

Oregon Portland | Baker City California Oakland | Irvine

December 12, 2022

Frank P. Winslow Toxics Cleanup Program Washington State Department of Ecology – Central Regional Office 1250 West Alder Street Union Gap, WA 98903

RE: REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY ADDENDUM COMFORT SUITES PROPERTY 7200 FUN CENTER WAY TUKWILA, WASHINGTON FARALLON PN: 2812-001

Dear Frank P. Winslow:

Farallon Consulting, L.L.C. (Farallon) has prepared this letter as an addendum to the Remedial Investigation/Focused Feasibility Study dated October 18, 2022 prepared by Farallon on behalf of Eastwind Investments, Inc. (Eastwind) (RI/FFS) for the Comfort Suites Property at 7200 Fun Center Way in Tukwila, Washington (herein referred to as the Comfort Suites Property) (Figure 1). The Comfort Suites Property is enrolled in the Washington State Department of Ecology (Ecology) Voluntary Cleanup Program (VCP) Expedited Process and assigned Facility Site Identification (ID) No. 18434384 and VCP Project ID No. XN0027. The Comfort Suites Property is part of the cleanup site known to Ecology as the Family Fun Center Site (Cleanup Site Identification No. 385) (Figure 2). The Family Fun Center Site historically was enrolled in the VCP by the former owner, Family Fun Center Tukwila LLC. The RI/FFS was prepared with the intention of pursuing a property-specific No Further Action (NFA) determination for only the Comfort Suites Property. Ecology provided initial comments to the RI/FFS and requested additional information to support its formal review of the RI/FFS in an email dated October 31, 2022 and during a meeting between Ecology and Farallon on November 10, 2022. During the meeting, Farallon indicated that groundwater monitoring was performed at the Comfort Suites Property in August 2022; however, the data from this monitoring event was not included in the RI/FFS. This addendum provides the additional information requested by Ecology during the November 10, 2022 meeting and presents the results from additional groundwater monitoring conducted in August 2022.

ADDITIONAL INFORMATION REQUESTED BY ECOLOGY

The following information was requested by Ecology during the November 10, 2022 meeting with Farallon:

- Revised versions of RI/FFS Figures 2A and 2B showing geological cross sections of the Comfort Suites Property updated to include the depth and thickness of fill material;
- A revised version of RI/FFS Figure 3 showing the approximate locations of borings and monitoring wells constructed as part of investigations performed at the Comfort Suites Property and Family Fun Center Site;

P:\2812 Eastwind Investments Inc\2812001 Parcel 2 Comfort Suites\Deliverables\2022-12 RI-FS Addendum\2022 RIFS Addendum.docx

- A revised version of RI/FFS Figure 4 showing the approximate location of the containment and capping area of the Fun Center Site presented on Figure 8 from the *Revised Cleanup Action Report, Family Fun Center Site, Tukwila, Washington* dated February 19, 2002, prepared by GeoEngineers; and
- A revised version of Tables 2 through 6 updated to indicate the parcels on which soil samples were collected and sampling locations where soil was subsequently excavated.

Farallon has revised these figures and tables as requested by Ecology. For convenience, a complete set of the RI/FFS figures and tables that includes these updates is attached.

AUGUST 2022 GROUNDWATER MONITORING

Groundwater monitoring was conducted on August 30, 2022 as a follow-up to groundwater monitoring conducted by Farallon on May 16, 2022 and to demonstrate that groundwater conditions are stable. The August 30, 2022 groundwater monitoring event included measuring depth to groundwater and collecting groundwater samples from monitoring wells FMW-01 through FMW-04 and MW-22. The monitoring wells were opened, and the water levels were allowed to equilibrate with atmospheric pressure before groundwater level measurements were obtained. Groundwater levels were measured to the surveyed reference point on the top of the monitoring well casing to an accuracy of 0.01 foot using an electric water-level meter. The depths to groundwater measurements and corresponding elevations are summarized in Table 1. Based on groundwater elevations measured on August 30, 2022, groundwater on the Comfort Suites Property flows north-northwest toward the Green River, which is consistent with the flow direction based on groundwater elevations measured on May 16, 2022.

Groundwater samples were collected using U.S. Environmental Protection Agency (EPA) lowflow protocols and analyzed for total petroleum hydrocarbons (TPH) as diesel-range organics (DRO) and oil-range organics (ORO) by Northwest Method NWTPH-Dx, and dissolved MTCA 5 metals (arsenic, cadmium, chromium, lead, and mercury) by EPA Methods 6010D/7471B. The laboratory report is included in Attachment A. A summary of the results of groundwater sampling is presented below and summarized in Tables 7 and 8.

- DRO and ORO either were not detected at the laboratory practical quantitation limit (PQL) or were detected at concentrations less than the MTCA Method A cleanup level in the groundwater samples collected from monitoring wells FMW-01 through FMW-04 and MW-22. These results are consistent with the results of groundwater sampling performed on May 16, 2022.
- Dissolved arsenic was detected at concentrations exceeding the MTCA Method A cleanup level of 5 micrograms per liter (μ g/l) and the Puget Sound Basin natural background concentration of 8 μ g/l described in Ecology's Natural Background Groundwater Arsenic Concentrations in Washington State dated July 2021, revised January 2022 in the groundwater samples collected from monitoring wells FMW-01 through FMW-04 and MW-22 at concentrations ranging from 9.9 to 49 μ g/l. These results are consistent with the results of groundwater sampling performed on May 16, 2022.

P:\2812 Eastwind Investments Inc\2812001 Parcel 2 Comfort Suites\Deliverables\2022-12 RI-FS Addendum\2022 RIFS Addendum.docx

Toxics Cleanup Program, Washington State Department of Ecology December 12, 2022 Page 3

• Dissolved cadmium, chromium, lead, and mercury were not detected at concentrations exceeding the laboratory PQL in groundwater samples collected from monitoring wells FMW-01 through FMW-04 and MW-22. These results are consistent with the results of groundwater sampling performed on May 16, 2022.

Additional groundwater monitoring at the Comfort Suites Property is planned for the fourth quarter of 2022 and first quarter of 2023. The results of those groundwater monitoring events and conclusions will be presented to Ecology in a groundwater monitoring report anticipated in the second quarter of 2023.

Farallon appreciates the opportunity to provide environmental consulting services for this project. Please contact either of the undersigned at (425) 295-0800 if you have questions or need additional information.

Sincerely,

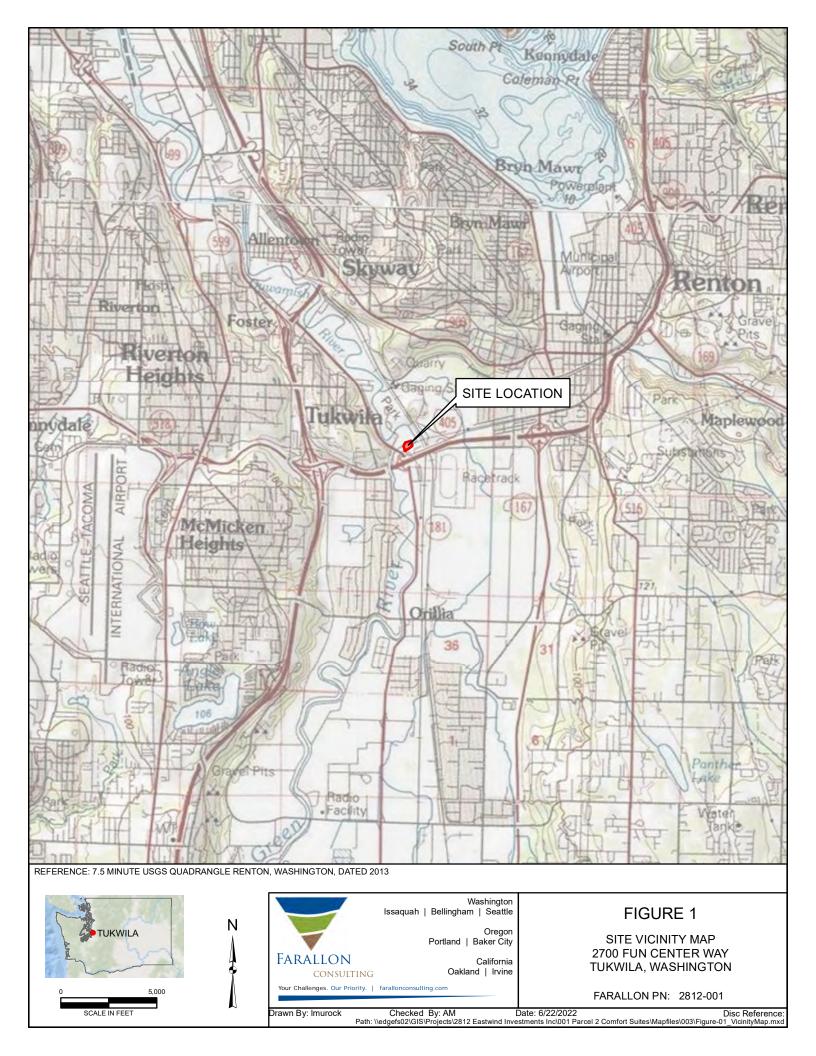
Farallon Consulting, L.L.C.

