

June 22, 2020

Robert Hayes Sagamore Spokane, LLC One East Camelback Road, Suite 200 Phoenix, Arizona 85012

Re: Supplemental Soil and Soil Gas Investigation Summary District on the River Redevelopment (formerly Riverbend) Spokane

Project No. 190210

Dear Mr. Hayes:

Aspect Consulting, LLC (Aspect) submits this Summary for supplemental soil and soil gas investigations completed at the properties located at 111 North Erie Street in Spokane, Washington (herein referred to collectively as the Subject Property or District on the River Redevelopment). The purpose of this investigation was to support redevelopment of the Subject Property which includes portions of the Hamilton Street Bridge Site (Site) and property outside of the MTCA Site.

Historical operations at the Site led to the investigation and cleanup of hazardous substances in soil and groundwater under the Washington State Model Toxics Control Act (MTCA) cleanup regulation, Chapter 173-340 of the Washington Administrative Code (WAC 173-340). A cleanup action plan (CAP) prepared under a Consent Decree by liable parties, Avista and BNSF, has been implemented at the Site (Ecology, 2001) and is documented in the Cleanup Action Completion Report dated February 2, 2006 (Landau, 2006). The Washington State Department of Ecology (Ecology)-selected cleanup action at the Site consisted of streambank bioengineering, limited soil cap, natural attenuation, groundwater monitoring, institutional controls, and stormwater management.

Investigation Scope

The basis of investigations included Ecology's request to (1) evaluate the former gas works locations where concrete slabs remain, and (2) conduct soil vapor sampling to evaluate the potential for vapor intrusion risk associated with the proposed residential structures. Other basis of investigation was to collect additional environmental and geotechnical information necessary for redevelopment planning. The scope of Aspect's supplemental investigations were submitted to Ecology for review in two work plans: (1) Work Plan for Test Pit Explorations; and (2) Test Pit and Vapor Sampling Work Plan Ecology provided comments on the draft work plans, and their comments are incorporated into the final work plans (Aspect, 2020a; Aspect 2020b).

The investigations were completed in accordance with the final work plans - all completed explorations, historical features, and proposed buildings are shown on Figure 1. Preliminary results in the form of data tables, exploration location figure, laboratory reports, draft test pit logs, and soil vapor point as-builts were transmitted to Ecology on May 7, 2020 to support Ecology's effort in preparing a CAP Amendment. A subsequent videoconference technical meeting between Aspect

and Ecology was conducted on May 12, 2020, to discuss the preliminary results. The final results are presented in this Summary.

Test Pit Explorations

The investigation objectives of test pit explorations in three areas on the Subject Property included:

- 1) Evaluating the presence/absence of historical manufactured gas plant (MGP) concrete slabs at the Site (test pit locations ATP-01 through ATP-07).
- 2) Understanding the potential for contaminated fill soil (if any) at the off-Site northern stormwater swale (test pit locations ATP-09 through ATP-13).
- 3) Evaluating on-Site riverbank stability for geotechnical engineering purposes (test pit locations ATP-08 and ATP- 14 through ATP-16).

Former MGP Slab Test Pits

Ecology identified the need for test pits in the former gas works locations to evaluate if the former below-grade gas holder concrete slabs remained (ATP-01 through ATP-07). Aspect completed a total of eight test pits to the depths of the concrete slabs in the locations indicated on Figure 1. The test pit locations were selected to verify the location of concrete slabs, assess condition of concrete slabs, and to identify whether free-phase contamination was pooled on the slabs. The reason for this evaluation was to understand if deep foundations completed as part of redevelopment would be drilled through free-phase liquids that might cause vertical migration of contaminates (drag down). The footprints of the two buildings fronting Martin Luther King Jr. Way, shown on Figure 1, represent the preliminary aerial extent of pilings required for deep foundations.

Northern Stormwater Swale Test Pits

Polycyclic aromatic hydrocarbons (PAHs) were detected in at least one soil sample during the City of Spokane's (City) riverfront trail extension which was constructed near the existing swale. The objective of the test pit explorations was to evaluate soil quality in the stormwater swale in the northeast portion of the Subject Property and off-Site (ATP-09 through ATP-13).

Riverbank Stability Test Pits

Additional test pit explorations (ATP-08 and ATP-13 through ATP-16) were conducted to evaluate geotechnical conditions and stability adjacent to the existing riverbank. Data will be used for the expansion of a pedestrian trail to also serve as emergency access for the proposed redevelopment. All test pits were evaluated for environmental and geotechnical parameters.

Summary of Test Pit Excavation and Field Screening

Field screening of select soil samples was completed at all test pit explorations. Field screening of soil included measuring volatilization using a photoionization detector (PID), sheen testing, and observing soil for staining and odors. Soil was classified in accordance with the ASTM International, Inc. (ASTM) Method D2488 *Standard Practice for Description and Identification of Soils* (Visual-Manual Procedure) by an Aspect field engineer. Soil descriptions, field screening results, and other relevant details (e.g., staining, debris, odors, etc.) are reported in the attached test pit logs. Each completed test pit was also photo documented, see Attachment D for the photographic log.

Environmental soil samples were analyzed for gasoline and diesel-range hydrocarbons by method NWTPH-Gx and NWTPH-Dx, semi-volatile organic compounds (SVOCs) and low-level polycyclic aromatic hydrocarbons (PAHs) by method Environmental Protection Agency (EPA) 8270D SIM. Select samples were also analyzed for polychlorinated biphenyls (PCBs) by method EPA 8082, metals (arsenic, barium, lead, mercury, selenium) by EPA method 6020, and WAD cyanide by method SM 4500CN where field screening indicated possible contamination. Samples were collected from undisturbed soil and handled according to industry-standard, chain-of-custody protocols until delivered to the analytical laboratory, Friedman & Bruya, Inc, for analysis.

On April 21 and 22, 2020, Aspect completed a total of 17 test pits in the locations indicated on Figure 1 and summarized in Table 1 below.

Test Pit No. Location							
	Former MGP Slab Test Pits						
ATP-01	Former condensing room slab						
ATP-02	Former gas holder slab						
ATP-03	Former pump house and gas vaporizer slab						
ATP-04	Former gas holder slab						
ATP-05	Former compressor and pump building slab						
ATP-05B	Former compressor and pump building slab						
ATP-06	Former gas holder slab						
ATP-07	Former pump house and gas vaporizer slab						
ATP-08	Filled former riverbank						
	Stormwater Infrastructure Test Pits						
ATP-09	Northern Swale Depression						
ATP-10	Northern Swale Depression						
ATP-11	Northern Swale Riverbank						
ATP-12	Northern Swale Riverbank						
ATP-13	Northern Swale Riverbank						
	Riverbank Stability Test Pits						
ATP-14	Northeast Riverbank						
ATP-15	Central Riverbank						

Table 1. Test Pit Locations

Test Pit No.	Location
ATP-16	Southwest Riverbank

Soil management of soil excavated from each test pit was conducted in accordance with the final work plans (Aspect, 2020a; Aspect, 2020b) and summarized here. Soil from test pits was segregated into two stockpiles during excavation 1) clean cover material (with no field indicators of contamination), and 2) soil suspected to be contaminated based on field screening. All contaminated material was stockpiled on a layer of visqueen sheeting. Once a test pit was completed, the stockpiled material was used to backfill the test pit in roughly 12-inch lifts and compacted with a vibratory compactor up to 2 feet below ground surface (bgs). Then, clean overburden placement and compaction occurred as test pits were completed. No test pits remained open when work was not being actively performed.

Soil Vapor Sampling

Soil vapor sampling was completed to evaluate whether volatile fractions of common MGP contaminants – primarily naphthalene and benzene, ethylbenzene, toluene, xylenes - existed in the subsurface soil vapor at the Subject Property. The purpose for this sampling and testing was to evaluate the potential vapor intrusion risk associated with the proposed residential structures to be constructed at the Site. The results of this sampling will also be used to identify the need for any vapor mitigation or institutional controls necessary for the proposed redevelopment.

Four soil vapor points were installed on April 20, 2020 in the locations shown on Figure 1. The locations ASVP-01 through ASVP-05 were selected to evaluate soil vapor conditions with respect to the limits of the contamination and each of the four preliminary proposed building footprints. A sixth location ASVP-06 was identified in the final work plan to evaluate soil vapor away from the limits of contamination for comparison. Due to difficult drilling conditions in the oversized fill materials (drill rig repeated refusal less than 5 feet bgs), the ASVP-02 and ASVP-06 locations in the final work plan were not completed.

For soil vapor probe installation, borings were advanced using hollow stem auger drilling techniques to approximately 10 feet bgs. Soil vapor probe construction consisted of a 6-inch-long by 0.5-inch-outer-diameter stainless-steel slotted soil vapor implant, attached to 0.25-inch-outer-diameter Teflon tubing to the surface. The screen filter pack consists of 10/20 sand with a hydrated bentonite seal to grade. The bottom of the screens were set at approximately 9.5 feet. Soil vapor probes were completed as permanent with an 8-inch flush-mount monument and concrete apron. See Attachment C for Soil Vapor Point As-Builts.

Prior to soil vapor sampling, the soil vapor probes were allowed to equilibrate overnight and sampled in accordance to the final work plan. All soil vapor probes were sampled under falling or stable barometric conditions when volatile contaminants are most likely to be present in soil gas and migrating towards the ground surface because of the pressure gradient from the subsurface to ambient air.

Upon completion of vapor sampling, the SUMMA canisters were maintained under chain-ofcustody procedures until they were delivered to Friedman & Bruya Laboratories in Seattle,

Washington. Vapor samples were analyzed using EPA Method TO-15 for Benzene, Toluene, Ethylbenzene, Total Xylenes, Naphthalene, and aromatic polycyclic hydrocarbons (APHs).

Investigation Results Former MGP Slab Test Pits

Each former MGP slab test pit was advanced to the depth of the concrete slab or to the maximum practical depth when no slab was encountered. The concrete slab features were located for each of the completed test pits ATP-01 through ATP-07. ATP-05 was an exception, as a concrete slab was not encountered to a depth of 7-feet bgs. The test pit was repeated as ATP-05B to the south (Figure 1), and the concrete slab was located at a depth of 5-feet bgs.

No free product was observed or indicated by field screening on the concrete slabs in any of the test pits. PID readings, slight sheen, and hydrocarbon like-odors were noted in ATP-01, ATP-04, and ATP-05. Additionally, MGP related infrastructure such as pipes, tar, and woody debris were observed in many of these test pits. Test pit logs can be found in Attachment A. Environmental analytical samples were not collected at any of these test pits.

Northern Stormwater Swale Test Pits

Each test pit completed at the northern stormwater swale was advanced to 12-feet, or to the depth at which the water table was encountered, at which point the test pit was terminated. Analytical results for all soil samples can be found in Table 2 and laboratory data reports are available in Attachment B. Results were compared with the 2001 Cleanup Action Plan (Ecology, 2001) cleanup levels for the Site.

Base Samples. Test pits ATP-09 and ATP-10 were located in the base of the existing stormwater swale and one analytical sample was analyzed from the bottom of the test pit. The surface of these test pits were five to seven feet lower than the surface of the Northern Berm Samples, there were no field indicators (in the form of sheen, odor, or elevated PID) of contamination present in these test pits. There were no cleanup level exceedances of PAHs or TPH constituents at ATP-09 and ATP-10.

North Berm Samples. Three test pits located on the northern berm between the stormwater swale and the Spokane River (ATP-11 through ATP-13) had field indicators of clinker-like material (black, low density, high organic fine sand) as well as some metallic debris in the upper fill layers. Two soil samples were taken from each test pit (6 samples total) for chemical analytical testing, one at a depth determined by field screening (between 5 and 7.5-feet bgs), and one at the bottom of the test pit (11 to 12 feet bgs). Contaminants of concern either were not detected or detected at concentrations less than MTCA cleanup levels in the six samples from the north berm test pits with the exception of arsenic, barium, lead, cyanide and cPAHs in fill soil at depths less than 7.5 feet (Table 1). There were no exceedances from soil samples tested at 11.5 to 12.5-feet bgs in these test pits.

There were no elevated PID readings, sheens, or strong hydrocarbon odors in any of the northern swale test pits. Analytical results are presented in Table 2 and test pit logs can be found in Attachment A.

Riverbank Stability Test Pits

Each riverbank stability test pit (ATP-14 through ATP-16) was advanced to 9.5-feet bgs, or until excavation became impractical due to the presence of basalt boulder fill. ATP-14 was advanced to a depth of 9.5-feet bgs, various fill layers were observed to a depth of 5.5-feet bgs and were composed of silty sand to basalt spalls (2-6" diameter). ATP-15 was advanced to a depth of 6.5-feet bgs, with basalt boulders encountered beginning at 4.5 feet-bgs and various other fill layers above. ATP-16 was advanced to a depth of 3-feet bgs, with basalt cobbles and boulders encountered beginning at 2-feet bgs and various fill layers above. Field screening did not indicate contamination at any of these test pits, therefore no analytical samples were taken. The riverbank stability geotechnical analysis and associated recommendations will be incorporated into the geotechnical report for redevelopment design purposes. Test pit logs can be found in Attachment A

Soil Vapor Results

The results of the four soil vapor samples (ASVP-01, 03, 04 and 05) collected on April 20, 2020 are presented in Table 3. ASVP-01 and ASVP-04 had an exceedance of the MTCA Method B Sub-Slab Soil Gas Screening Level (Ecology, 2020) for benzene. ASVP-01 also had an exceedance of the MTCA Method B Sub-Slab Soil Gas Screening level (Ecology, 2020) for naphthalene. Locations ASVP-03 and ASVP-05 had no exceedances. These results indicate that vapor intrusion mitigation will be necessary for the proposed residential redevelopment. Ecology agreed with this conclusion during the May 17, 2020, technical meeting.

In order to mitigate for the possibility of benzene and naphthalene vapor intrusion into the future atgrade residential buildings, two vapor mitigation options are currently under consideration: (1) a passive sub-slab venting system designed to allow for contingent active vapor extraction (if necessary), or (2) a chemical vapor barrier installed beneath slab on grade foundations. The redevelopment design team is planning to implement Option 1 pending concurrence from Ecology.

Project No. 190210

References

- Aspect Consulting LLC (Aspect), 2020a, Riverbend Spokane Work Plan for Test Pit Explorations, April 23, 2020.
- Aspect Consulting LLC (Aspect), 2020b, Riverbend Spokane Test Pit and Soil Vapor Sampling Work Plan, April 23, 2020.
- ASTM International (ASTM), 2018, 2018 Annual Book of ASTM Standards, West Conshohocken, Pennsylvania.
- Landau Associates, Inc. (Landau), 2006, Cleanup Action Completion Report: Hamilton Street Bridge Site, Spokane, Washington, February 2, 2006.
- Washington State Department of Ecology (Ecology), 2001, Final Cleanup Action Plan, Hamilton Street Bridge Site, Spokane, Washington, August 10, 2001.
- Washington State Department of Ecology (Ecology), 2020, Cleanup Levels and Risk Calculation Tables, January 2020.

Project No. 190210

Limitations

Work for this project was performed for Sagamore Spokane, LLC (Client), and this letter was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This letter does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

Please refer to Attachment E titled "Report Limitations and Guidelines for Use" for additional information governing the use of this report.

Sincerely, Aspect consulting, LLC

Incate

Dave Cook, LG, CPG Principal Geologist dcook@aspectconsulting.com

Breyn Green

Breeyn Greer, PE Project Engineer bgreer@aspectconsulting.com

Attachments:	Table 1 – Test Pit Locations (in-text) Table 2 – Soil Analytical Results Table 3 – Soil Gas Analytical Results
	Figure 1 – Design Investigation Exploration Map
	Attachment A – Test Pit Logs Attachment B – Laboratory Certificates of Analytical Data Attachment C – Soil Vapor As-Built Construction Diagrams Attachment D – Test Pit Photo Log Attachment E – Report Limitations and Guidelines for Use

cc: Christer Loftenius, Department of Ecology, Eastern Regional Office Chuck Dubroff, Sagamore Spokane, LLC Michael Dunning, Perkins Coie LLP

V:\190210 Sagamore Spokane\Deliverables\Design Investigation Data Summary\Final\Design Investigation Data Summary_06222020.docx

TABLES

Table 2. Soil Analytical Results

Project No. 190210, 111 N Erie Street, Spokane, WA

		Location	ATP-09	ATP-10	ATP-11	ATP-11	ATP-12	ATP-12	ATP-13	ATP-13
		Date	04/22/2020	04/22/2020	04/22/2020	04/22/2020	04/21/2020	04/21/2020	04/21/2020	04/21/2020
		Depth	11.5 ft	9 ft	6 ft	12.5 ft	7.5 ft	11.5 ft	5 ft	11.5 ft
		Cleanup		-	-	-	-		-	-
Analyte	Unit	Level ¹								
TPH	0	2010.				1	1			1
Gasoline Range Organics	mg/kg		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Diesel Range Organics	mg/kg	200	50 U							
Motor Oil Range Organics	mg/kg	200	250 U							
Other						•	•		•	•
Cyanide, (WAD)	mg/kg	0.52			0.07		1.1		0.34	
Metals						•			•	•
Arsenic	mg/kg	7			12.7		11.8		7.77	
Barium	mg/kg	112			197		120		205	
Lead	mg/kg	17			63.4		14.2		281	
Mercury	mg/kg	0.07			1 U		1 U		1 U	
Selenium	mg/kg	0.92			1 U		1 U		1 U	
PAHs										
Acenaphthene	mg/kg	64.3	0.002 U	0.01 U	0.05 U	0.05 U	0.065	0.01 U	0.078	0.01 U
Anthracene	mg/kg	480	0.002 U	0.01 U	0.051	0.063	0.91	0.01 U	0.2	0.01 U
Fluoranthene	mg/kg	9.02	0.005	0.01 U	0.29	0.25	6.9	0.03	2.2	0.01 U
Fluorene	mg/kg	64	0.002 U	0.01 U	0.05 U	0.05 U	0.17	0.01 U	0.082	0.01 U
Naphthalene	mg/kg	32	0.002 U	0.01 U	0.21	0.051	0.44	0.01 U	0.22	0.01 U
Pyrene	mg/kg	48	0.0059	0.01 U	0.28	0.28	6.9	0.024	1.9	0.01 U
Total cPAHs TEQ	mg/kg	1	0.0043	0.0075	0.36	0.36	5.27	0.024	1.50	0.00755 U
SVOCs										
Carbazole	mg/kg	0.437	0.01 U	0.05 U	0.25 U	0.25 U	0.25 U	0.05 U	0.25 U	0.05 U
PCBs										
Aroclor 1016	mg/kg				0.02 U		0.02 U		0.05 U	
Aroclor 1221	mg/kg				0.02 U		0.02 U		0.05 U	
Aroclor 1232	mg/kg				0.02 U		0.02 U		0.05 U	
Aroclor 1242	mg/kg				0.02 U		0.02 U		0.05 U	
Aroclor 1248	mg/kg				0.02 U		0.02 U		0.05 U	
Aroclor 1254	mg/kg				0.02 U		0.081		0.05 U	
Aroclor 1260	mg/kg				0.02 U		0.055		0.05 U	
Aroclor 1262	mg/kg				0.02 U		0.02 U		0.05 U	
Aroclor 1268	mg/kg				0.02 U		0.02 U		0.05 U	
Total PCBs (Sum of Aroclors)	mg/kg				0.02 U		0.136		0.05 U	

Notes:

(1) Hamilton Street Bridge Site Cleanup Levels (2001 Cleanup Action Plan) Bold - detected

Blue Fill - Detected result exceeds Cleanup Level

U - Analyte not detected at or above Reporting Limit (RL) shown

J - Result value estimated

UJ - Analyte not detected and the Reporting Limit (RL) is an estimate

BTEX = benzene, toleuene, ethylbenzene, and total xylenes

PAHs = polycyclic aromatic hydrocarbons

VOCs = volatile organic compounds

WAD - Weak Acid Dissolvable

Table 3. Soil Gas Analytical Results

Project No. 190210, 111 N Erie Street, Spokane, WA

			Location	ASVP-01	ASVP-03	ASVP-04	ASVP-05
			Date	4/21/2020	4/21/2020	4/21/2020	4/21/2020
			Sample	AVP-01-042120	AVP-03-042120	AVP-04-042120	AVP-05-042120
Analyte	Unit	Risk Driver	MTCA Method B Subslab Screening Level (Unrestricted) ^{1,3}				
BTEX							
Benzene	ug/m3	С	11	17 J	1.1 U	16	1.7
Toluene	ug/m3	NC	76,000	66 U	66 U	64 U	66 U
Ethylbenzene	ug/m3	NC	15,000	26 J	1.5 U	1.5 U	1.5 U
Total Xylenes	ug/m3	NC	1,500	87 J	3 U	3 U	3 U
PAHs							
Naphthalene	ug/m3	С	2.5	3	0.92 U	0.89 U	0.92 U
АРН							
C5 - C8 Aliphatic Hydrocarbons	ug/m3			560 J	100 U	100	100 U
C9 - C12 Aliphatic Hydrocarbons	ug/m3			760 J	120 U	160	120 U
C9 - C10 Aromatic Hydrocarbons	ug/m3			140 J	87 U	85 U	87 U
Total Petroleum Hydrocarbons ^{2,3} (ND = $1/2$ RL)	ug/m3	NC	4,700	1626	153 U	354	153 U

Notes

(1) Model Toxic Control Act (MTCA) Method B Subslab Soil Gas Screening Levels (SLs).

(2) Total petroleum hydrocarbon concentration is calculated as the sum of BTEX and APHs, one-half of the laboratory detection limit was used for non-detects.

(3) Generic sub-slab TPH screening level based on generic TPH indoor air cleanup level of 140 ug/m3 and an attenuation factor of 0.03 (Ecology Implementation Memo #18)

Bold - Analyte Detected

Blue Shading - Detected result exceeds screening level

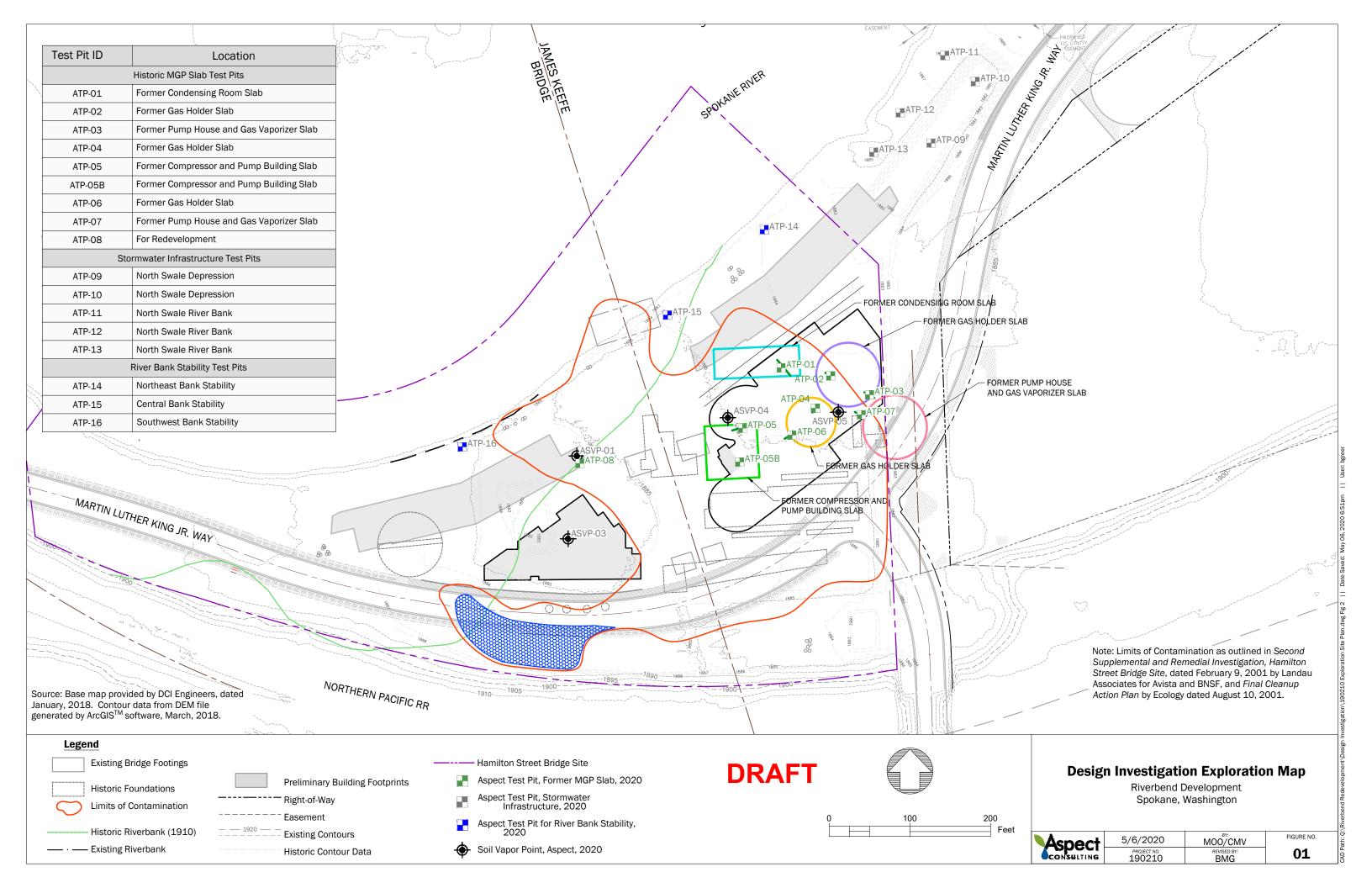
BTEX = benzene, toleuene, ethylbenzene, and xylene

