Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Sample No.		Gravel			Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand		S		Clay		
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
Sieve Size (microns)	3/8"	#4	#10	#18	#35	#60	#120	#230	21.00	15.00	7.00	0.00		
	0/0		(2000)	(1000)	(500)	(250)	(125)	(62)	31.00	15.60	7.80	3.90	2.00	1.00
GWS-EC14-0112	100.0	100.0	100.0	99.7	86.4	75.6	65.3	54.8	54.1	43.6	33.6	24.5	11.5	6.6
GWS-EC14-0112	100.0	100.0	99.6	93.9	85.6	74.1	63.4	52.9	50.0	40.7	31.0	22.3	11.0	5.8
GWS-EC14-0112	100.0	100.0	99.9	97.7	86.1	76.2	66.1	55.2	53.8	43.2	33.6	24.9	11.7	6.2
GWS-EC14-0008	100.0	100.0	100.0	99.9	95.8	91.9	85.8	71.5	62.4	48.6	36.2	25.5	16.0	9.5
GWS-EC14-0042	100.0	100.0	100.0	99.9	89.3	80.7	74.2	67.7	65.2	58.6	50.7	38.0	20.1	11.9
GWS-EC14-0068	100.0	100.0	100.0	99.5	89.2	79.3	72.6	66.3	65.7	57.6	46.8	33.5	16.1	9.0
GWS-EC22-0015	100.0	100.0	100.0	99.7	89.5	80.8	73.6	65.8	63.8	55.4	46.5	34.0	16.7	9.2
GWS-EC22-0055	100.0	100.0	99.9	98.9	89.4	81.4	73.5	63.2	62.9	57.0	47.2	32.5	14.6	8.7
GWS-EC22-0078	100.0	100.0	100.0	100.0	93.0	87.0	82.1	76.2	75.6	68.1	59.3	44.1	19.1	10.0
GWS-EC22-0105	100.0	100.0	100.0	99.9	95.7	92.5	90.0	87.3	85.9	78.3	68.2	49.7	19.3	11.3
GWS-EC22-0135	100.0	100.0	100.0	99.7	94.7	90.7	87.7	84.3	82.8	73.4	66.4	47.0	18.1	10.8
GWS-EC22-0162	100.0	100.0	100.0	99.9	94.2	89.7	86.1	81.9	80.6	71.3	66.1	49.8	19.7	12.5

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt		Clay	
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0
GWS-EC14-0112	0.0	0.3	13.4	10.7	10.3	10.5	0.8	10.5	10.0	9.1	13.0	5.0	6.6
GWS-EC14-0112	0.4	5.7	8.3	11.5	10.8	10.5	2.9	9.3	9.7	8.7	11.3	5.2	5.8
GWS-EC14-0112	0.1	2.2	11.6	9.9	10.2	10.9	1.4	10.6	9.6	8.7	13.3	5.5	6.2
GWS-EC14-0008	0.0	0.1	4.0	3.9	6.1	14.3	9.2	13.8	12.4	10.7	9.5	6.4	9.5
GWS-EC14-0042	0.0	0.1	10.5	8.6	6.5	6.5	2.5	6.5	8.0	12.7	17.9	8.1	11.9
GWS-EC14-0068	0.0	0.5	10.3	9.9	6.7	6.3	0.6	8.2	10.8	13.2	17.4	7.1	9.0
GWS-EC22-0015	0.0	0.3	10.2	8.7	7.2	7.9	2.0	8.4	8.9	12.4	17.3	7.5	9.2
GWS-EC22-0055	0.1	1.0	9.5	8.0	7.9	10.3	0.3	5.8	9.9	14.6	17.9	6.0	8.7
GWS-EC22-0078	0.0	0.0	6.9	6.0	4.9	5.9	0.5	7.5	8.8	15.2	25.0	9.1	10.0
GWS-EC22-0105	0.0	0.1	4.3	3.1	2.5	2.7	1.4	7.5	10.1	18.5	30.4	8.0	11.3
GWS-EC22-0135	0.0	0.3	5.0	4.0	3.0	3.3	1.6	9.4	7.0	19.4	28.9	7.3	10.8
GWS-EC22-0162	0.0	0.1	5.7	4.5	3.7	4.2	1.3	9.3	5.2	16.3	30.1	7.2	12.5

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Floyd/Sniderÿ3X

Gas Works Sed WSA RI/FS

Percent Finer Than Indicated Size

.42

Sieve Size (microns)	2"	1"	3/4"	1/2"	3/8"	#4	#10 (2000)	#18 (1000)	#35 (500)	#60 (250)	#120 (125)	#230 (63)
GWS-EC23-0019	100.0	100.0	100.0	100.0	98.1	95.8	90.0	85.0	75.8	45.4	10.4	3.0
GWS-EC23-0048	100.0	100.0	100.0	100.0	100.0	99.9	99.1	97.8	86.3	38.6	6.1	0.9
GWS-EC23-0067	100.0	64.7	64.7	60.4	59.1	57.8	57.0	54.7	43.0	22.5	11.2	6.1

Floyd/Snider Gas Works Sed WSA RI/FS

142

Percent Retained in Each Size Fraction

Sieve Size (microns)	>4750	4750-2000	2000-1000	1000-500	500-250	250-125	125-63	<63
GWS-EC23-0019	4.2	5.8	4.9	9.3	30.4	35.0	7.4	3.0
GWS-EC23-0048	0.1	0.8	1.3	11.5	47.7	32.4	5.2	0.9
GWS-EC23-0067	42.2	0.9	2.2	11.7	20.5	11.4	5.0	6.1

PSEP Total Solids Analysis Percent of Wet Weight

Sample No.	Total Solids (%)
GWS-EC14-0112	18.1
GWS-EC14-0112	18.7
GWS-EC14-0112	18.3
GWS-EC14-0008	32.3
GWS-EC14-0042	13.9
GWS-EC14-0068	15.6
GWS-EC22-0015	12.0
GWS-EC22-0055	13.2
GWS-EC22-0078	14.1
GWS-EC22-0105	15.8
GWS-EC22-0135	16.3
GWS-EC22-0162	17.0

Triplicate Average	18.4
Standard Deviation	0.29
%RSD	1.58

į.

(Total Solids at 90 C)

44

41

DRATED

INCORPORATED

INCORPORATED

SILT CLAY 100

Floyd, Snider

41

340542.002

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Sample No.	Gravel			Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand		S	Clay			
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
Sieve Size (microns)	3/8"	#4	#10 (2000)	#18 (1000)	#35 (500)	#60 (250)	#120 (125)	#230 (62)	31.00	15.60	7.80	3.90	2.00	1.00
GWS-EC14-0112	100.0	100.0	100.0	99.7	86.4	75.6	65.3	54.8	54.1	43.6	33.6	24.5	11.5	6.6
GWS-EC14-0112	100.0	100.0	99.6	93.9	85.6	74.1	63.4	52.9	50.0	40.7	31.0	22.3	11.0	5.8
GWS-EC14-0112	100.0	100.0	99.9	97.7	86.1	76.2	66.1	55.2	53.8	43.2	33.6	24.9	11.7	6.2
GWS-EC19-0010	100.0	100.0	100.0	99.8	91.5	82.6	75.1	68.6	68.3	59.8	51.3	37.0	18.8	12.4
GWS-EC19-0160	100.0	100.0	100.0	99.9	94.5	88.8	84.0	78.5	78.3	73.0	64.7	48.8	22.5	12.9
GWS-EC16-0066	100.0	100.0	100.0	99.8	92.6	87.7	83.9	79.8	78.5	70.0	60.3	44.6	22.6	15.2
GWS-EC21-0006	100.0	100.0	100.0	99.7	89.3	80.2	72.2	62.8	60.7	55.6	45.1	33.8	18.0	9.9
GWS-EC21-0177	100.0	100.0	100.0	99.9	93.7	89.2	86.0	82.4	81.1	72.5	64.8	49.7	19.9	10.8

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt		Clay	
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0
GWS-EC14-0112	0.0	0.3	13.4	10.7	10.3	10.5	0.8	10.5	10.0	9.1	13.0	5.0	6.6
GWS-EC14-0112	0.4	5.7	8.3	11.5	10.8	10.5	2.9	9.3	9.7	8.7	11.3	5.2	5.8
GWS-EC14-0112	0.1	2.2	11.6	9.9	10.2	10.9	1.4	10.6	9.6	8.7	13.3	5.5	6.2
GWS-EC19-0010	0.0	0.2	8.3	8.9	7.5	6.5	0.4	8.5	8.5	14.3	18.2	6.4	12.4
GWS-EC19-0160	0.0	0.1	5.4	5.7	4.8	5.5	0.2	5.3	8.3	15.9	26.3	9.6	12.9
GWS-EC16-0066	0.0	0.2	7.2	4.9	3.8	4.1	1.2	8.5	9.7	15.7	22.0	7.4	15.2
GWS-EC21-0006	0.0	0.3	10.5	9.0	8.0	9.4	2.2	5.1	10.4	11.3	15.8	8.2	9.9
GWS-EC21-0177	0.0	0.1	6.2	4.5	3.3	3.6	1.3	8.6	7.7	15.1	29.8	9.1	10.8

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

.

...

Floyd, Snider 340542.002

PSEP Total Solids Analysis Percent of Wet Weight

Sample No.	Total Solids (%)
GWS-EC14-0112	18.1
GWS-EC14-0112	18.7
GWS-EC14-0112	18.3
GWS-EC19-0010	11.4
GWS-EC19-0160	15.3
GWS-EC16-0066	12.7
GWS-EC21-0006	12.1
GWS-EC21-0177	16.3

Triplicate Average	18.4
Standard Deviation	0.29
%RSD	1.58

(Total Solids at 90 C)

14

IB68

·

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Sample No.	Gravel			Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand		S	Clay			
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
Sieve Size (microns)	3/8"	#4	#10 (2000)	#18 (1000)	#35 (500)	#60 (250)	#120 (125)	#230 (62)	31.00	15.60	7.80	3.90	2.00	1.00
GWS-EC02-0175	100.0	100.0	100.0	98.9	89.5	81.6	74.9	66.1	64.1	52.4	41.9	32.0	17.4	91
GWS-EC02-0175	100.0	100.0	99.6	99.5	89.7	80.9	73.6	64.6	62.8	52.3	41.7	31.7	16.9	8.9
GWS-EC02-0175	100.0	100.0	99.6	98.8	86.0	76.6	68.9	60.1	58.3	48.5	38.4	30.0	15.7	8.3
GWS-EC01-0090	100.0	100.0	100.0	99.5	91.9	86.2	81.8	76.9	76.3	67.8	59.4	39.8	19.6	10.6
GWS-EC10-0025	100.0	100.0	100.0	99.9	89.9	83.3	77.8	72.0	69.0	60.3	49.6	38.1	20.8	11.8
GWS-EC10-0180	100.0	100.0	100.0	99.9	95.3	90.3	86.0	81.5	80.5	73.1	63.3	48.8	19.7	10.6

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

.

14.

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt		Clay	
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0
GWS-EC02-0175	0.0	1.1	9.4	7.9	6.7	8.8	1.9	11.7	10.5	99	14 7	82	91
GWS-EC02-0175	0.4	0.1	9.8	8.7	7.3	9.0	1.8	10.5	10.6	9.9	14.8	8.0	89
GWS-EC02-0175	0.4	0.8	12.8	9.3	7.7	8.9	1.8	9.8	10.1	8.4	14.3	7.3	8.3
GWS-EC01-0090	0.0	0.5	7.6	5.6	4.5	4.9	0.6	8.5	8.4	19.6	20.2	9.0	10.6
GWS-EC10-0025	0.0	0.1	10.0	6.5	5.6	5.8	3.0	8.7	10.7	11.5	17.3	9.0	11.8
GWS-EC10-0180	0.0	0.1	4.7	5.0	4.2	4.5	1.0	7.4	9.7	14.6	29.0	91	10.6

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

•

Floyd, Snider 340542.002

PSEP Total Solids Analysis Percent of Wet Weight

Sample No.	Total Solids (%)
GWS-EC02-0175	16.4
GWS-EC02-0175	16.5
GWS-EC02-0175	16.5
GWS-EC01-0090	14.3
GWS-EC10-0025	10.8
GWS-EC10-0180	15.7

Triplicate Average	16.5
Standard Deviation	0.08
%RSD	0.51

(Total Solids at 90 C)

 ^{7}h

IB87

:

40

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Sample No.	Gravel			Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand		S	Clay			
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
Sieve Size (microns)	3/8"	#4	#10 (2000)	#18 (1000)	#35 (500)	#60 (250)	#120 (125)	#230 (62)	31.00	15.60	7.80	3.90	2.00	1.00
GWS-EC02-0175	100.0	100.0	100.0	98.9	89.5	81.6	74.9	66.1	64.1	52.4	41.9	32.0	17.4	9.1
GWS-EC02-0175	100.0	100.0	99.6	99.5	89.7	80.9	73.6	64.6	62.8	52.3	41.7	31.7	16.9	8.9
GWS-EC02-0175	100.0	100.0	99.6	98.8	86.0	76.6	68.9	60.1	58.3	48.5	38.4	30.0	15.7	8.3
GWS-EC02-0025	100.0	100.0	100.0	99.5	89.5	82.9	77.5	71.8	67.8	64.4	49.6	38.8	22.0	11.3
GWS-EC20-0058	100.0	100.0	100.0	98.4	88.4	81.5	76.6	72.2	71.4	63.3	53.9	40.5	20.1	11.2
GWS-EC09-0008	100.0	100.0	100.0	98.7	90.3	84.9	80.5	76.2	74.8	66.5	55.3	43.0	23.0	13.3
GWS-EC03-0110	100.0	100.0	99.9	98.6	89.6	82.3	76.6	70.0	67.5	56.3	45.6	33.7	16.3	9.5

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

4.

