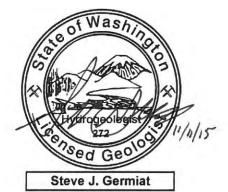
INTERIM ACTION CONFIRMATIONAL GROUNDWATER MONITORING REPORT Kimberly-Clark Worldwide Site Upland Area Everett, Washington

Prepared for: Kimberly-Clark Worldwide, Inc.

Project No. 110207-004-10 • November 11, 2015 Final



INTERIM ACTION CONFIRMATIONAL GROUNDWATER MONITORING REPORT Kimberly-Clark Worldwide Site Upland Area Everett, Washington

Prepared for: Kimberly-Clark Worldwide, Inc.

Project No. 110207-004-10 • November 11, 2015 Final

Aspect Consulting, LLC

Steve Germiat, LHG Principal Hydrogeologist sgermiat@aspectconsulting.com

Amy Tice, LG Senior Staff Geologist atice@aspectconsulting.com

V:\110207 KC Everett Mill\Deliverables\Confirmational GW Monitoring Report\Final 11-11-15\IA Confirmational GW Mon Report - Final.docx

Contents

1Introduction12Confirmational Monitoring Overview32.1Preliminary Cleanup Levels for Groundwater33Confirmational Monitoring Results by Area43.1BA-MW-6 Area43.2Boiler/Baghouse Area63.3Bunker C ASTs Area63.4CN-B-2 Area63.5GF-11 Area63.6Hydraulic Barker Vault Area63.7Naval Reserve Parcel UST Area103.8Naval Reserve Parcel South Area103.9Rail Car Dumper Area113.10REC2-MW-5 Area (near Diesel AST)123.11SHB-MW-1 Area123.12UST 29/Latex Spill Area123.13UST 70 Area143.14USTs 71, 72, 73 Area154Summary of Recommendations17	Ac	ronyr	ns	.iv
2.1 Preliminary Cleanup Levels for Groundwater 3 3 Confirmational Monitoring Results by Area. 4 3.1 BA-MW-6 Area 4 3.2 Boiler/Baghouse Area 4 3.3 Bunker C ASTs Area 6 3.4 CN-B-2 Area 6 3.5 GF-11 Area 6 3.6 Hydraulic Barker Vault Area 6 3.7 Naval Reserve Parcel UST Area 10 3.8 Naval Reserve Parcel South Area 10 3.9 Rail Car Dumper Area 11 3.10 REC2-MW-5 Area (near Diesel AST) 12 3.11 SHB-MW-1 Area 12 3.12 UST 29/Latex Spill Area 12 3.13 UST 70 Area 12 3.14 USTs 71, 72, 73 Area 12 4 Summary of Recommendations 17	1	Intr	oduction	1
2.1 Preliminary Cleanup Levels for Groundwater 3 3 Confirmational Monitoring Results by Area. 4 3.1 BA-MW-6 Area 4 3.2 Boiler/Baghouse Area 4 3.3 Bunker C ASTs Area 6 3.4 CN-B-2 Area 6 3.5 GF-11 Area 6 3.6 Hydraulic Barker Vault Area 6 3.7 Naval Reserve Parcel UST Area 10 3.8 Naval Reserve Parcel South Area 10 3.9 Rail Car Dumper Area 11 3.10 REC2-MW-5 Area (near Diesel AST) 12 3.11 SHB-MW-1 Area 12 3.12 UST 29/Latex Spill Area 12 3.13 UST 70 Area 12 3.14 USTs 71, 72, 73 Area 12 4 Summary of Recommendations 17	2	Cor	nfirmational Monitoring Overview	3
3.1 BA-MW-6 Area 4 3.2 Boiler/Baghouse Area 5 3.3 Bunker C ASTs Area 6 3.4 CN-B-2 Area 6 3.5 GF-11 Area 6 3.6 Hydraulic Barker Vault Area 6 3.7 Naval Reserve Parcel UST Area 10 3.8 Naval Reserve Parcel South Area 10 3.9 Rail Car Dumper Area 11 3.10 REC2-MW-5 Area (near Diesel AST) 12 3.11 SHB-MW-1 Area 12 3.12 UST 29/Latex Spill Area 12 3.13 UST 70 Area 12 3.14 USTs 71, 72, 73 Area 12 4 Summary of Recommendations 17				
3.2 Boiler/Baghouse Area 5 3.3 Bunker C ASTs Area 6 3.4 CN-B-2 Area 6 3.5 GF-11 Area 6 3.6 Hydraulic Barker Vault Area 6 3.6 Hydraulic Barker Vault Area 6 3.7 Naval Reserve Parcel UST Area 10 3.8 Naval Reserve Parcel South Area 10 3.9 Rail Car Dumper Area 11 3.10 REC2-MW-5 Area (near Diesel AST) 12 3.11 SHB-MW-1 Area 12 3.12 UST 29/Latex Spill Area 13 3.13 UST 70 Area 14 3.14 USTs 71, 72, 73 Area 15 4 Summary of Recommendations 17	3	Cor	firmational Monitoring Results by Area	4
3.3 Bunker C ASTs Area 6 3.4 CN-B-2 Area 8 3.5 GF-11 Area 9 3.6 Hydraulic Barker Vault Area 9 3.6 Hydraulic Barker Vault Area 9 3.7 Naval Reserve Parcel UST Area 10 3.8 Naval Reserve Parcel South Area 10 3.9 Rail Car Dumper Area 10 3.10 REC2-MW-5 Area (near Diesel AST) 12 3.11 SHB-MW-1 Area 12 3.12 UST 29/Latex Spill Area 13 3.13 UST 70 Area 14 3.14 USTs 71, 72, 73 Area 15 4 Summary of Recommendations 17		3.1	BA-MW-6 Area	4
3.4 CN-B-2 Area 8 3.5 GF-11 Area 9 3.6 Hydraulic Barker Vault Area 9 3.7 Naval Reserve Parcel UST Area 10 3.8 Naval Reserve Parcel South Area 10 3.9 Rail Car Dumper Area 10 3.10 REC2-MW-5 Area (near Diesel AST) 12 3.11 SHB-MW-1 Area 12 3.12 UST 29/Latex Spill Area 13 3.13 UST 70 Area 14 3.14 USTs 71, 72, 73 Area 15 4 Summary of Recommendations 17		3.2	Boiler/Baghouse Area	5
3.5 GF-11 Area		3.3	Bunker C ASTs Area	6
3.6 Hydraulic Barker Vault Area 9 3.7 Naval Reserve Parcel UST Area 10 3.8 Naval Reserve Parcel South Area 10 3.9 Rail Car Dumper Area 10 3.10 REC2-MW-5 Area (near Diesel AST) 12 3.11 SHB-MW-1 Area 12 3.12 UST 29/Latex Spill Area 13 3.13 UST 70 Area 14 3.14 USTs 71, 72, 73 Area 15 4 Summary of Recommendations 17		3.4	CN-B-2 Area	8
3.7 Naval Reserve Parcel UST Area 10 3.8 Naval Reserve Parcel South Area 10 3.9 Rail Car Dumper Area 11 3.10 REC2-MW-5 Area (near Diesel AST) 12 3.11 SHB-MW-1 Area 12 3.12 UST 29/Latex Spill Area 13 3.13 UST 70 Area 14 3.14 USTs 71, 72, 73 Area 15 4 Summary of Recommendations 17		3.5	GF-11 Area	9
3.8 Naval Reserve Parcel South Area 10 3.9 Rail Car Dumper Area 11 3.10 REC2-MW-5 Area (near Diesel AST) 12 3.11 SHB-MW-1 Area 12 3.12 UST 29/Latex Spill Area 13 3.13 UST 70 Area 14 3.14 USTs 71, 72, 73 Area 15 4 Summary of Recommendations 17		3.6	Hydraulic Barker Vault Area	9
3.9 Rail Car Dumper Area 11 3.10 REC2-MW-5 Area (near Diesel AST) 12 3.11 SHB-MW-1 Area 12 3.12 UST 29/Latex Spill Area 13 3.13 UST 70 Area 14 3.14 USTs 71, 72, 73 Area 15 4 Summary of Recommendations 17		3.7	Naval Reserve Parcel UST Area	.10
3.10 REC2-MW-5 Area (near Diesel AST) 12 3.11 SHB-MW-1 Area 12 3.12 UST 29/Latex Spill Area 13 3.13 UST 70 Area 14 3.14 USTs 71, 72, 73 Area 15 4 Summary of Recommendations 17		3.8	Naval Reserve Parcel South Area	.10
3.11 SHB-MW-1 Area 12 3.12 UST 29/Latex Spill Area 13 3.13 UST 70 Area 14 3.14 USTs 71, 72, 73 Area 15 4 Summary of Recommendations 17		3.9	Rail Car Dumper Area	.11
3.12 UST 29/Latex Spill Area 13 3.13 UST 70 Area 14 3.14 USTs 71, 72, 73 Area 15 4 Summary of Recommendations 17		3.10	REC2-MW-5 Area (near Diesel AST)	.12
3.13 UST 70 Area		3.11	SHB-MW-1 Area	.12
3.14 USTs 71, 72, 73 Area 15 4 Summary of Recommendations 17		3.12	UST 29/Latex Spill Area	.13
4 Summary of Recommendations17		3.13	UST 70 Area	.14
-		3.14	USTs 71, 72, 73 Area	.15
5 References	4	Sun	nmary of Recommendations	17
	5	Ref	erences	19
Limitations19	Liı	nitatio	ons	19

List of Tables

1	Preliminary Cleanup Levels for Confirmational Groundwater Monitoring Analytes
2	Confirmational Groundwater Monitoring Data for BA-MW-6 Area
3	Confirmational Groundwater Monitoring Data for Boiler/Baghouse Area
4	Confirmational Groundwater Monitoring Data for Bunker C ASTs Area
5	Confirmational Groundwater Monitoring Data for CN-B-2 Area
6	Confirmational Groundwater Monitoring Data for GF-11 Area

- 7 Confirmational Groundwater Monitoring Data for Hydraulic Barker Vault Area
- 8 Confirmational Groundwater Monitoring Data for Naval Reserve Parcel UST Area
- 9 Confirmational Groundwater Monitoring Data for Naval Reserve Parcel South Area
- 10 Confirmational Groundwater Monitoring Data for Rail Car Dumper Area
- 11 Confirmational Groundwater Monitoring Data for REC2-MW5 Area (near Diesel AST)
- 12 Confirmational Groundwater Monitoring Data for SHB-MW-1 Area
- 13 Confirmational Groundwater Monitoring Data for UST 29/Latex Spill Area
- 14 Confirmational Groundwater Monitoring Data for UST 70 Area
- 15 Confirmational Groundwater Monitoring Data for USTs 71, 72, 73 Area
- 16 Recommended Additional Groundwater Monitoring for Interim Action Areas

List of Figures

- 1 Interim Action Excavations and Confirmational Groundwater Monitoring Wells
- 2 Confirmational Monitoring Wells, BA-MW-6 Interim Action Area
- 3 Confirmational Monitoring Wells, Boiler/Baghouse Interim Action Area
- 4 Confirmational Monitoring Wells, Bunker C ASTs Interim Action Area
- 5 Confirmational Monitoring Wells, CN-B-2 Interim Action Area
- 6 Confirmational Monitoring Well, GF-11 Interim Action Area
- 7 Confirmational Monitoring Well, Hydraulic Barker Vault Interim Action Area
- 8 Confirmational Monitoring Wells, Naval Reserve Parcel UST Interim Action Area
- 9 Confirmational Monitoring Wells, Naval Reserve Parcel South Interim Action Area
- 10 Confirmational Monitoring Well, Rail Car Dumper Interim Action Area
- 11 Confirmational Monitoring Wells, REC2-MW-5 (near Diesel AST) Interim Action Area
- 12 Confirmational Monitoring Wells, SHB-MW-1 Interim Action Area
- 13 Confirmational Monitoring Wells, UST 29/Latex Spill Interim Action Area
- 14 Confirmational Monitoring Wells, UST 70 Interim Action Area
- 15 Confirmational Monitoring Wells, Bunker C USTs 71, 72, 73 Interim Action Area
- 16 Locations of Wells Recommended for Additional Groundwater Monitoring for Interim Action Areas

List of Appendices

- A Boring Logs for New Monitoring Wells
- B Data Validation Reports

Acronyms

Aspect	Aspect Consulting, LLC
AST	above-ground storage tank
BA	Boiler Area
BTEX	benzene, toluene, ethylbenzene, and xylenes
COC	contaminant of concern
CN	Clark Nickerson mill
сРАН	carcinogenic polycyclic aromatic hydrocarbon
DAST	REC2-MW-5 Area, located near Diesel AST
Ecology	Washington State Department of Ecology
EIM	Environmental Information Management
EPH	extractable petroleum hydrocarbons
ESA	Environmental Site Assessment
FS	Feasibility Study
GF	General Fill
IA	interim action
IACL	interim action cleanup level for soil
K-C	Kimberly-Clark Worldwide Inc.
LLC	limited liability company
mg/kg	milligrams/kilograms
mg/L	milligrams per liter
MTCA	Model Toxics Control Act
NAPL	non-aqueous phase liquid
NRU	Naval Reserve Parcel UST Area
NRS	Naval Reserve Parcel South Area
Order	Agreed Order No. DE 9476
РАН	polycyclic aromatic hydrocarbon
PCB	polychlorinated biphenyl
PCL	preliminary cleanup level
рН	negative log of the hydrogen ion concentration in solution
PQL	practical quantitation limit
RCD	Rail Car Dumper Area

REC	recognized environmental condition
RI	Remedial Investigation
RI/FS	Remedial Investigation/Feasibility Study
SAP	Sampling and Analysis Plan
SHB	Small Hydraulic Barker
Site	K-C Worldwide Site
SVOC	semivolatile organic compound
TCLP	toxicity characteristic leaching procedure
TEE	terrestrial ecological evaluation
TEQ	toxic equivalent quotient/concentration
ТРН	total petroleum hydrocarbons
TSS	total suspended solids
μg/L	micrograms per liter
U.S.	United States
Upland Area	Upland Area of the Kimberly-Clark Worldwide Site
UST	underground storage tank
VI	vapor intrusion
VOC	volatile organic compound
WAC	Washington Administrative Code
Work Plan	Interim Action Confirmational Groundwater Monitoring Work Plan

1 Introduction

Aspect Consulting, LLC (Aspect) has prepared this Confirmational Groundwater Monitoring Report (Monitoring Report), on behalf of Kimberly-Clark Worldwide, Inc. (K-C), to present results from the post-Interim Action confirmational groundwater monitoring activities on the Upland Area of the Kimberly-Clark Worldwide Site (herein referred to as the Upland Area; Figure 1). The confirmational groundwater monitoring was completed in accordance with the Interim Action Confirmational Groundwater Monitoring Work Plan (Work Plan; Aspect, 2014a).

As described in the Interim Action Report (Aspect, 2015a), the Upland Area interim action involved excavation and off-site disposal of approximately 38,500 tons of contaminated material, with concurrent dewatering to facilitate soil removal and handling. In addition, separate-phase petroleum encountered during excavation activities was collected and properly disposed of offsite. The 15 interim action areas and the contaminants of concern (COCs) targeted for removal in each were as follows (excavation areas are shown on Figure 1):

- BA-MW-6 Area within the Boilers Area
 - Oil-range total petroleum hydrocarbons (oil-range TPH)
- Boiler/Baghouse Area
 - Lead
- Bunker C Aboveground Storage Tanks (ASTs) Area
 - Oil-range TPH, gasoline-range TPH, and polycyclic aromatic hydrocarbons (PAHs) associated with the oil-range petroleum
- CN-B-2 Area within the former Clark-Nickerson lumber mill area
 - Oil-range TPH
- GF-11 Area located adjacent to the former digesters within the Pulp Mill Area
 - Lead
- Heavy Duty Shop Sump Area ¹
 - Oil-range TPH
- Hydraulic Barker Vault Area
 - Oil-range TPH

¹ Contamination of this area was inferred in the Phase 1 ESA but was not confirmed by the interim action field screening or analytical data. Therefore, no confirmational groundwater monitoring was conducted for this area in accordance with the Work Plan.

- Naval Reserve Parcel Underground Storage Tank (UST) Area
 - Diesel-range TPH and gasoline-range TPH
- Naval Reserve Parcel South Area
 - Oil-range TPH and gasoline-range TPH
- Rail Car Dumper Area
 - Oil-range TPH
- **REC2-MW-5** Area (near Diesel AST)
 - Oil-range TPH
- SHB-MW-1 Area within the Smaller Hydraulic Barker Area
 - Oil-range TPH, gasoline-range TPH, and copper
- UST 29/Latex Spill Area
 - Xylene and latex
- UST 70 Area
 - Diesel-range TPH
- Bunker C USTs 71, 72, 73 Area
 - Oil-range TPH

The Interim Action Plan (Aspect, 2012) outlined the interim action's compliance monitoring program. The compliance monitoring program, in accordance with Chapter 173-340-410 of the Washington Administrative Code (WAC), included protection monitoring for on-site cleanup worker health and safety, performance monitoring in the form of excavation verification soil sampling and analysis to confirm meeting of interim action cleanup levels (IACLs) for soil, and confirmational monitoring (groundwater sampling and analysis) to confirm the effectiveness of the interim action to be protective of groundwater by removing the sources of groundwater monitoring program protocols.

This Monitoring Report describes the post-excavation groundwater confirmational monitoring activities and results for each interim action area, as well as recommendations regarding additional groundwater monitoring in each area.

Based on review of the data presented in this Monitoring Report, the Washington State Department of Ecology will determine whether preliminary cleanup levels (PCLs) have been met for the target contaminants at specific interim action cleanup areas. If Ecology determines that the data do not adequately demonstrate compliance with PCLs for specific areas, additional confirmational groundwater monitoring will be conducted for those areas as agreed to with Ecology.

2 Confirmational Monitoring Overview

The goal for post-excavation confirmational groundwater monitoring is to verify whether the completed interim action soil cleanup activities have removed sufficient contaminant source material to be protective of groundwater in each area.

Figure 1 depicts the locations of the Upland Area interim action excavations and confirmational monitoring wells. Figure 1 also depicts the interpreted water table elevation contours from the November 2013 Remedial Investigation (RI) water level measurement event. The groundwater flow directions across the Upland Area are generally toward the west, with discharge to the East Waterway, as expected, but with localized flow direction variations from northwest to southwest. However, the November 2013 water level data also demonstrate a pronounced east-west-trending groundwater mound within the footprint of the former Log Pond, as described in the Work Plan (Aspect, 2014a). Review of the collective water level and tidal monitoring data collected during the site investigations to date indicates that the bulkhead constructed around the perimeter of the former Log Pond acts as a low-permeability barrier to groundwater flow, which allows the mound within the Log Pond to be maintained; the forthcoming RI/FS will describe in detail the hydrogeology and water level data for the Upland Area including the Log Pond. The local groundwater flow directions at each interim action area are depicted on the respective Figures 2 through 15.

For this monitoring program, 36 new monitoring wells were installed, considering local groundwater flow directions, and a combination of 38 new and pre-existing monitoring wells were sampled in accordance with the Work Plan (Aspect, 2014a). Well logs for the new wells are included in Appendix A. Chemical analyses for the groundwater monitoring in each area were determined in the Work Plan based on the COCs that identified the area for soil cleanup and the results of the excavation verification soil sampling and analysis. The monitoring well locations and chemical analyses for each interim action soil cleanup area are detailed in Section 3. In accordance with the Work Plan, the confirmational groundwater monitoring was conducted on a quarterly basis for one year (May, August, November 2014 and February 2015) to assess potential seasonal variability in groundwater quality.

Aspect conducted an independent quality assurance validation for the four rounds of analytical data. All data, as qualified, are usable for their intended purposes. The validation reports for the collective data are included in Appendix B. The four rounds of validated analytical data have been uploaded to and are available from Ecology's Environmental Information Management (EIM) database. The original laboratory certificates of analysis are on file at Aspect and available upon request.

2.1 Preliminary Cleanup Levels for Groundwater

The confirmational groundwater monitoring data are compared against groundwater preliminary cleanup levels (PCLs) established for the Upland Area. Because drinking water is not a practicable future use for groundwater at the Upland Area, the established groundwater PCLs are the most stringent criteria based on protection of the adjacent marine water body (East Waterway) and protection from vapor intrusion (VI) into future

structures (indoor air) on the property assuming a future industrial use consistent with the prospective buyer's planned redevelopment as a marine terminal. The process for deriving the groundwater PCLs is detailed in the RI Data Report (Aspect, 2014c). The PCL values were updated and approved by Ecology following review and discussion of the RI Data Report, and those values are applied in this Monitoring Report. The groundwater PCLs for compounds analyzed for in the confirmational groundwater monitoring program are presented in Table 1, and are listed in the area-specific data tables referenced in Section 3.

Based on an evaluation of the metals data from unfiltered groundwater samples versus filtered groundwater samples ("total" versus "dissolved" metals data, respectively) taken during Upland Area groundwater sampling (Aspect, 2014b), Ecology, in July 2014, concurred with K-C that dissolved metals are the appropriate measurement to represent groundwater quality for the Upland Area. Consequently, the groundwater PCLs for metals apply to dissolved metals data.

During the first quarter monitoring in May 2014, prior to Ecology's determination to use dissolved metals data, samples were analyzed for total metals, and samples with total metal(s) detected at concentrations greater than the screening levels were subsequently also analyzed for dissolved metals. The concentration resulting from a total metals analysis will generally be greater than the concentration resulting from a dissolved metals analysis of the same groundwater sample. Therefore, for samples lacking a dissolved metal will be considered in compliance. There were three first quarter groundwater samples with total metals concentrations exceeding respective PCLs for which the unfiltered water samples were lost so dissolved metals analyses could not be conducted. For these samples (discussed by area in Section 3), the total metals data are used for assessment purposes.

3 Confirmational Monitoring Results by Area

This section describes the four quarters of confirmational groundwater monitoring results, organized by interim action area. It demonstrates which wells and analytes have met PCLs, and makes recommendations for wells and analytes that warrant continued monitoring as part of the interim action. It's noted that the proposed monitoring of the interim action areas may be terminated and superseded by monitoring dictated by the cleanup alternative selected for the upland portion of the Site as part of the Cleanup Action Plan. Figures 2 through 15 show, for each interim action area, the soil excavation area, monitoring well locations for confirmational groundwater monitoring, and the local groundwater flow direction. Tables 2 through 15 present the analytical data for the respective areas. Detected COC concentrations exceeding PCLs are highlighted in the data tables.

3.1 BA-MW-6 Area

Oil-range TPH was the COC targeted in the interim action for this area. The interim action excavation area and excavation verification soil sample locations are shown on

Figure 2. Following the interim action soil removal and verification soil sampling, residual soil contaminant concentrations within the excavated area met soil IACLs that were based on industrial use including groundwater protection (Aspect, 2015a).

Confirmational groundwater monitoring for this area was completed at new monitoring well BA6-MW-101, located on the downgradient edge of the small excavation, as shown on Figure 2. The four quarters of confirmational groundwater samples were submitted for laboratory analysis of:

- Diesel- and oil-range TPH
- PAHs.

The results for all four quarters were below respective groundwater PCLs. These results can be found in Table 2.

Because the petroleum source was removed and groundwater concentrations meet PCLs, Aspect recommends no further groundwater monitoring for this interim action area.

3.2 Boiler/Baghouse Area

Lead was the COC targeted in the interim action for this area. The interim action excavation area and excavation verification soil samples are shown on Figure 3. Following the interim action soil removal and verification soil sampling, residual soil contaminant concentrations within the excavated area met soil IACLs based on industrial worker direct contact. However, residual soil concentrations of copper, mercury, and zinc within the excavated area exceeded their respective soil IACLs based on assumed groundwater leaching to protect the marine environment (Aspect, 2015a).

Confirmational groundwater monitoring for this area was completed at new monitoring wells BBH-MW-101 and BBH-MW-102 on the downgradient (west) end of the excavation, and wells BBH-MW-103 and BBH-MW-104 adjacent to the eastern portion of the excavation, as shown on Figure 3. The four quarters of confirmational groundwater samples were submitted for laboratory analysis of:

- Arsenic
- Copper
- Lead
- Mercury
- Zinc

The results can be found in Table 3.

In the four quarters of monitoring, well BBH-MW101 had one detection (5.8 ug/L) marginally above the 5 ug/L PCL for arsenic, and two detections (up to 78 ug/L) considerably above the 3.1 ug/L PCL for copper.

Downgradient well BBH-MW102 did not have any detections above PCLs.

Adjacent to the easternmost portion of the excavation, well BBH-MW103 had exceedances for arsenic (up to 32.7 ug/L), copper (up to 269 ug/L), and mercury (up to 4.2 ug/L) in three out of four quarters of monitoring. BBH-MW103 also had a lead detection (102 ug/L) during the 4th quarter of sampling that was very anomalous relative to prior samples from that well and any well surrounding; the arsenic and copper results for that sample were also considerably above prior detected concentrations (Table 3). The well was therefore resampled in April 2015 to verify the 4th quarter results. The results of the resample had a lead detection below the PCL (1.46 ug/L), which was in line with previous results; the concentrations of the others metals were also considerably lower than detected in the 4th quarter event, but were still above their respective PCLs. As described above, the directly downgradient wells BBH-MW101 did not have lead or mercury detections above PCLs.

Also adjacent to the easternmost portion of the excavation, well BBH-MW104 had one detection above the PCL for arsenic (11.7 ug/L), and four detections (up to 356 ug/L) above the PCL for zinc during the four quarters of monitoring. As described above, the directly downgradient well BBH-MW102 did not have detections above PCLs for arsenic or zinc.

In summary, groundwater metals exceedances were more consistent and of higher magnitude along the upgradient (eastern) portion of the excavation. At the downgradient side of the excavation, copper was the only metal detected above PCLs more than once, and only in one of two wells.

Based on the data to date, Aspect recommends continuing monitoring at each of the four wells in the Boiler/Baghouse Area for the same suite of metals. We also recommend monitoring of wells REC3-MW-1R and PM-MW-8, located near the shoreline generally downgradient of this excavation area (Figure 3), so as to assess potential migration of metals downgradient to the shoreline, which is information useful for the RI/FS. The proposed frequency for additional monitoring is presented in Section 4.

3.3 Bunker C ASTs Area

Oil-range TPH (Bunker C fuel oil) and associated PAHs were the COCs targeted in the interim action for this area. The interim action excavation area and excavation verification soil sample locations are shown on Figure 4. Following the interim action soil removal and verification sampling, residual soil concentrations of gasoline-range TPH, diesel-range TPH, total cPAH (TEQ²), copper, and mercury at one or more sample locations within the area exceeded their respective soil PCLs based on groundwater protection (Aspect, 2015a). The residual TPH exceedances were located in sidewall samples at/beneath the northern edge of the Warehouse. Petroleum-contaminated soil beneath the Warehouse was not targeted for removal during the interim action since the Warehouse may remain in the future (Aspect, 2015a).

Confirmational groundwater monitoring for this area was completed at eight new monitoring wells BCT-MW-101 through BCT-MW-108, as shown on Figure 4. Wells BCT-MW-101 through BCT-MW-104 were completed along the northern edge of the

² Total toxicity equivalence, calculated using toxicity equivalency factor in accordance with WAC

¹⁷³⁻³⁴⁰⁻⁷⁰⁸⁽⁸⁾⁽e) and assuming non-detected values are present at ½ the analytical reporting limit.

Warehouse to assess whether petroleum hydrocarbons are migrating in groundwater from petroleum-contaminated soils beneath the Warehouse. New wells BCT-MW-105 through BCT-MW-107 were completed along the downgradient edge of the excavation, and well BCT-MW-108 was completed on the northernwestern edge of the excavation. The four rounds of confirmational groundwater samples for this area were submitted for laboratory analysis of:

- Gasoline-range TPH
- Benzene, toluene, ethylbenzene, and xylenes (BTEX)
- Diesel- and oil-range TPH
- PAHs
- Copper
- Lead
- Mercury

The results for this area can be found in Table 4.

During the four quarters of sampling, seven of the eight wells had TPH results below PCLs. The sole TPH exceedance was a gasoline-range TPH concentration detected at well BCT-MW103 during sampling quarter one (1,100 ug/L, above the 1,000 ug/L PCL); this early detection may be due to mobilization of contaminants due to disturbance of soil during the recent large-scale excavation of petroleum-contaminated soil. TPH results for this well were below PCLs in the subsequent monitoring events. TPHs were not detected in wells BCT-MW-101 and BCT-MW-102, and there were no cPAH or BTEX detections above PCLs in any of the BCT wells. Notably, benzene was not detected in any of the 32 groundwater samples, consistent with prior data.

There was one exceedance of the 89 ug/L VI-based industrial land use PCL^3 detected for naphthalene at well BCT-MW-108 (130 ug/L) located along the northern edge of the excavation (Figure 4). The naphthalene exceedance in that well was detected during the first sampling event, and the detected concentrations in the subsequent three sampling events were below the PCL (Table 4).

Regarding dissolved metals, there were exceedances of the 3.1 ug/L copper PCL detected during the last two of four sampling events at wells BCT-MW-103, BCT-MW-106, and BCT-MW-107 (up to 13.3 ug/L). In addition, there was a mercury detection (0.0255 ug/L) very slightly above the 0.025 ug/L PCL in one of four samples collected from well BCT-MW-105.

In summary, following removal of roughly 9,700 tons of petroleum-contaminated material including non-aqueous phase liquid (NAPL) oil from the Bunker C ASTs Area, TPH and cPAH concentrations in groundwater met PCLs at all locations, except the one

³ Note that the naphthalene groundwater PCLs are based on VI, and the maximum detected naphthalene concentration in groundwater is an order of magnitude below the 4,700 ug/L marine water quality standard.

TPH-gasoline exceedance detected in four samples collected from well BCT-MW-103 located along the north wall of the Warehouse. The first groundwater sample collected from well BCT-MW-108 on the north edge of the excavation contained a naphthalene concentration exceeding the VI-based PCL for industrial use. Naphthalene concentrations in that well and in adjacent well BCT-MW-107 exceeded the VI-based PCL for unrestricted use in all four monitoring quarters.

Aspect recommends continued monitoring for gasoline-range TPH with BTEX, dieseland oil-range TPH, and PAHs at wells BCT-MW-103 through BCT-MW-108. We also recommend monitoring for these compounds plus dissolved copper at downgradient shoreline wells MW-1 and MW-2 (Figure 4), so as to assess potential migration of these constituents downgradient to the shoreline, which is information useful for the RI/FS. The proposed frequency for additional monitoring is presented in Section 4.

3.4 CN-B-2 Area

Oil-range TPH was the COC targeted in the interim action for this area. The interim action excavation area and excavation verification soil sample locations are shown on Figure 5. Following the interim action soil removal and verification sampling, residual soil concentrations of total cPAH, arsenic, copper, and lead in one or more sample locations within the excavated area exceeded their respective soil PCLs based on groundwater leaching to protect the marine environment (Aspect, 2015a).

Confirmational groundwater monitoring for this area was completed at new monitoring wells CN-MW-101 through CN-MW-104 located along the downgradient edge of the excavation, as shown on Figure 5. The four quarters of confirmational groundwater samples were submitted for laboratory analysis of:

- Diesel- and oil-range TPH
- PAHs
- Arsenic
- Copper
- Lead.

During the four quarters of sampling, the TPH, BTEX, and PAH concentrations were below respective PCLs; in fact, TPH was not detected in any of the 16 samples. There was one slight exceedance of arsenic (5.1 ug/L) detected in well CN-MW-101 during sampling quarter two; the other three samples had detected arsenic below the 5 ug/L PCL. Concentrations of dissolved copper and lead were below respective PCLs in all samples. The results can be found in Table 5.

In Summary, Aspect recommends further sampling in the CN-B-2 Area at well CN-MW-101 for dissolved arsenic. Because the petroleum source (6,560 tons of contaminated soil) was removed and groundwater TPH and PAH concentrations meet PCLs, further groundwater monitoring for those analytes is not proposed for this area. The proposed frequency for additional monitoring is presented in Section 4.

3.5 GF-11 Area

Lead was the COC targeted in the interim action for this area. The interim action excavation area and excavation verification soil sample locations are shown on Figure 6. Following the interim action soil removal and verification sampling, residual soil contaminant concentrations within the excavated area meet soil PCLs based on industrial worker direct contact. However, residual soil concentrations of copper and mercury within the excavated area exceeded soil PCLs based on groundwater leaching to protect the marine environment (Aspect, 2015a).

Confirmational groundwater monitoring for this area was completed at new monitoring well GF11-MW-101 located on the downgradient edge of the excavation, as shown on Figure 6. The four rounds of confirmational groundwater samples were submitted for laboratory analysis of:

- Copper
- Lead
- Mercury

The detected dissolved lead and copper concentrations for all four quarters were below their PCLs. The mercury results were below PCLs during sampling quarters one and two, but were slightly above PCLs for sampling quarters three and four (up to 0.044 ug/L). The results can be found in Table 6.

In summary, Aspect recommends to continue sampling in the GF-11 Area at well GF11-MW-101 for analysis of dissolved mercury. Because the lead source (224 tons of hazardous lead soil) was removed and groundwater lead concentrations meet PCLs, further groundwater monitoring for lead is not proposed for this area. The proposed frequency for additional monitoring is presented in Section 4.

3.6 Hydraulic Barker Vault Area

Oil-range TPH was the COC targeted in the interim action for this area based on observed oily material in a small subsurface vault encountered during mill demolition. The interim action excavation area and excavation verification soil samples are shown on Figure 7. Following the interim action soil removal and verification sampling, residual soil contaminant concentrations within the excavated area met soil PCLs based on industrial use including groundwater protection (Aspect, 2015a)

Confirmational groundwater monitoring for this area was completed at new monitoring well HBV-MW-101 located on the downgradient edge of the excavation, as shown on Figure 7. The four quarters of confirmational groundwater samples were submitted for laboratory analysis of:

- Diesel- and oil-range TPH
- PAHs

The results for all four quarters were below PCLs. These results can be found in Table 7.

In Summary, because the petroleum source was removed and groundwater TPH and PAH concentrations meet PCLs, Aspect recommends no further groundwater monitoring for the Hydraulic Barker Vault Area.

3.7 Naval Reserve Parcel UST Area

Diesel-range and gasoline-range TPH, left in place following the Navy's removal of gasoline and diesel USTs (Foster Wheeler, 1998), were the COCs targeted in the interim action for this area. The interim action excavation area and excavation verification soil sample locations are shown on Figure 8. Following the interim action soil removal and verification sampling, residual soil contaminant concentrations within the excavated area met soil PCLs based on industrial use including groundwater protection, with the exception of one sample containing 0.53 mg/kg total cPAH (TEQ) concentration, which exceeds the PCL based on groundwater leaching for marine protection (Aspect, 2015a).

Confirmational groundwater monitoring for this area was completed at existing monitoring well NRP-MW-2 and new monitoring wells NRU-MW-101 and NRU-MW-102, located along the downgradient edge of the excavation, as shown on Figure 8. The four quarters of confirmational groundwater samples were submitted for laboratory analysis of:

- Gasoline-range TPH
- BTEX
- Diesel- and oil-range TPH
- PAHs

The TPH, BTEX, and PAH results for all four quarters were below respective PCLs; in fact, TPH was not detected in any of the samples. These results can be found in Table 8.

In Summary, because the petroleum source (2,280 tons of petroleum-contaminated soil) was removed and groundwater concentrations meet PCLs, Aspect recommends no further groundwater monitoring for Naval Reserve Parcel UST Area.

3.8 Naval Reserve Parcel South Area

Gasoline-range and oil-range TPH were the COCs targeted in the interim action for this area. The interim action excavation area and excavation verification soil sample locations are shown on Figure 9. Following the interim action soil removal and verification sampling, residual soil contaminant concentrations within the excavated area met soil PCLs based on industrial use including groundwater protection (Aspect, 2015a).

Confirmational groundwater monitoring for this area was completed at new monitoring wells NRS-MW-101 and NRS-MW-102, as shown on Figure 9. The four quarters of confirmational groundwater samples were submitted for laboratory analysis of:

- Gasoline-range TPH
- BTEX
- Diesel- and oil-range TPH

FINAL

• PAHs

The TPH, BTEX, and PAH results for all four quarters were below the PCL. TPH, BTEX, and cPAHs were not detected in any of the samples. These results can be found in Table 9.

In summary, because the petroleum source (1,710 tons of petroleum-contaminated soil) was removed and groundwater concentrations meet PCLs, Aspect recommends no further groundwater monitoring for the Naval Reserve Parcel South Area.

3.9 Rail Car Dumper Area

Oil-range TPH was the COC targeted in the interim action for this area, based on oil staining observed on the structure (REC 4) during the Phase 1 environmental site assessment (AECOM, 2011). The interim action excavation area and excavation verification soil sample locations are shown on Figure 10. Following the interim action soil removal and verification sampling, residual soil contaminant concentrations within the excavated area met soil PCLs based on industrial use including groundwater protection (Aspect, 2015a).

Confirmational groundwater monitoring for this area was completed at new monitoring well RCD-MW-101 located near the downgradient edge of the excavation, as shown on Figure 10. The four rounds of confirmational groundwater samples were submitted for laboratory analysis of:

- Diesel- and oil-range TPH
- PAHs
- Arsenic
- Copper
- Mercury
- Nickel

During the four quarters of groundwater monitoring, there were no detections of TPH or PAHs. There were, however, one or more detections of dissolved copper and nickel exceeding PCLs, even though they were not targeted COCs. The copper exceedance (4.52 ug/L) was detected in sampling quarter two only. The detected nickel concentrations (up to 159 ug/L) exceeded the PCL during all four quarters, with relatively lower concentrations detected in quarters three and four. These results can be found in Table 10.

In summary, Aspect recommends continued sampled of the Rail Car Dumper Area at well RCD-MW-101 for dissolved copper and nickel. The proposed frequency for additional monitoring is presented in Section 4.

3.10 REC2-MW-5 Area (near Diesel AST)

Oil-range TPH was the COC targeted in the interim action for this area. The interim action excavation area and excavation verification soil sample locations are shown on Figure 11. Following the interim action soil removal and verification sampling, contaminant concentrations within the excavated area met soil PCLs based on industrial worker direct contact, and petroleum concentrations met PCLs. However, residual soil concentrations of copper and mercury within the excavated area exceeded the soil PCLs based on groundwater leaching to protect the marine environment (Aspect, 2015a). In addition, residual PCB concentrations exceeded soil PCLs for unrestricted soil direct contact (but not industrial direct contact), and exceeded a MTCA-default, soil screening level based on groundwater leaching to protect the marine environment.

Confirmational groundwater monitoring for this area was completed at new monitoring well DAST-MW-101 located on the downgradient edge of the excavation, as shown on Figure 11. The four quarters of confirmational groundwater samples were submitted for laboratory analysis of:

- Diesel- and oil-range TPH
- PAHs
- Copper
- Mercury

The results for all four quarters were below the respective PCLs. These results can be found in Table 11.

However, because residual soil concentrations within the excavation exceeded the leachability-based screening level, groundwater from well DAST-MW-101 in the REC2-MW-5 Area will be sampled and analyzed for PCBs in accordance with the RI/FS Work Plan (Aspect, 2015b).

3.11 SHB-MW-1 Area

Gasoline-range TPH, oil-range TPH, and copper were the COCs targeted in the interim action for this area. The interim action excavation area and excavation verification soil sample locations are shown on Figure 12. Following the interim action soil removal and verification sampling, COC concentrations within the excavated area met soil PCLs based on industrial worker direct contact, and petroleum concentrations met PCLs. However, residual soil concentrations of copper and mercury within the excavated area exceeded the soil PCLs based on groundwater leaching to protect the marine environment (Aspect, 2015a).

Confirmational groundwater monitoring for this area was completed at new monitoring well SHB-MW-101 and SHB-MW-102, as shown on Figure 12. The four quarters of confirmational groundwater samples were submitted for laboratory analysis of:

- Gasoline-range TPH
- BTEX

- Diesel- and oil-range TPH
- PAHs
- Copper
- Mercury

The results can be found in Table 12.

Neither well had detections of TPH above PCLs during the four quarters of monitoring. Well SHB-MW-102 also did not have any detections of metals or cPAHs above PCLs during the four quarters of monitoring. Well SHB-MW-101 had one low-level exceedance for cPAH (0.026 ug/L) during sampling quarter one, but subsequent sampling events were below the PCL. SHB-MW-101 also had one low-level copper exceedance during quarter one (3.5 ug/L) and mercury exceedances during quarters one and three (up to 0.064 ug/L), but the detections were inconsistent and do not exhibit a pattern.

In summary, Aspect recommends continued sampling of SHB-MW-1 Area at well SHB-MW-101 for dissolved copper and mercury, and PAHs. The proposed frequency for additional monitoring is presented in Section 4.

3.12 UST 29/Latex Spill Area

Total xylenes were the COCs targeted in the interim action for this area. The interim action excavation area and excavation verification soil sample locations are shown on Figure 13. While the latex product spilled in this area contained trace concentrations of formaldehyde, vinyl acetate, and 1,4-dioxane, those compounds were not detected at concentrations greater than analytical reporting limits in soil or groundwater during the Phase 2 ESA (Aspect, 2013a). Following the interim action soil removal and verification sampling, contaminant concentrations within the excavated area met soil PCLs based on industrial use including groundwater protection (Aspect, 2015a).

Confirmational groundwater monitoring for this area was completed at new monitoring wells UST29-MW-101 and UST29-MW-102, located on the downgradient edge of the excavation, and at new monitoring well UST29-MW-103, located within the footprint of the former xylene UST 29, as shown on Figure 13. The four quarters of confirmational groundwater samples were submitted for laboratory analysis of:

- Gasoline-range TPH
- BTEX
- Diesel- and Oil-range TPH
- PAHs

The gasoline-range TPH, BTEX, and diesel- and oil-range TPH results for each of the three wells during all four quarters were below the PCLs. Gasoline-range TPH and xylenes were not detected within the footprint of the former UST (UST29-MW-103), but were detectable at concentrations well below PCLs at downgradient well UST29-MW-102. In addition, there were detections of cPAHs (up to 0.051 ug/L) above the PCL

during three out of four quarters in well UST29-MW101. The results can be found in Table 13.

The confirmational groundwater data confirm that the xylene contaminant source (5,440 tons of xylene-contaminated soil) was successfully removed during the interim action, and groundwater concentrations for that COC meet PCLs.

In summary, Aspect recommends to continue sampling of the UST 29/Latex Spill Area at well UST29-MW-101 for analysis of PAHs. The proposed frequency for additional monitoring is presented in Section 4.

3.13 UST 70 Area

Diesel-range TPH was the COC targeted in the interim action for this area. The interim action excavation area and excavation verification soil sample locations are shown on Figure 14. Following the interim action soil removal and verification soil sampling, contaminant concentrations within the excavated area met soil PCLs based on industrial use including groundwater protection (Aspect, 2015a).

Confirmational groundwater monitoring for this area was completed at existing monitoring well UST70-MW-2 and new monitoring wells UST70-MW-101 and UST70-MW-102 located on the downgradient side of the excavation, as shown on Figure 14. The four quarters of confirmational groundwater samples were submitted for laboratory analysis of:

- Diesel- and oil-range TPH
- PAHs
- Arsenic
- Copper
- Nickel
- Zinc

During the four quarters of sampling, there were no detections of TPH or PAHs above PCLs. Dissolved copper exceeded its PCL in three⁴ of four samples from well UST70-MW-2 (up to 11.9 ug/L), in one of four samples from well UST70-MW-101 (6.47 ug/L), and in one of four samples from well UST70-MW-102 (9.35 ug/L). Dissolved nickel exceeded its PCL in three⁵ of four samples collected from well UST-MW-2 (up to 35.4 ug/L). These results can be found in Table 14.

In summary the confirmational groundwater data confirm that the petroleum source was successfully removed and groundwater concentrations for TPH and PAHs meet PCLs. Aspect recommends continued sampling in the three UST 70 Area wells for dissolved

⁴ The first-quarter exceedance is based on the total copper concentration since a dissolved metals analysis could not be performed (filtered bottle did not arrive at lab).

⁵ The first-quarter exceedance is based on the total nickel concentration since a dissolved metals analysis could not be performed (filtered bottle did not arrive at lab).

copper, and in well UST70-MW-2 for dissolved nickel. The proposed frequency for additional monitoring is presented in Section 4.

3.14 USTs 71, 72, 73 Area

Oil-range TPH (Bunker C oil) was the COC targeted in the interim action for this area. The interim action excavation area and excavation verification soil sample locations are shown on Figure 15. Following the interim action soil removal, residual soil contaminant concentrations within the excavated area met soil PCLs based on industrial direct contact. However, residual soil concentrations of oil-range TPH, cPAHs, copper, and mercury within the excavated area exceeded the soil PCLs based on groundwater protection. Small quantities of petroleum-contaminated soil were left in place beneath monolithic foundation elements, since it was deemed impracticable to remove the foundations (Aspect, 2015a).

Confirmational groundwater monitoring for this area was completed at new monitoring wells UST71-MW-101 through UST71-MW-103 located along the downgradient edge of the excavation (UST-MW-103 is immediately downgradient of residual Bunker C-contaminated soil left in place on the southern edge of the excavation). Confirmational groundwater monitoring was also completed at UST71-MW-104 located downgradient of residual Bunker C-contaminated soil left in place in the northeastern edge of the excavation, as shown on Figure 16.

During drilling of wells UST71-MW-102 and UST71-MW-103, an obstruction was encountered below ground surface. Several drilling locations were attempted with similar refusal at each. Ultimately, these two wells were completed approximately 3 to 4 feet shallower than planned based on water table depth at time of drilling. Because of the limited saturated thickness in these two wells, they went dry during well development, limiting development effectiveness, and they continue to provide poor yield during groundwater sampling. Wells UST71-MW-102 and UST71-MW-103 were sampled with normal low-flow sampling techniques; however, the turbidity has been high at each well throughout the four quarters of monitoring. Well UST71-MW-103 has pumped dry during each round of sampling and must be sampled after the well has been given time to recharge.

The four rounds of confirmational groundwater samples were submitted for laboratory analysis of:

- Diesel- and oil-range TPH
- PAHs
- Copper
- Zinc⁶

⁶ Mercury rather than zinc should have been included in groundwater compliance monitoring for the USTs 71, 72, 73 IA area (see description in the text).

The fourth-round sample from well UST71-MW-103 was also submitted for laboratory analysis of extractable petroleum hydrocarbons (EPH) to more accurately characterize the nature of hydrocarbons present. These results are shown in Table 15.

Because of a reporting mistake in Table 1 of the Work Plan (Aspect, 2014a), copper and zinc are displayed as groundwater analytes for this area and were subsequently analyzed as part of quarterly conformational monitoring events. However, copper and mercury are the correct groundwater analytes that should have been analyzed as part of conformational monitoring.

The Work Plan text correctly described this, but Table 1 of the Work Plan does not. All detected groundwater zinc concentrations met PCLs for the area, and there were copper exceedances detected in each of the four wells as outlined below.

On the north end of the excavation, no groundwater TPH or PAH exceedances were detected at well UST71-MW-104, which is positioned immediately downgradient of the residual soil left in place containing the highest diesel– and oil-range TPH concentrations (up to 28,000 mg/kg). Copper exceedances were also detected in two of four samples from well UST71-MW-104 (up to 7.6 ug/L).

