl dissolution. If sulfate is present dissolve the fuseate using HCl / tartaric acid to prevent BaSO4 precipitate); Organic Matrices (dry ash and dissolve in dilute HCl.) Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|--------------------|-------|---| | ICP-MS 138 amu | 1 ppt | N/A | 122Sn16O, | | | | | 122Te16O | | ICP-OES 230.424 nm | 0.004/0.0005 μg/mL | 1 | Mo, Ir, Co | | ICP-OES 233.527 nm | 0.004/0.0003 μg/mL | 1 | | | ICP-OES 455.403 nm | 0.002/0.0001 μg/mL | 1 | Zr, U | ## 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. #### 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. #### 10.0 QUALITY STANDARD DOCUMENTATION #### 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 ## 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 ### 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com ## 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY ### 11.1 Certification Issue Date September 13, 2019 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. ## 11.2 Lot Expiration Date - September 13, 2023 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. ## 11.3 Period of Validity | - Sealed TCT Bag Open Date: | | |-----------------------------|--| | | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. Paul R & inco ## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Approved By:** Michael Booth Manager, Quality Control **Certifying Officer:** Paul Gaines CEO, Senior Technical Director inorganicventures.com Christiansburg, VA 24073 · USA ## CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax; 540.585.3012 info@inorganicventures.com ### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGBE10 Lot Number: P2-BE678865 Matrix: 6% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Beryllium Starting Material: Beryllium diacetate Starting Material Lot#: 2221 Starting Material Purity: 99.9998% #### 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $10036 \pm 35 \mu g/mL$ **Density:** 1.140 g/mL (measured at 20 \pm 4 °C) **Assay Information:** Assay Method #1 10051 ± 42 μg/mL ICP Assay NIST SRM 3105a Lot Number: 090514 Assay Method #2 10008 ± 59 μg/mL Calculated NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. ``` Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: X_{CRM/RM} = \Sigma(w_i) (X_i) X_{CRM/RM} = (X_a) (u_{char a}) \mathbf{X}_{\mathbf{a}} = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A \mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2) CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} k = coverage factor = 2 k = coverage factor = 2 \mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2} where \mathbf{u_{char}}_i are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty ``` ### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. ## 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to $0.3~\mu m$. ``` M Ag 0.045414 M Eu < 0.000254 O Na 0.015009 M Se < 0.004059 0.015257 O Zn 0 ΑI 0.008058 O Fe 0.011749 M Nb < 0.000254 O Si 0.063793 O Zr < 0.007064 М As < 0.006473 M Ga < 0.000254 M Nd < 0.000254 M Sm < 0.000254 M Au < 0.000248 M Gd < 0.000254 M Ni < 0.002034 M Sn < 0.002542 0 B < 0.021661 M Ge < 0.000508 M Os < 0.000248 M Sr < 0.000254 M Ва 0.001760 M Hf < 0.000254 O P < 0.666500 M Ta < 0.000254 Be < M Ha < 0.001244 M Pb < 0.001271 M Tb < 0.000254 s Μ Bi < 0.000254 M Ho < 0.000254 M Pd < 0.000254 M Te < 0.001780 0 Ca 0.015256 M In < 0.000254 M Pr < 0.000254 M Th < 0.000254 M Cd < 0.000254 M Ir 0.000248 M Pt < 0.000254 O Ti < 0.002266 M Ce < 0.000254 O K 0.031127 M Rb < 0.000508 M TI < 0.000254 0.000254 M 0.000254 M M Co < 0.004068 M La < Re < Tm < 0.000254 0.000254 M M Cr < 0.001525 O li < 0.000666 M Rh < U 0.000254 M Cs 0.001642 M lu < 0.000254 M Ru < 0.000248 M V 0.000508 M Cu < 0.005085 O Mg 0.001907 i S < M W < 0.004068 Dy < M 0.000254 O Mn < 0.001333 M Sb < 0.000254 M Y < 0.000254 Er < 0.000254 M 0.000762 O Sc < 0.001333 M Yb < 0.000254
Mo < ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element ## 6.0 INTENDED USE - For the calibration of analytical instruments and validation of analytical methods as appropriate. #### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT **Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -** 9.01 +2 4 Be(H2O)4+2 **Chemical Compatibility -**Soluble in HCl, HNO3, H2SO4 and HF aqueous matrices. Stable with all metals and inorganic anions. **Stability -** 2-100 ppb levels stable for months in 1 % HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 5-10 % HNO3 / LDPE container. **Be Containing Samples (Preparation and Solution) -** Meta I(is best dissolved in diluted H2SO4); BeO (boiling nitric, hydrochloric, or sulfuric acids or KHSO4 fusion); Ores (H2SO4/HF digestion or carbonate fusion in Pt0); Organic Matrices (sulfuric/peroxide digestion or nitric/sulfuric/perchloric acid decomposition, or dry ash and dissolution according to the BeO procedure above). #### Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|----------------------|-------|---| | ICP-MS 9 amu | 4 ppt | N/A | | | ICP-OES 234.861 nm | 0.0003/0.00016 μg/mL | 1 | Fe, Ta, Mo | | ICP-OES 313.042 nm | 0.0003/0.00009 μg/mL | 1 | V, Ce, U | | ICP-OES 313.107 nm | 0.0007/0.0005 μg/mL | 1 | Ce, Th, Tm | ## 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. #### 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. #### 10.0 QUALITY STANDARD DOCUMENTATION #### 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 ## 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 #### 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganic ventures.com ## 11.0 CERTIFICATION, LOT EXPIRATION, PERIOD OF VALIDITY AND REVISION HISTORY #### 11.1 Certification Issue Date April 22, 2019 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. # 11.2 Lot Expiration Date - April 22, 2023 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. # 11.3 Period of Validity - Sealed TCT Bag Open Date: - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. #### 11.4 Revision Status - Revision 1 - Revised on Thursday, Jan 14, 2021 by utruong. Revision was made for the following reason: Modified Section 7 Chemical Form in Solution. Paul R & inea Michael 2 Booth # 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Approved By:** Michael Booth Director, Quality Control **Certifying Officer:** Paul Gaines Chairman / Senior Technical Director Christiansburg, VA 24073 · USA # CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com # 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGCA10 Lot Number: R2-CA697921 Matrix: 2% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Calcium Starting Material: Calcium Oxide Starting Material Lot#: P2-CA677788 Starting Material Purity: 99.9995% #### 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $9985 \pm 30 \mu g/mL$ **Density:** 1.039 g/mL (measured at 20 \pm 4 °C) Assay Information: Assay Method #1 9976 ± 43 μg/mL ICP Assay NIST SRM 3109a Lot Number: 130213 Assay Method #2 $9965 \pm 25 \mu g/mL$ EDTA NIST SRM 928 Lot Number: 928 Assay Method #3 $10008 \pm 26 \mu g/mL$ Calculated NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRWRM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, $X_{CRM/RM}$, where two or more methods of characterization are Certified Value, $X_{CRM/RM}$, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ X_{CRM/RM} = (X_a) (u_{char a}) $\mathbf{X}_{\mathbf{a}}$ = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A the variance $\mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty #### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRWRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRWRM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. # 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRWRMs. # 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` M Ag < 0.002500 M Eu < 0.001300 M Na 0.008214 O Se < 0.022000 O Zn 0.001158 0 Al < 0.030000 O Fe 0.002316 M Nb < 0.001300 O Si < 0.022000 M Zr < 0.006200 0 0.001300 M Sm < As < 0.025000 M Ga < 0.002500 M Nd < 0.001300 M Au < 0.013000 M Gd < 0.005300 O Sn < 0.001300 O Ni < 0.013000 O B < 0.006900 O Ge < 0.018000 M Os < 0.002500 M
Sr 0.115847 0.002500 O P < М Ва 0.000905 M Hf < 0.027000 M Ta < 0.008600 0.001300 M Pb 0.001685 M Tb < 0 Be < 0.000270 M Hg < 0.001300 M Bi < 0.001300 M Pd < 0.002500 M Ho < 0.006200 O Te < 0.045000 Ca < 0.001300 M Pr < M In < 0.001300 M Th < 0.001300 s 0 Cd < 0.000540 M lr < 0.001300 M Pt < 0.001300 O Ti < 0.004200 0.015797 M Rb < 0.014000 M TI < M Ce < 0.001300 O K 0.001300 \cap Co 0.001300 M Re < 0.001300 M Tm < 0.000558 M La < 0.001300 0 0.002500 M U < Cr < 0.006000 O Li < 0.006900 M Rh < 0.001300 V М Cs < 0.001300 M Lu < 0.001300 M Ru < 0.003800 O < 0.002200 M Cu < 0.002500 O Mg 0.002843 n S < W < М 0.012000 Sb < 0.007400 M Y < М Dy < 0.001300 O Mn 0.000115 M 0.001300 Fr 0.001300 M Мо 0.002527 O Sc 0.006100 M Yb < 0.001300 ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element # 6.0 INTENDED USE #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 40.08 +2 6 Ca(H2O)6+2 Chemical Compatibility - Soluble in HCl and HNO3. Avoid H2SO4, HF, H3PO4 and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate, and tungstate in neutral aqueous media. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO3 / LDPE container. **Ca Containing Samples (Preparation and Solution) -**Metal (best dissolved in diluted HNO3); Ores (Carbonate fusion in Pt0 followed by HCl dissolution); Organic Matrices (dry ash and dissolution in dilute HCl. Do not heat when dissolving to avoid precipitation of SiO2). The oxide, hydroxide, carbonate, phosphate, and fluoride of calcium are soluble in % levels of HCl or HNO3. The sulfates (gypsum, anhydrite, etc.), certain silicates, and complex compounds require fusion with Na2CO3 followed by HCl / water dissolution. Note that contamination is a very real problem when analyzing for trace levels. Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|------------------------|-------|---| | ICP-MS 44 amu | 1200 ppt | n/a | 16O212C, | | | | | 28Si16O, 88Sr | | ICP-OES 393.366 nm | 0.0002 / 0.00004 µg/mL | 1 | U, Ce | | ICP-OES 396.847 nm | 0.0005 / 0.00006 μg/mL | 1 | Th | | ICP-OES 422.673 nm | 0.01 / 0.001 µg/mL | 1 | Ge | # 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. #### 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. #### 10.0 QUALITY STANDARD DOCUMENTATION # 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 # 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 # 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com # 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY # 11.1 Certification Issue Date November 09, 2020 - The certification is valid within the measurement uncertainty specified provided the CRWRM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRWRM is damaged, contaminated, or otherwise modified. ## 11.2 Lot Expiration Date - November 09, 2024 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRWRM can be supported by long term stability studies conducted on properly stored and handled CRWRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. # 11.3 Period of Validity | - Sealed TCT Bag Open Date: | | |-----------------------------|--| | | | - This CRMRM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRMRM being stored and handled in accordance with the instructions given in Sec. 7.1. # 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Approved By:** Michael Booth Director, Quality Control Michael 2 Booth Paul R & inca **Certifying Officer:** Paul Gaines Chairman / Senior Technical Director Christiansburg, VA 24073 · USA # CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com #### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGCD10 Lot Number: P2-CD685077 Matrix: 3% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Cadmium Starting Material: Cd Shot Starting Material Lot#: 1954 Starting Material Purity: 99.9996% #### 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: 9954 ± 30 µg/mL **Density:** 1.029 g/mL (measured at 20 \pm 4 °C) **Assay Information:** Assay Method #1 9956 ± 54 μg/mL ICP Assay NIST SRM 3108 Lot Number: 130116 Assay Method #2 9953 ± 32 μg/mL EDTA NIST SRM 928 Lot Number: 928 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. ``` Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: X_{CRM/RM} = \Sigma(w_i) (X_i) X_{CRM/RM} = (X_a) (u_{char a}) \mathbf{X}_{\mathbf{a}} = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A \mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2) CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} k = coverage factor = 2 k = coverage factor = 2 \mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2} where \mathbf{u_{char}}_i are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty ``` # 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. # 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. # 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are
tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` 0 Ag < 0.006348 M Eu < 0.010622 O Na 0.004020 M Se < 0.008116 O Zn < 0.002152 0 ΑI 0.011566 M Fe 0.003011 M Nb < 0.000405 O Si 0.005480 M Zr < 0.000405 М As < 0.001623 M Ga < 0.000405 M Nd < 0.000405 M Sm < 0.000405 М Au < 0.000405 M Gd < 0.000405 M Ni < 0.002840 M Sn < 0.001217 М B < 0.004463 M Ge < 0.000405 M Os < 0.000405 M Sr < 0.000405 0 Ba < 0.000968 M Hf < 0.000405 O P < 0.045730 M Ta < 0.000405 M Be < 0.000405 O Ha < 0.002152 M Pb < 0.002434 M Tb < 0.000405 M Bi < 0.000405 M Ho < 0.000405 M Pd < 0.000405 M Te < 0.016636 0 Ca 0.002946 O In < 0.021520 M Pr < 0.000405 M Th < 0.000405 s Cd < M Ir 0.000405 M Pt < 0.000405 M Ti < 0.001217 0.000405 O K M Ce < 0.008179 M Rb < 0.000405 M TI < 0.004495 M Co < 0.000405 M La < 0.000405 M Re < 0.000405 M Tm < 0.000405 Li < M Cr 0.002907 M 0.000405 M Rh < 0.000405 M U 0.000405 M Cs < 0.002374 M lu < 0.000405 M Ru < 0.000405 M V 0.003179 M Cu < 0.002434 O Mg 0.000137 O S < 0.037660 M W < 0.000405 M Dy < 0.000405 M Mn < 0.001623 M Sb < 0.004057 M Υ < 0.000405 Er < 0.000405 M 0.000811 M Sc < 0.001623 M Yb < 0.000811 Mo < ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element # 6.0 INTENDED USE ## 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 112.41 +2 4 Cd2(OH) (aq)3+ and Cd(OH)(aq) **Chemical Compatibility** -Stable in HCl, HNO3, H2SO4, and HF. Avoid basic media forming insoluble carbonate and hydroxide. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5 % HNO3 / LDPE container. **Cd Containing Samples (Preparation and Solution)** -Metal (soluble in HNO3); Oxides (soluble in HCl or HNO3); Ores (dissolve in HCl /HNO3 then take to fumes with H2SO4. The silica and lead sulfate are filtered off after the addition of water); Organic based (dry ash at 450°C and dissolve ash in HCl), (sulfuric / peroxide acid digestion). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|----------------------|-------|---| | ICP-MS 111 amu | 11 ppt | n/a | 95Mo16O | | ICP-OES 214.438 nm | 0.003 / 0.0003 μg/mL | 1 | Pt, Ir | | ICP-OES 226.502 nm | 0.003 / 0.0003 μg/mL | 1 | Ir | | ICP-OES 228.802 nm | 0.003 / 0.0003 μg/mL | 1 | Co, Ir, As, Pt | # 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. # 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. # 10.0 QUALITY STANDARD DOCUMENTATION #### 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 # 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 ## 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com # 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY # 11.1 Certification Issue Date November 08, 2019 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. # 11.2 Lot Expiration Date - November 08, 2023 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. # 11.3 Period of Validity | - Sealed TCT Bag Open Date: _ | | |-------------------------------|--| | | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. Paul R & inco # 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Approved By:** Michael Booth Manager, Quality Control **Certifying Officer:** Paul Gaines CEO, Senior Technical Director Christiansburg, VA 24073 · USA # CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com # 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGCO10 Lot Number: N2-CO671028 Matrix: 3% (v/v) HNO3 Value / Analyte(s): 10 000 μg/mL ea: Cobalt Starting Material: COBALT Starting Material Lot#: 1749 Starting Material Purity: 99.9978% #### 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $9988 \pm 34 \mu g/mL$ **Density:** 1.057 g/mL (measured at 20 \pm 4 °C) **Assay Information:** Assay Method #1 9973 ± 32 μg/mL EDTA NIST SRM 928 Lot Number: 928 Assay Method #2 10024 ± 50 μg/mL ICP Assay NIST SRM traceable to 3113 Lot Number: M2-CO661665 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, $X_{CRM/RM}$, where two or more methods of characterization are Certified Value, $X_{CRM/RM}$, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char a})$ $\mathbf{X}_{\mathbf{a}}$ = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty # 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to
master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. # 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` 0 Ag 0.022956 M Eu < 0.000422 O Na 0.008125 M Se < 0.007197 0.009290 M Zn 0 ΑI 0.013621 O Fe 0.048700 M Nb < 0.000422 O Si 0.017539 M Zr < 0.014357 i As < M Ga < 0.000844 M Nd < 0.017735 M Sm < 0.001689 M Au < 0.000583 M Gd 0.003247 O Ni < 0.043642 M Sn < 0.005067 M B < 0.013512 M Ge < 0.004645 M Os < 0.000583 O Sr 0.000841 0 Ва 0.071210 M Hf < 0.000422 n P < M Ta < 0.000422 0 Be < 0.001771 M Ha < 0.002334 M Pb 0.010094 M Tb < 0.001689 M Bi 0.000614 M Ho < 0.000422 M Pd < 0.000422 M Te < 0.008445 0 Ca 0.025034 M In < 0.003378 M Pr < 0.006756 M Th < 0.000422 M Cd < 0.000844 M Ir 0.000583 M Pt < 0.000422 M Ti < 0.002533 TI < M Ce 0.002721 O K 0.005785 M Rb < 0.001689 M 0.000422 s Co < M La 0.000877 M Re 0.016853 M Tm < 0.000422 0.020269 O M Cr < Τi 0.000262 M Rh < 0.000422 M U < 0.000422 М Cs 0.000877 M Lu < 0.000422 M Ru < 0.000583 M V 0.001689 M Cu 0.007197 O Mg 0.003444 n S < M W 0.000844 Dy < M 0.000422 O Mn < 0.006072 M Sb < 0.005911 M Y 0.001228 0.000422 M 0.005911 M Sc < 0.001689 M Yb < 0.003378 Fr < Mo < ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element # 6.0 INTENDED USE ## 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT **Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -** 58.93 +2 6 Co(H2O)62+ **Chemical Compatibility -**Stable in HCl, HNO3, H2SO4 ,HF, H3PO4. Avoid basic media. Stable with most metals and inorganic anions in acidic media. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO3 / LDPE container. **Co Containing Samples (Preparation and Solution) -** Metal (soluble in HNO3); Oxides (Soluble in HCl); Ores (dissolve in HCl / HNO3). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|------------------|-------|---| | ICP-MS 59 amu | 2 ppt | n/a | 42Ca16O1H , | | | | | 40Ar18O1H , | | | | | 36Ar23Na, | | | | | 43Ca16O, | | | | | 24Mg35Cl | | ICP-OES 228.616 nm | 0.01/0.001 μg/mL | 1 | | | ICP-OES 237.862 nm | 0.01/0.002 µg/mL | 1 | W, Re, Al, Ta | | ICP-OES 238.892 nm | 0.01/0.002 μg/mL | 1 | Fe, W, Ta | #### 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. # 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. # 10.0 QUALITY STANDARD DOCUMENTATION # 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 # 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 # 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 $In organic \ Ventures, 300\ Technology\ Drive, Christiansburg, Va.\ 24073, USA; Telephone:\ 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganic ventures.com$ # 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY # 11.1 Certification Issue Date January 15, 2019 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. # 11.2 Lot Expiration Date - January 15, 2023 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. # 11.3 Period of Validity | Sealed TCT | Bag Open Date: | | |--------------------------------|----------------|--| - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. Paul R Line # 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Approved By:** Michael Booth Supervisor, Quality Control **Certifying Officer:** Paul Gaines CEO, Senior Technical Director Christiansburg, VA 24073 · USA # CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com # 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGCR(3)10 Lot Number: R2-CR691013 Matrix: 10% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Chromium Starting Material: Cr METAL Starting Material Lot#: 2077 Starting Material Purity: 99.9942% # 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $10044 \pm 40 \mu g/mL$ **Density:** 1.082 g/mL (measured at 20 \pm 4 °C) Assay Information: Assay Method #1 $10057 \pm 58 \mu g/mL$ ICP Assay NIST SRM 3112a Lot Number: 170630 Assay Method #2 $10035 \pm 50 \mu g/mL$ Calculated NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRWRM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, $X_{CRM/RM}$, where one method of characterization Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ X_{CRM/RM} = (X_a) (u_{char a}) $\mathbf{X}_{\mathbf{a}}$ = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A the variance $\mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty #### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRWRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRWRM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. # 4.2 Balance Calibration - All analytical balances are calibrated by an accredited
calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRWRMs. # 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRWRMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to $0.3~\mu m$. ``` M Ag < 0.000540 M Eu < 0.003200 O Na 0.130091 M Se < 0.012000 O Zn < 0.002700 0 ΑI 0.016634 O Fe 0.202602 M Nb < 0.022000 n Si < М Zr < 0.020000 0.035000 M As 0.003838 O Ga < 0.031000 M Nd < 0.000540 M Sm < M Au < 0.000540 M Gd < 0.000540 O Ni 0.009170 M Sn 0.004051 M B < Ge < 0.005400 M Os < 0.088000 O Sr < 0.000250 0.049000 M 0 Ba < 0.002000 M Hf < 0.000540 i P < M Ta < 0.000540 0.001600 M Pb 0 Be < 0.000250 M Hg < 0.002559 M Tb < 0.000540 M Bi 0.001100 M 0.008956 M Ho < 0.000540 M Pd < Te < 0.004800 Ca 0 0.074642 M In < 0.001100 M Pr < 0.000540 M Th < 0.000540 M Cd < 0.000540 M lr < 0.000540 M Pt < 0.000540 O Ti 0.013435 M Ce < 0.000540 O K 0.034122 i Rb < TI < 0.001100 M 0.002700 O 0 Co < 0.002900 M La < Re < Tm < 0.001100 M 0.001800 Cr < \circ Li < Rh < 0.032000 M U < s 0.000130 M 0.001100 0.094000 O М Cs < 0.019000 M Lu < Ru < V 0.000540 M 0.159949 0 Cu 0.010023 O 0.001450 i S W 0.028000 Mg < М < Sb < 0.008600 M Y < М Dy < 0.000540 O Mn < 0.014000 M 0.001100 Fr 0.016000 O Mo < 0.013000 O Sc 0.001400 M Yb < 0.000540 ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element # 6.0 INTENDED USE #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT **Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -** 52.00 +3 6 Cr(H2O)63+ **Chemical Compatibility -**Stable in HCI, HNO3, H2SO4, HF, H3PO4. Avoid basic media. Stable with most metals and inorganic anions in acidic media. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO3 / LDPE container. Cr3 Containing Samples (Preparation and Solution) -Metal (soluble in HCl); Oxides/Ores (Chrome ore/oxides are very difficult to dissolve. The following procedures [A-D] are commonly used: A. Fusion with KHSO4 and extraction with hot KCl. The residue fused with Na2CO3 and KClO3, 3:1. B. Fusion with NaKSO4 and NaF 2:1, C. Fusion with magnesia or lime and sodium or potassium carbonates, 4:1. D. Fusion with Na2O2 or NaOH and KNO3 or NaOH and Na2O2. Nickel, iron, copper, or silver crucibles should be used for D. Platinum may be used for A, B, C); Organic Matrices (ash at 4500C followed by one of the fusion methods above or sulfuric/hydrogen peroxide acid digestions may be applicable to non oxide containing samples). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|--------------------|-------|---| | ICP-MS 52 amu | 40 ppt | N/A | 36S16O, 36Ar16O - | | | | | The 50Cr, 53Cr, | | | | | 54Cr lines suffer | | | | | from many more | | | | | potential | | | | | interferences from | | | | | sulfur, chlorine and | | | | | argon compounds | | | | | of oxygen, nitrogen | | | | | and carbon. | | ICP-OES 205.552 nm | 0.006/0.0008 μg/mL | 1 | Os | | ICP-OES 276.654 nm | 0.01/0.001 μg/mL | 1 | Cu, Ta, V | | ICP-OES 284.325 nm | 0.008/0.0007 ua/mL | 1 | | # 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. # 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. # 10.0 QUALITY STANDARD DOCUMENTATION #### 10.1 ISO 9001 Quality Management System Registration - OSR Certificate Number OSR-1034 # 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" Chemical Testing - Accredited / A2LA Certificate Number 883.01 # 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com # 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY #### 11.1 Certification Issue Date March 25, 2020 - The certification is valid within the measurement uncertainty specified provided the CRWRM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRWRM is damaged, contaminated, or otherwise modified. ## 11.2 Lot Expiration Date - March 25, 2024 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRWRM can be supported by long term stability studies conducted on properly stored and handled CRWRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. ## 11.3 Period of Validity | Sealed TCT Bag Open Date: | | |-----------------------------|--| | Coulca I o I bag open bate. | | - This CRMRM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRMRM being stored and handled in accordance with the instructions given in Sec. 7.1. Michael 2 Booth Paul R Stine # 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Approved By: Michael Booth Manager, Quality Control **Certifying Officer:** Paul Gaines CEO, Senior Technical Director Christiansburg, VA 24073 · USA # CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com # 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGCU10 Lot Number: R2-CU693370 Matrix: 3% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Copper Starting Material: Cu Metal Starting Material Lot#: 2095 Starting Material Purity: 99.9996% #### 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $10016 \pm 30 \mu g/mL$ **Density:** 1.033 g/mL (measured at 20 \pm 4 °C) Assay Information: Assay Method #1 $10010 \pm 55 \mu g/mL$ ICP Assay NIST SRM 3114 Lot Number: 121207 Assay Method #2 $10017 \pm 26 \mu g/mL$ EDTA NIST SRM 928 Lot Number: 928 Assay Method #3 $10015 \pm 25 \mu g/mL$ Calculated NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, $X_{CRM/RM}$, where two or more methods of characterization are Certified Value, $X_{CRM/RM}$, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char a})$ $\mathbf{X}_{\mathbf{a}}$ = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A the variance $\mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle
to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty #### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRWRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRWRM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. # 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRWRMs. # 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` M Ag < 0.007542 M Eu < 0.000942 O Na 0.001434 M Se < 0.016971 M Zn < 0.005657 0 Al < 0.000609 O Fe 0.008698 M Nb < 0.000942 O Si 0.003052 M Zr < 0.000942 0.000942 M As < 0.010371 M Ga < 0.000942 M Nd < 0.000942 M Sm < 0.001885 M Gd < 0.003780 M Sn < 0.005657 M Au < 0.000942 M Ni ОВ 0.003662 M Ge < 0.005657 M Os < 0.000942 M Sr < 0.000942 0.000942 O P < М Ва 0.004252 M Hf < 0.031668 M Ta < 0.000942 M Be < 0.000942 O Hg < 0.007064 M Pb 0.005788 M Tb < 0.000942 0.000942 M Pd < M Bi < 0.000942 M Ho < 0.000942 M Te < 0.004714 Ca 0.000942 M Pr < 0.000942 M Th < 0 0.002304 M ln < 0.000942 M Cd < 0.000942 M lr 0.000942 M Pt < 0.000942 O Ti < < 0.002801 0.000942 O K 0.000762 M Rb < M Ce < 0.000942 M TI < 0.000942 0.000942 M Re < M Co 0.001890 M La < 0.000942 M Tm < 0.000942 М Cr < 0.005657 O Li < Rh < M U < 0.000243 i 0.000942 0.039588 M V M Cs < 0.000942 M Lu < 0.000942 M Ru < < 0.003771 Cu < O Mg 0.000320 O S 0.007172 M W < 0.005657 s 0.000942 O Mn Sb < 0.001885 M Y < М Dy < 0.000793 M 0.000942 Fr 0.000942 M Mo < 0.005657 M Sc 0.000942 M Yb < 0.000942 ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element # 6.0 INTENDED USE #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT **Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -** 63.55 +2 6 Cu(H2O)62+ **Chemical Compatibility -** Stable in HCI, HNO3, H2SO4, HF, H3PO4. Avoid basic media. Stable with most metals and inorganic anions in acidic media. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO3 / LDPE container. Cu Containing Samples (Preparation and Solution) -Metal (soluble in HNO3); Oxides (Soluble in HCI); Ores (Dissolve in HCI/HNO3). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|-----------------|-------|---| | ICP-MS 63 amu | 10 ppt | n/a | 40Ar23Na 47Ti16O, | | | | | 14N12C37CI, | | | | | 16O12C35CI, | | | | | 23Na40Ca | | ICP-OES 219.958 nm | 0.01/.002 µg/mL | 1 | Th, Ta, Nb, U, Hf | | ICP-OES 224.700 nm | 0.01/.001 µg/mL | 1 | Pb, Ir, Ni, W | | ICP-OES 324.754 nm | 0.06/.001 µg/mL | | Nb, U, Th, Mo, Hf | # 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. # 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. #### 10.0 QUALITY STANDARD DOCUMENTATION #### 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 # 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 # 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com # 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY #### 11.1 Certification Issue Date June 05, 2020 - The certification is valid within the measurement uncertainty specified provided the CRWRM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRWRM is damaged, contaminated, or otherwise modified. #### 11.2 Lot Expiration Date - June 05, 2024 - The date after which this CRWRM should not be used. - The lot expiration date reflects the period of time that the stability of a CRMRM can be supported by long term stability studies conducted on properly stored and handled CRMRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. ## 11.3 Period of Validity | - Sealed TCT Bag Open Date: | | |-----------------------------|--| | | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. Paul R 2 ince # 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Approved By: Michael Booth Manager, Quality Control **Certifying Officer:** Paul Gaines CEO, Senior Technical Director # Certificate of Analysis 300 Technology Drive Christiansburg, VA 24073 USA inorganicventures.com P: 800-669-6799/540-585-3030 F: 540-585-3012 info@inorganicventures.com #### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). ## 2.0 PRODUCT DESCRIPTION Product Code: Multi Analyte Custom Grade Solution Catalog Number: ARI-1 Lot Number: S2-MEB704284 Matrix: 5% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Iron #### 3.0 CERTIFIED VALUES AND UNCERTAINTIES ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE Iron, Fe 10 000.0 ± 40.0 μg/mL **Density:** 1.033 g/mL (measured at 20 \pm 4 °C) **Assay Information:** ANALYTE METHOD NIST SRM# SRM LOT# Fe ICP Assay 3126a 140812 Fe EDTA 928 928 The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. # Characterization of CRM/RM by Two or More Methods Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ X_i = mean of Assay Method i with standard uncertainty u_{char i} $\mathbf{w_i}$ = the weighting factors for each method calculated using the inverse square of the variance: $\mathbf{w_i} = (1/\mathsf{u_{char\;i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\;i}})^2)$ CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u²char + u²bb + u²lts + u²ts)^{1/2} k = coverage factor = 2 $\mathbf{u_{char}} = \left[\sum((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)\right]^{\frac{1}{2}}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method $\mathbf{u_{bb}}$ = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{ts} = transport stability standard uncertainty # Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results: $X_{CRM/RM} = (X_a) (u_{char a})$ X_a = mean of Assay Method A with u_{char a} = the standard uncertainty of characterization Method A CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char a} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{1/2}$ k = coverage factor = 2 uchar a = the errors from characterization
$egin{align*} \mathbf{u_{bb}} &= \mathrm{bottle} \ \mathrm{to} \ \mathrm{bottle} \ \mathrm{homogeneity} \ \mathrm{standard} \ \mathrm{uncertainty} \ \mathbf{u_{lts}} &= \mathrm{long} \ \mathrm{term} \ \mathrm{stability} \ \mathrm{standard} \ \mathrm{uncertainty} \ (\mathrm{storage}) \ \end{aligned}$ u_{lts} = long term stability standard uncertainty (s u_{ts} = transport stability standard uncertainty #### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. # 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) N/A #### 6.0 INTENDED USE - For the calibration of analytical instruments and validation of analytical methods as appropriate. #### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL # 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT # 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. ## 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. # 10.0 QUALITY STANDARD DOCUMENTATION # 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 ## 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 # 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganic ventures.com # 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY #### 11.1 Certification Issue Date April 20, 2021 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. # 11.2 Lot Expiration Date - April 20, 2025 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. # 11.3 Period of Validity | - Sealed TCT Bag Open Date: | | |-----------------------------|--| | | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. Paul R Lines # 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Approved By: Michael Booth Director, Quality Control Certifying Officer: Paul Gaines Chairman / Senior Technical Director Christiansburg, VA 24073 · USA # CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com #### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGK10 Lot Number: S2-K700978 Matrix: 2% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Potassium Starting Material: KNO3 Starting Material Lot#: 2313 Starting Material Purity: 99.9971% # 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $10016 \pm 30 \mu g/mL$ **Density:** 1.025 g/mL (measured at 20 \pm 4 °C) **Assay Information:** Assay Method #1 10018 ± 54 μg/mL ICP Assay NIST SRM 3141a Lot Number: 140813 Assay Method #2 10016 ± 24 μg/mL Gravimetric NIST SRM Lot Number: See Sec. 4.2 Assay Method #3 10014 ± 45 μg/mL Calculated NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. ``` Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: X_{CRM/RM} = \Sigma(w_i) (X_i) X_{CRM/RM} = (X_a) (u_{char a}) \mathbf{X}_{\mathbf{a}} = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A the variance \mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2) CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} k = coverage factor = 2 \mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2} where \mathbf{u_{char}}_i are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty ``` # 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. # 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. # 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` M Ag < 0.001400 M Eu < 0.000660 O Na 0.240000 M Se < 0.007900 O Zn 0.017000 0 ΑI 0.001600 O Fe 0.005800 M Nb < 0.000660 O Si 0.012000 O Zr < 0.001600 М As < 0.005300 M Ga < 0.000660 M Nd < 0.000660 M Sm < 0.000660 M Au < 0.002000 M Gd < 0.000660 O Ni < 0.004900 M Sn < 0.000660 0 B < 0.005600 M Ge < 0.002000 M Os < 0.003300 O Sr 0.000055 0 Ba < 0.000860 M Hf < 0.000660 O P < 0.032000 M Ta < 0.000660 Ω Be < 0.000082 M Ha < 0.002000 M Pb < 0.002300 M Tb < 0.000660 M Bi < 0.006600 M Ho < 0.000660 M Pd < 0.000660 M Te < 0.017000 0 Ca 0.031000 M In < 0.000660 M Pr < 0.000660 M
Th < 0.000660 0 Cd < 0.000450 M Ir 0.000660 M Pt < 0.002700 M Ti < 0.000660 M Ce < 0.000660 s K M Rb 0.480000 M TI < 0.000660 0.000660 M Re < 0 Co < 0.000780 M La < 0.000660 M Tm < 0.000660 0.000084 M Rh < 0 Cr 0.000530 O li < 0.000660 M U < 0.000660 М Cs < 0.000660 M lu < 0.000660 M Ru < 0.000660 O V 0.001100 M Cu < 0.002700 O Mg 0.006300 O S 0.028000 M W < 0.000660 М Dy < 0.000660 O Mn 0.000480 M Sb < 0.000660 M Υ < 0.000660 Er < 0.000660 M 0.000660 O Sc < 0.000340 O Yb < 0.000270 Mo < ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element # 6.0 INTENDED USE ## 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT **Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -** 39.10 +1 (6) K+(aq) **Chemical Compatibility -**Soluble in HCl, HNO3, H2SO4 and HF aqueous matrices. Avoid use of HClO4 due to insolubility of the perchlorate. Stable with all metals and inorganic anions except ClO4-. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO3 / LDPE container. **K Containing Samples (Preparation and Solution) -** Metal (Dissolves very rapidly in water); Ores (Sodium carbonate fusion in Pt0 followed by HCl dissolution-blank levels of K in sodium carbonate critical); Organic Matrices (Sulfuric/peroxide digestion) Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|-------------------|-------|---| | ICP-MS 39 amu | 10 ppt | n/a | 38ArH, 23Na16O, | | | | | 78Se | | ICP-OES 404.721 nm | 1.1 / 0.05 μg/mL | 1 | U, Ce | | ICP-OES 766.490 nm | 0.4 / 0.001 μg/mL | 1 | 2nd order radiation | | | | | from R.E.s on some | | | | | optical designs | | ICP-OES 771.531 nm | 1.0 / 0.03 μg/mL | 1 | 2nd order radiation | | | | | from R.E.s on some | | | | | optical designs | #### 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. # 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. # 10.0 QUALITY STANDARD DOCUMENTATION #### 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 # 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 # 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com # 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY # 11.1 Certification Issue Date February 06, 2021 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. # 11.2 Lot Expiration Date - February 06, 2025 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. # 11.3 Period of Validity | - Sealed TCT Bag Open Date: | | |-----------------------------|--| | Codica i C i Bag opon Bato. | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. # 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Approved By:** Michael Booth Director, Quality Control Michael 2 Booth Paul R & ince **Certifying Officer:** Paul Gaines Chairman / Senior Technical Director Christiansburg, VA 24073 · USA # CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com # 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). # 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGMG10 Lot Number: R2-MG695748 Matrix: 2% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Magnesium Starting Material: Magnesium Metal Starting Material Lot#: 2168 Starting Material Purity: 99.9984% ## 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $10044 \pm 30 \mu g/mL$ **Density:** 1.053 g/mL (measured at 20 \pm 4 °C) Assay Information: Assay Method #1 $10055 \pm 26 \mu g/mL$ EDTA NIST SRM 928 Lot Number: 928 Assay Method #2 $10042 \pm 57 \mu g/mL$ ICP Assay NIST SRM 3131a Lot Number: 140110 Assay Method #3 $10033 \pm 26 \mu g/mL$ Calculated NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRWRM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, $X_{CRM/RM}$, where two or more methods of characterization are Certified Value, $X_{CRM/RM}$, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ X_{CRM/RM} = (X_a) (u_{char a}) $\mathbf{X}_{\mathbf{a}}$ = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A the variance $\mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty #### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRWRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRWRM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. # 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRWRMs. # 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` 0 Ag 0.002104 M Eu < 0.000910 O Na 0.071011 O Se < 0.048000 O Zn 0.003296 0.032000 O Zr < M ΑI 0.003550 M Fe