PAHs = polycyclic aromatic hydrocarbons

VOCs = volatile organic compounds

APH = Aliphatic hydrocarbons

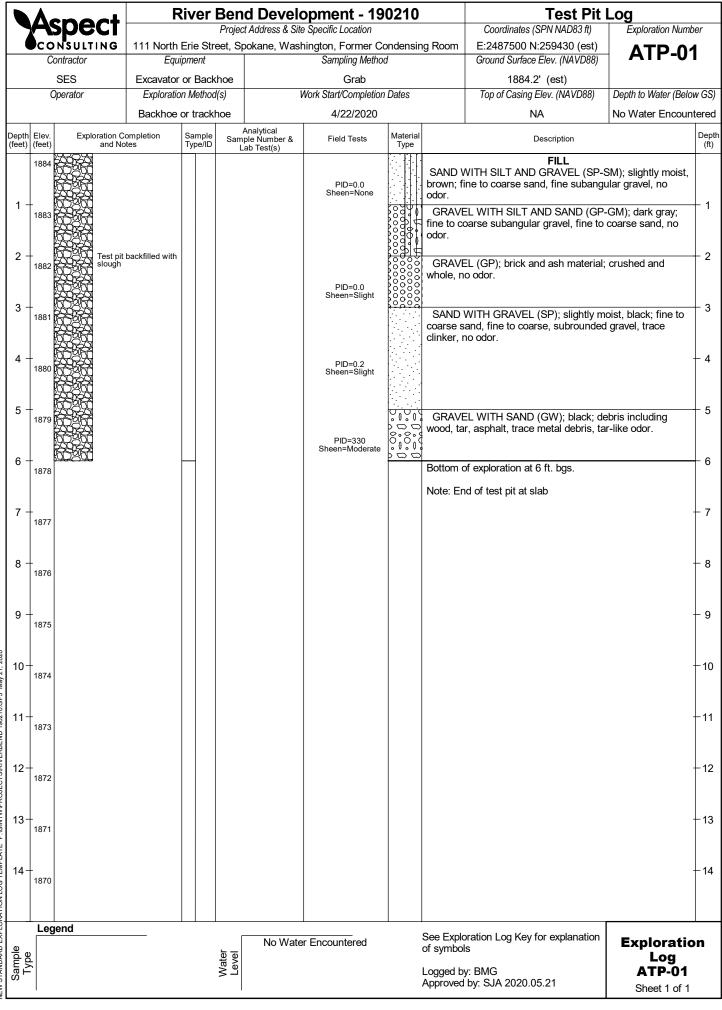
 μ g/m³ = micrograms per cubic meter

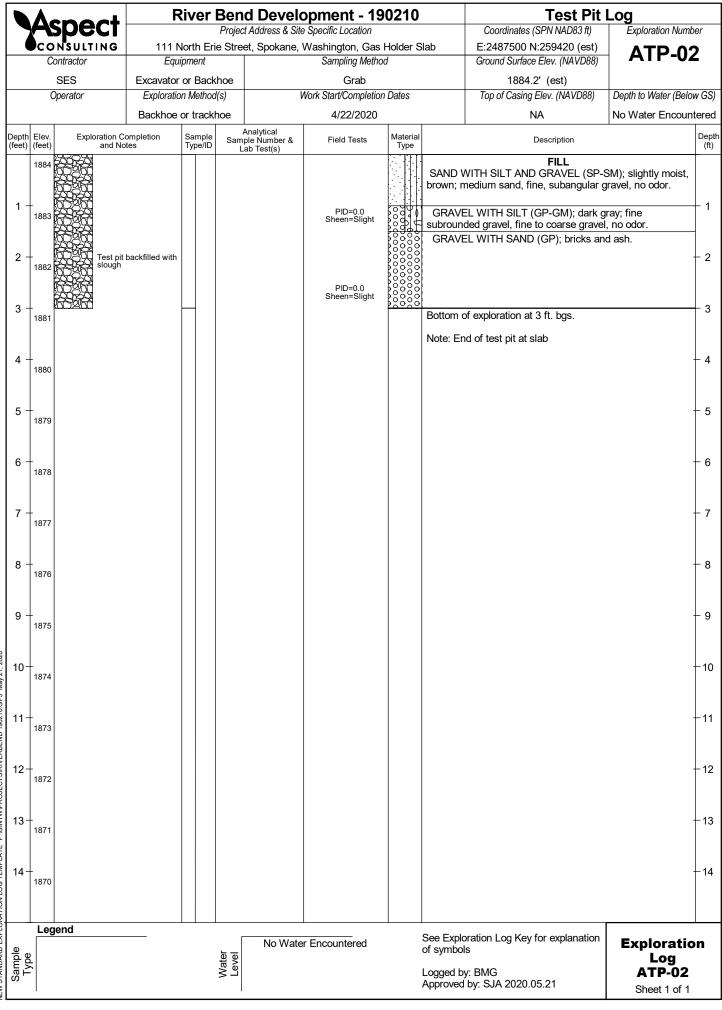

-- = not applicable

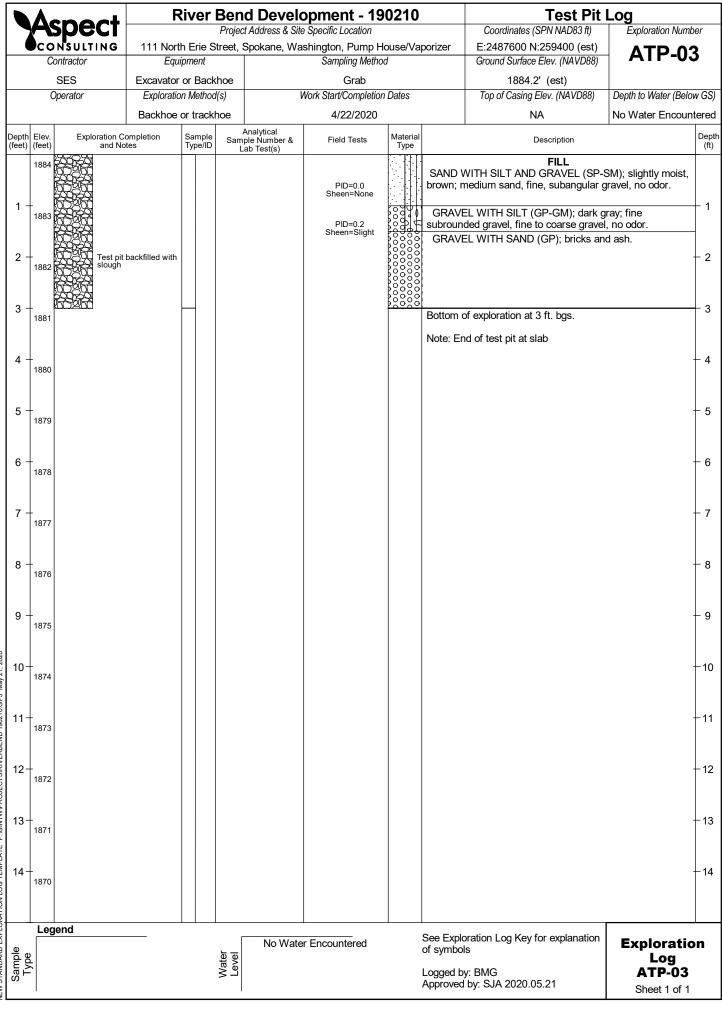
U = analyte was not detected at or above the reported result.

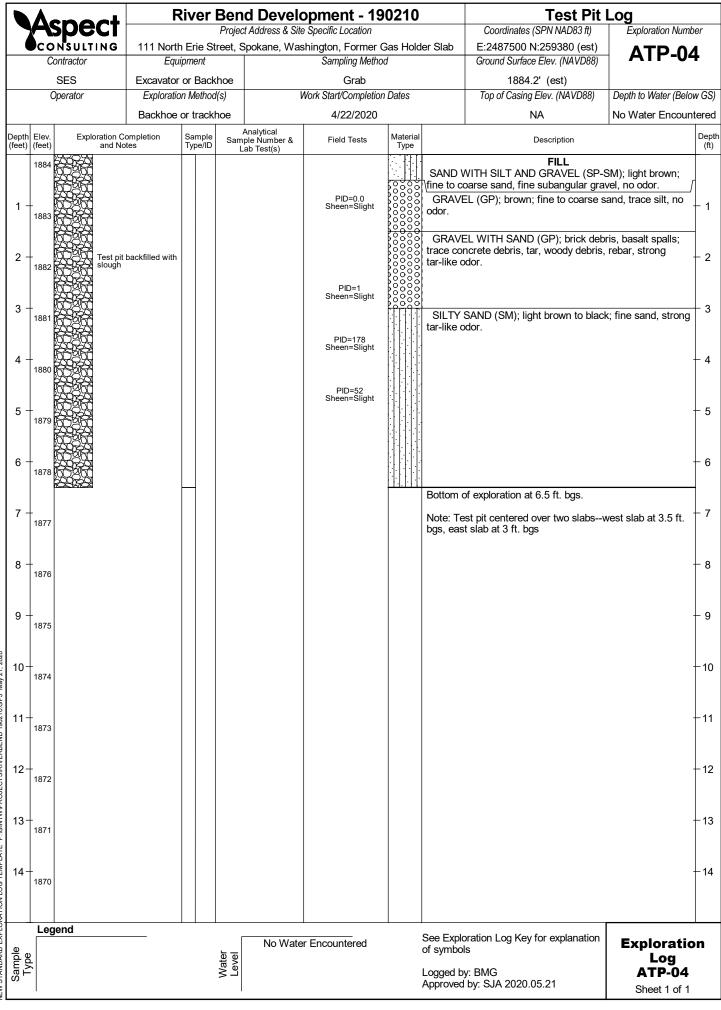
J = Result was estimated

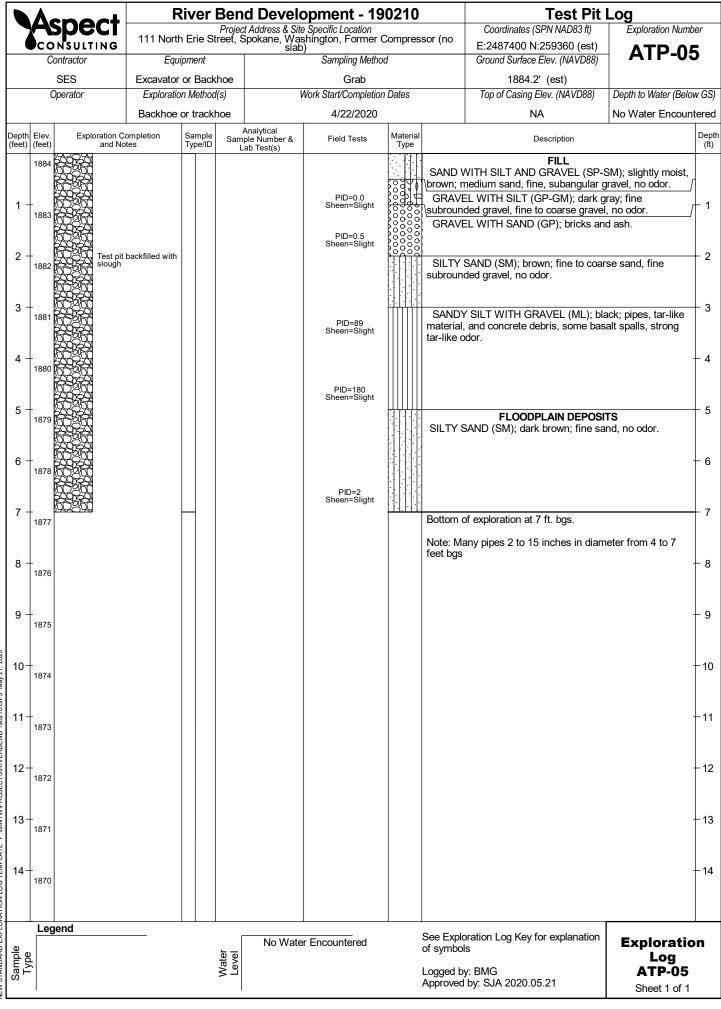
C = Carcinogenic; NC = Non carcinogenic

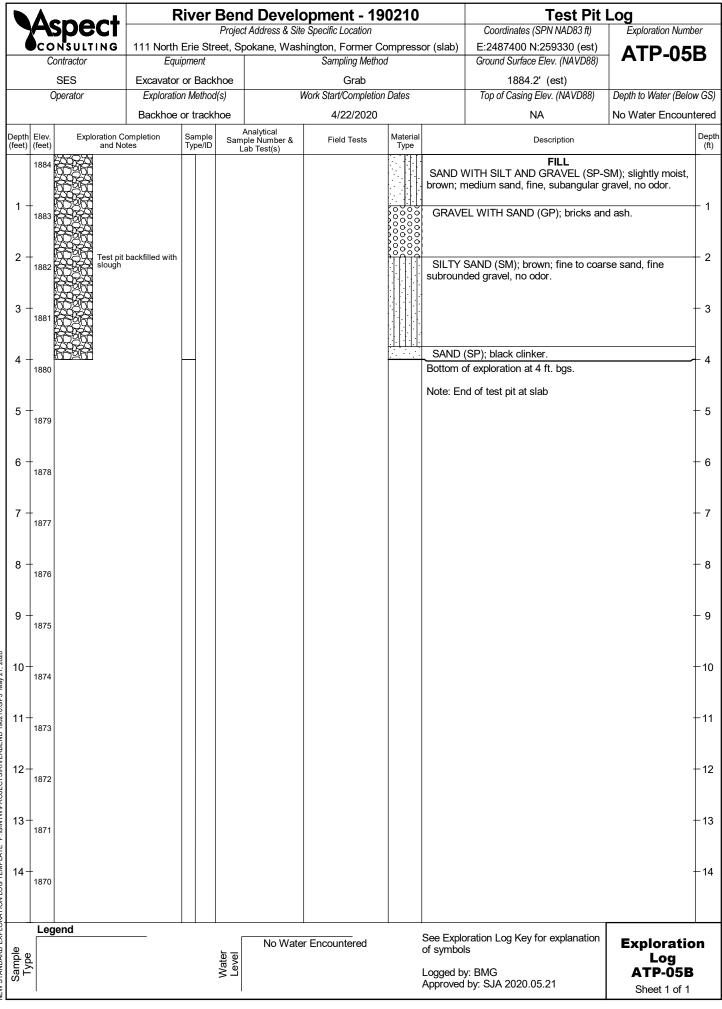

FIGURE

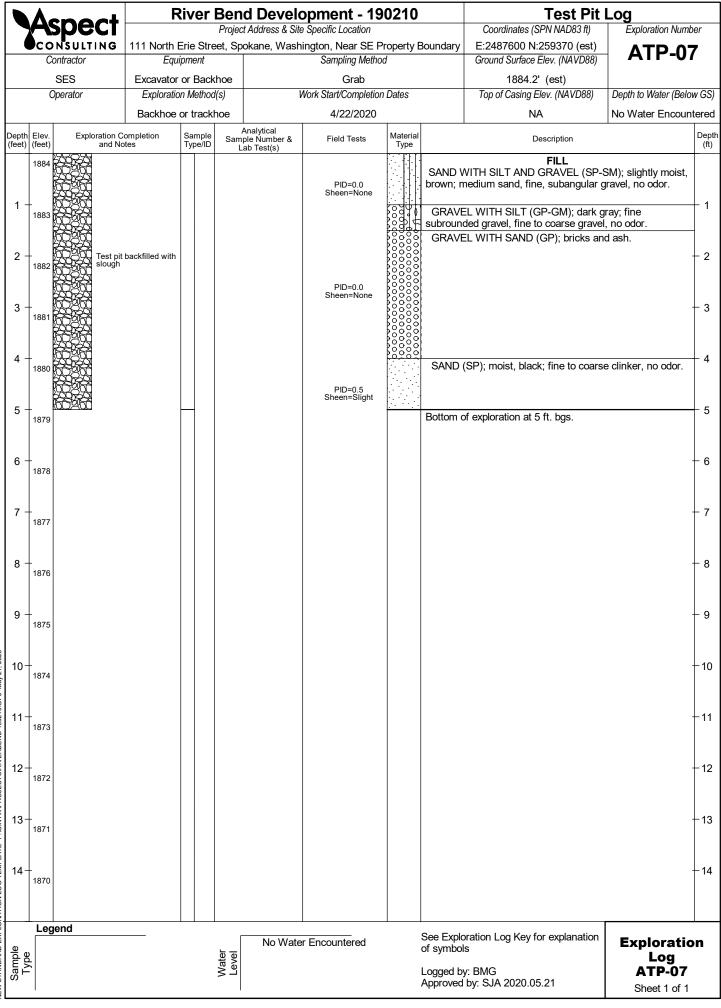


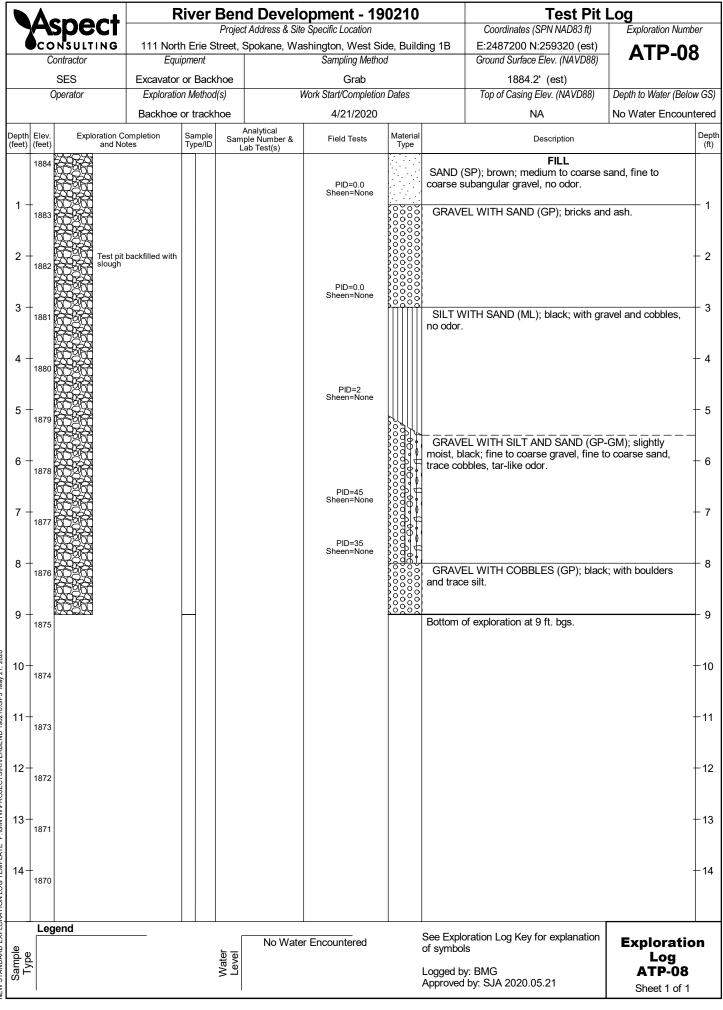

ATTACHMENT A

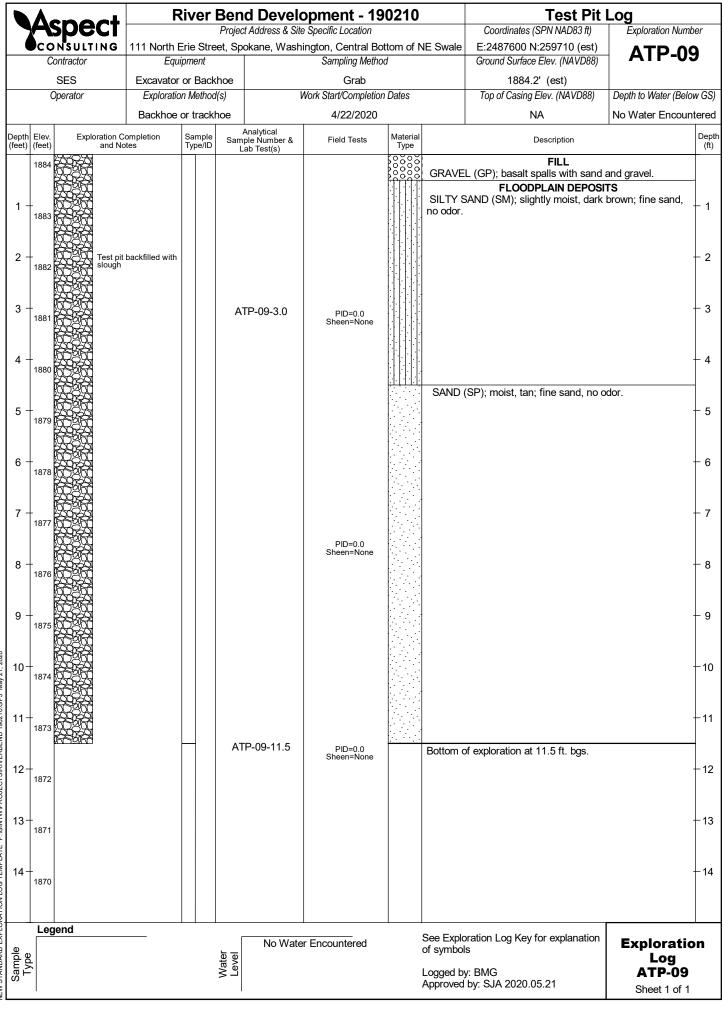

Test Pit Logs

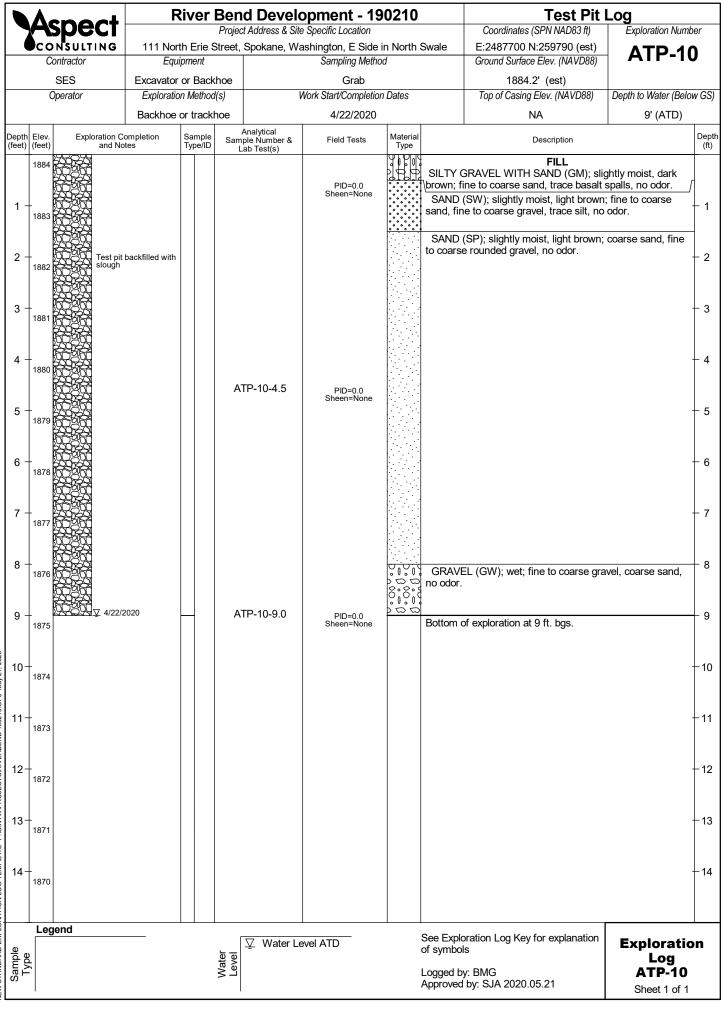

) Sieve	- More than 50% 1 of Coarse Fraction Retained on No. 4 Sieve	U • OO U		GW GP	Well-graded GRAVEL Well-graded GRAVEL WITH SAND Poorly-graded GRAVEL Poorly-graded GRAVEL WITH SAND	MC=Natural Moisture Content GSGEOTECHNICAL LAB TESTSGS=Grain Size Distribution FC=Fines Content (% < 0.075 mm)GH=Hydrometer TestALAL=Atterberg Limits CCC=Consolidation TestStr=Strength Test OCOC=Organic Content (% Loss by Ignition)
ned on No. 200	More than $50\%^{1}$ cRetained on No.	Fines		GM	SILTY GRAVEL SILTY GRAVEL WITH SAND	Comp = Proctor Test K = Hydraulic Conductivity Test SG = Specific Gravity Test CHEMICAL LAB TESTS
50%1 Retained on No.	Gravels - N	<u>≥</u> 15%		GC	CLAYEY GRAVEL CLAYEY GRAVEL WITH SAND	BTEX = Benzene, Toluene, Ethylbenzene, Xylenes TPH-Dx = Diesel and Oil-Range Petroleum Hydrocarbons TPH-G = Gasoline-Range Petroleum Hydrocarbons VOCs = Volatile Organic Compounds SVOCs = Semi-Volatile Organic Compounds
Coarse-Grained Soils - More than	of Coarse Fraction 4 Sieve	Fines		sw	Well-graded SAND Well-graded SAND WITH GRAVEL	PAHs = Polycyclic Aromatic Hydrocarbon Compounds PCBs = Polychlorinated Biphenyls <u>Metals</u> RCRA8 = As, Ba, Cd, Cr, Pb, Hg, Se, Ag, (d = dissolved, t = total)
ined Soils	e of Coars . 4 Sieve	≤5%I		SP	Poorly-graded SAND Poorly-graded SAND WITH GRAVEL	MTCA5 = As, Cd, Cr, Hg, Pb (d = dissolved, t = total) PP-13 = Ag, As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, Tl, Zn (d=dissolved, t=total) PID = Photoionization Detector FIELD TESTS
Coarse-Grai	50% ¹ or More Passes No.	Fines		SM	SILTY SAND SILTY SAND WITH GRAVEL	Sheen=Oil Sheen TestSPT2=Standard Penetration TestNSPT=Non-Standard Penetration TestDCPT=Dynamic Cone Penetration Test
	Sands - !	≥15%		SC	CLAYEY SAND CLAYEY SAND WITH GRAVEL	Descriptive Term BouldersSize Range and Sieve Number Larger than 12 inchesCOMPONENT DEFINITIONSCobbles=3 inches to 12 inches 3 inches to 3/4 inchesComponent DEFINITIONS
Sieve	ys E000			ML	SILT SANDY or GRAVELLY SILT SILT WITH SAND SILT WITH GRAVEL	Fine Gravel = 3/4 inches to 0/4 inches Coarse Sand = 3/4 inches to No. 4 (4.75 mm) Coarse Sand = No. 4 (4.75 mm) to No. 10 (2.00 mm) Medium Sand = No. 10 (2.00 mm) to No. 40 (0.425 mm) Fine Sand = No. 40 (0.425 mm) to No. 200 (0.075 mm)
Passes No. 200	Silts and Clays			CL	LEAN CLAY SANDY or GRAVELLY LEAN CLAY LEAN CLAY WITH SAND LEAN CLAY WITH GRAVEL	Silt and Clay = Smaller than No. 200 (0.075 mm) % by Weight Modifier % by Weight Modifier ESTIMATED ¹ <1
ore	io -	ר בולמומ ב		OL	ORGANIC SILT SANDY OF GRAVELLY ORGANIC SILT ORGANIC SILT WITH SAND ORGANIC SILT WITH GRAVEL	1 to <5 =Trace30 to 45 =Some5 to 10=Few>50=MostlyDry=Absence of moisture, dusty, dry to the touchMOISTURE
ls - 50%1 or M	ys Moro			мн	ELASTIC SILT SANDY or GRAVELLY ELASTIC SILT ELASTIC SILT WITH SAND ELASTIC SILT WITH GRAVEL	Slightly Moist=Perceptible moistureCONTENTMoist=Damp but no visible waterVery MoistWater visible but not free drainingVery Moist=Visible free water, usually from below water table
Fine-Grained Soils	Silts and Clays			сн	FAT CLAY SANDY or GRAVELLY FAT CLAY FAT CLAY WITH SAND FAT CLAY WITH GRAVEL	Non-Cohesive or Coarse-Grained SoilsRELATIVE DENSITYDensity³SPT² Blows/Foot $Very Loose$ Penetration with 1/2" Diameter Rod $\geq 2'$ Loose= 0 to 4 $= 5 to 10$ $\geq 2'$ $1' to 2'$
Fine		rinhin		он	ORGANIC CLAY SANDY or GRAVELLY ORGANIC CLAY ORGANIC CLAY WITH SAND ORGANIC CLAY WITH GRAVEL	Medium Dense = 11 to 30 3" to 1' Dense = 31 to 50 1" to 3" Very Dense = >50 $< 1"$
Highly	Organic Soils			PT	PEAT and other mostly organic soils	Cohesive or Fine-Grained Soils CONSISTENCY Consistency³ SPT² Blows/Foot Manual Test Very Soft = 0 to 1 Penetrated >1" easily by thumb. Extrudes between thumb & fingers. Soft = 2 to 4 Penetrated 1/4" to 1" easily by thumb. Easily molded. Medium Stiff = 5 to 8 Penetrated >1/4" with effort by thumb. Molded with strong pressure
name; e.g. GRAVEL" n gravel. • "\	., SP-SM • means 15 Well-grade	"SILTY" to 30% : d" mea	or "CLA sand an ns appro	YEY" me d gravel oximatel	6 silt and clay, denoted by a "-" in the group rans >15% silt and clay ● "WITH SAND" or "WITH ● "SANDV" or "GRAVELLY" means >30% sand and y equal amounts of fine to coarse grain sizes ● "Poorly zes ● Group names separated by "/" means soil	Stiff = 9 to 15 Indented ~1/4" with effort by thumb. Very Stiff = 16 to 30 Indented easily by thumbnail. Hard = > 30 Indented with difficulty by thumbnail.
contains la Soils were ASTM D24	ayers of the described 488. Where	e two so I and ide e indicat	il types; entified i ed in th	; e.g., SN in the fie ie log, sc		GEOLOGIC CONTACTS Observed and Distinct Observed and Gradual Inferred
2. (SPT) 5	Standard I	Penetra	tion Te	st (ASTN	dry weight // D1586) 99) or other field methods. See report text for details.	Exploration Log Key