Downgradient of UST71-MW-104, no TPH or PAH exceedances were detected at well UST71-MW-101 during the four rounds of sampling. A copper exceedance (8.73 ug/L) was detected in the first of four samples collected from this well. This exceedance was a total copper result because the corresponding filtered sample bottle did not arrive at the laboratory, and the three subsequent dissolved copper results from this well were below the PCL.

On the south end of the excavation, no groundwater TPH exceedances were detected at well UST71-MW-103, which is positioned immediately downgradient of the residual soil containing oil-range TPH concentrations of up to 8,400 mg/kg. However, in each of the four monitoring quarters, well UST71-MW-103 had detected exceedances for total cPAHs (up to 0.19 ug/L) and, assuming VI for an unrestricted land use, naphthalene in two of four samples (up to 53 ug/L). The detected naphthalene concentrations in each sample comply with the VI-based PCL for industrial use. The detected cPAH and naphthalene concentrations show no apparent trends over the four quarters.

There were also copper exceedances detected during each of the four quarters of sampling at well UST71-MW-103 (6.3 to 47.4 ug/L), with no apparent trend in concentrations. The EPH data confirm the detected hydrocarbons are within the diesel range (detectable aliphatic hydrocarbons in the C16-C21 range, and detectable aromatic hydrocarbons in the C12-C16 and C16-C21 ranges).

At well UST71-MW-102, located downgradient of the central portion of the excavation, diesel-range TPH exceedances (up to 890 ug/L) and total cPAH exceedances (up to 0.14 ug/L) were each detected in 2 of 4 samples collected; however, the TPH and cPAH exceedances occurred in different sampling rounds. The TPH exceedance occurs because of elevated oil-range TPH concentrations in the two samples (Table 15); this is the only well in the confirmational monitoring program that has had detectable oil-range TPH. No naphthalene exceedances were detected in this well. Copper exceedances were detected in each of the four samples collected from well UST71-MW-102—the maximum

detection (20.2 ug/L) was a total copper result because the corresponding filtered sample bottle did not arrive at the laboratory. The detected dissolved copper concentrations in the subsequent three samples were below 7 ug/L.

In summary, following removal of more than 8,000 tons of petroleum-contaminated material from the UST 71 Area, groundwater TPH concentrations are typically below PCLs, except during the last 2 of 4 quarters from well UST-MW-102 located on the downgradient edge of the excavation's center; cPAH exceedances were also detected in 2 of 4 quarters from this well. No groundwater TPH exceedances are detected in the wells located immediately downgradient of the two locations where residual petroleum-contaminated soil was left in place beneath very large foundation structures during the interim action; however, cPAH exceedances were consistently detected in well UST71-MW-103 located downgradient of the southern occurrence of residual contaminated soil.

As discussed in the preceding section, no cPAH exceedances were detected in monitoring wells for the UST 70 area, located generally downgradient of the UST 71 Area (Figure 15). Consistent copper exceedances were detected in wells UST71-MW-102 and UST71-MW-103. As stated above, mercury was inadvertently not analyzed for in this area's groundwater samples as had been originally intended based on residual soil concentrations following the interim action.

Aspect recommends continued sampling of wells UST71-MW-101, UST71-MW-102, and UST-MW-103 located along the downgradient edge of the excavation for dieselrange TPH, PAHs, dissolved copper, and dissolved mercury. We also recommend monitoring of downgradient shoreline well REC3-MW-1R (Figure 15) to assess potential migration of PAHs to the shoreline, which is information useful for the RI/FS. The proposed frequency for additional monitoring is presented in Section 4.

4 Summary of Recommendations

Based on the data collected during the four rounds of quarterly monitoring, Aspect proposes that no further monitoring is required for the following interim action areas:

- BA-MW-6 Area
- Hydraulic Barker Vault Area
- Naval Reserve Parcel UST Area
- Naval Reserve Parcel South Area

Aspect further recommends that additional sampling and analysis be completed for wells and analytes as outlined for each area in Section 3, which are summarized in Table 16. Figure 16 depicts locations of the monitoring wells recommended for continued monitoring.

We recommend that the monitoring be conducted quarterly for another year (4 additional events; e.g., November 2015, and February, May, and August 2016), by which time any additional groundwater monitoring would be conducted in accordance with the Cleanup

Action Plan for the Upland Area. The proposed monitoring could be terminated and superseded by monitoring dictated by the Cleanup Action Plan.

The results from the subsequent four quarters groundwater monitoring would be evaluated with existing data, and presented to Ecology at the end of the year of monitoring. The additional data will also be submitted to Ecology's Environmental Information Management (EIM) database in accordance with the Agreed Order.

5 References

- AECOM, 2011, Phase I Environmental Site Assessment, Everett Pulp and Paper Mill, Everett Washington, April 2011.
- Aspect, 2012, Interim Action Plan, Kimberly-Clark Worldwide Site Upland Area, Everett, Washington, September 20, 2012, Exhibit C to Agreed Order No. DE 9476.
- Aspect 2013a, Data Report for Phase 2 Environmental Site Assessment, Kimberly-Clark Worldwide Site Upland Area, Everett, Washington, March 15, 2013.
- Aspect, 2013b, RI/FS Work Plan, Kimberly-Clark Worldwide Site Upland Area, Everett, Washington, November 22, 2013.
- Aspect, 2014a, Interim Action Confirmational Groundwater Monitoring Work Plan, Kimberly-Clark Worldwide Site Upland Area, Everett, Washington, June 12, 2014.
- Aspect, 2014b, Comparison of Total and Dissolved Metals Data for Groundwater Site Upland Area, Everett, Washington, July 8, 2014.
- Aspect, 2014c, Remedial Investigation Data Report, Kimberly-Clark Worldwide Site Upland Area, Everett, Washington, September 29, 2014.
- Aspect, 2015a, Interim Action Report, Kimberly-Clark Worldwide Site Upland Area, Everett, Washington, April 8, 2015.
- Aspect, 2015b, RI/FS Work Plan Addendum for Additional Focused Data Collection, Kimberly-Clark Worldwide Site Upland Area RI/FS, June 2015.
- Foster Wheeler, 1998, Independent Remedial Action Closure Report, Old Naval Reserve Center, Everett, Washington, December 16, 1998.

Limitations

Work for this project was performed for the Kimberly-Clark Worldwide, Inc. (Client), and this report was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This report does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

TABLES

Table 1 - Preliminary Cleanup Levels for Confirmational Groundwater Monitoring Analytes

Project No. 110207-K-C Worldwide Site Upland Area Everett,WA

					APPLICABLE GRO	OUNDWATER CRITE	RIA							
		Mari	ne Surface Water	riteria for Establishing Method B Surface Water Cleanup Levels										
		Aquatic Protectio	n		Human Heal	th Protection								
	Surface Water ARAR - Aquatic	Surface Water ARAR - Aquatic	Surface Water ARAR - Aquatic	Surface Water	Surface Water	Surface Water,	Surface Water, Method B Human							
	Life - Marine,	Life - Marine,	Life - Marine,	ARAR - Human	ARAR - Human	Method B Human	Health, Most			Potable	Protective of	Applicable		
	,	Most Restrictive	Most Restrictive	Health - Marine -	Health - Marine -	Health, Most	Restrictive,	Surfa	ce Water	Groundwater	Vapor Intrusion	Practical	Most	Stringent
	Ch. 173-201A	Clean Water Act	National Toxics	Clean Water Act	National Toxics	Restrictive,	Adjusted for		ng Level for	Screening	for Industrial	Quantitation	Grou	ndwater
	WAC	§304	Rule, 40 CFR 131	§304		Standard Formula	ARARs ^b		Protection	Level ^c	Use (Method C) ^d	Level (PQL) ^e	Screenir	ng Level for
ANALYTE (BY GROUP)	(ma-wac)	(ma-cwa)	(ma-ntr)	(hh-cwa)	(hh-ntr)	(sw-b)	(hh)		arine)	(pot)	(vi-c)	(pql)	Industria	al Land Use
Total Petroleum Hydrocarbons		· · ·	· · ·	<u> </u>	· · ·	· · · · ·							<u></u>	
Gasoline Range Hydrocarbons in ug/L										1000		100	1000	(pot)
Diesel Range Hydrocarbons in ug/L										500		50	500	(pot)
Oil Range Hydrocarbons in ug/L										500		250	500	(pot)
Total TPH (D+O) in ug/L										500		250	500	(pot)
Dissolved Metals		a		•							•			
Arsenic in ug/L	36	36	36	0.14	0.14	0.098	0.14	5	footnote f			0.5	5	(marine)
Copper in ug/L	3.1	3.1				2900	2900	3.1	(ma-wac)			0.1	3.1	(marine)
Lead in ug/L	8.1	8.1	8.1					8.1	(ma-wac)			0.02	8.1	(marine)
Mercury in ug/L	0.025	0.94	0.025	0.3	0.15		0.15	0.025	(ma-wac)		1.9	0.0005	0.025	(marine)
Nickel in ug/L	8.2	8.2	8.2	4600	4600	1100	1100	8.2	(ma-wac)			0.2	8.2	(marine)
Zinc in ug/L	81	81	81	26000		17000	17000	81	(ma-wac)			0.5	81	(marine)
Volatile Organic Compounds (BTEX)	-	-	_					-					L	17
Benzene in ug/L				51	71	23	51	51	(hh)		24	1	24	(vi-c)
Ethylbenzene in ug/L				2100	29000	6800	2100	2100	(hh)		6100	1	2100	(marine)
Toluene in ug/L				15000	200000	19000	15000	15000	(hh)		34000	1	15000	(marine)
Xylenes, total										1000	680	3	680	(vi-c)
Polycyclic Aromatic Hydrocarbons (PAHs)		1	1		1	1				•	•	•		
Acenaphthene in ug/L				990		650	650	650	(hh)			0.012	650	(marine)
Acenaphthylene in ug/L				990		650	650	650	(hh)			0.012	650	(marine)
Anthracene in ug/L				40000	110000	26000	26000	26000	(hh)			0.012	26000	(marine)
Benzo(g,h,i)perylene in ug/L												0.012	1	/
Fluoranthene in ug/L				140	370	86	86	86	(hh)			0.012	86	(marine)
Fluorene in ug/L				5300	14000	3500	3500	3500	(hh)			0.012	3500	(marine)
Phenanthrene in ug/L									11			0.012		
Pyrene in ug/L				4000	11000	2600	2600	2600	(hh)			0.012	2600	(marine)
1-Methylnaphthalene in ug/L									1)	1.5		0.05	1.5	(pot)
2-Methylnaphthalene in ug/L										32		0.05	32	(pot)
Naphthalene in ug/L				1		4700	4700	4700	(hh)		89	0.012	89	(vi-c)
Benz(a)anthracene in ug/L				0.018	0.031	0.30	0.018		1			0.01		
Benzo(a)pyrene in ug/L				0.018	0.031	0.03	0.018					0.01	<u> </u>	
Benzo(b)fluoranthene in ug/L				0.018	0.031	0.30	0.018					0.01	<u> </u>	
Benzo(k)fluoranthene in ug/L				0.018	0.031	3.0	0.018					0.01	<u> </u>	
Chrysene in ug/L				0.018	0.031	30	0.018					0.01	<u> </u>	
Dibenzo(a,h)anthracene in ug/L				0.018	0.031	0.03	0.018					0.01	<u> </u>	
Indeno(1,2,3-cd)pyrene in ug/L				0.018	0.031	0.30	0.018				1	0.01	<u> </u>	
Total cPAHs TEQ in ug/L				0.018	0.031	0.03	0.018	0.018	(hh)			0.015	0.018	(marine)
Noto:		1	1	0.010	0.031	0.05	0.010	0.010	(111)	I		0.015	0.010	(marine)

Notes:

a Criteria values taken from Ecology's online CLARC database.

b Surface water Method B human health levels established using the standard Method B formula in MTCA were compared to state and federal human-health-based ARARs. The most stringent ARAR that is sufficiently protective under MTCA (i.e. less than a risk of 10⁻⁵ and a hazard quotient of 1) is selected as the screening level for human health protection (*hh*). If there are multiple contaminants, then the cumulative risk and HI must not exceed a risk of 10⁻⁵ or a hazard index of 1.

c Upland Area groundwater is not a practicable source of potable groundwater, but potable groundwater screening levels are applied for those compounds without a marine surface water screening level,.

d Updated values based on vapor intrusion provided by Andy Kallus, Ecology (3/31/15).

e Analytical method reporting limits. PQL for total cPAH (TEQ) is adjusted for toxicity equivalency factors (TEFs). TEQ = toxic equivalent concentration calculated in accordance with WAC 173-340-708(e).

f Based on background concentrations in Washington state (WAC 173-340-900, Table 720-1).

Table 2 - Confirmational Groundwater Monitoring Data for BA-MW6 Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

		BA6-MW-101									
Chemical Name	Groundwater Screening Level (Industrial Land Use)	5/13/14		8/11/14	11/5/14	2/18/15					
Total Petroleum Hydrocarbons (TPH)											
Diesel Range Hydrocarbons in ug/L	500	98	х	50 U	50 U	50 U					
Oil Range Hydrocarbons in ug/L	500	250	U	250 L	250 U	250 U					
Total TPHs (D+O Range) in ug/L	500	98		ND	ND	ND					
Polycyclic Aromatic Hydrocarbons (PAHs)					-						
Acenaphthene in ug/L	650	3.7		4.9	1.6	1.1					
Acenaphthylene in ug/L	650	0.05	U	0.044	0.018	0.014					
Anthracene in ug/L	26,000	0.05	U	0.026	0.01 U	0.014					
Benzo(g,h,i)perylene in ug/L		0.05	U	0.01 U	0.01 U	0.01 U					
Fluoranthene in ug/L	86	0.24		0.32	0.14	0.092					
Fluorene in ug/L	3,500	1.9		3	0.63	0.55					
Phenanthrene in ug/L		0.05	U	0.01 L	0.01 U	0.01 U					
Pyrene in ug/L	2,600	0.15		0.22	0.089	0.062					
Naphthalene in ug/L	89	0.05	U	0.044	0.02	0.012					
Benz(a)anthracene in ug/L		0.01	U	0.01 L	0.01 U	0.01 U					
Benzo(a)pyrene in ug/L		0.01	U	0.01 L	0.01 U	0.01 U					
Benzo(b)fluoranthene in ug/L		0.01	U	0.01 L	0.01 U	0.01 U					
Benzo(k)fluoranthene in ug/L		0.01	U	0.01 L	0.01 U	0.01 U					
Chrysene in ug/L		0.01	U	0.01 L	0.01 U	0.01 U					
Dibenzo(a,h)anthracene in ug/L		0.01	U	0.01 L	0.01 U	0.01 U					
Indeno(1,2,3-cd)pyrene in ug/L		0.01	U	0.01 L	0.01 U	0.01 U					
Total cPAHs TEQ in ug/L	0.018	ND		ND	ND	ND					
Field Parameters					-						
Dissolved Oxygen in mg/L		0.1		0.3	0.1	0.1					
ORP in mVolts		-60		-4	-55	9					
pH in pH Units		6.8		6.8	7.0	7.1					
Specific Conductance in us/cm		2145		2357	1767	1570					
Temperature in deg C		13.3		19.1	17.7	12.6					
Turbidity in NTU		4		3	13	7					

Notes

U - Analyte was not detected at or above the reported result.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Table 2

Table 3 - Confirmational Groundwater Monitoring Data for Boiler-Baghouse Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

			BBH-N	IW-101			BBH-N	1W-102				BBH-MW-103			BBH-MW-104			
	Groundwater Screening Level (Industrial Land																	
Chemical Name	Use)	5/12/14	8/12/14	11/3/14	2/18/15	5/12/14	8/12/14	11/3/14	2/17/15	5/13/14	8/13/14	11/3/14	2/17/15	4/20/15	5/13/14	8/13/14	11/3/14	2/17/15
Dissolved Metals				_	_						_	-				_		
Dissolved Arsenic in ug/L	5	4.4	4.5	5.8	3.4		2.7	1	1.6	9.1	4.7	17.6	32.7	12.0	11.7	0.6	1.1	1.3
Dissolved Copper in ug/L	3.1	1.41	1.23	78.4	20.9	1.31	1.57	0.96	1.11	4.69	1.87	49.1	269	15.6	1.18	1.78	1.29	1.12
Dissolved Lead in ug/L	8.1		0.011 J	0.156	0.207		0.049	0.116	0.166		0.013 J	2.23	102	1.46		0.026	0.277	0.023
Dissolved Mercury in ug/L	0.025		0.00205	0.011	0.0145		0.00196	0.00387	0.00333	0.0749	0.00577	3.86	4.24	0.288		0.00131	0.00069	0.0035
Dissolved Zinc in ug/L	81		1.7	0.6	0.6		4.5	4.8	5.9		2.6	1.3	2.5	1.28	240	83.1	356	204
Total Metals					•		•				•			•			-	
Total Arsenic in ug/L		6				2.1				10.1					15.5			
Total Copper in ug/L		3.88				3.5				34.8					4.31			
Total Lead in ug/L		1.25				2.49				1.36					0.307			
Total Mercury in ug/L		0.0107				0.0188				0.861					0.0034			
Total Zinc in ug/L		6.6				5.1				7.4					246			
Field Parameters																		
Dissolved Oxygen in mg/L		0.2	1.2	1.9	2.0	0.1	206.0	0.1	0.4	0.3	0.5	0.1	0.1	0.3	0.5	0.5	0.1	0.1
ORP in mVolts		-40	204	1	-103	-80	204	27	-33	21	-23	38	-76	78	89	62	71	0
pH in pH Units		7.5	7.2	12.1	9.5	5.8	5.5	6.1	6.1	6.9	6.8	7.1	9.3	8.4	6.1	6.0	5.4	5.9
Specific Conductance in us/cm		1713	2150	1698	1126	3013	2754	3448	2909	2663	1807	1582	1021	1397	2735	2365	2390	2499
Temperature in deg C		14.8	15.5	15.9	12.1	13.9	16.1	15.8	11.4	12.7	15.6	15.5	11.6	12.6	12.1	15.9	15.5	11.2
Turbidity in NTU		11	4	1	18	10	39	7	30	4	3	2	26	13	13	16	3	431

Notes

Concentrations in shaded cells indicate value exceeds Groundwater Screening Level (Industrial Land Use)

J - Analyte was positively identified. The reported result is an estimate.

Table 4 - Confirmational Groundwater Monitoring Data for Bunker C ASTs Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

		BCT-MW-101							BCT-M	W-102		BCT-MW-103					
	Groundwater									1							
	Screening Level																
	(Industrial Land		5/13/14		8/14/14		11/3/14		2/19/15								
Chemical Name	Use)	5/13/14	FD	8/14/14	FD	11/3/14	FD	2/19/15	FD	5/15/14	8/14/14	11/3/14	2/19/15	5/15/14	8/12/14	11/3/14	2/19/15
Total Petroleum Hydrocarbons (TPH)													•	Ī			
Gasoline Range Hydrocarbons in ug/L	1,000	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	J 100 U	1,100	830	100 U	220
Diesel Range Hydrocarbons in ug/L	500	50 U	50 U	50 UJ	50 U	J 50 U	400	460 x	50 U	50 U							
Oil Range Hydrocarbons in ug/L	500	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U
Total TPHs (D+O Range) in ug/L	500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	400	460	ND	ND
Dissolved Metals														1			
Dissolved Copper in ug/L	3.1			1.16	0.97	1.21	0.91	0.90	0.67		0.43	0.18	0.80		0.22	3.96	5.43
Dissolved Lead in ug/L	8.1			0.037	0.042	0.045	0.049	0.051	0.054		0.011 J	0.056	0.167		0.338	0.516	1.13
Dissolved Mercury in ug/L	0.025			0.00134	0.00102	0.00111	0.00106	0.00132	0.00121		0.00107	0.00034 J	J 0.00048 J		0.001	0.00548	0.00818
Total Metals			1						'					1			
Total Copper in ug/L		1.47	1.32							1.69				0.86			
Total Lead in ug/L		0.166	0.183							0.596				0.419			
Total Mercury in ug/L		0.00162	0.00171							0.00174				0.00169			
Polycyclic Aromatic Hydrocarbons (PAHs)																	
Acenaphthene in ug/L	650	0.05 U	0.05 U	0.012	0.01 U	0.01 UJ	0.01 U	0.01 U	0.01 U	0.25	0.17	0.2	0.12	4.2	3.7	0.01 U	0.21
Acenaphthylene in ug/L	650	0.05 U	0.05 U	0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.012
Anthracene in ug/L	26,000	0.05 U	0.05 U	0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 UJ	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.25	0.29	0.01 U	0.01 U
Benzo(g,h,i)perylene in ug/L		0.05 U	0.05 U	0.01 UJ	0.01 U	0.01 UJ	0.01 U	0.01 UJ	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Fluoranthene in ug/L	86	0.05 U	0.05 U	0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.56	0.68	0.01 U	0.01 U
Fluorene in ug/L	3,500	0.05 U	0.05 U	0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 UJ	0.01 U	0.05 U	0.029	0.022	0.01 U	1.8	1.8	0.01 U	0.049
Phenanthrene in ug/L		0.05 U	0.05 U	0.017	0.012	0.01 UJ	0.011	0.01 J	0.01 U	0.05 U	0.012	0.01 U	0.01 U	1.3	1.7	0.01 U	0.01 U
Pyrene in ug/L	2,600	0.05 U	0.05 U	0.01	0.01 U	0.01 UJ	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.41	0.55	0.01 U	0.014
Naphthalene in ug/L	89	0.05 U	0.05 U	0.015	0.011	0.01 UJ	0.014	0.01 U	0.01 U	0.05 U	0.01	0.01	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Benz(a)anthracene in ug/L		0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 UJ	0.01 U	0.01 U	0.038	0.033	0.01 U	0.01 U					
Benzo(a)pyrene in ug/L		0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U					
Benzo(b)fluoranthene in ug/L		0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U					
Benzo(k)fluoranthene in ug/L		0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 UJ	0.01 U	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chrysene in ug/L		0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 UJ	0.01 U	0.01 U	0.046	0.04	0.01 U	0.01 U					
Dibenzo(a,h)anthracene in ug/L		0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 UJ	0.01 U	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Indeno(1,2,3-cd)pyrene in ug/L		0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 UJ	0.01 U	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Total cPAHs TEQ in ug/L	0.018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0113	0.011	ND	ND
Volatile Organic Compounds (VOC)									-								
Benzene in ug/L	24	1 U	1 U	1 0	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U
Ethylbenzene in ug/L	2,100	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		2.3	2.2	1 U	1 U
Toluene in ug/L	15,000	1 U	1 U	-	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		6.9	1 U	1 U	1.7
Xylenes (total) in ug/L	680	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	J 3 U	5.6	3.1	3 U	3 U
Field Parameters														<u> </u>			
Dissolved Oxygen in mg/L		0.04		0.2		0.2		0.1		0.1	0.2	0.3	0.1	0.1	0.1	3.4	0.1
ORP in mVolts	4	-7		-5		38		-20		-108	-46	-105	89	-34	-100	-64	120
pH in pH Units	4	6.8		6.6		7.1		7.0		7.0	6.8	7.2	6.8	7.8	7.2	8.5	7.1
Specific Conductance in us/cm	4	389		828		405		409		328	421	424	380	299	659	346	321
Temperature in deg C		10.8		15.9		15.2		9.9		11.4	14.2	13.8	11.5	11.4	14.4	11.8	9.4
Turbidity in NTU		9		2		2		1		8	4	1	1	8	1	4	11

Notes

Concentrations within bold border indicate value exceeds

Groundwater Screening Level (Unrestricted Land Use)

J - Analyte was positively identified. The

reported result is an estimate.

U - Analyte was not detected at or above the reported result.

UJ - Analyte was not detected at or above the reported estimate

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Table 4 - Confirmational Groundwater Monitoring Data for Bunker C ASTs Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

	1 1		BCT-M	IW-104			BCT-N	1W-105		1	BCT-M	IW-106			BCT-M	W-107		BCT-MW-108			
	Groundwater Screening Level (Industrial Land																				
Chemical Name	Use)	5/13/14	8/12/14	11/3/14	2/17/15	5/14/14	8/13/14	11/4/14	2/17/15	5/14/14	8/13/14	11/4/14	2/18/15	5/15/14	8/14/14	11/4/14	2/19/15	5/15/14	8/14/14	11/4/14	2/19/15
Total Petroleum Hydrocarbons (TPH)																					
Gasoline Range Hydrocarbons in ug/L	1,000	320	710	100	170	180	100 U	100 U	100 U	110	140	120	150	260	130	120	160				
Diesel Range Hydrocarbons in ug/L	500	280	500 x	130	160 x	130 x	68 x	50 U	81 x	83	140 x	50	50 U	220	230	240	230	310 x	150 x	170	190
Oil Range Hydrocarbons in ug/L	500	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U									
Total TPHs (D+O Range) in ug/L	500	280	500	130	160	130	68	ND	81	83	140	50	ND	220	230	240	230	310	150	170	190
Dissolved Metals	-		•																		
Dissolved Copper in ug/L	3.1		0.51	0.72	1.43		2.16	2.92	2.43	1.42	1.77	13.3	5.48		2.16	5.38	4.39	0.89	1.15	1.61	2.80
Dissolved Lead in ug/L	8.1		0.137	0.084	0.286		0.116	0.73	0.403		0.071	2.22	0.140		0.277	1.38	1.55		0.232	1.29	1.37
Dissolved Mercury in ug/L	0.025		0.0018	0.00205	0.00601		0.00534	0.0255	0.00481		0.00234	0.00582	0.00402		0.0046	0.0043	0.00568		0.00773	0.00337	0.0041
Total Metals																I					
Total Copper in ug/L		2.01				1.6				4.83				2.46				5.09			[]
Total Lead in ug/L		0.48				0.504			1	1.45				0.896				3.03			
Total Mercury in ug/L		0.00547				0.00171				0.00768				0.00374				0.0159			
Polycyclic Aromatic Hydrocarbons (PAHs)	•		•	•				1	•				•			. .			•		
Acenaphthene in ug/L	650	0.67	1.1	0.54	0.45	2.6	1.1	0.29	0.55	0.21	1.3	0.15	0.022	5.7	8.4	14	14	19	11	8.7	7.4
Acenaphthylene in ug/L	650	0.05 U	0.01 U	0.079	0.04	0.05 U	0.016	0.011	0.014	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.072	0.093	0.11	0.05 U	0.01 U	0.075	0.055
Anthracene in ug/L	26,000	0.083	0.077	0.032	0.036	0.17	0.13	0.02	0.1	0.05 U	0.15	0.033	0.01 U	0.05 U	0.055	0.053	0.058	0.14	0.084	0.09	0.087
Benzo(g,h,i)perylene in ug/L		0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Fluoranthene in ug/L	86	0.05 U	0.038	0.015	0.03	0.15	0.078	0.028	0.11	0.05 U	0.041	0.018	0.01 U	0.057	0.073	0.06	0.048	0.28	0.12	0.073	0.099
Fluorene in ug/L	3,500	0.93	1.8	0.76	0.5	1.1	0.85	0.14	0.31	0.085	1.1	0.15	0.021	0.91	1.7	3.3	3.3	6.3	4.3	2.7	2.3
Phenanthrene in ug/L		0.05 U	0.013	0.01 U	0.017	0.05 U	0.01 U	0.01 U	0.018	0.05 U	0.19	0.018	0.01 U	0.42	0.51	0.47	0.36	1.1	0.43	0.55	0.58
Pyrene in ug/L	2,600	0.054	0.041	0.019	0.036	0.12	0.064	0.03	0.083	0.05 U	0.048	0.03	0.011	0.059	0.07	0.076	0.052	0.23	0.1	0.064	0.092
Naphthalene in ug/L	89	0.87	0.01 U	0.11	0.01 U	0.22	0.01 U	0.017	0.01 U	0.05 U	0.01 U	0.029	0.01 U	28	33	38	42	130	7.3	36	30
Benz(a)anthracene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.018	0.01 U	0.01 U	0.01 U									
Benzo(a)pyrene in ug/L		0.01 U	0.01	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U					
Benzo(b)fluoranthene in ug/L		0.01 U	0.011	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U					
Benzo(k)fluoranthene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U									
Chrysene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.011	0.01 U	0.015	0.011	0.01 U	0.01 U									
Dibenzo(a,h)anthracene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U									
Indeno(1,2,3-cd)pyrene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U									
Total cPAHs TEQ in ug/L	0.018	ND	ND	ND	ND	ND	ND	0.013	ND	ND	ND	ND	ND	ND	ND	0.0076	ND	0.00895	0.0076	ND	ND
Volatile Organic Compounds (VOC)			•	-				-					•								
Benzene in ug/L	24	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	-
Ethylbenzene in ug/L	2,100	1 U	1 U	1 U	1 U	2.1	1 U	1 U	1.2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Toluene in ug/L	15,000	1.6	2.7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
Xylenes (total) in ug/L	680	3 U	3 U	3 U	3 U	3 U	3 U	3 U	J 3 U	3 U	3 U	3 U	3 U	3.5	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Field Parameters							~ ~				<u> </u>	~ ~	~-				~ ~				
Dissolved Oxygen in mg/L	4	0.3	0.3	0.3	0.2	0.1	0.8	0.6	0.7	0.0	0.5	0.2	0.7	0.1	0.1	0.2	0.2	0.1	0.2	0.1	0.4
ORP in mVolts	4	-64	-94	-80	76	-137	-22	120	54	-85	81	-84	-51	-172	-87	-24	15	-201	-48	-353	25
pH in pH Units	4	7.3	7.3	7.7	7.2	7.8	8.1	7.9	7.4	7.5	7.1	7.4	7.4	10.4	10.6	10.9	10.6	9.9	10.2	10.6	10.6
Specific Conductance in us/cm	4	736	685	585	404	390	480	533	411	1123	691	1431	1029	1492	1371	149	1136	848	880	837	732
Temperature in deg C	4	11.1	16.0	14.6	8.8	11.8	17.1	13.8	9.1	12.0	16.7	15.6	9.9	12.4	16.5	16.1	11.7	12.4	15.7	15.0	11.6
Turbidity in NTU		1	3	5	3	8	8	5	10	8	4	9	2	8	4	4	2	I	19	8	8

Notes

Concentrations within bold border indicate value exceeds

Groundwater Screening Level (Unrestricted Land Use)

J - Analyte was positively identified. The

reported result is an estimate.

U - Analyte was not detected at or above the reported result.

UJ - Analyte was not detected at or above the reported estimate

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Table 5 - Confirmational Groundwater Monitoring Data for CN-B2 Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

		CN-MW-101					CN-M	W-102			CN-M	W-103		CN-MW-104			
	Groundwater																
	Screening Level																
	(Industrial Land																
Chemical Name	Use)	5/14/14	8/12/14	11/6/14	2/19/15	5/14/14	8/12/14	11/6/14	2/19/15	5/14/14	8/12/14	11/6/14	2/19/15	5/14/14	8/12/14	11/6/14	2/19/15
Total Petroleum Hydrocarbons (TPH)															•		
Diesel Range Hydrocarbons in ug/L	500	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U	50 U
Oil Range Hydrocarbons in ug/L	500	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U
Total TPHs (D+O Range) in ug/L	500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dissolved Metals															•		
Dissolved Arsenic in ug/L	5		5.1	1.2	3.4		1.4	0.6	0.9		0.9	0.4 J	0.5 J		1.9	2.2	4.8
Dissolved Copper in ug/L	3.1	2.74	2.85	0.53	1.93		1.2	0.73	1.20		0.54	0.44	0.59	2.82	2.13	2.72	2.54
Dissolved Lead in ug/L	8.1		4.19	0.909	3.43		0.135	0.153	0.278		0.028	0.037	0.034		0.056	0.036	0.148
Total Metals	-		•			· · ·									•	•	
Total Arsenic in ug/L		4.5				0.9				0.9				2.3			
Total Copper in ug/L		3.48				1.58				0.83				3.9			
Total Lead in ug/L		7.22				0.34				0.332				4.37			
Polycyclic Aromatic Hydrocarbons (PAHs)																	
Acenaphthene in ug/L	650	0.05 U	0.034	2.2	0.45	0.17	0.046	0.12	0.037	0.22	0.12	0.16	0.12	0.05 U	0.012	0.01 U	0.01 U
Acenaphthylene in ug/L	650	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Anthracene in ug/L	26,000	0.05 U	0.01 U	0.031	0.01 U	0.05 U	0.01 U	0.012	0.01 U	0.05 U	0.011	0.014	0.014	0.05 U	0.01 U	0.01 U	0.01 U
Benzo(g,h,i)perylene in ug/L		0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Fluoranthene in ug/L	86	0.05 U	0.016	0.068	0.025	0.052	0.019	0.031	0.012	0.061	0.03	0.031	0.025	0.05 U	0.01 U	0.01 U	0.01 U
Fluorene in ug/L	3,500	0.05 U	0.01 U	0.56	0.11	0.062	0.019	0.059	0.02	0.12	0.081	0.11	0.079	0.05 U	0.01 U	0.01 U	0.01 U
Phenanthrene in ug/L		0.05 U	0.017	0.22	0.052	0.059	0.034	0.043	0.021	0.14	0.073	0.1	0.035	0.05 U	0.013	0.01 U	0.01 U
Pyrene in ug/L	2,600	0.05 U	0.016	0.051	0.026	0.051	0.023	0.03	0.012	0.063	0.029	0.03	0.022	0.05 U	0.012	0.01 U	0.01 U
Naphthalene in ug/L	89	0.066	0.035	6.9	1.2	0.12	0.033	0.026	0.02	0.19	0.03	0.01 U	0.021	0.05 U	0.01 U	0.01 U	0.01 U
Benz(a)anthracene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Benzo(a)pyrene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Benzo(b)fluoranthene in ug/L		0.011	0.01 U	0.01 U	0.01 U	0.01 U											
Benzo(k)fluoranthene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chrysene in ug/L		0.019	0.011	0.01 U	0.014	0.01 U	0.01 U	0.01 U									
Dibenzo(a,h)anthracene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Indeno(1,2,3-cd)pyrene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Total cPAHs TEQ in ug/L	0.018	0.00829	0.0076	ND	0.00764	ND	ND	ND									
Field Parameters															-	-	
Dissolved Oxygen in mg/L		0.04	0.2	0.2	0.5	0.2	0.5	0.1	0.1	0.2	0.1	0.1	0.04	4.8	0.9	0.8	3.7
ORP in mVolts		-99	-80	-45	18	-72	189	-117	-80	-83	-96	-111	-133	-5	196	-42	-48
pH in pH Units		6.4	6.3	6.6	6.5	6.8	6.4	6.6	6.5	6.9	6.6	7.2	7.2	6.7	7.1	7.4	7.5
Specific Conductance in us/cm		2147	2040	918	1468	1130	1344	1005	1309	1071	1360	723	677	862	746	479	128
Temperature in deg C		13.4	15.8	15.2	12.1	13.0	16.1	14.6	11.7	12.8	15.9	14.2	10.8	14.1	20.3	13.6	10.0
Turbidity in NTU		9	8	2	2	4	8	7	4	4	3	4	2	7	2	7	64

Notes

Concentrations in shaded cells indicate value exceeds Groundwater Screening Level (Industrial Land Use)

J - Analyte was positively identified. The reported result is an estimate.

U - Analyte was not detected at or above the reported result.

Table 6 - Confirmational Groundwater Monitoring Data for GF11 Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

		GF11-MW-101								
Chemical Name	Groundwater Screening Level (Industrial Land Use)	5/14/14	8/13/14	11/3/14	2/18/15					
Dissolved Metals				-						
Dissolved Copper in ug/L	3.1		1.69	1.86	2.22					
Dissolved Lead in ug/L	8.1		1.12	3.86	3.82					
Dissolved Mercury in ug/L	0.025		0.0101	0.0289	0.0442					
Total Metals	-		•							
Total Copper in ug/L		2.48								
Total Lead in ug/L		2.98								
Total Mercury in ug/L		0.0161								
Field Parameters										
Dissolved Oxygen in mg/L		0.3	0.2	0.1	0.1					
ORP in mVolts		-203	-122	-205	-230					
pH in pH Units		7.2	7.0	7.4	7.1					
Specific Conductance in us/cm		1659	1336	1330	1326					
Temperature in deg C		11.9	14.8	14.9	11.4					
Turbidity in NTU		12	3	5	3					

Notes

Concentrations in shaded cells indicate value exceeds Groundwater Screening Level (Industrial Land Use)

Table 6

Table 7 - Confirmational Groundwater Monitoring Data for Hydraulic Barker Vault Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

	l í			HBV-	MW-101	
	Groundwater Screening Level (Industrial Land	- / /				
Chemical Name	Use)	5/14/14		8/13/14	11/4/14	2/18/15
Total Petroleum Hydrocarbons (TPH)	- <u>,</u>		-			
Diesel Range Hydrocarbons in ug/L	500	75	х		< 110	50 U
Oil Range Hydrocarbons in ug/L	500		U	250 l		
Total TPHs (D+O Range) in ug/L	500	75	U	220	110	ND
Polycyclic Aromatic Hydrocarbons (PAHs)						-
Acenaphthene in ug/L	650	0.19		0.26	0.15 .	J 0.052
Acenaphthylene in ug/L	650	0.05	U	0.01 l	J 0.01 L	0.01 U
Anthracene in ug/L	26,000	0.05	U	0.039	0.027 .	J 0.01 U
Benzo(g,h,i)perylene in ug/L		0.05	U	0.01 l	J 0.01 L	0.01 U
Fluoranthene in ug/L	86	0.05	U	0.049	0.015	0.01 U
Fluorene in ug/L	3,500	0.088		0.15	0.068 .	J 0.032
Phenanthrene in ug/L		0.11		0.19	0.084 .	J 0.041
Pyrene in ug/L	2,600	0.05	U	0.047	0.02	J 0.01 U
Naphthalene in ug/L	89	0.35		0.18	0.094 .	J 0.034
Benz(a)anthracene in ug/L		0.01	U	0.01 l	J 0.01 L	0.01 U
Benzo(a)pyrene in ug/L		0.01	U	0.01 l	J 0.01 L	0.01 U
Benzo(b)fluoranthene in ug/L		0.01	U	0.01 l	J 0.01 L	U 0.01 U
Benzo(k)fluoranthene in ug/L		0.01	U	0.01 l	J 0.01 L	U 0.01 U
Chrysene in ug/L		0.01	U	0.01 l	J 0.01 L	U 0.01 U
Dibenzo(a,h)anthracene in ug/L		0.01	U	0.01 l	J 0.01 L	U 0.01 U
Indeno(1,2,3-cd)pyrene in ug/L		0.01	U	0.01 l	J 0.01 L	0.01 U
Total cPAHs TEQ in ug/L	0.018	ND		ND	ND	ND
Field Parameters						
Dissolved Oxygen in mg/L		0.2		0.7	0.2	0.3
ORP in mVolts		-41		89	20	25
pH in pH Units		6.5		6.1	6.6	6.3
Specific Conductance in us/cm		907		826	869	1120
Temperature in deg C		11.7		14.2	14.7	11.6
Turbidity in NTU		17		86	71	47

Notes

J - Analyte was positively identified. The reported result is an estimate.

U - Analyte was not detected at or above the reported result.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Table 7

Table 8 - Confirmational Groundwater Monitoring Data for Naval Reserve UST Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

	1		NRP-N	/W-22			NRU-N	1W-101			NRU-N	1W-102	
	Groundwater Screening Level (Industrial Land												
Chemical Name	Use)	5/13/14	8/12/14	11/5/14	2/17/15	5/13/14	8/12/14	11/5/14	2/17/15	5/13/14	8/12/14	11/5/14	2/17/15
Total Petroleum Hydrocarbons (TPH)												•	
Gasoline Range Hydrocarbons in ug/L	1,000	100 U											
Diesel Range Hydrocarbons in ug/L	500	50 U											
Oil Range Hydrocarbons in ug/L	500	250 U											
Total TPHs (D+O Range) in ug/L	500	ND											
Polycyclic Aromatic Hydrocarbons (PAHs)													
Acenaphthene in ug/L	650	0.05 U	0.03	0.016	0.032	0.073	0.092	0.16	0.1	1.3	1.3	1.4	5.7
Acenaphthylene in ug/L	650	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.012	0.018	0.058
Anthracene in ug/L	26,000	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.047	0.048	0.14
Benzo(g,h,i)perylene in ug/L		0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Fluoranthene in ug/L	86	0.05 U	0.01 U	0.01 U	0.014	0.05 U	0.01 U	0.01 U	0.01 U	0.2	0.095	0.17	0.36
Fluorene in ug/L	3,500	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.034	0.056	0.03	0.23	0.31	0.52	2.1
Phenanthrene in ug/L		0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.2	0.11	0.068	0.88
Pyrene in ug/L	2,600	0.05 U	0.01 U	0.01 U	0.029	0.05 U	0.01 U	0.01 U	0.01 U	0.16	0.067	0.15	0.24
Naphthalene in ug/L	89	0.05 U	0.03	0.011	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	1.3	0.017	0.024	0.056
Benz(a)anthracene in ug/L		0.01 U	0.013	0.011									
Benzo(a)pyrene in ug/L		0.01 U											
Benzo(b)fluoranthene in ug/L		0.01 U											
Benzo(k)fluoranthene in ug/L		0.01 U											
Chrysene in ug/L		0.01 U	0.012	0.01 U									
Dibenzo(a,h)anthracene in ug/L		0.01 U											
Indeno(1,2,3-cd)pyrene in ug/L		0.01 U											
Total cPAHs TEQ in ug/L	0.018	ND	0.0084	0.0082									
Volatile Organic Compounds (VOC)													
Benzene in ug/L	24	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene in ug/L	2,100	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene in ug/L	15,000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total) in ug/L	680	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U
Field Parameters	-			•								-	•
Dissolved Oxygen in mg/L		0.3	0.5	0.2	0.1	0.7	0.2	0.2	0.2	0.3	0.6	0.1	0.1
ORP in mVolts		16	199	-36	-110	21	-32	23	-43	10	196	-121	-124
pH in pH Units		6.6	6.5	6.6	6.8	6.5	6.4	6.9	7.0	6.9	6.7	7.6	7.3
Specific Conductance in us/cm		4595	14937	6435	3328	4631	16023	10880	3988	7905	15609	966	1430
Temperature in deg C		12.0	16.2	16.7	10.7	12.3	16.7	16.7	10.7	12.2	17.1	15.9	9.8
Turbidity in NTU		1	1		1	2	13	6	12	2	3	26	2

Notes

U - Analyte was not detected at or above the reported result.

Table 9 - Confirmational Groundwater Monitoring Data for Naval Reserve South Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

	1		NRS-M	W-101		NRS-MW-102					
	Groundwater Screening Level (Industrial Land										
Chemical Name	Use)	5/13/14	8/12/14	11/4/14	2/17/15	5/13/14	8/12/14	11/4/14	2/17/15		
Total Petroleum Hydrocarbons (TPH)											
Gasoline Range Hydrocarbons in ug/L	1,000	100 U	100 U	100 U	100 U						
Diesel Range Hydrocarbons in ug/L	500	50 U	50 U	50 U	50 U						
Oil Range Hydrocarbons in ug/L	500	250 U	250 U	250 U	250 U						
Total TPHs (D+O Range) in ug/L	500	ND	ND	ND	ND	ND	ND	ND	ND		
Polycyclic Aromatic Hydrocarbons (PAHs)											
Acenaphthene in ug/L	650	0.054	0.077	0.1	0.067	0.2	0.11	0.098	0.092		
Acenaphthylene in ug/L	650	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U		
Anthracene in ug/L	26,000	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.017	0.015	0.01 U		
Benzo(g,h,i)perylene in ug/L		0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U		
Fluoranthene in ug/L	86	0.05 U	0.01 U	0.01 U	0.01 U	0.087	0.047	0.06	0.059		
Fluorene in ug/L	3,500	0.05 U	0.01 U	0.01 U	0.01 U	0.15	0.085	0.075	0.072		
Phenanthrene in ug/L		0.05 U	0.01 U	0.01 U	0.01 U	0.42	0.18	0.031	0.01 U		
Pyrene in ug/L	2,600	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.023	0.032	0.039		
Naphthalene in ug/L	89	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U		
Benz(a)anthracene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U						
Benzo(a)pyrene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U						
Benzo(b)fluoranthene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U						
Benzo(k)fluoranthene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U						
Chrysene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U						
Dibenzo(a,h)anthracene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U						
Indeno(1,2,3-cd)pyrene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U						
Total cPAHs TEQ in ug/L	0.018	ND	ND	ND	ND	ND	ND	ND	ND		
Volatile Organic Compounds (VOC)											
Benzene in ug/L	24	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Ethylbenzene in ug/L	2,100	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Toluene in ug/L	15,000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Xylenes (total) in ug/L	680	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U		
Field Parameters											
Dissolved Oxygen in mg/L		0.2	0.2	0.2	0.6	0.1	0.2	0.1	0.6		
ORP in mVolts		-99	-34	-72	46	-88	-86	-67	-17		
pH in pH Units		6.5	6.2	6.5	6.7	7.0	6.7	6.9	7.2		
Specific Conductance in us/cm		9021	19547	14564	6721	1829	1995	2279	1176		
Temperature in deg C		12.3	16.9	15.9	10.8	12.1	16.4	16.3	10.7		
Turbidity in NTU		5	25	42	316	7	2	2	2		

Notes

U - Analyte was not detected at or above the reported result.

Table 10 - Confirmational Groundwater Monitoring Data for Rail Car Dumper Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

	1		RCD-M	W-101	
	Groundwater Screening Level (Industrial Land				
Chemical Name	Use)	5/12/14	8/11/14	11/4/14	2/18/15
Total Petroleum Hydrocarbons (TPH)					
Diesel Range Hydrocarbons in ug/L	500	50 U	50 U	50 U	50 U
Oil Range Hydrocarbons in ug/L	500	250 U	250 U	250 U	250 U
Total TPHs (D+O Range) in ug/L	500	ND	ND	ND	ND
Dissolved Metals					
Dissolved Arsenic in ug/L	5		0.99	1.1	1.11
Dissolved Copper in ug/L	3.1	2.07	4.52	1.55	1.080
Dissolved Mercury in ug/L	0.025		0.0027	0.00083	0.00079
Dissolved Nickel in ug/L	8.2	92.4	159	85.4	19.0
Total Metals					
Total Arsenic in ug/L		0.68			
Total Copper in ug/L		2.6			
Total Mercury in ug/L		0.00162			
Total Nickel in ug/L		93.9			
Polycyclic Aromatic Hydrocarbons (PAHs)					
Acenaphthene in ug/L	650	0.05 U	0.01 U	0.01 U	0.01 U
Acenaphthylene in ug/L	650	0.05 U	0.01 U	0.01 U	0.01 U
Anthracene in ug/L	26,000	0.05 U	0.01 U	0.01 U	0.01 U
Benzo(g,h,i)perylene in ug/L		0.05 U	0.01 U	0.01 U	0.01 U
Fluoranthene in ug/L	86	0.05 U	0.01 U	0.01 U	0.01 U
Fluorene in ug/L	3,500	0.05 U	0.01 U	0.01 U	0.01 U
Phenanthrene in ug/L		0.05 U	0.01 U	0.01 U	0.01 U
Pyrene in ug/L	2,600	0.05 U	0.01 U	0.01 U	0.01 U
Naphthalene in ug/L	89	0.05 U	0.01 U	0.01 U	0.01 U
Benz(a)anthracene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U
Benzo(a)pyrene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U
Benzo(b)fluoranthene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U
Benzo(k)fluoranthene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U
Chrysene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U
Dibenzo(a,h)anthracene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U
Indeno(1,2,3-cd)pyrene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U
Total cPAHs TEQ in ug/L	0.018	ND	ND	ND	ND
Field Parameters					
Dissolved Oxygen in mg/L		7.9	5.8	7.2	9.8
ORP in mVolts		69	89	65	59
pH in pH Units		7.0	6.9	7.2	7.3
Specific Conductance in us/cm		27189	36189	36302	25430
Temperature in deg C		12.2	19.5	13.9	9.0
Turbidity in NTU		5	5	29	30

Notes

Concentrations in shaded cells indicate value exceeds Groundwater Screening Level (Industrial Land Use) U - Analyte was not detected at or above the reported result.

