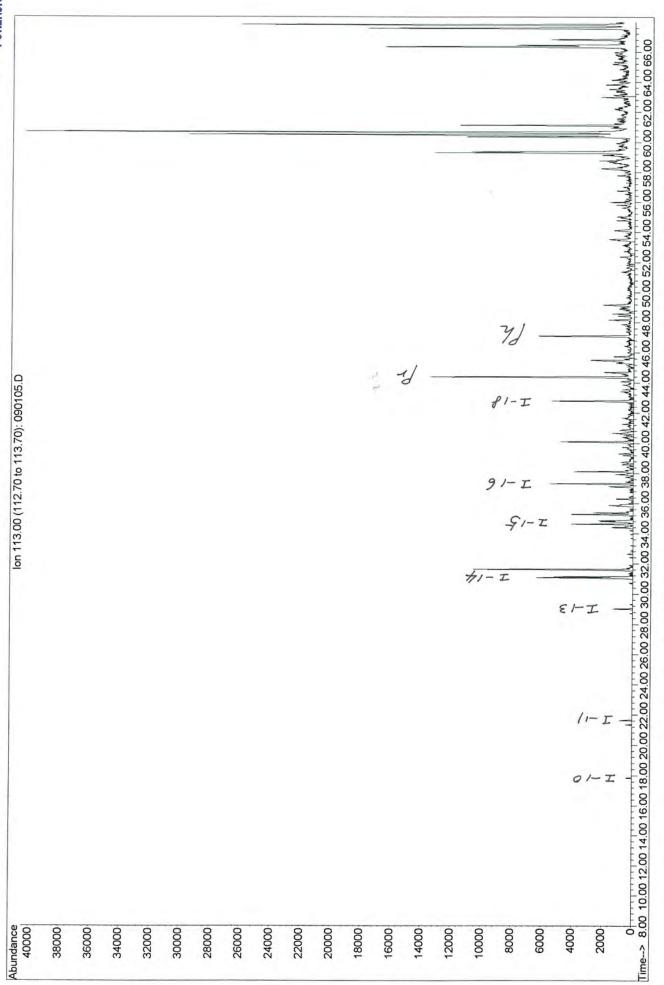

soil extract (1:7)
SS5318, Vf=3ml 34011008050 (36920-1) MGP, Floyd Snider, QB

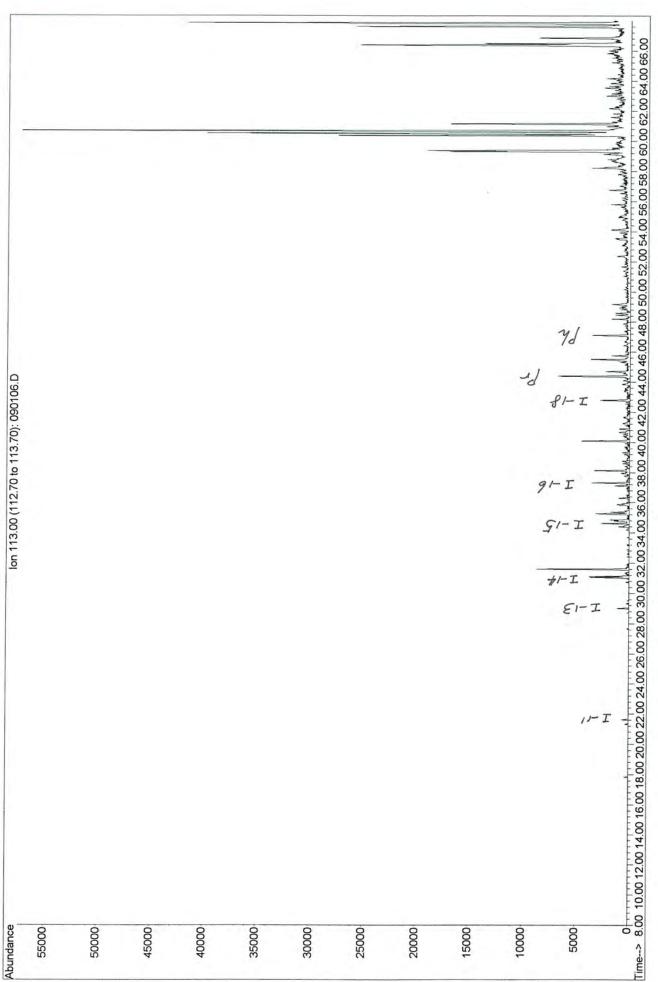


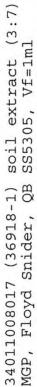


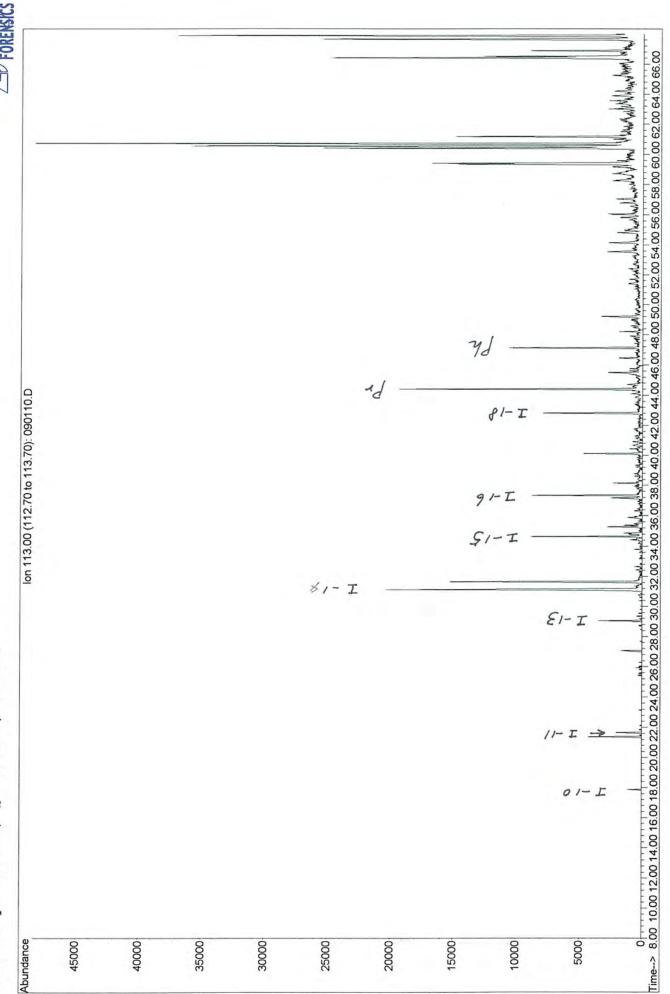






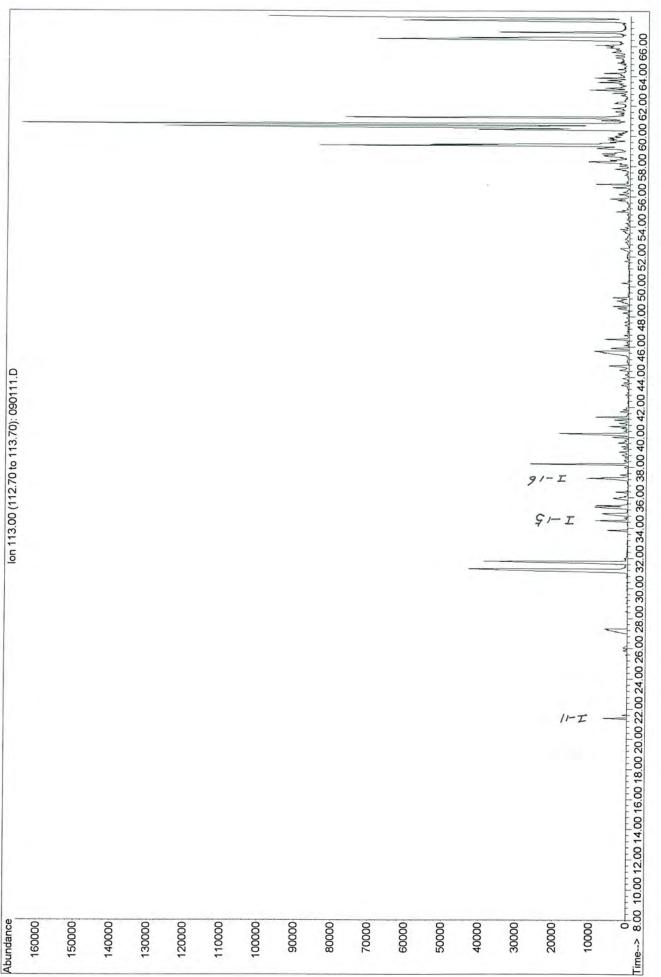


34011008001 (36917-1) soil extract (1:2) MGP, Floyd Snider, QB SS5305, Vf=1ml



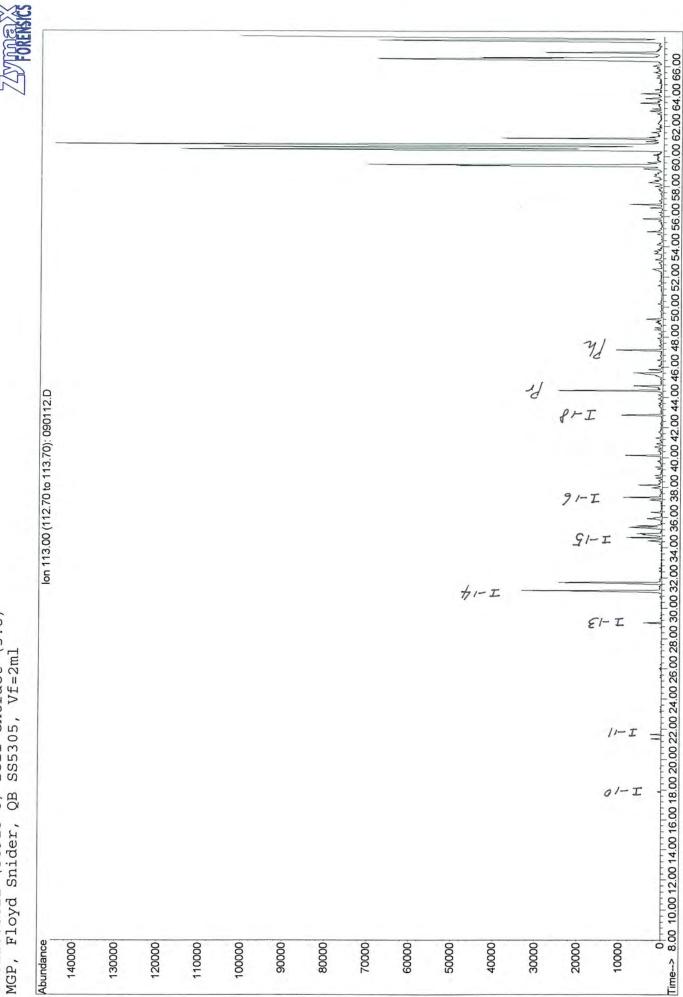




34011008011 (36917-11) soil extract (1:2) MGP, Floyd Snider, QB SS5305, Vf=1ml

| XX   |   |  |
|------|---|--|
| VPMB | - |  |
| 77   |   |  |
|      |   |  |
|      |   |  |
|      |   |  |
|      |   |  |
|      |   |  |






34011008020 (36918-4) soil extract (1:1.2) MGP, Floyd Snider, QB SS5305, Vf=2ml





soil extract (3:8) SS5305, Vf=2ml 34011008022 (36918-6) MGP, Floyd Snider, QB



34011008028 (36918-12) soil extract (1:1))

| Abundance<br>150000 |
|---------------------|
| 140000              |
| 130000              |
| 120000              |
| 110000              |
| 100000              |
| 00006               |
| 80000               |
| 70000               |
| 60000               |
| 50000               |
| 40000               |
| COOOCE              |

0 Time--> 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 48.00 48.00 50.00 52.00 54.00 56.00 62.00 62.00 62.00 62.00 66.00

yd

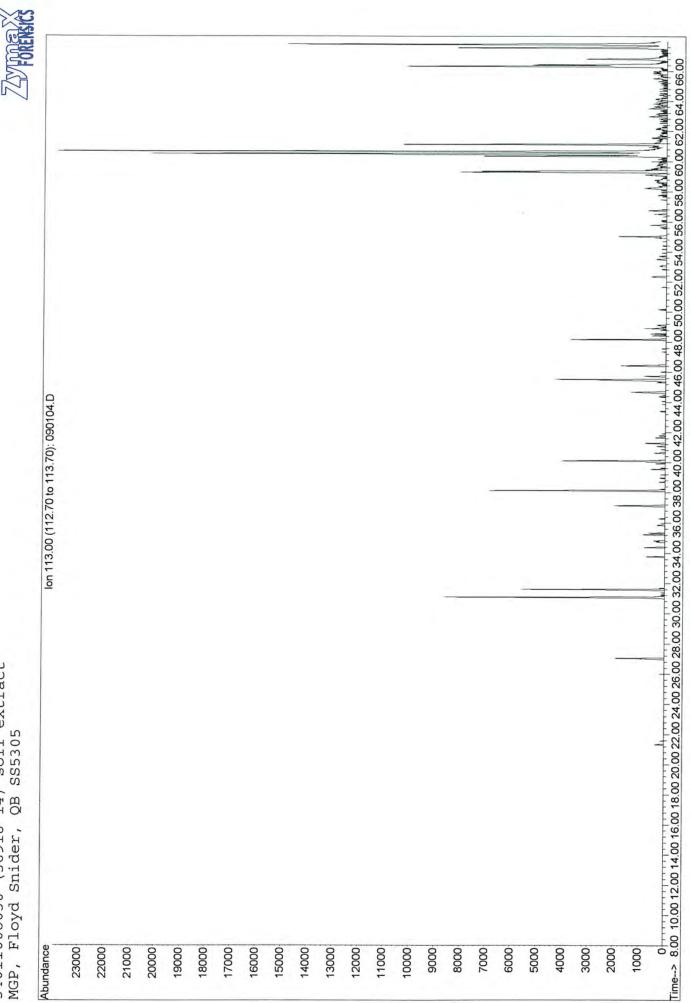
JI-I

9-1

SI-I

サーエ

11-I


20000-

10000

-



34011008030 (36918-14) soil extract MGP, Floyd Snider, QB SS5305



34011008032 (36918-16) soil ext (3.5:6.5) MGP, Floyd Snider, QB SS5305, Vf=4ml

|                     |                                         | LONENSICS |
|---------------------|-----------------------------------------|-----------|
| tbundance<br>160000 | lon 113.00 (112.70 to 113.70): 090114.D | _         |
| 150000              |                                         |           |
| 140000              |                                         |           |
| 130000              |                                         |           |
| 120000-             |                                         |           |
| 110000              |                                         |           |
| 100000              |                                         |           |
| 00006               |                                         |           |
| 80000               |                                         |           |
| 70000               |                                         |           |
| 60000               |                                         |           |
| 50000               |                                         |           |
| 40000               |                                         |           |
| 30000               |                                         |           |
| 20000-              |                                         |           |
| 10000               |                                         |           |

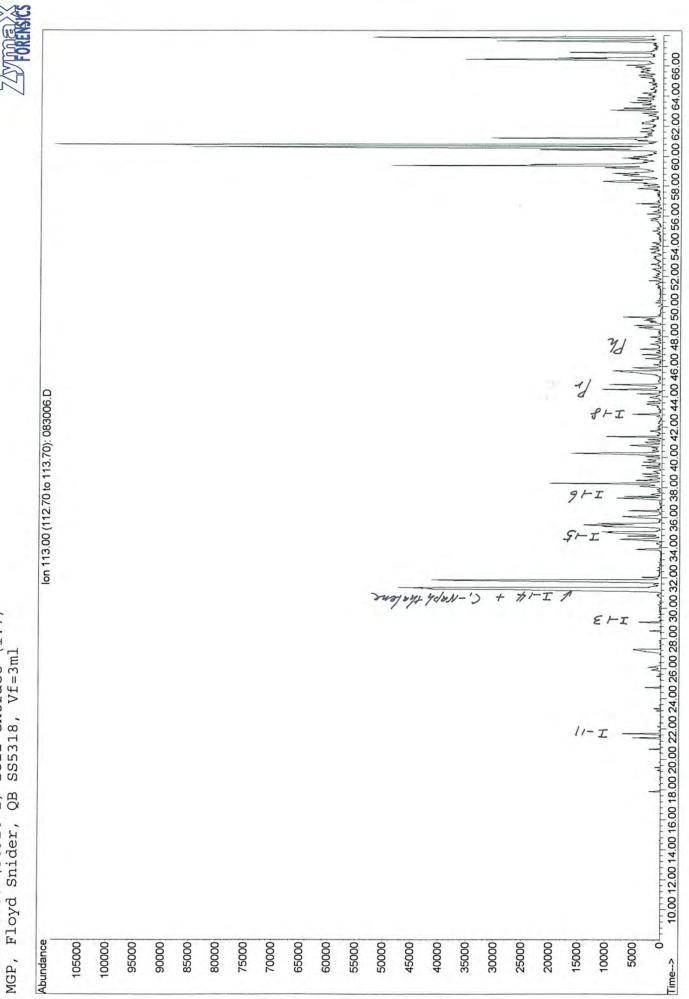
| (4:6)           | Vf=1ml      |
|-----------------|-------------|
| ext             |             |
| soil            | SS5305      |
| -19)            | QB          |
| 36918-          | er,         |
| ~               | Snide       |
| 34011008035 (36 | Floyd Snide |

VFORENSICS

| lon 113.00 (112.70 to 113.70); 090115,D |
|-----------------------------------------|
|                                         |

34011008040 (36919-4) soil extract (1:2) MGP, Floyd Snider, QB SS5318

| Vermon | S/Undel/ | - FORENSIC |  |
|--------|----------|------------|--|
| L      | 11       |            |  |
|        |          |            |  |
|        |          |            |  |


| 13000<br>13000<br>11000<br>10000<br>9000<br>9000<br>9000<br>9 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               | 140000- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | 130000  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | 120000- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | 110000- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | 100000  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | 00006   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | 80000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | 70000-  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | 60000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | 50000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | 40000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | 30000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | 20000-  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | 10000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               |         | When the standard with the sta |

34011008043 (36919-7) soil extract (1:2) MGP, Floyd Snider, QB SS5318, Vf=3ml

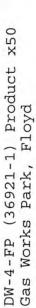
| C | X    | Sics |
|---|------|------|
|   | (R)  | E    |
|   | ATTN | B    |
|   | X    | J    |
|   |      | 7    |

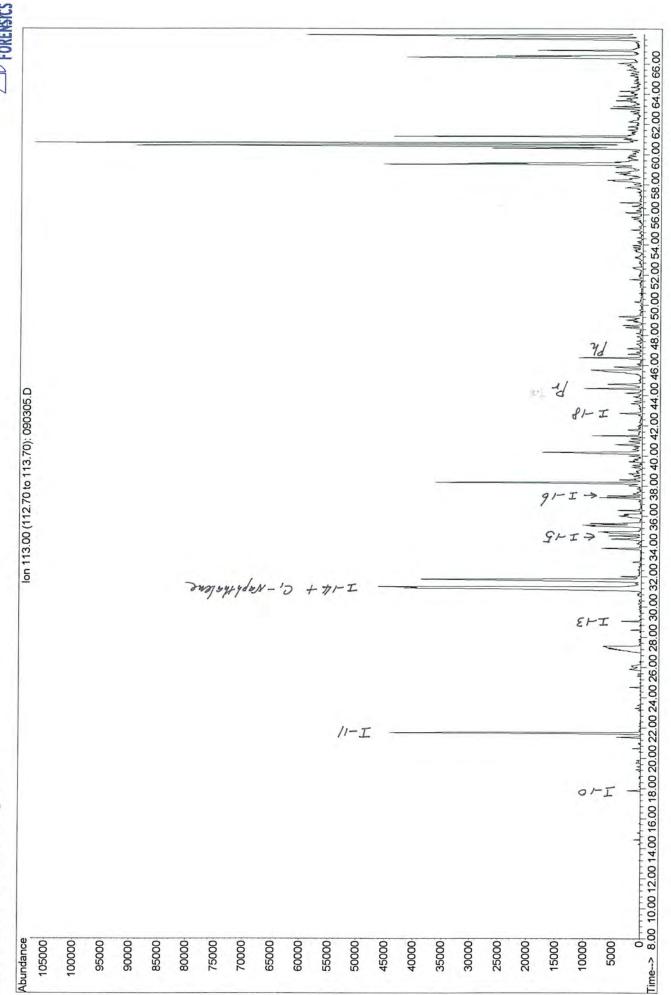
| Abundance | Ion 113 00 (112 70 to 113 70): 083008 D |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 130000    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 120000    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 110000    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100000-   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00006     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80000     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20000     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60000     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50000     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40000     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30000     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20000     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10000-    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |                                         | When the start when a start when a start when a start when the sta |

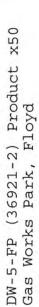
soil extract (1:7)
SS5318, Vf=3ml 34011008050 (36920-1) MGP, Floyd Snider, QB

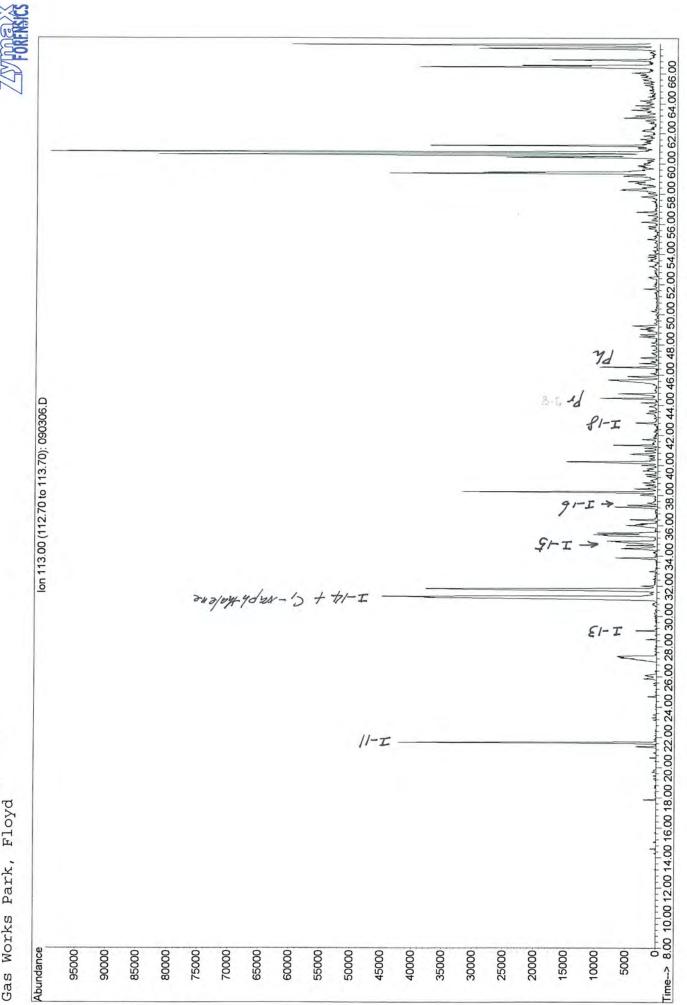


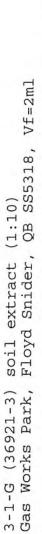
34011008054 (36920-5) soil extract MGP, Floyd Snider, QB SS5318

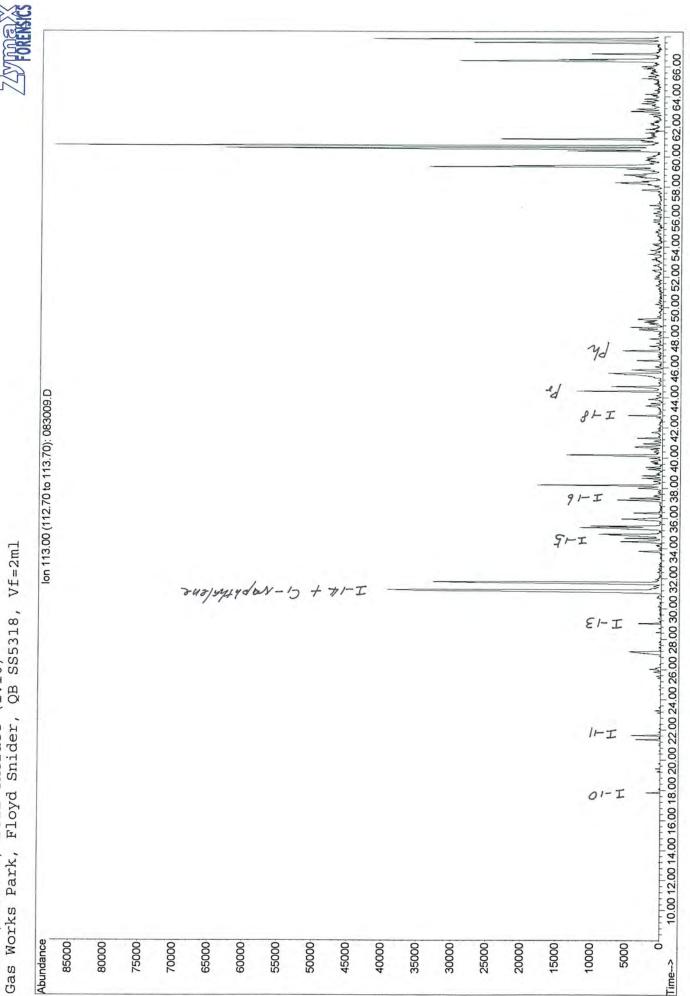

| 0 | X | SO   |  |
|---|---|------|--|
|   | R | DREN |  |
|   | M | 2    |  |
|   | 7 | 1    |  |
|   |   |      |  |


| 10:00<br>10:00<br>8:00<br>8:00<br>10:00<br>10:00<br>8:00<br>8:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00<br>10:00                                                                                                     | 11000  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10500- |  |
| 900         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         800         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10000  |  |
| 9000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000         8000 <t< td=""><td>9500</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9500   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0006   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8500   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8000   |  |
| 7000<br>5500<br>5500<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5 | 7500-  |  |
| 500<br>5500<br>5500<br>5500<br>5500<br>5500<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5  | 2000   |  |
| 600<br>5500<br>5000<br>2000<br>3350<br>3350<br>3350<br>3300<br>330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6500   |  |
| 500<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5  | 6000   |  |
| 500 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5500   |  |
| 450<br>4000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3  | 5000   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4500   |  |
| 3500<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>300<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3  | 4000   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3500   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3000   |  |
| 2000<br>15000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2500   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000   |  |
| 1000<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1500   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500    |  |


34011008056 (36920-7) soil extract MGP, Floyd Snider, QB SS5318





| 600   |  |
|-------|--|
| 60 69 |  |







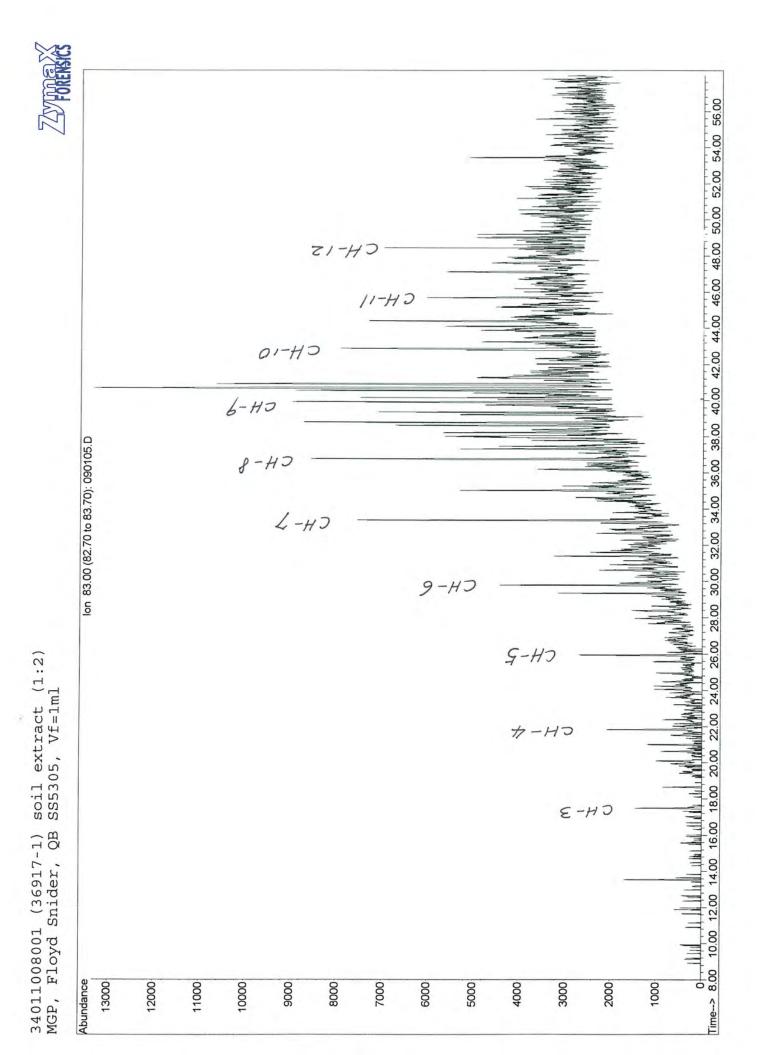


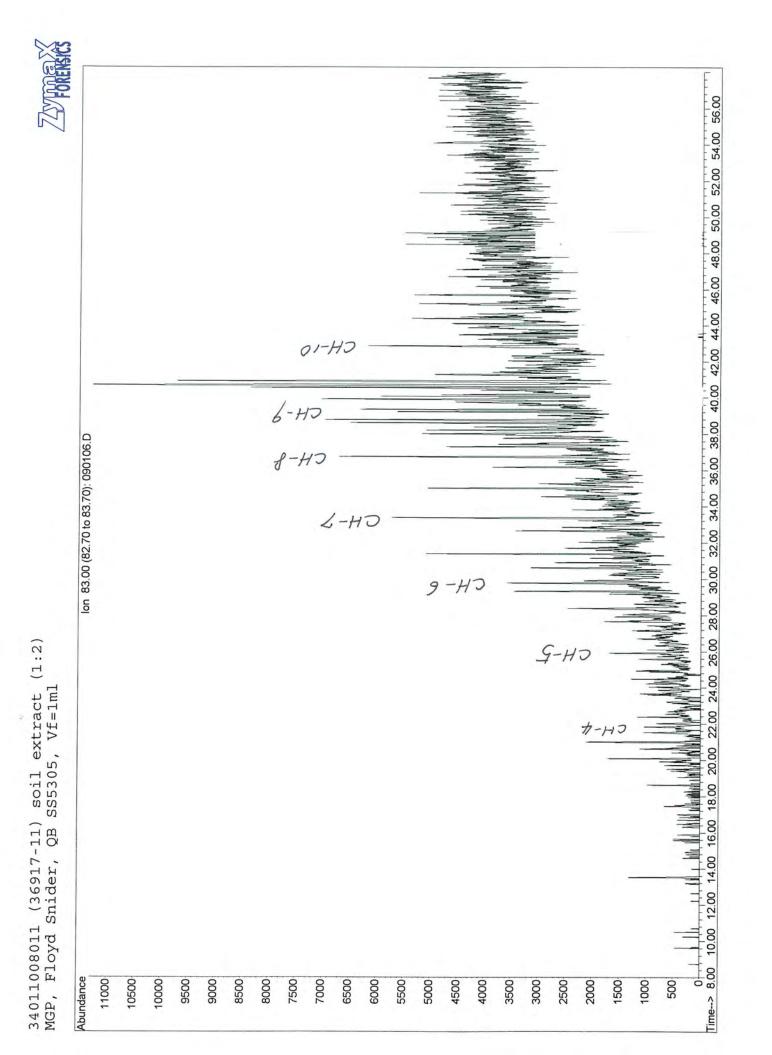


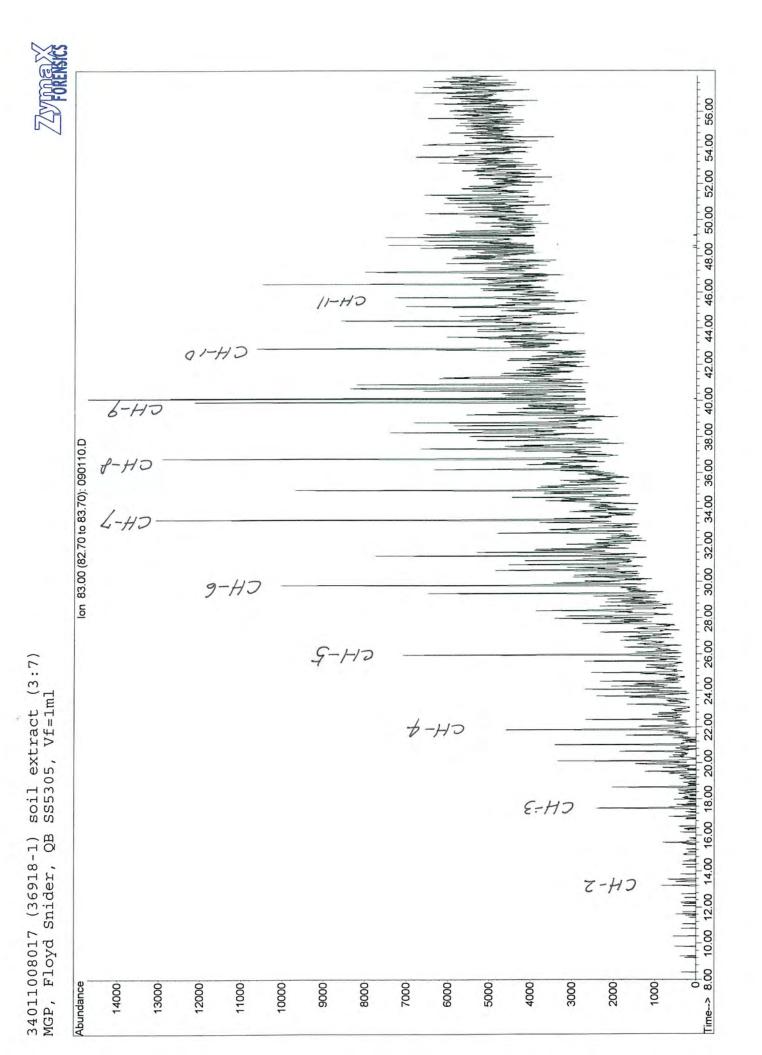



1-1G (36922-3) soil extract (1:12) MGP, Floyd Snider, QB SS5318, Vf=3ml

ZZVFRIRKS


| Abundance | lon 113.00 (112.70 to 113.70): 083010.D |
|-----------|-----------------------------------------|
| 130000    |                                         |
| 120000    |                                         |
| 110000-   |                                         |
| 100000    |                                         |
| 00006     |                                         |
| 80000     |                                         |
| 70000     |                                         |
| 60000     |                                         |
| 50000     |                                         |
| 40000     |                                         |
| 30000-    | E.                                      |
| 20000     |                                         |
| 10000-    |                                         |
|           |                                         |

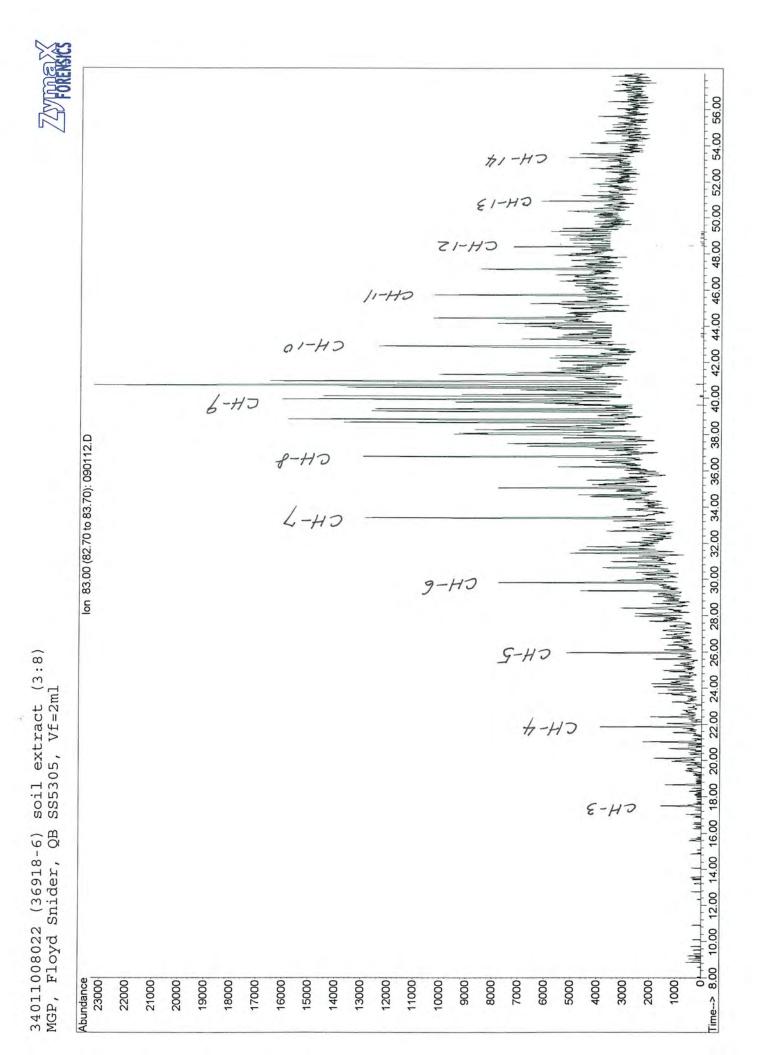


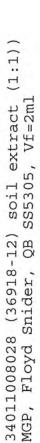


## Table

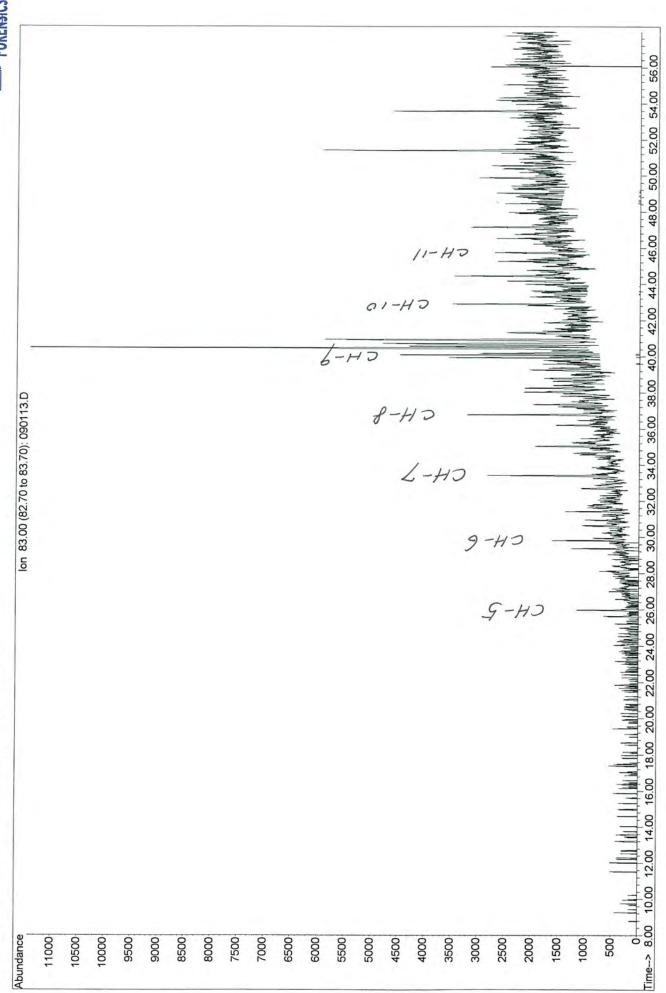
## Key for Alkylcyclohexanes at m/z 83

| - | Symbol | Detail                |
|---|--------|-----------------------|
|   | CH-1:  | Methylcyclohexane     |
|   | CH-2:  | Ethylcyclohexane      |
|   | CH-3:  | Propylcylohexane      |
|   | CH-4:  | Butylcyclohexane      |
|   | CH-5:  | Pentylcyclohexane     |
|   | CH-6:  | Hexylcyclohexane      |
|   | CH-7:  | Heptylcyclohexane     |
|   | CH-8:  | Octylcyclohexane      |
|   | CH-9:  | Nonylcyclohexane      |
|   | CH-10: | Decylcyclohexane      |
|   | CH-11: | Undecylcyclohexane    |
| à | CH-12: | Dodecylcyclohexane    |
|   | CH-13: | Tridecylcyclohexane   |
|   | CH-14: | Tetradecylcyclohexane |







34011008020 (36918-4) soil extract (1:1.2) MGP, Floyd Snider, QB SS5305, Vf=2ml

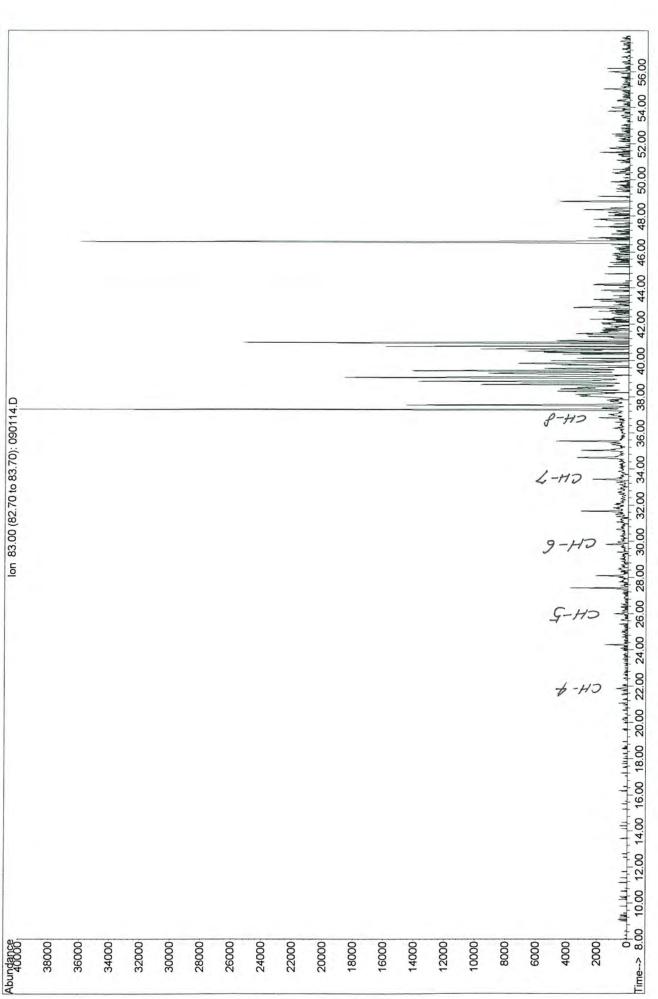


| 42000 |  |
|-------|--|
| 42000 |  |
|       |  |
| 40000 |  |
| 38000 |  |
| 36000 |  |
| 34000 |  |
| 32000 |  |
| 30000 |  |
| 28000 |  |
| 26000 |  |
| 24000 |  |
| 22000 |  |
| 20000 |  |
| 18000 |  |
| 16000 |  |
| 14000 |  |
| 12000 |  |
| 10000 |  |
| 8000  |  |
| 6000  |  |
| 4000  |  |
| 2000  |  |



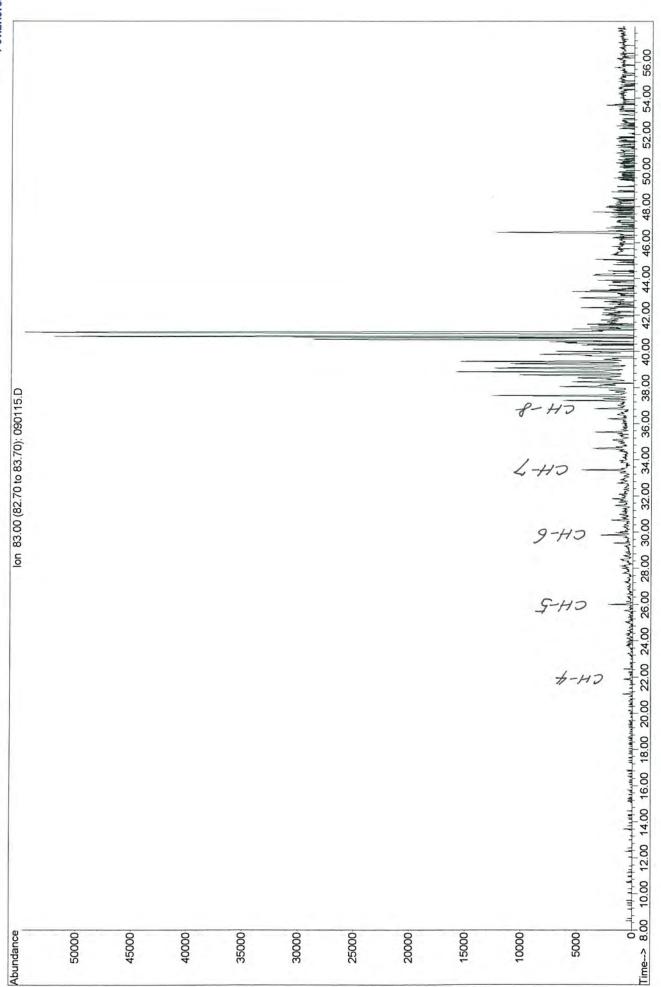





34011008030 (36918-14) soil extract MGP, Floyd Snider, QB SS5305

| 0 | Man   | ORENSICS |  |
|---|-------|----------|--|
|   | JAYTE | 1        |  |
|   |       |          |  |
|   |       |          |  |
|   |       |          |  |

| 10000 |  |
|-------|--|
|       |  |
| 9500  |  |
| 30006 |  |
| 8500  |  |
| 8000  |  |
| 7500  |  |
| 2000  |  |
| 6500  |  |
| 6000  |  |
| 5500- |  |
| 5000  |  |
| 4500  |  |
| 4000  |  |
| 3500  |  |
| 3000  |  |
| 2500  |  |
| 2000- |  |
| 1500  |  |
| 1000  |  |
|       |  |


34011008032 (36918-16) soil ext (3.5:6.5) MGP, Floyd Snider, QB SS5305, Vf=4ml





34011008035 (36918-19) soil ext (4:6) MGP, Floyd Snider, QB SS5305, Vf=1ml

| 1 | Vou  | N Sold | UKENALCS |  |
|---|------|--------|----------|--|
|   | 57nm | 141    | ]        |  |
|   |      |        |          |  |
|   |      |        |          |  |



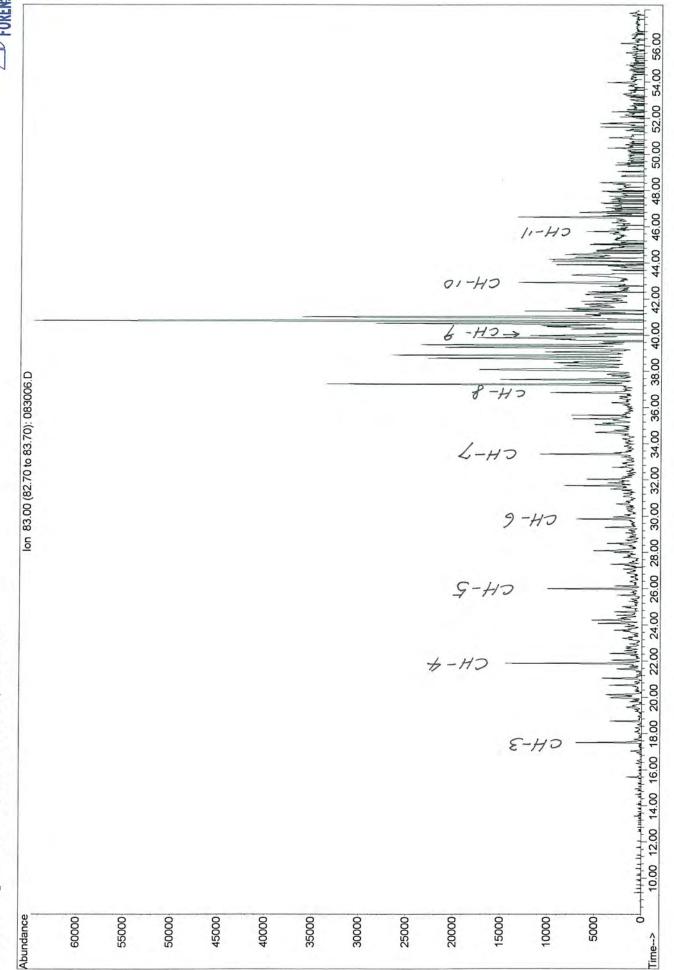
34011008040 (36919-4) MGP, Floyd Snider, QB

| ZZVFRIENCS                   |                                      |
|------------------------------|--------------------------------------|
|                              |                                      |
|                              |                                      |
|                              | 03007.D                              |
|                              | lon 83.00 (82.70 to 83.70); 083007.D |
|                              | ol<br>83                             |
| (1:2)                        |                                      |
| soil extract (1:2)<br>SS5318 |                                      |

|--|

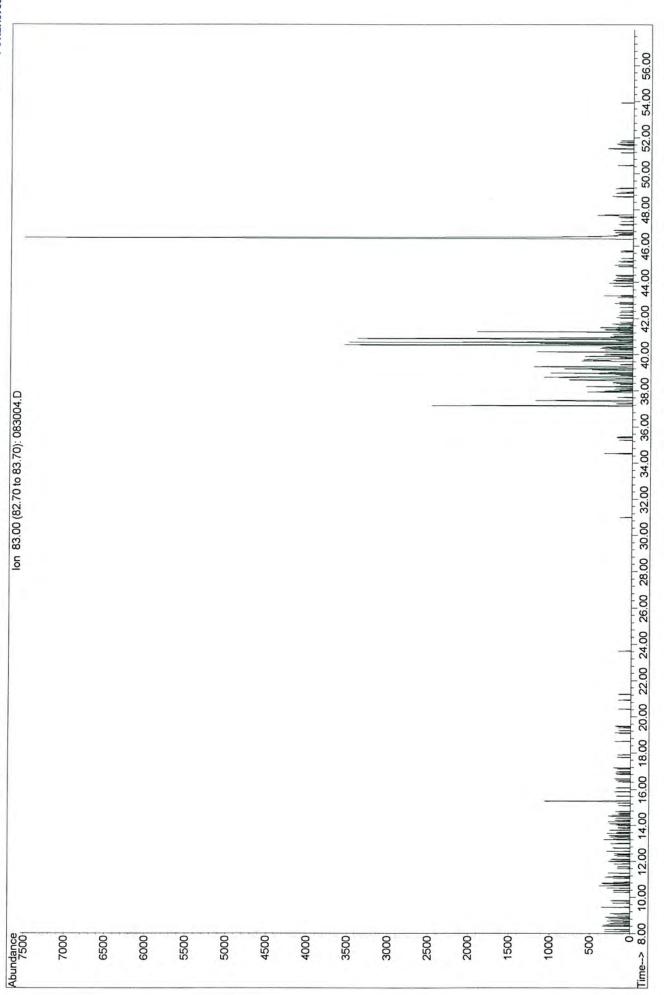
34011008043 (36919-7) soil extract (1:2) MGP, Floyd Snider, QB SS5318, Vf=3ml

|--|


6000

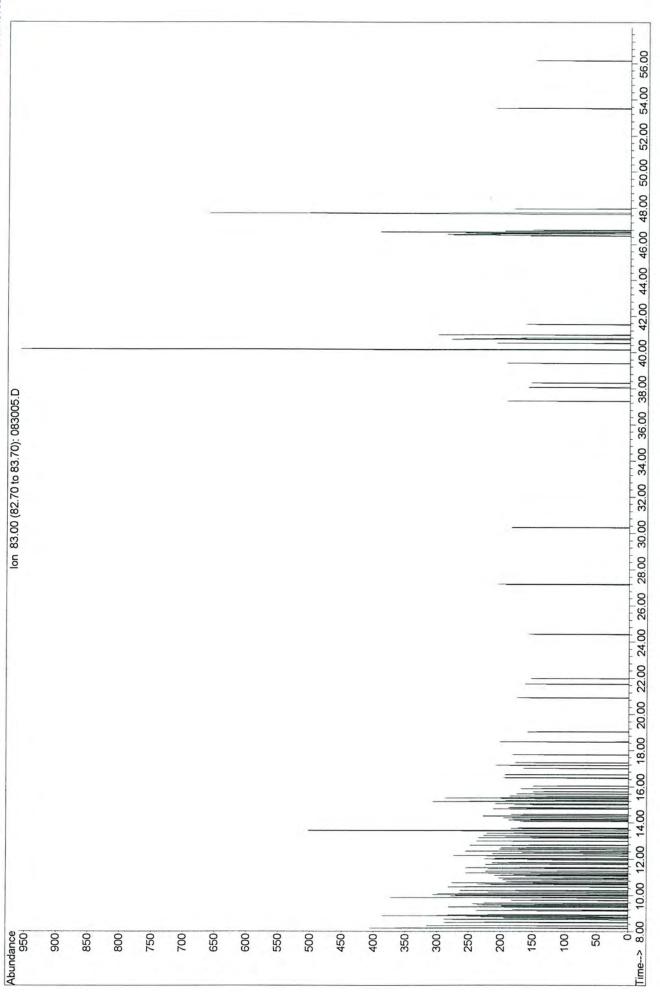
4000

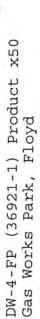
2000-

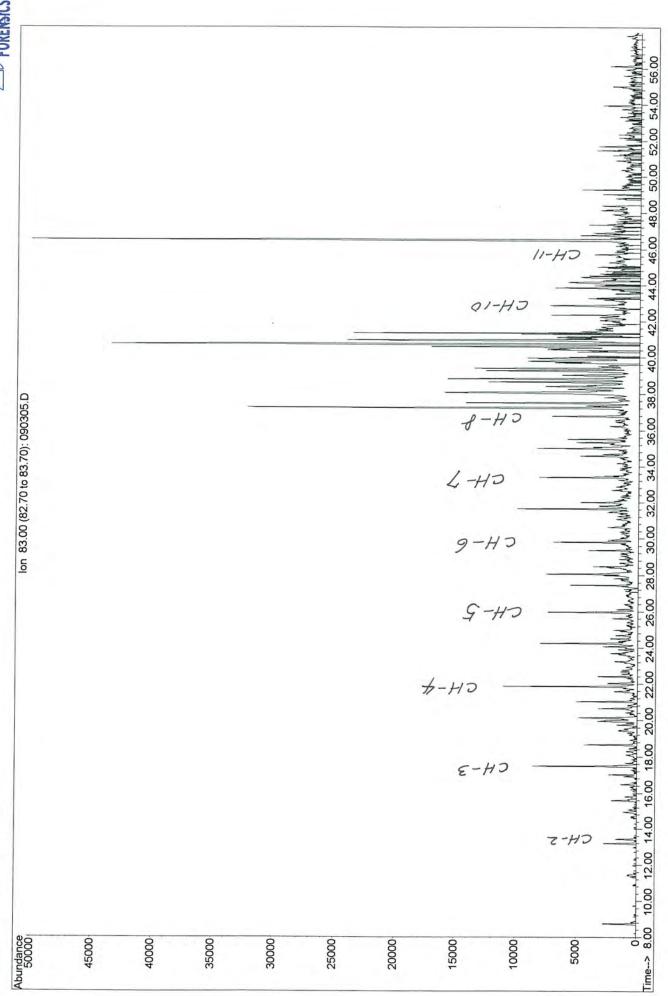

ZYPRIRICS

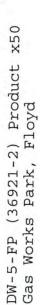
34011008050 (36920-1) soil extract (1:7) MGP, Floyd Snider, QB SS5318, Vf=3ml

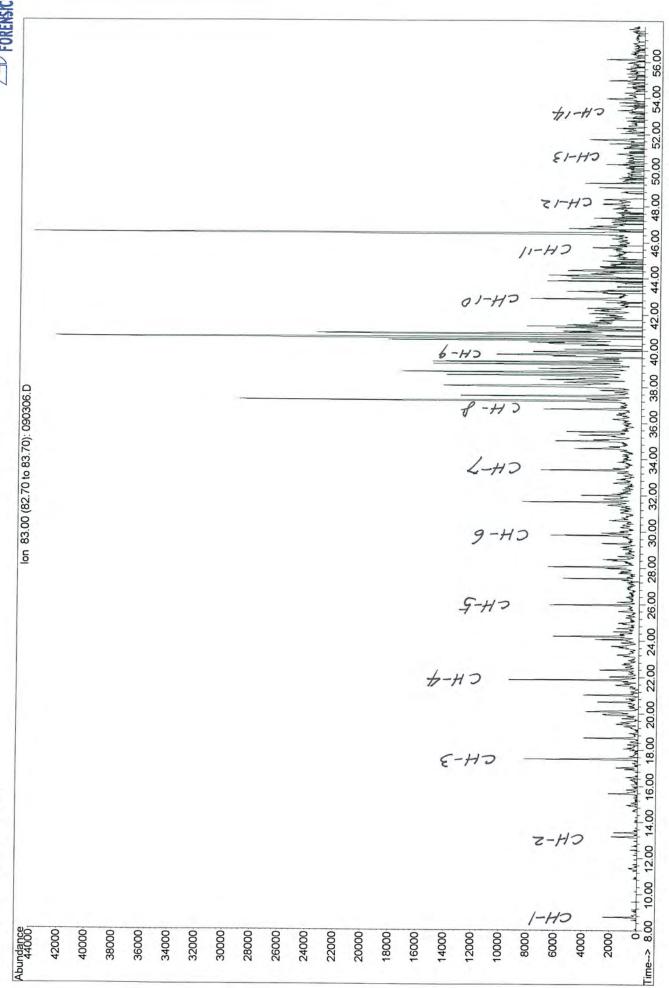



34011008054 (36920-5) soil extract MGP, Floyd Snider, QB SS5318

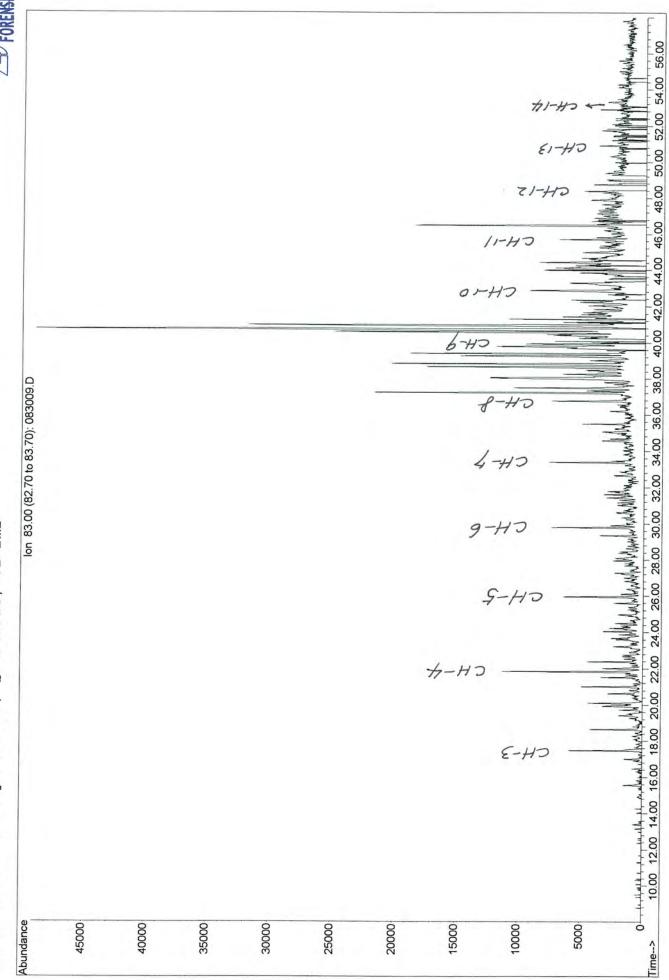




34011008056 (36920-7) soil extract MGP, Floyd Snider, QB SS5318

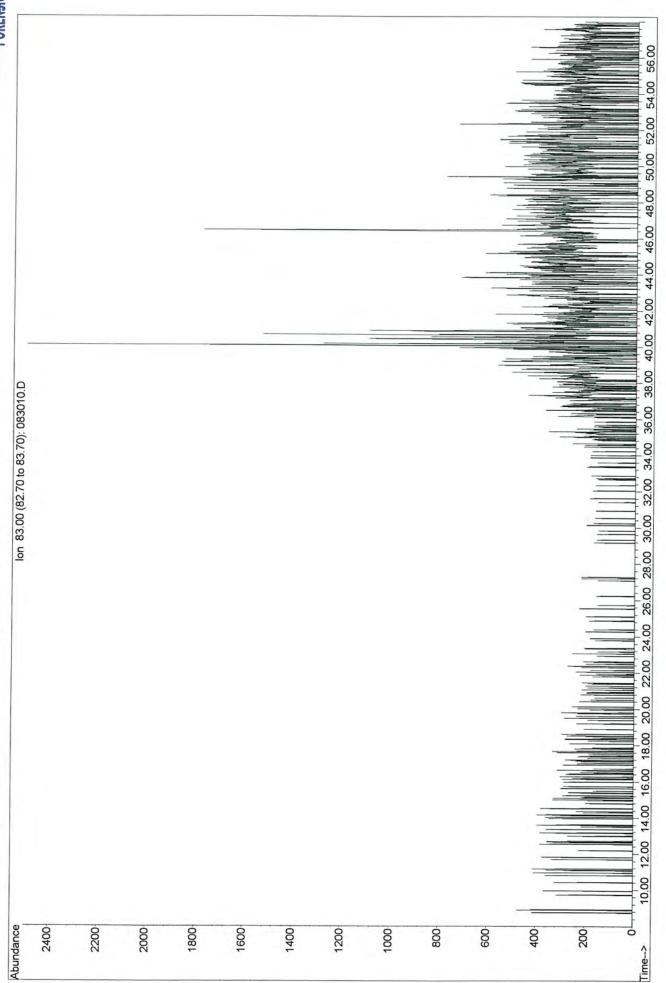


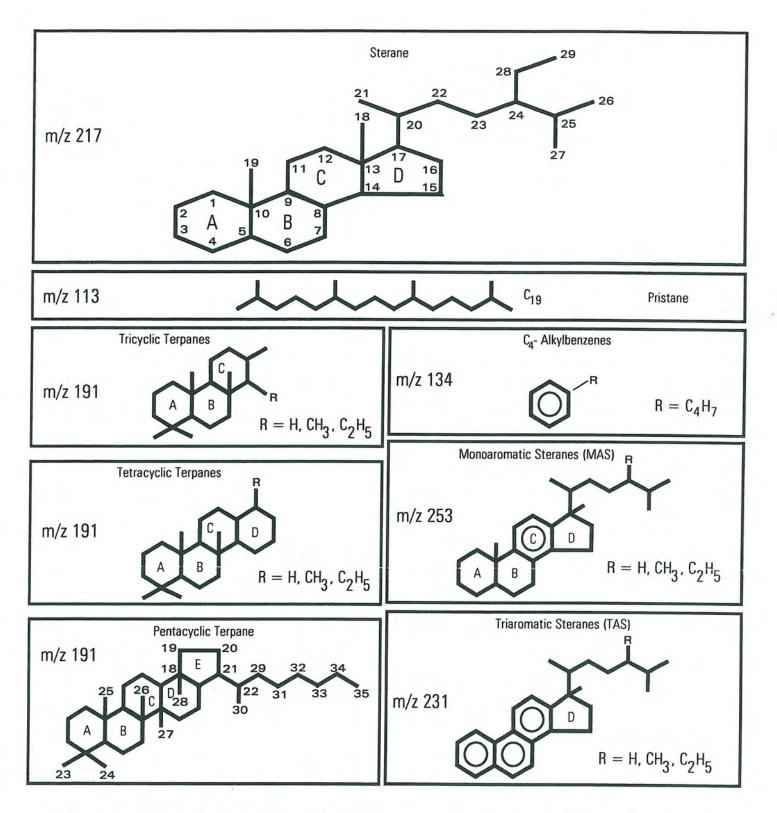








3-1-G (36921-3) soil extract (1:10) Gas Works Park, Floyd Snider, QB SS5318, Vf=2ml



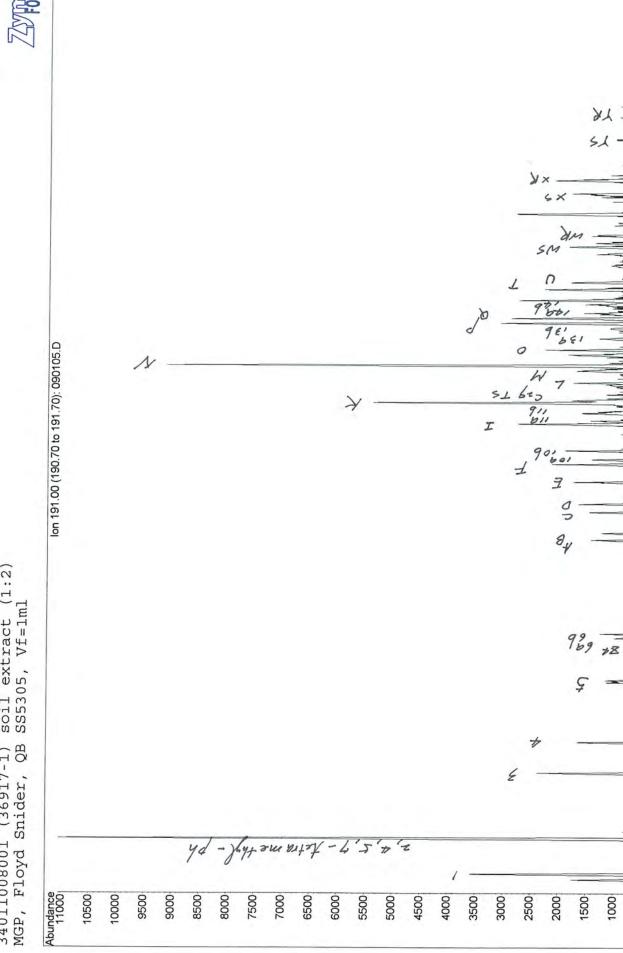
1-1G (36922-3) soil extract (1:12) MGP, Floyd Snider, QB SS5318, Vf=3ml







The compound structures of pristane, C<sub>4</sub>-alkylbenzenes, sterane; terpanes; monoaromatic and triaromatic steranes


Table



## Key for Tricyclic, Tetracyclic, and Pentacyclic Terpanes Identification (m/z 191 mass chromatograms)

| Code               | Identity                                                         | Carbon # |  |  |
|--------------------|------------------------------------------------------------------|----------|--|--|
| 0                  | C <sub>20</sub> -Tricyclic Terpane                               | 20       |  |  |
| 1                  | C <sub>21</sub> -Tricyclic Terpane                               | 21       |  |  |
| 2<br>3             | C <sub>22</sub> -Tricyclic Terpane                               | 22       |  |  |
| 3                  | C <sub>23</sub> -Tricyclic Terpane                               | 23       |  |  |
| 4                  | C <sub>24</sub> -Tricyclic Terpane                               | 24       |  |  |
| 5                  | C <sub>25</sub> -Tricyclic Terpane                               | 25       |  |  |
| Z4                 | C24-Tetracyclic Terpane                                          | 24       |  |  |
| 6a                 | C <sub>26</sub> -Tricyclic Terpane                               | 26       |  |  |
| 6b                 | C <sub>26</sub> -Tricyclic Terpane                               | 26       |  |  |
| 7                  | C <sub>27</sub> -Tricyclic Terpane                               | 27       |  |  |
| A                  | C <sub>28</sub> -Tricyclic Terpane #1                            |          |  |  |
| 3                  | $C_{28}$ -Tricyclic Terpane #2                                   | 28       |  |  |
|                    | $C_{28}$ -Tricyclic Terpane #2<br>$C_{29}$ -Tricyclic Terpane #1 | 28       |  |  |
| 5                  |                                                                  | 29       |  |  |
| Ξ                  | C <sub>29</sub> -Tricyclic Terpane #2                            | 29       |  |  |
|                    | 18α-22,29,30-Trisnorneohopane (Ts)                               | 27       |  |  |
| 3                  | 17α-22,29,30-Trisnorhopane (Tm)                                  | 27       |  |  |
|                    | 17ß-22,29-30-Trisnorhopane                                       | 27       |  |  |
| H                  | 17α-23,28-Bisnorlupane                                           | 28       |  |  |
| 10a                | C <sub>30</sub> -Tricyclic Terpane #1                            | 30       |  |  |
| 10b                | C <sub>30</sub> -Tricyclic Terpane #2                            | 30       |  |  |
| Ser 1              | 17α-28,30-Bisnorhopane                                           | 28       |  |  |
| 11a                | C <sub>31</sub> -Tricyclic Terpane #1                            | 31       |  |  |
|                    | 17α-25-Norhopane                                                 | 29       |  |  |
| 1b                 | C <sub>31</sub> -Tricyclic Terpane #2                            | 31       |  |  |
| <                  | 17α,21β-30-Norhopane                                             | 29       |  |  |
| C <sub>29</sub> Ts | 18α-30-Norneohopane                                              | 29       |  |  |
| 230*               | 17α-Diahopane                                                    | 30       |  |  |
|                    | 17β-21α-30-Normoretane                                           | 29       |  |  |
| la                 | 18α-Oleanane                                                     | 30       |  |  |
| ٨b                 | 18ß-Oleanane                                                     | 30       |  |  |
| 1                  | $17\alpha$ ,21ß-Hopane                                           | 30       |  |  |
| )                  | 17β,21α-Moretane                                                 | 30       |  |  |
| 3a                 | C <sub>33</sub> -Tricyclic Terpane #1                            |          |  |  |
| 3b                 | C <sub>33</sub> -Tricyclic Terpane #2                            | 33       |  |  |
|                    | 22S-17α,21β-30-Homohopane                                        | 33       |  |  |
| 1                  |                                                                  | 31       |  |  |
|                    | 22R-17α,21β-30-Homohopane                                        | 31       |  |  |
| 4a                 | Gammacerane                                                      | 30       |  |  |
| 44                 | C <sub>34</sub> -Tricyclic Terpane #1                            | 34       |  |  |
|                    | 17β,21α-Homomoretane                                             | 31       |  |  |
| 4b                 | C <sub>34</sub> -Tricyclic Terpane #2                            | 34       |  |  |
|                    | 22S-17α,21β-30-Bishomohopane                                     | 32       |  |  |
|                    | 22R-17α,21ß-30-Bishomohopane                                     | 32       |  |  |
| 5a                 | C <sub>35</sub> -Tricyclic Terpane #1                            | 35       |  |  |
| ōb                 | C <sub>35</sub> -Tricyclic Terpane #2                            | 35       |  |  |
|                    | 17ß,21α-C <sub>32</sub> -Bishomomoretane                         | 32       |  |  |
| S                  | 22S-17α,21β-30,31,32-Trishomohopane                              | 33       |  |  |
| R                  | 22R-17α,21β-30,31,32-Trishomohopane                              | 33       |  |  |
| ba -               | C <sub>36</sub> -Tricyclic Terpane #1                            | 36       |  |  |
| 6b                 | C <sub>36</sub> -Tricyclic Terpane #2                            | 36       |  |  |
| 5                  | 22S-17α,21ß-30,31,32,33-Tetrahomohopane                          | 34       |  |  |
| 2                  | 22R-17a,21ß-30,31,32,33-Tetrahomohopane                          | 34       |  |  |
| 6                  | 22S-17α,21β-30,31,32,33,34-Pentahomohopane                       | 35       |  |  |
| 2                  | 22R-17α,21β-30,31,32,33,34-Pentahomohopane                       | 35       |  |  |

soil extract (1:2) SS5305, Vf=lml 34011008001 (36917-1) MGP, Floyd Snider, QB



86.00

84.00

82.00

80.00

78.00

76.00

74.00

72.00

70.00

68.00

66.00

64.00

62.00

60.00

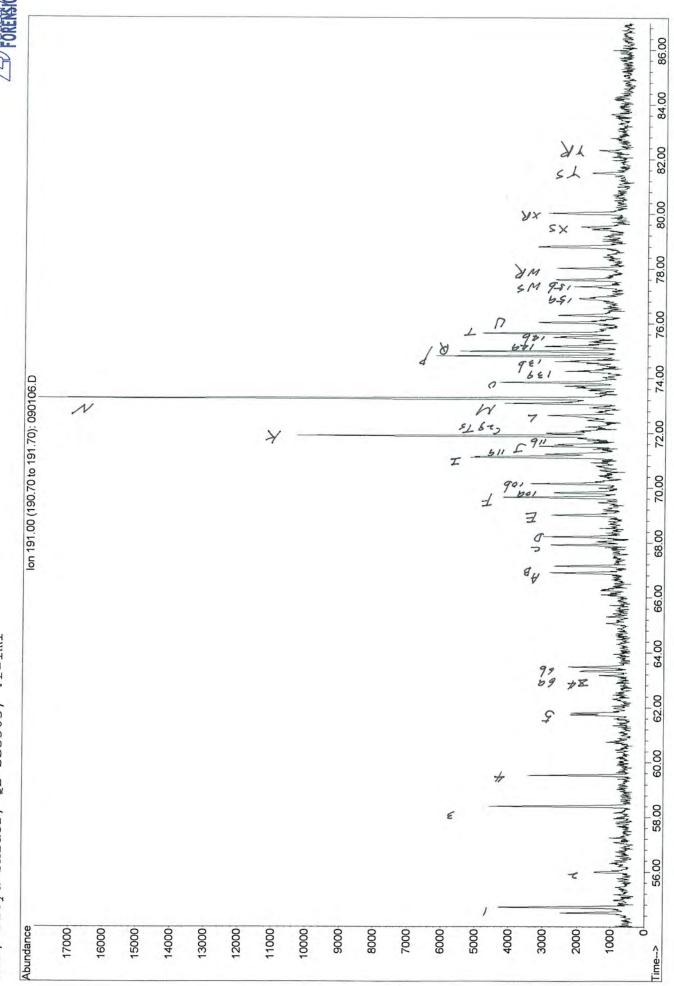
58.00

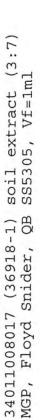
56.00

0 Time--> 54.00

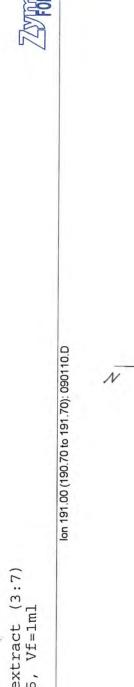
500

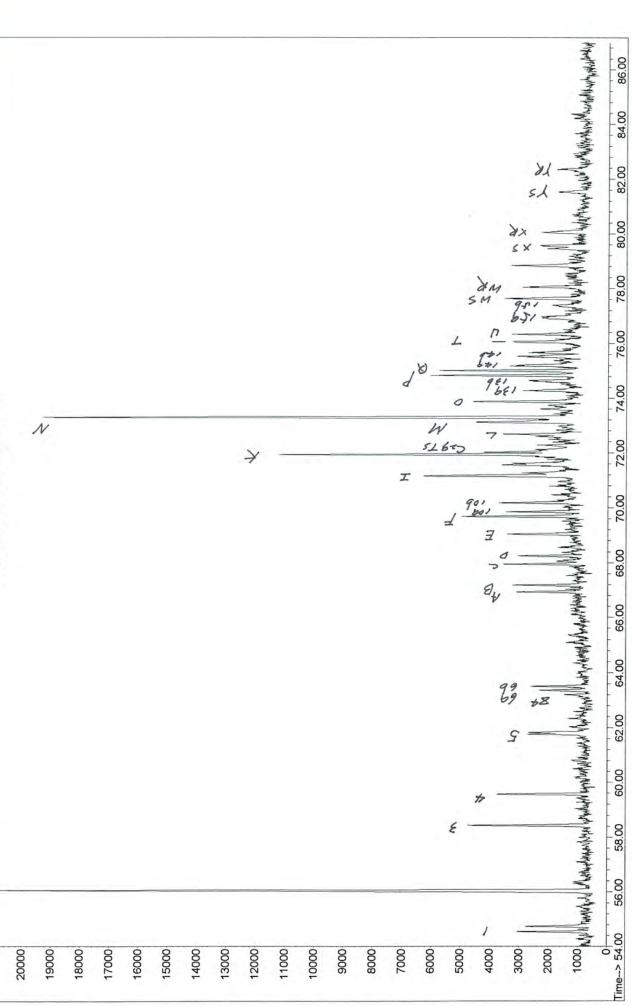
1000


3


and have been a product of the test of test of

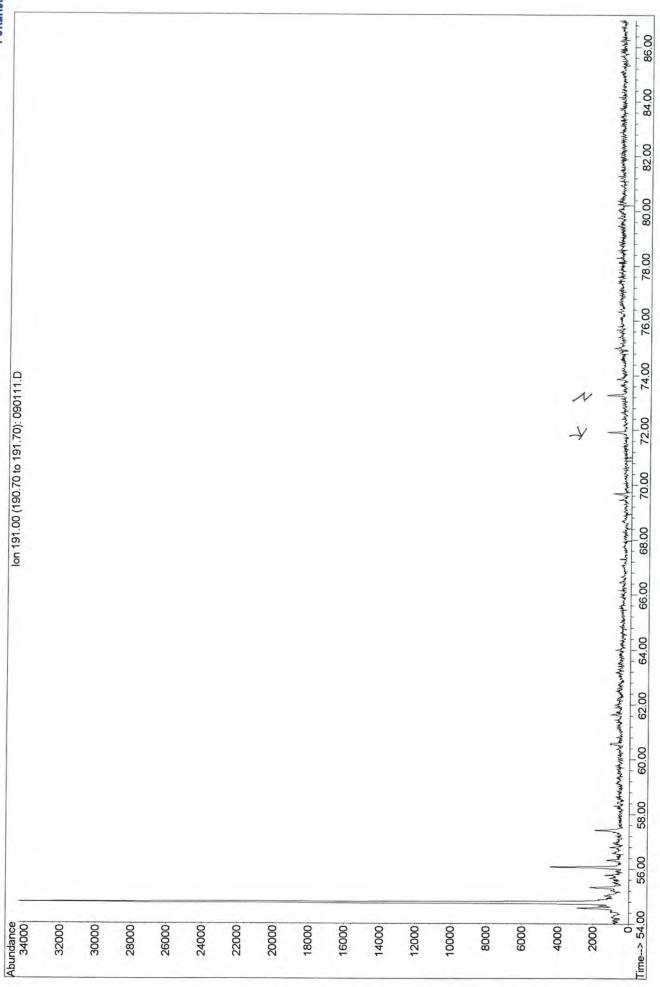
XX


51

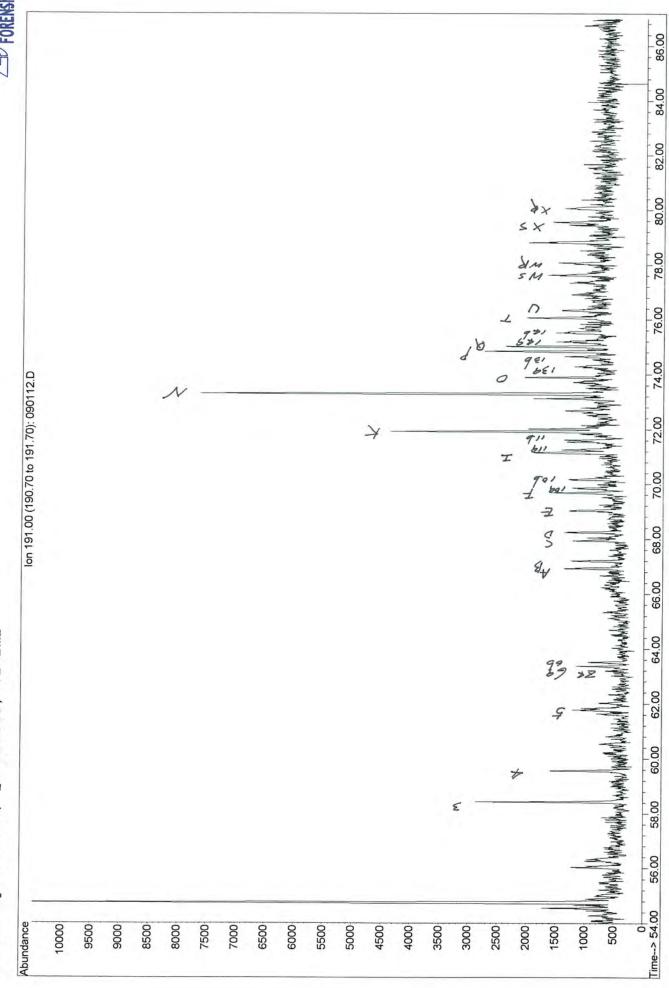

34011008011 (36917-11) soil extract (1:2) MGP, Floyd Snider, QB SS5305, Vf=1ml





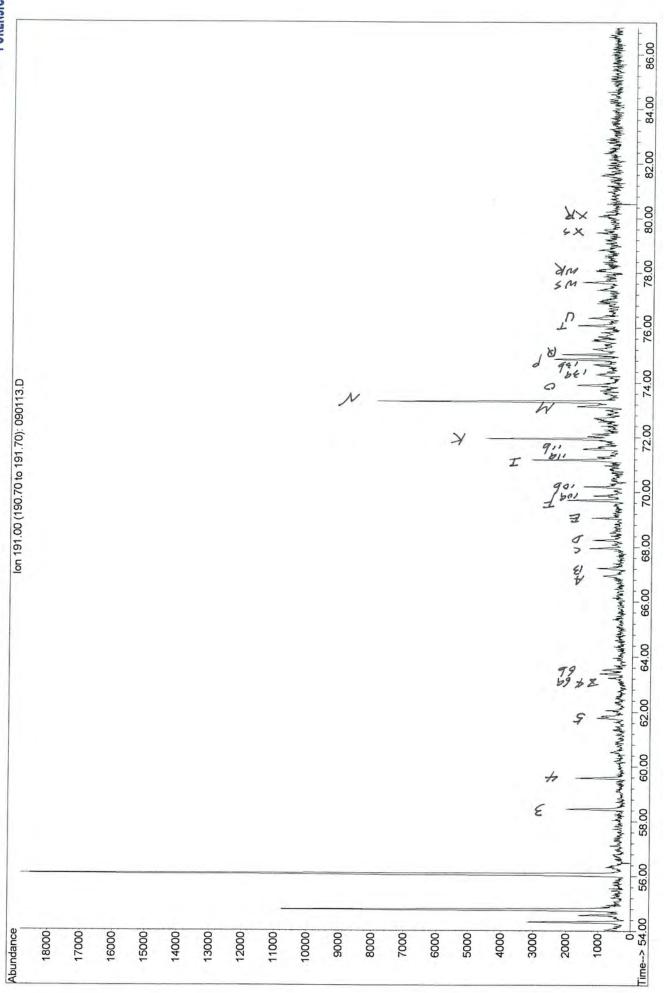

Abundance





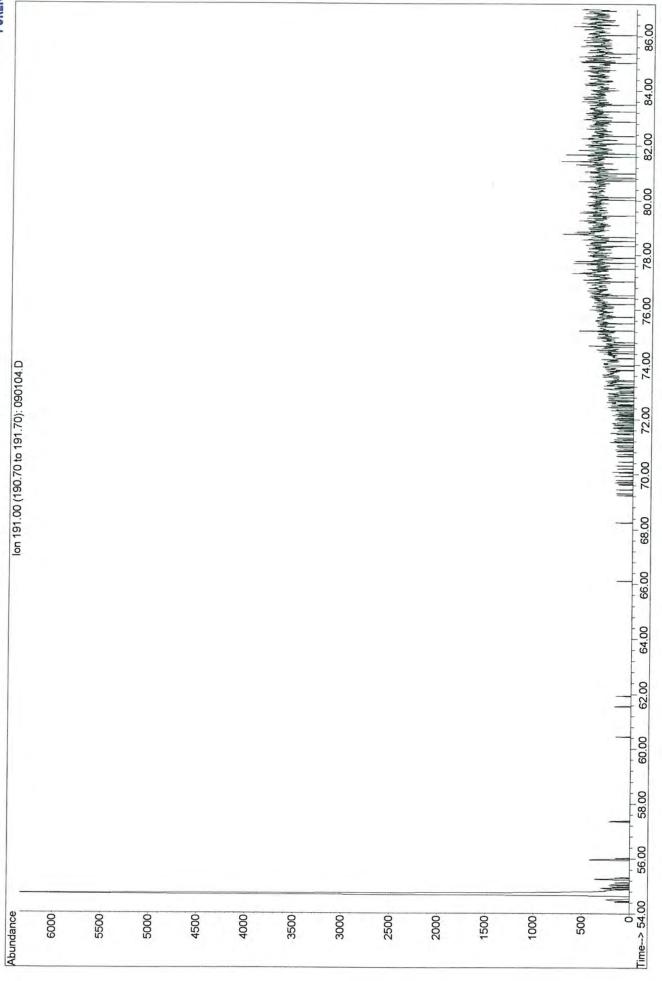

34011008020 (36918-4) soil extract (1:1.2) MGP, Floyd Snider, QB SS5305, Vf=2ml






34011008022 (36918-6) soil extract (3:8) MGP, Floyd Snider, QB SS5305, Vf=2ml




34011008028 (36918-12) soil extract (1:1)) MGP, Floyd Snider, QB SS5305, Vf=2ml

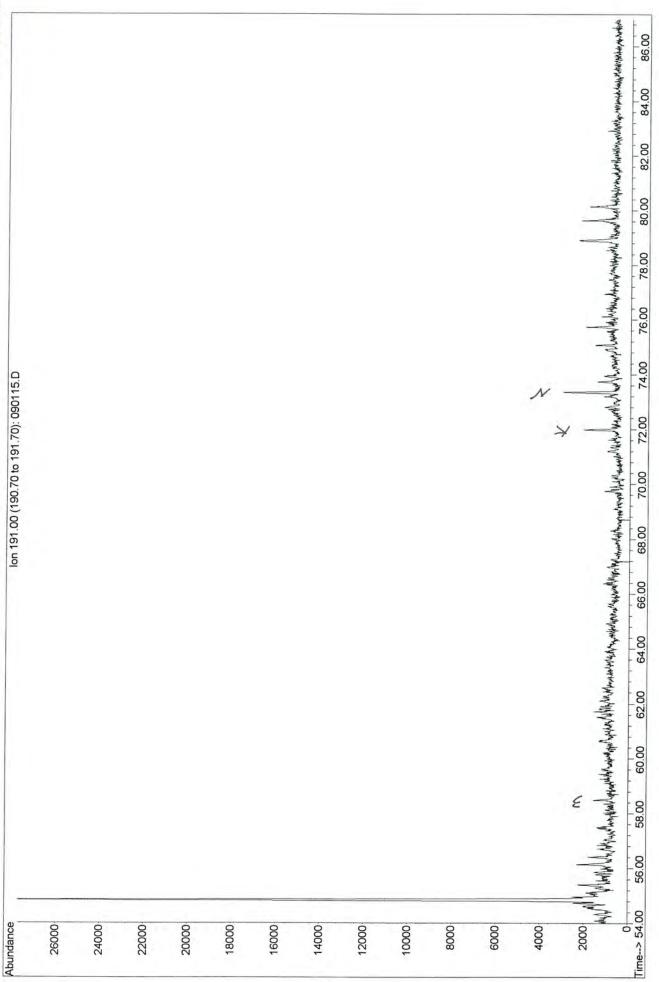




34011008030 (36918-14) soil extract MGP, Floyd Snider, QB SS5305






34011008032 (36918-16) soil ext (3.5:6.5) MGP, Floyd Snider, QB SS5305, Vf=4ml

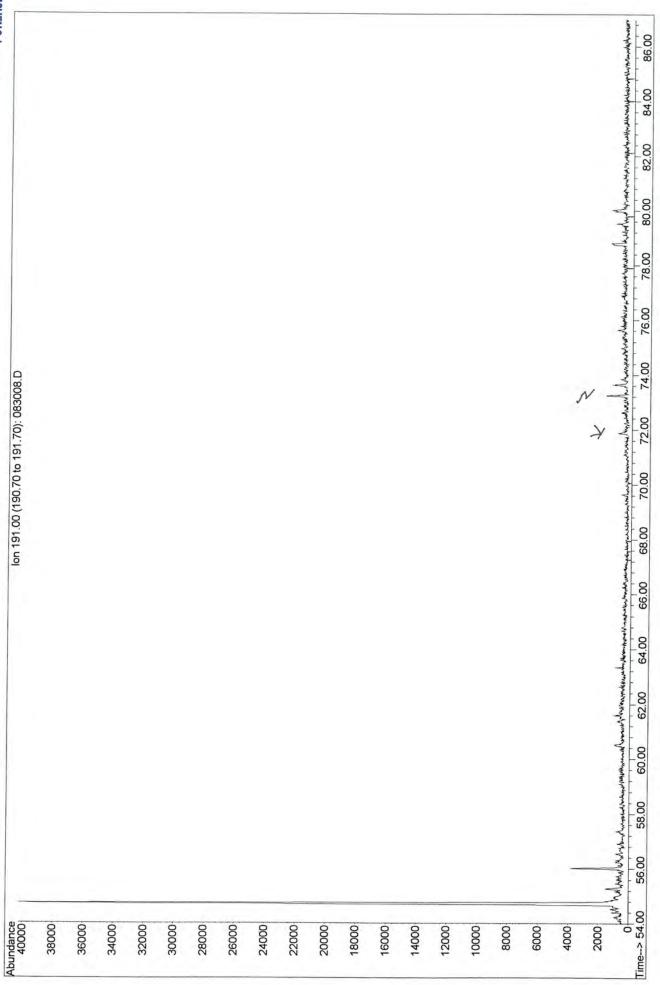


|  |  | the second                             |
|--|--|----------------------------------------|
|  |  | WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW |

34011008035 (36918-19) soil ext (4:6) MGP, Floyd Snider, QB SS5305, Vf=1ml

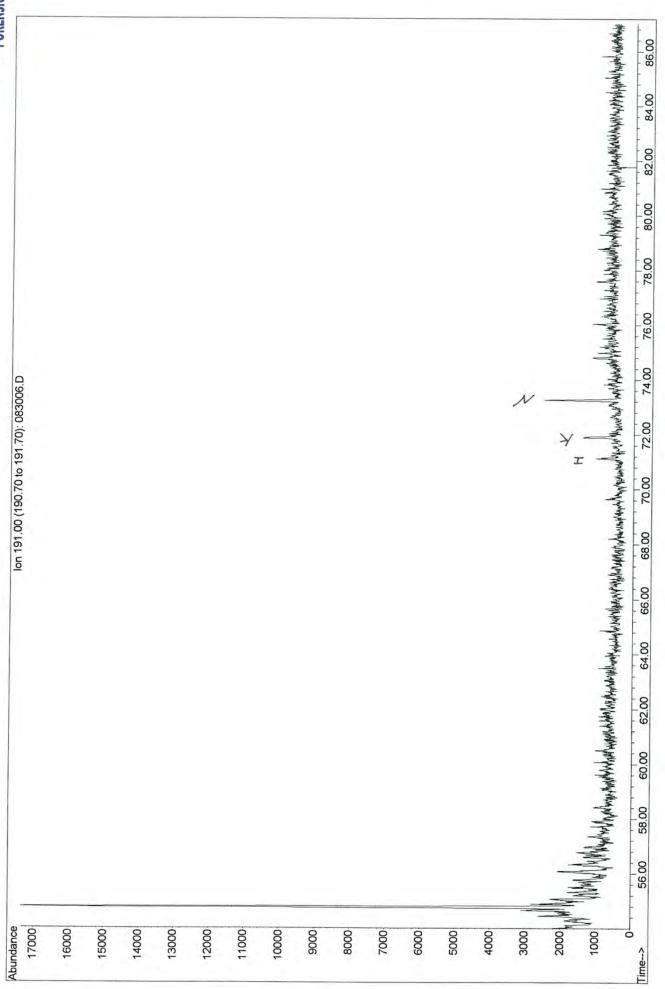





34011008040 (36919-4) soil extract (1:2) MGP, Floyd Snider, QB SS5318

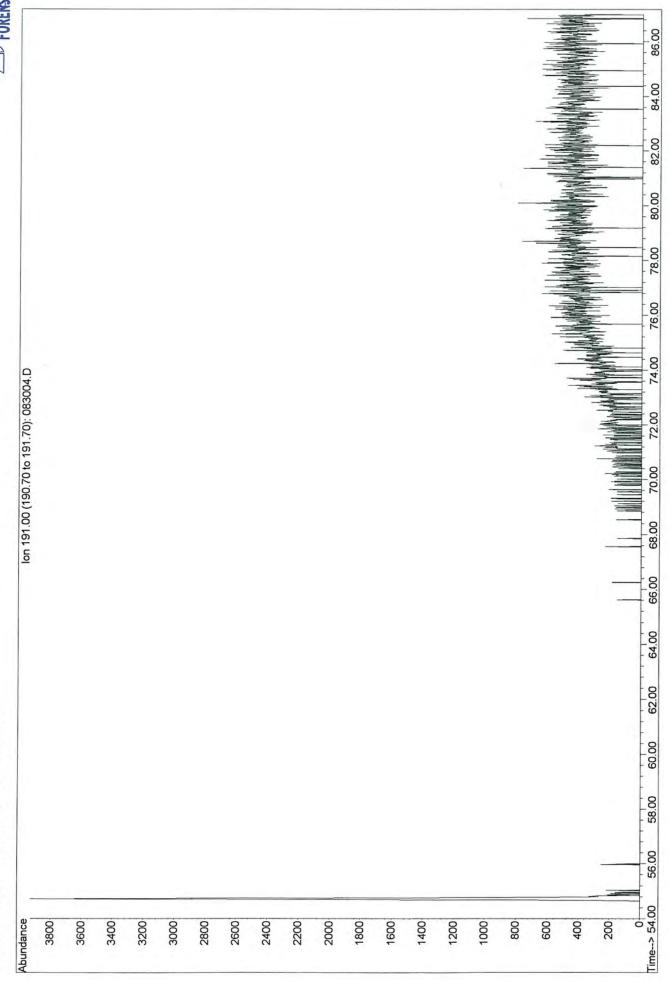


| 60000 | 55000 | 50000 | 45000- | 40000- | 35000 | 30000- | 25000 | 20000 | 15000 | 10000 | 5000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|-------|-------|--------|--------|-------|--------|-------|-------|-------|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |       |       |        |        |       |        |       |       |       |       |      | and how have an and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |       |       |        |        |       |        |       |       |       |       |      | - manuna man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |       |       |        |        |       |        |       |       |       |       |      | man have been and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |       |       |        |        |       |        |       |       |       |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       |       |        |        |       |        |       |       |       |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       |       |        |        |       |        |       |       |       |       |      | a producer and a second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |       |       |        |        |       |        |       |       |       |       |      | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |       |       |        |        |       |        |       |       |       |       |      | 1.515 - Charles |
|       |       |       |        |        |       |        |       |       |       |       |      | and the second of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |       |       |        |        |       |        |       |       |       |       |      | e presidente en sourie de servere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |       |       |        |        |       |        |       |       |       |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       |       |        |        |       |        |       |       |       |       |      | بالمحافظ والمحافظ والمحافظ المحافظ والمحافظ والمحا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       |       |        |        |       |        |       |       |       |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       |       |        |        |       |        |       |       |       |       |      | مادىمىك جارياكم والمالية الموارية الأوراب موادياته                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |


34011008043 (36919-7) soil extract (1:2) MGP, Floyd Snider, QB SS5318, Vf=3ml

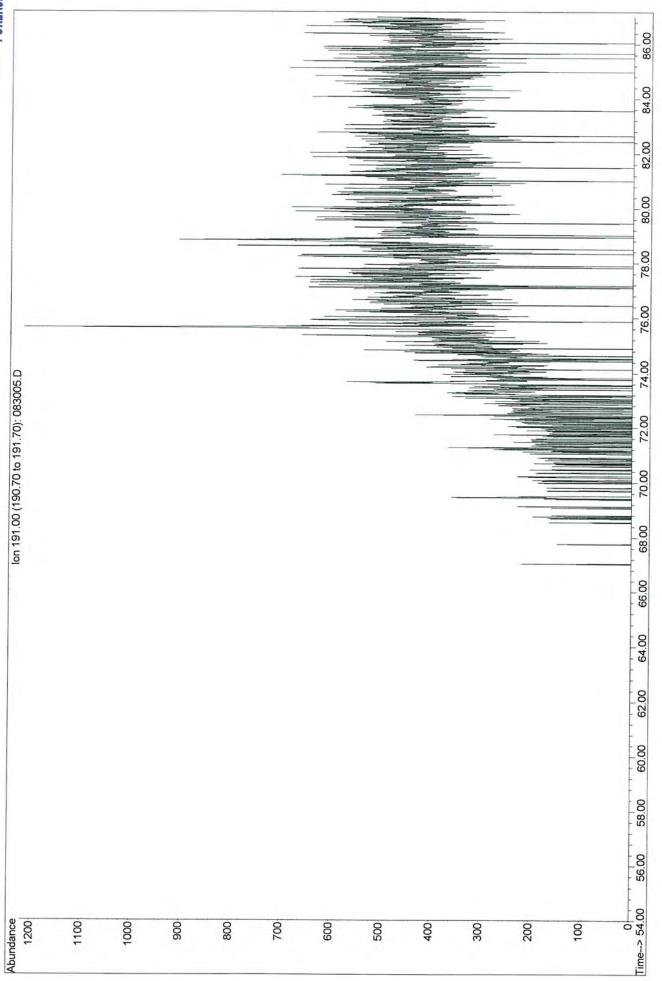





34011008050 (36920-1) soil extract (1:7) MGP, Floyd Snider, QB SS5318, Vf=3ml

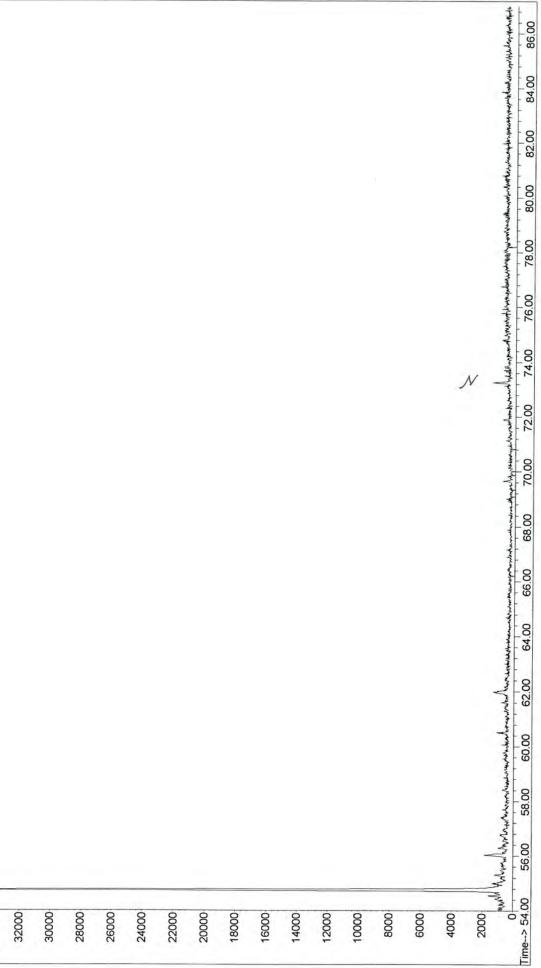





34011008054 (36920-5) soil extract MGP, Floyd Snider, QB SS5318







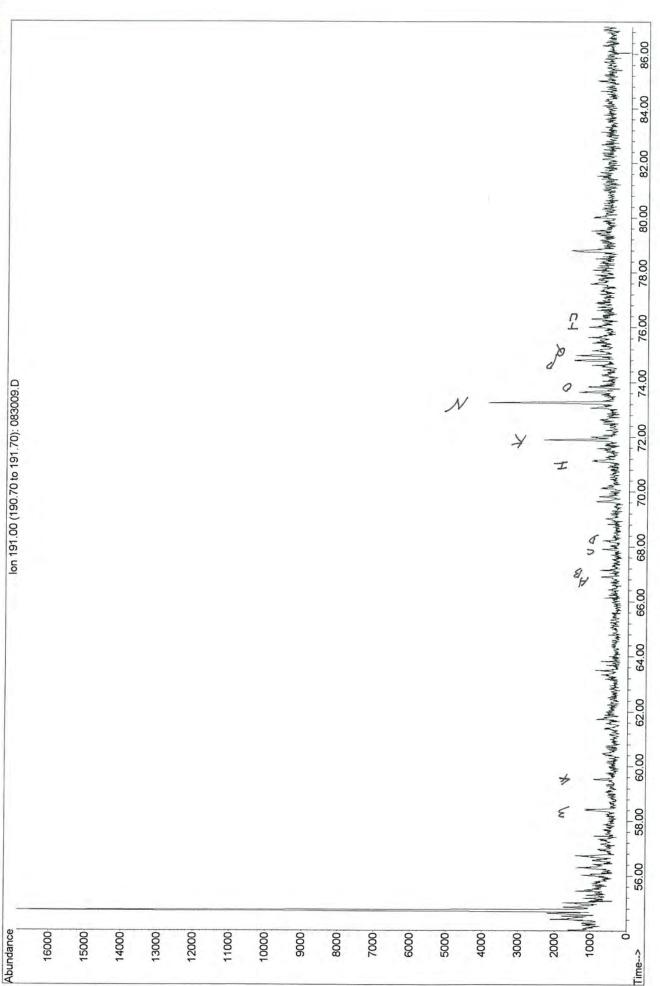





DW-4-FP (36921-1) Product x50 Gas Works Park, Flovd

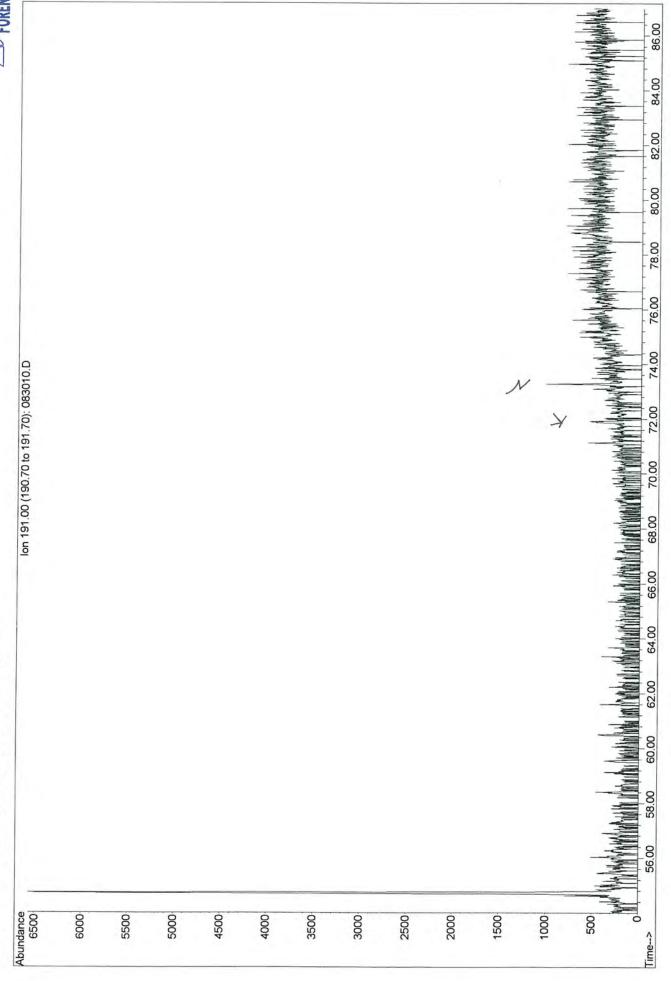
| Abundance         Ian 191.00 (190.70 to 191.70): 090305.D           38000         38000           34000         32000           32000         28000           28000         28000 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|






DW-5-FP (36921-2) Product x50 Gas Works Park, Floyd





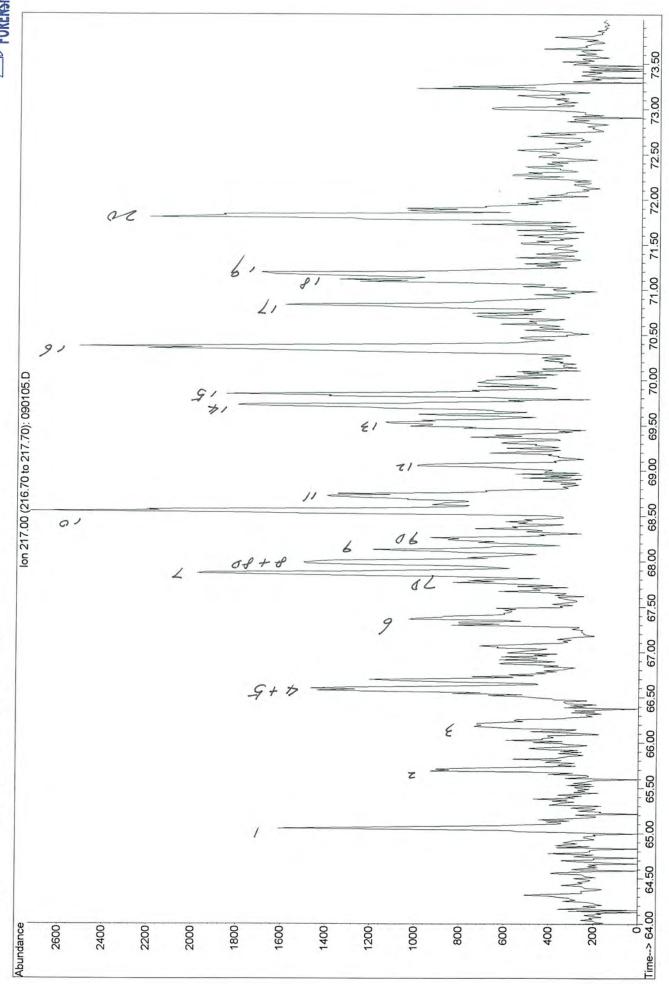

| ×S |
|----|
| œ  |
| S  |
| A  |
| N. |
|    |
|    |

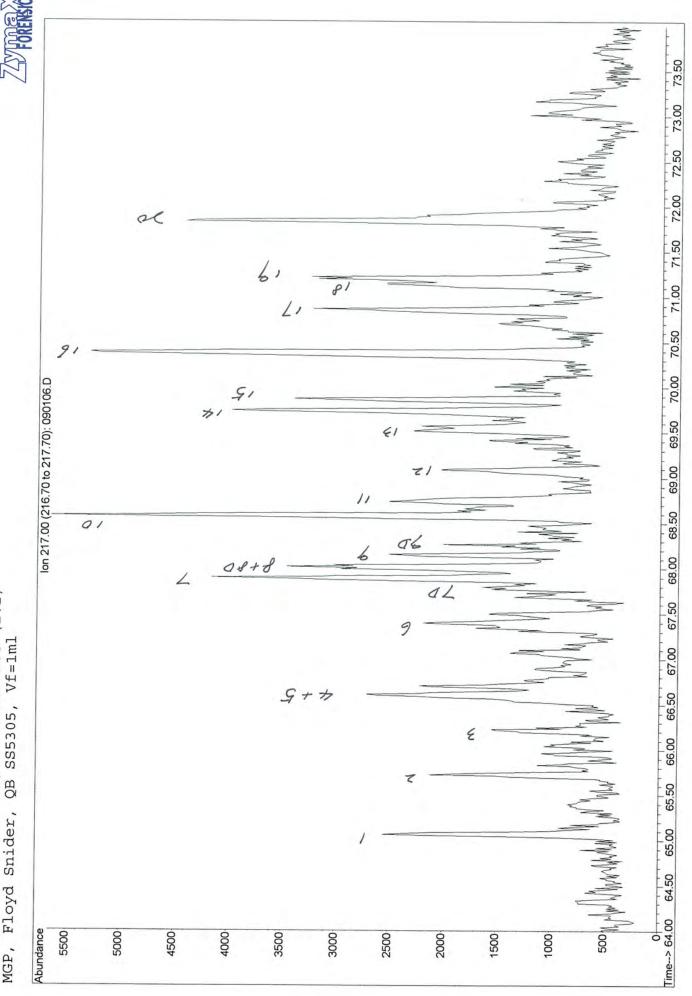


1-1G (36922-3) soil extract (1:12) MGP, Floyd Snider, QB SS5318, Vf=3ml

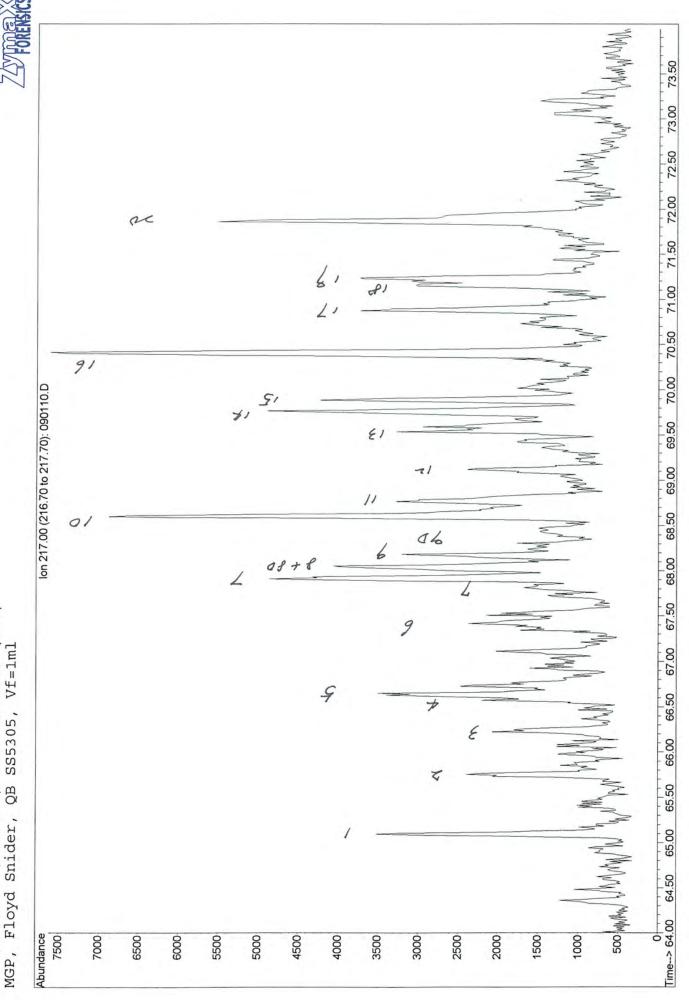






Table



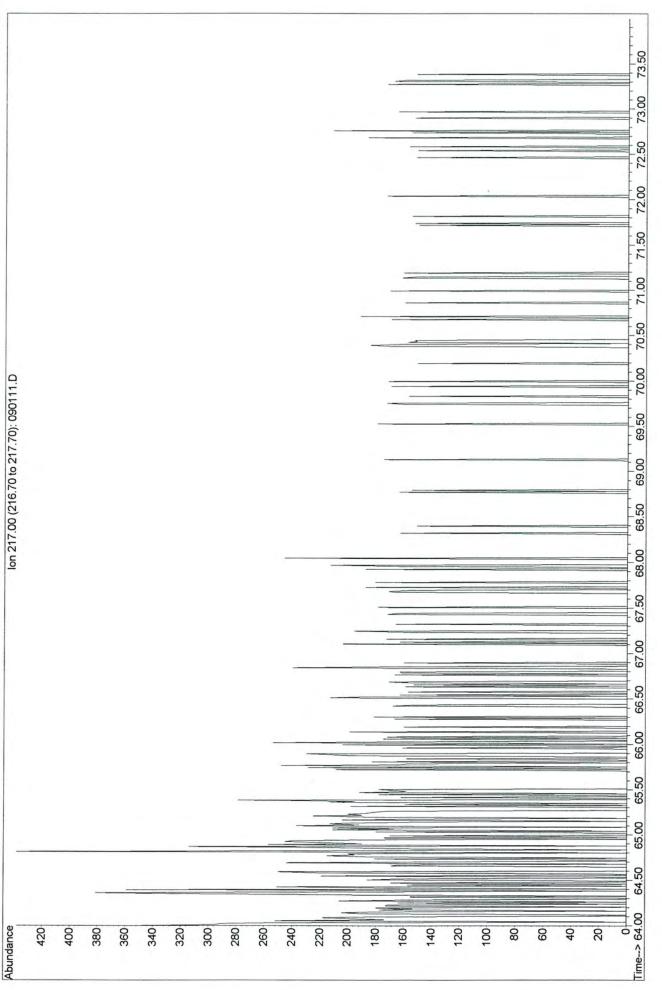

## Key for Steranes Identification (m/z 217 Mass Chromatogram)

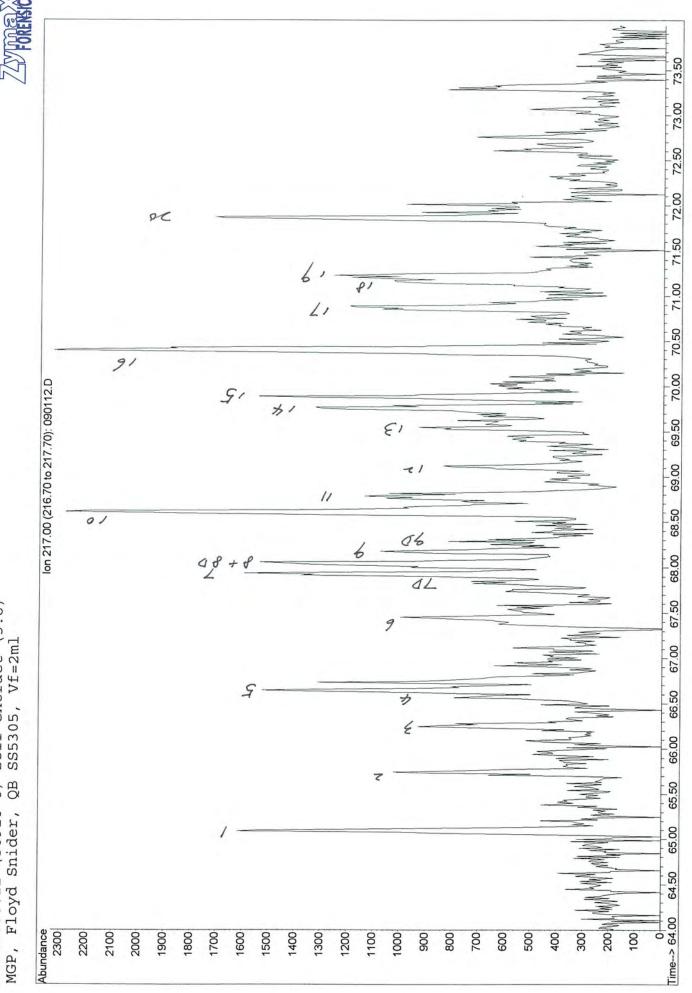

| Code | Identity                                                           | Carbon # |  |  |  |
|------|--------------------------------------------------------------------|----------|--|--|--|
| 1    | 13ß,17α-diacholestane (20S)                                        | 27       |  |  |  |
| 2    | 13ß,17α-diacholestane (20R)                                        | 27       |  |  |  |
| 3    | 13α,17ß-diacholestane (20S)                                        | 27       |  |  |  |
| 4    | 13α,17β-diacholestane (20R)                                        | 27       |  |  |  |
| 5    | 24-methyl-13ß,17α-diacholestane (20S)                              | 28       |  |  |  |
| 6    | 24-methyl-13ß,17α-diacholestane (20R)                              | 28       |  |  |  |
| 7D   | 24-methyl-13α,17β-diacholestane (20S)                              | 28       |  |  |  |
| 7    | 14α,17α-cholestane (20S)                                           | 27       |  |  |  |
| 8D   | 24-ethyl-13ß,17α-diacholestane (20S)                               | 29       |  |  |  |
| 8    | 14ß,17ß-cholestane (20R)                                           | 27       |  |  |  |
| 9    | 14ß,17ß-cholestane (20S)                                           | 27       |  |  |  |
| 9D   | 24-methyl-13α,17β-diacholestane (20R)                              | 28       |  |  |  |
| 10   | 14α,17α-cholestane (20R)                                           | 27       |  |  |  |
| 11   | 24-ethyl-13ß,17α-diacholestane (20R)                               | 29       |  |  |  |
| 12   | 24-ethyl-13α,17β-diacholestane (20S)                               | 29       |  |  |  |
| 13   | 24-methyl-14α,17α-cholestane (20S)                                 | 28       |  |  |  |
| 4D   | 24-ethyl-13α,17β-diacholestane (20R)                               | 29       |  |  |  |
| 4    | 24-methyl-14ß,17ß-cholestane (20R)                                 | 28       |  |  |  |
| 5    | 24-methyl-14ß,17ß-cholestane (20S)                                 | 28       |  |  |  |
| 6    | 24-methyl-14α,17α-cholestane (20R)                                 | 28       |  |  |  |
| 7    | 24-ethyl-14α-cholestane (20S)                                      | 29       |  |  |  |
| 8    | 24-ethyl-14ß,17ß-cholestane (20R)                                  | 29       |  |  |  |
| 9    | 24-ethyl-14ß,17ß-cholestane (20S)                                  | 29       |  |  |  |
| 0    | 24-ethyl-14α,17α-cholestane (20R)                                  | 29       |  |  |  |
| 1A   | 24-n-Propylcholestane (20S)                                        | 30       |  |  |  |
| 1B   | 4-methyl-24-ethylcholestane (20S)                                  | 30       |  |  |  |
| 2A   | $4\alpha$ -methyl-24-ethyl-14 $\beta$ ,17 $\beta$ -cholestane(20S) | 30       |  |  |  |
| 2B   | 24-n-propyl-14β,17β-cholestane (20S)                               | 30       |  |  |  |
| 3A   | $4\alpha$ -methyl-24-ethyl-14 $\beta$ ,17 $\beta$ -cholestane(20R) | 30       |  |  |  |
| BB   | 24-n-propyl-14β,17β-cholestane (20R)                               | 30       |  |  |  |
| 1A   | 4α-methyl-24-ethylcholestane(20R)                                  | 30       |  |  |  |
| B    | 24-n-propylcholestane (20R)                                        | 30       |  |  |  |



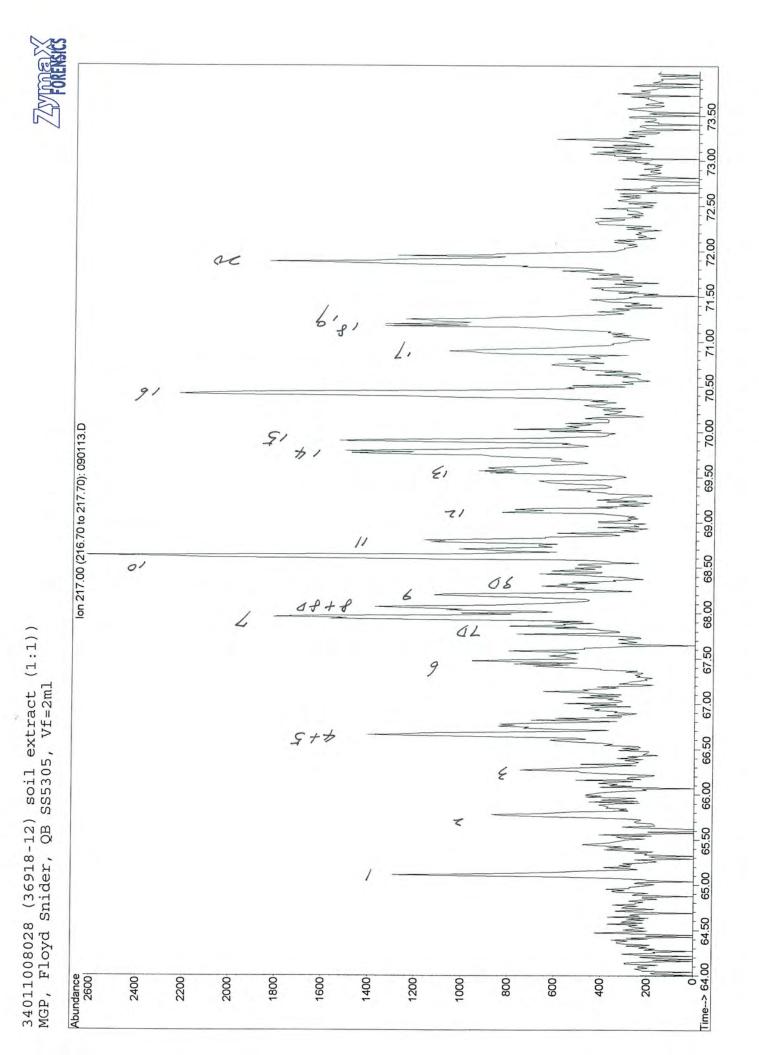





34011008011 (36917-11) soil extract (1:2) MGP, Floyd Snider, QB SS5305, Vf=1ml

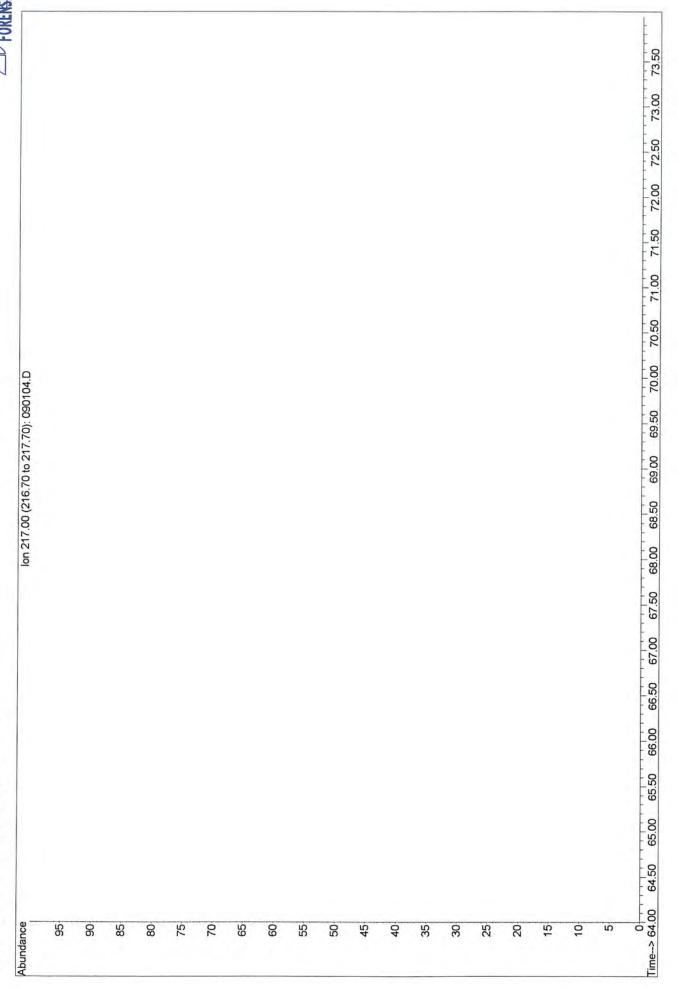



soil extract (3:7)
SS5305, Vf=lml 34011008017 (36918-1) MGP, Floyd Snider, QB


34011008020 (36918-4) soil extract (1:1.2) MGP, Floyd Snider, QB SS5305, Vf=2ml

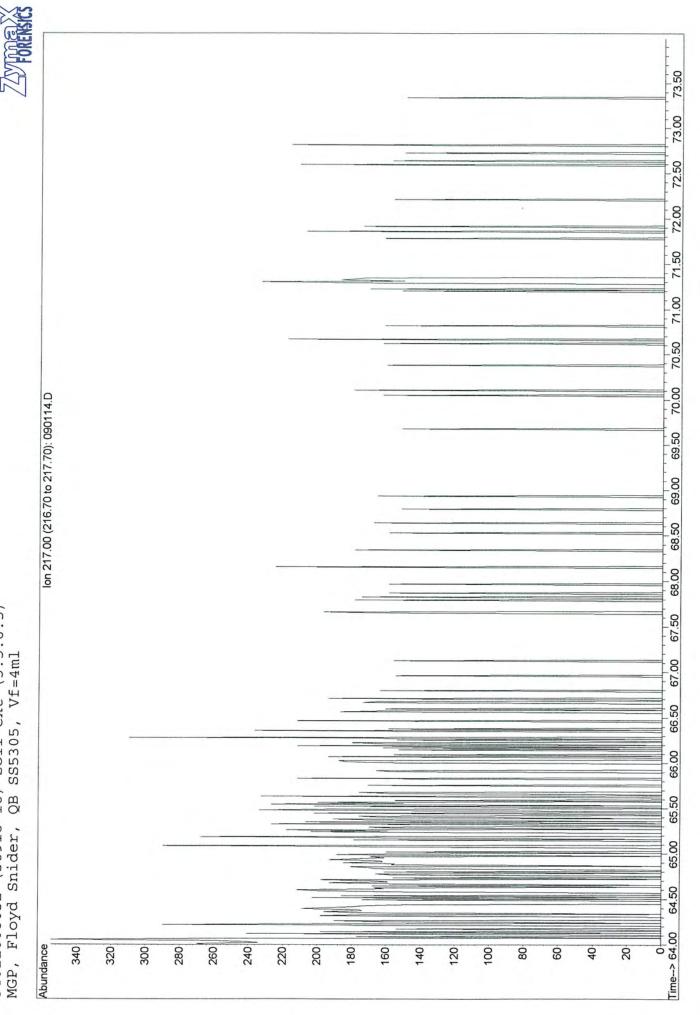




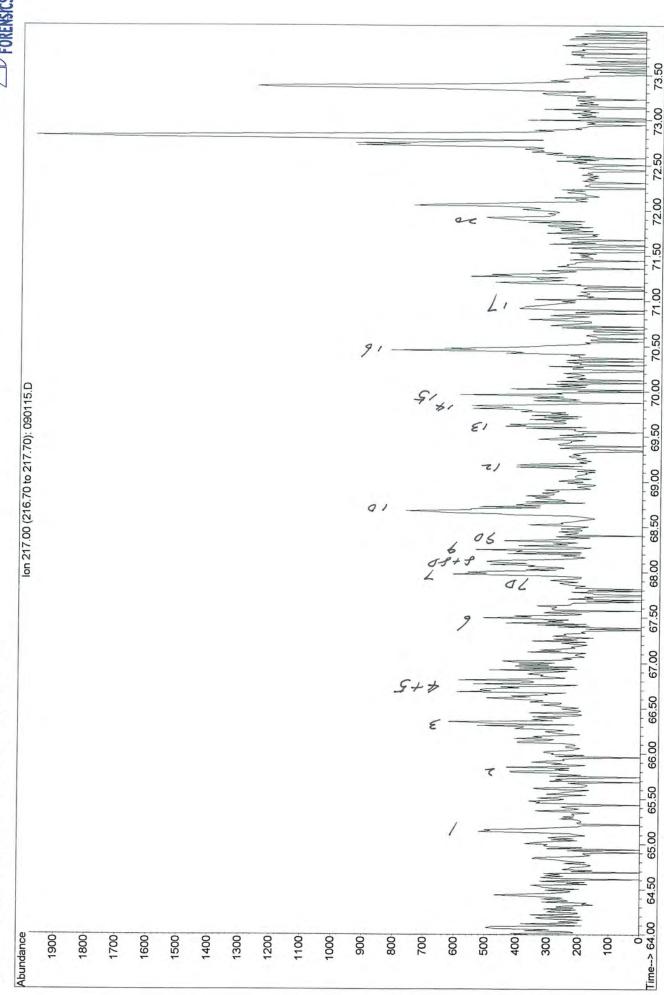



soil extract (3:8)
SS5305, Vf=2ml 34011008022 (36918-6) MGP, Floyd Snider, QB




34011008030 (36918-14) soil extract MGP, Floyd Snider, QB SS5305






34011008032 (36918-16) soil ext (3.5:6.5) MGP, Floyd Snider, QB SS5305, Vf=4ml

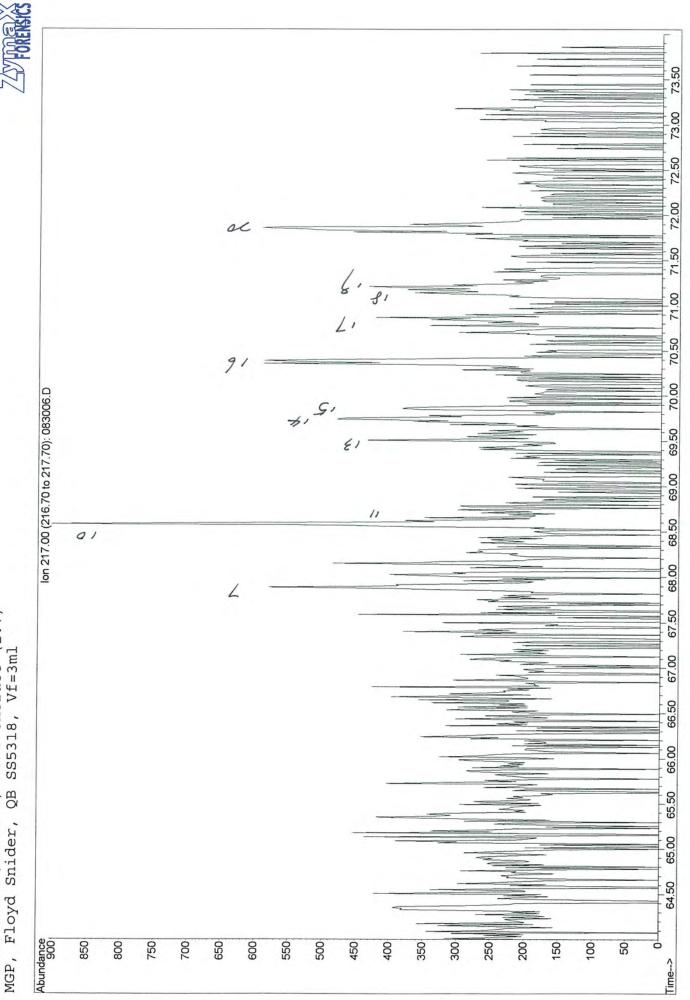




34011008035 (36918-19) soil ext (4:6) MGP, Floyd Snider, QB SS5305, Vf=1ml

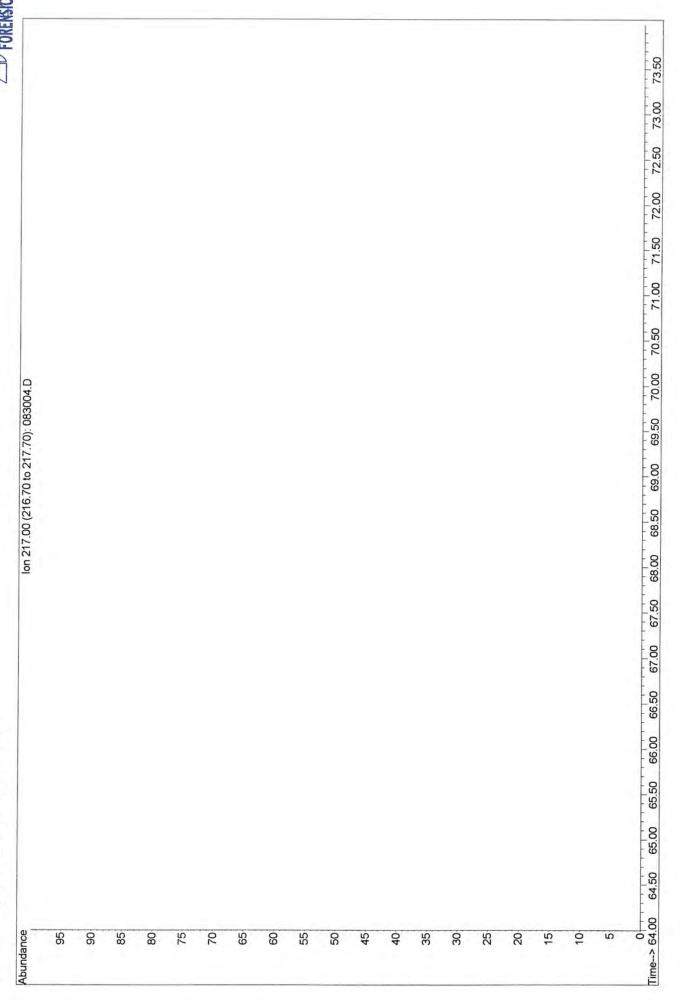


34011008040 (36919-4) soil extract (1:2) MGP, Floyd Snider, QB SS5318


| DREN |
|------|
| H    |
| J    |
|      |

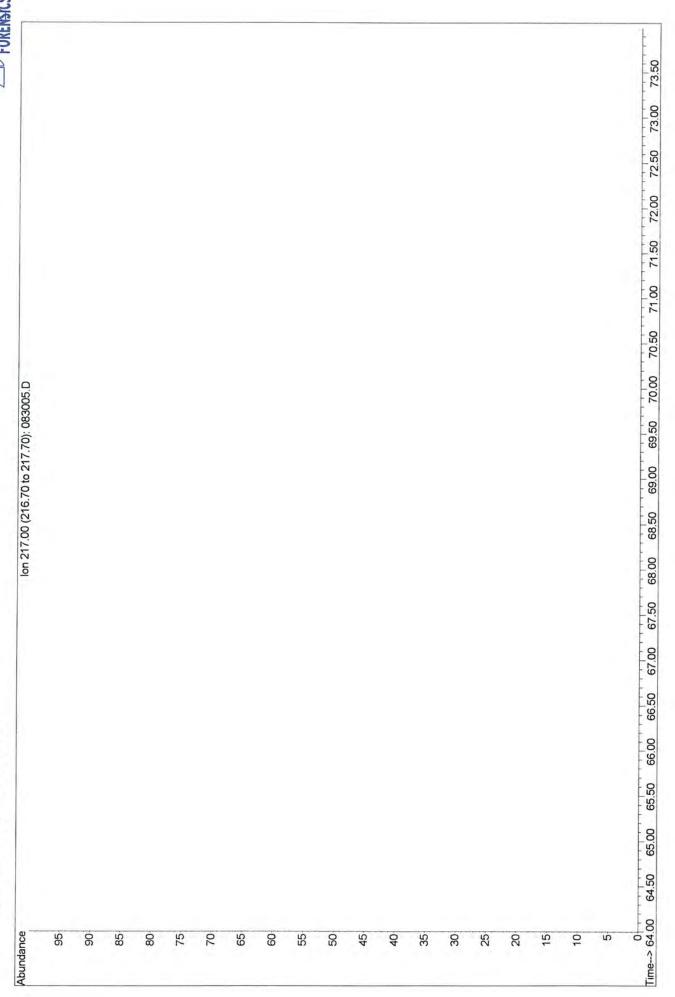
|--|--|--|--|--|--|

34011008043 (36919-7) soil extract (1:2) MGP, Floyd Snider, QB SS5318, Vf=3ml

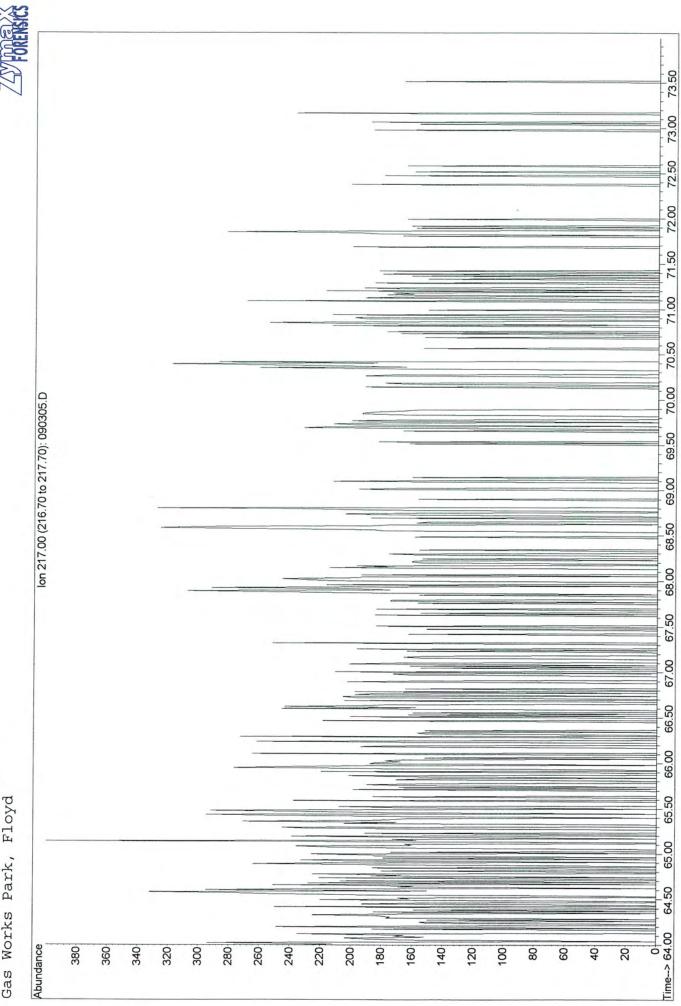

|                                         |     |     | <u></u> |     |     |     |     |     |     |     |       |        |
|-----------------------------------------|-----|-----|---------|-----|-----|-----|-----|-----|-----|-----|-------|--------|
|                                         |     |     |         |     |     |     |     |     |     |     |       |        |
|                                         |     |     |         |     |     |     |     |     |     |     |       |        |
|                                         |     |     |         |     |     |     |     |     |     |     |       |        |
|                                         |     |     |         |     |     |     |     |     |     |     |       |        |
|                                         |     |     |         |     |     |     |     |     | _   |     |       |        |
|                                         |     |     |         |     |     |     |     |     |     |     |       |        |
|                                         |     |     |         |     |     |     |     |     |     |     |       |        |
| 3008.D                                  |     |     |         |     |     |     | 1.2 |     |     |     |       |        |
| 7.70): 08                               |     |     |         |     |     |     |     |     | -   |     |       |        |
| 70 to 21                                |     |     |         |     |     |     |     | -   |     |     |       |        |
| 0 (216.                                 |     |     |         |     |     |     |     |     |     |     |       |        |
| lon 217.00 (216.70 to 217.70): 083008.D |     |     |         |     |     |     |     |     |     |     |       |        |
|                                         |     |     |         |     |     |     |     |     |     |     | 51501 |        |
|                                         |     |     |         |     |     |     |     |     |     |     |       |        |
|                                         |     |     |         |     |     |     |     |     |     |     |       |        |
|                                         |     |     |         |     |     |     |     |     | T Y |     |       |        |
|                                         |     |     |         |     |     |     |     | -   |     |     |       |        |
|                                         |     |     |         |     |     |     |     |     |     |     |       |        |
|                                         |     |     |         |     |     |     |     | -   |     |     |       |        |
|                                         |     |     |         |     |     |     |     | -   |     |     |       |        |
|                                         |     |     |         |     |     |     |     |     |     |     |       |        |
| Abundance                               | 600 | 550 | 500     | 450 | 400 | 350 | 300 | 250 | 200 | 150 | 100   | 2<br>2 |

soil extract (1:7) SS5318, Vf=3ml 34011008050 (36920-1) MGP, Floyd Snider, QB

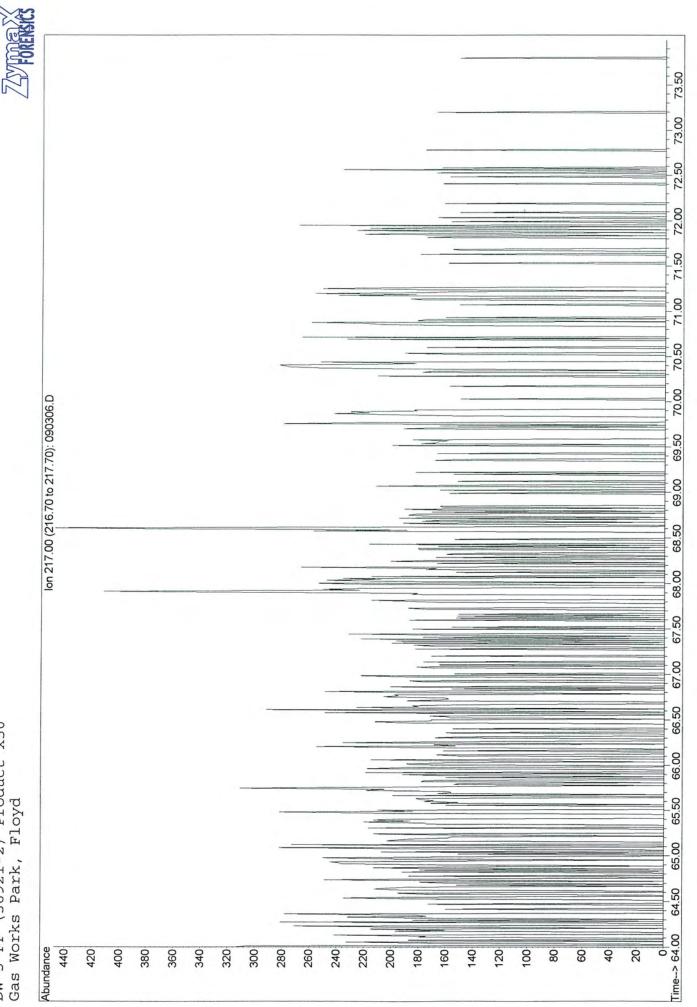


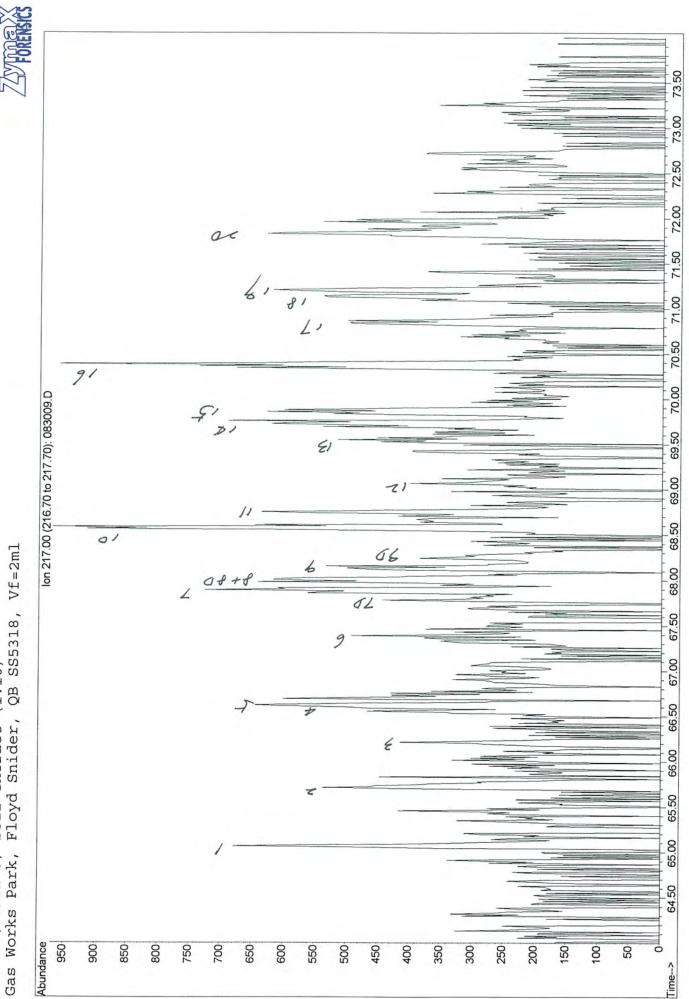

34011008054 (36920-5) soil extract MGP, Floyd Snider, QB SS5318






34011008056 (36920-7) soil extract MGP, Floyd Snider, QB SS5318








DW-5-FP (36921-2) Product x50 Gas Works Park, Floyd

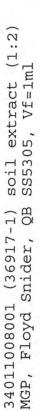


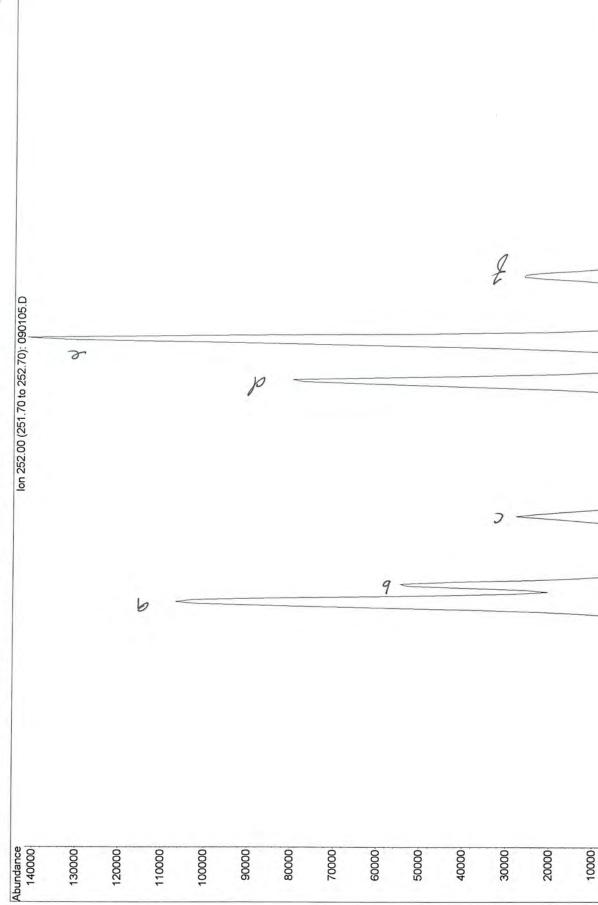


soil extract (1:10)
Floyd Snider, QB SS5318, Vf=2ml 3-1-G (36921-3) Gas Works Park,

1-1G (36922-3) soil extract (1:12) MGP, Floyd Snider, QB SS5318, Vf=3ml



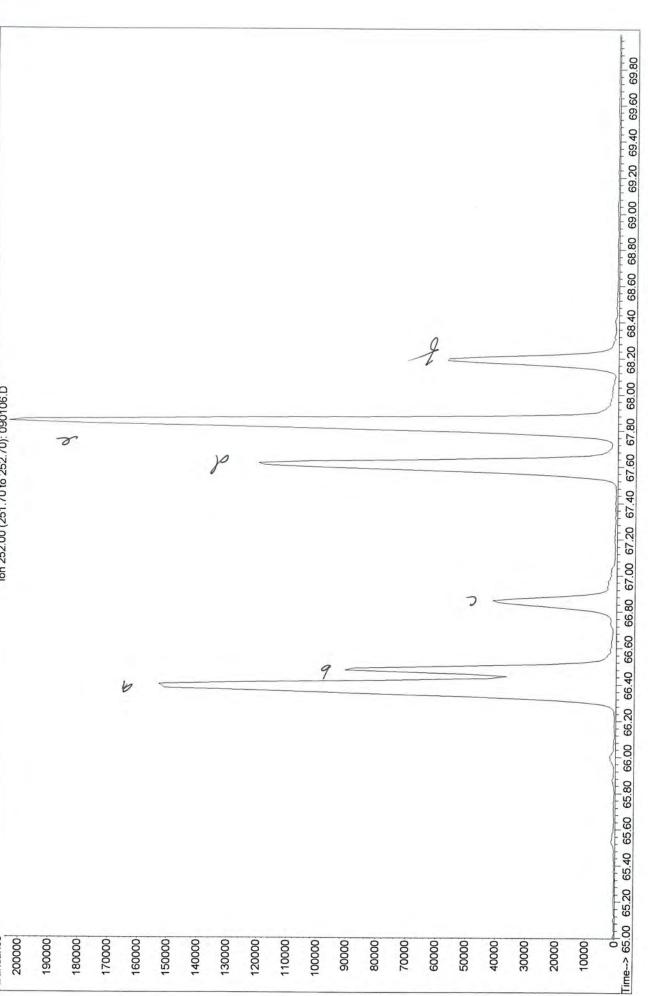

|                                         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |    |    |    |    |     |       | -    |
|-----------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|----|----|----|----|-----|-------|------|
|                                         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |    |    |    |    |     |       | -    |
|                                         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |    |    |    |    |     |       |      |
|                                         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |    |    | 5  |    |     |       |      |
|                                         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |    |    |    |    |     |       |      |
|                                         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |    |    |    |    |     |       |      |
|                                         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |    |    |    |    |     |       |      |
| 83010.D                                 |     |     | _   | _   |     |     | -   |     |     |     |     |     |     |     |      |    |    |    |    |     |       |      |
| 217.70): 0                              |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |    |    |    |    |     |       |      |
| lon 217.00 (216.70 to 217.70): 083010.D |     |     |     |     |     | _   |     |     |     |     |     |     |     |     |      |    |    |    |    |     |       |      |
| on 217.00                               |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |    |    |    |    |     |       |      |
|                                         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |    |    |    |    |     |       |      |
|                                         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |    |    |    |    |     |       |      |
|                                         |     |     |     |     |     |     | -   |     |     |     | _   |     |     |     | 1.00 |    |    |    |    |     |       |      |
|                                         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |    |    |    |    |     |       |      |
|                                         |     |     |     |     |     | _   |     |     |     |     |     | _   |     |     |      |    |    |    |    |     |       |      |
|                                         |     |     |     |     |     | _   |     |     |     |     |     |     |     |     |      |    |    |    |    |     |       |      |
|                                         |     |     |     |     |     | 1   |     |     |     |     |     |     |     |     |      | -  |    |    |    |     |       |      |
| ADUNDANCE                               | 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90   | 80 | 70 | 60 | 20 | 40. | 30.30 | <br> |

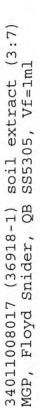


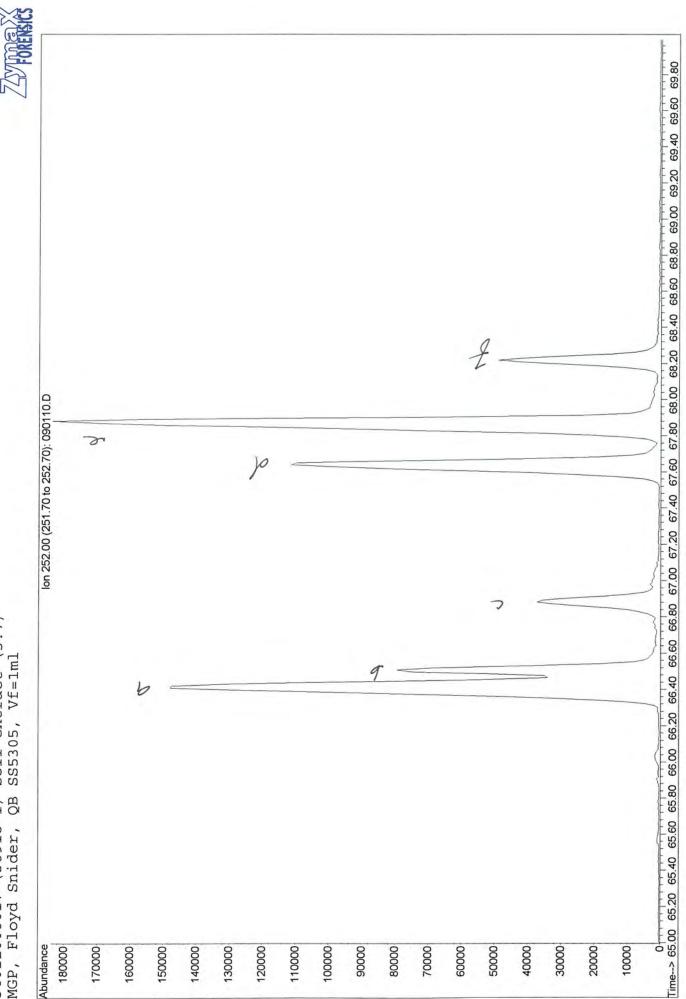

### Table

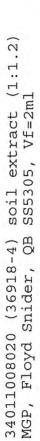
# Key for Identification for Six Pyrogenic PAH (m/z 252)

| Peak No. | Identity             |
|----------|----------------------|
| а        | Benzo(B)fluoranthene |
| b        | Benzo(K)fluoranthene |
| с        | Benzo(A)fluoranthene |
| d        | Benzo(E)pyrene       |
| е        | Benzo(A)pyrene       |
| f        | Perylene             |
|          |                      |

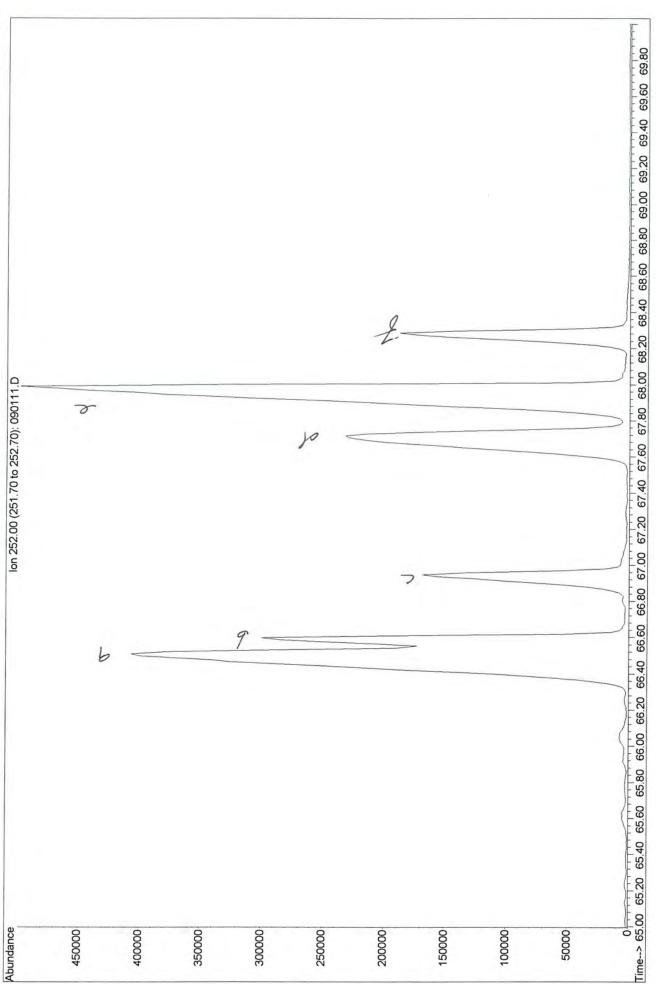


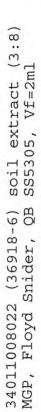





0 Time--> 65.00 65.20 65.40 65.60 65.80 66.00 66.20 66.40 66.60 67.00 67.20 67.40 67.60 67.80 68.00 68.20 68.40 68.60 68.80 69.00 69.20 69.40 69.60 69.60



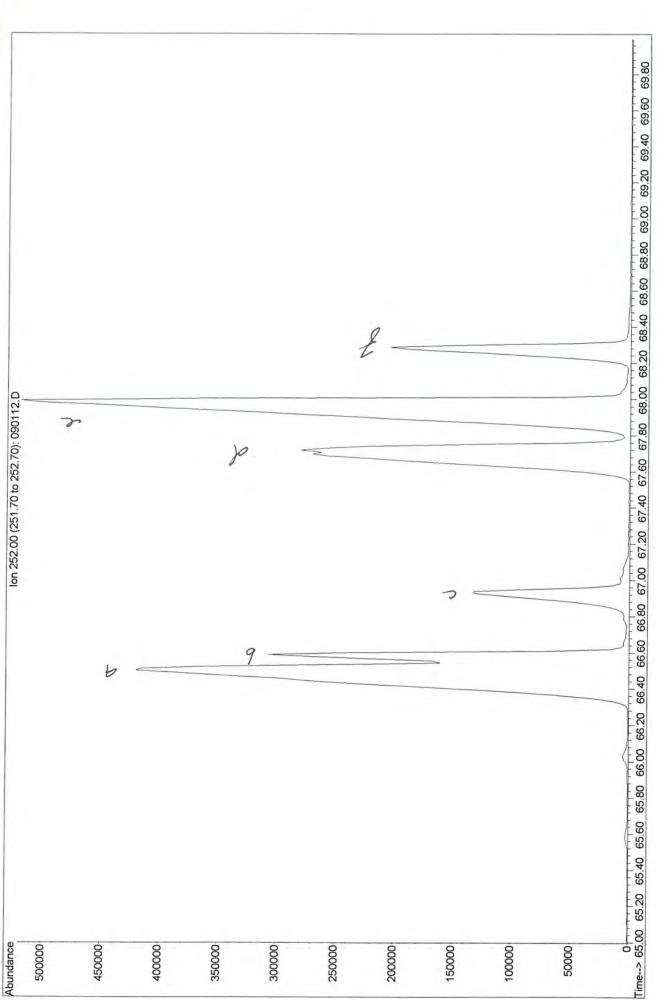

PORENEICS



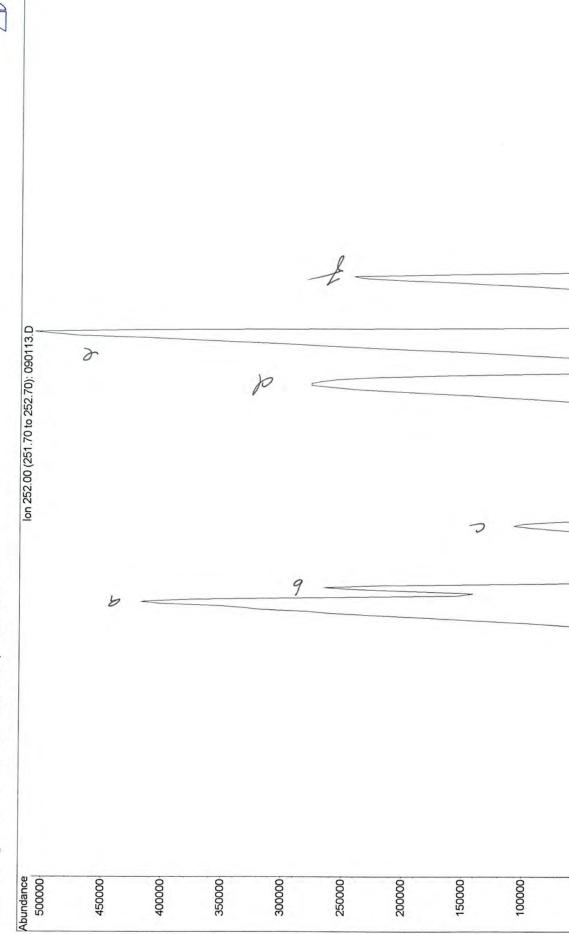





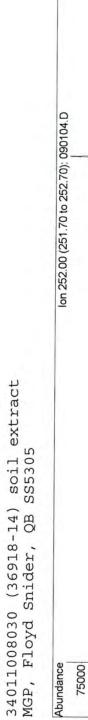


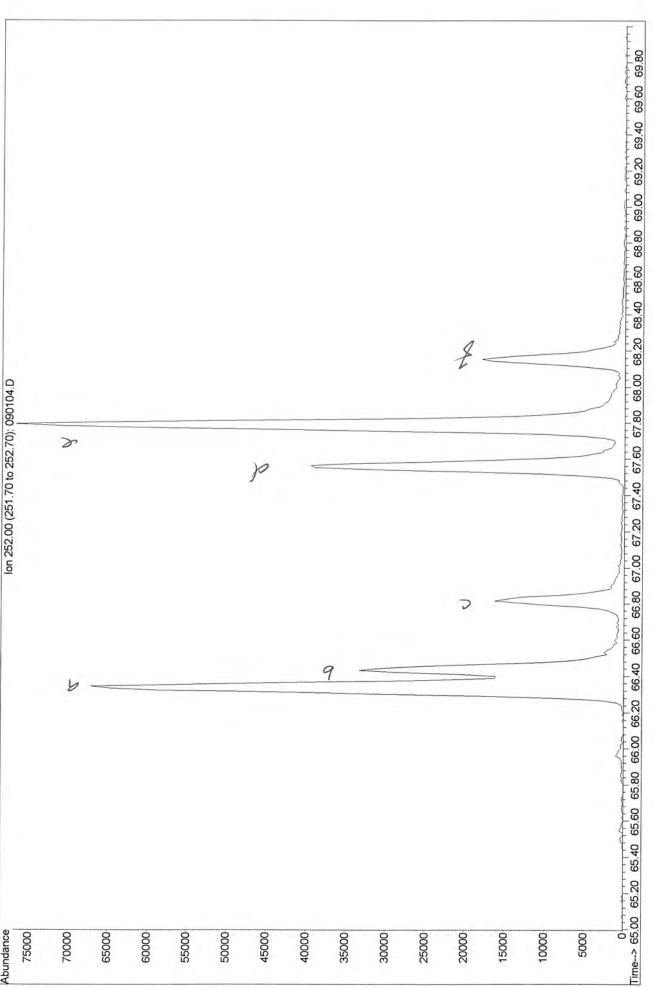





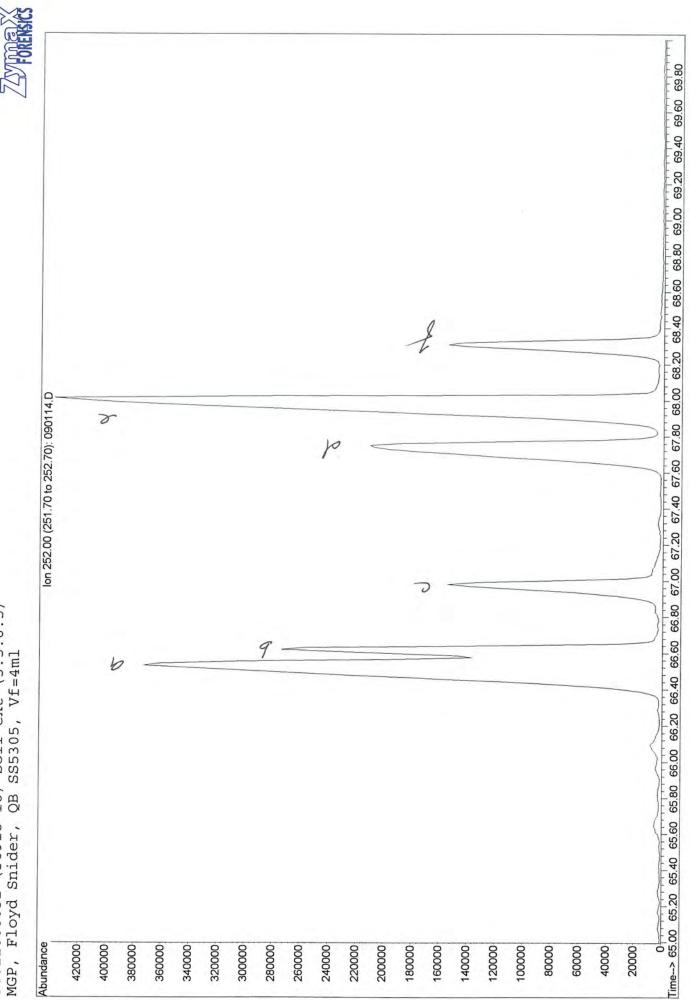





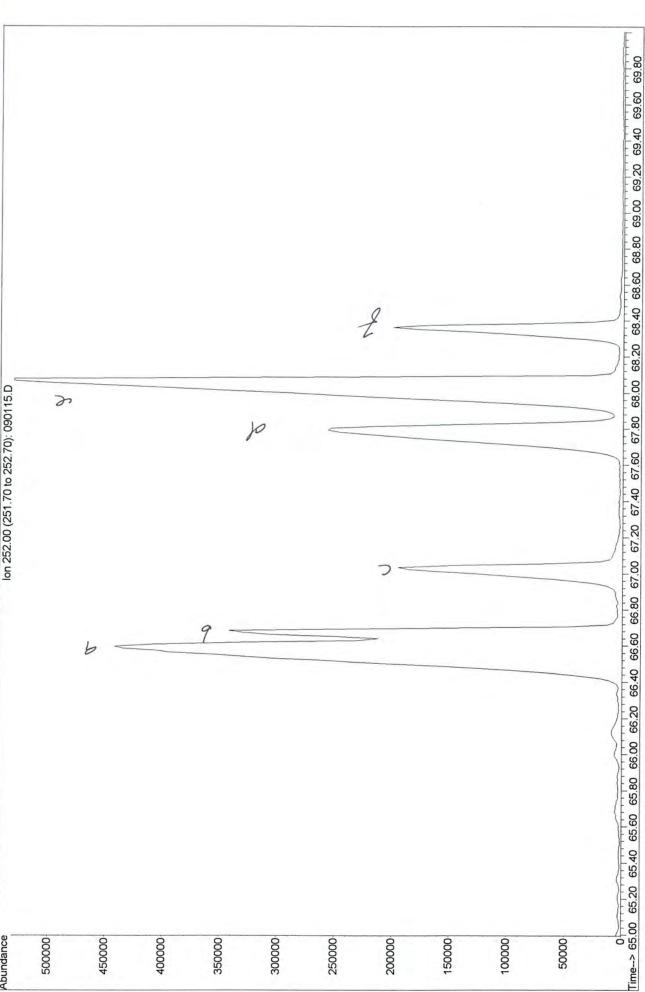


FORENCE

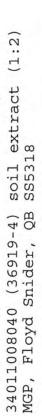


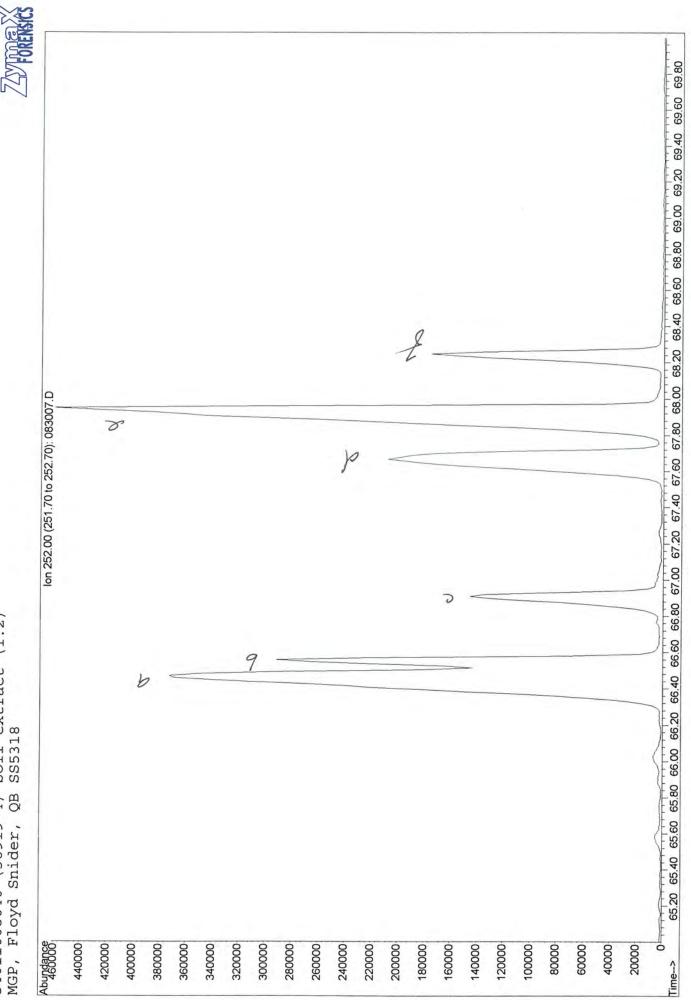


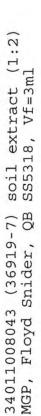



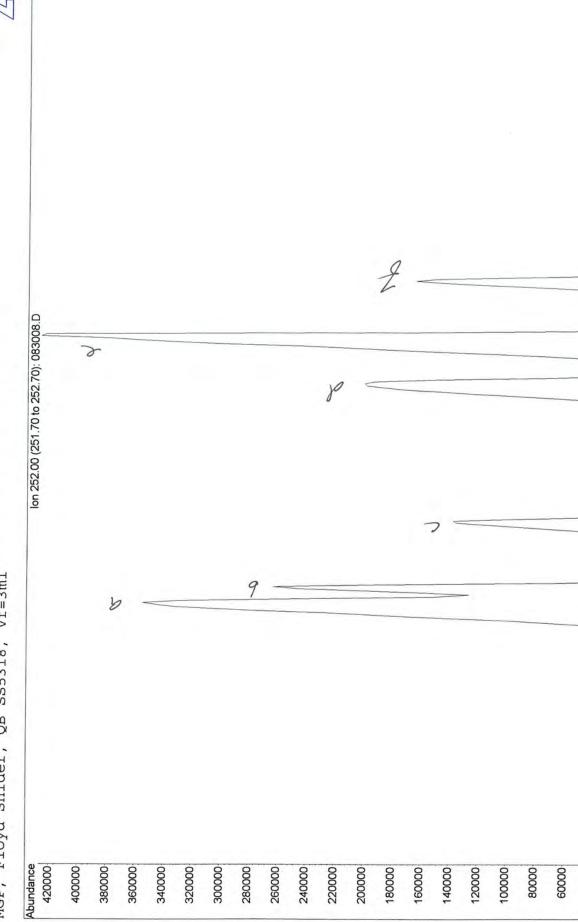

Time--> 65.00 65.20 65.40 65.60 65.80 66.00 66.20 66.40 66.60 67.00 67.20 67.40 67.60 67.80 68.00 68.20 68.40 68.60 68.80 69.00 69.20 69.40 69.60 69.80





34011008032 (36918-16) soil ext (3.5:6.5) MGP, Floyd Snider, QB SS5305, Vf=4ml



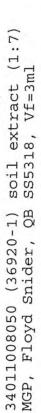



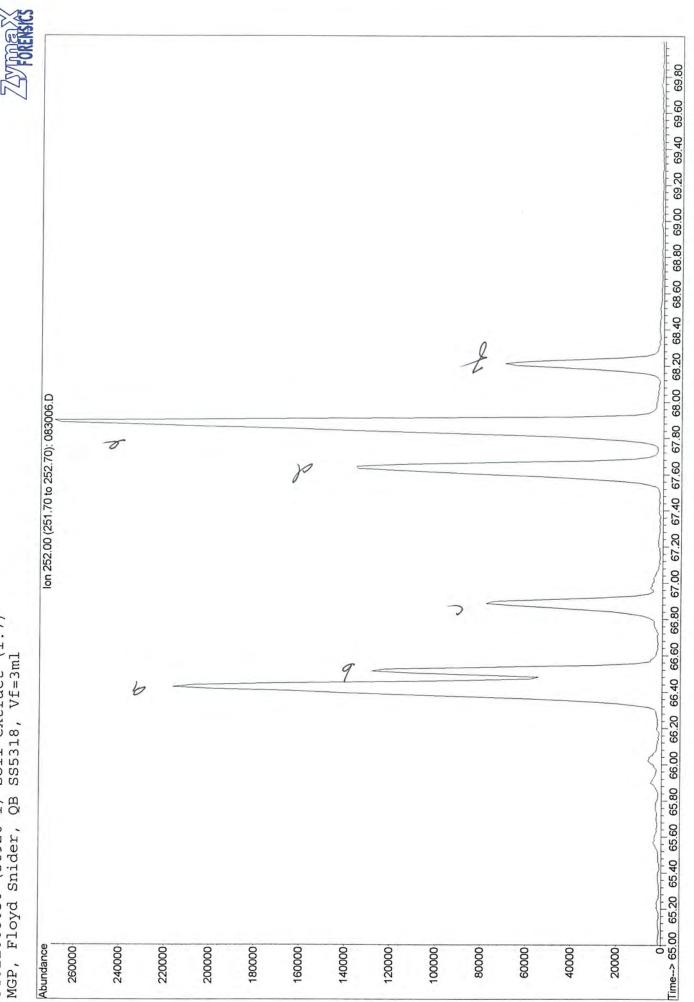


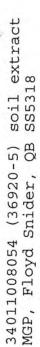


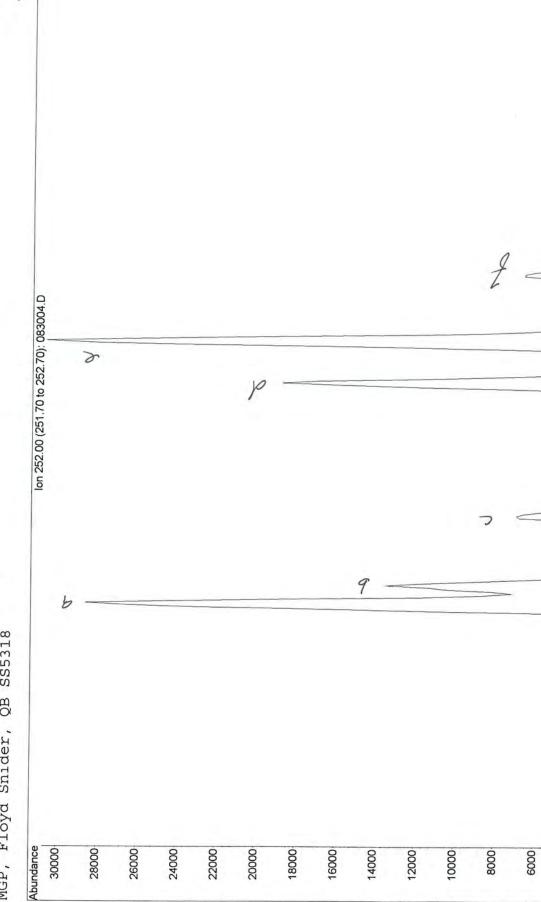




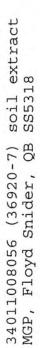


69.80

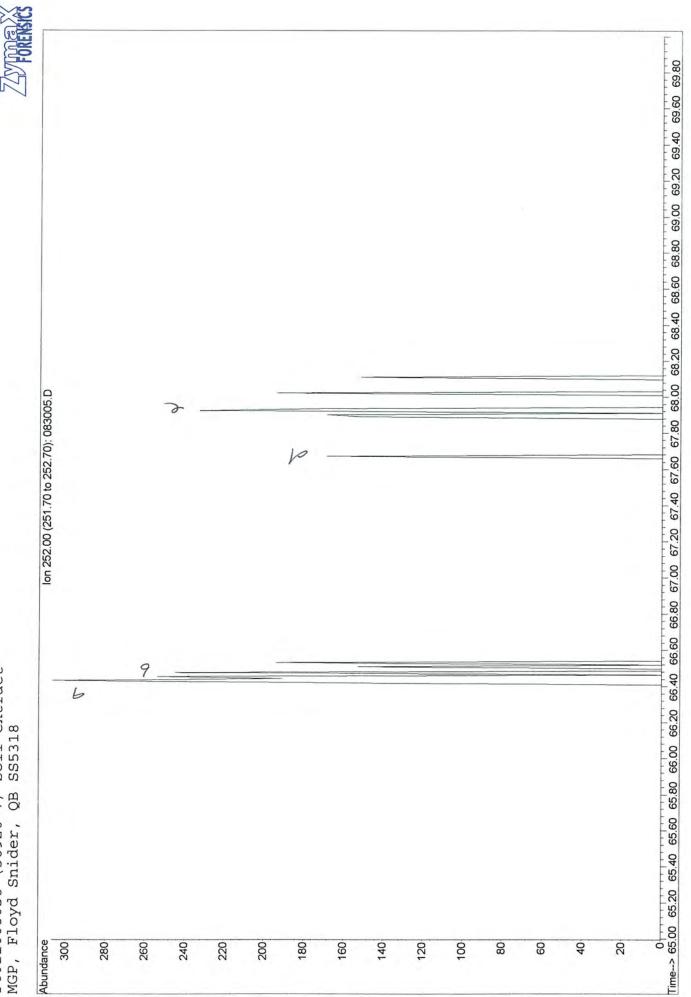

0 Time--> 65.00 65.20 65.40 65.60 65.80 66.00 66.20 66.40 66.60 67.00 67.20 67.40 67.60 67.80 68.00 68.20 68.40 68.60 68.60 69.20 69.40 69.60

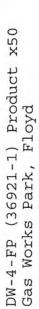

40000

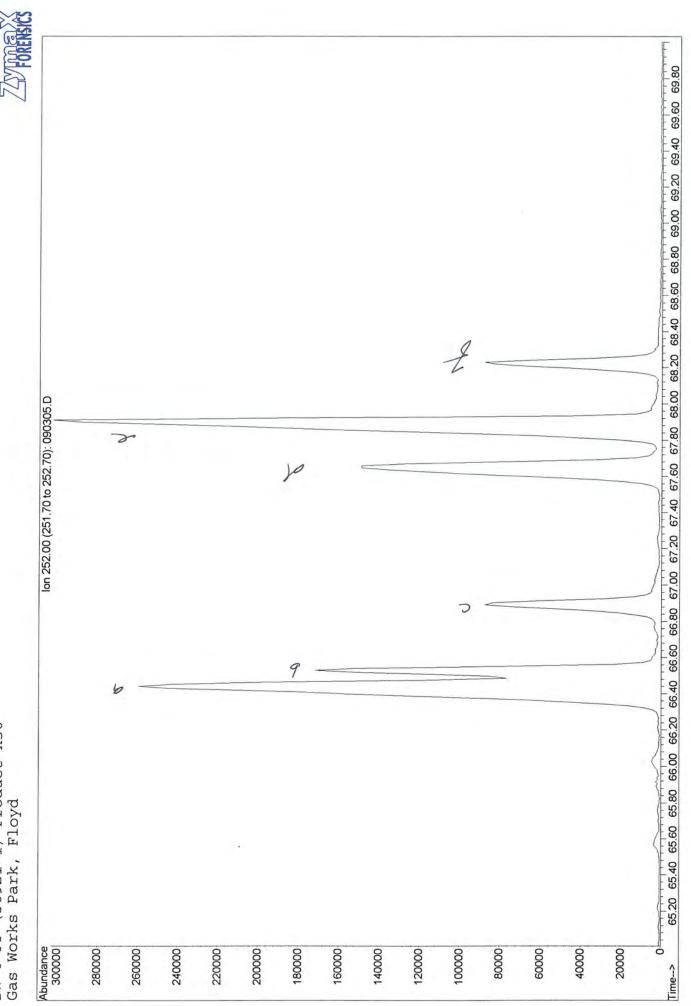
20000

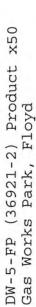




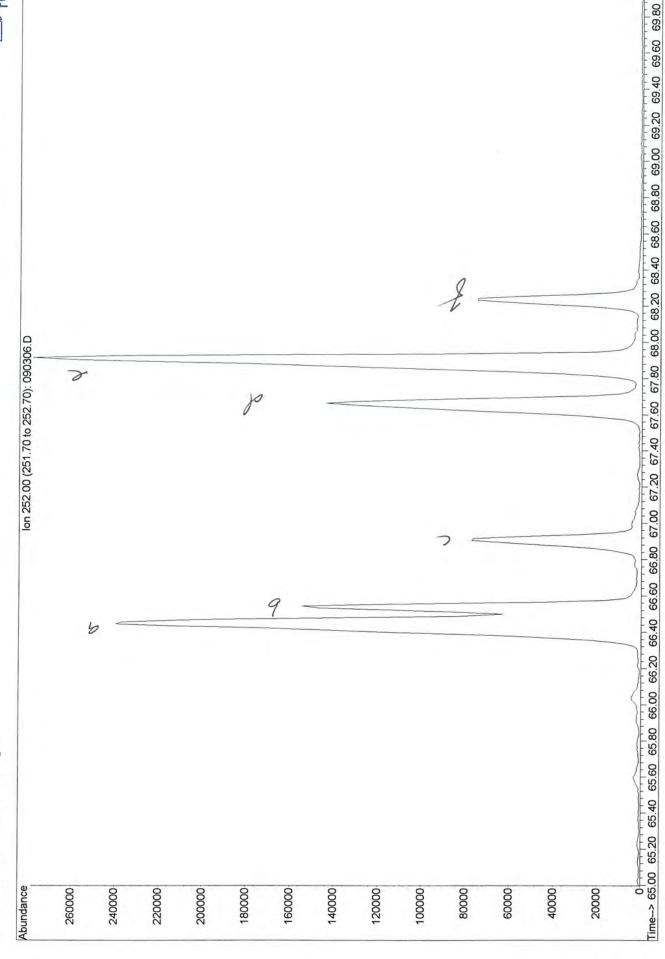



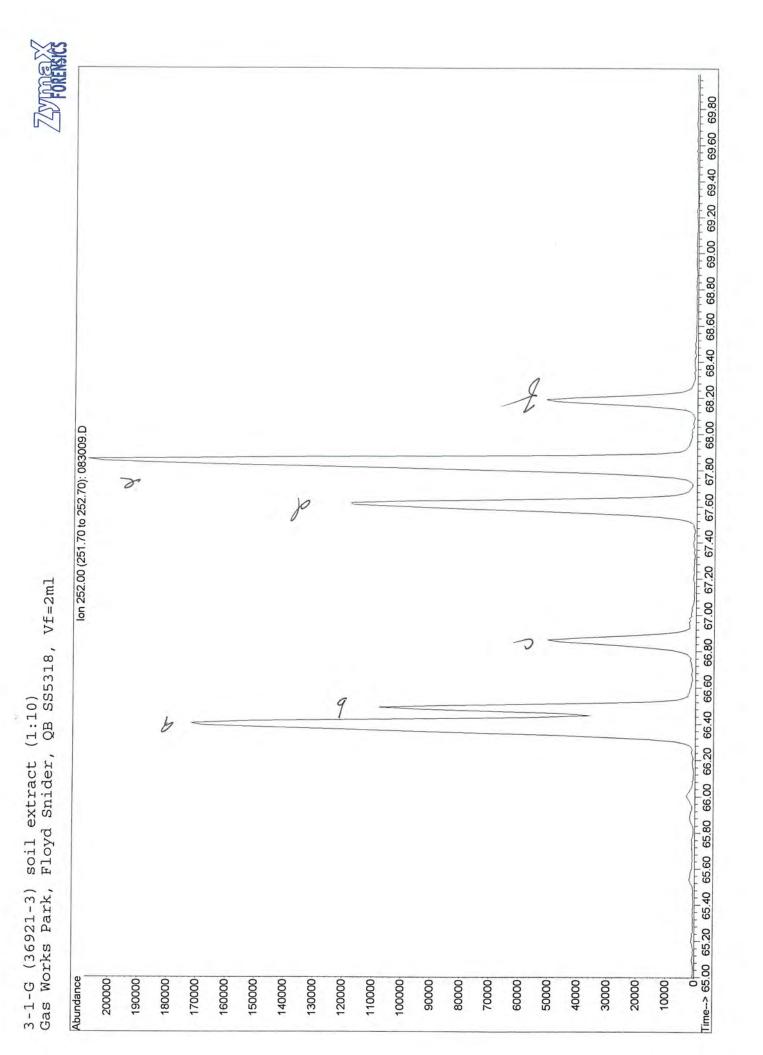



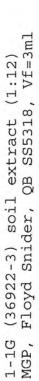


Time--> 65.00 65.20 65.40 65.60 65.80 66.00 66.20 66.40 66.60 67.00 67.20 67.40 67.60 67.80 68.00 68.20 68.40 68.60 68.80 69.00 69.20 69.40 69.60 69.60

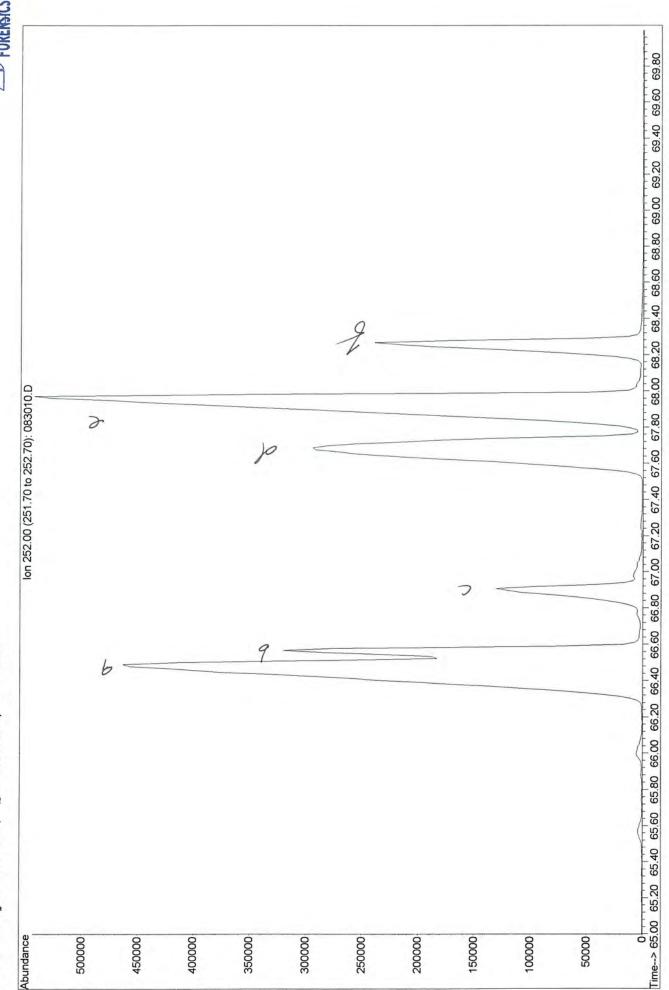





**FORENCE** 







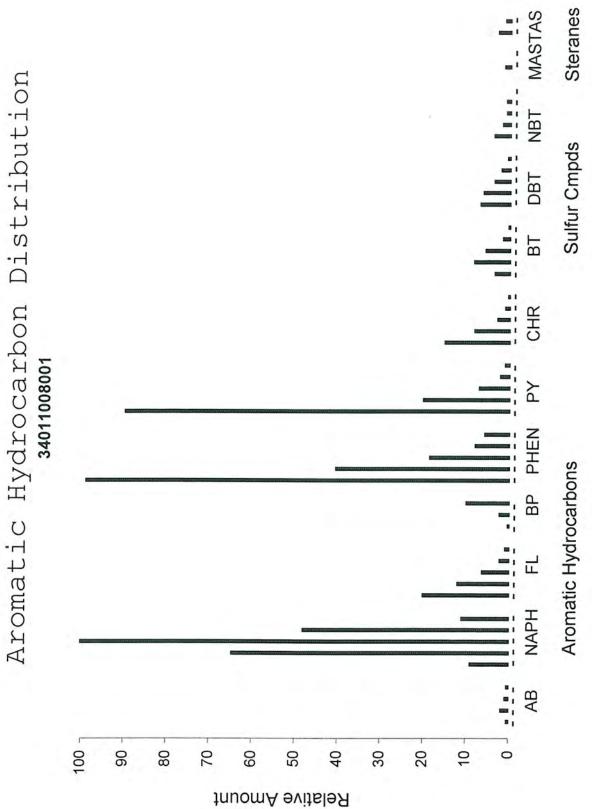




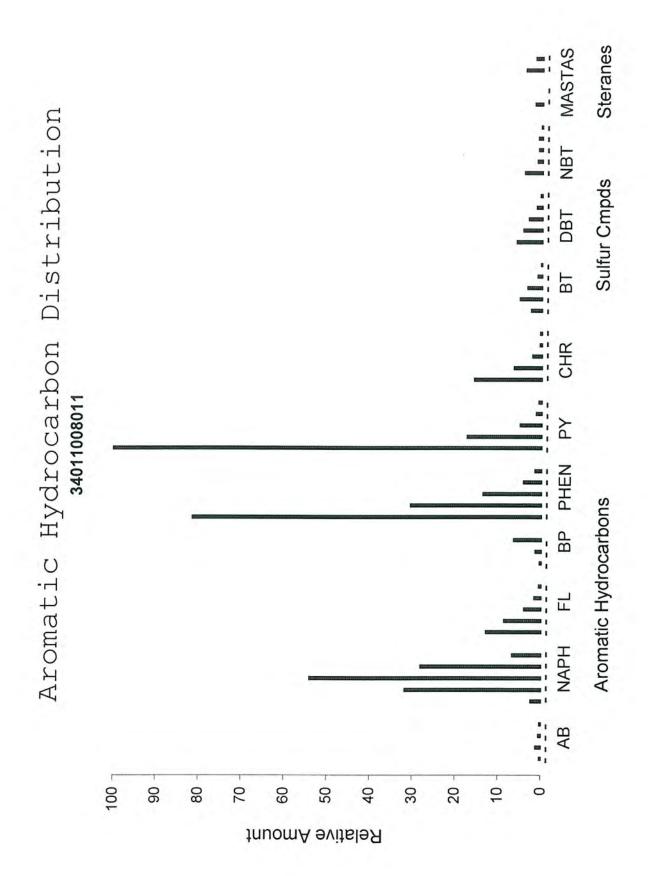
### Table

# Key for Aromatic Compounds Identification in Bar Diagram

| AB:   | C <sub>3</sub> -C <sub>6</sub> Alkylbenzenes            |
|-------|---------------------------------------------------------|
| NAPH: | C0-C4 Naphthalenes                                      |
| FL:   | C <sub>0</sub> -C <sub>4</sub> Fluorenes                |
| BP:   | C <sub>0</sub> -C <sub>2</sub> BP Biphenyl/Dibenzofuran |
| PHEN: | $C_0$ - $C_4$ Phenanthrenes                             |
| PY:   | $C_0$ - $C_4$ Pyrenes/Fluoranthenes                     |
| CHR:  | C <sub>0</sub> -C <sub>4</sub> Chrysenes                |
| BT:   | $C_1$ - $C_5$ Benzothiophenes                           |
| DBT:  | C0-C4 Dibenzothiophenes                                 |
| NBT:  | C0-C4 Naphthobenzothiophenes                            |
| MAS:  | Monoaromatic Steranes                                   |
| TAS:  | Triaromatic Steranes                                    |

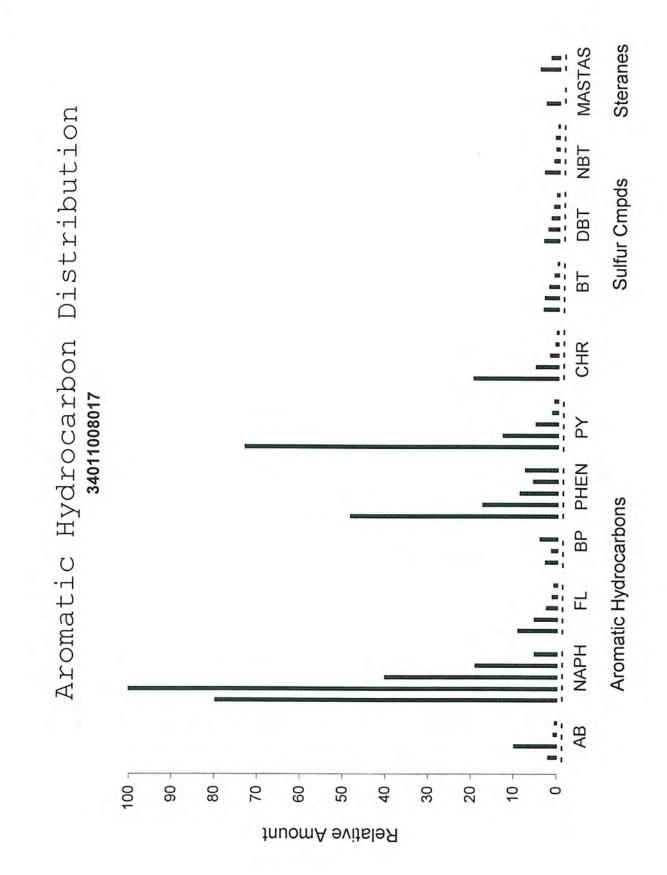

#### Table



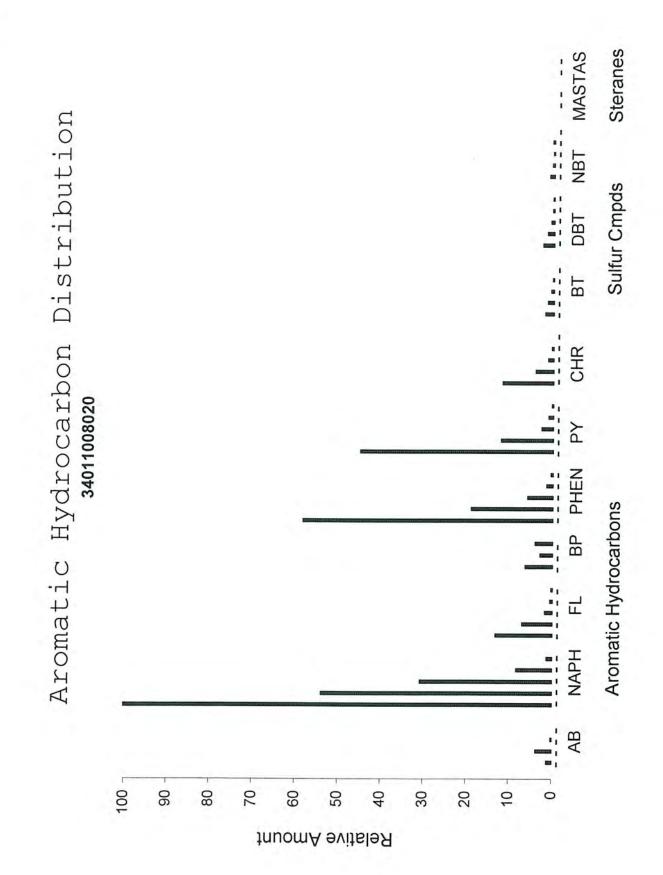

## Key for Identifying Aromatic Hydrocarbons at Various m/z Units

| No.      | m/z | Compound                               |  |
|----------|-----|----------------------------------------|--|
| 1        | 120 | C <sub>3</sub> -alkylbenzenes          |  |
| 2<br>3   | 134 | C <sub>4</sub> -alkylbenzenes          |  |
| 3        | 148 | C₅-alkylbenzenes                       |  |
| 4        | 162 | C <sub>6</sub> -alkylbenzenes          |  |
| 5        | 128 | C <sub>0</sub> -naphthalene            |  |
| 6        | 142 | C <sub>1</sub> -naphthalenes           |  |
| 7        | 156 | C <sub>2</sub> -naphthalenes           |  |
| 8        | 170 | C <sub>3</sub> -naphthalenes           |  |
| 9        | 184 | C₄-naphthalenes                        |  |
| 10       | 166 | C <sub>0</sub> -fluorene               |  |
| 11       | 180 | C <sub>1</sub> -fluorenes              |  |
| 12       | 194 | C <sub>2</sub> -fluorenes              |  |
| 13       | 208 | C <sub>3</sub> -fluorenes              |  |
| 14       | 222 | C₄-fluorenes                           |  |
| 15       | 154 | C <sub>0</sub> -biphenyl               |  |
| 16       | 168 | $C_1$ -biphenyls + dibenzofuran        |  |
| 17       | 182 | $C_2$ -biphenyls + $C_1$ -dibenzofuran |  |
| 18       | 178 | C₀-phenanthrene                        |  |
| 19       | 192 | C <sub>1</sub> -phenanthrenes          |  |
| 20       | 206 | $C_2$ -phenanthrenes                   |  |
| 21       | 220 | $C_3$ -phenanthrenes                   |  |
| 22       | 234 | $C_4$ -phenanthrenes                   |  |
| 23       | 202 | C <sub>0</sub> -pyrene/fluoranthene    |  |
| 24       | 216 | C <sub>1</sub> -pyrenes/fluoranthenes  |  |
| 25       | 230 | C <sub>2</sub> -pyrenes/fluoranthenes  |  |
| 26       | 244 | C <sub>3</sub> -pyrenes/fluoranthenes  |  |
| 27       | 258 | C <sub>4</sub> -pyrenes/fluoranthenes  |  |
| 28       | 228 | $C_0$ -chrysene                        |  |
| 29       | 242 | C <sub>1</sub> -chrysenes              |  |
| 30       | 256 | C <sub>2</sub> -chrysenes              |  |
| 31       | 270 | C <sub>3</sub> -chrysenes              |  |
| 32       | 284 | C₄-chrysenes                           |  |
| 33       | 148 | C <sub>1</sub> -benzothiophenes        |  |
| 34       | 162 | $C_2$ -benzothiophenes                 |  |
| 35       | 176 | C <sub>3</sub> -benzothiophenes        |  |
| 36       | 190 | C₄-benzothiophenes                     |  |
| 37       | 204 | C₅-benzothiophenes                     |  |
| 28       | 184 | $C_0$ -dibenzothiophene                |  |
| 39       | 198 | C <sub>1</sub> -dibenzothiophenes      |  |
| 40       | 212 |                                        |  |
| 41       | 226 | C <sub>2</sub> -dibenzothiophenes      |  |
| 42       | 240 | C <sub>3</sub> -dibenzothiophenes      |  |
| 43       |     | C₄-dibenzothiophenes                   |  |
| +3<br>14 | 234 | C <sub>0</sub> -naphthobenzothiophene  |  |
|          | 248 | C <sub>1</sub> -naphthobenzothiophenes |  |
| 15       | 262 | C <sub>2</sub> -naphthobenzothiophenes |  |
| 16       | 276 | C <sub>3</sub> -naphthobenzothiophenes |  |
| 17       | 290 | C <sub>4</sub> -naphthobenzothiophenes |  |
| 18       | 253 | Monoaromatic steranes                  |  |
| 19       | 267 | Monoaromatic steranes                  |  |
| 50       | 239 | Monoaromatic steranes                  |  |
| 51       | 231 | Triaromatic steranes                   |  |
| 52       | 245 | Triaromatic steranes                   |  |

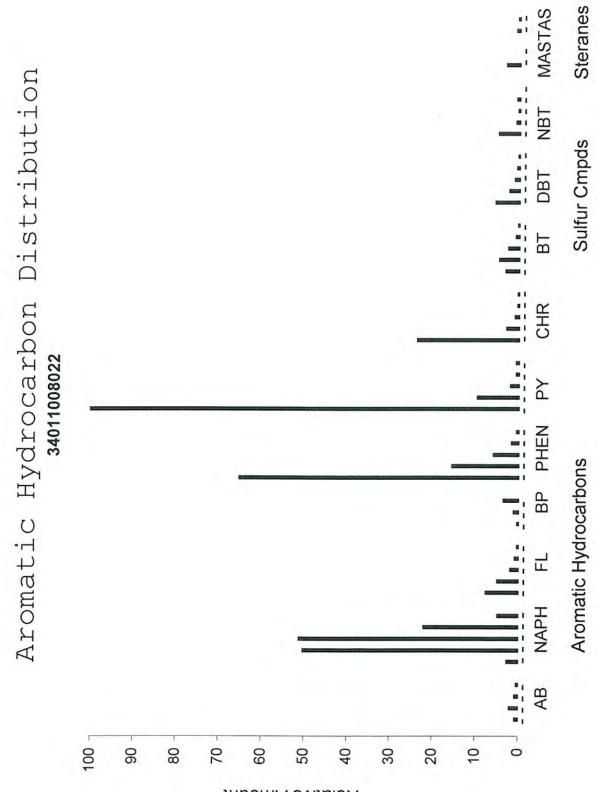






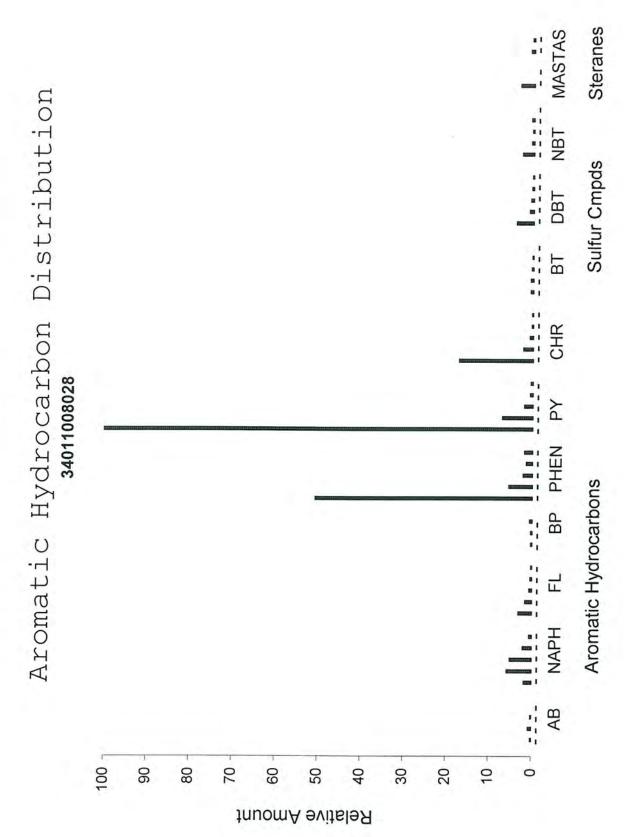




.