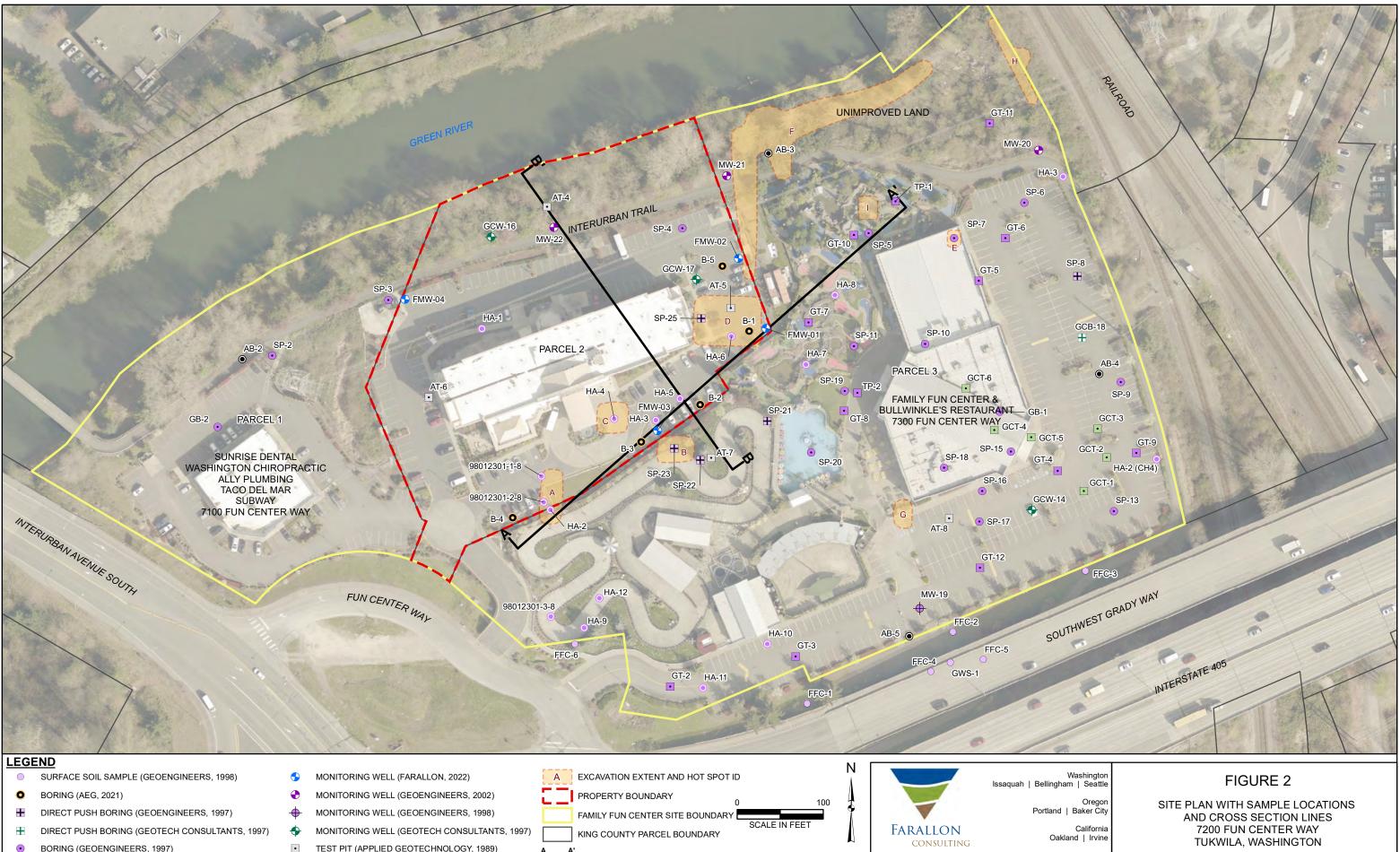
amanda M. Mengniot

Amanda Meugniot, L.G. Associate Geologist

Mark Havighorst, P.E. Principal Engineer

Attachments: Figure 1, Site Vicinity Map Figure 2, Site Plan with Sample Locations and Cross Section Lines Figure 2A, Cross Section A-A' Figure 2B, Cross Section B-B' Figure 3, Historical Features with Sample Locations Figure 4, Excavation Extents Figure 4A, Excavation Detail – North Figure 4B, Excavation Detail – Southwest Figure 4C, Excavation Detail – Southeast Table 1, Groundwater Elevations Table 2, Soil Analytical Results for TPH and BTEX Table 3, Soil Analytical Results for PAHs Table 4, Soil Analytical Results for PCBs Table 5, Soil Analytical Results for Organochlorine Pesticides Table 6, Soil Analytical Results for Metals Table 7, Groundwater Analytical Results for TPH and BTEX Table 8, Groundwater Analytical Results for Metals Attachment A, Laboratory Analytical Report

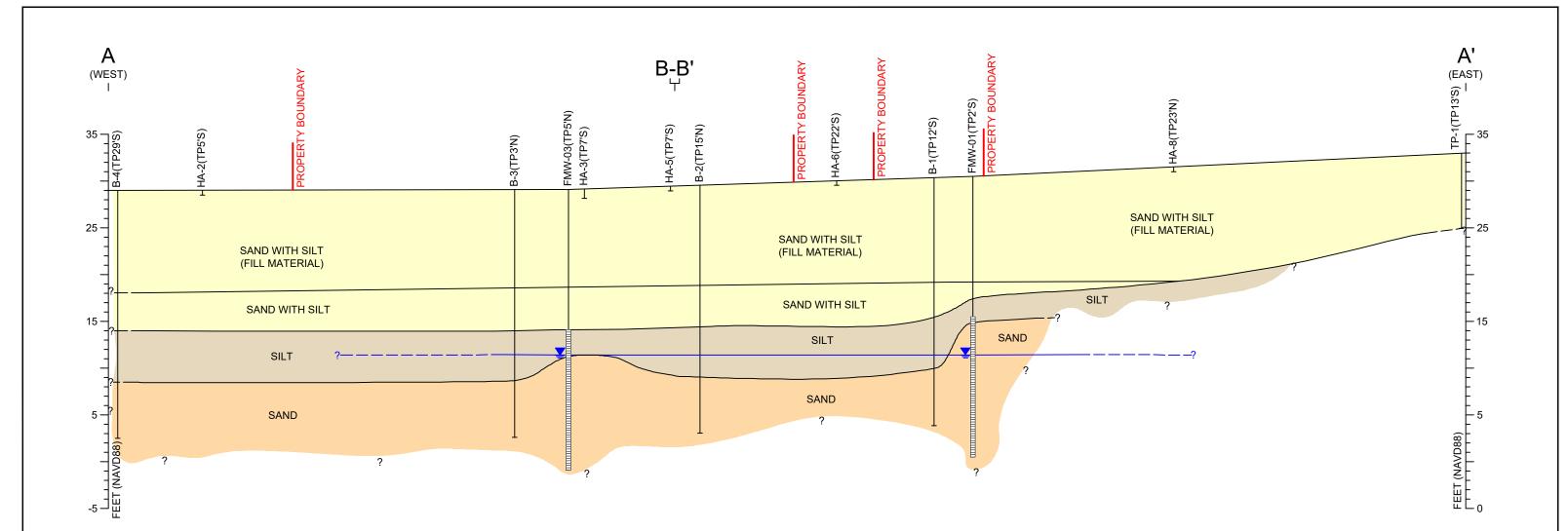

cc: Charles Lee, East Wind Investments, Inc.


AM/MH:cm

FIGURES

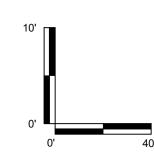
REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY ADDENDUM COMFORT SUITES PROPERTY 7200 FUN CENTER WAY

Farallon PN: 2812-001



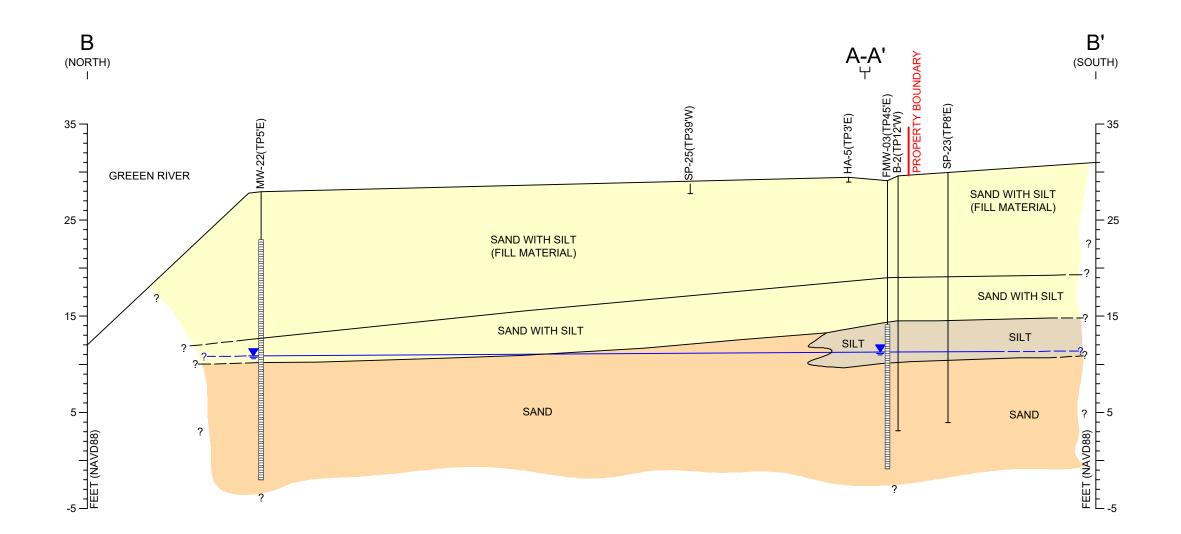
28.3	And a start of the second	10	Clark to the second	XX	A ANDER					
EGE	<u>ND</u>						N			
\bigcirc	SURFACE SOIL SAMPLE (GEOENGINEERS, 1998)	5	MONITORING WELL (FARALLON, 2022)	А	EXCAVATION EXTENT AND HO	OT SPOT				Issaquah B
0	BORING (AEG, 2021)	Ð	MONITORING WELL (GEOENGINEERS, 2002)	22	PROPERTY BOUNDARY		0 100			ioouquun D
+	DIRECT PUSH BORING (GEOENGINEERS, 1997)	\blacklozenge	MONITORING WELL (GEOENGINEERS, 1998)	7-	FAMILY FUN CENTER SITE BC	DUNDAR				Po
Ŧ	DIRECT PUSH BORING (GEOTECH CONSULTANTS, 1997)	+	MONITORING WELL (GEOTECH CONSULTANTS, 1997)		KING COUNTY PARCEL BOUN	IDARY	SCALE IN FEET		Farallon	
•	BORING (GEOENGINEERS, 1997)	•	TEST PIT (APPLIED GEOTECHNOLOGY, 1989)	A .	□				CONSULTING	
	HAND AUGER BORING (GEOENGINEERS, 1997)	•	TEST PIT (GEOENGINEERS, 1997)			FIGL	LOCATIONS ARE APPROXIMATE. JRES WERE PRODUCED IN COLOR.			Illonconsulting.com
۲	BORING (APPLIED GEOTECHNOLOGY, 1989	•	TEST PIT (GEOTECH CONSULTANTS, 1997)			GRA ALL	VSCALE COPIES MAY NOT REPRODUCI ORIGINAL INFORMATION.	E Dra	wn By: Imurock	Checked Q:

FARALLON PN: 2812-001

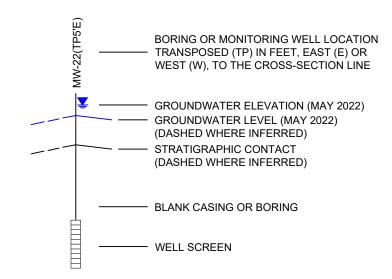

 ked
 By: AM
 Date: 9/22/2022
 Disc Reference:

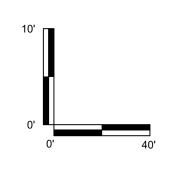
 Q:\Projects\2812 Eastwind Investments Inc\001 Parcel 2 Comfort Suites\Mapfiles\004\Figure-02_SitePlan_SampleLocs.mxd

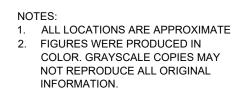
LEGEND



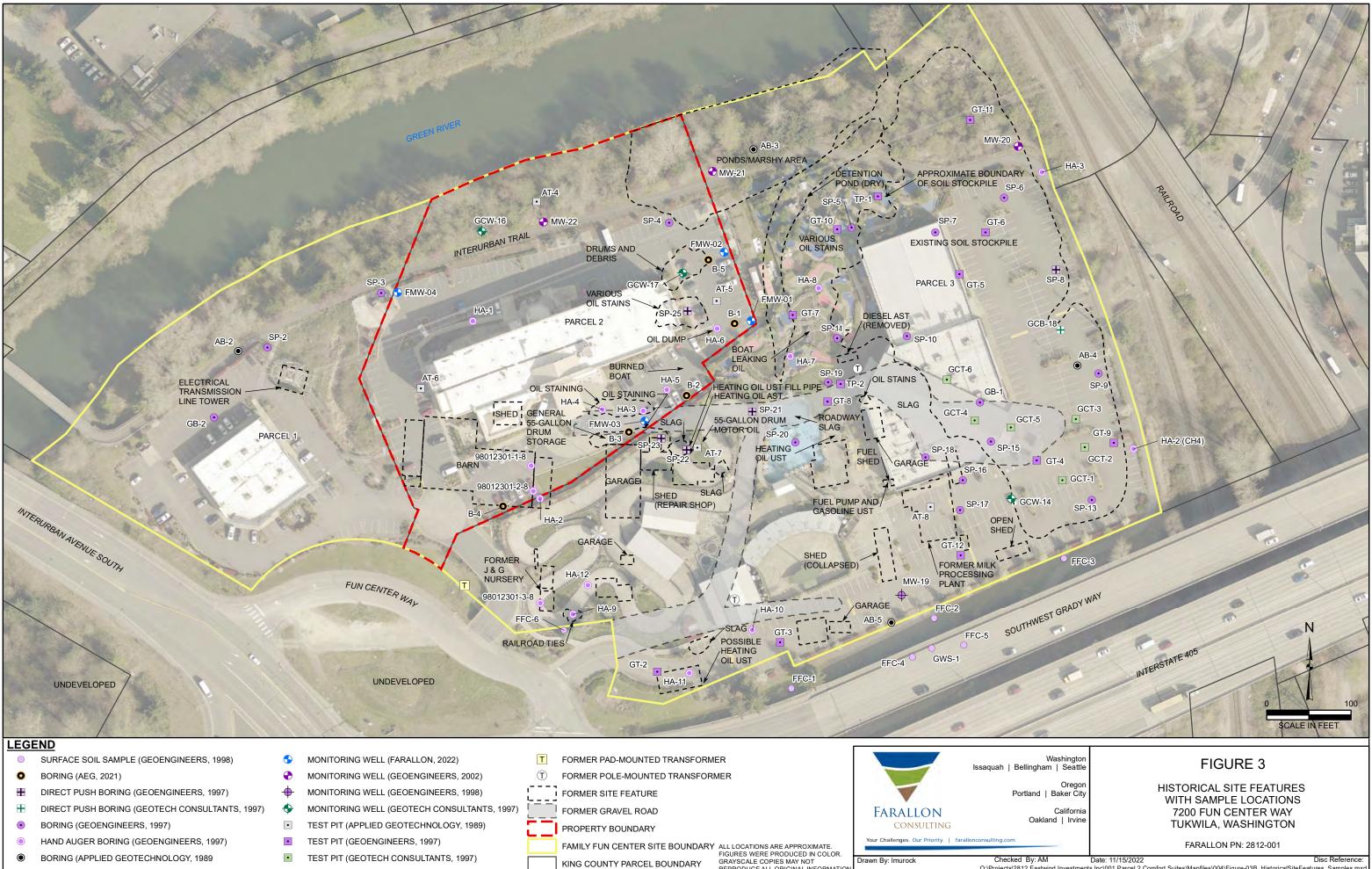
NOTES:


- 1. ALL LOCATIONS ARE APPROXIMATE
- 2. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.