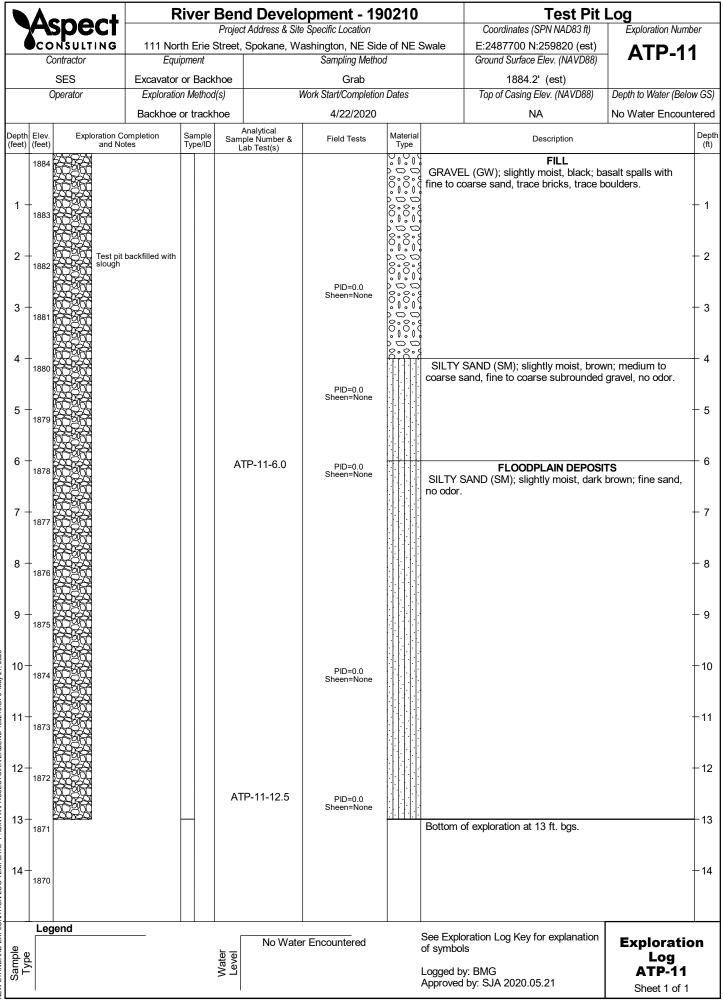


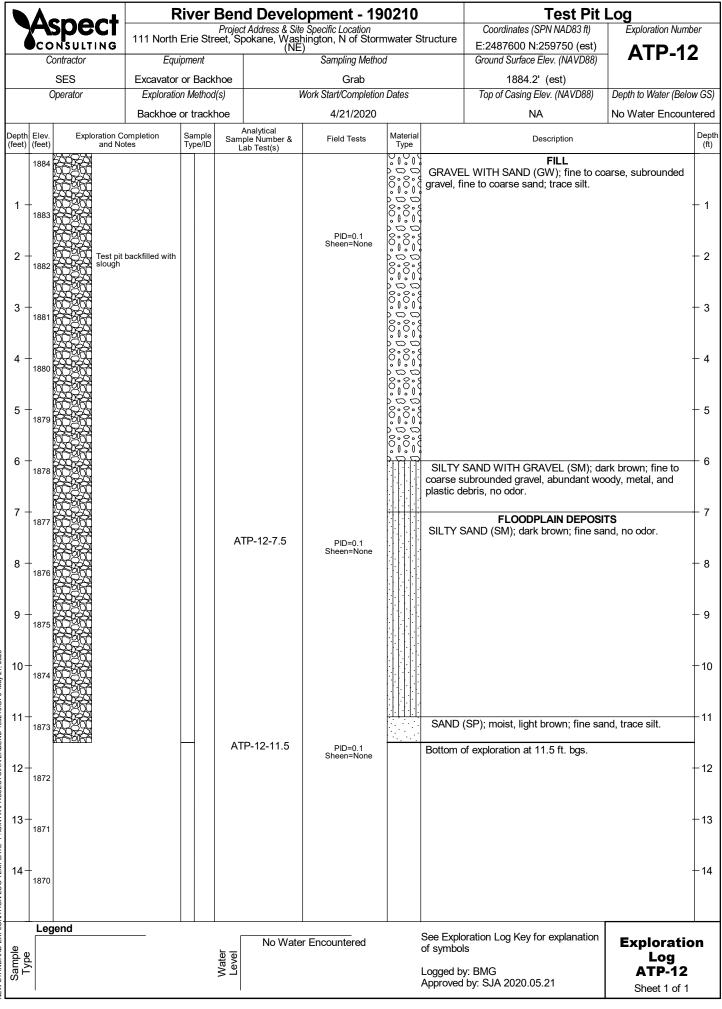


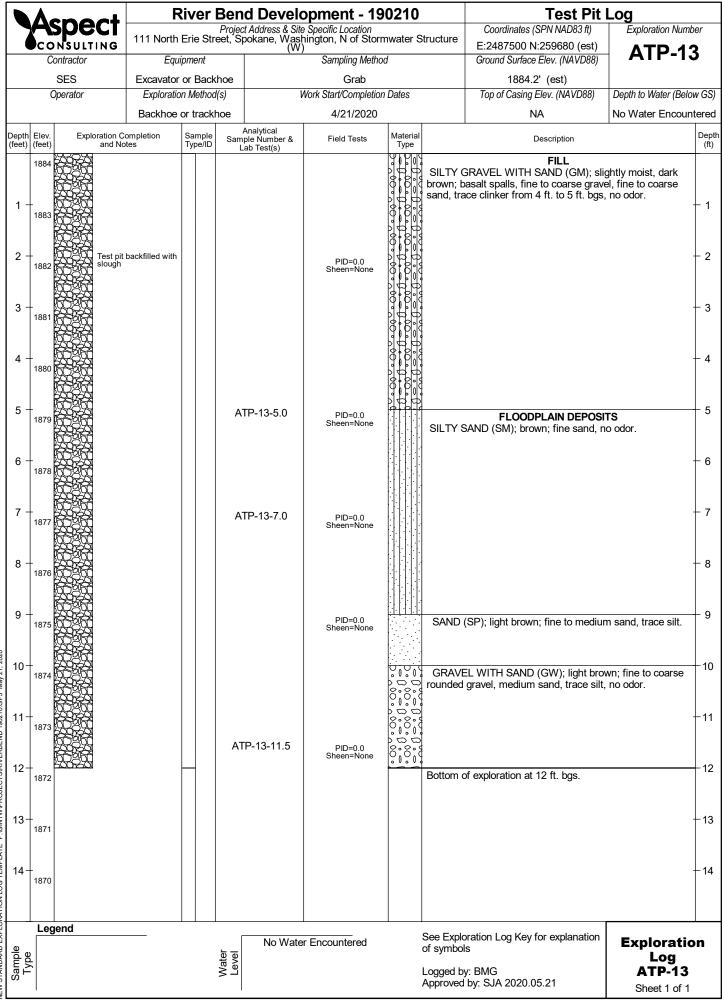


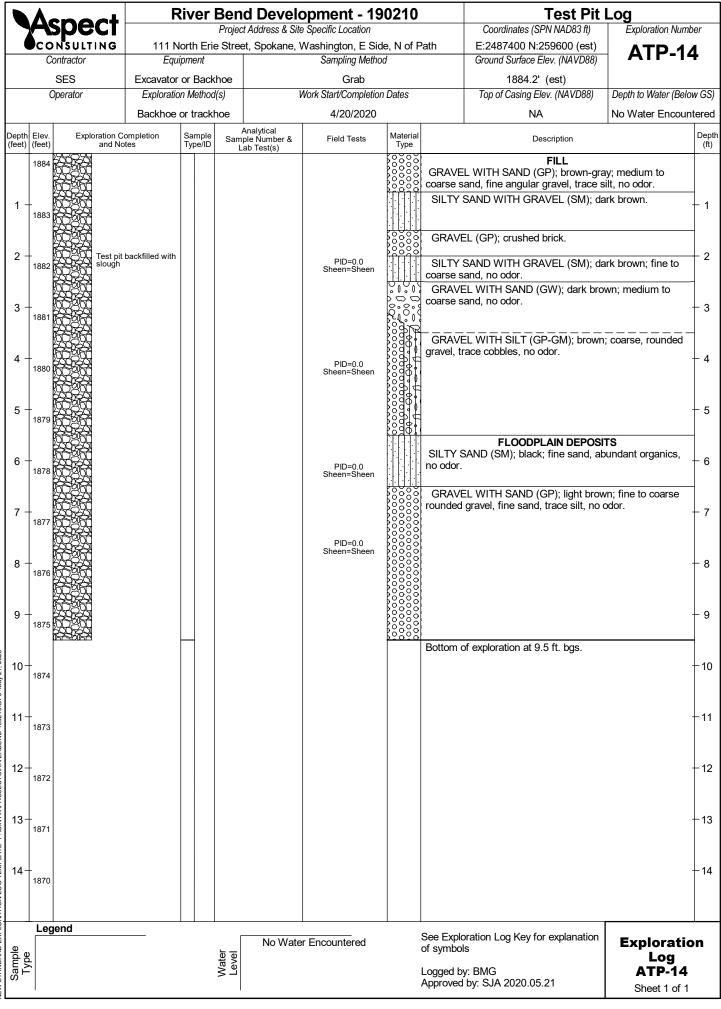


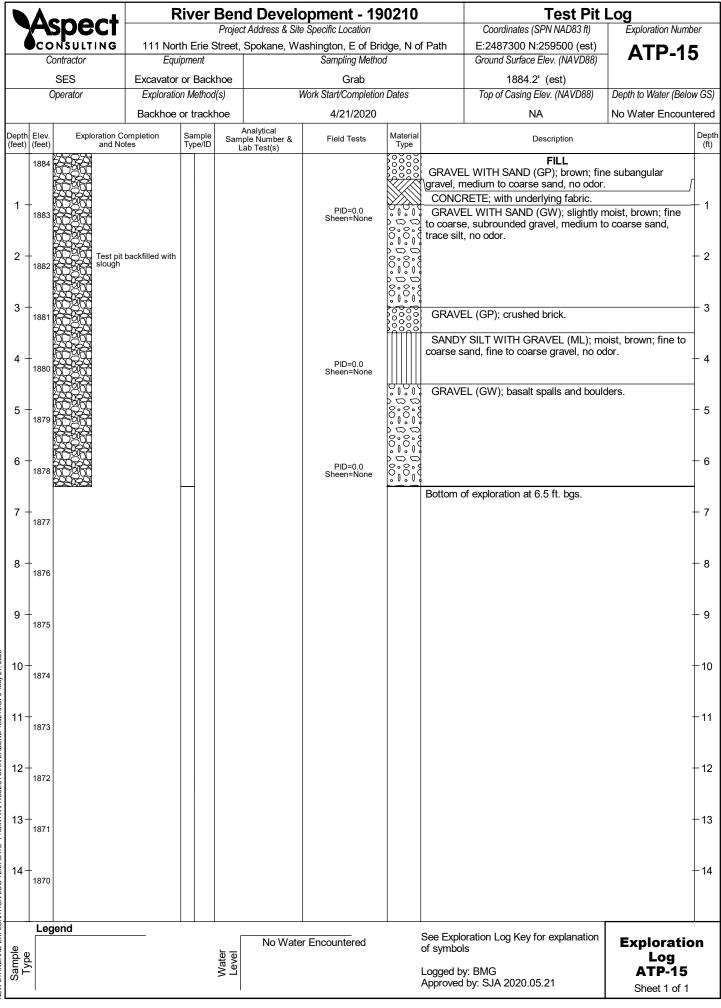


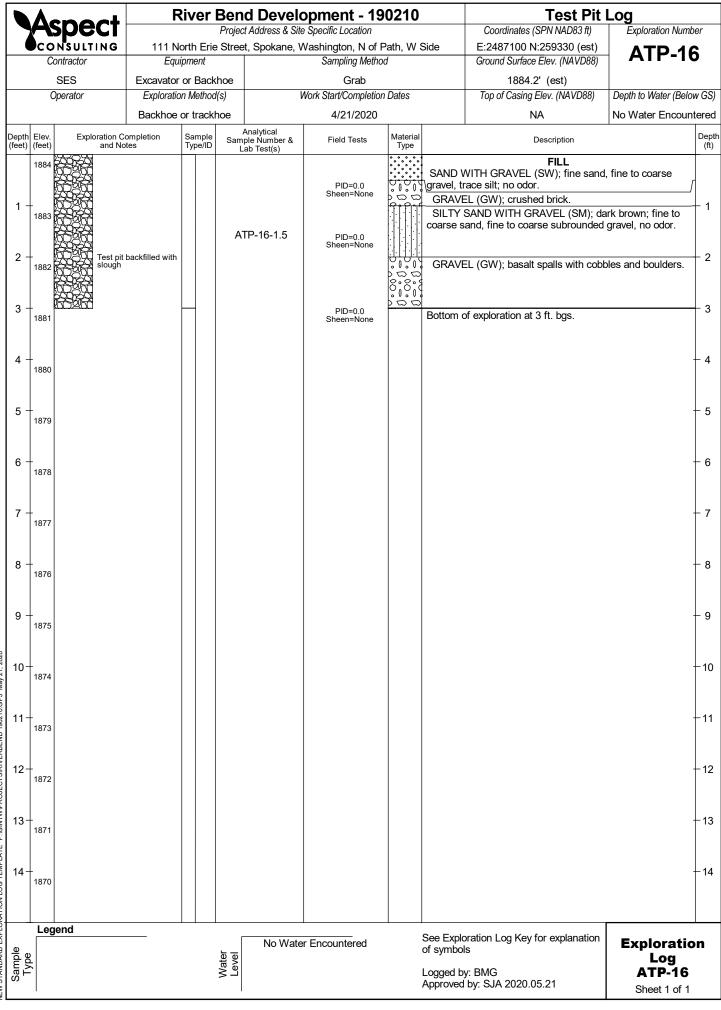












ATTACHMENT B

Laboratory Certificates of Analytical Data

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

May 4 2020 Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL

Dear MICHAEL ERDAHL:

Enclosed please find the analytical data for your 004278 project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
ATP_11-6.0	Soil	20-A005450	CN-s-WAD
ATP_12-7.5	Soil	20-A005451	CN-s-WAD
ATP_13-5.0	Soil	20-A005452	CN-s-WAD

Your samples were received on Friday, April 24, 2020. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

Aaron W. Young

Laboratory Manager

PO Number: B-175

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics NUT=Nutrients DEM=Demand **MIN=Minerals**

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: 004278 PO Number: B-175 All results reported on an as received basis.

AMTEST Identification Number	20-A005450
Client Identification	ATP_11-6.0
Sampling Date	04/22/20, 08:00

Miscellaneous

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANLST	DATE
Cyanide - WAD	0.07	ug/g		0.05	SM 4500 CN	AW	05/01/20

AMTEST Identification Number	20-A005451
Client Identification	ATP_12-7.5
Sampling Date	04/21/20, 15:00

Miscellaneous

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANLST	DATE
Cyanide - WAD	1.1	ug/g		0.05	SM 4500 CN	AW	05/01/20

AMTEST Identification Number	20-A005452
Client Identification	ATP_13-5.0
Sampling Date	04/21/20, 14:30

Date Received: 04/24/20 Date Reported: 5/ 4/20 Friedman & Bruya, Inc. Project Name: 004278 AmTest ID: 20-A005452

Miscellaneous

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANLST	DATE
Cyanide - WAD	0.34	ug/g		0.05	SM 4500 CN	AW	05/01/20

Aaron W. Young Laboratory Manager

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample numbers: 20-A005450 to 20-A005452

MATRIX SPIKES

SAMPLE # AI	NALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
20-A005452 C	yanide - WAD	ug/g	0.34	0.99	0.59	110.17 %
20-A005452 C	yanide - WAD	ug/g	0.34	0.99	0.59	110.17 %
_						
MATRIX SPIK						
SAMPLE # AI	NALYTE	UNITS	SAMPLE + SPK	MSD VALUE		RPD
Spike C	yanide - WAD	ug/g	0.99	0.99		0.00
STANDARD R	REFERENCE MATERIAL	.S				
ANALYTE		UNITS	TRUE VALUE	MEASURED	VALUE	RECOVERY
Cyanide - WAD		ug/g	1.0	1.0		100. %
BLANKS						
ANALYTE		UNITS	RESULT			
Cyanide - WAD		ug/g	< 0.05			

2	1	Come					-						[
	1											Received by:	<u> </u>	Fax (206) 283-5044
	-			-								Relinquished by		Ph. (206) 285-8282
000	4/24/2										Constant and the second	Received by:		Seattle, WA 98119-2029
14:40	4/24/20	Bruya	Friedman & Bruya	Fried			Ы	Michael Erdahl	Micha	C	2 Alla	Relianquished by:		3012 16th Avenue W
TIME	DATE	ANY	COMPANY			AME	PRINT NAME	PR			SIGNATURE			Friedman & Bruya, Inc.
					-									
						-								
	•					<u> </u>								
														•
						×			~	~	1430	4/22/20	5	ATP - 13. 5.0
						× '			-		1500	4/21/20	2	ATP -12-7.5
						×			1	Soil	0080	02/22/2	0616	ATP-11-6.0
Notes	N				Cyanide	VPH WAD	EPH	Dioxins/Furans	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
			JESTEI	ANALYSES REQUESTED	ALYSE	AN								
ions	Return samples Will call with instructions	 Return samples Will call with in 					EN			com	dmanandbruya	nerdahl@frie	8282 p	Phone # <u>(206) 285-8282</u> merdahl@friedmanandbruya.com
)SAL	SAMPLE DISPOSAL Dispose after 30 days	SAM Dispose a							REMARKS	REA		Seattle, WA 98119	eattle,	City, State, ZIP
d by:	Rush charges authorized by:	Rush charg		8-175	B		СР -11	004238	Ċ,			3012 16th Ave W	3012 16t	
	l TAT	SKStandard TAT	• • •	PO#			NO.	NAME/	PROJECT NAME/NO.	PRO	, Inc.	Friedman and Bruya.	riedma	Company]
of 1	ROUND	Page #				Amtest		RACTE	SUBCONTRACTER	IUS		Michael Erdahl	Michael	Send Report To
_											I			

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 5, 2020

Breeyn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on April 23, 2020 from the Riverbend 190210, F&BI 004276 project. There are 14 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Colo

Michael Erdahl Project Manager

Enclosures c: Data Aspect ASP0505R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 23, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Riverbend 190210, F&BI 004276 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
004276 -01	ASVP-01-042120
004276 -02	ASVP-03-042120
004276 -03	ASVP-04-042120
004276 -04	ASVP-05-042120

The TO-15 and MA-APH source sample and duplicate exceeded the relative percent difference acceptance criteria. The quality assurance was qualified accordingly.

Non-petroleum compounds identified in the air phase hydrocarbon (APH) ranges were subtracted per the MA-APH method.

The MA-APH APH EC9-10 aromatics calibration standard did not pass the acceptance criteria in sample ASVP-01-042120. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID:	ASVP-01-042120	Client		Aspect Consulting, LLC
Date Received:	04/23/20	Projec	et:	Riverbend 190210, F&BI 004276
Date Collected:	04/21/20	Lab II):	004276-01 1/3.5
Date Analyzed:	05/01/20	Data 1	File:	043012.D
Matrix:	Air	Instru	iment:	GCMS7
Units:	ug/m3	Opera	tor:	bat/MS
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 94	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 560			
APH EC9-12 aliph				
APH EC9-10 arom				

ENVIRONMENTAL CHEMISTS

Client Sample ID:	ASVP-03-042120	Clien	t:	Aspect Consulting, LLC
Date Received:	04/23/20	Projec	et:	Riverbend 190210, F&BI 004276
Date Collected:	04/21/20	Lab I	D:	004276-02 1/3.5
Date Analyzed:	05/01/20	Data	File:	043014.D
Matrix:	Air	Instru	ament:	GCMS7
Units:	ug/m3	Opera	ator:	bat/MS
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 85	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics <100			
APH EC9-12 aliph				
APH EC9-10 arom				

ENVIRONMENTAL CHEMISTS

Client Sample ID:	ASVP-04-042120	Client		Aspect Consulting, LLC
Date Received:	04/23/20	Projec	et:	Riverbend 190210, F&BI 004276
Date Collected:	04/21/20	Lab II	D:	004276-03 1/3.4
Date Analyzed:	05/01/20	Data	File:	043015.D
Matrix:	Air	Instru	ament:	GCMS7
Units:	ug/m3	Opera	itor:	bat/MS
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 98	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics 100			
APH EC9-12 aliph				
APH EC9-10 arom				

ENVIRONMENTAL CHEMISTS

Client Sample ID:	ASVP-05-042120	Clien	t:	Aspect Consulting, LLC
Date Received:	04/23/20	Proje	et:	Riverbend 190210, F&BI 004276
Date Collected:	04/21/20	Lab I	D:	004276-04 1/3.5
Date Analyzed:	05/01/20	Data	File:	043016.D
Matrix:	Air	Instru	ament:	GCMS7
Units:	ug/m3	Opera	ator:	bat/MS
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 83	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics <100			
APH EC9-12 aliph	atics <120			
APH EC9-10 arom	atics <87			

ENVIRONMENTAL CHEMISTS

Client Sample ID:		Client	•	Aspect Consulting, LLC
Date Received:	Not Applicable	Projec	et:	Riverbend 190210, F&BI 004276
Date Collected:	Not Applicable	Lab Il	D:	00-0986 mb
Date Analyzed:	05/01/20	Data	File:	043011.D
Matrix:	Air	Instru	iment:	GCMS7
Units:	ug/m3	Opera	tor:	bat/MS
	%	Lower	Upper	
Surrogates:	Recovery:	Limit:	Limit:	
4-Bromofluorobenz	zene 99	70	130	
	Concentration			
Compounds:	ug/m3			
APH EC5-8 alipha	tics <30			
APH EC9-12 aliph	atics <35			
APH EC9-10 arom				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	ASVP-01-042120 04/23/20 04/21/20 05/01/20 Air ug/m3	Client Projec Lab I Data Instru Opera	et: D: File: ament:	Aspect Consulting, LLC Riverbend 190210, F&BI 004276 004276-01 1/3.5 043012.D GCMS7 bat/MS
Surrogates: 4-Bromofluorobenz		Lower Limit: 70	Upper Limit: 130	
	Concen	tration		
Compounds:	ug/m3	ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	17 <66 26 57 30 3.0	5.2 <17 6.0 13 6.8 0.57		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	ASVP-03-042120 04/23/20 04/21/20 05/01/20 Air ug/m3	Client Projec Lab II Data I Instru Opera	et: D: File: iment:	Aspect Consulting, LLC Riverbend 190210, F&BI 004276 004276-02 1/3.5 043014.D GCMS7 bat/MS
Surrogates: 4-Bromofluorobenz		Lower Limit: 70	Upper Limit: 130	
Compounds:	Concen ug/m3	tration ppbv		
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<1.1 <66 <1.5 <3 <1.5 <0.92	<0.35 <17 <0.35 <0.7 <0.35 <0.17		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	ASVP-04-042120 04/23/20 04/21/20 05/01/20 Air ug/m3	Clien Projec Lab I Data Instru Opera	et: D: File: ument:	Aspect Consulting, LLC Riverbend 190210, F&BI 004276 004276-03 1/3.4 043026.D GCMS7 bat/MS
Surrogates: 4-Bromofluorobenz	Concent		Upper Limit: 130	
Compounds:	ug/m3	ppbv		
Benzene	16	5.0		
Toluene	<64	<17		
Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<1.5 <3 <1.5 <0.89	<0.34 <0.68 <0.34 <0.17		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	ASVP-05-042120 04/23/20 04/21/20 05/01/20 Air ug/m3	Clien Projec Lab I Data Instru Opera	et: D: File: ument:	Aspect Consulting, LLC Riverbend 190210, F&BI 004276 004276-04 1/3.5 043016.D GCMS7 bat/MS
Surrogates: 4-Bromofluorobenz	Concent		Upper Limit: 130	
Compounds:	ug/m3	ppbv		
Benzene	1.7	0.54		
Toluene	<66	<17		
Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<1.5 <3 <1.5 <0.92	<0.35 <0.7 <0.35 <0.17		
-				

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	ed: Not Applicable ted: Not Applicable		:: ct: D: File: ument: utor:	Aspect Consulting, LLC Riverbend 190210, F&BI 004276 00-0986 mb 043025.D GCMS7 bat/MS
Surrogates: 4-Bromofluorobenz Compounds:	% Recovery: 90 Concent ug/m3	Lower Limit: 70 tration ppbv	Upper Limit: 130	
Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Naphthalene	<0.32 <19 <0.43 <0.87 <0.43 <0.26	<0.1 <5 <0.1 <0.2 <0.1 <0.05		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/05/20 Date Received: 04/23/20 Project: Riverbend 190210, F&BI 004276

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD MA-APH

Laboratory Code: 004276-01 1/3.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
APH EC5-8 aliphatics	ug/m3	560	270	70 vo
APH EC9-12 aliphatics	ug/m3	760	470	47 vo
APH EC9-10 aromatics	ug/m3	140	<87	nm

Laboratory Code: Laboratory Control Sample

Laboratory Coue. Laboratory Con	cioi sumpio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
APH EC5-8 aliphatics	ug/m3	67	88	70-130
APH EC9-12 aliphatics	ug/m3	67	111	70-130
APH EC9-10 aromatics	ug/m3	67	122	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 05/05/20 Date Received: 04/23/20 Project: Riverbend 190210, F&BI 004276

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 004276-01 1/3.5 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	RPD (Limit 30)
Benzene	ug/m3	17	12	34 vo
Toluene	ug/m3	<66	<66	nm
Ethylbenzene	ug/m3	26	16	48 vo
m,p-Xylene	ug/m3	57	34	51 vo
o-Xylene	ug/m3	30	18	50 vo
Naphthalene	ug/m3	3.0	2.2	31 vo

Laboratory Code: Laboratory Control Sample

haberatory coue. haberatory con	lei oi Sampie		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/m3	43	87	70-130
Toluene	ug/m3	51	92	70-130
Ethylbenzene	ug/m3	59	83	70-130
m,p-Xylene	ug/m3	120	85	70-130
o-Xylene	ug/m3	59	82	70-130
Naphthalene	ug/m3	71	117	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Fax (206) 283-5044 Received by:	Ph. (206) 285-8282 Reling	Seattle, WA 98119-2029 Received by:	Т	Friedman & Bruya, Inc.	VOTO				Asup-05-042120 04	Asup-ou-ourize 03	ASUP 03-0421 20 02	ASUP-01-042120 01	Sample Name ID				SAMPLE INFORMATION	Phone (012327343 Email by	City, State, ZIP Seattle	Address 710 2 ro Aw	Ard	Report To V. OVer (7.6
ed by:	Relinquished by:	ed by:	Relinquished by: P	SIG	3412				9414	2300	3416	4495	Canister ID					Email byre erfor spect Consulting com	WA	Ste 5		Gattin
		2	reunor	SIGNATURE	452				256	244	152	242	Cont. ID	Flow	ĸ			reflows	90104	6		
			- ra	E	IA / SG	IA / SG	IA / SG	IA / SG	IA / BG	IA / 3G	1A / 60	1A / 60	SG=Soil Gas (Circle One)	Level: IA=Indoor Air	Reporting		×	ulfing lan			PROJE	
			0						4			4/21/20	Date Sampled			:	-		<u>v</u>		PROJECT NAME & AUDAESS	
	*	PISEAT	Gruyn Creer	PRIJ					27.5	0.42	27.0	5.42 0	d ("Hg)	Initial							tend)	·? > >
		7	n Gr	PRINT NAME					1231	2ht)		1642					-				UABOO	
		TADESSE	eer	B					0 20	1 2	, N 0	0.51	5									non
		X							1827	6 h t 1	9121	than	Final	Field							N N	
	-	184	Aspect	COMPANY			2		X				ſ	015	Full S BTE2 cVO	KN	ANALYSIS REQUESTED		Ap	INVOICE TO	190210	# Oq
				YV											PH		TEST		D Defa		C RUSH Rush charge	MStar
			00t1 ~ F2/h	E .		received at 2/	V0 26 + F						Notes						 Default: Clean after 3 days Archive (Fee may apply) 	SAMPLE DISPOSAL	7 RUSH Rush charges authorized by:	ındard

