

MW-33S (b) 0 to 5 feet

MW-33S (b) 5 to 10 feet

SI Soil Boring Core Field Photographs MW-33S (b)

Gas Works Park Site Seattle, Washington

MW-33S (b) 5 to 10 feet

MW-33S (b) 5 to 10 feet

SI Soil Boring Core Field Photographs MW-33S (b)

Gas Works Park Site Seattle, Washington

GEOENGINEERS

MW-33S (b) 10 to 15 feet

MW-33S (b) 10 to 15 feet

SI Soil Boring Core Field Photographs MW-33S (b)

Gas Works Park Site Seattle, Washington

GEOENGINEERS /

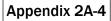
MW-33S (b) 10 to 15 feet

MW-33S (b) 15 to 20 feet

SI Soil Boring Core Field Photographs MW-33S (b)

Gas Works Park Site Seattle, Washington

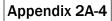
GEOENGINEERS /


MW-33S (b) 15 to 20 feet

MW-33S (b) 15 to 20 feet

SI Soil Boring Core Field Photographs MW-33S (b)

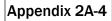
Gas Works Park Site Seattle, Washington


MW-33S (b) 20 to 25 feet

MW-33S (b) 20 to 25 feet

SI Soil Boring Core Field Photographs MW-33S (b)

Gas Works Park Site Seattle, Washington


MW-33S (b) 20 to 25 feet

MW-33S (b) 25 to 30 feet

SI Soil Boring Core Field Photographs MW-33S (b)

Gas Works Park Site Seattle, Washington

MW-33S (b) 25 to 30 feet

MW-33S (b) 25 to 30 feet

SI Soil Boring Core Field Photographs MW-33S (b)

Gas Works Park Site Seattle, Washington

GEOENGINEERS

MW-34S 0 to 5 feet

MW-34S 0 to 5 feet

SI Soil Boring Core Field Photographs MW-34S

Gas Works Park Site Seattle, Washington

MW-34S 0 to 5 feet

MW-34S 5 to 10 feet

SI Soil Boring Core Field Photographs MW-34S

Gas Works Park Site Seattle, Washington

MW-34S 5 to 10 feet

MW-34S 5 to 10 feet

SI Soil Boring Core Field Photographs MW-34S

Gas Works Park Site Seattle, Washington

GEOENGINEERS /

MW-35S 0 to 5 feet

MW-35S 0 to 5 feet

SI Soil Boring Core Field Photographs MW-35S

Gas Works Park Site Seattle, Washington

GEOENGINEERS

MW-35S 0 to 5 feet

MW-35S 0 to 5 feet

SI Soil Boring Core Field Photographs MW-35S

Gas Works Park Site Seattle, Washington

GEOENGINEERS /

MW-35S 5 to 10 feet

MW-35S 5 to 10 feet

SI Soil Boring Core Field Photographs MW-35S

Gas Works Park Site Seattle, Washington

Appendix 2A-4

MW-35S 5 to 10 feet

MW-35S 5 to 10 feet

SI Soil Boring Core Field Photographs MW-35S

Gas Works Park Site Seattle, Washington

MW-35S 10 to 15 feet

MW-35S 10 to 15 feet

SI Soil Boring Core Field Photographs MW-35S

Gas Works Park Site Seattle, Washington

MW-36D 0 to 5 feet

MW-36D 0 to 5 feet

SI Soil Boring Core Field Photographs MW-36D

Gas Works Park Site Seattle, Washington

GEOENGINEERS

MW-36D 0 to 5 feet

MW-36D 5 to 10 feet

SI Soil Boring Core Field Photographs MW-36D

Gas Works Park Site Seattle, Washington

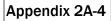
GEOENGINEERS

MW-36D 5 to 10 feet

MW-36D 5 to 10 feet

SI Soil Boring Core Field Photographs MW-36D

Gas Works Park Site Seattle, Washington


MW-36D 10 to 15 feet

MW-36D 10 to 15 feet

SI Soil Boring Core Field Photographs MW-36D

Gas Works Park Site Seattle, Washington

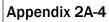
MW-36D 10 to 15 feet

MW-36D 15 to 20 feet

SI Soil Boring Core Field Photographs MW-36D

Gas Works Park Site Seattle, Washington

GEOENGINEERS


MW-36D 15 to 20 feet

MW-36D 20 to 25 feet

SI Soil Boring Core Field Photographs MW-36D

Gas Works Park Site Seattle, Washington

MW-36D 20 to 25 feet

MW-36D 20 to 25 feet

SI Soil Boring Core Field Photographs MW-36D

Gas Works Park Site Seattle, Washington

GEOENGINEERS /

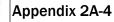
MW-36D 25 to 28 feet

MW-36D 25 to 28 feet

SI Soil Boring Core Field Photographs MW-36D


Gas Works Park Site Seattle, Washington

GEOENGINEERS


MW-36D 25 to 28 feet

MW-36D 25 to 28 feet

SI Soil Boring Core Field Photographs MW-36D

Gas Works Park Site Seattle, Washington

MW-36D 30 to 35 feet

MW-36D 30 to 35 feet

SI Soil Boring Core Field Photographs MW-36D

Gas Works Park Site Seattle, Washington

GEOENGINEERS /

MW-36D 30 to 35 feet

MW-36D 80 to 85 feet

SI Soil Boring Core Field Photographs MW-36D

Gas Works Park Site Seattle, Washington

MW-36D 80 to 85 feet

SI Soil Boring Core Field Photographs MW-36D

Gas Works Park Site Seattle, Washington

MW-36S 0 to 5 feet

MW-36S 0 to 5 feet

SI Soil Boring Core Field Photographs MW-36S

Gas Works Park Site Seattle, Washington

MW-36S 0 to 5 feet

MW-36S 5 to 10 feet

SI Soil Boring Core Field Photographs MW-36S

Gas Works Park Site Seattle, Washington

GEOENGINEERS /

MW-36S 5 to 10 feet

MW-36S 5 to 10 feet

SI Soil Boring Core Field Photographs MW-36S

Gas Works Park Site Seattle, Washington

GEOENGINEERS /

MW-36S 10 to 15 feet

MW-36S 10 to 15 feet

SI Soil Boring Core Field Photographs MW-36S

Gas Works Park Site Seattle, Washington

GEOENGINEERS

MW-36S 10 to 15 feet

MW-36S 15 to 20 feet

SI Soil Boring Core Field Photographs MW-36S

Gas Works Park Site Seattle, Washington

GEOENGINEERS

MW-36S 20 to 24 feet

MW-36S 20 to 24 feet

SI Soil Boring Core Field Photographs MW-36S

Gas Works Park Site Seattle, Washington

GEOENGINEERS /

MW-36S 20 to 24 feet

SI Soil Boring Core Field Photographs MW-36S

Gas Works Park Site Seattle, Washington

MW-37S 0 to 5 feet

MW-37S 5 to 10 feet

SI Soil Boring Core Field Photographs MW-37S

Gas Works Park Site Seattle, Washington

GEOENGINEERS

MW-37S 5 to 10 feet

MW-37S 5 to 10 feet

SI Soil Boring Core Field Photographs MW-37S

Gas Works Park Site Seattle, Washington

MW-37S 9 feet

MW-37S 10 to 15 feet

SI Soil Boring Core Field Photographs MW-37S

Gas Works Park Site Seattle, Washington

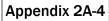
MW-37S 15 to 20 feet

MW-37S 15 to 20 feet

SI Soil Boring Core Field Photographs MW-37S

Gas Works Park Site Seattle, Washington

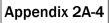
GEOENGINEERS /


MW-37S 15 to 20 feet

MW-37S

SI Soil Boring Core Field Photographs MW-37S

Gas Works Park Site Seattle, Washington


MW-38S 0 to 5 feet

MW-38S 5 to 10 feet

SI Soil Boring Core Field Photographs MW-38S

Gas Works Park Site Seattle, Washington

MW-38S 10 to 15 feet

MW-38S 15 to 18 feet

SI Soil Boring Core Field Photographs MW-38S

Gas Works Park Site Seattle, Washington

GEOENGINEERS

MW-38S 15 to 18 feet

SI Soil Boring Core Field Photographs MW-38S

Gas Works Park Site Seattle, Washington

MW-39 D 0 to 5 feet

MW-39 D 5 to 10 feet

SI Soil Boring Core Field Photographs MW-39D

Gas Works Park Site Seattle, Washington

GEOENGINEERS /

MW-39 D 10 to 14 feet

MW-39 D 14 to 15 feet

SI Soil Boring Core Field Photographs MW-39D

Gas Works Park Site Seattle, Washington

Appendix 2A-4

MW-39 D 14 to 15 feet

MW-39 D 15 to 20 feet

SI Soil Boring Core Field Photographs MW-39D

Gas Works Park Site Seattle, Washington

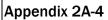
GEOENGINEERS /

MW-39 D 15 to 20 feet

MW-39 D 15 to 20 feet

SI Soil Boring Core Field Photographs MW-39D

Gas Works Park Site Seattle, Washington


MW-39S 0 to 5 feet

MW-39S 5 to 10 feet

SI Soil Boring Core Field Photographs MW-39S

Gas Works Park Site Seattle, Washington

MW-39S 5 to 10 feet

MW-39S 10 to 14 feet

SI Soil Boring Core Field Photographs MW-39S

Gas Works Park Site Seattle, Washington

MW-40S 0 to 5 feet

MW-40S 0 to 5 feet

SI Soil Boring Core Field Photographs MW-40S

Gas Works Park Site Seattle, Washington

GEOENGINEERS /

MW-40S 5 to 10 feet

MW-40S 5 to 10 feet

SI Soil Boring Core Field Photographs MW-40S

Gas Works Park Site Seattle, Washington

Appendix 2A-4

MW-40S 5 to 10 feet

MW-40S 5 to 10 feet

SI Soil Boring Core Field Photographs MW-40S

Gas Works Park Site Seattle, Washington

GEOENGINEERS /

0186-846-01 Date Exported: 01/18/19

MW-40S 10 to 15 feet

MW-40S 10 to 15 feet

SI Soil Boring Core Field Photographs MW-40S

Gas Works Park Site Seattle, Washington

GEOENGINEERS /

MW-40S 15 to 20 feet

MW-40S 15 to 20 feet

SI Soil Boring Core Field Photographs MW-40S

Gas Works Park Site Seattle, Washington

GEOENGINEERS /

MW-40S 15 to 20 feet

MW-40S 15 to 20 feet

SI Soil Boring Core Field Photographs MW-40S

Gas Works Park Site Seattle, Washington

GEOENGINEERS /

0186-846-01 Date Exported: 01/18/19

MW-40S 15 to 20 feet

SI Soil Boring Core Field Photographs MW-40S

Gas Works Park Site Seattle, Washington

ATTACHMENT 2A-5 SI Geotechnical Lab Results

Client: Geoengineers

Project: 0186-846-01, Task 1400 Gas Works Park

	Page From:	Page To:
Inventory Sheet		
Cover Letter	/	(
Chain of Custody Documentation	_2_	5
Case Narrative, Data Qualifiers, Control Limits		
Geotechnical Analysis		
Report and Summary QC Forms		_17
Geotechnical Raw Data		•
Analyst Notes and Raw Data	20	52

May 2, 2013

Zanna Satterwhite GeoEngineers, Inc. Plaza 600 Building 600 Stewart Street, Suite 1700 Seattle, WA 98101

RE: Client Project: Gas Works Park, 0186-846-01 ARI Job No.: WN09

Dear Zanna:

Please find enclosed the Chain of Custody records (COCs), sample receipt documentation, and the final data package for samples from the project referenced above.

Sample receipt and details of these analyses are discussed in the Case Narrative.

An electronic copy of this package will remain on file with ARI. Should you have any questions or problems, please feel free to contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Cheronne Oreiro

Project Manager (206) 695-6214 <u>cheronneo@arilabs.com</u> www.arilabs.com

cc: eFile: WN09

Enclosures

Page 1 of _____

Chain of Custody Documentation

ARI Job ID: WN09

.

WN09: 00002

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: ARI Client Commany:	Turn-around Requested: Standard	Requested: S	tandaro		Date:	CITE/H			Analytical Resources, Incorporated Analytical Chemists and Consultants
GeoEngineers	-	1011E 206	206-239-3258	258	rage.	l ot	2		4611 South 134th Place, Suite 100 Tukwila, WA 98168
Client Contact: Tim Bailey					No. of Coolers:	Cooler Temps:			206-695-6200 206-695-6201 (fax)
Client Project Name: Gas Works Park	Park						Analysis Requested		Notes/Comments
Client Project #: 0186-846-01, Task 1400	ers:	Bag Samples	les		SISA	Cu Jali			
Sample ID	Date	Time	Matrix	No Containers	7810 74181¥ ≣1/315	2 H 5540 5540	î de		
MW 320 8,5-10,5	4/10/13	,	Sol	BAG		X			
10,5-12,5	-				X				
10.5.13					\succ				
19.5-208					×				
20.5-233					×,				
22.524						×			
26,520						×			
26.5-30.5					\times				
1 35.5.37					×				
42-43						×			(
Comments/Special Instructions	Relinquished by (Signature)			Received by (Signature)	Zar	2000	\sum	23 E 90e	Received by (Signature)
		BALLEY	LEY	Our Brown	- 0 R	よう	Printed Name CLAS Brows	5576	A Nolaarden
	Company LEOF	AFOFNINEEP	Ee'	Company	Georengineers	5	Company Geo Enc	neers	Company ()
	144S	1/11/2	1,3	Uate & Time	145 4 117 13	-0	211 STILLE TIME TIME TO THE TOTAL	2 3	HICOLA 1702

Stimits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program for the end of the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for valid services. The acceptance by the client of a proposal for services thereof, not withstanding any provision to the contrary in any contract, purchase order or ender or the acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or ender or the acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or ender or the acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or the contrary in any contract. co-signed agreement between ARI and the Client. Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around Requested: Standard	aquested: S	tandard		Date:	51/11/12			Analytical Resources, Incorporated Analytical Chemists and Consultants
ARI Client Company: GeoEngineers	۵.	hone: 206	Phone: 206-239-3258	258	Page:	d d	Ч		4611 South 134th Place, Suite 100 Tukwila, WA 98168
Client Contact Tim Bailey					No. of Coolers:	Cooler Temps:)	206-695-6200 206-695-6201 (fax)
Client Project Name: Gas Works Park	s Park						Analysis Requested		Notes/Comments
Client Project #: Client Project #: 0186-846-01, Task 1400	Samplers:	Bag Samples	oles			(17) (17)			
Sample ID	Date	Time	Matrix	No Containers	PFRUE 1 PFRUE	~ 1554			
GEO-3 15-11'	4/12/12		7105	I BAK	X				
GFU-3 20-2181	4/12/13		Soil	I BAG	×				
GEO-2 9-10.51	Ulu/B		i)	ij	X				
1.10.2 14-161	4/n/13		1:	<i></i>	X				
1.E0-2 19-20,5	$u/_{11}/_{13}$		11	11		×			
GE0-2 24-26	4/11/13		11	<i>6</i>	×				
250.7 34.361	4/1.113		11	77	X				
2,00-2 39-40.5'	4/11/13		1,	11	X				
1202 yu. W.S.	4/11/13		11	17	\times				
*	1					_			
Comments/Special Instructions	Relinqushed by (Signature)	Y		Received by (Signature)	1 of	<i>d</i>	Relinquished by (Signature)	bleer	Received by (Signature)
		BAILEY	EN	Programme LVV 1	è B ç	Property B roseso		ic Roar	
	COMPANY LLED ENLINEERS	GUNEE	57	COMPANY	•		contractive ACO	-	Company APA
	Date & Time イイト く	h/17	11/13	Date & Time 1445	4/17	[1]	h SOLU	4/18/13	Date & Time 4/10/13 170S

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program and the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for and services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client. Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

Analytical Resources, Incorporated Analytical Chemists and Consultants	Cooler Receipt Form
ARI Client <u>GeoEnginters</u> COC No(s) NA	Project Name <u>GAS</u> WORKS PA-K Delivered by Fed-Ex UPS Courier Hand Delivered Other
Assigned ARI Job No	Tracking No [®]
Preliminary Examination Phase:	
Were intact, properly signed and dated custody seals attached to the	e outside of to cooler? YES
Were custody papers included with the cooler?	
Were custody papers properly filled out (ink, signed, etc.).	NO NO
Temperature of Cooler(s) (°C) (recommended 2 0-6 0 °C for chemist	ry) <u>12.3</u>
If cooler temperature is out of compliance fill out form 00070F	Temp Gun ID# 90877957
Cooler Accepted by	Date: 4/18/13 Time. 1705
Complete custody forms and	attach all shipping documents
Log-In Phase:	
Was a temperature blank included in the cooler?	YES NO

·····			0	NG D
What kind of packing material was used?	Bubble Wrap Wet Ice Gel Packs Baggies Foam	Block Paper (Other	
Was sufficient ice used (if appropriate)?		TS MA,	YES	×
Were all bottles sealed in individual plastic bags? .		\sim	YES	NO
Did all bottles arrive in good condition (unbroken)?			¥ 5 8	NO
Were all bottle labels complete and legible?	· · · · · · · · · · · · · · · · · · ·		¥€s	NO
Did the number of containers listed on COC match v	with the number of containers received?		KES	NO
Did all bottle labels and tags agree with custody pap	pers?		YES	NO
Were all bottles used correct for the requested analy	yses?		YES	NO
Do any of the analyses (bottles) require preservation	n? (attach preservation sheet, excluding VOCs)	(A)	YES	NO
Were all VOC vials free of air bubbles?		NA	YES	NO
Was sufficient amount of sample sent in each bottle	?		YES	NO
Date VOC Trip Blank was made at ARI	· · · · · · · · · · · · · · · · · · ·	Ø		
Was Sample Split by ARI : MAY YES Dat	te/Time Equipment	<u></u>	Split by:	
Samples Logged by:	Date: <u>4-23-3</u> Time	930		

** Notify Project Manager of discrepancies or concerns **

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
Additional Notes, Discrepancies	s, & Resolutions:		
_			
By Date	and the second se	· · · · · · · · · · · · · · · · · · ·	
Small Air Bubbles Peabubble -2mm 2-4 mm	1	Small → "sm"	
	> 4 mm	Peabubbles → "pb"	
		Large → "lg"	
	L	Headspace \rightarrow "hs"	

Case Narrative, Data Qualifiers, Control Limits

ARI Job ID: WN09

١

.

Client: GeoEngineers

ARI Job No.: WN09

Client Project: Gas Works Park Client Project No.: 0186-846-01, Task 1400

Case Narrative

- 1. Nineteen samples were submitted for analysis on April 18, 2013.
- 2. Fourteen samples were submitted for grain size distribution according to ASTM D422. The samples were prepared according to ASTM D421.
- 3. An assumed specific gravity of 2.65 was used in the hydrometer calculations.
- 4. A standard milkshake mixer type device was used to disperse the fine fraction sample for one minute.
- 5. One sample from this job, MW32D 35.5-37', was chosen for triplicate analysis. The triplicate data can be found on the QA summary table.
- 6. Due to the sandy nature of the samples, there was not enough fine material to acquire accurate hydrometer readings. Samples MW32D 18.5-20.5', MW32D 20.5-22.5' and GEO-2 14-16' required curve fitting between the sand and silt fractions.
- 7. Five samples were submitted for percent finer than the No. 200 sieve. The samples were run according to ASTM D1140.
- 8. The data is provided in summary tables and plots.
- There were no further anomalies in the samples or test method.

Released by: Determinician Date: May 1, 2013 Reviewed by: Katherine JBrichanan Date: May 1, 2013 Technician

Sample ID Cross Reference Report

ARI Job No: WN09 Client: Geoengineers Project Event: 0186-846-01,Task 1400 Project Name: Gas Works Park

		ARI	ARI			
	Sample ID	Lab ID	LIMS ID	Matrix	Sample Date/Time	VTSR
1.	MW32D 8.5-10.5'	WN09A	13-8517	Soil	04/10/13	04/18/13 17:05
2.	MW32D 22.5-24'	WN09B	13-8518	Soil	04/10/13	04/18/13 17:05
з.	MW32D 26.5-28'	WN09C	13-8519	Soil	04/10/13	04/18/13 17:05
4.	MW32D 42-43'	WN09D	13-8520	Soil	04/10/13	04/18/13 17:05
5.	GEO-2 19-20.5'	WN09E	13-8521	Soil	04/11/13	04/18/13 17:05
6.	MW32D 10.5-12.5'	WN09F	13-8522	Soil	04/10/13	04/18/13 17:05
7.	MW32D 16.5-18'	WN09G	13-8523	Soil	04/10/13	04/18/13 17:05
8.	MW32D 18.5-20.5'	WN09H	13-8524	Soil	04/10/13	04/18/13 17:05
9.	MW32D 20.5-22.5'	WN09I	13 - 8525	Soil	04/10/13	04/18/13 17:05
10.	MW32D 28.5-30.5'	WN09J	13-8526	Soil	04/10/13	04/18/13 17:05
11.	MW32D 35.5-37'	WN09K	13-8527	Soil	04/10/13	04/18/13 17:05
12.	GEO-3 15-17'	WN09L	13-8528	Soil	04/12/13	04/18/13 17:05
13.	GEO-3 20-21.5'	WN09M	13-8529	Soil	04/12/13	04/18/13 17:05
14.	GEO-2 9-10.5'	WN09N	13-8530	Soil	04/11/13	04/18/13 17:05
15.	GEO-2 14-16'	WN090	13-8531	Soil	04/11/13	04/18/13 17:05
16.	GEO-2 24-26'	WN09P	13-8532	Soil	04/11/13	04/18/13 17:05
17.	GEO-2 34-36'	WN09Q	13-8533	Soil	04/11/13	04/18/13 17:05
18.	GEO-2 39-40.5'	WN09R	13-8534	Soil	04/11/13	04/18/13 17:05
19.	GEO-2 44-44.5'	WN09S	13-8535	Soil	04/11/13	04/18/13 17:05

Geotechnical Analysis Report and Summary QC Forms

ARI Job ID: WN09

,

•

GEOTECHNICAL ANALYSIS DATA SHEET Percent Fines by Method ASTM D1140

Data Release Authorized: Reported: 05/01/13 Date Received: 04/18/13 Page 1 of 1 QC Report No: WN09-Geoengineers Project: Gas Works Park 0186-846-01,Task 1400

Client/ ARI ID	Date Sampled	Matrix	Analysis Date	Result
MW32D 8.5-10.5' WN09A 13-8517	04/10/13	Soil	04/24/13 14:45	3.7
MW32D 22.5-24' WN09B 13-8518	04/10/13	Soil	04/24/13 14:45	8.3
MW32D 26.5-28' WN09C 13-8519	04/10/13	Soil	04/24/13 14:45	20.5
MW32D 42-43' WN09D 13-8520	04/10/13	Soil	04/24/13 14:45	6.7
GEO-2 19-20.5' WN09E 13-8521	04/11/13	Soil	04/24/13 14:45	10.8

Reported in Percent

GeoEngineers Gas Works Park 0186-846-01,Task 1400

ASTM D1140 Percentage of Material Finer than #200 Sieve

Sample Identification	Initial Dry Mass of Sample (g)	Percent Fines (<#200 Sieve)
MW32D 8.5-10.5'	279.44	3.7
MW32D 22.5-24'	195.73	8.3
MW32D 26.5-28'	566.47	20.5
MW32D 42-43'	21.33	6.7
GEO-2 19-20.5'	278.47	10.8

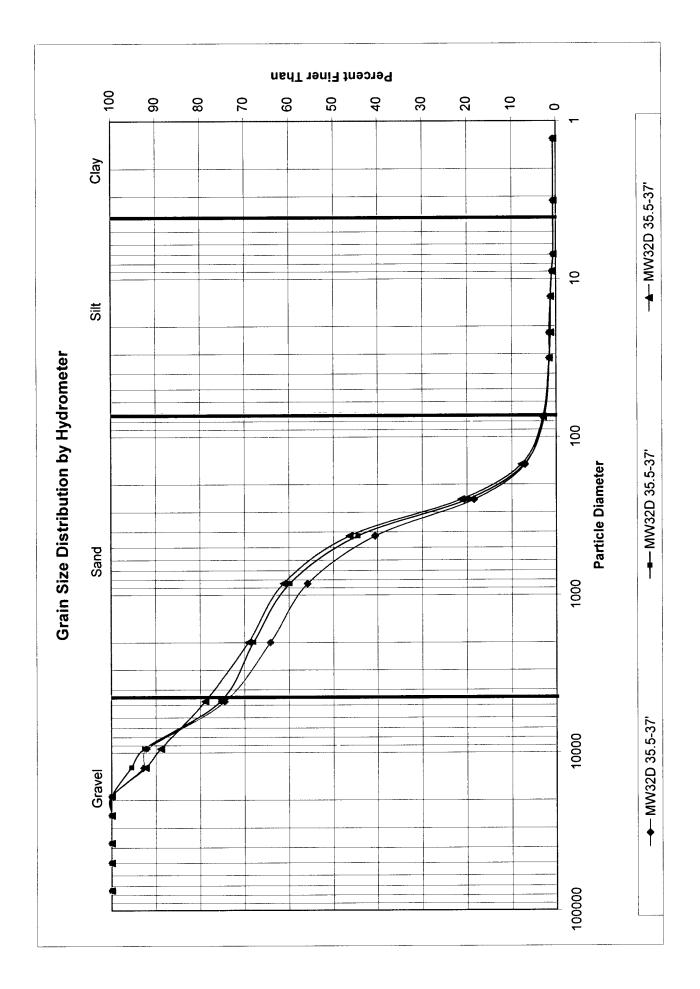
WN09

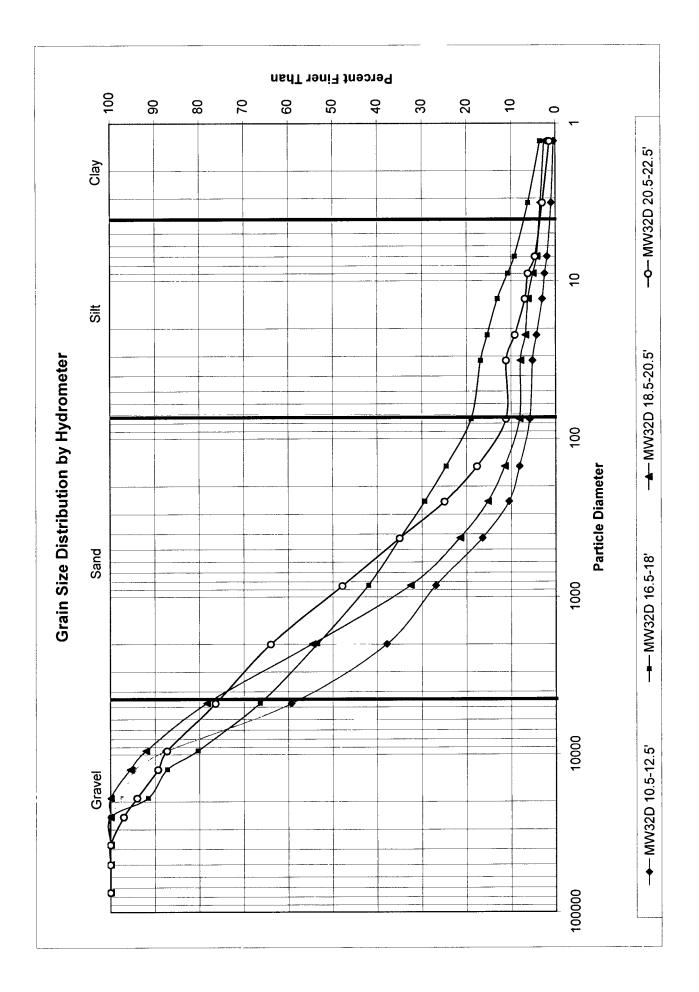
Percent Finer (Passing) Than the Indicated Size

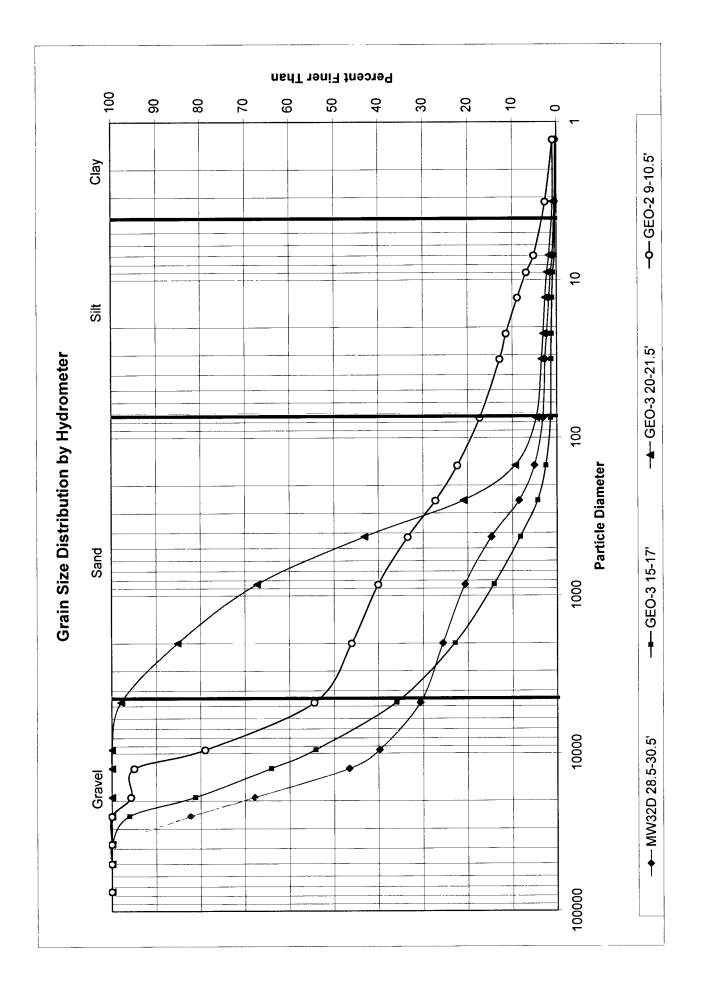
.3	<u>ر</u>	ç	٥	4	4	5	33	<u>_</u>		。	6	5	Ţ	。	_	_
1	0.6	õ	õ	0	34	3	-	0.3	0.2	0.9	0.9	0.5	11	0.0	00	0.0
3.2	90	0.6	0.6 0	0.9	61	34	29	0.4	03	0.9	2.6	1.1	3.2	0.0	0.0	0.0
7	0.6	0.6	0.6	1.8	92	42	46	60	0.5	1.7	5.1	2.7	5.4	0.0	03	00
6	0.9	0.9	60	2.4	10.7	51	62	13	0.8	2.2	6.8	36	7.6	04	0.3	00
13	12	1.2	1.3	2.9	13.0	62	6.8	17	10	26	88	4.7	9.2	0.4	0.7	0.3
22	15	15	13	42	153	67	91	22	1.2	3.0	114	6.0	119	06	07	03
32	15	15	16	51	16 9	79	111	26	13	3.4	12.8	66	151	08	10	05
#200 (75)	29	27	30	57	189	81	111	3.1	1.4	47	17.3	70	23.2	2.0	18	1.9
#100 (150)	7.0	7.2	78	80	24.6	114	17 7	50	2.5	9.4	22 3	12.1	44 4	61	40	6.5
#60 (250)	18.4	19.8	21.3	10.4	29.3	152	25 0	8.5	4.4	210	27 2	17.7	9 09	136	10.4	184
#40 (425)	40.5	44.4	46 3	16.4	348	215	35.0	14 7	82	43.1	33.4	26.0	71.3	22.3	23.0	389
#20 (850)	55.8	59.8	612	26.8	419	32.5	478	206	141	67.2	40.0	37.9	6'11	30.7	30.6	49.1
#10 (2000)	64 1	6'.9	69 1	37.8	53.4	545	63.9	25 5	22 9	85 1	46.0	55.6	83.4	37.1	341	537
#4 (4750)	74 4	754	78.9	593	66.3	78.3	763	306	35.9	6 7 9	54 4	71.9	90.4	413	38.4	60 4
3/8"	92.0	92.6	888	87.5	80.3	92.0	873	39.7	542	100 0	0.67	863	95 3	44 9	42.9	68 1
1/2"	92.8	95.5	92.3	945	873	92.6	893	46 6	64 1	100.0	95 0	90.8	36 5	48.8	44 6	739
3/4"	100.0	100 0	100 0	97 3	91.5	100.0	940	679	81.2	100 0	95.7	95.2	100.0	55.3	46.0	83.6
÷	100 0	100.0	100 0	100.0	100.0	100 0	97.0	82.2	96.1	100.0	100 0	95.2	100 0	586	53 2	90.7
1 1/2"	100.0	100 0	100.0	100 0	100 0	100 0	100 0	100 0	100 0	100.0	100.0	100 0	100 0	96/	59 2	100.0
2ª	100.0	100 0	100 0	100 0	100.0	100 0	100.0	100 0	100.0	100.0	100 0	100 0	100 0	100 0	100.0	100.0
	100 0	100.0	100 0	100 0	100 0	100.0	100.0	100 0	100 0	100.0	100.0	100 0	100 0	100 0	100.0	100.0
Sieve Size (microns)		MW32D 35 5-37'		MW32D 10 5-12.5'	MW32D 16 5-18'	MW32D 18.5-20 5'	MW32D 20 5-22 5'	MW32D 28 5-30 5'	GEO-3 15-17	GEO-3 20-21 5'	GEO-2 9-10 5'	GEO-2 14-16'	GEO-2 24-26'	GEO-2 34-36'	GEO-2 39-40.5'	GEO-2 44-44 5'