Table 11 - Confirmational Groundwater Monitoring Data for REC2-MW-5 Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

				DAS	T-N	1W-101			
	Groundwater								
	Screening Level								
	(Industrial Land								
Chemical Name	Use)	5/14/14		8/13/14		11/5/14		2/19/15	
Total Petroleum Hydrocarbons (TPH)									
Diesel Range Hydrocarbons in ug/L	500	82	х	50	U	67		70	х
Oil Range Hydrocarbons in ug/L	500	250	U	250	U	250	U	250	U
Total TPHs (D+O Range) in ug/L	500	82		ND		67		70	
Dissolved Metals									
Dissolved Copper in ug/L	3.1			0.47		0.3		0.77	
Dissolved Mercury in ug/L	0.025			0.00178		0.00189		0.00207	
Total Metals									
Total Copper in ug/L		0.98							
Total Mercury in ug/L		0.00437							
Polycyclic Aromatic Hydrocarbons (PAHs)	-								
Acenaphthene in ug/L	650	11		13		13		14	
Acenaphthylene in ug/L	650	0.05	U	0.01	U	0.01	U	0.058	
Anthracene in ug/L	26,000	0.069		0.06		0.056		0.063	
Benzo(g,h,i)perylene in ug/L		0.05	U	0.01	U	0.01	U	0.01	U
Fluoranthene in ug/L	86	0.26		0.42		0.26		0.27	
Fluorene in ug/L	3,500	3.8		3.6		4.1		3.4	
Phenanthrene in ug/L		0.23		0.058		0.06		0.067	
Pyrene in ug/L	2,600	0.21		0.24		0.19		0.2	
Naphthalene in ug/L	89	0.1		0.056		0.046		0.04	
Benz(a)anthracene in ug/L		0.01	U	0.01	U	0.01	U	0.01	U
Benzo(a)pyrene in ug/L		0.01	U	0.01	U	0.01	U	0.01	U
Benzo(b)fluoranthene in ug/L		0.01	U	0.01	U	0.01	U	0.01	U
Benzo(k)fluoranthene in ug/L		0.01	U	0.01	U	0.01	U	0.01	U
Chrysene in ug/L		0.012		0.01	U	0.01	U	0.01	U
Dibenzo(a,h)anthracene in ug/L		0.01	U	0.01	U	0.01	U	0.01	U
Indeno(1,2,3-cd)pyrene in ug/L		0.01	U	0.01	U	0.01	U	0.01	U
Total cPAHs TEQ in ug/L	0.018	0.00762		ND		ND		ND	
Field Parameters									
Dissolved Oxygen in mg/L		0.2		0.2		0.2		0.5	
ORP in mVolts		-128		-125		-139		39	
pH in pH Units		7.4		7.1		7.3		7.5	
Specific Conductance in us/cm		558		612		445		440	
Temperature in deg C		12.2		15.0		13.7		11.1	
Turbidity in NTU		12		3		9		2	

Notes

U - Analyte was not detected at or above the reported result.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Aspect Consulting

Table 11

Table 12 - Confirmational Groundwater Monitoring Data for Small Hydraulic Barker Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

			SHB-M	W-101		SHB-MW-102					
	Groundwater Screening Level (Industrial Land										
Chemical Name	Use)	5/12/14	8/11/14	11/5/14	2/18/15	5/12/14	8/11/14	11/5/14	2/18/15		
Total Petroleum Hydrocarbons (TPH)											
Gasoline Range Hydrocarbons in ug/L	1,000	100 U	100 U	100 U	100 U						
Diesel Range Hydrocarbons in ug/L	500	100 x	50 U	86	56 J	50 U	50 U	50 U	50 U		
Oil Range Hydrocarbons in ug/L	500	250 U	250 U	250 U	250 U						
Total TPHs in ug/L	500	100	ND	86	56	ND	ND	ND	ND		
Dissolved Metals											
Dissolved Copper in ug/L	3.1	3.5	1.19	1.49	0.51		0.65	0.67	0.70		
Dissolved Mercury in ug/L	0.025	0.0637	0.00253	0.0253	0.00528		0.00302	0.0018	0.00315		
Total Metals											
Total Copper in ug/L		16.1				1.6					
Total Mercury in ug/L		0.0832				0.00264					
Polycyclic Aromatic Hydrocarbons (PAHs)											
Acenaphthene in ug/L	650	0.85	4.8	0.46	4.3	0.05 U	0.064	0.15	0.3		
Acenaphthylene in ug/L	650	0.05 U	0.045	0.01 U	0.028	0.05 U	0.01 U	0.01 U	0.01 U		
Anthracene in ug/L	26,000	0.11	0.39	0.021	0.093	0.05 U	0.01 U	0.01 U	0.01 U		
Benzo(g,h,i)perylene in ug/L		0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U		
Fluoranthene in ug/L	86	0.38	0.89	0.039	0.17	0.05 U	0.01 U	0.01 U	0.01 U		
Fluorene in ug/L	3,500	0.53	2.5	0.24	0.73	0.05 U	0.01 U	0.01 U	0.01 U		
Phenanthrene in ug/L		0.5	1.9	0.12	0.63	0.05 U	0.01 U	0.01 U	0.01 U		
Pyrene in ug/L	2,600	0.3	0.51	0.032	0.13	0.05 U	0.01 U	0.01 U	0.01 U		
Naphthalene in ug/L	89	0.61	5.7	0.3	3.7	0.05 U	0.01 U	0.014	0.01 U		
Benz(a)anthracene in ug/L		0.079	0.048	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
Benzo(a)pyrene in ug/L		0.013	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
Benzo(b)fluoranthene in ug/L		0.026	0.013	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
Benzo(k)fluoranthene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U						
Chrysene in ug/L		0.059	0.045	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U		
Dibenzo(a,h)anthracene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U						
Indeno(1,2,3-cd)pyrene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U						
Total cPAHs TEQ in ug/L	0.018	0.0256	0.013	ND	ND	ND	ND	ND	ND		
Volatile Organic Compounds (VOC)											
Benzene in ug/L	24	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Ethylbenzene in ug/L	2,100	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Toluene in ug/L	15,000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Xylenes (total) in ug/L	680	3 U	3 U	3 U	3 U	3 U	3 U	3 U	3 U		
Field Parameters											
Dissolved Oxygen in mg/L		0.1	0.2	0.1	0.5	0.7	0.7	0.1	0.9		
ORP in mVolts		-192	-1400	-145	-80	34	60	66	20		
pH in pH Units		11.7	7.4	8.4	7.6	6.8	6.8	6.9	7.0		
Specific Conductance in us/cm		1535	1159	1005	752	1319	989	711	722		
Temperature in deg C		13.9	17.5	16.4	13.5	12.5	16.2	16.4	12.2		
Turbidity in NTU		11	4	83	1	6	4	3	4		

Notes

Concentrations in shaded cells indicate value exceeds Groundwater Screening Level (Industrial Land Use)

J - Analyte was positively identified. The reported result is an estimate.

U - Analyte was not detected at or above the reported result.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Table 12 Confirmational Groundwater Monitoring Report Page 1 of 1

Table 13 - Confirmational Groundwater Monitoring Data for UST 29/Latex Spill Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

		UST29-MW-101				UST29-N	/W-102		UST29-MW-103				
	Groundwater Screening Level (Industrial Land												
Chemical Name	Use)	5/14/14	8/13/14	11/5/14	2/18/15	5/14/14	8/13/14	11/6/14	2/18/15	5/14/14	8/13/14	11/6/14	2/18/15
Total Petroleum Hydrocarbons (TPH)													
Gasoline Range Hydrocarbons in ug/L	1,000	100 U	100 U	100 U	100 U	290	130	200	100 U	100 U	100 U	100 U	100 U
Diesel Range Hydrocarbons in ug/L	500	58 x	50 U	50 U	50 U	140 x	71 x	190	50 U	50 U	50 U	50 U	70 J
Oil Range Hydrocarbons in ug/L	500	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U	250 U
Total TPHs (D+O Range) in ug/L	500	58	ND	ND	ND	140	71.0	190	ND	ND	ND	ND	70
Polycyclic Aromatic Hydrocarbons (PAHs)													
Acenaphthene in ug/L	650	0.22	0.21	0.034	0.067	1.6	1.3	3.1	0.78	0.55	0.26	0.32	0.45
Acenaphthylene in ug/L	650	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Anthracene in ug/L	26,000	0.13	0.15	0.01 U	0.022	0.054	0.027	0.056	0.022	0.16	0.093	0.12	0.13
Benzo(g,h,i)perylene in ug/L		0.05 U	0.019	0.01 U	0.013	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Fluoranthene in ug/L	86	0.33	0.24	0.014	0.077	0.061	0.036	0.078	0.029	0.21	0.12	0.15	0.24
Fluorene in ug/L	3,500	0.12	0.17	0.01 U	0.01 U	0.58	0.54	1.3	0.29	0.21	0.14	0.22	0.22
Phenanthrene in ug/L		0.39	0.63	0.01 U	0.078	0.18	0.14	0.13	0.058	0.13	0.37	0.49	0.52
Pyrene in ug/L	2,600	0.34	0.31	0.034	0.14	0.053	0.033	0.066	0.031	0.21	0.13	0.21	0.26
Naphthalene in ug/L	89	0.3	0.33	0.01 U	0.04	0.05 U	0.01 U	0.01 U	0.01 U	0.22	0.14	0.13	0.14
Benz(a)anthracene in ug/L		0.11	0.061	0.01 U	0.031	0.01 U	0.01 U	0.01 U	0.01 U	0.022	0.01 U	0.01 U	0.015
Benzo(a)pyrene in ug/L		0.031	0.035	0.01 U	0.035	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Benzo(b)fluoranthene in ug/L		0.034	0.043	0.01 U	0.037	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Benzo(k)fluoranthene in ug/L		0.013	0.014	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U					
Chrysene in ug/L		0.12	0.081	0.01 U	0.039	0.01 U	0.01 U	0.01 U	0.01 U	0.027	0.01	0.016	0.017
Dibenzo(a,h)anthracene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Indeno(1,2,3-cd)pyrene in ug/L		0.01 U	0.027	0.01 U	0.011	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Total cPAHs TEQ in ug/L	0.018	0.0489	0.051	ND	0.044	ND	ND	ND	ND	0.00947	0.0076	0.0077	0.0087
Volatile Organic Compounds (VOC)	-												
Benzene in ug/L	24	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene in ug/L	2,100	1 U	1 U	1 U	1 U	1.3	2.2	2.6	1 U	1.2	1 U	1 U	1 U
Toluene in ug/L	15,000	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes (total) in ug/L	680	3 U	3 U	3 U	3 U	9	3 U	10	4.6	3 U	3 U	3 U	3 U
Field Parameters													
Dissolved Oxygen in mg/L		0.03	0.6	0.1	0.5	0.1	0.7	0.1	0.5	0.1	0.8	0.2	0.4
ORP in mVolts		9	94	-32	-147	-93	90	-39	-56	-174	96	30	-153
pH in pH Units		9.2	7.8	8.3	10.6	6.8	6.5	7.1	7.0	9.3	9.0	10.3	10.9
Specific Conductance in us/cm		1027	1078	831	992	1152	826	665	655	642	802	708	728
Temperature in deg C		13.5	16.6	15.6	11.2	13.6	15.4	15.2	12.2	11.6	15.1	15.1	11.0
Turbidity in NTU		29	10	71	46	7	2	2	3	11	2	7	1

Notes

Concentrations in shaded cells indicate value exceeds Groundwater Screening Level (Industrial Land Use)

J - Analyte was positively identified. The reported result is an estimate.

U - Analyte was not detected at or above the reported result.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Table 14 - Confirmational Groundwater Monitoring Data for UST 70 Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

			UST70-	MW-22			UST70-N	MW-101			UST70-N	AW-102	
	Groundwater Screening Level (Industrial Land												
Chemical Name	Use)	5/12/14	8/11/14	11/4/14	2/19/15	5/12/14	8/11/14	11/4/14	2/18/15	5/12/14	8/11/14	11/4/14	2/18/15
Total Petroleum Hydrocarbons (TPH)													
Diesel Range Hydrocarbons in ug/L	500	50 U											
Oil Range Hydrocarbons in ug/L	500	250 U											
Total TPHs (D+O Range) in ug/L	500	ND											
Dissolved Metals													
Dissolved Arsenic in ug/L	5		0.76	1.5	1.25		2.4	1.9	1.1		2.8	3.6	3.1
Dissolved Copper in ug/L	3.1		2.66	11.9	7.640		1.21	6.47	3.05		9.35	0.59	0.67
Dissolved Nickel in ug/L	8.2		19.1	35.4	6.85		4.8	3.92	3.40		3.44	2.24	1.92
Dissolved Zinc in ug/L	81		51.5	8.9	31.3		6.9	7.3	4.1		6.5	0.9	0.9
Total Metals								•			•		
Total Arsenic in ug/L		1.2				2.2				2.4			
Total Copper in ug/L		7.11			1	2.59				0.82			
Total Nickel in ug/L		19.2				4.23				3.21			
Total Zinc in ug/L		12.3				3.7				1.6			
Polycyclic Aromatic Hydrocarbons (PAHs)				•				LI					
Acenaphthene in ug/L	650	0.05 U	0.013	0.01 U	0.011	0.64	1.4	0.091	0.019	6.6	2	2.6	2.7
Acenaphthylene in ug/L	650	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.041	0.032	0.033
Anthracene in ug/L	26,000	0.05 U	0.01 U	0.012	0.014	0.05 U	0.01 U	0.01 U	0.01 U	0.44	0.3	0.042	0.049
Benzo(g,h,i)perylene in ug/L		0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U
Fluoranthene in ug/L	86	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.12	0.01 U	0.011	0.54	1	0.7	0.84
Fluorene in ug/L	3,500	0.05 U	0.01 U	0.01 U	0.01 U	0.21	0.25	0.018	0.015	3	2.6	1.3	0.27
Phenanthrene in ug/L		0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.024	0.01 U	0.01 U	0.05 U	0.01 U	0.014	0.017
Pyrene in ug/L	2,600	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.1	0.01 U	0.016	0.38	0.58	0.39	0.49
Naphthalene in ug/L	89	0.05 U	0.015	0.01 U	0.01 U	0.05 U	0.02	0.01 U	0.01 U	0.05 U	0.019	0.025	0.03
Benz(a)anthracene in ug/L		0.01 U	0.018	0.016	0.01 U	0.01 U							
Benzo(a)pyrene in ug/L		0.01 U											
Benzo(b)fluoranthene in ug/L		0.01 U											
Benzo(k)fluoranthene in ug/L		0.01 U											
Chrysene in ug/L		0.01 U	0.013	0.012	0.01 U	0.01 U							
Dibenzo(a,h)anthracene in ug/L		0.01 U											
Indeno(1,2,3-cd)pyrene in ug/L		0.01 U											
Total cPAHs TEQ in ug/L	0.018	ND	0.00893	0.0087	ND	ND							
Field Parameters				•									
Dissolved Oxygen in mg/L		1.7	0.6	2.6	1.7	0.2	0.7	1.4	0.2	0.4	0.6	0.2	0.5
ORP in mVolts		1	33	77	34	26	40	99	74	-142	56	38	-54
pH in pH Units		7.3	6.9	7.4	7.4	7.1	7.1	6.9	7.2	7.5	7.2	7.5	7.5
Specific Conductance in us/cm		11812	26580	8234	15307	1705	2234	2044	1401	1717	1970	2019	1394
Temperature in deg C		13.3	19.5	16.9	11.9	14.4	18.8	17.9	13.0	14.5	19.2	18.4	13.4
Turbidity in NTU		24	7	15	9	11	5	2	4	2	4	6	3

Notes

Concentrations within bold border indicate value exceeds Groundwater Screening Level (Unrestricted Land Use)

U - Analyte was not detected at or above the reported result.

Table 15 - Confirmational Groundwater Monitoring Data for UST 71 Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

Scre	iroundwater										UST71-N		
(Inc													
	reening Level												
Chemical Name	dustrial Land												
chemical func	Use)	5/12/14	8/12/14	11/5/14	2/17/15	5/12/14	8/11/14	11/4/14	2/17/15	5/13/14	8/12/14	11/5/14	2/18/15
Total Petroleum Hydrocarbons (TPH)													
Diesel Range Hydrocarbons in ug/L	500	50 U	50 U	50 U	50 U	200 x	53 x	50 U	84 x	370	220 x	200	190
Oil Range Hydrocarbons in ug/L	500	250 U	660	890	250 U	250 U	250 U	250					
Total TPHs (D+O Range) in ug/L	500	ND	ND	ND	ND	200	53	685	974	370	220	200	190
Extractable Petroleum Hydrocarbons													
Aliphatics C10-C12 (EPH) in ug/L													80.0
Aliphatics C12-C16 (EPH) in ug/L													80.0
Aliphatics C16-C21 (EPH) in ug/L													91.6
Aliphatics C21-C34 (EPH) in ug/L													80.0
Aliphatics C8-C10 (EPH) in ug/L													80.0
Aromatics C10-C12 (EPH) in ug/L													80.0
Aromatics C12-C16 (EPH) in ug/L													81.7
Aromatics C16-C21 (EPH) in ug/L													115
Aromatics C21-C34 (EPH) in ug/L													80.0
Aromatics C8-C10 (EPH) in ug/L													80.0
Dissolved Metals		•											
Dissolved Copper in ug/L	3.1		0.579	1.04	0.89		4.99	3.9	6.86	9.76	31.9	47.4	6.31
Dissolved Zinc in ug/L	81		2.8	1.7	3.0		4.7	2.4	4.8	18.4	39.6	25.5	7.7
Total Metals	-						L 1	•					
Total Copper in ug/L		8.73				20.2				56.9			
Total Zinc in ug/L	-	2.6				12				97.7			
Polycyclic Aromatic Hydrocarbons (PAHs)		-											
Acenaphthene in ug/L	650	0.05 U	0.018	0.061	0.067	0.91	0.15	0.01 U	0.01 U	3	1.9	8.3	6.7
Acenaphthylene in ug/L	650	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01 U	0.01 U	0.01
Anthracene in ug/L	26,000	0.05 U	0.012	0.019	0.024	0.54	0.15	0.01 U	0.037	0.6	0.51	1.6	0.99
Benzo(g,h,i)perylene in ug/L		0.05 U	0.01 U	0.01 U	0.01 U	0.05 U	0.01	0.01 U	0.01 U	0.05 U	0.086	0.03	0.027
Fluoranthene in ug/L	86	0.05 U	0.043	0.016	0.013	2	0.73	0.021	0.01 U	1.1	1.3	2	1.4
Fluorene in ug/L	3,500	0.05 U	0.048	0.049	0.038	0.12	0.021	0.01 U	0.01 U	1.6	1.2	5.4	4
Phenanthrene in ug/L		0.05 U	0.021	0.01 U	0.01 U	0.14	0.026	0.01 U	0.01 U	3.5	2.7	8.5	6.2
Pyrene in ug/L	2,600	0.054	0.043	0.037	0.024	1.8	0.66	0.089	0.034	0.96	1.3	1.6	1.1
Naphthalene in ug/L	89	0.05 U	0.01 U	0.01 U	0.011	0.2	0.01 U	0.01 U	0.01 U	24	6	1.8	53
Benz(a)anthracene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.28	0.077	0.01 U	0.01 U	0.15	0.21	0.19	0.16
Benzo(a)pyrene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.084	0.025	0.01 U	0.01 U	0.059	0.13	0.07	0.06
Benzo(b)fluoranthene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.16	0.043	0.01 U	0.01 U	0.1	0.22	0.13	0.11
Benzo(k)fluoranthene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.029	0.011	0.01 U	0.01 U	0.028	0.057	0.029	0.023
Chrysene in ug/L		0.014	0.01 U	0.01 U	0.01 U	0.24	0.08	0.013	0.011	0.2	0.36	0.25	0.22
Dibenzo(a,h)anthracene in ug/L		0.01 U	0.017	0.01 U	0.01								
Indeno(1,2,3-cd)pyrene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.023	0.01 U	0.01 U	0.01 U	0.027	0.072	0.023	0.021
Total cPAHs TEQ in ug/L	0.018	0.00764	ND	ND	ND	0.136	0.04	0.0076	0.0076	0.092	0.19	0.11	0.094
Field Parameters	-							1					
Dissolved Oxygen in mg/L		0.3	0.7	0.2	0.6	0.3	1.9	0.6	0.3	0.2	0.5	0.2	0.7
ORP in mVolts		-7	205	87	115	43	68	-16	51	-232	62	36	44
pH in pH Units		6.5	6.6	7.0	7.1	6.7	6.8	7.2	6.4	8.3	7.7	9.8	8.5
Specific Conductance in us/cm		1792	11535	1982	1405	3118	3381	259	194	3189	3205	2423	2184
Temperature in deg C		13.5	17.3	17.0	13.1	14.3	18.4	14.8	11.7	15.0	19.5	17.6	13.1
Turbidity in NTU		36	3	5	4	13	7	57	95	134		29	75

Notes

Concentrations in shaded cells indicate value exceeds Groundwater Screening Level (Industrial Land Use)

J - Analyte was positively identified. The reported result is an estimate.

U - Analyte was not detected at or above the reported result.

UJ - Analyte was not detected at or above the reported estimate

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Table 15 - Confirmational Groundwater Monitoring Data for UST 71 Area

Project #110207 - K-C Worldwide Site Upland Area Everett, WA

Screen (IndustChemical NameUTotal Petroleum Hydrocarbons (TPH)Diesel Range Hydrocarbons in ug/LOil Range Hydrocarbons in ug/LTotal TPHs (D+O Range) in ug/LExtractable Petroleum HydrocarbonsAliphatics C10-C12 (EPH) in ug/LAliphatics C12-C16 (EPH) in ug/LAliphatics C16-C21 (EPH) in ug/LAliphatics C21-C34 (EPH) in ug/LAromatics C10-C12 (EPH) in ug/LDissolved C10-C12 (EPH) in ug/LAromatics C10-C12 (EPH) in ug/LDissolved C21-C34 (EPH) in ug/LDissolved C0pper in ug/LDissolved Z10 (EPH) (EP	adwater ing Level rial Land 500 500 500 500 3.0 3.1 81	5/12/14 50 U 250 U ND	5/12/14 FD 50 U 250 U ND	8/11/14 50 U 250 U ND 	8/11/14 FD 50 U 250 U ND	11/5/14 50 U 250 U ND	11/5/14 FD 50 U 250 U ND	2/18/15 59 J 250 U 59 1 1 1 1 1 1 1 1 1 1 1 1 1	2/18/15 FD 50 U 250 U ND
Chemical NameUTotal Petroleum Hydrocarbons (TPH)Diesel Range Hydrocarbons in ug/LOil Range Hydrocarbons in ug/LTotal TPHs (D+O Range) in ug/LExtractable Petroleum HydrocarbonsAliphatics C10-C12 (EPH) in ug/LAliphatics C12-C16 (EPH) in ug/LAliphatics C16-C21 (EPH) in ug/LAliphatics C21-C34 (EPH) in ug/LAromatics C10-C12 (EPH) in ug/LDissolved C12-C16 (EPH) in ug/LAromatics C21-C34 (EPH) in ug/LDissolved C12-C16 (EPH) in ug/LDissolved MetalsDissolved Zinc in ug/LDissolved Zinc in ug/LTotal Copper in ug/LTotal Copper in ug/LPolycyclic Aromatic Hydrocarbons (PAHs)Acenaphthene in ug/LAcenaphthylene in ug/L	se) 500 500 500 3.1	50 U 250 U	FD 50 U 250 U	50 U 250 U ND	FD 50 U 250 U ND 100000000000000000000000000000000000	50 U 250 U ND	FD 50 U 250 U	59 J 250 U 59 J	FD 50 U 250 U
Total Petroleum Hydrocarbons (TPH)Diesel Range Hydrocarbons in ug/LOil Range Hydrocarbons in ug/LOil Range Hydrocarbons in ug/LExtractable Petroleum HydrocarbonsAliphatics C10-C12 (EPH) in ug/LAliphatics C12-C16 (EPH) in ug/LAliphatics C12-C16 (EPH) in ug/LAliphatics C16-C21 (EPH) in ug/LAliphatics C21-C34 (EPH) in ug/LAliphatics C10-C12 (EPH) in ug/LAromatics C10-C12 (EPH) in ug/LDissolved C10-C12 (EPH) in ug/LAromatics C10-C12 (EPH) in ug/LDissolved C10-C12 (EPH) in ug/LAromatics C10-C12 (EPH) in ug/LDissolved C10-C12 (EPH) in ug/LAromatics C21-C34 (EPH) in ug/LDissolved C10-C12 (EPH) in ug/LDissolved C10-C12 (EPH) in ug/LDissolved C10-C12 (EPH) in ug/LDissolved MetalsDissolved C21-C34 (EPH) in ug/LDissolved Zinc in ug/LDissolved C10-C12 (EPH) in ug/LAcenaphthene in ug/LAcenaphthene in ug/L	500 500 500	50 U 250 U	50 U 250 U	50 U 250 U ND	50 U 250 U ND	50 U 250 U ND	50 U 250 U	59 J 250 U 59 J	50 U 250 U
Diesel Range Hydrocarbons in ug/L Oil Range Hydrocarbons in ug/L Total TPHs (D+O Range) in ug/L Extractable Petroleum Hydrocarbons Aliphatics C10-C12 (EPH) in ug/L Aliphatics C12-C16 (EPH) in ug/L Aliphatics C16-C21 (EPH) in ug/L Aliphatics C16-C21 (EPH) in ug/L Aliphatics C16-C21 (EPH) in ug/L Aliphatics C10-C12 (EPH) in ug/L Aliphatics C10-C12 (EPH) in ug/L Aromatics C21-C34 (EPH) in ug/L Dissolved Metals Dissolved Metals Dissolved Copper in ug/L Dissolved Zinc in ug/L Total Metals Total Copper in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L	500 500	250 U	250 U	250 U ND	250 U ND	250 U ND	250 U	250 U 59	250 U
Oil Range Hydrocarbons in ug/L Total TPHs (D+O Range) in ug/L Extractable Petroleum Hydrocarbons Aliphatics C10-C12 (EPH) in ug/L Aliphatics C12-C16 (EPH) in ug/L Aliphatics C16-C21 (EPH) in ug/L Aliphatics C16-C21 (EPH) in ug/L Aliphatics C16-C21 (EPH) in ug/L Aliphatics C21-C34 (EPH) in ug/L Aromatics C10-C12 (EPH) in ug/L Dissolved Metals Dissolved Metals Dissolved Copper in ug/L Dissolved Zinc in ug/L Total Metals Total Copper in ug/L Total Zinc in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L	500 500	250 U	250 U	250 U ND	250 U ND	250 U ND	250 U	250 U 59	250 U
Total TPHs (D+O Range) in ug/LExtractable Petroleum HydrocarbonsAliphatics C10-C12 (EPH) in ug/LAliphatics C12-C16 (EPH) in ug/LAliphatics C16-C21 (EPH) in ug/LAliphatics C16-C21 (EPH) in ug/LAliphatics C21-C34 (EPH) in ug/LAromatics C10-C12 (EPH) in ug/LAromatics C16-C21 (EPH) in ug/LAromatics C16-C21 (EPH) in ug/LDissolved C10 (EPH) in ug/LDissolved MetalsDissolved MetalsDissolved Zinc in ug/LTotal Copper in ug/LTotal Copper in ug/LTotal Zinc in ug/LPolycyclic Aromatic Hydrocarbons (PAHs)Acenaphthene in ug/L	3.1			ND	ND	ND		59	
Extractable Petroleum Hydrocarbons Aliphatics C10-C12 (EPH) in ug/L Aliphatics C12-C16 (EPH) in ug/L Aliphatics C16-C21 (EPH) in ug/L Aliphatics C21-C34 (EPH) in ug/L Aliphatics C8-C10 (EPH) in ug/L Aromatics C10-C12 (EPH) in ug/L Aromatics C16-C21 (EPH) in ug/L Aromatics C21-C34 (EPH) in ug/L Aromatics C8-C10 (EPH) in ug/L Dissolved Metals Dissolved Copper in ug/L Dissolved Zinc in ug/L Total Copper in ug/L Total Copper in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L	3.1								
Aliphatics C10-C12 (EPH) in ug/L Aliphatics C12-C16 (EPH) in ug/L Aliphatics C16-C21 (EPH) in ug/L Aliphatics C21-C34 (EPH) in ug/L Aliphatics C8-C10 (EPH) in ug/L Aromatics C10-C12 (EPH) in ug/L Aromatics C21-C34 (EPH) in ug/L Dissolved Metals Dissolved Metals Dissolved Zinc in ug/L Dissolved Zinc in ug/L Total Copper in ug/L Total Copper in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L				1.06					
Aliphatics C12-C16 (EPH) in ug/L Aliphatics C16-C21 (EPH) in ug/L Aliphatics C21-C34 (EPH) in ug/L Aliphatics C8-C10 (EPH) in ug/L Aromatics C10-C12 (EPH) in ug/L Aromatics C16-C21 (EPH) in ug/L Aromatics C21-C34 (EPH) in ug/L Dissolved Metals Dissolved Copper in ug/L Dissolved Zinc in ug/L Total Metals Total Copper in ug/L Total Zinc in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L				1.06					
Aliphatics C16-C21 (EPH) in ug/L Aliphatics C21-C34 (EPH) in ug/L Aliphatics C8-C10 (EPH) in ug/L Aromatics C10-C12 (EPH) in ug/L Aromatics C12-C16 (EPH) in ug/L Aromatics C16-C21 (EPH) in ug/L Aromatics C16-C21 (EPH) in ug/L Aromatics C21-C34 (EPH) in ug/L Aromatics C21-C34 (EPH) in ug/L Dissolved Metals Dissolved Copper in ug/L Dissolved Zinc in ug/L Total Metals Total Copper in ug/L Total Zinc in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L				1.06					
Aliphatics C21-C34 (EPH) in ug/L Aliphatics C8-C10 (EPH) in ug/L Aromatics C10-C12 (EPH) in ug/L Aromatics C12-C16 (EPH) in ug/L Aromatics C16-C21 (EPH) in ug/L Aromatics C21-C34 (EPH) in ug/L Aromatics C21-C34 (EPH) in ug/L Aromatics C21-C34 (EPH) in ug/L Dissolved Metals Dissolved Copper in ug/L Dissolved Zinc in ug/L Total Metals Total Zinc in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthylene in ug/L				1.06					
Aliphatics C8-C10 (EPH) in ug/L Aromatics C10-C12 (EPH) in ug/L Aromatics C12-C16 (EPH) in ug/L Aromatics C16-C21 (EPH) in ug/L Aromatics C21-C34 (EPH) in ug/L Aromatics C8-C10 (EPH) in ug/L Dissolved Metals Dissolved Zinc in ug/L Total Metals Total Copper in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthylene in ug/L				1.06					
Aromatics C10-C12 (EPH) in ug/L Aromatics C12-C16 (EPH) in ug/L Aromatics C16-C21 (EPH) in ug/L Aromatics C21-C34 (EPH) in ug/L Aromatics C8-C10 (EPH) in ug/L Dissolved Metals Dissolved Copper in ug/L Dissolved Zinc in ug/L Total Metals Total Zinc in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthylene in ug/L				1.06					
Aromatics C12-C16 (EPH) in ug/L Aromatics C16-C21 (EPH) in ug/L Aromatics C21-C34 (EPH) in ug/L Aromatics C21-C34 (EPH) in ug/L Dissolved Metals Dissolved Metals Dissolved Zinc in ug/L Total Metals Total Copper in ug/L Total Zinc in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L				1.06					
Aromatics C16-C21 (EPH) in ug/L Aromatics C21-C34 (EPH) in ug/L Aromatics C8-C10 (EPH) in ug/L Dissolved Metals Dissolved Zinc in ug/L Dissolved Zinc in ug/L Total Metals Total Copper in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L				1.06					
Aromatics C8-C10 (EPH) in ug/L Dissolved Metals Dissolved Copper in ug/L Dissolved Zinc in ug/L Total Metals Total Copper in ug/L Total Zinc in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L				1.06					
Aromatics C8-C10 (EPH) in ug/L Dissolved Metals Dissolved Copper in ug/L Dissolved Zinc in ug/L Total Metals Total Copper in ug/L Total Zinc in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L				1.06					
Dissolved Copper in ug/L Dissolved Zinc in ug/L Total Metals Total Copper in ug/L Total Zinc in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L				1.06					
Dissolved Zinc in ug/L Total Metals Total Copper in ug/L Total Zinc in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L				1.06					
Total Metals Total Copper in ug/L Total Zinc in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L	81				1.12	3.23	3.16	6.20	7.62
Total Copper in ug/L Total Zinc in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L				3.5	2.5	2.1	1.8	1.9	2.4
Total Zinc in ug/L Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L									
Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene in ug/L Acenaphthylene in ug/L		1.65	1.67						-
Acenaphthene in ug/L Acenaphthylene in ug/L		1.4	1.7						
Acenaphthylene in ug/L									
	650	0.05 U	0.05 U	0.01 U	0.017	0.066	0.051	0.23	0.21
Anthracene in ug/L 26	650	0.05 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
	5,000	0.05 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.026	0.022
Benzo(g,h,i)perylene in ug/L		0.05 U	0.05 U	0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 UJ	0.01 U
Fluoranthene in ug/L	86	0.05 U	0.05 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
5,	3,500	0.05 U		0.026	0.029	0.045	0.04	0.15	0.13
Phenanthrene in ug/L		0.05 U		0.014	0.012	0.01 U	0.01 U	0.077	0.057
, 6.	2,600	0.05 U		0.01 U		0.01 U	0.01 U	0.011	0.01
Naphthalene in ug/L	89	0.05 U	0.05 U	0.01 U	0.01 U	0.026	0.024	0.099	0.092
Benz(a)anthracene in ug/L		0.01 U		0.01 U	0.01 U	0.01 U	0.01 U	0.01 UJ	0.01 U
Benzo(a)pyrene in ug/L		0.01 U		0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 UJ	0.01 U
Benzo(b)fluoranthene in ug/L		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UJ	0.01 U
Benzo(k)fluoranthene in ug/L		0.01 U		0.01 U	0.01 U	0.01 U	0.01 U	0.01 UJ	0.01 U
Chrysene in ug/L		0.01 U					0.01 U	0.01 UJ	0.01 U
Dibenzo(a,h)anthracene in ug/L		0.01 U				0.01 UJ	0.01 U	0.01 UJ 0.01 UJ	0.01 U
Indeno(1,2,3-cd)pyrene in ug/L	0.010	0.01 U				0.01 UJ	0.01 U		0.01 U
	0.018	ND	ND	ND	ND	ND	ND	ND	ND
Field Parameters					I		I		
Dissolved Oxygen in mg/L		0.2		0.2		0.1		0.1	
ORP in mVolts		-19		24		123		-194	
pH in pH Units		7.7		7.6		7.5		8.6	
Specific Conductance in us/cm		1549 12.7		2174		1143		806	
Temperature in deg C Turbidity in NTU				17.5		16.8		12.3 6	

Notes

Concentrations in shaded cells indicate value exceeds Groundwater

J - Analyte was positively identified. The reported result is an estima

U - Analyte was not detected at or above the reported result.

UJ - Analyte was not detected at or above the reported estimate

x - The sample chromatographic pattern does not resemble the fue

Table 15 Confirmational Groundwater Monitoring Report Page 2 of 2

Table 16 - Recommended Additional Groundwater Monitoring for Interim Action Areas

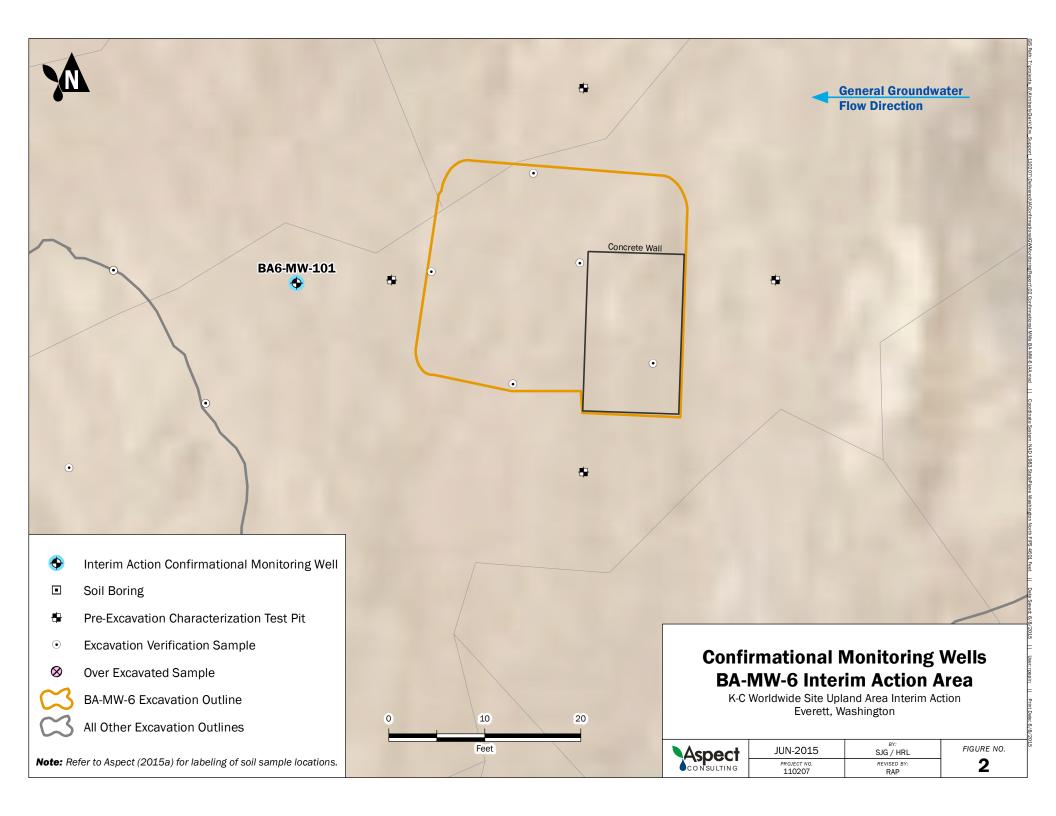
Project #110207 - K-C Worldwide Site Upland Area Everett, WA

	ті	рН		Dissolved Metals						
Interim Action Area	Diesel- + Oil-	Gasoline-								
and Monitoring Wells	Range	Range +BTEX	PAHs	Arsenic	Copper	Lead	Nickel	Mercury	Zinc	
Boiler/Baghouse Area										
BBH-MW-101				x	x	х		x	х	
BBH-MW-102				x	x	х		x	х	
BBH-MW-103				x	x	х		x	х	
BBH-MW-104				x	x	х		x	х	
PM-MW-8				x	x	х		x	х	
REC3-MW1R*			х	x	x	х		x	х	
Bunker C ASTs Area										
BCT-MW-103	х	х	х							
BCT-MW-104	х	х	х							
BCT-MW-105	х	х	х							
BCT-MW-106	х	х	х							
BCT-MW-107	х	х	х							
BCT-MW-108	х	х	х							
MW-1	х	х	х		x					
MW-2	х	x	х		x					
CN-B-2 Area										
CN-MW-101				x						
GF-11 Area				-						
GF-MW-101								x		
Rail Car Dumper Area										
RCD-MW-101					x		х			
SHB-MW-1 Area	<u>.</u>			-						
SHB-MW-101			х		x			x		
UST 29/Latex Spill Area										
UST29-MW-101			х							
UST 70 Area										
UST70-MW-101					х					
UST70-MW-102					х					
UST70-MW-2					х		х			
USTs 71 Area										
UST71-MW101	Х		х		х			x		
UST71-MW102	х		х		х			x		
UST71-MW103	х		х		х			x		

Notes

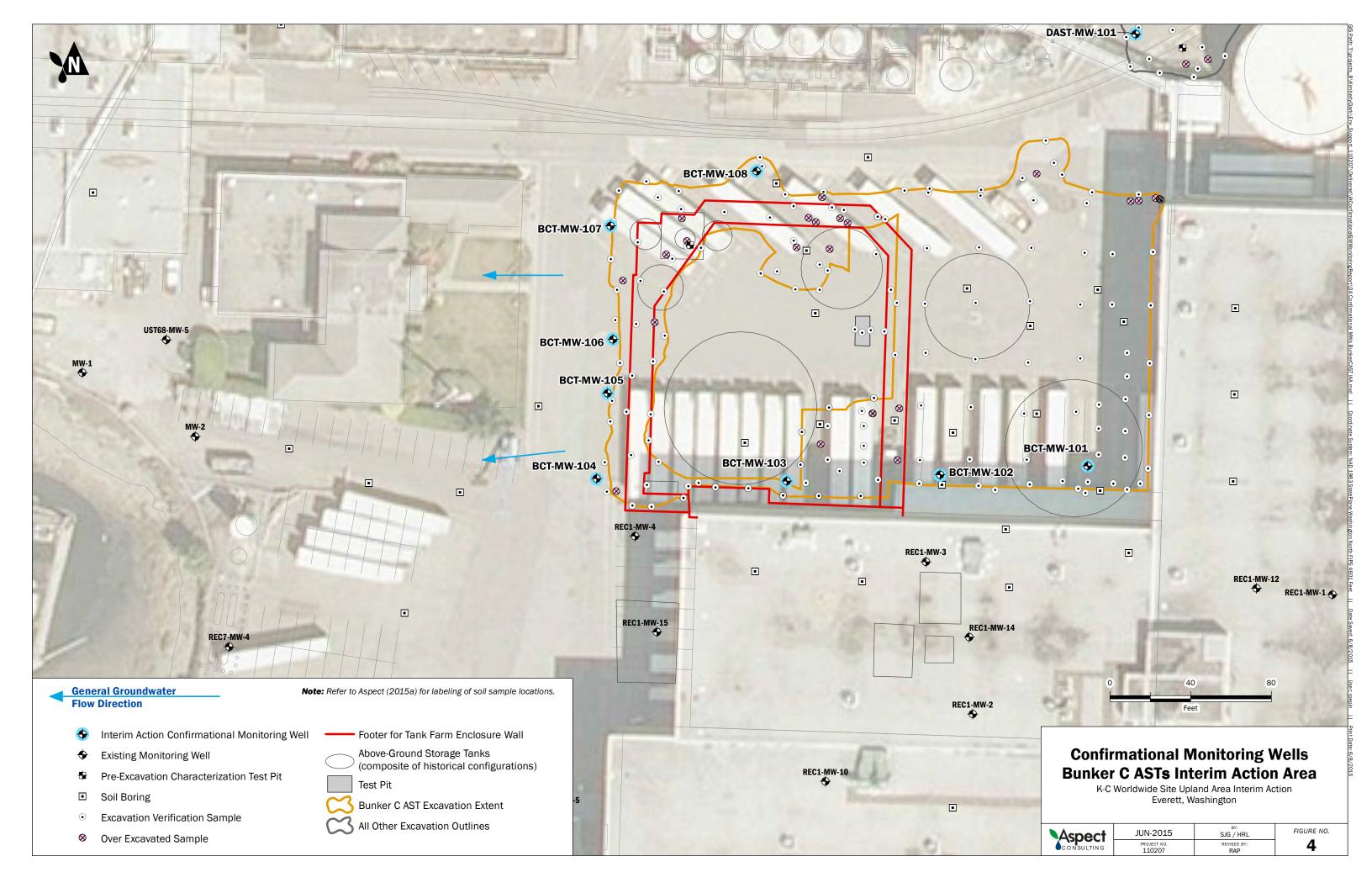
The proposed frequency for additional monitoring is presented in Section 4. In addition, well DAST-MW-101 will be sampled once for PCBs (refer to Section 3.10) *: The PAH monitoring at well REC3-MW-1R is done relative to the UST 71 excavation area.