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 5, 2020

Breeyn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the additional results from the testing of material submitted on April 23, 2020 from the Riverbend 190210, F&BI 004278 project. There are 5 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Adam Griffin ASP0505R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 23, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Riverbend 190210, F&BI 004278 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
004278 -01	ATP-09-3.0
004278 -02	ATP-09-11.5
004278 -03	ATP-10-4.5
004278 -04	ATP-10-9.0
004278 - 05	ATP-11-6.0
004278 -06	ATP-11-12.5
004278 -07	ATP-12-7.5
004278 -08	ATP-12-11.5
004278 -09	ATP-13-5.0
004278 -10	ATP-13-7.0
004278 -11	ATP-13-11.5
004278 -12	ASUP-IDW-01
004278 -13	ASUP-03
004278 -14	ATP-16-1.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	ASUP-IDW 04/23/20 05/01/20 05/04/20 Soil mg/kg (ppn	Y-01 h) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Riverbend 190210, F&BI 004278 004278-12 1/25 050412.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracene	e-d12	% Recovery: 86 d 99 d	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene		1.8		
Acenaphthylene		0.26		
Acenaphthene		0.059		
Fluorene		0.095		
Phenanthrene		1.2		
Anthracene		0.37		
Fluoranthene		4.5		
Pyrene		5.7		
Benz(a)anthracene		3.3		
Chrysene		3.5		
Benzo(a)pyrene		4.4		
Benzo(b)fluoranthe	ene	5.4		
Benzo(k)fluoranthe	ene	1.7		
Indeno(1,2,3-cd)pyr	rene	2.0		
Dibenz(a,h)anthrac	ene	0.41		
Benzo(g,h,i)perylen	ie	1.6		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E SIM

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 05/01/20 05/01/20 Soil mg/kg (ppm		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Riverbend 190210, F&BI 004278 00-983 mb2 1/5 050112.D GCMS6 VM
Surrogates: Anthracene-d10 Benzo(a)anthracen	e-d12	% Recovery: 85 112	Lower Limit: 31 24	Upper Limit: 163 168
Compounds:		Concentration mg/kg (ppm)		
Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthe	ene	$< 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 $		
Benzo(k)fluoranthe Indeno(1,2,3-cd)pyr Dibenz(a,h)anthrac Benzo(g,h,i)peryler	rene cene	<0.01 <0.01 <0.01 <0.01		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/05/20 Date Received: 04/23/20 Project: Riverbend 190210, F&BI 004278

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PAHS BY EPA METHOD 8270E SIM

Laboratory Code: 004296-01 1/5 (Matrix Spike)

Laboratory Coue. 004230	-01 1/3 (Matrix C	spike)			
			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	62	44-129
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	68	52 - 121
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	68	51 - 123
Fluorene	mg/kg (ppm)	0.17	< 0.01	72	37 - 137
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	73	34-141
Anthracene	mg/kg (ppm)	0.17	< 0.01	74	32 - 124
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	73	16-160
Pyrene	mg/kg (ppm)	0.17	< 0.01	121	10-180
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	80	23 - 144
Chrysene	mg/kg (ppm)	0.17	< 0.01	75	32 - 149
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	<0.01 J	$93 \mathrm{J}$	23 - 176
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	<0.01 J	94 J	42-139
Benzo(a)pyrene	mg/kg (ppm)	0.17	<0.01 J	$76~{ m J}$	21-163
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	<0.01 J	$42 \mathrm{J}$	23 - 170
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	<0.01 J	$44 \mathrm{J}$	31-146
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	<0.01 J	$38 \mathrm{J}$	37-133

Laboratory Code: Laboratory Control Sample 1/5

Laboratory Coue. Labora	tory Control San	the 1/2				
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	80	81	58-121	1
Acenaphthylene	mg/kg (ppm)	0.17	77	78	54 - 121	1
Acenaphthene	mg/kg (ppm)	0.17	77	79	54 - 123	3
Fluorene	mg/kg (ppm)	0.17	79	80	56 - 127	1
Phenanthrene	mg/kg (ppm)	0.17	85	87	55 - 122	2
Anthracene	mg/kg (ppm)	0.17	81	84	50 - 120	4
Fluoranthene	mg/kg (ppm)	0.17	86	86	54 - 129	0
Pyrene	mg/kg (ppm)	0.17	87	87	53 - 127	0
Benz(a)anthracene	mg/kg (ppm)	0.17	89	94	51 - 115	5
Chrysene	mg/kg (ppm)	0.17	90	94	55 - 129	4
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	81	82	56 - 123	1
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	80	82	54 - 131	2
Benzo(a)pyrene	mg/kg (ppm)	0.17	74	78	51 - 118	5
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	73	78	49-148	7
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	77	82	50-141	6
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	72	78	52 - 131	8

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

May 4 2020 Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL

Dear MICHAEL ERDAHL:

Enclosed please find the analytical data for your 004278 project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
ATP_11-6.0	Soil	20-A005450	CN-s-WAD
ATP_12-7.5	Soil	20-A005451	CN-s-WAD
ATP_13-5.0	Soil	20-A005452	CN-s-WAD

Your samples were received on Friday, April 24, 2020. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

Aaron W. Young

Laboratory Manager

PO Number: B-175

BACT = Bacteriological CONV = Conventionals MET = Metals ORG = Organics NUT=Nutrients DEM=Demand **MIN=Minerals**

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 www.amtestlab.com

Professional Analytical Services

ANALYSIS REPORT

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Attention: MICHAEL ERDAHL Project Name: 004278 PO Number: B-175 All results reported on an as received basis.

AMTEST Identification Number	20-A005450
Client Identification	ATP_11-6.0
Sampling Date	04/22/20, 08:00

Miscellaneous

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANLST	DATE
Cyanide - WAD	0.07	ug/g		0.05	SM 4500 CN	AW	05/01/20

AMTEST Identification Number	20-A005451
Client Identification	ATP_12-7.5
Sampling Date	04/21/20, 15:00

Miscellaneous

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANLST	DATE
Cyanide - WAD	1.1	ug/g		0.05	SM 4500 CN	AW	05/01/20

AMTEST Identification Number	20-A005452
Client Identification	ATP_13-5.0
Sampling Date	04/21/20, 14:30

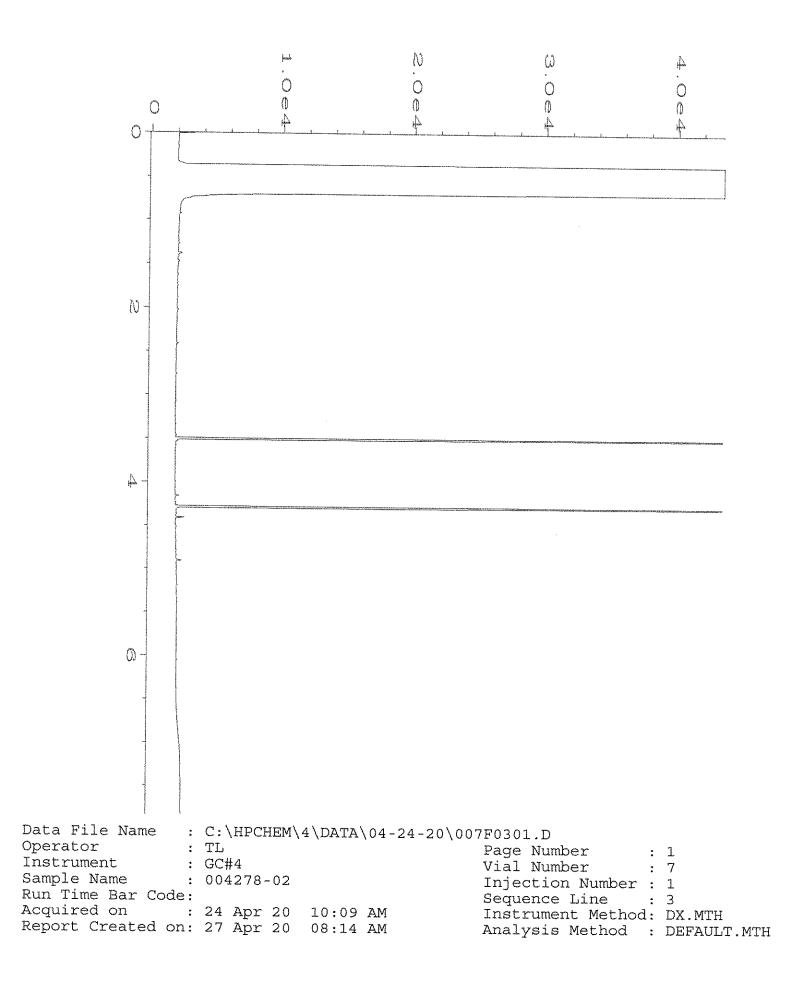
Date Received: 04/24/20 Date Reported: 5/ 4/20 Friedman & Bruya, Inc. Project Name: 004278 AmTest ID: 20-A005452

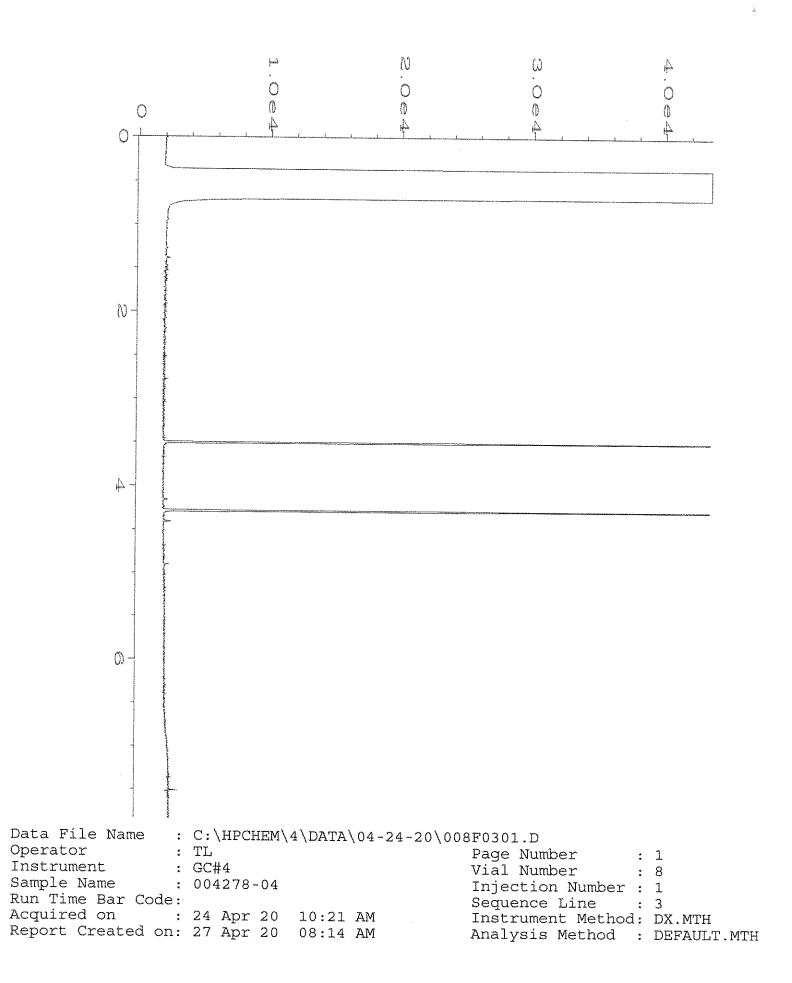
Miscellaneous

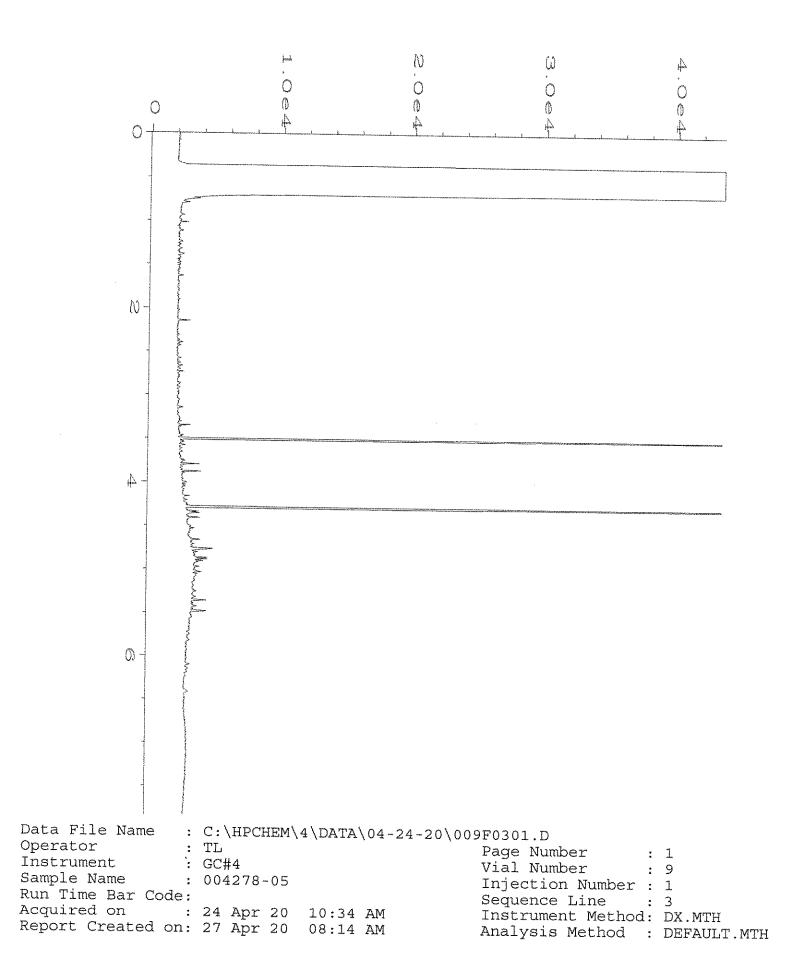
PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANLST	DATE
Cyanide - WAD	0.34	ug/g		0.05	SM 4500 CN	AW	05/01/20

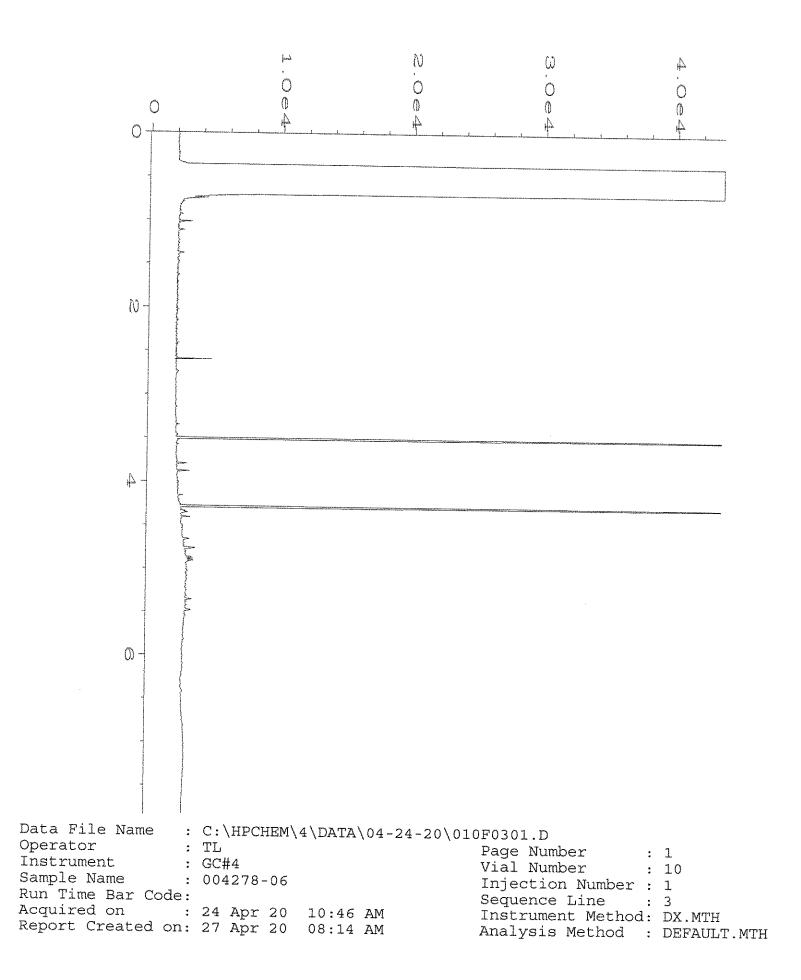
Aaron W. Young Laboratory Manager

Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

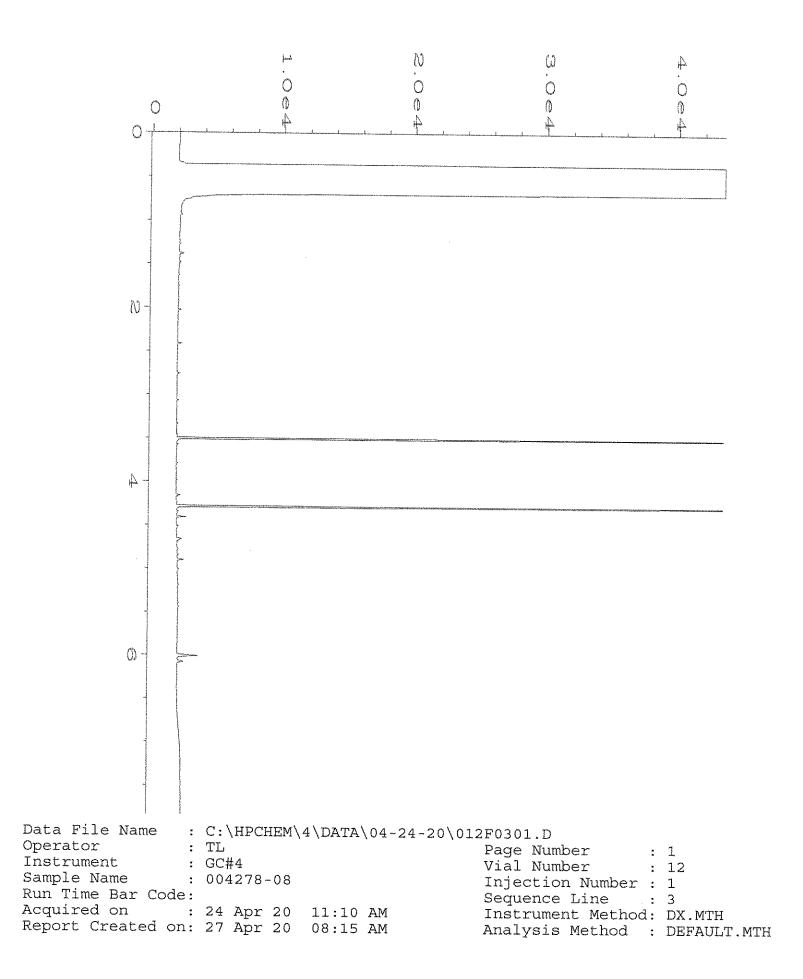

QC Summary for sample numbers: 20-A005450 to 20-A005452

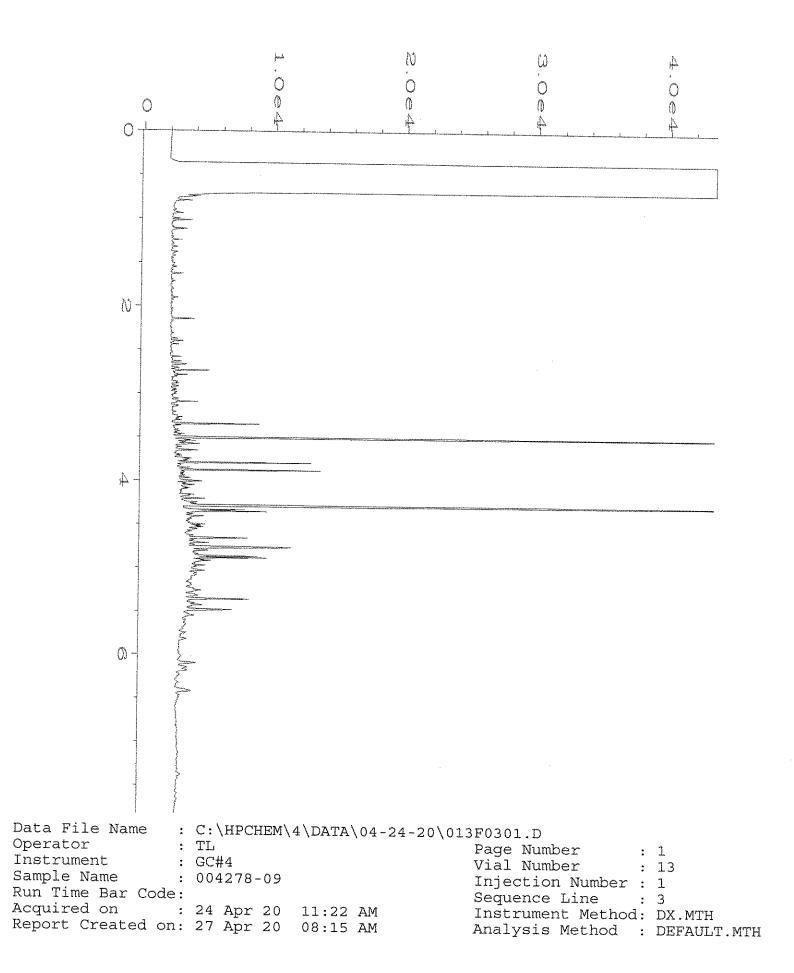

MATRIX SPIKES

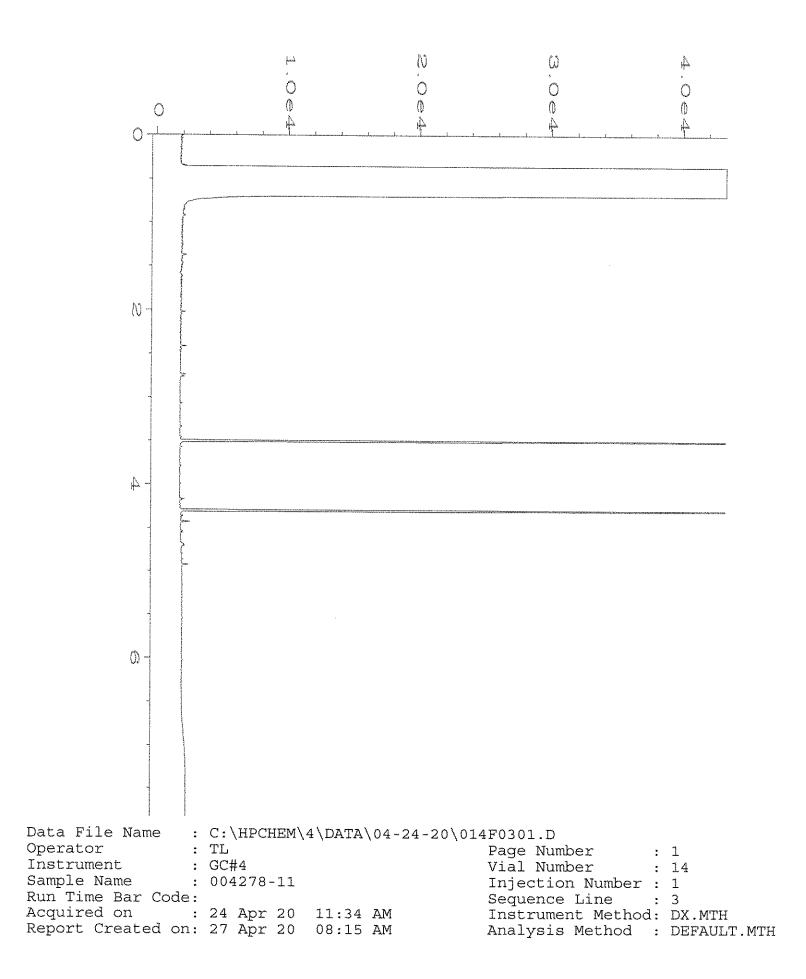

SAMPLE # ANAL	ΥTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
20-A005452 Cyanic	le - WAD	ug/g	0.34	0.99	0.59	110.17 %
20-A005452 Cyanic	le - WAD	ug/g	0.34	0.99	0.59	110.17 %
MATRIX SPIKE D	UPLICATES					
SAMPLE # ANAL	ΥTE	UNITS	SAMPLE + SPK	MSD VALUE		RPD
Spike Cyanic	le - WAD	ug/g	0.99	0.99		0.00
STANDARD REF	ERENCE MATERIAL	.S				
ANALYTE		UNITS	TRUE VALUE	MEASURED	VALUE	RECOVERY
Cyanide - WAD		ug/g	1.0	1.0		100. %
BLANKS						
ANALYTE		UNITS	RESULT			
Cyanide - WAD		ug/g	< 0.05			

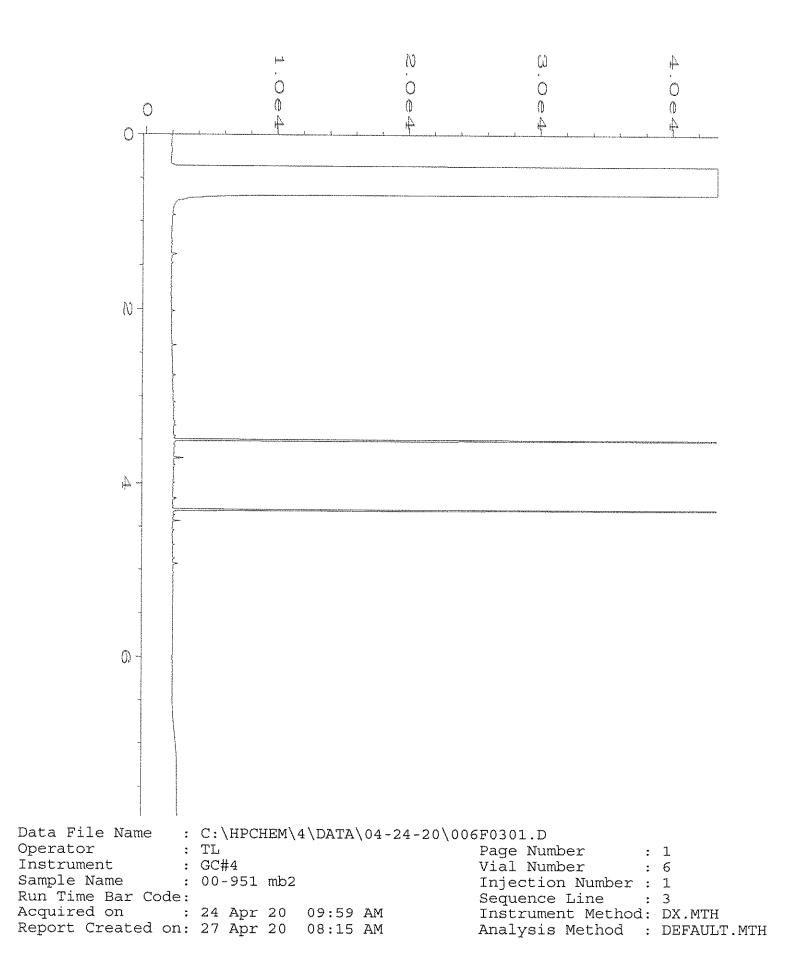

2	1	Courie					-						_	
	i		•									Received by:		Fax (206) 283-5044
											•	Relinquished by		Ph. (206) 285-8282
000	4/24/2										South and the second se	Received by:		Seattle, WA 98119-2029
14:40	4/24/20	Bruya	Friedman & Bruya	Fried			Ы	Michael Erdahl	Micha		2 Ola	Relianquished by:		3012 16th Avenue W
TIME	DATE	ANY	COMPANY			AME	PRINT NAME	PR			SIGNATURE			Friedman & Bruya, Inc.
	•					<u>.</u>								
						×			~		1430	4/22/20	8	ATP - 13. 5.0
						× l					1500	4/21/20	2	ATP -12-7.5
						×			1	Soil	0080	4/22/20	5430	ATP-11-6.0
Notes	N				Cyanide	VPH WAD	EPH	Dioxins/Furans	# of jars	Matrix	Time Sampled	Date Sampled	Lab ID	Sample ID
			JESTEI	ANALYSES REQUESTED	ALYSE	AN								
ions	Return samples Will call with instructions	□ Return samples □ Will call with in					ER			com	dmanandbruya	nerdahl@frie	8282 I	Phone # <u>(206) 285-8282</u> merdahl@friedmanandbruya.com
)SAL	SAMPLE DISPOSAL Dispose after 30 days	Disp	•						REMARKS	REA		Seattle, WA 98119	eattle,	City, State, ZIP
d by:	Rush charges authorized by:	Rush charg		S-175	B		ср 4	004238	Ċ,			3012 16th Ave W	3012 16	
	l TAT	RUSH	••••	PO#			NO.	NAME/	PROJECT NAME/NO.	PRO	, Inc.	Friedman and Bruya.	riedma	Company]
TIME	ROUND	Page #				Amtest		RACTE	SUBCONTRACTER	SUI		Michael Erdahl	<u>Michae</u>]	Send Report To
(