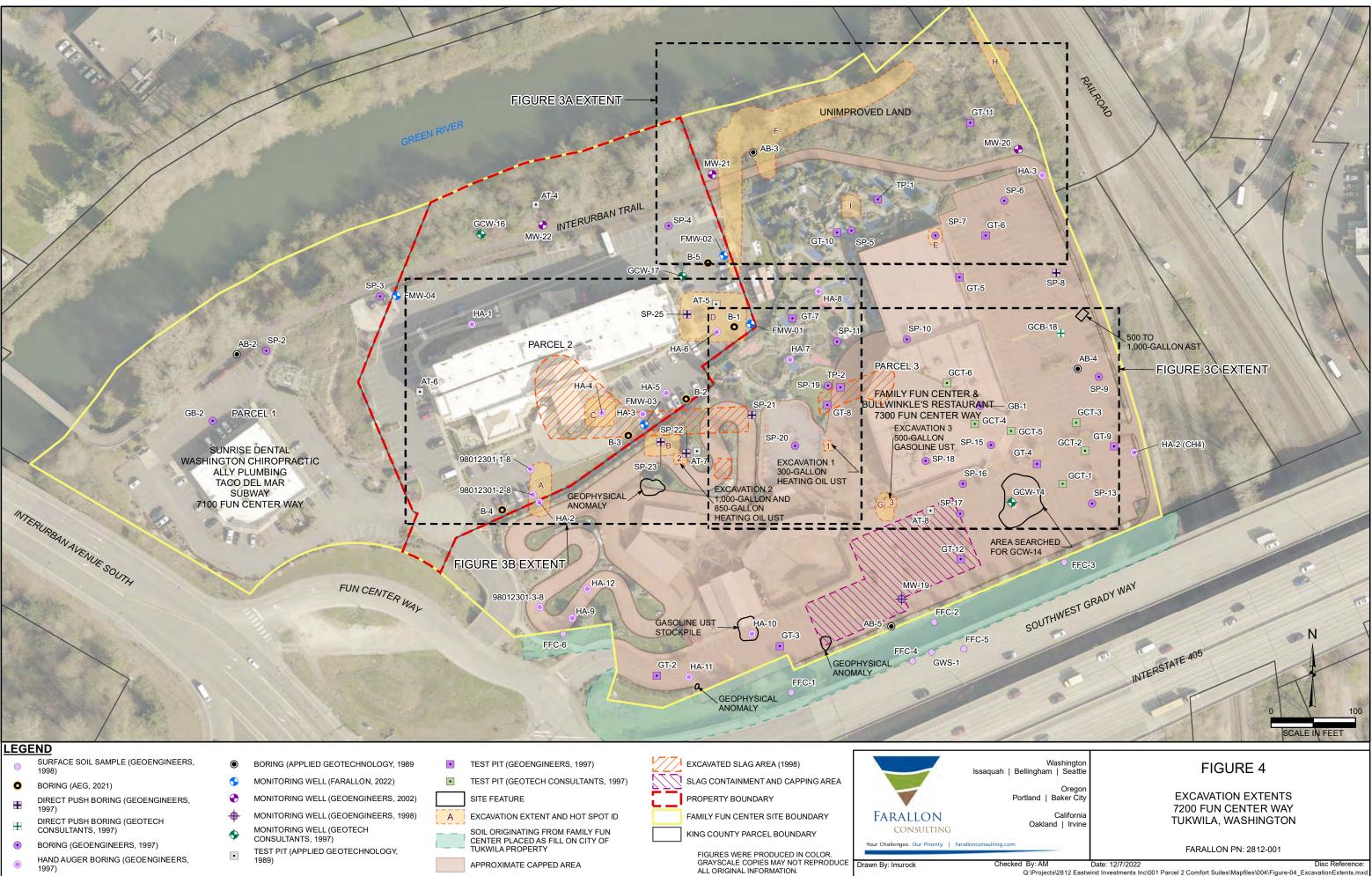

Washington Bellingham Seattle	FIGURE 2A
Oregon Portland Baker City California Oakland Irvine	CROSS SECTION A-A' 2700 FUN CENTER WAY TUKWILA, WASHINGTON
g.com	
: MH	FARALLON PN: 2812-001

LEGEND



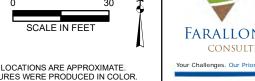
Washington ellingham Seattle
Oregon rtland Baker City
California Oakland Irvine
om

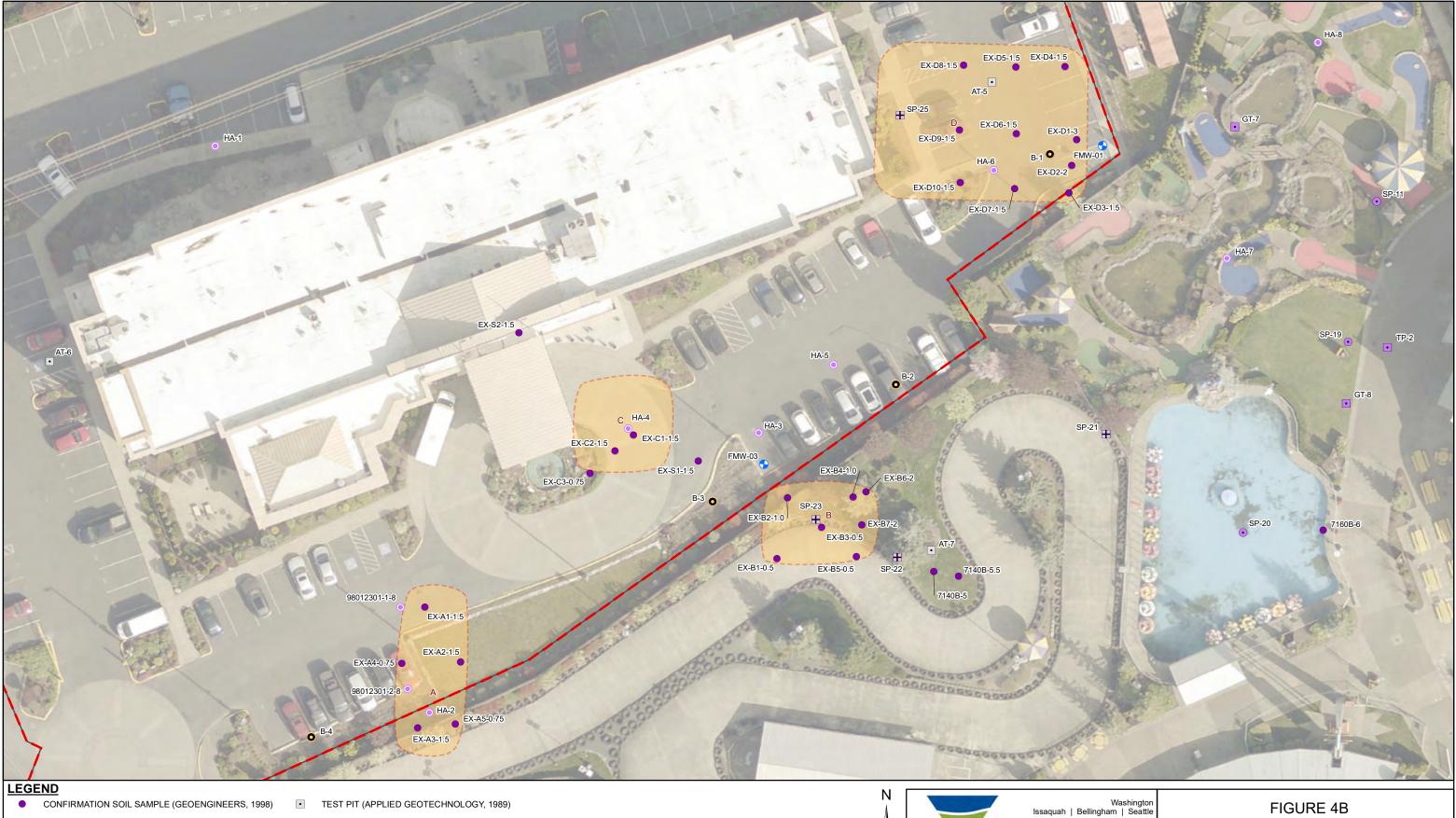
FIGURE 2B


CROSS SECTION B-B' 2700 FUN CENTER WAY TUKWILA, WASHINGTON

FARALLON PN: 2812-001

REPRODUCE ALL ORIGINAL INFORMATION





- 1997)

- CONFIRMATION SOIL SAMPLE (GEOENGINEERS, 1998)
- BORING (AEG, 2021) 0
- + DIRECT PUSH BORING (GEOENGINEERS, 1997)
- \bullet BORING (GEOENGINEERS, 1997)
- HAND AUGER BORING (GEOENGINEERS, 1997)
- MONITORING WELL (FARALLON, 2022)

- TEST PIT (APPLIED GEOTECHNOLOGY, 1989)
- TEST PIT (GEOENGINEERS, 1997)
- А EXCAVATION EXTENT AND HOT SPOT ID
- PROPERTY BOUNDARY
- FAMILY FUN CENTER SITE BOUNDARY