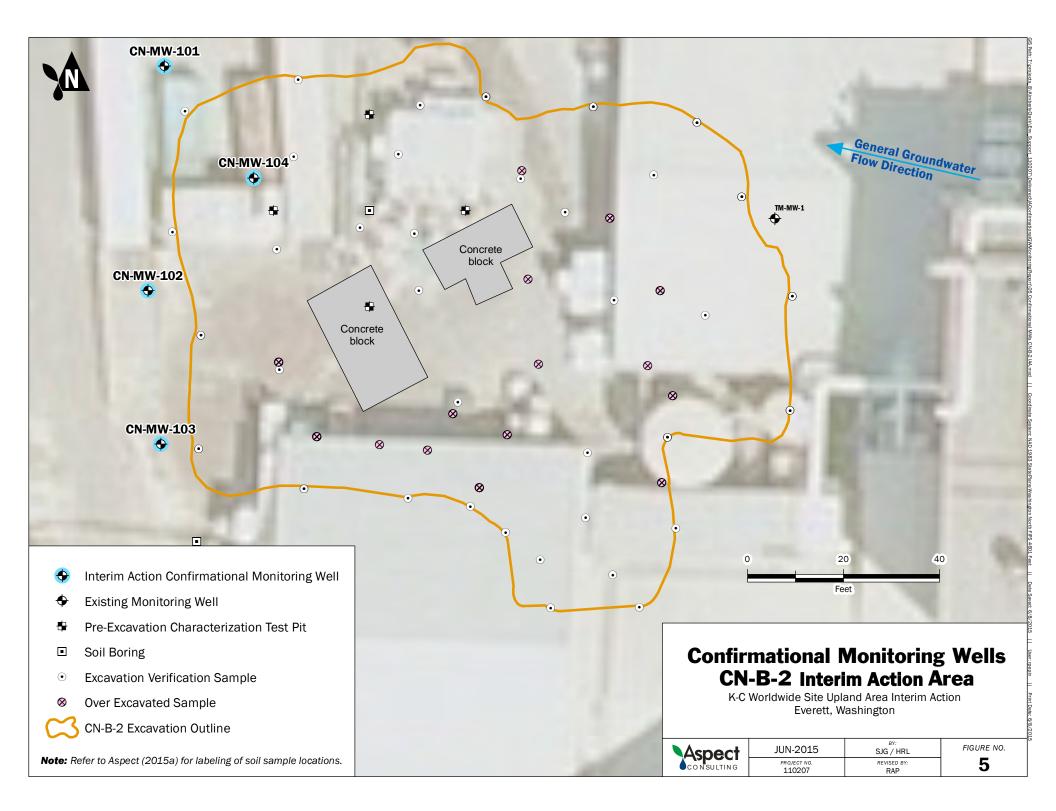
FIGURES

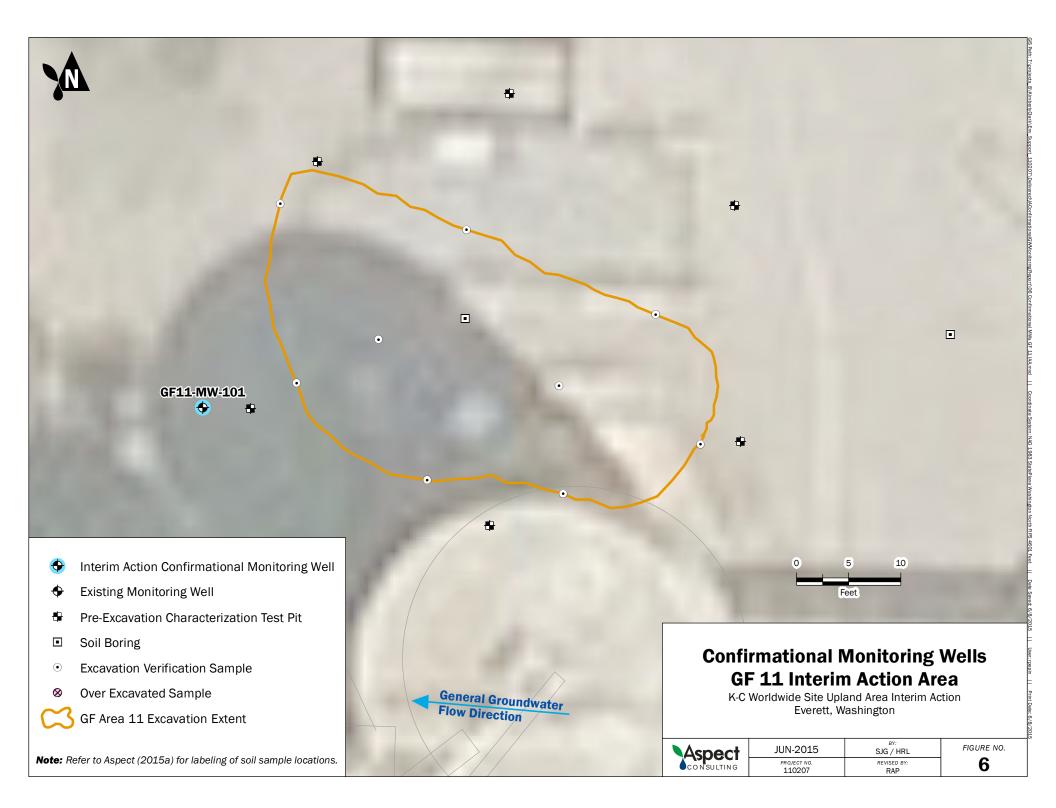

Former Log Pond

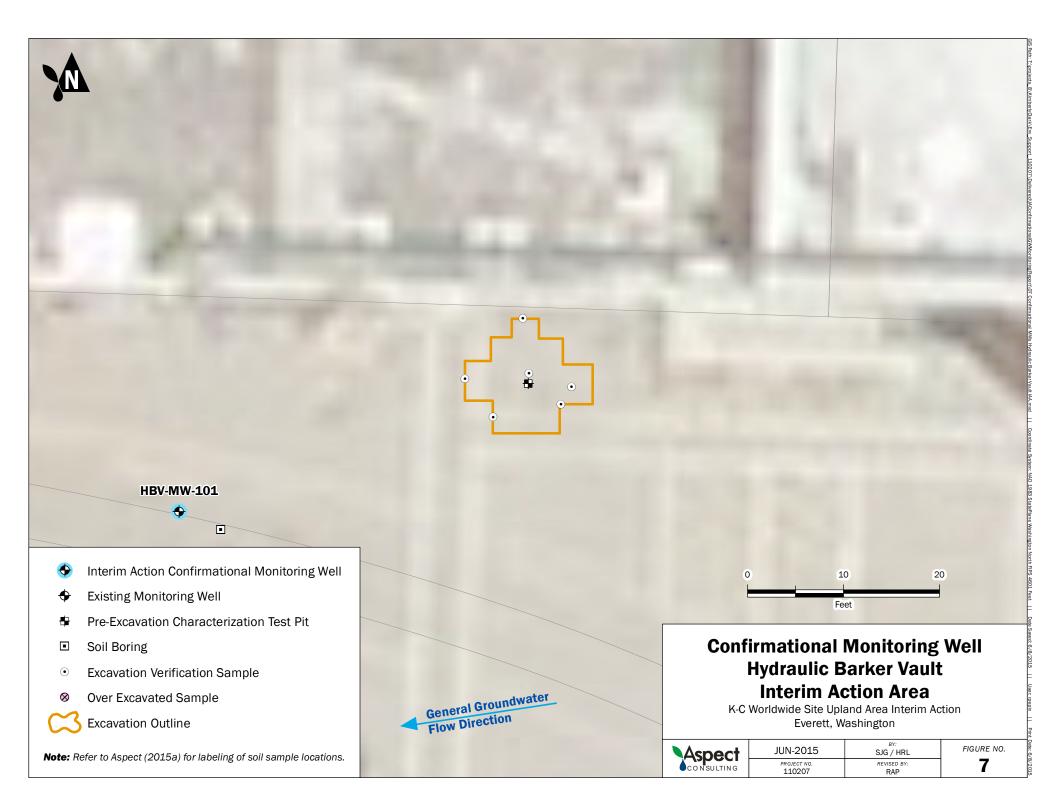

4 = = *

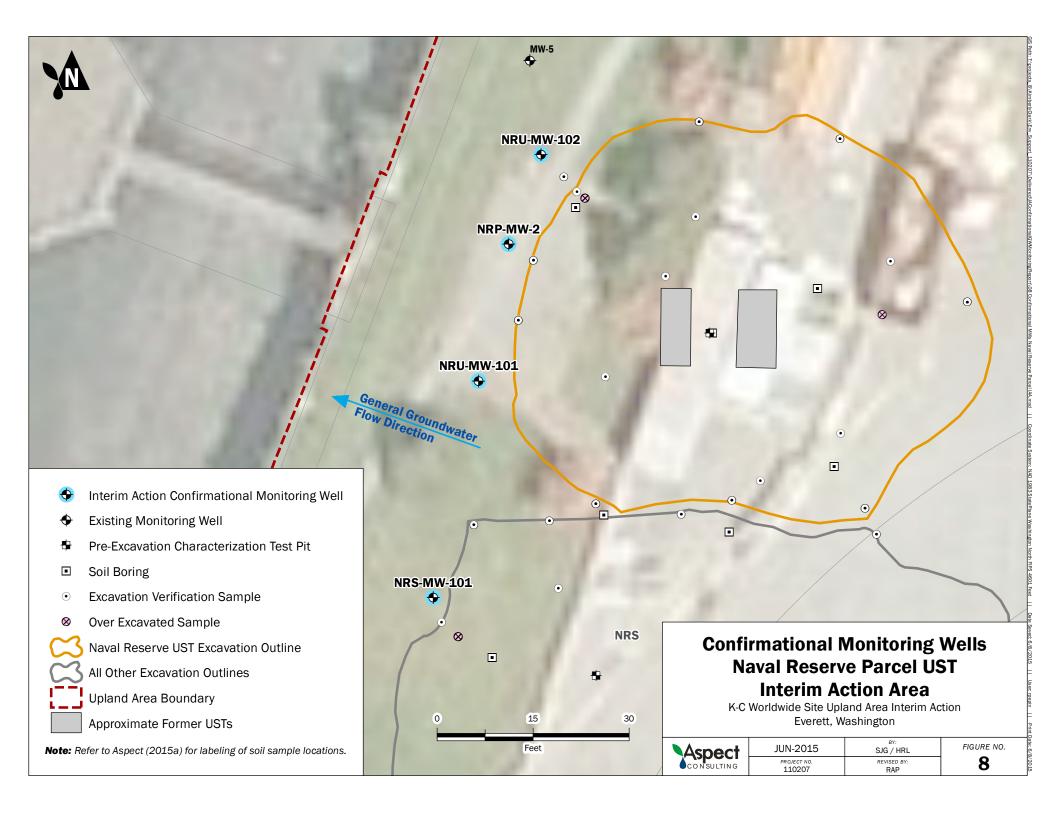
Basemap Layer Credits || Copyright:© 2014 Esri Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user communi

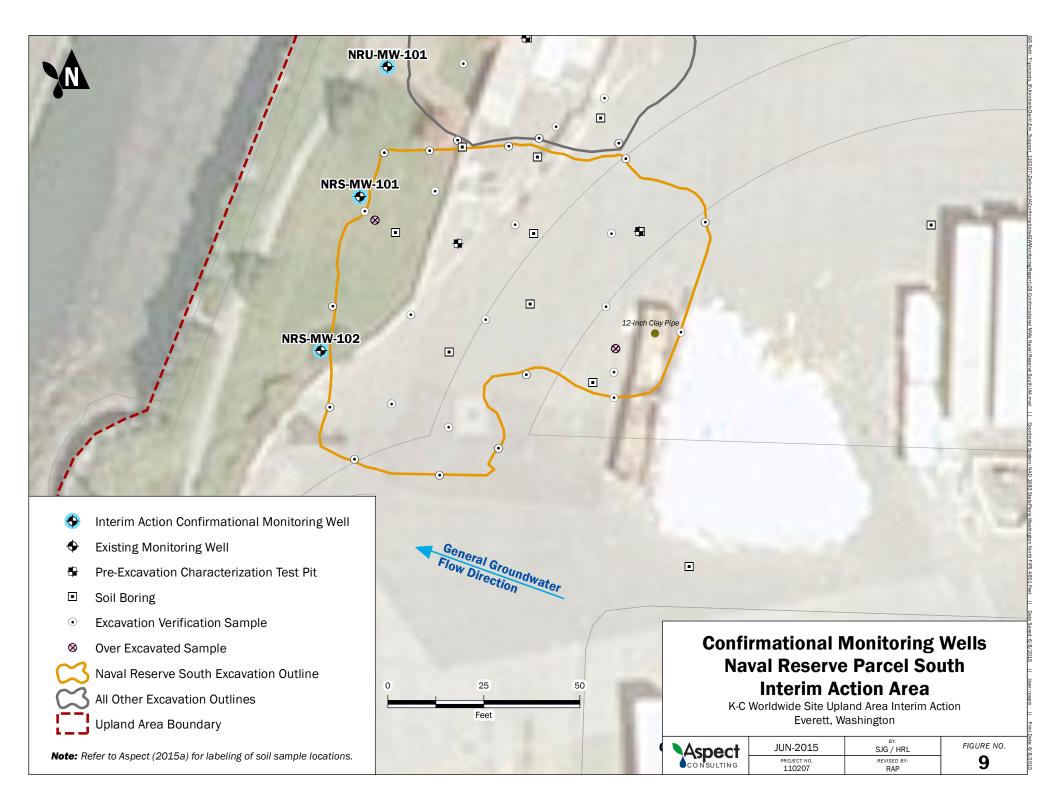

	JUN-2015	BY: SJG / HRL	FIGURE NO.
CONSULTING	PROJECT NO. 110207-004-06	REVISED BY: RAP	1

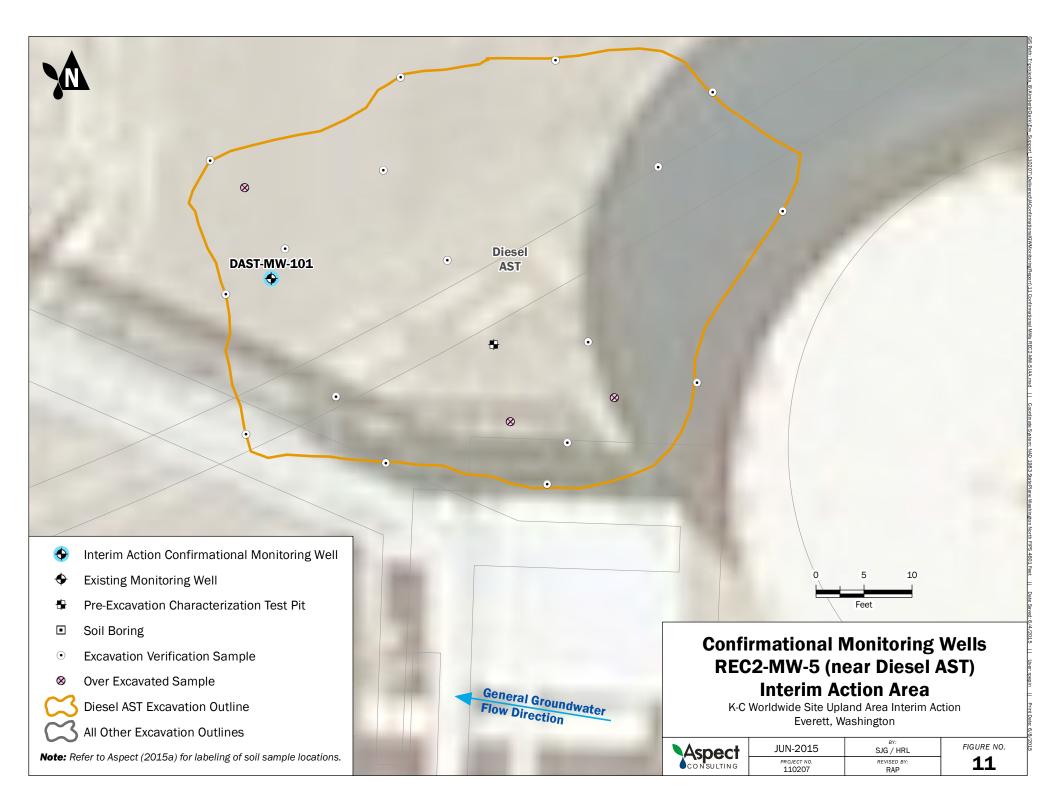

Feet

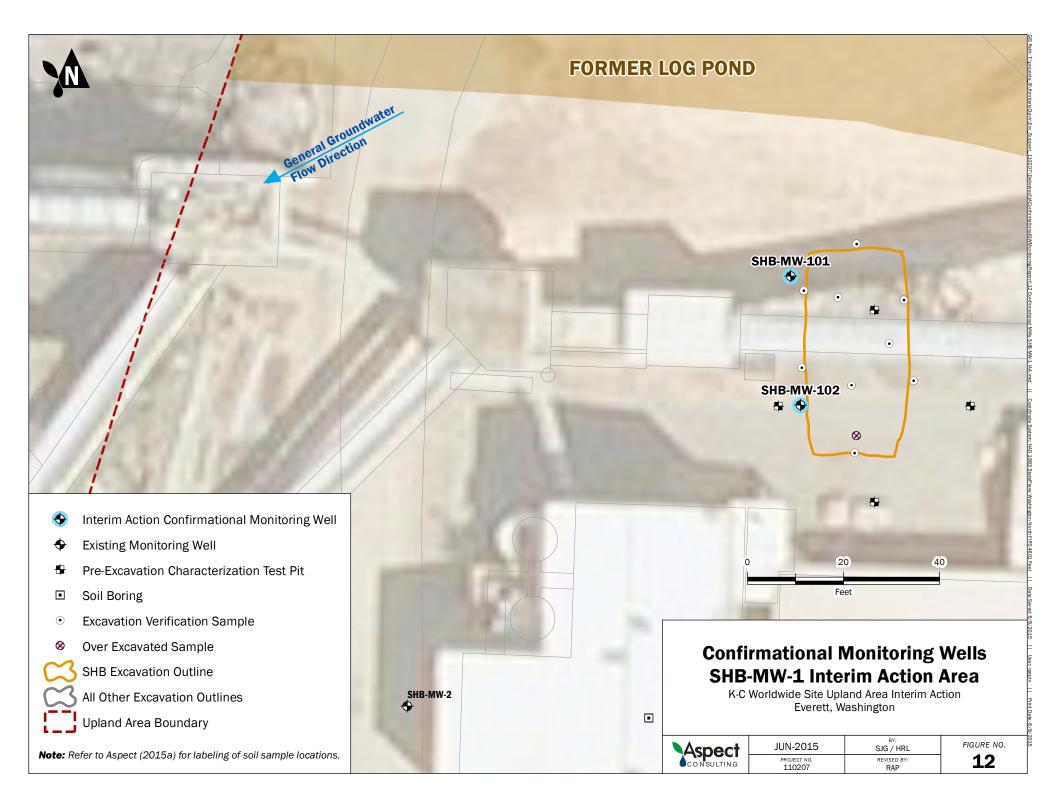


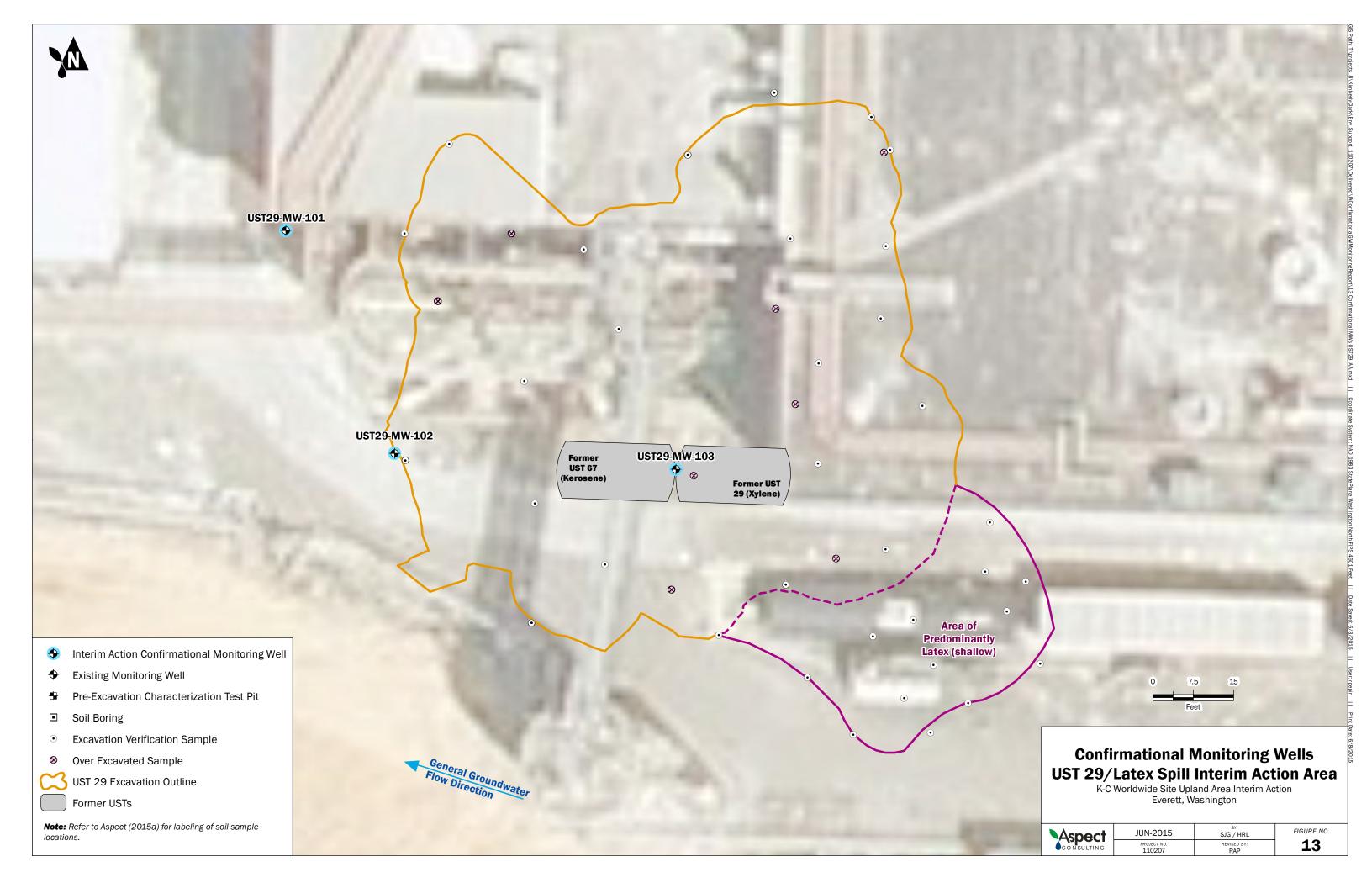


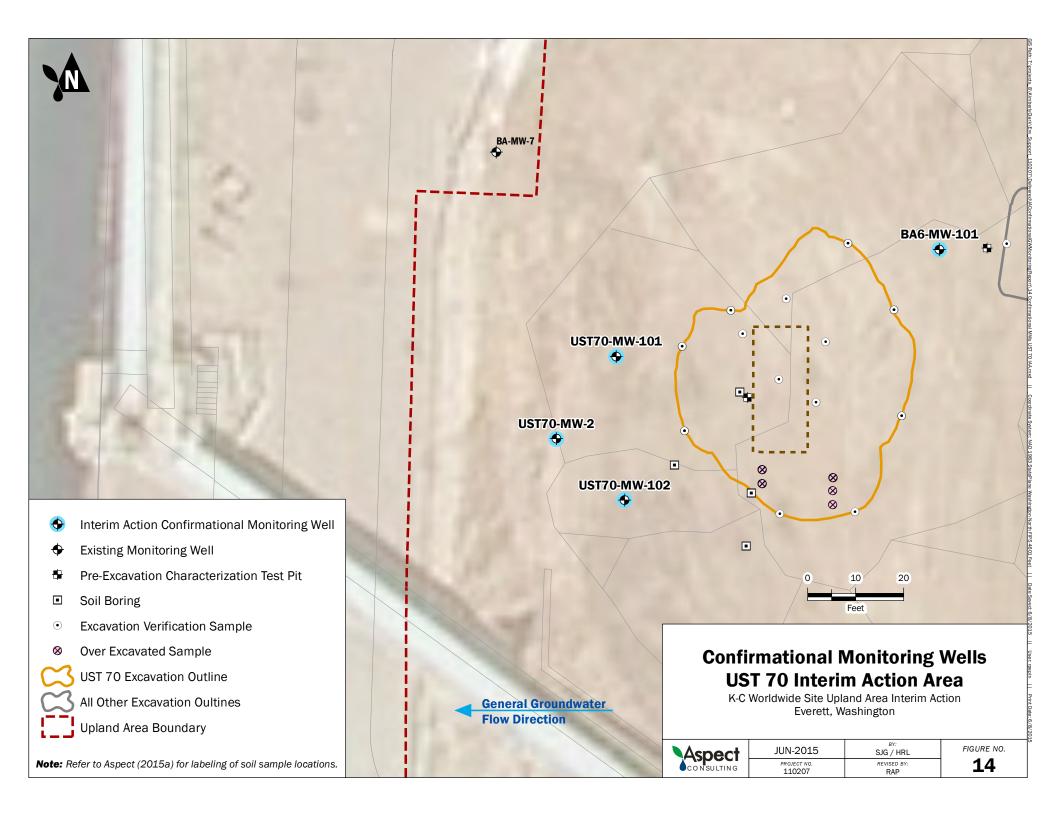

	JUN-2015	BY: SJG / HRL	FIGURE NO.	
CONSULTING	PROJECT NO. 110207	REVISED BY: RAP	3	

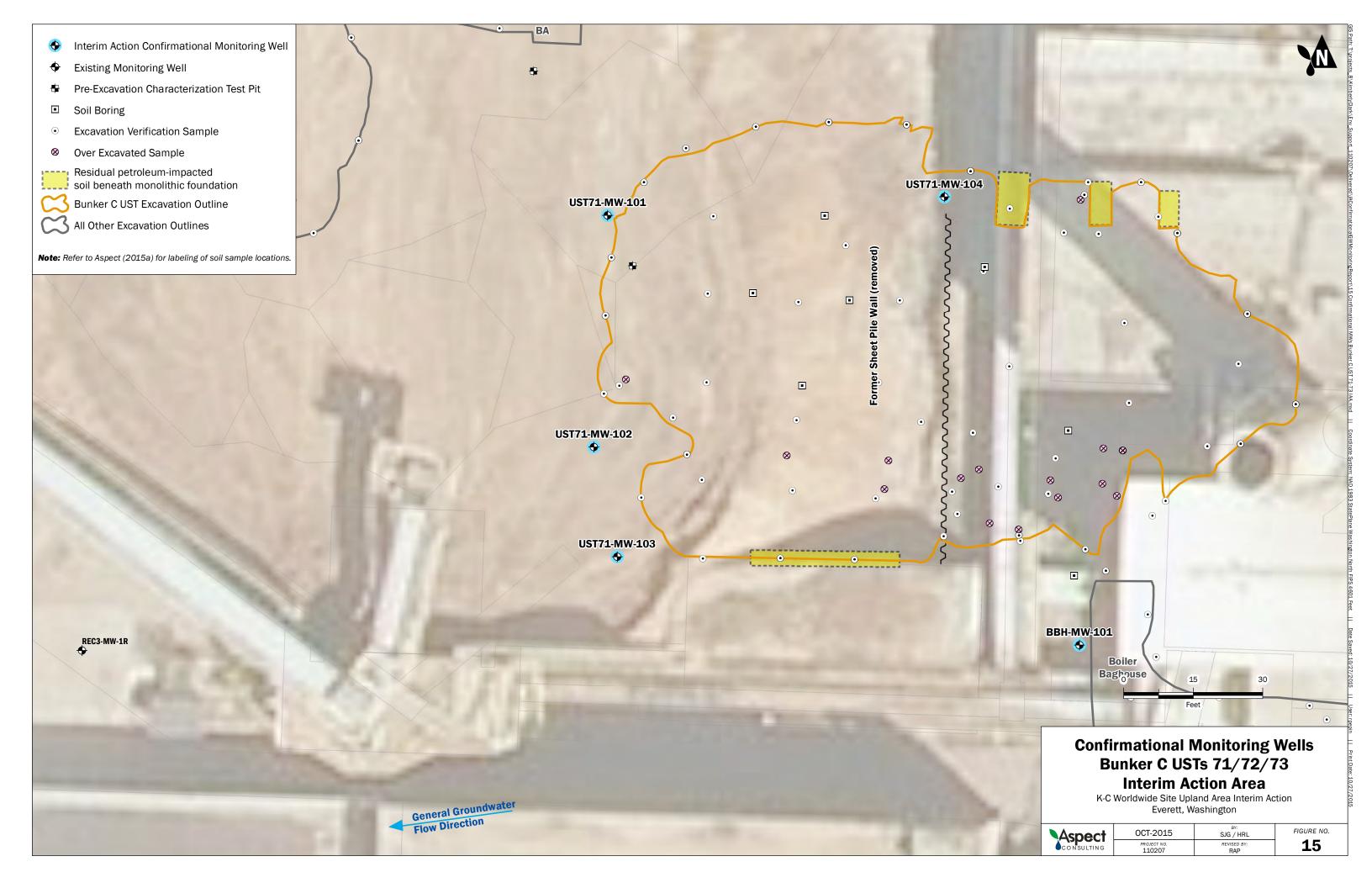


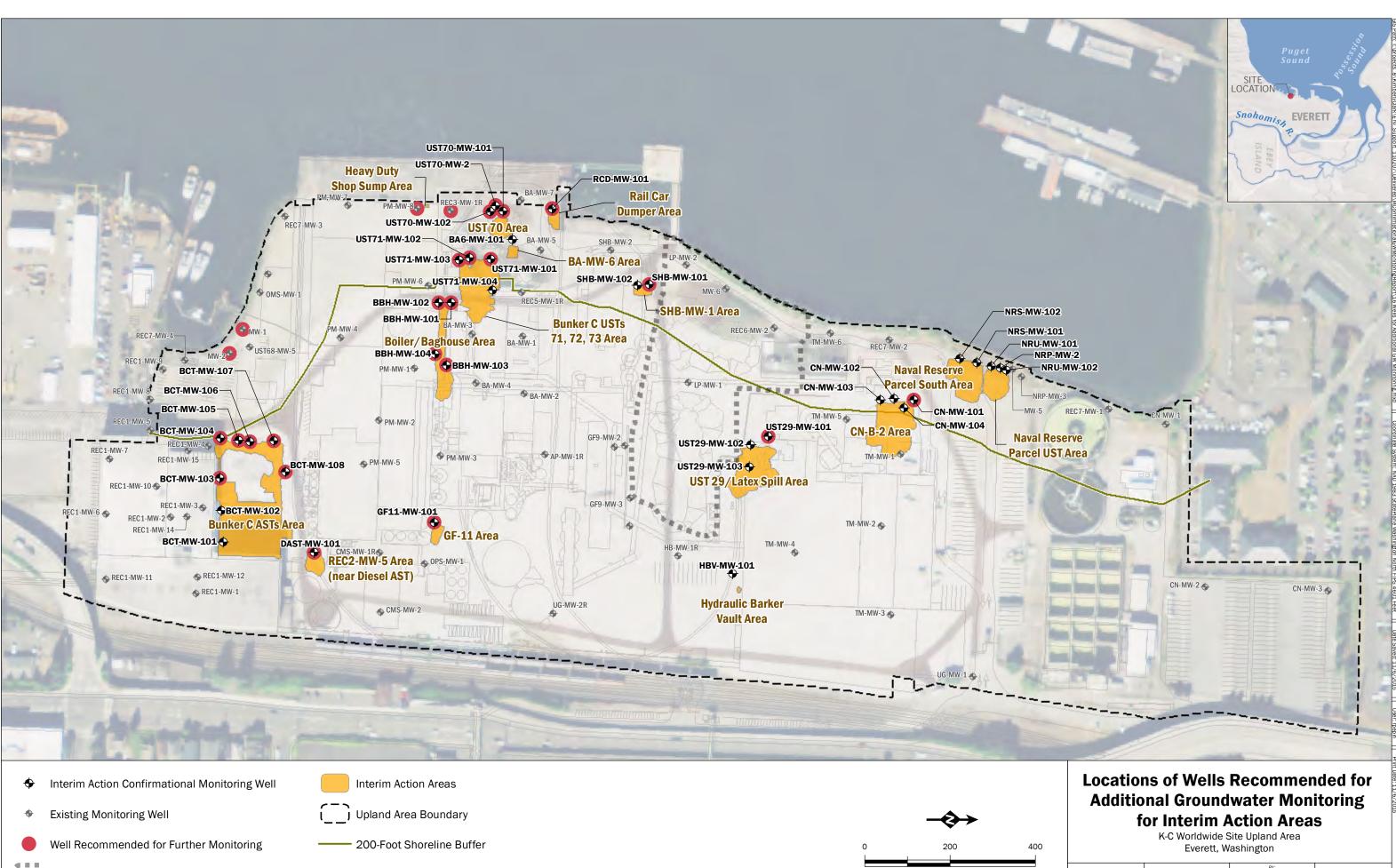












•

Former Log Pond

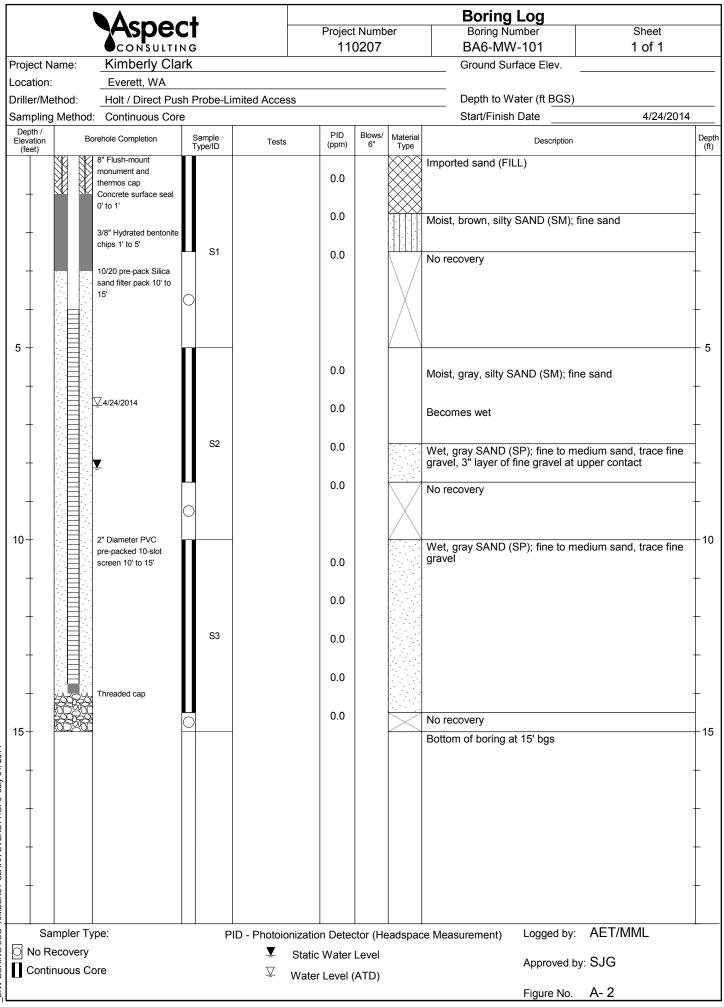
Basemap Layer Credits || Copyright:© 2014 Esri Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user commur

Feet

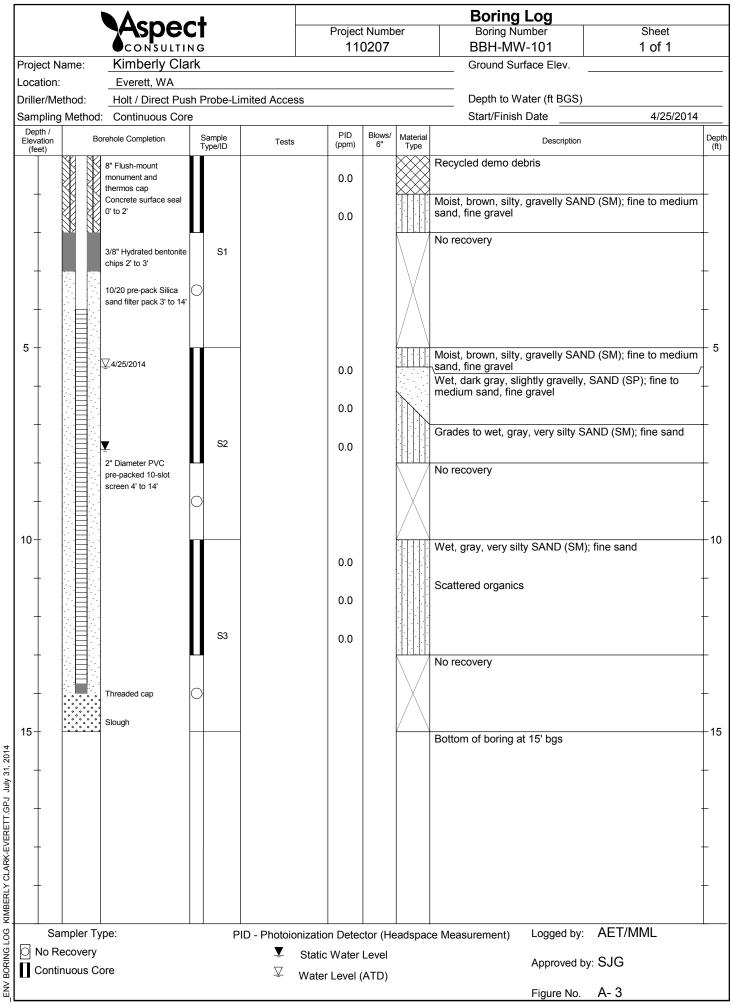
	NOV-2015	SJG / HRL	FIGURE NO.	
CONSULTING	PROJECT NO. 110207-004-06	REVISED BY: RAP	16	

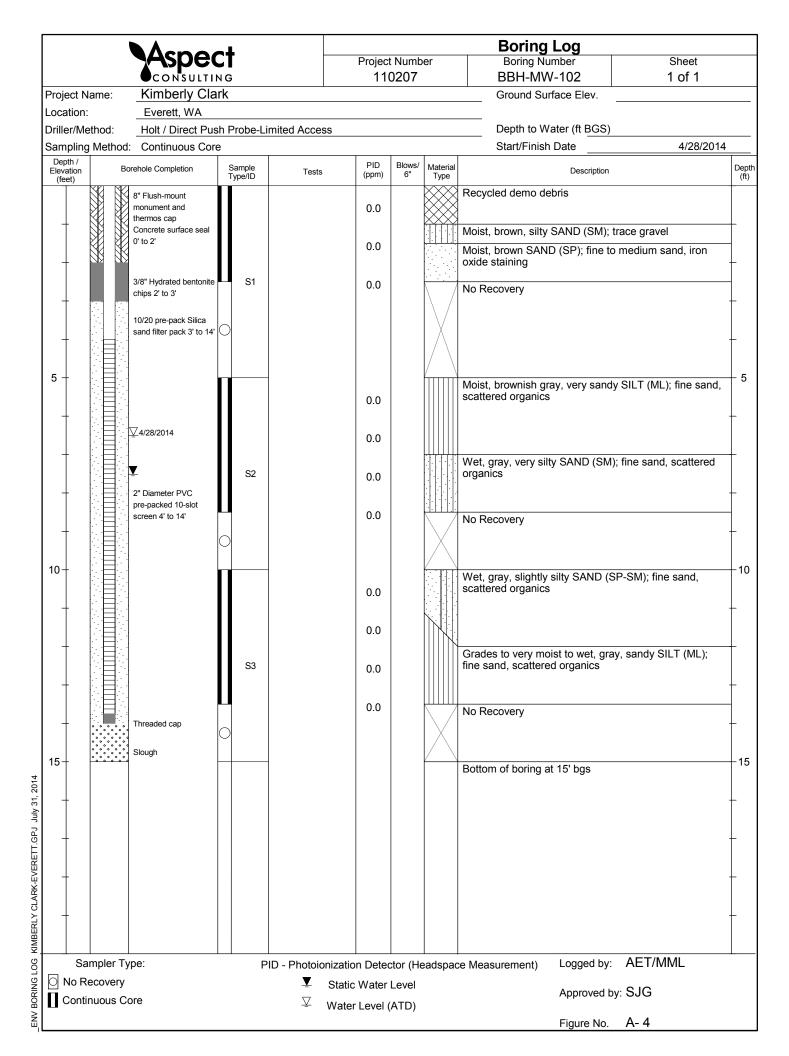
APPENDIX A

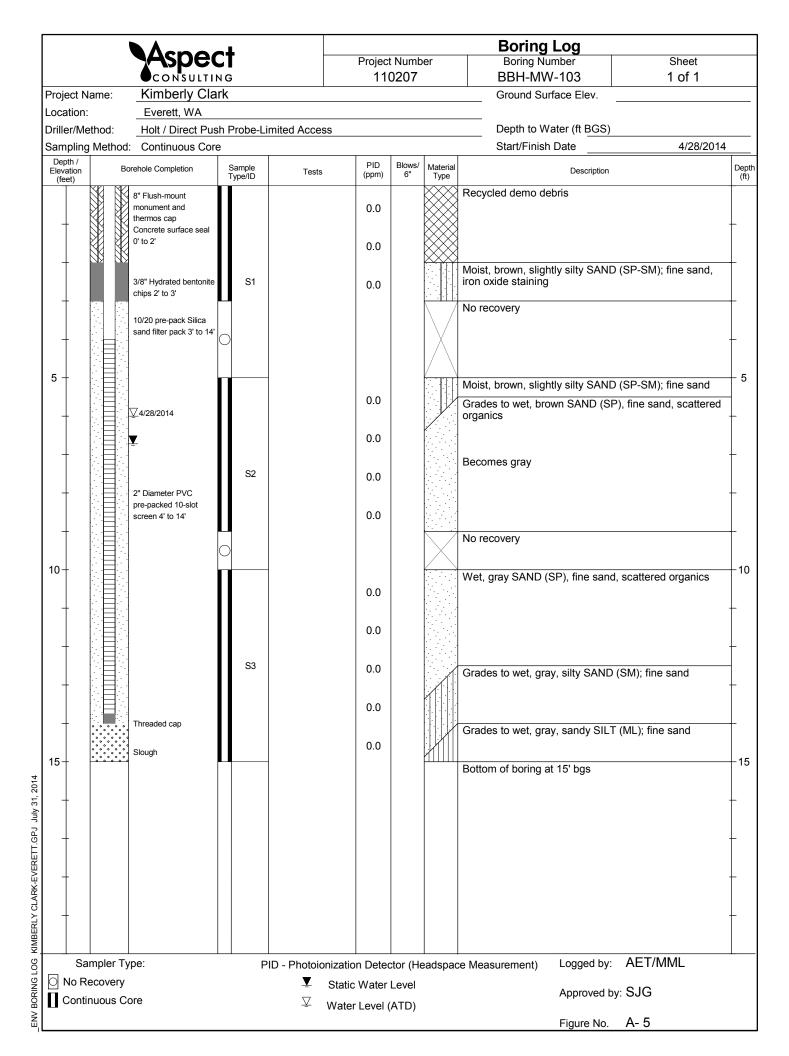
Boring Logs for New Monitoring Wells

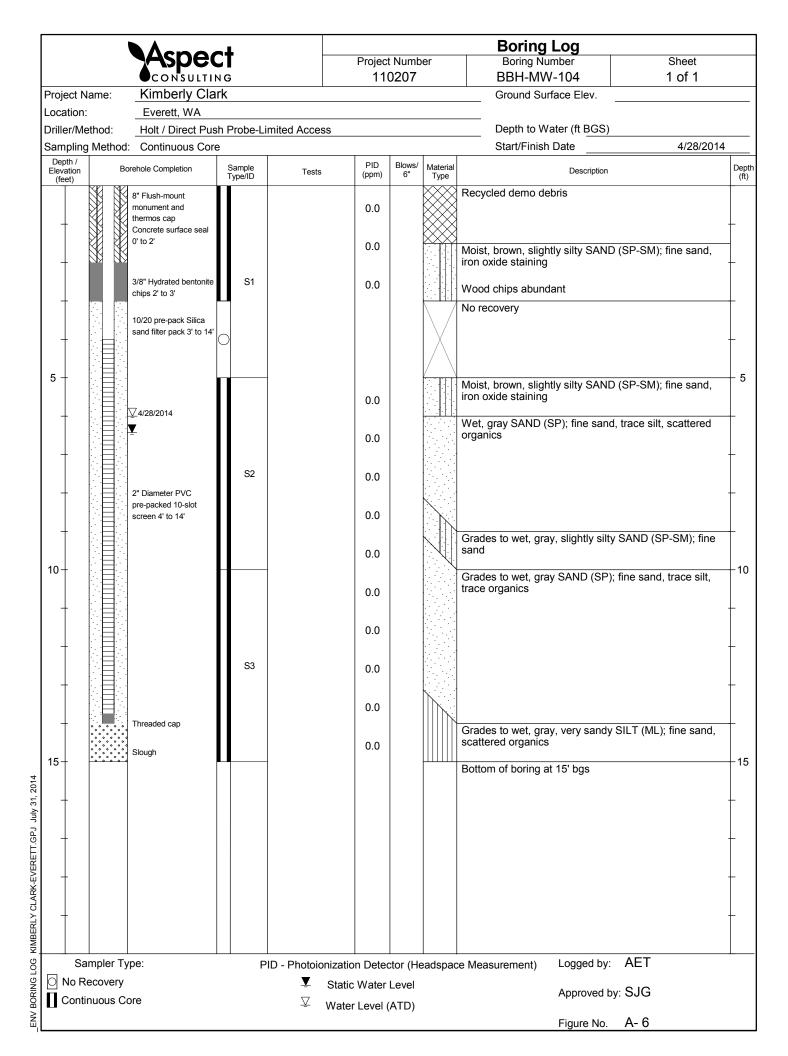

			۱٩	Well graded gravel and	Torme De	coribing D	alativa Dong	situ and Cancistanov				
	Fraction		GW	Well-graded gravel and gravel with sand, little to no fines	Coarse-	Density Very Loose	SPT ⁽²⁾ blows/for 0 to 4	ot <u>Test Symbols</u> <u>FC = Fines Content</u>				
0 Sieve	⁽¹⁾ f Coarse Fraction Vo. 4 Sieve	≤5% F	o o o o GP	Poorly-graded gravel and gravel with sand, little to no fines	Grained Soils	Loose Medium Dense Dense Very Dense	4 to 10 10 to 30 30 to 50 >50	G = Grain Size M = Moisture Content A = Atterberg Limits				
Retained on No. 200 Sieve	Gravels - More than 50% ⁽¹ Retained on No.	Fines ⁽⁵⁾ <u>0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</u>	GM	Silty gravel and silty gravel with sand	Fine- Grained Soils	Consistency Very Soft Soft Medium Stiff	SPT ⁽²⁾ blows/for 0 to 2 2 to 4 4 to 8	ot DD = Dry Density K = Permeability Str = Shear Strength Env = Environmental				
	a	≥15%	GC	Clayey gravel and clayey gravel with sand		Stiff Very Stiff Hard	8 to 15 15 to 30 >30	PiD = Photoionization Detector				
10re than 50%	-Grained Soils - More than 50' More of Coarse Fraction as No. 4 Sieve	Fines ⁽⁵⁾	SW	Well-graded sand and sand with gravel, little to no fines	Descriptive Te Boulders Cobbles	rm Size Ra	ponent Definange and Sieve than 12" 2"					
ined Soils - N		≤5% F	SP	Poorly-graded sand and sand with gravel, little to no fines	Gravel Coarse Gravel Fine Gravel Sand	3" to 3/ 3/4" to No. 4 (No. 4 (4.75 mm) 4.75 mm) to No. 2					
Coarse-Gra		Fines ⁽⁵⁾	SM	Silty sand and silty sand with gravel	Coarse Sand Medium Sand Fine Sand Silt and Clay	No. 10 No. 40	4.75 mm) to No. 1 (2.00 mm) to No. (0.425 mm) to No r than No. 200 (0.0	40 (0.425 mm) . 200 (0.075 mm)				
		≥15%।	sc	Clayey sand and clayey sand with gravel	⁽³⁾ Estimated Percentage by Weight	d Percenta <u>o</u> <u>Mod</u>	-	Moisture Content Dry - Absence of moisture, dusty, dry to the touch				
eve	Silts and Clays Silts and Clays		ML	Silt, sandy silt, gravelly silt, silt with sand or gravel	<5 5 to 15	•	tly (sandy, silty, y, gravelly)	Slightly Moist - Perceptible moisture Moist - Damp but no visible water				
Passes No. 200 Sieve		Limit Less th		Clay of low to medium plasticity; silty, sandy, or gravelly clay, lean clay	15 to 30 30 to 49	Sand grave Very	ly, silty, clayey,	Very Moist - Water visible but not free draining Wet - Visible free water, usually from below water table				
⁽¹) ^o r More Passe		L iduid	Organic clay or silt of low plasticity	Sampler	Blows/6" or portion of 6"	Symbols	Cement grout surface seal Bentonite chips					
			МН	Elastic silt, clayey silt, silt with micaceous or diato- maceous fine sand or silt	2.0" OD Split-Spoon Sampler (SPT)	Continuous Pu		↔ Grout Grout Filter pack with				
Fine-Grained Soils - 50%		ilts and Clay Limit 50 or	ilts and Clay Limit 50 or	ilts and Clay	ilts and Clay Limit 50 or		сн	Clay of high plasticity, sandy or gravelly clay, fat clay with sand or gravel	Bulk sample	(including Shell	all Tube Sampler	Grouted Grouted Filter pack
Fine-(Oł	он	Organic clay or silt of medium to high plasticity	(1) Percentage by c (2) (SPT) Standard	Portion not recovered		(5) Combined USCS symbols used for fines between 5% and 15% as				
Highly	Peat, muck and other highly organic soils		(ASTM D-1586)estimated in General Accordance(3) In General Accordance withwith Standard Practice forStandard Practice for DescriptionDescription and Identification ofand Identification of Soils (ASTM D-2488)Soils (ASTM D-2488)									
						<u> </u>	ATD = At time of di tatic water level (d	0				

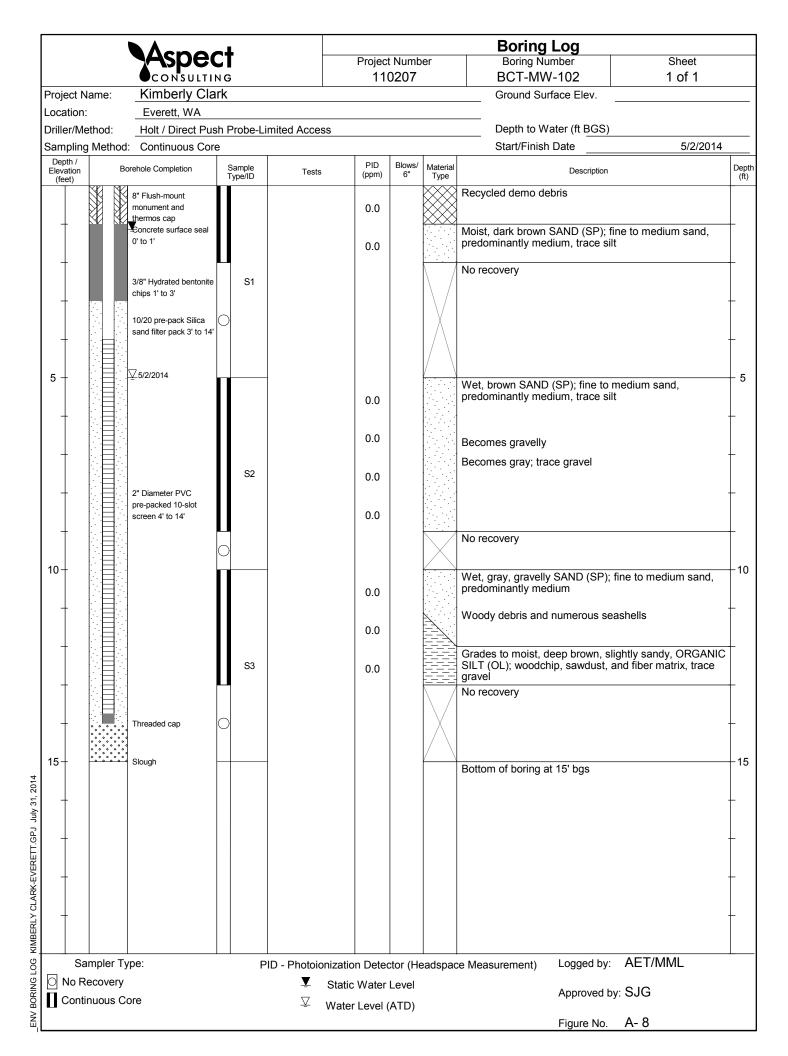
Classifications of soils in this report are based on visual field and/or laboratory observations, which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field or laboratory testing unless presented herein. Visual-manual and/or laboratory classification methods of ASTM D-2487 and D-2488 were used as an identification guide for the Unified Soil Classification System.