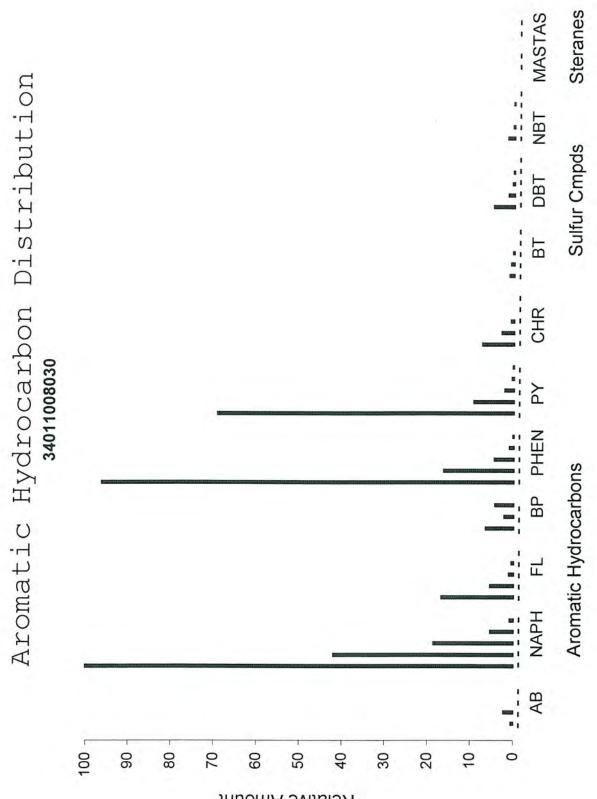






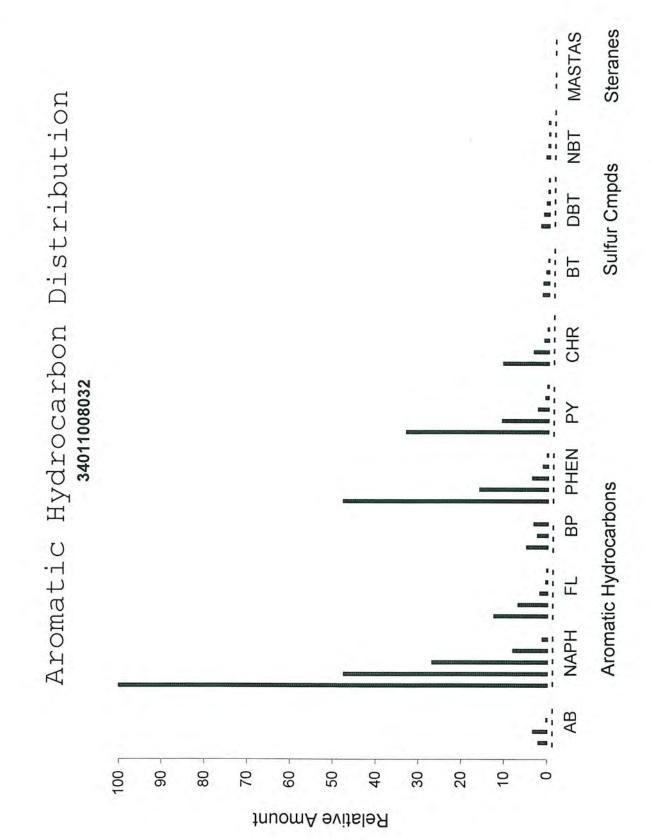





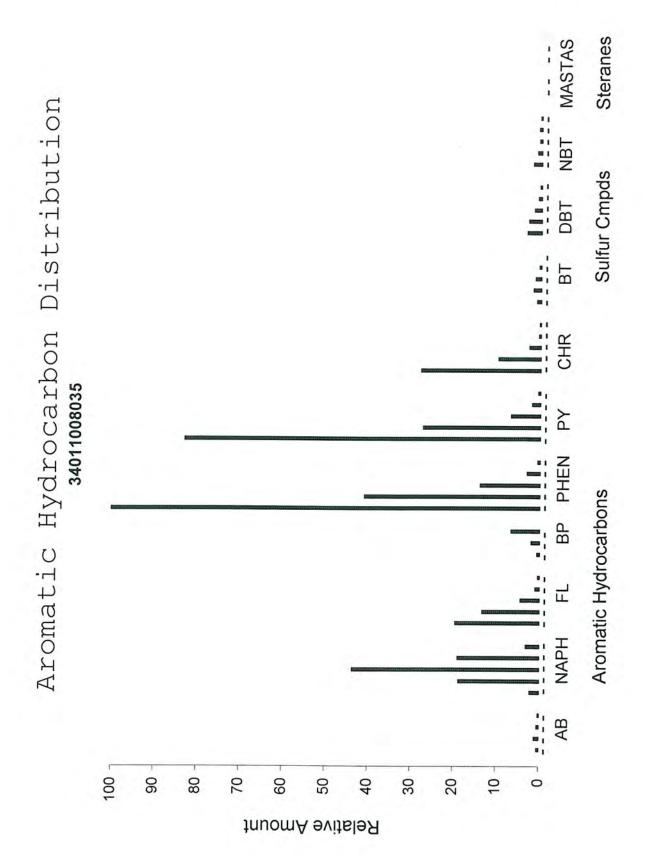




Relative Amount

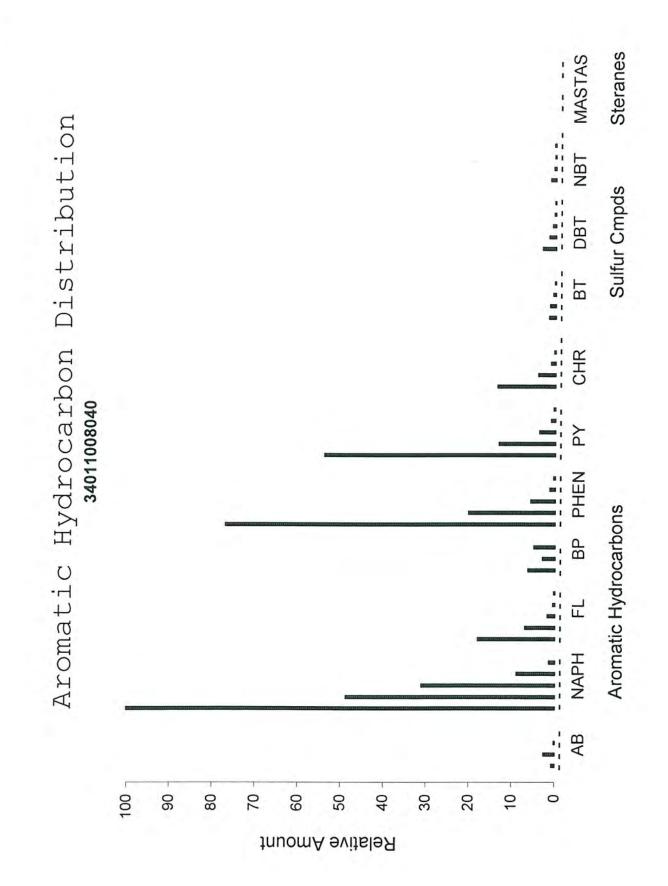




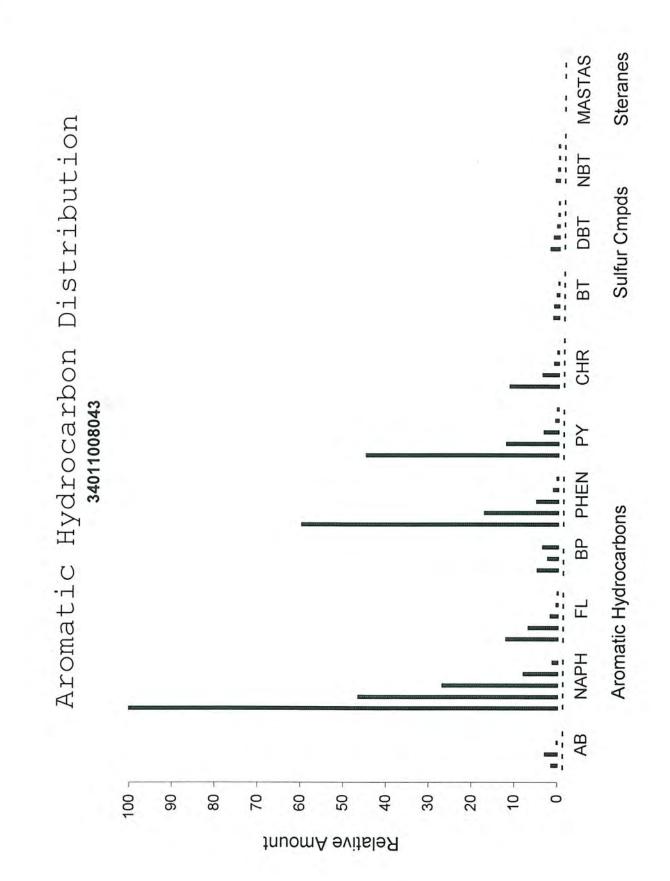



Relative Amount





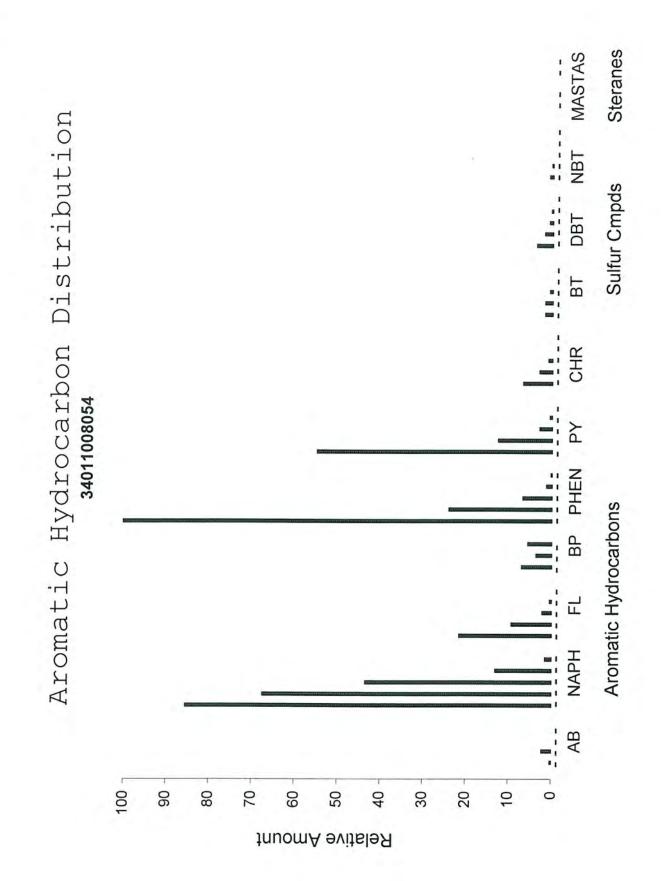




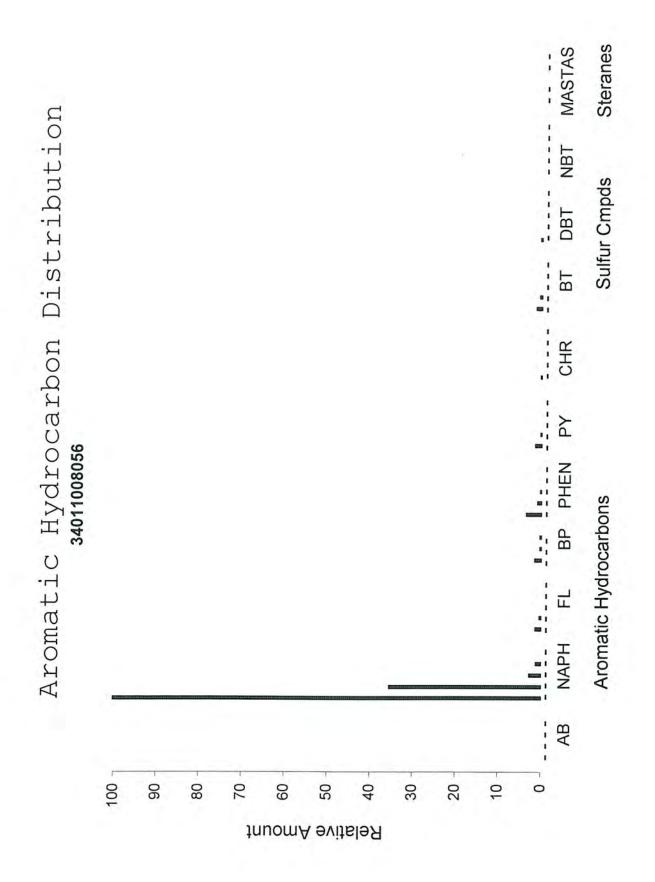




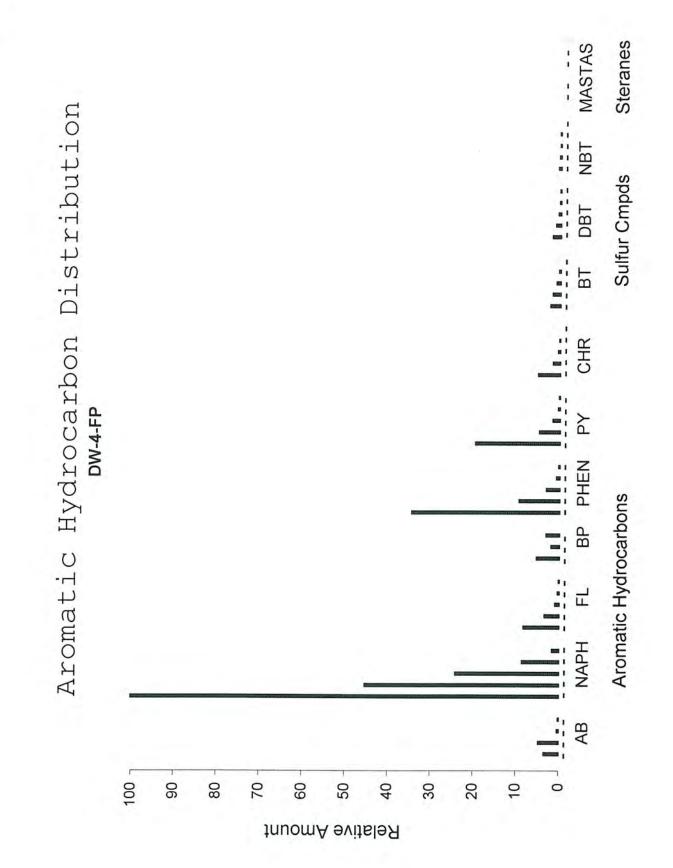




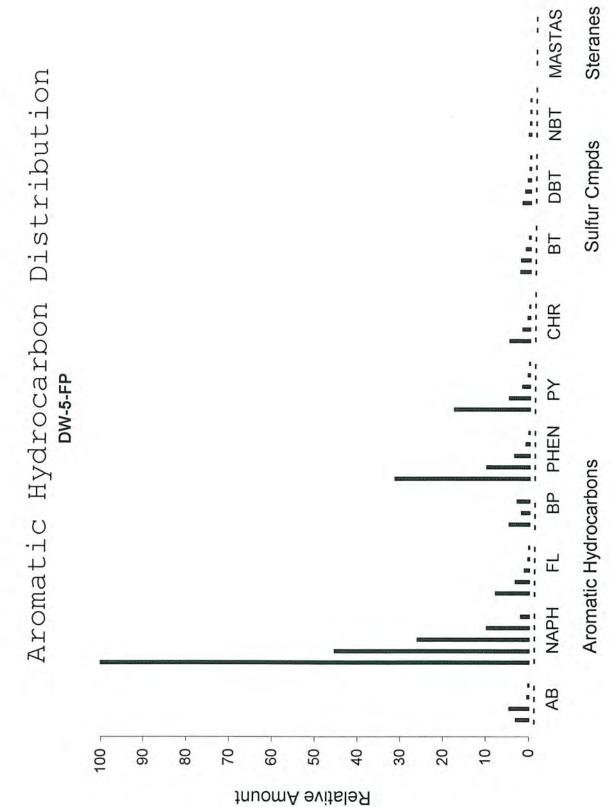

÷





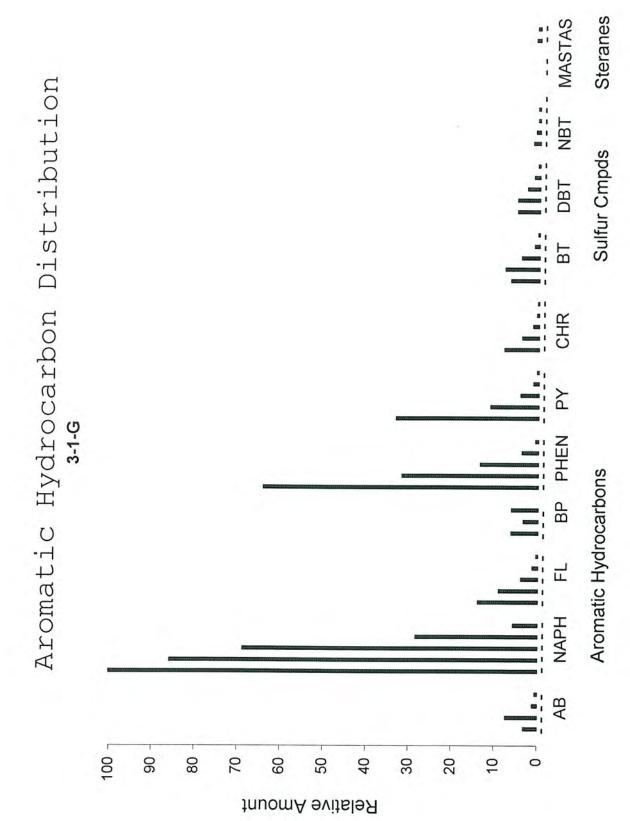





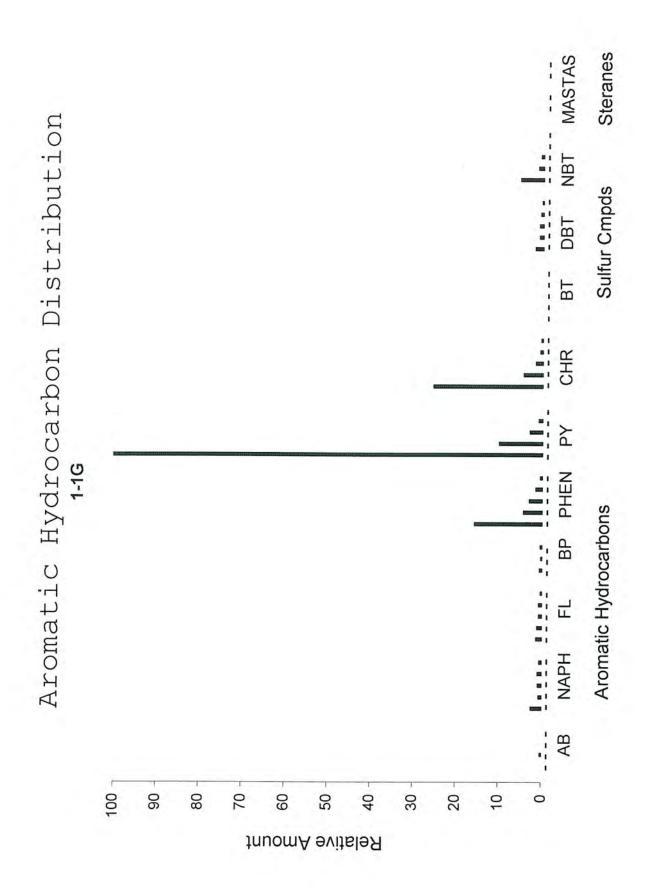










av oni









## SUB-ATTACHMENT 2D-4.2 NAPL Investigation Sediment Core Logs

Seattle Law Department Gas Works Park

**Chemical Forensics Sampling Report** 

# Appendix B NAPL Investigation 2004 Sediment Core Logs

## DRAFT

CONFIDENTIAL AND PRIVILEGED: PREPARED IN PREPARATION FOR LITIGATION

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

#### Station: 1--1

Maximum depth of retained sediment: 7.2 ft

Mudline elevation:

8.7 ft (Corps lake datum)

|       | Core       | Laboratory    |  |
|-------|------------|---------------|--|
|       | collection | processing    |  |
| Date: | 8/11/2004  | Aug. 11, 2004 |  |
| Time: | 13:40      | 15:00         |  |

Percent recovery (on-deck):

74%

| 0 -                       | Visual Description of Sediment                                                                                                                                                                     | Summary Interpretation          | Segment     | Primary Sample ID | Secondary Sample ID |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|-------------------|---------------------|
| 1 -                       | Black; mixture of water, wood chips,<br>clay, silt, gravel and oil; More oily from<br>1.2 to 1.5; More wood near top, gravel<br>near bottom; very soft, wet.                                       | Upper recent lake               |             | 34011008028       |                     |
| 2                         | Gray; sandy gravel (GW) with f-c<br>rounded gravel and f-c sand. Some<br>gray, silt lumps or beds. From 1.8 to<br>2.1 is laminated, silty gravel (GM) with<br>some oil penetration. No hydrocarbon |                                 |             |                   |                     |
| Depth below mudline (ft.) | odor or stains below GM. Dense,<br>moist.                                                                                                                                                          |                                 | Sampled GW. | 34011008029       |                     |
| Dept                      | Sediment lost during core recovery.                                                                                                                                                                | -<br>-<br>-<br>-<br>-<br>-<br>- |             |                   |                     |
| 6 -<br>-<br>-<br>7 -      | End of Core                                                                                                                                                                                        | End of core                     | End of core | End of core       | End of core         |
| 8 -                       | -                                                                                                                                                                                                  |                                 |             |                   |                     |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

#### Station: 1--2

Maximum depth of retained sediment: 6.9 ft

Mudline elevation: -10.8 ft (Corps lake datum)

|       | Core       | Laboratory    |  |
|-------|------------|---------------|--|
|       | collection | processing    |  |
| Date: | 8/12/2004  | Aug. 12, 2004 |  |
| Time: | 10:35      | 14:40         |  |

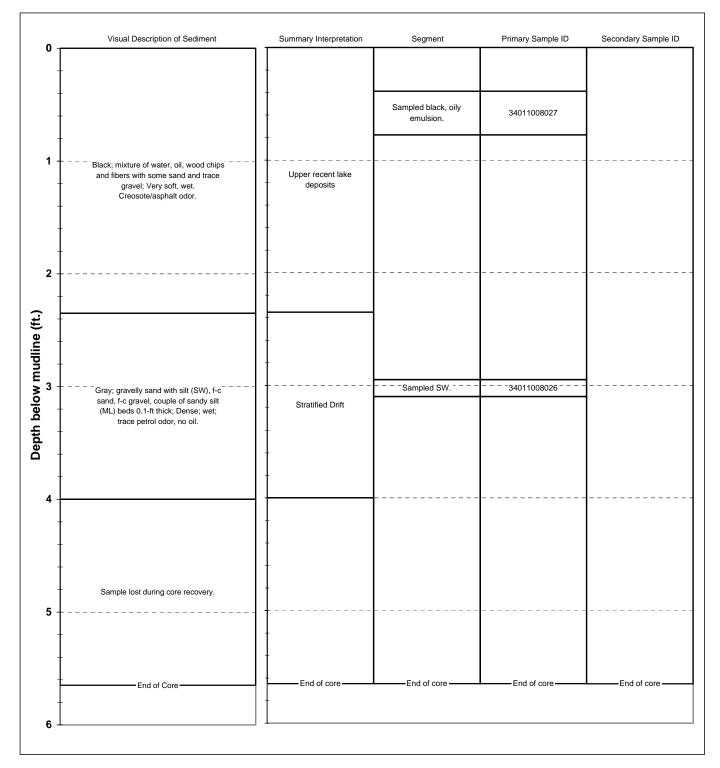
Percent recovery (on-deck): 70%

Field Log: J. LaManna

Summary Log: J. LaManna

| 0 -                       | Visual Description of Sediment                                               | Summary Interpretation | Segment     | Primary Sample ID | Secondary Sample ID |
|---------------------------|------------------------------------------------------------------------------|------------------------|-------------|-------------------|---------------------|
|                           | -                                                                            |                        |             | 34011008046       |                     |
| -                         | -                                                                            | -                      |             |                   |                     |
|                           | -                                                                            | -                      |             |                   |                     |
| ·<br>1 -                  | Black with minor gray beds; mixture of                                       | -<br>Upper recent lake |             |                   |                     |
|                           | water, wood fibers and fragments, clay<br>and oil. Very soft, wet.           | deposits               |             |                   |                     |
| -                         | -                                                                            | -                      |             |                   |                     |
| -                         | -                                                                            | Ì                      |             |                   |                     |
| 2 -                       |                                                                              |                        |             |                   |                     |
| -                         | -                                                                            |                        |             |                   |                     |
| -                         | -                                                                            | -                      |             |                   |                     |
| -                         | -                                                                            | ļ                      |             |                   |                     |
| 3 -                       |                                                                              |                        |             |                   |                     |
| (ft.)                     | Gray interbedded sandy gravey (GW),                                          | -                      |             |                   |                     |
| line                      | sand (SP) and sandy silt (SM). GW 6.7-<br>7.6, ML+SM 7.7-8.3, SP 8.3-9.0, SM | Stratified Drift       |             |                   |                     |
| pnu                       | 9.0-9.1. Dense, wet. No oil, sheen or stains.                                | -                      |             |                   |                     |
| N 4 -                     |                                                                              |                        |             |                   |                     |
| belo                      | +                                                                            |                        |             |                   |                     |
| Depth below mudline (ft.) | -                                                                            | -                      | Sampled SP. | 34011008045       |                     |
|                           | -                                                                            | -                      |             |                   |                     |
| 5 -                       |                                                                              |                        |             |                   |                     |
| -                         | -                                                                            | -                      |             |                   |                     |
|                           | -                                                                            | -                      |             |                   |                     |
| 6 -                       | -<br>Sediment lost during core recovery                                      | <b>I</b>               |             |                   |                     |
|                           | -                                                                            | +                      |             |                   |                     |
|                           | -                                                                            | +                      |             |                   |                     |
|                           | † I                                                                          | 1                      |             |                   |                     |
| 7 -                       | End of Core                                                                  | End of core            | End of core | End of core       | End of core         |
| -                         | -                                                                            | ł                      |             |                   |                     |
| -                         |                                                                              | 1                      |             |                   |                     |
| -                         | -                                                                            | +                      |             |                   |                     |
| 8 -                       |                                                                              | <u> </u>               |             |                   |                     |
|                           |                                                                              |                        |             |                   |                     |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T3


#### Station: 1--3

Maximum depth of retained sediment: 5.7 ft 74%

Mudline elevation: 20.9 ft (Corps lake datum)

| Percent recovery (on-deck): | 7 |
|-----------------------------|---|
|                             |   |

|       | Core       | Laboratory    |
|-------|------------|---------------|
|       | collection | processing    |
| Date: | 8/11/2004  | Aug. 11, 2004 |
| Time: | 12:35      | 14:45         |



Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

#### Station: 2-1 Rep 2

Maximum depth of retained sediment: 6.1 ft

-12.7 ft (Corps lake datum) Mudline elevation:

|       | Core       | Laboratory    |
|-------|------------|---------------|
|       | collection | processing    |
| Date: | 8/11/2004  | Aug. 11, 2004 |
| Time: | 17:00      | 18:00         |

ſ

58%

| Field Log:   | J. LaManna |
|--------------|------------|
| Summary Log: | J. LaManna |

| 0 -                       | Visual Description of Sediment                                                                                                                                   | Summary Interpretation          | Segment         | Primary Sample ID | Secondary Sample ID |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------|-------------------|---------------------|
| •<br>•<br>•               | Dark olive; mixture of wood fragments<br>(some lumber scraps), silt, clay and<br>some oil. Very soft (almost a liquid),<br>wet. Smells like creosote or asphalt. | Upper recent lake<br>deposits   |                 | 34011008036       |                     |
| 1 -<br>-<br>-             | Dark olive; silty clay (CL) with black oil<br>stains from 0.9 to 1.1 and black<br>lamellae throughout. Very soft, wet.                                           | Lower recent lake               |                 | 34011008035       |                     |
| 2                         |                                                                                                                                                                  |                                 |                 |                   |                     |
| Depth below mudline (ft.) |                                                                                                                                                                  |                                 |                 |                   |                     |
| Depth bel                 | Gray; sandy gravel (GW) with f-c sand<br>and f-c rounded gravel, c gravel and<br>cobbles at 5.2; Dense, wet; no oil or<br>stains.                                | -<br>Stratified Drfit<br>-<br>- |                 | 34011008034       |                     |
| 5 -                       |                                                                                                                                                                  | -                               |                 |                   |                     |
| 6 -                       | End of Core                                                                                                                                                      | End of core                     | <br>End of core | End of core       | End of core         |
| 7 -                       | -                                                                                                                                                                |                                 |                 |                   |                     |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

#### Station: 2-2 A

Maximum depth of retained sediment: 9.7 ft

Mudline elevation: -17.0 ft (Corps lake datum)

|       | Core       | Laboratory    |  |
|-------|------------|---------------|--|
|       | collection | processing    |  |
| Date: | 8/12/2004  | Aug. 12, 2004 |  |
| Time: | 9:00       | 12:00         |  |

Percent recovery (on-deck): 72%

| 0 -                       | Visual Description of Sediment                                                                                                                                                                                                                                            | Summary Interpretation          | Segment                                                      | Primary Sample ID | Secondary Sample ID |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------|-------------------|---------------------|
| 2 -                       | Black with minor dark gray; mixture of<br>water, clay, wood fragments and tarry<br>oil; Very soft, wet.                                                                                                                                                                   | - Upper recent lake<br>deposits |                                                              |                   |                     |
| -                         | -                                                                                                                                                                                                                                                                         | -                               | — Sampled gray sitty clay —<br>— with black tarry oil. —     | 34011008043       |                     |
| 4 -<br>-                  | +                                                                                                                                                                                                                                                                         | +<br>                           |                                                              |                   |                     |
| mudline (ft.)             | -                                                                                                                                                                                                                                                                         | -                               | Sampled SW with<br>bright sheen and black<br>oil.            | 34011008042       |                     |
| Depth below mudline (ft.) | <ul> <li>Gray; interbedded sandy gravel (GW)</li> <li>and gravelly sand (SW) with SP from</li> <li>5.0-6.4, brown wood fibers abundant in<br/>upper part of interval; Dense, wet.</li> <li>Brightly colored sheen with black oil</li> <li>3.6-4.3 and 7.8-8.6;</li> </ul> | Stratified Drift                | <ul> <li>Sampled SP with no</li> <li>visible oil.</li> </ul> | 34011008041       |                     |
| - 10<br>- 8               |                                                                                                                                                                                                                                                                           | -<br>-<br>                      | Sampled GW with<br>bright sheen and black<br>oil.            | 34011004040       | 34011008044         |
| -                         |                                                                                                                                                                                                                                                                           | -<br>-<br>-                     |                                                              |                   |                     |
| 10 -                      | End of Core                                                                                                                                                                                                                                                               | End of core                     | End of core                                                  | End of core       | End of core ———     |
| -                         |                                                                                                                                                                                                                                                                           | -                               |                                                              |                   |                     |
| 12 -                      |                                                                                                                                                                                                                                                                           |                                 |                                                              |                   |                     |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T3

#### Station: 2--2

Maximum depth of retained sediment: 9.7 ft

Mudline elevation: -14.3 ft (Corps lake datum)

|       | Core       | Laboratory    |
|-------|------------|---------------|
|       | collection | processing    |
| Date: | 8/12/2004  | Aug. 12, 2004 |
| Time: | 9:33       | 11:00         |

ſ

Percent recovery (on-deck): 82%

| 0 -                            | Visual Description of Sediment                                                                                                                                                                                         | Summary Interpretation                         | Segment                                                  | Primary Sample ID | Secondary Sample ID |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|-------------------|---------------------|
|                                | Black; mixture of water, clay, wood and<br>oil; Very saft, wet; black oil blebs and<br>slight sheen; asphalt odor.                                                                                                     | -<br>Upper recent lake<br>- deposits           |                                                          | 34011008039       |                     |
| 2 -                            |                                                                                                                                                                                                                        |                                                |                                                          |                   |                     |
| -                              | Blotched or mottled, black and dark<br>gray; organic clay (OL); some wood<br>fragments near core tube may be carry<br>down; very soft, wet; black may be oil.                                                          | Lower recent lake                              |                                                          | 34011008038       |                     |
| 4 -                            |                                                                                                                                                                                                                        |                                                |                                                          |                   |                     |
| Depth below mudline (ft.)<br>9 | Gray; interbedded sandy gravel (GW)<br>and gravelly sand (SW) with a sitly clay<br>(CL) from 5.6-5.9 and gravelly sitt (ML)<br>below 7.9; Dense, wet; faint<br>hydrocarbon odor; oil stains and sheen<br>from 4.0-4.5. | -<br>-<br>-<br>-<br>-<br>-<br>Stratified Drift | — Sampled sand with few —<br>— fines below silty clay. — | 34011008037       |                     |
| 8 -                            |                                                                                                                                                                                                                        |                                                |                                                          |                   |                     |
| 10 -                           | End of Core                                                                                                                                                                                                            | End of core                                    | End of core                                              | End of core       | End of core ———     |
| 12 -                           | -                                                                                                                                                                                                                      |                                                |                                                          |                   |                     |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

#### Station: 3-3 Rep 3

Maximum depth of retained sediment: 14.0 ft 72%

Mudline elevation: -18.6 ft (Corps lake datum)

|       | Core       | Laboratory     |  |  |
|-------|------------|----------------|--|--|
|       | collection | processing     |  |  |
| Date: | 8/11/2004  | Aug. 11, 2004. |  |  |
| Time: | 15:07      | 16:30          |  |  |

| •                                                  | Visual Description of Sediment                                                                                                                                                                                  | Summary Interpretation        | Segment            | Primary Sample ID | Secondary Sample ID |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|-------------------|---------------------|
| 0                                                  | Black; mixture of water, wood chips,<br>organic clay, some rounded gravel<br>and black oil; Very soft, wet. Creosote<br>or asphalt odor, very oily.                                                             | Upper recent lake<br>deposits |                    | 34011008033       |                     |
| 2                                                  |                                                                                                                                                                                                                 | *<br>                         |                    |                   |                     |
| 4 +                                                | Dark olive gray; organic clay (OL), with<br>veins of black oil from 1.1-5.8 and 6.9-<br>7.5; Very soft, wet. Black oil stains<br>from 1.1 to 1.3.                                                               | Lower recent lake<br>deposits |                    |                   |                     |
| Idline (ft.)                                       |                                                                                                                                                                                                                 |                               | Sampled oily vein. | 34011008032       |                     |
| Depth below mudline (ft.)<br>* + + + + + + + + + + | Dark olive gray viscous liquid that<br>appears to be mixture of organic clay<br>and black tarry oil; very soft; wet.                                                                                            | -<br>-<br>-<br>-              | Sampled oily GW    | 34011008031       |                     |
| 10 +                                               | Gray; interbedded sandy gravel (GW),<br>gravelly sand (SW) and below 11.3<br>minor silty sand (SM); Dense, wet.<br>Black tarry oil in sandy beds 8.8-10.0<br>and 10.7-10.9. Smells like creosote or<br>asphalt. | Stratified Drift              | Sampled oily GW.   | 34011008030       |                     |
| 12 +                                               | Sediment lost during core recovery                                                                                                                                                                              | <br>-<br>-<br>-               |                    |                   |                     |
| 14                                                 | End of Core                                                                                                                                                                                                     | End of core                   | End of core        | End of core       | End of core         |
| 16                                                 |                                                                                                                                                                                                                 | +                             |                    |                   |                     |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

#### Station: 3-5 Rep 2

Maximum depth of retained sediment: 5.7 ft

Mudline elevation: 20.9 ft (Corps lake datum)

Percent recovery (on-deck): 29%

 Core
 Laboratory

 collection
 processing

 Date:
 8/13/2004
 Aug. 13, 2004

 Time:
 17:30
 13:45

Field Log: J. LaManna

Summary Log: J. LaManna

| •                                             | Visual Description of Sediment                                                    | Summary Interpretation        | Segment                            | Primary Sample ID | Secondary Sample ID |
|-----------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|------------------------------------|-------------------|---------------------|
| 0                                             | Black grading down to gray; mixture of water, clay, wood and black tarry oil;     | Upper recent lake<br>deposits | Sampled gelatinous tarry material. | 34011008058       |                     |
|                                               | Very soft, wet. Asphalt odor.                                                     |                               |                                    |                   |                     |
|                                               | +                                                                                 | +                             |                                    |                   |                     |
|                                               | 1                                                                                 |                               |                                    |                   |                     |
|                                               |                                                                                   |                               |                                    |                   |                     |
|                                               | †                                                                                 | 1                             |                                    |                   |                     |
| 1 -                                           | +                                                                                 | +                             |                                    |                   |                     |
|                                               | 1                                                                                 | +                             |                                    |                   |                     |
|                                               | Dark olive gray; organic clay (OL) with<br>a piece of wood; Very soft, wet. Black | Lower recent lake             |                                    |                   |                     |
|                                               | oil-stain from 1.7 to 1.8                                                         | - deposits                    |                                    |                   |                     |
|                                               | +                                                                                 | +                             |                                    |                   |                     |
|                                               | -                                                                                 | +                             | Sampled black, oil-                |                   |                     |
| 2                                             |                                                                                   |                               | stained OL.                        | 34011008057       |                     |
| 2                                             | Τ                                                                                 |                               |                                    |                   |                     |
|                                               | +                                                                                 | +                             |                                    |                   |                     |
| ft.)                                          | +                                                                                 | -                             |                                    |                   |                     |
| ) el                                          |                                                                                   | -                             |                                    |                   |                     |
| alir                                          |                                                                                   |                               | Sampled oily GW.                   | 34011008056       |                     |
| nu                                            | †                                                                                 |                               |                                    |                   |                     |
| Depth below mudline (ft.) $_{\omega}^{\circ}$ | +                                                                                 | +                             |                                    |                   |                     |
| elo                                           | +                                                                                 | -                             |                                    |                   |                     |
| d<br>d                                        | Dark gray; gravelly sand (SW) grading                                             |                               |                                    |                   |                     |
| <u>s</u> ptl                                  | down to sandy gravel (GW); Dense,<br>wet. Oil stains at 2.7.                      |                               |                                    |                   |                     |
| ð                                             |                                                                                   | Ť                             |                                    |                   |                     |
|                                               | +                                                                                 | +                             |                                    |                   |                     |
| 4                                             |                                                                                   |                               |                                    |                   |                     |
| -                                             |                                                                                   | Stratified Drift              |                                    |                   |                     |
|                                               | †                                                                                 | 1                             |                                    |                   |                     |
|                                               |                                                                                   | -                             |                                    |                   |                     |
|                                               | -                                                                                 | +                             |                                    |                   |                     |
|                                               |                                                                                   |                               |                                    |                   |                     |
|                                               | †                                                                                 |                               |                                    |                   |                     |
| 5                                             | Sediment lost during core recovery.                                               | •                             |                                    |                   |                     |
|                                               | ļ                                                                                 |                               |                                    |                   |                     |
|                                               |                                                                                   |                               |                                    |                   |                     |
|                                               | † I                                                                               |                               |                                    |                   |                     |
|                                               | End of Core                                                                       | End of core                   | End of core                        | End of core       | End of core         |
|                                               |                                                                                   |                               | 3, 5010                            | 2. 0010           |                     |
| 6                                             |                                                                                   |                               |                                    |                   |                     |
| σ                                             |                                                                                   |                               |                                    |                   |                     |
|                                               |                                                                                   |                               |                                    |                   |                     |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

Station: 3--1

Maximum depth of retained sediment: 4.4 ft

Mudline elevation: -3.5 ft (Corps lake datum)

|       | Core       | Laboratory    |
|-------|------------|---------------|
|       | collection | processing    |
| Date: | 8/11/2004  | Aug. 11, 2004 |
| Time: | 10:42      | 14:00         |

Percent recovery (on-deck): 82%

| 0 -                       | Visual Description of Sediment                                                                                                                                                                                                               | Summary Interpretation | Segment                                    | Primary Sample ID | Secondary Sample ID |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------|-------------------|---------------------|
| -                         | -<br>-<br>-<br>-                                                                                                                                                                                                                             |                        |                                            |                   |                     |
| 1 -<br>-<br>-             |                                                                                                                                                                                                                                              |                        |                                            |                   |                     |
| 1 -<br>-<br>-             |                                                                                                                                                                                                                                              | +<br>-<br>-<br>-<br>-  |                                            |                   |                     |
| 2 -                       | Black; mixture of water, wood chips,<br>silt, clay, sand, oil and trace gravel;<br>most wood chips in top 0.3-ft; most silt<br>and sand near bottom; Very soft<br>(gelatinous to liquid in places), wet;<br>smells like creosote or asphalt. | Upper recent deposits  |                                            |                   |                     |
| Depth below mudline (ft.) |                                                                                                                                                                                                                                              | +<br>-<br>-<br>-<br>-  |                                            |                   |                     |
| pth below                 |                                                                                                                                                                                                                                              | +<br>-<br>-<br>-<br>-  |                                            |                   |                     |
| ۳ ۵ -<br>-<br>-           |                                                                                                                                                                                                                                              | +<br>-<br>-<br>-       | − − − Sampled very oily − − −<br>interval. | 34011008025       |                     |
| <b>4</b> -<br>-<br>-      |                                                                                                                                                                                                                                              |                        |                                            |                   |                     |
| -<br>4 -<br>-             | Sediment lost during core recovery.                                                                                                                                                                                                          | +<br>                  |                                            |                   |                     |
| 5 -                       | End of Core                                                                                                                                                                                                                                  | End of core            | End of core                                | End of core       | End of core         |
| 5 -                       |                                                                                                                                                                                                                                              | <u> </u>               |                                            |                   |                     |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

#### Station: 3--2

Maximum depth of retained sediment: 9.3 ft 69%

20.9 ft (Corps lake datum) Mudline elevation:

| •       |          |           |    |   |
|---------|----------|-----------|----|---|
| Percent | recovery | (on-deck) | ): | 6 |

|       | Core       | Laboratory    |  |
|-------|------------|---------------|--|
|       | collection | processing    |  |
| Date: | 8/11/2004  | Aug. 11, 2004 |  |
| Time: | 8:30       | 11:00         |  |

ſ

Field Log: J. LaManna

Summary Log: J. LaManna

|                           | 0 -                     | Visual Description of Sediment                                                                                                                                                                                                   | Summary Interpretation                                      | Segment          | Primary Sample ID | Secondary Sample ID |
|---------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|-------------------|---------------------|
|                           |                         | -                                                                                                                                                                                                                                | -                                                           |                  | 34011008017       |                     |
|                           | -<br>-<br>1 -<br>-<br>- | Black grading down to dark greenish<br>gray; sandy silt (ML) with wood chips<br>and one shell; Very soft, wet. Black oil<br>and sheen.                                                                                           | Upper recent lake                                           |                  |                   |                     |
|                           | 2 -                     |                                                                                                                                                                                                                                  |                                                             |                  |                   |                     |
|                           | 3 -                     | Dark greenish gray; sandy gravel with<br>silt (GW) or gravelly sand with silt<br>(SW) with wood chips and root fibers;<br>Very soft, wet. Black oil blebs in most<br>of interval, oil coats root fibers; strong<br>asphalt odor. | Upper recent lake<br>- deposits; possibly Gas<br>Works Fill |                  | 34011008018       |                     |
| ft.)                      | 4 -                     |                                                                                                                                                                                                                                  | +                                                           |                  |                   |                     |
| line (                    | -                       | -                                                                                                                                                                                                                                | +                                                           | Sampled oily SW. | 34011008020       |                     |
| Depth below mudline (ft.) | 5 -                     | -<br>-<br>                                                                                                                                                                                                                       | -<br>-<br>-<br>-                                            |                  |                   |                     |
| Jepth be                  | 6 -                     | Dark gray; gravelly sand (SW) grading<br>down to sand with gravel (SP); Dense,<br>moist. Asphalt odor, some oil stuck on<br>gravel.                                                                                              | -<br>- Stratified Drift                                     |                  |                   |                     |
| -                         | -                       | -                                                                                                                                                                                                                                | -                                                           |                  |                   |                     |
|                           | 7                       |                                                                                                                                                                                                                                  |                                                             |                  |                   |                     |
|                           | -                       | -                                                                                                                                                                                                                                |                                                             |                  | 34011008019       |                     |
|                           | 8 -                     | Sediment lost during core recovery;<br>core tube bent and scratched.                                                                                                                                                             |                                                             |                  |                   |                     |
|                           | 9 -                     | End of Core                                                                                                                                                                                                                      | End of core                                                 | End of core      | End of core       | End of core         |
|                           | 10                      |                                                                                                                                                                                                                                  | -                                                           |                  |                   |                     |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

#### Station: 3--3

Maximum depth of retained sediment: 7.2 ft

-18.5 ft (Corps lake datum) Mudline elevation:

|       | Core       | Laboratory    |
|-------|------------|---------------|
|       | collection | processing    |
| Date: | 8/11/2004  | Aug. 11, 2004 |
| Time: | 9:40       | 13:00         |

Percent recovery (on-deck): 71%

| 0 -                       | Visual Description of Sediment                                                                                                                                                                               | Summary Interpretation        | Segment                                         | Primary Sample ID | Secondary Sample ID |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------|-------------------|---------------------|
| 0 -                       |                                                                                                                                                                                                              | -                             | Sampled black,<br>gelatinous, oily<br>material. | 34011008022       |                     |
| +<br>+<br>+<br>1 -        | Gray (top 0.1-ft) and black mixture of<br>clay, water, silt, wood fibers (possibly<br>bark) and oil; Very soft, wet. Heavy oil<br>0.0-0.2 and 0.9-1.2; black oil appears<br>to penetrate next lower interval | Upper recent lake<br>deposits |                                                 |                   |                     |
| -                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                        | -                             | Sampled black oily mud.                         | 34011008024       |                     |
| 2                         |                                                                                                                                                                                                              | -                             |                                                 |                   |                     |
| 2 -                       |                                                                                                                                                                                                              |                               |                                                 |                   |                     |
| -                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                        | -                             |                                                 |                   |                     |
| (ff.)                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                        |                               |                                                 |                   |                     |
| v mudline                 | Dark olive gray; organic clay (OL) with<br>trace fir needles; Very soft, wet.                                                                                                                                | Lower recent lake             |                                                 |                   |                     |
| Depth below mudline (ft.) | abundant at top of interval; oil content<br>highest at top and bottom of interval.<br>Did not observe veins from 3.8-4.5.                                                                                    | deposits                      |                                                 |                   |                     |
| 5 -                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                        |                               |                                                 |                   |                     |
| -                         |                                                                                                                                                                                                              | -                             | Sampled black vein.                             | 34011008023       |                     |
| 6 -                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                        | <br>                          |                                                 |                   |                     |
| 7                         | Black oily wood chunks; very little<br>sediment. May be repenetration of<br>surface material. However, boat crew                                                                                             | Provenance not                | Sampled black,<br>viscous oil.                  | 34011008021       |                     |
| '                         | reports refusal.<br>End of Core                                                                                                                                                                              | End of core                   | End of core                                     | End of core       | End of core ———     |
|                           |                                                                                                                                                                                                              | +                             |                                                 |                   |                     |
| 8                         |                                                                                                                                                                                                              | <u> </u>                      |                                                 |                   |                     |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

#### Station: 3--4

Maximum depth of retained sediment: 10.5 ft

Mudline elevation: -13.8 ft (Corps lake datum)

|       | Core       | Laboratory    |
|-------|------------|---------------|
|       | collection | processing    |
| Date: | 8/12/2004  | Aug. 13, 2004 |
| Time: | 15:32      | 12:30         |

ſ

Percent recovery (on-deck):

59%

| ⁰ ⊤                     | Visual Description of Sediment                                                                                                                               | Summary Interpretation        | Segment                            | Primary Sample ID | Secondary Sample ID |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|-------------------|---------------------|
| -<br>-<br>-<br>2 -<br>- | Black grading down to dark gray; clay<br>(CL) with water, wood fragments, oil<br>and with black, angular gravel-sized<br>grain that, crushed between the<br> | Upper recent lake<br>deposits | Sampled black oil.                 | 34011008055       |                     |
| 4 +                     |                                                                                                                                                              |                               | Sampled oily GW with bright sheen. | 34011008054       |                     |
| 6 +<br>+<br>+<br>+      | Dark gray sandy gravel (GW), f-c<br>gravel, top of interval more sandy;<br>Dense, wet. Black oil with bright sheen<br>at 4.3; no oil in lower portion.       | - Stratified Drift            |                                    |                   |                     |
| 8 -                     | Gray sandy gravel (GW). About 50%<br>recovery and slumped in core tube.                                                                                      | -                             |                                    |                   |                     |
| 10 -                    | Sediment lost during core recovery.                                                                                                                          | End of core                   | End of core                        | End of core       | End of core         |
| 12                      |                                                                                                                                                              | -                             |                                    |                   |                     |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

#### Station: 4-1 A

Maximum depth of retained sediment: 7.4 ft

Mudline elevation: -3.7 ft (Corps lake datum)

Percent recovery (on-deck): 84%

|       | Core       | Laboratory    |  |  |
|-------|------------|---------------|--|--|
|       | collection | processing    |  |  |
| Date: | 8/10/2004  | Aug. 10, 2004 |  |  |
| Time: | 15:40      | 18:30         |  |  |

Field Log: J. LaManna

Summary Log: J. LaManna

| 0 -                       | Visual Description of Sediment                                                                                                                                                                    | Summary Interpretation        | Segment                                  | Primary Sample ID | Secondary Sample ID |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------|-------------------|---------------------|
| 1                         | Black; silt with fine sand (ML) and<br>abundant wood fragments; Very soft,<br>wet. Oily with asphalt odor.                                                                                        |                               | Sampled black, gelatinous oily material. | 34011008013       |                     |
| 2                         | Dark olive interbedded silt with fine<br>sand (ML) and sandy silt (SM) with<br>wood chips and fibers and a glass<br>bottle at bottom of interval; Very soft,<br>moist-wet. Oil and sheen 1.7-2.0. | Upper recent lake<br>deposits | Sampled oil stains.                      | 34011008014       |                     |
| Depth below mudline (ft.) | Dark gray fine-medium sand (SP) with<br>rounded fine gravel beds (SW) 0.1-ft                                                                                                                      | Stratified Drift              | Sampled oily SW.                         | 34011008015       |                     |
| □<br>5 -<br>6 -           | thick at 3.4 and 4.6; Dense, moist. No<br>odor, sheen or stains.                                                                                                                                  | *<br>*                        |                                          |                   |                     |
| 7 -                       | Sediment lost during core recovery.                                                                                                                                                               | End of core                   | End of core                              | End of core       | End of core         |
|                           |                                                                                                                                                                                                   |                               |                                          |                   |                     |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

#### Station: 4-2 Rep 1

Maximum depth of retained sediment: 1.8 ft

Mudline elevation: -15.4 ft (Corps lake datum)

|       | Core       | Laboratory    |
|-------|------------|---------------|
|       | collection | processing    |
| Date: | 8/10/2004  | Aug. 10, 2004 |
| Time: | 16:48      | 19:00         |

Percent recovery (on-deck): 32%

|                           | Visual Description of Sedi                                                                         | ment Summary Interpretatio                               | n Segment                                     | Primary Sample ID | Secondary Sample ID |
|---------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|-------------------|---------------------|
|                           | 0<br>Black; silty fine<br>(SM) or sandy<br>(ML), with clay<br>abundant wood<br>verysoft, wet.<br>0 | silt<br>and Upper recent lake<br>chips; deposits<br>Oily | Sampled black<br>gelatinous oily<br>material. | 34011008016       |                     |
| (ft.)                     | 1                                                                                                  |                                                          |                                               |                   |                     |
| Depth below mudline (ft.) | 1 Sediment lost d                                                                                  |                                                          |                                               |                   |                     |
| Dept                      | 1                                                                                                  |                                                          |                                               |                   |                     |
|                           | 2End of Core                                                                                       | End of core                                              | End of core                                   | End of core       | End of core         |
|                           | 2                                                                                                  |                                                          |                                               |                   |                     |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

#### Station: 4-3 Rep 1

Maximum depth of retained sediment: 14.8 ft

Mudline elevation: -19.6 ft (Corps lake datum)

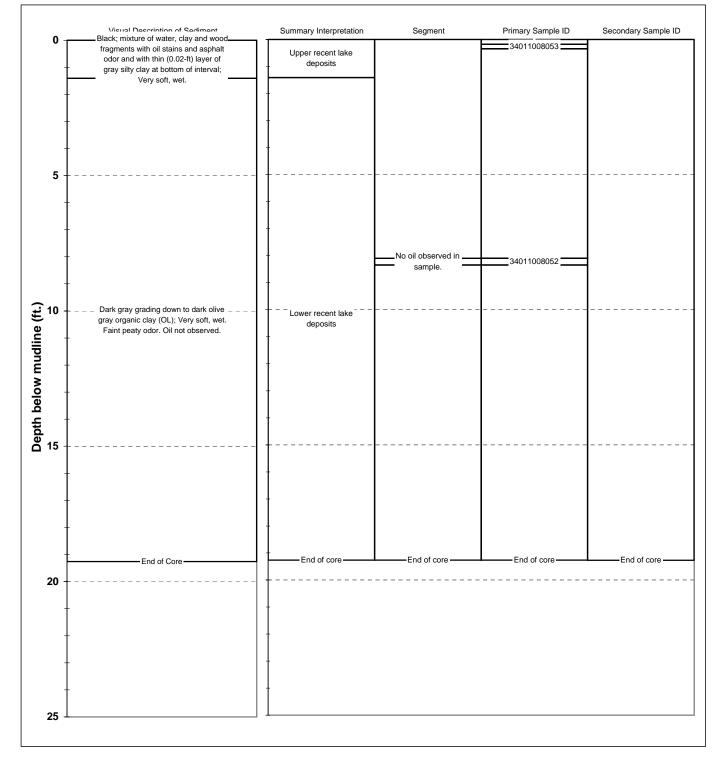
| Percent recovery (on-deck): 86% |  | Percent recovery | (on-deck): | 86% |  |
|---------------------------------|--|------------------|------------|-----|--|
|---------------------------------|--|------------------|------------|-----|--|

|       | Core       | Laboratory    |
|-------|------------|---------------|
|       | collection | processing    |
| Date: | 8/10/2004  | Aug. 10, 2004 |
| Time: | 14:20      | 17:00         |

ſ

| 0 -                       | Visual Description of Sediment                                                                                                  | Summary Interpretation                    | Segment     | Primary Sample ID | Secondary Sample ID |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------|-------------------|---------------------|
| 2 -                       | Black grading down to dark gray;<br>organic clay with silt, wood chips and<br>black oil blebs; Very soft, wet. Asphalt<br>odor. | Upper recent lake<br>deposits             |             | 34011008011       |                     |
| 4                         | -                                                                                                                               | -<br>-<br>-<br>-<br>-                     |             |                   |                     |
| 6                         | -<br>-<br>-                                                                                                                     | +<br>-<br>-<br>-<br>-                     |             |                   |                     |
| Depth below mudline (ft.) | <br>Very dark brown; organic clay<br>(OL);Very soft, wet. No oil or stains                                                      | -<br>-<br>- Lower recent lake<br>deposits |             |                   |                     |
| Depth be<br>10            | -<br>-<br>-<br>                                                                                                                 | +<br>-<br>-<br>-<br>-                     |             |                   |                     |
| 12 -                      | -<br>-<br>-<br>                                                                                                                 | +<br>+<br>                                |             |                   |                     |
| 14 -                      | -<br>-<br>-<br>                                                                                                                 | End of core                               | End of core | End of core       |                     |
| 16                        | -                                                                                                                               | -                                         |             |                   |                     |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5


#### Station: 4--4

Maximum depth of retained sediment: 19.3 ft

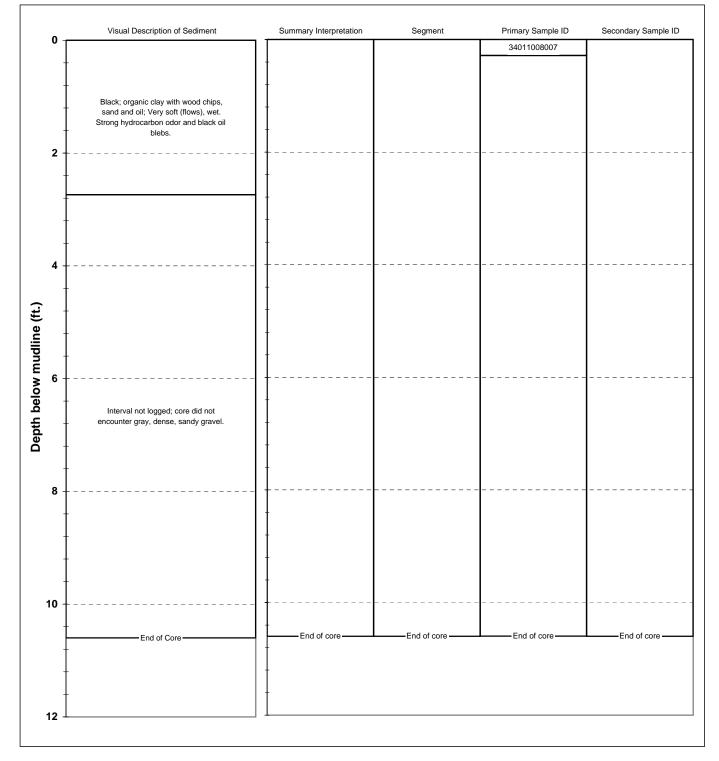
Mudline elevation: -19.6 ft (Corps lake datum)

|       | Core       | Laboratory    |
|-------|------------|---------------|
|       | collection | processing    |
| Date: | 8/13/2004  | Aug. 13, 2004 |
| Time: | 14:18      | 11:45         |

Percent recovery (on-deck): 69%



Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5


Station: 5-1

Maximum depth of retained sediment: 10.6 ft

Mudline elevation: -18.6 ft (Corps lake datum)

|       | Core collection | Laboratory processing |
|-------|-----------------|-----------------------|
| Date: | 8/10/2004       | Aug. 10, 2004         |
| Time: | 9:00            | 15:00                 |

Percent recovery (on-deck): 79%



Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

#### Station: 5-1 Rep 2

Maximum depth of retained sediment: 16.0 ft

Mudline elevation: -18.1 ft (Corps lake datum)

| Percent | recoverv | (on-deck): | 68%  |  |
|---------|----------|------------|------|--|
|         |          | (0         | 00/0 |  |

|       | Core       | Laboratory    |  |  |
|-------|------------|---------------|--|--|
|       | collection | processing    |  |  |
| Date: | 8/10/2004  | Aug. 10, 2004 |  |  |
| Time: | 9:38       | 13:30         |  |  |

| 0                                                                         | Visual Description of Sediment                                                                                                                           | Summary Interpretation             | Segment     | Primary Sample ID           | Secondary Sample ID |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------|-----------------------------|---------------------|
|                                                                           | Black; mixture of water, organic clay,<br>silt and wood chips; Very soft, wet. Oil<br>sheen and asphalt or creosote odor.                                | -                                  |             | 34011008001                 |                     |
| 2 +                                                                       | Dark gray silt (ML) with wood<br>fragments and fibers and trace angular<br>sand; Very soft, wet. Trace sheen                                             | Upper recent lake<br>deposits      |             | 34000118002                 |                     |
| +                                                                         | Very dark brownish gray grading down<br>to dark brown; organic clay (OL) with<br>gray lamellae and with brown peaty<br>lumps; Very soft, wet. No odor or | -                                  |             | 34011008003                 |                     |
| 4                                                                         | sheen.                                                                                                                                                   |                                    |             | 34011008004                 |                     |
| 6 +                                                                       |                                                                                                                                                          | -<br>-<br>                         |             |                             |                     |
| e (ft.)                                                                   | Olive brown; organic clay (OL) with<br>trace roots; Very soft, wet. No sheen,<br>slight reducing odor.                                                   | -<br>-<br>-                        |             |                             |                     |
| Depth below mudline (ft.)<br>01 8<br>11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                                          | Lower recent lake<br>deposits<br>- |             |                             |                     |
| bth belov                                                                 |                                                                                                                                                          |                                    |             |                             |                     |
| +                                                                         | Very dark brown organic clay (OL) with wood fragments and beds of gray fine                                                                              | -                                  |             | 34011008005                 |                     |
| 12 + -                                                                    | <ul> <li> to medium sand 0.05 to 0.1-ft thick;</li> <li>Very soft and very loose; wet. No odor<br/>or sheen.</li> </ul>                                  |                                    |             |                             |                     |
| 14                                                                        | Gray; well graded, sandy gravel (GW) with f-d sand and f-c gravel, with lumps of sandy silt (ML); loose, moist. No hysrocarbon odor or sheen.            | - Stratified Drift                 |             | <u></u> 34011008006 <u></u> |                     |
| 16                                                                        | Sediment lost during recovery.<br>— End of Core —                                                                                                        | End of core                        | End of core | End of core                 | End of core         |
| 18                                                                        |                                                                                                                                                          | -                                  |             |                             |                     |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

#### Station: 5-3 Rep 3

Maximum depth of retained sediment: #DIV/0! ft

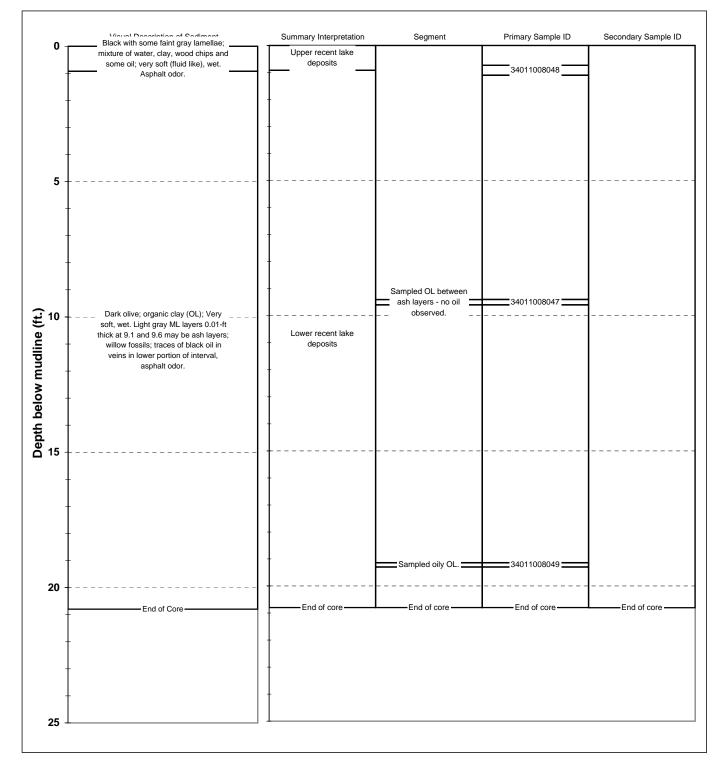
Mudline elevation: -14.2 ft (Corps lake datum)

|       | Core       | Laboratory    |  |
|-------|------------|---------------|--|
|       | collection | processing    |  |
| Date: | 8/10/2004  | Aug. 10, 2004 |  |
| Time: | 12:40      | 16:00         |  |

Percent recovery (on-deck): 70%

| 0 -                       | Visual Description of Sediment                                               | Summary Interpretation                                            | Segment<br>End of core ——— | Primary Sample ID | Secondary Sample ID<br>End of core |
|---------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------|-------------------|------------------------------------|
| •                         | -                                                                            | +                                                                 |                            |                   |                                    |
|                           | -<br>-                                                                       |                                                                   |                            |                   |                                    |
| -                         | -                                                                            | +                                                                 |                            | 34011008008       |                                    |
| 1 -                       |                                                                              |                                                                   |                            |                   |                                    |
| -                         | -                                                                            | 1                                                                 |                            |                   |                                    |
|                           | -                                                                            | +                                                                 |                            |                   |                                    |
| 1 -                       |                                                                              | +                                                                 |                            |                   |                                    |
| -                         | Black; silty clay with sand and wood<br>fragments; Very soft, wet. Black oil | -<br>Upper recent lake                                            |                            |                   |                                    |
| -                         | blebs and strong asphalt odor.                                               | deposits                                                          |                            |                   |                                    |
| 2 -                       | +                                                                            | +                                                                 |                            |                   |                                    |
|                           | -                                                                            | +                                                                 |                            |                   |                                    |
| <b>~</b>                  |                                                                              | +                                                                 |                            |                   |                                    |
| Depth below mudline (ft.) | •                                                                            | +                                                                 |                            |                   |                                    |
| alline .                  | -                                                                            |                                                                   |                            |                   |                                    |
| , mu                      |                                                                              | -                                                                 |                            |                   |                                    |
| ≥ 3 -                     |                                                                              |                                                                   |                            |                   |                                    |
| pel -                     | -                                                                            | Ì                                                                 |                            |                   |                                    |
| epth                      | Dark olive grading down to dark gray;                                        | +                                                                 |                            | 34011008009       |                                    |
| <u>ŏ</u> 3-               | organic clay (OL) and wood pieces                                            | <ul> <li>– – Lower recent lake - – –</li> <li>deposits</li> </ul> |                            | 34011008003       |                                    |
| -                         | or oil stains.                                                               | +                                                                 |                            |                   |                                    |
| -                         | -                                                                            | +                                                                 |                            |                   |                                    |
| 4 -                       |                                                                              |                                                                   |                            |                   |                                    |
|                           | -                                                                            | +                                                                 |                            |                   |                                    |
| -                         |                                                                              |                                                                   |                            |                   |                                    |
| 4 -                       | Dark gray sandy gravel (GW); Dense,<br>moist to wet. No oil sheen or stains. | Stratified Drift                                                  |                            |                   |                                    |
| -                         | -                                                                            | +                                                                 |                            |                   |                                    |
| -                         | -                                                                            | -                                                                 |                            | 34011008010       |                                    |
| 5 -                       | Sediment Ic End of Core e recovery.                                          | End of core                                                       |                            | End of core       |                                    |
| -                         | -                                                                            | ł                                                                 |                            |                   |                                    |
| -                         | +                                                                            | Į                                                                 |                            |                   |                                    |
| 5 -                       |                                                                              | L                                                                 |                            |                   |                                    |
|                           |                                                                              |                                                                   |                            |                   |                                    |

Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5


#### Station: 5--2

Maximum depth of retained sediment: 20.8 ft

Mudline elevation: -20.1 ft (Corps lake datum)

|       | Core Laboratory |               |
|-------|-----------------|---------------|
|       | collection      | processing    |
| Date: | 8/12/2004       | Aug. 12, 2004 |
| Time: | 11:30           | 15:45         |

Percent recovery (on-deck): 78%



Project: North Lake Union Sediment Survey Project No: COS-NAPL.T5

#### Station: 5--4

Maximum depth of retained sediment: 13.9 ft

Mudline elevation: -19.1 ft (Corps lake datum)

|       | Core Laborato |               |
|-------|---------------|---------------|
|       | collection    | processing    |
| Date: | 8/12/2004     | Aug. 13, 2004 |
| Time: | 13:15         | 10:30         |

ſ

Percent recovery (on-deck): 76%

Field Log: J. LaManna

Summary Log: J. LaManna

|                           |      | Visual Description of Sediment                                                     | Summary Interpretation | Segment          | Primary Sample ID | Secondary Sample ID |
|---------------------------|------|------------------------------------------------------------------------------------|------------------------|------------------|-------------------|---------------------|
|                           | ° ]  |                                                                                    | -<br>Upper recent lake |                  |                   |                     |
|                           | ]    | Gray grading down to dark gray or<br>black; clay (CL) with wood fragments          | deposits               |                  | 34011008051       |                     |
|                           |      | and blebs and streaks of black tarry<br>oil; Very soft, wet. Asphalt or creosote   | Ţ                      |                  |                   |                     |
|                           | -    | odor.                                                                              |                        |                  |                   |                     |
|                           | 2    |                                                                                    | -                      |                  |                   |                     |
|                           | -    | -                                                                                  | +                      |                  |                   |                     |
|                           | -    | -                                                                                  | +                      |                  |                   |                     |
|                           | 1    | -                                                                                  | -                      |                  |                   |                     |
|                           |      |                                                                                    | +                      |                  |                   |                     |
|                           | 4    |                                                                                    | 1                      |                  |                   |                     |
|                           |      |                                                                                    | I                      |                  |                   |                     |
|                           |      | -                                                                                  |                        |                  |                   |                     |
|                           | -    | -                                                                                  |                        |                  |                   |                     |
| _                         | 6    |                                                                                    | +                      |                  |                   |                     |
| (£f.)                     | -    | -                                                                                  | -                      |                  |                   |                     |
| ne                        | 1    | Dark olive gray; organic clay (OL) with                                            | Lower recent lake      |                  |                   |                     |
| ilbu                      | 1    | traces of roots; very soft, wet. Thin bed<br>of oily, f-m sand (SP) at 14.5. Veins | _ deposits             |                  |                   |                     |
| Ē                         | 8    | with black tarry oil throughout interval                                           | <b>T</b>               |                  |                   |                     |
| Depth below mudline (ft.) | Ĭ    | _                                                                                  | I                      |                  |                   |                     |
| þe                        | -    |                                                                                    |                        |                  |                   |                     |
| pth                       | -    | -                                                                                  | -                      |                  |                   |                     |
|                           | -    | -                                                                                  | +                      |                  |                   |                     |
|                           | 10 - |                                                                                    | Ŧ                      |                  |                   |                     |
|                           |      |                                                                                    | -                      |                  |                   |                     |
|                           | 1    |                                                                                    | -                      |                  |                   |                     |
|                           |      | _                                                                                  | I                      |                  |                   |                     |
|                           | 12   |                                                                                    |                        |                  |                   |                     |
|                           | -    | -                                                                                  |                        |                  |                   |                     |
|                           | -    | -                                                                                  | +                      | Sampled oily SP. | 34011008050       |                     |
|                           | -    | -                                                                                  | -                      |                  |                   |                     |
|                           |      | -                                                                                  | End of core            | End of core      | End of core       | End of core         |
|                           | 14 - | End of Core                                                                        | +                      |                  |                   |                     |
|                           | 1    | -                                                                                  | 1                      |                  |                   |                     |
|                           | ]    |                                                                                    | Į                      |                  |                   |                     |
|                           |      | -                                                                                  |                        |                  |                   |                     |
|                           | I6 ] |                                                                                    |                        |                  |                   |                     |
|                           |      |                                                                                    |                        |                  |                   |                     |

SUB-ATTACHMENT 2D-4.3 RI/FS 2005 Sediment Core Logs Seattle Law Department Gas Works Park

**Chemical Forensics Sampling Report** 

# Appendix C RI/FS 2005 Sediment Core Logs

# DRAFT

CONFIDENTIAL AND PRIVILEGED: PREPARED IN PREPARATION FOR LITIGATION

Project: Gas Works Sediment-Western Study Area Project No: 3400542.002

#### Station: GWS-EC01

Maximum depth of retained sediment: 20.1 ft

Mudline elevation: -19.9 ft (Corps lake datum)

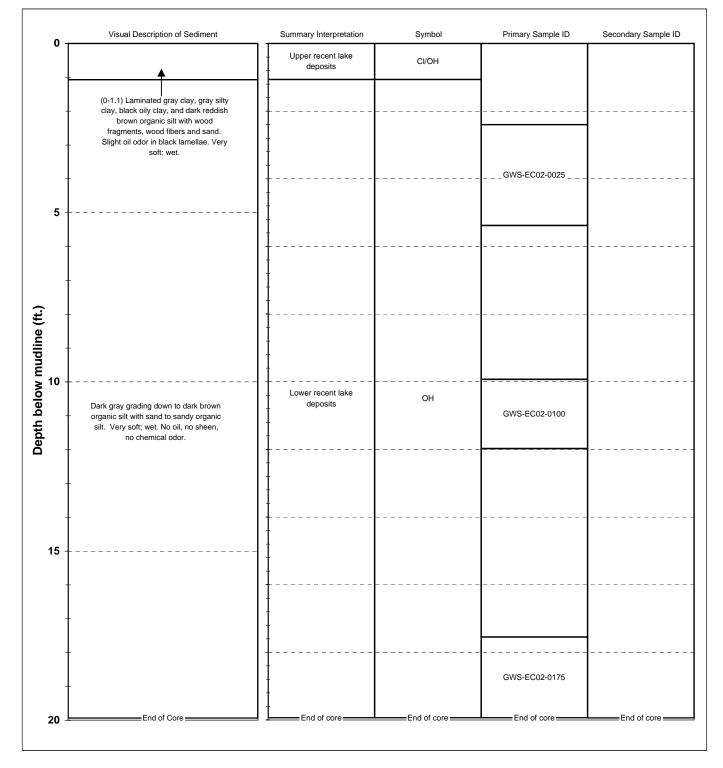
٢

## Percent recovery (on-deck): 76%

|       | Core       | Laboratory |              |              |          |                 |
|-------|------------|------------|--------------|--------------|----------|-----------------|
|       | collection | processing | Position:    | N238271      | E1269512 | (NAD83 SPC WAN) |
| Date: | 5/18/2005  | 5/18/2005  | Field Log:   | John LaManna |          |                 |
| Time: | 13:01      | 0:00       | Summary Log: | John LaManna |          |                 |

| 0 <sub>Ŧ</sub> | Visual Description of Sediment                                                                                              | Summary Interpretation                                                                      | Symbol | Primary Sample ID                     | Secondary Sample |
|----------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------|---------------------------------------|------------------|
| 1              | Thinnly bedded to laminated brown<br>organic silt and gray clay, with some<br>wood fragments and fibers. Very soft;<br>wet. | Upper recent lake<br>- deposits                                                             | OH/CI  |                                       |                  |
| 2              |                                                                                                                             |                                                                                             |        |                                       |                  |
| 3              |                                                                                                                             | ŧ                                                                                           |        | <sup></sup> GWS-EC01-0025 <sup></sup> |                  |
| 4              |                                                                                                                             | ŧ                                                                                           |        |                                       |                  |
| 5              |                                                                                                                             | ŧ                                                                                           |        |                                       |                  |
| 6              |                                                                                                                             | I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I |        |                                       |                  |
| ŧ              |                                                                                                                             |                                                                                             |        |                                       |                  |
| 7              |                                                                                                                             | <u>+</u>                                                                                    |        |                                       |                  |
| 8              |                                                                                                                             |                                                                                             |        |                                       |                  |
| 9              |                                                                                                                             | <u>+</u>                                                                                    |        |                                       |                  |
| 10 1           |                                                                                                                             | ŧ                                                                                           |        | GWS-EC01-0090                         |                  |
| 11             | Dark brown, organic silt with sand;<br>amorphous with trace plant fibers;                                                   | Lower recent lake<br>deposits                                                               | OH     |                                       |                  |
| 12             | massive. Very soft; moist to wet.                                                                                           |                                                                                             |        |                                       |                  |
| ŧ              |                                                                                                                             |                                                                                             |        |                                       |                  |
| 13             |                                                                                                                             | +                                                                                           |        |                                       |                  |
| 14             |                                                                                                                             | I                                                                                           |        |                                       |                  |
| 15             |                                                                                                                             | ŧ                                                                                           |        |                                       |                  |
| 16 1           |                                                                                                                             | <u></u>                                                                                     |        |                                       |                  |
| 17 1           |                                                                                                                             |                                                                                             |        |                                       |                  |
| ŧ              |                                                                                                                             |                                                                                             |        |                                       |                  |
| 18             |                                                                                                                             | <u>+</u>                                                                                    |        | GWS-EC01-0172                         |                  |
| 19             |                                                                                                                             | ŧ                                                                                           |        |                                       |                  |
|                |                                                                                                                             | Ŧ                                                                                           |        |                                       | 1                |

Project: Gas Works Sediment-Western Study Area Project No: 3400542.002


#### Station: GWS-EC02

Maximum depth of retained sediment: 19.9 ft

Mudline elevation: -20.3 ft (Corps lake datum)

Percent recovery (on-deck): 61%

|       | Core       | Laboratory |              |              |          |                 |
|-------|------------|------------|--------------|--------------|----------|-----------------|
|       | collection | processing | Position:    | N238520      | E1269647 | (NAD83 SPC WAN) |
| Date: | 5/19/2005  | 5/19/2005  | Field Log:   | John LaManna |          |                 |
| Time: | 8:41       | 0:00       | Summary Log: | John LaManna |          |                 |



Project: Gas Works Sediment-Western Study Area Project No: 3400542.002

#### Station: GWS-EC03

Maximum depth of retained sediment: 20.3 ft

Mudline elevation: -19.9 ft (Corps lake datum)

#### Percent recovery (on-deck): 70%

E1269515

|       | Core       | Laboratory |         |
|-------|------------|------------|---------|
|       | collection | processing | Pos     |
| Date: | 5/19/2005  | 5/19/2005  | Field   |
| Time: | 10:28      | 0:00       | Summary |

sition: N238690 d Log: John LaManna y Log: John LaManna

(NAD83 SPC WAN)

| 0 -    | Visual Description of Sediment                                                                                                                                                                          | Summary Interpretation        | Symbol          | Primary Sample ID | Secondary Sample ID |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|-------------------|---------------------|
| F      | <b>↑</b>                                                                                                                                                                                                | Upper recent lake<br>deposits | OH/CI           | -                 |                     |
| +      | (0-0.9) Interbedded and laminated;<br>dark reddish brown, organic silt and<br>gray, dark gray and black, silty clay<br>with few wood fibers and sand. Black<br>oil stains and oil odor. Very soft; wet. |                               |                 | GWS-EC03-0015     |                     |
| 5 -    |                                                                                                                                                                                                         |                               |                 | GWS-EC03-0055     |                     |
| ÷ 10 + | Dark gray grading down to dark brown,<br>sandy organic silt to organic silt with                                                                                                                        |                               |                 | GWS-EC03-0078     |                     |
|        | sandy organic sin to organic sin with a sandy organic sin with a sandy organic sin to organic sin with a sandy but smell decreases with depth.<br>Bottom smells oily. Black oil veinlets at 10.7-ft.    | Lower recent lake<br>deposits | ОН              | GWS-EC03-0110     |                     |
| 15 -   |                                                                                                                                                                                                         |                               |                 | GWS-EC03-0137     |                     |
|        |                                                                                                                                                                                                         |                               |                 | GWS-EC03-0173     |                     |
| 20 -   | End of Core                                                                                                                                                                                             | End of core                   | End of core ——— | End of core       | End of core —       |
| 25     |                                                                                                                                                                                                         | -                             |                 |                   |                     |

Project: Gas Works Sediment-Western Study Area Project No: 3400542.002

#### Station: GWS-EC04

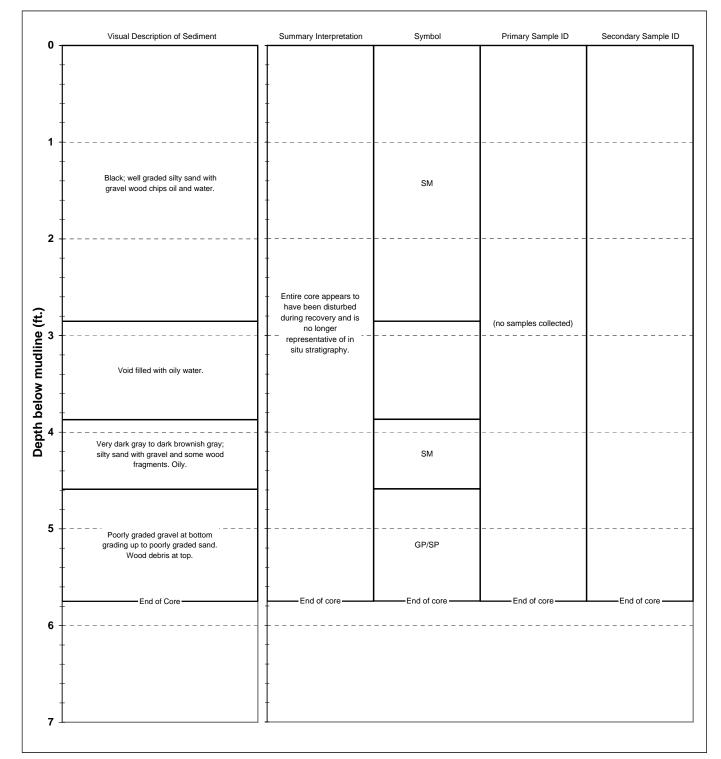
Maximum depth of retained sediment: 6.9 ft

Mudline elevation: -19.1 ft (Corps lake datum)

#### Percent recovery (on-deck): 51%

|       | Core       | Laboratory |              |              |          |                 |
|-------|------------|------------|--------------|--------------|----------|-----------------|
|       | collection | processing | Position:    | N238646      | E1269721 | (NAD83 SPC WAN) |
| Date: | 5/17/2005  | 5/17/2005  | Field Log:   | John LaManna |          |                 |
| Time: | 10:30      | 0:00       | Summary Log: | John LaManna |          |                 |

| 0                | Visual Description of Sediment                                                                                                                                                                                                                                           | Summary Interpretation        | Symbol      | Primary Sample ID | Secondary Sample ID |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|-------------------|---------------------|
| 1                | Black clay with undecayed wood<br>fragments; trace oil sheen. Very soft,<br>wet.                                                                                                                                                                                         | Upper recent lake<br>deposits | C!?         |                   |                     |
| 2                | Gray clay with silt. Very soft; wet. No<br>oil.                                                                                                                                                                                                                          | Upper recent lake             | Cl          |                   |                     |
| 3<br>3<br>4<br>4 | Dark brown, sandy organic silt to<br>organic silt with sand. Very soft; wet.<br>Slight asphalt odor.                                                                                                                                                                     | Lower recent lake<br>deposits | Pt          |                   |                     |
|                  |                                                                                                                                                                                                                                                                          | -<br>-<br>-<br>-<br>-<br>-    |             | GW3-EU04-0023     |                     |
| 6                | Interbedded dark brown, sandy<br>organic silt and poorly graded sand.<br>Some medium and coarse angular<br>sand grains, few quartz sand grains<br>Trace black oil in sand bed; asphaltic<br>odor. Igneous rock stuck in catcher<br>suggests refusal in stratified drift. | Lower recent lake             | Pt/Sp       |                   |                     |
| <b>7</b> + -     | End of Core                                                                                                                                                                                                                                                              | End of core                   | End of core | End of core       | End of core         |
| 8                |                                                                                                                                                                                                                                                                          | -                             |             |                   |                     |


Project: Gas Works Sediment-Western Study Area 3400542.002 **Project No:** 

#### Station: GWS-EC05

Maximum depth of retained sediment: ft 5.7

Mudline elevation: -7.7 ft (Corps lake datum) Percent recovery (on-deck): 75%

|       | Core       | Laboratory |              |              |          |                 |
|-------|------------|------------|--------------|--------------|----------|-----------------|
|       | collection | processing | Position:    | N238693      | E1269888 | (NAD83 SPC WAN) |
| Date: | 5/16/2005  | 5/16/2005  | Field Log:   | John LaManna |          |                 |
| Time: | 13:10      | 0:00       | Summary Log: | John LaManna |          |                 |



Project: Gas Works Sediment-Western Study Area **Project No:** 3400542.002

#### Station: GWS-EC05R4

Maximum depth of retained sediment: 7.7 ft

Mudline elevation: -10.2 ft (Corps lake datum)

Percent recovery (on-deck):

58%

|       | Core       | Laboratory |              |              |          |                 |
|-------|------------|------------|--------------|--------------|----------|-----------------|
|       | collection | processing | Position:    | N238680      | E1269868 | (NAD83 SPC WAN) |
| Date: | 5/20/2005  | 5/20/2005  | Field Log:   | John LaManna |          |                 |
| Time: | 12:50      | 0:00       | Summary Log: | John LaManna |          |                 |

| 0 T                       | Visual Description of Sediment                                                                                 | Summary Interpretation                                                        | Symbol          | Primary Sample ID      | Secondary Sample ID |
|---------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------|------------------------|---------------------|
| -                         | Dark gray slurry of water, clay, silt,<br>wood chips and oil. Asphalt odor.                                    | -                                                                             | CI?             |                        |                     |
| 1 -                       |                                                                                                                |                                                                               |                 |                        |                     |
| -                         | -<br>-<br>Black mixture of clay, water, oil, wood                                                              | - Upper recent lake<br>- deposits<br>-                                        | Cl?             |                        |                     |
| 2 -                       | fragments and sand. Gelatinous<br>-<br>-<br>-                                                                  |                                                                               |                 |                        |                     |
| 3 -                       |                                                                                                                |                                                                               |                 |                        |                     |
| ine (ft.)                 | Dark reddish brown, organic silt. Very<br>soft; wet. Gelatinous.                                               | Lower recent lake<br>deposits                                                 | он              | (no samples collected) |                     |
| low mud                   | - Gray; silty gravel. Very loose; wet.                                                                         | Weathered stratified                                                          | GM              |                        |                     |
| Depth below mudline (ft.) | Gray; sandy silt with gravel and some — — — —<br>interbeds of silty fine sand. Dense;<br>moist to wet. No oil. |                                                                               | SM              |                        |                     |
| 6 -                       | -<br>Gray; poorly graded fine sand, <20%<br>gravel, rounded, <5% silt. Dense. No<br>oil.                       | <ul> <li>Stratified drift: possibly</li> <li>glacially overridden.</li> </ul> | SP              |                        |                     |
| 7 -                       | -<br>-<br>- – – – Gray; silty fine sand. Dense; moist to– – – –<br>- wet. No oil.                              |                                                                               | SM              |                        |                     |
| 8 -                       | End of Core                                                                                                    | End of core                                                                   | End of core ——— | End of core            | End of core ——      |
| -                         | -                                                                                                              | -                                                                             |                 |                        |                     |
| 9                         |                                                                                                                | 1                                                                             |                 |                        |                     |

Project: Gas Works Sediment-Western Study Area Project No: 3400542.002

#### Station: GWS-EC06

Maximum depth of retained sediment: 8.1 ft

Mudline elevation: -11.8 ft (Corps lake datum)

## Percent recovery (on-deck): 71%

|       | Core       | Laboratory |              |              |          |                 |
|-------|------------|------------|--------------|--------------|----------|-----------------|
|       | collection | processing | Position:    | N238765      | E1269800 | (NAD83 SPC WAN) |
| Date: | 5/16/2005  | 5/16/2005  | Field Log:   | John LaManna |          |                 |
| Time: | 11:16      | 0:00       | Summary Log: | John LaManna |          |                 |

| 0 —                  | Visual Description of Sediment                                                                                                                                                                            | Summary Interpretation             | Symbol      | Primary Sample ID                     | Secondary Sample ID |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------|---------------------------------------|---------------------|
| 1+                   |                                                                                                                                                                                                           |                                    |             |                                       |                     |
| 2 +                  | Black grading down to gray; mixture of water, clay, wood fragments, and oil.<br>Laminated clay over abundant wood<br>chips in bottom foot. Very soft; wet.<br>Blebs of black oil. Asphalt odor.           | -<br>Upper recent lake<br>deposits | CI?         |                                       |                     |
| 3 +                  |                                                                                                                                                                                                           | -<br>                              |             | <sup></sup> GWS-EC06-0023 <sup></sup> |                     |
| 4                    |                                                                                                                                                                                                           | +<br>-<br>-<br>-<br>-              |             | GWS-EC06-0038                         |                     |
| 5 +<br>-<br>-<br>6 + | Dark gray and black; poorly graded<br>sandy silt; with black oil from 4.5 ft to<br>4.7 ft and 6.5 ft to 6.7 ft (on top of<br>clay); one oil-saturated undecayed<br>wood fragment 0.3-ft long. Loose; wet. |                                    | SP          | <br>GWS-EC06-0056                     |                     |
| 7 +                  | Gray; lean clay overlying gray, poorly<br>graded sand with gravel and a<br>rounded cobble. Cobble is<br>granodiorite.                                                                                     |                                    | CL/GW       |                                       |                     |
| 8 +                  | End of Core                                                                                                                                                                                               | End of core                        | End of core | End of core                           | End of core         |
| 9                    |                                                                                                                                                                                                           | -                                  |             |                                       |                     |

Project: Gas Works Sediment-Western Study Area **Project No:** 3400542.002

#### Station: GWS-EC07

Maximum depth of retained sediment: 7.7 ft

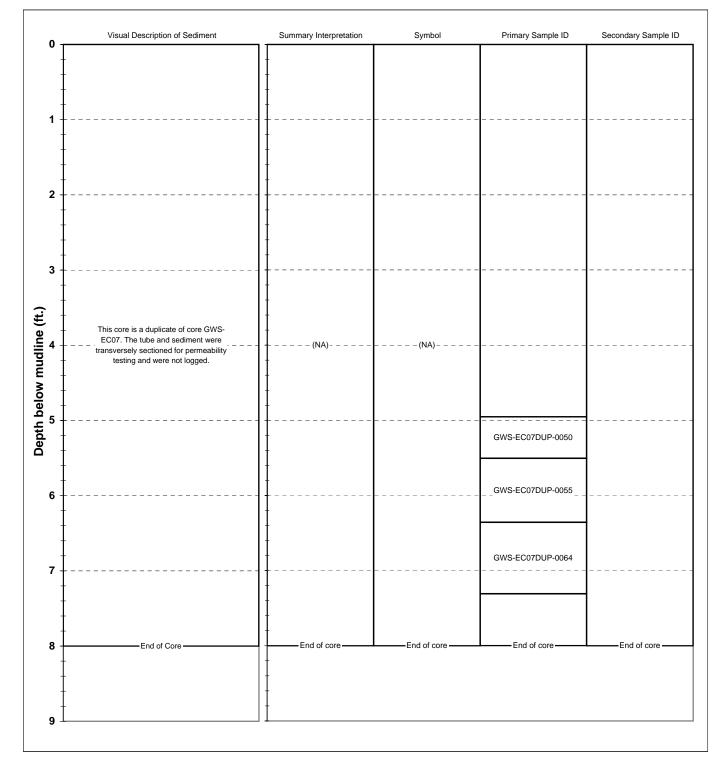
Mudline elevation: -2.5 ft (Corps lake datum)

Percent recovery (on-deck): 84%

|       | Core       | Laboratory |              |              |          |                 |
|-------|------------|------------|--------------|--------------|----------|-----------------|
|       | collection | processing | Position:    | N239035      | E1269642 | (NAD83 SPC WAN) |
| Date: | 5/16/2005  | 5/16/2005  | Field Log:   | John LaManna |          |                 |
| Time: | 10:07      | 0:00       | Summary Log: | John LaManna |          |                 |

| • ⊤                     | Visual Description of Sediment                                                                                                                     | Summary Interpretation         | Symbol          | Primary Sample ID | Secondary Sample I |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|-------------------|--------------------|
| +<br>+<br>+<br>+<br>1 + | Black; emulsion of water, wood<br>fragments, oil and sand. Gelatinous to<br>semi-solid. Very soft; wet. Asphalt<br>odor.                           | - Upper recent lake<br>deposit | (NA)            |                   |                    |
| 2 + -                   | Very dark olive brown; silty sand.<br>Trace wood fragments, possible brick<br>fragments. Thin bed of black grit at<br>10.6. Oily. Very loose; wet. |                                | GW              | GWS-EC07-0013     |                    |
| 3                       | Black; silty sand, at bottom of interval,<br>fine to coase gravel; trace wood                                                                      | Fill or disturbed lake         | OL?             | GWS-EC07-0034     |                    |
| 4                       | fragments and glass. Blebs of black oil.                                                                                                           |                                |                 | GWS-EC07-0046     |                    |
| 6                       | Gray; beds of clay, over poorly graded sand, over gravel with sand, over silty sand. Medium dense; wet. Some oil sheen on sand bed.                |                                | CL/SP/GW/SM     | GWS-EC07-0056     |                    |
| 7 -                     |                                                                                                                                                    | -<br>-<br>-<br>-<br>-<br>-     |                 |                   |                    |
| 8                       | End of Core                                                                                                                                        | End of core                    | End of core ——— | End of core       | End of core        |
| ‡<br>و                  |                                                                                                                                                    |                                |                 |                   |                    |

Project: Gas Works Sediment-Western Study Area Project No: 3400542.002


#### Station: GWS-EC07DUP

Maximum depth of retained sediment: 8.0 ft

Mudline elevation: -1.6 ft (Corps lake datum)

# Percent recovery (on-deck): 78%

|       | Core       | Laboratory |              |              |          |                 |
|-------|------------|------------|--------------|--------------|----------|-----------------|
|       | collection | processing | Position:    | N239033      | E1269643 | (NAD83 SPC WAN) |
| Date: | 5/16/2005  | 5/16/2005  | Field Log:   | John LaManna |          |                 |
| Time: | 14:36      | 0:00       | Summary Log: | John LaManna |          |                 |



Project: Gas Works Sediment-Western Study Area **Project No:** 3400542.002

#### Station: GWS-EC08

Maximum depth of retained sediment: 15.6 ft

Mudline elevation: -19.8 ft (Corps lake datum) 85%

Percent recovery (on-deck):

|       | Core       | Laboratory |     |
|-------|------------|------------|-----|
|       | collection | processing |     |
| Date: | 5/16/2005  | 5/16/2005  |     |
| Time: | 13:54      | 0:00       | Sum |

Position: N238894 Field Log: John LaManna mary Log: John LaManna

E1269444

(NAD83 SPC WAN)

| 0 <del></del>           | Visual Description of Sediment                                                                                                                                                                                      | Summary Interpretation          | Symbol      | Primary Sample ID | Secondary Sample ID |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|-------------------|---------------------|
|                         | •                                                                                                                                                                                                                   | - Upper recent lake<br>deposits | OH/CL       |                   |                     |
| 2                       | (0-1.2) Laminated, dark brown; organic<br>silt and very dark gray silty clay, with<br>wood fragments and sand overlying<br>black grading down to gray, silty clay,<br>with wood fragments. Oily. Very soft;<br>wet. |                                 |             | GWS-GC08-0006     |                     |
| 4 + -                   |                                                                                                                                                                                                                     | -<br>                           |             | GWS-GC08-0028     |                     |
| 6 + -                   |                                                                                                                                                                                                                     |                                 |             |                   |                     |
| -                       |                                                                                                                                                                                                                     |                                 |             | GWS-GC08-0048     |                     |
| uiue<br>8<br>8          |                                                                                                                                                                                                                     | Lower recent lake               |             |                   |                     |
| Leptn below mualine (π) | Grayish brown grading down to<br>yellowish brown;organic silt with sand<br>to sandy organic silt, trace plant fibers.<br>Very soft; moist to wet. Moisture<br>content decreases with depth. Smells                  | deposits                        | ОН          | GWS-GC08-0068     |                     |
| 10 + -<br>              | $-$ - $-$ oily. Oil veinlets at 6.3 ft and 8.7 ft. $\cdot$                                                                                                                                                          | +                               |             | GWS-GC08-0100     |                     |
| 12 + -                  |                                                                                                                                                                                                                     |                                 |             |                   |                     |
| 14 -                    |                                                                                                                                                                                                                     |                                 |             |                   |                     |
| ţ                       |                                                                                                                                                                                                                     |                                 |             | GWS-GC08-0129     |                     |
| 16 <del>-</del> -       | End of Core ————————————————————————————————————                                                                                                                                                                    | End of core                     | End of core | End of core       | End of core ———     |
| 18                      |                                                                                                                                                                                                                     | -                               |             |                   |                     |

Project: Gas Works Sediment-Western Study Area Project No: 3400542.002

#### Station: GWS-EC09

Maximum depth of retained sediment: 20.3 ft Percent recovery (on-deck): 76%

E1269353

Mudline elevation: -19.6 ft (Corps lake datum)

|       | Core       | Laborator  |
|-------|------------|------------|
|       | collection | processing |
| Date: | 5/19/2005  | 5/19/2005  |
| Time: | 11:06      | 0:00       |

ooratory cessing 9/2005 0:00 S

Position: N238842 Field Log: John LaManna Summary Log: John LaManna

(NAD83 SPC WAN)

Visual Description of Sediment Primary Sample ID Secondary Sample ID Summary Interpretation Symbol 0 (0-0.15) Upper recent (0-0.15) Laminated, gray clay and dark (0-0.15) CL/OH reddish brown organic silt; Very soft; lake deposits wet. GWS-GC09-0008 5 Gray grading down to dark brown; Depth below mudline (ft.) 10 organic silt with sand to sandy organic \_ GWS-GC09-0092 Lower recent lake silt, massive, moisture content OH deposits deceases with depth. Top 0.1-ft is gray. Very soft; wet. GWS-GC09-0176 20 End of core End of core End of core End of core --End of Core-

25

Project: Gas Works Sediment-Western Study Area **Project No:** 3400542.002

#### Station: GWS-EC09DUP/EC24

Maximum depth of retained sediment: 20.3 ft Percent recovery (on-deck):

Mudline elevation: -19.7 ft (Corps lake datum)

|       | Core<br>collection | Laborato<br>processi |
|-------|--------------------|----------------------|
| Date: | 5/20/2005          | 5/20/200             |
| Time: | 10:35              | 0:00                 |

ory ing 05

Position: N238845 Field Log: John LaManna Summary Log: John LaManna

E1269353

(NAD83 SPC WAN)

| 0 —  | Visual Description of Sediment                                                                                                                                                                                                                                                    | Summary Interpretation        | Symbol      | Primary Sample ID | Secondary Sample |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|-------------------|------------------|
| -    | <b>↑</b>                                                                                                                                                                                                                                                                          |                               | <b>^</b>    |                   |                  |
|      | I<br>(0-0.45) Organic silt, clay, wood<br>fragments, water and oil (asphalt odor)<br>overlying laminated, dark brown<br>organic silt and gray clay with silt. Very<br>soft; wet.                                                                                                  | Upper recent lake<br>deposits | I<br>OH/CL  | GWS-EC-0008       |                  |
| 5 +  |                                                                                                                                                                                                                                                                                   |                               |             |                   |                  |
| 10   | Gray grading down to dark brown,<br>sandy organic silt to organic silt with<br>sand, amorphous, massive, water<br>content decreases with depth, trace<br>visible plant parts. Gray color in top 0.3<br>ft. Very soft; wet. No odor in most of<br>this interval; no odor at bottom | Lower recent lake deposits    | он          | GWS-EC-0092       |                  |
| 15   |                                                                                                                                                                                                                                                                                   |                               |             |                   |                  |
| -    |                                                                                                                                                                                                                                                                                   | -                             |             | GWS-EC-0176       |                  |
| 20 + | End of Core                                                                                                                                                                                                                                                                       | End of core                   | End of core | End of core       | End of core      |
| ļ    |                                                                                                                                                                                                                                                                                   | +                             |             |                   |                  |

77%

Project: Gas Works Sediment-Western Study Area 3400542.002 **Project No:** 

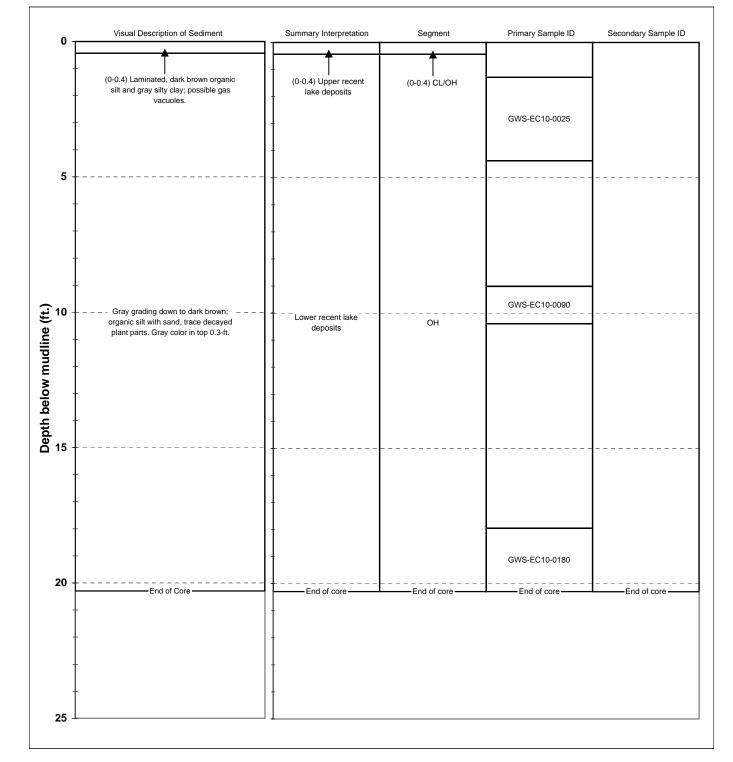
#### Station: GWS-EC10

Maximum depth of retained sediment: 20.3 ft Percent recovery (on-deck): 82%

Mudline elevation: -19.5 ft (Corps lake datum)

|       | Core       | Laborator  |
|-------|------------|------------|
|       | collection | processing |
| Date: | 5/18/2005  | 5/18/2005  |
| Time: | 13:55      | 0:00       |

·у g 5


N238540 Field Log: John LaManna

(NAD83 SPC WAN)

Position: Summary Log:

John LaManna

E1269116



Project: Gas Works Sediment-Western Study Area **Project No:** 3400542.002

#### Station: GWS-EC11

Maximum depth of retained sediment: 8.8 ft

Mudline elevation: 19.3 ft (Corps lake datum)

Γ

Percent recovery (on-deck): 69%

|       | Core       | Laboratory |              |              |          |                 |
|-------|------------|------------|--------------|--------------|----------|-----------------|
|       | collection | processing | Position:    | N239263      | E1269530 | (NAD83 SPC WAN) |
| Date: | 5/16/2005  | 5/16/2005  | Field Log:   | John LaManna |          |                 |
| Time: | 9:15       | 0:00       | Summary Log: | John LaManna |          |                 |

| 0 Τ                                                                                         | Visual Description of Sediment                                                                                                                                                                          | Summary Interpretation             | Symbol            | Primary Sample ID | Secondary Sample ID |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|-------------------|---------------------|
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Dark gray poorly graded sand with<br>gravel overlying dark gray silty sand<br>– – – with gravel; trace porceline, wood and – – –<br>glass fragments. No chemical odor.                                  | -<br>-<br>-<br>-<br>Fill<br>-<br>- | SP/SM             |                   |                     |
| 2 -                                                                                         |                                                                                                                                                                                                         | -<br>-<br>                         |                   |                   |                     |
| 3 -                                                                                         | -<br>-<br>-<br>-<br>-                                                                                                                                                                                   | -<br>-<br>-<br>-<br>               |                   | GWS-EC11-0019     |                     |
| 4                                                                                           | -<br>-<br>-<br>                                                                                                                                                                                         | -<br>-<br>-<br>-<br>-<br>-         |                   |                   |                     |
| 4                                                                                           | Dark grayish brown, poorly-graded,<br>fine sand with trace rounded gravel<br>and trace coarse sand, a lump of<br>organics or decayed wood; fine gravel<br>size lump of tarry sand with asphalt<br>odor. | -<br>-<br>- Fill<br>               | SP                | GWS-EC11-0048     |                     |
| 6 -                                                                                         | -<br>                                                                                                                                                                                                   | -<br>                              |                   |                   |                     |
| 7                                                                                           | -<br>-<br>                                                                                                                                                                                              | <br>                               |                   |                   |                     |
| 8                                                                                           |                                                                                                                                                                                                         | -<br>-<br>                         |                   | GWS-EC11-0067     |                     |
|                                                                                             | Dark brown silt; over 0.1 ft of dark<br>brown wood fragments.<br>End of Core                                                                                                                            | Fill End of core                   | ML<br>End of core | End of core       | End of core         |
| 9 -                                                                                         |                                                                                                                                                                                                         | +<br>-<br>-                        |                   |                   |                     |
| 10                                                                                          | -                                                                                                                                                                                                       | Ŧ                                  |                   |                   |                     |

Project: Gas Works Sediment-Western Study Area **Project No:** 3400542.002

### Station: GWS-EC11Dup/EC-23

Maximum depth of retained sediment: 7.8 ft

Mudline elevation: 19.5 ft (Corps lake datum)

#### Percent recovery (on-deck): 68%

|                | Core collection    | Laboratory processing | Position:                  | N239262                      | E1269530 | (NAD83 SPC WAN) |
|----------------|--------------------|-----------------------|----------------------------|------------------------------|----------|-----------------|
| Date:<br>Time: | 5/17/2005<br>12:56 | 5/17/2005<br>0:00     | Field Log:<br>Summary Log: | John LaManna<br>John LaManna |          | · · · ·         |

| 0                             | Visual Description of Sediment                                                                                                                | Summary Interpretation | Symbol     | Primary Sample ID | Secondary Sample ID |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|-------------------|---------------------|
|                               | Gray; poorly graded fine sand. No<br>chemical odor, no oil.                                                                                   | -<br>- Fill            | SP         |                   |                     |
| 1 <del>-</del><br>-<br>-<br>2 | Gray; poorly graded fine sand with 15-<br>20% rounded and angular gravel, with<br>glass and with undecayed wood. No<br>oil, no chemical odor. | -<br>-<br>- Fill<br>-  | SP         |                   |                     |
| 3 + -                         |                                                                                                                                               |                        |            | GWS-EC23-0019     |                     |
|                               | Gray, with strong brown mottles toward                                                                                                        |                        |            |                   |                     |
|                               | bottom of interval; poorly graded fine<br>sand with trace coarse gravel and a<br>dark brown silt lump. More oxidized in<br>bottom 0.5-ft.     | - Fill<br>- Fill<br>   | SP         | GWS-EC23-0048     |                     |
| 6 + -                         |                                                                                                                                               |                        |            |                   |                     |
| 7 + -                         | (7.4-7.8) Laminated, brown silty fine sand and sandy silt, grading down to gravel with silt and wood chips.                                   | -<br>                  |            | GWS-EC23-0067     |                     |
| 8 + -                         | End of Core                                                                                                                                   | - Fill<br>End of core  | SM? or GM? | End of core       | End of core         |
| 9                             |                                                                                                                                               |                        |            |                   |                     |

Project: Gas Works Sediment-Western Study Area Project No: 3400542.002

#### Station: GWS-EC12

Maximum depth of retained sediment: 15.5 ft Percent recovery (on-deck): 73%

Mudline elevation: -19.0 ft (Corps lake datum)

|       | Core<br>collection | Laboratory<br>processing |
|-------|--------------------|--------------------------|
| Date: | 5/17/2005          | 5/17/2005                |
| Time: | 8:46               | 0:00                     |

Position:N239177Field Log:John LaMannaSummary Log:John LaManna

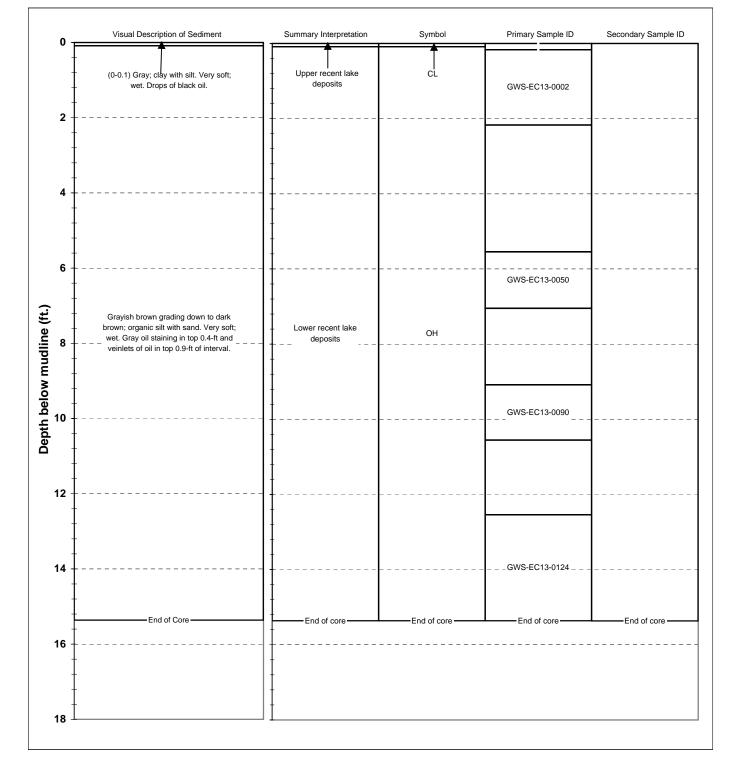
E1269370 (NAD83

(NAD83 SPC WAN)

| •               |                                                                              |                               |             |               |             |
|-----------------|------------------------------------------------------------------------------|-------------------------------|-------------|---------------|-------------|
| 0               | <b>_</b>                                                                     | Upper recent lake<br>deposits | CI          |               |             |
| Į               |                                                                              | I I                           |             |               |             |
| -               | (0-0.7 ft) Black to gray emulsion of water, oil, silt and clay. Gray clay at |                               |             |               |             |
| 2 +             | - bottom of interval. Very soft; wet                                         | •                             |             |               |             |
| ł               | -                                                                            | -                             |             | GWS-EC12-0008 |             |
| ł               | -                                                                            | +                             |             |               |             |
| ł               | -                                                                            | +                             |             |               |             |
| 4               |                                                                              | +                             |             |               |             |
| ł               | -                                                                            | +                             |             |               |             |
| ļ               | -                                                                            |                               |             |               |             |
| ł               | -                                                                            | +                             |             | GWS-EC12-0043 |             |
| 6 +             |                                                                              | +                             |             |               |             |
| t               | Dark gray and black organic silt with                                        | †                             |             |               |             |
| Ţ               | sand and oil grading to dark brown<br>organic silt with sand, amorphous,     | Lower recent lake             | ОН          |               |             |
| ļ               | massive, trace decayed plant parts.                                          | deposits                      |             | GWS-EC12-0064 |             |
| 8 -             | Very soft; moist to wet. No oil below a                                      | +                             |             |               |             |
| ł               | -                                                                            | + I                           |             |               |             |
| ł               | -                                                                            | + I                           |             |               |             |
| ŧ               | -                                                                            | †                             |             | GWS-EC12-0084 |             |
| <b>,</b> †      |                                                                              | †                             |             |               |             |
| 10 +            |                                                                              | Ţ                             |             |               |             |
| ļ               | -                                                                            | 1                             |             |               |             |
| ļ               | -                                                                            | + I                           |             |               |             |
| ł               | -                                                                            | +                             |             |               |             |
| 12 +            |                                                                              | +                             |             |               |             |
| ł               | -                                                                            | †                             |             |               |             |
| t               | -                                                                            | †                             |             |               |             |
| ļ               |                                                                              |                               |             | GWS-EC12-0108 |             |
| 14 ]            | Dark brown sandy organic silt                                                | L                             |             |               |             |
| ·-              | graded fine and medium sand. Trace                                           | Lower recent lake             | 011/05      |               |             |
| ļ               | angular (with sharp edges), tabular,<br>coarse sand-sized rock or shell      | deposits                      | OH/SP       |               |             |
| ł               | fragments with sand. Oil in sand beds.                                       | + I                           |             |               |             |
| ŧ               | End of Core                                                                  | End of core                   | End of core | End of core   | End of core |
| 16 +            |                                                                              | +                             |             |               |             |
| ļ               | -                                                                            | †<br>+                        |             |               |             |
| ļ               | -                                                                            | ţ                             |             |               |             |
| 18 <sup>⊥</sup> |                                                                              |                               |             |               |             |

Project: Gas Works Sediment-Western Study Area 3400542.002 Project No:

#### Station: GWS-EC13


Maximum depth of retained sediment: 15.4 ft Percent recovery (on-deck): 73%

Mudline elevation: -20.4 ft (Corps lake datum)

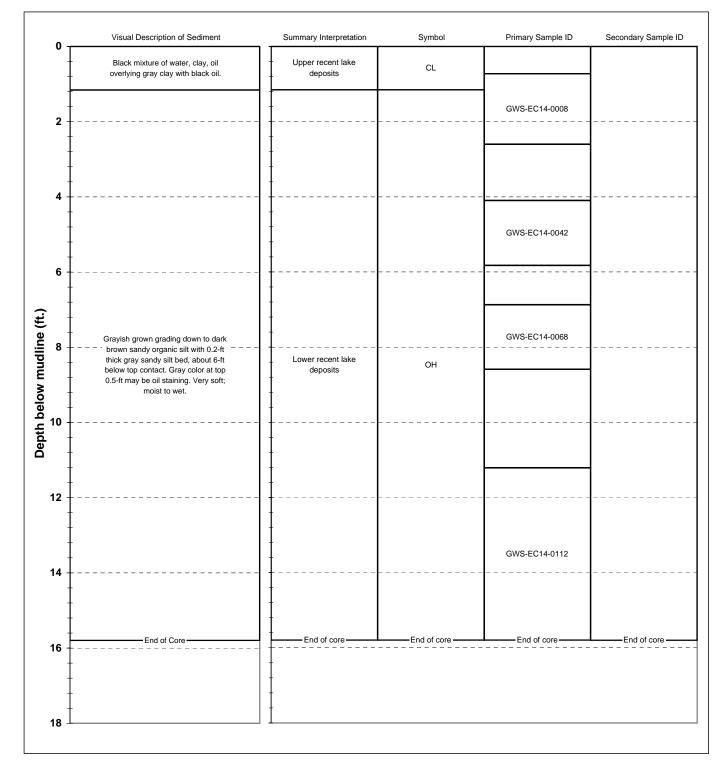
|       | Core collection | Laboratory<br>processing |
|-------|-----------------|--------------------------|
| Date: | 5/17/2005       | 5/17/2005                |
| Time: | 9:39            | 0:00                     |

Position: N239061 Field Log: John LaManna Summary Log: John LaManna

E1269278 (NAD83 SPC WAN)



Project: Gas Works Sediment-Western Study Area Project No: 3400542.002


#### Station: GWS-EC14

Maximum depth of retained sediment: 15.8 ft

Mudline elevation: -20.5 ft (Corps lake datum)

| num deput of retained sediment. | 10.0 |
|---------------------------------|------|
| Percent recovery (on-deck):     | 71%  |

|       | Core collection | Laboratory processing | Position:    | N239240      | E1269295 | (NAD83 SPC WAN)                       |
|-------|-----------------|-----------------------|--------------|--------------|----------|---------------------------------------|
| Date: | 5/17/2005       | 5/17/2005             | Field Log:   | John LaManna |          | · · · · · · · · · · · · · · · · · · · |
| Time: | 13:35           | 0:00                  | Summary Log: |              |          |                                       |



Project: Gas Works Sediment-Western Study Area 3400542.002 **Project No:** 

#### Station: GWS-EC15

Maximum depth of retained sediment: 19.6 ft Percent recovery (on-deck): 71%

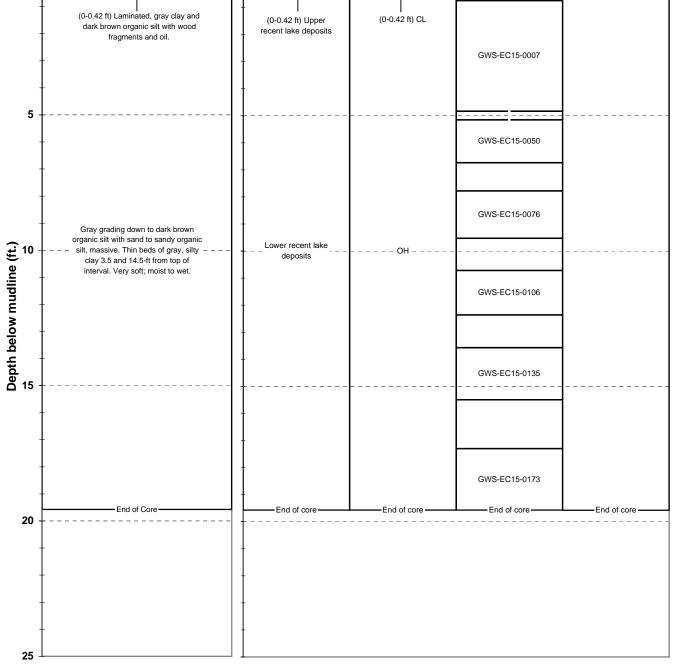
Primary Sample ID

Mudline elevation: -19.3 ft (Corps lake datum)

0

|       | Core       | Laborato  |
|-------|------------|-----------|
|       | collection | processin |
| Date: | 5/20/2005  | 5/20/2005 |
| Time: | 9:30       | 0:00      |

ory ng


Position: N239001 John LaManna

E1269161

(NAD83 SPC WAN)

Secondary Sample ID

)5 Field Log: John LaManna Summary Log: Visual Description of Sediment Summary Interpretation Symbol (0-0.42 ft) Laminated, gray clay and (0-0.42 ft) Upper dark brown organic silt with wood recent lake deposits fragments and oil.



Project: Gas Works Sediment-Western Study Area Project No: 3400542.002

#### Station: GWS-EC16

Maximum depth of retained sediment: 20.0 ft

Mudline elevation: -19.0 ft (Corps lake datum)

### Percent recovery (on-deck): 74%

(NAD83 SPC WAN)

|       | Core       | Laboratory |              |              |          |
|-------|------------|------------|--------------|--------------|----------|
|       | collection | processing | Position:    | N238874      | E1268806 |
| Date: | 5/18/2005  | 5/18/2005  | Field Log:   | John LaManna |          |
| Time: | 10:58      | 0:00       | Summary Log: | John LaManna |          |

Visual Description of Sediment Symbol Primary Sample ID Secondary Sample ID Summary Interpretation 0 Upper recent lake deposits CL Gray clay. Very soft; wet. GWC-EC16-0010 5 GWC-EC16-0066 Depth below mudline (ft.) 10 Dark brown organic silt with sand. Very soft; moist to wet. Lower recent lake OH deposits GWC-EC16-0173 20 End of core End of core End of core-End of core End of Core 25

Project: Gas Works Sediment-Western Study Area **Project No:** 3400542.002

#### Station: GWS-EC17

Maximum depth of retained sediment: 20.1 ft Percent recovery (on-deck): 74%

|       | Core       | Laboratory |
|-------|------------|------------|
|       | collection | processing |
| Date: | 5/20/2005  | 5/20/2005  |
| Time: | 8:25       | 0:00       |

Position:

N238760 Field Log: John LaManna Summary Log: John LaManna

E1269052 (NAD83 SPC WAN)

| 0 -                                      | Visual Description of Sediment                                                                                                                              | Summary Interpretation                    | Symbol                     | Primary Sample ID | Secondary Sample ID |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------|-------------------|---------------------|
| +                                        | (0-0.44 ft) Dark brownish gray organic<br>clay with silt. Trace wood; no oil, sheen<br>or chemical odor.                                                    | (0-0.44 ft) Upper<br>recent lake deposits | <b>↑</b><br>(0-0.44 ft) OL | GWS-EC17-0009     |                     |
| 5 -                                      |                                                                                                                                                             |                                           |                            |                   |                     |
| -                                        |                                                                                                                                                             | -                                         |                            | GWS-EC17-0055     |                     |
| + 10 + + + + + + + + + + + + + + + + + + | Dark grayish brown grading down to<br>dark brown; organic silt with sand. Grayish color in upper 0.3-ft. Very soft;<br>wet. No oil, sheen or chemical odor. | Lower recent lake<br>deposits<br>-        | он                         |                   |                     |
|                                          |                                                                                                                                                             | -                                         |                            | GWS-EC17-0125     |                     |
| -                                        |                                                                                                                                                             | -                                         |                            |                   |                     |
| 20 -                                     | End of Core                                                                                                                                                 |                                           | End of core                | GWS-EC17-0178     | End of core         |
| +                                        |                                                                                                                                                             | -                                         |                            |                   |                     |
| 25                                       |                                                                                                                                                             | -                                         |                            |                   |                     |

Project: Gas Works Sediment-Western Study Area Project No: 3400542.002

#### Station: GWS-EC18

Maximum depth of retained sediment: 15.6 ft

Mudline elevation: -19.5 ft (Corps lake datum)

### Percent recovery (on-deck): 70%

|       | Core       | Laboratory |              |              |
|-------|------------|------------|--------------|--------------|
|       | collection | processing | Position:    | N239112      |
| Date: | 5/20/2005  | 5/20/2005  | Field Log:   | John LaManna |
| Time: | 11:15      | 0:00       | Summary Log: | John LaManna |

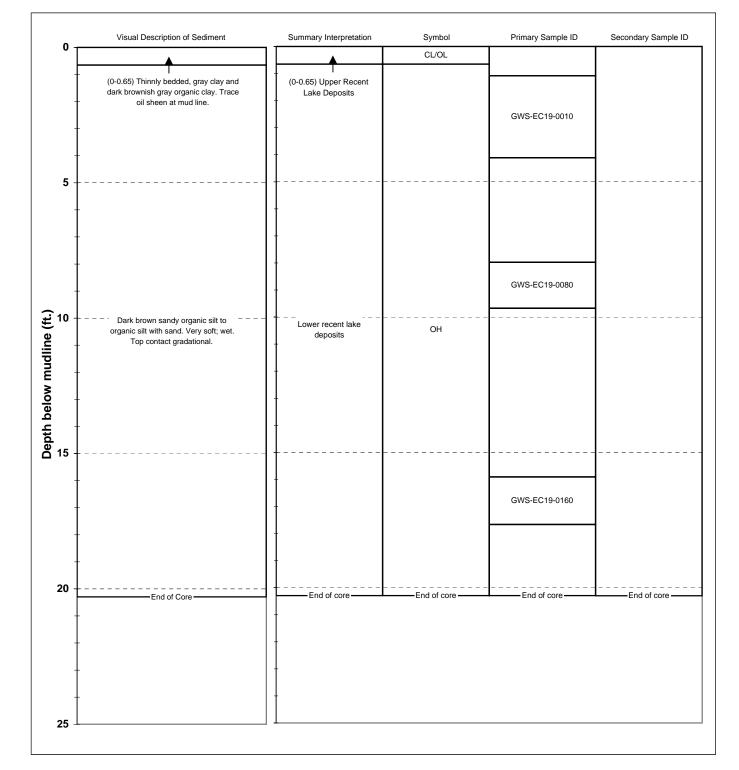
E1268852 (NAD83 SPC WAN)

Visual Description of Sediment Primary Sample ID Secondary Sample ID Summary Interpretation Symbol 0 Upper recent lake OH/CL deposits (0-0.8 ft) Laminated, dark brown 2 organic silt and gray clay with silt. Very soft; moist. GWS-EC18-0022 4 6 Depth below mudline (ft.) GWS-EC18-0068 Dark gray grading down to dark brown, 8 organic silt with sand, amorphous, Lower recent lake OH massive. Gray color in top 0.5-ft of deposits interval. Very soft; wet. 10 12 GWS-EC18-0127 14 End of Core End of core End of core -End of core -End of core 16 18

Project: Gas Works Sediment-Western Study Area 3400542.002 **Project No:** 

#### Station: GWS-EC19

Maximum depth of retained sediment: 20.3 ft Percent recovery (on-deck): 79%


Mudline elevation: -19.1 ft (Corps lake datum)

|       | Core       | Laborator |
|-------|------------|-----------|
|       | collection | processin |
| Date: | 5/18/2005  | 5/18/2005 |
| Time: | 9:07       | 0:00      |

·у g 5

Position: N239034 Field Log: John LaManna Summary Log: John LaManna

E1268729 (NAD83 SPC WAN)



Project: Gas Works Sediment-Western Study Area **Project No:** 3400542.002

#### Station: GWS-EC20

Maximum depth of retained sediment: 13.9 ft

E1269361

Mudline elevation: -19.5 ft (Corps lake datum)

Percent recovery (on-deck):

69%

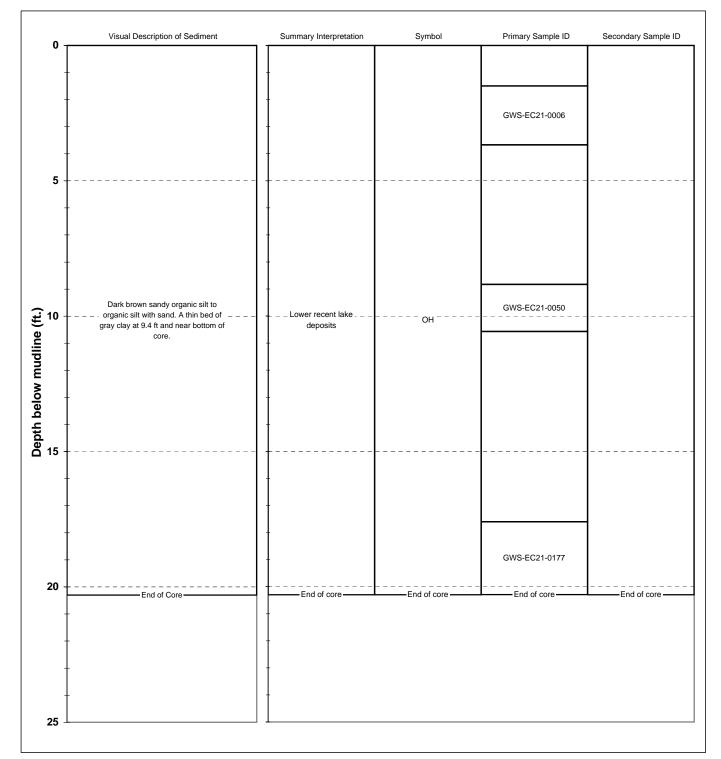
|       | Core       | Laboratory |  |
|-------|------------|------------|--|
|       | collection | processing |  |
| Date: | 5/19/2005  | 5/19/2005  |  |
| Time: | 9:38       | 0:00       |  |

Position: N238479

Field Log: John LaManna Summary Log: John LaManna (NAD83 SPC WAN)

| 0 -  | Visual Description of Sediment                                                                                             | Summary Interpretation        | Symbol      | Primary Sample ID | Secondary Sample ID |
|------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|-------------------|---------------------|
|      | <b>†</b>                                                                                                                   | Upper recent lake<br>deposits | CL/OH       |                   |                     |
| 2 -  | I<br>(0-0.8 ft) Laminated, dark red-brown<br>organic silt and gray to black clay(?).<br>Trace wood fibers. Very soft; wet. | -                             |             |                   |                     |
| +    |                                                                                                                            |                               |             | GWC-EC20-0018     |                     |
| 4 +  |                                                                                                                            |                               |             |                   |                     |
| 6    |                                                                                                                            | -                             |             |                   |                     |
|      | Gray grading down to dark brown organic silt with sand. Gray color and                                                     | -<br>Lower recent lake        | ОН          | GWC-EC20-0058     |                     |
| 8 -  | trace gas vacuoles in top 0.5-ft. Very<br>soft; moist to wet.                                                              | deposits                      |             |                   |                     |
| 8 +  |                                                                                                                            |                               |             |                   |                     |
| 10 + |                                                                                                                            | +                             |             |                   |                     |
|      |                                                                                                                            | -                             |             |                   |                     |
| 12 + |                                                                                                                            |                               |             | GWC-EC20-0128     |                     |
| 14 - | End of Core                                                                                                                | End of core                   | End of core | End of core       | End of core         |
|      |                                                                                                                            |                               |             |                   |                     |
| 16   |                                                                                                                            | 1                             |             |                   |                     |

Project: Gas Works Sediment-Western Study Area Project No: 3400542.002


#### Station: GWS-EC21

Maximum depth of retained sediment: 20.3 ft

Mudline elevation: -18.8 ft (Corps lake datum)

Percent recovery (on-deck): 77%

|       | Core       | Laboratory |              |              |          |                 |
|-------|------------|------------|--------------|--------------|----------|-----------------|
|       | collection | processing | Position:    | N238265      | E1269126 | (NAD83 SPC WAN) |
| Date: | 5/18/2005  | 5/18/2005  | Field Log:   | John LaManna |          |                 |
| Time: | 12:10      | 0:00       | Summary Log: | John LaManna |          |                 |



Project: Gas Works Sediment-Western Study Area **Project No:** 3400542.002

#### Station: GWS-EC22

Maximum depth of retained sediment: 19.8 ft Percent recovery (on-deck): 73%

Mudline elevation: -17.8 ft (Corps lake datum)

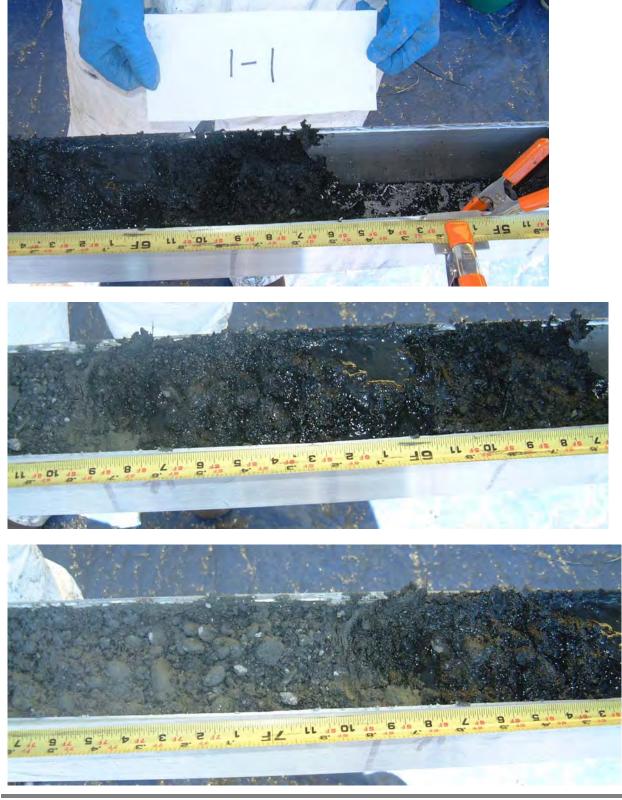
|       | Core       | Laboratory |
|-------|------------|------------|
|       | collection | processing |
| Date: | 5/17/2005  | 5/17/2005  |
| Time: | 14:25      | 0:00       |

Position: N238694 Field Log: John LaManna Summary Log: John LaManna

E1268638 (NAD83 SPC WAN)

Visual Description of Sediment Summary Interpretation Symbol Secondary Sample ID Primary Sample ID 0 CL (0-0.7) Upper recent (0-0.7) Gray, clay with silt. Very soft; lake deposits wet. GWS-EC22-0015 5 GWS-EC22-0055 GWS-EC22-0078 Dark brown, sandy organic silt to Depth below mudline (ft.) 21 01 organic silt, moisture content Lower recent lake OH decreases with depth. Very soft; moist deposits. to wet. Top contact gradational. GWS-EC22-0105 GWS-EC22-0135 GWS-EC22-0162 \_\_\_\_\_End of Core End of core -End of core End of core -End of core-20 \_\_\_\_ 25

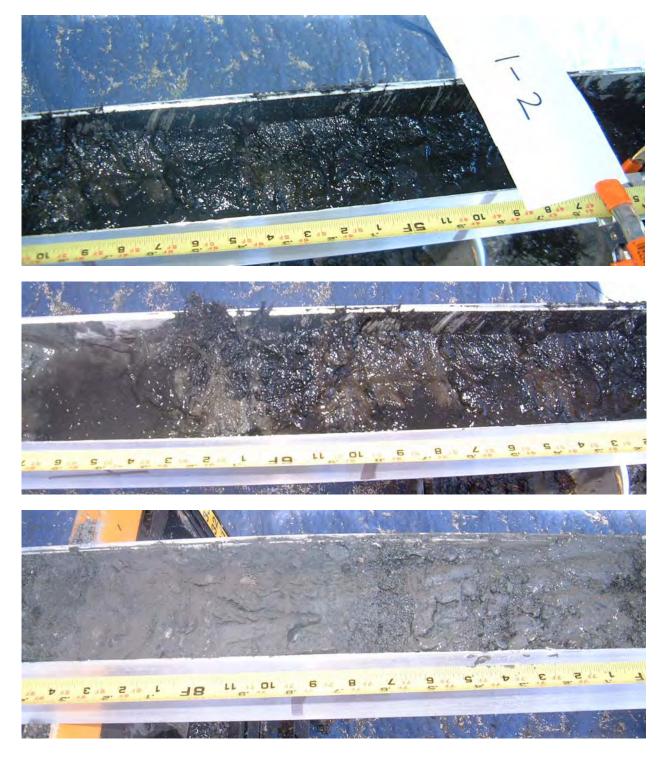
SUB-ATTACHMENT 2D-4.4 Photographs of NAPL Investigation 2004 Sediment Cores Seattle Law Department Gas Works Park


**Chemical Forensics Sampling Report** 

# Appendix D Photographs of NAPL Investigation 2004 Sediment Cores

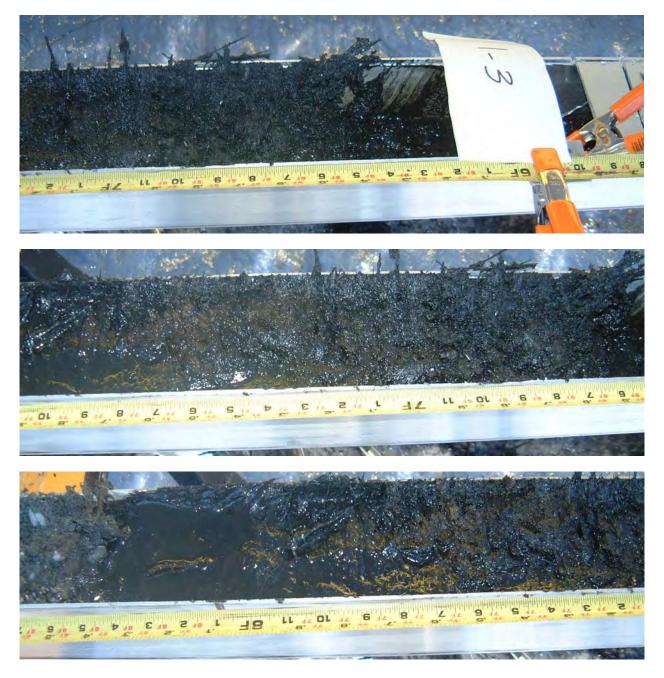
# DRAFT

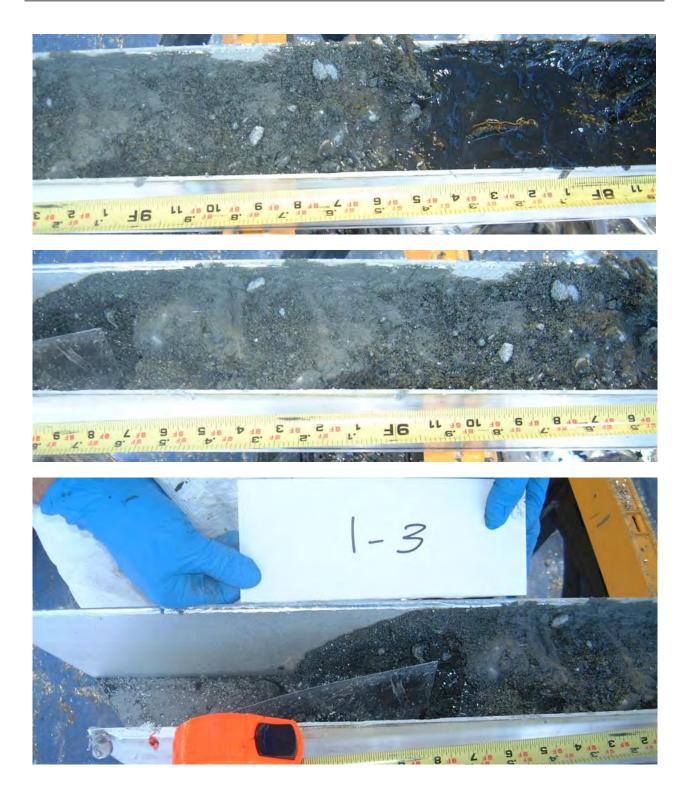
CONFIDENTIAL AND PRIVILEGED: PREPARED IN PREPARATION FOR LITIGATION


#### Photographs of NAPL Investigation Core 1-1: Starting at the top of the core

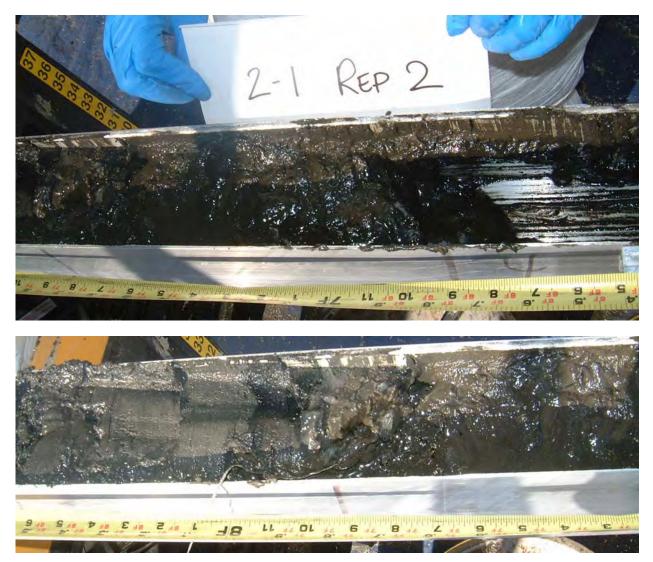


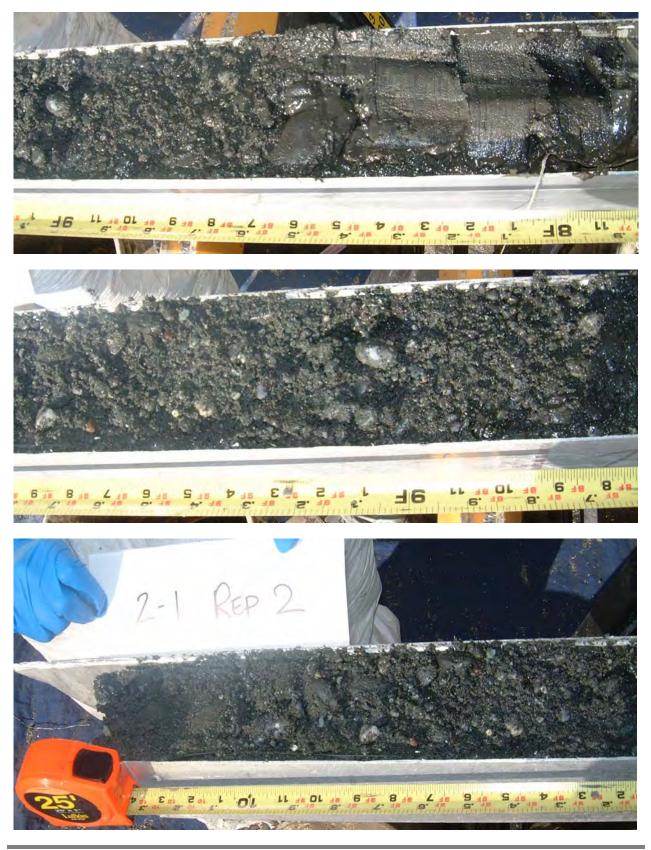




#### Photographs of NAPL Investigation Core 1-2: Starting at the top of the core

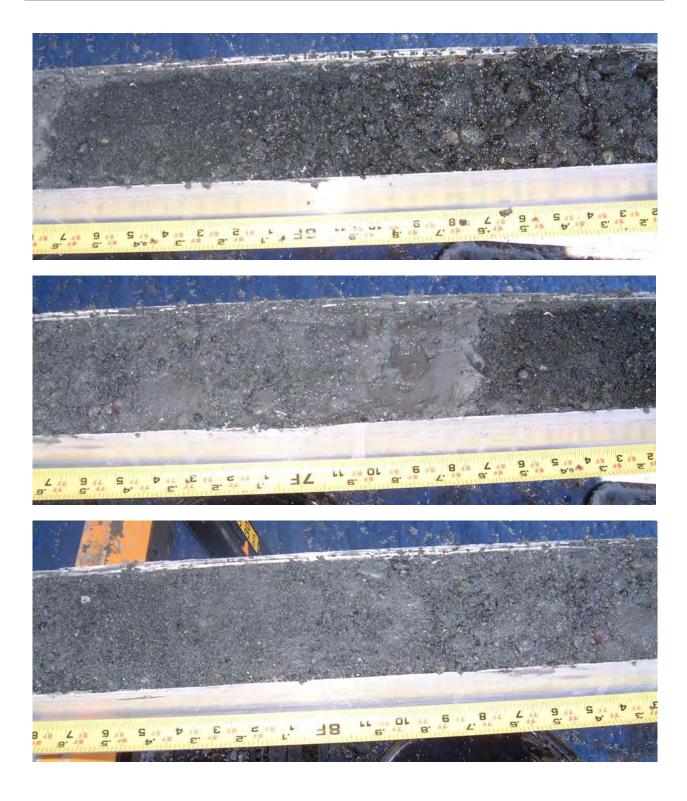




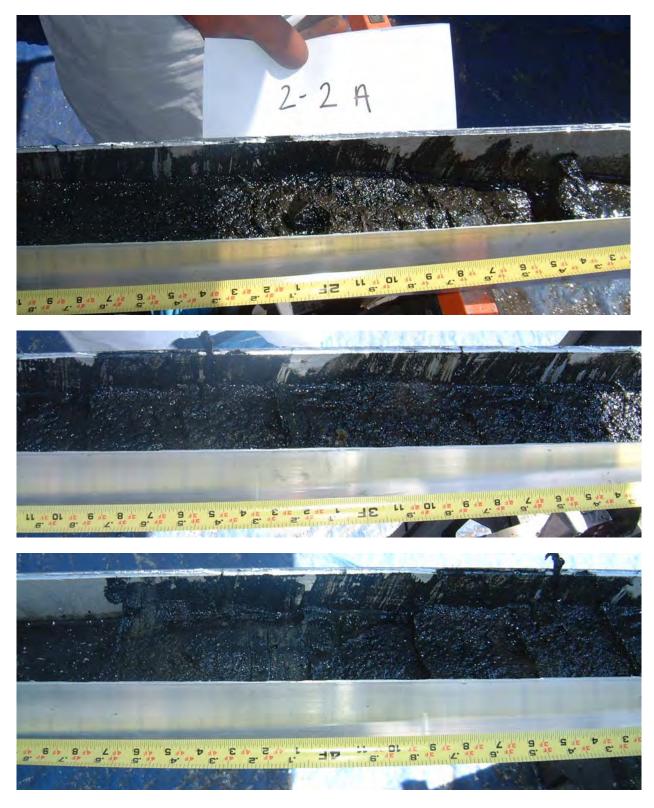


#### Photographs of NAPL Investigation Core 1-3: Starting at the top of the core



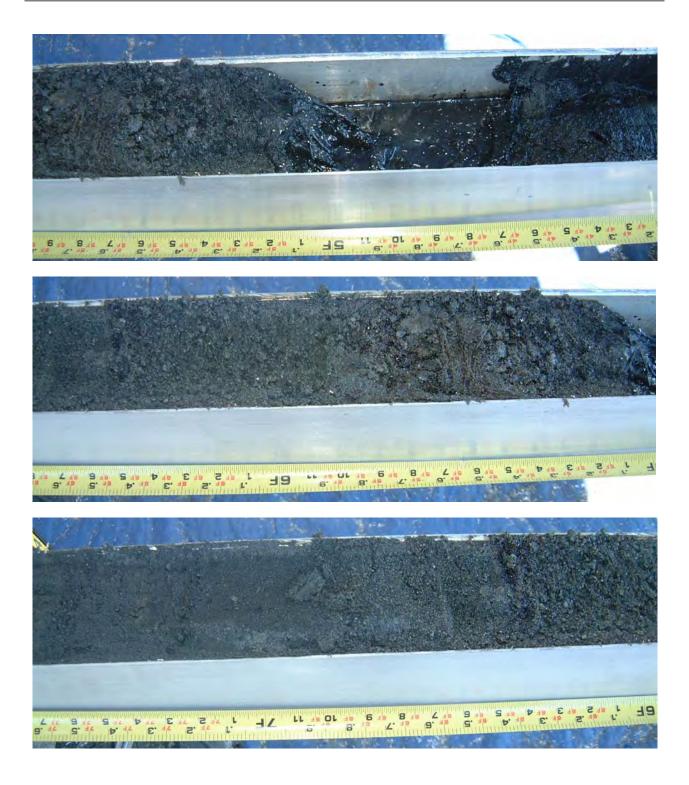


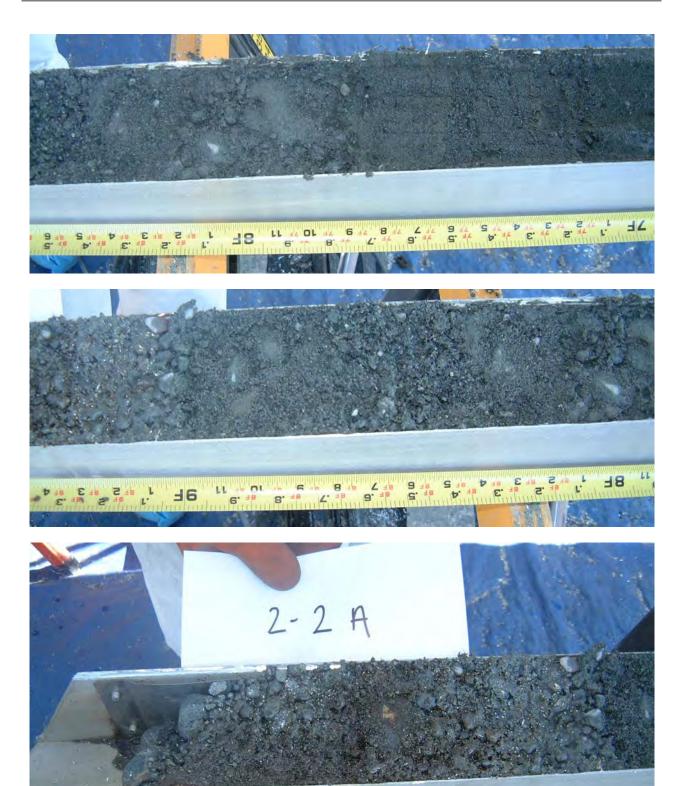

#### Photographs of NAPL Investigation Core 2-1 Rep 2: Starting at the top of the core












#### Photographs of NAPL Investigation Core 2-2 A: Starting at the top of the core





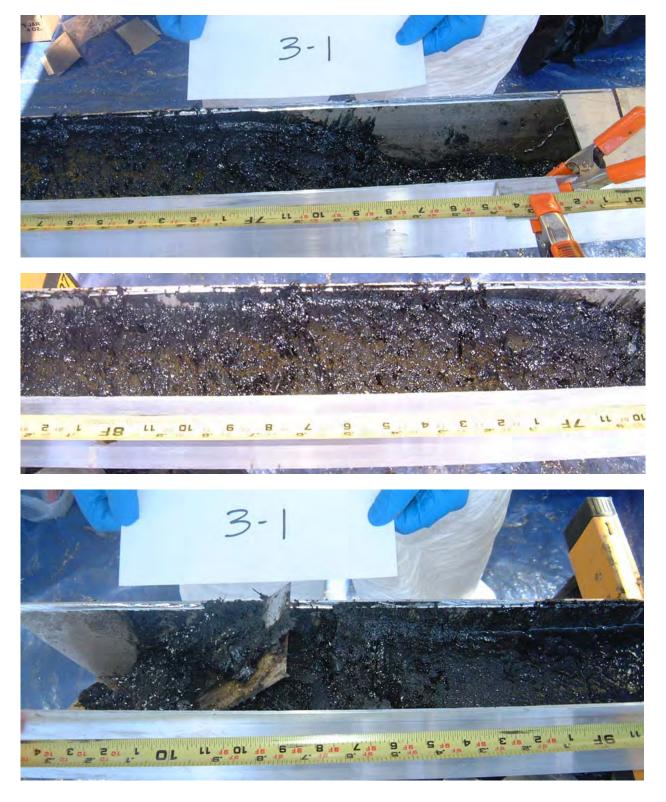
L

OL

2

LL

6


OL

8

36

LL

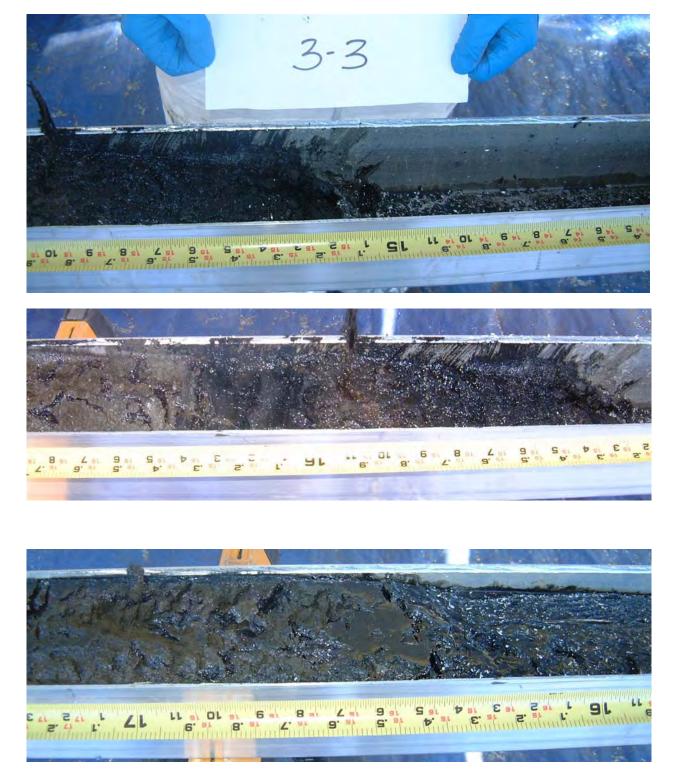
#### Photographs of NAPL Investigation Core 3-1: Starting at the top of the core

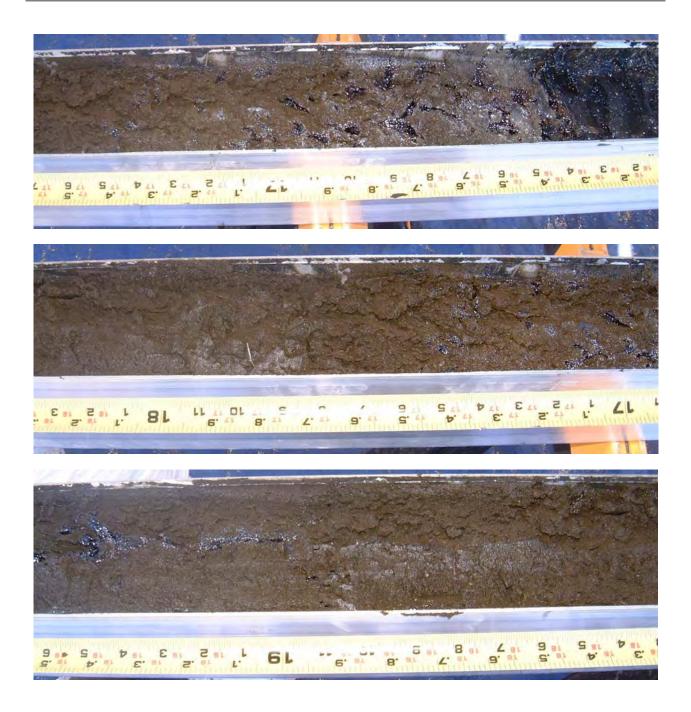


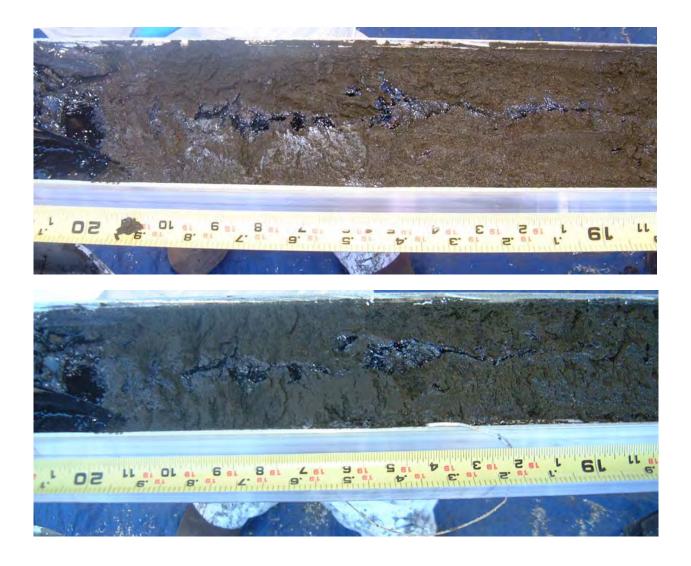


#### Photographs of NAPL Investigation Core 3-2: Starting at the top of the core



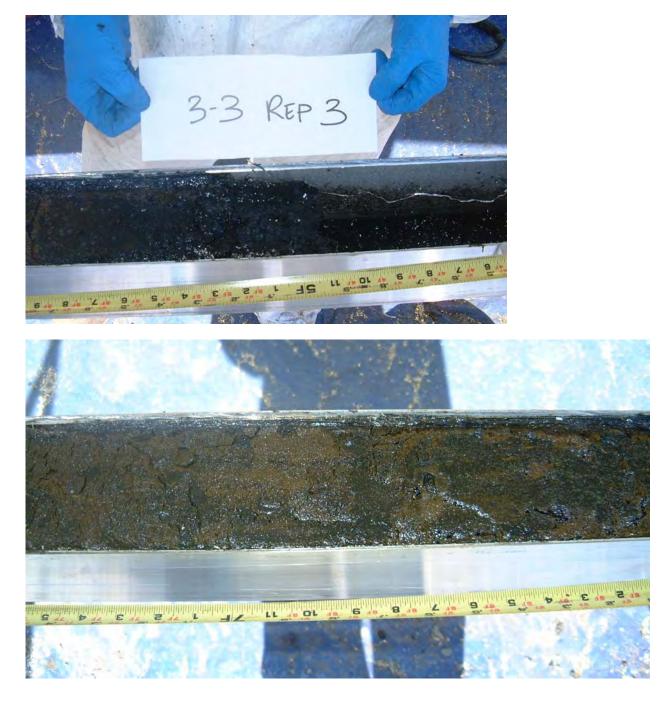


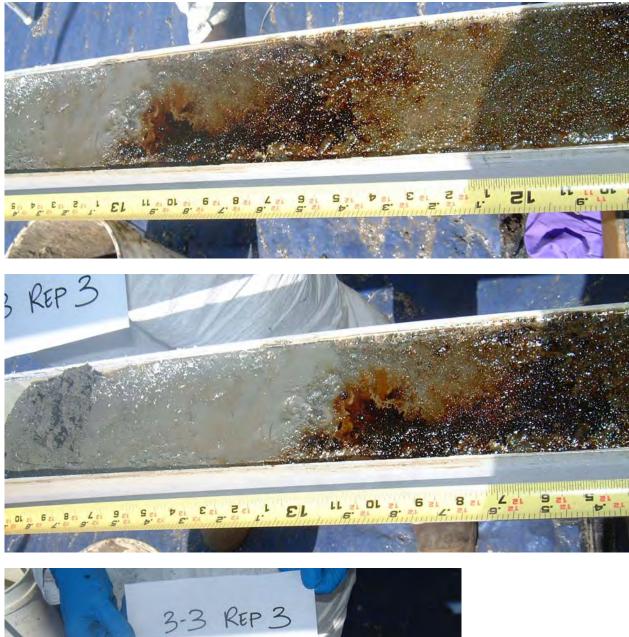











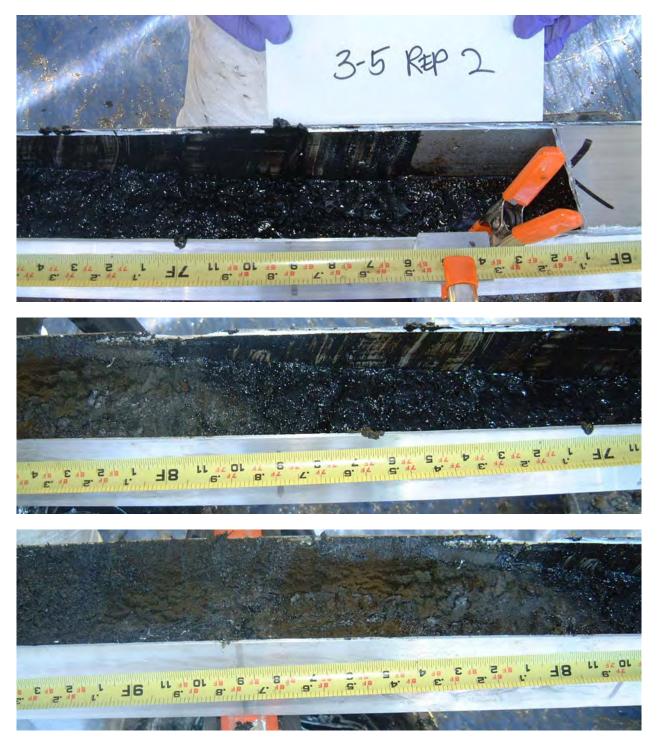

#### Photographs of Core 3-3 Rep 3: Starting at the top of the core







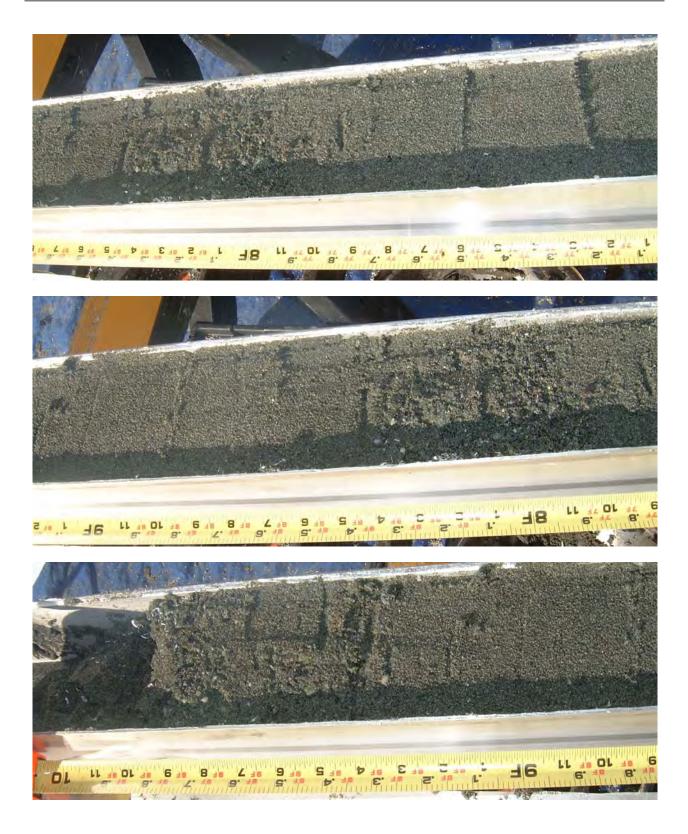



#### Photographs of NAPL Investigation Core 3-4: Starting at the top of the core







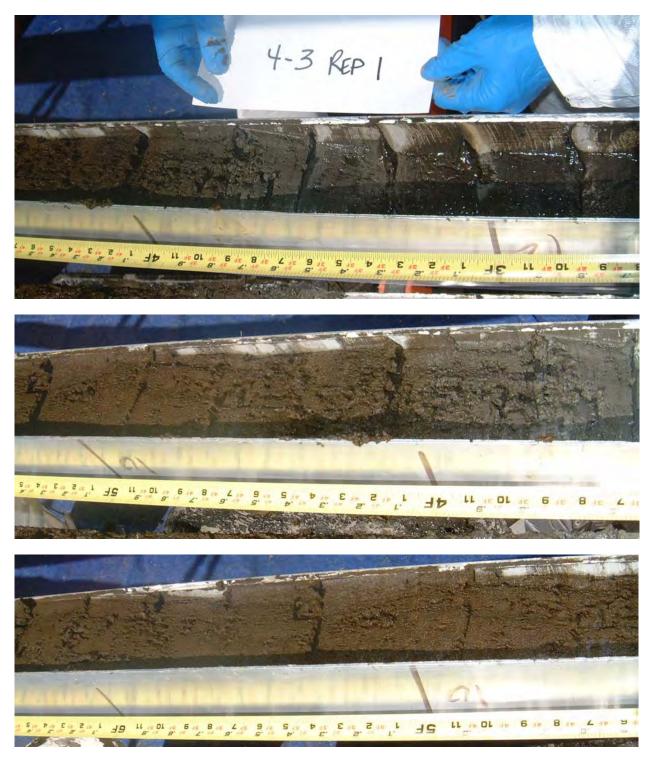

#### Photographs of NAPL Investigation Core 3-5 Rep 2: Starting at the top of the core

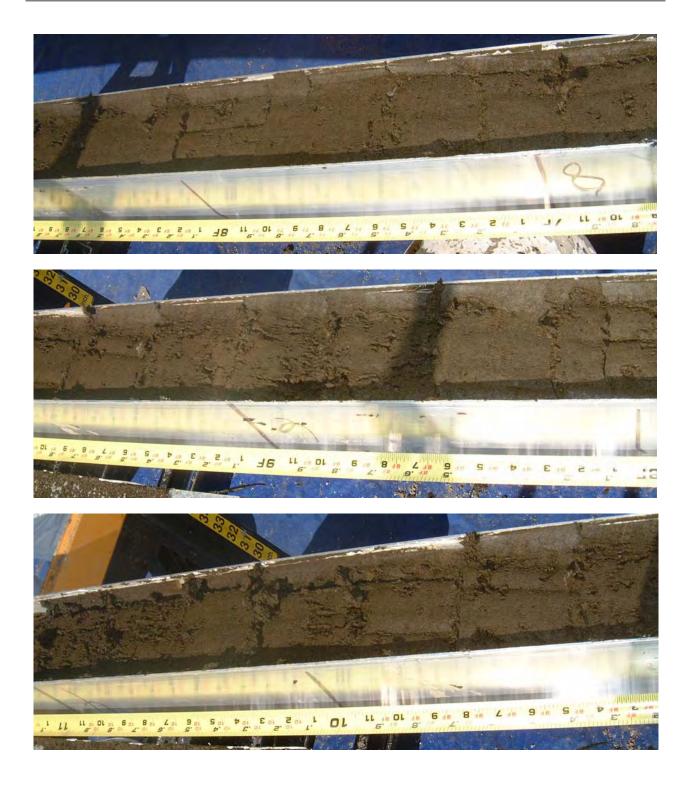




#### Photographs of NAPL Investigation Core 4-1 A: Starting at the top of the core

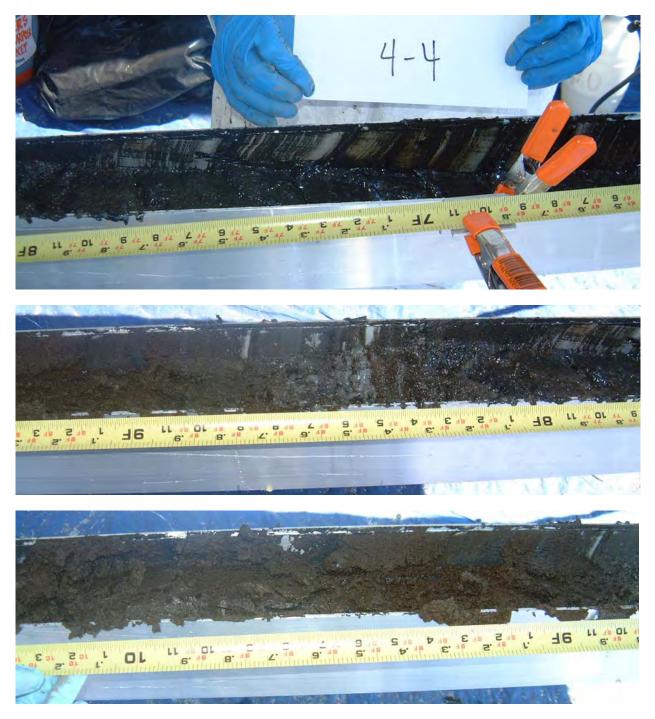


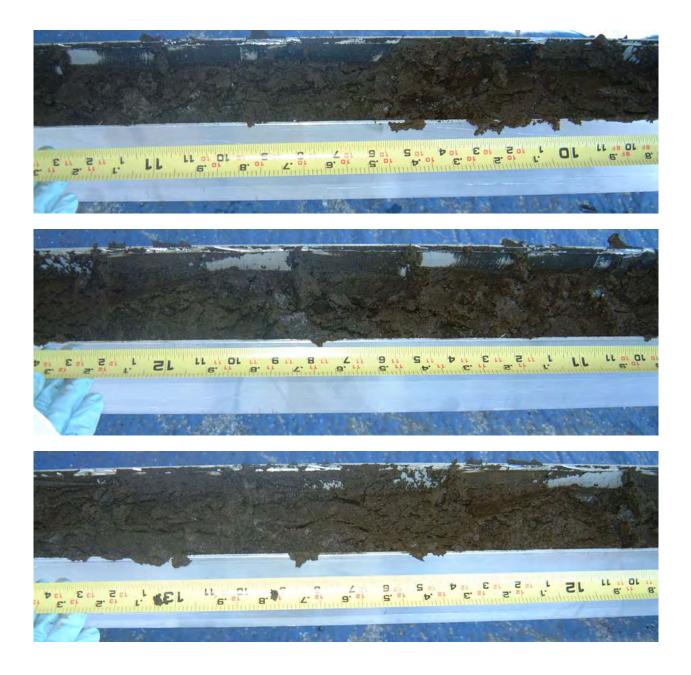


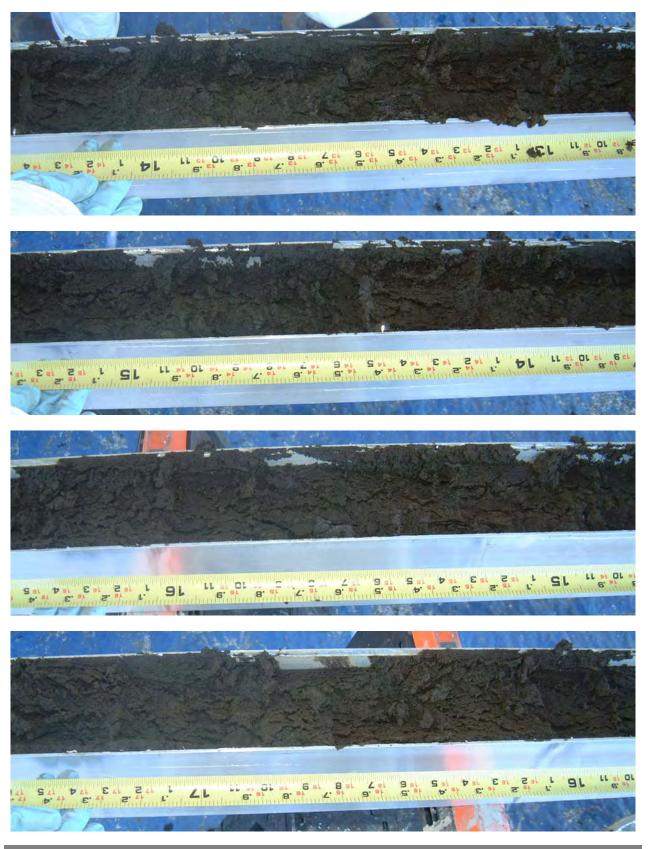



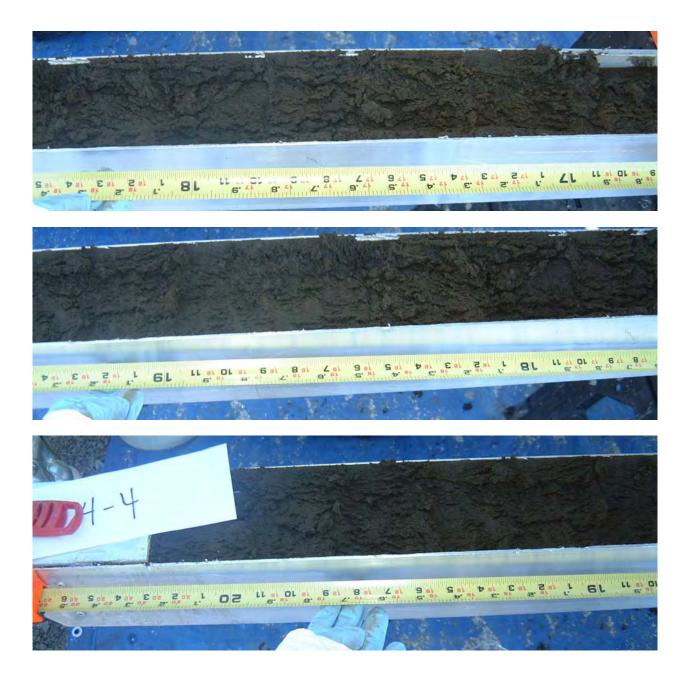

#### Photographs of NAPL Investigation Core 4-2: Starting at the top of the core



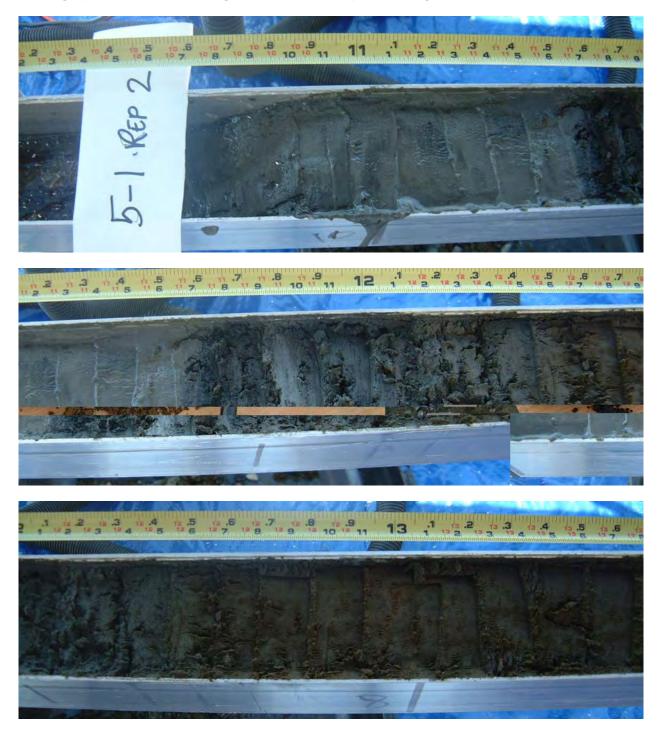

#### Photographs of NAPL Investigation Core 4-3 Rep 1: Starting at the top of the core



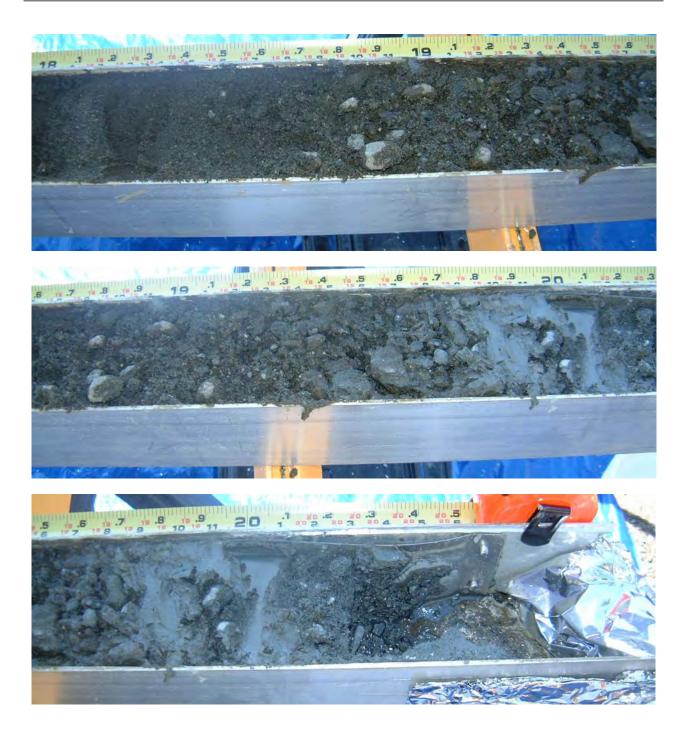

#### Photographs of NAPL Investigation Core 4-4: Starting at the top of the core











## Photographs of NAPL Investigation Core 5-1 Rep 2: Starting at the top of the core

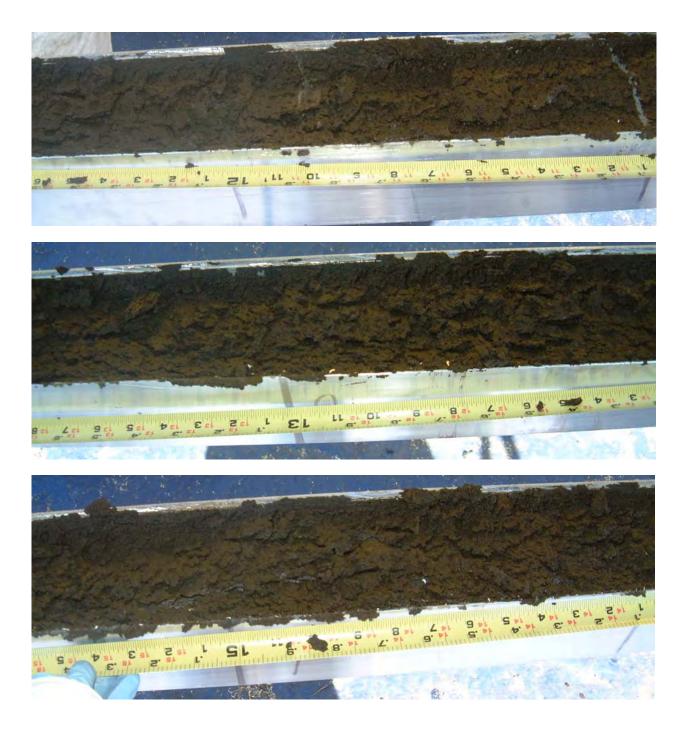






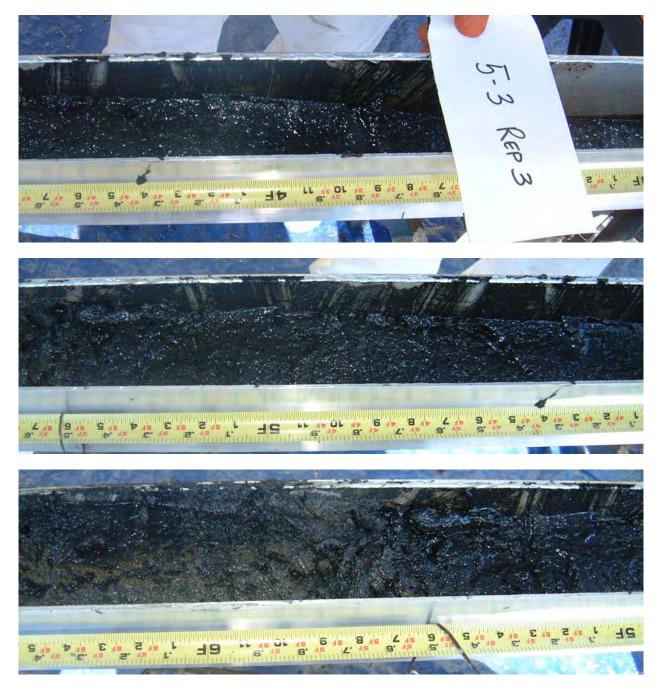


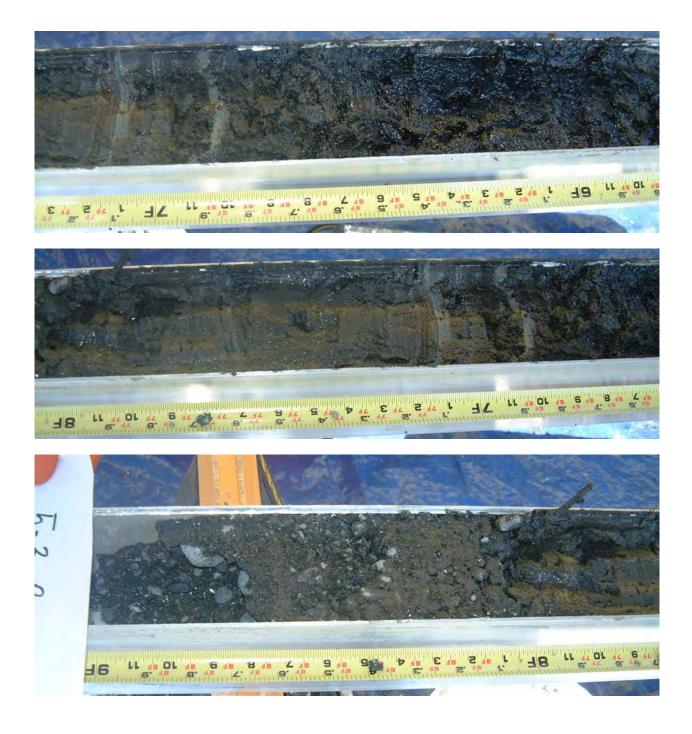




## Photographs of NAPL Investigation Core 5-2: Starting at the top of the core







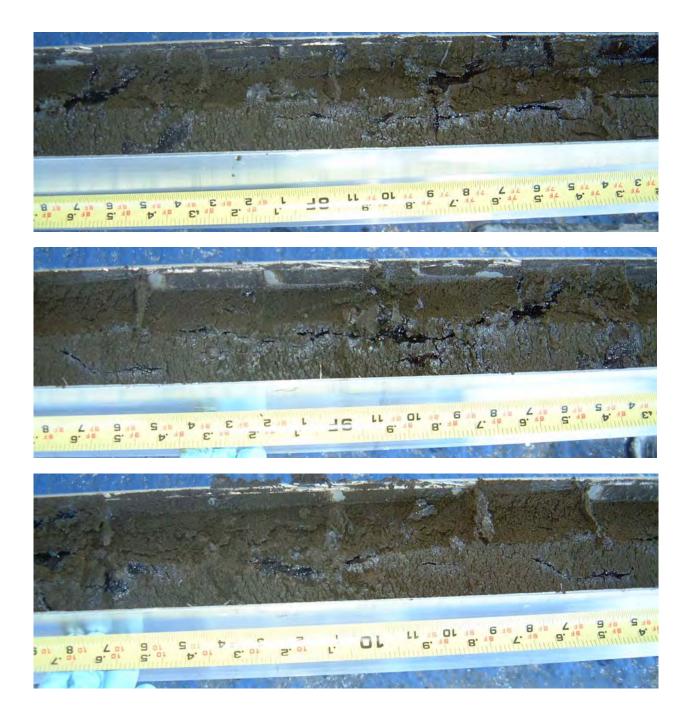



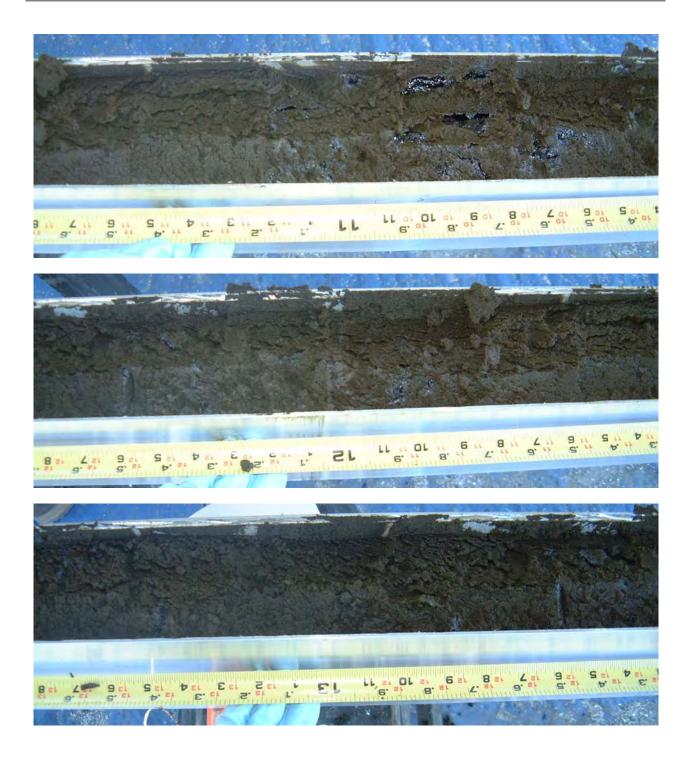






## Photographs of NAPL Investigation Core 5-3 Rep 3: Starting at the top of the core






## Photographs of NAPL Investigation Core 5-4: Starting at the top of the core









# ATTACHMENT 2D-5 Battelle February 2007 Data Report

# Battelle The Business of Innovation

# Data Report

# Gas Works Park Soils February 2007

**Prepared for:** 

Brad Bessinger Exponent, Incorporated

Prepared by:

Battelle 397 Washington Street Duxbury, Massachusetts 02332 Chain of Custody

ShpNo SHP-070116-01

| The Business of                       | Business of Innovation Battelle Project No: 06746-0001 |                    |              |                  |                          |               |          |  |  |  |  |
|---------------------------------------|--------------------------------------------------------|--------------------|--------------|------------------|--------------------------|---------------|----------|--|--|--|--|
| Sample Receip                         | ot Form                                                |                    |              |                  |                          |               |          |  |  |  |  |
|                                       |                                                        |                    |              |                  | Approve                  | d: 📃 Auth     | orized 📃 |  |  |  |  |
| Project Number:                       | BN03005.001                                            |                    | Client:      | Exponent         |                          |               |          |  |  |  |  |
| Received by:                          | Seyfert, Jeannine                                      | 9                  | Date/Ti      | me Received:     | Tuesday, January 16, 20  | 007 10:44 AM  |          |  |  |  |  |
| No. of Shipping Con                   | tainers: 1                                             | _                  |              |                  |                          |               |          |  |  |  |  |
| SHIPMENT                              |                                                        |                    |              |                  |                          |               |          |  |  |  |  |
| Method of Delivery:                   | Commercial Car                                         | rier               | Tracki       | ing Number:      | 8585-3984-8924           |               |          |  |  |  |  |
| COC Forms:                            | Shipped w                                              | ith samples        | No For       | ms               |                          |               |          |  |  |  |  |
| Cooler(s)/Box                         | x(es)                                                  |                    |              |                  |                          |               |          |  |  |  |  |
| Cntr Type                             | Tracki                                                 | ng No.             | Seal         | Seal Condition   |                          |               | Smps     |  |  |  |  |
| 1 of 1 Cooler                         |                                                        |                    | Таре         | Intact           | Intact                   | 3.0           | 22       |  |  |  |  |
| Samples                               |                                                        |                    |              |                  |                          |               |          |  |  |  |  |
| Sample Labels:                        |                                                        | Sample label       | s agree with | n COC forms      |                          |               |          |  |  |  |  |
|                                       |                                                        | Discrepancie       | s (see Samj  | ple Custody Corr | rective Action Form)     |               |          |  |  |  |  |
| <b>Container Seals:</b>               |                                                        | Tape C             | ustody Sea   | ls 🗌 Other Se    | als (See sample Log)     |               |          |  |  |  |  |
|                                       |                                                        | Seals intact for   | or each ship | pping container  |                          |               |          |  |  |  |  |
|                                       |                                                        | Seals broken       | (See sampl   | e log for impact | ed samples)              |               |          |  |  |  |  |
| Condition of Samples                  | :                                                      | Sample conta       | iners intac  | ŀ                |                          |               |          |  |  |  |  |
| · · · · · · · · · · · · · · · · · · · |                                                        |                    |              |                  | Custody Corrective Actio | n Form)       |          |  |  |  |  |
|                                       |                                                        |                    |              |                  | ·                        |               |          |  |  |  |  |
| Temperature upon re                   | -                                                      |                    |              |                  | Yes No                   |               |          |  |  |  |  |
| (Note: If temperature u               | ipon receipt diffe                                     | rs from required   | conditions,  | see sample log o | comment field)           |               |          |  |  |  |  |
| Samples Acidified:                    |                                                        | Yes No             | ✔ Unk        | nown             |                          |               |          |  |  |  |  |
| Initial pH 5-9?:                      |                                                        | Yes No             | 🖌 NA         |                  |                          |               |          |  |  |  |  |
| If no, individual sampl               | e adjustments on                                       | the Auxiliary San  | nple Receip  | ot Form          |                          |               |          |  |  |  |  |
| Total Residual Chlori                 | ing Procont?.                                          | Yes No             | ✓ NA         |                  |                          |               |          |  |  |  |  |
| If yes, individual samp               |                                                        |                    |              | pt Form          |                          |               |          |  |  |  |  |
|                                       |                                                        |                    |              |                  |                          |               |          |  |  |  |  |
| Head Space <1% in s                   | -                                                      | -                  | Yes Yes      |                  | NA                       |               |          |  |  |  |  |
| Individual sample devi                | ations noted on s                                      | ample log          |              |                  |                          |               |          |  |  |  |  |
| Samples Containers:                   |                                                        |                    |              |                  |                          |               |          |  |  |  |  |
| Samples returned in PC                | C-grade jars:                                          | Yes No             | 🖌 Unk        | nown /Lot No.:   | Unknown                  |               |          |  |  |  |  |
| Storage Location:                     | Field Roor                                             | n II: Refrigerator | - R0004 (Lo  | ower Col BDO     | IDs Assigned: R55        | 21 - R5542    |          |  |  |  |  |
| Samples logged in by                  | y: Seyfert, Je                                         | eannine            |              |                  | Date/Time:               | 01/16/2007 10 | ):44 AM  |  |  |  |  |
| Approved By:                          |                                                        |                    |              |                  | Approved On:             |               |          |  |  |  |  |
| Authorized By:                        |                                                        |                    |              |                  | Authorized On:           |               | -        |  |  |  |  |

ShpNo SHP-070116-01

Battelle Project No: 06746-0001

Sample Receipt Form Details

Client: Exponent

BN03005.001

Project Number:

Approved: Authonized

| Received by: | ed by: Seyfert, Jeannine    |                  | ate/Time | Received: Tue  | Date/Time Received: Tuesday, January 16, 2007 10:44 AM | 07 10:44 AN | ~                   |     | 1   |                |      |               |
|--------------|-----------------------------|------------------|----------|----------------|--------------------------------------------------------|-------------|---------------------|-----|-----|----------------|------|---------------|
| No. of :     | No. of Shipping Containers: | -                |          |                |                                                        |             |                     |     |     |                |      |               |
| BDO Id:      | BDO Id: Client Sample ID:   | Collection Date: | ate:     | Login Date:    | Ctrs: Matrix:                                          | Temp        | Temp: pH: TRC: VOC: | TRC | 007 | : Stored In:   | Loc: | No: Comments: |
| R5521        | GWP07T01                    | 01/11/07 12:00   | 00:      | 01/16/07 11:04 | 1 TAR                                                  | с           | ΝA                  | ΝA  | ΝA  | R0004 (Lower C | BIN  | 21            |
| R5522        | GWP07DW401                  | 01/11/07 10:54   | :54      | 01/16/07 11:05 | 1 NAPL                                                 | с<br>С      | ΝA                  | ΝA  | ΝA  | R0004 (Lower C | BIN  | 21            |
| R5523        | GWP07DW402                  | 01/11/07 10:54   | :54      | 01/16/07 11:06 | 1 NAPL                                                 | с           | ΝA                  | ΝA  | NA  | R0004 (Lower C | BIN  | 21            |
| R5524        | GWP07MW9                    | 01/12/07 10:50   | :50      | 01/16/07 11:07 | 1 NAPL                                                 | с           | ٩N                  | ٩N  | AA  | R0004 (Lower C | BIN  | 21            |
| R5525        | GWP07T02                    | 01/11/07 12:10   | :10      | 01/16/07 11:09 | 1 TAR                                                  | ო           | ΝA                  | ΝA  | NA  | R0004 (Lower C | BIN  | 21            |
| R5526        | GWP07T03                    | 01/11/07 12:10   | 10       | 01/16/07 11:19 | 1 TAR                                                  | ო           | ΝA                  | ΝA  | NA  | R0004 (Lower C | BIN  | 21            |
| R5527        | GWP07T04                    | 01/11/07 12:20   | :20      | 01/16/07 11:20 | 1 TAR                                                  | ო           | ΝA                  | ΝA  | NA  | R0004 (Lower C | BIN  | 21            |
| R5528        | GWP07T05                    | 01/11/07 12:35   | :35      | 01/16/07 11:21 | 1 TAR                                                  | ო           | ΝA                  | ΝA  | NA  | R0004 (Lower C | BIN  | 21            |
| R5529        | GWP07T06                    | 01/11/07 12:40   | :40      | 01/16/07 11:22 | 1 TAR                                                  | с           | ٨A                  | ٨A  | AN  | R0004 (Lower C | BIN  | 21            |
| R5530        | GWP07T07                    | 01/11/07 12:45   | :45      | 01/16/07 11:23 | 1 TAR                                                  | с           | ٩N                  | ٩N  | AN  | R0004 (Lower C | BIN  | 21            |
| R5531        | GWP07T08                    | 01/11/07 13:10   | :10      | 01/16/07 11:28 | 1 TAR                                                  | с           | ΝA                  | ΝA  | NA  | R0004 (Lower C | BIN  | 21            |
| R5532        | GWP07T09                    | 01/11/07 13:40   | :40      | 01/16/07 11:28 | 1 TAR                                                  | ო           | ΝA                  | ΝA  | NA  | R0004 (Lower C | BIN  | 21            |
| R5533        | GWP07T10                    | 01/11/07 13:48   | :48      | 01/16/07 11:29 | 1 TAR                                                  | ო           | ΝA                  | ΝA  | NA  | R0004 (Lower C | BIN  | 21            |
| R5534        | GWP07T11                    | 01/11/07 14:20   | :20      | 01/16/07 11:31 | 1 TAR                                                  | ო           | ΝA                  | ΝA  | NA  | R0004 (Lower C | BIN  | 21            |
| R5535        | GWP07T12                    | 01/11/07 14:50   | :50      | 01/16/07 11:33 | 1 TAR                                                  | ო           | ٨A                  | ΝA  | NA  | R0004 (Lower C | BIN  | 21            |
| R5536        | GWP07T13                    | 01/11/07 14:55   | :55      | 01/16/07 11:33 | 1 TAR                                                  | e           | ٨A                  | ΝA  | NA  | R0004 (Lower C | BIN  | 21            |
| R5537        | GWP07T14                    | 01/11/07 15:05   | :05      | 01/16/07 11:34 | 1 TAR                                                  | ო           | ٨A                  | ΝA  | NA  | R0004 (Lower C | BIN  | 21            |
| R5538        | GWP07S01                    | 01/12/07 9:30    | 30       | 01/16/07 11:35 | 1 TAR                                                  | ю           | ٨A                  | ΝA  | NA  | R0004 (Lower C | BIN  | 21            |
| R5539        | GWP07S02                    | 01/12/07 9:35    | 35       | 01/16/07 11:36 | 1 TAR                                                  | e           | ٨A                  | ΝA  | NA  | R0004 (Lower C | BIN  | 21            |
| R5540        | GWP07S03                    | 01/12/07 10:15   | :15      | 01/16/07 11:36 | 1 TAR                                                  | e           | ٨A                  | ΝA  | ΝA  | R0004 (Lower C | BIN  | 21            |
| R5541        | GWP07S04                    | 01/12/07 10:30   | :30      | 01/16/07 11:37 | 1 TAR                                                  | e           | ٨A                  | ΝA  | ΝA  | R0004 (Lower C | BIN  | 21            |
| R5542        | TDW3-4.5                    | 09/26/06 12:56   | :56      | 01/16/07 11:39 | 1 SOIL                                                 | 3           | NA                  | NA  | NA  | R0004 (Lower C | BIN  | 21            |
| Total S      | Total Samples: 22           |                  |          |                |                                                        |             |                     |     |     |                |      |               |

| Page of 2                           | E <sup>x</sup> ponent                              |                                           | ן פוגס        | , enta      | uuoui,  | rchi/     |                                       | 85521                          | R5522                                | R5523                                      | RSS24             | RSSZS                          | R5526                                   | R5527 | R5528                         | R5529 | R5530 | R5531            | R5532               | R5533               | R5534             | R5535              | R5536                            | R5537 | R5533                            | R5539                            | R5540                            |                                                                          |                                     | Custody Seal Intact: Ves No None      | Date/Time: 11307 13:32 | all that and the second second second      |  |
|-------------------------------------|----------------------------------------------------|-------------------------------------------|---------------|-------------|---------|-----------|---------------------------------------|--------------------------------|--------------------------------------|--------------------------------------------|-------------------|--------------------------------|-----------------------------------------|-------|-------------------------------|-------|-------|------------------|---------------------|---------------------|-------------------|--------------------|----------------------------------|-------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------|-------------------------------------|---------------------------------------|------------------------|--------------------------------------------|--|
| <b>_YSIS REQUEST FORM</b>           | 2005,00                                            | B. Bessinger 1. Massingale (Floyd Snider) | ses Requested | per<br>bel  | 5-2<br> | 9088 V R  | EFP                                   | ×                              | X                                    | X                                          | X                 | X                              | X                                       | X     | X                             | ×     | ×     | X                | ×                   | X                   | ×                 | X                  | ×                                | ×     | ×                                | ×                                |                                  |                                                                          |                                     | Condition of Samples<br>Upon Receipt: | 21                     | 101 10                                     |  |
| CHAIN OF CUSTODY RECORD/SAMPLE ANAL | Project:<br>(Name and Number) GAS WORKS PARK, BN03 | Office: BE Samplers:                      | PPLIED        | HINGTON ST. | _       | V de taca | Sample No. Tag No. Date Time Matrix O | GWP07T01 75601 111/0712:00 T X | GWP07DW401 75650 1/1/07 10:54 NAPL X | (auport Du4021 75 65   1/1/07 10:54 NAPL X | 75625/12107 10:50 | GWP07T02 75602 1/1/0712:10 T X | X T 01:21/07/17 75603 1/11/07 12:10 T X | 1     | ("WP07TD5 75605 /11/12:35 T X |       |       | TO8 75608 1/1/67 | 170/11/1 POJZC POTT | 7710 756 10 1/1/071 | 7711 75611 1/1/07 | 1712 75612 1/11/07 | 6WP 07T13 75613 1/1/07 14:55 T X | ) ~   | 6WP07501 75621 1/12/07 04:30 T X | 6WP07502 75622 1/12/07 04:35 T X | GWP07503 75623 1/12/07 10:15 T X | Matrix GW - Groundwater SL - Soil SD - Sediment SW - Surface water Code: | OTHER - Please identify codes T-TAR | Shipped FedFx/LPS Courier Other       | These Arne (Spann      | Heinquished by: DAU ANYTYU ANY (Signature) |  |

|                            | 05, 00                            | B. Bessinger / J. Mussingle (Floyd Snider) 3 | פוגי                                              |                       | Autor<br>Samo<br>Samo<br>Mon<br>Mon<br>Mon<br>Mon<br>Mon<br>Mon<br>Mon<br>Mon<br>Mon<br>Mo | -5 d<br>-0121 | ES ES ES ES EX Extern | X X X 85541                   | X X A A A A A A A A A A A A A A A A A A |  |  |  |  |  |  | water Priority: Normal Bush time period                                                         | Condition of Samples Custody Seal Intact: Ves No None | 2                  | ime: 1/15/07 1330 Received by: Jeannin Series deyland. Date/Time: 1/16/07 10:40 |             |
|----------------------------|-----------------------------------|----------------------------------------------|---------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------|---------------|-----------------------|-------------------------------|-----------------------------------------|--|--|--|--|--|--|-------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------|---------------------------------------------------------------------------------|-------------|
| APLE ANALYSIS REQUEST FORM | BN050                             | Samplers: R. Bessivier /                     | Analyses Rec                                      | O N V                 | 0413<br>-202                                                                               | W W W         | Eb<br>29              | T X X                         |                                         |  |  |  |  |  |  | Normal                                                                                          | Condition of Samples<br>Upon Receipt:                 | 13:32 Received by: | 707 1330 Received by:                                                           | 1           |
| <u>U</u>                   | (Name and Number) CAS WORKS PARK, | Exponent Contact: BRAD BESSINGER Office: BE  | Ship to: BATTELLE APPLIED ENVIRONMENTAL CHEMILITY | 397 WASHINGTON STREET |                                                                                            | NY            | Time                  | 6WP07504 75624 Y12/07 10:33 7 | GTDW3-45 - 91,2610K 1254 Soul           |  |  |  |  |  |  | Matrix GW - Groundwater SL - Soil SD - Sediment SW<br>Odde: OTHER - Please identify codes T-TAR | Shipped FedEx/UPS Courier Other                       | ed by: Kal Kenne   | lessilla                                                                        | (Signature) |

# SHC Data and Chromatograms

## SHC and TPH – Sediment QA/QC Summary Batches 07-0010

| PROJECT:        | Exponent – Gas Works Park                                                                  |
|-----------------|--------------------------------------------------------------------------------------------|
| PARAMETER:      | Saturated Hydrocarbons (SHC) and Total Petroleum Hydrocarbons (TPH)                        |
| LABORATORY:     | Battelle, Duxbury, MA                                                                      |
| MATRIX:         | Sediment                                                                                   |
| SAMPLE CUSTODY: | Eighteen tar samples, three NAPLs samples, and 1 soil sample were received at the Battelle |
|                 | Duxbury Operations (BDO) Laboratory on 1/16/2007. Upon receipt of samples, the             |
|                 | temperatures of the coolers were taken and the samples were logged into the laboratory and |
|                 | given unique IDs. The temperature of the cooler upon receipt was within the acceptable     |
|                 | range. Samples were either stored in an access-limited walk-in refrigerator at 4°C until   |
|                 | sample preparation could begin. The soil and tar samples were extracted together in one    |
|                 | analytical batch, batch 07-0001.                                                           |

## QA/QC DATA QUALITY OBJECTIVES:

|             | Reference<br>Method | Blank    | Surrogate<br>Recovery | LCS/MS<br>Recovery                                                    | MS/MSD<br>Precision | Control Oil<br>% Diff.              |
|-------------|---------------------|----------|-----------------------|-----------------------------------------------------------------------|---------------------|-------------------------------------|
| SHC and TPH | General<br>NS&T     | < 5x MDL | 40-120%<br>Recovery   | 40-120%<br>Recovery<br>MS target spike<br>must be > 5 x<br>background | < 30% RPD           | PD < 30% for 90%<br>of the analytes |

## **METHOD:**

Soil and tar samples were extracted following general NS&T methodologies.

Approximately 5-8 grams of sample was spiked with SHC, PAH, and biomarker surrogates and serially extracted three times with dichloromethane using orbital shaker table techniques. The combined extracts were dried over sodium sulfate and concentrated by Kuderna-Danish and nitrogen evaporation techniques. The sample extracts were split in half; one-half of the extract was removed for archiving; the other half was processed through an alumina gravity column to isolate the hydrocarbon fractions of interest. The weights of the resulting extracts were determined gravimetrically. The extracts were concentrated to 1 ml, split, and spiked with IS. The pre-injection volume and/or extract split were adjusted to achieve 5 mg/mL. One extract was submitted for PAH and petroleum biomarker analysis, and the second extract was submitted for SHC and TPH analysis.

SHC and TPH were measured by gas chromatography with flame ionization detection (GC/FID). An initial calibration consisting of target analytes was completed prior to analysis to demonstrate the linear range of analysis. Calibration verification was performed at the beginning and end of each 12 hour period in which samples were analyzed. Concentrations of SHC and TPH were calculated by the internal standard method. Normal alkanes were quantified using the average RF generated from the initial calibration. TPH concentrations were quantified using the average RF of nC8 through nC40. Isoprenoid hydrocarbon concentrations were quantified using the average RF of nC8 through nC40. Isoprenoid hydrocarbon and immediately following each target isoprenoid hydrocarbon.

# **HOLDING TIMES:** Samples were prepared for analysis in one analytical batch. Samples were extracted within 14 days of sample receipt and analyzed within 40 days of extraction. Holding times from collection to extraction for soil samples are 14-days if refrigerated, 365-days if frozen. Since the storage conditions for sample TDW3-4.5, collected 9/26/2006, prior to its arrival at BDO are unknown, this data has been conservatively qualified with a "T".

| Batch ID | <b>Extraction Date</b> | Analysis Date(s)     |
|----------|------------------------|----------------------|
| 07-0010  | 1/24/2007              | 1/31/2007 - 2/1/2004 |

## SHC and TPH – Sediment QA/QC Summary Batches 07-0010

| PROCEDURAL<br>BLANK (PB):    | A procedural blank (PB) was prepared with each analytical batch. The blank was analyzed ensure the sample extraction and analysis methods were free of contamination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                              | 07-0010 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                              | Comments- None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| LABORATORY<br>CONTROL SAMPLE | A laboratory control sample (LCS) was prepared each analytical batch. The percent recoveries of target analytes were calculated to measure data quality in terms of accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| (LCS):                       | 07-0010 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                              | <b>Comments</b> – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| SURROGATE<br>RECOVERY:       | Two surrogate compounds were added prior to extraction, including o-terphenyl and 5a-<br>androstane. The recovery of the surrogate compound was calculated to measure data quality<br>in terms of accuracy (extraction efficiency).                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|                              | 07-0010 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                              | <b>Comments</b> – None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| CONTROL OIL:                 | A control oil (North Slope Crude) was prepared with the analytical batch. The percent difference (PD) between the measured value and the target value was calculated to measure data quality in terms of accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|                              | 07-0010 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                              | <b>Comments</b> – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| CALIBRATIONS:                | The GC/FID is calibrated with a minimum 5 level curve for all compounds. The percent relative standard deviation (%RSD) between RF for the individual target analytes must be $\leq 25\%$ , and the mean RSD of all target analytes must be $< 20\%$ . Each batch of samples analyzed is bracketed by continuing calibration verification (CCV) sample, run at a frequency of minimally every 12 hours. The PD between the true value and the CCV should be $< 20\%$ for individual analytes. Additionally an initial calibration check (ICC) sample is run immediately after each initial calibration. The PD between the ICC and the initial calibration should be $< 20\%$ . |  |  |  |  |  |  |  |
|                              | 07-0010 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |

Comments – None.

The Business of Innovation

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                | GWP07T01   | GWP07T02   | GWP07T03   | GWP07T04   |
|--------------------------|------------|------------|------------|------------|
| Battelle ID              | R5521-P    | R5525-P    | R5526-P    | R5527-P    |
| Sample Type              | SA         | SA         | SA         | SA         |
| Collection Date          | 01/11/07   | 01/11/07   | 01/11/07   | 01/11/07   |
| Extraction Date          | 01/24/07   | 01/24/07   | 01/24/07   |            |
|                          |            |            |            | 01/24/07   |
| Analysis Date            | 01/31/07   | 01/31/07   | 01/31/07   | 02/01/07   |
| Analytical Instrument    | FID        | FID        | FID        | FID        |
| % Moisture               | 28.88      | 50.1       | 50.3       | 34.93      |
| % Lipid                  | NA         | NA         | NA         | NA         |
| Matrix                   | TAR        | TAR        | TAR        | TAR        |
| Sample Size              | 1.44       | 1.02       | 1.01       | 1.44       |
| Size Unit-Basis          | G_DRY      | G_DRY      | G_DRY      | G_DRY      |
| Minimum Reporting Limit  | 55.58      | 245.10     | 198.1      | 92.67      |
| Units                    | MG/KG_DRY  | MG/KG_DRY  | MG/KG_DRY  | MG/KG_DRY  |
| n-Nonane                 | U          | U          | U          | U          |
| n-Decane                 | U          | 1193.55    | 996.66     | 444.11     |
| n-Undecane               | U          | 612.43     | 533.37     | 88.93 J    |
|                          | 948.54     |            |            |            |
| n-Dodecane               |            | 2935.42    | 2429.74    | 1312.88    |
| n-Tridecane              | 468.84 ME  | 2504.47 ME | 2367.65 ME | 1524.69 ME |
| Isoprenoid RRT 1380      | U          | U          | U          | U          |
| n-Tetradecane            | 152.15     | 336.6      | 264.56     | 193.36     |
| Isoprenoid RRT 1470      | 136.99     | 278.2      | 231.91     | 176.53     |
| n-Pentadecane            | 79.8       | 159.6 J    | 131.08 J   | 98.43      |
| n-Hexadecane             | 108.22     | 258.18     | 177.19 J   | 125.75     |
| Norpristane (1650)       | 201.38     | 404.98     | 319.4      | 240.35     |
| n-Heptadecane            | 52.84 J    | 134.02 J   | 95.89 J    | 65.46 J    |
| Pristane                 | 55 J       | 121.46 J   | 86.69 J    | 62.31 J    |
| n-Octadecane             | 1472.34    | 3144.3     | 2446.92    | 1737.93    |
| Phytane                  | 36.74 J    | 76.6 J     | 60.75 J    | 37.48 J    |
| n-Nonadecane             | 11.78 J    | 29.82 J    | 21.48 J    | 16.34 J    |
| n-Eicosane               | 37.55 J    | 82.28 J    | 72.9 J     | 43.75 J    |
| n-Heneicosane            | 454.04     | 1059.47    | 826.47     | 581.65     |
| n-Docosane               | 157.29     | 340.27     | 233.82     | 196.96     |
| n-Tricosane              | 38.99 J    | 82.85 J    | 63.45 J    | 43.91 J    |
| n-Tetracosane            | 80.7       | 198.52 J   | 138.97 J   | 91.93 J    |
| n-Pentacosane            | U          | U          | 528.12     | U          |
| n-Hexacosane             | U          | U          | 176.8 J    | U          |
| n-Heptacosane            | U          | U          | U          | U          |
| n-Octacosane             | U          | U          | U          | U          |
| n-Nonacosane             | U          | U          | U          | U          |
| n-Triacontane            | U          | U          | U          | U          |
| n-Hentriacontane         | U          | U          | U          | U          |
| n-Dotriacontane          | U          | U          | U          | U          |
| n-Tritriacontane         | U          | U          | U          | U          |
| n-Tetratriacontane       | U          | U          | U          | U          |
| n-Pentatriacontane       | U          | U          | U          | U          |
| n-Hexatriacontane        | U          | Ŭ          | Ŭ          | U          |
| n-Heptatriacontane       | Ŭ          | Ŭ          | Ŭ          | Ŭ          |
| n-Octatriacontane        | Ŭ          | Ū          | Ŭ          | Ŭ          |
| n-Nonatriacontane        | U          | U          | U          | U          |
| n-Tetracontane           | Ŭ          | Ŭ          | Ŭ          | U          |
| TPH(total)               | 194301.96  | 600370.63  | 457694.31  | 232050.17  |
|                          | 10-1001.00 | 000070.00  | -01007.01  | 202000.17  |
| Surrogate Recoveries (%) |            |            |            |            |
|                          |            |            |            |            |
| O-Terphenyl              | 91         | 106        | 99         | 108        |
| 5a-androstane            | 84         | 90         | 87         | 88         |
|                          |            |            |            |            |

The Business of Innovation

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                               | GWP07T05             | GWP07T06     | GWP07T07     | GWP07T08            |
|-----------------------------------------|----------------------|--------------|--------------|---------------------|
| Battelle ID                             | R5528-P              | R5529-P      | R5530-P      | R5531-P             |
| Sample Type                             | SA                   | SA           | SA           | SA                  |
| Collection Date                         | 01/11/07             | 01/11/07     | 01/11/07     | 01/11/07            |
| Extraction Date                         | 01/24/07             | 01/24/07     | 01/24/07     | 01/24/07            |
|                                         |                      |              |              |                     |
| Analysis Date                           | 02/01/07             | 02/01/07     | 02/01/07     | 02/01/07            |
| Analytical Instrument                   | FID                  | FID          | FID          | FID                 |
| % Moisture                              | 4.23                 | 6.94         | 6.47         | 30.28               |
| % Lipid                                 | NA                   | NA           | NA           | NA                  |
| Matrix                                  | TAR                  | TAR          | TAR          | TAR                 |
| Sample Size                             | 1.92                 | 1.93         | 1.87         | 1.49                |
| Size Unit-Basis                         | G_DRY                | G_DRY        | G_DRY        | G_DRY               |
| Minimum Reporting Limit                 | 270.83               | 174.16       | 178.3        | 167.92              |
| Units                                   | MG/KG_DRY            | MG/KG_DRY    | MG/KG_DRY    | MG/KG_DRY           |
| n-Nonane                                | U                    | U            | U            | U                   |
| n-Decane                                | U                    | Ŭ            | Ŭ            | U                   |
| n-Undecane                              | Ŭ                    | Ŭ            | Ŭ            | Ŭ                   |
| n-Dodecane                              | 154.79 J             | 102.49 J     | 132.16 J     | 750.35              |
| n-Tridecane                             | 958.19 ME            | 709.86 ME    | 887.45 ME    | 2733.76 ME          |
| Isoprenoid RRT 1380                     | U                    | U U          | U            | 2700.70 ML          |
| n-Tetradecane                           | 349.29               | 280.5        | 314.44       | 290.87              |
| Isoprenoid RRT 1470                     | 224.99 J             | 194.69       | 205.67       | 572.59              |
| n-Pentadecane                           | 75.85 J              | 57.61 J      | 55.65 J      | 236.74              |
| n-Hexadecane                            | 184.63 J             | 165.06 J     | 177.34 J     | 63.43 J             |
| Norpristane (1650)                      | 673.76               | 641.75       | 640.32       | 48.89 J             |
| n-Heptadecane                           | 142.89 J             | 104.99 J     | 129.55 J     | 48.89 J<br>140.64 J |
| Pristane                                | 124.44 J             | 117.49 J     | 135.72 J     | 223.04              |
| n-Octadecane                            | 7021.65              | 6582         | 6697.6       | 3557.74             |
| Phytane                                 | 847.82               | 798.53       | 885.03       | 3557.74<br>38.47 J  |
| n-Nonadecane                            | 047.02<br>U          | 790.55<br>U  | 005.05<br>U  | 30.47 J<br>U        |
| n-Eicosane                              | 246.16 J             | 228.46       | 206.47       | U                   |
| n-Heneicosane                           | 246.16 J<br>U        | 220.40<br>U  | 200.47<br>U  | 1108.3              |
| n-Docosane                              | 876.93               | 767.75       | 896.07       |                     |
| n-Tricosane                             | 183.14 J             | U            | 090.07<br>U  | 639.18<br>U         |
| n-Tetracosane                           | 393.55               | 295.92       | U            | 527.55              |
| n-Pentacosane                           | 1499.75              | 174.84       | 1516.28      | 527.55<br>U         |
| n-Hexacosane                            | 1156.24              | 1079.68      | 1269.93      | U                   |
|                                         | U                    | U 1079.00    | 1209.95<br>U | U                   |
| n-Heptacosane<br>n-Octacosane           | 4408.6               | 3893.14      | 4634.83      | U                   |
| n-Nonacosane                            | 4408.8<br>U          | 3693.14<br>U | 4034.03<br>U | U                   |
| n-Triacontane                           | 228.82 J             | 178.94       | U            | U                   |
| n-Hentriacontane                        | 220.02 J<br>U        | U            | U            | U                   |
| n-Dotriacontane                         | U                    | U            | U            | U                   |
| n-Tritriacontane                        | 260.88 J             | 207.53       | U            | U                   |
| n-Tetratriacontane                      | 200.88 J<br>214.32 J | 207.55       | U            | U                   |
| n-Pentatriacontane                      |                      | 220.89<br>U  | U            | U                   |
|                                         | U                    |              | U            | U                   |
| n-Hexatriacontane<br>n-Heptatriacontane | U<br>U               | U<br>U       | U            | U                   |
|                                         | U                    | U            | U            | U                   |
| n-Octatriacontane                       |                      |              |              | -                   |
| n-Nonatriacontane                       | U                    | U            | U            | U                   |
| n-Tetracontane                          | U                    | U            | U            | U                   |
| TPH(total)                              | 297041.61            | 269380.89    | 292690.39    | 227878.18           |
| Surrogate Recoveries (%)                |                      |              |              |                     |
|                                         |                      |              |              |                     |
| O-Terphenyl                             | 101                  | 117          | 102          | 97                  |
| 5a-androstane                           | 108                  | 111          | 103          | 81                  |
|                                         |                      |              |              |                     |

The Business of Innovation

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                        | GWP07T09   | GWP07T10   | GWP07T11  | GWP07T12  |
|----------------------------------|------------|------------|-----------|-----------|
| Battelle ID                      | R5532-P    | R5533-P    | R5534-P   | R5535-P   |
| Sample Type                      | SA         | SA         | SA        | SA        |
| Collection Date                  | 01/11/07   | 01/11/07   | 01/11/07  | 01/11/07  |
| Extraction Date                  | 01/24/07   | 01/24/07   | 01/24/07  | 01/24/07  |
| Analysis Date                    | 02/01/07   | 02/01/07   | 02/01/07  | 02/01/07  |
| Analytical Instrument            | FID        | FID        | FID       | FID       |
| % Moisture                       | 19.46      | 32.51      | 5.51      | 10.85     |
|                                  |            | NA         | NA        | NA        |
| % Lipid<br>Matrix                | NA<br>TAR  | TAR        | TAR       | TAR       |
| Matrix<br>Sample Size            | 1.72       | 1.45       | 2.05      | 1.79      |
| •                                | G_DRY      | G_DRY      | G_DRY     | G_DRY     |
| Size Unit-Basis                  | 193.8      | 137.93     | 19.51     | 74.68     |
| Minimum Reporting Limit<br>Units | MG/KG_DRY  | MG/KG_DRY  | MG/KG_DRY | MG/KG_DRY |
| Onits                            | MG/RG_DRT  | MG/KG_DKT  | MG/KG_DR1 |           |
| n-Nonane                         | U          | U          | U         | U         |
| n-Decane                         | Ŭ          | Ŭ          | 3.13 J    | 70.47 J   |
| n-Undecane                       | Ŭ          | 505.29     | 6.18 J    | 50.98 J   |
| n-Dodecane                       | 564.36     | 1619.57    | 5.1 J     | 195.2     |
| n-Tridecane                      | 4528.19 ME | 6168.86 ME | 154.92 ME | 1161.6 ME |
| Isoprenoid RRT 1380              | U          | U          | U         | U         |
| n-Tetradecane                    | 296.14     | 245.96     | 94.21     | 104.69    |
| Isoprenoid RRT 1470              | 604.8      | 223.3      | 65.08     | 143.44    |
| n-Pentadecane                    | 258.95     | 119.69 J   | 20.29     | 70.38 J   |
| n-Hexadecane                     | 386.22     | 172.46     | 42.1      | 122.55    |
| Norpristane (1650)               | 59.23 J    | 301.71     | 25.35     | 344.25    |
| n-Heptadecane                    | 234.55     | 86.53 J    | 27.6      | 59.62 J   |
| Pristane                         | 319.15     | 105.86 J   | 49.55     | 69.94 J   |
| n-Octadecane                     | 3992.53    | 2285.79    | 350.75    | 2343.65   |
| Phytane                          | 56.2 J     | 54.28 J    | 10.08 J   | 84.67     |
| n-Nonadecane                     | U          | U          | U         | U         |
| n-Eicosane                       | Ŭ          | 73.73 J    | Ŭ         | 79.21     |
| n-Heneicosane                    | 1428.89    | 743.82     | 160.46    | 806.59    |
| n-Docosane                       | 782.6      | 274.01     | 84.28     | 329.85    |
| n-Tricosane                      | U          | U          | U         | 60.23 J   |
| n-Tetracosane                    | 670.89     | 165.71     | 52.92     | 186.34    |
| n-Pentacosane                    | 519.51     | 517.29     | 44.8      | 526.92    |
| n-Hexacosane                     | 677.44     | 225.75     | 111.55    | 424.36    |
| n-Heptacosane                    | U          | U          | 26.51     | 158.31    |
| n-Octacosane                     | U          | U          | 188.55    | 1724.06   |
| n-Nonacosane                     | U          | U          | U         | U         |
| n-Triacontane                    | U          | U          | U         | U         |
| n-Hentriacontane                 | U          | U          | U         | U         |
| n-Dotriacontane                  | U          | U          | U         | U         |
| n-Tritriacontane                 | U          | U          | U         | U         |
| n-Tetratriacontane               | U          | U          | U         | U         |
| n-Pentatriacontane               | U          | U          | U         | U         |
| n-Hexatriacontane                | U          | U          | U         | U         |
| n-Heptatriacontane               | U          | U          | U         | U         |
| n-Octatriacontane                | U          | U          | U         | U         |
| n-Nonatriacontane                | U          | U          | U         | U         |
| n-Tetracontane                   | U          | U          | U         | U         |
| TPH(total)                       | 258542.94  | 306102.65  | 26740.08  | 123144.75 |
| Surrogate Recoveries (%)         |            |            |           |           |
|                                  |            |            |           |           |
| O-Terphenyl                      | 107        | 106        | 101       | 111       |
| 5a-androstane                    | 96         | 78         | 80        | 91        |
|                                  |            |            |           |           |

The Business of Innovation

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                | GWP07T13   | GWP07T14  | GWP07S01  | GWP07S02  |
|--------------------------|------------|-----------|-----------|-----------|
| Battelle ID              | R5536-P    | R5537-P   | R5538-P   | R5539-P   |
|                          | SA         | SA        | SA        |           |
| Sample Type              |            |           |           | SA        |
| Collection Date          | 01/11/07   | 01/11/07  | 01/12/07  | 01/12/07  |
| Extraction Date          | 01/24/07   | 01/24/07  | 01/24/07  | 01/24/07  |
| Analysis Date            | 02/01/07   | 02/01/07  | 02/01/07  | 02/01/07  |
| Analytical Instrument    | FID        | FID       | FID       | FID       |
| % Moisture               | 12.18      | 7.01      | 13.85     | 10.23     |
| % Lipid                  | NA         | NA        | NA        | NA        |
| Matrix                   | TAR        | TAR       | TAR       | TAR       |
| Sample Size              | 1.83       | 1.95      | 1.75      | 1.80      |
| Size Unit-Basis          | G_DRY      | G_DRY     | G_DRY     | G_DRY     |
| Minimum Reporting Limit  | 72.86      | 2.06      | 190.48    | 185.33    |
| Units                    | MG/KG_DRY  | MG/KG_DRY | MG/KG_DRY | MG/KG_DRY |
|                          |            |           |           |           |
| n-Nonane                 | U          | U         | U         | U         |
| n-Decane                 | U          | U         | U         | U         |
| n-Undecane               | 185.62     | U         | U         | U         |
| n-Dodecane               | 562.64     | 0.59 J    | 681.52    | 345.73    |
| n-Tridecane              | 2124.98 ME | 1.28 JME  | 806.85 ME | 315.85 ME |
| Isoprenoid RRT 1380      | U          | U         | U         | U         |
| n-Tetradecane            | 154.67     | 0.55 J    | 41.31 J   | 13.81 J   |
| Isoprenoid RRT 1470      | 174.68     | 0.37 J    | 35.44 J   | 14.1 J    |
| n-Pentadecane            | 96.34      | U         | 38.51 J   | 16.02 J   |
| n-Hexadecane             | 171.28     | U         | 54.63 J   | 65.43 J   |
| Norpristane (1650)       | 360.8      | U         | U         | U         |
| n-Heptadecane            | 66.74 J    | 0.51 J    | 14.3 J    | U         |
| Pristane                 | 129.3      | 0.75 J    | 33.74 J   | U         |
| n-Octadecane             | 2311.44    | 8.39      | 3632.75   | 3464.74   |
| Phytane                  | 90.08      | 0.48 J    | 104.55 J  | 108.04 J  |
| n-Nonadecane             | U          | U         | U         | U         |
| n-Eicosane               | Ŭ          | U         | 105.71 J  | 111.97 J  |
| n-Heneicosane            | 828.22     | 7.19      | 3014.6    | 3804.27   |
| n-Docosane               | 290.38     | 7.78      | 428.84    | 425.53    |
| n-Tricosane              | 59.51 J    | U         | U         | U         |
| n-Tetracosane            | 150.32     | 7.09      | 697.9     | 647.33    |
| n-Pentacosane            | 67.73 J    | 4.53      | 491.26    | 391.39    |
| n-Hexacosane             | 240.61     | U         | 263.33    | U         |
| n-Heptacosane            | U          | U         | 188.48 J  | Ŭ         |
| n-Octacosane             | U          | Ŭ         | 3959.9    | Ŭ         |
| n-Nonacosane             | U          | U         | U         | U         |
| n-Triacontane            | U          | U         | U         | U         |
| n-Hentriacontane         | U          | U         | Ŭ         | U         |
| n-Dotriacontane          | U          | U         | U         | U         |
| n-Tritriacontane         | U          | U         | U         | U         |
| n-Tetratriacontane       | U          | U         | U         | U         |
| n-Pentatriacontane       | U          | U         | U         | U         |
| n-Hexatriacontane        | U          | U         | U         | U         |
|                          | U          | U         | U         | U         |
| n-Heptatriacontane       |            |           |           | U         |
| n-Octatriacontane        | U          | U         | U         | -         |
| n-Nonatriacontane        | U          | U         | U         | U         |
| n-Tetracontane           | U          | U         | U         | U         |
| TPH(total)               | 135670.62  | 2233.63   | 274222.32 | 258510.39 |
| Surrogate Recoveries (%) |            |           |           |           |
|                          |            |           |           |           |
| O-Terphenyl              | 98         | 96        | 107       | 110       |
| 5a-androstane            | 84         | 78        | 96        | 108       |
|                          |            |           |           |           |

The Business of Innovation

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                | GWP07S03        | GWP07S04        | TDW3-4.5             |
|--------------------------|-----------------|-----------------|----------------------|
| Battelle ID              | R5540-P         | R5541-P         | R5542-P              |
| Sample Type              | SA              | SA              | SA                   |
| Collection Date          | 01/12/07        | 01/12/07        | 09/26/06             |
| Extraction Date          | 01/24/07        | 01/24/07        | 01/24/07             |
| Analysis Date            | 02/01/07        | 02/01/07        | 02/01/07             |
| Analytical Instrument    | FID             | FID             | FID                  |
| % Moisture               | 20.14           | 12.16           | 14.86                |
| % Lipid                  | NA              | NA              | NA                   |
| Matrix                   | TAR             | TAR             | SOIL                 |
| Sample Size              | 1.66            | 1.85            | 17.17                |
| Size Unit-Basis          | G_DRY           | G DRY           | G DRY                |
| Minimum Reporting Limit  | 200.8           | 240.24          | 1.16                 |
| Units                    | MG/KG_DRY       | MG/KG_DRY       | MG/KG_DRY            |
| n-Nonane                 | U               | U               | UT                   |
| n-Decane                 | U               | U               | UT                   |
| n-Decane<br>n-Undecane   | U               | U               | UT                   |
| n-Dodecane               | 1802            | 2181.26         | 0.27 JT              |
| n-Tridecane              | 9548.63 ME      | 8148.73 ME      | 0.27 JT<br>0.58 JTME |
| Isoprenoid RRT 1380      | 9548.63 ME<br>U | 0140.73 ME<br>U | UT                   |
| n-Tetradecane            | 1057.6          | 1071.68         | 0.18 JT              |
| Isoprenoid RRT 1470      | 1502.73         | 1495.76         | 0.22 JT              |
| n-Pentadecane            | 418.89          | 482.53          | 0.22 JT<br>0.18 JT   |
| n-Hexadecane             | 875.13          | 857.02          | 0.17 JT              |
| Norpristane (1650)       | 157.34 J        | 128.43 J        | 0.17 JT              |
| n-Heptadecane            | 674.32          | 233.72 J        | 0.31 JT              |
| Pristane                 | 655.85          | 550.55          | 0.7 JT               |
| n-Octadecane             | 3444.29         | 2423.07         | 5.9 T                |
| Phytane                  | 118.4 J         | 187.21 J        | 0.31 JT              |
| n-Nonadecane             | U               | U               | UT                   |
| n-Eicosane               | 135.2 J         | U               | UT                   |
| n-Heneicosane            | 1633.15         | 1599.8          | 8.69 T               |
| n-Docosane               | 1117.65         | 1133.15         | 4.77 T               |
| n-Tricosane              | 357.64          | 81.9 J          | 0.25 JT              |
| n-Tetracosane            | 502.47          | 924.27          | 9.59 T               |
| n-Pentacosane            | 371.94          | 401.16          | 2.51 T               |
| n-Hexacosane             | 1360.81         | U               | 7.21 T               |
| n-Heptacosane            | U               | U               | 3.72 T               |
| n-Octacosane             | U               | U               | UT                   |
| n-Nonacosane             | U               | U               | UT                   |
| n-Triacontane            | U               | U               | UT                   |
| n-Hentriacontane         | U               | U               | UT                   |
| n-Dotriacontane          | U               | U               | UT                   |
| n-Tritriacontane         | U               | U               | UT                   |
| n-Tetratriacontane       | U               | U               | UT                   |
| n-Pentatriacontane       | U               | U               | UT                   |
| n-Hexatriacontane        | U               | U               | UT                   |
| n-Heptatriacontane       | U               | U               | UT                   |
| n-Octatriacontane        | U               | U               | UT                   |
| n-Nonatriacontane        | U               | U               | UT                   |
| n-Tetracontane           | U               | U               | UT                   |
| TPH(total)               | 421505.26       | 360563.27       | 1106.76 T            |
| Surrogate Recoveries (%) |                 |                 |                      |

## Surrogate Recoveries (%)

| O-Terphenyl   | 90  | 115 | 102 |
|---------------|-----|-----|-----|
| 5a-androstane | 102 | 104 | 80  |

The Business of Innovation

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Procedural Blank                                                                                                |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------|
| Battelle ID<br>Sample Type<br>Collection Date<br>Extraction Date<br>Analysis Date<br>Analytical Instrument<br>% Moisture<br>% Lipid<br>Matrix<br>Sample Size<br>Size Unit-Basis<br>Minimum Reporting Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BJ939PB-P<br>PB<br>01/24/07<br>01/24/07<br>01/31/07<br>FID<br>19:52<br>NA<br>SOIL, TAR<br>2.44<br>G_DRY<br>1.64 |             |
| Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MG/KG_DRY                                                                                                       |             |
| n-Nonane<br>n-Decane<br>n-Undecane<br>n-Dodecane<br>n-Tridecane<br>Isoprenoid RRT 1380<br>n-Tetradecane<br>Isoprenoid RRT 1470<br>n-Pentadecane<br>n-Hexadecane<br>Norpristane (1650)<br>n-Heptadecane<br>Pristane<br>n-Octadecane<br>Phytane<br>n-Octadecane<br>n-Heneicosane<br>n-Heneicosane<br>n-Heneicosane<br>n-Tricosane<br>n-Tetracosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Heptacosane<br>n-Triacontane<br>n-Triacontane<br>n-Tritriacontane<br>n-Tetratriacontane<br>n-Tetratriacontane<br>n-Tetratriacontane |                                                                                                                 |             |
| n-Hexatriacontane<br>n-Heptatriacontane<br>n-Octatriacontane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | U<br>U<br>U |
| n-Nonatriacontane<br>n-Tetracontane<br>TPH(total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | U<br>U<br>U |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |             |

## Surrogate Recoveries (%)

| O-Terphenyl   |  |  |
|---------------|--|--|
| 5a-androstane |  |  |

100 79

The Business of Innovation

## Project Client: Exponent, Inc.

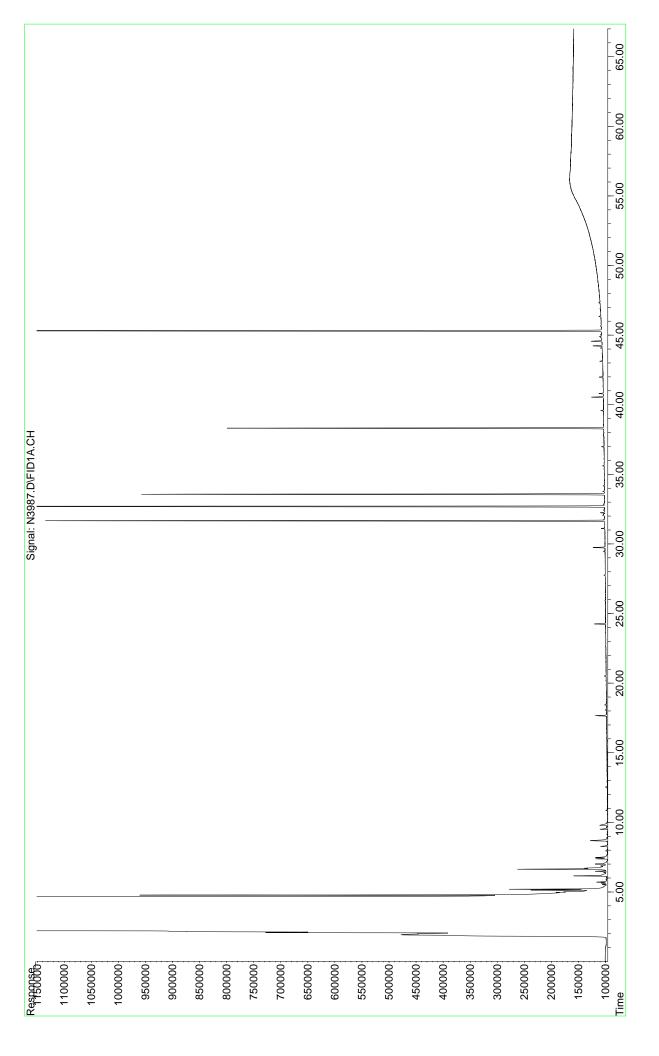
## Project Name: Exponent - Gas Works Park Project Number: N106746-0001 060208-03: Sand. Client ID White Quartz, -50+70 Battelle ID BJ940LCS-P Sample Type LCS **Collection Date** 01/24/07 Extraction Date 01/24/07 Analysis Date 01/31/07 Analytical Instrument FID % Moisture NA % Lipid NA Matrix SOIL, TAR Sample Size 20.01 Size Unit-Basis G\_DRY Minimum Reporting Limit 0.2 MG/KG\_DRY Target % Recovery Qualifier Units n-Nonane 0.89 1.25 71 n-Decane 1.25 83 1.04 n-Undecane U n-Dodecane 1.13 1.25 90 n-Tridecane U Isoprenoid RRT 1380 U n-Tetradecane 1.12 1.25 90 Isoprenoid RRT 1470 U n-Pentadecane U n-Hexadecane 1.17 1.25 94 Norpristane (1650) U n-Heptadecane U Pristane 1.25 1.25 100 1.25 n-Octadecane 105 1.31 Phytane 1.15 1.25 92 n-Nonadecane 0.97 1.25 78 n-Eicosane 1.21 1.25 97 U n-Heneicosane n-Docosane 1.24 1.25 99 n-Tricosane U n-Tetracosane 1.21 1.25 97 n-Pentacosane U n-Hexacosane 1.2 1.25 96 n-Heptacosane U n-Octacosane 1.36 1.25 109 n-Nonacosane U n-Triacontane 1.22 1.25 98 n-Hentriacontane U n-Dotriacontane U n-Tritriacontane U n-Tetratriacontane U n-Pentatriacontane U 1.3 n-Hexatriacontane 1.25 104 n-Heptatriacontane U n-Octatriacontane U n-Nonatriacontane U n-Tetracontane U TPH(total) U Surrogate Recoveries (%)

## O-Terphenyl 5a-androstane

101

81

The Business of Innovation


Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                                | GN62: North Slope<br>Crude |    |                  |            |           |
|------------------------------------------|----------------------------|----|------------------|------------|-----------|
| Battelle ID<br>Sample Type               | BJ952NSC-P<br>NSC          |    |                  |            |           |
| Collection Date                          | 01/30/07                   |    |                  |            |           |
| Extraction Date                          | 01/30/07                   |    |                  |            |           |
| Analysis Date                            | 01/31/07                   |    |                  |            |           |
| Analytical Instrument                    | FID                        |    |                  |            |           |
| % Moisture                               | NA                         |    |                  |            |           |
| % Lipid                                  | NA                         |    |                  |            |           |
| Matrix                                   | OIL                        |    |                  |            |           |
| Sample Size                              | 5.01                       |    |                  |            |           |
| Size Unit-Basis                          | MG_OIL                     |    |                  |            |           |
| Minimum Reporting Limit                  | 299.7                      |    | Tanatol          | D:#        | Qualifian |
| Units                                    | MG/KG_OIL                  |    | Target %         | Difference | Qualifier |
| n-Nonane                                 | 5020.14                    |    | 4670.06          | 7.5        |           |
| n-Decane                                 | 4863.37                    |    | 4951.66          | 1.8        |           |
| n-Undecane                               | 4861.8                     |    | 4506.16          | 7.9        |           |
| n-Dodecane                               | 4899.16                    |    | 4576.43          | 7.1        |           |
| n-Tridecane                              | 4096.3                     | ME | 4189.33          | 2.2        |           |
| Isoprenoid RRT 1380                      | 965.4                      |    | 961.81           | 0.4        |           |
| n-Tetradecane                            | 4398.78                    |    | 3919.50          | 12.2       |           |
| Isoprenoid RRT 1470                      | 1572.82                    |    | 1532.69          | 2.6        |           |
| n-Pentadecane                            | 4350.22                    |    | 3990.56          | 9.0        |           |
| n-Hexadecane                             | 3700.26                    |    | 3640.11          | 1.7        |           |
| Norpristane (1650)                       | 1190.91                    |    | 1141.72          | 4.3        |           |
| n-Heptadecane                            | 3302.36                    |    | 3078.38          | 7.3        |           |
| Pristane                                 | 2374.46                    |    | 2280.61          | 4.1        |           |
| n-Octadecane                             | 2877.12                    |    | 2796.74          | 2.9        |           |
| Phytane                                  | 1557.22                    |    | 1659.88          | 6.2        |           |
| n-Nonadecane                             | 2373.76                    |    | 2540.37          | 6.6        |           |
| n-Eicosane                               | 2668.31                    |    | 2502.77          | 6.6        |           |
| n-Heneicosane                            | 2572.46                    |    | 2419.45          | 6.3        |           |
| n-Docosane                               | 2487.37                    |    | 2251.79          | 10.5       |           |
| n-Tricosane                              | 2153.59                    |    | 2050.41          | 5.0        |           |
| n-Tetracosane                            | 2067.1                     |    | 1948.20          | 6.1        |           |
| n-Pentacosane                            | 1787.61                    |    | 1795.70          | 0.5        |           |
| n-Hexacosane                             | 1702.6                     |    | 1639.60          | 3.8        |           |
| n-Heptacosane                            | 1349.47                    |    | 1230.99          | 9.6        |           |
| n-Octacosane                             | 1105.92                    |    | 1004.15          | 10.1       |           |
| n-Nonacosane                             | 937.02                     |    | 872.21           | 7.4        |           |
| n-Triacontane                            | 687.11                     |    | 669.33           | 2.7        |           |
| n-Hentriacontane                         | 619.57                     |    | 606.82           | 2.1<br>8.2 |           |
| n-Dotriacontane                          | 503.97                     |    | 465.97           |            |           |
| n-Tritriacontane                         | 404.55                     |    | 399.05<br>371.75 | 1.4<br>1.2 |           |
| n-Tetratriacontane<br>n-Pentatriacontane | 367.32<br>383.03           |    | 371.75           | 1.2        |           |
| n-Pentatriacontane<br>n-Hexatriacontane  | 383.03<br>244.25           | J  | 235.65           | 1.3<br>3.6 |           |
| n-Heptatriacontane                       | 244.25<br>214.78           |    | 235.65           | 3.0<br>2.2 |           |
| n-Octatriacontane                        | 214.78<br>216.26           |    | 205.75           | 2.2<br>5.1 |           |
| n-Nonatriacontane                        | 159.07                     |    | 153.92           | 3.3        |           |
| n-Tetracontane                           | 172.95                     | J  | 161.64           | 5.5<br>7.0 |           |
| TPH(total)                               | 634437.42                  | 5  | 578973.63        | 9.6        |           |
|                                          | 00                         |    | 010010.00        | 5.0        |           |

## Surrogate Recoveries (%)

| O-Terphenyl   | 104 |
|---------------|-----|
| 5a-androstane | 85  |

File : F:\N\DATA\SN0223\N3987.D Operator : MM Acquired : 1-31-2007 02:46:51 PM using AcqMethod TPH.M Instrument : Inst. N Sample Name: BJ939PB-P-FID(4) Misc Info : Procedural Blank 5-202 07-0010 Vial Number: 6



File : F:\N\DATA\SN0223\N3989.D Operator : MM Acquired : 1-31-2007 04:08:48 PM using AcqMethod TPH.M Instrument : Inst. N Sample Name: BJ940LCS-P-FID(4) Misc Info : Laboratory Control Sample 5-202 07-0010 Vial Number: 7

| Response_ | -             |       |       |       | Signal: N | Signal: N3989.D\FID1A.CH | CH    | -          |       |       |       |       |
|-----------|---------------|-------|-------|-------|-----------|--------------------------|-------|------------|-------|-------|-------|-------|
| 1050000   |               |       |       |       |           |                          |       |            |       |       |       |       |
| 100000    |               |       |       |       |           |                          |       |            |       |       |       |       |
| 950000-   |               |       |       |       |           |                          |       |            |       |       |       |       |
| 000006    |               |       |       |       |           |                          |       |            |       |       |       |       |
| 850000    |               |       |       |       |           |                          | -     |            |       |       |       |       |
| 800000-   |               |       |       |       |           |                          |       |            |       |       |       |       |
| 750000    |               |       |       |       |           |                          |       |            |       |       |       |       |
| 700000    |               |       |       |       |           |                          |       |            |       |       |       |       |
| 650000    |               |       |       |       |           |                          |       |            |       |       |       |       |
| 600000    |               |       |       |       |           |                          |       |            |       |       |       |       |
| 550000    |               |       |       |       |           |                          |       |            |       |       |       |       |
| 50000     |               |       |       |       |           |                          |       |            |       |       |       |       |
| 450000    |               |       |       |       |           |                          |       |            |       |       |       |       |
| 400000    |               |       |       |       |           |                          |       |            | -     |       |       |       |
| 350000    |               |       |       |       |           |                          |       |            |       |       |       |       |
| 30000     |               |       |       |       |           |                          |       |            |       |       |       |       |
| 250000    |               |       |       |       |           |                          |       |            |       |       |       |       |
| 200000-   |               |       |       |       |           |                          |       |            |       |       |       |       |
| 150000    |               |       |       |       |           |                          |       |            |       |       |       |       |
| 100000    | W.W. W. M. W. |       |       |       |           |                          |       | حالالالالك |       |       | -     | -     |
| Time      | 5.00 10.00    | 15.00 | 20.00 | 25.00 | 30.00     | 35.00                    | 40.00 | 45.00      | 50.00 | 55.00 | 60.00 | 65.00 |

| Response                                                  | -          |         |                     |                                |                         | Signal: N399 | Signal: N3991.D\FID1A.CH                                                                                       | -             |                          |           |              |       |       |
|-----------------------------------------------------------|------------|---------|---------------------|--------------------------------|-------------------------|--------------|----------------------------------------------------------------------------------------------------------------|---------------|--------------------------|-----------|--------------|-------|-------|
| 1900000                                                   |            |         |                     |                                |                         |              |                                                                                                                |               |                          |           |              |       |       |
| 1800000                                                   |            |         |                     |                                |                         |              |                                                                                                                |               |                          |           |              |       |       |
| 1700000                                                   |            |         |                     |                                |                         |              |                                                                                                                |               |                          |           |              |       |       |
| 1600000                                                   |            |         |                     |                                |                         |              |                                                                                                                |               |                          |           |              |       |       |
| 1500000                                                   |            |         |                     |                                |                         |              |                                                                                                                |               |                          |           |              |       |       |
| 1400000                                                   |            |         |                     |                                |                         |              |                                                                                                                |               |                          |           |              |       |       |
| 1300000                                                   |            |         | -                   |                                |                         |              |                                                                                                                |               |                          |           |              |       |       |
| 1200000                                                   |            |         |                     |                                |                         |              |                                                                                                                |               |                          |           |              |       |       |
| 1100000                                                   |            |         |                     |                                |                         |              |                                                                                                                |               |                          |           |              |       |       |
| 100000                                                    |            |         |                     |                                |                         |              |                                                                                                                |               |                          |           |              |       |       |
| -000006                                                   |            |         |                     |                                | -                       |              |                                                                                                                |               |                          |           |              |       |       |
| 800000                                                    |            |         |                     |                                |                         |              |                                                                                                                |               |                          |           |              |       |       |
| 700000                                                    |            |         |                     |                                |                         |              | -                                                                                                              |               |                          |           |              |       |       |
| 600000                                                    |            |         |                     |                                |                         |              |                                                                                                                |               |                          |           |              |       |       |
| 50000                                                     |            |         |                     |                                |                         |              |                                                                                                                |               |                          |           |              |       |       |
| 400000                                                    |            |         |                     |                                |                         |              |                                                                                                                |               | -                        |           |              |       |       |
| 300000                                                    |            | _       |                     |                                |                         |              |                                                                                                                |               |                          | _         | -            |       |       |
| 200000                                                    |            |         | ALLONAL AND ALLONAL | ANTALIA, INALIA MUTUTA INA INA | רייזן<br>איזעראווויראין | ANUMUNAD     | امتحاط الماريمة المصريا يحدر المحد المصداية الإطارة المالية المالية ومالية المالية المالية المالية المالية الم | u and and and | אההאורייוליולטולטול אוני | hallandur | _ السالسالسا |       |       |
| 100000 <sup>1</sup> , , , , , , , , , , , , , , , , , , , | 5.00 10.00 | 0 15.00 | 0 20.00             | -                              | 25.00                   | 30.00        | 35.00                                                                                                          | 40.00         | 45.00                    | 50.00     | 55.00        | 60.00 | 65.00 |

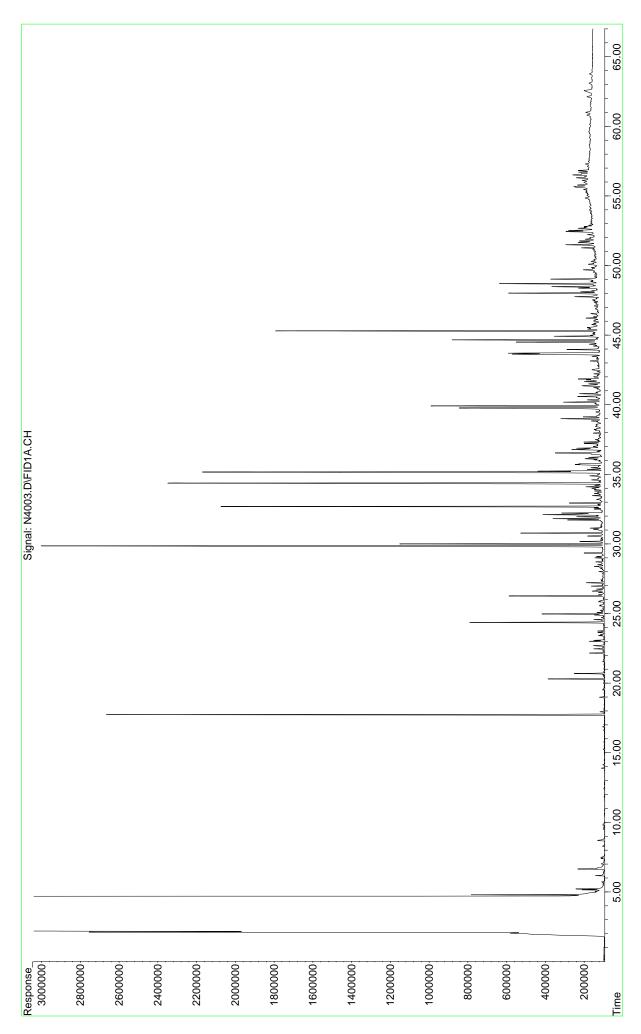
| File :         | : F:\N\DATA\SN0223\N3991.D                    |
|----------------|-----------------------------------------------|
| Operator :     | MM                                            |
|                | : 1-31-2007 05:29:00 PM using AcqMethod TPH.M |
| Ę              | Inst. N                                       |
| Sample Name:   | Sample Name: BJ952NSC-P(0)                    |
| Misc Info :    | : North Slope Crude FID 5-202 07-0010         |
| Vial Number: 8 | 00                                            |

| File :         |     | : F:\N\DATA\SN0223\N3993.D                    |
|----------------|-----|-----------------------------------------------|
| Operator :     |     | MM                                            |
|                | ••• | : 1-31-2007 06:49:17 PM using AcqMethod TPH.M |
| Instrument :   |     | Inst. N                                       |
| Sample Name:   |     | Sample Name: R5521-P-FID(11)                  |
| Misc Info :    |     | Misc Info : GWP07T01 5-202 07-0010            |
| Vial Number: 9 |     | 6                                             |
|                |     |                                               |

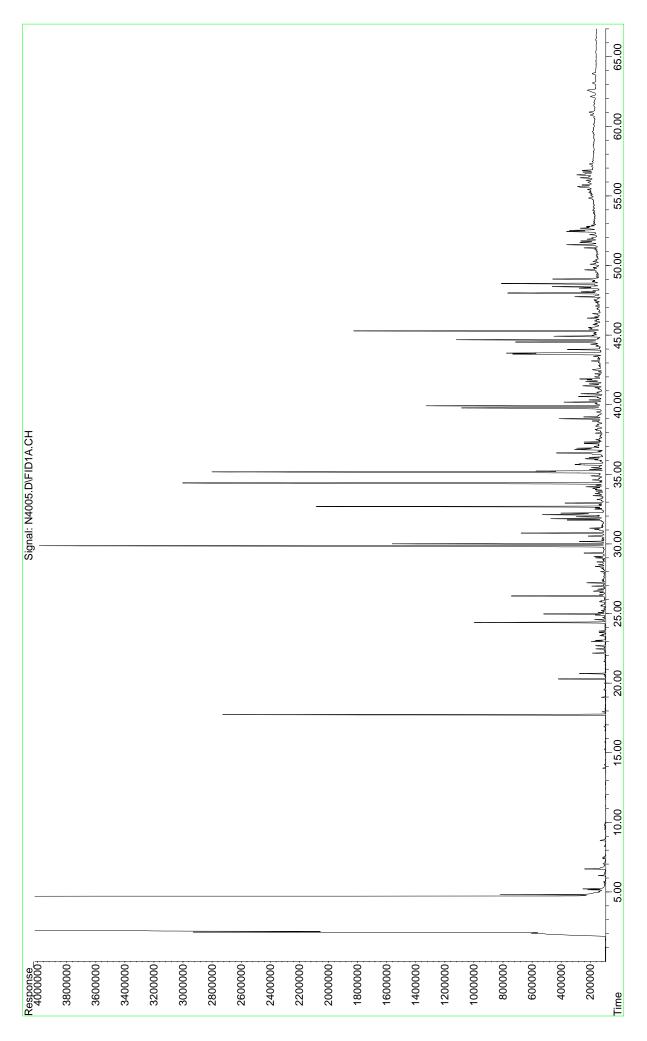
| Response | _          |                                               |       |         | Signal: N39 | Signal: N3993.D/FID1A.CH         | Ŧ                                       |      |       |       |       |
|----------|------------|-----------------------------------------------|-------|---------|-------------|----------------------------------|-----------------------------------------|------|-------|-------|-------|
| 2.8e+07  |            |                                               |       |         |             |                                  |                                         |      |       |       |       |
| 2.6e+07  |            |                                               |       |         |             |                                  |                                         |      |       |       |       |
| 2.4e+07  |            |                                               |       |         |             |                                  |                                         |      |       |       |       |
| 2.2e+07  |            |                                               |       |         |             |                                  |                                         |      |       |       |       |
| 2e+07    |            |                                               |       |         |             |                                  |                                         |      |       |       |       |
| 1.8e+07- |            |                                               |       |         |             |                                  |                                         |      |       |       |       |
| 1.6e+07- |            |                                               |       |         |             |                                  |                                         |      |       |       |       |
| 1.4e+07- |            |                                               |       |         |             |                                  |                                         |      |       |       |       |
| 1.2e+07- |            |                                               |       |         |             |                                  |                                         |      |       |       |       |
| 1e+07-   |            |                                               |       |         |             |                                  |                                         |      |       |       |       |
| 8000000  |            |                                               |       |         |             |                                  |                                         |      |       |       |       |
| 600000   |            |                                               |       |         |             |                                  |                                         |      |       |       |       |
| 400000   |            |                                               |       |         | _           |                                  |                                         |      |       |       |       |
| 200000   |            |                                               |       |         |             |                                  | =                                       |      |       |       |       |
| Time     | 5.00 10.00 | ۸, ۰٫۱۱. ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲ | 20.00 | <u></u> | ,,          | ب باللب ب <sup>مب</sup><br>35.00 | + // // + - + - + - + - + - + - + - + - | <br> | 55.00 | 60.00 | 65.00 |

| File :          | <br>: F:\N\DATA\SN0223\N3997.D                    |
|-----------------|---------------------------------------------------|
| Operator :      | <br>MM                                            |
| Acquired :      | <br>: 1-31-2007 09:29:10 PM using AcqMethod TPH.M |
| Instrument :    | <br>Inst. N                                       |
| Sample Name:    | <br>Sample Name: R5525-P-FID(11)                  |
| Misc Info :     | <br>Misc Info : GWP07T02 5-202 07-0010            |
| Vial Number: 11 | <br>11                                            |

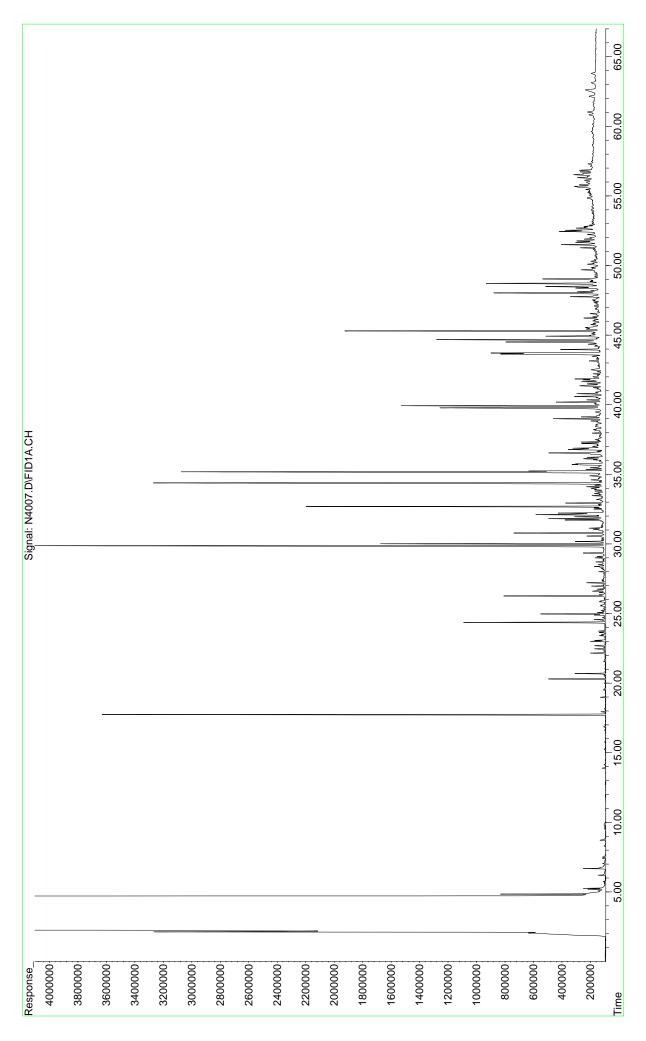
| Response_ | - |       |      |                                        | Signal: N35 | Signal: N3997.D/FID1A.CH                | I     |       |       |       |       |                                         |
|-----------|---|-------|------|----------------------------------------|-------------|-----------------------------------------|-------|-------|-------|-------|-------|-----------------------------------------|
| 2.4e+07   |   |       |      |                                        |             |                                         |       |       |       |       |       |                                         |
| 2.2e+07   |   |       |      |                                        |             |                                         |       |       |       |       |       |                                         |
| 2e+07     |   |       |      |                                        |             |                                         |       |       |       |       |       |                                         |
| 1.8e+07   |   |       |      |                                        |             |                                         |       |       |       |       |       |                                         |
| 1.6e+07   |   |       |      |                                        |             |                                         |       |       |       |       |       |                                         |
| 1.4e+07   |   |       |      |                                        |             |                                         |       |       |       |       |       |                                         |
| 1.2e+07   |   |       |      |                                        |             |                                         |       |       |       |       |       |                                         |
| 1e+07     |   |       |      |                                        |             |                                         |       |       |       |       |       |                                         |
| 800000    |   |       |      |                                        |             |                                         |       |       |       |       |       |                                         |
| 600000-   |   |       |      |                                        |             |                                         |       |       |       |       |       |                                         |
| 4000000-  |   |       |      |                                        |             |                                         |       |       |       |       |       |                                         |
| 200000-   |   |       |      | -                                      |             | -                                       |       |       |       |       |       |                                         |
| Time      |   | 15 00 |      | ************************************** | 30.00       | 35.00                                   | 40.00 | 45 00 | 50.00 | 55 00 |       | 65.00                                   |
|           |   | >>->- | >>>> | >>>>                                   | ~~~~        | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | >>>>  | >>>>  | ~~~~  | ~~~~~ | ~~~~~ | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |


| rile            | <br>Бц | : F:\N\DATA\SN0223\N3999.D                 |
|-----------------|--------|--------------------------------------------|
| Dperator        |        |                                            |
| Acquired        |        | 31 Jan 2007 10:50 pm using AcqMethod TPH.M |
| Instrument :    |        | Inst. N                                    |
| Sample Name     | <br>망  | Sample Name: R5526-P-FID(11)               |
| disc Info       | Ъ.:    | 1isc Info : GWP07T03 5-202 07-0010         |
| Vial Number: 12 |        |                                            |
|                 |        |                                            |

|  | -<br> |  |  |  |  |
|--|-------|--|--|--|--|
|  |       |  |  |  |  |


| File :          | <br>: F:\N\DATA\SN0223\N4001.D                  |
|-----------------|-------------------------------------------------|
| Operator :      | <br>MM<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| Acquired :      | UL FED ZUU/ 12:11 am USING ACQMETNOG TPH.M      |
| Instrument :    | <br>Inst. N                                     |
| Sample Name:    | <br>Sample Name: R5527-P-FID(11)                |
| Misc Info :     | <br>Misc Info : GWP07T04 5-202 07-0010          |
| Vial Number: 13 | <br>13                                          |
|                 |                                                 |

| Response2.4e+07 |      |       |     | _     |                | Signal: N4 | Signal: N4001.D/FID1A.CH                     | Ŧ  |               |           |       |       |
|-----------------|------|-------|-----|-------|----------------|------------|----------------------------------------------|----|---------------|-----------|-------|-------|
| 2.2e+07         |      |       |     |       |                |            |                                              |    |               |           |       |       |
| 2e+07           |      |       |     |       |                |            |                                              |    |               |           |       |       |
| 1.8e+07         |      |       |     |       |                |            |                                              |    |               |           |       |       |
| 1.6e+07         |      |       |     |       |                |            |                                              |    |               |           |       |       |
| 1.4e+07         |      |       |     |       |                |            |                                              |    |               |           |       |       |
| 1.2e+07         |      |       |     |       |                |            |                                              |    |               |           |       |       |
| 1e+07-          |      |       |     |       |                |            |                                              |    |               |           |       |       |
| 8000000         |      |       |     |       |                |            |                                              |    |               |           |       |       |
| 6000000         |      |       |     |       |                |            |                                              |    |               |           |       |       |
| 400000-         |      |       |     |       |                |            |                                              |    |               |           |       |       |
| 2000000-        |      |       |     |       |                |            |                                              |    |               |           |       |       |
| Time            | 5.00 | 10.00 | \ . | 20.00 | <u>₩₩₩₩₩₩₩</u> | 30.00      | <u>                                     </u> | ++ | + \\ \\ 45.00 | <br>55.00 | 60.00 | 65.00 |


File : F:\N\DATA\SN0223\N4003.D Operator : MM Acquired : 2-1-2007 01:30:53 AM using AcqMethod TPH.M Instrument : Inst. N Sample Name: R5528-P-A-FID(13) Misc Info : GWP07T05 5-202 07-0010 Vial Number: 14



File : F:\N\DATA\SN0223\N4005.D Operator : MM Acquired : 2-1-2007 02:50:25 AM using AcqMethod TPH.M Instrument : Inst. N Sample Name: R5529-P-A-FID(13) Misc Info : GWP07T06 5-202 07-0010 Vial Number: 15



File : F:\N\DATA\SN0223\N4007.D Operator : MM Acquired : 2-1-2007 04:09:54 AM using AcqMethod TPH.M Instrument : Inst. N Sample Name: R5530-P-FID(11) Misc Info : GWP07T07 5-202 07-0010 Vial Number: 16



| File :          | <br>: F:\N\DATA\SN0223\N4009.D                   |
|-----------------|--------------------------------------------------|
| Operator :      | <br>MM                                           |
| Acquired :      | <br>: 2-1-2007 05:29:42 AM using AcqMethod TPH.M |
| Instrument :    | <br>Inst. N                                      |
| Sample Name:    | <br>Sample Name: R5531-P-FID(11)                 |
| Misc Info :     | <br>Misc Info : GWP07T08 5-202 07-0010           |
| Vial Number: 17 | <br>17                                           |
|                 |                                                  |

| Response |            |       | -     |                   | Signal: N | Signal: N4009.D/FID1A.CH | H     |       |           |       |       |       |
|----------|------------|-------|-------|-------------------|-----------|--------------------------|-------|-------|-----------|-------|-------|-------|
| 5500000  |            |       |       |                   |           |                          |       |       |           |       |       |       |
| 500000-  |            |       |       |                   |           |                          |       |       |           |       |       |       |
| 4500000  |            |       |       |                   |           |                          |       |       |           |       |       |       |
| 4000000  |            |       |       |                   |           |                          |       |       |           |       |       |       |
| 3500000  |            |       |       |                   | -         |                          |       |       |           |       |       |       |
| 300000   |            |       |       |                   |           |                          |       |       |           |       |       |       |
| 2500000  |            |       |       |                   |           |                          |       |       |           |       |       |       |
| 2000000  |            |       |       |                   |           |                          |       |       |           |       |       |       |
| 1500000  |            |       |       |                   |           |                          |       |       |           |       |       |       |
| 1000000  |            |       |       |                   |           |                          | _     |       |           |       |       |       |
| 200000-  |            |       |       |                   |           |                          |       |       |           |       |       |       |
| Time     | 5.00 10.00 | 15.00 | 20.00 | 1444 Jury Multhum | 30.00     | 1.00<br>35.00            | 40.00 | 45.00 | UNULL WWW | 55.00 | 60.00 | 65.00 |

| File :          | F:\N\DATA\SN0223\N4013.D                   |
|-----------------|--------------------------------------------|
| Operator :      | MM                                         |
| ••              | 2-1-2007 08:09:16 AM using AcqMethod TPH.M |
| Instrument :    | Inst. N                                    |
| Sample Name:    | Sample Name: R5532-P-FID(11)               |
| Misc Info :     | GWP07T09 5-202 07-0010                     |
| Vial Number: 19 | 19                                         |

| Response |            |         | _ |       |       | Signa                                  | al: N4013. | Signal: N4013.D/FID1A.CH | Ŧ     |                                                                                                                |                                          |                    |       |   |       |
|----------|------------|---------|---|-------|-------|----------------------------------------|------------|--------------------------|-------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------|-------|---|-------|
| 380000-  |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 360000   |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 3400000- |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 3200000  |            |         |   |       |       | -                                      |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 300000   |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 2800000  |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 2600000  |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 2400000  |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 2200000  |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 200000   |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 1800000- |            |         |   | _     |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 1600000  |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 1400000  |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 1200000- |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 1000000  |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 800000   |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 600000-  |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 400000   |            |         |   |       |       |                                        |            |                          |       |                                                                                                                |                                          |                    |       |   |       |
| 200000   |            |         | W |       |       | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | W. W. W.   |                          |       | and when the second of the | W.W. W. | hy Manument Market |       |   |       |
| Time     | 5.00 10.00 | 0 15.00 | - | 20.00 | 25.00 | 30.00                                  | - 0        |                          | 40.00 | 45.00                                                                                                          | 50.00                                    | 55.00              | 60.00 | - | 65.00 |

| File :          | : F:\N\DATA\SN0223\N4015.D                   |
|-----------------|----------------------------------------------|
| Operator :      | WM                                           |
|                 | : 2-1-2007 09:29:43 AM using AcgMethod TPH.M |
| Ę               | Inst. N                                      |
| Sample Name:    | Sample Name: R5533-P-FID(11)                 |
| Misc Info :     | Misc Info : GWP07T10 5-202 07-0010           |
| Vial Number: 20 | 20                                           |

| Response2.1e+07  |       |              |       |       | Signal: N40 | Signal: N4015.D/FID1A.CH | Ŧ     |       |       |       |       |
|------------------|-------|--------------|-------|-------|-------------|--------------------------|-------|-------|-------|-------|-------|
| 2e+07<br>1.9e+07 |       |              |       |       |             |                          |       |       |       |       |       |
| 1.8e+07          |       |              |       |       |             |                          |       |       |       |       |       |
| 1.7e+07          |       |              |       |       |             |                          |       |       |       |       |       |
| 1.6e+07          |       |              |       |       |             |                          |       |       |       |       |       |
| 1.5e+07          |       |              |       |       |             |                          |       |       |       |       |       |
| 1.4e+07          |       |              |       |       |             |                          |       |       |       |       |       |
| 1.3e+07          |       |              |       |       |             |                          |       |       |       |       |       |
| 1.2e+07          |       |              |       |       |             |                          |       |       |       |       |       |
| 1.1e+07          |       |              |       |       |             |                          |       |       |       |       |       |
| 1e+07            |       |              |       |       |             |                          |       |       |       |       |       |
| 0000006          |       |              |       |       |             |                          |       |       |       |       |       |
| 800000           |       |              |       |       |             |                          |       |       |       |       |       |
| 7000000          |       |              |       |       |             |                          |       |       |       |       |       |
| 6000000          |       |              |       |       |             |                          |       |       |       |       |       |
| 500000           |       | _            |       |       |             |                          |       |       |       |       |       |
| 400000           |       | _            |       |       |             |                          |       |       |       |       |       |
| 300000           |       |              |       |       |             |                          |       |       |       |       |       |
| 200000           |       |              |       |       |             | -                        |       | _     |       |       |       |
| 100000           | <br>  |              |       |       |             |                          | -     |       | -     |       |       |
| Lime             | 10.00 | <u>15.00</u> | 20.00 | 25.00 | 30.00       | 35.00                    | 40.00 | 45 00 | 50.00 | 55.00 | 60 00 |

65.00 60.00 MMM 55.00 50.00 45.00 40.00 Signal: N4017.D\FID1A.CH PW WW WWWW 35.00 UMMMII CANANA MAN 30.00 Acquired:01Feb200710:50 am using AcqMethod TPH.MInstrumentInstrumentInst. NSample Name:R5534-P-FID(11)Misc Info:GWP07T11Vial Number:21 25.00 20.00 15.00 10.00 5.00 2400000 1200000-1000000 800000 600000-400000-200000 1800000-2200000-2000000-1600000 1400000 Response\_ Time

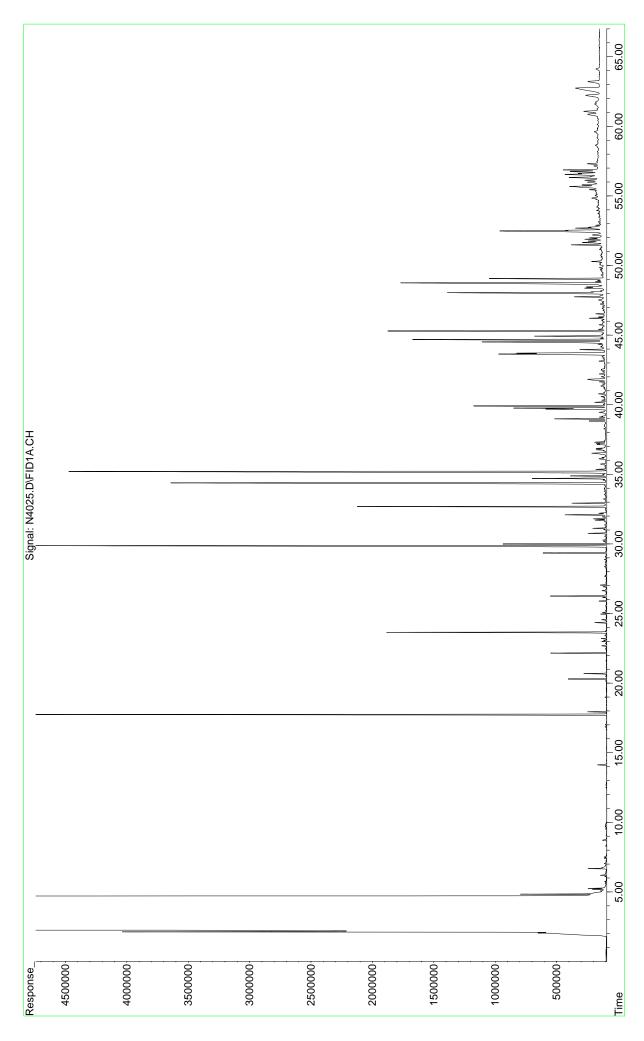
: F:\N\DATA\SN0223\N4017.D : MM

Operator Acquired

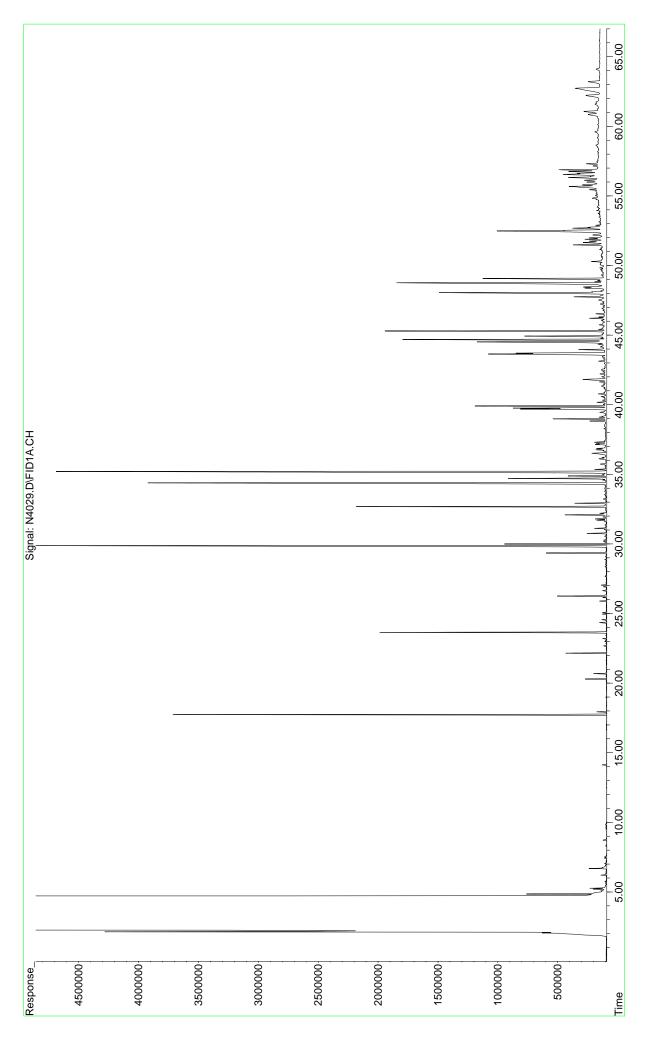
File

File : F:\N\DATA\SN0223\N4019.D Operator : MM Acquired : 01 Feb 2007 12:10 pm using AcqMethod TPH.M Instrument : Inst. N Sample Name: R5535-P-FID(11) Misc Info : GWP07T12 5-202 07-0010 Vial Number: 22

|                          |        |        |        |         |         |        |        |        |         |         |        |        |         |         |         |        |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 65.00 |
|--------------------------|--------|--------|--------|---------|---------|--------|--------|--------|---------|---------|--------|--------|---------|---------|---------|--------|-------|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                          |        |        |        |         |         |        |        |        |         |         |        |        |         |         |         |        |       |       |        | Mummun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60.00 |
|                          |        |        |        |         |         |        |        |        |         |         |        |        |         |         |         |        |       |       |        | - MMMmmmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55.00 |
|                          |        |        |        |         |         |        |        |        |         |         |        |        |         |         |         |        |       |       |        | Munner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.00 |
|                          |        |        |        |         |         |        |        |        |         |         | _      |        |         |         |         |        |       | _     |        | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45.00 |
|                          |        |        |        |         |         |        |        |        |         |         |        |        |         | _       |         |        |       |       |        | hand the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.00 |
| Signal: N4019.D\FID1A.CH |        |        |        |         |         |        |        |        |         |         |        |        |         |         |         |        |       |       |        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Signal: N4019            |        |        |        |         |         |        |        |        |         |         |        |        |         |         |         |        |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +     |
|                          |        |        |        |         |         |        |        |        |         |         |        |        |         |         | -       |        |       |       |        | Active and the second | 25.00 |
|                          |        |        |        |         |         |        |        |        |         |         |        |        |         |         |         |        |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.00 |
|                          |        |        |        |         |         |        |        |        |         |         |        |        |         |         |         |        |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.00 |
|                          |        |        |        |         |         |        |        |        |         |         |        |        |         |         |         |        |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.00 |
| _                        |        |        |        |         |         |        |        |        |         |         |        |        |         |         |         |        |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.00  |
| -                        |        |        |        |         |         |        |        |        |         |         |        |        |         |         |         |        |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Response_                | 400000 | 380000 | 360000 | 3400000 | 3200000 | 300000 | 280000 | 260000 | 2400000 | 2200000 | 200000 | 180000 | 1600000 | 1400000 | 1200000 | 100000 | 80000 | 60000 | 400000 | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time  |


| File :          | : F:\N\DATA\SN0223\N4021.D                   |
|-----------------|----------------------------------------------|
| ator            | WW                                           |
|                 | : 2-1-2007 01:31:24 PM using AcgMethod TPH.M |
| Ļ               | Inst. N                                      |
| Sample Name:    | Sample Name: R5536-P-FID(11)                 |
| Misc Info :     | Misc Info : GWP07T13 5-202 07-0010           |
| Vial Number: 23 | 23                                           |
|                 |                                              |

| Response |      |       |       |       | U          | Signal: N402 | Signal: N4021.D\FID1A.CH | Т     |       |                   |       |       |                                         |
|----------|------|-------|-------|-------|------------|--------------|--------------------------|-------|-------|-------------------|-------|-------|-----------------------------------------|
| 850000   |      |       |       |       |            |              |                          |       |       |                   |       |       |                                         |
| 800000   |      |       |       |       |            |              |                          |       |       |                   |       |       |                                         |
| 750000   |      |       |       |       |            |              |                          |       |       |                   |       |       |                                         |
| 700000   |      |       |       |       |            |              |                          |       |       |                   |       |       |                                         |
| 650000   |      |       |       |       |            |              |                          |       |       |                   |       |       |                                         |
| 600000   |      |       |       |       |            |              |                          |       |       |                   |       |       |                                         |
| 550000   |      |       |       |       |            |              |                          |       |       |                   |       |       |                                         |
| 500000   |      |       |       |       |            |              |                          |       |       |                   |       |       |                                         |
| 4500000  |      |       |       |       |            | -            |                          |       |       |                   |       |       |                                         |
| 400000   |      |       |       |       |            |              |                          |       |       |                   |       |       |                                         |
| 350000   |      |       |       |       |            |              |                          |       |       |                   |       |       |                                         |
| 300000   |      |       |       |       |            |              |                          |       |       |                   |       |       |                                         |
| 2500000  |      |       |       |       |            |              |                          |       |       |                   |       |       |                                         |
| 200000   |      |       |       |       |            |              |                          |       |       |                   |       |       |                                         |
| 1500000  |      |       |       |       |            |              |                          |       |       |                   |       |       |                                         |
| 1000000  |      |       |       |       | <br>       |              |                          |       |       |                   |       |       |                                         |
| 500000   |      | -     |       | -     | 11<br>11   |              |                          |       |       | Munner and Multim | Munum |       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| Time     | 5.00 | 10.00 | 15.00 | 20.00 | كالمهممالا | 30.00        | 35.00                    | 40.00 | 45.00 | 50.00             | 55.00 | 60.00 | 65.00                                   |


File : F:\N\DATA\SN0223\N4023.D Operator : MM Acquired : 2-1-2007 02:52:05 PM using AcqMethod TPH.M Instrument : Inst. N Sample Name: R5537-P-FID(8) Misc Info : GWP07T14 5-202 07-0010 Vial Number: 24

|                          |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |       |        |                    | 65.00                    |  |
|--------------------------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|-------|--------|--------------------|--------------------------|--|
|                          |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |       |        | Mumme              | 60.00                    |  |
|                          |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |       | -      | MMM                | 55.00                    |  |
|                          |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |       |        | Murand M.          | 50.00                    |  |
|                          |        | _       |         |         |         |         |         |         |         |         |        | -      |        |        |        |        |       |        |                    | 45.00                    |  |
| -                        |        |         |         |         |         |         |         |         |         |         |        | -      |        |        |        |        |       |        | Land Marine Marine | 40.00                    |  |
| Signal: N4023.D\FID1A.CH |        |         |         |         |         | -       |         |         |         |         |        |        |        |        |        |        |       |        |                    | 35.00                    |  |
| Signal: N40              |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |       |        |                    | 30.00                    |  |
|                          |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |       |        |                    | 25.00                    |  |
|                          |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |       |        |                    | لباب باللاب بلد<br>20.00 |  |
|                          |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |       |        |                    | 15.00                    |  |
|                          |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |       |        | -                  | 10.00                    |  |
|                          |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |        |       |        |                    | 5.00                     |  |
| Resp00560                | 200000 | 1900000 | 1800000 | 1700000 | 1600000 | 1500000 | 1400000 | 1300000 | 1200000 | 1100000 | 100000 | 000006 | 800000 | 700000 | 600000 | 500000 | 40000 | 300000 | 200000             | 100000                   |  |

File : F:\N\DATA\SN0223\N4025.D Operator : MM Acquired : 2-1-2007 04:12:23 PM using AcqMethod TPH.M Instrument : Inst. N Sample Name: R5538-P-FID(11) Misc Info : GWP07S01 5-202 07-0010 Vial Number: 25



File : F:\N\DATA\SN0223\N4029.D Operator : MM Acquired : 2-1-2007 06:52:57 PM using AcqMethod TPH.M Instrument : Inst. N Sample Name: R5539-P-FID(11) Misc Info : GWP07S02 5-202 07-0010 Vial Number: 27



| File            |     | : F:\N\DATA\SN0223\N4031.D                   |
|-----------------|-----|----------------------------------------------|
| Operator        |     | MM                                           |
|                 | ••• | : 2-1-2007 08:13:08 PM using AcqMethod TPH.M |
| Instrument :    |     | Inst. N                                      |
| Sample Name     |     | Sample Name: R5540-P-FID(11)                 |
| Misc Info       |     | Misc Info : GWP07S03 5-202 07-0010           |
| Vial Number: 28 | ••  | 28                                           |
|                 |     |                                              |

| Response |      |       |       |       |       | Signal: N4                                                                                                      | Signal: N4031.D/FID1A.CH | A.CH |      |       |                   |       |       |       |   |
|----------|------|-------|-------|-------|-------|-----------------------------------------------------------------------------------------------------------------|--------------------------|------|------|-------|-------------------|-------|-------|-------|---|
| 6500000  |      |       |       |       |       |                                                                                                                 |                          |      |      |       |                   |       |       |       |   |
| 6000000- |      |       |       |       |       |                                                                                                                 |                          |      |      |       |                   |       |       |       |   |
| 5500000- |      |       |       |       |       |                                                                                                                 |                          |      |      |       |                   |       |       |       |   |
| 500000-  |      |       |       |       |       |                                                                                                                 |                          |      |      |       |                   |       |       |       |   |
| 4500000  |      |       |       |       |       |                                                                                                                 |                          |      |      |       |                   |       |       |       |   |
| 400000-  |      |       |       |       |       |                                                                                                                 |                          |      |      |       |                   |       |       |       |   |
| 350000-  |      |       |       |       |       |                                                                                                                 |                          |      |      |       |                   |       |       |       |   |
| 3000000  |      |       |       |       |       |                                                                                                                 |                          |      |      |       |                   |       |       |       |   |
| 2500000  |      |       |       |       |       |                                                                                                                 |                          |      |      |       |                   |       |       |       |   |
| 2000000  |      |       |       |       |       |                                                                                                                 |                          |      |      | -     |                   |       |       |       |   |
| 1500000  |      |       |       |       |       |                                                                                                                 |                          |      |      |       |                   |       |       |       |   |
| 100000   |      |       |       |       |       |                                                                                                                 |                          |      |      |       |                   |       |       |       |   |
| 500000   | 7    |       |       |       |       | Ablum and a second a |                          |      | June |       |                   |       |       |       |   |
| Time     | 5.00 | 10.00 | 15.00 | 20.00 | 25.00 | 30.00                                                                                                           | 35.00                    |      | 00   | 45.00 | 40.00 45.00 50.00 | 55.00 | 60.00 | 65.00 | [ |

|              | · F · \N \DAIA \SNUZZ3 \N4033.D              |
|--------------|----------------------------------------------|
| Operator :   | MM                                           |
| Acquired :   | : 2-1-2007 09:33:07 PM using AcqMethod TPH.M |
| Instrument : | Inst. N                                      |
| Sample Name: | Sample Name: R5541-P-FID(11)                 |
| Misc Info :  | Misc Info : GWP07S04 5-202 07-0010           |
| Vial Number: | 29                                           |
|              |                                              |

| Response |      |       |       |       |       | Signal: N <sup>,</sup> | Signal: N4033.D\FID1A.CH | CH                |       |                                          |       |       |       |
|----------|------|-------|-------|-------|-------|------------------------|--------------------------|-------------------|-------|------------------------------------------|-------|-------|-------|
| 5500000  |      |       |       |       |       |                        |                          |                   |       |                                          |       |       |       |
| 5000000  |      |       |       |       |       |                        |                          |                   |       |                                          |       |       |       |
| 4500000  |      |       |       |       |       |                        |                          |                   |       |                                          |       |       |       |
| 400000   |      |       |       |       |       |                        |                          |                   |       |                                          |       |       |       |
| 3500000  |      |       |       |       |       |                        |                          |                   |       |                                          |       |       |       |
| 3000000  |      |       |       |       |       |                        |                          |                   |       |                                          |       |       |       |
| 2500000  |      |       |       |       |       |                        |                          |                   |       |                                          |       |       |       |
| 2000000  |      |       |       |       |       |                        |                          |                   |       |                                          |       |       |       |
| 1500000  |      |       |       |       |       |                        |                          |                   |       |                                          |       |       |       |
| 1000000- |      |       |       |       |       |                        |                          |                   |       |                                          |       |       |       |
| 200000   |      |       |       |       |       | Muldan Lath            | Land Marker              | Marshall Marshare |       | Manana ang tang tang tang tang tang tang |       |       |       |
| Time     | 5.00 | 10.00 | 15.00 | 20.00 | 25.00 | 30.00                  | 35.00                    | 40.00             | 45.00 | 00 30.00 35.00 40.00 45.00 50.00         | 55.00 | 60.00 | 65.00 |

File : F:\N\DATA\SN0223\N4035.D Operator : MM Acquired : 01 Feb 2007 10:53 pm using AcqMethod TPH.M Instrument : Inst. N Sample Name: R5542-P-A-FID(11) Misc Info : TDW3-4.5 5-202 07-0010 Vial Number: 30

| Signal: N4035.D/FID1A.CH |  |      |      |      |      |      |      |      | _ |      |      | 0 20.00 25.00 30.00 30.00 |
|--------------------------|--|------|------|------|------|------|------|------|---|------|------|---------------------------|
|                          |  |      |      |      |      |      |      |      |   |      | -    | 4. 1. 10.00 15.00 15.00   |
|                          |  | <br> |   | <br> | <br> | 5.00                      |

#### SHC and TPH – NAPL QA/QC Summary Batch 07-0011

| PROJECT:        | Exponent – Gas Works                                                                       |
|-----------------|--------------------------------------------------------------------------------------------|
| PARAMETER:      | Saturated Hydrocarbons (SHC) and Total Petroleum Hydrocarbons (TPH)                        |
| LABORATORY:     | Battelle, Duxbury, MA                                                                      |
| MATRIX:         | Non-aqueous phase liquid (NAPL)                                                            |
| SAMPLE CUSTODY: | Eighteen tar samples, three NAPLs samples, and 1 soil sample were received at the Battelle |
|                 | Duxbury Operations (BDO) Laboratory on 1/16/2007. Upon receipt of samples, the             |
|                 | temperatures of the coolers were taken and the samples were logged into the laboratory and |
|                 | given unique IDs. The temperature of the cooler upon receipt was within the acceptable     |
|                 | range. Samples were either stored in an access-limited walk-in refrigerator at 4°C until   |
|                 | sample preparation could begin. The NAPL samples were extracted together in one            |
|                 | analytical batch, batch 07-0011.                                                           |

#### QA/QC DATA QUALITY OBJECTIVES:

|             | Reference<br>Method | Blank    | Surrogate<br>Recovery | LCS/MS<br>Recovery                                                    | Control Oil<br>% Diff.                 |
|-------------|---------------------|----------|-----------------------|-----------------------------------------------------------------------|----------------------------------------|
| SHC and TPH | General<br>NS&T     | < 5x MDL | 40-120%<br>Recovery   | 40-120%<br>Recovery<br>MS target spike<br>must be > 5 x<br>background | PD < 30% for<br>90% of the<br>analytes |

**METHOD:** 

NAPL and filter samples were extracted following general NS&T methodologies. Approximately 50 mg of oil was weighed and diluted with 10 mL of hexane, while filter samples were extracted in entirety with 10 mL of Hexane. A portion of the extract was removed and spiked with SIS and IS. One extract was submitted for PAH and petroleum biomarker analysis, and the second extract was submitted for SHC and TPH analysis. NAPL sample data is reported on an oil weight basis, filter sample Bulkhead-02-fp data is reported on a gravimetric weight basis while filter sample Bulkhead Blank data is reported on a ng basis since the sample had no gravimetric weight.