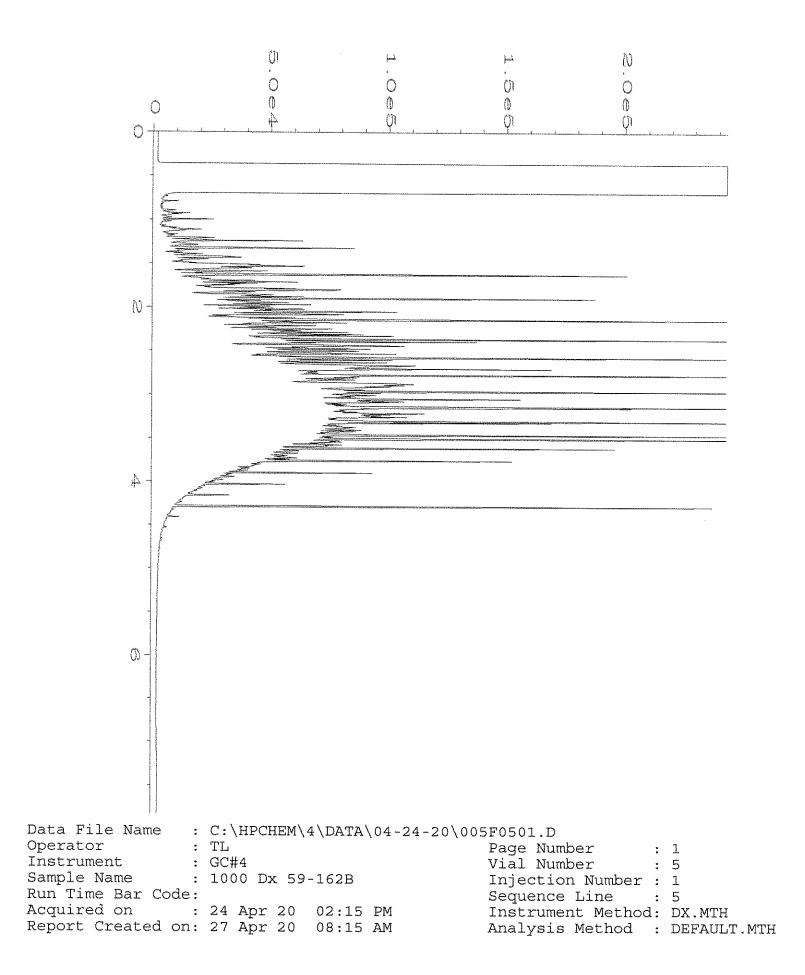

SUBCONTRACT SAMPLE CHAIN OF CUSTODY











1 & Bruya, Inc. Avenue West NA 98119-2029) 285-8282	-12-		ATP-09-3.0 ATP-09-11.5 ATP-10-4.5	Sample ID	004278 Report To_ASPECT Const Company <u>B.Cover</u> A. Address 716 2nd A. City, State, ZIP <u>Seattic</u> Phone <u>Wil 232 7345</u> Email
by: by: by: by: by: by: by:	8 08 07	06 05 04	02 H-F	5	SAMPLE CHAIN OI SAMPLERS (signature ect Consulting PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME Seichtic Sie 550 Remarks REMARKS REMARKS REMARKS
	4/21/20 4/21/20 4/21/20			Date Sampled	icy consu
	1500 1510 1430	0800	0910	Time Sampled	SAMPLE CHAIN OF CUSTO SAMPLERS (signature) PROJECT NAME REMARKS REMARKS REMARKS
	s s s	5 2 1		Sample Type	MPLE CHAIN OF SAMPLERS (signature) PROJECT NAME RAVerbace REMARKS REMARKS
PRINT N Brunge BISEAT	666	666		# of Jars	OF CU
PRINTNAME Briegn G 31SRAT W	Z ZZ	\neq \neq \neq	× × × ×	NWTPH-Dx NWTPH-Gx	Bus Bus
	77/			BTEX EPA 8021	
FATDESSE				NWTPH-HCID	I ANALY ANALY ANALY ANALY
	247	-44	××	VOCs EPA 8260 PAHs EPA 8270	ME OU PO # INVOICE TO
P.	XX			PCBs EPA 808	TO TO
COMI	XX>	$\langle X X$	\times \times	Svocs 8270	
	X. Z			Metals WAD Cyanide	Pag TU TU RUSH RUSH Archiv Default
mples				WAU CYAMON	
Samples received at				H A,	$\frac{BL^{-}V}{\Gamma URNAROUND TIME}$ $\frac{Page \#{of} 2}{\Gamma URNAROUND TIME}$ $\frac{K}{\Gamma USH}$ $\frac{K}{RUSH}$ $\frac{K}{Rush charges authorized by:}$
$\frac{1}{23}$			(Jost)	Hold No	ROUND TIM authorized authorized nples
ja č				Ar, Br, Ph, Ug, Sc Notes Hold	"Y / CI3 #
-00 -00	TIME			×	ays

Friedman & Bruya, Inc. 3012 16 th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282		ATP-16-1.5	Sample ID ATP-13-7.0	Report To The Address City, State, ZIP Email
Relinquished by: Received by: Relinquished by: Received by:		12 12 =	Lab ID	Crífkin Grífkin
DUMM (4/20/20 4/20/20 4/20/20	Date Sampled $\frac{1}{2}$	
		1530 1130 1110	Time Sampled	SAMPLE CHAIN OF CUSTOD SAMPLERS (signature) PROJECT NAME Niverbur REMARKS Project specific RLs? - Yes (No)
E Sp		s s s	Sample Type	MPLE CHAIN OF SAMPLERS (signature) PROJECT NAME REMARKS REMARKS Project specific RLs? -
Biser In		6 6 V	S S <td>I OF CUSTO</td>	I OF CUSTO
ACS SCI III		× ×	NWTPH-Gx BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260 ✓ PAHs EPA 8270 PCBs EPA 8085 SWOC5 8270	Y ME $dy/2$ PO # Invoice TO ANALYSES RE ANALYSES RE
	COMPANY	×	Metals *	$\begin{array}{c c} & & & & & & & \\ & & & & & & \\ & & & & $
Samples received at 2 oc	DATE TIME	HOLD	Notes HCLD	$\begin{array}{c c} B \sum q / C \sum 3 \\ Page # 2 of 2 \\ TURNAROUND TIME \\ Standard turnaround \\ RUSH \\ RUSH \\ Rush charges authorized by: \\ Rush charges authorized by: \\ SAMPLE DISPOSAL \\ SAMPLE DISPOSAL \\ SAMPLE DISPOSAL \\ Other \\ Other \\ Default: Dispose after 30 days \\ \hline ED \\ \hline H Archive samples \\ H Other \\ \hline H Archive samples \\ H Archive samples \\ \hline H Archive samples$

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 1, 2020

Breeyn Greer, Project Manager Aspect Consulting, LLC 710 2nd Ave S, Suite 550 Seattle, WA 98104

Dear Ms Greer:

Included are the results from the testing of material submitted on April 23, 2020 from the Riverbend 190210, F&BI 004278 project. There are 33 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Data Aspect, Adam Griffin ASP0501R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 23, 2020 by Friedman & Bruya, Inc. from the Aspect Consulting, LLC Riverbend 190210, F&BI 004278 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Aspect Consulting, LLC
004278 -01	ATP-09-3.0
004278 -02	ATP-09-11.5
004278 -03	ATP-10-4.5
004278 -04	ATP-10-9.0
004278 -05	ATP-11-6.0
004278 -06	ATP-11-12.5
004278 -07	ATP-12-7.5
004278 -08	ATP-12-11.5
004278 -09	ATP-13-5.0
004278 -10	ATP-13-7.0
004278 -11	ATP-13-11.5
004278 -12	ASUP-IDW-01
004278 -13	ASUP-03
004278 -14	ATP-16-1.5

Samples ATP-11-6.0, ATP-12-7.5, and ATP-13-5.0 were sent to Amtest for WAD cyanide analysis. The report generated by Amtest will be forwarded to your office upon receipt.

The 8270E calibration standard failed the acceptance criteria for indeno(1,2,3cd)pyrene. The data were flagged accordingly. In addition, the laboratory control sample and laboratory control sample duplicate failed the relative percent difference for hexachlorocyclopentadiene. The analyte was not detected in the samples therefore the data were acceptable.

Several compounds in the 8260D laboratory control sample exceeded the acceptance criteria. The analytes were not detected in the samples therefore the data were acceptable.

The PAH result for sample ASUP-IDW-01 will be issued in a separate report.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/20 Date Received: 04/23/20 Project: Riverbend 190210, F&BI 004278 Date Extracted: 04/24/20 Date Analyzed: 04/24/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 58-139)
ATP-09-11.5 004278-02	<5	92
ATP-10-9.0 004278-04	<5	89
ATP-11-6.0 004278-05	<5	94
ATP-11-12.5 004278-06	<5	93
ATP-12-7.5 004278-07	<5	91
ATP-12-11.5 004278-08	<5	90
ATP-13-5.0 004278-09	<5	91
ATP-13-11.5 004278-11	<5	90
Method Blank	<5	96

 $00-860 \mathrm{MB}$

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/20 Date Received: 04/23/20 Project: Riverbend 190210, F&BI 004278 Date Extracted: 04/24/20 Date Analyzed: 04/24/20

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 48-168)
$\underset{004278-02}{\text{ATP-09-11.5}}$	<50	<250	95
ATP-10-9.0 004278-04	<50	<250	107
ATP-11-6.0 004278-05	<50	<250	97
ATP-11-12.5 004278-06	<50	<250	95
ATP-12-7.5 004278-07	<50	<250	94
ATP-12-11.5 004278-08	<50	<250	96
ATP-13-5.0 004278-09	<50	<250	94
ATP-13-11.5 004278-11	<50	<250	91
Method Blank 00-951 MB2	<50	<250	100

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	ATP-11-6.0 04/23/20 04/28/20 04/28/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Riverbend 190210, F&BI 004278 004278-05 004278-05.046 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	12.7		
Barium	197		
Lead	63.4		
Mercury	<1		
Selenium	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	ATP-12-7.5 04/23/20 04/28/20 04/28/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Riverbend 190210, F&BI 004278 004278-07 004278-07.049 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	11.8		
Barium	120		
Lead	14.2		
Mercury	<1		
Selenium	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	ATP-13-5.0 04/23/20 04/28/20 04/28/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Riverbend 190210, F&BI 004278 004278-09 004278-09.050 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	7.77		
Barium	205		
Lead	217 ve		
Mercury	<1		
Selenium	<1		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	ATP-13-5.0 04/23/20 04/28/20 04/29/20 Soil	Client: Project: Lab ID: Data File: Instrument:	Aspect Consulting, LLC Riverbend 190210, F&BI 004278 004278-09 x5 004278-09 x5.032 ICPMS2
Units:	mg/kg (ppm) Dry Weight	Operator:	SP
Analyte:	Concentration mg/kg (ppm)		

Lead

281

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	ASUP-IDW-01 04/23/20 04/28/20 04/28/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Riverbend 190210, F&BI 004278 004278-12 004278-12.051 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	5.80		
Barium	108		
Lead	25.6		
Mercury	<1		
Selenium	<1		

ENVIRONMENTAL CHEMISTS

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 04/28/20 04/28/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Riverbend 190210, F&BI 004278 I0-243 mb I0-243 mb.044 ICPMS2 SP
Analyte:	Concentration mg/kg (ppm)		
Arsenic	<1		
Barium	<1		
Lead	<1		
Mercury	<1		
Selenium	<1		

ENVIRONMENTAL CHEMISTS

Date Received:ODate Extracted:ODate Analyzed:OMatrix:S	ATP-09-11.5)4/23/20)4/24/20)4/24/20 Soil ng/kg (ppm) Dry	Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Riverbend 190210, F 004278-02 042417.D GCMS8 MS	
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopheno Terphenyl-d14		Recovery: 66 73 68 67 75 80	Lower Limit: $36 \\ 47 \\ 38 \\ 50 \\ 25 \\ 50 \\ 50 \\ 100 $	Upper Limit: 114 116 117 150 187 150	
Compounds:		centration kg (ppm)	Compour	nds:	Concentration mg/kg (ppm)
Phenol Bis(2-chloroethyl) eth 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Benzyl alcohol 2,2'-Oxybis(1-chlorop 2-Methylphenol Hexachloroethane N-Nitroso-di-n-propy 3-Methylphenol + 4-N Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid Bis(2-chloroethoxy)m 2,4-Dichlorophenol 1,2,4-Trichlorobenzen Naphthalene Hexachlorobutadiene 4-Chloro-3-methylph 2-Methylnaphthalene Hexachlorocyclopenta 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	ner ropane) lamine Methylphenol ethane ne enol e e adiene	<pre><0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.002 <0.001 <1 <0.002 <0.002 <0.002 <0.002 <0.003 <0.1 <0.1 <0.002 <0.002 <0.002 <0.002 <0.003 <0.1 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.0</pre>	2,6-Dinit 3-Nitroa Acenaph 2,4-Dinit Dibenzof 2,4-Dinit 4-Nitrop Diethyl p Fluorene 4-Chloro N-Nitros 4-Nitroa 4,6-Dinit 4-Bromo Hexachle Pentachl Phenant Anthraco Carbazol Di-n-but Fluorant Pyrene Benzyl b Benz(a)a Chrysen Bis(2-eth Di-n-octy Benzo(a)	trotoluene niline thene trophenol furan trotoluene henol phthalate e phenyl phenyl ether sodiphenylamine niline tro-2-methylphenol phenyl phenyl ether orobenzene lorophenol hrene ene le yl phthalate thene utyl phthalate unthracene e nylhexyl) phthalate yl phthalate	$ \begin{array}{c} < 0.05 \\ < 1 \\ < 0.002 \\ < 0.3 \\ < 0.01 \\ < 0.05 \\ < 0.3 \\ < 0.01 \\ < 0.002 \\ < 0.01 \\ < 0.002 \\ < 0.01 \\ < 0.01 \\ < 1 \\ < 0.3 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.002 \\ < 0.003 \\ < 0.1 \\ 0.0032 \\ < 0.16 \\ < 0.1 \\ 0.0032 \\ 0.0038 \end{array} $
2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene		<0.01 <0.05 <0.1 <0.002	Indeno(1 Dibenz(a	ofluoranthene .,2,3-cd)pyrene a,h)anthracene h,i)perylene	<0.002 0.0025 ca <0.002 0.0025

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	ATP-10-9.0 04/23/20 04/24/20 04/24/20 Soil mg/kg (ppm) D	Prv Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Riverbend 190210, F 004278-04 1/5 042418.D GCMS8 MS	
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	%	6 Recovery: 79 86 84 86 77 89	Lower Limit: 36 47 38 50 25 50	Upper Limit: 114 116 117 150 187 150	
Compounds:		oncentration 1g/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Phenol Bis(2-chloroethyl) & 2-Chlorophenol 1,3-Dichlorobenzen 1,4-Dichlorobenzen Benzyl alcohol 2,2'-Oxybis(1-chloro 2-Methylphenol Hexachloroethane N-Nitroso-di-n-prop 3-Methylphenol + 4 Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid Bis(2-chloroethoxy) 2,4-Dichlorophenol 1,2,4-Trichlorobenz Naphthalene Hexachlorobutadie 4-Chloro-3-methylp 2-Methylnaphthale 1-Methylnaphthale	ether e e e opropane) oylamine t-Methylphenol l omethane ene ne ohenol ene ene	$\begin{array}{c} < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.01 \\ \end{array}$	2,6-Dini 3-Nitroa Acenaph 2,4-Dini Dibenzo 2,4-Dini 4-Nitrop Diethyl Fluorene 4-Chloro N-Nitroa 4,6-Dini 4-Bromo Hexachl Pentach Phenant Anthrac Carbazo Di-n-but Fluorene Benzyl b Benz(a)a Chrysen Bis(2-eth	trotoluene miline thene trophenol furan trotoluene henol phthalate e ophenyl phenyl ether sodiphenylamine miline tro-2-methylphenol ophenyl phenyl ether orobenzene lorophenol hrene ene le yl phthalate thene outyl phthalate anthracene e hylhexyl) phthalate	$\begin{array}{c} < 0.25 \\ < 5 \\ < 0.01 \\ < 1.5 \\ < 0.05 \\ < 0.25 \\ < 1.5 \\ < 0.5 \\ < 0.01 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.8 \end{array}$
Hexachlorocyclopen 2,4,6-Trichlorophen 2,4,5-Trichlorophen 2-Chloronaphthale 2-Nitroaniline Dimethyl phthalata Acenaphthylene	nol nol ne	<0.15 <0.5 <0.5 <0.05 <0.25 <0.5 <0.01	Benzo(a) Benzo(b) Benzo(k) Indeno(1) Dibenz(a)	yl phthalate)pyrene)fluoranthene)fluoranthene I,2,3-cd)pyrene a,h)anthracene ,h,i)perylene	<0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
				· · • •	

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted:	ATP-11-6.0 04/23/20 04/24/20		Client: Project: Lab ID:	Aspect Consulting, L Riverbend 190210, F 004278-05 1/25	
Date Analyzed:	04/27/20		Data File:	042710.D	
Matrix:	Soil		Instrument:	GCMS8	
Units:	mg/kg (ppm)	Dry Weight	Operator:	VM	
C		0/ Decomorrow	Lower	Upper	
Surrogates: 2-Fluorophenol		% Recovery: 55 d	Limit: 36	Limit: 114	
Phenol-d6		63 d	47	114	
Nitrobenzene-d5		69 d	38	117	
2-Fluorobiphenyl		78 d	50	150	
2,4,6-Tribromopher	nol	53 d	25	187	
Terphenyl-d14		76 d	50	150	
Compounds:		Concentration mg/kg (ppm)	Compou	nde	Concentration mg/kg (ppm)
Compounds.		ing/kg (ppin)	Compou	nus.	iiig/kg (ppiii)
Phenol		<2.5		trotoluene	<1.2
Bis(2-chloroethyl)	ether	< 0.25	3-Nitroa		<25
2-Chlorophenol		<2.5	Acenaph		< 0.05
1,3-Dichlorobenzen		< 0.25	,	trophenol	<7.5
1,4-Dichlorobenzen		< 0.25	Dibenzo		< 0.25
1,2-Dichlorobenzen	e	< 0.25		trotoluene	<1.2
Benzyl alcohol		<2.5	4-Nitrop		<7.5
2,2'-Oxybis(1-chlore	opropane)	< 0.25		phthalate	<2.5
2-Methylphenol		<2.5	Fluorene		< 0.05
Hexachloroethane	. .	< 0.25		phenyl phenyl ether	< 0.25
N-Nitroso-di-n-proj		< 0.25		sodiphenylamine	<0.25
3-Methylphenol + 4	l-Methylpheno		4-Nitroa		<25
Nitrobenzene		<0.25		tro-2-methylphenol	<7.5
Isophorone		<0.25		phenyl phenyl ether	<0.25
2-Nitrophenol	1	<2.5		orobenzene	<0.25
2,4-Dimethylpheno	1	<2.5		lorophenol	<1.2
Benzoic acid		<12 ca	Phenant		0.24
Bis(2-chloroethoxy)	methane	<0.25	Anthrac		0.051
2,4-Dichlorophenol 1,2,4-Trichlorobenz		<2.5 <0.25	Carbazo		<0.25 <2.5
	lene	<0.25 0.21	Fluoran	yl phthalate	~ 2.3 0.29
Naphthalene Hexachlorobutadie	20	<0.21		thene	0.29
4-Chloroaniline	lie	<0.25 <25	Pyrene Bongul k	outyl phthalate	<2.5
4-Chloro-3-methylg	honol	<2.5 <2.5	-	anthracene	<2.5 0.18
2-Methylnaphthale		0.16	Chrysen		0.18
1-Methylnaphthale		0.091		hylhexyl) phthalate	<4
Hexachlorocyclope		<0.75		yl phthalate	<4 <2.5
2,4,6-Trichloropher		<0.75 <2.5	Benzo(a)		-2.5 0.25
2,4,5-Trichloropher		<2.5)fluoranthene	0.20
2-Chloronaphthale		<0.25)fluoranthene	0.40
2-Nitroaniline		<0.25		1,2,3-cd)pyrene	0.13
Dimethyl phthalate	2	<1.2 <2.5		a,h)anthracene	0.25
Acenaphthylene		<0.05		,h,i)perylene	0.31
racinapitunyiene		-0.00	Denzo(g,	,,ı/por y 10116	0.01

ENVIRONMENTAL CHEMISTS

Client Sample ID:	ATP-11-12.5		Client:	Aspect Consulting, L	
Date Received:	04/23/20		Project:	Riverbend 190210, F	&BI 004278
Date Extracted:	04/24/20		Lab ID:	004278-06 1/25	
Date Analyzed:	04/27/20		Data File:	042711.D	
Matrix:	Soil		Instrument:	GCMS8	
Units:	mg/kg (ppm)	Dry Weight	Operator:	VM	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
2-Fluorophenol		68 d	36	114	
Phenol-d6 Nitrobenzene-d5		75 d 71 d	$\begin{array}{c} 47\\ 38\end{array}$	$\begin{array}{c} 116\\117\end{array}$	
2-Fluorobiphenyl		79 d	50	150	
2,4,6-Tribromopher	nol	66 d	25	187	
Terphenyl-d14		79 d	50	150	
	C	Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nda	
Compounds:		mg/kg (ppm)	Compou	nus.	mg/kg (ppm)
Phenol		<2.5	2,6-Dini	trotoluene	<1.2
Bis(2-chloroethyl) e	ether	< 0.25	3-Nitroa	niline	<25
2-Chlorophenol		<2.5	Acenaph	nthene	< 0.05
1,3-Dichlorobenzen	e	< 0.25	2,4-Dini	trophenol	<7.5
1,4-Dichlorobenzen	e	< 0.25	Dibenzo	furan	< 0.25
1,2-Dichlorobenzen	e	< 0.25	2,4-Dini	trotoluene	<1.2
Benzyl alcohol		<2.5	4-Nitrop	henol	<7.5
2,2'-Oxybis(1-chlore	opropane)	< 0.25	Diethyl	phthalate	<2.5
2-Methylphenol		<2.5	Fluorene	е	< 0.05
Hexachloroethane		< 0.25		phenyl phenyl ether	< 0.25
N-Nitroso-di-n-prop		< 0.25		sodiphenylamine	< 0.25
3-Methylphenol + 4	l-Methylphenol		4-Nitroa		<25
Nitrobenzene		< 0.25		tro-2-methylphenol	<7.5
Isophorone		< 0.25		phenyl phenyl ether	< 0.25
2-Nitrophenol		<2.5		orobenzene	< 0.25
2,4-Dimethylpheno	1	<2.5		lorophenol	<1.2
Benzoic acid	_	<12 ca	Phenant		0.097
Bis(2-chloroethoxy)	methane	< 0.25	Anthrac		0.063
2,4-Dichlorophenol		<2.5	Carbazo		< 0.25
1,2,4-Trichlorobenz	zene	< 0.25		yl phthalate	<2.5
Naphthalene		0.051	Fluoran	thene	0.25
Hexachlorobutadie	ne	< 0.25	Pyrene		0.28
4-Chloroaniline		<25	-	outyl phthalate	<2.5
4-Chloro-3-methylp		<2.5	. ,	anthracene	0.19
2-Methylnaphthale		< 0.05	Chrysen		0.31
1-Methylnaphthale		< 0.05		nylhexyl) phthalate	<4
Hexachlorocycloper		< 0.75		yl phthalate	<2.5
2,4,6-Trichloropher		<2.5	Benzo(a)		0.25
2,4,5-Trichloropher		<2.5)fluoranthene	0.45
2-Chloronaphthale	ne	< 0.25)fluoranthene	0.15
2-Nitroaniline		<1.2		1,2,3-cd)pyrene	0.26
Dimethyl phthalate	Э	<2.5		a,h)anthracene	0.062
Acenaphthylene		< 0.05	Benzo(g,	,h,i)perylene	0.24

ENVIRONMENTAL CHEMISTS

Client Sample ID:	ATP-12-7.5		Client:	Aspect Consulting I	IC
Client Sample ID: Date Received:	ATF-12-7.5 04/23/20		Project:	Aspect Consulting, L Riverbend 190210, F	
Date Extracted:	04/23/20 04/24/20		Lab ID:	004278-07 1/25	&DI 004278
Date Analyzed:	04/27/20		Data File:	004278-07 1/25 042712.D	
Matrix:	Soil		Instrument:	GCMS8	
Units:	mg/kg (ppm)	Dry Woight	Operator:	VM	
Units.	mg/kg (ppm)	Dry weight	Operator.		
G		0/ D	Lower	Upper	
Surrogates: 2-Fluorophenol		% Recovery: 65 d	Limit: 36	Limit: 114	
Phenol-d6		74 d	47	114	
Nitrobenzene-d5		73 d	38	117	
2-Fluorobiphenyl		77 d	50	150	
2,4,6-Tribromopher	nol	74 d	$25 \\ 50$	187	
Terphenyl-d14		80 d	50	150	
	(Concentration			Concentration
Compounds:		mg/kg (ppm)	Compou	nds:	mg/kg (ppm)
Phenol		<2.5	2.6-Dini	trotoluene	<1.2
Bis(2-chloroethyl)	ether	< 0.25	3-Nitroa		<25
2-Chlorophenol		<2.5	Acenaph	nthene	0.065
1,3-Dichlorobenzen	e	< 0.25		trophenol	<7.5
1,4-Dichlorobenzen		< 0.25	Dibenzo	1	< 0.25
1,2-Dichlorobenzen		< 0.25	2,4-Dini	trotoluene	<1.2
Benzyl alcohol		<2.5	4-Nitrop		<7.5
2,2'-Oxybis(1-chlore	opropane)	< 0.25	Diethyl	phthalate	<2.5
2-Methylphenol		<2.5	Fluoren	е	0.17
Hexachloroethane		< 0.25	4-Chloro	phenyl phenyl ether	< 0.25
N-Nitroso-di-n-proj	pylamine	< 0.25	N-Nitros	sodiphenylamine	< 0.25
3-Methylphenol + 4	l-Methylpheno	l <5	4-Nitroa	niline	<25
Nitrobenzene		< 0.25		tro-2-methylphenol	<7.5
Isophorone		< 0.25		phenyl phenyl ether	< 0.25
2-Nitrophenol		<2.5		orobenzene	< 0.25
2,4-Dimethylpheno	1	<2.5		lorophenol	<1.2
Benzoic acid		<12 ca	Phenant		4.0
Bis(2-chloroethoxy)	methane	< 0.25	Anthrac		0.91
2,4-Dichlorophenol		<2.5	Carbazo		<0.25
1,2,4-Trichlorobenz	zene	< 0.25		yl phthalate	<2.5
Naphthalene		0.44	Fluoran	thene	6.9
Hexachlorobutadie	ne	<0.25	Pyrene		6.9
4-Chloroaniline	1 1	<25		outyl phthalate	<2.5
4-Chloro-3-methylp		<2.5	. ,	anthracene	3.8
2-Methylnaphthale		0.14	Chrysen Dia(2, atl		3.8
1-Methylnaphthale		0.12 < 0.75		hylhexyl) phthalate	<4 <2.5
Hexachlorocycloper		<0.75 <2.5		yl phthalate	~2.5 3.9
2,4,6-Trichloropher 2,4,5-Trichloropher		<2.5 <2.5	Benzo(a)		3.9 4.8
2.4,5-1 richloropher 2-Chloronaphthale		<2.5 <0.25)fluoranthene)fluoranthene	4.8 1.8
2-Onioronaphtnale 2-Nitroaniline	ПС	<0.25		1,2,3-cd)pyrene	1.8 2.5
Dimethyl phthalate	2	<1.2 <2.5		a,h)anthracene	$\begin{array}{c} 2.5\\ 0.47\end{array}$
Acenaphthylene		0.37		,h,i)perylene	2.0
1 wenapituity tene		0.07	Denzo(g	,11,1/PEL / 1E11E	2.0