0.002536 M Nb < 0.000460 O Si < 0.002700 M As < 0.001400 M Ga < 0.000460 M Nd < 0.000910 M Sm < 0.000460 0.001400 M Gd < 0.001600 M Sn < M Au < 0.000460 O Ni < 0.002300 ОВ 0.006847 M Ge < 0.001400 M Os < 0.000460 O Sr 0.000278 0.000460 O P O Ba 0.000963 M Hf < 0.015216 M Ta < 0.000460 0.000460 M Pb < 0 Be < 0.000460 M 0.000120 M Hg < Tb < 0.000460 M Bi < 0.000460 M Ho < 0.000460 M Pd < 0.003200 M Te < 0.007300 0 Ca 0.053258 M In < 0.000460 M Pr < 0.000460 M Th < 0.000460 0 Cd < 0.000460 M Pt < 0.000360 M lr < 0.001900 O Ti < 0.001700 M Ce < 0.002300 M K 0.048186 M Rb 0.002409 M TI 0.003043 0.000460 M Tm < М Co < 0.002800 M Re < 0.000910 M La < 0.000460 М Cr < 0.002300 O Li 0.027897 M Rh < 0.000460 M U < 0.000460 0.000460 M V М Cs 0.001039 M Lu < 0.000460 M Ru < < 0.000460 O Cu < 0.003000 s Mg < \cap S < 0.190000 M W < 0.000460 0.000460 O Sb 0.020796 O Υ < М Dy < Mn 0.015216 M 0.000720 Fr 0.000460 M Mo < 0.000910 O Sc < 0.000480 M Yb < 0.000460 ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element # 6.0 INTENDED USE #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 24.31 +2 6 Mg(H2O)6+2 Chemical Compatibility - Soluble in HCI, HNO3, and H2SO4 avoid HF, H3PO4 and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicates, carbonates, hydroxides, oxides, and tungstates in neutral and slightly acidic media. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO3 / LDPE container. Mg Containing Samples (Preparation and Solution) -Metal (Best dissolved in diluted HNO3); Oxide (Readily soluble in above compatible aqueous acidic solutions); Ores (Carbonate fusion in Pt0 followed by HCI dissolution); Organic Matrices (Sulfuric / peroxide digestion or nitric / sulfuric / perchloric acid decomposition, or dry ash and dissolution in dilute HCI). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|------------------------|-------|---| | ICP-MS 24 amu | 42 ppt | n/a | 7Li17O, 48Ti+2 , | | | | | 48Ca+2 | | ICP-OES 279.553 nm | 0.0002 / 0.00003 μg/mL | 1 | Th | | ICP-OES 280.270 nm | 0.0003 / 0.00005 µg/mL | 1 | U, V | | ICP-OES 285.213 nm | 0.002 / 0.00003 μg/mL | 1 | U, Hf, Cr, Zr | # 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRWRM. ## 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. #### 10.0 QUALITY STANDARD DOCUMENTATION # 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 # 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 # 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganic ventures.com #### 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY # 11.1 Certification Issue Date September 01, 2020 - The certification is valid within the measurement uncertainty specified provided the CRWRM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRWRM is damaged, contaminated, or otherwise modified. # 11.2 Lot Expiration Date - September 01, 2024 - The date after which this CRWRM should not be used. - The lot expiration date reflects the period of time that the stability of a CRMRM can be supported by long term stability studies conducted on properly stored and handled CRMRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. #### 11.3 Period of Validity | - Sealed TCT Bag Open Date: | | |-----------------------------|--| | | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. # 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Approved By: Michael Booth Director, Quality Control Michael 2 Booth Paul R Lines **Certifying Officer:** **Paul Gaines** Chairman / Senior Technical Director Christiansburg, VA 24073 · USA # CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com # 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGMN10 Lot Number: P2-MN687536 Matrix: 3% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Manganese Starting Material: Mn Metal Starting Material Lot#: 2275 Starting Material Purity: 99.9909% # 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $10046 \pm 30 \mu g/mL$ **Density:** 1.035 g/mL (measured at 20 \pm 4 °C) **Assay Information:** Assay Method #1 10045 ± 25 μg/mL EDTA NIST SRM 928 Lot Number: 928 Assay Method #2 10083 ± 68 μg/mL ICP Assay NIST SRM 3132 Lot Number: 050429 Assay Method #3 $10031 \pm 47 \mu g/mL$ Calculated NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. ``` Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: X_{CRM/RM} = \Sigma(w_i) (X_i) X_{CRM/RM} = (X_a) (u_{char a}) \mathbf{X}_{\mathbf{a}} = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A \mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2) CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} k = coverage factor = 2 k = coverage factor = 2 \mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2} where \mathbf{u_{char}}_i are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty ``` # 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. # 5.0 TRACE METALLIC
IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` М Ag < 0.001500 M Eu < 0.000730 O Na 0.006600 M Zn 0.009960 0.176713 M Se < 0 ΑI 0.004337 M Fe < 0.650000 M Nb < 0.000730 O Si 0.097995 M Zr < 0.000730 М As < 0.008000 M Ga 0.004337 M Nd < 0.001500 M Sm < 0.000730 М Au < 0.000730 M Gd < 0.000730 M Ni 0.024097 M Sn < 0.002200 М В 0.069078 M Ge < 0.004400 M Os < 0.000730 O Sr 0.000931 М Ba < 0.001500 M Hf < 0.000730 i P < M Ta < 0.000730 М Be < 0.000730 M Ha < 0.002200 M Pb 0.007389 M Tb < 0.000730 M Bi < 0.003000 M Ho < 0.000730 M Pd < 0.000730 M Te < 0.019000 0 Ca 0.062652 M In < 0.003000 M Pr < 0.000730 M Th < 0.000730 М Cd < 0.001500 M Ir 0.000730 M Pt < 0.000730 O Ti < 0.006500 M Ce < 0.007300 O K 0.006425 M Rb < 0.006600 M TI < 0.000730 0 Co 0.014779 M La < 0.003000 M Re < 0.000730 M Tm < 0.000730 0 Cr 0.273102 O Τi 0.000417 M Rh < 0.003000 M U < 0.001500 M Cs < 0.000730 M lu < 0.000730 M Ru < 0.004400 M V 0.000730 0 Cu 0.007711 O Mg 0.321297 i S < M W 0.004400 M Dy < 0.001500 s Mn < M Sb < 0.021000 O Y 0.001365 Er < 0.001500 M 0.010281 O Sc < 0.004100 M Yb < 0.000730 Mο ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element # 6.0 INTENDED USE #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT **Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -** 54.94 +2 6 Mn(H2O)62+ **Chemical Compatibility -**Stable in HCl, HNO3, H2SO4 ,HF, H3PO4. Avoid basic media. Stable with most metals and inorganic anions in acidic media. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5 % HNO3/LDPE container. **Mn Containing Samples (Preparation and Solution) -**Metal (Soluble in dilute acids); Oxides (Soluble in dilute acids); Ores (Dissolve with HCl. If silica is present add HF and then fume off silica by adding H2SO4 and heat to SO3 fumes - dense white fumes). Atomic Spectroscopic Information (ICP-OES D.L.s are given as <u>radial/axial</u> view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|------------------------|-------|---| | ICP-MS 55 amu | 10 ppt | n/a | 40Ar14N1H,39K16 | | | | | O,37Cl18O,40Ar15 | | | | | N,38Ar17O,36Ar18O | | | | | 1H | | | | | ,38Ar16O1H,37Cl17 | | | | | O1H,23Na32S | | ICP-OES 257.610 nm | 0.0014 / 0.00002 μg/mL | 1 | Ce, W, Re | | ICP-OES 259.373 nm | 0.0016 / 0.00002 µg/mL | 1 | U, Ta, Mo, Fe, Nb | | ICP-OES 260.569 nm | 0.0021 / 0.00002 µg/mL | 1 | Co | # 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. # 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. #### 10.0 QUALITY STANDARD DOCUMENTATION # 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 # 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 # 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 $Inorganic \ Ventures, 300\ Technology\ Drive,\ Christiansburg,\ Va.\ 24073,\ USA;\ Telephone:\ 800.669.6799;\ 540.585.3030,\ Fax:\ 540.585.3012;\ inorganic ventures.com;\ info@inorganic info@inorgani$ # 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY # 11.1 Certification Issue Date January 05, 2020 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. #### 11.2 Lot Expiration Date - January 05, 2024 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. # 11.3 Period of Validity - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. # 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Approved By: Michael Booth Manager, Quality Control Michael 2 Booth **Certifying Officer:** Paul Gaines CEO, Senior Technical Director Paul R Since Christiansburg, VA 24073 · USA ## CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com ## 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGMO10 Lot Number: R2-MO693167 Matrix: tr. NH4OH tr. NH4OH H2O Value / Analyte(s): 10 000 μg/mL ea: Molybdenum Starting Material: Ammonium Molybdate Starting Material Lot#: 2257 Starting Material Purity: 99.9914% ## 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $10013 \pm 35 \mu g/mL$ **Density:** 1.011 g/mL (measured at 20 \pm 4 °C) Assay Information: Assay Method #1 $10035 \pm 67 \mu g/mL$ ICP Assay NIST SRM 3134 Lot Number: 130418 Assay Method #2 $10005 \pm 40 \mu g/mL$ Calculated NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRWRM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, $X_{CRM/RM}$, where one method of characterization Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ X_{CRM/RM} = (X_a) (u_{char a}) $\mathbf{X}_{\mathbf{a}}$ = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A the variance $\mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty ults = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty #### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRWRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRWRM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory
and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRWRMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` M Ag < 0.001826 M Eu < 0.000300 M Na 0.008750 M Se < 0.007480 M Zn 0.002553 Si < M ΑI 0.004455 M Fe 0.002093 M Nb < 0.015030 i M Zr < 0.005393 0.000300 M As < 0.003006 M Ga < 0.000300 i Nd < Μ Sm < Gd < 0.004828 M M Au < 0.006012 M 0.000300 M Ni < Sn 0.001004 M B < Ge < 0.000903 M Os < 0.003006 M 0.035184 M Sr 0.001903 0 Ва 0.015613 M Hf < 0.000896 i Р < Μ Ta < 0.000300 0.003006 M Hg < Pb 0.000409 M M Be < 0.003006 M < Tb < 0.000300 M Bi < 0.000401 M Ho < 0.000300 M Pd < 0.001114 M Te < 0.060122 0 Ca 0.032589 M ln < 0.015030 M Pr < 0.090184 M Th < 0.000786 0 Cd < 0.007483 M Pt < 0.051800 M lr 0.000388 O Ti < 0.093240 M Ce < 0.015030 M K 1.114508 M Rb 0.040641 M TI 0.013140 M Co 0.000300 M Re < 0.000300 M Tm < 0.004032 M La < 0.000300 M Cr 0.005931 O Li Rh < 0.000300 M U 0.000215 M 0.000937 V М Cs 0.000300 M Ru < 0.003006 M 0.002812 M Lu < 0.000759 М Cu 0.005172 M Mg 0.005212 i S < M W 0.592427 0.000952 M Sb 0.003147 M Y М Dy < 0.000300 M Mn < 0.000300 M Fr 0.000300 s М Sc < 0.009019 M Yb < 0.000300 Mo < ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard ⊟ement ## 6.0 INTENDED USE #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT **Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -** 95.94 +6 6,7,8,9 [MoO4] -2(chemical form as received) Chemical Compatibility -Mo is received in a NH4OH matrix giving the operator the option of using HCl or HF to stabilize acidic solutions. The [MoO4]-2 is soluble in concentrated HCl [MoOCI5]-2, dilute HF / HNO3 [MoOF5] -2 and basic media [MoO4]-2. Stable at ppm levels with some metals provided it is fluorinated. Do not mix with Alkaline or Rare Earths when HF is present. Stable with most inorganic anions provided it is in the [MoO4]-2 chemical form. **Stability -** 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the [MoOF5]-2 for months in 1% HNO3 / LDPE container. 1-10,000 ppm single element solutions as the [MoO4] -2 chemically stable for years in 1% NH4OH in a LDPE container. $\begin{tabular}{ll} \textbf{Mo Containing Samples (Preparation and Solution) -} Metal (Soluble in HF / HNO3 or hot dilute HCl); Oxide (soluble in HF or NH4OH); Organic Matrices (Dry ash at 450EC in Pt0 and dissolve oxide with HF or HCl). \\ \end{tabular}$ Atomic Spectroscopic Information (ICP-OES D.L.s are given as <u>radial/axial</u> view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|----------------------|-------|---| | ICP-MS 95 amu | 3 ppt | n/a | 40Ar39K16O,79Br1 | | | | | 6O,190Os2+,190Pt | | | | | 2+ | | ICP-OES 202.030 nm | 0.008 / 0.0002 μg/mL | 1 | Os, Hf | | ICP-OES 203.844 nm | 0.012 / 0.002 μg/mL | 1 | | | ICP-OES 204.598 nm | 0.012 / 0.001 μg/mL | 1 | Ir, Ta | #### 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRWRM. ## 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. ## 10.0 QUALITY STANDARD DOCUMENTATION ## 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 #### 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" Chemical Testing - Accredited / A2LA Certificate Number 883.01 ## 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com ## 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY ## 11.1 Certification Issue Date May 28, 2020 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. #### 11.2 Lot Expiration Date - May 28, 2024 - The date after which this CRWRM should not be used. - The lot expiration date reflects the period of time that the stability of a CRWRM can be supported by long term stability studies conducted on properly stored and handled CRWRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. #### 11.3 Period of Validity | - Sealed TCT Bag Open Date: | | |-----------------------------|--| | ocaica for bag open bate. | | - This CRMRM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRMRM being stored and handled in accordance with the instructions given in Sec. 7.1. ## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Approved By:** Michael Booth Manager, Quality Control Michael 2 Booth Paul R Since **Certifying Officer:** Paul Gaines CEO, Senior Technical Director Christiansburg, VA 24073 · USA ## CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com ## 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGNA10 Lot Number: S2-NA700842 Matrix: 2% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Sodium Starting Material: Na2CO3 Starting Material Lot#: 2274 Starting Material Purity: 99.9958% ## 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $10053 \pm 30 \mu g/mL$ **Density:** 1.036 g/mL (measured at 20 \pm 4 °C) **Assay Information:** Assay Method #1 10070 ± 26 μg/mL Gravimetric NIST SRM Lot Number: See Sec. 4.2 Assay Method #2 10012 ± 31 μg/mL ICP Assay NIST SRM 3152a Lot Number: 120715 Assay Method #3 $10059 \pm 20 \mu g/mL$ Calculated NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, $X_{CRM/RM}$, where two or more methods of characterization are Certified Value, $X_{CRM/RM}$, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char a})$ $\mathbf{X}_{\mathbf{a}}$ = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty
(storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty ## 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. ## 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` 0 Ag < 0.000250 M Eu < 0.000840 s 0.004700 O Zn 0.000226 Na < O Se < 0 ΑI 0.003688 O Fe 0.001560 O Nb < 0.001300 O Si 0.049648 O Zr 0.000680 0 As < 0.006900 M Ga < 0.000840 M Nd < 0.000840 M Sm < 0.000840 M Au < 0.000840 M Gd < 0.000840 O Ni < 0.000250 M Sn < 0.001700 0 В 0.000936 M Ge < 0.003400 M Os < 0.000840 O Sr 0.000255 0 Ва 0.002269 M Hf < 0.000840 O P 0.006525 M Ta < 0.004200 Ω Be < 0.000130 M Ha < 0.001700 M Pb < 0.000840 M Tb < 0.000840 Ω Bi < 0.008100 M Ho < 0.000840 M Pd < 0.000840 O Te < 0.004800 Ω Ca 0.085112 M In < 0.000840 M Pr < 0.000840 M Th < 0.002500 0 Cd < 0.000250 M Ir 0.000840 M Pt < 0.000840 O Ti 0.000553 M Ce < 0.001700 O K 1.049718 M Rb < 0.003400 M TI < 0.000840 0 Co < 0.000370 M La < 0.000840 M Re < 0.000840 M Tm < 0.000840 0 Cr < 0.001400 O Τi 0.000069 M Rh < 0.000840 M U 0.000840 M Cs < 0.003400 M Lu < 0.000840 M Ru < 0.001700 O V 0.001600 0 Cu < 0.001400 O Mg 0.028370 O S 0.048230 O W < 0.005000 M Dy < 0.000840 O Mn 0.000139 M Sb < 0.001700 O Υ < 0.000730 Er < 0.000840 O 0.004800 O Sc < 0.000370 O Yb < 0.000130 Mo < ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element ## 6.0 INTENDED USE #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 22.99 +1 (6) Na+(aq) largely ionic in nature **Chemical Compatibility** -Soluble in HCl, HNO3, H2SO4 and HF aqueous matrices. Stable with all metals and inorganic anions. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO3 / LDPE container. **Na Containing Samples (Preparation and Solution) -** Metal (Dissolves very rapidly in water); Ores (Lithium carbonate fusion in graphite crucible followed by HCl dissolution - blank levels of Na in lithium carbonate critical); Organic Matrices (Sulfuric / peroxide digestion or nitric/sulfuric/perchloric acid decomposition). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|----------------------|-------|--| | ICP-MS 23 amu | 310 ppt | n/a | 46Ti+2 , 46Ca+2 | | ICP-OES 330.237 nm | 2.0 / 0.09 μg/mL | 1 | Pd, Zn | | ICP-OES 588.995 nm | 0.03 / 0.006 μg/mL | 1 | 2nd order radiation
from R.E.s on some
optical designs | | ICP-OES 589.595 nm | 0.07 / 0.00009 μg/mL | 1 | 2nd order radiation
from R.E.s on some
optical designs | #### 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. ## 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. ## 10.0 QUALITY STANDARD DOCUMENTATION ## 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 ## 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 #### 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com ## 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY ## 11.1 Certification Issue Date January 25, 2021 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. ## 11.2 Lot Expiration Date - January 25, 2025 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. ## 11.3 Period of Validity | - Sealed TCT Bag Open Date: | | |-----------------------------|--| | | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. ## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Approved By:** Michael Booth Director, Quality Control Michael 2 Booth Paul R & ince **Certifying Officer:** Paul Gaines Chairman / Senior Technical Director Christiansburg, VA 24073 · USA ## CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com #### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGNI10 Lot Number: P2-NI686384 Matrix: 3% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Nickel Starting Material: Ni Metal Starting Material Lot#: 2277 and 2282 Starting Material Purity: 99.9992% #### 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $9979 \pm 30 \mu g/mL$ **Density:** 1.038 g/mL (measured at 20 \pm 4 °C) **Assay Information:** Assay Method #1 9971 ± 54 μg/mL ICP Assay NIST SRM 3136 Lot Number: 120619 Assay Method #2 9970 ± 32 μg/mL EDTA NIST SRM 928 Lot Number: 928 Assay Method #3 9993 ± 33 μg/mL Calculated NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. ``` Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: X_{CRM/RM} = \Sigma(w_i) (X_i) X_{CRM/RM} = (X_a) (u_{char a}) \mathbf{X}_{\mathbf{a}} = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A \mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2) CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} k =
coverage factor = 2 k = coverage factor = 2 \mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2} where \mathbf{u_{char}}_i are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty ``` ## 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` Ag М 0.002606 M Eu < 0.001100 O Na 0.004965 O Se < 0.067000 M Zn 0.006578 М Al < 0.013000 O Fe 0.018618 M Nb < 0.001100 O Si 0.010923 M Zr < 0.001100 0 As < 0.067000 M Ga < 0.001100 M Nd < 0.001100 M Sm < 0.001100 М Au < 0.002100 M Gd < 0.001100 s Ni < M Sn < 0.016000 М B < 0.017000 M Ge < 0.004200 M Os 0.002110 O Sr < 0.000940 М Ba < 0.001100 M Hf < 0.001100 i P < M Ta < 0.001100 0 Be < 0.000410 M Ha 0.014895 M Pb 0.006578 M Tb < 0.001100 M Bi < 0.004200 M Ho < 0.001100 M Pd < 0.001100 M Te < 0.015000 0 Ca 0.003351 M In < 0.001100 M Pr < 0.001100 M Th < 0.001100 M Cd 0.001365 M Ir 0.004716 M Pt < 0.001100 M Ti < 0.004200 TI < M Ce < 0.001100 O Κ 0.004716 M Rb < 0.001100 M 0.001100 0 Co 0.017377 M La < 0.001100 M Re 0.001737 M Tm < 0.001100 0.006300 M 0 Cr < 0.006700 O li < 0.000140 M Rh < U < 0.001100 М Cs < 0.007300 M lu < 0.001100 M Ru < 0.019000 M V 0.002100 M Cu 0.004096 O Mg 0.000372 i S < M W < 0.006300 M Dy < 0.001100 O Mn < 0.001900 M Sb 0.005833 O Y < 0.000540 Er < 0.001100 M 0.008400 M Sc < 0.002100 M Yb < 0.001100 Mo < ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element ## 6.0 INTENDED USE #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT **Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -** 58.69 +2 6 Ni(H2O)62+ **Chemical Compatibility -**Stable in HCl, HNO3, H2SO4 ,HF, H3PO4. Avoid basic media. Stable with most metals and inorganic anions in acidic media. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO3 / LDPE container. **Ni Containing Samples (Preparation and Solution)** -Metal (Soluble in HNO3); Oxides (Soluble in HCI); Ores (Dissolve in HCI / HNO3). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|---------------------|-------|---| | ICP-MS 60 amu | 100 ppt | n/a | 43Ca16O1H , | | | | | 44Ca16O, | | | | | 23Na37Cl | | ICP-OES 221.647 nm | 0.01 / 0.0009 μg/mL | 1 | Si | | ICP-OES 231.604 nm | 0.02 / 0.002 μg/mL | 1 | Sb, Ta, Co | | ICP-OES 232.003 nm | 0.02 / 0.006 μg/mL | 1 | Cr, Re, Os, Nb, Ag,
Pt Fe | ## 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. #### 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. ## 10.0 QUALITY STANDARD DOCUMENTATION ## 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 ## 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 ## 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com ## 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY ## 11.1 Certification Issue Date December 02, 2019 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. ## 11.2 Lot Expiration Date - December 02, 2023 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. ## 11.3 Period of Validity | Sealed TCT Bag Open Date: | | |---|--| | | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. Paul R & inco ## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Approved By:** Michael Booth Manager, Quality Control Certifying Officer: Paul Gaines CEO, Senior Technical Director Christiansburg, VA 24073 · USA ## CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com #### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGPB10 Lot Number: P2-PB686383 Matrix: 0.5% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Lead Starting Material: Lead Nitrate Starting Material Lot#: 2299 Starting Material Purity: 99.9974% #### 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $10031 \pm 30 \mu g/mL$ **Density:** 1.015 g/mL (measured at 20 \pm 4 °C) **Assay Information:** Assay Method #1 10060 ± 63 μg/mL ICP Assay NIST SRM 3128 Lot Number: 101026 Assay Method #2 10048 ± 32 μg/mL EDTA NIST SRM 928 Lot Number: 928 Assay Method #3 10007 ± 32 μg/mL Calculated NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. ``` Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: X_{CRM/RM} = \Sigma(w_i) (X_i) X_{CRM/RM} = (X_a) (u_{char a}) \mathbf{X}_{\mathbf{a}} = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A \mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2)
CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} k = coverage factor = 2 k = coverage factor = 2 \mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2} where \mathbf{u_{char}}_i are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty ``` ## 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` M Ag 0.000850 M Eu < 0.000310 O Na 0.005780 M Se < 0.004600 M Zn 0.005440 0 ΑI 0.234602 O Fe 0.023460 M Nb < 0.000310 O Si 0.047600 M Zr < 0.000610 М As < 0.001900 M Ga < 0.000310 M Nd < 0.000310 M Sm < 0.000310 М Au < 0.002200 M Gd < 0.004300 M Ni < 0.001600 M Sn < 0.000610 0 B < 0.005200 M Ge < 0.000610 M Os < 0.000310 O Sr 0.000442 0 Ва 0.001530 M Hf < 0.000310 O P < 0.052000 M Ta < 0.000310 Ω Be < 0.000630 M Ha < 0.001600 s Pb < М Tb < 0.000310 Ω Bi 0.021080 M Ho < 0.000610 M Pd < 0.000310 M Te < 0.004300 Ω Ca 0.037400 M In < 0.000310 M Pr < 0.000310 M Th < 0.000310 M Cd < 0.000610 M Ir 0.000310 M Pt < 0.000310 M Τi 0.002992 M Ce < 0.000910 O K 0.008840 M Rb < 0.000610 M ΤI 0.037400 M Co < 0.000610 M La < 0.000610 M Re < 0.000310 M Tm < 0.000610 U < M Cr < 0.003400 O Τi 0.000108 O Rh < 0.006300 M 0.000310 M Cs 0.002686 M lu < 0.000310 M Ru < 0.000310 M V 0.000310 M Cu < 0.002500 O Mg 0.004760 O S < 0.052000 M W < 0.002200 M Dy < 0.000310 M Mn < 0.000310 M Sb < 0.001300 M Υ < 0.000310 Er < 0.000310 O 0.005400 M Sc < 0.000310 M Yb < 0.000310 Mo < ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element ## 6.0 INTENDED USE #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 207.20 +2 6 Pb(H2O)6+2 Chemical Compatibility - Soluble in HCl, HF and HNO3. Avoid H2SO4. Stable with most metals and inorganic anions forming insoluble carbonate, borate, sulfate, sulfite, sulfide, phosphate, oxalate, chromate, tannate, iodate, and cyanide in neutral aqueous media. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO3 / LDPE container. **Pb Containing Samples (Preparation and Solution) -**Metal (Best dissolved in 1:1 H2O / HNO3); Oxides (The many different Pb oxides are soluble in HNO3 with the exception of PbO2 which is soluble in HCl or HF); Ores and Alloys (Best attacked using 1:1 H2O / HNO3); Organic Matrices (Dry ash and dissolve in dilute HCl). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|--------------------|-------|---| | ICP-MS 208 amu | 5 ppt | n/a | 192Pt16O, | | | | | 192Os16O | | ICP-OES 168.215 nm | 0.03 / 0.003 μg/mL | 1 | Co | | ICP-OES 217.000 nm | 0.09 / 0.03 μg/mL | 1 | W, Ir, Hf, Sb, Th | | ICP-OES 220.353 nm | 0.04 / 0.006 μg/mL | 1 | Bi, Nb | ## 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. ### 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. #### 10.0 QUALITY STANDARD DOCUMENTATION #### 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 ## 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 ## 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com ## 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY ## 11.1 Certification Issue Date December 02, 2019 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. ## 11.2 Lot Expiration Date - December 02, 2023 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. ## 11.3 Period of Validity | Sealed TCT Bag Open Date: | | |---|--| | | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. Paul R & inco ## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Approved By:** Michael Booth Manager, Quality Control **Certifying Officer:** Paul Gaines CEO, Senior Technical Director Christiansburg, VA 24073 · USA # CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com #### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGSB10 Lot Number: R2-SB688559 Matrix: 3% (v/v) HNO3 3% (w/v) tartaric acid Value / Analyte(s): 10 000 μg/mL ea: **Antimony** Starting Material: Antimony Metal Starting Material Lot#: 1857 Starting Material Purity: 99.9894% ## 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $10003 \pm 47 \mu g/mL$ **Density:** 1.061 g/mL (measured at 20 \pm 4 °C) **Assay Information:** Assay Method #1 $10003 \pm 41 \mu g/mL$ ICP Assay NIST SRM 3102a Lot Number: 140911 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRWRM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. ## Characterization of CRM/RM by Two or More Methods Certified Value, X_{CRM/RM}, where two or more methods of characterization are used is the weighted mean of the results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of
$\mathbf{w_i} = (1/u_{\text{char i}})^2 / (\Sigma (1/(u_{\text{char i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u^2_{char} + u^2_{bb} + u^2_{lts} + u^2_{ts})^{1/2}$ k = coverage factor = 2 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{bb} = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) u_{ts} = transport stability standard uncertainty #### Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where one method of characterization is used is the mean of individual results: X_{CRM/RM} = (X_a) (u_{char a}) X_a = mean of Assay Method A with u_{char a} = the standard uncertainty of characterization Method A CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ **k** = coverage factor = 2 $u_{char\ a}$ = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) u_{ts} = transport stability standard uncertainty #### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRWRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRWRM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRWRMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRMRMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` M Aq < 0.000200 M Eu < 0.000300 O Na 0.140000 M Se < 0.007300 O Zn 0.005000 M ΑI 0.003200 O Fe 0.060000 M Nb < 0.000100 O Si 0.150000 O Zr < 0.006300 M As < 0.004400 M Ga < 0.000400 M Nd < 0.000100 M Sm < 0.000100 M Au < 0.000210 M Gd < 0.000100 O Ni 0.004800 M Sn < 0.001800 Μ B < 0.011000 M Ge < 0.000600 M Os < 0.000110 O Sr 0.000750 0 Ba < 0.004900 M Hf < 0.000100 O P 0.540000 M Ta 0.003300 0.000400 M Hg < 0.000110 M Pb < 0.000400 M Tb < Μ Be < 0.000100 Bi < 0.000200 M Ho < 0.000100 M Pd < 0.000210 M Te < Μ 0.000600 0 Ca 0.110000 M In < 0.000100 M Pr < 0.001600 M Th < 0.000100 Cd < 0.000200 M lr < 0.000110 M Pt < 0.000600 M Ti < M 0.002800 Μ Ce 0.006500 O K 0.020000 M Rb < 0.001000 M TI < 0.000100 Μ Co < 0.000200 O La < 0.016000 M Re < 0.000100 M Tm < 0.000100 M Cr 0.006900 O Li < 0.000430 M Rh < 0.000300 M U < 0.000100 Μ Cs < 0.000200 M Lu < 0.000100 M Ru < 0.000310 M V < 0.000800 Μ Cu < 0.000600 O Mg 0.021000 n S < M W < 0.000200 M Dy < 0.000100 O Mn 0.001900 s Sb < M Y < 0.000100 Μ Er < 0.000100 M Mo < 0.000500 O Sc < 0.002300 M Yb < 0.000100 ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element ### 6.0 INTENDED USE - For the calibration of analytical instruments and validation of analytical methods as appropriate. ## 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRMRM is negligible. After opening the sealed TCT bag transpiration of the CRMRM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at 20° ± 4° C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 121.75 +3 6 Sb(O)C4H4O6-1 Chemical Compatibility - Stable in conc. HCI, dilute or conc. HF. Stable in dilute HNO3 as the fluoride or tartrate complex. Avoid basic media. Stable with most metals and inorganic anions in acidic media as the tartrate provided the acidity is not too high or the acid is oxidizing causing loss of the stabilizing tartrate ion. The fluoride complex of antimony is stable in strong acid but you should only mix with other metals that are fluorinated. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-2% HNO3 / LDPE container. **Sb Containing Samples (Preparation and Solution) -**Metal and alloys (Soluble in H2O / HF / HNO3 mixture); Oxides (Soluble in HCl and tartaric acid or H2O / HF / HNO3 mixtures); Ores (fusion with Na2CO3 in Pt0 followed by dissolving the fuseate in a H2O / HF / HNO3 mixture); Organic based (sulfuric acid / hydrogen peroxide digestion) Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|------------------|-------|---| | ICP-MS 121 amu | 5 ppt | N/A | 105Pd16O, | | | | | 89Y16O2 | | ICP-OES 206.833 nm | 0.03/0.003 μg/mL | 1 | Ta, Cr, Ge, Hf | | ICP-OES 217.581 nm | 0.05/0.005 μg/mL | 1 | Nb, W, Re, Fe | | ICP-OES 231.147 nm | 0.06/0.006 μg/mL | 1 | Ni, Co, Pt | ## 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRMRM. #### 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. ## 10.0 QUALITY STANDARD DOCUMENTATION ## 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 ### 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 ## 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com ## 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY #### 11.1 Certification Issue Date April 30, 2020 - The certification is valid within the measurement uncertainty specified provided the CRWRM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRWRM is damaged, contaminated, or otherwise modified. #### 11.2 Lot Expiration Date - April 30, 2024 - The date after which this CRWRM should not be used. - The lot expiration date reflects the period of time that the stability of a CRMRM can be supported by long term stability studies conducted on properly stored and handled CRMRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. #### 11.3 Period of Validity | - Sealed TCT Bag Open Date: | | |-----------------------------|--| | | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. ## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Approved By: Michael Booth Manager, Quality Control Michael & Book Paul R 2 ince **Certifying Officer:** Paul Gaines CEO, Senior Technical Director Page 4 of 4 Christiansburg, VA 24073 · USA # CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com #### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGSE10 Lot Number: P2-SE684206 Matrix: 3% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Selenium Starting Material: Se Metal Starting Material Lot#: 1962 Starting Material Purity: 99.9991% #### 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: 9992 ± 61 µg/mL **Density:** 1.035 g/mL (measured at 20 \pm 4 °C) **Assay Information:** Assay Method #1 9993 ± 67 μg/mL ICP Assay NIST SRM 3149 Lot Number: 100901 Assay Method #2 9992 ± 73 μg/mL Calculated NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute
of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, $X_{CRM/RM}$, where two or more methods of characterization are Certified Value, $X_{CRM/RM}$, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ $X_{CRM/RM} = (X_a) (u_{char a})$ $\mathbf{X}_{\mathbf{a}}$ = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A $\mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 k = coverage factor = 2 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty ## 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` М Ag < 0.002242 M Eu < 0.000373 O Na 0.013700 s 0.002382 Se < O 7n М ΑI 0.004465 M Fe 0.008506 O Nb < 0.002975 O Si 0.006270 M Zr < 0.001868 0 As < 0.022040 M Ga < 0.000373 M Nd < 0.000373 M Sm < 0.000373 М Au < 0.000373 M Gd < 0.000373 O Ni 0.001849 M Sn 0.000850 Ω B < 0.007714 M Ge < 0.002616 M Os < 0.000373 M Sr < 0.001121 М Ba < 0.001495 M Hf < 0.000373 O P < 0.022040 M Ta < 0.000373 M Be < 0.001495 M Ha < 0.002240 M Pb 0.006379 M Tb < 0.006353 M Bi < 0.000373 M Ho < 0.000373 M Pd < 0.000373 M Te < 0.012707 0 Ca 0.006552 M In < 0.000373 M Pr < 0.001495 M Th < 0.002990 M Cd 0.001169 M Ir 0.000373 M Pt < 0.000373 M Ti < 0.003363 M Ce < 0.000373 O K 0.002006 M Rb < 0.001868 M ΤI 0.008613 M Co < 0.000373 M La < 0.001121 M Re < 0.000373 M Tm < 0.000373 M Cr 0.002870 O Ιi 0.000062 M Rh < 0.000373 M U < 0.000373 M Cs < 0.001121 M Lu < 0.000373 M Ru < 0.001493 M V 0.000747 M Cu < 0.000747 O Mg 0.001159 O S 0.024674 M W < 0.002242 M Dy < 0.000373 M Mn < 0.000373 M Sb < 0.002242 M Υ < 0.000373 0.001121 M Yb < Er < 0.000373 O 0.003195 M Sc < 0.000373 Mo < ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element ## 6.0 INTENDED USE #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 78.96 +4 6 H2SeO3 Chemical Compatibility -Soluble in HCI, HNO3,H3PO4, H2SO4 and HF aqueous matrices and water. It is stable with most inorganic anions but many cationic metals form the insoluble selenites under pH neutral conditions. When fluorinated and/or under acidic conditions precipitation is typically not a problem at moderate to low concentrations. **Stability -** 2-100 ppb levels stable for months alone or mixed with other elements at equivalent levels in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO3 / LDPE container. **Se Containing Samples (Preparation and Solution) -**Metal (soluble in HNO3); Oxides (readily soluble in water); Minerals and alloys (acid digestion with HNO3or HNO3 / HF); Organic Matrices (acid digestion with hot concentrated H2SO4 accompanied by the careful dropwise addition of H2O2 until clear). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|------------------|-------|---| | ICP-MS 82 amu | 200 ppt | N/A | 12C35Cl2 | | ICP-OES 196.026 nm | 0.08/0.006 μg/mL | 1 | Fe | | ICP-OES 203.985 nm | 0.2/0.05 μg/mL | 1 | Sb, Ir, Cr, Ta | | ICP-OES 206.279 nm | 0.3/0.16 μg/mL | 1 | Cr, Pt | ## 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. ## 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. ## 10.0 QUALITY STANDARD DOCUMENTATION ## 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 #### 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 ## 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganic ventures.com; info@inorganic ventures.com ## 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY ## 11.1 Certification Issue Date September 13, 2019 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. ## 11.2 Lot Expiration Date - September 13, 2023 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. ## 11.3 Period of Validity | - Sealed TCT Bag Open Date: | | |-----------------------------|--| | | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. Paul R & inco ## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS **Certificate Approved By:** Michael Booth Manager, Quality Control **Certifying Officer:** Paul Gaines CEO, Senior Technical Director Christiansburg, VA 24073 · USA # CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com ## 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGTL10 Lot Number: R2-TL691937 Matrix: 5% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Thallium Starting Material: TINO3 Starting Material Lot#: 2118 Starting Material