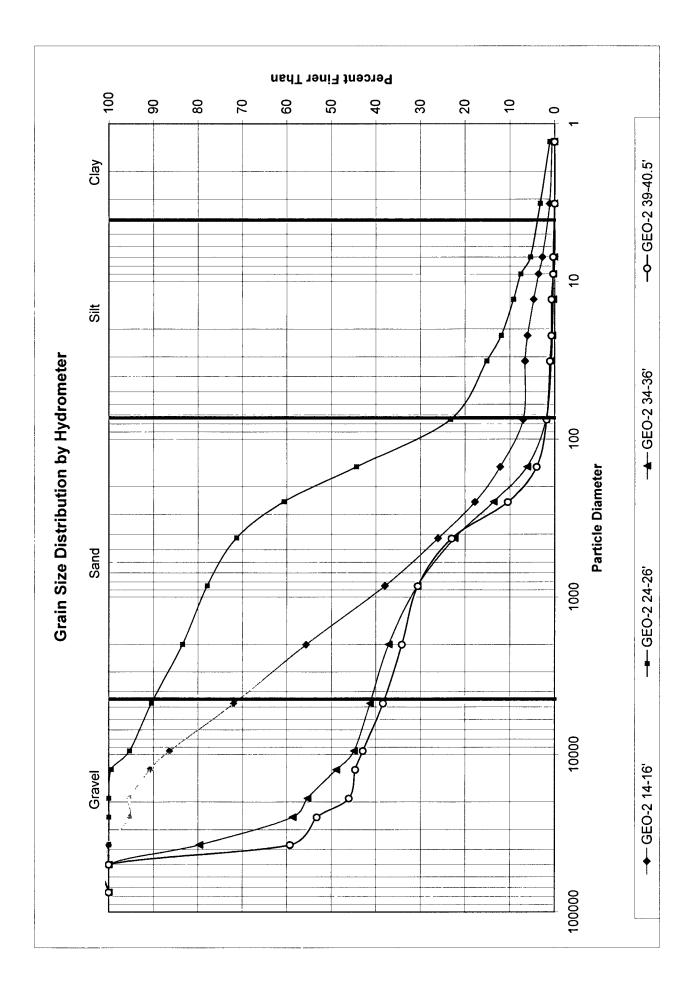
Testing performed according to ASTM D421/D422

Fraction
Size
Each
Retained in
Percent F


Description		% Coars	% Coarse Gravel			% Gravel		% Coarse Sand	% Medium Sand	m Sand	%	% Fine Sand		% Very Coarse Silt	% Coarse Silt	% Medium Silt	% Fine Silt	% Fine Silt	% Very Fine Silt	% Clay	ay
Particle Size (microns)	3-2"	2-1 1/2"	1 1/2"-1"	1-3/4"	3/4-1/2"	1/2-3/8"	3/8"-4750	4750- 2000	2000-850	850-425	425-250	250-150	150-75	75-32	32-22	22-13	13-9	9-7	7-32	32-13	<13
	00	00	00	0.0	72	08	176	10.3	8.3	15.3	22 1	114	41	1.5	0.0	03	0.3	03	00	0.0	90
MW32D 35 5-37	00	00	00	00	45	29	17.2	7.5	81	15.4	246	12.6	45	11	0.0	03	0.3	03	00	00	90
-	00	00	00	00	7.7	3.5	10.0	98	79	14 9	25 0	13.4	4.9	14	0.3	00	0.3	0.3	00	00	0.6
MW32D 10.5-12 5'	00	00	00	2.7	28	7.0	283	21.4	11.0	10.4	6.0	24	23	06	0.9	13	06	06	60	90	04
MW32D 16.5-18'	00	00	00	85	43	6.9	14 0	13.0	114	7.2	55	48	56	21	1.5	23	2.3	15	3.1	27	34
MW32D 18.5-20 5'	0.0	0.0	0.0	00	44	36	13.7	23.7	22 1	11.0	63	3.8	33	02	11	06	11	0.8	0.8	0.8	25
MW32D 20 5-22 5'	00	00	3.0	30	47	20	10.9	12.4	16.1	12.8	10 0	7.3	6.5	01	20	2.3	0.7	1.6	1.6	1.6	13
MW32D 28 5-30 5'	00	00	17.8	14.4	213	6.9	56	50	50	5.9	6.2	35	1.9	05	04	0.5	04	4.0	05	0.1	0.3
GEO-3 15-17'	0.0	0.0	3.9	14.9	17.1	10.0	18.2	13 1	87	5.9	39	19	11	01	0.1	01	02	03	01	0.1	0.2
GEO-3 20-21 5'	0.0	0.0	00	00	0.0	0.0	21	12.8	17 9	24 1	22.1	116	4.7	12	0.4	04	04	04	0.9	0.0	60
GEO-2 9-10 5'	0.0	00	0.0	43	0.7	16.0	24.5	84	60	6.6	61	49	50	45	1.4	2.6	2.0	17	2.6	17	60
GEO-2 14-16'	00	00	4.8	00	45	4.4	14 5	163	177	119	83	5.6	51	04	05	14	11	08	1.6	05	0.5
GE0-2 24-26'	00	00	0.0	0.0	05	4.1	4.9	7.0	5.6	6.6	106	16.3	211	81	32	2.7	16	2.2	2.2	22	1.1
GEO-2 34-36'	0.0	204	210	3.3	65	3.9	3.7	42	6.4	8.4	8.7	74	42	12	02	0.2	00	04	00	0.0	00
GEO-2 39-40.5'	0.0	40.8	61	7.2	1.4	17	4.6	4.2	36	76	12.5	6.4	2.2	08	03	0.0	03	00	03	00	0.0
GEO-2 44-44 5'	00	00	93	71	96	58	7.7	67	4.6	10 2	20.5	12 0	4.5	4	03	0.0	03	00	00	00	00


No. 0186 P46 01 Task 140	No 000-01	Page 1 of 1	
	ARI Triplicate Sample ID VVN09K Batch	Client Triplicate Sample ID MW32D 35 5-37	


		-		-			
13	90	90	90	061	003	4 26	
32	90	90	90	061	0 03	4 26	
7	06	06	06	061	0 03	4 26	
6	60	60	60	0 91	0 04	4 26	
13	12	12	13	1 22	0 05	4 26	
22	15	15	13	142	0 14	10 10	
32	15	15	16	152	90 0	4 26	
75	29	27	30	2 85	0 17	5 92	
150	70	72	78	7 33	0 44	6 04	
250	18.4	19.8	213	19 82	1 45	7 31	
425	40.5	444	463	43 72	2 94	6 72	
850	55.8	59.8	612	58 90	2 80	4 76	
2000	64 1	679	69 1	67 02	2 60	3 88	
4750	74 4	754	789	76 21	2 35	3 08	
9500	92.0	926	888	91 13	202	221	
12500	92.8	95.5	923	93 53	172	184	
19000	100 0	100 0	1000	100 00	8	000	
25000	1000	100 0	100 0	100 00	80	000	
37500	100 0	100 0	100 0	100 00	000	80	
50000	100 0	100 0	100 0	100 00	000	800	
75000	100 0	100 0	100 0	100 00	000	80	
Sample ID	MW32D 35 5-37	MW32D 35 5-37	MW32D 35 5-37	AVE	STDEV	%RSD	


This Triplicate applies to the Batch Containing the Following Samples

Sample ID	Date Sampled	Date Set up	Date Started	Date Complete	Data Qualifiers
	4/10/2013	4/24/2013	6102/62/4	5/1/2013	
MW32D 35 5-37'	4/10/2013	4/24/2013	4/29/2013	5/1/2013	
	4/10/2013	4/24/2013	4/29/2013	5/1/2013	
MW32D 10 5-12 5'	4/10/2013	4/24/2013	4/29/2013	5/1/2013	
MW32D 16 5-18'	4/10/2013	4/24/2013	4/29/2013	5/1/2013	
MW32D 18 5-20 5'	4/10/2013	4/24/2013	4/29/2013	5/1/2013	
MW32D 20 5-22 5'	4/10/2013	4/24/2013	4/29/2013	5/1/2013	
MW32D 28 5-30 5'	4/10/2013	4/24/2013	4/29/2013	5/1/2013	
GEO-3 15-17	4/12/2013	4/24/2013	4/29/2013	5/1/2013	
GEO-3 20-21 5'	4/12/2013	4/24/2013	4/29/2013	5/1/2013	
GEO-2 9-10 5'	4/11/2013	4/24/2013	4/29/2013	5/1/2013	
GEO-2 14-16'	4/11/2013	4/24/2013	4/29/2013	5/1/2013	
GEO-2 24-26	4/11/2013	4/24/2013	4/29/2013	5/1/2013	
GEO-2 34-36'	4/11/2013	4/24/2013	4/29/2013	5/1/2013	
GEO-2 39-40 5'	4/11/2013	4/24/2013	4/29/2013	5/1/2013	
GEO-2 44 44 5	4/11/2013	4/24/2013	8102/62/7	5/1/2013	

ANALYTICAL RESOURCES INCORPORATED

Percent Finer Than the No. 200 Sieve ASTM D-1140

ARI Job No.: WN01

Date Set up: 04.24.2013

Tested by: <u>Jefs</u>

SAMPLES A, B, C, AND E CONSUMED. VOLUME ON THESE SAMPLES WAS LOW. Notes:

Ш	IЦ	10.30	35.92 457.03	1268.77	258.63
Q	Q	10.21	35.92	275-152	30.11
C	Co	04 749.7219	26 731.23	771315. 60 to 31. 54 2426877	62 1199.51 30.11 258.63
В	В	10.04	283.26	205.77	
Å	A	10.33	533.23	289.77	279.33
ARI Sample ID	Tare Number	Tare, g	Wet Soil + Tare, g	Dry Soil + Tare, g	Dry Soil + Tare after Wash 279 33 (89

ARI Sample ID					
Tare Number					
Tare, g					
Wet Soil + Tare, g					
Dry Soil + Tare, g					
Dry Soil + Tare after Wash					

1102F Rev. 0 Geotechnical Raw Data Analyst Notes and Raw Data

ARI Job ID: WN09

\$

.

Sample Number M	MW32D 35 5-37	100 00	100 00		100 00	100 00	100 00	92 80	91 96	74 38	64 09	55 77	40 51	18 38	669	2 93	1 45	145	1 16	0.87	0 58	0 58	0 58
		125000	75000	50000	37500	25000	19000	12500	9500	4750	2000	850	425	250	150	75	36.7	232	13.4	95	68	33	1
est Temperature		21 5"	3.	4	15"	÷	3/4"	1/2"	3/8"	4	¢	20	4	60	100	200							
Specific Gravity	21	2 65																					
		-					Sieve Ana	we Analysis Portior					Нya	frometer Ar.	Hydrometer Analysis Portion	u							
					Sieve Size	Weight of Soil + W Tare	f Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	÷	۵	×	a	-				
	10 F 10 F	-			2	10 13	000		80	100 00								Γ					
-					ъ.	10 13	000		0 00	100 00									_				
		-			s.	10 13	000		000	100 00													
Vet Wt & Tare	25.	29			15"	10 13	000		0 00	100 00	-	6	60	174	14.8	14 8 51 78251	0 01345 1	1 001385					
Iry Wt & Tare	25 23	23			-	1013	00 0		00 0	100 00	2	85	60	1 45	14 9	14 9 36 71684	0 01345 1	1 001385					
Vt Moisture	0	8			3/4	10 13	00 0		00 0	100 00	5	85	60	1 45	14 9	14 9 23 22177	0 01345 1	1 001385					
At Tare	Ŧ	157			1/2	25 28	15 15		7 20	92.80	15	8	60	116	15 0	15 0 13 4439	0 01345 1	1 001385		-			
Iry Soil	23(66	_		3/8	27 05	16 92		8 04	9196	30	75	60	280	151	15 1 9 532229	0 01345 1	1 001385					
Ioisture Content	0 002535926	26	-		4	64 02	53 89		25 62	74 38	09	7	60	85 0	15 2 1	15 2 6 758607	0 01345 1	1 001385					
ur Dry Total Sample	210 72	72			9	85.67	75 54		35 91	64 09	250	7	60	0 58	15.2		0 01345 1	1 001385					
Oven Dry Total Samp	210 3780607	07			20	100 03	14 36	8 32	44 23	55 77	1440	7	60	0 58	15.2	1 379595	0 01345 1	1 001385					
Arr Dry Hydro Sample	110 86	86			4	126 36	40.69	23 58	59 49	40.51									_				
Oven Dry Wt Hydro	110 5795784	84	_		99	164 54	78 87	45 71	81 62	18 38													
Amount Plus #10	75 54	54			1 0	184 19	98 52	57 10	93 01	669													
W (14 2) =	172 5293077	77			200	1912	105 53	6117	97 07	2 93													

Sample Number	MW32D 35 5-37	100 00	100 00	100 00	100 00	00 001	100 00			_			_	19 80							J 62	70 0	0 6Z
		125000	75000	Ĺ	37500	25000	19000	12500		4750	2000	850	425	250	150		367 2	23 2 1	134	95	68	33	14
Text Temperature		2.	n,	2	- 2. -	÷	3/4"		3/8"	-		20		60	i	200				-	 		
Specific Gravity	5	2 65																-	-			-	
							Sieve Analysis Portion	us Portion			1							ļ	_				
					Sieve	Weight of Soil + Tare	t of Total + Weight of s Soit		Percent P Retained P	Percent Passing	Time	Hydro (Reading C	Comp Correct	Percent Finer	ŗ	۵	 ¥	a				· ·-	
	_				2	10 06	00 0			00 00							-	Γ		-			
					÷.	10 06 80 05	000		880	8 8							_		-		_		
Vet Wt & Tare		07			15.	10 06	000			00 00	-	6	9	185	148 51		_	01385			_		
Dry Wt & Tare	e	30.6			-	10.06	00 0			100 00	7	85	9	154	14.9 36	36 71684 0 (0 01345 1 0	001385		_			
At Moisture		01			3/4	10 06	00 0			100 00	5	85	9	154	14.9 23		-	01385		_			
Nt Tare	-	156			1/2	19 34	9 28			95 50	15	8	9	123	150 13		-	01385		_			
Dry Soil	29	29 04			3/8	25 31	15 25			92 60	30	75	9	0 93			٢.	01385					
Moisture Content	0 003443526	526			4	60 77	50 71			75 39	99	7	9	0 62		6 758607 0 (-	01385				_	
Air Dry Total Sample		206 56			10	76 25	66 19			67 88	250	7	9	0 62			Ξ.	01385		-			
Oven Dry Total Samp	p 206 078291	291		_	20	89 45	13 20			59 75	1440	7	9	0 62	-	379595 0 (-	01385		-			
Air Dry Hydro Sample		110 59			40	114 41	38 16			44 38													
Oven Dry Wt Hydro	110 2104873	873			8	154 31	78 06	48 08	80 20	19 80													
Amount Plus #10		66 19			100	174 82	98 57		92 83	717													
W (14 2) =	162 3580409	409			200	182 14	105 89		97 34	2 66													

Sample Number	MW32D 35 5-37	1	00 00	100 00	100 00	100 00	100 00	100 00	92 29	88 83	78 86	69 07	61 18	46 28	21 28	7 83	2 97	158	1 26	126 0	095_063	3 063	3 063
		-		75000	50000 37500		25000	19000	12500	9500	4750	2000	850	425	250	150	75	36 7	233	13.4 9	95 68	33	7
Temperature		21 5"	, m	2	-	1		3/4"	1/2"	3/8"	4	9	8	40	60	100	200)	
Specific Gravity	-	2 65																					
				-				Sieve Analysis Portior	sis Portion		Π			Hyc	Hydrometer Anałysis Portion	alysis Porti	ы						
	 					Sieve V Size	Weight of Soil + V Tare	Total Weight of Soil	_	Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	ŗ	٥	¥	æ				
			-			°,	10.4	00 0		000	100 00												
		-		-	-	ů.	10.4	00 0		0 00	100 00												
						5	10 4	000		800	100 00												
Vet Wt & Tare		32 23				1 1/2"	10.4	800		000	100 00	-	6	9	189		51 78251	0 01345	1 001385				
Dry Wt & Tare		32 111				-	10.4	800		000	100 00	7	85	9	158	149	36 71684	0 01345	1 001385				
Nt Moisture	_	0 119				3/4	10.4	000		000	100 00	5	80	9	1 26		23 28552	0 01345	1 001385				
Wt Tare		151	-			12	26 16	15 76		7 71	92 29	15	80	9	1 26		13 4439	0 01345	1 001385				
Drv Soil		30 601				3/8	33 22	22 82		11 17	88 83	8	75	9	0 95		9 532229	0 01345	1 001385				
Moisture Content	0 0038	0 003888762	-	_		4	536	43 20		21 14	78 86	8	7	9	0 63	152 (6 758607	0 01345	1 001385				
Air Dry Total Sample		204 88				₽	73 59	63 19		30 93	69 07	250	7	9	0 63	15.2	3 311028	0 01345	1 001385				
Oven Dry Total Samp	204 3	204 3311357				20	86 13	12 54	7 90	38 82	61 18	1440	7	9	0 63	15.2	1 379595	0 01345	1 001385				
Air Dry Hydro Sample		110 11				4	109 79	36 20	22 80	53 72	46 28												
Oven Dry Wt Hydro	109 683467	834671				80	149 49	75 90	47 80	78 72	2128												
Amount Plus #10		63 19				<u>6</u>	170 84	97 25	6124	92 17	7 83												
W (14 2) =	158 78	158 7896207				200	178 55	104 96	66 10	97 03	2 97												

Sample Number	MW32D 10 5-12 5	100 00	100 00	100 00	100 00	100 00	97 28	94 50		-	37 82	26 84	16 43	10 43	8	574		4 22		2 38	2	0 92	0.37
		125000	75000	50000	37500	25000	19000			4750		850	425	250				22 0	13.0	93	66 3	33	4
est Temperature	21	0	3	2"	15	÷	3/4"	1/2"	3/8"	4	10	50	4	99		500							+
Specific Gravity	2 65																						
		-				0	Sieve Analysis Portion	is Portion		Η			Hydrc	Hydrometer Analysis Portion	ysis Portion								
					Sieve	Weight of Soil + Tare	t of Total + Weight of e Soul		Percent P Retained P	Percent Passing	Time	Hydro Reading 0	Comp F Correct	Percent Finer	÷	۵	 ¥	n					
					5"	10 25	000			100 BC								Γ					
		-	_		ъ	10 25	000		0 00	100 00													
					5 .	10 25	000			00 00													-
Vet Wt & Tare	50.65	117			15"	10 25	00 0			100 00	-	53	9	6 24	12547	-	÷	001385			-		
Drv Wt & Tare	49 68				-	10 25	000			00 00	7	20	9	5 14	130 34	34 31681 0	0 01345 1 1	001385			-		-
At Moisture	0.97	_			3/4	2181	11 56			97 28	5	17.5	9	4 22	134 22	-	Ξ.	001385					
At Tare	1 52	_			1/2	33 67	23 42			94 50	15	4	9	294	14 0 12	~	-	001385					
Dry Soul	48 16				3/8	63 28	53 03			87 54	90	12.5	9	2 38	142 9.		-	001385					
Moisture Content	0 020141196				4	183 66	173 41			59 26	60	ŧ	9	183	14561	-	Ξ.	001385	-			_	
Air Drv Total Sample			_		10	274 89	264 64		62 18	37 82	250	85	9	0 92		-	Ξ.	001385	-				
Oven Dry Total Samp	425.6				20	304 85	29 96			26 84	1440	7	9	0 37	152 13	379595 0	01345 1	001385	-				-
Air Dry Hydro Sample			_		4	333 28	58 39			16 43							-	٦			-		-
Oven Drv Wt Hvdro	103 2				09	349 65	74 76	27 39	57	10 43												- •	
Amount Plus #10	264 64				100	356 17	81 28		91 96	8 Q4													•
W (14 2) =	272 9478679	-			200	362 44	87 55	32 08	94 26	5 74													

Campia Number	MM32D 16 5-18	100.00	100 00.	100 00	100 00	100 00	91 54	87 26	80 34	66 35	53 38	41 95	34 78	29 33	24 57	18 94	16 86	15 32	13 03	10 73	9 19	6 13	3 45
		125000		50000	1	25000	19000	12500	9500	4750	2000	850	425	250	150	75	32 5	209	12.3	89	63	32	4
	-	1.1		10	i.,		3/4"	10"	3/8"	4	0	20	4	8	9 0	200						1	
est remperature		5		4		-				+													
Specific Gravity		2 65											:		•								
							Sieve Anal	Sieve Analysis Portion					MH	Hydrometer Analysis Portion	alysis Port	g		ſ					-
+ —					Sieve Size	Weight of Soil + Tare	f Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	ŗ	٥	×	ŋ					
			_		ۍ	10 32	00 0		00 0	100 00			1			1					-		-
~					'n	10 32	000		000	100 00											-		
					2	10 32	000		000	100 00							-				-	-	-
Wet Wt & Tare		11 57			15"	10 32	000		000	100 00	-	ŝ	9	20 69	109	44 38298	0 01345	1 001385	-	-			
Drv Wit & Tare		11 37			-	10 32	000		000	100 00	7	28	9	16 86	11 7	32 54301	0 01345	1 001385					
Wit Moreture		0.2	-		3/4	25 44	15 12		8 46	9154	5	26	9	15 32	12 0	20 86812	0 01345	1 001385		-			
Aft Tare		1 55	-	-	1/2	33 09	22 77		12 74	87 26	15	23	9	13 03	12.5	12 29184	0 01345 -	1 001385					
Dry Soul		9 82			3/8	45 45	35 13		19 66	80 34	30	20	9	10 73	130	8 860563	0 01345	1 001385					
Moieture Content	0.020366599	9599	_		4	70 45	60 13		33 65	66 35	60	18	9	919	13 3	6 343745	0 01345	1 001385					
Air Dor Total Samula	18	180.61			10	93 62	83 30		46 62	53 38	250	14	9	6 13	14 0	3 183195	0 01345	1 001385		-			-
Oven Dry Total Sample	178 6676846	5846	. –		8	108 56	14 94	11 43	58 05	41 95	1440	10.5	9	3 45	146	1 353225	0 01345	1 001385					
Air Drv Hvdrn Samnle	2	71 18			4	117 92	24 30	18 59	65 22	34 78								٦					
Oven Drv Wi Hvdro	69 75924152	4152			09	125 05	3143	24 05	70 67	29 33													
Amount Plus #10	80	83 30			100	131 27	37 65	28 81	75 43	24 57									-				
W (14 2) =	130 6912526	2526			200	138 62	45 00	34 43	81 06	18 94													

o

Sample Number	MW32D 18 5-20 5'	100 00	100 00	100 00	100 00	100 00	100 00	95 56	92 00	78 29	54 55	32 49	21 47	15 19	11 42	8 09	7 86	674	6 18	5 05	4 21	3 37.	2 53
		1 JENON	75000	1_	37500	25000	1000	12500	9500	4750	2000	850	425	250	150	75	34.3	22 0	12.8	91	65	32	-
		nnezi		2000	2000	20002		20021	2000			3	 	202								-	ĺ
est Temperature		ما	3*		15	t-	3/4	1/2.	3/8	4	₽	2	€	٩ſ		200			-		-	-+	1
Specific Gravity	2 65	2	-															1					-
						S	Sieve Analysis Portion	is Portion					Hydr	Hydrometer Analysis Portion	alysis Portic	u							-
		•	-		Sieve	Weight of Soil + \ Tare	tt of Total + Weight of B Soul		Percent F Retained F	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	÷	۵	¥	ŋ					
					2	10 04	00 0			100 00		1		1		1	1	Γ			-		
					÷	10 04	00 0			100 00											-		
		-			Ň	10 04	000			100 00													
Vet Wt & Tare	38.28	8	-		15	10 04	0 00		000	100 00	-	27 5	9	12 07	118 4	46 18354	0 01345 1	1 001385					
Drv Wt & Tare	36.58	8	-		-	10 04	00 0			100 00	2	20	9	7 86	130	34 31681	0 01345 1	1 001385					
At Moisture	-	7	•		3/4	10 04	00 0			100 00	Ş	18	9	674	133	21 97538	0 01345	1 001385	-				
Nt Tare		15			1/2	29 9	19 86			95 56	15	17	9	618	13.5	12 76515	0 01345 1	1 001385	~				
Dry Soil	35.08	8	•••		3/8	45 82	35 78		8 00	92 00	90	15	9	5 05	13.8	9 135158	0 01345 1	1 001385					
Moisture Content	0.04846066	F			4	107 2	97 16		2171	78 29	60	13.5	9	4 21	141 (6 516654	0 01345 1	1 001385					
Air Drv Total Sample		2			10	213 44	203 40		45 45	54 55	250	12	9	3 37		3 220236	0 01345 1	1 001385			-		-
Oven Dry Total Samo	447	84		•	50	252 78	39 34	22 06	67 51	32 49	1440	10.5	9	2 53	146	1 353225	0 01345 1	1 001385					
Air Dry Hydro Sample		102			40	272 44	59 00	33 08	78 53	21 47											_		
Oven Drv Wt Hvdro	97 28548124	-			80	283 63	70 19	39 36	84 81	15 19												-	
Amount Plus #10	203 40	9			<u>6</u>	290 35	76 91	43 12	88 58	11 42													
W (14 2) =	178 3498348	8			200	2963	82 86	46 46	91 91	8 09													

Sample Number	MW32D 20 5-22 5'	100 00	100 00	100 00	100 00	97 00				76 32	63 92	47 81	34.98	24 95	17 68	11 13	11 06	911	6 83	618 - 4	-	2 93	1 30
		125000	75000		37500	25000	19000	12500	9500	4750	2000	850	425	250	150	75	33.7	217	12.8	_	65 32	2	4
est Temperature	21.5		3"	5	15"	-		È		4	1 0	8	4	60	100	200					 	 	1
Specific Gravity	2 65	 	-	-																		_	
						Ō	Sieve Analysis Portion	is Portion					Hydro	Hydrometer Analysis Portion	INSIS Portio	c		Π		_	-		
					Sieve Size	Weight of Soil + V Tare	Total Weight of Soil	- K	Percent P Retained P	Percent Passing	Time	Hydro Reading (Comp F Correct	Percent Finer	ŗ		¥	æ					
		_	_	·	ы No en	10 13 10 13	00 0		88	6 6 8 8				ĺ							• –	_	
					2	10 13	000			100 00									_	-	_		
Net Wt & Tare	36.62				15	10 13	00 0		000	100 00	-	5 8	9	13 02	1204		-	001385					_
Dry Wt & Tare	36 04	_	_		-	18 59	8 46			97 00	7	53	9	11 06		_	-	001385					
Nt Moisture	0.58				3/4	27 01	16 88			94 01	ŝ	20	9	9 11		2170386 0	-	001385	_				•
Mt Tare	1 52	· _	_		1/2	40 29	30 16			89 30	15	16.5	9	6 83	136 1	-	-	001385		-	-		-
Dry Sol	34 52		-		3/8	46 04	35 91			87 26	90	15.5	9	6 18		-	•	001385			-		~
Moisture Content	0 016801854	-	-		4	76 87	66 74			76 32	60	13	9	4 56		6 535584 0	0 01345 1	001385		_			
Air Dry Total Sample	284 87	-	_		6	111 81	101 68		36 08	63 92	250	10.5	9	2 93	"	-	0 01345 1	001385		-			
Oven Dry Total Samp	p 281 8429288	-	_		20	1366	24 79			47 81	1440	80	9	1 30	1501	372112 0	0 01345 1	001385					
Air Dry Hydro Sample	100	_			4	156 37	44 56			3 7 98									_		-		
Oven Dry Wt Hydro	98 34757835				9 9	171 77	59 96	38 97		24 95										_	_		_
Amount Plus #10	101 68		-		10 1	182 96	71 15		82 32	17 68													_
W (14 2) =	153 8527915				200	193 03	81 22			11 13													

Sample Number	MW32D 28 5-30 5'	100 00	100 00	100 00	100 00	82 24	67 86	46 58	39 73	30 57	25 54	20 57	14 69	8 50	5 00	3 10	2 58	2 19	168	1 29	060	0 39	0 26
		125000	75000	50000	37500	25000	19000	12500	9500	4750	2000	850	425	250	150	75	35.2	22 4	131	93 93	67	33	4
est Temperature		ĥ	3"	2"	15	÷	3/4"	1/2"	3/8"	4	6	50	₽	09	5	200							
Specific Gravity	2 65	 																					
				1			Sieve Analy	ve Analysis Portion					Hydi	rometer An	Hydrometer Analysis Portion	Ę						-	
					Sieve	Weight of Soil + Tare	Total Weight of Soil	-	Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	1	۵	×	ŋ					
		_			S	10 37	00 0		00 0	100 00													
					e 0	10 37 10 37	88		88	000 000 000											_		
Vet Wt & Tare	40 46				15	10 37	000		0 00	100 00	-	17	9	2 84		-	0 01345 1	1 001385					
Drv Wt & Tare	40.14				-	187 34	176 97		17 76	82 24	7	16	9	2 58			0 01345 1	1 001385					
At Moisture	0.32				3/4	330 72	320 35		32 14	67 86	5	14 5	9	2 19			0 01345 1	1 001385					
Wt Tare	151		-		12	542 81	532 44		53 42	46 58	15	12 5	9	168			0 01345 1	1 001385					
Drv Soil	38.63		-		3/8	611 13	600 76		60 27	39 73	8	1	9	1 29		9 349028	0 01345 1	1 001385					-
Moisture Content	0 008283717				4	702 37	692 00		69 43	30 57	60	95	9	06 0		6 666587	0 01345 1	1 001385					-
Ar Drv Total Sample					6	752 49	742 12		74 46	25 54	250	75	9	0 39	151 3	3 302061	0 01345 1	1 001385			-		
Oven Drv Total Sam	2 966 7				20	7718	19 31	4 98	79 43	20 57	1440	7	9	0 26	15.2	1 379595	0 01345 1	1 001385					
Air Div Hydro Sample					40	7946	42 11	10 85	85 31	14 69													
Oven Dry Wt Hydro	99 138	- 	-		60	818 64	66 15	17 04	91 50	8 50										-			
Amount Plus #10	742 12				5	832 24	79 75	20 55	95 00	5 00											-		
W (14 2) =	388 1232393	~			200	839 61	87 12	22 45	96 90	3 10													