SHC and TPH were measured by gas chromatography with flame ionization detection (GC/FID). An initial calibration consisting of target analytes was completed prior to analysis to demonstrate the linear range of analysis. Calibration verification was performed at the beginning and end of each 12 hour period in which samples were analyzed. Concentrations of SHC and TPH were calculated by the internal standard method. Normal alkanes were quantified using the average RF generated from the initial calibration. TPH concentrations were quantified using the average RF of nC8 through nC40. Isoprenoid hydrocarbon concentrations were quantified using the average RF of the n-alkanes immediately preceding and immediately following each target isoprenoid hydrocarbon.

**HOLDING TIMES:** Samples were stored cool at approximately 4°C until extraction.

Samples were prepared for analysis in one analytical batch and analyzed within 40 days of extraction.

| Batch ID | Extraction Date | Analysis Date(s)    |
|----------|-----------------|---------------------|
| 07-0011  | 1/30/2007       | 2/5/2007 - 2/6/2007 |

## SHC and TPH – NAPL QA/QC Summary Batch 07-0011

| PROCEDURAL<br>BLANK (PB):              | A procedural blank (PB) was prepared with each analytical batch. The blank was analyzed to ensure the sample extraction and analysis methods were free of contamination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | <b>07-0011</b> – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | Comments- None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LABORATORY<br>CONTROL SAMPLE<br>(LCS): | A laboratory control sample (LCS) was prepared each analytical batch. The percent recoveries of target analytes were calculated to measure data quality in terms of accuracy.<br><b>07-0011</b> – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | Comments- None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SURROGATE<br>RECOVERY:                 | Two surrogate compounds were added prior to extraction, including o-terphenyl and 5a-<br>androstane. The recovery of the surrogate compound was calculated to measure data quality<br>in terms of accuracy (extraction efficiency).                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        | <b>07-0011</b> – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | Comments- None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CONTROL OIL:                           | A control oil (North Slope Crude) was prepared with the analytical batch. The percent difference (PD) between the measured value and the target value was calculated to measure data quality in terms of accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | <b>07-0011</b> – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | <b>Comments</b> – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CALIBRATIONS:                          | The GC/FID is calibrated with a minimum 5 level curve for all compounds. The percent relative standard deviation (%RSD) between RF for the individual target analytes must be $\leq 25\%$ , and the mean RSD of all target analytes must be $< 20\%$ . Each batch of samples analyzed is bracketed by a continuing calibration verification (CCV) sample, run at a frequency of minimally every 12 hours. The PD between the true value and the CCV should be $< 20\%$ for individual analytes. Additionally an initial calibration check (ICC) sample is run immediately after each initial calibration. The PD between the ICC and the initial calibration should be $< 20\%$ . |
|                                        | <b>07-0011</b> – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | <b>Comments</b> – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                | GWP07DW401 | GWP07DW402 | GWP07MW9   |
|--------------------------|------------|------------|------------|
| Battelle ID              | R5522-P    | R5523-P    | R5524-P    |
| Sample Type              | SA         | SA         | SA         |
| Collection Date          | 01/11/07   | 01/11/07   | 01/12/07   |
|                          |            |            |            |
| Extraction Date          | 01/30/07   | 01/30/07   | 01/30/07   |
| Analysis Date            | 02/05/07   | 02/05/07   | 02/06/07   |
| Analytical Instrument    | FID        | FID        | FID        |
| % Moisture               | NA         | NA         | NA         |
| % Lipid                  | NA         | NA         | NA         |
| Matrix                   | NAPL       | NAPL       | NAPL       |
| Sample Size              | 49.50      | 47.40      | 45.80      |
| Size Unit-Basis          | MG_OIL     | MG_OIL     | MG_OIL     |
| Reporting Limit          | 303.03     | 316.46     | 327.51     |
| Units                    | MG/KG_OIL  | MG/KG_OIL  | MG/KG_OIL  |
|                          |            |            |            |
| n-Nonane                 | U          | U          | U          |
| n-Decane                 | U          | U          | U          |
| n-Undecane               | 985.16     | 904.4      | U          |
| n-Dodecane               | 2909.61    | 2982.5     | U          |
| n-Tridecane              | 5232.44 ME | 8415.55 ME | 4205.06 ME |
| Isoprenoid RRT 1380      | U          | U          | 6331.01    |
| n-Tetradecane            | 4571.43    | 4648.67    | 2968.95    |
| Isoprenoid RRT 1470      | 3316.27    | 3374.48    | 7188.74    |
| n-Pentadecane            | 1547.03    | 1667.54    | U          |
| n-Hexadecane             | 1388.3     | U          | U          |
| Norpristane (1650)       | 1658.57    | 363.09     | 6678.5     |
| n-Heptadecane            | 946.27     | 970.61     | 480.82     |
| Pristane                 | 1377.81    | 1311.14    | 10138.83   |
| n-Octadecane             | 9014.06    | 9221.92    | 1509.41    |
| Phytane                  | 317.24     | 353.6      | 6173.46    |
| n-Nonadecane             | U          | U          | U          |
| n-Eicosane               | 468.06     | 482.61     | U          |
| n-Heneicosane            | 1908.32    | 1992.63    | 768.98     |
| n-Docosane               | 1254.65    | 1294.69    | 342.06     |
| n-Tricosane              | U          | U          | U          |
| n-Tetracosane            | U          | U          | U          |
| n-Pentacosane            | 843.09     | 868.18     | U          |
| n-Hexacosane             | 1279.06    | 1262.68    | U          |
| n-Heptacosane            | 205.75 J   | 224.86 J   | U          |
| n-Octacosane             | 2113.46    | 2295.97    | U          |
| n-Nonacosane             | U          | U          | U          |
| n-Triacontane            | U          | U          | U          |
| n-Hentriacontane         | U          | U          | U          |
| n-Dotriacontane          | U          | U          | U          |
| n-Tritriacontane         | U          | U          | U          |
| n-Tetratriacontane       | U          | U          | U          |
| n-Pentatriacontane       | Ū          | Ŭ          | Ŭ          |
| n-Hexatriacontane        | Ŭ          | Ŭ          | Ŭ          |
| n-Heptatriacontane       | U          | U          | Ŭ          |
| n-Octatriacontane        | U          | U          | U          |
| n-Nonatriacontane        | Ŭ          | Ŭ          | Ŭ          |
| n-Tetracontane           | U          | U          | U          |
| TPH(total)               | 774165.21  | 786091.98  | 869177.39  |
|                          | 777103.21  | 100091.30  | 003111.03  |
|                          |            |            |            |
|                          |            |            |            |
| Surrogate Recoveries (%) |            |            |            |
|                          |            |            |            |

| O-Terphenyl   | 107 | 103 | 108 |
|---------------|-----|-----|-----|
| 5a-androstane | 86  | 87  | 86  |

# Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                | Procedural Blank FID |        |
|--------------------------|----------------------|--------|
| Battelle ID              | BJ963PB-P            |        |
| Sample Type              | PB                   |        |
| Collection Date          | 01/30/07             |        |
| Extraction Date          | 01/30/07             |        |
| Analysis Date            | 02/05/07             |        |
| Analytical Instrument    | FID                  |        |
| % Moisture               | NA                   |        |
| % Lipid                  | NA                   |        |
| Matrix                   | OIL                  |        |
| Sample Size              | 5.00                 |        |
| Size Unit-Basis          | MG_OIL               |        |
| Minimum Reporting Limit  | 300                  |        |
| Units                    | MG/KG_OIL            |        |
| Ginto                    | MG/RG_OL             |        |
| n-Nonane                 |                      | U      |
| n-Decane                 |                      | U      |
| n-Undecane               |                      | U      |
| n-Dodecane               |                      | U      |
| n-Tridecane              |                      | U      |
| Isoprenoid RRT 1380      |                      | U      |
| n-Tetradecane            |                      | U      |
| Isoprenoid RRT 1470      |                      | U      |
| n-Pentadecane            |                      | U      |
| n-Hexadecane             |                      | U      |
| Norpristane (1650)       |                      | U      |
| n-Heptadecane            |                      | U      |
| -                        |                      | U      |
| Pristane<br>n-Octadecane |                      | U      |
| Phytane                  |                      | U      |
| n-Nonadecane             |                      | U      |
| n-Eicosane               |                      | U      |
|                          |                      | U      |
| n-Heneicosane            |                      | U      |
| n-Docosane               |                      | U      |
| n-Tricosane              |                      | U      |
| n-Tetracosane            |                      |        |
| n-Pentacosane            |                      | U      |
| n-Hexacosane             |                      | U<br>U |
| n-Heptacosane            |                      | U      |
| n-Octacosane             |                      |        |
| n-Nonacosane             |                      | U<br>U |
| n-Triacontane            |                      |        |
| n-Hentriacontane         |                      | U      |
| n-Dotriacontane          |                      | U<br>U |
| n-Tritriacontane         |                      |        |
| n-Tetratriacontane       |                      | U      |
| n-Pentatriacontane       |                      | U      |
| n-Hexatriacontane        |                      | U      |
| n-Heptatriacontane       |                      | U      |
| n-Octatriacontane        |                      | U      |
| n-Nonatriacontane        |                      | U      |
| n-Tetracontane           |                      | U      |
| TPH(total)               |                      | U      |
|                          |                      |        |

#### Surrogate Recoveries (%)

| O-Terphenyl   |  |
|---------------|--|
| 5a-androstane |  |

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                                                        | Sample FID                                |        |          |            |           |
|------------------------------------------------------------------|-------------------------------------------|--------|----------|------------|-----------|
| Battelle ID<br>Sample Type<br>Collection Date<br>Extraction Date | BJ964LCS-P<br>LCS<br>01/30/07<br>01/30/07 |        |          |            |           |
| Analysis Date                                                    | 02/05/07                                  |        |          |            |           |
| Analytical Instrument                                            | FID                                       |        |          |            |           |
| % Moisture                                                       | NA                                        |        |          |            |           |
| % Lipid<br>Matrix                                                | NA<br>OIL                                 |        |          |            |           |
| Sample Size                                                      | NA                                        |        |          |            |           |
| Size Unit-Basis                                                  | NA                                        |        |          |            |           |
| Minimum Reporting Limit                                          | 1000                                      |        |          |            |           |
| Units                                                            | NG                                        |        | Target   | % Recovery | Qualifier |
|                                                                  |                                           |        |          |            |           |
| n-Nonane                                                         | 24417.91                                  |        | 25000.00 | 98         |           |
| n-Decane                                                         | 25466.5                                   |        | 25000.00 | 102        |           |
| n-Undecane<br>n-Dodecane                                         | 25452.29                                  | U      | 25000.00 | 102        |           |
| n-Tridecane                                                      | 20402.29                                  | U      | 23000.00 | 102        |           |
| Isoprenoid RRT 1380                                              |                                           | Ŭ      |          |            |           |
| n-Tetradecane                                                    | 25215.84                                  |        | 25000.00 | 101        |           |
| Isoprenoid RRT 1470                                              |                                           | U      |          |            |           |
| n-Pentadecane                                                    |                                           | U      |          |            |           |
| n-Hexadecane                                                     | 25548.96                                  |        | 25000.00 | 102        |           |
| Norpristane (1650)                                               |                                           | U      |          |            |           |
| n-Heptadecane<br>Pristane                                        | 26973.83                                  | U      | 25005.00 | 108        |           |
| n-Octadecane                                                     | 25361.5                                   |        | 25005.00 | 100        |           |
| Phytane                                                          | 24683.95                                  |        | 25017.50 | 99         |           |
| n-Nonadecane                                                     | 23835.33                                  |        | 25000.00 | 95         |           |
| n-Eicosane                                                       | 25536.21                                  |        | 25000.00 | 102        |           |
| n-Heneicosane                                                    |                                           | U      |          |            |           |
| n-Docosane                                                       | 26224.58                                  |        | 25000.00 | 105        |           |
| n-Tricosane                                                      | 25409.65                                  | U      | 25000.00 | 102        |           |
| n-Tetracosane<br>n-Pentacosane                                   | 25409.65                                  | U      | 25000.00 | 102        |           |
| n-Hexacosane                                                     | 25290.62                                  | 0      | 25000.00 | 101        |           |
| n-Heptacosane                                                    |                                           | U      |          |            |           |
| n-Octacosane                                                     | 25240.62                                  |        | 25000.00 | 101        |           |
| n-Nonacosane                                                     |                                           | U      |          |            |           |
| n-Triacontane                                                    | 25174.25                                  |        | 25000.00 | 101        |           |
| n-Hentriacontane                                                 |                                           | U      |          |            |           |
| n-Dotriacontane<br>n-Tritriacontane                              |                                           | U<br>U |          |            |           |
| n-Tetratriacontane                                               |                                           | U      |          |            |           |
| n-Pentatriacontane                                               |                                           | Ū      |          |            |           |
| n-Hexatriacontane                                                | 23884.94                                  |        | 25000.00 | 96         |           |
| n-Heptatriacontane                                               |                                           | U      |          |            |           |
| n-Octatriacontane                                                |                                           | U      |          |            |           |
| n-Nonatriacontane                                                |                                           | U      |          |            |           |
| n-Tetracontane<br>TPH(total)                                     |                                           | U<br>U |          |            |           |
| i i i i (iotal)                                                  |                                           | 0      |          |            |           |
|                                                                  |                                           |        |          |            |           |

Laboratory Control

#### Surrogate Recoveries (%)

O-Terphenyl 5a-androstane

99 85

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID               | GN62: North Slope  |    |            |            |           |
|-------------------------|--------------------|----|------------|------------|-----------|
| Client ID               | Crude              |    |            |            |           |
| Battelle ID             | BJ960NSC-P         |    |            |            |           |
| Sample Type             | NSC                |    |            |            |           |
| Collection Date         | 01/30/07           |    |            |            |           |
| Extraction Date         | 01/30/07           |    |            |            |           |
| Analysis Date           | 02/05/07           |    |            |            |           |
| Analytical Instrument   | FID                |    |            |            |           |
| % Moisture              | NA                 |    |            |            |           |
| % Lipid                 | NA                 |    |            |            |           |
| Matrix                  | OIL                |    |            |            |           |
| Sample Size             | 5.01               |    |            |            |           |
| Size Unit-Basis         | MG_OIL             |    |            |            |           |
| Minimum Reporting Limit | 299.7              |    |            |            |           |
| Units                   | MG/KG_OIL          |    | Target % E | Difference | Qualifier |
| n-Nonane                | 5001.37            |    | 4670.06    | 7.1        |           |
| n-Decane                | 4915.31            |    | 4951.66    | 0.7        |           |
| n-Undecane              | 4915.31<br>4816.79 |    | 4506.16    | 0.7<br>6.9 |           |
| n-Dodecane              | 4810.79            |    | 4576.43    | 5.5        |           |
| n-Tridecane             | 4726.74            | ME | 4189.33    | 12.8       |           |
| Isoprenoid RRT 1380     | 977.58             |    | 961.81     | 1.6        |           |
| n-Tetradecane           | 4166.88            |    | 3919.50    | 6.3        |           |
| Isoprenoid RRT 1470     | 1419.61            |    | 1532.69    | 7.4        |           |
| n-Pentadecane           | 4278.1             |    | 3990.56    | 7.2        |           |
| n-Hexadecane            | 3638.09            |    | 3640.11    | 0.1        |           |
| Norpristane (1650)      | 1145.36            |    | 1141.72    | 0.3        |           |
| n-Heptadecane           | 3308.17            |    | 3078.38    | 7.5        |           |
| Pristane                | 2267.36            |    | 2280.61    | 0.6        |           |
| n-Octadecane            | 2860.32            |    | 2796.74    | 2.3        |           |
| Phytane                 | 1535.02            |    | 1659.88    | 7.5        |           |
| n-Nonadecane            | 2453.53            |    | 2540.37    | 3.4        |           |
| n-Eicosane              | 2609.57            |    | 2502.77    | 4.3        |           |
| n-Heneicosane           | 2447.38            |    | 2419.45    | 1.2        |           |
| n-Docosane              | 2466.56            |    | 2251.79    | 9.5        |           |
| n-Tricosane             | 2120.65            |    | 2050.41    | 3.4        |           |
| n-Tetracosane           | 2087.24            |    | 1948.20    | 7.1        |           |
| n-Pentacosane           | 1785.6             |    | 1795.70    | 0.6        |           |
| n-Hexacosane            | 1685.79            |    | 1639.60    | 2.8        |           |
| n-Heptacosane           | 1345.81            |    | 1230.99    | 9.3        |           |
| n-Octacosane            | 1051.9             |    | 1004.15    | 4.8        |           |
| n-Nonacosane            | 868.68             |    | 872.21     | 0.4        |           |
| n-Triacontane           | 668.2              |    | 669.33     | 0.2        |           |
| n-Hentriacontane        | 638.48             |    | 606.82     | 5.2        |           |
| n-Dotriacontane         | 478.41             |    | 465.97     | 2.7        |           |
| n-Tritriacontane        | 389.91             |    | 399.05     | 2.3        |           |
| n-Tetratriacontane      | 355.59             |    | 371.75     | 4.3        |           |
| n-Pentatriacontane      | 360.66             |    | 378.11     | 4.6        |           |
| n-Hexatriacontane       | 234.32             | J  | 235.65     | 0.6        |           |
| n-Heptatriacontane      | 206.67             | J  | 210.06     | 1.6        |           |
| n-Octatriacontane       | 218.79             | J  | 205.75     | 6.3        |           |
| n-Nonatriacontane       | 163.55             | J  | 153.92     | 6.3        |           |
| n-Tetracontane          | 163.61             | J  | 161.64     | 1.2        |           |
| TPH(total)              | 612781.39          |    | 578973.63  | 5.8        |           |

#### Surrogate Recoveries (%)

O-Terphenyl 5a-androstane

98 83

| File :<br>Operator :<br>Acquired :<br>Instrument :<br>Sample Name :<br>Misc Info :<br>Vial Number: | : F:\N\DATA\SN0224\N4134.D<br>: MM<br>: 2-5-2007 05:05:46 PM using<br>: Inst. N<br>: BJ963PB-P(0)<br>: Procedural Blank FID 5-202<br>: 36 | \sN0224\<br>05:05:46<br>(0)<br>l Blank | N4134.D<br>PM using<br>FID 5-202 | g AcqMethod<br>2 07-0011 | od TPH.M |             |                               | E     |       |       |       |       |       |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------|--------------------------|----------|-------------|-------------------------------|-------|-------|-------|-------|-------|-------|
| Kesponse                                                                                           |                                                                                                                                           |                                        |                                  |                          |          | Signal: N41 | Signal: N4134.D/FID1A.CH<br>I | т     |       |       |       |       |       |
| 1700000                                                                                            |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 160000                                                                                             |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 150000                                                                                             |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 1400000                                                                                            |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 1300000                                                                                            |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 1200000                                                                                            |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 1100000                                                                                            |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 100000                                                                                             |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 000006                                                                                             |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 800000-                                                                                            |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 700000                                                                                             |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 600000                                                                                             |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 50000                                                                                              |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 400000                                                                                             |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 300000                                                                                             |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 200000                                                                                             |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| 100000                                                                                             |                                                                                                                                           |                                        |                                  |                          |          |             |                               |       |       |       |       |       |       |
| Time                                                                                               | 5.00                                                                                                                                      | 10.00                                  | 15.00                            | 20.00                    | 25.00    | 30.00       | 35.00                         | 40.00 | 45.00 | 50.00 | 55.00 | 60.00 | 65.00 |

File : F:\N\DATA\SN0224\N4136.D Operator : MM Acquired : 2-5-2007 06:24:37 PM using AcqMethod TPH.M Instrument : Inst. N Sample Name: BJ964LCS-P(0) Misc Info : Laboratory Control Sample FID 5-202 07-0011 Vial Number: 37

| Response<br>2800000<br>2600000<br>2400000<br>2200000<br>1800000<br>1600000<br>1200000<br>1000000<br>800000<br>600000<br>400000<br>800000 |      |       |       |        |       | Signal: N       | Signai: N4136.D/FID1A.CH | D1A.CH        |        |       |       |       |       |       |  |
|------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|--------|-------|-----------------|--------------------------|---------------|--------|-------|-------|-------|-------|-------|--|
| -000007                                                                                                                                  |      | 3     |       |        |       |                 |                          |               | _      |       |       |       |       |       |  |
| _                                                                                                                                        |      |       |       | ┶┰┶╸╁╸ |       | ╎└┿╌┅╟┝╍┯╌╢┿╍╍┙ | م مالالباليم             | جالالب مب الس | ┵┨┝╶╵┙ |       |       |       | -     |       |  |
|                                                                                                                                          |      |       |       |        |       |                 |                          |               |        |       |       | -     | -     | -     |  |
| Time                                                                                                                                     | 5.00 | 10.00 | 15.00 | 20.00  | 25.00 | 30.00           | 35.00                    |               | 40.00  | 45.00 | 50.00 | 55.00 | 60.00 | 65.00 |  |
|                                                                                                                                          |      |       |       |        |       |                 |                          |               |        |       |       |       |       |       |  |

| File                                                                                | : F:\N\DATA\SN0224\N4138.D                                                                                                                  |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Operator<br>Acquired<br>Instrument :<br>Sample Name:<br>Misc Info :<br>Vial Number: | : MM<br>: 2-5-2007 07:43:23 PM using AcqMethod TPH.M<br>t : Inst. N<br>me: BJ960NSC-P(0)<br>: North Slope Crude FID 5-202 07-0011<br>er: 38 |
| Response_                                                                           | Signal: N4138.D/FID1A.CH                                                                                                                    |
| 1900000                                                                             |                                                                                                                                             |
| 1800000                                                                             |                                                                                                                                             |
| 1700000                                                                             |                                                                                                                                             |
| 1600000                                                                             |                                                                                                                                             |
| 150000                                                                              |                                                                                                                                             |
| 1400000                                                                             |                                                                                                                                             |
| 1300000                                                                             |                                                                                                                                             |
| 1200000                                                                             |                                                                                                                                             |
| 1100000                                                                             |                                                                                                                                             |
| 100000                                                                              |                                                                                                                                             |
| 000006                                                                              |                                                                                                                                             |
| 800000                                                                              |                                                                                                                                             |
| 700000                                                                              |                                                                                                                                             |
| 600009                                                                              |                                                                                                                                             |
| 50000                                                                               |                                                                                                                                             |
| 400000                                                                              |                                                                                                                                             |
| 300000-                                                                             |                                                                                                                                             |
| 200000                                                                              |                                                                                                                                             |
| 100000                                                                              |                                                                                                                                             |

65.00

60.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

| File :                | : F:\N\DATA\SN0224\N4140.D                   |
|-----------------------|----------------------------------------------|
| <pre>Dperator :</pre> | MM                                           |
| Acquired :            | : 2-5-2007 09:02:02 PM using AcqMethod TPH.M |
| Instrument :          | Inst. N                                      |
| Sample Name:          | Sample Name: R5522-P-FID(5)                  |
| Misc Info :           | disc Info : GWP07DW401 5-202 07-0011         |
| Vial Number: 39       | 39                                           |
|                       |                                              |

| t.2e+07  |      |       |                                                                                                                 |   |       |       | Signa | II: N4140.I | Signal: N4140.D\FID1A.CH | Ŧ     |       |   |       |       |       |
|----------|------|-------|-----------------------------------------------------------------------------------------------------------------|---|-------|-------|-------|-------------|--------------------------|-------|-------|---|-------|-------|-------|
| 1.1e+07  |      |       |                                                                                                                 |   |       |       |       |             |                          |       |       |   |       |       |       |
| 1e+07    |      |       |                                                                                                                 |   |       |       |       |             |                          |       |       |   |       |       |       |
| -0000006 |      |       |                                                                                                                 |   |       |       |       |             |                          |       |       |   |       |       |       |
| 8000000  |      |       |                                                                                                                 |   |       |       |       |             |                          |       |       |   |       |       |       |
| 7000000- |      |       |                                                                                                                 |   |       |       |       |             |                          |       |       |   |       |       |       |
| 6000000  |      |       |                                                                                                                 |   | _     |       |       |             |                          |       |       |   |       |       |       |
| 5000000  |      |       |                                                                                                                 |   |       |       |       |             |                          |       |       |   |       |       |       |
| 4000000  |      |       |                                                                                                                 |   |       |       | _     |             |                          |       |       |   |       |       |       |
| 300000   |      |       |                                                                                                                 |   |       |       |       |             |                          |       |       |   |       |       |       |
| 2000000  |      |       |                                                                                                                 |   |       | -     |       | _           |                          |       |       |   |       |       |       |
| 1000000  | <br> |       | A Marine Mari |   |       |       |       |             |                          |       |       |   |       |       |       |
| Time     | 5.00 | 10.00 | -                                                                                                               | - | 20.00 | 25.00 | 30.00 | -           | 35.00                    | 40.00 | 45.00 | 2 | 55.00 | 60.00 | 65.00 |

| File            | : F:\N\DATA\SN0224\N4144.D                   |  |
|-----------------|----------------------------------------------|--|
| Operator        | : MM                                         |  |
| Acquired        | : 05 Feb 2007 11:39 pm using AcqMethod TPH.M |  |
| Instrument      |                                              |  |
| Sample Name     | Sample Name: R5523-P-FID(5)                  |  |
| Misc Info       | Misc Info : GWP07DW402 5-202 07-0011         |  |
| Vial Number: 41 | er: 41                                       |  |
|                 |                                              |  |

| Response |      |       |       | _ |       |       | Signi | al: N4144. | Signal: N4144.D\FID1A.CH | ï     |       |                                                                                                                |       |       |       |
|----------|------|-------|-------|---|-------|-------|-------|------------|--------------------------|-------|-------|----------------------------------------------------------------------------------------------------------------|-------|-------|-------|
| 1.1e+07  |      |       |       |   |       |       |       |            |                          |       |       |                                                                                                                |       |       |       |
| 1e+07-   |      |       |       |   |       |       |       |            |                          |       |       |                                                                                                                |       |       |       |
| 0000006  |      |       |       |   |       |       |       |            |                          |       |       |                                                                                                                |       |       |       |
| 8000000  |      |       |       |   |       |       |       |            |                          |       |       |                                                                                                                |       |       |       |
| 7000000  |      |       |       |   |       |       |       |            |                          |       |       |                                                                                                                |       |       |       |
| 600000   |      |       |       |   |       |       |       |            |                          |       |       |                                                                                                                |       |       |       |
| 500000-  |      |       |       |   |       |       |       |            |                          |       |       |                                                                                                                |       |       |       |
| 400000   |      |       |       |   |       |       | _     |            |                          |       |       |                                                                                                                |       |       |       |
| 3000000  |      |       |       |   |       |       |       |            |                          |       |       |                                                                                                                |       |       |       |
| 200000-  |      |       |       |   |       |       |       | _          |                          |       |       |                                                                                                                |       |       |       |
| 1000000- |      |       |       |   |       |       | la M. |            |                          |       |       | , the second |       |       |       |
| Time     | 5.00 | 10.00 | 15.00 |   | 20.00 | 25.00 | 30.   |            | 35.00                    | 40.00 | 45.00 | 50.00                                                                                                          | 55.00 | 60.00 | 65.00 |

File : F:\N\DATA\SN0224\N4146.D Operator : MM Acquired : 06 Feb 2007 12:59 am using AcqMethod TPH.M Instrument : Inst. N Sample Name: R5524-P-FID(5) Misc Info : GWP07MW9 5-202 07-0011 Vial Number: 42

| Response | _                                              |                          |       |       | Signal: N₄               | Signal: N4146.D\FID1A.CH | Т                                        |        |       |       |       |       |
|----------|------------------------------------------------|--------------------------|-------|-------|--------------------------|--------------------------|------------------------------------------|--------|-------|-------|-------|-------|
| 2100000  |                                                |                          | _     |       |                          |                          |                                          |        |       |       |       |       |
| 200000   |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| 1900000  |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| 1800000  |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| 1700000- |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| 1600000- |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| 150000   |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| 1400000  |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| 1300000- |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| 1200000  |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| 1100000  |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| 100000   |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| -000006  |                                                | _                        |       |       |                          |                          |                                          |        |       |       |       |       |
| 800000-  |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| 700000   |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| 600000   |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| 50000    |                                                |                          |       |       |                          | _                        |                                          |        |       |       |       |       |
| 400000   |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| 300000-  |                                                |                          |       |       |                          |                          |                                          |        |       |       |       |       |
| 20000    |                                                |                          |       |       | al Andalan Alina di Sana | WHY WINN W WANT AND AND  | West March March and a series and a      | . h. d |       |       |       |       |
| 100000   | Marpha And | WWWWWWWWWWWWWWWWWWWWWWWW |       |       |                          |                          | 177h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h | - { ⊢  |       |       |       |       |
| Time     | 5.00 10.00                                     | 15.00                    | 20.00 | 25.00 | 30.00                    | 35.00                    | 40.00                                    | 45.00  | 50.00 | 55.00 | 60.00 | 65.00 |

# PAH Data and Histograms Biomarker Data and EICPs

#### PAH and Biomarker – Sediment QA/QC Summary Batches 07-0010

| <b>PROJECT:</b>   | Exponent – Gas Works Park                                                                  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------|--|--|--|--|
| <b>PARAMETER:</b> | Polycyclic Aromatic Hydrocarbons and Biomarkers                                            |  |  |  |  |
| LABORATORY:       | Battelle, Duxbury, MA                                                                      |  |  |  |  |
| MATRIX:           | Tar and Soil                                                                               |  |  |  |  |
| SAMPLE CUSTODY:   | Eighteen tar samples, three NAPLs samples, and 1 soil sample were received at the Battelle |  |  |  |  |
|                   | Duxbury Operations (BDO) Laboratory on 1/16/2007. Upon receipt of samples, the             |  |  |  |  |
|                   | temperatures of the coolers were taken and the samples were logged into the laboratory and |  |  |  |  |
|                   | given unique IDs. The temperature of the cooler upon receipt was within the acceptable     |  |  |  |  |
|                   | range. Samples were either stored in an access-limited walk-in refrigerator at 4°C until   |  |  |  |  |
|                   | sample preparation could begin. The soil and tar samples were extracted together in one    |  |  |  |  |
|                   | analytical batch, batch 07-0010.                                                           |  |  |  |  |

#### QA/QC DATA QUALITY OBJECTIVES:

|                                 | Reference<br>Method | Blank    | Surrogate<br>Recovery | LCS/MS<br>Recovery                                                    | MS/MSD<br>Precision | Control Oil<br>% Diff.                 |
|---------------------------------|---------------------|----------|-----------------------|-----------------------------------------------------------------------|---------------------|----------------------------------------|
| PAH and petroleum<br>biomarkers | General<br>NS&T     | < 5x MDL | 40-120%<br>Recovery   | 40-120%<br>Recovery<br>MS target spike<br>must be > 5 x<br>background | < 30% RPD           | PD < 30% for<br>90% of the<br>analytes |

#### **METHOD:**

Soil samples were extracted following general NS&T methodologies. Approximately 15 to 30 grams of soil was spiked with SHC, PAH, and biomarker surrogates and serially extracted three times with dichloromethane using orbital shaker table techniques. The combined extracts were dried over sodium sulfate and concentrated by Kuderna-Danish and nitrogen evaporation techniques. The sample extracts were split in half; one-half of the extract was removed for archiving; the other half was processed through an alumina gravity column to isolate the hydrocarbon fractions of interest. The weight of the resulting extract was determined gravimetrically. The extracts were concentrated to 1 ml, split, and spiked with IS. The pre-injection volume and/or extract split were adjusted to achieve 3 mg/mL. One extract was submitted for PAH and petroleum biomarker analysis, and the second extract was submitted for SHC and TPH analysis.

PAH and petroleum biomarkers were measured by gas chromatography-mass spectrometry (GC/MS) in the selected ion mode (SIM). An initial calibration consisting of target analytes was analyzed prior to analysis to demonstrate the linear range of analysis. Calibration verification was performed at the beginning and end of each 12 hour period in which samples were analyzed. Concentrations of PAH and petroleum biomarkers were calculated versus internal standards. Target PAH were quantified using the average response factors (RF) generated from the initial calibration. The alkyl homolgue PAH series were assigned the RF of the parent PAH, steranes were assigned the RF of cholestane, and triterpanes were assigned the RF of moretane.

Note: the reporting limit for alkylbenzene compounds is orders of magnitude higher than the reporting limit for the rest of the PAH compounds.

## PAH and Biomarker – Sediment QA/QC Summary Batches 07-0010

| HOLDING TIMES:                         | 14 days of sample receipt<br>collection to extraction fo<br>the storage conditions for                                                                                                                                                                                                                                                                                                                                                                                             | and analyzed within 40 day<br>r soil samples are 14-days i | batch. Samples were extracted within<br>ys of extraction. Holding times from<br>f refrigerated, 365-days if frozen. Since<br>ed 9/26/2006, prior to its arrival at BDO<br>fied with a "T". |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                        | <b>Batch ID</b> 07-0010                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Extraction Date 1/24/2007                                  | <b>Analysis Date(s)</b><br>2/7/2006 – 2/14/2007                                                                                                                                            |  |  |  |
| PROCEDURAL<br>BLANK (PB):              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | was prepared with each ana<br>on and analysis methods w    | lytical batch. The blank was analyzed to ere free of contamination.                                                                                                                        |  |  |  |
|                                        | <b>07-0010</b> – 1 exceedence m                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oted.                                                      |                                                                                                                                                                                            |  |  |  |
|                                        | the MDL (8.42 ng/g). Fie                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            | at a concentration greater than five times<br>or naphthalene were significantly higher<br>rective action required.                                                                         |  |  |  |
| LABORATORY<br>CONTROL SAMPLE<br>(LCS): |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            | h analytical batch. The percent<br>ure data quality in terms of accuracy.                                                                                                                  |  |  |  |
|                                        | 07-0010 - No exceedence                                                                                                                                                                                                                                                                                                                                                                                                                                                            | es noted.                                                  |                                                                                                                                                                                            |  |  |  |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |                                                                                                                                                                                            |  |  |  |
| SURROGATE<br>RECOVERY:                 | Five surrogate compounds were added prior to extraction, including d8-naphthalene, d10-<br>acenaphthene, d10-phenanthrene, and d12-benzo(a)pyrene, and 5(b)H-cholane. The recovery<br>of the surrogate compound was calculated to measure data quality in terms of accuracy<br>(extraction efficiency).                                                                                                                                                                            |                                                            |                                                                                                                                                                                            |  |  |  |
|                                        | <b>07-0010</b> – 31 exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                                                                                                                                                                            |  |  |  |
|                                        | <b>Comments</b> – (b)H-cholane was over-recovered in all field samples. d8-Naphthalene was under-recovered in samples GWP07T01and GWP07T03. d-12 Benzo(a)pyrene was over-recovered in samples GWP07T05, GWP07T07, GWP07T08, GWP07T09, GWP07T12, GWP07T13, GW07S01, GWP07S02, GWP07S03, and GWP07S04. All surrogate exceedences are due to the high contamination level in the samples, and have been qualified with an "NME" to indicate the exceedences are due to matrix effect. |                                                            |                                                                                                                                                                                            |  |  |  |
| CONTROL OIL:                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | he measured value and the                                  | the analytical batch. The percent target value was calculated to measure                                                                                                                   |  |  |  |
|                                        | <b>07-0010</b> – No exceedence                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es noted.                                                  |                                                                                                                                                                                            |  |  |  |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |                                                                                                                                                                                            |  |  |  |

### PAH and Biomarker – Sediment QA/QC Summary Batches 07-0010

# **CALIBRATIONS:**The GC/MS is calibrated with a minimum 5 level curve for all compounds. The percent<br/>relative standard deviation (%RSD) between RF for the individual target analytes must be<br/> $\leq$ 30%, and the mean RSD of all target analytes must be <15%. Each batch of samples<br/>analyzed is bracketed by a continuing calibration verification (CCV) sample, run at a<br/>frequency of minimally every 12 hours. The PD between the true value and the CCV should<br/>be <25% for individual analytes. Additionally an initial calibration check (ICC) sample is run<br/>immediately after each initial calibration. The PD between the ICC and the initial calibration<br/>should be <25%.</td>

07-0010 - No exceedences noted.

Comments – None.

## Battelle

The Business of Innovation

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                                            | GWP07T01                   | GWP07T02                 | GWP07T03                 | GWP07T04                    |
|------------------------------------------------------|----------------------------|--------------------------|--------------------------|-----------------------------|
| Battelle ID                                          | R5521-P                    | R5525-P                  | R5526-P                  | R5527-P                     |
| Sample Type                                          | SA                         | SA                       | SA                       | SA                          |
| Collection Date                                      | 01/11/07                   | 01/11/07                 | 01/11/07                 | 01/11/07                    |
| Extraction Date                                      | 01/24/07                   | 01/24/07                 | 01/24/07                 | 01/24/07                    |
| Analysis Date                                        | 02/12/07                   | 02/10/07                 | 02/09/07                 | 02/09/07                    |
| Analytical Instrument                                | MS                         | MS                       | MS                       | MS                          |
| % Moisture                                           | 28.88                      | 50.1                     | 50.3                     | 34.93                       |
| % Lipid                                              | NA                         | NA                       | NA                       | NA                          |
| Matrix                                               | TAR                        | TAR                      | TAR                      | TAR                         |
| Sample Size                                          | 1.44                       | 1.02                     | 1.01                     | 1.44                        |
| Size Unit-Basis                                      | G_DRY                      | G_DRY                    | G_DRY                    | G_DRY                       |
| Minimum Reporting Limit<br>Units                     | 281.14<br>NG/G_DRY         | 1240.34<br>NG/G_DRY      | 1044.29<br>NG/G_DRY      | 488.3<br>NG/G_DRY           |
| Onits                                                | NG/G_DK1                   | NG/G_DR1                 | NG/G_DK1                 | NO/O_DKT                    |
| C3-Alkylbenzenes                                     | 200241.89                  | 740500.51                | 544602.3                 | 320855.54                   |
| C4-Alkylbenzenes                                     | 127384.2                   | 392300.28                | 291736.71                | 199914.12                   |
| C5-Alkylbenzenes                                     | 23379.2 J                  | 69444.5 J                | 51860.33 J               | 37371.72 J                  |
| C6-Alkylbenzenes                                     | 9519.52 J                  | 26200.83 J               | 19546.42 J               | 14739.7 J                   |
| Benzo(b)thiophene                                    | 808170.83                  | 2934365.74               | 2091464.31               | 1072137.6                   |
| C1-benzo(b)thiophenes                                | 82288.56                   | 219469.33                | 161209.05                | 118049                      |
| C2-benzo(b)thiophenes                                | 25587.92                   | 63190.68                 | 45916.09                 | 34531.23                    |
| C3-benzo(b)thiophenes                                | 6724.18                    | 17958.79                 | 13558.37                 | 8978.88                     |
| C4-benzo(b)thiophenes                                | 1516.3                     | 4177.36                  | 2615.75                  | 1908.26                     |
| Naphthalene                                          | 87981028.34 D<br>2197272.8 | 378914338.6 D            | 248684663.2 D<br>4544807 | 113638067.2 D<br>3162312.68 |
| C1-Naphthalenes<br>C2-Naphthalenes                   | 599102.14                  | 6076038.76<br>1518395.61 | 1092221.59               | 817449.67                   |
| C3-Naphthalenes                                      | 197880.46                  | 477415.52                | 336362.53                | 256499.08                   |
| C4-Naphthalenes                                      | 52064.86                   | 127870.43                | 85971.42                 | 65429.99                    |
| Biphenyl                                             | 454683.59                  | 1184039.28               | 868480.2                 | 639554.02                   |
| C1-Biphenyls + Dibenzofuran                          | 966212.61                  | 2460541.43               | 1791369.85               | 1328068.78                  |
| C2-Biphenyls + C1-Dibenzofurans                      | 262579.31                  | 637542.98                | 455780.84                | 349172.44                   |
| Acenaphthylene                                       | 1973285.53 D               | 5537642.35 D             | 4060515.93 D             | 2692348.15 D                |
| Acenaphthene                                         | 285034.92                  | 709485.38                | 510151.04                | 375293.53                   |
| Dibenzofuran                                         | 837673.49                  | 2145426.95               | 1564653.17               | 1156883.78                  |
| Fluorene                                             | 904621.84                  | 2349835.85               | 1683830.72               | 1205960.13                  |
| C1-Fluorenes                                         | 112323.51                  | 292247.97                | 179830.74                | 129613.09                   |
| C2-Fluorenes                                         | 41956.52                   | 90599.94                 | 63677.05                 | 45832.25                    |
| C3-Fluorenes                                         | 28090.04                   | 55225.82                 | 43056.81                 | 41673.07                    |
| C4-Fluorenes<br>Anthracene                           | 23282.04<br>748435.91 D    | 37973.81<br>2660367.97   | 38625<br>1900732.77      | 29355.34<br>1340503.68      |
| Phenanthrene                                         | 3719663.76 D               | 8334306.16 D             | 6784198.36 D             | 5438479.44 D                |
| C1-Phenanthrenes/Anthracenes                         | 545149.65                  | 1316736.52               | 922450.96                | 709667.29                   |
| C2-Phenanthrenes/Anthracenes                         | 175754.19                  | 384891.14                | 280592.34                | 209185.93                   |
| C3-Phenanthrenes/Anthracenes                         | 60038.95                   | 137878.3                 | 96256.35                 | 71843.81                    |
| C4-Phenanthrenes/Anthracenes                         | 16755.98                   | 37901.3                  | 30011.68                 | 20688.25                    |
| Retene                                               | 16608.63                   | 37693.1                  | 25082.64                 | 18792.64                    |
| Dibenzothiophene                                     | 156443.91                  | 386954.46                | 273906.09                | 208212.9                    |
| C1-Dibenzothiophenes                                 | 31741.48                   | 77811.54                 | 53431.96                 | 40801.72                    |
| C2-Dibenzothiophenes                                 | 11763.09                   | 28766.57                 | 19936.93                 | 15567.12                    |
| C3-Dibenzothiophenes                                 | 5766.46                    | 13019.78                 | 9164.7                   | 6731.11                     |
| C4-Dibenzothiophenes                                 | 1556.21                    | 5215.75                  | 2668.13                  | 1791.68                     |
| Fluoranthene                                         | 2667711.89 D               | 6197361.74 D             | 4646671.1 D              | 3690165.6 D                 |
| Pyrene                                               | 2277073.94 D               | 4820682.77 D             | 3900598.32 D             | 3063545.13 D                |
| C1-Fluoranthenes/Pyrenes                             | 604569.61                  | 1510567.23               | 1044364.86               | 740920.57                   |
| C2-Fluoranthenes/Pyrenes                             | 157177.94                  | 324998.68                | 233225.34                | 193823.39                   |
| C3-Fluoranthenes/Pyrenes<br>C4-Fluoranthenes/Pyrenes | 49635.71<br>27127.96       | 124029.31<br>38210.82    | 83739.63<br>48389.03     | 66622.04<br>35783.93        |
| C0-Benzo(b)naphthothiophenes                         | 39868.25                   | 93925.17                 | 66452.3                  | 52190.34                    |
| C1-Benzo(b)naphthothiophenes                         | 18780.12                   | 42078.27                 | 27938.49                 | 23608.21                    |
| C2-Benzo(b)naphthothiophenes                         | 5816.1                     | 13668.57                 | 10299.92                 | 6895.74                     |
| C3-Benzo(b)naphthothiophenes                         | 7116.14                    | 16044.83                 | 13620.22                 | 8640.99                     |
| C4-Benzo(b)naphthothiophenes                         | 1267.71                    | 3337.31                  | 1625.15                  | 1836.15                     |
| Benzo(a)anthracene                                   | 779123.01                  | 1881479.4                | 1329724.3                | 991494.48                   |
| Chrysene                                             | 735216.55                  | 1705008.49               | 1235623.91               | 919283.01                   |
|                                                      |                            |                          |                          |                             |

## Battelle

The Business of Innovation

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                | GWP07T01    | GWP07T02    | GWP07T03    | GWP07T04    |
|--------------------------|-------------|-------------|-------------|-------------|
| Battelle ID              | R5521-P     | R5525-P     | R5526-P     | R5527-P     |
| Sample Type              | SA          | SA          | SA          | SA          |
| Collection Date          | 01/11/07    | 01/11/07    | 01/11/07    | 01/11/07    |
| Extraction Date          | 01/24/07    | 01/24/07    | 01/24/07    | 01/24/07    |
| Analysis Date            | 02/12/07    | 02/10/07    | 02/09/07    | 02/09/07    |
| Analytical Instrument    | MS          | MS          | MS          | MS          |
| % Moisture               | 28.88       | 50.1        | 50.3        | 34.93       |
| % Lipid                  | NA          | NA          | NA          | NA          |
| Matrix                   | TAR         | TAR         | TAR         | TAR         |
| Sample Size              | 1.44        | 1.02        | 1.01        | 1.44        |
| Size Unit-Basis          | G_DRY       | G_DRY       | G_DRY       | G_DRY       |
| Minimum Reporting Limit  | 281.14      | 1240.34     | 1044.29     | 488.3       |
| Units                    | NG/G_DRY    | NG/G_DRY    | NG/G_DRY    | NG/G_DRY    |
| C1-Chrysenes             | 186899      | 427281.94   | 293837.11   | 223996.13   |
| C2-Chrysenes             | 63142.39    | 146843.07   | 99966.78    | 72766.81    |
| C3-Chrysenes             | 32332.16    | 106991.93   | 80682.88    | 49488.17    |
| C4-Chrysenes             | 8735.48     | 14005.92    | 12381.17    | 8380.26     |
| Benzo(b)fluoranthene     | 613443.59   | 1298687.15  | 949836.19   | 752475.2    |
| Benzo(k)fluoranthene     | 695610.31   | 1645954.33  | 1155474.88  | 866874.81   |
| Benzo(e)pyrene           | 554569.65   | 1255137.45  | 911100.65   | 689339.59   |
| Benzo(a)pyrene           | 1065303.82  | 2408803.35  | 1719568.32  | 1289502.51  |
| Pervlene                 | 345127.64   | 740509.08   | 528443.28   | 410475.45   |
| Indeno(1,2,3-cd)pyrene   | 761702.38   | 1731032.79  | 1240056.85  | 961042.01   |
| Dibenz(a,h)anthracene    | 119887.72   | 240723.05   | 168280.12   | 131715.72   |
| Benzo(g,h,i)perylene     | 764495.1    | 1720045.71  | 1254098.16  | 965716.53   |
| Total PAH                | 113619845.5 | 441162555.3 | 294979245.5 | 148378016.9 |
|                          |             |             |             |             |
| Surrogate Recoveries (%) |             |             |             |             |
| Naphthalene-d8           | 24 NME      | 70          | 38 NME      | 67          |
| Acenaphthene-d10         | 73          | 78          | 66          | 70          |
| Phenanthrene-d10         | 80          | 90          | 80          | 87          |
| Benzo(a)pyrene-d12       | 110         | 96          | 94          | 94          |
|                          |             |             |             |             |

The Business of Innovation

| Client ID                                    | GWP07T05                | GWP07T06                | GWP07T07                | GWP07T08                 |
|----------------------------------------------|-------------------------|-------------------------|-------------------------|--------------------------|
| Battelle ID                                  | R5528-P                 | R5529-P                 | R5530-P                 | R5531-P                  |
| Sample Type                                  | SA                      | SA                      | SA                      | SA                       |
| Collection Date                              | 01/11/07                | 01/11/07                | 01/11/07                | 01/11/07                 |
| Extraction Date                              | 01/24/07                | 01/24/07                | 01/24/07                | 01/24/07                 |
| Analysis Date                                | 02/08/07                | 02/08/07                | 02/08/07                | 02/11/07                 |
| Analytical Instrument                        | MS                      | MS                      | MS                      | MS                       |
| % Moisture                                   | 4.23                    | 6.94                    | 6.47                    | 30.28                    |
| % Lipid                                      | NA                      | NA                      | NA                      | NA                       |
| Matrix                                       | TAR                     | TAR                     | TAR                     | TAR                      |
| Sample Size                                  | 1.92                    | 1.93                    | 1.87                    | 1.49                     |
| Size Unit-Basis                              | G_DRY                   | G_DRY                   | G_DRY                   | G_DRY                    |
| Minimum Reporting Limit                      | 1449.65                 | 969.51                  | 992.27                  | 934.01                   |
| Units                                        | NG/G_DRY                | NG/G_DRY                | NG/G_DRY                | NG/G_DRY                 |
| C3-Alkylbenzenes                             | 16643.82 J              | 11632.94 J              | 11720.98 J              | 35938.6 J                |
| C4-Alkylbenzenes                             | 18269.2 J               | 13375.85 J              | 13845.59 J              | 65757.51 J               |
| C5-Alkylbenzenes                             | 4900.61 J               | 3514.58 J               | 3497.96 J               | 12543.17 J               |
| C6-Alkylbenzenes                             | 1894.64 J               | U                       | 982.99 J                | 7874.5 J                 |
| Benzo(b)thiophene                            | 170508.78               | 108387.93               | 141819.22               | 782246.38                |
| C1-benzo(b)thiophenes                        | 43922.65                | 31332.87                | 35349.83                | 605540.6                 |
| C2-benzo(b)thiophenes                        | 30116.14                | 24141.77                | 25158.21                | 549105.87                |
| C3-benzo(b)thiophenes                        | 13843.29                | 12339.22                | 11883.37                | 177168.13                |
| C4-benzo(b)thiophenes                        | 4725.35                 | 4270.95                 | 3571.41                 | 29031.26                 |
| Naphthalene                                  | 12799972.26 D           | 8370861.88 D            | 11298733.16 D           | 22267654.71 D            |
| C1-Naphthalenes                              | 1486915.45              | 1078913.71              | 1185207.88              | 6376462.97               |
| C2-Naphthalenes                              | 884717.78               | 731690.04               | 732986.71               | 3933479.51               |
| C3-Naphthalenes                              | 465601.45               | 427265.02               | 413581.2                | 1319799.8                |
| C4-Naphthalenes                              | 186182.16               | 182598.98               | 173957.22               | 234321.2                 |
| Biphenyl                                     | 397569.91               | 304501.81               | 321153.01               | 1370918.67               |
| C1-Biphenyls + Dibenzofuran                  | 2422635.2               | 2080320.47              | 1967361.36              | 757779.53                |
| C2-Biphenyls + C1-Dibenzofurans              | 959968.41               | 896783.56               | 844367.87               | 509842.78                |
| Acenaphthylene                               | 44864.09                | 31802.1                 | 28696.3                 | 2408513.29               |
| Acenaphthene                                 | 3770326.74              | 3018808.59 D            | 3283019.88 D            | 316370.51                |
| Dibenzofuran                                 | 2066229.18              | 1775620.25              | 1782695.2 D             | 371781.72                |
| Fluorene                                     | 2673369.51              | 2279642.43              | 2343495.76 D            | 2210941.52               |
| C1-Fluorenes                                 | 432142.76               | 403061                  | 411620.05               | 747906.54                |
| C2-Fluorenes                                 | 200826.92               | 190577.73               | 222271.76               | 255951.1                 |
| C3-Fluorenes                                 | 161247.38               | 200254.06               | 171384.74               | 157418.35                |
| C4-Fluorenes                                 | 146309.67               | 145878.09               | 152394.9                | 61709.87                 |
| Anthracene                                   | 5353451.21 D            | 5197306.26 D            | 5324002.63 D            | 2576612.15               |
| Phenanthrene<br>C1-Phenanthrenes/Anthracenes | 16503180.16 D           | 15593447.41 D           | 16283960.62 D           | 13778166.28 D            |
| C1-Phenanthrenes/Anthracenes                 | 3738000.72              | 3513357.24<br>1415337.3 | 3369621.5<br>1439871.86 | 3777576.77<br>1177836.63 |
| C3-Phenanthrenes/Anthracenes                 | 1460972.93<br>604353.09 | 576273.77               | 603675.97               | 254939.68                |
| C4-Phenanthrenes/Anthracenes                 | 169873.5                | 170503.18               | 201299.14               | 40945.67                 |
| Retene                                       | 351280.25               | 345423.48               | 359624.96               | 40945.67<br>U            |
| Dibenzothiophene                             | 562702.85               | 526970.55               | 498078.59               | 1306618.92               |
| C1-Dibenzothiophenes                         | 150631.44               | 145321.6                | 142086.32               | 611469.7                 |
| C2-Dibenzothiophenes                         | 64336.15                | 63060.51                | 64238.87                | 292654.59                |
| C3-Dibenzothiophenes                         | 32726.6                 | 30226.36                | 32725.71                | 87040.51                 |
| C4-Dibenzothiophenes                         | 9836.09                 | 7614.17                 | 11307.3                 | 14206.06                 |
| Fluoranthene                                 | 12427734.3 D            | 11851310.8 D            | 12984354.54 D           | 6410742.12 D             |
| Pyrene                                       | 12257379.44 D           | 11684717.46 D           | 12912726.03 D           | 8576504.35 D             |
| C1-Fluoranthenes/Pyrenes                     | 3666549.68              | 3248534.17              | 3512515.4               | 2565017.43               |
| C2-Fluoranthenes/Pyrenes                     | 958652.35               | 965239.01               | 1056810.25              | 736260.09                |
| C3-Fluoranthenes/Pyrenes                     | 396583.89               | 438139.89               | 436357.63               | 194956.72                |
| C4-Fluoranthenes/Pyrenes                     | 183519.7                | 193563.04               | 213915.67               | 46774.56                 |
| C0-Benzo(b)naphthothiophenes                 | 202024.03               | 188707.18               | 200086.12               | 351643.5                 |
| C1-Benzo(b)naphthothiophenes                 | 99858.18                | 100235.56               | 103812.64               | 250739.06                |
| C2-Benzo(b)naphthothiophenes                 | 36081.65                | 32482.84                | 39025.68                | 105906.27                |
| C3-Benzo(b)naphthothiophenes                 | 39767.85                | 40157.99                | 47446.73                | 59034.8                  |
| C4-Benzo(b)naphthothiophenes                 | 10500.81                | 11174.56                | 14645.47                | 14094.95                 |
| Benzo(a)anthracene                           | 3848884.26              | 3691087.79 D            | 4139655.69 D            | 2121727.42               |
| Chrysene                                     | 3664745.85              | 3625200.38 D            | 4057987.38 D            | 2437418.12               |
|                                              |                         |                         |                         |                          |

The Business of Innovation

| Client ID                | GWP07T05     | GWP07T06     | GWP07T07     | GWP07T08    |
|--------------------------|--------------|--------------|--------------|-------------|
| Battelle ID              | R5528-P      | R5529-P      | R5530-P      | R5531-P     |
| Sample Type              | SA           | SA           | SA           | SA          |
| Collection Date          | 01/11/07     | 01/11/07     | 01/11/07     | 01/11/07    |
| Extraction Date          | 01/24/07     | 01/24/07     | 01/24/07     | 01/24/07    |
| Analysis Date            | 02/08/07     | 02/08/07     | 02/08/07     | 02/11/07    |
| Analytical Instrument    | MS           | MS           | MS           | MS          |
| % Moisture               | 4.23         | 6.94         | 6.47         | 30.28       |
| % Lipid                  | NA           | NA           | NA           | NA          |
| Matrix                   | TAR          | TAR          | TAR          | TAR         |
| Sample Size              | 1.92         | 1.93         | 1.87         | 1.49        |
| Size Unit-Basis          | G_DRY        | G_DRY        | G_DRY        | G_DRY       |
| Minimum Reporting Limit  | 1449.65      | 969.51       | 992.27       | 934.01      |
| Units                    | NG/G_DRY     | NG/G_DRY     | NG/G_DRY     | NG/G_DRY    |
| C1-Chrysenes             | 1148640.89   | 1073725.91   | 1212316.18   | 1003941.42  |
| C2-Chrysenes             | 428957.15    | 436161.25    | 535767.32    | 361014.6    |
| C2-Chrysenes             | 303677.61    | 281809.93    | 338022.76    | 150152.43   |
| C4-Chrysenes             | 45363.1      | 56221.48     | 84118.52     | 34853.32    |
| Benzo(b)fluoranthene     | 2651645.19   | 2613760.42   | 2722647.73 D | 1530971.59  |
| Benzo(k)fluoranthene     | 3316052.5    | 3043902.3    | 3009453.47   | 1914736.39  |
| Benzo(e)pyrene           | 2633480.75   | 2503298.29   | 2697597.76 D | 1774418.3   |
| Benzo(a)pyrene           | 4643724.57 D | 4252114.79 D | 4862823.78 D | 3113342.2   |
| Perylene                 | 1417611.53   | 1367073.07   | 1580992.44   | 812754.07   |
| Indeno(1,2,3-cd)pyrene   | 3311073.71   | 2792696.64 D | 3189174.8 D  | 2288335.56  |
| Dibenz(a,h)anthracene    | 503905.76    | 534705.23    | 605991.98    | 386713.77   |
| Benzo(g,h,i)perylene     | 3245118.71   | 3000716.48 D | 3400513.54 D | 2220649.95  |
| Total PAH                | 115089811.6  | 103695431.2  | 113679498.6  | 104524096.7 |
|                          |              |              |              |             |
| Surrogate Recoveries (%) |              |              |              |             |
| Naphthalene-d8           | 88           | 104          | 101          | 81          |
| Acenaphthene-d10         | 88           | 79           | 81           | 68          |
| Phenanthrene-d10         | 88           | 94           | 87           | 77          |
| Benzo(a)pyrene-d12       | 399 NME      | 89           | 411 NME      | 157 NME     |
|                          |              |              |              |             |

The Business of Innovation

| Client ID                       | GWP07T09      | GWP07T10      | GWP07T11    | GWP07T12     |
|---------------------------------|---------------|---------------|-------------|--------------|
| Battelle ID                     | R5532-P       | R5533-P       | R5534-P     | R5535-P      |
| Sample Type                     | SA            | SA            | SA          | SA           |
| Collection Date                 | 01/11/07      | 01/11/07      | 01/11/07    | 01/11/07     |
| Extraction Date                 | 01/24/07      | 01/24/07      | 01/24/07    | 01/24/07     |
| Analysis Date                   | 02/08/07      | 02/09/07      | 02/11/07    | 02/08/07     |
| Analytical Instrument           | MS            | MS            | MS          | MS           |
| % Moisture                      | 19.46         | 32.51         | 5.51        | 10.85        |
| % Lipid                         | NA            | NA            | NA          | NA           |
| Matrix                          | TAR           | TAR           | TAR         | TAR          |
| Sample Size                     | 1.72          | 1.45          | 2.05        | 1.79         |
| Size Unit-Basis                 | G DRY         | G_DRY         | G DRY       | G_DRY        |
| Minimum Reporting Limit         | 1078.81       | 698.01        | 977.56      | 414.65       |
| Units                           | NG/G_DRY      | NG/G_DRY      | NG/G_DRY    | NG/G_DRY     |
|                                 |               | _             |             | _            |
| C3-Alkylbenzenes                | 36580.22 J    | 525029.89     | 2191.57 DJ  | 39680.66 J   |
| C4-Alkylbenzenes                | 71566.13 J    | 267770.56     | 5055.11 DJ  | 44626.03 J   |
| C5-Alkylbenzenes                | 13353.4 J     | 50020.43 J    | 1590.34 DJ  | 7993.18 J    |
| C6-Alkylbenzenes                | 9286.1 J      | 18809.7 J     | 1132.86 DJ  | 4237.2 J     |
| Benzo(b)thiophene               | 600997.35     | 1409434.13    | 6602.21 D   | 202487.18    |
| C1-benzo(b)thiophenes           | 559175.82     | 138298.11     | 18195.82 D  | 82126.5      |
| C2-benzo(b)thiophenes           | 580029.73     | 40696.8       | 32674.4 D   | 36340.56     |
| C3-benzo(b)thiophenes           | 207713.37     | 11562.9       | 20464.75 D  | 9868.5       |
| C4-benzo(b)thiophenes           | 36712.3       | 2649.01       | 6076.18 D   | 1944.66      |
| Naphthalene                     | 15284889.93 D | 145298242.7 D | 223304.71 D | 4999828.2 D  |
| C1-Naphthalenes                 | 6211078.04    | 3899752.92    | 350693.91 D | 2205708.83   |
| C2-Naphthalenes                 | 4284353.22    | 970727.61     | 352583.57 D | 809484.01    |
| C3-Naphthalenes                 | 1569159.41    | 306810.83     | 137220.32 D | 248499.46    |
| C4-Naphthalenes                 | 293313.36     | 82897.14      | 36593.43 D  | 64641.58     |
| Biphenyl                        | 1353389.83    | 753471.08     | 50124.82 D  | 317396       |
| C1-Biphenyls + Dibenzofuran     | 814568.89     | 1566453.23    | 103159.32 D | 1263797.88   |
| C2-Biphenyls + C1-Dibenzofurans | 617126.67     | 410565.66     | 84113.06 D  | 478999.88    |
| Acenaphthylene                  | 2723434.28    | 3466032.62 D  | 70113.9 D   | 1849540.36 D |
| Acenaphthene                    | 322276.01     | 444398.4      | 238718.81 D | 266858.11    |
| Dibenzofuran                    | 381628.07     | 1361607.06    | 61672.29 D  | 1201966.66 D |
| Fluorene                        | 2430112.88    | 1491341.86    | 245201.44 D | 1473457.49 D |
| C1-Fluorenes                    | 926137.56     | 178262.98     | 113263.88 D | 194027.96    |
| C2-Fluorenes                    | 355186.83     | 66723.22      | 51536.29 D  | 73084.62     |
| C3-Fluorenes                    | 179920.17     | 37615.8       | 18702.8 D   | 85391.42     |
| C4-Fluorenes                    | 76583.75      | 40720.93      | 12491.92 D  | 51229.37     |
| Anthracene                      | 2965638.91    | 1750201.39    | 277290.96 D | 1620907.51 D |
| Phenanthrene                    | 14428616.22 D | 7263752.38 D  | 1060654.5 D | 6996121.82 D |
| C1-Phenanthrenes/Anthracenes    | 4511051.53    | 862740.73     | 500955.37 D | 1230217.63   |
| C2-Phenanthrenes/Anthracenes    | 1474202.26    | 278082.25     | 179938.85 D | 433471.24    |
| C3-Phenanthrenes/Anthracenes    | 330344.99     | 97771.75      | 48951.4 D   | 136666.94    |
| C4-Phenanthrenes/Anthracenes    | 57750.41      | 28485.65      | 11119.04 D  | 38936.33     |
| Retene                          | U             | 36778.51      | 4865.52 D   | 52945.19     |
| Dibenzothiophene                | 1446533.18    | 247820.26     | 79816.35 D  | 257089.58    |
| C1-Dibenzothiophenes            | 732148.82     | 49989.6       | 74607.4 D   | 65380.27     |
| C2-Dibenzothiophenes            | 365443.44     | 19653.69      | 45202.6 D   | 25930.43     |
| C3-Dibenzothiophenes            | 116396.7      | 8170.17       | 17548.54 D  | 10655.43     |
| C4-Dibenzothiophenes            | 21781.27      | 2639.63       | 4933.51 D   | 2258.07      |
| Fluoranthene                    | 7291103.73 D  | 5056902.67 D  | 519719.5 D  | 5371309.03 D |
| Pyrene                          | 10065014.19 D | 4262558.61 D  | 632498.36 D | 5122420.76 D |
| C1-Fluoranthenes/Pyrenes        | 3272368.71    | 1009297.21    | 374611.91 D | 1270064.14   |
| C2-Fluoranthenes/Pyrenes        | 937168.77     | 229850.65     | 110112.61 D | 427613.13    |
| C3-Fluoranthenes/Pyrenes        | 246295.46     | 80465.28      | 31944.82 D  | 125298.55    |
| C4-Fluoranthenes/Pyrenes        | 62759.66      | 49537.86      | 8622.3 D    | 53036.15     |
| C0-Benzo(b)naphthothiophenes    | 423790.53     | 65863.38      | 27427.54 D  | 115923.36    |
| C1-Benzo(b)naphthothiophenes    | 302029.96     | 30065.31      | 27932.63 D  | 52530.21     |
| C2-Benzo(b)naphthothiophenes    | 131066.21     | 10891.34      | 12159.6 D   | 16868.85     |
| C3-Benzo(b)naphthothiophenes    | 77214.29      | 11772.33      | 5496.42 D   | 16075.47     |
| C4-Benzo(b)naphthothiophenes    | 16587.38      | 2259.44       | 2178.97 D   | 2823.57      |
| Benzo(a)anthracene              | 2488334.87    | 1273089.82    | 228885.55 D | 1642711.55 D |
| Chrysene                        | 2867991.71    | 1190069.72    | 236434.16 D | 1614818.64 D |
|                                 |               |               |             |              |

The Business of Innovation

| Client ID                    | GWP07T09    | GWP07T10    | GWP07T11                   | GWP07T12     |
|------------------------------|-------------|-------------|----------------------------|--------------|
| Battelle ID                  | R5532-P     | R5533-P     | R5534-P                    | R5535-P      |
| Sample Type                  | SA          | SA          | SA                         | SA           |
| Collection Date              | 01/11/07    | 01/11/07    | 01/11/07                   | 01/11/07     |
| Extraction Date              | 01/24/07    | 01/24/07    | 01/24/07                   | 01/24/07     |
| Analysis Date                | 02/08/07    | 02/09/07    | 02/11/07                   | 02/08/07     |
| Analytical Instrument        | MS          | MS          | MS                         | MS           |
| % Moisture                   | 19.46       | 32.51       | 5.51                       | 10.85        |
| % Lipid                      | NA          | NA          | NA                         | NA           |
| Matrix                       | TAR         | TAR         | TAR                        | TAR          |
| Sample Size                  | 1.72        | 1.45        | 2.05                       | 1.79         |
| Size Unit-Basis              | G_DRY       | G_DRY       | G_DRY                      | G_DRY        |
| Minimum Reporting Limit      | 1078.81     | 698.01      | 977.56                     | 414.65       |
| Units                        | NG/G_DRY    | NG/G_DRY    | NG/G_DRY                   | NG/G_DRY     |
| C1-Chrysenes                 | 1215740.74  | 298416.09   | 116117.61 D                | 430987.26    |
| C2-Chrysenes                 | 425207.68   | 97163.86    | 33587.03 D                 | 145186.25    |
| C3-Chrysenes                 | 158003.22   | 72744.66    | 11370.82 D                 | 70869.11     |
| C3-Chrysenes<br>C4-Chrysenes | 41669.54    | 10381.95    | 2119.89 D                  | 18003.21     |
| Benzo(b)fluoranthene         | 1807708.96  | 965211.2    | 102703.46 D                | 1193235.69 D |
| Benzo(k)fluoranthene         | 2216835.94  | 1146342.11  | 145824.59 D                | 1441182.67   |
| Benzo(e)pyrene               | 2048385.44  | 913574.37   | 143824.39 D<br>113381.94 D | 1135788.54 D |
| Benzo(a)pyrene               | 3686081.03  | 1736642.79  | 216113.91 D                | 1969951.25 D |
| Perylene                     | 941296.51   | 547303.45   | 42255.27 D                 | 698839.98    |
| Indeno(1,2,3-cd)pyrene       | 2601656.25  | 1220562.11  | 42255.27 D<br>108369.76 D  | 1488582.15 D |
| Dibenz(a,h)anthracene        | 432410.31   | 170838      | 24908.62 D                 | 301431.86    |
| Benzo(g,h,i)perylene         | 2477511.48  | 1266127.39  | 104107.18 D                | 1620078.65 D |
| Total PAH                    | 107985571.9 | 190514733.7 | 7405815.68                 | 50695892.37  |
| Idaran                       | 107903371.9 | 190314733.7 | 7403013.00                 | 30093092.37  |
| Surrogate Recoveries (%)     |             |             |                            |              |
| Naphthalene-d8               | 99          | 41          | 78 D                       | 94           |
| Acenaphthene-d10             | 88          | 56          | 54 D                       | 61           |
| Phenanthrene-d10             | 84          | 83          | 80 D                       | 89           |
| Benzo(a)pyrene-d12           | 194 NME     | 111         | 89 D                       | 138 NME      |
|                              |             |             |                            |              |

The Business of Innovation

| Client ID                            | GWP07T13                | GWP07T14            | GWP07S01                 | GWP07S02                 |
|--------------------------------------|-------------------------|---------------------|--------------------------|--------------------------|
| Battelle ID                          | R5536-P                 | R5537-P             | R5538-P                  | R5539-P                  |
| Sample Type                          | SA                      | SA                  | SA                       | SA                       |
| Collection Date                      | 01/11/07                | 01/11/07            | 01/12/07                 | 01/12/07                 |
| Extraction Date                      | 01/24/07                | 01/24/07            | 01/24/07                 | 01/24/07                 |
| Analysis Date                        | 02/09/07                | 02/09/07            | 02/09/07                 | 02/08/07                 |
| Analytical Instrument                | MS                      | MS                  | MS                       | MS                       |
| % Moisture                           | 12.18                   | 7.01                | 13.85                    | 10.23                    |
| % Lipid                              | NĂ                      | NA                  | NA                       | NA                       |
| Matrix                               | TAR                     | TAR                 | TAR                      | TAR                      |
| Sample Size                          | 1.83                    | 1.95                | 1.75                     | 1.80                     |
| Size Unit-Basis                      | G DRY                   | G DRY               | G DRY                    | G_DRY                    |
| Minimum Reporting Limit              | 384.24                  | 12.91               | 1004.51                  | 1030.86                  |
| Units                                | NG/G_DRY                | NG/G_DRY            | NG/G_DRY                 | NG/G_DRY                 |
| C3-Alkylbenzenes                     | 190546.76               | 42.74 J             | 9764.91 J                | 2246.68 J                |
| C4-Alkylbenzenes                     | 125716.17               | 29.24 J             | 8066.24 J                | 1603.81 J                |
| C5-Alkylbenzenes                     | 20333.3 J               | 19.14 J             | 2046.11 J                | U                        |
| C6-Alkylbenzenes                     | 8708.41 J               | 16.89 J             | 1470.33 J                | U                        |
| Benzo(b)thiophene                    | 563452.05               | 292.66              | 758954.67                | 395927.35                |
| C1-benzo(b)thiophenes                | 131790.2                | 150.38              | 86699.74                 | 36079.64                 |
| C2-benzo(b)thiophenes                | 41945.85                | 221.93              | 42898                    | 13843.85                 |
| C3-benzo(b)thiophenes                | 9133.19                 | 170.14              | 14447.97                 | 3948.09                  |
| C4-benzo(b)thiophenes                | 1706.06                 | 115.18              | 3549.83                  | 897.61 J                 |
| Naphthalene                          | 16263103.13 D           | 5059.57             | 21721142 D               | 12234462.62 D            |
| C1-Naphthalenes                      | 3314100.42              | 1481.53             | 1127445.06               | 623848.67                |
| C2-Naphthalenes                      | 905688.15               | 1564.22             | 246488.39                | 84945.32                 |
| C3-Naphthalenes                      | 268147.15               | 1130.83             | 64876.2                  | 18541.83                 |
| C4-Naphthalenes                      | 87700.42                | 778.54              | 15114.43                 | 4413.73                  |
| Biphenyl                             | 632479.48               | 995.72              | 1562671.63               | 1113379.92               |
| C1-Biphenyls + Dibenzofuran          | 1524802.87              | 590.82              | 291733.82                | 192543.94                |
| C2-Biphenyls + C1-Dibenzofurans      | 482761.56               | 646.64              | 57689.31                 | 34707.76                 |
| Acenaphthylene                       | 2847800.61 D            | 3922.19             | 7231603.33 D             | 6490099.33 D             |
| Acenaphthene                         | 271355.89               | 187.75              | 232629.82                | 112631.05                |
| Dibenzofuran                         | 1652087.79 D            | 322.84              | 206558.66                | 144056.33                |
| Fluorene                             | 1725178.93 D            | 777.53              | 1676012.74               | 1438195.8                |
| C1-Fluorenes                         | 181489.89               | 568.29              | 102492.82                | 57887.68                 |
| C2-Fluorenes                         | 64836.33                | 1136.75             | 29679.66                 | 14011.39                 |
| C3-Fluorenes                         | 66157.24                | 2655.14             | 23834.33                 | 10175.46                 |
| C4-Fluorenes                         | 44910.49                | 3959.41             | 7772.65                  | 3654.53                  |
| Anthracene                           | 1607520.18 D            | 4195.11             | 2774651.05               | 2925100.01               |
| Phenanthrene                         | 8192705.83 D            | 21141.12            | 28059893.4 D             | 21867409.72 D            |
| C1-Phenanthrenes/Anthracenes         | 1083410.58              | 8694.55             | 939016.67                | 770315.86                |
| C2-Phenanthrenes/Anthracenes         | 367874.88               | 11122.07            | 151458.42                | 88878.02                 |
| C3-Phenanthrenes/Anthracenes         | 117746.98               | 7938.89             | 42447.12                 | 22664.61                 |
| C4-Phenanthrenes/Anthracenes         | 35588.9                 | 2817.46             | 7548.84                  | 3506.41                  |
| Retene                               | 55643.33                | 726.77              | 2239.34                  | 845.44 J                 |
| Dibenzothiophene                     | 253540.14               | 2104.04             | 2296634.96               | 2175735.95               |
| C1-Dibenzothiophenes                 | 57973.86                | 1438.73<br>2547.28  | 141231.41                | 101150.11<br>23842.63    |
| C2-Dibenzothiophenes                 | 19815.42                |                     | 42580.56                 |                          |
| C3-Dibenzothiophenes                 | 8012.08                 | 2413.97             | 18234.26                 | 9336.34<br>2196.64       |
| C4-Dibenzothiophenes<br>Fluoranthene | 1692.49<br>5676062.55 D | 1000.78<br>39773.81 | 4058.68<br>21361152.11 D | 2196.64<br>17772525.52 D |
| Pyrene                               | 5293384.47 D            | 65047.13 D          | 29709883.05 D            | 23700020.48 D            |
| C1-Fluoranthenes/Pyrenes             | 1087088.92              | 22213.95            | 1927284.7                | 1862567.79               |
| C2-Fluoranthenes/Pyrenes             | 317097.28               | 15552.37            | 195657.49                | 148188.86                |
| C3-Fluoranthenes/Pyrenes             | 90786.78                | 8997.16             | 42100.99                 | 27531.43                 |
| C4-Fluoranthenes/Pyrenes             | 43675.06                | 5050.3              | 22284.19                 | 27331.43<br>U            |
| C0-Benzo(b)naphthothiophenes         | 95761.46                | 4337.03             | 625856.11                | 575552.01                |
| C1-Benzo(b)naphthothiophenes         | 39637.36                | 4150.54             | 89078.51                 | 68284.05                 |
| C2-Benzo(b)naphthothiophenes         | 12526.87                | 2683.1              | 24192.79                 | 14774.05                 |
| C3-Benzo(b)naphthothiophenes         | 12395.15                | 1688.02             | 54788.21                 | 47679.14                 |
| C4-Benzo(b)naphthothiophenes         | 2104.03                 | 465.72              | 3861.4                   | 2730.45                  |
| Benzo(a)anthracene                   | 1354796.64              | 19761.41            | 2814695.87 D             | 2782388.99               |
| Chrysene                             | 1292269.51              | 28241.94            | 4315321.21 D             | 3838732.39 D             |
|                                      |                         |                     |                          |                          |

The Business of Innovation

| Client ID                | GWP07T13     | GWP07T14   | GWP07S01      | GWP07S02      |
|--------------------------|--------------|------------|---------------|---------------|
| Battelle ID              | R5536-P      | R5537-P    | R5538-P       | R5539-P       |
| Sample Type              | SA           | SA         | SA            | SA            |
| Collection Date          | 01/11/07     | 01/11/07   | 01/12/07      | 01/12/07      |
| Extraction Date          | 01/24/07     | 01/24/07   | 01/24/07      | 01/24/07      |
| Analysis Date            | 02/09/07     | 02/09/07   | 02/09/07      | 02/08/07      |
| Analytical Instrument    | MS           | MS         | MS            | MS            |
| % Moisture               | 12.18        | 7.01       | 13.85         | 10.23         |
| % Lipid                  | NA           | NA         | NA            | NA            |
| Matrix                   | TAR          | TAR        | TAR           | TAR           |
| Sample Size              | 1.83         | 1.95       | 1.75          | 1.80          |
| Size Unit-Basis          | G_DRY        | G_DRY      | G_DRY         | G_DRY         |
| Minimum Reporting Limit  | 384.24       | 12.91      | 1004.51       | 1030.86       |
| Units                    | NG/G_DRY     | NG/G_DRY   | NG/G_DRY      | NG/G_DRY      |
| C1-Chrysenes             | 350632.98    | 14801.48   | 334128.56     | 259854.13     |
| C2-Chrysenes             | 115498.52    | 8152.3     | 82098.52      | 59322.94      |
| C3-Chrysenes             | 84453.72     | 3756.19    | 19307.78      | 12665.37      |
| C4-Chrysenes             | 15108.51     | 1094.7     | U             | 12003.37<br>U |
| Benzo(b)fluoranthene     | 1046794.12   | 23921.92   | 3939621.07 D  | 4198747.8 D   |
| Benzo(k)fluoranthene     | 1249814.43   | 24395.92   | 3111284.69    | 3214063.68    |
| Benzo(e)pyrene           | 1018539.66   | 27937.45   | 4949803.45 D  | 5010843.9 D   |
| Benzo(a)pyrene           | 1350021.51 D | 35234.46   | 7607195.93 D  | 8192228.11 D  |
| Pervlene                 | 588546.04    | 10279.86   | 1960653.87 D  | 3213617.69    |
| Indeno(1,2,3-cd)pyrene   | 992432.6 D   | 35802.93   | 7385669.2 D   | 7867281.06 D  |
| Dibenz(a,h)anthracene    | 224314.97    | 5396.98    | 715519.56     | 599913.8      |
| Benzo(g,h,i)perylene     | 1200172.25 D | 38276.68 D | 11127333.87 D | 10804525.44 D |
| Total PAH                | 63373822.23  | 514633.54  | 170317016.4   | 143901804.8   |
|                          |              |            |               |               |
| Surrogate Recoveries (%) |              |            |               |               |
| Naphthalene-d8           | 97           | 66         | 107           | 99            |
| Acenaphthene-d10         | 62           | 76         | 66            | 63            |
| Phenanthrene-d10         | 89           | 80         | 80            | 91            |
| Benzo(a)pyrene-d12       | 181 NME      | 83         | 155 NME       | 139 NME       |
|                          |              |            |               |               |

The Business of Innovation

| Client ID                       | GWP07S03                | GWP07S04              | TDW3-4.5             |
|---------------------------------|-------------------------|-----------------------|----------------------|
| Battelle ID                     | R5540-P                 | R5541-P               | R5542-P              |
| Sample Type                     | SA                      | SA                    | SA                   |
| Collection Date                 | 01/12/07                | 01/12/07              | 09/26/06             |
| Extraction Date                 | 01/24/07                | 01/24/07              | 01/24/07             |
| Analysis Date                   | 02/12/07                | 02/08/07              | 02/09/07             |
| Analytical Instrument           | MS                      | MS                    | MS                   |
| % Moisture                      | 20.14                   | 12.16                 | 14.86                |
| % Lipid                         | NA                      | NA                    | NA                   |
| Matrix                          | TAR                     | TAR                   | SOIL                 |
| Sample Size                     | 1.66                    | 1.85                  | 17.17                |
| Size Unit-Basis                 | G_DRY                   | G_DRY                 | G_DRY                |
| Minimum Reporting Limit         | 1117.8                  | 1337.34               | 6.48                 |
| Units                           | NG/G_DRY                | NG/G_DRY              | NG/G_DRY             |
| C3-Alkylbenzenes                | 1294243.87              | 158106.44 J           | 17.7 JT              |
| C4-Alkylbenzenes                | 797410.21               | 382114.16             | 18.1 JT              |
| C5-Alkylbenzenes                | 121385.55 J             | 67650.97 J            | 9.96 JT              |
| C6-Alkylbenzenes                | 41402.02 J              | 33688.64 J            | 9.52 JT              |
| Benzo(b)thiophene               | 1788561.97              | 2254325.92            | 328.76 T             |
| C1-benzo(b)thiophenes           | 2045245.44              | 3058073.54            | 100.13 T             |
| C2-benzo(b)thiophenes           | 1583925.71              | 2374427.64            | 102.97 T             |
| C3-benzo(b)thiophenes           | 579130.31               | 763348.46             | 77 T                 |
| C4-benzo(b)thiophenes           | 116971.38               | 131691.56             | 40.58 T              |
| Naphthalene                     | 31350491.1 D            | 28051647.36 D         | 2965.03 T            |
| C1-Naphthalenes                 | 15885043.89             | 18087022.6            | 756.44 T             |
| C2-Naphthalenes                 | 8946938.73              | 9894089.64            | 642.61 T             |
| C3-Naphthalenes                 | 3262299.36              | 3138374.42            | 515.15 T             |
| C4-Naphthalenes                 | 723383.94               | 594581.58             | 332.96 T             |
| Biphenyl                        | 1314448.7               | 1419183.18            | 709.08 T             |
| C1-Biphenyls + Dibenzofuran     | 1068258.12              | 990601.92             | 332.42 T             |
| C2-Biphenyls + C1-Dibenzofurans | 1131285.97              | 913603.05             | 295.76 T             |
| Acenaphthylene                  | 4151973.75 D            | 3725782.99            | 2665.3 T             |
| Acenaphthene                    | 355568.86               | 308642.76             | 113 T                |
| Dibenzofuran                    | 327097.45               | 299699.54             | 205.07 T             |
| Fluorene                        | 2469334.06              | 2089016.85            | 456.79 T             |
| C1-Fluorenes                    | 1981109.01              | 1635741.32            | 280.93 T             |
| C2-Fluorenes<br>C3-Fluorenes    | 1008404.37<br>335631.47 | 833572.19             | 365.9 T<br>1220.15 T |
| C4-Fluorenes                    | 147321.1                | 439976.77<br>253597.8 | 572.27 T             |
| Anthracene                      | 2575820.2               | 1878925.68            | 3596.5 T             |
| Phenanthrene                    | 8251686.47 D            | 8665001.32 D          | 10905.75 T           |
| C1-Phenanthrenes/Anthracenes    | 6530972.32              | 6966200.73            | 5353.75 T            |
| C2-Phenanthrenes/Anthracenes    | 2876421.64              | 3716568.09            | 3710.04 T            |
| C3-Phenanthrenes/Anthracenes    | 784697.31               | 1228739.4             | 1707.85 T            |
| C4-Phenanthrenes/Anthracenes    | 170962.04               | 260004.02             | 530.66 T             |
| Retene                          | U                       | U                     | 490.91 T             |
| Dibenzothiophene                | 1012181.57              | 1533863.59            | 1711.31 T            |
| C1-Dibenzothiophenes            | 1200051.65              | 2093835.6             | 1166.67 T            |
| C2-Dibenzothiophenes            | 753681.47               | 1646871.81            | 1188.44 T            |
| C3-Dibenzothiophenes            | 301581.59               | 732821.53             | 681.43 T             |
| C4-Dibenzothiophenes            | 68117.41                | 165057.12             | 196.34 T             |
| Fluoranthene                    | 1873682.81              | 1856741.01            | 48371.32 DT          |
| Pyrene                          | 3791787.81              | 3955992.67            | 69765.27 DT          |
| C1-Fluoranthenes/Pyrenes        | 4310483.13              | 4455074.97            | 11962.25 T           |
| C2-Fluoranthenes/Pyrenes        | 1666681.85              | 2144404.39            | 5261.06 T            |
| C3-Fluoranthenes/Pyrenes        | 570324.57               | 778142.29             | 1646.56 T            |
| C4-Fluoranthenes/Pyrenes        | 115630.39               | 166123.68             | 812.45 T             |
| C0-Benzo(b)naphthothiophenes    | 234913.79               | 490166.25             | 5655.43 T            |
| C1-Benzo(b)naphthothiophenes    | 445315.32               | 994243.91             | 2287.75 T            |
| C2-Benzo(b)naphthothiophenes    | 236901.37               | 638001.83             | 940.77 T             |
| C3-Benzo(b)naphthothiophenes    | 101327.36               | 248438.76             | 705.23 T             |
| C4-Benzo(b)naphthothiophenes    | 27841.45                | 63057.34              | 126.43 T             |
| Benzo(a)anthracene              | 1484981.4               | 1613574.99            | 17677.03 T           |
| Chrysene                        | 1614197.23              | 1754172.46            | 21363.2 T            |
|                                 |                         |                       |                      |

| Client ID                | GWP07S03    | GWP07S04    | TDW3-4.5       |
|--------------------------|-------------|-------------|----------------|
| Battelle ID              | R5540-P     | R5541-P     | R5542-P        |
| Sample Type              | SA          | SA          | SA             |
| Collection Date          | 01/12/07    | 01/12/07    | 09/26/06       |
| Extraction Date          | 01/24/07    | 01/24/07    | 01/24/07       |
| Analysis Date            | 02/12/07    | 02/08/07    | 02/09/07       |
| Analytical Instrument    | MS          | MS          | MS             |
| % Moisture               | 20.14       | 12.16       | 14.86          |
| % Lipid                  | NA          | NA          | NA             |
| Matrix                   | TAR         | TAR         | SOIL           |
| Sample Size              | 1.66        | 1.85        | 17.17          |
| Size Unit-Basis          | G DRY       | G DRY       | G DRY          |
| Minimum Reporting Limit  | 1117.8      | 1337.34     | 6.48           |
| Units                    | NG/G_DRY    | NG/G_DRY    | NG/G_DRY       |
| C1-Chrysenes             | 1650064.43  | 2194426.25  | 5462.79 T      |
| C2-Chrysenes             | 699503.7    | 1208945.48  | 2180.9 T       |
| C3-Chrysenes             | 314904.32   | 421187.55   | 793.81 T       |
| C4-Chrysenes             | 68838.45    | 91294.52    | 735.01 T<br>UT |
| Benzo(b)fluoranthene     | 520198.7    | 567719.71   | 21099.37 T     |
| Benzo(k)fluoranthene     | 759851.51   | 793548.85   | 19967.55 T     |
| Benzo(e)pyrene           | 746671.21   | 1082489.22  | 23771.27 T     |
| Benzo(a)pyrene           | 1448281.84  | 1507281.33  | 24775.08 DT    |
| Perylene                 | 262250.29   | 298368.92   | 8679.4 T       |
| Indeno(1,2,3-cd)pyrene   | 522843.71   | 590739.46   | 23701.94 DT    |
| Dibenz(a,h)anthracene    | 203297.51   | 224563.2    | 4440.35 T      |
| Benzo(g,h,i)perylene     | 545106.51   | 808491.22   | 28198.79 DT    |
| Total PAH                | 119691849.3 | 125752378.6 | 381095.09 T    |
|                          |             |             |                |
| Surrogate Recoveries (%) |             |             |                |
| Naphthalene-d8           | 77          | 103         | 78             |
| Acenaphthene-d10         | 74          | 63          | 87             |
| Phenanthrene-d10         | 77          | 82          | 86             |
| Benzo(a)pyrene-d12       | 219 NME     | 169 NME     | 101            |
|                          |             |             |                |

The Business of Innovation

| Client ID                       | Procedural Blank |  |
|---------------------------------|------------------|--|
| Battelle ID                     | BJ939PB-P        |  |
| Sample Type                     | PB               |  |
| Collection Date                 | 01/24/07         |  |
| Extraction Date                 | 01/24/07         |  |
| Analysis Date                   | 02/10/07         |  |
| Analytical Instrument           | MS               |  |
| % Moisture                      | 19.52            |  |
| % Lipid                         | NA               |  |
| Matrix                          | SOIL, TAR        |  |
| Sample Size                     | 2.44             |  |
| Size Unit-Basis                 | G_DRY            |  |
| Minimum Reporting Limit         | 8.21             |  |
| Units                           | NG/G_DRY         |  |
|                                 | o (o )           |  |
| C3-Alkylbenzenes                | 3.48 J           |  |
| C4-Alkylbenzenes                | U                |  |
| C5-Alkylbenzenes                | U                |  |
| C6-Alkylbenzenes                | U                |  |
| Benzo(b)thiophene               | U                |  |
| C1-benzo(b)thiophenes           | U                |  |
| C2-benzo(b)thiophenes           | U                |  |
| C3-benzo(b)thiophenes           | U                |  |
| C4-benzo(b)thiophenes           | U<br>8.42 N      |  |
| Naphthalene                     | 8.42 N<br>2.13 J |  |
| C1-Naphthalenes                 | 2.13 J<br>U      |  |
| C2-Naphthalenes                 | UU               |  |
| C3-Naphthalenes                 | UU               |  |
| C4-Naphthalenes<br>Biphenyl     | U                |  |
| C1-Biphenyls + Dibenzofuran     | U                |  |
| C1-Diphenyls + C1-Dibenzofurans | U                |  |
| Acenaphthylene                  | U                |  |
| Acenaphthene                    | U                |  |
| Dibenzofuran                    | U                |  |
| Fluorene                        | U                |  |
| C1-Fluorenes                    | Ű                |  |
| C2-Fluorenes                    | Ŭ                |  |
| C3-Fluorenes                    | Ŭ                |  |
| C4-Fluorenes                    | Ŭ                |  |
| Anthracene                      | U                |  |
| Phenanthrene                    | 2.37 J           |  |
| C1-Phenanthrenes/Anthracenes    | U                |  |
| C2-Phenanthrenes/Anthracenes    | Ū                |  |
| C3-Phenanthrenes/Anthracenes    | U                |  |
| C4-Phenanthrenes/Anthracenes    | U                |  |
| Retene                          | U                |  |
| Dibenzothiophene                | U                |  |
| C1-Dibenzothiophenes            | U                |  |
| C2-Dibenzothiophenes            | U                |  |
| C3-Dibenzothiophenes            | U                |  |
| C4-Dibenzothiophenes            | U                |  |
| Fluoranthene                    | 1.34 J           |  |
| Pyrene                          | 1.54 J           |  |
| C1-Fluoranthenes/Pyrenes        | U                |  |
| C2-Fluoranthenes/Pyrenes        | U                |  |
| C3-Fluoranthenes/Pyrenes        | U                |  |
| C4-Fluoranthenes/Pyrenes        | U                |  |
| C0-Benzo(b)naphthothiophenes    | U                |  |
| C1-Benzo(b)naphthothiophenes    | U                |  |
| C2-Benzo(b)naphthothiophenes    | U                |  |
| C3-Benzo(b)naphthothiophenes    | U                |  |
| C4-Benzo(b)naphthothiophenes    | U                |  |
| Benzo(a)anthracene              | U                |  |
| Chrysene                        | U                |  |

The Business of Innovation

| Client ID                | Procedural Blank |  |
|--------------------------|------------------|--|
| Battelle ID              | BJ939PB-P        |  |
| Sample Type              | PB               |  |
| Collection Date          | 01/24/07         |  |
| Extraction Date          | 01/24/07         |  |
| Analysis Date            | 02/10/07         |  |
| Analytical Instrument    | MS               |  |
| % Moisture               | 19.52            |  |
| % Lipid                  | NA               |  |
| Matrix                   | SOIL, TAR        |  |
| Sample Size              | 2.44             |  |
| Size Unit-Basis          | G_DRY            |  |
| Minimum Reporting Limit  | 8.21             |  |
| Units                    | NG/G_DRY         |  |
|                          |                  |  |
| C1-Chrysenes             | U                |  |
| C2-Chrysenes             | U                |  |
| C3-Chrysenes             | U                |  |
| C4-Chrysenes             | U                |  |
| Benzo(b)fluoranthene     | U                |  |
| Benzo(k)fluoranthene     | U                |  |
| Benzo(e)pyrene           | U                |  |
| Benzo(a)pyrene           | U                |  |
| Perylene                 | U                |  |
| Indeno(1,2,3-cd)pyrene   | 1.51 J           |  |
| Dibenz(a,h)anthracene    | 0.73 J           |  |
| Benzo(g,h,i)perylene     | 2.07 J           |  |
| Total PAH                | 20.11 J          |  |
|                          |                  |  |
|                          |                  |  |
| Surrogate Recoveries (%) |                  |  |
| Naphthalene-d8           | 94               |  |
| Acenaphthene-d10         | 89               |  |
| Phenanthrene-d10         | 94               |  |
| Benzo(a)pyrene-d12       | 54<br>71         |  |
| Donzo(a)pyrene-u rz      | 71               |  |

The Business of Innovation

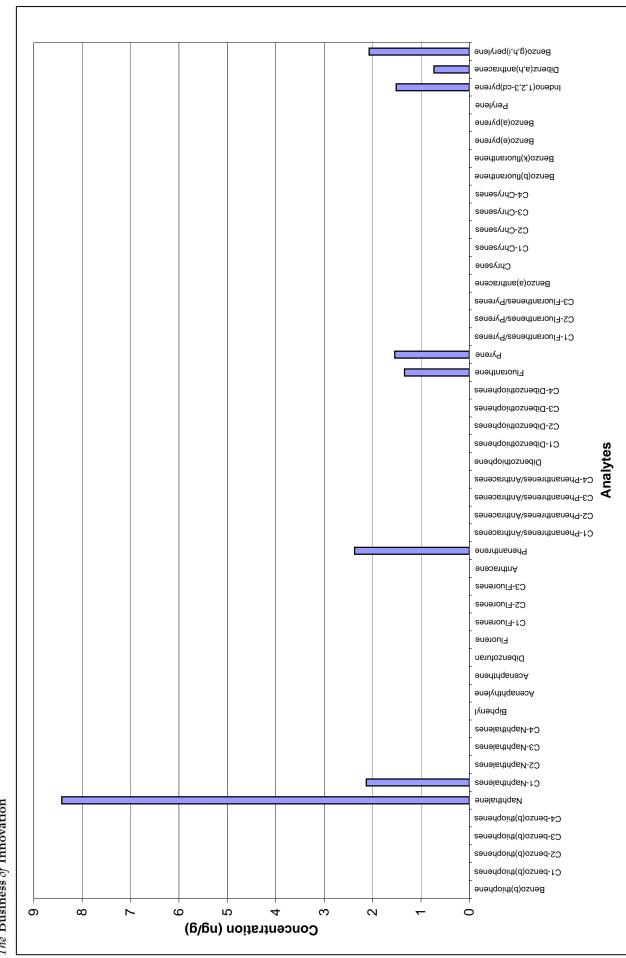
|                                 | 060208-03: Sand,     |           |                    |  |
|---------------------------------|----------------------|-----------|--------------------|--|
| Client ID                       | White Quartz, -50+70 |           |                    |  |
| Battelle ID                     | BJ940LCS-P           |           |                    |  |
| Sample Type                     | LCS                  |           |                    |  |
| Collection Date                 | 01/24/07             |           |                    |  |
| Extraction Date                 | 01/24/07             |           |                    |  |
| Analysis Date                   | 02/10/07             |           |                    |  |
| Analytical Instrument           | MS                   |           |                    |  |
| % Moisture                      | NA                   |           |                    |  |
| % Lipid                         | NA                   |           |                    |  |
| Matrix                          | SOIL, TAR            |           |                    |  |
| Sample Size                     | 20.01                |           |                    |  |
| Size Unit-Basis                 | G_DRY                |           |                    |  |
| Minimum Reporting Limit         | 1.00                 |           |                    |  |
| Units                           | NG/G_DRY             | Target %  | Recovery Qualifier |  |
| 01113                           | NO/O_DIT             | Target /d | Recovery Qualifier |  |
| C3-Alkylbenzenes                | U                    |           |                    |  |
| C4-Alkylbenzenes                | U                    |           |                    |  |
| C5-Alkylbenzenes                | U                    |           |                    |  |
| C6-Alkylbenzenes                | U                    |           |                    |  |
| Benzo(b)thiophene               | 132.09               | 125.02    | 106                |  |
| C1-benzo(b)thiophenes           | U                    |           |                    |  |
| C2-benzo(b)thiophenes           | U                    |           |                    |  |
| C3-benzo(b)thiophenes           | U                    |           |                    |  |
| C4-benzo(b)thiophenes           | U                    |           |                    |  |
| Naphthalene                     | 138.71               | 124.96    | 111                |  |
| C1-Naphthalenes                 | U                    |           |                    |  |
| C2-Naphthalenes                 | U                    |           |                    |  |
| C3-Naphthalenes                 | Ŭ                    |           |                    |  |
| C4-Naphthalenes                 | Ŭ                    |           |                    |  |
| Biphenyl                        | 134.58               | 125.15    | 108                |  |
| C1-Biphenyls + Dibenzofuran     | U                    | 120.10    | 100                |  |
| C2-Biphenyls + C1-Dibenzofurans | Ŭ                    |           |                    |  |
| Acenaphthylene                  | 129.1                | 125.05    | 103                |  |
| Acenaphthene                    | 136.48               | 125.02    | 109                |  |
| Dibenzofuran                    | 135.53               | 125.17    | 109                |  |
| Fluorene                        | 137.31               | 125.01    | 110                |  |
| C1-Fluorenes                    | 137.31<br>U          | 125.01    | 110                |  |
| C2-Fluorenes                    | U                    |           |                    |  |
| C3-Fluorenes                    | U                    |           |                    |  |
| C4-Fluorenes                    | U                    |           |                    |  |
| Anthracene                      | 134.3                | 124.96    | 107                |  |
| Phenanthrene                    | 143.66               |           | 115                |  |
| C1-Phenanthrenes/Anthracenes    | 143.00<br>U          | 125.00    | 115                |  |
|                                 |                      |           |                    |  |
| C2-Phenanthrenes/Anthracenes    | U                    |           |                    |  |
| C3-Phenanthrenes/Anthracenes    | U                    |           |                    |  |
| C4-Phenanthrenes/Anthracenes    | U                    |           |                    |  |
| Retene                          | U                    | 405 54    | 440                |  |
| Dibenzothiophene                | 137.72               | 125.51    | 110                |  |
| C1-Dibenzothiophenes            | U                    |           |                    |  |
| C2-Dibenzothiophenes            | U                    |           |                    |  |
| C3-Dibenzothiophenes            | U                    |           |                    |  |
| C4-Dibenzothiophenes            | U                    |           |                    |  |
| Fluoranthene                    | 145.74               | 125.00    | 117                |  |
| Pyrene                          | 142.26               | 124.98    | 114                |  |
| C1-Fluoranthenes/Pyrenes        | U                    |           |                    |  |
| C2-Fluoranthenes/Pyrenes        | U                    |           |                    |  |
| C3-Fluoranthenes/Pyrenes        | U                    |           |                    |  |
| C4-Fluoranthenes/Pyrenes        | U                    |           |                    |  |
| C0-Benzo(b)naphthothiophenes    | U                    |           |                    |  |
| C1-Benzo(b)naphthothiophenes    | U                    |           |                    |  |
| C2-Benzo(b)naphthothiophenes    | U                    |           |                    |  |
| C3-Benzo(b)naphthothiophenes    | U                    |           |                    |  |
| C4-Benzo(b)naphthothiophenes    | U                    | (a ·      |                    |  |
| Benzo(a)anthracene              | 108.23               | 124.97    | 87                 |  |
|                                 |                      |           |                    |  |

The Business of Innovation

|                          | 060208-03: Sand,     |   |          |          |           |
|--------------------------|----------------------|---|----------|----------|-----------|
| Client ID                | White Quartz, -50+70 |   |          |          |           |
|                          |                      |   |          |          |           |
| Battelle ID              | BJ940LCS-P           |   |          |          |           |
| Sample Type              | LCS                  |   |          |          |           |
| Collection Date          | 01/24/07             |   |          |          |           |
| Extraction Date          | 01/24/07             |   |          |          |           |
| Analysis Date            | 02/10/07             |   |          |          |           |
| Analytical Instrument    | MS                   |   |          |          |           |
| % Moisture               | NA                   |   |          |          |           |
| % Lipid                  | NA                   |   |          |          |           |
| Matrix                   | SOIL, TAR            |   |          |          |           |
| Sample Size              | 20.01                |   |          |          |           |
| Size Unit-Basis          | G_DRY                |   |          |          |           |
| Minimum Reporting Limit  | 1.00                 |   |          |          |           |
| Units                    | NG/G_DRY             |   | Target % | Recovery | Qualifier |
|                          |                      |   |          |          |           |
| Chrysene                 | 119.18               |   | 124.99   | 95       |           |
| C1-Chrysenes             |                      | U |          |          |           |
| C2-Chrysenes             |                      | U |          |          |           |
| C3-Chrysenes             |                      | U |          |          |           |
| C4-Chrysenes             |                      | U |          |          |           |
| Benzo(b)fluoranthene     | 107.83               |   | 125.04   | 86       |           |
| Benzo(k)fluoranthene     | 121.31               |   | 125.01   | 97       |           |
| Benzo(e)pyrene           | 114.48               |   | 125.25   | 91       |           |
| Benzo(a)pyrene           | 105.11               |   | 125.04   | 84       |           |
| Perylene                 | 88.5                 |   | 125.19   | 71       |           |
| Indeno(1,2,3-cd)pyrene   | 101.19               |   | 125.00   | 81       |           |
| Dibenz(a,h)anthracene    | 109.51               |   | 125.01   | 88       |           |
| Benzo(g,h,i)perylene     | 110.44               |   | 124.98   | 88       |           |
| Total PAH                | 2601.17              |   |          |          |           |
|                          |                      |   |          |          |           |
|                          |                      |   |          |          |           |
| Surrogate Recoveries (%) |                      |   |          |          |           |
| Nanhthalana da           | 100                  |   |          |          |           |

| Naphthalene-d8     | 109 |
|--------------------|-----|
| Acenaphthene-d10   | 103 |
| Phenanthrene-d10   | 112 |
| Benzo(a)pyrene-d12 | 76  |

The Business of Innovation


|                                 | ONICO: North Olars         |   |            |            |           |
|---------------------------------|----------------------------|---|------------|------------|-----------|
| Client ID                       | GN62: North Slope<br>Crude |   |            |            |           |
| Client ID                       | Ciude                      |   |            |            |           |
| Battelle ID                     | BJ959NSC-P                 |   |            |            |           |
| Sample Type                     | NSC                        |   |            |            |           |
| Collection Date                 | 01/30/07                   |   |            |            |           |
| Extraction Date                 | 01/30/07                   |   |            |            |           |
| Analysis Date                   | 02/07/07                   |   |            |            |           |
| Analytical Instrument           | MS                         |   |            |            |           |
| % Moisture                      | NA                         |   |            |            |           |
| % Lipid                         | NA                         |   |            |            |           |
| Matrix                          | OIL                        |   |            |            |           |
| Sample Size                     | 5.01                       |   |            |            |           |
| Size Unit-Basis                 | G_OIL                      |   |            |            |           |
| Minimum Reporting Limit         | 1.3                        |   |            |            |           |
| Units                           | NG/G_OIL                   |   | Target % I | Difference | Qualifier |
| ··· ··                          |                            |   |            |            |           |
| C3-Alkylbenzenes                | 2027.44                    |   |            |            |           |
| C4-Alkylbenzenes                | 1510.05                    |   |            |            |           |
| C5-Alkylbenzenes                | 795.79                     |   |            |            |           |
| C6-Alkylbenzenes                | 488.99                     |   |            |            |           |
| Benzo(b)thiophene               | 13.52                      |   |            |            |           |
| C1-benzo(b)thiophenes           | 45                         |   |            |            |           |
| C2-benzo(b)thiophenes           | 79.93                      |   | 95.74      | 16.5       |           |
| C3-benzo(b)thiophenes           | 141.48                     |   | 132.67     | 6.6        |           |
| C4-benzo(b)thiophenes           | 96.21                      |   | 96.72      | 0.5        |           |
| Naphthalene                     | 806.17                     |   | 740.29     | 8.9        |           |
| C1-Naphthalenes                 | 1634.24                    |   | 1516.04    | 7.8        |           |
| C2-Naphthalenes                 | 2010.9                     |   | 2000.10    | 0.5        |           |
| C3-Naphthalenes                 | 1445.89                    |   | 1526.96    | 5.3        |           |
| C4-Naphthalenes                 | 785.13                     |   | 898.03     | 12.6       |           |
| Biphenyl                        | 371.59                     |   | 220.02     | 0.0        |           |
| C1-Biphenyls + Dibenzofuran     | 240.71                     |   | 220.82     | 9.0        |           |
| C2-Biphenyls + C1-Dibenzofurans | 514.5                      | U |            |            |           |
| Acenaphthylene<br>Acenaphthene  | 13.75                      | 0 | 14.50      | 5.2        |           |
| Dibenzofuran                    | 77.57                      |   | 77.75      | 0.2        |           |
| Fluorene                        | 96.04                      |   | 92.51      | 3.8        |           |
| C1-Fluorenes                    | 223.14                     |   | 227.01     | 3.8<br>1.7 |           |
| C2-Fluorenes                    | 345.32                     |   | 367.09     | 5.9        |           |
| C3-Fluorenes                    | 295.4                      |   | 326.32     | 9.5        |           |
| C4-Fluorenes                    | 212.42                     |   | 020.02     | 0.0        |           |
| Anthracene                      | 212.12                     | U |            |            |           |
| Phenanthrene                    | 285.03                     | Ũ | 249.49     | 14.2       |           |
| C1-Phenanthrenes/Anthracenes    | 584.34                     |   | 549.17     | 6.4        |           |
| C2-Phenanthrenes/Anthracenes    | 669.09                     |   | 642.72     | 4.1        |           |
| C3-Phenanthrenes/Anthracenes    | 453.02                     |   | 446.11     | 1.5        |           |
| C4-Phenanthrenes/Anthracenes    | 176.09                     |   | 180.02     | 2.2        |           |
| Retene                          | 74.51                      |   |            |            |           |
| Dibenzothiophene                | 241.56                     |   | 210.35     | 14.8       |           |
| C1-Dibenzothiophenes            | 440.7                      |   | 409.03     | 7.7        |           |
| C2-Dibenzothiophenes            | 573.69                     |   | 551.46     | 4.0        |           |
| C3-Dibenzothiophenes            | 483.6                      |   | 471.36     | 2.6        |           |
| C4-Dibenzothiophenes            | 261.9                      |   | 243.11     | 7.7        |           |
| Fluoranthene                    |                            | U |            |            |           |
| Pyrene                          | 14.53                      |   | 12.99      | 11.9       |           |
| C1-Fluoranthenes/Pyrenes        | 84.98                      |   | 70.92      | 19.8       |           |
| C2-Fluoranthenes/Pyrenes        | 145.97                     |   | 117.89     | 23.8       |           |
| C3-Fluoranthenes/Pyrenes        | 154.91                     |   | 137.25     | 12.9       |           |
| C4-Fluoranthenes/Pyrenes        | 123.35                     |   |            |            |           |
| C0-Benzo(b)naphthothiophenes    | 46.42                      |   |            |            |           |
| C1-Benzo(b)naphthothiophenes    | 162.78                     |   |            |            |           |
| C2-Benzo(b)naphthothiophenes    | 204.91                     |   |            |            |           |
| C3-Benzo(b)naphthothiophenes    | 163.24                     |   |            |            |           |
| C4-Benzo(b)naphthothiophenes    | 66.74                      |   |            |            |           |
| Benzo(a)anthracene              |                            | U |            |            |           |
|                                 |                            |   |            |            |           |

The Business of Innovation

|                          | GN62: North Slope |            |           |           |
|--------------------------|-------------------|------------|-----------|-----------|
| Client ID                | Crude             |            |           |           |
| Battelle ID              | BJ959NSC-P        |            |           |           |
| Sample Type              | NSC               |            |           |           |
| Collection Date          | 01/30/07          |            |           |           |
| Extraction Date          | 01/30/07          |            |           |           |
| Analysis Date            | 02/07/07          |            |           |           |
| Analytical Instrument    | MS                |            |           |           |
| % Moisture               | NA                |            |           |           |
| % Lipid                  | NA                |            |           |           |
| Matrix                   | OIL               |            |           |           |
| Sample Size              | 5.01              |            |           |           |
| Size Unit-Basis          | G_OIL             |            |           |           |
| Minimum Reporting Limit  | 1.3               |            |           |           |
| Units                    | NG/G_OIL          | Target % D | ifference | Qualifier |
|                          |                   |            |           |           |
| Chrysene                 | 51.12             | 47.18      | 8.4       |           |
| C1-Chrysenes             | 85.28             | 78.82      | 8.2       |           |
| C2-Chrysenes             | 113.52            | 102.67     | 10.6      |           |
| C3-Chrysenes             | 97.23             | 85.36      | 13.9      |           |
| C4-Chrysenes             | 62.06             | 61.99      | 0.1       |           |
| Benzo(b)fluoranthene     | 6.18              | 6.08       | 1.6       |           |
| Benzo(k)fluoranthene     | U                 |            |           |           |
| Benzo(e)pyrene           | 13.86             | 12.88      | 7.6       |           |
| Benzo(a)pyrene           | U                 |            |           |           |
| Perylene                 | U                 |            |           |           |
| Indeno(1,2,3-cd)pyrene   | U                 |            |           |           |
| Dibenz(a,h)anthracene    | 1.1 J             |            |           |           |
| Benzo(g,h,i)perylene     | 3.86              | 3.44       | 12.2      |           |
| Total PAH                | 12977.88          |            |           |           |
|                          |                   |            |           |           |
|                          |                   |            |           |           |
| Surragata Pasavarias (%) |                   |            |           |           |
| Surrogate Recoveries (%) |                   |            |           |           |

| Naphthalene-d8     | 109 |
|--------------------|-----|
| Acenaphthene-d10   | 106 |
| Phenanthrene-d10   | 97  |
| Benzo(a)pyrene-d12 | 119 |

## Procedural Blank (BJ939PB-P)



## GWP07T01 (R5521-P)

## GWP07T02 (R5525-P)

| 8 | 40        | 6.        |           | l <mark>gn) noi</mark> ti<br>2 ≤ |          | 10        | Ŋ        |                                                                                                                                                                                                                                                                       |          |
|---|-----------|-----------|-----------|----------------------------------|----------|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|   | 400000000 | 350000000 | 300000000 |                                  | nnnnnnel | 100000000 | 50000000 | -                                                                                                                                                                                                                                                                     |          |
|   |           | 00000     |           |                                  |          | 00000     | -        | C2-Naphthalenes<br>C3-Naphthalenes<br>Biphenyl<br>Acenaphthene<br>Dibenzoturan<br>Fluorene<br>C1-Fluorenes                                                                                                                                                            |          |
|   |           |           |           |                                  |          |           |          | C2-Fluorenes<br>C3-Fluorenes<br>C3-Fluorenes<br>Phenanthrenes/Phinacenes<br>C3-Phenanthrenes/Phinacenes<br>C3-Phenanthrenes/Phinacenes<br>C4-Phenanthrenes/Phinacenes<br>C3-Diberzothiophenes<br>C3-Diberzothiophenes<br>C3-Diberzothiophenes<br>C3-Diberzothiophenes | Analytes |
|   |           |           |           |                                  |          |           |          | -                                                                                                                                                                                                                                                                     |          |
|   | Г         | 1         | 1         |                                  | 1        |           |          | I ( K P)                                                                                                                                                                                                                                                              |          |

### GWP07T03 (R5526-P)

Г

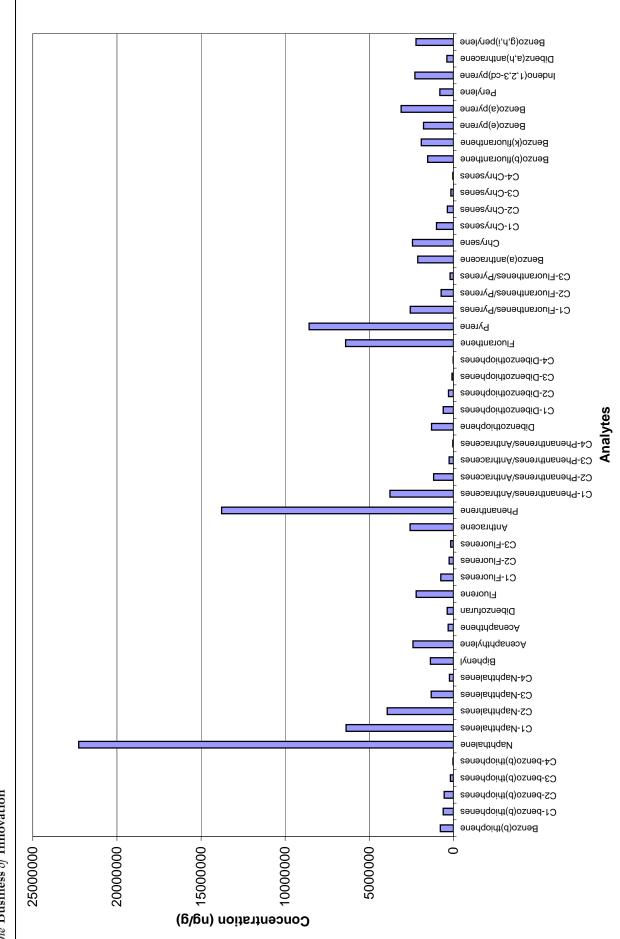
|           |           |             |           |          |         | Benzo(g,h,i)perylene                                                                        |         |
|-----------|-----------|-------------|-----------|----------|---------|---------------------------------------------------------------------------------------------|---------|
|           |           |             |           |          |         | Dibenz(a,h)anthracene                                                                       |         |
|           |           |             |           |          |         | Indeno(5,2,5)pyrene                                                                         |         |
|           |           |             |           |          |         | -<br>Perylene                                                                               |         |
|           |           |             |           |          |         | Benzo(a)pyrene                                                                              |         |
|           |           |             |           |          |         | Benzo(e)pyrene                                                                              |         |
|           |           |             |           |          |         | Benzo(k)fluoranthene                                                                        |         |
|           |           |             |           |          |         | l ənəntnsıoulî(d)ozna8                                                                      |         |
|           |           |             |           |          |         | C4-Chrysenes                                                                                |         |
|           |           |             |           |          |         | C3-CµLysenes                                                                                |         |
|           |           |             |           |          |         | C2-Chrysenes                                                                                |         |
|           |           |             |           |          |         | C1-Chrysenes                                                                                |         |
|           |           |             |           |          |         | Chrysene                                                                                    |         |
|           |           |             |           |          |         | Benzo(a)anthracene                                                                          |         |
|           |           |             |           |          |         | C3-Fluoranthenes/Pyrenes                                                                    |         |
|           |           |             |           |          |         | C2-Fluoranthenes/Pyrenes                                                                    |         |
|           |           |             |           |          |         | C1-Fluoranthenes/Pyrenes                                                                    |         |
|           |           |             |           |          |         | Pyrene                                                                                      |         |
|           |           |             |           |          |         | Fluoranthene                                                                                |         |
|           |           |             |           |          |         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |         |
|           |           |             |           |          |         | C3-Dibenzothiophenes                                                                        |         |
|           |           |             |           |          |         | -<br>sənənqointoznadiD-SO                                                                   |         |
|           |           |             |           |          |         | C1-Dibenzothiophenes                                                                        | nalytes |
|           |           |             |           |          |         | Dibenzothiophene                                                                            | ž       |
|           |           |             |           |          |         |                                                                                             | Ana     |
|           |           |             |           |          |         | -                                                                                           | 4       |
|           |           |             |           |          |         | C2-Phenanthrenes/Anthracenes                                                                |         |
|           |           |             |           |          |         | Phenanthrenes/Anthracenes                                                                   |         |
|           |           |             |           |          | -       | anenatine<br>Anenatine                                                                      |         |
|           |           |             |           |          |         |                                                                                             |         |
|           |           |             |           |          |         | Senerce C2-Fluorenes                                                                        |         |
|           |           |             |           |          |         | C1-Fluorenes                                                                                |         |
|           |           |             |           |          |         | Fluorene                                                                                    |         |
|           |           |             |           |          |         | Dibenzofuran                                                                                |         |
|           |           |             |           |          |         | -<br>-                                                                                      |         |
|           |           |             |           |          |         | Acenaphthylene                                                                              |         |
|           |           |             |           |          |         | Biphenyl                                                                                    |         |
|           |           |             |           |          |         | C4-Naphthalenes                                                                             |         |
|           |           |             |           |          |         | C3-Naphthalenes                                                                             |         |
|           |           |             |           |          |         | C2-Naphthalenes                                                                             |         |
|           |           |             |           |          |         | C1-Naphthalenes                                                                             |         |
|           |           |             |           |          |         | Asphthalane Vaphthalene                                                                     |         |
|           |           |             |           |          |         | C4-benzo(b)thiophenes                                                                       |         |
|           |           |             |           |          |         | C3-penzo(b)thiophene                                                                        |         |
|           |           |             |           |          |         | C2-benzo(b)thiophene c                                                                      |         |
|           |           |             |           |          |         | sənənqoini(d)oznad<br>sənəndoini(d)oznad-rO                                                 |         |
|           |           |             |           |          |         | Benzo(b)thiophene                                                                           |         |
| 300000000 | nunununez |             | 2         | 10000000 | 5000000 | 0                                                                                           |         |
|           | nnnnnnez  |             | ž         | 200      | 200     |                                                                                             |         |
| 000       |           |             | Š         | ŏŏ       | ŏo      |                                                                                             |         |
| 30        |           |             | 2         | 10       | 2ı      |                                                                                             |         |
|           |           | (p\pn) noit | Goncentra | )        |         |                                                                                             |         |

٦

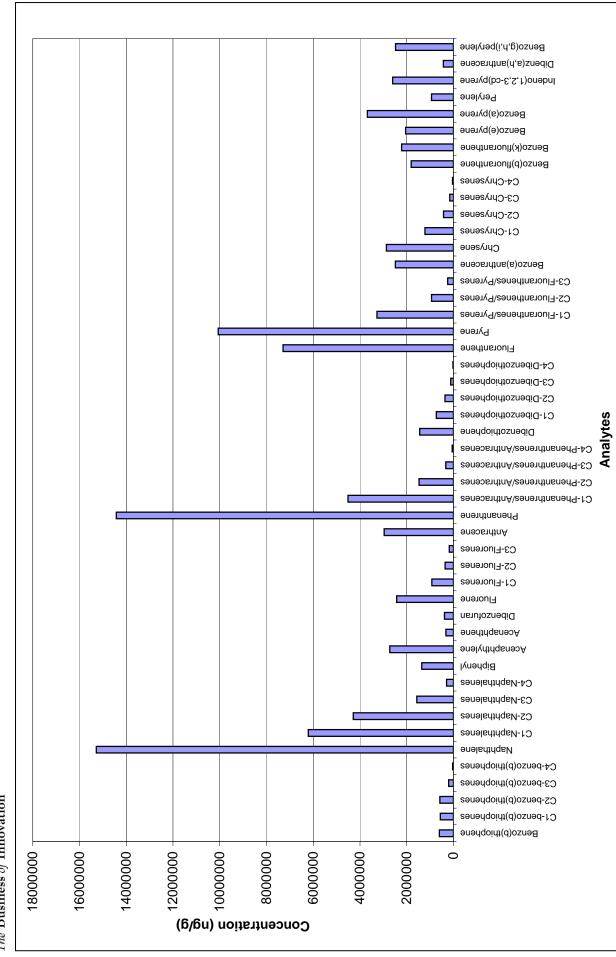
## GWP07T04 (R5527-P)

| -        |          | (6 <i>1</i> 6) | ) noitertion ( |         |         |        |                                                |          |
|----------|----------|----------------|----------------|---------|---------|--------|------------------------------------------------|----------|
| 12000000 | 10000000 | 8000000        | 6000000        | 4000000 | 2000000 |        |                                                |          |
| 00       | 00       | 00             | 00             | 00      | 00      | c      | 5<br>5                                         |          |
|          |          |                |                |         |         |        |                                                |          |
|          |          |                |                |         |         |        | Seneddoidt(d)ozned-tO                          |          |
|          |          |                |                |         |         |        | -<br>-<br>-<br>-                               |          |
|          |          |                |                |         |         |        | C3-benzo(b)thiophenes<br>C4-benzo(b)thiophenes |          |
|          |          |                |                |         |         |        | enendom/d/oznad-+0                             |          |
|          |          |                |                |         |         |        | senelenthqsr<br>C1-Naphthalenee                |          |
|          |          |                |                |         |         | ا<br>_ | -<br>C2-Naphthalenes                           |          |
|          |          |                |                |         |         |        | C3-Naphthalenes                                |          |
|          |          |                |                |         |         |        | C4-Naphthalenes                                |          |
|          |          |                |                |         |         | I      | Biphenyl                                       |          |
|          |          |                |                |         |         |        | Acenaphthylene                                 |          |
|          |          |                |                |         |         | l      | -<br>enehthqsnecA                              |          |
|          |          |                |                |         |         |        | Dibenzofuran                                   |          |
|          |          |                |                |         |         |        | Fluorene                                       |          |
|          |          |                |                |         |         |        | C1-Fluorenes                                   |          |
|          |          |                |                |         |         |        | C2-Fluorenes                                   |          |
|          |          |                |                |         |         |        | C3-Fluorenes                                   |          |
|          |          |                |                |         |         |        | Anthracene                                     |          |
|          |          |                |                |         |         |        | Phenanthrene                                   |          |
|          |          |                |                |         |         | ſ      | canenativenes/Anthracenes                      |          |
|          |          |                |                |         |         |        | cenes/Anthracenes/Anthracenes                  |          |
|          |          |                |                |         |         |        | canenathrenes/Anthracenes                      | A        |
|          |          |                |                |         |         |        | C4-Phenanthrenes/Anthracenes                   | Analytes |
|          |          |                |                |         |         |        | Dibenzothiophene                               | yte      |
|          |          |                |                |         |         |        | C-1-Dibenzothiophenes                          | ŝ        |
|          |          |                |                |         |         |        | C2-Dibenzothiophenes                           |          |
|          |          |                |                |         |         |        | C3-Dibenzothiophenes                           |          |
|          |          |                |                |         |         |        | C4-Dibenzothiophenes                           |          |
|          |          |                |                |         |         |        | Fluoranthene                                   |          |
|          |          |                |                |         |         |        | -<br>-<br>-                                    |          |
|          |          |                |                |         |         | г      | C1-Fluoranthenes/Pyrenes                       |          |
|          |          |                |                |         |         |        | C2-Fluoranthenes/Pyrenes                       |          |
|          |          |                |                |         |         | L      | C3-Fluoranthenes/Pyrenes                       |          |
|          |          |                |                |         |         | L<br>T | Benzo(a)anthracene                             |          |
|          |          |                |                |         |         |        | C1-Chrysene                                    |          |
|          |          |                |                |         |         |        | C2-Chrysenes                                   |          |
|          |          |                |                |         |         |        | C3-Chrysenes                                   |          |
|          |          |                |                |         |         |        | C4-Chrysenes                                   |          |
|          |          |                |                |         |         | I      | Benzo(b)fluoranthene<br>Benzo(b)fluoranthene   |          |
|          |          |                |                |         |         | L<br>r | -                                              |          |
|          |          |                |                |         |         | I<br>T | Benzo(k)fluoranthene<br>-<br>-                 |          |
|          |          |                |                |         |         |        | Benzo(e)oznaB                                  |          |
|          |          |                |                |         |         |        | Bendenzo(a)pyrene<br>                          |          |
|          |          |                |                |         |         |        | Perylene<br>-<br>-                             |          |
|          |          |                |                |         |         |        | Indeno(1,2,3-cd)pyrene                         |          |
|          |          |                |                |         |         |        | Dibenz(a,h)anthracene                          |          |

## GWP07T05 (R5528-P)

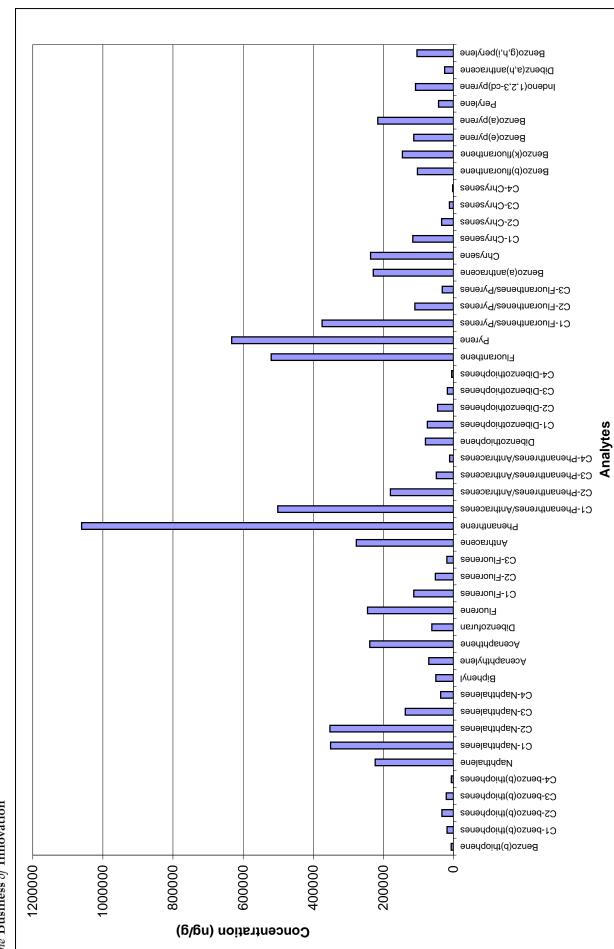

## GWP07T06 (R5529-P)

| 18000000<br>16000000 | 1400000 | נרפניסה (ng/g)<br>1200000<br>1000000<br>12000000 | 800000 | 4000000<br>2000000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------|---------|--------------------------------------------------|--------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00 00                |         | 3 8                                              | 0 00   |                    | Benzo(b)thiophene<br>C3-benzo(b)thiophenes<br>C3-benzo(b)thiophenes<br>C3-benzo(b)thiophenes<br>C3-benzo(b)thiophenes<br>C3-haphthalenes<br>C3-haphthalenes<br>C3-haphthalenes<br>Biphenyl<br>Biphenyl<br>C4-laphthalenes<br>C3-haphthalenes<br>C3-haphthalenes<br>Biphenyl<br>Biphenyl<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C3-fluorenes<br>C |
|                      |         |                                                  |        |                    | C3-Phenanthrenes/Anthracenes<br>C2-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      |         |                                                  |        |                    | Pyrene         Pyrenes         Fororanthenes/Pyrenes         C2-Fluoranthenes/Pyrenes         C3-Fluoranthenes/Pyrenes         C3-Fluoranthenes/Pyrenes         C3-Fluoranthenes/Pyrenes         Chrysenes         Benzo(b)fluoranthene         Perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |


## GWP07T07 (R5530-P)

| Elementary (a constraint of a constraint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2    | g    | 8       | 8        | 00      | 8      | 8      | 8        | 8    |                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|---------|----------|---------|--------|--------|----------|------|------------------------------|
| Comparison of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0000 | 0000 | 1400000 | 12000000 | 1000000 | 800000 | 600000 | 400000   | 0000 | 0                            |
| Carbonal (Construction)<br>Carbonal (Constructio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 0    |         |          |         |        |        |          | 0    |                              |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |      |         |          |         |        |        |          |      | F                            |
| C3-branchighenese<br>C4-branchighenese<br>C4-branchighenese<br>C4-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C5-branchighenese<br>C6-branchighenese<br>C7-branchighenese<br>C7-branchighenese<br>C7-branchighenese<br>C7-branchighenese<br>C7-branchighenese<br>C7-branchighenese<br>C7-branchighenese<br>C7-branchighenese<br>C7-branchighe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |      |         |          |         |        |        |          |      | -                            |
| C-theoremine and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |         |          |         |        |        |          |      | -                            |
| And Calibrations (Action of the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |         |          |         |        |        |          |      | -                            |
| C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-thermathreaters<br>C2-the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |      |         |          |         |        |        | <u> </u> |      | -                            |
| C3-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-theratifications<br>C4-therat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |         |          |         |        |        |          |      | C1-Naphthalenes              |
| Additional and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |         |          |         |        |        |          |      |                              |
| Behroading and indexes of the ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |         |          |         |        |        |          |      | -                            |
| And the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |         |          |         |        |        |          |      |                              |
| Activity of the second state of the second sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |         |          |         |        |        |          |      | -                            |
| Dibercelusin<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-Fhorenes<br>CC-F                                                                                                                                                                                                                                                                                                                                                                                |      |      |         |          |         |        |        |          |      | -                            |
| Huckense<br>Flucense<br>C2-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense<br>C3-Flucense                                                                                                                                                                                                                                                                                                                                                                                |      |      |         |          |         |        |        |          |      | -                            |
| C2-Photenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/<br>C3-Photomhenes/<br>C3-Photomhenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/Prenes/<br>C3-Photomhenes/<br>C3-Photomhenes/<br>C3-Photomhenes/<br>C3-Photomhenes/<br>C3-Photomh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |      |         |          |         |        |        |          |      | -                            |
| C2-Fluorente<br>C3-Fluorente<br>C3-Fluorente<br>C3-Fluorente<br>C3-Fluorente<br>C3-Fluorente<br>C3-Fluorente<br>C3-Fluorente<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysene<br>C3-Chrysen                                                                                                                                                                                                                                                                                                                                                                                  |      |      |         |          |         |        |        |          |      | -                            |
| C3-Fluorentee Anthracense<br>Anthracense<br>Anthracense<br>C3-Fluoranthenes/Anthracense<br>C3-Fluoranthenes/Anthracense<br>C3-Fluoranthenes/Anthracense<br>C3-Fluoranthenes/Pyrense<br>C3-Fluoranthenes/Pyrense<br>C3-Fluoranthenes/Pyrense<br>C3-Fluoranthenes/Pyrense<br>C3-Fluoranthenes/Pyrense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-Chrysense<br>C3-                                                                                                                                                                                                                                              |      |      |         |          |         |        |        |          |      | -                            |
| Phenathrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Prenes<br>C3-Phenanthrenes/Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |      |         |          |         |        |        |          |      | -                            |
| C1-Phenanthrenes/Anthracenes<br>C2-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |      |         |          |         |        |        |          |      | -                            |
| C2-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-Dipersothiphenes<br>C3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |         |          |         |        |        |          |      | -                            |
| C4-Phenanthrenes/Anthrecenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothiophenes<br>C4-Dibercothio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |      |         |          |         |        |        |          |      | C1-Phenanthrenes/Anthracenes |
| C4-Phenardhrenes/Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyrenes<br>Pyre                                                                                                                                                                                                                                        |      |      |         |          |         |        |        |          |      | C2-Phenanthrenes/Anthracenes |
| C2-Diberothiophenes<br>C3-Tiboranthenes/Pyrenes<br>C3-Tiboranthenes/Pyrenes<br>C3-Tiboranthenes/Pyrenes<br>C3-Chrysenes<br>Elenzo(a)pyrene<br>Perviene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracene<br>Diberz(a,h)anthracen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |         |          |         |        |        |          | 1    | C3-Phenanthrenes/Anthracenes |
| C2-Diberothiophenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>Elenzo(a)pyrene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Perylene<br>Pery                                                                                                                                                                                                                                                                                                  |      |      |         |          |         |        |        |          |      | C4-Phenanthrenes/Anthracenes |
| C2-Diberothiohanes<br>C3-Diberothiohanes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C4-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-C                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |         |          |         |        |        |          |      | Dibenzothiophene             |
| C3-Diberordhomes<br>C4-Diberordhomes<br>Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Ch                                                                                                                                                                                                                                                                                                                                                                                                              |      |      |         |          |         |        |        |          |      |                              |
| C4-Diberracitioneace<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene<br>Pyrene                                                                                                                                                                                  |      |      |         |          |         |        |        |          |      | -                            |
| Fluoranthene<br>Pyrene<br>C2-Fluoranthenes/Pyrene<br>C2-Fluoranthenes/Pyrene<br>C2-Fluoranthenes/Pyrene<br>C2-Fluoranthenes/Pyrene<br>C2-Fluoranthenes/Pyrene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranthene<br>C3-Fluoranth                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |      |         |          |         |        |        |          |      | -                            |
| Pyrene<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-Chrysenes<br>C3-C                                                                                                                                                                                                                                                                                                                                                                                                              |      |      |         |          |         |        |        |          |      | -                            |
| C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>Benzo(s)pyrene<br>Perylene<br>Perylene<br>Dibenz(s,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |         |          |         |        |        |          |      | -                            |
| C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthene<br>C4-Chrysenes<br>C3-Fluoranthene<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chr                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |         |          |         |        |        |          |      | -                            |
| Benzo(s)pyrenee<br>Benzo(s)pyrenee<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denysea<br>Denys                                                                                                                                                                                                                                        |      |      |         |          |         |        |        |          |      |                              |
| Benzo(a)anthracene<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Chrysenes<br>Ch                                                                                                                                                                                                                                                                                                                        |      |      |         |          |         |        |        |          |      | -                            |
| Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chrysene<br>Chr |      |      |         |          |         |        |        |          |      | -                            |
| CChrysenes<br>CC-Chrysenes<br>CC-Chrysenes<br>CC-Chrysenes<br>CC-Chrysenes<br>CC-Chrysenes<br>CC-Chrysenes<br>CC-Chrysenes<br>CC-Chrysenes<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Perylene<br>Perylene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>Diberzo(a)pyrene<br>D                                                                                                                                                                                                                                                                                                                         |      |      |         |          |         |        |        |          |      | -                            |
| C3-Chrysenes<br>C3-Chrysenes<br>Benzo(b)fluoranthene<br>Benzo(b)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene<br>Benz                                                                                                                                                                                                                                                                                                                                                                                                    |      |      |         |          |         |        |        |          |      | -                            |
| C4-Chrysenes<br>Benzo(k)fluoranthene<br>Benzo(k)pyrene<br>Perylene<br>Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      |         |          |         |        |        |          |      | -                            |
| Benzo(b)tronomic (a, h) substraint (a, h) substraint (a) (b) constraint (b) (b) constraint (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |      |         |          |         |        |        |          |      | -                            |
| Benzo(k)fluoranthrene<br>Benzo(k)pyrene<br>Perylene<br>Perylene<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tu                                                                                                                                                                                                                                                                                                                                                                                                                            |      |      |         |          |         |        |        |          |      | -                            |
| Benzo(k)fluoranthrene<br>Benzo(k)pyrene<br>Perylene<br>Perylene<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tustication<br>Dibenz(a,h)tu                                                                                                                                                                                                                                                                                                                                                                                                                            |      |      |         |          |         |        |        |          |      | -                            |
| Benzo(e)pyrene<br>Benzo(a)pyrene<br>Penylene<br>Penylene<br>Dibenz(a,h)antracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |      |         |          |         |        |        |          |      |                              |
| Benzickie (a, h) strain (a, h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |      |         |          |         |        |        |          |      | -                            |
| Diberof(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |      |         |          |         |        |        |          |      | Benzo(a)pyrene               |
| Dibenzich, h) anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |         |          |         |        |        |          |      | Leuylene                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |         |          |         |        |        |          |      | Indeno(1,2,3-cd)pyrene       |
| geuzo(â'u'ı)beu\leue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |      |         |          |         |        |        |          |      | -                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |         |          |         |        |        |          |      | Benzo(g,h,i)perylene         |

### GWP07T08 (R5531-P)




### GWP07T09 (R5532-P)

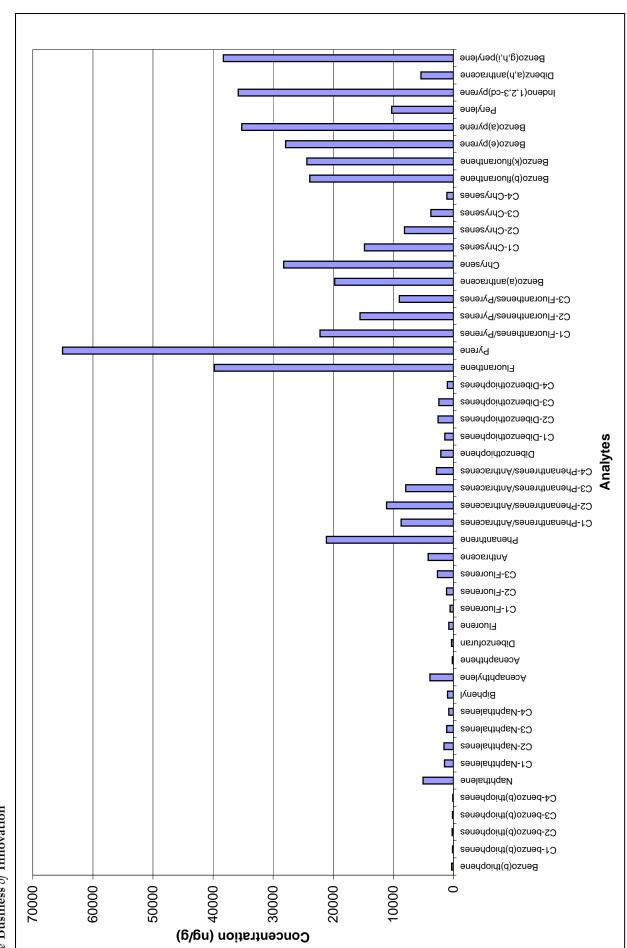


## GWP07T10 (R5533-P)

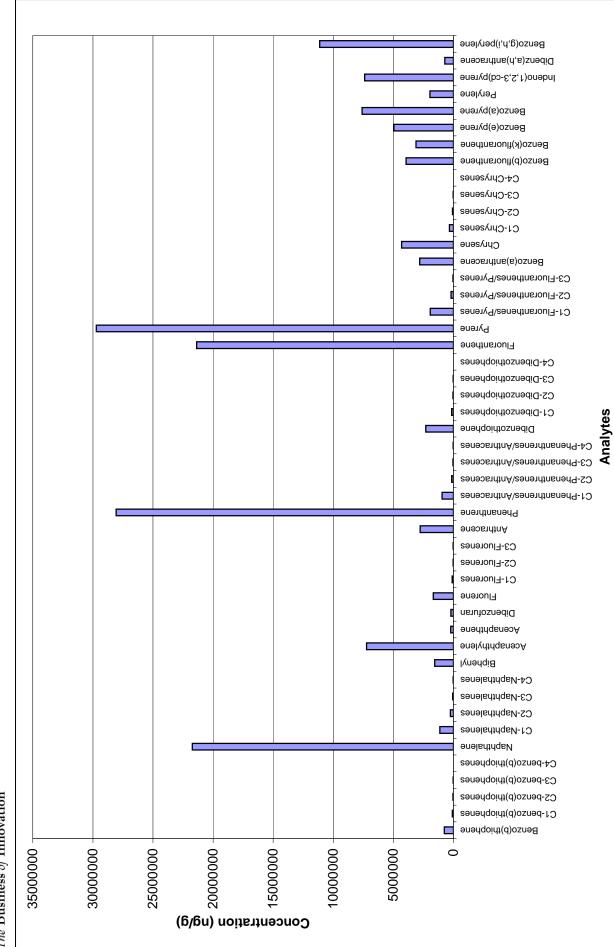
### GWP07T11 (R5534-P)



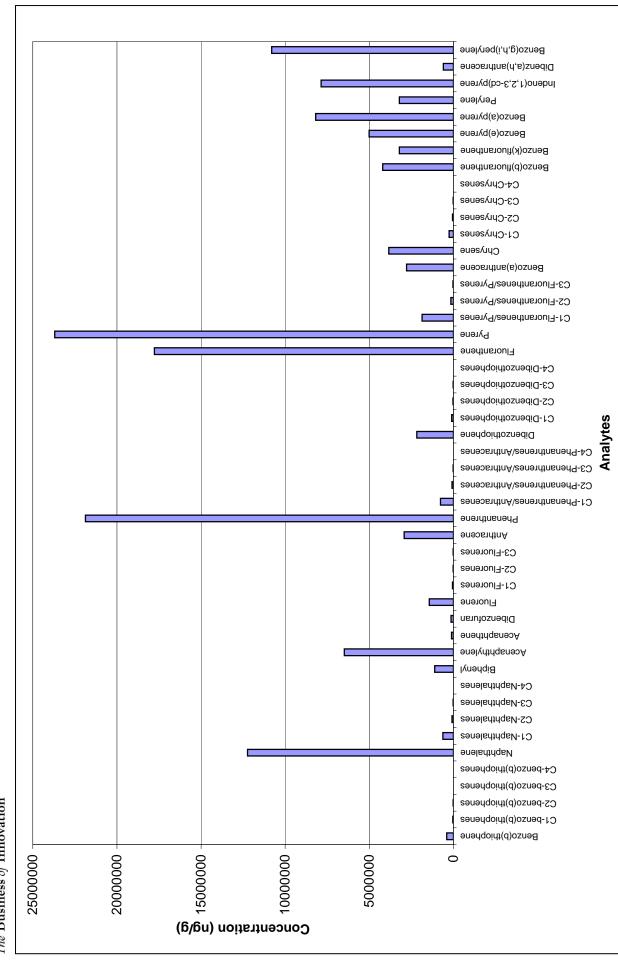
## GWP07T12 (R5535-P)


|        |  |        |   |  | Benzo(e)pyrene<br>Benzo(a)pyrene<br>Perylene<br>Perylene<br>Prene<br>Dibenz(a,h)anthracene                                                                   |
|--------|--|--------|---|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |  |        |   |  | Benzo(k)fluoranthene<br>Benzo(b)fluoranthene<br>Benzo(k)fluoranthene                                                                                         |
|        |  |        |   |  | C3-Fluoranthenes/Pyrenes<br>Benzo(a)anthracene<br>Chrysenes<br>C1-Chrysenes                                                                                  |
|        |  |        |   |  | C2-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes                                                                             |
|        |  |        |   |  | C3-Phenanthrenes/Anthracenes<br>C4-Phenanthrenes/Anthracenes<br>C1-Dibenzothiophenes<br>C2-Dibenzothiophenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes |
|        |  |        |   |  | C1-Phenanthrenes/Anthracenes                                                                                                                                 |
|        |  |        |   |  | C1-Fluorenes<br>C2-Fluorenes<br>C3-Fluorenes                                                                                                                 |
|        |  |        |   |  | enelyntingsnessA<br>enentingsnessA<br>Dibertostan<br>Fluorene<br>Fluorene                                                                                    |
|        |  |        | _ |  | C 1 4 Aphritialenes<br>C2-Naphthalenes<br>C3-Naphthalenes<br>Biphenyl                                                                                        |
|        |  |        |   |  | C3-benzo(b)thiophenes<br>C4-benzo(b)thiophenes<br>Naphthalene<br>C1-Naphthalenes                                                                             |
|        |  |        |   |  | Benzo(b)th(d)oznaB<br>Benzo(b)th(ophene<br>Penzo(b)th(ophenes                                                                                                |
| 800000 |  | 400000 |   |  | ·                                                                                                                                                            |

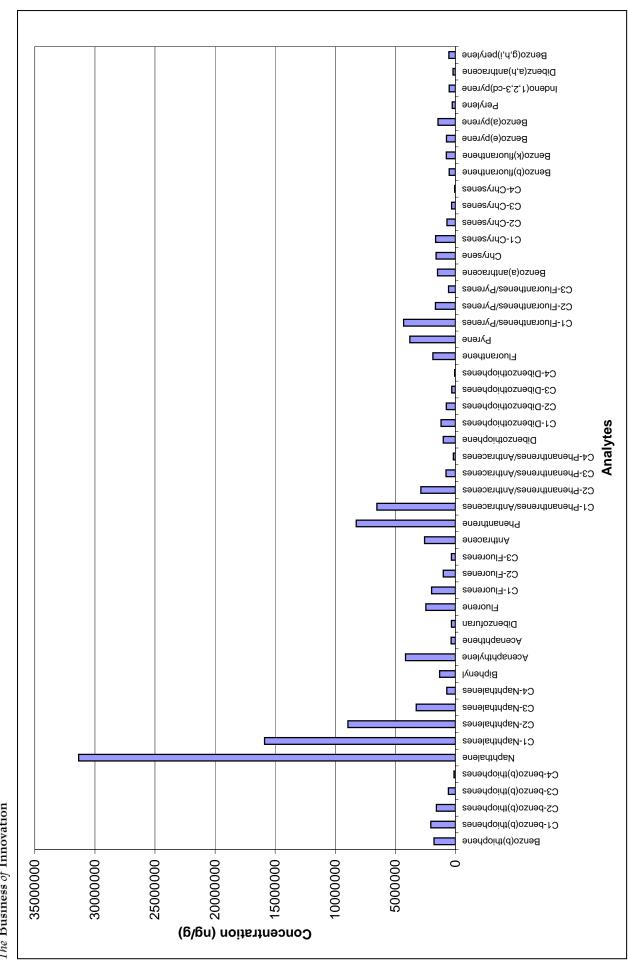
## GWP07T13 (R5536-P)


Г

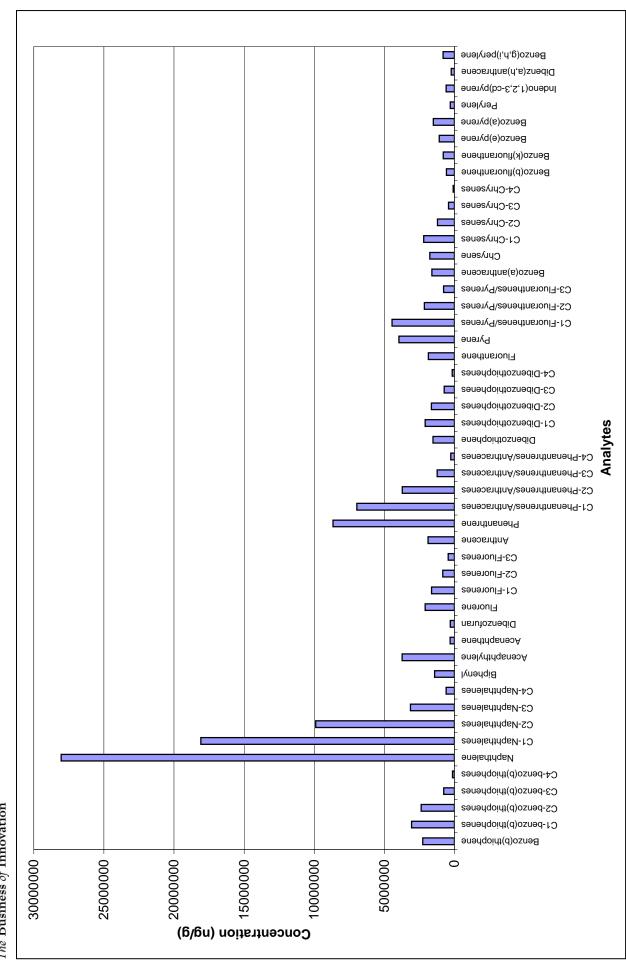
| ←       | ,− <b>र</b> |          | <br>(ɓ/ɓu) u |         | Conce  |      |         |                                                                                                                                                                                                        |
|---------|-------------|----------|--------------|---------|--------|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1800000 | 1600000     | 12000000 | 10000000     | 8000008 | 600000 |      | 2000000 | 2                                                                                                                                                                                                      |
|         |             |          |              |         |        |      |         | Benzo(b)thiophene<br>C1-benzo(b)thiophenes<br>C3-benzo(b)thiophenes<br>C3-benzo(b)thiophenes<br>C4-benzo(b)thiophenes<br>C4-benzo(b)thiaphenes                                                         |
|         |             |          |              |         |        |      |         | C4-Naphthalenes<br>Biphenyl<br>Acenaphthylene<br>Acenaphthoene<br>Dibenzofuran<br>Fluorene<br>C1-Fluorenes<br>C2-Fluorenes                                                                             |
|         |             |          |              | _       |        | <br> |         | C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes                                                                           |
|         |             |          |              |         |        |      |         | C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C4-Phenanthrenes/Anthracenes<br>Dibenzothiophenes<br>C2-Dibenzothiophenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes              |
|         |             |          |              |         |        |      |         | Fluoranthene<br>Pyrenes<br>C1-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>Benzo(a)anthracene                                                                                                  |
|         |             |          |              |         |        |      |         | Grinysene<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes                                                                                                              |
|         |             |          |              |         |        |      |         | anaritinsrouht(d)osnaß<br>Bensouht(s)osnaß<br>Benso(e)pyrene<br>Benso(e)pyrene<br>Penylene<br>Penylene<br>Profitins(n,s)snaf<br>Benso(n,n,p)penylene<br>Benso(n,n,p)penylene<br>Benso(s,n,n,p)penylene |
|         |             |          |              |         |        |      |         | Γ                                                                                                                                                                                                      |


## GWP07T14 (R5537-P)




### GWP07S01 (R5538-P)



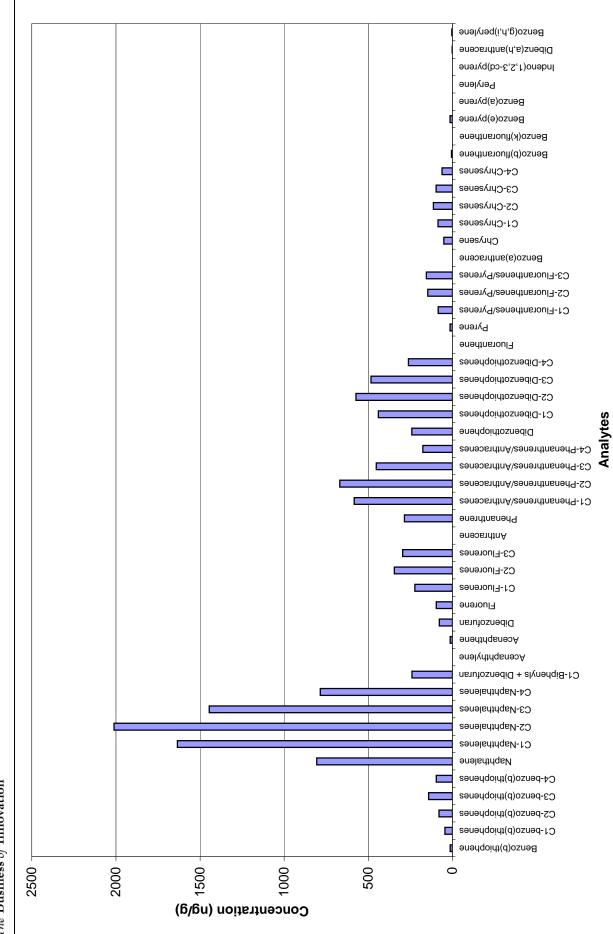

## GWP07S02 (R5539-P)



### GWP07S03 (R5540-P)



### GWP07S04 (R5541-P)




### TDW3-4.5 (R5542-P)

| 80000 |  |   |  |   | Benzo(b)thiophenee<br>C1-benzo(b)thiophenes<br>C2-benzo(b)thiophenes<br>C3-benzo(b)thiophenes<br>C4-benzo(b)thiophenes<br>C1-Naphthalenes<br>C1-Naphthalenes<br>C3-Naphthalenes<br>C3-Naphthalenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|--|---|--|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |  |   |  |   | Benzo(b)thiophenes<br>C1-benzo(b)thiophenes<br>C2-benzo(b)thiophenes<br>C3-benzo(b)thiophenes<br>C4-benzo(b)thiophenes<br>C4-benzo(b)thiophenes<br>C1-Naphthalenes<br>C3-Naphthalenes<br>C3-Naphthalenes<br>Biphanyl<br>Biphanyl<br>C4-Ribhene<br>Fluorene<br>C1-Fluorenes<br>C1-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |  |   |  |   | C1-benzo(b)thiophenes<br>C2-benzo(b)thiophenes<br>C3-benzo(b)thiophenes<br>C3-benzo(b)thiophenes<br>C4-benzo(b)thialenes<br>C2-Vaphthalenes<br>C3-Vaphthalenes<br>C3-Vaphthalenes<br>C3-Vaphthalenes<br>Biphenyl<br>Biphenyl<br>Biphenyl<br>C4-fluorene<br>C1-Fluorenes<br>C1-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |  |   |  |   | C2-benzo(b)thiophenes<br>C3-benzo(b)thiophenes<br>C4-benzo(b)thiophenes<br>C4-benzo(b)thiophenes<br>C4-benzo(b)thialenes<br>C3-Naphthalenes<br>C4-Naphthalenes<br>C4-Naphthalenes<br>Biphenyl<br>Biphenyl<br>C4-Fluorene<br>C1-Fluorenes<br>C3-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |  |   |  |   | C3-benzo(b)thiophenes<br>C4-benzo(b)thiophenes<br>V4sphthalenes<br>C1-V4sphthalenes<br>C2-V4sphthalenes<br>C3-V4sphthalenes<br>Biphenyl<br>Biphenyl<br>Acenaphthylene<br>Pibenzofuran<br>Fluorene<br>C1-Fluorenes<br>C3-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |  |   |  |   | C4-benzo(b)thiophenes<br>Maphthalenes<br>C3-Naphthalenes<br>C3-Naphthalenes<br>C3-Naphthalenes<br>C4-Naphthalenes<br>Biphenyl<br>Biphenyl<br>Acenaphthylene<br>C4-Fluorene<br>C1-Fluorenes<br>C3-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |  |   |  |   | Naphthalene<br>C1-Naphthalenes<br>C2-Naphthalenes<br>C3-Naphthalenes<br>C4-Naphthalenes<br>Biphenyl<br>Acenaphthylene<br>Dibenzofuran<br>Fluorene<br>C1-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |  |   |  |   | C1-Naphthalenes<br>C2-Naphthalenes<br>C3-Naphthalenes<br>Biphenyl<br>Acenaphthylene<br>Dibenzofuran<br>Fluorene<br>C1-Fluorenes<br>C1-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |  |   |  |   | C2-Naphihalenes<br>C3-Naphihalenes<br>C4-Naphihalenes<br>Biphenyl<br>Acenaphihylene<br>Dibenzofuran<br>Fluorene<br>C1-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |  |   |  |   | C3-Naphihalenes<br>C4-Naphihalenes<br>Biphenyl<br>Acenaphihylene<br>Dibenzofuran<br>Fluorene<br>C1-Fluorenes<br>C2-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |  |   |  |   | Biphenyl<br>Biphenyl<br>Acenaphthylene<br>Acenaphthene<br>Dibenzofuran<br>Fluorene<br>C1-Fluorenes<br>C3-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |  |   |  |   | Acenaphthylene<br>Acenaphthene<br>Dibenzofuran<br>Fluorene<br>C1-Fluorenes<br>C2-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |  |   |  |   | Acenaphthene<br>Dibenzofuran<br>Fluorene<br>C1-Fluorenes<br>C2-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |  |   |  |   | Dibenzofuran<br>Fluorenes<br>C1-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |  |   |  |   | Fluorenes<br>C1-Fluorenes<br>C2-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |  |   |  |   | C1-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |  |   |  |   | -<br>C2-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |  | I |  |   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |  |   |  |   | C3-Fluorenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |  | l |  |   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |  | l |  | - | - Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |  | l |  | Г | Phenanthrand Phenanthrand D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |  | l |  |   | C1-Phenanthrenes/Anthracenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |  | l |  |   | C2-Phenanthrenes/Anthracenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |  | l |  |   | C3-Phenanthrenes/Anthrecenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |  | 1 |  |   | -<br>Dipension of the contension |
|       |  | 1 |  |   | Dibenzothornadi<br>-<br>SanandopidtoznadiC-tO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |  | 1 |  |   | C1-Dibenzothiophenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |  | 1 |  |   | C2-Dibenzothiophenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |  | l |  |   | C4-Dibenzothiophenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |  |   |  |   | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |  |   |  |   | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |  | L |  |   | C1-Fluoranthenes/Pyrenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |  | 1 |  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |  | 1 |  |   | C3-Fluoranthenes/Pyrenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |  | 1 |  |   | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |  | 1 |  |   | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |  | l |  |   | C1-Chrysenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |  | 1 |  |   | C2-Chrysenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |  | l |  |   | C3-Chrysenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |  | l |  |   | C4-Chrysenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |  | l |  | 1 | Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |  | l |  |   | Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |  | l |  |   | Benzo(e)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |  | 1 |  |   | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |  | l |  |   | Perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |  | l |  |   | encectd*gc(d,c)zgodi<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |  | l |  |   | Dibenz(a,h)anthracene<br>-<br>Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |  |   |  |   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



# GN62: North Slope Crude (BJ959NSC-P)



The Business of Innovation

| Client ID                            | GWP07T01 | GWP07T02 | GWP07T03 | GWP07T04    |
|--------------------------------------|----------|----------|----------|-------------|
| Battelle ID                          | R5521-P  | R5525-P  | R5526-P  | R5527-P     |
| Sample Type                          | SA       | SA       | SA       | SA          |
| Collection Date                      | 01/11/07 | 01/11/07 | 01/11/07 | 01/11/07    |
| Extraction Date                      | 01/24/07 | 01/24/07 | 01/24/07 | 01/24/07    |
| Analysis Date                        | 02/12/07 | 02/10/07 | 02/09/07 | 02/09/07    |
| Analytical Instrument                | MS       | MS       | MS       | MS          |
| % Moisture                           | 28.88    | 50.1     | 50.3     | 34.93       |
| % Lipid                              | NA       | NA       | NA       | 54.95<br>NA |
| Matrix                               | TAR      | TAR      | TAR      | TAR         |
|                                      | 1.44     | 1.02     | 1.01     | 1.44        |
| Sample Size                          |          |          | G_DRY    |             |
| Size Unit-Basis                      | G_DRY    | G_DRY    |          | G_DRY       |
| Minimum Reporting Limit              | 281.71   | 1242.82  | 1046.38  | 489.28      |
| Units                                | NG/G_DRY | NG/G_DRY | NG/G_DRY | NG/G_DRY    |
| C23 Tricyclic Terpane                | U        | U        | U        | U           |
| C29 Tricyclic Terpane -22S           | U        | U        | U        | U           |
| C29 Tricyclic Terpane -22R           | U        | U        | U        | U           |
| 18a(H)-22,29,30-Trisnorneohopane -TS | U        | U        | U        | U           |
|                                      | -        | _        | _        | -           |
| 17a(H)-22,29,30-Trisnorhopane -TM    | 556.01 J | U        | U        | U           |
| 30-Norhopane                         | 1062.22  | U        | U        | U           |
| 18a(H) & 18b(H)-Oleananes            | U        | U        | U        | U           |
| Hopane                               | 1827.01  | U        | U        | U           |
| 30-Homohopane -22S                   | U        | U        | U        | U           |
| 30-Homohopane -22R                   | U        | U        | U        | U           |
| 13b(H),17a(H)-20S-Diacholestane      | U        | U        | U        | U           |
| 13b(H),17a(H)-20R-Diacholestane      | U        | U        | U        | U           |
| 14a(H),17a(H)-20R-methylcholestane   | 519.25 J | U        | U        | 478.26 J    |
| 14a(H),17a(H)-20S-Ethylcholestane    | 407.28 J | U        | U        | 445.87 J    |
| 14a(H),17a(H)-20R-Ethylcholestane    | 362.99 J | U        | U        | 316.3 J     |
| C21-TAS                              | U        | U        | U        | U           |
| C26-TAS(20S)                         | 81.59 J  | 213.02 J | U        | U           |
| C26,C27-TAS                          | 205.25 J | 432.58 J | 257.21 J | U           |
| C27-TAS(20R)                         | 116.48 J | 241.98 J | 206.94 J | U           |
| C28-TAS(20S)                         | 82.36 J  | 174.71 J | U        | U           |
| C28-TAS(20R)                         | 93.9 J   | 231.7 J  | 183.48 J | U           |
| C21-MAS                              | U        | U        | U        | U           |
| C22-MAS                              | U        | U        | U        | U           |
| C27-MAS                              | U        | U        | U        | U           |
| C27-20R-MAS                          | 3355.08  | U        | U        | U           |
| C27-20S-MAS                          | 989.82   | U        | U        | U           |
| C28-20S-MAS                          | U        | U        | U        | U           |
| C27-C2920S/R-MAS                     | 35605.15 | U        | Ŭ        | U           |
| C29-20S-MAS                          | 44868.64 | Ū        | Ū        | Ŭ           |
| C29-20R-MAS                          | U        | Ŭ        | 2221.04  | Ŭ           |
| TAS 245                              | NA       | NA       | NA       | NA          |
| MAS_239                              | NA       | NA       | NA       | NA          |
| -                                    |          |          |          |             |

| Surrogate Recoveries (%) |           |           |           |           |  |  |  |  |  |
|--------------------------|-----------|-----------|-----------|-----------|--|--|--|--|--|
| 5b(H)-Cholane            | 18404 NME | 32515 NME | 23623 NME | 22622 NME |  |  |  |  |  |

The Business of Innovation

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                            | GWP07T05 | GWP07T06     | GWP07T07  | GWP07T08 |
|--------------------------------------|----------|--------------|-----------|----------|
| Battelle ID                          | R5528-P  | R5529-P      | R5530-P   | R5531-P  |
| Sample Type                          | SA       | SA           | SA        | SA       |
| Collection Date                      | 01/11/07 | 01/11/07     | 01/11/07  | 01/11/07 |
| Extraction Date                      | 01/24/07 | 01/24/07     | 01/24/07  | 01/24/07 |
|                                      | 02/08/07 | 02/08/07     | 02/08/07  | 01/24/07 |
| Analysis Date                        |          |              |           |          |
| Analytical Instrument                | MS       | MS           | MS        | MS       |
| % Moisture                           | 4.23     | 6.94         | 6.47      | 30.28    |
| % Lipid                              | NA       | NA           | NA        | NA       |
| Matrix                               | TAR      | TAR          | TAR       | TAR      |
| Sample Size                          | 1.92     | 1.93         | 1.87      | 1.49     |
| Size Unit-Basis                      | G_DRY    | G_DRY        | G_DRY     | G_DRY    |
| Minimum Reporting Limit              | 1452.54  | 971.44       | 994.26    | 935.87   |
| Units                                | NG/G_DRY | NG/G_DRY     | NG/G_DRY  | NG/G_DRY |
|                                      |          |              |           |          |
| C23 Tricyclic Terpane                | U        | U            | U         | U        |
| C29 Tricyclic Terpane -22S           | U        | U            | U         | U        |
| C29 Tricyclic Terpane -22R           | U        | U            | U         | U        |
| 18a(H)-22,29,30-Trisnorneohopane -TS | U        | U            | U         | U        |
| 17a(H)-22,29,30-Trisnorhopane -TM    | U        | U            | U         | U        |
| 30-Norhopane                         | 5597.06  | 4469.68      | 4619.9    | U        |
| 18a(H) & 18b(H)-Oleananes            | U        | U            | U         | Ŭ        |
| Hopane                               | 7476.45  | 5024.06      | 5375.22   | U        |
| 30-Homohopane -22S                   | U        | 5024.00<br>U | 3152.17   | U        |
|                                      | U        | U            |           | U        |
| 30-Homohopane -22R                   |          |              | 3078.5    | _        |
| 13b(H),17a(H)-20S-Diacholestane      | U        | U            | U         | U        |
| 13b(H),17a(H)-20R-Diacholestane      | U        | U            | U         | U        |
| 14a(H),17a(H)-20R-methylcholestane   | U        | U            | U         | U        |
| 14a(H),17a(H)-20S-Ethylcholestane    | U        | U            | 1364.18 J | U        |
| 14a(H),17a(H)-20R-Ethylcholestane    | U        | U            | 1732.93 J | U        |
| C21-TAS                              | U        | U            | U         | U        |
| C26-TAS(20S)                         | U        | U            | U         | U        |
| C26,C27-TAS                          | U        | 388.11 J     | 368.9 J   | 576.43 J |
| C27-TAS(20R)                         | U        | 226.69 J     | U         | 454.53 J |
| C28-TAS(20S)                         | U        | U            | U         | 227.67 J |
| C28-TAS(20R)                         | Ŭ        | Ŭ            | Ŭ         | 261.58 J |
| C21-MAS                              | Ŭ        | Ŭ            | Ŭ         | U        |
| C22-MAS                              | Ŭ        | Ŭ            | Ŭ         | U        |
| C27-MAS                              | Ŭ        | Ŭ            | Ŭ         | U        |
| C27-20R-MAS                          | U        | U            | U         | U        |
| C27-20S-MAS                          | U        | U            | U         | U        |
|                                      |          |              |           |          |
| C28-20S-MAS                          | U        | U            | U         | U        |
| C27-C2920S/R-MAS                     | U        | U            | U         | U        |
| C29-20S-MAS                          | U        | U            | U         | U        |
| C29-20R-MAS                          | U        | U            | U         | U        |
| TAS_245                              | NA       | NA           | NA        | NA       |
| MAS_239                              | NA       | NA           | NA        | NA       |
|                                      |          |              |           |          |

| Surrogate Recoveries (%) |            |            |            |           |
|--------------------------|------------|------------|------------|-----------|
| 5b(H)-Cholane            | 155388 NME | 153337 NME | 170266 NME | 19515 NME |

The Business of Innovation

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                            | GWP07T09             | GWP07T10             | GWP07T11               | GWP07T12 |
|--------------------------------------|----------------------|----------------------|------------------------|----------|
| Battelle ID                          | R5532-P              | R5533-P              | R5534-P                | R5535-P  |
| Sample Type                          | SA                   | SA                   | SA                     | SA       |
| Collection Date                      | 01/11/07             | 01/11/07             | 01/11/07               | 01/11/07 |
| Extraction Date                      | 01/24/07             | 01/24/07             | 01/24/07               | 01/24/07 |
| Analysis Date                        | 02/08/07             | 02/09/07             | 02/11/07               | 02/08/07 |
| Analytical Instrument                | MS                   | MS                   | MS                     | MS       |
| % Moisture                           | 19.46                | 32.51                | 5.51                   | 10.85    |
| % Lipid                              | NA                   | NA                   | NA                     | NA       |
| Matrix                               | TAR                  | TAR                  | TAR                    | TAR      |
| Sample Size                          | 1.72                 | 1.45                 | 2.05                   | 1.79     |
| Size Unit-Basis                      | G DRY                | G DRY                | G DRY                  | G DRY    |
| Minimum Reporting Limit              | 1080.96              | 699.41               | 979.51                 | 415.48   |
| Units                                | NG/G_DRY             | NG/G_DRY             | NG/G_DRY               | NG/G_DRY |
|                                      |                      |                      |                        |          |
| C23 Tricyclic Terpane                | U                    | U                    | DU                     | U        |
| C29 Tricyclic Terpane -22S           | U                    | U                    | DU                     | U        |
| C29 Tricyclic Terpane -22R           | U                    | U                    | DU                     | U        |
| 18a(H)-22,29,30-Trisnorneohopane -TS | U                    | U                    | DU                     | U        |
| 17a(H)-22,29,30-Trisnorhopane -TM    | U                    | U                    | DU                     | U        |
| 30-Norhopane                         | U                    | U                    | DU                     | U        |
| 18a(H) & 18b(H)-Oleananes            | U                    | U                    | DU                     | U        |
| Hopane                               | U                    | U                    | DU                     | U        |
| 30-Homohopane -22S                   | U                    | U                    | DU                     | U        |
| 30-Homohopane -22R                   | U                    | U                    | DU                     | U        |
| 13b(H),17a(H)-20S-Diacholestane      | U                    | U                    | DU                     | U        |
| 13b(H),17a(H)-20R-Diacholestane      | U                    | U                    | DU                     | U        |
| 14a(H),17a(H)-20R-methylcholestane   | U                    | U                    | 3464.38 D              | U        |
| 14a(H),17a(H)-20S-Ethylcholestane    | U<br>U               | U                    | 1275.21 DJ             | U<br>U   |
| 14a(H),17a(H)-20R-Ethylcholestane    |                      | U<br>U               | 2158.71 D              | UU       |
| C21-TAS                              | U                    | -                    | DU                     | UU       |
| C26-TAS(20S)<br>C26,C27-TAS          | U<br>646.21 J        | 159.25 J<br>392.28 J | 510.92 DJ<br>1941.12 D | 170.77 J |
| C27-TAS(20R)                         | 469.54 J             | 233.02 J             | 1941.12 D<br>1115.3 D  | 100.81 J |
| C28-TAS(20S)                         | 409.34 J<br>304.97 J | 148.22 J             | 670.63 DJ              | 66.82 J  |
| C28-TAS(208)                         | 361.69 J             | 140.22 J<br>U        | 690.6 DJ               | 81.1 J   |
| C21-MAS                              | U                    | U                    | DU                     | U        |
| C22-MAS                              | U                    | Ű                    | DU                     | U        |
| C27-MAS                              | U                    | Ŭ                    | DU                     | Ű        |
| C27-20R-MAS                          | Ŭ                    | Ŭ                    | DU                     | Ŭ        |
| C27-20S-MAS                          | Ŭ                    | Ŭ                    | DU                     | Ŭ        |
| C28-20S-MAS                          | Ŭ                    | Ŭ                    | DU                     | Ŭ        |
| C27-C2920S/R-MAS                     | Ŭ                    | Ŭ                    | DU                     | Ŭ        |
| C29-20S-MAS                          | U                    | U                    | DU                     | Ŭ        |
| C29-20R-MAS                          | U                    | Ŭ                    | DU                     | Ŭ        |
| TAS_245                              | NA                   | NA                   | NA                     | NA       |
| MAS_239                              | NA                   | NA                   | NA                     | NA       |
| Surrogate Recoveries (%)             |                      |                      |                        |          |
| <b>U</b>                             |                      |                      |                        |          |

| 5b(H)-Cholane | 32311 NME | 27454 NME | 5507 ND | 48227 NME |
|---------------|-----------|-----------|---------|-----------|
|               |           |           |         |           |

The Business of Innovation

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                            | GWP07T13 | GWP07T14 | GWP07S01  | GWP07S02  |
|--------------------------------------|----------|----------|-----------|-----------|
| Battelle ID                          | R5536-P  | R5537-P  | R5538-P   | R5539-P   |
| Sample Type                          | SA       | SA       | SA        | SA        |
| Collection Date                      | 01/11/07 | 01/11/07 | 01/12/07  | 01/12/07  |
| Extraction Date                      | 01/24/07 | 01/24/07 | 01/24/07  | 01/24/07  |
| Analysis Date                        | 02/09/07 | 02/09/07 | 02/09/07  | 02/08/07  |
| Analytical Instrument                | MS       | MS       | MS        | MS        |
| % Moisture                           | 12.18    | 7.01     | 13.85     | 10.23     |
| % Lipid                              | NA       | NA       | NA        | NA        |
| Matrix                               | TAR      | TAR      | TAR       | TAR       |
| Sample Size                          | 1.83     | 1.95     | 1.75      | 1.80      |
| Size Unit-Basis                      | G_DRY    | G_DRY    | G_DRY     | G_DRY     |
| Minimum Reporting Limit              | 385.01   | 12.94    | 1006.52   | 1032.92   |
| Units                                | NG/G_DRY | NG/G_DRY | NG/G_DRY  | NG/G_DRY  |
| Onito                                | NG/G_BIT |          | NG/G_DICI | NO/O_DICI |
| C23 Tricyclic Terpane                | U        | 82.07    | U         | U         |
| C29 Tricyclic Terpane -22S           | Ŭ        | 55.09    | Ŭ         | Ŭ         |
| C29 Tricyclic Terpane -22R           | Ŭ        | 42.19    | Ŭ         | U         |
| 18a(H)-22,29,30-Trisnorneohopane -TS | Ŭ        | 33.26    | Ŭ         | Ŭ         |
| 17a(H)-22,29,30-Trisnorhopane -TM    | Ŭ        | 50.17    | Ŭ         | Ŭ         |
| 30-Norhopane                         | Ŭ        | 167.1    | Ŭ         | U         |
| 18a(H) & 18b(H)-Oleananes            | U        | 92.31    | U         | U         |
| Hopane                               | U        | 308.82   | Ű         | U         |
| 30-Homohopane -22S                   | U        | 99.1     | U         | U         |
| 30-Homohopane -22R                   | U        | 73.11    | Ű         | U         |
| 13b(H),17a(H)-20S-Diacholestane      | U        | 190.73   | Ű         | U         |
| 13b(H),17a(H)-20R-Diacholestane      | U        | 127.58   | Ű         | U         |
| 14a(H),17a(H)-20R-methylcholestane   | U        | 187.19   | U         | U         |
| 14a(H),17a(H)-20S-Ethylcholestane    | U        | 86.87    | U         | U         |
| 14a(H),17a(H)-20R-Ethylcholestane    | U        | 154.99   | Ű         | U         |
| C21-TAS                              | U        | U        | Ű         | U         |
| C26-TAS(20S)                         | U        | Ŭ        | Ű         | U         |
| C26,C27-TAS                          | 127.76 J | 45.4     | U         | U         |
| C27-TAS(20R)                         | 78.73 J  | 30.21    | U         | U         |
| C28-TAS(20S)                         | 218.3 J  | 20.81    | Ű         | U         |
| C28-TAS(20R)                         | 162.12 J | 16.11    | Ű         | U         |
| C21-MAS                              | U        | U        | U         | U         |
| C22-MAS                              | U        | Ŭ        | Ŭ         | U         |
| C27-MAS                              | Ŭ        | Ŭ        | Ŭ         | Ŭ         |
| C27-20R-MAS                          | U        | Ŭ        | 21465.67  | 17342.52  |
| C27-20S-MAS                          | Ŭ        | Ŭ        | 3524.46   | 2631.01   |
| C28-20S-MAS                          | Ŭ        | Ŭ        | U         | U         |
| C27-C2920S/R-MAS                     | Ŭ        | Ŭ        | Ŭ         | Ŭ         |
| C29-20S-MAS                          | U        | Ŭ        | Ű         | U         |
| C29-20R-MAS                          | U        | Ŭ        | Ű         | U         |
| TAS 245                              | NA       | NA       | NA        | NA        |
| MAS_239                              | NA       | NA       | NA        | NA        |
| _                                    |          |          |           |           |

| Surrogate Recoveries (%) |           |         |           |           |
|--------------------------|-----------|---------|-----------|-----------|
| 5b(H)-Cholane            | 46836 NME | 212 NME | 46848 NME | 42830 NME |

The Business of Innovation

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                            | GWP07S03       | GWP07S04       | TDW3-4.5       |
|--------------------------------------|----------------|----------------|----------------|
| Battelle ID                          | R5540-P        | R5541-P        | R5542-P        |
| Sample Type                          | SA             | SA             | SA             |
| Collection Date                      | 01/12/07       | 01/12/07       | 09/26/06       |
| Extraction Date                      | 01/24/07       | 01/24/07       | 03/26/00       |
| Analysis Date                        | 01/24/07       | 02/08/07       | 02/09/07       |
| 5                                    | 02/12/07<br>MS | 02/08/07<br>MS | 02/09/07<br>MS |
| Analytical Instrument                | _              | _              | -              |
| % Moisture                           | 20.14          | 12.16          | 14.86          |
| % Lipid                              | NA             | NA             | NA             |
| Matrix                               | TAR            | TAR            | SOIL           |
| Sample Size                          | 1.66           | 1.85           | 17.17          |
| Size Unit-Basis                      | G_DRY          | G_DRY          | G_DRY          |
| Minimum Reporting Limit              | 1120.03        | 1340.01        | 6.5            |
| Units                                | NG/G_DRY       | NG/G_DRY       | NG/G_DRY       |
| C23 Tricyclic Terpane                | U              | U              | 17.62 T        |
| C29 Tricyclic Terpane -22S           | Ŭ              | Ŭ              | UT             |
| C29 Tricyclic Terpane -22R           | Ŭ              | Ŭ              | UT             |
| 18a(H)-22,29,30-Trisnorneohopane -TS | Ŭ              | Ŭ              | UT             |
| 17a(H)-22,29,30-Trisnorhopane -TM    | Ŭ              | Ŭ              | 26.61 T        |
| 30-Norhopane                         | Ŭ              | Ŭ              | 69.06 T        |
| 18a(H) & 18b(H)-Oleananes            | Ŭ              | Ŭ              | 55.34 T        |
| Hopane                               | Ŭ              | Ŭ              | 113.88 T       |
| 30-Homohopane -22S                   | Ŭ              | U              | 49.49 T        |
| 30-Homohopane -22R                   | Ŭ              | Ŭ              | 38.99 T        |
| 13b(H),17a(H)-20S-Diacholestane      | Ŭ              | Ŭ              | 39.08 T        |
| 13b(H),17a(H)-20R-Diacholestane      | Ŭ              | Ŭ              | 22.14 T        |
| 14a(H),17a(H)-20R-methylcholestane   | Ŭ              | Ŭ              | 75.52 T        |
| 14a(H),17a(H)-20S-Ethylcholestane    | Ŭ              | Ŭ              | 43.36 T        |
| 14a(H),17a(H)-20R-Ethylcholestane    | Ŭ              | Ŭ              | 61.76 T        |
| C21-TAS                              | Ŭ              | Ŭ              | UT             |
| C26-TAS(20S)                         | Ŭ              | Ŭ              | UT             |
| C26,C27-TAS                          | Ŭ              | Ŭ              | 56.03 T        |
| C27-TAS(20R)                         | Ŭ              | Ŭ              | 35.08 T        |
| C28-TAS(20S)                         | Ŭ              | U              | 23.85 T        |
| C28-TAS(20R)                         | Ŭ              | Ŭ              | 20.94 T        |
| C21-MAS                              | Ŭ              | Ŭ              | UT             |
| C22-MAS                              | Ŭ              | Ŭ              | UT             |
| C27-MAS                              | Ŭ              | Ŭ              | UT             |
| C27-20R-MAS                          | 11737.95       | Ŭ              | UT             |
| C27-20S-MAS                          | 4918.55        | Ŭ              | UT             |
| C28-20S-MAS                          | U              | Ŭ              | UT             |
| C27-C2920S/R-MAS                     | Ŭ              | Ŭ              | UT             |
| C29-20S-MAS                          | Ŭ              | U              | UT             |
| C29-20R-MAS                          | Ŭ              | U              | UT             |
| TAS_245                              | NA             | NA             | NA             |
| MAS_239                              | NA             | NA             | NA             |
| —                                    |                |                |                |

### Surrogate Recoveries (%)

| 5b(H)-Cholane | 48709 NME | 20141 NME | 691 NME |
|---------------|-----------|-----------|---------|
|               |           |           | ••••    |