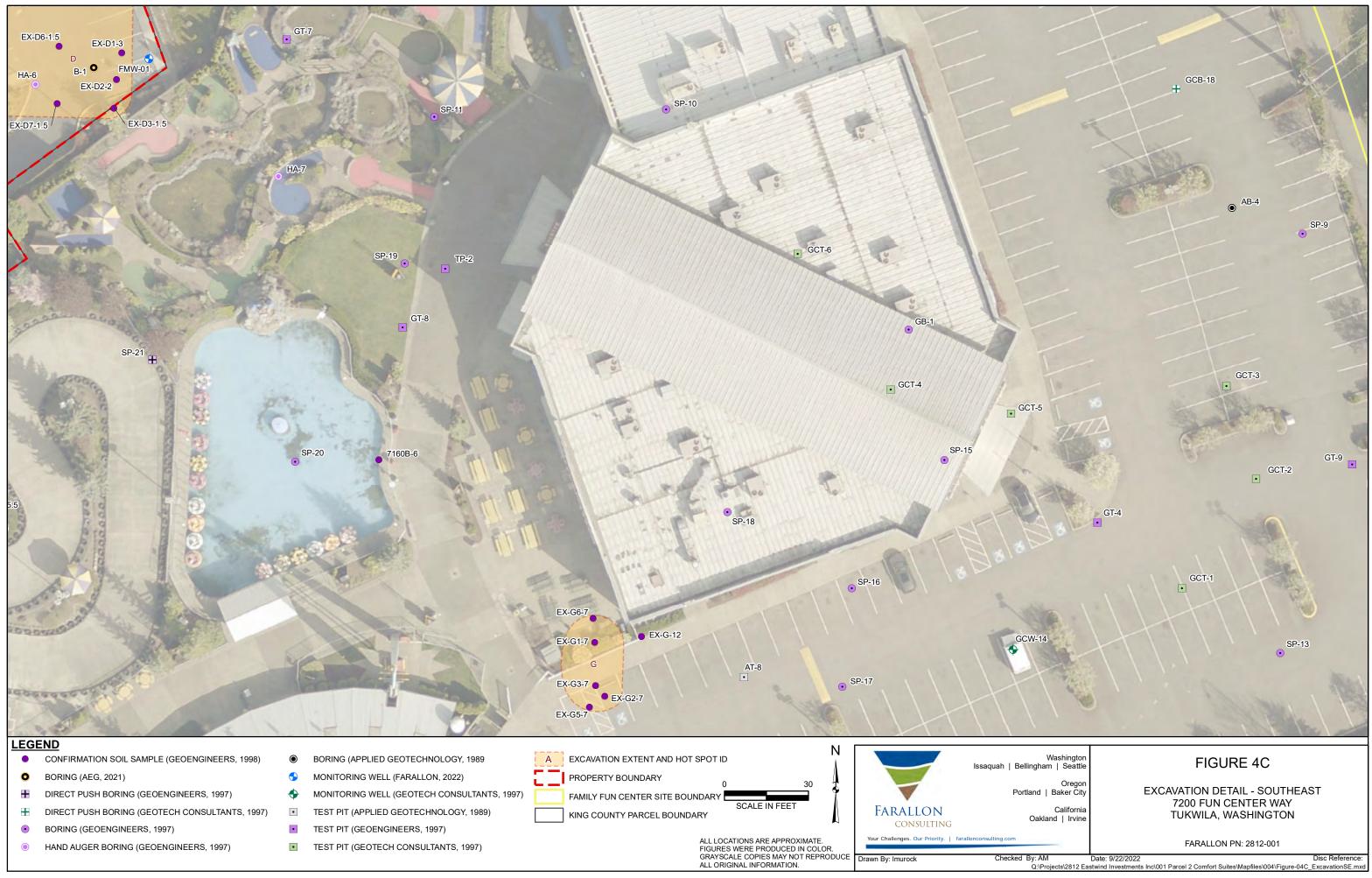
KING COUNTY PARCEL BOUNDARY

Drawn By: Imurock

ALL LOCATIONS ARE APPROXIMATE. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.

EXCAVATION DETAIL - SOUTHWEST 7200 FUN CENTER WAY TUKWILA, WASHINGTON

FARALLON PN: 2812-001


Checked By: AM Date: 9/22/2022 Disc Reference: Q\Projects\2812 Eastwind Investments Inc\001 Parcel 2 Comfort Suites\Mapfiles\004\Figure-04B_ExcavationSW.mxd

Oregon

California

Portland | Baker City

Oakland | Irvine

TABLES

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY ADDENDUM COMFORT SUITES PROPERTY 7200 FUN CENTER WAY

Farallon PN: 2812-001

Table 1 **Groundwater Elevations Comfort Suites Property** 7200 Fun Center Way Tukwila, Washington **Farallon PN: 2812-001**

Location	Total Depth (feet bgs) ¹	Screened Interval (feet bgs) ¹	Top of Casing Elevation (feet NAVD88) ²	Monitoring Date	Depth to Water (feet) ³	Water Level Elevation (feet NAVD88) ²
MW-19	30	10 to 30	NS	11/20/1997	12.39	
101 00 - 19	30	10 10 50	IND	1/26/1998	10.36	
MW-20	30	10 to 30	NS	4/1/2002	19.82	
IVI W -20	30	10 10 50	IND	10/3/2002	23.17	
MW 21	30	5 4- 20	NS	4/1/2002	19.07	
MW-21	30	5 to 30	INS	10/3/2002	22.55	
				4/1/2002	17.90	9.73
NUM 22	30	5 (20	27.(2	10/3/2002	21.36	6.27
MW-22	30	5 to 30	27.63	5/16/2022	16.73	10.90
				8/30/2022	20.27	7.36
	20	15 (20	20.02	5/16/2022	18.60	11.33
FMW-01	30	15 to 30	29.93	8/30/2022	22.16	7.77
ENUL 02	20	15 (20	20.11	5/16/2022	18.93	11.18
FMW-02	30	15 to 30	30.11	8/30/2022	22.53	7.58
EMBY 02	20	15 4- 20	28.60	5/16/2022	17.34	11.35
FMW-03	30	15 to 30	28.69	8/30/2022	21.03	7.66
	20	15 4 20	29.79	5/16/2022	17.71	11.07
FMW-04	30	15 to 30	28.78	8/30/2022	21.53	7.25

NOTES:

NS = not surveyed

--- denotes elevation not calculated ¹ In feet below ground surface (bgs).

² In feet referenced to North American Vertical Datum of 1988 (NAVD88).

³ In feet below top of well casing.

Table 2Soil Analytical Results for TPH and BTEXComfort Suites PropertyTukwila, WashingtonFarallon PN: 2812-001

						Aı	nalytical Resu	llts (milligram	s per kilogra	m)	
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Sample Date	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
Parcel 1				400 5 DI	HE 1	1.01/					
CD 2	CEL	CD 2 10	10.0		e II Environment						
SP-2	GEI	SP-2-10	10.0	10/2/1997	< 10.00	< 25.00					
Parcel 2				1997 Phase	e II Environment	al Site Assessm	ont				
HA-4	GEI	HA-4	0.5	10/6/1997	3,530	< 2,530		< 0.200	< 0.200	< 0.200	< 0.400
HA-5	GEI	HA-5	0.5	10/6/1997	566	2,250					
HA-6	GEI	HA-6	0.5	10/6/1997	< 110	701	36.0	< 0.200	< 0.200	< 0.200	< 0.400
SP-4	GEI	SP-4-8	8.0	10/2/1997	15.0	25.4					
SP-25	GEI	SP-25	1.0	10/6/1997	6,860	31,700		< 0.200	< 0.200	< 0.200	< 0.400
	•	19	98-1999 Cleanur	Action — Exc	avation C - Form	er Auto Repair	Shop/Drum	Storage Area			
EX-C2-1.5	GEI	EX-C2-1.5	1.5	5/5/1998	< 12	< 47					
			1998-19	999 Cleanup Ac	tion — Excavatio	on D - Former ()il Dump Are	a			
EX-D1-3	GEI	EX-D1-3	3.0	5/5/1998	24	88					
EX-D3-1.5	GEI	EX-D3-1.5	1.5	5/5/1998	80	250					
EX-D5-1.5	GEI	EX-D5-1.5	1.5	5/5/1998	450	830					
EX-D7-1.5	GEI	EX-D7-1.5	1.5	5/5/1998	41	190					
EX-D9-1.5	GEI	EX-D9-1.5	1.5	5/5/1998	270	710					
	1		•		Cleanup Action -		ion	1	1		
EX-S1-1.5	GEI	EX-S1-1.5	1.5	8/11/1998	45.0	96.9					
	I				22 Subsurface Inv	, j		1			
FMW-01	Farallon	FMW-01-2.5	2.5	5/12/2022	26 N	270					
FMW-02	Farallon	FMW-02-2.5	2.5	5/12/2022	35 N	280					
FMW-03	Farallon	FMW-03-5.0	5.0	5/12/2022	< 26	< 64					
FMW-04	Farallon	FMW-04-2.5	2.5	5/12/2022	31 N	380					
Parcel 3				1007 Dhog	e II Environment	al Sita Agagam	~~+				
HA-7	GEI	HA-7	0.5	10/6/1997	19.9	< 25.00		1			
HA-7 HA-8	GEI	HA-7 HA-8	0.5	10/6/1997	24.0	< 25.00					
на-о НА-11	GEI	НА-8	0.5	10/8/1997	< 10.00	< 25.00					
HA-12	GEI	HA-11 HA-12	0.5	10/8/1997	< 10.00	< 25.00					
SP-5	GEI	SP-5-18.0	18.0	10/3/1997	156	1,570					
SP-6	GEI	SP-6-4.0	4.0	10/3/1997	< 10.00	50.6					
SP-7	GEI	SP-7-30	30.0	10/2/1997	83.7	310					
SP-9	GEI	SP-9-2.0	2.0	10/2/1997	44.8	455					
SP-10	GEI	SP-10	0.5	10/6/1997	53.6	< 25.00					
SP-11	GEI	SP-11-3.0	3.0	10/3/1997	14.5	81.0					
SP-13	GEI	SP-13-4.0	4.0	10/3/1997	43.7	217					
SP-15 SP-15	GEI	SP-15-1.0	1.0	10/3/1997	40.9	285					
SP-16	GEI	SP-16-2.0	2.0	10/3/1997	< 10.00	< 25.00		< 0.200	< 0.200	< 0.200	< 0.400
SP-17	GEI	SP-17-2.0	2.0	10/3/1997	< 10.00	< 25.00		< 0.200	< 0.200	< 0.200	< 0.400
SP-18	GEI	SP-18-10.0	10.0	10/3/1997			< 5.00	< 0.0500	< 0.0500	< 0.0500	< 0.100
SP-19	GEI	SP-19-10.0	10.0	10/3/1997	13.0	54.3					
SP-20	GEI	SP-20-9.0	9.0	10/3/1997	< 10.00	< 25.00					
SP-21	GEI	SP-21-1.0	1.0	10/3/1997	11.2	65.1					
SP-22	GEI	SP-22-9.0	9.0	10/3/1997	< 10.00	< 25.00					
SP-23	GEI	SP-23-0.5	0.5	10/3/1997	3,650	359	117				
	d A Cleanup Lev	als for Sail ⁵			2,000	2,000	30/100 ⁶	0.03	7	6	9

Table 2Soil Analytical Results for TPH and BTEXComfort Suites PropertyTukwila, WashingtonFarallon PN: 2812-001