Sample Number GE	GEO-3 15-17	100 00	100 00	100 00	100 00	96 08		64 12		35 95	22 88 1	14 14	823	4 35	249	138	~	1 16	8	081	0.46	0 35	0 23
		125000	Ì.			25000		1	9500				425	250	150	75	361	22 9	13.3	94	67	33	4
est Temberature		21 5"	÷	ا		-		1/2"	3/8"	4	40	20	40	8	100	200							
Specific Gravity		2 65			-	 													_			-	
		,				Sier	leve Analysis Portion	s Portion					Hydro	meter Ana.	Hydrometer Analysis Portion						_		
					Sieve	Weight of Soil + V Tare	f Total Weight of Soil	αž	Percent Pe Retained Pa	Percent Passing	Time R.	Hydro C Reading C	Comp P Correct	Percent Finer	ŗ	٥	¥	a,				·	
					ŝ	10 22	00 0		0 00	800							-						
						10 22	00 0			100 00										-			
			_	_	2	10 22	000			00 00													
Vet Wt & Tare	29	57 25			15	10 22	00 0		0 00	100 00	-	5	9	1 39			0 01345 11	001385				-	
Drv Wt & Tare	đ	384			-	54 57	44 35			3 6 08	2	115	9	127			.	001385		-		-	
M Moisture	5	041			3/4	222 47	212 25	-		31 22	5	ŧ	9	116		_	۰.	001385			-		
M Tare		1 49	_		12	415 74	405 52			34 12	15	10.5	9	8		-	-	001385					
Drv Sol	5	55 35			3/8	528 31	518 09	•		54 16	30	95	9	081	1479	_	-	001385			-		
Moisture Content	0 007407407	407			4	734 23	724 01	-		35 95	60	ø	9	0.46		672195 0	-	001385					
Air Drv Totał Sample	1132 23	23	-		0	8819	871 68	,	77 12 2	22 88	250	75	9	0 35	151 33	3 302061 0	0 01345 1	001385	_	_	-	• •	
Oven Drv Total Samo	1130 314191	191			20	919 73	37 83	874 8		14 14	1440	7	9	0 23	152 1:	379595 0	0 01345 1 1	001385			_		
Air Dry Hydro Samplei	6	92 26			4	945 32	63 42	14 65		8 23							-			_			
Oven Dry Wt Hydro	99 02647059	059			99	962 1				4 35											_		
Amount Plus #10	871	871 68			<u>1</u> 00	970 13	88 23		97 51	2 49									-				
W (14 2) =	432 7773698	698			200	974 94				138									-				

Sample Number G	GEO-3 20-21 5'	100 00	100 00	100 00	100 00	100 00	100 00	100 00	100 00	97 92	85 11	67 22	43 11	20 97	937	4 65	3 45	3 02	2 59	2 15	1 72	0.86	0.86
1		125000	75000	50000	37500	25000	19000	12500	9500	4750	2000	850	425	250	150	75	36.4	23 1	13.4	95	67	33	4
est Temperature		21.5" 3	3"		15"	-	3/4"	1/2"	3/8"	4	10	20	4	60	100	200							
Specific Gravity	2 65	35	 	+ 														-					
-							Sieve Anali	ve Analysis Portion					Hydi	Hydrometer Analysis Portion	alysis Porti	E							
					Sieve Size	Weight of Soil + Tare	F Total Weight of Soil		Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	ł	۵	¥	ß					
			_		5	10 45	000		000	100 00													
					<i>с</i> , с	10 45 10 45	88		000	100 00									-		-		-
Vet Wt & Tare	57 98	8			• 1	10 45	000		000	100 00	-	¢	9	3 45	147 5	51 49542	0 01345	1 001385		-			-
Drv Wt & Tare	57.7	2			-	10 45	00 0		00 0	100 00	2	₽	9	3 45		36 41276	0 01345	1 001385	-				
Wit Moisture	30	8			3/4	10 45	000		000	100 00	2	95	9	3 02		23 09374	0 01345	1 001385					
Wt Tare	1 47	17			1/2	10 45	00 0		000	100 00	15	6	9	2 59	148	13 37019	0 01345	1 001385					
Dry Soil	385	100			3/8	10 45	0 00		00 0	100 00	30	85	9	2 15			0 01345	1 001385					
Moisture Content	0 004979548	18			4	16 92	6 47		2 08	97 92	8	8	9	172	15.0	6 72195	0 01345	1 001385					
Air Dry Total Sample	312 88	38			₽	56 84	46 39		14 89	85 11	250	7	9	0 86		3 311028	0 01345	1 001385					
Oven Dry Total Samp:	311 5595753	53			20	77 62	20 78	17 89	32 78	67 22	1440	7	9	0 86	152 1	1 379595	0 01345	1 001385					
Air Dry Hydro Sample	99 37	37			4	105 63	48 79	42 00	56 89	43 11													
Oven Dry Wt Hydro	98 87763405	35			99	131 36	74 52	64 14	79 03	20 97													
Amount Plus #10	46 39	39			8	144 83	87 99	75 74	90 63	9 37													
W (14 2) =	116 1757477				200	150 31	93 47	80 46	95 35	4 65													

Sample Number	GEO-2 9-10 5'	100 00	100 00	100 00	100 00	100 00	95 69	9 5 98	78 99	54 45	46 04	40 01	33 37	27 22	22 31	17 29	12 78	11 36	8 80	6 82	5 11	2 56	69 D
-		125000		Į.	÷ .	25000	19000	12500	9500	4750	2000	850	425	250	150	75	32 4	209	12.4	90 6	65	31	-
est Temperature			ď.	"	_	÷	3/4"	1/2"	3/8"	4	10	20	4	8	100	5 00				+ 			
Specific Gravity		2 65								-													
		_					Sieve An	Sieve Analysis Portion					Hyc	Hydrometer Analysis Portion	alysis Port	ы							
4					Sieve Size	Weight of Soil + Tare	f Total Weight of Soil	¥	Percent Retained	Percent Passing	Time	Hydro Reading	Comp	Percent Finer	ł	٥	¥	ŋ					
					5	10 09	00 0		00 0	100 00							1	Γ					
		-		-	5	10 09	000		800	100 00										-			
Mat MH & Tara		9.80			, <mark>1</mark> 2	10 09	000		000	100 00	-	ह	9	15 91	10.7	44 0477	0 01345	1 001385					
Drv Wt & Tare		968			-	10 09	000		000	100 00	2	285	9	12 78	116		0 01345	1 001385					
Wt Moisture		0 21			3/4"	21 06	10 97		4 31	95 69	5	26	9	11 36	12.0		0 01345	1 001385					
At Tare	-	1 46	_		1/2"	22 92	12 83		504	88	15	215	9	8 80	12.8	12 41186	0 01345	1 001385					
Dry Sol		8 22			3/8.	63 54	53 45		21 01	78 99	8	18	9	6 82	13 3		0 01345	1 001385				-	
Moisture Content	0 025547445	17445			4	125 99	115 90		45 55	54 45	8	15	ç	511	138		0 01345	1 001385					
Air Dry Total Sample		257 43			9	147 38	137 29		53 96	46 04	267	10 5	9	2 56	146		0 01345	1 001385					
Oven Dry Total Samp	10 254 4371886	71886			8	158 02	10 64	6 04	59 99	40 01	1440	75	9	0 85	151	1 375859	0 01345	1 001385					
Air Drv Hvdro Sample	_	83 24		_	4	169 72	22 34	12 67	66 63	33 37							1						
Oven Drv Wt Hvdro	81 166	10569			99	180 56	33 18		72 78	27 22													-
Amount Plus #10	-	137 29			8	189 22	41 84		77 69	22 31										-			
W (14 2) =	176 288926	39261			200	198 06			82 71	17 29													

ukao aaasi

Samole Number	GEO-2 14-16	100 00	100 00	100 00	100 00	95 24	95 24	90 76	86 34	71 88	55 61	37 91	26 00	17 72	12 11	6 98	6 58	6 04	4 66	3 57	274	1 10	0 55
		125000	75000	50000	37500	25000	19000	12500	9500	4750	2000	850	425	250	150	75	347	22 1	13.0	82	61	32	4
Fest Temperature		21 5"	3"	5	15"	1	3/4"	1/2"	3/8"	4	10	20	40	09	100	200							l
Specific Gravity		2 65																					-
						,	Sieve Analysis Portion	sis Portion											-		-		
					Sieve	Weight of Soil + Tare	Total Weight of Soil	-	Percent F Retained F	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	Ļ	٥	¥	a					
					ĥ	10 02	000		000	100 00													
					œ	10 02	000		000	100 00													
		-			2	10 02	000		000	100 00									-				
Vet Wt & Tare	 	4181			15"	10 02	0 00		000	100 00	-	8	9	8 78	127 4	47 91648	0 01345 1	001385	_				
Dry Wt & Tare	_	41 22			÷	30 37	20 35		4 76	95 24	7	18	9	6 58	13.3		0 01345 1	001385		-			
Wt Moisture	-	0 59			3/4"	30 37	20 35		4 76	95 24	2	17	9	6 04	135 2	2 10988	0 01345 1	001385			-	-	
Wt Tare		1 46			1/2"	49 54	39 52		9 24	90.76	15	145	9	4 66	139	12 95726	0 01345 1	001385					
Dry Soil		39.76			3/8"	684	58 38		13 66	86.34	38	12 5	9	3 57	142 8	1 236082	0 01345 1	001385					
Moisture Content	0 014	0 014839034			4	130 26	120 24		28 12	71 88	2	7	9	274	145 6	120375	0 01345 1	001385					
Air Dry Total Sample		431 06			9	199 81	189 79		44 39	55 61	259	80	9	1 10		3 235348	0 01345 1	001385					
Oven Dry Total Samp	_	427 5321363			20	232 12	32 31	17 70	62 09	37 91	1440	7	9	0 55	152	379595	0 01345 1	001385					
Arr Dry Hydro Sample	6	103			4	253 85	5	29 61	74 00	26 00													
Oven Dry Wt Hydro		101 4939281			8	268 97	69 16	37 89	82 28	17 72												-	
Amount Plus #10		189 79			<u>1</u> 00	2792	79 39	43 50	87 89	12 11													
W (14 2) =	182 5	182 5167242			200	288 57	88 76	48 63	93 02	6 98													

Sample Number	GEO-2 24-26'	100 00	0. 100 00		100 00 100 00	0 100 00	100 00	0 99.46	95 31	90 42	83 44	77 87	71 27	60 62	44 36	23 21	15 13	11 89	919	7 57	5 40	3 24	18
!		125000	0 75000		50000 37500	0 25000				4750	2000	850	425	250	150	75	34 3 3	22 1	13.0	92	66	33	4
Test Temperature		21 5"	÷,	s.	15	4	3/4"			4	9	20	4	8	100	200			.			-	
Specific Gravity	2	2 65																					
							Sieve Ar	ve Analysis Portion	5				Нyd	rometer Ar	Hydrometer Analysis Portion	ç			-				
					Sieve Size	e Veight of Soil + Tare	of Total Weight of Soil	oť	Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	ŗ	٥	×	D					
					5	866	00 0		80	100 00							-						
			-		e	86 6	0 00		000	100 00 00												_	
					10	866	000		00 0	100 00								_				_	
Wet Wt & Tare	2	. 05		-	15	966	000		00 0	100 00	-	31	9	27 02	112 -	45 04606 (0 01345 1	1 001385					
Drv Wt & Tare	9	6 96			-	966	000		0000	100 00	7	20	9	15 13	130	14 31681	0 01345 1	1 001385			_		
Wt Moisture	0	0 09	_		3/4	866.	00 0		000	100 00	ŝ	17	9	11 89		22 10988 (0 01345 1	1 001385					
Wt Tare	-	154			1/2	10 61			054	99 4 6	15	145	9	9 19	139	12 95726 (0 01345 1	1 001385	-				
Dry Soil	5	5 42		-	3/8	15 44			4 69	95 31	8	13	9	7 57		9 242711 (0 01345 1	1 001385		_	-		
Moisture Content	0 016605166	166	-		4				958	90 42	8	5	9	5 40	1456	-	0 01345 1	1 001385					
Air Dry Total Sample	118 05	05			5			~	16 56	83 44	250	6	9	3 24		3 275013 (0 01345 1	1 001385					
Oven Dry Total Samp	116 4366969	169			20				22 13	77 87	1440	7	9	1 08	152 1	379595 (0 01345 . 1	1 001385					
Air Dry Hydro Sample	78	78 59			4				28 73	71 27									-				
Oven Dry Wt Hydro	77 30631579	579			80	504	21 14			60 62											-	-	
Amount Plus #10	19	19 28			100				55 64	44 36											_		
W (14 2) =	92 64716018	118			200	85 06		0 60 23		23 21													

Sample Number	GEO-2 34-36	100 00	100 00	100 00	79 64	58 63	55 32	48 84 4	44 91 4	4126	37 10 :	30.65 2	22 30 1	13 59 6	614 195	075	0.56	038	0 38	000	00 0	000	
		125000	75000	20000	37500	25000	19000	12500	9500	4750	2000	850	425	250 1	150 75	36.8	23.3	135	96	68	33	4	
Test Temperature		21 5"	ň	5.	15'	÷	3/4"	1/2"	3/8"	4	10	20	40		100 200								
Specific Gravity	2	2 65								1											-	! 	
						ŝ	ieve Analysis Portion	Is Portion		Γ			Hydron	Hydrometer Analysis Portion	is Portion							-	
					Sieve	Weight of	Total	٩.	Percent P	Percent	Time 1	Hydro C	Comp Pe	Percent "	"L" D	×	a						
					'n	9 72	000		0 00	8 00											-		
	_				3.	9 72	00 0		0 00 0	00 00													
					5	9 72	000		000	00 00													
Wet Wt & Tare	66.35	35			15"	138 98	129 26		20.36 7	79 64	•	85	9	196	14.9 51 92545	45 0 01345	5 1 001385	10					
Dry Wt & Tare	66 21	21			-		262 58	•	4137 5	58 63	7	8	9	175	15 0 36 81764	-	5 1 001385	10					
Wt Moisture	0	0 14			3/4		283 58		44 68 5	55 32	ş	75	9	156	151 23 3491	91 0 0 1 3 4 5	5 1 001385	10		-		-	
Wt Tare	146	46			12		324 71		5116 4	18 84	15	7	9	38	15 2 13 5172	21 001345	5 1 001385	2	-				
Dry Soil	2	75			3/8		349 66			44 91	30	7	-	038	152 9558114	114 0 01345	5 1 001385	5					
Moisture Content	0 002162162	62			4	382 56	372 84		5874 4	41 26	60	9	9	80	153 6795066	66 001345	5 1 001385	2				_	
Air Dry Total Sample	635 26	26			₽	408 98	399 26	-	62 90 3	37 10	250	9	-	000	15 3 3 328889	889 0 0 1 3 4 5	5 1 001385	2					
Oven Dry Total Samp	634 7508306	8			20	426 19	17 21	645	69 35 3	30 65	1440	9	9	00 (15 3 1 387037	37 001345	5 1 001385	10					
Air Dry Hydro Sample	99 22	2			4	448 48	39 50	14 80	77 70 2	22 30													
Oven Dry Wt Hydro	99 00593312	12	_		60	47172	62 74			13 59								1					
Amount Plus #10	399 26	26			6	4916	82 62			614													
W (14 2) =	266 8643111	11	_		200	502 77	93 79		98 05	195													

100 00 100 00 125000 75000	100 00 50000	59 25 37500	53 19 25000	46 02 19000	44 60 12500	42 90 9500	38 35 4750	3 4 13 2000	30 57 850	22 97 425	10 43 250	4 04 150	179 75	103 366	0 69 23 3	069 134	034 96	034 68
'n					1/2"	3/8"	4	9	8	40	60	<u>5</u>	200					
			Sie	Sieve Analysis Portion	s Portion		Π											
		Sieve W Size	Weight of Soif + W Tare	Total Weight of Soil	μũ	Percent Retained	Percent Passing	Time	Hydro Reading	Comp Correct	Percent Finer	÷	٥	¥	œ			
		5		000		000	100 00	1			1			1				
				80		000	100 00											
				80		000	100 00											
		15	41571 4	405 40		40 75	59 25	-	95	9	120	1475		0 01345	1 001385			
				165 66		46 81	53 19	2	6	9	1 03	1483	36 61576	0.01345	1 001385			
				536 99		53 98	46 02	5	80	9	0 69	1502		0 01345	1 001385			
				551 06		55 40	44 60	15	80	9	0 69	150		0 01345	1 001385			
				567 95		57 10	42 90	8	7	9	034		9 558114 1	0 01345	1 001385			
				513 23		61 65	38 35	8	7	9	034	1526	6 758607 (0 01345	1 001385			
				355 28		65 87	34 13	250	9	9	000	1533	328889 (0 01345	1 001385			
						69 43	30 57	1440	9	9	000	1531	387037 4	0 01345	1 001385			
						77 03	22 97											
					23 69	89 57	10 43											
						95 96	404											
						98 21	1 79											

000 68																		
000 96																		
0 27 13 6																_		
027 235			æ				1 001385		1 001385	1 001385	1 001385	1 001385	1 001385	1 001385				
054 370			¥				0 01345	0 01345	0 01345	0 01345	0 01345	0 01345	0 01345	0 01345				
193 75	200	ION	۵				52 21017	37 01842	23 47574	15 2 13 55372	9 609674	6 795066	153 3328889	1 387037				
6 48 150	6	ialysis Port	÷				151	152	152	152	153	153	153	153				
18 45 250	80	Hydrometer Analysis Portion	Percent Finer				081	054	0 27	0 27	800	80	000	000				
38 91 425	4	Hyd	Comp Correct				9	9	9	9	9	9	9	9				
4 9 11 850	8		Hydro Reading				75	7	65	65	9	9	9	9				
53 74 2000	₽		Time				-	5	ŝ	15	8	8	250	1440				
60 45 4750	4	Γ	Percent Passing	100 00	100 00	100 00	100 00	90 68	83 56	73 94	68 13	60 45	53 74	49 11	38 91	18 45	6 48	193
68 13 9500	3/8"		Percent Retained	0 00	000	000	000	9 32	16 44	26 06	31 87	39 55	46 26	50 89	61 09	81 55	93 52	98 07
73 94 12500	1/2"	Sieve Analysis Portion												4 63	14 83	35 29	47 26	51 80
83 56 19000	3/4"	ieve Analy	Total Weight of Soil	80	80	80	80	66 08	116 63	184 86	226 07	280 51	328 13	854	27 37	65 13	87 22	95.61
90 68 25000	÷	Ű	Weight of Soil + Tare	10 51	10 51	10 51	10 51	76 59	127 14	195 37	236 58	291 02	338 64	347 18	366 01	403 77	425 86	434 25
100 00 37500	1 5		Sieve Size	ŝ	ę	7	15	-	3/4	12	3/8	4	5	ଷ୍ପ	40	60	5	200
100 00 50000																		
100 00 75000	~																	
100 00 125000	μ																	
- 2	215" 265	8					63 59	63 44	0 15	151	61 93	0	709 25	709 25	99 18	99 18	28 13	2535
GEO-2 44-44 5'								J			Ţ							184 5702535
Sample Number	Test Temperature Securic Growty	opening disaris					Wet Wt & Tare	Dry Wt & Tare	Wf Moisture	Wt Tare	Dry Soil	Moisture Content	Air Dry Total Sample	Oven Dry Total Samp	Air Dry Hydro Sample	Oven Dry Wit Hydro	Amount Plus #10	W (14 2) =

000

 ARI Job No.: WN09 ARI Sample ID.: K-I Setup Date: 04.24.2013 Initials: Jbb

 Sample Description: Sample Splitter [] Quartering [] Stockpile [1] Whole Sample []

Tare Number	K-1
Tare Weight (g)	10.12
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	220.84
Hydro Test Sample Weight (g) (not including beaker weight)	10.86
Tare + Oven-Dried #10 Washed (g)	85.60
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	191.55

Hygroscopic Mo Content	oisture
Tare Number	KI
Tare Weight (g)	1.57
Wet Soil + Tare (g)	25.29
Dry Soil + Tare (g)	25.23

Hydro Beaker: <u>BA</u> Calgon Batch #: $\frac{234}{234}$ Calgon Date: $\frac{04/28/13}{234}$ Technician: <u>MF</u> Method of size reduction: Sample Splitter [] Quartering [] Stockpile [] Whole Sample []

		T	1.6	
4/29/2013	193285	_ Technicia	in: <u>1215</u>	
Time	∆ Time	Test Cylinder	Calgon Blank	Temp (°C)
12:55:00	START			
12:56:00	1	9.0	6	21
12:57:00	2	8.5	6	21
13:00:00	5	8.5	6	21
13:10:00	15	8.0	6	21
13:25:00	30	7,5	6	21
13:55:00	60	7.D	6	21.5
17:05:00	250	7	6	22.0
12:55:00	1440	7	6	21.5

Hvdrometer Analysis

Sieve Date: 5/1/13 Sieve Set #: 3 Technician: 34

Sieve Size	Cumulative Weight (g)]
Empty Tare	10.11350	1
2"	•]
11⁄2"		1
1"		1
3/4"	10.183 eg for	TA
1/2"	25.28	
3/8"	27.05	1
#4	64 02	1
#10	85,67	1
#20	100.03	1
#40	126,36	
#60	164.5×4J.	
#100	184.19	1
#200	191,1520JL	\mathbf{F}
Pan	191.48]

ARI Job No.: <u>WN09</u> ARI Sample ID.: <u>K-2</u> Setup Date: <u>04.24.2013</u> Initials: <u>bb</u> Sample Description: <u>Sand</u>, <u>rocks</u>, <u>organic</u> <u>debris</u> Method of size reduction: Sample Splitter [] Quartering [] Stockpile [] Whole Sample []

Tare Number	K-2	
Tare Weight (g)	10.05	
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	2110.61	
Hydro Test Sample Weight (g) (not including beaker weight)	110.59	
Tare + Oven-Dried #10 Washed (g)	76.20	
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	182.30-	sa

Hygroscopic Mo Content	oisture
Tare Number	K.2
Tare Weight (g)	1.56
Wet Soil + Tare (g)	30.70
Dry Soil + Tare (g)	30.60

Hydro Beaker: <u>AB</u> Calgon Batch #: <u>284</u> Calgon Date: <u> $0^{4/2s/13}$ </u> Technician: <u>kb</u> Method of size reduction: Sample Splitter [] Quartering [] Stockpile [] Whole Sample []

4/29/2013 193285 Technician: 197				
Time	∆ Time	Test Cylinder	Calgon Blank	Temp (°C)
13:02:00	START			
13:03:00	1	9.0	6	21
13:04:00	2	8.5	6	21
13:07:00	5	8.5	6	21
13:17:00	15	8.0	6	21
13:32:00	30	7.5	6	21
14:02:00	60	7.0	6	21.5
17:12:00	250	7	6	220
13:02:00	1440	7	6	21.5
	1			

Sieve Date: <u>5/1/13</u> Sieve Set #: <u>4</u> Technician: <u>54</u>

	·····
Sieve Size	Cumulative Weight (g)
Empty Tare	10.06
2"	- 1
11/2"	
1"	*
3/4"	10,06
1/2"	19.34
3/8"	25.31
#4	50.77
#10	76.25
#20	89.45
#40	114.341 Ja
#60	154,31
#100	174,82
#200	182.14
Pan	182.32

ARI Job No.: WN09 ARI Sample ID.: K-3 Setup Date: 04.24.2013 Initials: kb-Sample Description: <u>sand</u>, <u>vocks</u>, <u>organic</u> <u>debris</u>

Method of size reduction: Sample Splitter [] Quartering [] Stockpile [Y Whole Sample []

Tare Number	K-3
Tare Weight (g)	10.38
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	215.24
Hydro Test Sample Weight (g) (not including beaker weight)	11.01
Tare + Oven-Dried #10 Washed (g)	73.63
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	178.86

Hygroscopic Moisture Content		
Tare Number K-3		
Tare Weight (g)		
Wet Soil + Tare (g)	32.23	
Dry Soil + Tare (g)	32.11	

Hydro Beaker: <u>BF</u> Calgon Batch #: <u>284</u> Calgon Date: <u>04/26/17</u> Technician: <u>*h*b</u> Method of size reduction: Sample Splitter [] Quartering [] Stockpile M Whole Sample []

4/29/2013	3 193285 Technician: 186			
Time	∆ Time	Test Cylinder	Calgon Blank	Temp (°C)
13:09:00	START			
13:10:00	1	9.0	6	21
13:11:00	2	8.5	6	21
13:14:00	5	8.0	6	21
13:24:00	15	8.0	6	21
13:39:00	30	7.5	6	21
14:09:00	60	7.0	6	21.5
17:19:00	250	7	6	220
13:09:00	1440	7	!e	21.5
	1			

Hydrometer Analysis

Sieve Date: <u>5/1/13</u> Sieve Set #: <u>3</u> Technician: 3

Sieve Size	Cumulative Weight (g)
Empty Tare	10,40
2"	\wedge
11⁄2"	
1"	↓
3/4"	10,40
1/2"	26:16
3/8"	33,22
#4	53.60
#10	73,59
#20	86, \$13 Ji
#40	109.79
#60	149,49
#100	170.84
#200	178.55
Pan	178,214 50

Sieve/Hydrometer Particle Size Analysis - ASTM D421/422

ARI Job No.: WN09 ARI Sample ID.: F Setup Date: 04.24.2013 Initials: 128-Sample Description: rocks, Sand, Silt Method of size reduction: Sample Splitter [] Quartering [] Stockpile [] Whole Sample []

Tare Number	F
Tare Weight (g)	10.24
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	439.09
Hydro Test Sample Weight (g) (not including beaker weight)	105-31
Tare + Oven-Dried #10 Washed (g)	279.54
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	363,31

& SAMPLE CONSUMED				
Hygroscopic Conter				
Tare Number	1.52 F -8			
Tare Weight (g)	58.1.52 4			
Wet Soil + Tare (g	50.65			
Dry Soil + Tare (g)	49.68			

Hydro Beaker: DQ Calgon Batch #: $\frac{284}{284}$ Calgon Date: $\frac{04/28/13}{284}$ Technician: $\frac{104}{28}$ Method of size reduction: Sample Splitter [] Quartering [] Stockpile [/] Whole Sample []

Hydrometer Analysis				
4/29/2013 193285 Technician: <u>Jeb</u>				
Time	∆ Time	Test Cylinder	Calgon Blank	Temp (°C)
13:16:00	START			
13:17:00	1	23.0	6	21
13:18:00	2	20.0	6	21
13:21:00	5	17.5	6	21
13:31:00	15	14.0	6	21
13:46:00	30	12.5	6	21.5
14:16:00	60	11.0	6	21.5
17:26:00	250	8.5	6	220
13:16:00	1440	コ	6	21.5

Hydrometer Analysis

Sieve Size	Cumulative Weight (g)
Empty Tare	10,25
2"	*
11⁄2"	*
1"	10,25
3/4"	21.81
1/2"	33.67
3/8"	63,28
#4	123.66
#10	274.89
#20	304.85
#40	333,28
#60	349.65
#100	356,17
#200	362,44
Pan	3(3,80

ARI JOD NO .: WND9	ARI Sample ID.:		04.24.20	13 Initials: <u>kb</u>
Sample Description: Se	nd, rocks, silt, orac	amic debris		
Method of size redu	uction: Sample Splitter []	Quartering []	Stockpile []	Whole Sample [I]

Tare Number	G
Tare Weight (g)	10.29
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	190.90
Hydro Test Sample Weight (g) (not including beaker weight)	71.18
Tare + Oven-Dried #10 Washed (g)	98.45
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	140.60

& SAMPLE	CONSUMED			
Hygroscopic Moisture				
Content				
Tare Number	G			
Tare Weight (g)	1.55			
Wet Soil + Tare (g)	11.57			
Dry Soil + Tare (g)	11.37			

Hydro Beaker: <u>G</u> Calgon Batch #: $\frac{234}{\text{Calgon Date: }04/28/13}$ Technician: <u>*kb*</u> Method of size reduction: Sample Splitter [] Quartering [] Stockpile [] Whole Sample []

Hydrometer Analysis				
4/29/2013	193285	Technicia	in: <u>18-6-</u>	
Time	∆ Time	Test Cylinder	Calgon Blank	Temp (°C)
13:23:00	START			
13:24:00	1	33.0	6	21
13:25:00	2	28.0	6	21
13:28:00	5	26.0	6	21
13:38:00	15	23.0	6	21
13:53:00	30	20.0	6	21.5
14:23:00	60	18.0	6	21.5
17:33:00	250	14	4	22.0
13:23:00	1440	10.5	6	21.5

Sieve Date: <u>5/1/13</u> Sieve Set #: <u>3</u> Technician: <u>5</u>

	······
Sieve Size	Cumulative Weight (g)
Empty Tare	10.32
2"	4
11⁄2"	+
1"	10,32
3/4"	25,44
1/2"	33.09
3/8"	45,45
#4	70.45
#10	93.62
#20	108,56
#40	117,92
#60	125.05
#100	131.27
#200	138.62
Pan	140,81

ARI Job No.: WN09 ARI Sample ID.: H Setup Date: 04.24.2013 Initials: 100 Sample Description: clayey, coarse sand, rocks

Method of size reduction: Sample Splitter [] Quartering [] Stockpile [] Whole Sample [Y

* SAMPLE CONSUMED

Tare Number	$\mid H$
Tare Weight (g)	9.95
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	469.28
Hydro Test Sample Weight (g) (not including beaker weight)	\$99.59
Tare + Oven-Dried #10 Washed (g)	229.18
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	298,25

	Hygroscopic Moisture Content		
1	Tare Number	Н	
102.000	Tare Weight (g)	1.50	
	Wet Soil + Tare (g)	38.28	
- [Dry Soil + Tare (g)	36.58	

Hydro Beaker: <u>BH</u> Calgon Batch #: <u>284</u> Calgon Date: <u>4/28//3</u> Technician: <u>kb</u> Method of size reduction: Sample Splitter [] Quartering [] Stockpile [] Whole Sample []

4/29/2013	<u> 93285</u>	_ Technicia	in: <u>hb</u>	
Time	∆ Time	Test Cylinder	Calgon Blank	Temp (°C)
13:30:00	START			
13:31:00	1	27.5	6	21
13:32:00	2	20.0	6	21
13:35:00	5	18.0	6	21
13:45:00	15	17.0	6	21.5
14:00:00	30	15.0	6	21.5
14:30:00	60	13.5	6	21.5
17:40:00	250	12	6	22.0
13:30:00	1440	10.5	6	21.5
]			

Hydrometer Analysis

Sieve Date: 5/1/13 Sieve Analysis Sieve Set #: 1 Technician: TCA

	Sieve Size	Cumulative Weight (g)	
	Empty Tare	10.64	
	2"	*	
	1½"		
	1"	4	
	3/4"	F (J, 0)	
	1/2"	29,90	
[3/8"	45.82	
[#4	La st	İ
	#10	213,44	
	#20	252,78	
	#40	272.44	
	#60	283.63	
	#100	290.35	ļ
	#200	296.30	l
	Pan	298.49	
* curve fitting was applied			

107.20 Ja

1101F-A Rev. 001

UNIGS MASUS

Sieve/Hydrometer Particle Size Analysis - ASTM D421/422

ARI Job No.: <u>WND9</u> ARI Sample ID.: <u>I</u> Setup Date: <u>04.24.2013</u> Initials: <u>kb</u> Sample Description: <u>silty</u>, <u>coarse</u> <u>Sand</u>, <u>weeks</u>, <u>reubbery</u>, <u>particles</u>, <u>debns</u> Method of size reduction: Sample Splitter [] Quartering [] Stockpile [] Whole Sample []

Tare Number	I	
Tare Weight (g)	10.09	
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	294.76	
Hydro Test Sample Weight (g) (not including beaker weight)	* 99.35-10	0.00°g
Tare + Oven-Dried #10 Washed (g)	122.02	
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	195.76	

Hygroscopic Moisture Content		
Tare Number	I	
Tare Weight (g)	1.52	
Wet Soil + Tare (g)	36.62	
Dry Soil + Tare (g)	36.04	

Hydro Beaker: \underline{I} Calgon Batch #: $\underline{284}$ Calgon Date: $\underline{04/28/13}$ Technician: $\underline{166}$ Method of size reduction: Sample Splitter [] Quartering [Y Stockpile [] Whole Sample []

4/29/2013	<u>193285</u> Technician: <u>kb</u>			
Time	∆ Time	Test Cylinder	Calgon Blank	Temp (°C)
13:37:00	START			
13:38:00	1	26.0	6	21
13:39:00	2	23.0	6	21
13:42:00	5	20.0	6	21
13:52:00	15	16.5	6	21.5
14:07:00	30	15.5	6	21.5
14:37:00	60	13.0	6	21.5
17:47:00	250	105	6	22.0
13:37:00	1440	8	6	21.5

Hydrometer Analysis

Sieve Date: <u>5/1/13</u> Sieve Analysis Sieve Set #: <u>3</u> Technician: <u>5</u>

Sieve Size	Cumulative Weight (g)		
Empty Tare	10,13		
2"	10.13		
11/2"	(0.13		
1"	18.59		
3/4"	27,01		
1/2"	40,29		
3/8"	46.04		
#4	76.297 Je		
#10	111.81		
#20	136,60		
#40	156.37		
#60	171,77		
#100	182.96		
#200	193.03		
Pan	196,04		
Acurve fitting was applied.			