The Business of Innovation

# Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID         Procedural Blank           Battelle ID         BJ939PB-P           Sample Type         PB           Collection Date         01/24/07           Analysis Date         02/10/07           Analysis Date         02/10/07           Analytical Instrument         MS           % Moisture         19.52           % Lipid         NA           Matrix         SOIL, TAR           Sample Size         2.44           Size Unit-Basis         G_DRY           Winimum Reporting Limit         8.23           Jnits         NG/G_DRY           C23 Tricyclic Terpane         U           C29 Tricyclic Terpane -22S         U           C23 Tricyclic Terpane -22R         U           Ba(H) & 18b(H)-Oleananes         U           04-Nornohopane         U           030-Homohopane -22S         U           04-Homohopane -22S         U           030-Homohopane -22S         U           044a(H), 17a(H)-20R-methylcholestane         U           13b(H), 17a(H)-20R-methylcholestane         U           14a(H), 17a(H)-20R-Tehylcholestane         U           224-TAS(20S)         U           U22-TAS(20R)         U                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Type         PB           Collection Date         01/24/07           Extraction Date         01/24/07           Analytical Instrument         MS           % Moisture         19.52           % Lipid         NA           Matrix         SOIL, TAR           Sample Size         2.44           Size Unit-Basis         G_DRY           Vinimum Reporting Limit         8.23           Jnits         NG/G_DRY           C23 Tricyclic Terpane         U           C29 Tricyclic Terpane -22S         U           C29 Tricyclic Terpane -22R         U           U8a(H)-22,29,30-Trisnorneohopane -TS         U           V30-Norhopane         U           Waith & 18b(H)-Oleananes         U           40pane         U           V30-Homohopane -22S         U           V30-Homohopane -22S         U           V30-Homohopane -22S         U           V4q(H), 17a(H)-20S-Diacholestane         U           V4a(H), 17a(H)-20S-Ethylcholestane         U           V4a(H), 17a(H)-20S-Ethylcholestane         U           V26-C27-TAS         U           V27-TAS(20R)         U           V22-TAS(20S)         U                              |
| Sample Type         PB           Collection Date         01/24/07           Extraction Date         01/24/07           Analytical Instrument         MS           % Moisture         19.52           % Lipid         NA           Matrix         SOIL, TAR           Sample Size         2.44           Size Unit-Basis         G_DRY           Vinimum Reporting Limit         8.23           Jnits         NG/G_DRY           C23 Tricyclic Terpane         U           C29 Tricyclic Terpane -22S         U           C29 Tricyclic Terpane -22R         U           U8a(H)-22,29,30-Trisnorneohopane -TS         U           V30-Norhopane         U           Waith & 18b(H)-Oleananes         U           40pane         U           V30-Homohopane -22R         U           V30-Homohopane -22S         U           V30-Homohopane -22R         U           V4a(H), 17a(H)-20S-Diacholestane         U           V4a(H), 17a(H)-20S-Ethylcholestane         U           V4a(H), 17a(H)-20S-Ethylcholestane         U           V26-C27-TAS         U           V27-TAS(20R)         U           V27-TAS(20R)         U                              |
| Collection Date         01/24/07           Extraction Date         01/24/07           Analysis Date         02/10/07           Analytical Instrument         MS           & Moisture         19.52           & Lipid         NA           Matrix         SOIL, TAR           Sample Size         2.44           Size Unit-Basis         G_DRY           Winimum Reporting Limit         8.23           Jnits         NG/G_DRY           C23 Tricyclic Terpane         228           C23 Tricyclic Terpane -228         U           C29 Tricyclic Terpane -228         U           C29 Tricyclic Terpane -228         U           U38(H)-22,29,30-Trisnorneohopane -TS         U           30-Norhopane         U           30-Norhopane         U           30-Homohopane -228         U                                           |
| Extraction Date         01/24/07           Analysis Date         02/10/07           Analysis Date         02/10/07           Analysis Date         02/10/07           Analysis Date         19.52           & Lipid         NA           Matrix         SOIL, TAR           Sample Size         2.44           Size Unit-Basis         G_DRY           Minimum Reporting Limit         8.23           Jnits         NG/G_DRY           C23 Tricyclic Terpane         U           C23 Tricyclic Terpane -22R         U           C29 Tricyclic Terpane -22R         U           Na(H)-22,29,30-Trisnorneohopane -TS         U           17a(H)-22,29,30-Trisnorneohopane -TS         U           030-Norhopane         U           030-Norhopane         U           13b(H), 17a(H)-20S-Diacholestane         U           13b(H), 17a(H)-20S-Diacholestane         U           13b(H), 17a(H)-20R-Diacholestane         U           14a(H), 17a(H)-20R-Ethylcholestane         U           14a(H), 17a(H)-20R-Ethylcholestane         U           14a(H), 17a(H)-20R-Ethylcholestane         U           122-TAS         U           122-TAS(20R)         U |
| Analysis Date         02/10/07           Analytical Instrument         MS           % Moisture         19.52           % Lipid         NA           Matrix         SOIL, TAR           Sample Size         2.44           Size Unit-Basis         G_DRY           Winimum Reporting Limit         8.23           Jnits         NG/G_DRY           C23 Tricyclic Terpane         U           C29 Tricyclic Terpane -22S         U           C29 Tricyclic Terpane -22R         U           18a(H)-22,29,30-Trisnorneohopane -TS         U           17a(H)-22,29,30-Trisnorneohopane -TS         U           17a(H)-22,29,30-Trisnorneohopane -TS         U           00-Norhopane         U           30-Norhopane         U           30-Homohopane -22S         U           30-Homohopane -22S         U           30-Homohopane -22S         U           30-Homohopane -22R         U           13b(H),17a(H)-20R-Diacholestane         U           14a(H),17a(H)-20R-methylcholestane         U           14a(H),17a(H)-20R-methylcholestane         U           124-TAS         U           127-TAS(20R)         U           128-TAS(20R)             |
| Analytical Instrument       MS         % Moisture       19.52         % Lipid       NA         Matrix       SOIL, TAR         Sample Size       2.44         Size Unit-Basis       G_DRY         Minimum Reporting Limit       8.23         Jnits       NG/G_DRY         C23 Tricyclic Terpane -22R       U         C29 Tricyclic Terpane -22R       U         C29 Tricyclic Terpane -22R       U         C29 Tricyclic Terpane -22R       U         17a(H)-22,29,30-Trisnorneohopane -TS       U         17a(H)-22,29,30-Trisnorneohopane -TS       U         30-Norhopane       U         8a(H) & 18b(H)-Oleananes       U         40a-Homohopane -22S       U         30-Homohopane -22R       U         13b(H), 17a(H)-20S-Diacholestane       U         13b(H), 17a(H)-20R-Diacholestane       U         14a(H), 17a(H)-20R-Ethylcholestane       U         14a(H), 17a(H)-20R-Ethylcholestane       U         121-TAS       U         122-TAS(20R)       U         128-TAS(20R)       U         128-TAS(20R)       U         128-TAS(20R)       U         127-MAS       U <t< td=""></t<>                                                            |
| % Moisture         19.52           % Lipid         NA           Matrix         SOIL, TAR           Sample Size         2.44           Size Unit-Basis         G_DRY           Winimum Reporting Limit         8.23           Jnits         NG/G_DRY           C23 Tricyclic Terpane         U           C29 Tricyclic Terpane -22R         U           C29 Tricyclic Terpane -22R         U           17a(H)-22,29,30-Trisnorhopane -TS         U           00-Norhopane         U           30-Norhopane         U           30-Homohopane -22S         U           30-Homohopane -22R         U           30-Homohopane -22R         U           30-Homohopane -22R         U           30-Homohopane -22R         U           13b(H),17a(H)-20S-Diacholestane         U           13b(H),17a(H)-20R-methylcholestane         U           U21-TAS         U           C26-TAS(20S)         U           C28-TAS(20R)         U           C27-TAS         U           C28-TAS(20R)         U           C27-MAS         U           C27-MAS         U           C27-20S-MAS         U                                                                       |
| % Lipid         NA           Matrix         SOIL, TAR           Sample Size         2.44           Size Unit-Basis         G_DRY           Winimum Reporting Limit         8.23           Jnits         NG/G_DRY           C23 Tricyclic Terpane         U           C23 Tricyclic Terpane -22R         U           C29 Tricyclic Terpane -22R         U           Ba(H)-22,29,30-Trisnorneohopane -TS         U           Take(H)-22,29,30-Trisnorneohopane -TM         U           30-Norhopane         U           30-Norhopane         U           30-Norhopane         U           30-Homohopane -22R         U           13b(H),17a(H)-20R-methylcholestane         U           144(H),17a(H)-20R-methylcholestane         U           124-TAS         U           C26-TAS(20S)         U           C26-TAS(20S)         U           C28-TAS(20R)         U           C28-TAS(20R)         U           C27-MAS         U           C27-OR-MAS                                            |
| Matrix         SOIL, TAR           Sample Size         2.44           Size Unit-Basis         G_DRY           Winimum Reporting Limit         8.23           Jnits         NG/G_DRY           C23 Tricyclic Terpane         U           C29 Tricyclic Terpane -22R         U           C29 Tricyclic Terpane -22R         U           18a(H)-22,29,30-Trisnorneohopane -TS         U           17a(H)-22,29,30-Trisnorneohopane -TM         U           30-Norhopane         U           30-Homohopane         U           30-Homohopane         U           30-Homohopane -22R         U           13b(H),17a(H)-20S-Diacholestane         U           144(H),17a(H)-20R-methylcholestane         U           144(H),17a(H)-20R-methylcholestane         U           124-TAS         U           124-TAS         U           127-TAS(20R)         U           127-TAS(20R)         U           128-TAS(20R)         U <tr< td=""></tr<>                |
| Sample Size       2.44         Size Unit-Basis       G_DRY         Winimum Reporting Limit       8.23         Jnits       NG/G_DRY         C23 Tricyclic Terpane       U         C29 Tricyclic Terpane -22S       U         C29 Tricyclic Terpane -22R       U         18a(H)-22,29,30-Trisnorneohopane -TS       U         30-Norhopane       U         18a(H)-22,29,30-Trisnorneohopane -TM       U         30-Norhopane       U         18a(H)-22,29,30-Trisnorneohopane -TS       U         30-Norhopane       U         18a(H)-22,29,30-Trisnorhopane -TM       U         30-Norhopane       U         18a(H)-22,29,30-Trisnorhopane -TS       U         30-Norhopane       U         18a(H)-22,29,30-Trisnorhopane -TM       U         30-Norhopane       U         18a(H)-22,29,30-Trisnorhopane -TM       U         30-Homohopane -22R       U         30-Homohopane -22R       U         30-Homohopane -22R       U         13b(H),17a(H)-20R-Ethylcholestane       U         14a(H),17a(H)-20R-Ethylcholestane       U         124-TAS       U         C27-TAS(20R)       U         C28-TAS(20R)                                                 |
| Size Unit-Basis         G_DRY           Winimum Reporting Limit         8.23           Jnits         NG/G_DRY           C23 Tricyclic Terpane         U           C29 Tricyclic Terpane -22S         U           C29 Tricyclic Terpane -22R         U           18a(H)-22,29,30-Trisnorneohopane -TS         U           17a(H)-22,29,30-Trisnorneohopane -TM         U           30-Norhopane         U           18a(H) & 18b(H)-Oleananes         U           40pane         U           30-Homohopane -22S         U           30-Homohopane -22S         U           30-Homohopane -22R         U           13b(H),17a(H)-20R-Diacholestane         U           13b(H),17a(H)-20R-Diacholestane         U           14a(H),17a(H)-20R-bitylcholestane         U           14a(H),17a(H)-20R-bitylcholestane         U           126-TAS         U           127-TAS         U           128-TAS(20R)         U           128-TAS(20R)         U           128-TAS(20R)         U           127-TAS         U           127-TAS(20R)         U           128-TAS(20R)         U           127-TAS(20R)         U                                       |
| Minimum Reporting Limit         8.23           Jnits         NG/G_DRY           C23 Tricyclic Terpane         U           C29 Tricyclic Terpane -22S         U           C29 Tricyclic Terpane -22R         U           18a(H)-22,29,30-Trisnorneohopane -TS         U           17a(H)-22,29,30-Trisnorhopane -TM         U           30-Norhopane         U           18a(H) & 18b(H)-Oleananes         U           -lopane         U           30-Homohopane -22S         U           30-Homohopane -22R         U           13b(H),17a(H)-20S-Diacholestane         U           13b(H),17a(H)-20R-Diacholestane         U           14a(H),17a(H)-20R-Ethylcholestane         U           U22-TAS         U           C24-TAS         U           C26-TAS(20S)         U           C27-TAS         U           C28-TAS(20R)         U           C28-TAS(20R)         U           C22-MAS         U           C27-OR-MAS         U           C27-20S-MAS         U           C28-TAS(20S)         U           C27-20S-MAS         U           C27-20S-MAS         U           C28-20S-MAS         U                                                     |
| Units         NG/G_DRY           C23 Tricyclic Terpane         L           C29 Tricyclic Terpane -22S         L           C29 Tricyclic Terpane -22R         L           C29 Tricyclic Terpane -22R         L           Ba(H)-22,29,30-Trisnorneohopane -TS         L           17a(H)-22,29,30-Trisnorhopane -TM         L           30-Norhopane         L           8a(H) & 18b(H)-Oleananes         L           40pane         L           30-Homohopane -22S         L           30-Homohopane -22R         L           13b(H),17a(H)-20S-Diacholestane         L           13b(H),17a(H)-20R-methylcholestane         L           14a(H),17a(H)-20R-methylcholestane         L           14a(H),17a(H)-20R-methylcholestane         L           124-TAS         L           C26-TAS(20S)         L           C26-TAS(20S)         L           C27-TAS         L           C27-TAS         L           C28-TAS(20R)         L           C27-MAS         L           C27-OR-MAS         L           C27-OS-MAS         L           C27-20S-MAS         L           C28-20S/MAS         L           C28-20S/MAS                                         |
| C23 Tricyclic Terpane       L         C29 Tricyclic Terpane -22S       L         C29 Tricyclic Terpane -22R       L         C29 Tricyclic Terpane -22R       L         Ba(H)-22,29,30-Trisnorneohopane -TS       L         30-Norhopane       L         8a(H)-22,29,30-Trisnorhopane -TM       L         30-Norhopane       L         8a(H) & 18b(H)-Oleananes       L         4opane       L         30-Homohopane -22S       L         30-Homohopane -22R       L         13b(H),17a(H)-20S-Diacholestane       L         13b(H),17a(H)-20R-methylcholestane       L         14a(H),17a(H)-20S-Ethylcholestane       L         14a(H),17a(H)-20S-Ethylcholestane       L         124-TAS       L         C26-TAS(20S)       L         C27-TAS       L         C28-TAS(20S)       L         C28-TAS(20R)       L         C27-MAS       L         C27-MAS       L         C27-OR-MAS       L         C27-20S-MAS       L         C28-COS/MAS       L         C27-2020S/R-MAS       L         C28-20S-MAS       L         C28-20S-MAS       L <t< td=""></t<>                                                                                               |
| C29 Tricyclic Terpane -22S       U         C29 Tricyclic Terpane -22R       U         I8a(H)-22,29,30-Trisnorneohopane -TS       U         I7a(H)-22,29,30-Trisnorhopane -TM       U         30-Norhopane       U         88(H) & 18b(H)-Oleananes       U         4opane       U         30-Homohopane -22S       U         30-Homohopane -22R       U         214a(H),17a(H)-20R-methylcholestane       U         C28-TAS(20S)       U         C28-TAS(20R)       U         C28-TAS(20R)<                                                                                |
| C29 Tricyclic Terpane -22S       U         C29 Tricyclic Terpane -22R       U         I8a(H)-22,29,30-Trisnorneohopane -TS       U         J7a(H)-22,29,30-Trisnorhopane -TM       U         30-Norhopane       U         30-Norhopane       U         30-Norhopane       U         30-Norhopane       U         30-Homohopane -22S       U         30-Homohopane -22R       U         214a(H),17a(H)-20R-methylcholestane       U         C28-TAS(20S)       U         C28-TAS(20R)                                                                                       |
| C29 Tricyclic Terpane -22R         U           18a(H)-22,29,30-Trisnorneohopane -TS         U           17a(H)-22,29,30-Trisnorhopane -TM         U           30-Norhopane         U           18a(H) & 18b(H)-Oleananes         U           4opane         U           30-Homohopane -22S         U           30-Homohopane -22R         U           13b(H),17a(H)-20S-Diacholestane         U           14a(H),17a(H)-20R-methylcholestane         U           14a(H),17a(H)-20R-Ethylcholestane         U           14a(H),17a(H)-20R-Ethylcholestane         U           124a(H),17a(H)-20R-Ethylcholestane         U           124a(H),17a(H)-20R-Ethylcholestane         U           124a(H),17a(H)-20R-Ethylcholestane         U           122-TAS         U           122-TAS         U           122-TAS(20R)         U           122-TAS(20R)         U           122-TAS(20R)         U           12  |
| C29 Tricyclic Terpane -22R         U           18a(H)-22,29,30-Trisnorneohopane -TS         U           17a(H)-22,29,30-Trisnorhopane -TM         U           30-Norhopane         U           18a(H) & 18b(H)-Oleananes         U           4opane         U           30-Homohopane -22S         U           30-Homohopane -22R         U           13b(H),17a(H)-20S-Diacholestane         U           14a(H),17a(H)-20R-methylcholestane         U           14a(H),17a(H)-20R-Ethylcholestane         U           14a(H),17a(H)-20R-Ethylcholestane         U           124-TAS         U           C27-TAS         U           C28-TAS(20S)         U           C28-TAS(20R)         U           C28-TAS(20R)         U           C28-TAS(20R)         U           C22-MAS         U           C22-MAS         U           C22-                                     |
| 18a(H)-22,29,30-Trisnorneohopane -TS       U         17a(H)-22,29,30-Trisnorhopane -TM       U         30-Norhopane       U         18a(H) & 18b(H)-Oleananes       U         Hopane       U         30-Homohopane -22S       U         30-Homohopane -22R       U         13b(H),17a(H)-20S-Diacholestane       U         13b(H),17a(H)-20R-Diacholestane       U         14a(H),17a(H)-20R-methylcholestane       U         14a(H),17a(H)-20R-Ethylcholestane       U         14a(H),17a(H)-20R-Ethylcholestane       U         14a(H),17a(H)-20R-Ethylcholestane       U         121-TAS       U         C26-TAS(20S)       U         C26-TAS(20R)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C27-MAS       U         C27-MAS       U         C27-MAS       U         C27-MAS       U         C27-20S-MAS       U         C28-CS-MAS       U         C28-20S/MAS       U         C28-20S/MAS       U         C28-20S/MAS       U         C28-20S/MAS       U         C28-                                                                                                                   |
| 17a(H)-22,29,30-Trisnorhopane -TM       U         30-Norhopane       U         8a(H) & 18b(H)-Oleananes       U         4opane       U         30-Homohopane -22S       U         30-Homohopane -22R       U         13b(H),17a(H)-20S-Diacholestane       U         13b(H),17a(H)-20R-Diacholestane       U         14a(H),17a(H)-20R-methylcholestane       U         14a(H),17a(H)-20R-Ethylcholestane       U         14a(H),17a(H)-20R-Ethylcholestane       U         121-TAS       U         224-TAS       U         226-TAS(20S)       U         C26,C27-TAS       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C27-MAS       U         C27-MAS       U         C27-MAS       U         C27-20S-MAS       U         C28-CS-MAS       U         C28-CS-MAS       U         C28-20S-MAS       U         C28-20S-MAS       U         C28-20S-MAS       U         C28-20S-MAS       U         C28-20S-MAS       U         C29-20S-MAS       U                                                                                                                                                      |
| 30-Norhopane         U           18a(H) & 18b(H)-Oleananes         U           4opane         U           30-Homohopane -22S         U           30-Homohopane -22R         U           13b(H), 17a(H)-20S-Diacholestane         U           13b(H), 17a(H)-20R-Diacholestane         U           13b(H), 17a(H)-20R-Diacholestane         U           14a(H), 17a(H)-20R-Ethylcholestane         U           14a(H), 17a(H)-20R-Ethylcholestane         U           14a(H), 17a(H)-20R-Ethylcholestane         U           126-TAS         U           226-TAS(20S)         U           C26,C27-TAS         U           C28-TAS(20R)         U           C27-MAS         U           C27-WAS         U           C27-20S-MAS         U           C28-20S-MAS         U           C28-20S-MAS         U           C28-20S/R-MAS         U           C28-20S/MAS         U                                                                            |
| 18a(H) & 18b(H)-Oleananes       U         Hopane       U         30-Homohopane -22S       U         30-Homohopane -22R       U         13b(H),17a(H)-20S-Diacholestane       U         13b(H),17a(H)-20S-Diacholestane       U         13b(H),17a(H)-20R-methylcholestane       U         14a(H),17a(H)-20R-methylcholestane       U         14a(H),17a(H)-20R-Ethylcholestane       U         126-TAS(20S)       U         C26-TAS(20S)       U         C27-TAS(20R)       U         C28-TAS(20S)       U         C28-TAS(20S)       U         C24-TAS       U         C22-MAS       U         C22-MAS       U         C22-MAS       U         C22-MAS       U         C27-Z90S-MAS       U         C28-20S/R-MAS       U         C28-20S-MAS       U         C28-20                                                                                                                                                      |
| Hopane       U         30-Homohopane -22S       U         30-Homohopane -22R       U         13b(H),17a(H)-20S-Diacholestane       U         14a(H),17a(H)-20R-methylcholestane       U         14a(H),17a(H)-20R-Ethylcholestane       U         14a(H),17a(H)-20R-Ethylcholestane       U         C21-TAS       U         C26-TAS(20S)       U         C26-TAS(20R)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C21-MAS       U         C22-MAS       U         C22-MAS       U         C27-20R-MAS       U         C27-20S-MAS       U         C28-TAS(20S)       U         C27-C2920S/R-MAS       U         C27-202-MAS       U         C27-220S-MAS       U         C28-20S-MAS       U         C28-20S-MAS       U                                                                                                                                                |
| 30-Homohopane -22S         U           30-Homohopane -22R         U           30-Homohopane -22R         U           30-Homohopane -22R         U           30-Homohopane -22R         U           13b(H),17a(H)-20S-Diacholestane         U           13b(H),17a(H)-20R-Diacholestane         U           14a(H),17a(H)-20R-methylcholestane         U           14a(H),17a(H)-20S-Ethylcholestane         U           14a(H),17a(H)-20R-thylcholestane         U           14a(H),17a(H)-20R-Ethylcholestane         U           C21-TAS         U           C24-TAS(20S)         U           C26-TAS(20S)         U           C28-TAS(20R)         U           C28-TAS(20R)         U           C28-TAS(20R)         U           C21-MAS         U           C22-MAS         U           C27-20R-MAS         U           C27-20S-MAS         U           C28-TAS(20S/R-MAS         U           C28-20S-MAS         U           C28-20S-MAS         U           C28-20S-MAS         U           C28-20S-MAS         U           C28-20S-MAS         U           C29-20S-MAS         U                                                                    |
| 30-Homohopane -22R         U           13b(H),17a(H)-20S-Diacholestane         U           13b(H),17a(H)-20R-Diacholestane         U           14a(H),17a(H)-20R-methylcholestane         U           14a(H),17a(H)-20S-Ethylcholestane         U           14a(H),17a(H)-20S-Ethylcholestane         U           14a(H),17a(H)-20R-Ethylcholestane         U           14a(H),17a(H)-20R-Ethylcholestane         U           C21-TAS         U           C26-TAS(20S)         U           C26,C27-TAS         U           C27-TAS(20R)         U           C28-TAS(20R)         U           C27-MAS         U           C27-MAS         U           C27-MAS         U           C27-20S-MAS         U           C28-20S-MAS         U           C28-20S/R-MAS         U           C28-20S/MAS         U           C29-20S/MAS         U                                                                                                             |
| 13b(H),17a(H)-20S-Diacholestane         U           13b(H),17a(H)-20R-Diacholestane         U           14a(H),17a(H)-20R-methylcholestane         U           14a(H),17a(H)-20S-Ethylcholestane         U           14a(H),17a(H)-20S-Ethylcholestane         U           12b(H),17a(H)-20R-Ethylcholestane         U           12ch-TAS         U           221-TAS         U           226-TAS(20S)         U           C26,C27-TAS         U           C28-TAS(20R)         U           C27-MAS         U           C27-MAS         U           C27-MAS         U           C27-20S-MAS         U           C28-20S-MAS         U           C28-20S/R-MAS         U           C28-20S/R-MAS         U           C29-20S/MAS         U                                                                                                         |
| 13b(H),17a(H)-20R-Diacholestane       U         14a(H),17a(H)-20R-methylcholestane       U         14a(H),17a(H)-20S-Ethylcholestane       U         14a(H),17a(H)-20S-Ethylcholestane       U         124a(H),17a(H)-20R-Ethylcholestane       U         124a(H),17a(H)-20R-Ethylcholestane       U         021-TAS       U         026-TAS(20S)       U         026,C27-TAS       U         027-TAS(20R)       U         028-TAS(20S)       U         028-TAS(20R)       U         028-TAS(20R)       U         022-MAS       U         022-MAS       U         027-Q2-MAS       U         027-20S-MAS       U         028-20S-MAS       U         028-20S-MAS       U         029-20S-MAS       U         029-20S-MAS       U         029-20S-MAS       U         029-20S-MAS       U                                                                                                                                                                                                                                                                                                                                                                   |
| 14a(H),17a(H)-20R-methylcholestane       U         14a(H),17a(H)-20S-Ethylcholestane       U         14a(H),17a(H)-20R-Ethylcholestane       U         C21-TAS       U         C26-TAS(20S)       U         C26,C27-TAS       U         C27-TAS(20R)       U         C28-TAS(20S)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C21-MAS       U         C22-MAS       U         C27-Z0R-MAS       U         C27-C20S-MAS       U         C27-C2920S/R-MAS       U         C27-C2920S/R-MAS       U         C29-20S-MAS       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14a(H),17a(H)-20S-Ethylcholestane       U         14a(H),17a(H)-20R-Ethylcholestane       U         C21-TAS       U         C26-TAS(20S)       U         C26-C27-TAS       U         C27-TAS(20R)       U         C28-TAS(20S)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C22-MAS       U         C22-MAS       U         C27-QR-MAS       U         C27-20S-MAS       U         C28-20S-MAS       U         C28-20S-MAS       U         C29-20S-MAS       U                                                                                                                                                                                                                                                                                                                                                                        |
| 14a(H),17a(H)-20R-Ethylcholestane       U         C21-TAS       U         C26-TAS(20S)       U         C26-TAS(20R)       U         C27-TAS(20R)       U         C28-TAS(20S)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C21-MAS       U         C22-MAS       U         C27-20R-MAS       U         C27-20S-MAS       U         C28-C2920S/R-MAS       U         C29-20S-MAS       U         C29-20S-MAS       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C21-TAS       U         C26-TAS(20S)       U         C26,C27-TAS       U         C27-TAS(20R)       U         C28-TAS(20S)       U         C28-TAS(20R)       U         C27-MAS       U         C27-MAS       U         C27-20S-MAS       U         C28-20S-MAS       U         C28-20S/R-MAS       U         C29-20S-MAS       U         C29-20S-MAS       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C26-TAS(20S)       U         C26,C27-TAS       U         C27-TAS(20R)       U         C28-TAS(20S)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C21-MAS       U         C22-MAS       U         C27-20R-MAS       U         C28-20S-MAS       U         C28-20S/R-MAS       U         C29-20S/R-MAS       U         C29-20S-MAS       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C26,C27-TAS       U         C27-TAS(20R)       U         C28-TAS(20S)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C28-TAS(20R)       U         C21-MAS       U         C22-MAS       U         C27-20R-MAS       U         C27-20S-MAS       U         C28-20S-MAS       U         C27-2020S/R-MAS       U         C29-20S-MAS       U         C29-20S-MAS       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C27-TAS(20R)       U         C28-TAS(20S)       U         C28-TAS(20R)       U         C21-MAS       U         C22-MAS       U         C27-MAS       U         C27-20R-MAS       U         C27-20S-MAS       U         C27-C2920S/R-MAS       U         C29-20S-MAS       U         C29-20S-MAS       U         C29-20S-MAS       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C28-TAS(20S)       U         C28-TAS(20R)       U         C21-MAS       U         C22-MAS       U         C27-MAS       U         C27-20R-MAS       U         C27-20S-MAS       U         C28-C29-20S-MAS       U         C29-20S-MAS       U         C29-20S-MAS       U         C29-20S-MAS       U         C29-20S-MAS       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C28-TAS(20R)       U         C21-MAS       U         C22-MAS       U         C27-MAS       U         C27-20R-MAS       U         C27-20S-MAS       U         C28-20S-MAS       U         C28-20S-MAS       U         C29-20S-MAS       U         C29-20S-MAS       U         C29-20S-MAS       U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C21-MAS         U           C22-MAS         U           C27-MAS         U           C27-20R-MAS         U           C27-20S-MAS         U           C28-20S-MAS         U           C28-20S-MAS         U           C28-20S-MAS         U           C29-20S-MAS         U           C29-20S-MAS         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C22-MAS         U           C27-MAS         U           C27-20R-MAS         U           C27-20S-MAS         U           C28-20S-MAS         U           C27-C2920S/R-MAS         U           C29-20S-MAS         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C27-MAS     U       C27-20R-MAS     U       C27-20S-MAS     U       C28-20S-MAS     U       C27-C2920S/R-MAS     U       C29-20S-MAS     U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C27-MAS     U       C27-20R-MAS     U       C27-20S-MAS     U       C28-20S-MAS     U       C27-C2920S/R-MAS     U       C29-20S-MAS     U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C27-20R-MAS         U           C27-20S-MAS         U           C28-20S-MAS         U           C27-C2920S/R-MAS         U           C29-20S-MAS         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C27-20S-MAS         U           C28-20S-MAS         U           C27-C2920S/R-MAS         U           C29-20S-MAS         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C28-20S-MAS         U           C27-C2920S/R-MAS         U           C29-20S-MAS         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C27-C2920S/R-MAS U<br>C29-20S-MAS U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C29-20S-MAS U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C29-20R-MAS U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TAS_245 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MAS_239 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### Surrogate Recoveries (%)

5b(H)-Cholane

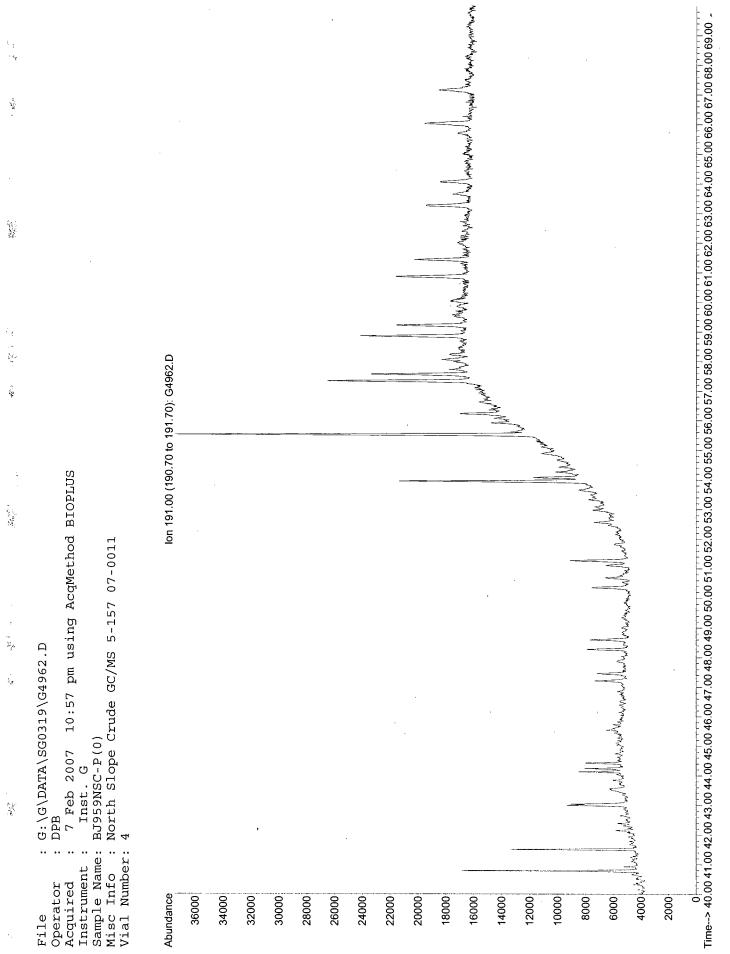
The Business of Innovation

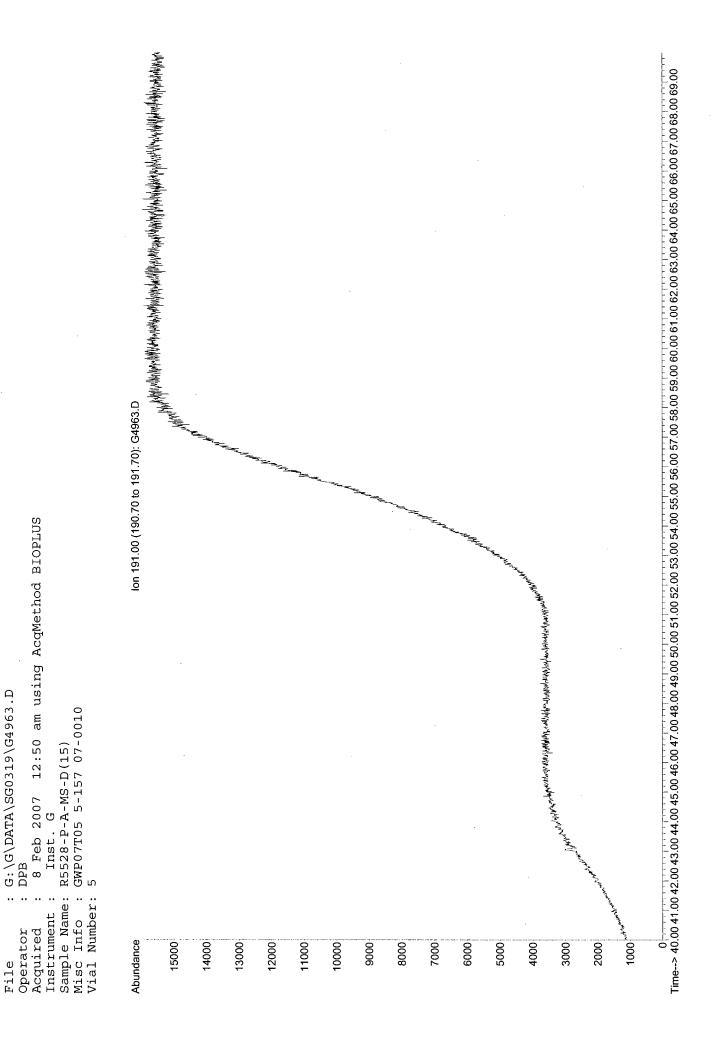
Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

|                                      | 060208-03: Sand,     |                             |
|--------------------------------------|----------------------|-----------------------------|
| Client ID                            | White Quartz, -50+70 |                             |
| Battelle ID                          | BJ940LCS-P           |                             |
| Sample Type                          | LCS                  |                             |
| Collection Date                      | 01/24/07             |                             |
| Extraction Date                      | 01/24/07             |                             |
| Analysis Date                        | 02/10/07             |                             |
| Analytical Instrument                | MS                   |                             |
| % Moisture                           | NA                   |                             |
| % Lipid                              | NA                   |                             |
| Matrix                               | SOIL, TAR            |                             |
| Sample Size                          | 20.01                |                             |
| Size Unit-Basis                      | G_DRY                |                             |
| Minimum Reporting Limit              | 1                    |                             |
| Units                                | NG/G_DRY             | Target % Recovery Qualifier |
| C23 Tricyclic Terpane                | U                    |                             |
| C29 Tricyclic Terpane -22S           | Ŭ                    |                             |
| C29 Tricyclic Terpane -22R           | U                    |                             |
| 18a(H)-22,29,30-Trisnorneohopane -TS | Ŭ                    |                             |
| 17a(H)-22,29,30-Trisnorhopane -TM    | Ŭ                    |                             |
| 30-Norhopane                         | Ŭ                    |                             |
| 18a(H) & 18b(H)-Oleananes            | Ŭ                    |                             |
| Hopane                               | U                    |                             |
| 30-Homohopane -22S                   | Ŭ                    |                             |
| 30-Homohopane -22R                   | Ū                    |                             |
| 13b(H),17a(H)-20S-Diacholestane      | Ŭ                    |                             |
| 13b(H),17a(H)-20R-Diacholestane      | U                    |                             |
| 14a(H),17a(H)-20R-methylcholestane   | U                    |                             |
| 14a(H),17a(H)-20S-Ethylcholestane    | U                    |                             |
| 14a(H),17a(H)-20R-Ethylcholestane    | U                    |                             |
| C21-TAS                              | U                    |                             |
| C26-TAS(20S)                         | U                    |                             |
| C26,C27-TAS                          | U                    |                             |
| C27-TAS(20R)                         | U                    |                             |
| C28-TAS(20S)                         | U                    |                             |
| C28-TAS(20R)                         | U                    |                             |
| C21-MAS                              | U                    |                             |
| C22-MAS                              | U                    |                             |
| C27-MAS                              | U                    |                             |
| C27-20R-MAS                          | U                    |                             |
| C27-20S-MAS                          | U                    |                             |
| C28-20S-MAS                          | U                    |                             |
| C27-C2920S/R-MAS                     | U                    |                             |
| C29-20S-MAS                          | U                    |                             |
| C29-20R-MAS                          | U                    |                             |
| TAS_245                              | NA                   |                             |
| MAS_239                              | NA                   |                             |
|                                      |                      |                             |

### Surrogate Recoveries (%)

5b(H)-Cholane

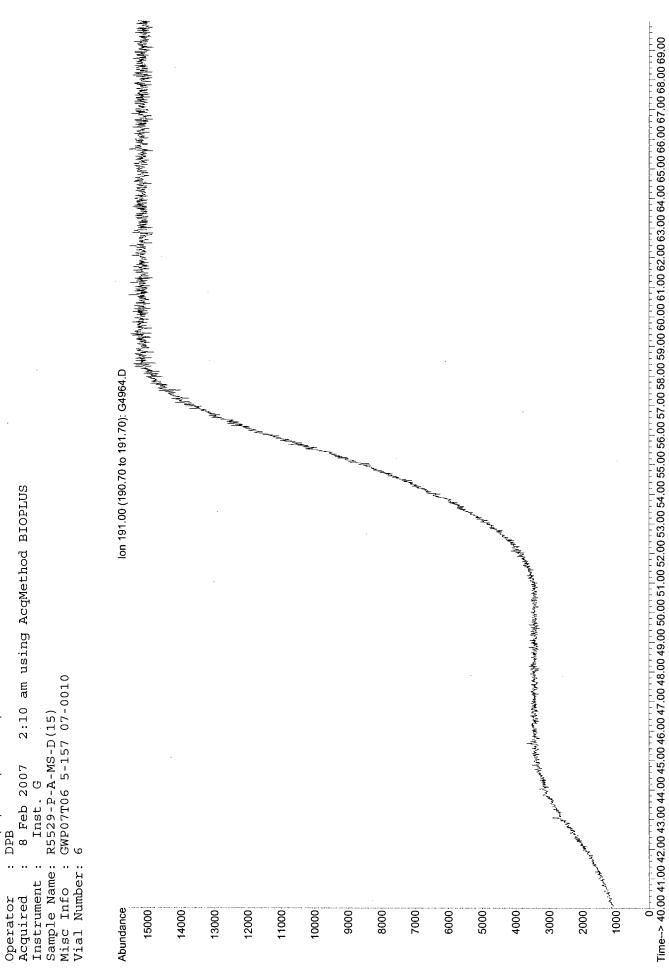

The Business of Innovation


Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

|                                      | GN62: North Slope |            |           |           |
|--------------------------------------|-------------------|------------|-----------|-----------|
| Client ID                            | Crude             |            |           |           |
| Cheft ID                             | Cidde             |            |           |           |
| Battelle ID                          | BJ959NSC-P        |            |           |           |
| Sample Type                          | NSC               |            |           |           |
| Collection Date                      | 01/30/07          |            |           |           |
| Extraction Date                      | 01/30/07          |            |           |           |
|                                      |                   |            |           |           |
| Analysis Date                        | 02/07/07          |            |           |           |
| Analytical Instrument                | MS                |            |           |           |
| % Moisture                           | NA                |            |           |           |
| % Lipid                              | NA                |            |           |           |
| Matrix                               | OIL               |            |           |           |
| Sample Size                          | 5.01              |            |           |           |
| Size Unit-Basis                      | G_OIL             |            |           |           |
| Minimum Reporting Limit              | 1.3               |            |           |           |
| Units                                | NG/G_OIL          | Target % D | ifference | Qualifier |
|                                      |                   |            |           |           |
| C23 Tricyclic Terpane                | 43.65             | 47.76      | 8.6       |           |
| C29 Tricyclic Terpane -22S           | 12.63             | 14.70      | 14.1      |           |
| C29 Tricyclic Terpane -22R           | 13.24             | 14.64      | 9.6       |           |
| 18a(H)-22,29,30-Trisnorneohopane -TS | 15.95             | 15.96      | 0.1       |           |
| 17a(H)-22,29,30-Trisnorhopane -TM    | 24.18             | 24.82      | 2.6       |           |
| 30-Norhopane                         | 73.99             | 69.58      | 6.3       |           |
| 18a(H) & 18b(H)-Oleananes            | U                 | 00100      | 0.0       |           |
| Hopane                               | 124.37            | 120.14     | 3.5       |           |
| 30-Homohopane -22S                   | 62.52             | 59.93      | 4.3       |           |
| 30-Homohopane -22R                   | 38.83             | 39.69      | 2.2       |           |
| 13b(H),17a(H)-20S-Diacholestane      | 44.55             | 44.18      | 0.8       |           |
|                                      | 25.35             | 25.52      | 0.8       |           |
| 13b(H),17a(H)-20R-Diacholestane      |                   |            |           |           |
| 14a(H),17a(H)-20R-methylcholestane   | 35.49             | 33.94      | 4.6       |           |
| 14a(H),17a(H)-20S-Ethylcholestane    | 41.61             | 35.93      | 15.8      |           |
| 14a(H),17a(H)-20R-Ethylcholestane    | 40.28             | 39.17      | 2.8       |           |
| C21-TAS                              | 18.59             |            |           |           |
| C26-TAS(20S)                         | 15.53             |            |           |           |
| C26,C27-TAS                          | 55.26             |            |           |           |
| C27-TAS(20R)                         | 37.91             |            |           |           |
| C28-TAS(20S)                         | 31.48             |            |           |           |
| C28-TAS(20R)                         | 31.26             |            |           |           |
| C21-MAS                              | 6.09              |            |           |           |
| C22-MAS                              | 3.54              |            |           |           |
| C27-MAS                              | 4.73              |            |           |           |
| C27-20R-MAS                          | 5.98              |            |           |           |
| C27-20S-MAS                          | 2.57              |            |           |           |
| C28-20S-MAS                          | 14.9              |            |           |           |
| C27-C2920S/R-MAS                     | 12.33             |            |           |           |
| C29-20S-MAS                          | 4.08              |            |           |           |
| C29-20R-MAS                          | 9.14              |            |           |           |
| TAS_245                              | NA                |            |           |           |
| MAS_239                              | NA                |            |           |           |
|                                      |                   |            |           |           |

### Surrogate Recoveries (%)

5b(H)-Cholane

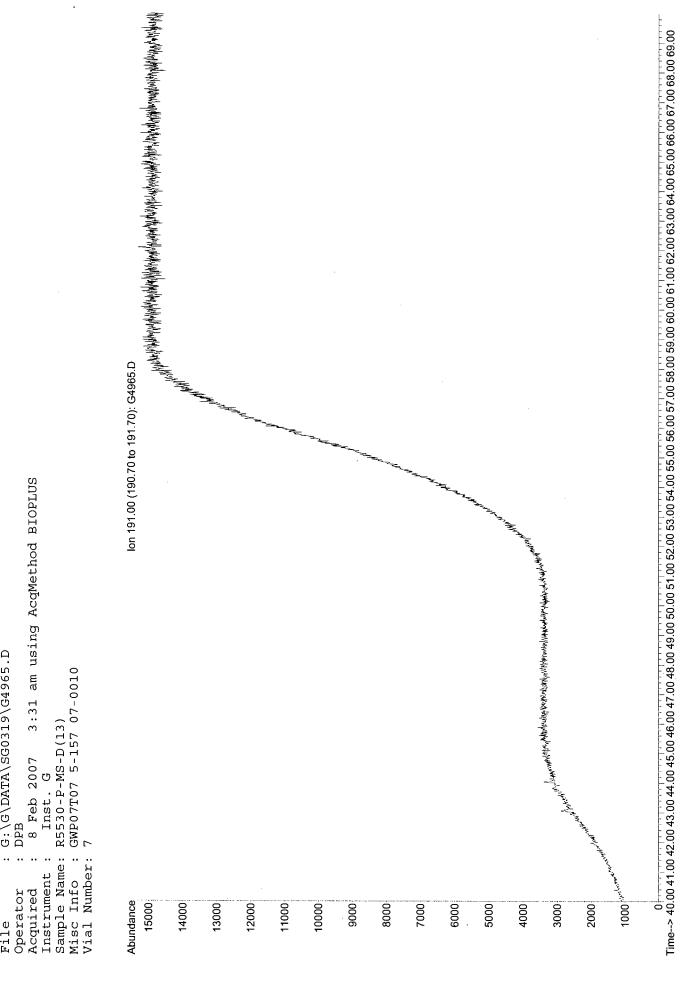





1

A)

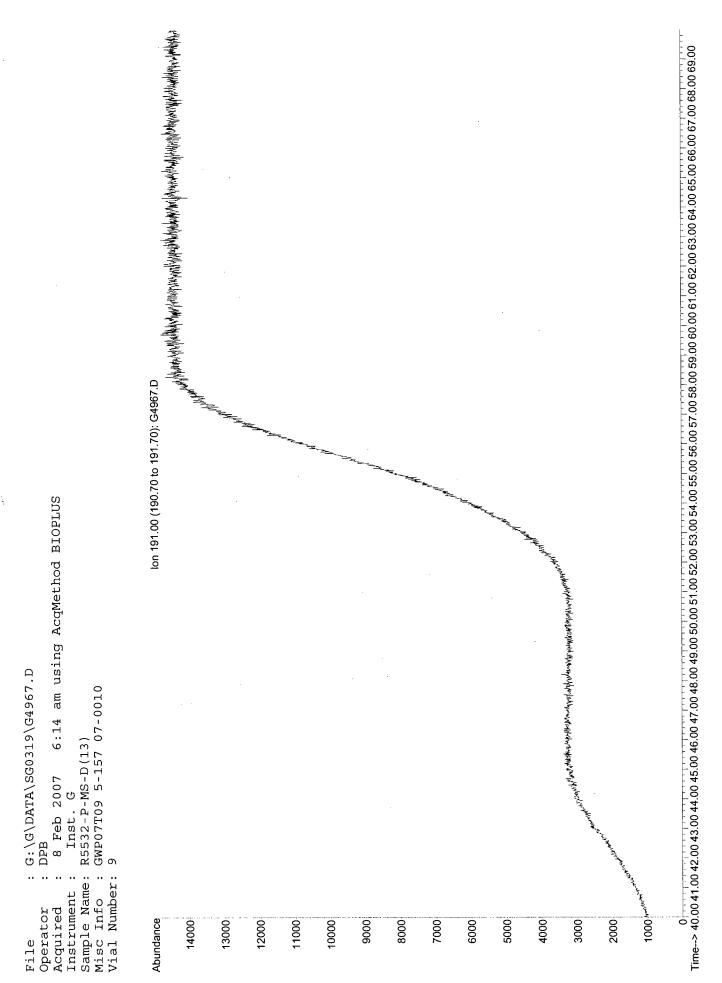
File




: G:\G\DATA\SG0319\G4964.D : DPB

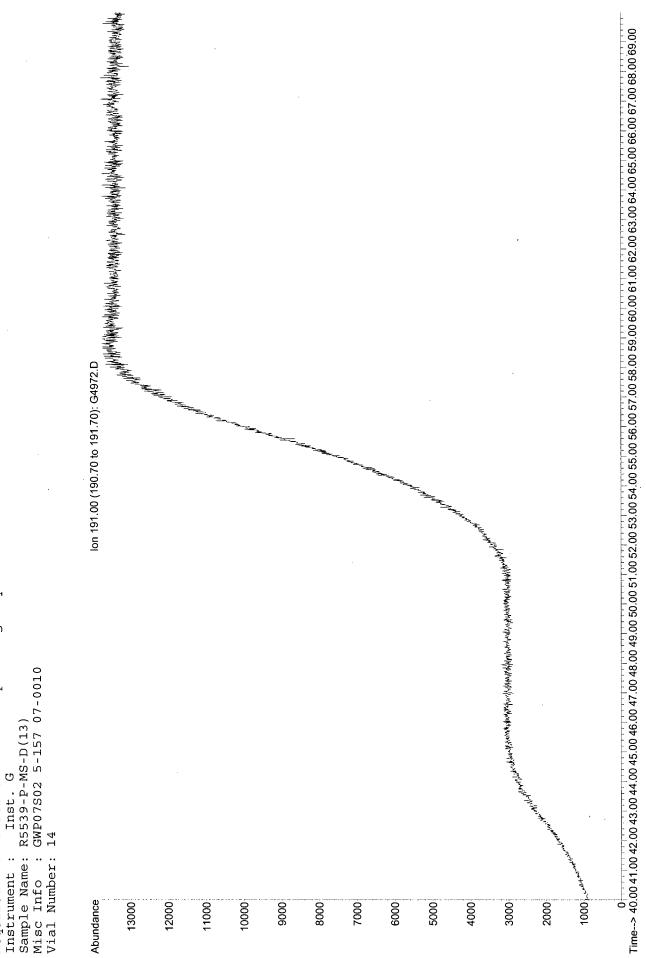
File

4


2:10 am using AcqMethod BIOPLUS



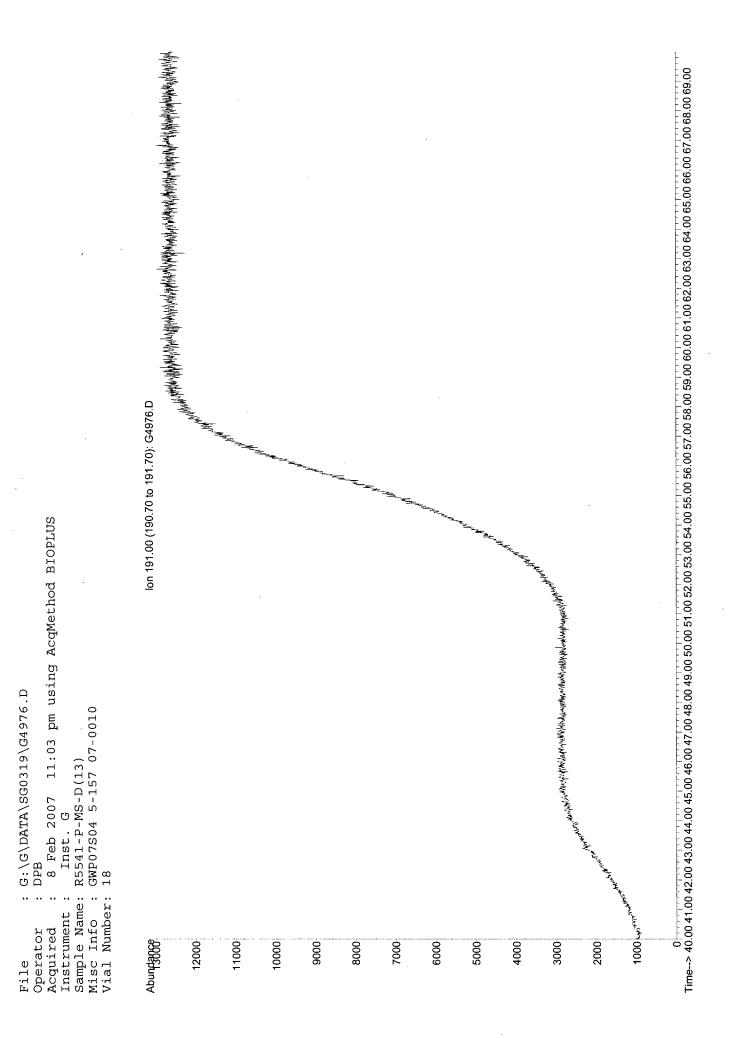

3:31 am using AcqMethod BIOPLUS

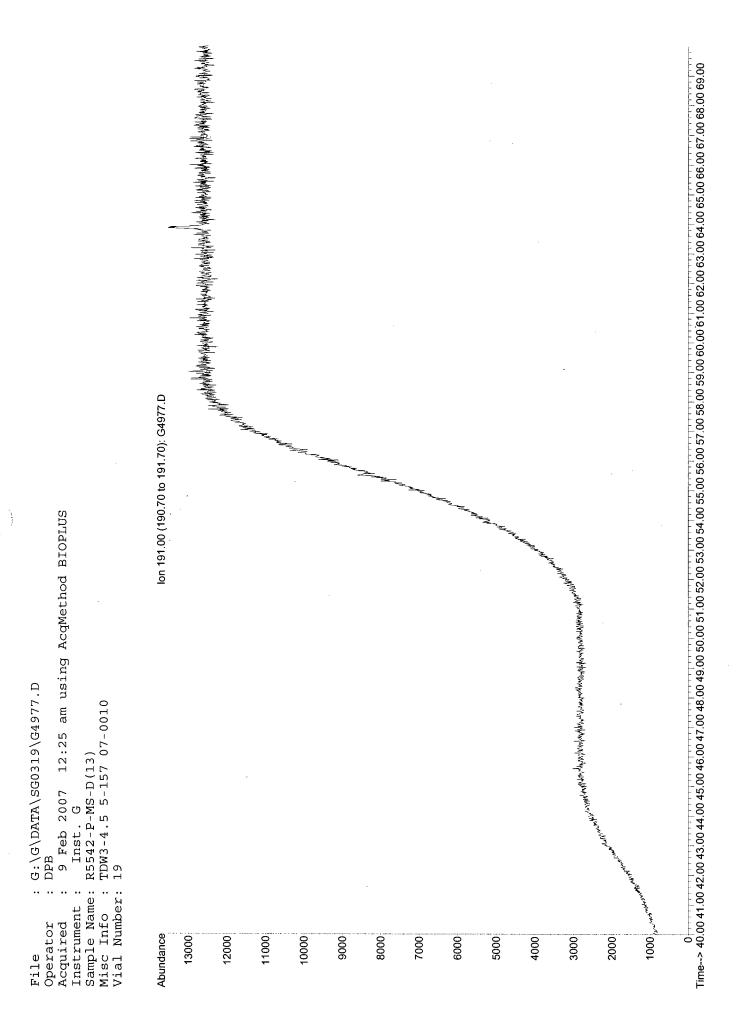

: G:\G\DATA\SG0319\G4965.D : DPB

File

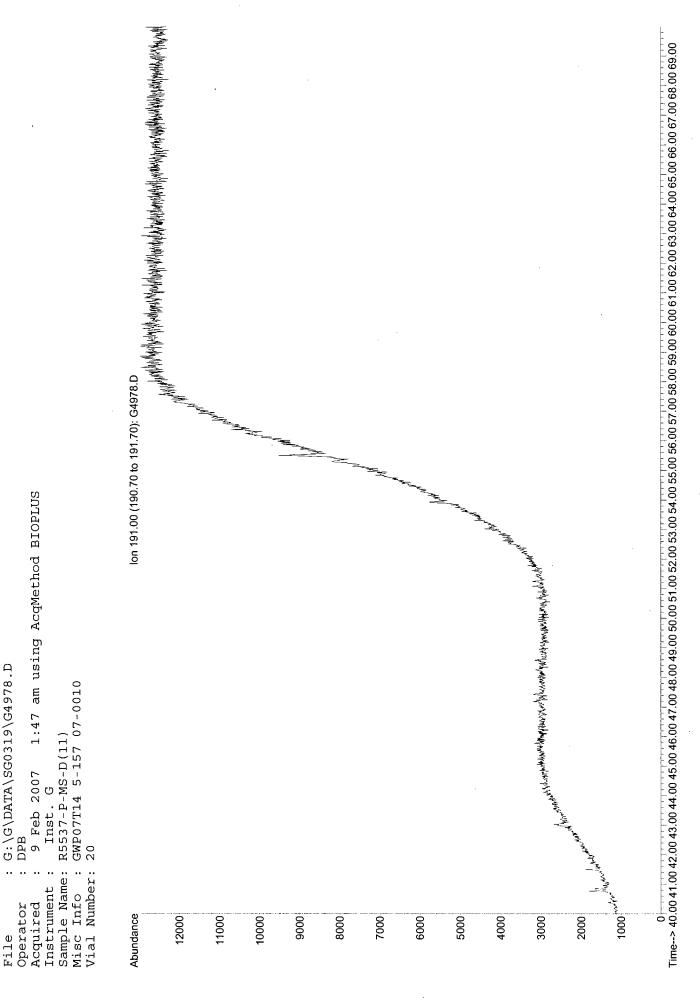


.\*

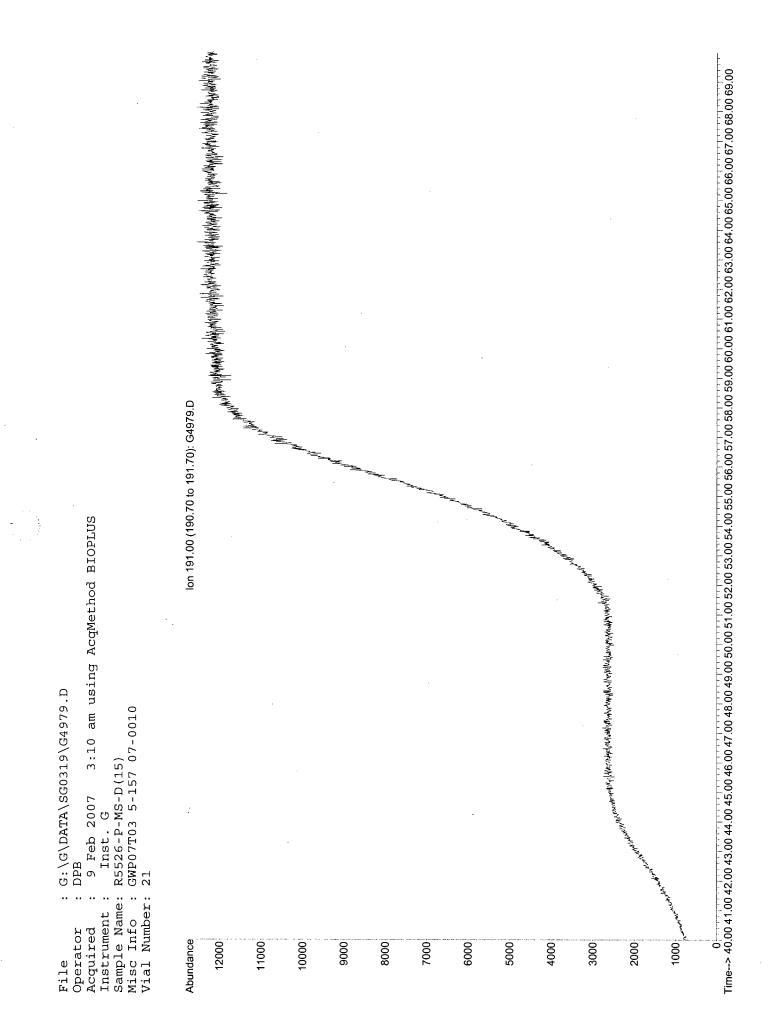


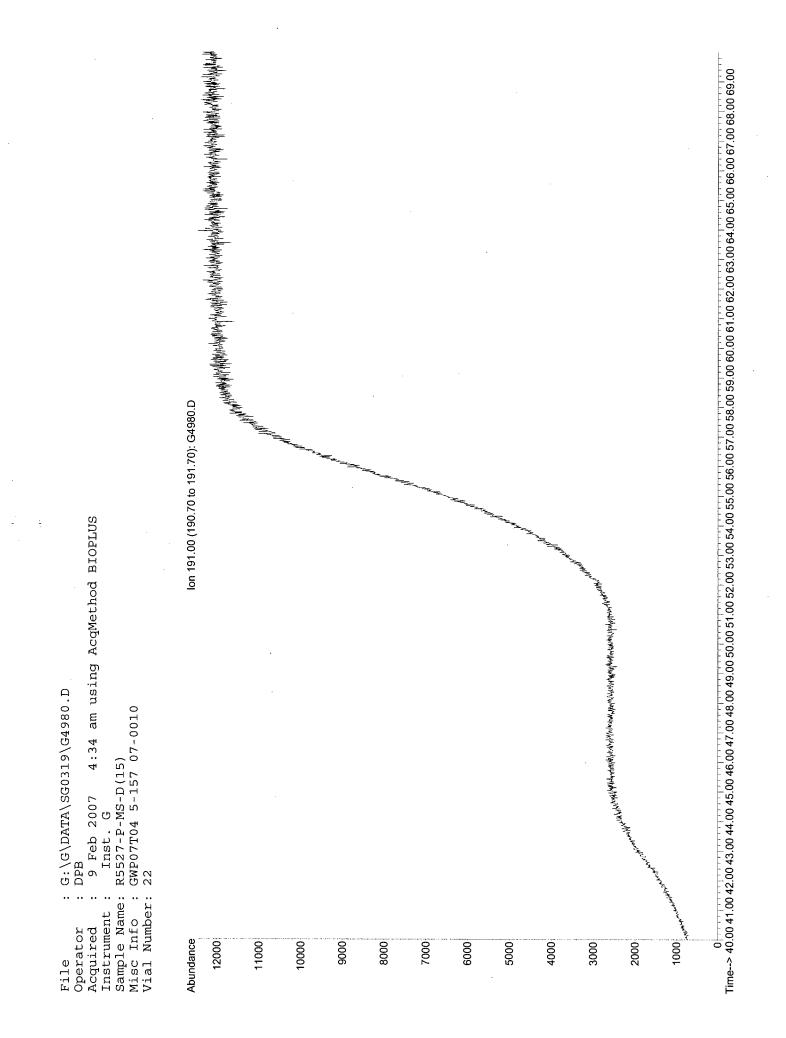



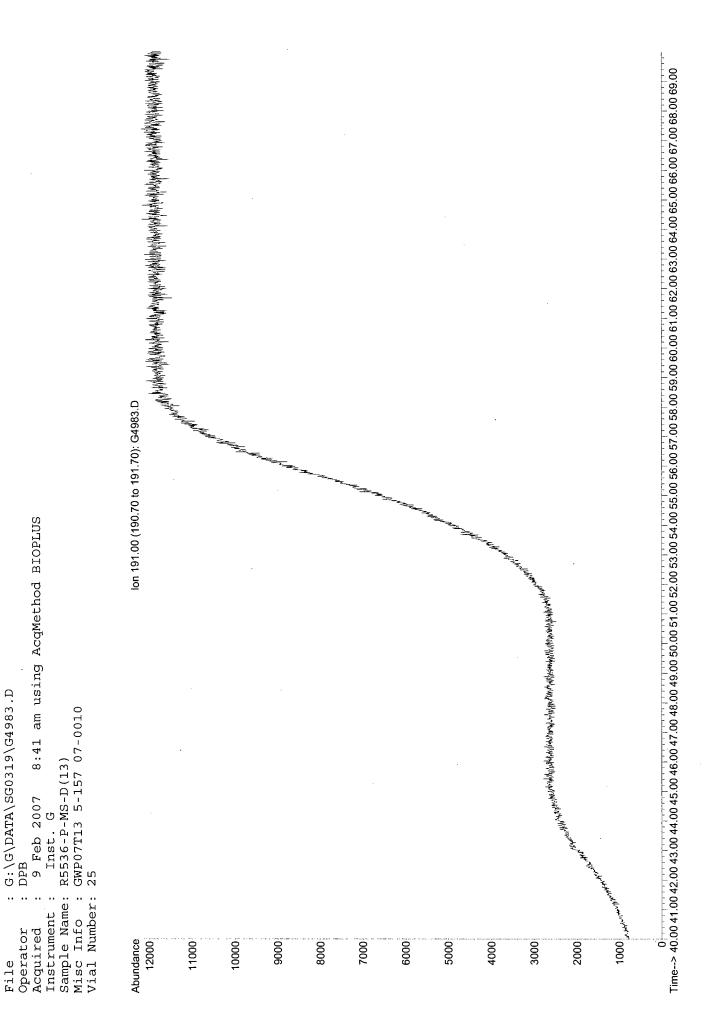

5:37 pm using AcqMethod BIOPLUS : G:\G\DATA\SG0319\G4972.D : DPB Acquired : 8 Feb 2007 5: Instrument : Inst. G Sample Name: R5539-P-MS-D(13) Operator


File

· . ;

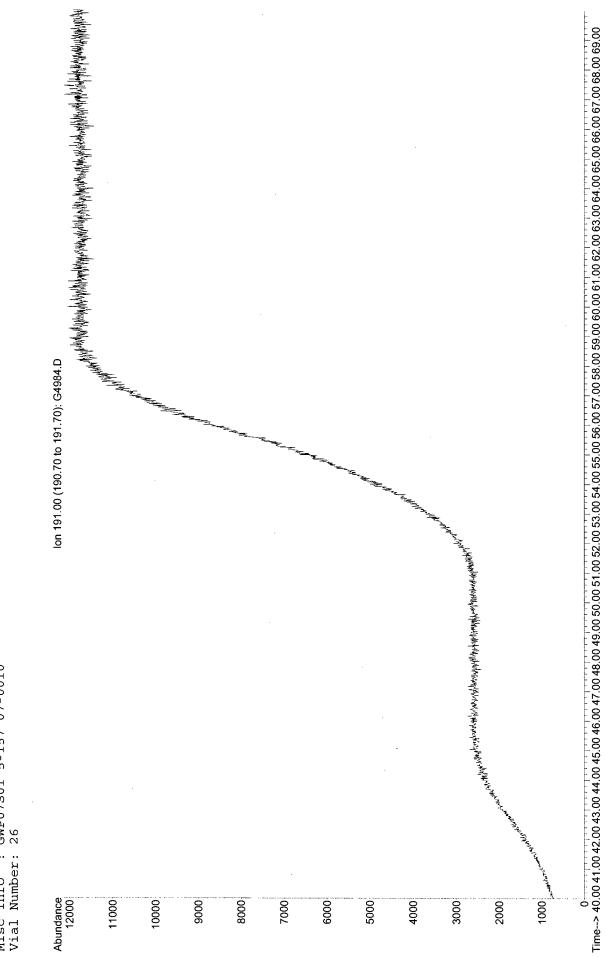


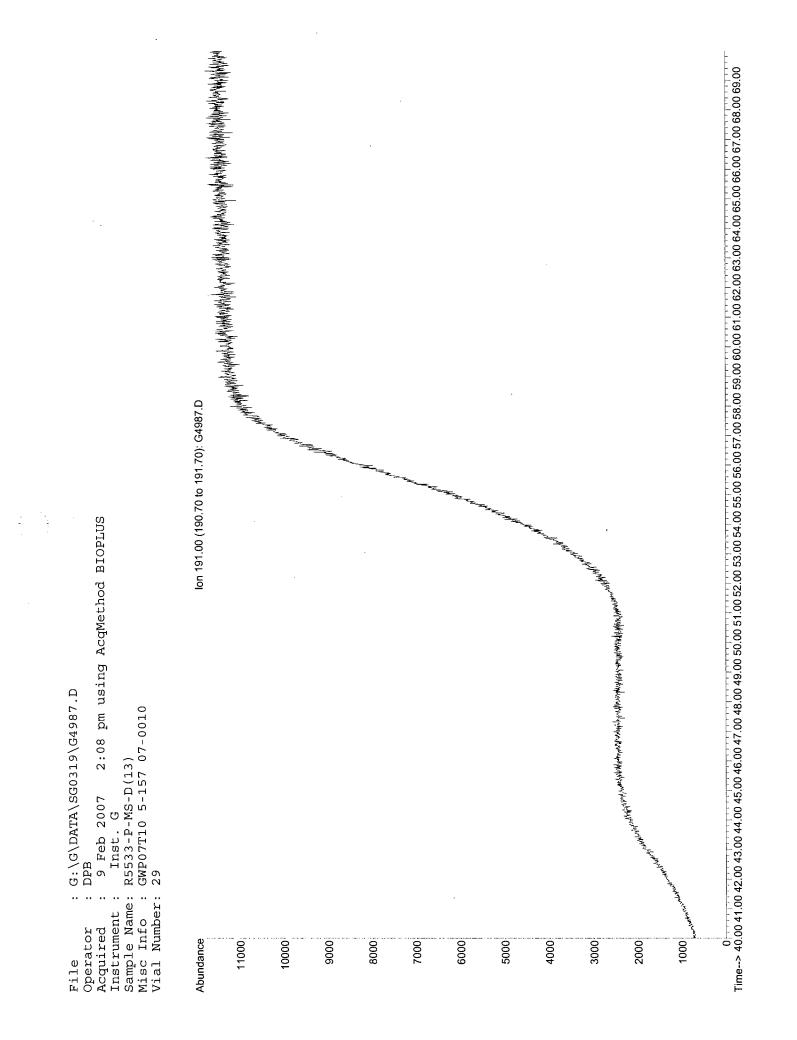


\_

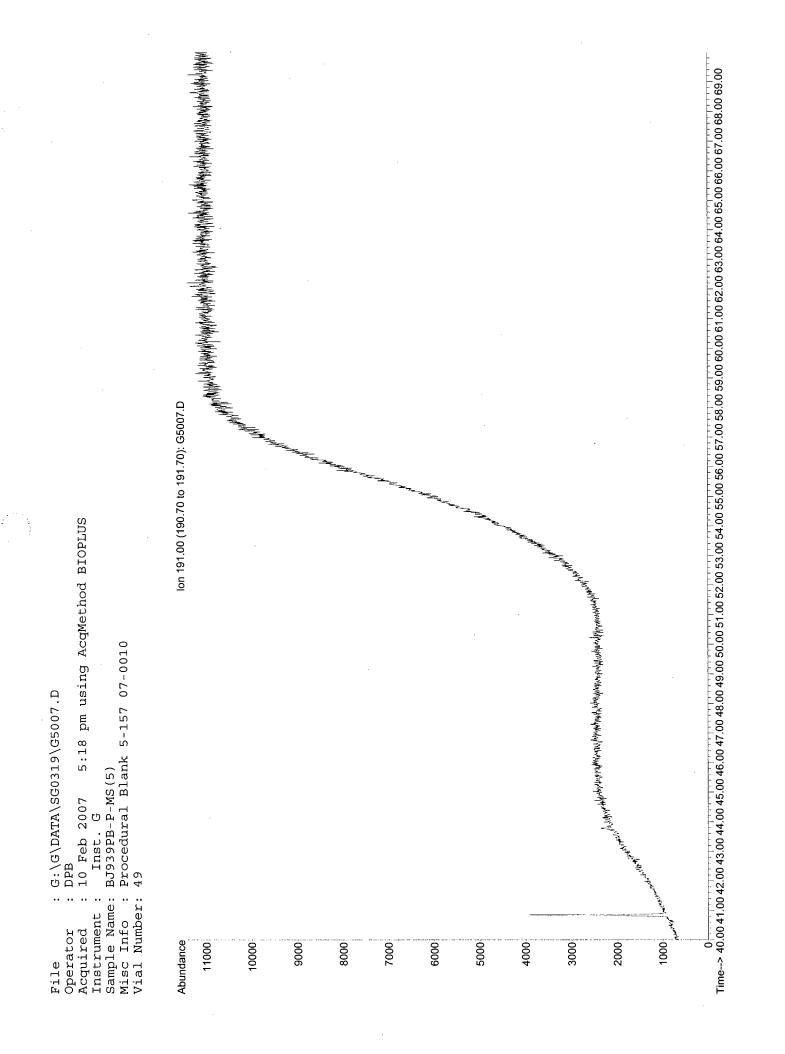


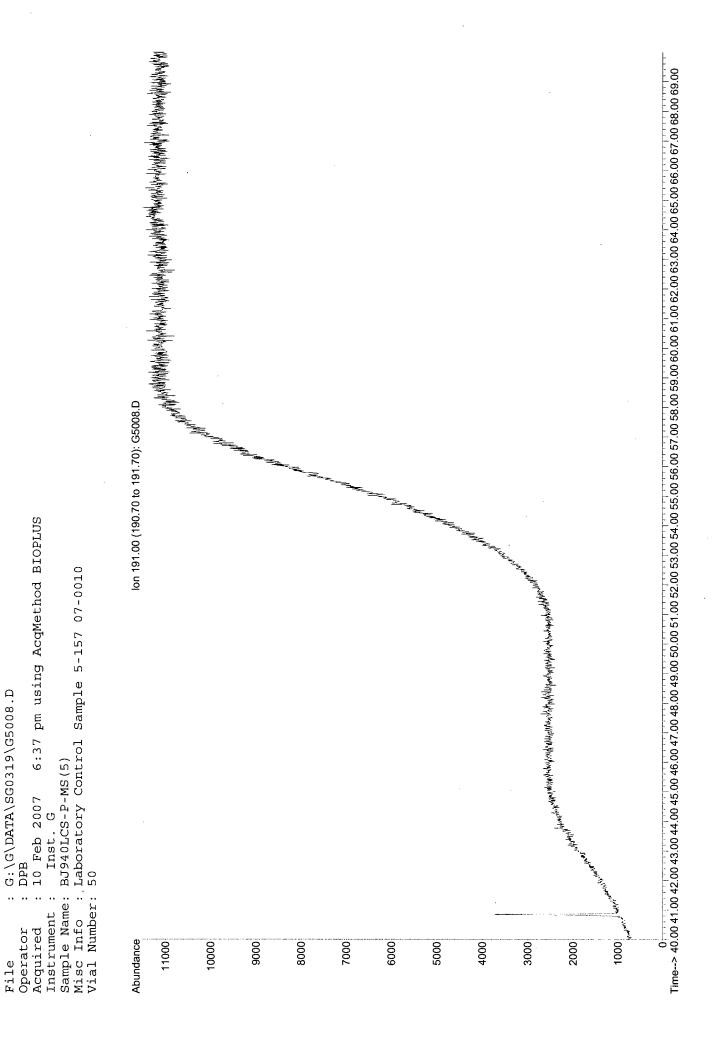
1:47 am using AcqMethod BIOPLUS : G:\G\DATA\SG0319\G4978.D : DPB

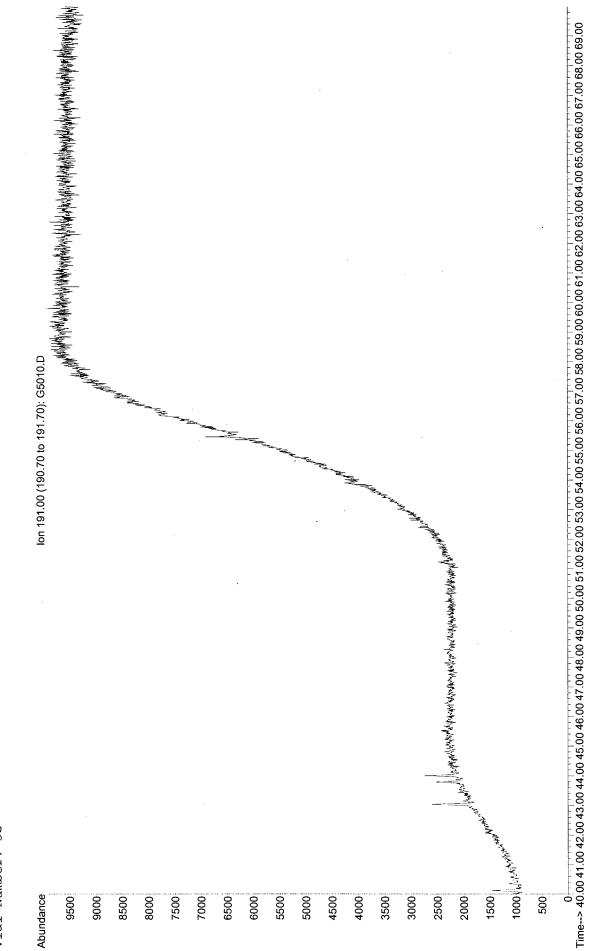




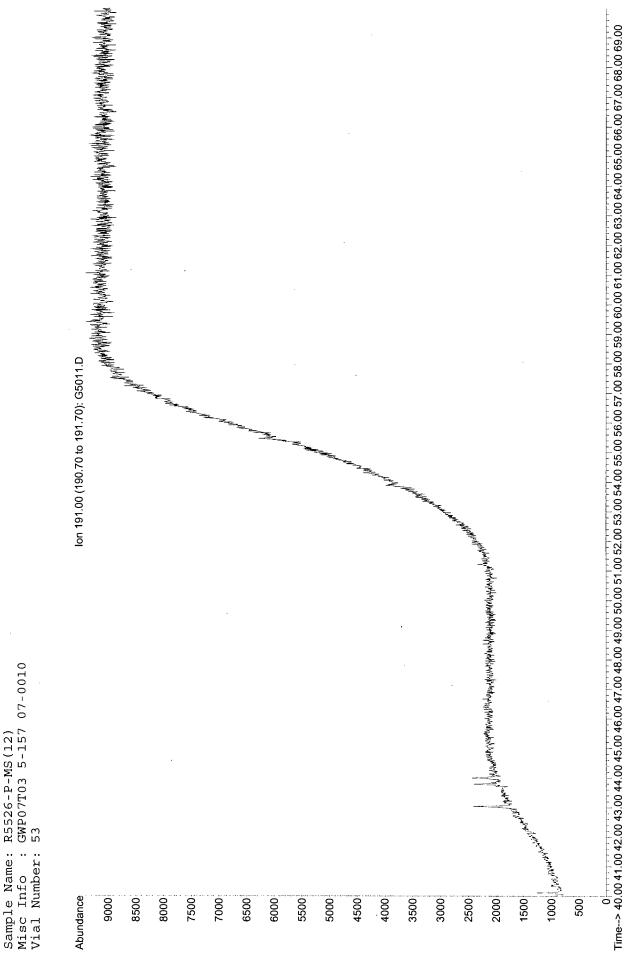





, . . .


File

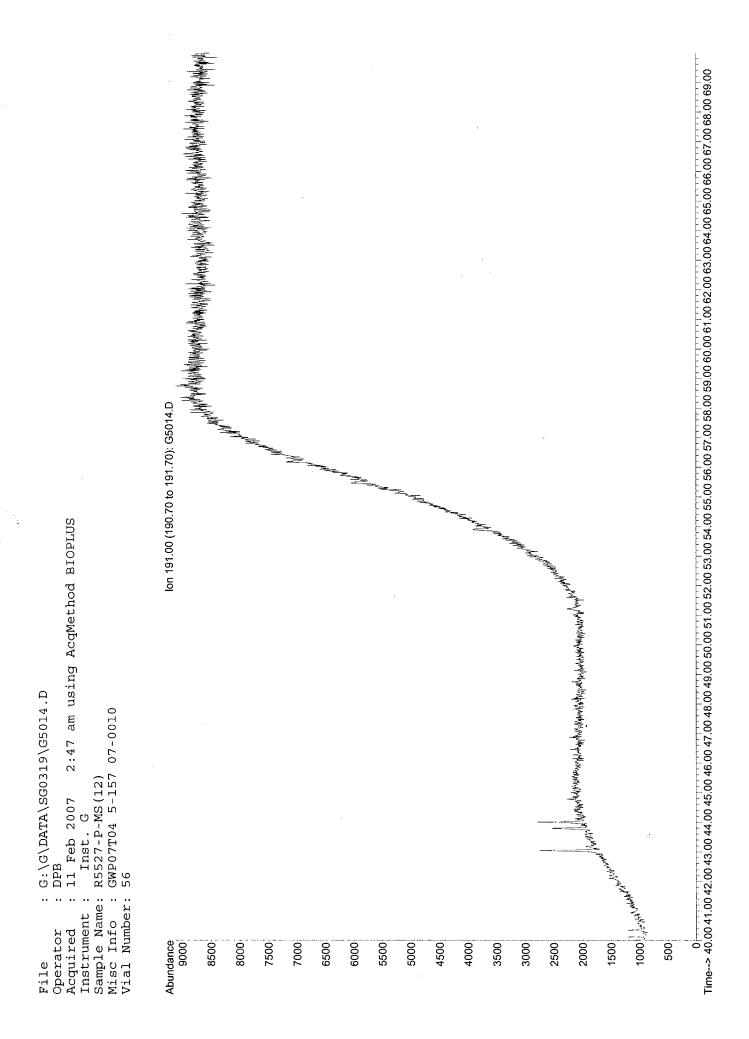


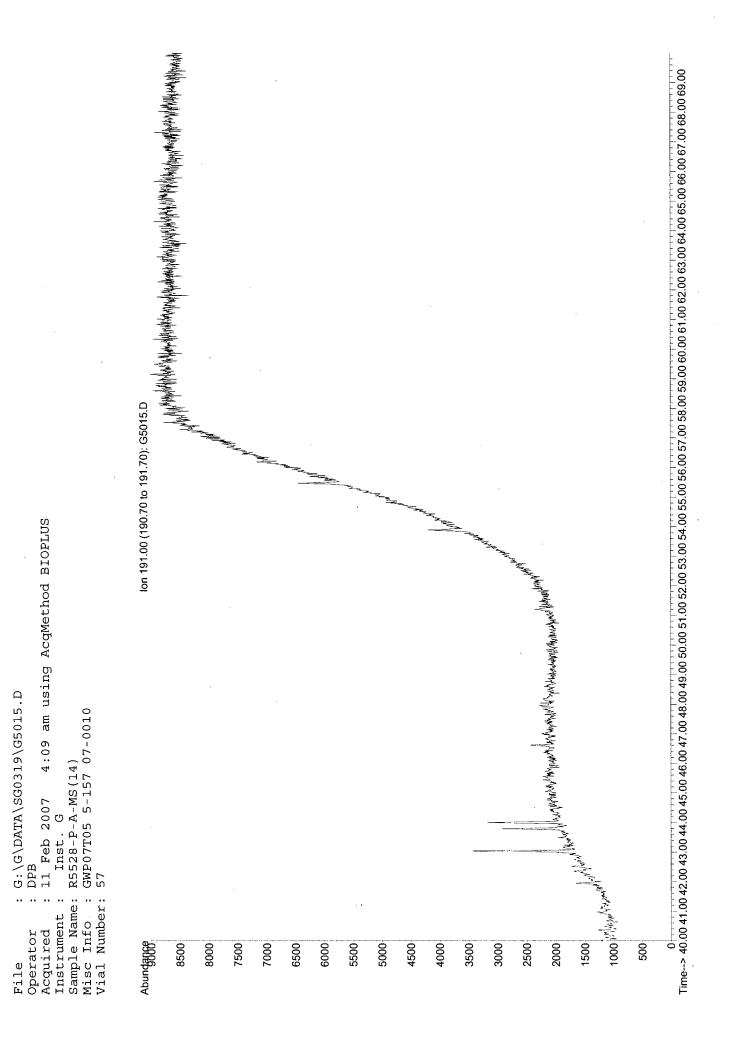

File : G:\G\DATA\SG0319\G4984.D Operator : DPB Acquired : 9 Feb 2007 10:03 am using AcqMethod BIOPLUS Instrument : Inst. G Sample Name: R5538-P-MS-D(13) Misc Info : GWP07S01 5-157 07-0010 Vial Number: 26

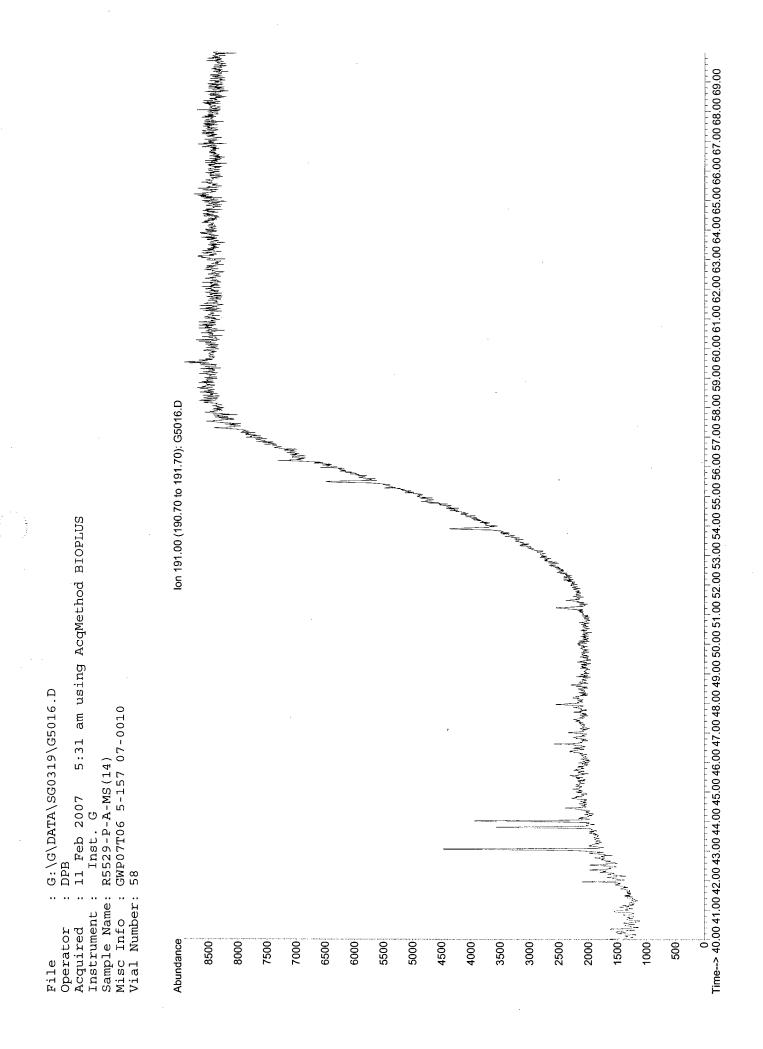


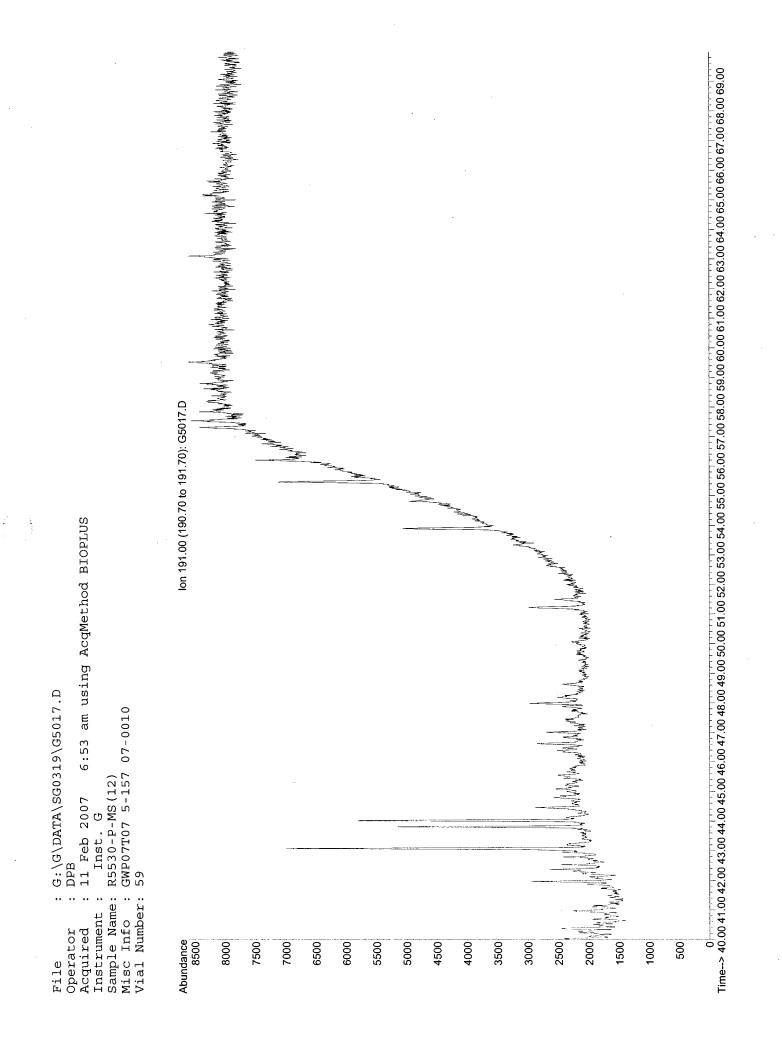


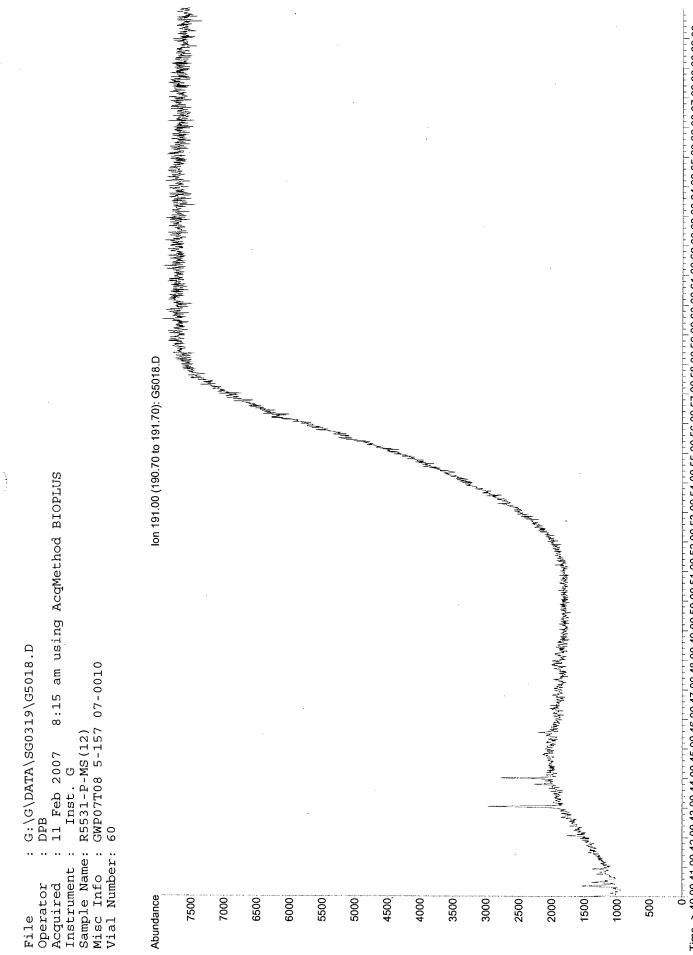


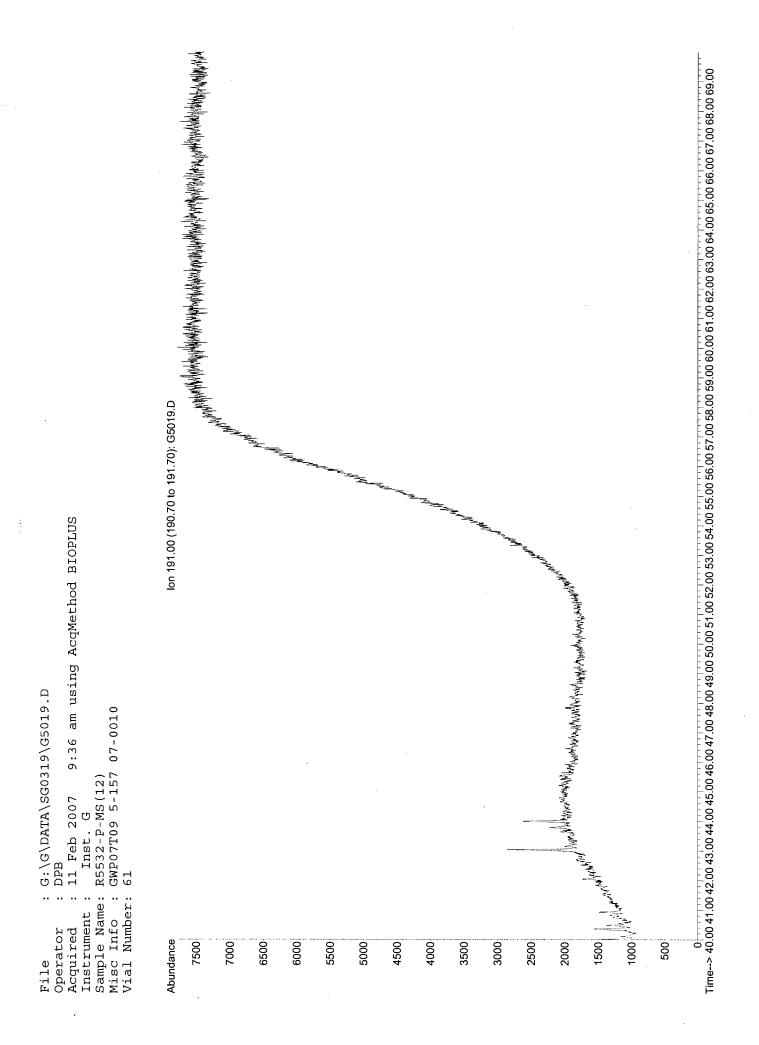


File : G:\G\DATA\SG0319\G5010.D Operator : DPB Acquired : 10 Feb 2007 9:21 pm using AcqMethod BIOPLUS Instrument : Inst. G Sample Name: R5525-P-MS(12) Misc Info : GWP07T02 5-157 07-0010 Vial Number: 52

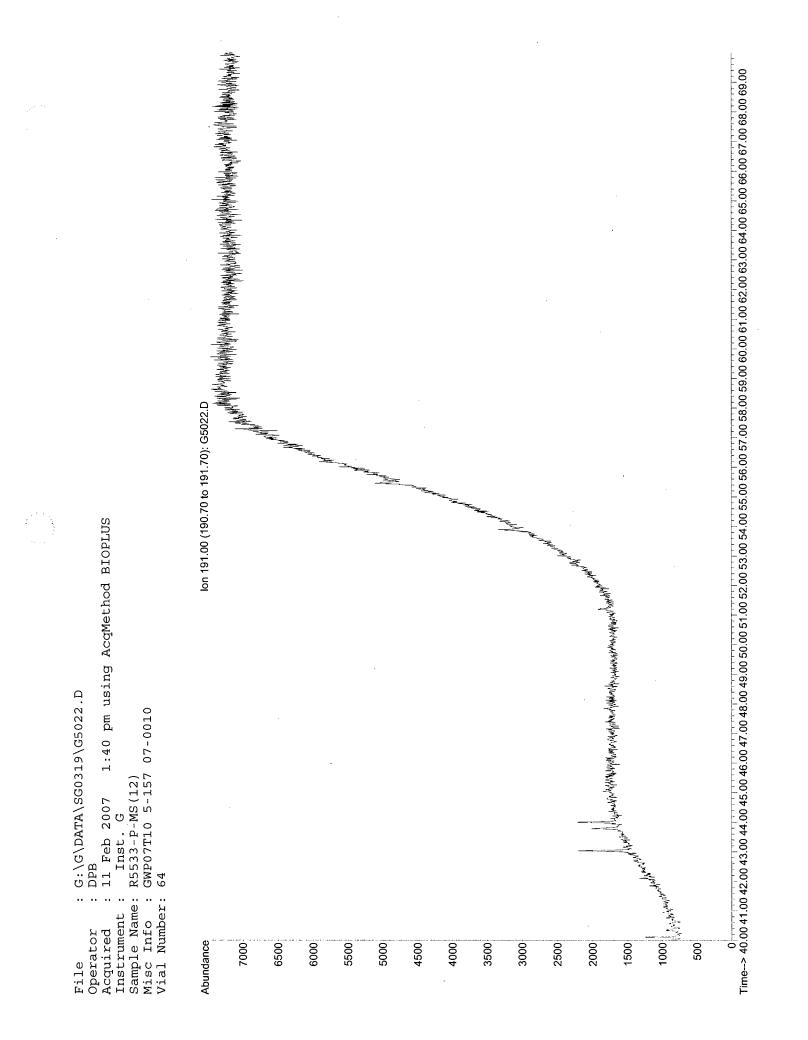


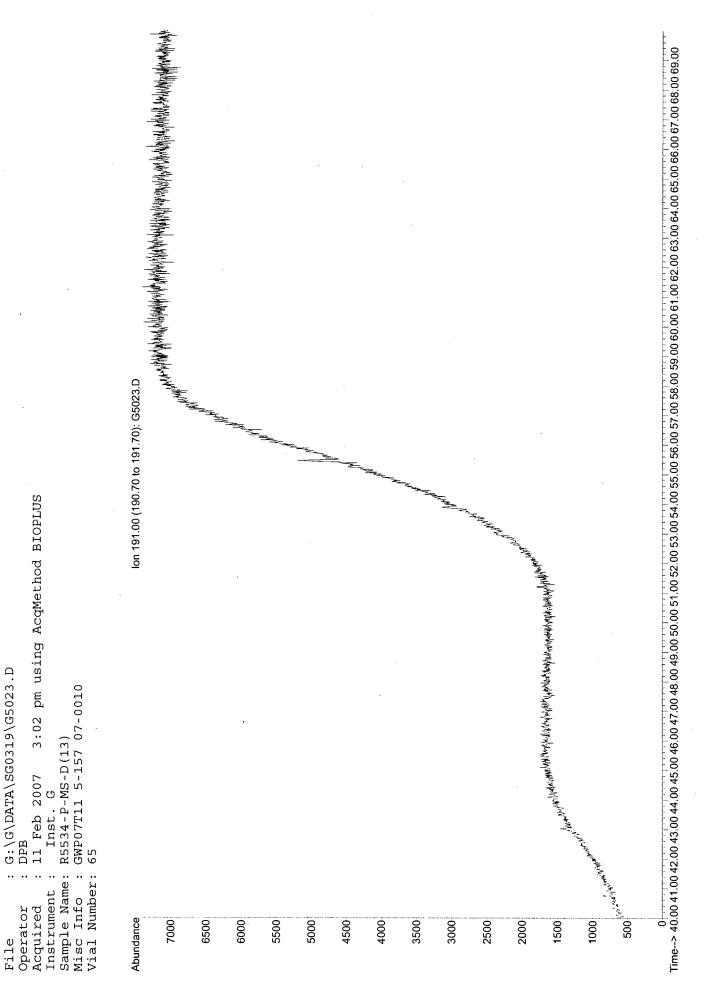


Acquired : 10 Feb 2007 10:43 pm using AcqMethod BIOPLUS Instrument : Inst. G Sample Name: R5526-P-MS(12) Misc Info : GWP07T03 5-157 07-0010 G:\G\DATA\SG0319\G5011.D DPB Operator File

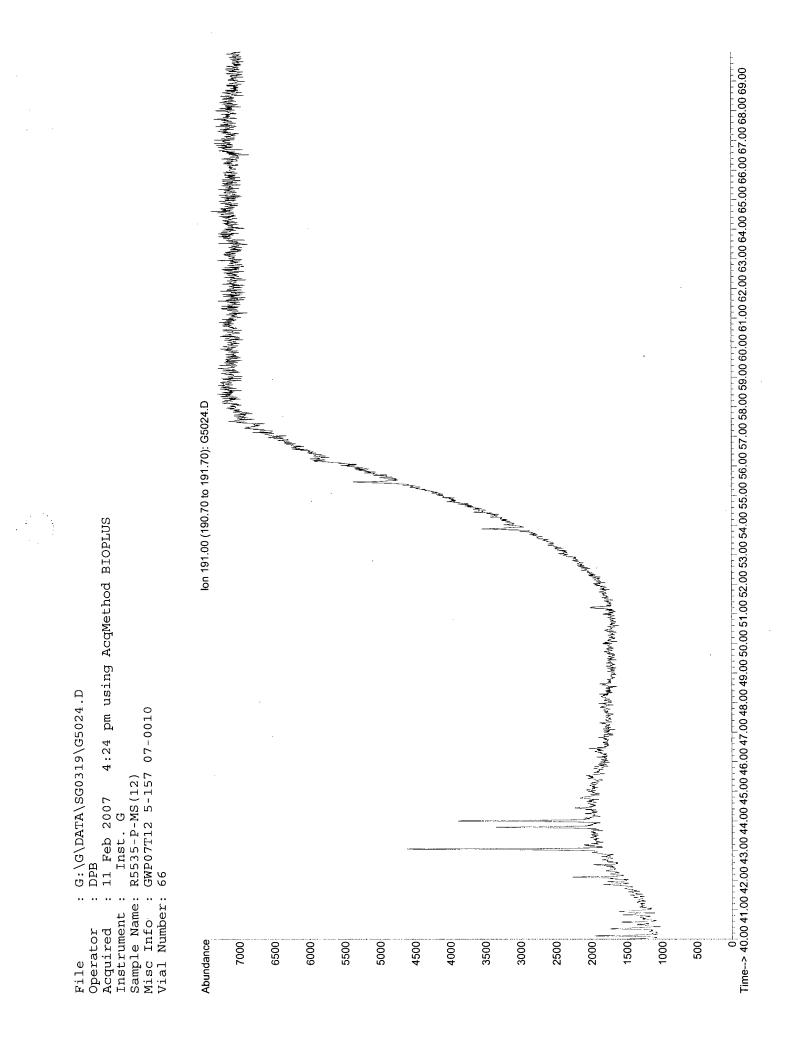

;

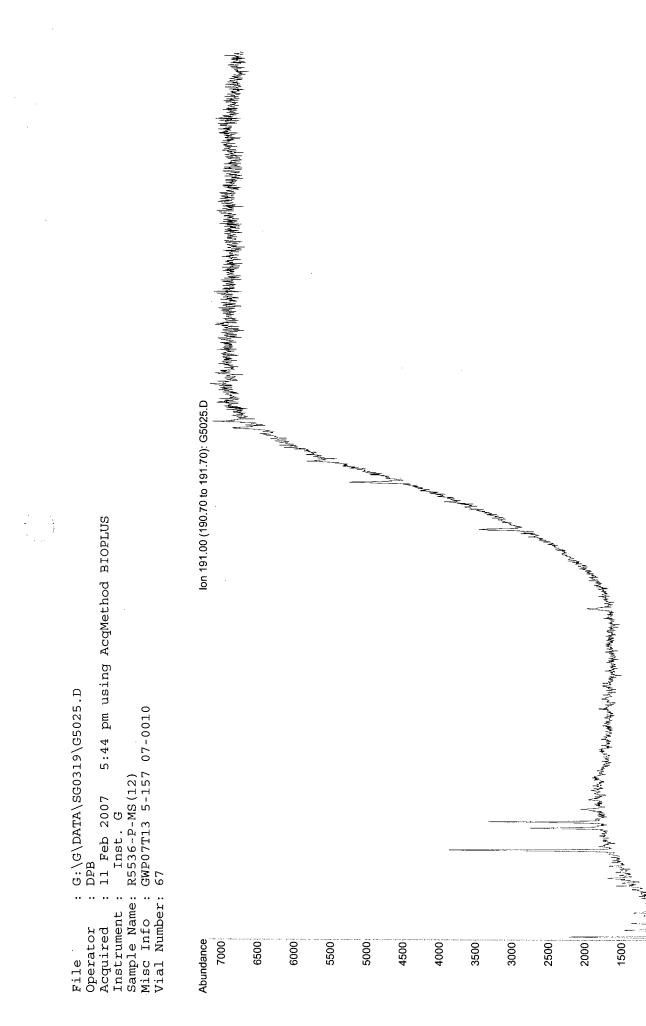




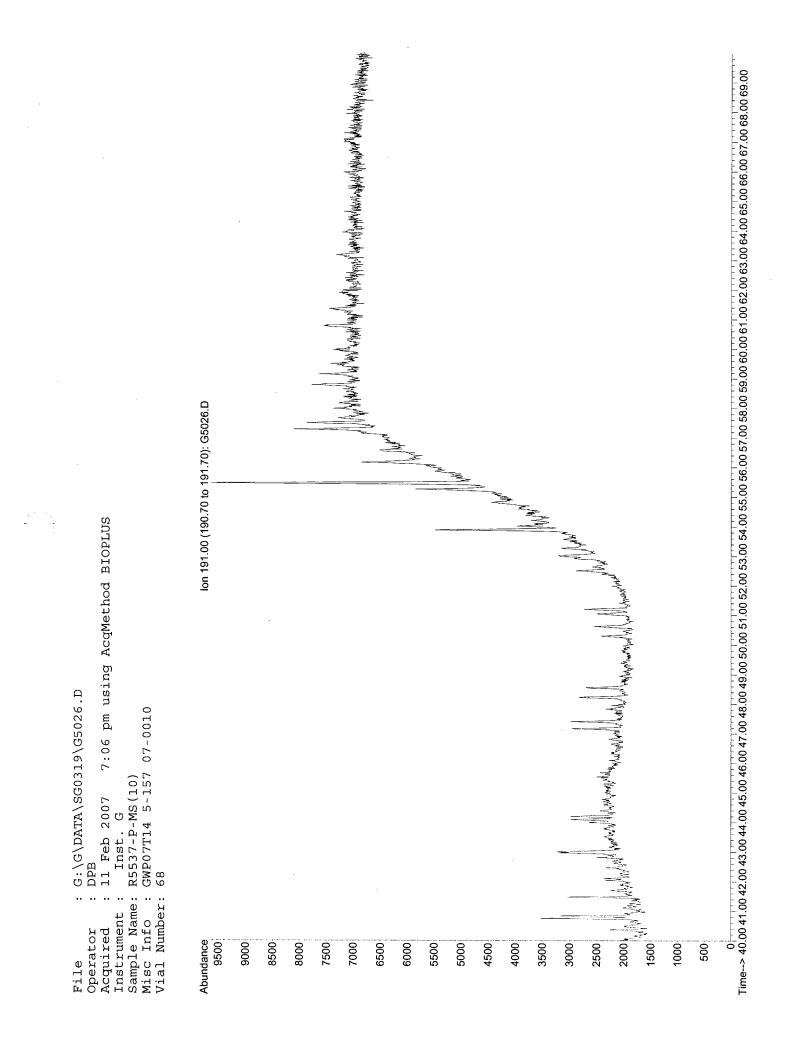



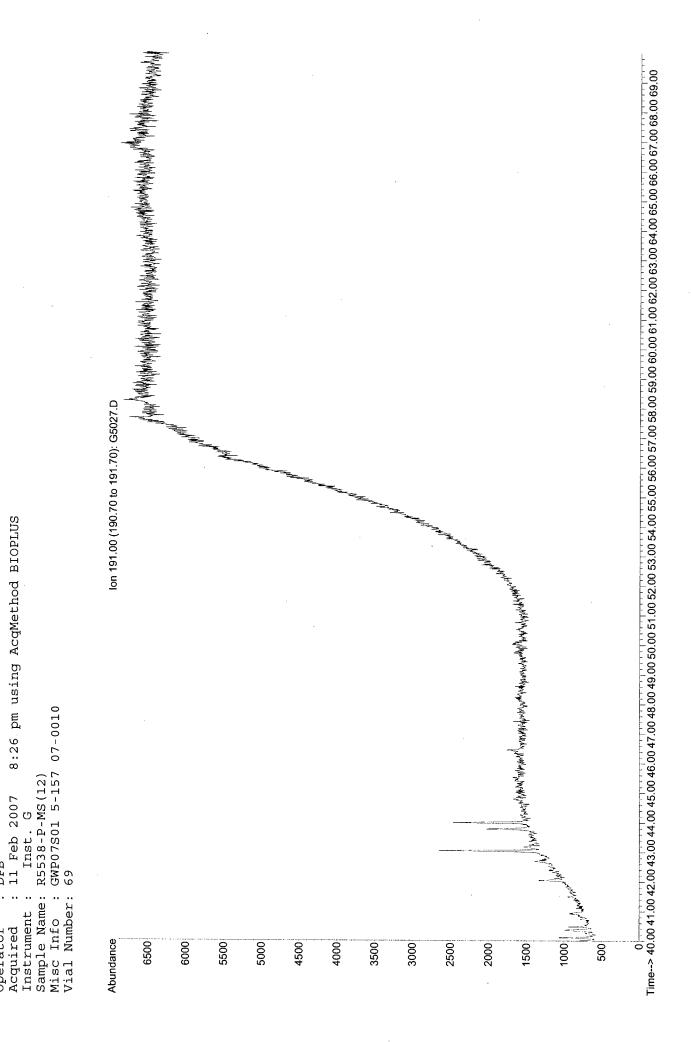


Time--> 40.00 41.00 42.00 43.00 45.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00 60.00 61.00 62.00 65.00 66.00 67.00 68.00 69.00







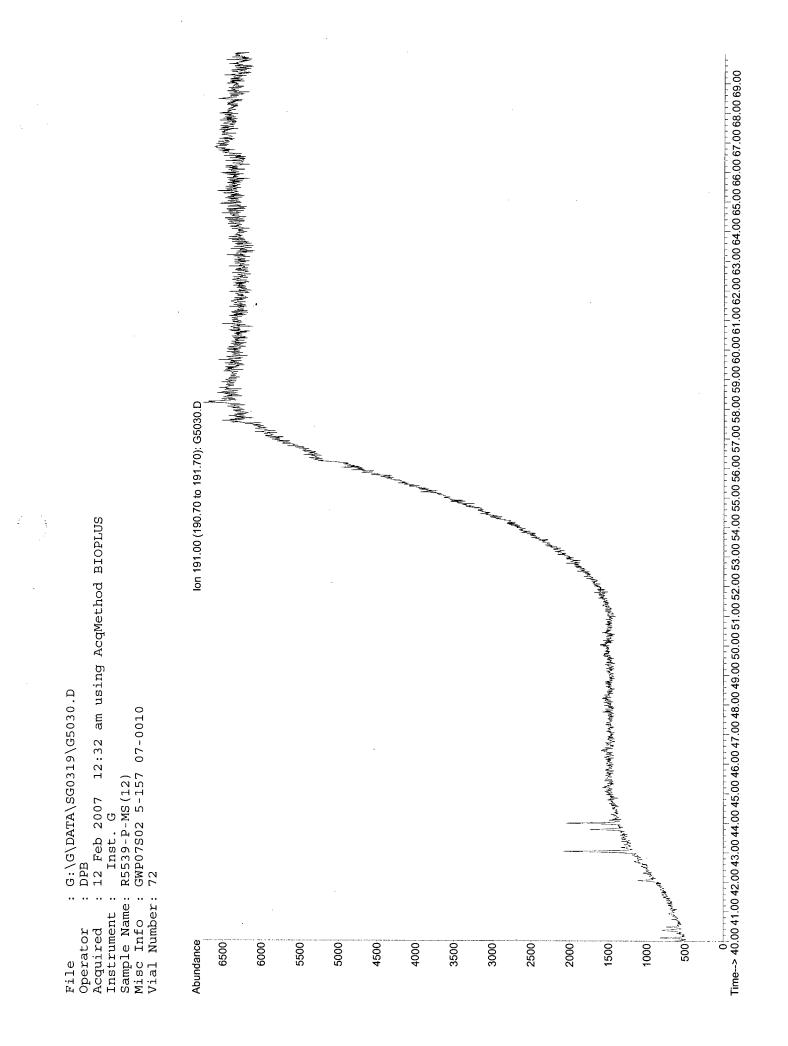


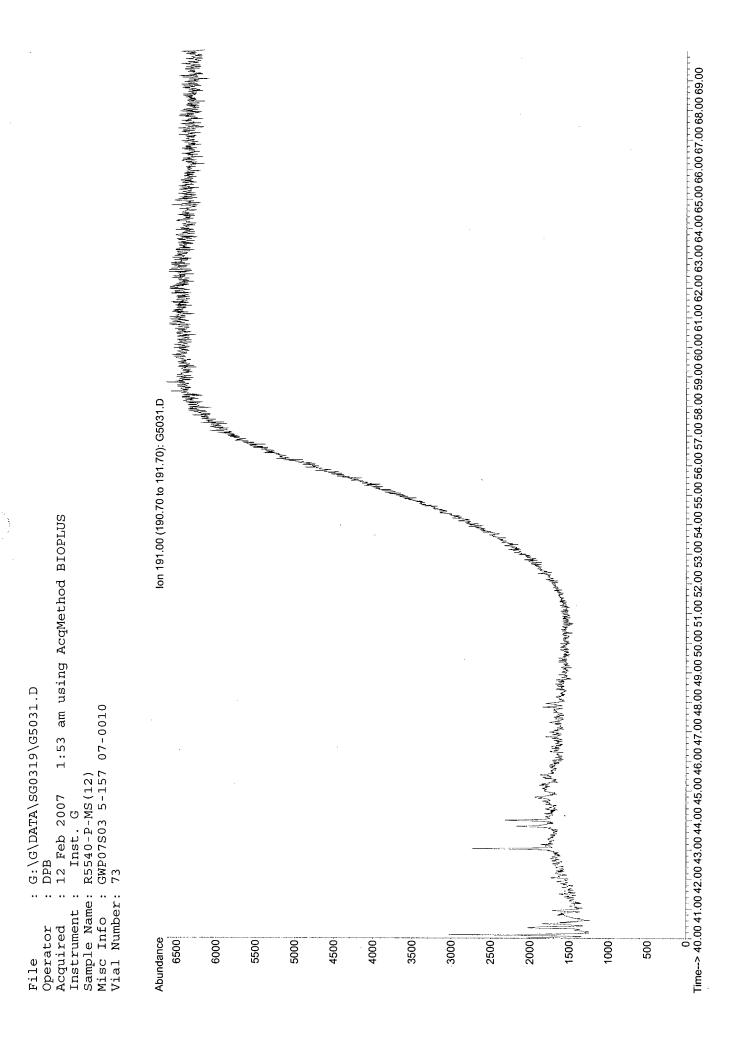



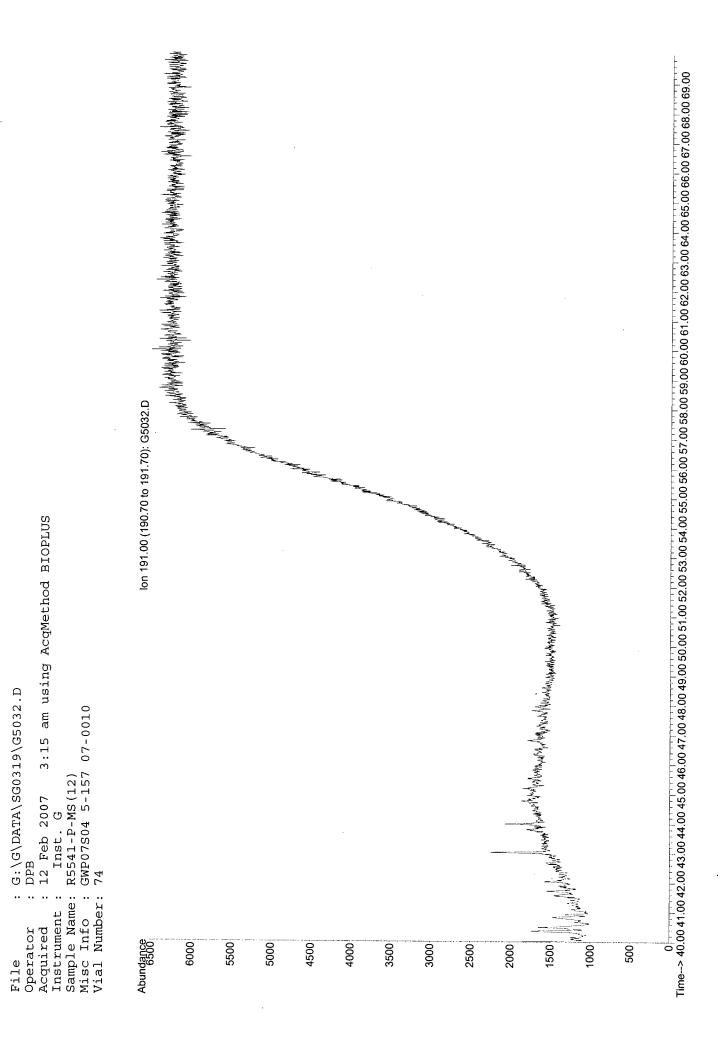

Time--> 40.00 41.00 42.00 45.00 45.00 45.00 45.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00 60.00 61.00 62.00 65.00 65.00 68.00 69.00 Ö

.

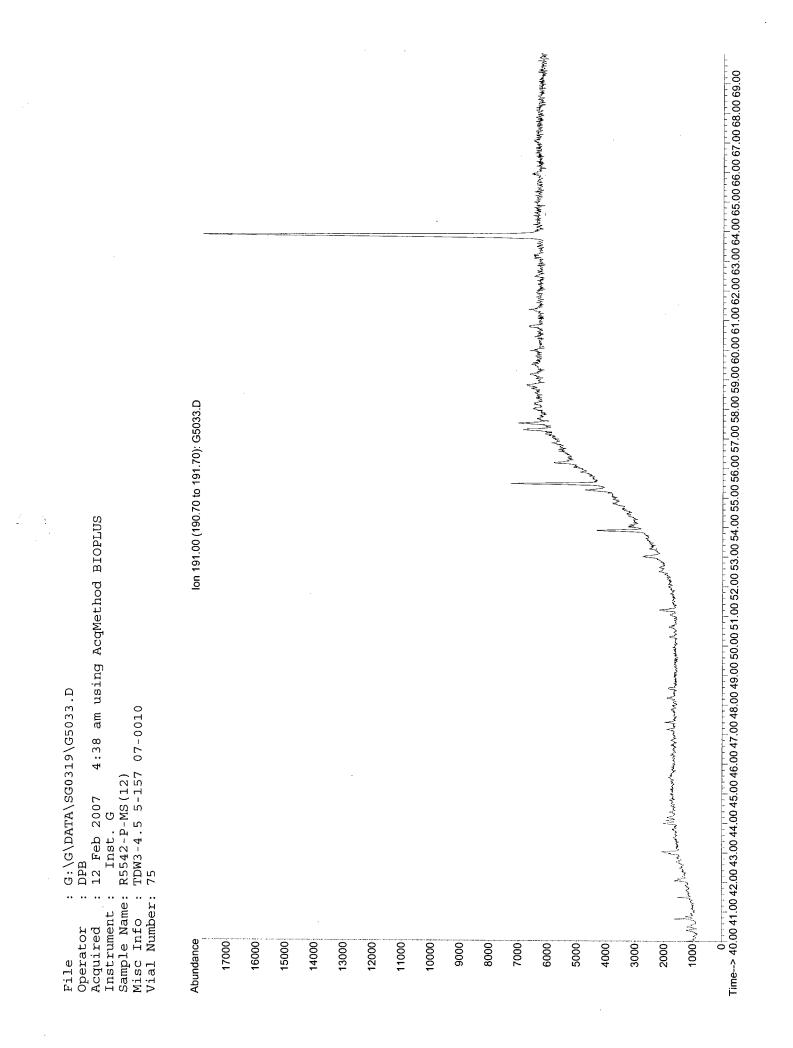
1000

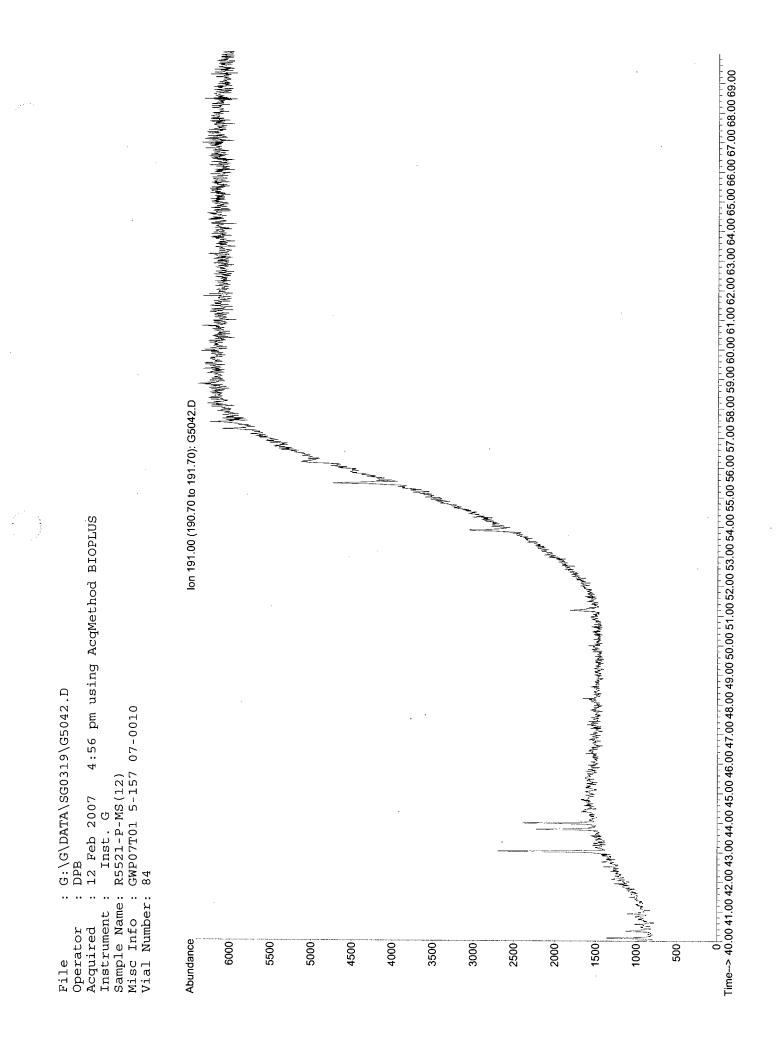


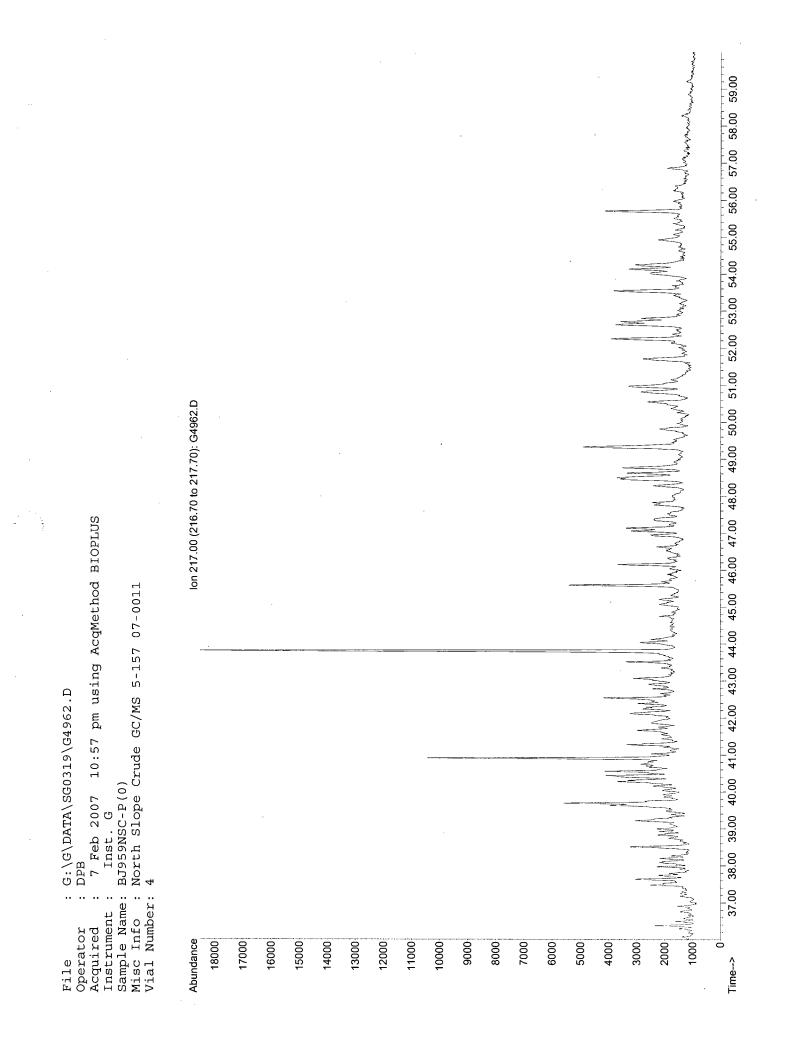



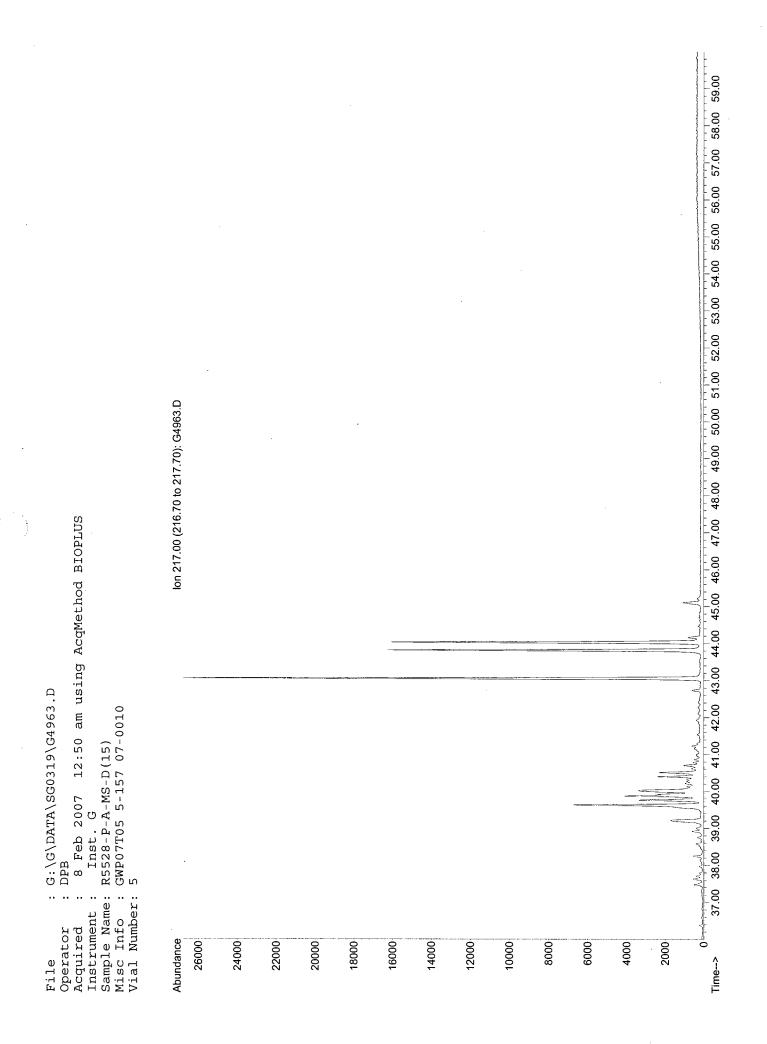


G:\G\DATA\SG0319\G5027.D DPB

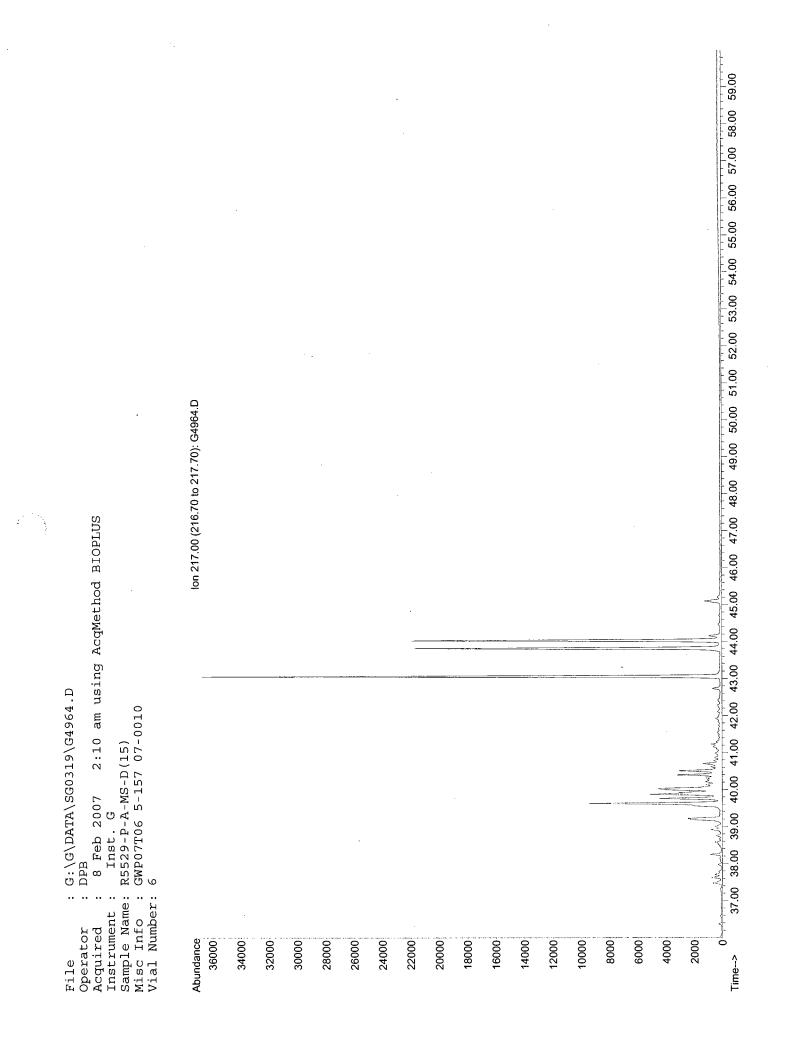
Operator

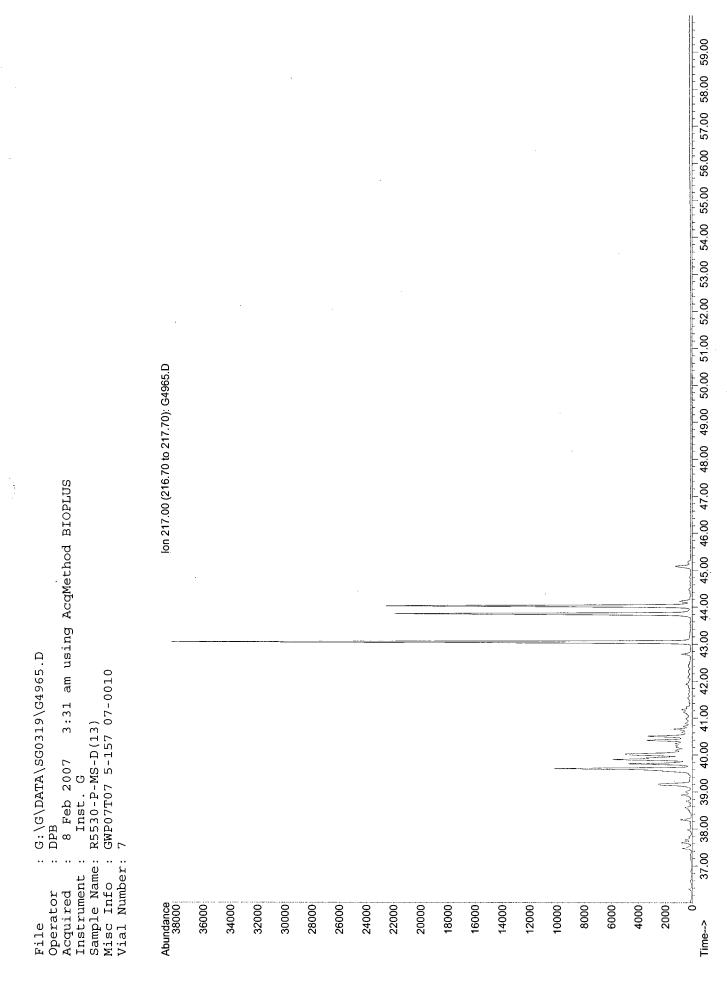

File



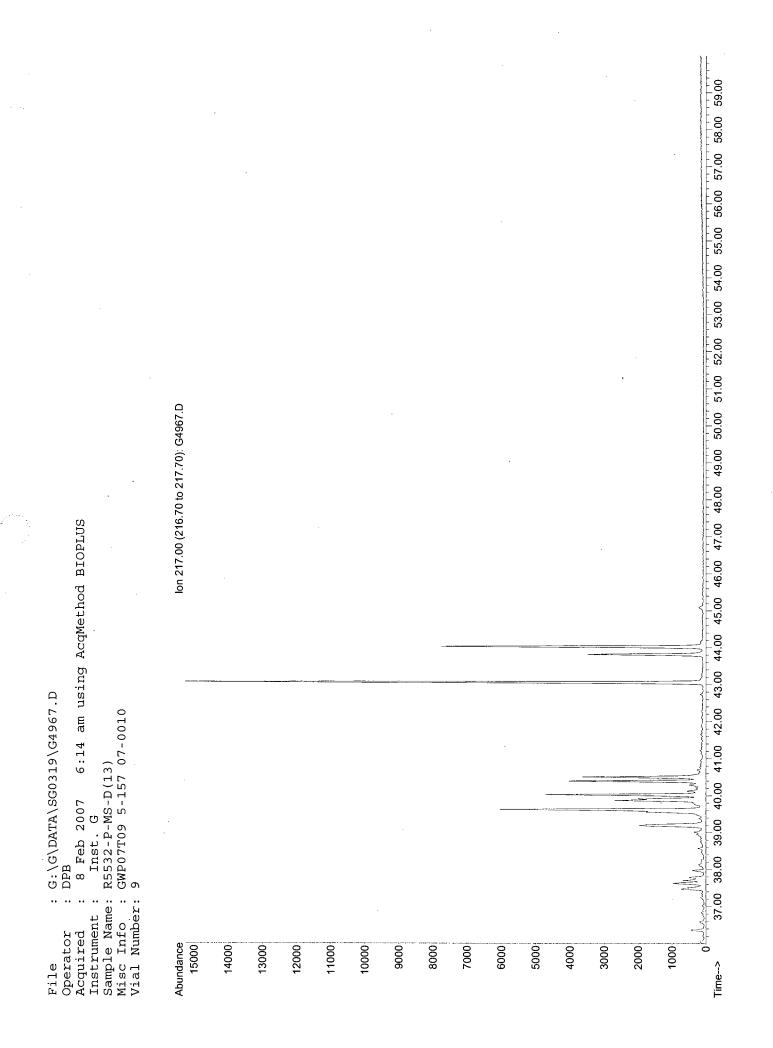



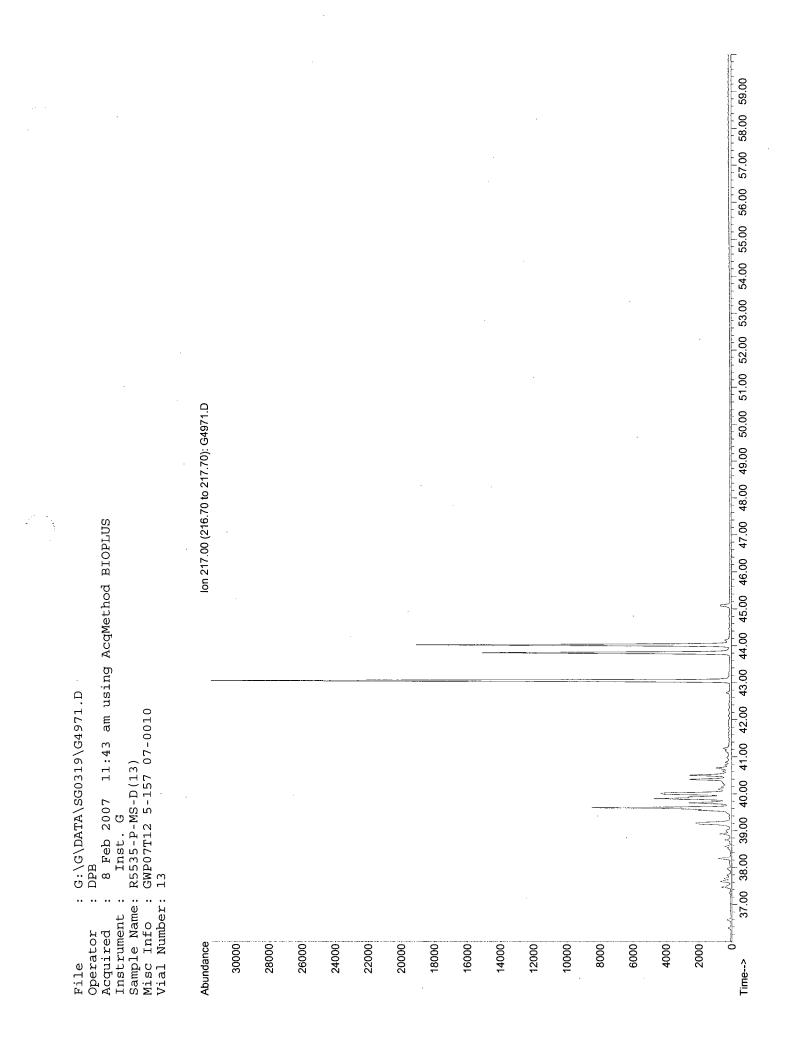



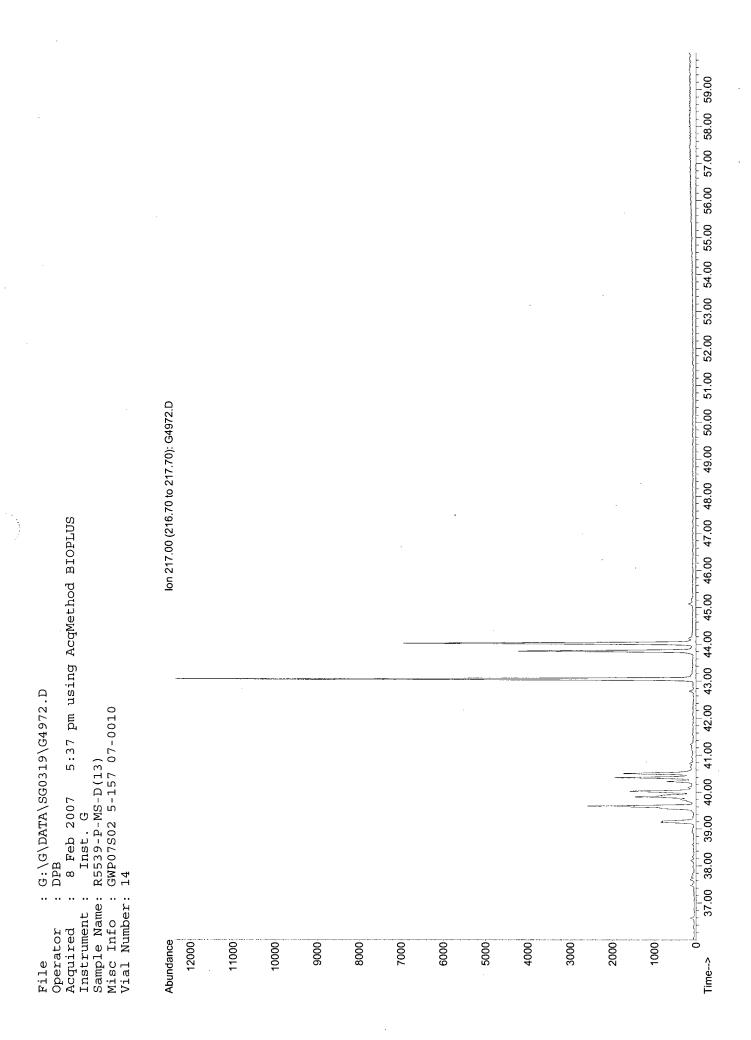


-

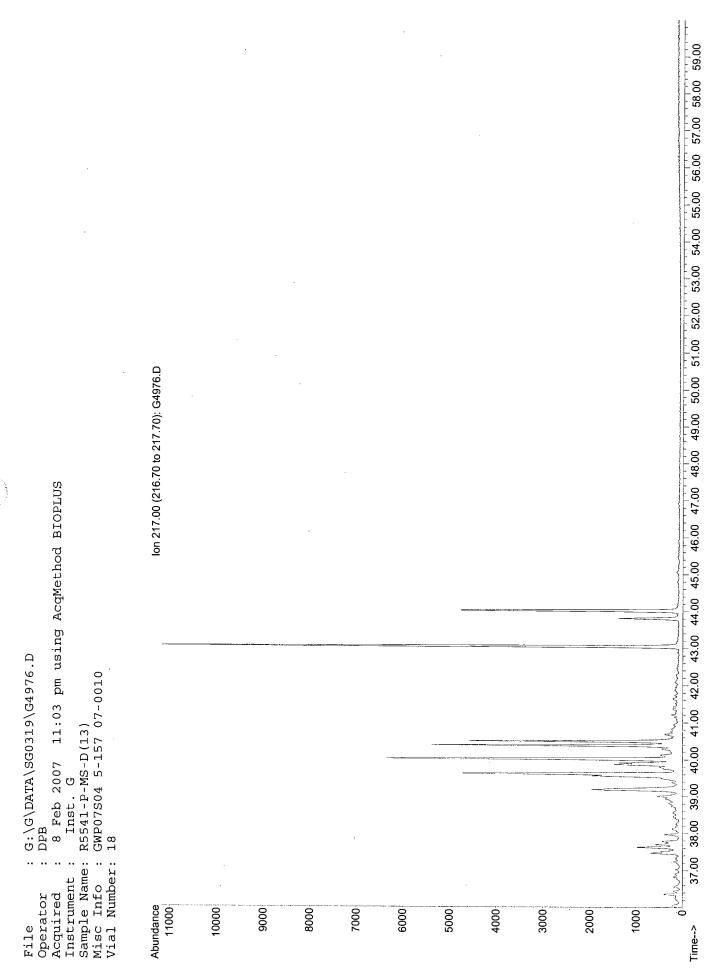




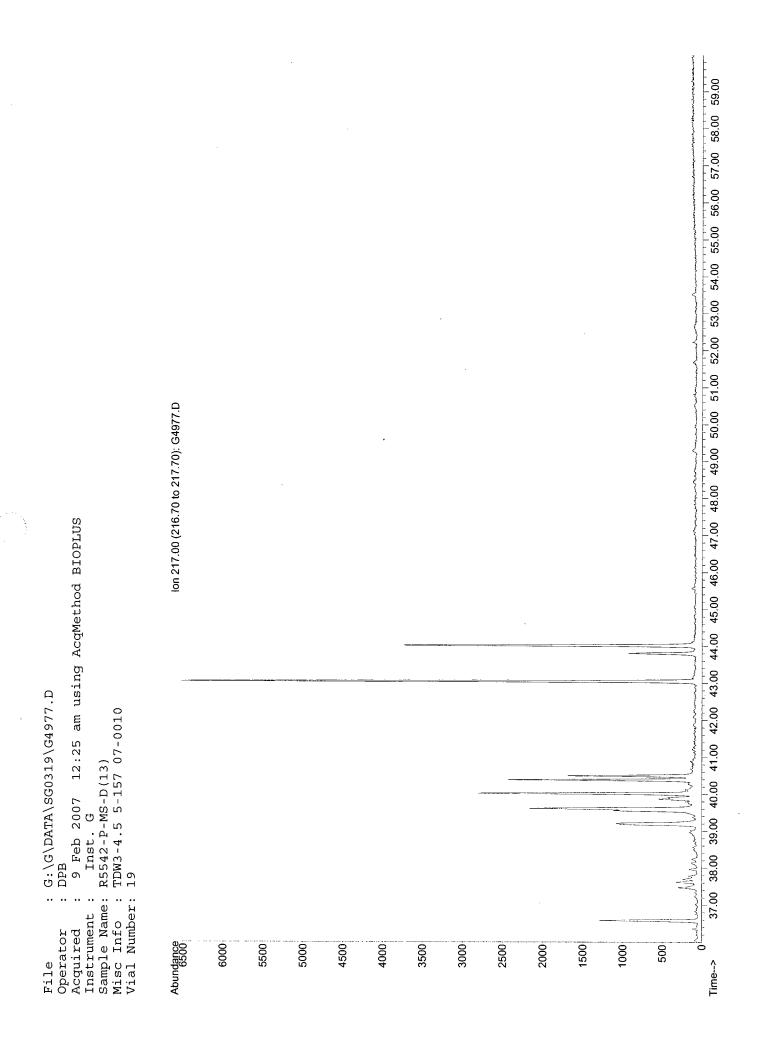



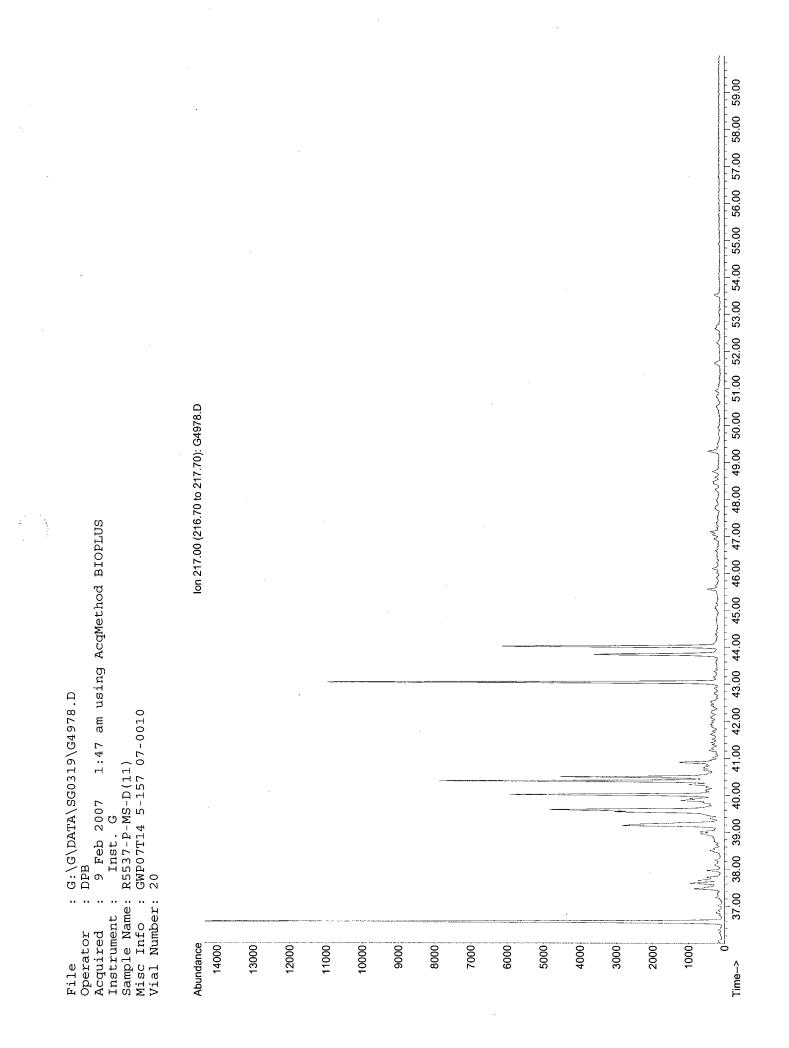



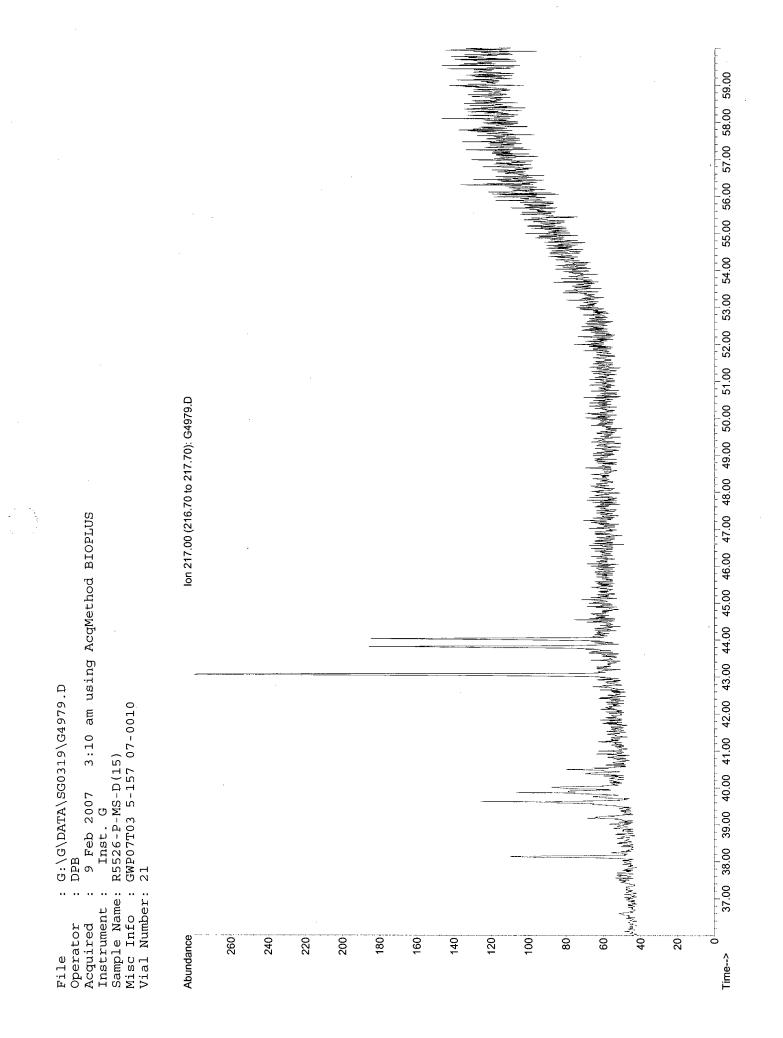



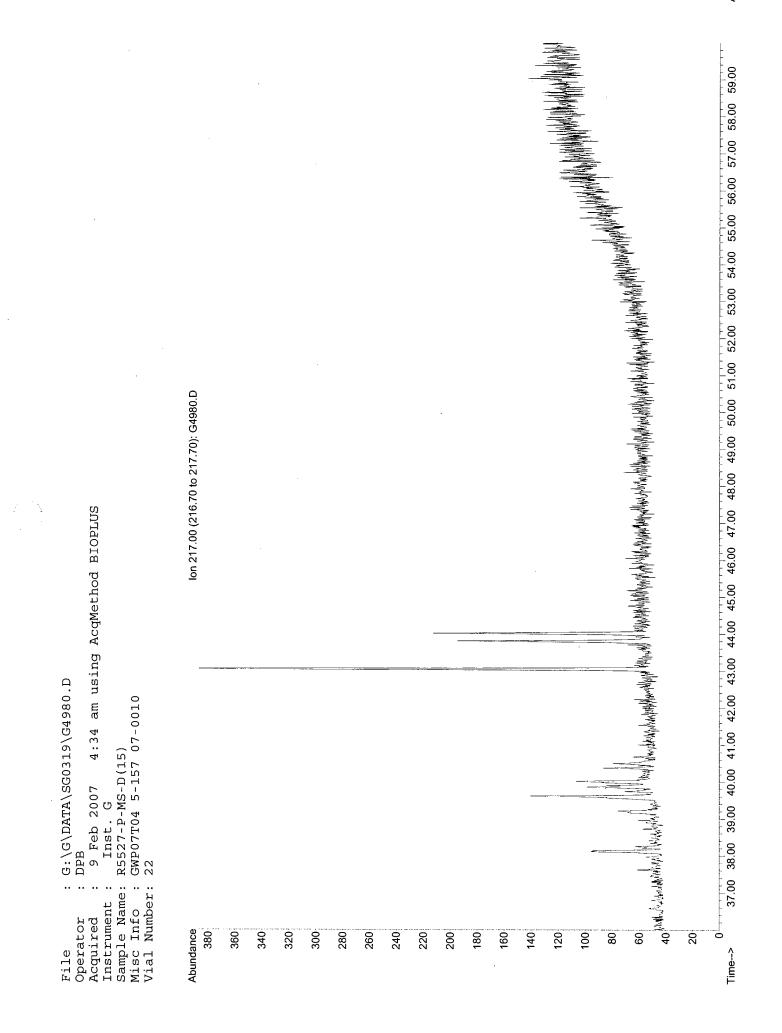




.



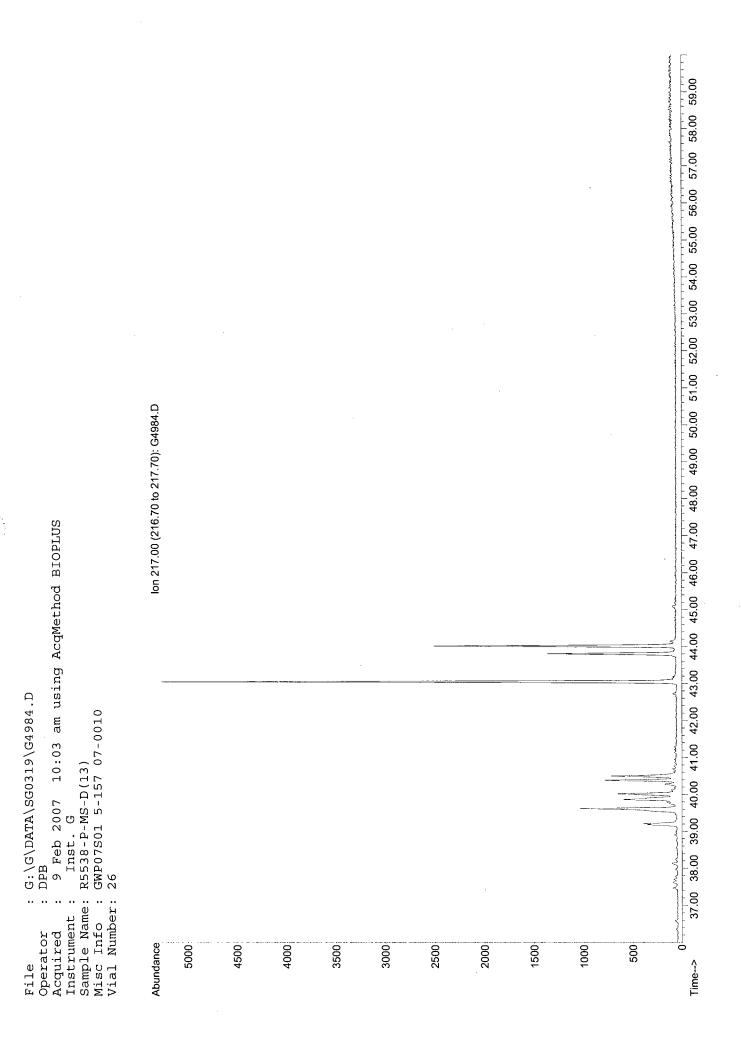



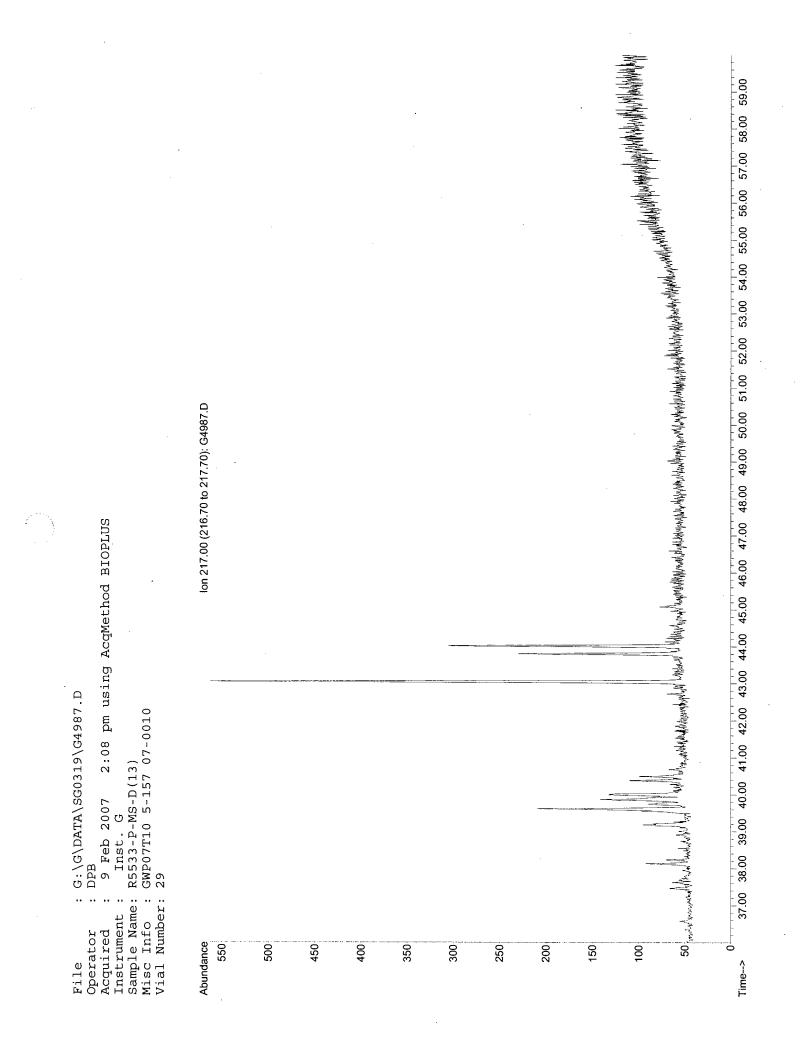

. . . . .





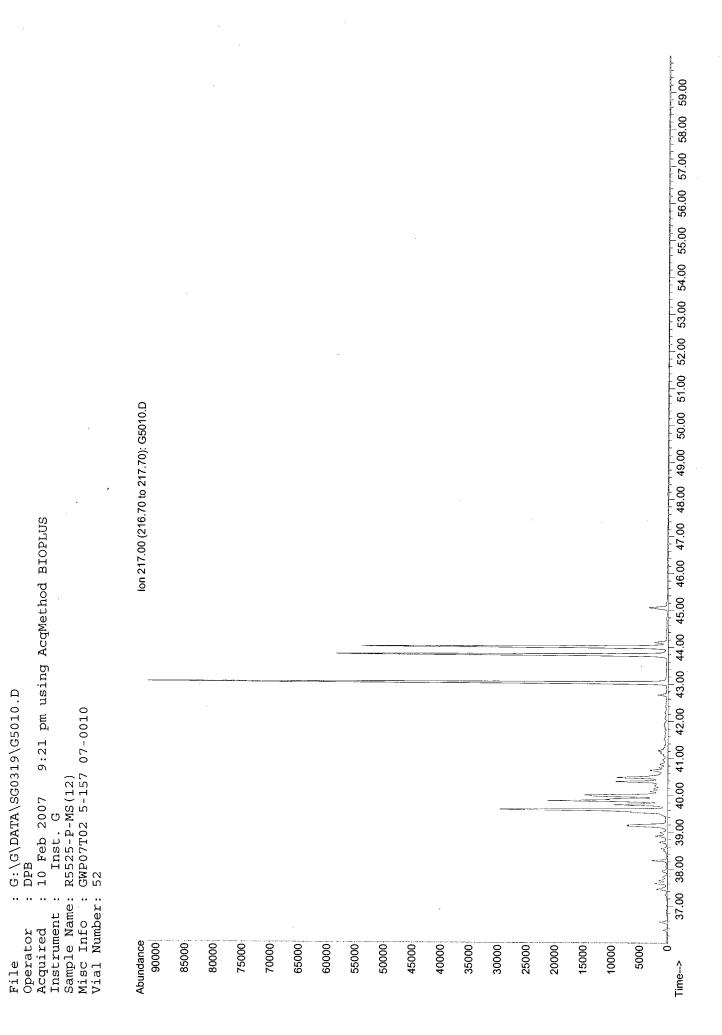




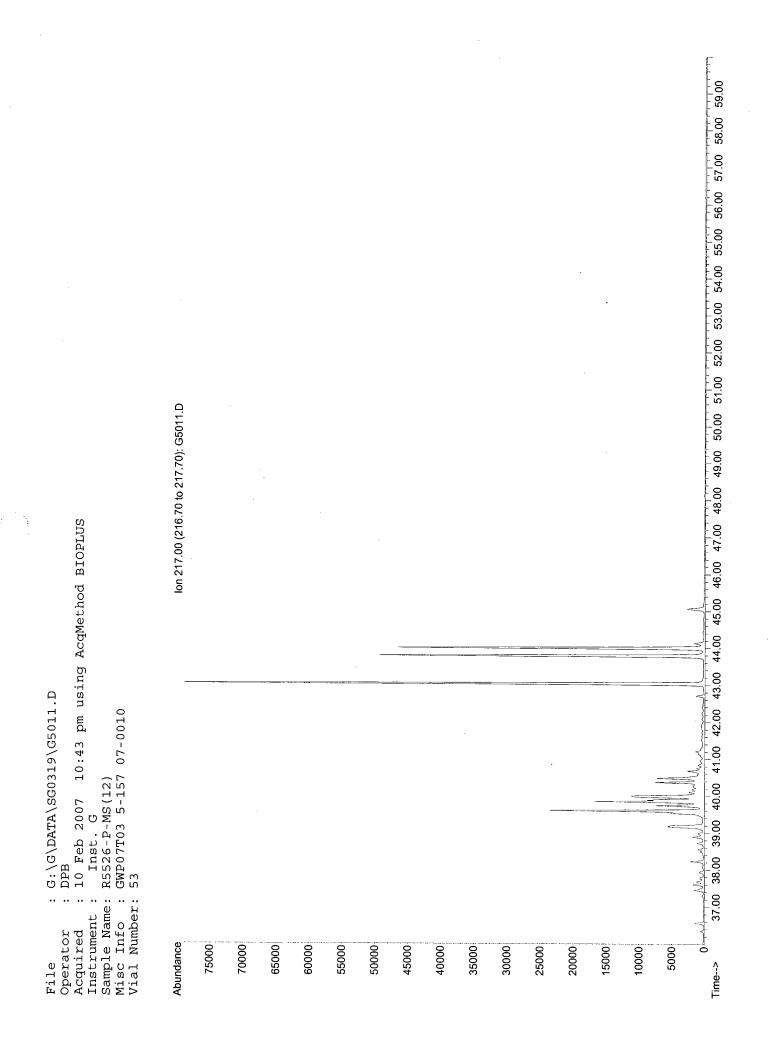


37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00 52.00 54.00 55.00 56.00 57.00 58.00 59.00 Ion 217.00 (216.70 to 217.70); G4983.D 8:41 am using AcqMethod BIOPLUS : G:\G\DATA\SG0319\G4983.D : DPB Auguired : 9 Feb 2007 8:41 am
Instrument : Inst.G
Sample Name: R5536-P-MS-D(13)
Misc Info : GWP07T13 5-157 07-0010
Vial Number: 25 Niv. Abundance 12000 11000 10000 0006 8000 7000 6000 5000 4000 3000 1000 2000

Time-->

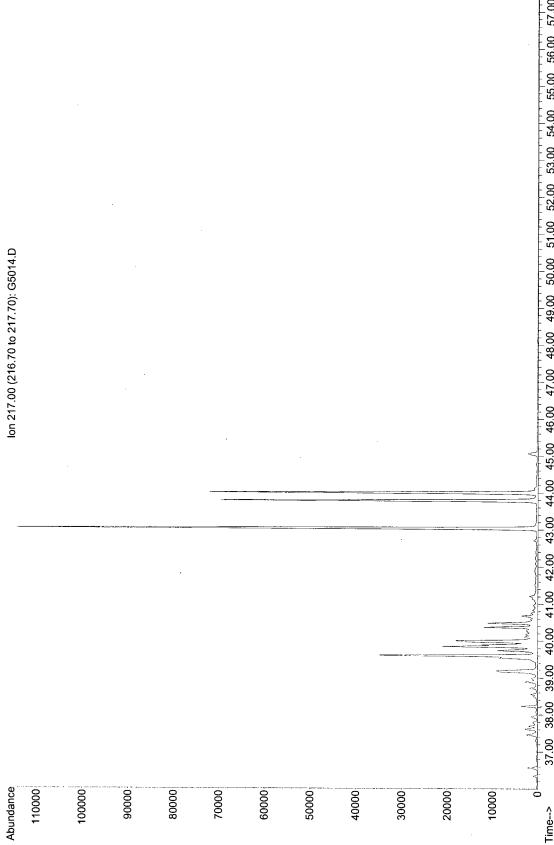
÷


File

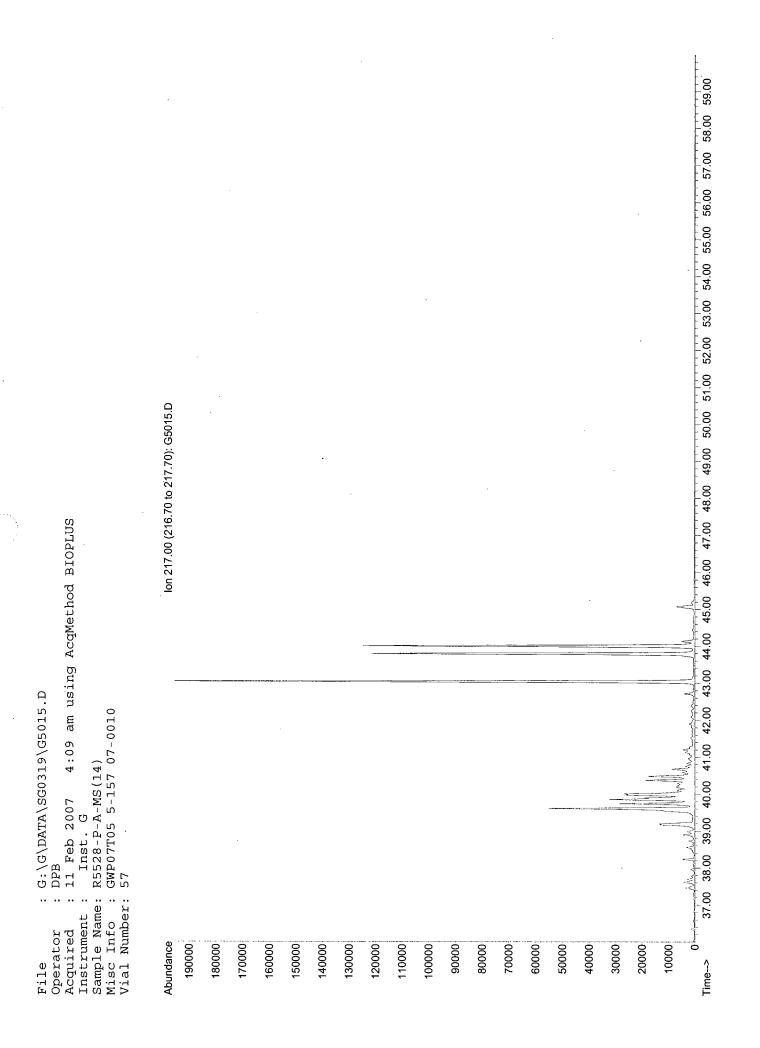


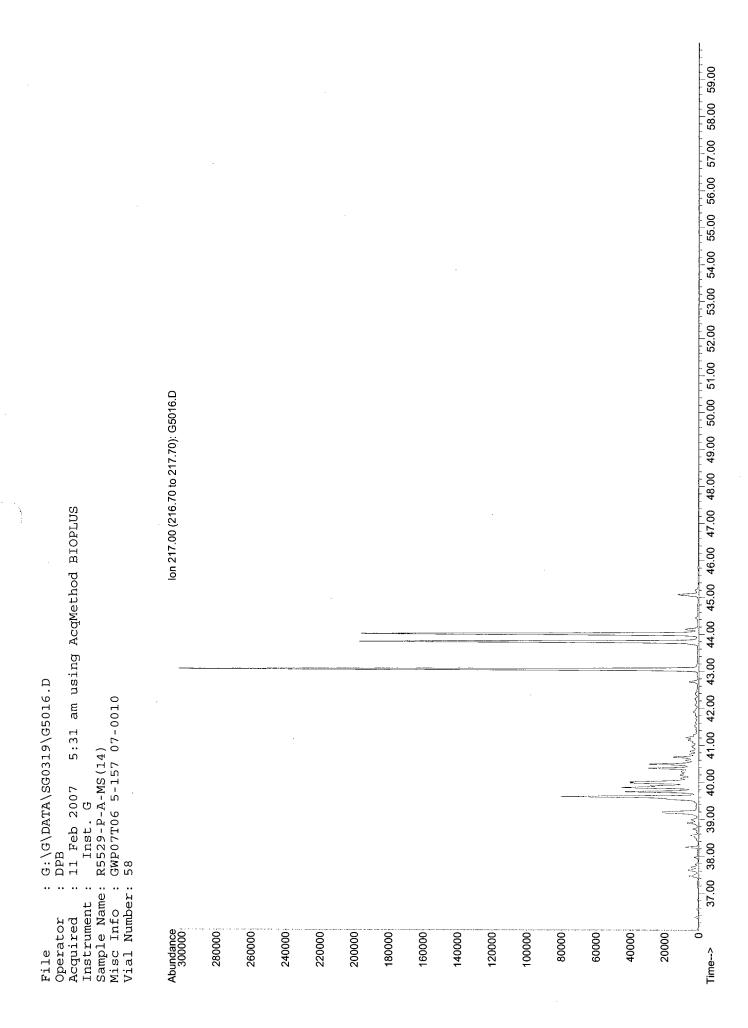


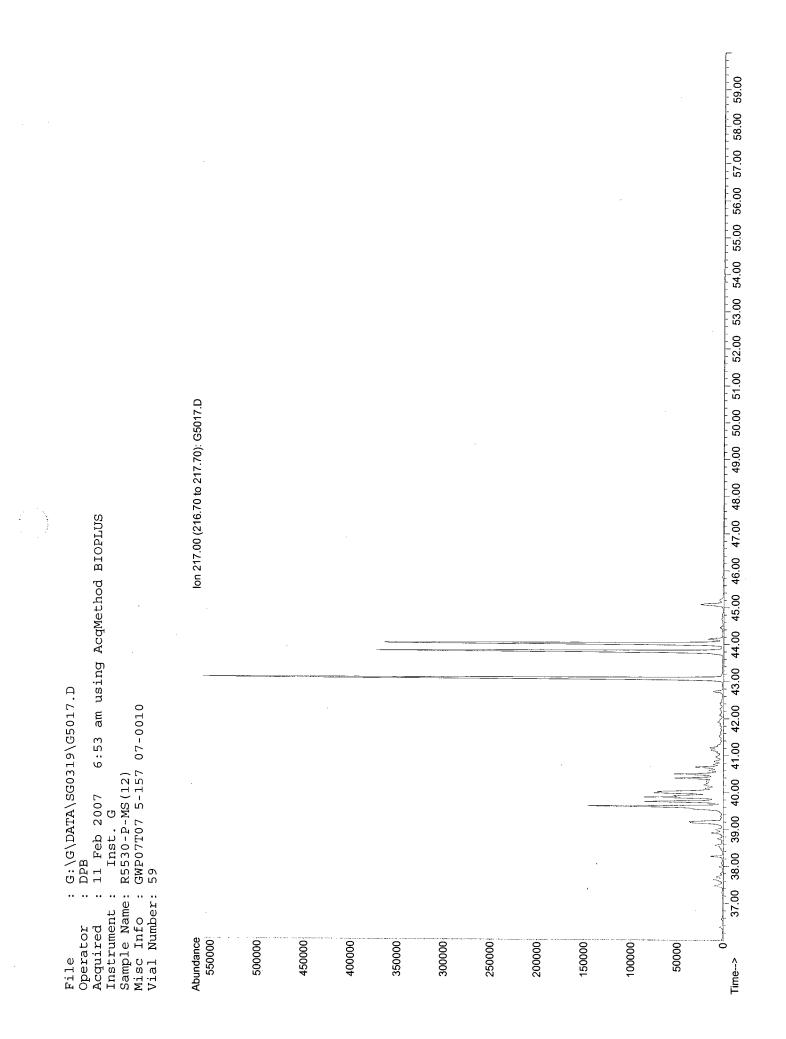

37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00 lon 217.00 (216.70 to 217.70): G5007.D 5:18 pm using AcqMethod BIOPLUS Acquired : 10 Feb 2007 5:18 pm using Act Instrument : Inst. G Sample Name: BJ939PB-P-MS(5) Misc Info : Procedural Blank 5-157 07-0010 Vial Number: 49 G:\G\DATA\SG0319\G5007.D DPB ... Abundance 120000 110000 00006 70000 60000 100000 80000 50000 40000 30000 20000 10000 0 File Time-->

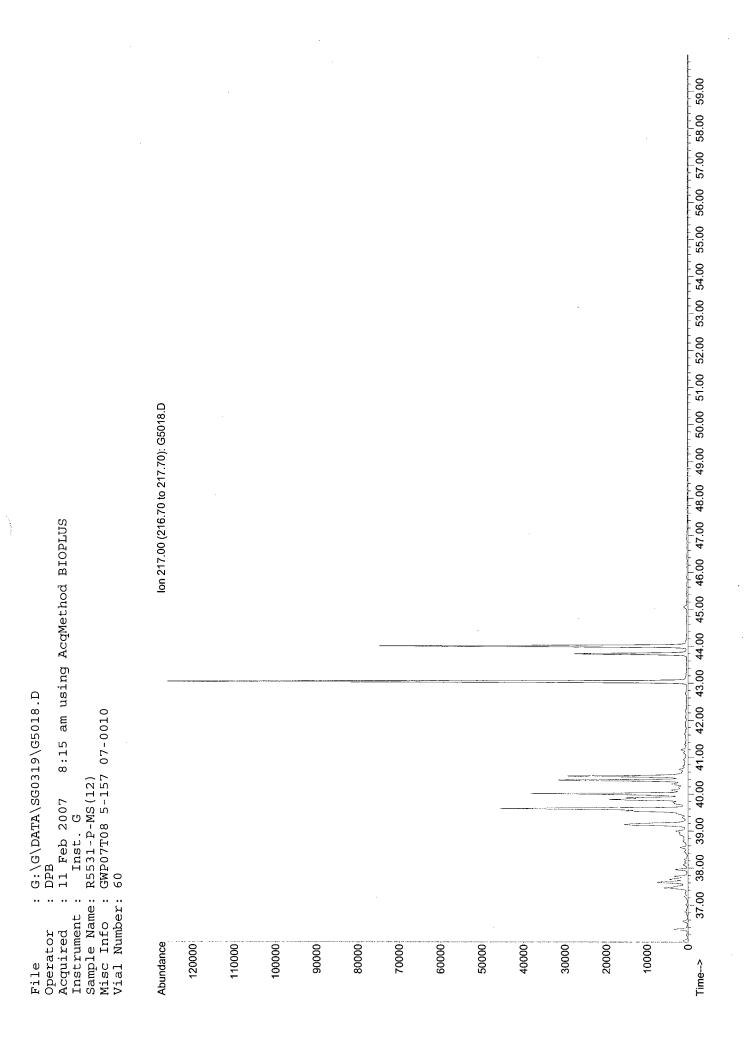

37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00 lon 217.00 (216.70 to 217.70); G5008.D 6:37 pm using AcqMethod BIOPLUS ...... Laboratory Control Sample 5-157 07-0010 G:\G\DATA\SG0319\G5008.D DPB Sample Name: BJ940LCS-P-MS(5) Misc Info : Laboratory Contr Vial Number: 50 10 Feb 2007 Inst. G .. .. •• •• Instrument Acquired Operator Abundance 120000 110000 100000 00006 80000 70000 60000 50000 40000 30000 20000 10000 ò File Time-->

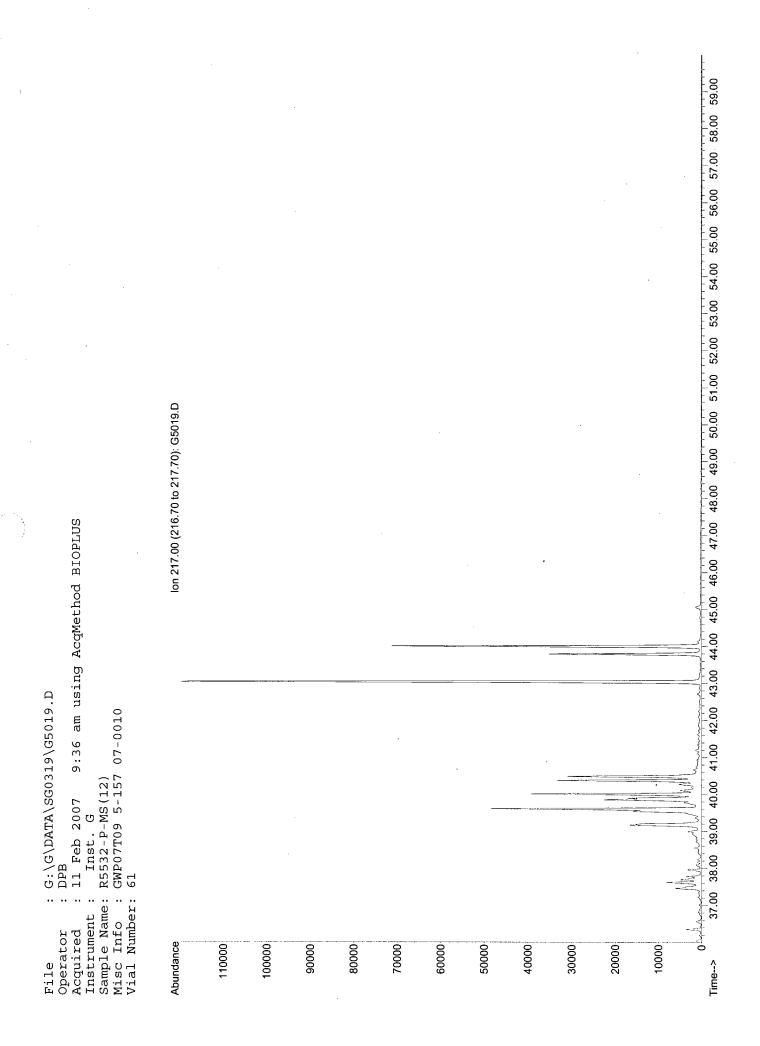



`.<u>.</u>

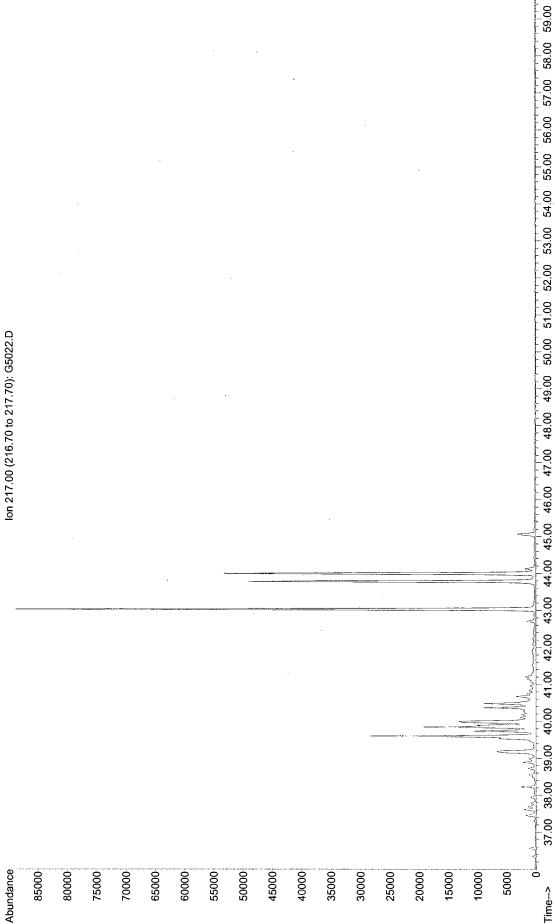




lon 217.00 (216.70 to 217.70): G5014.D 2:47 am using AcqMethod BIOPLUS G:\G\DATA\SG0319\G5014.D DPB Acquired : 11 Feb 2007 2:47 am Instrument : Inst. G Sample Name: R5527-P-MS(12) Misc Info : GWP07T04 5-157 07-0010 Vial Number: 56 .. .. Operator File

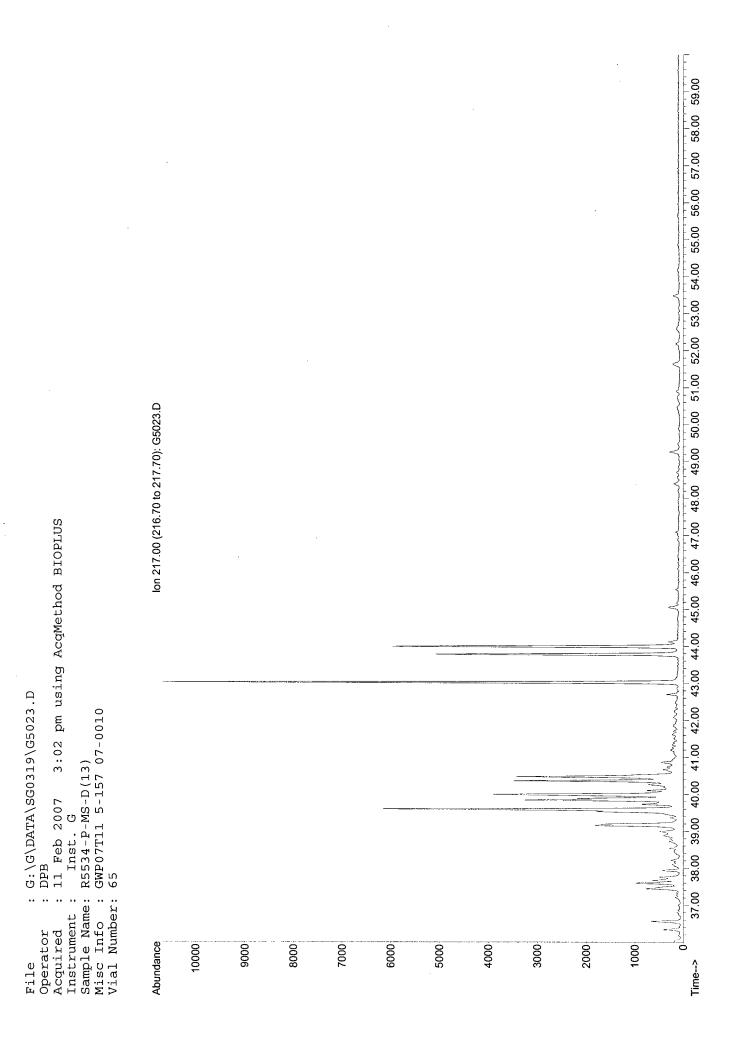


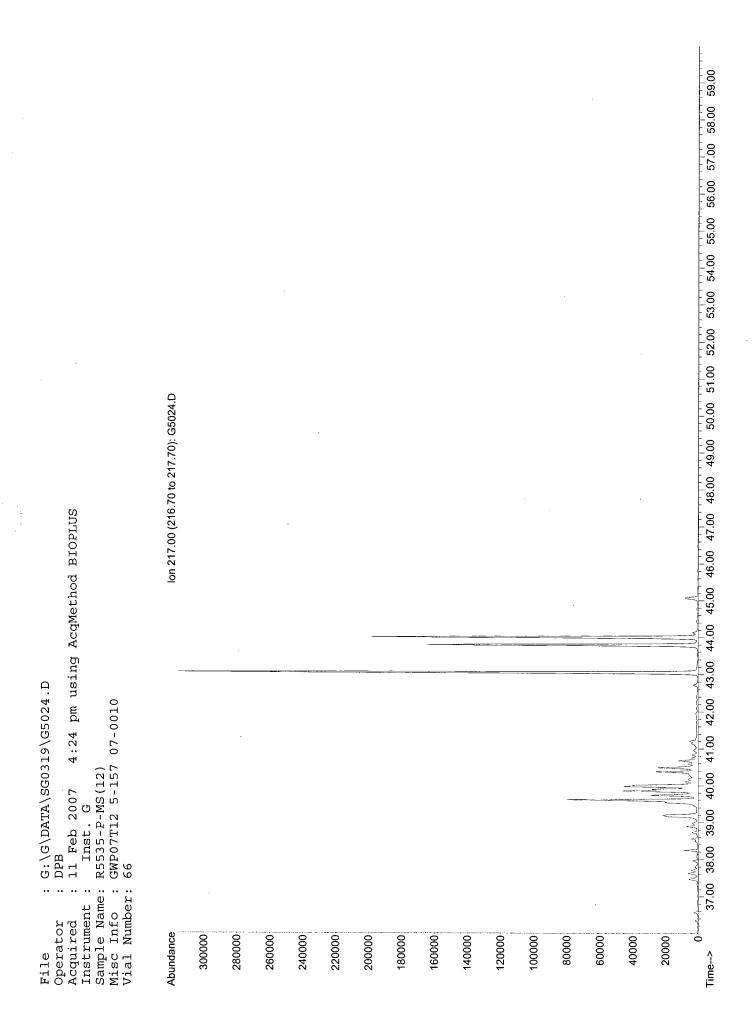


37.00 38.00 39.00 40.00 41.00 42.00 44.00 45.00 45.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 55.00 56.00 57.00 58.00 59.00

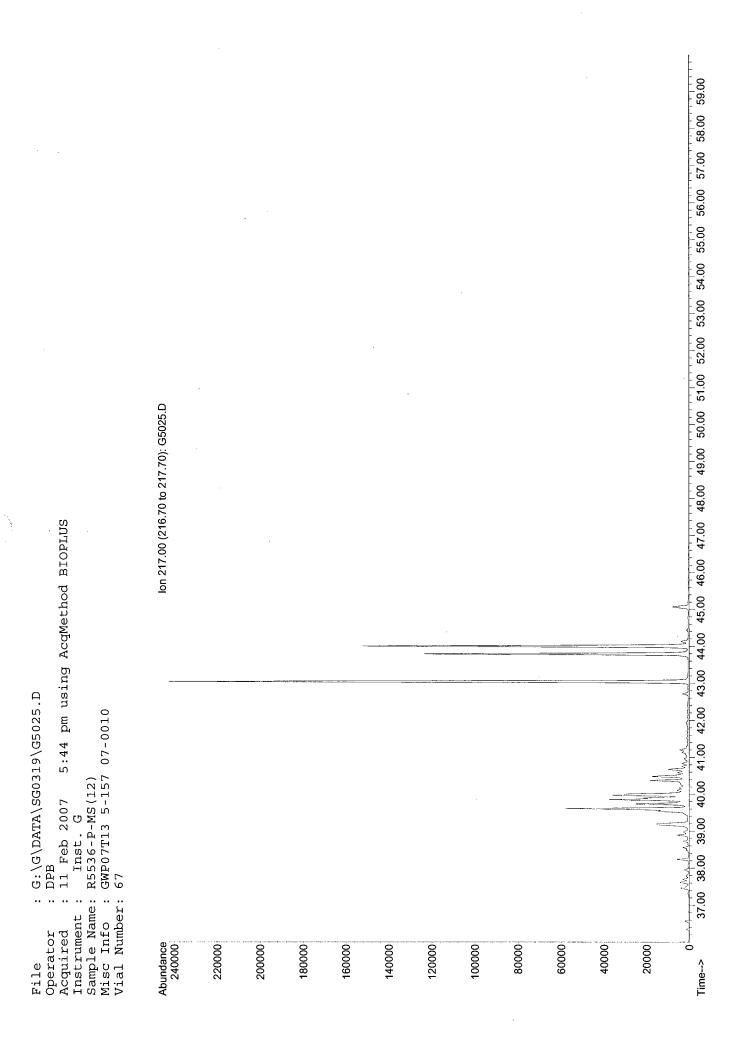


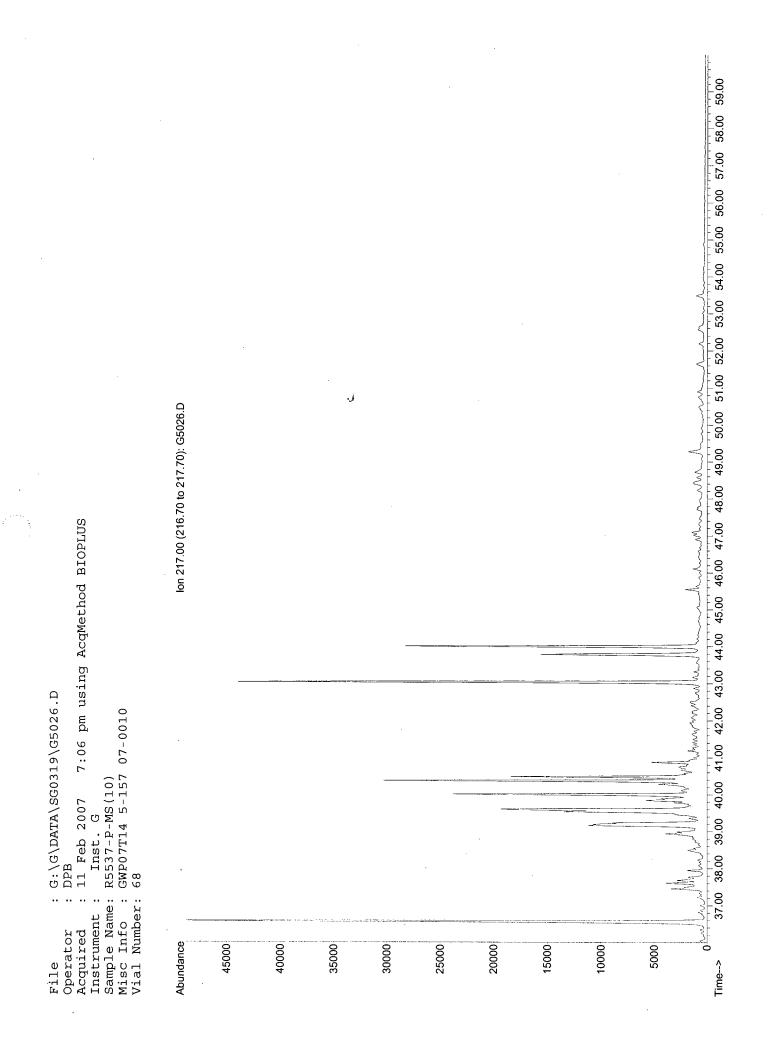


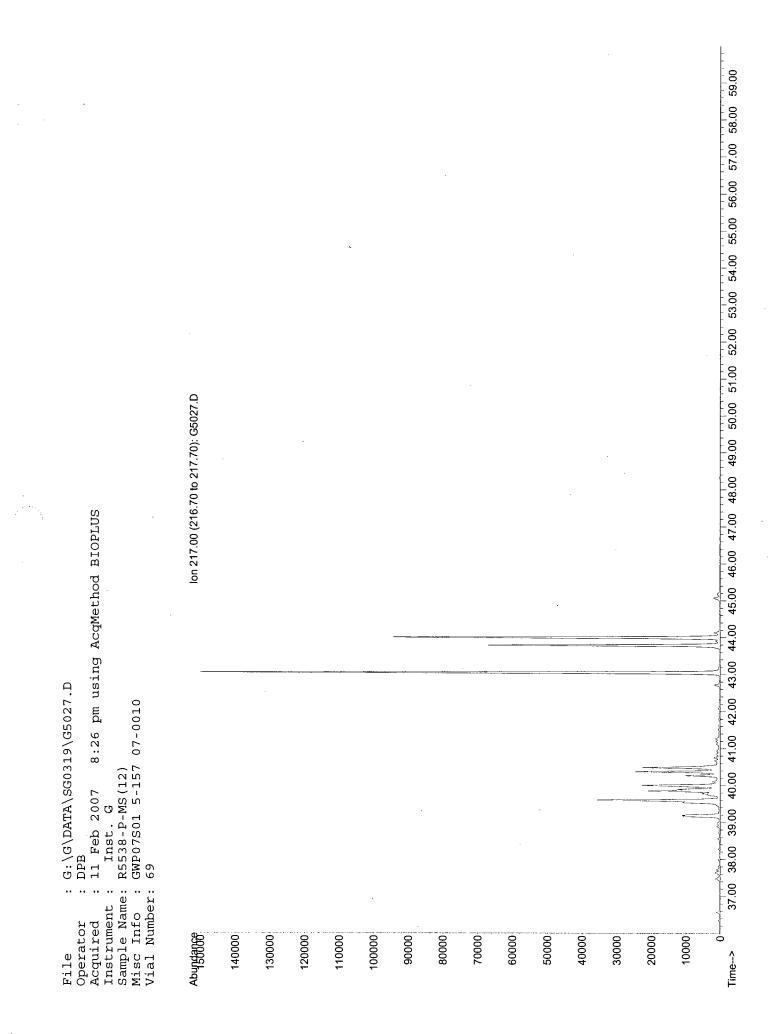


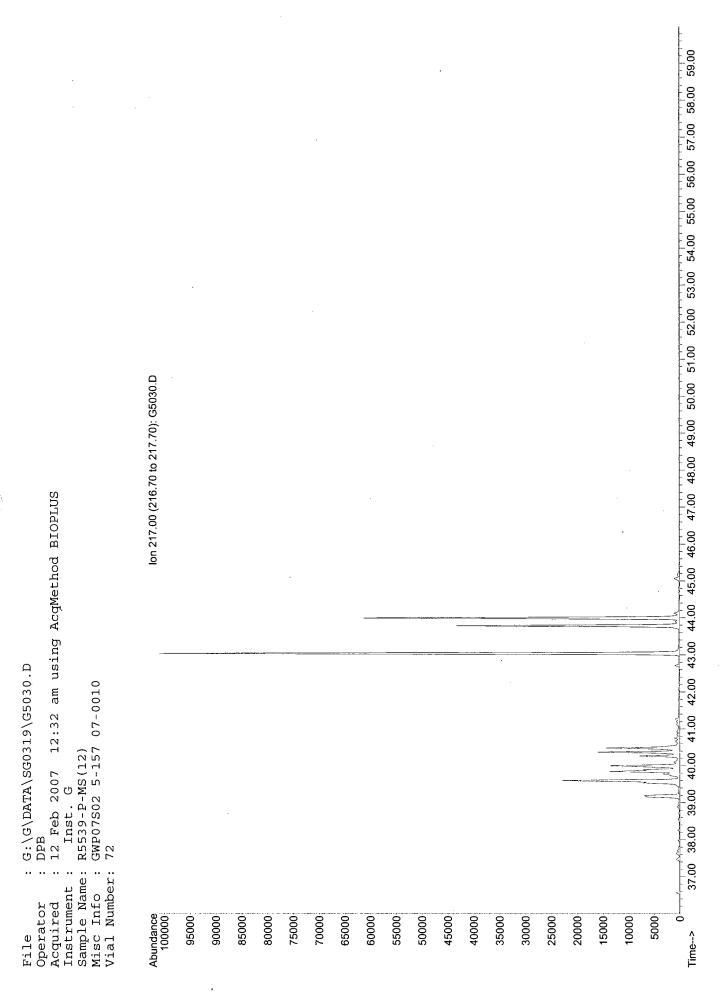



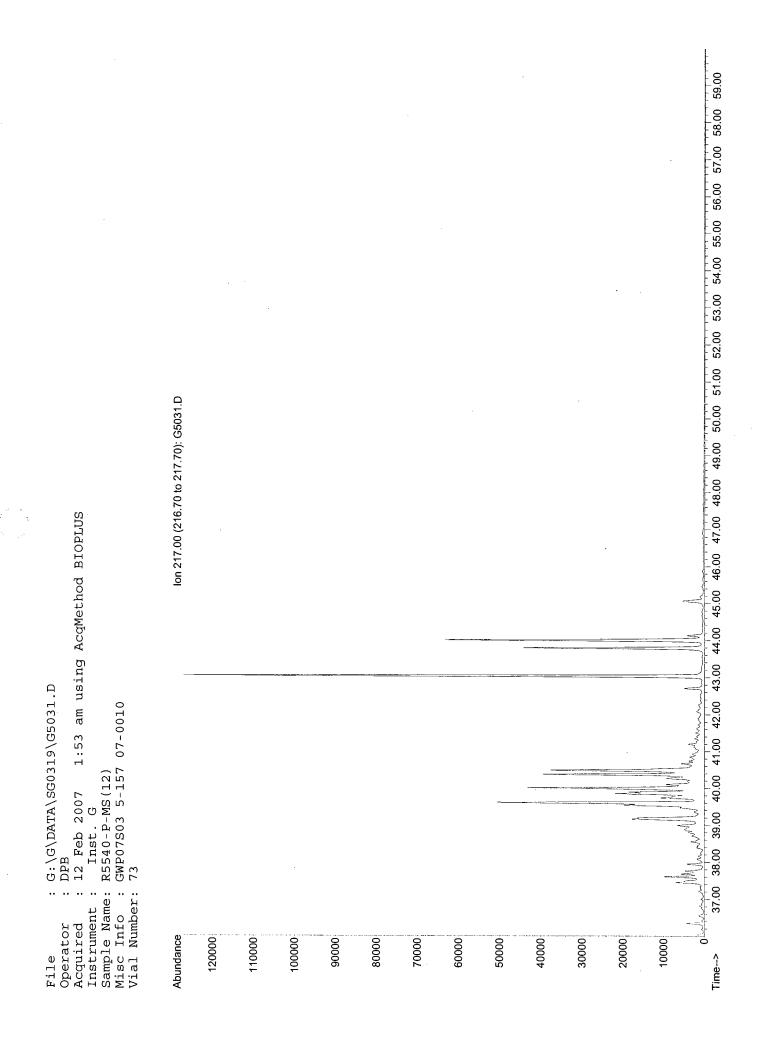


1:40 pm using AcqMethod BIOPLUS G:\G\DATA\SG0319\G5022.D DPB Acquired : 11 Feb 2007 1:40 pm 1 Instrument : Inst. G Sample Name: R5533-P-MS(12) Misc Info : GWP07T10 5-157 07-0010 Vial Number: 64 .. .. Operator File