						A	nalytical Resu	lts (milligram	s per kilogra	m)	
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Sample Date	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
Parcel 3 (conti	nued)										
	1	998 UST Remova	ls and Suppleme	ntal Subsurfac	e Investigation —	- UST No. 1 - H	eating Oil Ta	nk at Former	Residence 71	60	
7160B-6	GEI	7160B-6	6.0	2/25/1998	< 10.0	< 25.0					
	1998	UST Removals an	d Supplemental	Subsurface Inv	vestigation — US	T Nos. 2 and 3	- Heating Oil	Tanks at Form	mer Residenc	e 7140	
7140B-5	GEI	7140B-5.0	5.0	2/25/1998	13.6	< 25.0					
7140EB-5.5	GEI	7140EB-5.5	5.5	2/25/1998	12.7	< 25.0					
	-	199	8 UST Removals	and Suppleme	ntal Subsurface	Investigation —	UST No. 4 -	Gasoline UST			
EX-G1-7	GEI	EX-G1-7	7.0	2/25/1998			235	< 0.0500	< 0.100	< 0.0500	10.1
EX-G2-7	GEI	EX-G2-7	7.0	2/25/1998			37.1	0.101	0.739	0.0791	3.45
EX-G3-7	GEI	EX-G3-7	7.0	2/25/1998			1,990	1.16	55.5	24.5	208
EX-G4-7	GEI	EX-G4-7	7.0	2/25/1998			< 5.00	< 0.0500	< 0.0500	< 0.0500	0.159
B-G2-12	GEI	B-G-12	12.0	2/25/1998			< 5.00	< 0.0500	< 0.0500	< 0.0500	< 0.100
			1998-199	99 Cleanup Act	ion — Excavatio	n B - Former A	uto Repair Sh	ор			
EX-B1-0.5	GEI	EX-B1-0.5	0.5	5/5/1998	< 11	< 45	< 5.6	< 0.028	< 0.028	< 0.028	< 0.028
EX-B2-1.0	GEI	EX-B2-1.0	1.0	5/5/1998	22	58	< 6.3	< 0.032	< 0.032	< 0.032	< 0.032
EX-B3-1.0	GEI	EX-B3-1.0	1.0	5/5/1998	< 12	< 47	< 5.9	< 0.029	< 0.029	< 0.029	< 0.029
EX-B4-1.0	GEI	EX-B4-1.0	1.0	5/5/1998	19	120	< 6.5	< 0.032	< 0.032	< 0.032	< 0.032
EX-B5-0.5	GEI	EX-B5-0.5	0.5	5/5/1998	25	70	< 6.3	< 0.031	< 0.031	< 0.031	< 0.031
		19	98-1999 Cleanu	p Action — Ex	cavation F - Sedi	ment Excavatio	n/Creosote-In	npacted Soil	-		
EX-F1-1.5	GEI	EX-F1-1.5	1.5	8/11/1998	24.7	98.6					
EX-F2-1.5	GEI	EX-F2-1.5	1.5	8/11/1998	34.6	123					
EX-F3-2.0	GEI	EX-F3-2.0	2.0	8/11/1998	31.6	151					
EX-F4-6	GEI	EX-F4-6	6.0	8/12/1998	36.0	116					
EX-F5-4	GEI	EX-F5-4	4.0	8/12/1998	68.2	66.7					
EX-F6-10	GEI	EX-F6-10	10.0	8/12/1998	926	503					
EX-F7-1.5	GEI	EX-F7-1.5	1.5	8/12/1998	< 10.0	< 25.0					
EX-F8-10	GEI	EX-F8-10	10.0	8/12/1998	13.8	45.5					
EX-F9-5	GEI	EX-F9-5	5.0	8/12/1998	187	208					
EX-F10-5	GEI	EX-F10-5	5.0	8/12/1998	54.5	153					
EX-F11-1.5	GEI	EX-F11-1.5	1.5	8/12/1998	< 10.0	< 25.0					
EX-F12-2.5	GEI	EX-F12-2.5	2.5	8/12/1998	26.4	32.3					
EX-F13-1.5	GEI	EX-F13-1.5	1.5	8/12/1998	34.9	93.5					
EX-F16-12	GEI	EX-F16-12	12.0	9/23/1998	160	236					
			998-1999 Cleanu	p Action — Ex	cavation H - Sed	iment along Eas	stern Propert	v Boundary			
H1-1.5	GEI	H1-1.5	1.5	8/25/1998	14.0	134					
H2-1.5	GEI	H2-1.5	1.5	8/25/1998	22.2	109					
EX-H3-1.0	GEI	EX-H3-1.0	1.0	9/23/1998	54.3	171					
					on G - Former Ga			1	1		
EX-G5-7	GEI	EX-G5-7	7.0	8/10/1998			< 5.00	< 0.0500	< 0.0500	< 0.0500	< 0.100
B-G2-12	GEI	B-G2-12	12.0	8/10/1998			< 5.00	< 0.0500	< 0.0500	< 0.0500	< 0.100
EX-G6-7	GEI	EX-G6-7	7.0	8/10/1998			< 5.00	< 0.0500	< 0.0500	< 0.0500	< 0.100
B-G3-12	GEI	B-G3-12	12.0	8/10/1998			< 5.00	< 0.0500	< 0.0500	< 0.0500	< 0.100
	d A Cleanup Lev				2,000	2,000	30/100 ⁶	0.03	7	6	9

Table 2 Soil Analytical Results for TPH and BTEX **Comfort Suites Property** Tukwila, Washington Farallon PN: 2812-001

						Aı	nalytical Resu	ılts (milligram	s per kilogra	m)	
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Sample Date	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
Southwest Gra	dy Way										
				Soil Placed Of	ff the Site in City	of Tukwila Pro	operty				
GWS-1	GEI	GWS-1	NA	9/23/1998	53.2	254					
FFC-1	GEI	FFC-1	NA	12/21/1998	48.2	176					
FFC-2	GEI	FFC-2	NA	12/21/1998	41.7	247					
FFC-3	GEI	FFC-3	NA	12/21/1998	35.0	149					
FFC-4	GEI	FFC-4	NA	12/21/1998	82.2	631					
FFC-5	GEI	FFC-5	NA	12/21/1998	< 10.0	46.2					
FFC-6	GEI	FFC-6	NA	12/21/1998	55.9	256					
MTCA Metho	d A Cleanup Lev	els for Soil ⁵			2,000	2,000	30/100 ⁶	0.03	7	6	9
NOTES						•				•	

NOTES:

Gray highlighting indicates location of sample has been excavated.

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

- denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by Washington Department of Ecology Method WDOE-TPH-D or Northwest Method NWTPH-Dx.

³Analyzed by Washington Department of Ecology Method WDOE-TPH-D or Northwest Method NWTPH-Gx.

⁴Analyzed by U.S. Environmental Protection Agency Method 8020/8021/8240.

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels

for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁶Cleanup level is 30 milligrams per kilogram if benzene is detected and 100 milligrams per kilogram if benzene is not detected.

BTEX = benzene, toluene, ethylbenzene and xylenes DRO = total petroleum hydrocarbons (TPH) as diesel-range organics Farallon = Farallon Consulting, L.L.C. GEI = GeoEngineers, Inc. GRO = TPH as gasoline-range organics

N = hydrocarbons in the oil-range are impacting the diesel-range result

NA = not applicable

ORO = TPH as oil-range organics

UST = underground storage tank

Table 3 Soil Analytical Results for PAHs **Comfort Suites Property** Tukwila, Washington Farallon PN: 2812-001

												Analy	vtical Result	ts (milligran	ns per kilogi	ram) ²							
									Non-C	Carcinogenio	PAHs								Carcinoge	enic PAHs			
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Sample Date	Naphthalene	2-Methylnaphthalene	Total Naphthalenes ³	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{4,5}
Parcel 2																							
			T	1	I					-		ite Assessm		1	1	n					T		
HA-3	GEI	HA-3	0.5	10/6/1997	< 0.0100	< 0.0100	< 0.0200	< 0.0100	< 0.0100	< 0.0100	0.0601	0.0395	< 0.0100	0.0232	0.0635	0.0137	0.0137	0.0249	< 0.0100	0.0266	< 0.0100	0.0275	0.022
HA-4	GEI	HA-4	0.5	10/6/1997	0.216	2.82	3.036	< 0.0800	< 0.0800	0.303	0.483	1.04	0.169	0.652	0.897	0.250	0.553	0.285	0.111	0.501	< 0.0800	0.140	0.370
HA-5	GEI	HA-5	0.5	10/6/1997	< 0.0200	< 0.0200	< 0.0400	< 0.0200	< 0.0200	< 0.0200	0.470	0.0235	< 0.0200	< 0.0200	0.0587	0.0436	< 0.0200	0.0553	< 0.0200	< 0.0200	< 0.0200	0.101	0.062
HA-6	GEI	HA-6	0.5	10/6/1997	< 0.0100	< 0.0100	< 0.0200	< 0.0100	0.0168	0.0124	0.0878	< 0.0100	< 0.0100	0.0154	0.105	0.0241	< 0.0100	0.0256	< 0.0100	0.0446	< 0.0100	0.0709	0.036
SP-25 Parcel 3	GEI	SP-25	1.0	10/6/1997	< 0.167	< 0.167	< 0.334	< 0.167	< 0.167	< 0.167	< 0.167	< 0.167	< 0.167	< 0.167	< 0.167	< 0.167	< 0.167	< 0.167	< 0.167	< 0.167	< 0.167	< 0.167	< 0.13
I al cel 5							1998 US	T Removals	and Supple	emental Sub	surface Inv	estigation	- LIST No. 4	- Gasoline I	UST								
EX-G3-7	GEI	EX-G3-7	7.0	2/25/1998	14.0		14.0																
Parcel 3			,										1										
							1998-	1999 Cleanu	p Action —	Excavation	F - Sedimer	nt Excavatio	n/Creosote-	Impacted S	oil								
EX-F13-12	GEI	EX-F13-12	12.0	10/8/1998	< 0.0200		< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.015
EX-F14-15	GEI	EX-F14-15	15.0	10/8/1998	< 0.0200		< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.015
EX-F15-12	GEI	EX-F15-12	12.0	10/8/1998	< 0.0200		< 0.0200	< 0.0200	< 0.0200	< 0.0200	0.0291	0.0200	< 0.0200	< 0.0200	0.0655	0.0236	< 0.0200	0.0218	< 0.0200	< 0.0200	< 0.0200	0.0218	0.031
EX-F16-12	GEI	EX-F16-12	12.0	9/23/1998	0.171		0.171	0.161	0.834	0.417	1.63	3.25	0.256	1.51	4.77	2.41	1.51	2.82	0.768	1.50	0.218	1.73	3.10
EX-F17-15	GEI	EX-F17-15	15.0	12/7/1998	0.0653		0.0653	< 0.0500	0.178	0.0914	0.270	0.235	< 0.0500	0.178	0.400	0.231	0.178	0.244	0.0609	0.144	< 0.0500	0.270	0.310
EX-F18-12	GEI	EX-F18-12	12.0	12/7/1998	< 0.0500		< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.038
EX-F19-18	GEI	EX-F19-18	18.0	1/21/1999	< 0.0100		< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0234	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0076
EV II 5	OFI		5.0	10/0/1000	< 0.0500	-		Cleanup Act		1	-	-	1			< 0.0500	< 0.0500	0.0522	< 0.0500	< 0.0500	< 0.0500	< 0.0500	0.041
EX-I1-5	GEI	EX-I1-5	5.0	10/8/1998	< 0.0500		< 0.0500	< 0.0500 4.800 ⁷	< 0.0500	< 0.0500	< 0.0500	0.0755 3,200 ⁷	< 0.0500	0.0666	0.102	< 0.0500	< 0.0500	0.0533	< 0.0500	< 0.0500	< 0.0500	< 0.0500	0.041
MTCA Method	-						5	4,800	NE	24,0007	NE	3,200	3,2007	NE	2,4007								0.1
MTCA Method Degrees Celsius		oil Protective of G	roundwater	Vadose @ 13	4.5	NE	NE	49	NE	1,100	NE	630	51	NE	330								3.9
MTCA Method	B Levels for S	oil Protective of G	roundwater	Saturated ⁷	0.24	NE	NE	2.5	NE	57	NE	32	2.6	NE	16								0.2
NOTES:														•	•								

Gray highlighting indicates location of sample has been excavated.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8270.

³Sum of naphthalene and 2-methylnaphthalene.

⁴Total cPAHs derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁵For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

⁶Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁷Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State MTCA, Standard Method B Formula Values for Soil from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

GEI = GeoEngineers, Inc.

NA = not applicable

NE = not established

PAHs = polycyclic aromatic hydrocarbons

TEC = toxic equivalent concentration

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

Table 4Soil Analytical Results for PCBsComfort Suites PropertyTukwila, WashingtonFarallon PN: 2812-001

			Comula					Analytica	l Results (mil	ligrams per k	ilogram) ²			
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Sample Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268	Total PCBs
Parcel 2														
					1997 Phase	II Environm	ental Site Ass	sessment						
HA-1	GEI	HA-1	0.5	10/6/1997	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.45
HA-2	GEI	HA-2	0.5	10/6/1997	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.45
Parcel 3														
					1997 Phase	II Environm	ental Site Ass	sessment						
SP-15	GEI	SP-15-1.0	1.0	10/3/1997	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.45
SP-21	GEI	SP-21-1.0	1.0	10/3/1997	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.45
MTCA Method A	Cleanup Level for	Soil ³												1.0

NOTES:

Gray highlighting indicates location of sample has been excavated.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8081.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington

Administrative Code, as revised 2013.