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt		Clay	
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0
GWS-EC02-0175	0.0	1.1	9.4	7.9	6.7	8.8	1.9	11.7	10.5	9.9	14.7	8.2	9.1
GWS-EC02-0175	0.4	0.1	9.8	8.7	7.3	9.0	1.8	10.5	10.6	9.9	14.8	8.0	8.9
GWS-EC02-0175	0.4	0.8	12.8	9.3	7.7	8.9	1.8	9.8	10.1	8.4	14.3	7.3	8.3
GWS-EC02-0025	0.0	0.5	10.0	6.6	5.4	5.7	4.0	3.4	14.8	10.8	16.7	10.7	11.3
GWS-EC20-0058	0.0	1.6	10.0	6.9	4.9	4.4	0.8	8.1	9.4	13.3	20.4	8.9	11.2
GWS-EC09-0008	0.0	1.3	8.4	5.4	4.3	4.4	1.4	8.3	11.2	12.4	20.0	9.7	13.3
GWS-EC03-0110	0.1	1.2	9.1	7.2	5.7	6.6	2.6	11.1	10.8	11.8	17.4	6.8	9.5

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

PSEP Total Solids Analysis Percent of Wet Weight

Sample No.	Total Solids (%)
GWS-EC02-0175	16.4
GWS-EC02-0175	16.5
GWS-EC02-0175	16.5
GWS-EC02-0025	11.7
GWS-EC20-0058	12.4
GWS-EC09-0008	11.3
GWS-EC03-0110	14.8

Triplicate Average	16.5
Standard Deviation	0.08
%RSD	0.51

(Total Solids at 90 C)

IB91

:

. .

142

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Sample No.	ole No. Gravel				Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand		S	Clay			
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
Sieve Size (microns)	3/8"	#4	#10 (2000)	#18 (1000)	#35 (500)	#60 (250)	#120 (125)	#230 (62)	31.00	15.60	7.80	3.90	2.00	1.00
GWS-EC02-0175	100.0	100.0	100.0	98.9	89.5	81.6	74.9	66.1	64.1	52.4	41.9	32.0	17.4	91
GWS-EC02-0175	100.0	100.0	99.6	99.5	89.7	80.9	73.6	64.6	62.8	52.3	41.7	31.7	16.9	8.9
GWS-EC02-0175	100.0	100.0	99.6	98.8	86.0	76.6	68.9	60.1	58.3	48.5	38.4	30.0	15.7	8.3
GWS-EC17-0055	100.0	100.0	100.0	98.9	90.9	84.0	78.1	71.6	68.3	60.8	51.6	37.5	19.0	10.5
GWS-EC15-0050	100.0	100.0	99.9	99.6	91.5	84.8	79.5	73.2	69.1	60.4	51.0	36.9	19.4	10.9
GWS-EC15-0106	100.0	100.0	100.0	99.7	92.8	85.8	78.8	68.7	65.6	55.2	45.7	30.2	13.4	7.8
GWS-EC24-0008	100.0	100.0	100.0	99.6	90.5	83.1	76.9	69.7	66.0	54.6	47.0	33.5	17.4	10.0
GWS-EC18-0068	100.0	100.0	100.0	99.7	91.9	85.5	80.0	73.3	71.4	62.0	53.3	38.7	19.2	10.9

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

IC04

41

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt		Clay	
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0
GWS-EC02-0175	0.0	1.1	9.4	7.9	6.7	8.8	1.9	11.7	10.5	99	14 7	82	0.1
GWS-EC02-0175	0.4	0.1	9.8	8.7	7.3	9.0	1.8	10.5	10.6	9.9	14.8	8.0	89
GWS-EC02-0175	0.4	0.8	12.8	9.3	7.7	8.9	1.8	9.8	10.1	8.4	14.3	73	83
GWS-EC17-0055	0.0	1.1	8.0	7.0	5.8	6.6	3.3	7.4	9.2	14.2	18.4	8.5	10.5
GWS-EC15-0050	0.1	0.3	8.1	6.6	5.4	6.2	4.1	8.7	9.4	14.1	17.5	8.5	10.0
GWS-EC15-0106	0.0	0.3	6.9	7.0	7.0	10.1	3.1	10.4	9.5	15.5	16.8	5.6	7.8
GWS-EC24-0008	0.0	0.4	9.0	7.4	6.2	7.3	3.6	11.4	7.6	13.6	16.0	7.4	10.0
GWS-EC18-0068	0.0	0.3	7.8	6.5	5.5	6.6	1.9	9.4	8.7	14.6	19.4	8.3	10.9

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

IC04

.

11

Floyd, Snider 340542.002

PSEP Total Solids Analysis Percent of Wet Weight

Sample No.	Total Solids (%)
GWS-EC02-0175	16.4
GWS-EC02-0175	16.5
GWS-EC02-0175	16.5
GWS-EC17-0055	13.0
GWS-EC15-0050	13.1
GWS-EC15-0106	14.0
GWS-EC24-0008	11.4
GWS-EC18-0068	12.3

Triplicate Average	16.5
Standard Deviation	0.08
%RSD	0.51

(Total Solids at 90 C)

14

IC04

·

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

Sample No.		Gravel		Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand		S	Clay			
Phi Size	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
Sieve Size	3/8"	#4	#10	#18	#35	#60	#120	#230	31.00	15.60	7.80	3.90	2.00	1.00
(microns)	100.0	100.0	(2000)	(1000)	(500)	(250)	(125)	(62)						
GWS-SG10	100.0	100.0	98.7	97.3	85.9	78.0	69.8	61.8	58.9	48.3	35.2	22.4	14.7	8.9
GWS-SG10	100.0	100.0	100.0	99.6	94.4	88.4	80.6	73.1	69.0	56.3	41.9	27.0	17.8	10.7
GWS-SG10	100.0	100.0	99.6	99.3	95.4	90.3	83.0	75.3	71.8	58.5	43.6	27.7	18.4	11.2
GWS-SG09	100.0	100.0	98.9	98.1	91.0	84.8	76.7	68.7	65.9	52.4	38.3	24.5	16.1	9.5
GWS-SG12	100.0	100.0	99.6	98.5	94.4	87.0	77.4	70.8	68.4	57.3	46.5	33.3	23.6	15.2
GWS-SG08	100.0	100.0	99.9	99.5	92.3	82.2	73.7	66.2	62.4	48.6	35.2	20.7	13.0	7.4
GWS-SG14	100.0	100.0	99.8	99.5	97.0	93.5	89.2	84.9	81.4	68.4	53.6	34.6	21.6	13.1
GWS-SG15	100.0	100.0	100.0	99.8	92.8	86.4	78.7	69.6	66.6	53.0	39.9	24.7	14.5	8.6
GWS-SG06	100.0	100.0	100.0	99.6	92.5	86.0	78.7	70.6	67.0	52.3	38.0	23.3	13.8	8.3
GWS-SG11	100.0	100.0	100.0	99.8	94.7	89.1	80.2	71.5	68.4	53.8	39.9	26.1	16.2	10.0
GWS-SG02	100.0	100.0	100.0	99.9	93.7	86.3	75.8	65.5	59.2	44.6	32.0	19.3	11.7	7.1
GWS-SG04	100.0	100.0	100.0	99.9	94.2	87.7	79.5	69.8	66.6	53.0	39.4	26.3	17.1	12.8
GWS-SG07	100.0	98.9	97.6	94.8	84.6	54.0	31.0	21.2	19.9	14.8	10.7	7.1	4.9	3.4
GWS-SG17	100.0	96.6	95.6	92.4	80.7	45.5	22.9	14.6	12.5	9.6	7.0	4.8	3.3	2.5
GWS-SG03	100.0	100.0	100.0	99.9	92.9	86.2	78.9	70.9	67.8	52.5	39.5	25.9	17.5	12.4
GWS-SG01	100.0	100.0	99.5	98.4	93.6	87.8	79.6	70.1	63.9	44.7	28.5	17.8	13.5	9.7
GWS-SG05	100.0	99.9	96.0	90.2	81.3	65.7	52.7	45.9	45.4	38.7	31.4	23.5	17.2	12.6
GWS-SG16	100.0	100.0	100.0	99.9	98.4	95.2	89.0	81.8	79.1	66.5	52.3	36.9	25.4	18.0
GWS-SG13	100.0	97.6	91.8	87.2	74.9	45.8	24.5	13.0	2.9	1.7	1.2	1.0	0.7	0.6

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

Sample No.	Gravel	Very Coarse Sand	Coarse Sand	Medium Sand	Fine Sand	Very Fine Sand	Coarse Silt	Medium Silt	Fine Silt	Very Fine Silt		Clay		
Phi Size	> -1	-1 to 0	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5	5 to 6	6 to 7	7 to 8	8 to 9	9 to 10	< 10	
Sieve Size (microns)	> #10 (2000)	10 to 18 (2000-1000)	18-35 (1000-500)	35-60 (500-250)	60-120 (250-125)	120-230 (125-62)	62.5-31.0	31.0-15.6	15.6-7.8	7.8-3.9	3.9-2.0	2.0-1.0	<1.0	
GWS-SG10	1.3	1.4	11.4	7.9	8.2	8.0	2.9	10.6	13.1	12.9	7.6	5.8	8.9	
GWS-SG10	0.0	0.4	5.1	6.1	7.8	7.5	4.1	12.6	14.4	14.9	9.2	7.0	10.7	
GWS-SG10	0.4	0.3	3.9	5.1	7.2	7.7	3.5	13.3	14.9	15.9	9.3	7.2	11.2	
GWS-SG09	1.1	0.9	7.1	6.2	8.1	8.0	2.9	13.5	14.1	13.9	8.4	6.5	9.5	
GWS-SG12	0.4	1.1	4.2	7.3	9.6	6.6	2.4	11.2	10.8	13.2	9.7	8.4	15.2	
GWS-SG08	0.1	0.5	7.2	10.1	8.5	7.5	3.8	13.8	13.3	14.5	7.7	5.6	7.4	
GWS-SG14	0.2	0.3	2.6	3.5	4.2	4.3	3.5	13.0	14.8	19.0	13.0	8.5	13.1	
GWS-SG15	0.0	0.2	7.0	6.4	7.8	9.0	3.1	13.6	13.1	15.2	10.1	5.9	8.6	
GWS-SG06	0.0	0.4	7.1	6.4	7.3	8.2	3.6	14.6	14.3	14.7	9.5	5.5	8.3	
GWS-SG11	0.0	0.2	5.1	5.6	8.9	8.7	3.1	14.6	13.9	13.9	9.9	6.1	10.0	
GWS-SG02	0.0	0.1	6.2	7.3	10.5	10.4	6.3	14.7	12.5	12.7	7.7	4.6	7.1	
GWS-SG04	0.0	0.1	5.7	6.5	8.1	9.7	3.2	13.6	13.7	13.1	9.1	4.3	12.8	
GWS-SG07	2.4	2.8	10.2	30.6	23.0	9.9	1.2	5.2	4.0	3.6	2.2	1.5	3.4	
GWS-SG17	4.4	3.2	11.7	35.2	22.6	8.3	2.2	2.9	2.6	2.3	1.4	0.9	2.5	
GWS-SG03	0.0	0.1	7.0	6.7	7.3	8.1	3.1	15.2	13.0	13.6	8.4	5.1	12.4	
GWS-SG01	0.5	1.1	4.8	5.8	8.2	9.5	6.2	19.3	16.1	10.7	4.3	3.8	9.7	
GWS-SG05	4.0	5.8	8.9	15.5	13.0	6.8	0.5	6.7	7.3	7.9	6.3	4.5	12.6	
GWS-SG16	0.0	0.1	1.5	3.1	6.2	7.2	2.8	12.6	14.2	15.4	11.6	7.4	18.0	
GWS-SG13	8.2	4.6	12.3	29.1	21.3	11.5	10.1	1.2	0.5	0.3	0.3	0.1	0.6	

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

IC14

.