ENVIRONMENTAL CHEMISTS

Client Sample ID:ATP-12-11.5Date Received:04/23/20Date Extracted:04/24/20Date Analyzed:04/24/20Matrix:SoilUnits:mg/kg (ppm)	5) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Riverbend 190210, F 004278-08 1/5 042419.D GCMS8 MS	
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14	% Recovery: 69 73 75 74 61 75	Lower Limit: 36 47 38 50 25 50	Upper Limit: 114 116 117 150 187 150	
Compounds:	Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Phenol Bis(2-chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 2,2'-Oxybis(1-chloropropane) 2-Methylphenol Hexachloroethane N-Nitroso-di-n-propylamine 3-Methylphenol + 4-Methylphen Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid Bis(2-chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene 1-Methylnaphthalene Hexachlorocyclopentadiene	$\begin{array}{c} < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.15 \end{array}$	3-Nitroa Acenaph 2,4-Dini Dibenzo 2,4-Dini 4-Nitrop Diethyl Fluorend 4-Chloro N-Nitros 4-Chloro N-Nitros 4-Chloro Hexachl Pentach Phenant Anthrac Carbazo Di-n-but Fluoran Pyrene Benzyl b Benz(a)a Chrysen Bis(2-etl	athene trophenol furan trotoluene whenol phthalate e ophenyl phenyl ether sodiphenylamine niline tro-2-methylphenol ophenyl phenyl ether orobenzene lorophenol chrene ene le yl phthalate thene	$\begin{array}{c} < 0.25 \\ < 5 \\ < 0.01 \\ < 1.5 \\ < 0.05 \\ < 0.25 \\ < 1.5 \\ < 0.5 \\ < 0.01 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.013 \\ < 0.01 \\ < 0.05 \\ < 0.5 \\ 0.030 \\ 0.024 \\ < 0.5 \\ 0.019 \\ 0.022 \\ < 0.8 \\ < 0.5 \end{array}$
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene	<0.5 <0.5 <0.05 <0.25 <0.5 <0.01	Benzo(k Indeno(1 Dibenz(a)fluoranthene)fluoranthene l,2,3-cd)pyrene a,h)anthracene ,h,i)perylene	0.016 0.028 0.010 0.017 ca <0.01 0.016

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	ATP-13-5.0 04/23/20 04/24/20 04/24/20 Soil mg/kg (ppm)	Dry Woight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Riverbend 190210, F 004278-09 1/25 042421.D GCMS8 MS	
Units.	mg/kg (ppm)	Dry weight	Operator.	MB	
Surrogates: 2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophen Terphenyl-d14	nol	% Recovery: 32 d 42 d 75 d 77 d 37 d 80 d	Lower Limit: 36 47 38 50 25 50	Upper Limit: 114 116 117 150 187 150	
Compounds:	(Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Phenol		<2.5	2.6-Dini	trotoluene	<1.2
Bis(2-chloroethyl) e	ether	<0.25	3-Nitroa		<25
2-Chlorophenol		<2.5	Acenaph		0.078
1,3-Dichlorobenzen	e	< 0.25		trophenol	<7.5
1,4-Dichlorobenzen		< 0.25	Dibenzo	1	< 0.25
1,2-Dichlorobenzen		< 0.25	2,4-Dini	trotoluene	<1.2
Benzyl alcohol		<2.5	4-Nitrop	ohenol	<7.5
2,2'-Oxybis(1-chlore	opropane)	< 0.25	Diethyl	phthalate	<2.5
2-Methylphenol		<2.5	Fluoren	е	0.082
Hexachloroethane		< 0.25	4-Chloro	phenyl phenyl ether	< 0.25
N-Nitroso-di-n-prop		< 0.25		sodiphenylamine	< 0.25
3-Methylphenol + 4	l-Methylpheno		4-Nitroa		<25
Nitrobenzene		< 0.25		tro-2-methylphenol	<7.5
Isophorone		< 0.25		phenyl phenyl ether	< 0.25
2-Nitrophenol	,	<2.5		orobenzene	< 0.25
2,4-Dimethylpheno	1	<2.5		lorophenol	<1.2
Benzoic acid	1	<12	Phenant		1.5
Bis(2-chloroethoxy)		<0.25	Anthrac		0.20
2,4-Dichlorophenol		<2.5	Carbazo		<0.25
1,2,4-Trichlorobenz	zene	<0.25		yl phthalate	<2.5
Naphthalene Hexachlorobutadie	20	0.22 < 0.25	Fluoran Pyrene	tnene	$\begin{array}{c} 2.2 \\ 1.9 \end{array}$
4-Chloroaniline	ne	<0.25 <25	•	outyl phthalate	<2.5
4-Chloro-3-methylp	henol	<2.5		anthracene	0.97
2-Methylnaphthale		0.18	Chrysen		1.2
1-Methylnaphthale		0.12		hylhexyl) phthalate	<4
Hexachlorocycloper		< 0.75		yl phthalate	<2.5
2,4,6-Trichloropher		<2.5	Benzo(a)		1.1
2,4,5-Trichloropher		<2.5)fluoranthene	1.4
2-Chloronaphthale		< 0.25)fluoranthene	0.48
2-Nitroaniline		<1.2		1,2,3-cd)pyrene	0.84 ca
Dimethyl phthalate	э	<2.5	Dibenz(a	a,h)anthracene	0.18
Acenaphthylene		< 0.05	Benzo(g	,h,i)perylene	0.72

ENVIRONMENTAL CHEMISTS

Compounds: mg/kg (ppm)Compounds: mg/kg (ppp)Phenol<0.52,6-Dinitrotoluene<0.25Bis(2-chloropthenol<0.53-Nitroaniline<52-Chlorophenol<0.5Acenaphthene<0.011,3-Dichlorobenzene<0.052,4-Dinitrophenol<1.51,4-Dichlorobenzene<0.05Dibenzofuran<0.051,2-Dichlorobenzene<0.052,4-Dinitrotoluene<0.25Benzyl alcohol<0.54-Nitrophenol<1.52.2'Oxybis(1-chloropropane)<0.05Diethyl phthalate<0.52-Methylphenol<0.5Fluorene<0.05N-Nitroso-di-n-propylamine<0.05N-Nitrosodiphenylamine<0.053-Methylphenol + 4-Methylphenol<14-Nitroaniline<5Nitrobenzene<0.054-6-Dinitro-2-methylphenol<1.5Isophorone<0.054-Bromophenyl phenyl ether<0.052-Nitrophenol<0.5Pentachlorophenol<0.52-Nitrophenol<0.5Pentachlorophenol<0.52-Nitrophenol<0.5Pentachlorophenol<0.52-Nitrophenol<0.5Pentachlorophenol<0.253-Nitrophenol<0.5Pentachlorophenol<0.552-Nitrophenol<0.5Pentachlorophenol<0.253-Nitrophenol<0.5Pentachlorophenol<0.252-Nitrophenol<0.5Pentachlorophenol<0.253-Nitrophenol<0.5Pentachlorophenol<0.553-Nitrophenol<0.5Anthra	Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	ATP-13-11.5 04/23/20 04/24/20 04/24/20 Soil mg/kg (ppm) D	ry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Riverbend 190210, F 004278-11 1/5 042420.D GCMS8 MS	
Compounds:mg/kg (ppm)Compounds:mg/kg (ppm)Phenol<0.5	2-Fluorophenol Phenol-d6 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromopher		78 83 82 83 77	Limit: 36 47 38 50 25	Limit: 114 116 117 150 187	
Bis(2-chloroethyl) ether < 0.05 3 -Nitroaniline < 5 2-Chlorophenol < 0.5 Acenaphthene < 0.01 1,3-Dichlorobenzene < 0.05 $2,4$ -Dinitrophenol < 1.5 1,4-Dichlorobenzene < 0.05 $2,4$ -Dinitrotoluene < 0.25 1,2-Dichlorobenzene < 0.05 $2,4$ -Dinitrotoluene < 0.25 Benzyl alcohol < 0.5 4 -Nitrophenol < 1.5 2,2'-Oxybis(1-chloropropane) < 0.05 Dibethyl phthalate < 0.5 2-Methylphenol < 0.5 Fluorene < 0.01 Hexachloroethane < 0.05 N-Nitrosodiphenyl phenyl ether < 0.05 3-Methylphenol + 4-Methylphenol < 1 4 -Nitroaniline < 5 Nitrobenzene < 0.05 4 -Geninitro-2-methylphenol < 1.5 Isophorone < 0.05 4 -Bromophenyl phenyl ether < 0.05 2-Nitrophenol < 0.5 Hexachlorobenzene < 0.05 2-Nitrophenol < 0.5 Hexachlorobenzene < 0.05 2-Nitrophenol < 0.5 Pentachlorobenzene < 0.05 2-Nitrophenol < 0.5 Pentachlorophenol < 0.25 2-Nitrophenol < 0.5 Pin-hutyl phthalate < 0.01 2,4-Dinethylphenol < 0.5 Di-n-bu	Compounds:			Compou	nds:	Concentration mg/kg (ppm)
4-Chloro-3-methylphenol<0.5	Phenol Bis(2-chloroethyl) e 2-Chlorophenol 1,3-Dichlorobenzen 1,4-Dichlorobenzen 1,2-Dichlorobenzen Benzyl alcohol 2,2'-Oxybis(1-chloro 2-Methylphenol Hexachloroethane N-Nitroso-di-n-prop 3-Methylphenol + 4 Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid Bis(2-chloroethoxy) 2,4-Dichlorophenol 1,2,4-Trichlorobenz Naphthalene Hexachlorobutadier 4-Chloro-3-methylp 2-Methylnaphthale	ther e e e opropane) oylamine -Methylphenol l methane ene ene henol ne	$\begin{array}{c} < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.05 \\ < 0.5 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.01 \end{array}$	2,6-Dinit 3-Nitroa Acenaph 2,4-Dinit Dibenzoi 2,4-Dinit 4-Nitrop Diethyl p Fluorene 4-Chloro N-Nitroa 4,6-Dinit 4-Bromo Hexachl Pentach Phenant Anthrac Carbazo Di-n-but Fluorant Pyrene Benzyl b Benz(a)a Chrysen	trotoluene niline thene trophenol furan trotoluene henol phthalate e ophenyl phenyl ether sodiphenylamine niline tro-2-methylphenol ophenyl phenyl ether orobenzene lorophenol chrene ene le yl phthalate thene outyl phthalate anthracene e	$\begin{array}{c} < 0.25 \\ < 5 \\ < 0.01 \\ < 1.5 \\ < 0.05 \\ < 0.25 \\ < 1.5 \\ < 0.5 \\ < 0.01 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \\ < 0.01 \end{array}$
Hexachlorocyclopentadiene<0.15Di-n-octyl phthalate<0.5 $2,4,6$ -Trichlorophenol<0.5	2,4,6-Trichlorophen 2,4,5-Trichlorophen 2-Chloronaphthalen 2-Nitroaniline Dimethyl phthalate	nol nol	<0.5 <0.5 <0.05 <0.25 <0.5	Benzo(a) Benzo(b) Benzo(k) Indeno(1 Dibenz(a)pyrene)fluoranthene)fluoranthene I,2,3-cd)pyrene a,h)anthracene	<0.01 <0.01 <0.01 <0.01 <0.01

ENVIRONMENTAL CHEMISTS

			~		
Client Sample ID:	Method Blank		Client:	Aspect Consulting,	
Date Received:	Not Applicable		Project:	Riverbend 190210,	F&BI 004278
Date Extracted:	04/24/20		Lab ID:	00-960 mb	
Date Analyzed:	04/24/20		Data File:	042414.D	
Matrix:	Soil		Instrument:	GCMS8	
Units:	mg/kg (ppm) Di	ry Weight	Operator:	MS	
			Lower	Upper	
Surrogates:	%	Recovery:	Limit:	Limit:	
2-Fluorophenol	,,,	71	36	114	
Phenol-d6		78	47	116	
Nitrobenzene-d5		76 76	38	117	
2-Fluorobiphenyl 2,4,6-Tribromopher		79 76	$50\\25$	$\begin{array}{c} 150\\ 187\end{array}$	
Terphenyl-d14	101	87	50	150	
rorphonyr ar r			00	100	
		ncentration		_	Concentration
Compounds:	m	g/kg (ppm)	Compou	nds:	mg/kg (ppm)
Phenol		< 0.1	2,6-Dini	trotoluene	< 0.05
Bis(2-chloroethyl)	ether	< 0.01	3-Nitroa	niline	<1
2-Chlorophenol		< 0.1	Acenaph	nthene	< 0.002
1,3-Dichlorobenzen	e	< 0.01	2,4-Dini	trophenol	< 0.3
1,4-Dichlorobenzen	e	< 0.01	Dibenzot	furan	< 0.01
1,2-Dichlorobenzen	e	< 0.01	2,4-Dini	trotoluene	< 0.05
Benzyl alcohol		< 0.1	4-Nitrop	henol	< 0.3
2,2'-Oxybis(1-chlore	opropane)	< 0.01	Diethyl	phthalate	< 0.1
2-Methylphenol		< 0.1	Fluorene	э	< 0.002
Hexachloroethane		< 0.01		phenyl phenyl ether	< 0.01
N-Nitroso-di-n-proj	pylamine	< 0.01		sodiphenylamine	< 0.01
3-Methylphenol + 4	4-Methylphenol	< 0.2	4-Nitroa		<1
Nitrobenzene		< 0.01		tro-2-methylphenol	< 0.3
Isophorone		< 0.01		phenyl phenyl ether	
2-Nitrophenol		< 0.1		orobenzene	< 0.01
2,4-Dimethylpheno	bl	< 0.1		lorophenol	< 0.05
Benzoic acid		< 0.5	Phenant		< 0.002
Bis(2-chloroethoxy)		< 0.01	Anthrac		< 0.002
2,4-Dichlorophenol		< 0.1	Carbazo		< 0.01
1,2,4-Trichlorobenz	zene	< 0.01		yl phthalate	< 0.1
Naphthalene		< 0.002	Fluorant	thene	< 0.002
Hexachlorobutadie	ne	< 0.01	Pyrene		< 0.002
4-Chloroaniline		<1		outyl phthalate	< 0.1
4-Chloro-3-methylp		< 0.1	· · ·	anthracene	< 0.002
2-Methylnaphthale		< 0.002	Chrysen		< 0.002
1-Methylnaphthale		< 0.002		hylhexyl) phthalate	< 0.16
Hexachlorocycloper		< 0.03		yl phthalate	< 0.1
2,4,6-Trichloropher		< 0.1	Benzo(a)	10	< 0.002
2,4,5-Trichloropher		<0.1)fluoranthene	< 0.002
2-Chloronaphthale	ne	< 0.01	· · · ·)fluoranthene	< 0.002
2-Nitroaniline	_	< 0.05	· ·	1,2,3-cd)pyrene	< 0.002
Dimethyl phthalate	е	<0.1		a,h)anthracene	< 0.002
Acenaphthylene		< 0.002	Benzo(g,	,h,i)perylene	< 0.002

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	ASUP-IDV 04/23/20 04/24/20 04/24/20 Soil mg/kg (ppr	V-01 n) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Riverbend 190210, F 004278-12 042417.D GCMS4 MS	
			Lower	Upper	
Surrogates:	1.4	% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	e-d4	103	62	145	
Toluene-d8 4-Bromofluorobenz		$\frac{108}{98}$	$\begin{array}{c} 55\\ 65\end{array}$	$145\\139$	
4-Dromonuorobenz	ene	90	60	199	
Compounds:		Concentration mg/kg (ppm)	Compou	nds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	loropropane	< 0.05
Chloromethane		< 0.5		oroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		omoethane (EDB)	< 0.05
Chloroethane		< 0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	<0.5	Ethylber		0.071
Acetone		<0.5 <0.05		etrachloroethane	< 0.05
1,1-Dichloroethene Hexane		<0.05 <0.25	m,p-Xyle o-Xylene		$\begin{array}{c} 0.38\\ 0.11\end{array}$
Methylene chloride	, ,	<0.25	Styrene	÷	< 0.05
Methyl t-butyl ethe		<0.05	-	lbenzene	<0.05
trans-1,2-Dichloroe		< 0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05	n-Propy		< 0.05
2,2-Dichloropropar		< 0.05	Bromobe		< 0.05
cis-1,2-Dichloroeth		< 0.05	1,3,5-Tr	imethylbenzene	0.19
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK)		< 0.5		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.05	2-Chloro		< 0.05
1,1,1-Trichloroetha		< 0.05	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorie	de	< 0.05		imethylbenzene	0.17
Benzene Trichloroethene		0.58 < 0.02	•	vlbenzene	$< 0.05 \\ < 0.05$
1,2-Dichloropropar		< 0.02		pyltoluene lorobenzene	<0.05
Bromodichloromet		< 0.05		lorobenzene	<0.05
Dibromomethane	liane	<0.05		lorobenzene	< 0.05
4-Methyl-2-pentan	one	< 0.5		omo-3-chloropropane	< 0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene	-	0.46		orobutadiene	< 0.25
trans-1,3-Dichlorog	oropene	< 0.05	Naphtha		3.2
1,1,2-Trichloroetha	ine	< 0.05	1,2,3-Tri	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bl Not Applic 04/24/20 04/24/20 Soil mg/kg (pp)		Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, L Riverbend 190210, F 00-832 mb 042416.D GCMS4 MS	
			Lower	Upper	
Surrogates:		% Recovery:	Limit:	Limit:	
1,2-Dichloroethane	e-d4	104	62	145	
Toluene-d8		108	55	145	
4-Bromofluorobenz	ene	99	65	139	
Compounds:		Concentration mg/kg (ppm)	Compou	inds:	Concentration mg/kg (ppm)
Dichlorodifluorome	ethane	< 0.5	1,3-Dich	lloropropane	< 0.05
Chloromethane		< 0.5		loroethene	< 0.025
Vinyl chloride		< 0.05		ochloromethane	< 0.05
Bromomethane		< 0.5		romoethane (EDB)	< 0.05
Chloroethane	_	< 0.5	Chlorob		< 0.05
Trichlorofluoromet	hane	< 0.5	Ethylber		< 0.05
Acetone		<0.5		Fetrachloroethane	< 0.05
1,1-Dichloroethene Hexane		< 0.05	m,p-Xylene o-Xylene		<0.1
Methylene chloride		<0.25 <0.5	Styrene		<0.05 <0.05
Methyl t-butyl ether (MTBE)		< 0.05	Isopropylbenzene		<0.05
trans-1,2-Dichloroe		<0.05	Bromofo		< 0.05
1,1-Dichloroethane		< 0.05		lbenzene	< 0.05
2,2-Dichloropropan			Bromobenzene		< 0.05
cis-1,2-Dichloroeth		<0.05 <0.05	1,3,5-Trimethylbenzene		< 0.05
Chloroform		< 0.05	1,1,2,2-7	Tetrachloroethane	< 0.05
2-Butanone (MEK))	< 0.5		ichloropropane	< 0.05
1,2-Dichloroethane		< 0.05	2-Chlore		< 0.05
1,1,1-Trichloroetha		< 0.05	4-Chloro		< 0.05
1,1-Dichloropropen		< 0.05		ylbenzene	< 0.05
Carbon tetrachlorie	de	< 0.05		imethylbenzene	< 0.05
Benzene		< 0.03	·	vlbenzene	< 0.05
Trichloroethene 1,2-Dichloropropar		<0.02 <0.05		pyltoluene Ilorobenzene	<0.05 <0.05
Bromodichloromet		< 0.05		llorobenzene	<0.05
Dibromomethane	liane	<0.05		llorobenzene	< 0.05
4-Methyl-2-pentan	one	<0.5		romo-3-chloropropane	< 0.5
cis-1,3-Dichloropro		< 0.05		ichlorobenzene	< 0.25
Toluene	-	< 0.05		orobutadiene	< 0.25
trans-1,3-Dichlorog	propene	< 0.05	Naphtha		< 0.05
1,1,2-Trichloroetha	ine	< 0.05	1,2,3-Tr	ichlorobenzene	< 0.25
2-Hexanone		< 0.5			

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	ATP-11-6.0 04/23/20 04/27/20 04/27/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Riverbend 190210, F&BI 004278 004278-05 1/6 042711.D GC9 IJL
Surrogates: TCMX	% Recovery: 98	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	ATP-12-7.5 04/23/20 04/27/20 04/27/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Riverbend 190210, F&BI 004278 004278-07 1/6 042714.D GC9 IJL
Surrogates: TCMX	% Recovery: 97	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ 0.081 \\ 0.055 \\ < 0.02 \\ < 0.02 \\ < 0.02 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	ATP-13-5.0 04/23/20 04/27/20 04/27/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Riverbend 190210, F&BI 004278 004278-09 1/6 042715.D GC9 IJL
Surrogates: TCMX	% Recovery: 92	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	$< 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ < 0.05 $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 04/27/20 04/27/20 Soil mg/kg (ppm) Dry Weight	Client: Project: Lab ID: Data File: Instrument: Operator:	Aspect Consulting, LLC Riverbend 190210, F&BI 004278 00-962 mb 1/6 042710.D GC9 IJL
Surrogates: TCMX	% Recovery: 109	Lower Limit: 31	Upper Limit: 119
Compounds:	Concentration mg/kg (ppm)		
Aroclor 1221 Aroclor 1232 Aroclor 1016 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262 Aroclor 1268	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/20 Date Received: 04/23/20 Project: Riverbend 190210, F&BI 004278

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 00	04278-02 (Duplic	ate)			
		Samp	le Du	plicate	
	Reporting	Resu	lt R	esult	RPD
Analyte	Units	(Wet V	Vt) (W	et Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5		<5	nm
Laboratory Code: La	aboratory Contro	ol Sample	e Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	100	61-153	
Analyte	aboratory Contro Reporting Units	Spike Level	Percent Recovery LCS	Criteria	_

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/20 Date Received: 04/23/20 Project: Riverbend 190210, F&BI 004278

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code:	004230-02 (Matri	x Spike)					
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	112	108	64-133	4
Laboratory Code:	Laboratory Contr	ol Samp	le				
			Percent	t			
	Reporting	Spike	Recover	y Accep	tance		
Analyte	Units	Level	LCS	Crit	eria		
Diesel Extended	mg/kg (ppm)	5,000	110	58-1	147		

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/20 Date Received: 04/23/20 Project: Riverbend 190210, F&BI 004278

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 004278-05 (Matrix Spike)

	Reporting	Spike	Sample Result	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	11.5	97	97	75 - 125	0
Barium	mg/kg (ppm)	50	177	$45 \mathrm{b}$	68 b	75 - 125	41 b
Lead	mg/kg (ppm)	10	57.1	97 b	281 b	75 - 125	97 b
Mercury	mg/kg (ppm	5	<1	90	78	75 - 125	14
Selenium	mg/kg (ppm)	5	<1	88	86	75 - 125	2

Laboratory Code: Laboratory Control Sample

Laboratory Co	de. Laboratory Com	noi bampie	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	89	80-120
Barium	mg/kg (ppm)	50	102	80-120
Lead	mg/kg (ppm)	10	96	80-120
Mercury	mg/kg (ppm)	5	99	80-120
Selenium	mg/kg (ppm)	5	96	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/20 Date Received: 04/23/20 Project: Riverbend 190210, F&BI 004278

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 004278-02 (Matrix Spike)

Analyte	Reporting Units	Spike Level	Sample Result (Wet wt)	Percent Recovery MS	Acceptanc Criteria
Phenol	mg/kg (ppm)	0.17	< 0.1	76	50-150
Bis(2-chloroethyl) ether	mg/kg (ppm)	0.17	< 0.01	69	40-125
2-Chlorophenol	mg/kg (ppm)	0.17	< 0.1	73	41-131
1,3-Dichlorobenzene	mg/kg (ppm)	0.17	< 0.01	66	28-126
I,4-Dichlorobenzene	mg/kg (ppm)	0.17	< 0.01	66	29-124
,2-Dichlorobenzene	mg/kg (ppm)	0.17	< 0.01	67	36-123
Benzyl alcohol	mg/kg (ppm)	0.33	<0.1	75	50-150
2,2'-Oxybis(1-chloropropane) 2-Methylphenol	mg/kg (ppm) mg/kg (ppm)	$0.17 \\ 0.17$	<0.01 <0.1	71 74	50-150 42-143
Iexachloroethane	mg/kg (ppm)	0.17	<0.01	68	31-132
V-Nitroso-di-n-propylamine	mg/kg (ppm)	0.17	< 0.01	75	50-150
-Methylphenol + 4-Methylphenol	mg/kg (ppm)	0.17	<0.2	74	50-150
Vitrobenzene	mg/kg (ppm)	0.17	< 0.01	75	25-151
sophorone	mg/kg (ppm)	0.17	< 0.01	73	23-164
Nitrophenol	mg/kg (ppm)	0.17	< 0.1	81	29-152
2,4-Dimethylphenol	mg/kg (ppm)	0.17	< 0.1	72	16-163
Benzoic acid	mg/kg (ppm)	0.25	< 0.5	50	10-250
Bis(2-chloroethoxy)methane	mg/kg (ppm)	0.17	< 0.01	74	50-150
2,4-Dichlorophenol	mg/kg (ppm)	0.17	< 0.1	74	39-145
,2,4-Trichlorobenzene	mg/kg (ppm)	0.17	< 0.01	71	44-122
Naphthalene	mg/kg (ppm)	0.17	< 0.002	73	10-188
Iexachlorobutadiene	mg/kg (ppm)	0.17	< 0.01	68 66	39-122
-Chloroaniline	mg/kg (ppm)	0.33	<1	66 81	19-113
-Chloro-3-methylphenol 2-Methylnaphthalene	mg/kg (ppm) mg/kg (ppm)	0.17	<0.1 <0.002	81 78	50-150 50-150
-Methylnaphthalene	mg/kg (ppm)	$0.17 \\ 0.17$	<0.002	78 77	43-132
Iexachlorocyclopentadiene	mg/kg (ppm)	0.17	<0.03	83	10-150
2,4,6-Trichlorophenol	mg/kg (ppm)	0.17	<0.05	79	50-150
2.4.5-Trichlorophenol	mg/kg (ppm)	0.17	<0.1	85	50-150
-Chloronaphthalene	mg/kg (ppm)	0.17	< 0.01	76	50-150
-Nitroaniline	mg/kg (ppm)	0.33	< 0.05	84	50-150
Dimethyl phthalate	mg/kg (ppm)	0.17	< 0.1	87	50-150
Acenaphthylene	mg/kg (ppm)	0.17	< 0.002	83	50 - 150
2,6-Dinitrotoluene	mg/kg (ppm)	0.17	< 0.05	92	49-142
Nitroaniline	mg/kg (ppm)	0.33	<1	78	23-125
Acenaphthene	mg/kg (ppm)	0.17	< 0.002	80	50 - 150
2,4-Dinitrophenol	mg/kg (ppm)	0.17	< 0.3	97	10-152
Dibenzofuran	mg/kg (ppm)	0.17	< 0.01	83	50-150
2,4-Dinitrotoluene	mg/kg (ppm)	0.17	< 0.05	93	48-143
-Nitrophenol	mg/kg (ppm)	$0.17 \\ 0.17$	<0.3 <0.1	95 90	19-154 50-150
Diethyl phthalate Fluorene	mg/kg (ppm) mg/kg (ppm)	0.17	<0.002	90 87	46-140
-Chlorophenyl phenyl ether	mg/kg (ppm)	0.17	<0.002	85	40-140 50-150
J-Nitrosodiphenylamine	mg/kg (ppm)	0.17	< 0.01	81	50-150
-Nitroaniline	mg/kg (ppm)	0.33	<1	74	26-130
,6-Dinitro-2-methylphenol	mg/kg (ppm)	0.17	< 0.3	98	9-157
-Bromophenyl phenyl ether	mg/kg (ppm)	0.17	< 0.01	82	47-143
Iexachlorobenzene	mg/kg (ppm)	0.17	< 0.01	85	50-150
Pentachlorophenol	mg/kg (ppm)	0.17	< 0.05	102	32 - 151
Phenanthrene	mg/kg (ppm)	0.17	< 0.002	86	15-244
Anthracene	mg/kg (ppm)	0.17	< 0.002	85	33-146
Carbazole	mg/kg (ppm)	0.17	< 0.01	92	50 - 150
)i-n-butyl phthalate	mg/kg (ppm)	0.17	< 0.1	94	50 - 150
luoranthene	mg/kg (ppm)	0.17	0.0040	90	19-162
yrene	mg/kg (ppm)	0.17	0.0047	86	10-238
Benzyl butyl phthalate	mg/kg (ppm)	0.17	< 0.1	104	9-215
Senz(a)anthracene	mg/kg (ppm)	0.17	0.0022	89	50-150
Chrysene	mg/kg (ppm)	0.17	0.0025	88	50-150
Bis(2-ethylhexyl) phthalate	mg/kg (ppm) mg/kg (ppm)	$0.17 \\ 0.17$	<0.16 <0.1	95 99	23-187 10-253
Di-n-octyl phthalate Benzo(a)pyrene	mg/kg (ppm)	0.17	0.0026	99 83	48-134
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	0.0028	85	48-154 38-158
Senzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.002	86	41-151
ndeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	0.0020	99	19-144
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.0020	98	21-140
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	0.0020	90	7-144