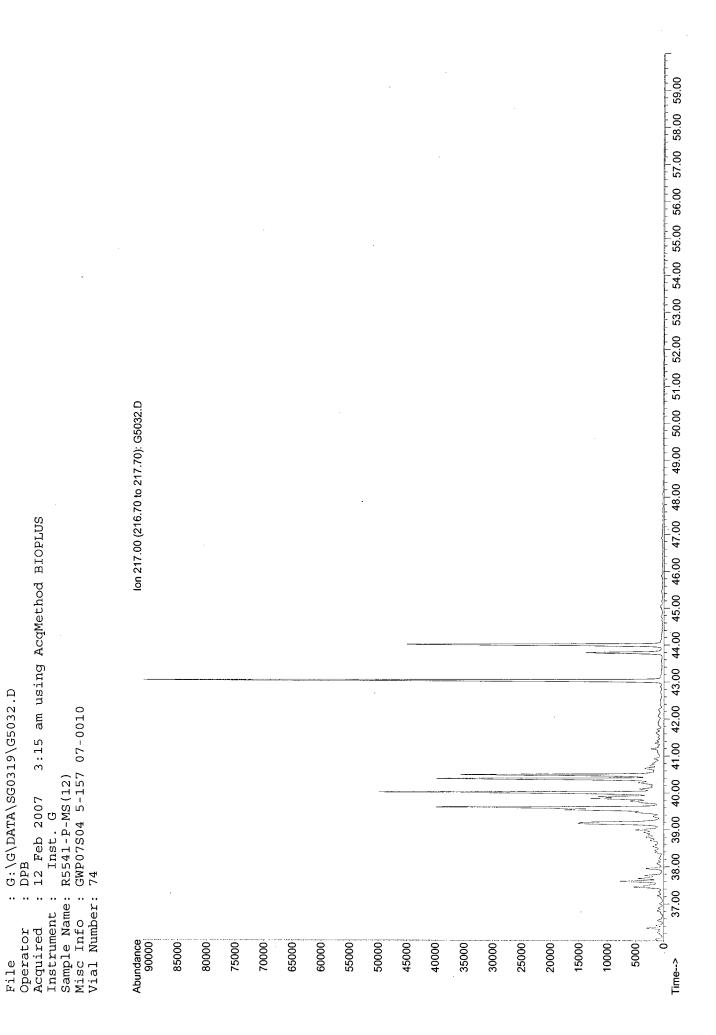


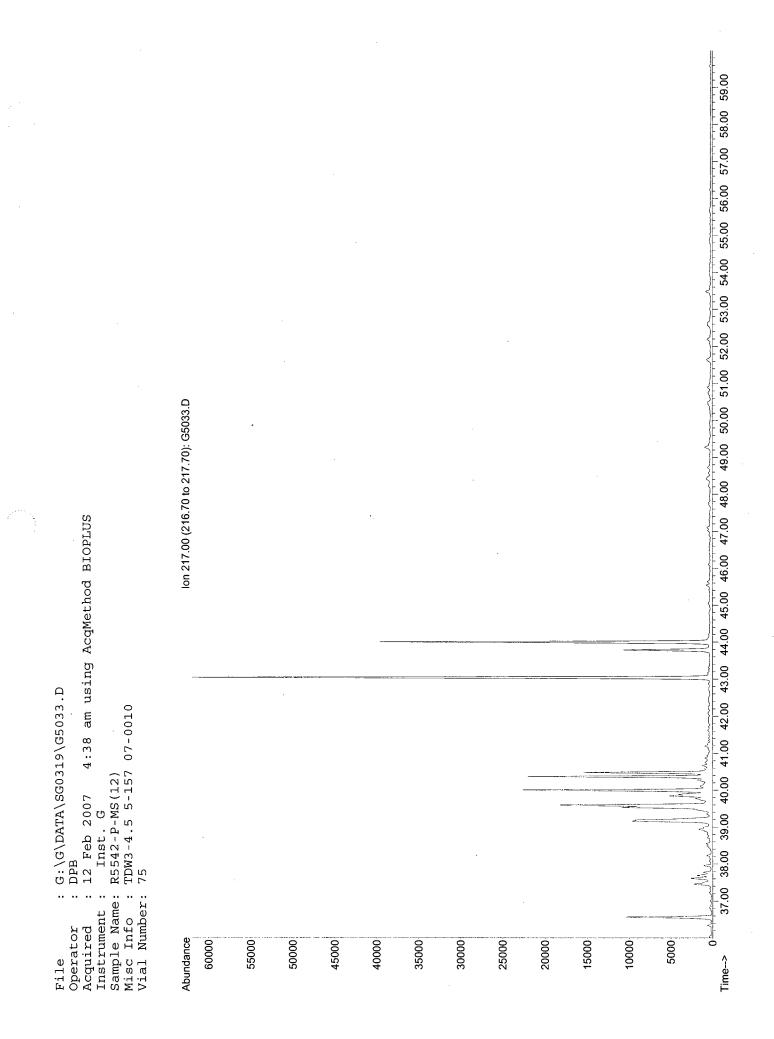


Time-->

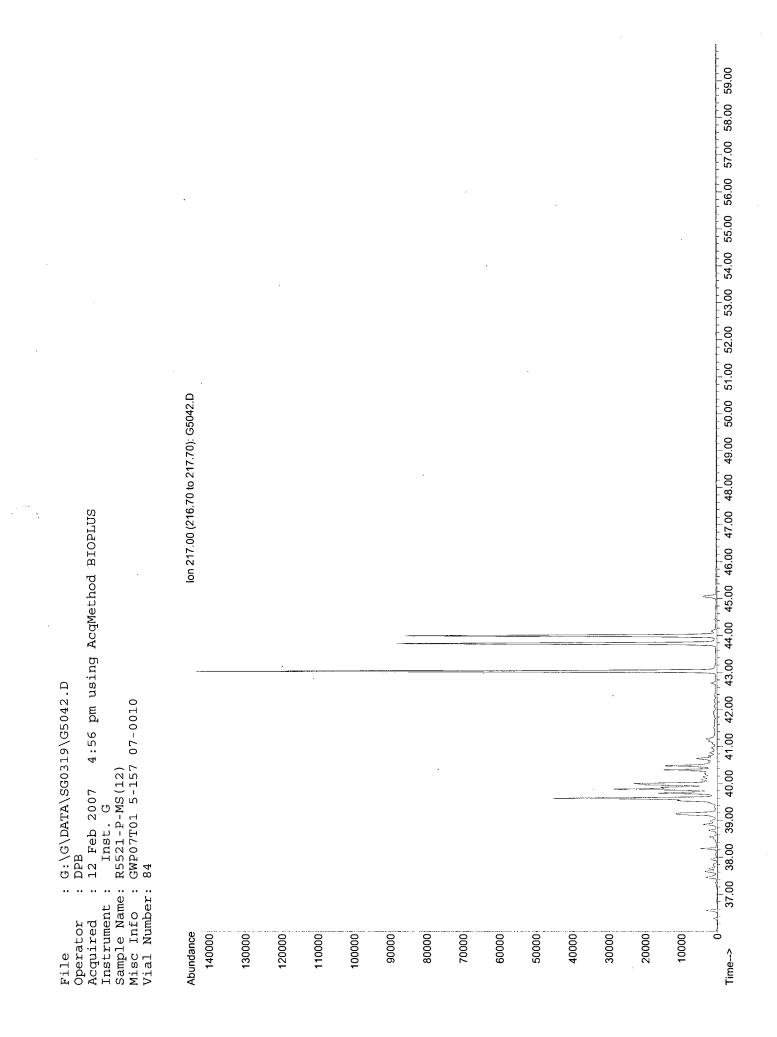


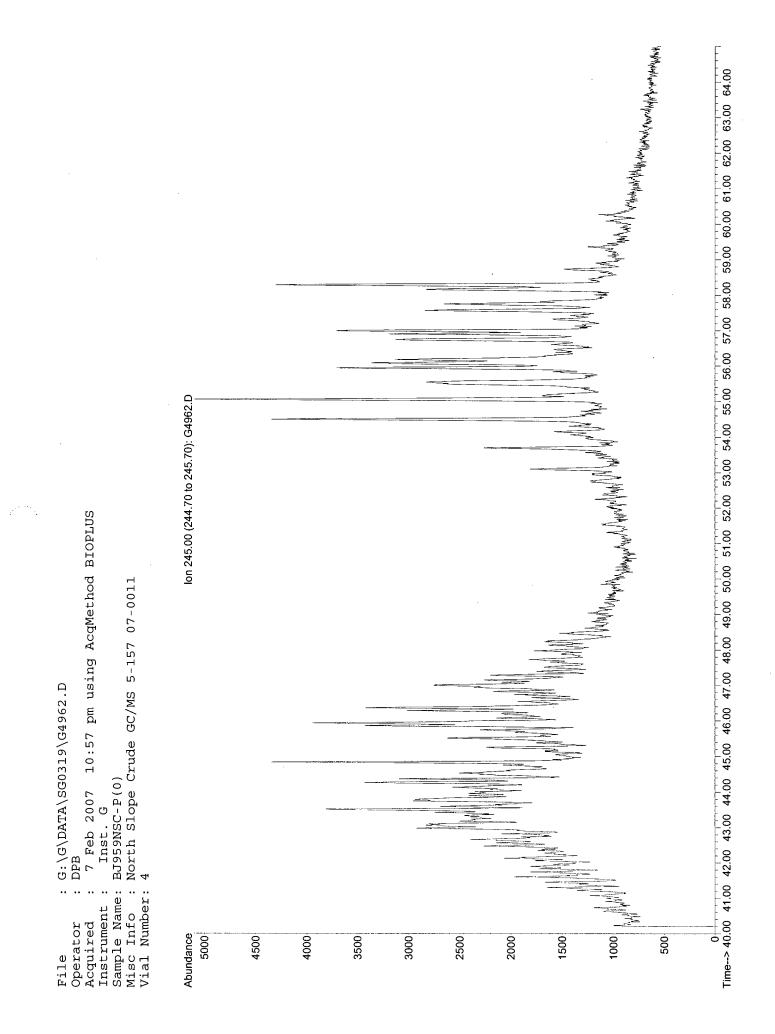


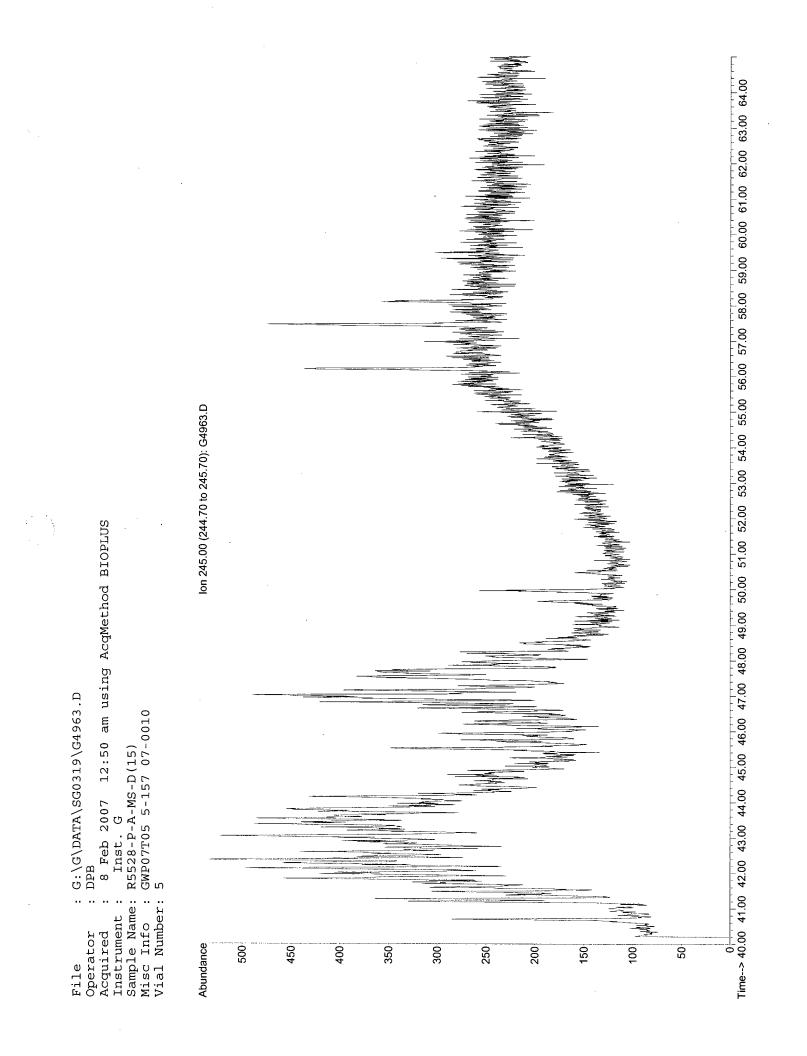



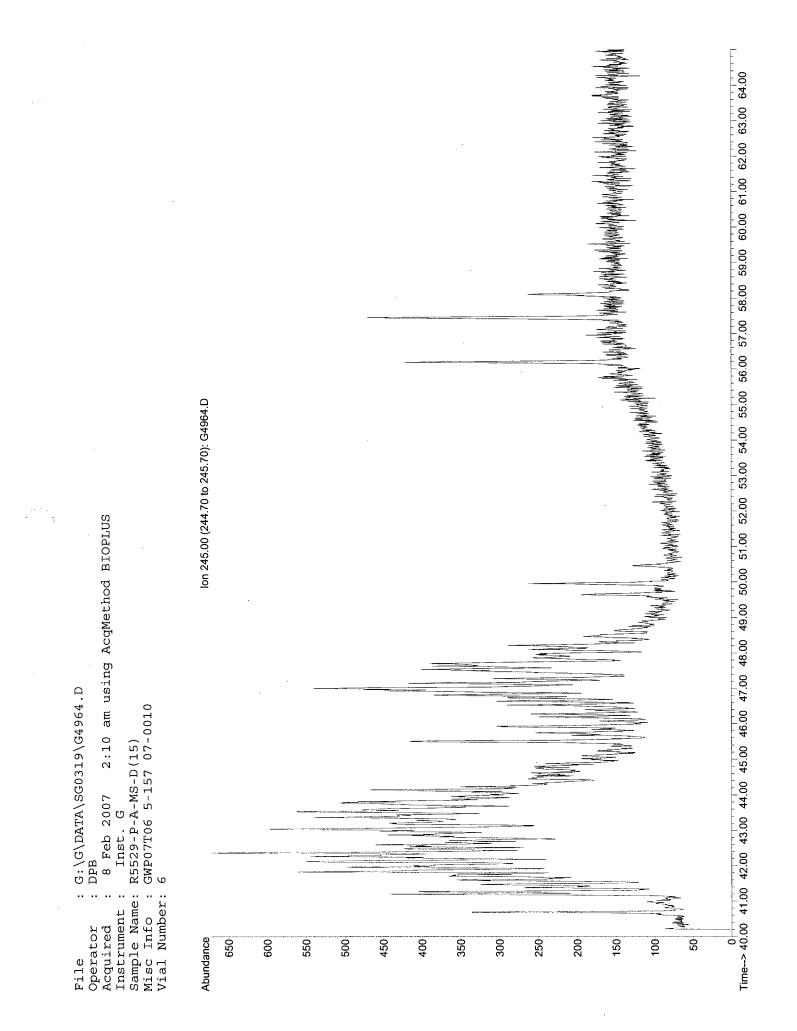



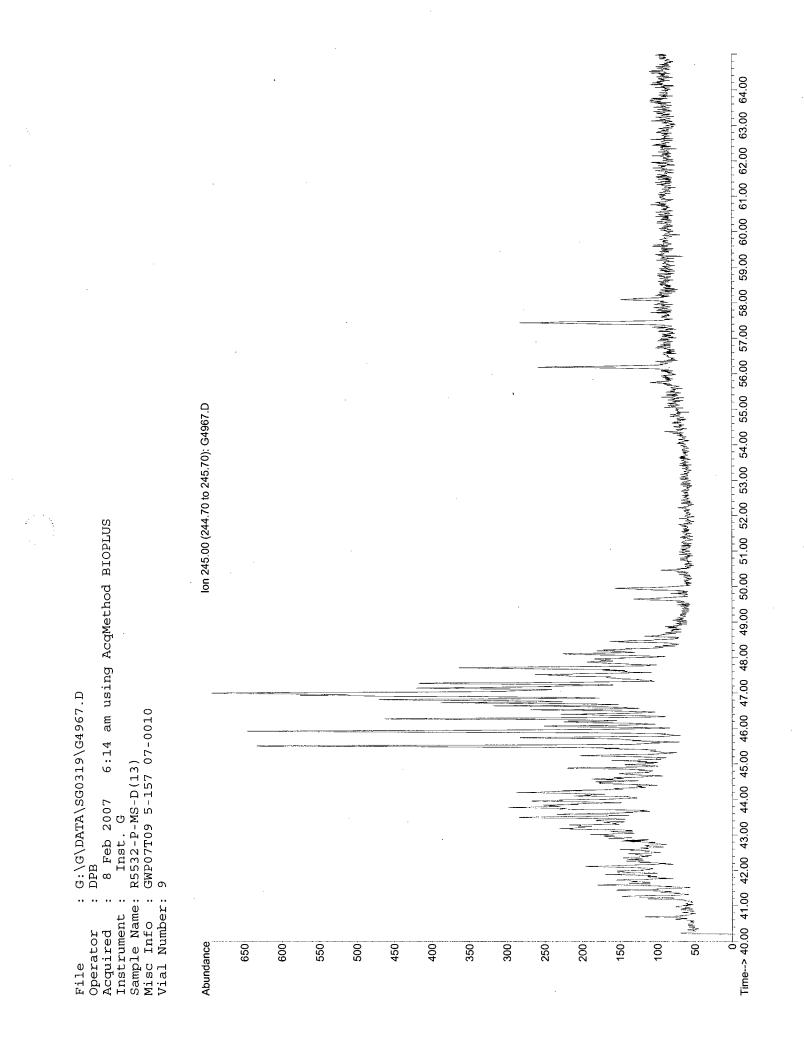



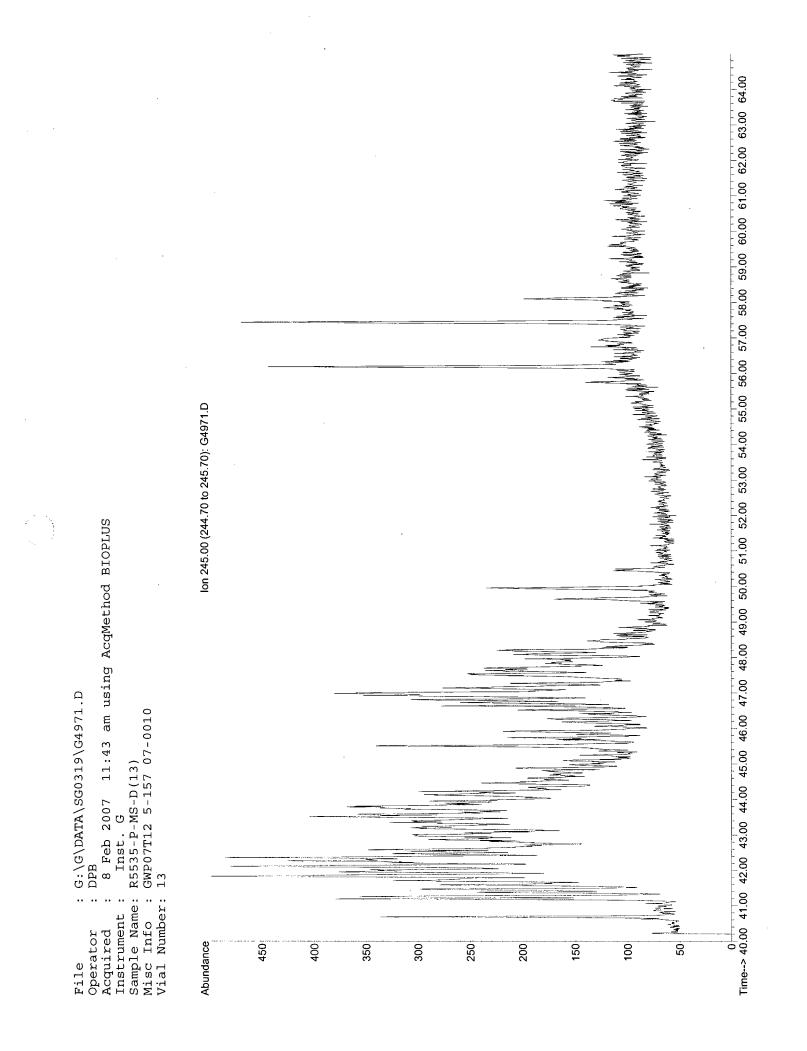


а По 1 — а

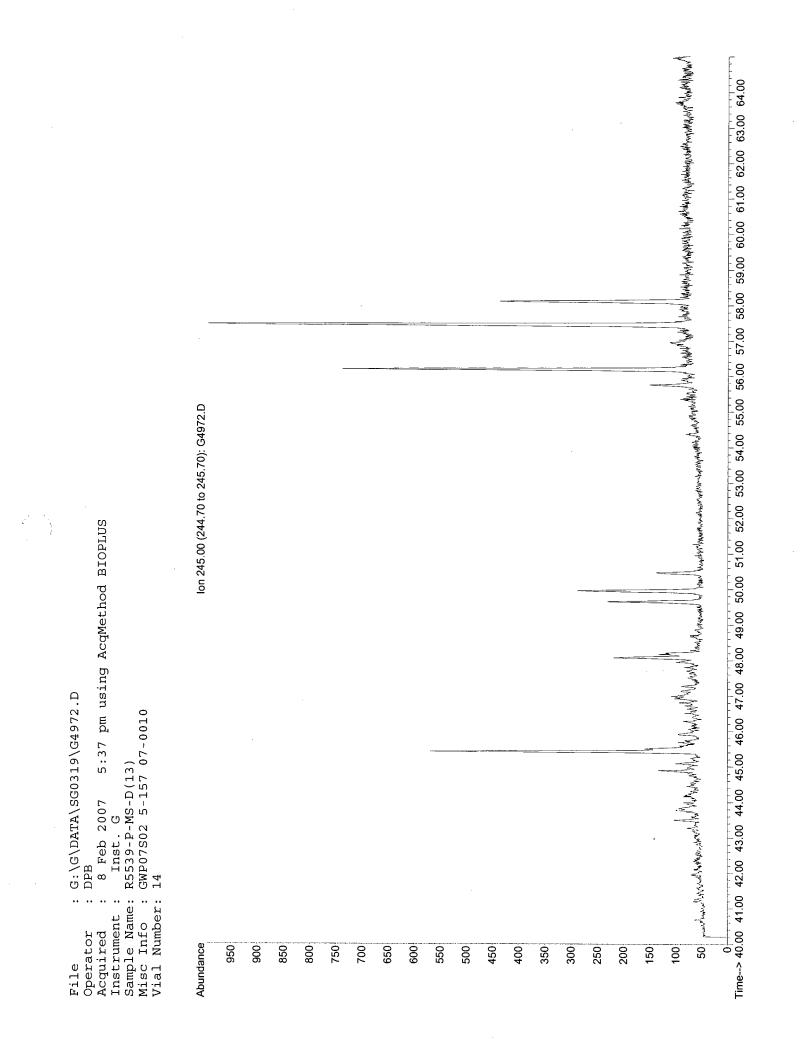


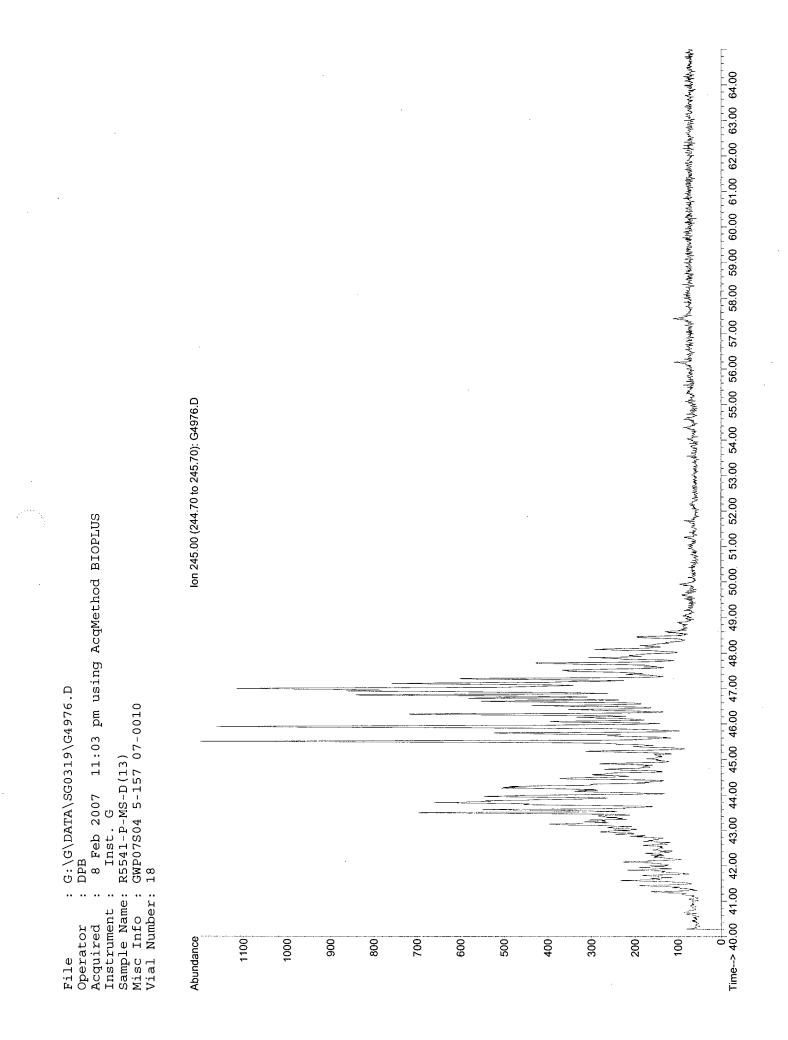



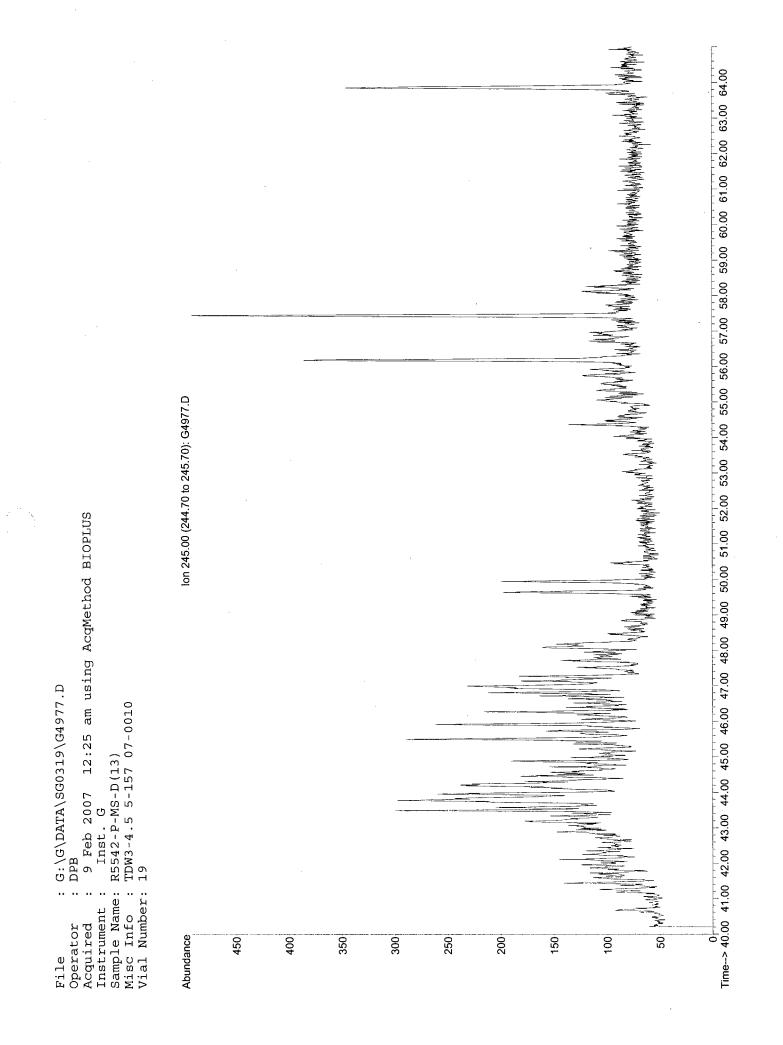


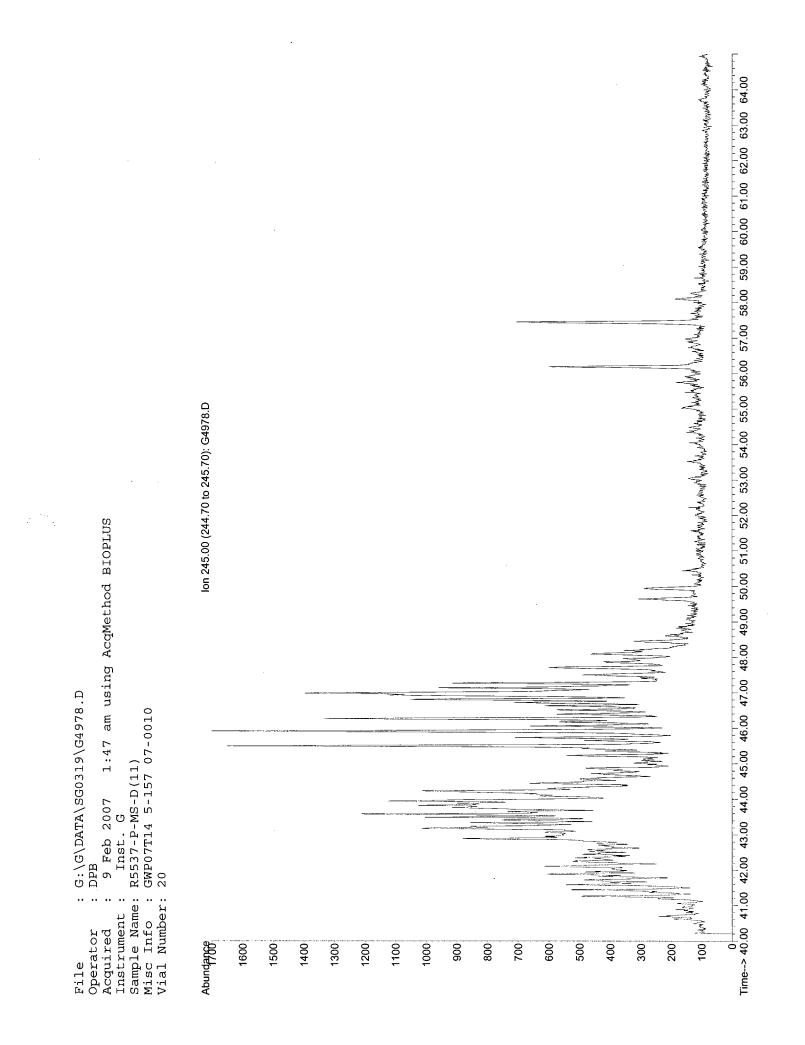



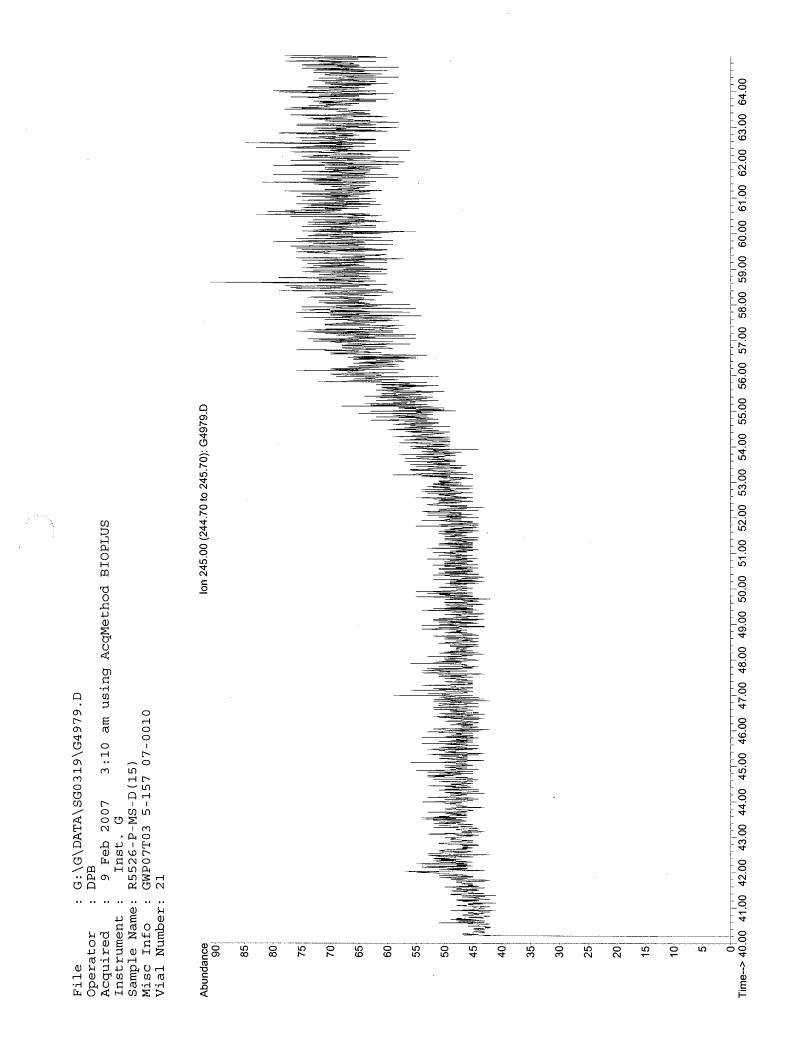



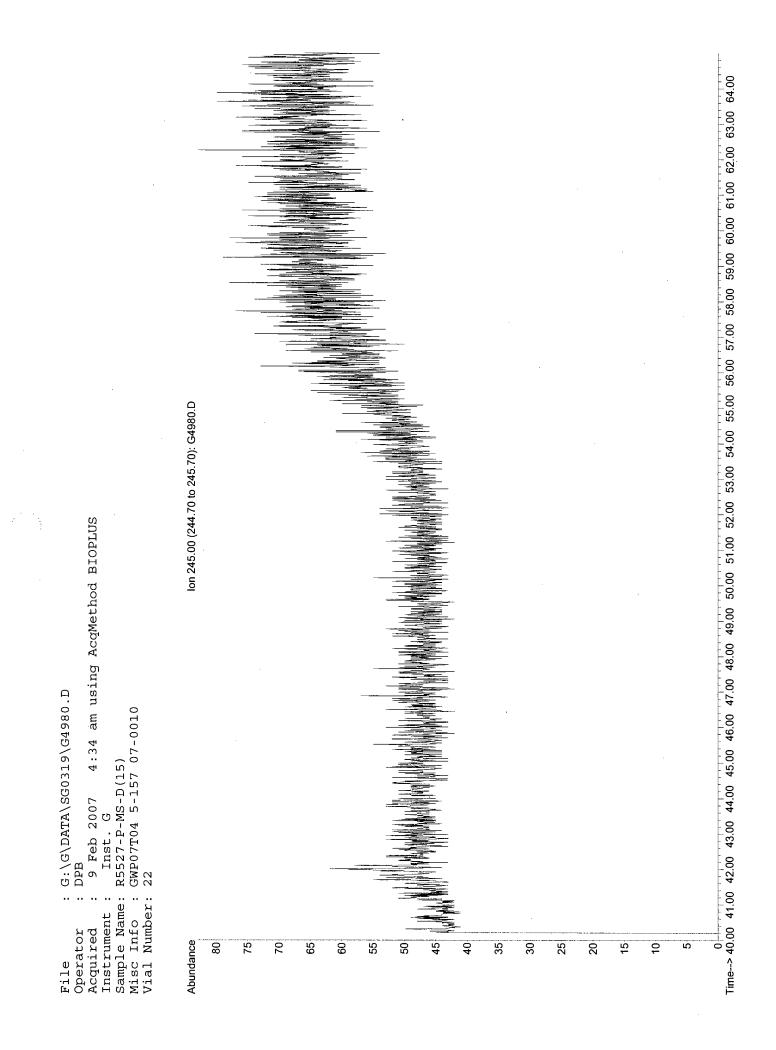



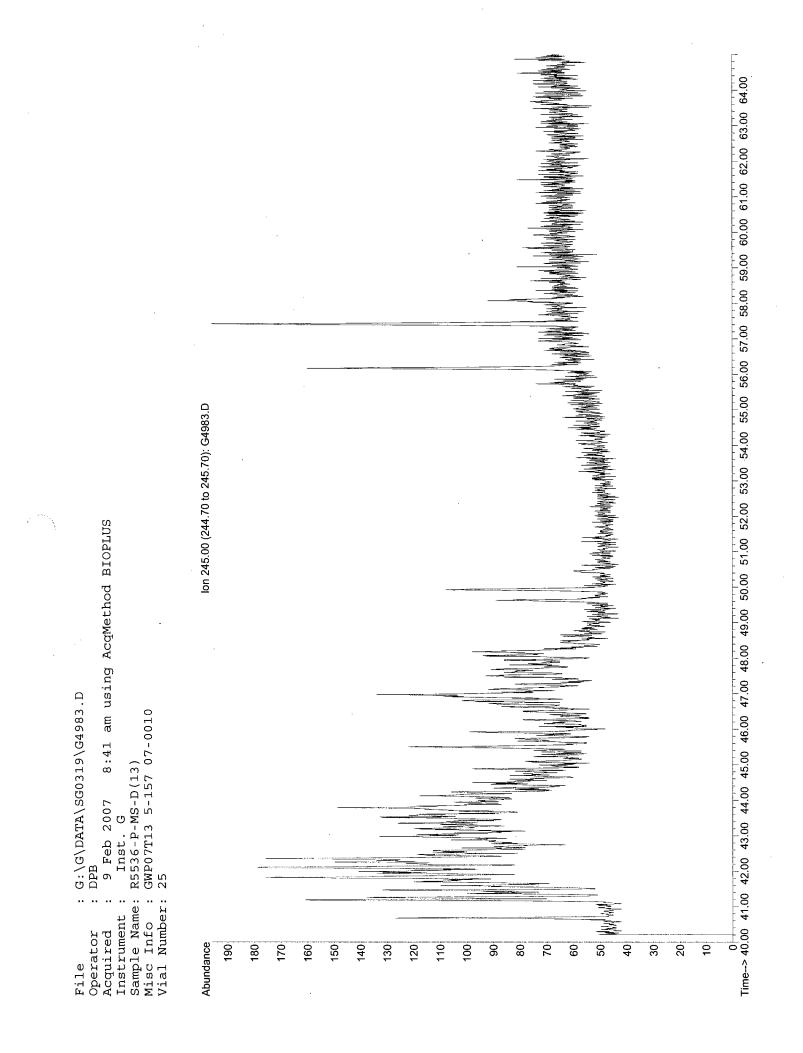



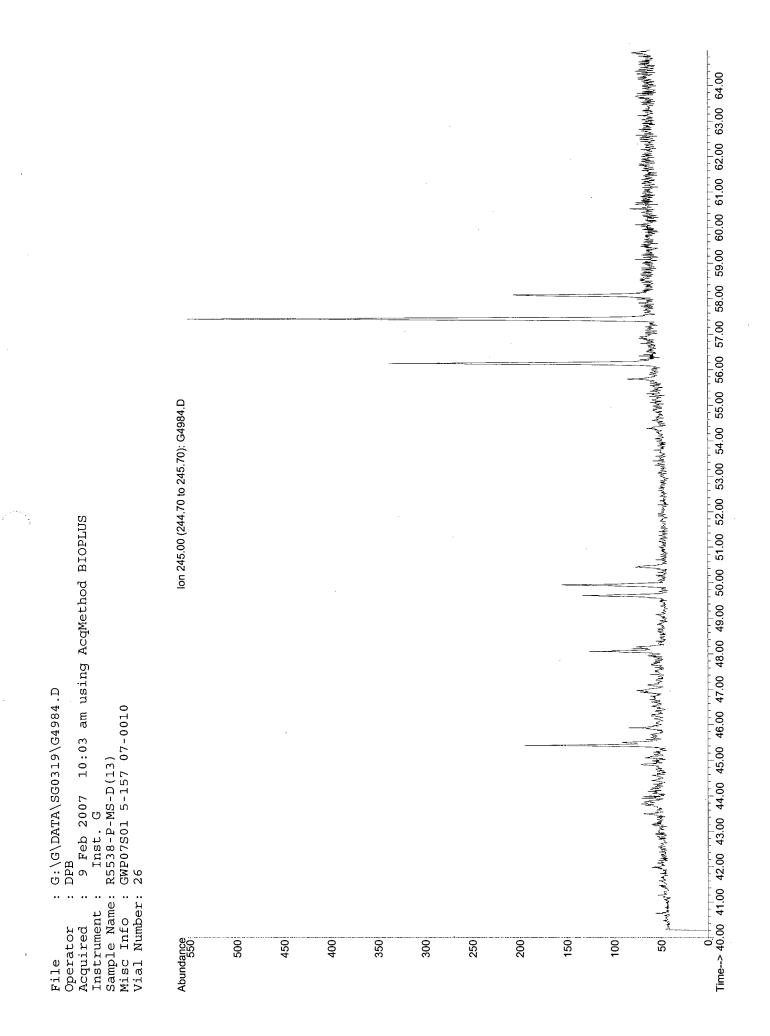



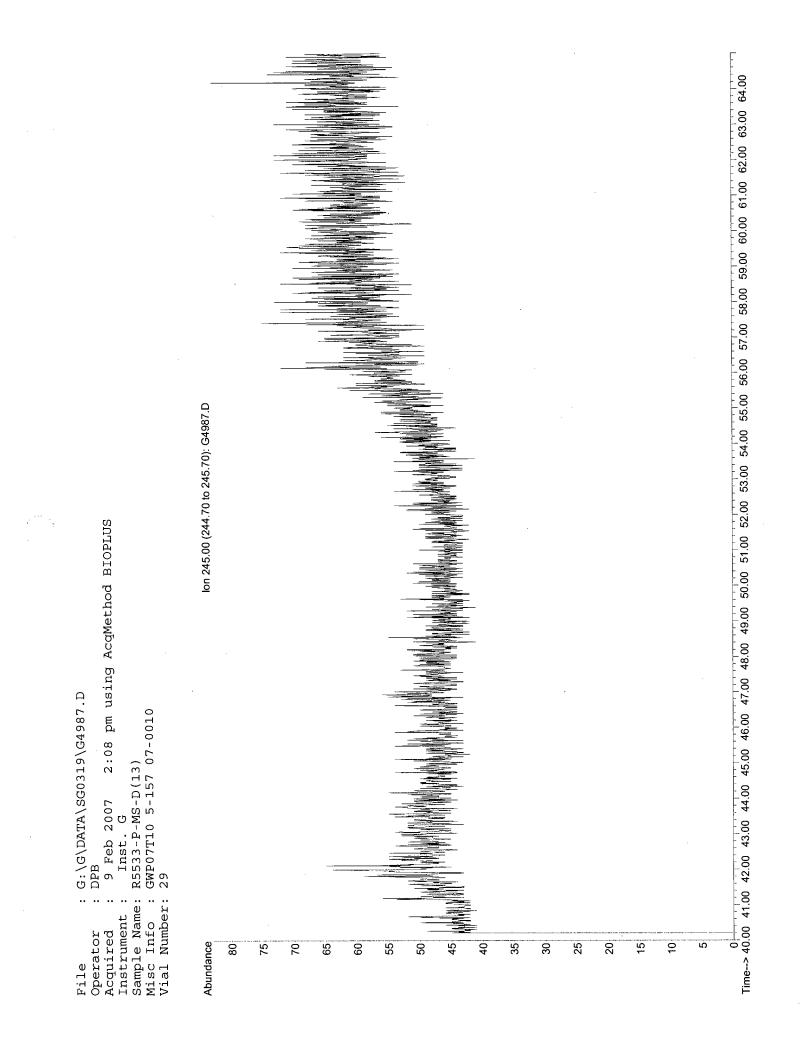



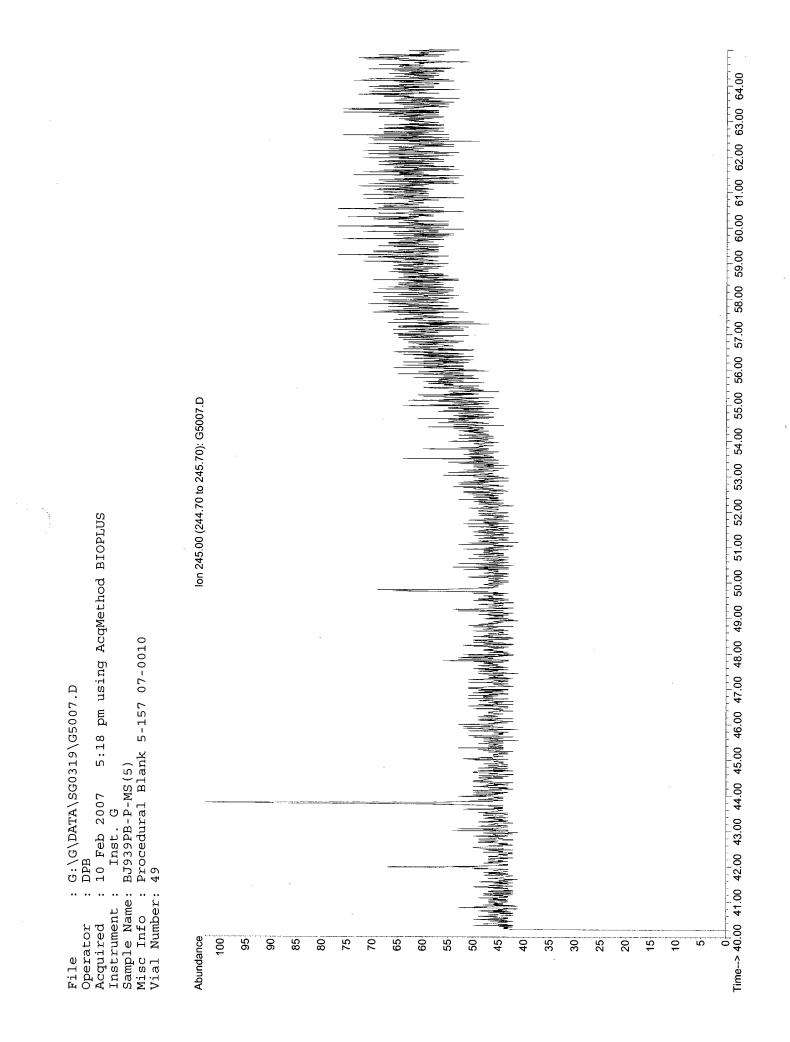



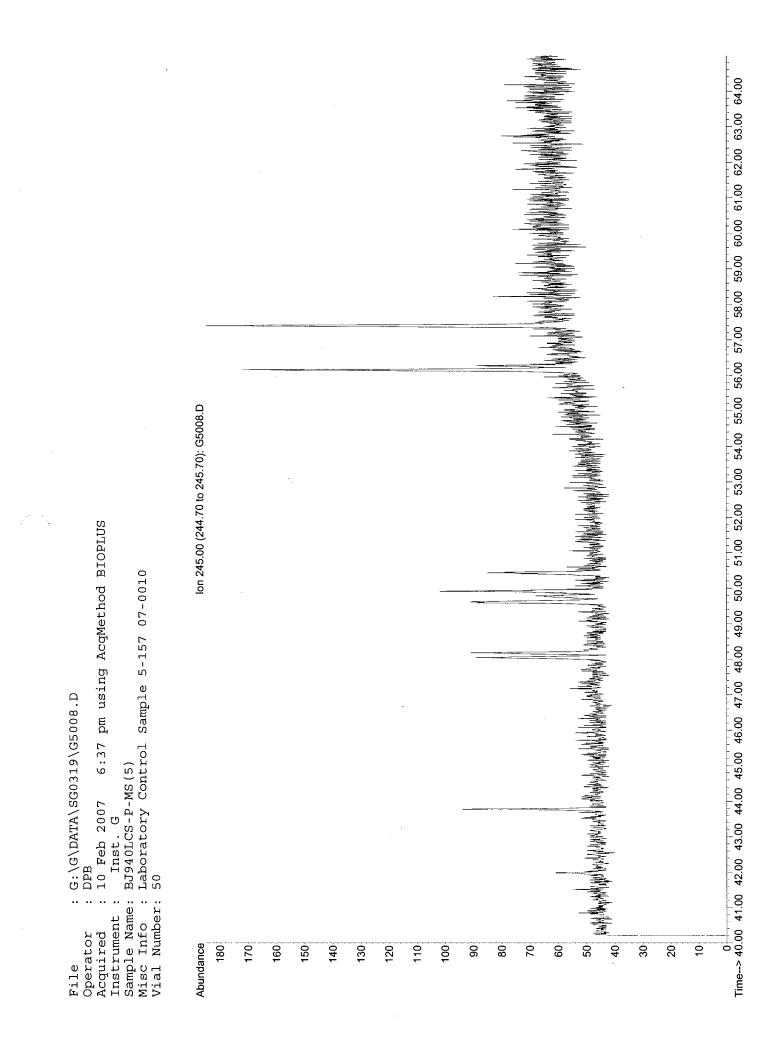



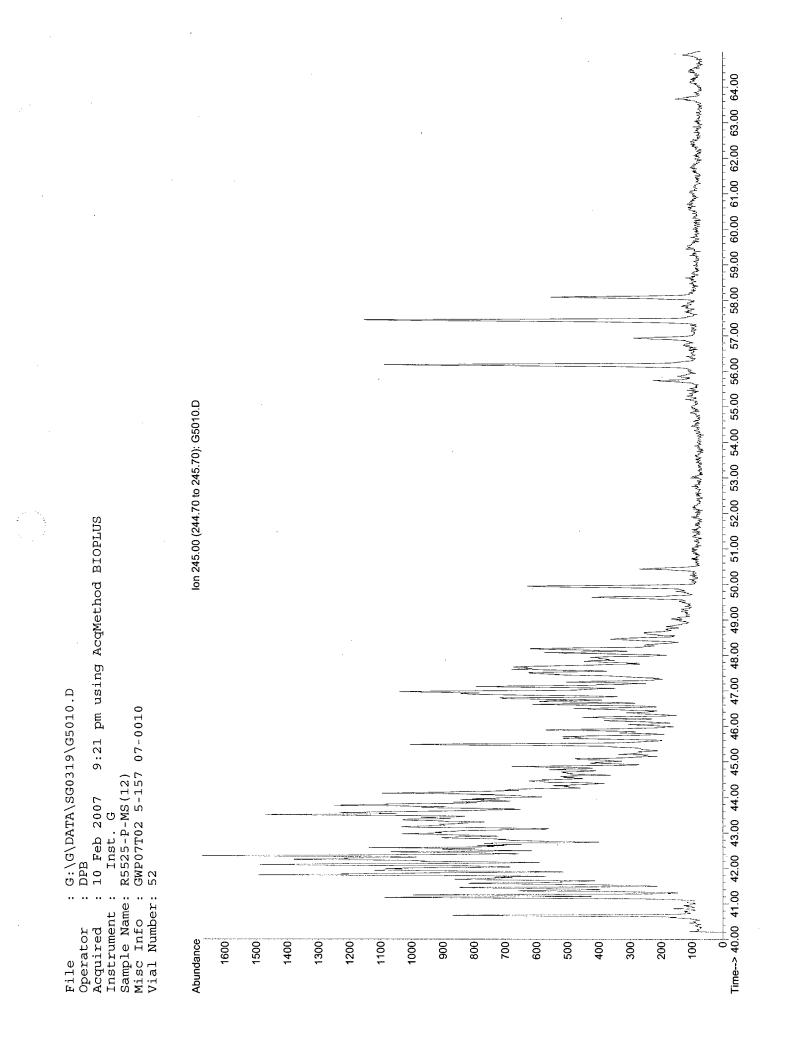



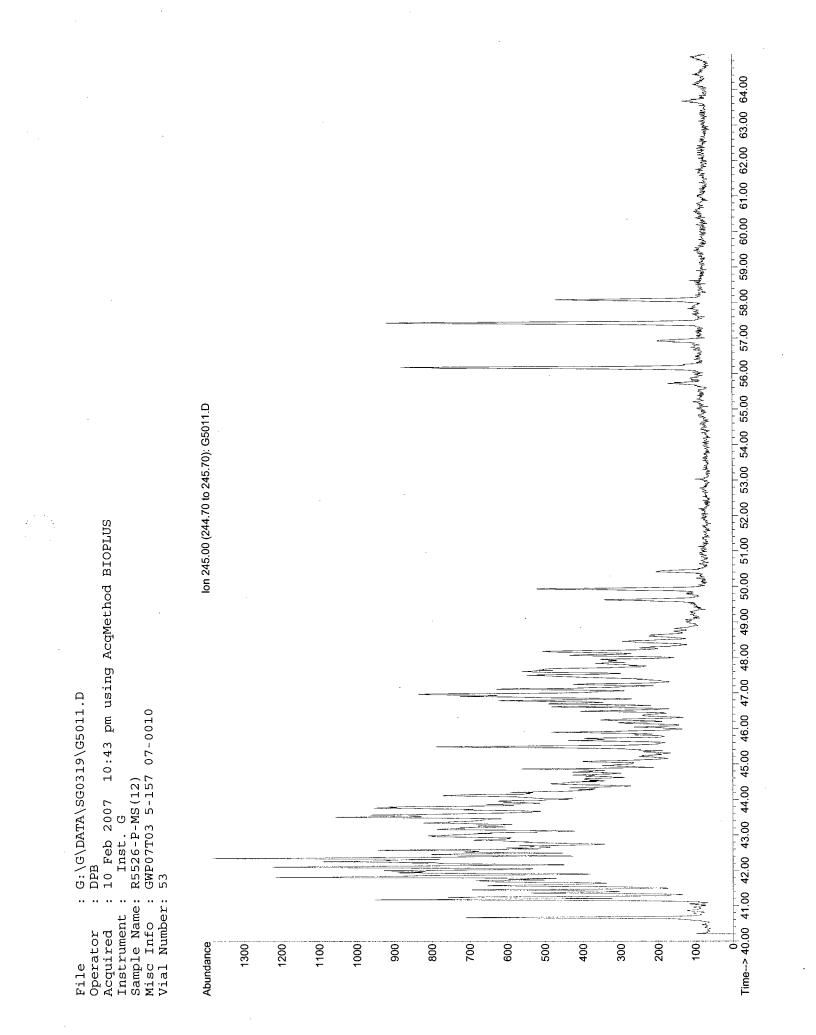



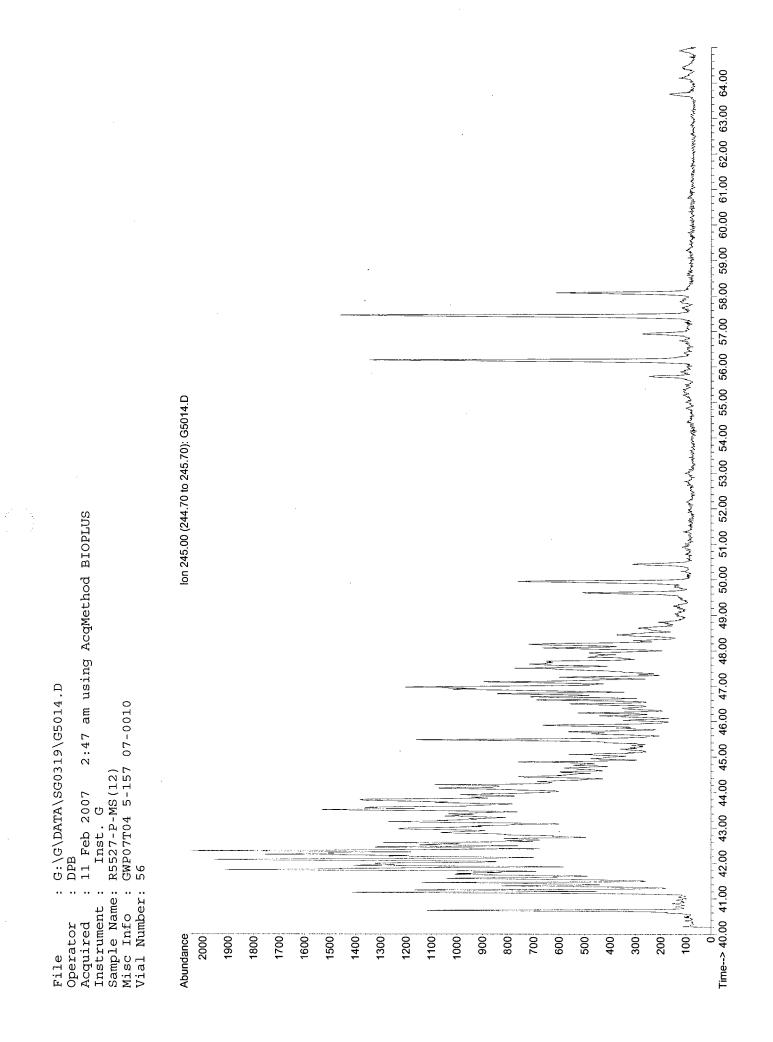



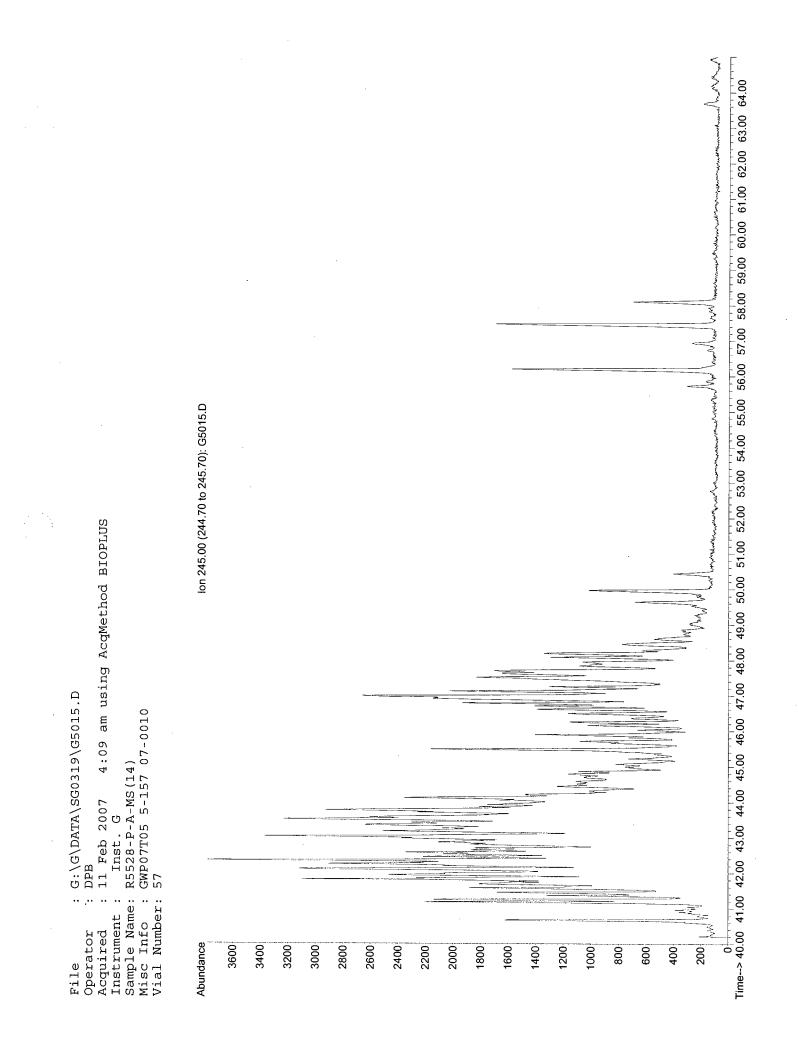



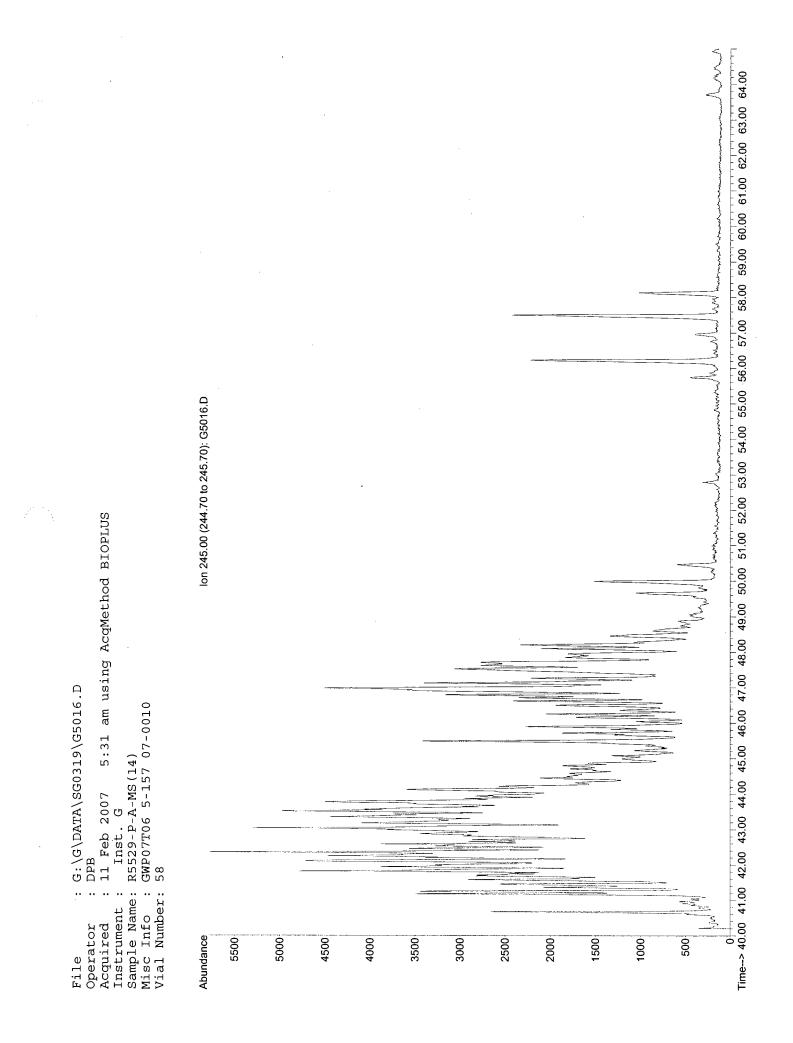



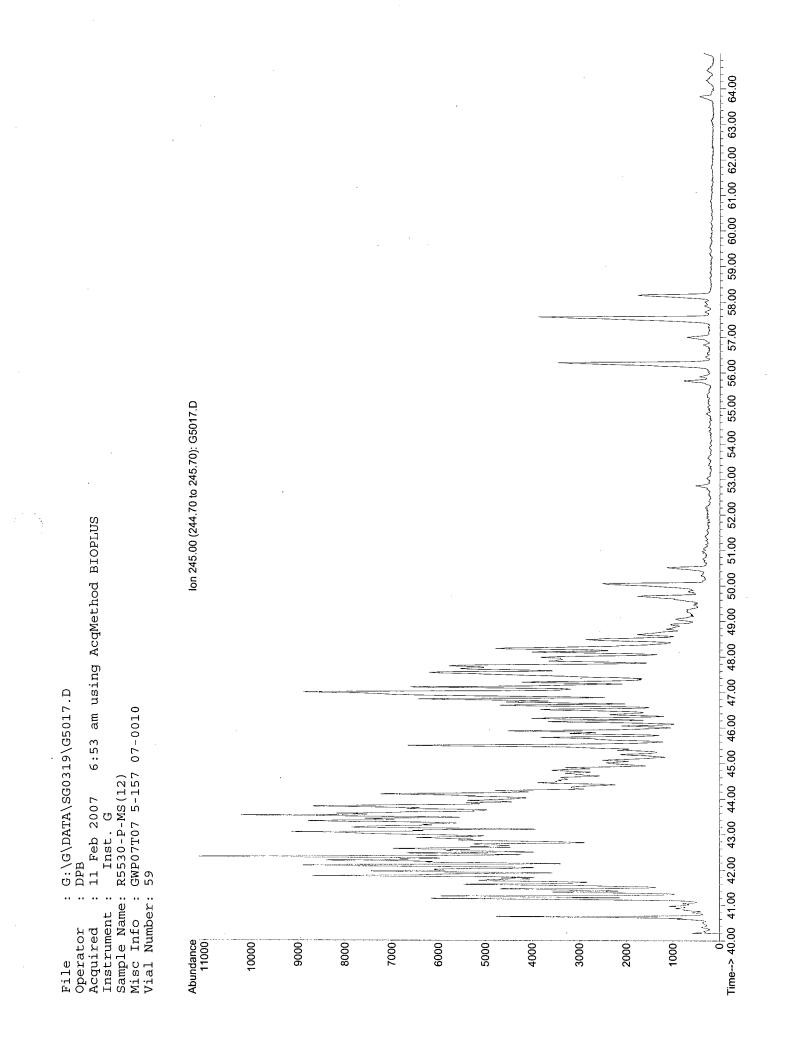



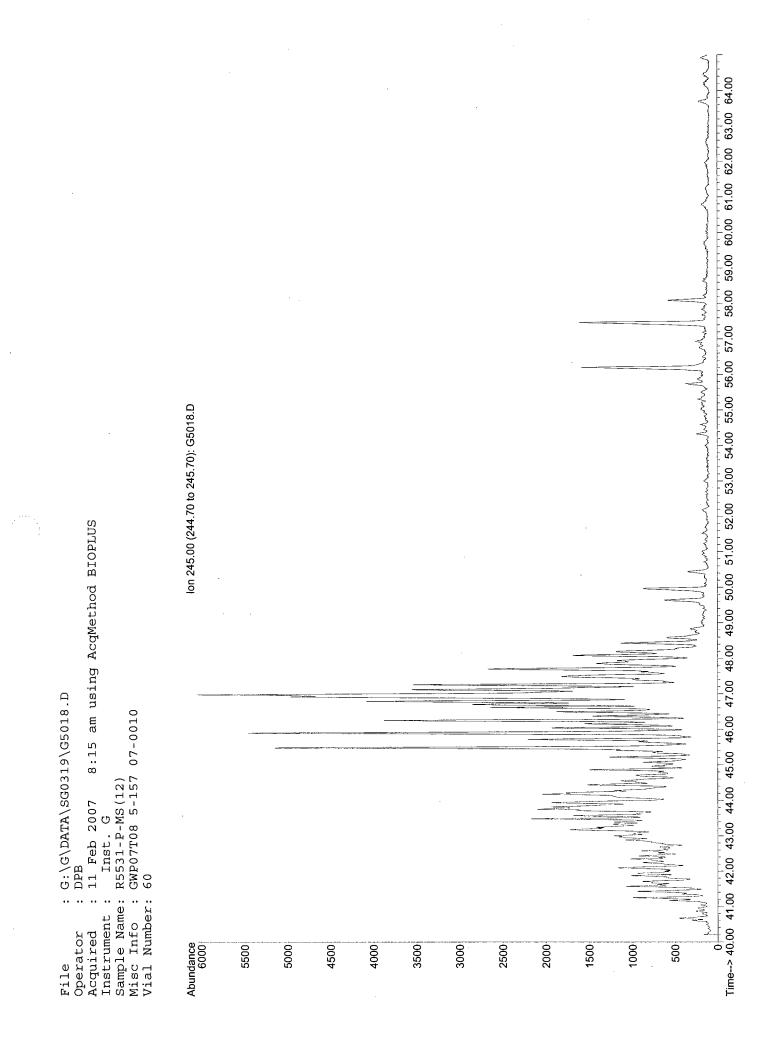



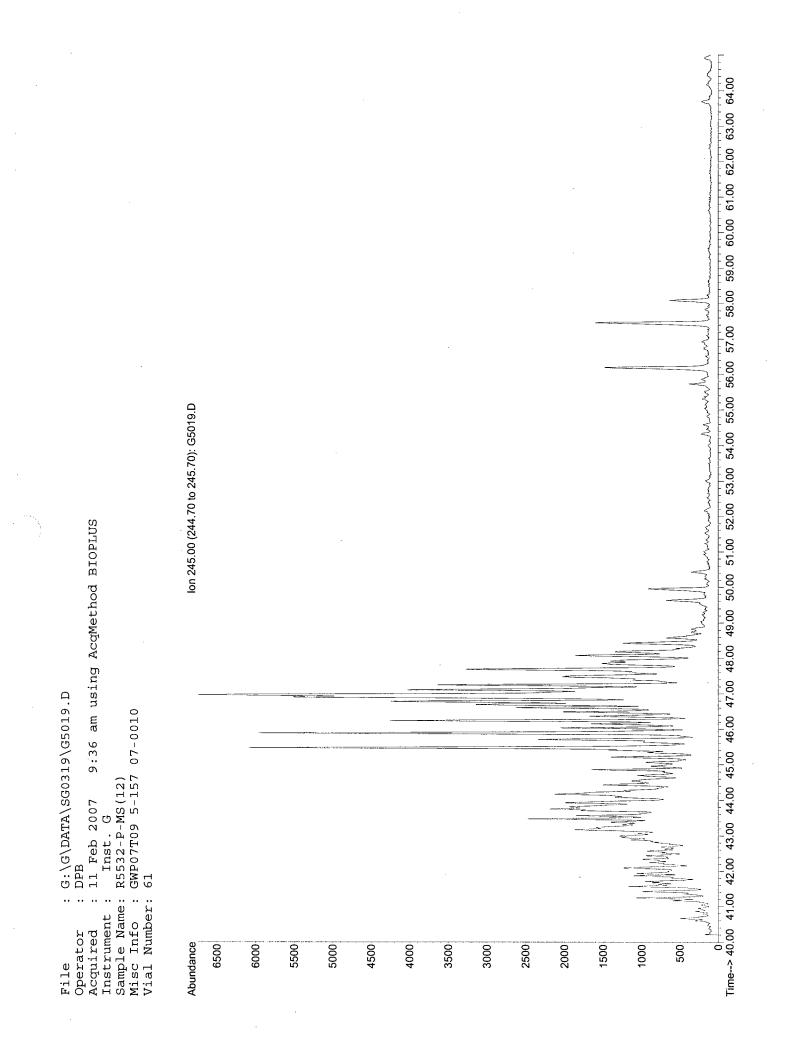



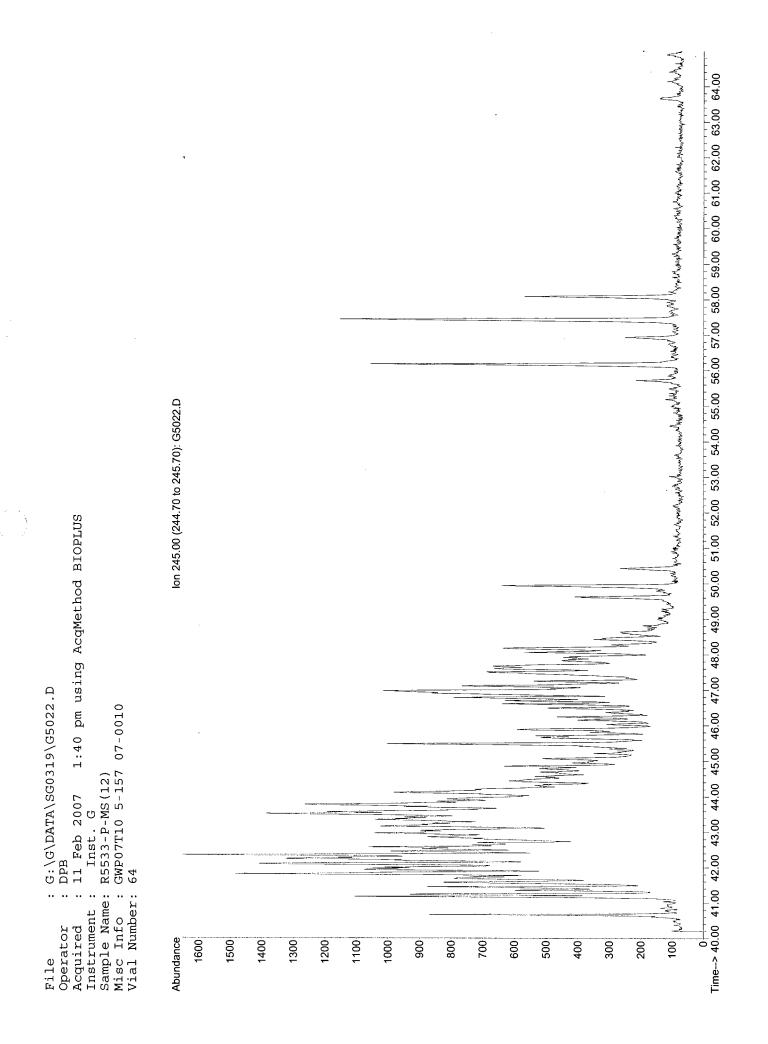



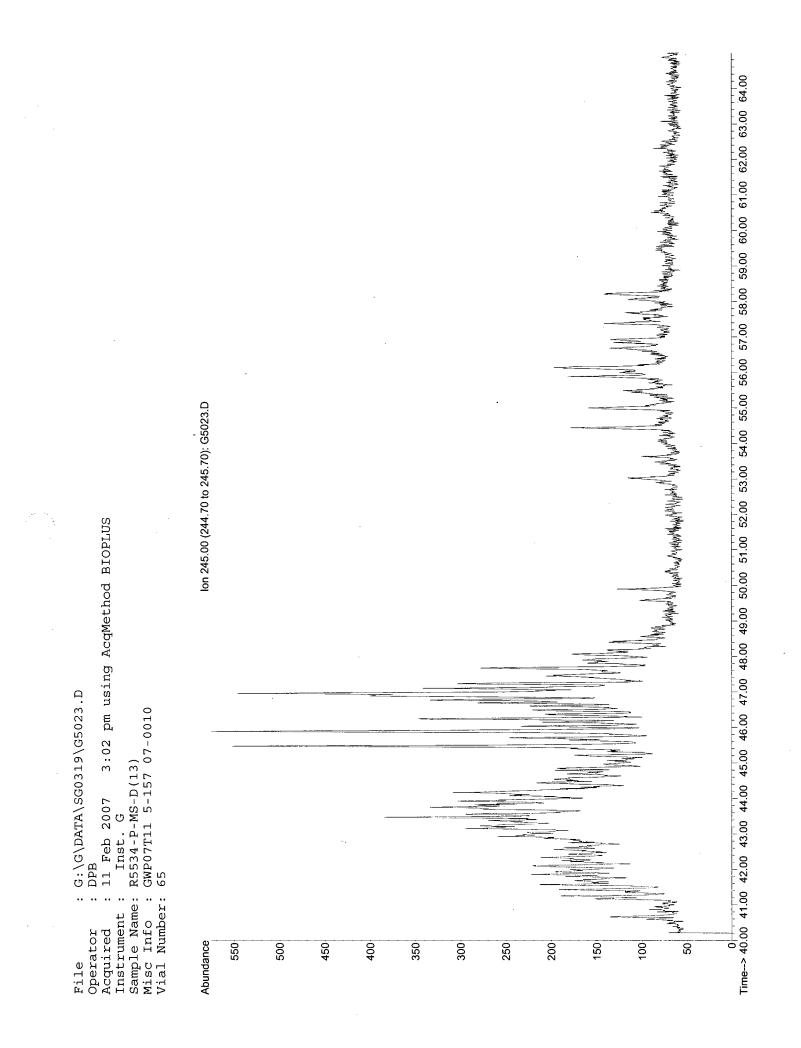



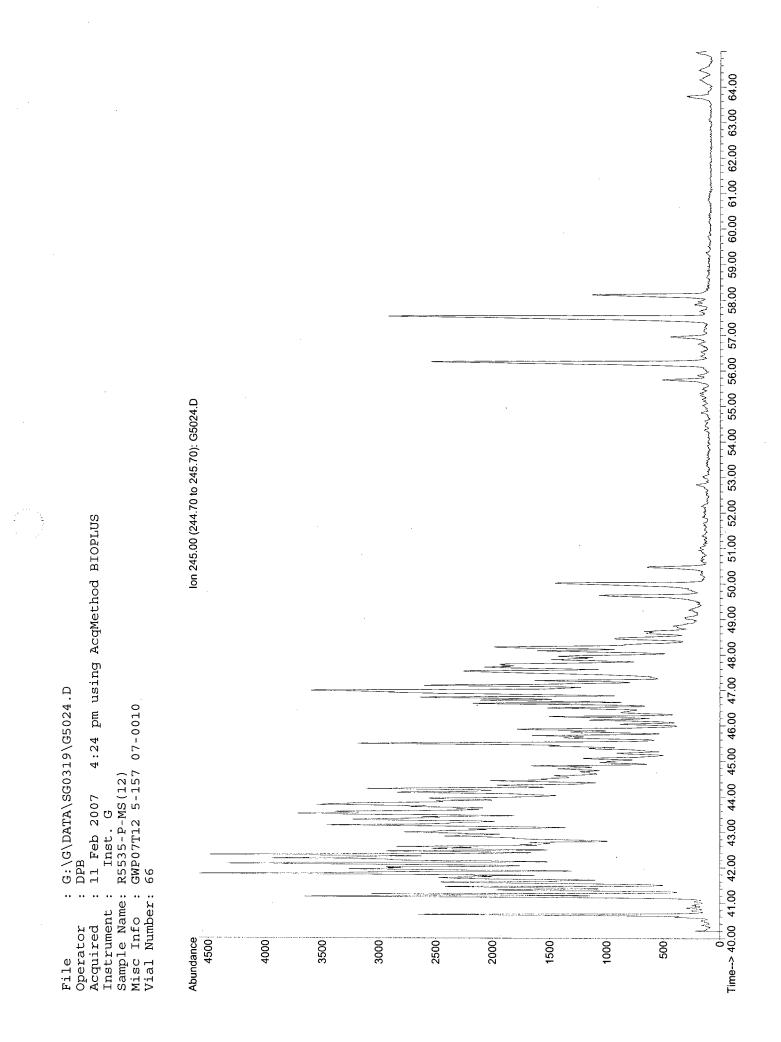



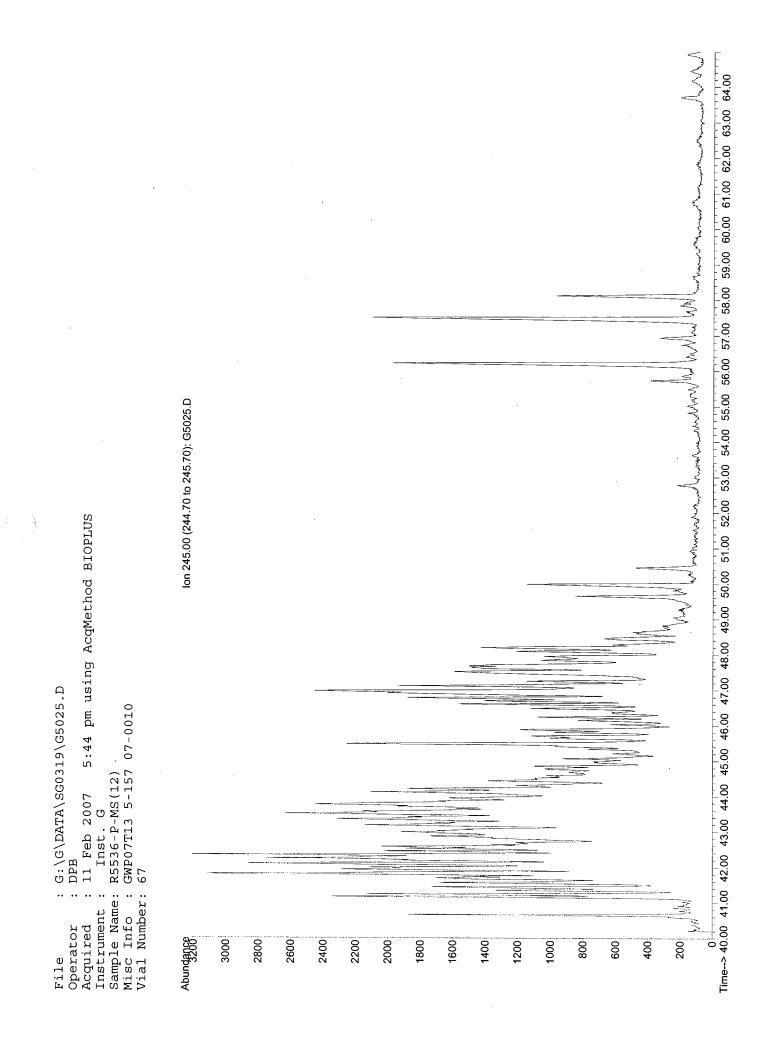



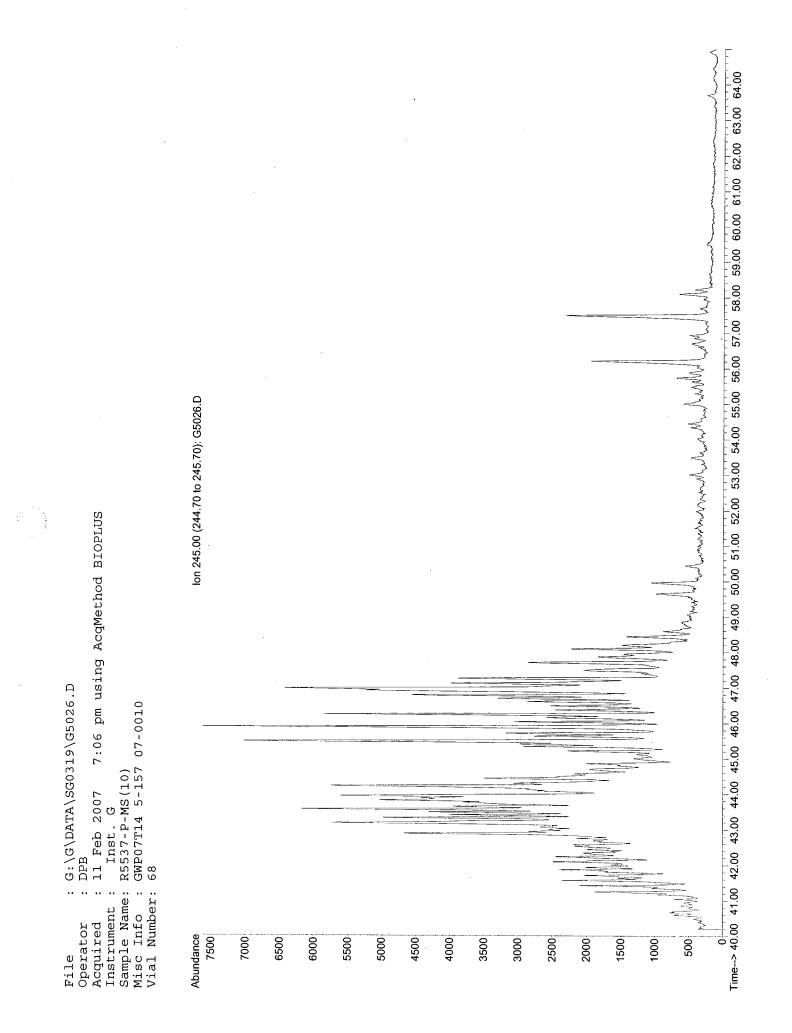



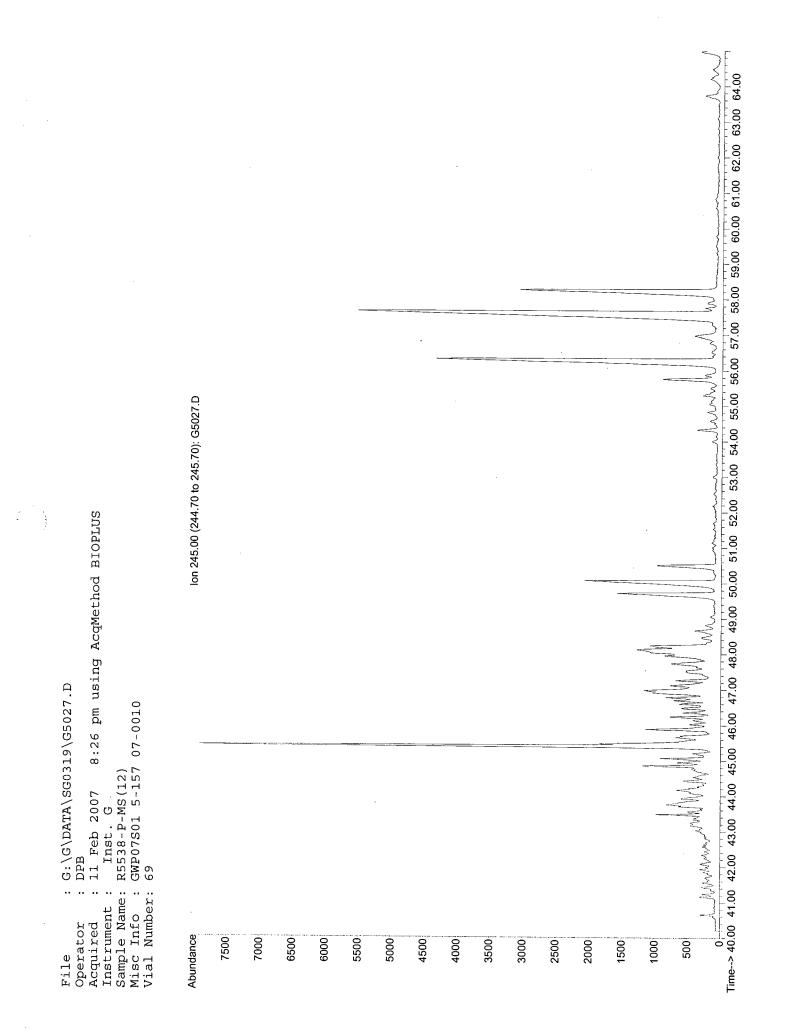



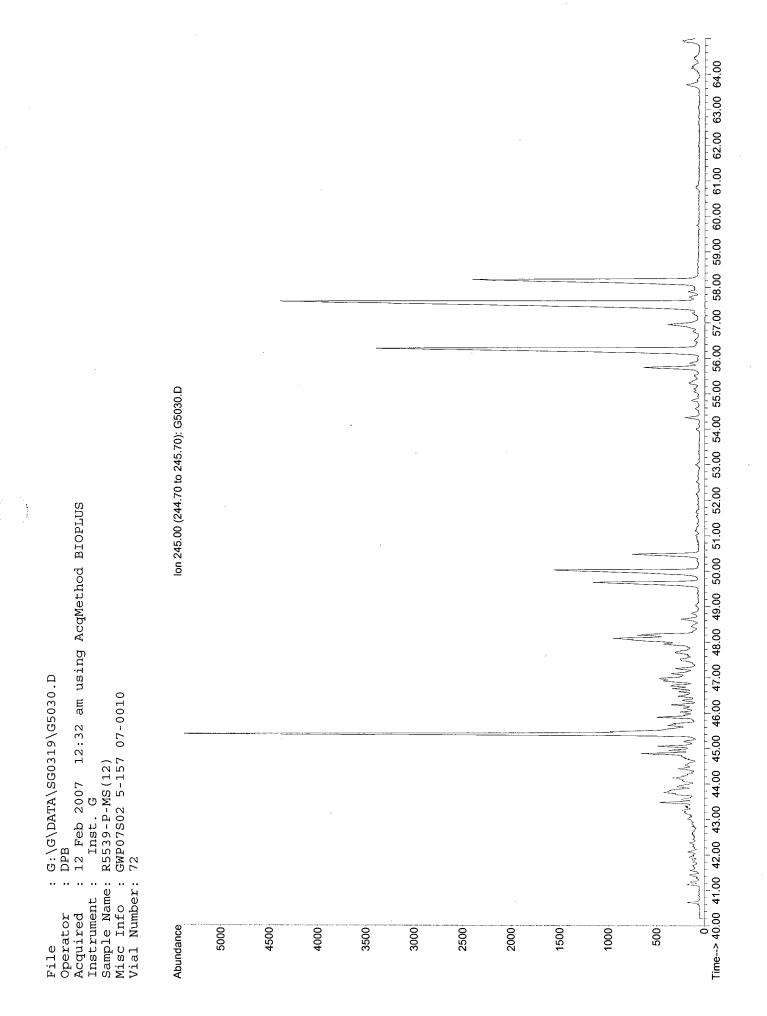



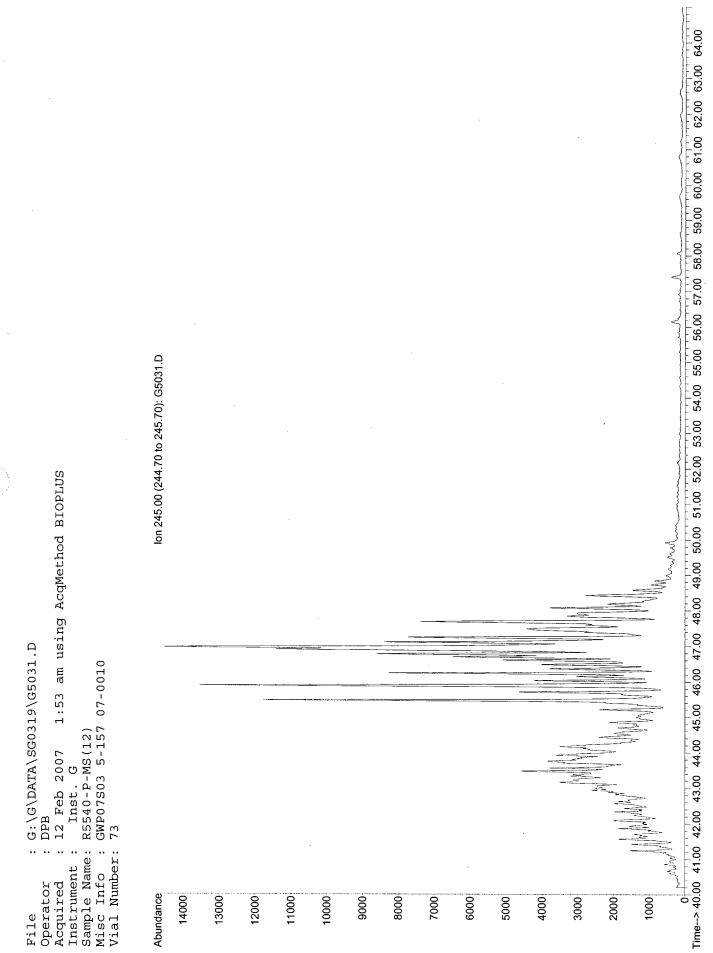



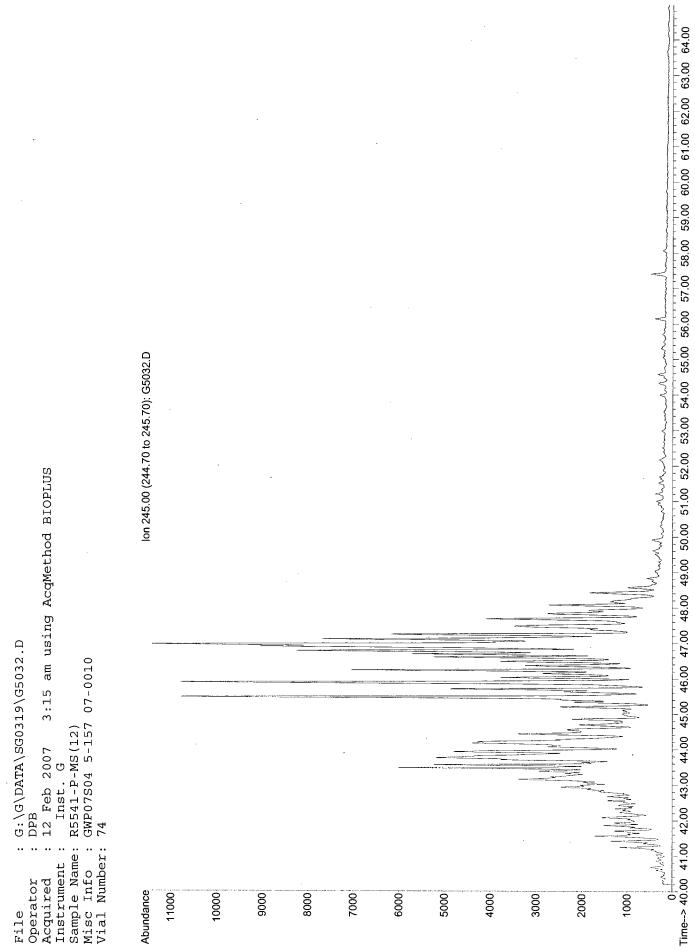



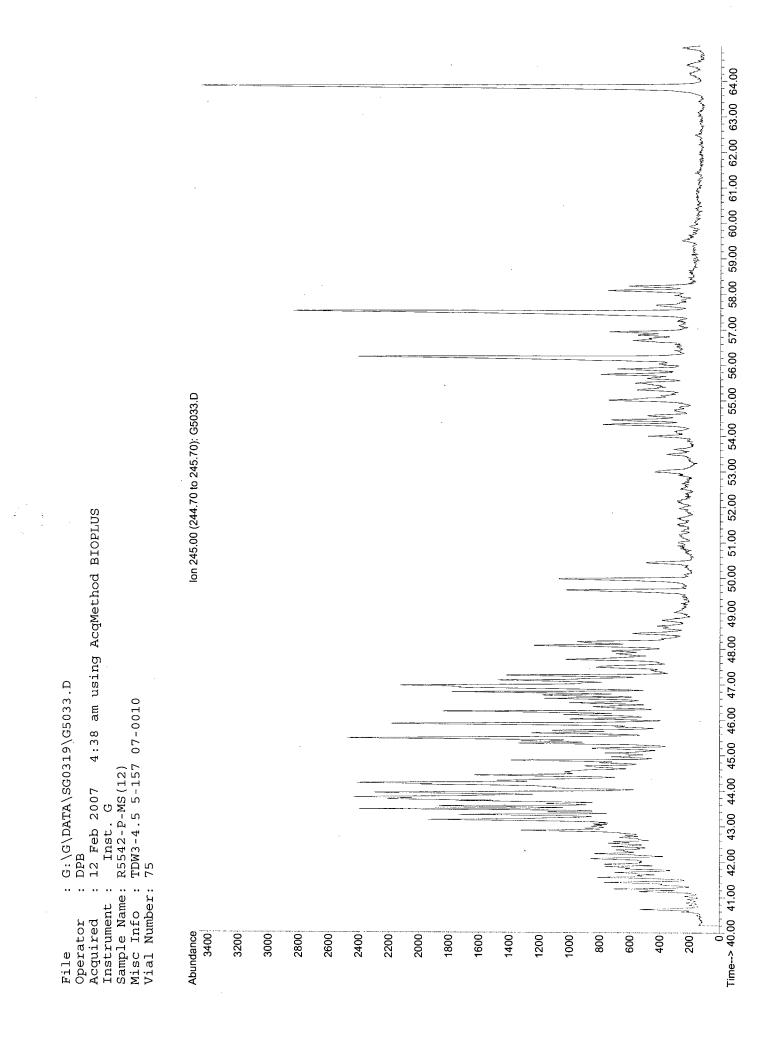



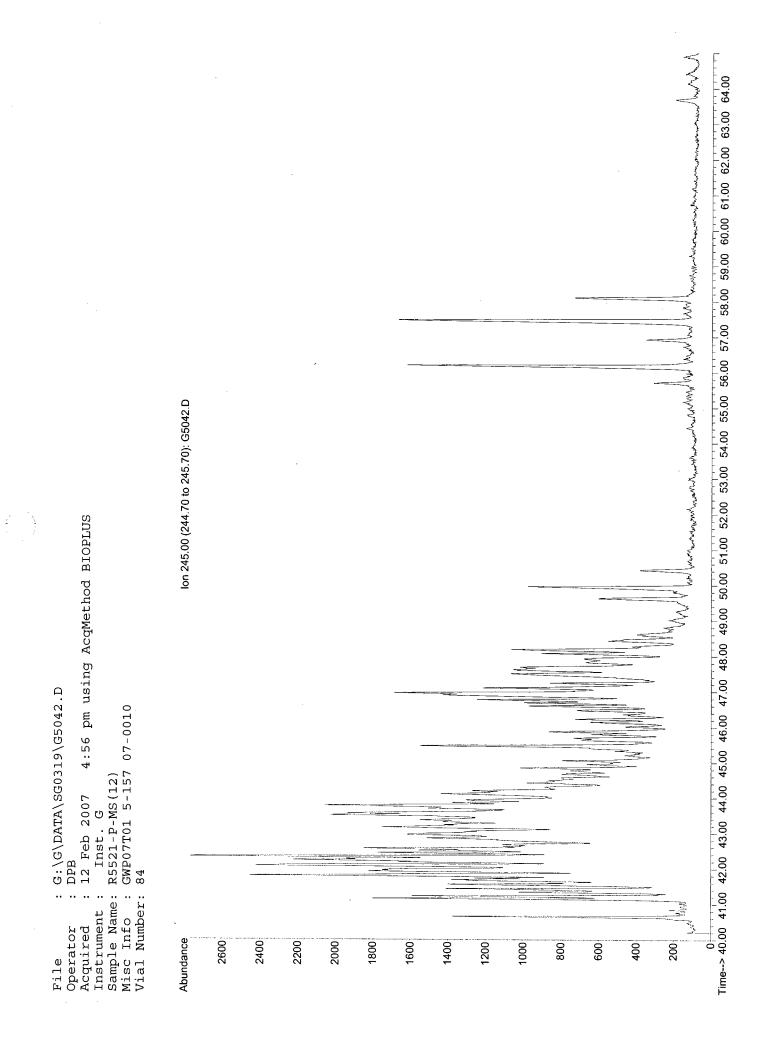


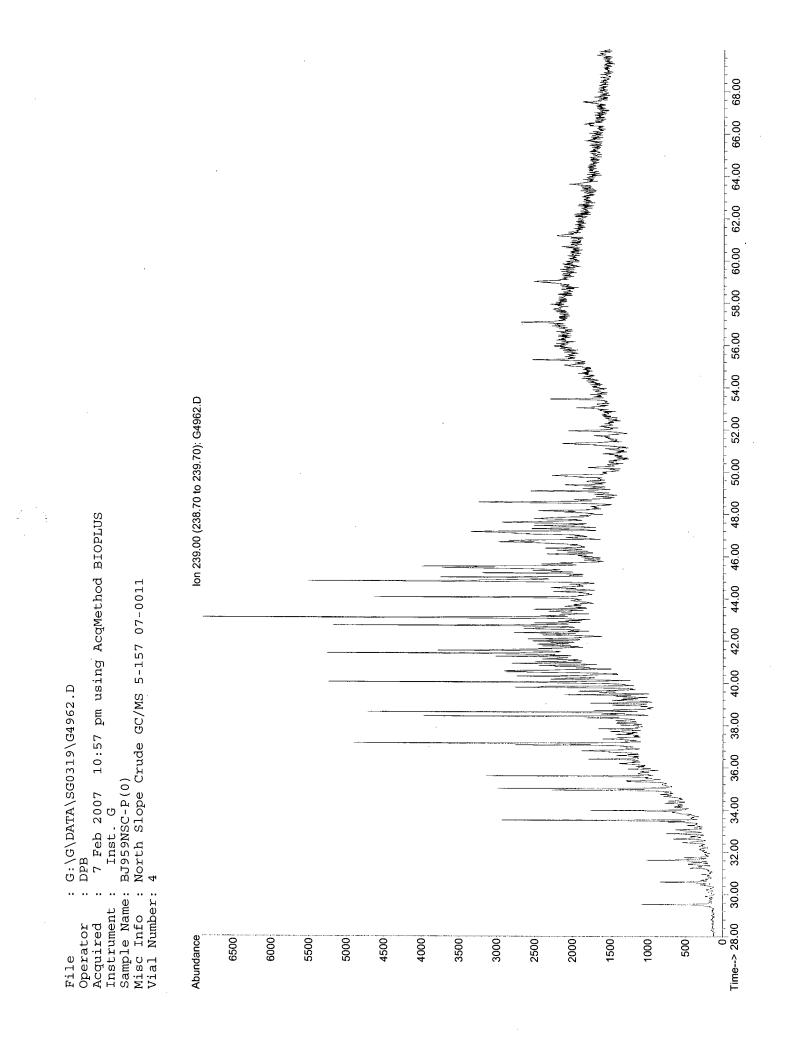



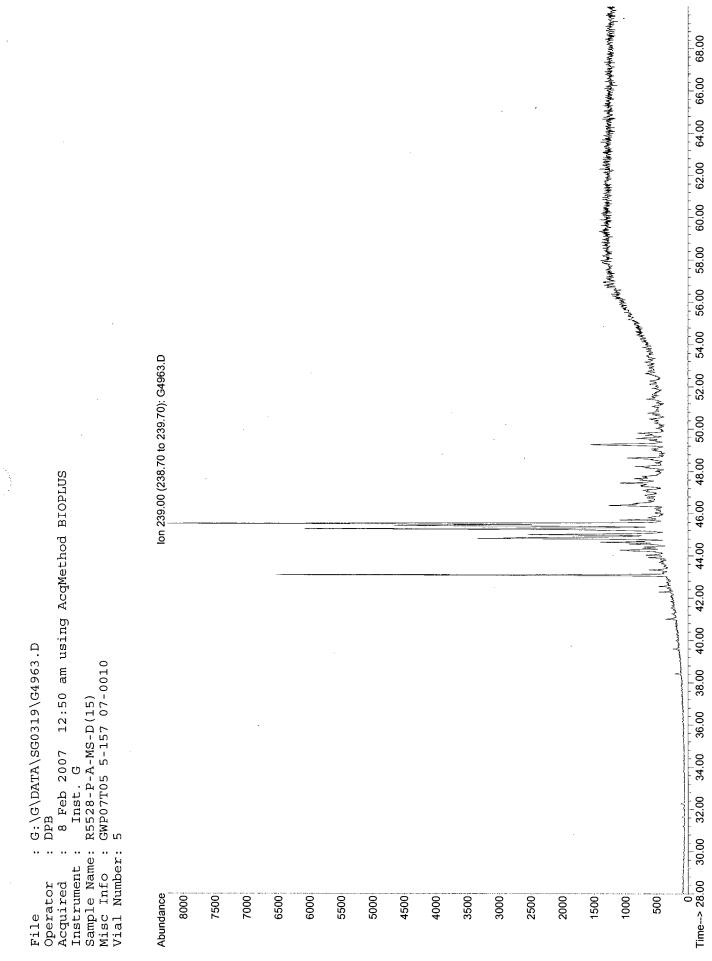


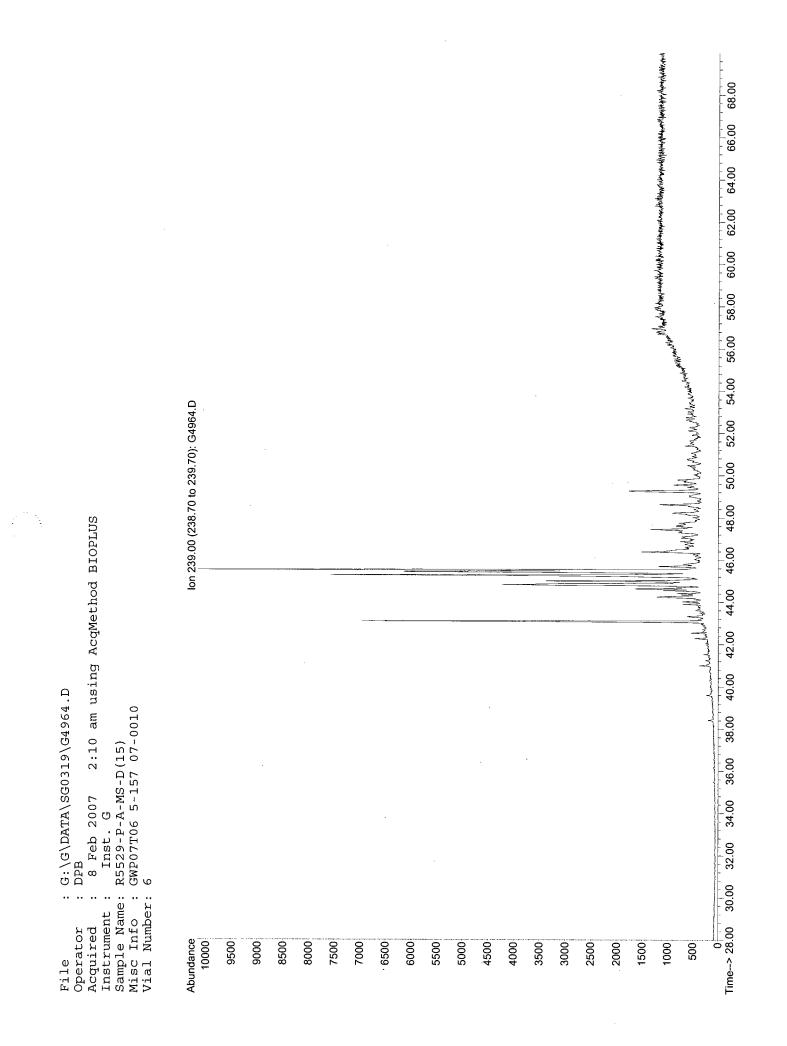


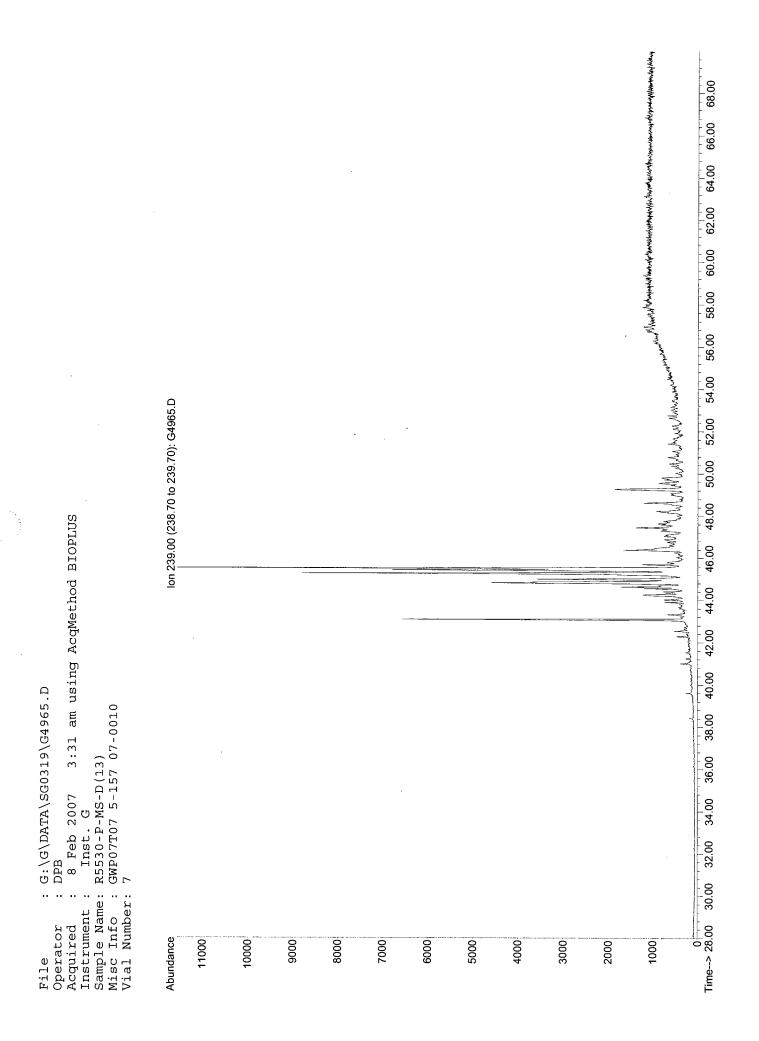



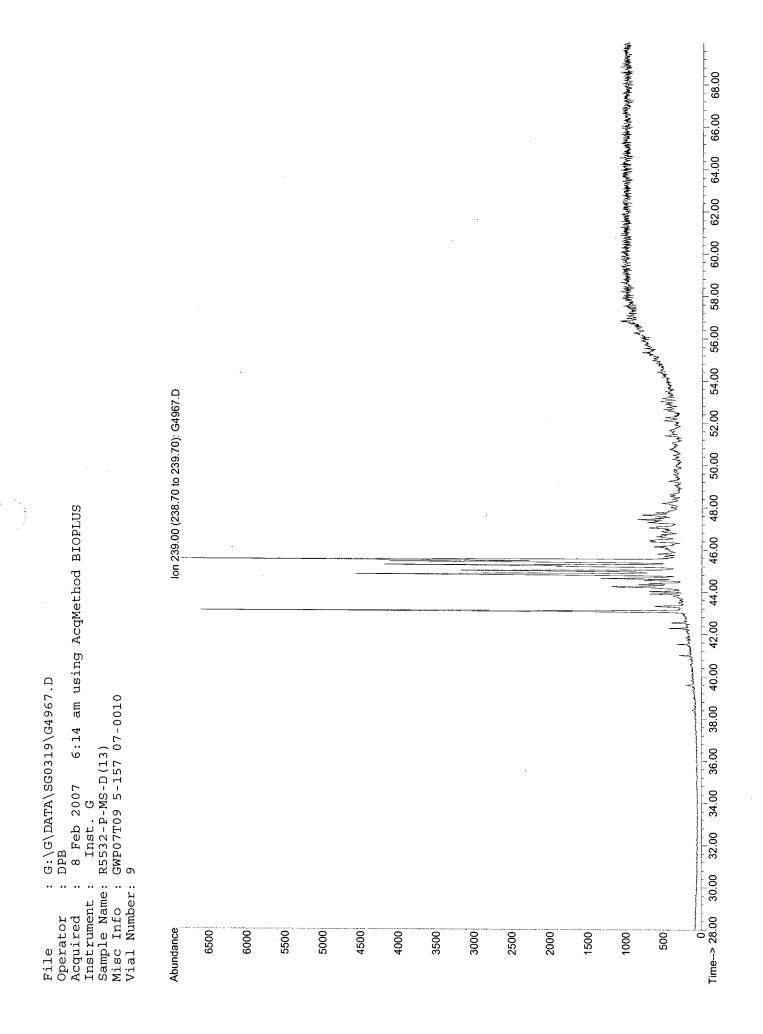


÷ .

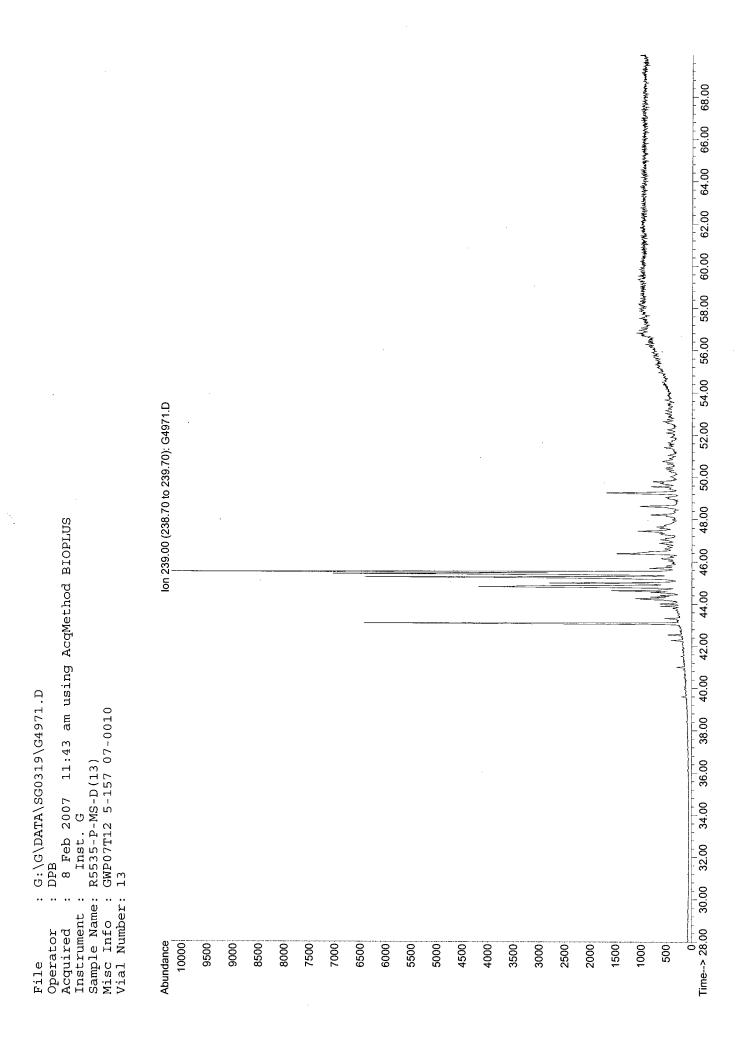




.


- - -





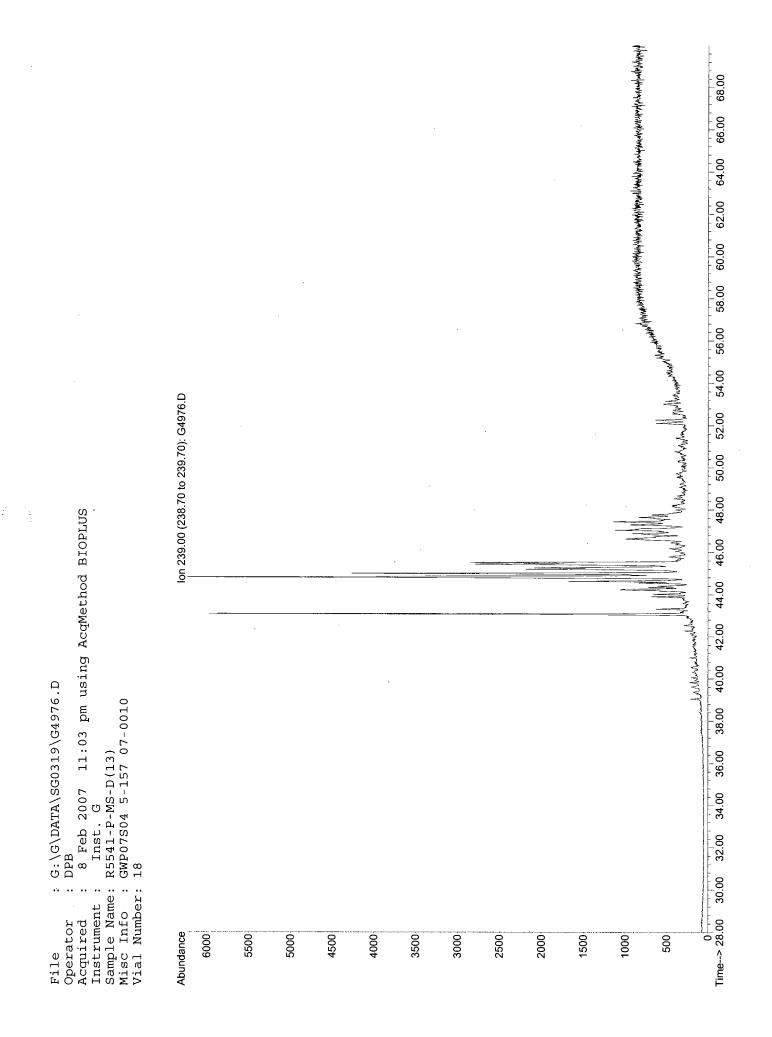


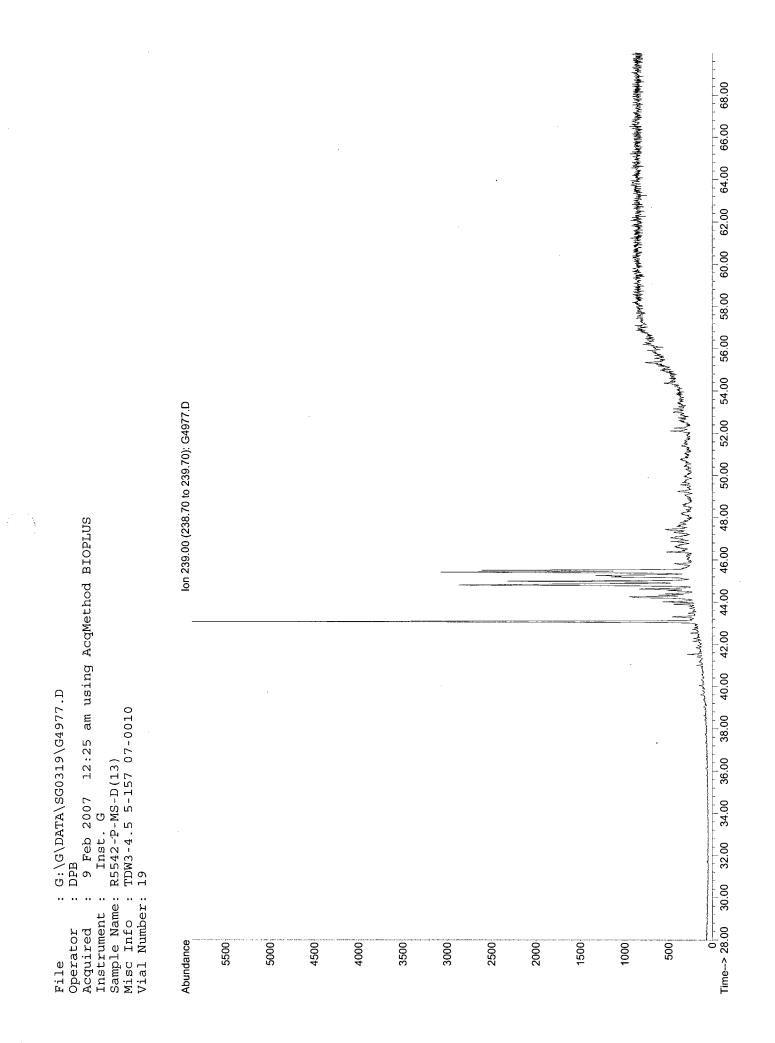


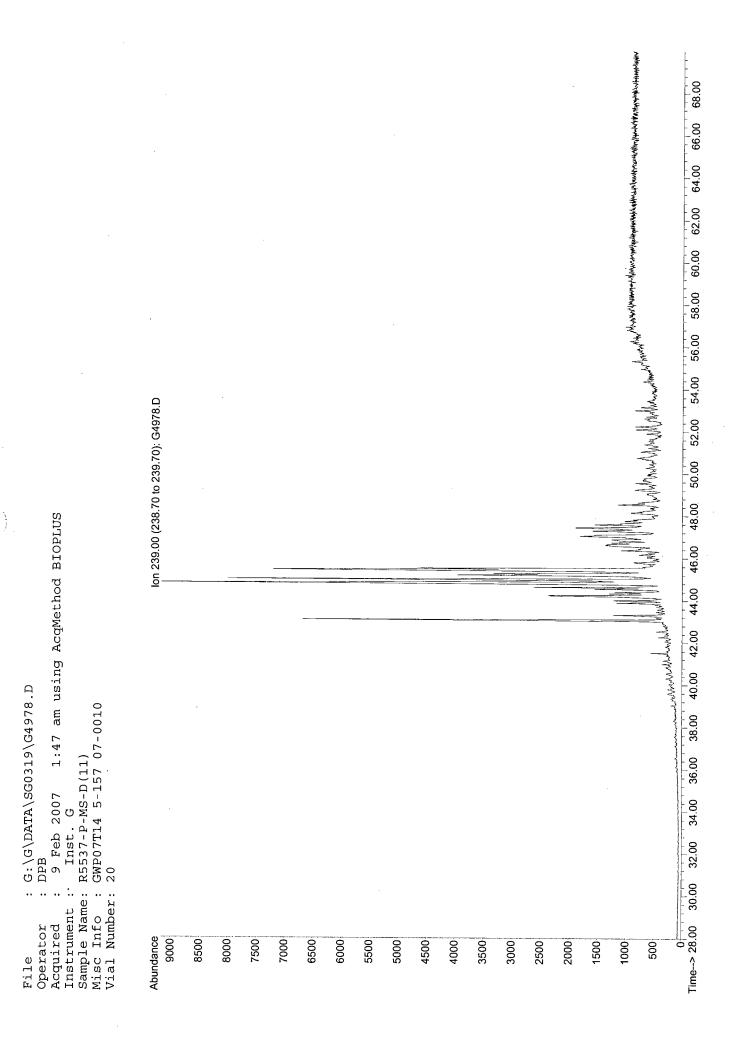


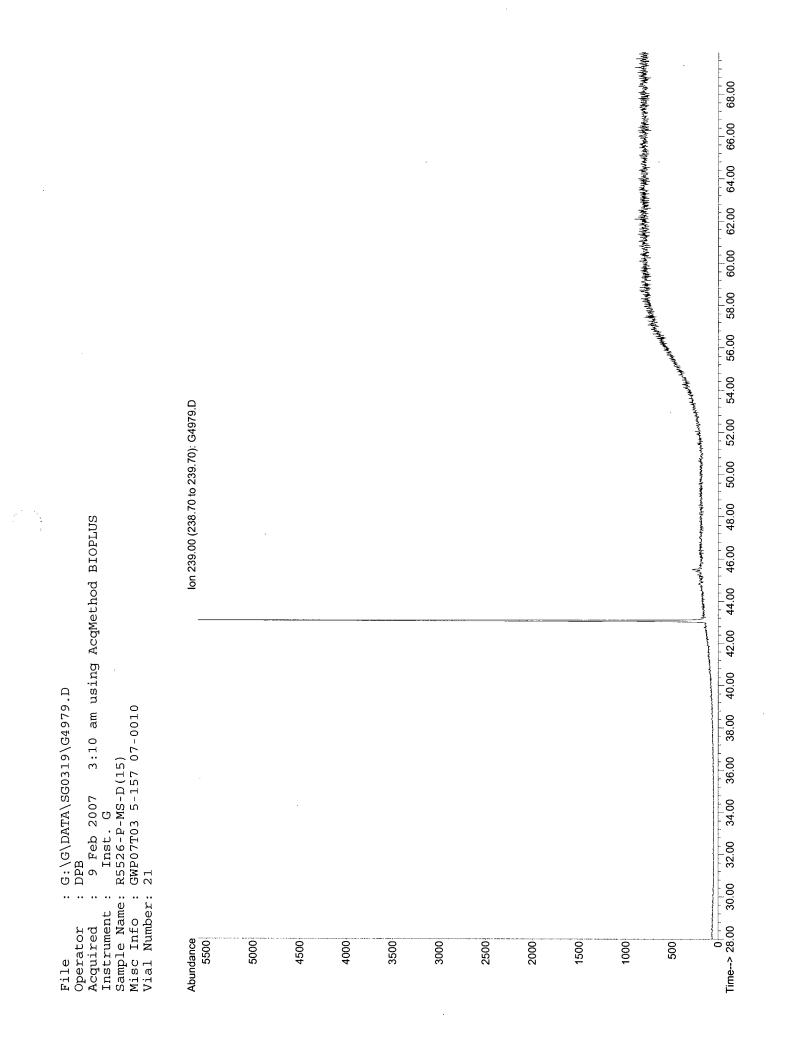


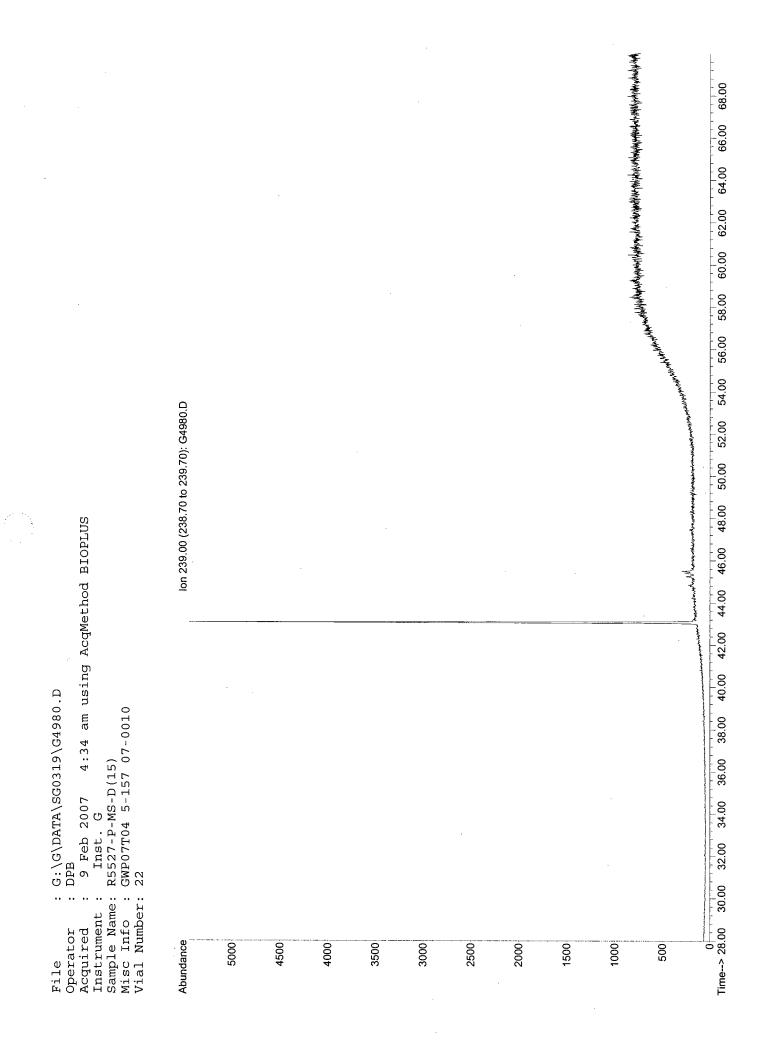

Ion 239.00 (238.70 to 239.70): G4972.D 5:37 pm using AcqMethod BIOPLUS : G:\G\DATA\SG0319\G4972.D : DPB Acquired : 8 Feb 2007 5:37 pm 1 Instrument : Inst. G Sample Name: R5539-P-MS-D(13) Misc Info : GWP07S02 5-157 07-0010 Vial Number: 14 14000 13000 12000 11000 0006 8000 7000 6000 Abundance, 10000 File

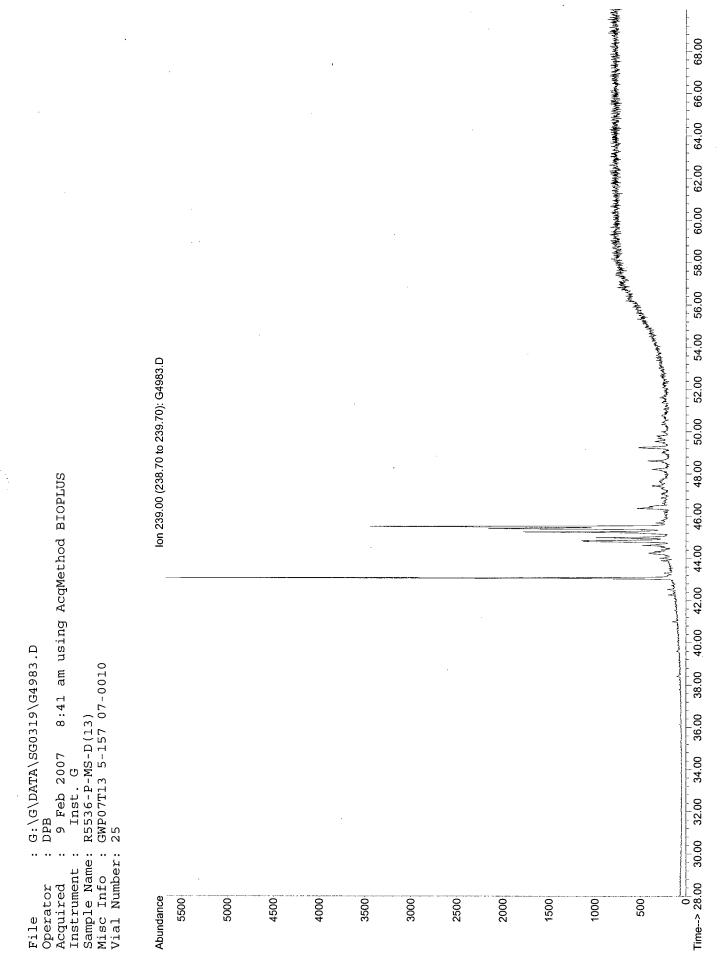

54.00 56.00 58.00 60.00 62.00 64.00 66.00 68.00 52.00 50.00 36.00 38.00 40.00 42.00 44.00 46.00 48.00 NY WWW WW -Time--> 28.00 30.00 32.00 34.00 1 0 1000


5000

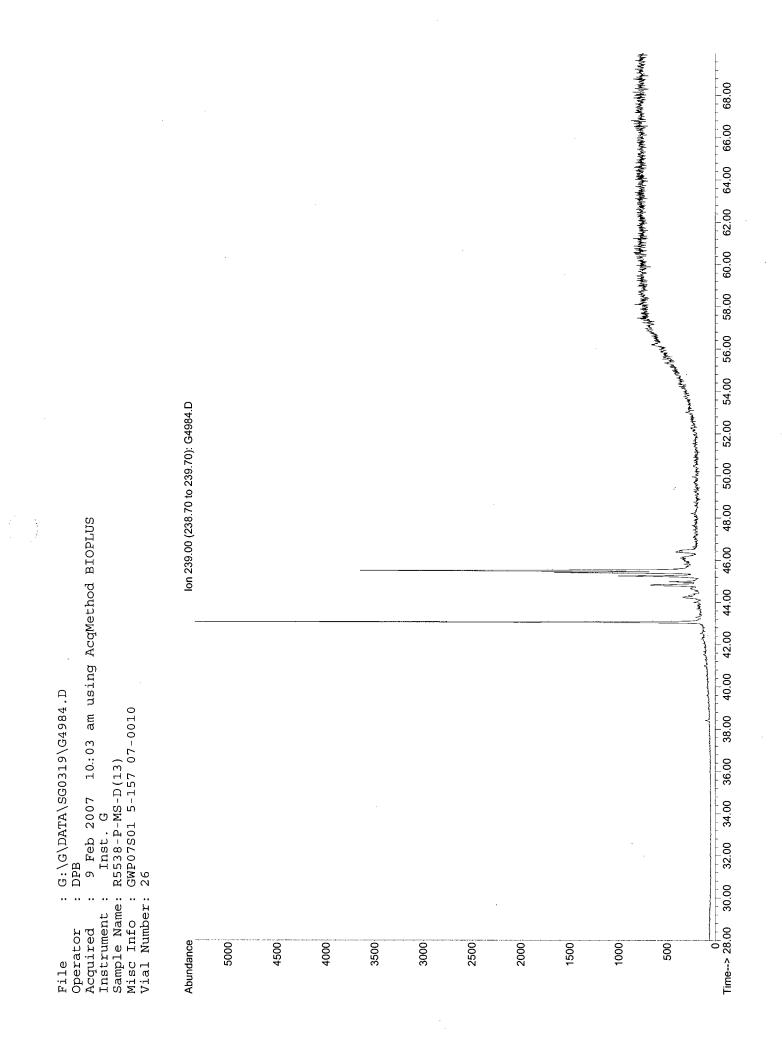

4000

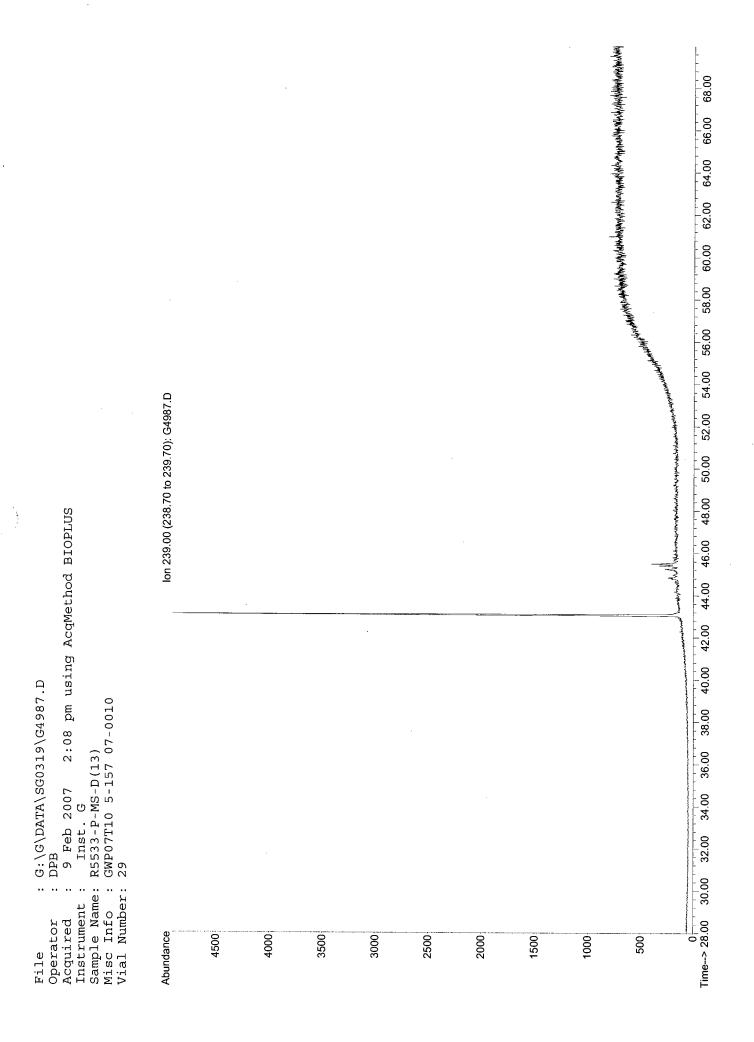

3000

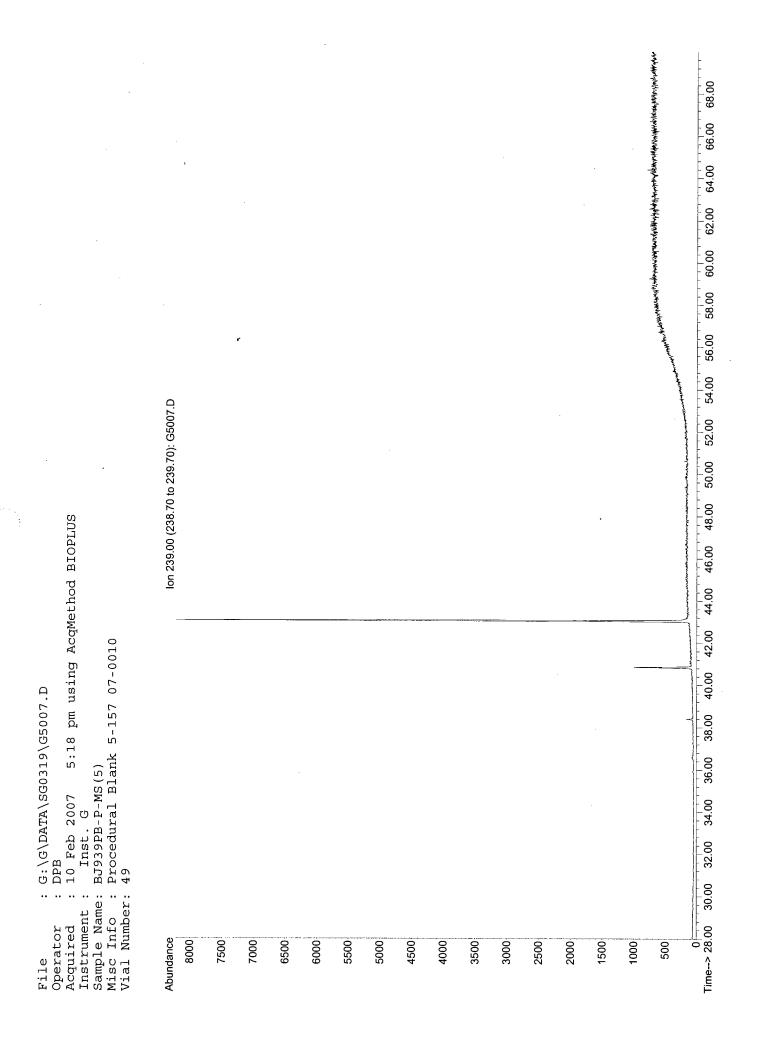

2000

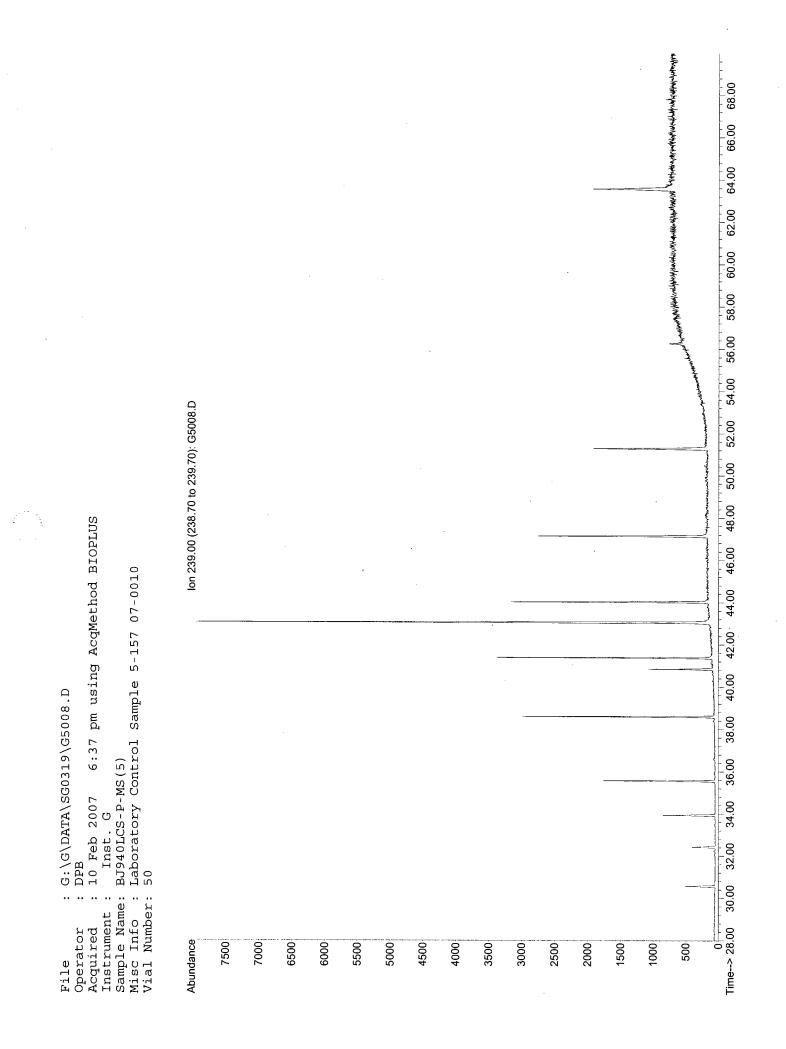


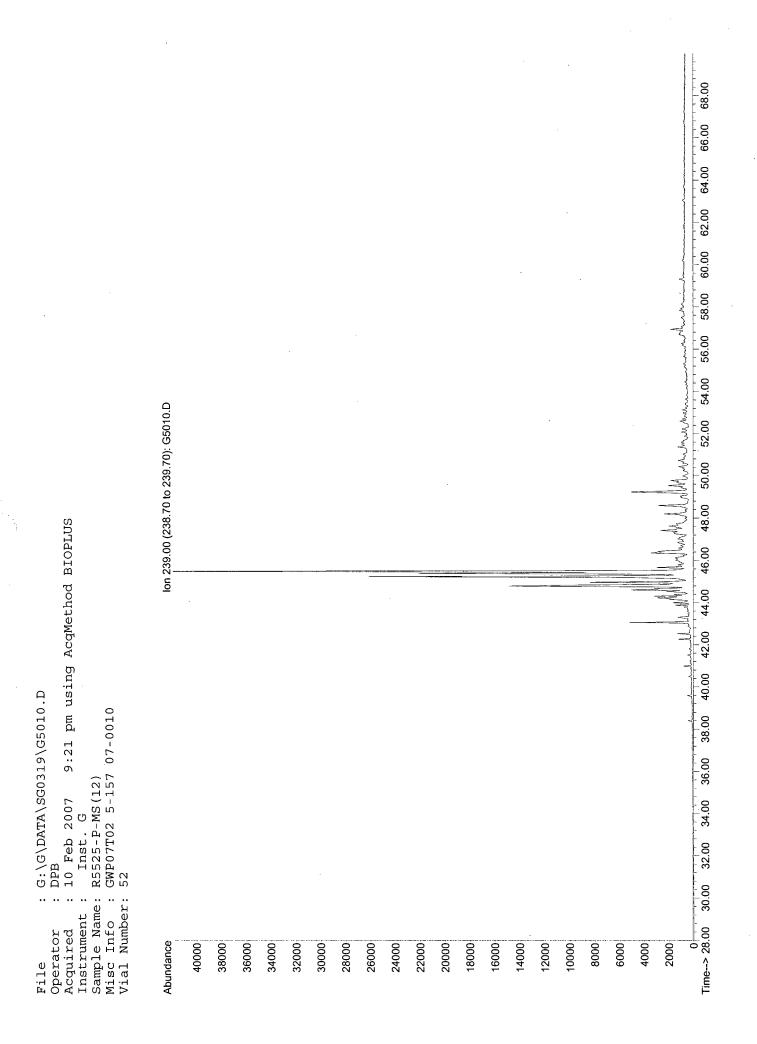


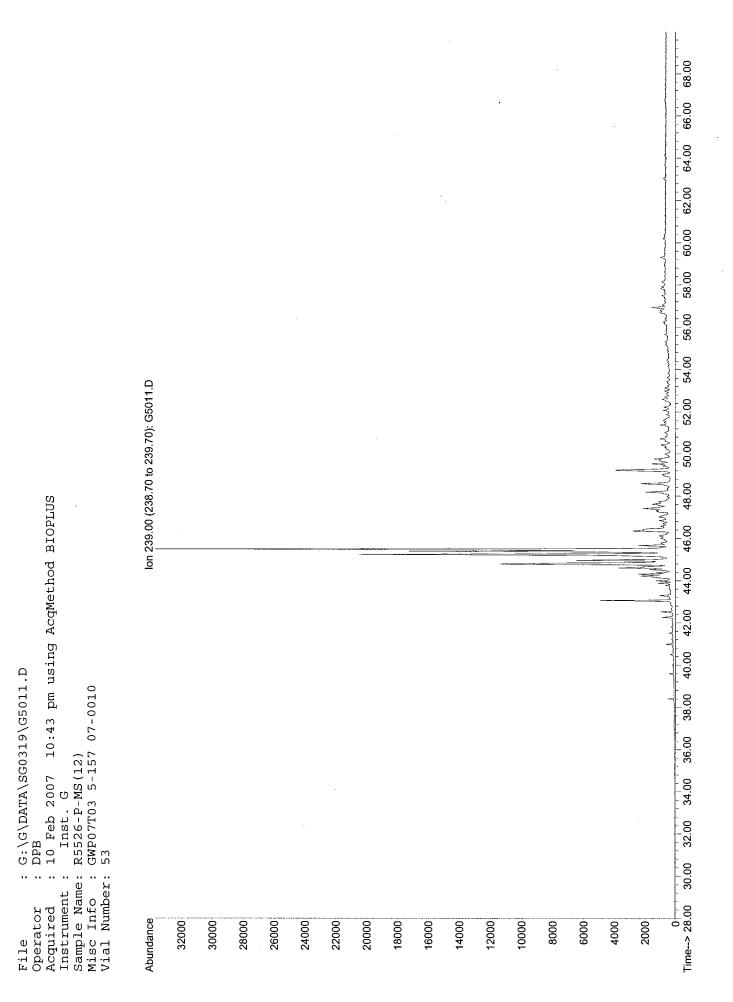



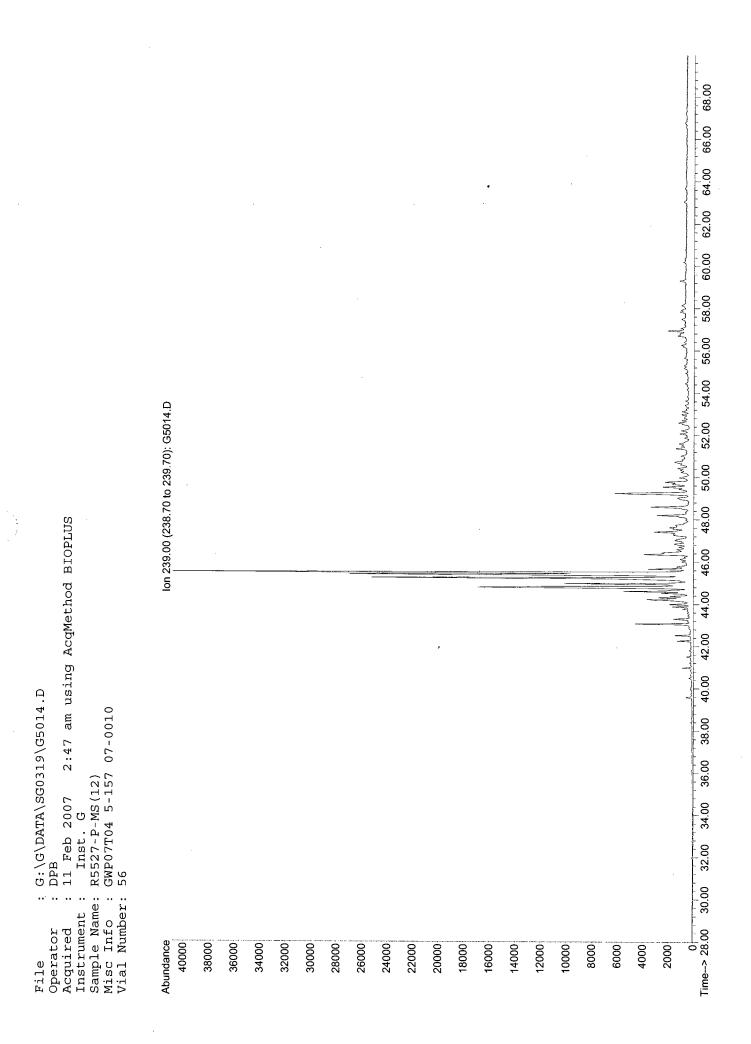



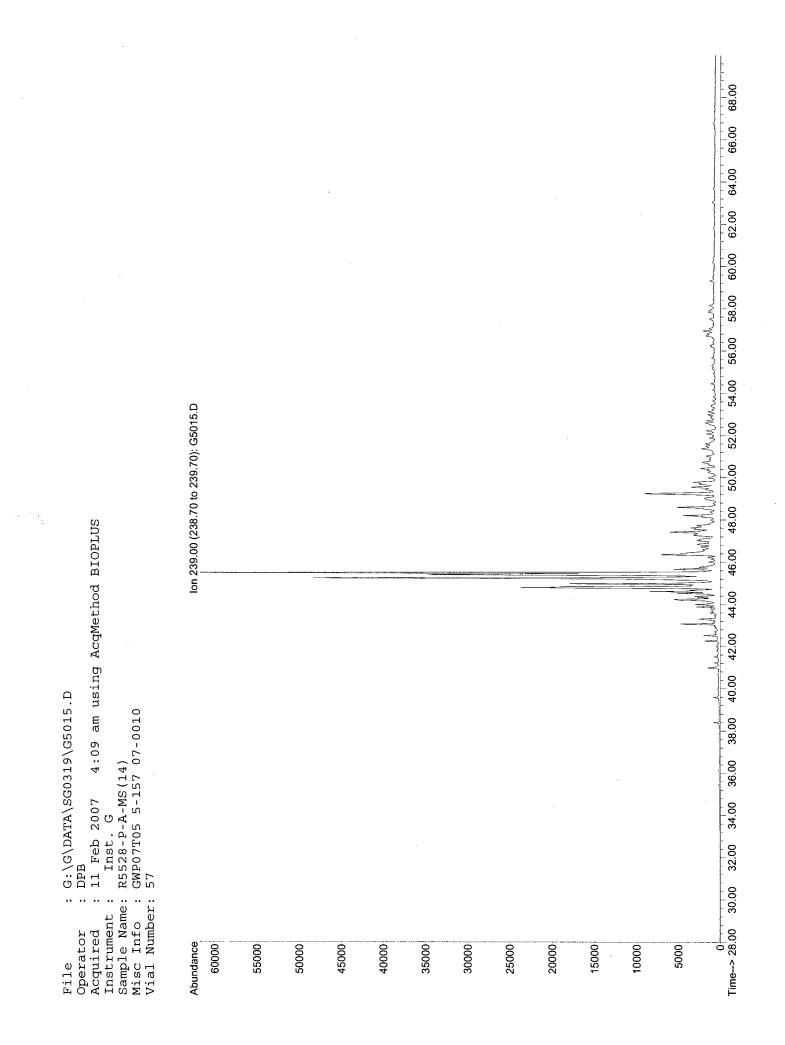



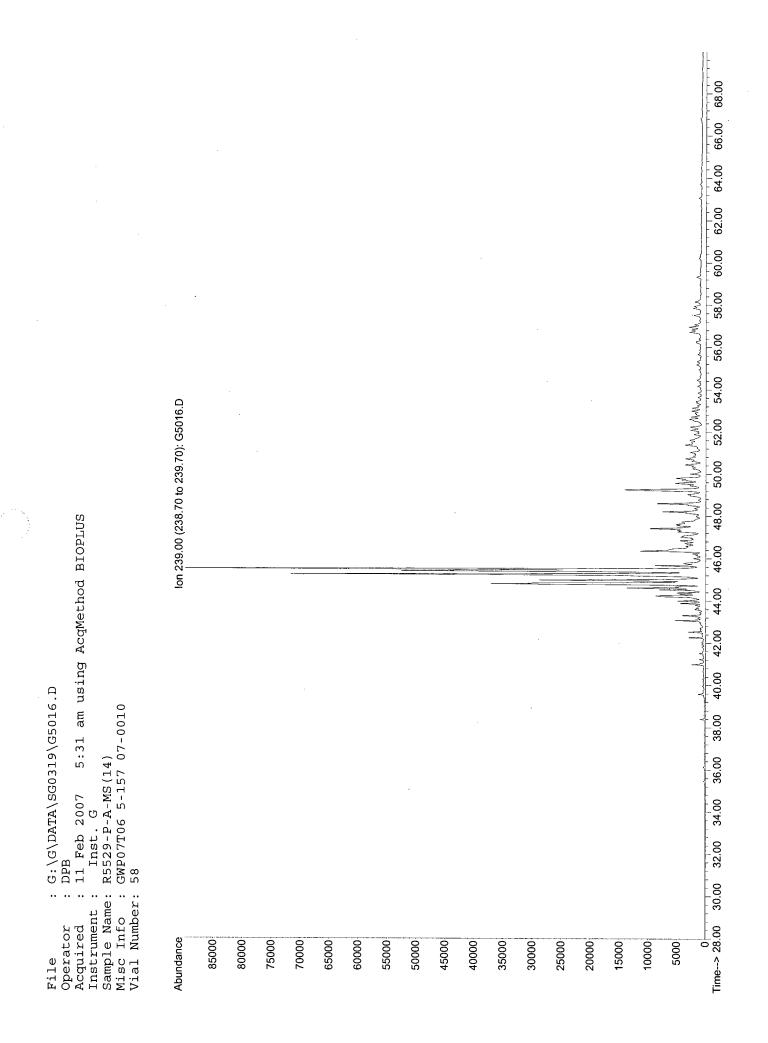


.

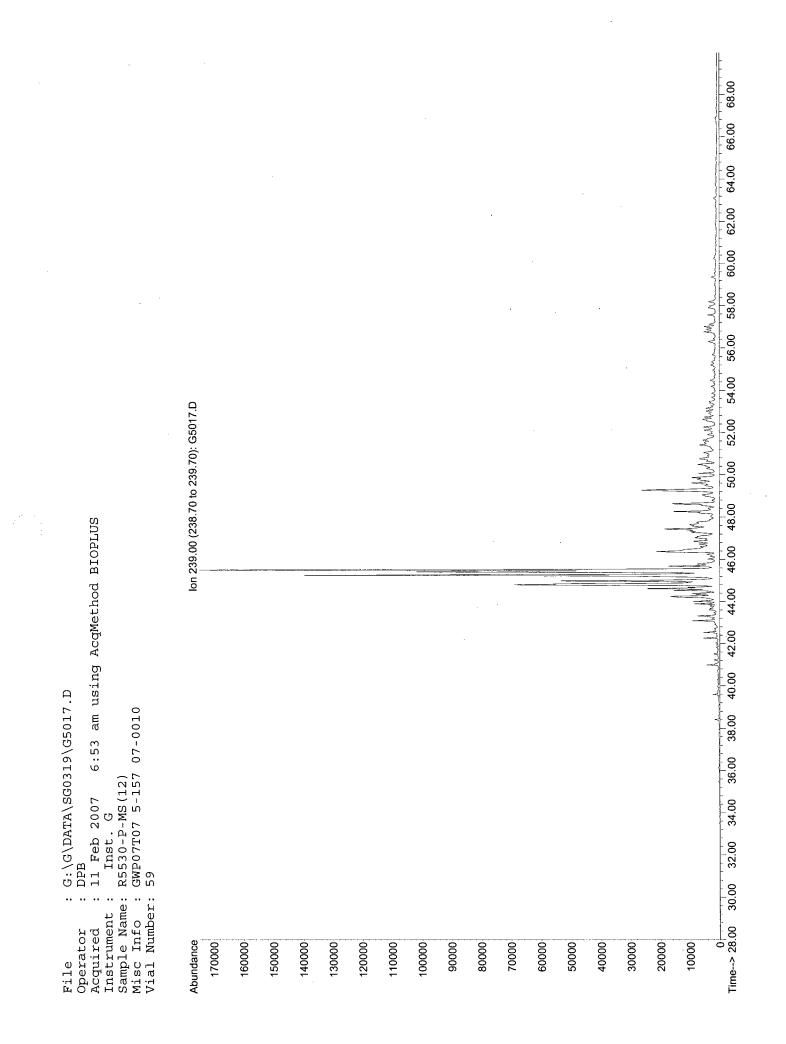


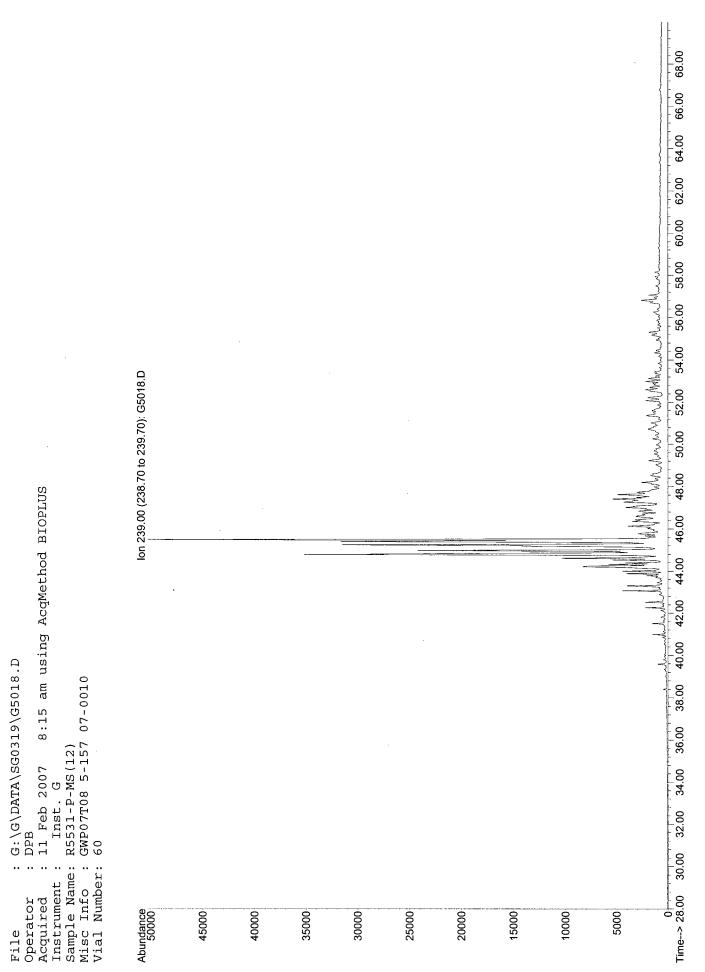


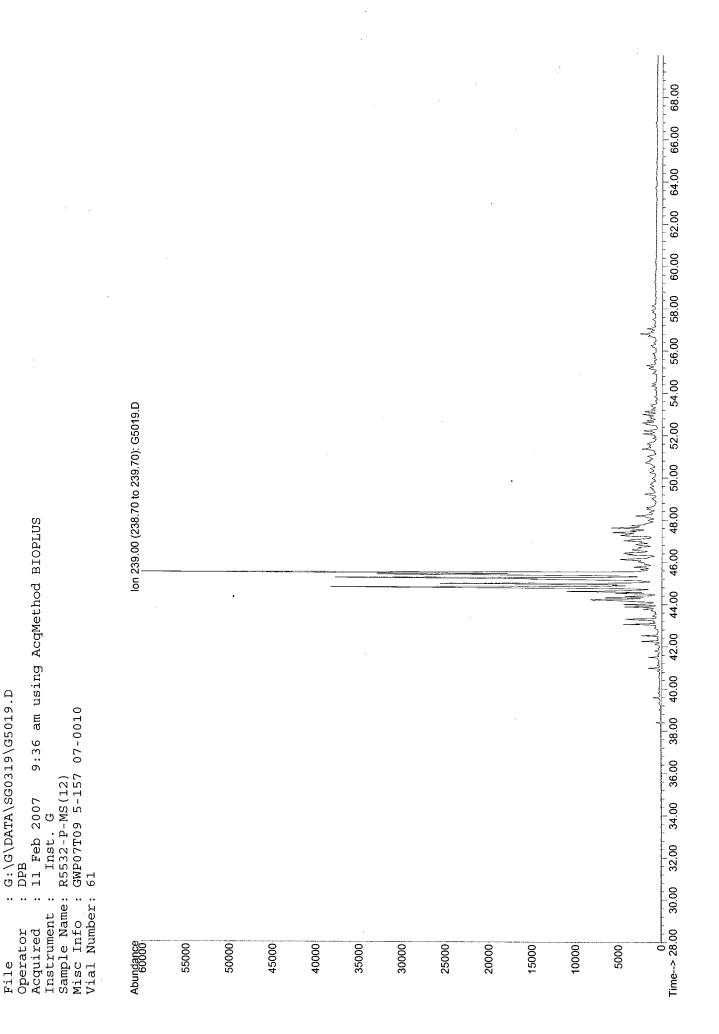



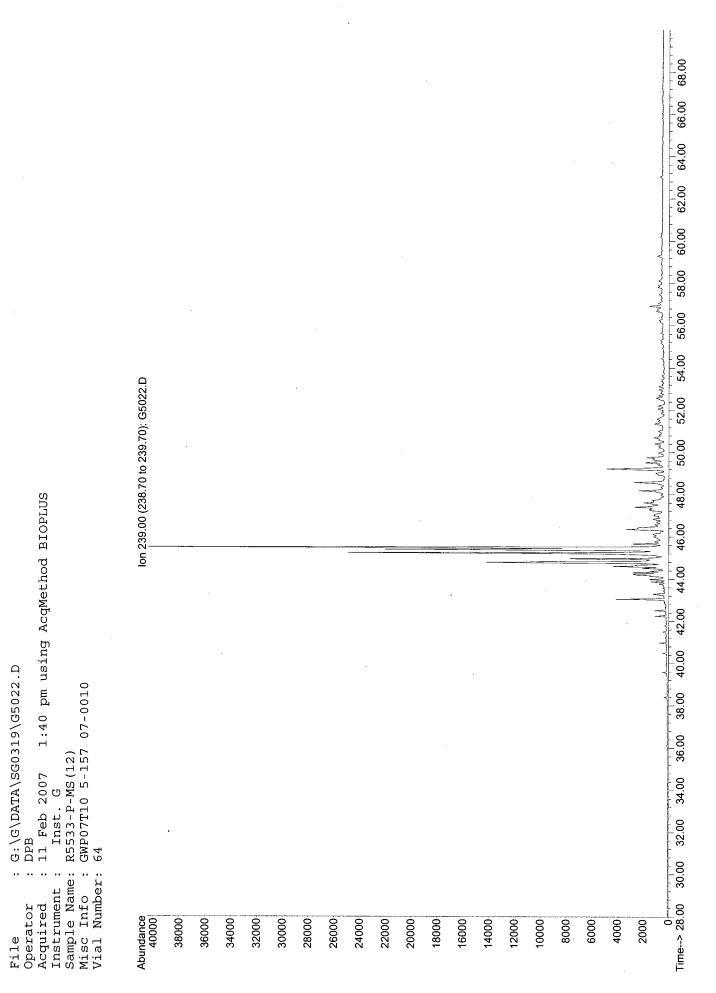



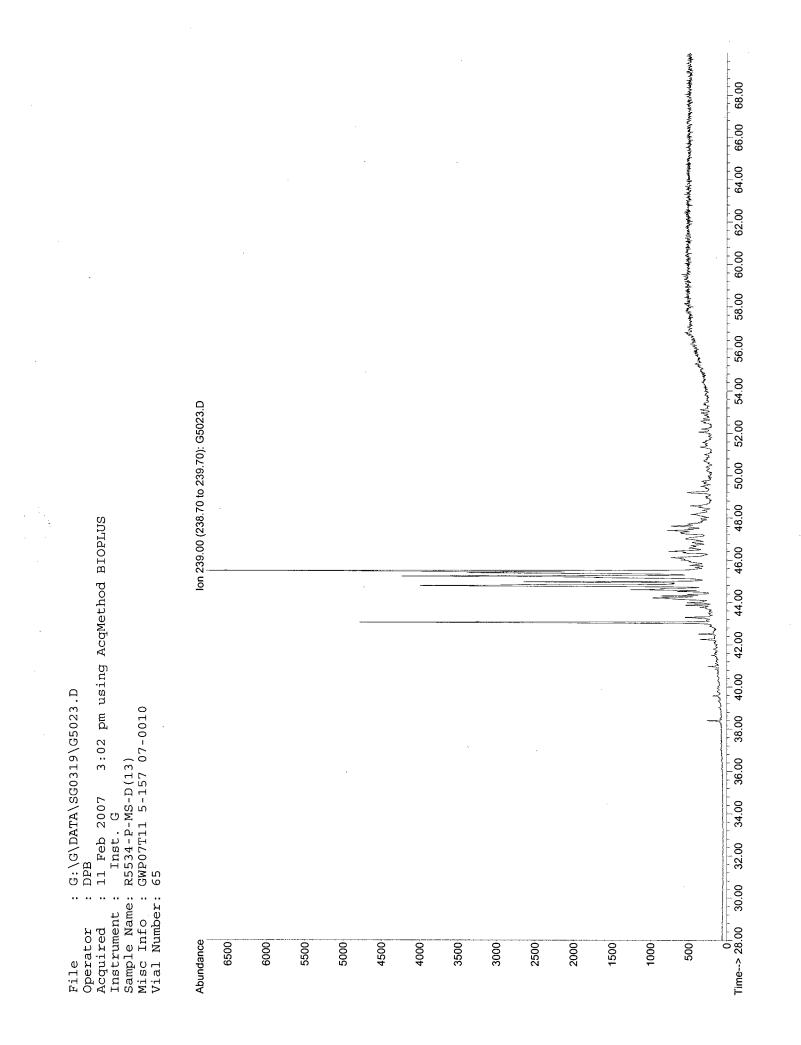


.

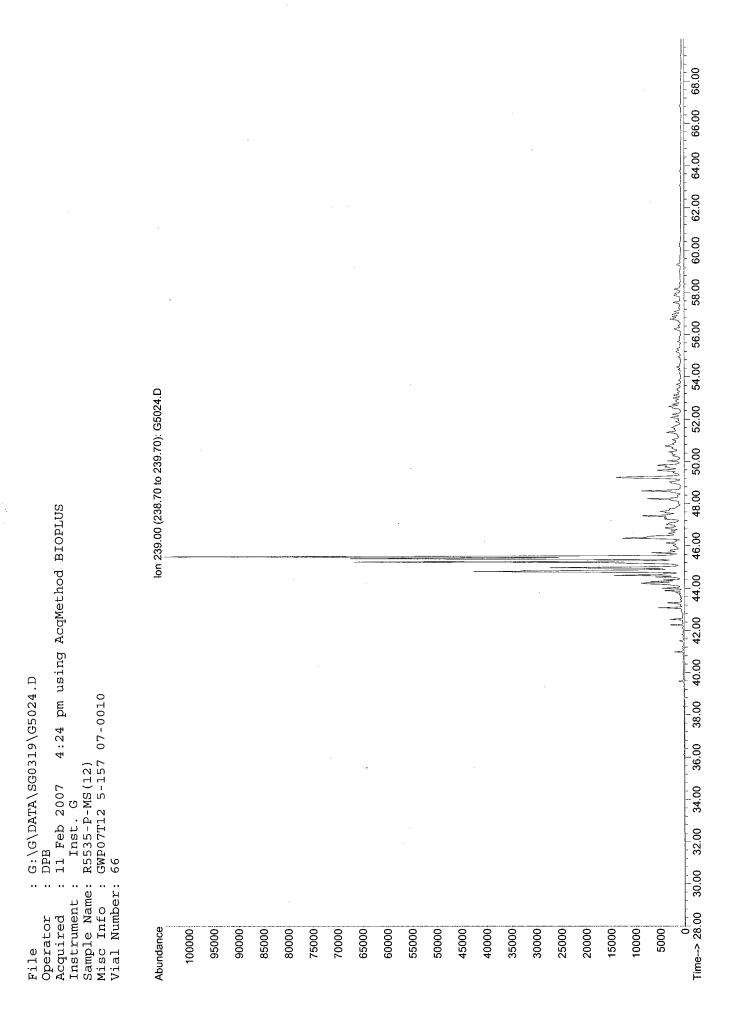






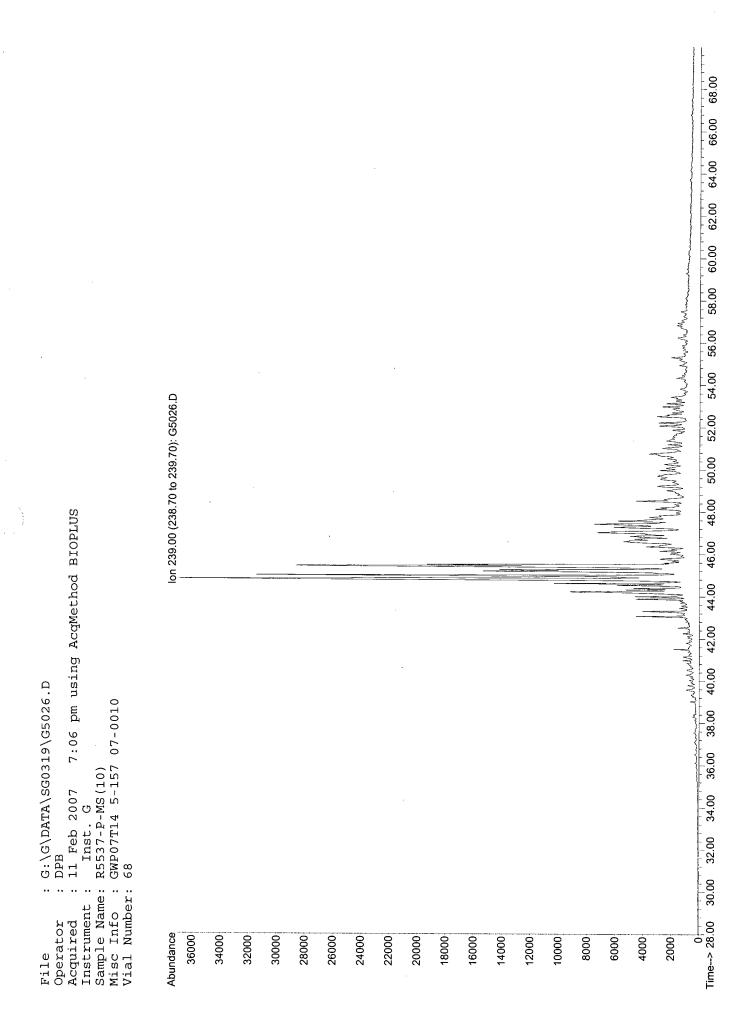



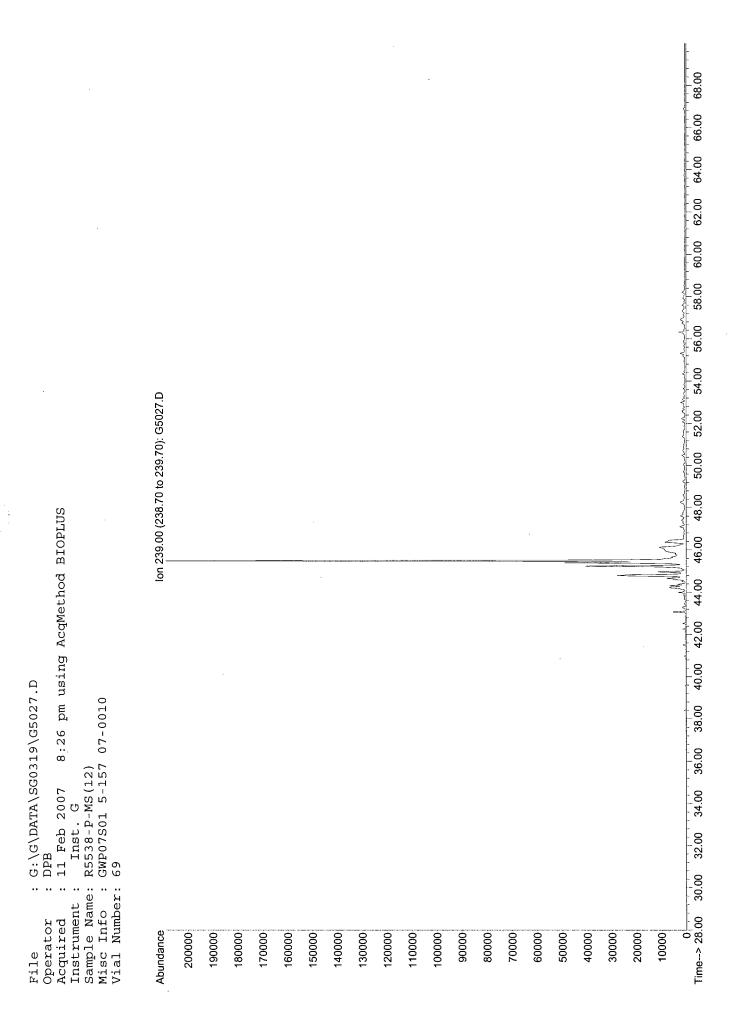



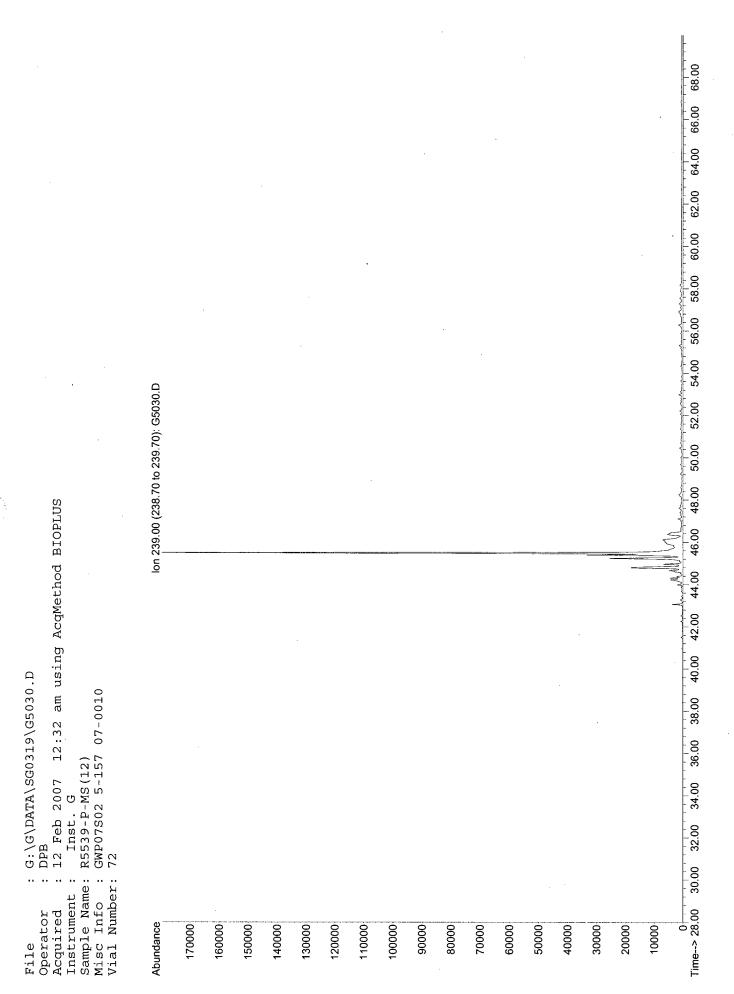


1

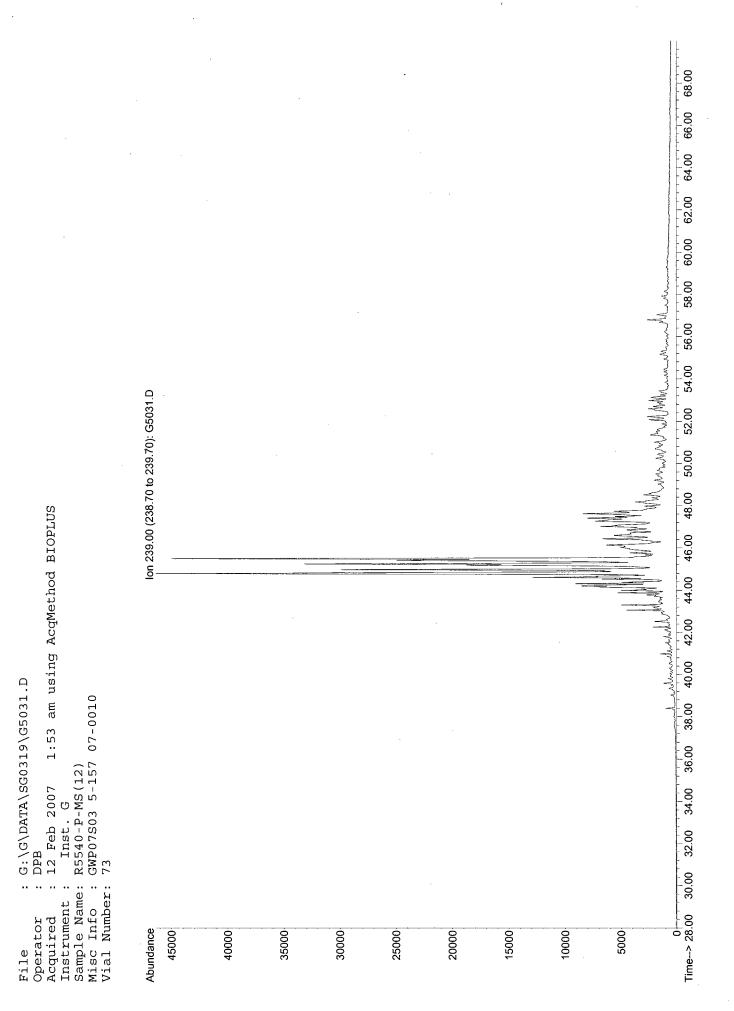
· · · ·

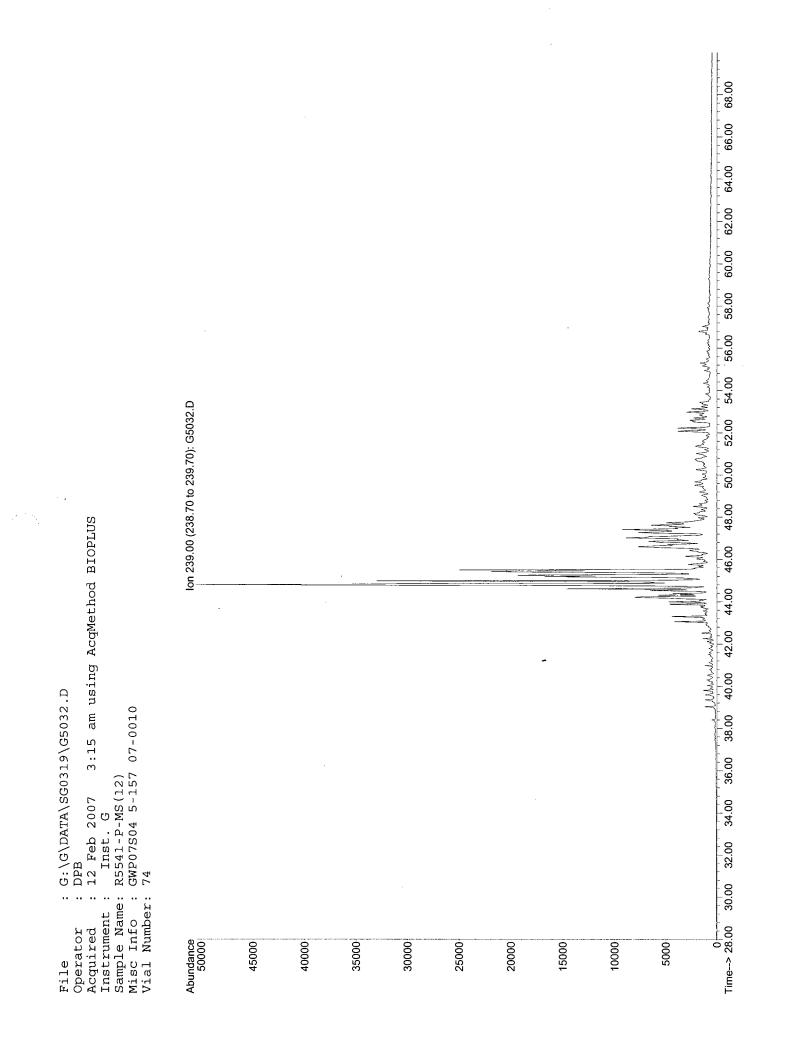


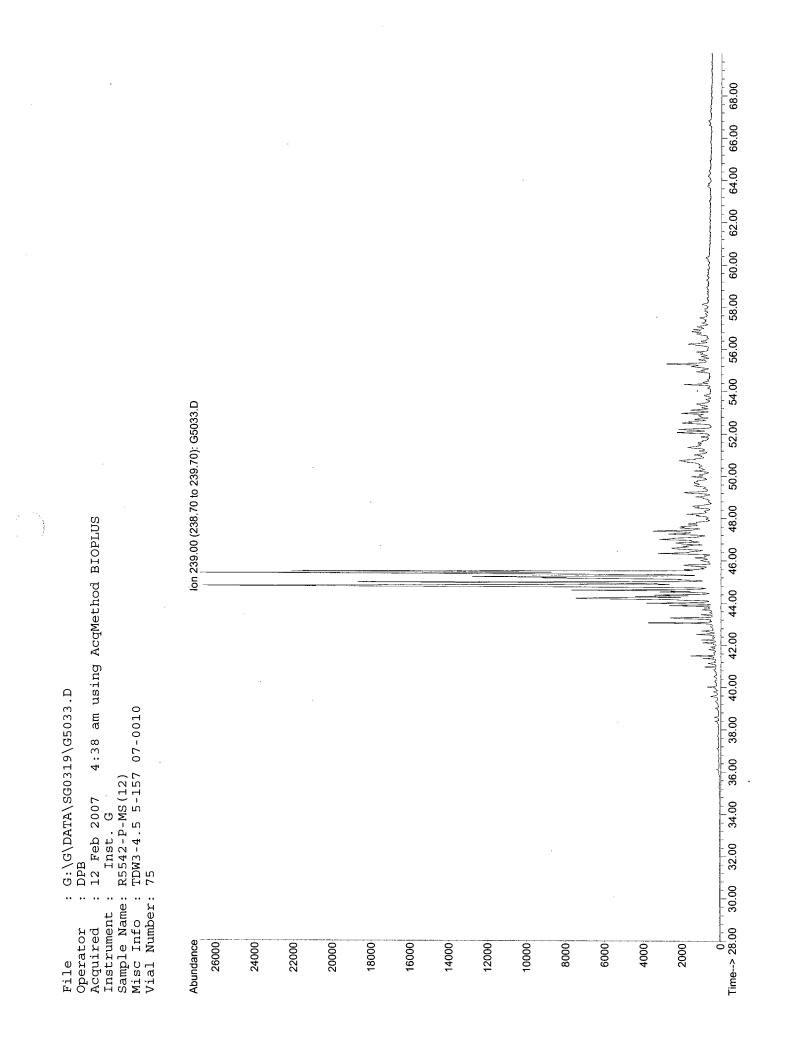


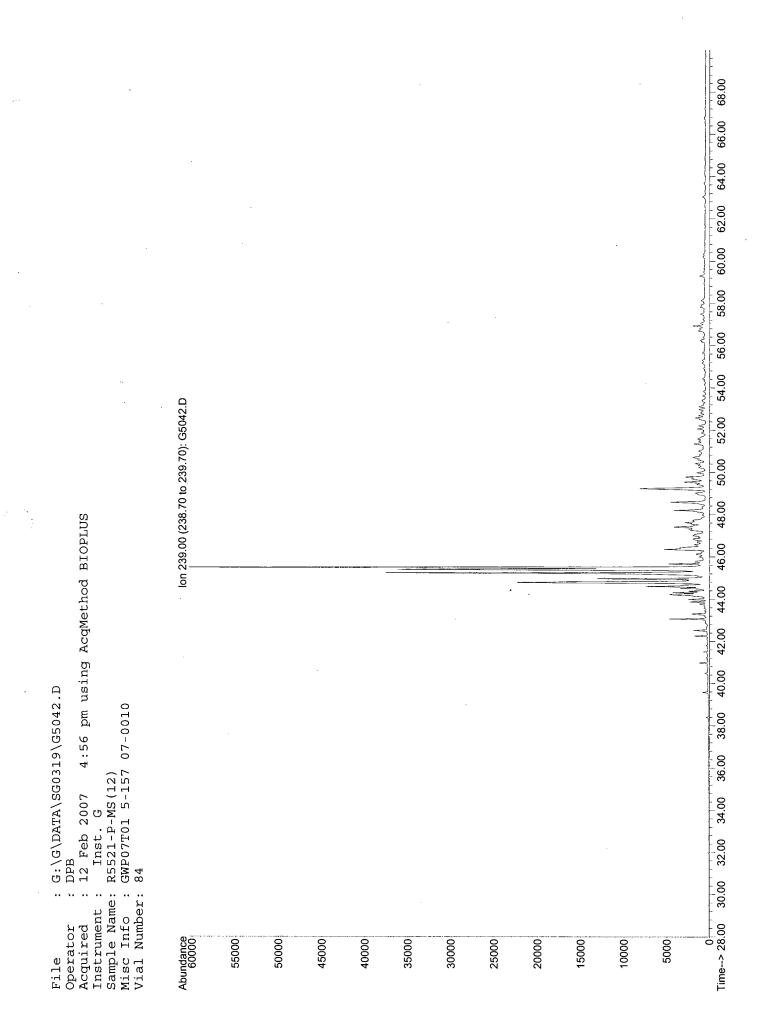





ч Ч.














# PAH and Biomarker – NAPL QA/QC Summary Batches 07-0011

| <b>PROJECT:</b> | Exponent – Gas Works Park                                                                  |
|-----------------|--------------------------------------------------------------------------------------------|
| PARAMETER:      | Polycyclic Aromatic Hydrocarbons and Biomarkers                                            |
| LABORATORY:     | Battelle, Duxbury, MA                                                                      |
| MATRIX:         | Non-aqueous phase liquid (NAPL) and Filter/NAPL samples                                    |
| SAMPLE CUSTODY: | Eighteen tar samples, three NAPLs samples, and 1 soil sample were received at the Battelle |
|                 | Duxbury Operations (BDO) Laboratory on 1/16/2007. Upon receipt of samples, the             |
|                 | temperatures of the coolers were taken and the samples were logged into the laboratory and |
|                 | given unique IDs. The temperature of the cooler upon receipt was within the acceptable     |
|                 | range. Samples were either stored in an access-limited walk-in refrigerator at 4°C until   |
|                 | sample preparation could begin. The NAPL samples were extracted together in one            |
|                 | analytical batch, batch 07-0011.                                                           |

## QA/QC DATA QUALITY OBJECTIVES:

|                                 | Reference<br>Method  | Blank    | Surrogate<br>Recovery | LCS/MS<br>Recovery                                                    | Control Oil<br>% Diff.              |   |
|---------------------------------|----------------------|----------|-----------------------|-----------------------------------------------------------------------|-------------------------------------|---|
| PAH and petroleum<br>biomarkers | EPA 8270<br>modified | < 5x MDL | 40-120%<br>Recovery   | 40-120%<br>Recovery<br>MS target spike<br>must be > 5 x<br>background | PD < 30% for 90%<br>of the analytes | _ |
|                                 |                      |          |                       |                                                                       |                                     |   |

**METHOD:** 

NAPL samples were prepared for analysis by weighing approximately 50 mg of oil and diluting with 10 mL of hexane. A portion of the extract was removed and spiked with SIS and IS. One extract was submitted for PAH and petroleum biomarker analysis, and the second extract was submitted for SHC and TPH analysis. NAPL sample data is reported on an oil weight basis.

PAH and petroleum biomarkers were measured by gas chromatography-mass spectrometry (GC/MS) in the selected ion mode (SIM) using a modified EPA Method 8270. An initial calibration consisting of target analytes was analyzed prior to analysis to demonstrate the linear range of analysis. Calibration verification was performed at the beginning and end of each 12 hour period in which samples were analyzed. Concentrations of PAH and petroleum biomarkers were calculated versus internal standards. Target PAH were quantified using the average response factors (RF) generated from the initial calibration. The alkyl homolgue PAH series were assigned the RF of the parent PAH, steranes were assigned the RF of cholestane, and triterpanes were assigned the RF of moretane.

Note: the reporting limit for alkylbenzene compounds is orders of magnitude higher than the reporting limit for the rest of the PAH compounds.

HOLDING TIMES: Samples were stored cool at approximately 4°C until extraction.

Samples were prepared for analysis in one analytical batch and analyzed within 40 days of extraction.

| Batch ID | Extraction Date | Analysis Date(s)     |
|----------|-----------------|----------------------|
| 07-0011  | 1/30/2007       | 2/7/2007 - 2/12/2007 |

# PAH and Biomarker – NAPL QA/QC Summary Batches 07-0011

| PROCEDURAL<br>BLANK (PB):              | A procedural blank (PB) was prepared with each analytical batch. The blank was analyzed to ensure the sample extraction and analysis methods were free of contamination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | 07-0011 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | Comments- None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LABORATORY<br>CONTROL SAMPLE<br>(LCS): | A laboratory control sample (LCS) was prepared each analytical batch. The percent recoveries of target analytes were calculated to measure data quality in terms of accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (LCS).                                 | <b>07-0011</b> – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        | Comments- None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SURROGATE<br>RECOVERY:                 | Five surrogate compounds were added prior to extraction, including d8-naphthalene, d10-<br>acenaphthene, d10-phenanthrene, d12-benzo(a)pyrene, and 5(b)H-cholane. The recovery of<br>the surrogate compound was calculated to measure data quality in terms of accuracy<br>(extraction efficiency).                                                                                                                                                                                                                                                                                                                                                              |
|                                        | 07-0011 - 4 exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                        | <b>Comments</b> –d10-acenaphthtene and 5b(H)-cholane was over-recovered in the following samples: GWP07DW401 and GWP07DW402. These over-recoveries are due to an interfering peak. The exceedences were qualified with an "NME" to indicate the exceedence is an estimate due to matrix interference.                                                                                                                                                                                                                                                                                                                                                            |
| CONTROL OIL:                           | A control oil (North Slope Crude) was prepared with the analytical batch. The percent difference (PD) between the measured value and the target value was calculated to measure data quality in terms of accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        | 07-0011 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | <b>Comments</b> – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CALIBRATIONS:                          | The GC/MS is calibrated with a minimum 5 level curve for all compounds. The percent relative standard deviation (%RSD) between RF for the individual target analytes must be $\leq$ 30%, and the mean RSD of all target analytes must be <15%. Each batch of samples analyzed is bracketed by a continuing calibration verification (CCV) sample, run at a frequency of minimally every 12 hours. The PD between the true value and the CCV should be <25% for individual analytes. Additionally an initial calibration check (ICC) sample is run immediately after each initial calibration. The PD between the ICC and the initial calibration should be <25%. |
|                                        | 07-0011 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | <b>Comments</b> – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# Battelle The Business of Innovation

| Client ID                                      | GWP07DW401          | GWP07DW402         | GWP07MW9          |
|------------------------------------------------|---------------------|--------------------|-------------------|
| Battelle ID                                    | R5522-P             | R5523-P            | R5524-P           |
| Sample Type                                    | SA                  | SA                 | SA                |
| Collection Date                                | 01/11/07            | 01/11/07           | 01/12/07          |
| Extraction Date                                | 01/30/07            | 01/30/07           | 01/30/07          |
| Analysis Date                                  | 02/09/07            | 02/09/07           | 02/09/07          |
| Analytical Instrument                          | MS                  | MS                 | MS                |
| % Moisture                                     | NA                  | NA                 | NA                |
| % Lipid                                        | NA                  | NA                 | NA                |
| Matrix                                         | NAPL                | NAPL               | NAPL              |
| Sample Size                                    | 49.50               | 47.40              | 45.80             |
| Size Unit-Basis                                | MG OIL              | MG_OIL             | MG_OIL            |
| Minimum Reporting Limit                        | 1.38                | 1.45               | 1.35              |
| Units                                          | MG/KG_OIL           | MG/KG_OIL          | MG/KG_OIL         |
| C3-Alkylbenzenes                               | 2138.94             | 2176.03            | 872.5             |
| C4-Alkylbenzenes                               | 1395.75             | 1403.29            | 1048.71           |
| C5-Alkylbenzenes                               | 333.04              | 331.6              | 405.07            |
| C6-Alkylbenzenes                               | 122.64 J            | 125.34 J           | 443.22            |
| Benzo(b)thiophene                              | 2816.79             | 2829.81            | 198.62            |
| C1-benzo(b)thiophenes                          | 2034.58             | 2036.28            | 493.55            |
| C1-benzo(b)(hiophenes<br>C2-benzo(b)thiophenes | 2034.58<br>1687.46  | 1685.17            | 493.55<br>621.88  |
| C2-benzo(b)(hiophenes<br>C3-benzo(b)thiophenes | 728.13              | 717.84             | 533.11            |
| C3-benzo(b)(hiophenes<br>C4-benzo(b)thiophenes | 211.42              | 211.15             | 306.86            |
| Naphthalene                                    | 80881 D             | 83156.26 D         | 11835.73 D        |
| •                                              | 32020.01            | 32249.35           | 9666.3            |
| C1-Naphthalenes                                |                     | 17857.55           | 7679.23           |
| C2-Naphthalenes                                | 17923.86<br>6609.39 |                    |                   |
| C3-Naphthalenes                                |                     | 6549.99            | 4057.14           |
| C4-Naphthalenes                                | 1605.29             | 1593.48            | 1767.19           |
| C1-Biphenyls + Dibenzofuran                    | 7569.69             | 7549.04            | 917.96            |
| Biphenyl                                       | 4858.56<br>3603.81  | 4845.03            | 626.06            |
| C2-Biphenyls + C1-Dibenzofurans                |                     | 3590.56            | 1299.63           |
| Acenaphthylene                                 | 5833.45             | 5845.03            | 546.25            |
| Acenaphthene                                   | 7215.98             | 7207.79            | 1882.87           |
| Dibenzofuran                                   | 4859.52             | 4833.66            | 216.65            |
| Fluorene                                       | 7591.66 D           | 7806.98 D          | 1491.6            |
| C1-Fluorenes                                   | 2673.78             | 2621.67            | 1231.7            |
| C2-Fluorenes                                   | 1131.96             | 1102.6             | 883.48            |
| C3-Fluorenes<br>C4-Fluorenes                   | 369.59              | 373.58             | 445.92            |
| Anthracene                                     | 312.01<br>7275.9    | 311.66<br>7158.32  | 429.99<br>877.01  |
| Phenanthrene                                   | 22250.58 D          | 22825.88 D         | 3626.27           |
| C1-Phenanthrenes/Anthracenes                   | 8916.84             | 8704.98            | 2830.13           |
| C2-Phenanthrenes/Anthracenes                   | 3174.56             | 3075.38            | 1432.77           |
| C3-Phenanthrenes/Anthracenes                   | 821.77              | 783.37             | 566.25            |
| C4-Phenanthrenes/Anthracenes                   | 184.59              | 186.81             | 149.46            |
| Retene                                         | 187.75              | 182.9              | 82.04             |
| Dibenzothiophene                               | 1693.56             | 1658.84            | 339.8             |
| •                                              | 1123.6              | 1096.14            | 475.18            |
| C1-Dibenzothiophenes<br>C2-Dibenzothiophenes   | 592.49              | 569.64             | 399.12            |
|                                                |                     |                    |                   |
| C3-Dibenzothiophenes<br>C4-Dibenzothiophenes   | 218.44<br>59.24     | 218.21             | 221.59<br>78.75   |
| Fluoranthene                                   | 7751.27 D           | 56.66<br>7953.79 D | 969.93            |
| Pyrene                                         | 8050.52 D           | 8352.58 D          | 1497.93           |
| C1-Fluoranthenes/Pyrenes                       |                     |                    |                   |
| C2-Fluoranthenes/Pyrenes                       | 5167.6<br>1387.61   | 5008.93<br>1373.09 | 1405.69<br>541.28 |
| C2-Fluoranthenes/Pyrenes                       |                     |                    | 202.56            |
| C4-Fluoranthenes/Pyrenes                       | 427.01              | 417.1<br>142.48    | 71.92             |
| C0-Benzo(b)naphthothiophenes                   | 146.9<br>271.49     | 142.48             | 47.51             |
| C0-Benzo(b)naphthothiophenes                   | 271.49 221.3        | 262.16<br>231.36   | 76.72             |
| C1-Benzo(b)naphthothiophenes                   | 92.05               | 88.89              | 46.1              |
| C2-Benzo(b)naphthothiophenes                   | 92.05<br>52.73      |                    | 26.65             |
|                                                |                     | 53.85              |                   |
| C4-Benzo(b)naphthothiophenes                   | 13.7                | 16.28              | 8.88<br>547 84    |
| Benzo(a)anthracene                             | 3227.37             | 3279.55<br>3054.96 | 547.84            |
| Chrysene                                       | 3000.92             | 5054.90            | 535.57            |

The Business of Innovation

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                | GWP07DW401 | GWP07DW402 | GWP07MW9  |
|--------------------------|------------|------------|-----------|
| Battelle ID              | R5522-P    | R5523-P    | R5524-P   |
| Sample Type              | SA         | SA         | SA        |
| Collection Date          | 01/11/07   | 01/11/07   | 01/12/07  |
| Extraction Date          | 01/30/07   | 01/30/07   | 01/30/07  |
| Analysis Date            | 02/09/07   | 02/09/07   | 02/09/07  |
| Analytical Instrument    | MS         | MS         | MS        |
| % Moisture               | NA         | NA         | NA        |
| % Lipid                  | NA         | NA         | NA        |
| Matrix                   | NAPL       | NAPL       | NAPL      |
| Sample Size              | 49.50      | 47.40      | 45.80     |
| Size Unit-Basis          | MG OIL     | MG OIL     | MG OIL    |
| Minimum Reporting Limit  | 1.38       | 1.45       | 1.35      |
| Units                    | MG/KG OIL  | MG/KG OIL  | MG/KG OIL |
|                          | _          |            |           |
| C1-Chrysenes             | 1471.93    | 1508.6     | 414.23    |
| C2-Chrysenes             | 507.39     | 517.36     | 176.04    |
| C3-Chrysenes             | 282.15     | 300.06     | 87.51     |
| C4-Chrysenes             | 43.48      | 46.28      | 12.88     |
| Benzo(b)fluoranthene     | 1546.11    | 1593.49    | 187.89    |
| Benzo(k)fluoranthene     | 2222.36    | 2223.93    | 276.86    |
| Benzo(e)pyrene           | 1581.81    | 1618.3     | 213.72    |
| Benzo(a)pyrene           | 3163.62    | 3212.24    | 454.19    |
| Perylene                 | 705.74     | 721.08     | 73.34     |
| Indeno(1,2,3-cd)pyrene   | 1555.21    | 1595.97    | 170.51    |
| Dibenz(a,h)anthracene    | 326.56     | 337.24     | 47.31     |
| Benzo(g,h,i)perylene     | 1437.13    | 1473.18    | 165.02    |
| Total PAH                | 263741.41  | 266964.93  | 61306.75  |
|                          |            |            |           |
| Surrogate Recoveries (%) |            |            |           |
| Naphthalene-d8           | 102        | 100        | 91        |
| Acenaphthene-d10         | 132 NME    | 128 NME    | 99        |
| Phenanthrene-d10         | 96         | 93         | 89        |
| Benzo(a)pyrene-d12       | 104        | 107        | 112       |
|                          |            | 101        |           |

The Business of Innovation

| Client ID                                | Procedural Blank |  |
|------------------------------------------|------------------|--|
| Battelle ID                              | BJ941PB-P        |  |
| Sample Type                              | PB               |  |
| Collection Date                          | 01/30/07         |  |
| Extraction Date                          | 01/30/07         |  |
|                                          |                  |  |
| Analysis Date                            | 02/12/07         |  |
| Analytical Instrument                    | MS               |  |
| % Moisture                               | NA               |  |
| % Lipid                                  | NA               |  |
| Matrix                                   | NAPL             |  |
| Sample Size                              | 5.00             |  |
| Size Unit-Basis                          | MG_OIL           |  |
| Minimum reporting Limit                  | 1.3              |  |
| Units                                    | MG/KG_OIL        |  |
| C3-Alkylbenzenes                         | U                |  |
| C4-Alkylbenzenes                         | U                |  |
| C5-Alkylbenzenes                         | U                |  |
| C6-Alkylbenzenes                         | U                |  |
| Benzo(b)thiophene                        | U                |  |
| C1-benzo(b)thiophenes                    | U                |  |
| C2-benzo(b)thiophenes                    | U                |  |
| C3-benzo(b)thiophenes                    | U                |  |
| C4-benzo(b)thiophenes                    | U                |  |
| Naphthalene                              | 0.44 J           |  |
| C1-Naphthalenes                          | U                |  |
| C2-Naphthalenes                          | U                |  |
| C3-Naphthalenes                          | U                |  |
| C4-Naphthalenes                          | U                |  |
| C1-Biphenyls + Dibenzofuran              | U                |  |
| Biphenyl                                 | U                |  |
| C2-Biphenyls + C1-Dibenzofurans          | U                |  |
| Acenaphthylene                           | U                |  |
| Acenaphthene                             | U                |  |
| Dibenzofuran                             | U                |  |
| Fluorene                                 | U                |  |
| C1-Fluorenes                             | U                |  |
| C2-Fluorenes                             | U                |  |
| C3-Fluorenes                             | U                |  |
| C4-Fluorenes                             | U                |  |
| Anthracene                               | U                |  |
| Phenanthrene                             | 0.14 J           |  |
| C1-Phenanthrenes/Anthracenes             | U                |  |
| C2-Phenanthrenes/Anthracenes             | U                |  |
| C3-Phenanthrenes/Anthracenes             | U                |  |
| C4-Phenanthrenes/Anthracenes             | U<br>U           |  |
| Retene                                   | U                |  |
| Dibenzothiophene<br>C1-Dibenzothiophenes | U                |  |
| C1-Dibenzothiophenes                     | U                |  |
| C3-Dibenzothiophenes                     |                  |  |
| C3-Dibenzothiophenes                     | U<br>U           |  |
| Fluoranthene                             | 0.07 J           |  |
| Pyrene                                   | 0.07 J<br>0.06 J |  |
| C1-Fluoranthenes/Pyrenes                 | 0.00 J<br>U      |  |
| C2-Fluoranthenes/Pyrenes                 | U                |  |
| C3-Fluoranthenes/Pyrenes                 | U                |  |
| C4-Fluoranthenes/Pyrenes                 | U                |  |
| C0-Benzo(b)naphthothiophenes             | U                |  |
| C1-Benzo(b)naphthothiophenes             | U                |  |
| C2-Benzo(b)naphthothiophenes             | U                |  |
| C3-Benzo(b)naphthothiophenes             | U                |  |
| C4-Benzo(b)naphthothiophenes             | U                |  |
| Benzo(a)anthracene                       | U                |  |
| Chrysene                                 | U                |  |
| - ,                                      | 0                |  |

The Business of Innovation

# Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID                | Procedural Blank |  |
|--------------------------|------------------|--|
| Battelle ID              | BJ941PB-P        |  |
| Sample Type              | PB               |  |
| Collection Date          | 01/30/07         |  |
| Extraction Date          | 01/30/07         |  |
| Analysis Date            | 02/12/07         |  |
| Analytical Instrument    | MS               |  |
| % Moisture               | NA               |  |
| % Lipid                  | NA               |  |
| Matrix                   | NAPL             |  |
| Sample Size              | 5.00             |  |
| Size Unit-Basis          | MG_OIL           |  |
| Minimum reporting Limit  | 1.3              |  |
| Units                    | MG/KG_OIL        |  |
|                          |                  |  |
| C1-Chrysenes             | U                |  |
| C2-Chrysenes             | U                |  |
| C3-Chrysenes             | U                |  |
| C4-Chrysenes             | U                |  |
| Benzo(b)fluoranthene     | U                |  |
| Benzo(k)fluoranthene     | U                |  |
| Benzo(e)pyrene           | U                |  |
| Benzo(a)pyrene           | U                |  |
| Perylene                 | U                |  |
| Indeno(1,2,3-cd)pyrene   | U                |  |
| Dibenz(a,h)anthracene    | U                |  |
| Benzo(g,h,i)perylene     | U                |  |
| Total PAH                | 0.71 J           |  |
|                          |                  |  |
|                          |                  |  |
| Surrogate Recoveries (%) |                  |  |
| Naphthalene-d8           | 118              |  |
| Acenaphthene-d10         | 109              |  |
| Phenanthrene-d10         | 105              |  |
| Benzo(a)pyrene-d12       | 93               |  |
| Denze(a)pyrene-urz       | 55               |  |

The Business of Innovation

|                                                      | Laboratory Control |           |                    |  |
|------------------------------------------------------|--------------------|-----------|--------------------|--|
| Client ID                                            | Sample             |           |                    |  |
| Battelle ID                                          | BJ942LCS-P         |           |                    |  |
| Sample Type                                          | LCS                |           |                    |  |
| Collection Date                                      | 01/30/07           |           |                    |  |
| Extraction Date                                      | 01/30/07           |           |                    |  |
| Analysis Date                                        | 02/12/07           |           |                    |  |
| Analytical Instrument                                | MS                 |           |                    |  |
| % Moisture                                           | NA                 |           |                    |  |
| % Lipid                                              | NA                 |           |                    |  |
| Matrix                                               | NAPL               |           |                    |  |
| Sample Size                                          | NA                 |           |                    |  |
| Size Unit-Basis                                      | NA                 |           |                    |  |
| Minimum reporting Limit<br>Units                     | 7.01<br>NG         | Target %  | Recovery Qualifier |  |
|                                                      | 110                | Target /  | Recovery Qualifier |  |
| C3-Alkylbenzenes                                     | L                  |           |                    |  |
| C4-Alkylbenzenes                                     | L                  |           |                    |  |
| C5-Alkylbenzenes                                     | L                  |           |                    |  |
| C6-Alkylbenzenes                                     |                    |           |                    |  |
| Benzo(b)thiophene                                    | 1160.46            | 1000.70   | 116                |  |
| C1-benzo(b)thiophenes                                | L                  |           |                    |  |
| C2-benzo(b)thiophenes                                | L                  |           |                    |  |
| C3-benzo(b)thiophenes<br>C4-benzo(b)thiophenes       |                    |           |                    |  |
| Naphthalene                                          | 1182.31            | 1000.20   | 118                |  |
| C1-Naphthalenes                                      | 1102.01            |           | 110                |  |
| C2-Naphthalenes                                      | l                  |           |                    |  |
| C3-Naphthalenes                                      | l                  |           |                    |  |
| C4-Naphthalenes                                      | ι                  | J         |                    |  |
| C1-Biphenyls + Dibenzofuran                          | ι                  | J         |                    |  |
| Biphenyl                                             | 1170.82            | 1001.70   | 117                |  |
| C2-Biphenyls + C1-Dibenzofurans                      | L                  | J         |                    |  |
| Acenaphthylene                                       | 1139.35            | 1000.90   | 114                |  |
| Acenaphthene                                         | 1186.2             | 1000.65   | 119                |  |
| Dibenzofuran                                         | 1172.15            | 1001.90   | 117                |  |
| Fluorene                                             | 1152.67            | . 1000.55 | 115                |  |
| C1-Fluorenes                                         | l                  |           |                    |  |
| C2-Fluorenes                                         | l                  |           |                    |  |
| C3-Fluorenes<br>C4-Fluorenes                         | L                  |           |                    |  |
| Anthracene                                           | 1124.71            | 1000.15   | 112                |  |
| Phenanthrene                                         | 1181.82            | 1000.50   | 118                |  |
| C1-Phenanthrenes/Anthracenes                         | L 1101.02          |           | 110                |  |
| C2-Phenanthrenes/Anthracenes                         | l                  |           |                    |  |
| C3-Phenanthrenes/Anthracenes                         | l                  |           |                    |  |
| C4-Phenanthrenes/Anthracenes                         | Ĺ                  |           |                    |  |
| Retene                                               | L                  | J         |                    |  |
| Dibenzothiophene                                     | 1155.88            | 1004.60   | 115                |  |
| C1-Dibenzothiophenes                                 | ι                  |           |                    |  |
| C2-Dibenzothiophenes                                 | L                  |           |                    |  |
| C3-Dibenzothiophenes                                 | L                  |           |                    |  |
| C4-Dibenzothiophenes                                 | L                  |           |                    |  |
| Fluoranthene                                         | 1128.95            | 1000.50   | 113                |  |
| Pyrene                                               | 1092.09            | 1000.35   | 109                |  |
| C1-Fluoranthenes/Pyrenes                             | L                  |           |                    |  |
| C2-Fluoranthenes/Pyrenes                             | Ĺ                  |           |                    |  |
| C3-Fluoranthenes/Pyrenes<br>C4-Fluoranthenes/Pyrenes | L                  |           |                    |  |
| C0-Benzo(b)naphthothiophenes                         | L L                |           |                    |  |
| C1-Benzo(b)naphthothiophenes                         |                    |           |                    |  |
| C2-Benzo(b)naphthothiophenes                         | l                  |           |                    |  |
| C3-Benzo(b)naphthothiophenes                         | l                  |           |                    |  |
| C4-Benzo(b)naphthothiophenes                         | l                  |           |                    |  |
| Benzo(a)anthracene                                   | 909.06             | 1000.25   | 91                 |  |
| • •                                                  |                    |           |                    |  |

The Business of Innovation

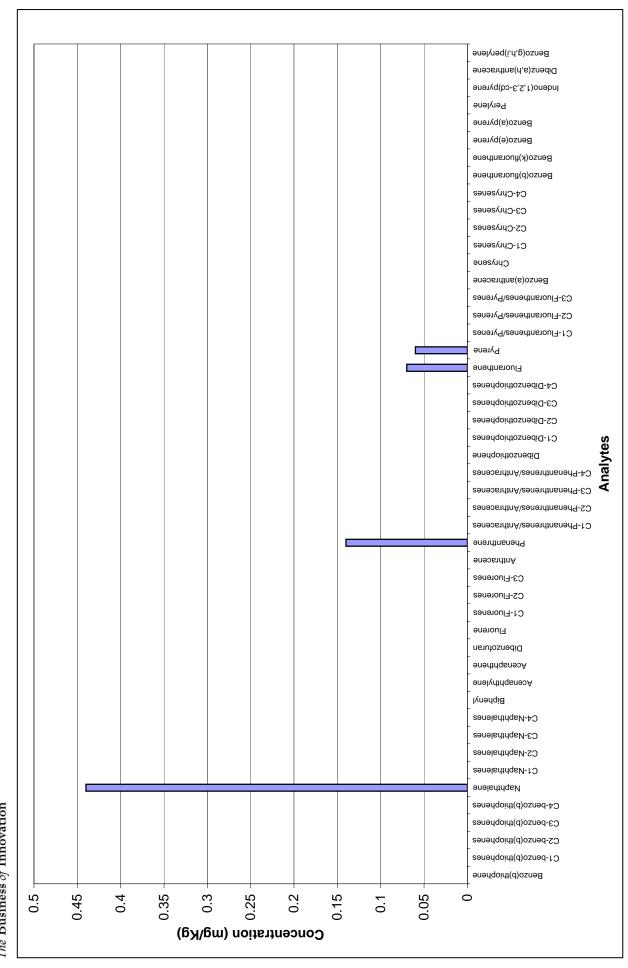
| Client ID<br>Battelle ID       | Laboratory Control<br>Sample<br>BJ942LCS-P |   |          |          |           |
|--------------------------------|--------------------------------------------|---|----------|----------|-----------|
| Sample Type<br>Collection Date | LCS<br>01/30/07                            |   |          |          |           |
| Extraction Date                | 01/30/07                                   |   |          |          |           |
| Analysis Date                  | 02/12/07                                   |   |          |          |           |
| Analytical Instrument          | 02/12/07<br>MS                             |   |          |          |           |
| % Moisture                     | NA                                         |   |          |          |           |
| % Lipid                        | NA                                         |   |          |          |           |
| Matrix                         | NAPL                                       |   |          |          |           |
| Sample Size                    | NA                                         |   |          |          |           |
| Size Unit-Basis                | NA                                         |   |          |          |           |
| Minimum reporting Limit        | 7.01                                       |   |          |          |           |
| Units                          | NG                                         |   | Target % | Recovery | Qualifier |
|                                |                                            |   | Ť        | · · ·    |           |
| Chrysene                       | 1014.88                                    |   | 1000.40  | 101      |           |
| C1-Chrysenes                   |                                            | U |          |          |           |
| C2-Chrysenes                   |                                            | U |          |          |           |
| C3-Chrysenes                   |                                            | U |          |          |           |
| C4-Chrysenes                   |                                            | U |          |          |           |
| Benzo(b)fluoranthene           | 916.03                                     |   | 1000.85  | 92       |           |
| Benzo(k)fluoranthene           | 1033.98                                    |   | 1000.55  | 103      |           |
| Benzo(e)pyrene                 | 971.81                                     |   | 1002.50  | 97       |           |
| Benzo(a)pyrene                 | 983.44                                     |   | 1000.80  | 98       |           |
| Perylene                       | 915.48                                     |   | 1002.05  | 91       |           |
| Indeno(1,2,3-cd)pyrene         | 910.17                                     |   | 1000.50  | 91<br>00 |           |
| Dibenz(a,h)anthracene          | 986.83                                     |   | 1000.55  | 99       |           |
| Benzo(g,h,i)perylene           | 933.19                                     |   | 1000.30  | 93       |           |
|                                |                                            |   |          |          |           |
| Surrogate Recoveries (%)       |                                            |   |          |          |           |
|                                |                                            |   |          |          |           |
| Naphthalene-d8                 | 120                                        |   |          |          |           |
| Acenaphthene-d10               | 112                                        |   |          |          |           |
| Phenanthrene-d10               | 108                                        |   |          |          |           |
| Benzo(a)pyrene-d12             | 87                                         |   |          |          |           |
|                                |                                            |   |          |          |           |

The Business of Innovation

| Client ID                                                    | GN62: North Slope<br>Crude |   |                  |             |           |
|--------------------------------------------------------------|----------------------------|---|------------------|-------------|-----------|
| Chern ID                                                     | Ciude                      |   |                  |             |           |
| Battelle ID                                                  | BJ959NSC-P                 |   |                  |             |           |
| Sample Type                                                  | NSC                        |   |                  |             |           |
| Collection Date                                              | 01/30/07                   |   |                  |             |           |
| Extraction Date                                              | 01/30/07                   |   |                  |             |           |
| Analysis Date                                                | 02/07/07                   |   |                  |             |           |
| Analytical Instrument                                        | MS                         |   |                  |             |           |
| % Moisture                                                   | NA                         |   |                  |             |           |
| % Lipid                                                      | NA                         |   |                  |             |           |
| Matrix                                                       | OIL                        |   |                  |             |           |
| Sample Size                                                  | 5.01                       |   |                  |             |           |
| Size Unit-Basis                                              | MG_OIL                     |   |                  |             |           |
| Minimum reporting Limit                                      | 1.3                        |   |                  |             |           |
| Units                                                        | MG/KG_OIL                  |   | Target % [       | Difference  | Qualifier |
|                                                              | 0007 44                    |   |                  |             |           |
| C3-Alkylbenzenes                                             | 2027.44                    |   |                  |             |           |
| C4-Alkylbenzenes                                             | 1510.05                    |   |                  |             |           |
| C5-Alkylbenzenes                                             | 795.79                     |   |                  |             |           |
| C6-Alkylbenzenes                                             | 488.99<br>13.52            |   |                  |             |           |
| Benzo(b)thiophene<br>C1-benzo(b)thiophenes                   | 45                         |   |                  |             |           |
|                                                              | 79.93                      |   | 95.74            | 16.5        |           |
| C2-benzo(b)thiophenes<br>C3-benzo(b)thiophenes               | 141.48                     |   | 132.67           | 6.6         |           |
| C4-benzo(b)thiophenes                                        | 96.21                      |   | 96.72            | 0.0         |           |
| Naphthalene                                                  | 806.17                     |   | 740.29           | 8.9         |           |
| C1-Naphthalenes                                              | 1634.24                    |   | 1516.04          | 7.8         |           |
| C2-Naphthalenes                                              | 2010.9                     |   | 2000.10          | 0.5         |           |
| C3-Naphthalenes                                              | 1445.89                    |   | 1526.96          | 5.3         |           |
| C4-Naphthalenes                                              | 785.13                     |   | 898.03           | 12.6        |           |
| C1-Biphenyls + Dibenzofuran                                  | 371.59                     |   | 000100           |             |           |
| Biphenyl                                                     | 240.71                     |   | 220.82           | 9.0         |           |
| C2-Biphenyls + C1-Dibenzofurans                              | 514.5                      |   |                  |             |           |
| Acenaphthylene                                               |                            | U |                  |             |           |
| Acenaphthene                                                 | 13.75                      |   | 14.50            | 5.2         |           |
| Dibenzofuran                                                 | 77.57                      |   | 77.75            | 0.2         |           |
| Fluorene                                                     | 96.04                      |   | 92.51            | 3.8         |           |
| C1-Fluorenes                                                 | 223.14                     |   | 227.01           | 1.7         |           |
| C2-Fluorenes                                                 | 345.32                     |   | 367.09           | 5.9         |           |
| C3-Fluorenes                                                 | 295.4                      |   | 326.32           | 9.5         |           |
| C4-Fluorenes                                                 | 212.42                     |   |                  |             |           |
| Anthracene                                                   |                            | U |                  |             |           |
| Phenanthrene                                                 | 285.03                     |   | 249.49           | 14.2        |           |
| C1-Phenanthrenes/Anthracenes                                 | 584.34                     |   | 549.17           | 6.4         |           |
| C2-Phenanthrenes/Anthracenes                                 | 669.09                     |   | 642.72           | 4.1         |           |
| C3-Phenanthrenes/Anthracenes<br>C4-Phenanthrenes/Anthracenes | 453.02                     |   | 446.11           | 1.5         |           |
|                                                              | 176.09                     |   | 180.02           | 2.2         |           |
| Retene                                                       | 74.51                      |   | 210.25           | 44.0        |           |
| Dibenzothiophene                                             | 241.56<br>440.7            |   | 210.35<br>409.03 | 14.8<br>7.7 |           |
| C1-Dibenzothiophenes<br>C2-Dibenzothiophenes                 | 573.69                     |   | 409.03<br>551.46 | 4.0         |           |
| C3-Dibenzothiophenes                                         | 483.6                      |   | 471.36           | 2.6         |           |
| C4-Dibenzothiophenes                                         | 261.9                      |   | 243.11           | 7.7         |           |
| Fluoranthene                                                 | 201.0                      | U | 240.11           | 1.1         |           |
| Pyrene                                                       | 14.53                      | 0 | 12.99            | 11.9        |           |
| C1-Fluoranthenes/Pyrenes                                     | 84.98                      |   | 70.92            | 19.8        |           |
| C2-Fluoranthenes/Pyrenes                                     | 145.97                     |   | 117.89           | 23.8        |           |
| C3-Fluoranthenes/Pyrenes                                     | 154.91                     |   | 137.25           | 12.9        |           |
| C4-Fluoranthenes/Pyrenes                                     | 123.35                     |   |                  |             |           |
| C0-Benzo(b)naphthothiophenes                                 | 46.42                      |   |                  |             |           |
| C1-Benzo(b)naphthothiophenes                                 | 162.78                     |   |                  |             |           |
| C2-Benzo(b)naphthothiophenes                                 | 204.91                     |   |                  |             |           |
| C3-Benzo(b)naphthothiophenes                                 | 163.24                     |   |                  |             |           |
| C4-Benzo(b)naphthothiophenes                                 | 66.74                      |   |                  |             |           |
| Benzo(a)anthracene                                           |                            | U |                  |             |           |
|                                                              |                            |   |                  |             |           |

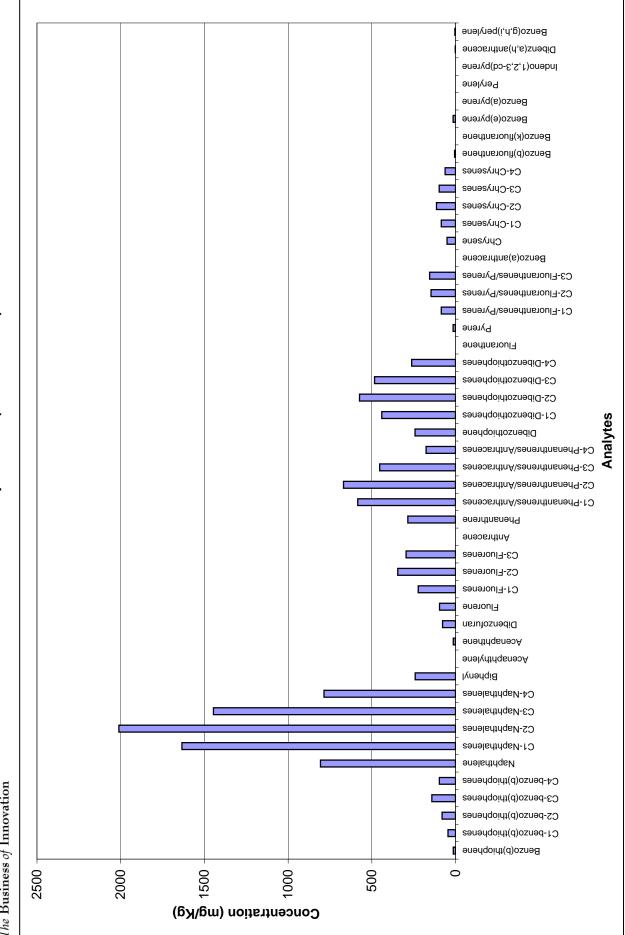
The Business of Innovation

Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001


|                                                                         | GN62: North Slope |   |            |            |           |
|-------------------------------------------------------------------------|-------------------|---|------------|------------|-----------|
| Client ID                                                               | Crude             |   |            |            |           |
| Battelle ID                                                             | BJ959NSC-P        |   |            |            |           |
| Sample Type                                                             | NSC               |   |            |            |           |
| Collection Date                                                         | 01/30/07          |   |            |            |           |
| Extraction Date                                                         | 01/30/07          |   |            |            |           |
| Analysis Date                                                           | 02/07/07          |   |            |            |           |
| Analytical Instrument                                                   | MS                |   |            |            |           |
| % Moisture                                                              | NA                |   |            |            |           |
| % Lipid                                                                 | NA                |   |            |            |           |
| Matrix                                                                  | OIL               |   |            |            |           |
| Sample Size                                                             | 5.01              |   |            |            |           |
| Size Unit-Basis                                                         | MG_OIL            |   |            |            |           |
| Minimum reporting Limit                                                 | 1.3               |   |            |            |           |
| Units                                                                   | MG/KG_OIL         |   | Target % D | oifference | Qualifier |
|                                                                         |                   |   |            |            |           |
| Chrysene                                                                | 51.12             |   | 47.18      | 8.4        |           |
| C1-Chrysenes                                                            | 85.28             |   | 78.82      | 8.2        |           |
| C2-Chrysenes                                                            | 113.52            |   | 102.67     | 10.6       |           |
| C3-Chrysenes                                                            | 97.23             |   | 85.36      | 13.9       |           |
| C4-Chrysenes                                                            | 62.06             |   | 61.99      | 0.1        |           |
| Benzo(b)fluoranthene                                                    | 6.18              |   | 6.08       | 1.6        |           |
| Benzo(k)fluoranthene                                                    |                   | U |            |            |           |
| Benzo(e)pyrene                                                          | 13.86             |   | 12.88      | 7.6        |           |
| Benzo(a)pyrene                                                          |                   | U |            |            |           |
| Perylene                                                                |                   | U |            |            |           |
|                                                                         |                   | U |            |            |           |
| Indeno(1,2,3-cd)pyrene                                                  |                   | J |            |            |           |
|                                                                         | 1.1               | 0 |            |            |           |
| Indeno(1,2,3-cd)pyrene<br>Dibenz(a,h)anthracene<br>Benzo(g,h,i)perylene | 1.1<br>3.86       | U | 3.44       | 12.2       |           |

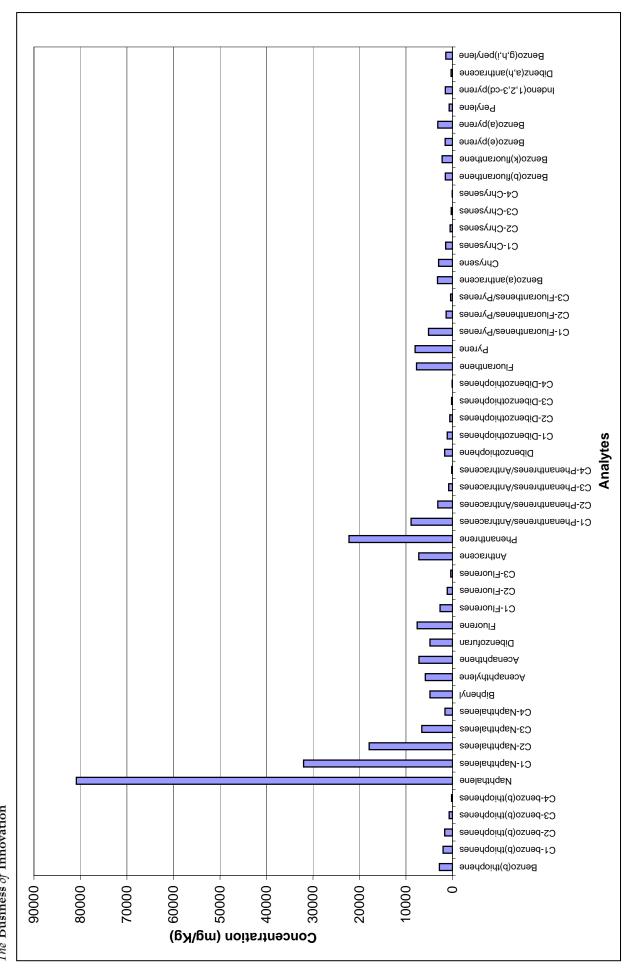
## Surrogate Recoveries (%)

| Naphthalene-d8     | 109 |
|--------------------|-----|
| Acenaphthene-d10   | 106 |
| Phenanthrene-d10   | 97  |
| Benzo(a)pyrene-d12 | 119 |


# **Baltelle** The Business of Innovation

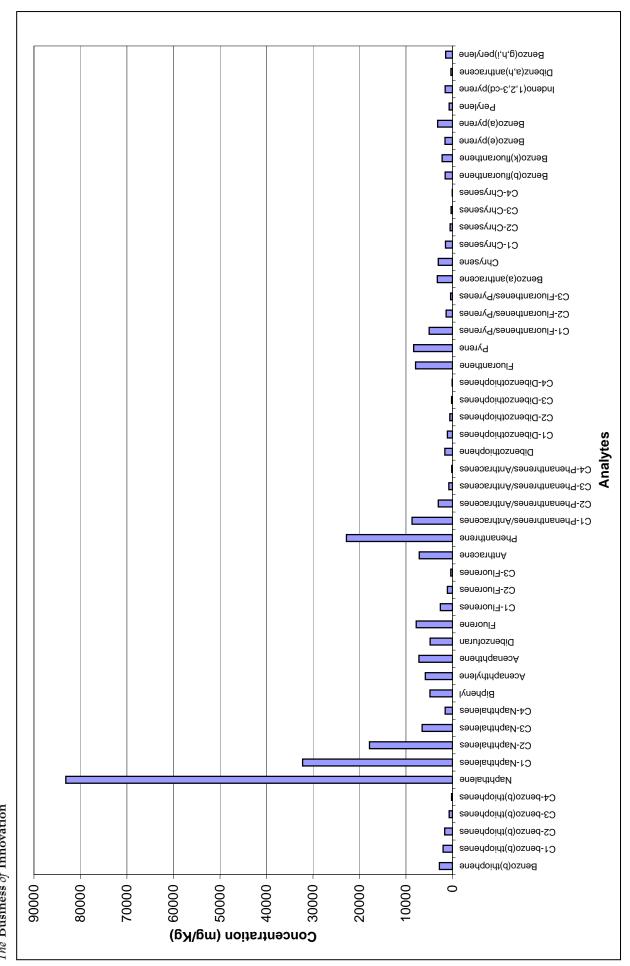
# Procedural Blank (BJ941PB-P)





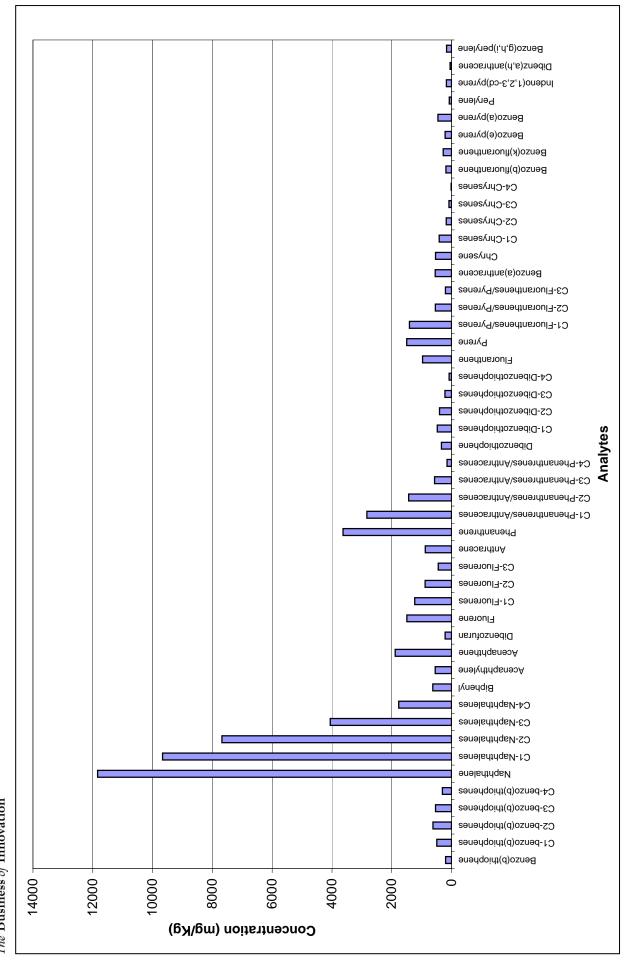

# GN62: North Slope Crude (BJ959NSC-P)




# **Baffelle** The Business of Innovation

# GWP07DW401 (R5522-P)




# **Baffelle** The Business of Innovation

# GWP07DW402 (R5523-P)



# **Baltelle** The Business of Innovation

# GWP07MW9 (R5524-P)



The Business of Innovation

| Client ID                            | GWP07DW401     | GWP07DW402     | GWP07MW9       |
|--------------------------------------|----------------|----------------|----------------|
| Battelle ID                          | R5522-P        | R5523-P        | R5524-P        |
| Sample Type                          | SA             | SA             | SA             |
| Collection Date                      | 01/11/07       | 01/11/07       | 01/12/07       |
| Extraction Date                      | 01/30/07       | 01/30/07       | 01/30/07       |
| Analysis Date                        | 02/09/07       | 02/09/07       | 02/09/07       |
| Analytical Instrument                | 02/09/07<br>MS | 02/09/07<br>MS | 02/09/07<br>MS |
| 5                                    | -              |                | -              |
| % Moisture                           | NA<br>NA       | NA<br>NA       | NA<br>NA       |
| % Lipid                              |                |                |                |
| Matrix                               | NAPL 40.50     | NAPL<br>47.40  | NAPL<br>45.80  |
| Sample Size                          | 49.50          |                | 45.80          |
| Size Unit-Basis                      | MG_OIL         | MG_OIL         | MG_OIL         |
| Minimum Reporting Limit              | 1.39           | 1.45           | 1.36           |
| Units                                | MG/KG_OIL      | MG/KG_OIL      | MG/KG_OIL      |
| C23 Tricyclic Terpane                | U              | U              | 40.62          |
| C29 Tricyclic Terpane -22S           | Ŭ              | Ŭ              | 12.03          |
| C29 Tricyclic Terpane -22R           | Ŭ              | Ŭ              | 11.13          |
| 18a(H)-22,29,30-Trisnorneohopane -TS | Ŭ              | Ŭ              | 7.86           |
| 17a(H)-22,29,30-Trisnorhopane -TM    | Ŭ              | Ŭ              | 10.84          |
| 30-Norhopane                         | 6.51           | 6.04           | 29.84          |
| 18a(H) & 18b(H)-Oleananes            | U              | U              | 12.11          |
| Hopane                               | 10.38          | 11.12          | 57.14          |
| 30-Homohopane -22S                   | U              | U              | 13.98          |
| 30-Homohopane -22R                   | U              | U              | 10.97          |
| 13b(H),17a(H)-20S-Diacholestane      | U              | U              | 65.16          |
| 13b(H),17a(H)-20R-Diacholestane      | U              | U              | 40.91          |
| 14a(H),17a(H)-20R-methylcholestane   | 6.86           | 7.91           | 86.78          |
| 14a(H),17a(H)-20S-Ethylcholestane    | 3.58           | 3.08           | 29.66          |
| 14a(H),17a(H)-20R-Ethylcholestane    | 3.39           | 4.74           | 47.85          |
| C21-TAS                              | U              | U              | 9.32           |
| C26-TAS(20S)                         | 1.44           | 1.6            | 14.27          |
| C26,C27-TAS                          | 4.78           | 5              | 46.72          |
| C27-TAS(20R)                         | 2.36           | 2.57           | 25.18          |
| C28-TAS(20S)                         | 1.6            | 1.68           | 13.93          |
| C28-TAS(20R)                         | 1.38 J         | 1.71           | 11.88          |
| C21-MAS                              | U              | U              | U              |
| C22-MAS                              | U              | U              | U              |
| C27-MAS                              | U              | U              | U              |
| C27-20R-MAS                          | U              | U              | 10.16          |
| C27-20S-MAS                          | U              | U              | 9.31           |
| C28-20S-MAS                          | U              | U              | 21.72          |
| C27-C2920S/R-MAS                     | U              | U              | 27.59          |
| C29-20S-MAS                          | U              | U              | 7.49           |
| C29-20R-MAS                          | U              | U              | 17.37          |
| TAS_245                              | NA             | NA             | NA             |
| MAS_239                              | NA             | NA             | NA             |
|                                      |                |                |                |
|                                      |                |                |                |
| Surrogate Recoveries (%)             |                |                |                |

| 5b(H)-Cholane | 570 NME | 568 NME | 112 |
|---------------|---------|---------|-----|

The Business of Innovation

# Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

| Client ID Procedural E  | lank |
|-------------------------|------|
| Battelle ID BJ941       | PB-P |
| Sample Type             | PB   |
| Collection Date 01/3    | 0/07 |
| Extraction Date 01/3    | 0/07 |
| Analysis Date 02/1      | 2/07 |
| Analytical Instrument   | MS   |
| % Moisture              | NA   |
| % Lipid                 | NA   |
| Matrix                  | APL  |
| Sample Size             | 5.00 |
| Size Unit-Basis MG      | _OIL |
| Minimum Reporting Limit | 1.31 |
| Units MG/KG             | _OIL |

| C23 Tricyclic Terpane                | U  |
|--------------------------------------|----|
| C29 Tricyclic Terpane -22S           | U  |
| C29 Tricyclic Terpane -22R           | U  |
| 18a(H)-22,29,30-Trisnorneohopane -TS | U  |
| 17a(H)-22,29,30-Trisnorhopane -TM    | U  |
| 30-Norhopane                         | U  |
| 18a(H) & 18b(H)-Oleananes            | U  |
| Hopane                               | U  |
| 30-Homohopane -22S                   | U  |
| 30-Homohopane -22R                   | U  |
| 13b(H),17a(H)-20S-Diacholestane      | U  |
| 13b(H),17a(H)-20R-Diacholestane      | U  |
| 14a(H),17a(H)-20R-methylcholestane   | U  |
| 14a(H),17a(H)-20S-Ethylcholestane    | U  |
| 14a(H),17a(H)-20R-Ethylcholestane    | U  |
| C21-TAS                              | U  |
| C26-TAS(20S)                         | U  |
| C26,C27-TAS                          | U  |
| C27-TAS(20R)                         | U  |
| C28-TAS(20S)                         | U  |
| C28-TAS(20R)                         | U  |
| C21-MAS                              | U  |
| C22-MAS                              | U  |
| C27-MAS                              | U  |
| C27-20R-MAS                          | U  |
| C27-20S-MAS                          | U  |
| C28-20S-MAS                          | U  |
| C27-C2920S/R-MAS                     | U  |
| C29-20S-MAS                          | U  |
| C29-20R-MAS                          | U  |
| TAS_245                              | NA |
| MAS_239                              | NA |
|                                      |    |

## Surrogate Recoveries (%)

5b(H)-Cholane

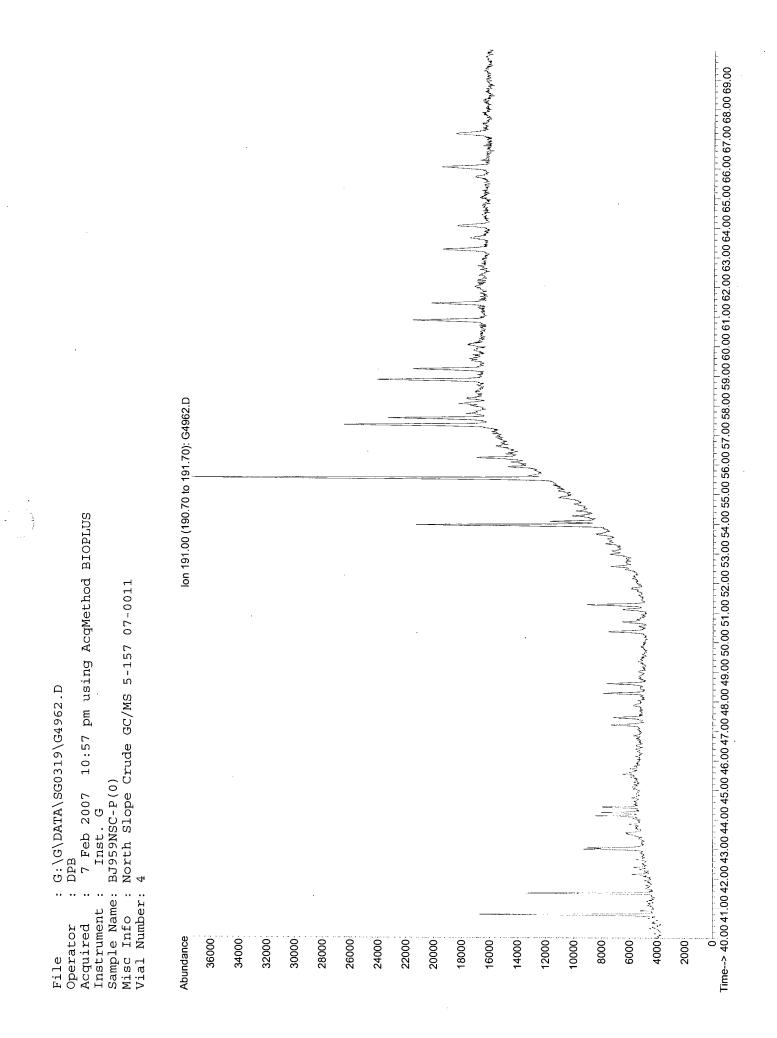
The Business of Innovation

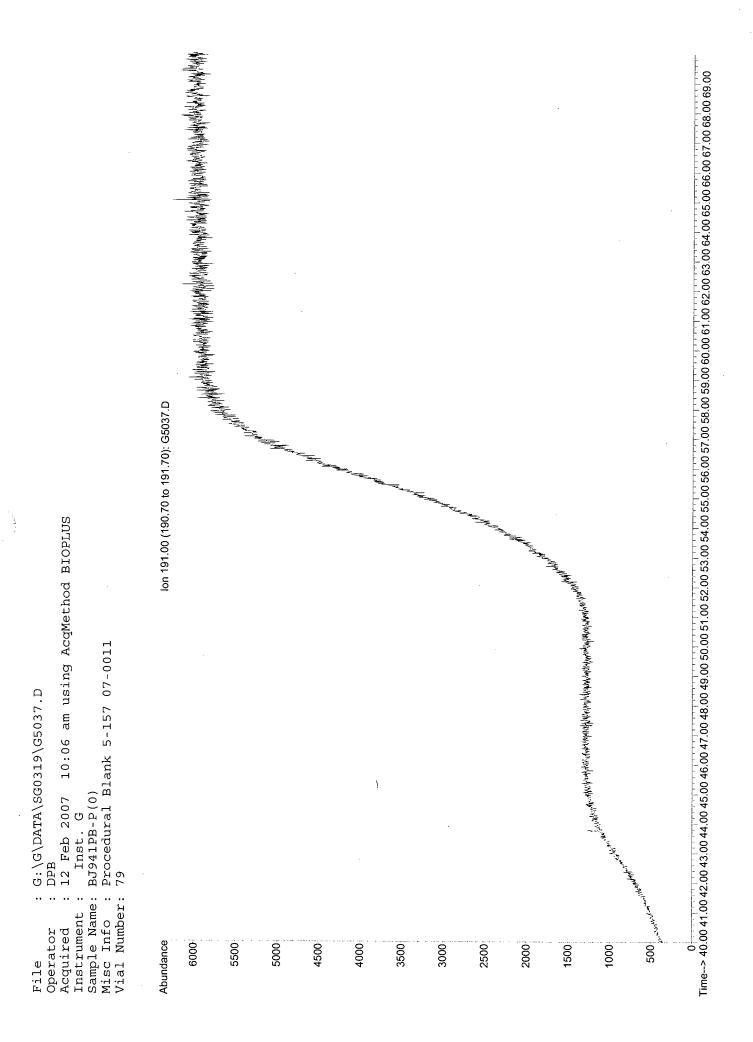
Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001

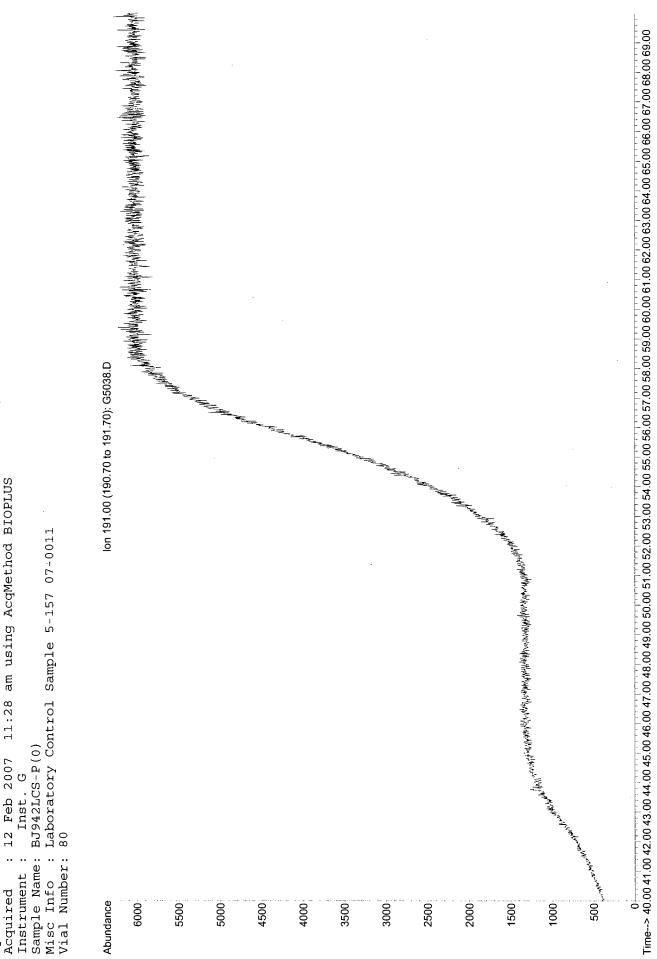
| Client ID                            | Laboratory Control<br>Sample |                             |
|--------------------------------------|------------------------------|-----------------------------|
| Client ID                            | Sample                       |                             |
| Battelle ID                          | BJ942LCS-P                   |                             |
| Sample Type                          | LCS                          |                             |
| Collection Date                      | 01/30/07                     |                             |
| Extraction Date                      | 01/30/07                     |                             |
| Analysis Date                        | 02/12/07                     |                             |
| Analytical Instrument                | MS                           |                             |
| % Moisture                           | NA                           |                             |
| % Lipid                              | NA                           |                             |
| Matrix                               | NAPL                         |                             |
| Sample Size                          | NA                           |                             |
| Size Unit-Basis                      | NA                           |                             |
| Minimum Reporting Limit              | 7.03                         |                             |
| Units                                | NG                           | Target % Recovery Qualifier |
|                                      |                              | ů ,                         |
| C23 Tricyclic Terpane                | U                            |                             |
| C29 Tricyclic Terpane -22S           | U                            |                             |
| C29 Tricyclic Terpane -22R           | U                            |                             |
| 18a(H)-22,29,30-Trisnorneohopane -TS | U                            |                             |
| 17a(H)-22,29,30-Trisnorhopane -TM    | U                            |                             |
| 30-Norhopane                         | U                            |                             |
| 18a(H) & 18b(H)-Oleananes            | U                            |                             |
| Hopane                               | U                            |                             |
| 30-Homohopane -22S                   | U                            |                             |
| 30-Homohopane -22R                   | U                            |                             |
| 13b(H),17a(H)-20S-Diacholestane      | U                            |                             |
| 13b(H),17a(H)-20R-Diacholestane      | U                            |                             |
| 14a(H),17a(H)-20R-methylcholestane   | U                            |                             |
| 14a(H),17a(H)-20S-Ethylcholestane    | U                            |                             |
| 14a(H),17a(H)-20R-Ethylcholestane    | U                            |                             |
| C21-TAS                              | U                            |                             |
| C26-TAS(20S)                         | U                            |                             |
| C26,C27-TAS                          | U                            |                             |
| C27-TAS(20R)                         | U                            |                             |
| C28-TAS(20S)                         | U                            |                             |
| C28-TAS(20R)                         | U                            |                             |
| C21-MAS                              | U                            |                             |
| C22-MAS                              | U                            |                             |
| C27-MAS                              | U                            |                             |
| C27-20R-MAS                          | U                            |                             |
| C27-20S-MAS                          | U                            |                             |
| C28-20S-MAS                          | U                            |                             |
| C27-C2920S/R-MAS                     | U                            |                             |
| C29-20S-MAS                          | U                            |                             |
| C29-20R-MAS                          | U                            |                             |
| TAS_245                              | NA                           |                             |
| MAS_239                              | NA                           |                             |
|                                      |                              |                             |

## Surrogate Recoveries (%)

5b(H)-Cholane


The Business of Innovation


Project Client: Exponent, Inc. Project Name: Exponent - Gas Works Park Project Number: N106746-0001


| Client ID         Crude           Battelle ID         BJ959NSC-P           Sample Type         NSC           Collection Date         01/30/07           Extraction Date         02/07/07           Analytical Instrument         MS           % Moisture         NA           Matrix         OlL           Sample Size         5.01           Size Unit-Basis         MG/G_OLL           Minimum Reporting Limit         1.3           Units         MG/KG_OLL         Target % Difference           C26-TAS(20S)         15.53           C26,C27-TAS         55.26           C27-TAS(20R)         31.26           C28-TAS(20R)         31.26           C28-TAS(20R)         31.26           C27-AS         55.26           C27-TAS         55.26           C27-TAS         55.26           C27-TAS         55.26           C27-TAS         55.26           C27-MAS                                                                            |                         | GN62: North Slope |                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|-------------------------------|
| Sample Type         NSC           Collection Date         01/30/07           Extraction Date         01/30/07           Analysis Date         02/07/07           Analysis Date         NA           % Moisture         NA           Matrix         OIL           Sample Size         5.01           Size Unit-Basis         MG_OIL           Minimum Reporting Limit         1.3           Units         MG/KG_OIL         Target % Difference         Qualifier           C21-TAS         15.53         C26, C27-TAS         55.26           C27-TAS(20S)         31.48         C28-TAS(20R)         31.48           C28-TAS(20R)         31.48         C28-TAS(20R)         31.48           C27-C29LMAS         3.54         C27-C29LMAS         2.57           C27-AS         5.98         2.57         C27-C29LMAS           C27-C29LOS-MAS | Client ID               | Crude             |                               |
| Sample Type         NSC           Collection Date         01/30/07           Extraction Date         01/30/07           Analysis Date         02/07/07           Analysis Date         NA           % Moisture         NA           Matrix         OIL           Sample Size         5.01           Size Unit-Basis         MG_OIL           Minimum Reporting Limit         1.3           Units         MG/KG_OIL         Target % Difference         Qualifier           C21-TAS         15.53         C26, C27-TAS         55.26           C27-TAS(20S)         31.48         C28-TAS(20R)         31.48           C28-TAS(20R)         31.48         C28-TAS(20R)         31.48           C27-C29LMAS         3.54         C27-C29LMAS         2.57           C27-AS         5.98         2.57         C27-C29LMAS           C27-C29LOS-MAS |                         |                   |                               |
| Collection Date         01/30/07           Analysis Date         02/07/07           Analysical Instrument         MS           % Moisture         NA           Matrix         OIL           Sample Size         5.01           Size Unit-Basis         MG_OIL           Minimum Reporting Limit         1.3           Units         MG/KG_OIL         Target % Difference           C26-TAS(20S)         15.53           C26-C27-TAS         55.26           C27-TAS(20R)         37.91           C28-TAS(20S)         31.48           C27-TAS         55.26           C27-MAS         3.54           C27-MAS         4.73           C27-20S-MAS         5.98           C27-20S-MAS         14.9           C28-Z0S-MAS         14.9           C27-C2920S/R-MAS         12.33           C29-20R-MAS         9.14           TAS_245         NA                                                                                      |                         |                   |                               |
| Extraction Date       01/30/07         Analytical Instrument       MS         % Moisture       NA         % Lipid       NA         Matrix       OlL         Sample Size       5.01         Size Unit-Basis       MG_OIL         Minimum Reporting Limit       1.3         Units       MG/KG_OIL       Target % Difference       Qualifier         C21-TAS       18.59         C26-TAS(20S)       15.53         C26,C27-TAS       55.26         C27-TAS(20R)       37.91         C28-TAS(20R)       31.48         C27-MAS       6.09         C27-MAS       3.54         C27-MAS       5.98         C27-C27-QS-MAS       2.57         C28-DS-MAS       14.9         C27-C2920S/R-MAS       12.33         C29-20R-MAS       9.14         TAS_245       NA                                                                                                                                                                                                                                                                                                                                                                                         |                         |                   |                               |
| Analysis Date       02/07/07         Analytical Instrument       MS         % Moisture       NA         % Lipid       NA         Matrix       OIL         Sample Size       5.01         Size Unit-Basis       MG_OIL         Minimum Reporting Limit       1.3         Units       MG/KG_OIL       Target % Difference         C21-TAS       18.59         C26-TAS(20S)       15.53         C26,C27-TAS       55.26         C27-TAS(20R)       37.91         C28-TAS(20R)       31.48         C28-TAS(20R)       31.48         C28-TAS(20R)       31.48         C22-MAS       5.98         C27-MAS       4.73         C27-OR-MAS       5.98         C27-C2920S/R-MAS       14.9         C27-C2920S/R-MAS       4.08         C29-20R-MAS       4.08         C29-20R-MAS       9.14         TAS_245       NA                                                                                                                                                                                                                                                                                                                                    |                         |                   |                               |
| Analytical Instrument       MS         % Moisture       NA         % Lipid       NA         % Lipid       NA         Matrix       OIL         Sample Size       5.01         Size Unit-Basis       MG_OIL         Minimum Reporting Limit       1.3         Units       MG/KG_OIL       Target % Difference         C21-TAS       15.53         C26-TAS(20S)       15.53         C26-TAS(20S)       15.53         C26-TAS(20R)       37.91         C28-TAS(20R)       31.48         C22-MAS       6.09         C22-MAS       3.54         C27-MAS       4.73         C27-20R-MAS       5.98         C27-20S-MAS       14.9         C28-C29S/R-MAS       14.9         C29-20S-MAS       4.08         C29-20S-MAS       9.14         TAS_245       NA                                                                                                                                                                                                                                                                                                                                                                                            | Extraction Date         | 01/30/07          |                               |
| % Moisture     NA       % Lipid     NA       Matrix     OIL       Sample Size     5.01       Size Unit-Basis     MG_OIL       Minimum Reporting Limit     1.3       Units     MG/KG_OIL       Target % Difference     Qualifier       C21-TAS     18.59       C26-TAS(20S)     15.53       C26-C27-TAS     55.26       C27-TAS(20R)     37.91       C28-TAS(20S)     31.48       C28-TAS(20R)     31.26       C21-MAS     6.09       C22-MAS     3.54       C27-TAS     5.98       C27-TAS     2.57       C28-DS-MAS     14.9       C27-C2920S/R-MAS     12.33       C29-20R-MAS     4.08       C29-20R-MAS     9.14       TAS_245     NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis Date           | 02/07/07          |                               |
| % Lipid         NA           Matrix         OIL           Sample Size         5.01           Size Unit-Basis         MG_OIL           Minimum Reporting Limit         1.3           Units         MG/KG_OIL         Target % Difference         Qualifier           C21-TAS         18.59           C26-TAS(20S)         15.53           C26,C27-TAS         55.26           C27-TAS(20S)         31.48           C28-TAS(20R)         31.26           C21-MAS         6.09           C22-MAS         3.54           C27-CAS         5.98           C27-C20S-MAS         2.57           C28-SOS         14.9           C27-C2920S/R-MAS         12.33           C29-20R-MAS         4.08           C29-20R-MAS         9.14           TAS_245         NA                                                                                                                                                                                                                                                                                                                                                                                       | Analytical Instrument   | MS                |                               |
| Matrix         OIL           Sample Size         5.01           Size Unit-Basis         MG_OIL           Minimum Reporting Limit         1.3           Units         MG/KG_OIL         Target % Difference           C21-TAS         18.59           C26-TAS(20S)         15.53           C26-TAS(20R)         37.91           C28-TAS(20R)         31.48           C28-TAS(20R)         31.48           C21-MAS         6.09           C22-MAS         3.54           C27-TAS         5.58           C27-TAS         5.54           C28-TAS(20R)         31.26           C21-MAS         6.09           C22-MAS         3.54           C27-OR-MAS         5.98           C27-C20S-MAS         14.9           C27-C2920S/R-MAS         14.9           C27-C2920S/R-MAS         14.9           C29-20R-MAS         4.08           C29-20R-MAS         9.14           TAS_245         NA                                                                                                                                                                                                                                                         | % Moisture              | NA                |                               |
| Sample Size         5.01           Size Unit-Basis         MG_OLL           Minimum Reporting Limit         1.3           Units         MG/KG_OLL         Target % Difference         Qualifier           C21-TAS         18.59           C26-TAS(20S)         15.53           C26-C27-TAS         55.26           C27-TAS(20R)         37.91           C28-TAS(20S)         31.48           C28-TAS(20R)         31.26           C21-MAS         6.09           C27-MAS         3.54           C27-OR-MAS         4.73           C27-20S-MAS         2.57           C28-20S-MAS         14.9           C27-C2920S/R-MAS         12.33           C29-20R-MAS         4.08           C29-20R-MAS         9.14           TAS_245         NA                                                                                                                                                                                                                                                                                                                                                                                                      | % Lipid                 | NA                |                               |
| Size Unit-Basis         MG_OIL           Minimum Reporting Limit         1.3           Units         MG/KG_OIL         Target % Difference         Qualifier           C21-TAS         18.59           C26-TAS(20S)         15.53           C26,C27-TAS         55.26           C27-TAS(20R)         37.91           C28-TAS(20S)         31.48           C28-TAS(20R)         31.26           C21-MAS         6.09           C27-VAS         3.54           C27-VAS         4.73           C27-20R-MAS         5.98           C27-20S-MAS         14.9           C27-C2920S/R-MAS         14.9           C27-02S-MAS         4.08           C29-20S-MAS         4.08           C29-20S-MAS         9.14           TAS_245         NA                                                                                                                                                                                                                                                                                                                                                                                                          | Matrix                  | OIL               |                               |
| Minimum Reporting Limit         1.3<br>MG/KG_OIL         Target % Difference         Qualifier           C21-TAS         18.59 </td <td>Sample Size</td> <td>5.01</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample Size             | 5.01              |                               |
| Units         MG/KG_OIL         Target % Difference         Qualifier           C21-TAS         18.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Size Unit-Basis         | MG_OIL            |                               |
| C21-TAS       18.59         C26-TAS(20S)       15.53         C26,C27-TAS       55.26         C27-TAS(20R)       37.91         C28-TAS(20S)       31.48         C28-TAS(20R)       31.26         C21-MAS       6.09         C22-MAS       3.54         C27-WAS       4.73         C27-20R-MAS       5.98         C27-20S-MAS       2.57         C28-20S-MAS       14.9         C27-C2920S/R-MAS       4.08         C29-20R-MAS       9.14         TAS_245       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Minimum Reporting Limit | 1.3               |                               |
| C26-TAS(20S)       15.53         C26,C27-TAS       55.26         C27-TAS(20R)       37.91         C28-TAS(20S)       31.48         C28-TAS(20R)       31.26         C21-MAS       6.09         C22-MAS       3.54         C27-QR-MAS       5.98         C27-20S-MAS       2.57         C28-QS-MAS       14.9         C29-20S/R-MAS       12.33         C29-20R-MAS       9.14         TAS_245       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Units                   | MG/KG_OIL         | Target % Difference Qualifier |
| C26-TAS(20S)       15.53         C26,C27-TAS       55.26         C27-TAS(20R)       37.91         C28-TAS(20S)       31.48         C28-TAS(20R)       31.26         C21-MAS       6.09         C22-MAS       3.54         C27-QR-MAS       5.98         C27-20S-MAS       2.57         C28-QS-MAS       14.9         C29-20S/R-MAS       12.33         C29-20R-MAS       9.14         TAS_245       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                   |                               |
| C26,C27-TAS       55.26         C27-TAS(20R)       37.91         C28-TAS(20S)       31.48         C28-TAS(20R)       31.26         C21-MAS       6.09         C22-MAS       3.54         C27-OR-MAS       5.98         C27-20S-MAS       2.57         C28-C2920S/R-MAS       14.9         C29-20S-MAS       12.33         C29-20R-MAS       9.14         TAS_245       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C21-TAS                 | 18.59             |                               |
| C27-TAS(20R)       37.91         C28-TAS(20S)       31.48         C28-TAS(20R)       31.26         C21-MAS       6.09         C22-MAS       3.54         C27-VAS       4.73         C27-20R-MAS       5.98         C27-20S-MAS       2.57         C28-20S-MAS       14.9         C29-20S-MAS       12.33         C29-20S-MAS       4.08         C29-20R-MAS       9.14         TAS_245       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C26-TAS(20S)            | 15.53             |                               |
| C28-TAS(20S)       31.48         C28-TAS(20R)       31.26         C21-MAS       6.09         C22-MAS       3.54         C27-MAS       4.73         C27-20R-MAS       5.98         C27-20S-MAS       2.57         C28-20S-MAS       14.9         C27-C2920S/R-MAS       4.08         C29-20S-MAS       4.08         C29-20R-MAS       9.14         TAS_245       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C26,C27-TAS             | 55.26             |                               |
| C28-TAS(20R)       31.26         C21-MAS       6.09         C22-MAS       3.54         C27-MAS       4.73         C27-20R-MAS       5.98         C27-20S-MAS       2.57         C28-20S-MAS       14.9         C27-C2920S/R-MAS       4.08         C29-20S-MAS       9.14         TAS_245       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C27-TAS(20R)            | 37.91             |                               |
| C21-MAS       6.09         C22-MAS       3.54         C27-MAS       4.73         C27-20R-MAS       5.98         C27-20S-MAS       2.57         C28-20S-MAS       14.9         C27-C2920S/R-MAS       12.33         C29-20S-MAS       4.08         C29-20R-MAS       9.14         TAS_245       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C28-TAS(20S)            | 31.48             |                               |
| C22-MAS       3.54         C27-MAS       4.73         C27-20R-MAS       5.98         C27-20S-MAS       2.57         C28-20S-MAS       14.9         C27-C2920S/R-MAS       12.33         C29-20S-MAS       4.08         C29-20R-MAS       9.14         TAS_245       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C28-TAS(20R)            | 31.26             |                               |
| C27-MAS       4.73         C27-20R-MAS       5.98         C27-20S-MAS       2.57         C28-20S-MAS       14.9         C27-C2920S/R-MAS       12.33         C29-20S-MAS       4.08         C29-20R-MAS       9.14         TAS_245       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C21-MAS                 | 6.09              |                               |
| C27-20R-MAS     5.98       C27-20S-MAS     2.57       C28-20S-MAS     14.9       C27-C2920S/R-MAS     12.33       C29-20S-MAS     4.08       C29-20R-MAS     9.14       TAS_245     NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C22-MAS                 | 3.54              |                               |
| C27-20S-MAS       2.57         C28-20S-MAS       14.9         C27-C2920S/R-MAS       12.33         C29-20S-MAS       4.08         C29-20R-MAS       9.14         TAS_245       NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C27-MAS                 | 4.73              |                               |
| C28-20S-MAS     14.9       C27-C2920S/R-MAS     12.33       C29-20S-MAS     4.08       C29-20R-MAS     9.14       TAS_245     NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C27-20R-MAS             | 5.98              |                               |
| C27-C2920S/R-MAS     12.33       C29-20S-MAS     4.08       C29-20R-MAS     9.14       TAS_245     NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C27-20S-MAS             | 2.57              |                               |
| C29-20S-MAS     4.08       C29-20R-MAS     9.14       TAS_245     NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C28-20S-MAS             | 14.9              |                               |
| C29-20R-MAS         9.14           TAS_245         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C27-C2920S/R-MAS        | 12.33             |                               |
| TAS_245 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C29-20S-MAS             | 4.08              |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C29-20R-MAS             | 9.14              |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                   |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                   |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                   |                               |