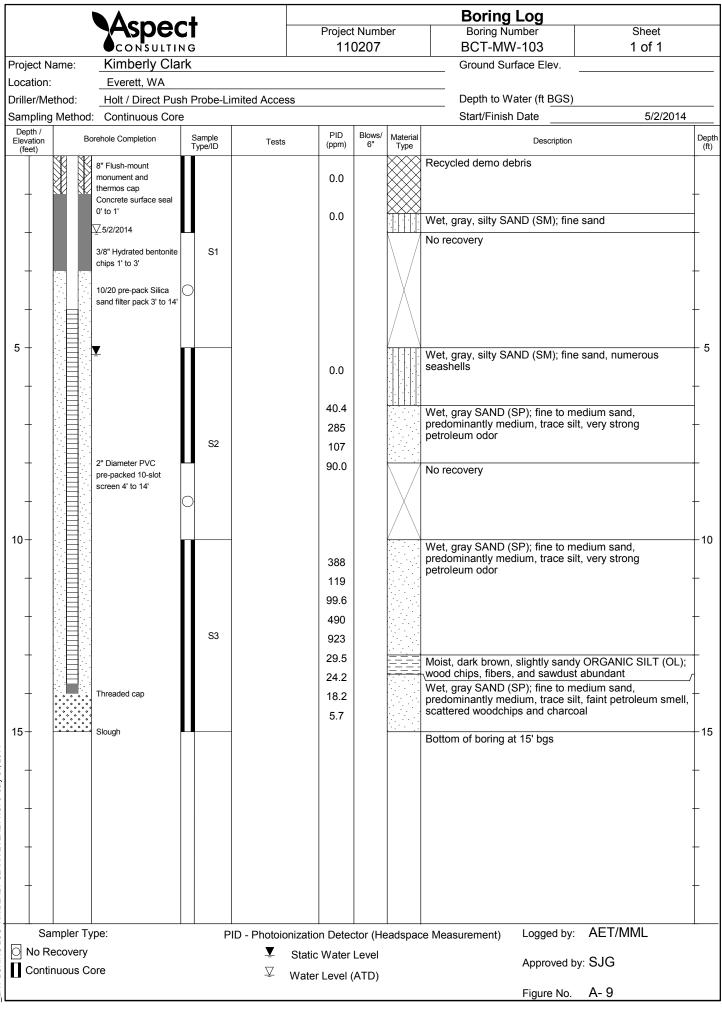

Exploration Log Key

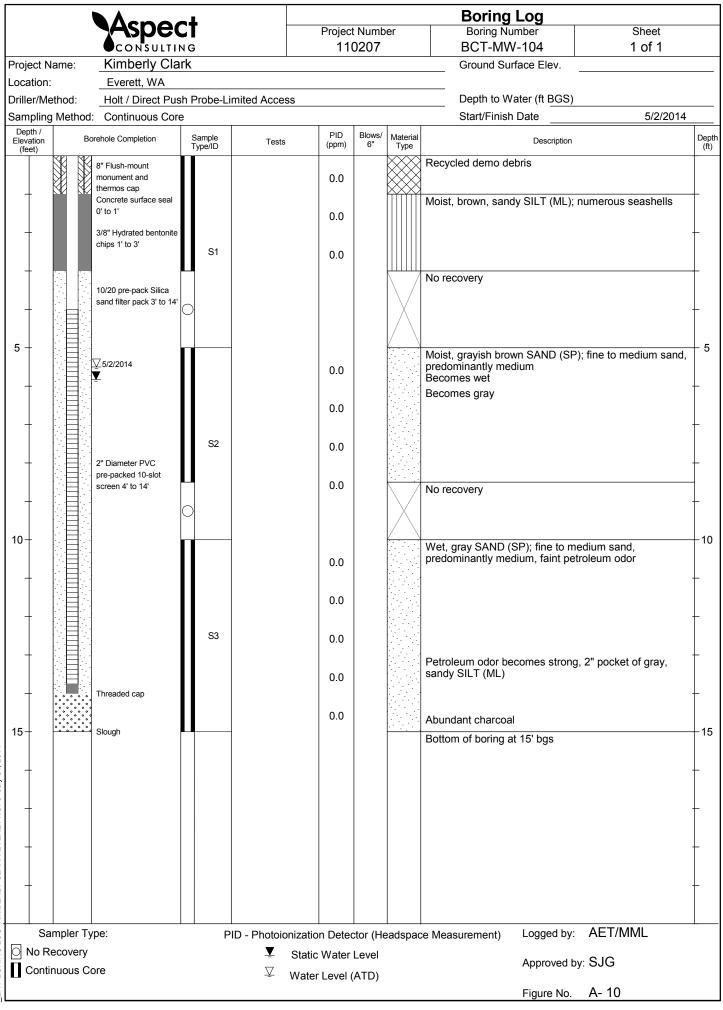

DATE:	PROJECT NO.
DESIGNED BY:	
DRAWNBY:	FIGURE NO.
REVISED BY:	A-1

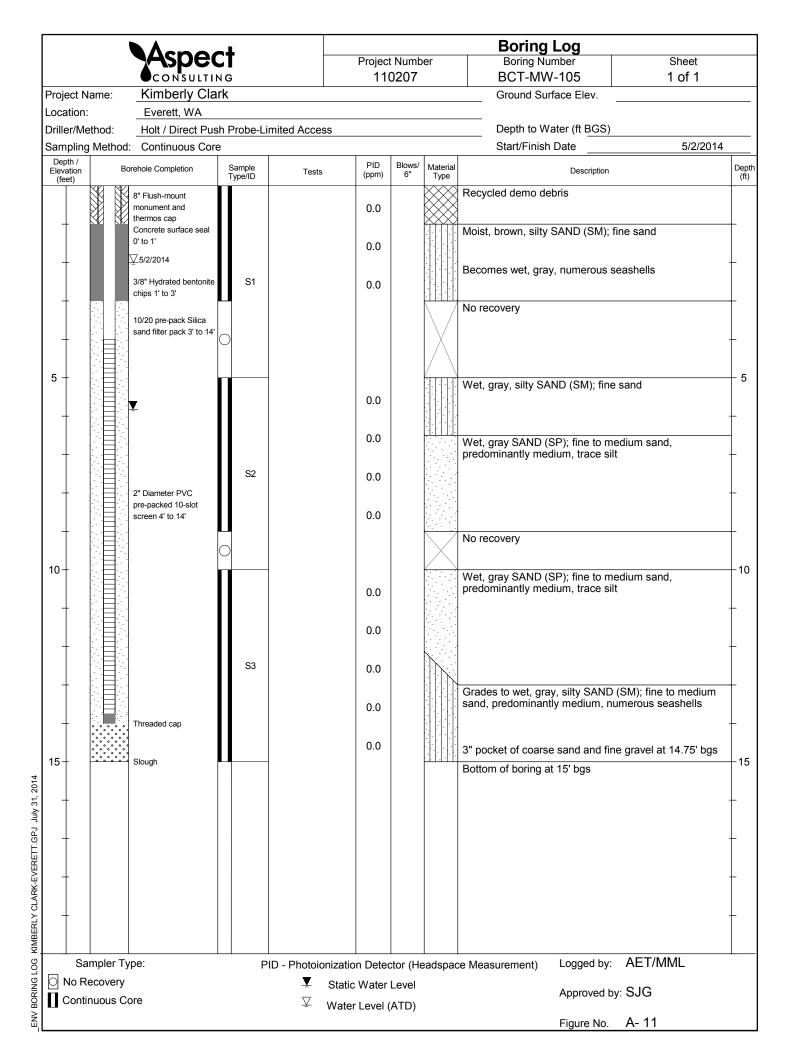


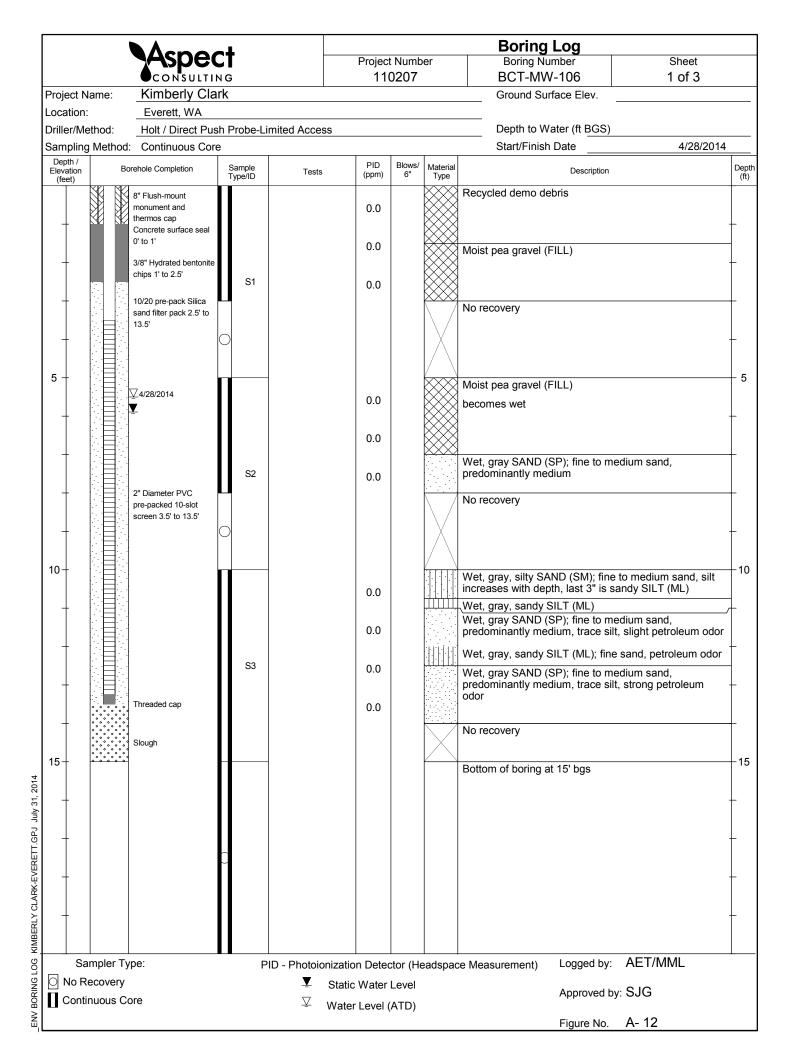

ENV BORING LOG KIMBERLY CLARK-EVERETT.GPJ July 31, 2014

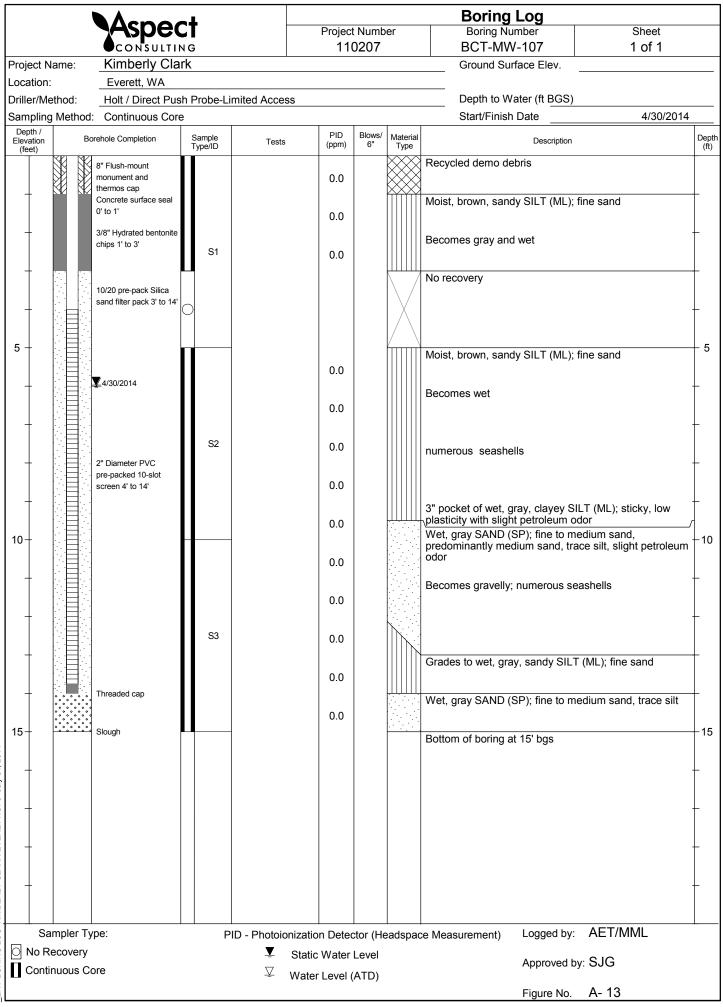

ENV BORING LOG

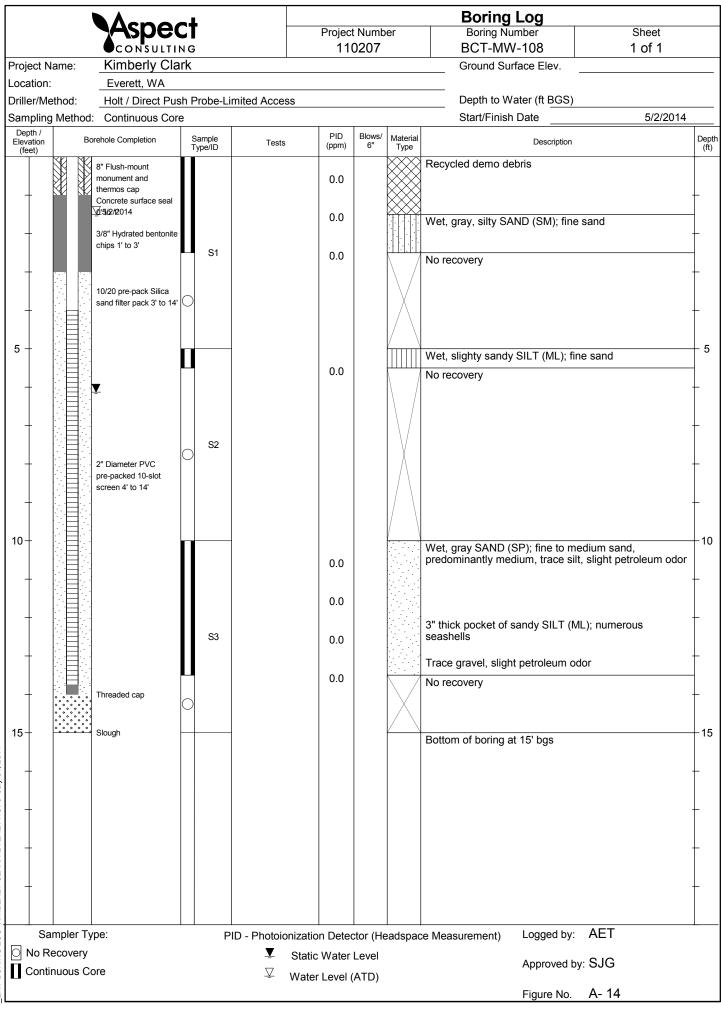


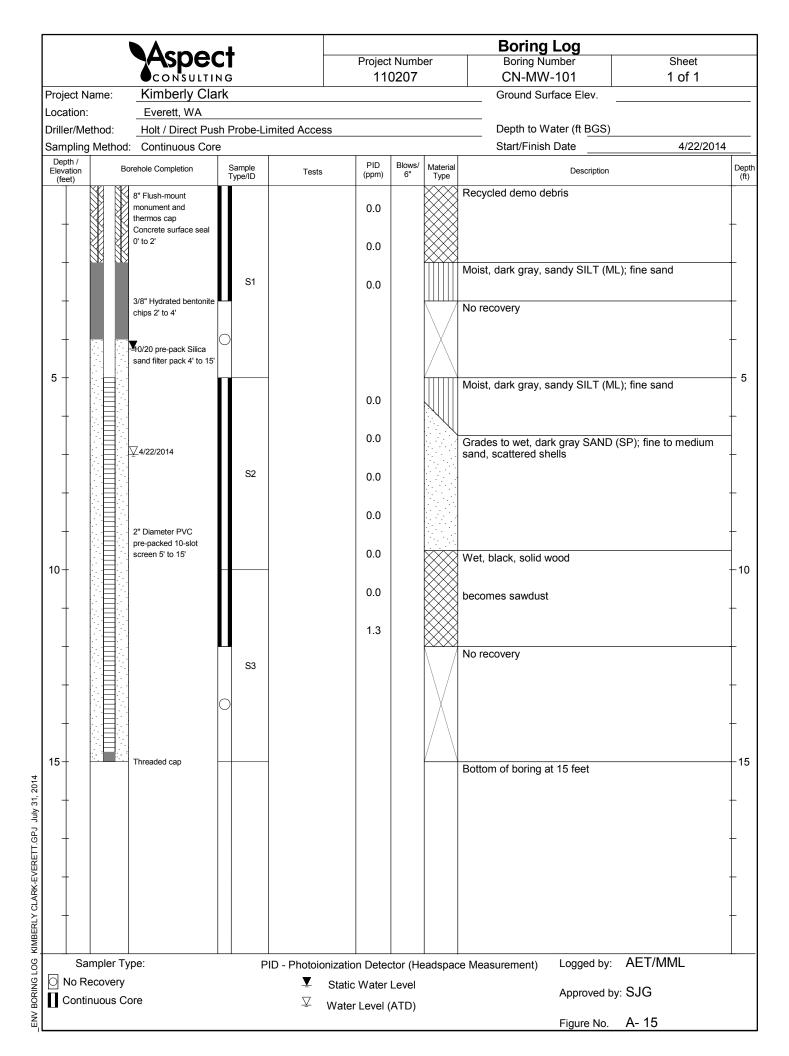


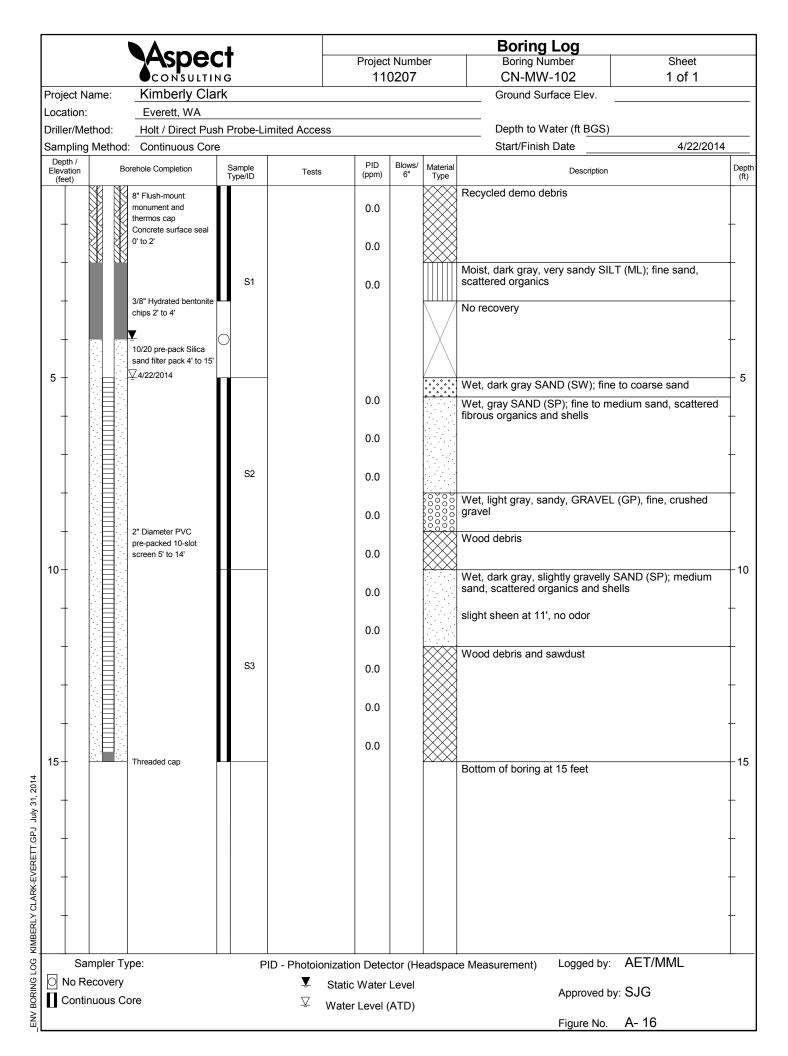


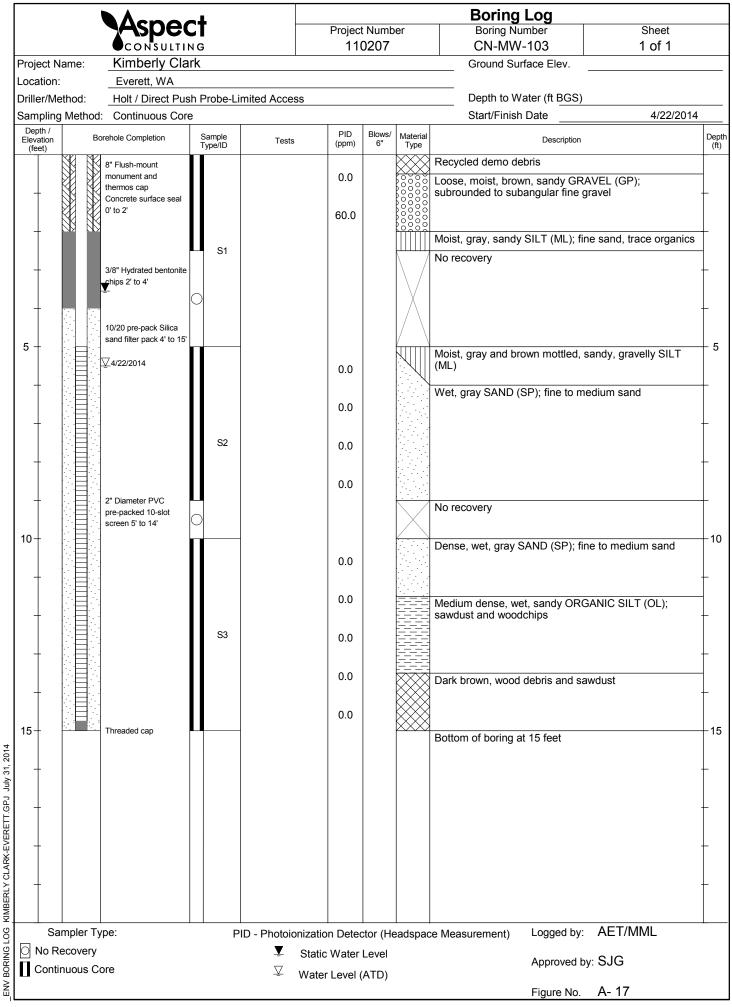

		Across	. L		Boring Log					
						t Numb 0207	er	Boring Number BCT-MW-101	Sheet 1 of 1	
Project Nan	ne: K	Consulting Cimberly Clar				0207		Ground Surface Elev.	1011	
Location:		Everett, WA								
Driller/Meth		lolt / Direct Pus	h Probe-Lin	nited Acces	SS			Depth to Water (ft BGS)		
Sampling M	lethod: C	Continuous Core	9					Start/Finish Date	4/29/20	14
Depth / Elevation	Borehol	le Completion	Sample Type/ID	Tests	PID	Blows/	Material	Description		Dej (f
(feet)			Type/ID		(ppm)	0	Type	Recycled demo debris		(f
		lush-mount nument and			0.0		\boxtimes	Moist, brown SAND (SP); fine to	a madium agad traca	_
+ 🕅		mos cap icrete surface seal						silt	o medium sanu, trace	+
	0' to				0.0					
+ 🛛	3 88									+
		Hydrated bentonite	S1		0.0			No recovery		
+ .	chip	is 2' to 3'						No recovery		+
		20 pre-pack Silica								
+	san	d filter pack 3' to 14'	9							+
	目									
5 -		·								+ 5
	目									
+							V			÷
	目						A			
+										÷
	目		○ S2							
+		Diameter PVC								+
	1 1 . 1 .	packed 10-slot een 4' to 14'								
+							$ \rangle$			+
	目									
10-								Very moist, gray-brown SAND ((SP): fine to medium	
					0.0			sand, trace silt	(er), into to moulain	
+	.8	29/2014						Wet, gray, sandy SILT (ML); fin	e sand	\rightarrow
					0.0				oouna	
+										+
			S3		0.0			Wet, gray SAND (SP); fine to m	nedium sand	_
+					0.0			predominantly medium, trace si	ilt	+
					0.0					
+	Thre	eaded cap					· ·	No recovery		\rightarrow
			0				$ \times $			
15 -	Slou	ıgh						Bottom of boring at 15' bgs		
+										÷
+										ł
+										ł
+										ł
Same									AET/MML	
Samp	oler Type:		PII				eadspac	ce Measurement) Logged by		
	ous Core			¥ ⊻	Static Water			Approved b	by: SJG	
				<u> </u>	Water Level	(ATD)			A 7	
								Figure No.	A- 7	

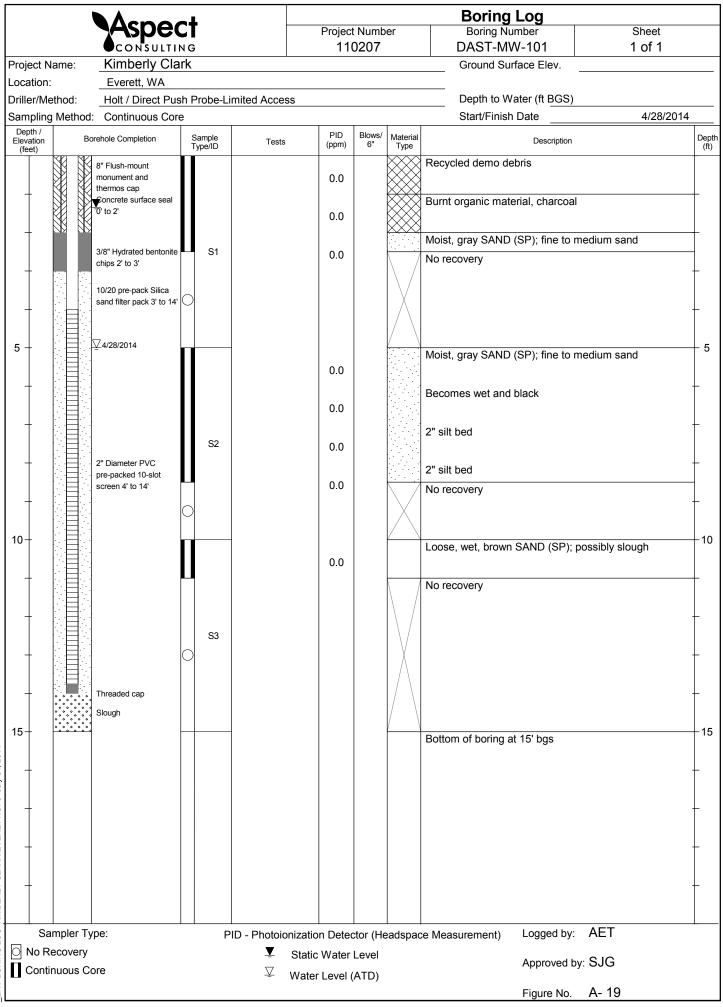


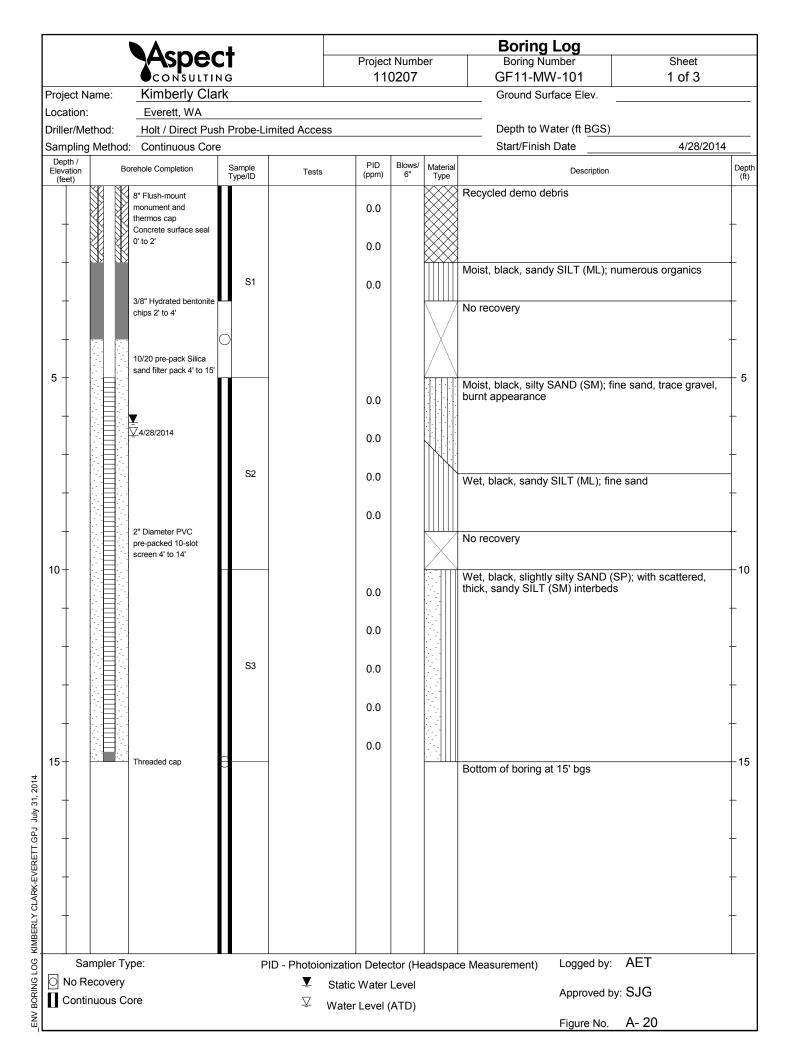


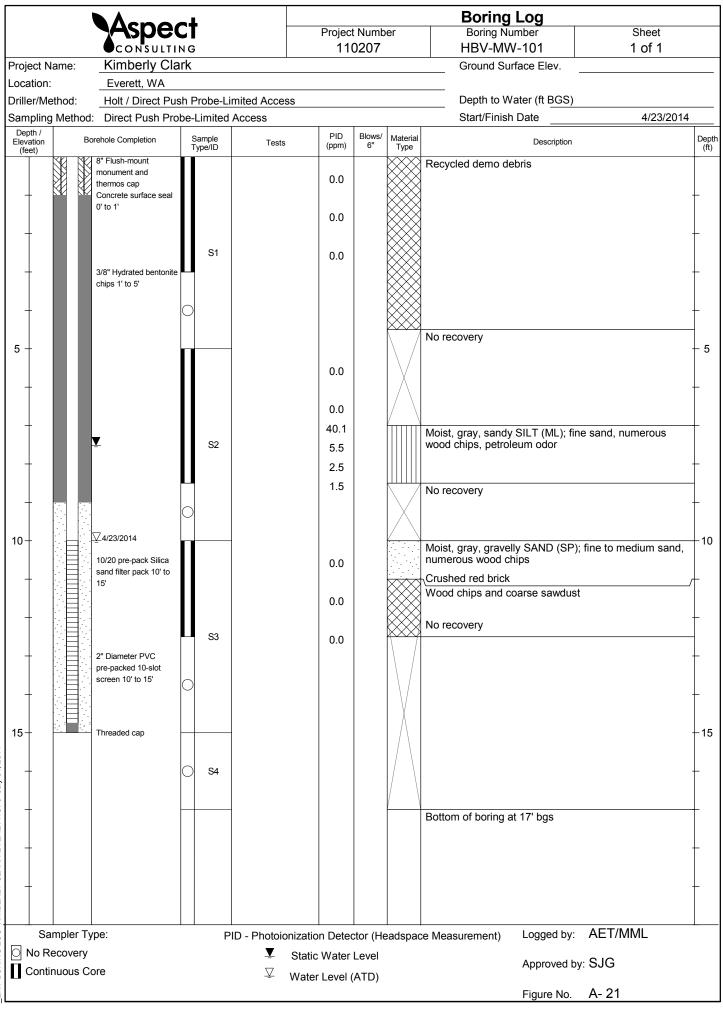


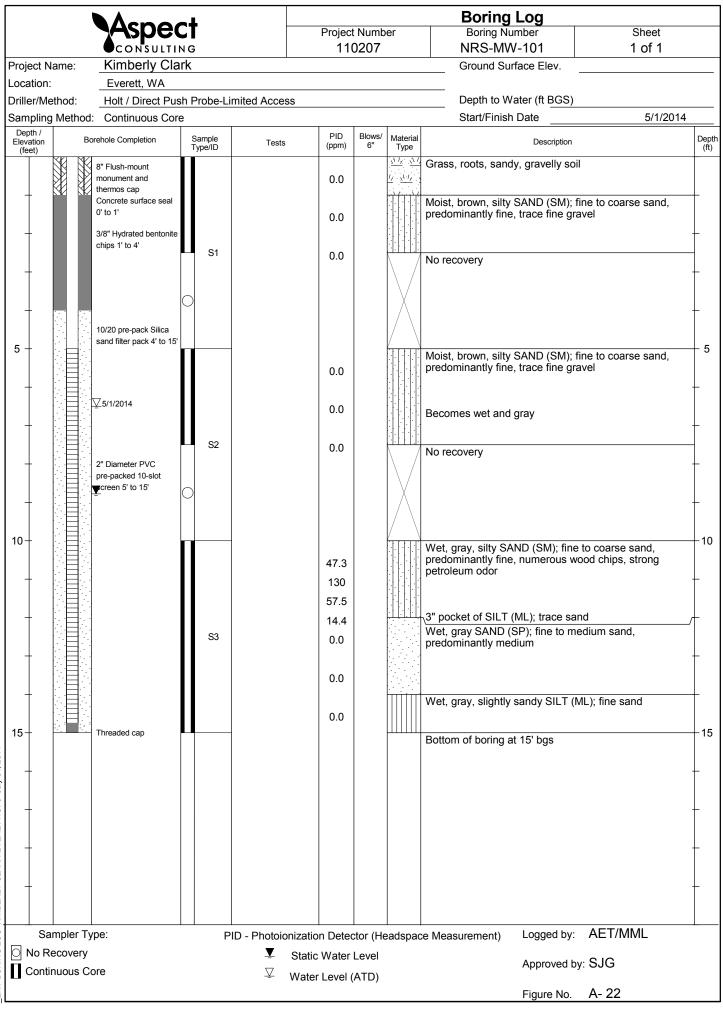

	Aspect						Boring Log		
				Projec 11	t Numb 0207	er	Boring Number BCT-MW-106	Sheet 2 of 3	
Project Nam					0207		Ground Surface Elev.	2010	
Location:	Everett, WA								
Driller/Metho		Push Probe-Lim	ited Acces	s			Depth to Water (ft BGS)		
	ethod: Continuous C	Core					Start/Finish Date	4/28/2014	
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description	D	
+								Ť	
1								Ť	
1								Ť	
								Ť	
25-								+2	
T I								Γ	
T I								Γ	
30-								-:	
		Ŭ							
<u> </u>								-	
+								+	
+								+	
+								+	
35-								+;	
+								+	
+								+	
+								+	
+								+	
Samo	ler Type:	∎∎ PIΓ) - Photoio	nization Deter	L ctor (He	adspace	Measurement) Logged by:	AET/MML	
			⊥ Turiotoio	Static Water			·		
Continuo			-	Water Level (Approved by	/: SJG	
							Figure No.	A- 12	

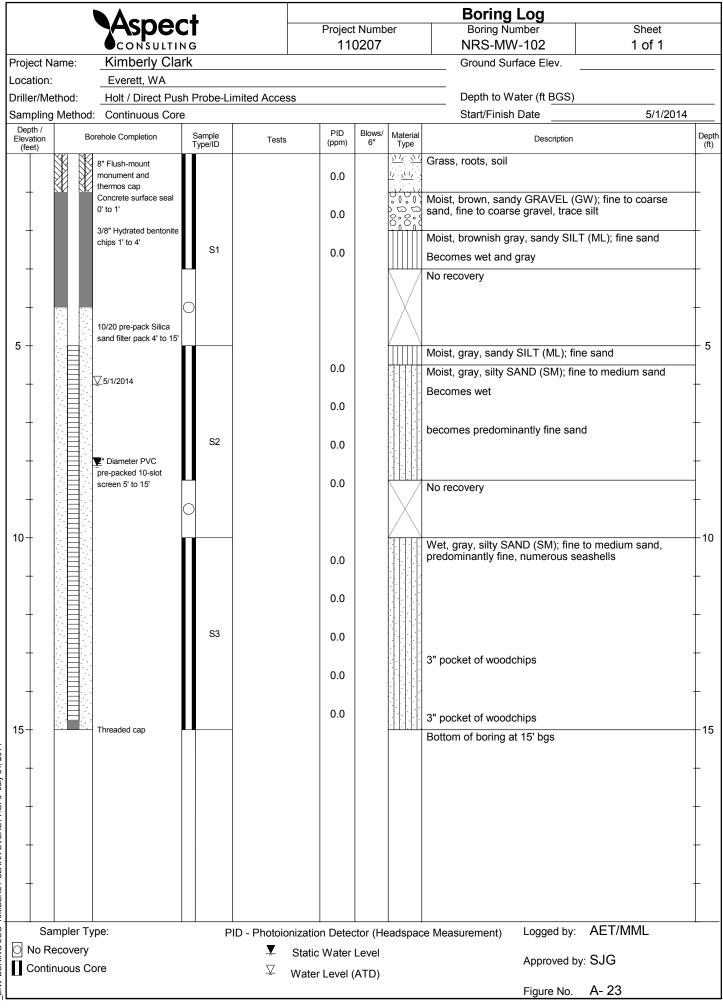

	Aspect				t Numb	er	Boring Log Boring Number DOT MIN(100	Sheet	
Project Nar		sulting rly Clark		110	0207		BCT-MW-106 Ground Surface Elev.	3 of 3	
Location:	Everett,								
Driller/Meth		rect Push Probe-Lim	ited Acces	29			 Depth to Water (ft BGS)		
	Nethod: Continuc						Start/Finish Date	4/28/2014	
	Borehole Complet			PID	Blows/ 6"	Material			Den
Depth / Elevation (feet)		tion Sample Type/ID	Tests	(ppm)	6"	Material Type	Description		Dept (ft)
								-	
		C						-	-
50-								-	-50
55 -								-	55
	pler Type: covery ious Core	PIC) - Photoic ¥ ∑	onization Detect Static Water Water Level (Level	eadspace N	Neasurement) Logged by: Approved by Figure No.	AET/MML :: SJG A- 12	

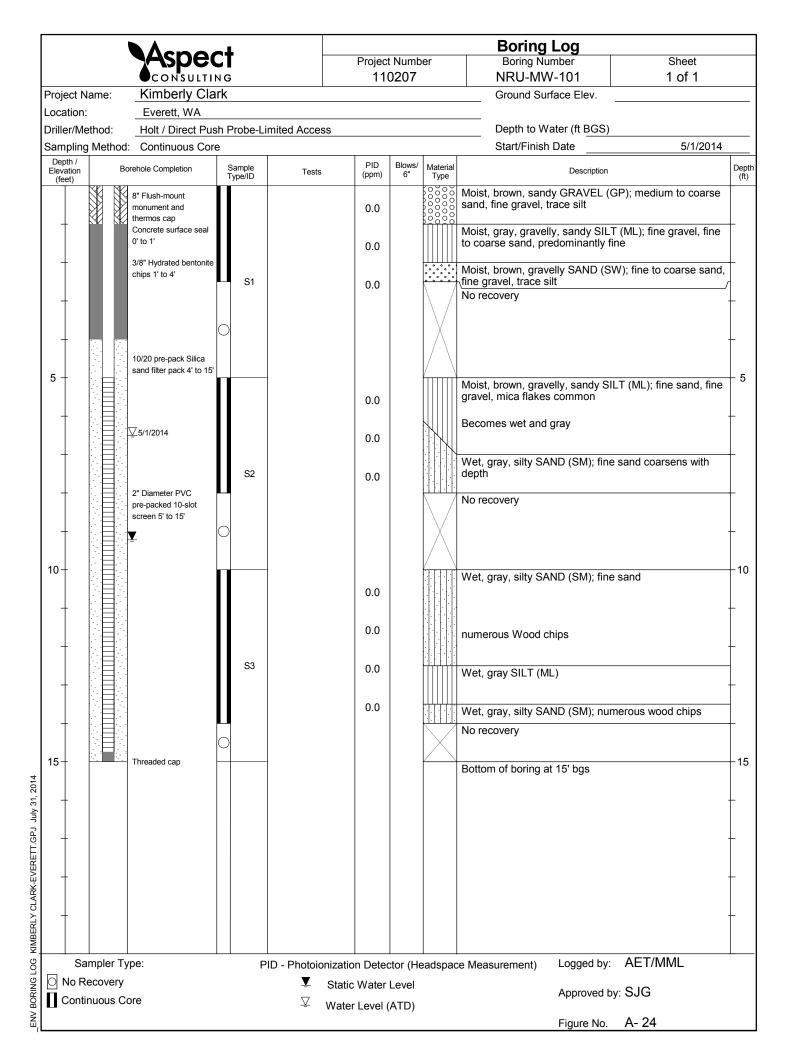


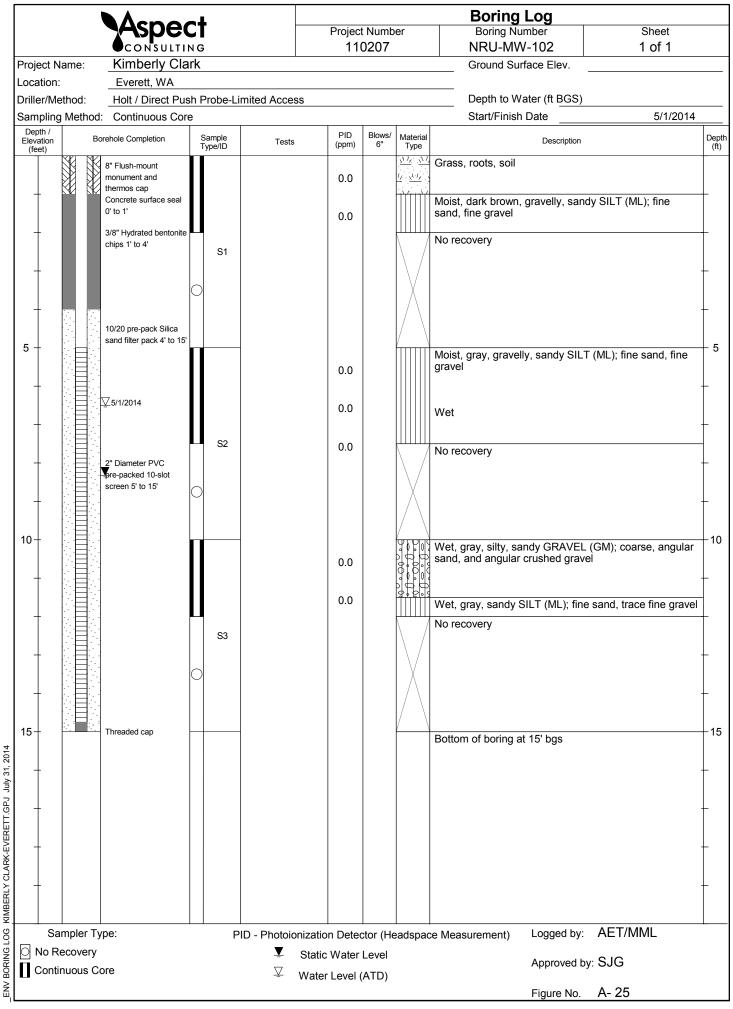


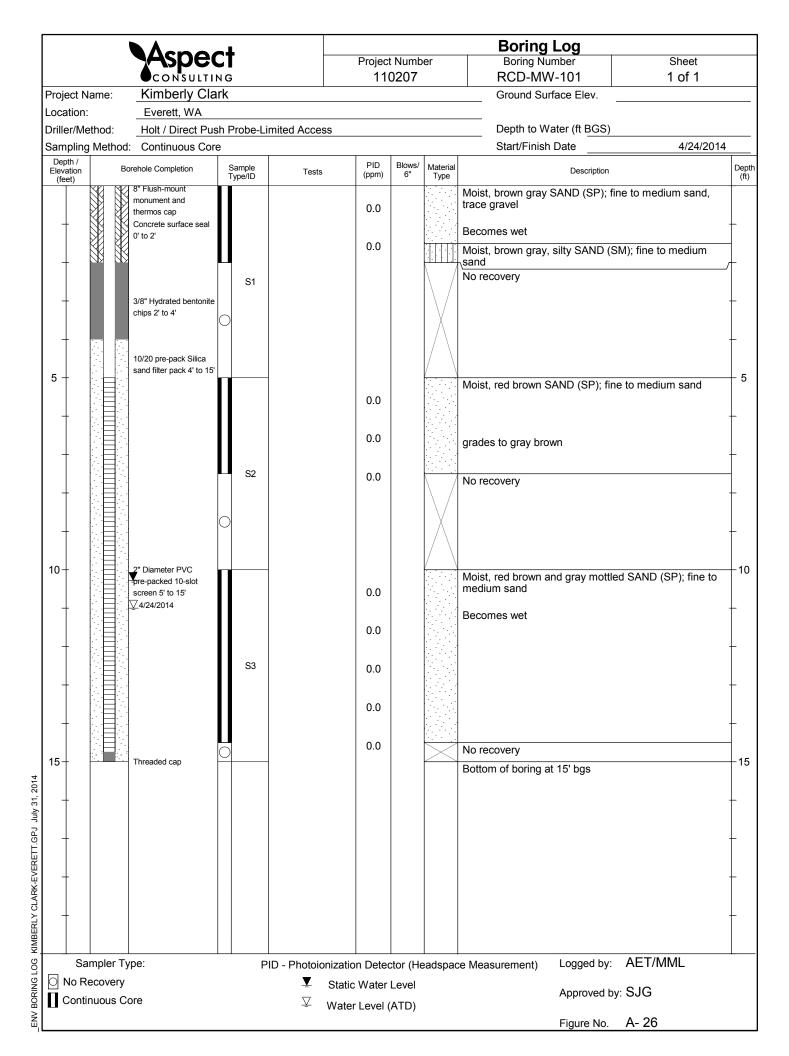

	Managet						Boring Log			
		Aspec		Γ	Projec	t Numb 0207	er	Boring Number Sheet		
Project N	lama:	Kimberly Clar			11	0207		CN-MW-104 Ground Surface Elev.	1 of 1	
Location:		Everett, WA	ĸ							
Driller/Me		Holt / Direct Push	h Probe-l im	ited Acces	s			Depth to Water (ft BGS)		
		d: Continuous Core						Start/Finish Date	4/22/20)14
Depth / Elevation		Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/	Material Type	Description		Dep (ft
(feet)	8" Flush-mount			(pp)			Recycled demo debris			
		monument and thermos cap			0.0			Moist, brown, slightly gravelly S	AND (SP); fine to	
+		Concrete surface seal						medium sand		t
		0' to 2'			0.0					
		3/8" Hydrated bentonite	01					Wet		Ť
		chips 2' to 3'	S1		0.0					
		10/20 pre-pack Silica					\backslash	No recovery		
1		sand filter pack 3' to 14'								Ļ
5 -		∑4/22/2014					<u> </u>			5
					0.0			Wet, brown, slightly gravelly SA medium sand	ND (SP); fine to	
+		- -			0.0					+
					0.0					
+								Wet, gray, silty SAND (SM); fine	sand	
		· ·	S2		0.0			Wet, dark gray SAND (SP); fine		
+		 2" Diameter PVC pre-packed 10-slot 								÷
		screen 4' to 14'			0.0					
+		-								÷
					0.0			Wet, gray to brown sawdust		
10+		-						Wet, brown SAND (SW); fine to	coarse sand, trace	
					0.0			gravel		
T										T
					0.0					
			S3		0.0			Wet, gray SAND (SP); fine to m	edium sand	
+		-			0.0					
					0.0			Wood debris		
+		Threaded cap								+
		۰ ۹			0.0					
15-	<u></u>	Slough						Bottom of boring at 15 feet		
								2010 0. 201g at 10 1001		
+										t
†										t
1										Ť
\downarrow										
T										Γ
_	ampler T		PID	_			eadspac	ce Measurement) Logged by:	AET/MML	
	ecovery				Static Water			Approved b	y: SJG	
				<u> </u>	Water Level ((ATD)		Figure N-	Λ 19	
								Figure No.	A- 18	