1101F-A Rev. 001

Sieve/Hydrometer Particle Size Analysis - ASTM D421/422

ARI Job No.: WN09 ARI Sample ID.: J Setup Date: 04.24.2013 Initials: kb Sample Description: rocks, sand

Method of size reduction: Sample Splitter [] Quartering [] Stockpile [] Whole Sample []

Tare Number	J
Tare Weight (g)	10.36
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	1009.18
Hydro Test Sample Weight (g) (not including beaker weight)	99.96
Tare + Oven-Dried #10 Washed (g)	754.84
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	840.66

Hygroscopic Moisture Content		
Tare Number J		
Tare Weight (g)	1.51	
Wet Soil + Tare (g)	40.46	
Dry Soil + Tare (g)	40.14	

Hydro Beaker: <u>J</u> Calgon Batch #: <u>284</u> Calgon Date: <u>04/28/13</u> Technician: <u>Lt</u> Method of size reduction: Sample Splitter [] Quartering [] Stockpile [] Whole Sample []

4/29/2013	193285	_ Technicia	n: <u>kb</u>	
Time	∆ Time	Test Cylinder	Calgon Blank	Temp (°C)
13:44:00	START			
13:45:00	1	17.0	6	21.5
13:46:00	2	16.0	6	21.5
13:49:00	5	14.5	6	21.5
13:59:00	15	12.5	6	21.5
14:14:00	30	11.0	6	21.5
14:44:00	60	9.5	6	21.5
17:54:00	250	7.5	6	220
13:44:00	1440	7	4	21.5

Sieve Date:	5/1/15	Sieve Analysis Sieve Set #:	Technician: TK
Sieve Date:	5/1/12	Sieve Set #:	Technician: <u>0 ×</u>

		-
Sieve Size	Cumulative Weight (g)	
Empty Tare	10,37	1
2"	10.37]
11⁄2"	187.39	
1"	330.72	1
3/4"	330.72	
1/2"	542.81	
3/8"	611,13	
#4	702,37	
#10	752.49	
#20	771,80	
#40	794.60	J
#60	818.64]
#100	832 24]
#200	839.61	
Pan	840.63	

Sieve/Hydrometer Particle Size Analysis - ASTM D421/422

ARI Job No.: WN 09 ARI Sample ID.: L Setup Date: 04.24.2013 Initials: bb Sample Description: rocks Sand

Method of size reduction: Sample Splitter [] Quartering [] Stockpile [/ Whole Sample []

Tare Number	
Tare Weight (g)	10.20
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	1142.43
Hydro Test Sample Weight (g) (not including beaker weight)	99.76
Tare + Oven-Dried #10 Washed (g)	889.49
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	975.78

. . . .

Hygroscopic Moisture Content		
Tare Number L		
Tare Weight (g)	1.49	
Wet Soil + Tare (g)	57.25	
Dry Soil + Tare (g) 56.84		

Hydro Beaker: _____ Calgon Batch #: 284 Calgon Date: 04/26/13 Technician: 4/2 Method of size reduction: Sample Splitter [] Quartering [4] Stockpile [] Whole Sample []

4/29/2013	1932.85	85 Technician: 46			
Time	∆ Time	Test Cylinder	Calgon Blank	Temp (°C)	
13:51:00	START				
13:52:00	1	120	6	21.5	
13:53:00	2	11.5	6	21.5	
13:56:00	5	11.0	6	21.5	
14:06:00	15	10.5	6	21.5	
14:21:00	30	9.5	6	21.5	
14:51:00	60	8.0	6	21.5	
18:01:00	250	7.5	6	22.0	
13:51:00	1440	7	6	21.5	
	7				

	Chi ha	Sieve Analysis	\sim
Sieve Date:	5/1/13	Sieve Set #:	Technician:

Sieve Size	Cumulative Weight (g)
Empty Tare	10.22
2"	10.22
11⁄2"	10.22
1"	54,57
3/4"	222.47
1/2"	415,74
3/8"	528.3
#4	734.23
#10	881.90
#20	919.73
#40	145.32
#60	962.10
#100	970.13
#200	974.94
Pan	975.82

Sieve/Hydrometer Particle Size Analysis - ASTM D421/422

ARI Job No.: WN09 ARI Sample ID.: M Setup Date: 04.24.2013 Initials: bb Sample Description: ____and

Method of size reduction: Sample Splitter [] Quartering [] Stockpile [] Whole Sample []

Tare Number	M
Tare Weight (g)	10.44
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	323.32
Hydro Test Sample Weight (g) (not including beaker weight)	99.37
Tare + Oven-Dried #10 Washed (g)	57.38
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	150.67

Hygroscopic Moisture Content		
Tare Number M		
Tare Weight (g) 1.47		
Wet Soil + Tare (g)	57.98	
Dry Soil + Tare (g) 57,70		

Hydro Beaker: M Calgon Batch #: $\frac{2.84}{2.84}$ Calgon Date: $\frac{04/28/13}{2.84}$ Technician: M Method of size reduction: Sample Splitter [] Quartering M Stockpile [] Whole Sample []

infutoritor Analytic				
4/29/2013	<u> 193285 </u>	_ Technicia	in: <u>bb</u>	
Time	∆ Time	Test Cylinder	Calgon Blank	Temp (°C)
13:58:00	START			
13:59:00	1	j0.0	6	21.5
14:00:00	2	10.0	6	21.5
14:03:00	5	9.5	6	21.5
14:13:00	15	9.0	6	21.5
14:28:00	30	8.5	6	21.5
14:58:00	60	8.0	6	21.5
18:08:00	250	7	6	22.0
13:58:00	1440	7	6	21.5
	1			

Sieve Date: <u>5/1/13</u> Sieve Set #: <u>4</u> Technician: <u>T</u>

	·····
Sieve Size	Cumulative Weight (g)
Empty Tare	10.45
2"	•
11/2"	
1"	
3/4"	
1/2"	V
3/8"	10.45
#4	16.92
#10	56.84
#20	77,62
#40	105.63
#60	131.36
#100	144,83
#200	150.31
Pan	150.51

ARI Job No.: <u>WN09</u> ARI Sample ID.: <u>N</u> Setup Date: <u>04.24.2013</u> Initials: <u>kb</u> Sample Description: <u>rocks, rusty-colored</u> <u>clayey</u> <u>sand</u>, <u>debns</u> <u>organic</u> <u>debns</u> Method of size reduction: Sample Splitter [] Quartering [] Stockpile [] Whole Sample []

Tare Number	N
Tare Weight (g)	0.10
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	267.53
Hydro Test Sample Weight (g) (not including beaker weight)	83.24
Tare + Oven-Dried #10 Washed (g)	150.39
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	200,37

Hygroscopic Moisture Content	
Tare Number	N
Tare Weight (g)	1.46
Wet Soil + Tare (g)	9.89
Dry Soil + Tare (g)	9.68

Hydro Beaker: <u>DN</u> Calgon Batch #: <u>284</u> Calgon Date: <u>04/28/13</u> Technician: <u>46</u> Method of size reduction: Sample Splitter [] Quartering [] Stockpile [] Whole Sample [4]

Hydrometer Analysis					
4/29/2013	4/29/2013 193285 Technician: 人の				
Time	∆ Time	Test Cylinder	Calgon Blank	Temp (°C)	
14:05:00	START				
14:06:00	1	34.0	6	21.5	
14:07:00	2	28.5	6	21.5	
14:10:00	5	26.0	6	21.5	
14:20:00	15	21.5	6	21.5	
14:35:00	30	18.0	6	21.5	
15:05:00	60	15.0	6	22.0	
18:15:00	250	10.5	6	22.0	
14:05:00	1440	7.5	4	215	

Sieve Date: <u>5/1/13</u>	Sieve Analysis Sieve Set #: <u>3</u>	_ Technician: <u></u>
---------------------------	---	-----------------------

	· · · · · · · · · · · · · · · · · · ·	1
Sieve Size	Cumulative Weight (g)	
Empty Tare	10.09	
2"	21,06, 10,09	\sim
11⁄2"	22.92 1009	00
1"	(0.09	
3/4"	21,06	
1/2"	22.92	
3/8"	63.54	
#4	125.99	
#10	147,38	
#20	158.02	
#40	169.72	
#60	180.56	
#100	189.22	
#200	198.06	
Pan	200,38	

Sieve/Hydrometer Particle Size Analysis - ASTM D421/422

ARI Job No.: WN09 ARI Sample ID.: 0 Setup Date: 04.24.2013 Initials: 126 Sample Description: <u>Silky Sand, vocks</u>

Method of size reduction: Sample Splitter [] Quartering [] Stockpile [4/ Whole Sample []

Tare Number	0	
Tare Weight (g)	9.96	
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	441.02	
Hydro Test Sample Weight (g) - (not including beaker weight)	99.65	103.00
Tare + Oven-Dried #10 Washed (g)	229.27	
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	292.60	

[Hygroscopic Moisture Content	
. [, Tare Number	0
51	Tare Weight (g)	1.46
Ŭ [Wet Soil + Tare (g)	41.81
[Dry Soil + Tare (g)	41.22

Hydro Beaker: O Calgon Batch #: 284 Calgon Date: 04/28/13 Technician: kb-Method of size reduction: Sample Splitter [] Quartering [] Stockpile [9] Whole Sample []

4/29/2013	4/29/2013 193285 Technician: ht			
Time	∆ Time	Test Cylinder	Calgon Blank	Temp (°C)
14:13:00	START			
14:14:00	1	22.0	6	21.5
14:15:00	2	18.0	6	21.5
14:18:00	5	17.0	6	21.5
14:28:00	15	14.5	6	21.5
14:43:00	30	12.5	6	21.5
15:13:00	60	11.0	6	22.0
18:23:00	250	8	6	220
14:13:00	1440	7	6	21.5
	1			

Hydrometer Analysis

Sieve Date: <u>5/1/13</u> Sieve Set #: <u>4</u> Technician: <u>5</u>C

Sieve Size	Cumulative Weight (g)
Empty Tare	10.02
2"	(0,02
11⁄2"	10.02
1"	30.37
3/4"	30.37
1/2"	49,54
3/8"	68.40
#4	130.26
#10	199,81
#20	232.12
#40	253,85
#60	268.97
#100	279.20
#200	288,57
Pan	292,55

ARI Job No.: WN09 ARI Sample ID.: P Setup Date: 04.24.2013 Initials: 40-	
Sample Description: medium dark-coved sand, fuel-like odar, soft rubber-like part	icles
Method of size reduction: Sample Splitter [] Quartering [] Stockpile [] Whole Sample [4	

Tare Number	Р
Tare Weight (g)	9.97
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	128.02
Hydro Test Sample Weight (g) (not including beaker weight)	78.59
Tare + Oven-Dried #10 Washed (g)	30.77
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	88.53

* SAMPLE CONSTRUED

Hygroscopic Moisture Content			
Tare Number	P		
Tare Weight (g)	1.54		
Wet Soil + Tare (g)	7.05		
Dry Soil + Tare (g)	6.96		

Hydro Beaker: P Calgon Batch #: 234 Calgon Date: 04/28/13 Technician: M Method of size reduction: Sample Splitter [] Quartering [] Stockpile [] Whole Sample []

4/29/2013 193285 Technician: <u>hb-</u>				
Time	Δ Time	Test Cylinder	Calgon Blank	Temp (°C)
14:20:00	START			
14:21:00	1	31.0	6	21.5
14:22:00	2	20.0	6	21.5
14:25:00	5	17.0	6	21.5
14:35:00	15	14.5	6	21.5
14:50:00	30	13.0	6	21.5
15:20:00	60	11.0	6	22.D
18:30:00	250	9	6	22.0
14:20:00	1440	7	6	21.5

Sieve Date: <u>5/1/13</u> Sieve Set #: <u>3</u> Technician: <u>90</u>	Sieve Date: 5/1/13	Sieve Analysis	Technician: <u>TC</u>
---	--------------------	----------------	-----------------------

Sieve Size	Cumulative Weight (g)
Empty Tare	9.98
2"	
1½"	
1"	
3/4"	
1/2"	10.61
3/8"	15:44
#4	21.13
#10	29.20
#20	34.42
#40	40.54
#60	5040
#100	65.47
#200	85.06
Pan	88.86

Sieve/Hydrometer Particle Size Analysis - ASTM D421/422

ARI Job No.: WN09 ARI Sample ID.: Q Setup Date: 04.24.2013 Initials: Jed-Sample Description: Sand, rocks

Method of size reduction: Sample Splitter [] Quartering [] Stockpile [4] Whole Sample []

Tare Number	\bigcirc
Tare Weight (g)	9.72
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	644.98
Hydro Test Sample Weight (g) (not including beaker weight)	99.22
Tare + Oven-Dried #10 Washed (g)	409.35
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	502.94

Hygroscopic Moisture Content			
Tare Number	\bigcirc		
Tare Weight (g)	1.46		
Wet Soil + Tare (g)	66.35		
Dry Soil + Tare (g)	66.21		

Hydro Beaker: _____ Calgon Batch #: $\frac{284}{\text{Quartering [i] Stockpile [] Whole Sample []}}$ Technician: $\frac{kl}{284}$

4/29/2013	<u>193+2+285</u> Technician: <u>Jeb</u>			
Time	∆ Time	Test Cylinder	Calgon Blank	Temp (°C)
14:27:00	START			
14:28:00	1	8.5	6	21.5
14:29:00	2	8.0	6	21.5
14:32:00	5	7.5	6	21.5
14:42:00	15	7.0	6	21.5
14:57:00	30	7.0	6	21.5
15:27:00	60	6.D	6	22.0
18:37:00	250	6	4 to en	21.5
14:27:00	1440	6	6	21.5
			_	

Hydrometer Analysis

Sieve Analysis					
Sieve Date: <u>5</u>	.1.13	Sieve Set #: Teo	hnician:		
	<u> </u>	<u></u>			
	Sieve Size	Cumulative Weight (g)			
	Empty Tare	9.72			
	2"				
	11⁄2"	13898			
	1"	272.30			
	3/4"	293.30			
	1/2"	334.43			
	3/8"	359.38			
	#4	382.56			
	#10	408 98			

426.19 448.48

471.72

491.100

502.77

203.11

#20

#40 #60

#100

#200

Pan

Sieve/Hydrometer Particle Size Analysis - ASTM D421/422

ARI Job No.: WN09 ARI Sample ID.: R Sample Description: Sand, large rocks	Setup Date: <u>04·24·2013</u> Initials: <u>4</u> 6
Method of size reduction: Sample Splitter []	Quartering [] Stockpile [] Whole Sample [4]

Tare Number	R
Tare Weight (g)	10.30
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	1005.89
Hydro Test Sample Weight (g) (not including beaker weight)	99.52
Tare + Oven-Dried #10 Washed (g)	666.80
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	759.82

* SAMPLE CONSUMED		
Hygroscopic Moisture		
Content		
Tare Number	R	
Tare Weight (g)	151	
Wet Soil + Tare (g)	61.42	
Dry Soil + Tare (g)	61.27	

Hydro Beaker: <u>CR</u> Calgon Batch #: <u>284</u> Calgon Date: <u>04/28/13</u> Technician: <u>*bb*</u> Method of size reduction: Sample Splitter [] Quartering [4] Stockpile [] Whole Sample []

4/29/2013	1131285 G	Technicia	an: <u>leb</u>	
Time	∆ Time	Test Cylinder	Calgon Blank	Temp (°C)
14:34:00	START			
14:35:00	1	9.5	6	21.5
14:36:00	2	9.0	6	21.5
14:39:00	5	8. D	6	21.5
14:49:00	15	8.0	6	21.5
15:04:00	30	7.0	6	22.0
15:34:00	60	7.0	6	22.0
18:44:00	250	6	6	220
14:34:00	1440		5	21.5

Hydrometer Analysis

		<u>Sieve Analysis</u>	-		
Sieve Date: _	5113	Sieve Set #:	3	Technician:	en
					0

· · · · · · · · · · · · · · · · · · ·	The second se
Sieve Size	Cumulative Weight (g)
Empty Tare	10:31
2"	
11/2"	415.71
1"	475.97
3/4"	547.30
1/2"	561.37
3/8"	578.24
#4	623.54
#10	665.59
#20	1675.93
#40	698.05
#60	734.51
#100	753.11
#200	759.64
Pan	75988

ANALYTICAL RESOURCES, INC.

Sieve/Hydrometer Particle Size Analysis - ASTM D421/422

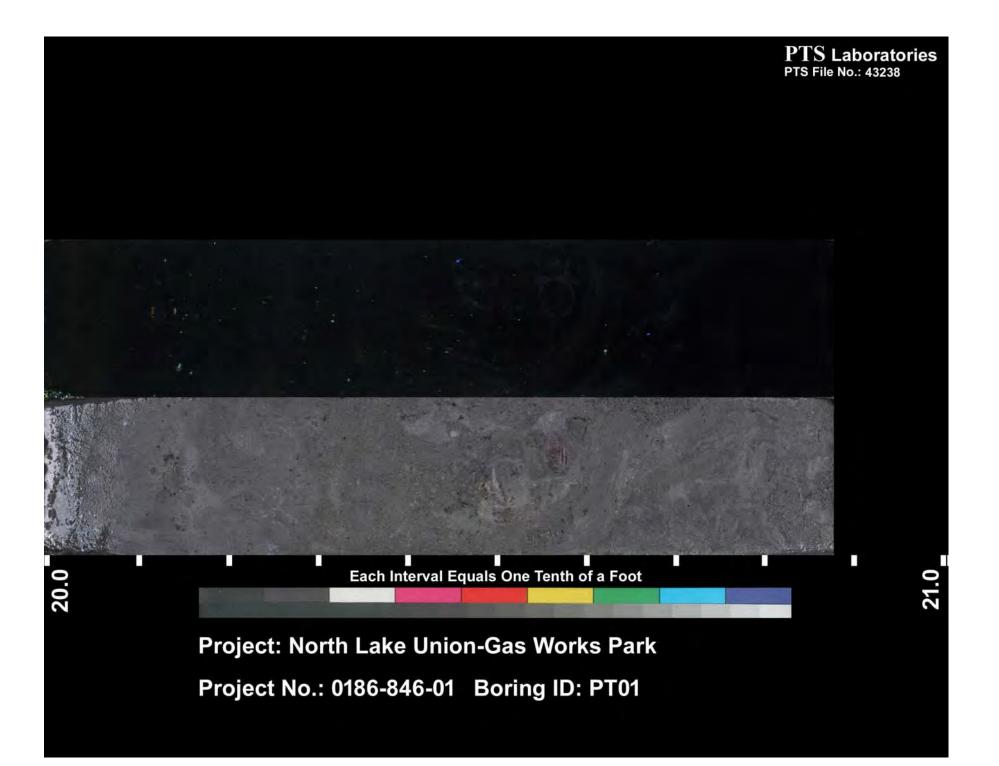
ARI JOB NO .: WN09		Setup Date:	04.24.20	13 Initials: kb
Sample Description:	Sand, hocks			
Method of size	reduction: Sample Splitter []	Quartering []	Stockpile []	Whole Sample [Y

Tare Number	S
Tare Weight (g)	10.46
Tare + Air-Dried Sample Weight (g) (before #10 preparation)	719.71
Hydro Test Sample Weight (g) (not including beaker weight)	99.18
Tare + Oven-Dried #10 Washed (g)	339.21
Tare + Oven-Dried #200 Washed (g) (including plus #10 material)	434.59

* SAMPLE CON	ISUMED
Hygroscopic Mo Content	oisture
Tare Number	S
Tare Weight (g)	1.51
Wet Soil + Tare (g)	63.59
Dry Soil + Tare (g)	63.44

(including plus #10 material) (724.57)Hydro Beaker: <u>BS</u> Calgon Batch #: <u>284</u> Calgon Date: <u>04/28/13</u> Technician: <u>166</u> Method of size reduction: Sample Splitter [] Quartering [4] Stockpile [] Whole Sample []

4/29/2013	193285	_ Technicia	in: <u>M</u>		
Time	∆ Time	Test Cylinder	Calgon Blank	Temp (°C)	
14:41:00	START				
14:42:00	1	7.5	6	21.5	
14:43:00	2	7.0	6	21.5	
14:46:00	5	6.5	6	21.5	
14:56:00	15	6.5	6	21.5	
15:11:00	30	6.0	6	22.0	
15:41:00	60	6	6 benfor	22.0	
18:51:00	250	6	6	22	
14:41:00	1440	6	6	21.5	


Hydrometer Analysis ,

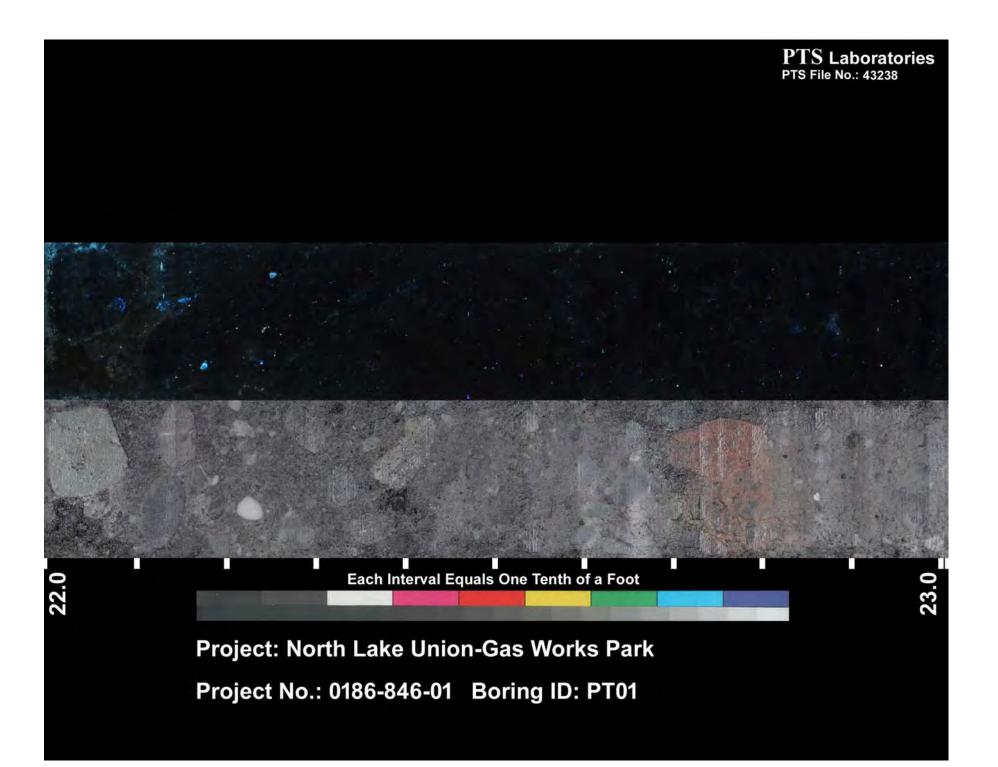
Sieve Date: _	5.1.13	Sieve Analysis Sieve Set #:	4	Technician: _	ly
-			,		0
					-

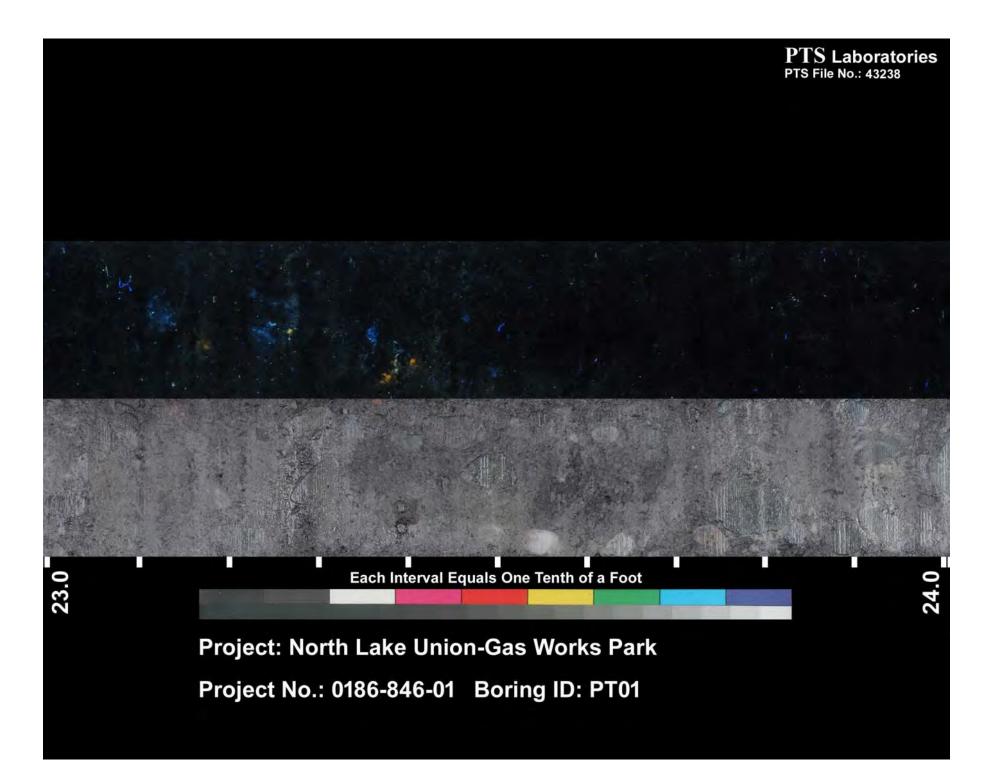
Sieve Size	Cumulative Weight (g)
Empty Tare	10.51
2"	
11/2"	
1"	76.59
3/4"	127.14
1/2"	195.37
3/8"	236.58
#4	291.02
#10	338.14
#20	347.18
#40	3(20.0)
#60	403.77
#100	425.86
#200	434:25
Pan	434.59

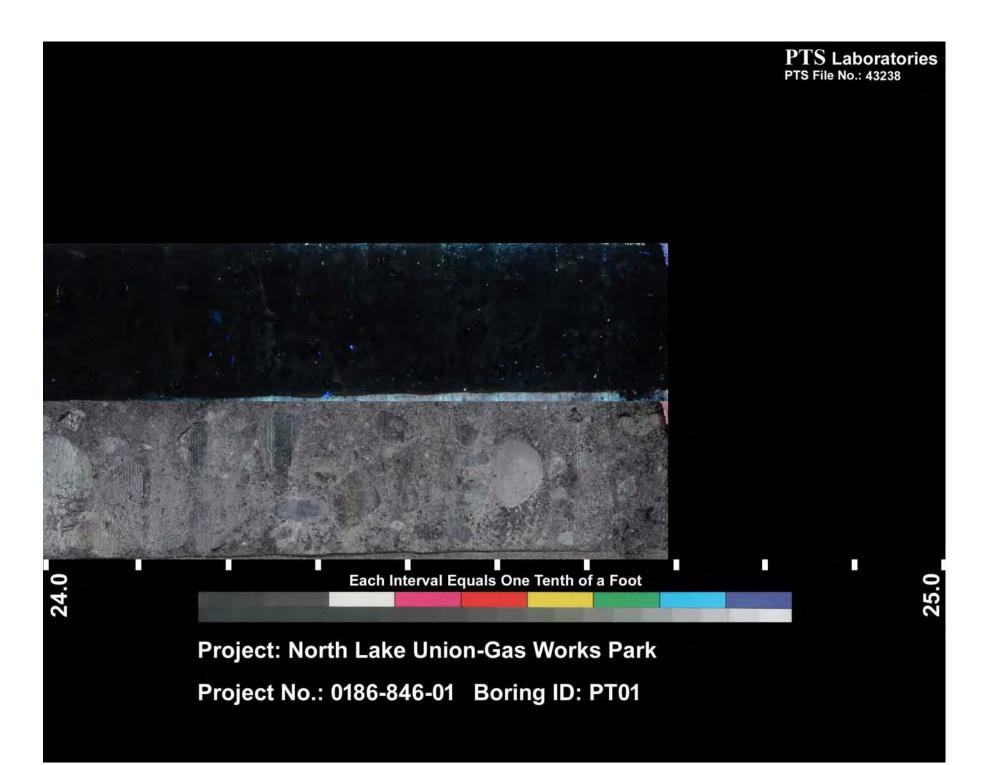
ATTACHMENT 2A-6 SI UV Photographs and Petrophysical Results