GEI = GeoEngineers, Inc. PCB = polychlorinated biphenyl

Table 5 Soil Analytical Results for Organochlorine Pesticides **Comfort Suites Property** Tukwila, Washington Farallon PN: 2812-001

									Analytical	Results (milli	grams per ki	logram) ²								Analytical	Results (mil	ligrams per l	kilogram) ²			
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Sample Date	Aldrin	alpha-BHC	beta-BHC	delta-BHC	gamma-BHC (Lindane)	alpha-Chlordane	gamma-Chlordane	Chlordane	4,4'-DDD	4,4'-DDE	4,4'-DDT	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Endrin	Endrin Aldehyde	Endrin Ketone	Heptachlor	Heptachlor Epoxide	Methoxychlor	Toxaphene
Parcel 2																										
											1997 Phase	II Environm	ental Site As	sessment												
HA-1	GEI	HA-1	0.5	10/6/1997	< 0.00100	< 0.000500	< 0.000900	< 0.000600	< 0.00100	< 0.000800	0.00169	< 0.00100	0.00553	< 0.00100	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200		< 0.00100	< 0.00100	< 0.00400	< 0.0500
HA-2	GEI	HA-2	0.5	10/6/1997	< 0.00100	< 0.000500	< 0.000900	< 0.000600	< 0.00100	0.0496	0.0464	0.738	< 0.00100	< 0.00100	0.00936	0.00516	< 0.00100	< 0.00200	< 0.00100	< 0.00200	< 0.00200		< 0.00100	< 0.00100	< 0.00400	< 0.0500
									1	998-1999 Cle	anup Action	- Excavatio	on A - Forme	r Pesticide S	torage Area											
EX-A1-1.5	GEI	EX-A1-1.5	1.5	5/5/1998	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020			< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0020	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0039	< 0.0020	< 0.0020	< 0.20	< 0.39
EX-A2-1.5	GEI	EX-A2-1.5	1.5	5/5/1998	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019			< 0.0038	< 0.0038	< 0.0038	< 0.0038	< 0.0038	< 0.0019	< 0.0038	< 0.0038	< 0.0038	< 0.0038	< 0.0038	< 0.0019	< 0.0019	< 0.019	< 0.038
EX-A4-0.75	GEI	EX-A4-0.75	0.75	5/5/1998	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020			< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0020	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0020	< 0.0020	< 0.20	< 0.40
Parcel 3				•	•																				•	
									1	998-1999 Cle	anup Action	- Excavatio	on A - Forme	r Pesticide S	torage Area											
EX-A3-1.5	GEI	EX-A3-1.5	1.5	5/5/1998	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018			< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0018	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0018	< 0.0018	< 0.18	< 0.36
EX-A5-0.75	GEI	EX-A5-0.75	0.75	5/5/1998	< 0.0019	< 0.0019	< 0.0019	< 0.0019	< 0.0019			< 0.0037	< 0.0037	< 0.0037	< 0.0037	< 0.0037	< 0.0019	< 0.0037	< 0.0037	< 0.0037	< 0.0037	< 0.0037	< 0.0019	< 0.0019	< 0.19	< 0.37
MTCA Cleanup	Levels for Soil ³	•		•	0.059	0.16	0.56	NE	0.014	40	40	2.9	2.4	2.9	34	0.063	4	30	480	24	NE	NE	0.22	0.11	400	0.91
NOTES:																										

 NUTES:

 Gray highlighting indicates location of sample has been excavated.

 < denotes analyte not detected at or exceeding the reporting limit listed.</td>

 --- denotes sample not analyzed.

 ¹Depth in feet below ground surface.

 ²Analyzed by U.S. Environmental Protection Agency Method 8081.

³Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Standard Method B Formula Values for Soil from CLARC Master spreadsheet, https://coology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC, unless otherwise noted.

BHC = hexachlorocyclohexane DDD = dichlorodiphenyldichloroethane DDE = dichlorodiphenyldichloroethylene DDT = dichlorodiphenyltrichloroethane GEI = GeoEngineers, Inc. NE = not established

⁴Washington State MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

Table 6Soil Analytical Results for MetalsComfort Suites PropertyTukwila, WashingtonFarallon PN: 2812-001

								-	-	Analytical Re	sults (millig	grams per k	ilogram) ²					
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Sample Date	Antimony	Arsenic	Barium	Bervllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
Parcel 2	Sampled Dy	Identification	(itet)	Sample Date	Timbinionj	111.501110	2411411	2019	Caulifuli	Cintonnum	copper	Ltau	whereary	INCKCI	belemum	Silver	Inamuni	Zinc
						1997	Phase II En	vironmental S	te Assessme	nt								
HA-3	GEI	HA-3	0.5	10/6/1997	< 5.00	< 10.0	48.0	< 0.250	0.715	23.6	41.2	127	0.119	37.8	< 7.50	< 1.00	< 10.0	138
HA-4	GEI	HA-4	0.5	10/6/1997	< 5.00	< 10.0	36.0	< 0.250	0.664	12.6	29.2	146	0.0535	18.0	< 7.50	< 1.00	< 10.0	130
HA-5	GEI	HA-5	0.5	10/6/1997	< 5.00	< 10.0	58.3	< 0.250	< 0.250	24.0	29.2	71.8	0.0333	71.5	< 7.50	< 1.00	< 10.0	90.9
SP-4	GEI	SP-4-8	8.0	10/2/1997	< 5.00	< 10.0	49.0	< 0.250	< 0.250	34.3	10.6	10.4	< 0.0500	22.5	< 7.50	< 1.00	< 10.0	37.5
SP-25	GEI	SP-25	1.0	10/6/1997	< 5.00	< 10.0	48.1	< 0.250	< 0.250	17.6	12.1	< 10.0	0.0575	22.6	< 7.50	< 1.00	< 10.0	27.5
51-25	GLI	51-25	1.0	10/0/1997				upplemental S			12.1	10.0	0.0375	22.0	< 7.50	< 1.00	10.0	21.5
98012301-1	GEI	98012301-1-8	8.0	11/20/1997		7.69				-		168						
98012301-2	GEI	98012301-2-8	8.0	11/20/1997		4.5						6.14						
98012301-2	UEI	98012301-2-8	0.0	11/20/1997		-		ip Action — S	lag Evenyati			0.14						
EX-S3-2.0	GEI	EX-S3-2.0	2.0	8/15/1998	< 0.500	2.27	56.8	< 0.500	< 0.500	22.0	18.8	23.6	< 0.100	27.6	< 0.500	< 0.500	< 0.500	38.5
EA-35-2.0	0E1	EA-55-2.0	2.0	8/13/1998	< 0.300			vironmental S			10.0	23.0	< 0.100	27.0	< 0.300	< 0.300	< 0.300	38.5
B-1	AEG	B1-21	21.0	2/19/2021				r	< 1.0	8.1		0.0	< 0.5					
B-1 B-2	AEG	B1-21 B2-21	21.0	2/19/2021		14 12			< 1.0	× 5.0		9.0 7.8	< 0.5					
B-2 B-3	AEG	B2-21 B3-21	21.0	2/19/2021		5.6			< 1.0	< 5.0		< 5.0	< 0.5					
B-3 B-4	AEG	B3-21 B4-21	21.0	2/19/2021		< 5.0			< 1.0	< 5.0		< 5.0	< 0.5					
B-4 B-5	AEG	B4-21 B5-6	6.0	2/19/2021		< <u>3.0</u> 31			1.1	28		150	< 0.5					
D-3	ALU	B3-0	0.0	2/19/2021		51		surface Invest		20		150	< 0.5					
FMW-01	Farallon	FMW-01-16.0	16.0	5/12/2022		< 13		1	< 0.67	10		- 67	< 0.34					
FMW-01 FMW-02	Farallon	FMW-01-16.0 FMW-02-18.0	16.0 18.0	5/12/2022		< 13			< 0.67	18 14		< 6.7 < 6.1	< 0.34					
FMW-02 FMW-02	Farallon	FMW-02-7.0	7.0	5/12/2022		< 12			< 0.61	32		27	< 0.31					
FMW-02 FMW-03	Farallon	FMW-02-7.0	17.0	5/12/2022		< 12			< 0.59	6.1		< 6.4	< 0.29					
FMW-04	Farallon	FMW-04-15.0	17.0	5/12/2022		< 13			< 0.68	15		< 6.8	< 0.32					
Parcel 3	Paranon	110100-04-13.0	15.0	5/12/2022		< 1 4			< 0.08	15		< 0.8	< 0.34					
						1997	Phase II En	vironmental S	ite Assessme	nt								
HA-9	GEI	HA-9	0.5	10/6/1997	< 5.00	< 10.0	19.1	< 0.250	< 0.250	18.9	62.3	15.1	0.0628	23.7	< 7.50	< 1.00	< 10.0	55.2
HA-10	GEI	HA-10	0.5	10/6/1997	< 5.00	< 10.0	63.4	< 0.250	< 0.250	14.2	24.9	< 10.0	0.103	11.9	< 7.50	< 1.00	< 10.0	60.2
SP-7	GEI	SP-7-30	30.0	10/2/1997	< 5.00	< 10.0	281	< 0.250	< 0.250	1,150	77.4	134	< 0.0500	131	< 7.50	2.17	< 10.0	103
SP-9	GEI	SP-9-2.0	2.0	10/3/1997	< 5.00	< 10.0	42.9	< 0.250	< 0.250	17.0	23.1	26.0	0.0842	17.9	< 7.50	< 1.00	< 10.0	55.7
SP-10	GEI	SP-10	0.5	10/6/1997	< 5.00	< 10.0	49.4	< 0.250	< 0.250	41.0	22.8	19.1	0.0814	18.2	< 7.50	< 1.00	< 10.0	47.8
SP-11	GEI	SP-11-3.0	3.0	10/3/1997	< 5.00	< 10.0	31.1	< 0.250	< 0.250	12.5	13.8	< 10.0	0.0645	10.0	< 7.50	< 1.00	< 10.0	30.1
SP-15	GEI	SP-15-1.0	1.0	10/3/1997	< 5.00	< 10.0	38.8	< 0.250	< 0.250	15.4	17.8	15.7	0.0860	15.5	< 7.50	< 1.00	< 10.0	38.6
SP-21	GEI	SP-21-1.0	1.0	10/3/1997	< 5.00	< 10.0	40.6	< 0.250	< 0.250	9.63	13.7	18.2	0.0538	8.94	< 7.50	< 1.00	< 10.0	33.9
SP-23	GEI	SP-23-0.5	0.5	10/3/1997	< 5.00	30.4		< 0.250	< 0.250	196	290	85.5	< 0.0500	2,720	< 7.50	< 1.00	< 10.0	46.0
					19	98 UST Ren	novals and S	upplemental S	Subsurface In	ivestigation								
98012301-3	GEI	98012301-3-8	8.0	11/20/1997		3.67						6.31						
MTCA Cleanup Lo	evels for Soil ³				32 ⁴	20	16,000 ⁴	160 ⁴	2	2,000	3,200 ⁴	250	2	1,600 ⁴	400 ⁴	400 ⁴	0.804	24,000 ⁴
MTCA Method B Degrees Celsius ⁵		for Soil Protectiv	e of Groundwate	r Vadose @ 13	5.4	2.9	1,600	63	0.69	480,000	280	3,000	2.1	130	5.2	14	0.23	6,000
MTCA Method B	Cleanup Levels	for Soil Protectiv	e of Groundwate	r Saturated ⁵	0.27	0.15	83	3.2	0.035	24,000	14	150	0.1	6.5	0.26	0.69	0.011	300

Table 6Soil Analytical Results for MetalsComfort Suites PropertyTukwila, WashingtonFarallon PN: 2812-001