11

Floyd, Snider 340542.002

PSEP Total Solids Analysis Percent of Wet Weight

Sample No.	Total Solids (%)
GWS-SG10	14.9
GWS-SG10	14.6
GWS-SG10	14.4
GWS-SG09	14.4
GWS-SG12	18.9
GWS-SG08	12.7
GWS-SG14	19.2
GWS-SG15	11.8
GWS-SG06	11.9
GWS-SG11	13.4
GWS-SG02	13.1
GWS-SG04	10.9
GWS-SG07	34.6
GWS-SG17	43.3
GWS-SG03	10.9
GWS-SG01	13.2
GWS-SG05	29.2
GWS-SG16	16.3
GWS-SG13	75.6

Triplicate Average	14.6
Standard Deviation	0.27
%RSD	1.83

(Total Solids at 90 C)

14

IC14

.42

SUB-ATTACHMENT 3D-2.6.3 Floyd | Snider 2005 Geotechnical Field Sampling Methods and Laboratory Testing Program

Gas Works Sediment Western Study Area

Data Report

Appendix C Geotechnical Field Sampling Methods

List of Tables

Table C.1 Vane Shear Test Results

List of Figures

- Figure C.1 Key to Exploration Logs
- Figure C.2 Boring Log GWS-GC01
- Figure C.3 Boring Log GWS-GC02
- Figure C.4 Boring Log GWS-GC03
- Figure C.5 Boring Log GWS-GC04
- Figure C.6 Boring Log GWS-GC05
- Figure C.7 Boring Log GWS-GC06
- Figure C.8 Peak Shear Strength Plot

List of Attachments

Attachment C.1 Logs of Cone Penetrometer Probes

Geotechnical Field Sampling Methods

This appendix documents the processes used in determining the nature and classification of sediments in the GWS-WSA. This appendix includes information on the following subjects:

- Explorations and their locations
- The use of auger borings
- Standard Penetration Test (SPT) procedures
- The use of Shelby Tubes
- The use of Cone Penetrometer Probes
- The use of Vane Shear (VS) Probes

EXPLORATIONS AND THEIR LOCATIONS

Subsurface explorations for this program consisted of 6 sediment borings, 5 VS tests, and 5 Cone penetrometer tests (CPTs). In the field, samples were classified according to the methods presented on Figure C.1. Boring logs (Figures C.2 through C.7) show the interpretation of the drilling, sampling, and testing data. They indicate the depths where soil conditions changed. Figure C.1 provides a legend explaining the symbols and abbreviations used in the boring logs.

Discussions of the VS and CPTs are presented below.

Figure 2.1 in the Data Report shows the location of explorations, located using a Global positioning system (GPS) receiver in the field. Mudline elevations at these locations were established using a weighted tape measure to determine the depth of the water column at each exploration location.

THE USE OF AUGER BORINGS

Six hollow stem auger borings, designated GWS-GC01 through GWS-GC06, were drilled to depths ranging from 14 to 76 feet below the existing mudline surface, in the period between April 25 and 28, 2005. The borings use a 3-3/8-inch inside diameter hollow stem auger and were advanced with a truck-mounted drill rig. A Washington State licensed geologist continuously observed the drilling. Detailed field logs were prepared for each boring. The SPT was used to generally obtain sediment samples at 2.5 to 5-foot depth intervals.

The boring logs are presented on Figures C.2 through C.7.

STANDARD PENETRATION TEST PROCEDURES

This test is an approximate measure of soil density and consistency. To be useful, results must be used with engineering judgment in conjunction with other tests. The SPT, as described in ASTM D1587, was used to obtain disturbed samples. The test employs a standard 2-inch outside diameter split-spoon sampler. Using a 140-pound hammer free-falling 30 inches, the sampler is driven into the soil for 18 inches. The number of blows required to drive the sampler the last 12 inches is the Standard Penetration Resistance. This resistance (or blow count) measures the relative density of granular soils and the consistency of cohesive soils. The blow counts are plotted on the boring logs at their respective sample depths.

Soil samples were recovered from the split-spoon sampler, and were field classified and placed into watertight jars. Select samples were sent to ARI for further testing.

Occasionally, very dense or hard materials preclude driving the total 18-inch sample. When this happens, the penetration resistance is entered on the logs as follows:

Penetration Less Than Six Inches. The log indicates the total number of blows over the number of inches of penetration.

Penetration Greater Than Six Inches. The blow count noted on the log is the sum of the total number of blows completed after the first 6 inches of penetration. The sum is expressed over the number of inches driven that exceed the first 6 inches. The number of blows needed to drive the first 6 inches are not reported. For example, a blow count series of 12 blows for 6 inches, 30 blows for 6 inches, and 50 (the maximum number of blows counted within a 6-inch increment for SPT) for 3 inches would be recorded as 80/9.

THE USE OF SHELBY TUBES

To obtain a relatively undisturbed sample for classification and testing in fine-grained sediments, a 3-inch diameter thin-walled steel Shelby tube sampler was pushed hydraulically below the auger in accordance with ASTM D1587. The tubes were sealed in the field and taken to the laboratory for extrusion and classification.

THE USE OF CONE PENETROMETER PROBES

A cone penetrometer was used to probe the subgrade sediments at five locations in the GWS-WSA. The probes, designated GWS-CPT01 through GWS-CPT05, were advanced to depths ranging from 6 to 47 feet below the mudline surface. The probes were advanced from an anchored barge through stiffness casing fixed to a splayed footing at the mudline. The stiffness casing and splayed anchor footing provide reaction to advance the probes while allowing vertical barge movement, resulting from wave and tidal action, without affecting the probe advance rate. A hydraulic ram is fixed to the top of the stiffness casing.

The cone and its sleeve provide information regarding the density and consistency of the sediment. A direct correlation exists between the point resistance of the cone and the bearing capacity of the sediment. Another direct correlation exists between the friction registered on the sleeve and the friction characteristics of the sediment.

Generally, a friction ratio (e.g., point resistance to sleeve resistance) less than 2 indicates sand; a friction ratio between 2 and 4 indicates silt-sand mixture, clayey sand, or silt; and ratios greater than 4 indicate a clayey silt or clay.

Logs of cone penetrometer probes are presented in Attachment C.1.

THE USE OF VANE SHEAR PROBES

VS probes are used to determine the *in-situ* shear strength of a low strength, homogeneous cohesive sediment. VS probes consist of a four-bladed vane mounted on a vertical shaft. The blades are pushed into the sediment and a torque is applied to the shaft until the apparatus rotates. When the sediment is stressed to its shear strength, the vanes will rotate in the sediment. Because the soil fails along the cylindrical surface of the vanes, the shearing resistance can be calculated from the vane dimensions and the applied torque.

VS tests were performed at five locations in the GWS-WSA. The probes, designated GWS-VS01 through GWS-VS05, were advanced to depths ranging from 1 to 13 feet below the mudline surface.

Results of the VS tests are presented in Table C.1 and the peak shear strength plot is shown in Figure C.8.

Gas Works Sediment Western Study Area

Data Report

Appendix C Geotechnical Field Sampling Methods Tables

	Test Location ²							
Vane Shear Test Designation	Northing	Easting	Test Date	Depth (feet) ³	Peak Shear Strength (psf)	Residual Shear Strength (psf)	Sensitivity Ratio⁴	Comments
CPT-01	239179	1269480	5/4/2005	3	47	0	-	Potential stick or rock obstructions.
CPT-02	239046	1269571	5/4/2005	2	259	29	8.9	Potential sand lense or stick.
CPT-02	239046	1269571	5/4/2005	4	37	9	4.1	
CPT-03	238764	1269717	5/3/2005	1.5	37	9	4.1	
CPT-03	238764	1269717	5/3/2005	3.5	75	22	3.4	
CPT-03	238764	1269717	5/3/2005	5.5	47	18	2.6	
CPT-04	238600	1269632	5/5/2005	1	62	26	2.4	Erratic results.
CPT-04	238600	1269632	5/5/2005	3	50	21	2.4	
CPT-04	238600	1269632	5/5/2005	5	74	21	3.5	
CPT-04	238600	1269632	5/5/2005	7	101	38	2.7	
CPT-04	238600	1269632	5/5/2005	9	108	37	2.9	
CPT-04	238600	1269632	5/5/2005	11	142	19	7.5	
CPT-04	238600	1269632	5/5/2005	13	178	36	4.9	
CPT-05	238655	1269207	5/5/2005	1	14	3	4.7	

Table C.1 Vane Shear Test Results¹

	Test Location ²							
Vane Shear Test Designation	Northing	Easting	Test Date	Depth (feet) ³	Peak Shear Strength (psf)	Residual Shear Strength (psf)	Sensitivity Ratio⁴	Comments
CPT-05	238655	1269207	5/5/2005	3	30	18	1.7	
CPT-05	238655	1269207	5/5/2005	5	62	11	5.6	
CPT-05	238655	1269207	5/5/2005	7	74	20	3.7	
CPT-05	238655	1269207	5/5/2005	9	104	26	4.0	
CPT-05	238655	1269207	5/5/2005	11	129	37	3.5	
CPT-05	238655	1269207	5/5/2005	13	142	31	4.6	

Notes:

1 All data results from Northwest Cone Exploration, Inc.

2 Location coordinates are given in Washington State Plane (North). Sample locations are also shown on Figure 2.1.

3 Depths are provided as depth below mudline.

4 Sensitivity Ratio is defined as the ratio of the peak shear strength to the residual shear strength.

Gas Works Sediment Western Study Area

Data Report

Appendix C Geotechnical Field Sampling Methods Figures

SAMPLE DESCRIPTION

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following: Density/consistency, moisture, color, minor constituents, MAJOR CONSTITUENT, additional remarks.

DENSITY/CONSISTENCY

SAMPLING TEST SYMBOLS

10/14/2005

DATE:

Soll density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits is estimated based on visual observation and is presented parenthetically on the test pit logs.

SAND or GRAVEL Density	Standard Penetration Resistance (N) in Blows/Foot	SILT or CLAY Consistency	Standard Penetration Resistance(N) in Blows/Foot	Approximete Shear Strength In TSF
Very loose	0 - 4	Very soft	0 - 2	<0.125
Loose	4 - 10	Soft	2 - 4	0.125 - 0.25
Medium dense	10 - 30	Medium stiff	4 - 8	0.25 - 0.5
Dense	30 - 50	Stiff	8 - 15	0.5 - 1.0
Very dense	>50	Very stiff	15 - 30	1.0 - 2.0
		Hard	>30	>2.0

MOIST	URE	MINOR CONSTITUENTS	Estimated Percentage	
Dry	Little perceptible moisture	Not identified in description	0 - 5	
Damp	Some perceptible moisture, probably below optimum	Slightly (clayey, silty, etc.)	5 - 12	
Moist	Probably near optimum moisture content	Clayey, silty, sandy, gravelly	12 - 30	
Wet	Much perceptible moisture, probably above optimum	Very (clayey, silty, etc.)	30 - 50	

LEGENDS

.

TEST SYMBOLS

siCOS-SPUDRITask5 Data Analysis-DataReport/Data Report-Internal Draft/Figures/Figure C.1.dwg	Split Spoon Grab (Jar) Shelby Tube Bag Cuttings Shelby Tube Core Run Shelby Tube * No Sample Recovery P Tube Pushed, Not Driven GROUNDWATER OBSERVATION WELLS Monument Surface Seal Riser Pipe Bentonite Groundwater Level on Date or at Time of Drilling (ATD) Well Screen Sand Pack Native Material Q Groundwater Seepage (Test Pits)				Grain Size Class Consolidation Unconsolidated Un Consolidated Un Consolidated Dra Unconfined Com Direct Shear Permeability Pocket Penetrom Approximate Co Torvane Approximate Sh California Bearin Moisture Density Atterberg Limits	ification Jndrained Triaxial drained Triaxial ained Triaxial pression heter ompressive Strength in TSF g Ratio Relationship Vater Content in Percent quid Limit astic Limit letector Reading s est	
Strat	OYD SNIDE egy • science • engineer	Gas Wor	Data Re rks Sediment City of S	eport Westerr Seattle	n Study Area	Figure C.1 Key to Exploration Logs	

DATE: 10/14/2005 DWG NAME: F:/Projects/COS-SPUDR\Task5 Data Analysis-Data Report/Data Report-Internal DraftFigures/FigureC.2.dwg

DATE: DWG NAME:

10/14/2005 F:NProjects/COS-SPUDR\Task5 Data Analysis-Data Report/Data Report-Internal Draft/Figures\Figurec.6.dwg

DATE: DWG NAME:

F:\projects\COS-SPUDR\Task 5 Data Analysis-Data Report\Ecology Review Draft\Appendices\C - Geotech Sampling\Figures\Figure C.8 120105.doc

Gas Works Sediment Western Study Area

Data Report

Appendix C Geotechnical Field Sampling Methods Attachments

Operator: Brown Sounding: GWS-CPT-01 Cone Used: DSG0708 CPT Date/Time: 5/4/2005 11:14:30 AM Location: Lake Union - Gas Works Park Job Number: GWS-GSA

Operator: Brown Sounding: GWS-CPT-02 Cone Used: DSG0708 CPT Date/Time: 5/4/2005 2:04:51 PM Location: Lake Union - Gas Works Park Job Number: GWS-GSA

Operator: Brown Sounding: GWS-CPT-03 Cone Used: DSG0851 CPT Date/Time: 5/2/2005 12:42:15 PM Location: Lake Union - Gas Works Park Job Number: GWS-GSA

Operator: Brown Sounding: GWS-CPT-04 Cone Used: DSG0708 CPT Date/Time: 5/5/2005 11:58:54 AM Location: Lake Union - Gas Works Park Job Number: GWS-GSA

Operator: Brown Sounding: GWS-CPT-05 Cone Used: DSG0708 CPT Date/Time: 5/3/2005 12:11:38 PM Location: Lake Union - Gas Works Park Job Number: GWS-GSA

Gas Works Sediment Western Study Area

Data Report

Appendix D Geotechnical Physical Laboratory Testing Program

List of Figures

Figure D.1 Unified Soil Classification System

List of Attachments

- Attachment D.1 Moisture Content Data
- Attachment D.2 Atterberg Limit Data
- Attachment D.3 Grain-Size Analysis Data
- Attachment D.4 Specific Gravity Data
- Attachment D.5 Triaxial Unconsolidated Undrained Compression Test Data
- Attachment D.6 One Dimensional Consolidation Test Data

Geotechnical Physical Laboratory Testing Program

A laboratory testing program was performed to evaluate the basic index and geotechnical engineering properties of the site sediments within the GWS-WSA. Both disturbed and undisturbed samples were tested. The tests performed and procedures followed are outlined below.