## Surrogate Recoveries (%)

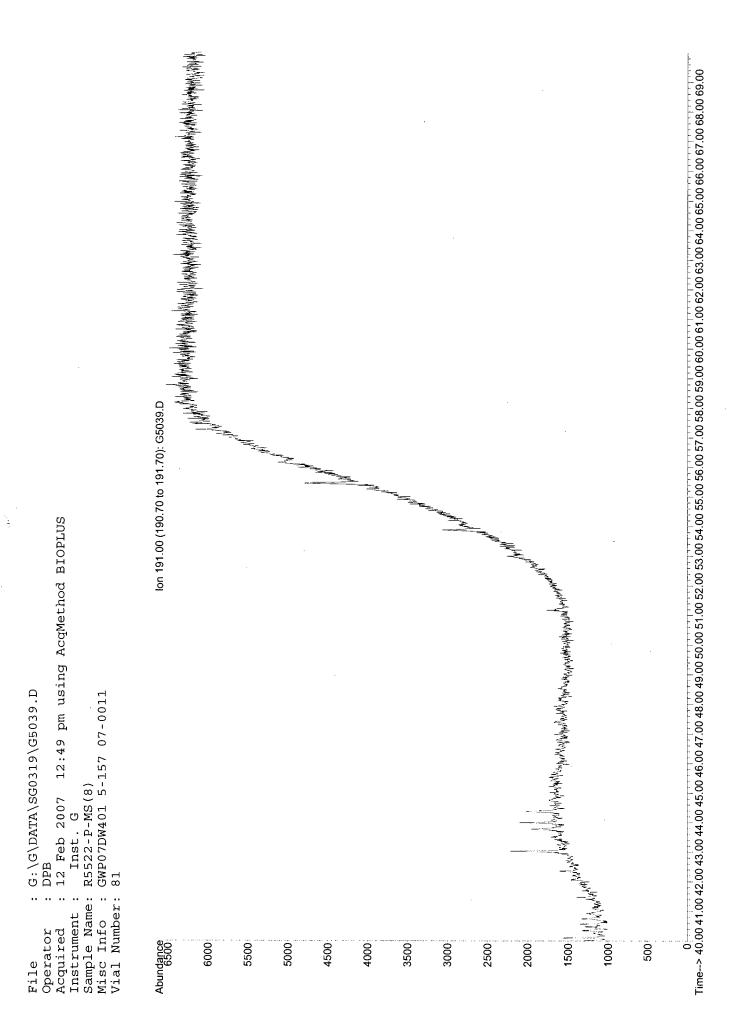
5b(H)-Cholane

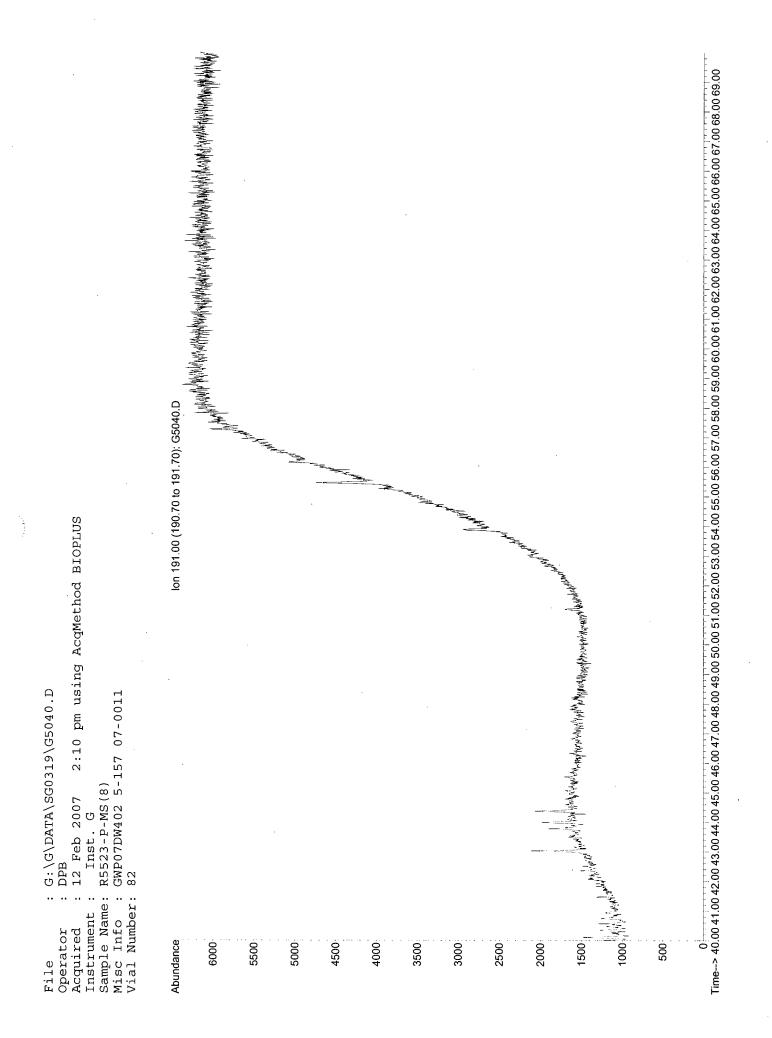


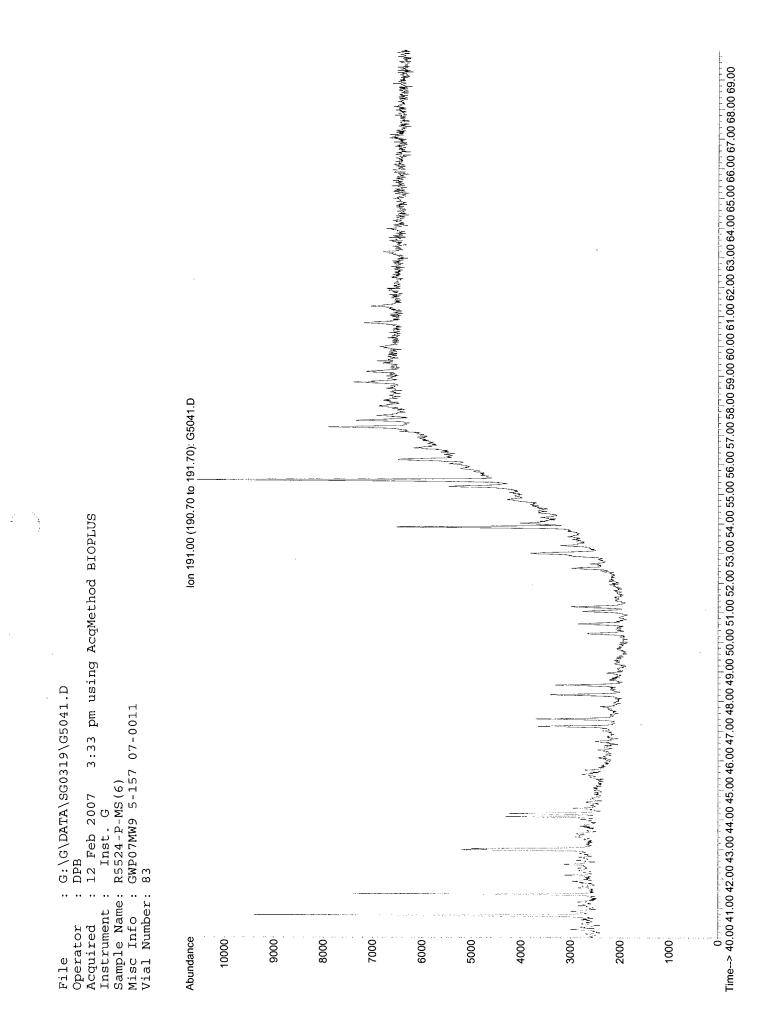


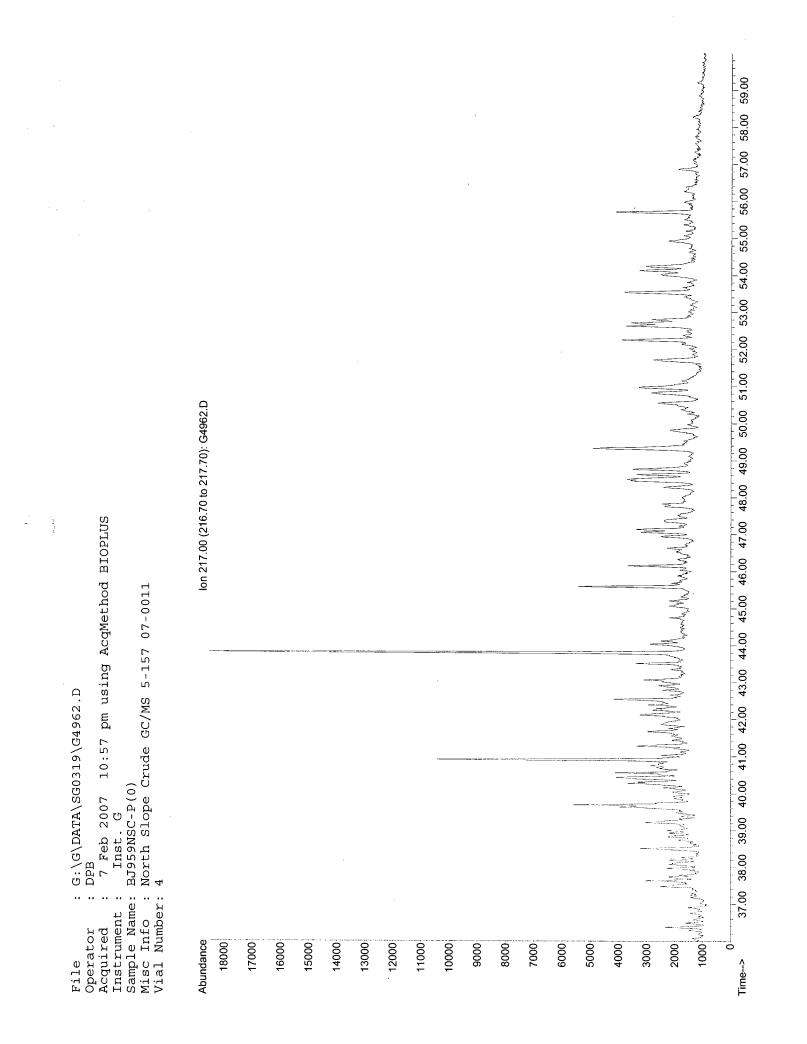


1.47


11:28 am using AcqMethod BIOPLUS


G:\G\DATA\SG0319\G5038.D DPB

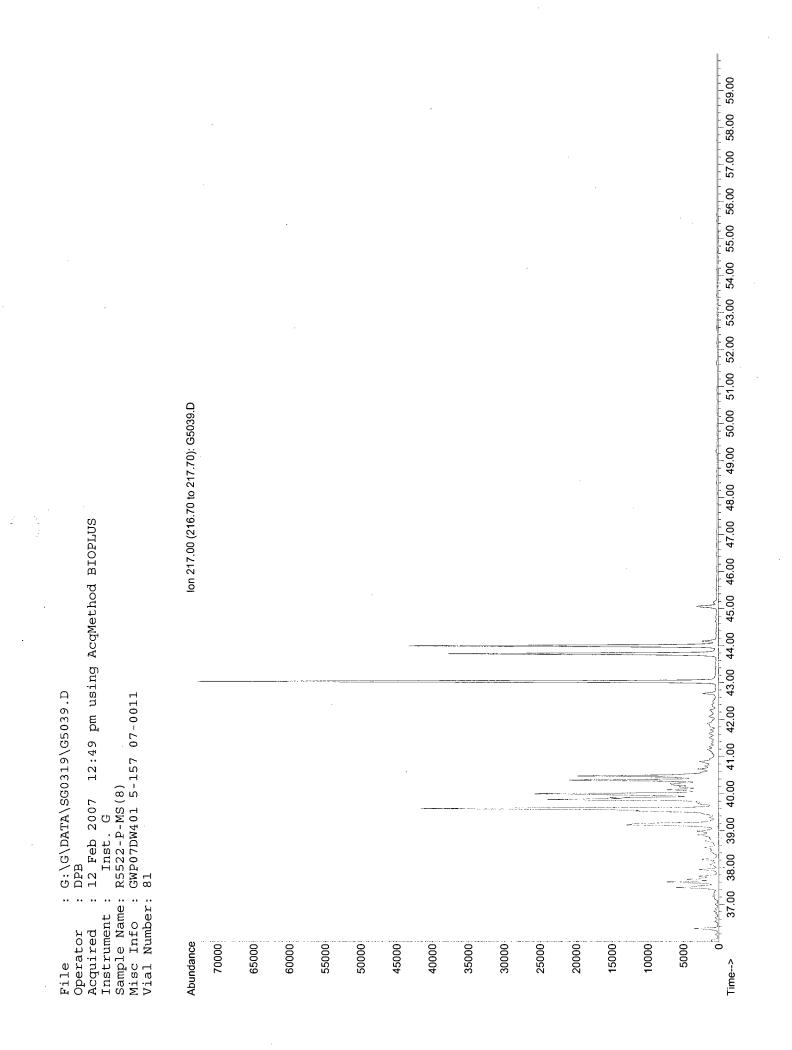

12 Feb 2007

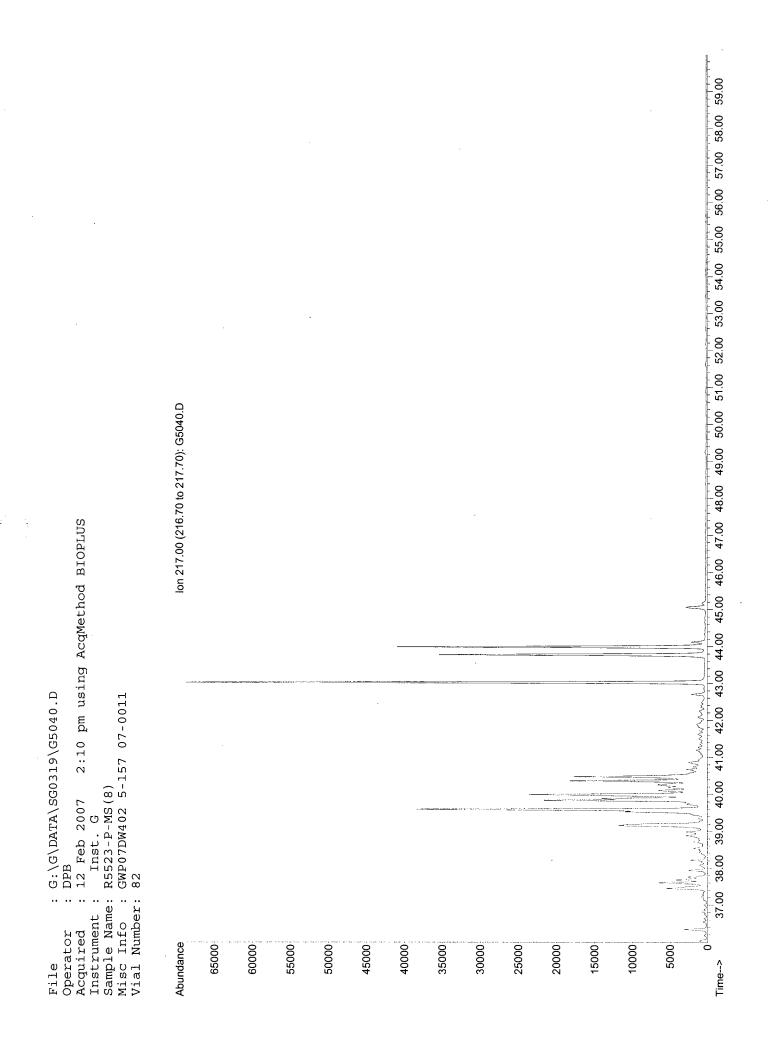

Operator

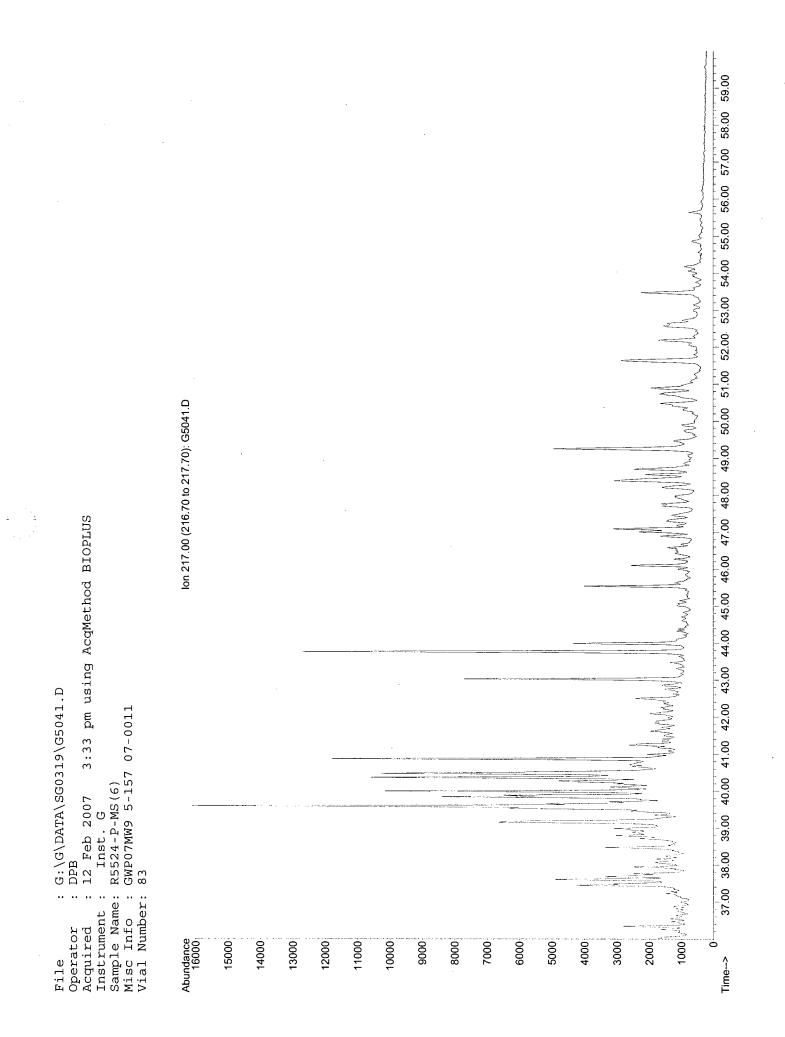
File

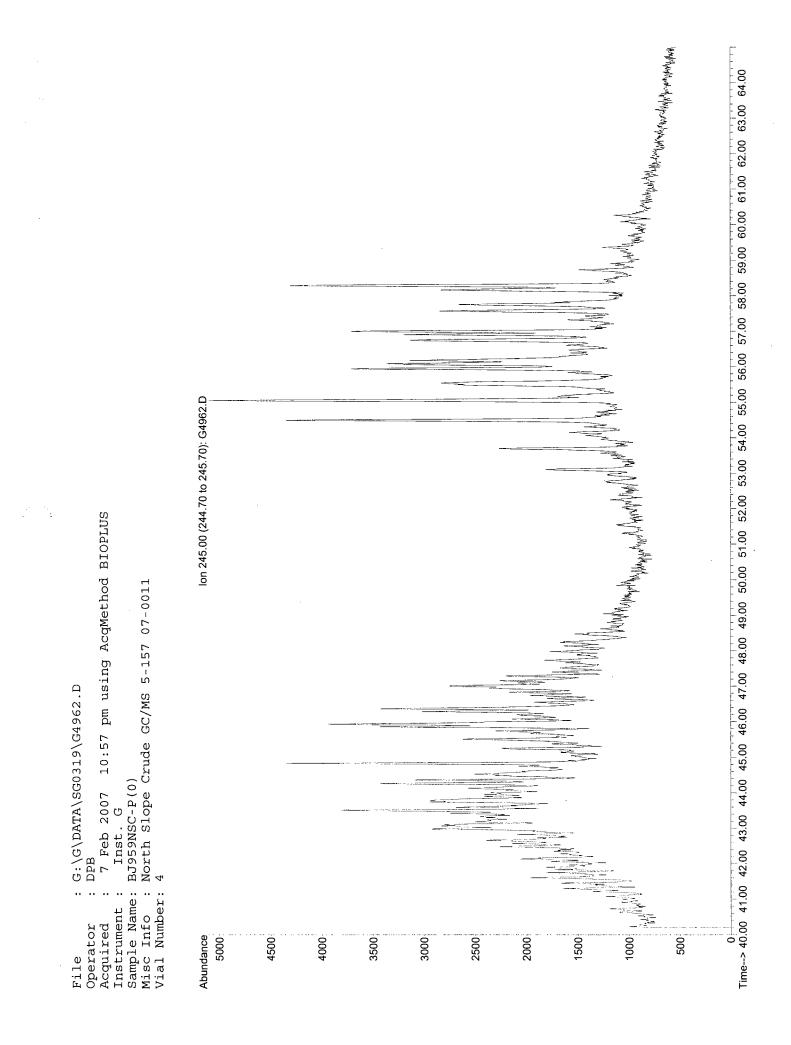


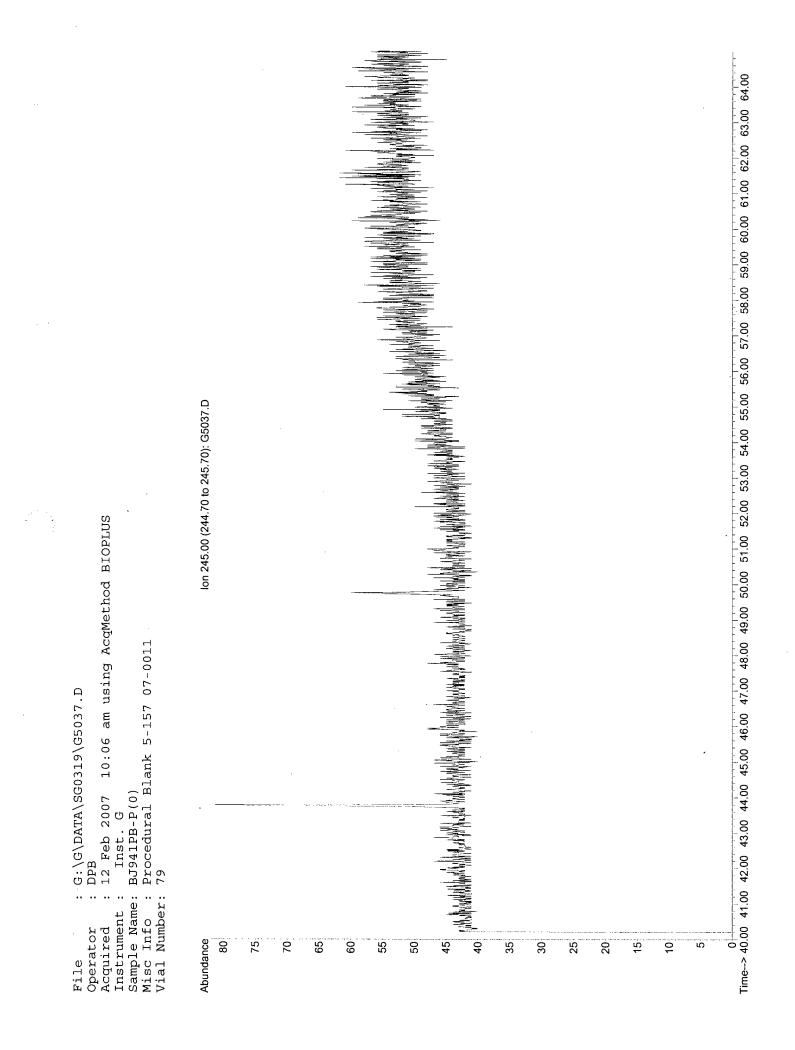


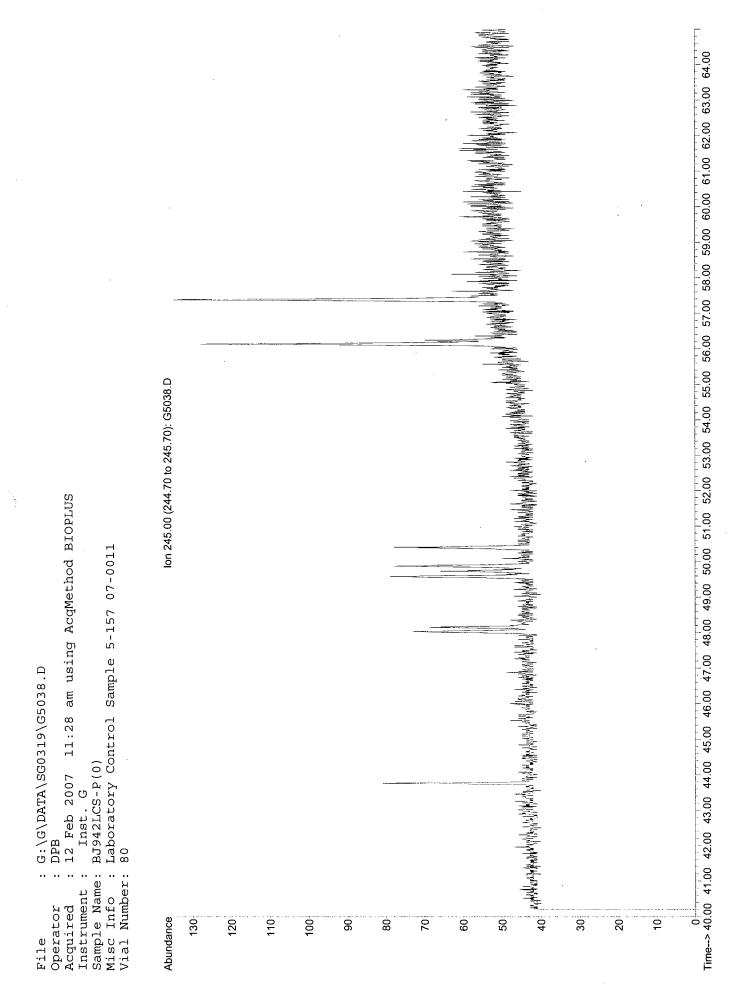


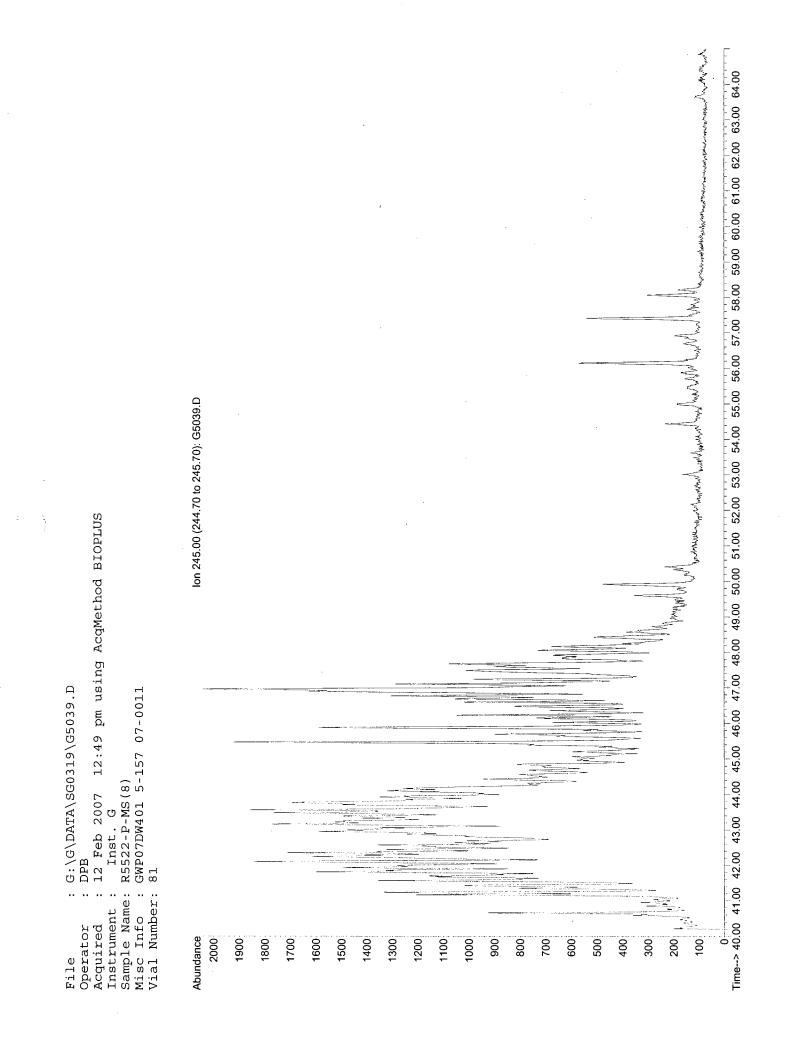



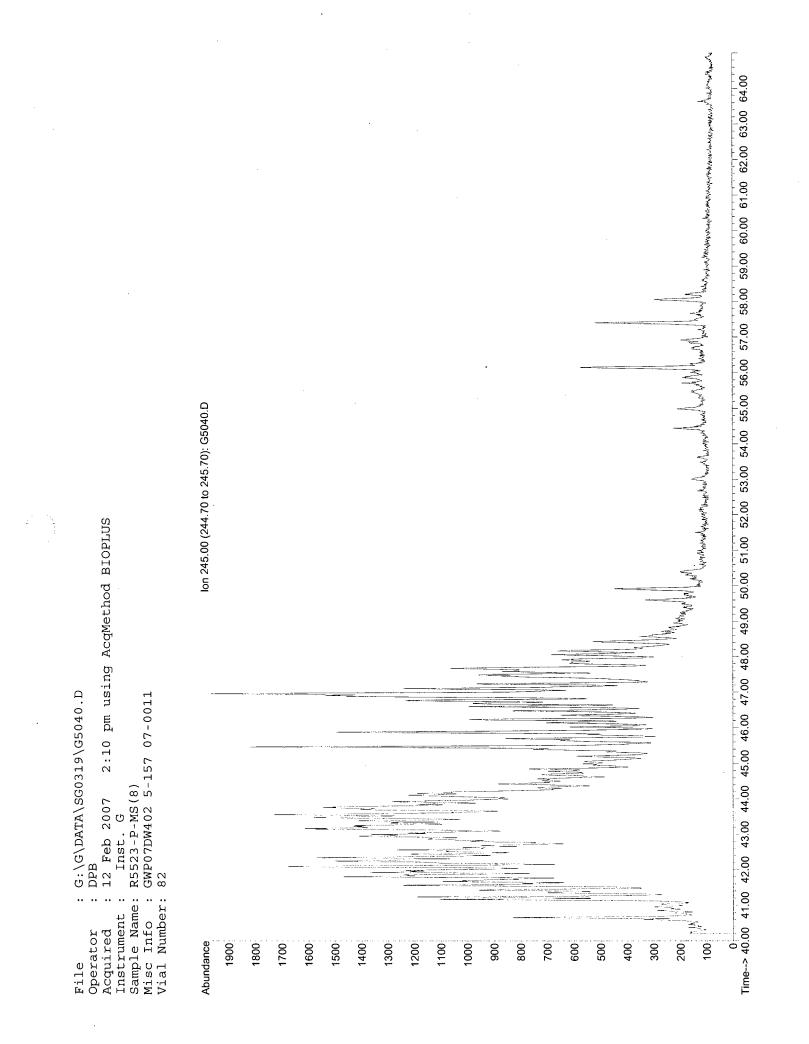


37.00 38.00 39.00 41.00 41.00 42.00 43.00 44.00 45.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 56.00 56.00 57.00 58.00 59.00 lon 217.00 (216.70 to 217.70); G5037.D 10:06 am using AcqMethod BIOPLUS File : G:\G\DATA\SG0319\G5037.D Operator : DPB Acquired : 12 Feb 2007 10:06 am using Ac Instrument : Inst. G Sample Name: BJ941PB-P(0) Misc Info : Procedural Blank 5-157 07-0011 Vial Number: 79 Abundance Time-->

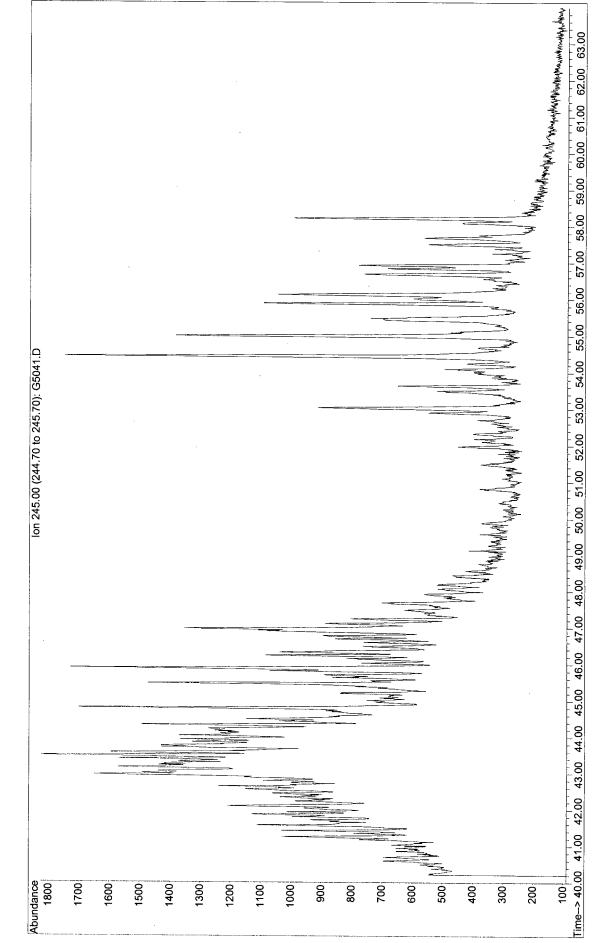

lon 217.00 (216.70 to 217.70): G5038.D File : G:\G\DATA\SG0319\G5038.D Operator : DPB Acquired : 12 Feb 2007 11:28 am using AcqMethod BIOPLUS Instrument : Inst. G Sample Name: BJ942LCS-P(0) Misc Info : Laboratory Control Sample 5-157 07-0011 Vial Number: 80 Abundance 


37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 55.00 56.00 57.00 58.00 59.00 Time-->

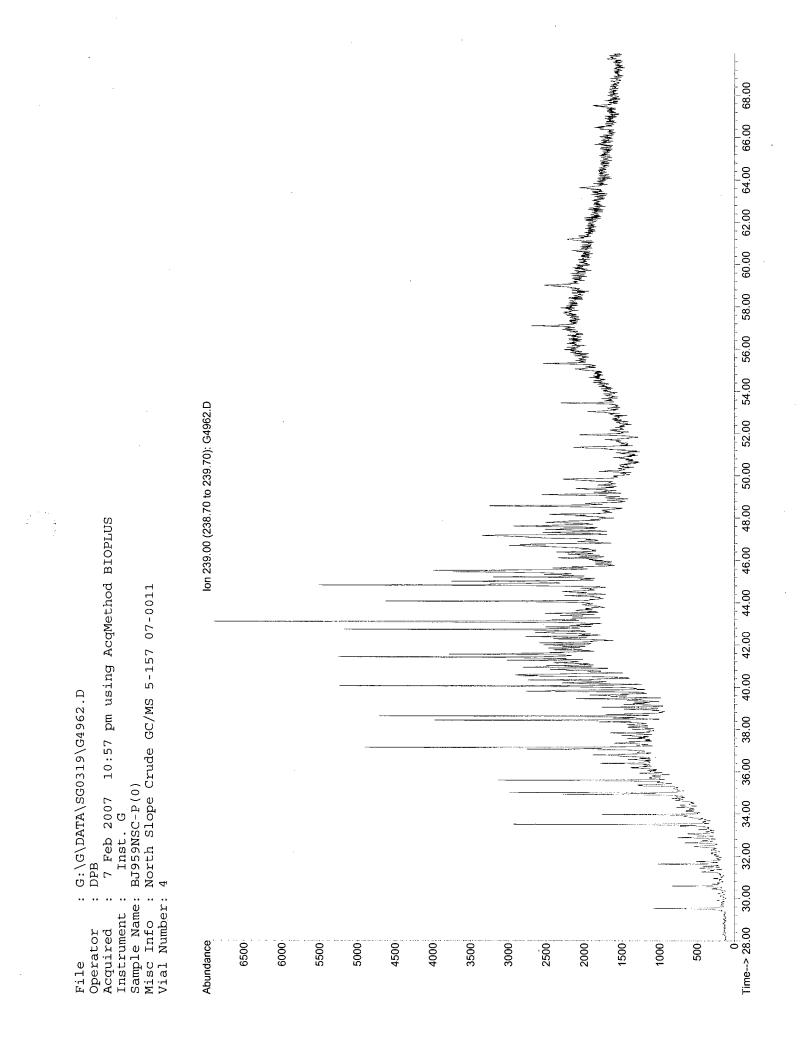


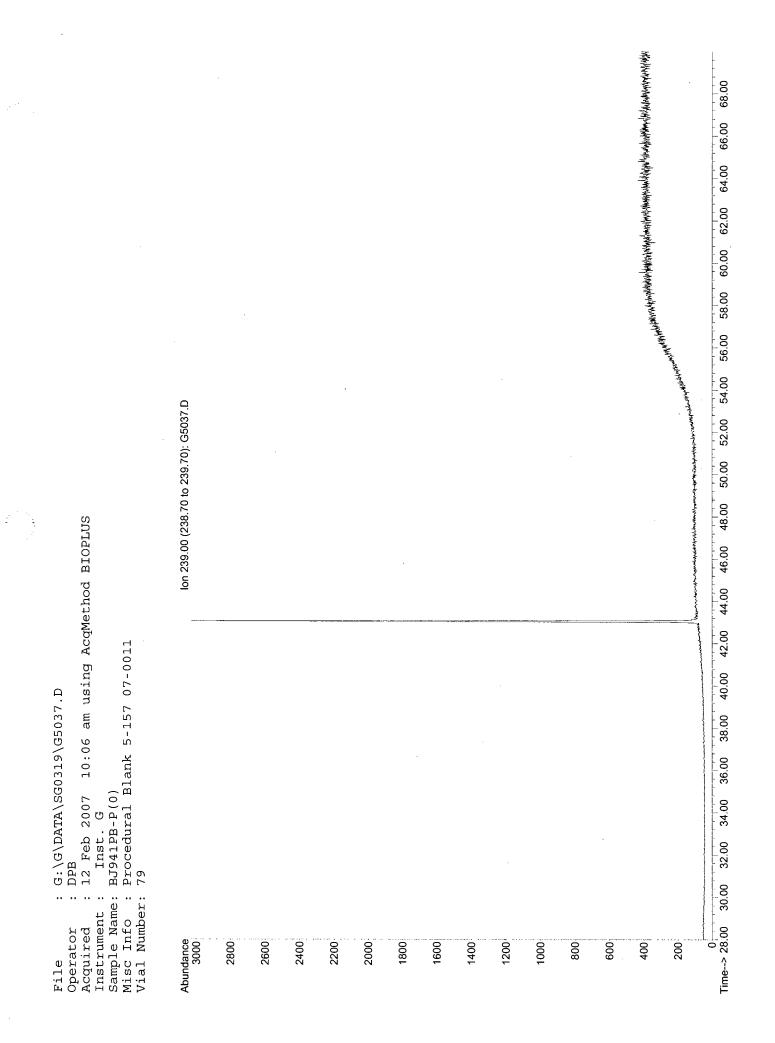



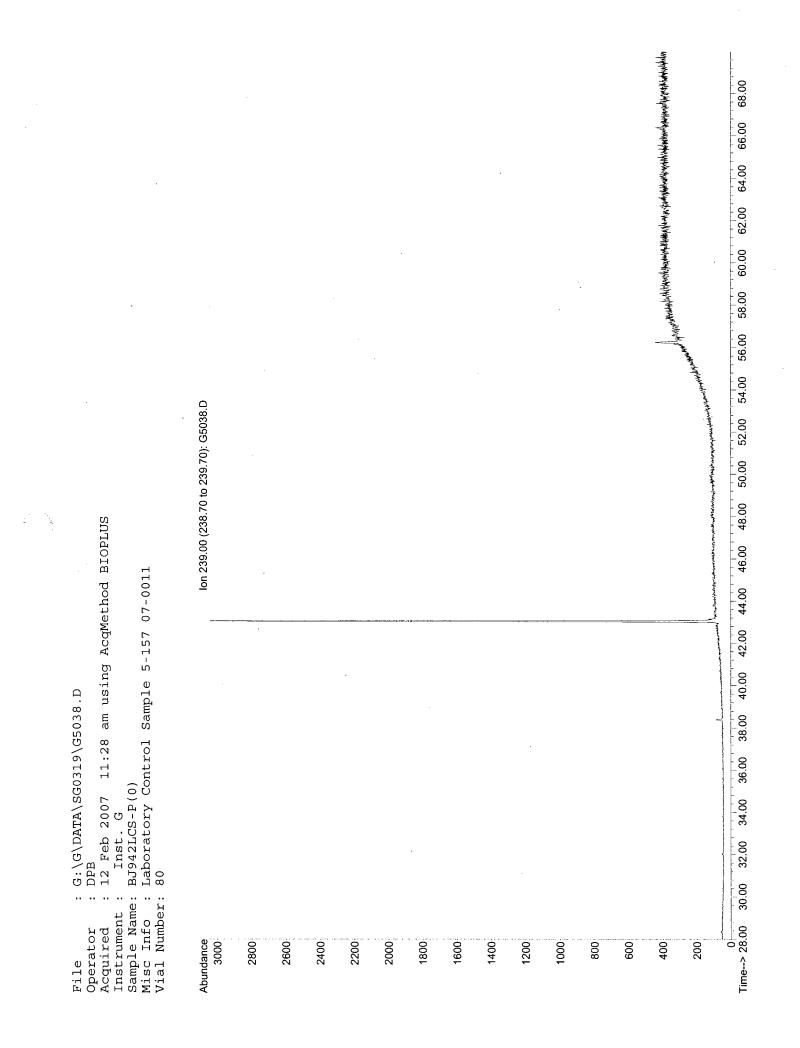



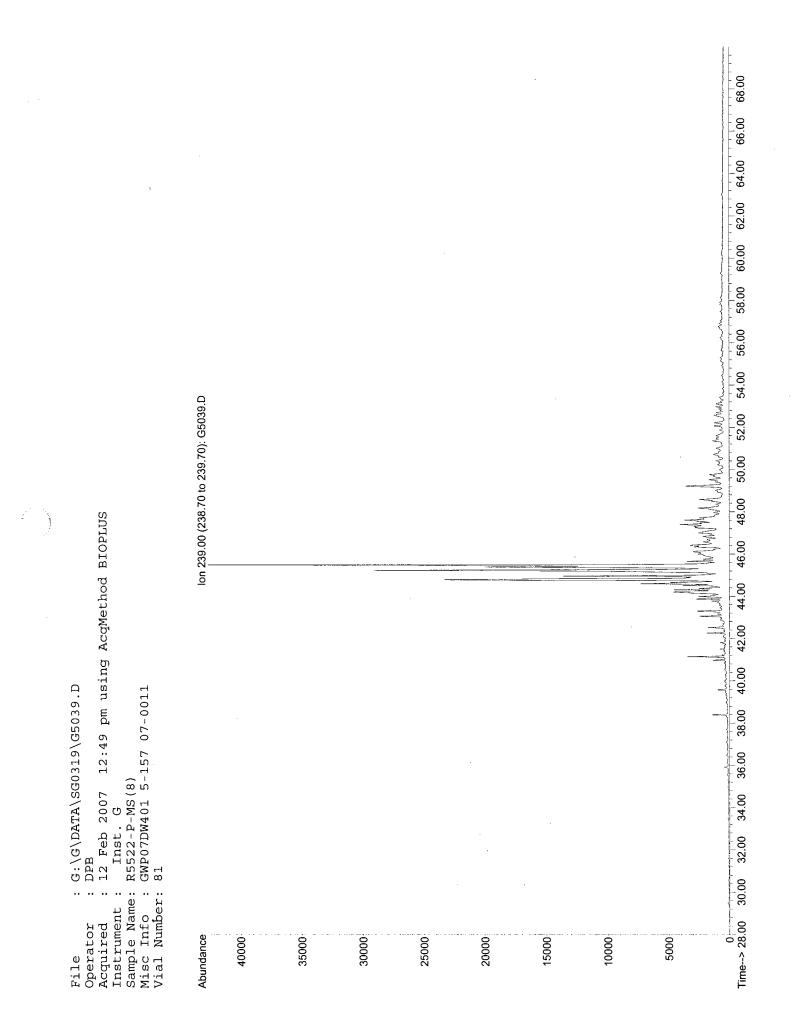



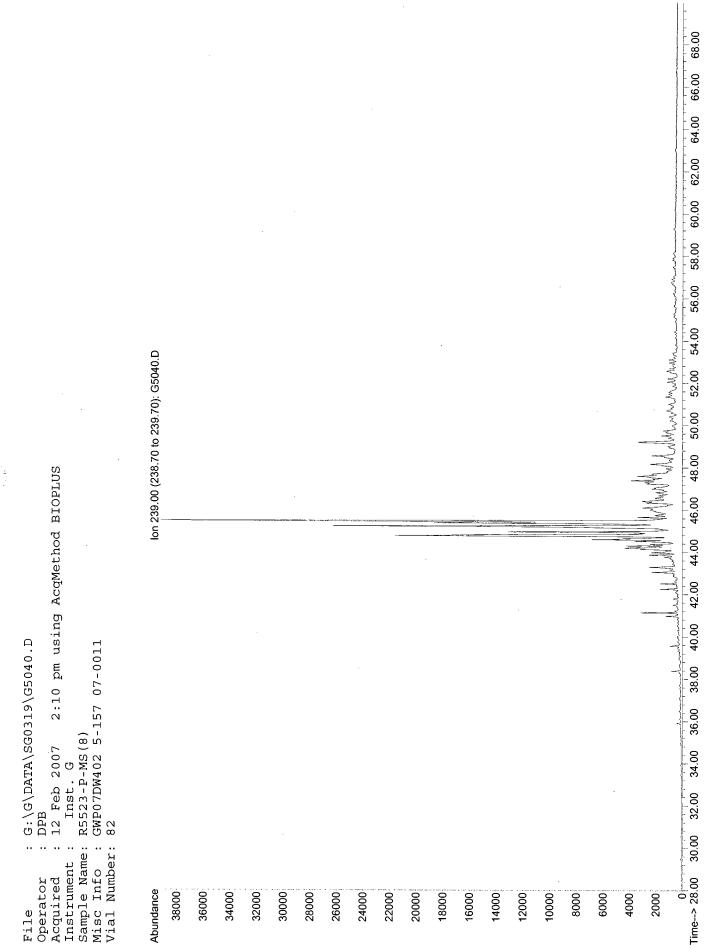


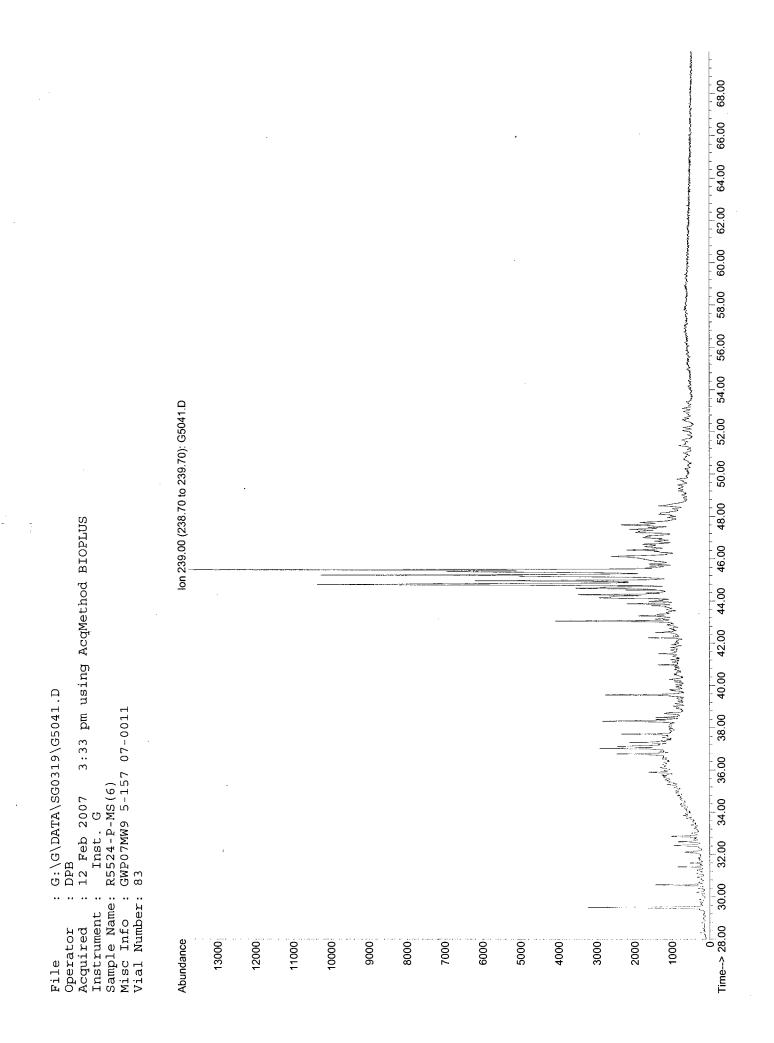





pm using AcqMethod BIOPLUS G:\G\DATA\SG0319\G5041.D DPB 12 Feb 2007 3:33 pm Inst. G R5524-P-MS(6) GWP07MW9 5-157 07-0011 83 8 Sample Name: Misc Info : Vial Number: ••• Instrument Operator Acquired File














Data Qualifiers



#### **Glossary of Data Qualifiers**

#### Flag: Application:

- B Analyte concentration found in the sample at a concentration <5x the level found in the procedural blank.
- D Dilution Run. Initial run outside linear range of instrument.
- E Estimate, result is greater than the highest concentration level in the calibration.
- H Surrogate diluted out. Used when surrogate recovery is affected by excessive dilution of the sample extract.
- J Analyte detected below the sample-specific Reporting Limit (RL).
- ME Significant Matrix Interference Estimated value.
- MI Significant Matrix Interference value could not be determined or estimated.
- n Quality Control (QC) value is outside the accuracy or precision Data Quality Objective (DQO), but meets the contingency criteria.
- N Quality Control (QC) value is outside the accuracy or precision Data Quality Objective (DQO)
- NA Not applicable
- T Holding Time (HT) exceeded.
- U Analyte not detected at 3:1 signal:noise ratio. The sample-specific method detection limit (MDL) reported.

## FLOYD | SNIDER

#### Tar Removal and Source Sampling Description Table

| Sampling    | Sample ID   | Sample Type                | Comments                                                                                                           |
|-------------|-------------|----------------------------|--------------------------------------------------------------------------------------------------------------------|
| Location    | -           |                            |                                                                                                                    |
| DW-04       | GWP07-DW4   | Physical                   | Well located in Harbor Patrol parking lot                                                                          |
|             | GWP07-DW401 | Forensics                  |                                                                                                                    |
|             | GWP07-DW402 | Forensics-duplicate        | 7                                                                                                                  |
| Station 1   | GWP07-T01   | Physical                   | Station east of play barn near blackberry                                                                          |
|             | GWP07-T01   | Forensics                  | bushes, location with strong naphthalene odor                                                                      |
|             | GWP07-T02   | Forensics                  | noticed during warmer temperatures. During                                                                         |
|             | GWP07-T03   | Forensics-duplicate of T02 | sampling PID reading of 541 units. Solidified tar                                                                  |
|             | GWP07-T04   | Forensics                  | removed by Parks.                                                                                                  |
| Station 2   | GWP07-T05   | Physical                   | Solidified tar seep previously covered with                                                                        |
|             | GWP07-T05   | Forensics                  | gravel by Parks. Approx. 3' by 3', PID reading                                                                     |
|             | GWP07-T06   | Forensics                  | around 7 units. Solidified tar removed by Parks.                                                                   |
|             | GWP07-T07   | Forensics                  | 7                                                                                                                  |
|             | GWP07-T10   | Physical                   | Soft vein of tar identified by Jodi and Parks                                                                      |
|             | GWP07-T10   | Forensics                  |                                                                                                                    |
| Station 3   | GWP07-T08   | Physical                   | Station NW corner, roots of birch tree on                                                                          |
|             | GWP07-T08   | Forensics                  | shoreline                                                                                                          |
|             | GWP07-T09   | Forensics                  | 7                                                                                                                  |
| Station 4   | GWP07-T11   | Physical                   | Aged solidified tar sample east of southerly play<br>barn building. Tar between large pieces of                    |
|             | GWP07-T11   | Forensics                  | clinker.                                                                                                           |
| Station 5   | GWP07-T12   | Physical                   | Aged solidified tar sample embedded with                                                                           |
|             | GWP07-T12   | Forensics                  | gravel and some clinker. Slightly pliable, in                                                                      |
|             | GWP07-T13   | Forensics                  | August/September during site visit with Marya                                                                      |
| Station 6   | GWP07-T14   | Forensics                  | Possible solidified tar intermixed with dirt and gravel, faint naphthalene odor, small quantity collected (~1 oz). |
| Structure 1 | GWP07-S01   | Physical                   | Structure is a historical scrubber located in the                                                                  |
|             | GWP07-S01   | Forensics                  | secured/fenced "Cracking Towers" area.                                                                             |
|             | GWP07-S02   | Forensics                  |                                                                                                                    |
| Structure 2 | GWP07-S03   | Forensics                  | Structure is a historical scrubber located west of                                                                 |
|             |             |                            | the play barn in fenced area, not locked. Only                                                                     |
|             |             |                            | small quantity of tar available.                                                                                   |
| Structure 3 | GWP07-S04   | Physical                   | Structure is a historical scrubber located west of                                                                 |
|             | GWP07-S04   | Forensics                  | structure 2 and the play barn in fenced area, not                                                                  |
| MW-9        | GWP07-MW9   | Physical                   | Well located SW of play barn and SE of                                                                             |
|             | GWP07-MW9   | Forensics                  | structures 2 and 3                                                                                                 |

## ATTACHMENT 2D-6 Battelle November 2007 Data Report



Duxbury Operations 397 Washington Street Duxbury, Massachusetts 02332 Telephone 781-934-0571 Fax: 781-934-2124

Battelle

The Business of Innovation

November 15, 2007

Ms. Lisa Meoli Floyd/Snyder Two Union Square 601 Union Street, Suite 600 Seattle, WA 98101

Subject: Data Delivery - Gas Works Park

Dear Ms. Meoli:

Enclosed please find analytical data associated with the Gas Works Park project. The deliverable includes sample custody records, all analytical data tables (including QC data), GC chromatograms, PAH histograms, biomarker EICPs, and a data quality narratives associated with the data set. The narrative includes custody information, a summary of the processing and analysis methods, holding time information, and a discussion of issues related to quality control samples analyzed with the sample batch.

Please call me at (781) 952-5235 if you have any questions or you need additional information.

Sincerely,

Robert Lizotte,

Research Scientist

| CS43                          | Normal          | al TAT           |                | - aga              | 10     |                                 |   | Analytical Resources, Incorporated |
|-------------------------------|-----------------|------------------|----------------|--------------------|--------|---------------------------------|---|------------------------------------|
| ANI LIPHOUP I Swider          | ev P            | OC. COC. DOC     | Stor           | Date:<br>10]3      | 107    | Present? V                      |   | 4611 South 134th Place, Suite 100  |
| 2                             | Singal          | 2                |                | No. of<br>Coolers: | Temps: | er Aub                          | ) | 206-695-6200 206-695-6201 (fax)    |
| Ulent Froject Name:           | 5               |                  |                |                    |        | Analysis Requested              |   | Notes/Comments                     |
| cliphe Brolect #:             | Samplers:       | 11 M. Kin        |                | 00                 | T      | DILYZ                           |   |                                    |
| Sample ID                     | Date            | /<br>Time Matrix | No. Containers | Hes .              | Thid   | 101                             |   |                                    |
| p-WM                          | 1 70 200        | 14:00 product    | 6.5            | )                  | 7      |                                 |   | LNAPI                              |
|                               |                 |                  |                |                    |        |                                 |   |                                    |
|                               |                 |                  |                |                    |        |                                 |   |                                    |
|                               |                 | _                |                |                    |        |                                 |   |                                    |
|                               |                 |                  |                |                    |        |                                 |   |                                    |
|                               |                 |                  |                |                    | -      |                                 |   |                                    |
| Comments/Snerial Instructions | Balifordianad   |                  |                |                    |        |                                 |   |                                    |
|                               | HORC            | e heude          | (Senature) -   | 0                  | 0      | Relinquished by:<br>(Signature) |   | Received by:                       |
|                               | Printed Name: N | deoli            | Fringd Name:   | 1150.0             |        | Printed Namo:                   |   | (organization)<br>Printed Name:    |
|                               | Floud           | Swider           | Company:       |                    |        | Company:                        |   | Company:                           |
|                               | Uate & Time:    | taleal           | Date & Time:   |                    | 10/3/2 | Date & Time:                    |   | Date & Time:                       |

said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

| ARI Assigned Number:<br>ARI Client Company                   | Turn-around Requested: | tequested: | Standard              | rd                          | Date:              | September 28, 2007            | ber 28,          | 2007                            |   | Analytical Resources, Incorporated<br>Analytical Chamiets and Consultation |
|--------------------------------------------------------------|------------------------|------------|-----------------------|-----------------------------|--------------------|-------------------------------|------------------|---------------------------------|---|----------------------------------------------------------------------------|
| Floyd/Snider                                                 |                        | Phone: (2  | Phone: (206) 292-2078 | 2-2078                      | Page               |                               | of               |                                 |   | 4611 South 134th Place, Suite 100                                          |
| Jes                                                          |                        |            |                       |                             | No. of<br>Coolers: | 0 P                           | Cooler<br>Temps: | 2.6                             | ) | 1 ukwila, WA 98168<br>206-695-6200 206-695-6201 (fax)                      |
| COS-LCES                                                     | S                      |            |                       |                             |                    |                               |                  | Analysis Requested              |   | Notes/Comments                                                             |
| Client Project #: COS-LCES                                   | Samplers:              |            |                       |                             |                    | -                             |                  |                                 |   |                                                                            |
| Sample ID                                                    | Date                   | Time       | Matrix                | No. Containers              | Metho<br>8270      | 8270 by<br>Extraction<br>SPLP | 8560             | D×<br>NMTP                      | - |                                                                            |
| SB-2 S5 8-9.5                                                | 09/28/07               |            | Soil                  |                             |                    |                               | L                |                                 |   | Please only use 2.5 oz and archive                                         |
| SB-8 S5 9-10.5                                               | 09/28/07               |            | Soil                  |                             |                    |                               |                  |                                 |   | the remainder for forensic analysis.<br>Please only use 2.5 oz and archive |
| SB-13 25-4.0                                                 | 09/28/07               |            | Soil                  |                             | >                  | >                             |                  |                                 |   | the remainder for forsenic analysis.                                       |
|                                                              |                        |            |                       |                             |                    | -                             | 1                | -                               |   |                                                                            |
| SB-12A S3 5-6.5                                              | 09/28/07               |            | Soil                  |                             |                    | +                             | +                | -                               |   | Please archive total sample                                                |
|                                                              |                        |            |                       |                             |                    |                               | +                |                                 |   | volume for forensic analysis.                                              |
|                                                              |                        |            |                       |                             |                    | +                             | -                |                                 |   |                                                                            |
|                                                              |                        |            |                       |                             |                    |                               | +                |                                 |   |                                                                            |
|                                                              |                        |            |                       |                             |                    |                               | -                |                                 |   |                                                                            |
| Comments/Special Instructions                                | Pallocurried but       |            |                       |                             |                    |                               |                  |                                 |   |                                                                            |
| Please see comments                                          | (Signatore)            | - lite     | Hi.                   | Received by:<br>(Signature) |                    |                               | Relir<br>(Slor   | Relinquished by:<br>(Slaneture) |   | Received by                                                                |
| regarding sample volume. Hold<br>partial volume for SB-2 and | Printed Name:          | Meel       |                       | Printed Name:               | ŀ                  |                               | avint            | Printed Name:                   |   | (signalue)<br>Printed Name:                                                |
| lction.<br>B-12A                                             | Company.               | 1 Sur      | cler                  | Company.                    |                    |                               | E<br>S           | Company:                        |   | Company;                                                                   |
| until turtner instruction.                                   | Dates a time:          | 111        | 20                    | Date & Time:                |                    |                               | Date             | Date & Time:                    |   | Date & Taxe                                                                |

c × .... Chain of Custody Record & Laborato

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

| ARI Assigned Number:<br>ARI Client Company | Turn-around             | Turn-around Requested: | Standard     | ard                         | Date:              | Septe          | September 28, 2007              | 8, 2007                       | 6 | Analytical Resources, Incorporated                                       |
|--------------------------------------------|-------------------------|------------------------|--------------|-----------------------------|--------------------|----------------|---------------------------------|-------------------------------|---|--------------------------------------------------------------------------|
| Floyd/Snider                               |                         | Phone: (2              | 06) 29       | Phone: (206) 292-2078       | Page:              | 2              | of                              |                               | 5 | Analytical Chemists and Consultants<br>4611 South 134th Place, Suite 100 |
| Jessi Massingale                           | singale                 |                        |              |                             | No. of<br>Coolers: |                | Cooler<br>Temps:                | 26                            | ) | Tukwila, WA 98168<br>206-695-6200 206-695-6201 (fax)                     |
| Gas Wol                                    | Gas Works Park - COS (N | COS (N                 | E Corner)    | 1                           |                    |                |                                 | Analysis Requested            |   | Notas/Commante                                                           |
| Client Project #: Gas Works Park - COS     | Samplers:               |                        |              |                             | р                  |                |                                 | -+                            |   | S110111100-00000                                                         |
| Sample ID                                  | Date                    | Time                   | Matrix       | No. Containers              | Metho<br>0728      | Methoo<br>8260 | SPLP<br>Extraction (<br>8270 by | D×<br>NWTPł                   |   |                                                                          |
| SB-3 S5 10-11.5                            | 09/28/07                |                        | Soil         |                             | >                  | 1              |                                 |                               |   |                                                                          |
| SB-6 S2 1-2.0                              | 09/28/07                |                        | Soil         |                             | >                  |                | 5                               |                               | 1 |                                                                          |
| SB-10 S7 15-16.5                           | 09/28/07                |                        | Soil         |                             | >                  |                | 1                               |                               |   |                                                                          |
| GP-12 S2 23-24                             | 09/28/07                |                        | Soil         |                             | >                  | >              | T                               |                               | + |                                                                          |
| GP-1 12.5-13                               | 09/28/07                |                        | Soil         |                             | >                  |                | 1                               |                               | + |                                                                          |
| GP-11 14-14.5                              | 09/28/07                |                        | Soil         |                             | 1                  | >              | T                               |                               | + |                                                                          |
| GP-12 S1 8-12                              | 09/28/07                |                        | Soil         |                             |                    | 1              | T                               |                               | - | Plasen and the second                                                    |
| GP-9 7-8                                   | 09/28/07                |                        | Soil         |                             |                    |                | T                               | -                             |   | and archive remainder.                                                   |
|                                            |                         |                        |              |                             |                    | -              | T                               |                               |   | and archive remainder                                                    |
| Comments/Special Instructions              | Retinutshed hv          | -                      |              |                             | H                  |                |                                 |                               |   |                                                                          |
| Please see comments                        | (Signature)             | C. ILLY                | ti.          | Received by:<br>(Signature) |                    |                | R. S.                           | Reinquished by<br>(Signature) |   | Received by:<br>(Storature)                                              |
| regarding sample<br>volume.                | U Si                    | Liet h                 |              | Printed Name:               |                    |                | ă                               | Printed Name:                 |   | Printed Name:                                                            |
|                                            | 1212                    | Firuel Sou             | 1. 1 C 1 C 1 | Compuny                     |                    |                | 3                               | Company.                      |   | Company:                                                                 |
|                                            | La C La                 | 11.21                  |              | Data & Time.                |                    |                | ő                               | Date & Time:                  |   | 1010                                                                     |

The solution of the industry. The total liability of ARI, its officience with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officiens, agents, employees, or successors, anising out of or in connection with the requested services. Shall not exceed the Invoiced amount for said services. The acceptance DRI is program said services. The acceptance DRI is program said services. The acceptance DRI is program said services and the ARI Quality Assurance Program. This program said services. The acceptance DRI is program said services and the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

The Business of Innovation

# **Data Report**

# Gas Works Park November 2007

**Prepared For:** 

Lisa Meoli Floyd/Snider Two Union Square 601 Union Street Seattle, WA 98101

**Prepared By:** 

Battelle 397 Washington Street Duxbury, Massachusetts 02332 Chain of Custody

# Battelle The Business of Innovation

ShpNo SHP-071009-02

Battelle Project No: OP47854

| Commis                | Description Discourses |  |
|-----------------------|------------------------|--|
| SETTION:              | Receipt Form           |  |
| and the second second |                        |  |

| and the second                                  | and the second s | and and and                 | Approved:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Project Number:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client: ARI / Floyd-Sni     | der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| Received by:                                    | Seyfert, Jeannine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date/Time Received:         | Tuesday, October 09, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12:00 AM        |
| No. of Shipping Con                             | tainers: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| SHIPMENT                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| Method of Delivery:                             | Commercial Carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tracking Number:            | 1Z-832-695-01-4511-8864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| COC Forms:                                      | Shipped with samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No Forms                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| Cooler(s)/Box                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| Cntr Type<br>1 of 1 Cardboard B                 | Tracking No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Seal Seal Condition         | and the second s | Temp C Smps     |
| Samples                                         | 07 12-002-030-01-4011-0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tape Intact                 | Intact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6 7           |
| Sample Labels:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| ample Ladels:                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | agree with COC forms        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                 | Discrepancies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (see Sample Custody Corre   | ective Action Form)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| Container Seals:                                | 🗌 Tape 🔲 Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | istody Seals 🗌 Other Sea    | le (See cample Loc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
|                                                 | Seals intact fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r each shipping container   | is (see sample Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | See sample log for impacted | d samples)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| Condition of Samples:                           | Sample contai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ners intact                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                 | Sample contai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ners broken/leaking (See Cu | ustody Corrective Action Fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rm)             |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| emperature upon reco<br>Note: If temperature up | eipt (°C): 0.6 Te<br>oon receipt differs from required co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mperature Blank used        | Yes 🔽 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
|                                                 | on receipt aggers from required co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mattions, see sample log co | omment field)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| amples Acidified:                               | 🗌 Yes 🗌 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unknown                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| nitial pH 5-9?:                                 | 🗌 Yes 🗌 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA NA                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| no, individual sample                           | adjustments on the Auxiliary Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ole Receipt Form            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| otal Residual Chlorine                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ✓ NA                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| yes, individual sample                          | adjustments on the Auxiliary Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ple Receipt Form            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| lead Snace <1% in sam                           | nples for water VOC analysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| dividual sample deviat                          | ions noted on sample log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes No V NA                 | A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
|                                                 | ions noted on sumple log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| amples Containers:                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| amples returned in PC-g                         | grade jars: 🖌 Yes 🗌 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unknown /Lot No.: U         | InKnown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| orage Location:                                 | Chem North: Freezer - F0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| amples logged in by:                            | Seyfert, Jeannine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (maiking BDO ID             | os Assigned: Q0540 - Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| pproved By:                                     | Brackett, Roxanne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/2007 12:00 AM |
|                                                 | Brackett, Koxanne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | Approved On: 11/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2/2007 12:      |
| uthorized By:                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Authorized On:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |

# **Battelle** The Business of Innovation

ShpNo: SHP-071009-02

Battelle Project No: OP47854

| COC Client:                        | ARI / Floyd-S      | Snider                               |                                        |                                                                                                                                                                                                                             |
|------------------------------------|--------------------|--------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COC Project:                       | Gasworks Pa        | rk                                   |                                        |                                                                                                                                                                                                                             |
| COC Date:                          | 10/9/2007 1:       | 42:00 PM                             |                                        |                                                                                                                                                                                                                             |
|                                    |                    | ion of Problem:                      | Expla                                  | nation:                                                                                                                                                                                                                     |
| Sample<br>Container<br>Integrity   | Sample leakir      | IG                                   | residue<br>well as<br>it was<br>on the | e Q0540 (MW-9) had some oil<br>e on the outside of the container as<br>s on the inner side of the bubble wrap<br>wrapped in. The oil residue was only<br>inside of the bubble wrap and did<br>uch any of the other samples. |
| Temperature<br>and<br>Preservation | Receipt tempe      | erature outside of acceptability     | The co                                 | oler temperature upon receipt was<br>of the 4+/- 2 degree range of                                                                                                                                                          |
| Documentation                      | of project mana    | ger notification                     |                                        |                                                                                                                                                                                                                             |
| Sample Cu                          | stodian            | Seyfert, Jeannine                    | Date:                                  | 10/9/2007 1:58:00 PM                                                                                                                                                                                                        |
| Laboratory                         | Manager:           | Thorn, Jonathan                      | Date:                                  | 11/6/2007 7:33:00 AM                                                                                                                                                                                                        |
| Project Ma                         |                    | Krahforst, Kerylynn                  | Date:                                  | 11/12/2007 12:00:00 P                                                                                                                                                                                                       |
| Documentation of                   | of client notifica | tion (should be completed by project | manager wit                            | thin 24 hrs):                                                                                                                                                                                                               |
| On 16-0                            | ct-07 I cor        | ntacted Meoli, Lisa                  | at Flo                                 | oyde Snider                                                                                                                                                                                                                 |

Date this form was received back to the custodian:

The Business of Innovation Battelle

ShpNo SHP-071009-02

**OP47854 Battelle Project No:** 

Sample Receipt Form Details

Approved: 🗸

Client: ARI / Floyd-Snider Seyfert, Jeannine Project Number: Received by:

Date/Time Received: Tuesday, October 09, 2007 12:00 AM

No. of Shipping Containers: 1

| - and the second | Collection Date: | Login Date:    | Ctre. Matriv. | Towner              |      |       |                 |      |               |                  |
|------------------|------------------|----------------|---------------|---------------------|------|-------|-----------------|------|---------------|------------------|
| 20540 MW-9       |                  |                | CUS. MGUIA.   | IEMP: PH: IKC: VOC: | 11   | C: NO | :: Stored In:   | Loc: | No: Comments: | Iments:          |
| SP 7 SE 8 DE     | 10/03/07 0:00    | 10/09/07 13:47 | 1 NAPL        | 0.6 N               | AN   | A NA  | F0002 (Walk-in) | BIN  | 87 07-2       | 7-21114-1 SA3A   |
| SR-8 S5 0-10 5   | 00:0 /0// 1/60   | 10/09/07 13:47 | 1 SOIL        | 0.6 N               | AN   | A NA  | F0002 (Walk-in) | BIN  | 87 07-2       | 07-20838-I R81A  |
| SB-13 2 5 4 0    | 00:0 /0/01/60    | 10/09/07 13:48 | 1 SOIL        | 0.6 N               | AN   | A NA  | F0002 (Walk-in) | BIN  | 87 07-2       | 07-20839-I R81B  |
| SB-124 S3 6 6 6  | 00:0 /0/07/60    | 10/09/07 13:49 | 1 SOIL        | 0.6 N               | AN   | AN NA | F0002 (Walk-in) | BIN  | 87 07-2       | 07-20840-I R81C  |
| GP-12 S2 23-24   | 00:0 /0/07/60    | 10/09/07 13:50 | 1 SOIL        | 0.6 N               | AN   | A NA  | F0002 (Walk-in) | BIN  | 87 07-2       | 07-20842-LR81F   |
| 00546 GP-0 7.8   | 00:0 /0/07/60    | 10/09/07 13:52 | 1 SOIL        | 0.6 N               | AN   | A NA  | F0002 (Walk-in) | BIN  | 87 07-2       | 07-20828-I R80D  |
| 2                | 03/18/07 0:00    | 10/09/07 13:53 | 1 SOIL        | 0.6 N               | NA N | NA NA | F0002 (Walk-in) | BIN  | 0 70 79       | 07 20022 L D0011 |

SUBCONTRACTOR ANALYSIS REQUEST CUSTODY TRANSFER 10/04/07



Laboratory: Battelle Laboratories Duxbury ARI Client: Floyd-Snider Lab Contact: Kerylynn Krahforst Lab Address: 397 Washington Street Duxbury, MA 02332 Phone: Fax:

Project ID: Gasworks ARI PM: Sue Dunnihoo Phone: 206-695-6207 Fax: 206-695-6201

Analytical Protocol: In-house Special Instructions:

Requested Turn Around: 10/17/07 Fax Results (Y/N): Y

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or sucessors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

| ARI ID          | Client ID/<br>Add'l ID | 141 | Sampled  | Matrix  | Bottles | Analyses | Battelle ID |
|-----------------|------------------------|-----|----------|---------|---------|----------|-------------|
| 07-21114-LS43A  | MW-9                   |     | 10/03/07 | Product | 1       | WILDCARD | QC540       |
| Special Instruc | tions: None            |     |          |         |         |          | 01-01-0     |

| Carrier UPS<br>Religiuished by | Airbill<br>12832695                  | 01 4511 8464            | Date 10/8/7  | 1   |
|--------------------------------|--------------------------------------|-------------------------|--------------|-----|
| D'ZIR.                         | Company<br>Refelle Dichard           | Date<br>10/8/12<br>Date | Time<br>1600 | 111 |
| J JI                           | Subcontractor Custody P<br>Page 1 of | Form - LS43             | 13.00        |     |

SUBCONTRACTOR ANALYSIS REQUEST CUSTODY TRANSFER 10/04/07



Laboratory: Battelle Laboratories Duxbury ARI Client: Floyd-Snider Lab Contact: Kerylynn Krahforst Lab Address: 397 Washington Street Duxbury, MA 02332 Phone: Fax:

Project ID: COS-LCES ARI PM: Sue Dunnihoo Phone: 206-695-6207 Fax: 206-695-6201

Analytical Protocol: In-house Special Instructions:

Requested Turn Around: 10/17/07 Fax Results (Y/N): Yes

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or sucessors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

| Client ID/<br>Add'l ID | Sampled                                                                                                                      | Matrix                                                                                                                                                                                                                                                                                        | Bottles                                                                                                                                                                                                                                                                                                                                                                                                               | Analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Enthelle ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SB-2 S5 8-9.5          | 09/17/07                                                                                                                     | Soil                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | WILDCARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q0541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| tions: None            |                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SB-8 S5 9-10.5         | 09/18/07                                                                                                                     | Soil                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | WILDCARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R0592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| tions: None            |                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SB-13 2.5-4.0          | 09/20/07                                                                                                                     | Soil                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | WILDCARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q0543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| tions: None            |                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40570.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SB-12A S3 5-6.5        | 09/20/07                                                                                                                     | Soil                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                       | WILDCARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ions: None             |                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | Add'1 ID<br>SB-2 S5 8-9.5<br>tions: None<br>SB-8 S5 9-10.5<br>tions: None<br>SB-13 2.5-4.0<br>tions: None<br>SB-12A S3 5-6.5 | Add'1 ID       Sampled         SB-2 S5 8-9.5       09/17/07         tions: None       09/18/07         SB-8 S5 9-10.5       09/18/07         tions: None       09/20/07         SB-13 2.5-4.0       09/20/07         tions: None       SB-12A S3 5-6.5         SB-12A S3 5-6.5       09/20/07 | Add'1 ID       Sampled       Matrix         SB-2 S5 8-9.5       09/17/07       Soil         tions: None       09/18/07       Soil         tions: None       09/20/07       Soil | Add'1 ID       Sampled       Matrix       Bottles         SB-2 S5 8-9.5       09/17/07       Soil       1         tions: None       09/18/07       Soil       1         sB-8 S5 9-10.5       09/18/07       Soil       1         tions: None       09/20/07       Soil       1         tions: None       09/20/07       Soil       1         sB-13 2.5-4.0       09/20/07       Soil       1         tions: None       09/20/07       Soil       1         sB-12A S3 5-6.5       09/20/07       Soil       1         tions: None       1       1       1 | Add'1 ID       Sampled       Matrix       Bottles       Analyses         SB-2 S5 8-9.5       09/17/07 Soil       1       WILDCARD         tions: None       09/18/07 Soil       1       WILDCARD         tions: None       09/20/07 Soil       1       WILDCARD         sB-12A S3 5-6.5       09/20/07 Soil       1       WILDCARD         tions: None       1       WILDCARD       1 |

| Carrier UPS                | Airbill                                |                                 | Date           |
|----------------------------|----------------------------------------|---------------------------------|----------------|
| Received by flanture fight | Company<br>Company<br>Battelle Duxbery | Date<br>10/8/7<br>Date<br>0/9/7 | Time 13:00     |
| U                          | Subcontractor Custody F<br>Page 1 of   | Sorm - LR81<br>1                | 10 m 11 m 16 m |

SUBCONTRACTOR ANALYSIS REQUEST CUSTODY TRANSFER 10/04/07

. .



Laboratory: Battelle Laboratories Duxbury ARI Client: Floyd-Snider Lab Contact: Kerylynn Krahforst Lab Address: 397 Washington Street Duxbury, MA 02332 Phone: Fax:

Project ID: Gas Works Park-COS (NE Corner) ARI PM: Sue Dunnihoo Phone: 206-695-6207 Fax: 206-695-6201

Analytical Protocol: In-house Special Instructions:

Requested Turn Around: 10/17/07 Fax Results (Y/N): Yes

Limits of Liability. Subcontractor is expected to perform all requested services in accordance with appropriate methodology following Standard Operating Procedures that meet standards for the industry. The total liability of ARI, its officers, agents, employees, or sucessors, arising out of or in connection with the requested services, shall not exceed the negotiated amount for said services. The agreement by the Subcontractor to perform services requested by ARI releases ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Subcontractor.

| ARI ID        | Client ID/<br>Add'l ID | Sampled  | Matrix | Bottles | Analyses |        |
|---------------|------------------------|----------|--------|---------|----------|--------|
| 07-20828-LR80 | D GP-12 S2 23-24       | 09/20/07 | Soil   | 1       | WILDCARD | Q0545  |
| Special Instr | uctions: None          |          |        |         |          |        |
| 07-20832-LR80 | H GP-9 7-8             | 09/18/07 | Soil   | 1       | WILDCARD | Q0.546 |
| Special Instr | uctions: None          |          |        |         |          | 4-0-10 |

| Carrier                      | Airbill                                                                           | <br>Date                      |     |
|------------------------------|-----------------------------------------------------------------------------------|-------------------------------|-----|
| Received by.<br>Jeanne Fight | Company<br>Company<br>Batelle Dux boy<br>Subcontractor Custody For<br>Page 1 of 1 | Time<br>1600<br>Time<br>13:00 | - T |

SHC Data and Chromatograms

#### SHC and TPH – SEDIMENT QA/QC SUMMARY Batch 07-0259

| PROJECT:        | Floyd/Snyder – Gas Works Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PARAMETER:      | Saturated Hydrocarbons (SHC) and Total Petroleum Hydrocarbons (TPH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LABORATORY:     | Battelle, Duxbury, MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MATRIX:         | Sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SAMPLE CUSTODY: | Six soil samples and 1 NAPL were received at Battelle Duxbury Operations (BDO)<br>Laboratory on 10/9/07. Upon Receipt of the samples, the temperature of the cooler was<br>taken and the samples were logged into the laboratory and given unique IDs. The<br>temperature of the cooler upon receipt was slightly below the acceptable range ( $4^{\circ}C \pm 2^{\circ}$ ) at 0.6°C. Also, it was noted that sample Q0540 (MW-9) had some oil residue on the<br>outside of the container as well as the inner side of the bubble wrap. The oil residue was<br>only on the inside of the bubble wrap and did not touch any of the other samples. The<br>client was notified on 10/16/07. The laboratory was instructed to proceed with the<br>analysis. Samples were stored in an access-limited walk-in refrigerator at 4°C until<br>sample preparation could begin. |

|                | Reference<br>Method | Method<br>Blank | Surrogate<br>Recovery | LCS<br>Recovery     | MS<br>Recovery                               | MS/MSD<br>Precision | Control<br>Oil<br>% Diff             |
|----------------|---------------------|-----------------|-----------------------|---------------------|----------------------------------------------|---------------------|--------------------------------------|
| SHC and<br>TPH | General<br>NS&T     | <5xMDL          | 40-120%<br>Recovery   | 40-120%<br>Recovery | 40-120%<br>Recovery                          | ≤30% RPD            | PD,30% for<br>90% of the<br>analytes |
|                |                     |                 |                       |                     | MS target spike<br>must be >5x<br>background |                     |                                      |

**METHOD:** 

Soil samples were extracted following general NS&T methods. Approximately 5-8 g of sample was spiked with SHC and PAH surrogates and serial extracted three times with dichloromethane using orbital shaker table techniques. The combined extracts were dried over anhydrous sodium sulfate and concentrated by Kuderna-Danish and nitrogen evaporation techniques. The sample extracts were split in half: one-half of the extract was removed for archiving; the other half was processed through an alumina gravity column to isolate the hydrocarbon fractions of interest. The weights of the resulting extracts were determined gravimetrically. The extracts were concentrated to 1 mL, split, and spiked with internal standard (IS). The pre-injection volume and/or extract split were adjusted to 5mg/mL. One extract was submitted for PAH and the second extract was submitted for SHC and TPH analysis.

SHC and TPH were measured by gas chromatography with flame ionization detection (GC/FID). An initial calibration consisting of target analytes was completed prior to analysis to demonstrate the linear range of the analysis. Calibration verification was performed at the beginning and end of each 12 hour period in which samples were analyzed. Concentrations of SHC and TPH were calculated by the internal standard method. Normal alkanes were quantified using the average RF generated from the initial calibration. TPH concentrations were quantified suing the average RF of nC8 through nC40. Isoprenoid hydrocarbon concentrations were quantified using the average RF of nc8 through nC40. Isoprenoid hydrocarbon concentrations were quantified using the average RF of nc8 through nC40.

HOLDING TIMES: Samples were prepared for analysis in three analytical batches and were extracted within 30 days of sample collection analyzed within 40 days of extraction.

| Batch   | Extraction Date | Analysis Date           |
|---------|-----------------|-------------------------|
| 07-0259 | 10/15/2007      | 10/18/2007 - 10/19/2007 |

### SHC and TPH – SEDIMENT QA/QC SUMMARY Batch 07-0259

| PROCEDURAL<br>BLANK (PB):              | A procedural blank (PB) was prepared with each analytical batch. Blanks were analyzed to ensure the sample extraction and analysis methods were free of contamination.                                                                                                                                                                                                 |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | 07-0259 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                        |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                       |
| LABORATORY<br>CONTROL<br>SAMPLE (LCS): | A laboratory control sample (LCS) was prepared with each analytical batch. The percent recoveries of target analytes were calculated to measure data quality in terms of accuracy.<br>07-0259 – No exceedences noted.                                                                                                                                                  |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                       |
| SURROGATE<br>RECOVERY:                 | Two surrogate compounds were added prior to extraction, including o-terphenyl and 5a-<br>androstane. The recovery of the surrogate compound was calculated to measure data quality                                                                                                                                                                                     |
|                                        | in terms of accuracy (extraction efficiency).                                                                                                                                                                                                                                                                                                                          |
|                                        | 07-0259 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                        |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                       |
| CONTROL OIL:                           | A control oil (North Slope Crude) was prepared with the analytical batch. The percent difference (PD) between the measured value and the target value was calculated to measure data quality in terms of accuracy.                                                                                                                                                     |
|                                        | 07-0259 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                        |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                       |
| CALIBRATIONS:                          | The GC/FID is calibrated with a minimum 6 local sector is a local sector.                                                                                                                                                                                                                                                                                              |
|                                        | The GC/FID is calibrated with a minimum 5 level curve for all compounds. The percent relative standard deviation (% RSD) between RF for the individual target analytes must be $\leq 25\%$ , and the mean RSD of all target analytes must be $\leq 20\%$ . Each batch of samples analyzed is bracketed by a continuing calibration verification (CCV) sample, run at a |
|                                        | frequency of minimally every 12 hours. The PD between the true value and the CCV should be $\leq 25\%$ for individual analytes. Additionally an initial calibration check (ICC) sample is run immediately after each initial calibration. The PD between the ICC and the initial calibration should be $\leq 25\%$ .                                                   |
|                                        | 07-0259 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                        |
|                                        | Comments - None                                                                                                                                                                                                                                                                                                                                                        |

The Business of Innovation

#### Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID               | SB-2 S5 8-9.5 | GP-12 S2 23-24 |  |
|-------------------------|---------------|----------------|--|
| Battelle ID             | Q0541-P       | 20515 2        |  |
| Sample Type             |               | Q0545-P        |  |
| Collection Date         | SA            | SA             |  |
| Extraction Date         | 09/17/07      | 09/20/07       |  |
| Analysis Date           | 10/15/07      | 10/15/07       |  |
| Analysis Date           | 10/18/07      | 10/19/07       |  |
| Analytical Instrument   | FID           | FID            |  |
| % Moisture              | 18.05         | 26.35          |  |
| % Lipid                 | NA            | NA             |  |
| Matrix                  | SOIL          | SOIL           |  |
| Sample Size             | 4.59          | 3.93           |  |
| Size Unit-Basis         | G_DRY         | G DRY          |  |
| Units                   | UG/G_DRY      | UG/G_DRY       |  |
| n-Nonane                | U             |                |  |
| n-Decane                | Ű             | ů.             |  |
| n-Undecane              |               | U              |  |
| n-Dodecane              | U             | U              |  |
| n-Tridecane             | U             | U              |  |
|                         | U             | U              |  |
| Isoprenoid RRT 1380     | U             | U              |  |
| n-Tetradecane           | U             | Ū              |  |
| Isoprenoid RRT 1470     | U             | U              |  |
| n-Pentadecane           | 165.07        | 9.04           |  |
| n-Hexadecane            | 86.55         | 28.62          |  |
| Norpristane (1650)      | U             | U              |  |
| n-Heptadecane           | Ŭ             | Ŭ              |  |
| Pristane                | 213.07        | ŭ              |  |
| n-Octadecane            | 228.64        |                |  |
| Phytane                 | 180.99        | 82.21          |  |
| n-Nonadecane            |               | 22.17          |  |
| n-Eicosane              | 4.97          | 1.05 J         |  |
| n-Heneicosane           | U             | U              |  |
|                         | U             | 9.78           |  |
| n-Docosane              | U             | U              |  |
| n-Tricosane             | U             | U              |  |
| n-Tetracosane           | U             | U              |  |
| -Pentacosane            | U             | U              |  |
| n-Hexacosane            | U             | U              |  |
| n-Heptacosane           | U             | Ŭ              |  |
| -Octacosane             | U             | - ŭ            |  |
| n-Nonacosane            | Ũ             | 11.65          |  |
| -Triacontane            | ŭ             |                |  |
| -Hentriacontane         | Ŭ             | U              |  |
| -Dotriacontane          | U             | 0 U            |  |
| -Tritriacontane         | Ŭ             | 2.18           |  |
| -Tetratriacontane       |               | 6.11           |  |
| -Pentatriacontane       | U             | 3.08           |  |
| -Hexatriacontane        | U             | U              |  |
|                         | U             | U              |  |
| -Heptatriacontane       | U             | U              |  |
| -Octatriacontane        | U             | U              |  |
| -Nonatriacontane        | U             | U              |  |
| -Tetracontane           | Ŭ             | Ű              |  |
| PH(total)               | 19288.58      | 2228.21        |  |
|                         |               |                |  |
| urrogate Recoveries (%) |               |                |  |
| Terphenyl               | 440           |                |  |
| a-androstane            | 113           | 96             |  |

The Business of Innovation

# Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                | Procedural Blank |  |
|--------------------------|------------------|--|
| Battelle ID              | BL033PB-P        |  |
| Sample Type              | PB               |  |
| Collection Date          |                  |  |
| Extraction Date          | 10/15/07         |  |
| Analysis Date            | 10/15/07         |  |
| Analytical Instrument    | 10/18/07         |  |
|                          | FID              |  |
| % Moisture               | 22.07            |  |
| % Lipid                  | NA               |  |
| Matrix                   | SEDIMENT         |  |
| Sample Size              | 11.03            |  |
| Size Unit-Basis          | G_DRY            |  |
| Units                    | UG/G_DRY         |  |
| n-Nonane                 | U                |  |
| n-Decane                 | U                |  |
| n-Undecane               | Ũ                |  |
| n-Dodecane               | Ŭ                |  |
| n-Tridecane              | ŭ                |  |
| Isoprenoid RRT 1380      | Ü                |  |
| n-Tetradecane            | U                |  |
| Isoprenoid RRT 1470      | 0                |  |
| n-Pentadecane            | U<br>U           |  |
| n-Hexadecane             |                  |  |
| Norpristane (1650)       | U.               |  |
| n-Heptadecane            | U                |  |
| Pristane                 | U                |  |
| n-Octadecane             | U                |  |
| Phytane                  | U                |  |
| n-Nonadecane             | U                |  |
| n-Eicosane               | U                |  |
| n-Heneicosane            | υ                |  |
|                          | U                |  |
| n-Docosane               | U                |  |
| n-Tricosane              | U                |  |
| n-Tetracosane            | Ú                |  |
| n-Pentacosane            | U                |  |
| n-Hexacosane             | U                |  |
| n-Heptacosane            | U                |  |
| n-Octacosane             | U                |  |
| n-Nonacosane             | U                |  |
| n-Triacontane            | U                |  |
| n-Hentriacontane         | U                |  |
| n-Dotriacontane          | U                |  |
| n-Tritriacontane         | U                |  |
| n-Tetratriacontane       | U                |  |
| n-Pentatriacontane       | Ŭ                |  |
| n-Hexatriacontane        | Ŭ                |  |
| n-Heptatriacontane       | Ŭ                |  |
| n-Octatriacontane        | Ŭ                |  |
| n-Nonatriacontane        |                  |  |
| n-Tetracontane           | ũ                |  |
| TPH(total)               |                  |  |
|                          |                  |  |
| Surrogate Recoveries (%) |                  |  |
| O-Terphenyl              | 91               |  |
| 5a-androstane            | 91               |  |

O-Terphenyl 5a-androstane

94

The Business of Innovation

#### Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                  | 060208-03: Sand,<br>White Quartz, -50+70 |   |          |            |           |  |
|----------------------------|------------------------------------------|---|----------|------------|-----------|--|
| Battelle ID                | BL034LCS-P                               |   |          |            |           |  |
| Sample Type                | BL034LCS-P<br>LCS                        |   |          |            |           |  |
| Collection Date            | 10/15/07                                 |   |          |            |           |  |
| Extraction Date            | 10/15/07                                 |   |          |            |           |  |
| Analysis Date              | 10/18/07                                 |   |          |            |           |  |
| Analytical Instrument      | FID                                      |   |          |            |           |  |
| % Moisture                 | NA                                       |   |          |            |           |  |
| % Lipid                    | NA                                       |   |          |            |           |  |
| Matrix                     | SEDIMENT                                 |   |          |            |           |  |
| Sample Size                | NA                                       |   |          |            |           |  |
| Size Unit-Basis            | NA                                       |   |          |            |           |  |
| Units                      | UG                                       |   | Target 9 | & Recovery | Qualifier |  |
| n-Nonane                   | 70.5                                     |   | 100.00   | 44         |           |  |
| n-Decane                   | 79.72                                    |   | 100.00   | 71<br>80   |           |  |
| n-Undecane                 | 74.9                                     |   | 100.00   | 80<br>75   |           |  |
| n-Dodecane                 | 79                                       |   | 100.00   | 75<br>79   |           |  |
| n-Tridecane                | 78.16                                    |   | 100.00   | 79         |           |  |
| soprenoid RRT 1380         | 75:16                                    | U | 100.00   | 10         |           |  |
| n-Tetradecane              | 79.07                                    | - | 100.00   | 79         |           |  |
| soprenoid RRT 1470         | 10.01                                    | U | 100.00   | 19         |           |  |
| -Pentadecane               | 81.89                                    |   | 100.00   | 82         |           |  |
| -Hexadecane                | 82.76                                    |   | 100.00   | 83         |           |  |
| lorpristane (1650)         |                                          | U |          | 00         |           |  |
| -Heptadecane               | 81.82                                    | 2 | 100.00   | 82         |           |  |
| Pristane                   | 83.15                                    |   | 100.00   | 83         |           |  |
| -Octadecane                | 83.37                                    |   | 100.00   | 83         |           |  |
| hytane                     | 82.3                                     |   | 100.00   | 82         |           |  |
| -Nonadecane                | 83.61                                    |   | 100.00   | 84         |           |  |
| -Eicosane                  | 84.32                                    |   | 100.00   | 84         |           |  |
| -Heneicosane               | 83.54                                    |   | 100.00   | 84         |           |  |
| -Docosane                  | 86.84                                    |   | 100.00   | 87         |           |  |
| -Tricosane<br>-Tetracosane | 84.72                                    |   | 100.00   | 85         |           |  |
| Pentacosane                | 85.21                                    |   | 100.00   | 85         |           |  |
| Hexacosane                 | 86.59                                    |   | 100.00   | 87         |           |  |
| Heptacosane                | 84.71                                    |   | 100.00   | 85         |           |  |
| Octacosane                 | 85.55                                    |   | 100.00   | 86         |           |  |
| Nonacosane                 | 82.19                                    |   | 100.00   | 82         |           |  |
| Triacontane                | 87.14<br>82.99                           |   | 100.00   | 87         |           |  |
| Hentriacontane             | 82.99                                    |   | 100.00   | 83         |           |  |
| Dotriacontane              | 81.33                                    |   | 100.00   | 81         |           |  |
| Tritriacontane             | 81.16                                    |   | 100.00   | 83         |           |  |
| Tetratriacontane           | 78.57                                    |   | 100.00   | 81<br>79   |           |  |
| Pentatriacontane           | 79.91                                    |   | 100.00   | 80         |           |  |
| Hexatriacontane            | 71.72                                    |   | 100.00   | 72         |           |  |
| Heptatriacontane           | 67.74                                    |   | 100.00   | 68         |           |  |
| Octatriacontane            | 65.06                                    |   | 100.00   | 65         |           |  |
| Nonatriacontane            | 58.22                                    |   | 100.00   | 58         |           |  |
| Tetracontane               | 53.38                                    |   | 100.00   | 53         |           |  |
| PH(total)                  |                                          | J | 199100   |            |           |  |

#### Surrogate Recoveries (%)

| O-Terphenyl   | 82 |
|---------------|----|
| 5a-androslane | 86 |

## Battelle The Business of Innovation

# Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                 | GO98: North Slope<br>Crude |          |            |           |   |
|---------------------------|----------------------------|----------|------------|-----------|---|
| Battelle ID               | BL041NSC-P                 |          |            |           |   |
| Sample Type               |                            |          |            |           |   |
| Collection Date           | NSC                        |          |            |           |   |
| Extraction Date           | 10/17/07                   |          |            |           |   |
| Analysis Date             | 10/17/07                   |          |            |           |   |
| Analytical Instrument     | 10/18/07                   |          |            |           |   |
| % Moisture                | FID                        |          |            |           |   |
| % Lipid                   | NA.                        |          |            |           |   |
| Matrix                    | NA                         |          |            |           |   |
| Sample Size               | OIL                        |          |            |           |   |
| Size Unit-Basis           | 5.04                       |          |            |           |   |
| Units                     | G_OIL                      | Sec. 1   |            |           |   |
| Units                     | UG/G_OIL                   | Target % | Difference | Qualifier | _ |
| n-Nonane                  | 5.03                       | 4.67     | 7.7        |           |   |
| n-Decane                  | 4.79                       | 4.95     | 3.3        |           |   |
| n-Undecane                | 4.31                       | 4.51     | 4.4        |           |   |
| n-Dodecane                | 4.17                       | 4.58     | 8.9        |           |   |
| n-Tridecane               | 4.02                       | 4.19     | 4.0        |           |   |
| Isoprenoid RRT 1380       | 0.9                        | 0.96     | 6.4        |           |   |
| n-Tetradecane             | 3.85                       | 3.92     | 1.8        |           |   |
| soprenoid RRT 1470        | 1.5                        | 1.53     | 2.1        |           |   |
| n-Pentadecane             | 3.86                       | 3.99     | 3.3        |           |   |
| n-Hexadecane              | 3.34                       | 3.64     | 8.2        |           |   |
| Norpristane (1650)        | 1.16                       | 1.14     | 1.6        |           |   |
| n-Heptadecane             | 3.11                       | 3.08     | 1.0        |           |   |
| Pristane                  | 2.23                       | 2.28     | 2.2        |           |   |
| 1-Octadecane              | 2.88                       | 2.80     | 3.0        |           |   |
| Phytane                   | 1.4                        | 1.66     | 15.7       |           |   |
| n-Nonadecane              | 2.56                       | 2.54     | 0.8        |           |   |
| I-Eicosane                | 2.53                       | 2.50     | 1.1        |           |   |
| I-Heneicosane             | 2.24                       | 2.42     | 7.4        |           |   |
| -Docosane                 | 2.21                       | 2.25     | 1.9        |           |   |
| -Tricosane                | 1.98                       | 2.05     | 3.4        |           |   |
| -Tetracosane              | 1.89                       | 1.95     | 3.0        |           |   |
| -Pentacosane              | 1.71                       | 1.80     | 4.8        |           |   |
| -Hexacosane               | 1.58                       | 1.64     | 3.6        |           |   |
| -Heptacosane              | 1.18                       | 1.23     | 4.1        |           |   |
| -Octacosane               | 0.94                       | 1.00     | 6.4        |           |   |
| -Nonacosane               | 0.8                        | 0.87     | 8.3        |           |   |
| -Triacontane              | 0.67                       | 0.67     | 0.1        |           |   |
| Hentriacontane            | 0.66                       | 0.61     | 8.8        |           |   |
| Dotriacontane             | 0.42                       | 0.47     | 9.9        |           |   |
| Tritriacontane            | 0.43                       | 0.40     | 7.8        |           |   |
| Tetratriacontane          | 0.34                       | 0.37     | 8.5        |           |   |
| Pentatriacontane          | 0.4                        | 0.38     | 5.8        |           |   |
| Hexatriacontane           | 0.23 J                     | 0.24     | 2.4        |           |   |
| Heptatriacontane          | 0.2 J                      | 0.21     | 4.8        |           |   |
| Octatriacontane           | 0.21 J                     | 0.21     | 2.1        |           |   |
| Nonatriacontane           | 0.16 J                     | 0.15     | 4.0        |           |   |
| Tetracontane<br>PH(total) | 0.15 J                     | 0.16     | 7.2        |           |   |
|                           |                            |          | 1.6        |           |   |

#### Surrogate Recoveries (%)

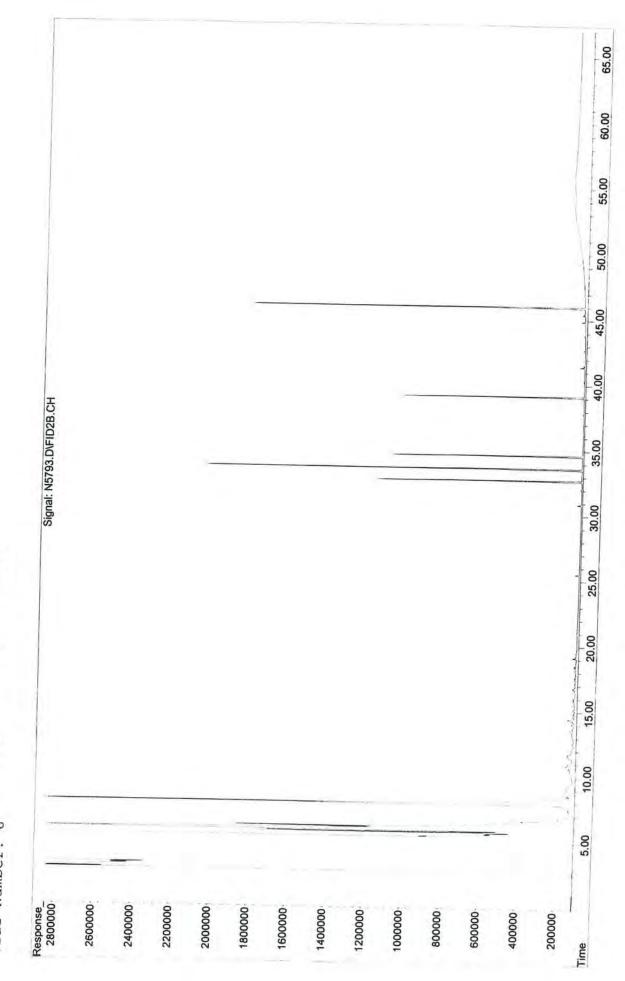
| O-Terphenyl   | 95  |
|---------------|-----|
| 5a-androstane | 100 |
|               |     |



: 10-18-2007 01:09:38 PM using AcqMethod TPH.M : Inst. N : BL044SOL-P(0) : F:\N\DATA\SN0256.SEC\N5789.D : MM File : Operator : Acquired : Instrument : Sample Name:



all's


|                                    | TPH.M                                |                                                    |
|------------------------------------|--------------------------------------|----------------------------------------------------|
|                                    | AcqMethod TPH.M                      |                                                    |
| F:\N\DATA\SN0256.SEC\N5791.D<br>MM | 10-18-2007 02:29:27 PM using Inst. N | BL045SOL-P(0)<br>Solvent blank. 5-202 07-0259<br>5 |
| File :<br>Operator :               | Acquired :<br>Instrument :           | Sample Name:<br>Misc Info :<br>Vial Number:        |

| Response                 | 3400000 | 3200000 | 000000 | 2800000 | 2600000 | 2400000 | 2200000 | 2000000 | 1800000 | 1600000 | 1400000 | 1200000 | 100000 | 800000 | 600000 | 400000 | 200000 |
|--------------------------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|
|                          |         |         |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |
|                          |         |         |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |
| Signal: N                |         |         |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |
| Signal: N5791.D/FID2B.CH |         |         |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |
| CH                       |         |         |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |
|                          |         |         |        |         |         |         |         |         |         | 7       |         |         |        |        |        |        |        |
|                          |         |         |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |
|                          |         |         |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |
|                          |         |         |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |
|                          |         |         |        |         |         |         |         |         |         |         |         |         |        |        |        |        |        |

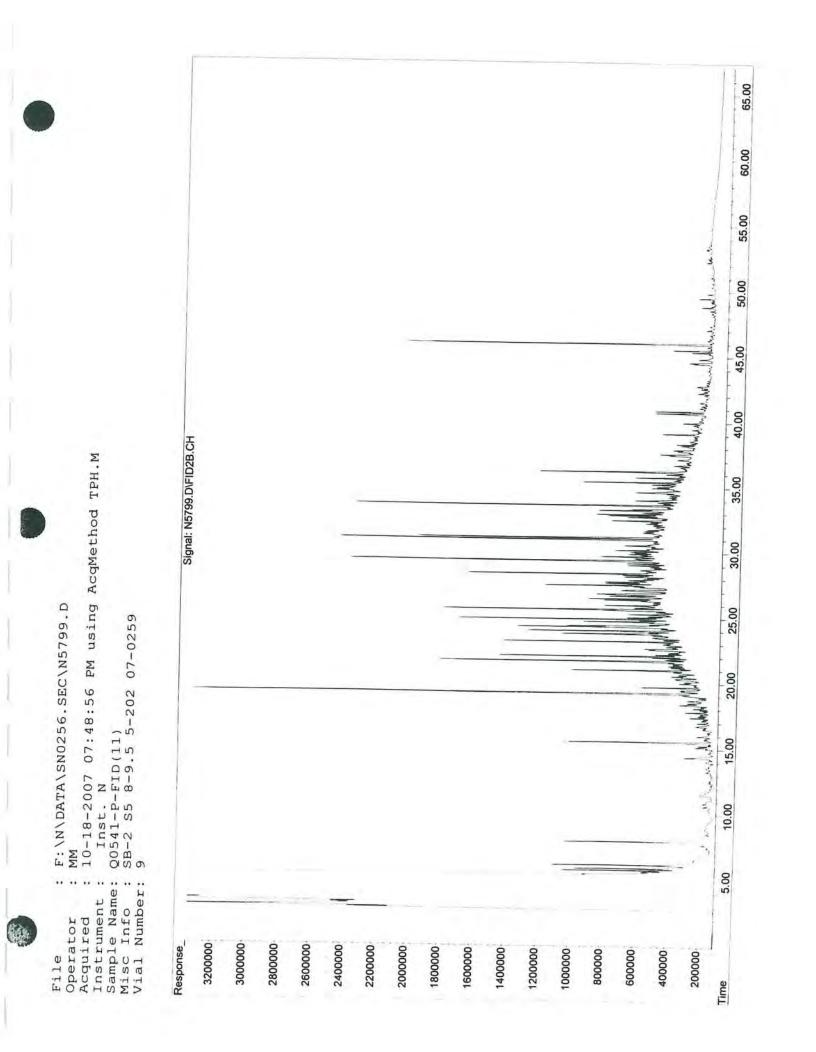


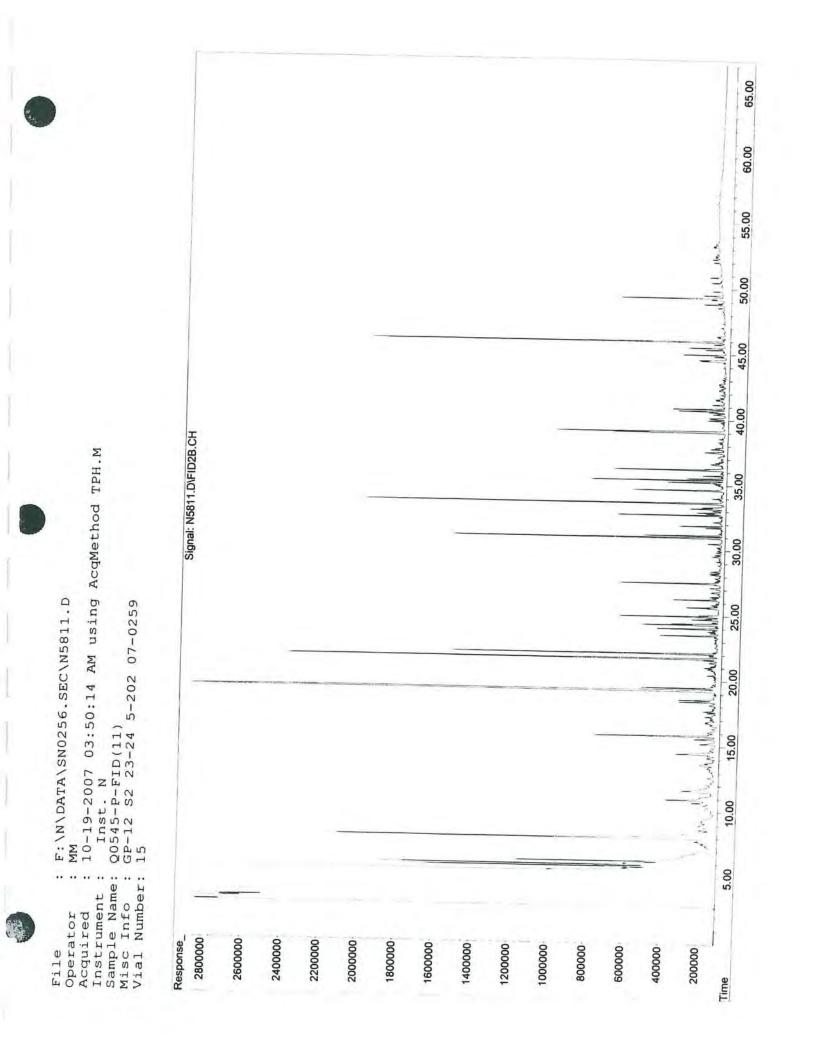
|                   | AcqMethod            |
|-------------------|----------------------|
| 193.D             | using                |
| SNI               | Md                   |
| 56.SEC\N5793      | 03:49:20             |
| \SN0256           | 03:                  |
| F:\N\DATA\:<br>MM | 10-18-2007<br>Inst N |

|                         | TPH.M                 |                                             |
|-------------------------|-----------------------|---------------------------------------------|
|                         | AcqMethod             | 6                                           |
| C\N5793.D               | using                 | 07-025                                      |
| SE                      | :20 PM                | 5-202                                       |
| SN0256                  | 03:49                 | FID(4)<br>Blank                             |
| F:\N\DATA\SN0256.<br>MM | 10-18-2007<br>Inst. N |                                             |
| File :<br>Operator :    | cquired<br>nstrumen   | Sample Name:<br>Misc Info :<br>Vial Number: |






10-18-2007 05:09:34 PM using AcqMethod TPH.M Inst. N BL034LCS-P-FID(4) Laboratory Control Sample 5-202 07-0259 F:\N\DATA\SN0256.SEC\N5795.D MM 5 File : F Operator : M Acquired : 1 Instrument : Sample Name: E Misc Info : 1 Vial Number: 7


| 0.00 25.00 | Signal: N5795.D/FID2B.CH |  | 1111111 |      |  |  |  | 30.00 35.00 40.00 |
|------------|--------------------------|--|---------|------|--|--|--|-------------------|
| 2          |                          |  |         | <br> |  |  |  |                   |



10-18-2007 06:29:05 PM using AcqMethod TPH.M Inst. N BL041NSC-P(0) North Slope Crude 07-0259 8 F:\N\DATA\SN0256.SEC\N5797.D MM File : 1 Operator : 1 Acquired : 1 Instrument : Sample Name: F Misc Info : 1 Vial Number: 6

|                          |  |  |  |  | <br> |  | and all the property of the function of the second s |                                                                                                                  |  |
|--------------------------|--|--|--|--|------|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| signal: N5/97.D/FID2B.CH |  |  |  |  |      |  | LUNK AN WAVAN MUNAMURINA ALLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | non-security and a start for a line of the second |  |
|                          |  |  |  |  |      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |  |





### SHC and TPH - SEDIMENT QA/QC SUMMARY Batch 07-0264

| PROJECT<br>PARAME<br>LABORAT<br>MATRIX:<br>SAMPLE | TER:<br>FORY:       | Saturated H<br>Battelle, Du<br>Non-aqueou<br>Six soil sam<br>Laboratory of<br>taken and th<br>temperature<br>2°) at 0.6°C.<br>outside of th<br>only on the i<br>client was no<br>analysis. Sat | er – Gas Works<br>ydrocarbons (SF<br>xbury, MA<br>is phase liquid (N<br>ples and 1 NAP<br>on 10/9/07. Upo<br>e samples were 1<br>of the cooler up<br>Also, it was no<br>e container as w<br>nside of the bub<br>otified on 10/16/<br>mples were store<br>aration could beg | IC) and Total P<br>NAPL)<br>L were received<br>on Receipt of the<br>logged into the<br>on receipt was s<br>ted that sample<br>ell as the inner<br>ble wrap and di<br>07. The labora<br>ed in an access- | at Battelle Du<br>e samples, the t<br>laboratory and<br>slightly below t<br>Q0540 (MW-9<br>side of the bubl<br>d not touch any<br>atory was instru | xbury Operatio<br>emperature of t<br>given unique II<br>he acceptable r<br>had some oil<br>ble wrap. The<br>of the other sa | ns (BDO)<br>the cooler was<br>Ds. The<br>ange $(4^{\circ}C \pm$<br>residue on the<br>oil residue was<br>mples. The<br>with the |
|---------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                   | Reference<br>Method | Method<br>Blank                                                                                                                                                                                | Surrogate<br>Recovery                                                                                                                                                                                                                                                      | LCS<br>Recovery                                                                                                                                                                                         | MS<br>Recovery                                                                                                                                     | MS/MSD<br>Precision                                                                                                         | Control<br>Oil<br>% Diff                                                                                                       |
| SHC and                                           | General             | <5xMDL                                                                                                                                                                                         | 40-120%                                                                                                                                                                                                                                                                    | 40-120%                                                                                                                                                                                                 | 40-120%                                                                                                                                            | ≤30% RPD                                                                                                                    | PD,30% for                                                                                                                     |

Recovery

| MS   | target spike |
|------|--------------|
| mus  | t be >5x     |
| back | ground       |

Recovery

90% of the analytes

#### METHOD:

TPH

NS&T

The NAPL sample was extracted following general NS&T methods. Approximately 50 mg of oil was weighed and diluted with 10mL of hexane. A portion of the extract was removed and spiked with SIS and IS. One extract was submitted for PAH and the second extract was submitted for SHC and TPH analysis. NAPL sample data is reported on an oil weight basis.

Recovery

SHC and TPH were measured by gas chromatography with flame ionization detection (GC/FID). An initial calibration consisting of target analytes was completed prior to analysis to demonstrate the linear range of the analysis. Calibration verification was performed at the beginning and end of each 12 hour period in which samples were analyzed. Concentrations of SHC and TPH were calculated by the internal standard method. Normal alkanes were quantified using the average RF generated from the initial calibration. TPH concentrations were quantified suing the average RF of nC8 through nC40. Isoprenoid hydrocarbon concentrations were quantified using the average RF of the n-alkanes immediately preceding and immediately following each target isoprenoid hydrocarbon.

#### HOLDING TIMES:

Samples were prepared for analysis in three analytical batches and were extracted within 15 days of sample collection analyzed within 40 days of extraction.

| Batch   | Extraction Date | Analysis Date |
|---------|-----------------|---------------|
| 07-0264 | 10/18/2007      | 10/19/2007    |

## SHC and TPH – SEDIMENT QA/QC SUMMARY Batch 07-0264

| PROCEDURAL<br>BLANK (PB):              | A procedural blank (PB) was prepared with each analytical batch. Blanks were analyzed to ensure the sample extraction and analysis methods were free of contamination.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | 07-0264 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LABORATORY<br>CONTROL<br>SAMPLE (LCS): | A laboratory control sample (LCS) was prepared with each analytical batch. The percent recoveries of target analytes were calculated to measure data quality in terms of accuracy.<br>07-0264 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SURROGATE<br>RECOVERY:                 | Two surrogate compounds were added prior to extraction, including o-terphenyl and 5a-<br>androstane. The recovery of the surrogate compound was calculated to measure data quality<br>in terms of accuracy (extraction efficiency).                                                                                                                                                                                                                                                                                                                                                                    |
|                                        | 07-0264 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CONTROL OIL:                           | A control oil (North Slope Crude) was prepared with the analytical batch. The percent difference (PD) between the measured value and the target value was calculated to measure data quality in terms of accuracy.                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | 07-0264 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CALIBRATIONS:                          | The GC/FID is calibrated with a minimum 5 level curve for all compounds. The percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                        | relative standard deviation (% RSD) between RF for the individual target analytes must be $\leq 25\%$ , and the mean RSD of all target analytes must be $\leq 20\%$ . Each batch of samples analyzed is bracketed by a continuing calibration verification (CCV) sample, run at a frequency of minimally every 12 hours. The PD between the true value and the CCV should be $\leq 25\%$ for individual analytes. Additionally an initial calibration check (ICC) sample is run immediately after each initial calibration. The PD between the ICC and the initial calibration should be $\leq 25\%$ . |
|                                        | 07-0264 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Comments - None.

## Battelle

The Business of Innovation

-

# Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                | MW-9       |
|--------------------------|------------|
| Battelle ID              | Q0540-P    |
| Sample Type              |            |
| Collection Date          | SA         |
| Extraction Date          | 10/03/07   |
| Analysis Date            | 10/18/07   |
| Analytical Instrument    | 10/19/07   |
| % Moisture               | FID        |
| % Lipid                  | NA         |
| Matrix                   | NA         |
| Sample Size              | NAPL       |
| Size Unit-Basis          | 53.70      |
| Units                    | MG_OIL     |
| o nue                    | UG/MG_OIL  |
| n-Nonane                 | U          |
| n-Decane                 | U          |
| n-Undecane               | U          |
| n-Dodecane               | U          |
| n-Tridecane              | U          |
| soprenoid RRT 1380       | U          |
| n-Tetradecane            | Ŭ          |
| soprenoid RRT 1470       | U          |
| n-Pentadecane            | U          |
| 1-Hexadecane             | U          |
| Norpristane (1650)       | U          |
| Hepladecane              | U          |
| Pristane                 | 12.89      |
| 1-Octadecane             | 5.95       |
| Phytane                  | 8.62       |
| -Nonadecane              | U          |
| Eicosane                 | Ú          |
| -Heneicosane             | Ŭ          |
| -Docosane                | Ũ          |
| -Tricosane               | Ŭ          |
| -Tétracosane             | ũ          |
| -Pentacosane             | ŭ          |
| Hexacosane               | Ŭ          |
| -Heptacosane             | Ŭ          |
| Octacosane               | Ŭ          |
| Nonacosane               | Ŭ          |
| Triacontane              | ŭ          |
| Hentriacontane           | Ŭ          |
| Dotriacontane            | Ŭ          |
| Tritriacontane           | Ŭ          |
| Tetratriacontane         | Ŭ          |
| Pentatriacontane         | U          |
| Hexatriacontane          | ŭ          |
| Heptatriacontane         | Ŭ          |
| Octatriacontane          | υ          |
| Nonatriacontane          | U          |
| Tetracontane             |            |
| PH(total)                | 1025 45    |
| , (lolo)                 | 1035.45    |
| urrogate Recoveries (%)  |            |
|                          |            |
|                          |            |
| Terphenyl<br>-androstane | 100<br>111 |

## Battelle The Business of Innovation

## Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                | Procedural Blank |  |
|--------------------------|------------------|--|
| Battelle ID              |                  |  |
|                          | BL057PB-P        |  |
| Sample Type              | PB               |  |
| Collection Date          | 10/18/07         |  |
| Extraction Date          | 10/18/07         |  |
| Analysis Date            | 10/19/07         |  |
| Analytical Instrument    | FID              |  |
| % Moisture               |                  |  |
|                          | NA               |  |
| % Lipid                  | NA               |  |
| Matrix                   | OIL              |  |
| Sample Size              | 50.00            |  |
| Size Unit-Basis          | MG_OIL           |  |
| Units                    | UG/MG_OIL        |  |
| n-Nonane                 | U                |  |
| n-Decane                 | Ŭ                |  |
| n-Undecane               | ŭ                |  |
| n-Dodecane               | Ŭ                |  |
| n-Tridecane              |                  |  |
|                          | U                |  |
| Isoprenoid RRT 1380      | U                |  |
| n-Tetradecane            | U                |  |
| Isoprenoid RRT 1470      | U                |  |
| n-Pentadecane            | U                |  |
| n-Hexadecane             | U                |  |
| Norpristane (1650)       | U                |  |
| n-Heptadecane            | U                |  |
| Pristane                 | Ū                |  |
| n-Octadecane             | ŭ                |  |
| Phytane                  | Ŭ                |  |
| n-Nonadecane             | Ŭ                |  |
| n-Eicosane               |                  |  |
| n-Heneicosane            | U                |  |
| n-Docosane               | U                |  |
|                          | U                |  |
| n-Tricosane              | U                |  |
| n-Tetracosane            | U                |  |
| n-Pentacosane            | U                |  |
| n-Hexacosane             | U                |  |
| n-Heptacosane            | U                |  |
| n-Octacosane             | U                |  |
| n-Nonacosane             | U                |  |
| n-Triacontane            | ŭ                |  |
| n-Hentriacontane         | Ŭ                |  |
| n-Dotriacontane          | Ŭ                |  |
| n-Tritriacontane         |                  |  |
| n-Tetratriacontane       | U                |  |
| n-Pentatriacontane       | U                |  |
|                          | U                |  |
| n-Hexatriacontane        | U                |  |
| n-Heptatriacontane       | U                |  |
| n-Octatriacontane        | U                |  |
| n-Nonatriacontane        | U                |  |
| n-Tetracontane           | U                |  |
| TPH(total)               | U                |  |
|                          |                  |  |
| Surrogate Recoveries (%) |                  |  |
| O.T. I.I.I               |                  |  |
| O-Terphenyl              | 98               |  |
| 5a-androstane            | 103              |  |
| 5a-androstane            |                  |  |

### Battelle

The Business of Innovation

# Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

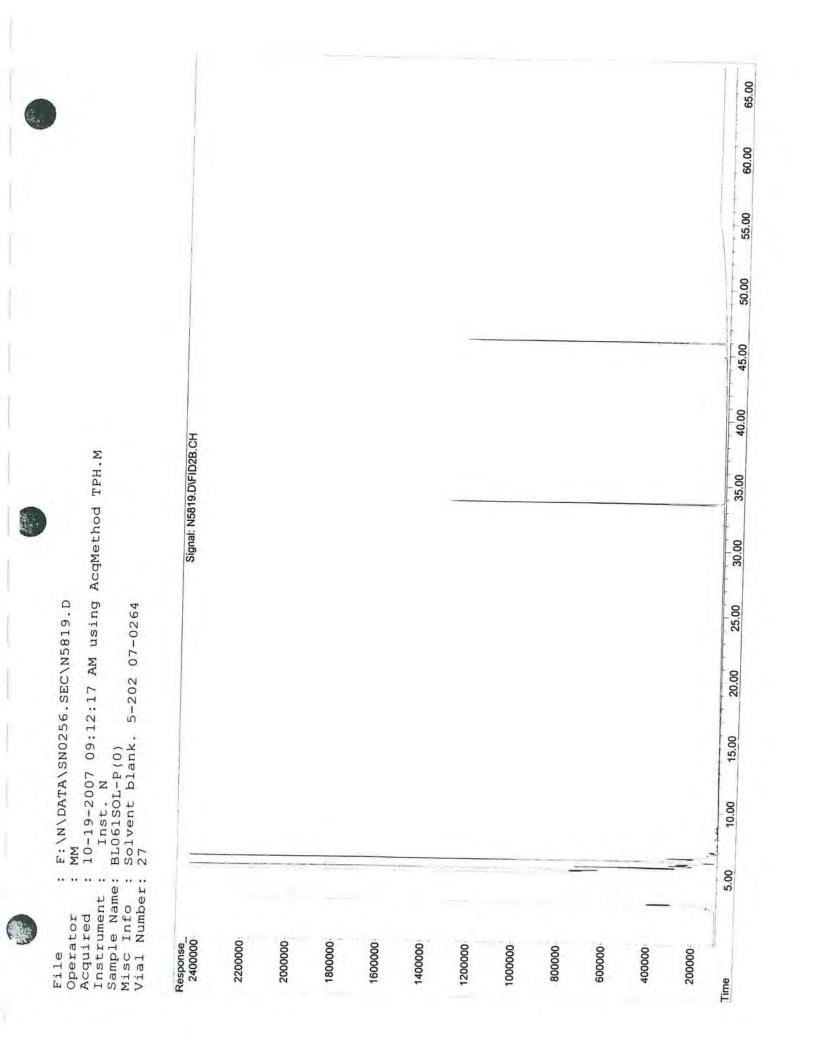
| Client ID                              | Laboratory Control<br>Sample |   |        |            |           |  |
|----------------------------------------|------------------------------|---|--------|------------|-----------|--|
| Battelle ID                            | BL058LCS-P                   |   |        |            |           |  |
| Sample Type                            | LCS                          |   |        |            |           |  |
| Collection Date                        | 10/18/07                     |   |        |            |           |  |
| Extraction Date                        | 10/18/07                     |   |        |            |           |  |
| Analysis Date                          | 10/19/07                     |   |        |            |           |  |
| Analytical Instrument                  | FID                          |   |        |            |           |  |
| % Moisture                             | NA                           |   |        |            |           |  |
| % Lipid                                | NA                           |   |        |            |           |  |
| Matrix                                 | OIL                          |   |        |            |           |  |
| Sample Size                            | NA                           |   |        |            |           |  |
| Size Unit-Basis                        | NA                           |   |        |            |           |  |
| Units                                  | UG                           |   | Target | % Recovery | Qualifier |  |
| n-Nonane                               | 38.26                        |   | 40.00  |            |           |  |
| n-Decane                               | 38.3                         |   | 40.00  | 96         |           |  |
| n-Undecane                             | 37.71                        |   | 40.00  | 96         |           |  |
| n-Dodecane                             | 36.73                        |   | 40.00  | 94         |           |  |
| n-Tridecane                            | 36.4                         |   | 40.00  | 92         |           |  |
| Isoprenoid RRT 1380                    |                              | U | 40.00  | 91         |           |  |
| n-Tetradecane                          | 36.42                        |   | 40.00  | .04        |           |  |
| Isoprenoid RRT 1470                    |                              | J | 40.00  | 91         |           |  |
| n-Pentadecane                          | 36.18                        | 5 | 40.00  | 90         |           |  |
| n-Hexadecane                           | 36.07                        |   | 40.00  | 90         |           |  |
| Norpristane (1650)                     |                              | J | 40.00  | 90         |           |  |
| n-Heptadecane                          | 36.22                        |   | 40.00  | 91         |           |  |
| Pristane                               | 36.94                        |   | 40.00  | 92         |           |  |
| n-Octadecane                           | 35.13                        |   | 40.00  | 88         |           |  |
| Phytane                                | 35.29                        |   | 40.00  | 88         |           |  |
| n-Nonadecane                           | 36.27                        |   | 40.00  | 91         |           |  |
| n-Eicosane                             | 36.3                         |   | 40.00  | 91         |           |  |
| n-Heneicosane                          | 35.77                        |   | 40.00  | 89         |           |  |
| n-Docosane                             | 36.9                         |   | 40.00  | 92         |           |  |
| n-Tricosane                            | 35.92                        |   | 40.00  | 90         |           |  |
| n-Tetracosane                          | 36.03                        |   | 40.00  | 90         |           |  |
| n-Pentacosane                          | 35.68                        |   | 40.00  | 89         |           |  |
| n-Hexacosane                           | 35.43                        |   | 40.00  | 89         |           |  |
| n-Heptacosane                          | 35.89                        |   | 40.00  | 90         |           |  |
| n-Octacosane                           | 34.39                        |   | 40.00  | 86         |           |  |
| n-Nonacosane                           | 35.09                        |   | 40.00  | 88         |           |  |
| n-Triacontane                          | 34.88                        |   | 40.00  | 87         |           |  |
| n-Hentriacontane                       | 34,33                        |   | 40.00  | 86         |           |  |
| n-Dotriacontane                        | 35.38                        |   | 40.00  | 88         |           |  |
| n-Tritriacontane                       | 34.61                        |   | 40.00  | 87         |           |  |
| n-Tetratriacontane                     | 34.9                         |   | 40.00  | 87         |           |  |
| n-Pentatriacontane                     | 36.01                        |   | 40.00  | 90         |           |  |
| n-Hexatriacontane                      | 33.65                        |   | 40.00  | 84         |           |  |
| n-Heptatriacontane                     | 28.76                        |   | 40.00  | 72         |           |  |
| n-Octatriacontane<br>n-Nonatriacontane | 27.14                        |   | 40.00  | 68         |           |  |
| n-Tetracontane                         | 23.62                        |   | 40.00  | 59         |           |  |
| TPH(total)                             | 21.25                        |   | 40.00  | 53         |           |  |
| (rentional)                            | U                            |   |        |            |           |  |

#### Surrogate Recoveries (%)

h

| O-Terphenyl   | 96  |
|---------------|-----|
| 5a-androstane | 100 |

### Battelle


The Business of Innovation

#### Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Project Number: N007097-0001          |                   |          |              |           |
|---------------------------------------|-------------------|----------|--------------|-----------|
| 05-410                                | GO98: North Slope |          |              |           |
| Client ID                             | Crude             |          |              |           |
| Battelle ID                           | BL059NSC-P        |          |              |           |
| Sample Type                           | NSC               |          |              |           |
| Collection Date                       | 10/18/07          |          |              |           |
| Extraction Date                       | 10/18/07          |          |              |           |
| Analysis Date                         | 10/19/07          |          |              |           |
| Analytical Instrument                 | FID               |          |              |           |
| % Moisture                            | NA                |          |              |           |
| % Lipid                               | NA                |          |              |           |
| Matrix                                | OIL               |          |              |           |
| Sample Size                           | 5.04              |          |              |           |
| Size Unit-Basis                       | MG OIL            |          |              |           |
| Units                                 | UG/MG_OIL         | Target % | Difference C | Qualifier |
| n-Nonane                              | 1.05              |          |              |           |
| 1-Decane                              | 4.65<br>4.65      | 4.67     | 0.4          |           |
| n-Undecane                            | 4.65              | 4.95     | 6.1          |           |
| 1-Dodecane                            |                   | 4.51     | 2.1          |           |
| n-Tridecane                           | 4.13              | 4.58     | 9.8          |           |
| soprenoid RRT 1380                    | 4.13              | 4.19     | 1.4          |           |
| n-Tetradecane                         | 0.96              | 0.96     | 0.2          |           |
| soprenoid RRT 1470                    | 3.86              | 3.92     | 1.5          |           |
| Pentadecane                           | 1.48              | 1.53     | 3.4          |           |
| -Hexadecane                           | 3.98              | 3.99     | 0.3          |           |
| lorpristane (1650)                    | 3.53              | 3.64     | 3.0          |           |
| -Heptadecane                          | 1.12              | 1.14     | 1.9          |           |
| ristane                               | 3.12              | 3.08     | 1.4          |           |
| -Octadecane                           | 2.32              | 2.28     | 1.7          |           |
| hytane                                | 2.96              | 2.80     | 5.8          |           |
| -Nonadecane                           | 1,44              | 1.66     | 13.2         |           |
| -Eicosane                             | 2.61              | 2.54     | 2.7          |           |
| -Heneicosane                          | 2.58              | 2.50     | 3.1          |           |
| -Docosane                             | 2.27              | 2.42     | 6.2          |           |
| Tricosane                             | 2.31              | 2.25     | 2.6          |           |
| Tetracosane                           | 2.05              | 2.05     | 0.0          |           |
| Pentacosane                           | 1.95              | 1.95     | 0.1          |           |
| Hexacosane                            | 1.78              | 1.80     | 0.9          |           |
| Heptacosane                           | 1.64              | 1.64     | 0.0          |           |
| Octacosane                            | 1.25              | 1.23     | 1.5          |           |
| Nonacosane                            | 0.98              | 1.00     | 2.4          |           |
| Triacontane                           | 0.79              | 0.87     | 9.4          |           |
| Hentriacontane                        | 0.67              | 0.67     | 0.1          |           |
| Dotriacontane                         | 0.64              | 0.61     | 5.5          |           |
| Tritriacontane                        |                   | 0.47     | 7.7          |           |
| Tetratriacontane                      | 0.43              | 0.40     | 7.8          |           |
| Pentatriacontane                      | 0.34              | 0.37     | 8.5          |           |
| Hexatriacontane                       | 0.41              | 0.38     | 8.4          |           |
| Heptatriacontane                      | 0.25 J            | 0.24     | 6.1          |           |
| Octatriacontane                       | 0.21 J            | 0.21     | 0.0          |           |
| Nonatriacontane                       | 0.2 J             | 0.21     | 2.8          |           |
| Tetracontane                          | 0.15 J            | 0.15     | 2.5          |           |
| PH(total)                             | 0.16 J            | 0.16     | 1.0          |           |
| i i i i i i i i i i i i i i i i i i i | 478.35            | 578.97   | 17.4         |           |

#### Surrogate Recoveries (%)

| O-Terphenyl   | 97  |
|---------------|-----|
| 5a-androstane | 104 |



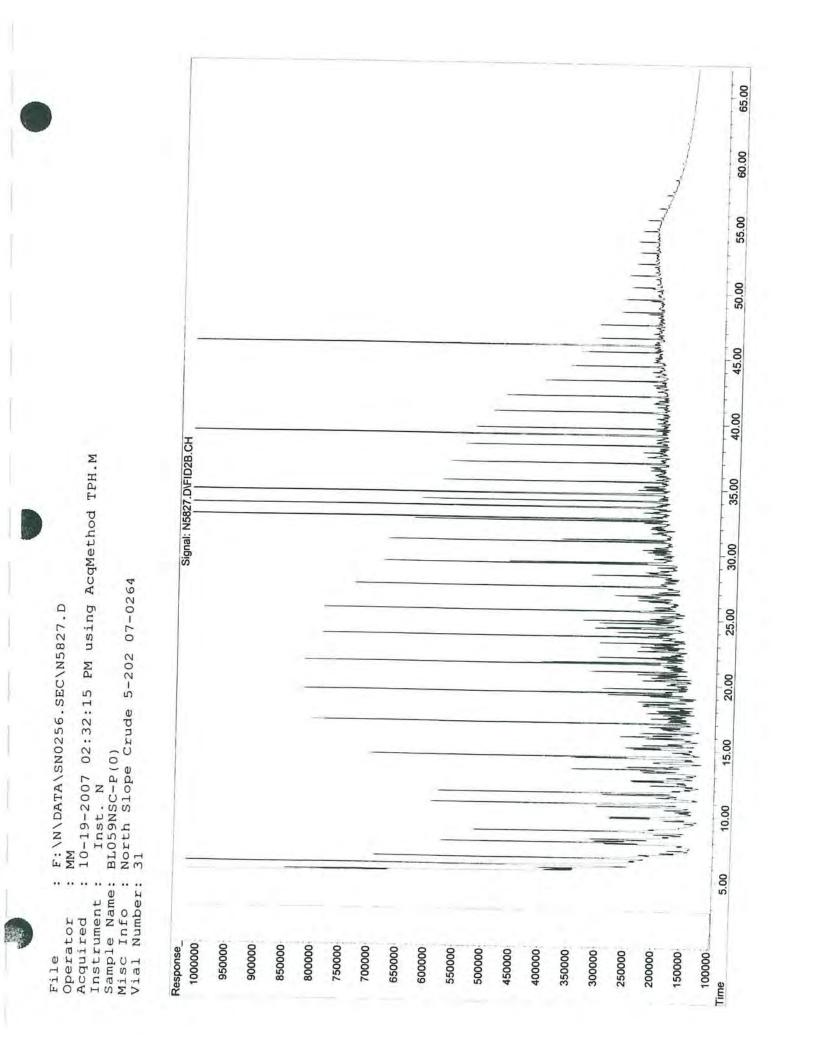


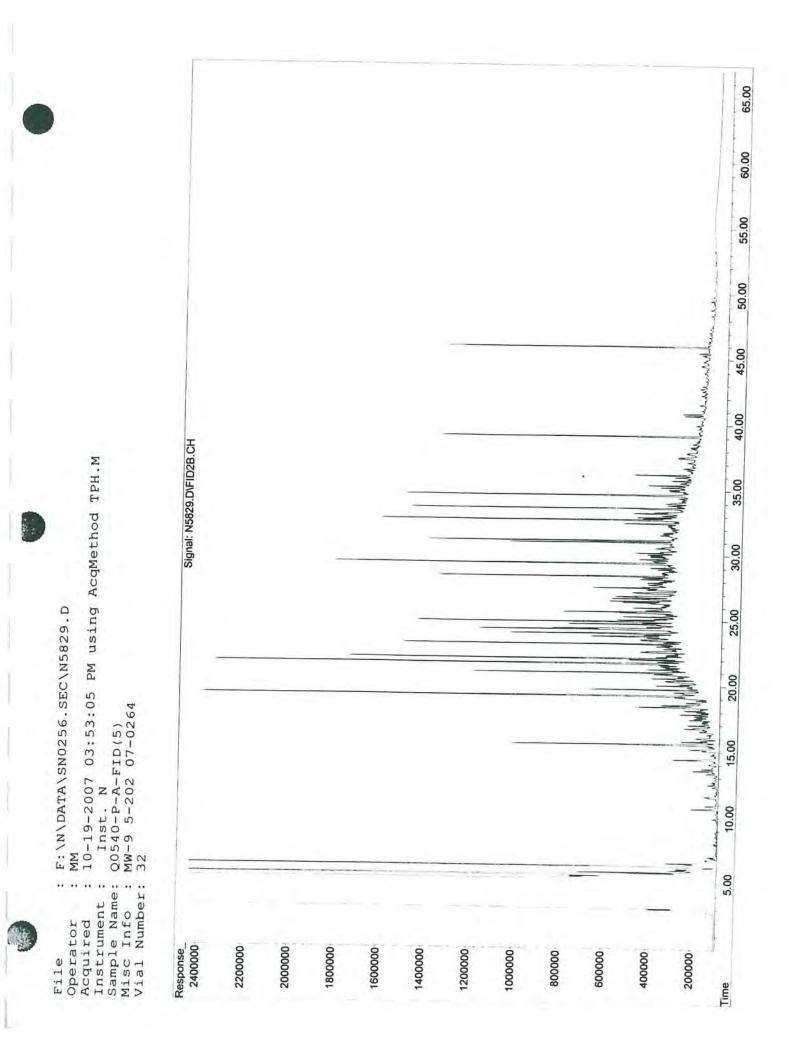
File : F:\N\DATA\SN0256.SEC\N5821.D Operator : MM Acquired : 19 Oct 2007 10:31 am using AcgMethod TPH.M Instrument : Inst. N Sample Name: BL062SOL-P(0) Misc Info : Solvent blank. 5-202 07-0264 Vial Number: 28

|                                                                                                                                                                                                                                                                                                   |         |         |         |         |        |        |        |        |        |       |        |        |        |        | t t t t t |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|--------|--------|--------|--------|--------|-------|--------|--------|--------|--------|-----------|
|                                                                                                                                                                                                                                                                                                   |         |         |         | -       |        |        |        |        |        |       |        |        |        |        |           |
| Ð                                                                                                                                                                                                                                                                                                 |         |         |         |         |        |        |        |        |        |       |        |        |        |        |           |
| Signal: N5821.D\FID2B.CH                                                                                                                                                                                                                                                                          |         |         |         |         |        |        |        |        |        |       | _      |        |        |        | DE DO     |
| Signal: N5                                                                                                                                                                                                                                                                                        |         |         |         |         |        |        |        |        |        |       |        |        |        |        | UU US     |
|                                                                                                                                                                                                                                                                                                   |         |         |         |         |        |        |        |        |        |       |        |        |        |        | 25.00     |
|                                                                                                                                                                                                                                                                                                   |         |         |         |         |        |        |        |        |        |       |        |        |        |        | 20.00     |
|                                                                                                                                                                                                                                                                                                   |         |         |         |         |        |        |        |        |        |       |        |        |        |        | 15.00     |
|                                                                                                                                                                                                                                                                                                   |         |         |         |         |        |        |        |        |        |       |        |        |        |        | 10.00     |
| 14(m)                                                                                                                                                                                                                                                                                             |         |         |         |         |        |        |        |        |        |       |        |        | =      | 1.1    | 5.00      |
| Response16000001500000150000015000001500000150000015000001500000150000015000001500000150000001500000015000000150000001500000015000000150000001500000015000000150000001500000015000000150000001500000015000000150000001500000015000000150000001500000015000000150000001500000001500000001500000000 | 1400000 | 1300000 | 1200000 | 1100000 | 100000 | 000006 | 800000 | 700000 | 600000 | 50000 | 400000 | 300000 | 200000 | 100000 | Time      |



11:51 am using AcqMethod TPH.M 19 Oct 2007 11:51 am using Acc Inst. N BL057PB-P-FID(2) Procedural Blank 5-202 07-0264 29 F:\N\DATA\SN0256.SEC\N5823.D MM File : I Operator : N Acquired : A Instrument : Sample Name: E Misc Info : E Vial Number: 2


|                          |         |         |         |        |        |         |         |         |         |         |        |        |        |        |        |        |        |        |        | and the second |
|--------------------------|---------|---------|---------|--------|--------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------------|
| Signal: N5823.D/FID2B.CH |         |         |         |        |        | _       | -       |         |         |         |        |        |        |        |        |        |        |        |        |                |
| Signal: N5               |         |         |         |        |        |         |         |         |         |         |        |        |        |        |        |        |        |        |        |                |
|                          |         |         |         |        |        |         |         |         |         |         |        |        |        |        |        |        |        |        |        | a de se        |
|                          |         |         |         |        |        |         |         |         |         |         |        |        |        |        |        |        |        |        |        | 20,00          |
|                          |         |         |         |        |        |         |         |         |         |         |        |        |        |        |        |        |        |        |        | 15.00          |
|                          |         |         |         |        |        |         |         |         |         |         |        |        |        |        |        |        |        |        |        | 10.00          |
|                          |         |         |         |        |        |         |         | -       |         |         |        |        | =      |        |        | -      | -      | =      | 1 1    | 5.00           |
| 2000000                  | 1900000 | 1800000 | 1700000 | 160000 | 150000 | 1400000 | 1300000 | 1200000 | 1100000 | 1000000 | 000006 | 800000 | 700000 | 600000 | 500000 | 400000 | 300000 | 200000 | 100000 | Time           |




| - |     |
|---|-----|
|   |     |
|   |     |
|   |     |
|   |     |
|   |     |
|   | 0   |
|   | -   |
|   | 10  |
|   | 0   |
|   | c a |
|   | 5   |
|   | Z   |
|   | 1   |
|   | C   |
|   | E.  |

|                                             | F:\N\DATA\SN0256.SEC\N5825.D<br>MM                                 |
|---------------------------------------------|--------------------------------------------------------------------|
| Acquired :<br>Instrument :                  |                                                                    |
| Sample Name:<br>Misc Info :<br>Vial Number: | BL058LCS-P-FID(2)<br>Laboratory Control Sample 5-202 07-0264<br>30 |

|                          |         |         |         |       |        |        |        |        |        |        |        | EE OU |
|--------------------------|---------|---------|---------|-------|--------|--------|--------|--------|--------|--------|--------|-------|
|                          |         |         |         |       |        |        |        |        |        |        | 1      | en on |
|                          |         |         |         |       |        |        |        | -      |        |        |        | 55.00 |
|                          |         |         |         |       |        |        |        |        |        |        |        | 50.00 |
|                          |         |         |         |       |        |        |        |        |        |        |        | 45.00 |
| CH                       |         |         |         |       |        |        |        |        |        |        |        | 40.00 |
| Signal: N5825.D/FID2B.CH |         |         |         |       |        |        |        |        |        |        |        | 35.00 |
| Signal: N5               |         |         |         |       |        | -      |        |        |        |        |        | 30.00 |
|                          |         |         |         |       |        |        |        |        |        |        |        | 25.00 |
|                          |         |         |         |       |        |        |        |        |        |        |        | 20.00 |
|                          |         |         |         |       |        |        | -      |        |        |        | 5      | 15.00 |
|                          |         |         |         |       |        |        |        |        |        |        | 1000   | 10.00 |
| -                        |         |         |         |       |        |        |        |        |        |        | 5.00   | 222   |
| Response_                | 1100000 | 1000000 | .000006 | 80000 | 700000 | 600000 | 500000 | 400000 | 300000 | 200000 | 100000 |       |





### SHC and TPH – SEDIMENT QA/QC SUMMARY Batch 07-0266

| PROJECT<br>PARAME<br>LABORA'<br>MATRIX:<br>SAMPLE | TER:<br>FORY:       | Saturated H<br>Battelle, Du<br>Sediment<br>Six soil sam<br>Laboratory of<br>taken and th<br>temperature<br>2°) at 0.6°C.<br>outside of th<br>only on the i<br>client was no<br>analysis. Sa | er – Gas Works I<br>ydrocarbons (SE<br>xbury, MA<br>ples and 1 NAP)<br>on 10/9/07. Upo<br>e samples were 1<br>of the cooler upo<br>Also, it was no<br>e container as w<br>nside of the bub<br>otified on 10/16/<br>mples were store<br>aration could beg | IC) and Total P<br>L were received<br>on Receipt of the<br>logged into the l<br>on receipt was s<br>ted that sample<br>ell as the inner s<br>ble wrap and di<br>07. The labora<br>ed in an access-J | at Battelle Du<br>samples, the t<br>laboratory and<br>lightly below t<br>Q0540 (MW-9<br>side of the bubl<br>d not touch any<br>tory was instru | xbury Operatio<br>emperature of t<br>given unique II<br>he acceptable r<br>blad some oil<br>ble wrap. The<br>of the other sa<br>cted to proceed | ns (BDO)<br>the cooler was<br>Ds. The<br>ange $(4^{\circ}C \pm$<br>residue on the<br>pil residue was<br>mples. The<br>with the |
|---------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                   | Reference<br>Method | Method<br>Blank                                                                                                                                                                             | Surrogate<br>Recovery                                                                                                                                                                                                                                    | LCS<br>Recovery                                                                                                                                                                                     | MS<br>Recovery                                                                                                                                 | MS/MSD<br>Precision                                                                                                                             | Control<br>Oil<br>% Diff                                                                                                       |
| SHC and<br>TPH                                    | General<br>NS&T     | <5xMDL                                                                                                                                                                                      | 40-120%<br>Recovery                                                                                                                                                                                                                                      | 40-120%<br>Recovery                                                                                                                                                                                 | 40-120%<br>Recovery                                                                                                                            | ≤30% RPD                                                                                                                                        | PD,30% for<br>90% of the                                                                                                       |

| MS target spi | ke |
|---------------|----|
| must be >5x   |    |
| background    |    |

analytes

METHOD:

Soil samples were extracted following general NS&T methods. Approximately 5-8 g of sample was spiked with SHC and PAH surrogates and serial extracted three times with dichloromethane using orbital shaker table techniques. The combined extracts were dried over anhydrous sodium sulfate and concentrated by Kuderna-Danish and nitrogen evaporation techniques. The sample extracts were split in half: one-half of the extract was removed for archiving; the other half was processed through an alumina gravity column to isolate the hydrocarbon fractions of interest. The weights of the resulting extracts were determined gravimetrically. The extracts were concentrated to 1 mL, split, and spiked with internal standard (IS). The pre-injection volume and/or extract split were adjusted to 5mg/mL. One extract was submitted for PAH and the second extract was submitted for SHC and TPH analysis.

SHC and TPH were measured by gas chromatography with flame ionization detection (GC/FID). An initial calibration consisting of target analytes was completed prior to analysis to demonstrate the linear range of the analysis. Calibration verification was performed at the beginning and end of each 12 hour period in which samples were analyzed. Concentrations of SHC and TPH were calculated by the internal standard method. Normal alkanes were quantified using the average RF generated from the initial calibration. TPH concentrations were quantified suing the average RF of nC8 through nC40. Isoprenoid hydrocarbon concentrations were quantified using the average RF of nc8 through nC40. Isoprenoid hydrocarbon concentrations were quantified using the average RF of nc8 through nC40. Isoprenoid hydrocarbon concentrations were quantified using the average RF of nc8 through nC40. Isoprenoid hydrocarbon concentrations were quantified using the average RF of nc8 through nC40. Isoprenoid

HOLDING TIMES: Samples were prepared for analysis in three analytical batches and were extracted within 30 days of sample collection analyzed within 40 days of extraction. The samples from this batch were re-extracted from 07-0259 because of poor surrogate recoveries.

| Batch   | Extraction Date | Analysis Date           |
|---------|-----------------|-------------------------|
| 07-0266 | 10/23/2007      | 10/30/2007 - 10/31/2007 |

## SHC and TPH – SEDIMENT QA/QC SUMMARY Batch 07-0266

| PROCEDURAL<br>BLANK (PB):              | A procedural blank (PB) was prepared with each analytical batch. Blanks were analyzed to ensure the sample extraction and analysis methods were free of contamination.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | 07-0266 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LABORATORY<br>CONTROL<br>SAMPLE (LCS): | A laboratory control sample (LCS) was prepared with each analytical batch. The percent recoveries of target analytes were calculated to measure data quality in terms of accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | 07-0266 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SURROGATE<br>RECOVERY:                 | Two surrogate compounds were added prior to extraction, including o-terphenyl and 5a-<br>androstane. The recovery of the surrogate compound was calculated to measure data quality<br>in terms of accuracy (extraction efficiency).                                                                                                                                                                                                                                                                                                                                                                    |
|                                        | 07-0266 – Three of the four samples extracted in this batch failed SIS recovery criteria with high recoveries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | <b>Comments</b> – These samples have been extracted twice with similar results. The issue appears to be matrix related rather than extraction related as the PB and LCS (samples without matrix) did not exhibit similar trends.                                                                                                                                                                                                                                                                                                                                                                       |
| CONTROL OIL:                           | A control oil (North Slope Crude) was prepared with the analytical batch. The percent difference (PD) between the measured value and the target value was calculated to measure data quality in terms of accuracy.                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | <b>07-0266</b> – nC13 had a PD of 48%, but was "ME" qualified indicating that an interferent was identified. The control oil still passed the MQO of the PD being $\leq$ 30% for 90% of the analytes.                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CALIBRATIONS:                          | The GC/FID is calibrated with a minimum 5 level curve for all compounds. The percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                        | relative standard deviation (% RSD) between RF for the individual target analytes must be $\leq 25\%$ , and the mean RSD of all target analytes must be $\leq 20\%$ . Each batch of samples analyzed is bracketed by a continuing calibration verification (CCV) sample, run at a frequency of minimally every 12 hours. The PD between the true value and the CCV should be $\leq 25\%$ for individual analytes. Additionally an initial calibration check (ICC) sample is run immediately after each initial calibration. The PD between the ICC and the initial calibration should be $\leq 25\%$ . |

07-0266 - No exceedences noted.

Comments - None.

### Battelle

The Business of Innovation

Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                | SB-8 S5 9-10.5 | SB-13 2.5-4.0 | SB-12A S3 5-6.5 | GP-9 7-8      |
|--------------------------|----------------|---------------|-----------------|---------------|
| Battelle ID              | Q0542-P1       | Q0543-P1      | 00544.04        | Section 1     |
| Sample Type              | SA             |               | Q0544-P1        | Q0546-P1      |
| Collection Date          |                | SA            | SA              | SA            |
|                          | 09/18/07       | 09/20/07      | 09/20/07        | 09/18/07      |
| Extraction Date          | 10/23/07       | 10/23/07      | 10/23/07        | 10/23/07      |
| Analysis Date            | 10/30/07       | 10/31/07      | 10/31/07        | 10/31/07      |
| Analytical Instrument    | FID            | FID           | FID             | FID           |
| % Moisture               | 8.06           | 16.77         | 13.98           |               |
| % Lipid                  | NA             | NA            |                 | 49.24         |
| Matrix                   | SOIL           |               | NA              | NA            |
| Sample Size              |                | SOIL          | SOIL            | SOIL          |
| Size Unit-Basis          | 4.78           | 4.45          | 4.63            | 2.84          |
| Units                    | G_DRY          | G_DRY         | G_DRY           | G_DRY         |
| onto                     | UG/G_DRY       | UG/G_DRY      | UG/G_DRY        | UG/G_DRY      |
| n-Nonane                 | U              | U             | U               | U             |
| n-Decane                 | U              | Ŭ             | ŭ               |               |
| n-Undecane               | Ū              | Ŭ             |                 | U             |
| n-Dodecane               | Ŭ              | υ             | <u>U</u> -      | U             |
| n-Tridecane              | ŭ              |               | U               | U             |
| Isoprenoid RRT 1380      |                | U             | U               | U             |
| n-Tetradecane            | U              | U             | U               | U             |
| Isoprenoid RRT 1470      | U              | U             | U               | U             |
|                          | U              | U             | U               | U             |
| n-Pentadecane            | U              | U             | U               | U             |
| n-Hexadecane             | U              | U             | U               | U             |
| Norpristane (1650)       | 28.63          | U             | Ú               | Ŭ             |
| n-Heptadecane            | U              | U             | U               | Ŭ             |
| Pristane                 | 41.71          | U             | Ŭ               | Ŭ             |
| n-Octadecane             | U              | Ŭ             | Ŭ               | Ŭ             |
| Phytane                  | 25.27          | Ū             | ũ               | Ŭ             |
| n-Nonadecane             | U              | Ũ             | Ŭ               |               |
| n-Eicosane               | Ŭ              | ŭ             | U<br>U          | U             |
| n-Heneicosane            | Ŭ              | Ŭ             |                 | U             |
| n-Docosane               | Ŭ              | U             | U               | U             |
| n-Tricosane              | ŭ              |               | u               | U             |
| n-Tetracosane            | Ŭ              | U             | U               | U             |
| n-Pentacosane            | U              | U             | U               | U             |
| n-Hexacosane             |                | U             | U               | U             |
| n-Heptacosane            | U              | U             | U               | υ             |
| n-Octacosane             | U              | υ             | U               | U             |
| n-Nonacosane             | U              | U             | U               | U             |
|                          | u              | U             | U               | U             |
| n-Triacontane            | U              | U             | U               | Ŭ             |
| n-Hentriacontane         | U              | U             | U               | ũ             |
| n-Dotriacontane          | U              | U             | U               | Ŭ             |
| n-Tritriacontane         | U              | U             | U               | Ŭ             |
| n-Tetratriacontane       | U              | U             | Ŭ               | Ŭ             |
| n-Pentatriacontane       | U              | Ŭ             | ŭ               | U             |
| n-Hexatriacontane        | U              | ũ             | Ŭ               |               |
| n-Heptatriacontane       | U              | ŭ             | Ŭ               | 0             |
| n-Octatriacontane        | υ              | Ŭ             | ŭ               | U             |
| n-Nonatriacontane        | Ũ              | 11            | 71              | U             |
| n-Tetracontane           | Ŭ              | Ŭ             | U               | U             |
| TPH(total)               | 4533.08        | 10664.19      | U<br>45954.94   | U<br>53535.09 |
| Surrogate Recoveries (%) |                |               |                 |               |
| O-Terphenyl              | 150.11         |               |                 |               |
| 5a-androstane            | 150 N          | 63            | 165 N           | 148 N         |
|                          | 142 N          | 52            | 150 N           | 152 N         |

### Battelle

The Business of Innovation

#### Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID               | Procedural Blank |  |
|-------------------------|------------------|--|
| Battelle ID             | BL065PB-P        |  |
| Sample Type             |                  |  |
| Collection Date         | PB               |  |
| Extraction Date         | 10/23/07         |  |
|                         | 10/23/07         |  |
| Analysis Date           | 10/30/07         |  |
| Analytical Instrument   | FID              |  |
| % Moisture              | 22.01            |  |
| % Lipid                 | NA               |  |
| Matrix                  | SEDIMENT         |  |
| Sample Size             | 4.20             |  |
| Size Unit-Basis         | G DRY            |  |
| Units                   | UG/G_DRY         |  |
| n-Nonane                | U                |  |
| n-Decane                | Ŭ                |  |
| n-Undecane              | Ŭ                |  |
| n-Dodecane              | U<br>U           |  |
| n-Tridecane             | U                |  |
| Isoprenoid RRT 1380     |                  |  |
| n-Tetradecane           | U                |  |
| Isoprenoid RRT 1470     | U                |  |
| n-Pentadecane           | U                |  |
|                         | U                |  |
| n-Hexadecane            | U                |  |
| Norpristane (1650)      | U                |  |
| n-Heptadecane           | U                |  |
| Pristane                | U                |  |
| n-Octadecane            | U                |  |
| Phytane                 | U                |  |
| n-Nonadecane            | U                |  |
| n-Eicosane              | U                |  |
| n-Heneicosane           | U                |  |
| n-Docosane              | Ŭ                |  |
| n-Tricosane             | U                |  |
| n-Tetracosane           | U                |  |
| n-Pentacosane           | Ŭ                |  |
| n-Hexacosane            | Ŭ                |  |
| n-Heptacosane           | Ŭ                |  |
| 1-Octacosane            | Ŭ                |  |
| I-Nonacosane            | Ŭ                |  |
| -Triacontane            | Ű                |  |
| -Hentriacontane         | U                |  |
| Dotriacontane           | UUU              |  |
| -Tritriacontane         |                  |  |
| Tetratriacontane        | U.               |  |
| -Pentatriacontane       | U<br>U           |  |
| -Hexatriacontane        |                  |  |
| -Heptatriacontane       | U                |  |
| -Octatriacontane        | - U              |  |
| -Nonatriacontane        | U                |  |
|                         | U                |  |
| -Tetracontane           | υ                |  |
| PH(total)               | U                |  |
|                         |                  |  |
| urrogate Recoveries (%) |                  |  |
|                         |                  |  |

#### O-Terphenyl 5a-androstane

106 102

## Battelle The Business of Innovation

# Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                           | 060208-03: Sand,<br>White Quartz, -50+70 |   |          |            |           |  |
|-------------------------------------|------------------------------------------|---|----------|------------|-----------|--|
| Battelle ID                         | BL066LCS-P                               |   |          |            |           |  |
| Sample Type                         | LCS                                      |   |          |            |           |  |
| Collection Date                     | 10/23/07                                 |   |          |            |           |  |
| Extraction Date                     | 10/23/07                                 |   |          |            |           |  |
| Analysis Date                       |                                          |   |          |            |           |  |
| Analytical Instrument               | 10/30/07<br>FID                          |   |          |            |           |  |
| % Moisture                          | NA                                       |   |          |            |           |  |
| % Lipid                             | NA                                       |   |          |            |           |  |
| Matrix                              | SEDIMENT                                 |   |          |            |           |  |
| Sample Size                         | SEDIMENT                                 |   |          |            |           |  |
| Size Unit-Basis                     | NA                                       |   |          |            |           |  |
| Units                               | UG                                       |   | Target 9 | & Recovery | Qualifier |  |
| All and                             |                                          |   |          |            | Gouinor   |  |
| n-Nonane                            | 101.24                                   |   | 100.00   | 101        |           |  |
| n-Decane                            | 101.13                                   |   | 100.00   | 101        |           |  |
| n-Undecane                          | 102.74                                   |   | 100.00   | 103        |           |  |
| n-Dodecane                          | 101.86                                   |   | 100.00   | 102        |           |  |
| n-Tridecane                         | 105.12                                   | 1 | 100.00   | 105        |           |  |
| soprenoid RRT 1380<br>n-Tetradecane |                                          | U | 100.000  |            |           |  |
|                                     | 101.67                                   |   | 100.00   | 102        |           |  |
| soprenoid RRT 1470<br>n-Pentadecane | 123.5                                    | U |          |            |           |  |
| -Hexadecane                         | 100.17                                   |   | 100.00   | 100        |           |  |
| Vorpristane (1650)                  | 100.23                                   |   | 100.00   | 100        |           |  |
| n-Heptadecane                       |                                          | U |          |            |           |  |
| Pristane                            | 101.57                                   |   | 100.00   | 102        |           |  |
| -Octadecane                         | 101.94                                   |   | 100.00   | 102        |           |  |
| Phytane                             | 100.88                                   |   | 100.00   | 101        |           |  |
| -Nonadecane                         | 98.48<br>102.23                          |   | 100.00   | 98         |           |  |
| -Eicosane                           | 102.23                                   |   | 100.00   | 102        |           |  |
| -Heneicosane                        | 100.28                                   |   | 100.00   | 102        |           |  |
| -Docosane                           | 102.83                                   |   | 100.00   | 100<br>103 |           |  |
| -Tricosane                          | 99.87                                    |   | 100.00   | 100        |           |  |
| Tetracosane                         | 100.28                                   |   | 100.00   | 100        |           |  |
| -Pentacosane                        | 99.02                                    |   | 100.00   | 99         |           |  |
| -Hexacosane                         | 99.28                                    |   | 100.00   | 99         |           |  |
| -Heptacosane                        | 100.24                                   |   | 100.00   | 100        |           |  |
| Octacosane                          | 101.45                                   |   | 100.00   | 101        |           |  |
| Nonacosane                          | 98                                       |   | 100.00   | 98         |           |  |
| Triacontane                         | 97.65                                    |   | 100.00   | 98         |           |  |
| Hentriacontane                      | 95.49                                    |   | 100.00   | 95         |           |  |
| Dotriacontane                       | 96.81                                    |   | 100.00   | 97         |           |  |
| Tritriacontane                      | 93.15                                    |   | 100.00   | 93         |           |  |
| Tetratriacontane                    | 91.62                                    |   | 100.00   | 92         |           |  |
| Pentatriacontane                    | 93.43                                    |   | 100.00   | 93         |           |  |
| Hexatriacontane                     | 86.24                                    |   | 100.00   | 86         |           |  |
| Heptatriacontane                    | 84                                       |   | 100.00   | 84         |           |  |
| Octatriacontane                     | 84.54                                    |   | 100.00   | 85         |           |  |
| Nonatriacontane                     | 77.68                                    |   | 100.00   | 78         |           |  |
| Tetracontane                        | 74.91                                    |   | 100.00   | 75         |           |  |
| PH(total)                           |                                          | U |          |            |           |  |

#### Surrogate Recoveries (%)

| O-Terphenyl   | 118 |
|---------------|-----|
| 5a-androstane | 119 |

## Battelle The Business of Innovation

# Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                          | GO98: North Slope<br>Crude |          |            |           |  |
|------------------------------------|----------------------------|----------|------------|-----------|--|
|                                    | Crude                      |          |            |           |  |
| Battelle ID                        | BL087NSC-P                 |          |            |           |  |
| Sample Type                        | NSC                        |          |            |           |  |
| Collection Date                    | 10/30/07                   |          |            |           |  |
| Extraction Date                    | 10/30/07                   |          |            |           |  |
| Analysis Date                      | 10/30/07                   |          |            |           |  |
| Analytical Instrument              | FID                        |          |            |           |  |
| % Moisture                         | NA                         |          |            |           |  |
| % Lipid                            | NA                         |          |            |           |  |
| Matrix                             | OIL                        |          |            |           |  |
| Sample Size                        | 5.04                       |          |            |           |  |
| Size Unit-Basis                    | MG OIL                     |          |            |           |  |
| Units                              | UG/MG_OIL                  | Target % | Difference | Qualifier |  |
| Nonane                             |                            |          |            |           |  |
| -Decane                            | 4.93                       | 4.67     | 5.6        |           |  |
| Undecane                           | 4.62                       | 4.95     | 6.7        |           |  |
| n-Dodecane                         | 4.48                       | 4.51     | 0.6        |           |  |
| n-Tridecane                        | 4.54                       | 4.58     | 0.8        |           |  |
| soprenoid RRT 1380                 | 6.2 ME                     | 4.19     | 48.0       | N         |  |
| Tetradecane                        | 0.92                       | 0.96     | 4.3        |           |  |
| soprenoid RRT 1470                 | 4.23                       | 3.92     | 7.9        |           |  |
| -Pentadecane                       | 1.59                       | 1.53     | 3.7        |           |  |
| -Hexadecane                        | 3.88                       | 3.99     | 2.8        |           |  |
| lorpristane (1650)                 | 3.76<br>1.08               | 3.64     | 3.3        |           |  |
| -Heptadecane                       | 3.33                       | 1.14     | 5.4        |           |  |
| ristane                            | 2.28                       | 3.08     | 8.2        |           |  |
| -Octadecane                        | 2.28                       | 2.28     | 0.0        |           |  |
| hytane                             | 1.52                       | 1.66     | 1.3        |           |  |
| -Nonadecane                        | 2,7                        | 2.54     | 8.4<br>6.3 |           |  |
| -Eicosane                          | 2.43                       | 2.54     | 2.9        |           |  |
| Heneicosane                        | 2.35                       | 2.42     | 2.9        |           |  |
| Docosane                           | 2.29                       | 2.25     | 1.7        |           |  |
| Tricosane                          | 2.01                       | 2.05     | 2.0        |           |  |
| Tetracosane                        | 1.96                       | 1.95     | 0.6        |           |  |
| Pentacosane                        | 1.65                       | 1.80     | 8.1        |           |  |
| Hexacosane                         | 1.53                       | 1.64     | 6.7        |           |  |
| Heptacosane                        | 1.24                       | 1.23     | 0.7        |           |  |
| Octacosane                         | 1.01                       | 1.00     | 0.6        |           |  |
| Nonacosane                         | 0.84                       | 0.87     | 3.7        |           |  |
| Triacontane                        | 0.67                       | 0.67     | 0.1        |           |  |
| Hentriacontane                     | 0.59                       | 0.61     | 2.8        |           |  |
| Dotriacontane                      | 0.49                       | 0.47     | 5.2        |           |  |
| Tritriacontane<br>Tetratriacontane | 0.38                       | 0.40     | 4.8        |           |  |
| Pentatriacontane                   | 0.34                       | 0.37     | 8.5        |           |  |
| Hexatriacontane                    | 0.35                       | 0.38     | 7.4        |           |  |
| Heptatriacontane                   | 0.24 J                     | 0.24     | 1.8        |           |  |
| Dctatriacontane                    | 0.21 J                     | 0.21     | 0.0        |           |  |
| Nonatriacontane                    | 0.23 J                     | 0.21     | 11.8       |           |  |
| fetracontane                       | 0.17 J                     | 0.15     | 10.4       |           |  |
| 'H(total)                          | 0.18 J                     | 0.16     | 11.4       |           |  |
| . dramad                           | 495.56                     | 578.97   | 14.4       |           |  |

#### Surrogate Recoveries (%)

| O-Terphenyl   | 114 |
|---------------|-----|
| 5a-androstane | 110 |

| 111 |   | ь  |   |   |
|-----|---|----|---|---|
| 888 | 2 | é, | ۵ |   |
| 18  | 7 | 97 | 8 | L |
| 10  |   | 9  | V |   |
| 20  | ŭ | 9  | ٢ |   |
| rib | 2 | -  |   |   |

U

| 5 | 2 | e  |   |  |
|---|---|----|---|--|
| ĥ | 5 | í. | a |  |
| ٩ | ĕ | 1  | ۴ |  |
|   |   |    |   |  |
|   |   |    |   |  |
|   |   |    |   |  |

| nfo :<br>umber:     | Inst. N<br>BL089SOL-P(<br>Solvent bla<br>29                                                                      | 03:57:23 PM using<br>0)<br>nk. 5-202 07-0266 |       | AcqMethod | od TPH.M                 | Σ     |       |      |  |   |
|---------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------|-----------|--------------------------|-------|-------|------|--|---|
| Response<br>3200000 |                                                                                                                  |                                              |       | Signal:   | Signal: N5945.D\FID1A.CH | 1A.CH |       |      |  | } |
| 3000000             |                                                                                                                  |                                              |       |           |                          |       |       |      |  |   |
| 2800000             |                                                                                                                  |                                              |       |           |                          |       |       |      |  |   |
| 260000              |                                                                                                                  |                                              |       |           |                          |       |       |      |  |   |
| 2400000             |                                                                                                                  |                                              |       |           |                          |       |       |      |  |   |
| 2200000             |                                                                                                                  |                                              |       |           |                          |       |       |      |  |   |
| 200000              |                                                                                                                  |                                              |       |           |                          |       |       |      |  |   |
| 1800000             |                                                                                                                  |                                              |       |           |                          |       |       |      |  |   |
| 1600000             |                                                                                                                  |                                              |       |           | -                        |       |       |      |  |   |
| 1400000             |                                                                                                                  |                                              |       |           |                          |       |       |      |  |   |
| 1200000             |                                                                                                                  |                                              |       |           |                          |       |       |      |  |   |
| 1000000             |                                                                                                                  |                                              |       |           |                          |       |       |      |  |   |
| 800000              |                                                                                                                  |                                              |       |           |                          |       |       |      |  |   |
| 60000               |                                                                                                                  |                                              |       |           | -1                       |       |       |      |  |   |
| 400000              |                                                                                                                  |                                              |       |           |                          |       |       |      |  |   |
| 200000              | and the second |                                              |       |           |                          |       |       |      |  |   |
| Time 5.00           | 10.00 15.00                                                                                                      | 20.00                                        | 25.00 | 30.00     | 35.00                    | 40.00 | 45.00 | EDDO |  |   |

| E. |                                                                                                                          |                          |        |        |        |         |         |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60.00 65.00 |
|----|--------------------------------------------------------------------------------------------------------------------------|--------------------------|--------|--------|--------|---------|---------|--------|---------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|    |                                                                                                                          | 1                        |        |        |        |         |         |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55.00 60    |
|    |                                                                                                                          | 1                        |        |        |        |         |         |        |         |       | and the second sec | 50.00       |
|    |                                                                                                                          |                          |        |        |        |         | -       |        |         | _     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45.00       |
|    |                                                                                                                          | Ю                        |        |        |        |         |         |        |         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40.00       |
|    | .D<br>using AcqMethod TPH.M<br>?-0266                                                                                    | Signal: N5947.D/FID1A.CH |        |        |        | 2       |         |        |         |       | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.00       |
|    | AcqMetho                                                                                                                 | Signal: N                |        |        |        |         |         |        |         |       | 30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.00       |
|    | 17.D<br>M using<br>07-0266                                                                                               |                          |        |        |        |         |         |        |         |       | 25.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00.02       |
|    | )\N594<br>3:35 F                                                                                                         |                          |        |        |        |         |         |        |         |       | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|    | A\SN0260\N5<br>07 05:18:35<br>4<br>-P(0)<br>olank. 5-20                                                                  |                          |        |        |        |         |         |        |         |       | 15.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|    | F:\N\DATA\SN0260\N5947.D<br>MM<br>10-30-2007 05:18:35 PM u<br>Inst. N<br>BL090S0L-P(0)<br>Solvent blank. 5-202 07-<br>30 |                          |        |        |        |         |         |        |         |       | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|    | . F.<br>                                                                                                                 |                          |        |        |        |         |         |        |         | -     | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
|    | File :<br>Operator :<br>Acquired :<br>Instrument :<br>Sample Name:<br>Misc Info :<br>Vial Number:                        | Response                 | 400000 | 350000 | 300000 | 2500000 | 2000000 | 150000 | 1000000 | 50000 | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |



| 5 | 5 | 2  | h |
|---|---|----|---|
| Ξ | 8 | 15 |   |
| R | 8 | 18 |   |
| ü | 2 | 2  | 2 |
| 2 | - | ** |   |
|   |   |    |   |
|   |   |    |   |
|   |   |    |   |
|   |   |    |   |

| Info : 10-30-<br>ument : Inst<br>e Name: BL065P<br>Info : Proced<br>Number: 31 | : 10-30-2007 06:39:52 PM using Acq<br>: FL065PB-P-FID(7)<br>: Procedural Blank 5-202 07-0266<br>r: 31<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | : F:\N\<br>: MM | F:\N\DATA\SN0260\N5949.D<br>MM | SN0260 | N5949  | D.     |         |              |      |  |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|--------------------------------|--------|--------|--------|---------|--------------|------|--|--|--|
| Info : Procedural Blank 5-202 07-0266<br>Number: 31                            | Sc Inflo : Procedural Blank 5-202 07-0266<br>al Number: 31<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000 | Acquired<br>Instrument :<br>Sample Name: |                 | 0-2007<br>st. N<br>5PB-P-F     | 06:39  | :52 PM | (C)    | AcqMeth | od TPH.I     | Σ    |  |  |  |
|                                                                                | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | isc Info<br>ial Number                   |                 | edural                         | Blank  |        | 07-026 | 9       |              |      |  |  |  |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Response                                 |                 |                                | 1      |        |        | Signal: | N5949 DVFID1 | A CH |  |  |  |
|                                                                                | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3800000                                  |                 |                                |        |        |        | ,       |              | 5    |  |  |  |
|                                                                                | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>00000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                                                                                                  | 360000                                   |                 |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>00000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                                                                                                  | 3400000                                  |                 |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>00000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                                                                                                  | 3200000                                  |                 |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>000<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300000                                   |                 |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2800000                                  |                 |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 560000                                   |                 |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 400000                                   |                 |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20000                                    |                 |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000000                                   |                 |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>5.00 15.00 20.00 25.00 30.00 25.00 30.00 25.00 30.00 25.00 20.00 25.00 20.00 25.00 20.00 25.00 20.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 800000                                   |                 |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>5.00 10.00 15.00 30.00 36.00 30.00 36.00 30.00 36.00 30.00 36.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60000                                    |                 |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 0000<br>0000<br>0000<br>0000<br>5.00 10.00 15.00 20.00 25.00 30.00 35.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 400000                                   |                 |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 0000<br>0000<br>0000<br>0000<br>0000<br>5.00 10.00 15.00 30.00 3.000 3.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200000                                   | -               |                                |        |        |        |         |              |      |  |  |  |
| _                                                                              | 0000<br>0000<br>0000<br>5.00 10.00 15.00 20.00 30.00 3.6.00 0.00 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 000000                                   | -               |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 0000<br>0000<br>5.00 10.00 15.00 20.00 30.00 37.00 47.00 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300000                                   |                 |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 0000<br>0000<br>5.00 10.00 15.00 20.00 30.00 35.00 10.00 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200000                                   |                 |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 5.00 10.00 15.00 20.00 30.00 35.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 400000                                   |                 |                                |        |        |        |         |              |      |  |  |  |
|                                                                                | 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200000                                   |                 | 1.1                            |        |        |        |         |              |      |  |  |  |

| 1.5         | - |   |
|-------------|---|---|
| đ           |   |   |
| $R_{\rm c}$ |   | 3 |
| 10          | 1 | 2 |
|             |   |   |

| - |    |
|---|----|
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   |    |
|   | 0  |
|   |    |
|   |    |
|   |    |
|   |    |
|   | 10 |
|   | 5  |
|   | 0  |
|   |    |
|   | 5  |
|   |    |
|   | z  |
|   | 1  |
|   | -  |
|   | 0  |
|   |    |
|   |    |

学

|                              | TPH.M                 | 10                                          |
|------------------------------|-----------------------|---------------------------------------------|
|                              | AcqMethod             | 02 07-0266                                  |
| D                            | using                 | le 5-202                                    |
| 15951.                       | 4 PM                  | Sample                                      |
| SN0260\N                     | 08:00:3               | -FID(7)<br>Control                          |
| F:\N\DATA\SN0260\N5951<br>MM | 10-30-2007<br>Inst. N | BL066LCS-P-F.<br>Laboratory Cc<br>32        |
| ile :<br>perator :           | quirestru             | Sample Name:<br>Misc Info :<br>Vial Number: |

|   |   | l |  |
|---|---|---|--|
|   |   | ŀ |  |
| č | Б |   |  |
| ç | - |   |  |
| ۶ | Ş |   |  |
| ù | ō | 1 |  |
| Q | Ś |   |  |
| η | 2 |   |  |
|   |   |   |  |

Signal: N5951.D/FID1A.CH

4000000

3500000

3000000

2500000

1000000

2000000

1500000

500000

35.00

40.00

45.00

50.00

60.00

65.00

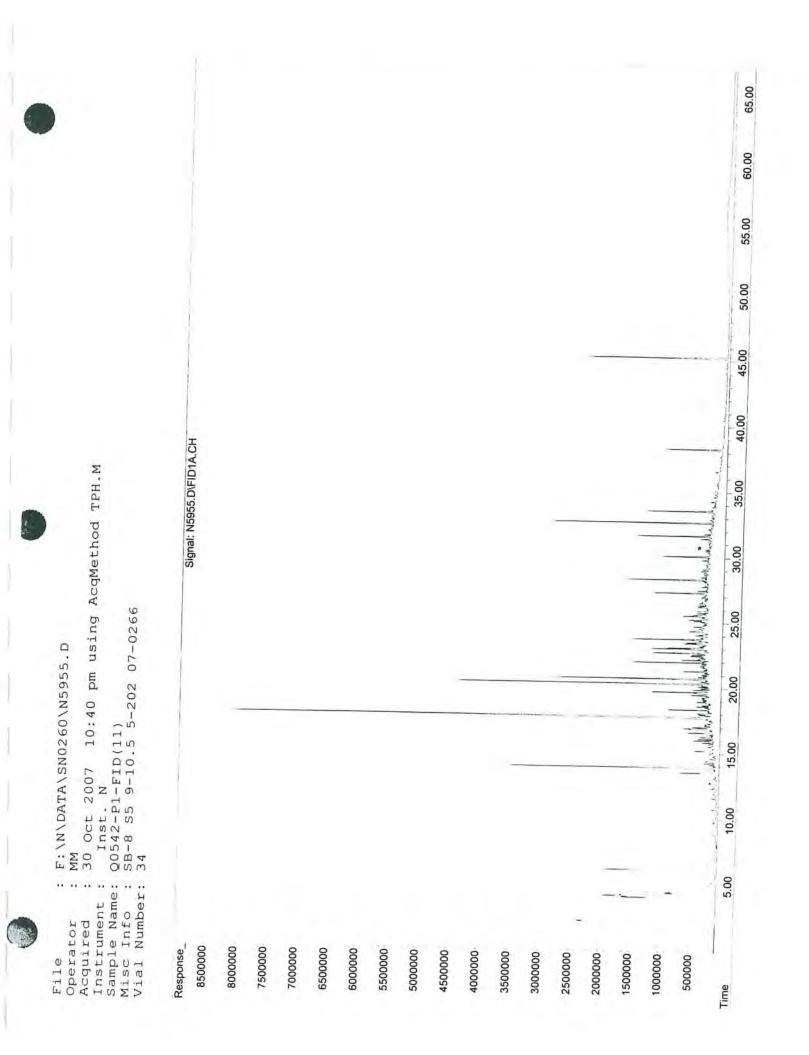
55.00

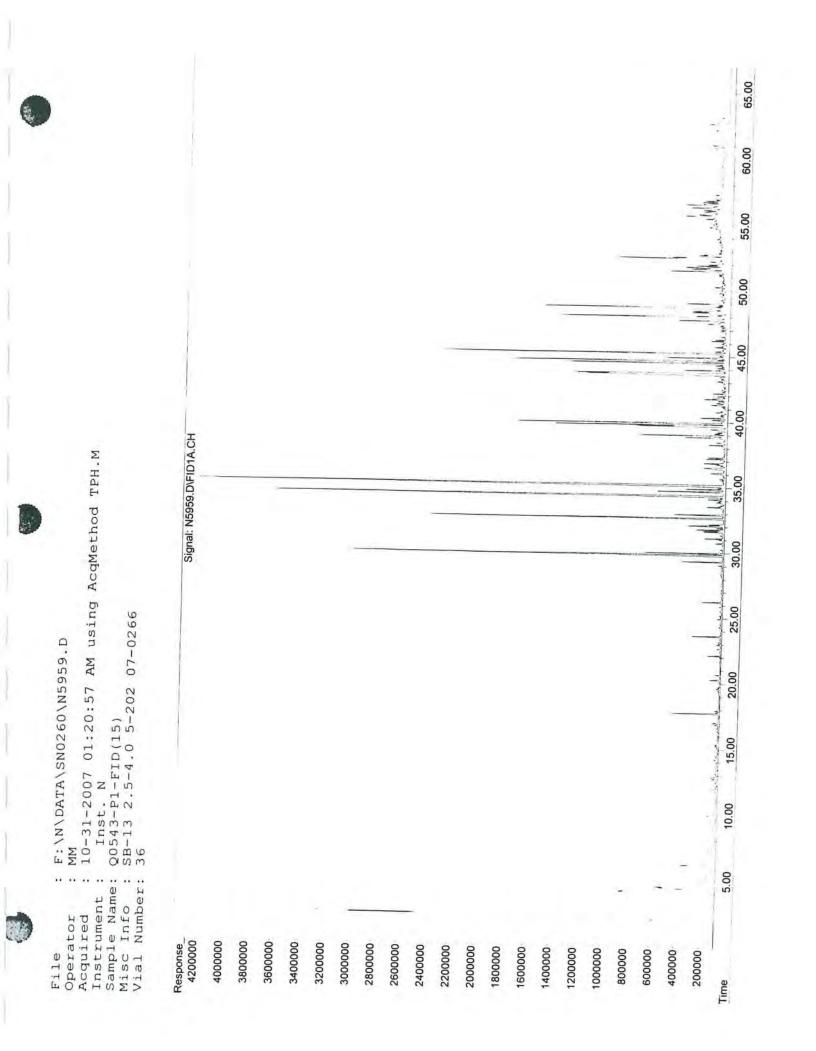
30.00

25.00

20.00

Para and the second 15.00


10.00


5.00

Time

|   |                                |                            |         |                           |                          |        |        |        |        |         |         |         |        |        |       |                    | 65.00 |
|---|--------------------------------|----------------------------|---------|---------------------------|--------------------------|--------|--------|--------|--------|---------|---------|---------|--------|--------|-------|--------------------|-------|
|   |                                |                            |         |                           |                          |        |        |        |        |         |         |         |        |        |       | 1                  | 60.00 |
|   |                                |                            |         |                           |                          |        |        |        |        |         |         |         |        |        |       | معليل              | 55.00 |
|   |                                |                            |         |                           | 1                        |        |        |        |        |         |         |         |        |        |       | لالالالمال         | 50.00 |
|   |                                |                            |         |                           |                          |        |        |        |        | -       |         |         |        |        |       | The second         | 45.00 |
|   |                                | V                          |         |                           | A.CH                     |        |        | -      |        |         |         |         |        |        |       |                    | 40.00 |
|   |                                | d TPH.N                    |         |                           | Signal: N5953.D/FID1A.CH |        |        |        |        |         |         | la este |        | -      |       | AAA LANNING LANDER | 35.00 |
|   |                                | cqMetho                    |         | 10                        | Signal: N                |        |        |        |        |         |         |         |        |        |       | Land Land          | 30.00 |
|   | D                              | PM using AcqMethod TPH.M   |         | 07-0266                   |                          |        |        |        |        |         |         |         | _      |        |       | UN NAVA A          | 25.00 |
|   | N5953.                         | -                          |         | e 5-202                   |                          |        |        |        |        |         |         |         |        |        |       |                    | 20.00 |
|   | SN0260                         | 09:19:59                   | (0)     | e Crude                   | Ì                        |        |        |        |        |         |         |         |        |        |       |                    | 15.00 |
|   | F:\N\DATA\SN0260\N5953.D<br>MM | 10-30-2007<br>Tret M       | 87NSC-F | North Slope Crude 5<br>33 |                          |        |        |        |        |         |         |         |        | -      |       |                    | 10.00 |
|   | : F: /                         | : 10-                      | e: BLO  | : Nor<br>r: 33            |                          |        |        |        |        |         |         |         |        | -      | 1     |                    | 5.00  |
| ) | ator                           | Acquired :<br>Instrument : | le Name | Info<br>Numbeı            | والع                     | 00     | Q      | Q      | Q      | 0       | 0       | 0       | -      | 0      |       | -                  |       |
|   | File                           | Acqu.<br>Instr             | Samp    | Misc<br>Vial              | Response_                | 220000 | 200000 | 180000 | 160000 | 1400000 | 1200000 | 100000  | 800000 | 600000 | 40000 | 20000              | Time  |

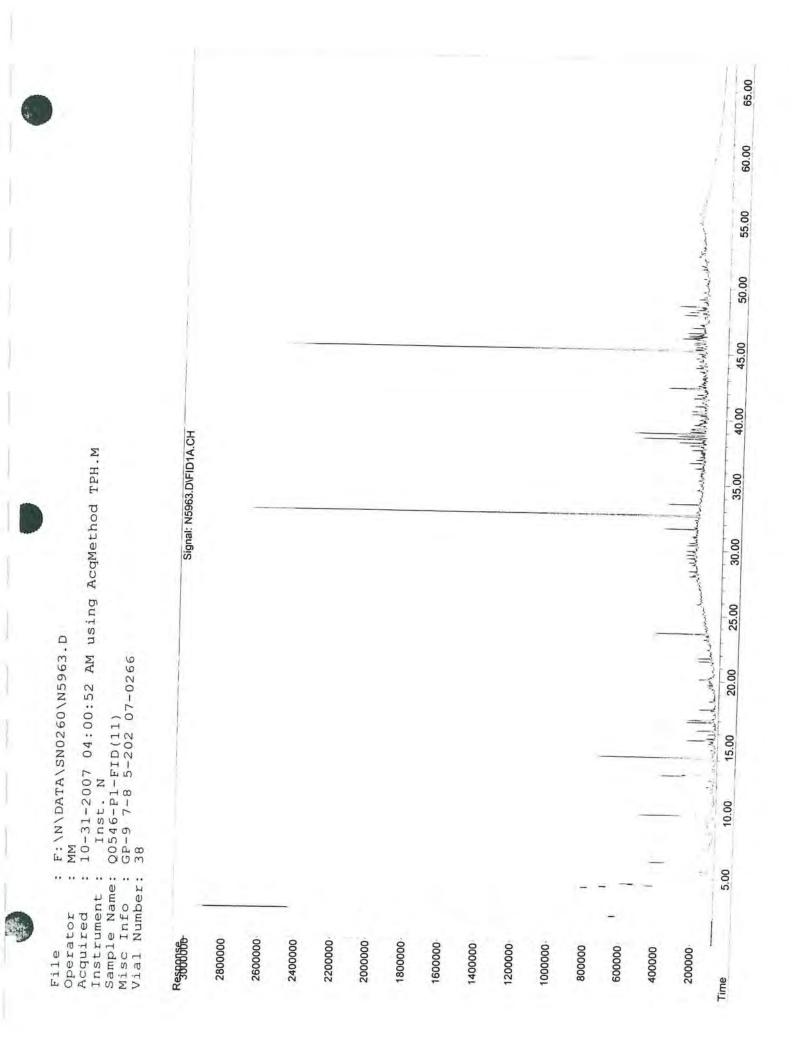
L







| į  |    |    | h | ĥ |
|----|----|----|---|---|
| 10 | Ē  | i. |   | b |
| į, | C. |    | P | ٢ |
|    |    |    |   |   |
|    |    |    |   |   |
|    |    |    |   |   |


| MHT                                                                            |                                                   |
|--------------------------------------------------------------------------------|---------------------------------------------------|
| F:\N\DATA\SN0260\N5961.D<br>MM<br>10-31-2007 02:40:32 AM using AcaMethod TPH.M |                                                   |
| 1.D<br>M using                                                                 | 07-0266                                           |
| F:\N\DATA\SN0260\N5961<br>MM<br>10-31-2007 02:40:32 AM                         | 1<br>-FID(11)<br>8 5-6.5 5-202 07-0266            |
| ATA\SN02<br>2007 02                                                            | Inst. N<br>Q0544-P1-FID(J<br>SB-12A S3 5-6.<br>37 |
| F:\N\D<br>MM<br>10-31-                                                         | Inst. N<br>20544-P1-<br>SB-12A S3<br>37           |
|                                                                                | unc :<br>me:<br>er:                               |
| red                                                                            | uple Name<br>Iple Name<br>Ic Info<br>I Number     |

| Response | 9500000 | 8000006 | 850000 | 8000000 | 750000 | 700000 | 650000 | 8000000 | 550000 | 500000 | 4500000 | 4000000 | 350000 | 3000000 | 250000 | 2000000 | 1500000 | 1000000 |  |
|----------|---------|---------|--------|---------|--------|--------|--------|---------|--------|--------|---------|---------|--------|---------|--------|---------|---------|---------|--|
|          |         |         |        |         |        |        |        |         |        |        |         |         |        |         |        |         |         |         |  |

65.00

60.00

55.00



PAH Data and Histograms Biomarker Data and EICPs

#### PAH and Biomarker – SEDIMENT QA/QC SUMMARY Batch 07-0259

| PROJECT<br>PARAME<br>LABORA'<br>MATRIX:<br>SAMPLE | TER:<br>FORY:       | Polycyclic A<br>Battelle, Du:<br>Sediment<br>Six soil sam<br>Laboratory of<br>taken and the<br>temperature<br>2°) at 0.6°C.<br>outside of th<br>only on the i<br>client was no<br>analysis. Sam | xbury, MA<br>ples and 1 NAPI<br>on 10/9/07. Upo<br>e samples were 1<br>of the cooler up<br>Also, it was no<br>e container as w<br>nside of the bub<br>otified on 10/16/ | L were received<br>n Receipt of th<br>ogged into the<br>on receipt was<br>ted that sample<br>ell as the inner<br>ble wrap and d<br>07. The labor<br>ed in an access- | and Biomarkers<br>d at Battelle Duy<br>te samples, the te<br>laboratory and g<br>slightly below th<br>e Q0540 (MW-9<br>side of the bubb<br>id not touch any<br>atory was instruc-<br>limited walk-in | abury Operation<br>emperature of t<br>given unique II<br>ne acceptable r<br>) had some oil<br>ole wrap. The o<br>of the other sa<br>cted to proceed | he cooler was<br>Ds. The<br>ange $(4^{\circ}C \pm$<br>residue on the<br>bil residue was<br>mples. The<br>with the |
|---------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                                   | Reference<br>Method | Method<br>Blank                                                                                                                                                                                 | Surrogate<br>Recovery                                                                                                                                                   | LCS<br>Recovery                                                                                                                                                      | MS<br>Recovery                                                                                                                                                                                       | MS/MSD<br>Precision                                                                                                                                 | Control<br>Oil<br>% Diff                                                                                          |
| SHC and<br>TPH                                    | General<br>NS&T     | <5xMDL                                                                                                                                                                                          | 40-120%<br>Recovery                                                                                                                                                     | 40-120%<br>Recovery                                                                                                                                                  | 40-120%<br>Recovery<br>MS target spike                                                                                                                                                               | ≤30% RPD                                                                                                                                            | PD,30% for<br>90% of the<br>analytes                                                                              |

METHOD:

HOLDING TIMES: Soil samples were extracted following general NS&T methods. Approximately 5-8 g of sample was spiked with SHC, PAH, and biomarker surrogates and serial extracted three times with dichloromethane using orbital shaker table techniques. The combined extracts were dried over anhydrous sodium sulfate and concentrated by Kuderna-Danish and nitrogen evaporation techniques. The sample extracts were split in half: one-half of the extract was removed for archiving; the other half was processed through an alumina gravity column to isolate the hydrocarbon fractions of interest. The weights of the resulting extracts were determined gravimetrically. The extracts were concentrated to 1 mL, split, and spiked with internal standard (IS). The pre-injection volume and/or extract split were adjusted to 5mg/mL. One extract was submitted for PAH and the second extract was submitted for SHC and TPH analysis.

PAH and petroleum biomarkers were measured by gas chromatography -mass spectrometry (GC/MS) in the selected ion mode (SIM). An initial calibration consisting of target analytes was completed prior to analysis to demonstrate the linear range of the analysis. Calibration verification was performed at the beginning and end of each 12 hour period in which samples were analyzed. Concentrations of the PAH and petroleum biomarkers were calculated by the internal standard method. Target PAH were quantified using the average RF generated from the initial calibration. The alkyl homologue PAH series were assigned the RF of the parent PAH, Steranes were assigned the RF of cholestane, and triterpanes were assigned the RF of Moretane.

Note: the reporting limit for the alkyl benzene compounds is orders of magnitude higher than the reporting limits for the rest of the PAH compounds.

Samples were prepared for analysis in three analytical batches and were extracted within 30 days of sample collection analyzed within 40 days of extraction.

 Batch
 Extraction Date
 Analysis Date

 07-0259
 10/15/2007
 10/24/2007

#### PAH and Biomarker – SEDIMENT QA/QC SUMMARY Batch 07-0259

| PROCEDURAL<br>BLANK (PB):              | A procedural blank (PB) was prepared with each analytical batch. Blanks were analyzed to ensure the sample extraction and analysis methods were free of contamination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | 07-0259 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LABORATORY<br>CONTROL<br>SAMPLE (LCS): | A laboratory control sample (LCS) was prepared with each analytical batch. The percent recoveries of target analytes were calculated to measure data quality in terms of accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | 07-0259 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SURROGATE<br>RECOVERY:                 | Five surrogate compounds were added prior to extraction, including naphthalene-d8, acenaphthene-d10, phenanthrene-d10, benzo(a)pyrene-d12, and 5b(H)-chloane. The recovery of the surrogate compound was calculated to measure data quality in terms of accuracy (extraction efficiency).                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | <b>07-0259</b> – Several surrogates are over-recovered in the samples. Benzo(a)pyrene-d12 is out in the PB and the NSC, though the NSC still passes for all the analytes and this does not affect the authentic samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                        | <b>Comments</b> – The exceedences in the authentic samples is most likely attributed to the high levels of target analytes found in the samples and should have not affect on the values reported for the target analytes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CONTROL OIL:                           | A control oil (North Slope Crude) was prepared with the analytical batch. The percent difference (PD) between the measured value and the target value was calculated to measure data quality in terms of accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | 07-0259 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CALIBRATIONS:                          | The GC/MS is calibrated with a minimum 5 level curve for all compounds. The percent relative standard deviation (% RSD) between RF for the individual target analytes must be $\leq 25\%$ , and the mean RSD of all target analytes must be $\leq 15\%$ . Each batch of samples analyzed is bracketed by a continuing calibration verification (CCV) sample, run at a frequency of minimally every 12 hours. The PD between the true value and the CCV should be $\leq 25\%$ for individual analytes. Additionally an initial calibration check (ICC) sample is run immediately after each initial calibration. The PD between the ICC and the initial calibration should be $\leq 25\%$ . |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

07-0259 - No exceedences noted.

Comments - None.

The Business of Innovation

| Client ID                       | SB-2 S5 8-9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GP-12 S2 23-24    |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Battelle ID                     | Q0541-P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q0545-P           |
| Sample Type                     | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SA SA             |
| Collection Date                 | 09/17/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 09/20/07          |
| Extraction Date                 | 10/15/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/15/07          |
| Analysis Date                   | 10/24/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10/24/07          |
| Analytical Instrument           | MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| % Moisture                      | 18.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MS                |
| % Lipid                         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.35             |
| Matrix                          | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                |
| Sample Size                     | 4.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL              |
| Size Unit-Basis                 | G DRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.93              |
| Units                           | NG/G_DRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G_DRY<br>NG/G_DRY |
| C3-Alkylbenzenes                | 10085.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5127.04           |
| C4-Alkylbenzenes                | 15434.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| C5-Alkylbenzenes                | 10512.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3892.29           |
| C6-Alkylbenzenes                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 742.61 J          |
| Benzo(b)thiophene               | 12276.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 339 J             |
| C1-benzo(b)thiophenes           | 9878.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20344.59          |
| C2-benzo(b)thiophenes           | 11507.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7546.34           |
| C3-benzo(b)thiophenes           | 14450.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4669.98           |
| C4-benzo(b)thiophenes           | 14482.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1168.82           |
| Naphthalene                     | 8555.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 159.28            |
| C1-Naphthalenes                 | 280712.07 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 401296.71 D       |
| C2-Naphthalenes                 | 161435.32 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 106483 D          |
| C3-Naphthalenes                 | 200528.1 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32509.83 D        |
| C4-Naphthalenes                 | 150550.6 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6892.79 D         |
|                                 | 78992.16 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1297.11 D         |
| C1-Biphenyls + Dibenzofuran     | 28932.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16556.81          |
| Biphenyl                        | 8957.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12549.72          |
| C2-Biphenyls + C1-Dibenzofurans | 45019.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6521.65           |
| Acenaphthylene                  | 5745.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15068.74          |
| Acenaphthene                    | 122429.23 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6762.95           |
| Dibenzofuran                    | 7893.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12352.38          |
| Fluorene                        | 64333.84 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20199.05          |
| C1-Fluorenes                    | 37349.9 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3928.84           |
| C2-Fluorenes                    | 32374.2 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1332.36           |
| C3-Fluorenes                    | 20462.87 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 565.53            |
| C4-Fluorenes                    | 9721.05 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 233.13            |
| Anthracene                      | 54254.5 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15041.8 D         |
| Phenanthrene                    | 187892.05 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60533.18 D        |
| C1-Phenanthrenes/Anthracenes    | 109645.54 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12567.33 D        |
| C2-Phenanthrenes/Anthracenes    | 55169.03 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5974.74 D         |
| C3-Phenanthrenes/Anthracenes    | 20750.58 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1092.05 D         |
| C4-Phenanthrenes/Anthracenes    | 5696.83 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 442.09            |
| Retene                          | 2259.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 891.41            |
| Dibenzothiophene                | 15598.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3943.26           |
| C1-Dibenzothiophenes            | 18802.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1433.37           |
| C2-Dibenzothiophenes            | 16145.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 660.06            |
| C3-Dibenzothiophenes            | 8872.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 234.5             |
| C4-Dibenzothiophenes            | 3335.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67.4              |
| luoranthene                     | 59196.4 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22336.82          |
| Pyrene                          | 97480.76 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20773.98          |
| 1-Fluoranthenes/Pyrenes         | 65145.99 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12195.01          |
| 2-Fluoranthenes/Pyrenes         | 14924.46 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3270.47           |
| 3-Fluoranthenes/Pyrenes         | 4915.67 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| 4-Fluoranthenes/Pyrenes         | 2180.92 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 988.68            |
| CO-Benzo(b)naphthothiophenes    | 3776.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 465.25            |
| 1-Benzo(b)naphthothiophenes     | 4725.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 913.61            |
| 2-Benzo(b)naphthothiophenes     | the Base of the State of the St | 694.13            |
| 3-Benzo(b)naphthothiophenes     | 2125.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 221.74            |
| 4-Benzo(b)naphthothiophenes     | 1212.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 154.67            |
| enzo(a)anthracene               | 536.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36.21             |
| hrysene                         | 24074,78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9590.03           |
|                                 | 22810.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9771.77           |

The Business of Innovation

| Client ID                              | SB-2 S5 8-9.5 | GP-12 S2 23-24 |
|----------------------------------------|---------------|----------------|
| Battelle ID                            | Q0541-P       | 00545 0        |
| Sample Type                            | SA SA         | Q0545-P        |
| Collection Date                        | 09/17/07      | SA             |
| Extraction Date                        | 10/15/07      | 09/20/07       |
| Analysis Date                          | 10/15/07      | 10/15/07       |
| Analytical Instrument                  |               | 10/24/07       |
| % Moisture                             | MS            | MS             |
| % Lipid                                | 18.05         | 26.35          |
| Matrix                                 | NA            | NA             |
| Sample Size                            | SOIL          | SOIL           |
| Size Unit-Basis                        | 4.59          | 3.93           |
| Units                                  | G_DRY         | G_DRY          |
| Units                                  | NG/G_DRY      | NG/G_DRY       |
| C1-Chrysenes                           | 16589.65      | 4494.91        |
| C2-Chrysenes                           | 5241.89       | 1459.72        |
| C3-Chrysenes                           | 2403.14       | 619.55         |
| C4-Chrysenes                           | 1114.53       | 241.79         |
| Benzo(b)fluoranthene                   | 12560.8       | 7467.49        |
| Benzo(k)fluoranthene                   | 17864.18      | 8774.71        |
| Benzo(e)pyrene                         | 15474.59      | 6186           |
| Benzo(a)pyrene                         | 28503.51      | 11388.72       |
| Pervlene                               | 4224.91       | 3288.78        |
| Indeno(1,2,3-cd)pyrene                 | 12042.45 D    | 5028.52 D      |
| Dibenz(a,h)anthracene                  | 2886.08 D     | 1140.83 D      |
| Benzo(g,h,i)perylene                   | 13776.39      | 7060.88        |
| Total PAH                              | 2089157.85    | 859307.45      |
|                                        |               | 000007.40      |
| Surrogate Recoveries (%)               |               |                |
| Naphthalene-d8                         | 123 N         | 103            |
| cenaphthene-d10                        | 189 N         | 110            |
|                                        |               |                |
| Phenanthrene-d10                       | 94            |                |
| Phenanthrene-d10<br>Benzo(a)pyrene-d12 | 94<br>107 D   | 93<br>72 D     |

## Battelle The Business of Innovation

| Client ID                              | GO98: North Slope<br>Crude |          |            |           |
|----------------------------------------|----------------------------|----------|------------|-----------|
| Battelle ID                            | BL042NSC-P                 |          |            |           |
| Sample Type                            | NSC                        |          |            |           |
| Collection Date                        | 10/17/07                   |          |            |           |
| Extraction Date                        | 10/17/07                   |          |            |           |
| Analysis Date                          | 10/24/07                   |          |            |           |
| Analytical Instrument                  | MS                         |          |            |           |
| % Moisture                             | NA                         |          |            |           |
| % Lipid                                | NA                         |          |            |           |
| Matrix                                 | OIL                        |          |            |           |
| Sample Size                            | 5.04                       |          |            |           |
| Size Unit-Basis                        | MG_OIL                     |          |            |           |
| Units                                  | MG/KG_OIL                  | Target % | Difference | Qualifier |
| C3-Alkylbenzenes                       | 1616.97                    |          |            |           |
| C4-Alkylbenzenes                       | 1276.68                    |          |            |           |
| C5-Alkylbenzenes                       | 721.47                     |          |            |           |
| C6-Alkylbenzenes                       | 454.78                     |          |            |           |
| Benzo(b)thiophene                      | 12.64                      |          |            |           |
| C1-benzo(b)thiophenes                  | 42.96                      |          |            |           |
| C2-benzo(b)thiophenes                  | 76.93                      | 95.74    | 19.6       |           |
| C3-benzo(b)thiophenes                  | 99.29                      | 132.67   | 25.2       |           |
| C4-benzo(b)thiophenes                  | 96.03                      | 96.72    | 0.7        |           |
| Naphthalene<br>C1 Naphthalene          | 705.29                     | 740.29   | 4.7        |           |
| C1-Naphthalenes                        | 1418.33                    | 1516.04  | 6.4        |           |
| C2-Naphthalenes<br>C3-Naphthalenes     | 1865.4                     | 2000.10  | 6.7        |           |
| C4-Naphthalenes                        | 1459.07                    | 1526.96  | 4.4        |           |
| C1-Biphenyls + Dibenzofuran            | 792.31<br>338.3            | 898.03   | 11.8       |           |
| Biphenyl                               | 211                        | 220.82   | 4.4        |           |
| C2-Biphenyls + C1-Dibenzofurans        | 502.68                     | 220.02   | 4.4        |           |
| Acenaphthylene                         | 002.00<br>U                |          |            |           |
| Acenaphthene                           | 13.59                      | 14.50    | 6.3        |           |
| Dibenzofuran                           | 67.6                       | 77.75    | 13.1       |           |
| Fluorene                               | 98.21                      | 92.51    | 6.2        |           |
| C1-Fluorenes                           | 209.14                     | 227.01   | 7.9        |           |
| C2-Fluorenes                           | 298.65                     | 367.09   | 18.6       |           |
| C3-Fluorenes                           | 274.46                     | 326.32   | 15.9       |           |
| C4-Fluorenes                           | 179.5                      |          |            |           |
| Anthracene                             | U                          |          |            |           |
| Phenanthrene                           | 237.55                     | 249.49   | 4.8        |           |
| C1-Phenanthrenes/Anthracenes           | 507.25                     | 549.17   | 7.6        |           |
| C2-Phenanthrenes/Anthracenes           | 596.02                     | 642.72   | 7.3        |           |
| C3-Phenanthrenes/Anthracenes           | 423.45                     | 446,11   | 5.1        |           |
| C4-Phenanthrenes/Anthracenes<br>Retene | 150.11                     | 180.02   | 16.6       |           |
| Dibenzothiophene                       | 43.19                      | 10.000   |            |           |
| C1-Dibenzothiophenes                   | 197.91                     | 210.35   | 5.9        |           |
| C2-Dibenzothiophenes                   | 376.95                     | 409.03   | 7.8        |           |
| C3-Dibenzothiophenes                   | 520.69                     | 551.46   | 5.6        |           |
| C4-Dibenzothiophenes                   | 420.01<br>232.92           | 471.36   | 10.9       |           |
| Fluoranthene                           | 3.51                       | 243.11   | 4.2        |           |
| Pyrene                                 | 11.92                      | 12.99    | 8.2        |           |
| C1-Fluoranthenes/Pyrenes               | 69.22                      | 70.92    | 2.4        |           |
| C2-Fluoranthenes/Pyrenes               | 128.43                     | 117.89   | 8.9        |           |
| C3-Fluoranthenes/Pyrenes               | 146.1                      | 137.25   | 6.4        |           |
| C4-Fluoranthenes/Pyrenes               | 111.01                     | 101,60   | 0.4        |           |
| C0-Benzo(b)naphthothiophenes           | 40.92                      |          |            |           |
| C1-Benzo(b)naphtholhiophenes           | 160.58                     |          |            |           |
| C2-Benzo(b)naphthothiophenes           | 194.47                     |          |            |           |
| C3-Benzo(b)naphthothiophenes           | 143.86                     |          |            |           |
| C4-Benzo(b)naphthothiophenes           | 96.41                      |          |            |           |
| Benzo(a)anthracene                     | 4.52                       |          |            |           |
|                                        |                            |          |            |           |

## Battelle The Business of Innovation

| Project Number: N007097-0001         |                   |   |            |            |           |
|--------------------------------------|-------------------|---|------------|------------|-----------|
|                                      | GO98: North Slope |   |            |            |           |
| Client ID                            | Crude             |   |            |            |           |
|                                      |                   |   |            |            |           |
| Battelle ID                          | BL042NSC-P        |   |            |            |           |
| Sample Type                          | NSC               |   |            |            |           |
| Collection Date                      | 10/17/07          |   |            |            |           |
| Extraction Date                      | 10/17/07          |   |            |            |           |
| Analysis Date                        | 10/24/07          |   |            |            |           |
| Analytical Instrument                | MS                |   |            |            |           |
| % Moisture                           | NA                |   |            |            |           |
| % Lipid                              | NA                |   |            |            |           |
| Matrix                               | OIL               |   |            |            |           |
| Sample Size                          | 5.04              |   |            |            |           |
| Size Unit-Basis                      | MG_OIL            |   |            |            |           |
| Units                                | MG/KG_OIL         |   | Target % D | Difference | Qualifier |
| Chrysene                             | 10.00             |   | 17.10      |            |           |
| C1-Chrysenes                         | 48.26             |   | 47.18      | 2.3        |           |
| C2-Chrysenes                         | 83.68<br>108.82   |   | 78.82      | 6.2        |           |
| C3-Chrysenes                         | 108.82            |   | 102.67     | 6.0        |           |
| C4-Chrysenes                         | 98.2<br>60.53     |   | 85.36      | 15.0       |           |
| Benzo(b)fluoranthene                 | 6.48              |   | 61.99      | 2.4        |           |
| Benzo(k)fluoranthene                 | 0.68              | J | 6.08       | 6.6        |           |
| Benzo(e)pyrene                       | 14.65             | J | 10.00      | 10.7       |           |
| Benzo(a)pyrene                       | 14.05             | υ | 12.88      | 13.7       |           |
| Perylene                             |                   | U |            |            |           |
| ndeno(1.2.3-cd)pyrene                |                   | ŭ |            |            |           |
| Dibenz(a,h)anthracene                | 1.26              | 0 |            |            |           |
| Benzo(g,h,i)perylene                 | 3.46              |   | 3.44       | 0.0        |           |
| Total PAH                            | 11865.63          |   | 3.44       | 0.6        |           |
|                                      | 11003.03          |   |            |            |           |
| Surrogate Recoveries (%)             |                   |   |            |            |           |
| lashingland 10                       |                   |   |            |            |           |
| Naphthalene-d8                       | 113               |   |            |            |           |
| Acenaphthene-d10<br>Phenanthrene-d10 | 98                |   |            |            |           |
|                                      | 96                |   |            |            |           |
| Benzo(a)pyrene-d12                   | 139               | N |            |            |           |
| 5b(H)-Cholane                        |                   |   |            |            |           |
|                                      |                   |   |            |            |           |

The Business of Innovation

# Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                       | Procedural Blank  |  |
|---------------------------------|-------------------|--|
| Battelle ID                     | DI 033DC D        |  |
| Sample Type                     | BL033PB-P         |  |
|                                 | PB                |  |
| Collection Date                 | 10/15/07          |  |
| Extraction Date                 | 10/15/07          |  |
| Analysis Date                   | 10/24/07          |  |
| Analytical Instrument           | MS                |  |
| % Moisture                      | 22.07             |  |
| % Lipid                         | NA                |  |
| Matrix                          | SEDIMENT          |  |
| Sample Size                     | 11.03             |  |
| Size Unit-Basis                 |                   |  |
| Units                           | G_DRY<br>NG/G DRY |  |
|                                 |                   |  |
| C3-Alkylbenzenes                | U                 |  |
| C4-Alkylbenzenes                | U                 |  |
| C5-Alkylbenzenes                | U                 |  |
| C6-Alkylbenzenes                | U                 |  |
| Benzo(b)thiophene               | Ŭ                 |  |
| C1-benzo(b)thiophenes           | ŭ                 |  |
| C2-benzo(b)thiophenes           | Ŭ                 |  |
| C3-benzo(b)thiophenes           |                   |  |
| C4-benzo(b)thiophenes           | u                 |  |
|                                 | U                 |  |
| Naphthalene                     | 0.82 J            |  |
| C1-Naphthalenes                 | 0.12 J            |  |
| C2-Naphthalenes                 | U                 |  |
| C3-Naphthalenes                 | U                 |  |
| C4-Naphthalenes                 | U                 |  |
| C1-Biphenyls + Dibenzofuran     | Ŭ                 |  |
| Biphenyl                        | Ŭ                 |  |
| C2-Biphenyls + C1-Dibenzofurans | Ŭ                 |  |
| Acenaphthylene                  | Ŭ                 |  |
| Acenaphthene                    |                   |  |
| Dibenzofuran                    | U                 |  |
|                                 | U                 |  |
| Fluorene                        | u                 |  |
| C1-Fluorenes                    | U                 |  |
| C2-Fluorenes                    | U                 |  |
| C3-Fluorenes                    | U                 |  |
| C4-Fluorenes                    | Ũ                 |  |
| Anthracene                      | ŭ                 |  |
| Phenanthrene                    | Ŭ                 |  |
| C1-Phenanthrenes/Anthracenes    | Ŭ                 |  |
| C2-Phenanthrenes/Anthracenes    |                   |  |
| C3-Phenanthrenes/Anthracenes    | U                 |  |
| C4-Phenanthrenes/Anthracenes    | U                 |  |
| Retene                          | U                 |  |
|                                 | U                 |  |
| Dibenzothiophene                | U                 |  |
| C1-Dibenzothiophenes            | U                 |  |
| C2-Dibenzothiophenes            | U                 |  |
| C3-Dibenzothiophenes            | Ū                 |  |
| C4-Dibenzothiophenes            | ŭ                 |  |
| luoranthene                     | Ŭ                 |  |
| Pyrene                          |                   |  |
| C1-Fluoranthenes/Pyrenes        | U                 |  |
| 22-Fluoranthenes/Pyrenes        | U                 |  |
|                                 | U                 |  |
| 3-Fluoranthenes/Pyrenes         | U                 |  |
| 24-Fluoranthenes/Pyrenes        | U                 |  |
| 0-Benzo(b)naphthothiophenes     | U<br>U            |  |
| 1-Benzo(b)naphthothiophenes     | U                 |  |
| 2-Benzo(b)naphthothiophenes     | Ŭ                 |  |
| 3-Benzo(b)naphthothiophenes     | ũ                 |  |
| 4-Benzo(b)naphthothiophenes     | Ŭ                 |  |
|                                 | U.                |  |
| enzo(a)anthracene               | 11                |  |
| enzo(a)anthracene<br>hrysene    | U<br>U            |  |

The Business of Innovation

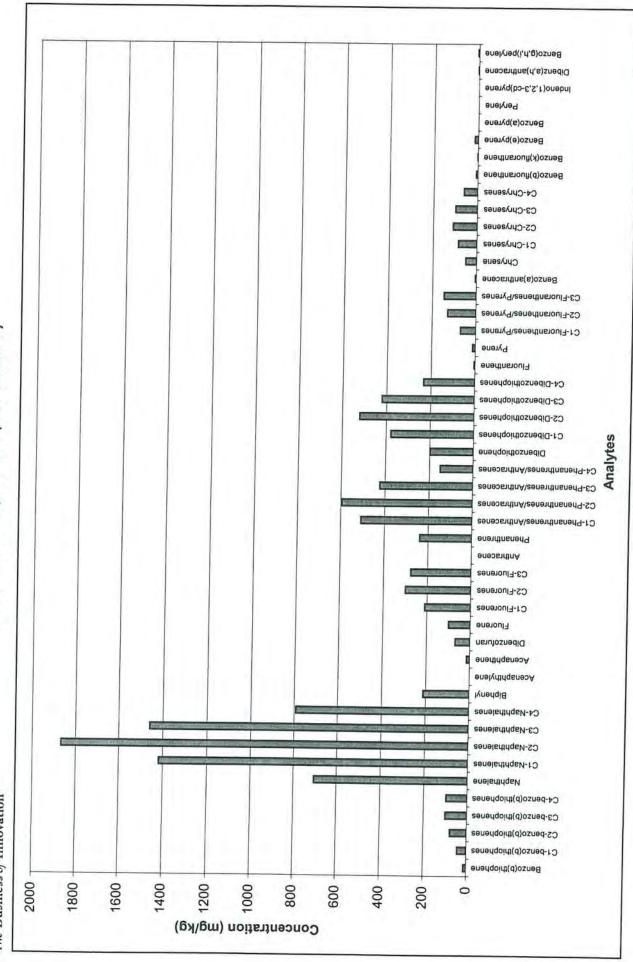
| Client ID                | Procedural Blank |  |
|--------------------------|------------------|--|
| Battelle ID              | BL033PB-P        |  |
| Sample Type              | PB               |  |
| Collection Date          | 10/15/07         |  |
| Extraction Date          | 10/15/07         |  |
| Analysis Date            | 10/24/07         |  |
| Analytical Instrument    | MS               |  |
| % Moisture               | 22.07            |  |
| % Lipid                  | NA               |  |
| Matrix                   | SEDIMENT         |  |
| Sample Size              | 11.03            |  |
| Size Unit-Basis          | G DRY            |  |
| Units                    | NG/G_DRY         |  |
| C1-Chrysenes             | U                |  |
| C2-Chrysenes             | Ŭ                |  |
| C3-Chrysenes             | Ŭ                |  |
| C4-Chrysenes             | Ŭ                |  |
| Benzo(b)fluoranthene     | Ũ                |  |
| Benzo(k)fluoranthene     | Ŭ                |  |
| Benzo(e)pyrene           | Û                |  |
| Benzo(a)pyrene           | U                |  |
| Perylene                 | Û                |  |
| ndeno(1,2,3-cd)pyrene    | Û                |  |
| Dibenz(a,h)anthracene    | U                |  |
| Benzo(g,h,i)perylene     | Ū                |  |
| Total PAH                | 0.94 J           |  |
| Surrogate Recoveries (%) |                  |  |
|                          |                  |  |
| Naphthalene-d8           | 108              |  |
| Acenaphthene-d10         | 96               |  |
| Phenanthrene-d10         | 93               |  |
| Benzo(a)pyrene-d12       | 121 N            |  |
| bb(H)-Cholane            | 100              |  |

The Business of Innovation

| Client ID                                                                                                       | 060208-03: Sand<br>White Quartz, -50+7( |   |             |            |           |  |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|---|-------------|------------|-----------|--|
| Part In the                                                                                                     |                                         |   |             |            |           |  |
| Battelle ID                                                                                                     | BL034LCS-F                              |   |             |            |           |  |
| Sample Type                                                                                                     | LCS                                     |   |             |            |           |  |
| Collection Date                                                                                                 | 10/15/07                                |   |             |            |           |  |
| Extraction Date                                                                                                 | 10/15/07                                |   |             |            |           |  |
| Analysis Date                                                                                                   | 10/24/07                                |   |             |            |           |  |
| Analytical Instrument                                                                                           | MS                                      |   |             |            |           |  |
| % Moisture                                                                                                      | NA                                      |   |             |            |           |  |
| % Lipid                                                                                                         | NA                                      |   |             |            |           |  |
| Matrix                                                                                                          | SEDIMENT                                |   |             |            |           |  |
| Sample Size                                                                                                     | NA                                      |   |             |            |           |  |
| Size Unit-Basis                                                                                                 | NA                                      |   |             |            |           |  |
| Units                                                                                                           | NG                                      | 1 | Target      | % Recovery | Qualifier |  |
| C3-Alkylbenzenes                                                                                                |                                         | U |             |            |           |  |
| C4-Alkylbenzenes                                                                                                |                                         | Ŭ |             |            |           |  |
| C5-Alkylbenzenes                                                                                                |                                         | ŭ |             |            |           |  |
| C6-Alkylbenzenes                                                                                                |                                         | ŭ |             |            |           |  |
| Benzo(b)thiophene                                                                                               | 2229.17                                 |   | 2508.50     | 89         |           |  |
| C1-benzo(b)thiophenes                                                                                           |                                         | U | 2000.00     | 00         |           |  |
| C2-benzo(b)thiophenes                                                                                           |                                         | ŭ |             |            |           |  |
| C3-benzo(b)thiophenes                                                                                           |                                         | Ŭ |             |            |           |  |
| C4-benzo(b)thiophenes                                                                                           |                                         | Ũ |             |            |           |  |
| Naphthalene                                                                                                     | 2498.65                                 |   | 2500.50     | 100        |           |  |
| C1-Naphthalenes                                                                                                 | 100001                                  | U |             | 100        |           |  |
| C2-Naphthalenes                                                                                                 |                                         | ū |             |            |           |  |
| C3-Naphthalenes                                                                                                 |                                         | Ū |             |            |           |  |
| C4-Naphthalenes                                                                                                 |                                         | U |             |            |           |  |
| C1-Biphenyls + Dibenzofuran                                                                                     |                                         | Ú |             |            |           |  |
| Biphenyl                                                                                                        | 2082.17                                 |   | 2504.25     | 83         |           |  |
| C2-Biphenyls + C1-Dibenzofurans                                                                                 |                                         | U | 2007.00     |            |           |  |
| Acenaphthylene                                                                                                  | 2301.46                                 |   | 2502.25     | 92         |           |  |
| Acenaphthene                                                                                                    | 2451.23                                 |   | 2501.63     | 98         |           |  |
| Dibenzofuran                                                                                                    | 2068.13                                 |   | 2504.75     | 83         |           |  |
| Fluorene                                                                                                        | 2285.22                                 |   | 2501.38     | 91         |           |  |
| C1-Fluorenes                                                                                                    |                                         | U | Decelores.  |            |           |  |
| C2-Fluorenes                                                                                                    |                                         | U |             |            |           |  |
| C3-Fluorenes                                                                                                    |                                         | U |             |            |           |  |
| C4-Fluorenes                                                                                                    |                                         | U |             |            |           |  |
| Anthracene                                                                                                      | 2095.12                                 |   | 2500.38     | 84         |           |  |
| Phenanthrene                                                                                                    | 2091                                    |   | 2501.25     | 84         |           |  |
| C1-Phenanthrenes/Anthracenes                                                                                    |                                         | U |             |            |           |  |
| C2-Phenanthrenes/Anthracenes                                                                                    |                                         | U |             |            |           |  |
| C3-Phenanthrenes/Anthracenes                                                                                    |                                         | U |             |            |           |  |
| C4-Phenanthrenes/Anthracenes                                                                                    |                                         | U |             |            |           |  |
| Retene                                                                                                          |                                         | U |             |            |           |  |
| Dibenzothiophene                                                                                                | 1838.31                                 |   | 2502.50     | 73         |           |  |
| C1-Dibenzothlophenes                                                                                            |                                         | U |             |            |           |  |
| C2-Dibenzothiophenes                                                                                            |                                         | U |             |            |           |  |
| C3-Dibenzothiophenes                                                                                            |                                         | U |             |            |           |  |
| C4-Dibenzothiophenes                                                                                            |                                         | U |             |            |           |  |
| Fluoranthene                                                                                                    | 2132.27                                 |   | 2501.25     | 85         |           |  |
| Pyrene                                                                                                          | 2165.99                                 |   | 2500.88     | 87         |           |  |
| C1-Fluoranthenes/Pyrenes                                                                                        |                                         | U |             |            |           |  |
| C2-Fluoranthenes/Pyrenes                                                                                        |                                         | U |             |            |           |  |
| C3-Fluoranthenes/Pyrenes                                                                                        |                                         | U |             |            |           |  |
| C4-Fluoranthenes/Pyrenes                                                                                        |                                         | U |             |            |           |  |
| C0-Benzo(b)naphthothiophenes                                                                                    |                                         | U |             |            |           |  |
| C1-Benzo(b)naphthothiophenes                                                                                    |                                         | U |             |            |           |  |
| C2-Benzo(b)naphthothiophenes                                                                                    |                                         | U |             |            |           |  |
| C3-Benzo(b)naphthothiophenes<br>C4-Benzo(b)naphthothiophenes                                                    |                                         | U |             |            |           |  |
| Contraction of the second s |                                         | U | - interests | 1.12       |           |  |
| Benzo(a)anthracene                                                                                              | 2291.31                                 |   | 2500.63     | 92         |           |  |
|                                                                                                                 |                                         |   |             |            |           |  |

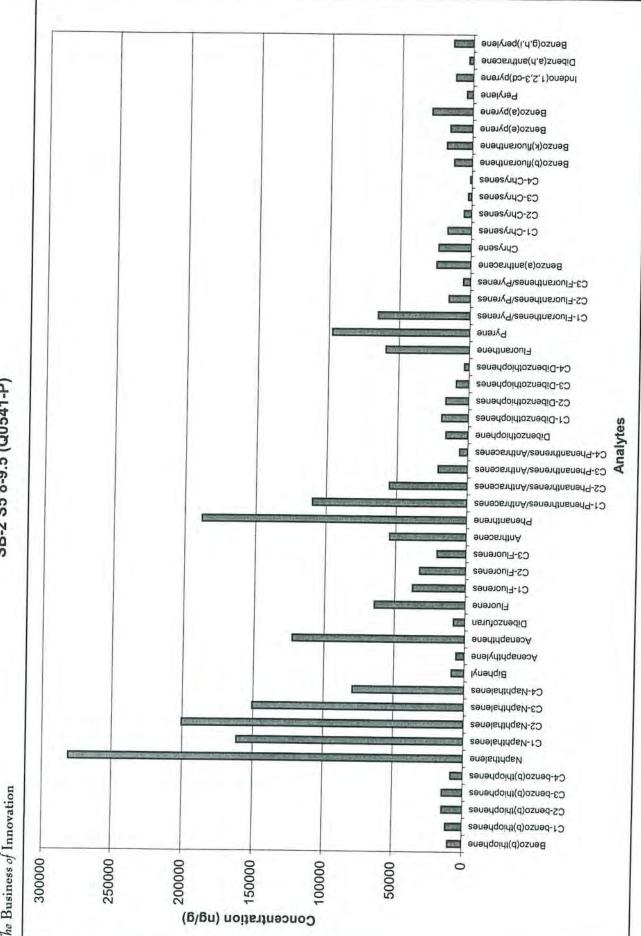
The Business of Innovation

| Client ID                | 060208-03: Sand,<br>White Quartz, -50+70 |   |          |          |           |  |
|--------------------------|------------------------------------------|---|----------|----------|-----------|--|
| Battelle ID              | BL034LCS-P                               |   |          |          |           |  |
| Sample Type              | LCS                                      |   |          |          |           |  |
| Collection Date          | 10/15/07                                 |   |          |          |           |  |
| Extraction Date          | 10/15/07                                 |   |          |          |           |  |
| Analysis Date            | 10/24/07                                 |   |          |          |           |  |
| Analytical Instrument    | MS                                       |   |          |          |           |  |
| % Moisture               | NA                                       |   |          |          |           |  |
| % Lipid                  | NA                                       |   |          |          |           |  |
| Matrix                   | SEDIMENT                                 |   |          |          |           |  |
| Sample Size              | NA                                       |   |          |          |           |  |
| Size Unit-Basis          | NA                                       |   |          |          |           |  |
| Units                    | NG                                       | - | Target % | Recovery | Qualifier |  |
| Chrysene                 | 2168.08                                  |   | 2501.00  | 87       |           |  |
| C1-Chrysenes             |                                          | U | 202 (202 | 200      |           |  |
| C2-Chrysenes             |                                          | U |          |          |           |  |
| C3-Chrysenes             |                                          | U |          |          |           |  |
| C4-Chrysenes             |                                          | U |          |          |           |  |
| Benzo(b)fluoranthene     | 2605.55                                  |   | 2502.13  | 104      |           |  |
| Benzo(k)fluoranthene     | 2769.68                                  |   | 2501.38  | 111      |           |  |
| Benzo(e)pyrene           | 2446.43                                  |   | 2503.50  | 98       |           |  |
| Benzo(a)pyrene           | 2764.71                                  |   | 2502.00  | 111      |           |  |
| Perylene                 | 2683.02                                  |   | 2505.13  | 107      |           |  |
| ndeno(1,2,3-cd)pyrene    | 2979.41                                  |   | 2501.25  | 119      |           |  |
| Dibenz(a,h)anthracene    | 2790.14                                  |   | 2501.38  | 112      |           |  |
| Benzo(g,h,i)perylene     | 2908.59                                  |   | 2500.75  | 116      |           |  |
| Total PAH                | 50416.47                                 |   |          |          |           |  |
| Surrogate Recoveries (%) |                                          |   |          |          |           |  |
| Naphthalene-d8           | 92                                       |   |          |          |           |  |
| Acenaphthene-d10         | 92<br>81                                 |   |          |          |           |  |
| henanthrene-d10          | 79                                       |   |          |          |           |  |
| lenzo(a)pyrene-d12       | 111                                      |   |          |          |           |  |
| b(H)-Cholane             | 82                                       |   |          |          |           |  |


Battelle The Business of Innovation

Procedural Blank (BL033PB-P)

|  |   |  | C1-Chrysenes<br>C2-Chrysenes<br>Benzo(b)fluoranthenes                                        |
|--|---|--|----------------------------------------------------------------------------------------------|
|  |   |  | C2-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes<br>Benzo(a)anthracene<br>Chrysene       |
|  |   |  | C3-Dibenzothiophenes<br>C4-Dibenzothiophenes<br>Pyrene<br>C1-Fluoranthenes/Pyrenes           |
|  |   |  | C4-PhenanthrenestAnthrecenes<br>Dibenzothiophenes<br>C2-Dibenzothiophenes                    |
|  |   |  | C3-Phenanthrenes/Anthracenes<br>C2-Phenanthrenes/Anthracenes<br>C2-Phenanthrenes/Anthracenes |
|  |   |  | C3-Fluorenes<br>C1-Fluorenes<br>C3-Fluorenes                                                 |
|  |   |  | Biphenyl<br>Acensphithgene<br>Acensphithene<br>Dibenzotuen                                   |
|  |   |  | C4-Naphthalenes<br>C3-Naphthalenes<br>C2-Naphthalenes                                        |
|  |   |  | C3-Naphthalenes                                                                              |
|  | 1 |  | Naphthalene                                                                                  |




# GO98: North Slope Crude (BL042NSC-P)





SB-2 S5 8-9.5 (Q0541-P)



| Battelle | Susiness of Innovation |
|----------|------------------------|
|          | The B                  |

# GP-12 S2 23-24 (Q0545-P)

| Полновите продукти         Полновите продукти           0         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00 | 400000 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|

The Business of Innovation

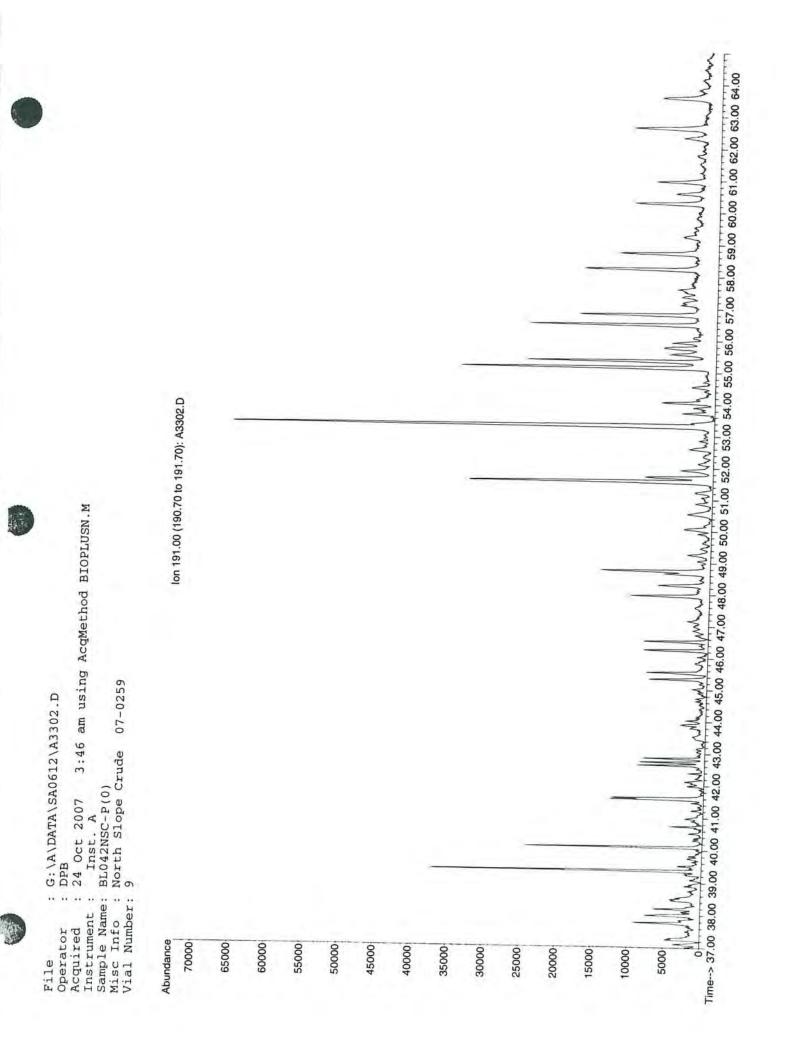
| Client ID                           | SB-2 S5 8-9.5 | GP-12 S2 23-24 |
|-------------------------------------|---------------|----------------|
| Battelle ID                         | Q0541-P       | 00545.0        |
| Sample Type                         |               | Q0545-P        |
| Collection Date                     | SA            | SA             |
| Extraction Date                     | 09/17/07      | 09/20/07       |
|                                     | 10/15/07      | 10/15/07       |
| Analysis Date                       | 10/24/07      | 10/24/07       |
| Analytical Instrument               | MS            | MS             |
| % Moisture                          | 18.05         | 26.35          |
| % Lipid                             | NA            | NA             |
| Matrix                              | SOIL          | SOIL           |
| Sample Size                         | 4.59          | 3.93           |
| Size Unit-Basis                     | G DRY         | G DRY          |
| Units                               | NG/G_DRY      | NG/G_DRY       |
| C23 Tricyclic Terpane               | 808.38        | U              |
| C29 Tricyclic Terpane -22S          | 186.44        | U              |
| C29 Tricyclic Terpane -22R          | 161.44        |                |
| 18a(H)-22,29,30-Trisnomeohopane -TS | 106.17        | U              |
| 17a(H)-22,29,30-Trisnorhopane -TM   |               | U              |
| 30-Norhopane                        | 206.65        | 9.32 J         |
| 18a(H) & 18b(H)-Oleananes           | 585.14        | 17.21 J        |
|                                     | 249.57        | Ŭ              |
| Hopane                              | 1145.01       | 25.49          |
| 30-Homohopane -22S                  | 348.58        | 7.89 J         |
| 30-Homohopane -22R                  | 256.76        | 9.62 J         |
| 13b(H),17a(H)-20S-Diacholestane     | 933.64        | U              |
| 13b(H),17a(H)-20R-Diacholestane     | 506,1         | U              |
| 14a(H),17a(H)-20R-methylcholestane  | 2052.28       | 1.56 J         |
| 14a(H),17a(H)-20S-Ethylcholestane   | 792.41        | 1.33 J         |
| 14a(H),17a(H)-20R-Ethylcholestane   | 1253.6        | U              |
| C21-TAS                             | 233.87        | 96.2           |
| C26-TAS(20S)                        | 316.84        | U              |
| C26,C27-TAS                         | 1112.01       | 3.93 J         |
| C27-TAS(20R)                        | 582.47        | 1.57 J         |
| C28-TAS(20S)                        | 356.92        | 1.69 J         |
| C28-TAS(20R)                        | 285.06        |                |
| C21-MAS                             | 181.17        | 1.48 J         |
| C22-MAS                             | 79.43         | 2.44 J         |
| C27-MAS                             |               | U              |
| C27-20R-MAS                         | 77.57         | 5.44 J         |
| C27-20S-MAS                         | 450.42        | 67.48          |
| C28-20S-MAS                         | 331.86        | 18.33          |
| C27-C2920S/R-MAS                    | 473.27        | 5.27 J         |
|                                     | 595.97        | 237.34         |
| C29-20S-MAS                         | 1813.24       | U              |
| C29-20R-MAS                         | 389.19        | 626.34         |
| TAS_245                             | U             | U              |
| MAS_239                             | U             | U              |
| Surrogate Recoveries (%)            |               |                |
| Naphthalene-d8                      | 123 N         | 103            |
| Acenaphthene-d10                    | 189 N         | 110            |
| Phenanthrene-d10                    | 94            | 93             |
| Benzo(a)pyrene-d12                  | 107 D         | 93<br>72 D     |
| 5b(H)-Cholane                       | 209 N         |                |
| 104 J. 40 11 11 11 1                | 203 14        | 1182 N         |