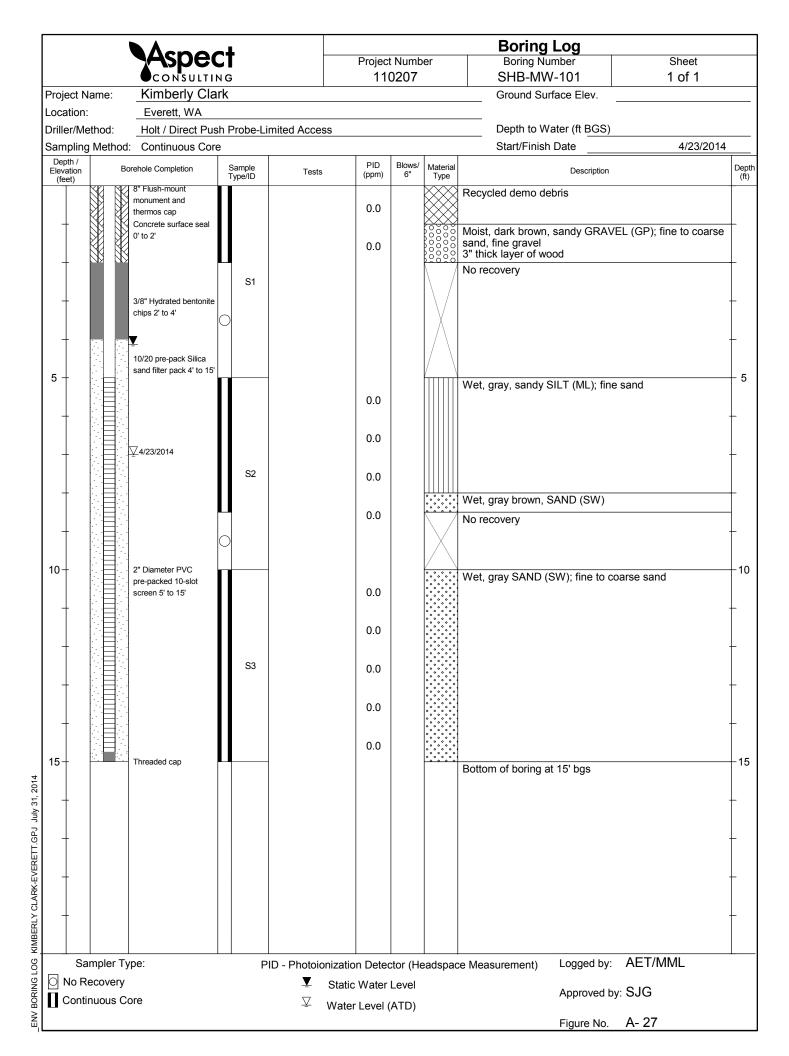


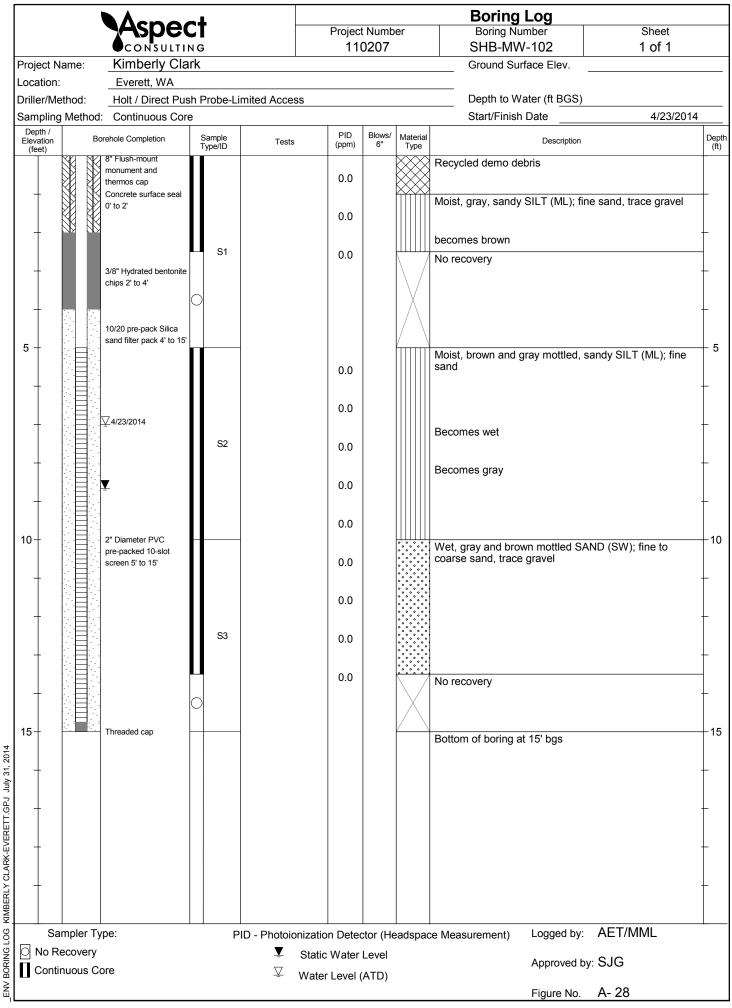


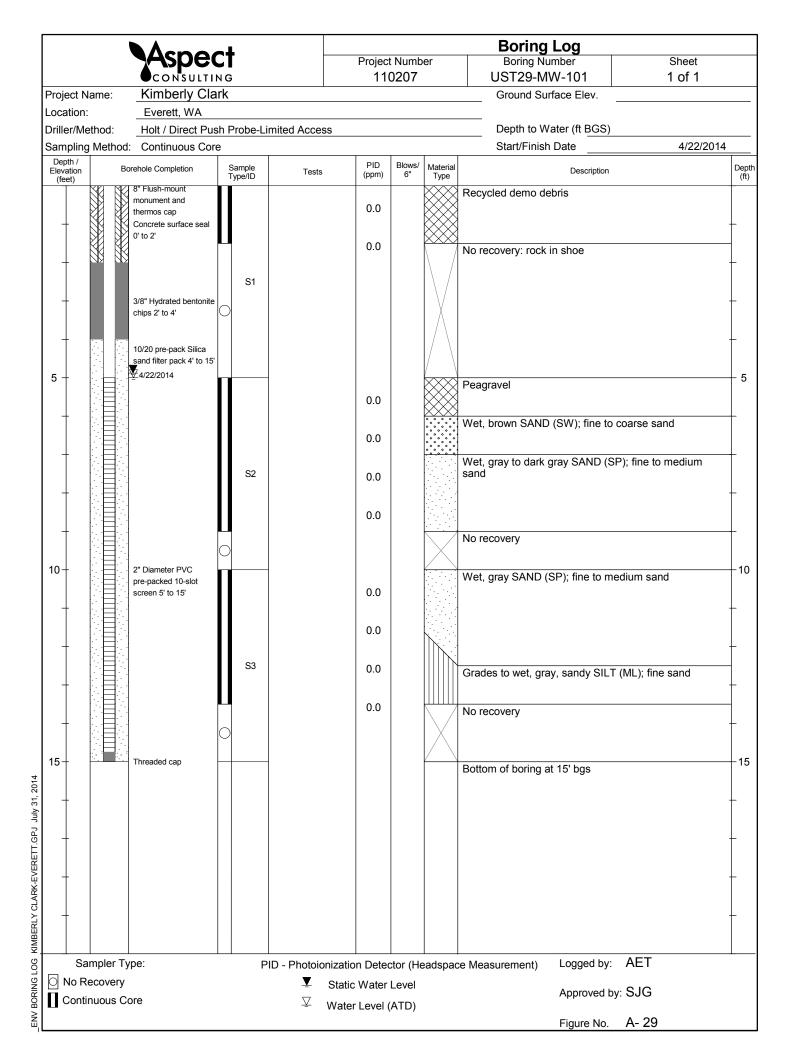

	Aspect				t Numb 0207	er	Boring Log Boring Number GF11-MW-101	Sheet 2 of 3		
Project Na					0207		Ground Surface Elev.	2013	2013	
Location:	Everett, WA									
Driller/Meth	nod: Holt / Direct	Push Probe-Lim	ited Acces	S			Depth to Water (ft BGS)			
	Method: Continuous	Core					Start/Finish Date	4/28/2014		
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Dept (ft)	
								-	-	
								-	-	
-								-	-	
+								-	-	
25-								-	-25	
+								-	-	
-								-	-	
-								-	+	
-								-	-	
30-								-	-30	
_								-	_	
								_		
35-								+	-35	
Sam								-	+	
+								-	-	
								-	-	
								-	-	
	pler Type:	PID		nization Deteo	 ctor (He	adspace N	Aeasurement) Logged by:	AET		
O No Rec	covery Jous Core		¥ ⊻	Static Water Water Level (Approved by	: SJG		
					,		Figure No.	A- 20		

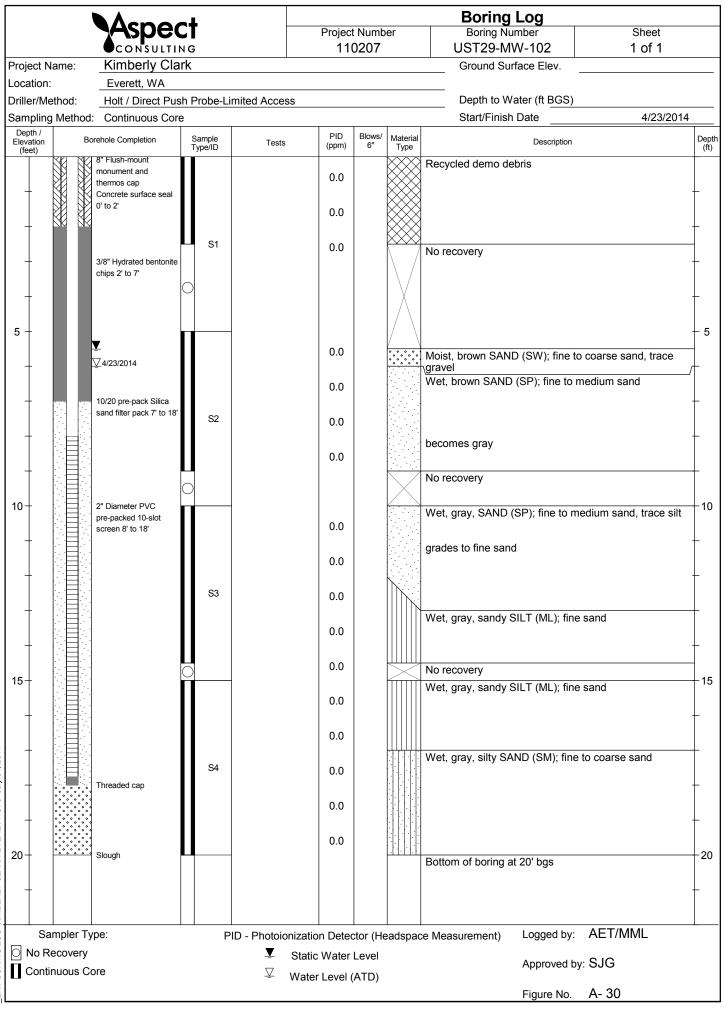

Construint Constru		Aspe	ct	_	Project	t Numb	er	Boring Log Boring Number	Sheet
California Everation MA immonwhethodi MBD (Direct house) Problem (Integet Access) Depth to Water (It BGS) immonwhethodi Continuous Core Start/Finish Date 4/28/2014 immonwhethodi Synth Tracs Sonth Tracs Start/Finish Date 4/28/2014 immonwhethodi Synth Tracs Sonth Tracs Tracs Sonth Tracs Tracs Sonth Tracs			ING				-		
Image: Mark J Direct Puch Probe-Linited Access Depth to Water (HBGS) StartFinish Date 4282014 Profile Sampler Mucha: Continuous Consultation Train Work Mark Mark Mark Mark Mark Mark Mark Mark			lark				I	Ground Surface Elev.	
ampling Method: Continuous Core Start/Finish Date 428/2014 Uberoise System Tests Pare Date Decrision 1 1 Bardrose Congetion System Tests Pare Date Decrision 1 4 Bardrose Congetion System Tests Pare Date Decrision 1 4 Bardrose Congetion System Tests Pare Date Decrision 1 4 Bardrose Congetion System Bardrose Congetion Bardrose Congetion 1 <	Location:								
Definition by provide Reactive Compation Sample Transf Users UPO Base Base of the provide Description C - <				ted Acces	S				1/28/2014
Sampler Type: Sampler Type: PID - Photoionization Detector (Headspace Measurement) Sampler Type: PID - Photoionization Detector (Headspace Measurement) Sampler Type: PID - Photoionization Detector (Headspace Measurement) Continuous Core V Mater Level Approved by: SJG					PID	Blows/	Material		
Sampler Type: Sampler Type: Sampler Type: PID - Photolonization Detector (Headspace Measurement) Sampler Type: PID - Photolo	Elevation (feet)	Borenole Completion	Type/ID	Tests		6"	Туре	Description	De (1
Sampler Type: Sampler Type: Sampler Type: PID - Photolonization Detector (Headspace Measurement) Sampler Type: PID - Photolo									
Sampler Type: Sampler Type: Sampler Type: PID - Photolonization Detector (Headspace Measurement) Sampler Type: PID - Photolo									
Sampler Type: Sampler Type: Sampler Type: PID - Photolonization Detector (Headspace Measurement) Sampler Type: PID - Photolo									-
Sampler Type: Sampler Type: Sampler Type: PID - Photolonization Detector (Headspace Measurement) Sampler Type: PID - Photolo	+								-
Sampler Type: Sampler Type: Sampler Type: PID - Photolonization Detector (Headspace Measurement) Sampler Type: PID - Photolo	-								-
Sampler Type: No Recovery Continuous Core Y Water Level (ATD) No Recovery Continuous Core Y Water Level (ATD)	45-								-4
Sampler Type: No Recovery Continuous Core Y Water Level (ATD) No Recovery Continuous Core Y Water Level (ATD)	-								-
Sampler Type: No Recovery Continuous Core Y Water Level (ATD) No Recovery Continuous Core Y Water Level (ATD)	-		~						-
Sampler Type: No Recovery Continuous Core Y Water Level (ATD) No Recovery Continuous Core Y Water Level (ATD)	-								-
Sampler Type: No Recovery Continuous Core Y Water Level (ATD) No Recovery Continuous Core Y Water Level (ATD)	-								-
Sampler Type: No Recovery Continuous Core Y Water Level (ATD) No Recovery Continuous Core Y Water Level (ATD)	50-								-5
Sampler Type: No Recovery Continuous Core PID - Photoionization Detector (Headspace Measurement) Static Water Level Water Level (ATD) Logged by: AET Approved by: SJG									
Sampler Type: No Recovery Continuous Core PID - Photoionization Detector (Headspace Measurement) Static Water Level Water Level (ATD) Logged by: AET Approved by: SJG									
Sampler Type: No Recovery Continuous Core PID - Photoionization Detector (Headspace Measurement) Static Water Level Water Level (ATD) Logged by: AET Approved by: SJG									-
Sampler Type: No Recovery Continuous Core PID - Photoionization Detector (Headspace Measurement) Static Water Level Water Level (ATD) Logged by: AET Approved by: SJG	+								-
Sampler Type: No Recovery Continuous Core PID - Photoionization Detector (Headspace Measurement) Static Water Level Water Level (ATD) Logged by: AET Approved by: SJG	-								-
O No Recovery ▼ Static Water Level Approved by: SJG I Continuous Core ▼ Water Level (ATD)	55-								-5
O No Recovery ▼ Static Water Level Approved by: SJG I Continuous Core ▼ Water Level (ATD)	+								-
O No Recovery ▼ Static Water Level Approved by: SJG I Continuous Core ▼ Water Level (ATD)									+
O No Recovery ▼ Static Water Level Approved by: SJG I Continuous Core ▼ Water Level (ATD)									÷
O No Recovery ▼ Static Water Level Approved by: SJG I Continuous Core ▼ Water Level (ATD)	-								+
O No Recovery ▼ Static Water Level Approved by: SJG I Continuous Core ▼ Water Level (ATD)	Sam	pler Type:		- Photoio			adsnace	Measurement) Logged by	AET
Wald Level (ATD)	O No Rec	overy		Ţ	Static Water	Level			
				<u> </u>	vvater Level (aid)		Figure No.	A- 20

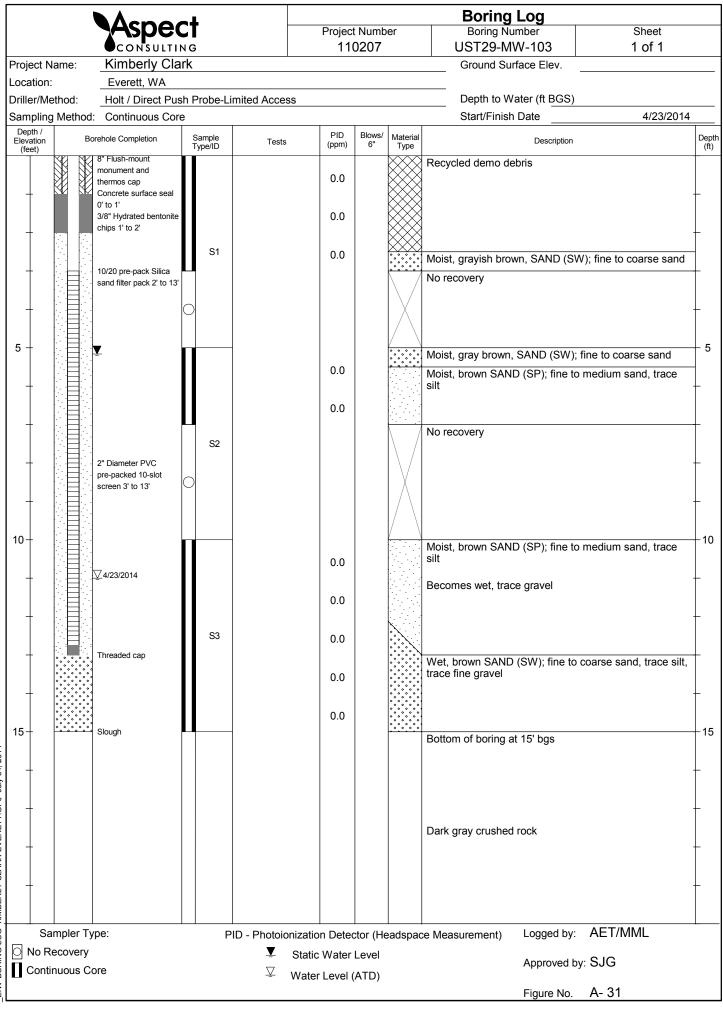


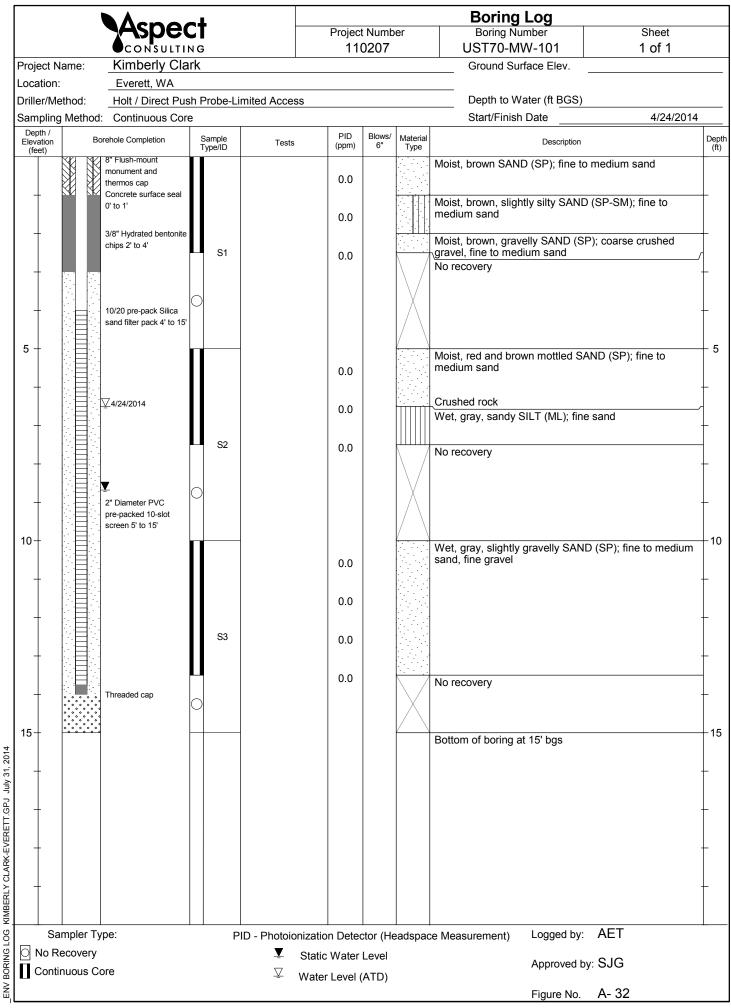


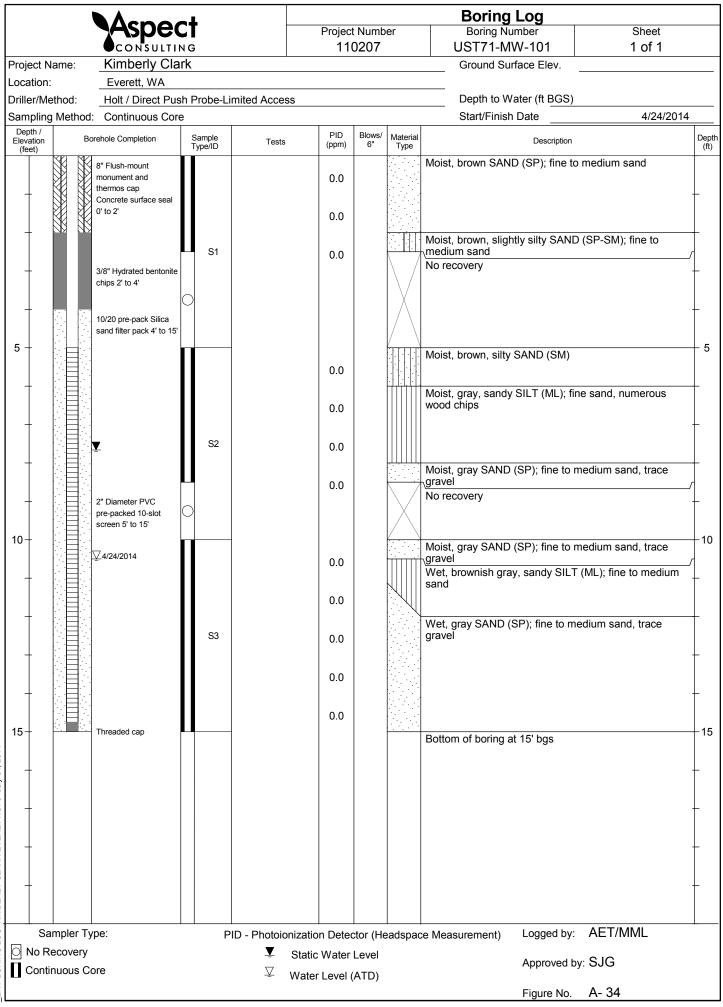


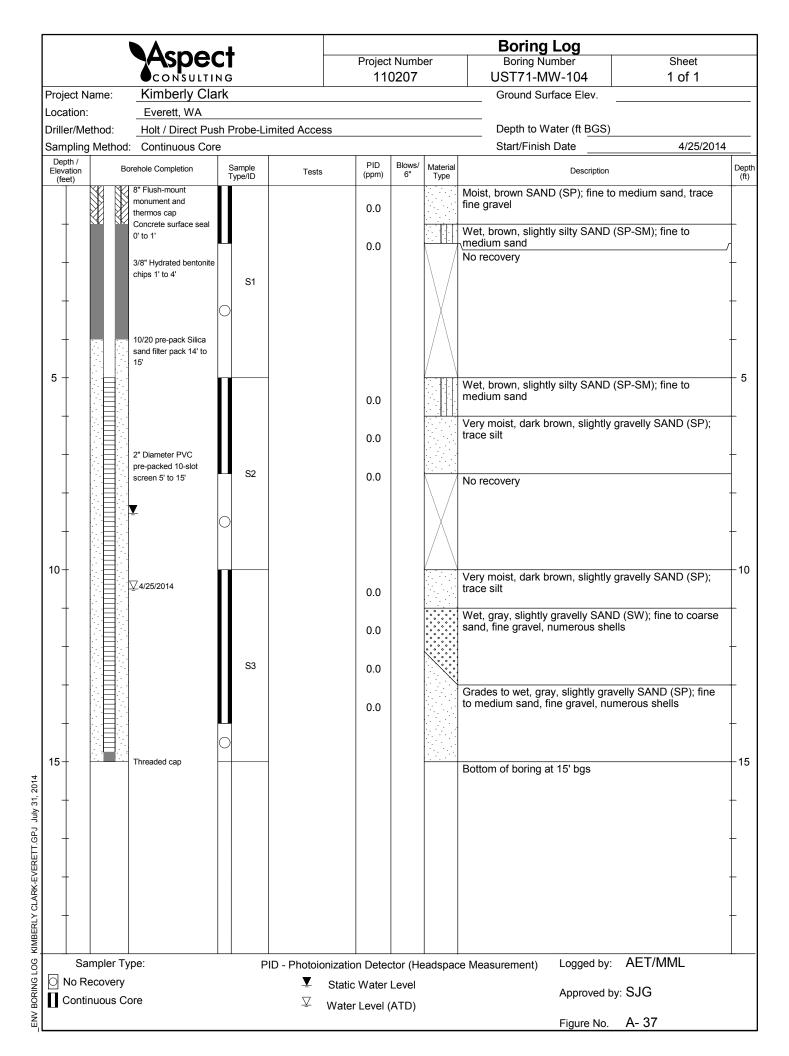












	Aspect					t Numb 0207	er	Boring Log Boring Number UST70-MW-102	Sheet 1 of 1	
Project Nan	ne:	Kimberly Cla				5201		Ground Surface Elev.		
Location:		Everett, WA								
Driller/Meth	od:	Holt / Direct Pus	h Probe-Lin	nited Acces	SS			Depth to Water (ft BGS)		
	lethod	Continuous Core	e					Start/Finish Date	4/24/2014	4
Depth / Elevation (feet)	Bo	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Dep (ft)
-		8" Flush-mount monument and thermos cap Concrete surface seal 0' to 2'			0.0			Moist, brown SAND (SP); fine to 3" pocket of silty sand	o medium sand,	+
		0.02	S1		0.0			3" pocket of crushed rock artific	ial fill	-
-		3/8" Hydrated bentonite chips 2' to 4'	0		0.0			No recovery		-
5 -		10/20 pre-pack Silica sand filter pack 4' to 15'			0.0			Moist, brown, gravelly SAND (S sand, fine gravel, woodchips	P); fine to medium	
-		⊻4/24/2014	S2		0.0			Wet, gray, gravelly, sandy SILT	(ML): find cond and	_
		Ţ						vrei, gravel gravel No recovery		
10-		2" Diameter PVC pre-packed 10-slot screen 5' to 15'			0.0			Wet, gray, gravelly, sandy SILT gravel	(ML); fine sand and	10
			S3		0.0			Wet, gray, gravelly SAND (SP); predominantly medium sand, fir	fine to medium sand, ne gravel	+
-					0.0					-
			0				$\mathbf{\times}$	No recovery		٦.,
15-	·	Threaded cap						Bottom of boring at 15' bgs		-+ 1! - -
										+
										Ť
Samp			PI	D - Photoic ⊈ ⊻	onization Dete Static Water Water Level	Level	adspa	Le Measurement) Logged by: Approved b		
						·		Figure No.	A- 33	

		-1					Boring Log		
					t Numb 0207	er	Boring Number Shee UST71-MW-102 1 of		
Project Name:	Kimberly Cla				0207		Ground Surface Elev.	1011	
Location:	Everett, WA								
Driller/Method:	Holt / Direct Pus	h Probe-Lim	ited Acces	s			Depth to Water (ft BGS)		
	od: Continuous Core	9					Start/Finish Date	4/25/2014	14
Depth / Elevation (feet)	Borehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Dept (ft)
	8" Flush-mount monument and thermos cap Concrete surface seal 0' to 2' 3/8" Hydrated bentonite chips 2' to 4'	S1		0.0 0.0 29.5			Moist, brown, SAND (SP); fine to fine gravel Silt lense, petroleum odor No recovery	medium sand, trace	- /- -
5 -	→0/25/β0-1βack Silica sand filter pack 4' to 15'			11.4			Wet, gray, sandy SILT (ML); fine odor	sand, slight petroleum	- - 5 -
	2" Diameter PVC pre-packed 10-slot screen 5' to 15'	S2		0.0			Wet, gray SAND (SP); fine to me seashells No recovery		- 10
	Threaded cap	S3		0.0 0.0 0.0			Wet, gray SAND (SP) with scatter inerbeds; fine to medium sand, ra	red thing SILT (ML) re seashells	-
- 15-				0.0			Refusal at 14' bgs		-15 -
									-
Sampler	Туре:	PIC) - Photoior	nization Deter	L ctor (He	eadspace	Le Measurement) Logged by:	AET/MML	-L
O No Recover	ry	11	Ţ	Static Water	Level	Jauopa	Approved by:		
			<u> </u>	Water Level ((ATD)			A 25	
							Figure No.	A- 35	

		_ _					Boring Log		
				Project 11	t Numb 0207	er	Boring Number Sheet UST71-MW-103 1 of 1		
Project Name:	Kimberly Cla				0201		Ground Surface Elev.	1011	
Location:	Everett, WA								
Driller/Method:	Holt / Direct Pus	h Probe-Lim	ited Access	6			Depth to Water (ft BGS)		
	: Continuous Core	9					Start/Finish Date	4/25/2014	
Depth / Elevation (feet)	orehole Completion	Sample Type/ID	Tests	PID (ppm)	Blows/ 6"	Material Type	Description		Dep (ft
	8" Flush-mount monument and thermos cap Concrete surface seal 0' to 1'			0.0			Moist, brown SAND (SP); fine to r fine gravel	nedium sand, trace	_
	3/8" Hydrated bentonite chips 1' to 5'	S1		0.0			Crushed rock, crushed concrete Wet, brown gray, slightly silty, gra ∖fine to medium sand	velly SAND (SP-SM);	
5 -	⊻4/25/2014	0					No recovery		- - - 5
	 10/20 pre-pack Silica sand filter pack 6' to 12' 			0.0			Wet, brown gray, slightly silty, gra fine to medium sand Moist to wet, black, fibrous organi matrix	7	 -
		S2		0.0					 -
	- - - - - - - - -	0		0.0			No recovery	-	
10-	2" Diameter PVC pre-packed 10-slot screen 7' to 12'			0.0			Moist to wet, black, fibrous organi matrix Wet, dark gray, sandy GRAVEL (i	7	-1
	: Threaded cap			0.0		0000000	fine gravel		
- ····	9 9 9 9 9			0.0			Wet, dark gray and brown mottled medium sand Brick fragments	I SAND (SP); Tine to	-
	e e e e			0.0			Mild petroleum odor, and dark bro	wn mottling	
15-	9 6 4			0.0			Bottom of boring at 15' bgs		-1
-								-	
								+	_ -
								+	 -
Complex T							Manager () Jamma Isa	ΛΕΤ	
Sampler T		PIC	⊻ (Static Water	Level	eadspac	e Measurement) Logged by: Approved by:	AET SJG	
•••			÷ (Vater Level ((ATD)		Figure No.	A- 36	

APPENDIX B

Data Validation Reports

DATA VALIDATION REPORT

Kimberly Clark Worldwide Site Upland Area Interim Action Confirmational Groundwater Monitoring May 2014 SDGs 405224, 405255, 405285, 405290, 405253, 405254, K1404940, K1405926, K1409540

> Prepared by: Aspect Consulting, LLC 401 Second Ave South, Suite 201 Seattle, WA 98104

Project No. 110207 • October 7, 2014

V:\110207 KC Everett Mill\Deliverables\Confirmational GW Monitoring Report\App B\KC IA May 2014 Data Validation.docx

1 Introduction

This report summarizes the findings of the United States Environmental Protection Agency (USEPA) Stage 2A data validation performed on analytical data for groundwater samples collected during May 12 through 15, 2014 for Kimberly Clark Worldwide Upland Site Interim Action Confirmational Groundwater Monitoring. This data quality review is divided into sections by sample delivery group (SDG). A complete list of samples and analyses for each SDG is provided in the Sample Index at the beginning of each section. The metals data were sent to a separate lab for analysis, and are presented in Sections 8, 9, and 10 at the end of the report.

Samples were analyzed for non-metals analytes by Friedman & Bruya, Inc in Seattle, Washington, and for metals analytes by ALS Environmental in Kelso, Washington. The analytical methods are summarized below:

Analysis	Method	Laboratory
Polycyclic Aromatic Hydrocarbons (PAHs)	SW8270D-SIM	Friedman & Bruya, Inc
	NWTPH-	
TPH - Gasoline Range and BTEX ¹	Gx/EPA 8021B	Friedman & Bruya, Inc
TPH - Diesel and Motor Oil Ranges	NWTPH-Dx	Friedman & Bruya, Inc
Total and Dissolved Metals	EPA 200.8	ALS
Total and Dissolved Mercury	EPA 1631E	ALS

The validation followed the procedures documented in the analytical methods, the Quality Assurance Project Plan (QAPP; in Appendix A to Aspect, 2013), *National Functional Guidelines for Organic Data Review* (USEPA, 1999), and *National Functional Guidelines for Inorganic Data Review* (USEPA, 2004).

Data assigned a J qualifier (estimated) may be used for site evaluation purposes but the reasons for qualification should be taken into account when interpreting sample concentrations. Data marked as do-not-report (DNR) should not be used under any circumstances. Values without qualification meet all data measurement quality objectives and are suitable for use.

Data qualifier definitions and a summary table of the qualified data are included in the Qualified Data Summary at the end of this report. A qualified laboratory electronic data deliverable (EDD) is also submitted with this report.

¹ BTEX = benzene, toluene, ethylbenzene, and xylenes

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

							An	alyte				
Sample ID	Sample Date	Sample Matrix	TPH- Dx	TPH- Gx	BTEX	Low Level PAHs	Mercury	Arsenic	Copper	Lead	Nickel	Zinc
BBH-MW101-051214	5/12/2014	GrWtr					х	х*	х*	х		х
BBH-MW102-051214	5/12/2014	GrWtr					х	х	Х*	х		х
RCD-MW101-051214	5/12/2014	GrWtr	х			х	х	х	x*		x*	
SHB-MW101-051214	5/12/2014	GrWtr	х	х	х	х	X*		х*			
SHB-MW102-051214	5/12/2014	GrWtr	х	х	х	х	х		х			
UST70-MW101- 051214	5/12/2014	GrWtr	x			x		x	x		x	x
UST70-MW102- 051214	5/12/2014	GrWtr	x			x		x	x		x	x
UST70-MW2-051214	5/12/2014	GrWtr	х			х		х	х		х	х
UST71-MW101- 051214	5/12/2014	GrWtr	x			x			x			х
UST71-MW102- 051214	5/12/2014	GrWtr	x			x			х			x
UST71-MW104- 051214	5/12/2014	GrWtr	x			x			х			x
UST71-MW500- 051214 * Totol c	5/12/2014	GrWtr	x			x			x			x

* = Total and dissolved metals analysis, otherwise only total metals

2.1 PAHs by SW8270-SIM

2.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be extracted within 7 days of collection and soil within 14 days of collection. Extracted samples should be analyzed within 40 days of extraction.

Sample receipt, preservation (2-6 degrees Celsius [C]), and holding times were acceptable.

2.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

2.1.3 Surrogates

All surrogate spike recoveries were within control limits or were not applicable due to sample matrix interference or sample dilution below quantitation limits because of high petroleum hydrocarbon concentrations. No data qualification was necessary.

2.1.4 Laboratory Control Samples (LCS/LCSD)

Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) percent recovery (%R) and relative percent difference (RPD) were within the project control limits.

2.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

Matrix spike (MS) and matrix spike duplicate (MSD) %R and RPD were within the project control limits.

2.1.6 Field Duplicates

Field duplicates are an indication of both field and laboratory precision. According to the EPA National Functional Guidelines, there are no set criteria for field duplicate evaluation, but the following advisory criteria were used. For results greater than or equal to the analytical reporting limit (RL), the advisory RPD is 35%. For results <5 times the RL, the difference between the sample and the duplicate should be <RL.

One set of blind field duplicates was submitted for this analysis, UST71-MW104-051214 and UST71-MW500-051214. The RPD for the field duplicate pair was within the control limits specified above.

2.1.7 Reported Results and Reporting Limits (RL)

The results for acenaphthene and fluorene in sample UST70-MW102-051214 exceeded the instrument calibration range, requiring the sample to be diluted and re-analyzed. These analytes were reported from the dilution and qualified as do-not-report (DNR) in the undiluted sample. The remaining analytes were reported from the undiluted sample.

The reporting limits outlined in the Quality Assurance Project Plan (QAPP; in Appendix A to Aspect, 2013) were met or were elevated accordingly due to high concentrations of target analytes.

2.1.8 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD, LCS/LCSD, and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

2.2 TPH-Gasoline and BTEX by NWTPH-Gx and EPA 8021B and EPA 8021B

2.2.1 Sample Receipt, Preservation, and Holding Times

Soil and water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

2.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

2.2.3 Surrogates

All %R were within control limits.

2.2.4 Laboratory Control Samples (LCS)

LCS %R and RPD were within the project control limits.

2.2.5 Laboratory Duplicates

For laboratory duplicate results that are greater than the RL, the RPD control limit is 20%. For laboratory duplicate results less than 5 times the RL, the difference between the sample and duplicate must be less than the reporting limit.

RPD values met the control criteria for laboratory duplicates.

2.2.6 Field Duplicates

One set of blind field duplicates was submitted, UST71-MW104-051214 and UST71-MW500-051214. All RPD were within the control limits.

2.2.7 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP.

2.2.8 Overall Assessment

Accuracy was acceptable based on the LCS recoveries, and precision was acceptable based on the laboratory and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

2.3 Diesel- and Oil-Range TPH by NWTPH-Dx

2.3.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable (see Section 2.1.1).

2.3.2 Method Blanks

Target analytes were not detected at or above RLs in the method blanks.

2.3.3 Surrogates

All %R were within control limits or were not applicable due to sample matrix interference.

2.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

2.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

2.3.6 Field Duplicates

One set of blind field duplicates was submitted, UST71-MW104-051214 and UST71-MW500-051214. All RPD were within the control limits.

2.3.7 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

2.3.8 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD, LCS/LCSD, and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

							An	alyte				
Sample ID	Sample Date	Sample Matrix	TPH- Dx	TPH- Gx	BTEX	Low Level PAHs	Mercury	Arsenic	Copper	Lead	Nickel	Zinc
BA6-MW101-051314	5/12/2014	GrWtr	х			х						
BBH-MW103-051314	5/12/2014	GrWtr					x*	x*	x*	х		х
BBH-MW104-051314	5/12/2014	GrWtr					х	X*	x*	х		x*
BCT-MW101-051314	5/12/2014	GrWtr	х	х	х	х	х		х	х		
BCT-MW104-051314	5/12/2014	GrWtr	х	х	х	х	х		х	х		
BCT-MW500-051314	5/12/2014	GrWtr	х	х	х	х	х		х	х		
UST71-MW103-051314	5/12/2014	GrWtr	х			х			Х*			х*

* = Total and dissolved metals analysis, otherwise only total metals

3.1 PAHs by SW8270-SIM

3.1.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

3.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

3.1.3 Surrogates

All surrogate spike %R were within control limits or were not applicable due to sample matrix interference or sample dilution below quantitation limits because of high petroleum hydrocarbon concentrations. No qualification of the results was necessary.

3.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

3.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

3.1.6 Field Duplicates

One set of blind field duplicates was submitted, BCT-MW104-051314 and BCT-MW500-051314. All RPD were within the control limits.

3.1.7 Reported Results and Reporting Limits (RL)

The results for naphthalene, acenaphthene and fluorene in sample UST71-MW103-051314 exceeded the instrument calibration range, requiring the sample to be diluted and re-analyzed. These analytes were reported from the dilution and qualified as DNR in the undiluted sample. The remaining analytes were reported from the undiluted sample.

The result for acenaphthene in sample BA6-MW101-051314 also exceeded the linear range and was qualified in the same manner.

The reporting limits outlined in the QAPP were met or were elevated accordingly due to high concentrations of target analytes.

3.1.8 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries and precision was acceptable based on the MS/MSD, LCS/LCSD, and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

3.2 TPH-Gasoline and BTEX by NWTPH-Gx and EPA 8021B

3.2.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

3.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

3.2.3 Surrogates

All %R were within control limits.

3.2.4 Laboratory Control Samples (LCS)

LCS %R and RPD were within the project control limits.

3.2.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

3.2.6 Field Duplicates

One set of blind field duplicates was submitted, BCT-MW104-051314 and BCT-MW500-051314. All RPD were within the control limits.

3.2.7 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP.

3.2.8 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD, LCS/LCSD, and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

3.3 Diesel- and Oil-Range TPH by NWTPH-Dx

3.3.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

3.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

3.3.3 Surrogates

All %R were within control limits.

3.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

3.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

3.3.6 Field Duplicates

One set of blind field duplicates was submitted, BCT-MW104-051314 and BCT-MW500-051314. All RPD were within the control limits.

3.3.7 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

3.3.8 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD, LCS/LCSD, and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

							Analyte			
Sample ID	Sample Date	Sample Matrix	TPH- Dx	TPH- Gx	BTEX	Low Level PAHs	Mercury	Arsenic	Copper	Lead
BCT-MW105-051414	5/14/2014	GrWtr	х	х	х	х	х		х	х
BCT-MW106-051414	5/14/2014	GrWtr	х	х	х	х	х		Х*	х
CN-MW101-051414	5/14/2014	GrWtr	х			х		х	Х*	х
CN-MW102-051414	5/14/2014	GrWtr	х			х		х	х	х
CN-MW103-051414	5/14/2014	GrWtr	х			х		х	х	х
CN-MW104-051414	5/14/2014	GrWtr	х			х		х	Х*	х
DAST-MW101-051414	5/14/2014	GrWtr	х			х	х		х	
GF11-MW101-051414	5/14/2014	GrWtr					х		х	х
HBV-MW101-051414	5/14/2014	GrWtr	х			х				
UST29-MW101-051414	5/14/2014	GrWtr	х	х	х	х				
UST29-MW102-051414	5/14/2014	GrWtr	х	х	х	х				
UST29-MW103-051414	5/14/2014	GrWtr	х	х	х	х				

* = Total and dissolved metals analysis, otherwise only total metals

4.1 PAHs by SW8270-SIM

4.1.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

4.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

4.1.3 Surrogates

All surrogate spike %R were within control limits or were not applicable due to sample matrix interference or sample dilution below quantitation limits because of high petroleum hydrocarbon concentrations. No qualification of the results was necessary.