SOIL CLASSIFICATION

Soil samples from the explorations were visually classified in the field and then taken to the laboratory where the classifications were verified in a relatively controlled laboratory environment. Field and laboratory observations include density/consistency, moisture condition, and estimates of grain-size and plasticity.

The classifications of selected samples were checked by laboratory tests such as Atterberg limits determinations and grain-size analyses. Classifications were made in accordance with the USCS, ASTM D2487, as presented on Figure D.1.

MOISTURE CONTENT DETERMINATIONS

As soon as possible following sample arrival to the laboratory, moisture contents were determined in accordance with ASTM D2216. The results of these tests are plotted at the corresponding sample depths on the boring logs (Appendix C) and also presented in Attachment D.1.

ATTERBERG LIMITS

Atterberg limits were determined for selected fine-grained sediment samples. The liquid and plastic limits were determined in accordance with ASTM D4318-84. The results of the Atterberg Limits analyses and the plasticity characteristics are summarized in Attachment D.2. The results of the Atterberg Limits tests are also shown graphically on the boring logs (Appendix C).

GRAIN-SIZE ANALYSIS

Grain-size distribution was analyzed on representative samples in accordance with ASTM D422. Wet sieve analysis was used to determine the size distribution greater than the U.S. No. 200 mesh sieve. A hydrometer was used on sample GWS-GC06-S15 due to high fines content (greater than 90 percent). The results of the tests are presented as curves in Attachment D.3, plotting percent finer by weight versus grain-size.

SPECIFIC GRAVITY

Specific gravity is defined as the ratio of the average density of solid constituents in a sediment sample to the density of water. Specific gravity was determined from selected sediment

samples according to ASTM D854. Results of specific gravity tests are presented in Attachment D.4.

TRIAXIAL UNCONSOLIDATED UNDRAINED TEST

The triaxial unconsolidated undrained (UU) compression test estimates the undrained shear strength of the soil. This test was performed in accordance with ASTM D2850. A relatively undisturbed fine-grained sample is trimmed to a length of about 6 inches, encased in a rubber membrane, and placed in a triaxial cell. An all-around confining pressure is applied hydraulically, but the sample is not allowed to consolidate, and no back pressure is applied. An axial load is then applied to the sample at a constant strain rate without allowing drainage from the specimen. The stress strain behavior is recorded until failure occurs.

The failure stress is generally taken as the maximum load on the sample or the load recorded at 20 percent strain, whichever is greater. The test results, plotted in terms of axial strain versus deviator stress, are presented in Attachment D.5. The shear strength is considered to be one-half the maximum stress difference.

ONE DIMENSIONAL CONSOLIDATION TEST

Consolidation tests were performed according to ASTM D2435 by placing a disk of cohesive sediment within a metal loading ring. The faces of the sediment are covered with porous plates. The disc apparatus is then loaded and submerged in water. Static loads are applied in increments, and the vertical displacement is measured with time for each load increment. When the displacement rate levels off, the final void ratio is determined for that increment. The load versus the void ratio is then plotted together as an e-log p curve.

Results of the consolidation tests performed for this program are presented in Attachment D.6.

Gas Works Sediment Western Study Area

Data Report

Appendix D Geotechnical Physical Laboratory Testing Program

Figures

10/14/2005

Gas Works Sediment Western Study Area

Data Report

Appendix D Geotechnical Physical Laboratory Testing Program

Attachments
Attachment D.1

Moisture Content

ASTM D2216

•

FLOYD/SNIDER Gasworks Park RI/FS

Client Sample Number	ARI Sample Number	Moisture Content (%)
GWS-GC02-S1	IA09A	18.9*
GWS-GC02-S2	IA09B	17.3
GWS-GC02-S3	IA09C	19.4
GWS-GC02-S4	IA09D	20.4
GWS-GC01-S1	IA09E	18.2
GWS-GC01-S2	IA09F	10.6
GWS-GC01-S3	IA09G	14.5*
GWS-GC01-S4	IA09H	17.2
GWS-GC01-S5	IA09I	38.0
GWS-GC06-S1	IA09J	523.0
GWS-GC06-S2	IA09K	731.3
GWS-GC06-S3	IA09L	732.0
GWS-GC06-S4	IA09M	520.3
GWS-GC06-S5	IA09N	637.1
GWS-GC06-S6	IA09O	548.7
GWS-GC06-S7	IA09P	546*
GWS-GC06-S8	IA09Q	358.9
GWS-GC06-S9	IA09R	390.7
GWS-GC06-S10	IA09S	129.4
GWS-GC06-S11	IA09T	93.7*
GWS-GC06-S12	IA09U	: 88.0
GWS-GC06-S13	IA09V	· 51.7*
GWS-GC06-S14	IA09W	70.6
GWS-GC06-S15	IA09X	32.0

Moisture Content

Moisture content by ASTM D2216.

÷

* this value taken from the consolidation test.

FLOYD/SNIDER COS-SPUDR.0040

Client Sample Number	ARI Sample Number	Moisture Content (%)
GWS-GC04-S1	IA11A	703.2
GWS-GC04-S2	IA11B	408.9
GWS-GC04-S5	IA11C	436.7
GWS-GC04-S6	IA11D	9.2
GWS-GC04-S7	IA11E	15.1
GWS-GC04-S8	IA11F	13.7
GWS-GC03-S1	IA11G	9.7
GWS-GC03-S2	IA11H	11.0
GWS-GC03-S3	IA11I	28.3
GWS-GC05-S1	IA11J	289.2
GWS-GC05-S2	IA11K	740.6
GWS-GC05-S3	IA11L	304.2
GWS-GC05-S4	IA11M 87.9	
GWS-GC05-S5	IA11N	78.5
GWS-GC05-S6	IA11Q	73.3

Initial Moisture Content

Moisture content by ASTM D2216.

¥

.

Attachment D.2

Atterberg Limits

ASTM D4318

Sample Number	Depth	Plasticity Index	Liquid Limit	Plastic Limit	Classification
GWS-GC05-S3	NA	NA	NA	NA	Non-Plastic
GWS-GC05-S4	NA	NA	NA	NA	Non-Plastic
GWS-GC05-S6	NA	22.8	50.0	27.2	CL-CH

Sample Number	Depth	Plasticity Index	Liquid Limit	Plastic Limit	Classification
GWS-GC-04-54	17	287	472	185	OH

HZ66

Sample Number	Depth	Plasticity Index	Liquid Limit	Plastic Limit	Classification
GWS-GC02-S1	1	NA	NA	NA	Non-Plastic
GWS-GC06-S1	2	NA	NA	NA	Non-Plastic
GWS-GC06-S3	7	309.0	645.2	336.1	ОН
GWS-GC06-S5	25	NA	NA	NA	Non-Plastic

Sample Number	Depth	Plasticity Index	Liquid Limit	Plastic Limit	Classification
GWS-GC06-S7	35	97.7	405.5	307.8	ОН
GWS-GC06-S9	45	NA	NA	NA	Non-Plastic
GWS-GC06-S11	55	41.4	71.8	30.4	СН
GWS-GC06-S13	65	18.1	47.0	28.8	OL

Sample Number	Depth	Plasticity Index	Liquid Limit	Plastic Limit	Classification
GWS-GC04-S1	NA	NA	NA	NA	Non-Plastic
GWS-GC04-S2	NA	NA	NA	NA	Non-Plastic
GWS-GC05-S1	NA	49.7	112.7	63.0	ОН
GWS-GC05-S2	NA	308.4	624.3	315.8	OH

Attachment D.3

Grain Size

ASTM D422

I

ź

I

ë

ANALYTICAL RESOURCES INCORPORATED Percent Finer 100 6 80 20 60 50 40 30 20 10 0 -x--GWS-GC03-S2 10 Grain Size Distribution By ASTM D422 -A-GWS-GC03-S1 #500 100 **Particle Diameter (microns)** 001# 09# 07# #50 1000 01# ₽# 10000 3\8" "2\r 3\4" "ŀ 100000

ĕ

ANALYTICAL RESOURCES INCORPORATED Percent Finer 100 6 80 70 09 50 40 30 20 10 0 ~ 10 Grain Size Distribution By ASTM D422 #500 100 Particle Diameter (microns) GWS-GC05-S6 001# 09# 07# #50 1000 #۱0 ₽# 10000 **..**8/8 "2\r 3\4" "1 100000

ż

Attachment D.4

Specific Gravity

ASTM D854

-

Floyd Snider, Inc.

Gasworks RI/FS

Specific Gravity

÷

.

÷

Specific Gravity						
Sample ID	Descritption	Specific Gravity				
GWS-GC02-S1	Gravely Sand	2.71				
GWS-GC06-S1	Organic Silt	2.43				
GWS-GC06-S3	Organic Silt	1.83				
GWS-GC06-S5	Organic Silt	2.04				
GWS-GC06-S7	Organic Silt	2.08				
GWS-GC06-S9	Organic Silt	2.19				
GWS-GC06-S11	Clay	2.76				
GWS-GC06-S13	Clay	2.75				

•

IA09

:

۰. ۰

.

. .

FLOYD/SNIDER COS-SPUDR.0040

Client Sample Number	ARI Sample Number	Specific Gravity
GWS-GC04-S1	IA11A	1.98
GWS-GC04-S2	IA11B	2.20
GWS-GC03-S1	IA11G	2.77
GWS-GC05-S1	IA11J	2.44
GWS-GC05-S2	IA11K	2.00
GWS-GC05-S3	IA11L	2.30
GWS-GC05-S4	IA11M	2.73
GWS-GC05-S6	IA11Q	2.80

,

Specific Gravity

Specific Gravity by ASTM D854

9'

IA11

.

Attachment D.5

Unconsolidated, Undrained Triaxial Strength

ASTM D2850

Sample ID	Depth (ft)	Confining Pressure (psi)	Wet Density (pcf)	Moisture Content (%)	Dry Density (pcf)
GWS-GC02-S1	1	5.0	125.1	18.5	105.6

1. The testing was performed according to ASTM D-2850.

2. The sample had a bulging failure.

Sample ID	Depth (ft)	Confining Pressure (psi)	Wet Density (pcf)	Moisture Content (%)	Dry Density (pcf)
GWS-GC06-S3	7	5.0	65.9	676.7	8.5

1. The testing was performed according to ASTM D-2850.

2. The sample had a bulging failure.

Sample ID	Depth (ft)	Confining Pressure (psi)	Wet Density (pcf)	Moisture Content (%)	Dry Density (pcf)
GWS-GC06-S7	35	5.0	66.2	528.9	10.5

- 1. The testing was performed according to ASTM D-2850.
- 2. The sample had a bulging failure.

Sample ID	Depth (ft)	Confining Pressure (psi)	Wet Density (pcf)	Moisture Content (%)	Dry Density (pcf)
GWS-GC06-S11	55	5.0	93.6	92.1	48.7

- 1. The testing was performed according to ASTM D-2850.
- 2. The sample had a bulging failure.