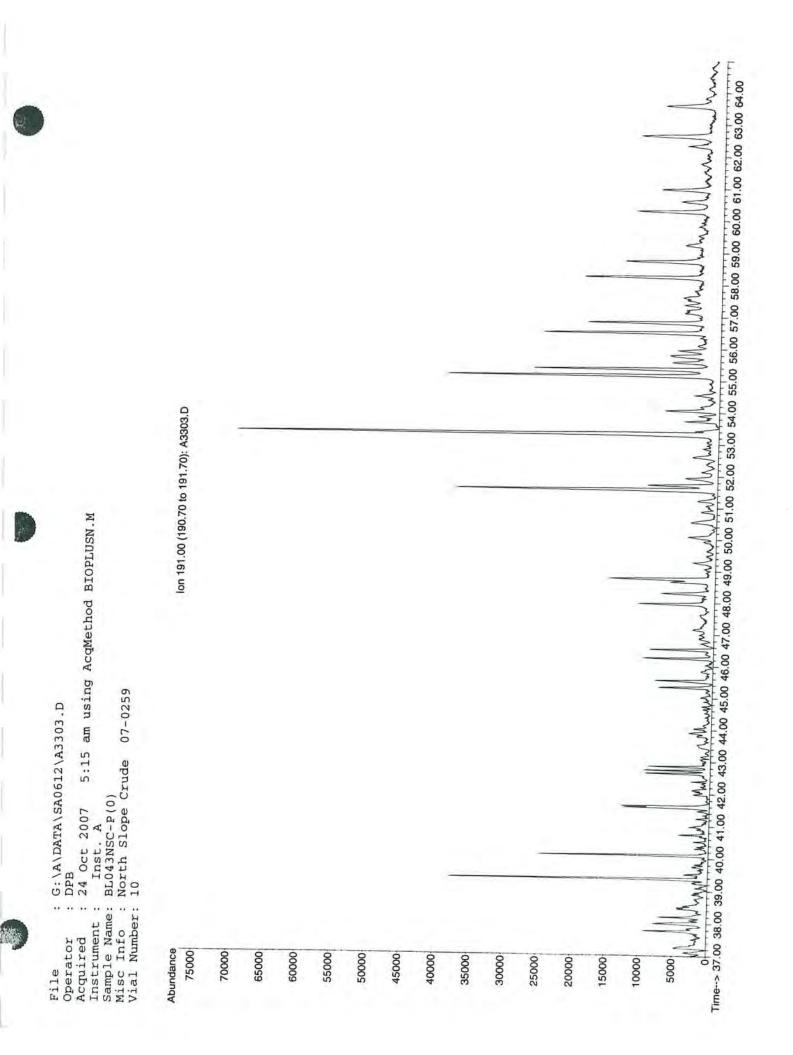
The Business of Innovation

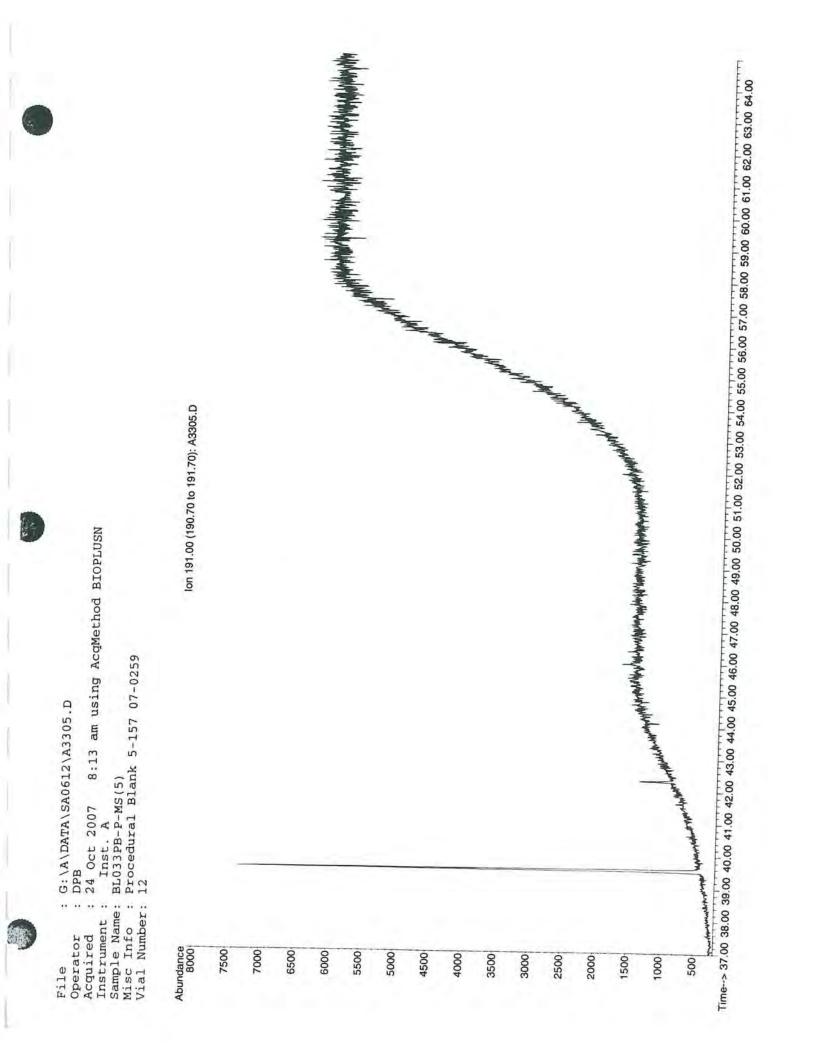
| Client ID                           | 060208-03: Sand,<br>White Quartz, -50+70 |                   |           |
|-------------------------------------|------------------------------------------|-------------------|-----------|
| Battelle ID                         | BL034LCS-P                               |                   |           |
| Sample Type                         |                                          |                   |           |
| Collection Date                     | LCS                                      |                   |           |
| Extraction Date                     | 10/15/07                                 |                   |           |
|                                     | 10/15/07                                 |                   |           |
| Analysis Date                       | 10/24/07                                 |                   |           |
| Analytical Instrument               | MS                                       |                   |           |
| % Moisture                          | NA                                       |                   |           |
| % Lipid                             | NA                                       |                   |           |
| Matrix                              | SEDIMENT                                 |                   |           |
| Sample Size                         | NA                                       |                   |           |
| Size Unit-Basis                     | NA                                       |                   |           |
| Units                               | NG                                       | Target % Recovery | Qualifier |
| CO2 Televalla Tarran                | 10                                       |                   |           |
| C23 Tricyclic Terpane               | U                                        |                   |           |
| C29 Tricyclic Terpane -22S          | U                                        |                   |           |
| C29 Tricyclic Terpane -22R          | U                                        |                   |           |
| 18a(H)-22,29,30-Trisnomeohopane -TS | U                                        |                   |           |
| 17a(H)-22,29,30-Trisnorhopane -TM   | U                                        |                   |           |
| 30-Norhopane                        | Ú                                        |                   |           |
| 18a(H) & 18b(H)-Oleananes           | Ũ                                        |                   |           |
| Hopane                              | U                                        |                   |           |
| 30-Homohopane -22S                  | Ū                                        |                   |           |
| 30-Homohopane -22R                  | Ŭ                                        |                   |           |
| 13b(H),17a(H)-20S-Diacholestane     | Ŭ                                        |                   |           |
| 13b(H),17a(H)-20R-Diacholestane     | Ŭ                                        |                   |           |
| 14a(H),17a(H)-20R-methylcholestane  | Ŭ                                        |                   |           |
| 14a(H),17a(H)-20S-Ethylcholestane   | Ŭ                                        |                   |           |
| 14a(H),17a(H)-20R-Ethylcholestane   | U                                        |                   |           |
| C21-TAS                             | Ŭ                                        |                   |           |
| C26-TAS(20S)                        |                                          |                   |           |
| C26,C27-TAS                         | U                                        |                   |           |
| C27-TAS(20R)                        | U                                        |                   |           |
| C28-TAS(208)                        | U                                        |                   |           |
| C28-TAS(20S)                        | U                                        |                   |           |
|                                     | U                                        |                   |           |
| C21-MAS                             | U                                        |                   |           |
| C22-MAS                             | U                                        |                   |           |
| C27-MAS                             | U                                        |                   |           |
| C27-20R-MAS                         | U                                        |                   |           |
| C27-20S-MAS                         | U                                        |                   |           |
| C28-20S-MAS                         | U                                        |                   |           |
| C27-C2920S/R-MAS                    | U                                        |                   |           |
| C29-20S-MAS                         | U                                        |                   |           |
| C29-20R-MAS                         | Ŭ                                        |                   |           |
| TAS_245                             | U                                        |                   |           |
| MAS_239                             | U                                        |                   |           |
|                                     |                                          |                   |           |
| Surrogate Recoveries (%)            |                                          |                   |           |
| Naphthalene-d8                      | 92                                       |                   |           |
| cenaphthene-d10                     | 81                                       |                   |           |
| Phenanthrene-d10                    |                                          |                   |           |
| Benzo(a)pyrene-d12                  | 79                                       |                   |           |
| b(H)-Cholane                        | 111                                      |                   |           |
| and a shorane                       | 82                                       |                   |           |

The Business of Innovation

| 110/0011001.1001001-0001            |                     |  |
|-------------------------------------|---------------------|--|
| Client ID                           | Procedural Blank    |  |
|                                     | and a second second |  |
| Battelle ID                         | BL033PB-P           |  |
| Sample Type                         | PB                  |  |
| Collection Date                     | 10/15/07            |  |
| Extraction Date                     | 10/15/07            |  |
| Analysis Date                       | 10/24/07            |  |
| Analytical Instrument               | MS                  |  |
| % Moisture                          | 22.07               |  |
| % Lipid                             | NA                  |  |
| Matrix                              | SEDIMENT            |  |
| Sample Size                         |                     |  |
|                                     | 11.03               |  |
| Size Unit-Basis                     | G_DRY               |  |
| Units                               | NG/G_DRY            |  |
| C23 Tricyclic Terpane               | 11                  |  |
| C29 Tricyclic Terpane -22S          | U                   |  |
|                                     | U                   |  |
| C29 Tricyclic Terpane -22R          | U                   |  |
| 18a(H)-22,29,30-Trisnomeohopane -TS | U                   |  |
| 17a(H)-22,29,30-Trisnorhopane -TM   | U                   |  |
| 30-Norhopane                        | U                   |  |
| 18a(H) & 18b(H)-Oleananes           | U                   |  |
| Hopane                              | U                   |  |
| 30-Homohopane -22S                  | Ŭ                   |  |
| 30-Homohopane -22R                  | Ŭ                   |  |
| 13b(H),17a(H)-20S-Diacholestane     | Ŭ                   |  |
| 13b(H),17a(H)-20R-Diacholestane     | Ŭ                   |  |
| 14a(H),17a(H)-20R-methylcholestane  |                     |  |
| 14a(H) 17a(H) 200 Ethylohalastane   | U                   |  |
| 14a(H),17a(H)-20S-Ethylcholestane   | U.                  |  |
| 14a(H),17a(H)-20R-Ethylcholestane   | U                   |  |
| C21-TAS                             | U                   |  |
| C26-TAS(20S)                        | U                   |  |
| C26,C27-TAS                         | U                   |  |
| C27-TAS(20R)                        | 0.23 J              |  |
| C28-TAS(20S)                        | 0.16 J              |  |
| C28-TAS(20R)                        | U                   |  |
| C21-MAS                             | Ŭ                   |  |
| C22-MAS                             | Ŭ                   |  |
| C27-MAS                             | Ŭ                   |  |
| C27-20R-MAS                         | Ŭ                   |  |
| C27-20S-MAS                         | Ŭ                   |  |
| C28-20S-MAS                         |                     |  |
| C27-C2920S/R-MAS                    | 0                   |  |
| C29-20S-MAS                         | U                   |  |
|                                     | U                   |  |
| C29-20R-MAS                         | U<br>U              |  |
| TAS_245                             | U                   |  |
| MAS_239                             | U                   |  |
|                                     |                     |  |
| Surrogate Recoveries (%)            |                     |  |
| Naphthalene-d8                      | 105                 |  |
|                                     | 108                 |  |
| Acenaphthene-d10                    | 96                  |  |
| Phenanthrene-d10                    | 93                  |  |
| Benzo(a)pyrene-d12                  | 121 N               |  |
| 5b(H)-Cholane                       | 100                 |  |
|                                     |                     |  |
|                                     |                     |  |

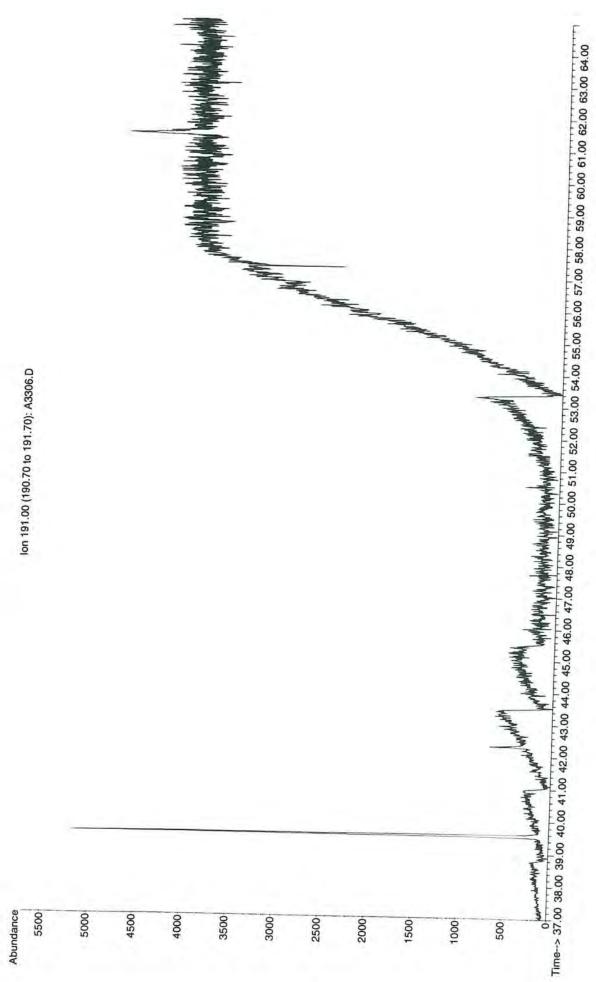

The Business of Innovation

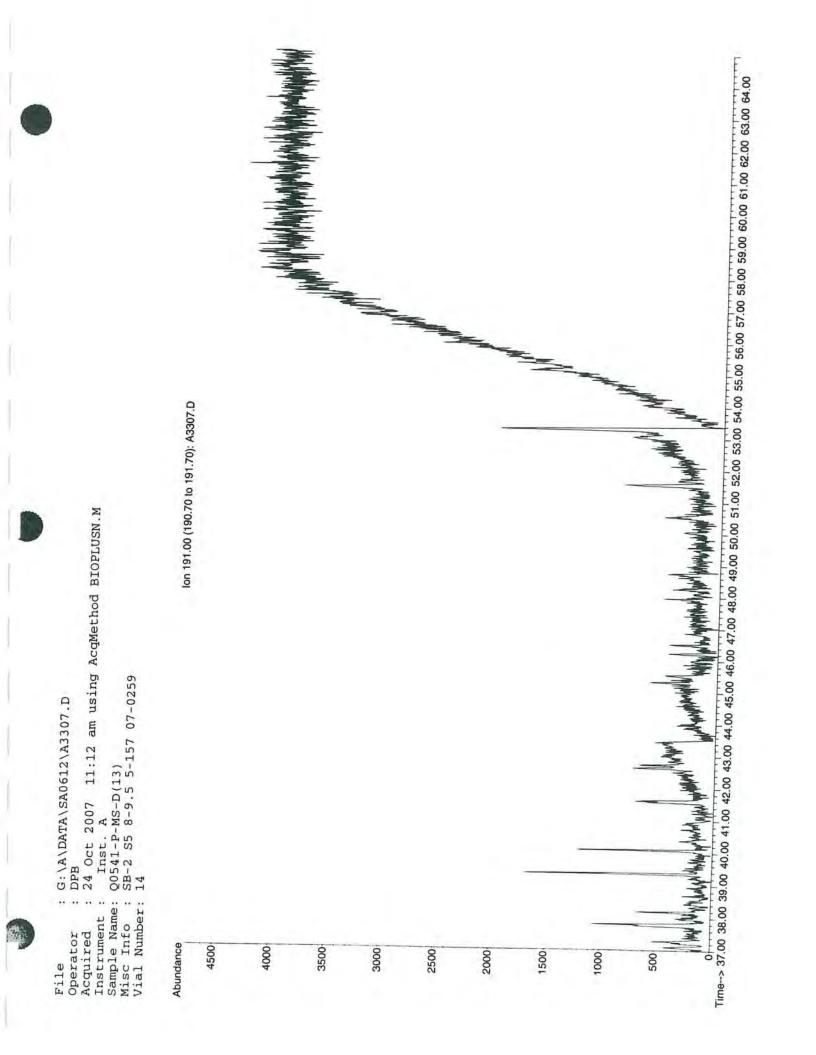

#### Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

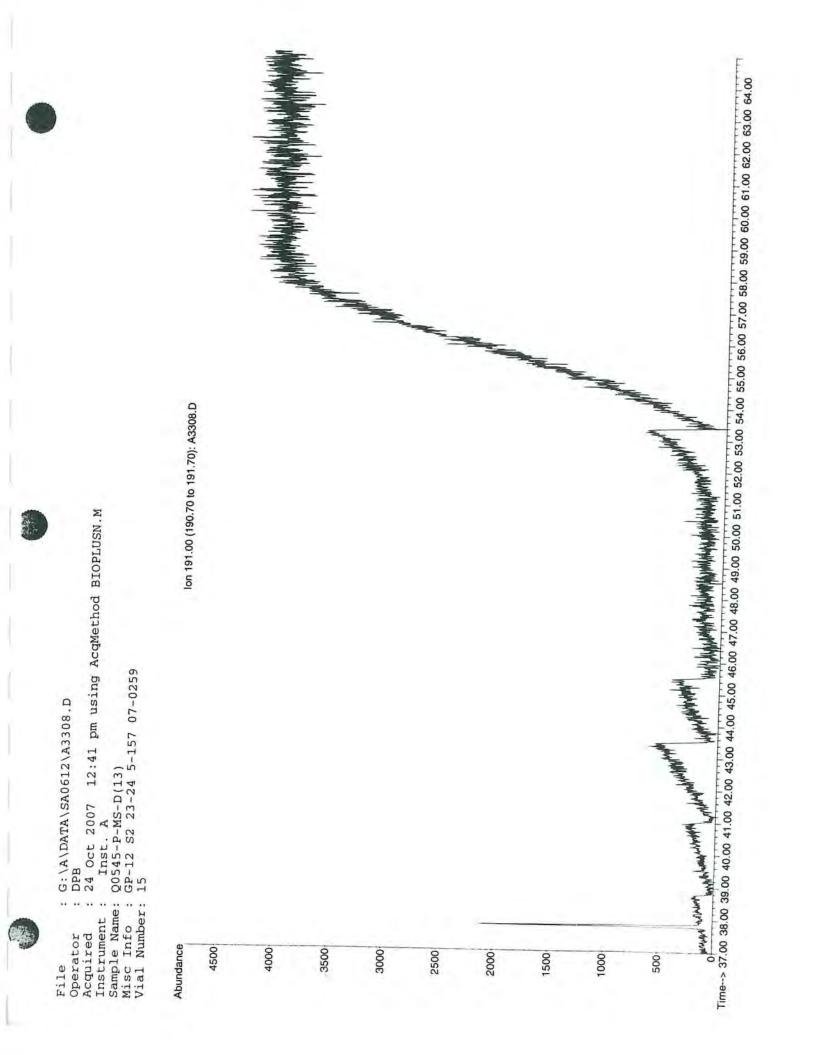

| Client ID                           | GO98: North Slope<br>Crude |            |            |          |
|-------------------------------------|----------------------------|------------|------------|----------|
| Detter ID                           | Contractor In              |            |            |          |
| Battelle ID                         | BL043NSC-P                 |            |            |          |
| Sample Type                         | NSC                        |            |            |          |
| Collection Date                     | 10/17/2007                 |            |            |          |
| Extraction Date                     | 10/17/2007                 |            |            |          |
| Analysis Date                       | 10/24/2007                 |            |            |          |
| Analytical Instrument               | MS                         |            |            |          |
| % Moisture                          | NA                         |            |            |          |
| % Lipid                             | NA                         |            |            |          |
| Matrix                              | OIL                        |            |            |          |
| Sample Size                         | 5.04                       |            |            |          |
| Size Unit-Basis                     | MG OIL                     |            |            |          |
| Units                               | MG/KG_OIL                  | Target % I | Difference | Qualifie |
| C22 Triquelle Terrere               |                            |            |            |          |
| C23 Tricyclic Terpane               | 38.41                      | 47.76      | 19.6       |          |
| C29 Tricyclic Terpane -22S          | 12.22                      | 14.70      | 16.9       |          |
| C29 Tricyclic Terpane -22R          | 11.89                      | 14.64      | 18.8       |          |
| 18a(H)-22,29,30-Trisnomeohopane -TS | 14.61                      | 15.96      | 8.5        |          |
| 17a(H)-22,29,30-Trisnorhopane -TM   | 23.47                      | 24.82      | 5.4        |          |
| 30-Norhopane                        | 63.43                      | 69.58      | 8.8        |          |
| 18a(H) & 18b(H)-Oleananes           | U                          |            |            |          |
| Hopane                              | 111.6                      | 120.14     | 7.1        |          |
| 30-Homohopane -22S                  | 60.02                      | 59.93      | 0.2        |          |
| 30-Homohopane -22R                  | 42.46                      | 39.69      | 7.0        |          |
| 13b(H), 17a(H)-20S-Diacholestane    | 38.87                      | 44.18      | 12.0       |          |
| 13b(H),17a(H)-20R-Diacholestane     | 23.96                      | 25.52      | 6.1        |          |
| 14a(H),17a(H)-20R-methylcholestane  | 31.74                      | 33.94      | 6.5        |          |
| 14a(H),17a(H)-20S-Ethylcholestane   | 37.87                      | 35.93      | 5.4        |          |
| 14a(H),17a(H)-20R-Ethylcholestane   | 38                         | 39.17      | 3.0        |          |
| C21-TAS                             | U                          |            |            |          |
| C26-TAS(20S)                        | U                          |            |            |          |
| 26,C27-TAS                          | U                          |            |            |          |
| 227-TAS(20R)                        | U                          |            |            |          |
| C28-TAS(20S)                        | U                          |            |            |          |
| 228-TAS(20R)                        | U                          |            |            |          |
| C21-MAS                             | U                          |            |            |          |
| 22-MAS                              | U                          |            |            |          |
| 27-MAS                              | U                          |            |            |          |
| 27-20R-MAS                          | U                          |            |            |          |
| 27-20S-MAS                          | U                          |            |            |          |
| 28-20S-MAS                          | U                          |            |            |          |
| 27-C2920S/R-MAS                     | u                          |            |            |          |
| 29-20S-MAS                          | U                          |            |            |          |
| 29-20R-MAS                          | U                          |            |            |          |
| AS_245                              | U                          |            |            |          |
| IAS 239                             | U                          |            |            |          |

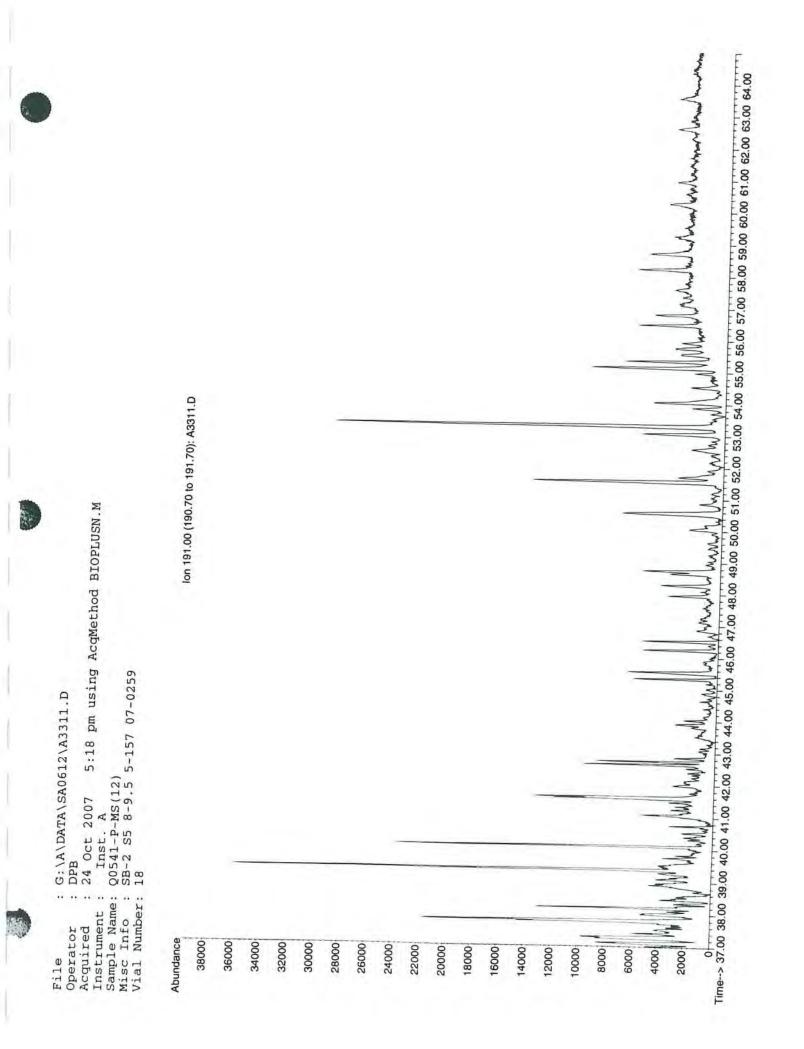
#### Surrogate Recoveries (%)

Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Benzo(a)pyrene-d12 5b(H)-Cholane



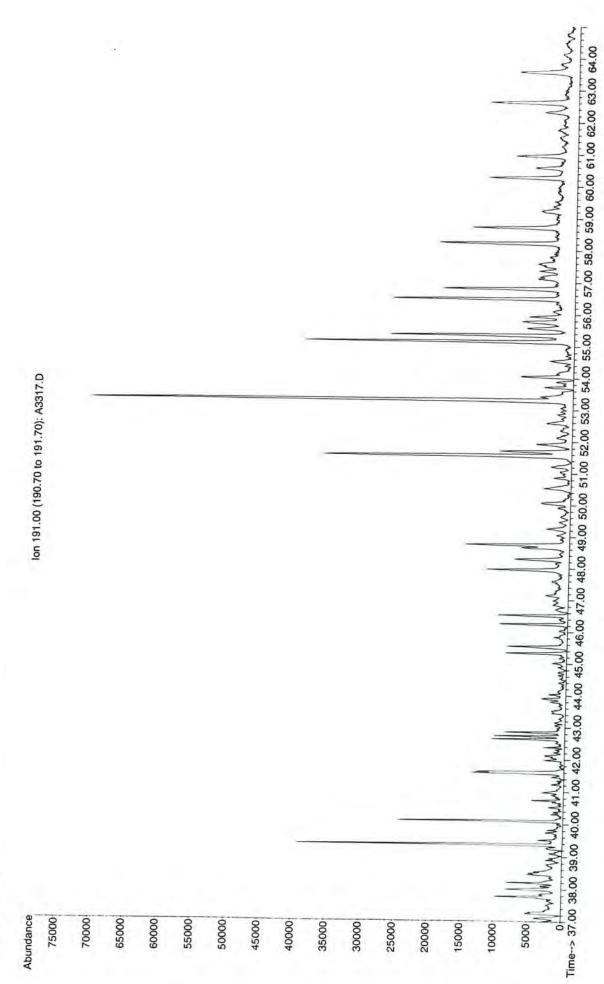

| 1306.D                              | 24 Oct 2007 9:42 am using AcqMethod BIOPLUSN.M | buo34LCS-P-MS(5)<br>Laboratory Control Sample 5-157 07-0259<br>13                     |  |
|-------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|--|
| : G:\A\DATA\SA0612\A3306.D<br>: DPB | 24 Oct 2007 9:42<br>Inst. A                    | Multiple Number: BLU34LCS-P-MS(5)<br>Misc Info : Laboratory Control<br>Mal Number: 13 |  |
| File :<br>Operator :                | scquired :<br>Instrument :                     | Wisc Info :<br>Vial Number:                                                           |  |





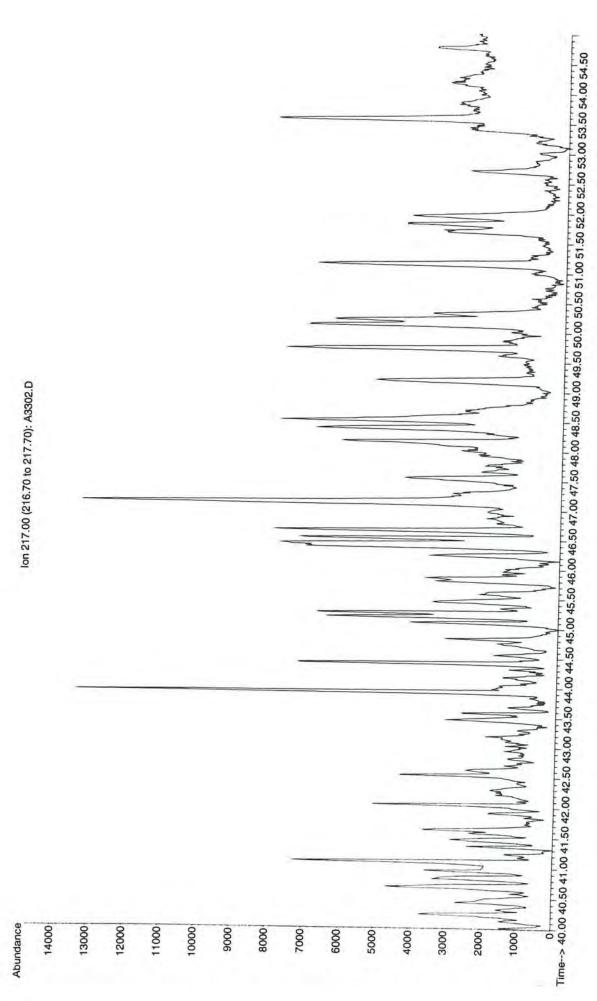






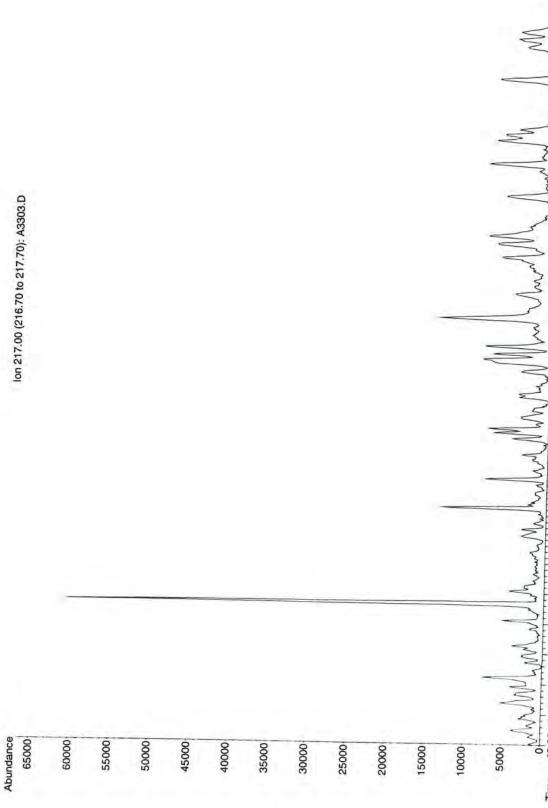

| AcqMethod BIOPLUSN.M                                                                                                                                 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| G:\A\DATA\SA0612\A3312.D<br>DPB<br>24 Oct 2007 6:47 pm using AcqMethod BIOPLUSN.M<br>Inst. A<br>Q0545-P-MS(12)<br>GP-12 S2 23-24 5-157 07-0259<br>19 |  |
| File :                                                                                                                                               |  |

| Abundance                              | 100000 | 00006 | 80000 | 70000 | 60000 | 50000 | 40000 | 30000 | 20000 | 10000 |  |
|----------------------------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| lon 191.00 (190.70 to 191.70): A3312.D |        |       |       |       |       |       |       |       |       |       |  |
| Ο                                      |        |       |       |       |       |       |       |       |       |       |  |




2:12 am using AcqMethod BIOPLUSN.M 07-0259 G: \A\DATA\SA0612\A3317.D Inst. A BL043NSC-P(0) North Slope Crude 25 Oct 2007 DPB Misc Info : Nor Vial Number: 24 .. Sample Name: Instrument Operator Acquired File



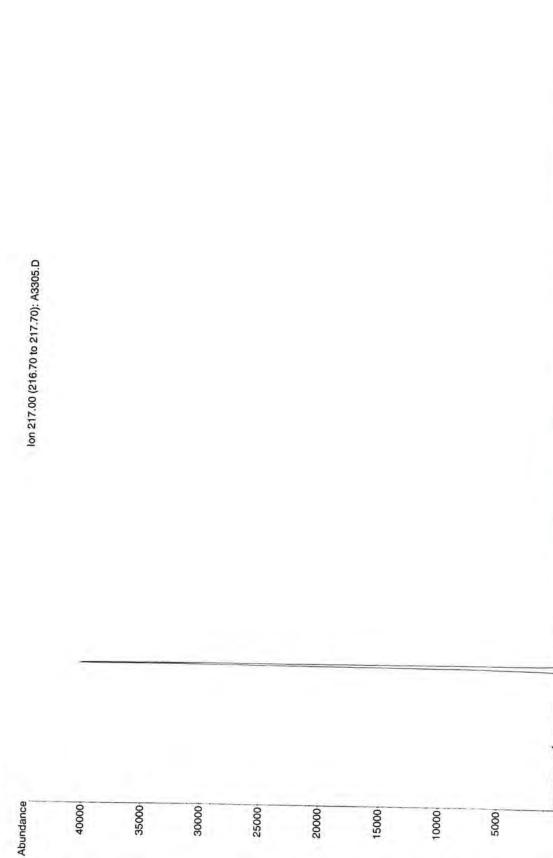



3:46 am using AcqMethod BIOPLUSN.M 07-0259 : G:\A\DATA\SA0612\A3302.D : DPB wistrument : Inst. A Sample Name: BL042NSC-P(0) Misc Info : North Slope Crude Vial Number: 9 24 Oct 2007 **Operator** Acquired File





| Acquired : 24 Oct 2007 5:15 am using AcqMethod BIOPLUSN.M<br>Instrument : Inst. A<br>Sample Name: BL043NSC-P(0)<br>Misc Info : North Slope Crude 07-0259<br>Vial Number: 10 | ii.                                                          | D. 2022A    |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------|----------------------|
| Misc Info : North Slope Crude 07-0259<br>Vial Number: 10                                                                                                                    | ed : 24 Oct 2007 5;<br>nent : Inst. A<br>Name: BL043NSC-P(0) | .5 am using | AcqMethod BIOPLUSN.M |
|                                                                                                                                                                             | ıfo : North Slope Crud<br>ımber: 10                          | 07-0259     |                      |
| Abundance                                                                                                                                                                   |                                                              |             |                      |




Time-> 40.00 40.50 41.00 41.50 42.50 43.50 43.50 44.50 45.50 45.50 45.50 45.50 45.50 48.50 47.50 48.50 48.50 48.50 48.50 48.50 50.50 50.50 50.50 51.50 52.00 52.50 53.50 53.50 54.50 54.50

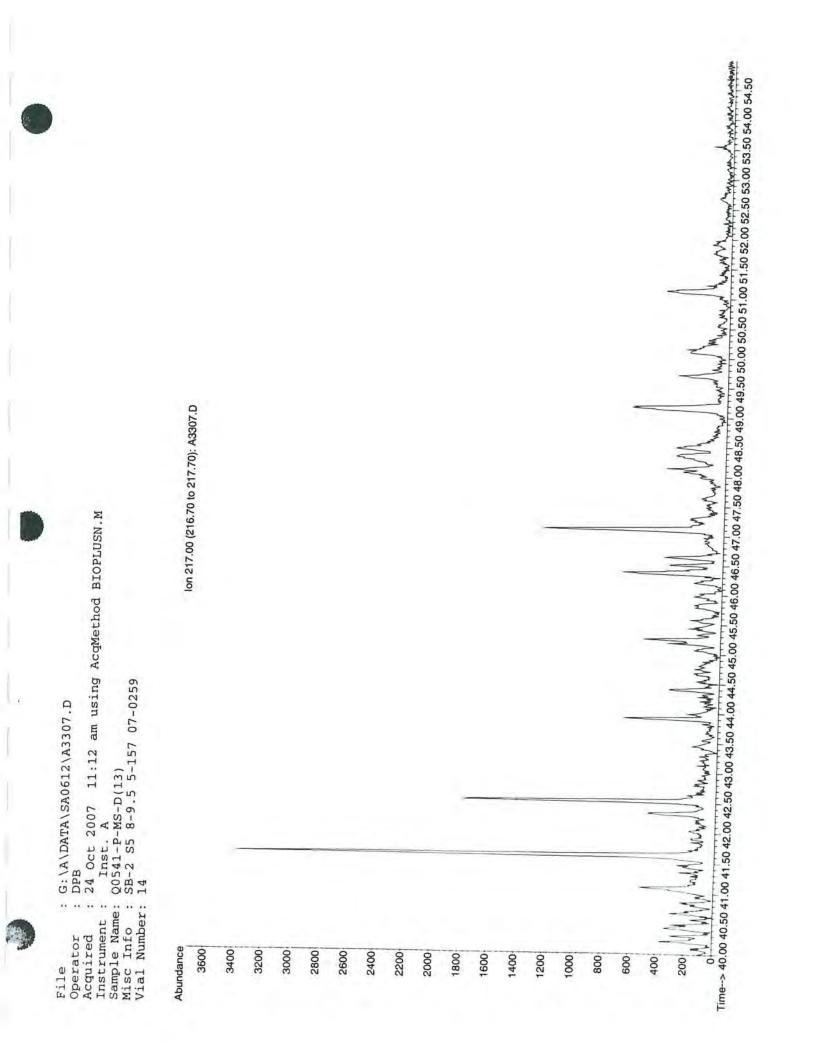


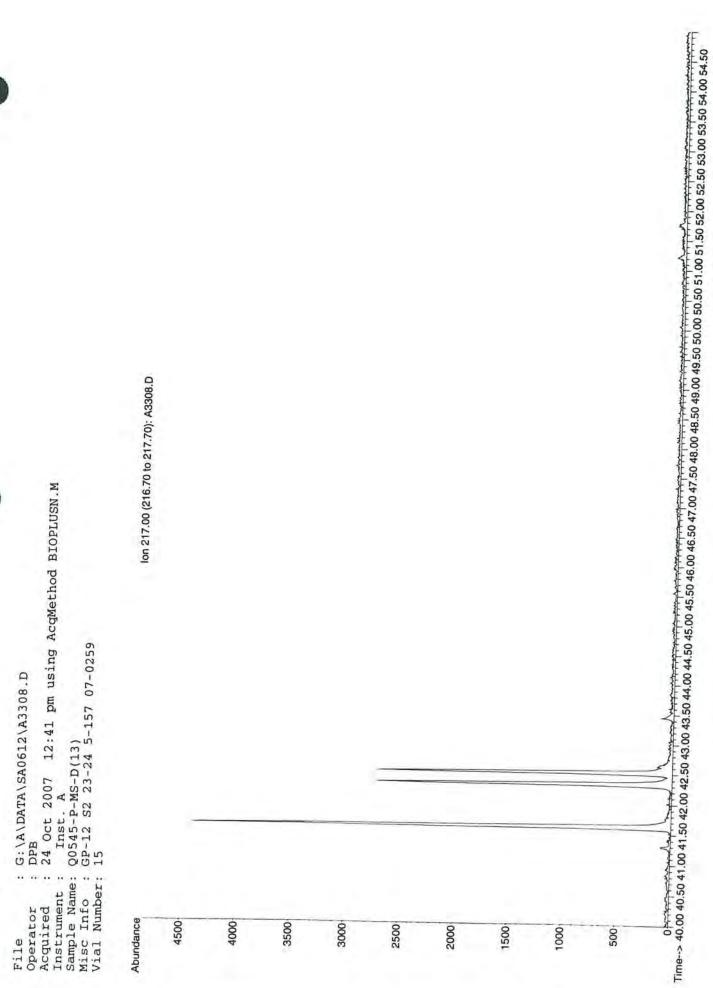
|          | BIOPLI    |
|----------|-----------|
|          | AcqMethod |
| D.D      | using     |
| 305      | am        |
| 612\A3   | 8:13      |
| TA\SA061 | 2007      |
| A\DA     | Oct       |

NSD Instrument : Inst. A Sample Name: BL033PB-P-MS(5) Misc Info : Procedural Blank 5-157 07-0259 Vial Number: 12 : G:\A : DPB 24 ... File Operator Acquired Instrument

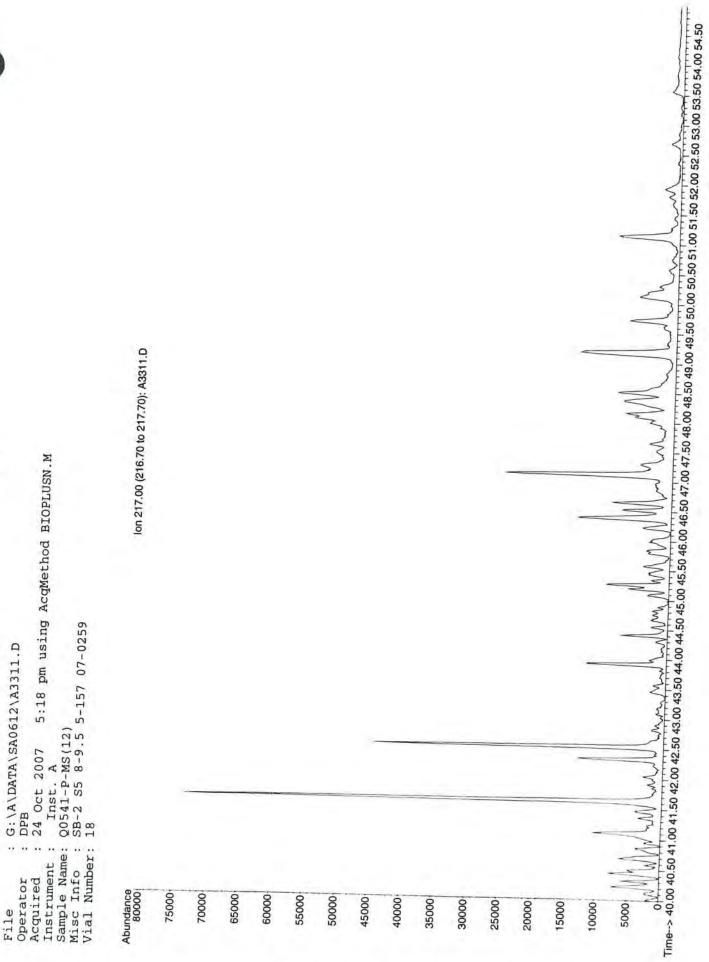


Time-> 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 48.00 48.50 49.00 49.50 50.00 50.50 51.00 51.50 52.00 52.50 53.00 53.50 54.00 54.50



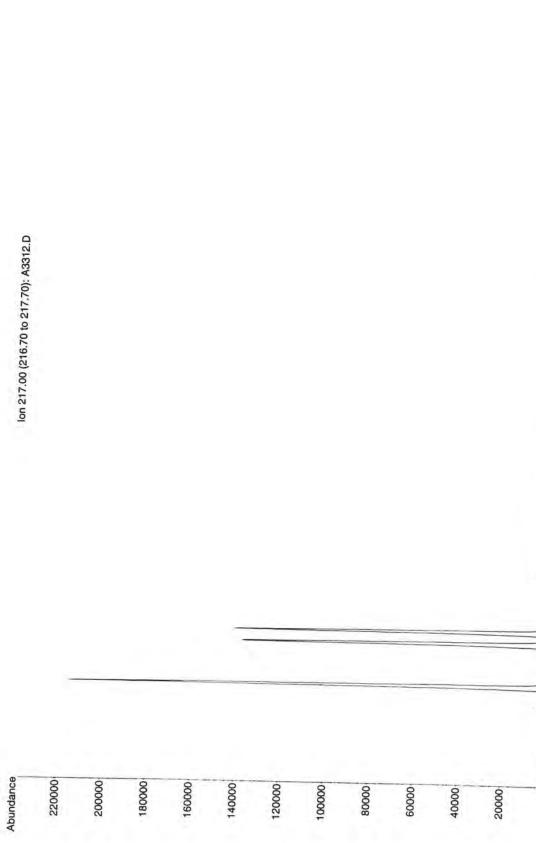


File

| 8 | 1 | 1 |  |
|---|---|---|--|
| 7 |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |

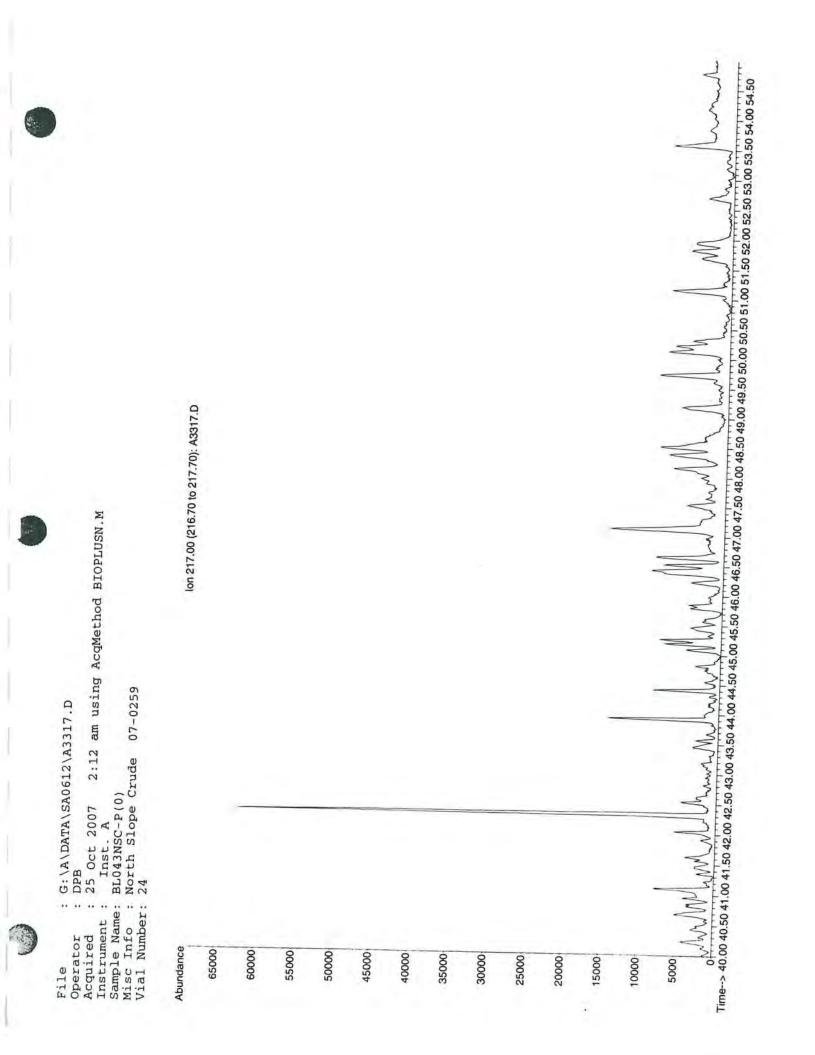

9:42 am using AcqMethod BIOPLUSN.M File : G:\A\DATA\SA0612\A3306.D Operator : DPB Acquired : 24 Oct 2007 9:42 am using AcqMethod B1 Instrument : Inst. A Sample Name: BL034LCS-P-MS(5) Misc Info : Laboratory Control Sample 5-157 07-0259 Vial Number: 13

Time--> 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.50 45.50 45.50 46.00 46.50 47.00 47.50 48.00 48.50 49.00 49.50 50.00 50.50 51.00 51.50 52.50 53.50 53.50 54.50 54.50



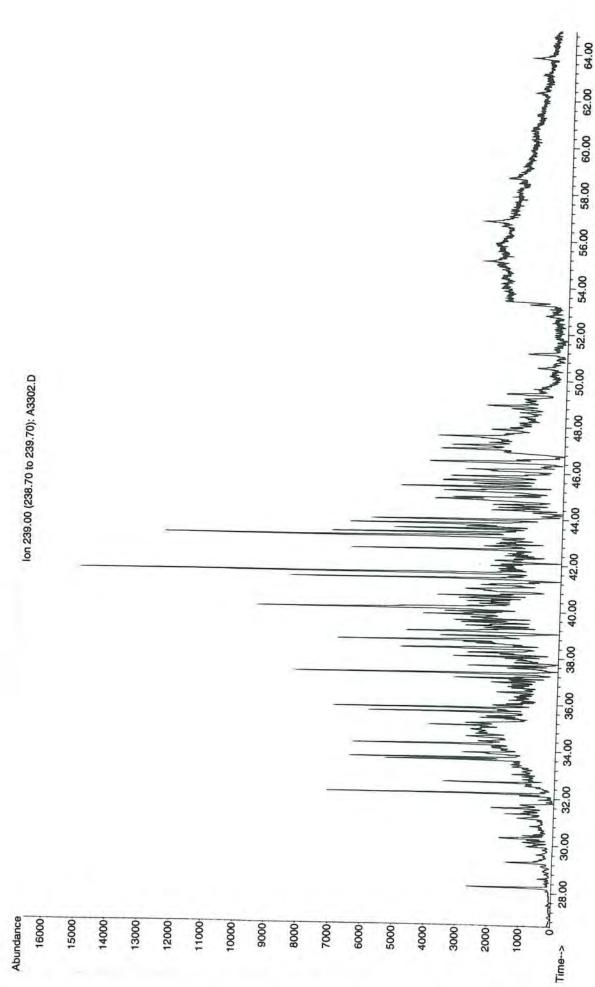


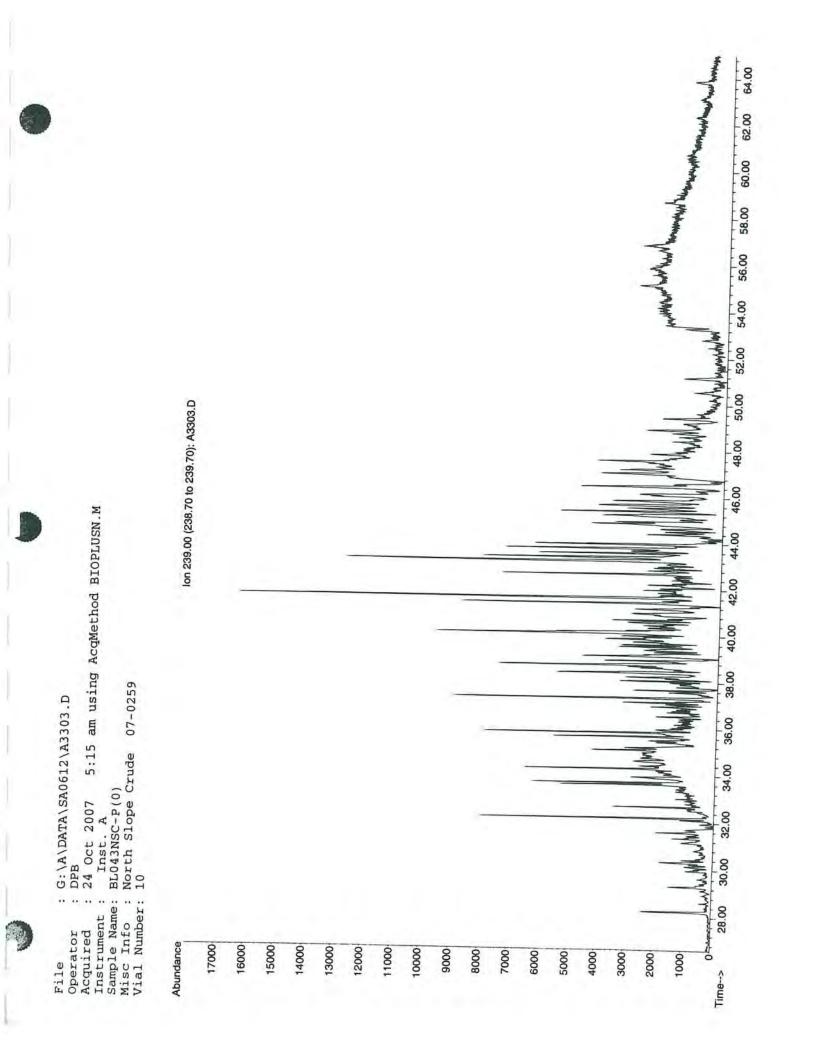





|                                     | AcqMethod BIOPLUSN.M                                                              |                                                      |
|-------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------|
| : G:\A\DATA\SA0612\A3312.D<br>: DPR | Acquired : 24 Oct 2007 6:47 pm using AcqMethod BIOPLUSN.M<br>Instrument : Inst. A | 00545-P-MS(12)<br>GP-12 S2 23-24 5-157 07-0259<br>19 |
| File :<br>Operator :                | Acquired :                                                                        | sample Name:<br>Misc Info :<br>Vial Number:          |

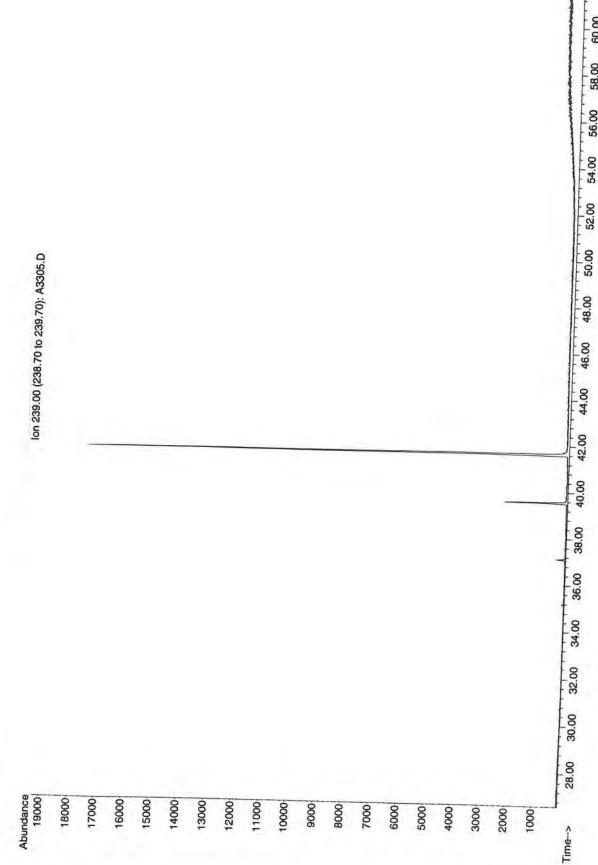




Time--> 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 45.50 47.00 47.50 48.00 48.50 49.00 49.50 50.00 50.50 51.00 51.50 52.00 52.50 53.00 53.50 54.00 54.50





3:46 am using AcqMethod BIOPLUSN.M 07-0259 G:\A\DATA\SA0612\A3302.D DPB : 24 Oct 2007 3:46 a : Inst. A ie: BL042NSC-P(0) : North Slope Crude 0 6 Sample Name: F Misc Info : N Vial Number: 5 Instrument File Operator Acquired









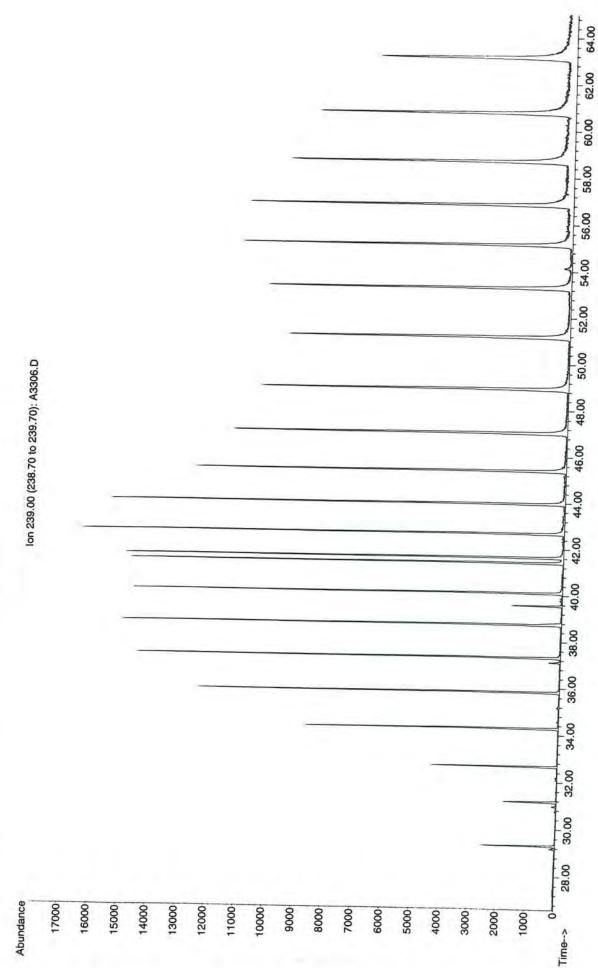

8:13 am using AcqMethod BIOPLUSN File : G:\A\DATA\SA0612\A3305.D Operator : DPB Acquired : 24 Oct 2007 8:13 am using Acq Instrument : Inst. A Sample Name: BL033PB-P-MS(5) Misc Info : Procedural Blank 5-157 07-0259 Vial Number: 12 File

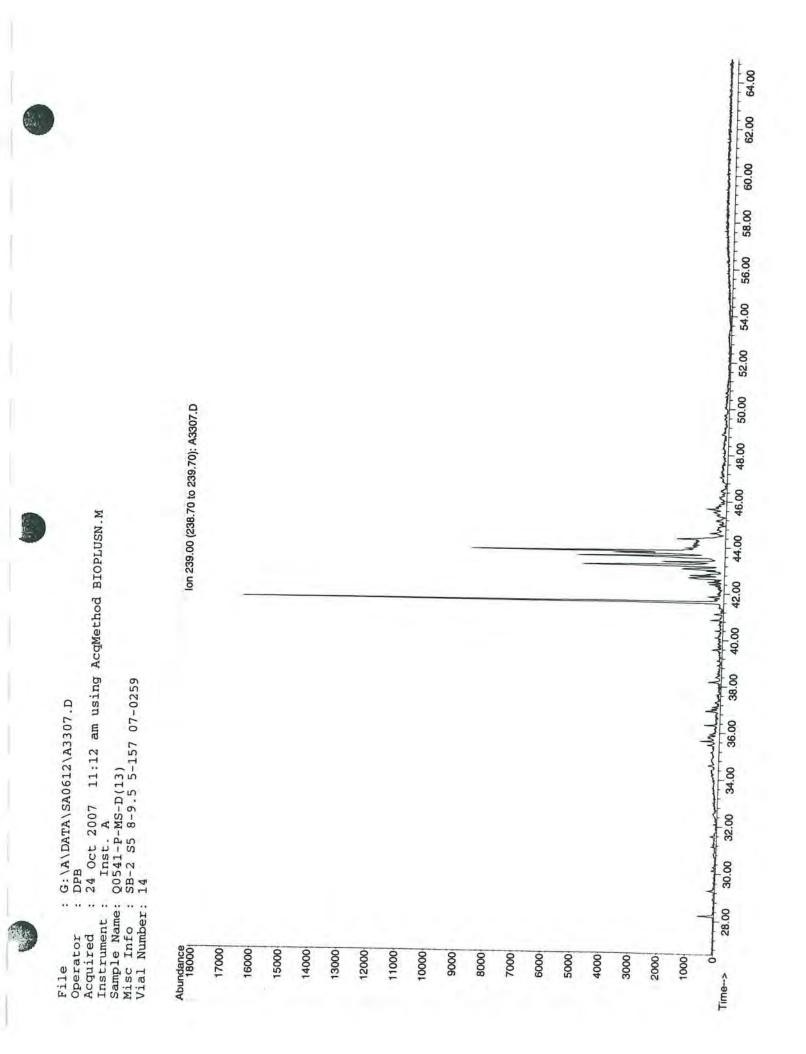


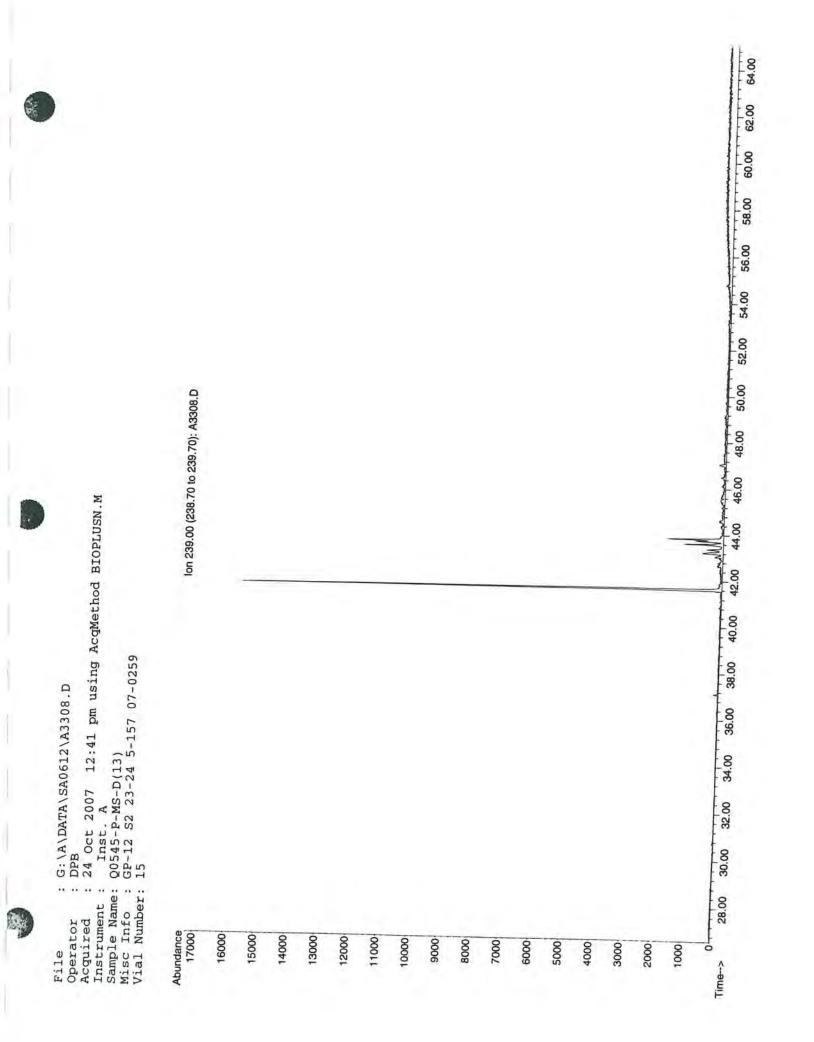
64.00

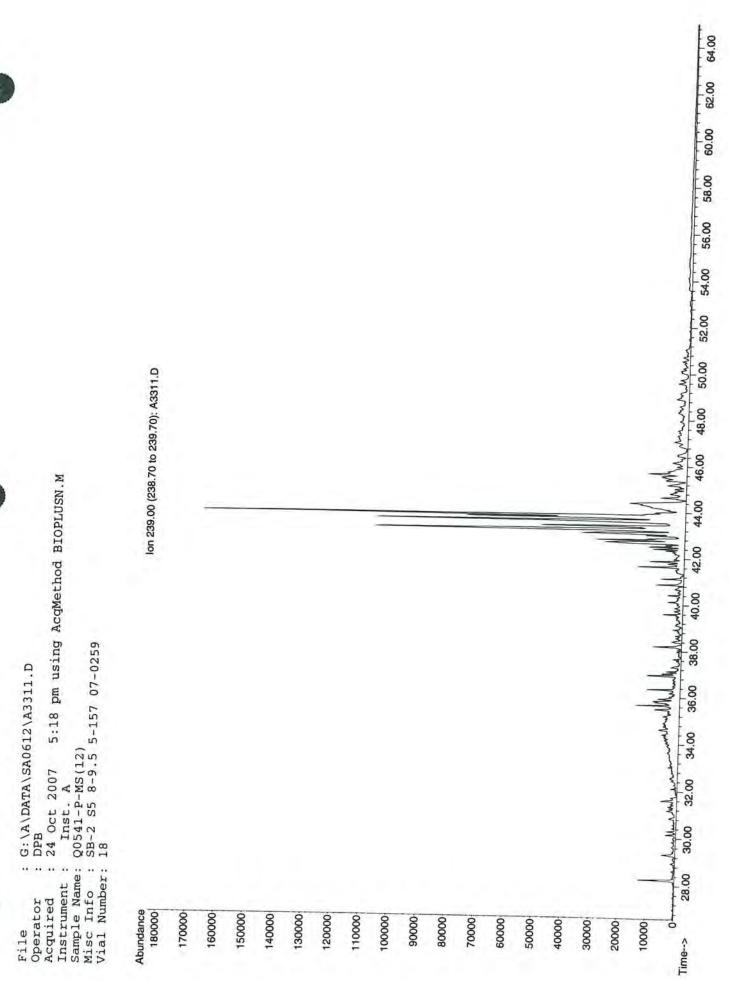
62.00

60.00


58.00

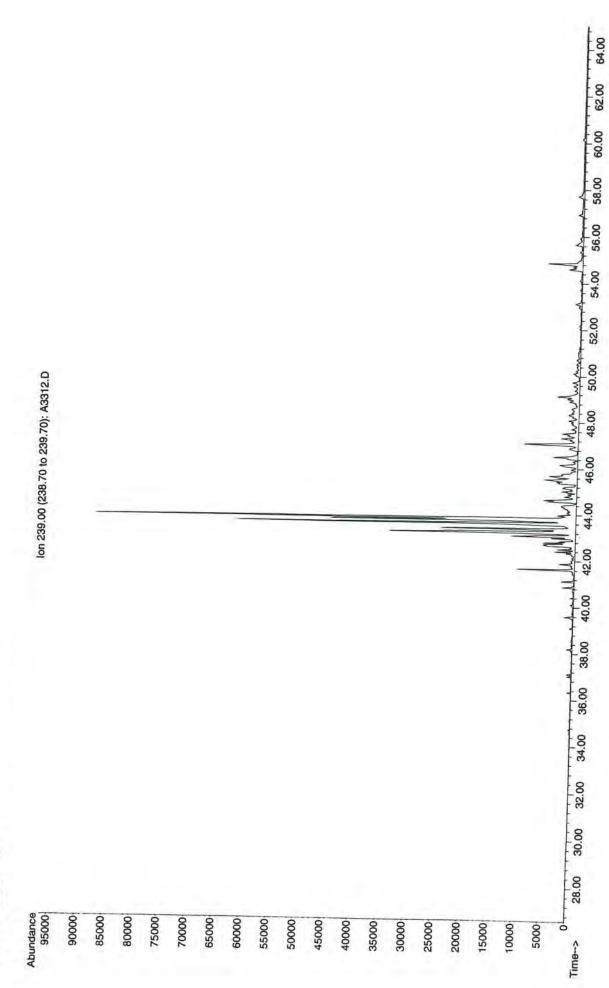

56.00




9:42 am using AcqMethod BIOPLUSN.M G:\A\DATA\SA0612\A3306.D DPB 24 Oct 2007 9:42 am using AcqMethod BI Inst. A BL034LCS-P-MS(5) Laboratory Control Sample 5-157 07-0259 13 Sample Name: F Misc Info : I Vial Number: ] Instrument **Operator** Acquired File

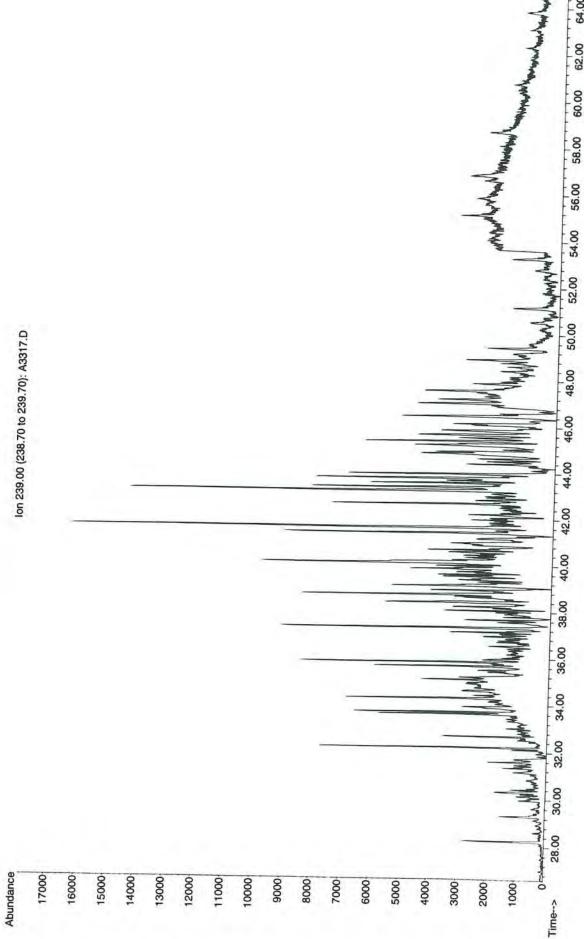






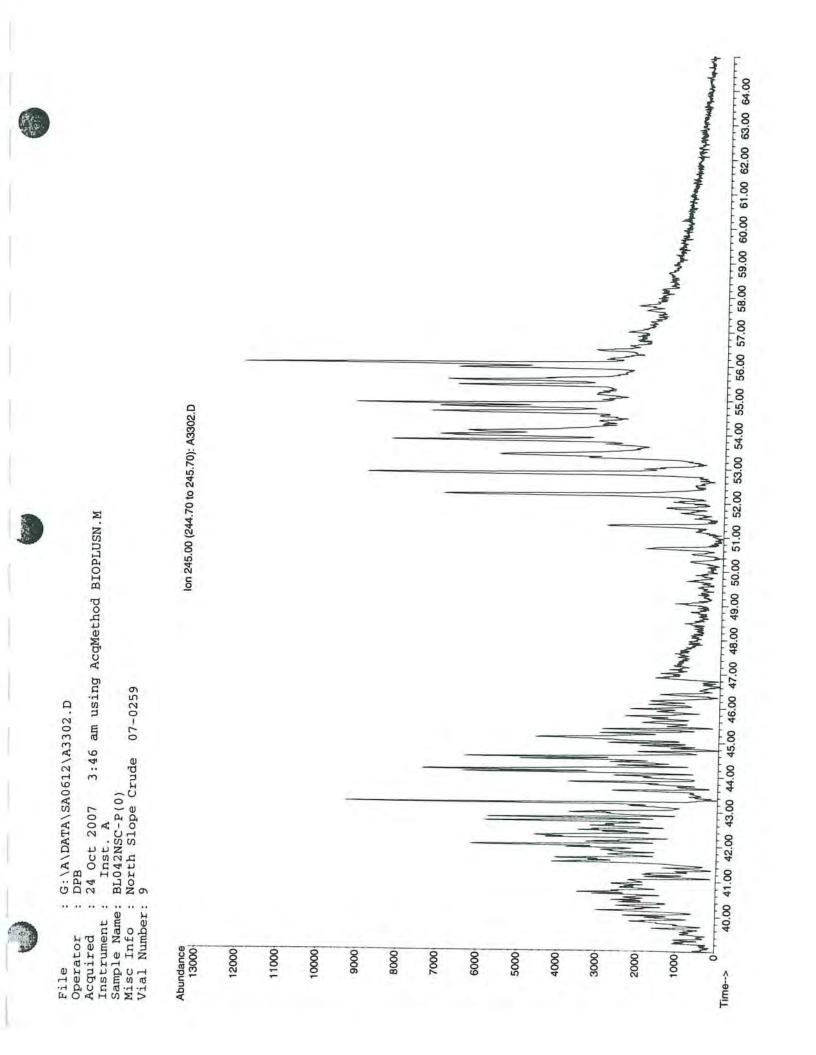






|                          | 6:47 pm using AcqMethod BIOPLUSN.M | 0259                                                 |
|--------------------------|------------------------------------|------------------------------------------------------|
| G:\A\DATA\SA0612\A3312.D | 24 Oct 2007 6:47 pm us:<br>Thet a  | Q0545-P-MS(12)<br>GP-12 S2 23-24 5-157 07-0259<br>19 |
| File :<br>Operator :     | Acquired :<br>Instrument :         | Sample Name:<br>Misc Info :<br>Vial Number:          |

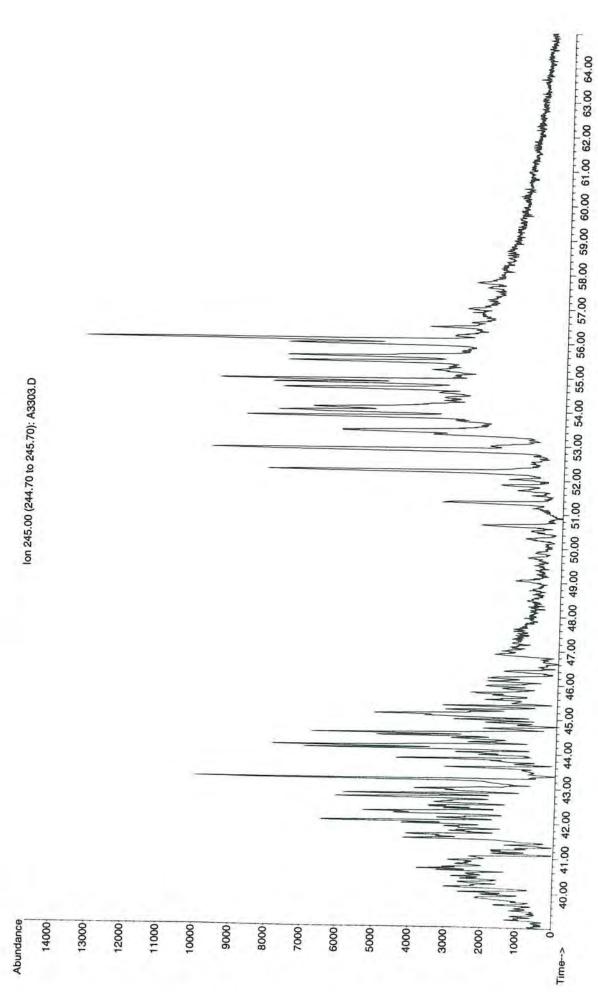





2:12 am using AcqMethod BIOPLUSN.M 07-0259 File : G:\A\DATA\SA0612\A3317.D Operator : DPB Acquired : 25 Oct 2007 2:12 am usi Instrument : Inst. A Sample Name: BL043NSC-P(0) Misc Info : North Slope Crude 07-025 Vial Number: 24

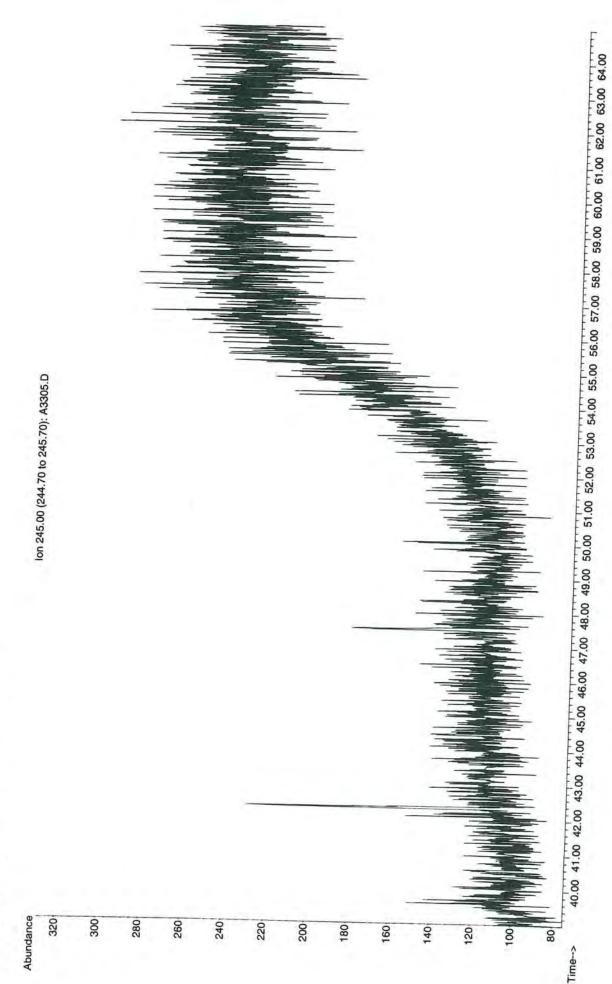





64.00

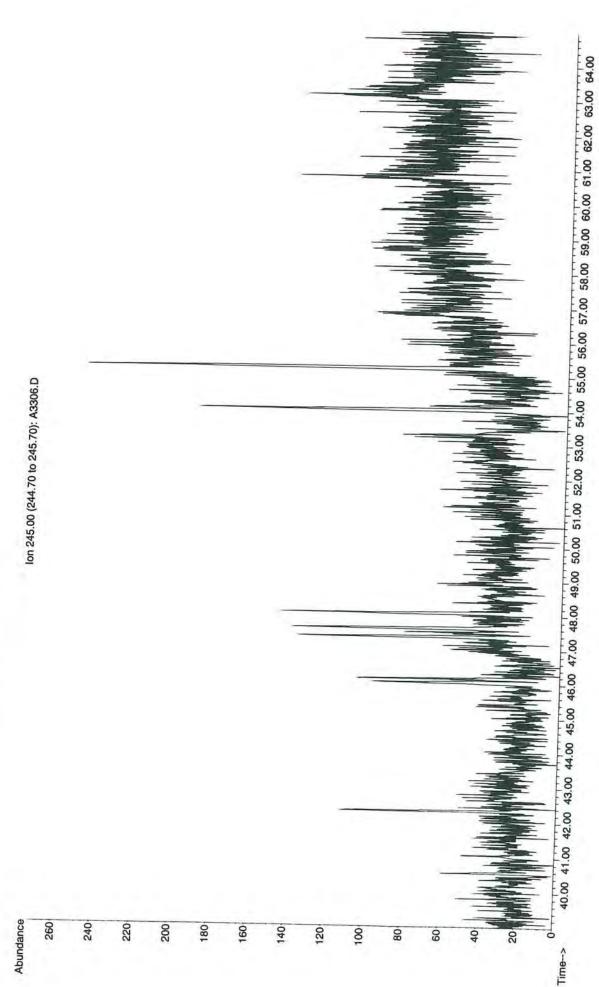
62.00






5:15 am using AcqMethod BIOPLUSN.M File : G:\A\DATA\SA0612\A3303.D Operator : DPB Acquired : 24 Oct 2007 5:15 am using Instrument : Inst. A Sample Name: BL043NSC-P(0) Misc Info : North Slope Crude 07-0259 Vial Number: 10

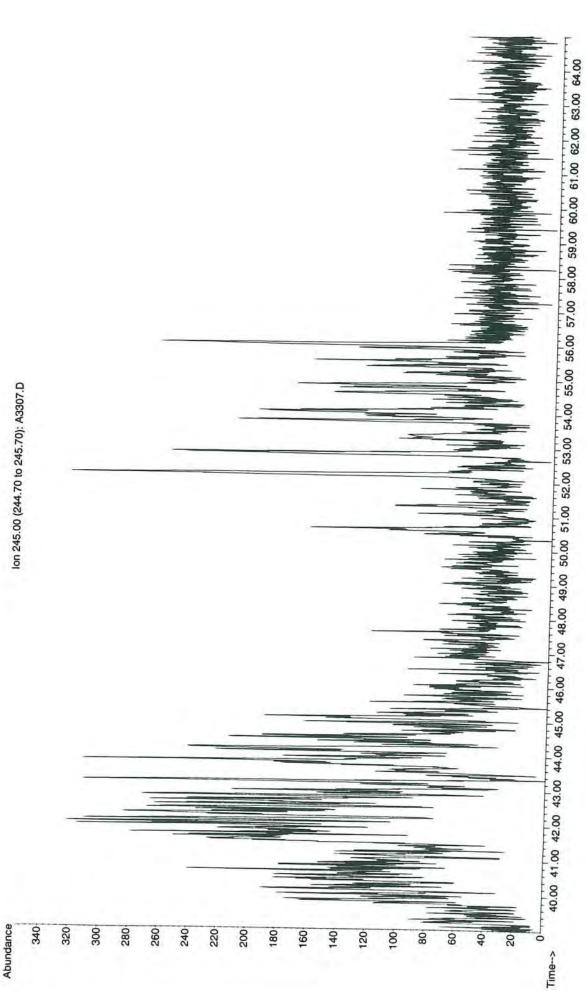





8:13 am using AcqMethod BIOPLUSN : G:\A\DATA\SA0612\A3305.D : DPB : 24 Oct 2007 8:13 am using AcqM : Inst. A : BL033PB-P-MS(5) : Procedural Blank 5-157 07-0259 : 12 Sample Name: Misc Info : Vial Number: Operator Acquired Instrument File

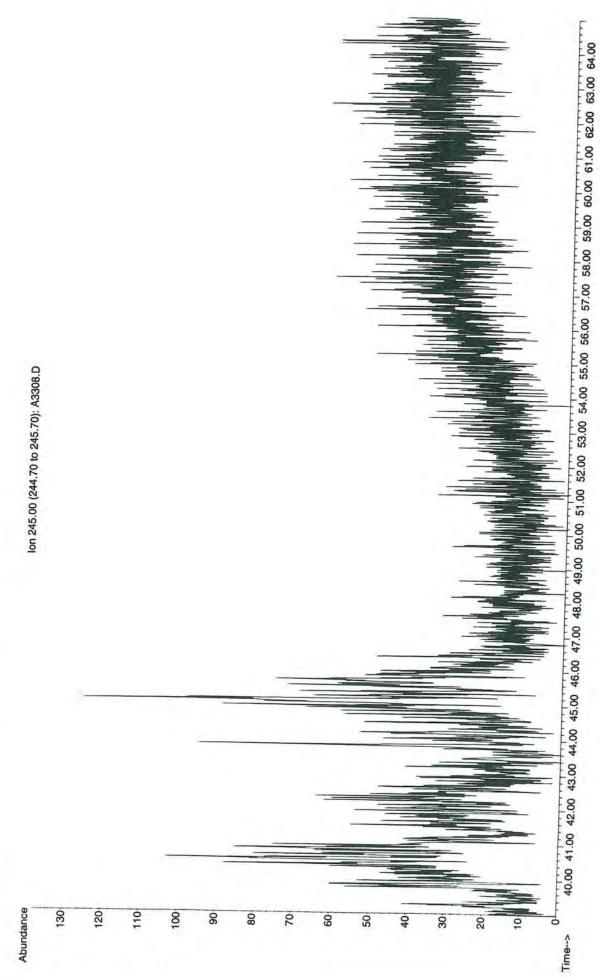


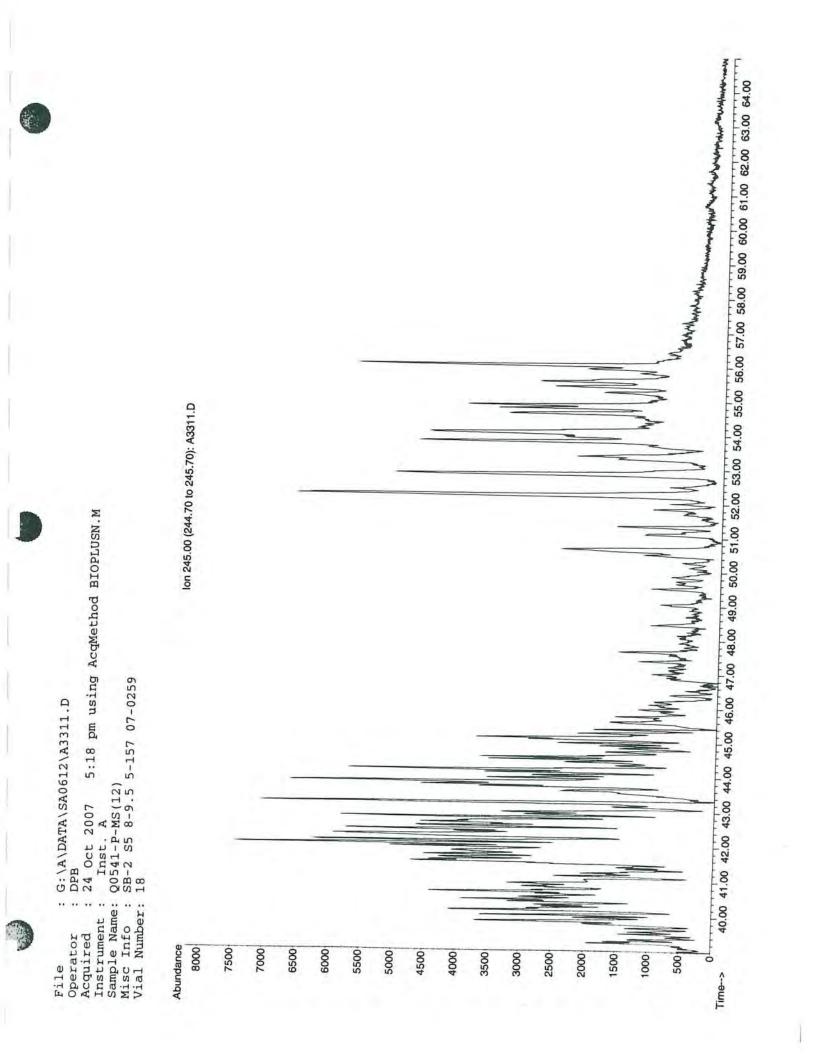


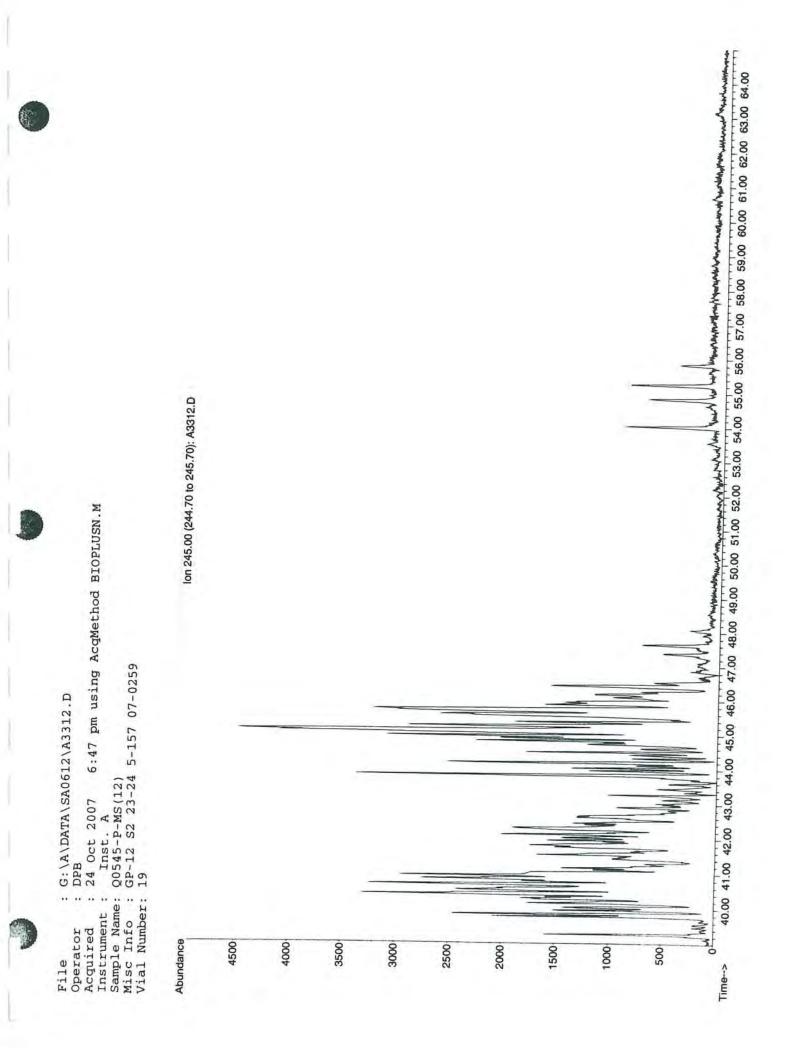

9:42 am using AcqMethod BIOPLUSN.M G:\A\DATA\SA0612\A3306.D DPB 24 Oct 2007 9:42 am using AcqMethod B1 Inst. A BL034LCS-P-MS(5) Laboratory Control Sample 5-157 07-0259 13 Misc Info : Vial Number: Sample Name: Instrument Operator Acquired File

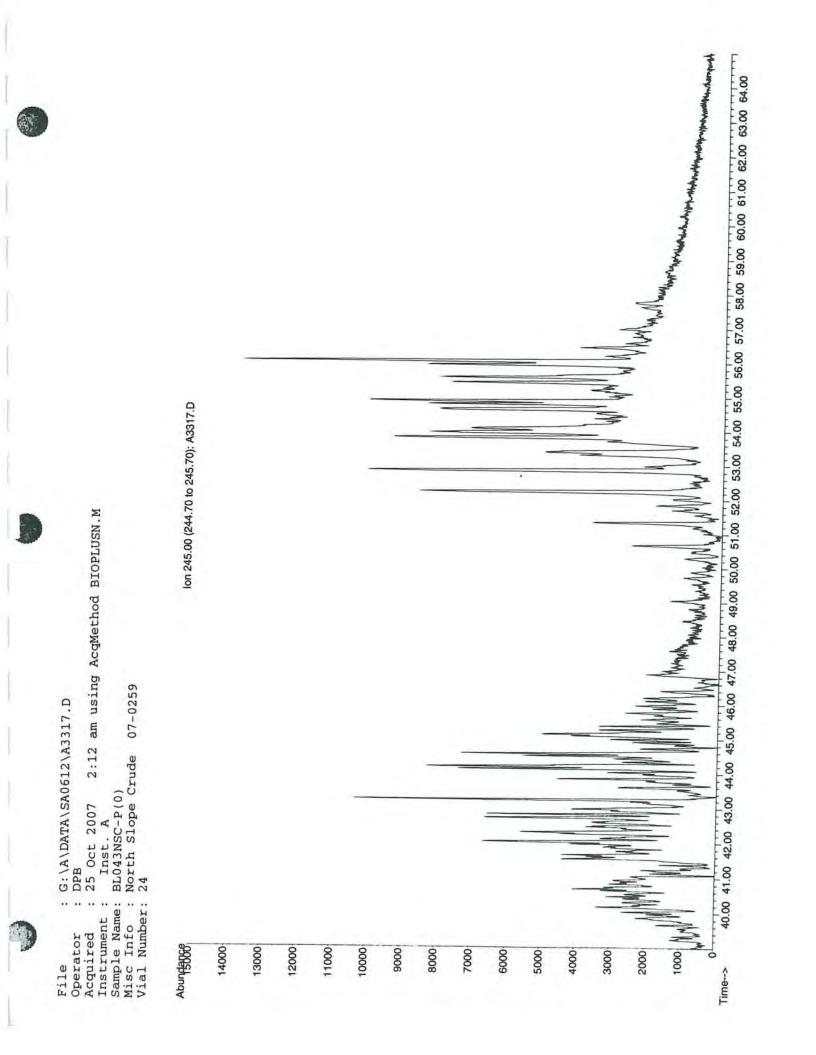








G:\A\DATA\SA0612\A3307.D DPB 24 Oct 2007 11:12 am using AcqMethod BIOPLUSN.M Inst. A Q0541-P-MS-D(13) SB-2 S5 8-9.5 5-157 07-0259 14 Sample Name: ( Misc Info : 9 Vial Number: 1 ... •• .. File Operator Acquired Instrument




24 Oct 2007 12:41 pm using AcqMethod BIOPLUSN.M Inst. A Q0545-P-MS-D(13) GP-12 S2 23-24 5-157 07-0259 G:\A\DATA\SA0612\A3308.D DPB 15 Sample Name: C Misc Info : C Vial Number: 1 ... .. Instrument File Operator Acquired









## PAH and Biomarker – SEDIMENT QA/QC SUMMARY Batch 07-0264

| PROJECT:        | Floyd/Snyder – Gas Works Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PARAMETER:      | Polycyclic Aromatic Hydrocarbons (PAH) and Biomarkers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LABORATORY:     | Battelle, Duxbury, MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MATRIX:         | Non-aqueous phase liquid (NAPL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SAMPLE CUSTODY: | Six soil samples and 1 NAPL were received at Battelle Duxbury Operations (BDO)<br>Laboratory on 10/9/07. Upon Receipt of the samples, the temperature of the cooler was<br>taken and the samples were logged into the laboratory and given unique IDs. The<br>temperature of the cooler upon receipt was slightly below the acceptable range (4°C $\pm$<br>2°) at 0.6°C. Also, it was noted that sample Q0540 (MW-9) had some oil residue on the<br>outside of the container as well as the inner side of the bubble wrap. The oil residue was<br>only on the inside of the bubble wrap and did not touch any of the other samples. The<br>client was notified on 10/16/07. The laboratory was instructed to proceed with the<br>analysis. Samples were stored in an access-limited walk-in refrigerator at 4°C until<br>sample preparation could begin. |
| 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Reference<br>Method | Method<br>Blank   | Surrogate<br>Recovery    | LCS<br>Recovery                  | MS<br>Recovery                               | MS/MSD<br>Precision                                                                                      | Control<br>Oil<br>% Diff                                                                                                                    |
|---------------------|-------------------|--------------------------|----------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| General<br>NS&T     | <5xMDL            | 40-120%<br>Recovery      | 40-120%<br>Recovery              | 40-120%<br>Recovery                          | ≤30% RPD                                                                                                 | PD,30% for<br>90% of the<br>analytes                                                                                                        |
|                     |                   |                          |                                  | MS target spike<br>must be >5x<br>background |                                                                                                          |                                                                                                                                             |
|                     | Method<br>General | MethodBlankGeneral<5xMDL | MethodBlankRecoveryGeneral<5xMDL | MethodBlankRecoveryRecoveryGeneral<5xMDL     | Method         Blank         Recovery         Recovery         Recovery           General         <5xMDL | Method         Blank         Recovery         Recovery         Recovery         Recovery         Precision           General         <5xMDL |

#### **METHOD:**

The NAPL sample was extracted following general NS&T methods. Approximately 50 mg of oil was weighed and diluted with 10mL of hexane. A portion of the extract was removed and spiked with SIS and IS. One extract was submitted for PAH and petroleum biomarker analysis and the second extract was submitted for SHC and TPH analysis. NAPL sample data is reported on an oil weight basis.

PAH and petroleum biomarkers were measured by gas chromatography –mass spectrometry (GC/MS) in the selected ion mode (SIM). An initial calibration consisting of target analytes was completed prior to analysis to demonstrate the linear range of the analysis. Calibration verification was performed at the beginning and end of each 12 hour period in which samples were analyzed. Concentrations of the PAH and petroleum biomarkers were calculated by the internal standard method. Target PAH were quantified using the average RF generated from the initial calibration. The alkyl homologue PAH series were assigned the RF of the parent PAH, Steranes were assigned the RF of cholestane, and triterpanes were assigned the RF of Moretane.

Note: the reporting limit for the alkyl benzene compounds is orders of magnitude higher than the reporting limits for the rest of the PAH compounds.

HOLDING TIMES: Samples were prepared for analysis in three analytical batches and were extracted within 15 days of sample collection analyzed within 40 days of extraction.

| Batch   | Extraction Date | Analysis Date |  |  |
|---------|-----------------|---------------|--|--|
| 07-0264 | 10/18/2007      | 10/23/2007    |  |  |

## PAH and Biomarker – SEDIMENT QA/QC SUMMARY Batch 07-0264

| PROCEDURAL<br>BLANK (PB):              | A procedural blank (PB) was prepared with each analytical batch. Blanks were analyzed to ensure the sample extraction and analysis methods were free of contamination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | 07-0264 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LABORATORY<br>CONTROL<br>SAMPLE (LCS): | A laboratory control sample (LCS) was prepared with each analytical batch. The percent recoveries of target analytes were calculated to measure data quality in terms of accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | 07-0264 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SURROGATE                              | Five surrogate compounds were added prior to extraction, including naphthalene-d8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RECOVERY:                              | acenaphthene-d10, phenanthrene-d10, benzo(a)pyrene-d12, and 5b(H)-chloane. The recovery of the surrogate compound was calculated to measure data quality in terms of accuracy (extraction efficiency).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | 07-0264 – Benzo(a)pyrene-d12 is out in NSC, though the NSC still passes for all the analytes and this does not affect the authentic samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                        | Comments - None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CONTROL OIL:                           | A control oil (North Slope Crude) was prepared with the analytical batch. The percent difference (PD) between the measured value and the target value was calculated to measure data quality in terms of accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | 07-0264 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CALIBRATIONS:                          | The GC/MS is calibrated with a minimum 5 level curve for all compounds. The percent relative standard deviation (% RSD) between RF for the individual target analytes must be $\leq 25\%$ , and the mean RSD of all target analytes must be $\leq 15\%$ . Each batch of samples analyzed is bracketed by a continuing calibration verification (CCV) sample, run at a frequency of minimally every 12 hours. The PD between the true value and the CCV should be $\leq 25\%$ for individual analytes. Additionally an initial calibration check (ICC) sample is run immediately after each initial calibration. The PD between the ICC and the initial calibration should be $\leq 25\%$ . |
|                                        | 07-0264 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# Battelle The Business of Innovation

# Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                       | MW-9             |
|---------------------------------|------------------|
| Battelle ID                     | Q0540-P          |
| Sample Type                     | SA               |
| Collection Date                 | 10/03/07         |
| Extraction Date                 | 10/18/07         |
| Analysis Date                   |                  |
| Analytical Instrument           | 10/23/07         |
| % Moisture                      | MS               |
| % Lipid                         | NA               |
| Matrix                          | NA               |
|                                 | NAPL             |
| Sample Size                     | 53.70            |
| Size Unit-Basis                 | MG_OIL           |
| Units                           | MG/KG_OIL        |
| C3-Alkylbenzenes                | 957.06           |
| C4-Alkylbenzenes                | 1229.52          |
| C5-Alkylbenzenes                | 522.11           |
| C6-Alkylbenzenes                | 546.55           |
| Benzo(b)thiophene               |                  |
| C1-benzo(b)thiophenes           | 230.3            |
| C2-benzo(b)thiophenes           | 588.57           |
|                                 | 770.41           |
| C3-benzo(b)thiophenes           | 681.89           |
| C4-benzo(b)thiophenes           | 348.21           |
| Naphthalene                     | 12501.92 D       |
| C1-Naphthalenes                 | 14043.83 D       |
| C2-Naphthalenes                 | 11458.07 D       |
| C3-Naphthalenes                 | 6178.7 D         |
| C4-Naphthalenes                 | 2509.58 D        |
| C1-Biphenyls + Dibenzofuran     | 1045.39          |
| Biphenyl                        | 705.62           |
| C2-Biphenyls + C1-Dibenzofurans | 1651.94          |
| Acenaphthylene                  | 562.91           |
| Acenaphthene                    | 1875.64          |
| Dibenzofuran                    | 251.7            |
| Fluorene                        | 1457.43          |
| C1-Fluorenes                    | 1344.02          |
| C2-Fluorenes                    | 1034.47          |
| C3-Fluorenes                    | 539.52           |
| C4-Fluorenes                    | 485.27           |
| Anthracene                      | 5 B. 17 The 18 1 |
| Phenanthrene                    | 998.56 D         |
| C1-Phenanthrenes/Anthracenes    | 4785.59 D        |
| C2-Phenanthrenes/Anthracenes    | 3773.15 D        |
| C3-Phenanthrenes/Anthracenes    | 1970.53 D        |
| C4-Phenanthrenes/Anthracenes    | 664.8 D          |
| Retene                          | 208.41 D         |
|                                 | 85.3             |
| Dibenzothiophene                | 359.75           |
| C1-Dibenzothiophenes            | 547.93           |
| C2-Dibenzothiophenes            | 508.9            |
| C3-Dibenzothiophenes            | 278.07           |
| C4-Dibenzothiophenes            | 97.27            |
| Fluoranthene                    | 979.03           |
| Pyrene                          | 1443.38          |
| C1-Fluoranthenes/Pyrenes        | 1749.41          |
| C2-Fluoranthenes/Pyrenes        | 692.53           |
| C3-Fluoranthenes/Pyrenes        | 264.09           |
| C4-Fluoranthenes/Pyrenes        | 92.23            |
| C0-Benzo(b)naphthothiophenes    | 58.98            |
| C1-Benzo(b)naphthothiophenes    |                  |
| C2-Benzo(b)naphthothiophenes    | 112.29           |
| C3-Benzo(b)naphthothiophenes    | 61.47            |
| C1 Paga(b)apphinothiophenes     | 31.01            |
| C4-Benzo(b)naphthothiophenes    | 20.71            |
| Benzo(a)anthracene              | 539.72           |
| Chrysene                        | 538.43           |

The Business of Innovation

#### Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                                       | MW-9         |
|-------------------------------------------------|--------------|
| Battelle ID                                     | Q0540-P      |
| Sample Type                                     | SA           |
| Collection Date                                 | 10/03/07     |
| Extraction Date                                 | 10/18/07     |
| Analysis Date                                   | 10/23/07     |
| Analytical Instrument                           | MS           |
| % Moisture                                      | NA           |
| % Lipid                                         | NA           |
| Matrix                                          | NAPL         |
| Sample Size                                     | 53.70        |
| Size Unit-Basis                                 | MG OIL       |
| Units                                           | MG/KG_OIL    |
| C1-Chrysenes                                    | 518.15       |
| C2-Chrysenes                                    | 226.85       |
| C3-Chrysenes                                    | 100.32       |
| C4-Chrysenes                                    | 45.7         |
| Benzo(b)fluoranthene                            | 225.58       |
| Benzo(k)fluoranthene                            | 335.92       |
| Benzo(e)pyrene                                  | 257.94       |
| Benzo(a)pyrene                                  | 512.94       |
| Perylene                                        | 85.5         |
|                                                 | 000.00       |
| Indeno(1,2,3-cd)pyrene                          | 229.39       |
| Indeno(1,2,3-cd)pyrene<br>Dibenz(a,h)anthracene | 229.39 56.45 |
|                                                 |              |

#### Surrogate Recoveries (%)

| Naphthalene-d8     | 96  |
|--------------------|-----|
| Acenaphthene-d10   | 90  |
| Phenanthrene-d10   | 86  |
| Benzo(a)pyrene-d12 | 120 |
| 5b(H)-Cholane      | 115 |

The Business of Innovation

# Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                       | Procedural Blank |      |
|---------------------------------|------------------|------|
|                                 |                  |      |
| Battelle ID                     | BL057PB-P        |      |
| Sample Type                     | PB               |      |
| Collection Date                 | 10/18/07         |      |
| Extraction Date                 | 10/18/07         |      |
| Analysis Date                   | 10/23/07         |      |
| Analytical Instrument           | MS               |      |
| % Moisture                      | NA               |      |
| % Lipid                         |                  |      |
| Matrix                          | NA               |      |
| Sample Size                     | OIL              |      |
|                                 | 50.00            |      |
| Size Unit-Basis<br>Units        | MG_OIL           |      |
| Units                           | MG/KG_OIL        | <br> |
| C3-Alkylbenzenes                | U                |      |
| C4-Alkylbenzenes                | U                |      |
| C5-Alkylbenzenes                | U                |      |
| C6-Alkylbenzenes                | Ŭ                |      |
| Benzo(b)thiophene               | Ŭ                |      |
| C1-benzo(b)thiophenes           |                  |      |
| C2-benzo(b)thiophenes           | U                |      |
|                                 | 0                |      |
| C3-benzo(b)thiophenes           | U                |      |
| C4-benzo(b)lhiophenes           | U                |      |
| Naphthalene                     | 0.09 J           |      |
| C1-Naphthalenes                 | U                |      |
| C2-Naphthalenes                 | Ŭ                |      |
| C3-Naphthalenes                 | Ŭ                |      |
| C4-Naphthalenes                 | Ŭ                |      |
| C1-Biphenyls + Dibenzofuran     | U                |      |
| Biphenyl                        | U                |      |
| C2-Biphenyls + C1-Dibenzofurans |                  |      |
| Acenaphthylene                  | u                |      |
|                                 | U                |      |
| Acenaphthene                    | U                |      |
| Dibenzofuran                    | U                |      |
| Fluorene                        | U                |      |
| C1-Fluorenes                    | Ŭ                |      |
| C2-Fluorenes                    | U                |      |
| C3-Fluorenes                    | Ũ                |      |
| C4-Fluorenes                    | Ŭ                |      |
| Anthracene                      | ŭ                |      |
| Phenanthrene                    |                  |      |
| C1-Phenanthrenes/Anthracenes    | U                |      |
| C2-Phenanthrenes/Anthracenes    | U                |      |
| C2-Frienanthrenes/Anthracenes   | U                |      |
| C3-Phenanthrenes/Anthracenes    | U                |      |
| C4-Phenanthrenes/Anthracenes    | U                |      |
| Retene                          | U                |      |
| Dibenzothiophene                | Ū                |      |
| C1-Dibenzothiophenes            | Ŭ                |      |
| C2-Dibenzothiophenes            | Ŭ                |      |
| C3-Dibenzothiophenes            |                  |      |
| C4-Dibenzothiophenes            | U                |      |
|                                 | υ                |      |
| Fluoranthene                    | U                |      |
| Pyrene                          | Ŭ                |      |
| C1-Fluoranthenes/Pyrenes        | U                |      |
| C2-Fluoranthenes/Pyrenes        | Ŭ                |      |
| C3-Fluoranthenes/Pyrenes        | ũ                |      |
| C4-Fluoranthenes/Pyrenes        | ŭ                |      |
| CO-Benzo(b)naphthothiophenes    | Ŭ                |      |
| C1-Benzo(b)naphthothiophenes    |                  |      |
| 2-Benzo(b)naphthothiophenes     | U                |      |
| 3-Benzo(b)naphthothicshores     | U                |      |
| 3-Benzo(b)naphthothiophenes     | U                |      |
| 24-Benzo(b)naphthothiophenes    | U                |      |
| lenzo(a)anthracene              | U                |      |
| Chrysene                        | Ŭ                |      |

The Business of Innovation

| Client ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Procedural Blank |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|
| Battelle ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BL057PB-P        |  |  |
| Sample Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PB               |  |  |
| Collection Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/18/07         |  |  |
| Extraction Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/18/07         |  |  |
| Analysis Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/23/07         |  |  |
| Analytical Instrument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MS               |  |  |
| % Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA               |  |  |
| % Lipid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA               |  |  |
| Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OIL              |  |  |
| Sample Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.00            |  |  |
| Size Unit-Basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MG_OIL           |  |  |
| Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MG/KG_OIL        |  |  |
| C1-Chrysenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U                |  |  |
| C2-Chrysenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ŭ                |  |  |
| C3-Chrysenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ŭ                |  |  |
| C4-Chrysenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ŭ                |  |  |
| Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U<br>U           |  |  |
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ŭ                |  |  |
| Benzo(e)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ŭ                |  |  |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ŭ                |  |  |
| Perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ŭ                |  |  |
| Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ŭ                |  |  |
| Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŭ                |  |  |
| Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                |  |  |
| Total PAH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.09 J           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.09 0           |  |  |
| Surrogate Recoveries (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |  |  |
| Naphthalene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106              |  |  |
| Acenaphthene-d10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 97               |  |  |
| Phenanthrene-d10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96               |  |  |
| Benzo(a)pyrene-d12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109              |  |  |
| 5b(H)-Cholane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95               |  |  |
| and the second sec | 55               |  |  |

The Business of Innovation

### Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                                            | Laboratory Contro<br>Sample              |     |         |            |           |  |
|------------------------------------------------------|------------------------------------------|-----|---------|------------|-----------|--|
| Battelle ID                                          | BL058LCS-F                               |     |         |            |           |  |
| Sample Type                                          | LCS                                      |     |         |            |           |  |
| Collection Date                                      | 10/18/07                                 |     |         |            |           |  |
| Extraction Date                                      | 10/18/07                                 |     |         |            |           |  |
| Analysis Date                                        | 10/23/07                                 |     |         |            |           |  |
| Analytical Instrument                                | MS                                       |     |         |            |           |  |
| % Moisture                                           | NA                                       |     |         |            |           |  |
| % Lipid                                              | NA                                       |     |         |            |           |  |
| Matrix                                               | OIL                                      |     |         |            |           |  |
| Sample Size                                          | NA                                       |     |         |            |           |  |
| Size Unit-Basis                                      | NA                                       |     |         |            |           |  |
| Units                                                | NG                                       |     | Target  | % Recovery | Qualifier |  |
| C3-Alkylbenzenes                                     |                                          | 14  |         |            |           |  |
| C4-Alkylbenzenes                                     |                                          | U   |         |            |           |  |
| C5-Alkylbenzenes                                     |                                          | U   |         |            |           |  |
| C6-Alkylbenzenes                                     |                                          | UU  |         |            |           |  |
| Benzo(b)thiophene                                    | 1697.65                                  | 0   | 0000.00 |            |           |  |
| C1-benzo(b)thiophenes                                | 1097.05                                  | - n | 2006.80 | 85         |           |  |
| C2-benzo(b)thiophenes                                |                                          | U   |         |            |           |  |
| C3-benzo(b)thiophenes                                |                                          | UU  |         |            |           |  |
| C4-benzo(b)thiophenes                                |                                          | ŭ   |         |            |           |  |
| Naphthalene                                          | 1948.35                                  | U   | 2000 10 | 07         |           |  |
| C1-Naphthalenes                                      | 1940.35                                  | υ   | 2000.40 | 97         |           |  |
| C2-Naphthalenes                                      |                                          | U   |         |            |           |  |
| C3-Naphthalenes                                      |                                          | U   |         |            |           |  |
| C4-Naphthalenes                                      |                                          | Ŭ   |         |            |           |  |
| C1-Biphenyls + Dibenzofuran                          |                                          | ŭ   |         |            |           |  |
| Biphenyl                                             | 1681.44                                  | 0   | 2003.40 | 84         |           |  |
| C2-Biphenyls + C1-Dibenzofurans                      | 1001.44                                  | U   | 2003.40 | 04         |           |  |
| Acenaphthylene                                       | 1859.47                                  | U   | 2001.80 | 93         |           |  |
| Acenaphthene                                         | 1962.93                                  |     | 2001.30 | 98         |           |  |
| Dibenzofuran                                         | 1739.28                                  |     | 2003.80 | 87         |           |  |
| Fluorene                                             | 1864.93                                  |     | 2001.10 | 93         |           |  |
| C1-Fluorenes                                         | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | U   | 2001.10 | 55         |           |  |
| C2-Fluorenes                                         |                                          | Ŭ   |         |            |           |  |
| C3-Fluorenes                                         |                                          | Ũ   |         |            |           |  |
| C4-Fluorenes                                         |                                          | U   |         |            |           |  |
| Anthracene                                           | 1779.37                                  |     | 2000.30 | 89         |           |  |
| Phenanthrene                                         | 1781.84                                  |     | 2001.00 | 89         |           |  |
| C1-Phenanthrenes/Anthracenes                         |                                          | U   |         | 105        |           |  |
| C2-Phenanthrenes/Anthracenes                         |                                          | U   |         |            |           |  |
| C3-Phenanthrenes/Anthracenes                         |                                          | U   |         |            |           |  |
| C4-Phenanthrenes/Anthracenes                         |                                          | U   |         |            |           |  |
| Retene                                               |                                          | U   |         |            |           |  |
| Dibenzothiophene                                     | 1570.79                                  |     | 2002.00 | 78         |           |  |
| C1-Dibenzothiophenes                                 |                                          | U   |         |            |           |  |
| C2-Dibenzothiophenes                                 |                                          | U   |         |            |           |  |
| C3-Dibenzothiophenes                                 |                                          | U   |         |            |           |  |
| C4-Dibenzothiophenes                                 | - Alternation                            | U   |         |            |           |  |
| Fluoranthene<br>Pyrene                               | 1732.39                                  |     | 2001.00 | 87         |           |  |
| C1-Fluoranthenes/Pyrenes                             | 1782.5                                   |     | 2000.70 | 89         |           |  |
|                                                      |                                          | U   |         |            |           |  |
| C2-Fluoranthenes/Pyrenes<br>C3-Fluoranthenes/Pyrenes |                                          | U   |         |            |           |  |
| C4-Fluoranthenes/Pyrenes                             |                                          | U   |         |            |           |  |
| C0-Benzo(b)naphthothiophenes                         |                                          | U   |         |            |           |  |
| C1-Benzo(b)naphthothiophenes                         |                                          | U   |         |            |           |  |
| C2-Benzo(b)naphthothiophenes                         |                                          | U   |         |            |           |  |
| C3-Benzo(b)naphthothiophenes                         |                                          | U   |         |            |           |  |
| C4-Benzo(b)naphthothiophenes                         |                                          | U   |         |            |           |  |
| Benzo(a)anthracene                                   | 1698.46                                  | U   | 2000 50 | 05         |           |  |
|                                                      | 1090.40                                  |     | 2000.50 | 85         |           |  |

The Business of Innovation

| Client ID                | Laboratory Control<br>Sample |   |          |            |           |  |
|--------------------------|------------------------------|---|----------|------------|-----------|--|
| Detter ID                |                              |   |          |            |           |  |
| Battelle ID              | BL058LCS-P                   |   |          |            |           |  |
| Sample Type              | LCS                          |   |          |            |           |  |
| Collection Date          | 10/18/07                     |   |          |            |           |  |
| Extraction Date          | 10/18/07                     |   |          |            |           |  |
| Analysis Date            | 10/23/07                     |   |          |            |           |  |
| Analytical Instrument    | MS                           |   |          |            |           |  |
| % Moisture               | NA                           |   |          |            |           |  |
| % Lipid                  | NA                           |   |          |            |           |  |
| Matrix                   | OIL                          |   |          |            |           |  |
| Sample Size              | NA                           |   |          |            |           |  |
| Size Unit-Basis          | NA.                          |   |          |            |           |  |
| Units                    | NG                           | - | Target % | & Recovery | Qualifier |  |
| Chrysene                 | 1712.45                      |   | 2000.80  | 86         |           |  |
| C1-Chrysenes             | .,                           | U | 2000.00  | 00         |           |  |
| C2-Chrysenes             |                              | Ŭ |          |            |           |  |
| C3-Chrysenes             |                              | ŭ |          |            |           |  |
| C4-Chrysenes             |                              | ŭ |          |            |           |  |
| Benzo(b)fluoranthene     | 1859.09                      | 0 | 2001.70  | 93         |           |  |
| Benzo(k)/luoranthene     | 2011.19                      |   | 2001.10  | 101        |           |  |
| Benzo(e)pyrene           | 1721.05                      |   | 2002.80  | 86         |           |  |
| Benzo(a)pyrene           | 1965.52                      |   | 2001.60  | 98         |           |  |
| Perylene                 | 1873.42                      |   | 2004.10  | 93         |           |  |
| ndeno(1,2,3-cd)pyrene    | 1851.82                      |   | 2001.00  | 93         |           |  |
| Dibenz(a,h)anthracene    | 1779.91                      |   | 2001.10  | 89         |           |  |
| Benzo(g,h,i)perylene     | 1811.31                      |   | 2000.60  | 91         |           |  |
| Total PAH                | 37987.51                     |   | 2000.00  | 91         |           |  |
|                          |                              |   |          |            |           |  |
| Surrogate Recoveries (%) |                              |   |          |            |           |  |
| laphthalene-d8           | 104                          |   |          |            |           |  |
| cenaphthene-d10          | 96                           |   |          |            |           |  |
| henanthrene-d10          | 95                           |   |          |            |           |  |
| enzo(a)pyrene-d12        | 110                          |   |          |            |           |  |
|                          | 110                          |   |          |            |           |  |

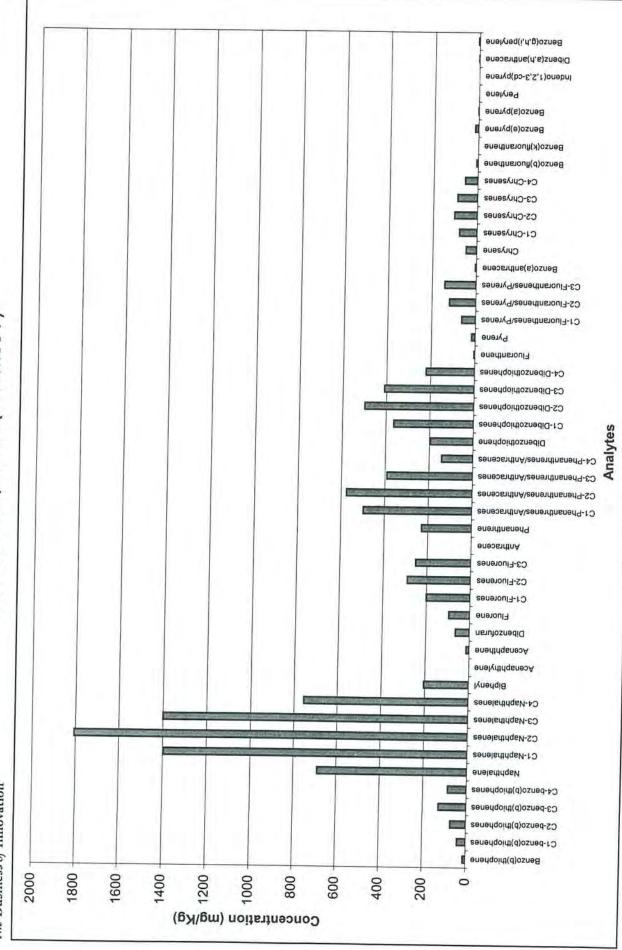
# Battelle The Business of Innovation

| Client ID                       | GO98: North Slope<br>Crude |            |             |           |
|---------------------------------|----------------------------|------------|-------------|-----------|
|                                 |                            |            |             |           |
| Battelle ID                     | BL060NSC-P                 |            |             |           |
| Sample Type                     | NSC                        |            |             |           |
| Collection Date                 | 10/18/07                   |            |             |           |
| Extraction Date                 | 10/18/07                   |            |             |           |
| Analysis Date                   | 10/23/07                   |            |             |           |
| Analytical Instrument           | MS                         |            |             |           |
| % Moisture                      | NA                         |            |             |           |
| % Lipid                         | NA                         |            |             |           |
| Matrix                          | OIL                        |            |             |           |
| Sample Size                     | 5.04                       |            |             |           |
| Size Unit-Basis                 | MG_OIL                     |            |             |           |
| Units                           | MG/KG_OIL                  | Target % I | Difference  | Qualifier |
| C3-Alkylbenzenes                | 1560.8                     |            |             |           |
| C4-Alkylbenzenes                | 1216.22                    |            |             |           |
| C5-Alkylbenzenes                | 685.39                     |            |             |           |
| C6-Alkylbenzenes                | 430.56                     |            |             |           |
| Benzo(b)thiophene               | 12.17                      |            |             |           |
| C1-benzo(b)thiophenes           | 39.72                      |            |             |           |
| C2-benzo(b)thiophenes           | 72.43                      | 95,74      | 04.0        |           |
| C3-benzo(b)thiophenes           | 127.49                     | 132.67     | 24.3<br>3.9 |           |
| C4-benzo(b)thiophenes           | 85.27                      | 96.72      |             |           |
| Naphthalene                     | 689.11                     | 740.29     | 11.8        |           |
| C1-Naphthalenes                 | 1395.18                    | 1516.04    | 6.9         |           |
| C2-Naphthalenes                 | 1805.37                    | 2000.10    | 8.0<br>9.7  |           |
| C3-Naphthalenes                 | 1399.36                    | 1526.96    | 8.4         |           |
| C4-Naphthalenes                 | 755.68                     | 898.03     | 15.9        |           |
| C1-Biphenyls + Dibenzofuran     | 318.25                     | 030.03     | 15.9        |           |
| Biphenyl                        | 204.89                     | 220.82     | 70          |           |
| C2-Biphenyls + C1-Dibenzofurans | 473.11                     | 220.02     | 7.2         |           |
| Acenaphthylene                  | 473.11<br>U                |            |             |           |
| Acenaphthene                    | 12.4                       | 14.50      | 14.5        |           |
| Dibenzofuran                    | 64.18                      | 77.75      |             |           |
| Fluorene                        | 95.2                       | 92.51      | 17.5        |           |
| C1-Fluorenes                    | 200.32                     | 227.01     | 11.8        |           |
| C2-Fluorenes                    | 287.55                     | 367.09     | 21.7        |           |
| C3-Fluorenes                    | 250.22                     | 326.32     | 23.3        |           |
| C4-Fluorenes                    | 157.75                     | 020.02     | 20.0        |           |
| Anthracene                      | U                          |            |             |           |
| Phenanthrene                    | 228.28                     | 249.49     | 8.5         |           |
| C1-Phenanthrenes/Anthracenes    | 497.37                     | 549.17     | 9.4         |           |
| C2-Phenanthrenes/Anthracenes    | 574.96                     | 642.72     | 10.5        |           |
| C3-Phenanthrenes/Anthracenes    | 390.44                     | 446.11     | 12.5        |           |
| C4-Phenanthrenes/Anthracenes    | 142.25                     | 180.02     | 21.0        |           |
| Retene                          | 43.86                      | 100.02     | 11.0        |           |
| Dibenzothiophene                | 194.31                     | 210.35     | 7.6         |           |
| C1-Dibenzothiophenes            | 362.86                     | 409.03     | 11.3        |           |
| C2-Dibenzothiophenes            | 498.7                      | 551.46     | 9.6         |           |
| C3-Dibenzothiophenes            | 408.82                     | 471.36     | 13.3        |           |
| C4-Dibenzothiophenes            | 221.26                     | 243.11     | 9.0         |           |
| Fluoranthene                    | 3.55                       | 2.131.1    |             |           |
| Pyrene                          | 15.21                      | 12.99      | 17.1        |           |
| C1-Fluoranthenes/Pyrenes        | 61.96                      | 70.92      | 12.6        |           |
| C2-Fluoranthenes/Pyrenes        | 119.12                     | 117.89     | 1.0         |           |
| C3-Fluoranthenes/Pyrenes        | 141.73                     | 137.25     | 3.3         |           |
| C4-Fluoranthenes/Pyrenes        | 98.19                      |            | 0.0         |           |
| C0-Benzo(b)naphthothiophenes    | 39.22                      |            |             |           |
| C1-Benzo(b)naphthothiophenes    | 153.8                      |            |             |           |
| C2-Benzo(b)naphthothiophenes    | 189.65                     |            |             |           |
| C3-Benzo(b)naphthothiophenes    | 128.56                     |            |             |           |
| C4-Benzo(b)naphthothiophenes    | 78.36                      |            |             |           |
| Benzo(a)anthracene              | 4.17                       |            |             |           |
|                                 | Vi-                        |            |             |           |

# Battelle The Business of Innovation

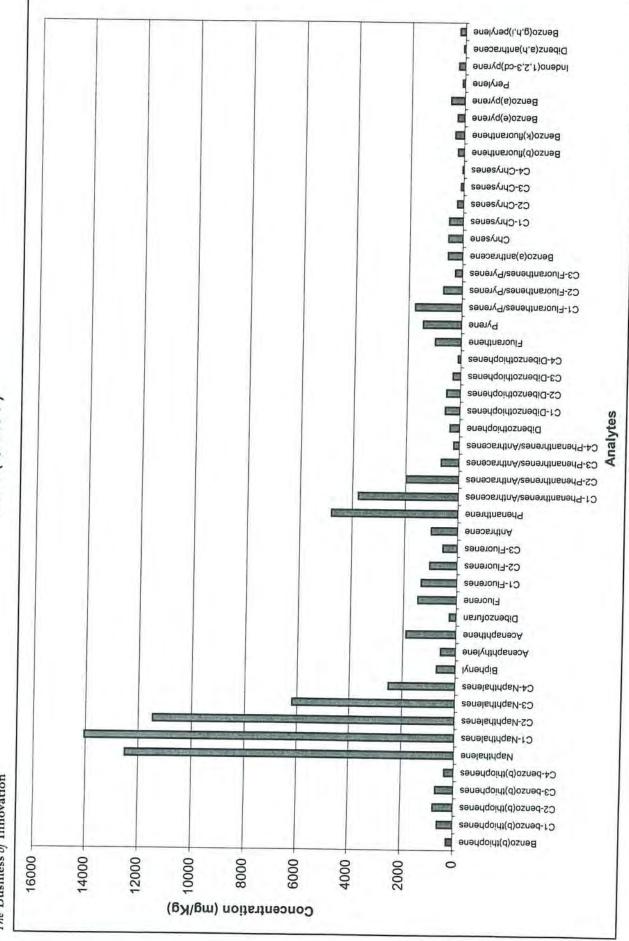
| Client ID                           | GO98: North Slope<br>Crude |   |            |            |           |  |
|-------------------------------------|----------------------------|---|------------|------------|-----------|--|
| Battelle ID                         | BL060NSC-P                 |   |            |            |           |  |
| Sample Type                         | NSC                        |   |            |            |           |  |
| Collection Date                     | 10/18/07                   |   |            |            |           |  |
| Extraction Date                     | 10/18/07                   |   |            |            |           |  |
| Analysis Date                       | 10/23/07                   |   |            |            |           |  |
| Analytical Instrument               | MS                         |   |            |            |           |  |
| % Moisture                          | NA                         |   |            |            |           |  |
| % Lipid                             | NA                         |   |            |            |           |  |
| Matrix                              | OIL                        |   |            |            |           |  |
| Sample Size                         | 5.04                       |   |            |            |           |  |
| Size Unit-Basis                     | MG_OIL                     |   |            |            |           |  |
| Units                               | MG/KG_OIL                  |   | Target % [ | Difference | Qualifier |  |
| Chrysene                            | 47.25                      |   | 47.18      |            |           |  |
| C1-Chrysenes                        | 47.25                      |   | 78.82      | 0,1        |           |  |
| C2-Chrysenes                        | 102.3                      |   | 102.67     | 0.2        |           |  |
| C3-Chrysenes                        | 88.83                      |   | 85.36      | 4.1        |           |  |
| C4-Chrysenes                        | 55.14                      |   | 61.99      | 4.1        |           |  |
| Benzo(b)fluoranthene                | 5.89                       |   | 6.08       | 3.1        |           |  |
| Benzo(k)fluoranthene                | 0.05                       | U | 0.00       | 5.1        |           |  |
| Benzo(e)pyrene                      | 13.72                      | 0 | 12.88      | 6.5        |           |  |
| Benzo(a)pyrene                      | 1.09                       | J | 12.00      | 0,5        |           |  |
| Perylene                            | 1.00                       | Ŭ |            |            |           |  |
| Indeno(1,2,3-cd)pyrene              |                            | ŭ |            |            |           |  |
| Dibenz(a,h)anthracene               | 1.09                       | J |            |            |           |  |
| Benzo(g,h,i)perylene                | 3.61                       |   | 3.44       | 4.9        |           |  |
| Total PAH                           | 11422                      |   | 5,11       | 4.5        |           |  |
| Surrogate Recoveries (%)            |                            |   |            |            |           |  |
| Naphthalene-d8                      | 104                        |   |            |            |           |  |
| Acenaphthene-d10                    | 92                         |   |            |            |           |  |
| Phenanthrene-d10                    | 90                         |   |            |            |           |  |
|                                     |                            | N |            |            |           |  |
|                                     |                            |   |            |            |           |  |
| Benzo(a)pyrene-d12<br>5b(H)-Cholane | 126<br>96                  | N |            |            |           |  |

Procedural Blank (BL057PB-P)


I

| (рауран)         (політистипестор)           0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th>co •</th> | co • |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|

11/15/20073:21 PM




# GO98: North Slope Crude (BL060NSC-P)





MW-9 (Q0540-P)



The Business of Innovation

#### Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

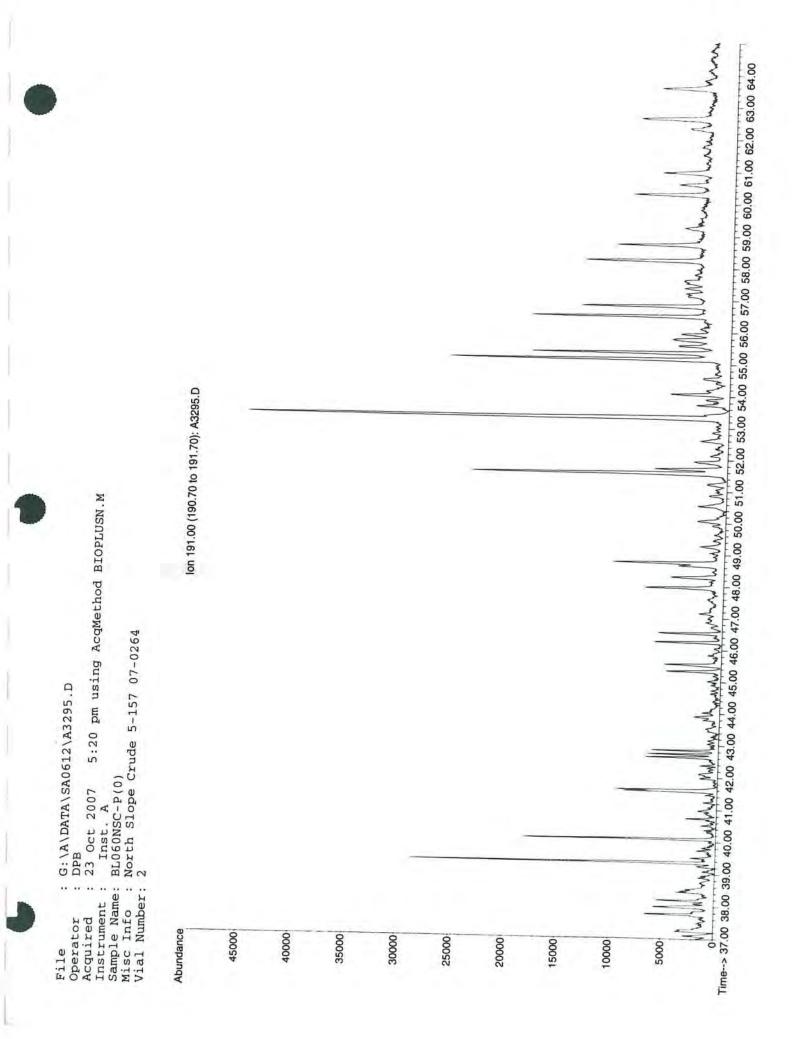
| Client ID                           | MW-9      |
|-------------------------------------|-----------|
| Battelle ID                         | Q0540-P   |
| Sample Type                         | SA        |
| Collection Date                     | 10/03/07  |
| Extraction Date                     | 10/18/07  |
| Analysis Date                       |           |
| Analytical Instrument               | 10/23/07  |
| % Moisture                          | MS        |
| % Lipid                             | NA        |
| Matrix                              | NA        |
| Sample Size                         | NAPL      |
| Size Unit-Basis                     | 53.70     |
| Units                               | MG_OIL    |
| Onits                               | MG/KG_OIL |
| C23 Tricyclic Terpane               | 44.57     |
| C29 Tricyclic Terpane -22S          | 13.91     |
| C29 Tricyclic Terpane -22R          | 12.55     |
| 18a(H)-22,29,30-Trisnomeohopane -TS | 8.56      |
| 17a(H)-22,29,30-Trisnorhopane -TM   | 12.67     |
| 30-Norhopane                        | 35.59     |
| 18a(H) & 18b(H)-Oleananes           | 13.97     |
| Hopane                              | 65.08     |
| 30-Homohopane -22S                  | 23.21     |
| 30-Homohopane -22R                  | 13.35     |
| 13b(H),17a(H)-20S-Diacholestane     |           |
| 13b(H),17a(H)-20R-Diacholestane     | 78.45     |
| 14a(H),17a(H)-20R-methylcholestane  | 45.43     |
| 14a(H),17a(H)-20S-Ethylcholestane   | 102.96    |
| 14a(H),17a(H)-20R-Ethylcholestane   | 40.52     |
| C21-TAS                             | 59.44     |
| C26-TAS(20S)                        | 10.91     |
| C26,C27-TAS                         | 18.2      |
| C27-TAS(20R)                        | 58.72     |
| C28-TAS(20S)                        | 30.58     |
| C28-TAS(20R)                        | 18.79     |
| C21-MAS                             | 14.16     |
| C22-MAS                             | 7.93      |
| C27-MAS                             | 3.89      |
| C27-20R-MAS                         | 3.14      |
|                                     | 18.71     |
| C27-20S-MAS                         | 14.78     |
| C28-20S-MAS                         | 32.2      |
| C27-C2920S/R-MAS                    | 36.37     |
| C29-20S-MAS                         | 33.57     |
| C29-20R-MAS                         | 24.77     |
| TAS_245                             | υ         |
| MAS 239                             | U         |

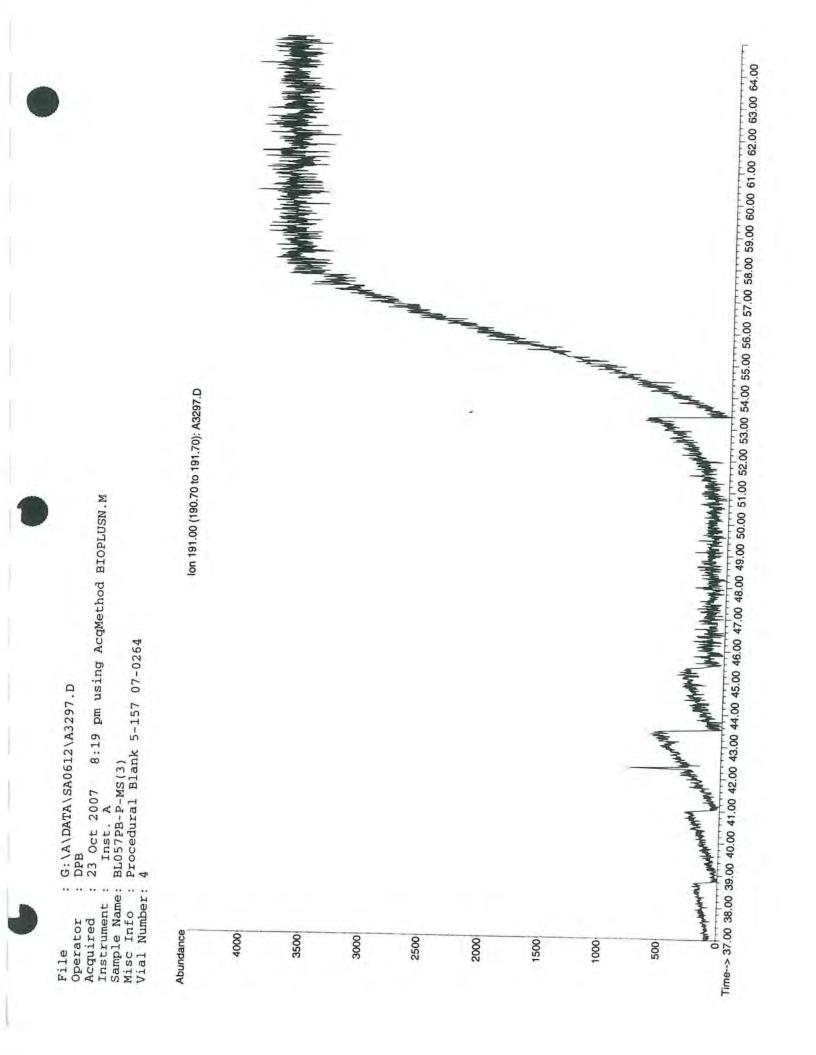
## Surrogate Recoveries (%)

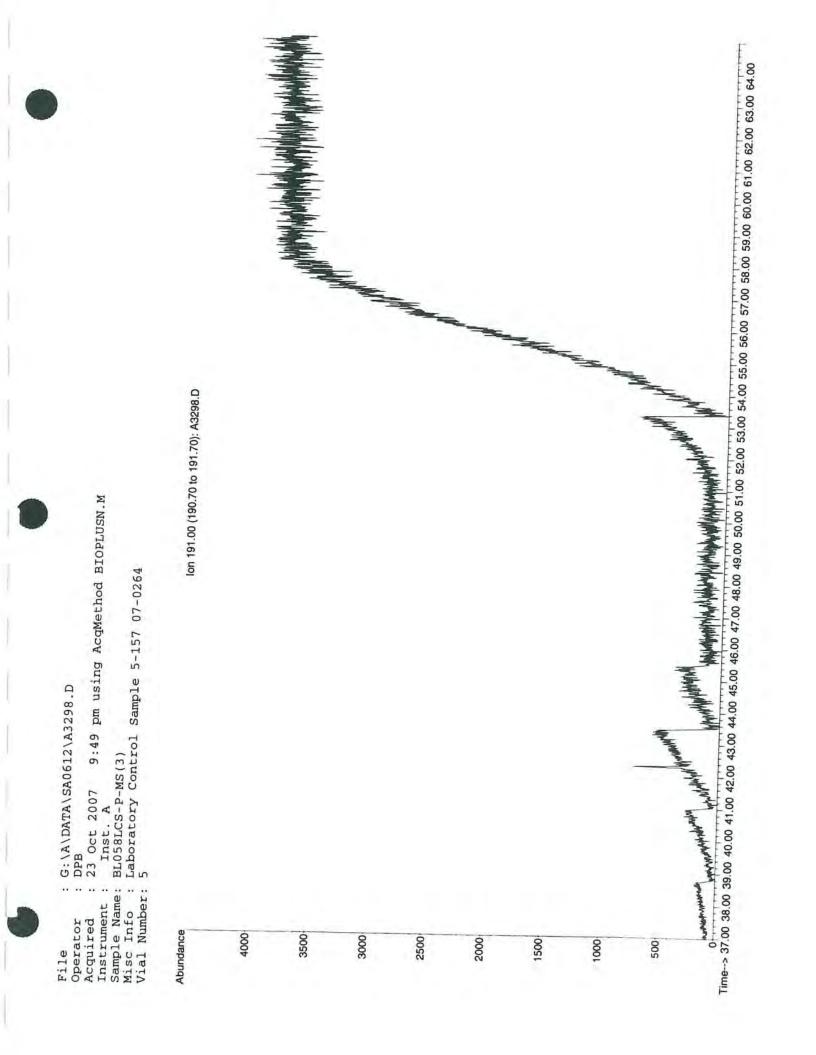
| Naphthalene-d8     | 96  |
|--------------------|-----|
| Acenaphthene-d10   | 90  |
| Phenanthrene-d10   | 86  |
| Benzo(a)pyrene-d12 | 120 |
| 5b(H)-Cholane      | 115 |
|                    |     |

The Business of Innovation

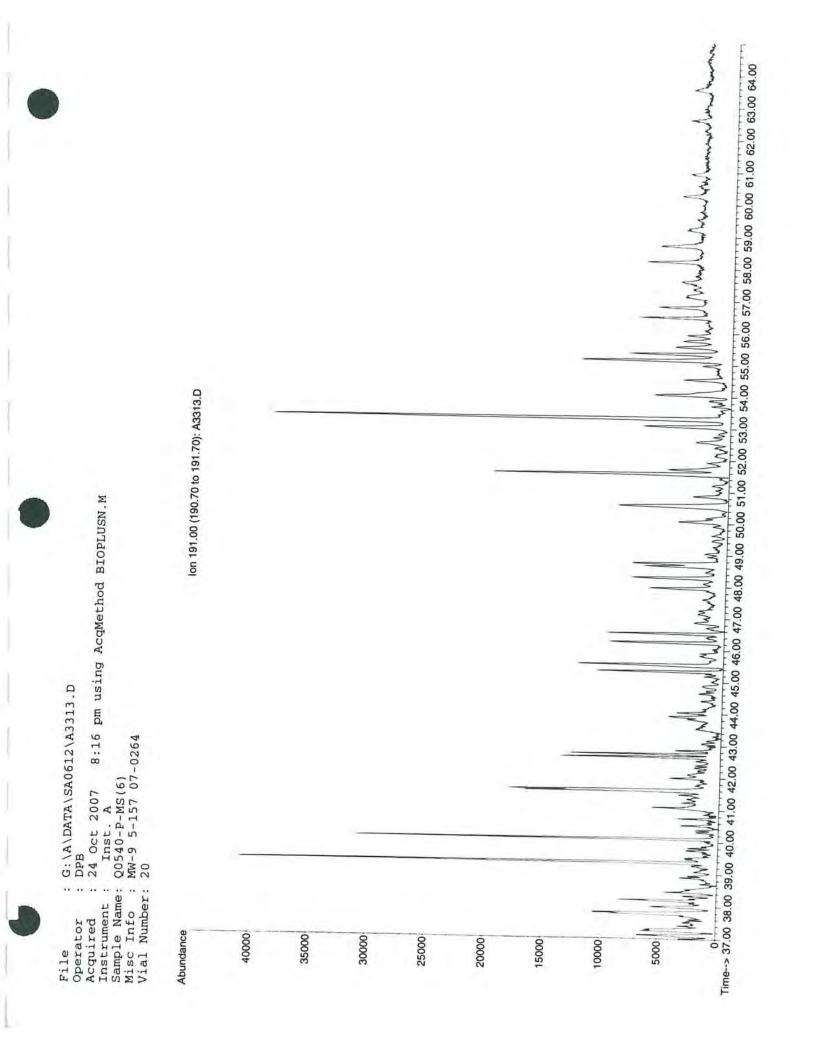
# Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

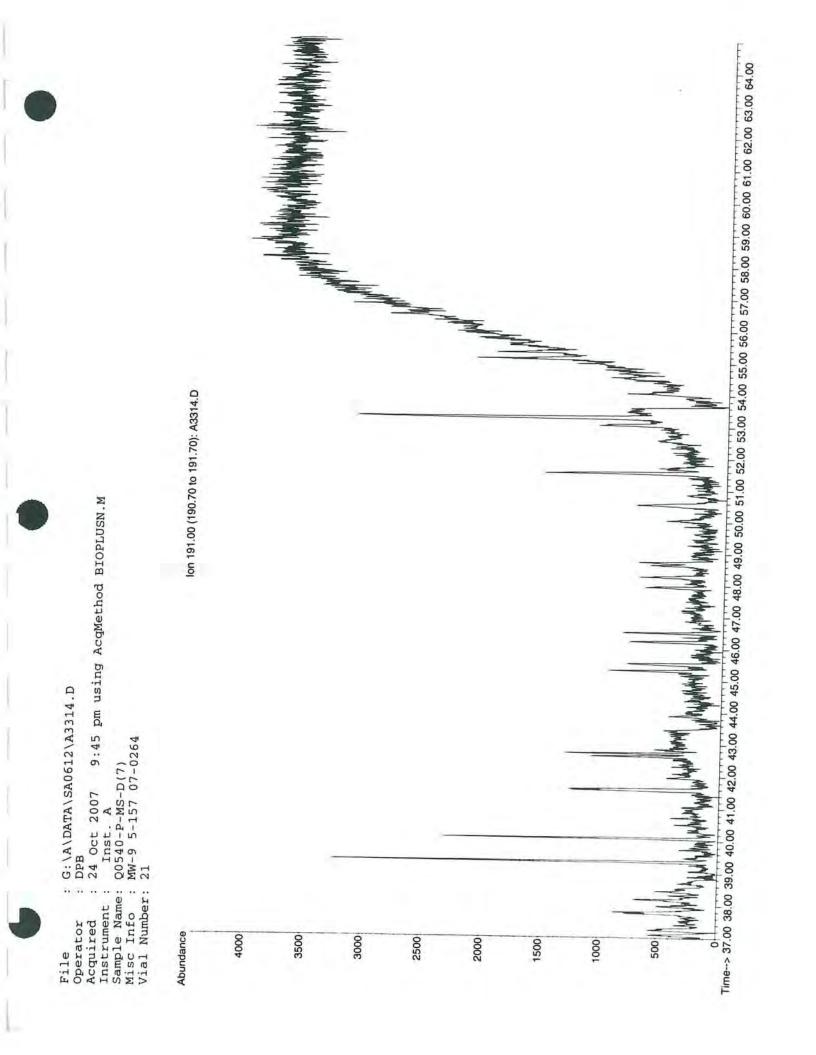

| Client ID                           | Procedural Blank |  |
|-------------------------------------|------------------|--|
| B-#-#- ID                           | 100 AT 11 AT 10  |  |
| Battelle ID                         | BL057PB-P        |  |
| Sample Type                         | PB               |  |
| Collection Date                     | 10/18/07         |  |
| Extraction Date                     | 10/18/07         |  |
| Analysis Date                       | 10/23/07         |  |
| Analytical Instrument               | MS               |  |
| % Moisture                          | NA               |  |
| % Lipid                             | NA               |  |
| Matrix                              | OIL              |  |
| Sample Size                         |                  |  |
| Size Unit-Basis                     | 50.00            |  |
| Units                               | MG_OIL           |  |
| Units                               | MG/KG_OIL        |  |
| C23 Tricyclic Terpane               | υ                |  |
| C29 Tricyclic Terpane -22S          | U                |  |
| C29 Tricyclic Terpane -22R          |                  |  |
|                                     | U                |  |
| 18a(H)-22,29,30-Trisnomeohopane -TS | U                |  |
| 17a(H)-22,29,30-Trisnorhopane -TM   | U                |  |
| 30-Norhopane                        | U                |  |
| 18a(H) & 18b(H)-Oleananes           | Ŭ                |  |
| Hopane                              | U                |  |
| 30-Homohopane -22S                  | U                |  |
| 30-Homohopane -22R                  | Ū                |  |
| 13b(H),17a(H)-20S-Diacholestane     | ŭ                |  |
| 13b(H),17a(H)-20R-Diacholestane     | ŭ                |  |
| 14a(H),17a(H)-20R-methylcholestane  | Ŭ                |  |
| 14a(H),17a(H)-20S-Ethylcholestane   |                  |  |
| 14a(H),17a(H)-20R-Ethylcholestane   | U                |  |
| C21-TAS                             | U                |  |
|                                     | U                |  |
| C26-TAS(20S)                        | U                |  |
| C26,C27-TAS                         | U                |  |
| C27-TAS(20R)                        | U                |  |
| C28-TAS(20S)                        | U                |  |
| C28-TAS(20R)                        | U                |  |
| C21-MAS                             | U                |  |
| C22-MAS                             | Ŭ                |  |
| C27-MAS                             | Ũ                |  |
| C27-20R-MAS                         | ŭ                |  |
| C27-20S-MAS                         | Ŭ                |  |
| C28-20S-MAS                         | Ŭ                |  |
| C27-C2920S/R-MAS                    | 0                |  |
| C29-20S-MAS                         | U                |  |
| C29-20R-MAS                         | U                |  |
|                                     | U                |  |
| TAS_245                             | U                |  |
| MAS_239                             | U                |  |
| Surrogate Recoveries (%)            |                  |  |
| Naphthalene-d8                      | 100              |  |
| Acenaphthene-d10                    | 106              |  |
|                                     | 97               |  |
| Phenanthrene-d10                    | 96               |  |
| Benzo(a)pyrene-d12                  | 109              |  |
| 5b(H)-Cholane                       | 95               |  |
|                                     |                  |  |

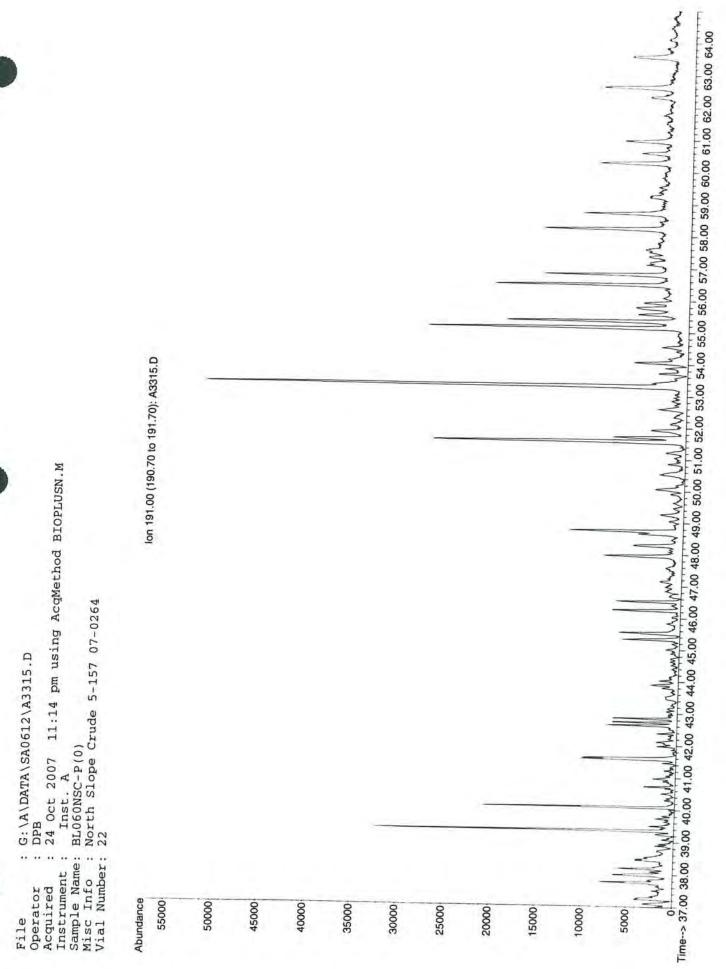

The Business of Innovation

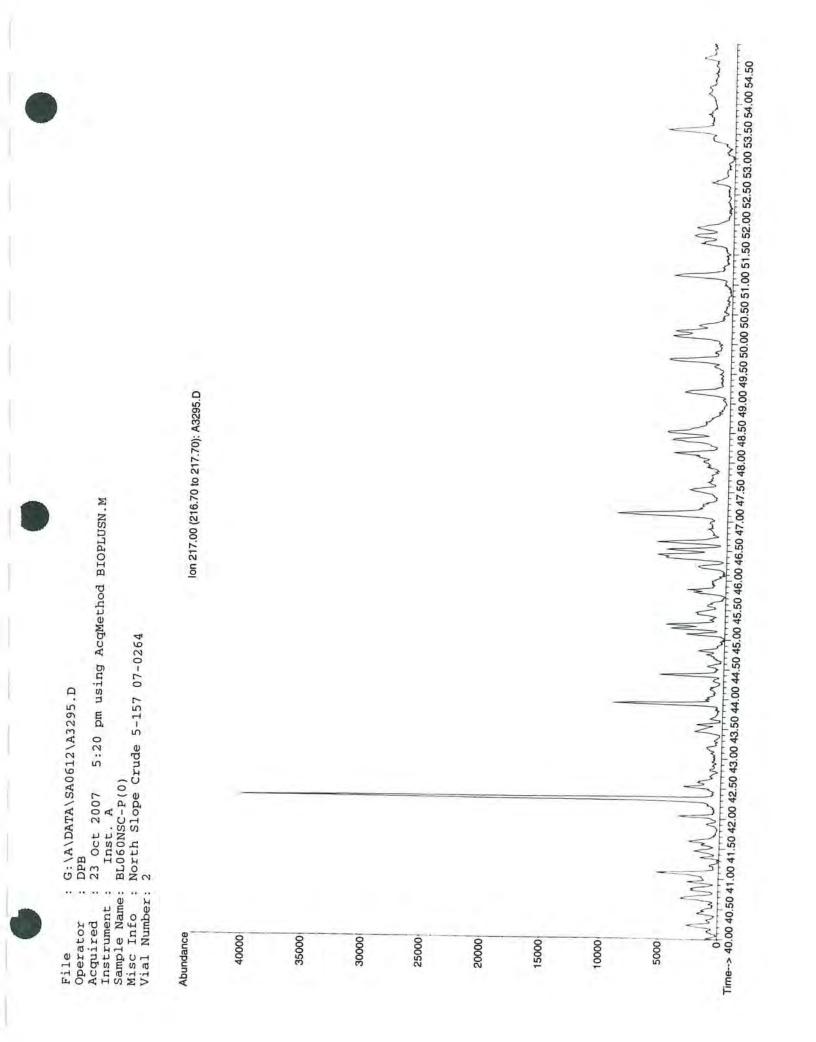

| Client ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Laboratory Control<br>Sample |                    |           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|-----------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample                       |                    |           |  |
| Battelle ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BL058LCS-P                   |                    |           |  |
| Sample Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LCS                          |                    |           |  |
| Collection Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/18/07                     |                    |           |  |
| Extraction Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/18/07                     |                    |           |  |
| Analysis Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10/23/07                     |                    |           |  |
| Analytical Instrument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MS                           |                    |           |  |
| % Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                           |                    |           |  |
| % Lipid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                           |                    |           |  |
| Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OIL                          |                    |           |  |
| Sample Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                           |                    |           |  |
| Size Unit-Basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                           |                    |           |  |
| Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NG                           | Target % Recovery  | Qualifier |  |
| Call States and the states of |                              | raiget in Recovery | Quanter   |  |
| C23 Tricyclic Terpane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U                            |                    |           |  |
| C29 Tricyclic Terpane -22S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                            |                    |           |  |
| C29 Tricyclic Terpane -22R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U                            |                    |           |  |
| 18a(H)-22,29,30-Trisnomeohopane -TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                            |                    |           |  |
| 17a(H)-22,29,30-Trisnorhopane -TM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U                            |                    |           |  |
| 30-Norhopane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                            |                    |           |  |
| 18a(H) & 18b(H)-Oleananes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U                            |                    |           |  |
| Hopane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U                            |                    |           |  |
| 30-Homohopane -22S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ũ                            |                    |           |  |
| 30-Homohopane -22R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ū                            |                    |           |  |
| 13b(H),17a(H)-20S-Diacholestane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ũ                            |                    |           |  |
| 13b(H),17a(H)-20R-Diacholestane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ũ                            |                    |           |  |
| 14a(H),17a(H)-20R-methylcholestane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ũ                            |                    |           |  |
| 14a(H),17a(H)-20S-Ethylcholestane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ũ                            |                    |           |  |
| 14a(H),17a(H)-20R-Ethylcholestane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ŭ                            |                    |           |  |
| C21-TAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ŭ                            |                    |           |  |
| C26-TAS(20S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                            |                    |           |  |
| C26,C27-TAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ŭ                            |                    |           |  |
| C27-TAS(20R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ŭ                            |                    |           |  |
| C28-TAS(20S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                            |                    |           |  |
| C28-TAS(20R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŭ                            |                    |           |  |
| C21-MAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ŭ                            |                    |           |  |
| C22-MAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ŭ                            |                    |           |  |
| C27-MAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ŭ                            |                    |           |  |
| C27-20R-MAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ŭ                            |                    |           |  |
| C27-20S-MAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ŭ                            |                    |           |  |
| C28-20S-MAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ŭ                            |                    |           |  |
| C27-C2920S/R-MAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŭ                            |                    |           |  |
| C29-20S-MAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ŭ                            |                    |           |  |
| C29-20R-MAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ŭ                            |                    |           |  |
| TAS 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ŭ                            |                    |           |  |
| MAS_239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ŭ                            |                    |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                            |                    |           |  |
| Surrogate Recoveries (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                    |           |  |
| Naphthalene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104                          |                    |           |  |
| Acenaphthene-d10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96                           |                    |           |  |
| Phenanthrene-d10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95                           |                    |           |  |
| Benzo(a)pyrene-d12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110                          |                    |           |  |
| 5b(H)-Cholane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88                           |                    |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                    |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                    |           |  |

The Business of Innovation


|                                     | GO98: North Slope |   |          |            |           |  |
|-------------------------------------|-------------------|---|----------|------------|-----------|--|
| Client ID                           | Crude             |   |          |            |           |  |
| Battelle ID                         | BL060NSC-P        |   |          |            |           |  |
| Sample Type                         |                   |   |          |            |           |  |
| Collection Date                     | NSC               |   |          |            |           |  |
| Extraction Date                     | 10/18/07          |   |          |            |           |  |
|                                     | 10/18/07          |   |          |            |           |  |
| Analysis Date                       | 10/23/07          |   |          |            |           |  |
| Analytical Instrument               | MS                |   |          |            |           |  |
| % Moisture                          | NA                |   |          |            |           |  |
| % Lipid                             | NA                |   |          |            |           |  |
| Matrix                              | OIL               |   |          |            |           |  |
| Sample Size                         | 5.04              |   |          |            |           |  |
| Size Unit-Basis                     | MG OIL            |   |          |            |           |  |
| Units                               | MG/KG_OIL         | 1 | Target % | Difference | Qualifier |  |
| C23 Tricyclic Terpane               | 00.50             |   | (in 15)  | 6.4.5      |           |  |
| C29 Tricyclic Terpane -22S          | 39.58             |   | 47.76    | 17.1       |           |  |
|                                     | 11.85             |   | 14.70    | 19.4       |           |  |
| C29 Tricyclic Terpane -22R          | 11.1              |   | 14.64    | 24.2       |           |  |
| 18a(H)-22,29,30-Trisnomeohopane -TS | 15.34             |   | 15.96    | 3.9        |           |  |
| 17a(H)-22,29,30-Trisnorhopane -TM   | 22.14             |   | 24.82    | 10.8       |           |  |
| 30-Norhopane                        | 61.9              |   | 69.58    | 11.0       |           |  |
| 18a(H) & 18b(H)-Oleananes           | 0.88              | J |          |            |           |  |
| Hopane                              | 106.92            |   | 120.14   | 11.0       |           |  |
| 30-Homohopane -22S                  | 55.79             |   | 59.93    | 6.9        |           |  |
| 30-Homohopane -22R                  | 39.79             |   | 39.69    | 0.3        |           |  |
| 13b(H),17a(H)-20S-Diacholestane     | 38.7              |   | 44.18    | 12.4       |           |  |
| 13b(H),17a(H)-20R-Diacholestane     | 21.96             |   | 25.52    | 13.9       |           |  |
| 14a(H),17a(H)-20R-methylcholestane  | 28.93             |   | 33.94    | 14.8       |           |  |
| 14a(H),17a(H)-20S-Ethylcholestane   | 33.42             |   | 35.93    | 7.0        |           |  |
| 14a(H),17a(H)-20R-Ethylcholestane   | 36.01             |   | 39.17    | 8.1        |           |  |
| C21-TAS                             | 17.14             |   | 00.17    | 0.1        |           |  |
| C26-TAS(20S)                        | 12.87             |   |          |            |           |  |
| C26,C27-TAS                         | 52.98             |   |          |            |           |  |
| C27-TAS(20R)                        | 31.83             |   |          |            |           |  |
| C28-TAS(20S)                        | 28.99             |   |          |            |           |  |
| C28-TAS(20R)                        | 26.51             |   |          |            |           |  |
| C21-MAS                             | 5.01              |   |          |            |           |  |
| C22-MAS                             | 3.29              |   |          |            |           |  |
| C27-MAS                             |                   |   |          |            |           |  |
| C27-20R-MAS                         | 4.68              |   |          |            |           |  |
| C27-20S-MAS                         | 7.65              |   |          |            |           |  |
| C28-20S-MAS                         | 1.36              |   |          |            |           |  |
| C27-C2920S/R-MAS                    | 14.61             |   |          |            |           |  |
| C29-20S-MAS                         | 13.91             |   |          |            |           |  |
| C29-20R-MAS                         | 3.56              |   |          |            |           |  |
|                                     | 9.39              |   |          |            |           |  |
| TAS_245                             | U                 |   |          |            |           |  |
| MAS_239                             | U                 |   |          |            |           |  |
| Surrogate Recoveries (%)            |                   |   |          |            |           |  |
| Nachthalana da                      |                   |   |          |            |           |  |
| Naphthalene-d8                      | 104               |   |          |            |           |  |
| Acenaphthene-d10                    | 92                |   |          |            |           |  |
| Phenanthrene-d10                    | 90                |   |          |            |           |  |
| Benzo(a)pyrene-d12                  | 126 N             |   |          |            |           |  |
| 5b(H)-Cholane                       | 96                |   |          |            |           |  |
|                                     |                   |   |          |            |           |  |



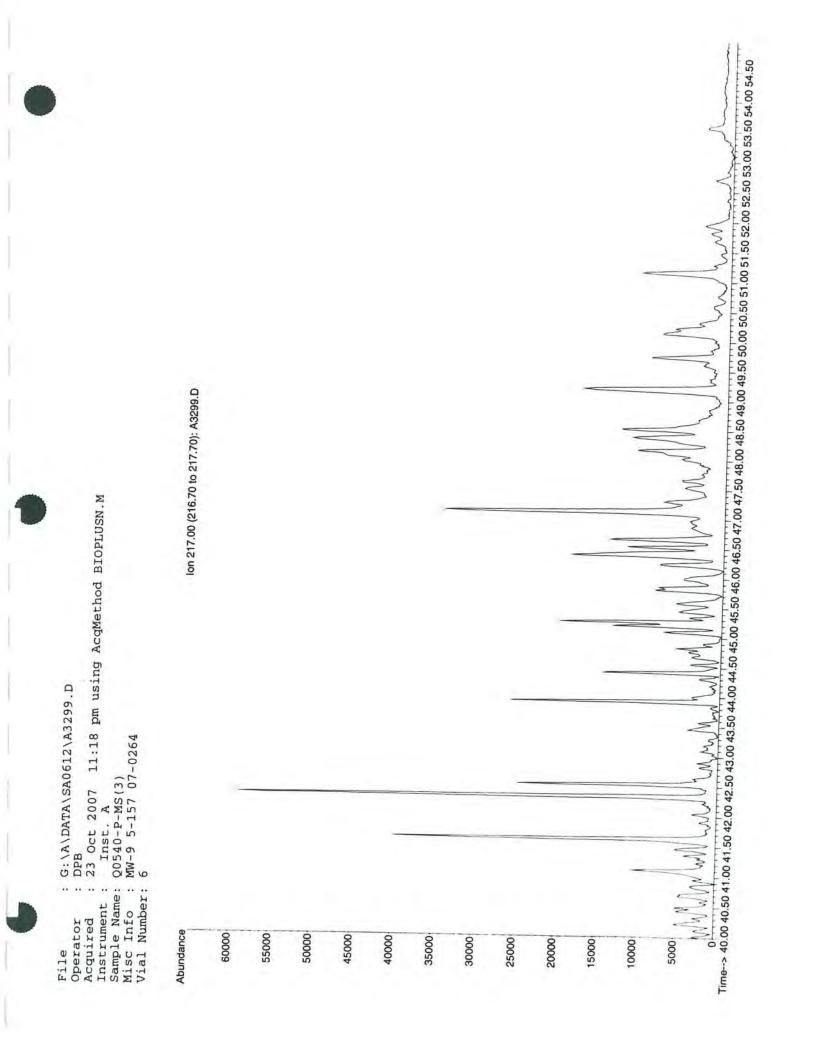



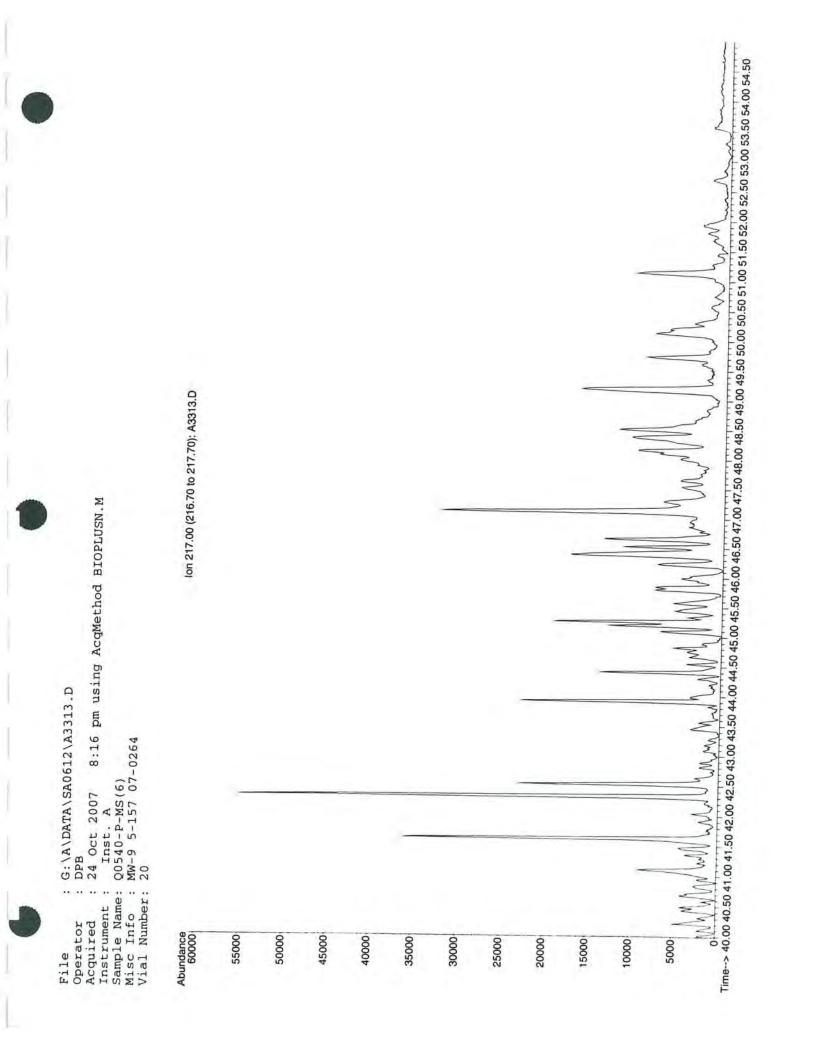


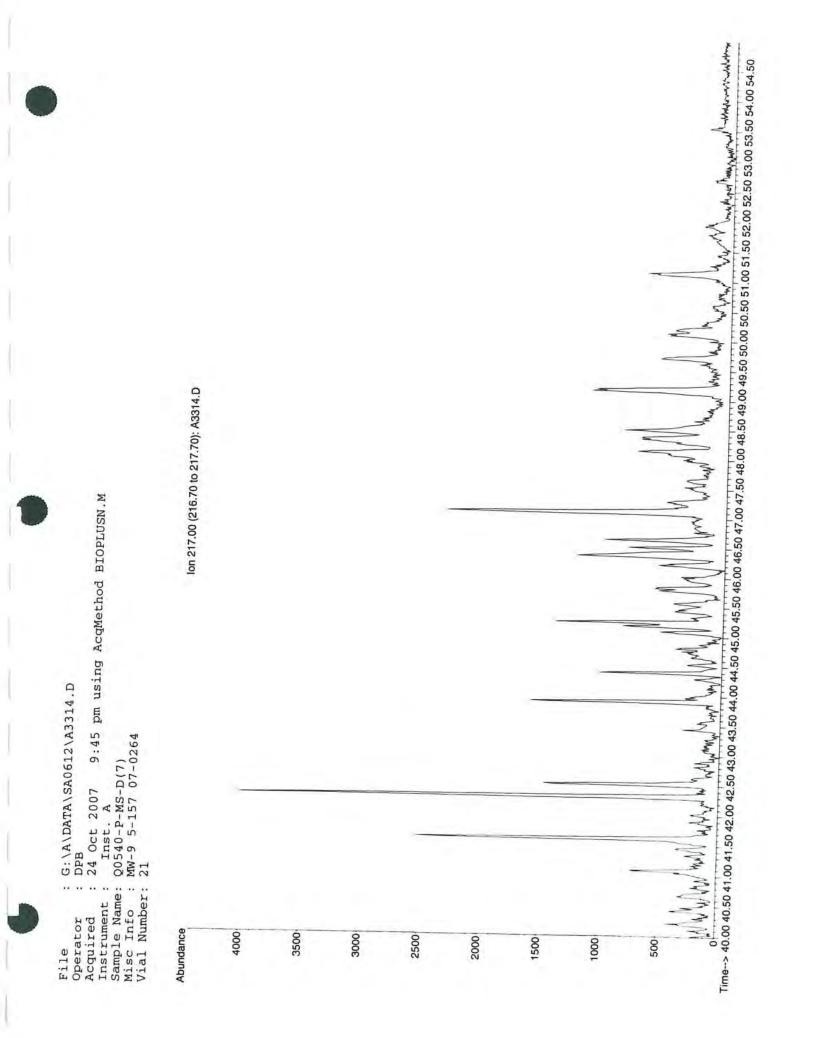


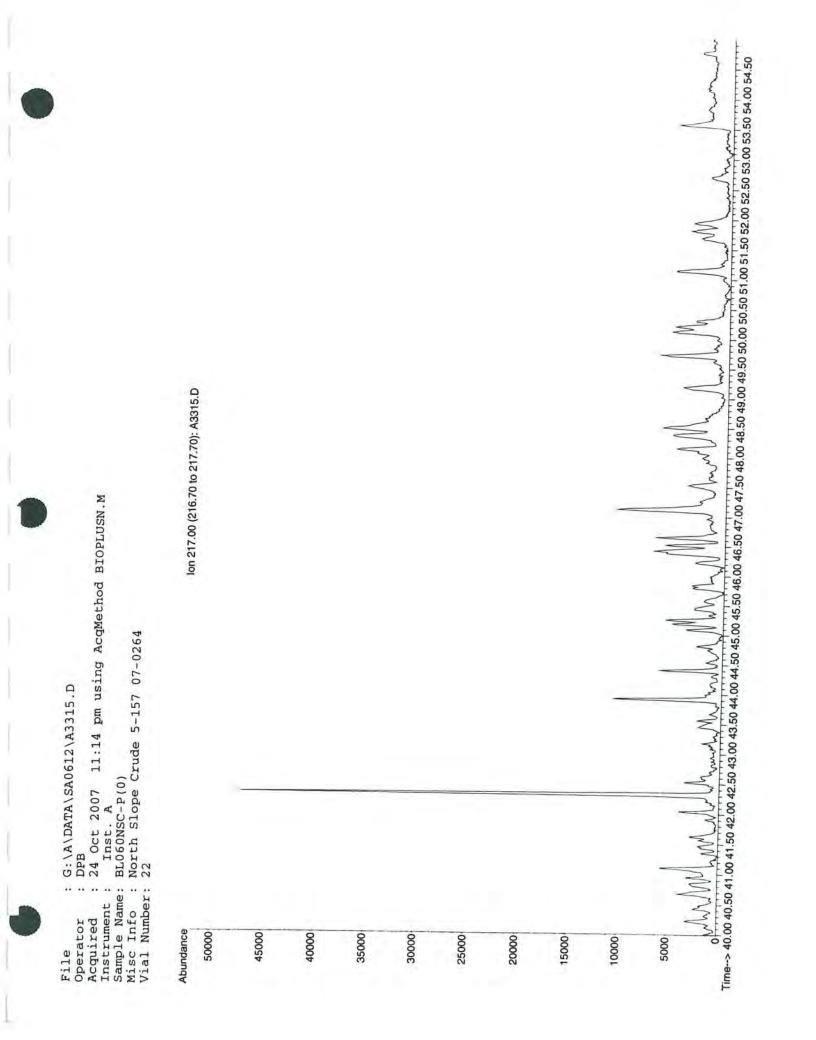


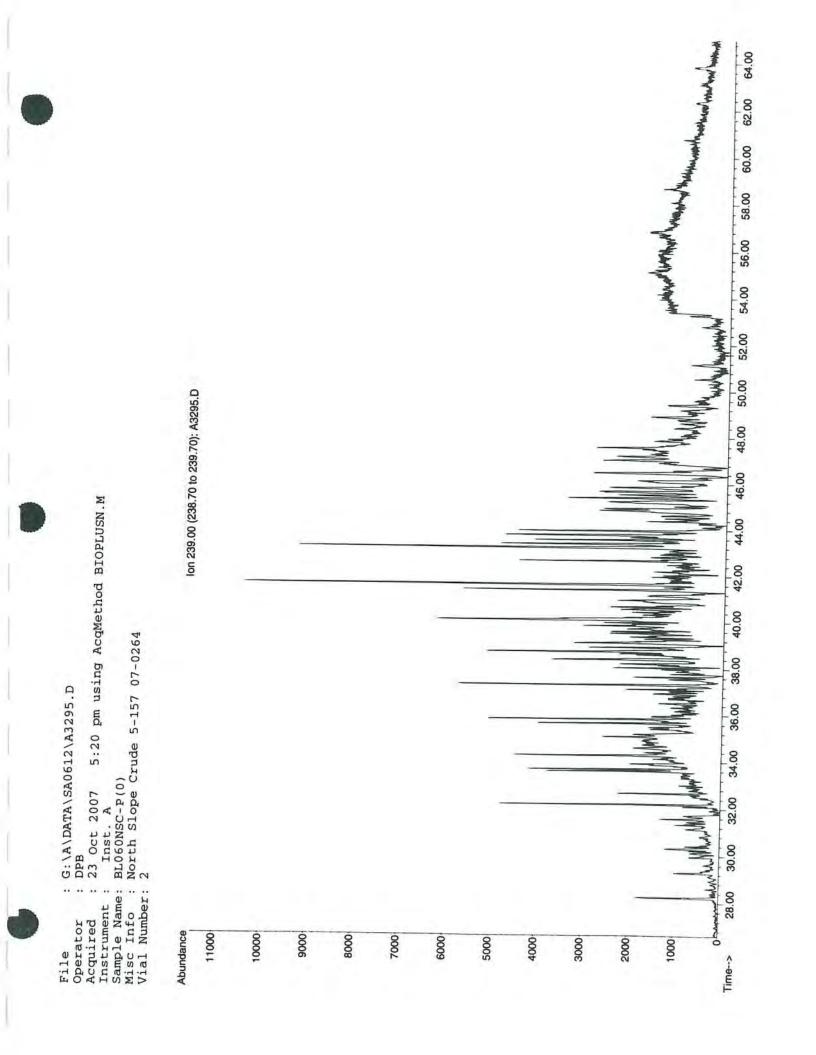


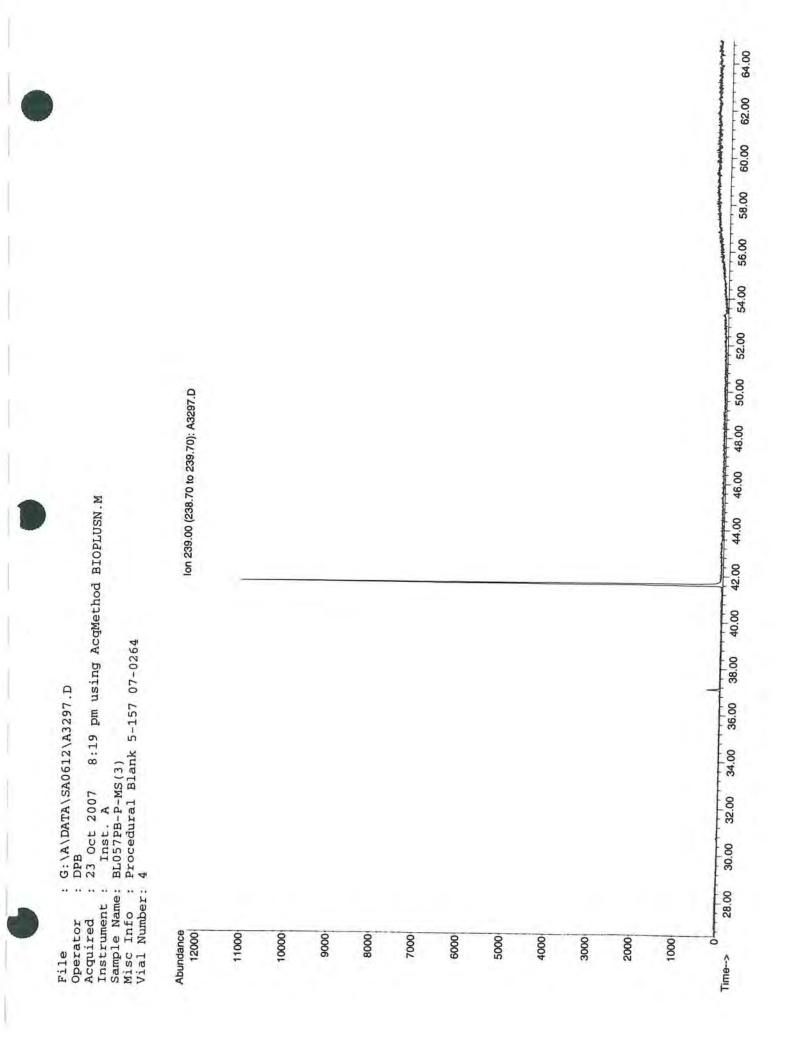



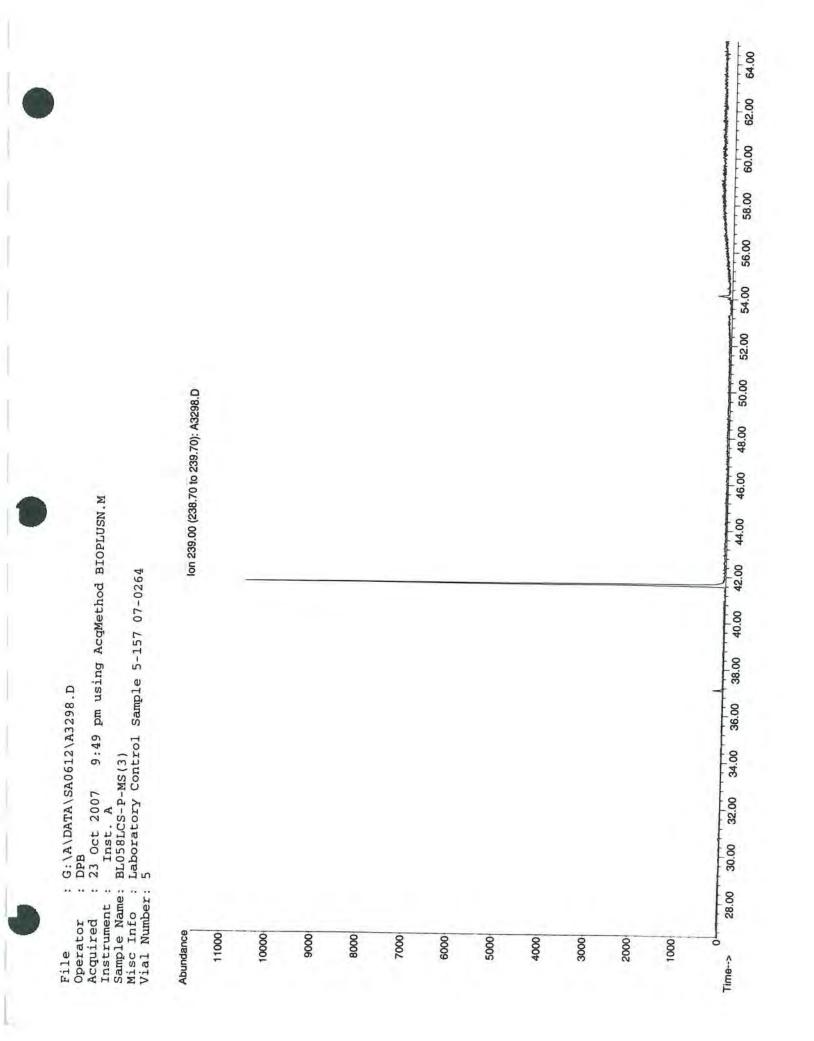


| Pile         : (:)NIMAN SOGIJAJ327.D           Operator         : 13 oct. 207         ::19 musing Acceletiod BIOFLISN.M           Antimumari         Trac., 1         :ne., 1           Antimumari         Trac., 1         :ne., 1           Antimumari         Trac., 207         ::19 musing Acceletiod BIOFLISN.M           Antimumari         Trac., 2         :100         :110           Antimore         : 2007         :157 07-0264           Antimore         : 2000         :157 07-0264           Antimore         : 2007         :157 07-0264           Antimore         : 2007         :157 07-0264           Antimore         : 2006         :150           Antimore         : 2006         : 2007 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

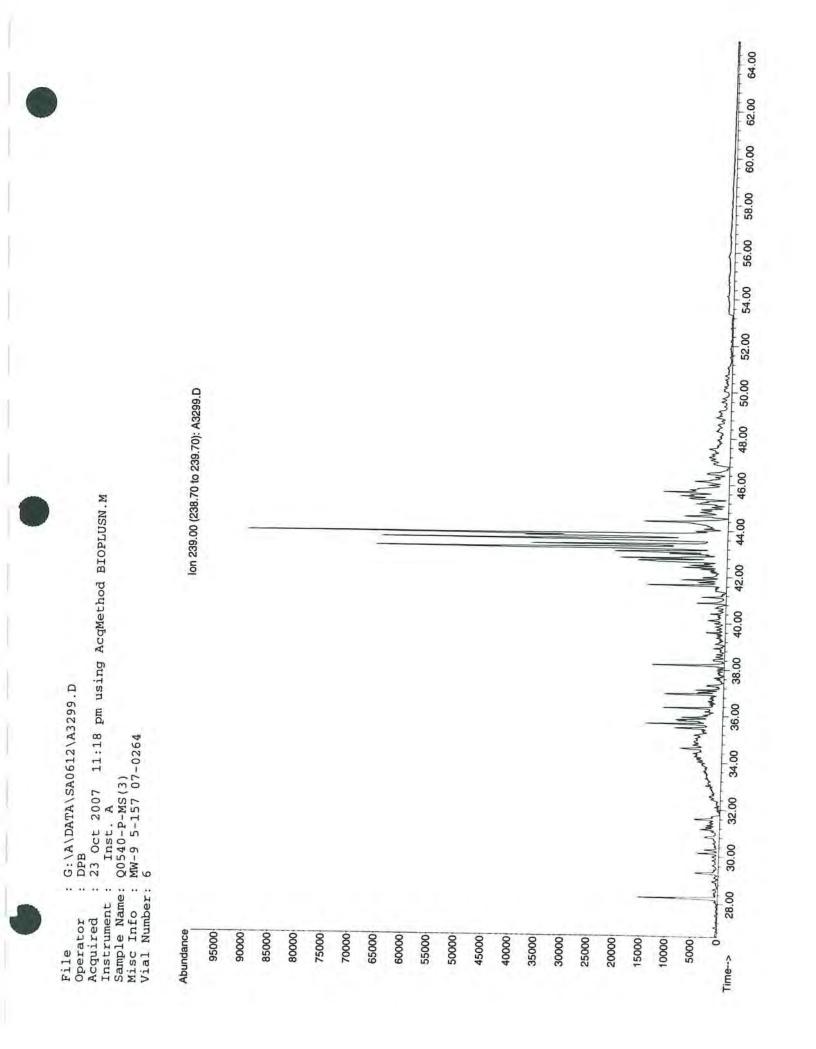

| File : G:\A\DATA\SA0612\A3298.I<br>Operator : DPB<br>Acquired : 23 Oct 2007 9:49 pm us<br>Instrument : Inst a |   | 0.8    |          | 1121     |            |
|---------------------------------------------------------------------------------------------------------------|---|--------|----------|----------|------------|
|                                                                                                               |   | 29     |          | EC       |            |
|                                                                                                               |   | 612\A3 |          | 9:49     |            |
|                                                                                                               |   | TA\SAO |          | 2007     | A          |
|                                                                                                               |   | A/DA   | 8        | Oct      |            |
| File :<br>Operator :<br>Acquired :<br>Instrument :                                                            |   | ö      | DPI      | 23       | Ì          |
| File<br>Operator<br>Acquired<br>Instrument                                                                    |   |        |          |          | ••         |
|                                                                                                               | 0 | File   | Operator | Acquired | Instrument |

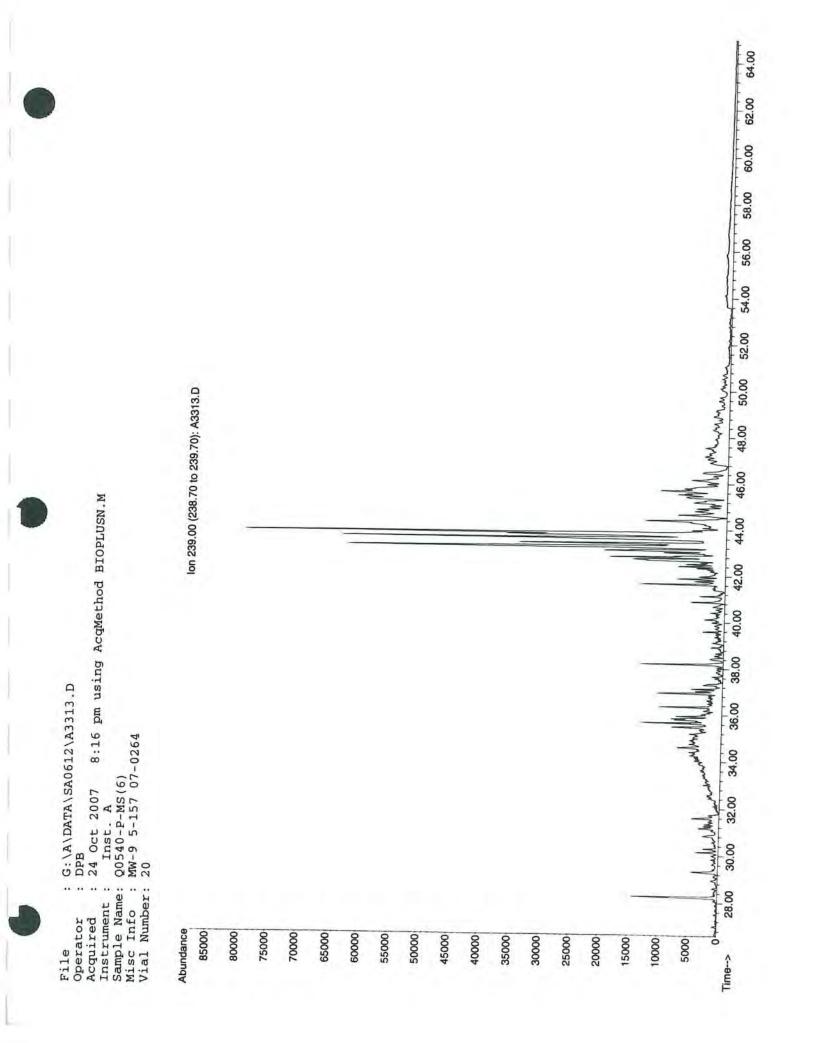

sing AcqMethod BIOPLUSN.M Sample Name: Lnst. A Sample Name: BL058LCS-P-MS(3) Misc Info : Laboratory Control Sample 5-157 07-0264 Vial Number: 5

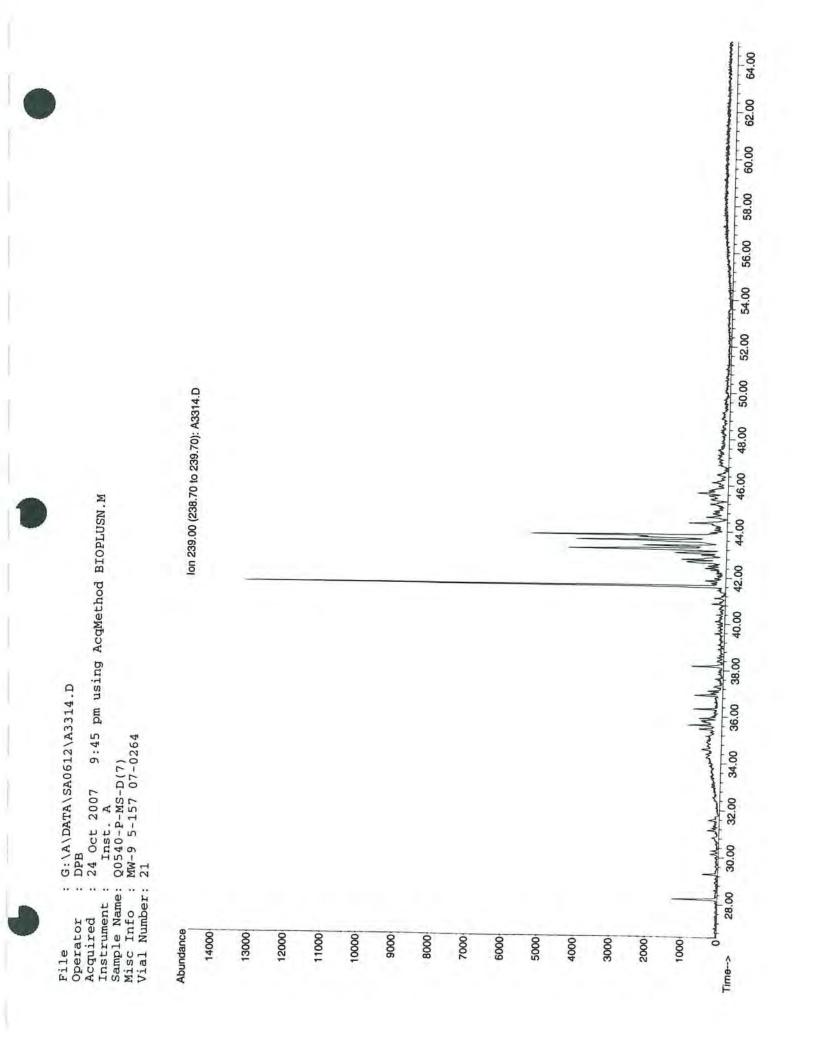

Time--> 40.00 40.50 41.00 41.50 42.00 42.50 43.00 43.50 44.00 44.50 45.00 45.50 46.00 46.50 47.00 47.50 48.00 48.50 49.00 49.50 50.00 50.50 51.00 51.50 52.00 52.50 53.00 53.50 54.00 54.50

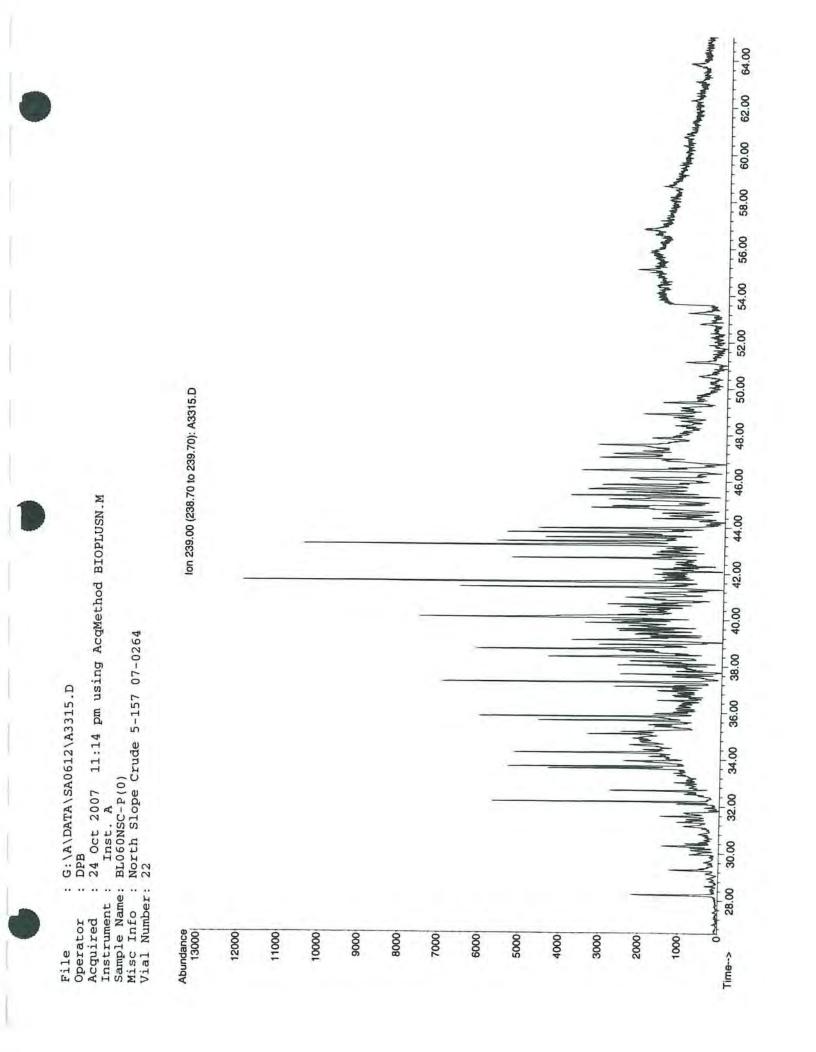


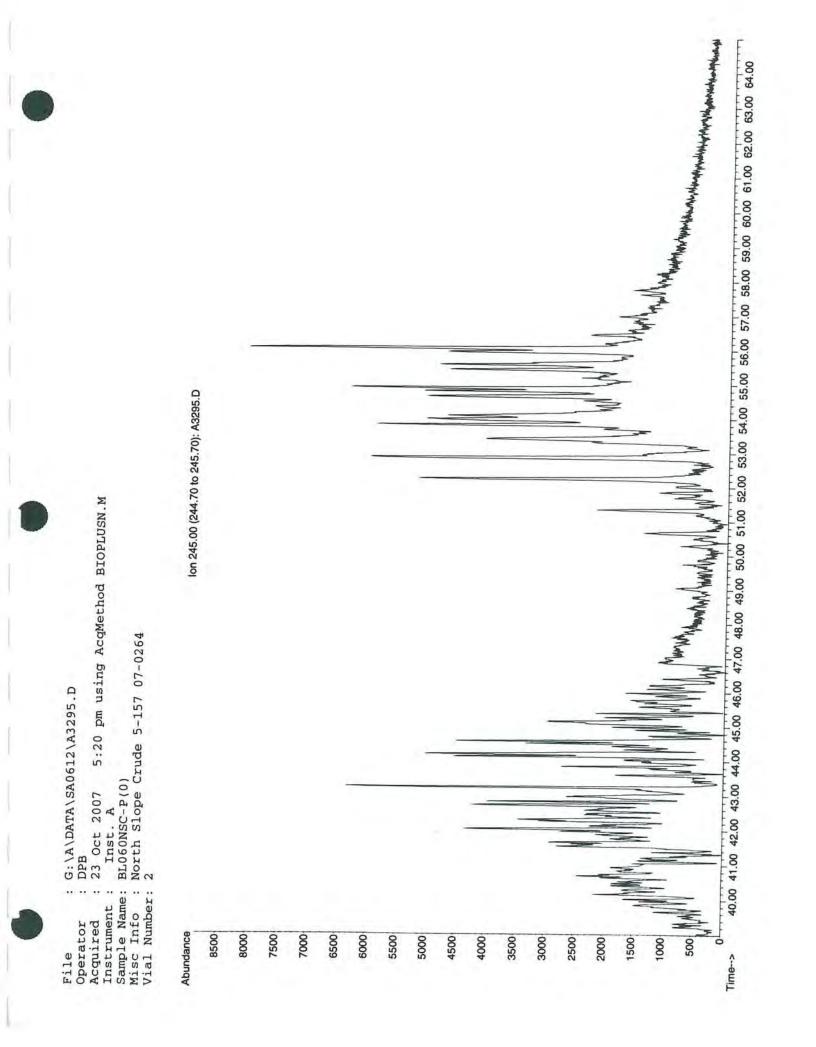



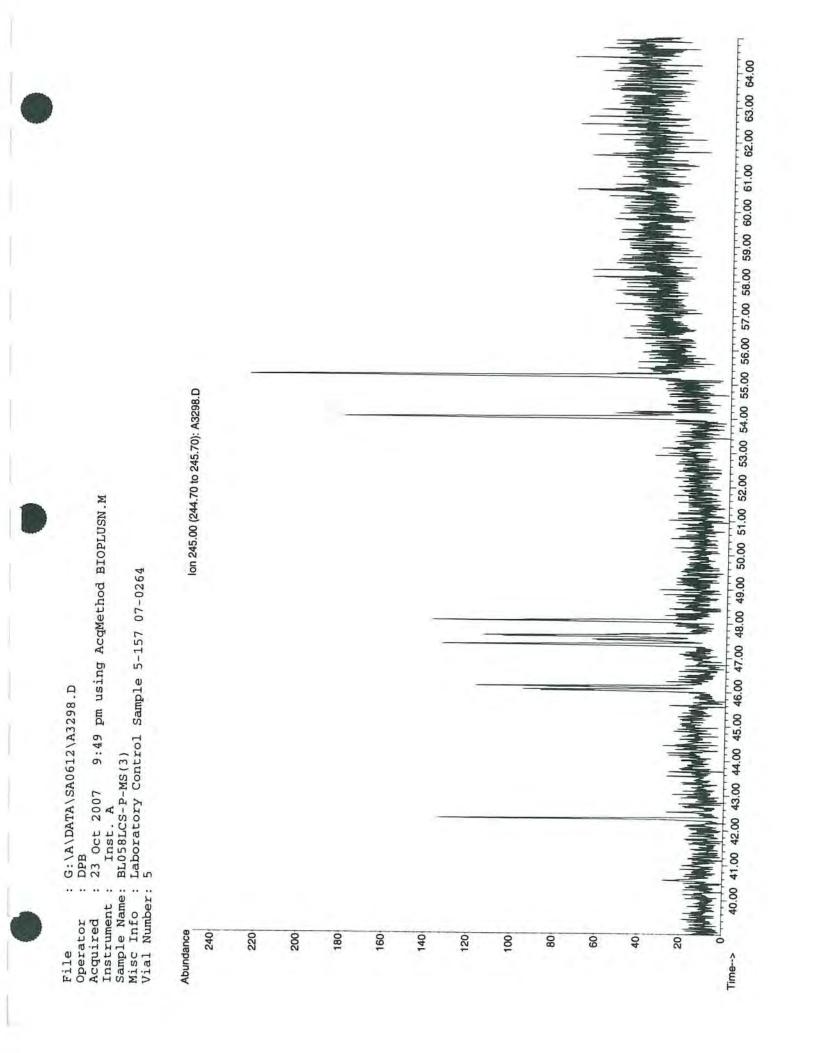



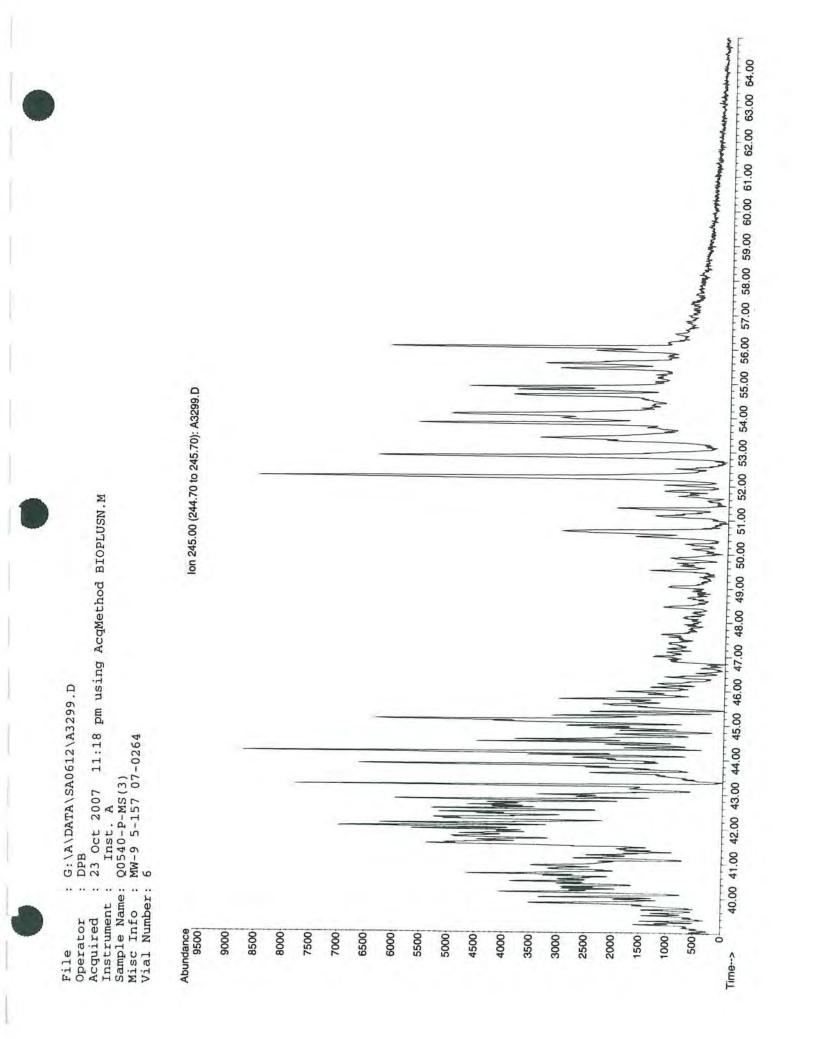



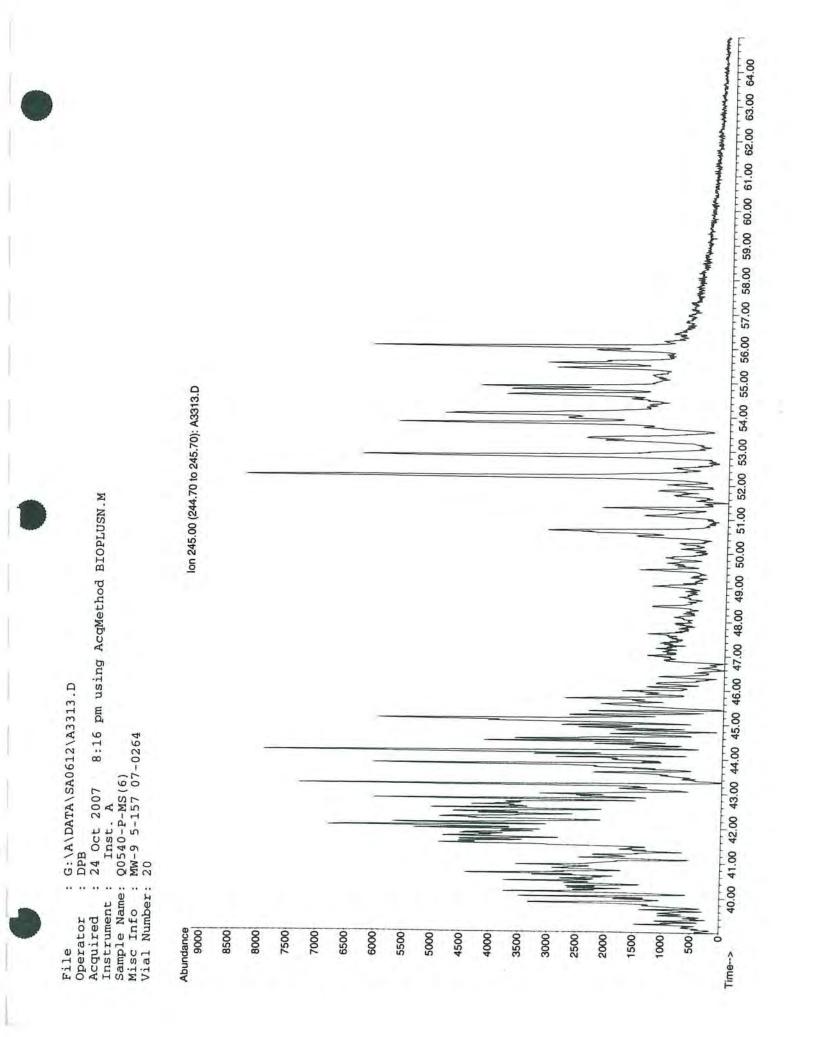



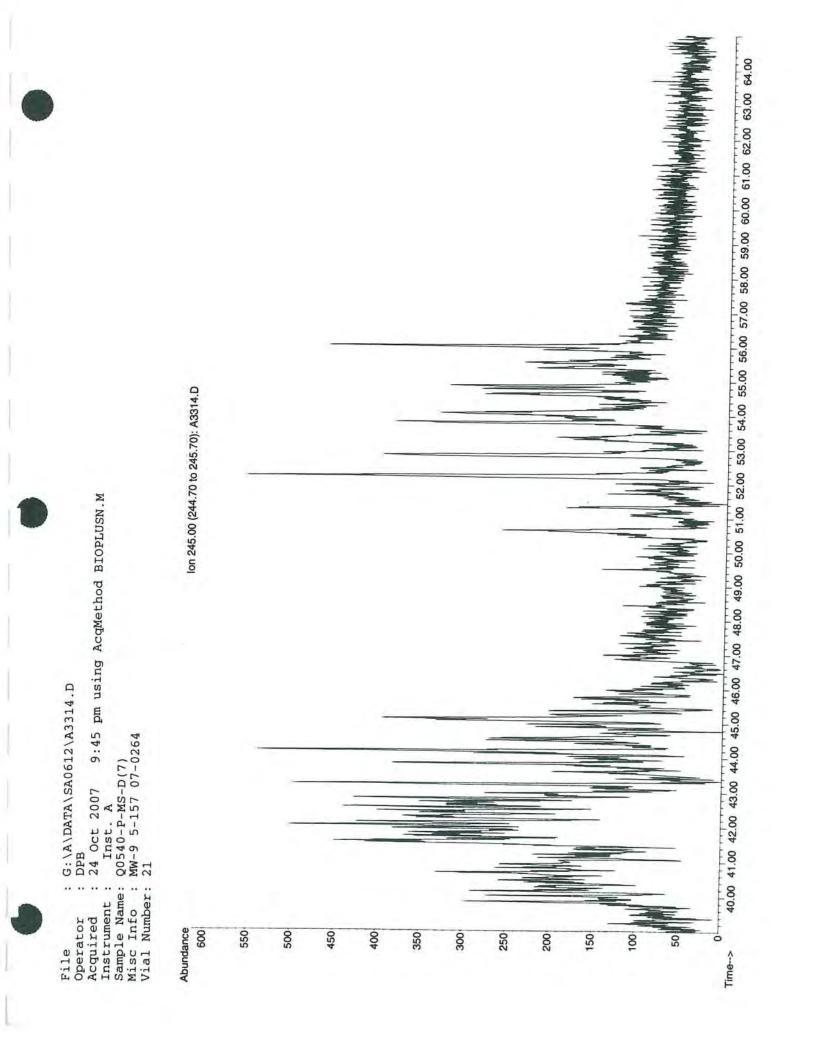



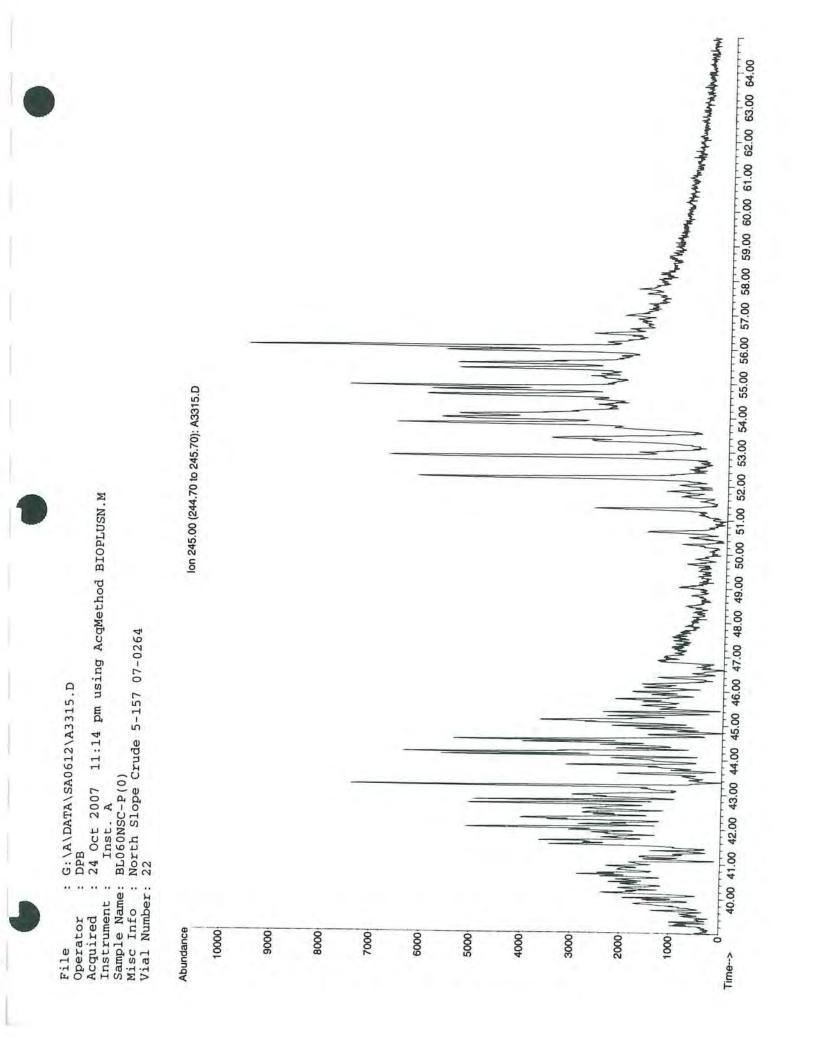













#### PAH and Biomarker – SEDIMENT QA/QC SUMMARY Batch 07-0266

| PROJECT:        | Floyd/Snyder – Gas Works Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PARAMETER:      | Polycyclic Aromatic Hydrocarbons (PAH) and Biomarkers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LABORATORY:     | Battelle, Duxbury, MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MATRIX:         | Sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SAMPLE CUSTODY: | Six soil samples and 1 NAPL were received at Battelle Duxbury Operations (BDO)<br>Laboratory on 10/9/07. Upon Receipt of the samples, the temperature of the cooler was<br>taken and the samples were logged into the laboratory and given unique IDs. The<br>temperature of the cooler upon receipt was slightly below the acceptable range ( $4^{\circ}C \pm 2^{\circ}$ ) at 0.6°C. Also, it was noted that sample Q0540 (MW-9) had some oil residue on the<br>outside of the container as well as the inner side of the bubble wrap. The oil residue was<br>only on the inside of the bubble wrap and did not touch any of the other samples. The<br>client was notified on 10/16/07. The laboratory was instructed to proceed with the<br>analysis. Samples were stored in an access-limited walk-in refrigerator at 4°C until<br>sample preparation could begin. |
| 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                | Reference<br>Method | Method<br>Blank | Surrogate<br>Recovery | LCS<br>Recovery     | MS<br>Recovery                               | MS/MSD<br>Precision | Control<br>Oil<br>% Diff             |
|----------------|---------------------|-----------------|-----------------------|---------------------|----------------------------------------------|---------------------|--------------------------------------|
| SHC and<br>TPH | General<br>NS&T     | <5xMDL          | 40-120%<br>Recovery   | 40-120%<br>Recovery | 40-120%<br>Recovery                          | ≤30% RPD            | PD,30% for<br>90% of the<br>analytes |
|                |                     |                 |                       |                     | MS target spike<br>must be >5x<br>background |                     |                                      |

ETHOD:

Soil samples were extracted following general NS&T methods. Approximately 5-8 g of sample was spiked with SHC, PAH, and biomarker surrogates and serial extracted three times with dichloromethane using orbital shaker table techniques. The combined extracts were dried over anhydrous sodium sulfate and concentrated by Kuderna-Danish and nitrogen evaporation techniques. The sample extracts were split in half: one-half of the extract was removed for archiving; the other half was processed through an alumina gravity column to isolate the hydrocarbon fractions of interest. The weights of the resulting extracts were determined gravimetrically. The extracts were concentrated to 1 mL, split, and spiked with internal standard (IS). The pre-injection volume and/or extract split were adjusted to 5mg/mL. One extract was submitted for PAH and the second extract was submitted for SHC and TPH analysis.

PAH and petroleum biomarkers were measured by gas chromatography -mass spectrometry (GC/MS) in the selected ion mode (SIM). An initial calibration consisting of target analytes was completed prior to analysis to demonstrate the linear range of the analysis. Calibration verification was performed at the beginning and end of each 12 hour period in which samples were analyzed. Concentrations of the PAH and petroleum biomarkers were calculated by the internal standard method. Target PAH were quantified using the average RF generated from the initial calibration. The alkyl homologue PAH series were assigned the RF of the parent PAH, Steranes were assigned the RF of cholestane, and triterpanes were assigned the RF of Moretane.

Note: the reporting limit for the alkyl benzene compounds is orders of magnitude higher than the reporting limits for the rest of the PAH compounds.

#### PAH and Biomarker - SEDIMENT QA/QC SUMMARY Batch 07-0266

| PROCEDURAL                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROCEDURAL<br>BLANK (PB):              | A procedural blank (PB) was prepared with each analytical batch. Blanks were analyzed to ensure the sample extraction and analysis methods were free of contamination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | 07-0266 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LABORATORY<br>CONTROL<br>SAMPLE (LCS): | A laboratory control sample (LCS) was prepared with each analytical batch. The percent recoveries of target analytes were calculated to measure data quality in terms of accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                        | 07-0266 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SURROGATE                              | Five surrogate compounds were added prior to extraction, including naphthalene-d8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RECOVERY:                              | acenaphthene-d10, phenanthrene-d10, benzo(a)pyrene-d12, and 5b(H)-chloane. The recovery of the surrogate compound was calculated to measure data quality in terms of accuracy (extraction efficiency).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        | 07-0266 – All four samples extracted in this batch failed SIS recovery criteria with high recoveries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                        | <b>Comments</b> – These samples have been extracted twice with similar results. The issue appears to be matrix related rather than extraction related as the PB and LCS (samples without matrix) did not exhibit similar trends.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CONTROL OIL:                           | A control oil (North Slope Crude) was prepared with the analytical batch. The percent difference (PD) between the measured value and the target value was calculated to measure data quality in terms of accuracy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                        | 07-0266 – No exceedences noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | Comments – None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CALIBRATIONS:                          | The GC/MS is collibrated with the state of t |
| CALIDICATIONS:                         | The GC/MS is calibrated with a minimum 5 level curve for all compounds. The percent relative standard deviation (% RSD) between RF for the individual target analytes must be $\leq 25\%$ , and the mean RSD of all target analytes must be $\leq 15\%$ . Each batch of samples analyzed is bracketed by a continuing calibration verification (CCV) sample, run at a frequency of minimally every 12 hours. The PD between the true value and the CCV should be $\leq 25\%$ for individual analytes. Additionally an initial calibration check (ICC) sample is run immediately after each initial calibration. The PD between the ICC and the initial calibration should be $\leq 25\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

07-0266 - No exceedences noted.

Comments - None.

calibration should be  $\leq 25\%$ .