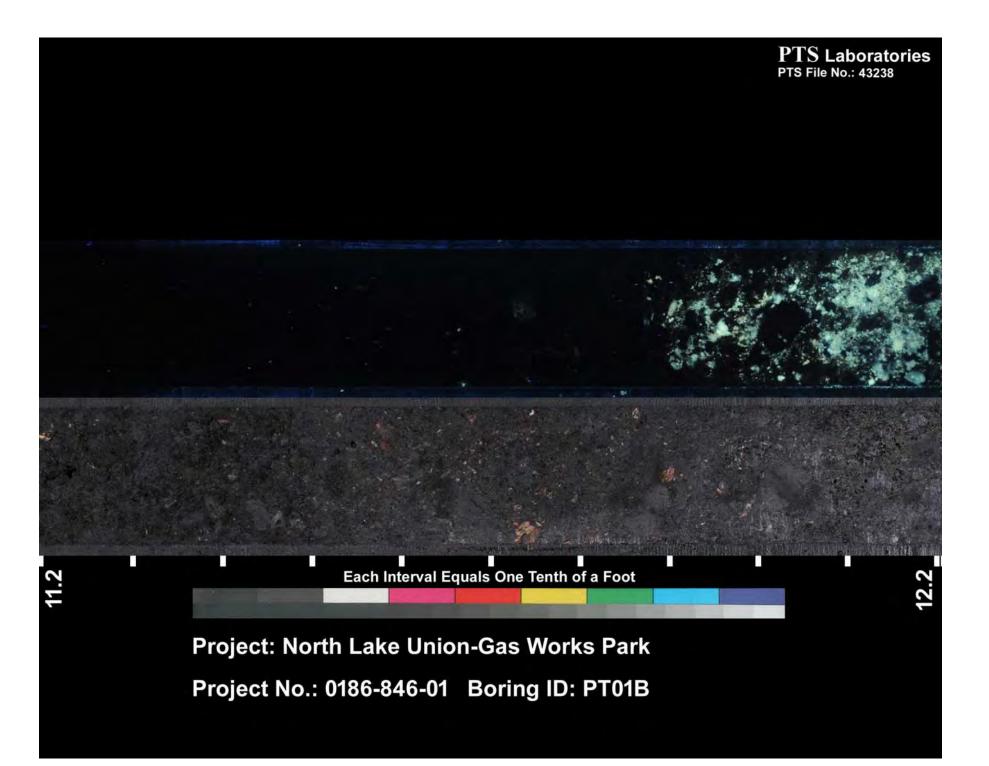
SUB-ATTACHMENT 2A-6.1 UV Photographs

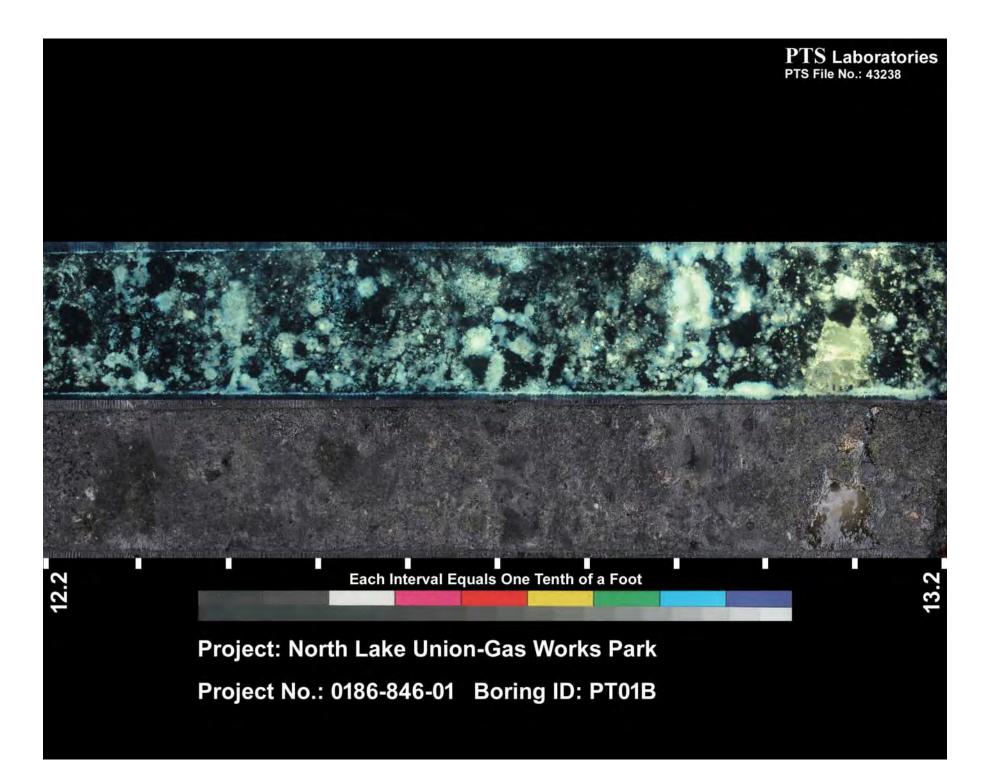
PTS Laboratories PTS File No.: 43238

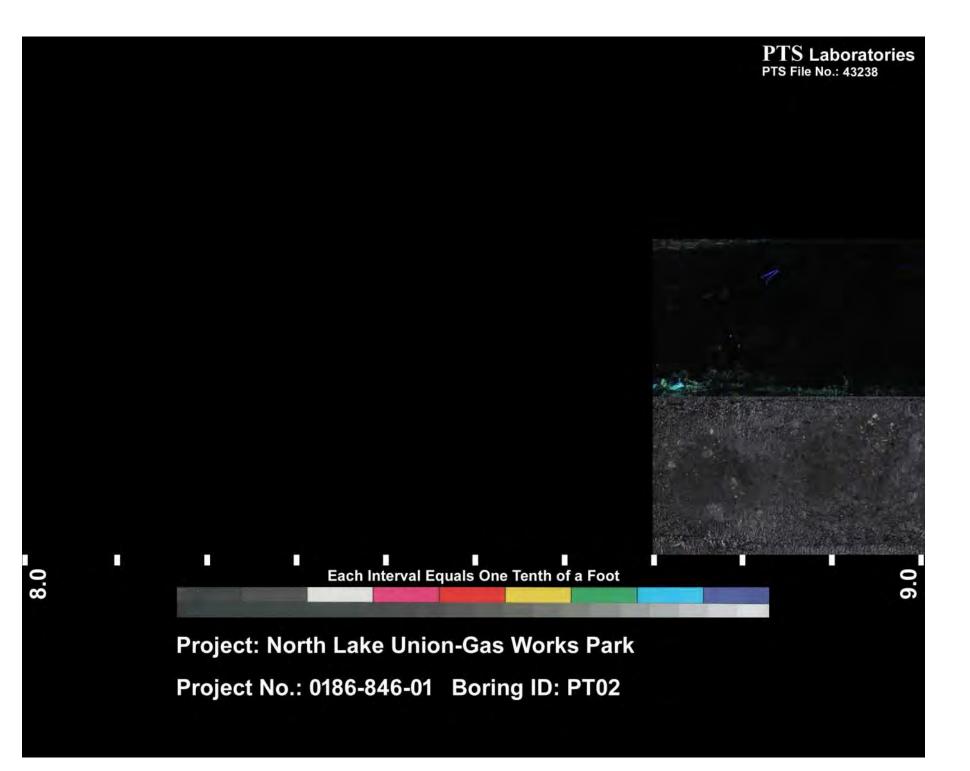

П

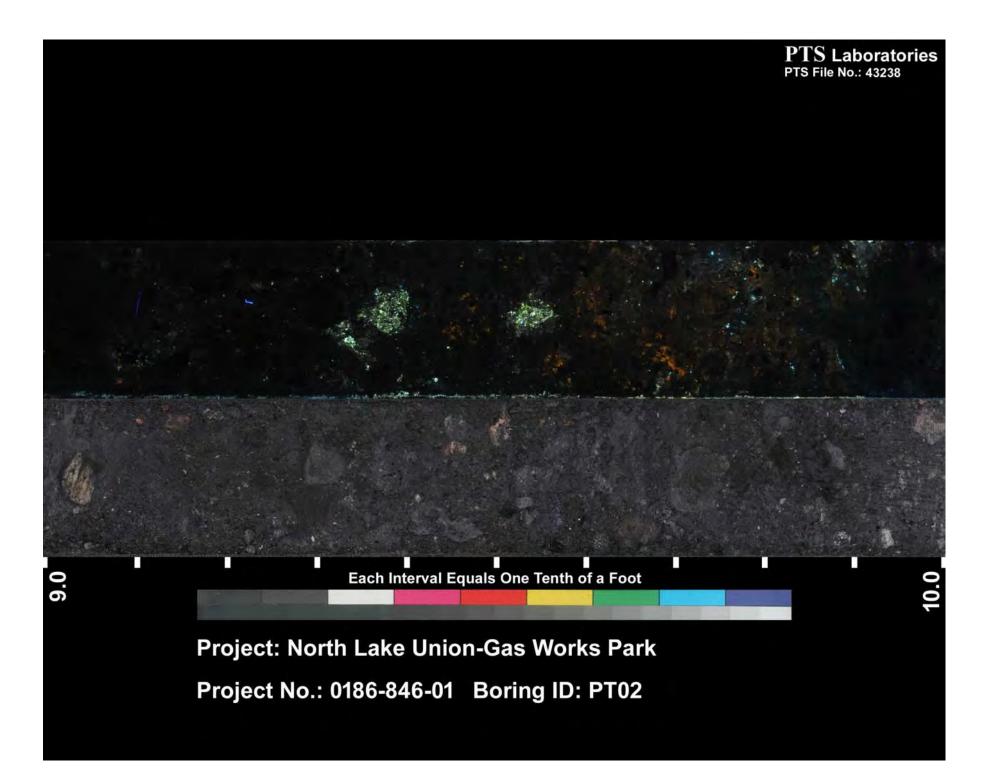

22.0

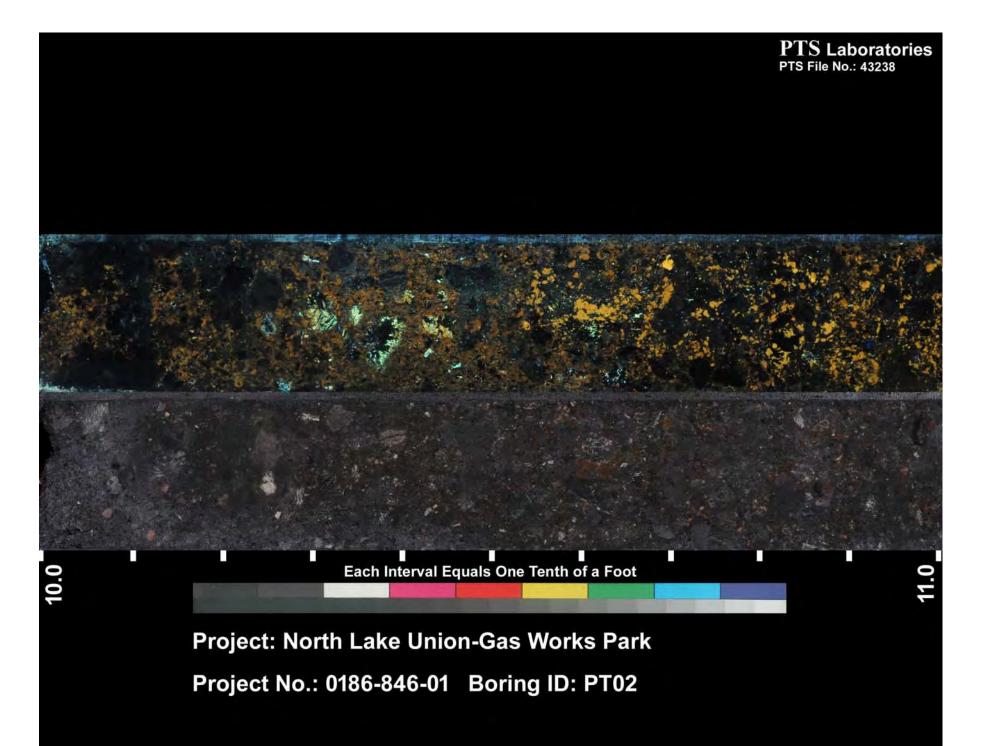


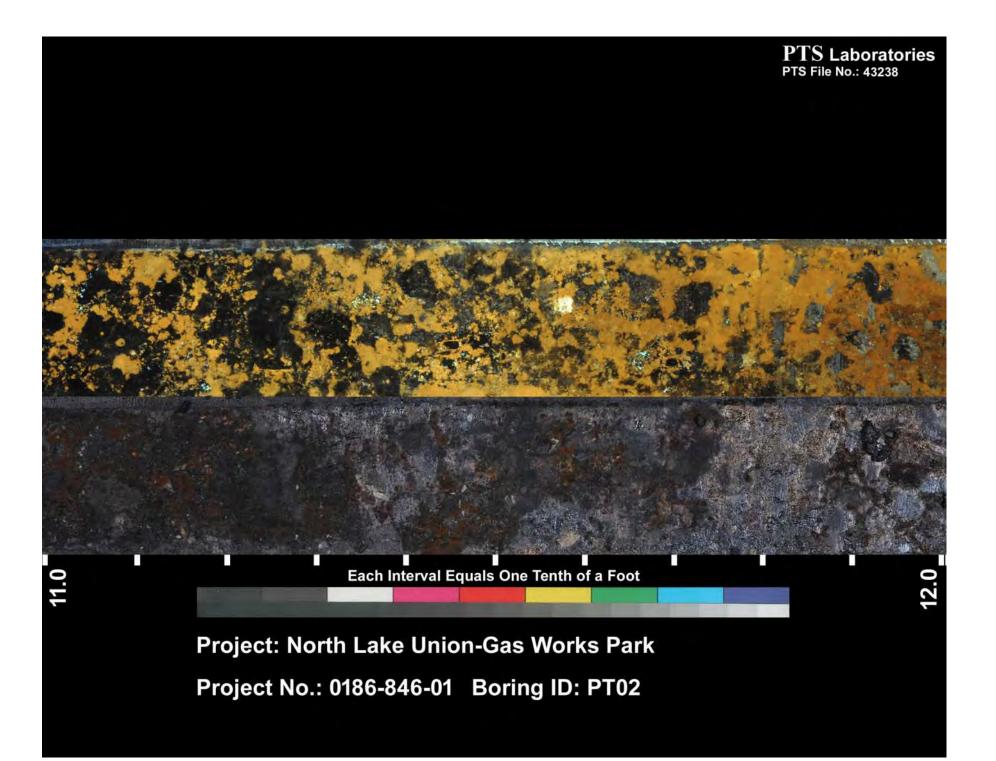

Project: North Lake Union-Gas Works Park Project No.: 0186-846-01 Boring ID: PT01