Sample ID	Depth (ft)	Confining Pressure (psi)	Wet Density (pcf)	Moisture Content (%)	Dry Density (pcf)
GWS-GC06-S13	65	5.0	98.5	65.2	59.6

1. The testing was performed according to ASTM D-2850.

2. The sample had a bulging failure.

Attachment D.6

One Dimensional Consolidation

ASTM D2435

Project Number:	IA09	Job Name:	Gasworks RI/FS
Boring / Sample	QWS-GC02-S1	Job Number	COS-SPUDR0400
Sample Initial Height	1.0955	Job Location	Seattle
Initial Dial Indicator	0.4990	DI after Seating loa	ad 0.4945

Consolidation Test Summary

S ₀	S ₉₀	S ₁₀₀	S _f	t ₉₀ (min)	Sample Height	Drainage Path	Cv (ft²/day)	Load (tsf)	Strain Ratio
0.4932	0.4903	0.4900	0.4894	1.00	1.0904	0.5452	0.252	0.0625	0.0088
0.4889	0.4860	0.4857	0.4855	1.00	1.0865	0.5433	0.250	0.125	0.0123
0.4840	0.4811	0.4808	0.4800	0.60	1.0810	0.5405	0.413	0.25	0.0173
0.4780	0.4745	0.4741	0.4737	0.60	1.0747	0.5374	0.408	0.5	0.0231
0.4698	0.4663	0.4659	0.4652	0.50	1.0662	0.5331	0.482	1.	0.0309
0.4570	0.4527	0.4522	0.4515	0.50	1.0525	0.5263	0.470	2	0.0434
0.4458	0.4403	0.4397	0.4385	0.40	1.0395	0.5198	0.573	4	0.0552
0.4304	0.4244	0.4237	0.4225	0.40	1.0235	0.5118	0.555	8	0.0698
0.4244	0.4253	0.4254	0.4254	0.50	1.0264	0.5132	0.447	2	0.0672
0.4286	0.4294	0.4295	0.4297	0.60	1.0307	0.5154	0.375	0.5	0.0633
0.4312	0.4327	0.4329	0.4335	0.50	1.0345	0.5173	0.454	0.125	0.0598

Sample Parameters

Initial Moisture Content, %	19	Final Moisture Content, %	16
Initial Dry Unit Weight, lb/ft ³	102	Final Dry Unit Weight, lb/ft ³	108
Initial Void Ratio	0.66	Final Void Ratio	0.57
Initial Saturation	0.77	Final Saturation	0.78

The following equations were used to calculate the values shown in the table above:

$$Cv = T H^2/t_{90}$$

Where:

T = the time factor for 90% consolidation

H = average of initial and final heights of the sample at each load, divided by 2

 $(S_0 + S_{100})/2$ (for double drainage paths)

 t_{90} = the time at which 90% consolidation has occurred, as derived from square root of time plots for each load.

Notes to the Testing:

 The sample was extruded from the sample tube and trimmed into a consolidation ring. The sample was inundated at the time of the seating load was applied. The test was run according to ASTM D-2435, Method B.
The sample was gravely sand with silt.

ş

.

¥

1

Project Number:	HZ66	Client:	Flovd-Snider
Boring / Sample	GWS-GC-04-S4	Job Number	COS-
Sample Initial Height	1.0017	Job Location	Gasworks Park
Initial Dial Reading	0.5243	DI After Seating Load	0.526

Consolidation Test Summary

S ₀	S _{90 .}	S ₁₀₀	S _f	t ₉₀ (min)	Н	Drainage Path	Cv (ft²/day)	Load (tsf)	Strain Ratio
0.5257	0.5248	0.5247	0.5245	0.5	0.5245	0.2623	1.166	0.005	-0.0002
0.5239	0.5226	0.5225	0.5215	1.5	0.5215	0.2608	0.384	0.01	0.0028
0.5207	0.5102	0.5090	0.5090	11	0.5090	0.2545	0.050	0.02	0.0153
0.5080	0.4675	0.4630	0.4630	35	0.4630	0.2315	0.013	0.04	0.0612
0.4620	0.3965	0.3892	0.3890	25	0.3890	0.1945	0.013	0.09.	0.1351
0.3895	0.3402	0.3347	0.3330	13	0.3330	0.1665	0.018	0.14	0.1910
0.3330	0.2520	0.2430	0.2400	28	0.2400	0.1200	0.004	0.24	0.2838
0.2420	0.2539	0.2552	0.2554	7	0.2554	0.1277	0.020	0.09	0.2684
0.2560	0.2875	0.2910	0.2910	28	0.2910	0.1455	0.006	0.02	0.2329
0.2912	0.3500	0.3565	0.3565	90	0.3565	0.1783	0.003	0.005	0.1675

Sample Parameters

.

Initial Moisture Content, %	500	Final Moisture Content, %	410
Initial Dry Unit Weight, lb/ft ³	11	Final Dry Unit Weight, Ib/ft ³	13
Initial Void Ratio	13.31	Final Void Ratio	10.89
Initial Saturation	0.92	Final Saturation	0.95

The following equations were used to calculate the values shown in the table above:

$$Cv = T H^2/t_{90}$$

Where:

T = the time factor for 90% consolidation

H = average of initial and final heights of the sample at each load, divided by 2

 $(S_0 + S_{100})/2$ (for double drainage paths)

 t_{90} = the time at which 90% consolidation has occurred, as derived from square root of time plots for each load.

Notes to the Testing:

1. The sample was extruded from the sample tube and trimmed into a consolidation ring.

2. The sample was organic silt, which swelled when inundated with water.

÷

"K.

Project Number:	IA09	Job Name:	Gasworks RI/FS
Boring / Sample	GWS-GC06-S3	Job Number	COS-SPUDR0400
Sample Initial Height	1.0014	Job Location	Seattle
Initial Dial Reading	0.5268	DI After Seating Load	0.5282

Consolidation Test Summary

S ₀	S ₉₀ .	S ₁₀₀	S _f	t ₉₀ (min)	н	Drainage Path	Cv (ft²/day)	Load (tsf)	Strain Ratio
0.5278	0.5270	0.5269	0.5267	0.5	0.5267	0.2634	1.176	0.005	0.0001
0.5262	0.5247	0.5245	0.5247	1.8	0.5247	0.2624	0.324	0.01	0.0021
0.5235	0.5165	0.5157	0.5153	5	0.5153	0.2577	0.113	0.02	0.0115
0.5123	0.4915	0.4892	0.4892	10.5	0.4892	0.2446	0.048	0.04	0.0375
0.4855	0.4280	0.4216	0.4180	18.5	0.4180	0.2090	0.020	0.09.	0.1086
0.4190	0.3552	0.3481	0.3461	34	0.3461	0.1731	0.007	0.14	0.1804
0.3586	0.3661	0.3669	0.3682	5.8	0.3682	0.1841	0.050	0.04	0.1584
0.3675	0.4190	0.4247	0.4336	35	0.4336	0.2168	0.011	0.01	0.0931

Sample Parameters

.

Initial Moisture Content, %	732	Final Moisture Content, %	678
Initial Dry Unit Weight, lb/ft ³	8	Final Dry Unit Weight, lb/ft ³	9
Initial Void Ratio	13.84	Final Void Ratio	12.44
Initial Saturation	0.92	Final Saturation	1.00

The following equations were used to calculate the values shown in the table above:

$$Cv = T H^2/t_{90}$$

Where:

T = the time factor for 90% consolidation

H = average of initial and final heights of the sample at each load, divided by 2

 $(S_0 + S_{100})/2$ (for double drainage paths)

 t_{90} = the time at which 90% consolidation has occurred, as derived from square root of time plots for each load.

Notes to the Testing:

1. The sample was extruded from the sample tube and trimmed into a consolidation ring.

2. The sample was peat, which began to swell when inundated with water.

÷

ANALYTICAL RESOURCES INCORPORATED

7

Project Number:	IA09	Job Name:	Gasworks RI/FS
Boring / Sample	GWS-GC06-S7	Job Number	COS-SPUDR0400
Sample Initial Height	1.0000	Job Location	Seattle
Initial Dial Reading	0.5268	DI After Seating Load	0.49

Consolidation Test Summary

S ₀	S ₉₀ .	S ₁₀₀	S _f	t ₉₀ (min)	н	Drainage Path	Cv (ft²/day)	Load (tsf)	Strain Ratio
0.4898	0.4895	0.4895	0.4895	0.4	0.4895	0.2448	1.270	0.005	0.0005
0.4891	0.4882	0.4881	0.4881	3.5	0.4881	0.2441	0.144	0.01	0.0019
0.4875	0.4850	0.4847	0.4845	1.5	0.4845	0.2423	0.332	0.02	0.0055
0.4830	0.4778	0.4772	0.4770	1.5	0.4770	0.2385	0.322	0.04	0.0130
0.4735	0.4650	0.4641	0.4580	0.5	0.4580	0.2290	0.889	0.09	0.0320
0.4563	0.4438	0.4424	0.4423	2.5	0.4423	0.2212	0.166	0.14	0.0477
0.4400	0.4113	0.4081	0.4080	4	0.4080	0.2040	0.088	0.24	0.0820
0.4060	0.3342	0.3262	0.3262	7	0.3262	0.1631	0.032	0.44	0.1638
0.3250	0.2235	0.2122	0.2122	6.25	0.2122	0.1061	0.015	0.84	0.2778
0.2153	0.2265	0.2277	0.2290	0.75	0.2290	0.1145	0.148	0.24	0.2610
0.2292	0.2500	0.2523	0.2530	2.5	0.2530	0.1265	0.054 · ·	0.09	0.2370
0.2538	0.3020	0.3074	0.3074	16	0.3074	0.1537	0.013	0.02	0.1826
0.3083	0.3422	0.3460	0.3494	38.5	0.3494	0.1747	0.007	0.005	0.1406

Sample Parameters

Initial Moisture Content, %	546	Final Moisture Content, %	481
Initial Dry Unit Weight, lb/ft ³	10	Final Dry Unit Weight, lb/ft ³	12
Initial Void Ratio	11.73	Final Void Ratio	9.94
Initial Saturation	0.92	Final Saturation	1.01

The following equations were used to calculate the values shown in the table above:

$$Cv = T H^2/t_{90}$$

Where:

T = the time factor for 90% consolidation

H = average of initial and final heights of the sample at each load, divided by 2

 $(S_0 + S_{100})/2$ (for double drainage paths)

 t_{90} = the time at which 90% consolidation has occurred, as derived from square root of time plots for each load.

Notes to the Testing:

1. The sample was extruded from the sample tube and trimmed into a consolidation ring.

2. The sample was peat, which began to swell when inundated with water.

÷

ANALYTICAL RESOURCES

2

Project Number:	Project Number: IA09		Gasworks RI/FS			
Boring / Sample	QWS-GC06-S11	Job Number	COS	S-SPUDR0400		
Sample Initial Height	1.1007	Job Location	e d dou	Seattle		
Initial Dial Indicator	0.4993	DI after Seating lo	bad	0.5		

Consolidation Test Summary

S ₀	S ₉₀	S ₁₀₀	S _f	t ₉₀ (min)	Sample Height	Drainage Path	Cv (ft²/dav)	Load (tsf)	Strain Ratio
0.4999	0.4981	0.4979	0.4974	0.50	1.0981	0.5491	0.511	0.03125	0.0017
0.4968	0.4929	0.4925	0.4925	7.00	1.0932	0.5466	0.036	0.0625	0.0062
0.4916	0.4890	0.4887	0.4875	0.60	1.0882	0.5441	0.418	0.125	0.0107
0.4843	0.4772	0.4764	0.4765	2.50	1.0772	0.5386	0.098	0.25	0.0207
0.4732	0.4600	0.4585	0.4573	2.50	1.0580	0.5290	0.095	0.5 .	0.0382
0.4500	0.4250	0.4222	0.4170	1.50	1.0177	0.5089	0.146	1	0.0748
0.4080	0.3330	0.3247	0.3280	3.00	0.9287	0.4644	0.061	2	0.1556
0.3320	0.2570	0.2487	0.2350	2.00	0.8357	0.4179	0.074	4	0.2401
0.2414	0.2429	0.2431	0.2430	0.40	0.8437	0.4219	0.377	1	0.2329
0.2540	0.2604	0.2611	0.2620	1.50	0.8627	0.4314	0.105	0.25	0.2156
0.2662	0.2735	0.2743	0.2750	2.00	0.8757	0.4379	0.081	0.0625	0.2038

Sample Parameters

Initial Moisture Content, %	94	Final Moisture Content, %	66
Initial Dry Unit Weight, lb/ft ³	44	Final Dry Unit Weight, lb/ft ³	56
Initial Void Ratio	2.95	Final Void Ratio	2.14
Initial Saturation	0.84	Final Saturation	0.84

The following equations were used to calculate the values shown in the table above:

$$Cv = T H^2/t_{90}$$

Where:

- T = the time factor for 90% consolidation
- H = average of initial and final heights of the sample at each load, divided by 2

 $(S_0 + S_{100})/2$ (for double drainage paths)

 t_{90} = the time at which 90% consolidation has occurred, as derived from square root of time plots for each load.

Notes to the Testing:

1. The sample was extruded from the sample tube and trimmed into a consolidation ring. The sample was inundated at the time of the seating load was applied. The test was run according to ASTM D-2435, Method B.