### Battelle

The Business of Innovation

#### Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                      | SB-8 S5 9-10.5 | SB-13 2.5-4.0 | SB-12A S3 5-6.5 | GP-9 7-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------|----------------|---------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Battelle ID                    | Q0542-P1       | Q0543-P1      | Q0544-P1        | Q0546-P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample Type                    | SA             | SA            | SA              | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Collection Date                | 09/18/07       | 09/20/07      | 09/20/07        | THE REAL PROPERTY AND A DESCRIPTION OF A |
| Extraction Date                | 10/23/07       | 10/23/07      | 10/23/07        | 09/18/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Analysis Date                  | 11/14/07       | 11/14/07      | 11/14/07        | 10/23/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Analytical Instrument          | MS             | MS            | MS              | 11/13/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| % Moisture                     | 8.06           | 16.77         |                 | MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| % Lipid                        | NA             | NA            | 13.98           | 49.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Matrix                         | SOIL           |               | NA              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sample Size                    | 4.78           | SOIL          | SOIL            | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Size Unit-Basis                |                | 4.45          | 4.63            | 2.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Units                          | G_DRY          | G_DRY         | G_DRY           | G_DRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Units                          | NG/G_DRY       | NG/G_DRY      | NG/G_DRY        | NG/G_DRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C3-Alkylbenzenes               | 3892.89        | 186.94 J      | 47632.7         | 5372.73 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C4-Alkylbenzenes               | 18749.55       | 249.65 J      | 33828.46        | 5577.88 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C5-Alkylbenzenes               | 5557.54        | 156.88 J      | 10399.43 J      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C6-Alkylbenzenes               | 4402.57        | 98.64 J       | 8583.42 J       | 2089.59 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Benzo(b)thiophene              | 3378.11        | 5076.38       |                 | 1729.16 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C1-benzo(b)thiophenes          | 3329.38        |               | 393493.15 D     | 3568.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C2-benzo(b)thiophenes          | 2895.91        | 1139.53       | 178498.3 D      | 3388.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C3-benzo(b)thiophenes          | 2534.91        | 1482.64       | 145715.34 D     | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                |                | 1140.93       | 63061.83 D      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 24-benzo(b)thiophenes          | 1632.18        | 412.32        | 16930.09 D      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Naphthalene                    | 197097.18 D    | 46290.73      | 4524558.48 D    | 10239.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C1-Naphthalenes                | 98316.58 D     | 9577.93       | 1193806.3 D     | 2301.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2-Naphthalenes                 | 43038.8 D      | 8881.07       | 641883.07 D     | 6972.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3-Naphthalenes                 | 20997.44 D     | 7590.06       | 260962.9 D      | 5843.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24-Naphthalenes                | 9953 1 D       | 3506.08       | 75069.96 D      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1-Biphenyls + Dibenzofuran     | 4673.01        | 7971.01       | 95177.23        | 1984.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| liphenyl                       | 9344.63        | 14005.81      | 141278.54       | 856.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2-Biphenyls + C1-Dibenzolurans | 5754.07        | 4533.09       | 91796.6         | 7146.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| cenaphthylene                  | 170.56         | 23360.5       | 196999.75       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cenaphthene                    | 5931.38        | 2216.54       | 128297.35       | 79299.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| libenzofuran                   | 1232.99        | 5571.55       |                 | 622.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| luorene                        | 2703.28        | 22655.84      | 43413.34        | 454.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-Fluorenes                    | 3297.95        | 5254.37       | 242645.7        | 667.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2-Fluorenes                    | 3895.26        |               | 127932.59       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3-Fluorenes                    | 2966.17        | 4151.98       | 86930.23        | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4-Fluorenes                    |                | U             | 41379.34        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nthracene                      | 2393.37        | U             | 13759.75        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| henanthrene                    | 268.41         | 88166.17 D    | 327451.33 D     | 10159.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                | 3271.85        | 515173.52 D   | 1652158.57 D    | 2405.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1-Phenanthrenes/Anthracenes    | 5110.85        | 76738.48 D    | 713534.16 D     | 6776.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2-Phenanthrenes/Anthracenes    | 5084.27        | 31628.12 D    | 351181.43 D     | 7611.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3-Phenanthrenes/Anthracenes    | 2895.42        | 11745.34 D    | 103700.95 D     | 7070.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4-Phenanthrenes/Anthracenes    | 1396.86        | 2593.54 D     | 23157.55 D      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| etene                          | 2268,57        | 1860.34       | Ŭ               | 3378.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ibenzothiophene                | 561.92         | 58124.16      | 248996.12       | 979.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-Dibenzothiophenes            | 1416.11        | 15918.52      | 204065.03       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-Dibenzothiophenes            | 1656.13        | 10229.11      | 159270.15       | 2546.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3-Dibenzothiophenes            | 1020.41        | 4900.03       |                 | 5089.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4-Dibenzothiophenes            | 432.74         | 1443.07       | 69948.85        | 4871.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| uoranthene                     | 425.84         |               | 19585.16        | 2457.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| rene                           | 632.53         | 740795.46 D   | 769240.56 D     | 4503.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1-Fluoranthenes/Pyrenes        |                | 954314.48 D   | 1147697.77 D    | 14763.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2-Fluoranthenes/Pyrenes        | 715.32         | 120979.11 D   | 517881 D        | 13411.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3-Fluoranthenes/Pyrenes        | 578            | 28376.19 D    | 182979.44 D     | 19334.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                | 463.84         | 9383.55 D     | 71821.42 D      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4-Fluoranthenes/Pyrenes        | 262.87         | U             | 23035.94        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| )-Benzo(b)naphthothiophenes    | 45.36          | 62969.55      | 105627.53       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1-Benzo(b)naphthothiophenes    | 140.59         | 19773.48      | 126444.47       | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2-Benzo(b)naphthothiophenes    | 142.96         | 6070.07       | 74933.29        | ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3-Benzo(b)naphthothiophenes    | 87.78          | 7872.43       | 33192.02        | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4-Benzo(b)naphthothiophenes    | U              | 725.56        | 8221.03         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| enzo(a)anthracene              | 124.37         | 223728.55 D   | 290498.83 D     | 3336.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| hrysene                        |                |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Analyzed by Restucci Jr, Richard 11/15/2007

### Battelle

The Business of Innovation

| SB-8 S5 9-10.5 | SB-13 2.5-4.0                                                                                                                                                                                                                            | SB-12A S3 5-6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GP-9 7-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q0542-P1       | Q0543-P1                                                                                                                                                                                                                                 | 00544-P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q0546-P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                |                                                                                                                                                                                                                                          | Contraction of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 09/18/07       |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 09/18/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10/23/07       |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/23/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11/14/07       |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/13/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MS             |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49.24<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NG/G_DRY       | NG/G_DRY                                                                                                                                                                                                                                 | NG/G_DRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G_DRY<br>NG/G_DRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 177.77         | 45327 58                                                                                                                                                                                                                                 | 107122.24 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2502.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3503.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                          | Very energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7404.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7060.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8672.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9161.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8317.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81298.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2717.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87159.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | 5001002.43                                                                                                                                                                                                                               | 10020314.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 431075.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 136 NME        | 40                                                                                                                                                                                                                                       | 134 NMF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 142 NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 142 NME        | 47                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 141 NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 145 NME        |                                                                                                                                                                                                                                          | 11 S S 10 S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 165 NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 135 NME        | 49                                                                                                                                                                                                                                       | 171 NME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 132 NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 133 NUME       | 49                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | Q0542-P1<br>SA<br>09/18/07<br>10/23/07<br>11/14/07<br>MS<br>8.06<br>NA<br>SOIL<br>4.78<br>G_DRY<br>NG/G_DRY<br>177.77<br>174.33<br>136.57<br>87.49<br>70.16<br>76.29<br>72.83<br>104.89<br>31.08<br>72.35<br>11.27<br>79.03<br>426259.29 | Q0542-P1         Q0543-P1           SA         SA           09/18/07         09/20/07           10/23/07         10/23/07           11/14/07         11/14/07           MS         MS           8.06         16.77           NA         NA           SOIL         SOIL           4.78         4.45           G_DRY         G_DRY           NG/G_DRY         NG/G_DRY           NG/G_DRY         NG/G_DRY           177.77         45327.58           174.33         13412.49 D           136.57         5542.83           87.49         4208.54           70.16         215988 D           76.29         22285.07 D           72.83         235414.11 D           104.89         290768.98 D           31.08         70186.94           72.35         298934.42 D           11.27         40419.21           79.03         303454.24 D           426259.29         5061002.49           136 NME         40           142 NME         47           145 NME         46 | Q0542-P1         Q0543-P1         Q0544-P1           SA         SA         SA           09/18/07         09/20/07         09/20/07           10/23/07         10/23/07         10/23/07           11/14/07         11/14/07         11/14/07           11/14/07         11/14/07         11/14/07           MS         MS         MS           8.06         16.77         13.98           NA         NA         NA           SOIL         SOIL         SOIL           4.78         4.45         4.63           G_DRY         G_DRY         G_DRY           MG/G_DRY         NG/G_DRY         NG/G_DRY           177.77         45327.58         197122.34 D           174.33         13412.49 D         102039.96 D           136.57         5542.83         42176.85           87.49         4208.54         12791.94           70.16         215988 D         160335.11           76.29         222855.07 D         170225.35           72.83         235414.11 D         195020.96           104.89         290768.98 D         339611.03 D           31.08         70186.94         76194.88 |

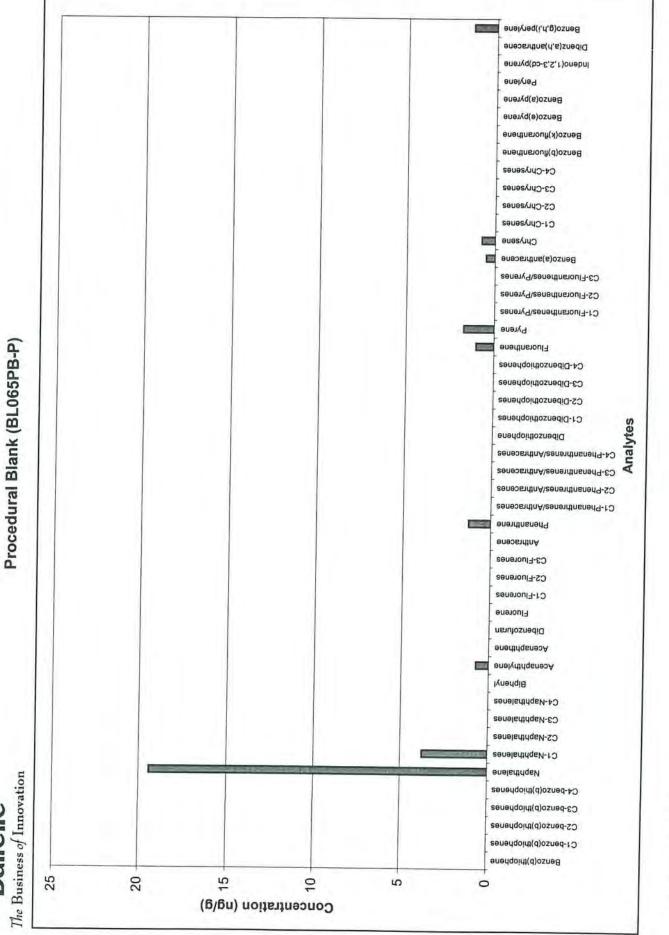
## Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                       | Procedural Blank |  |
|---------------------------------|------------------|--|
| Battelle ID                     | BL065PB-P        |  |
| Sample Type                     |                  |  |
| Collection Date                 | PB               |  |
|                                 | 10/23/07         |  |
| Extraction Date                 | 10/23/07         |  |
| Analysis Date                   | 11/13/07         |  |
| Analytical Instrument           | MS               |  |
| % Moisture                      | 22.01            |  |
| % Lipid                         | NA               |  |
| Matrix                          | SEDIMENT         |  |
| Sample Size                     | 4.20             |  |
| Size Unit-Basis                 | G_DRY            |  |
| Units                           | NG/G_DRY         |  |
| C3-Alkylbenzenes                | υ                |  |
| C4-Alkylbenzenes                |                  |  |
| C5-Alkylbenzenes                | U                |  |
|                                 | U                |  |
| C6-Alkylbenzenes                | U                |  |
| Benzo(b)thiophene               | U                |  |
| C1-benzo(b)thiophenes           | U                |  |
| C2-benzo(b)thiophenes           | U                |  |
| C3-benzo(b)thiophenes           | U                |  |
| C4-benzo(b)thiophenes           | Ű                |  |
| Naphthalene                     | 19.41 N          |  |
| C1-Naphthalenes                 | 3.75 J           |  |
| C2-Naphthalenes                 | 0.75 U           |  |
| C3-Naphthalenes                 |                  |  |
| C4-Naphthalenes                 | U                |  |
|                                 | U                |  |
| C1-Biphenyls + Dibenzofuran     | U                |  |
| Biphenyl                        | U                |  |
| C2-Biphenyls + C1-Dibenzofurans | U                |  |
| Acenaphthylene                  | 0.74 J           |  |
| Acenaphthene                    | U                |  |
| Dibenzofuran                    | Ŭ                |  |
| Fluorene                        | U                |  |
| C1-Fluorenes                    | Ŭ                |  |
| C2-Fluorenes                    | Ŭ                |  |
| C3-Fluorenes                    | ŭ                |  |
| C4-Fluorenes                    | Ŭ                |  |
| Anthracene                      |                  |  |
| Phenanthrene                    | U                |  |
| C1-Phenanthrenes/Anthracenes    | 1.25 J           |  |
| 22 Phenanthrenes/Anthracenes    | U                |  |
| 22-Phenanthrenes/Anthracenes    | U                |  |
| C3-Phenanthrenes/Anthracenes    | u                |  |
| C4-Phenanthrenes/Anthracenes    | U                |  |
| Retene                          | u                |  |
| Dibenzothiophene                | Ŭ                |  |
| C1-Dibenzothiophenes            | Ū.               |  |
| C2-Dibenzothiophenes            | ŭ                |  |
| C3-Dibenzothiophenes            | Ŭ                |  |
| C4-Dibenzothiophenes            | U<br>U           |  |
| luoranthene                     |                  |  |
| Pyrene                          | 1.01 J           |  |
|                                 | 1.72 J           |  |
| 1-Fluoranthenes/Pyrenes         | U                |  |
| 2-Fluoranthenes/Pyrenes         | U                |  |
| 3-Fluoranthenes/Pyrenes         | U                |  |
| 4-Fluoranthenes/Pyrenes         | U                |  |
| 0-Benzo(b)naphthothiophenes     | Ŭ                |  |
| 1-Benzo(b)naphthothiophenes     | ũ                |  |
| 2-Benzo(b)naphthothiophenes     | Ŭ                |  |
| 3-Benzo(b)naphthothiophenes     |                  |  |
| 4-Benzo(b)naphthothiophenes     | U                |  |
| enzo(a)anthracene               | U                |  |
| Chrysene                        | 0.49 J           |  |
|                                 | 0.75 J           |  |

| Client ID                | Procedural Blank |  |
|--------------------------|------------------|--|
| Battelle ID              | BL065PB-P        |  |
| Sample Type              | PB               |  |
| Collection Date          | 10/23/07         |  |
| Extraction Date          | 10/23/07         |  |
| Analysis Date            | 11/13/07         |  |
| Analytical Instrument    | MS               |  |
| % Moisture               | 22.01            |  |
| % Lipid                  | NA               |  |
| Matrix                   | SEDIMENT         |  |
| Sample Size              | 4.20             |  |
| Size Unit-Basis          | G_DRY            |  |
| Units                    | NG/G_DRY         |  |
| C1-Chrysenes             | U                |  |
| C2-Chrysenes             | U                |  |
| C3-Chrysenes             | Ŭ                |  |
| C4-Chrysenes             | Ŭ                |  |
| Benzo(b)fluoranthene     | ŭ                |  |
| Benzo(k)fluoranthene     | Ŭ                |  |
| Benzo(e)pyrene           | U                |  |
| Benzo(a)pyrene           | ŭ                |  |
| Perylene                 | Ŭ                |  |
| Indeno(1,2,3-cd)pyrene   | Ŭ                |  |
| Dibenz(a,h)anthracene    | Ŭ                |  |
| Benzo(g,h,i)perylene     | 1.3 J            |  |
| Total PAH                | 30.42 J          |  |
|                          | 612 P.           |  |
| Surrogate Recoveries (%) |                  |  |
| Naphthalene-d8           | 93               |  |
| Acenaphthene-d10         | 87               |  |
| Phenanthrene-d10         | 94               |  |
| Benzo(a)pyrene-d12       | 96               |  |
| 5b(H)-Cholane            | 101              |  |

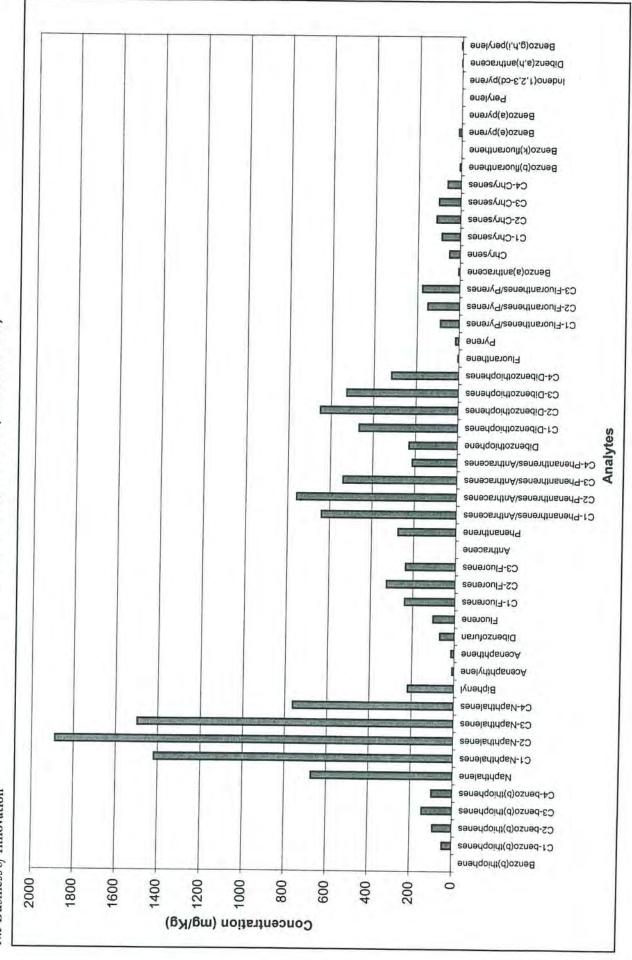
| Client ID                                                                                                        | 060208-03: Sand<br>White Quartz, -50+70 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|--|
| Battelle ID                                                                                                      | DI 0001 00 D                            | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Sample Type                                                                                                      | BL066LCS-P                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Collection Date                                                                                                  | LCS                                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Extraction Date                                                                                                  | 10/23/07                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Analysis Date                                                                                                    | 10/23/07                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| and the second | 11/13/07                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Analytical Instrument<br>% Moisture                                                                              | MS                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| % Lipid                                                                                                          | NA                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Matrix                                                                                                           | NA                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Sample Size                                                                                                      | SEDIMENT                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Size Unit-Basis                                                                                                  | NA                                      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Units                                                                                                            | NA<br>NG                                |        | Taraat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0/ Deserves | 0           |  |
|                                                                                                                  | NO                                      | -      | larget                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | % Recovery  | / Qualifier |  |
| C3-Alkylbenzenes                                                                                                 |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C4-Alkylbenzenes                                                                                                 |                                         | Ū      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C5-Alkylbenzenes                                                                                                 |                                         | Ũ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C6-Alkylbenzenes                                                                                                 |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Benzo(b)thiophene                                                                                                | 1598.34                                 |        | 2508.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64          |             |  |
| C1-benzo(b)thiophenes                                                                                            |                                         | U      | 101103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |             |  |
| C2-benzo(b)thiophenes                                                                                            |                                         | u      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C3-benzo(b)thiophenes                                                                                            |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C4-benzo(b)thiophenes                                                                                            |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Naphthalene                                                                                                      | 1696.05                                 |        | 2500.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68          |             |  |
| C1-Naphthalenes                                                                                                  |                                         | U      | ( A State of the s |             |             |  |
| C2-Naphthalenes                                                                                                  |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C3-Naphthalenes                                                                                                  |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C4-Naphthalenes                                                                                                  |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C1-Biphenyls + Dibenzofuran                                                                                      |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Biphenyl                                                                                                         | 1514.31                                 |        | 2504.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60          |             |  |
| C2-Biphenyls + C1-Dibenzofurans                                                                                  |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Acenaphthylene                                                                                                   | 1796.09                                 |        | 2502,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72          |             |  |
| Acenaphthene                                                                                                     | 1813.64                                 |        | 2501.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72          |             |  |
| Dibenzofuran                                                                                                     | 1617.51                                 |        | 2504.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65          |             |  |
| Fluorene                                                                                                         | 1761.72                                 |        | 2501.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70          |             |  |
| C1-Fluorenes                                                                                                     |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C2-Fluorenes<br>C3-Fluorenes                                                                                     |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C4-Fluorenes                                                                                                     |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Anthracene                                                                                                       | 126.32                                  | U      | Summer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |             |  |
| Phenanthrene                                                                                                     | 1801.19                                 |        | 2500.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72          |             |  |
| C1-Phenanthrenes/Anthracenes                                                                                     | 1873.41                                 | Sec. 1 | 2501.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75          |             |  |
| C2-Phenanthrenes/Anthracenes                                                                                     |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C3-Phenanthrenes/Anthracenes                                                                                     |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C4-Phenanthrenes/Anthracenes                                                                                     |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Retene                                                                                                           |                                         | UU     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Dibenzothiophene                                                                                                 | 1649.82                                 | U      | 2502 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |             |  |
| C1-Dibenzothiophenes                                                                                             | 1049.82                                 | υ      | 2502.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66          |             |  |
| C2-Dibenzothiophenes                                                                                             |                                         | ŭ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C3-Dibenzothiophenes                                                                                             |                                         | ŭ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C4-Dibenzothiophenes                                                                                             |                                         | U.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Fluoranthene                                                                                                     | 1942.61                                 | 0      | 2501.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 78          |             |  |
| Pyrene                                                                                                           | 1936.25                                 |        | 2500.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 78          |             |  |
| C1-Fluoranthenes/Pyrenes                                                                                         |                                         | U      | 2300.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |             |  |
| C2-Fluoranthenes/Pyrenes                                                                                         |                                         | ŭ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C3-Fluoranthenes/Pyrenes                                                                                         |                                         | ŭ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C4-Fluoranthenes/Pyrenes                                                                                         |                                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C0-Benzo(b)naphthothiophenes                                                                                     |                                         | Ŭ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C1-Benzo(b)naphthothiophenes                                                                                     |                                         | Ŭ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C2-Benzo(b)naphthothiophenes                                                                                     |                                         | ŭ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C3-Benzo(b)naphthothiophenes                                                                                     |                                         | Ŭ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| C4-Benzo(b)naphthothiophenes                                                                                     |                                         | ŭ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |
| Benzo(a)anthracene                                                                                               | 1773.04                                 |        | 2500.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71          |             |  |
|                                                                                                                  | 10.0.2021                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |  |

| Client ID                           | 060208-03: Sand,<br>White Quartz, -50+70 |   |          |            |           |  |
|-------------------------------------|------------------------------------------|---|----------|------------|-----------|--|
| Battelle ID                         | BL066LCS-P                               |   |          |            |           |  |
| Sample Type                         | LCS                                      |   |          |            |           |  |
| Collection Date                     | 10/23/07                                 |   |          |            |           |  |
| Extraction Date                     | 10/23/07                                 |   |          |            |           |  |
| Analysis Date                       | 11/13/07                                 |   |          |            |           |  |
| Analytical Instrument               | MS                                       |   |          |            |           |  |
| % Moisture                          | NA                                       |   |          |            |           |  |
| % Lipid                             | NA                                       |   |          |            |           |  |
| Matrix                              | SEDIMENT                                 |   |          |            |           |  |
| Sample Size                         | SEDIMENT                                 |   |          |            |           |  |
| Size Unit-Basis                     | NA                                       |   |          |            |           |  |
| Units                               | NG                                       |   | Target 9 | & Recovery | Qualifier |  |
|                                     | 110                                      | - | Jarger / | a Recovery | Qualmer   |  |
| Chrysene                            | 1630.11                                  |   | 2501.00  | 65         |           |  |
| C1-Chrysenes                        |                                          | U |          |            |           |  |
| C2-Chrysenes                        |                                          | U |          |            |           |  |
| C3-Chrysenes                        |                                          | U |          |            |           |  |
| C4-Chrysenes                        |                                          | U |          |            |           |  |
| Benzo(b)fluoranthene                | 1727.03                                  |   | 2502.13  | 69         |           |  |
| Benzo(k)fluoranthene                | 1847.36                                  |   | 2501.38  | 74         |           |  |
| Benzo(e)pyrene                      | 1626.79                                  |   | 2503.50  | 65         |           |  |
| Benzo(a)pyrene                      | 1744.04                                  |   | 2502.00  | 70         |           |  |
| Perylene                            | 1671.75                                  |   | 2505.13  | 67         |           |  |
| ndeno(1,2,3-cd)pyrene               | 1776.5                                   |   | 2501.25  | 71         |           |  |
| Dibenz(a,h)anthracene               | 1750.62                                  |   | 2501.38  | 70         |           |  |
| Benzo(g,h,i)perylene                | 1808.55                                  |   | 2500.75  | 72         |           |  |
| Total PAH                           | 36758.39                                 |   |          |            |           |  |
| Surrogate Recoveries (%)            |                                          |   |          |            |           |  |
|                                     |                                          |   |          |            |           |  |
| Vaphthalene-d8                      | 62                                       |   |          |            |           |  |
| cenaphthene-d10                     | 61                                       |   |          |            |           |  |
| henanthrene-d10                     | 66                                       |   |          |            |           |  |
|                                     |                                          |   |          |            |           |  |
| Benzo(a)pyrene-d12<br>ib(H)-Cholane | 64                                       |   |          |            |           |  |

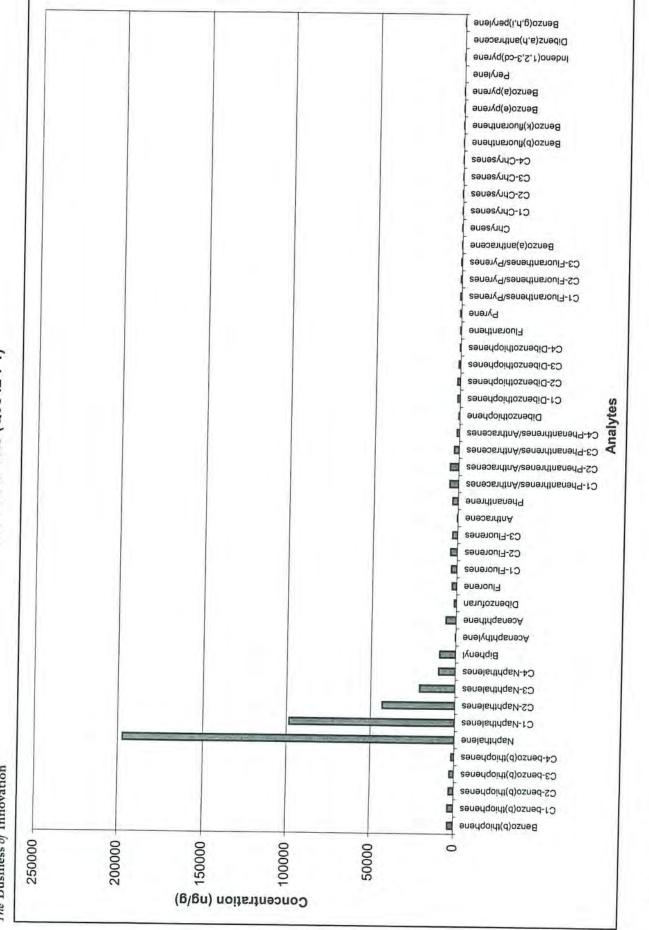

# Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

| Client ID                       | GO98: North Slope<br>Crude |          |            |           |  |
|---------------------------------|----------------------------|----------|------------|-----------|--|
| Battelle ID                     | DI ASSNICC D               |          |            |           |  |
| Sample Type                     | BL088NSC-P                 |          |            |           |  |
| Collection Date                 | NSC                        |          |            |           |  |
| Extraction Date                 | 10/30/07                   |          |            |           |  |
| Analysis Date                   | 10/30/07                   |          |            |           |  |
| Analytical Instrument           |                            |          |            |           |  |
| % Moisture                      | MS                         |          |            |           |  |
| % Lipid                         | NA                         |          |            |           |  |
| Matrix                          | NA                         |          |            |           |  |
| Sample Size                     | OIL                        |          |            |           |  |
| Size Unit-Basis                 | 5.04                       |          |            |           |  |
| Units                           | MG_OIL                     |          |            |           |  |
| onno.                           | MG/KG_OIL                  | Target % | Difference | Qualifier |  |
| C3-Alkylbenzenes                | 1535.55                    |          |            |           |  |
| C4-Alkylbenzenes                | 1217.77                    |          |            |           |  |
| C5-Alkylbenzenes                | 694.08                     |          |            |           |  |
| C6-Alkylbenzenes                | 443.15                     |          |            |           |  |
| Benzo(b)thiophene               | U                          |          |            |           |  |
| C1-benzo(b)thiophenes           | 44.7                       |          |            |           |  |
| C2-benzo(b)thiophenes           | 91.01                      | 95.74    | 4.9        |           |  |
| C3-benzo(b)thiophenes           | 144.34                     | 132.67   |            |           |  |
| C4-benzo(b)thiophenes           | 98.69                      | 96.72    | 8.8        |           |  |
| Naphthalene                     | 672.77                     | 740.29   | 2.0        |           |  |
| C1-Naphthalenes                 | 1417.68                    | 1516.04  | 9.1        |           |  |
| C2-Naphthalenes                 | 1886.29                    | 2000.10  | 6.5        |           |  |
| C3-Naphthalenes                 | 1497.57                    |          | 5.7        |           |  |
| C4-Naphthalenes                 | 762.58                     | 1526.96  | 1.9        |           |  |
| C1-Biphenyls + Dibenzofuran     | 365.13                     | 898.03   | 15.1       |           |  |
| Biphenyl                        | 217.33                     | 000.00   |            |           |  |
| C2-Biphenyls + C1-Dibenzofurans |                            | 220.82   | 1.6        |           |  |
| Acenaphthylene                  | 502.49                     |          |            |           |  |
| Acenaphthene                    | 8.11                       | 1111     |            |           |  |
| Dibenzofuran                    | 13.93                      | 14.50    | 3.9        |           |  |
| Fluorene                        | 68.86                      | 77.75    | 11.4       |           |  |
| C1-Fluorenes                    | 101.65                     | 92.51    | 9.9        |           |  |
| C2-Fluorenes                    | 236.93                     | 227.01   | 4.4        |           |  |
| C3-Fluorenes                    | 324                        | 367.09   | 11.7       |           |  |
| C4-Fluorenes                    | 235.59                     | 326.32   | 27.8       |           |  |
| Anthracene                      | 248.33                     |          |            |           |  |
| Phenanthrene                    | U                          | A 14 10  |            |           |  |
| C1-Phenanthrenes/Anthracenes    | 272.7                      | 249.49   | 9.3        |           |  |
| C2-Phenanthrenes/Anthracenes    | 638.52                     | 549.17   | 16.3       |           |  |
| C3-Phenanthrenes/Anthracenes    | 757.4                      | 642,72   | 17.8       |           |  |
| C4-Phenanthrenes/Anthracenes    | 537.54                     | 446.11   | 20.5       |           |  |
| Retene                          | 211.77                     | 180.02   | 17.6       |           |  |
| Dibenzothiophene                | U                          | 1000     |            |           |  |
| C1-Dibenzothiophenes            | 228.5                      | 210.35   | 8.6        |           |  |
| C2-Dibenzothiophenes            | 466.01                     | 409.03   | 13.9       |           |  |
| C3-Dibenzothiophenes            | 651.87                     | 551.46   | 18.2       |           |  |
| C4-Dibenzothiophenes            | 526.38                     | 471.36   | 11.7       |           |  |
| Fluoranthene                    | 315.87                     | 243.11   | 29.9       |           |  |
| Pyrene                          | 4                          |          |            |           |  |
| C1-Fluoranthenes/Pyrenes        | 16.52                      | 12.99    | 27.2       |           |  |
| C2-Fluoranthenes/Pyrenes        | 89.15                      | 70.92    | 25.7       |           |  |
| C3-Fluoranthenes/Pyrenes        | 150.71                     | 117.89   | 27.8       |           |  |
| C4-Fluoranthenes/Pyrenes        | 176.84                     | 137.25   | 28.8       |           |  |
| CO Banzo/b)coobloatti           | 133.73                     |          |            |           |  |
| C0-Benzo(b)naphthothiophenes    | 56.15                      |          |            |           |  |
| C1-Benzo(b)naphthothiophenes    | 215.16                     |          |            |           |  |
| C2-Benzo(b)naphthothiophenes    | 277.03                     |          |            |           |  |
| C3-Benzo(b)naphthothiophenes    | 179.86                     |          |            |           |  |
| C4-Benzo(b)naphthothiophenes    | 125.39                     |          |            |           |  |
| Benzo(a)anthracene              | 5.71                       |          |            |           |  |

Analyzed by Restucci Jr, Richard 11/15/2007

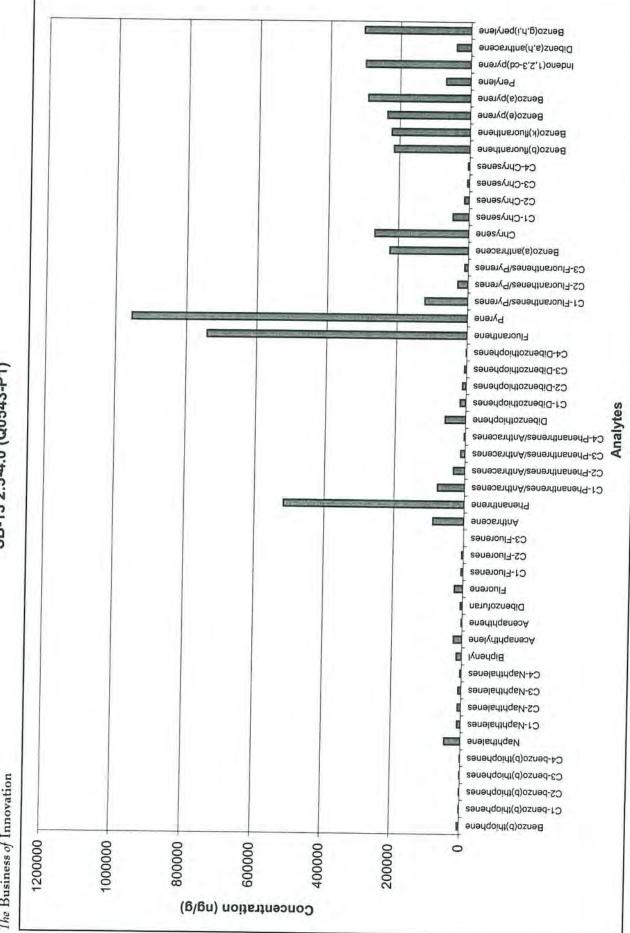

| Client ID                              | GO98: North Slope<br>Crude |   |            |            |           |  |
|----------------------------------------|----------------------------|---|------------|------------|-----------|--|
| Battelle ID                            | BL088NSC-P                 |   |            |            |           |  |
| Sample Type                            | NSC                        |   |            |            |           |  |
| Collection Date                        | 10/30/07                   |   |            |            |           |  |
| Extraction Date                        | 10/30/07                   |   |            |            |           |  |
| Analysis Date                          | 11/13/07                   |   |            |            |           |  |
| Analytical Instrument                  | MS                         |   |            |            |           |  |
| % Moisture                             | NA                         |   |            |            |           |  |
| % Lipid                                | NA                         |   |            |            |           |  |
| Matrix                                 | OIL                        |   |            |            |           |  |
| Sample Size                            | 5.04                       |   |            |            |           |  |
| Size Unit-Basis                        | MG OIL                     |   |            |            |           |  |
| Units                                  | MG/KG_OIL                  | 1 | Target % D | Difference | Qualifier |  |
| Chrysene                               | 50.54                      |   | 47.18      | 7.1        |           |  |
| C1-Chrysenes                           | 86.81                      |   | 78.82      | 10.1       |           |  |
| C2-Chrysenes                           | 112.8                      |   | 102.67     | 9.9        |           |  |
| C3-Chrysenes                           | 101.95                     |   | 85.36      | 19.4       |           |  |
| C4-Chrysenes                           | 62.39                      |   | 61.99      | 0.6        |           |  |
| Benzo(b)fluoranthene                   | 5.88                       |   | 6.08       | 3.3        |           |  |
| Benzo(k)fluoranthene                   | 0.00                       | U | 0.00       | 5.5        |           |  |
| Benzo(e)pyrene                         | 12.4                       | 0 | 12.88      | 3.7        |           |  |
| Benzo(a)pyrene                         | 12.5                       | U | 12.00      | 5//        |           |  |
| Perylene                               |                            | Ű |            |            |           |  |
| ndeno(1,2,3-cd)pyrene                  |                            | U |            |            |           |  |
| Dibenz(a,h)anthracene                  | 0.8                        | J |            |            |           |  |
| Benzo(g,h,i)perylene                   | 3.15                       | 1 | 3.44       | 8.4        |           |  |
| Total PAH                              | 12929.5                    |   | 2.2.2      | 20         |           |  |
| Surrogate Recoveries (%)               |                            |   |            |            |           |  |
| Naphthalene-d8                         | 100                        |   |            |            |           |  |
| Acenaphthene-d10                       | 96                         |   |            |            |           |  |
|                                        | 94                         |   |            |            |           |  |
| benanthrong d10                        |                            |   |            |            |           |  |
| Phenanthrene-d10<br>Benzo(a)pyrene-d12 | 97<br>105                  |   |            |            |           |  |






11/15/20073:26 PM

GO98: North Slope Crude (BL088NSC-P)




SB-8 S5 9-10.5 (Q0542-P1)



11/15/20073:26 PM

SB-13 2.5-4.0 (Q0543-P1)



# Battelle

SB-12A S3 5-6.5 (Q0544-P1)

|         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |        | Dipensofusion<br>Private Procession<br>Fluorenci<br>Pluorenci<br>C2-Fluorenci<br>C3-Fluorenci<br>C3-Fluorenci<br>C3-Fluorenci<br>C3-Fluorenthrenes/Anthrescenci<br>C3-Fluorenthrenes/Anthrescenci<br>C4-Phenanthrenacytricenci<br>C4-Phenanthrenacytricenci<br>C4-Phenanthrenacytricenci<br>C3-Fluorenthrenacytricenci<br>C4-Phenanthrenacytricenci<br>C4-Phenanthrenacytricenci<br>C4-Phenanthrenacytricenci<br>C4-Phenanthrenacytricenci<br>C4-Phenanthrenacytricenci<br>C4-Phenanthrenacytricenci<br>C4-Phenanthrenacytricenci<br>C4-Phenanthrenacytricenci<br>C4-Phenanthrenacytricenci<br>C4-Physenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chrysenes<br>C4-Chr |
|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4500000 | 4000000 | 2500000 ng 3000000 ng 2500000 ng 25000000 ng 2500000000 ng 250000000 ng 25000000 ng 250000000 ng 25000000 ng 250000000 ng 25000000000 ng 25000000000 ng 2500000000 ng 250000000000 ng 25000000000000 ng 250000000000000 ng 25000000000000000000000000000000000000 | 1500000 | 500000 | Benzo(b)(hiophene<br>C1-benzo(b)(hiophene<br>C2-benzo(b)(hiophene<br>C3-benzo(b)(hiophene<br>C3-benzo(b)(hiophene<br>C3-benzo(b)(hiophene<br>C3-hephthalene<br>C3-haphthalene<br>C3-haphthalene<br>C3-haphthalene<br>C3-haphthalene<br>Biphen)<br>Biphen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

11/15/20073:26 PM

GP-9 7-8 (Q0546-P1)

I

| C3-Elinorenes | C3-Fluorenes<br>Anthracenes<br>Phenanthrenes/Anthracenes<br>C1-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes<br>C3-Phenanthrenes/Anthracenes | Anthracene<br>Phenanthrenes/Anthracenes<br>Phenanthrenes/Anthracenes<br>D4-Phenanthrenes/Anthracenes<br>Dibenzothiophenes<br>C2-Dibenzothiophenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes<br>C3-Dibenzothiophenes |  |  |  |  |  |  | 20010 |  |  |  |  | C4-benzo(b)thiophenes<br>Waphthalenes<br>C1-Waphthalenes<br>C3-Waphthalenes<br>C4-Waphthalenes<br>Biphenyl<br>Acenaphthylene<br>Pibenzofuran<br>C1-Fluorenes<br>C1-Fluorenes<br>C3-Fluorenes |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|-------|--|--|--|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|-------|--|--|--|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

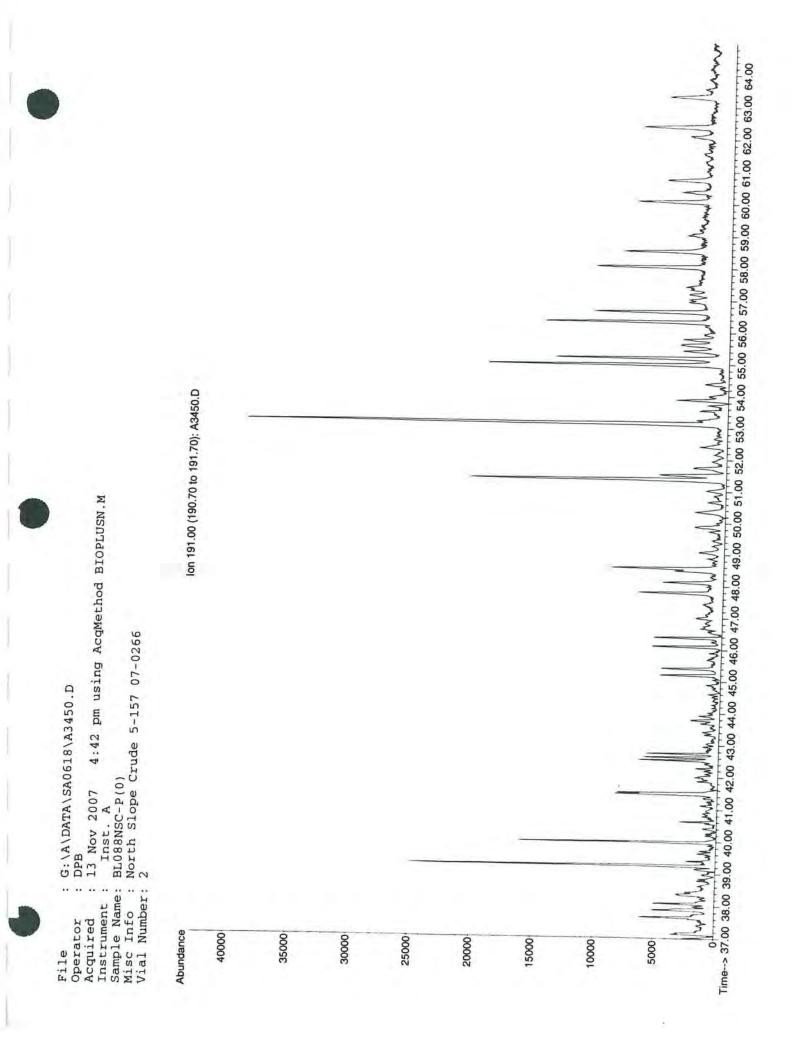
#### Battelle

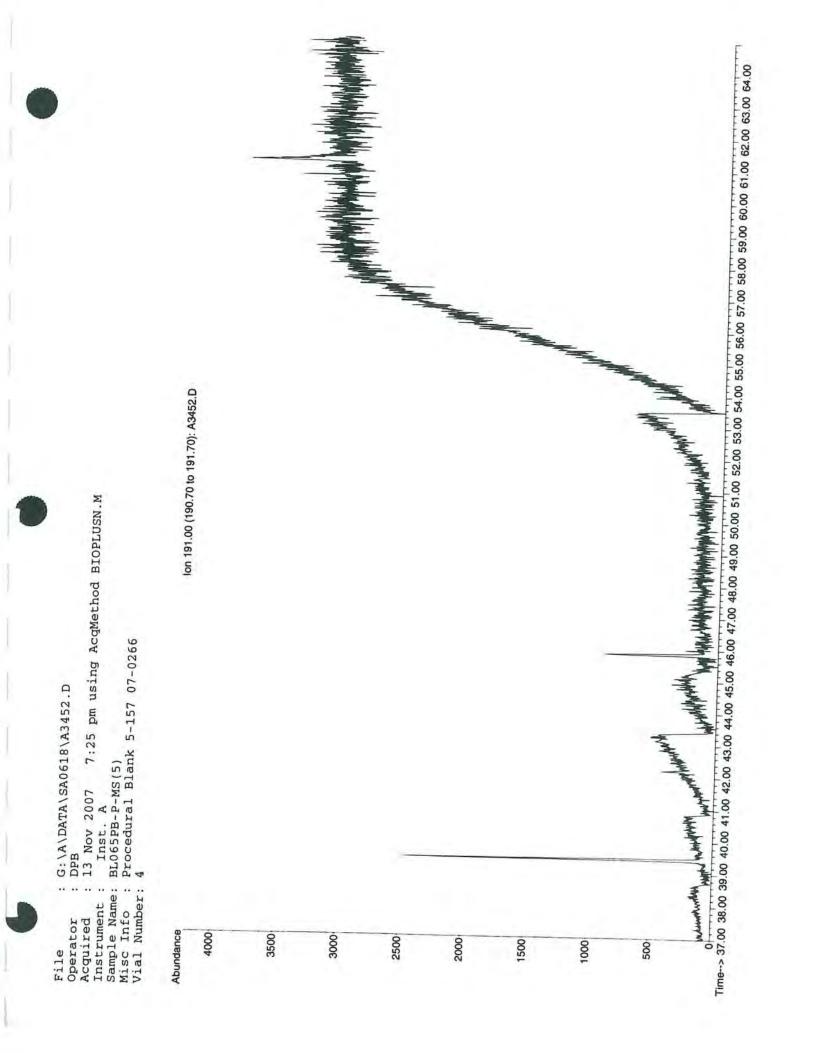
The Business of Innovation

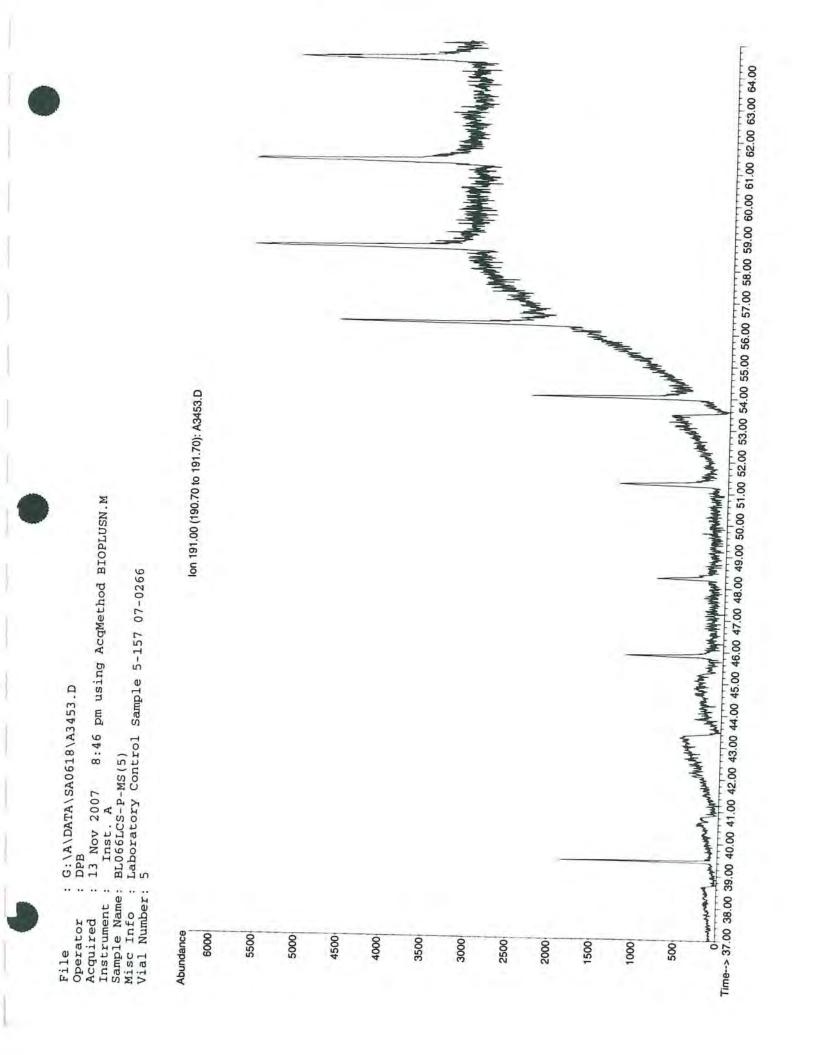
#### Project Client: Floyd|Snider Project Name: Gas Works Park Project Number: N007097-0001

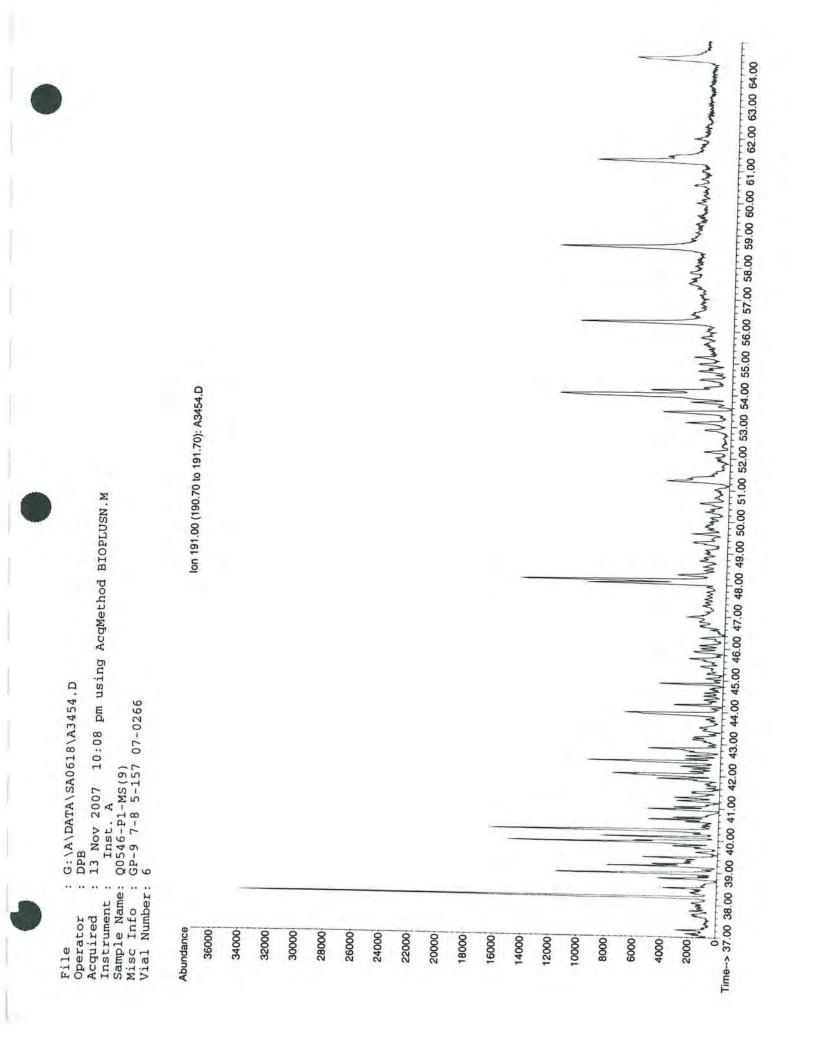
| Client ID                                                              | SB-8 S5 9-10.5  | SB-13 2.5-4.0  | SB-12A S3 5-6.5 | GP-97-8      |
|------------------------------------------------------------------------|-----------------|----------------|-----------------|--------------|
| Battelle ID                                                            | Q0542-P1        | Q0543-P1       | 00544 54        | a survey and |
| Sample Type                                                            | SA              | Q0543-P1<br>SA | Q0544-P1        | Q0546-P1     |
| Collection Date                                                        | 09/18/07        |                | SA              | SA           |
| Extraction Date                                                        | 10/23/07        | 09/20/07       | 09/20/07        | 09/18/07     |
| Analysis Date                                                          | 11/14/07        | 10/23/07       | 10/23/07        | 10/23/07     |
| Analytical Instrument                                                  | MS              | 11/14/07       | 11/14/07        | 11/13/07     |
| % Moisture                                                             | 8.06            | MS             | MS              | MS           |
| % Lipid                                                                | NA              | 16.77          | 13.98           | 49.24        |
| Matrix                                                                 | SOIL            | NA             | NA              | NA           |
| Sample Size                                                            |                 | SOIL           | SOIL            | SOIL         |
| Size Unit-Basis                                                        | 4.78            | 4.45           | 4.63            | 2.84         |
| Units                                                                  | G_DRY           | G_DRY          | G_DRY           | G_DRY        |
| Units .                                                                | NG/G_DRY        | NG/G_DRY       | NG/G_DRY        | NG/G_DRY     |
| C23 Tricyclic Terpane                                                  | 162.73          | U              | 809.73          |              |
| C29 Tricyclic Terpane -22S                                             | 27.09           | Ŭ              |                 | U            |
| C29 Tricyclic Terpane -22R                                             | 25              | ŭ              | 314.6           | 596.59       |
| 18a(H)-22,29,30-Trisnorneohopane -TS                                   | 17.34 J         | U              | 326.97          | 722.25       |
| 17a(H)-22,29,30-Trisnorhopane -TM                                      | 32.61           | 34.85 J        | 229.08          | U            |
| 30-Norhopane                                                           | 94.28           |                | 483.22          | U            |
| 18a(H) & 18b(H)-Oleananes                                              | 35.41           | 73.47 J        | 1399.33         | 1551.53      |
| Hopane                                                                 |                 | 70.63 J        | 333.67          | 596.7        |
| 30-Homohopane -22S                                                     | 164.54<br>66.91 | 151.58         | 1994.84         | 1270.93      |
| 30-Homohopane -22R                                                     | 37.11           | 61.44 J        | 1003.25         | 896.47       |
| 13b(H),17a(H)-20S-Diacholestane                                        |                 | U              | 630.21          | 716.91       |
| 13b(H),17a(H)-20R-Diacholestane                                        | 153.15          | 187.6          | 880.4           | 1117.57      |
| 14a(H),17a(H)-20R-methylcholestane                                     | 85.75           | 76.89 J        | 496.59          | 3573.01      |
|                                                                        | 209.35          | 71.97 J        | 1752.21         | 2459.83      |
| 14a(H),17a(H)-20S-Ethylcholestane<br>14a(H),17a(H)-20R-Ethylcholestane | 133.71          | U              | U               | U            |
| C21-TAS                                                                | 134.38          | 70.72 J        | 1260.44         | 1428.5       |
| C26-TAS(20S)                                                           | 37.97           | 398.7          | 308.64          | 590.98       |
| C26.C27-TAS                                                            | 43.29           | U              | 968.53          | 343.78       |
| C27-TAS(20R)                                                           | 129.61          | 28.11 J        | 3548.47         | 3304.51      |
| C28-TAS(20S)                                                           | 64.93           | 8.84 J         | 2175.84         | 794.95       |
| C28-TAS(20R)                                                           | 36.12           | 8.61 J         | 906.06          | 1410.9       |
| C21-MAS                                                                | 32.67           | 9.93 J         | 845.84          | 368.27       |
| C22-MAS                                                                | 50.35           | 5.24 J         | 82.76 J         | 854.6        |
| C27-MAS                                                                | 20.34           | U              | 54.36 J         | 820.26       |
| C27-20R-MAS                                                            | 15.71           | 86.56          | 936.12          | U            |
| C27-20S-MAS                                                            | 41.57           | 1949.58        | 3176.64         | U            |
| C28-20S-MAS                                                            | 35.96           | 440.19         | 1190.74         | 276.54       |
| C27-C2920S/R-MAS                                                       | 73.31           | 91.98          | 2517.57         | 2212.9       |
| C29-20S-MAS                                                            | 61.6            | 9478.41        | 10891.68        | 1345.44      |
| C29-20S-MAS<br>C29-20R-MAS                                             | 27.19           | 11591.31       | U               | 3971.75      |
|                                                                        | 61.79           | 1060.24        | 1105.64         | 1000.84      |
| TAS_245                                                                | U               | U              | U               | U            |
| MAS_239                                                                | U               | U              | U               | U            |
| Surrogate Recoverles (%)                                               |                 |                |                 |              |
| Naphthalene-d8                                                         | 136 NME         |                |                 |              |
| Acenaphthene-d10                                                       | 142 NME         | 40             | 134 NME         | 142 NME      |
| Phenanthrene-d10                                                       |                 | 47             | 260 NME         | 141 NME      |
| Benzo(a)pyrene-d12                                                     | 145 NME         | 46             | 152 NME         | 165 NME      |
| 5b(H)-Cholane                                                          | 135 NME         | 49             | 171 NME         | 132 NME      |
| and the subliding.                                                     | 155 NME         | 712 NME        | 6100 NME        | 255 NME      |
|                                                                        |                 |                |                 |              |

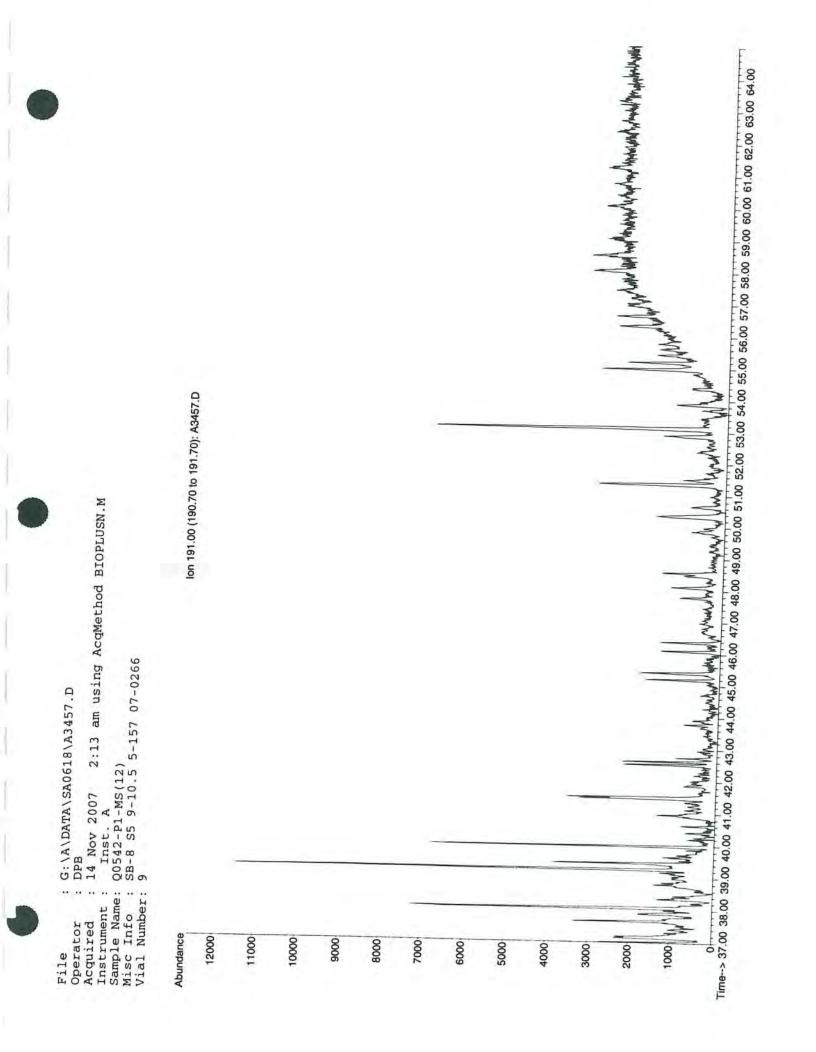
Analyzed by Restucci Jr, Richard 11/15/2007

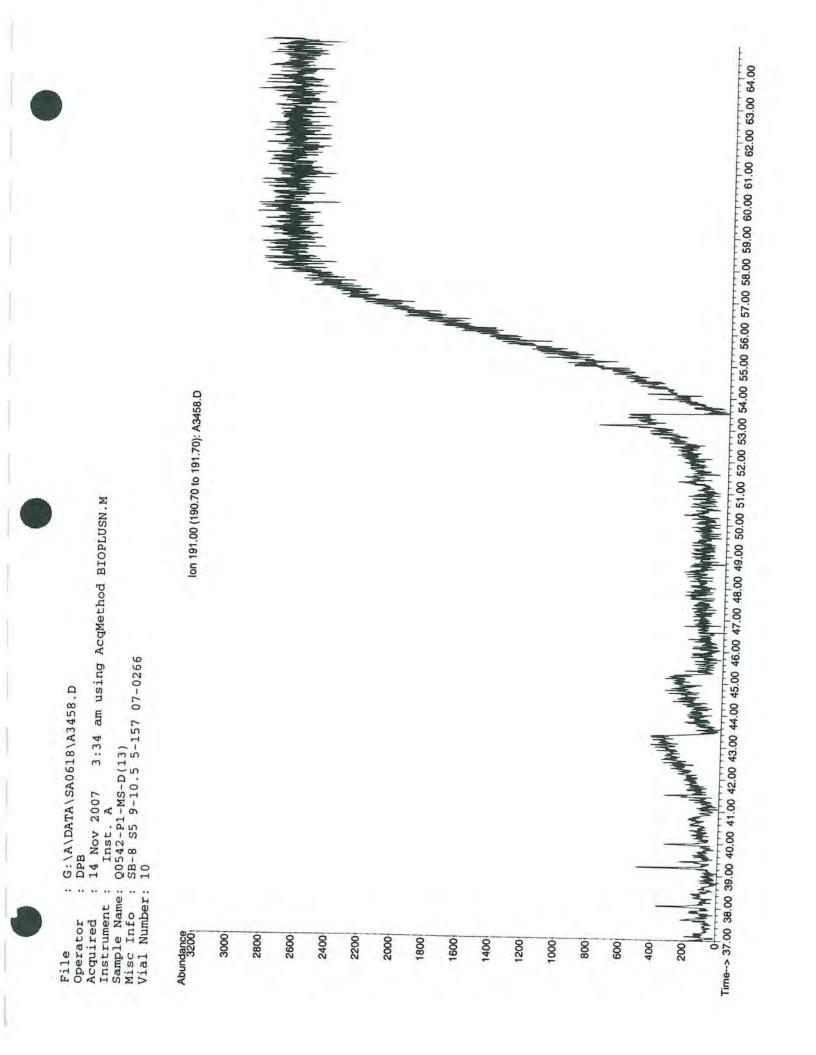

| Client ID                           | Procedural Blank |  |
|-------------------------------------|------------------|--|
| Battelle ID                         | BL065PB-P        |  |
| Sample Type                         |                  |  |
| Collection Date                     | PB               |  |
|                                     | 10/23/07         |  |
| Extraction Date                     | 10/23/07         |  |
| Analysis Date                       | 11/13/07         |  |
| Analytical Instrument               | MS               |  |
| % Moisture                          | 22.01            |  |
| % Lipid                             | NA               |  |
| Matrix                              |                  |  |
|                                     | SEDIMENT         |  |
| Sample Size                         | 4.20             |  |
| Size Unit-Basis                     | G_DRY            |  |
| Units                               | NG/G_DRY         |  |
| C23 Tricyclic Terpane               | U                |  |
| C29 Tricyclic Terpane -22S          | U                |  |
| C29 Tricyclic Terpane -22R          | Ŭ                |  |
| 18a(H)-22,29,30-Trisnomeohopane -TS |                  |  |
| 17a/HI-22 20 20 Trisportionage The  | U                |  |
| 17a(H)-22,29,30-Trisnorhopane -TM   | U                |  |
| 30-Norhopane                        | U                |  |
| 18a(H) & 18b(H)-Oleananes           | U                |  |
| Hopane                              | U                |  |
| 30-Homohopane -22S                  | U                |  |
| 30-Homohopane -22R                  | U                |  |
| 13b(H).17a(H)-20S-Diacholestane     | Ū                |  |
| 13b(H), 17a(H)-20R-Diacholestane    | ũ                |  |
| 14a(H),17a(H)-20R-methylcholestane  | ŭ                |  |
| 14a(H),17a(H)-20S-Ethylcholestane   | Ŭ                |  |
| 14a(H),17a(H)-20R-Ethylcholestane   |                  |  |
|                                     | U                |  |
| C21-TAS                             | U                |  |
| C26-TAS(20S)                        | U                |  |
| C26,C27-TAS                         | U                |  |
| C27-TAS(20R)                        | U                |  |
| C28-TAS(20S)                        | Ú                |  |
| C28-TAS(20R)                        | Ū                |  |
| C21-MAS                             | Ŭ                |  |
| C22-MAS                             | ŭ                |  |
| C27-MAS                             | U                |  |
| C27-20R-MAS                         |                  |  |
| 그렇고 집에 가장 있다. 신가지 않아 봐야?            | U                |  |
| C27-20S-MAS                         | Û                |  |
| C28-20S-MAS                         | U                |  |
| C27-C2920S/R-MAS                    | U                |  |
| C29-20S-MAS                         | U                |  |
| C29-20R-MAS                         | U                |  |
| TAS_245                             | U                |  |
| MAS_239                             | Ŭ                |  |
|                                     |                  |  |
| Surrogate Recoveries (%)            |                  |  |
| Naphthalene-d8                      | 93               |  |
| Acenaphthene-d10                    | 87               |  |
| Phenanthrene-d10                    |                  |  |
| Benzo(a)pyrene-d12                  | 94               |  |
| 5b(H)-Cholane                       | 96               |  |
| su(n)-cholane                       | 101              |  |
|                                     |                  |  |


| Client ID                           | 060208-03: Sand,<br>White Quartz, -50+70 |                   |           |  |
|-------------------------------------|------------------------------------------|-------------------|-----------|--|
| Battelle ID                         | D) 0001 00 0                             |                   |           |  |
| Sample Type                         | BL066LCS-P                               |                   |           |  |
|                                     | LCS                                      |                   |           |  |
| Collection Date                     | 10/23/07                                 |                   |           |  |
| Extraction Date                     | 10/23/07                                 |                   |           |  |
| Analysis Date                       | 11/13/07                                 |                   |           |  |
| Analytical Instrument               | MS                                       |                   |           |  |
| % Moisture                          | NA                                       |                   |           |  |
| % Lipid                             | NA                                       |                   |           |  |
| Matrix                              | SEDIMENT                                 |                   |           |  |
| Sample Size                         | NA                                       |                   |           |  |
| Size Unit-Basis                     | NA                                       |                   |           |  |
| Units                               | NG                                       | Target % Recovery | Qualifier |  |
| C23 Tricyclic Terpane               |                                          |                   |           |  |
|                                     | U                                        |                   |           |  |
| C29 Tricyclic Terpane -22S          | U                                        |                   |           |  |
| C29 Tricyclic Terpane -22R          | U                                        |                   |           |  |
| 18a(H)-22,29,30-Trisnomeohopane -TS | υ                                        |                   |           |  |
| 17a(H)-22,29,30-Trisnorhopane -TM   | U                                        |                   |           |  |
| 30-Norhopane                        | U                                        |                   |           |  |
| 18a(H) & 18b(H)-Oleananes           | U                                        |                   |           |  |
| Hopane                              | U                                        |                   |           |  |
| 30-Homohopane -22S                  | U                                        |                   |           |  |
| 30-Homohopane -22R                  | U                                        |                   |           |  |
| 13b(H),17a(H)-20S-Diacholestane     | U                                        |                   |           |  |
| 13b(H),17a(H)-20R-Diacholestane     | U                                        |                   |           |  |
| 14a(H),17a(H)-20R-methylcholestane  | U                                        |                   |           |  |
| 14a(H),17a(H)-20S-Ethylcholestane   | Ū                                        |                   |           |  |
| 14a(H),17a(H)-20R-Ethylcholestane   | Ŭ                                        |                   |           |  |
| C21-TAS                             | Ŭ                                        |                   |           |  |
| C26-TAS(20S)                        | Ū                                        |                   |           |  |
| C26,C27-TAS                         | Ũ                                        |                   |           |  |
| C27-TAS(20R)                        | Ŭ                                        |                   |           |  |
| C28-TAS(20S)                        | Ŭ                                        |                   |           |  |
| C28-TAS(20R)                        | Ŭ                                        |                   |           |  |
| C21-MAS                             | Ŭ                                        |                   |           |  |
| C22-MAS                             | Ū                                        |                   |           |  |
| C27-MAS                             | Ũ                                        |                   |           |  |
| C27-20R-MAS                         | Ŭ                                        |                   |           |  |
| C27-20S-MAS                         | Ŭ                                        |                   |           |  |
| C28-205-MAS                         | ũ                                        |                   |           |  |
| C27-C2920S/R-MAS                    | ŭ                                        |                   |           |  |
| C29-20S-MAS                         | ŭ                                        |                   |           |  |
| C29-20R-MAS                         | ŭ                                        |                   |           |  |
| TAS_245                             | Ŭ                                        |                   |           |  |
| MAS_239                             | Ŭ                                        |                   |           |  |
|                                     |                                          |                   |           |  |
| Surrogate Recoveries (%)            |                                          |                   |           |  |
| Naphthalene-d8                      | 62                                       |                   |           |  |
| Acenaphthene-d10                    | 61                                       |                   |           |  |
| Phenanthrene-d10                    |                                          |                   |           |  |
| Benzo(a)pyrene-d12                  | 66                                       |                   |           |  |
|                                     | 64<br>62                                 |                   |           |  |
| 5b(H)-Cholane                       |                                          |                   |           |  |

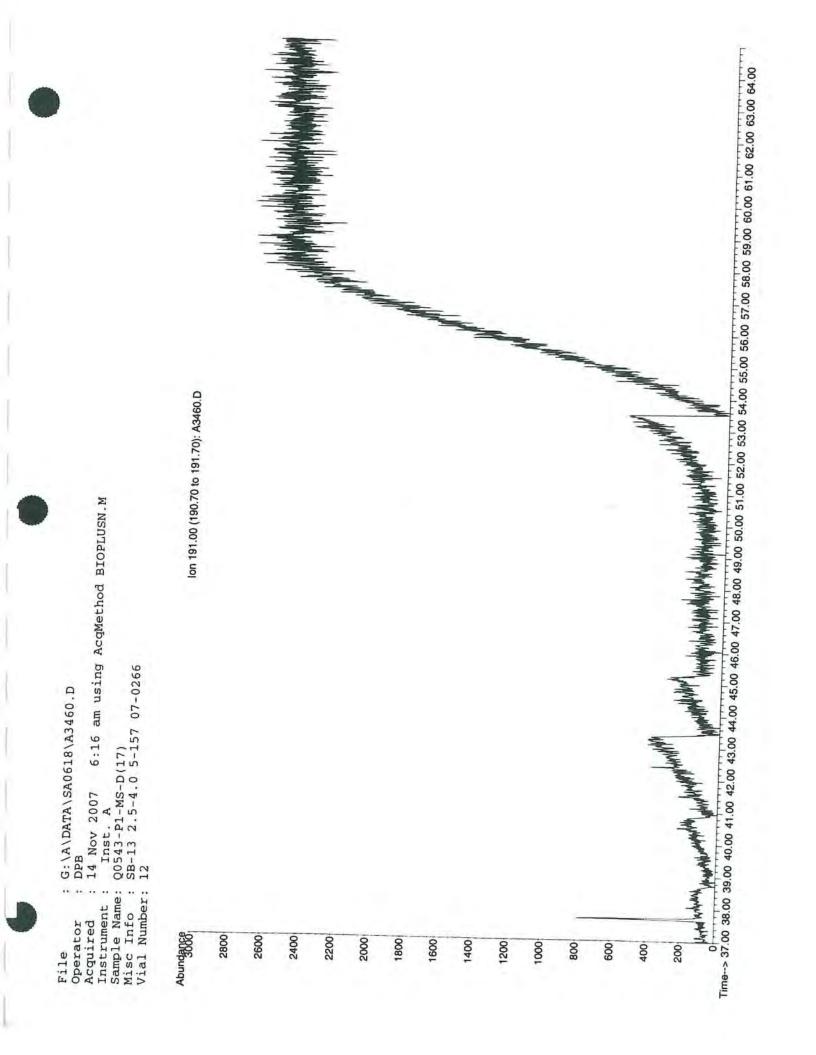

#### Battelle


The Business of Innovation

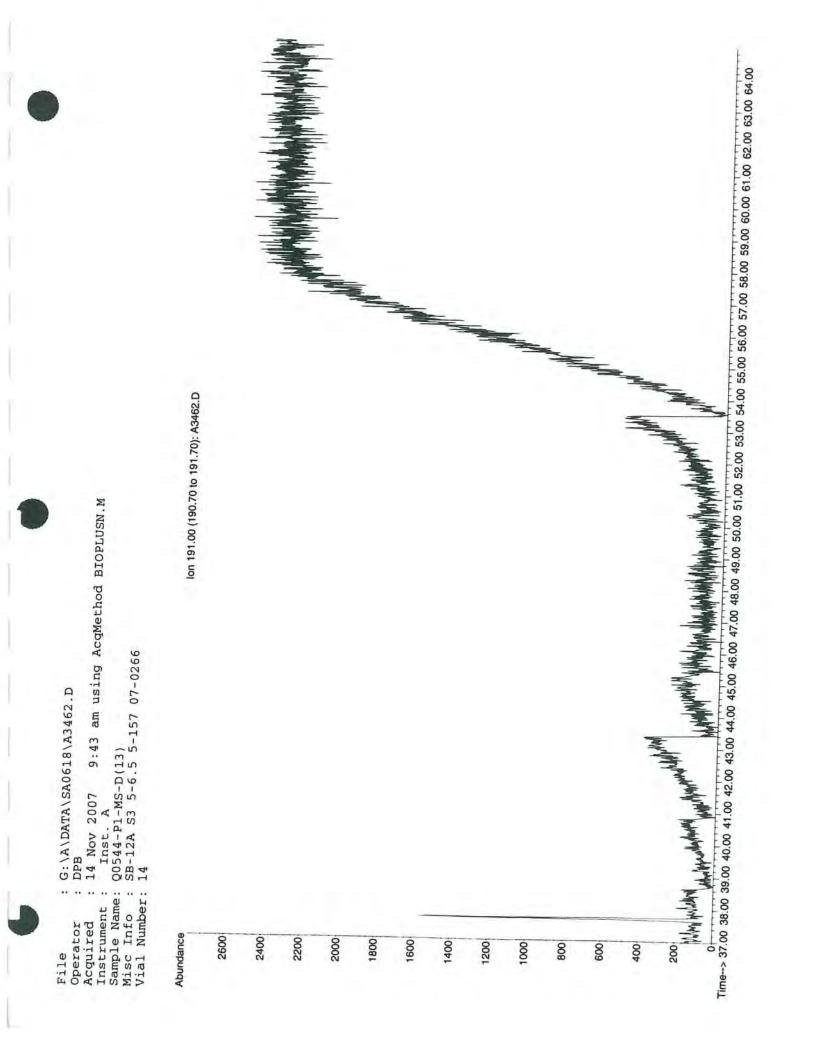

| Client ID                           | GO98: North Slope |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|-------------------------------------|-------------------|------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Client ID                           | Crude             |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Battelle ID                         | BL088NSC-P        |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Sample Type                         | NSC               |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Collection Date                     | 10/30/07          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Extraction Date                     | 10/30/07          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Analysis Date                       |                   |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Analytical Instrument               | 11/13/07          |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| % Moisture                          | MS                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| % Lipid                             | NA                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                     | NA                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Matrix<br>Sample Size               | OIL               |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Size Unit-Basis                     | 5.04              |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Units                               | MG_OIL            | ÷          |            | and the second se |  |
| OTINS                               | MG/KG_OIL         | Target % [ | Difference | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| C23 Tricyclic Terpane               | 41.31             | 47.76      | 13.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C29 Tricyclic Terpane -22S          | 13.23             | 14.70      | 10.0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C29 Tricyclic Terpane -22R          | 13.32             | 14.64      | 9.0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 18a(H)-22,29,30-Trisnomeohopane -TS | 15.52             | 15.96      | 2.8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 17a(H)-22,29,30-Trisnorhopane -TM   | 22.68             | 24.82      | 8.6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 30-Norhopane                        | 61.75             | 69.58      | 11.3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 18a(H) & 18b(H)-Oleananes           | 01.75<br>U        | 09.00      | 11.3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Hopane                              | 106.73            | 120.14     | 11.2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 30-Homohopane -22S                  | 50.15             | 59.93      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 30-Homohopane -22R                  | 39.69             | 39.69      | 16.3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 13b(H),17a(H)-20S-Diacholestane     | 41.02             | 44.18      | 0.0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 13b(H),17a(H)-20R-Diacholestane     | 24.2              | 25.52      | 7.2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 14a(H),17a(H)-20R-methylcholestane  | 33                | 33.94      | 5.2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 14a(H),17a(H)-20S-Ethylcholestane   | 35.99             | 35.93      | 2.8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 14a(H),17a(H)-20R-Ethylcholestane   | 40.34             |            | 0.2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C21-TAS                             | 18.95             | 39.17      | 3.0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C26-TAS(20S)                        | 14.31             |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C26,C27-TAS                         | 53.61             |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C27-TAS(20R)                        | 32.3              |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C28-TAS(20S)                        | 29.5              |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C28-TAS(20R)                        | 31.76             |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C21-MAS                             | 6.02              |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C22-MAS                             | 2.94              |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C27-MAS                             | 6.92              |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C27-20R-MAS                         |                   |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C27-20S-MAS                         | 7.84              |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C28-20S-MAS                         | 14.73             |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C27-C2920S/R-MAS                    | 9.46              |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C29-20S-MAS                         | 3.04              |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C29-20R-MAS                         |                   |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| TAS 245                             | 11.36             |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| MAS_239                             | U                 |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| MAG_200                             | U                 |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Surrogate Recoveries (%)            |                   |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Naphthalene-d8                      | 96                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Acenaphthene-d10                    |                   |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Phenanthrene-d10                    | 94                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Benzo(a)pyrene-d12                  | 97                |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 5b(H)-Cholane                       | 105               |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| John - Shoishe                      | 106               |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                     |                   |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |

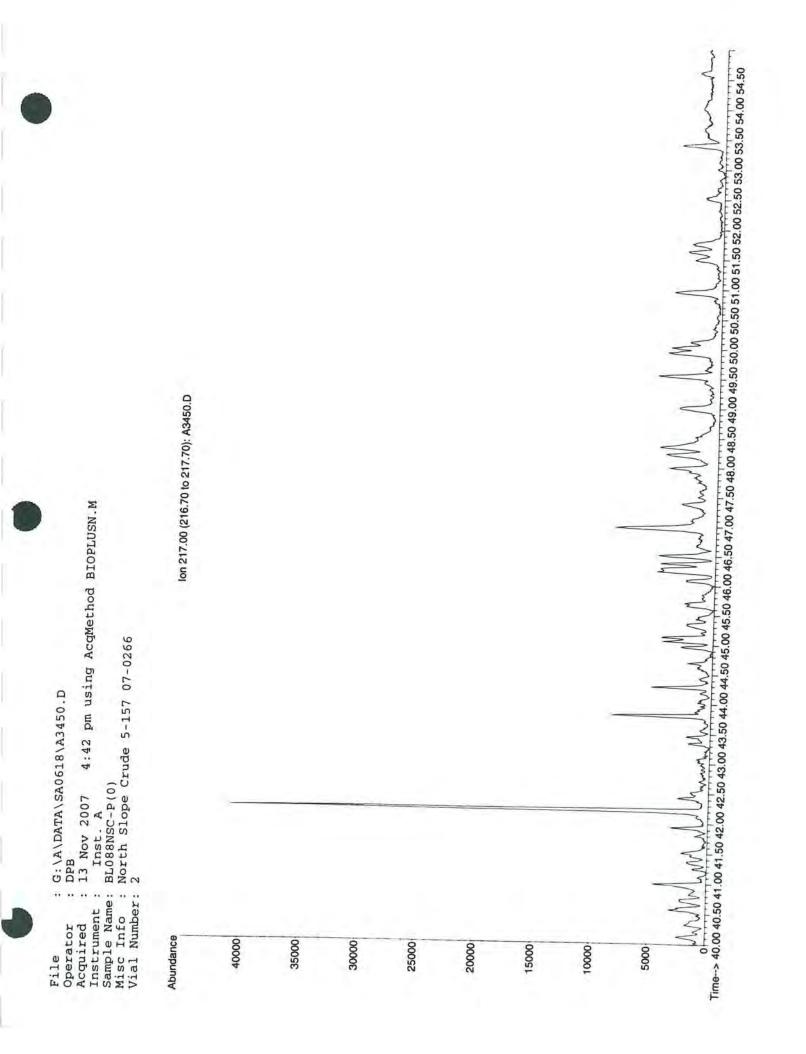






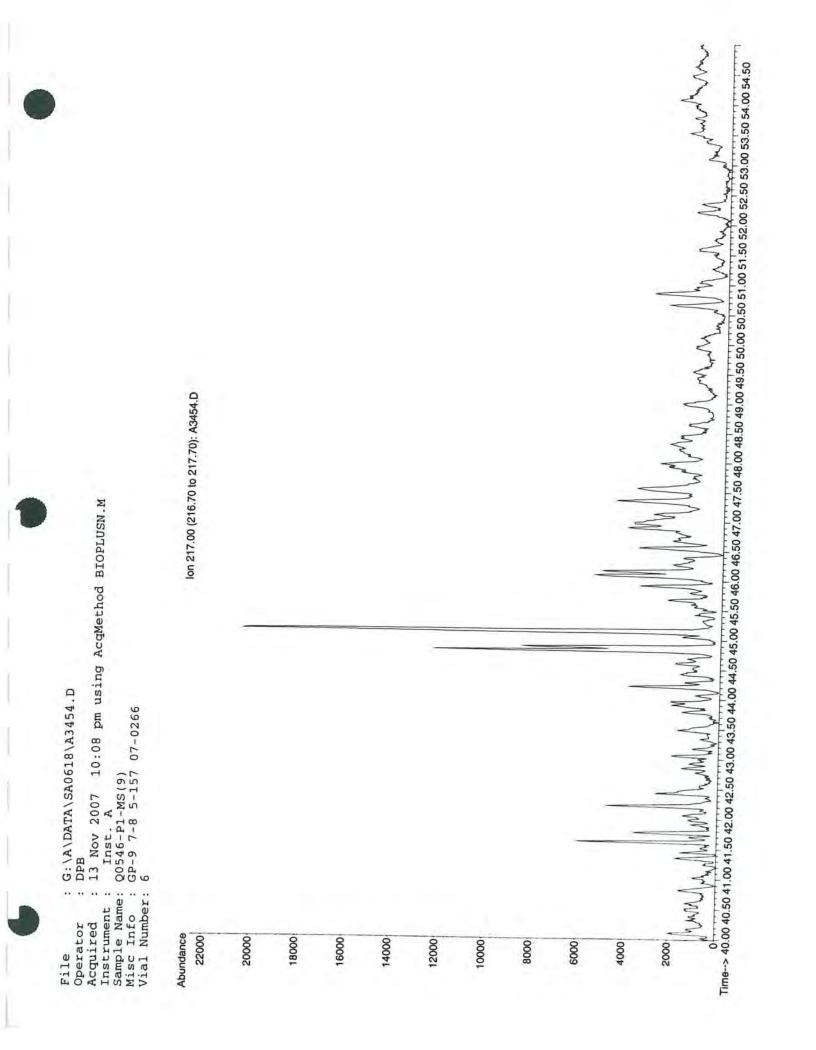

| W.                                                                                                                                                                 | lon 191.00 (190.70 to 191.70): A3459.D |       |       |      |       |       |      |      |      | المحمد المحم المحمد | 48.00 49.00 50.00 51.00 52.00 53.00 54.00 56.00 56.00 57.00 58.00 59.00 60.00 61.00 62.00 63.00 64.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|-------|------|-------|-------|------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| : G:\A\DATA\SA0618\A3459.D<br>: DPB<br>: 14 Nov 2007 4:55 am using AcqMethod BIOPLUSN.M<br>: Inst. A<br>: Q0543-P1-MS(16)<br>: SB-13 2.5-4.0 5-157 07-0266<br>: 11 | Ion 191.00 (190.7                      |       |       |      |       |       |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0/11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11-11 10 11 10 11-11 10 11-1 |
| File<br>Operator<br>Acquired<br>Instrument<br>Sample Name:<br>Misc Info                                                                                            | Abundance                              | 20000 | 16000 | 0001 | 12000 | 10000 | 8000 | 6000 | 4000 | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | me> 37.00 38.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



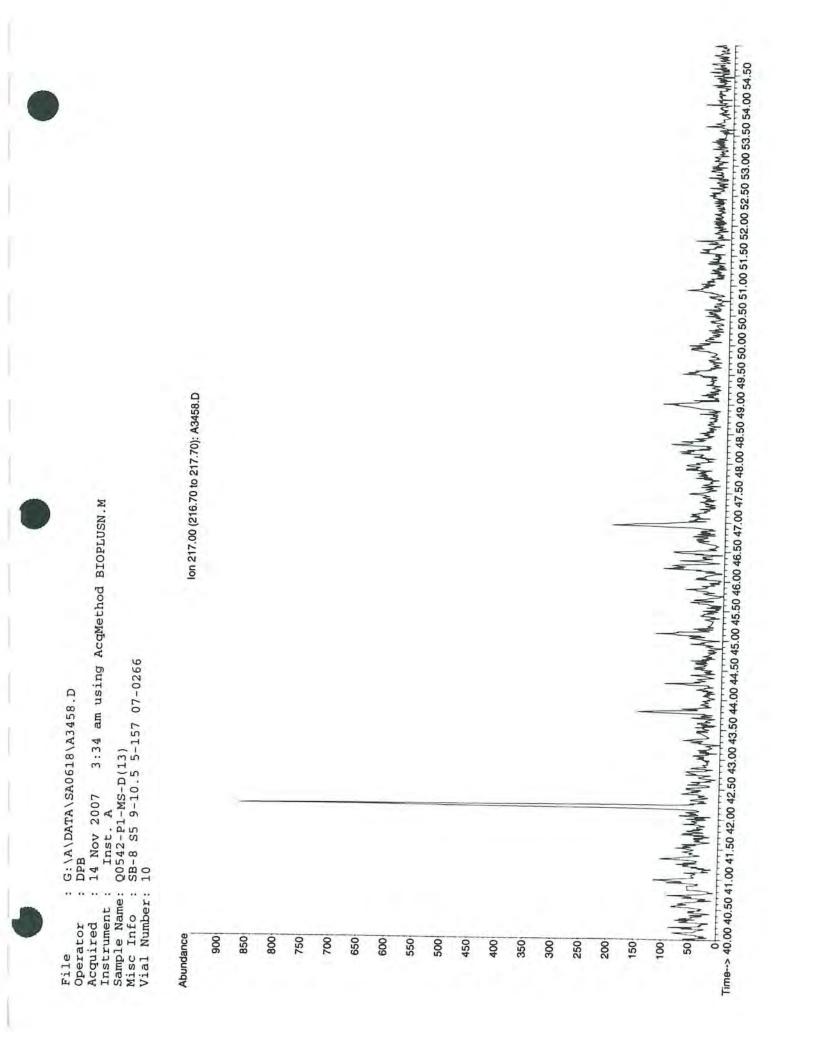
|--|--|








File : G:\A\DATA\SA0618\A3452.D Operator : DPB Acquired : 13 Nov 2007 7:25 pm using AcqMethod BIOPLUSN.M Instrument : Inst. A Sample Name: BL065PB-P-MS(5) Misc Info : Procedural Blank 5-157 07-0266 Vial Number: 4


| 12000 | 11000 | 10000 | 0006 | 8000 | 7000 | 6000 | 5000 | 4000 | 3000 | 2000 | 1000 |
|-------|-------|-------|------|------|------|------|------|------|------|------|------|
|       |       |       |      |      |      |      |      |      |      |      | 1000 |
|       |       |       |      |      |      |      |      |      |      |      |      |

49.50 50.00 50.50 51.00 51.50 52.00 52.50 53.00 53.50 54.00 54.50 Time

| File G:(A)DATA/SA0618\A3453.D<br>Operator Distributions<br>Acquired 11 Bwoy 2007 8:46 pm using AcqMethod BIOPLUSN.M<br>Acquired 11 Bwoy 2007 8:46 pm using AcqMethod BIOPLUSN.M<br>Sample Name: BL066LCS-P-MS(5)<br>Mile Info. 5<br>Vial Number: 5<br>Societies Control Sample 5-157 07-0266<br>MundBQS<br>AbundBQS<br>Societies Control Sample 5-157 07-0266<br>MundBQS<br>Societies Control Sample 5-157 07-0266<br>MundBQS<br>Societies Control Sample 5-157 07-0266<br>MundBQS<br>Societies Control Sample 5-157 07-0266<br>MundBQS<br>Societies Control Sample 5-157 07-0266<br>Societies Control | 500 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|

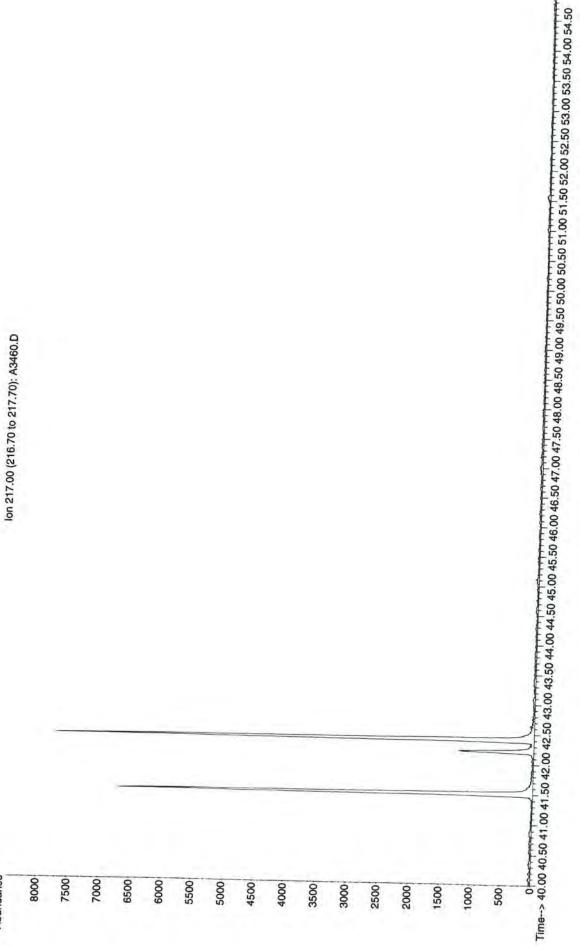


|                                                                                                                                                                                                    |                                        |       |       |       |       |       |       |       |      |      |      |      |      |      |      |      | A A A A A A A A A A A A A A A A A A A     | 0 51.50 52.00 52.50 53.00 53.50 54.00 54.50                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 1457.D<br>am using AcqMethod BIOPLUSN.M<br>7 07-0266                                                                                                                                               | Ion 217.00 (216.70 to 217.70): A3457.D |       |       |       |       |       |       |       |      |      |      |      |      |      |      |      | Mun MMW Lun M                             | 44.00 45.50 45.00 45.50 46.00 46.50 47.00 47.50 48.00 49.50 50.00 50.50 51.00 51.50 52.00 52.50 53.00 53.50 54.00 54.50 |
| <pre>File : G:\A\DATA\SA0618\A3457.D Operator : DPB Acguired : 14 Nov 2007 2:13 am us Instrument : Inst. A Sample Name: Q0542-P1-MS(12) Misc Info : SB-8 S5 9-10.5 5-157 07-( Vial Number: 9</pre> | Abundance<br>17000                     | 16000 | 15000 | 14000 | 13000 | 12000 | 11000 | 10000 | 0006 | 8000 | 2000 | 6000 | 5000 | 4000 | 3000 | 2000 | 1000 NVVV WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW |                                                                                                                         |





4:55 am using AcqMethod BIOPLUSN.M Acquired : 14 Nov 2007 4:55 am using Instrument : Inst. A Sample Name: 20543-P1-MS(16) Misc Info : SB-13 2.5-4.0 5-157 07-0266 Vial Number: 11 : G:\A\DATA\SA0618\A3459.D : DPB Operator File


0 Preserve of the second s

0



6:16 am using AcqMethod BIOPLUSN.M Acquired : 14 Nov 2007 6:16 am using Instrument : Inst. A Sample Name: Q0543-P1-MS-D(17) Misc Info : SB-13 2.5-4.0 5-157 07-0266 Vial Number: 12 G:\A\DATA\SA0618\A3460.D DPB .. .. Operator Acquired File

Abundance

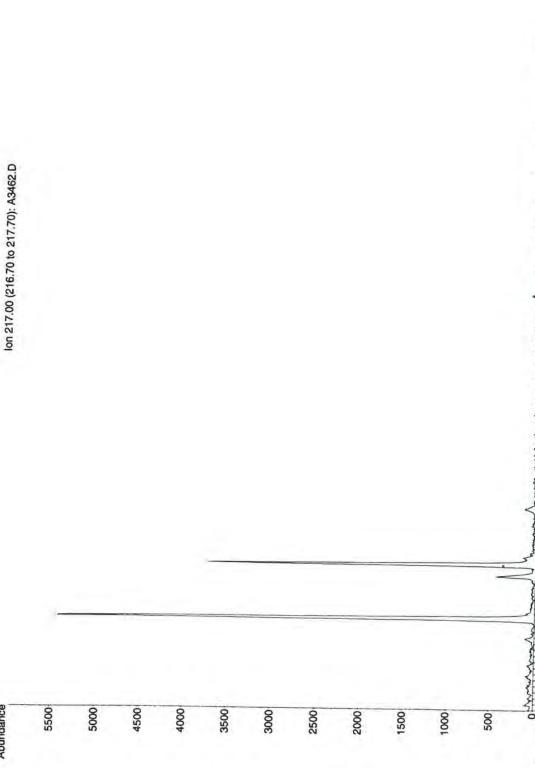


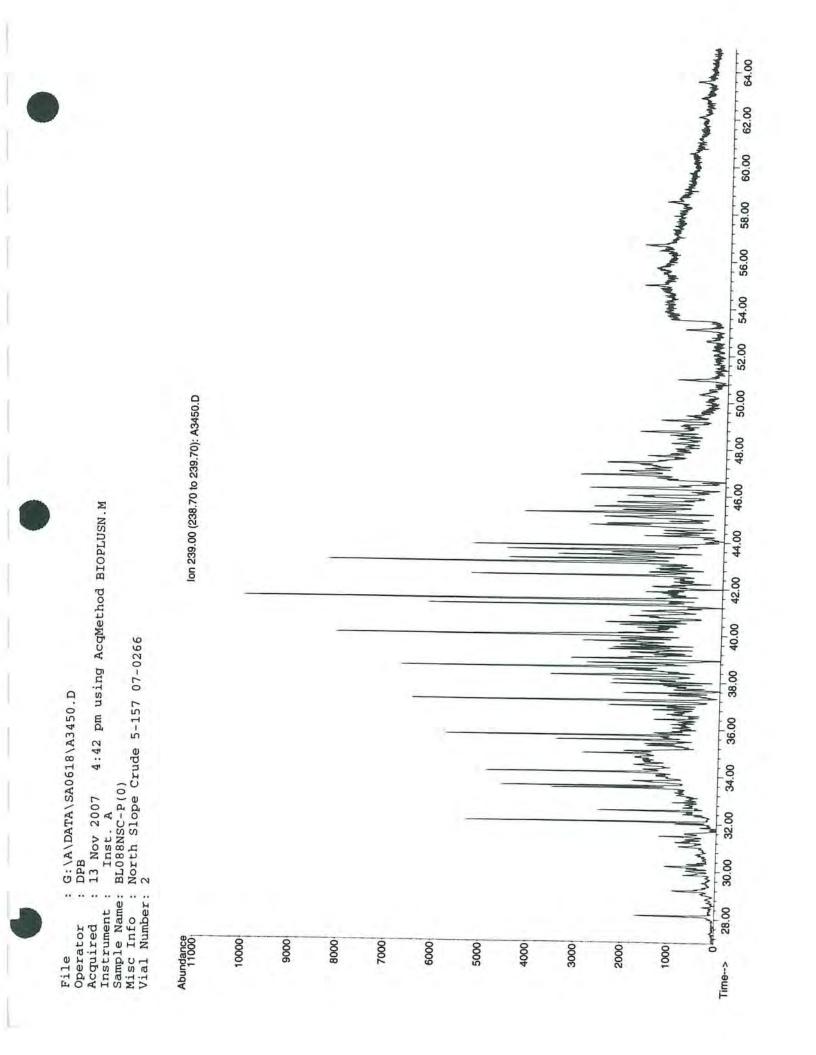


7:37 am using AcqMethod BIOPLUSN.M Acquired : 14 Nov 2007 7:37 am using A Instrument : Inst. A Sample Name: 20544-P1-MS(12) Misc Info : SB-12A S3 5-6.5 5-157 07-0266 Vial Number: 13 G:\A\DATA\SA0618\A3461.D DPB Operator Acquired Instrument File

| 1    | m |
|------|---|
| 1.12 |   |
| . 4  | 0 |
| 1    | Ē |
| 1    | ΰ |
| 7    | 0 |
| 4    | - |
|      | 0 |
| 1    | ą |
| <    | c |
|      | - |
|      |   |

Ion 217.00 (216.70 to 217.70): A3461.D





0 0 0 40.50 41.00 41.50 42.00 42.50 43.50 44.00 44.50 45.00 45.50 46.00 45.50 47.00 47.50 48.00 48.50 49.00 49.50 50.00 51.50 51.00 51.50 52.00 52.50 53.50 54.00 54.50



9:43 am using AcqMethod BIOPLUSN.M Instrument : Inst. A
Sample Name: Q0544-P1-MS-D(13)
Misc Info : SB-12A S3 5-6.5 5-157 07-0266
Vial Number: 14 G: \A\DATA\SA0618\A3462.D 14 Nov 2007 DPB Operator Acquired File

Abundance







File : G:\A\DATA\SA0618\A3452.D Operator : DPB Acquired : 13 Nov 2007 7:25 pm using AcqMethod BIOPLUSN.M Instrument : Inst. A Sample Name: BL065PB-P-MS(5) Misc Info : Procedural Blank 5-157 07-0266 Vial Number: 4

64.00

62.00

60.00

58.00

56.00

54.00

52.00

50.00

48.00

46.00

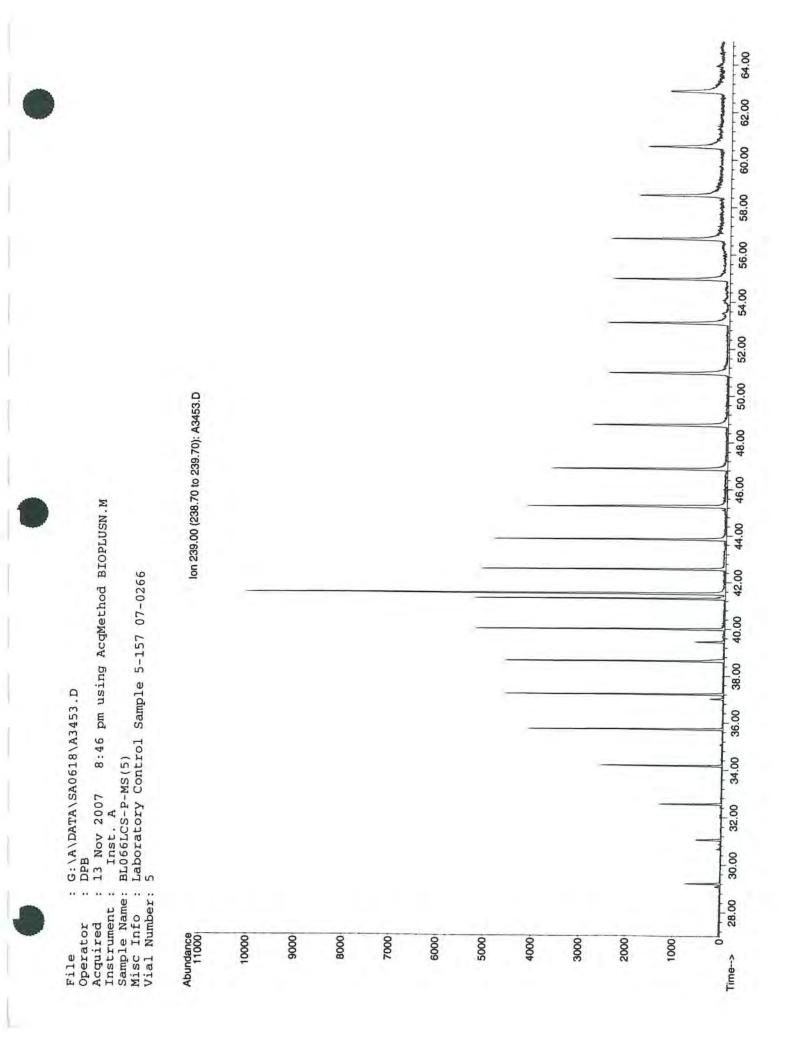
44.00

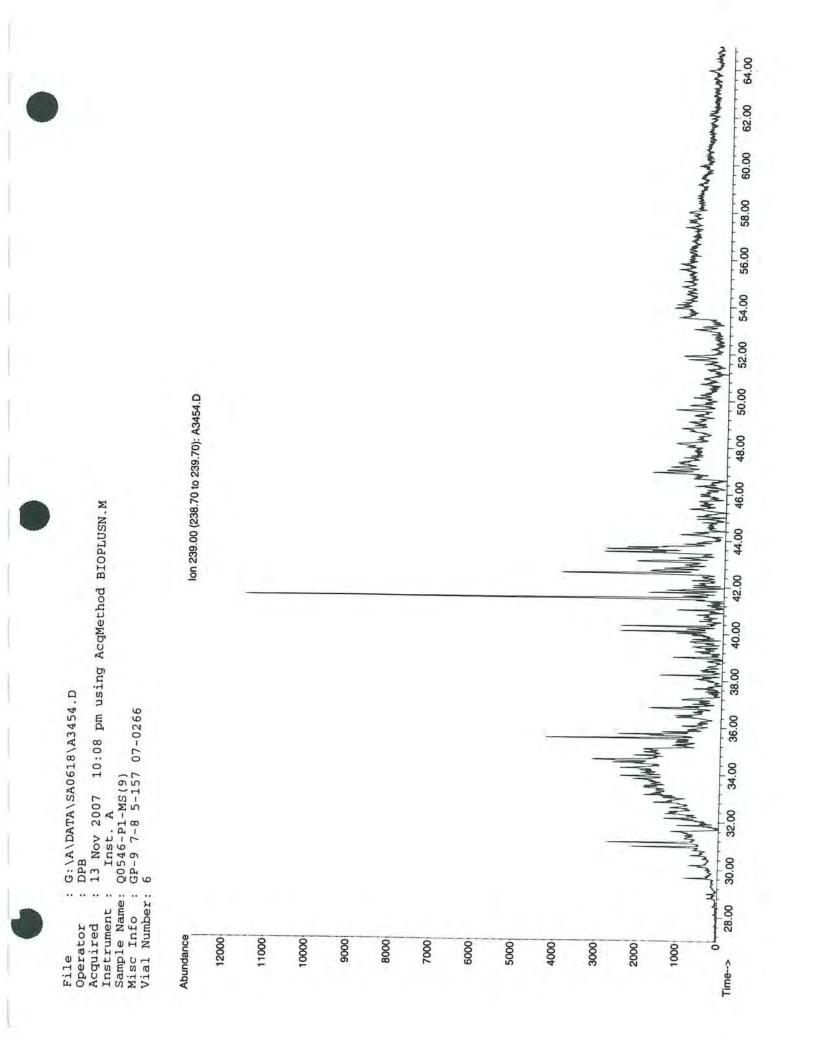
42.00

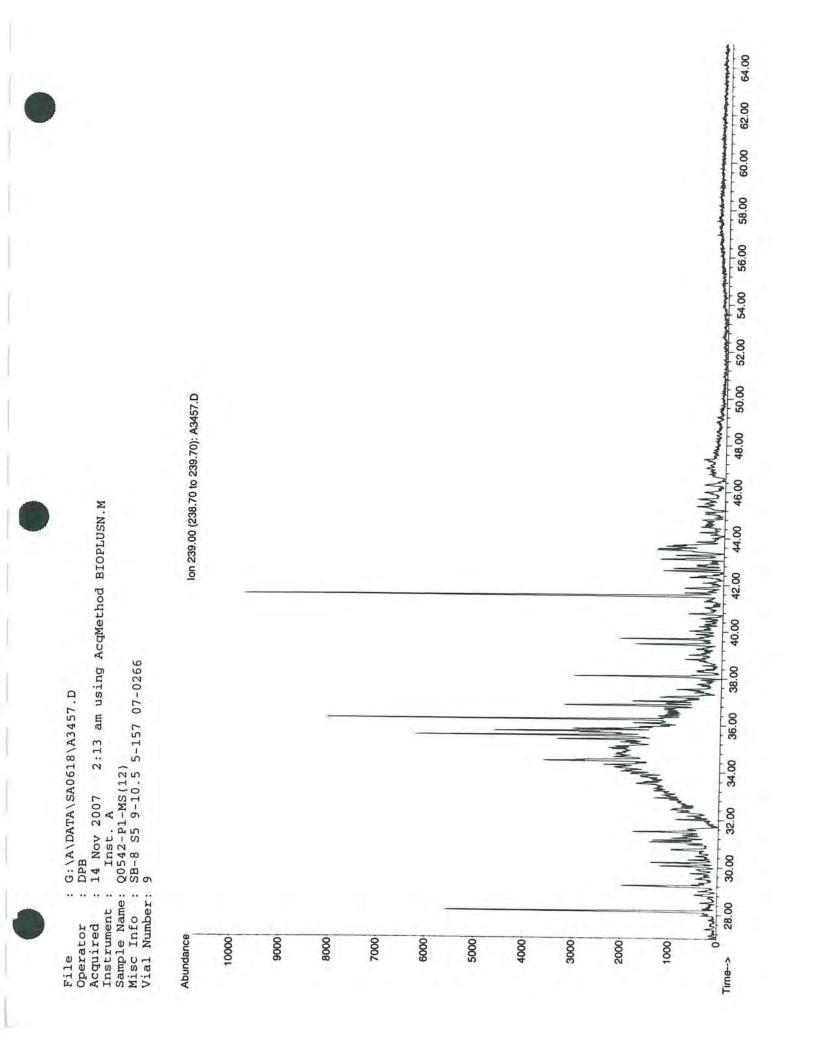
40.00

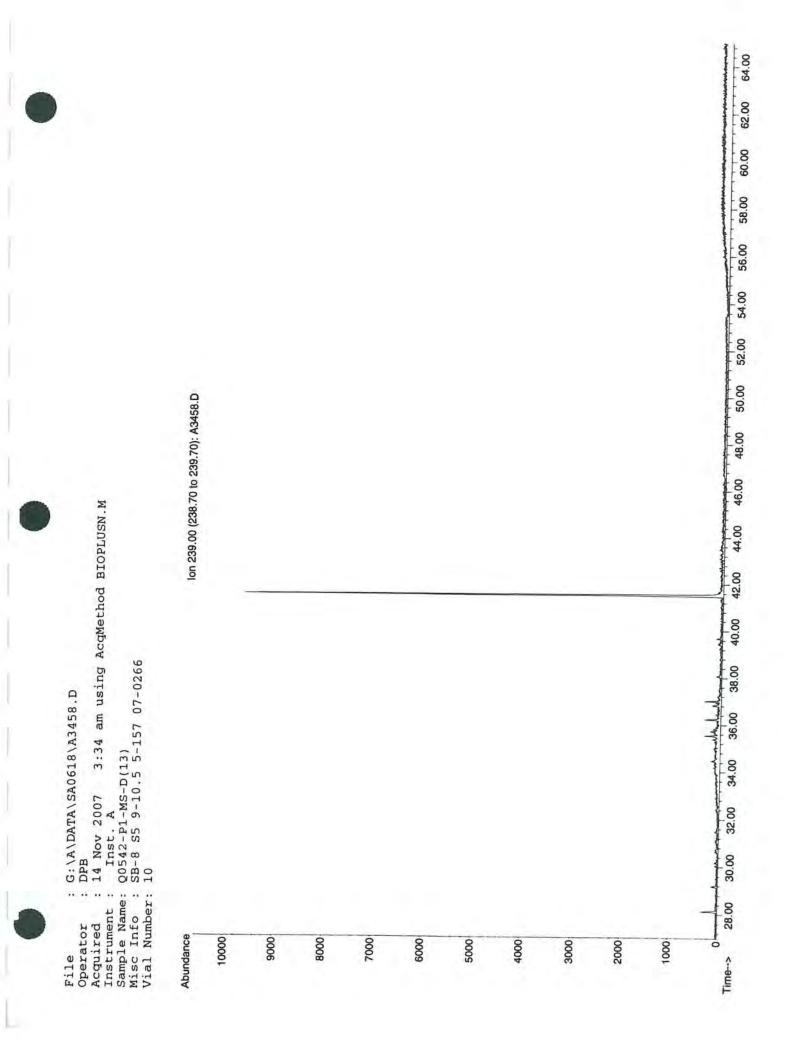
38.00

36.00

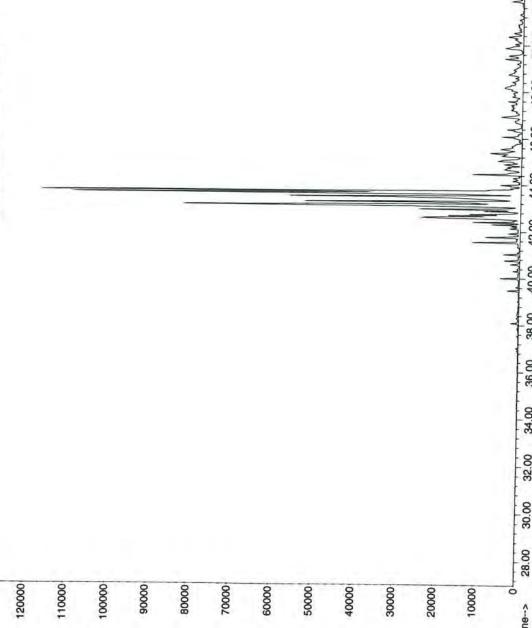

34.00


32.00

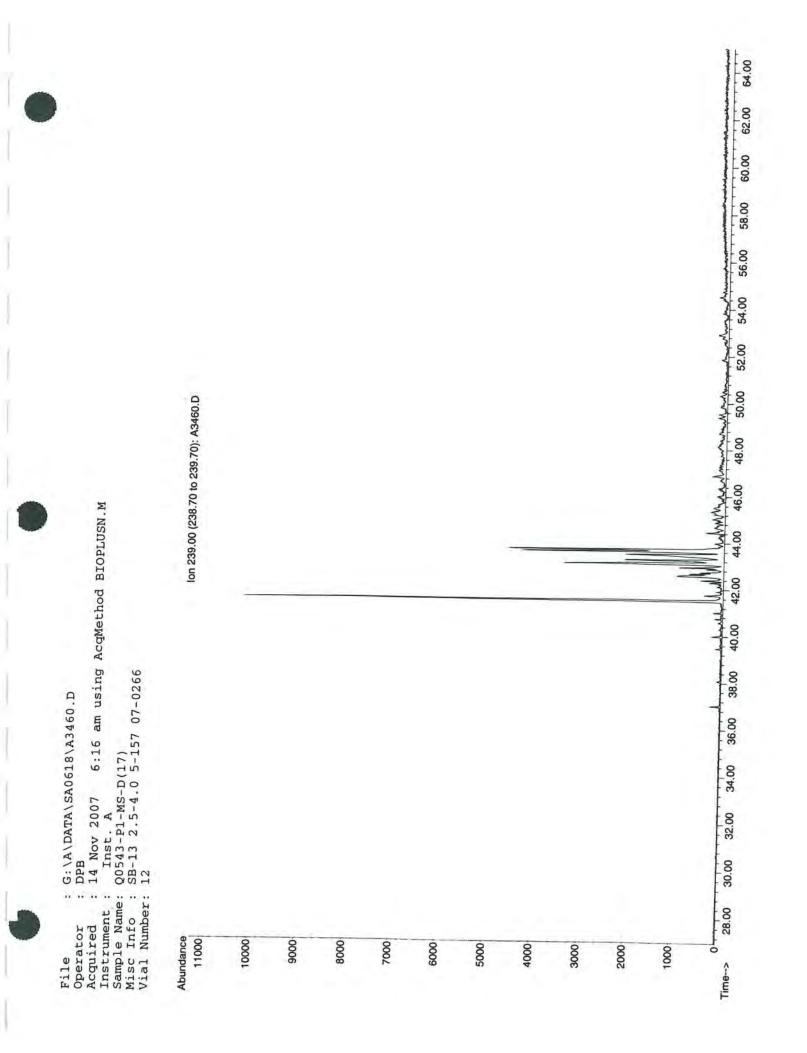

30.00


28.00

Time-->








| •   | File : G:\A\DATA\SA0618\A3459.D<br>Operator : DPB<br>Acquired : 14 Nov 2007 4:55 am using<br>Instrument : Inst. A<br>Sample Name: Q0543-P1-MS(16)<br>Misc Info : SB-13 2.5-4.0 5-157 07-0266<br>Vial Number: 11 | Abundance                              | 120000 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------|
|     | : G:\A\DATA\SA0618\A3459.D<br>: DPB<br>: 14 Nov 2007 4:55 am usi<br>Inst. A<br>: 20543-P1-MS(16)<br>: SB-13 2.5-4.0 5-157 07-02<br>: 11                                                                         |                                        |        |
|     | 18\A3459<br>4:55 am 1<br>5-157 07 <sup>.</sup>                                                                                                                                                                  |                                        |        |
|     | .D<br>ising Acq<br>-0266                                                                                                                                                                                        |                                        |        |
|     | 618\A3459.D<br>4:55 am using AcqMethod BIOPLUSN.M<br>6)<br>5-157 07-0266                                                                                                                                        | lon                                    |        |
| •   | OPLUSN.M                                                                                                                                                                                                        | Ion 239.00 (238.70 to 239.70): A3459.D |        |
| l : |                                                                                                                                                                                                                 | 0 to 239.70):                          |        |
|     |                                                                                                                                                                                                                 | A3459.D                                |        |
|     |                                                                                                                                                                                                                 |                                        |        |
|     |                                                                                                                                                                                                                 |                                        |        |
|     |                                                                                                                                                                                                                 |                                        |        |
|     |                                                                                                                                                                                                                 |                                        |        |
|     |                                                                                                                                                                                                                 |                                        |        |

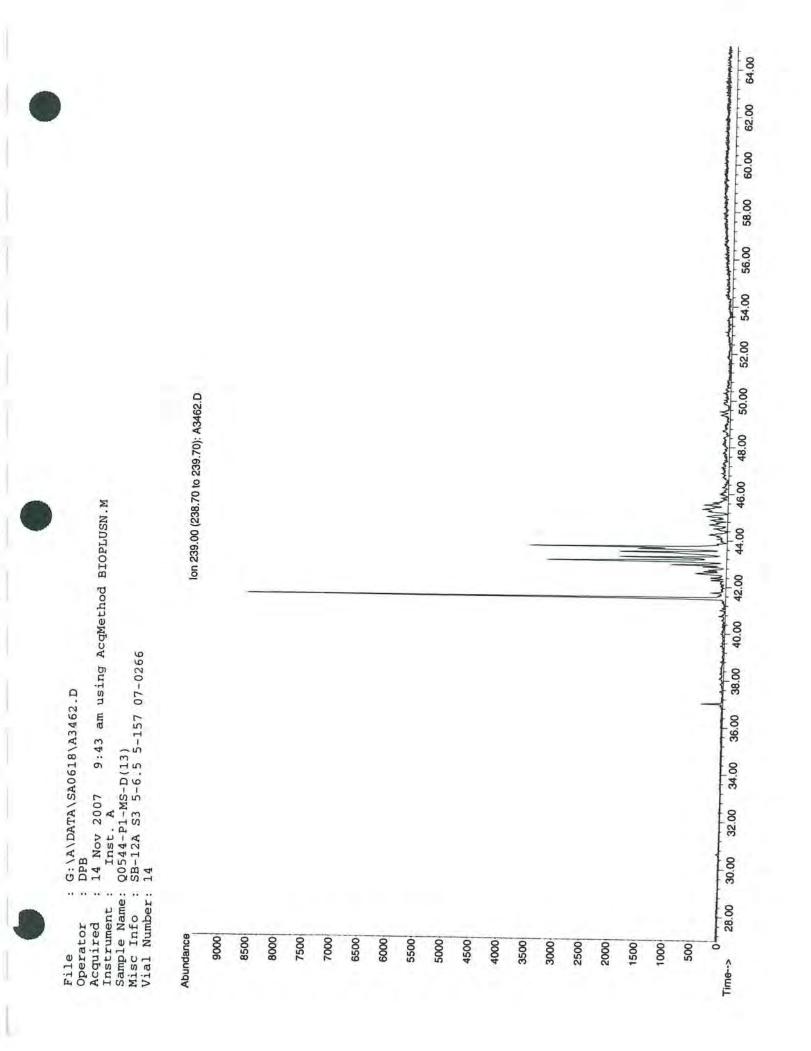


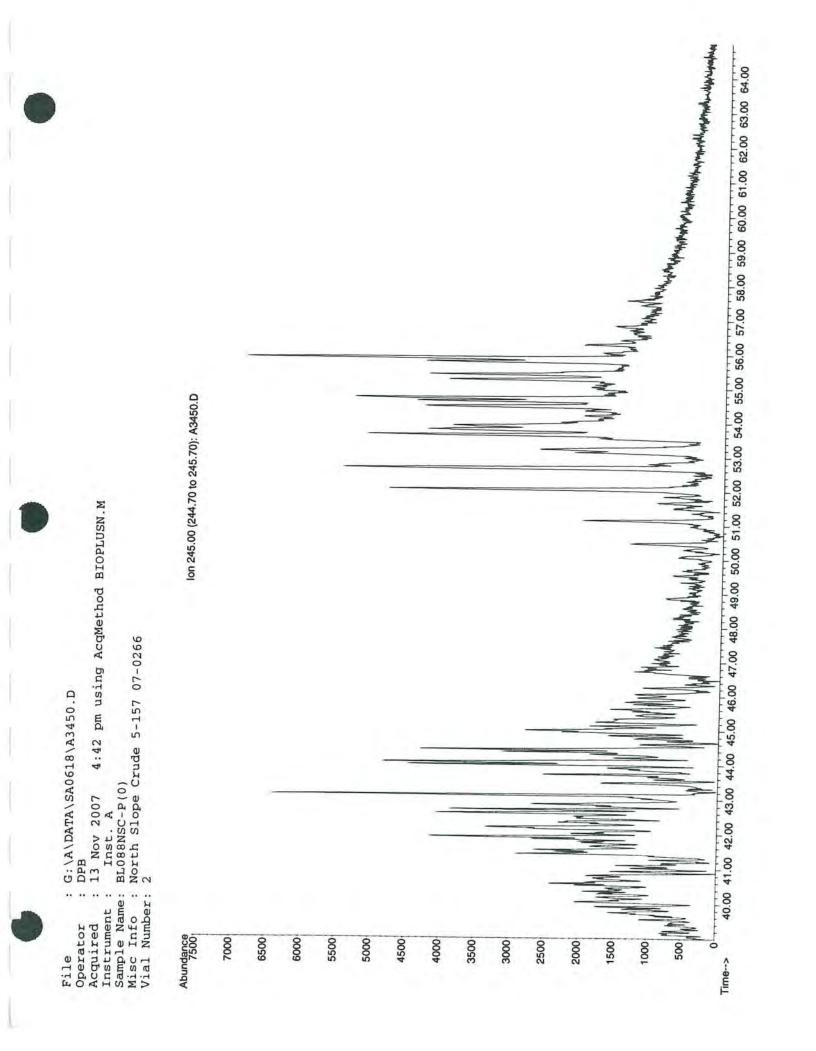
64.00 62.00 60.00 58.00 56.00 \$ 52.00 54.00 42.00 44.00 46.00 48.00 50.00 52 40.00 38.00 36.00 34.00 32.00 30.00 28.00 Time->

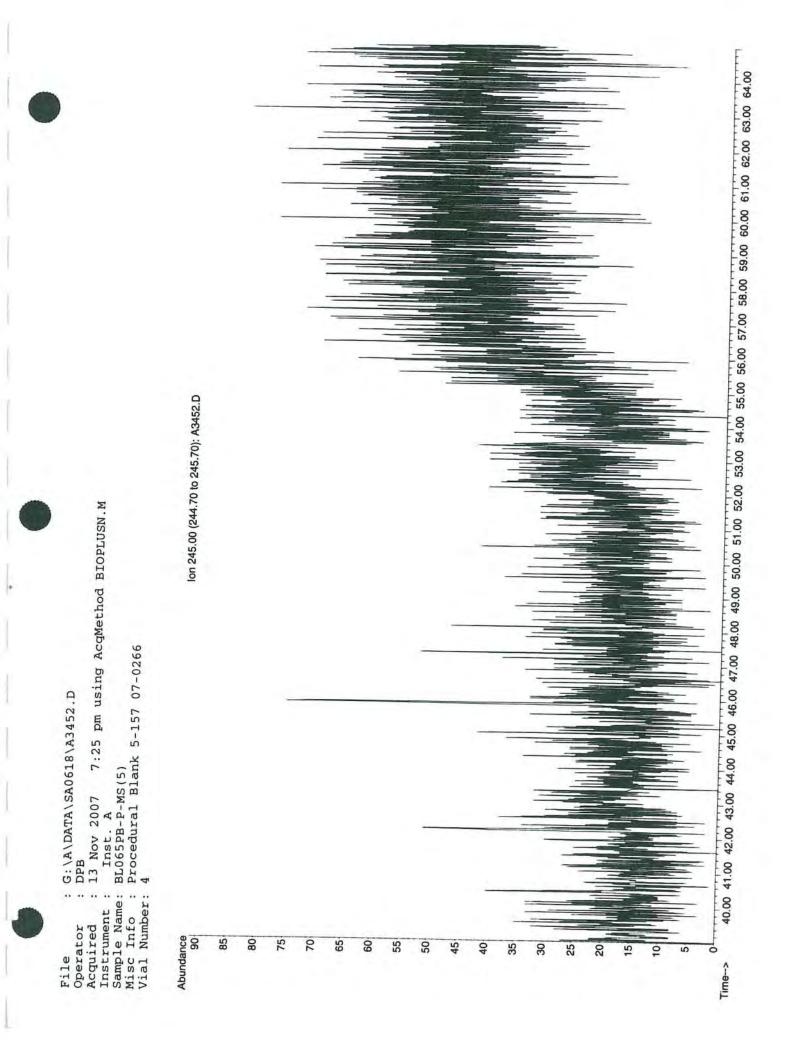


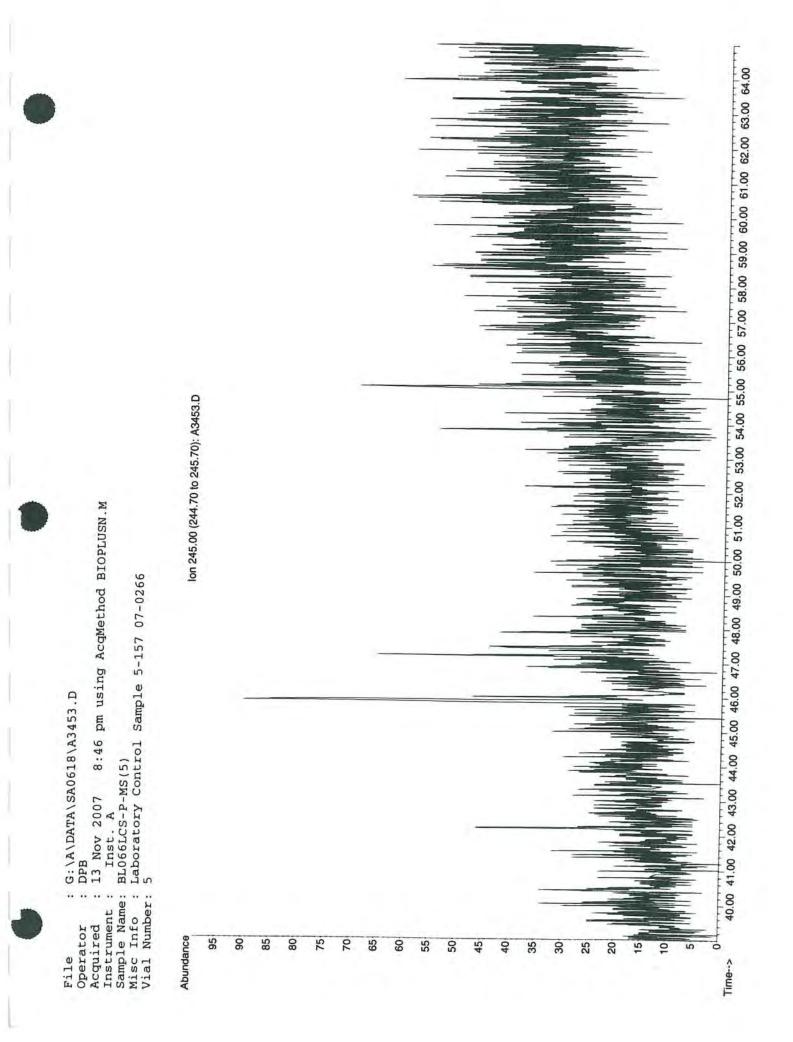


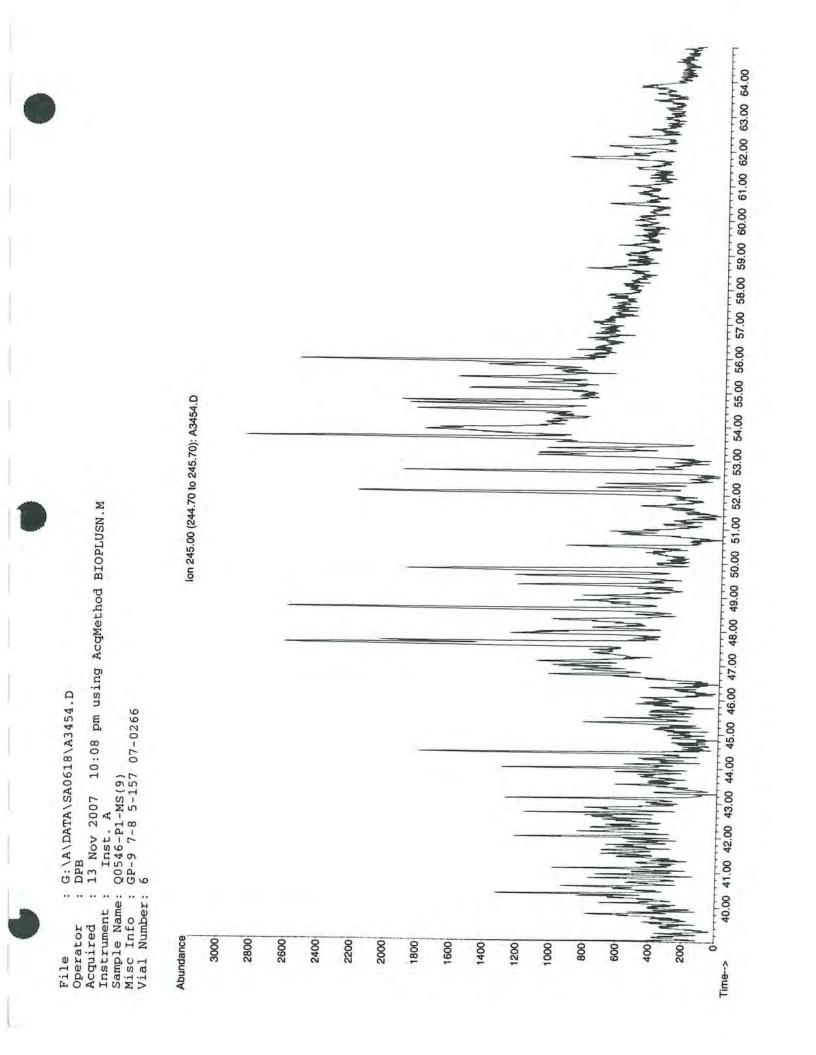
7:37 am using AcqMethod BIOPLUSN.M Operator : DPB Acquired : 14 Nov 2007 7:37 am using Ac Instrument : Inst. A Sample Name: Q0544-P1-MS(12) Misc Info : SB-12A S3 5-6.5 5-157 07-0266 Vial Number: 13 : G:\A\DATA\SA0618\A3461.D : DPB File

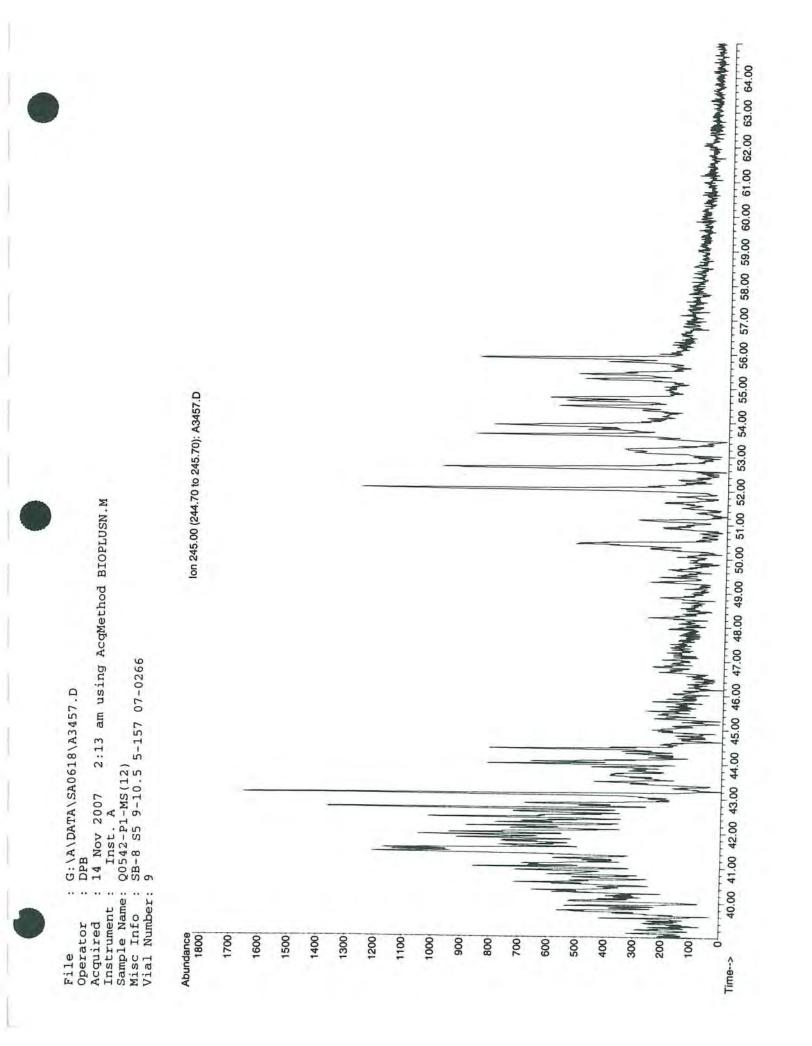

Abundance

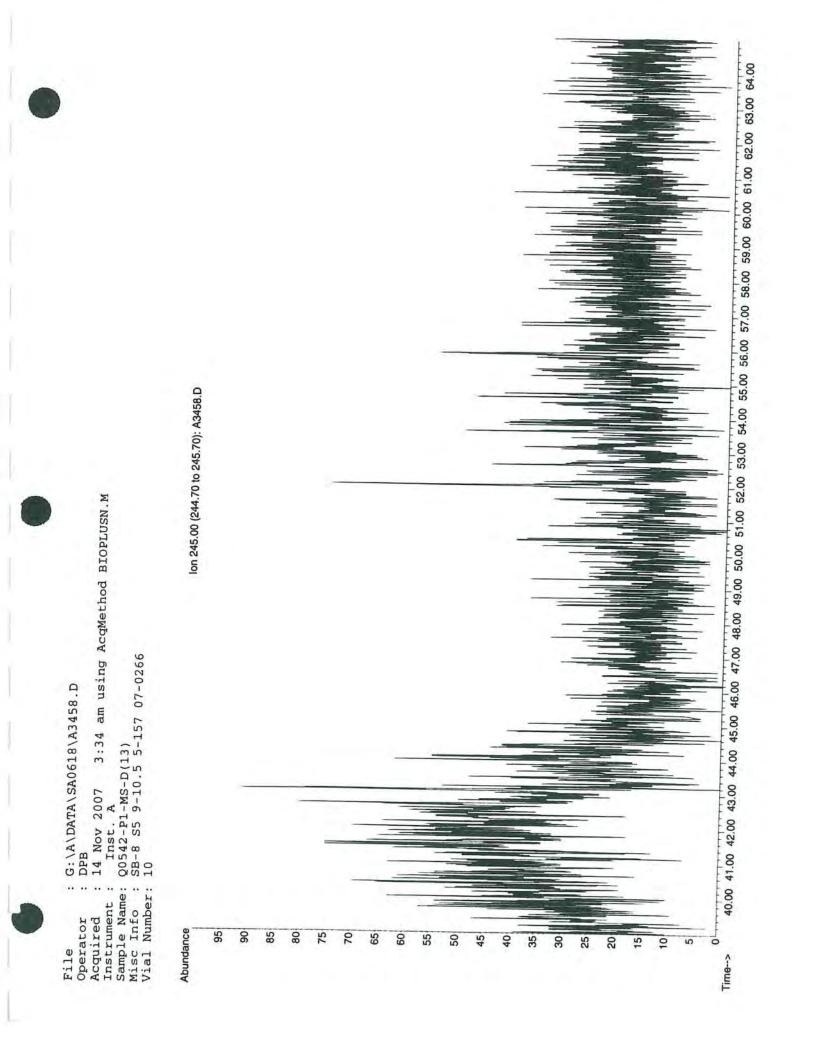

Ion 239.00 (238.70 to 239.70): A3461 D

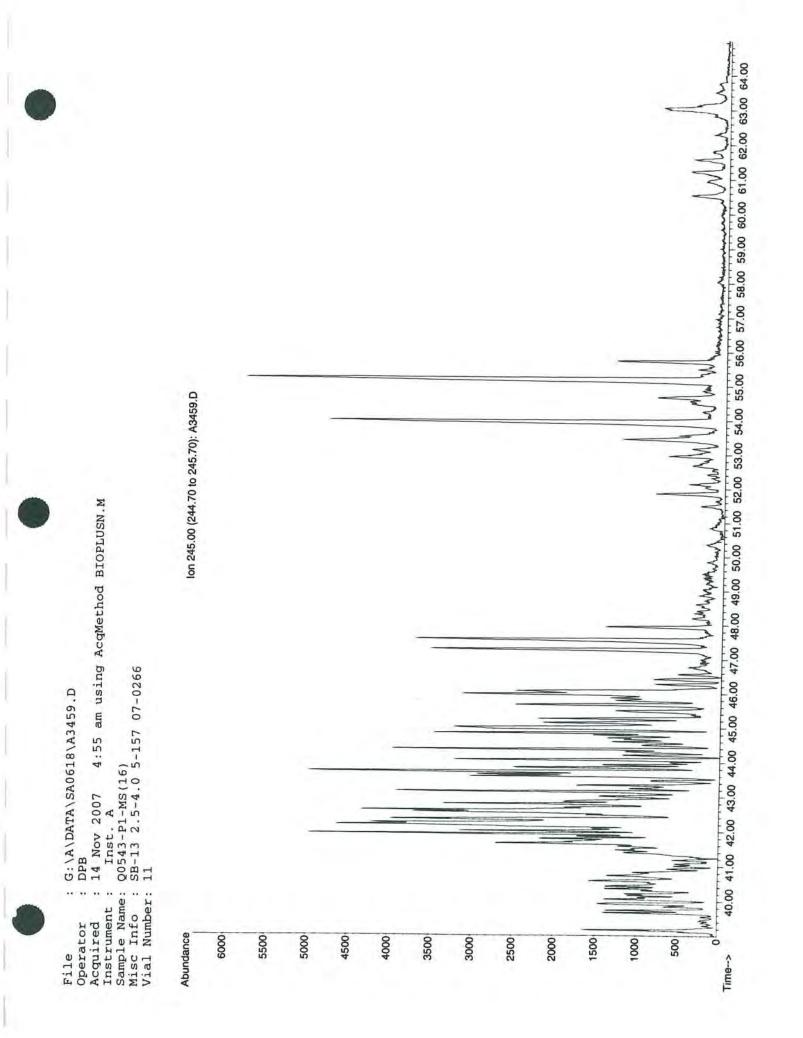

|                                           | 2                        | 1011 239.00 (238.70 to 239.70): A3461.D | 02: 10): Y3401.D                       |               |  |
|-------------------------------------------|--------------------------|-----------------------------------------|----------------------------------------|---------------|--|
| 160000                                    |                          |                                         |                                        |               |  |
| 150000-                                   |                          | -                                       |                                        |               |  |
| 140000                                    |                          |                                         |                                        |               |  |
| 130000                                    |                          |                                         |                                        |               |  |
| 120000                                    |                          |                                         |                                        |               |  |
| 110000                                    |                          |                                         |                                        |               |  |
| 100000                                    |                          |                                         |                                        |               |  |
| 00006                                     |                          |                                         |                                        |               |  |
| 80000                                     |                          |                                         |                                        |               |  |
| 70000                                     |                          |                                         |                                        |               |  |
| 60000                                     |                          |                                         |                                        |               |  |
| 50000                                     |                          |                                         |                                        |               |  |
| 40000                                     |                          |                                         |                                        |               |  |
| 30000                                     |                          |                                         |                                        |               |  |
| 20000                                     |                          |                                         |                                        |               |  |
|                                           |                          |                                         |                                        |               |  |
| Time> 28.00 30.00 32.00 34.00 36.00 30.00 | 1 mm/ Alphin his inthe h | WW ALL                                  | WWW WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW | With Mar have |  |

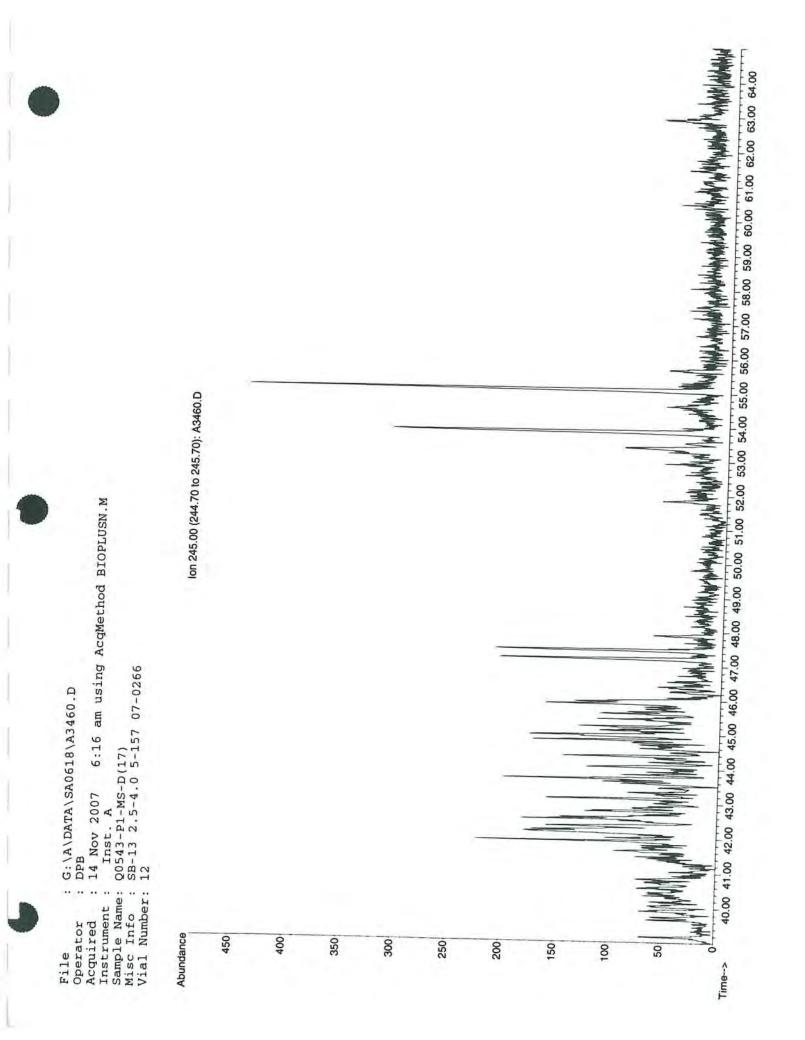

64.00

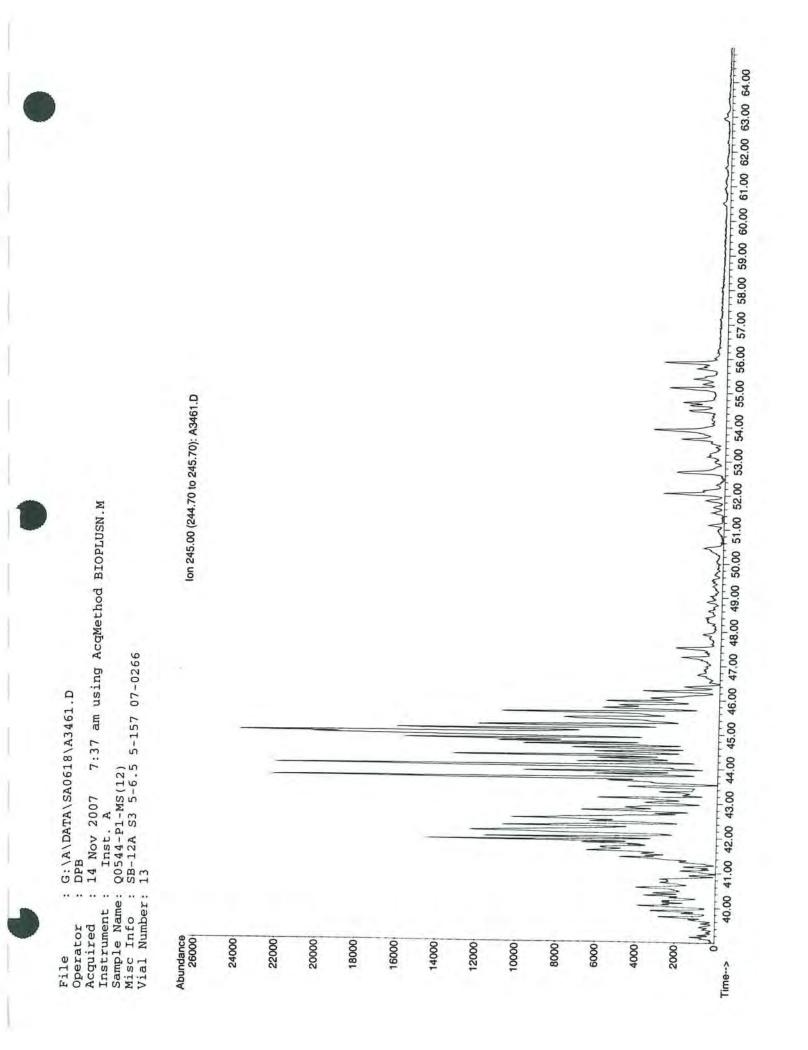

62.00

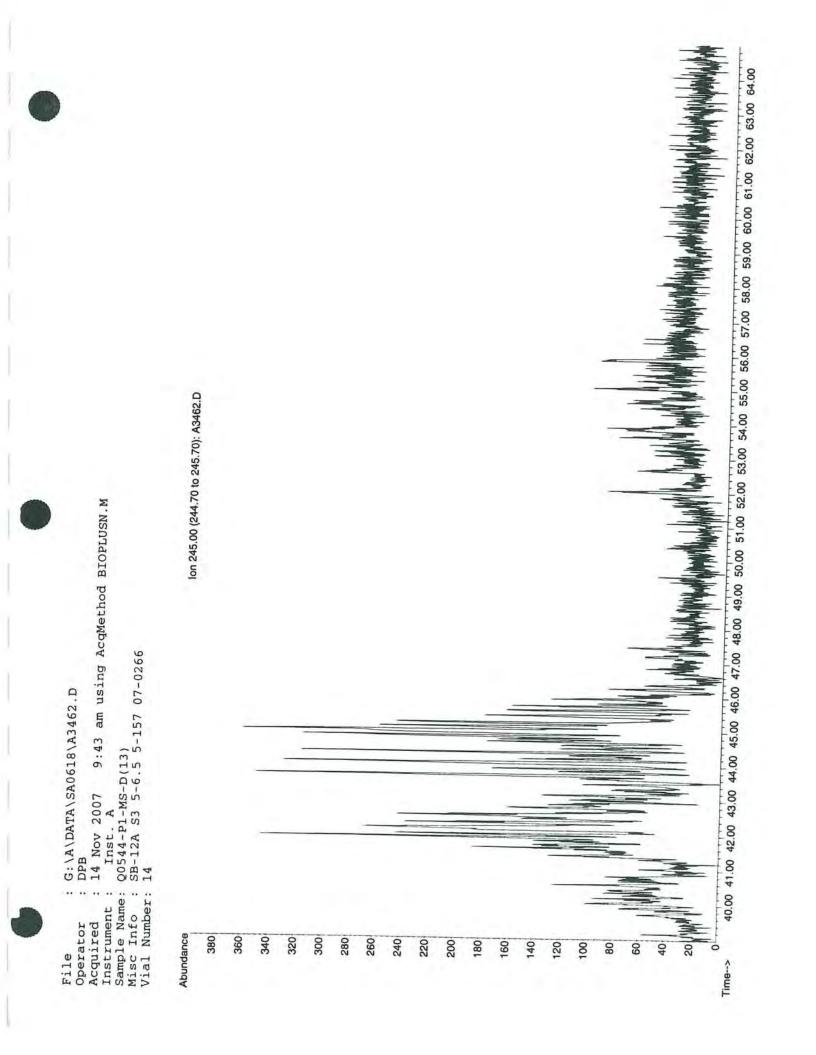













# Battelle

The Business of Innovation

#### **Glossary of Data Qualifiers**

#### Flag: Application:

- B Analyte concentration found in the sample at a concentration <5x the level found in the procedural blank.
- D Dilution Run. Initial run outside linear range of instrument.
- E Estimate, result is greater than the highest concentration level in the calibration.
- H Surrogate diluted out. Used when surrogate recovery is affected by excessive dilution of the sample extract.
- J Analyte detected below the sample-specific Reporting Limit (RL).
- m Confirmation column manually over-ridden by analyst
- ME Significant Matrix Interference Estimated value.
- MI Significant Matrix Interference value could not be determined or estimated.
- n Quality Control (QC) value is outside the accuracy or precision Data Quality Objective (DQO), but meets the contingency criteria.
- N Quality Control (QC) value is outside the accuracy or precision Data Quality Objective (DQO)
- NA Not applicable
- p Dual column value exceeds RPD criteria
- T Holding Time (HT) exceeded.
- U Analyte not detected at 3:1 signal:noise ratio.

ATTACHMENT 2D-7 Stanford Aqueous Equilibrium Report

# Final Report – February 3, 2006

# PAH Partitioning in Black Carbon-impacted Sediments from Lake Union

Lei Hong and Richard G. Luthy Department of Civil and Environmental Engineering Stanford University, Stanford, CA 94305-4020

### SUMMARY

This report summarizes laboratory investigations of the physicochemical nature of polycyclic aromatic hydrocarbon (PAH) contamination in sediment samples from Lake Union, Seattle, WA. This work infers the extent to which black carbon (BC) materials are present in samples, and the role that these black, particulate organic particles may have in affecting the PAH availability from sediments. Three partitioning models are evaluated to explain the aqueous equilibrium sorption between PAHs and sediment samples: a conventional partitioning model based on natural organic matter sorption, an oil or tar phase partitioning model based on Raoult's Law assuming an ideal aromatic phase, and a model assuming sorption on soot-like matter.

Twenty sediment samples were examined in this study, which exhibited a wide variety of physicochemical characteristics. It was noted that one sample, CR10-NAPL, appeared completely different from the other nineteen sediment samples and was comprised mainly of a soft-tar like non-aqueous phase liquid (NAPL) substance. The total organic carbon contents of these samples ranged from less than 1% to over 70% by weight, and PAH analyses showed highly variable degrees of PAH contamination in these sediment samples. The total concentrations of the 16 EPA priority PAHs ranged from 18 mg/kg for NLU 54 to 4,400 mg/kg for NLU 51, and for the NAPL sample the value was 90,500 mg/kg. In addition to PAH analyses in bulk sediment samples, PAH analyses on density-separated fractions provided insights about the association of PAHs with sediment particles. The significant findings were that PAH concentrations in the low-density fractions; and for most samples the majority of the PAH mass (78 ~ 100% of total PAH mass) was associated with the low-density particulate fractions. These observations were not surprising given the hydrophobicity of PAH compounds and the high organic matter and

black carbon content in the low-density fractions.

Measurements of aqueous equilibrium concentrations of PAHs from these sediment samples provide a quantitative evaluation of PAH leaching potential and availability from the sediment to the aqueous phase. Site-specific, sediment-water distribution coefficients  $(K_d)$  of PAHs are calculated. By comparing experimentally-determined  $K_d$  values with predictions based on different partitioning models, we propose three PAH partitioning scenarios occur in these sediment samples: *i*) modified fraction organic carbon partitioning: the majority (fifteen out of twenty in total) of sediment samples generally agree with the conventional organic carbon equilibrium partitioning model,  $K_d = f_{oc} K_{oc}$ . However, due to the existence of black carbonaceous particles, the observed  $K_d$  values are approximately 0.5 ~ 1.0 logarithmic units higher than conventional predictions for sorption onto natural organic matter with the divergence from the conventional model greater for the more hydrophobic PAH compounds; ii) oil / tar partitioning: three sediment samples NLU 51, NLU 56, NLU 65, and the NAPL sample (CR10-NAPL) exhibit PAH partitioning behavior described by an oil/tar-water partitioning model, which includes the case of oily-coated soot. This model assumes that the PAHs are present in an oil phase and that the partitioning behavior follows the dissolution process from the oil phase; and iii) soot carbon partitioning: NLU 73-Stanford is the only sample that clearly exhibits partitioning behavior of PAHs being controlled by oil soot (or lampblack, carbon black). In this case the PAH sediment-water distribution coefficients  $K_d$  are generally 1.5 ~ 2 orders of magnitude higher than those derived on the basis of conventional natural organic matter partitioning, and correspondingly the aqueous equilibrium concentrations are disproportionally lower than predicted by such partitioning models.

This report also includes two documents as appendixes. Appendix I is the detailed data for PAH analyses on density separated fractions for each sediment sample. Appendix II comprises results on aqueous equilibrium concentration measurements and calculated site-specific PAH sediment-water distribution coefficients for sediment samples.

# **INTRODUCTION**

This project examined the characteristics of polycyclic aromatic hydrocarbon (PAH)

contamination in sediment samples from Lake Union, Seattle, WA, and the role that black carbonaceous particles may contribute to the presence of PAHs and PAH partitioning behaviors to the aqueous phase. Specifically, this project (1) inferred the extent to which the sediment samples from Lake Union contain black carbon materials, and (2) investigated their roles in affecting the availability of PAHs in samples obtained from the site.

This project evaluated the sorptive binding of PAHs to the lake sediment in order to better determine how sorption affects the fate of these contaminants in the aquatic environment. It is well accepted that hydrophobic organic compounds such as PAHs sorb to the organic carbon fraction of sediment. Thus, sorption models based on the fraction organic carbon content  $(f_{oc})$ are useful to predict the sorption behavior of hydrophobic organic compounds to natural sediments assuming the organic matter to be homogeneous and equally sorptive (1, 2). Traditionally such models employ an organic-carbon-normalized distribution coefficient  $(K_{oc})$ that is dependent on the sorbing chemical's hydrophobicity or solubility, as may be quantified by the sorbate's octonal-water partition coefficient  $K_{ow}$  (3). Although the organic carbon fraction foc is generally taken as a measure to characterize the sorption capacity of natural sediments, investigators have noted for several years that the sorption of hydrophobic organic compounds to sediments is not always consistent with model predictions. Our earlier work (4, 5) demonstrated that organic carbon in sediments may comprise different compositional forms having very different sorption capacities. Thus, the nature of the organic carbon in the sediment could have a significant impact on the sorption behavior of contaminants associated with the sediment. This is especially the case if the sediment contains black carbon particulate matter known to have high sorption capacities and strong affinities for PAHs. The strong binding between black carbon materials and PAHs could result in less availability of PAHs to the aqueous phase and thus considerably reduce the potential environmental risk to the aquatic environment.

Furthermore, in our recent work we demonstrate that the presence of oil/tar in soil or sediment also could be an important factor in determining the organic contaminant partitioning behavior of PAHs (5) or PCBs (14). We showed for lampblack that, when the oil/tar content in soil or sediment is high enough to exhaust the sorption capacity of lampblack carbonaceous matter, the oil/tar phase governs PAH partitioning and that PAHs associated with a liquid or

semi-soft oil/tar phase will be more available. This could result in higher aqueous equilibrium concentrations and pose greater environmental concern than PAHs sorbed only on lampblack.

# **OBJECTIVES AND SCOPE OF THE STUDY**

The primary objective of this research is to identify the extent of black carbon materials in Lake Union, WA, sediment samples and to characterize the association of PAHs with black carbon-impacted sediment. The second major objective of this project is to measure aqueous equilibrium concentrations with sediment samples and to calculate site-specific PAH partition coefficients between sediment samples and water. The measured PAH partition coefficients are compared with conventionally-estimated partition coefficients based on the organic carbon content in the sediment. This comparison will shed light on estimating the impact of black carbonaceous materials in the sediment and the effects of such materials on the availability of PAHs from the site.

This report summarizes results of (1) characterization of PAH concentration levels and distribution patterns, as well as (2) the determination of PAH aqueous equilibrium concentrations for sediment samples from Lake Union. We received 16 sediment samples on January 20, 2005, and four remaining sediment samples arrived on February 3, 2005. Since receipt, the following tasks have been conducted on these twenty sediment samples:

### 1. Characterization of sediment samples and PAH analyses

- A density separation technique aided by a saturated cesium chloride solution was used to identify the percentage by weight light carbonaceous particulate fraction in each sediment sample.
- The total organic carbon content in each sediment sample was measured using a combustion technique followed by nondispersive infrared detection.
- The percentage by weight oil/grease in the whole samples was determined by following procedures similar to SW-846 EPA method 9071A (Hexane Extractable Materials) for oil and grease in soils and sediments using ultrasonic extraction.
- Analyses for 16 EPA priority PAHs were performed on the whole samples and the separated fractions by following EPA method 3550B (ultrasonic extraction), EPA

method 3630C (silica gel cleanup), and EPA method 8100 for PAH analyses with a gas chromatograph (GC) and a flamed ionization detector (FID).

- 2. Aqueous equilibrium tests with sediment samples and calculation of site-specific partition coefficients of PAHs
  - Aqueous equilibrium tests with sediment samples were performed using a newly-developed polyoxymethylene (POM) solid phase extraction (SPE) method as described in Jonker et al., 2001 (6). This technique has been fully characterized with the polyoxymethylene material in our laboratory (7) and is confirmed to be comparable with other aqueous equilibrium concentration measurement techniques such as air-bridge or alum flocculation procedures.
  - The PAH aqueous equilibrium concentrations for selected samples were measured by employing a direct contact protocol, which involves supernatant treatment by alum flocculation and centrifugation. This was performed on six sediment samples to confirm results obtained by the POM solid phase extraction method.
  - An air-bridge technique was used to measure PAH aqueous equilibrium concentrations for the non-aqueous phase liquid sample (CR10-NAPL-1523). This technique was chosen due to the need for absolute certainty of eliminating the potential oil contamination in the aqueous phase measurements.
  - Site-specific partition coefficients  $(K_d)$  of PAHs were calculated for each sediment sample, and these results were compared with values obtained based on a conventional, organic-carbon partitioning model. Organic-carbon normalized partition coefficients  $(K_{oc})$  were also determined.

# SITE DESCRIPTION AND SAMPLE INFORMATION

The study area of this project comprises a band of sediments in the region surrounding the Gas Works Park site in north-central Lake Union. The Gas Works Park site is located on the northern shore of Lake Union in Seattle, WA. Historically significant activities occurring at this site over time included: a manufactured gas plant, a tar refinery, and park construction. The gas works plant was built on the site in 1906 and the plant gasified coal to produce "town gas." In 1937, oil-gas generators were added and the plant was converted to an oil gasification process.

The gas making operations ceased in 1956 due to the availability of cheaper natural gas. A tar refinery was operated on the northwestern part of the site from 1907 through the 1950s. The tar company processed tars from the gas works plant, as well as feedstock from other sources, to produce various grades of tar and pitch. After the gas works converted to oil gas in 1937, manufactured gas plant tar was no longer a major feedstock to the tar refinery. The property was purchased by the City of Seattle in 1962 and converted to a public park, named Gas Work Park, and opened in 1976. Sediments in Lake Union are very likely contaminated from a number of sources owing to the long history of industrial and commercial activities near or along the lake.

#### **EXPERIMENTAL METHODS**

Twenty sediment samples from Lake Union were shipped to our laboratory in ice-packed coolers, and stored at 4 °C until use. Prior to experiments, all sediment samples were wet sieved to remove particles larger than 2 mm in diameter. These large particles were primarily comprised of stones and brick fragments.

**Chemicals and Materials.** Pesticide grade solvents hexane, acetone, pentane, cyclohexane, and methylene chloride were purchased from Fisher Scientific (Pittsburgh, PA). Solvents were checked regularly for any PAH contaminations by GC-FID as described below. Anhydrous sodium sulfate (Fisher Scientific) was prepared with drying in an oven at 105 °C for 24 hours prior to use. Silica gel (Fisher Scientific) used in the column cleanup procedure was activated at 130 °C for 16 hours. White crystalline powder cesium chloride (CsCl) with a purity > 98% was obtained from Sigma Aldrich, Inc. PAH surrogate solution pyrene- $d_{10}$  (500 ppm in acetone), internal standard 2-fluorobiphenyl, and standard solutions of 16 EPA PAHs for GC calibration were purchased from ULTRA Scientific, Inc. (North Kingstown, RI). Polyoxymethylene (POM) (trade name: poly-acetal, also known as acetal; molecular formula: [-OCH<sub>2</sub>]<sub>n</sub>; density: 1.38 g/cm<sup>3</sup>) was obtained from Vink NV, Industriepark 7, B-2220 Heist-op-den-Berg, Belgium. The POM sheet has a thickness of 0.58 mm and natural white color. It was cut into strips with desirable dimensions of 13 mm by 5 mm prior to use and pre-cleaned by soaking in methanol and hexane sequentially for 30 minutes each, then rinsed with Milli-Q<sup>®</sup> water and allowed to air-dry. Before employed in experiments, several strips were randomly selected as blank samples to go through

the whole procedure from extraction, column cleanup, and GC analysis to ensure that no contamination exists with these POM strips.

**Density Separation.** A saturated cesium chloride solution with a specific gravity of 1.8 was used to separate lighter-density carbonaceous particles from the mineral fraction of soil (i.e., sand and clay). Four to eight grams of wet sediment samples were mixed with 70 mL of saturated cesium chloride solution and centrifuged at 2000 rpm (1000g) for 10 minutes in 80-mL glass centrifuge tubes. The light particles that floated to the top were decanted and collected on a 0.7- $\mu$ m glass fiber filter paper. This procedure was repeated 3-5 times until the light fraction was separated from the heavier mineral fraction. Separated fractions were washed with deionized water thoroughly to remove the residual cesium chloride. The mass of each fraction was recorded after air-drying and desiccating for 12 hours. Duplicate tests were performed with each sediment sample with relative standard deviations (RSDs) in all cases less than 2-10 %.

**PAH Extraction, Cleanup, and Analysis by GC-FID.** The PAH concentrations on bulk sediment samples and separated fractions were measured by following EPA standard method 3550B. Three grams of solid samples were placed in a beaker containing 50 mL hexane/acetone (1:1) mixture and extracted using a Fisher 550 Sonic Dismembrator (Pittsburgh, PA) for 6 minutes (pulsing for 15 s on and 15 s off). The sample was extracted three times and then the extracts were combined, concentrated and changed into solvent cyclohexane. Cleanup was performed on the final extract using an activated silica gel column as outlined in EPA standard method 3630C. An Agilent gas chromatograph 6890N system (Sunnyvale, CA) with a fused silica capillary column (HP-5, 30 m long x 0.25 mm I.D.) and a flamed ionization detector was used for analysis based on EPA standard method 8100 for PAHs. Duplicate extractions were performed for each sediment sample as well as the separated fractions. A blank solvent and a standard solution of 16 EPA PAHs spiked with the internal standard were run with every sequence of samples to assess GC performance and validate calibration.

**Organic Carbon (TOC) Measurement.** The organic carbon content in each sediment sample was determined by AGVISE Laboratories, Northwood, ND, using the conventional combustion technique followed by nondispersive infrared detection after treating the samples with hydrochloric acid to remove the inorganic carbon that may exist in the solid matrix.

**Total Extractable Organics (Oil and Grease).** A similar experimental protocol to SW-846 EPA standard method 9071A (Hexane Extractable Material) was employed to quantify the level of oil and grease present in all sediment samples. The only difference is use of an ultrasonic extraction instead of a soxhlet extraction procedure, and a hexane/acetone (1:1, v/v) mixture as a solvent instead of pure hexane. It has been determined that TEO values obtained with this protocol are very close to those from the standard method, with differences less than 5%.

Aqueous Equilibrium Tests. Several different techniques for conducting aqueous equilibrium tests were employed in this project. Except for the non-aqueous phase liquid sample (CR10-NAPL-1523), a polyoxymethylene – solid phase extraction (POM-SPE) method developed by Jonker (6) was adopted to determine the distribution coefficients of PAHs between sediment samples and water. In order to confirm results from POM-SPE experiments, six sediment samples were selected to follow a conventional, direct-contact experimental protocol with alum flocculation to measure the PAH aqueous equilibrium concentrations. This direct contact experimental protocol with flocculation has been performed in several studies in our laboratory (5, 8) and is reliably demonstrated to accurately measure aqueous phase concentrations of PAHs and PCBs from soil and sediment samples without the interference from colloids and incomplete phase separation. For sample CR10-NAPL-1523, however, neither of these two methods works easily because of the presence of an oil emulsion in the aqueous phase. Therefore an air-bridge system was used for this sample, which eliminates any potential oil contamination in the measurement of aqueous equilibrium concentrations.

Prior to experiments, an aqueous phase was prepared with Milli- $Q^{\text{®}}$  water by adding in 100 mg/L sodium azide to inhibit microbial degradation and 0.01 M calcium chloride to compensate the ionic strength in the system. In order to avoid photolysis of PAH compounds, all experiments were carried out in amber glass bottles or covered glassware.

1) Aqueous equilibrium tests with POM-SPE method. Polymethylene (POM) strips were deployed in the sediment-water system as a passive equilibrium sampler. POM strips take up dissolved organic compounds such as PAHs from the sediment-water slurry until phase equilibrium is reached in the system. At equilibrium, the measured PAH concentrations in POM strips, together with the knowledge of concentration-independent POM-water partition

coefficients predetermined for PAH compounds, can be used to quantify the PAH compounds' freely dissolved concentrations.

Prior to aqueous equilibrium experiments with POM-SPE for sediment samples, sorption isotherm tests were conducted in our laboratory to characterize the sorption properties of POM and to determine the POM-water partition coefficients for PAH compounds of interest. Each sorption isotherm comprised seven data points with a span of approximately two orders of magnitude in aqueous concentrations. For more hydrophobic compounds (> benz[a]anthracene) with their extremely low aqueous solubility, the lowest data points of aqueous concentrations were below the limit of aqueous quantification in our study, therefore six pairs rather than seven pairs of aqueous concentrations ( $C_w$ ) and concentrations sorbed into POM ( $C_{POM}$ ) are involved in the determination of  $K_{POM-w}$  values for these compounds. It was found for all PAH that sorption to POM follows a linear isotherm within aqueous concentration ranges that were examined. The POM-water partition coefficients are defined as the ratio of the compound concentration in the POM ( $C_{POM}$ ) divided by the aqueous phase concentration ( $C_w$ ) at equilibrium:

$$K_{POM-w} = C_{POM} \, (\mu g/kg) / C_w \, (\mu g/L) \qquad [L/kg]$$

Due to the linearity of sorption isotherms, the values of  $K_{POM-w}$  were determined by taking slopes of the linear regression curves fitted to the sorption isotherm data. Results of sorption isotherm tests confirmed that sorption of PAHs to the POM can be regarded as a partitioning process and is independent of the solute concentration and other organic analytes in the aqueous phase. These properties make this material an excellent passive sampler for quantifying the freely dissolved concentrations of PAH compounds from environmental matrixes. Kinetic studies of PAH uptake into POM strips from water were also performed. Results showed that the attainment of equilibration for PAH uptake by POM requires less than 40 days with more hydrophobic compounds taking less time, and with higher mass ratio of POM-to-water phase taking less time. The detailed results and discussions about the POM-SPE method and applications in environmental analytical measurement were summarized in a recent research paper (7).

The aqueous equilibrium tests with POM strips were set up as follows: 3 g of wet sediment sample, 0.5 g of POM strip, and 35 mL of prepared aqueous phase were placed in a 40 mL glass

bottle with an aluminum-lined lid. Duplicate tests were carried out for each sediment sample. All the bottles were tumbled end-to-end at 4 rpm in the dark at room temperature for a period of 40 days. The mass of POM strip was chosen so that less than 5% of the individual PAH compounds were accumulated into the POM from the water. This ensures that the original equilibrium between sediment and water will not be disturbed by POM as an additional sorbing phase (7, 9).

After equilibration, the POM strips were taken out of the system with a pair of tweezers, rinsed with deionized water and dried with a Kimwipe, and then soxhlet extracted continuously with 150 mL hexane/acetone (1:1, v/v) for 16 hours. An internal standard (2  $\mu$ g 2-fluorobiphenyl) and a surrogate PAH compound (1  $\mu$ g pyrene- $d_{10}$ ) were added prior to extraction. The extracts were then concentrated using a rotoevap followed by a stream of gentle nitrogen purge to 1 mL, and cleaned up for GC-FID analysis as described above. The measured PAH concentrations in POM strips allowed us to calculate the aqueous equilibrium concentrations based on the knowledge of POM-water partition coefficients.

2) Aqueous equilibration tests with batch mixing and particle separation using alum flocculation. In this method, the wet sediment sample and the synthetic aqueous phase in the weight ratio of 1:20 were placed in 1-L glass bottles with a Teflon-lined cap and gently agitated on a roller at 2 rpm in the dark for two weeks to allow complete mixing and full contact between sediment and water. In order to ensure aqueous equilibrium and phase separation within the sediment-water system, these bottles were equilibrated further for two months before sampling. After the sediment fraction settled to the bottom of the glass bottle, 750 mL of the aqueous phase was transferred to a centrifuge tube. To remove particulates from solution without sacrificing the aqueous PAH composition integrity, the tube contents were centrifuged at 20 °C and 1000 g for 10 minutes to settle any coarse particles (5, 8). This step was followed by the addition of about 10 mL 0.1 M alum solution and adjustment of pH back to neutral with 1.0 N NaOH solution. The supernatant water was mixed carefully using a glass pipette for 1 minute to mix and flocculate the alum without disturbing the settled particles. A sweep floc was formed, which co-precipitates with fine particles. The flocculated system was subjected to a second centrifugation step at 500 g for 30 minutes. The clear supernatant created afterwards was

carefully pipetted into a separatory funnel and extracted with fresh volumes of hexane three times. The pipette was similarly rinsed with hexane into the separatory funnel. The hexane extracts were combined, dried using anhydrous sodium sulfate, concentrated to 1 mL, cleaned by a silica gel cleanup method, and the final clean eluate concentrated to 0.2 mL for GC analysis.

Our previous work showed that particulates are effectively precipitated by alum flocs and that aqueous PAH concentrations are not affected by the technique (5). In the absence of particulate removal using alum flocculation, equilibrium tests may be biased because the apparent aqueous phase concentration may comprise both dissolved PAHs and PAHs sorbed on micro-particulates or colloids. This is an especially important concern when measuring PAH concentrations at sub-microgram per liter concentrations as in this study.

3) Aqueous equilibrium tests with an air-bridge system. This test protocol involves an equilibration technique in which an air bridge is employed to physically separate the sediment from the equilibrated water. The air-bridge method described by Bucheli and Gustafsson (10) was used. This method employs a beaker holding the sediment sample that is contained within a larger, closed vessel with an aqueous phase in the outer annular space. PAHs in sediment in the inner beaker are allowed to volatilize and transfer to the outer water phase through the air bridge, and over time an equilibrium state is attained between the sediment slurry inside the beaker and the water in the annular space outside the beaker. For PAHs, the equilibration takes one to two months. In this project, a 150-mL glass beaker containing about 10 grams of sediment sample (CR10-NAPL-1523), 120 mL synthetic aqueous phase and a stir bar was placed in a 4 L glass jar with Teflon-lined cap, and the annular space between the jar and the beaker was filled with 1 L synthetic aqueous phase. The glass jar was sealed with Teflon tape and equilibrated for two months on a magnetic stirrer to gently mix the solid slurry and facilitate solute transfer until sampled. The aqueous phase sampled from the outer annular space was extracted by hexane three times, and then the extracts were combined, concentrated and analyzed by GC for PAHs as described above. The main advantage of the air-bridge method is the absolute certainty of the elimination of particulate-phase contamination in the measurement of aqueous phase concentrations.

Quality Assurance and Quality Control (QA/QC). All solvents used in the experiments

were checked periodically with GC-FID for any possible contamination. Prior to the extraction of sediment samples, a surrogate PAH compound (1  $\mu$ g pyrene- $d_{10}$ ) and an internal standard (2  $\mu$ g 2-fluorobiphenyl) were spiked in the sample matrix to monitor the performance of all procedures involved in PAH analyses in sediment samples. Duplicate tests were carried out with each sample. The reported values are average values with relative standard deviations ranging from 2% to 10%, which are well within the method control limits. A standard solution of 16 EPA PAHs with a known concentration of individual compounds was chosen as a laboratory control sample (LCS), and this was included in each analytical batch and its recovery was used to check the column cleanup efficiency and GC performance. A reagent blank consisting of the elution solvents was passed through the silica gel column and analyzed before each new lot of adsorbents and solvents were used in this method. This was done to ensure that any interferences from adsorbents (silica gel) are well below the method detection limits. The recovery rates of laboratory control samples (LCS) were  $93 \pm 7\%$  (n=160) for all PAH compounds of interest, considerably higher than the requirement of  $\geq 85\%$  specified in the EPA standard method. The recovery check of the surrogate PAH compound and the internal standard in the column cleanup procedure was also performed, with recovery rates of 95  $\pm$  8% (n=18) and 96  $\pm$  4% (n=18) respectively.

A blank reagent and a standard solution spiked with known amount of the internal standard and the surrogate compound were run with each sample batch for GC-FID analysis. The instrumental performance was checked everyday and maintained by following the standard operating procedure (SOP) established in our laboratory, such as regularly changing the inlet liner and the septa for the injection port. GC calibration was performed every three months with standard solutions of 16 EPA PAHs at five different concentration levels. Calibration curves for each PAH compound of interest, which delineate the relationship between instrument responses to concentrations of target compounds in the standard solutions, were constructed and used to calculate the analyte concentrations in samples. GC calibration was verified for each analytical batch based on the instrument responses for the standard solution, making sure to meet the calibration verification criteria of within  $\pm 20\%$  difference from the initial calibration responses.

In aqueous equilibrium tests using the POM method, the extraction efficiency of POM strips

with hexane-acetone (1:1, v/v) was found to be  $98 \pm 1.4\%$  (n=160) for all 16 EPA PAH compounds. And in the tests using alum-flocculation and air-bridge techniques, PAHs in the aqueous phase were extracted in accordance with EPA standard method 550, and the average recovery rate was determined to be  $99 \pm 2\%$ .

#### **RESULTS AND DISCUSSIONS**

Experimental results for this study are presented and discussed with respect to each of twenty sediment samples from the following three aspects: (a) physical and chemical characteristics, (b) PAH analyses for bulk and separated fractions of sediment samples, and (c) PAH aqueous equilibrium concentration measurements and calculation of site-specific sediment-water distribution coefficients.

**Physical and Chemical Characteristics of Sediment Samples.** Table 1 summarizes the physical and chemical properties of sediment samples examined in this study, including total organic carbon content, oil and grease content, mass percentage of light density materials, and weight ratio of total organic carbon to light density fraction in the sediment samples.

The total organic carbon (TOC) contents of the sediment samples are highly variable, with the lowest value of 0.7% by weight in sample NLU 402 and the highest value of 77.1% by weight in sample NLU 65. Among these sediment samples, the majority (i.e., thirteen out of twenty) have TOC levels of approximately 14% to 27%. Three samples including NLU 402, NLU 55, and NLU 56 have much lower TOC levels of less than 5% by weight. By contrast, the remaining four of twenty sediment samples have relatively high TOC levels ranging from 40.3% up to 77.1%, which include NLU 51, NLU 65, NLU 73-Stanford, and the NAPL sample, CR10-NAPL. The mass of light fraction particles (density < 1.8 g/cc) determined by density separation varied from sample to sample, ranging from less than 5% to 79% by weight.

The oil and grease contents of sediment sample varied from 0.2% to 2.5%, except the sample CR10-NAPL, which appears to be very oily, soft-tar like, having an oil and grease content of greater than 95% by weight. Oil and grease is a conventional pollutant defined under 40 CFR 401.16 by US EPA and generally refers to substances, including biological lipids and mineral

hydrocarbons that have similar physical characteristics and common solubility in an organic extracting solvent. By comparing the oil and grease content with the PAH analysis results described below, we note that sediment samples with high TOC content have relatively higher oil and grease content and correspondingly higher levels of PAH contamination. The examples are the four samples with relatively high TOC values, NLU 51, NLU 65, NLU 73-Stanford, and CR10-NAPL.

Organic particles such as plantative materials and black carbons are generally less dense than the mineral (sand/clay/silt) fractions of sediments. Thus, low density fractions obtained by the density separation technique from sediment samples tend to comprise the majority of organic particles. Given the organic carbon content in a certain class of organic particles, the mass ratio of total organic carbon to the less-dense particulate fraction could provide a quick assay to predict the composition of organic carbon in the sediment sample. Our experience is that if the light density fraction comprises primarily black carbonaceous materials, then owing to their extremely high organic carbon content, usually close to or over 90% by weight, the TOC values and the light fraction measurements are in the same range for a ratio of TOC to light fraction in the proximity of unity. This means that the organic carbon in these sediments is mainly contributed by black carbon matter, and examples from this study are NLU 51, NLU 65 and NLU 73-Stanford. On the other hand, for cases as NLU 44, NLU 47 and NLU 62 etc., with TOC values around 15 ~ 17%, the light (density < 1.8 g/cc) fraction accounts for about 39 ~ 46% of total sample weight. This indicates that the weight percent of carbon in the less-dense particulate fraction for these samples is about 40%, which is expected if the majority of the organic particulate matter is plantative material. We also note that three samples NLU 68-S1, NLU 68-S2 and NLU 68-SS have a TOC-to-light fraction ratio of 0.6 or so, and based on the same reasoning, this suggests that the light fraction could be a mixture of both black carbonaceous materials and natural organic matter with either of these two components dominating.

**PAH Analysis and Distribution Patterns.** The experimental results of PAH analyses in bulk sediment samples, as well as that for density separated fractions, are summarized in Table 2 and Table 3. The detailed data for individual PAH concentrations and distributions among the

light density fraction and the heavy density fraction for each sample are presented in Appendix I, except for the NAPL sediment sample for which the density separation is not applicable. As shown in Table 2, all twenty sediment samples exhibit various degrees of PAH contamination and the total 16 EPA PAH concentrations range from 18 mg/kg for NLU 54 to 4,390 mg/kg for NLU 51. The total 16 EPA-listed PAHs content of the NAPL sample is 90,480 mg/kg. Figures 1 and 2 depicted the distribution profiles of the 16 EPA PAHs in six highly or moderately contaminated sediment samples. Profiles for NLU 51, NLU 65, and NLU 73-Stanford are shown in Figure 1 for which total PAH concentrations range from 1,900 to 4,400 mg/kg, and profiles for NLU 56, NLU 64, and NLU 68-SS are shown in Figure 2 with total PAH levels in the range of 850 to 1,400 mg/kg. As shown in the figures, despite the various PAH concentration levels, a common feature for these samples is that fluoranthene and pyrene are the most abundant PAH compounds, except NLU 73-Stanford which has naphthalene and phenanthrene as dominant PAHs.

PAH concentrations on lighter and heavier fractions of each sediment sample were measured to examine the association and distribution patterns within the sample. The total concentrations of 16 EPA-listed PAHs on light-density and heavy-density fractions as well as the mass percent of PAHs associated with the less-dense fraction are reported in Table 3. From the data summarized in Table 3 and Appendix I, it is evident that PAH concentrations in the lighter density particle fractions are over four times greater than those in the heavier density particle fractions. In the case of NLU 65, the total concentration of PAHs in the light density particle fraction is 194-fold greater than the heavier fraction. Based on the knowledge of PAH concentrations in bulk samples, as well as separated fractions and measurements of mass percentage of light fraction for each sediment sample, it can be estimated that for most of these sediment samples the majority of the PAHs (78 ~ 100% of total mass) are associated with the low-density particle fraction. Only two samples, NLU 402 and NLU 68-US-S2, have lower values of 69% and 61% respectively for the mass of PAHs in the low-density fraction. The total PAH concentration in the light density particle fraction of sample NLU 402 is 2,905 mg/kg, which is 45 times as high as the concentration value (64 mg/kg) in the heavy density fraction. Since NLU 402 is the sample with the lowest TOC value (0.7% by weight) and the lowest light fraction (4.6% by weight), it is not surprising to observe that relatively less mass of PAHs are in the light density fraction.

Sediment-water Distribution Coefficients ( $K_d$ ) for PAHs. Using the knowledge of the equilibrium partitioning of PAHs between POM strips and water established earlier (7), the aqueous equilibrium concentrations of PAHs from sediment samples were calculated based on measurements of PAH concentrations in POM strips according to  $C_w = C_{POM} / K_{POM-water}$ . From this, sediment-water distribution coefficients  $K_d$  were derived using the measured sediment PAH concentrations and the dissolved PAH concentrations inferred from the POM samplers.  $K_{POM-water}$  values for 12 PAH compounds determined in our previous studies are listed in Table 4, along with literature values of octanol-water ( $K_{ow}$ ) partition coefficients and organic carbon-normalized partition coefficients ( $K_{oc}$ ). Values of  $K_{ow}$  were taken from the reference text *Environmental Organic Chemistry* by Schwarzenbach et al. (15), except that  $K_{ow}$  values of benzo[b]fluoranthene, benzo[k]fluoranthene and dibenz[a,h]anthracene are taken from Accardi-Dey et al. (16), and the  $K_{ow}$  value of benzo[g,h,i]perylene is taken from Mackay et al. (12).  $K_{oc}$  values are calculated from the equation:

$$\log K_{oc} = 0.989 \log K_{ow} - 0.346$$

 $K_d = f_{oc} K_{oc}$  [L/kg]

which was originally developed by Karickhoff et al. (1). This equation is very close to the correlation given in the reference text *Environmental Organic Chemistry* (15):  $\log K_{oc} = 0.98 \log K_{ow} - 0.32$  for PAH compounds with  $\log K_{ow}$  values of 2.2 to 6.4. In the nineteen consecutive tables in Appendix II, the aqueous equilibrium concentrations determined by the POM-SPE method and the calculated site-specific sediment-water distribution coefficients for individual PAHs are presented for each sample.

In order to verify aqueous equilibrium concentration measurements and  $K_d$  values determined by the POM-SPE method, an alum-flocculation technique was applied to six selected sediment samples. Experimental results confirmed that PAH aqueous equilibrium concentrations measured by these two methods as well as  $K_d$  values calculated correspondingly agree with each other very well. Figure 3 shows the correlation between logarithmic  $K_d$  values obtained with POM-SPE method and alum-flocculation method for samples NLU 73-stanford and NLU 51. Data shown in figure 3 demonstrate that the POM-SPE method can serve as a good alternative to the alum-flocculation method.

We compared our experimentally measured  $K_d$  values with the conventional organic-carbon equilibrium partitioning model, in which the  $K_d$  value was predicted on the basis of each sediment's organic carbon content ( $f_{oc}$ ) and each PAH compound's  $K_{oc}$  value according to Karickhoff et al. (1) as cited above. This comparison shows that these sediment samples exhibit distinctive partitioning behaviors. Accordingly, three conceptual sorption models are proposed for adoption in the current study as follows:

1. Modified fraction organic carbon partitioning: in this model, all the organic matter present in the sample is assumed to be uniformly distributed and homogeneous in terms of sorption properties, and PAHs sorbed on sediment solids can be regarded as partitioning into the organic carbon domain. With this approach, the organic carbon content ( $f_{oc}$ ) is considered to be the crucial parameter in the prediction of sediment-water distribution coefficients. In Karickhoff's model, the  $f_{oc}$  is considered to be comprised of natural plant and animal derived organic carbon. In the modified model, we envision the  $f_{oc}$  to be comprised partly of natural organic carbon and partly of black carbonaceous materials.

Fifteen sediment samples agreed reasonably well with this model, and they include: NLU 44, NLU 47, NLU 402, NLU 54, NLU 55, NLU 57, NLU 62, NLU 64, NLU 68-S1, NLU 68-S2, NLU 72, NLU 73-SS, NLU 45, NLU 58, and NLU 68-SS. These sediment samples have relatively low organic carbon contents (0.7 ~ 26.5% by weight) and low PAH concentration levels (total concentration 18 ~ 320 mg/kg) except NLU 64 and NLU 68-SS with relatively high 16 EPA PAH concentrations of 850 mg/kg and 1120 mg/kg, respectively.

Figure 4 shows a comparison between experimentally measured PAH sediment-water distribution coefficients and model predictions for two representative samples (a) NLU 44 and (b) NLU 64. As demonstrated in the diagrams, a common trend we find from the comparison between observed  $K_d$  values and model-predicted  $K_d$  values is that the observed site-specific  $K_d$  values are generally larger than those predicted by fraction organic carbon (OC) partitioning by

approximately  $0.5 \sim 1.0$  logarithmic units, with the divergence from the model greater for the more hydrophobic PAH compounds. This implies that other than natural organic matter, some other types of organic carbon particles, such as black carbonaceous materials, affect the sorption process due to their higher sorption capacity and non-linear equilibrium sorption mechanisms for PAHs. The presence of black carbonaceous particles in these sediment samples is expected since the sediment samples examined in this study originated from the lake area surrounding the former manufactured gas and tar refining plant sites, and received runoff that likely contained soot from the surrounding urban areas.

2. Oil/tar partitioning: this model assumes that all PAHs are present in an oil phase and that the partitioning behavior follows dissolution from the oil phase. Our previous study (5) used an oil/tar-water partitioning model to describe PAH partitioning from lampblack-impacted soil samples governed by an oil/tar phase. In this approach the aqueous equilibrium concentration of a PAH compound is calculated using the equation:

$$C_{aq,i} = x_i S_i$$

where  $x_i$  is the mole fraction of PAH *i* in the oil/tar phase, and  $S_i$  is the subcooled liquid solubility of PAH *i*. The subcooled liquid solubility of PAH *i* is calculated by dividing the aqueous solubility of the solid PAH *i* by the ratio of the solid-liquid reference fugacities  $(f^{s}/f^{t})_{i}$  for the pure PAH *i*, as summarized by Peters et al. (13). The mole fraction of PAH *i* is computed by assuming that the oil/tar phase is measured as oil and grease (total extractable organics) with an average molecular weight of 270.

In the current study, this model was applied to three sediment samples (NLU 51, NLU 65 and NLU 56) and the NAPL sample to interpret PAH sorption mechanisms and partitioning properties. Figure 5 shows a comparison of the apparent PAH sediment-water distribution coefficients determined in this study with different model predictions for samples (a) NLU 51 and (b) NLU 65. It was noted that the fraction organic carbon model and oil/tar model are comparable in predicting the sediment-water distribution coefficients of PAHs for these two samples. This is because that the weight ratios of oil and grease content to TOC are 0.06 and 0.03 for NLU 51 and NLU 65 respectively, and the corresponding sorption capacity of oil and grease for PAHs is

generally greater than that of natural organic matter by a factor of 5 to 25. Thus, these two factors approximately compensate each other and the predicted PAH distribution coefficients on the basis of these two models result in very similar values. Nonetheless, we believe that the oil/tar model is more appropriate for the following reasons. These two sediment samples have very high TOC values of 40.3% for NLU 51 and of 77.1% for NLU 65. The fact that the ratio of TOC value to light-density fraction is close to or greater than unity implied that black carbon materials may be the dominant type of organic carbon in these samples. NLU 51 and NLU 65 are two highly contaminated sediment samples with the highest total PAH concentration levels at 4,400 mg/kg and 4,200 mg/kg respectively, which may exhaust the black carbon sorption capacity. Based on these characteristics, it is conceivable that oil tar-water partitioning model would be more appropriate to interpret PAH sorption behavior in NLU 51 and NLU 65 than a fraction It was observed that aqueous equilibrium organic carbon-water partitioning model. concentrations measured with these two samples are significantly higher than that for the sediment sample controlled by soot carbon. For example, freely dissolved aqueous concentration of phenanthrene from NLU 51 is 103  $\mu$ g/L and 22  $\mu$ g/L for NLU 65, as opposed to 0.5 µg/L for NLU 73-Stanford which is controlled by oil soot partitioning as explained below.

As shown in figure 6, PAH partitioning behavior in sediment sample NLU 56 is described by the oil/tar-water partitioning model. NLU 56 has a very low TOC value of 2.7% but a relatively high PAH concentration at 1360 mg/kg. These factors result in the oil/tar-water partitioning model providing a much better fit to experimental results, especially for more hydrophobic PAH compounds.

Due to its unique nature as a soft-tar like material, the PAH aqueous equilibrium concentrations from sample CR10-NAPL can be predicted very well using the oil tar-water partition model. Figure 7 shows the good correlation between the measured distribution coefficients with the model predictions.

**3.** Soot-carbon controlling partition model: in this model, black carbon is the predominant form of organic particulate matter in the sediment, and PAHs are assumed to be associated with the soot carbon. Soot carbon normalized distribution coefficient  $K_{oc}$  values of PAHs were determined in our previous work with lampblack-impacted soils. As presented in

Table 4, these values are generally  $1.5 \sim 2.5$  orders of magnitude larger than those derived from natural organic matter due to the strong affinity of soot carbon for PAHs. Therefore a striking phenomenon often observed with this kind of sample is the diminished aqueous equilibrium concentrations and drastically elevated sediment-water distribution coefficients ( $K_d$ ). NLU 73-Stanford is the only sample among this batch of sediments that clearly exhibits this unique partitioning behavior for PAHs.

Figure 8 shows that the aqueous equilibrium concentrations of PAHs from NLU 73-Stanford are in good agreement with the predictions of a soot partitioning model. NLU 73-Stanford has a total organic carbon content of 74.8% by weight, and this is very close to the light density fraction of 72.9% determined by density separation. The fact that the weight ratio of TOC versus light fraction is nearly unity suggests that black carbon is the major organic carbon source in this sample.

Based on the experimental results and modeling approaches demonstrated above, it is noted that even though sediment samples have similar compositions of organic matter with black carbonaceous particles being present, these samples may exhibit two different PAH partitioning behaviors depending on the predominance of either oil/tar or soot-carbon partitioning. We postulate that these phenomena can be explained on the basis of physiochemical characteristics of the black carbon solid matrix and sorptive nature of PAHs. The strong binding of PAHs to a black carbon solid matrix is attributed to the overlap of  $\pi$ -electrons in the aromatic soot structure and the planar aromatic rings of PAH molecules. Soot carbon has a non-linear equilibrium sorption isotherm, and the amount of PAHs that can be sorbed onto the soot carbon skeleton is limited. When the PAH concentrations reach the sorption capacity of soot carbon, they start to form a free oil phase, and the sorption mechanism for PAHs undergoes a transition from adsorption on a soot carbon matrix to absorption into a free aromatic oil phase, therefore the aqueous partitioning behaviors for PAHs in these kind of samples appear like dissolving from oil tar phase rather than from the strong carbon sorbent.

### **Literature Cited**

(1) Karickhoff, S. W.; Brown, D. S.; Scott, T. A. Sorption of hydrophobic pollutants on natural sediments. *Water Res.* **1979**, *13* (3), 241-8.

(2) Chiou, C. T.; Peters, L. J.; Freed, V. H. Physical concept of soil-water equilibria for non-ionic organic-compounds. *Science* **1979**, *206* (4420), 831-832.

(3) Karapanagioti, H. K.; Kleineidam, S.; Sabatini, D. A.; Grathwohl, P.; Ligouis, B. Impacts of heterogeneous organic matter on phenanthrene sorption: equilibrium and kinetic studies with aquifer material. *Environmental Science and Technology* **2000**, *34* (3), 406-414.

(4) Ghosh, U.; Zimmerman, J. R.; Luthy, R. G. PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability. *Environmental Science and Technology* **2003**, *37* (10), 2209-2217.

(5) Hong, L.; Ghosh, U.; Mahajan, T.; Zare, R. N.; Luthy, R. G. PAH sorption mechanism and partitioning behavior in lampblack-impacted soils from former oil-gas plant sites. *Environmental Science and Technology* **2003**, *37* (16), 3625-3634.

(6) Jonker, M. T. O.; Koelmans, A. A. Polyoxymethylene solid phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot. *Environmental Science and Technology* **2001**, *35* (18), 3742-3748.

(7) Hong, L.; Luthy, R. G. Uptake kinetics of PAHs to polyoxymethylene and applications for environmental analytical measurements. *Prepared for Environmental Science Technology* **2005.** 

(8) Ghosh, U.; Weber, A. S.; Jensen, J. N.; Smith, J. R. Relationship between PCB desorption equilibrium, kinetics, and availability during land biotreatment. *Environmental Science and Technology* **2000**, *34* (12), 2542-2548.

(9) Ramos, E. U.; Meijer, S. N.; Vaes, W. H. J.; Verhaar, H. J. M.; Hermens, J. L. M. Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals. *Environmental Science and Technology* **1998**, *32* (21), 3430-3435.

(10) Bucheli, T. D.; Gustafsson, O. Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations. *Environmental Science and Technology* **2000**, *34* (24), 5144-5151.

(11) Ghosh, U.; Gillette, J. S.; Luthy, R. G.; Zare, R. N. Microscale location, characterization, and association of polycyclic aromatic hydrocarbons on harbor sediment particles. *Environmental Science and Technology* **2000**, *34* (9), 1729-1736.

(12) Mackay, D.; Shiu, W. Y.; Ma, K. C. Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals; Lewis Publishers: Boca Raton: 1992.

(13) Peters, C. A.; Knightes, C. D.; Brown, D. G. Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment. *Environmental Science and Technology* **1999**, *33* (24), 4499-4507.

(14) McNamara, S. W.; Ghosh, U.; Dzombak, D. A.; Weber, A. S.; Smith, J. R.; Luthy, R. G. Effect of oil on polychlorinated biphenyl phase partitioning during land biotreatment of impacted sediment. *J. Environ. Eng.* **2005**, *131* (2), 278-286.

(15) Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M. *Environmental organic chemistry*; Wiley: Hoboken, N.J.: 2003; p 1313.

(16) Accardi-Dey, A.; Gschwend, P. M. Reinterpreting literature sorption data considering both absorption into organic carbon and adsorption onto black carbon. *Environ. Sci. Technol.* **2003**, *37* (1), 99-106.

(17) Yunker, M. B.; Macdonald, R. W.; Vingarzan, R.; Mitchell, R. H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. *Org. Geochem.* **2002**, *33* (4), 489-515.

| Sample ID    | TOC<br>(%) | Carbonate<br>(%) | Oil & grease<br>(%) | Light fraction<br>(%) | TOC vs. light<br>fraction |
|--------------|------------|------------------|---------------------|-----------------------|---------------------------|
| NLU 44       | 14.8       |                  | 0.98                | $38.7\pm3.8$          | 0.4                       |
| NLU 47       | 14.1       |                  | 1.25                | $45.6 \pm 1.3$        | 0.3                       |
| NLU 51       | 40.3       |                  | 2.44                | $44.9\pm3.3$          | 0.9                       |
| NLU 402      | 0.7        |                  | 0.17                | $4.6\pm0.7$           | 0.2                       |
| NLU 54       | 15.2       |                  | 0.92                | $45.0\pm1.7$          | 0.3                       |
| NLU 55       | 3.8        |                  | 0.15                | $13.8\pm0.5$          | 0.3                       |
| NLU 56       | 2.7        | 0.2              | 0.60                | $9.2\pm0.8$           | 0.3                       |
| NLU 57       | 14.1       | 0.1              | 0.97                | $47.0\pm2.2$          | 0.3                       |
| NLU 62       | 16.8       |                  | 1.27                | $46.0\pm1.9$          | 0.4                       |
| NLU 64       | 18.2       | 0.1              | 1.20                | $46.0\pm0.7$          | 0.4                       |
| NLU 65       | 77.1       | 0.1              | 2.15                | $46.4 \pm 1.3$        | 1.7                       |
| NLU 68-S1    | 15.8       | 0.1              | 1.38                | $25.7\pm2.5$          | 0.6                       |
| NLU 68-S2    | 14.6       | 0.2              | 1.06                | $23.0\pm2.1$          | 0.6                       |
| NLU 72       | 16.6       |                  | 0.86                | $47.0\pm3.0$          | 0.4                       |
| NLU 73-SS    | 15.4       |                  | 1.22                | $46.2\pm1.8$          | 0.3                       |
| NLU 73-Stanf | 74.8       |                  | 1.55                | $72.9 \pm 1.6$        | 1.0                       |
| NLU 45       | 13.5       | 0.1              | 0.98                | $56.1\pm0.5$          | 0.2                       |
| NLU 58       | 16.2       | 0.1              | 1.44                | $78.8\pm3.7$          | 0.2                       |
| NLU 68-SS    | 26.5       |                  | 2.49                | $43.8\pm0.7$          | 0.6                       |
| CR10-NAPL    | 56.2       |                  | > 95%               | n.a.                  | n.a.                      |

Table 1 Characteristics of Lake Union sediment samples, including total organic carbon(TOC), oil and grease content, and weight percentage of light density fraction

| Compounds              | Sample ID |        |        |         |        |        |        |        |        |        |        |
|------------------------|-----------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|
| _                      | NLU 44    | NLU 47 | NLU 51 | NLU 402 | NLU 54 | NLU 55 | NLU 56 | NLU 57 | NLU 62 | NLU 64 | NLU 65 |
| Naphthalene            | 0.2       | 0.7    | 19     | 2.3     | n.d.   | 4.2    | 3.2    | n.d.   | 3.1    | 3.0    | 14     |
| Acenaphthylene         | n.d.      | 0.4    | 16     | 4.6     | n.d.   | 1.7    | 6.3    | n.d.   | 1.4    | 4.2    | 27     |
| Acenaphthene           | n.d.      | 0.5    | 69     | 14      | n.d.   | 1.8    | 37     | 0.2    | 3.3    | 12     | 64     |
| Fluorene               | n.d.      | 0.5    | 44     | 13      | 0.2    | 1.8    | 15     | 1.0    | 2.4    | 6.2    | 27     |
| Phenanthrene           | 1.2       | 3.9    | 501    | 59      | 1.1    | 12     | 131    | 3.0    | 11     | 31     | 174    |
| Anthracene             | 0.3       | 0.8    | 160    | 17      | 0.3    | 2.6    | 35     | 2.1    | 3.3    | 16     | 48     |
| Fluoranthene           | 3.5       | 11.1   | 851    | 28      | 2.4    | 21     | 240    | 8.3    | 22     | 136    | 690    |
| Pyrene                 | 4.7       | 13.7   | 1009   | 32      | 2.8    | 25     | 300    | 7.0    | 28     | 169    | 908    |
| Benz[a]anthracene      | 1.6       | 4.1    | 236    | 11      | 1.0    | 8.4    | 65     | 2.8    | 8.4    | 47     | 242    |
| Chrysene               | 1.7       | 3.9    | 271    | 11      | 1.1    | 9.7    | 79     | 4.0    | 9.2    | 52     | 291    |
| Benzo[b]fluoranthene   | 2.5       | 4.9    | 202    | 5.1     | 1.5    | 7.5    | 66     | 3.2    | 9.6    | 56     | 279    |
| Benzo[k]fluoranthene   | 3.3       | 5.8    | 198    | 6.0     | 2.8    | 7.9    | 66     | 4.6    | 11     | 55     | 270    |
| Benzo[a]pyrene         | 3.2       | 7.1    | 342    | 9.1     | 1.2    | 11     | 114    | 3.2    | 15     | 93     | 439    |
| Indeno[1,2,3-cd]pyrene | 2.5       | 5.4    | 205    | 4.1     | 1.6    | 7.6    | 90     | 3.1    | 13     | 76     | 333    |
| Dibenz[a,h]anthracene  | 0.2       | 0.6    | 26     | 0.9     | n.d.   | 1.2    | 11     | 0.4    | 1.7    | 8.9    | 47     |
| Benzo[g,h,i]perylene   | 2.7       | 5.7    | 235    | 3.8     | 1.5    | 8.2    | 104    | 3.2    | 15     | 90     | 382    |
|                        |           |        |        |         |        |        |        |        |        |        |        |
| Total 16 EPA PAHs      | 28        | 69     | 4390   | 220     | 18     | 131    | 1360   | 46     | 157    | 854    | 4235   |

 Table 2 Summary of PAH concentrations in Lake Union sediment samples (mg/kg dry weight sediments)

| Compounds              | Sample ID |           |        |           |                 |        |        |           |           |
|------------------------|-----------|-----------|--------|-----------|-----------------|--------|--------|-----------|-----------|
| _                      | NLU 68-S1 | NLU 68-S2 | NLU 72 | NLU 73-SS | NLU 73-Stanford | NLU 45 | NLU 58 | NLU 68-SS | CR10-NAPL |
| Naphthalene            | 28        | 28        | 0.7    | 5.0       | 326             | 1.0    | 3.2    | 3.8       | 22890     |
| Acenaphthylene         | 2.4       | 4.2       | 0.6    | 3.5       | 17              | 1.2    | 3.2    | 5.4       | 613       |
| Acenaphthene           | 6.6       | 3.9       | 0.6    | 6.3       | 150             | 3.0    | 2.2    | 32        | 6700      |
| Fluorene               | 4.2       | 7.1       | 0.3    | 3.9       | 71              | 1.4    | 2.2    | 21        | 2450      |
| Phenanthrene           | 24        | 26        | 3.2    | 26        | 362             | 9.8    | 20     | 45        | 14380     |
| Anthracene             | 6.6       | 6.0       | 0.8    | 7.6       | 86              | 2.6    | 4.6    | 43        | 2769      |
| Fluoranthene           | 42        | 13        | 14     | 45        | 219             | 38     | 30     | 193       | 8580      |
| Pyrene                 | 55        | 19        | 17     | 57        | 276             | 46     | 37     | 244       | 11100     |
| Benz[a]anthracene      | 19        | 6.7       | 5.6    | 18        | 60              | 14     | 13     | 65        | 2834      |
| Chrysene               | 23        | 8.4       | 5.8    | 23        | 75              | 15     | 16     | 77        | 2830      |
| Benzo[b]fluoranthene   | 19        | 3.5       | 7.7    | 19        | 48              | 16     | 13     | 59        | 2287      |
| Benzo[k]fluoranthene   | 11        | 4.4       | 8.5    | 22        | 52              | 17     | 15     | 63        | 2560      |
| Benzo[a]pyrene         | 27        | 5.4       | 12     | 31        | 74              | 26     | 19     | 101       | 4230      |
| Indeno[1,2,3-cd]pyrene | 22        | 3.2       | 11     | 24        | 50              | 21     | 16     | 76        | 2792      |
| Dibenz[a,h]anthracene  | 3.5       | 0.9       | 1.2    | 3.4       | 12              | 2.6    | 2.5    | 11        | 430       |
| Benzo[g,h,i]perylene   | 25        | 3.4       | 12     | 26        | 55              | 23     | 18     | 86        | 3030      |
|                        |           |           |        |           |                 |        |        |           |           |
| Total 16 EPA PAHs      | 316       | 142       | 100    | 319       | 1932            | 237    | 214    | 1124      | 90480     |

 Table 2 (continued)
 Summary of PAH concentrations in Lake Union sediment samples (mg/kg dry weight sediments)

| Sample ID       | Total 16 PAHs<br>concentration in light<br>density fraction<br>(mg/kg dry weight) | Total 16 PAHs<br>concentration in<br>heavy density<br>fraction<br>(mg/kg dry weight) | Mass percentage of<br>PAH in light<br>density fraction<br>(% by weight) |
|-----------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| NLU 44-SS-0010  | 47                                                                                | 8                                                                                    | 78                                                                      |
| NLU 47-SS-0010  | 118                                                                               | 10                                                                                   | 91                                                                      |
| NLU 51-SS-0010  | 8738                                                                              | 542                                                                                  | 93                                                                      |
| NLU 402-GE15    | 2905                                                                              | 64                                                                                   | 69                                                                      |
| NLU 54-SS-0010  | 28                                                                                | 2                                                                                    | 93                                                                      |
| NLU 55-SS-0010  | 868                                                                               | 8                                                                                    | 95                                                                      |
| NLU 56-SS-0010  | 12779                                                                             | 181                                                                                  | 88                                                                      |
| NLU 57-SS-0010  | 63                                                                                | 13                                                                                   | 81                                                                      |
| NLU 62-SS-0010  | 296                                                                               | 29                                                                                   | 90                                                                      |
| NLU 64-SS-0010  | 1697                                                                              | 128                                                                                  | 92                                                                      |
| NLU 65-SS-0010  | 8937                                                                              | 46                                                                                   | 99                                                                      |
| NLU 68-US-S1    | 1119                                                                              | 67                                                                                   | 85                                                                      |
| NLU 68-US-S2    | 334                                                                               | 63                                                                                   | 61                                                                      |
| NLU 72-SS-0010  | 165                                                                               | 28                                                                                   | 84                                                                      |
| NLU 73-SS-0010  | 800                                                                               | 11                                                                                   | 98                                                                      |
| NLU 73-Stanford | 2561                                                                              | 183                                                                                  | 97                                                                      |
| NLU 45-DC       | 457                                                                               | 49                                                                                   | 92                                                                      |
| NLU 58-SS-0010  | 340                                                                               | 12                                                                                   | 99                                                                      |
| NLU 68-SS-0010  | 2584                                                                              | 259                                                                                  | 89                                                                      |
| CR10-NAPL       | n.a.                                                                              | n.a.                                                                                 | n.a.                                                                    |

## Table 3 Summary of PAH analyses on Separated Fractions

## Note:

\* Please refer to Appendix I for detailed data of PAH distribution on separated fractions for each sample.

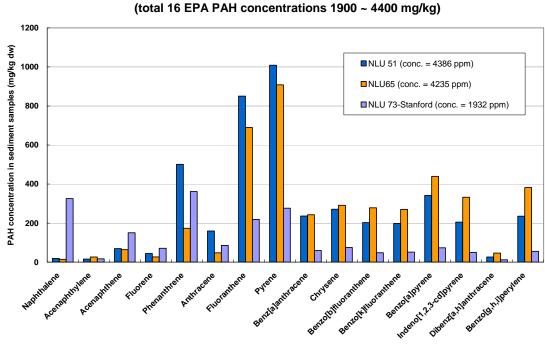
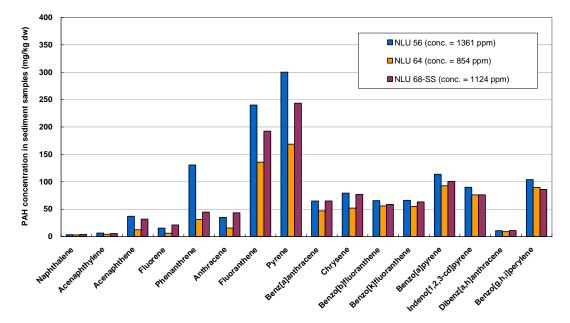
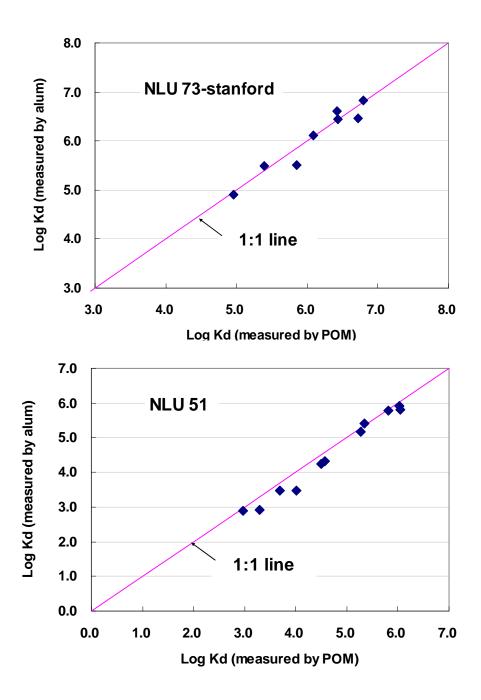
### Table 4

|                        |                                           |                                              | 1                                                      | 1                                               |
|------------------------|-------------------------------------------|----------------------------------------------|--------------------------------------------------------|-------------------------------------------------|
| Compounds              | log K <sub>ow</sub> <sup>[1]</sup><br>(-) | log K <sub>oc</sub> <sup>[2]</sup><br>(L/kg) | log K <sub>oc-lampblack</sub> <sup>[3]</sup><br>(L/kg) | log K <sub>POM-w</sub> <sup>[4]</sup><br>(L/kg) |
| Naphthalene            | 3.33                                      | 2.95                                         |                                                        | 2.06                                            |
| Acenaphthylene         | 4.20                                      | 3.81                                         |                                                        | n.a.                                            |
| Acenaphthene           | 4.00                                      | 3.61                                         |                                                        | 2.43                                            |
| Fluorene               | 4.32                                      | 3.93                                         |                                                        | 2.88                                            |
| Phenanthrene           | 4.57                                      | 4.17                                         | 5.57                                                   | 3.22                                            |
| Anthracene             | 4.68                                      | 4.28                                         | 5.91                                                   | 3.46                                            |
| Fluoranthene           | 5.23                                      | 4.83                                         | 6.74                                                   | 3.73                                            |
| Pyrene                 | 5.13                                      | 4.73                                         | 6.81                                                   | 3.74                                            |
| Benz[a]anthracene      | 5.91                                      | 5.50                                         | 7.34                                                   | 4.36                                            |
| Chrysene               | 5.81                                      | 5.40                                         | 7.44                                                   | 4.32                                            |
| Benzo[b]fluoranthene   | 5.90                                      | 5.49                                         | 8.05                                                   | 4.75                                            |
| Benzo[k]fluoranthene   | 6.00                                      | 5.59                                         | 8.08                                                   | 4.63                                            |
| Benzo[a]pyrene         | 6.13                                      | 5.72                                         | 8.35                                                   | 4.73                                            |
| Indeno[1,2,3-cd]pyrene |                                           |                                              |                                                        | n.a.                                            |
| Dibenz[a,h]anthracene  | 6.80                                      | 6.38                                         |                                                        | n.a.                                            |
| Benzo[g,h,i]perylene   | 7.10                                      | 6.68                                         |                                                        | n.a.                                            |

## Partition Coefficients Used to Interpret Aqueous Equilibrium Experiments: Octanol-Water (K<sub>ow</sub>), Organic Carbon-Water (K<sub>oc</sub>), Lampblack (oil soot) Organic Carbon-Water (K<sub>oc-lampblack</sub>), and Polyoxymethylene (POM)-Water (K<sub>POM-w</sub>)

#### Note:

- 1. Log  $K_{ow}$  values are taken from the reference *Environmental Organic Chemistry* by Schwarzenbach, Rene P.; Gschwend, P.M. and Imboden, Dieter M.; published by John Wiley & Sons, Inc., Hoboken, NJ, 2003, 2<sup>nd</sup> edition. Except that log  $K_{ow}$  values of benzo[b]fluoranthene, benzo[k]fluoranthene and dibenz[a,h]anthracene are taken from Accardi-Dey, A.; Gschwend, P.M., 2003 (16). Log  $K_{ow}$  value of benzo[g,h,i]perylene is taken from Mackay et al. (12).
- 2. Log  $K_{oc}$  values are calculated from the equation log  $K_{oc} = 0.989 \log K_{ow} 0.346$  established by Karickhoff, S.W. (1)
- Log K<sub>oc-lampblack</sub> values are determined in a previous study with lampblack-impacted soil samples (5).
- 4. Log K<sub>POM-water</sub> values are determined in our laboratory for 12 PAH compounds based on extensive sorption isotherm studies with POM strips; POM-water partition coefficients for acenaphthylene, indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene and benzo[g,h,i]perylene are not currently available (7).

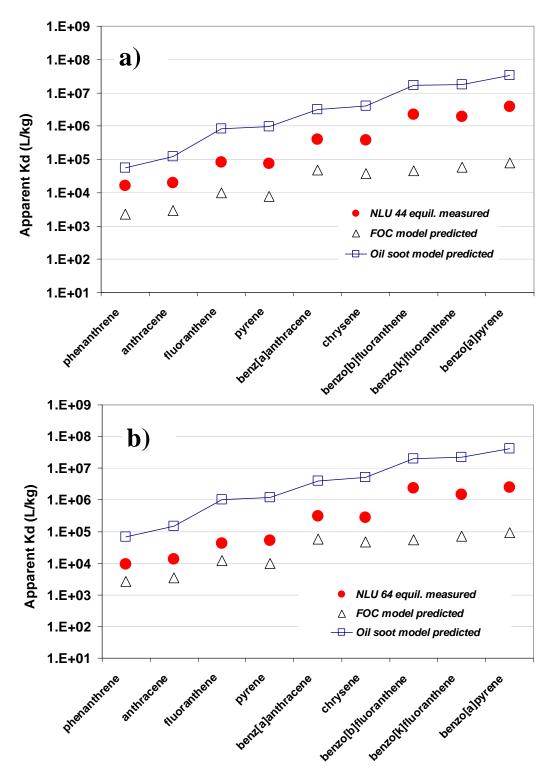
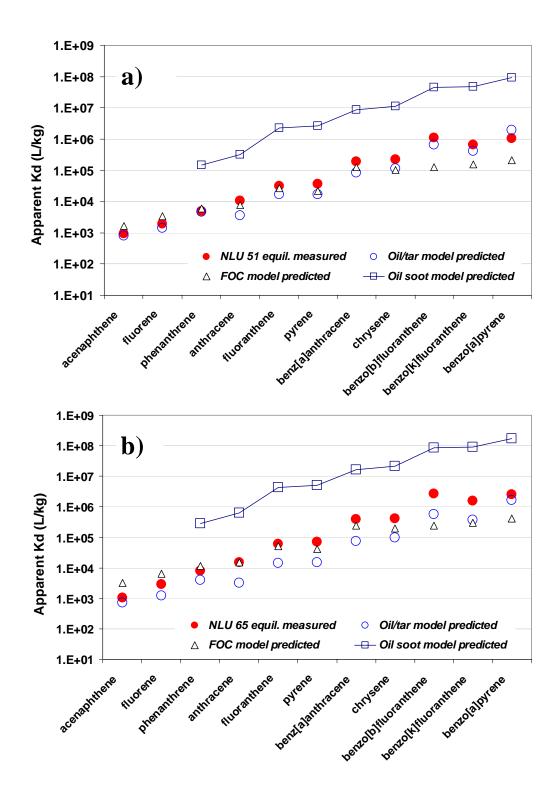
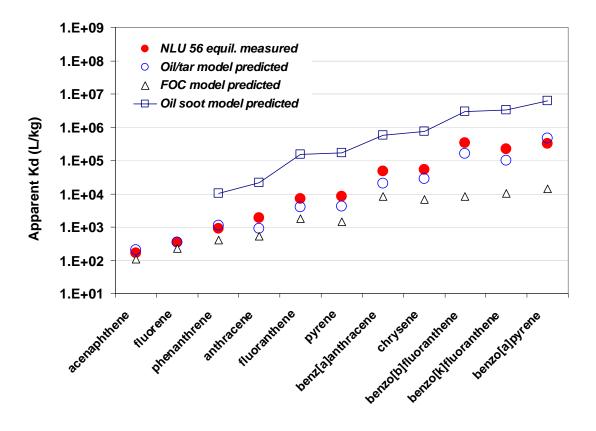


Figure 1 PAH distribution profiles for sediment samples NLU 51, NLU 65 and NLU 73-Stanford (total 16 FPA PAH concentrations 1900 ~ 4400 mg/kg)

Figure 2 PAH distribution profiles for sediment samples NLU 56, NLU64 and NLU 68-SS (total 16 EPA PAH concentrations 850 ~ 1400 mg/kg)







**Figure 3** Comparison of sediment-water distribution coefficients ( $K_d$ ) measured by two different methods, POM-SPE and alum-flocculation, for sample NLU 73-stanford and NLU 51. Experimental results show an excellent agreement in PAH aqueous equilibrium concentrations measured by these two methods, as well as the  $K_d$  values calculated correspondingly.



**Figure 4** Comparisons between experimentally measured PAH sediment-water distribution coefficients with model predictions (fraction organic carbon partitioning model and oil-soot partitioning model) for two representative samples (a) NLU 44 and (b) NLU 64 in which natural organic matter is considered the dominant type of organic carbon. This representation is characteristic of fifteen sediment samples.



**Figure 5** Comparisons between experimentally measured PAH sediment-water distribution coefficients with model predictions for samples (a) NLU 51 and (b) NLU 65 in which the majority of the PAH partitioning is described by equilibrium with an oil/tar phase.



**Figure 6** Comparisons between experimentally measured PAH sediment-water distribution coefficients with model predictions for sample NLU 56, showing that the oil tar-water partitioning model better describes the PAH partitioning behavior from this sample than the other models.

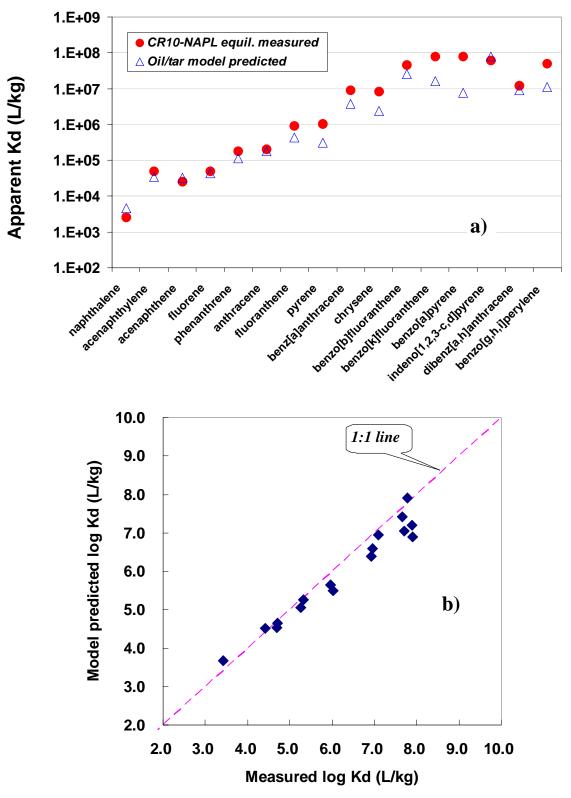
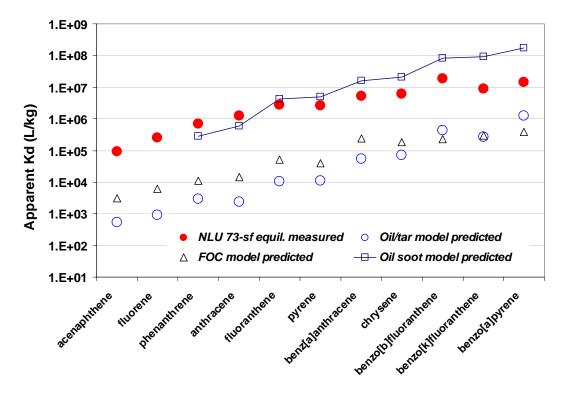




Figure 7 (a) Comparison between experimentally measured PAH sediment-water distribution coefficients with oil tar-water partition model predictions for sample CR10-NAPL. (b) Experimental results are in good agreement with the oil tar-water partitioning model.



**Figure 8** Comparisons between experimentally measured PAH sediment-water distribution coefficients with model predictions for sample NLU 73-Stanford, showing that the oil soot model best describes the PAH partitioning behavior from this sample.

# SUB-ATTACHMENT 2D-7.1

Summary of PAH Analyses in Bulk Sediment Samples and Separated Fractions

| Compounds              | INVERTING ADD. ADD. DAVE DAVE DAVE | Sediment concentration<br>in heavy density fraction<br>(mg/kg dry weight) | Calculated sediment<br>concentration<br>(mg/kg dry weight) | Measured bulk<br>sediment<br>concentration<br>(mg/kg dry weight) | Mass percentage of<br>PAH in light density<br>fraction<br>(% by weight) |
|------------------------|------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|
| Naphthalene            | < 0.1                              | < 0.1                                                                     | n.a.                                                       | 0.2                                                              | n.a.                                                                    |
| Acenaphthylene         | < 0.1                              | < 0.1                                                                     | n.a.                                                       | n.d.                                                             | n.a.                                                                    |
| Acenaphthene           | < 0.1                              | < 0.1                                                                     | n.a.                                                       | n.d.                                                             | n.a.                                                                    |
| Fluorene               | < 0.1                              | < 0.1                                                                     | n.a.                                                       | n.d.                                                             | n.a.                                                                    |
| Phenanthrene           | 2.2                                | 0.6                                                                       | 1.2                                                        | 1.2                                                              | 69                                                                      |
| Anthracene             | < 0.1                              | < 0.1                                                                     | n.a.                                                       | 0.3                                                              | n.a.                                                                    |
| Fluoranthene           | 6.9                                | 1.0                                                                       | 3.3                                                        | 3.5                                                              | 82                                                                      |
| Pyrene                 | 9.2                                | 1.5                                                                       | 4.4                                                        | 4.7                                                              | 80                                                                      |
| Benz[a]anthracene      | 3.1                                | 0.5                                                                       | 1.5                                                        | 1.6                                                              | 80                                                                      |
| Chrysene               | 3.2                                | 0.5                                                                       | 1.5                                                        | 1.7                                                              | 80                                                                      |
| Benzo[b] fluoranthene  | 3.5                                | 0.8                                                                       | 1.8                                                        | 2.5                                                              | 74                                                                      |
| Benzo[k]fluoranthene   | 4.6                                | 0.8                                                                       | 2.3                                                        | 3.3                                                              | 77                                                                      |
| Benzo[a]pyrene         | 5.3                                | 0.8                                                                       | 2.5                                                        | 3.2                                                              | 81                                                                      |
| Indeno[1,2,3-cd]pyrene | 4.0                                | 0.9                                                                       | 2.1                                                        | 2.5                                                              | 73                                                                      |
| Dibenz[a,h]anthracene  | < 0.1                              | < 0.1                                                                     | n.a.                                                       | 0.2                                                              | n.a.                                                                    |
| Benzo[g,h,i]perylene   | 4.8                                | 0.9                                                                       | 2.4                                                        | 2.7                                                              | 77                                                                      |
| Total (mg/kg)          | 46.8                               | 8.3                                                                       | 23.2                                                       | 27.7                                                             | 78                                                                      |

# NLU 44-SS-0010: Summary of PAH Analyses on Bulk Sediment Sample and Separated Fractions

Note:

n.a. = not applicable, n.d. = not detected or below detection limit, the method detection limit (MDL) for PAH analysis on sediment samples has been determined as 0.1~0.5 mg/kg dry weight for individual PAH compounds.

Reported concentration values are average values of duplicate tests with relative standard deviation (RSD) ranging from 1~17% for all PAH compounds of interest.

Concentration values reported in each fraction are all based on the dry weight of corresponding fractions, for example, concentrations in the light fraction have a unit of mg PAH compounds / kg dry weight of light fraction of this sediment sample.

| Compounds              | DAVE ELEMENT AND DAVE DAVE DAVE DAVE | Sediment concentration<br>in heavy density fraction<br>(mg/kg dry weight) | Calculated sediment<br>concentration<br>(mg/kg dry weight) | Measured bulk<br>sediment<br>concentration<br>(mg/kg dry weight) | Mass percentage of<br>PAH in light density<br>fraction<br>(% by weight) |
|------------------------|--------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|
| Naphthalene            | < 0.5                                | < 0.5                                                                     | n.a.                                                       | 0.7                                                              | n.a.                                                                    |
| Acenaphthylene         | < 0.5                                | < 0.5                                                                     | n.a.                                                       | 0.4                                                              | n.a.                                                                    |
| Acenaphthene           | < 0.5                                | < 0.5                                                                     | n.a.                                                       | 0.5                                                              | n.a.                                                                    |
| Fluorene               | < 0.5                                | < 0.5                                                                     | n.a.                                                       | 0.4                                                              | n.a.                                                                    |
| Phenanthrene           | 6.4                                  | 0.7                                                                       | 3.3                                                        | 3.9                                                              | 88                                                                      |
| Anthracene             | 2.0                                  | < 0.5                                                                     | 0.9                                                        | 0.8                                                              | 100                                                                     |
| Fluoranthene           | 18.8                                 | 1.4                                                                       | 9.3                                                        | 11.1                                                             | 92                                                                      |
| Pyrene                 | 23.6                                 | 1.9                                                                       | 11.8                                                       | 13.7                                                             | 91                                                                      |
| Benz[a]anthracene      | 7.4                                  | 0.6                                                                       | 3.7                                                        | 4.1                                                              | 91                                                                      |
| Chrysene               | 6.7                                  | 0.6                                                                       | 3.4                                                        | 3.9                                                              | 91                                                                      |
| Benzo[b]fluoranthene   | 7.9                                  | 1.1                                                                       | 4.2                                                        | 4.9                                                              | 86                                                                      |
| Benzo[k]fluoranthene   | 9.7                                  | 0.8                                                                       | 4.9                                                        | 5.8                                                              | 91                                                                      |
| Benzo[a]pyrene         | 14.5                                 | 0.9                                                                       | 7.1                                                        | 7.1                                                              | 93                                                                      |
| Indeno[1,2,3-cd]pyrene | 10.2                                 | 1.1                                                                       | 5.2                                                        | 5.4                                                              | 88                                                                      |
| Dibenz[a,h]anthracene  | < 0.5                                | < 0.5                                                                     | < 0.5                                                      | 0.6                                                              | n.a.                                                                    |
| Benzo[g,h,i]perylene   | 11.0                                 | 0.9                                                                       | 5.5                                                        | 5.7                                                              | 91                                                                      |
| Total (mg/kg)          | 118.1                                | 10.0                                                                      | 59.3                                                       | 69.2                                                             | 91                                                                      |

# NLU 47-SS-0010: Summary of PAH Analyses on Bulk Sediment Sample and Separated Fractions

Note:

Reported concentration values are average values of duplicate tests with relative standard deviation (RSD) ranging from 0.3~12% for all PAH compounds of interest.

| Compounds              | Table Contract Least of Contract States South | Sediment concentration<br>in heavy density fraction<br>(mg/kg dry weight) | Calculated sediment<br>concentration<br>(mg/kg dry weight) | Measured bulk<br>sediment<br>concentration<br>(mg/kg dry weight) | Mass percentage of<br>PAH in light density<br>fraction<br>(% by weight) |
|------------------------|-----------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|
| Naphthalene            | 40                                            | 0.6                                                                       | 18                                                         | 19                                                               | 98                                                                      |
| Acenaphthylene         | 32                                            | 0.9                                                                       | 15                                                         | 16                                                               | 97                                                                      |
| Acenaphthene           | 85                                            | 4                                                                         | 41                                                         | 69                                                               | 95                                                                      |
| Fluorene               | 65                                            | 4                                                                         | 31                                                         | 44                                                               | 94                                                                      |
| Phenanthrene           | 922                                           | 73                                                                        | 454                                                        | 501                                                              | 91                                                                      |
| Anthracene             | 262                                           | 16                                                                        | 127                                                        | 160                                                              | 93                                                                      |
| Fluoranthene           | 1678                                          | 124                                                                       | 822                                                        | 851                                                              | 92                                                                      |
| Pyrene                 | 2037                                          | 149                                                                       | 997                                                        | 1009                                                             | 92                                                                      |
| Benz[a]anthracene      | 505                                           | 29                                                                        | 243                                                        | 236                                                              | 93                                                                      |
| Chrysene               | 553                                           | 40                                                                        | 271                                                        | 271                                                              | 92                                                                      |
| Benzo[b]fluoranthene   | 476                                           | 17                                                                        | 223                                                        | 202                                                              | 96                                                                      |
| Benzo[k]fluoranthene   | 396                                           | 23                                                                        | 191                                                        | 198                                                              | 93                                                                      |
| Benzo[a]pyrene         | 653                                           | 27                                                                        | 308                                                        | 342                                                              | 95                                                                      |
| Indeno[1,2,3-cd]pyrene | 447                                           | 16                                                                        | 209                                                        | 205                                                              | 96                                                                      |
| Dibenz[a,h]anthracene  | 69                                            | 2                                                                         | 32                                                         | 26                                                               | 97                                                                      |
| Benzo[g,h,i]perylene   | 516                                           | 17                                                                        | 241                                                        | 235                                                              | 96                                                                      |
| Total (mg/kg)          | 8738                                          | 542                                                                       | 4222                                                       | 4386                                                             | 93                                                                      |

# NLU 51-SS-0010: Summary of PAH Analyses on Bulk Sediment Sample and Separated Fractions

Note:

Reported concentration values are average values of duplicate tests with relative standard deviation (RSD) ranging from 2~24% for all PAH compounds of interest.

| Compounds              | and matter test of the set and build | Sediment concentration<br>in heavy density fraction<br>(mg/kg dry weight) | Calculated sediment<br>concentration<br>(mg/kg dry weight) | Measured bulk<br>sediment<br>concentration<br>(mg/kg dry weight) | Mass percentage of<br>PAH in light density<br>fraction<br>(% by weight) |
|------------------------|--------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|
| Naphthalene            | 10                                   | 0.2                                                                       | 1                                                          | 2                                                                | 70                                                                      |
| Acenaphthylene         | 61                                   | 1.5                                                                       | 4                                                          | 5                                                                | 66                                                                      |
| Acenaphthene           | 114                                  | 4.5                                                                       | 10                                                         | 14                                                               | 55                                                                      |
| Fluorene               | 112                                  | 4.0                                                                       | 9                                                          | 13                                                               | 58                                                                      |
| Phenanthrene           | 662                                  | 18                                                                        | 48                                                         | 59                                                               | 64                                                                      |
| Anthracene             | 211                                  | 4.7                                                                       | 14                                                         | 17                                                               | 68                                                                      |
| Fluoranthene           | 381                                  | 7.5                                                                       | 25                                                         | 28                                                               | 71                                                                      |
| Pyrene                 | 441                                  | 8.4                                                                       | 28                                                         | 32                                                               | 72                                                                      |
| Benz[a]anthracene      | 166                                  | 3.0                                                                       | 11                                                         | 11                                                               | 73                                                                      |
| Chrysene               | 170                                  | 3.0                                                                       | 11                                                         | 11                                                               | 73                                                                      |
| Benzo[b]fluoranthene   | 86                                   | 1.4                                                                       | 5                                                          | 5                                                                | 75                                                                      |
| Benzo[k]fluoranthene   | 113                                  | 1.9                                                                       | 7                                                          | 6                                                                | 74                                                                      |
| Benzo[a]pyrene         | 178                                  | 2.9                                                                       | 11                                                         | 9                                                                | 75                                                                      |
| Indeno[1,2,3-cd]pyrene | 89                                   | 1.4                                                                       | 5                                                          | 4                                                                | 75                                                                      |
| Dibenz[a,h]anthracene  | 24                                   | 0.3                                                                       | 1                                                          | 1                                                                | 80                                                                      |
| Benzo[g,h,i]perylene   | 87                                   | 1.3                                                                       | 5                                                          | 4                                                                | 76                                                                      |
| Total (mg/kg)          | 2905                                 | 64                                                                        | 195                                                        | 220                                                              | 69                                                                      |

# NLU 402-GE15-16.5: Summary of PAH Analyses on Bulk Sediment Sample and Separated Fractions

Note:

Reported concentration values are average values of duplicate tests with relative standard deviation (RSD) ranging from 1~19% for all PAH compounds of interest.

| Compounds              |       | Sediment concentration<br>in heavy density fraction<br>(mg/kg dry weight) | Calculated sediment<br>concentration<br>(mg/kg dry weight) | Measured bulk<br>sediment<br>concentration<br>(mg/kg dry weight) | Mass percentage of<br>PAH in light density<br>fraction<br>(% by weight) |
|------------------------|-------|---------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|
| Naphthalene            | < 0.1 | < 0.1                                                                     | n.a.                                                       | n.d.                                                             | n.a.                                                                    |
| Acenaphthylene         | < 0.1 | < 0.1                                                                     | n.a.                                                       | n.d.                                                             | n.a.                                                                    |
| Acenaphthene           | < 0.1 | < 0.1                                                                     | n.a.                                                       | n.d.                                                             | n.a.                                                                    |
| Fluorene               | < 0.1 | < 0.1                                                                     | n.a.                                                       | 0.2                                                              | n.a.                                                                    |
| Phenanthrene           | 2.2   | < 0.1                                                                     | 1.0                                                        | 1.1                                                              | 100                                                                     |
| Anthracene             | < 0.1 | < 0.1                                                                     | n.a.                                                       | 0.3                                                              | n.a.                                                                    |
| Fluoranthene           | 4.5   | 0.8                                                                       | 2.5                                                        | 2.4                                                              | 83                                                                      |
| Pyrene                 | 5.3   | 0.9                                                                       | 2.9                                                        | 2.8                                                              | 83                                                                      |
| Benz[a]anthracene      | 1.8   | < 0.1                                                                     | 0.8                                                        | 1.0                                                              | 100                                                                     |
| Chrysene               | 2.1   | < 0.1                                                                     | 0.9                                                        | 1.1                                                              | 100                                                                     |
| Benzo[b]fluoranthene   | 2.1   | < 0.1                                                                     | 1.0                                                        | 1.5                                                              | 100                                                                     |
| Benzo[k]fluoranthene   | 2.6   | < 0.1                                                                     | 1.2                                                        | 2.8                                                              | 100                                                                     |
| Benzo[a]pyrene         | 3.1   | < 0.1                                                                     | 1.4                                                        | 1.2                                                              | 100                                                                     |
| Indeno[1,2,3-cd]pyrene | 2.4   | < 0.1                                                                     | 1.1                                                        | 1.6                                                              | 100                                                                     |
| Dibenz[a,h]anthracene  | < 0.1 | < 0.1                                                                     | n.a.                                                       | n.d.                                                             | n.a.                                                                    |
| Benzo[g,h,i]perylene   | 2.0   | < 0.1                                                                     | 0.9                                                        | 1.5                                                              | 100                                                                     |
| Total (mg/kg)          | 28    | 2                                                                         | 14                                                         | 17                                                               | 93                                                                      |

# NLU 54-SS-0010: Summary of PAH Analyses on Bulk Sediment Sample and Separated Fractions

Note:

Reported concentration values are average values of duplicate tests with relative standard deviation (RSD) ranging from 7~13% for all PAH compounds of interest.