4.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

4.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

There were no MS/MSD associated with this SDG.

4.1.6 Reported Results and Reporting Limits (RL)

The results for acenaphthene in sample BCT-MW105-051414 exceeded the instrument calibration range, requiring the sample to be diluted and re-analyzed. These analytes were reported from the dilution and qualified as do-not-report (DNR) in the undiluted sample. The remaining analytes were reported from the undiluted sample.

The results for fluorene and acenaphthene in sample DAST-MW101-051414 also exceeded the linear range and was qualified in the same manner.

The reporting limits outlined in the QAPP were met or were elevated accordingly due to high concentrations of target analytes.

4.1.7 Overall Assessment

Accuracy was acceptable based on the LCS and surrogate spike recoveries, and precision was acceptable based on the LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

4.2 TPH-Gasoline and BTEX by NWTPH-Gx and EPA 8021B

4.2.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

4.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

4.2.3 Surrogates

All %R were within control limits.

4.2.4 Laboratory Control Samples (LCS)

LCS %R and RPD were within the project control limits.

4.2.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

There were no MS/MSD associated with this SDG.

4.2.6 Laboratory Duplicates

All RPD were within the control limits.

4.2.7 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP.

4.2.8 Overall Assessment

Accuracy was acceptable based on the LCS and surrogate spike recoveries, and precision was acceptable based on the laboratory duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

4.3 Diesel- and Oil-Range TPH by NWTPH-Dx

4.3.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

4.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

4.3.3 Surrogates

All percent recoveries were within control limits or were at levels that had no adverse effects on data quality.

4.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

4.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

There were no MS/MSD associated with this SDG.

4.3.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

4.3.7 Overall Assessment

Accuracy was acceptable based on the LCS and surrogate spike recoveries, and precision was acceptable based on the LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

			Analyte								
Sample ID	Sample Date	Sample Matrix	TPH- Dx	TPH- Gx	BTEX	Low Level PAHs	Mercury	Copper	Lead		
BCT-MW102-051514	5/15/2014	GrWtr	х	х	х	х	х	х	х		
BCT-MW103-051514	5/15/2014	GrWtr	х	х	х	х	х	х	х		
BCT-MW107-051514	5/15/2014	GrWtr	х	х	х	х	х	х	х		
BCT-MW108-051514	5/15/2014	GrWtr	х	х	х	х	х	Х*	х		

* = Total and dissolved metals analysis

5.1 PAHs by SW8270-SIM

5.1.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

5.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

5.1.3 Surrogates

All surrogate spike %R were within control limits or were not applicable due to sample dilution below quantitation limits because of high petroleum hydrocarbon concentrations. No qualification of the results was necessary.

5.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

5.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

There were no MS/MSD associated with this SDG.

5.1.6 Reported Results and Reporting Limits (RL)

The results for naphthalene and acenaphthene in sample BCT-MW107-051514 exceeded the instrument calibration range, requiring the sample to be diluted and re-analyzed. These analytes were reported from the dilution and qualified as do-not-report (DNR) in the undiluted sample. The remaining analytes were reported from the undiluted sample.

Naphthalene, acenaphthene, and fluorene in BCT-MW108-051514 and acenaphthene in BCT-MW103-051514 exceeded the linear range and were qualified in the same manner.

The reporting limits outlined in the QAPP were met or were elevated accordingly due to high concentrations of target analytes.

5.1.7 Overall Assessment

Accuracy was acceptable based on the surrogate spike and LCS recoveries, and precision was acceptable based on the LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

5.2 TPH-Gasoline and BTEX by NWTPH-Gx and EPA 8021B

5.2.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

5.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

5.2.3 Surrogates

All %R were within control limits.

5.2.4 Laboratory Control Samples (LCS)

LCS %R and RPD were within the project control limits.

- **5.2.5** *Matrix Spike/Matrix Spike Duplicates (MS/MSD)* MS and MSD %R and RPD were within the project control limits.
- 5.2.6 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP.

5.2.7 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD RPD values. The data are of known quality and are acceptable for use as qualified.

5.3 Diesel- and Oil-Range TPH by NWTPH-Dx

5.3.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

5.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

5.3.3 Surrogates

All %R were within control limits.

5.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD % R and RPD were within the project control limits.

- 5.3.5 *Matrix Spike/Matrix Spike Duplicates (MS/MSD)* There were no MS/MSD associated with this SDG.
- **5.3.6** Reported Results and Reporting Limits (RL) All target RLs were met as outlined in the QAPP.

5.3.7 Overall Assessment

Accuracy was acceptable based on the surrogate spike and laboratory control sample recoveries and precision was acceptable based on the LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

			Analyte				
Sample ID	Sample Date	Sample Matrix	TPH- Dx	TPH- Gx	BTEX	Low Level PAHs	
NRP-MW2-051314	5/13/2014	GrWtr	х	х	х	х	
NRU-MW101-051314	5/13/2014	GrWtr	х	х	х	х	
NRU-MW102-051314	5/13/2014	GrWtr	х	х	х	х	

6.1 PAHs by SW8270-SIM

6.1.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

6.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

6.1.3 Surrogates

All surrogate spike %R were within control limits or were not applicable due to sample matrix interference. No qualification of the results was necessary.

6.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

6.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

6.1.6 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP.

6.1.7 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

6.2 TPH-Gasoline and BTEX by NWTPH-Gx and EPA 8021B

6.2.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

6.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

6.2.3 Surrogates

All %R were within control limits or were at levels that had no adverse effects on data quality.

6.2.4 Laboratory Control Samples (LCS)

LCS %R and RPD were within the project control limits.

- 6.2.5 *Matrix Spike/Matrix Spike Duplicates (MS/MSD)* MS and MSD %R and RPD were within the project control limits.
- **6.2.6** *Reported Results and Reporting Limits (RL)* All reporting limits were met as outlined in the QAPP.

6.2.7 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD RPD values. The data are of known quality and are acceptable for use as qualified.

6.3 Diesel- and Oil-Range TPH by NWTPH-Dx

6.3.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

6.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

6.3.3 Surrogates

All %R were within control limits or were at levels that had no adverse effects on data quality.

6.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

6.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

6.3.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

6.3.7 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

			Analyte					
Sample ID	Sample Date	Sample Matrix	TPH- Dx	TPH- Gx	BTEX	Low Level PAHs		
NRS-MW101-051314	5/13/2014	GrWtr	х	х	х	x		
NRS-MW102-051314	5/13/2014	GrWtr	х	х	х	х		

7.1 PAHs by SW8270-SIM

7.1.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

7.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

7.1.3 Surrogates

All surrogate spike %R were within control limits or were not applicable due to sample matrix interference. No qualification of the results was necessary.

7.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

7.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

7.1.6 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP.

7.1.7 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

7.2 TPH-Gasoline and BTEX by NWTPH-Gx and EPA 8021B

7.2.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

7.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

7.2.3 Surrogates

All percent recoveries were within control limits or were at levels that had no adverse effects on data quality.

- **7.2.4** Laboratory Control Samples (LCS) LCS %R and RPD were within the project control limits.
- **7.2.5** *Matrix Spike/Matrix Spike Duplicates (MS/MSD)* MS and MSD %R and RPD were within the project control limits.
- **7.2.6** *Reported Results and Reporting Limits (RL)* All reporting limits were met as outlined in the QAPP.

7.2.7 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD RPD values. The data are of known quality and are acceptable for use as qualified.

7.3 Diesel- and Oil-Range TPH by NWTPH-Dx

7.3.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

7.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

7.3.3 Surrogates

All %R were within control limits.

7.3.4 Laboratory Control Samples (LCS)

LCS and LCSD %R and RPD were within the project control limits.

7.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

7.3.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

7.3.7 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

8 Data Validation Findings for SDG K1404940 (Metals Analysis)

In accordance with the QAPP, the groundwater samples were submitted to ALS in Kelso, Washington, for metals analyses, as they have particular expertise performing trace metals analyses in saline water matrices. Friedman and Bruya combined groundwater samples from multiple SDGs into a single batch for transfer to ALS. The specific metals analytes for each sample in this ALS SDG are tabulated in the preceding sections. The sections below describe the results of the data quality review, separated into mercury and the other metals.

8.1 Mercury by EPA 1631E

8.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 28 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

8.1.2 Method Blanks

Target analytes were either not detected at or above the reporting levels in the method blanks, except for one method blank associated with sample BBH-MW103-051314. The result was greater than 10 times the blank concentration so no qualification was required.

8.1.3 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

8.1.4 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

8.1.5 Field Duplicates

One set of blind field duplicates was submitted, BCT-MW101-051314 and BCT-MW500-051314. All RPD were within the control limits specified above.

8.1.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

8.1.7 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries and precision was acceptable based on the LCS/LCSD, MS/MSD, and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

8.2 Total Metals by EPA 200.8 and 6010C

Depending on the well, groundwater samples were analyzed for arsenic, copper, lead, nickel, and/or zinc.

8.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 180 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable, with the following exceptions. Six of the coolers were received at a temperature below 2 degrees C, but no action was taken as this did not affect the data quality. Sample bottles from BCT-MW102-051514 (1 of 2 totals) and UST71-MW103-051314 (2 of 2 totals) were received at pH >2, but had sufficient nitric acid added by the lab to achieve the pH requirements within 2 weeks of collection as outlined in the method (USEPA, 1994). Therefore, no data qualifiers are assigned.

To reduce the analytical interferences due to high concentrations of dissolved solids, samples identified as having high specific conductance in the field (UST70-MW2-051214 and RCD-MW101-051214) were prepared by the reductive precipitation method (USEPA, 1997).

8.2.2 Method Blanks

Target analytes were either not detected at or above the reporting levels in the method blanks, or sample results were greater than 10 times the detection in the blank.

8.2.3 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

8.2.4 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

8.2.5 Laboratory Duplicates

All RPD were either within the control limits or the control limits were not applicable.

8.2.6 Field Duplicates

Two sets of blind field duplicates were submitted, BCT-MW101-051314 and BCT-MW500-051314; and UST71-MW104-051214 and UST71-MW500-051214. All RPD were within the control limits specified above.

8.2.7 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

8.2.8 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the laboratory and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

9 Data Validation Findings for SDG K1405926 (Metals Analysis)

In accordance with the QAPP, the groundwater samples were submitted to ALS in Kelso, Washington, for metals analyses, as they have particular expertise performing trace metals analyses in saline water matrices. Friedman and Bruya combined groundwater samples from multiple SDGs into a single batch for transfer to ALS. The specific metals analytes for each sample in this ALS SDG are tabulated in the preceding sections. Based on the results of the total metals analysis (reviewed in Section 8), certain samples were analyzed for dissolved metals. The sections below describe the results of the data quality review, separated into dissolved mercury and the other dissolved metals.

9.1 Dissolved Mercury by EPA 1631E

9.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 28 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

9.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

- **9.1.3** *Laboratory Control Samples (LCS/LCSD)* LCS and LCSD %R and RPD were within the project control limits.
- **9.1.4** *Matrix Spike/Matrix Spike Duplicates (MS/MSD)* MS and MSD %R and RPD were within the project control limits.

9.1.5 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

9.1.6 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the LCS/LCSD, MS/MSD, and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

9.2 Dissolved Metals by EPA 200.8 and 6010C

9.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 180 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable. Sample bottles from UST71-MW103-051314 (1 of 2 dissolved) were received at pH >2, but had sufficient nitric acid added by the lab to achieve the pH requirements within 2 weeks of collection as outlined in the method (USEPA, 1994). Therefore, no data qualifiers are assigned.

To reduce the analytical interferences due to high concentrations of dissolved solids, samples identified as having high specific conductance in the field (RCD-MW101-051214) were prepared by the reductive precipitation method (USEPA, 1997).

9.2.2 Method Blanks

Target analytes were either not detected at or above the reporting levels in the method blanks, or sample results were greater than 10 times the detection in the blank.

9.2.3 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

9.2.4 *Matrix Spike/Matrix Spike Duplicates (MS/MSD)* MS and MSD %R and RPD were within the project control limits.

9.2.5 Laboratory Duplicates

All RPD were either within the control limits or the control limits were not applicable.

9.2.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

9.2.7 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the LCS/LCSD, MS/MSD, and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

10 Data Validation Findings for SDG K1409540 (Metals Analysis)

In accordance with the QAPP, the groundwater samples were submitted to ALS in Kelso, Washington, for metals analyses, as they have particular expertise performing trace metals analyses in saline water matrices. Friedman and Bruya combined groundwater samples from multiple SDGs into a single batch for transfer to ALS. The specific metals analytes for each sample in this ALS SDG are tabulated in the preceding sections. Based on the results of the total metals analysis (reviewed in Section 8), certain samples were later analyzed for dissolved metals. The section below describes the results of the data quality review for supplemental dissolved metals analyses.

10.1 Dissolved Metals by EPA 200.8 and 6010C

10.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 180 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable. Dissolved metals analyses were not completed for samples UST71-MW101-051214 and UST71-MW102-051214 because field filtered sample bottles were not submitted.

10.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

10.1.3 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

10.1.4 *Matrix Spike/Matrix Spike Duplicates (MS/MSD)* MS and MSD %R and RPD were within the project control limits.

10.1.5 Laboratory Duplicates

All RPD were either within the control limits or the control limits were not applicable.

10.1.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

10.1.7 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the LCS/LCSD and laboratory duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

11 Qualified Data Summary

Qualified Data Summary Table

Sample ID	Laboratory ID	Analyte	Qualifier	Qualified Reason
		Acenaphthene Fluorene	DNR	Result outside of instrument calibration range. Use diluted result.
UST70-MW102-051214 DAST-MW101-051414	405224-01 405285-11	Naphthalene Acenaphthylene Phenanthrene Anthracene Fluoranthene Pyrene Benz[a]anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	DNR	A more appropriate result is reported. Use undiluted result.
		Naphthalene Acenaphthene Fluorene	DNR	Result outside of instrument calibration range. Use diluted result.
UST71-MW103-051314 BCT-MW108-051514	405255-05 405290-02	Acenaphthylene Phenanthrene Anthracene Fluoranthene Pyrene Benz[a]anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	DNR	A more appropriate result is reported. Use undiluted result.
		Acenaphthene	DNR	Result outside of instrument calibration range. Use diluted result.
BA6-MW101-051314 BCT-MW105-051414 BCT-MW103-051514	405255-08 405285-10 405290-04	Naphthalene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz[a]anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	DNR	A more appropriate result is reported. Use undiluted result.

Sample ID	Laboratory ID	Analyte	Qualifier	Qualified Reason
	Naphthalene Acenaphthene	DNR	Result outside of instrument calibration range. Use diluted result.	
		Acenaphthylene		
		Phenanthrene Fluorene		
		Anthracene		
	405290-01	Fluoranthene		
BCT-MW107-051514		Pyrene		A more appropriate result is reported. Use
		Benz[a]anthracene	DNR	undiluted result.
		Chrysene		
		Benzo(a)pyrene		
		Benzo(b)fluoranthene		
		Benzo(k)fluoranthene		
		Indeno(1,2,3-cd)pyrene		
		Dibenzo(a,h)anthracene		

Data Qualifier Definitions

Data Qualifier	Definition
DNR	Do not report; the result should be reported from an alternative analysis.
J	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.
UJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.
х	The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

12 References

- U.S. Environmental Protection Agency (USEPA), 1994, Method 200.8 Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma – Mass Spectrometry, Revision 5.4, Environmental Monitoring Systems Laboratory Office of Research and Development.
- U.S. Environmental Protection Agency (USEPA), 1997, Method 1640 Determination of Trace Elements in Waters by Preconcentration and Inductively Coupled Plasma – Mass Spectrometry, Office of Water & Office of Science and Technology Engineering and Analysis Division (4303), April.
- U.S. Environmental Protection Agency (USEPA), 1999, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, Office of Emergency and Remedial Response, USEPA Publication No. 540/R-99/008, October.
- U.S. Environmental Protection Agency (USEPA), 2004, Contract Laboratory Program National Functional Guidelines for Organic Methods Data Review, Office of Superfund Remediation and Technology Innovation (OSRTI), USEPA Publication No. 540-R-04-004, October.
- Aspect, 2013, Work Plan for Remedial Investigation/Feasibility Study, Kimberly-Clark Worldwide Site Upland Area, Everett, Washington, November 22, 2013.

DATA VALIDATION REPORT

Kimberly Clark Worldwide Site Upland Area Interim Action Confirmational Groundwater Monitoring August 2014 SDGs 408183, 408213, 408237, 408211, 408212, K1408718

> Prepared by: Aspect Consulting, LLC 401 Second Ave South, Suite 201 Seattle, WA 98104

Project No. 110207 • October 7, 2014

S:\Kimberly Clark\Everett Mill 110207\Data\Lab Data\Interim Action\Confirmational GW Monitoring\Data Validation\KC IA August 2014 Data Validation.docx

1 Introduction

This report summarizes the findings of the United States Environmental Protection Agency (USEPA) Stage 2A data validation performed on analytical data for groundwater samples collected during August 11 through 14, 2014 for Kimberly Clark Worldwide Upland Site Interim Action Confirmational Groundwater Monitoring. This data quality review is divided into sections by sample delivery group (SDG). A complete list of samples and analyses for each SDG is provided in the Sample Index at the beginning of each section. The metals data were sent to a separate lab for analysis, and are presented in Sections 7 at the end of the report.

Samples were analyzed for non-metals analytes by Friedman & Bruya, Inc in Seattle, Washington, and for metals analytes by ALS Environmental in Kelso, Washington. The analytical methods are summarized below:

Analysis	Method	Laboratory
Polycyclic Aromatic Hydrocarbons (PAHs)	SW8270D-SIM	Friedman & Bruya, Inc
	NWTPH-	
TPH - Gasoline Range and BTEX ¹	Gx/EPA 8021B	Friedman & Bruya, Inc
TPH - Diesel and Motor Oil Ranges	NWTPH-Dx	Friedman & Bruya, Inc
Total and Dissolved Metals	EPA 200.8	ALS
Total and Dissolved Mercury	EPA 1631E	ALS

The validation followed the procedures documented in the analytical methods, the Quality Assurance Project Plan (QAPP; in Appendix A to Aspect, 2013), *National Functional Guidelines for Organic Data Review* (USEPA, 1999), and *National Functional Guidelines for Inorganic Data Review* (USEPA, 2004).

Data assigned a J qualifier (estimated) may be used for site evaluation purposes but the reasons for qualification should be taken into account when interpreting sample concentrations. Data marked as do-not-report (DNR) should not be used under any circumstances. Values without qualification meet all data measurement quality objectives and are suitable for use.

Data qualifier definitions and a summary table of the qualified data are included in the Qualified Data Summary at the end of this report. A qualified laboratory electronic data deliverable (EDD) is also submitted with this report.

¹ BTEX = benzene, toluene, ethylbenzene, and xylenes

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

				Analyte								
Sample ID	Sample Date	Sample Matrix	TPH- Dx	TPH- Gx	BTEX	Low Level PAHs	Diss Arsenic	Diss Copper	Diss Nickel	Diss Mercury	Diss Zinc	
UST71-MW102-081114	8/11/2014	GrWtr	х			х		х			х	
UST70-MW101-081114	8/11/2014	GrWtr	х			х	х	х	х		х	
UST70-MW102-081114	8/11/2014	GrWtr	х			х	х	х	х		х	
BA6-MW101-081114	8/11/2014	GrWtr	х			х						
UST70-MW2-081114	8/11/2014	GrWtr	х			х	х	х	х		х	
RCD-MW101-081114	8/11/2014	GrWtr	х			х	х	х	х	х		
SHB-MW101-081114	8/11/2014	GrWtr	х	х	х	х		х		х		
SHB-MW102-081114	8/11/2014	GrWtr	х	х	х	х		х		х		
UST71-MW104-081114	8/11/2014	GrWtr	х			х		х			х	
UST71-MW500-081114	8/11/2014	GrWtr	х			х		х			х	

2.1 PAHs by SW8270-SIM

2.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be extracted within 7 days of collection and soil within 14 days of collection. Extracted samples should be analyzed within 40 days of extraction.

Sample receipt, preservation (2-6 degrees Celsius [C]), and holding times were acceptable. Sample UST71-MW500-081114 was incorrectly labeled as UST70-MW500-081114 in the lab report, but is correctly named in the EDD.

2.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

2.1.3 Surrogates

All surrogate spike recoveries were within control limits or were not applicable due to sample matrix interference or sample dilution below quantitation limits because of high petroleum hydrocarbon concentrations. No data qualification was necessary.

2.1.4 Laboratory Control Samples (LCS/LCSD)

Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) percent recovery (%R) and relative percent difference (RPD) were within the project control limits.

2.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

Matrix spike (MS) and matrix spike duplicate (MSD) %R and RPD were within the project control limits, except for benzo(a)pyrene in sample UST71-MW104-081114. This sample had MS and MSD %R values of 58% and 59%, which was below the acceptance criteria of 60-86%. This result was flagged as UJ.

2.1.6 Field Duplicates

Field duplicates are an indication of both field and laboratory precision. According to the EPA National Functional Guidelines, there are no set criteria for field duplicate evaluation, but the following advisory criteria were used. For results greater than or equal to the analytical reporting limit (RL), the advisory RPD is 35%. For results <5 times the RL, the difference between the sample and the duplicate should be <RL.

One set of blind field duplicates was submitted for this analysis, UST71-MW104-081114 and UST71-MW500-081114. The RPD for the field duplicate pair was within the control limits specified above.

2.1.7 Reported Results and Reporting Limits (RL)

The results for acenaphthene and fluorene in sample BA6-MW101-081114 exceeded the instrument calibration range, requiring the sample to be diluted and re-analyzed. These analytes were reported from the dilution and qualified as do-not-report (DNR) in the undiluted sample. The remaining analytes were reported from the undiluted sample.

The results for naphthalene, acenaphthene and fluorene in sample SHB-MW101-081114 also exceeded the linear range and were qualified in the same manner.

The reporting limits outlined in the Quality Assurance Project Plan (QAPP; in Appendix A to Aspect, 2013) were met or were elevated accordingly due to high concentrations of target analytes.

2.1.8 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries and precision was acceptable based on the MS/MSD, LCS/LCSD and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

2.2 TPH-Gasoline and BTEX by NWTPH-Gx and EPA 8021B

2.2.1 Sample Receipt, Preservation, and Holding Times

Soil and water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable. Sample UST71-MW500-081114 was incorrectly labeled as UST70-MW500-081114 in the lab report, but is correctly named in the EDD.

2.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

2.2.3 Surrogates

All %R were within control limits.

2.2.4 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

2.2.5 Laboratory Duplicates

For laboratory duplicate results that are greater than the RL, the RPD control limit is 20%. For laboratory duplicate results less than 5 times the RL, the difference between the sample and duplicate must be less than the reporting limit.

RPD values met the control criteria for laboratory duplicates.

2.2.6 Field Duplicates

One set of blind field duplicates was submitted, UST71-MW104-081114 and UST71-MW500-081114. All RPD were within the control limits specified above.

2.2.7 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP (Quality Assurance Project Plan).

2.2.8 Overall Assessment

Accuracy was acceptable based on the surrogate spike and LCS recoveries, and precision was acceptable based on the lab and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

2.3 Diesel- and Oil-Range TPH by NWTPH-Dx

2.3.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable (see Section 2.1.1). Sample UST71-MW500-081114 was incorrectly labeled as UST70-MW500-081114 in the lab report, but is correctly named in the EDD.

2.3.2 Method Blanks

Target analytes were not detected at or above RLs in the method blanks.

2.3.3 Surrogates

All percent recoveries were within control limits or were at levels that had no adverse effects on data quality.

2.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

2.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

2.3.6 Field Duplicates

One set of blind field duplicates was submitted, UST71-MW104-081114 and UST71-MW500-081114. All RPD were within the control limits specified above.

2.3.7 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

2.3.8 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD, LCS/LCSD and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

			Analyte								
Sample ID	Sample Date	Sample Matrix	TPH- Dx	TPH- Gx	BTEX	Low Level PAHs	Diss Arsenic	Diss Copper	Diss Lead	Diss Mercury	Diss Zinc
BBH-MW102-081214	8/12/2014	GrWtr					х	х	х	х	х
BBH-MW101-081214	8/12/2014	GrWtr					х	х	х	х	х
UST71-MW-103-081214	8/12/2014	GrWtr	х			х		х			х
UST71-MW-101-081214	8/12/2014	GrWtr	х			х		х			х
BCT-MW-104-081214	8/12/2014	GrWtr	х	х	х	х		х	х	х	
CN-MW-101-081214	8/12/2014	GrWtr	х			х	х	х	х		
CN-MW-102-081214	8/12/2014	GrWtr	х			х	х	х	х		
CN-MW-103-081214	8/12/2014	GrWtr	х			х	х	х	х		
BCT-MW-103-081214	8/12/2014	GrWtr	х		х	х		х	х	х	
CN-MW-104-081214	8/12/2014	GrWtr	х			х	х	х	х		
UST29-MW-101-081314	8/13/2014	GrWtr	х	х	х	х					
UST29-MW-102-081314	8/13/2014	GrWtr	х	х	х	х					
UST29-MW-103-081314	8/13/2014	GrWtr	х	х	х	х					
BBH-MW103-081314	8/13/2014	GrWtr					х	х	х	х	х
BBH-MW104-081314	8/13/2014	GrWtr					х	х	х	х	х
GF11-MW101-081314	8/13/2014	GrWtr						х	х	х	
HBV-MW-101-081314	8/13/2014	GrWtr	х			х					
DAST-MW-101-081314	8/13/2014	GrWtr	х			х		х		х	
BCT-MW-106-081314	8/13/2014	GrWtr	х	х	х	х		х	х	х	
BCT-MW-105-081314	8/13/2014	GrWtr	х	х	х	х		х	х	х	

3.1 PAHs by SW8270-SIM

3.1.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

3.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

3.1.3 Surrogates

All surrogate spike %R were within control limits or were not applicable due to sample matrix interference or sample dilution below quantitation limits because of high petroleum hydrocarbon concentrations. No qualification of the results was necessary.

3.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

3.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

There were no MS/MSD associated with this SDG.

3.1.6 Reported Results and Reporting Limits (RL)

The results for naphthalene and phenanthrene in sample UST71-MW-103-081214 exceeded the instrument calibration range, requiring the sample to be diluted and reanalyzed. These analytes were reported from the dilution and qualified as do-not-report (DNR) in the undiluted sample. The remaining analytes were reported from the undiluted sample.

The result for acenaphthene in sample BCT-MW-103-081214 also exceeded the linear range and was qualified in the same manner.

The results for acenaphthene and fluorene in sample DAST-MW-101-081314 also exceeded the linear range and were qualified in the same manner.

The reporting limits outlined in the QAPP were met or were elevated accordingly due to high concentrations of target analytes.

3.1.7 Overall Assessment

Accuracy was acceptable based on the surrogate spike and LCS recoveries, and precision was acceptable based on the LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

3.2 TPH-Gasoline and BTEX by NWTPH-Gx and EPA 8021B

3.2.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

3.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

3.2.3 Surrogates

All %R were within control limits.

3.2.4 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

3.2.5 Laboratory Duplicates

RPD values met the control criteria for laboratory duplicates.

3.2.6 Matrix Spike/Matrix Spike Duplicates (MS/MSD) There were no MS/MSD associated with this SDG

3.2.7 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP.

3.2.8 Overall Assessment

Accuracy was acceptable based on the surrogate spike and LCS recoveries, and precision was acceptable based on the laboratory duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

3.3 Diesel- and Oil-Range TPH by NWTPH-Dx

3.3.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

3.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

3.3.3 Surrogates

All %R were within control limits.

3.3.4 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

There were no MS/MSD associated with this SDG.

3.3.5 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

3.3.6 Overall Assessment

Accuracy was acceptable based on the surrogate spike and LCS recoveries, and precision was acceptable based on the LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

			Analyte						
Sample ID	Sample Date	Sample Matrix	TPH- Dx	TPH- Gx	BTEX	Low Level PAHs	Diss Copper	Diss Lead	Diss Mercury
BCT-MW108-081414	8/14/2014	GrWtr	х	х	х	х	х	х	х
BCT-MW107-081414	8/14/2014	GrWtr	х	х	х	х	х	х	х
BCT-MW102-081414	8/14/2014	GrWtr	х	х	х	х	х	х	х
BCT-MW101-081414	8/14/2014	GrWtr	х	х	х	х	х	х	х
BCT-MW500-081414	8/14/2014	GrWtr	х	х	х	х	х	х	х

4.1 PAHs by SW8270-SIM

4.1.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

4.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

4.1.3 Surrogates

All surrogate spike %R were within control limits or were not applicable due to sample matrix interference or sample dilution below quantitation limits because of high petroleum hydrocarbon concentrations. No qualification of the results was necessary.

4.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

4.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits, except for benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, dibenzo(a,h)anthracene, and benzo(g,h,i)perylene in sample BCT-MW101-081414, which exceeded the RPD control limit of 20% and had %R below the lower control limit for the MS. These results were flagged as UJ. The MS %R for phenanthrene in this sample fell below the control limit, but because the MSD %R was acceptable and the RPD, no action was taken.

4.1.6 Field Duplicates

One set of blind field duplicates was submitted, BCT-MW101-081414 and BCT-MW500-081414. All RPD were within the control limits specified above.

4.1.7 Reported Results and Reporting Limits (RL)

The results for naphthalene, acenaphthene, and phenanthrene in sample BCT-MW108-081414 exceeded the instrument calibration range, requiring the sample to be diluted and

re-analyzed. These analytes were reported from the dilution and qualified as DNR in the undiluted sample. The remaining analytes were reported from the undiluted sample.

The results for naphthalene and acenaphthene in sample BCT-MW107-081414 also exceeded the linear range and was qualified in the same manner.

The reporting limits outlined in the QAPP were met or were elevated accordingly due to high concentrations of target analytes.

4.1.8 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD, LCS/LCSD and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

4.2 TPH-Gasoline and BTEX by NWTPH-Gx and EPA 8021B

4.2.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

4.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

4.2.3 Surrogates

All %R were within control limits.

4.2.4 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

4.2.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

4.2.6 Field Duplicates

One set of blind field duplicates was submitted, BCT-MW101-081414 and BCT-MW500-081414. All RPD were within the control limits specified above.

4.2.7 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP.

4.2.8 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

4.3 Diesel- and Oil-Range TPH by NWTPH-Dx

4.3.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

4.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

4.3.3 Surrogates

All %R were within control limits.

4.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

4.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits, except for the diesel range hydrocarbon results in sample BCT-MW101-081414, which exceeded the RPD control limit of 20% with a value of 22%. This result was flagged as UJ.

4.3.6 Field Duplicates

One set of blind field duplicates was submitted, BCT-MW101-081414 and BCT-MW500-081414. All RPD were within the control limits specified above.

4.3.7 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

4.3.8 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD, LCS/LCSD and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

			Analyte				
Sample ID	Sample Date	Sample Matrix	TPH- Dx	TPH- Gx	BTEX	Low Level PAHs	
NRS-MW-102-081214	8/12/2014	GrWtr	х	х	х	x	
NRS-MW-101-081214	8/12/2014	GrWtr	х	х	х	х	

5.1 PAHs by SW8270-SIM

5.1.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

5.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

5.1.3 Surrogates

All surrogate spike %R were within control limits or were not applicable due to sample matrix interference. No qualification of the results was necessary.

5.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

5.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

There were no MS/MSD associated with this SDG.

5.1.6 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP.

5.1.7 Overall Assessment

Accuracy was acceptable based on the surrogate spikes and LCS recoveries, and precision was acceptable based on the MS/MSD and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

5.2 TPH-Gasoline and BTEX by NWTPH-Gx and EPA 8021B

5.2.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

5.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

5.2.3 Surrogates

All %R were within control limits.

5.2.4 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

5.2.5 Laboratory Duplicates

RPD values met the control criteria for laboratory duplicates.

5.2.6 Matrix Spike/Matrix Spike Duplicates (MS/MSD) There were no MS/MSD associated with this SDG.

5.2.7 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP (Quality Assurance Project Plan).

5.2.8 Overall Assessment

Accuracy was acceptable based on the surrogate spikes and LCS recoveries, and precision was acceptable based on the MS/MSD and laboratory duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

5.3 Diesel- and Oil-Range TPH by NWTPH-Dx

5.3.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

5.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

5.3.3 Surrogates

All %R were within control limits.

5.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

5.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD) There were no MS/MSD submitted with this SDG.

5.3.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

5.3.7 Overall Assessment

Accuracy was acceptable based on the surrogate spikes and LCS recoveries, and precision was acceptable based on the MS/MSD and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

				A	Analyte	
Sample ID	Sample Date	Sample Matrix	TPH- Dx	TPH- Gx	BTEX	Low Level PAHs
NRU-MW-102-081214	8/12/2014	GrWtr	х	х	х	х
NRP-MW-2-081214	8/12/2014	GrWtr	х	х	х	х
NRU-MW-101-081214	8/12/2014	GrWtr	х	х	х	х

6.1 PAHs by SW8270-SIM

6.1.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

6.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

6.1.3 Surrogates

All surrogate spike recoveries were within control limits or were not applicable due to sample matrix interference. No qualification of the results was necessary.

6.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

6.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

There were no MS/MSD associated with this SDG.

6.1.6 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP (Quality Assurance Project Plan).

6.1.7 Overall Assessment

Accuracy was acceptable based on the surrogate spikes and LCS recoveries, and precision was acceptable based on the MS/MSD and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

6.2 TPH-Gasoline and BTEX by NWTPH-Gx and EPA 8021B

6.2.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

6.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

6.2.3 Surrogates

All %R were within control limits.

6.2.4 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

6.2.5 Laboratory Duplicates

RPD values met the control criteria for laboratory duplicates.

6.2.6 Matrix Spike/Matrix Spike Duplicates (MS/MSD) There were no MS/MSD associated with this SDG.

There were no MS/MSD associated with this SDG.

6.2.7 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP.

6.2.8 Overall Assessment

Accuracy was acceptable based on the surrogate spikes and LCS recoveries, and precision was acceptable based on the MS/MSD and laboratory duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

6.3 Diesel- and Oil-Range TPH by NWTPH-Dx

6.3.1 Sample Receipt, Preservation, and Holding Times

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

6.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

6.3.3 Surrogates

All %R were within control limits.

6.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

6.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

There were no MS/MSD associated with this SDG.

6.3.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

6.3.7 Overall Assessment

Accuracy was acceptable based on the surrogate spikes and LCS recoveries, and precision was acceptable based on the MS/MSD and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

7 Data Validation Findings for SDG K1408718 (Metals Analysis)

In accordance with the QAPP, the groundwater samples were submitted to ALS in Kelso, Washington, for metals analyses, as they have particular expertise performing trace metals analyses in saline water matrices. Friedman and Bruya combined groundwater samples from multiple SDGs into a single batch for transfer to ALS. The specific metals analytes for each sample in this ALS SDG are tabulated in the preceding sections. The sections below describe the results of the data quality review, separated into mercury and the other metals. The groundwater samples for metals analysis were field-filtered, therefore the results are reported as dissolved metals.

7.1 Dissolved Mercury by EPA 1631E

7.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 28 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

7.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

7.1.3 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

7.1.4 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

7.1.5 Field Duplicates

One set of blind field duplicates was submitted, BCT-MW101-081414 and BCT-MW500-081414. All RPD were within the control limits specified above.

7.1.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP (Quality Assurance Project Plan).

7.1.7 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD and field duplicates relative percent difference values. The data are of known quality and are acceptable for use as qualified.

7.2 Dissolved Metals by EPA 200.8 and 6010C

7.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 180 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable. Samples UST71-MW-102-081114 and UST71-MW-103-081214 were received at pH>2, but had sufficient nitric acid added by the lab to achieve the pH requirements within 2 weeks of collection as outlined in the method (USEPA, 1994). Therefore, no data qualifiers are assigned.

To reduce the analytical interferences due to high concentrations of dissolved solids, samples identified as having high specific conductance in the field (UST70-MW2-081114, RCD-MW101-081114, UST71-MW101-081214) were prepared by the reductive precipitation method (USEPA, 1997).

7.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

7.2.3 Laboratory Control Samples (LCS)

LCS and LCSD %R and RPD were within the project control limits.

7.2.4 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

7.2.5 Laboratory Duplicates

For laboratory duplicate results that are greater than the reporting limit, the RPD control limit is 20%. For laboratory duplicate results less than five times the reporting limit, the difference between the sample and duplicate must be less than the reporting limit.

All RPD were within the control limits specified above.

7.2.6 Field Duplicates

Two sets of blind field duplicates was submitted, BCT-MW101-081414 and BCT-MW500-081414; and UST71-MW104-081114 and UST71-MW500-081114. All RPD were within the control limits specified above.

7.2.7 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP (Quality Assurance Project Plan).

7.2.8 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the laboratory duplicates relative percent difference values. The data are of known quality and are acceptable for use as qualified.

8 Qualified Data Summary

Qualified Data Summary Table

Sample ID	Laboratory ID	Analyte	Qualifier	Qualified Reason	
UST71-MW104-081114	408183-09	Benzo(a)pyrene	UJ	MS/MSD %R below control limits.	
		Acenaphthene	DNR	Result outside of instrument calibration	
		Fluorene	DINK	range. Use diluted result.	
		Naphthalene			
		Acenaphthylene			
		Phenanthrene			
		Anthracene			
		Fluoranthene			
BA6-MW101-081114 DAST-MW-101-081314	408183-04 408213-18	Pyrene			
DA31-WW-101-001314	400213-10	Benz[a]anthracene	DNR	A more appropriate result is reported. Use undiluted result.	
		Chrysene		unuluted result.	
		Benzo(a)pyrene			
		Benzo(b)fluoranthene			
		Benzo(k)fluoranthene			
		Indeno(1,2,3-cd)pyrene			
		Dibenzo(a,h)anthracene Benzo(ghi)perylene			
		Naphthalene			
		Acenaphthene	DNR	Result outside of instrument calibration	
		Fluorene	2	range. Use diluted result.	
	408183-07 408237-01	Acenaphthylene			
		Phenanthrene			
		Anthracene	DNR		
		Fluoranthene			
SHB-MW101-081114		Pyrene			
BCT-MW108-081414		Benz[a]anthracene			
		Chrysene		A more appropriate result is reported. Use undiluted result.	
		Benzo(a)pyrene			
		Benzo(b)fluoranthene			
		Benzo(k)fluoranthene			
		Indeno(1,2,3-cd)pyrene			
		Dibenzo(a,h)anthracene			
		Benzo(ghi)perylene			
		Naphthalene	DNR	Result outside of instrument calibration	
		Phenanthrene		range. Use diluted result.	
		Acenaphthylene			
		Acenaphthene			
		Fluorene			
		Anthracene			
		Fluoranthene			
UST71-MW-103- 081214	408213-03	Pyrene Benz[a]anthracene		A more appropriate result is reported. Use	
		Chrysene	DNR	undiluted result.	
		Benzo(a)pyrene			
		Benzo(b)fluoranthene			
		Benzo(k)fluoranthene			
		Indeno(1,2,3-cd)pyrene			
		Dibenzo(a,h)anthracene			
		Benzo(ghi)perylene			

Sample ID	Laboratory ID	Analyte	Qualifier	Qualified Reason
		Acenaphthene	DNR	Result outside of instrument calibration range. Use diluted result.
BCT-MW-103-081214	408237-09	Naphthalene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz[a]anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene	DNR	A more appropriate result is reported. Use undiluted result.
		Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene Naphthalene	DNR	Result outside of instrument calibration
		Acenaphthene	DINK	range. Use diluted result.
BCT-MW107-081414	408213-09	Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz[a]anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(gi)perylene	DNR	A more appropriate result is reported. Use undiluted result.
		Diesel Range Hydrocarbons	UJ	MS/MSD %R below control limits.
BCT-MW101-081114	408237-04	Benz[a]anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	IJ	MS/MSD %RPD above control limits, MS/MSD %R below control limits.

Data Qualifier Definitions

Data Qualifier	Definition
DNR	Do not report; the result should be reported from an alternative analysis.
J	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.
UJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.
x	The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

9 References

- U.S. Environmental Protection Agency (USEPA), 1994, Method 200.8 Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma – Mass Spectrometry, Revision 5.4, Environmental Monitoring Systems Laboratory Office of Research and Development.
- U.S. Environmental Protection Agency (USEPA), 1997, Method 1640 Determination of Trace Elements in Waters by Preconcentration and Inductively Coupled Plasma – Mass Spectrometry, Office of Water & Office of Science and Technology Engineering and Analysis Division (4303), April.
- U.S. Environmental Protection Agency (USEPA), 1999, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, Office of Emergency and Remedial Response, USEPA Publication No. 540/R-99/008, October.
- U.S. Environmental Protection Agency (USEPA), 2004, Contract Laboratory Program National Functional Guidelines for Organic Methods Data Review, Office of Superfund Remediation and Technology Innovation (OSRTI), USEPA Publication No. 540-R-04-004, October.
- Aspect, 2013, Work Plan for Remedial Investigation/Feasibility Study, Kimberly-Clark Worldwide Site Upland Area, Everett, Washington, November 22, 2013.

DATA VALIDATION REPORT

Kimberly Clark Worldwide Site Upland Area Interim Action Confirmational Groundwater Monitoring November 2014 SDGs 411039, 411066, 411067, 411116, 411119, K1412631

> Prepared by: Aspect Consulting, LLC 401 Second Ave South, Suite 201 Seattle, WA 98104

Project No. 110207 • December 8, 2014

S:\Kimberly Clark\Everett Mill 110207\Data\Validation\Data Validation - Delia\KC IA Nov 2014 Data Validation.docx

1 Introduction

This report summarizes the findings of the United States Environmental Protection Agency (USEPA) Stage 2A data validation performed on analytical data for groundwater samples collected during November 3 through 6, 2014 for Kimberly Clark Worldwide Upland Site Interim Action Confirmational Groundwater Monitoring. This data quality review is divided into sections by sample delivery group (SDG). A complete list of samples and analyses for each SDG is provided in the Sample Index at the beginning of each section. The metals data were sent to a separate lab for analysis, and are presented in Section 7 at the end of the report.

Samples were analyzed for non-metal analytes by Friedman & Bruya, Inc in Seattle, Washington, and for metal analytes by ALS Environmental in Kelso, Washington. The analytical methods are summarized below:

Analysis	Method	Laboratory
Polycyclic Aromatic Hydrocarbons (PAHs)	SW8270D-SIM	Friedman & Bruya, Inc
	NWTPH-	
TPH - Gasoline Range and BTEX ¹	Gx/EPA 8021B	Friedman & Bruya, Inc
TPH - Diesel and Motor Oil Ranges	NWTPH-Dx	Friedman & Bruya, Inc
Total and Dissolved Metals	EPA 200.8	ALS
Total and Dissolved Mercury	EPA 1631E	ALS

The validation followed the procedures documented in the analytical methods, the Quality Assurance Project Plan (QAPP; in Appendix A to Aspect, 2013), *National Functional Guidelines for Organic Data Review* (USEPA, 1999), and *National Functional Guidelines for Inorganic Data Review* (USEPA, 2004).

Data assigned a J qualifier (estimated) may be used for site evaluation purposes but the reasons for qualification should be taken into account when interpreting sample concentrations. Data marked as do-not-report (DNR) should not be used under any circumstances. Values without qualification meet all data measurement quality objectives and are suitable for use.

Data qualifier definitions and a summary table of the qualified data are included in the Qualified Data Summary at the end of this report. Data qualifiers have been incorporated into the project chemistry database to reflect the validation in this report.

¹ BTEX = benzene, toluene, ethylbenzene, and xylenes

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

			Analyte							
Sample ID	Sample Date	Sample Matrix	TPH- Dx/Oil	TPH- Gx/BTEX	Low Level PAHs	Mercury	Arsenic	Copper	Lead	Zinc
BCT-MW101-110314	11/3/2014	GrWtr	х	х	х	х		х	х	x
BCT-MW500-110314	11/3/2014	GrWtr	х	х	х	х		х	х	х
BCT-MW102-110314	11/3/2014	GrWtr	х	х	х	х		х	х	х
BCT-MW103-110314	11/3/2014	GrWtr	х	х	х	х		х	х	x
BCT-MW104-110314	11/3/2014	GrWtr	х	х	х	х		х	х	х
BBH-MW104-110314	11/3/2014	GrWtr				х	х	х	х	х
BBH-MW103-110314	11/3/2014	GrWtr				х	х	х	х	x
BBH-MW102-11314	11/3/2014	GrWtr				х	х	х	х	х
BBH-MW101-110314	11/3/2014	GrWtr				х	х	х	х	х
GF11-MW101-110314	11/3/2014	GrWtr				х		х	х	

2.1 PAHs (SW8270-SIM)

2.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be extracted within 7 days of collection. Extracted samples should be analyzed within 40 days of extraction.

Sample receipt, preservation (2-6 degrees Celsius [C]), and holding times were acceptable.

2.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

2.1.3 Surrogates

All surrogate spike recoveries were within control limits or were not applicable due to sample matrix interference or sample dilution below quantitation limits because of high petroleum hydrocarbon concentrations. No data qualification was necessary.

2.1.4 Laboratory Control Samples (LCS/LCSD)

Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) percent recovery (%R) and relative percent difference (RPD) were within the project control limits.

2.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

Matrix spike (MS) and matrix spike duplicate (MSD) %R and RPD were within the project control limits, except for the sixteen semivolatile target compounds in sample BCT-MW101-110314. Each analyte had an RPD above the control limit of 20% and were flagged as estimated (UJ).

2.1.6 Field Duplicates

Field duplicates are an indication of both field and laboratory precision. According to the EPA National Functional Guidelines, there are no set criteria for field duplicate evaluation, but the following advisory criteria were used. For results greater than or equal to the analytical reporting limit (RL), the advisory RPD is 35%. For results <5 times the RL, the difference between the sample and the duplicate should be <RL.

One set of blind field duplicates was submitted for this analysis, BCT-MW101-110314 and BCT-MW500-110314. The RPD for the field duplicate pair was within the control limits specified above.

2.1.7 Reported Results and Reporting Limits (RL)

The reporting limits outlined in the Quality Assurance Project Plan (QAPP; in Appendix A to Aspect, 2013) were met.

2.1.8 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries and precision was acceptable based on the MS/MSD, LCS/LCSD and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

2.2 TPH-Gasoline and BTEX (NWTPH-Gx and EPA 8021B)

2.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

2.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

2.2.3 Surrogates

All %R were within control limits.

2.2.4 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

2.2.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

2.2.6 Field Duplicates

One set of blind field duplicates was submitted, BCT-MW101-110314 and BCT-MW500-110314. All RPD were within the control limits specified above.

2.2.7 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP (Quality Assurance Project Plan).