2. The sample was soft gray clay.

7. F.

ż

Project Number:	IA09	Job Name:	G	asworks RI/FS		
Boring / Sample	QWS-GC06-S13	Job Number	CO	COS-SPUDR0400		
Sample Initial Height	1.0955	Job Location		Seattle		
Initial Dial Indicator	0.5085	DI after Seating	load	0.504		

Consolidation Test Summary

S ₀	S ₉₀	S ₁₀₀	S _f	t ₉₀ (min)	Sample Height	Drainage Path	Cv (ft²/day)	Load (tsf)	Strain Ratio
0.5038	0.5018	0.5016	0.5013	1.00	1.0928	0.5464	0.253	0.03125	0.0066
0.5007	0.4954	0.4948	0.4950	4.50	1.0865	0.5433	0.056	0.0625	0.0123
0.4932	0.4812	0.4799	0.4800	8.00	1.0715	0.5358	0.030	0.125	0.0260
0.4765	0.4558	0.4535	0.4550	12.00	1.0465	0.5233	0.019	0.25	0.0488
0.4510	0.4064	0.4014	0.4014	23.00	0.9929	0.4965	0.009	0.5 .	0.0978
0.3955	0.3528	0.3481	0.3481	16.00	0.9396	0.4698	0.012	1	0.1464
0.3579	0.3590	0.3591	0.3495	0.50	0.9410	0.4705	0.375	0.25	0.1451
0.3507	0.3587	0.3596	0.3596	9.00	0.9511	0.4756	0.021	0.0625	0.1359
								•	
				Sample F	Parameters	;			

Initial Moisture Content, %	65	Final Moisture Content, %	52
Initial Dry Unit Weight, lb/ft ³	55	Final Dry Unit Weight, lb/ft ³	64
Initial Void Ratio	2.09	Final Void Ratio	1.69
Initial Saturation	0.84	Final Saturation	0.84

The following equations were used to calculate the values shown in the table above:

Where:

T = the time factor for 90% consolidation

H = average of initial and final heights of the sample at each load, divided by 2

 $(S_0 + S_{100})/2$ (for double drainage paths)

 t_{90} = the time at which 90% consolidation has occurred, as derived from square root of time plots for each load.

Notes to the Testing:

1. The sample was extruded from the sample tube and trimmed into a consolidation ring. The sample was inundated at the time of the seating load was applied. The test was run according to ASTM D-2435, Method B.

2. The sample was soft gray clay.

ž

Project Number:	IA11	Job Name:	Floyd / Snider
Boring / Sample	GWS-GC05-S2	Job Number	COS-SPUDR.0040
Sample Initial Height	0.9984	Job Location	Gas Works
Initial Dial Reading	0.5295	DI After Seating Load	0.4574

Consolidation Test Summary

S ₀	S ₉₀ .	S ₁₀₀	S _f	t ₉₀ (min)	н	Drainage Path	Cv (ft²/day)	Load (tsf)	Strain Ratio	
0.4570	0.5175	0.5242	0.4551	1	0.4551	0.2276	0.439	0.005	0.0039	
0.4547	0.4995	0.5045	0.4501	4	0.4501	0.2251	0.107	0.01	0.0089	
0.4493	0.4753	0.4782	0.4380	8	0.4380	0.2190	0.051	0.02	0.0210	
0.4377	0.3947	0.3899	0.3880	30	0.3880	0.1940	0.011	0.04	0.0711	
0.3885	0.3100	0.3013	0.3013	34	0.3013	0.1507	0.1507 0.006		0.1580	
0.3005	0.2350	0.2277	0.2277	55	0.2277	0.1139	0.002	0.14	0.2317	
0.2283	0.2368	0.2377	0.2410	1.5	0.2410	0.1205	0.082	0.04	0.2183	
0.2410	0.2841	0.2889	0.2889	36	0.2889	0.1445	0.005	0.01	0.1704	
2										

Sample Parameters

.

Initial Moisture Content, %	426	Final Moisture Content, %	345
Initial Dry Unit Weight, lb/ft ³	12	Final Dry Unit Weight, lb/ft ³	16
Initial Void Ratio	9.14	Final Void Ratio	6.78
Initial Saturation	0.92	Final Saturation	1.02

The following equations were used to calculate the values shown in the table above:

$$Cv = T H^2/t_{90}$$

Where:

T = the time factor for 90% consolidation

H = average of initial and final heights of the sample at each load, divided by 2

 $(S_0 + S_{100})/2$ (for double drainage paths)

 t_{90} = the time at which 90% consolidation has occurred, as derived from square root of time plots for each load.

Notes to the Testing:

1. The sample was extruded from the sample tube and trimmed into a consolidation ring.

2. The sample was Peat.

ż

SUB-ATTACHMENT 3D-2.7 Herrera 2009 NLSY Investigation Geotechnical Data

Herrera Environmental Consultants, Inc.

Memorandum

То	Mark Longtine, L.G., Ecology & Environment, Inc.
CC	Alexander Whitman, P.E., Ecology and Environment, Inc.
From	Chris Brummer, Ph.D., P.E., L.E.G. and Rob Zisette, Herrera Environmental Consultants
Date	July 2, 2009
Subject	Northlake Shipyard Geotechnical Sampling and Analysis

Introduction and Purpose

This memorandum presents the results of the geotechnical laboratory testing of lake sediments collected from Lake Union, Seattle, Washington, within the vicinity of the Northlake Shipyard. Collection and analysis of the geotechnical cores were conducted in accordance with the revised final Northlake Shipyard Sandblast Grit Study Sampling and Analysis Plan (SAP; Ecology and Environment, Inc. 2009). The geotechnical samples were collected in coordination with sandblast grit identification and characterization activities. The geotechnical cores were collected on April 20, 2009, from locations that appeared to be representative of conditions across an area potentially subject to grit removal pending determination by Ecology. Laboratory analyses occurred through May 29, 2009. The purpose of the geotechnical sampling and analysis was to provide information required to develop a dredge plan for the sandblast grit area associated with the Northlake Shipyard.

Sample Locations

A total of four sediment cores were collected from the project area and submitted to Analytical Resources, Inc. (ARI) for geotechnical analyses. A fifth geotechnical core was attempted at station NS01-G, but the core was rejected due to insufficient recovery. Three of the cores were split into 24-inch intervals, for a total of seven analytical samples. Core collection information is summarized in the Northlake Shipyard Sandblast Grit Study Report. Geotechnical samples are summarized as follows:

- Sample NS06-G was collected from the sloping shoreline at an approximate depth of 30 feet below the water surface.
- Sample NS05-G was collected at a depth of approximate depth of 39 feet within the transition zone between the toe of the sloping shoreline and the flat lake bottom. The core was split into two samples (intervals 0 24 inches and 24 48 inches).
- Samples NS12-G and NS18-G were collected at depths of 40 feet and 39 feet, respectively, within the flat lake bottom at the distal limits of the project area. Both cores were split into two samples each (intervals 0 24 inches and 24 48 inches).

Sample locations are shown in Figures 3-1 and 3-2 of the Northlake Shipyard Sandblast Grit Study Report.

Sampling Methods

Geotechnical sediment cores were collected using the same methods and equipment as the sandblast grit characterization sediment cores, as described in the Northlake Shipyard Sandblast Grit Study Report. Geotechnical sediment core locations were selected based on field screening results and methods described in the SAP (Ecology and Environment, Inc. 2009).

In most instances, the divers were able to advance the cores beyond 30 inches below the sediment surface, with percent recovery ranging from 38.5 to 94.1 percent. Poor penetration and recovery depths occurred at Station NS01-G, due to large amounts of debris and sandblast grit at the sediment surface. Because of these limitations and poor sediment recovery, the core from Station NS01-G was rejected and station NS06-G was selected as a replacement.

Laboratory Testing

The core samples were submitted to ARI on April 21, 2009 for the following analyses:

- Grain size, sieve, and hydrometer (ASTM D 422)
- Moisture content (ASTM D 2216)
- Porosity calculated from specific gravity (ASTM D 854) and bulk unit weight (ASTM D 2937)
- Atterberg limits (ASTM D 4318)
- Consolidation (ASTM D 2435)
- Vane shear (ASTM D 4648)
- Unconsolidated, undrained triaxial strength tests (ASTM D 2850)

All testing was performed in accordance with the SAP, except the samples were not analyzed for unconsolidated, undrained triaxial strength tests (ASTM D 2850) because the extruded sediments were not able to stand undeformed under their own weight at a height-to-diameter ratio of 2:1. As a result, it was decided, in consultation with the E & E project manager and the Ecology project manager, to substitute the the unconsolidated, undrained triaxial strength test with a tilting table test. The tilting table test was performed in accordance with *Parsons, J. D., Whipple, K. X., and Simoni, A., 2001, Experimental study of the grain-flow, fluid-mud transition in debris flows, Journal of Geology 109(4), pages 427-447.* In general, the tilting table test consisted of extruding a 7-mm to 9-mm core on a roughened piece of plywood, slowly tilting the board, and noting the angle at which the sample failed. The yield strength of the sample was calculated from the product of the sample unit weight, sample height, and sine of the tilting board angle at failure.

Quality Assurance/ Quality Control

Laboratory testing was conducted in accordance with ARI's laboratory QA/QC Plan. Herrera provided quality assurance review of the laboratory results and procedures that generally consisted of cross-checking laboratory results with field descriptions of sample cores, checking laboratory results for internal consistency, and maintaining regular communications with ARI during testing and reporting of results. The laboratory results are considered to be acceptable and generally meet the measurement objectives specified in the SAP (Ecology and Environment 2009).

Analytical Results

The following sections describe the analytical laboratory results of the geotechnical testing. A summary of geotechnical results is presented in Table 1; the complete laboratory report is included in the Northlake Shipyard Sandblast Grit Study Report.

Subsurface conditions

Detailed lithologic information on the materials encountered in the geotechnical cores is inferred based on the descriptions for the grit identification and characterization cores presented in Section 7 of the Northlake Shipyard Sandblast Grit Study Report.

Grain size analysis, sieve, and hydrometer (ASTM D 422)

Most of the samples contained less than 10 percent sand and gravel. Exceptions include sample NS06-G (0-18), which contained approximately 88 percent sand and gravel, and sample NS18-G (24-48), which contained approximately 20 percent sand and gravel.

Atterberg limits (ASTM D 4318)

All samples except NS05-G (0-24) and NS06-G (0-18) were classified as high-plasticity, organic clays (OH) with liquid limits greater than 50. Sample NS05-G (0-24) was classified as a high-plasticity silt (MH) due the high silt content. Sample NS06-G (0-18) was determined to be non-plastic due to high sand and gravel content.

Bulk unit weight (ASTM D 2937)

The bulk unit weight is reported as both wet and dry density. Wet density is calculated from the known volume and weight of an undisturbed sample; dry density is calculated from the same volume as wet density without water. Wet densities ranged from 59.1 to 96.7 lbs/ft³; dry densities ranged from 6.3 to 69.3 lbs/ft³, with the highest value measured in the sandy gravelly sample (NS06-G).

Moisture content (ASTM D 2216)

The moisture content was measured from the center of each of the four cores upon receipt of the samples and again from tilting table samples. The moisture content of samples ranged from 38.1 to 881 percent. The lowest values were measured in cores NS05-G and NS06-G, collected from

the sloping shoreline and transition zone. The highest values were found in cores NS12-G and NS18-G collected from the distal lake bottom. The anomalously low value measured from the center of NS05-G may be attributed to the presence of suspected coke briquettes found in this sample. The higher moisture content measured for this sample during the tilting table analysis may have been due to an absence of suspected coke briquettes in the analyzed portion of the sample, and may be more representative of the sediment moisture content in the sample.

Porosity calculated from specific gravity (ASTM D 854) and bulk unit weight (ASTM D 2937)

The porosity of samples ranged from 0.59 to 0.95. The lowest values were measured in samples NS05-G and NS06-G collected from the sloping shoreline and transition zone, whereas the highest values were found in samples NS12-G and NS18-G collected from the distal lake bottom.

Consolidation (ASTM D 2435)

The rate of consolidation of saturated clay deposits is a function of several factors that include permeability, void ratio, sample thickness, and the ratio of new loading relative to the loading history. A higher consolidation coefficient (c_v) indicates a longer time required for a given percentage of consolidation to occur during loading. Maximum consolidation measured for each sample ranged from 0.05 to 0.7 ft²/day, with the highest consolidation coefficient identified for sample NS06-G.

Vane shear (ASTM D 4648)

Measurements of the unconfined shear strength of samples were conducted in the laboratory on undisturbed cores using a hand-held vane shear apparatus fitted with large vanes (vane ratio of 0.2). Results of the vane shear testing were highly variable and ranged from <20 lbs/ft² (the minimum reading possible) to 400 lbs/ft². The anomalously high value was found in sample NS05-G and may be due to the presence of the suspected coke briquettes or other debris found in this sample.

Tilting table (Parsons et al. 2001)

The yield strength calculated from the tilting table ranged from 5.3 to 14 lbs/ft^2 . Results indicate that all of the core samples are composed of extremely weak sediments.