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/20 Date Received: 04/23/20 Project: Riverbend 190210, F&BI 004278

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample

Analyta	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 2
Analyte						
Phenol	mg/kg (ppm)	0.17	84	83	68-117	1
Bis(2-chloroethyl) ether B-Chlorophenol	mg/kg (ppm)	0.17	79	77	51-119	$\frac{3}{4}$
3-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	$0.17 \\ 0.17$	82 74	79 72	58-116 48-109	4 3
,4-Dichlorobenzene	mg/kg (ppm)	0.17	74 74	72 71	48-109 50-107	4
,2-Dichlorobenzene	mg/kg (ppm)	0.17	74 75	71 75	53-107	4
Benzyl alcohol	mg/kg (ppm)	0.33	87	86	70-130	1
,2'-Oxybis(1-chloropropane)	mg/kg (ppm)	0.17	80	77	70-130	4
-Methylphenol	mg/kg (ppm)	0.17	82	82	63-112	0
Iexachloroethane	mg/kg (ppm)	0.17	77	75	50-112	3
V-Nitroso-di-n-propylamine	mg/kg (ppm)	0.17	87	87	70-130	õ
-Methylphenol + 4-Methylphenol	mg/kg (ppm)	0.17	85	84	70-130	1
litrobenzene	mg/kg (ppm)	0.17	86	81	60-116	6
sophorone	mg/kg (ppm)	0.17	83	83	66-119	0
Nitrophenol	mg/kg (ppm)	0.17	95	83	64-120	13
,4-Dimethylphenol	mg/kg (ppm)	0.17	78	80	58-118	3
enzoic acid	mg/kg (ppm)	0.25	103	95	56-169	8
is(2-chloroethoxy)methane	mg/kg (ppm)	0.17	85	82	68-110	4
,4-Dichlorophenol	mg/kg (ppm)	0.17	85	81	63-116	5
,2,4-Trichlorobenzene	mg/kg (ppm)	0.17	78	75	56-110	4
Japhthalene	mg/kg (ppm)	0.17	81	78	60-105	4
Iexachlorobutadiene	mg/kg (ppm)	0.17	78	73	52-111	7
-Chloroaniline	mg/kg (ppm)	0.33	46	55	10-90	18
-Chloro-3-methylphenol	mg/kg (ppm)	0.17	86	85	65-120	1
-Methylnaphthalene	mg/kg (ppm)	0.17	85	84	64-107	1
-Methylnaphthalene	mg/kg (ppm)	0.17	84	84	64-105	0
Iexachlorocyclopentadiene	mg/kg (ppm)	0.17	102	79	54-131	25 vo
,4,6-Trichlorophenol	mg/kg (ppm)	0.17	87	83	63-125	5
,4,5-Trichlorophenol	mg/kg (ppm)	0.17	91	89	70-130	2
-Chloronaphthalene	mg/kg (ppm)	0.17	84	81	65-115	4 8
-Nitroaniline Dimethyl phthalate	mg/kg (ppm) mg/kg (ppm)	0.33	92	85	64-128	8 5
Acenaphthylene		0.17	94	89	64-127	5 2
,6-Dinitrotoluene	mg/kg (ppm) mg/kg (ppm)	$0.17 \\ 0.17$	91 95	89 91	70-130 68-126	4
-Nitroaniline	mg/kg (ppm)	0.33	95 77	91 75	52-108	3
cenaphthene	mg/kg (ppm)	0.17	88	85	70-130	3
4-Dinitrophenol	mg/kg (ppm)	0.17	120	100	51-159	18
Dibenzofuran	mg/kg (ppm)	0.17	89	88	70-130	1
,4-Dinitrotoluene	mg/kg (ppm)	0.17	100	98	66-125	2
-Nitrophenol	mg/kg (ppm)	0.17	100	96	60-146	6
Diethyl phthalate	mg/kg (ppm)	0.17	94	90	63-133	4
luorene	mg/kg (ppm)	0.17	92	91	70-130	1
-Chlorophenyl phenyl ether	mg/kg (ppm)	0.17	90	87	70-130	3
N-Nitrosodiphenylamine	mg/kg (ppm)	0.17	87	84	70-130	4
Nitroaniline	mg/kg (ppm)	0.33	80	79	50-124	1
,6-Dinitro-2-methylphenol	mg/kg (ppm)	0.17	113	101	68-139	11
-Bromophenyl phenyl ether	mg/kg (ppm)	0.17	92	86	43-167	7
Iexachlorobenzene	mg/kg (ppm)	0.17	94	87	70-130	8
entachlorophenol	mg/kg (ppm)	0.17	114	104	61-136	9
henanthrene	mg/kg (ppm)	0.17	94	91	70-130	3
nthracene	mg/kg (ppm)	0.17	93	91	70-130	2
arbazole	mg/kg (ppm)	0.17	100	99	70-130	1
i-n-butyl phthalate	mg/kg (ppm)	0.17	106	99	70-130	7
luoranthene	mg/kg (ppm)	0.17	98	98	70-130	0
yrene	mg/kg (ppm)	0.17	91	90	70-130	1
enzyl butyl phthalate	mg/kg (ppm)	0.17	103	97	70-130	6
enz(a)anthracene	mg/kg (ppm)	0.17	93	93	70-130	0
hrysene	mg/kg (ppm)	0.17	93	92	70-130	1 6
sis(2-ethylhexyl) phthalate	mg/kg (ppm) mg/kg (ppm)	0.17	98	92	38-153	6 7
i-n-octyl phthalate	mg/kg (ppm) mg/kg (ppm)	$0.17 \\ 0.17$	98 88	91 88	52-141 64-112	0
enzo(a)pyrene enzo(b)fluoranthene	mg/kg (ppm) mg/kg (ppm)	0.17 0.17	88 88	88 88	64-112 61-118	0
Benzo(k)fluoranthene	mg/kg (ppm) mg/kg (ppm)	0.17	88 92	88 89	61-118	3
ndeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	92 108	89 106	52-130	2
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	108	106	52-130 54-125	4
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	108	97	47-128	4

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/20 Date Received: 04/23/20 Project: Riverbend 190210, F&BI 004278

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 004278-12 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	\mathbf{MS}	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	< 0.5	28	23	10-142	20
Chloromethane	mg/kg (ppm)	2.5	<0.5	57	52	10-126	9
Vinyl chloride	mg/kg (ppm)	$2.5 \\ 2.5$	<0.05 <0.5	55 65	50 64	10-138 10-163	$\frac{10}{2}$
Bromomethane Chloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.5 <0.5	65 73	64 64	10-163	2 13
Trichlorofluoromethane	mg/kg (ppm)	2.5	<0.5	63	56	10-176	13
Acetone	mg/kg (ppm)	12.5	<0.5	100	92	10-163	8
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	84	73	10-160	14
Hexane	mg/kg (ppm)	2.5	< 0.25	53	50	10-137	6
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	97	81	10-156	18
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	101	92	21-145	9
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	89	79	14-137	12
1,1-Dichloroethane 2,2-Dichloropropane	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	$95 \\ 120$	84 103	19-140 10-158	12 15
cis-1.2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	120	90	25-135	15
Chloroform	mg/kg (ppm)	2.5	<0.05	97	89	21-145	9
2-Butanone (MEK)	mg/kg (ppm)	12.5	< 0.5	77	87	19-147	12
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	77	78	12-160	1
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	105	93	10-156	12
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	85	82	17-140	4
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	130	116	9-164	11
Benzene	mg/kg (ppm)	2.5	0.35	68	66	29-129	3
Trichloroethene	mg/kg (ppm)	2.5	< 0.02	84	86	21-139	2
1,2-Dichloropropane	mg/kg (ppm)	2.5	<0.05	89	92	30-135	3 2
Bromodichloromethane Dibromomethane	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	105 86	107 88	23-155 23-145	$\frac{2}{2}$
4-Methyl-2-pentanone	mg/kg (ppm) mg/kg (ppm)	2.5 12.5	<0.05	94	101	23-145 24-155	27
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	<0.05	89	101	28-144	13
Toluene	mg/kg (ppm)	2.5	0.28	65	62	35-130	5
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	85	95	26-149	11
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	76	80	10-205	5
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	72	83	15-166	14
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	72	80	31-137	11
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	81	77	20-133	5
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	108	110	28-150	2
1,2-Dibromoethane (EDB) Chlorobenzene	mg/kg (ppm) mg/kg (ppm)	$2.5 \\ 2.5$	<0.05 <0.05	78 79	86 78	28-142 32-129	10 1
Ethylbenzene	mg/kg (ppm)	2.5	<0.05	79 81	78 78	32-129	4
1.1.1.2-Tetrachloroethane	mg/kg (ppm)	2.5	<0.05	121	108	31-143	11
m,p-Xylene	mg/kg (ppm)	5	0.23	78	75	34-136	4
o-Xylene	mg/kg (ppm)	2.5	0.066	85	79	33-134	7
Styrene	mg/kg (ppm)	2.5	< 0.05	84	84	35-137	0
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	91	83	31-142	9
Bromoform	mg/kg (ppm)	2.5	< 0.05	127	126	21-156	1
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	77	77	23-146	0
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	73	75	34-130	3
1,3,5-Trimethylbenzene 1,1.2,2-Tetrachloroethane	mg/kg (ppm)	2.5 2.5	0.12	76 82	74	18-149	3 2
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	$2.5 \\ 2.5$	<0.05 <0.05	82 74	84 77	28-140 25-144	2 4
2-Chlorotoluene	mg/kg (ppm)	2.5	<0.05	74 78	76	31-134	3
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	74	76	31-136	3
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	80	80	30-137	0
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	0.10	76	73	10-182	4
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	81	78	23-145	4
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	83	79	21-149	5
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	77	76	30-131	1
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	78	77	29-129	1
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	<0.05	83	78	31-132	6
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	<0.5	126	112	11-161	12
1,2,4-Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	$2.5 \\ 2.5$	<0.25 <0.25	86 88	76 77	22-142 10-142	12 13
Naphthalene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.25 1.9	88 0 vo	0 vo	10-142 14-157	13
raphinatelle	mg/rg (ppm)	4.0	1.0	0.00	0 00	14-101	0

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/20 Date Received: 04/23/20 Project: Riverbend 190210, F&BI 004278

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	51	10-146
Chloromethane	mg/kg (ppm)	2.5	75	27-133
Vinyl chloride	mg/kg (ppm)	2.5	82	22-139
Bromomethane	mg/kg (ppm)	2.5	84	38-114
Chloroethane	mg/kg (ppm)	2.5	94	9-163
Trichlorofluoromethane	mg/kg (ppm)	$2.5 \\ 12.5$	96 109	10-196
Acetone 1.1-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5	109	52-141 47-128
Hexane	mg/kg (ppm)	2.5	95	43-142
Methylene chloride	mg/kg (ppm)	2.5	112	42-132
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	110	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	106	67-129
1,1-Dichloroethane	mg/kg (ppm)	2.5	108	68-115
2,2-Dichloropropane	mg/kg (ppm)	2.5	136	52-170
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	114	72-127
Chloroform	mg/kg (ppm)	2.5	112	66-120
2-Butanone (MEK)	mg/kg (ppm)	12.5	104	72-127
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	97	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	121	62-131
1,1-Dichloropropene	mg/kg (ppm)	2.5	109	69-128
Carbon tetrachloride	mg/kg (ppm)	2.5	151 vo	60-139
Benzene	mg/kg (ppm)	2.5	110	68-114
Trichloroethene	mg/kg (ppm)	2.5	108	64-117
1,2-Dichloropropane	mg/kg (ppm)	2.5	114	72-127
Bromodichloromethane	mg/kg (ppm)	$2.5 \\ 2.5$	134 vo 109	72-130
Dibromomethane 4-Methyl-2-pentanone	mg/kg (ppm) mg/kg (ppm)	2.5 12.5	109	70-120 45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	125	45-145 75-136
Toluene	mg/kg (ppm)	2.5	96	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	116	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	96	75-113
2-Hexanone	mg/kg (ppm)	12.5	98	33-152
1,3-Dichloropropane	mg/kg (ppm)	2.5	98	72-130
Tetrachloroethene	mg/kg (ppm)	2.5	97	72-114
Dibromochloromethane	mg/kg (ppm)	2.5	133 vo	74-125
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	106	74-132
Chlorobenzene	mg/kg (ppm)	2.5	95	76-111
Ethylbenzene	mg/kg (ppm)	2.5	97	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	128	69-135
m,p-Xylene	mg/kg (ppm)	5	99	78-122
o-Xylene	mg/kg (ppm)	2.5	99	77-124
Styrene	mg/kg (ppm)	$2.5 \\ 2.5$	101	74-126
Isopropylbenzene Bromoform	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	98 152 vo	76-127 56-132
n-Propylbenzene	mg/kg (ppm)	2.5	93	74-124
Bromobenzene	mg/kg (ppm)	2.5	93	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	97	76-126
1.1.2.2-Tetrachloroethane	mg/kg (ppm)	2.5	103	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	95	61-137
2-Chlorotoluene	mg/kg (ppm)	2.5	93	74-121
4-Chlorotoluene	mg/kg (ppm)	2.5	92	75-122
tert-Butylbenzene	mg/kg (ppm)	2.5	97	73-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	96	76-125
sec-Butylbenzene	mg/kg (ppm)	2.5	94	71-130
p-Isopropyltoluene	mg/kg (ppm)	2.5	95	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	93	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	93	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	94	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	137	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5 2.5	91 88	64-135
Hexachlorobutadiene Naphthalene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	88 97	50-153 63-140
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	89	63-138
1,2,0 IIICHIOIODENZENE	mg/rg (bhm)	2.0	09	00-100

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/20 Date Received: 04/23/20 Project: Riverbend 190210, F&BI 004278

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 004278-05 1/6 (Matrix Spike) 1/6

Analyte	Reporting Units	Spike Level	Sample Result (Wet Wt)	Percent Recovery MS	Percent Recovery MSD	Control Limits	RPD (Limit 20)
Aroclor 1016	mg/kg (ppm)	0.25	<0.02	86	88	44-107	2
Aroclor 1260	mg/kg (ppm)	0.25	<0.02	92	95	38-124	3

Laboratory Code: Laboratory Control Sample 1/6

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.25	98	47-158
Aroclor 1260	mg/kg (ppm)	0.25	107	69-147

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

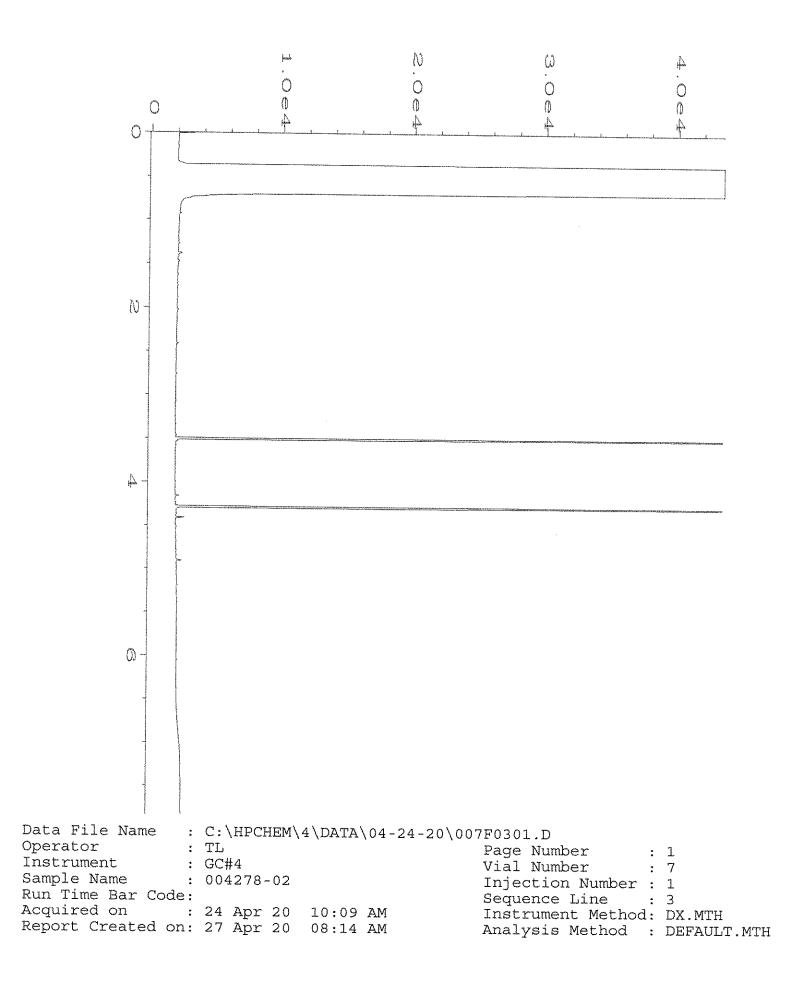
 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

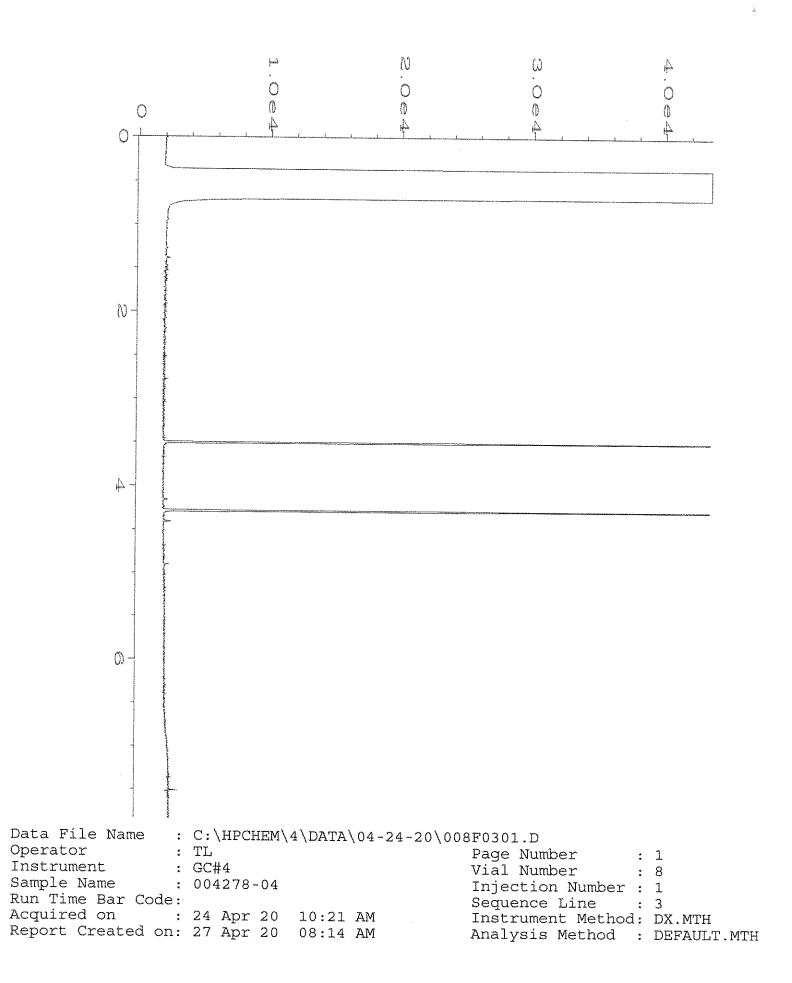
jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

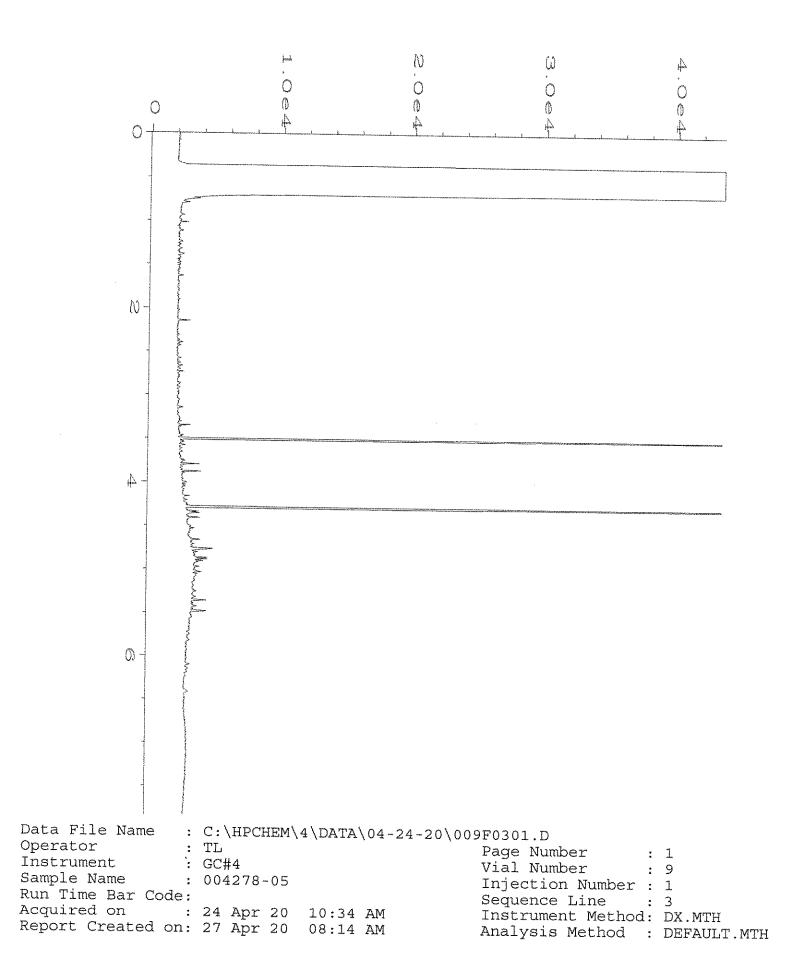
js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

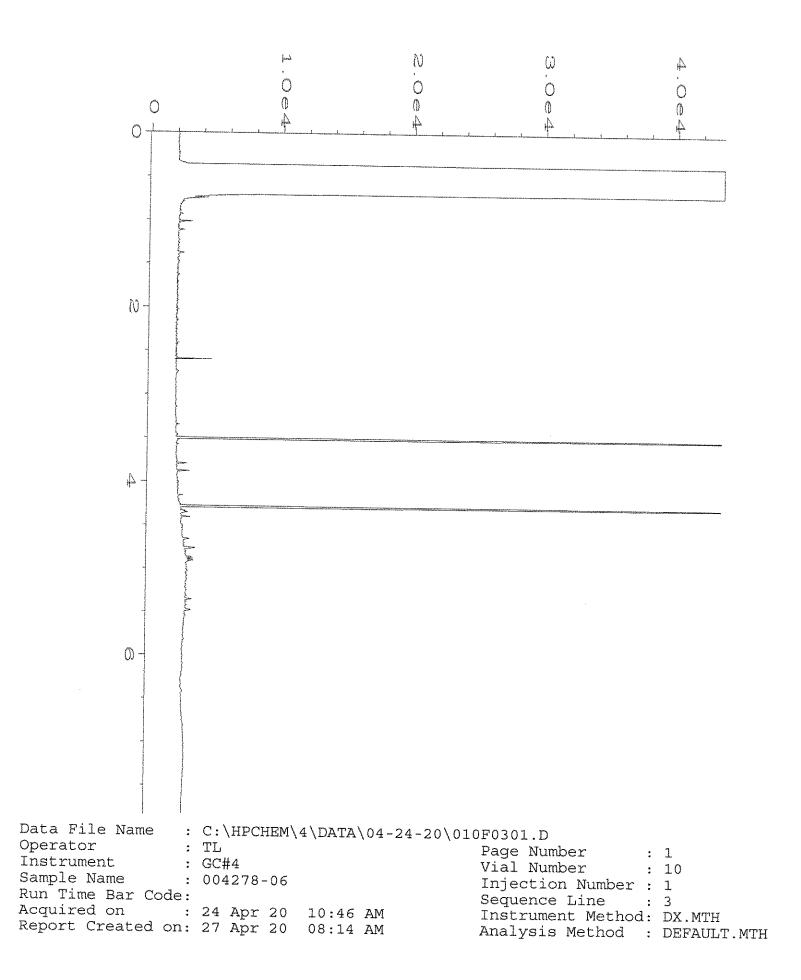
lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