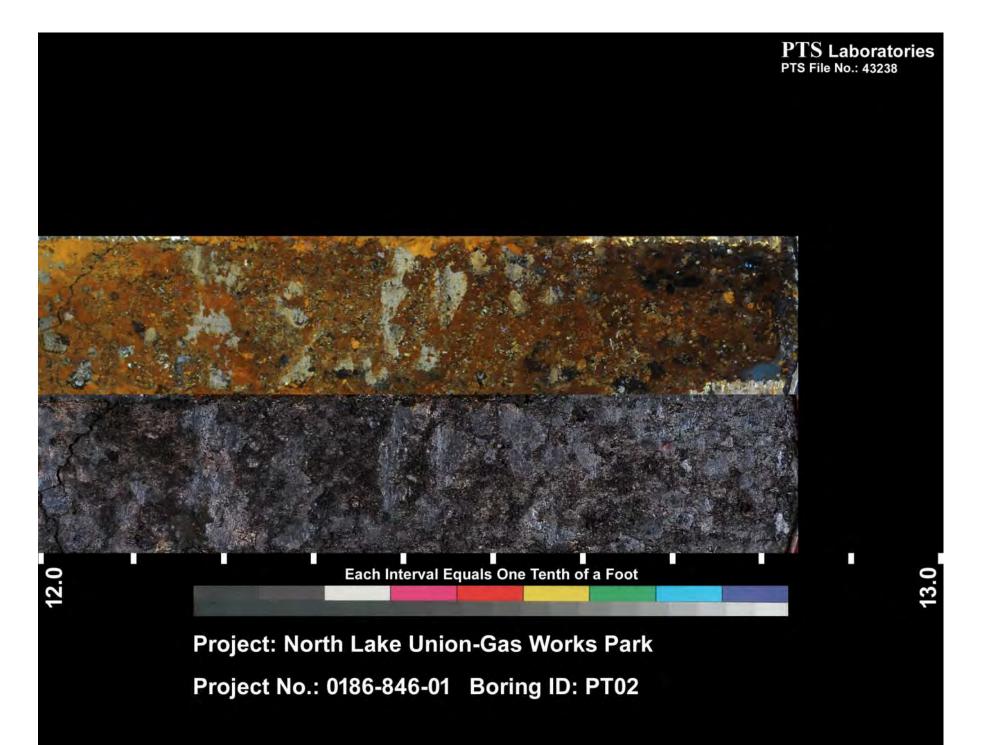

21.0

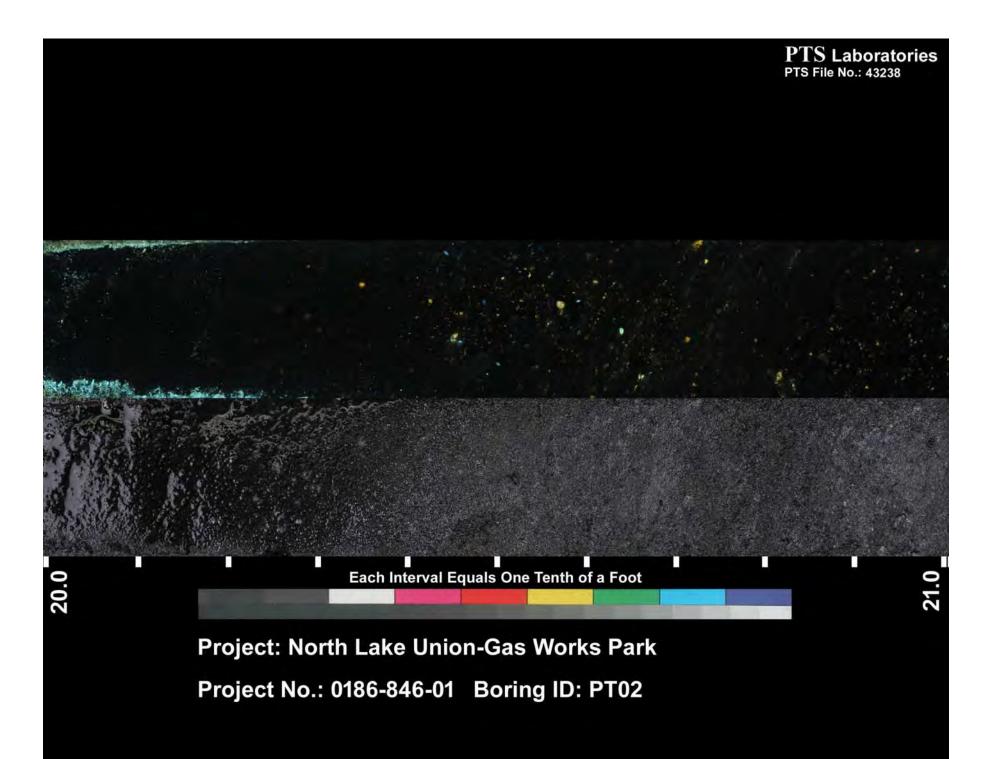


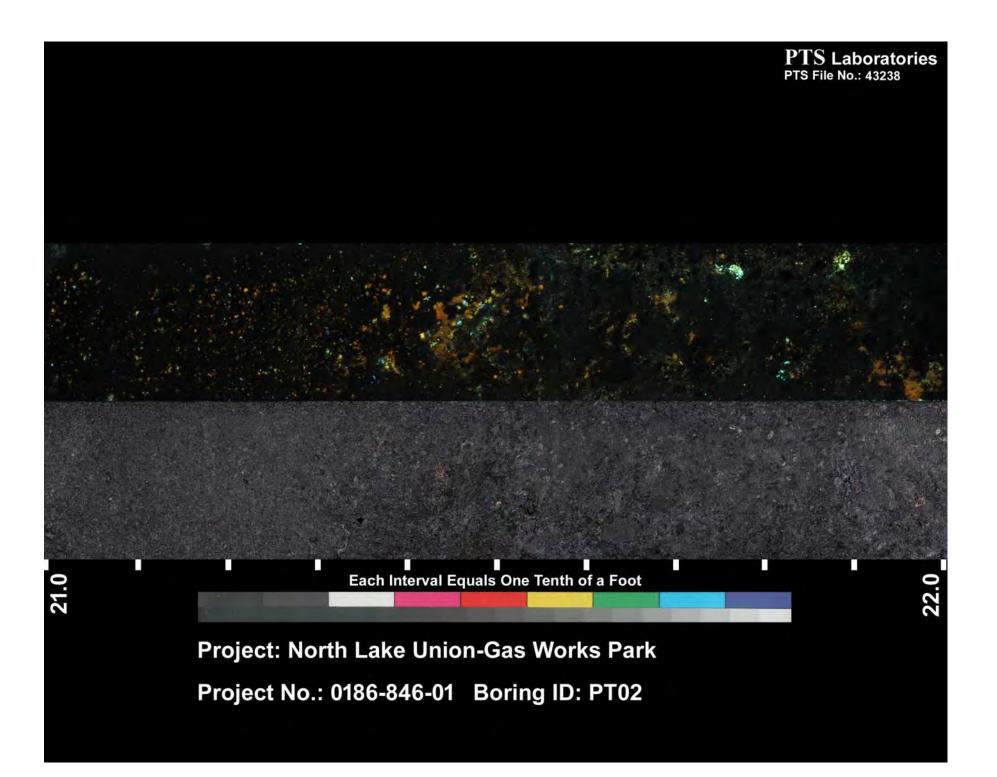


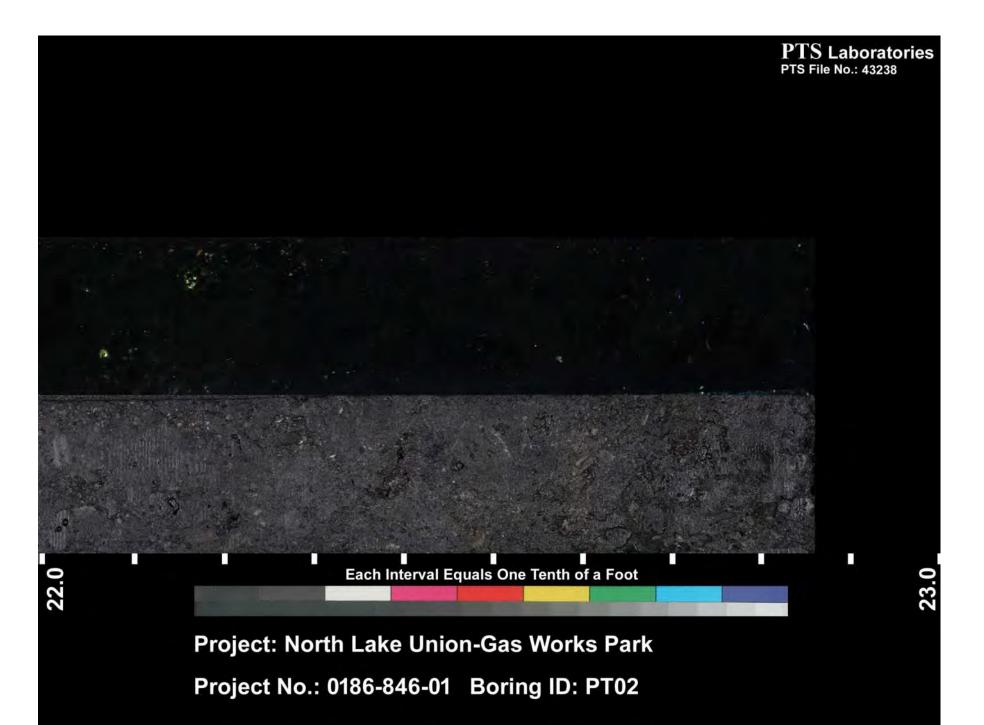


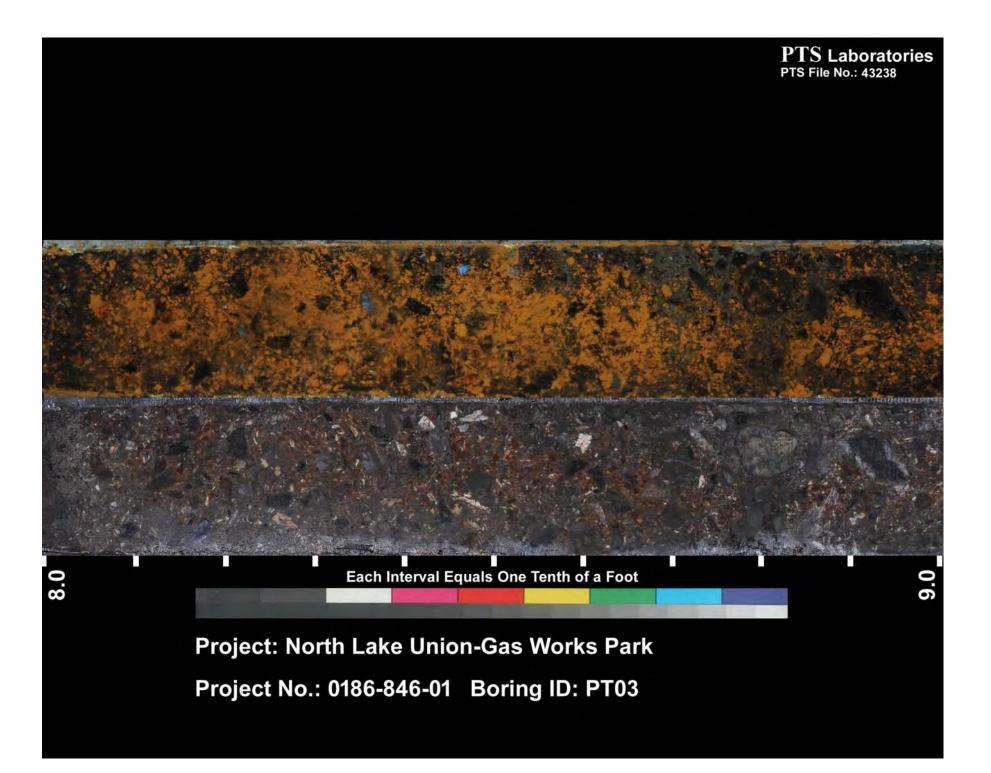


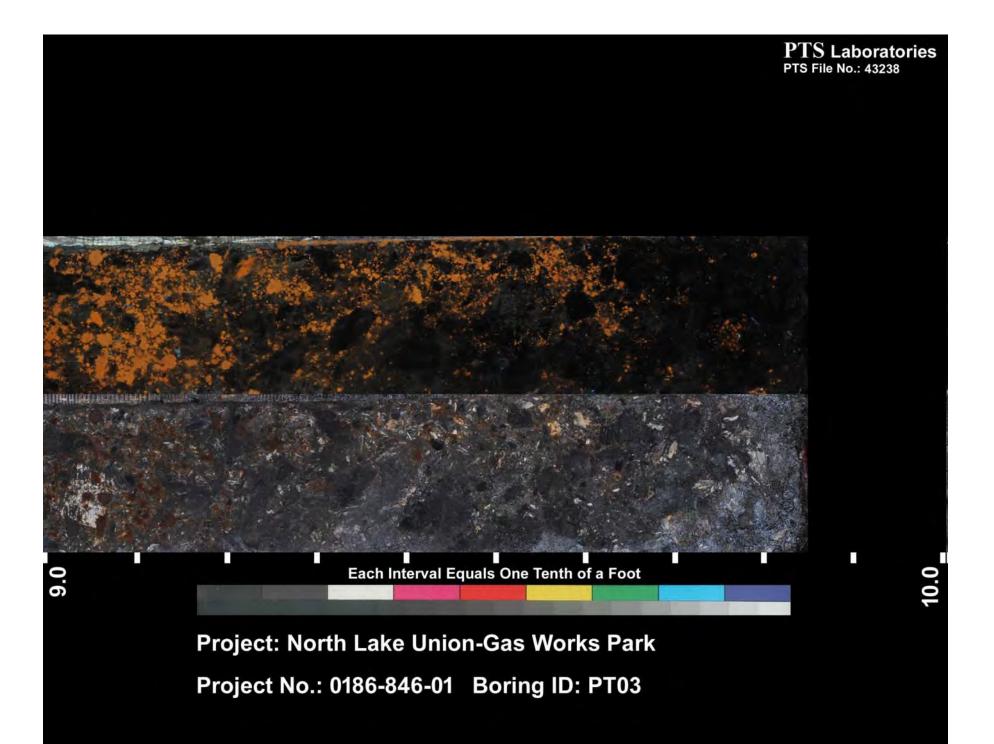


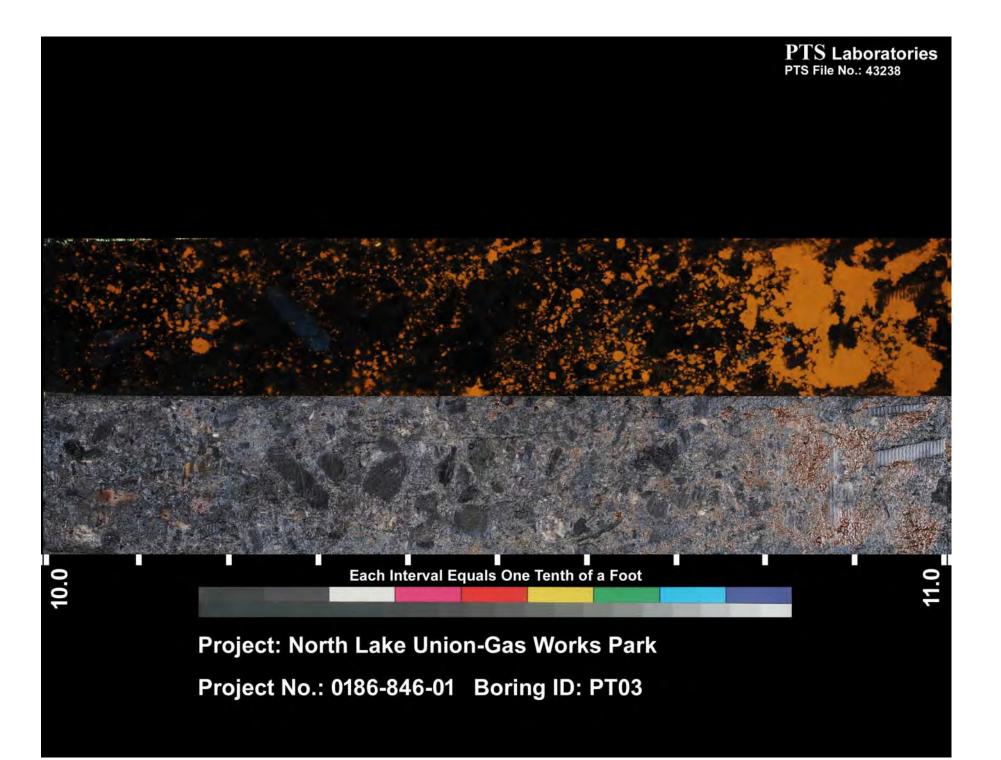


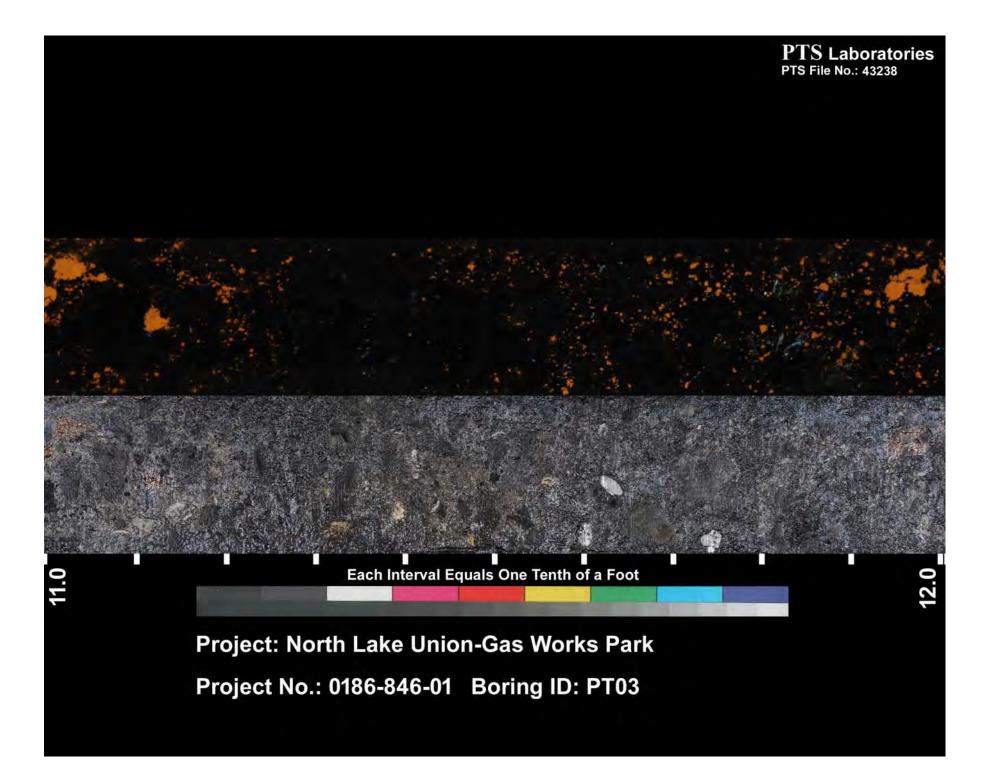


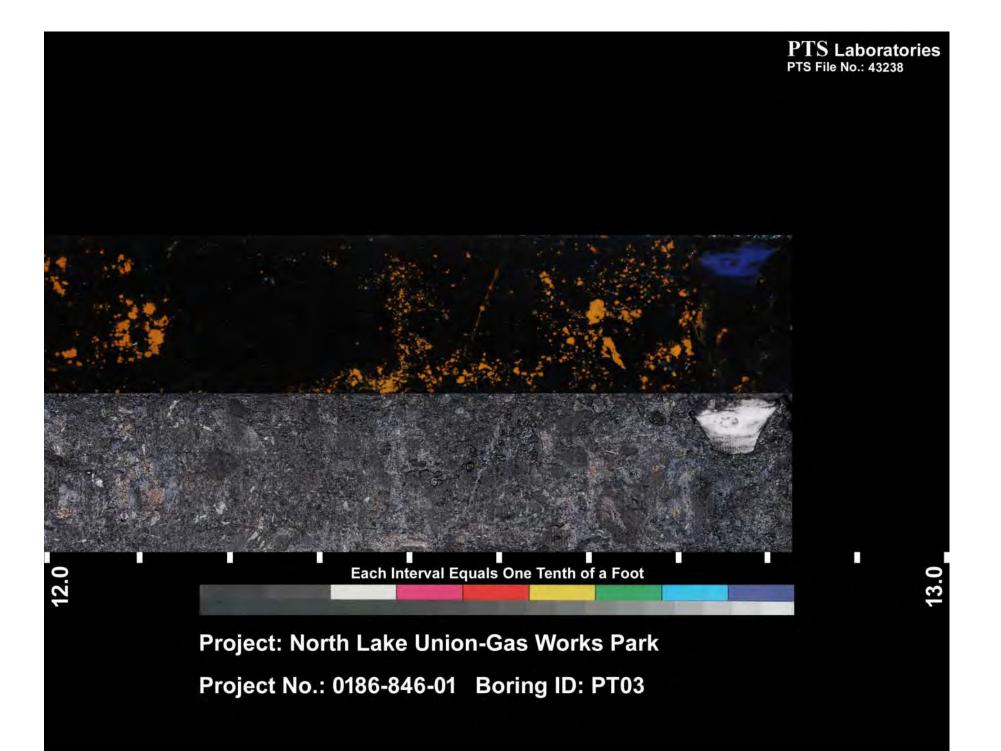


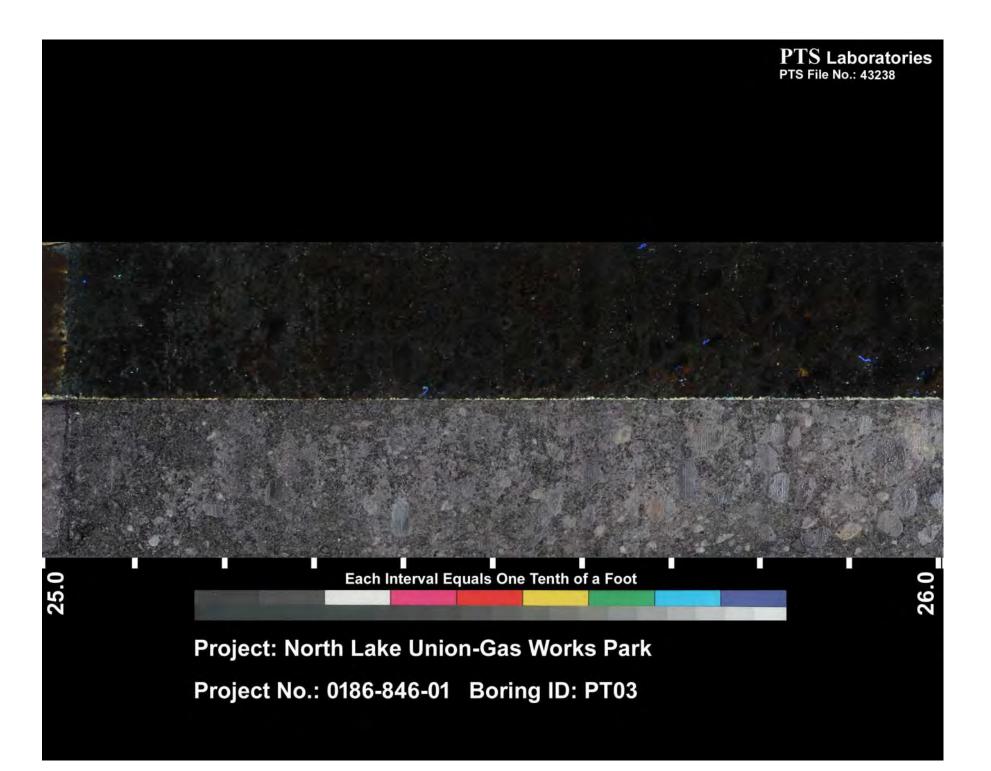


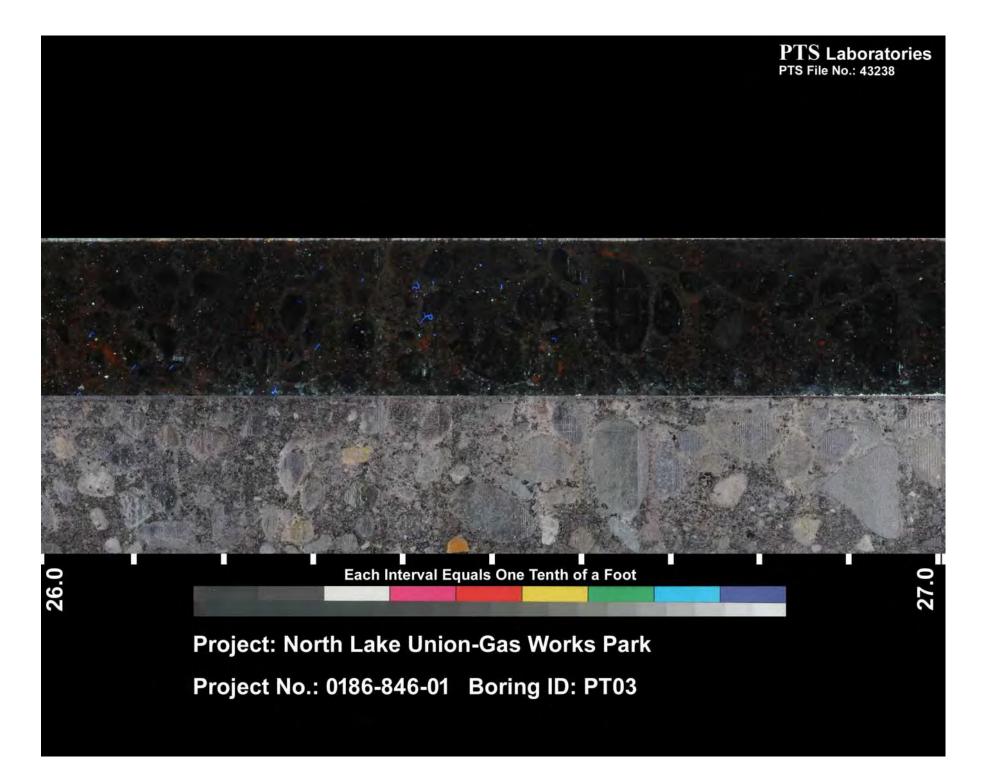


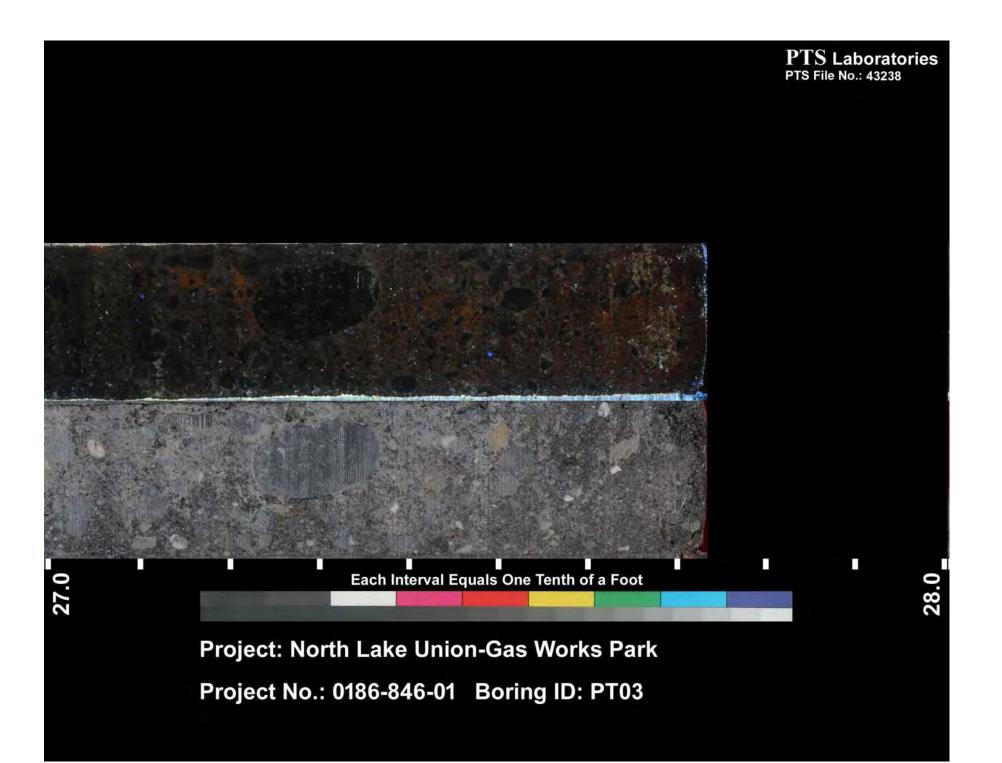


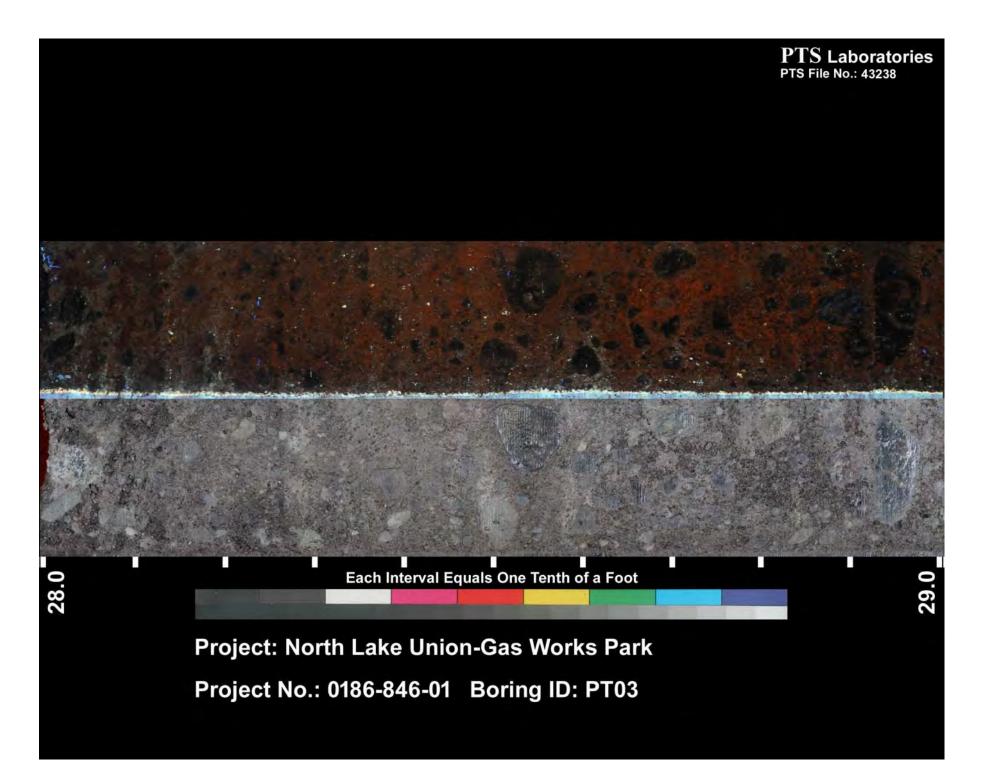


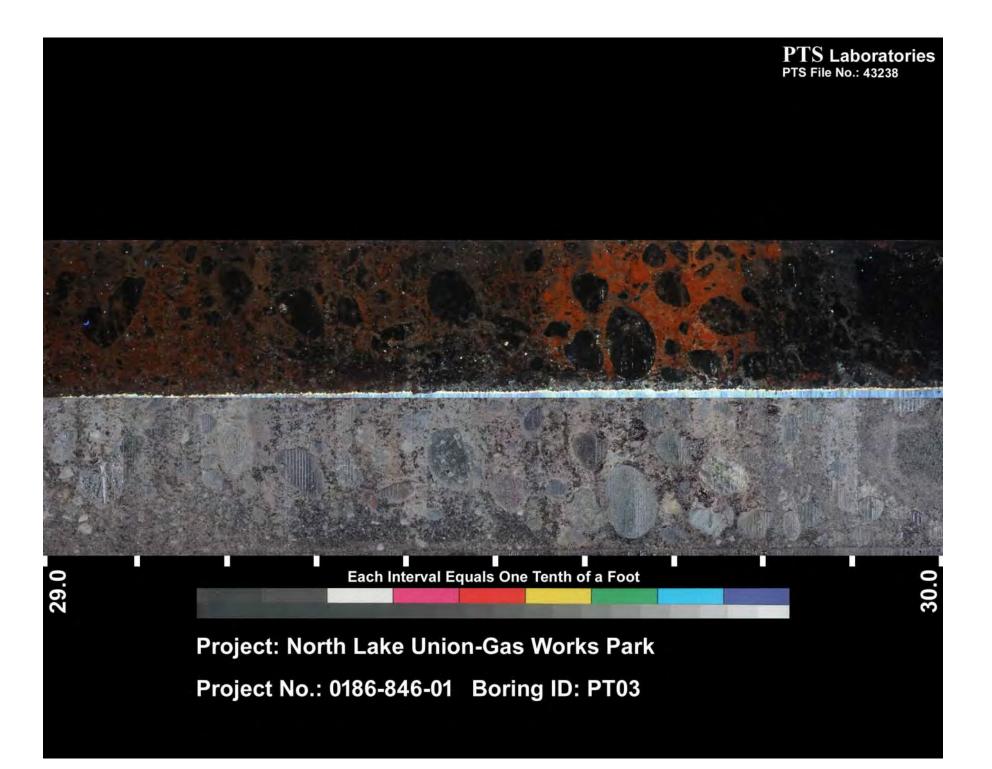












SUB-ATTACHMENT 2A-6.2 Petrophysical Data

8100 Secura Way • Santa Fe Springs, CA 90670 Telephone (562) 347-2500 • Fax (562) 907-3610

June 28, 2013

Zanna A. Satterwhite GeoEngineers, Inc. 600 Stewart Street, Suite 1700 Seattle, WA 98101

Re: PTS File No: 43238 Physical Properties Data North Lake Union-Gas Works Park; 0186-846-01

Dear Ms. Satterwhite:

Please find enclosed report for Physical Properties analyses conducted upon samples received from your North Lake Union-Gas Works Park; 0186-846-01 project. All analyses were performed by applicable ASTM, EPA, or API methodologies. Electronic versions of the core images and physical properties report have been uploaded to PTS Laboratories website, <u>www.ptslabs.com</u>. The cores remain in frozen storage and will be held indefinitely. Please note that core storage will be billed quarterly beginning September 1, 2013.

PTS Laboratories appreciates the opportunity to be of service. If you have any questions or require additional information, please contact Rachel Spitz at (562) 347-2504.

Sincerely, PTS Laboratories

Michael Mark Brady, P.G. District Manager

Encl.

PTS Laboratories

Project	Name:
Project	Number:

North Lake Union-Gas Works Park 0186-846-01

PTS File No: 43238 Client: GeoEngineers, Inc.

TEST PROGRAM - 20130530									
CORE ID	Depth ft.	Core Recovery ft.	Photo	*Free Product Mobility	*Free Product Mobility Under Water	Modified Free Product Mobility	Viscosity/ Density at 70⁰F	Viscosity/ Density at 70⁰F	Notes
Method:		Plugs:	1/4:3/4	Hor. 1.5"	Hor. 1.5"	Hor. 1.5"	ASTM D1481, D445	ASTM D1481, D445	Keep core frozen
Date Received: 20130424									
MW09-130415-LNAPL	N/A	N/A					X		200 mL LNAPL
MW09-130415-DNAPL	N/A	N/A						Х	200 mL DNAPL
DW07-130415-DNAPL	N/A	N/A						х	200 mL DNAPL
DW04-130415-DNAPL	N/A	N/A							200 mL DNAPL HOLD
DW05-130415-DNAPL	N/A	N/A							200 mL DNAPL HOLD
PZ03-130417-DNAPL	N/A	N/A						х	200 mL DNAPL
MW18-130422-DNAPL	N/A	N/A						х	200 mL DNAPL
MW03-130419	N/A	N/A							2400 mL Water for FPM
PT01B-11-13.2A	11-13.2	2.25	2	12.9				Photograph 2 feet that appear most impacted	
PT02-8-10A	8.7-10	1.30	2						
PT02-10-13B	10-13	2.85	3		11.8				
PT02-20-23	20-23	2.85	3		21.45				
PT01-20-21.1A	20-21.1	0.85	1						Photograph lower foot
PT01-21.1-22B	21.1-22	0.75	1		21.2				
PT03-8-10A	8-10	1.85	2	8.55					Only photograph 8-10'
PT03-10-13B	10-13	2.80	3		10.85				No top or bottom labeled
PT03-25-28A	25-28	2.70	3						
PT03-28-30B	28-30	2.00	2		29.7				Photograph upper 2 feet
PT01-22-25C	22-25	2.70	3						
TOTALS:	13 jars 11 cores	22.90	25	2	5	0	1	5	25

TEST PROCRAM - 20130530

Laboratory Test Program Notes

Contaminant identification: **Possible BTEX, PAH, & Arsenic**

Sample locations to be selected by GeoEngineers, Inc. personnel from core photography.

Standard TAT for basic analysis is 10 business days. Advanced tests require additional time.

*Free Product Mobility (Stepped): 250RPM, 500RPM, and 1000RPM.

Modified Free Product Mobility: Apply centrifugal force at 1000xG for one hour. Submit centrifuged sample to analytical laboratory selected by GeoEngineers, Inc. Shipping not included.

Please contact laboratory if you would like the "HOLD" samples retained longer than 30 days.

STEPPED FREE PRODUCT MOBILITY: INITIAL AND RESIDUAL SATURATIONS

(Centrifugal method: samples spun under air, stepped pressures.)

PROJECT NAME: North Lake Union-Gas Works Park PROJECT NO: 0186-846-01

		METHODS:	API R	P 40	API RP 40				DEAN-STARK	
		SAMPLE	DENS	SITY	TOTAL	APPLIED	Initial Fluid	Saturations		ntrifuging
SAMPLE	DEPTH,	ORIENTATION	DRY BULK,	GRAIN,	POROSITY,	FORCE,	WATER (Swi)	NAPL (Soi)	WATER (Srw)	NAPL (Sor)
ID.	ft.	(1)	g/cc	g/cc	%Vb	RPM or xG	SATURATION	SATURATION	SATURATION	SATURATION
PT01B-11-13.2A	12.9	н	0.65	1.87	65.1	250 RPM	80.6	6.8	75.5	6.8
NOTE:	No visible NA	PL produced. Pro	duced water c	loudy with st	trong hydrocarbon	odor.				
						500 RPM	75.5	6.8	30.9	6.8
NOTE:	No visible NA	PL produced. Pro	duced water s	lightly cloud	y with strong hydro	ocarbon odor.				
						1000 RPM	30.9	6.8	23.2	6.7
NOTE:	Trace NAPL p	roduced. Produce	ed water slight	ly cloudy.						
PT03-8-10A	8.55	н	0.85	2.46	65.4	250 RPM	78.2	8.4	76.8	8.4
NOTE:	No visible NA	PL produced. Pro	duced water c	lear with mo	derate hydrocarbor	odor.				
						500 RPM	76.8	8.4	57.1	8.4
NOTE:	No visible NA	PL produced. Pro	duced water s	lightly cloud	y, yellow tint, and n	noderate hydrocarbo	n odor.			
						1000 RPM	57.1	8.4	43.3	8.4

NOTE: No visible NAPL produced. Produced water slightly cloudy, yellow tint, and moderate hydrocarbon odor.

N/A = Not Analyzed. Vb = Bulk Volume, Pv = Pore Volume. (1) H = horizontal, V = vertical, R = remoldSoi = Initial NAPL Saturation as received prior to centrifuging at 1000xG, Swi = Initial Water Saturation as received prior to centrifuging at 1000xGSor = Residual NAPL Saturation after centrifuging at 1000xG, Srw = Residual Water Saturation after centrifuging at 1000xGWater = 0.9996 g/cc, NAPL = 0.9193 g/cc.

FREE PRODUCT MOBILITY: INITIAL AND RESIDUAL SATURATIONS

(Samples spun under water, stepped pressures.)

PROJECT NAME:	North Lake Union-Gas Works Park
PROJECT NO:	0186-846-01

			METHODS	: API F	RP 40	API RP 40		r	,	DEAN-STARK	
						-				FURATIONS, % Pv	
			SAMPLE	DENS	SITY	TOTAL	APPLIED	Initial Fluid	Saturations	After Ce	ntrifuging
SAMPLE		DEPTH,	ORIENTATION	DRY BULK,	GRAIN,	POROSITY,	FORCE,	WATER (Swi)	NAPL (Soi)	WATER (Srw)	NAPL (Sor)
ID.		ft.	(1)	g/cc	g/cc	%Vb	RPM or xG	SATURATION	SATURATION	SATURATION	SATURATION
PT02-10-13B		11.8	Н	0.44	2.00	77.8	250 RPM	47.6	46.6	49.5	46.6
	NOTE:	No visible NAP	L produced. Proc	uced water clea	r with strona	hvdrocarbon odor					
			•		J	,	500 RPM	49.5	46.6	50.0	46.6
	NOTE:	No visible NAP	L produced. Proc	uced water clea	r with strong	hydrocarbon odor					
							1000 RPM	50.0	46.6	50.6	46.6
	NOTE:	No visible NAP	L produced. Proc	uced water clea	r with strong	hydrocarbon odor	2				
PT02-20-23		21.45	Н	0.75	2.10	64.4	250 RPM	69.6	19.6	73.8	19.6
	NOTE:	No visible NAP	L produced. Proc	uced water clea	r with modera	te hydrocarbon o	dor. Fines produce	ed.			
							500 RPM	73.8	19.6	74.0	19.6
	NOTE:	No visible NAP	L produced. Proc	uced water clea	r with modera	te hydrocarbon o	dor. Fines produce	ed.			
							1000 RPM	74.0	19.6	74.4	19.6
	NOTE:	No visible NAP	L produced. Proc	uced water clea	r with modera	te hydrocarbon o	dor. Fines produce	ed.			
PT01-21.1-22E	2	21.2	н	1.69	2.70	37.2	250 RPM	70.9	10.3	75.3	10.3
1 101 21.1 226					-	-	odor. Fines produc		10.0	70.0	10.0
	NUTE:	NU VISIDIE NAP		uceu waler Ciol	ady with mode	rate nyurotarbon	500 RPM	75.3	10.3	75.3	10.3
	NOTE:	No visible NAP	L produced. Proc	uced water clou	udy with mode	rate hydrocarbon	odor. Fines produc	ced.			
							1000 RPM	75.3	10.3	75.3	10.3
	NOTE:	No visible NAP	L produced. Proc	uced water clou	udy with mode	rate hydrocarbon	odor. Fines produc	ced.			

N/A = Not Analyzed. Vb = Bulk Volume, Pv = Pore Volume. (1) H = horizontal, V = vertical, R = remoldSoi = Initial NAPL Saturation as received prior to centrifuging, Swi = Initial Water Saturation as received prior to centrifugingSor = Residual NAPL Saturation after centrifuging, Srw = Residual Water Saturation after centrifugingWater =0.9996 g/cc, NAPL = 0.9193 g/cc.

FREE PRODUCT MOBILITY: INITIAL AND RESIDUAL SATURATIONS

(Samples spun under water, stepped pressures.)

PROJECT NAME:	North Lake Union-Gas Works Park
PROJECT NO:	0186-846-01

		METHODS:	API R	P 40	API RP 40			,	DEAN-STARK	
		SAMPLE	DENS	SITY	TOTAL	APPLIED	Initial Fluid	Saturations	After Ce	ntrifuging
SAMPLE	DEPTH,	ORIENTATION	DRY BULK,	GRAIN,	POROSITY,	FORCE,	WATER (Swi)	NAPL (Soi)	WATER (Srw)	NAPL (Sor)
ID.	ft.	(1)	g/cc	g/cc	%Vb	RPM or xG	SATURATION	SATURATION	SATURATION	SATURATION
PT03-10-13B	10.85	Н	0.65	2.43	73.2	250 RPM	66.3	14.5	66.3	14.5
NOT	E: No visible NA	PL produced. Prod	uced water clea	r with strong	hydrocarbon odo	r. Fines produced.				
						500 RPM	66.3	14.5	66.3	14.5
NOT	E: No visible NA	PL produced. Prod	uced water clea	r with modera	te hydrocarbon o	dor. Fines produce	d.			
						1000 RPM	66.3	14.5	66.3	14.5
NOT	E: No visible NA	PL produced. Prod	uced water clea	r with faint-m	oderate hydrocarl	bon odor. Fines pro	duced.			
	Sample comp	ressed slightly fron	n confining pres	sure.						
PT03-28-30B	29.7	Н	1.90	2.73	30.1	250 RPM	57.3	13.8	65.0	13.8
NOT	E: No visible NA	PL produced. Prod	uced water clea	r with strong	hydrocarbon odo	r. Fines produced.				
						500 RPM	65.0	13.8	65.0	13.8
NOT	E: No visible NA	PL produced. Prod	uced water clea	r with modera	te hydrocarbon o	dor. Fines produce	d.			
						1000 RPM	65.0	13.8	65.0	13.8
NOT	E. Novisible NA	Di produced Dred	upped water alon	r with moders	ta hudrooarhan a	dor Einos produco	d			

NOTE: No visible NAPL produced. Produced water clear with moderate hydrocarbon odor. Fines produced.

N/A = Not Analyzed. Vb = Bulk Volume, Pv = Pore Volume. (1) H = horizontal, V = vertical, R = remold Soi = Initial NAPL Saturation as received prior to centrifuging, Swi = Initial Water Saturation as received prior to centrifuging Sor = Residual NAPL Saturation after centrifuging, Srw = Residual Water Saturation after centrifuging Water =0.9996 g/cc, NAPL = 0.9193 g/cc.

VISCOSITY, DENSITY, and SPECIFIC GRAVITY DATA (METHODOLOGY: ASTM D445, ASTM D1481, API RP40)

PROJECT NAME:	North Lake Union-Gas Works Park
PROJECT NO:	0186-846-01

SAMPLE	MATRIX	TEMPERATURE,	SPECIFIC	DENSITY,	VISCO	OSITY
ID	MATNA	°F	GRAVITY	g/cc	centistokes	centipoise
MW09-130415-LNAPL	NAPL	70	0.9212	0.9193	14.6	13.4

VISCOSITY, DENSITY, and SPECIFIC GRAVITY DATA (METHODOLOGY: ASTM D445, ASTM D1481, API RP40)

PROJECT NAME:	North Lake Union-Gas Works Park
PROJECT NO:	0186-846-01

SAMPLE	MATRIX	TEMPERATURE,	SPECIFIC	DENSITY,	VISCO	DSITY
ID		°F	GRAVITY	g/cc	centistokes	centipoise
MW09-130415-DNAPL	NAPL	70	1.019	1.017	22.2	22.6
DW07-130415-DNAPL	NAPL	70	1.081	1.079	46.0	49.6
PZ03-130417-DNAPL	NAPL	70	1.082	1.080	685	740
MW18-130422-DNAPL	NAPL	70	1.109	1.107	1129	1250

PTS Laboratorie	s, Inc.		CHAIN	0	F	CI	US	ТС	D۱	ſF	RE	CC	R	D							Ρ	Ά	ĠΕ	ĺ	OF	1
COMPANY		**************************************		Ι						A	NAI	YS	SIS	RE	QL	JES	Т						PO#	<u> </u>		
BEDENGWEER ADDRESS BOD Stewartst 5 PROJECT MANAGER Zama Sat PROJECT NAME BUD DEQUERT MANAGER	CITY 01te 170	o Seat	zip code 1/2 98101	-											M D2937		1 DF 40, U3004	MILOLEY		1 D445			24 HO	AROUND	5 D	AYS [RMAL_2
DIB6-846-0	51	ZUL	PHONE NUMBER 57282674 FAX NUMBER 67282752	LES	PACKAGE	HYDRAULIC CONDUCTIVITY PACKAGE	PORE FLUID SATURATIONS PACKAGE	TCEQ/TNRCC PROPERTIES PACKAGE	AGE S PACKAGE	PHOTOLOG: CORE PHOTOGRAPHY	MOISTURE CONTENT, ASTM D2216	POROSITY: TOTAL, API RP40	IIVE, ASTM D425M	ASTM D854	BULK DENSITY (DRY), API RP40 or ASTM D2937	AIR PERMEABILITY, API RP40	GBAIN SIZE DISTEIELITION ASTA DA22444		3, ASTM D4318	05174 ASTA			SAMPI INTAC		0N I	CHECK): CE
SAMPLER SIGNATURE	<u>M</u>			NUMBER OF SAMPI	SOIL PROPERTIES PACKAGE	RAULIC CONDI	IE FLUID SATUF	Q/TNRCC PROI	CAPILLAHI Y PACKAGE FLUID PROPERTIES PACKAGE	TOLOG: CORE	STURE CONTE	OSITY: TOTAL,	OSITY: EFFECI	SPECIFIC GRAVITY, ASTM D854	K DENSITY (DR	AIR PERMEABILITY, API RP40	וחאטבוט טטוונטט ואו פודה חופדםו	TOC: WALKLEY-BLACK	ATTERBERG LIMITS, ASTM D4318	VISCERTY/DEDSITY			PTS FI	LE:	230	
SAMPLE ID NUMBER	DATE	TIME	DEPTH, FT	NUN	SOIL	ΠΥΡ	РОЯ	1CE		рно	NOI	РОЯ	РОЯ	SPE	BULI	AIR		TOC	ATTE					COM	MENT	S
MWQ9-139415-LWXPL	4/15	845		1													_			X						
mw79-130415-D-VAPL	4/15	910		1																X						
2087-130415-DNAR	4/15	1240		1																X						
DW04-130415-DNAPL	4/15	1325		1																			× He	92D		
DW05-130415-DWAPL	4/15	1340		1							1 &												×h *h	LP		
PZ03-130417-DUAPL	4/17	1537-	· · · · · · · · · · · · · · · · · · ·	1.																X						
MW18-130422-DNAPL	4/22			j																X						<u> </u>
mwo3-130414=	4/19	940		b			N.,																for w	Free abili	Prze Ky	duct
																								<u>,</u>		
			65.54																							
1. RELINDUSHED BY COMPANY COMPANY COMPANY COMPANY COMPANY COMPANY PIS LABS									OMP		JISH	EDI	BY								ECEIV IPANY		3Y			
DATE 4/22 TIME		DATE	, TIN	: 3					ATE			*****			TIM					DAT				TIM	E	

New State

PTS Laboratories, Inc. • 8100 Secura Way • Santa Fe Springs, CA 90670 • Phone (562) 347-2500 • Fax (562) 907-3610 PTS Laboratories, Inc. • 4342 W. 12th St. • Houston, TX 77055 • Phone (713) 316-1800 • Fax (713) 316-1882