Dredging Considerations

The lake bottom sediments are very weak, compressible, and exhibit extremely high water contents. The properties of the soft sediments may pose some difficulties with the application of dredging technologies whether mechanical or hydraulic. The geotechnical properties of the soft sediments (low strength and high water content) are not sufficient to maintain a stable cut surface or sidewall during dredging. The soft sediments will be prone to re-suspension and sloughing at the dredge margin. Total source removal by dredging (without an excessive amount of over-excavation) may not be possible due to these limitations. The risks to in-water infrastructure (e.g., shoreline and piers) as a result of dredging is not a significant concern due to the depth of embedment of existing piles below the weak surface sediments and the shallow depth (less than 4 feet) of anticipated dredging.

Station			NS05-G	NS05-G	NS06-G	NS12-G	NS12-G	NS18-G	NS18-G
Depth Interv	al (Inche	s)	0 - 24	24 - 48	0 - 18	0 - 24	24 - 48	0 - 24	24 - 48
Date Sample	d		4/20/2009	4/20/2009	4/20/2009	4/20/2009	4/20/2009	4/20/2009	4/20/2009
Time Sample	d		13:05	13:05	17:30	15:05	15:05	16:20	16:20
Particle/	Gravel	(percent)	0.2	0.3	10.8	0.1	0.1	0.1	9.9
Grain	Sand (p	percent)	3.0	5.8	76.6	2.9	0.7	9.4	10.2
Size	Silt (pe	rcent)	52.4	50.9	7.4	48.9	47.0	43.7	33.4
	Clay (p	ercent)	44.5	42.9	5.2	48.0	52.5	46.9	46.5
Wet Density	(lb/ft ³)		96.7	64.5	95.7	72.9	62.9	84.9	59.1
Moisture Co	ntent	Center of core	126	126	38.1	881	881	843	843
(percent)		Tilting Table sample	120	684	42.6	252	870	163	NA ¹
Dry Density (lb/ft ³)		42.8	28.5	69.3	7.4	6.4	9.0	6.3
Porosity (sta	ndard un	its)	0.73	0.75	0.59	0.95	0.95	0.94	0.95
Atterberg	Plastici	ty Index (percent)	28.1	493	NA ²	345	453	390	519
Limits	Liquid I	Limit (percent)	87.4	655	NA ²	486	625	510	718
	Plastic	Limit (percent)	59.3	162	NA ²	141	172	120	199
	USCS C	lassification	MH	ОН	SM	ОН	ОН	ОН	ОН
Max. Consoli	dation, c	v (ft²/day)	0.21	0.2	0.7	0.08	0.05	0.11	0.18
Shear Streng	Shear Strength, Vane Shear (lb/ft ²)			400	<20	<20	<20	<20	<20
Shear Streng	th, Tiltin	g Table (lb/ft²)	10	8.8	14	5.3	5.3	12	NA ¹

Table 1. Summary of geotechnical laboratory results for sediment cores collected from Lake Union adjacent to the Northlake Shipyard.

¹ A tilting table test was not performed for sample NS18-6 (24-48) because the sample was disturbed during an attempt to setup for a triaxial test.

² Atterberg limits are not available for sample NS06-G (0-18) due to lack of fines.

Table 7-2. Grain Size Field Screening and Laboratory Analytical Results

Image: market in the section of the section																		
Image: state							Phi -1 to 0	Phi 0 to 1	Phi 1 to 2	Phi 2 to 3	Phi 3 to 4	Phi 4 to 5	Phi 5 to 6	Phi 6 to 7	Phi 7 to 8	Phi 8 to 9	Phi 9 to 10	
Image Image <t< td=""><td></td><td></td><td></td><td></td><td>Sum Phi <-1 to</td><td>Phi < -1</td><td>(2000 - 1000</td><td>(1000 - 500</td><td>(500 - 250</td><td>(250 - 125</td><td>(125 - 62.5</td><td>(62.5 - 31</td><td>(31 - 15.6</td><td>(15.6 - 7.8</td><td>(7.8 - 3.9</td><td>(3.9 - 2.0</td><td>(2.0 - 1.0</td><td>Phi >10</td></t<>					Sum Phi <-1 to	Phi < -1	(2000 - 1000	(1000 - 500	(500 - 250	(250 - 125	(125 - 62.5	(62.5 - 31	(31 - 15.6	(15.6 - 7.8	(7.8 - 3.9	(3.9 - 2.0	(2.0 - 1.0	Phi >10
bord bord <t< td=""><td></td><td></td><td>Depth</td><td>Field</td><td>3 (> 125 um)</td><td>(>2000 um)</td><td>um)</td><td>um)</td><td>um)</td><td>um)</td><td>um)</td><td>um)</td><td>um)</td><td>um)</td><td>um)</td><td>um)</td><td>um)</td><td>(<1.0 um)</td></t<>			Depth	Field	3 (> 125 um)	(>2000 um)	um)	um)	um)	um)	um)	um)	um)	um)	um)	um)	um)	(<1.0 um)
Control Interl Not Not <th< th=""><th></th><th></th><th>Interval</th><th>Screening</th><th></th><th></th><th>Very</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>			Interval	Screening			Very											
Core Core <th< th=""><th></th><th></th><th>(feet below</th><th>Weight %</th><th>Fine Sand and</th><th></th><th>Coarse</th><th>Coarse</th><th>Medium</th><th></th><th>Very Fine</th><th></th><th>Medium</th><th>-</th><th>Very Fine</th><th></th><th></th><th></th></th<>			(feet below	Weight %	Fine Sand and		Coarse	Coarse	Medium		Very Fine		Medium	-	Very Fine			
Non Individual 1 1	Core Location ID	Sample ID	top of core)	>125 um DW	Coarser	Gravel	Sand	Sand	Sand	Fine Sand	Sand	Coarse Silt	Silt	Fine Silt	Silt	Clay	Clay	Clay
NB32 NB32 <th< td=""><td>NS01</td><td>NS01-GC-10</td><td>0-1</td><td>10.37</td><td>74.0</td><td>0.3</td><td>10.4</td><td>24</td><td>10</td><td>0.2</td><td>4.1</td><td>5.1</td><td>Э</td><td>3.7</td><td>3.4</td><td>1.7</td><td>0.9</td><td>1.4</td></th<>	NS01	NS01-GC-10	0-1	10.37	74.0	0.3	10.4	24	10	0.2	4.1	5.1	Э	3.7	3.4	1.7	0.9	1.4
NB2 NB2 <td></td> <td>NS02-GC-10</td> <td>0 - 1</td> <td>20.05</td> <td>12.6</td> <td>0.3</td> <td>22</td> <td>35</td> <td>35</td> <td>32</td> <td>4 1</td> <td>8</td> <td>19.8</td> <td>15.7</td> <td>13.6</td> <td>8.1</td> <td>6.8</td> <td>11.3</td>		NS02-GC-10	0 - 1	20.05	12.6	0.3	22	35	35	32	4 1	8	19.8	15.7	13.6	8.1	6.8	11.3
MS2 MS2 Col Col <td></td> <td>NS02-GC-20</td> <td>1 - 2</td> <td>80.75</td> <td>80.1</td> <td>4.7</td> <td>6.4</td> <td>12</td> <td>28.9</td> <td>28.1</td> <td>10.8</td> <td>1.5</td> <td>1.5</td> <td>0.9</td> <td>1.2</td> <td>1.1</td> <td>0.9</td> <td>1.8</td>		NS02-GC-20	1 - 2	80.75	80.1	4.7	6.4	12	28.9	28.1	10.8	1.5	1.5	0.9	1.2	1.1	0.9	1.8
NBSC C40 0.1 0.	NS02	NS02-GC-30	2 - 3	43.88														
NBSS-C20 0.1 25 /1 207 0.5 3.2 0.4 5.5 4 14.4 17.1 16 0.5 6.4 92 7.4 <th7.4< th=""> <th7.6< t<="" td=""><td></td><td>NS02-GC-40</td><td>3 - 4</td><td>60.72</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th7.6<></th7.4<>		NS02-GC-40	3 - 4	60.72														
NBM NBSS-COURT 1.2 2.45 1.2 <th1.2< th=""> 1.2 1.2 <th1< td=""><td></td><td>NS03-GC-10</td><td>0 - 1</td><td>25.17</td><td>20.7</td><td>0.5</td><td>3.2</td><td>5.4</td><td>5.5</td><td>6.1</td><td>5</td><td>4</td><td>14.4</td><td>17.1</td><td>14</td><td>9.3</td><td>6.4</td><td>9.2</td></th1<></th1.2<>		NS03-GC-10	0 - 1	25.17	20.7	0.5	3.2	5.4	5.5	6.1	5	4	14.4	17.1	14	9.3	6.4	9.2
M803-62.00 2-3 1.55 <th< td=""><td></td><td>NS03-GC-20</td><td>1 - 2</td><td>2.45</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		NS03-GC-20	1 - 2	2.45														
H803-GC 40 3-4 2-45	NS03	NS03-GC-30	2 - 3	1.55														
NS04 6548 4.4.5 7.85 0		NS03-GC-40	3 - 4	2.45														
NS04 HS34/G-10 0 + 1 S13 69 6.8 123 20.1 63 4.5 2.5 4.6 133 4.2 31 2.7 4.3 NS05 S02 0.1 2 3.4 4.4 0.4		NS03-GC-45	4 - 4.5	7.85														
None None No No <th< td=""><td>NS04</td><td>NS04-GC-10</td><td>0-1</td><td>83.81</td><td>69</td><td>6.8</td><td>12.3</td><td>20.3</td><td>20.1</td><td>9.5</td><td>4.5</td><td>2.9</td><td>5.4</td><td>3.9</td><td>4.2</td><td>3.1</td><td>2.7</td><td>4.3</td></th<>	NS04	NS04-GC-10	0-1	83.81	69	6.8	12.3	20.3	20.1	9.5	4.5	2.9	5.4	3.9	4.2	3.1	2.7	4.3
NSS NSS <td></td> <td>NS05-GC-10</td> <td>0-1</td> <td>29.48</td> <td>4.4</td> <td>0.4</td> <td>0.0</td> <td>1.2</td> <td>1.1</td> <td>0.9</td> <td>1.5</td> <td>4.0</td> <td>10.7</td> <td>19.7</td> <td>17.1</td> <td>11.0</td> <td>9.4</td> <td>14.0</td>		NS05-GC-10	0-1	29.48	4.4	0.4	0.0	1.2	1.1	0.9	1.5	4.0	10.7	19.7	17.1	11.0	9.4	14.0
N805 N8056C40 0.4 14.85 0		NS05-GC-20	1-2	30.32														
N805 62-00 3-4 14.55 NA	NS05	NS05-GC-30	2 - 3	13.03														
Non-Sec 0-90 4-5 NA Non-Sec 0-10 No		NS05-GC-40	3 - 4	14.55														
NS8 NS866C30 0 1 68.7 7.2 11.1 21.1 22.3 8.8 5.4 2.1 6.8 4.3 2.7 1.8 2.1 NS0 NS0-62.5 0.1 2.38 8.2 0.8 1.9 1.2 1.3 2.0 6.3 118 138 10.6 16.8 4.2 0.2 1.2 NS0 0.3 1.2 2.3 0.36 0.5 0.3 1 0.5 7.3 16.8 17.2 25.1 17.5 17.5 NS0 0.3 0.1 1.1 1.2 0.5 0.3 1.5 4.8 13.2 11.2 11.5 NS0 0.3 1.2 0.5 0.3 1.5 4.8 13.2 11.2 11.6 NS0 0.4 0.4 0.4 0.4 0.4 11.2 11.6 11.6 11.7 11.6 11.8 11.6 11.6 11.6 11.7 11.6 11.6 11.		NS05-GC-50	4 - 5	NA														
N800 N800 1 2 61 1<	NS06	NS06-GC-10	0 - 1	58.67	65.2	3.5	7.2	11.1	21.1	22.3	8.8	5.4	2.1	6.9	4.9	2.7	1.8	2.1
N807 N807-6C2 0 0 1.2 1.3 2.8 6.3 11.8 13.8 10.6 10.2 3.7 8.2 15.2 17.2 2.1 17.2 2.1 17.2 2.1 17.2 2.1 17.2 2.1 17.2 17.5 <td>11000</td> <td>NS06-GC-20</td> <td>1 - 2</td> <td>61.74</td> <td></td>	11000	NS06-GC-20	1 - 2	61.74														
NS07 NS07-620 1-2 220 -		NS07-GC-10	0 - 1	2.38	8.2	0.8	1.9	1.2	1.3	2.9	6.3	11.8	13.8	10.6	16.2	9.7	8.2	15.2
N807450-00 2-3 0.38 4.22 0.3 <t< td=""><td>NS07</td><td>NS07-GC-20</td><td>1-2</td><td>2.20</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10.0</td><td>17.0</td><td></td><td>10.5</td><td></td></t<>	NS07	NS07-GC-20	1-2	2.20										10.0	17.0		10.5	
NS10 NS10 O </td <td></td> <td>NS07-GC-30</td> <td>2-3</td> <td>0.36</td> <td>4.2</td> <td>0.3</td> <td>2.8</td> <td>0.5</td> <td>0.3</td> <td>0.3</td> <td>1</td> <td>0.5</td> <td>7.3</td> <td>16.8</td> <td>17.2</td> <td>25.1</td> <td>12.5</td> <td>15.3</td>		NS07-GC-30	2-3	0.36	4.2	0.3	2.8	0.5	0.3	0.3	1	0.5	7.3	16.8	17.2	25.1	12.5	15.3
NS08 Oracle 1.2 Oracle 1.2 <td></td> <td>NS07-GC-40</td> <td>3 - 4</td> <td>1.61</td> <td>2.1</td> <td>0.1</td> <td>11</td> <td>1.2</td> <td>0.5</td> <td>0.3</td> <td>1.5</td> <td>1.9</td> <td>12.2</td> <td>16.9</td> <td>19.6</td> <td>12.2</td> <td>11.2</td> <td>17.6</td>		NS07-GC-40	3 - 4	1.61	2.1	0.1	11	1.2	0.5	0.3	1.5	1.9	12.2	16.9	19.6	12.2	11.2	17.6
NS08 NS06-C-40 3-4 1.5 2.5 <th2.5< th=""> 2.5 2.5 <th2.< td=""><td></td><td>NS08-GC-20</td><td>1-2</td><td>5.58</td><td>0.1</td><td>0.1</td><td>1.1</td><td>1.2</td><td>0.5</td><td>0.0</td><td>1.5</td><td>4.0</td><td>10.2</td><td>10.0</td><td>10.0</td><td>10.2</td><td>11.2</td><td>17.0</td></th2.<></th2.5<>		NS08-GC-20	1-2	5.58	0.1	0.1	1.1	1.2	0.5	0.0	1.5	4.0	10.2	10.0	10.0	10.2	11.2	17.0
NS08_GC00 3 -2 Cols Cols <thcols< th=""></thcols<>	NS08	NS08-GC-30	2-3	2 91														
NS09-GC-00 4 + 5 0.00 NA NO	10000	NS08-GC-40	3-4	1.05														
NS09 NS09-GC:0 0 -1 3.41 2.1 0.1 0.6 0.4 0.5 0.7 3.5 8.7 19.4 21 14.5 11.9 18.3 NS09-GC:20 1 - 2 0.66 - <td></td> <td>NS08-GC-50</td> <td>4 - 5</td> <td>0.00</td> <td></td>		NS08-GC-50	4 - 5	0.00														
NS09 NS09 <th< td=""><td></td><td>NS09-GC-02</td><td>0 - 0.2</td><td>NA</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		NS09-GC-02	0 - 0.2	NA														
NG03 NG09-GC-20 1 - 2 0.66 </td <td>NSOO</td> <td>NS09-GC-10</td> <td>0 - 1</td> <td>3.41</td> <td>2.1</td> <td>0.1</td> <td>0.6</td> <td>0.6</td> <td>0.4</td> <td>0.5</td> <td>0.7</td> <td>3.5</td> <td>8.7</td> <td>19.4</td> <td>21</td> <td>14.5</td> <td>11.9</td> <td>18.3</td>	NSOO	NS09-GC-10	0 - 1	3.41	2.1	0.1	0.6	0.6	0.4	0.5	0.7	3.5	8.7	19.4	21	14.5	11.9	18.3
NS09-GC.30 2 - 3 2.68	11003	NS09-GC-20	1 - 2	0.66														
NS10-62-10 0-1 1.82 1.4 0.2 <th0.2< th=""> 0.2 <th0.2< th=""> <th0.< td=""><td></td><td>NS09-GC-30</td><td>2 - 3</td><td>2.68</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10.0</td><td>10 -</td><td></td></th0.<></th0.2<></th0.2<>		NS09-GC-30	2 - 3	2.68												10.0	10 -	
NS10 NS10-6C-30 2:3 0.35 0		NS10-GC-10	0-1	1.82	1.4	0.2	0.2	0.4	0.5	0.2	0.2	3	11.2	17	21.6	13.9	12.7	19.1
NSTO Distribution	NS10	NS10-GC-20	2-3	0.35														
NS10-GC-00 4-5 0.09	No lo	NS10-GC-40	3 - 4	1.36														
NS11 NS11-GC-10 0 -1 4.32 6 0.1 2.4 2 1 0.7 0.8 3.3 10.1 18.9 14.5 15.7 11.8 18.8 NS11 0.23 0.23 0.58 0.1 0.4 0.8 3.3 10.1 18.9 14.5 15.7 11.8 18.8 NS12 0.23 0.58 0.1 0.4 0.1 0.1 0.8 0.1		NS10-GC-50	4 - 5	0.09														
NS11 NS11-GC-20 1-2 0.23 0.58 0.55 0.57 0.56 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.55 0.57 0.58		NS11-GC-10	0 - 1	4.32	6	0.1	2.4	2	1	0.7	0.8	3.3	10.1	18.9	14.5	15.7	11.8	18.8
NS11 NS12 O.23 O.26 O.26 <tho.27< th=""> O.26 O.26 <tho< td=""><td>NS11</td><td>NS11-GC-20</td><td>1-2</td><td>0.23</td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tho<></tho.27<>	NS11	NS11-GC-20	1-2	0.23														
NS12 NS13 NS13 <th< td=""><td></td><td>NS11-GC-30 NS12-GC-10</td><td>2-3</td><td>0.58</td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		NS11-GC-30 NS12-GC-10	2-3	0.58			<u> </u>											
NS12 NS12-GC-30 2 · 3 1.81 Image: constraint of the second		NS12-GC-20	1-2	1.01														
NS12-GC-40 3 - 4 1.66 Image: constraint of the second	NS12	NS12-GC-30	2 - 3	1.81														
NS12-GC-50 4 - 5 7.65 Image: constraint of the state of the s		NS12-GC-40	3 - 4	1.66														
NS13 Operating and the state of the state operating and the state operating andifference operating andifference operating and the stat		NS12-GC-50	4 - 5	7.65														
NS13 NS13-GC-20 1-2 1.73 5.0 0.1 1.3 1.3 1.3 1.9 6.0 13.7 13.1 9.3 6.0 9.3 NS13 GC-30 2-3 2.29 <td></td> <td>NS13-GC-10</td> <td>0-1</td> <td>5.37</td> <td>4.6</td> <td>0.1</td> <td>0.2</td> <td>0.3</td> <td>0.5</td> <td>3.7</td> <td>9.6</td> <td>6.4</td> <td>14</td> <td>24.7</td> <td>17.3</td> <td>7</td> <td>6.5</td> <td>10</td>		NS13-GC-10	0-1	5.37	4.6	0.1	0.2	0.3	0.5	3.7	9.6	6.4	14	24.7	17.3	7	6.5	10
Instruction	NS13	NS13-GC-20 NS13-GC-30	2-3	1.13 2.20	5.8	0.1	1.3	1.3	1.3	1.9	8.8	13.7	19.8	13.7	13.1	9.3	6.6	9.3
NS14 Occupy Ocupy Ocupy		NS13-GC-40	3 - 4	6.71			<u> </u>											
NS14 NS14-GC-20 1 - 2 1.87 Image: constraint of the state		NS14-GC-10	0 - 1	2.82	6.5	0.1	2.8	1.6	0.8	1.2	1.7	3.5	11	16.2	19.5	14.8	10.1	16.6
NS14-GC-30 2 - 3 2.95 Image: constraint of the state of the s	NS1/	NS14-GC-20	1 - 2	1.87														
NS14-GC-40 3 - 4 2.20 Image: Constraint of the state of the s	11014	NS14-GC-30	2 - 3	2.95														
NS15 OC-10 OC-10 <tho< td=""><td></td><td>NS14-GC-40</td><td>3 - 4</td><td>2.20</td><td></td><td> </td><td>ļ</td><td> </td><td> </td><td> </td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td></tho<>		NS14-GC-40	3 - 4	2.20			ļ											
NS15 NS15-GC-30 2 - 3 2.91 Image: Second sec		NS15-GC-10	U-1 1-2	0.43														
NS15-GC-40 3 - 4 0.58	NS15	NS15-GC-30	2 - 3	2.33			<u> </u>											
		NS15-GC-40	3 - 4	0.58														