										Analytical Re	esults (millig	rams per k	ilogram) ²					
Sample Location	Sampled By	Sample Identification	Sample Depth (feet) ¹	Sample Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
Parcel 3 (continued	d)																	
					1998-1	999 Cleanu	p Action —	Excavation B	- Former Au	to Repair Sh	ор							
EX-B1-0.5	GEI	EX-B1-0.5	0.5	5/5/1998	< 3.0	4.2	52	< 0.30	< 0.30	8.6	16	15	< 0.11	8.7	< 0.60	< 0.61	< 0.30	84
EX-B2-1.0	GEI	EX-B2-1.0	1.0	5/5/1998	< 3.4	11	96	< 0.34	0.40	13	28	110	0.27	11	< 0.69	< 0.69	< 0.35	110
EX-B3-1.0	GEI	EX-B3-1.0	1.0	5/5/1998	< 3.2	3.8	58	< 0.32	< 0.32	11	20	25	< 0.11	9.5	< 0.64	< 0.63	< 0.32	55
EX-B4-1.0	GEI	EX-B4-1.0	1.0	5/5/1998	< 3.5	13	400	0.59	1.00	30	51	570	0.15	16	< 1.8	< 0.71	< 0.35	180
EX-B5-0.5	GEI	EX-B5-0.5	0.5	5/5/1998	< 3.3	10	300	0.33	0.87	15	47	210	0.13	21	< 0.64	< 0.67	< 0.32	290
EX-B6-2	GEI	EX-B6-2	2.0	8/10/1998								6.26						
EX-B7-2	GEI	EX-B7-2	2.0	8/10/1998								3.75						
					199	8-1999 Clea	nup Action	- Excavation	E - Chromi	um Hot Spot								
EX-E1-15.5	GEI	EX-E1-15.5	15.5	10/8/1998						95.9								
EX-E2-14.0	GEI	EX-E2-14.0	14.0	10/8/1998						97.1								
				199	8-1999 Clear	nup Action	— Excavatio	n F - Sedimer	t Excavation	n/Creosote-In	npacted Soil							
EX-F6-10	GEI	EX-F6-10	10.0	8/12/1998	< 0.500	8.68		< 0.500	< 0.500	10.6	21.6	41.9	0.128	34.7	< 0.500	1.16	< 0.500	37.5
EX-F13-12	GEI	EX-F13-12	12.0	10/8/1998	< 0.500	5.82		< 0.500	< 0.500	38.4	38.0	40.8	0.116	37.6	< 0.500	< 0.500	< 0.500	65.7
EX-F14-15	GEI	EX-F14-15	15.0	10/8/1998	< 0.500	5.45		< 0.500	< 0.500	12.1	30.5	16.7	0.103	11.3	< 0.500	< 0.500	< 0.500	54.2
EX-F15-12	GEI	EX-F15-12	12.0	10/8/1998	< 0.500	3.65		< 0.500	< 0.500	22.8	40.0	23.9	< 0.100	25.7	< 0.500	< 0.500	< 0.500	46.7
EX-F16-12	GEI	EX-F16-12	12.0	9/23/1998	< 0.500	3.14		< 0.500	< 0.500	25.2	28.9	8.66	0.128	24.2	< 0.500	< 0.500	< 0.500	43.0
				1998-199	9 Cleanup A	ction — Ex	cavation I - (Creosote-Trea	ted Timbers	in Detention	Pond Excav	vation						
EX-I1-5	GEI	EX-I1-5	5.0	10/8/1998	< 0.500	3.70		< 0.500	0.543	22.9	25.3	24.5	< 0.100	25.3	< 0.500	< 0.500	< 0.500	45.5
MTCA Cleanup Lo	evels for Soil ³				32 ⁴	20	16,000 ⁴	160 ⁴	2	2,000	3,200 ⁴	250	2	1,600 ⁴	400 ⁴	400⁴	0.80 ⁴	24,000 ⁴
MTCA Method B (Degrees Celsius ⁵	Cleanup Levels	for Soil Protectiv	e of Groundwate	r Vadose @ 13	5.4	2.9	1,600	63	0.69	480,000	280	3,000	2.1	130	5.2	14	0.23	6,000
MTCA Method B	Cleanup Levels	for Soil Protectiv	e of Groundwate	r Saturated ⁵	0.27	0.15	83	3.2	0.035	24,000	14	150	0.1	6.5	0.26	0.69	0.011	300
NOTES:										1			<u> </u>		1			

Gray highlighting indicates location of sample has been excavated.

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

--- denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency 6000/7000 series methods.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013, unless otherwise noted.

⁴Washington State Department of Ecology Cleanup Levels and Risk Calculations under MTCA Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

⁵Washington State Cleanup Levels and Risk Calculations under the MTCA Standard Method B Formula Values for Soil from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

AEG = Associated Environmental Group, LLC Farallon = Farallon Consulting, L.L.C. GEI = GeoEngineers, Inc. UST = underground storage tank

Table 7Groundwater Analytical Results for TPH and BTEX
Comfort Suites Property
Tukwila, Washington
Farallon PN: 2812-001

						Analytic	al Results (n	nicrograms p	er liter)		
Sample Location	Sampled By	Sample Date	Sample Identification	DRO ¹	ORO ¹	TPH¹ (C10 to C36)	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³
				Reconnaissa	ance Boring Gr	oundwater Samp	les		•		
SP-2	GEI	10/2/1997	SP-2	< 250	< 750						
SP-3	GEI	10/2/1997	SP-3	< 250	< 750						
SP-4	GEI	10/2/1997	SP-4	< 250	< 750		< 50.00	< 1.00	1.32	< 1.00	< 2.00
SP-5	GEI	10/3/1997	SP-5	< 250	< 750		< 50.00	< 1.00	< 1.00	< 1.00	< 2.00
SP-18	GEI	10/3/1997	SP-18				< 50.00				
SP-19	GEI	10/3/1997	SP-19	982	1,350						
SP-23	GEI	10/3/1997	SP-23	448	< 750		58.9				
				Monitor	ing Well Grour	ndwater Samples					
GCW-16	GEI	10/8/1997	GCW-16	< 250	< 500		< 50.00				
	GEI	4/1/2002	MW-20	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
	GEI	10/3/2002	MW-20	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
MW-20	GEI	4/14/2004	MW-20	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
WI W-20	GEI	7/15/2004	MW-20	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
	GEI	11/4/2004	MW-20	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
	GEI	1/19/2005	MW-20	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
	GEI	4/1/2002	MW-21	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
	GEI	10/3/2002	MW-21	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
MW-21	GEI	4/14/2004	MW-21	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
IVI VV -2.1	GEI	7/15/2004	MW-21	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
	GEI	11/4/2004	MW-21	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
	GEI	1/19/2005	MW-21	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
	GEI	4/1/2002	MW-22	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
	GEI	10/3/2002	MW-22	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
	GEI	4/14/2004	MW-22	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
MW-22	GEI	7/15/2004	MW-22	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
IVI VV - 22	GEI	11/4/2004	MW-22	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
	GEI	1/19/2005	MW-22	< 130	< 250		< 50.0	< 1.00	< 1.00	< 1.00	< 3.00
	Farallon	5/16/2022	MW-22-051622			< 270					
	Farallon	8/30/2022	MW-22-083022	< 160	< 220						
MTCA Method	A Cleanup Le	evel for Ground	water ⁴	500	500	500	800/1,000 ⁵	5	1,000	700	1,000

Table 7Groundwater Analytical Results for TPH and BTEX
Comfort Suites Property
Tukwila, Washington
Farallon PN: 2812-001

					Analytical Results (micrograms per liter)							
Sample Location	Sampled By	Sample Date	Sample Identification	DRO ¹	ORO ¹	TPH ¹ (C10 to C36)	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³	
			Ν	Ionitoring W	ell Groundwate	er Samples (conti	nued)					
FMW-01	Farallon	5/16/2022	FMW-01-051622			490						
F1VI W -01	Farallon	8/30/2022	FMW-01-083022	< 170	< 230							
FMW-02	Farallon	5/16/2022	FMW-02-051622			380						
F1VI W-02	Farallon	8/30/2022	FMW-02-083022	180	< 210							
FMW-03	Farallon	5/16/2022	FMW-03-051622			< 280						
11WI W -03	Farallon	8/30/2022	FMW-03-083022	180	260							
FMW-04	Farallon	5/16/2022	FMW-04-051622			< 280						
1°1v1 W -04	Farallon	8/30/2022	FMW-04-083022	< 170	< 220							
MTCA Method A	MTCA Method A Cleanup Level for Groundwater ⁴			500	500	500	800/1,000 ⁵	5	1,000	700	1,000	

NOTES:

Results in **bold** and highlighted yellow denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or above the reporting limit listed.

--- denotes sample not analyzed.

¹Analyzed by Washington Department of Ecology Method WDOE-TPH-D or Northwest Method NWTPH-Dx.

²Analyzed by Washington Department of Ecology Method WDOE-TPH-D or Northwest Method NWTPH-Gx.

³Analyzed by U.S. Environmental Protection Agency Method 8021/8240.

⁴Washington State Model Toxics Control Act Cleanup Regulation Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013.

⁵Cleanup level is 800 micrograms per liter if benzene is detected and 1,000 micrograms per liter if benzene is not detected.

BTEX = benzene, toluene, ethylbenzene, and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics GEI = GeoEngineers, Inc.

GRO = TPH as gasoline-range organics

ORO = TPH as oil-range organics

TPH (C10 to C36) = total petroleum hydrocarbons quantified as a single product within the carbon range of C10 to C36 (diesel- and oil-range)

2 of 2

Table 8 Groundwater Analytical Results for Metals **Comfort Suites Property** 7200 Fun Center Way Tukwila, Washington