PTS Laboratorie	s, Inc.		CHAIN	0	F	сι	JS	TC)D'	YF	RE	СС)R	D								P/	40	GE 1 OF 1
COMPANY GED ENGWEERS	_		инан — — — — — — — — — — — — — — — — — —							A	NA	LYS	SIS	RE	QU	ES	T'							PO#
ADDRESS 600 Stewart 520 PROJECT MANAGER Canna Sa PROJECT NAME	CITY 12 1700 + 12 - 121	Seatt	zip code 980/			щ	111				-				TM D2937	נמסים סנם ום	PI HP40, U5084	22/4464M						TURNAROUND TIME 24 HOURS
PROJECT NUMBER		(206	5) 7282674	ES	PACKAGE	HYDRAULIC CONDUCTIVITY PACKAGE	PORE FLUID SATURATIONS PACKAGE	TCEQ/TNRCC PROPERTIES PACKAGE	GE Package	PHOTOLOG: CORE PHOTOGRAPHY	MOISTURE CONTENT, ASTM D2216	Pi RP40	POROSITY: EFFECTIVE, ASTM D425M	\STM D854	BULK DENSITY (DRY), API RP40 or ASTM D2937	AIR PERMEABILITY, API RP40 UNDEALLIN COMPLICATIVITY FEAGOO AN ENVIRONMENT	IVITY, EPA9100, A	GHAIN SIZE DISTRIBUTION, ASTM D422/4464M	X: VVALKLEY-BLACK FPBFPG IMITS ASTM DA318	E D h et				OTHER: SAMPLE INTEGRITY (CHECK): INTACT ON ICE PTS QUOTE NO.
EIBE-846- SITE LOCATION SAMPLER SIGNATORE	ttle		,	OF SAMPLES	PERTIES P	IC CONDUC	JID SATUR/	RCC PROPE	CAPILLARITY PACKAGE	G: CORE P	E CONTEN	POROSITY: TOTAL, API RP40	Y: EFFECTIV	SPECIFIC GRAVITY, ASTM D854	JSITY (DRY	AIR PERMEABILITY, API RP40				Photestaphy				Q13-Q63 PTS FILE: 43238
SAMPLE ID NUMBER	DATE	TIME	DEPTH, FT	HH	SOIL PRO	HYDRAUL	PORE FLI	TCEQ/TNF	CAPILLAR FI UID PRI	PHOTOLC	MOISTUR	POROSITY	POROSITY	SPECIFIC	BULK DEN			GHAIN SIZ		UV Ph	1			COMMENTS
PTØ1B-11-13.2A	4/17	1122	11 - 13.Z	1																				
PT02-8710A	4/17	1348	87-10	ı																				
PT\$Z-10-13B	4/17	134 8	10-13	1																				
PT02-18-20 A	4/17	-1420-	-18-20-	-4	-																			
PT#Z-20-23 5	4/17	14zo	20-23	1							1 2									-			ĺ	
PTØ1-20-21.1 A	4/17	1028	20-21,[1																				
PTB1-21.1-22.B	4/17	10Z8	Z[.]-ZZ	1																				
PT\$3-8-10 A	4/18	1015	8-10	1			<u> </u>																	
PTØ3-10-13 B	4 (18	1015	10-13	1																				
PTØ3-25-28A	4/18	1100	25-28	1				, , ,																
PT\$3-28-30B	4/18	1100	28-30	1																				
COMPANY	2. RECEIVED BY COMPANY						- 14.3 °F COMPANY								4. RECEIVED BY COMPANY									
DATE H/22	250	DATE 4/2	CABS 111 4/13 10	ИЕ 9.1 З	5				DATE						TIME	Ξ				DA	TE			TIME

 PTS Laboratories, Inc. • 8100 Secura Way • Santa Fe Springs, CA 90670 • Phone (562) 347-2500 • Fax (562) 907-3610

 PTS Laboratories, Inc. • 4342 W. 12th St. • Houston, TX 77055 • Phone (713) 316-1800 • Fax (713) 316-1882

PTS Laboratorie	-		CHAIN				50																E Z OF	
COMPANY GEOENGINEERS										1A	JAL	YS	IS R	EQ	UE	ST				,			PO#	
ADDRESS	CITY	NAN	ZIP CODE											137		, D5084	Σ						TURNAROUND TIME 24 HOURS 🔲 5 I	days [Ormal [
PROJECT MANAGER						ш								TM D29		PI RP40	22/4464						72 HOURS 🛛	
PROJECT NAME	<u></u>	F	PHONE NUMBER			ACKAG	ACKAGI	ACKAGI		АРНҮ	2216		D425M	0 or AS		49100, A	SIM D4	318				- i	OTHER:	
PROJECT NUMBER			FAX NUMBER	- 	CKAGE	гі ітү Р	IONS P/	ATIES P/	ACKAGE	IOTOGR.	ASTM D	I RP40	E, ASTM STM D85	API RP4	91 RP40	νιτγ, ΕΡ/	IIUN, AS	STM D4:	parte	1			INTACT ON PTS QUOTE NO.	
ITE LOCATION				SAMPLES	IES PA	NDUC	TURAT	ROPE	AUKAG TIES P	ORE PL	VTENT,	FAL, AP	ECTIVI	(DRY),	-ITΥ, AF	IDUCTI		MITS, A	Mra	-				
SAMPLER SIGNATURE					SOIL PROPERTIES PACKAGE	HYDRAULIC CONDUCTIVITY PACKAGE	PORE FLUID SATURATIONS PACKAGE	TCEQ/TNRCC PROPERTIES PACKAGE	CAPILLAHI Y PACKAGE FLUID PROPERTIES PACKAGE	PHOTOLOG: CORE PHOTOGRAPHY	MOISTURE CONTENT, ASTM D2216	POROSITY: TOTAL, API RP40	POROSITY: EFFECTIVE, ASTM D425M SPECIFIC GRAVITY. ASTM D854	BULK DENSITY (DRY), API RP40 or ASTM D2937	AIR PERMEABILITY, API RP40	HYDRAULIC CONDUCTIVITY, EPA9100, API RP40, D5084	GHAIN SIZE DISTHIBUTION, ASTM D422/4464M TOC: WALKI EV-RLACK	ATTERBERG LIMITS, ASTM D4318	Photograph.			F	PTS FILE: <i>43</i> 238	5
SAMPLE ID NUMBER	DATE	TIME	DEPTH, FT	NUMBER OF	SOIL P	НУDR/	PORE	TCEQ/	FLUID	PHOTO	MOIST	PORO	POROS	BULK [AIR PE	НҮБRА		ATTER	\sim				COMMEN	TS
Mel-22-25C	4/17	1028	22-25																					
A water																		_						
			- man of the data and the second															_						
							×.														·			
:						_																		
								<u>}</u>	<u>\</u>					<u> </u>										
. RELINQUISHED BY		2. RECEI							. REL														/	
COMPANY	D.		· Li		مر.	14.	39															זט י		
at 100 more	5	PE	Y S LABS						OMP	AN Y									COI	IVIPA	IN Y			

 PTS Laboratories, Inc. • 8100 Secura Way • Santa Fe Springs, CA 90670 • Phone (562) 347-2500 • Fax (562) 907-3610

 PTS Laboratories, Inc. • 4342 W. 12th St. • Houston, TX 77055 • Phone (713) 316-1800 • Fax (713) 316-1882

ATTACHMENT 2A-7 SI Slug Testing

Table of Contents

1.0	INTRODUCTION	2A-7-1
2.0	FIELD PROCEDURES	2A-7-1
3.0	DATA ANALYSIS	2A-7-1
4.0	REFERENCES	

LIST OF TABLES

Table 2A-7-1. Hydraulic Conductivity Values

LIST OF FIGURES

Figures 2A-7-1 through 2A-7-7. Plots

ATTACHMENT 2A-7 SLUG TESTING

1.0 INTRODUCTION

Slug testing was performed on seven wells at the Site between April 24 and 25, 2013. The purpose of the slug testing was to evaluate the hydraulic conductivity (*K*) within a subset of wells installed along the shoreline during the 2013 Supplemental Investigation (SI). The wells tested were MW-32S, MW-32D, MW-33S, MW-36S, MW-36D, MW-39S and MW-39D, and consisted of both shallow- ("S") and deep- ("D") screened wells. Groundwater levels were measured as hydrostatic pressures during testing by using a submerged 15-pounds per square inch (psi) INW PT2X vented pressure transducer and combined datalogger. Hydraulic conductivity was calculated using the Bouwer and Rice (1976) method or the Butler and Garnett (2000) method. Plots of the slug test response and type curves analyzed are presented in Figures 2A-7-1 through 2A-7-7. Table 2A-7-1 shows interpreted hydraulic conductivity values.

2.0 FIELD PROCEDURES

Prior to slug testing, the pre-test static water level was measured in each well using a decontaminated interface probe/water-level tape to measure depth to water from a surveyed reference mark at the top of the well casing. The pressure transducer/datalogger was programmed to record hydrostatic submergence pressure eight times per second, supplemented with manual electronic water-level meter readings before, during and after each slug test.

Each slug test was performed in two stages, resulting in a falling-head stage, followed by a rising-head stage:

- 1. A slug (weighted 5-foot length of sealed polyvinyl chloride [PVC] casing) of known volume was rapidly lowered into the well, causing displacement of the water level above its initial level. The water level in the well was monitored until it returned (fell) to the approximate pre-test water level. This part of the test is known as the falling-head stage.
- 2. The slug was then rapidly removed from the well, causing the water level to fall below its initial level. The water level in the well was then monitored until it returned (rose) to the approximate pre-test water level. This part of the test is known as the rising-head stage.

3.0 DATA ANALYSIS

After the sensor data were downloaded and processed using spreadsheet software, the hydraulic response was evaluated to determine the appropriate analytical method. In soils of moderate to low permeability, the recovery of the water level (rising or falling) back to its initial level is usually in the form of a monotonic trend, as seen in the slug test response from well MW-32S (Figure 2A-7-1). This type of hydraulic response has been classified as "overdamped" in the technical literature (Butler and Garnett 2000). In higher-permeability soils, where much rapid rates of recovery are possible, the response is classified as "underdamped."

Hydraulic response to slug testing in wells MW-36S and MW-39S exhibited an underdamped response, which is typically observed as decaying oscillations in water level following insertion or removal of the slug (Neville 2011), rather than the monotonic response. This type of response is typically due to high hydraulic conductivity of the aquifer in the vicinity of the well. Data from wells exhibiting this type of response were analyzed using a high-conductivity analytical method for slug tests developed by Butler and Garnett (2000). The authors developed their analytical method based on the work of Van Der Kamp (1976) and Kipp (1985), refining the method to be applicable to wells that do not penetrate the entire thickness of the aquifer. The Butler and Garnett (2000) method is widely used in slug test data analysis and can be applied to data from both confined and unconfined aquifers. Slug test data from all wells were analyzed assuming unconfined aquifer conditions.

The falling-head test data were not analyzed in wells where the water table occurred within the screened interval (i.e., in wells MW-33S and MW-39S). This is the case because the falling-head response may have been affected by partial well water drainage into the vadose zone. In each of these instances, the falling-head response occurs faster than the rising-head response. Therefore, only the rising head test data were used to calculate the hydraulic conductivity at these locations.

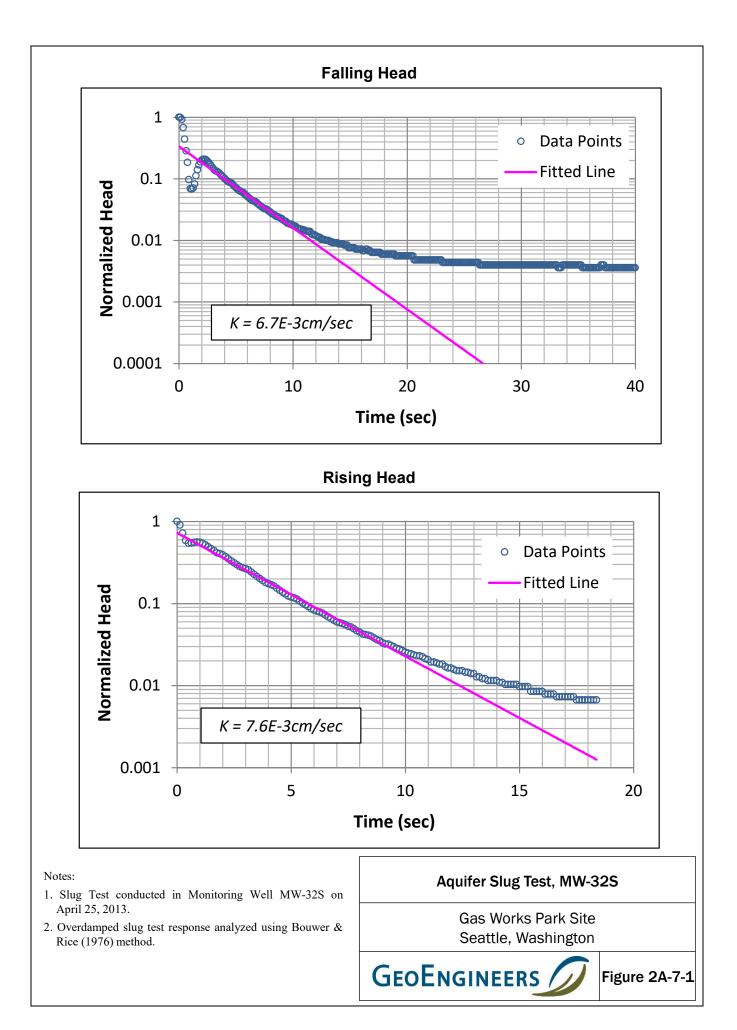
4.0 REFERENCES

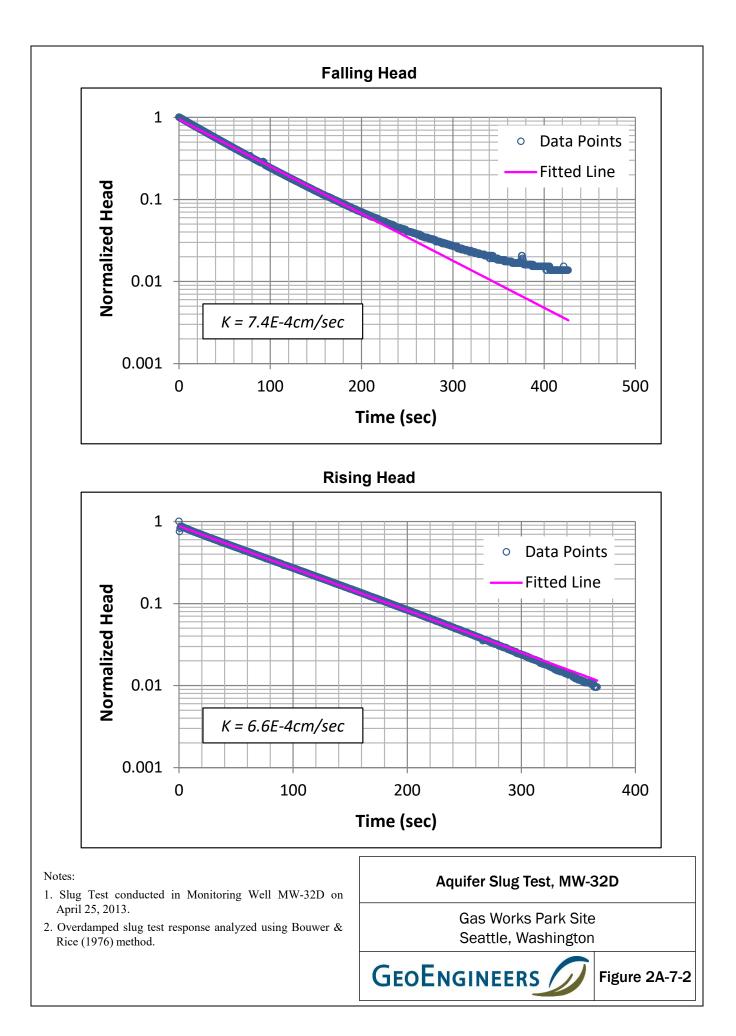
- Bouwer, H., and R.C. Rice. 1976. "A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells." *Water Resources Research* 12 (3):5.
- Butler, J.J., and E.J. Garnett. 2000. Simple Procedures for Analysis of Slug Tests in Formations of High Hydraulic Conductivity Using Spreadsheet and Scientific Graphics Software. Kansas Geological Survey Open-File Rept. 2000-40.
- Kipp. 1985. "Type Curve Analysis of Inertial Effects in the Response of a Well to a Slug Test." *Water Resources Research* 21 (9):12.
- Neville, C.J. 2011. "Critical Thinking in Aquifer Test Interpretation." Presented in Conjunction with the 8th Washington Hydrogeology Symposium, Tacoma, Washington, April 28, 2011.
- VanDerKamp, G. 1976. "Determining Aquifer Transmissivity by Means of Well Response Tests: The Underdamped Case." *Water Resources Research* 12 (1):6.

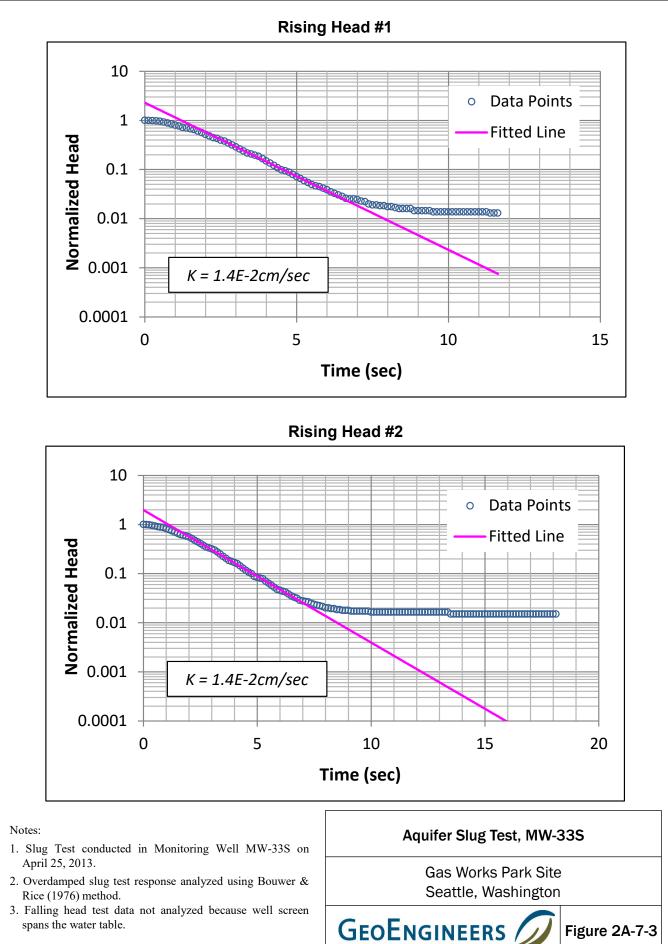
Table 2A-7-1

Hydraulic Conductivity Values Gas Works Park Site Seattle, Washington

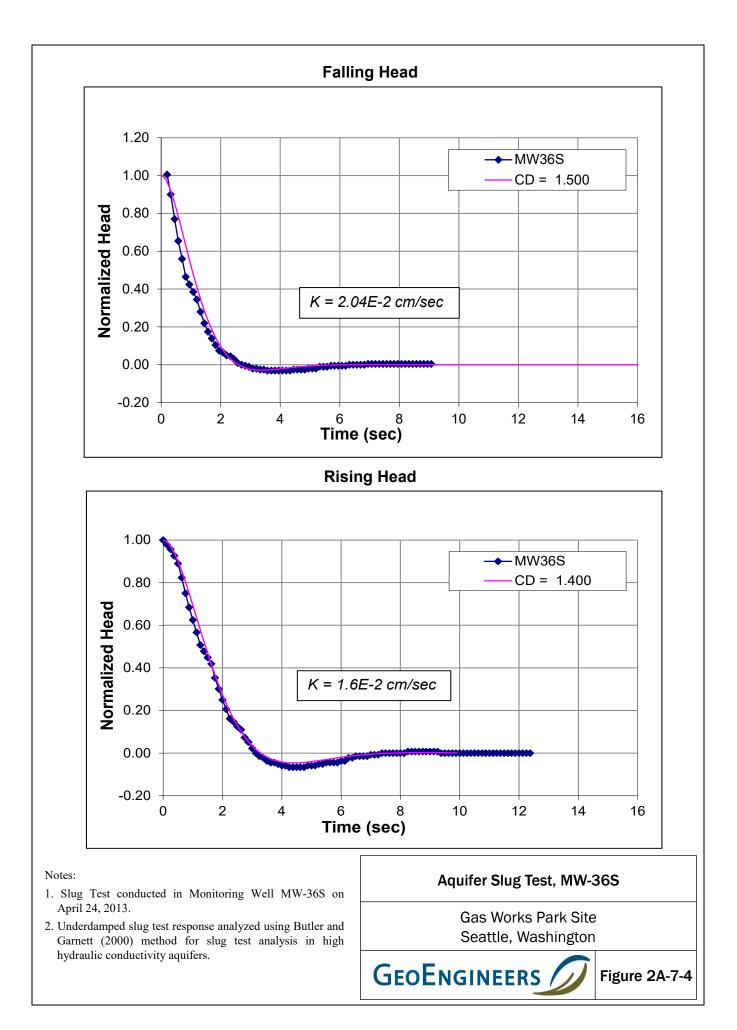
Well	Hydraulic Conductivity (K, cm/sec)	Well Screened Interval (ft bgs)	Hydrogeologic Unit
MW-32S	7.15E-03	16.5 - 31	Fill
MW-32D/GEO-1	7.00E-04	42 - 46.8	Qva/Qpgt
MW-33S(b)	1.40E-02	13.1 - 22	Fill/Qvr
MW-36S	1.82E-02	8 - 22.8	Fill
MW-36D	9.35E-05	29.3 - 33.8	Qvr/Qpgt
MW-39S	4.05E-02	3.9 - 14	Fill/Qva
MW-39D	7.00E-04	17.1 - 21.8	Qva/Qpgt
Mean	1.16E-02		-
Standard Deviation	1.46E-02		

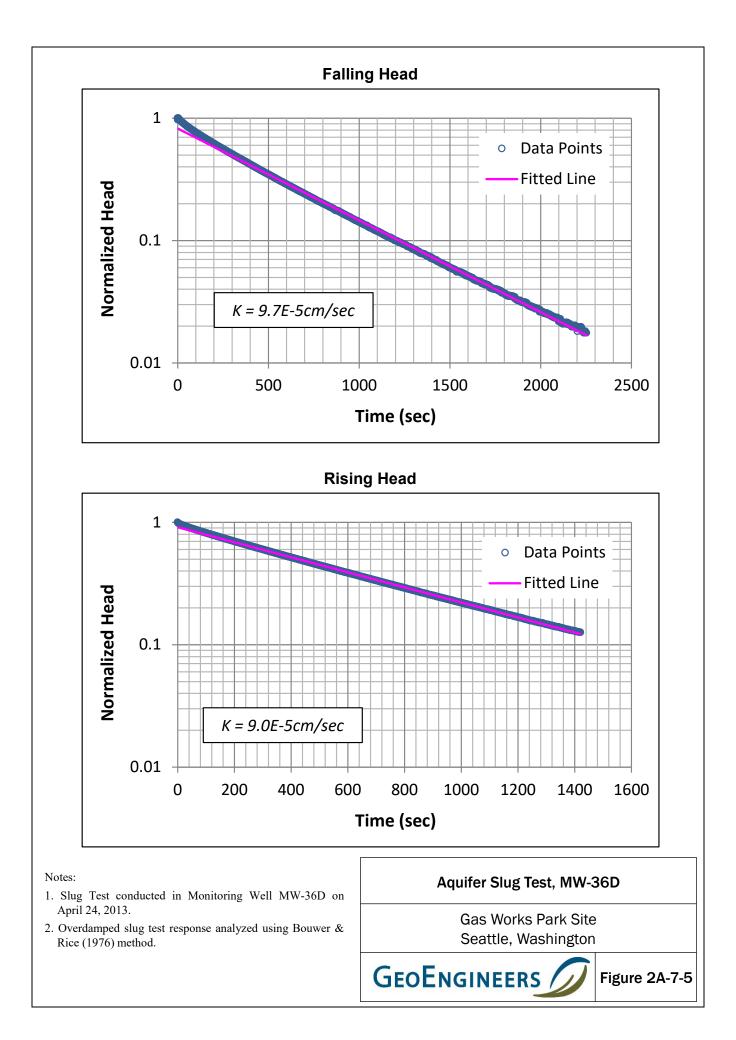

Notes:

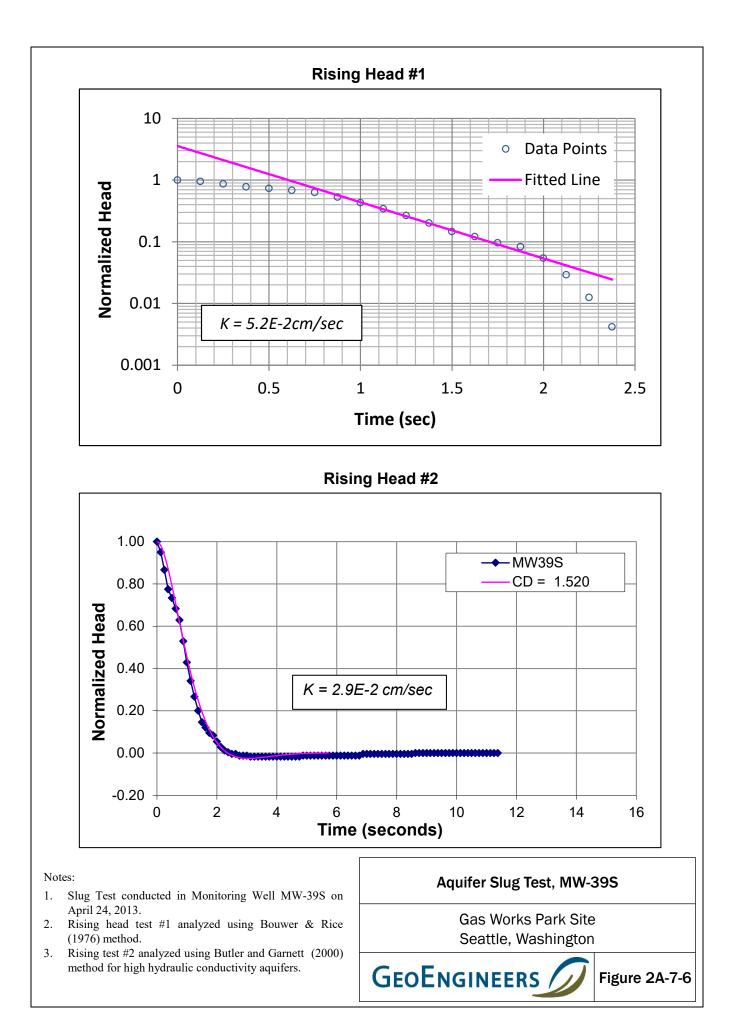

cm/sec = centimeters per second


Hydraulic conductivity was estimated using the Bouwer and Rice (1976) method or the Butler and Garnett (2000) method.

Falling head data were not analyzed in wells MW-33S and MW-39S because the water table occurred within the screened interval.







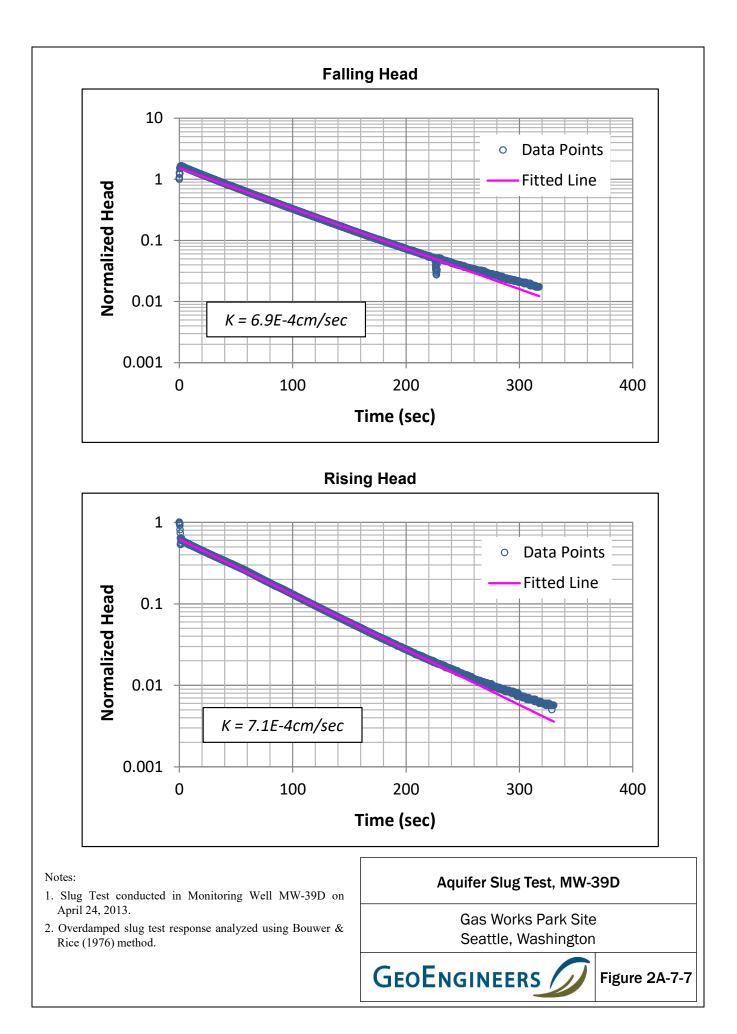

spans the water table.

Figure 2A-7-3

ATTACHMENT 2A-8 SI NAPL Baildown Testing

Table of Contents

1.0	LNAPL BAILDOWN TESTING	2A-8-1
2.0	BAILDOWN TEST METHODOLOGY	2A-8-1
3.0	BAILDOWN TEST RESULTS	2A-8-1
4.0	REFERENCES	2A-8-2

LIST OF FIGURES

Figure 2A-8-1. MW-09 Baildown Test - LNAPL and Groundwater Elevations

ATTACHMENT 2A-8 MW-09 LNAPL BAILDOWN FIELD PROCEDURES, METHODOLOGY, RESULTS

1.0 LNAPL BAILDOWN TESTING

Baildown tests in unconfined aquifers are commonly evaluated using the Bouwer and Rice method for groundwater slug tests (Bouwer and Rice 1976, Bouwer 1989). The Bouwer and Rice slug test analytical solution has been modified to estimate light nonaqueous phase liquid (LNAPL) transmissivity following one or more slug withdrawals (Huntley 2000, Kirkman 2012). LNAPL transmissivity is a measure of the potential flux of LNAPL per unit drawdown, or the volume of LNAPL travelling through a unit width of an aquifer per unit time per unit drawdown (units of length squared per time).

Based on the modified method, the purpose of the testing was twofold:

- Empirically and quantitatively evaluate the transmissivity of LNAPL in the geologic formation, and
- Assess the potential recoverability of LNAPL.

2.0 BAILDOWN TEST METHODOLOGY

A baildown test was conducted in well MW-09 on April 29, 2013, by removing LNAPL from the well, and measuring and recording the LNAPL recovery and associated groundwater response following removal of the LNAPL. Both LNAPL-air and LNAPL-water interfaces were measured following LNAPL removal. A hydraulic pressure transducer with datalogging capabilities was installed in the well to monitor groundwater pressure (elevation) changes during the early portion of the recovery period. Measurements continued frequently (once per minute gradually reducing in frequency to once per hour) on April 29 following removal of LNAPL, but NAPL recovery was slow. To observe long-term response and changes to LNAPL thickness in the well, it was necessary to conduct periodic measurements until October 14. The baildown field procedures, which are based on the methodology of Lundy (2002), are described in the work plan for the 2013 Supplemental Investigation (SI) (GeoEngineers 2013); results of the SI are presented as Appendix 2A to the remedial investigation (RI) report.