Table 7-2. Grain Size Field Screening and Laboratory Analytical Results

				PSEP Grain Size (weight % DW)													
						Phi -1 to 0	Phi 0 to 1	Phi 1 to 2	Phi 2 to 3	Phi 3 to 4	Phi 4 to 5	Phi 5 to 6	Phi 6 to 7	Phi 7 to 8	Phi 8 to 9	Phi 9 to 10	1
				Sum Phi <-1 to	Phi < -1	(2000 - 1000	(1000 - 500	(500 - 250	(250 - 125	(125 - 62.5	(62.5 - 31	(31 - 15.6	(15.6 - 7.8	(7.8 - 3.9	(3.9 - 2.0	(2.0 - 1.0	Phi >10
		Depth	Field	3 (> 125 um)	(>2000 um)	um)	· um)	um)	um)	um)	`um)	um)	um)	um)	um)	um)	(<1.0 um)
		Interval	Screening			Very											[
		(feet below	Weight %	Fine Sand and		Coarse	Coarse	Medium		Very Fine		Medium		Very Fine			1
Core Location ID	Sample ID	top of core)	>125 um DW	Coarser	Gravel	Sand	Sand	Sand	Fine Sand	Sand	Coarse Silt	Silt	Fine Silt	Silt	Clay	Clay	Clay
NS16	NS16-GC-10	0 - 1	1.84	3.7	0.1	0.7	0.3	0.7	2	2.5	3.6	10.7	16.1	21.3	13.8	10	18.4
	NS16-GC-20	1 - 2	1.54														
	NS16-GC-30	2 - 3	0.67														
	NS16-GC-40	3 - 4	2.95														
	NS16-GC-50	4 - 5	2.00														
NS17	NS17-GC-10	0 - 1	2.49	2.1	0.1	0.1	0.1	0.6	1.2	2	24	8.9	11.7	13.7	10.8	8	18.9
	NS17-GC-20	1 - 2	1.26														
	NS17-GC-30	2 - 3	3.27														
	NS17-GC-40	3 - 4	2.04														
NS18	NS18-GC-10	0 - 1	4.10														
	NS18-GC-20	1-2	0.43														
	NS18-GC-30	2-3	2.91														l
	NS18-GC-40	3-4	5.66	2.4	0.1	0.1	0.0	0.7	2.4	E 4	7	10.0	10.1	10.7	11 7	0	16.6
NS19	NS19-GC-10	0-1	INA NA	3.4	0.1	0.1	0.2	0.7	2.4	5.1	1	12.2	10.1	10.7	11.7	9	10.0
	NS19-GC-20	1-2	INA NA	4.0	0.5	۷	1.3	0.4	0.5	2.1	0.0	10.2	15.5	10	12.9	10.4	19
NS20	NS20 GC-10	2-3	20.81	20.8	0.3	0.5	1 1	5.4	12.6	10.1	6.6	0.6	12.2	12.0	0.5	Б	11.1
	NS20-GC-20	1-2	20.01	20.0	0.3	0.5	1.1	5.4	13.0	10.1	0.0	9.0	13.2	13.9	5.5	5	
	NS20-CC-20	2.2	50.77 NA														i
NS21	NS21-GC-10	0-1	30.44														
NS23	NS23-GC-10	0-1	0.42														
	NS23-GC-20	1-2	2.88														
	NS23-GC-30	2 - 3	1.55														
NS24	NS24-GC-10	0 - 1	2.42														
	NS24-GC-20	1 - 2	5.76														
	NS24-GC-30	2 - 3	10.78														(
NS26	NS26-GC-10	0 - 1	3.73														(
	NS26-GC-20	1 - 2	0.00														
	NS26-GC-30	2 - 3	6.66														
NS27	NS27-GC-10	0 - 1	9.56														
	NS27-GC-20	1 - 2	NA														
	NS27-GC-30	2 - 3	32.08														
NS28	NS28-GC-02	0 - 0.2	NA														l
	NS28-GC-10	0 - 1	6.85														
	NS28-GC-20	1-2	4.72														
	NS28-GC-30	2 - 3	0.65														
NS29	NS29-GC-10	0-1	2.93														
	NS29-GC-20	1-2	1.30														
NS33	NS29-GC-30	2-3	5.40														
	NS33-GC-20	0-1 1-2	3.50					ł									ł
	NS33-GC-30	2-3	0.00														l
NS34	NS34-GC-02	0-02	0.90 NA														1
	NS34-GC-10	0 - 1	2.38														1
	NS34-GC-20	1-2	0.54	1				ł									i
	NS34-GC-30	2 - 3	3.80														1
NS35	NS35-GC-10	0 - 1	96.75								1		1				

Key: DW = Dry weight

ft = Feet

ID = Identification

NA = Not analyzed PSEP = Puget Sound Estuary Program

um = Micrometer