2.2.8 Overall Assessment

Accuracy was acceptable based on the surrogate spike, MS, and LCS recoveries, and precision was acceptable based on the MS/MSD and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

2.3 Diesel- and Oil-Range TPH (NWTPH-Dx)

2.3.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

2.3.2 Method Blanks

Target analytes were not detected at or above RLs in the method blanks.

2.3.3 Surrogates

All percent recoveries were within control limits or were at levels that had no adverse effects on data quality.

2.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

2.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

2.3.6 Field Duplicates

One set of blind field duplicates was submitted, BCT-MW101-110314 and BCT-MW500-110314. All RPD were within the control limits specified above.

2.3.7 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

2.3.8 Overall Assessment

Accuracy was acceptable based on the surrogate spike, MS, and LCS recoveries, and precision was acceptable based on the MS/MSD, LCS/LCSD, and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

				Analyte	
Sample ID	Sample Date	Sample Matrix	TPH- Dx/Oil	TPH- Gx/BTEX	Low Level PAHs
NRS-MW101-110414	11/4/2014	GrWtr	х	х	x
NRS-MW102-110414	11/4/2014	GrWtr	х	х	х

3.1 PAHs (SW8270-SIM)

3.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be extracted within 7 days of collection. Extracted samples should be analyzed within 40 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

3.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

3.1.3 Surrogates

All %R were within control limits.

3.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

3.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

3.1.6 Reported Results and Reporting Limits (RL)

The reporting limits outlined in the QAPP were met.

3.1.7 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the MS/MSD and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

3.2 TPH-Gasoline and BTEX (NWTPH-Gx and EPA 8021B)

3.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

3.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

3.2.3 Surrogates

All %R were within control limits.

3.2.4 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

- **3.2.5** *Matrix Spike/Matrix Spike Duplicates (MS/MSD)* MS and MSD %R and RPD were within the project control limits.
- **3.2.6 Reported Results and Reporting Limits (RL)** The reporting limits were met as outlined in the QAPP.

The reporting mints were met as outlined m

3.2.7 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the MS/MSD RPD values. The data are of known quality and are acceptable for use as qualified.

3.3 Diesel- and Oil-Range TPH (NWTPH-Dx)

3.3.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

3.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

3.3.3 Surrogates

All %R were within control limits.

3.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

3.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

3.3.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

3.3.7 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the MS/MSD and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

			Analyte								
Sample ID	Sample Date	Sample Matrix	TPH- Dx/Oil	TPH- Gx/BTEX	Low Level PAHs	Mercury	Arsenic	Copper	Lead	Nickel	Zinc
BCT-MW105-110414	11/4/2014	GrWtr	х	х	x	х		х	х		
BCT-MW106-110414	11/4/2014	GrWtr	х	х	х	х		х	х		
BCT-MW107-110414	11/4/2014	GrWtr	х	х	х	х		х	х		
BCT-MW108-110414	11/4/2014	GrWtr	х	х	х	х		х	х		
HBV-MW101-110414	11/4/2014	GrWtr	х		х						
HB-MW1R-110414	11/4/2014	GrWtr				х	х	х	х	х	х
UST71-MW102-110414	11/4/2014	GrWtr	х		х			х			х
UST70-MW102-110414	11/4/2014	GrWtr	х		х		х	х		х	х
UST70-MW2-110414	11/4/2014	GrWtr	х		х		х	х		х	х
UST70-MW101-110414	11/4/2014	GrWtr	х		х		х	х		х	х
RCD-MW101-110414	11/4/2014	GrWtr	х		x	х	х	х		х	

4.1 PAHs (SW8270-SIM)

4.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be extracted within 7 days of collection. Extracted samples should be analyzed within 40 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

4.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

4.1.3 Surrogates

All surrogate spike %R were within control limits or were not applicable due to sample matrix interference or sample dilution below quantitation limits because of high petroleum hydrocarbon concentrations, with one exception. The %R for benzo(a)anthracene-d12 in HBV-MW101-110414 (194 percent) was above the control limit of 150 percent. Because the recovery was greater than the upper control limit, the detected semivolatile target compounds in this sample will be qualified as estimated (J), and the non-detected target compounds will not be qualified.

4.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

4.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

4.1.6 Reported Results and Reporting Limits (RL)

The results for naphthalene, acenaphthene, and phenanthrene in samples BCT-MW107-110414 and BCT-MW108-110414 exceeded the instrument calibration range, requiring the samples to be diluted and re-analyzed. These analytes were reported from the dilution and qualified as DNR in the undiluted samples. The remaining analytes were reported from the undiluted samples.

The results for acenaphthene in sample UST70-MW102-110414 also exceeded the linear range and was qualified in the same manner.

The reporting limits outlined in the QAPP were met or were elevated accordingly due to high concentrations of target analytes.

4.1.7 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the MS/MSD, LCS/LCSD and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

4.2 TPH-Gasoline and BTEX (NWTPH-Gx and EPA 8021B)

4.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

4.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

4.2.3 Surrogates

All %R were within control limits.

4.2.4 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

4.2.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

4.2.6 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP.

4.2.7 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the MS/MSD and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

4.3 Diesel- and Oil-Range TPH (NWTPH-Dx)

4.3.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

4.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

4.3.3 Surrogates

All %R were within control limits.

4.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

4.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

4.3.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

4.3.7 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the MS/MSD, LCS/LCSD and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

				Analyte	
Sample ID	Sample Date	Sample Matrix	TPH- Dx/Oil	TPH- Gx/BTEX	Low Level PAHs
NRU-MW101-110514	11/5/2014	GrWtr	х	х	х
NRU-MW102-110514	11/5/2014	GrWtr	х	х	х
NRP-MW2-110514	11/5/2014	GrWtr	х	х	х

5.1 PAHs (SW8270-SIM)

5.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be extracted within 7 days of collection. Extracted samples should be analyzed within 40 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

5.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

5.1.3 Surrogates

All surrogate spike %R were within control limits or were not applicable due to sample matrix interference. No qualification of the results was necessary.

5.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

5.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

5.1.6 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP.

5.1.7 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the MS/MSD and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

5.2 TPH-Gasoline and BTEX (NWTPH-Gx and EPA 8021B)

5.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

5.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

5.2.3 Surrogates

All %R were within control limits.

5.2.4 Laboratory Control Samples (LCS)

LCS and LCSD %R and RPD were within the project control limits.

5.2.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

There were no MS/MSD associated with this SDG.

5.2.6 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP (Quality Assurance Project Plan).

5.2.7 Overall Assessment

Accuracy was acceptable based on the surrogate and LCS recoveries, and precision was acceptable based on the LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

5.3 Diesel- and Oil-Range TPH (NWTPH-Dx)

5.3.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

5.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

5.3.3 Surrogates

All %R were within control limits.

5.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

5.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

5.3.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

5.3.7 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the MS/MSD and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

				Analyte						
Sample ID	Sample Date	Sample Matrix	TPH- Dx/Oil	TPH- Gx/BTEX	Low Level PAHs	Mercury	Arsenic	Copper	Lead	Zinc
UST71-MW104-110514	11/5/2014	GrWtr	х		х			х		х
UST71-MW101-110514	11/5/2014	GrWtr	х		х			х		х
UST71-MW500-110514	11/5/2014	GrWtr	х		х			х		х
DAST-MW101-110514	11/5/2014	GrWtr	х		х	х		х		
UST29-MW101-110514	11/5/2014	GrWtr	х	х	х					
BA6-MW101-110514	11/5/2014	GrWtr	х		х					
UST71-MW103-110514	11/5/2014	GrWtr	х		х			х		
SHB-MW101-110514	11/5/2014	GrWtr	х	х	х	х		х		
SHB-MW102-110514	11/5/2014	GrWtr	х	х	х	х		х		
UST29-MW103-110614	11/6/2014	GrWtr	х	х	х					
UST29-MW102-110614	11/6/2014	GrWtr	х	х	х					
CN-MW101-110614	11/6/2014	GrWtr	х		х		х	х	х	
CN-MW102-110614	11/6/2014	GrWtr	х		х		х	х	х	
CN-MW103-110614	11/6/2014	GrWtr	х		х		х	х	х	
CN-MW104-110614	11/6/2014	GrWtr	х		х		х	х	х	

Sample Index

6.1 PAHs (SW8270-SIM)

6.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be extracted within 7 days of collection. Extracted samples should be analyzed within 40 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

6.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

6.1.3 Surrogates

All surrogate spike %R were within control limits or were not applicable due to sample matrix interference or sample dilution below quantitation limits because of high petroleum hydrocarbon concentrations, with one exception. The %R for sample UST71-MW103-110514 were below the control limits because the surrogates were not added prior to extraction and should be considered estimates. Because the MS and LCS %R were within the limits for this sample, no qualification of the results was necessary.

6.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

6.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits, with one exception. The RPDs for indeno(1,2,3-c,d)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene in UST71-MW104-110514 were above the control limit of 20%. The results for these analytes were qualified as estimated (UJ).

6.1.6 Field Duplicates

One set of blind field duplicates was submitted, UST71-MW104-110514 and UST71-MW500-110514. All RPD were within the control limits specified above.

6.1.7 Reported Results and Reporting Limits (RL)

The results for acenaphthene and fluorene in sample DAST-MW101-110514 exceeded the instrument calibration range, requiring the sample to be diluted and re-analyzed. These analytes were reported from the dilution and qualified as DNR in the undiluted sample. The remaining analytes were reported from the undiluted sample.

The results for acenaphthene, fluorene, and phenanthrene in sample UST71-MW103-110514, acenaphthene in UST29-MW102-110614, and naphthalene and acenaphthene in CN-MW101-110614 also exceeded the linear range and was qualified in the same manner.

The reporting limits outlined in the QAPP were met or were elevated accordingly due to high concentrations of target analytes.

6.1.8 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the field duplicate, MS/MSD, and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

6.2 TPH-Gasoline and BTEX (NWTPH-Gx and EPA 8021B)

6.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

6.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

6.2.3 Surrogates

All %R were within control limits.

6.2.4 Laboratory Control Samples (LCS)

LCS and LCSD %R and RPD were within the project control limits.

6.2.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

There were no MS/MSD associated with this SDG.

6.2.6 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP.

6.2.7 Overall Assessment

Accuracy was acceptable based on the surrogate spikes and LCS recoveries, and precision was acceptable based on the LCS/LCSD and RPD values. The data are of known quality and are acceptable for use as qualified.

6.3 Diesel- and Oil-Range TPH (NWTPH-Dx)

6.3.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

6.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

6.3.3 Surrogates

All %R were within control limits.

6.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

6.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

6.3.6 Field Duplicates

One set of blind field duplicates was submitted, UST71-MW104-110514 and UST71-MW500-110514. All RPD were within the control limits specified above.

6.3.7 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

6.3.8 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the field duplicate, MS/MSD, and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

7 Data Validation Findings for SDG K1412631 (Metals Analyses)

In accordance with the QAPP, the groundwater samples were submitted to ALS in Kelso, Washington, for metals analyses, as they have particular expertise performing trace metals analyses in saline water matrices. Friedman and Bruya combined groundwater samples from multiple SDGs into a single batch for transfer to ALS. The specific metals analytes for each sample in this ALS SDG are tabulated in the preceding sections. The sections below describe the results of the data quality review, separated into mercury and the other metals. The groundwater samples for metals analysis were field-filtered, therefore the results are reported as dissolved metals.

7.1 Dissolved Mercury (EPA 1631E)

7.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 28 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

7.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

7.1.3 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

7.1.4 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

7.1.5 Field Duplicates

One set of blind field duplicates was submitted, BCT-MW101-110314 and BCT-MW500-110314. All RPD were within the control limits specified above.

7.1.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

7.1.7 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD and field duplicates relative percent difference values. The data are of known quality and are acceptable for use as qualified.

7.2 Dissolved Metals (EPA 200.8 and 6010C)

7.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 180 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

To reduce the analytical interferences due to high concentrations of dissolved solids, samples identified as having high specific conductance in the field (UST70-MW2-

110414, RCD-MW101-110414) were prepared by the reductive precipitation method (USEPA, 1997).

7.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

7.2.3 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

7.2.4 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

7.2.5 Laboratory Duplicates

For laboratory duplicate results that are greater than the reporting limit, the RPD control limit is 20%. For laboratory duplicate results less than five times the reporting limit, the difference between the sample and duplicate must be less than the reporting limit.

All RPD were within the control limits specified above.

7.2.6 Field Duplicates

Two sets of blind field duplicates were submitted, BCT-MW101-110314 and BCT-MW500-110314; and UST71-MW104-110514 and UST71-MW500-110514. All RPD were within the control limits specified above.

7.2.7 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP (Quality Assurance Project Plan).

7.2.8 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD, laboratory and field duplicates relative percent difference values. The data are of known quality and are acceptable for use as qualified.

8 Qualified Data Summary

Qualified Data Summary Table

Sample ID	Laboratory ID	Analyte	Qualifier	Qualified Reason
BCT-MW101-110314	411039-01	Acenaphthene Fluorene Naphthalene Acenaphthylene Phenanthrene Anthracene Fluoranthene Pyrene Benz[a]anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	З	MS/MSD %RPD above control limits.
HBV-MW101-110414	411067-05	Acenaphthene Fluorene Naphthalene Phenanthrene Anthracene Fluoranthene Pyrene	J	Surrogate %R above control limit.
UST71-MW104- 110514	411119-01	Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	UJ	MS/MSD %R below control limits.
		Naphthalene Acenaphthene Fluorene	DNR	Result outside of instrument calibration range. Use diluted result.
BCT-MW107-110414 BCT-MW108-110414	411067-03 411067-04	Acenaphthylene Phenanthrene Anthracene Fluoranthene Pyrene Benz[a]anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	DNR	A more appropriate result is reported. Use undiluted result.

Sample ID	Laboratory ID	Analyte	Qualifier	Qualified Reason
		Acenaphthene	DNR	Result outside of instrument calibration range. Use diluted result.
UST70-MW102- 110414 UST29- MW102-110614	411067-08 411119-11	Naphthalene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz[a]anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	DNR	A more appropriate result is reported. Use undiluted result.
		Acenaphthene Fluorene	DNR	Result outside of instrument calibration range. Use diluted result.
DAST-MW101- 110514	411119-04	Naphthalene Acenaphthylene Phenanthrene Anthracene Fluoranthene Pyrene Benz[a]anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	DNR	A more appropriate result is reported. Use undiluted result.
		Phenanthrene Acenaphthene Fluorene	DNR	Result outside of instrument calibration range. Use diluted result.
UST71-MW103- 110514	411119-07	Naphthalene Acenaphthylene Anthracene Fluoranthene Pyrene Benz[a]anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	DNR	A more appropriate result is reported. Use undiluted result.

Sample ID	Laboratory ID	Analyte	Qualifier	Qualified Reason	
CN-MW101-110614	411119-12	Naphthalene Acenaphthene	DNR	Result outside of instrument calibration range. Use diluted result.	
		Acenaphthylene			
		Fluorene	DNR		
		Phenanthrene			
		Anthracene			
		Fluoranthene			
		Pyrene			
		Benz[a]anthracene		A more appropriate result is reported. Use	
		Chrysene		undiluted result.	
		Benzo(a)pyrene			
		Benzo(b)fluoranthene			
		Benzo(k)fluoranthene			
		Indeno(1,2,3-cd)pyrene			
		Dibenzo(a,h)anthracene			
		Benzo(ghi)perylene			

Data Qualifier Definitions

Data Qualifier	Definition
DNR	Do not report; the result should be reported from an alternative analysis.
J	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.
UJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.
Х	The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

9 References

- U.S. Environmental Protection Agency (USEPA), 1994, Method 200.8 Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma – Mass Spectrometry, Revision 5.4, Environmental Monitoring Systems Laboratory Office of Research and Development.
- U.S. Environmental Protection Agency (USEPA), 1997, Method 1640 Determination of Trace Elements in Waters by Preconcentration and Inductively Coupled Plasma – Mass Spectrometry, Office of Water & Office of Science and Technology Engineering and Analysis Division (4303), April.
- U.S. Environmental Protection Agency (USEPA), 1999, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, Office of Emergency and Remedial Response, USEPA Publication No. 540/R-99/008, October.
- U.S. Environmental Protection Agency (USEPA), 2004, Contract Laboratory Program National Functional Guidelines for Organic Methods Data Review, Office of Superfund Remediation and Technology Innovation (OSRTI), USEPA Publication No. 540-R-04-004, October.
- Aspect, 2013, Work Plan for Remedial Investigation/Feasibility Study, Kimberly-Clark Worldwide Site Upland Area, Everett, Washington, November 22, 2013.

DATA VALIDATION REPORT

Kimberly Clark Worldwide Site Upland Area Interim Action Confirmational Groundwater Monitoring February 2015 SDGs 502284, 502285, 502286, 502297, 502330, K1501795

> Prepared by: Aspect Consulting, LLC 401 Second Ave South, Suite 201 Seattle, WA 98104

Project No. 110207 • March 16, 2015

S:\Kimberly Clark\Everett Mill 110207\Data\Validation\Data Validation - Delia\KC IA Feb 2015 Data Validation.docx

1 Introduction

This report summarizes the findings of the United States Environmental Protection Agency (USEPA) Stage 2A data validation performed on analytical data for groundwater samples collected during February 17 through 19, 2015 for Kimberly Clark Worldwide Upland Site Interim Action Confirmational Groundwater Monitoring. This data quality review is divided into sections by sample delivery group (SDG). A complete list of samples and analyses for each SDG is provided in the Sample Index at the beginning of each section. The metals data were sent to a separate lab for analysis, and are presented in Section 7 at the end of the report.

Samples were analyzed for non-metal analytes by Friedman & Bruya, Inc in Seattle, Washington and Fremont Analytical in Seattle, Washington, and for metal analytes by ALS Environmental in Kelso, Washington. The analytical methods are summarized below:

Analysis	Method	Laboratory	
Polycyclic Aromatic Hydrocarbons (PAHs)	SW8270D-SIM	Friedman & Bruya, Inc	
	NWTPH-		
TPH - Gasoline Range and BTEX ¹	Gx/EPA 8021B	Friedman & Bruya, Inc	
TPH - Diesel and Motor Oil Ranges with			
Silica Gel	NWTPH-Dx	Friedman & Bruya, Inc	
Extractable Petroleum Hydrocarbons			
(EPH)	NWEPH	Fremont Analytical	
Total and Dissolved Metals	EPA 200.8	ALS	
Total and Dissolved Mercury	EPA 1631E	ALS	

The validation followed the procedures documented in the analytical methods, the Quality Assurance Project Plan (QAPP; in Appendix A to Aspect, 2013), *National Functional Guidelines for Organic Data Review* (USEPA, 1999), and *National Functional Guidelines for Inorganic Data Review* (USEPA, 2004).

Data assigned a J qualifier (estimated) may be used for site evaluation purposes but the reasons for qualification should be taken into account when interpreting sample concentrations. Data marked as do-not-report (DNR) should not be used under any circumstances. Values without qualification meet all data measurement quality objectives and are suitable for use.

Data qualifier definitions and a summary table of the qualified data are included in the Qualified Data Summary at the end of this report. Data qualifiers have been incorporated into the project chemistry database to reflect the validation in this report.

¹ BTEX = benzene, toluene, ethylbenzene, and xylenes

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

			Analyte		
Sample ID	Sample Date	Sample Matrix	TPH-Dx/Oil w/ SG	TPH- Gx/BTEX	Low Level PAHs
NRS-MW101-021715	2/17/2015	GrWtr	x	х	х
NRS-MW102-021715	2/17/2015	GrWtr	х	Х	x

2.1 PAHs (SW8270D-SIM)

2.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be extracted within 7 days of collection. Extracted samples should be analyzed within 40 days of extraction.

Sample receipt, preservation (2-6 degrees Celsius [C]), and holding times were acceptable.

2.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

2.1.3 Surrogates

All percent recoveries (%R) were within control limits.

2.1.4 Laboratory Control Samples (LCS/LCSD)

Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) percent recovery (%R) and relative percent difference (RPD) were within the project control limits.

2.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

Matrix spike (MS) and matrix spike duplicate (MSD) %R and RPD were within the project control limits, with the exception of eight analytes. However, because the parent sample was from a different SDG and the interference was likely due to the sample matrix, no results were qualified.

2.1.6 Reported Results and Reporting Limits (RL)

The reporting limits (RLs) outlined in the Quality Assurance Project Plan (QAPP; in Appendix A to Aspect, 2013) were met.

2.1.7 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the MS/MSD and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

2.2 TPH-Gasoline and BTEX (NWTPH-Gx and EPA 8021B)

2.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

2.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

2.2.3 Surrogates

All %R were within control limits.

2.2.4 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

2.2.5 Laboratory Duplicate

For laboratory duplicate results that are greater than the reporting limit, the RPD control limit is 20%. For laboratory duplicate results less than five times the reporting limit, the difference between the sample and duplicate must be less than the reporting limit.

All RPD were within the control limits specified above.

2.2.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

2.2.7 Overall Assessment

Accuracy was acceptable based on the surrogate and LCS recoveries, and precision was acceptable based on the laboratory duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

2.3 Diesel- and Oil-Range TPH (NWTPH-Dx)

2.3.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

2.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

2.3.3 Surrogates

All %R were within control limits.

2.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

2.3.5 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

2.3.6 Overall Assessment

Accuracy was acceptable based on the surrogate and LCS recoveries, and precision was acceptable based on the LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

			Analyte		
Sample ID	Sample Date	Sample Matrix	TPH-Dx/Oil w/ SG	TPH- Gx/BTEX	Low Level PAHs
NRU-MW101-021715	2/17/2015	GrWtr	х	х	х
NRU-MW102-021715	2/17/2015	GrWtr	х	х	х
NRP-MW2-021715	2/17/2015	GrWtr	х	х	x

3.1 PAHs (SW8270D-SIM)

3.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be extracted within 7 days of collection. Extracted samples should be analyzed within 40 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

3.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

3.1.3 Surrogates

All surrogate spike %R were within control limits or were not applicable due to sample dilution below quantitation limits because of high petroleum hydrocarbon concentrations. No qualification of the results was necessary.

3.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

3.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits, with the exception of seven analytes. However, because the parent sample was from a different SDG and the interference was likely due to the sample matrix, no results were qualified.

3.1.6 Reported Results and Reporting Limits (RL)

The results for acenaphthene and fluorene in sample NRU-MW102-021715 exceeded the instrument calibration range, requiring the sample to be diluted and re-analyzed. These analytes were reported from the dilution and qualified as DNR in the undiluted sample. The remaining analytes were reported from the undiluted samples.

The RLs outlined in the QAPP were met or were elevated accordingly due to high concentrations of target analytes. RLs were acceptable for their intended use.

3.1.7 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the MS/MSD and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

3.2 TPH-Gasoline and BTEX (NWTPH-Gx and EPA 8021B)

3.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

3.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

3.2.3 Surrogates

All %R were within control limits.

3.2.4 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

3.2.5 Laboratory Duplicate

For laboratory duplicate results that are greater than the reporting limit, the RPD control limit is 20%. For laboratory duplicate results less than five times the reporting limit, the difference between the sample and duplicate must be less than the reporting limit.

All RPD were within the control limits specified above.

3.2.6 Reported Results and Reporting Limits (RL)

The RLs outlined in the QAPP were met or were elevated accordingly due to high concentrations of target analytes. RLs were acceptable for their intended use.

3.2.7 Overall Assessment

Accuracy was acceptable based on the surrogate and LCS recoveries, and precision was acceptable based on the laboratory duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

3.3 Diesel- and Oil-Range TPH (NWTPH-Dx)

3.3.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

3.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

3.3.3 Surrogates

All %R were within control limits.

3.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

3.3.5 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

3.3.6 Overall Assessment

Accuracy was acceptable based on the surrogate and LCS recoveries, and precision was acceptable based on the LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

4 Data Validation Findings for SDG 502286

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sample Index

				Analyte						
Sample ID	Sample Date	Sample Matrix	TPH- Dx/Oil w/ SG	TPH- Gx/ BTEX	Low Level PAHs	Arsenic	Copper	Lead	Mercury	Zinc
BBH-MW103-021715	2/17/2015	GrWtr				х	х	х	х	x
BBH-MW102-021715	2/17/2015	GrWtr				х	х	х	х	х
BBH-MW104-021715	2/17/2015	GrWtr				х	х	х	х	x
BCT-MW104-021715	2/17/2015	GrWtr	х	х	х		х	х	х	
BCT-MW105-021715	2/17/2015	GrWtr	х	х	х		х	х	х	
UST71-MW101-021715	2/17/2015	GrWtr	х		х		х			х
UST71-MW102-021715	2/17/2015	GrWtr	х		х		х			х

4.1 PAHs (SW8270D-SIM)

4.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be extracted within 7 days of collection. Extracted samples should be analyzed within 40 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

4.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

4.1.3 Surrogates

All %R were within control limits.

4.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

4.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits, with the exception of seven analytes. However, because the parent sample was from a different SDG and the interference was likely due to the sample matrix, no results were qualified.

4.1.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

4.1.7 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries and precision was acceptable based on the MS/MSD and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

4.2 TPH-Gasoline and BTEX (NWTPH-Gx and EPA 8021B)

4.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

4.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

4.2.3 Surrogates

All %R were within control limits.

4.2.4 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

4.2.5 Laboratory Duplicate

For laboratory duplicate results that are greater than the reporting limit, the RPD control limit is 20%. For laboratory duplicate results less than five times the reporting limit, the difference between the sample and duplicate must be less than the reporting limit.

All RPD were within the control limits specified above.

4.2.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

4.2.7 Overall Assessment

Accuracy was acceptable based on the surrogate spike and LCS recoveries, and precision was acceptable based on the laboratory duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

4.3 Diesel- and Oil-Range TPH (NWTPH-Dx)

4.3.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

4.3.2 Method Blanks

Target analytes were not detected at or above RLs in the method blanks.

4.3.3 Surrogates

All %R were within control limits.

4.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

4.3.5 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

4.3.6 Overall Assessment

Accuracy was acceptable based on the surrogate spike and LCS recoveries, and precision was acceptable based on the LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

5 Data Validation Findings for SDG 502297

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

				Analyte								
Sample ID	Sample Date	Sample Matrix	TPH- Dx/ Oil w/ SG	TPH- Gx/ BTEX	Low Level PAHs	EPH	Hg	As	Cu	Pb	Ni	Zn
GF11-MW101-021815	2/18/2015	GrWtr					х		х	х		
HBV-MW101-021815	2/18/2015	GrWtr	х		х							
BBH-MW101-021815	2/18/2015	GrWtr					х	х	х	х		х
UST71-MW104-021815	2/18/2015	GrWtr	х		х				х			х
UST71-MW500-021815	2/18/2015	GrWtr	х		х				х			х
UST29-MW101-021815	2/18/2015	GrWtr	х	х	х							
UST29-MW102-021815	2/18/2015	GrWtr	х	х	х							
UST29-MW103-021815	2/18/2015	GrWtr	х	х	х							
UST71-MW103-021815	2/18/2015	GrWtr	х		х	х			х			х
BA6-MW101-021815	2/18/2015	GrWtr	х		х							
SHB-MW101-021815	2/18/2015	GrWtr	х	х	х		х		х			
SHB-MW102-021815	2/18/2015	GrWtr	х	х	х		х		х			
RCD-MW101-021815	2/18/2015	GrWtr	х		х		х	х	х		х	
UST70-MW101-021815	2/18/2015	GrWtr	х		х			х	х		х	х
UST70-MW102-021815	2/18/2015	GrWtr	х		х			х	х		х	х
BCT-MW106-021815	2/18/2015	GrWtr	х	х	х		х		х	х		

Sample Index

5.1 PAHs (SW8270D-SIM)

5.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be extracted within 7 days of collection. Extracted samples should be analyzed within 40 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

5.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

5.1.3 Surrogates

All surrogate spike %R were within control limits or were not applicable due to sample matrix interference or sample dilution below quantitation limits because of high petroleum hydrocarbon concentrations.

5.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

5.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits, with several exceptions. The %R and/or RPD were outside the control limits for benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-

c,d)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene. These analytes were qualified as estimated (J) in the parent sample, UST71-MW104-021814.

5.1.6 Field Duplicates

Field duplicates are an indication of both field and laboratory precision. According to the EPA National Functional Guidelines, there are no set criteria for field duplicate evaluation, but the following advisory criteria were used. For results greater than or equal to the analytical RL, the advisory RPD is 35%. For results <5 times the RL, the difference between the sample and the duplicate should be <RL.

One set of blind field duplicates was submitted for this analysis, UST71-MW104-021815 and UST71-MW500-021815. The RPD for the field duplicate pair was within the control limits specified above.

5.1.7 Reported Results and Reporting Limits (RL)

The results for naphthalene, acenaphthene, fluorene, and phenanthrene in sample UST71-MW103-021815 exceeded the instrument calibration range, requiring the sample to be diluted and re-analyzed. These analytes were reported from the dilution and qualified as DNR in the undiluted sample. The remaining analytes were reported from the undiluted samples.

The results for naphthalene and acenaphthene in sample SHB-MW101-021815 and acenaphthene in UST70-MW102-021815 also exceeded the linear range and were qualified in the same manner.

The reporting limits outlined in the QAPP were met or were elevated accordingly due to high concentrations of target analytes. RLs were acceptable for their intended use.

5.1.8 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the MS/MSD, LCS/LCSD and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

5.2 TPH-Gasoline and BTEX (NWTPH-Gx and EPA 8021B)

5.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

5.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

5.2.3 Surrogates

All %R were within control limits.

5.2.4 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

5.2.5 Laboratory Duplicate

For laboratory duplicate results that are greater than the reporting limit, the RPD control limit is 20%. For laboratory duplicate results less than five times the reporting limit, the difference between the sample and duplicate must be less than the reporting limit.

All RPD were within the control limits specified above.

5.2.6 Field Duplicates

One set of blind field duplicates was submitted, UST71-MW104-021815 and UST71-MW500-021815. All RPD were within the control limits specified above.

5.2.7 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP.

5.2.8 Overall Assessment

Accuracy was acceptable based on the surrogate and LCS recoveries, and precision was acceptable based on the laboratory and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

5.3 Diesel- and Oil-Range TPH (NWTPH-Dx)

5.3.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

5.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

5.3.3 Surrogates

All %R were within control limits.

5.3.4 Laboratory Control Samples (LCS/LCSD)

LCS %R were within the project control limits, however, the LCSD %R and RPD were above the project control limits. All positive sample results were qualified as estimated (J).

5.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

5.3.6 Field Duplicates

One set of blind field duplicates was submitted, UST71-MW104-021815 and UST71-MW500-021815. All RPD were within the control limits specified above.

5.3.7 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

5.3.8 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the MS/MSD, LCS/LCSD and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

5.4 Extractable Petroleum Hydrocarbons (NWEPH)

5.4.1 Sample Receipt, Preservation, and Holding Times

Water samples should be extracted within 14 days of collection. Extracted samples must be analyzed within 40 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

5.4.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

5.4.3 Surrogates

All %R were within control limits.

5.4.4 Laboratory Control Samples (LCS/LCSD) LCS and LCSD %R and RPD were within the project control limits.

5.4.5 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

5.4.6 Overall Assessment

Accuracy was acceptable based on the surrogate and LCS recoveries, and precision was acceptable based on the LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

6 Data Validation Findings for SDG 502330

Groundwater samples in this SDG, and the chemical analyses performed on them, are tabulated below. The sections below describe the results of the data quality review for this SDG by analyte group (analysis).

Sampl	le Inc	lex	

				Analyte							
Sample ID	Sample Date	Sample Matrix	TPH- Dx/Oil w/ SG	TPH- Gx/ BTEX	Low Level PAHs	Mercury	Arsenic	Copper	Lead	Nickel	Zinc
BCT-MW103-021915	2/19/2015	GrWtr	х	х	х	х		х	х		
BCT-MW102-021915	2/19/2015	GrWtr	х	х	х	х		х	х		
BCT-MW101-021915	2/19/2015	GrWtr	х	х	х	х		х	х		
BCT-MW500-021915	2/19/2015	GrWtr	х	х	х	х		х	х		
BCT-MW107-021915	2/19/2015	GrWtr	х	х	х	х		х	х		
BCT-MW108-021915	2/19/2015	GrWtr	х	х	х	х		х	х		
DAST-MW-101- 021915	2/19/2015	GrWtr	x		x	х		х			
CN-MW101-021915	2/19/2015	GrWtr	х		х		х	х	х		
CN-MW102-021915	2/19/2015	GrWtr	х		х		х	х	х		
CN-MW103-021915	2/19/2015	GrWtr	х		х		х	х	х		
CN-MW104-021915	2/19/2015	GrWtr	х		х		х	х	х		
UST70-MW2-021915	2/19/2015	GrWtr	х		х		х	х		х	х

6.1 PAHs (SW8270-SIM)

6.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be extracted within 7 days of collection. Extracted samples should be analyzed within 40 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

6.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

6.1.3 Surrogates

All surrogate spike %R were within control limits or were not applicable due to sample matrix interference or sample dilution below quantitation limits because of high petroleum hydrocarbon concentrations.

6.1.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

6.1.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits, with one exception. The RPDs for fluorene, phenanthrene, anthracene, benzo(k)fluoranthene, indeno(1,2,3-c,d)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene in BCT-MW101-021915 were above the control limit of 20%. The results for these analytes were qualified as estimated (UJ).

6.1.6 Field Duplicates

One set of blind field duplicates was submitted, BCT-MW101-021915 and BCT-MW500-021915. All RPD were within the control limits specified above.

6.1.7 Reported Results and Reporting Limits (RL)

The results for naphthalene, acenaphthene, and fluorene in samples BCT-MW107-021915 and BCT-MW108-021915 exceeded the instrument calibration range, requiring the samples to be diluted and re-analyzed. These analytes were reported from the dilution and qualified as DNR in the undiluted samples. The remaining analytes were reported from the undiluted samples.

The results for acenaphthene and fluorene in sample DAST-MW-101-021915 also exceeded the linear range and were qualified in the same manner.

The reporting limits outlined in the QAPP were met or were elevated accordingly due to high concentrations of target analytes. RLs were acceptable for their intended use.

6.1.8 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the field duplicate, MS/MSD, and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

6.2 TPH-Gasoline and BTEX (NWTPH-Gx and EPA 8021B)

6.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

6.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

6.2.3 Surrogates

All %R were within control limits.

6.2.4 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

6.2.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

6.2.6 Field Duplicates

One set of blind field duplicates was submitted, BCT-MW101-021915 and BCT-MW500-021915. All RPD were within the control limits specified above.

6.2.7 Reported Results and Reporting Limits (RL)

All reporting limits were met as outlined in the QAPP.

6.2.8 Overall Assessment

Accuracy was acceptable based on the surrogate spikes, MS, and LCS recoveries, and precision was acceptable based on the MS/MSD and RPD values. The data are of known quality and are acceptable for use as qualified.

6.3 Diesel- and Oil-Range TPH (NWTPH-Dx)

6.3.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 14 days of collection.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

6.3.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

6.3.3 Surrogates

All %R were within control limits.

6.3.4 Laboratory Control Samples (LCS/LCSD)

LCS and LCSD %R and RPD were within the project control limits.

6.3.5 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

6.3.6 Field Duplicates

One set of blind field duplicates was submitted, BCT-MW101-021915 and BCT-MW500-021915. All RPD were within the control limits specified above.

6.3.7 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

6.3.8 Overall Assessment

Accuracy was acceptable based on the surrogate, MS, and LCS recoveries, and precision was acceptable based on the field duplicate, MS/MSD, and LCS/LCSD RPD values. The data are of known quality and are acceptable for use as qualified.

7 Data Validation Findings for SDG K1501795 (Metals Analyses)

In accordance with the QAPP, the groundwater samples were submitted to ALS in Kelso, Washington, for metals analyses, as they have particular expertise performing trace metals analyses in saline water matrices. Friedman and Bruya combined groundwater samples from multiple SDGs into a single batch for transfer to ALS. The specific metal analytes for each sample in this ALS SDG are tabulated in the preceding sections. The sections below describe the results of the data quality review, separated into mercury and the other metals. The groundwater samples for metals analysis were field-filtered, therefore the results are reported as dissolved metals.

7.1 Dissolved Mercury (EPA 1631E)

7.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 28 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable, with one exception. Sample RCD-MW101-021815 was incorrectly labeled as RCD-MW102-021815, but the lab was able to determine the correct Sample ID through process of elimination. No further action was needed.

7.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

7.1.3 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

7.1.4 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

7.1.5 Field Duplicates

One set of blind field duplicates was submitted, BCT-MW101-021915 and BCT-MW500-021915. All RPD were within the control limits specified above.

7.1.6 Reported Results and Reporting Limits (RL)

The RLs outlined in the QAPP were met or were elevated accordingly due to high concentrations of target analytes. RLs were acceptable for their intended use.

7.1.7 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

7.2 Dissolved Metals (EPA 200.8)

7.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 180 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable.

To reduce the analytical interferences due to high concentrations of dissolved solids, samples identified as having high specific conductance in the field (UST70-MW2-021915, RCD-MW101-021915) were prepared by the reductive precipitation method (USEPA, 1997).

7.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

7.2.3 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

7.2.4 Matrix Spike (MS)

MS %R were within the project control limits.

7.2.5 Laboratory Duplicates

For laboratory duplicate results that are greater than the reporting limit, the RPD control limit is 20%. For laboratory duplicate results less than five times the reporting limit, the difference between the sample and duplicate must be less than the reporting limit.

All RPD were within the control limits specified above.

7.2.6 Field Duplicates

Two sets of blind field duplicates were submitted, BCT-MW101-021915 and BCT-MW500-021915; and UST71-MW104-021815 and UST71-MW500-021815. All RPD were within the control limits specified above.

7.2.7 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

7.2.8 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the laboratory duplicate and field duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

8 Qualified Data Summary Table

Sample ID	Laboratory ID	Analyte	Qualifier	Qualified Reason			
		Benz(a)anthracene					
		Chrysene					
		Benzo(b)fluoranthene					
UST71-MW104-021815	502297-04	Benzo(k)fluoranthene	UJ	MS/MSD %R and RPD outside control			
		Benzo(a)pyrene		limits.			
		Indeno(1,2,3-cd)pyrene					
		Dibenzo(a,h)anthracene					
		Benzo(ghi)perylene					
UST71-MW104-021815 UST29-MW103-021815	502297-04 502297-08	Diesel Range		LCS/LCSD %R and RPD above control			
UST71-MW103-021815	502297-09	Hydrocarbons	J	limits.			
SHB-MW101-021815	502297-11						
		Fluorene					
		Phenanthrene					
		Anthracene		MS/MSD %R and RPD outside control			
BCT-MW101-021915	502330-03	Benzo(k)fluoranthene	UJ/J	limits.			
		Indeno(1,2,3-cd)pyrene					
		Dibenzo(a,h)anthracene					
		Benzo(ghi)perylene Naphthalene					
		Acenaphthene		Result outside of instrument calibration			
		Fluorene	DNR	range. Use diluted result.			
		Phenanthrene					
		Acenaphthylene					
		Anthracene					
		Fluoranthene					
UST71-MW103-021815	502297-09	Pyrene					
	002207 00	Benz[a]anthracene					
		Chrysene	DNR	A more appropriate result is reported.			
		Benzo(a)pyrene		Use undiluted result.			
		Benzo(b)fluoranthene					
		Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene					
		Dibenzo(a,h)anthracene					
		Benzo(ghi)perylene					
		Naphthalene		Result outside of instrument calibration			
		Acenaphthene	DNR	range. Use diluted result.			
		Acenaphthylene					
		Fluorene					
		Phenanthrene					
		Anthracene					
		Fluoranthene					
SHB-MW101-021815	502297-11	Pyrene					
		Benz[a]anthracene	DNR	A more appropriate result is reported. Use undiluted result.			
		Chrysene		Use unanated result.			
		Benzo(a)pyrene					
		Benzo(b)fluoranthene					
		Benzo(k)fluoranthene					
		Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene					
		Benzo(ghi)perylene					

Sample ID	Laboratory ID	Analyte	Qualifier	Qualified Reason
		Acenaphthene	DNR	Result outside of instrument calibration range. Use diluted result.
UST70-MW102-021815	502297-15	Naphthalene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz[a]anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	DNR	A more appropriate result is reported. Use undiluted result.
		Naphthalene Acenaphthene Fluorene	DNR	Result outside of instrument calibration range. Use diluted result.
BCT-MW107-021915 BCT-MW108-021915	502330-05 502330-06	Acenaphthylene Phenanthrene Anthracene Fluoranthene Pyrene Benz[a]anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	DNR	A more appropriate result is reported. Use undiluted result.
		Acenaphthene Fluorene	DNR	Result outside of instrument calibration range. Use diluted result.
NRU-MW102-021715 DAST-MW-101-021915	502285-02 502330-07	Naphthalene Acenaphthylene Phenanthrene Anthracene Fluoranthene Pyrene Benz[a]anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(ghi)perylene	DNR	A more appropriate result is reported. Use undiluted result.

Data Qualifier Definitions

_

Data Qualifier	Definition
DNR	Do not report; the result should be reported from an alternative analysis.
J	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.
UJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.
х	The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

9 References

- Aspect, 2013, Work Plan for Remedial Investigation/Feasibility Study, Kimberly-Clark Worldwide Site Upland Area, Everett, Washington, November 22, 2013.
- U.S. Environmental Protection Agency (USEPA), 1994, Method 200.8 Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma – Mass Spectrometry, Revision 5.4, Environmental Monitoring Systems Laboratory Office of Research and Development.
- U.S. Environmental Protection Agency (USEPA), 1997, Method 1640 Determination of Trace Elements in Waters by Preconcentration and Inductively Coupled Plasma – Mass Spectrometry, Office of Water & Office of Science and Technology Engineering and Analysis Division (4303), April.
- U.S. Environmental Protection Agency (USEPA), 1999, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, Office of Emergency and Remedial Response, USEPA Publication No. 540/R-99/008, October.
- U.S. Environmental Protection Agency (USEPA), 2004, Contract Laboratory Program National Functional Guidelines for Organic Methods Data Review, Office of Superfund Remediation and Technology Innovation (OSRTI), USEPA Publication No. 540-R-04-004, October.

DATA VALIDATION REPORT Kimberly Clark Worldwide Site Upland Area Interim Action Confirmational Groundwater Monitoring April 2015 SDGs K1504093

Prepared by: Aspect Consulting, LLC 401 Second Ave South, Suite 201 Seattle, WA 98104

Project No. 110207 • April 29, 2015

S:\Kimberly Clark\Everett Mill 110207\Data\Validation\Data Validation - Delia\KC IA Feb 2015 Data Validation.docx

1 Introduction

This report summarizes the findings of the United States Environmental Protection Agency (USEPA) Stage 2A data validation performed on analytical data for groundwater samples collected on April 20, 2015 for Kimberly Clark Worldwide Upland Site Interim Action Confirmational Groundwater Monitoring. This data quality review is divided into sections by sample delivery group (SDG). A complete list of samples and analyses for each SDG is provided in the Sample Index at the beginning of each section.

Samples were analyzed for metal analytes by ALS Environmental in Kelso, Washington. The analytical methods are summarized below:

Analysis	Method	Laboratory
Total and Dissolved Metals	EPA 200.8	ALS
Total and Dissolved Mercury	EPA 1631E	ALS

The validation followed the procedures documented in the analytical methods, the Quality Assurance Project Plan (QAPP; in Appendix A to Aspect, 2013), *National Functional Guidelines for Organic Data Review* (USEPA, 1999), and *National Functional Guidelines for Inorganic Data Review* (USEPA, 2004).

Data assigned a J qualifier (estimated) may be used for site evaluation purposes but the reasons for qualification should be taken into account when interpreting sample concentrations. Data marked as do-not-report (DNR) should not be used under any circumstances. Values without qualification meet all data measurement quality objectives and are suitable for use.

Data qualifier definitions and a summary table of the qualified data are included in the Qualified Data Summary at the end of this report. Data qualifiers have been incorporated into the project chemistry database to reflect the validation in this report.

2 Data Validation Findings for SDG K1504093

				Δ	nalyte		
Sample ID	Sample Date	Sample Matrix	Arsenic	Copper	Lead	Mercury	Zinc
BBH-MW103-021715	2/17/2015	GrWtr	х	х	х	х	х

2.1 Dissolved Mercury (EPA 1631E)

2.1.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 28 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable, with one exception. Sample BBH-MW103-042015 had a pH > 2 upon sample receipt, however, sufficient nitric acid was added to lower the pH more than 16 hours before analysis. No further action was needed.

2.1.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

2.1.3 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

2.1.4 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

MS and MSD %R and RPD were within the project control limits.

2.1.5 Reported Results and Reporting Limits (RL)

The RLs outlined in the QAPP were met or were elevated accordingly due to high concentrations of target analytes. RLs were acceptable for their intended use.

2.1.6 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the MS/MSD RPD values. The data are of known quality and are acceptable for use as qualified.

2.2 Dissolved Metals (EPA 200.8)

2.2.1 Sample Receipt, Preservation, and Holding Times

Water samples should be analyzed within 180 days of extraction.

Sample receipt, preservation (2-6 degrees C), and holding times were acceptable. Sample BBH-MW103-042015 had a pH > 2 upon sample receipt, however, sufficient nitric acid was added to lower the pH more than 16 hours before analysis. No further action was needed.

2.2.2 Method Blanks

Target analytes were not detected at or above the reporting levels in the method blanks.

2.2.3 Laboratory Control Samples (LCS)

LCS %R were within the project control limits.

2.2.4 Matrix Spike (MS)

MS %R were within the project control limits.

2.2.5 Laboratory Duplicates

For laboratory duplicate results that are greater than the reporting limit, the RPD control limit is 20%. For laboratory duplicate results less than five times the reporting limit, the difference between the sample and duplicate must be less than the reporting limit.

All RPD were within the control limits specified above.

2.2.6 Reported Results and Reporting Limits (RL)

All target RLs were met as outlined in the QAPP.

2.2.7 Overall Assessment

Accuracy was acceptable based on the MS and LCS recoveries, and precision was acceptable based on the laboratory duplicate RPD values. The data are of known quality and are acceptable for use as qualified.

3 Qualified Data Summary Table

No data were qualified.

Data Qualifier Definitions

Data Qualifier	Definition
DNR	Do not report; the result should be reported from an alternative analysis.
J	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.
UJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.
Х	The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

4 References

- Aspect, 2013, Work Plan for Remedial Investigation/Feasibility Study, Kimberly-Clark Worldwide Site Upland Area, Everett, Washington, November 22, 2013.
- U.S. Environmental Protection Agency (USEPA), 1994, Method 200.8 Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma – Mass Spectrometry, Revision 5.4, Environmental Monitoring Systems Laboratory Office of Research and Development.
- U.S. Environmental Protection Agency (USEPA), 1997, Method 1640 Determination of Trace Elements in Waters by Preconcentration and Inductively Coupled Plasma – Mass Spectrometry, Office of Water & Office of Science and Technology Engineering and Analysis Division (4303), April.
- U.S. Environmental Protection Agency (USEPA), 1999, Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, Office of Emergency and Remedial Response, USEPA Publication No. 540/R-99/008, October.
- U.S. Environmental Protection Agency (USEPA), 2004, Contract Laboratory Program National Functional Guidelines for Organic Methods Data Review, Office of Superfund Remediation and Technology Innovation (OSRTI), USEPA Publication No. 540-R-04-004, October.