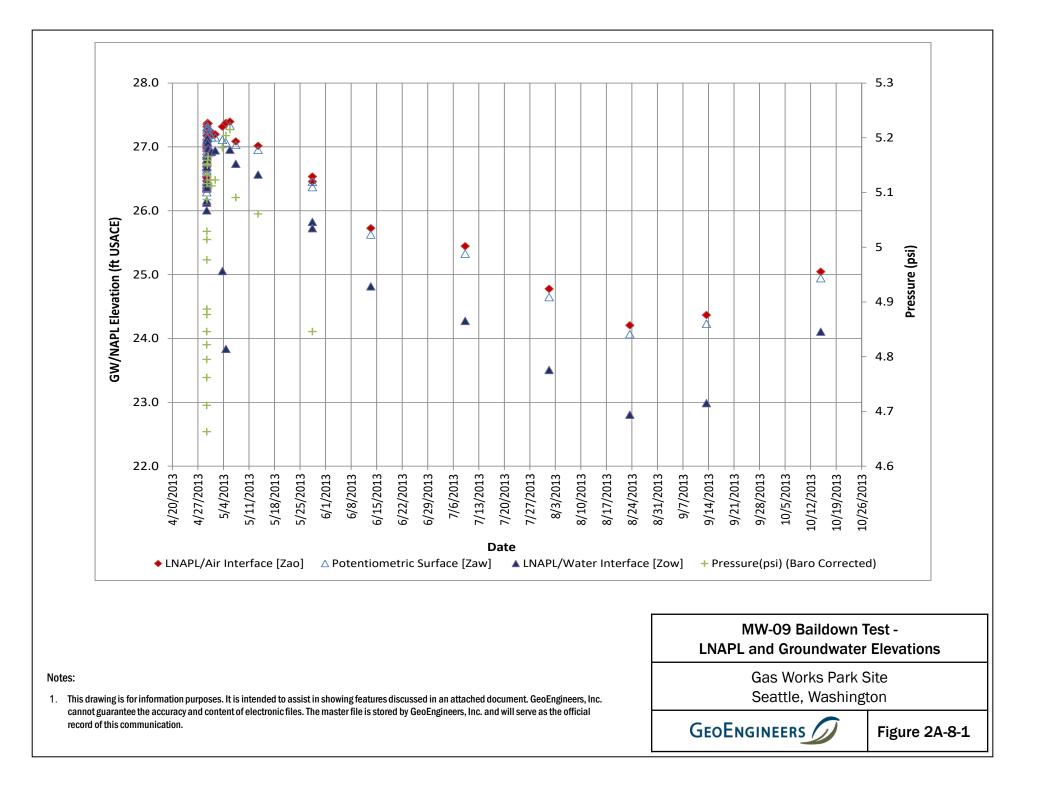
3.0 BAILDOWN TEST RESULTS

One baildown test was performed in well MW-09 to estimate the LNAPL transmissivity (T_n). The LNAPL thickness (volume) in MW-09 prior to the baildown test was 1.55 feet (0.25 gallons), which is considered a marginal LNAPL thickness for conducting a baildown test; a 1-foot thickness is generally considered the minimum for observing response and analyzing baildown test data. NAPL thicknesses in other wells at the Site, as measured during the April 2013 SI, were less than 1 foot, too thin for baildown testing. Following the removal of LNAPL from MW-09, the LNAPL thickness was 0.31 feet, with a volume of 0.050 gallons remaining in the well at the start of recovery monitoring. LNAPL-air and LNAPL-groundwater interface measurements from the April 2013 baildown test are shown in Figure 2A-8-1; transducer pressure measurements and groundwater potentiometric surface elevations are also shown.

Data from the MW-09 baildown test were not considered usable for transmissivity estimates. The small changes in LNAPL drawdown and LNAPL thickness precluded use of the method of analysis for the purpose intended. In addition, LNAPL recovery into the well was not consistent. For example, after LNAPL was removed from the well, the LNAPL thickness was 0.31 feet but fluctuated up to a maximum of 0.78 feet before dropping to less than 0.05 feet at the end of monitoring on April 29. The maximum thickness of LNAPL observed in MW-09 during recovery monitoring was 1.37 feet on August 23, 2013, which is equal to a volume of 0.22 gallons of LNAPL recovery since the baildown test was conducted on April 29, 2013.

The theoretical response of LNAPL in a small-diameter monitoring well after baildown was not observed. Possible explanations include fluctuating thickness of free LNAPL (i.e., thickness in formation capable of movement), insufficient LNAPL, questionable well construction or age of well (the well was constructed in 1986 and may not be up to par with today's construction standards), and LNAPL transmissivities that were too low to measure by the selected methods of analysis (Huntley 2000, Kirkman 2012).

4.0 REFERENCES


Bouwer, H. 1989. "The Bouwer and Rice Slug Test – An Update." Ground Water 27 (3):5.

Bouwer, H., and R.C. Rice. 1976. "A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells." *Water Resources Research* 12 (3):5.

GeoEngineers, Inc. 2013. Supplemental Investigation Work Plan, Gas Works Park Site, Seattle, Washington.

- Huntley. 2000. "Analytic Determination of Hydrocarbon Transmissivity from Baildown Tests, Ground Water." 38 (1).
- Kirkman. 2012. Refinement of Bouwer-Rice Baildown Test Analysis, Ground Water Monitoring & Remediation.
- Lundy, D.A. 2002. Well Baildown Protocols for Determining LNAPL Transmissivity and Conductivity. In API Interactive LNAPL Guide. Vol. 2.

ATTACHMENT 2A-9 SI Data Validation Memos and Lab Data Packages

SUB-ATTACHMENT 2A-9.1 Data Validation Memos

Data Validation Report

Plaza 600 Building, 600 Stewart Street, Suite 1700, Seattle, WA 98101, Telephone: 206.728.2674, Fax: 206.728.2732

www.geoengineers.com

Project:	PSE North Lake Union – 2013 Supplemental Upland Investigation (Soil)
File:	00186-846-01
Date:	August 19, 2013
Lab Report:	WJ09, WJ66, WJ79, WJ80, WK21, WK22, WL88, WY52, and WZ75

This report presents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2A validation (USEPA Document 540-R-08-005; USEPA, 2009) of analytical data from the analyses of soil boring samples obtained from the Supplemental Upland Investigation at the PSE North Lake Union site. Samples obtained were submitted to Analytical Resources, Incorporated (ARI) of Tukwila, Washington for chemical analysis of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds by method SW8260C, polycyclic aromatic hydrocarbons (PAHs) and Alkylated PAHs by method SW8270-SIM, poly-chlorinated biphenyls (PCBs) by method SW8082, and arsenic by EPA Method 200.8.

The objective of this data quality assessment was to review laboratory analytical procedures and QC results to evaluate whether the samples were analyzed using well-defined and acceptable methods that provide quantitation limits below applicable regulatory criteria, the precision and accuracy of the data are well defined and sufficient to provide defensible data, and the quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

ARI Sample Delivery Groups (SDGs; noted above) were reviewed for the following quality control (QC) elements:

- Chain of Custody
- Holding Times
- Additional/Follow-up Analyses
- Surrogates/Labeled Compounds
- Method Blanks, Equipment Rinsate Blanks, and Trip Blanks
- Laboratory Control Samples
- Matrix Spikes/Matrix Spike Duplicates
- Laboratory and Field Duplicates

DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in two USEPA documents: USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA, 2010) and USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 2008).

Data Validation Report August 19, 2013 Page 2

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical reports. No transcription errors were found, and the appropriate signatures were applied. There were no anomalies mentioned in the sample receipt forms, as the samples were transported to the laboratory at the appropriate temperatures of between 2 and 6 degrees Celsius, except in cases where the samples were transported directly to the laboratory from the field. In these cases, the laboratory recorded temperatures greater than 6 degrees Celsius. No action was taken because the samples were received by the laboratory within 12 hours of sampling.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses, with the following exceptions:

■ **SDG WK21** (BTEX): Samples GEI-13-13-16, GEI-13-23.5-24.5, GEI-13-25.0-25.5, and GEI-1-16.5-17.0 were analyzed 1 day outside of the holding time of 14 days. The positive results and reporting limits for non-detected compounds were qualified as estimated (J/UJ).

Additional/Follow-up Analyses

SDGs WY52 and WZ75: Additional arsenic analyses (by EPA 200.8) were requested for samples that had been archived and refrigerated by the laboratory upon delivery in late March 2013. The metals holding time of 6 months had not expired for the following samples, and the laboratory proceeded to report these results as two SDGs.

MW36S-22.5-23	MW37S-13.5-14.5	GEI-3-16-17
GEI-4-15.0-16.0	GEI-5-10-10.5	GEI-3-22-23
GEI-4-20.0-21.0	GEI-5-22-23	

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits, with the exceptions below:

SDGs WJ09, WJ66, WJ79, WJ80 (Alkylated PAHs/Regular PAHs): Due to the inherently high concentrations of target analytes in this sampling event, several soil samples had to be diluted by the laboratory. For the purposes of validation, any sample diluted at least 10 fold is considered to have the spiked surrogates diluted to levels which are lower than the calibration range of the instrument used for analysis and should not be relied upon as a measurement of accuracy.

For this reason, there were no surrogate recoveries reported in the re-analyzed/dilutions of several samples in this sampling event. In each case, the absence of surrogate recoveries was found to be

within the realm of normal laboratory procedure for diluted samples in order to accommodate high concentrations of target analytes, and no qualifiers were necessary.

In almost all cases, the laboratory reported the samples that required dilution multiple times in order to achieve the lowest possible reporting limits for any target analytes that did not require dilution. For this reason, only the target analytes that exceeded the calibration range from each initial analysis were qualified as Do-Not-Report (DNR). Correspondingly, all other analytes were qualified as Do-Not-Report (DNR) in the more diluted analysis in order to avoid the redundant reporting of data.

SDG WK21 (BTEX): The %R values for d4-1,2-dichloroethane and d4-1,2-dichlorobenzene exceeded the control limits in Sample DUP3-040113. The sample was re-analyzed at a medium level with no detections at higher reporting limits. The positive results for all target analytes were qualified as estimated (J) in the initial analysis while the reporting limits were labeled as Do-Not-Report in the medium level analysis.

The %R value for d4-1,2-dichlorobenzene exceeded the control limit in Sample GEI-13-8-9.5. The sample was re-analyzed at a medium level with no detections at higher reporting limits. Since there were 3 other surrogate %R values within the control limits for this sample no action was taken for this outlier. The reporting limits were labeled as Do-Not-Report in the medium level analysis.

Method Blanks, Trip Blanks, and Equipment Rinsate Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency. None of the analytes of interest were detected in any of the method blanks, with the exceptions below:

- SDG WJ09 (PAHs): There was a positive result for naphthalene in the water method blank extracted on 3/30/13 that was less than the contract required quantitation limit. The positive result for naphthalene was qualified as not detected (U) in the associated Sample RINSE-032513.
- SDG WJ79 (PAHs): There was a positive result for naphthalene in the soil method blank extracted on 4/11/13 that was greater than the contract required quantitation limit. The positive result for naphthalene was qualified as not detected (U) in the associated Sample GEI-10-2-3. All other associated samples exhibited positive concentrations which were greater than 5 times the amount found in the method blank. No further action was required.
- SDG WL88 (PAHs): There was a positive result for naphthalene in the soil method blank extracted on 4/19/13 that was greater than the contract required quantitation limit. The positive result for naphthalene was qualified as not detected (U) in the associated Sample MW32D-43.5-44.5. All other associated samples exhibited positive concentrations which were greater than 10 times the amount found in the method blank after sample dilutions were taken into account. No further action was required.

Trip blanks are analyzed to provide an indication as to whether there has been any cross-contamination in the transportation process. Seven trip blanks were collected for this sampling event: TRIP BLANK-032613,

Data Validation Report August 19, 2013 Page 4

TRIP BLANK-03-27-13, TRIP BLANK_130328, TRIP BLANK-032913, TRIP BLANK-040113, and TRIP BLANK_130412. There were no positive results for any target analytes in these blanks.

Equipment rinsate blanks are analyzed to provide an indication as to whether field decontamination and sampling procedures effectively prevent cross-contamination in field activities. Four equipment rinsate blanks were collected for this sampling event: RINSE-032513, RINSE-032713, RINSE-032913, and RINSATE-040213. There were no positive results for any target analytes in these blanks, with the exceptions below:

- SDG WJ79 (PAHs): There were positive results for naphthalene, phenanthrene, fluoranthene, and pyrene in the equipment blank RINSE-032913 greater than the contract required quantitation limit. However, all the field sample concentrations were greater than 10 times the concentrations in the field blank. No further action was required.
- SDG WK22 (PAHs): There were positive results for all target analytes in the equipment blank RINSE-040213 greater than the contract required quantitation limit. However, all the field sample concentrations were greater than 10 times the concentrations in the field blank. No further action was required.

Matrix Spikes/Matrix Spike Duplicates

Because the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses as a precision check. For some organic analytical methods, a laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample") is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spiked sample".

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference (RPD) values. The frequency requirements were met for all analyses and the %R/RPD values were within the proper control limits, with the exceptions below:

SDG WJ66 (Alkylated PAHs): The laboratory performed an MS/MSD set on Sample GEI-3-16-17. The %R values for several target analytes could not be reported because the parent sample concentrations were greater than four times the amount spiked into the sample. No action was taken.

(Regular PAHs): The laboratory performed an MS/MSD set on Sample GEI-3-27-28. The %R values for naphthalene could not be reported because the parent sample concentration for this compound was greater than four times the amount spiked into the sample. No action was taken.

(Arsenic): The laboratory performed an MS/MSD set on Sample MW35S-4.5-5. The %R value for arsenic was less than the control limit. The positive results for arsenic were qualified as estimated (J)

for Samples GEI-3-2.0-3.0, GEI-3-8-9, GEI-3-11.5-12.0, GEI-4-0.5-1.5, GEI-4-5.5-7.0, GEI-4-10.0-11.0, MW34S-7-8, and MW35S-4.5-5.

SDG WJ79 (Regular PAHs): The laboratory performed an MS/MSD set on Sample GEI-5-15-16. The %R values and the RPD value for naphthalene could not be reported because the parent sample concentrations were greater than four times the amount spiked into the sample. No action was taken.

The laboratory performed an MS/MSD set on Sample GEI-10-6.5-7.5. The %R values for fluoranthene and pyrene could not be reported because the parent sample concentrations were greater than four times the amount spiked into the sample. No action was taken.

- SDG WK21 (Regular PAHs): The laboratory performed an MS/MSD set on Sample GEI-2-16.0-17.0. The %R values for phenanthrene, fluoranthene, and pyrene could not be reported because the parent sample concentrations were greater than four times the amount spiked into the sample. No action was taken.
- SDG WK22 (Regular PAHs): The laboratory performed an MS/MSD set on Sample GEI-14-14.5-15.5. The %R values for all target analytes were not assessed because the parent sample concentrations for several compounds exceeded the linear calibration of the instrument. No action was taken.

The laboratory performed an MS/MSD set on Sample GEI-14-37-38. The %R values for naphthalene and phenanthrene were not reported because the parent sample concentrations were greater than four times the amount spiked into the sample. No action was taken.

Laboratory Control Samples

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the RPD values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits.

Laboratory Duplicates (Arsenic only)

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory, and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD as a measurement of precision.

Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met, with the following exception:

Data Validation Report August 19, 2013 Page 6

- SDG WJ09 (Arsenic): The laboratory performed an internal duplicate on Sample MW39D-0.5-1.5. The RPD value for arsenic was greater than the control limit of 20%. The positive results for arsenic were qualified as estimated (J) in all associated batched Samples: MW37S-0.5-1, MW37S-7.5-8, MW38S-0.5-1, MW38S-10-11, MW39D-0.5-1.5, MW39D-08-10, and MW39D-17-18.
- SDG WJ66 (Arsenic): The laboratory performed an internal duplicate on Sample MW35S-4.5-5. The RPD value for arsenic was greater than the control limit of 20%. The positive results for arsenic were qualified as estimated (J) in all associated batched Samples: GEI-3-2.0-3.0, GEI-3-8-9, GEI-3-11.5-12.0, GEI-4-0.5-1.5, GEI-4-5.5-7.0, GEI-4-10.0-11.0, MW34S-7-8, and MW35S-4.5-5.

Field Duplicates

Field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. As mentioned above for the laboratory duplicates the RPD is used as the criteria for assessing precision, if one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD as a measurement of precision.

The following field duplicate sample sets were submitted for this sampling event:

MW33S-13-14/DUP1-032813

The RPD/absolute difference values for acenaphthene, acenaphthylene, benzo(a)anthracene, fluorene, naphthalene, and phenanthrene, and Total PAHs exceeded the control limits in this sample set, the results were qualified as estimated (J) in both samples.

MW36D-23-24/DUP-2-032813

The RPD/absolute difference values for all target analytes exceeded the control limits in this sample set, the results were qualified as estimated (J) in both samples.

GEI-13-8-9.5/ DUP3-040113

The RPD/absolute difference values for fluoranthene and naphthalene exceeded the control limits in this sample set, the results were qualified as estimated (J) in both samples.

Reporting Limits

The arsenic target practical quantitation limits listed in the Quality Assurance Project Plan (QAPP) were not met by the laboratory. The QAPP presents a value of 0.1 mg/kg whereas the laboratory used a value of 0.2 mg/kg as the reporting limit. The associated samples in this sampling event exhibited positive results which were greater than 0.1 mg/kg, therefore no further action was taken for this discrepancy.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogates, LCS/LCSD, and MS/MSD %R values, with the exceptions noted above. Precision was acceptable, as demonstrated by the laboratory duplicate, field duplicates, LCS/LCSD and MS/MSD RPD and absolute difference values, with the exceptions noted above.

Data Validation Report August 19, 2013 Page 7

Data should be qualified as estimated because of holding time outliers, surrogate %R outliers, laboratory and field duplicate precision, MS/MSD %R outliers, and method blank contamination. See Table 1 for a summary of qualifiers.

No data points were rejected.

Based on the data quality review, it is our opinion that the analytical data, including data qualified as noted above, are of acceptable quality for their intended use.

REFERENCES

- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," OSWER 9240.1-51, EPA 540-R-10-011. January 2010.
- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.
- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

Data Validation Report

Plaza 600 Building	g, 600 Stewart Street, Suite 1700, Seattle, WA 98101, Telephone: 206.728.2674, Fax: 206.728.2732 www.geoengineer	s.com
Project:	PSE North Lake Union – 2013 Supplemental Upland Investigation (Groundwater and NAPL; IDW)	
File:	00186-846-01	
Date:	July 11, 2013; December 5, 2013	

Lab Report(s): WM33, WM34, WM86, WN07, WN33, WN34, WN81, WN82, XK23, XK28, XK60, XK78, XK94

This report presents the results of a United States Environmental Protection Agency (USEPA)-defined Stage 2A validation (USEPA Document 540-R-08-005; USEPA, 2009) of analytical data from the analyses of groundwater and NAPL samples obtained from the Supplemental Upland Investigation at the Gas Works Park Site, and associated investigation-derived waste characterization composite samples (soil and groundwater). Samples obtained were submitted to Analytical Resources, Incorporated (ARI) of Tukwila, Washington for chemical analysis of Volatile Organic Compounds (VOCs), benzene, toluene, ethylbenzene, and xylene (BTEX) compounds by method SW8260C, polycyclic aromatic hydrocarbons (PAHs) and Alkylated PAHs by method SW8270-SIM, and arsenic by method EPA 200.8. IDW samples were analyzed for RCRA 8 total metals (water), and TCLP benzene and TCLP RCRA 8 metals (soil).

The objective of this data quality assessment was to review laboratory analytical procedures and QC results to evaluate whether the samples were analyzed using well-defined and acceptable methods that provide quantitation limits below applicable regulatory criteria, the precision and accuracy of the data are well defined and sufficient to provide defensible data, and the quality assurance/quality control (QA/QC) procedures utilized by the laboratory meet acceptable industry practices and standards.

The ARI Sample Delivery Groups (SDGs) noted above were reviewed for the following quality control (QC) elements:

- Chain of Custody
- Holding Times
- Surrogates/Labeled Compounds
- Method and Trip Blanks
- Laboratory Control Samples
- Matrix Spikes/Matrix Spike Duplicates
- Reporting Limits

LABORATORY AND FIELD DUPLICATES DATA QUALITY ASSESSMENT SUMMARY

The results for each of the QC elements are summarized below. The data assessment was performed using guidance in two USEPA documents: USEPA Contract Laboratory Program National Functional Guidelines for

Inorganic Data Review (USEPA, 2010) and USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 2008).

It should be noted that there were two sample names that were changed internally to Geoengineers after the samples were received by the laboratory:

IDW-3-130424 (Chain-of-Custody) was changed to TDW-3-130424, and TPW01-130417 (Chain-of-Custody) was changed to TDW01-130417

These changes were made in the Geoengineers database, while maintaining the original sample names along with a description of the changes. No other action was taken other than to note these discrepancies here.

Chain-of-Custody Documentation

Chain-of-custody forms were provided with the laboratory analytical reports. No transcription errors were found, and the appropriate signatures were applied. There were no anomalies mentioned in the sample receipt forms, as the samples were transported to the laboratory at the appropriate temperatures of between 2 and 6 degrees Celsius, except in cases where the samples were transported directly to the laboratory from the field. In these cases, the laboratory recorded temperatures greater than 6 degrees Celsius. No action was taken because the samples were received by the laboratory within 12 hours of sampling.

Holding Times

The holding time is defined as the time that elapses between sample collection and sample analysis. Maximum holding time criteria exist for each analysis to help ensure that the analyte concentrations found at the time of analysis reflect the concentration present at the time of sample collection. Established holding times were met for all analyses.

Surrogate Recoveries

A surrogate compound is a compound that is chemically similar to the analytes of interest, but unlikely to be found in any environmental sample. Surrogates are used for organic analyses and are added to all samples, standards, and blanks to serve as an accuracy and specificity check of each analysis. The surrogates are added at a known concentration and percent recoveries are calculated following analysis. All surrogate recoveries for field samples were within the laboratory control limits, with the exceptions below:

All SDGs (Alkylated PAHs/Regular PAHs): Due to the inherently high concentrations of target analytes in this sampling event, several water samples had to be diluted by the laboratory. For the purposes of validation, any sample diluted at least 10 fold is considered to have the spiked surrogates diluted to levels which are lower than the calibration range of the instrument used for analysis and should not be relied upon as a measurement of accuracy.

For this reason, there were no surrogate recoveries reported in the re-analyzed/dilutions of several samples in this sampling event. In each case, the absence of surrogate recoveries was found to be within the realm of normal laboratory procedure for diluted samples in order to accommodate high concentrations of target analytes, and no qualifiers were necessary.

In almost all cases, the laboratory reported the samples that required dilution multiple times in order to achieve the lowest possible reporting limits for any target analytes that did not require dilution. For this reason, only the target analytes that exceeded the calibration range from each initial analysis were qualified as Do-Not-Report (DNR). Correspondingly, all other analytes were qualified as Do-Not-Report (DNR) in the more diluted analysis in order to avoid the redundant reporting of data.

Method Blanks and Trip Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. Method blanks were analyzed with each batch of samples, at a frequency of one per twenty samples. For all sample batches, method blanks for all applicable methods were analyzed at the required frequency. Analytes of interest were not detected above the contract required quantitation limits in any of the method blanks, with the exceptions below. If a qualifier was applied due to blank contamination, the effective reporting limit for that compound was elevated to the amount of the positive result.

- SDG WM33 (Regular PAHs): There was a positive result for naphthalene in the water method blank extracted on 4/19/13. The associated sample results for naphthalene were greater than 5 times the concentration found in the method blank. No further action was taken.
- SDG WM34 /WM86 (Regular PAHs): There were positive results for naphthalene in the water method blanks extracted on 4/19/13 and 4/22/13 (filtered) that were greater than the contract required quantitation limits. The associated sample results for naphthalene were greater than 5 times the concentration found in the method blank. No further action was taken.
- SDG WN07 (VOCs): There was a positive result for acetone in the NAPL method blank analyzed on 4/29/13 that was greater than the contract required quantitation limit. There was no positive result for this compound in the associated NAPL sample. No further action was required.

(Regular PAHs): There was a positive result for naphthalene in the water method blank analyzed on 4/23/13 that was greater than the contract required quantitation limit. However, all the associated field sample concentrations were greater than 5 times the concentrations in the field blank, no further action was required.

There was a positive result for naphthalene in the water method blank analyzed on 4/24/13 that was greater than the contract required quantitation limit. The positive result for naphthalene was qualified as not detected (U) in the associated Sample MLS01-3-130418.

(Metals): There was a positive result for barium in the TCLP method blank analyzed on 4/29/13 that was greater than the contract required quantitation limit. However, the associated field sample concentration was greater than 5 times the concentration in the prep blank. No further action was required.

- **SDG WN33** (Regular PAHs): There was a positive result for naphthalene in the water method blank extracted on 4/25/13 that was greater than the contract required quantitation limit. The positive result for naphthalene was qualified as not detected (U) in the associated Sample RW01-130419.
- **SDG WN81** (Regular PAHs): There was a positive result for naphthalene in the water method blank extracted on 4/30/13 that was greater than the contract required quantitation limit. The positive

results for naphthalene were qualified as not detected (U) in the associated Samples MW13-130424, MW37S-130424 and MW38S-130424.

- SDG XK23 (Regular PAHs): There was a positive result for naphthalene in the water method blank extracted on 10/21/13 that was greater than the contract required quantitation limit. However, the associated field sample concentrations were greater than 5 times the concentration in the prep blank. No further action was required.
- SDG XK60 (Regular PAHs): There was a positive result for naphthalene in the water method blank extracted on 10/22/13 that was greater than the contract required quantitation limit. However, the associated field sample concentrations were greater than 5 times the concentration in the prep blank. No further action was required.
- SDG XK78 (Regular PAHs): There was a positive result for naphthalene in the water method blank extracted on 10/23/13 that was greater than the contract required quantitation limit. The positive results for naphthalene were qualified as not detected (U) in the associated samples MW-23-131017, TSW-3-131018, FILTER BLANK, MW-23-131017-F, TSW-3-131018-F, MW-32D-131018-F.

Trip blanks are analyzed to provide an indication as to whether there has been any cross-contamination in the transportation process. Six trip blanks were collected for this sampling event: TRIP BLANKS_130419, TRIP BLANKS_130424, Trip Blank #1, Trip Blank #2, Trip Blank #3, and TRIP BLANKS_131016. There were no positive results for any target analytes in these blanks.

In the fall sampling event, one FILTER BLANK (sampled on 10/17/13) was analyzed to provide an indication as to whether there was any contamination through the PAH sample filters. After method blank contamination qualification was applied to all associated samples, there was a positive result found for acenaphthene in this filter blank. For this reason, the positive result for acenaphthene was qualified as not detected (U) in the associated Sample MW-32D-131018-F.

Matrix Spikes/Matrix Spike Duplicates

Because the actual analyte concentration in an environmental sample is not known, the accuracy of a particular analysis is usually inferred by performing a matrix spike (MS) analysis. One aliquot of sample is analyzed in the normal manner, and then a second aliquot of the sample is spiked with a known amount of analyte concentration and analyzed. From these analyses, a %R is calculated. Matrix spike duplicates (MSD) analyses are generally performed for organic analyses as a precision check. For some organic analytical methods, a laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) sample set is performed in lieu of a MS/MSD analysis.

For inorganics methods, the matrix spike (referred to as a "spiked sample") is typically followed by a post spike sample if any element recoveries were outside the control limits in the "spiked sample".

Matrix spike analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for matrix spikes and laboratory control samples are specified in the laboratory documents as are the relative percent difference (RPD) values. The frequency requirements were met for all analyses and the %R/RPD values were within the proper control limits, with the exceptions below:

SDG WM33 (VOCs): The laboratory performed an MS/MSD on Sample MW18-130415-DNAPL. The %R values for acetone were greater than the control limits in both the MS and MSD. The outliers were indicative of a high bias. As there was no positive result for acetone in the parent sample, no action was taken.

Laboratory Control Samples

A laboratory control sample is essentially a blank sample that is spiked with a known amount of analyte concentration and analyzed. It is to be treated much like a matrix spike, without the possibility for matrix interference. As there is no actual sample matrix in the analysis, the analytical expectations for accuracy and precision are usually more rigorous and qualification would apply to all samples in the batch, instead of the parent sample only.

Laboratory control sample analyses should be performed once per analytical batch or every twenty field samples, whichever is more frequent. The recovery criteria for laboratory control samples are specified in the laboratory documents as are the RPD values. The frequency requirements were met for all analyses, and the %R/RPD values were within the proper control limits, with the exceptions below.

SDG WM33 (VOCs): The %R values for acrolein and bromoform were less than the control limits in both the LCS/LCSD extracted on 4/19/13. The only field sample associated with this QC batch was a Trip Blank. No further action was taken.

(Regular PAHs): The R values for naphthalene were greater than the control limits in both the LCS/LCSD extracted on 4/19/13. The associated positive results for this compound were qualified as estimated (J) in Samples MLS04-3-130415 and MLS04-5-130415.

- SDG WM34 (Regular PAHs): The %R values for naphthalene were greater than the control limits in both the LCS/LCSD extracted on 4/19/13. The associated positive results for this compound were qualified as estimated (J) in Samples MLS04-2-130416, MLS05-1-130416, MLS05-2-130416, MLS05-3-130416, MLS05-4-130416, MLS05-5-130416, MLS06-130416, MLS06-2-130416, MLS07-1-130416, MLS07-2-130416, MLS07-4-130416, CMP01-130416, DUP-130416, DW06-130416.
- **SDG XK78** (Regular PAHs): Seven RPD values were greater than the control limits in the LCS/LCSD extracted on 10/28/13. Upon further inspection it was found that all %R values for each of these outliers were found to be within the control limits. No further action was taken for these outliers.

Laboratory Duplicates (Arsenic and PAH-NAPL sample only)

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory, and the RPD between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD as a measurement of precision.

Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met.

Field Duplicates

Field duplicate samples were collected and analyzed along with the reviewed sample batches. The duplicate samples were analyzed for the same parameters as the associated parent samples. As mentioned above for the laboratory duplicates the RPD is used as the criteria for assessing precision, if one or more of the samples used has a concentration greater than five times the reporting limit for that sample, the absolute difference is used instead of the RPD as a measurement of precision.

The following field duplicate sample sets were submitted for this sampling event:

MLS05-4-130416/DUP-130416

The RPD/absolute difference values for all target analytes were within the control limits in this sample set, no precision qualifiers were applied to either sample.

MLS02-1-130418/DUP-130418

The RPD/absolute difference values for all target analytes were within the control limits in this sample set, no precision qualifiers were applied to either sample.

MW30-130419/DUP-130419

The RPD/absolute difference values for all target analytes were within the control limits in this sample set, no precision qualifiers were applied to either sample.

MLS02-1-130418/DUP-130418

The RPD/absolute difference values for benzo(a)anthracene, benzo(a)pyrene, Total benzofluoranthenes, benzo(k)fluoranthene, benzo(g,h,i)perylene, indeno(1,2,3-cd)pyrene, chrysene, and carcinogenic PAH TEQ values were outside of the control limits in this sample set, the positive results for these compounds were qualified as estimated (J) in both samples.

MW-40S-131016/DUP-131016 and MW-40S-131016-F/DUP-131016-F

The RPD/absolute difference values for all target analytes were within the control limits in both sample sets, no precision qualifiers were applied to any sample.

TSW-2-131018/DUP-131018 and TSW-2-131018-F/DUP-131018-F

The RPD/absolute difference values for acenaphthene, fluorene, and naphthalene were outside of the control limits in the first sample set, the positive results for these compounds were qualified as estimated (J) in both samples.

The RPD value for acenaphthene was outside of the control limit in the second sample set, the positive results for this compound was qualified as estimated (J) in both samples.

Reporting Limits

A great amount of the individual samples from this sampling event exhibited a high concentration of target analytes which required the laboratory to dilute these samples at factors of 100 times or more. Oftentimes, the target practical quantitation limits listed in the Quality Assurance Project Plan (QAPP) were not met by the laboratory because of the inherent necessity of internal laboratory dilutions.

Typically, the significance of elevated reporting limits was outweighed by the usable concentrations of other compounds which would exceed the linear calibration range of the analytical instrumentation if left undiluted.

OVERALL ASSESSMENT

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogates, LCS/LCSD, and MS/MSD %R values, with the exceptions noted above. Precision was acceptable, as demonstrated by the laboratory duplicate, field duplicates, LCS/LCSD and MS/MSD RPD and absolute difference values, with the exceptions noted above.

Data should be qualified as estimated because of LCS/LCSD %R outliers, field duplicate precision outliers, and qualified as not detected because of method blank contamination. See Tables 1 and 2 for a summary of qualifiers on Spring 2013 and Fall 2013 results.

No data points were rejected.

Based on the data quality review, it is our opinion that the analytical data, including data qualified as noted above, are of acceptable quality for their intended use.

ATTACHMENTS

Table 1 – Summary of Data Qualifiers for Spring 2013 Groundwater SamplingTable 2 - Summary of Data Qualifiers for October 2013 Groundwater Sampling

REFERENCES

- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review," OSWER 9240.1-51, EPA 540-R-10-011. January 2010.
- U.S. Environmental Protection Agency (USEPA). "Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review," EPA-540-R-08-01. June 2008.
- U.S. Environmental Protection Agency (USEPA). "Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use," EPA-540-R-08-005. January 2009.

SUB-ATTACHMENT 2A-9.2 Laboratory Data Packages

Provided on DVD