Farallon PN: 2812-001

		-	-										Faral	<u>lon PN</u>	: 2812-0)01															
						-			Analy	tical Results	(micrograms	s per liter) ¹				-						<u>. </u>	Analytic	al Results (micrograms	s per liter	r) ¹				
Sample	Sampled			Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
Location	By	Sample Date	Sample Identification	Antimony	Antimony	Arsenic	Arsenic	Barium		Beryllium				Chromium	Chromium	Copper	Copper	Lead	Lead	Mercury	Mercury	Nickel	Nickel		Selenium			Thallium	Thallium	Zinc	Zinc
									Reconn	aissance Bori	ng Groundw		es										Reconnais	sance Borin	g Groundw		nples				
SP-2	GEI	10/2/1997	SP-2	< 100		< 4.00		< 10.0		< 5.00		< 5.00		< 10.0		< 30.0		< 2.00		< 1.00		< 30.0		< 5.00		< 20.0		< 200		< 20.0	
SP-3	GEI	10/2/1997	SP-3	< 100		< 4.00		16.5		< 5.00		< 5.00		< 10.0		< 30.0		< 2.00		< 1.00		< 30.0		< 5.00		< 20.0		< 200		172	
SP-4	GEI	10/2/1997	SP-4	< 100		69.4		19.6		< 5.00		< 5.00		< 10.0		< 30.0		< 2.00		< 1.00		< 30.0		< 5.00		< 20.0		< 200		< 20.0	
SP-5	GEI	10/3/1997	SP-5	< 100		68.4		54.2		< 5.00		< 5.00		< 10.0		< 30.0		< 2.00		< 1.00		< 30.0		< 5.00		< 20.0		< 200		< 20.0	
SP-18	GEI	10/3/1997	SP-18																< 100												
SP-19	GEI	10/3/1997	SP-19		< 100		< 4.00		38.3		< 5.00		< 5.00		< 10.0		< 30.0		< 2.00		< 1.00		< 30.0		< 5.00		< 20.0		< 2.00		< 20.0
SP-23	GEI	10/3/1997	SP-23 B1-W		< 100		< 4.00		13.3		< 5.00		< 5.00		< 10.0		< 30.0		< 2.00		< 1.00		59.4		< 5.00		< 20.0		< 2.00		< 20.0
B-1	AEG	2/19/2021	B1-W B2-W			150 47						4		21				150 79		< 0.100											
B-2 B-3	AEG AEG	2/19/2021 2/19/2021	B2-W B3-W			47 88						10 4.1		< 5.0				84		< 0.100											
B-3 B-4	AEG	2/19/2021	B3-W B4-W			72						1.5		< 5.0				15		< 0.100											
D-4	ALU	2/19/2021	D4-W			12				itoring Well				< 5.0				15		< 0.100				oring Well G							
GCW-16	GEI	10/8/1997	GCW-16	< 100		6.60		42.3		< 5.00		< 5.00		< 10.0		< 30.0		< 2.00		< 1.00		< 30.0		35.0		< 20.0		< 200		< 20.0	
	GEI	11/20/1997	MW-19		< 100		< 4.00				< 5.00		< 5.00		< 10.0		< 30.0		< 2.00		< 1.00		< 30.0		< 5.00		< 20.0		< 2.00		< 20.0
MW-19	GEI	1/23/1998	MW-19				< 1.00																								
	GEI	4/1/2002	MW-20			33	25							< 10	< 10			7	< 4			< 20	< 20								
	GEI	10/3/2002	MW-20			72	55							< 10	< 10			< 3	< 3			< 20	< 20								
1.000	GEI	4/14/2004	MW-20			20	< 5							9	< 7			7	< 3			20	< 20								
MW-20	GEI	7/15/2004	MW-20			40	26							62	< 7			58	< 3			400	< 20								
	GEI	11/4/2004	MW-20			20	11							76	10			68	17			100	20								
	GEI	1/19/2005	MW-20			15	10							45	< 7			20	< 3			20	< 20								
	GEI	4/1/2002	MW-21			170	77							10	< 10			< 4	< 4			< 20	< 20								
	GEI	10/3/2002	MW-21			62	41							< 10	< 10			< 3	< 3			< 20	< 20								
MW-21	GEI	4/14/2004	MW-21			21	9							100	< 7			4	< 3			< 20	< 20								
1110 21	GEI	7/15/2004	MW-21			19	10							59	< 7			17	< 3			< 20	< 20								
	GEI	11/4/2004	MW-21			21	21							15	7			7	5			< 20	< 20								
	GEI	1/19/2005	MW-21			50	15							< 7	< 7			3	< 3			< 20	< 20								
	GEI	4/1/2002	MW-22			5	< 5							< 10	< 10			< 4	< 4			< 20	< 20								
	GEI	10/3/2002	MW-22			12	6							< 10	< 10			< 3	< 3			< 20	< 20								
	GEI	4/14/2004	MW-22			9	< 5							10	< 7			9	< 3			< 20	< 20								
MW-22	GEI	7/15/2004	MW-22			15	7							33	< 7			30	< 3			< 20	< 20								
	GEI	11/4/2004	MW-22			12	10							22	< 7			17	14			20	< 20								
	GEI	1/19/2005	MW-22			6	< 5							10	< 7			17	< 3			30	< 20								
	Farallon	5/16/2022	MW-22-051622				4.5						< 4.0		< 10				< 1.0		< 0.50										
	Farallon	8/30/2022	MW-22-083022				9.9						< 4.0		< 10				< 1.0		< 0.50										
MTCA Clea	nup Levels	for Groundwat	er	6	5.4 ³		5	3,	200 ³		2 ³		5		50		540 ³		15		2	-	320 ³	-	0 ³		80 ³	0.1	.16 ³	4,8	800 ³
	F 11	5/16/2022	EN 101 051 (22		1	1		1		g Well Groun		î -			- 10		1		-10	<u> </u>	10.50	M		Vell Ground		ples (con					1
FMW-01	Farallon	5/16/2022	FMW-01-051622				64						< 4.0		< 10				< 1.0		< 0.50										
	Farallon	8/30/2022	FMW-01-083022				35						< 4.0		< 10				< 1.0		< 0.50										
FMW-02	Farallon	5/16/2022	FMW-02-051622				66						< 4.0		< 10				< 1.0		< 0.50										
	Farallon	8/30/2022	FMW-02-083022				49						< 4.0		< 10				< 1.0		< 0.50										
FMW-03	Farallon	5/16/2022	FMW-03-051622				6.8						< 4.0		< 10				< 1.0		< 0.50										
	Farallon	8/30/2022	FMW-03-083022				8.1						< 4.0		< 10				< 1.0		< 0.50										
FMW-04	Farallon	5/16/2022	FMW-04-051622				16						< 4.0		< 10				< 1.0		< 0.50										
	Farallon	8/30/2022	FMW-04-083022				27						< 4.0		< 10				< 1.0		< 0.50										
MTCA Clea	nup Levels	for Groundwat	er"	6	5.4 ³		5	3,	,200 ³	3	2^{3}		5		50	(640 ³		15		2	3	320 ³	8	60 ³		80 ³	0.	.16 ³	4,8	800 ³

MTCA Creating LAVES ACCENTING AND ADDRESS AND ADDRESS

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless

²Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Standard Method B Formula Values for Groundwater from CLARC Master spreadsheet, https://cology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

ATTACHMENT A LABORATORY ANALYTICAL REPORT

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY ADDENDUM COMFORT SUITES PROPERTY 7200 FUN CENTER WAY

Farallon PN: 2812-001

September 9, 2022

Amanda Meugniot Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 2812-001 Laboratory Reference No. 2208-347

Dear Amanda:

Enclosed are the analytical results and associated quality control data for samples submitted on August 31, 2022.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 9, 2022 Samples Submitted: August 31, 2022 Laboratory Reference: 2208-347 Project: 2812-001

Case Narrative

Samples were collected on August 30, 2022 and received by the laboratory on August 31, 2022. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

2

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-01-083022					
Laboratory ID:	08-347-01					
Diesel Range Organics	ND	0.17	NWTPH-Dx	9-7-22	9-7-22	
Lube Oil Range Organics	ND	0.23	NWTPH-Dx	9-7-22	9-7-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	FMW-02-083022					
Laboratory ID:	08-347-02					
Diesel Range Organics	0.18	0.16	NWTPH-Dx	9-7-22	9-7-22	
Lube Oil Range Organics	ND	0.21	NWTPH-Dx	9-7-22	9-7-22	
Surrogate:	Percent Recovery	Control Limits		•••==		
o-Terphenyl	95	50-150				
Client ID:	FMW-03-083022					
Laboratory ID:	08-347-03					
Diesel Range Organics	0.18	0.17	NWTPH-Dx	9-7-22	9-7-22	
Lube Oil Range Organics	0.26	0.23	NWTPH-Dx	9-7-22	9-7-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	FMW-04-083022					
Laboratory ID:	08-347-04					
Diesel Range Organics	ND	0.17	NWTPH-Dx	9-7-22	9-7-22	
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	9-7-22	9-7-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	110	50-150				
Client ID:	MW-22-083022					
Laboratory ID:	08-347-05					
Diesel Range Organics	ND	0.16	NWTPH-Dx	9-7-22	9-7-22	
Lube Oil Range Organics	ND	0.22	NWTPH-Dx	9-7-22	9-7-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3

DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0907W1					
Diesel Range Organics	ND	0.12	NWTPH-Dx	9-7-22	9-7-22	
Lube Oil Range Organics	ND	0.16	NWTPH-Dx	9-7-22	9-7-22	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				

RPD	Linait	
	Limit	Flags
9	NA	
	9	9 NA

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	FMW-01-083022					
Laboratory ID:	08-347-01					
Arsenic	35	3.0	EPA 200.8		9-6-22	
Cadmium	ND	4.0	EPA 200.8		9-6-22	
Chromium	ND	10	EPA 200.8		9-6-22	
Lead	ND	1.0	EPA 200.8		9-6-22	
Mercury	ND	0.50	EPA 7470A		9-2-22	

Client ID:	FMW-02-083022			
Laboratory ID:	08-347-02			
Arsenic	49	3.0	EPA 200.8	9-6-22
Cadmium	ND	4.0	EPA 200.8	9-6-22
Chromium	ND	10	EPA 200.8	9-6-22
Lead	ND	1.0	EPA 200.8	9-6-22
Mercury	ND	0.50	EPA 7470A	9-2-22

Client ID:	FMW-03-083022			
Laboratory ID:	08-347-03			
Arsenic	8.1	3.0	EPA 200.8	9-6-22
Cadmium	ND	4.0	EPA 200.8	9-6-22
Chromium	ND	10	EPA 200.8	9-6-22
Lead	ND	1.0	EPA 200.8	9-6-22
Mercury	ND	0.50	EPA 7470A	9-2-22

Client ID:	FMW-04-083022			
Laboratory ID:	08-347-04			
Arsenic	27	3.0	EPA 200.8	9-6-22
Cadmium	ND	4.0	EPA 200.8	9-6-22
Chromium	ND	10	EPA 200.8	9-6-22
Lead	ND	1.0	EPA 200.8	9-6-22
Mercury	ND	0.50	EPA 7470A	9-2-22

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

DISSOLVED METALS EPA 200.8/7470A

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-22-083022					
Laboratory ID:	08-347-05					
Arsenic	9.9	3.0	EPA 200.8		9-6-22	
Cadmium	ND	4.0	EPA 200.8		9-6-22	
Chromium	ND	10	EPA 200.8		9-6-22	
Lead	ND	1.0	EPA 200.8		9-6-22	
Mercury	ND	0.50	EPA 7470A		9-2-22	

DISSOLVED METALS EPA 200.8/7470A QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

			Date	Date		
Result	PQL	Method	Prepared	Analyzed	Flags	
MB0906D1						
ND	3.0	EPA 200.8		9-6-22		
ND	4.0	EPA 200.8		9-6-22		
ND	10	EPA 200.8		9-6-22		
ND	1.0	EPA 200.8		9-6-22		
MB0829F1						
ND	0.50	EPA 7470A	8-29-22	9-2-22		
	MB0906D1 ND ND ND ND MB0829F1	MB0906D1 ND 3.0 ND 4.0 ND 10 ND 1.0	MB0906D1 ND 3.0 EPA 200.8 ND 4.0 EPA 200.8 ND 10 EPA 200.8 ND 1.0 EPA 200.8 ND 1.0 EPA 200.8 MB0829F1 MB0829F1 MB0829F1	Result PQL Method Prepared MB0906D1 3.0 EPA 200.8	Result PQL Method Prepared Analyzed MB0906D1	

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD Limit		Flags
DUPLICATE											
Laboratory ID:	08-34	47-01									
	ORIG	DUP									
Arsenic	35.0	34.4	NA	NA		I	NA	NA	2	20	
Cadmium	ND	ND	NA	NA		NA		NA	NA	20	
Chromium	ND ND		NA	NA		NA		NA	NA	20	
Lead	ND ND		NA	NA		NA		NA	NA	20	
Laboratory ID:	08-29	98-01									
Mercury	ND	ND	NA	NA		NA		NA	NA	20	
MATRIX SPIKES											
Laboratory ID:	08-34	47-01									
	MS	MSD	MS	MSD		MS MSD					
Arsenic	123	121	80.0	80.0	35.0	110	108	75-125	2	20	
Cadmium	73.6	76.2	80.0	80.0	ND	92	95	75-125	3	20	
Chromium	72.6	71.8	80.0	80.0	ND	91	90	75-125	1	20	
Lead	74.2	74.6	80.0	80.0	ND	93	93	75-125	1	20	
Laboratory ID:	08-29	98-01									
Mercury	5.85	5.95	6.25	6.25	ND	94	95	75-125	2	20	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1 Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- X2 Sample extract treated with a silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Reviewed/Date	Received	Relinquished	Received	Helinquished	Received #17	Relinquished Contry Sanstre	Signature			S MW-22- 083022	4 FMW-04-083022	3 FMW-03-083022	2 FMW-02-083022	1 FMW-01-083022		Amenda Meugniot Sampled by: C. Ven Stolk	Project Name: Parciel 2 Comfort Suites	ASIZ- 001	Company: Favallon	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Environmental Inc.
Reviewed/Date			A ORE	georg All -	Speedy & Shan	, Favallon	Company			A 1111 A	1436	1555	1055	8-30-22 1248 GW 3		(other) er of Contain	Standard (7 Days)	2 Days 3 Days	Same Day 1 Day	ys)	Chain of Custody
			8/31/20 1345	8/3/2 1245	8-2-2 1235	8-31-22 1234	Date Time			×.	×	×	×	×	NWTP NWTP NWTP Volatile Haloge	H-Gx/BTEX (8	G Clean	-up[])		Laboratory Number:	ustody
Chromatograms with final report \Box Electronic Data Deliverables (EDDs) \Box	Data Package: Standard 🛛 Level III 🗍 Level IV 🗍					metals samples were field filtered	Comments/Special Instructions	J J		×	×	×	×.	1	(with lc PAHs & PCBs & Organc Organc Chlorin Total R Total M TCLP N HEM (o	pochlorine Pesti ophosphorus F lated Acid Her CRA Metals TCA Metals Aetals ill and grease)	level) cides 80 Pesticides 8 bicides 8	s 8270/3		08 - 3 4 7	Page 1 of 1