Purity: 99.9998% #### 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $9987 \pm 49 \mu g/mL$ **Density:** 1.035 g/mL (measured at 20 \pm 4 °C) Assay Information: Assay Method #1 9968 ± 68 μg/mL ICP Assay NIST SRM 3158 Lot Number: 151215 Assay Method #2 $10001 \pm 58 \mu g/mL$ Calculated NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRWRM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. #### Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, $X_{CRM/RM}$, where two or more methods of characterization are Certified Value, $X_{CRM/RM}$, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: $X_{CRM/RM} = \Sigma(w_i) (X_i)$ X_{CRM/RM} = (X_a) (u_{char a}) $\mathbf{X}_{\mathbf{a}}$ = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A the variance $\mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2)$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2}$ k = coverage factor = 2 $\mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2}$ where $\mathbf{u_{char}}_i$ are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty #### 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRWRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRWRM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRWRMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRMRMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` M Ag < 0.000200 M Eu < 0.000200 O Na 0.002479 M Se < 0.011019 O Zn 0.002288 0 Al < 0.004184 O Fe < 0.002824 M Nb < 0.000200 O Si 0.003744 M Zr < 0.000200 M As < 0.002003 M Ga < 0.000200 M Nd < 0.000200 M Sm < 0.000200 0 Sn < Au < 0.002824 M Gd < 0.000200 M Ni 0.001717 M 0.000601 O B < 0.004184 M Ge < 0.000801 M Os < 0.000198 O Sr < 0.000313 0.000200 O P < M Ba < 0.000400 M Hf < 0.010460 M Ta < 0.000200 0 Be < 0.000794 M Pb 0.000104 M Hg < 0.000807 M Tb < 0.000200 0.000200 M Pd < M Bi < 0.005209 M Ho < 0.000400 M Te < 0.005008 O Ca 0.000200 M Pr < 0.000200 M Th < 0.002426 M In < 0.000200 M Cd 0.001312 M lr 0.000198 M Pt < 0.000801 O Ti < 0.001255 < 0.000200 O K M Ce < 0.006150 M Rb < 0.000200 s TI < M Co < 0.000601 M La < 0.000200 M Re < 0.000200 M Tm < 0.000200 M Cr < 0.000801 O Li < 0.000177 M Rh < 0.000200 M U < 0.000200 0.000200 M 0.000397 M V M Cs < 0.003606 M Lu < Ru < < 0.002203 М Cu < 0.001001 O Mg 0.000527 O S < 0.015690 M W < 0.000601 Sb < 0.000400 M Y < М Dy < 0.000200 M Mn < 0.000801 M 0.000200 Fr 0.000200 M Mo < 0.001202 O Sc 0.000711 M Yb < 0.000200 ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element ## 6.0 INTENDED USE #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 204.38 +1 6 Tl(H2O)61+ Chemical Compatibility - Soluble in HCI, HNO3, and H2SO4. Stable with most metals and inorganic anions. The sulfite, thiocyanate and oxalate are moderately soluble; the phosphate and arsenite are slightly soluble and the sulfide is insoluble. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO3 / LDPE container. TI Containing Samples (Preparation and Solution) -Metal (Best dissolved in HNO3 which forms chiefly the Tl1+ ion.); Oxide (The thallous oxide is readily soluble in water. The thallic oxide requires high levels of acid); Ores (Carbonate fusion in Pt0 followed by HCl dissolution); Organic Matrices (Sulfuric/peroxide digestion or dry ash and dissolution in HCl). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|--------------------|-------|---| | ICP-MS 205 amu | 2 ppt | N/A | 189Os16O | | ICP-OES 190.864 nm | 0.04 / 0.004 μg/mL | 1 | V, Ti | | ICP-OES 276.787 nm | 0.1 / 0.01 μg/mL | 1 | Ta, V, Fe, Cr | | ICP-OES 351.924 nm | 0.2 / 0.02 μg/mL | 1 | Th, Ce, Zr | ## 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRWRM. ## 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. ## 10.0 QUALITY STANDARD DOCUMENTATION ## 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 #### 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 ## 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com ## 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY #### 11.1 Certification Issue Date April 08, 2020 - The certification is valid within the measurement uncertainty specified provided the CRWRM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRWRM is damaged, contaminated, or otherwise modified. #### 11.2 Lot Expiration Date - April 08, 2024 - The date after which this CRWRM should not be used. - The lot expiration date reflects the period of time that the stability of a CRMRM can be supported by long term stability studies conducted on properly stored and handled CRMRMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. ## 11.3 Period of Validity | - Sealed TCT Bag Open Date: | | |-----------------------------|--| | | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. Paul R 2 ince ## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Approved By: Michael Booth Manager, Quality Control **Certifying Officer:** Paul Gaines CEO, Senior Technical Director Christiansburg, VA 24073 · USA ## CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com #### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is
also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGV10 Lot Number: R2-V688296 Matrix: 7% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Vanadium Starting Material: Vanadium pentoxide Starting Material Lot#: 1782 Starting Material Purity: 99.9907% #### 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $10026 \pm 30 \mu g/mL$ **Density:** 1.105 g/mL (measured at 20 \pm 4 °C) **Assay Information:** Assay Method #1 10025 ± 56 μg/mL ICP Assay NIST SRM 3165 Lot Number: 160906 Assay Method #2 10027 ± 30 μg/mL EDTA NIST SRM 928 Lot Number: 928 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. ``` Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: X_{CRM/RM} = \Sigma(w_i) (X_i) X_{CRM/RM} = (X_a) (u_{char a}) \mathbf{X}_{\mathbf{a}} = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A \mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2) CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} k = coverage factor = 2 k = coverage factor = 2 \mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2} where \mathbf{u_{char}}_i are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty ``` ## 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` М Ag < 0.000510 M Eu < 0.000110 M Na 0.095000 M Se < 0.008900 0.002300 M Zn 0 ΑI 0.051000 O Fe 0.350000 M Nb < 0.000710 O Si 0.260000 M Zr < 0.002500 М As < 0.000410 M Ga < 0.007100 M Nd < 0.000210 M Sm < 0.000110 М Au < 0.000410 M Gd < 0.000110 M Ni 0.011000 M Sn < 0.003300 М B < 0.006000 M Ge < 0.000110 M Os < 0.000410 M Sr 0.001400 М Ва 0.001800 M Hf < 0.000110 O P < 0.120000 M Ta < 0.000110 М Be < 0.000110 M Ha < 0.000310 M Pb < 0.002300 M Tb < 0.000110 M Bi < 0.000610 M Ho < 0.000110 M Pd < 0.000610 M Te < 0.000610 M Ca 0.180000 M In < 0.000110 M Pr < 0.000110 M Th < 0.000210 M Cd < 0.000410 M Ir 0.000110 M Pt < 0.000410 M Ti < 0.021000 TI < M Ce < 0.000310 M K 0.400000 M Rb < 0.000410 M 0.000110 M Co < 0.001100 M La < 0.000110 M Re < 0.000110 M Tm < 0.000110 0 Cr 0.190000 M li < 0.001400 M Rh < 0.000110 M U 0.000310 M Cs 0.005700 M lu < 0.000110 M Ru < 0.000410 s V M Cu < 0.001800 M Mg 0.009200 n S < M W < 0.003100 М Dy < 0.000110 M Mn 0.008700 M Sb 0.076000 M Y < 0.000110 Er < 0.000110 M 0.086000 M Sc < 0.000310 M Yb < 0.000110 Mο ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element ## 6.0 INTENDED USE #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT **Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -** 50.94 +5 6 H2V10O284-**Chemical Compatibility -**Soluble in HCl, HNO3, H2SO4, HF, H3PO4 and strong basic media. Stable with most metals and inorganic anions in acidic media. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO3 / LDPE container. **V Containing Samples (Preparation and Solution) -**Metal (Fusion with NaOH or KOH in Ni0 or Na2CO3 / KNO3); Oxides (V2O3 - use HCl, V2O4 - use HCl or HNO3, V2O5 - use concentrated acids); Ores (Na2CO3 / KNO3 in Pt0 caution - nitrates attack Pto followed by water extraction of fuseate); Organic Matrices (Ash at 450 EC followed by dissolving according to V2O5 above). #### Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|----------------------|-------|---| | ICP-MS 51 amu | 4 ppt | N/A | 34S16O1H, | | | | | 35Cl16O, 38Ar13C, | | | | | 36Ar15N, | | | | | 36Ar14N1H, | | | | | 37Cl14N,36S15N, | | | | | 33S18O, 34S17O, | | | | | 102Ru+2,02Pd+2 | | ICP-OES 290.882 nm | 0.008 / 0.0008 μg/mL | 1 | Hf, Nb | | ICP-OES 292.402 nm | 0.006 / 0.001 μg/mL | 1 | Th | | ICP-OES 309.311 nm | 0.005 / 0.001 μg/mL | 1 | Mg, U, Th | ## 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. ## 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. ## 10.0 QUALITY STANDARD DOCUMENTATION #### 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 ## 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 ### 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 Inorganic Ventures, 300 Technology Drive, Christiansburg, Va. 24073, USA; Telephone: 800.669.6799; 540.585.3030, Fax: 540.585.3012; inorganicventures.com; info@inorganicventures.com ## 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY #### 11.1 Certification Issue Date March 01, 2020 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. ## 11.2 Lot Expiration Date - March 01, 2024 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. ## 11.3 Period of Validity | - Sealed TCT Bag Open Date: | | |-----------------------------|--| | | | - This CRM/RM should not be used longer than one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. Michael 2 Booth ## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Approved By: Michael Booth Manager, Quality Control Certifying Officer: Paul Gaines CEO, Senior Technical
Director Christiansburg, VA 24073 · USA # CERTIFICATE OF ANALYSIS tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com #### 1.0 ACCREDITATION / REGISTRATION **INORGANIC VENTURES** is accredited to ISO 17034, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (QSR Certificate Number QSR-1034). #### 2.0 PRODUCT DESCRIPTION Product Code: Single Analyte Custom Grade Solution Catalog Number: CGZN10 Lot Number: P2-ZN686137 Matrix: 2% (v/v) HNO3 Value / Analyte(s): 10 000 µg/mL ea: Zinc Starting Material: Zn Shot Starting Material Lot#: 2201 Starting Material Purity: 99.9993% ## 3.0 CERTIFIED VALUES AND UNCERTAINTIES Certified Value: $10040 \pm 30 \mu g/mL$ **Density:** 1.033 g/mL (measured at 20 \pm 4 °C) **Assay Information:** Assay Method #1 $10009 \pm 54 \mu g/mL$ ICP Assay NIST SRM 3168a Lot Number: 120629 Assay Method #2 10049 ± 33 μg/mL EDTA NIST SRM 928 Lot Number: 928 Assay Method #3 10041 ± 28 μg/mL Calculated NIST SRM Lot Number: See Sec. 4.2 - The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability. The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2. ``` Characterization of CRM/RM by Two or More Methods Characterization of CRM/RM by One Method Certified Value, X_{CRM/RM}, where two or more methods of characterization are Certified Value, X_{CRM/RM}, where one method of characterization used is the weighted mean of the results: is used is the mean of individual results: X_{CRM/RM} = \Sigma(w_i) (X_i) X_{CRM/RM} = (X_a) (u_{char a}) \mathbf{X}_{\mathbf{a}} = mean of Assay Method A with X_i = mean of Assay Method i with standard uncertainty u_{char i} w_i = the weighting factors for each method calculated using the inverse square of u_{char a} = the standard uncertainty of characterization Method A \mathbf{w_i} = (1/\mathsf{u_{char\ i}})^2 \, / \, (\Sigma (1/(\mathsf{u_{char\ i}})^2) CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} CRM/RM Expanded Uncertainty (±) = U_{CRM/RM} = k (u_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{ts}^2)^{1/2} k = coverage factor = 2 k = coverage factor = 2 \mathbf{u_{char}} = [\Sigma((\mathbf{w_i})^2 (\mathbf{u_{char}}_i)^2)]^{1/2} where \mathbf{u_{char}}_i are the errors from each characterization method u_{char a} = the errors from characterization u_{bb} = bottle to bottle homogeneity standard uncertainty u_{bb} = bottle to bottle homogeneity standard uncertainty u_{lts} = long term stability standard uncertainty (storage) u_{lts} = long term stability standard uncertainty (storage) uts = transport stability standard uncertainty u_{ts} = transport stability standard uncertainty ``` ## 4.0 TRACEABILITY TO NIST - This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified. #### 4.1 Thermometer Calibration - All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory. #### 4.2 Balance Calibration - All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST. #### 4.3 Glassware Calibration - An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs. ## 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL) CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm. ``` Ag < 0.003057 M Eu < 0.000509 O Na 0.001874 M Se < M 0.023441 s 7n < 0 Al < 0.005720 O Fe 0.006348 M Nb < 0.000509 O Si < 0.057200 M Zr < 0.000509 М As < 0.003057 M Ga < 0.007134 M Nd < 0.000509 M Sm < 0.000509 М Au < 0.000510 M Gd < 0.000509 M Ni < 0.000509 M Sn < 0.000509 Ω B < 0.017160 M Ge < 0.003057 M Os < 0.000510 M Sr < 0.000509 М Ba < 0.000509 M Hf < 0.000509 O P < 0.057200 M Ta < 0.000509 M Be < 0.000509 M Ha < 0.001021 O Pb 0.023870 M Tb < 0.000509 M Bi < 0.005095 M Ho < 0.000509 M Pd < 0.002038 M Te < 0.023441 Ω Ca 0.033793 M In < 0.000509 M Pr < 0.000509 M Th < 0.000509 0 Cd 0.003924 M Ir 0.000510 M Pt < 0.000509 M Ti < 0.000509 M Ce < 0.000509 O K 0.001499 M Rb < 0.002038 M TI < 0.009172 M Co < 0.000509 M La < 0.000509 M Re < 0.000509 M Tm < 0.000509 0 Cr 0.001549 O li < 0.000457 M Rh < 0.000509 M U < 0.000509 M Cs < 0.000509 M lu < 0.000509 M Ru < 0.006129 M V 0.000509 0 Cu < 0.010296 O Mg 0.000349 O S < 0.034320 M W < 0.001019 0.001019 M М Dy < 0.000509 M Mn < 0.000509 M Sb < Υ < 0.000509 Er < 0.000509 M 0.000509 M Sc < 0.000509 M Yb < 0.000509 Mo < ``` M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element ## 6.0 INTENDED USE #### 7.1 Storage and Handling Recommendations - Store between approximately 4° 30° C while in sealed TCT bag. - While stored in the sealed TCT bag, transpiration of this CRM/RM is negligible. After opening the sealed TCT bag transpiration of the CRM/RM will occur, resulting in a gradual increase in the analyte concentration(s). It is the responsibility of the user to account for this effect. When the bottle is weighed both before and after being placed in storage, the mass difference observed will be a measure of transpiration mass loss. - After opening the sealed TCT bag, keep cap tightly sealed when not in use and store between 4° 24° C to minimize the effects of transpiration. Use at $20^{\circ} \pm 4^{\circ}$ C to minimize volumetric dilution error when using the reported density. Do not pipette from the container. Do not return removed aliquots to container. - For more information, visit www.inorganicventures.com/TCT **Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -** 65.39 +2 4 Zn(OH)(aq)1+ **Chemical Compatibility -**Stable in HCl, HNO3, H2SO4 ,HF, H3PO4. Avoid basic media forming insoluble carbonate and hydroxide. Stable with most metals and inorganic anions in acidic media. **Stability -** 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO3 / LDPE container. **Zn Containing Samples (Preparation and Solution) -**Metal (soluble in HNO3); Oxides (Soluble in HCI); Ores (Dissolve in HCI / HNO3); Organic based (dry ash at 4500C and dissolve ash in HCI) (sulfuric/peroxide acid digestion) Atomic Spectroscopic Information (ICP-OES D.L.s are given as <u>radial/axial</u> view): | Technique/Line | Estimated D.L. | Order | Interferences (underlined indicates severe) | |--------------------|--------------------|-------|---| | ICP-MS 66 amu | 7 ppt | N/A | 50Ti16O,50Cr16O, | | | | | 50V16O, 34S16O2, | | | | | 32S16O18O, | | | | | 32S17O2, | | | | | 33S16O17O, | | | | | 32S34S, 33S2 | | ICP-OES 202.548 nm | 0.004/0.0002 μg/mL | 1 | Nb, Cu, Co, Hf | | ICP-OES 206.200 nm | 0.006/0.0006 μg/mL | 1 | Sb, Ta, Bi, Os | | ICP-OES 213.856 nm | 0.002/0.0004 µg/mL | 1 | Ni, Cu, V | ## 8.0 HAZARDOUS INFORMATION - Please refer to the Safety Data Sheet for information regarding this CRM/RM. ## 9.0 HOMOGENEITY - This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity. #### 10.0 QUALITY STANDARD DOCUMENTATION ## 10.1 ISO 9001 Quality Management System Registration - QSR Certificate Number QSR-1034 ## 10.2 ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories" - Chemical Testing - Accredited / A2LA Certificate Number 883.01 #### 10.3 ISO 17034 "General Requirements for the Competence of Reference Material Producers" - Reference Material Producer - Accredited / A2LA Certificate Number 883.02 $Inorganic \ Ventures, 300\ Technology\ Drive,\ Christiansburg,\ Va.\ 24073,\ USA;\ Telephone:\ 800.669.6799;\ 540.585.3030,\ Fax:\ 540.585.3012;\ inorganic ventures.com;\ info@inorganic info@inorgani$ ## 11.0 CERTIFICATION, LOT EXPIRATION AND PERIOD OF VALIDITY ## 11.1 Certification Issue Date December 05, 2019 - The certification is valid within the measurement uncertainty specified provided the CRM/RM is stored and handled in accordance with instructions given in Sec 7.1. This certification is nullified if instructions in Sec 7.1 are not followed or if the CRM/RM is damaged, contaminated, or otherwise modified. ## 11.2 Lot Expiration Date - December 05, 2023 - The date after which this CRM/RM should not be used. - The lot expiration date reflects the period of time that the stability of a CRM/RM can be supported by long term stability studies conducted on properly stored and handled CRM/RMs. Lot expiration is limited primarily by transpiration (loss of water from the solution) and infrequently by chemical stability. ## 11.3 Period of Validity | - Sealed TCT Bag Open Date: | | |-----------------------------|--| | Codica 101 Bag open Bate. | | - This CRM/RM should not be used longer than
one year (or six months in the case of a 30 mL bottle) from the date of opening the aluminized bag or after the date given in Sec. 11.2, whichever comes first. This is contingent upon the CRM/RM being stored and handled in accordance with the instructions given in Sec. 7.1. ## 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS Certificate Approved By: Michael Booth Manager, Quality Control Michael 2 Booth **Certifying Officer:** Paul Gaines CEO, Senior Technical Director Paul R Since ### 2022 Annual Compliance Monitoring Report # Appendix C Soil Cap and Wildlife Barrier Inspection Logs and Photographs #### **Table of Contents** Figure C.1 Wildlife Barrier Inspection Locations Attachment C.1 Lora Lake Apartments Parcel Inspection Log and Photographs Attachment C.2 DMCA Inspection Log and Photographs ### 2022 Annual Compliance Monitoring Report # Appendix C Soil Cap and Wildlife Barrier Inspection Logs and Photographs **Figure** ## 2022 Annual Compliance Monitoring Report # Appendix C Soil Cap and Wildlife Barrier Inspection Logs and Photographs | | | | | | Lora Lake | Apartm | ents Tem | porary C | ap Inspe | ction Fori | m | | | |-----------------------|--------------|--|----------------------------|-----------------------------|---|--|-----------------------------|----------|------------------------------|------------|-----|---------|--| | | | | Check all that apply | | | | | | Overall Condition of Barrier | | | Needed | | | Monitoring
Station | Photo Number | Engineered
surface
characteristics
condition
compromised | Exposed
underlying soil | Loss of barrier
material | Down-slope
movement of
barrier material | Presence of debris
on barrier surface | Substantial plant
growth | рооб | Fair | Poor | Yes | NO
N | Comments/Observations | | LLA 01 | | | | | | | | Х | | | | Х | | | LLA 02 | | | | | | | | Х | | | | Х | | | LLA 03 | | | | | | | | Х | | | | Х | | | LLA 04 | L1 | | X | | | | | | Х | | Х | | Loss of vegetation used for erosion control | | LLA 05 | L2 | | X | | | | | | Х | | Х | | Loss of vegetation asea for crosson control | | LLA 06 | | | | | | | х | | х | | | х | | | LLA 07 | L3 | | | | | | Х | | Х | | | Х | Some maintenance of plant overgrowth | | LLA 08 | L3, L4 | | | | | | Х | | Х | | | Х | recommended | | LLA 09 | L4 | | | | | | Х | | Х | | | х | | | LLA 10 | L5 | | | | | | Х | | Х | | | Х | | | LLA 11 | | | | | | | | Х | | | | Х | | | LLA 12 | L6,L7 | | | | | | | | Х | | Х | | Fence repair required | | LLA 13 | | | | | | | | Х | | | | Х | | | LLA 14 | L8 | | X | | | | | | Х | | Х | | Loss of vegetation used for erosion control | | LLA 15 | L8 | | X | | | | | | | Х | Х | | 2000 of Vegetation asea for crosson control | | LLA 16 | | | | | | | | Х | | | | Х | | | LLA 17 | | | | | | | | Х | | | | Х | | | LLA 18 | L6 | | Х | | | | | | | Х | Х | | Loss of vegetation used for erosion control | | LLA 19 | | | | | | | | Х | | | | Х | | | LLA 20 | | | | | | | | Х | | | | Х | | | LLA 21 | | | | | | | | Х | | | | Х | | | LLA 22 | | | | | | | | Х | | | | Х | | | LLA 23 | L9 | | X | Х | | | | | Х | | | Х | Animal burrowing | | LLA 24 | | | | | | | | Х | | | | Х | | | LLA 25 | | | | | | | | Х | ļ | | | Х | | | LLA 26 | | | | | | | | Х | ļ | | | Х | | | LLA 27 | | | | | | | | Х | | | | Х | | | WSDOT 01 | L10 | | | | | | х | | х | | | х | Some maintenance of plant overgrowth recommended | Photograph L1. Station LLA 04 at the northeast corner of the property with slight loss of vegetation used for erosion control. Photograph L2. Stations LLA 05 at the northeast corner of the property with slight loss of vegetation used for erosion control. Photograph L3. Station LLA 07 and LLA 08, at the northwest corner of the property, with notable plant overgrowth. Photograph L4. Stations LLA 08 and LLA 09, along the west property line, with notable plant overgrowth. Photograph L5. Notable plant overgrowth at Station LLA 10, located at the southwest corner of the property. Photograph L6. Large area at the southwest portion of the property near Stations LLA 12 and LLA 18 with noted loss of vegetation used for erosion control. Photograph L7. Removed fence panel near Station LLA 12. Photograph L8. Area just south of the biofiltration swale at the south end of the property, near Stations LLA 14 and LLA 15, with substantial loss of vegetation resulting in exposed underlying soils. Photograph L9. Animal burrowing observed at the northeast corner of the property near Station LLA 23. L10. Fair conditions with some plant overgrowth at Station WSDOT-10. FLOYD | SNIDER strategy • science • engineering 2022 Annual Compliance Monitoring Report Lora Lake Apartments Site Burien, Washington ## 2022 Annual Compliance Monitoring Report # Appendix C Soil Cap and Wildlife Barrier Inspection Logs and Photographs Attachment C.2 DMCA Inspection Log and Photographs | DMCA Wildlife Barrier Inspection Form | | | | | | | | | | | | | | |---------------------------------------|----------------------|---|----------------------------|-----------------------------|---|--|-----------------------------|------------------------------|------|------|---------------|----|-----------------------| | | Check all that apply | | | | | | | Overall Condition of Barrier | | | Repair Needed | | | | Monitoring
Station | Photo Number | Engineered surface
characteristics
condition
compromised | Exposed underlying
soil | Loss of barrier
material | Down-slope
movement of
barrier material | Presence of debris
on barrier surface | Substantial plant
growth | роод | Fair | Poor | Yes | NO | Comments/Observations | | DMCA 01 | D1 | | | | | Х | | _ | Х | | • | Х | Sweeping recommended | | DMCA 02 | | | | | | | | Х | | | | Х | | | DMCA 03 | | | | | | | | Х | | | | Х | | | DMCA 04 | D2 | | | | | | | Х | | | | Х | | | DMCA 05 | D3 | | | | | | | | Х | | | Х | Sweeping recommended | | DMCA 06 | D3 | | | | | | | | Χ | | | Х | Sweeping recommended | | DMCA 07 | | | | | | | | Х | | | | Х | | | DMCA 08 | | | | | | | | Х | | | | Х | | | DMCA 09 | D4 | | | | | Х | | | Х | | | Х | Sweeping recommended | | DMCA 10 | D5, D6 | | | | | | | Х | | | | Х | | | DMCA 11 | | | | | | | | Х | | | | Х | | | DMCA 12 | | | | | | | | Х | | | | Х | | | DMCA 13 | | | | | | | | Х | | | | Х | | Photograph D1. Station DMCA 01 at the west border of the 1982 Dredged Material Containment Area (DMCA) with organic debris. Photograph D2. Good conditions at Station DMCA 04 at the northeast portion of the cap. Attachment C.2 DMCA Inspection Log and Photographs Photograph D3. East border of the DMCA photographed to the south with notable organic debris and dust near Stations DMCA 05 and DMCA 06. Photograph D4. Substantial organic debris and dust at the southwest corner of the cap near Station DMCA 09. Attachment C.2 DMCA Inspection Log and Photographs Photograph D5. Good cap conditions around the ecology blocks and structure at DMCA 10. Photograph D6. Generally good cap conditions observed from Station DMCA 08, looking north. Attachment C.2 DMCA Inspection Log and Photographs ### 2022 Annual Compliance Monitoring Report ## Appendix D Post-Maintenance Photographs Photograph 1. Area near the northwest corner of the property after landscaping and cutback of noted plant overgrowth. Photograph 2. Photograph taken to the east from the west end of the property showing site-wide landscaping and cutback of plant overgrowth. Appendix D Post-Maintenance Photographs Photograph 3. Fence repairs along the southern portion of the west fence line. Photograph 4. Natural reseeding at Station LLA 14 and Station LLA 15 in the area near the swale that was previously noted as requiring maintenance for vegetation loss. Appendix D Post-Maintenance Photographs Photograph 5. Natural reseeding at Station LLA 12 and LLA 18 in the area near the swale that was previously noted as requiring maintenance for vegetation loss. Appendix D Post-Maintenance Photographs