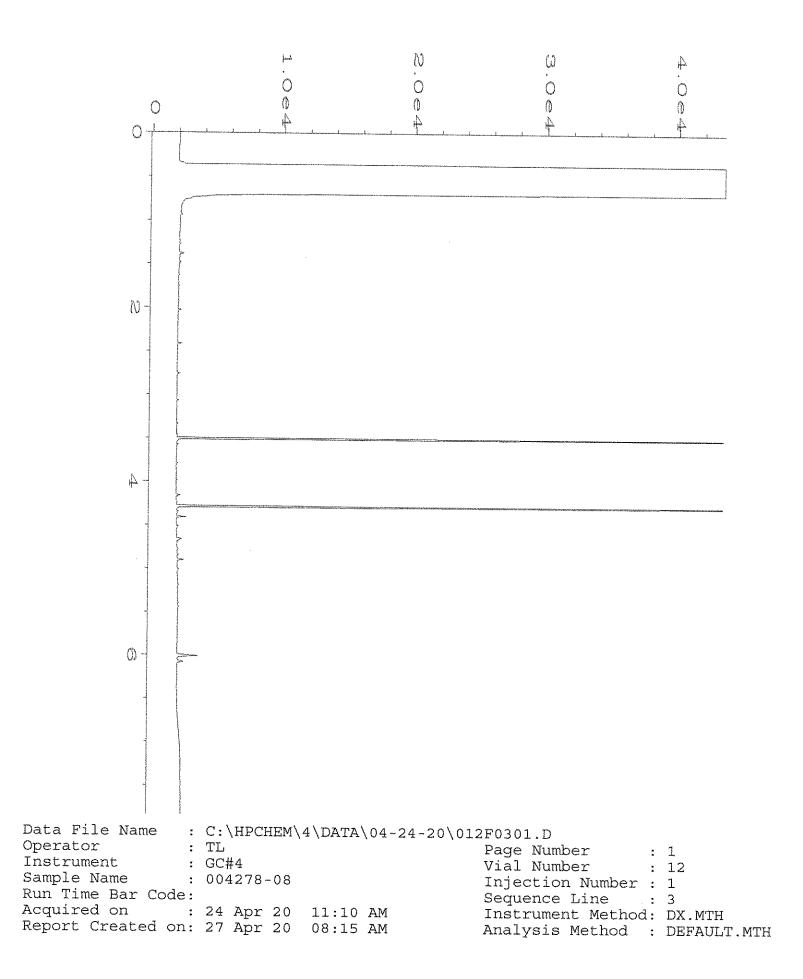

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

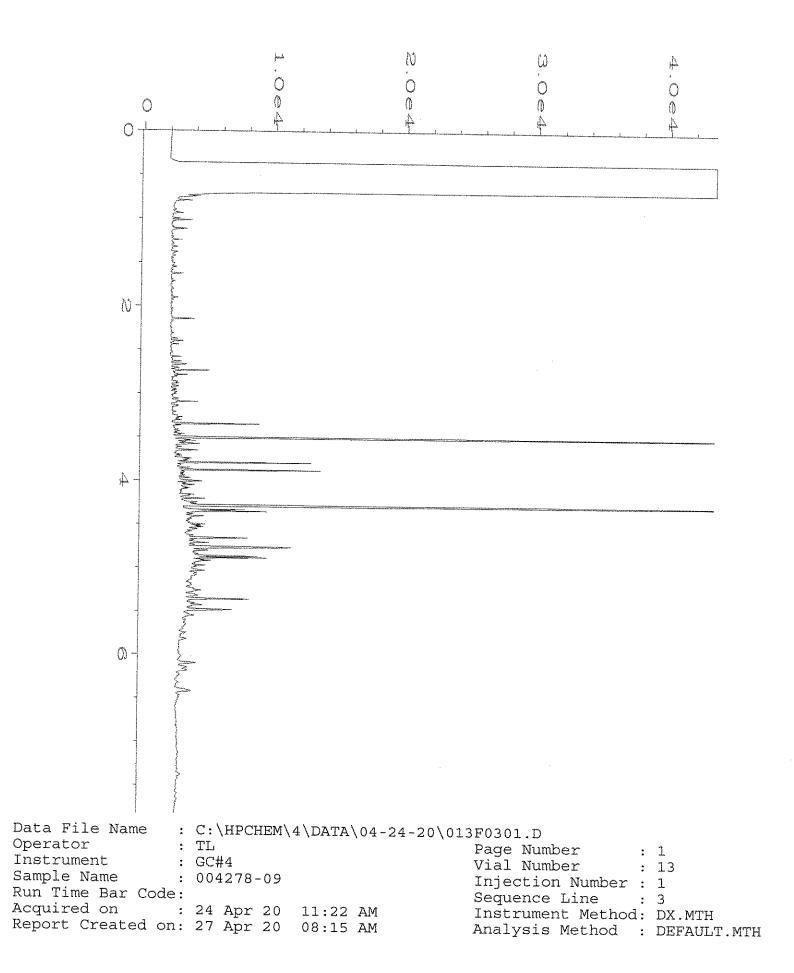

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

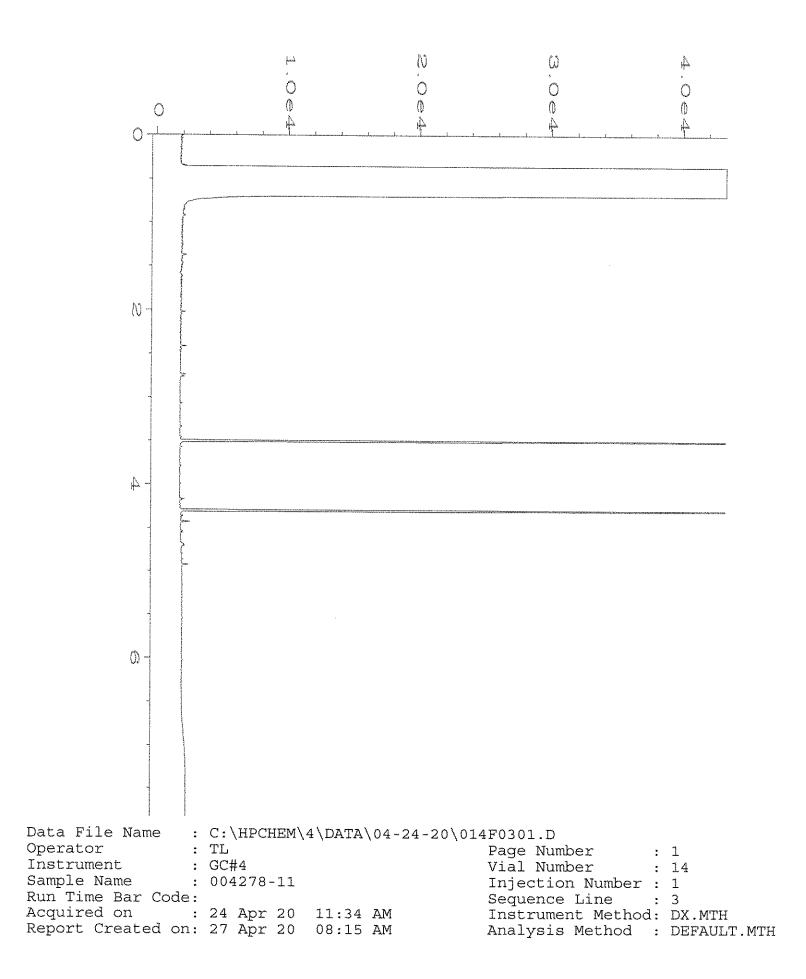

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

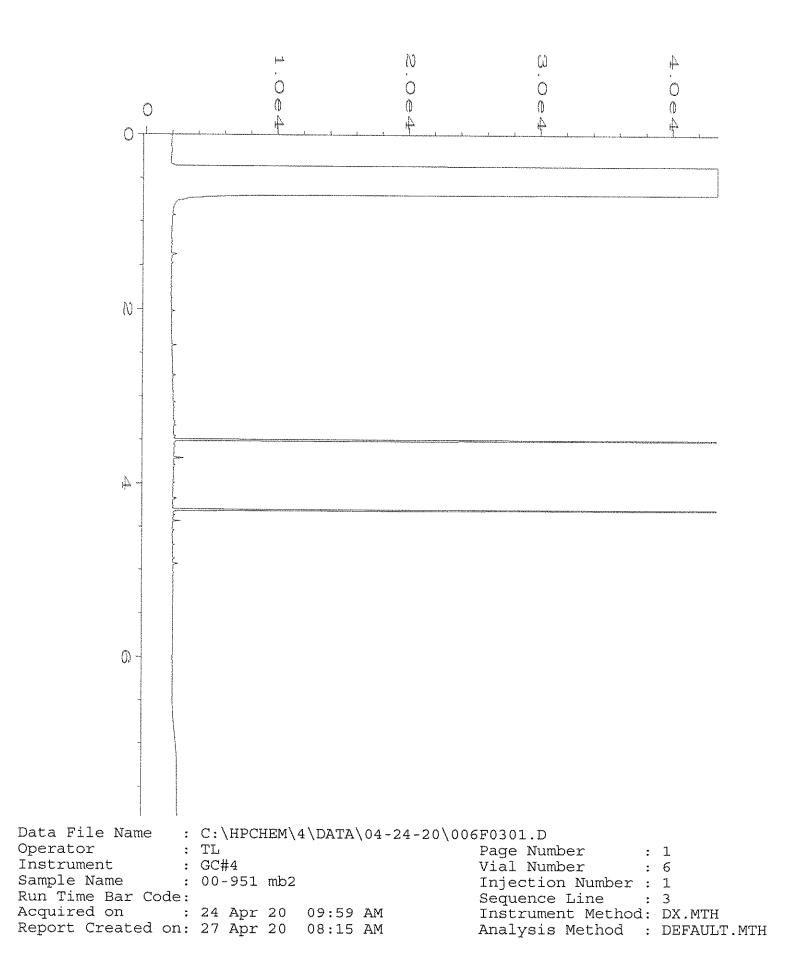

vo - The value reported fell outside the control limits established for this analyte.

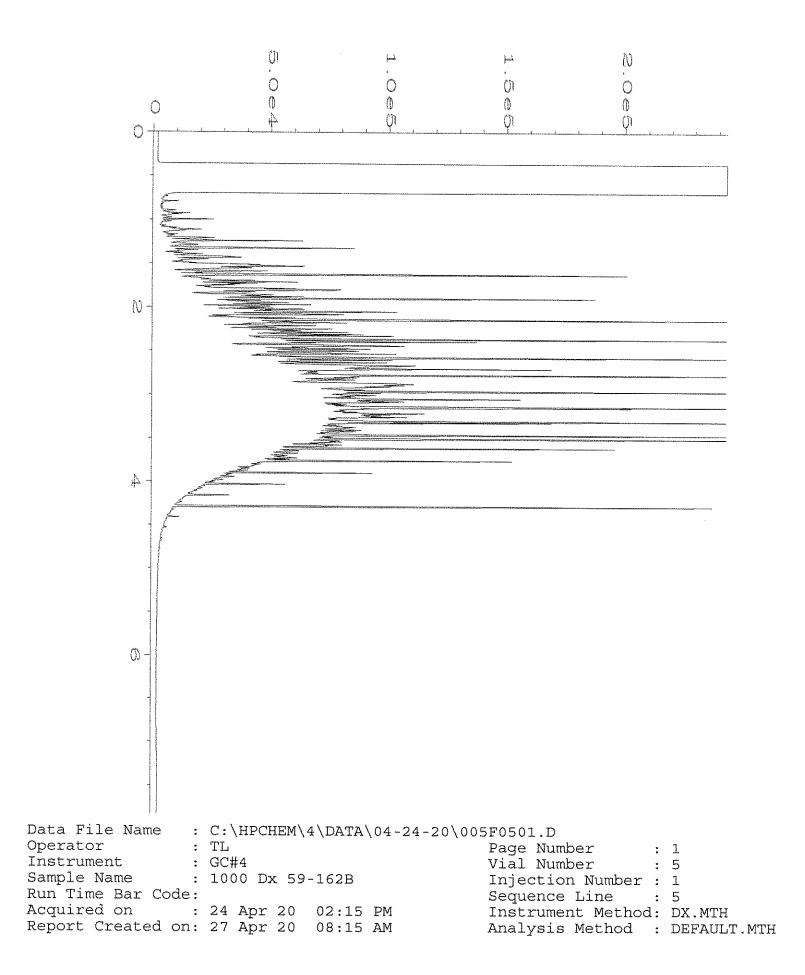

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.











1 & Bruya, Inc. Avenue West NA 98119-2029 285-8282	-12-		ATP-09-3.0 ATP-09-11.5 ATP-10-4.5	Sample ID	DOG 278 Report To ASPECT Const Company D. Greer A. Address HC 2nd A. City, State, ZIP Seattle Phone Wil 232 7345Email
by: by: by: by: by: by: by: by: by: by:	8 00 07	06 06 04	02 A-E	r	SAMPLE CHAIN OI SAMPLERS (signature ect Consulting PROJECT NAME PROJECT NAME PROJECT NAME PROJECT NAME Seichtic Sie 550 Remarks REMARKS REMARKS REMARKS
	4/21/20 4/21/20 4/21/20	e	$\frac{1}{22}$	Date Sampled	icy consu
	1500 1500 1430	0800	0910	Time Sampled	SAMPLE CHAIN OF CUSTO SAMPLERS (signature) PROJECT NAME REMARKS REMARKS REMARKS
	s s s	s v v		Sample Type	MPLE CHAIN OF SAMPLERS (signature) PROJECT NAME RAVELELA REMARKS REMARKS
PRINT N Brunge BISEAT	666	666		# of Jars	OF CU
PRINTNAME Briegn G 315 RAT W	× ×	\neq \neq \rangle	× × × ×	NWTPH-Dx NWTPH-Gx	BLA BLA
	771			BTEX EPA 8021	
FATDESSE				NWTPH-HCID	I ANALY ANALY ANALY ANALY
	247		××	VOCs EPA 8260 PAHs EPA 8270	ME OU PO # INVOICE TO
Pr.	XX			PCBs EPA 8085	TO TO
COMI	XX>	$\langle \times \times$	XX	Svocs 8270	
	X. X			Metals WAD Cyamide	Pag TU TU TU TU TU TU TU TU TU TU TU TU TU
mples				WAD CYAMYSU	
Samples received at				H A,	$\frac{BL^{-}V}{\Gamma URNAROUND TIME}$ $\frac{M}{\Gamma URNAROUND TIME}$ $\frac{K}{\Gamma USH}$ $\frac{K}{\Gamma USF}$
$\frac{1}{23}$			en et	Hold No	ROUND TIM armaround authorized nples
ja č				Ar, Br, Ph, Urg, Sc Notes Hold	"4/ CT3 #
-oc	TIME			×	ays

Friedman & Bruya, Inc. 3012 16 th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282		ATP-13-11.5 ASUP-IDW-01 ASUP-03 ATP-16-1.5	Sample ID	Report To The Address Company Creen City, State, ZIP Email
Relinquished by: Received by: Relinquished by: Received by:		12 12	Lab ID	Email Email
Dumm ($\frac{ u }{ u }$	Date Sampled 4/24/26	
		1530 1530 1130 1110	Time Sampled	SAMPLE CHAIN OF CUSTOD SAMPLERS (signature) PROJECT NAME Niverbur REMARKS Project specific RLs? - Yes (No)
E Sp		S S S	Sample Type	MPLE CHAIN OF SAMPLERS (signature) PROJECT NAME Niverband REMARKS Project specific RLs? -
Bisert		660	S S <td>I OF CUSTO</td>	I OF CUSTO
HOSSEI H		×	NWTPH-Gx BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260 ✓ PAHs EPA 8270 PCBs EPA 8081 SVOCs 8270	Y ME $dy/2$ PO # I PO # INVOICE TO ANALYSES RE ANALYSES RE
	COMPANY	×	Meturs *	$\begin{array}{c} B \sum q / C \sum 3 \\ Page \# 2 of \\ TURNAROUND T \\ RUSH \\ RUSH \\ Rush charges authorize \\ SAMPLE DISPO \\ SAMPLE DISPO \\ Other \\ Other \\ Default: Dispose after \\ \hline XKCKA \\ \end{array}$
Samples received at 2 oc	DATE TIME	HOLD	Notes HOLD	$\begin{array}{c c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$

ATTACHMENT C

Soil Vapor As-Built Construction Diagrams

As-Bi	uilt Soil Van	or Probe Diagram
Project Number:		Boring/Monitoring
190210		Well Number: ASVP-01 Sheet: 1 of: 1
Riverbend		East Side of Prop. Bldg 1B Drilling Contractor:
Drilling Method and Equipment Used:		Environmental West
Hollow Stem Au	ger	Logged By: BMG
Water Levels:	N/A	Completion Start: 4/20/2020 0920 Finish: 4/20/2020 1230
Ecology Well ID <u>N/A</u>		
[- Monument Type/Height 8" Steel Flush Mount
Completion Depths		- Well Cap TypeN/A
Concrete		constants
2'	┤╎┻┫	- Surface Seal Material Concrete
Bentonite	 	- Seal Material
Chips		
	-	- Well Casing ID 1/4"
		Type of CasingTeflon Tubing
8.5' 9'		Type of Connection N/A
		- Filter Pack/Size10/20 Sand
		Filter Pack Interval 8.5' - 10' bgs
Cand		- Well Screen ID 3/8"
Sand		Type of Screen 6" Vapor Point, Stainless Steel
		Slot Size 0.0057"
		Screen Interval 9'-9.5' bgs
		Centralizers N/A
9.5'		- Diameter of Borehole8"
		- SumpN/A
L10'	Bottom of Bo	ring 10' bgs
	Matariala Llaad	Serecci
	Materials Used:	Screen: Geoprobe Soil Vapor Implant
earth+water	^{Sand:} 10/20 Size	Bentonite: 3/8" Chips
www.aspectconsulting.com	Blank: 1/4" ID Teflon ⁻	Monument: Tubing 8" Flush MountSteel
a limited liability company	Concrete: Rapid Set	Other:

As-Bu	uilt Soil Vap	or Probe Diagram
Project Number: 190210		Boring/Monitoring Well Number: ASVP-03 Sheet: 1 of: 1
Project: Riverbend		Location: Center of Prop. Building 2B
Elevation:		Drilling Contractor: Environmental West
Drilling Method and Equipment Used: Hollow Stem Au	laer	Logged By: BMG
Water Levels:	N/A	Completion Start: 4/20/2020 1100 Finish:4/20/2020 1245
Ecology Well ID <u>N/A</u>		•
]		- Monument Type/Height 8" Steel Flush Mount
Completion Depths		- Well Cap TypeN/A
Concrete	┥┝╫╤╌╴ ┥┝╢╤╴╴	- Surface Seal Material Concrete
Bentonite Chips		- Seal Material Hydrated 3/8" Bentonite Chips
	-	- Well Casing ID1/4"
8.5'		Type of Casing Teflon Tubing
9'		Type of Connection N/A
		511 p. 1/20 Sand
		- Filter Pack/Size <u>10/20 Sand</u> Filter Pack Interval 8.5' - 10' bgs
		- Well Screen ID3/8"
Sand		Type of Screen6" Vapor Point, Stainless Steel
		Slot Size0.0057"
		Screen Interval9'-9.5' bgs
		Centralizers N/A
		- Diameter of Borehole 8"
9.5'		N/A
		- Sump <u>N/A</u>
	Bottom of Bo	ring 10' bgs
└── <u>10</u> ' └─		
	Materials Used:	Screen: Geoprobe Soil Vapor Implant
	Sand: 10/20 Size	Bentonite: 3/8" Chips
earth+water www.aspectconsulting.com	Blank: 1/4" ID Teflon	Monument:
a limited liability company	Concrete: Rapid Set	Other:

As-Bi	uilt Soil Van	or Probe Diagram
Project Number		Boring/Monitoring
190210		Well Number: ASVP-04 Sheet: 1 of: 1
Riverbend		Drilling Contractor:
Drilling Method and Equipment Used:		Logged By:
Hollow Stem Au	iger	BMG
Water Levels:	N/A	Completion Start: 4/20/2020 1300 Finish: 4/20/2020 1340
Ecology Well ID <u>N/A</u>		
		- Monument Type/Height 8" Steel Flush Mount
Completion Depths	-	– Well Cap Type <u>N/A</u>
		a de la versión Concrete
<u> </u>	╡╟╸	- Surface Seal Material Concrete
Bentonite		- Seal MaterialHydrated 3/8" Bentonite Chips
Chips		
	-	– Well Casing ID1/4"
8.5'		Type of Casing Teflon Tubing
0.5 — 9'		Type of Connection N/A
		- Filter Pack/Size 10/20 Sand
		Filter Pack Interval 8.5' - 10' bgs
		2/0"
Sand		- Well Screen ID <u>3/8"</u>
		Type of Screen 6" Vapor Point, Stainless Steel Slot Size 0.0057"
		Screen Interval9'-9.5' bgs
		Centralizers <u>N/A</u>
		– Diameter of Borehole8"
9.5'		
		– Sump <u>N/A</u>
	Bottom of Bo	pring 10' bgs
└── 10' └─	,	
	Materials Used:	Screen: Geoprobe Soil Vapor Implant
Aspect consulting	Sand: 10/20 Size	Bentonite: 3/8" Chips
earth+water	Blank:	Monument:
www.aspectconsulting.com	1/4" ID Teflon	Tubing 8" Flush MountSteel Other:
a limited liability company Rapid Set		

	unt Son Vap	or Probe Diagram		
Project Number: 190210		Boring/Monitoring Well Number: ASVP-05 Sheet: 1 of: 1		
Project: Riverbend		Location: Between Former MGP Slabs		
Elevation:		Drilling Contractor: Environmental West		
Drilling Method and Equipment Used: Hollow Stem Au	Ider	Logged By: BMG		
Water Levels:	N/A	Completion Start: 4/20/2020 1410 Finish:4/20/2020 1445		
Ecology Well ID <u>N/A</u>				
]		Monument Type/Height 8" Steel Flush Mount		
Completion Depths		- Well Cap TypeN/A		
		concrete		
<u> </u>		- Surface Seal Material Concrete		
Bentonite	4	Seal Material Hydrated 3/8" Bentonite Chips		
Chips				
	-	Well Casing ID1/4"		
8.5'		Type of Casing Teflon Tubing		
9'		Type of Connection N/A		
		Filter Pack/Size 10/20 Sand		
		Filter Pack Interval 8.5' - 10' bgs		
		Well Screen ID3/8"		
Sand		Type of Screen6" Vapor Point, Stainless Steel		
		Slot Size 0.0057"		
		Screen Interval9'-9.5' bgs		
		Centralizers N/A		
		- Diameter of Borehole8"		
9.5'				
		· SumpN/A		
	Bottom of Bo	ring 10' bgs		
<u> </u>				
	Materials Used:	Screen: Geoprobe Soil Vapor Implant		
	Sand: 10/20 Size	Bentonite: 3/8" Chips		
earth+water www.aspectconsulting.com	Blank: 1/4" ID Teflon 7	Monument:		
a limited liability company	Concrete: Rapid Set	Other:		
· · · · ·				

ATTACHMENT D Test Pit Photo Log

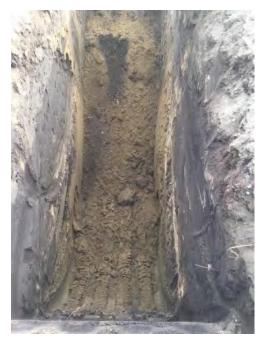
Photograph 1. ATP-01

Photograph 2. ATP-02

Photograph 3. ATP-03

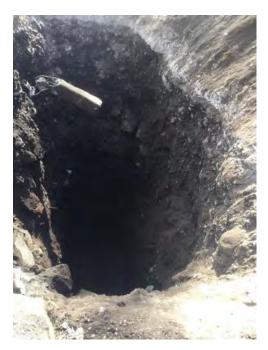
Photograph 4. ATP-04

Photograph 5. ATP-05 (Left, no slab) ATP-05B (Right, contains slab)

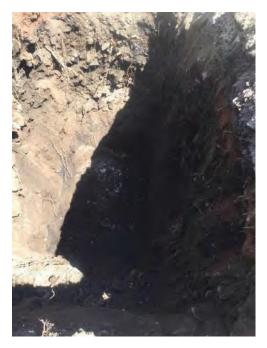

Photograph 6. ATP-06

Photograph 7. ATP-07

Photograph 8. ATP-08


Photograph 9. ATP-09

Photograph 10. ATP-10


Photograph 11. ATP-11

Photograph 12. ATP-12

Photograph 13. ATP-13

Photograph 14. ATP-14

Photograph 15. ATP-15

Photograph 16. ATP-16

ATTACHMENT E

Report Limitations and Guidelines for Use

REPORT LIMITATIONS AND USE GUIDELINES

Reliance Conditions for Third Parties

This report was prepared for the exclusive use of the Client. No other party may rely on this report or the product of our services without the express written consent of Aspect Consulting, LLC (Aspect). This limitation is to provide our firm with reasonable protection against liability claims by third parties with whom there would otherwise be no contractual conditions or limitations and guidelines governing their use of the report. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and recognized standards of professionals in the same locality and involving similar conditions.

Services for Specific Purposes, Persons and Projects

Aspect has performed the services in general accordance with the scope and limitations of our Agreement. This report has been prepared for the exclusive use of the Client and their authorized third parties, approved in writing by Aspect. This report is not intended for use by others, and the information contained herein is not applicable to other properties.

This report is not, and should not, be construed as a warranty or guarantee regarding the presence or absence of hazardous substances or petroleum products that may affect the subject property. The report is not intended to make any representation concerning title or ownership to the subject property. If real property records were reviewed, they were reviewed for the sole purpose of determining the subject property's historical uses. All findings, conclusions, and recommendations stated in this report are based on the data and information provided to Aspect, current use of the subject property, and observations and conditions that existed on the date and time of the report.

Aspect structures its services to meet the specific needs of our clients. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and subject property. This report should not be applied for any purpose or project except the purpose described in the Agreement.

This Report Is Project-Specific

Aspect considered a number of unique, project-specific factors when establishing the Scope of Work for this project and report. You should not rely on this report if it was:

- Not prepared for you
- Not prepared for the specific purpose identified in the Agreement
- Not prepared for the specific real property assessed
- Completed before important changes occurred concerning the subject property, project or governmental regulatory actions

If changes are made to the project or subject property after the date of this report, Aspect should be retained to assess the impact of the changes with respect to the conclusions contained in the report.

Geoscience Interpretations

The geoscience practices (geotechnical engineering, geology, and environmental science) require interpretation of spatial information that can make them less exact than other engineering and natural science disciplines. It is important to recognize this limitation in evaluating the content of the report. If you are unclear how these "Report Limitations and Use Guidelines" apply to your project or site, you should contact Aspect.

Discipline-Specific Reports Are Not Interchangeable

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually address any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding the subject property.

Environmental Regulations Are Not Static

Some hazardous substances or petroleum products may be present near the subject property in quantities or under conditions that may have led, or may lead, to contamination of the subject property, but are not included in current local, state or federal regulatory definitions of hazardous substances or petroleum products or do not otherwise present potential liability. Changes may occur in the standards for appropriate inquiry or regulatory definitions of hazardous substance and petroleum products; therefore, this report has a limited useful life.

Property Conditions Change Over Time

This report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time (for example, Phase I ESA reports are applicable for 180 days), by events such as a change in property use or occupancy, or by natural events, such as floods, earthquakes, slope failure or groundwater fluctuations. If more than six months have passed since issuance of our report, or if any of the described events may have occurred following the issuance of the report, you should contact Aspect so that we may evaluate whether changed conditions affect the continued reliability or applicability of our conclusions and recommendations.

Phase I ESAs – Uncertainty Remains After Completion

Aspect has performed the services in general accordance with the scope and limitations of our Agreement and the current version of the "Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process", ASTM E1527, and U.S. Environmental Protection Agency (EPA)'s Federal Standard 40 CFR Part 312 "Innocent Landowners, Standards for Conducting All Appropriate Inquiries".

No ESA can wholly eliminate uncertainty regarding the potential for recognized environmental conditions in connection with subject property. Performance of an ESA study is intended to reduce, but not eliminate, uncertainty regarding the potential for environmental conditions affecting the subject property. There is always a potential that areas with contamination that were not identified during this ESA exist at the subject property or in the study area. Further evaluation of such potential would require additional research, subsurface exploration, sampling and/or testing.

Historical Information Provided by Others

Aspect has relied upon information provided by others in our description of historical conditions and in our review of regulatory databases and files. The available data does not provide definitive information with regard to all past uses, operations or incidents affecting the subject property or adjacent properties. Aspect makes no warranties or guarantees regarding the accuracy or completeness of information provided or compiled by others.

Exclusion of Mold, Fungus, Radon, Lead, and HBM

Aspect's services do not include the investigation, detection, prevention or assessment of the presence of molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detection, assessment, prevention or abatement of molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts. Aspect's services also do not include the investigation or assessment of hazardous building materials (HBM) such as asbestos, polychlorinated biphenyls (PCBs) in light ballasts, lead based paint, asbestos-containing building materials, urea-formaldehyde insulation in on-site structures or debris or any other HBMs. Aspect's services do not include an evaluation of radon or lead in drinking water, unless specifically requested.